 25 Cents
canado 3o:

Out of Tine

LARGEST AND BAST SHORT.WAVE STATION LIST IN PRINT - PHOTOS OF SWW ARTISTS WHERE TO FND SW STATIONS ON YOUR DIAL O WORLD SHORT-WAVE STATION MAP

NATION-WIDE TESTIMONIALS PRAISE THIS SET

CONTINUOUS BANDSPREAD

on all bands

D
THE OFFICIAL
O ER LE bANDSPREAD
5 -TUBE SHORTWAVE RECEIVER

Gentlemen:
i received your "Official Inoerle A. C. $\because, "$ today, after being adjusted by sour engineers. I have had the receiver turned on less than 10
minutes and at the present time I am listening to the American Hour coming from IRA, Rome, Italy. It is a wonderful relief to listen in without hearing a lot of noise. wo uk for making this time thank you ever so much for mach I this adjustment. You cannot tell how mach appreciate this favor. You can certainly count on me as one of your boosters and 1 shall spread your name and products to all of my friends. Dear Sir:
Just a letter of recommendation concerning the Doerle A. C. ${ }^{5}$. What a set, oh boy, for bringing in the DX night after night. I receive about 10 stations a week that are new programs, besides 50 I already received. Ihesides I logyed 700 hams. Stations that aren't even listen in
call books wive me a thrill. I only use a 20 ft . antenna wrapped around a chimney.

FRANCIS KMEC. Allentown. Pa.
Gentlemen;
This will acknowledge receipt of my Doerle shortwave receiver. This 1935 model is the smoothest and best operating set I have ever operated, both on amateur and foreign recenlion. I have heard practically all of the South American stations, Russia, Spain, and of course, France, Germany, Japan, and lots of others. This little receiver is just as you say it is-
the best for the money-and I have seen sets selling for lots more which do nat come within a mile of this Doerle.
a mile of habody wants to know if you people will treat them white. just let me know and I will tell absolutely yes.
S. L. SMITH, Colorado, Texas, Gentlemen: well satisfied with the set and here are some of IXX stations which I have reheaved on it: On 20 meter coil: E AQ Madrid. Spain ; PRF5-Rio Grander, Brazil. S. A.; LSK-Monte Grander, Argentina, S. A.; DIU Germany (MoeGrandee, Argentina, G. A.; England (Daventry) ; ${ }^{\text {nigh }} \mathrm{COH}$-Hasternaus. Cubs. COH-Havana. 49 Meters: DJD--Berlin. Germany: H2-CRI-Guayaquil, South America: "RD-Rome, Italy: DKC and DKF-Germany : XEBT-Mexico City, Mexico
Also many other South American stations more than 36 different states and including Canadian amateur

AUGUSTE THEBERGE, River Edge, N.J.

Doublet Antenna Input or » Standard Antenna Input 8-Low Loss Bakelite Plug-in Coils 15-200 Meters "Fully Shielded Bandspread Dial \#Dynamic Speaker
" Headset Jack
*Beautiful Cabinet

\qquad
BEFORE you buy any other Short-Wave Receiver, be sure to take advantage of our FREE B five day trial offer explained below. Satisfy yourself, in your own home and at your leisure that this is one of the greatest values in radio, and that it DOES have features which are found in more "expensive receivers. on a single chassis and contained in a large handsomely flushed black trakkle rabbet with mated a th speaker grill.
Two tuned stages-regenerative detector. 3 AF stages with powerful 41 pentode output and perfectly matched dymamie speaker; all these features contribute to the great power and fine performa wave receiver. CONTINIOOS RANDSPREAD ON ALL
Many fine features that you would expect to find in more expensive receivers are incorporated in this "ACE TOPNOTCHEIB" of the entire Doerle line.
Fit her a short-wave doublet or standard antenna may be used. A new antenna-aljuqting selherne permits perfect

LOOK AT THIS DX-QSL LIST!

During its initial test. In New York Pity, this receiver pulled in on its loud speaker, at pood room volume the and W9XF, Chicago; GSC, GSD, GSE, GSF, Daventry, England: DJA, DJB, DJC, DJD, Zeesen. Germany; Hind W9XF, Chicago; GSC, GSO, Ontario; V9DN Quebec: GESDR Montreal; VE9HX Halifax; XETE Mexico City; YUIBC, Y V3BC Caracas; CP5 Bolivia: LSN Buenos Aires; COC Havana: EAQ Madrid; WQO and WEF, testing with the Byrd Expedition and a whole fork of amateurs in prartlidily
The testimonials printed on this page testify that, In actual use, our customer, are attaining even greater success.
 tubes in one), l-37, l-41 power output tubs and 1-80 full-ware rectifier, Two gang tuning condenser:
 List Price $\$ 46.75$ Sot of 2 Broadcast coils $\$ 1.75$ additional

7 PAGES of Instructions and Diagrams Included with each SET

RADIO TRADING CO., IOtA HUDSON ST., NEW YORK

 GentlemenR enclose 8-7-35

FREE

IMPORTANT BUYING GUIDE FOR RADIO DEALERS, SERVICE MEN, EXPERIMENTERS AND
WAVE FANS

32 Pages. Two Colors.

JUNE - JULY, 1935

YOUR HELP WANTED

- In our last issue, I asked our readers to send in their letters for our new department, "The Listener Speaks." These letters hate brought a marvelous response, and we are starting to print them in this issue.

One of the many things that most of our readers were interested in was a complete World Short Hare List of stations, similar to the one we ran in this magazine when it toas published under the name of OFFICIAL SHORT HAVE LOG AVD CALL MAGAZIVE.
We are resuming the publication of this list in the present issue, due to the insistent demand from thousands of readers. It should be noted that this is the only magazine published now which prints such a list. The present list contains ocer 1600 short wate telephone broadcast stations and is as accurate as possible. It should be noted that changes are constantly made by the many governments all orer the world and they are sometimes slow in transmitting this information to us. We, therefore, ask our readers if they will not be kind enough to voluntarily call our attention to any mistakes or omissions which occur in the list.

Remember, this magazine is published ecery sixty days, and in between printing changes always occur, 80 if you hear the calls of a new station not listed, or if you know of any changes that have been made in the calls which we do list, we hope you will be kind enough in the interest of YOUR magazine to send this information to us as soon as you possibly can.

HEGO GERNSBACK,
Editor.

Popular Book Corporation

Editorial and General Offices
99-101 Hudson St., New York, N. Y.

Viditor

HUGO GERNSBACK
Managing Editor
H. WINFIELI) SECOR

Associate Editor

GEORGE W. SHLLART, W2AMN.

OFFICIAL

SHORT-WAVE LISTENER MAGAZINE
('ombined with
OFFICIAL SHORT.WAVE
LOG AND CALL MAGAZINE

Contents...
Articles
Proge Number
Short Wave Beauties From Holland 100
Talking Around the World! 101
When MOSCOW Turns On the Short Waves 102
Short Waves in the Camera's Eye 103
King's Jubilee Carried 'Round the World By Short Waves 104
Danish S W Transmitter 105
New 2-Way Police System Works on 7 Meters 106
New Stations in Latin America, by H. S. Bradley 107
What About Television? by H. W. Secor 108
How to Get Best Results from Your Short Wave Set, by G. W. Shuart 110
Directional Effects of S-W Antennas 111
Doublet Aerials 112
$\$ 3.00$ for Best S-W Hint 113
Foreign Language Alphabets and Numerals 114
Locating S-W Stations in a Jiffy ! 115
Silver Trophy "Prize" for Best "Listening Post" Photo. 116
The Listener Speaks 118
Short-Wave Map of the World 120
Air-Line Distances Over the Surface of the Earth 122
TELEVISION and POLICE Stations 123
Standard Time Zones of the United States 124
Best Short-Wave Stations 125
Grand Short-Wave Station List 128
Calibration Curve Sheets 137
The Listener Asks (Question Box), hy George W. Shuart, W2AMN 138
This magazine is published every other month. The next issue will be out August 15th.

OFFICIAL SHORT WAVE LISTENER MAGAZINE published every other month by Popular Book Corp., 99-101 Hudson St.. New York. N. Y. and entered as second class matter at the Post Office, New York, N. Y., under the act of March 31. 1879. Additional entry, Paterson, N. J. Trademark and copyrights by permission of H. Gernsback, 99 Hudson Street. New York City. Text and illustrations of this magazine are conyright and must not be reproduced without permission. OFFICIAL SHORT LISTENER MAGAZINE is published every other month, six numbers per year. The subacription price is $\$ 1.50$ per year in the United Stater and jossessions ;

Canada and foreign countries, $\$ 1.75$ ner year. Single copies 25 c . Address all contributions for publication to the Editor, OFFICIAL SHORT WAVE LISTENER MAGAZINE, 99-101 Hudson Street, New York, N. Y. Publishers are not responsible for lost manuscripts New York, N. Y. Publishers are not responsible for lost manuscripts
or photographs. Contributions cannot be returned unless authors reor photographs. Contributions cannot be returned unless authors re-
mit full return postage. This magazine is for sale at all principal mit full return mostage. This magazine is for sale at all princinal newstands in the
Brentano's. London and Paris. Printed in U. S. A.

Make all subscription checks payable to Popular Book Corporation. COPYRIGHT, 1935 by H. GERNSBACK.

Netty Blase

- ON cur next trip to Europe we shall make certain to stop at the fanous Philip's short-wave station in Holland, operating under the call PHI. This station has established a very enviable reputation, both for the high quality of its programs and its distance-getting ability.

This famous station first went on the air March 19, 1927 , and one of the principal objects of this station was and is to establish a direct contact between the mother country and its colonies on the other side of the world. The power of the transmitter is $60 \mathrm{~K} . \mathrm{W}$.,

Marietta Serle
which is quite unusual for a short-wave station. The aerial system is of the beam type and radiates principally in two directions. east and west. The principal studios are in Hilversum with a special studio in Amsterdam, a large musie studio in the Hague, with a special music studio at Huizen.

All of the latest news from the mother country is broadcast over the Holland transmitting station to the colonies in the far east, along with entertaining programs.

Transmissions are broadcast

Above-amenz the entertainers heard over the famsus sheri-vare broadcasting station, PH, is Friedl Dotza. daily, except on Tuesdays and Wednesdays, between 12:30 and 15:30 G.M.'工. The program con(Continied on page 141)

Below-Gertrad Wertheim, whose instrumental number: have been greatly enjoyed by short-wave listeners in far parts of the

Olga Welscka lugustra, who has a large following amons short-viave "Fans" both in Furops and co this side of the Arlantic.

Talking Around the World on Short-Waves

A remarkable demonstration was recently conducted in which tuo people in the same building heard each other speak, after their roices had passed around the uorld in opposite directions on short waves.

Bandoeng, Java, the transmitting station from whict the voice waves coming from New York by way of London and Amsterdam, are fung across 9,000 miles of ocean to San Francisco. Left-Dixon, Calif.,-The 9,000 miles of ocean to Jave is spanned by means of the antenna shown, sinply a pair of wires strung on 70 ft . poles.

- THOSE taking part in the remarkable 2-way round-theworld conversation were in adjoining offices in the Long Distance Building, headquarters of the Long Lines Department of the American Telephone \& Telegraph Company, at 32 Sixth Avenue, New York City. From these offices they conversed with each other over a circuit formed of radio and wires which circled the globe.

In their course around the world the voices of the two speakers employ every type of circuit which the art of the telephone engineer has evolved-underground and aerial cable, open wire "carrier," radio and submarine cable. With and Without Wires
From the Long Distance Building the voice of the first speaker passed into an underground cable and thence to an aerial cable that crosses the continent to Omaha. Here it is transferred to a "carrier" circuit, in which the voice impulses are raised to a high frequency and carried
along a channel superposed on a wire line. This circuit carried it to Sacramento, Calif.
At Sacramento the voice entered another cable that carried it through the Transpacific Switchboard at San Francisco, to the short-wave transmitting station at Dixon, Calif. From here it was hurled 9,000 miles across the Pacific to the overseas telephone terminal at Bandoeng in Java, where it was transferred to another short-wave radio circvit than spanned a distance of 7,000 miles to Amsterdam in the Netherlands.

From Amsterdan the voice passed over land wires and submarine cable under the North Sea to the Trunk Exchange in London, and thence to the radio station at Rugby, where it was projected across the Atlantic over a third short-wave channel, picked up at Netcong, N. J., and brought to the Lorg Distance Building over a cable. The voice of the second speaker followed the reverse direction.

Some Astonishing Figures

Specially drawn artist's diagram showing the remarkable path taken by the twoway conversation around the world.

Nina Alexandryscaye. a scloist cf the Radio Committee

- MANY American short-weve listeners have heard the short-あEve broadcast progranss raliate ${ }^{-3}$ by the powerful stations o- U.SS.E -among them RHE and RV1; The accompanying phozos ut ct were kindly sent to the editzl of this publication ky the $4 / l$ Lis. (N. Radio Committee of the U.S:I will undoubtedly poove very 7 esting to our readers.

Short-wave act vities proceed εt a rapid rate in the Sovet Un om. Not only are the short-wave bioaccasting stations encouraged, $=1 t$

Above-Ceorpe Abramov and Soja Muratova, soloists of the Radio Committee, U. S. S. R
Left--l roadcust of an instrumental number by the "Worker"s Circle."
a very important part in directing shipping in that region.

Many interesting short-wave programs have been heard in various parts of the world as broadcast by the U.S.S.R.

List of Short-Wave Stations

Kc. Meters
Khabarovsk
RV-15
$4,273.5 \quad 70.2$
Moscow
VZSPS RV-59 6,000 50
12,000
25
Moscow
ZDKA RV-72 $\quad 6,610.8 \quad 45.38$

SHORT WAVE CAMERA SHOTS
 -

Deople and stations of public interest in the shortwace field have been caught by the camera's eye and we are glood to present these new shots herewith.

Tie Kookaburra bird or laushing jackass, the world-famous bird known to every real short-wav- "Pan" wh, listens to the Australian stations. This parAcutir specimen of the Kookabarra bird famile apparently kot up early and canaht the proverbal worm. The Kookaburra hal worm. The Kookaburra grovs to a good is abuut nine averak

Left-Two photos show respectively the announcer and the broadcasting apparatus at station CT2AJ at Et Miguel, Azores. The announcer is Senor Doedato Soares, who speaks with equal facility in Portuguese, Englith or French. On the transmitter, the tap panel is the modulated power-amplifier; serond panel crystal temperature cone trol and buffer amplifier: the third panel is first speech amplifier, and final panel is firsl speech amplifier, and fina tains relayy and control apparatus Fee quency $4,000 \mathrm{~K} . \mathrm{C}$.

Above-Henry Hall, lirector of the well-knewn B. 13. C.' "cance orchestra" which las entertained thousands a Anericass vis short-waves. Some res ple are still cery susp cious ahou- a wave sets and probabl have the ind that while Eagland tuny be tuned that i:- woulc sound ike a third rime Ancricze station. It would prctant come ls quite a susprize to ramy new short-wave "Fans", when they tur. in England and hear Henry Hall's orcherta playing with the same volume of sonz as an atierica, station's dance orcherta

The taseball season is now ir fall sway and the photo will be of interest m baseball and short-wave "Fans", as shows the wellonoun C.B.S. annoscerTed Hesing, a a hasebsll broadeasi. Tte short-rave apparatus is set up as sisum and redays the annosncer's remark: to a pick-up station which zarries the row on to Solumbia headquarters.

Above-some of the highlights of the Silver Jubilee which were broadcast to the entire world by the British Broadcasting Company.

KING'S JUBILEE Carried Round the World by Short - Wave

- WITH the passing of King Edward, May 6, 1910, just twenty-five years ago, George V became ruler of England, although it wasn't until June 22, 1911 that he was actually crowned in Westminster Abbey. This past May 6 was the twenty-fifth anniversary of his reign over England and its vast world-wide empire. The King's Silver Jubilee was cause for much rejoicing and ce-ebration among his subjects in many climes.

This great fete was broadcast to the entire world via short waves. Among the countries hearing his Majesty's speech were, Australia, South Africa, New Zealand, Celon, India, Kenya, The Argentine, Austria, Brazil, Czechoslovakia, Denmark, Egypt, Finland, France, Holland, Hungary,

Poland, Portugal, Rolmania, Sweden, Switzerland, and the grand old Čnited States.

Many of these countries had representatives at the Jubilee in order that they might broadcast in their native tongue to the populace at home the activities and many scenes of rejoicing. American short-wave listeners had the unique experience of hearing representatives of far-flung British dominions speat in their native tongue by s -w to London, then re-broadcast to America by s-w again.

All this was accomplished through the courtesy of the Bitish Broadcasting Company, who threw open their entire facilities to serve their beloved King.

The world-wide broadeast was one
of the most successful of its kind that the B.B.C. has ever attempted. Here in the United States their programs could be heard as clearly and distinctly as those coming from any local broadcast station. Reports from other parts of the world have indicated that the program and broadcasts were received equally as well and the B.B.C. should be congratulated on their fine work.

In the above photograph we find to the left his Majesty, the King, talking over the microphone to his worldwide Empire; the top left is Big Ben, well-known to all the American shortwave "Fans"; bottom, is the scene taken at the Coronation of King George; center, dome of St. Paul's (Continued on page 141)

Danish S-W Transmitter

Vlew of the transmitting masts of the Danish short-wave station OXY, lecatell at skamlebosek. This station is hearil refillarly with good volume by American listoners.

The short-wave recelving station of the Danish chort wave mystem is shown in the picture at the rlght, the high poles supporting a novel form of espechalis designed antenna. The power of the transmilter is 500 watts and the station may be heard at different $t 1 \mathrm{me}$ e on wavelengths of 19.6, 31.6, or 49.5 metors.

Few short-wave transmitters anjwhere in the world have been in operation as long as OXY in Denmark. The original transmitter was set In operation on November 13, 1828, boven years ego. The $O X Y$ hort$w a v e$ tranemifter broadrasts daliy programe of lwo programs of two
other Danish staother Danish sta-
thons, located at Copenhacen and Kalundborg

- THE short-wave station OXY is situated at Skamleboaek on the western coast of the island of Zealand. At present it is broadcasting on a wavelength of 49.5 meters (6060 kc .), the power is 0.5 kilowatt. From time to time it may, however, be working on 31.6 and 19.6 meters.
The transmitter-which was inaugurated on the 13th of November, 1928 comprises five stages, and is crystal controlled. In order to overcome the difficulties attendant upon the production and subsequent maintenance of a crystal control at the very high frequency corresponding to 31.6 meters, a much lower frequency is employed in the initial or control stage and is doubled in succeeding stages, at the same time as the jower is progressively in-
creased. The modulation is applied via two tubes operated in parallel, the power in the aerial being 0.5 kilowatt under working conditions,

The power supply is obtainel from two direct-current generators: one giving 0.6 kw . at 1,200 volts for the anodes of the amplifying tubes, and the other delivering 3 kw , at 6,000 volts to the anodes of the main transmitting and modulating tubes. Each generator is rliven by an alternating-current notor. The valve in the crystal control circuit operates with an anode potential of 180 volts. Filament heating current for the last-mentioned valve, and for the first amplifying tubes, is obtained from an accumulator; alternating current is used for the other valves.

The OXY shortwave transmitter does
not send its own program, but it broad. casts the daily program of the two other Janish stations Copenhagen and Kalundborg from 6:00 p.m. to about 11:30 p.m. GMT, that is to the close down of the Ilanish programs. Furthermore the Sunday afternoon service at 4:00 p.m. ($1: 00$ p.m. GMT during the summer) is broadcast by the shortwave transmitter.

The elaborate antenna system which is shown in the photographs is undoubtedly the cause of this station being heard over tremendous distances. Nearly all of the prominent short-wave broad. casting stations are using directive antennas in order to insure the success of their signals reaching the country or countries for which they are being broadcast.

New 2 Way Police System Works on 7 Meters

The extremely short wavelength of 7 meters is now being adopted by numerous police systems, owing to greater freedom from static and other interference. The newest 7 meter apparatus has been developed so as to permit the police to talk from a moving car to police headquarters.

Top photo shows 7 meter equipped police car with a telescopic antenna at A. Left-photo shows loudspeaker L. alio transmitter cabinet on brackets, which is ordinarily placed in trunk at rear. Small inset shows "hand-mike" on hook. Right-hand photo shows closeup of transmitter and inset

- POLICE chiefs and other public officials in the East recently participated in a special demonstration of two-way radio service, latest development in police communications.

A Newark, N. J., police car, regularly equipped to receive broadcasts from headquarters, was further equipped with an ultra-high frequency transmitter newly perfected by Bell Telephone Laboratories for the Western Electric Company.

The transmitter weighs only 20 pounds and is 11 by 7 by $6 \frac{1 / 2}{}$ inches in size. It has a power of 5 watts which, together with the high efficiency antenna systems used, was sufficient to be clearly heard over the receiver at headquarters.

Visiting officials, taken for a cruise around the streets in this car, listened to warnings broadcast by the police dispatcher and then, by speaking into a telephone instrument, replied, thus
having two-way communication.
Newark's ultra-high frequency police channel of 30,100 kilocycles was used. Transmission from the car was controlled from headquarters and in no way interfered with regular police service.

An advantage foreseen for the twoway system is that the policeman on motor patrol can make instant reports to headquarters at any time without leaving the wheel. In cases of pursuit, for example, he can report his position without delaying the chase. With the wole motor patrol able to report over the return channel, headquarters can visualize an entire situation and direct it so that all cars can cooperate effectively.

A specially designed crystal holds the transmitter to within .025 per cent of its assigned frequency. The crysta requires temperature control only at temperatures below freezing, at which
point a heater automatically goes into operation. Power is furnished to the transmitter by a 6 volt battery charged by the car's generator.

A vertical radiator consisting of a flexible steel rad, serves the duat purpose of transmitting and receiviug antenna. This antenna is fixed to the side of the car and projects somewhat above its top.

The patrolman in the car speaks over a telephone which is nearly identical with the familiar hand telephone. The voice itself operates relays which put the transmitter on the air. These are so timed that they do not switch off during mere intervals between words but do so after a brief pause which indicates the speaker is finished. The receiver then automatically goes into operation to pick up the answer from headquarters. The transmitter uses four tubes, cach containing five elements.

The photo ahove show's the Post Office building in the center of Macao, Portugese Colony on a peninsular on Macao Island, at the entrance of Canton River. China. The letters indicate the following divisions of the radio set-up at Macao: A, amplifier: \mathbf{B}, broadcasting studio: C. radio station; D. automatic telephone switchboard.

In the photo above-CON'S transmitter is shown at the left, the amplifier in the center and the rectifier panel at the right.

At the left-the antenna masts of the station at Macao are indicated at XX. The Portugese aviator, Humberto da Cruz, is shown arriving by plane from Lisbon.

The S-W Station in Macao

- THE three photos reproduced herewith show a little-known broadcast station operating at Macao, a Portugese colony off the coast of China. The wavelength used by the shortwave broadcasting station is 49.8 meters and it is on the air, according to a letter received from the Post Master General of Macao, twice a week-

Mondays and Fridays, from 8 to 10 G.M.T. The power of the station is 500 watts when the modulation in the aerial system is 100 per cent. The aerial used is of the Zepp type. Announcements from this short-wave broadcasting station are made in both Portugese and English. The antenna towers and transmitter apparatus
buildings are situated on the top of the hill D . Maria outside of the city. The studio of the broadcasting station is installed on the top floor of the Post Office building in the suite of rooms marked " B " in the accompanying photo. This Post Office building in which the studio is housed is located in the center of Macao.

New Stations in Latin America

- THE numerous Spanish-speaking stations of South and Central America are, without doubt, the source of the average fan's most difficult identification problems! Few of these stations ever give English announcements; many of them shift wavelength at will, and new ones are appearing almost daily, to add to the listeners' confusion.

It is the writer's purpose, then, to briefly give essential data on some of the newer and less-well-known of this group of stations that are to be heard broadcasting on short-wave channels, in order that fans may log some of them, before the deluge of summer static settles upon the waves above 30 metres, where the majority of such stations are to be found to operate.

Looking south of the Rio Grande,

By H. S. Bradley

"World's Champion S-W Listener"
we should first note the new Mexican stations which operates daily on 5980 kc. or 50.16 m . The call used on this, and a broadcast-band wave simultaneously, is XECW. Verifications, sent out on post-card views of the lofty mountain peaks about the city of Mexico, give the station schedule as 10:30-11:30 P.M., daily, and the power as ten watts. Signal strength is very good, when the low power is considered, but reception is generally marred by telegraphic interference from KNA. Reports should be sent to this station at Bajio 120, in Mexico City.

YNLF, "La Voz de Nicaragua" (The Voice of Nicaragua) has been
reported on varying wavelengths, from 41 to 45 metres, but, at present, is to be found on 50.2 metres, several nights each week, between 7 and 8 P.M., with scheduled broadcasts, and, at later hours, engaged in twoway conversation with neighboring stations. Verification cards bear a view of the transmitter with a map of Nicaragua as a background; together with interesting information concerning the country, as well as the station. YNLF was the first station installed in Nicaragua, and its power is given as 1,000 watts.

Nicaragua presents also, what, until recently, has been a mystery station, operating daily on about 6400 kc . or 46.8 m , between 7 and 10 P.M. This has at last been identified as YN1GG, "The Voice of the Lakes,"
(Continued on page 140)

By H. W. Secor

- PRACTICALLY everyone today is asking the question, "What about Television-and how soon can we expect it?" According to a recent announcement by Mr. David Sarnoff, President of the Radio Corporation of America, they will be ready to set up a television test station in about a year or a year and a half. Apparently, from Mr. Sarnoff's statement, it will be several years before the general public will be able to enjoy the facilities of everyday Television. At present there is another center of television activity in this country, namely the Farnsworth Television Corporation, located in Philadelphia, and the latest information concerning their activities seems to point to a much earlier introduction of up-to-the-minute cathode ray television to the public than that predicted by Min. Sarnoff and the R.C.A.

One thing seems to be quite certain, and that is that very excellent television images with excellent detail have now been produced for some time in the laboratories of both the R.C.A. and the Farnsworth Corp. In fact, one of the accompanying photos shows the Farnsworth cathode-ray receiver with the image actually shown upon the screen as it was projected onto it from the cathode ray tube inside the cabinet. Another photo shows the Farnsworth television pick-up used in picking up the actual studio scene, in this case the image of the young lady seated before the powerful floodlights.

Mr. Farnsworth has also perfected another very important television adjunct, known as the telecine, a device for picking up and transmitting standard movie filn, directly from the film, and which will make the transmission of motion pictures by television possible. In this new device, as the film is "televised" it moves steadily along at a constant rate before the pick-up, without any jerky or intermittent motion such as that occurring in the standard motion picture projector.

Practically all of the television transmission and reception which has been produced up to the present time, has been accomplished by means of a scanning dise, a thin metal or other dise containing a spiral of small holes or lenses, which is used to scan the image (a person's face, for instance) line by line. The outer hole of the spiral scans the top of the face, for example; the second hole a section across the foreliead above the eyes; the third hole in the spiral the eyes or part of the eyes, etc. At the receiving end of the tele-

FIG. 1 ~NEW CATHODE RAY SYSTEM -

-HOW 5 TOT METER ULTRA-SHORT WAVE TELEVISION STATIONS WILL OVERLAP AND COVER THE

WHOLE COUNTRY

~TRANSMITTER -
SHORT-WAVES

vision system using a scanning disc, a sımilar dise with a spiral of holes or lenses in it, is rapidly rotated in front of a neon tube and flashes of light from this tube, corresponding in fluctuations with a photo cell fitted behind the transmitting scanning disc, cause an image to be built up at the receiver.

At the present time there are two schools in the television field, the older school still believing in the scanning disc, while the newer group, represented by Dr. Zworykin of the R.C.A., and also Mr. Farnsworth, express their faith in the cathode-ray tube. The nechanical scanning system employing scanning dises is rather limited, according to many experts, and when it comes to building up an image with 200 to 400 lines, it will prove a rather ticklish problem to provide a scanning disc with a sufficient number of holes for the purpose, and remember the very small holes transmit but little light. Also that the holes will be very small indeed in a 200 or 300 hole disc.

The diagrams Figs. I to 4 at the left show clearly the principles of how the cathode ray tube as well as the revolving ecanning disc scan the image. The plan for covering the whole country with a network of ultra shortwave televiaion stations is shown and also the simple set-up for transmitting a television image, Fig. 4.

The cathode-ray tube is undoubtedly the logical solution of the television problem, when it comes to producing images built up of several hundred lines, as the greatly increased speed which the tube will have to handle in picking up or reproducing such highquality television images, can very easiiy be handled by such a device, which has practically no electrical inertia. (iag.)

In the cathode-ray television system, the image is scanned or built up by the extremely rapid movements of a beam of electrons within the tube, the movements of this practically inertia-less ray being controlled by means of electro magnets placed around the exterior of the glass tube or by varying electrical charges on plates within the tube. Many people seem to get the icea that the cathode-ray tube does away with scanning of the image, but such is not the case at all; the only new principle involved being that we are here dealing with an electrical scanning device, in which an electronic beam is made available for our purposes and acts as a pencil of light, as.

Television?

,
How soon shall ue have practical Television in this country and what is the probable type of Television receiving apparatus to be ased? In the accompanying article a number of interesting angles on the status and practical application of Television in the immedia!e future are discussed in a clear manner.

Pheto above shows the new Farnsworth Television receiver if veleped in his Philadelphia laboratories and it is very interestna is note that the sirl's face reproduced on the screen is the actual reproduction from the Farnsworth special cathode tube, and not merely picture painted on it by an artist. Photo at left shows Farnsworth Television pick-up at studio.
it were, with which to paint the image on a chemical target or screen placed (deposited) on the expanded end of the catiode tube.

One of the reasons why it would probably take an appreciable time before the new cathode-ray television is made available to the public in all parts of the country, is because of the fact that the very high frequency signals involved, (which will undoubtedly be transmitted on waves about 5 or 6 meters in length), will necessitate the use o- transmitters mounted on the top of high buildings or towers in various cities. Furthermore, these ultra-short-uave transmitters will probably have a range not greater than a 50 mile radius, and it is the plan of the R.C.A. at least, so far as known, that after their tests have proven successful and sufficient engineering measuremerts have been made in the field, that eventually and durin r the course of the next five years or so, the whole count will be covered with a complete overlapping network of these 5 -meter stations, each with a range of 50 miles, or so. Just as if you had placed a lot of coins over the map of the U. S., the coins overlapping a little.

It will be seen that to erect a whole series of these ultra short-wave television transmitting stations across the country, north and south as well as east and west, will take considerable tine and money. It is unfortunate that experimental television could not have proceeded along the lines which it started to pursue a few years ago, even though the image produced with the older mechanical scanning system was not so fine in detail, as steady improvements during the past three or four years would certainly have resulted in a much better image today-
(Continued on page 142)

How To Get BEST RESULTS

By George W. Shuart

From Your S-W Set

- WE have had a great deal of correspondence from readers who do not scem to be obtaining the results which they should. Their complaint is that they read the lists of stations rolled up by some of the Trophy Winners in Short Wave Craft and they are very much disappointed be cause they do

In some locations a hill may interfere and preinterfere and pre-
vent reception of certain programs.
not receive the same stations on their shortwave sets. Of course, there are huncreds of reasons which one could mention that would be responsible for this condition, and we will endeavor to point out a few which we hope will aid some of those who are less fortunate in picking up the very distant and hard-to-get stations.

First you must remember though that the location has a lot to do with it, and it is quite possible that you may be in a location which is not well suited to short-wave reception, although very few actual "dead spots" have been reported; there are many locations which will permit excellent reception from one direction and very poor reception from stations located in other parts of the world.

This, we have been told, is frequently due to intervening hills or mountains which act as a shield between the transmitting station and the receiver. This condition can not be overcome and we do not offer any suggestions for it. Arother reason why stations are received from only one dircction can be due entirely to the directive effect of the antenna employed. This can only be determined by one who is expert in the design of antennas. The prime requiste in short-wave reception is, of course, a good antenna and by all means you should read every available arti-

[^0]cle in which different types of antennas and their construction are discussed.

To get the most out of your receiver e.nd run up a large total of stations received, it is absolutely necessary that ycu listen at the proper time of day or night. During the summer months the greatest distance and best reception will be obtained on the 19,25 , and 31 meter bands during the evening, over a period ranging between one hour before darkness sets in and two to four hours after night-fall. The best all-around bands are the 25 and 31 meter bands if you are interested in learing a lot of stations. They will come in very strong and there will be very little fading experienced.

The 19 meter band and all those lower in wavelength produce best results during the period just before darkness and in the late afternoon. The 49 meter bsind during the summer months seems to be best only in the early morning jirst after daybreak, when the Asian and African (Japan, Australia, etc.) stations may be heard, although the static is very heavy on this band during

If noise is a problem, disconnect the aerial and note if noise ceases.
summer months.

Many shortwave listeners also complain that they live in very "noisy" locations. Noise encountered during short-wave reception can originate in any number of scurces. Those living in congested areas experience noises caused by automobile ignition and electrical apparatus such as neon signs, flashers, and many other types of machines which are too numerous to mention. The automobile ignition interference is experienced mostly on the wavelengths below 25 meters and seems to reach a prak somewhere around 18 to 20 meters.

A great deal has been written and published about noise-reducing antenras and, as we said before, every shortwave enthusiast should gain as much information as possible regarding antennas by carefully studying all available data. Much of the so-called "man-made static" can be eliminated
cr materially reduced through the use of these excellent antennas.

Before you condemn your location, especially when you are encountering a lot of noise, you should determine first whether or not the noise is really coming from the outside or originating in

> Wifferent frequency bands or wavelengths are more active at certain seasons.
theradio
 receiver itself.
This can easily be done by disconnecting the antenna. If the noise disappears completely when the antenna is disconnected, you can be most certain that the noise originates on the outside. However, if vou still hear noises, it is advisable to cill in your local radio service man and have him check over your receiver or, if you are of the more advanced type of short-wave "Fan", there are several places where you can look for the trouble yourself.

Probably the two most common scurces of noise in short-wave receivers are the tubes and the tuning condenser. The bearings of the condensers which, in most cases also serve as an electrical connecting link, become clogged with dust and other forms of dirt which naturally collects in any receiver and should be thoroughly cleaned with a small brush and alcohol.

In the up-to-date short-wave receivers of the all electric type, noise is often caused by a defective tube and the only way this can be determined or eliminated is by changing the tubes one at a time until you have found thic one that is causing the trouble. Nost up-to-date receivers have tone controls which tend to discriminate agrainst the high-pitched tones when turned in a certain direction. A lot of these crackling and scrap(Cont. p. 141)

The above drawing shows just about every type of short-wave antenn a commonly used and the dark arrows clearly indicate the direction or directions from which these antennas receive best.

Directional Effects
 of SHORT WAVE ANTENNAS

- IN Fig. 1 we have the regular inverted L type antenna which is directional in a plane parallel with the flat top. While this antenna receives well in both directions, maximum pick-up is said to be obtained from the direction opposite the free end. Where the flat-top section is rather short, the directional effects are not very noticeable; however, if the flattop is many times the length of the down lead its directional qualities are very evident.

In Fig. 2 we have the very much discussed doublet antenna which receives best in either direction facing the broad side of the antenna flat-top. It is advisable to have this antenna facing in a direction which will afford maximum pick-up, especially on the distant stations. The vertical antenna shown in Fig. 3 is non-directional and receives well in all directions. However, it is used mostly on the shorter waves, from 30 meters downward and it is especialy valuable in the ultra high frequency region.

If we wish to construct really directional antennas we will find these shown in Figs. 4 and 5. Fig. 4 shows the horizontal "V" which is extremely directional in the directions shown by the arrows. The angle of the V found hest for the average shortwave receiving antenna is around 45 degrees. However, this angle would vary considerably with the length of antenna used, but for general purposes the angle of 45 degrees will work fairly satisfactory.

By GEORGE W. SHUART W2AMN

In Fig. 5 we have shown the inverted " V " antenna. This antenna is very popular in Europe and gives very good results on a comparatively wide wave band and receives best from the direction opposite to the grounded end. The resistor shown connected between the far end of the antenna and ground should be somewhere around 400 to 600 ohms. If the resistor is left out, then the antenna will receive equally as well in the opposite direction.

For those who are interested in constructing this inverted "V" antenna the total length of the wire in the "V" should be 123 ft . The height of the mast will be 57 ft . and the distance across the base will be 41 ft . The length of the lead-in is not important.

In Fig. 6 we have the long low antenna sometimes termed the "Beverage" antenna. This consists of several hundred feet of wire run in a single direction fairly close to the ground, three or four feet above the ground is sufficient. The far end of this antenna is also grounded through a resistor similar to the "V" antenna. This is very directional in the direction opposite to the resistor or in the direction of the lead-in.

The antenna in Fig. 7 allows reception in all four directions, north, south, east, and west, or in any other
four directions which the experimenter may desire. In all cases the antennas shown, should be located well out in the clear and away from all surtounding objects.

The directional effects of any antenna here shown are not effected by the type of lead-in which may be used. For instance, on the doublet type antennas either the twisted pair or the transposed type of lcad-ins may be used, also the type of wire used makes no difference. The total length of the " L " type antenna shown in Fig. 1, should be approximately 75 ft . for best results. The length of lead-ins for the doublet antennas or the " V " antenna is not at all critical; however, if possible, the total length of the flat-top should be around 75 feet or about 37 feet per section.

In Fig. 6 the small coupling coil is connected between the antenna and the receiver. The two leads marked " X " connect to the antenna and ground posts of the short-wave receiver. The two doublet antennas in Fig. 7 are not used simultaneously; when one is used, the other should be disconnected from the antenna and ground binding posts.

Also, the two ends of the doublets which are mounted on a single pole should be kept as far apart as possible in order that one will not have a great deal of effect upon the other. These two ends of the doublets should be 15 or 20 feet apart if possible.

Doublet Aerials

- PROBABLY the most discussed subject among shortwave "Fans" is aerials, or antennas, as they are called in most cases. The most prominent of antennas undoubtedly is the doublet in some form, there being several different varieties of doublets. In the accompanying drawing we see the modern doublet which uses a

> Operating more than one receiver on a single I.ynch antenna system.
transformer or coupler in the center of the flat-top and a twisted pair or cable for the lead-in.

The drawing also shows how several different receivers can be operated simultaneously with the same antenna system. By merely connecting the transformer as shown in the diagram and using small double-pole recepticles and plugs for each receiver, as many as 20 can be used, at the same time. The drawing shows that a 500 ohm resistor should be connected in series with each lead going to the lead-in system where more than 5 receivers are operated; otherwise they are not necessary.

THE V-DOUBLET

- ANOTHER version of the doublet has been presented in the new G. E.
"V-Doublet." This is quite a unique system and said to respond to a fairly wide range of frequencies and still maintain all the qualities of the conventional doublet, designed to improve reception and discriminate against back-ground noises.

In this subject, the heart of the entire system is the " V " which connects the lead-in system to the antenna. The space between the two halves of the doublet is 10 feet and each side of the " V " is also 10 feet long.

The 10 feet space between the two top sections of the " V ," of course, is effected by the two insulators at the points where the " V " connects to

The new "V-Doublet" antenna system.
the center of the flat-top. The leadin system is a special cable designed to work especially with this system.

ONE MINUTE AERIAL

- THE accompanying illustration shows the newest idea in quickly erected aerials-in fact this aerial can be erected in about one minute, without the use of tools of any kind. The aerial consists of a low resistance conductor mourted on adhesive tape, with a combination terminal that sticks wherever you put it. The aerial can be placed around picture moulding or baseboard where it is also easily concealed and the instructions for installing it are included with the aerial. This aerial can be used inside of apartments and other locations where unsightly wires are objectionable; it may be placed under a rug, running the tape around in a concentric spiral.

It is connected to your radio receiver in the same manner as any regular out-door antenna. However, you should be careful not to run it near metal radiators or pipes, and, by all means, do not allow it to come in contact with metal of any kind.

Probably the best place to mount the antenna is around the base-board of the room.

The new "Quik-Up" tape aerial.

$\$ 3.00$ for Best S-W Hint

Band-spread Hints

By mounting two vernier dials such as shown in the drawing, excellent bandspread can be obtained. One of the dials drives the vernier of the other. In other words, if each dial had a ratio of 6 to 1 , we would have a total of 36 to 1 giving a considerable amount of band spread.

One novel method of obtaining bandapread.
Another convenient way of obtaining band-spread, is to connect a small condenser in parallel with the main tuning condenser. If you are using a regenerative detector, the small condenser should have a value of from 20 to 35 mmf.

The Antenna Hint

Many short-wave "Fans" use a high pole specially constructed to support the aerial or the family flag pole. When the pulley jams in the usual arrangement, it is just about impossible to repair the trouble unless the mast is lowered. Referring to the drawing we notice that the pulley rope runs through a large ring which is fastened to the

This hint shows the method by which your antenna palley can be repaired or replaced without lowering the mast.

Each month we are awarding $\$ 3.00$ for the best short-wave hint. Those presented on this page will give the reader an idea of the type of material that we are looking for. All hints printed other than the prize winner will be awarded a six months subscription to this magazine.
top of the pole or mast. Should the pulley jam, the rope going through the ring can be used to lower the pulley and the difficulty overcome. This is a worthwhile suggestion and requires only a little extra effort when the pole is put up.

Cheap Transposition Block

A neat and efficient transposition block can be made with two 3 --inch porcelain tubes as shown in the drawing, by grinding a flat surface in the center of each tube so that they can be taped together, and if the wires are not pulled too tightly, they will give excellent service.

Transposition block made from insulating tubes.
When grinding the tubes flat on one side where they are crossed, do not grind all the way through, because there will be a direct opening between the two tubes and this way allow the feeders to touch, rendering the system useless, because of the noise which would occur when the wires scraped together.

Short-Wave Antennas

The short-wave antenna is the heart of any receiving station, and should be given as much consideration as the design of the short-wave receiver. This may seem like a broad statement, but if it is heeded, you will immediately notice that it is quite true. Many people use long tie wires between the insulator which supports the end of the antenna and the mast or other object
to which the antenna is hung. In one of the drawings you will notice that more than one insulator is recommended at the end of the antenna; if your supporting wire is 10 ft . or more in length, it should be broken up with

Some worthwhile suggestions for antenna construction.
several insulators, as shown in the accompanying drawing. If your masts are of metal it is advisable to keep the end of the antenna proper at least 10 to 15 feet from it.

Do not run the aerial lead-in through a metal pipe or any other type of metal tubing just to provide a convenient place for the lead-in.

Handy Cable Marker

Here is something which will pay big dividends because it will insure you against misplacing the cable wires of your battery set and probably damaging the tubes. It is just an ordinary piece of corrugated cardboard from an old packing box and the drawing clearly shows how it should be marked.

This drawing shows how to make a cablemarker which will prevent you from connecting the batteries to the wrong wires.

Foreign－Language Alphabets and Numerals

The following table gives the names of the letters of the alphzbet and of the simple numerals in the more connon lang－ uages of broadcasting．An English equivalent of the promunciation of the letter names and numerals is included to facilitate interpretation of the announcement of the various station call lettors．

		English
亨	a	ay
髧	b	bee
考	c	sere
	d	dee
是	e	ee
嵒	f	ef
硣	g	jee
	h	aitch
㹧	I	ah－ee
	j	jay
	k	kay
㱏	1	el
	m	elll
豪	n	en
䨝	0	\bigcirc
	p	pee
（	4	kew
	r	ale
	3	ess
表	t	tee
㐁	u	you
츨	v	vee
老	w	double－you
全	x	ex
	y	wye
	z	zee
	－	
－	1	wun
老	2	too
霥	3	three
	4	fore
氟	5	flve
劍	6	six
晨	7	seven
者	8	ate
㫛	9	nine
金	10	ten
，	11	eleven
	12	twelve
	13	thirteen
	14	fourteen
	15	fifteen
	16	sixteen
	17	seventeen
	18	ayteen
	19	nineteen
	20	twenty
	30	thirty
	40	forty
	50	fifty

French
ah
bay
say
day
ily
ef
zhay
asch
ee
zhee
kah
el
em
en
o
pay
cuo
air
ess
tay
eu
vay
double－vay
eeks
egrek
zed
unh
der
trwa
katth
sank
seece
set
hweet
nerf
deece
onze
doze
traze
katorz
kanz
saze
deece－set
deece－hweet
deece－nerf
vant
traynt
karant
sankant
and

Spanish	German	Portuguese
bily	bay	bay
say（thay）	tsay	say
day	day	day
ay	ay	ay
effity	ef	effay
hay	gay	hay
ah－chay	hath	ah－hay
ee	ee	ee
ho－tah	yot	ho－tah
kan	kah	kah
ellay	el	ellay
elmmay	enll	emmay
entay	ell	ennay
0	0	0
pay	pay	pay
cuo	coo	coo
erray	air	erray
enssay	ess	essay
tay	tay	tay
00	00	00
vay	fow	vay
dooble－vay	vay	dooble－vay
erekis	icks	eckis
cgree－ay－gah	ipsilon	egreego
zed	tset	zed
uno	ine	oon
doce	tswi	dois
trace	dry	trezh
kwah－tro	feer	kwah－tro
sinko	finf	seenko
sase	sex	sase
sate	seeben	seti
ocho	okt	oyto
noc－a－vay	noin	novay
de－ais	tsane	dezh
on－say	－19	ohnzi
do－say	tsvelf	dohzi
trasay	try－tsane	trehzi
katorsay	feer－tsane	ka－tawr－zy
keen－say	finf－tsane	keen－zy
deesl－sase	sex－tsane	deza－sayz
deesi－sate	seeben－tsane	deza－seti
deesi－ocho	okt－tsane	dez－oyto
deesl－nooavay	noin－tsane	deza－novay
vain－tay	tsvantsig	veentay
trayntah	dry－tsig	tree－teh
karentah	feer－tsig	qwurrenteh
seen－kentah	inf－tsig	seen－kwenteh
－Courtesy World	Short－Wave Rad	，Transmitters．

MODEL REPORT

BeRLIN TEMPELHOF－LONGITLDE $13^{\circ} 20^{\prime}$ EST．GR．LATITUDE $50^{\circ} 20^{\prime}$ NORTH ALTITUDE $\cdot 50 \mathrm{~m}$ NATURE OF SURROUNDING：LEVEL RECEIVING－SET＝ 3 TUBES（DENTODES）

EXPLANATION OF
SIGNS：－ 5 －VERY STRONG 5 －VERY STRO
4 －STRONG GDOD WEAK 1 －VERY WEAK
3 －GREAT DEAL
2 －QUITEA BIT
1 －SOME
O－NONE
3 －VERY CLEAR
1 －SLIGNTLY DISTCRTED
$\begin{aligned} & \text { O－GREATLY DISTARTED } \\ & \text { f（）－TRIEDTO GET STATION }\end{aligned}$
$\left\{\begin{array}{c}\text { WITHOUT SUCCESS } \\ \text {／．DIO NOT TRY TOGETSTATION }\end{array}\right.$
A＝L $50 \mathrm{~m} 26-B \cdot L 19 \mathrm{~m} .84$
$\left\{\begin{array}{l}\text { ：ANTENNA INTERIDR } \\ \text { E：ANTENNA EXTEROR }\end{array}\right.$
$\left\{\begin{array}{l}\text { I：ANTENNA INTERIDR } \\ \text { E：ANTENNA EXTEROR }\end{array}\right.$

[^1]

The lllustration directly above shows the appearance of a typical dial on E European all－wave receiver，which has to cover wavelencths all on a European all－wave receiver，which has to cover wavelen the way from 2，000 meters down to 20 meters，for the reason that much The diasram at left shows model reception repert sent out by $2 R 0$ ， The

Win This

First

Trophy Award to Juan Cloquell Storer,

Arecibo, Puerto Rico

The handsome Silver Trophy, illustrated here. will be awarded to the person here. whe in what appears to be to the judes the most interesting photograph of judges the most interesting photograph of their short-wave listening post. The rules for this contest provide that the Trophy shall be awarded only for the BEST photo of listening post apparatus or set-up, and is not concerned with amateor TRANSMITTING stations. Those owning transmitting stations may enter such photos in the monthly contest sponsored by SHORT WAVE CRAFT magazine. This Trophy is hendsome specimen of the silveris a handand becter leading smith's art and was Manufacturer. This New York Trophy Manufacturer. This beautiful silver trophy stands 16 inches high and is symbolic of the art of shortwave lirtening.

Rules For Short

Wave "Listening Post"

Trophy Contest

- THE editors of the OFFICIAL SHORT WAVE LISTENER magazine feel sure that our readers will be greatly pleased with this announcement of a brand new "Trophy Cup" Contest, in which the hardsome silver trophy here illustrated, will be awarded to that Short Wave Listener who submits the best "Listening Post" photo.
Here are some of the points on which the "Listening Post" photos will be judged by the editorial staff: The photo must be clear and preft ably not smaller than 5×7 inches, althourh 4×5 inches will do if the photo is particularly clear.

If possible try to have the photo show the owner or operator of the "Listening Post" appear in the same picture with the receiving apparatus, although a separate photo of yourself will do, of course.
Not only will the photo be judged for the quality of the photograph itself, but also for the ingenuity shown by the owner of the station in a neat and orderly arrangement of the receiving apparatus.
Do not write descriptions on the

Here is a brand new contest which will cost you practically nothing to enter and you have a very fine chance of winning this hindsome Siluer Trophy. The editors uill award one of these Silrer Trophies tor the best "Listening Post" photo subnitted by the readers of the OFFIClAL SHORT WAVE LISTENER magazine. Please remember that the fhotos must be as large as possible and they absolutely must be "clear"!
back of the photo, but simply place your name and address on the back of it or on the photo mounting.

All descriptions of Short-Wave "Listening Posts" snould be typewritten or else writtin in ink, well spaced so that the editors can read them quickly. Do not send "pencil-written" descriptions and moreover keep the description of the station and the results you have obtained as brief as possible; usually 300 words is plenty.

Describe your aerial briefly with its

Silver Trophy For the Best "Listening Post Photo"

dimensions, and particularly tell in what geographic direction it points, north, south, etc. Also mention where it is located such as above any roofs, trees, or other objects, and what form of lead-in you employ.
The announcement of the first Trophy Award for the best Short-Wave "Listening Post" photo appears on the opposite page. Entries for the next contest will be accepted up until July, 20th, 1935.

The editors will not be responsible for any photographs or descriptions of "Listening Posts" which may be lost in the mail or otherwise, and return postage should be included with the photos if they are to be returned.
All members of the OFFICIAL SHORT WAVE LISTENER MAGAZINE'S editorial and business staff are excluded from this contest, as well as any members of their families.
In the event of a "tie" between two or more contestants, the judges will award a similar trophy to each contestant so tying. Please remember that this contest for the best Short-Wave "Listening Post" photo is purely an amateur or experimenter's proposition, and all commercial short-wave receiving stations are excluded.
The best "Listening Post" photo will also be judged not because of the fact that a handsome array of expensive short-wave receiving apparatus has beep assembled for the picture, but the "pedigree" or "DX" reception results will also be carefully scrutinized by the judges. The board of judges for this contest will be the Editors of the Official SHORT WAVE LISTENER magaz:ine.

Address all entries to this contest to: LISTENING POST CONTEST, care of OFFICIAL SHORT WAVE LISTENER MAGAZINE, 99-101 Hudson Street, New York.

Second Trophy Award To Juan C. Storer For Best Listening Post Photo

Crackerjack short-wave listening post owned and operated by Juan C. Storer of Arecibo, Puerto Kico, who wins the Silver Trophy for the best "listening post" photo this month.

Editor, Short Wave Listener:

I received the copy of your magazine I ordered, and believe me, it's just swell. Here's a real magazine for the "real" short-wave listener who does not know anything of mathematics or radio technies.
I have become interested in the contest for the best photo of a Listening Post, and gladly send photo of my listening post, and hope to win that pretty trophy.

My radio set is a model General Electric M61, mounted on a Majestic console; my antenna is a Lynch doublet 90 feet long, including lead-in for each span about 40 feet high. The globe on top of the radio set was obtained from Short Wave Craft. The certificate above the globe is a fourth prize won at station WMT for DX contest; on the left side, between the world map and Short Wave League certificate is a barometer (Aneroid). On top of the map is a membership certificate of the Union Radio Americana of Costa Rica and the "Veri" on the top of the clock is from TIANRH, for being the first listener in Puerto Rico to report. On the side of the rack you have a Short Wave Craft Magazine, Short Wave Listener Magazine, and Radio Index for the broadcast programs and stations. With this equipment and the radio connected to the phonograph I feel the happiest of men. I have verifications from all over the world, covering the five continents, around a hundred S.W. veris for broadcast program stations ONLY. I do not pay attention to telephone stations; sometimes I enjoy amateur conversations and may be some day I shall become a "ham" with a transmitter license, etc.

Juan Cloquell Storer

José de Diego St. No. 1
P. O. Box 194

Arecibo, Puerto Rico

Honorable Mention -- Thomas J. Taaffe, Jr.

Editor, Short Wave Listener:
Here is a photo of the Official Short Wave Listening Post, No. 1, of New York State for the International DX'ers Alliance.

The aerial which is used most and tliat has performed the best is the RCA Double-Doublet aerial that you described in your magazine. The aerial is on a mast 55 feet above the ground and runs north-west by south-east.

The set on the right of the photo is an RCA Victor 262-a ten-tube superhet. The set in the center is an allwave six-tube superhet. That on the left was made from a description in Short Wave Craft and is the old reliable "Doerle".

The following stations have been verified: All the " D " stations in Germany, all the G's in England. EAQ, HBP, HBL, CT1AA, X2RO, IRM, FTA, RNE, RKI, PHI, ORK, LSX, VK2ME, VK3ME, PRF5, COH, HIH, JVT, HC2RL, PRADO, YV3RC, YV2RC, HP5B, COC, XEBT, YV5RMO, (Continued on page 141)

Excelient short-wave listening post conducted by Thomas J. Taaffe, Jr.

Thanks for the Suggestions Editor, Short Wave Listener:

It is with a great deal of pleasure that I write you about your new Short Wave Listener magazine. I think it is absolutely the "TOPS". The Listener is something for which I have been looking for in connection with short-wave radio listening. I sincerely hope the magazine has unbounded. success.
The article concerning verifications was very good, but I would have appreciated more details. May I offer the following suggestions, which I believe will be of assistance.
(1) The cost of postage to foreign countries, you stated, is five cents. This holds true with the exception of Spain, where it is three cents.
chine. Double doublet - by putting transformers in the aerial it kills station signals also. To use a common expression: "So what?"

In spite of all my troubles with interference. I still get a great kick from Short Waves. I have monkeyed around with radio since 1924 and short wates since 1931. I think that your new magazine is going to be of great help to S. W. L's. Again wishing you and the magazine every success.

> James Waters, 4865 East 85th St., Cleveland. Ohio.
(As a matter of fact most modern allwave receivers are being fitted or adapted to use the new noise-reducing doublet aerials. In some cases you may

Speaks" as well as articles on shortwave stations similar to "London Calling" in the latest Listener. I am not at all interested in fiction published in the Listener, but no doubt many other readers enjoy same.
My receiver is a TRF (Tuned Radio Frequency) job, using 3 tubes with 'phones, and 2 tubes are added with dynamic speaker.
H. C. CHESTNUT,

88 Bailey Avenue, Plattsburg, N. Y.

Appreciation From YV1RC, Caracas Hugo Gernsback, Editor,
Short Wave Listener,
Dear Mr. Gernsback:
Please accept my most sincere con-

The

(2) The approximate length of time it takes to obtain verification from foreign countries. I have written for veriflcations from Rome, Paris, Berlin, and I have waited six weeks without obtaining a verification. I enclosed on international reply coupon. At least these stations could have answered with a yes or no. Perhaps I have not given them sufficient time. I always print (by hand) these letters.
(3) Print a list of stations that will verify reception. (For instance, the British Broadcasting Co., do not verify, but they have sent me a very interest ing booklet regarding their history of short-wave activities along with a threemonth schedule.) I understand that there are a number of South American stations who do not reply, I imagine they will gain quite a little bit of revenue by this policy-in other words they play us for "suckers"

Another feature I liked was the article on Caracas. Here is an article that adds zest to listening. I have also obtained books from the local Public Library, containing descriptions of the different countries whose S.W Stations I have heard on short waves. It makes It that much more interesting. Your articles go one better by giving a story about the stations and the country.

The article, "Tuning Short-Wave Stations" should be of great assistance to new owners of short-wave receivers.

The manufacturers of All-Wave receivers are very short-sighted or they would equip every all-wave receiver sold with a noise-reducing antenna or some mechanical device eliminating noises.

Take my set for instance. All AllWave 1935 model 6-tube super of popular make. I am at the mercy of my neighbors' electrical devices for hundreds of feet around. My next-door nelghbor has a refrigerator that kills short-wave reception-a washing machine and a motor-driven lathe, and then his automobile which all kill my recelving on the short wave. I am at the mercy also of every passing ma-

> In this department we will print in each issue letters from short-wave listeners of value to all readers. We are particularly interested in those that have constructive criticisms and information that may be of value and help to other short-wave listen. ers. Only those Ieters which are deemed of sufficient importance will be printed here. It makes no difference whether your letter is laudatory or whether it contains a "brickbat," it will be published juat the same. as lone aa the information is deemed worthy.
> Address all communications to THE LISTENER SPEAKS, care of THE SHORTWAVE IISTENER, 99-101 Hudson Street, New York City.
have to try and convince your neighbor that he should connect an interference preventing fllter on his refrigerator motor. Sometimes you local electrical service company can help you-Editor.)

He's Been On Look-out for "Mag."

 Like S.W. ListenerEditor, Short Wave Listener:
I have just received my second copy of O fricial Short Wave Listener Magazine, and after reading it from cover to cover with few exceptions find it to be just the magazine I have been looking for. A magazine that is more for the LISTENER, rather than for the set builder or experimenter.

Of course, while building my set I needed Short Wave Craft, but since that has been completed, I have been on the lookout for a magazine like the LISTENER.

There are a few minor changes I would suggest, for instance Short Wave Craft still lists about one hundred more stations in the list of "Best Bets" than the Listener. This, I believe, should be changed immediately. Also would suggest that this list in the LISTENER should not be printed on both sides of the same page, as it makes a very nice permanent log on the table under glass or on the wall. Perhaps other readers have found the same trouble.

I enjoy very much such features as "The Listener Asks" and the "Listener
gratulations for your article "Short Wave by Heart" published in the Feb-ruary-March issue of "SHORT Wave LISTENER."

My close contact with foreign radio fans enables me to appreciate the merits of your very unusual story that I find amusing, interesting and helpful. Cordially yours,

EDGAR J. ANZOLA,
Director.

"Fine Business"!

Editor, Short Wave Listener:
I am a regular reader of your OFficial Short Wave Listener magazine and am sure well pleased with it. I have taken several different magazines in the years past, but, I find that this magazine has some of the finest information that I have ever found in any of them.

In your department "The Listener Speaks" I have a few articles that I think would improve it still more. Your description of short-wave stations and pictures are sure F.B. (Fine Business). Keep it up! Your grand list of all short-wave stations are sure the best. There are also other articles that are very fine, but too numerous to mention.

I think news and pictures of amateur stations and short-wave listening posts would be very fine and also pictures of latest short-wave receivers and equipment also. I sure do like to see pictures and descriptions of short-wave stations. (Amateur and Commercial). Pictures of short-wave hams and lay outs of radio shacks.

I notice you have a few pictures of amateur stations now, but a few more would be fine.

Code instruction would also be quite interesting, also colored maps of the world.

Well I'll be wishing you good luck and the best of success for you and your magazinc.

DAIVID C. PIERCE,
No. 11 Wood St.,
Plymouth, Mass.

HJપ્Z'

OUR

Paradise for S-W Listener
Editor, Short Wave Listener:
There has been no time like this when his disposal a magazine from which he may gather strange and interesting facts about short-wave radio.
Before the Short Wave Listener
was published, a beginner had to de was published, a beginner had to de-
pend on his own judgment and his own experience to receive the most enjoyment from short-wave radio.
Some years ago I became interested
short-wave radio. I looked for a magazine dealing with short waves, and I found that Short Wave Craft was
the nnagazine for me. Here was, and the nagazine for me. Here was, and
still is, a magazine which gave interesting information to the beginner as well as the "dyed in the wool" experimenter.
Now Short Wave Craft publishes a magazine for the short wave listene -the Short Wave Listener
Here is the magazine which I be-
lieve is a paradise to the short wave lieve is a paradise to the short wave
listener. No technical data to puzzle the listener; a magazine which touch es general interests to all short-wave
listeners, a magazine for the non-technical minded.

Stanley Baikowski,
12 Marble Terace
12 Marble Terace
Hastings-on-Hudson, N. Y.

Some Good Suggestions

Editor, Short Wave Listener
As this is MY magazine, $H i$, I want
suggestions.
First of my suggestions is: I think that it would be a good idea to have a classified column for the short-wave
listener, to be printed in back of the listener, to be printed in back of the
magazine. The cost per word should be about 2c and a little higher for business corporations.
As the advertisements increase, the
cost per word should likewise be de-
creased.
Now here is the most important sug-
gestion. There are many short-wave gestion. There are many short-wave
listeners who haven't receivers like the ones shown in the photos competing for the Scout Trophy. Many shortWave listeners have only the cash for
a two or three tube receiver and therefore cannot compete with the fellows who have ten to twelve tube receivers.
Why not start a Why not start a contest similar to
the Scout Trophy contest in Short Wave Craft, for the short-wave listeners who read Short Wave Listener magazine. The persons competing
should not use a receiver of more than Should not use a receiver of more than
three tubes but have the choice of A.C. or D.C. tubes. The prize could be a
small Scout Trophy or one similar to

My third and most important sug restion is: I move that the Short Wave
,istener be published every month in istener be published every
stead of every other month. Why not leave it up to the listeners and see what they think of my ideas
and see how it goes over with the short-wave listeners. Come on all
S. W. L.-how about it? S. W. L.-how about
S. B.
B. B. C. Don't Verify

Elitor, Short Wave Listener Recently I received a card from the Broadcasting House in London, replytion of their programs. for a verificaa card which reads as follows: "The British Broadcasting Corporation thanks you for your report on the transmissions from the Empire Broad-
casting Station, but regrets that casting Station, but regrets that no
specific verifications of reception of any transmissions can be given."
Does this mean that we can not get

READERS

verificaion Engish
stations?
Yours very truly,
J. A. Terrell
191 W. Washington St.
(Yes, James, we're afraid that's what
Wants a Binder for "Mags." Editor, Short Wave listener:
1 have two copies of the Short Wave Listener and can truthfully say, that it's the best short wave magazine
have seen yet and I have had many have seen yet
different ones.
May I make a suggestion that you ret up some kind of a binder for the
Short Wave Listener that would sell for about fifty cents? I am sure this would meet the approval of most of your readers.
Iam repeating again, you have a the magazine the greatest of success.

$$
\begin{aligned}
& \text { ine the greatest of so } \\
& \text { Howard W. Marshal } \\
& 1300 \text { Lodi Street }
\end{aligned}
$$

1300 Lodi Street
Syracuse, N. Y.

Handy Index

Editor, Short Wave Listener I find that for quick and accurate ing to important sections, such as "Short Wave Stations", "Time Graph", piece of gummed paper can be pasted onto the necessary pages of your mag azines, protruding like index tabs, and
hereore save one the useless metho of tearing the pages from the magazin and thereby destroying its compactnes
and usefulness. Also, I can keep each magazine handy and use the most re ent edition on my table and have the thers near at hand for future refer
This may be of some use t ence. This may be of some use to the habit of turning over the tips of the pages, or tearing the pages of the
book out and posting them on the walls of their short-wave den.

$$
\begin{aligned}
& \text { Joseph G. Heffron } \\
& 519 \mathrm{~N}
\end{aligned}
$$

Joseph G. Heffron
519 N. Sprinfield
519 N. Springfield R
Springfield, Penna.
-
ditor, Constructive Criticism I have been living in the country for he past six or eight months, and
was only recently that I learned that there is such a thing as a magazine the Short Wave Listener and wheartedly to You want opinions? Well, I'll give "ou my honest one, and it won't be a soft soapy" one, either! First, the covers: Doesn't anyone
ever mention them? I'm surprised at hat, because the one on the issue I tanding one on the whole newsstand Now for the contents: The reports on foreign broadcasting stations were quite interesting, and it's thrilling to be able to see pictures of studios an Aerials, Grounds, and Listening Dens liked best of all. The aerial I hav here is a full-wave doublet for 20 met-
rs with a twisted pair lead in-but that's getting off the subject.
The station list and map: Really th best going; however, I do have two or
three suggestions, and I believe that the average S. W. L. will agree that they would help. Here they are: 1. Somewhere in the list give in
formation on how to change Mtrs. to Megs., vice versa. This would over cume one big difficulty that everyone I know seems to have.
2. Start a "ham"
hange where listeners could W. L. Ex vertisements at reduced prices when

SPEAK

3. Somewhere in the Station List cllude a section containing prefixes of
cmateurs of various countries! Now that you know how a newcomer feels toward your mag, maybe I'd betT. and stop raising Q. R. M General. Delivery Bridges, Virginia

OUR

Paradise for S-W Listeners

Editor, Short Wave Listener:
There has been no time like this when a beginner in short-wave radio has at his disposal a magazine from which he may gather strange and interesting facts about short-wave radio.
Before the Short Wave Listener was published, a beginner had to depend on his own judgment and his own experience to receive the most enjoyment from short-wave radio.

Some years ago I became interested in short-wave radio. I looked for a magazine dealing with short waves, and I found that Short Wave Craft was the magazine for me. Here was, and still is, a magazine which gave interesting information to the beginner as well as the "dyed in the wool" experimenter.
Now Short Wave Craft publishes a magazine for the short wave listener -the Short Wave Listener.

Here is the magazine which I believe is a paradise to the short wave listener. No technical data to puzzle the listener; a magazine which touches general interests to all short-wave listeners, a magazine for the non-technical minded.

$$
\begin{aligned}
& \text { Stanley Baikowski, } \\
& 12 \text { Marble Terace } \\
& \text { Hastings-on-Hudson, N. Y. }
\end{aligned}
$$

Some Good Suggestions

Editor, Short Wave Listener:

As this is MY magazine, Hi, I want to build it up by offering some of my suggestions.

First of my suggestions is: I think that it would be a good idea to have a classified column for the short-wave listener, to be printed in back of the magazine. The cost per word should be about 2 c and a little higher for business corporations.

As the advertisements increase, the cost per word should likewise be decreased.

Now here is the most important suggestion. There are many short-wave listeners who haven't receivers like the ones shown in the photos competing for the Scout Trophy. Many shortwave listeners have only the cash for a two or three tube receiver and therefore cannot compete with the fellows who have ten to twelve tube receivers.

Why not start a contest similar to the Scout Trophy contest in Short Wave Craft, for the short-wave listeners who read Short Wave Listener magazine. The persons competing should not use a receiver of more than three tubes but have the choice of A.C. or D.C. tubes. The prize could be a
small Scout Trophy or one similar to it.

My third and most important suggestion is: I move that the Short Wave Listener be published every month instead of every other month.

Why not leave it up to the listeners and see what they think of my ideas and see how it goes over with the short-wave listeners. Come on all S. W. L.-how about it?
S. B.
B. B. C. Don't Verify

Editor, Short Wave Listener:
Recently I received a card from the Broadcasting House in London, replying to my letter asking for a verification of their programs. They sent me a card which reads as follows:
"The British Broadcasting Corporation thanks you for your report on the transmissions from the Empire Broadcasting Station, but regrets that no specific verifications of reception of any transmissions can be given."

Does this mean that we can not get
READERS
verification cards from the English stations?

Yours very truly,
J. A. Terrell,

191 W. Washington St.
Bradford, Pa.
(Yes, James, we're afraid that's what it means.-Editor)

Wants a Binder for "Mags." Editor, Short Wave Listener:

I have two copies of the Short Wave Listener and can truthfully say, that it's the best short wave magazine I have seen yet and I have had many different ones.

May I make a suggestion that you ret up some kind of a binder for the Short Wave Listener that would sell for about fifty cents? I am sure this would meet the approval of most of your readers.
I am repeating again, you have a very fine magazine and I wish you and the magazine the greatest of success.

Howard W. Marshall
1300 Lodi Street
Syracuse, N. Y. .

Handy Index
 Editor, Short Wave Listener:

I find that for quick and accurate reference to your SWL pages pertaining to important sections, such as "Short Wave Stations", "Time Graph", and "Identifying Stations", that a piece of gummed paper can be pasted onto the necessary pages of your magazines, proṭruding like index tabs, and
therefore save one the useless method of tearing the pages from the magazine and thereby destroying its compactness and usefulness. Also, I can keep each magazine handy and use the most recent edition on my table and have the others near at hand for future reference. This may be of some use to your SWL readers who have been in the habit of turning over the tips of the pages, or tearing the pages of the book out and posting them on the walls of their short-wave den.

> Joseph G. Heffron 519 N. Springfield Rd. Springfield, Penna.

Constructive Criticism

Editor, Short Wave Listener:
I have been living in the country for the past six or eight months, and it was only recently that I learned that there is such a thing as a magazine devoted solely and whole-heartedly to the Short Wave Listener.

You want opinions? Well, I'll give you my honest one, and it won't be a "soft soapy" one, either!

First, the covers: Doesn't anyone ever mention them? I'm surprised at that, because the one on the issue I bought was the most colorful and outstanding one on the whole newsstand!
Now for the contents: The reports on foreign broadcasting stations were quite interesting, and it's thrilling to be able to see pictures of studios and people we have heard. The article on Aerials, Grounds, and Listening Dens I liked best of all. The aerial I have here is a full-wave doublet for 20 meters with a twisted pair lead in-but that's getting off the subject.

The station list and map: Really the best going; however, I do have two or three suggestions, and I believe that the average $S . W$. L, will agree that they would help. Here they are:

1. Somewhere in the list give information on how to change Mtrs. to Megs, vice versa. This would overcome one big difficulty that everyone I know seems to have.
2. Start a "ham" or S. W. L. Exchange where listeners could insert advertisements at reduced prices when they had something to swap, etc.

SPEAK

3. Somewhere in the Station List include a section containing prefixes of amateurs of various countries!

Now that you know how a newcomer feels toward your mag, maybe I'd better Q. R. T. and stop raising Q. R. M. Jack Wesley Polick General Delivery Bridges, Virginia.

$$
\begin{array}{ccccccccc}
A & N & T & A & R & C & T & I & C
\end{array}
$$

AIR LINE DISTANCES OVER THE SURFACE OF THE EARTH

Everyone who has studied geography is familiar with the map called "Mercator's Projection," which for more than three centuries has been the basis for all world maps. Since the earth is round and a map is flat, all ordinary maps give a ve:y distorted idea as to the actual geographical relationship existing between distant
countries, and as a distance and direction guide for the short wave fan they are altogether useless. If you want to know the real airline distances between important places, use a string and measure them on the face of a globe, or refer to the more convenient chart below. This is easily consulted and saves the radio fan the
trouble of figuring the distance according to the somewhat cramped scale on the globe.

Space limitations make it impractical to include many small cities. However, the places shown are scattered places may readily be calculated

2000-2100 kc.
W2XDR-Long Island City, N, Y.
W8XAN-Jackson, Mich.
W9XK-lowa City, Ia.
W9XAK-Manhattan, Kans.
W9XAO-Chicago, Ill.
W6XAH-llukersfield, Calif.
2750-2850 kc.
W3XAK-Portable
Police

W9XAP-Chicago, Ill.
W2XBS-Bellmore, N. Y.
W9XAL-Kansas City, Mo.
W9XG-W. Lafayette, Ind.
W2XAB-New York, N. Y.

42000-56000, 60000-86000 kc.

W2XAX—New York, N. Y
W6XAO-Los Angeles, Calif.
W2XF-New York, N, Y.
W3XE-Philadelphia. Pa.

W3XAD-Camden. N. J. W10XX-Portable \& Mobile (Vicinity of Camden)
W2XDR-Long Island City, N Y.
W8XAN-Jackson, Mich.
W9XAT-Portable
W2XD-New York, N. Y.
W2XAG-Portable
W1XG-Boston, Mass.
W9XK-lowa City. Ia.
W9XD-Milwaukee. Wis.
W2XBT-Portabl

CGZ	Vancouver, B.C.
CJW	St. Johns, N.B,
CJZ	Verdeen, Que.
KGHA	1
KGHB	Portable-Mobile
KGHC	> In State of Wash.
KGHD	
KGHE)
KGHG	Las Vegas, Nev.
KGHK	Palo Alto, Cal.
KGHM	Reno, Nev.
KGHN	Hutchinson, Kans,
KGHO	Des Moines, Iowa
KGHP	Lakton. Okla.
KGHQ	Chinook Pass, W.
KGHR	(Mobile) in Wash.
KGHS	Spokane. Wash.
KGHT	Brownsville, Tex.
KGHU	Austin, Tex
KGHV	Corpus Christi, Tex.
KGHW	Centralia, Wash.
KGHX	Santa Ana, Cal.
KGHY	Whittier. Cal,
KGHZ	Little Rock. Ark.
KGJX	Pasadena, Cal.
KGLX	Albuquerque, N,M.
KGOZ	Cedar Rapids, Iowa
KGPA	Seattle, Wash.
KGPB	Minneapolis, Minn.
KGPC	St. Louis, Mo.
KGPD	San Francisco, Cal.
KGPE	Kansas City, Mo.
KGPF	Sante Fe, N. Mex.
KGPG	Vallejo, Cal.
KGPH	Oklahoma City, Okla.
KGPI	Omaha, Neb
KGPJ	Beaumont, Tex.
KGPK	Sioux City, Iowa
KGPL	Los Angeles, Cal.
KGPM	San Jose, Cal.
KGPN	Davenport, Iowa
KGPO	Tulsa, Okla.
KGPP	Portland, Ore.
KGPQ	Honolulu, T.H.
KGPR	Minneapolis, Minn.
KGPS	Bakersfield, Cal.
KGPW	Salt Lake City, Utah
KGPX	I)enver, Colo.
KGPY	Haton Rouge, La.
KGPZ	Wichita, Kans,
KGZA	Fresno, Calif,
KGZB	Houston, Tex,
KGZC	Topeka, Kans.
KG2D	San Diego, Cal.
KG7E	San Antonio, Tex.
KGZF	Chanute, Kans.
KGZG	I)es Moines, Iowa
KGZH	Klamath Falls, Ore.
KGZI	Wichita Falls, Tex.
KG7.J	Phoenix, Ariz.
KG7L	Shreveport, La.
KGZM	El Paso, Tex.
KGZN	Tacoma, Wash.
KG70	Santa Barbara, CaI,
KGZP	Coffeyville, Kans,
KG7Q.	Waco, Tex.
KGZR	'rm Ore.
KGZS	McAlester, Okla.
KGZT	Santa Cruz, Cal.
KGZU	Lincoln, Neb.
KGZV	Aberdeen, Wash.
KGZW	Lubbock, Tex.
KGZX	Albuquerque, N, Mex,
KNFA	San Bernardino. Cal,
KGZY	Jefferson City, Mo,
KIUK	Clovis, N. Mex.

STANDARD TIME ZONES OF THE UNITED STATES

And adjacent parts of Canada and Mexico

Best Short Wave Stations

This list of short-wave relay broadcasting, commercial and experimental stations is the result of several years of work. Names and ad-
dresses included wherever possible so that you may know where to write. The blank spaces are for the dial settings of your own set.

> \# Stars designate the most active and best heard stations. Times are Eastern Standard C-Commercial phone. B-Broadcast service. X—Experimental service.

Ntation	${ }^{\text {Iial }}$	station	Dial	station	${ }^{\text {biat }}$	Ntation	Dial
				EINDHOVEN. HOLLAND Breadeast relaying PHI Sat, and Sun. Also tests Tues 3.6 Sat, and Sun. a tests Tues. 3.6 a.m. Wed. 7.11 a.m.			
Teats irreeularly, daytime 19355 kc FTM							
		Brazil and Europe, daytime				13610 kc . JYK	
						Phones Caliliornia tiil 11 p. m	
				15120 kc . \qquad Vatioz miterit 10:30 to $0: 45 \mathrm{a}-\mathrm{M}$ Sunday			
17810 kc . PCV		15		Calls ${ }^{\text {Hatentith }}$ Central America, dastime			

Station	I) inl	Station	İial	Station	Itial	Ntution	Dial
				$\begin{aligned} & 9840 \mathrm{kC} \text {. JYS } \\ & -\mathrm{X} \text { K me.49. meters } \\ & \text { KEMIKAWA.CHO. CHIBA. } \\ & \text { KEN. JAPAN } \\ & \text { Irregular, } 4.7 \text { A.m. } \end{aligned}$		$\begin{aligned} & 9540 \mathrm{kC} \text {. } \star \text { DJN } \\ & \text { 31.45 meters } \\ & \text { BROASE } \\ & \text { BERCASTING GERMANY } \\ & 3: 45.7: 15 \mathrm{mmm} \\ & 5: 05-10: 30 \mathrm{pm.m.} \end{aligned}$	
		c. Lawrenceville. n. J. Arge., Braz... Peneru, nights		9800 kc.			
11940 kc. \qquad STE. ASSISE. FRANCE Phones CNA morning Hurlingham. Argo., nights							
				9750 kc. WOF		9510 kc. - VK3ME - BAMALgAMATED Wireless.	
		10410 kc . PDK		$\frac{\text { LAWhes }}{\substack{\text { LAWgland. } \\ \text { Phonening. }}}$		meLboúrine, Australia Wod., Thurs.: Fri., Sat. 5:00-7:00 a.m.	
11860 kc. DAVETMTRY Metri houise, LONDON, ENGLAND							
		$10350 \mathrm{kc} \text {. }$ LSX					
		MONTE GHANDE, 		9600 kc . ${ }^{2}$ CTIAA B. LISBON. PORTUGAL			
$\underset{-\mathrm{B} .}{11811 \mathrm{kc} .} \star 2 \mathrm{FO}$		${ }_{-\mathrm{B}}^{10345 \mathrm{kc} \text {. }} \text { meton } \mathrm{CAC}$					
		ay, 8:30.9:30 p.m.				9125 kc . HAT4	
.m.e. $9: 15-10: 15$		10330 kc . ORK		3, 5:30-6:		${ }^{32.88}$ moters	
11790 kc . WIXAL				9590 kc. *VK2ME	1	budapest. hungary Sunday 8.7 D.m.	
$\begin{aligned} & - \text { B- } \quad \text { BosTon. } 25.45 \text { meters } \\ & \text { Irresulariy in the afternoon } \end{aligned}$		10290 kc. DIQ		LTD. ${ }^{47}$ YORK ST. Sunday 12M.-2 A.m., 4:30.8:30			
11770 kc. *DJD		Breadembty -irrooularly		HP5J		BoLINAS. CAL Reiny Pracama lo evening irregularly	
BROADCASTING HOUSE, 12.4:30, 5:05.10:30 D.m.		${ }_{-c} 10260 \mathrm{kc} . \quad \text { PMN }$				$\begin{aligned} & 8795 \mathrm{kc} \text { 34.09 moter } \\ & \text {-B. } \mathrm{HKV} \\ & \text { Bogota colombia } \end{aligned}$	
11750 kc . ${ }^{\text {c }}$ *GSD		BANDOENG, JAVA Calls Australla $5 \mathrm{a} . \mathrm{m}$.		9590 kc. W3XAU		Irrosular: 8:30 p.mo-12 m.	
		10250 kc. LSK3					
11720 kc. *CJRX -B- wIMNIPEG CANADA		- CuRLINGHAM. ${ }^{29.27}$ meters 					
11705 kc *F		10200 kc. CMHB		B. BRITISH 31.32 meters DAVENTRY, ENGLAND		7:14-10:IT p.m.. Exeept monday	
-B. .4RADIO 25.83 meters ${ }^{2}$ PARIB. FRANCE $10^{8-9} \stackrel{\text { ®. }}{\mathrm{E} . \mathrm{m} .} \mathrm{m} .12 \mathrm{~m}$.		 Tosting in oarly evening		$\begin{aligned} & 9580 \mathrm{kC.} \quad \star \text { VK3LR } \\ & \text {-B. } \begin{array}{l} \text { 31.32 meters } \\ \text { Resereh } \\ \text { Seetlon } \\ \text { Postmaster Gen'ls. Dept. } \end{array} \end{aligned}$		8185 kc. -CiO DE 38.85 meters IANEIRO, BRAZIL Ireegulerly reegulari	
$11700 \mathrm{kc} \quad \text { \# HJ4ABA }$				3:15-7:30 $2 . m$. exeent sun. Also Fri., $10: 30$ o.m. $\cdot 2$ a.m.			
MEDIregulariy $5.1 \mid$		9950 kc. GCU		9570 kc. \qquad		7880 kc . JYR	
		-c. 30.15 maters RUGBY, ENGLAND		WESTIMGHOUSE ELECTRIC SPRINGFFGLD. ${ }^{\text {CO }}$ MASS. Reliys wBz. 6 i.m. 12 m .			
		9860 kc .		9560 kc.			

Grand Short－Wave Station List

－This Grand List of Short－Wace Stations of the World is a carefully edited one，and especially compiled by the editors．Only those short－wave stations which the average listener is likely to hear have been included in this list．A special＂Quick Reference＂list appears else－ where in the magazine，giving the＂Star＂short－wave broadcasting stations，while another specially edited list contains the＂Television＂and＂Police＂station call letters．

The editors will be glad at all times to receive correc－ tions from our readers，and particularly any additional information on new stations not found in this list．In giv－ ing this information，please write such data on a separate sheet if the letter contains references to any other sub－ ject，so that these corrections can be handed directly to the editor of this department．A postcard will frequently serce the purpose for sending us such information．

Short Wave Phone Stations By Order of Frequency in Megacycles

Freq． Mc．	CALL and LOCATION		Freq． Mc．	CALL and I，OCATION		Freq． Mr．	CALL and LOCATION	
1.510	VAF	199 TO 180 METERS Nert Bay，Can．	1.600 1.615	PIC	Sheveningen Lighthouse Jep． Netherlands Brandaris laghthouse，Neth．	$\begin{aligned} & 1.819 \\ & 1.840 \\ & 1.860 \end{aligned}$	$\begin{aligned} & \text { OXC } \\ & \text { YOJ4 } \\ & \text { YOK } \end{aligned}$	Kingsted，Jenmark （＇heribon．Netherl．．Indie，（13） wemarange Netherl．India．（13）
1.510 1.510	CJD	Campell River，13．C．，Can．	1.615	PCD	Haaks Lightship，			160 TO 120 METERS
1.510	VAC	C＇upe lazo，（＇an．	1.615	PIA	Kykduin Semaphore，Neth．			
1.510	CJN	Curdero Channel，I3．（＇a Can，	1.615	PCE	＇rerschellingerbank lightwhip，	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$	EAU DCA	San Loranzo，（＇anary Imands Adergrund Lightship．Germans
1.510 1.510	CJE	Ceepercee，B，¢night Inlet．B．t．．（＇a	1.615	YDB4	T＇jepoer，Netherland India（B）	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$		Adergrund Laghtshio．Germans Bremen Lightship，Gernany
1.510	VCU	Merry Island，C＇an．	1.620	C2B		1.875	DCK	Wthe Lightship No．2，Germany
1.510	CFV	Namu，B．C．，Car，	1.620	CFC	Cub Lake，Sask．，Canada	1.875	DCG	F＇Jbe lightship No．3，Germans
1.510	CKQ	l＇owell River，13．＇．，Cas	1.620	CGV	Emma Lake，Sask．Cunada	1.875		E．lbe Lightship No，4，Germany
1.510	YLZ	Kiga，Latvia（N）	1.620	CZJ	1le－a－la－C＇rossp，Sask．，（＇anada	$\begin{aligned} & 1,875 \\ & 1,875 \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DCU } \end{aligned}$	Filbe Wemer．Germany Rohbinplate lishthouse Gur
1.510	CJT	Theodosia Arm， 3	1.620 1.620	CFD CGO	Kenora，Ont．．Canads（rasda	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$	$\begin{aligned} & \text { DCU } \\ & \text { DAS } \end{aligned}$	Robbinplate Laghthous Kugen。（iermany
1.510	CYG	Thurston 13ay，13，0	1.	CGQ	lace la Ronge，Sask．；（amada	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$		Rugent（rermany Caval stations Germany
1.510	VAI	Vancouver，13．0	1.620 1.620	CMF CZY	Manicoungan Riverr PGQ inn．	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$	TFH	Naval stations， Husalik，leeland
1.510	CJH	Viner Sound，13，（＇an，（3）（＇an．．	1.620 1.620	CZY	Kiviere du（＇hef，P＇，¢，（＇anad	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$	RFAW	Husarik，leemand Moscow，Jussia
1.510	CJR		1.620 1.620	CZZ	St．Felicien，P．（e，Conada	$\begin{aligned} & 1.875 \\ & 1.875 \end{aligned}$	$\begin{aligned} & \text { RFAW } \\ & \text { RLX } \end{aligned}$	Moscow，Russia saratov．Russia
1.520	VIA	Adelade．Austrabia Sydney，Australin	1.620 1.620	CJL	Tabouret．P，©．，Canada	1.8780	YDO9	Soerabaja，Netherl，India，（13）
1.523	GUF	．${ }^{\text {dederseg，I＇niter }}$ Kingrdom	1.620		Experimental，Canada	1.898	ESP	Parnu，Estonis
1.523	GUG	Guernses，United Kingdom	1.622	VKA	Jogolara，Australia	1.		Batavia，Notherl
1.523	GUB	lochboindale，Inited Kingelo	1.622	VJE	Burrinju＇k，sustralia			a Russita
1.523	GUA	Tobrrmory，Tnited Kingdom	1.622	VJF	Gootamundra，Ausirali	1.920		Ship－Stations，Germany Buitenzorg，Netherl．India，（B）
1.530	W9XEY	Kansas City，Missouri，CNA （ 13 S ）	1.622 1.622	VJH	（rundapai，Australia Køorawhtha．Anstralia	$\begin{aligned} & 1.920 \\ & 1.940 \end{aligned}$		Buitenzorg，Netherl．India，（B） Hango，Finland
1.530	W1x8S	Prospect Tupp．，（＇onn．，${ }^{\text {PSAL }}$（13N）	1.622	VKJ	Lithgow．Anstralia	1.940	YON3	Kediri，Netherland India，（ B
1.530	SCJ	Karlskrona．Swedin（13）	1.622	VJG	Jurrumburrah，Australia			Ship Stations，（rey Tveraa．Denmark
1.532	CFC	（un，lake，Sask．（an，	1.622 1.622	VKB	Yass，Australia ${ }_{\text {Portable Burrinjuck，Iustralia }}$	$\begin{aligned} & 2.000 \\ & 2.000 \end{aligned}$	$\begin{aligned} & \text { OXK } \\ & \text { TFG } \end{aligned}$	Tveran，Denmark （irimsey，I cetand
1.532	CGV	Fmma lakce sask．，（an．Can．	1.622 1.622		Portable，Burrinjuck，Iustralia Portable，Lithgow，Australia	$\begin{aligned} & 2.000 \\ & 2.020 \end{aligned}$	RIAD	Nijni－C＇hkaft，Russ
1.532	CZJ	Ineata－（rosme，Siske．（ant．	1.622 1.622			2.		Portable．Australia
1.532 1.532	CGQ	Thac la Ronger，Natk．．Cask．Can．	1.622	OXB	Blaavand，Denmark． 2 B Vyl Lighthip，Deninark	2.050	$J 1$	Cloncurry，Austral
$\begin{aligned} & 1.532 \\ & 1.538 \end{aligned}$	CJC OSW	Thunder Mountain，gasko．Can，	1.629	ESS	6）mmissaur，fitoniamark	2.090	DAS	Kugun，Germany
$\begin{aligned} & 1.538 \\ & 1.538 \end{aligned}$	M	Christianso，jhenmark	1.630	YDD2	Bandoeng．Netherland India	2.098		Kronlory Light．
1.538	OXJ	Thorshaven，lenma	1.640	YDA3	13uitenzorg．Netherl．India， 33	2.110		Ship－to－Shore ra
1.538	OZK	Thorshave，Jumma	1.648	TFA	Krevjavik，Iercland			－l＇
1.538	TFO	Malmey．Ireln	1.648	TFX	Siglufjordur，Ifeland	2.		hip－to－shore，C＇S．
1.538	TFS	Stykkitholmur．Id	1.648	TFV	Vertmannatyjar．I celand			ny
1.540	VBY	Luntuhnre．N．s．．．（＇ant	． 660	YOB3	1）jukinkirta Nopherl．Ind．．（B）			
1.540	VK3EJ	Mellourne Anniralia（			180 TO 160 METERS			hip－to－shore，
1.540	CJD					2.206	VYV	Port Menier，］．Q．．Cunada
1.540 1.550	CJDXA1	Thurston 13as，Culif．（BX）	1.690 1.712	$c \geq G$	Burnham，Caited Kingdom I＇rince Kupert，13．C．，Canada	$\begin{array}{r} 2.206 \\ ? .212 \end{array}$	$\mathbf{V Y Z}$	lligh Falls，IP．（\％．，Canada
1.550 1.550	W6xAl	13ak＋rsfield，（blif．（B3N） Long Island City，S．V° ．	$\begin{aligned} & 1.712 \\ & 1.712 \end{aligned}$	$c \geq G$	Vancouver．B．C．C＇unad	$\bigcirc 230$	RT7	Azov－on－le－Jon，Kussia
1.550	WEXR	$\begin{aligned} & \text { Long } \\ & (13 \mathrm{~S}) \end{aligned}$	1.712	CZE	Viotoria． B ，C，Canada	2.252	KIU	Portable．I＇sa
1.550	YDA4	Soekaboemi，Neth．India（13）	1.714	ESG	Tillinn－l＇lemiste，Fitonia	2.252	KIU	Portable，I＇SA
1.550		Nov゙al stations，V゙nit－d Kingrlom	1.715		Amaterss．．Irgenti	2.252	KIUE	lortuble，［＇SA
1.560	CZA	Irummondville，l＇．（Q．，（＇an．	1.715		Amateurs，	52	KIUO	Portable，USA
1.560	VBG	1Talifax，犬 心．，（＇un．	1.715		Imateurs．	2	K	Portable，UTS．
1.570	YDB6	Mulang．Nuthorland India	1.715		Amatelurs，Estonia			
1.579	VLA	Cape lirung，Australia	1.715		Amateurs，Cnion of So．		CKC	
1.579 1.579	VLB	Mantsuyker Isi．．			matears，US．	4	C	Flaggs Cove，N，J．．（anm
1.579 1.579		Adisrgrund Lightship，	2.000			2.284	CFT	Latamington，Ont．．（＇anada
1.579	DCV	Bremen lightahip，（hormany	1.720		Bremerhaven İloydhalle，Gra	2.284	CKP	Montmagny，$P^{\text {P }}$ ，Q．．（ana
1.579	DCK	Fithe lijghtship No． 2 （farm	1.730	YLY	Licpaja，Latria，（X）			Pold
1.579	DCG	Fibse Lightohip No．3，Gormany	1.735	RFAU	luyovo（Moskow（Obl．）P Russia			
1.579	DCI	Filbe Lightahip No．4．（\％rmany	1.754	OYE	Ronne Darm			Il elehimo
1.5	DCU	IRohbenplats Lighthouse．						lBones l3ay，B
1.579		Ship Stations．Grermany			Salentia lrish Free Siate	2，290	CJE	（＇rapparcee，13．C．，（＇anada
1.579	OYQ	Jakohshavn，Greanland	1.760 1.760		Culfercoats，Innitrd Kinguom	2.290	VFJ	Homalko，13，C．，（\％anada
1.580	CJM	Borden，I＇．E．，I．．（＇anuda	1.760 1.760		Fishguard，inited Kinglon	2.290	CZL	Inampack Bay，13，
1.582	YDD3 PCC	Batavia，St therland lndia（B）	1.760 1.760		Homher，Vnited Kingdom	2290	CJY	Jackson 13as，B．C．．Cana
1.585 1.585	PCC PID	Coordhinder lightship．Neth．	1.760 1.760		Lands Find，Innied－Kingalom	2.290	CFV	Xamu，13．C，Canada
1.595	OZP	Langhy lenmark（13）	1.760		Niton，I＇nited Kingedem	2.290	C	Selwy Inlet．13，
1.595	YOB5	Solo，Netherland India（ls）	1.760		North Foreland．［initud King．			
1.596		Fixperimental，1TS．I	1.760		Cionforth			1.0
1.596	CFC	Cub Lake．Susk．，Connda	1.760		Saforth．Initrd	2.343	RFCO	Moscow，Russi
1.596	CG	Fimma lake，Sask．，Canada				2，350		Malifax．N．S．．Canad
1.596	CZJ	Jla－la－－Cross，Sask．Canada	1.764 1.764	DCS	Tonning，Crormary	2.355		I3urnham，United Kingdom
1.596	CGG	Lae la Ronge，Sask，．Cannda	． 1.764	TFF	Flatey a Skjalfanda，Icelend	2.355		Cullercoats．Vnited Kingdom
1.596	C	Thunder Mountain，Sask．，Can．	． $\begin{aligned} & 1.765 \\ & 1.775\end{aligned}$	RHBD	Inaningrad．Russia	2.355		Fishguard．United Kingdom
1.596	TFZ	lsafjordur，Imeland	1.775	ESR	Kuhnur，Fistonia	2.355		Humber，United k
1.596	TFA	Reykjuvik．Ireland	1.775	ESR	Ship Stations，Germ	2.355		lands Find，UTnited Kinglo
1.596	TFX	Siglufjordur，Ireland	1.775	OUY	Vil Lightship，Ifenmark	2.355		Malin Head．I＇nited Kingro
1.596	TFV	Yestmannueyjar．Ireland Hoek van Jolland，Netherlands	s $\begin{aligned} & 1.818 \\ & 1.818\end{aligned}$	PON	Scheveningen．Netherlands	2.355		Vitnn Kadio．United Kingdom
1.600	PIE	Hopk yan Holland，Netherlands Maas Lightship．Netherlands	\＄ $\begin{aligned} & 1.818 \\ & 1.818\end{aligned}$	PHED	Ieningrad，Kussia	2.355		North Foreland，United King．
1.600	PCB	Maas Lightship．Netherlands	1.818	RHED	leningrad，Kussia	2.355		

$\mathbf{B}=$ Broadcasting ； $\mathbf{X}=$ Experimental．

Freq． Mc．	CALL and LOCATION		treq． Mc．	CALL and LOCATION		req． Mc．		L and LOCATIO		
2.355		P＇ortpatrick，L＇nited Kingdom	$\begin{aligned} & 2.910 \\ & 2.920 \\ & 2.930 \\ & 2.950 \\ & 2.980 \end{aligned}$	YDE3 REKD YDOS YDQ5 CZA				Vatskar，Finland		
$\begin{aligned} & 2.355 \\ & 2.355 \end{aligned}$		utorth，Lnited Kingdom				$\begin{aligned} & 3.333 \\ & 3.333 \\ & 3.340 \end{aligned}$	OFU OHP			
2．355		Valentia，L＇nited Kingdom			Alma－Ata，Kussia			Drummondville， 1		
2.357	P	ma de Mallorca，Spa			Soerabaja，Netherl．India，（13） Malang，Netherland India，（13） Drummondville，P＇Q（＇unada	3.340		Montreal，le，Q．，C＇auada		
2.357	EDR4	Pama de Mallorca，Spaia				3.34		Portuble l＇si		
2.366		Naval stations，（ nited Ki		－100 TO 85 METERS		0	YDG3	Naval Stations，Germany Malang，Netherland India		
2.385	2	Matavia，Netherl India，（13）	2.990	RHBB		3.370	YDUZ	Malang，Netherland India， Medan，Netherland India，		
$\begin{aligned} & 2.398 \\ & 2.400 \end{aligned}$	EST	Experimental，［＇s．t	3.000	$\begin{aligned} & \text { SQB } \\ & \text { SOA } \end{aligned}$	1sialystok，	3.370	RIAY	Tchernoretehenskoe，Russia		
2.400	DAF	Norddeich，fiermany	3.000 3.000		Lwow，Poh	3.380	RGJV	Iochkar－Ola，Russia		
2.400	OYR	Eigadesminde，（irownlund	3.040	SQA SWZ CGE	Warsaw，loland	3.380	RENJ	Karsakpai，Russia		
2.415	YDE4	Sourabaja，V＇etherl，India，（13）	3.040 3.040	CGE RKDM	Calgary，．lta．，Canada	$\begin{array}{r} 3.385 \\ 3.385 \end{array}$	WIIU	Marshath，Nlaska		
2.416	CZG	Prince Rupert，13．（＇．，（＇anada	3.040		Calgary，．lta．，（＇anad	3.385 3.390	RENG	Portable，LSA		
2.416 2.416	CJW	St．John，N．Mo，C＇anada	3.040	RKOO	Odessa，liussia	3.390	YOQ:	Injember，Netherland India，（13）		
2.416	CZF	Vancouvir，13．C＇．，Manad	3.040	RKOO		3.410		heboygan Range Light Stution，		
2．416	VYW	Winnip	3.048	KIOG	portable，USA			Mich．．USA．		
2.450	YDB2	Semaramg，Notherl．In	3.048	Kı	lortable，CSAI	． 41	WWEC	Delaware IBreakwater Light		
2.452	caz	Vanconver．13．（\％）（＇anady	3.048	KIUD	Portable，l＇ortahe，Posil			it，L．II．Deyot，Mich．，US．I		
		Verdun，P．4．．．＇mat	3.048	KIUC		3.410 3.410	$\begin{aligned} & \text { WWR } \\ & \text { WWN } \end{aligned}$	roit Rivar Light Station，		
		120 TO 100 MET	3.048	KIUB	Portable，RSA					
2.500	DAS	Rugen，rirm	3.055		Moscow，Russia			Dry Tortugas		
2.500	TF	Djopivagrar，Imand	3.050		Portable，Wyndham Meatsworks． Australia	3.410				
$\begin{aligned} & 2.517 \\ & 2.517 \end{aligned}$	EDO	Madrid，Spain								
2.517	EDS	Madrid，Spain	3.058	VYY	Misson， I^{2} ．Q ．（＇anada	3.410	WWz	Key West L．II，Dep，Fla．，US．I		
2.550	RHJS	Oust－labinskaia，	3.050 3.060	RKNK	Kharkov，Russia	3.410	WWAJ	Manitou Lgt．Sta．．Mich，USA		
2.604	WZAS	Cinsconade．Mo．．U＇S．	3.080	PVV	Moscow，Kussiat		WWM WWAL	Marquette Lgi．Sta．，Wis．，USA		
2.604	WXA	Juncau．Daska	3.080	RHIK	Rostor on Don，Russia	3.410 3.410	$\begin{aligned} & \text { WWA } \\ & \text { WRL } \end{aligned}$	Pere Reef lagt．Sta．，Mich．，USA		
2.604 2.604	WXH	Kıtchekan，Alasks	3.080	REBB	Vadimir，Kussia	3.410	WWAM	Kork of İges ligt．，Hieh．，US．I		
$\begin{aligned} & 2,604 \\ & 2 \end{aligned}$	WYBF	Sapoleon，Mo．，L＇s．l	3.088		A irplanes，CHAA	3.410	WWH	Standard Rock l．gt．，Mich，USA		
		N	3.090	RBX	Moscow，Russia	3.410^{\prime}	YDL4	Djokjakurta，Nithrl．India，（13）		
2.6	RELB	Houkhta	3.095	\times A		3.410	RGAZ	Kotelnitch，Russia		
10	RELO	Boukhas Bartss，			＂＇ortable＂，US．	3.410	RJBD	Sourdlovak．Russ		
2.610	RELO	Bouklita liertys，			dirplanes，USA	3.420	RFA	lsamovo Russia		
2.610	RELZ	Spasskyi Zavod，Russia	．130	YDH6	Moscow，Russia	3.435	OEHI			
2.640		dirways．［sil	3.135	$\begin{aligned} & \text { RKO } \\ & \text { RK } \end{aligned}$	Bandoeng，Netherl．India，（B） Kinv，Lusssia	$\begin{aligned} & 3.430 \\ & 3.440 \end{aligned}$	YDOZ	Sorabuja，Netherl．Indi		
2		Airways，［0＇s	3.140	RMOU	Kitev，Lussia Guroulga，Kussia	3.440	RKA	Mosow，Russia		
	NOX	Biloxi，Miss．．	3.150	YDG3	Batavia，Netherl．India，（1s）	3.445	Wix	Moscow，Russia		
2.670	N	Buffalo．N．Y＇，［＇S．l	3.150	REIX		3.450	YDI	Solo，Nitheriand Indi		
2.670	NOV	Capa May，N．A．，L＇sa	3.150	RLEE	Akmolinsk， Bouchoulti，Kussia Rusia	3.450	RKNZ	Kharkos．Russia		
	N	Cleveland，Ohio，USA	3.150	RMDK	Kıniuvskaia，Russia	3.450	RFAG	Moscow，Lussia		
2.670	OOL	Ft．Lauderdale，rla，E＊S．l	3.152	CGM		3.450	RFBL	Moscow，Russia		
2.670	NOY	Galveston，Texas USA	3.152	CGY	Yamachichi P．Q C＇unada	3.460	CFD	K，nora，Ont．，Canad		
2.670	NMW	Grays Harbor．Wash．，	3.155	Wixac	Portable station，USS． I＇prnjvik，Greenland	3.460	CZG	Prince knpert，13．		
2.670	NMV	Jucksonville，frla，C゙sid	3.158	OYN		3.460	CZF	Vancouver， 13.		
2.670	NOM	Miami，Fla．．CNI	3.160	CGM	CMrnjik，Greenland Montreal．1＂．（2．（＇anada	3.460	CZE	Victoria，13．©．，		
2.670	NMG	Mobile．Ana，USA	3.160	CGY		3.470	RFA	Moscow，Russia		
2.670		New London，Conn．，US． 1	3.160	RLEz	Zilovo．Ifussia Soerabaja，Netherl．India，（B）	3.480	VLT	Bulolo，Naw dilin		
2.670	NMC	Point lbonita，Calif．，［＇s．l	3.170	YOO4		3.485	SQB	Hials atok，Poland		
2.670	NOJ	Point Vicente，（alif．，UsA	3.170	RLEC	Sourabaja，Netherl．India，（B） Tehita，Russia	3.490	PKIW	Bandoeng．Java，		
$\stackrel{3}{2.670}$	NOW	Port Ingelm，Wash，［－sA	3.180	RMDG		3.490	HAP	Budapest，Hungary		
2.670	NOZ NMN	Port Tounsend．Wash．．I＇sid	3.180	RHJO	Boldhoi Never，P	3.490	Saz	Warsaw，Poland		
	NMN	Princoss ．Tnne		RLED	A Tashkront．Russia		85 TO 80 METERS			
2.6	NOF	st．Patershurg	3.180 3.180	RMWA						
2.670	NOS		3.180	RMDF	Zuia，Russia	3.495	SQA	Luow，Poland		
	NMP	Wilmette．III．，L＇SA	3.190 3.190	RMDQ RENI	Kemarang，Nothorl．India，（13） Amuzar，Russia			Saratov，leussia		
2.670	NMF	Winthrop，Mass，，USA	3.130			$\begin{aligned} & 95 \\ & 90 \end{aligned}$	RLXS			
2.67	EDO	Madrid，spmin	195			to		teurs，		
	EDR	Madril．Spain	3.200	RMDMYOL5	loget（hat，liussia	．00				
2.673		Madrid，Spain	3.210			3.505	U	Leningrad，Russia		
2.698 2.698	NOX	Bilaxi，Mixs．：LYSA	3.230	$\begin{aligned} & \text { YOQ4 } \\ & \text { W-XAO } \end{aligned}$	bjokjakarta，Nuthrl．India，（B） Jalang，Xi，therland India，（B）	3.510	RKNX	behaltsevo．Kis		
		Muffalo，N．Y．．USA	3,235 3.240		Mathing，Nitherland India，（B） Q Portable，［＇s．	3.510	RKLA	Kramatorsk，Lussia		
2.698	NOW	Port Angeles，Washo，USA	3.240 3.240	RMAY EDP		3.515	RTU	Polgeproudmaia．Russi		
2.698		Naterm．Mass．．－－－．	3.240		Trontw Zaronbino．Renssia ［＇alma du Mallorsa，spain	3.520 3.520	RFAO	Whasow，Rossia		
2.698		W＇ilmette，111．：1－si	3.240	EDR？ YDH：	Madrich Spitin	3.520 3.530		Flarsaw，Poland		
2.710	YDK5	Semaramp，Neetherl，India，	3.250		faron＋1．Nitherland India，（ B ） ド：xpmrime ntal。（＇anada	3.530	TFP			
2.730	KZGF	Manila，Philiplin！1 Nands	3.256			3.540		Cirways station		
2.730 2		Nurth foreland．［＇nitocl Kingdom	3.265	 YDK 4 Merland，Nitherl．India，（B）		3.543	CRIAA	Laurenay Sargues，Mo		
2.738 2.740	WKDX CFD	Nuw York N．Yo．I＇s．l	3.270 3					(B)		
2.740	C	Kunoria，Gnt．，Chata	3.275 3.295	RMAS W－XAQ	＇Jafunin，liu－sia	3.550	REI	Ama－－ita．Russin		
2.750	－－－－	Exprerimmaid，tal．［TS．（		Wixas YDH．	sundoeng．Netherl．India．（1s）			Russi		
2.750		Fixprimental，tel．，（＇an．．．（＇I＇）	3.310	RIACLPG		3.55	REJA	Mrgiolich，Ru8sta		
2.750	YDLG	lrjokjakarta，Nithrl．India，（13）	3.330			3.555	RRT	Thly－kourgon，Russia		
2.758		Fxpurimuntal．（＇an．	3.330	YOVㅁ	Bandjurmasin．Noth．Iudia，（13）	3.560	RPOK	Kırovtrn，Russ		
2.760	YZGH	Proido．Philippine Ishands	3.330		3－hkrat．Kussin	3.565	RRT	Vitask．Russia		
2.770	VK3LR	Dsmblharst．Vic．．Anstralia	3.332	RRRR CFD		3.570	RGAP	（iorki，Runsial		
2.770	VKIXX	dendhurst．Vio．duatratia	3.333	OGH	Elabholm，F＇inlanil	3.570	RGLG	Meran，leansia		
2.770	YDO6	Amoralaja．Notherl．India，（13）	3.333	OGF	Fagerholm，P＇inland	3.570	RCR	Sukhitchevan，Ifme		
2.790	YDN	Madioern．Nothort．India．（13）	3.333	OFL	Hatpasalari．F＇inland	3.570	RRT	Vitelnk．Russia		
2.800		Turonaticat．Furabe	3.333	OHN	lango．finlanil	3.580	RLW	－ 1 rtomovek，Russia		
2.8	YDG6	Malamg，Sotherland India（B）	3.333	OGE	Inelsingfors．Finland	3.580	RMP	Madrouchkent．Russi		
2.8	RHBD	Latougrad，Russia	3.333	$\begin{aligned} & \mathrm{OHG} \\ & \mathrm{OHH} \end{aligned}$	Helsingfors，F＇inland	3.580	RIU	V，．rkhoiansk，Rhassia		
2.8		Aaronautiral forrope	3.333		Koivinto r＇inland	3.585	RHC	K゙hihinigorsk．Russia		
2.820	VK3LR	leyndhurst．Vic．．Australia．（13）	3.333	OFM	Kotka，Finland	3.590	REX	Indigo－Boukhta，Russi		
2.820	VK3X	condhurst．Vic．，Australia	3.333	OFG		3.590	RUY	lerromaisk，Russia		
2.820	RIAD	Sijni－Chkuft，Russia	3.333	OFY	Lavansaari，Finland Mariohania，Finland	3.600	CT2A	Ponta Delgada，dz		
2.830	KZGG	Crhu，Philippine Islands	3.333	OFW I＇irtisaari，Finland		3.600	RPG2	（iroumont Siti， 1		
2.830	YDU4	Medan，Netherland Indies（13）	3.333	OFX Porkkala，Kallbada，		3.600	RKNE	Kharkov，Russia		
2.830		－${ }^{\text {eronautieal，}}$ burope	3.333	OFV Porkkala，Tonnskar，Finland		3.600	RCNO	Neval．Russia		
2.835		Rome，Italy	3.333	OGI Saggo，Finland		3.600	Rucz	Sorrdlorsk．Russi		
2.845	OHG	Indsingfors，Finland	3.333	OFS Seiskari，F＇inland		3.610	RJRV	Kozlor．Russia		
2.845	VLT	Bulolo．New Guinea	3.333	OFN Suursaari，F＇inland		3.610	RKLW	Kramatorsk．Russia		
2.870	YDJ3	Tegal，Netherland India，（B）	3.333	OFI OFO OHT OGJ	Tanimio，Finland Tytarsaari，Finland C＇to，Finland Vasas，Finland	3.620	DOA	Dopheritz．Germany		
2.870	RFCG	Moscow．Russia	3.333			3.620	RC．AD	Minsk．Kussia		
2.875	EDR4	Prama de Mallorca，Span	3.333			3.620	RGX	Minsk，Russia		
．890	YDJ2	Pekalongou，Nitherl．India，（3）	3.333			3.62	RIAU	Sumara，Russia		

$\mathbf{B}=$ Broadcasting ； $\mathbf{X}=$ Experimental．

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION		Freq． Mc．	CA	LL and LOCATION	rreq． Mc．		LL and LOCATION
$\begin{aligned} & 5.077 \\ & 5.085 \end{aligned}$	$\begin{aligned} & \text { WC } \\ & \text { RIO } \end{aligned}$	Lawrencevalle，N．J．，USA l＇akou，Kussia	$\begin{aligned} & 5.660 \\ & 5.660 \end{aligned}$	$\begin{aligned} & H J 5 A B C G^{\prime} \\ & 12 R O \end{aligned}$	＇ali，Colombia，（B） Kome，Ithly	5.990	XEBT	$\begin{aligned} & \text { Mexico City, Mex., P. O. Hox } \\ & 79-44 \text {, (B) } \end{aligned}$
5．085	RMBK	Oust Bolcheretsk，Russia	$\begin{aligned} & 5.660 \\ & 5.660 \end{aligned}$	VQR	Rome，Ithy Nairobi，Krnya			
5.090	REJV	Seuipalatinsk，Russia	5.660	RKLP I	Rovenki，Russia			501045 METERS
$\begin{aligned} & 5.100 \\ & 5.105 \end{aligned}$	RCTO KEC		5.670 5.680	RHON RKOF	Gorlorka，K゙ussia	5.9	WXE	Anchorage，Alaska Fetchikau，luska
5.120	REIG	Pribalkhachstroi，	5.692	FIQA T	Tranamarive，Madagascar	5.995	RPT	chikan，Alu
5.130	ZGD	Kuantun，Federath，Malay States	5.700	OSG 1	Luluabourg，Belgian（＇ongo	6.000	OSF	nu，Belgian Congo
5.140	EDR3	El Tablero，（＇mary Is．	5.700	RKLR 1	l isitwhank，Kussia	6.000	XGO	nking．Chins
5.140	PMY	Bandowng，Netherl．India，（1）	5.705	$\text { ZC2PC } 1$	liaifa，Palestine	6.00	VSZAB	Kuala Lumpur，fed Malay
5.140 5.145	PJEJ OKIMPT	＊＇vardlosk，Russia	5.705 5.705	$\begin{aligned} & \text { ZC3PC } \\ & \text { ZC4PC } \end{aligned}$	Mafrak，＇Transj．，Palestint			sitatess ＇Tananarive，Madagasarar
$\begin{aligned} & 5.145 \\ & 5.200 \end{aligned}$	$\begin{aligned} & \text { OKIMPT } \\ & \text { RKLW } \end{aligned}$	Thrague，（zechoslowakia，（X）	$\begin{aligned} & 5.705 \\ & 5.710 \end{aligned}$	$\begin{aligned} & \text { ZC4PC I } \\ & \text { HCJB } \end{aligned}$	I＇ump）Station H4，＇Transj．，l＇al． Quito，Ecuador，（is）	$\begin{aligned} & 6.000 \\ & 6.000 \end{aligned}$	$\begin{aligned} & \text { FIQA } \\ & Z L 3 Z C \end{aligned}$	Tananarive，Madagasear Christehurch N．Z．
5.210	REIP	Yozrojdornic（ostrov，Russia	5.710		Daino，Echator，Manchuria	6.000 6.000	2L3ZC	hristehurch，Denis，Reu
5.215	RCTP	Trhistopol，Russia	5.714	2GA K	Kuala Lumpur，Fed，Malay	6.000		Henorest，
5.220	ZFC	Hanilton，Bermuda				6.000	RPDM	Medvejia Gora，linssia
5.220	RELO	Houkhan Bertys．Ku	5.715	GIR I	！ollis Hill，United Kingdom	6.000	RW50	Moseow，Russia
5.222	ZEZ	Broken Hill，Xorthern Rhodesia	5.725	OXL S	Skamlobak，Denm	6.000	RV59	
5.222	20H	Fort lamenon，Northn．Rhoderia	5.725	12RO II	Rome，Italy，（13）	6.000	RKDO	Parandovo．Russia
5.222	2DA	Livingetute，Northern khoduia	5.730	JVV＇r	Fokyo，Japar	6.000	RKDN	Kיrju，Russia
5.222	ZDI	Mongu－Lealui，Northn，Rlodesia	5.740	RKLS T	Trhistiakwo．Russia	6.000	EAJ25	13are lona，Spain
5.222	2FF	Mpikia，Nurthern Rhodesia	5.750	RGAQ Ij	Ijuwek．Russia	6.005	VE9CU	（anciars，Alta．．＂anadia
5.250	RIBC ！	Pיonza．Rusia	5.750	EDR2	Mindrid．Spain	6.005	VE9DN	Trammondvilte，I＇，（2．，（amada
5.25	DJB	Zatan，（iprmany，（13）	5.750	EDS M	Madrid，Spam	6.005	VE9DR	
5.260	WGN	Rowky Point．N．Y．．．I－	5.760	RLX 1	Mrtemorsk．R2，	6.005	HJ3ABH	Buarotit，Colombiat
5.263	RMFN	（irodikono．kussia	5.760	OQG	lithergr．13ndian（＇ongo	6.005	CMCl	Hatratia．Cubat
5.265	CEC I	lat riranja，Chilu	5.766	CFU li	Rowatand，13．＇＇．．Camada	6.005	HRB	＂0egurigalpa，H1
5．280	PWO	Xirtheros．Mrmacao，lbrazil	5.766	XAM	Murida．لّuratalı，M	6.006	HJ1ABF	Samta Marta，Color
5.28	RGAP	fiorkyi．lansxia	5.769	RELB İ	Bowkhta 13t rtus，Rawniat	6.010	COC	Hatama，（＇ubar（13）
5.290	RUY		5.769	RELD	Boukhaa lartys，Rusnia	6.010		tiro，Egyyt．${ }^{\text {a }} 13$
5.300	2FO	Cat C＇ily，Maha	5.769	RMSX ．	Merer hussial	6.010	XEB	ximo Its，Mexim
5.310	RIAC	Pe－nza，Rus－ia	5.769	RELZ	Spanksi Zatoul，Russia	6.012	ZHI	ingrpore．Straits su．themble．
5.345	EDR4	Patmat do Mallorrat，Spain	5.780	OAX4D 1				
5.35	RELT	Bunli－Piable．Rus，ia	5，780	RKOS lim	Rant lankovo．Raxia	6.020	CON	Manao
5.350	RKOK		5.780	HIIJ	San Padro de Macoris，lema．	6.020	DJC	
5.357 5	ZGF	K゙bantan，Fodldratd Mahay Status			R．P．（ ${ }^{\text {（ }}$ ）	6.020	PGD	Kowtwijk，Nuthorland，（1t）
5．357	RMPB	Madronchkent．Riln	5.	RV50 ！	Moxcow，Liasia．（13）	6.023	XEW	Mrxico（ity，Maxeos，（b）
5.357	RMPH	Stalinahad．Row	5.790	JVU＇l	Tokso，，atara	6.025	PGO	Kontwijk．Suthomands．（13）
5．370	RLW	－rtatumsk．Rus－	5，800	VK3XX 1	losndhurv．Via．．dumtraliat	6.030	VE9CA	（＇algary．Mat．，（amada．（13）
5．370	RLX	Artmment lilla	5.800	VK3LR		6.030	OQT	
5.3	RS	Stalimek．Ruania	5.800	RKMK \％	\％ollovkil．｜ranmial	6.030	PGD	
5.380	LPG2	Wi．nnral Pumbero．	5.805	OSE l		6.030	HP5B	Pamama，Pathamat
5.390	RKOU	Kharkos．Rumia	5.805	CSN ！		6.030	YV6RV	
5.400	HAT	Strkiofuthervar．Hungary	5.810	RKOR K		6.035	HJ4ABI	Maldedin，「ulamhiat
00	RFAG	Mramow hins－ia	5.810	CGI ！	1－1．Milignt．P＇，	6.035	YNA	Manakua Nicaragna，（i）
5.405	CGT		5.810	RFAN	Mnsabm．lansia	6.040	W1XAL	Bortom，Masm．I＇s．l．（13）
5.410		Cuast Ntatiom－I	5.810	CGR	Quabace 1＇，Q．．${ }^{\text {Pa }}$	6.040	W4XB	Miami lbuah，klali，（＇Sol．（13）
	R	Sorokino．IRu	5.813	FZN6－		6.040	CMCI	Matama，＇ubat，（13）
5.415	IAF	F＇iumiximo．Italy	5.820	CEC I		6.040	RILD	Omakk linasias
5.420	CGE		5.820	RKML l	Krinditchovka，Russia	6.040	RLEC	＇Tahita．liussia
	JPY	Tobatal ，Taparn	5.825	TIGPH	San Jown＇osta kirat，（B）	6.04	HJ1ABG	Curamquilas，（＇olon
5.440	RSN	Swordlowk．linwia	5.830	JMP－	Shankso．Japma	6.045	HJ3AB	Bugota，Colo．，（13）
5.450	ZGC	Kıata Lampur，Federated Mat	5.830	RPG	Bormotshurge．lin	6.045	EAQ	Aranjurz Spain，BM
		lay states	5.830	CWD 1	Currito，1＇rugu	6.050	VE9CF	Malifax．N．S．，（anadan（13）
50	RKLG	Inapropetrow－k．Russia	5.840	REKD	Sluat 1 Ita	6.050	RIMK	opki．las－ia
5，454	RHJD	Chakhty，Ruswin	5.840	RKMM	Kınstantinovkr，İussi	6.050	GSA	Waventry．（nitul kiongloun．（13）
5.455	VGR	Xatobi，Kirnya	5.840	RHIF	Mirozni，Kussia	6.060	W8XAL	Mason，bhio．
	RLXI	Ctialingrad．Raw	5.840	RHII	Noso Krecitano	6.060	W3XAU	Nuwton Nr.. Pa.: I'sil, (13)
5.460	VIX	Wisudham Mratworks，Iusiralia	5.840	RHIH	Sturarrtitchka．	6.060	OSC	Botnde．Bulgian
	RKPL	． Stomir ，Russia	5.842	FZP4	Papeepe．＇19\％hiti	6.060	CMCI	llahama，（＊uba，（13）
5.460	RCNF	Smoleank．Russ	5.845	KRO	Kıhuku，Hawati	0.060	OXY	Skamlebak．Denmark．
5.460	ZFU	Irua．Ikandit	5.850	VK3LR ！	Leyndhurst，V＇ic．－Australia，（13）	6.060	HIX	Santo bomingo，Da
	RKOV	（irimhino．Rassin	5.850	RKOQ	Kadinvka．Ruいいa			
5，490	RPOB	Bobrinakaia，Rus	5.850	RFAL	Mowow，Koutchin	6.065	12 RO	Rome Italy，（13）
5，490	ROI	Sverdlovek．Russia	5.850	YV5RMO	O Mararaibo．Visezu	6.060	Va7to	Nairobi．Kınさa，（13）
	ZGD	Kuantan，Fed．Malay States	5.853	WOB	Lat wrenerville，N．J．	6.060	ZL2ZX	Wrllimgion，X．ww \％atund，（b）
	RKNK	Kharkow，lussia	5.855	OGZ	Kıumint	6.060	RLEE	Bourhoulei．liusa
5.510		dirplan＋k．liss	5，855	EDR3	E． 1 ＇rablero，Teneriffe．Cumary	6.065	SAJ	Mataln，Sweden．（13）
	SPV	Warsaw，l＇onand			Island	6.069	TI	ohannesbur
5.520	PP	Olinda，Brazil	5.857	XDA	（＇hapultepere，Mo			
5．520	RMAT	V1ativostok．Russia	5.860	XDA	Chapultepee，Mex	6.070	VEgCS	Vanmouver，B．C．．Cutala，（B）
5.530	RINA	Novanibirak，Russia	5.860	RPMN ：	Sorokini．Russia	6.070	OXY	Skamblbak，lenmark．（13）
5.540	CFD	Kinora．Ont．．（anada	5.870	RKMB	（torlovka．Russi	6.070	RGFN	Charia，leussia
5.542	RUU	bratore sulo，liussia	5.870	RRRR	Tashkent．Russia	6.070	EAQ	Aranju＇\％．Spain，（R）
5.547	RUU	Thenkoe sido．Rnssiat	5.880	REKD	Nmat－lta，Russia	6.072	$2 \mathrm{HJ}^{\text {2 }}$	Pemang．Malaya，（13）
5.552	RUU		5.880	RKNY	Kharkov，Rusia	6.072	OER2	Vienma，Jumria，（13）
5.555	RUU	briskoe sido．Russia	5.880 5880	RKMO	Vorkhne．Oudinsk，Russia Thihnkil，Taluvan，Japan	6.074 6.079	HJ1ABF DJM	F Barranquilla，（olombia，(\mathbb{X}) 7asesth，（iermatny，（1s
	LPD LPG3	（iteneral latheros）．Irdentina （ianural I＇arhereo，Irgentina	$\begin{aligned} & 5.890 \\ & 5.890 \end{aligned}$	$\begin{aligned} & \text { JIC } \\ & R!K W \end{aligned}$	Taihokin，Tanvan，Japan Osme，Russia	6.079 6.080	DJM W9XAA	クu＂sorn，（bermany， （＇hic：ago．M！．．I•SA
5.555	$\begin{aligned} & \text { LPG3 } \\ & \text { I2RO } \end{aligned}$		5，890	RRRZ	Svertlovsk，Russia	6.080	CP5	Lallaz．Bativin
5．356	OXM	sroreshyumid．Gra	5.892			6.080	TIRA	（artago，Costa Rias（13）
5.556	OY1		5.895			6.080	VE9EH	（＇harlottrown．I＇，EK，I，，（3）
5.560	RKOH	\％namenka，Ru－sia	5.900	OQX	Kabinda，Thelgian	6.080	RFCK	Mo－6\％R11
5.		－irplanes［＇s．	5.900	CMBI	Mabanat．Cuhat．（B）	6.085	12RO	lomee 1taly，（B）Canada
5.	OQP	Astridn，lbtgian Comgo	5.900	RMWA＇	Ta－bkent Russia	6.090	VE9BJ	St．John．N．．13．．Canada．
5.	RKOL	Krwnentehoug．Jussial	915	VRR	Sions lill．．lamai	6.090	HJ4A	skamlehak（hemmath（18）
5.		Spromautical，fiur	5.930	HJ4ABE	Madralin，Colo	6.090	OXY	Skamlobak．Deramark．（B） 1bowmancille．（Ont．．（＇inada，（B）
5.		dirplaner losil	5.940	HJABJ		6.095		Bostuaturille．Orit．．（andata．（B） dibuneshure［＂n of S
5.610 5.610	$\begin{aligned} & \text { FFK } \\ & \text { I2RO } \end{aligned}$	Si．Nataire，France Romer Italy	5.950 $\mathbf{5 . 9 5 0}$	$\begin{aligned} & \text { HJ1ABJ } \\ & \text { OSI } \end{aligned}$	Satla Marta，C＇olo．， Ginl．，Indrian Congo	6.097		dohithnesburg．（n．of S．．． （ H ）
5.610	RELO	130ukhta Rurtys．Russin	5.950	TGX 1	bisatumalat＇ity，Guat．．（B）	6.098	HJ1ABD	C Cartagana
5.615	OGY	Niangara，Bulgian Congo	5.952	FZF6	Fort dr．Frame Martinigne	6.100	W3XAL	Bomud Brom，N．J．．［si．（13）
5.620	KOD	Kazatin，Russia	5.953	HIX	Santo lromingo．Thoth．Rep．，（B）	6.100	W9 XF	
5.630	GFW	Viatka，Ruscia	5.955	RRRZ	S゙いrdowsk，Rıwia	6.100	VE9CF	Halifax．N．Su，Cunada，（13）
5.635	DAS	Rugra，（iermany	5.969	HVJ	Vatican（＇ity．（13）	6.100	RMDG	
5	RGFK	Kanavino．liasia	5.970	HJ3ABH	H Jogrota，（oolo．，AparTado 56．	6.100	RMDK	K－nniovskata，Rus
5.640	RKOG	Chapmiarka，lins－ia			（13）	6.100	RFCI	Riazan．Russia（1）
5.650 5.653	OQM	Lensambe．Meplgian Congo	5.975 5.980	J2ABC	C（uruta，Colombia．（1）） sinto I Momingo Dorniniasan Re	6.110 6.110	$\begin{aligned} & \text { HJ4ABL } \\ & \text { VE9CG } \end{aligned}$	L Manizalps．（＇ol．．（18） （＇algary，Iltan．．（＇amiala
5.653	WNEY	Batimore Mily，I＊S．	5.980		Sinto Domingo，Dominisan Ro	6.110	VE9CG	$\begin{aligned} & \text { ('algary, Ahand(amita } \\ & \text { Iavontry, Fingland. 13. 13. C. } \end{aligned}$
5.		Sirphapes 1－sid			（B） （ralle			$\text { Is raideast. IIse, l onn... } F \text { (} 13 \text {) }$
		Krnora，Ont．． Ghanghai，Chima	5.980		$\begin{aligned} & \text { ('alle flel } \\ & \text { ('ity. Nex } \end{aligned}$		VE9HX	Halifax． x ．
． 6	OZZ	Thule，Grecontand	5.990	FZK6	bakar．Sinegal	6.110	HJ4ABE	B Merlation，Colombin，（X）

$\begin{aligned} & \text { 1req. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION	$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$		LL and LOCATION	$\begin{aligned} & \text { req. } \\ & \text { Mc. } \end{aligned}$		LL and LOCATION
6.110	VUC Calcuth，India，（B）	6.495	0			EAK	
$\begin{aligned} & 6.110 \\ & 6.112 \end{aligned}$	EAC Aranjurz，Spuin，（B） YV1RC Ciaracas，Ventzuela	6.500	HJ5ABD	O Mannzules．（＇ol．，（B）	$6,870$	RFK	Moscow，Russia
6.112	YV2RC Curacas，Ventzuela	$\begin{aligned} & 6.520 \\ & 6.520 \end{aligned}$	$\begin{aligned} & \text { RELT } \\ & \text { YV6RV } \end{aligned}$	Bourli Tiube，Russias Valencia，Venezuela （13）	$\left\lvert\, \begin{aligned} & 0.880 \\ & 0.880 \end{aligned}\right.$	$\begin{aligned} & \text { OQN } \\ & \text { CFA4 } \end{aligned}$	Irumu，Belgian Congo
6.115 6	－－－Warsaw，lolund，（B）	6．528	HIL	Talemeia，renmzuela，（B） Santo Domingo，IV．R．，（13）	$\begin{array}{\|l\|l} 6.880 \\ 6.880 \end{array}$	$\begin{aligned} & \text { CFA4 } \\ & \text { RKF } \end{aligned}$	Drummondville，P．Q．，C＇anuda Moscow，1Russia
6.116	HJ1ABE Cartugena，Colombia，（ B ）	6.535	OSB	Kikwit，Belgian Conmo	6.880	RINY	Oirat－Toura，Russia
$\begin{aligned} & 6.116 \\ & 6.120 \end{aligned}$	F3LCD Saigon．F＇rench Indo－China，（B）	6.550	TI2PG	San Jose，Costa Ricio，（B）	6.890	RLGL	Kahunsk，Russia
6.120	W2XE Wayner N，1）USA，USA，（B）	6.550 6.570	RKLM	Zaporojit，Rusia	6.895	EDK	San Larthzo，C＇anary Islands
6.120	OQU Kasankusu，Belgian Congo．（B）	6.570 6.580	OJ1ABB		6.895 6.900	EDT	San lorenzo，Canary Islands
6.120	VE9HK Ifalifax， X ，S．，（anada，（B）	6.580 6.590	VGA	Sairobi．Kinyya	$\begin{aligned} & 6.900 \\ & 6.905 \end{aligned}$	RKF GDS	Moseow．Russia
6.120	YOA liandoeng．Netheri．India，（B）	6.593	2 ZG	Mpika，Northern Rhodesia	$\left\lvert\, \begin{aligned} & 6.905 \\ & 6.910 \end{aligned}\right.$	GES	Rugby，Cnited Kingdom
6.120	RKOM Licpropetrovsk，Russia	6.593	2EB	Bulawayo，Southern IRhodesia	\bigcirc	$\begin{aligned} & 2 E Z \\ & 20 H \end{aligned}$	Broken Hill，Northern Rhodesia Fort Jameson．Northrn Rhodesia
6.128	HJ1ABH Cipnaga，Colombin，（X）	6.593	2EA	Sulisbury，Southern khodesia	6.910	20A	livingstone，Northern Rhodesia
6.128	YV11RMO Maramaibo．Venezuela	6.593	2TG	Germiston．L＇nion of s．A．	6.910	201	Mungu－Lealui，Xorthn，Khodesia
6.128 6.130	LKJ1 Jeloy，Norwny，（B）	6.600	RJTL	Dmitris－Igovsky，Russia	6.910	2FF	Mpika，Xorthern Rhodesia
$\begin{aligned} & 6.130 \\ & 6.130 \end{aligned}$	VE9BA Montreal，1．Q．．Canada．（B）	6.600	RKLX	Odersa，Russia	6.910	RJBD	Sverdlov：k，Russia
$\begin{array}{\|l} 6.130 \\ 6.130 \end{array}$	XETE Mexico（ity，Mexico，（3）	6.605	OQW	Banning＊ille．Belian（＇ongo	6.915	ZCl	Cape J「，\guilar，Hong Kong
6.135	HJ1ABC Quib	6.610		Santo Domingo，Dominican R	6.920	RFA	Moscow．Rus
6.135	ZGE Kuula ，umpur，Fed．Malas	6.610	REN		$\begin{array}{\|l} 6.930 \\ 6.930 \end{array}$	RENU	Iktuhinsk，Russia
	（13）	6.610	RV72	Moscow，Russia，（15）	$\left\lvert\, \begin{aligned} & 6.930 \\ & 6.930 \end{aligned}\right.$	RGKX RLEV	
6．135	YID linghdad，Iraq，（B）	6.610	CWE	Corrito，Montevideo，Jrugauy	6.940	RFAU	Perkhne－Oudinsk，Russ Bukovo，Russia
6.135	RKK Moscow，Russia	6.620	PRADO	Reohamba，ficuador，（B）	6.950	RLXS	Suratov，Russia
6．140	W8xK saxonburg．P＇．，［＇sil，（B）	6.630		Mos\％w，Russia，（15）	6.958	WEO	Xew Brunswick．N．
$\begin{aligned} & 6.140 \\ & 6.140 \end{aligned}$	VK3LR Lyndhurst，Vie．，Anstralia，（B）	6.635		Coquilhatville，Bugian Congo	6.960	OTS	stanleyville，Belgian Congo
6.145	－－－Pontoise，France	6.650 6.650		Coltance Italy，（ X ）	6.965	KZGG	Chhu．Philippine Islands
6.150	CJRO Winniper，Manitoba，（＇un．，（B）	6．650	XFO	Mexim fity，Mexicu，（B）	$\left\lvert\, \begin{aligned} & 6.966 \\ & 6,970 \end{aligned}\right.$	EDO EDR2	Madrid，spain Madrid Spain
6.15	HJ5ABC（abi，（onombin．（13）	6.650	HC2RL	Po．Box Ti59．（quayaquil，Eicu－	6.976	EDR2 EA4AQ	Madrid，spain Madrid，spain．（B）
6．150	HJ2ABA Tunja，Colombia，（13）		－	ador，s．i．，（ B ）	6.977		heronautical，Europe
6.150 6.150	RKOO Odussa，Russia	6.660	F8KR	Constantine．－lygeria，	6.977	R	Pitropuslovsk，Russia
6.150	YV3RC iaracas，Venezue			Guatemala（＇ity，Guatemala，（B）	6.980	12RO	Romer，Italy
6.155	CO9GC Arau \＆Camencros			Cathoz Del Tropico，sian Jose， Costa Ricn．（13）	$\begin{aligned} & 6.980 \\ & 6.980 \end{aligned}$	$\begin{aligned} & \operatorname{VOR} \\ & K Z G H \end{aligned}$	Nairobi，Kenya Hoilo．I＇hilipnine
	I2RO 137，Santiugo，C＇uba，			45 TO 40 ME	6.980	RKNZ	Kharkov，Russia
6.170	CFD				0	RFAO	nspow，Kussia
6.170	CFG Pickle Lake，${ }^{\text {che }}$	6.664	LPG4	（ieneral piachearaga，（13）	6.980	EAR110	Madrid．Spain，（B）
6.170	CFJ Red Lake，Ont．，（＇anad	6.667	F8KR	Constantime，Algeria，（B）	6.990 6.990	LVS	Tokyo，Japan
6.170	CFB Sioux lookont，Ont，Can	6.672	YVa	Muracay．Ven	77.000	HJ5AE	
6.175	OND Bamana．Belgian Congo	6.674	IRT	Rome，Italy	7.000		m，（0mmbia，（B）
6.175	FTX St．Issise，France	6.675	HBQ	Prangins，Switzerland	to		nateurs，US
${ }^{6} 6.180$	HJ3ABF Hogota，Colombin，（13）	6.676	HC2RL	Guayaquil，Ecuador，（B）	7.300		
$\begin{array}{\|l\|l\|} 6.180 \\ 6.180 \end{array}$	TGW GOP Kiutemala Clity，Guatemula，（B）	6.677	F214	Brazzaville，Fr，Equa，Africa	7.010	RHCU	Leningrad，Russia
6.180	REIK Petropaviovak．Rus	6.680	OGP	Saucn，（cremany，（X）	7.020	RFEL	Moscow，
6.185	HI1A P．O，Box＋2，3，Santiago，Dom－	6.685	2GA	Kuala Lumpur，Fed．Malay	$\left\lvert\, \begin{aligned} & 7,020 \\ & 7.030 \end{aligned}\right.$	EAR 125. HRP1	Madrid，Spain．（B） San Pedro Sula．Honduras，（B）
	indan Rep．a．（B）			¢s	7.050		San P＇edro Sula．Honduras，（B） Experimental Sta．，Japan（X）
6.190 6.190	RIPV Barnaoul，Russia	6.685	YNLF	Managua，Niraragia	7.050	RGFO	Arzamas，lRussia，
6．198	RRRR Tashkent，Russin	6.690	CFA	Drummondville．P．Q．，Canada	7.050	RFBO	Mojaisk，Russia
	CTortugal．（13）	$\begin{aligned} & 6.690 \\ & 6.690 \end{aligned}$	$\begin{aligned} & \text { VGR } \\ & \text { ZDB } \end{aligned}$	Nairobi，Ken	7.0	RENB	Boukhta Bertys，Russia
6.200	RMDP Kirofei Pavlovitch，Russia	6.690		Sroken Mint Morthern Rho	7.060		Bourou
6.200	RMDM Mogoteha．Russia	${ }_{6.690}$	2 ZB	Mpika，Northern Rhantera	7.070	RHAX	Leningrad．Russia
6.200	RMWW Tashkent，Russia	6．690	ZEA	Salisbury：Southern Rhodes	$\begin{aligned} & 7.080 \\ & 7.080 \end{aligned}$	LU5C2	Buenos Aires，Argentina，（13）
6.210	HJN liogota，Colombia，（13）	6.690	2TG	Germiston，Union of So．Ifrica	$\begin{aligned} & 7.080 \\ & 7.100 \end{aligned}$	RTK	Bogota．（＇olombia，（13）
6.230	OAX4B ，partado 12．42，Limu，P＊rn，（13）	6.690	ZTF	Maitand Cape．In，of S．．Ifrica	7.100		Fixperimental and
6．235	OCN Limu，1＇ern．（13）	6.695	OGI	Lisala，Brlyian Congo	7.100		Japan，（X）and
6．240	RMAS Tafouin．Russia	6.700	RIBF	Syzran，Russia	7.160	OA4B	Lima，P1 ru，（B）
6.240	RMAY Troitse Zarontino，Russia	6.703	TIK	Cartago，Co：fa Rica	7.170	RELD	Boukhta Bertys，Russia
6，245	OQE Costermansville lelgian Congo	6.707	YNCRG	Granada．Nicaragun，（B）	7.170	RELO	13oukhtu 13，rtys，Russia
6.250	dirways，（ermany	6.718	WDB	Rocky Point．N．Y．，l＇sil	7.177	CR6AA	Lobito．Ingolu，（13）
6.250	OCI Limn，Prat	6.718	KBK	Manila，P．T，N，Mor	7.211	EA8AB	Tunerific，Canary Tslands，
6.250°	REIX Ukmolinsk，Ruskia	6.733	WDA	Ruky Puint．N，Y．I＇Sil	7.220	－A8AB	Fxperimental，Japan，（X）
6.250	RGAZ Kotelnicls．Russia	6.738	TIGP	San Jose．（oota Rina，13）	7.225	RPK	Moncow，Russia
6．250	RFAQ Monsow，Ruscial	6.745	OQB	Bumba，13，letian（ongo	7.230	DOA	Woberit\％（enrmany
$\begin{aligned} & 6.250 \\ & 6.250 \end{aligned}$	REIA OUfals，Russin	6.750 6	JVT	Tokyo，Japan	7.250		Rome．Itals
	HJAABC Periers，Colas（B）		RMSE	Karahongaz，IKus．ia	7.260	RFF	Kharkor．Russia
6.260	PBE Jen Hplder．Xephirlands	6.755 6.755	KZGF	${ }_{1}$	7.260	VS1AB	Singatrors S．S．，（B）
6.280		6.760	CFA2		5	RTZ	Irkilt
6.285	CZA 1rummondvill＂，P．（Q．，（＇antada	6.760	RENJ	K゙った	77.300		Rothe 1 taly
6.300	RCE Raningrad．Rusia	6.770	KZGF	Manila，Philimpine Juands	7.310 7.310		Momow，Rassia
6.300	RMBA Prochrajonin，Russia	6.775	OQK	Iketi，Belpian Congo	7.310		
6.320	CFD Kınora，Oqt．．（＇anada	6.780	RENT	Gomriow，Kussia	7，320		（＇ali，（＇olombla，（13）
6.320	HIZ Santo Domingo，Dominican Rep．．	6.780	EAH	Madrich spain	7，320	2TJ	
	OQA（13）${ }^{(1)}$	6.785 6.790	Ono	Kindu．Bulyian Congo	7.330	RKMI	Krivoi Rog，Russia（B）
6.330	OQA Kipoma，Tanganyi	6.790	SQB	Bialsitrk．Poland	7.333	DFH	Nathen，Mirmany
6.335	VE9AP Irammondvilto．	6.790 6.792	HAPP	Kwarkemo．Russial	7.340	RGLC	Syktyrkar．Ru－in
	VESA（13）	6.792	SQZ	Windapot，Mandza	7.345 7.360	GDL	
6.345	OSD Kigali，Belgian Congo，（13）	6.795		Rughes．United Kingdom	7.360 7.360	20\％	
6.375	YV4RC Caramas．Venczuela	6.800	EDR3	Tablaro．Cimary Islands	7.360	20A	Ft．，am＂son．Sorthern Rhoderia
6．375	OQR I＇umbura，Belgiun Congo	6.800	SQA	L，wow，Poland	$\begin{array}{r} 7.360 \\ 7.360 \end{array}$	2FF	Livingstone Sorthern Rhodesia
6.380		6.800	HIH	San Pedro de Macoris，Domin－	7.360	201	Monelelenlui Northr Rhorlosin
6.383	RNZ D＇utopaviowsk．Russia			jran Lr＂p．．（B）	7.370	RFBX	Mongidapalui．Northr．Rhodisia
6.405	OQJ Inongo，Belgimn Congo	6.810	OSK	Kitega．Brlgian Congo	7.370	RKLX	Mosenw，Russia
6.420	RGX Mink．lunssia	6.810	RENG	Atchesai．Russia	7.380	XECR	Foreign Office，Mexico Cits，
6.425	VE9AS Frodericton．N．B．，Canada，（X）	6.818	RELZ	Spasskyi Zacoul，Russia			Mex．．（B）
6.425	W3XL Bound Hrook．N，\％．．IVS．L．（13）	6.840	OnG	Kongolo．lelelian Congo	7.390	JVR	
6.425	CZE Vicforin，B，© Canada	6.840	CFA	1rummondville．P＇，Q．．Canada	7.390	ZLT	W：ulington， \mathbf{x}, Z ，
6.425	CZF Cancouver，B，Cis Canada	6.840	HAS	Szukerse hervar，Ifungary，	7.390	RKNE	Kharkov．Russia
6.425	CzG Prinre Rupert． 13.1 （｀．．（anada	6.840	HAT2	Szekesrehervar，Innigary	7.400	WEM	Rorky Point． N ．Y．，ITS． 1
6.425	VE9BY London．Ont，Canada，（13）	6.840	RKNP	Kharkov，Russin	7.400	HJ3ABD	Bogota，Colombia，（13）
6.430	OQF Port Frunqui，Belgian Congo	6.850	LPG5	General Pacheo，Areentina	7.400	RRRH	Khabarovsk，Russia
6.440 9.450	RTA Novosibirsk．Russia	9.850	VPE	1，abara，Fiji Islands，（ X ）	7.407	WEN	Sew Brunswick，N．J．，I＇S．I
9.450	CTO Leopoldville Reigian Congo	5.850	VRL	Savi－Sayu．Fiji Islands，（X）	7.408	RFAJ	Moscow．Russia
6.450	HJ1ABB Barranquilla，Colombia，（B）	6.850	VRO	Suva，Fiji Itlands，（ X ）	7.410	x ¢V	Shanghai．China
6.460	RHCC OQO Khihinogorsk， Basoko Belgian Congo	6.850	VPF RKF	Taveuni，Fiji Islands，（X）	7.410	VOR	Yairobi，Kenya
$\begin{aligned} & 6.465 \\ & 6.470 \end{aligned}$	OQO Basoko，Belgian Congo RCAD Minsk．Russia	$\begin{aligned} & 6.850 \\ & 6.860 \end{aligned}$	$\begin{aligned} & \text { RKF } \\ & \text { KEL } \end{aligned}$	Mosmow，Renssia Bolinas Calif，（X）	7.415	WEG	Rockv Point．N，Y．，USA
${ }_{5} 480$	ERR4［＇alma de Mallorea	6.860	OTL	Bolinas，Ralif，（X）	7.430 7	RKAn，	Zaporojip，Russia．
				Lenpoliville．Brigian Congo	7140	RKMH	Khristinova，Russia

$B=$ Broadcasting ；$X=$ Experimental．

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION			CALL and LOCATION	$\begin{aligned} & \text { Freq. } \\ & \text { Mc* } \end{aligned}$	CALL and LOCATION	
12.450	RL	Kabansk，Kussia		LPR2 Gienaral l＇acheco，Argentina		U	Dixon，Calif．，USS
12.470	OQل2	Inongo，Belgian Coòngo	14.286	RMNKhharkov，Russia，	15.370	TIR C	Cartago，Costa Rica（B）
12.485	CNP	Casablanca，Morotco	14.286	RKV Noscow，Russia	15.370	HAS3 S	Szekesfehervar，Hungary．（B）
12.500	PBB	Derbe Helder，Netherlands	14.410	DIP Zeesen，Germany	15.410	PRADO	Kiobamba，Ecuador，（B）
12.500	SPN	Warsaw，l＇oland	14.420	VPD Sura，fiji	15.415	KWO I	I ixon，Calif．LDSA
12.500	YGI	Constanta，Rumania	14.435	LSJ2 Hurlingham，Argentina	15.430	KWE B	Bolinas，Calif，USA
12.500	RKF	Moscow，IRussial	14.440	GBW Ruglo，United Kingdom	15.445	$w G Z$	San Juan，Juerto Kico
12.500	zSv	Wulvia Buy，Cin．of So．－Ifrica	14.450	RPK Hoscow，Russia	$15,460$		Iololinas，Calif．，LSA
12.50		Leronautical，Euarope	14.470 14.479	WMF Lawronceville，N．J．，L゙心． HSJ Banrkok Siam	$\begin{aligned} & 15.475 \\ & 15.490 \end{aligned}$	KKL KEM	Bolinas，Calif．，USA Bolinas，Calif．，LiSA
$\left\lvert\, \begin{aligned} & 12.565 \\ & 12.570 \end{aligned}\right.$	$\begin{aligned} & \text { OQX2 } \\ & \text { FFK } \end{aligned}$	Kabinda，Belgian Congo	14.479 14.480	HSJ Bangkok，Siam LSN Buenos dires，Argentina，	$\begin{aligned} & 15.490 \\ & 15.510 \end{aligned}$	KEM	kolinas，Calif．，CSA I）airen，Manchuria
12.640	OGZ2	Kanuna，Belgian Congo	14.480 14.480	GSW buthos dires，Mrg	15.510 15.530	JoX il	Mairen，Manchuria
12.660	CZA	1）rummondville，1＇．（2．，Canada	14.485	TGF（fuatemula city，Gu	15.560	PYR S	Sipetiba，Brazil
12.705	FFK	St．Nazaire，France	14.485	HPF I＇anama，panama	15.620	JVF T	Tokso，Japar
12.740	OSE2	Kanda－Kanda，Melgian Congo	14．485	YNA Managua，Nicaragua	15.625	OCJ L	Lima，l＇eru
12.745	DAF ．	Norddeith，（irruany	14.485	TIR（＇artago，（＇osta liota	15.660	JVE＇1	lokro，Japan
12.750		Arronautical，Fiurope	14.500	LSM2 Hurhagham，Irgentinat	15.670	LCO J	Jeloy，Norway
12.780	GBC	Rughy，United Kingdom	14.500	RRRF Moncow，Russia	15.680	JZA S	Shinkyo，Japan
12.795	IAC	Coltano，Italy，（X）	14.510	RRRF Mon＇ow，Russia	15.740	TFM R	Reykjavik，leland
12.800	OSD2	Kigali，1salgian（omgo	14.515	Panama C＇ity，Panara	15.740	JIA T	Taihoku，Taiwan，
12.825	CNR	Kabat，Morocroo（13）	14.525	XDA C＇hapulteper，Mexico	15.760	JYT T	Tokyo（Komikawa）Jay．，（BX）
12.840	Woy	Lawrencevilla，犬．．T．．USA	14.530	LSA lsumos Airns，urgentina	15.810	LSL IT	Fluringham，Argentina
12.840	woo		14.530	LSN Bumos dires，Argentina，（13）	15.860	FTK S	St．Assise，France
12.860	OQD2	Kindu．Belgian Congo	14.535	HBJ Prangins，switzerland	15.860	JVD T	Tokyo，Japan
12.865	IAC	Coltano，Italy，（X）	14.540	Tukyo．Japan	15.865	CEC I	Lat（irmija，Chile
12.910	OSK2	Kituga，Belgian（oump	14.545	RTZ lrkutak，Russia	15.880	FTK S	St．Assise，France
12.910	OXR	Skambebuk．Menmark	14.550	RTZ Irkutsk，Russia	15.930	FYC P	Paris，France
12.980	OGG2	Kongolo．Melgian（＇on	14，550	HBJ prangins．switze	15.935		
13.000	TYC	t＇aris＇1－S．F＇，F＇ramme	14，560	RTZ Irkult．Izussia	15.970	RRRI K	Khabarovsk，Russia
13.025	OGG2 1	Libenge，Brilgian Congo	14.570	RTZ Irkutik．Kussia	15.985	WAZ	New lranswick，N．İ．USS
13.040		Ship Telephone	14.590	WMN Iawrenceville，N．J．，US． 1	16.000	WKG R	Rocky Point N．Y．，L＇S．t
13.074	JYK＇l	Tokyo，Japar	14.600	JVH＇lokyo．Japarn	16.000	RFAJ	Moscow，Russia ，USI
13.075	VPD	Suva，Fiji lsands，（X）	14.605	DGZ Namen．Germany	16.015	WQR	Ňw krunswick．N．．J．，UST
13.085	OQ12 1	Lisalib Belyran Congo	14.620	XDA Chapultume，Mex	16.030	KKP K	Kahuku，Hawaii
13.100		Nianal stations，（harma	14.620	EDM Madrid Spain	16.050	JVC T	Tokyo，Japan
13.105	IRJ	Romer Ituly	14.620	EDN Madrid．Spain	16.070	RRRI k	Khabarossk，Russia
13.140	CWH	Crarito．Montevidmo，Irupuay	14.620	EDR2 Madrid．Surin	16.090	EDR2	Madrid，Spain
13.150	OSG2	laluabuorg．Butgian Congo	14.620	EDS Matrid．Stain	16.090	EDS	Madrid，Spain
13.180	DGG	Natuers，（i，rmany	14.620	EHY Madrid，Spain	16.120	IRY R	Rome．Italy
13.200		Ship Telephone	14.635	RELB Bomkliti lburtys，Russia	16.140		Rugly
13.205	ONF	Kunana，13，lgian Congo	14.635	RELO Boukhta Bertys，Russia	16.150	GBX 1	Rughy．L＇nited Kingdom
13.215		Ship Telabhome	14.653	GBL Rughy：United Kingdom	16.162	PSA M	Maripieu，Brazil
13.220		Ship Tellephone	14.665.	DFD Namen，（ibmany	16.200	$F Z R$	Sitigon，French indochina
13.240	KBJ	Manila，Philippine Islands	14.690	PSS Llio du daneiro，Braz	16.214	FZR3	Saigon，French Indo China
13.245	OSV	Stunlexvilb，balgiat Congo	14.705	OZW skamlehak．Denmark	16.233	F2R3	saigon，French Indo＇hina
13.260	IRR	lomme Italy	14.710	VLZ5 sydney dustralia	16.240	KTO	Manilat Phalippine lslands
13.285	CJA7	1）rummondville．P＇，Q．．（＇anadis	14.750	FZV Thnanarive，Madagnsear	16.270	WLK I	Lawrenceville，N．J．．［＇s．l
13.300		Lrronantical，Fiuropen	14.770	WEB looky Point．A．Yu．I＇s．	16.270	WOG	Oewian liate，X．J．，LSS
13.300		Naval stations，Japan	14.800	WGV Rotky Point，N．Yod ${ }^{\text {W }}$ d	16.300	EDR3	Fil Tablero，Canary Islands
13.315	OGY2	Xiangara，1silgian Congo	14.815	WGL Now lsrunswick．N゙．J．，I＇SI	16.305	PCL K	Kootwijk，Nehterlands
13.335	WYS	＂lark Pield．Philipuine 1st．	14.820	EAK San dorenzo，Canary Islands	16.330	VLJ3 S	Sydney，Australia
13.335	WYY	Orsden，＇li xas，los．	14.830	WKU Rocky Point．N．Y．，US．	16.330	VLK	Sydney，Australia，（B）
13.335	WYM		14.830	RRRW\Ioscow，Russia	16.330	vLz S	Sydues，dustralia
13.335	WYN	Hathox Wiold．Whita I＇S．l	14.840	RRRW Moscow，IRussia	16.430	N	Caval Stations，Germany
13.335	WYO	Hensle yrudd trexay dos	14.910	JVG Tokyo，Tayan	16.440		Acronautical，Fiurole
13.335	WYG	Kelly Field．Tixas，	14.920	KQH Kihnku，Hawai	16.665	LPD	（ieneral Patheco．Srgentina
13.335	WYR	Kindley，lindt．Philippine Ist．	14.935	PSE Marapicu，13razil	16.665	DAN N	Norden，Germany
13.335	WUG	Marfa，＇luxas．l＇sil	14.940	EAK San Iomenzo，Canary Islands	16.666	LOB I＇	Puerto Aguirre． Ir
13.335	W：＇T	Nichols Fiold．Philippine Ind．	14.950	HJB lhogota．（＇ol．	16.800		Deronautical．Finrole
13.335	WUM	Turorn，Ariz．，I＇SA	14.965	EAK san loranpo，（anary Inamd	16.854	ZSV	Wialvis lsay，［n．of No．Ifriotl
13.340	VLJ2	Sydury，Anstratia	14.980	KAY Manila．Philippine Islands	16.870	FFK ：	Nt．Nazaire．Fra
13.340	VLZ3	Sydney，Australia	14.985	EFR2 Matrid．Apain	17.080	GBC	Rughy．I＇nited バingdom
13.340	CGA	lrummondwille．${ }^{\prime}$ ，Q ．．（anada	14.985	EDS Matrial spatin	17.120	woy	Lawrenceville，
13.345	YVG	Maracay，Venezupla		20 TO 17 METERS	17.120	WOO ！	Orpan diate．
${ }^{13.360}$	OGMA	Port－Framegni，［30］gian（ongo			17.130	HAS5	Szekegfehervar，Hungary：（ ${ }^{\text {c }}$
13.390 13.405	WMA		15.000	CM6Xderntral＇rumucu，（＇ubat	17.143		Shanghat，Chinh
13.405	GBJ	lsodmin．［＇nited Kingedom	15.040	WGG lunky loint，N．Y．，（＇S．l	17.150	OPC	Comuilhatrille Brigian Congo
13.410	YID	liaghdid．Iraq．（13）	15.040	RKI Moscow．Russia	17.190	Oxv sis	Skamlahak，Hemmark
13.415	OQR2	［sumbura，13t kinn（ongo	15.055	WNC Hialenh．Plat．．IVSS	17：200		Aronautical．Europe
13.415	GCJ	laurbe United kingrom	15，065	EAK Sitn Lerrenzo．Canary Islands	17.200	CWI	Cerrito，Monteviden．Uruguay
13.460	LPR6	（iemeral Padurn．Irgentina	15.070	PSD Marapicu，Brazil	17.260	DAF N	Nordd，iteh．Germany
13.510	OSB2	Kikwit，lalyan Congo	15.075	TI4NRH Wrordia．＇orta Rion．（I3）	17.260	PBE	Drn Helder，Netherlands
13.540	GMS	Ongar．I＇nite．l Kingden	15.090	RKI Moscow，IRussia ．	17.300	VE9BY	London，Ont．，Camada．（B）
13.560	JV1	Tok yo．Japan	15.104	RAS Tashkent，Kussia，（13）	17.310	W3 ${ }^{\text {L }}$－1 1	bound lsrook．N，＇J US．I．（13）
13.585	GBB	Rugbs，United Kingdom	15.110	DJL Zasern，（ie rmany，（13）	17.310	CZA	1rammondville．P．Q．，（＇anava
13.591			15.120	J1AA Tokyo，Jrpan，（13）	17.341		Xaumb．（iernang
13.605	OGA2	Kigoma，Bulgian Congo	15．120	HVJ Vatican（ity．（I3）	17.400	J1AA ！	＇lokyo，Tapan，（1）
13.610	JYK	Tokyo．Japan，（X13）	15.123	HVJ Vatican City，（13）	17.430	CWM ！	＇irrito．Montevicteo．Uruguas
13.635	SPW	Whrsaw．looland	15.130		17.470	TYn	Paris．Ts．F．．France
13.685	HAT	Szekwsphervar，ILungary	15.130	VE9DN Trumriondvilhe，I＇，（2．．＇an．，	17.480	VWY kir	Kirken．India
13,740 13	CGA	brummondville，P ，Q ．Canada		GSF（13）（haventry，United Kinerlom，（B）	17.510 17.512	VWY2	Kirkeer．India Situen．（fermany
13.790	EAK	San Loramzo．＇anary Islands	15.140	GSF liaventry，［nited Kingedom．（13）	17.512	DFE	Yaum．Germany
13.800	VLK5	Sydney．Australia	15.190 15.200	VE9BA Montrenl，P，Q．．（anada，（X）	17.520	DEB	
13.811 13.813	SUZ	Ahou Zaabal，Egypt	15.200 15.210		17.600 17.600	GBC	ship Telophone Rusby．［＇nited Kingdom
13.820			15.220	PCJ Eindhowen Netherlands（1）	17.620		ship Telephone
13.827	suz	Ahou Zaabal．Fgert	15.230		17.630	VLJ5	Sydney，Anstrali
13.829			15.243	FYA l＇ontoise．lirance（ $\mathrm{B}^{(1)}$	17.630	RRRU	Khalarovsk．Russia
13.880	RELO	Boukhta Rertys，Russia	15.250	W1XAL Boston．Mass．．（＇S．l．（B）	17.640	RRRU 5	Khalarovek，Russia
13.885	WQT		15.252	RIM Rachkrnt．Russia ．	17.640		Shit Trapoliom，
$\left\lvert\, \begin{array}{r}13.890 \\ 13.950\end{array}\right.$	LPG9	fromeral Pacheo Irgentina	$\begin{aligned} & 15.260 \\ & 15.265 \end{aligned}$	GSI Inaventry，Unifed kingdom．（13）			17 TO 15 METERS
$\begin{aligned} & 13.950 \\ & 13.950 \end{aligned}$	YO1	Acronantical，Europe＇${ }^{\text {Sucharest }}$ Rumania，	15.265 15.270	W2XE Wayne．J．J．IJS．t．（13）	17.650	XGM	Shanghai，China
13.965	TFL．	R，ykjavik，Imoland（ ${ }^{\text {a }}$	15.275	－－－－Warsuw，Poland，（B）	17，650	RRRU	hhabarovik．Kussia
13.980	LCO	Jeloy，Norway，（13）	15.280	DJG Zeresen，Geermany，（13）	17.660	RRRV	Khabarovsk．Russia
13.990	GBA	Rugby，England	15.295	CP5 La Paz，Bolivia，（B）	17.670	RRRV	Khabarovsk．Russia
14.000	RFBD	Mojaisk，Russia	15.295	FYA Pontoise，Franct，（ B ）	17.680	RRRV	Khabarovsk，Russia Nonte Grande．Irgenti
14.005			15.300 15.320	OXY Nkamlahak，lenmark．（B） －．－－Traihoku．Janan	17.690 17.699	LGB2 $\triangle A C$	Monte Grande．irgent Coltano，Italy（X）
$\begin{gathered} 10 \\ 14.395 \end{gathered}$		Amateurs，USA	15.330	W2XAD Shenectady N, Y ．，USA，	17.699 17.700		Coltano，Italy（ X ） ペッドal Stations，Inpa
14.100	HJ5A	E Cali．Colombia，（X）		DJR（B）${ }^{\text {a }}$（ ${ }^{\text {a }}$	17.710	CJA9	Mrummondrille．P，Q．．Canada
14．151	HSJ	Bangkok，Siam	15，340	DJR Z\％ensm．Germany，（B）	17.710	RRRV	Khatarovsk．Russia
14.250	RPK	Moscow．Russia	15.350	CTIAA Tisbon．Portugal．（ $\mathrm{BSX}^{\text {（ }}$ ）	17.719	HSP	T．inmknk．Sinm

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	CALL and LOCATION		Freq． Mc．		CALL and LOCATION	$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$		ALL and LOCATION
$\begin{aligned} & 17.720 \\ & 17.725 \end{aligned}$	$\begin{aligned} & \text { RRRVV } \\ & \text { CNP } \end{aligned}$	Khabarova．Rusnia Cusablancu，Mororco	$\begin{aligned} & 18.420 \\ & 18.427 \end{aligned}$	VWz	K゙irken．I mat	$\begin{aligned} & 20.570 \\ & 20.570 \end{aligned}$	EDS EHX	Madrid．Span Madrid，Sumin
17.730	RRRV	Khabarovak，Russia	18.429			20.585	ORS	Madrid，Sman
17.735			18.480	HBH	Prangins，Switzerland	20.595	ORL	Laropoldville，Belgian Con
17.740	HSP	Sia	18.535	PCM	Kootwijk，X，therland．	20.610	EAH	Madrid，Spain
17.750	IAC	Coltano，Italy．（X）	18.535		Warsaw，Poland	20.620	CEC	1，a（iranja．Chile
17.760	DJE	Zeesen，Germany，（B）	18.540	PCM	Kootwijk，Nitherland－	20.640	FSR＇	larin France
17.765	FYA	l＇ontoise，france，（B）	18.545	PCM	Sootwijk，No therland：	20.670	EHX	Madrid，Spain
17.775	PHI	Huizern，Netherland，（I3）	18.595	GLS	Gugar．United Ǩingdom	20.680	LSN	13ut nos Aires，Argentina，（13）
17.780	W3XAL	Bound Br．，N．J．，US．1．（B）	18.600	PDM	Koutwijk．Nitherlatid：	20.680	LSX	Monte（irande，Arsentina，（13）
17.780	W9XAA	（＇hicago，1ll．，［＇NA，（13）	18.610	RRK	Plitlio．Russia	20.730	LSY	Mont．（irande，． rg l entinu
17.780	W9 XF	I owner＇s Grove，Ill．，［＇s．${ }^{\text {a }}$ ，（B）	18.620	GBJ	Budmin．l＇nited Kingdom	20.740	DGP	Namen，（iermany
：77．780	W8XK	Saxonburg，Pa．，（13）	18.620	GAU	Rugby，Vnitod Kingamm	20.780	KMM	Bolinas，＇ulif．，I＇S．
17.780		Warsaw，Poland，（13）	18.630	IRZ	Rome．Atals	20.820	KSS	Bolinas，＇alif．，L＇SA
17.790	RRRV	Khabarovsk，Russia	18.640	PSC	Marapicu．Brazal	20.825	PFF	Kootwijk．Netherlands
17.790	GSG	Waventry，United Kingdom（B）	18.680	OCl	lima，Peru	20.830	PFF	Kootwijk，Netherlands
17.794	${ }^{\text {XGBB }}$	Shanghai．China	18.680	GAX	Rughy，l＇nited kingdem	20.835		
17.795	PCV	Ǩootwijk．Netherlands	18.700	DFG		20.860	EDM	Madrid，Spain
17.800	$x G O X$	Canking，China，（B）	18.770	TYD3	Paris，Tas．F．e framae	$\begin{aligned} & 20.860 \\ & 20.860 \end{aligned}$	EDR2	Madrid，Spain
17.800	PCV	「iootwijk．Netherlands	18.830	PLE	7sandoeng．lava，（＇）	20.860	EDS	Madrid．Smain
17.800	RRRV	Khabarorsk，Russia	18.860	WKM	Rocky Point，N．Y．．［＇S．	20.860	EHY	Madrid．Spain
17.800	HSC	13angkok．Siam	18.890	255	Klipheuvel．［ n ．of Sc．． frica	20.960	EAH	Madrid，Spain
17．805	PCV	Kootwijk，Nיtherlands	18.910	JVA	Tokyor，Japan	21.000	OKI	Podehrudy．（zechoslovakia
17.810	PCV	Kootwijk，Netherlands	18.950	HBF	Prangins，switherland	21.020	LSN	Buenos Aires，Irgentima，（13）
17.810	RRRV	Khabarorsk，Russia	18.960	LSR	Burnos ．lires．．Irgontina	21.060	KWN	1）ixon，（alif．，［＇s．l
17.820	RRRV	Khaharovsk．Russia	18.960	EAH	Madrid．Spain	21.060	WKA	lawremevilla．N．J．，［＊S．
17.830	PCV	Kootwijk，Notherlands	18.970	GAQ	Rugby，United Kingdum	21.080	PSA	Marapicu，1srazil
17.830	RRRV	Khabarovsk．Russia	18.980	WFX	Rocky Point．N．Y．l＇s．l	21.110	CEC	La Granja，chile
17.850	LSN	Bumos Aires．Drgentina，（13）	19.000	HSJ	Bangkok，Siam	21.130	LSM	Bueonos dires，Irgentina（B）
17.850	RRRV	Khabarovsk，Russia	19.010	PSB	Marapion，Braz	21.140	KBI	Manila．Philippine Istands
17.860	WaC	Rocky P＇oint．X．Y．．，l＊S．	19.030	EDM	Madricl，Spain	21.150	HAS4	Szokesfehervar，Hungary（B）
17.860	RRRV	Khabarovsk．Russia	19.030	EDR2	Madrid．Smin	21.160	LSL	Burnos Aitus．Irgentina
17.870	RRRV	Khabarorek，Russia	19.030	EDS	Madrid．Spain	21.180	DGN	Nanen，（rerman
17.880	WQ1	New Brunswick N．J．，İS．l	19.030	EHY	Madrid．Spain	21.220	WQA	Rucky Point，N．Y．，USN
17.890	TFN	Reykjavik，Iefland	19.160	GAP	Rughy l＇nited Kingdom	21.240	WQJ	Rowky loint，N．Y．，INS
17.890	FZT	Tanamarive，Madagascar	19.200	ORG	Ruysselede，lbelgiun	21.260	WBU	Rorky Point．X．Y．，［＇R゙d
17.900	WZL	Rocky Point，${ }^{\text {N，Y．，USA }}$	19.220 19.240	WKF	lawroncwolle，N．I．İs．l	21.340	OGM	Numon，Gurmany
17.900	FZT	Tananarive，Madagasrar	19.240	DFA	Sauen，Germany	21，420	WKK	
17.910	CWO	Currito，Montevideo，L＇ruguay	$\begin{aligned} & 19.250 \\ & 19.260 \end{aligned}$	FZV3	Tanamarive，Madagasear	21.460	W1XAL	Boston，Mass．，USA．（B）
17.910 17.920	RRRV ${ }_{\text {WQF }}$	Khnharovsk，Russia	19.260	PPU	Seperim，${ }_{\text {Slazal }}$	$\begin{aligned} & 21.470 \\ & 21.480 \end{aligned}$	GSH	Daventry，［＇nited Kingdom，（ B ）
17.920	RRRV	Rocky Point．Nubsion	19.355	FTM	Si_{t} ．Assise．France	21.490	FYA	Pontoise，Prance．（k）
17.930	RRH＇	Trashke nt，Russia	19.380	WOP	Orean Gate．N．J．，I＇SA	21.500	NAA	Wushington，I），C．，［＇s．1
17.940	WQB	Rocky Point．N．Y＇．，USSA	19.400	LQD	Monte Grande．． rg entina	21.530	GSJ	Baventry，［＇nited Kingdom，（13）
17.980	Kaz	Holinas，Calif．，USA	19.400	FRE	St．Asxise Prunce	21.540	W8xK	Pittsburgh，P＇s．，US．I
18.030	RRI	Novosibirsk．Russia	19.430	ORH	prisabethville，lbelgian（＇ongo	21.540	VK3LR	Rendhurst，Vic．，Aus．，（B）
18.040	GAB	Rugby，United Kingdom	19.435	EDR2	Madrid．Stpain	21.550	XGBA	Shanghai，China，（13）
18.050	RRRX	Khabarovsk，Russia	19.435	EDS	Madrid．Spain	21.600	CGG	brummondville，P．Q．．Canada
18.060	KUN	Bolinas，Calif．，L＇sis	19.460	DFM	Namen，（hurmuny	22.300	GBU	Rughys［lnited Kingdo
18.060	RRRX	Khnbarovsk，Russia	19.500	LSQ	Buenos Aires，Argentina，（13）	22.460	EDS	Madrid，Spain
18.070	RRRX	Khabarovsk，Russia	19.520	IRW	liome，Italy．	22.520	DGE	Nauen，Grrmany
18.080	ㄱ․․	Camaguey，Cuba	19.530	EDR2	Madrid．Spain	22.600		Nauen，Germany
18.080	RRRX	Khubarovsk．Russia	19.530	EDS	Madrid．Spain	22.760	EDR2	Madrid Spain
18.100	RRRX	Khabarovsk，Russia	19.600	LSF	Monte（irunde．Argentina	22.820	CEC	La Granja，Chile
18.110	RRRX	Khabarovsk，Kusia	19.650	LSN5	Ifurlinghan，Nrgentina	23.240	HSJ	langkok，Siam King
18.115	LSY3／	Monte Grande．Argentina	19，656	IRL	Rome，Italy	26.100	GSK	Daventry，I＇nited Kingdom
18.120	RRRX	Khabarovsk，Russia	19.680	CEC	1 A Granja．Chile	28.000		Amateurs，USA
18.135	PMC	Bandoeng，Java	$\begin{aligned} & 19.700 \\ & 19.720 \end{aligned}$	DFJ	Nauen，Germany	to		
18.150		C＇amaguey，（＇uba	$\begin{aligned} & 19.720 \\ & 19.800 \end{aligned}$	EAQ	Aranjuez，Spain，（B）	30.000		
18.150	RRRX	Khalarovsk，Russia	19.800 19.820		Tokyo．Japan	29.817	IAF	Fiumicino，Italy
18.160	${ }_{\text {RGA }}$		19.820 19.840	FTO	Lawrenceville，N．J．，I＇s	33.604	$\begin{aligned} & \text { IAG } \\ & \text { TYZ } \end{aligned}$	Golfo Aranci，Italy
18.170 18.170	RRRX	Mrummondville．P．Q．，Canada	19.900	LSG	Mont＂（Brande，Argentina	36．300	KGXM	Calenzana，Franc
18.190	JVB	Tokyo，Japan	19.920	HSJ	Bangkok，Sium	36.800		Amateur and Fixperimenta
18.200	GAW 1	Rughy．United Kingdom	19.947	DIH	Nouen，Germany			年，
18.220	KUS	Manila，Philippine Islands	19.980	KAX	Manila，Dhilippine Tslands	37.400	KGXC	Munawahua．Hawaii
18.230	EAH ：	Madrid．Spain			15 TO 6 METERS	39.473	TY4	La Turbie，France
18.240	JVE T	Tokyo，Japan	20.020	DHO	Nauen，（iurmany	$\left.\right\|_{40.700} ^{39.600}$	KGXA KGXJ	Manawahua．Hawaii
18.250	FTO	St．Issise，Fra	20.040	OPL	1，opoldville Bejgian（0）	41.040		Monte Gratide，Ar
18.295	YVR	Marachy，Vinezucla	20.140	DGW	Nauen，Germany	41.400	LQK	Monte Grande，Argentina
18.310	FZS	Saigon．Indo－（＇hina	20.140	DWG	Namen，（bermany	46.200	KGXO	Kalepa，Hawaii
18.310	GBS	Rugby，［＇nited Kingdom	20.165		Warsaw，Poland	47.300	KGXB	Manawahua，Hawaii
18.340	WLA L	Lawrenceville．N．I．，I＇SA	20.180	wax	Rorky Point．X Y．，TSA	48，400	KGXH	I＇lupalakun，Hawaii
18.340	ZLW	Wellington， N, Z ．	20.260	WQa		49.500	KGXK	Waikiki．Hawaii
18.345	FZS3	Naigon．French Indo－C＇hina	20.310	RFAJ	Momow，Rhassia	56.000		Amateurs，USA
18.390		Warsaw，Poland	20.360	EAH	Madrid．Spain	to		
18.400	PCK K	Kootwijk．Netherlands	20.380		Rughy．L＇nitarl Kingdom	60.000		
$\begin{aligned} & 18.405 \\ & 18.410 \end{aligned}$	PCK	ootwijk．Netherlands	$\begin{aligned} & 20.400 \\ & 20.430 \end{aligned}$	VLK7 IRK	Sudney，Inveralia Trumb＂。 Jtaly	$\text { \| } 400.000 \mid$		Amateurs，USA
18.411	VWZ K	Kirker．India	20.500	DGO	Naupr，Grimany	401．000		
18.413			20.570	EDR2	Madrid．Spain			

$\mathrm{B}=$ Broadcasting ； $\mathrm{X}=$ Experimental．

Calibration Curve Sheets

THE LISTENER

ANTENNA MAST CONSTRLCTION Charles Curtis, St. Paul, Minn.
(Q) I have built several masts to support my short-wave antenna and have not been very successful. Wach

A simple mast which can be constructed by the layman.
one has blown down during wind storms and none of them have been very secure. I would appreciate it very much if you would print a diagram showing how a sturdy mast may be constructed; one that will not cost a lot of money, and one that can be put up and taken down easily.
(A) The construction of an antenna mast has always been a difficult problem for the layman because there are so many different types to choose from. We believe that the simplest form of mast is one constructed of $2^{\prime \prime} \times 4^{\prime \prime}$ wood poles. If you will refer to the drawing you will note that the mast is constructed of two 18 foot $2^{\prime \prime} \times 4$ " planks and they are bolted together in the center with a two foot overlay. One of the
greatest problems has been the anchorage at the base of a mast. However, one simple method of arranging this is to dir a hole in the earth about 2 ft . in diameter and 2 ft . deep. This should be filled with concrete, and before it has hardened, at 4 inch inside diameter iron pipe should be located directly in the center of this block of cement. No not allow the entire pipe to become full of cement because the mast is held in place by fitting down into the pipe a distance of about 1 ft . Two sets of guy wires are used; the first set is fastened to the center of the mast, and there are three, forming a triangle at the base. Only two are shown in the diagram; the one is located directly behind the mast. The three long guys are fast(ned approximately half wa; up the upper 10 ft . section. Make sure to break up the guy wires at least every 10 ft . and preferably closer with "egg" type strain insulators. The anchors for the guys consist of 1 ft . iengths of 4 inch diameter pipe buried in the ground as deep as pusisible. If the ground is allowed to settle and water is poured on the gr:und, they will hold very firmly; otherwise it may be necessary to fasten them into cement blocks. Another good method would be to bury a regular cement block such as used in building construction. This mast will have a total height of approximately 33 ft . above ground; 20 or 22 ft . lengths of timber can be used to construct a higher mast although in the open country 33 ft . is sufficiently high to allow good general reception.

[^2]
POOR ANTENNA CONNECTIONS IMIPAIR RECEPTION

Arthur Stanley, Davenport, Iowa

(Q) I have considerable trouble in picking up short-wave stations and keeping them tuned in. I hear constant crackling noise in my receiver and I have to re-tune constantly otherwise I would not have any success with my short-wave receiver. Could this srouble be in my antenna? All the connections are made by first cleaning the wires and twisting them tightly and then thoroughly taping them. Would appreciate any help you can give me.
(A) In the first place we would say right off that you should not depend upon an ordinary twisted joint covered with tape where radio reception is concerned. All joints should be thoroughly soldered. In the drawing we have shown how to make splices. Fiven splices in antennas should be avoided wherever possible by making the antenna and lead-in all one piece. After the wires have been twisted as shown in the drawing, they should be soldered with a very hot soldering iron or blow torch and, always use rosin core solder. Acid core solder is not advisable where small wires are joined because of corrosion which may take place. The joints should be heated to the extent that the solder will flow freely over the entire connection and when finished you will have a neat appearing joint, similar to the one shown in the drawing. Make sure your iron is clean, and if not, file it smooth, eliminating all pits and then tin it with a rosin core solder. Also, if you are using a mast with guy wires for supporting it, make sure that there are no loose connections in the guy wires; these will cause just as much noise and trouble as poor connections in the antenna itself. Keep the lead-in away from all metal objects so that there will be no danger of it coming in contact with metal. This will also cause a crackling noise in the receiver.

VOICE AND PICTURE TKANSMISSION

James Thompkins, Springfield, Mass.
(Q) Several years ago, when Television was more or less popular, I heard stations broadcasting Television and also heard them announce that the sound could be picked up on an(ther frequency and I have been won-

ASKS

Only questions of general "Listener" interest will be answered here. No queries can be answered by mail. No diagrams of a technical or

involved nature will be given here-only those which the Editors feel will be of calue to the average nontechnical "Short-Wave Listener."

dering ever since just how this was accomplished. If it is not too much trouble, I would like to have you print the answer in your next issue of the Listener.
(A) The most practical method so far developed and one which was in use several years ago when Television was more popular than it is today, was the use of two separate transmitters and receivers. If you will refer to the drawing you will clearly understand just how this was accomplished. Two transmitters were used; over one of which the Television picture was sent, and over the other the sound was transmitted. In order to pick up both it was necessary to use two separate receivers. The early experiments were conducted on two different wavelengths, one was around 160 meters and the other was approximately 50 meters. This meant that one receiver had to be tuned to the 50 meter signal and the other was tuned to the 160 meter channel for reception of the picture. In the laboratories today, radio engineers are experimenting with apparatus which will send the picture and sound simultaneously with the use of a single transmitter.

ADDING A SPEAKER TO THE FAMILY RADIO

A. Jennings, Brooklyn, N. Y.

(Q) I am confronted with the problem of connecting an extra speaker to our radio and not being much of a radio technician I am turning to you for a simple solution to my problem. I have an old style magnetic speaker which I would like
to use. Will you please be kind enough to print a diagram in the Short Wave Listener.
(A) No definite diagram can be printed which shows just how to connect the speaker to your receiver, although, if you will follow these few simple suggestions you will be able to obtain the results you desire. Connect a .1 mf . condenser in series with one lead of your magnetic speaker, such as shown in the diagram. On your dynamic speaker you will find a transformer with three or four and possibly five terminals. Turn on your radio and tune in a station; then connect the wires from your magnetic speaker to any two of the terminals of this transformer. You may be fortunate enough to locate the proper ones the first time. However, if no music is heard in the magnetic speaker, remove one of the connections and try it on each of the remaining terminals. Somewhere in the combination you will find two terminals of the group which will give full speaker volume when the magnetic speaker is connected across them. Some experimenting will be necessary, but no damage can be done because the condenser protects the speaker. This condenser should have a rating of at least 600 volts.

ONE-PIECE ANTENNAS ARE BEST Harry Ricker, Pawtucket, R. I.
(Q) Some of my friends have told me that I should make my antenna from a single piece of wire with no connections or splices and others have told me that splices do not matter or affect reception in any way. Will

[^3]

How splices in antennas can be climinated.
you please be kind enough to put me straight on these?
(A) This question has been asked a number of times by short-wave "Fans" and there is really only one answer. Wherever, possible, connections should be avoided; however, a good soldered joint such as shown in one of the drawings on this page will not make any difference in the operation of the antenna. The reason they should be avoided, however, is because there is always a chance of a poor connection if one is not thoroughly familiar with the art of soldering. In the drawings we have shown both the doublet and an inverted "L" antennas and you will notice that it is possible to make the doublet with two pieces of wire, having one of the lead-ins and one of the flat-top sections all one piece, just by running it through the insulator and twisting it one or two times around. The L antenna is constructed in the same manner. We advise our readers to follow these assemblies wherever possible, unless they are experts at soldering.

AUTO IGNITION INTERFERENCE Dominick Polino, Hoboken, N. J.

(Q) I live in a very congested area where there is a tremendous amount of automobile traffic and I would like to know if there is any way in which I can reduce the noise or interference caused by the autos.
(A) About the only suggestion we can make is that you use some sort of noise-reducing antenna system and mount the antenna proper as far away from the street as possible.
owned by R. Gutierrez U., y Cia., in Managua. The 100 watt transmitter is said to have been transferred from the city of Granada, where it had formerly operated under the call-letters YNCRG. YN1GG may be found between HJ1ABB and YV4RC most any evening.

Listeners are likely familiar with the transmissions from the two San Jose, Costa Rica stations, TIEP, and TIXGP3. TIEP has long since sent out data in its verifications but until recently TIXGP3 has ignored reports of reception. Perhaps other fans may not have been so fortunate as to secure, as yet, one of the QSL-cards now sent out by Gonzales Pinto H., the owner. "The Queen of the Air," as the station is known, lists its frequency as " 5777 kc ," but it is to be found each night on 5820 kc , usually from 8-11 P.M.

The Republic of Panama has only recently entered the S.W. Broadcasting field but now two stations are making up for any time lost. HP5B, "Radioifusora Miramar" has already become famous through its transmissions on 6030 kc . The second Panamanian station, HP5J operates on 31.28 m . between 7:30 and 11 P . M. and is known as "The Voice of Panama"; clear English announcements, like those given on HP5B aid in identification but HP5J does not provide as good reception as does its sister station on the 49 m band; this situation may be reversed however, during the coming months. Those hearing HP5J should address them at Box 867, Panama City.

Proceeding to the continent of South America we shall attempt to clarify the existing broadcast situation there. Of the Colombian stations HJ 1 ABB, $2 \mathrm{ABA}, 3 \mathrm{ABD}, 3 \mathrm{ABF}$, $4 \mathrm{ABB}, 4 \mathrm{ABE}$ and 5 ABD are quite familiar to most listeners. Verifications from all except 3 ABF of Bogota are to be found in the collections of most every SW fan; there is considerable news on other Colombian stations.

HJIABD, "Ondas de La Heroica" (Waves of Cartagena - the Heroic One), operates on an announced frequency of 7281 kc ., having recently changed to this wave from the 49 m band in order to escape merciless interference from near-by stations which were using much greater power than 1 ABD (the latter's transmitter gives a carrier power of about 100 watts). This station may be heard most any evening until the sign-off at 9.30 P.M., at which time the "Stars and Stripes Forever" is played; reports should go to Box 252 in Cartagena.

New Stations in Latin America
 (Continued from page 107)

Situated in the same city is HJ1ABE, "The Voice of the Fuentes Laboratories," (Box 31). This station formerly operated on 7050 kc . (the writer has verification of reception of their test transmission on 16 metres, also), and was heard quite frequently in the USA. A new transmitter, a 150 watt Collins has been installed, and the frequency changed to 6115 kc . Though HJ1ABE may be heard daily its signals may best be enjoyed from 10.30-11.30 I.M., on Mondays, at which time a special IXX program dedicated to various SW clubs of the world is sent out.

A station which has already been heard over a period of several months is IIJ1ABG, "Emisora Atlantico" of Barranquilla, operating on an announced frequency of 6042.5 kc . Reception is best from 9-10.10 P.M., at which latter time the station signs off, giving clear announcements in English.

HJ1ABH, "The Voice of Cienaga" has been received between 8 and 10 P.M. (its schedule is on Tuesday and Friday) on about 47.8 m , and HJ 1 ABJ , "The Voice of Santa Marta," has been frequently logged from 7-9 P.M., broadcasting, and later, calling HJ1ABH, YV4RC etc., on 50.3 meters. Sergio Aparicio Jr. and Julio A. Sanchez T., are the owners of these respective stations and both appreciate reports enough to answer them with attractive verification cards.

In the second Colombian district we find that HJ2ABC, "The Voice of Cucuta" located in the city of Cucuta has recently returned to the air, after a long silence. This signal is to be heard from 6.30-9 P.M., and, at times, later, on a frequency of 5870 to 5880 kc ., although this latter item is announced as "5975." Quality is greatly improved over that of this station's former transmitter and thus identification is more easily made. Reports go to the station director, Sr. J. A. Sanchez C.

The only station in the third district that may be termed "new" is HJ3ABH, "The Voice of the Victor" which operates on long and short waves simultaneously. Until recently this station operated on 5970 kc ., with 150 watts power; about the first of the year the station director announced plans for a power increase and these plans seemed to have been completed for HJ3ABH is now heard with a very strong signal, on about 6015 kc .

The fourth Colombian district offers us more news; first, HJ 4 ABA , announcing as "Echoes of the Mountain," has been heard between 4 and 8 P.M., on about 11,700 and 14,100 kc. Quality and signal strength of this new station are very good. Although no definite address is given over the air ,reports addressed to Radiodifusora HJ4ABA, "Ecos de la Montana," Medellin, Colombia, should reach their proper destination prompt$1 y$.

A second one should be noted from the fourth HJ district, namely IIJ 4 ABC , "The Voice of Pereira," located in Pereira, Caldas. Programs are transmitted nightly from 7-8 P.M., and generally later on about 48 metres. Signals are quite good, considering the power, which is but 50 watts.

In addition a new but powerful station has been opened in the city of Manizales. It is to be found on about 6100 kc . from 5:30-7:30 P.M. daily and from 10.30-11.30 with a special DX program on Saturdays. Call and title are HJ4ABL, and "Ecos de Occidente" (Echoes of the West), and address Box 50 in Manizales.

About the only news from the 5th Colombian district concerns HJ5ABC, "La Voz de Colombia," which formerly operated on approximately 53.6 metres (though the wavelength was always stated as " 58 " metres, the engineer who ground the crystal stated that he had no means of actually checking the correct frequency of the transmitter, so thus, the error in calculating the wavelength!). Power has been increased from 30 to 150 watts, and the new station has been heard testing on 7005 kc .

In Eeuador there are several stations which though not entirely new, fall into the "mystery" class. HC2AT owned by the American Trading Co., Box 872, Guayaquil, operates with the very low power of only 15 watts but is heard with a fine signal between 8 and 10 P.M. almost daily.
HC2ET, "El Telegrafo," Casilla 249, Guayaquil operates on 4600 kc ., or 65.2 m ., each Wednesday and Saturday from 9-11:30 P.M. An interval signal of some 11 or 12 chimes aids in identification.

HCK was long supposed to operate on 53 metres or thereabouts, but, for many months has been shifting around from 50.5 to 52 metres. For some time this station has remained very close to 5730 kc ., and may be heard from 8-10 P.M. daily with the possible exception of Sunday.

Some weeks ago the fans of the USA were aroused by the appearance of a new Quito station using the call HC1JW and HCETC. The real call has proven to be the latter, whereas the former call is that of the station engineer.

Short Wave Beauties from Holland
 (Contimued from page 100)

sists of classic and light music, lectures, news bulletins, cabaret, sports, etc, etc, whilst variety must be its chief essence. The letters written by the listeners-in prove that the programs are meeting expectations,

For the broadcasting of its concerts, the Phohi engages an excellent orchestra. Moreoever, every fortnight on the Thursday, the famous "Residentie" orchestra, with the colaboration of well-known artists, plays before the I'hohi-microphone.

Practically every Sunday, with the collaboration of well-known artists, a one-hour transmission is arranged by the Roman ('atholic Broadcasting Association.

The announcer takes a very big part in the sports program and the daily routine. Thanks to the pleasant manner in which he carries out his difficult task, the announcer, Fdw, Startz, has gained a popularity which many a film star or sports recordholder might envy. Ilis particular forte is the free and easy way in which he addresses his audience in seven different languages.

King's Jubilee
(Continued from page 104)

Cathedral in London, and hottom right, the jubilant throng witnessing the passing of the Royal Carriage; finally, in the upper right hand corner, we see one of the control panels through which, to the various countries, was routed the happenings of that memorable day.

Just imagine that in the days of King George's father, it would have required hundreds of speeches to address the great number of people who heard this Silver Jubilee broadcast. As the Prince of W ales mentioned in one of his recent broadcasts, short wow radio has probably done more than anything else to bring closer together the various possessions which go to make up the far-flung British Empire.

The weeks of preparation for this broadcast by the B.B.C. have surely been compensated for by the tremendous success of the broadcast. Several members of our staff heard the various programs broadcast direct from London by short uaves and remarked that the strength and clarity of the transmissions were quite unusual and thoroughly enjoyable.

Thomas J. Taaffe, Jr.
 (Contimued from page 117)

LU8AB, VE9GW, CJRX, FG7 and sevcral stations here.

Other stations heard but not verified as yet: OAX4D, TIGP3, HJ2ABC, HJ4ABE, HJ4ABL, YDA, CO9GC, HI1A, YN10P, HIL, VP1FR, HJ3ABD, VUB, TI4NRH, HAS3.

I have been interested in radio for a frod many years and I am a member of the Short W'ave lorague the Short Wave Club of Now York, the International HX'ers Alliance and the Society of IVireless Pionerrs.

Thomas J. Taaffe, Jr. 29 Valley Ave. Elmsford, New York.

How to Get Best Results From Your S-W Set
 (Continued from page 110)

ing noises picked up from the outside can be reduced by turning the tone acutrol to the point where the highpitched notes are reduced in volume.

Too much cannot be said about the amount of care which should be exercised in operating any radio receiver. If you have a set with automatic volume control, make absolutely certain that you have tuned the station in properly. If the dial is set off to one side of the station, the automatic volume control action of the receiver is not effective and although the station can still be heard quite loud, the general background noises are amplified to nearly the full capacity of the rectiver.
Swing the dial back and forth until you are absolutely certain that you are in the center of the station and at that point where the outside noises are at a minimum. Extreme care should be exercised when tuning across the short-wave bands in search of distant stations, especially with receivers employing automatic volume control, because when the set is not tuned to a station the amplification of the receiver is maximum and all of the background noises come in at full volume. It is very easy then to pass over a station and not even know that it exists. When tining across the band, tune very, very slouly and if you should come to a point where the background noise takes a sudden drop in volume level, you can be most certain that this is a station and although there may be no speech or music coming through at that particular moment, you should remain at this point for a short length of time.

THE TRUTH

THE WHOLE TRUTH and NOTHING BUT THE TRUTH

BETTER RECEPTION
with Noise-Reduction
on ALL Waves
most AERIALS DO NOT CUT OUT ANY NOISE on the hegular broadcast band

WHEN BETTER AERIALS ARE MADE LYNCH WILL MAKE THEM.
AND OTHERS WILL TRY TO COPY THEM Write for Free bulletin on LYMCH Noise-Reducing Antennas for Home.Auto Use. ARTHUR H. LYNCH, INC., 227 Fulton St., N.Y. fIONEER OF NOISE-REDUCING AERIALS

Know Thyself:

You can thoroughly ENJOY

Order from your dealer. If he cannot supply you. We will.
Write for illustrated
C. F. CA
sppingwat

DATAPRINTS

TESLA OR OUDIN cOils

SLIDE RULE MIDGET

Metal 4" Dia.
Price $\$ 1.50$
Case 50c Extra
 thmers of mumbers; sints, rnitues, tankents and cos and subtracts Practors. Approwed by folleges. 10" Dia.. 27" Scale "Special" Rule. \$2.75 Mufliples and Divides, but has no "Trig" Scales

$$
\begin{aligned}
& 20 \text { "Electric Tricks" for LODGES and } \$ 0.50 \\
& \text { PARTIES }
\end{aligned}
$$

 $(20 \%$ of on orders for $\$ 3.00$ or more. No C.O.D.)

The IDTAIPINT COMPANY Lock Box 322 A

RAMSEY, N.

What About Television?
 (Contimued from page 109)

if our engineers had kept at it. At the present time there are a few television stations broadcasting daily programs (27 are licensed) which are being picked up by experimenters equipped with mechanical scanners and short-wave television receivers, the ir!ages at present usually being built up with 50 or 60 line scanning.

The cathode-ray image transmission of Philco, Farnsworth, and R.C.A., will use probably no less than 250 lines and 400 lines have been rumored, which of course will give us an image comparirg in clarity to those produced by our home movie projectors-a very satisfactory image indeed.

A recent report which the writer obtained mentions that television broadcasting in Germany has already started on a daily program basis, with cath-ode-ray scanners in use by the public. The programs include movie film transmission, as well as studio-spot-light pick-ups.

Television transmission in Germany is being carried on over a 7 meter shortwave band; at present the principal station is located in Berlin and the images can be picked up over the entire area of that city. The German television activities are centered in the organization known as Fernseh and one of its television transnitters has been in regular operation for two years. The Fernseh is said to be the only firm which has delivered commercial television transmitters on the continent of Europe. The German goveinment has helped the television industry by the appropriation of considerable sums of money. An interchange of certain patents between the American and German television experts has now been arranged.

Tomorrow television will prove an indispensable everyday necessity, which will be found in every home and office, and we can rest assured that one of the principal commercial applications of perfected television will be the sale of merchandise of every description, from automobiles to ladies' gowns and hats, pictures of which will be spread before us on our television screens, right in our home. Don't forget that television in colors has already been demonstrated in England by the Baird experts and also by our own Bell Telephone Laboratory experts, headed by Di. Herbert E. Ives. Another development of the televisor of tomorrow will be the reproduction of images in relief or perspective; stereoscopic or binocular television has also been demonstrated in England.

Fach book contains 32 pages-and

ITFIRAI IY thousands of radlo fans have bullt the famous DuFiliLf; Short Wave Hadlio IReceivers, So in-
sistont has been the demand for these receivers, as sistent has been the demand for these receivers, as ially published.

HOW TO MAKE FOUR DOERLE SHORTWAVE SETS

Contains EVERYTHING that has ever been printed on

 these famous receivery, These are the famoun sets that "IVAF"T: "A 2'Tube Iterelver that Rearhes the 12,500Mile Mark, by Walter C. Doerle (Der. 1931-Jan. 1932). :Ile 3.Thube 'Sy Wal Gripper,". by Walter C. Doerle (Vo vemher 1932). "Joerie " 2 -Tuber' Adapted to A. C. Operatlon" (Auly. 1933). "The looerle 3-Tube "Signal-Gripner' Elertrifietl," (.tugust 1933) and "The Doerle Goes "Bamd-sipread" " (May, 1931).
Due to a sperlal arrangeme
CRAB to a sperlal arrangement with SIIORT W'AVF, Covaft. We present a complete 32 -page book with stif merous illusirations. Nothing has been left out. Nou only are all the DoERRIF sets in thls book, but an excellent phiner back if you wish to
intifilif, sets, Is also described.
HOW TO MAKE THE MOST POPULAR ALLWAVE 1- and 2-TUBE RECEIVERS

THEHE has been a continuous demand right along for

 fan. ralio service lian. etr, who wishes to bulld 1-and 2 -tube all-wave getg powerful enough to operate a loudtube all-wave gets powerful enourh to operate a loud
speakur. For the thousands of readers who wish to bulld surfh sets. this book has been especially published.
This hook contalng a number of excellent sets, some of Which have apheared in past issucs of RADlO-CRAFT. These sets are not toys but have been carefully engineered
They are not expertments, To mention only a few of the sets the following will give you an idea. The Meralyne 1-Tuhe I'entolio Loudspeaker Set by Hugo Gernsback. Klectrifying The Mexadsuo. © How
To Make a l-Tube Loul-speaker Set, Dy W. 1 . Chesney. To Make a l-Tube Lould-speaker Set, by W. 1". Chesney. by How Green. © How To Build A Four-1n-Two All-Wave Electric sel. hy IT. T. lsernsley, and others. Not only are all of these sets described in this book, but it rontains all of the tlustrations, hookups, etc.- the book,
In fact, contains overything. Nothing at all has bees left And belleve it or not, earh hook contains over 15.000 words of now lectble type. Each book is thoroughly modern and up-todiate. They are not just a renrint of what
was printed before. All the latest tmprorements have been was printed before. All the
incorporated into the sets.
Incorporated into the sets. of ten cents y you can not possibly go wrong in bursing them of ten rents; you ran not poashil kuwrang in bursink them. book as well DO NOT TIINK THAT THIS BOOK IS WORTH THE MONE ASKET FOR IT IRFTGHN IT WITHLN TWENTY-FOUR HOIRS A
WILL BE INSTANTLY REFENDED

There has never been suth a low-priced radio book of this type in the history of
aublishing business.
Take advantake of the speclal
orfer we are making and use the
coupon below.
RADIO PUELICATIONS
New York. N.
 95 Hudson Street
Please send immedlately hooks checked: Q How io Make Four 1 Doerle Nhott-Wiare Sets................. 10 e
 I m enciosing ; the price of each book is 10 c (Coin or US scumps acceptable.) Books are sent post paid.

Addres
City

When public television comes a litthe closer to realization, there may be a feeling on the part of prospective ptirchasers of regular radio receiving sets, that they had best hesitate before investing in a new set, with the idea that television will be combined in the new model receivers offered them. This cindoubtedly will not be the case at all, as it now appears that the 5 to 7 meter waves will be used for transmitting the television images. Without a doubt, a secial television receiver cabinet will be the apparatus you will buy, for some years at least, which will contain a special 5 to 7 meter receiver set and amplifier, together with the cathorleray tube and the necessary oscillator control circuits used for propelling the cathode ray back and forth across the screen as it scans or builds up the irage. In other words, there will be nc similarity at all between the ultra short-wave television receiver and its associated scanning apparatus, and the present type of broadcast receiver. Thus, you will require both a broadcast receiver with which to hear your regular broadcast programs on, the same as you do now, plus the tolcvision receiver cabinet for the 5 -meter waves.
Many people have asked the question of whether two different wavelengths or frequencies will still be required to transmit the inage and the accompanying voice signal, While this 2 -wave system has been followed in the past (with the exception of the doubly modulated single wave used by the C.B.S. television system just before it ceased operation, about one and onehalf years ago) with the recent advent of the new froquency-modulated ultra short-wave transmitting and receiving system, devised by Major Edwin Armstrong, it will be easily possible to transmit the voice and image on a single wavelength.

Best S-W Stations

(Continued from page 127)

TELEPLEX COMPANY

76 Cortlandt Street New York, N, Y "MASTER TELEPLEX-The Choice of those who know

Get a real education on short and all waves Edited in simple language that anyone ran understand Send $\$ 1.00$ ($\$ 1.25$ in Canada and foreign countries) for 8 monthly issues. Technical articles written by experts. 68 pages, hundreds of illustrations. Edited by Hugo Giernsback
SHORT WAVE (RAFT, Dept. L 99 Hudson Street New York, N. Y.

Save $\$ 1.98$
Just As Long As the Supply of This Book Lasts!

JOIN THE SHORT WAVE LEAGUE

 frethon with the lefllite. No mot makes any money

SHORT WAVE
 LEAGUE MEMBERS

IDENTIFY THEMSELVES WITH

THE ORGANIZATION

In order that fellow mombers of the LEAGUE may be able to recognize each other when they meet. we have
desioned this button, which is sold onfy to members and which will give you a professional appearance.

If you are a member of the LEAGUE, you
camnot afford to be without this insignia of
your membership. It is sold only to those
belonging to the LEAGUE and when you see
it on another, you can be certain that he is
a member.
Lapel Button, made in bronze, gold fllied, not plated, prepaid

35c
Lapel Button, like one described above. \$ $\quad \$ 2.00 ~$
but in solid gold. prepaid
A pamphlet setting forth the LEAGUE'S numerous as pirations and purposes will be sent to anyone on ro

SHORT WAVE LEAGUE

99 HUDSON ST.. Dept. L-7. NEW YORK, N. Y

Invisible ttands Maqically lissure WORID-WIDE

Divect ferin Tridhunt Cabontoried.
THE a rest magical performance of thissuper Midwest "Fifteenth A foreign sations are l.rought in, many automatic can save from 1% to $1 / 2$ by buying direc ad ustments are corstantly being made inside the from Midwesb laboratories. Learn why Midwest set It might be said that a number of "Invisible outperiorms sets costing up to $\$ 200.00$ and more. Hands" ena sle you ta bring in and hold any sta- Now save 30% to 50%. Never before so mach tion you dezire from the whole world of broadeast radio for so ittle money 1 Midwest gives jou ...regardless of fading and interfering conditions. triple protect on with: One-YearGuarantee, ForBeiore ycu uy any redio, writefor the new FREE eign Reception Guarantee, Money-Back Guarantee.

On y Midwe!t Offers Wulti-Function Dial Thas exc-usive dial :s not an ordinary airplane dial-but a many-purpose un.t that reforms exclusive functions. Send for FREE miniature dial showing these outstanding advantages: 1. Dial calibrated In Kilocycles, Megacycles mand Moters;
2. Call Letters of American Broadeast Sta-- tions prinied on Dial and Illuminated; 3. Slow-Fast Smooth-Action Tuning;
4. Station Group Locator,
5. Simplifled Tuning Guide Lights;
6. Autormatic Select-G-Band Indicator:

New Style Consoles
The Midwest 36page catalog pictures a complete line of beautiful, artistic de luxe consoles and chassis in four colors. Write for new FREE catalog today! Midwest long-range Hadios are $\$ 7750$ low as ...

50 ADVANCED FEATURES
Exclusive "Invisible Hards" features include: High Level Automatic Volume Coytrol Action, Discriminating Automatic Tone Control, Multi-Function Dial, Micro-Temuator, Fidel-A-Stat, etc. Only Midwest covers a tuning range of 9 to 2400 meters (33 megacycles to 125 KC)enabling you to easily and successfully tune in even low-powered forcign stations up to 12,000 miles away. All 5 Wave Bands enable you to enjoy today's finest High Fidelity American prograns. In addition, you ket Canadian, police, amateur. airplane broadcusts...commarcial and ship signals...and delight in exciting world-wide broadcasts from England, France, Germany, Spann, Italy, Russia, Australia, etc. Send Loday for money-saving facts SENSATIONAL HIGA FIDELITY RECEPTION This bigger, better, more powerful, clearer-toned, super-selective, 16-tube "Invisible Hands" radio gives you absolthe you have ever experienced before. You will hear one more octave-overtonesthat cannot be brought in with ordinary radios. Now, hear every DEAL DIRECT WITH LABORATORIES Increasing costs are sure to result in bigher radio prices soon. Juy before the big advance NOW while you can talke advantage of $\triangle \mathcal{L}$ Midwest's sensational values. No middlemen's UP TO profits to pay \mid You can order your Midweat
 ligh Fidelity radio frons the new Nidwest cataiog with us nuch certanty of satiscaction a You save 30% to 50% when you buy this popular way...you get 30 days FREE trial...as little as $\$ 5.00$ down puts a No Midwest radio iu your home. Foreign Reception, 5 One-Year and Money-Back GUARANTEES pro-Po- lect you! Write for FiEE catalog NOW...TODAY!

MAIL COUPON TODAY! FOR TFRIE MANIATUHE DISL..... FSEE 30-DAI TRIAL OFFER..FREE CATALOC

MIOWEST RADIO CORP.,

 Dept. 2^{n}. B Cincinnati, Ohlo. Without obliratious on my part, send TRE your Mow Fintiater Dial, and come plete detailw of your liberal 30-1nyPREE Hrial offer. This is NOT an urdur.

Heps His Native Country Lisbon, Acushnet, Mass- - I tuned in CHAA, Lisbon, Portuga, my birthplace.....ear as a songs of
 my country. This
aloas
mote
pry price It pan low my Midwest. Also tuned in GSB, England 12RO, Rome.. DJA,Germany

[^0]: Many crackling and other noises can be removed by adjusting the tone control.

[^1]: 1 INT FAD．MOD．SHOULD BE REPRESENTED BY DOINTS ON THE GRADH （eqA．B．C．D）THE CON
 STANO OUT CLEARLY
 2 IF THE INT，THE FAD THE MOD，VARY DURINGA SINGLE BROADCAST IT CAN BE INDICATEO WITH SEVERAL DOINTS ONTHE SAME VERTICAL LINE （AS ILLUSTRATED FOR THE 3 SD ANO ETH DAYS） 3．－OTHER USEFUL OBSERVATIONS MAY BE REPORTEO ON A SEPARATE

[^2]: l'roper method of making antenna connections.

[^3]: Two speakers working from one radio.

