AUTOMATIC

RECORD CHANGERS

and

RECORDERS

by
JOHN F. RIDER

JOHN F. RIDER Publisher, Inc.

Copyright, 1941, by JOHN F. RIDER

All rights reserved including translation into the Scandinavian and other foreign languages

AUTOMATIC

RECORD CHANGERS and RECORDERS

Other Books

by
JOHN F. RIDER

Cathode-Ray Tube at Work
Servicing Superheterodynes
Servicing Receivers by Means of Resistance Measurement

Perpetual Trouble Shooter's Manual:
Volumes I to V Abridged (One Volume)
Volume VI
Volume VII
Volume VIII
Volume IX
Volume X
Volume XI
Volume XII
Volume XIII
Volume XIV
Volume XV
Inside The Vacuum Tube
Aligning Philco Receivers, Volumes I and II
Automatic Frequency Control Systems
Frequency Modulation
Servicing by Signal Tracing
The Oscillator at Work The Meter at Work
Vacuum Tube Voltmeters
An Hour a Day with Rider
ON
Resonance and Alignment
Automatic Volume Control
Alternating Currents in
Radio Receivers
D-C. Voltage Distribution in
Radio Receivers
Radar-What It Is
+
A-C. Calculation Charts
BY
R. Lorenzen

Understanding Microwaves
BY
V. J. Young

Dedicated to the

RADIO SERVICEMAN

who through no fault of his own now is surrounded with pawls and cams and gears

1

$$
\omega
$$

TABLE OF CONTENTS

Chapter IMOTORS AND DRIVES1
D-C Motors 2
A-C Motors 7
Universal Motors 16
Maintenance of Motors 16
Commonplace Troubles 19
SPEED REGULATORS and REDUCTION DRIVES 22
Chapter II
RECORDERS AND PHONOGRAPHS 29
The Cutting Head 32
The Groove 35
Recording Needles 39
Pick-ups 42
Phonograph Needles 45
Chapter III
AUTOMATIC RECORD CHANGERS 47
Mechanisms 48
Troubles 51
Chapter IV
ANALYSIS OF RCA MODEL RP-152-C RECORD CHANGER 53
MANUFACTURERS' SERVICE DATA 61
INDEX

AUTHOR'S FOREWORD

TTHE AUTOMATIC RECORD CHANGER is by no means a new device, for several such units have been available for many years. However, the last four or five years have witnessed a tremendous boom in the production and sale of these units to the owners of radio receivers. In fact, it is possible to credit the revival of phonograph record sales and interest in such records to the successful development of a simple record changer. We say simple, for so it is when compared to the devices of years ago.

At the same time, the wide-spread sale of these units and the service work necessary thereon represented a new era in the operations of the radio serviceman. For almost two decades, his interest revolved around the invisible defects which accompany the operation of electrical devices. Mechanics in radio receivers was limited to such things as remote control and motor driven condensers. Mechanical operation was so much in the minority that very few if any serviceman paid the slightest attention to even the simplest terms used in mechanics, let alone the study of gears and linkages.

Then along comes the automatic record changer and introduces almost a new language, the language of mechanics. Fortunately, the nature of the device is such that a study of mechanics is not necessary, but it must be admitted that even if a study of mechanics is not required, the development of motion in many different directions by means of gears, levers, and cams, is something which is foreign to the radio-minded man. And when this new device is not too gently thrown into his lap and he is told to service something, the prototype of which he has never seen, he cannot help but be at a loss.

The birth of this volume covering automatic record changers and recorders is a direct effort to supply to the radio serviceman, a book which will give him general and specific facts about the record changers and recorders now in the hands of the public, so that he will at least have available some source of specific information.

As is clearly evident in the text, no effort is made to cover the theory of mechanics, for we do not deem it necessary. At no time is the individual who does the service work called upon to improvise an arrangement in place of something which has failed. The mechanical system is already designed and his part is to keep it running
and clear whatever defects develop. At the same time, the general discussion of mechanical troubles is limited. This is brought about by the fact that the respective manufacturers indicate the exact parts to be investigated in the event that some defect develops. . . . Since variations exist between record changers, it is far more important that the reader refer to the manufacturers' notes and derive specific information, than try to interpret general service references.

We have refrained from publishing design theory, as far as recorders are concerned, because the subject matter of this volume concerns units already manufactured and which must be kept in operation Since these units function with other available devices, records and needles, all that we deem necessary to say about records and needles are those things which relate to faults and those things which will enable a serviceman to answer questions submitted by the average user of a recorder to his not getting the kind of results he expected.

The remainder of the problems, that is service problems surrounding the individual recorders, those are answered by information furnished by the respective manufacturers, for they not only give the solution to the problem, but also stipulate the exact part of the system which must be manipulated to accomplish a certain aim.

As this book goes to press, it just about covers all of the devices of the kind listed in the title, which have been sold to the public. Fith the requirements for National Defense becoming more and more urgent, it is doubtful if there will be need for a second volume covering future units for quite a few years. Be that as it may, we hope that what we present in these pages will be of practical aid to the serviceman. In this connection we desire to express our sincere appreciation to all of the service managers of the manufacturers represented in this book for their wholehearted cocperation. Without such cooperation this book would have been impossible. That goes for some of the staff of the publisher, particularly Mr. G. C. B. Rowe whose job it was to edit the text we wrote and who helped us watch the gyrations of gears and levers and cams within the record changers that were purchased for observation and analysis.

John F. Rider
November 29, 1941.

Chapter I

MOTORS AND DRIVES

The primary driving device in record changers, recording devices, and phonographs is the electric motor. That is what converts electrical energy into the mechanical energy required to rotate the turntable upon which the record rests, either for reproduction or for recording. Since this is a manual aimed at furnishing service information, our primary concern is with information of this character. But in the case of motors, as well as other completely assembled electrical mechanisms, like pick-ups and cutter heads, there is comparatively little which can be described as service information.
Of course, there are details relating to service which shall be discussed, but due to the nature of such devices as motors and the others named, the kinds of defects which are within the province of the repairman are relatively few and simple. Those defects which are major in nature are, unfortunately, of such character as to require virtual reconstruction of the device, hence invariably mean replacement of the defective unit with a new one. This is particularly true of burnouts of windings or coils, such as are employed in motors, pick-ups as well as recorder cutting heads. When such defects develop, the lack of facilities for repair and the specialized nature of the repair make replacement the only feasible and most practical method of overcoming the problem.

This does not mean that these subjects need be dismissed by nothing more than a tabulation of the simple faults and their remedies. In fact they cannot be dealt with in such an easy way, for it is highly desirable that the serviceman who works on such devices, regardless of the nature of the defect, have a general idea of what electrical principles govern the operation.

This is particularly true in the case of pick-ups and recorder cutters, for much of the success in reproduction as well as recording is founded upon the performance of these respective units. The more familiar the individual with their operation, the better the results obtained because of the many related devices and operations.

In the case of motors, the parallel is not as close because the electrical characteristics of the driving unit have no relationship, assuming correct selection of the electrical power source, the power line frequency and voltage, to the manner of reproduction or recording. Unlike the other two units, only a defect in the motor will interfere with the attainment of its proper performance. Yet, it cannot help but be valuable to
the user of this manual to understand the manner in which the different kinds of motors used in automatic record changers and recorders, operate. Therefore we shall discuss in brief the kinds of motors used as well as the related driving mechanisms.

Motors

Motors as a whole are identified in four ways. First is the general classification associated with the kind of power supply, namely for use on either alternating current, direct current, or both. Second, is the rating of the voltage which must be impressed upon the motor, or to put it differently, the voltage of the power supply for which the motor has been designed. Third, the classification of the electrical design of the motor, that is, the basic principle responsible for the turning action of the motor, and fourth is the horse-power rating. As we go along in this discussion examples of the first three will be given. As to the last named, no need exists for any discussion, in that the general category of all motors used in recording units as well as record changers and phonographs, is "fractional horsepower," by which is meant something of the order of $1 / 10$ horsepower or higher, although there seldom appears any reference to some particular value. The fact that the motors are of fractional horsepower is generally accepted as sufficient.

Basic Principles of Motors

While it is true that different kinds of motors make use of certain definite electrical laws in certain special ways, it nevertheless is possible to state in general terms the principles which govern the operation of motors. Essentially a motor revolves because of forces developed by the interaction between two electromagnetic fields. The manner in which these fields are developed is of no consequence. In some instances they may be due to current which is caused to flow through conductors by the application of an external voltage and then again it may be due to induced currents.

The exact manner in which these principles are employed is a different matter. Some of the arrangements are native only to those devices which are intended for use with an alternating-current form of supply, whereas others are used for direct current and some for a combination of both. It is the distinction between these arrangements which supplies the data for
this discussion. . . . Suppose then that we start with the d -c motor, although it so happens that d-c motors are by far in the minority in such devices. In fact, in most cases, where operation may be necessary upon a $\mathrm{d}-\mathrm{c}$ line, the kind of motor furnished is one which is equally suitable for use on alternating as well as directcurrent power supply circuits. However, by discussing the basic principles of d-c motors, we provide a more solid basis of comprehension of what makes a motor revolve.

D.C MOTORS

The d-c motor is comparatively simple in its basis of operation. Essentially it consists of a current carrying conductor located within a magnetic field. (Fig. 1.) In principle it is like the simple d-c moving coil type of meter. When a current is passed through the conductor, which incidentally consists of numerous windings, a magnetic field is created around the numerous turns. This part of the motor is known as the armature. This magnetic field interacts with the magnetic field of the field magnets, which you may recall was originally mentioned as being the area within which the armature windings were located. The field magnets may be permanent magnets or electromagnets, that is iron cores surrounded by windings.

FIG. 1. Essentially a d-c motor consists of a loop of wire carrying current which sets up a field around the wire and reacts with the field set up by a permanent magnet. The interaction of these two fields causes the loop to rotate.

When two such magnetic fields combine, the resultant forces developed by the combined fields tend to make the windings located within the field move. Since the structure of the system is such that motion of these coils is possible only in a rotary manner, the whole armature assembly revolves. The turning force or torque existing at the armature shaft is transferred to whatever device is to be turned by any one of a number of linking systems.

Imagine if you will, a single length of conductor located between the pole pieces of a permanent magnet, as shown in Fig. 2, and then the passage of current through the conductor as indicated in Fig. 3. Due to the passage of current through the conductor, lines of force are created around the conductor. As a result of the direction of current flow through the conductor and the location of the N and S poles of the magnet,
we find that the direction of the flux lines beneath the conductor aid the flux lines due to the magnet and that those above the conductor buck the flux lines due to the magnet. The net result of the combination of

FIG. 2. The dotted lines indicate a magnetic field set up between the two poles N and S of a magnet. The circle in the midst of this field represents the cross section of a wire through which no current is flowing.
these two magnetic fields is as shown in Fig. 3; there is a bunching of the lines of force beneath the conductor and a reduction in the strength of the field above the conductor....

Since lines of force behave like stretched rubber bands, the bunched or distorted lines beneath the conductor will tend to straighten themselves and in so doing will exert an upward force upon the conductor. This can be said in another way, which perhaps is a closer approach to basic electrical laws: "when a cur-rent-carrying conductor disturbs a uniform field, thus making the field stronger on one side of the conductor than upon the other, the conductor will move from the stronger to the weaker field."

Now suppose that instead of having a single conductor in a magnetic field, we arrange a loop which can pivot upon a shaft as in Fig. 4, and pass current through this conductor. Whereas the combined field bunches beneath coil side A, it bunches above coil side B. The reason is that the direction of the current flow through coil side B is exactly opposite to that through coil side A. If we assume that the direction of cur-

FIG. 3. When current flows downward through the wire of Fig. 2, the field set up (indicated by the concentric dotted circles) reacts with the field of the magnet so that the lines of force are crowded under the wire and thimed out above it.
rent through this loop is away from the observer in coil side A, it is towards the observer in side \mathbf{B}. As to the force now exerted upon the coil sides, it is in the upward direction on side A and in the downward direction upon side B, with the result that the coil turns as a whole.

FIG. 4. A loop of wire with sides A and B has been substituted here for the single wire of Fig. 3. As the current is going down into the paper in side A and up in side B, the resulting crowding of the magnetic lines below A and above B give a clockwise rotation to the loop.

Essentially, this is the story of the motor, although as you can probably appreciate, it is not the entire story. The principle which governs the motion of the coil AB in Fig. 4 does effectively explain the operation of motors in that it states that "a coil carrying current and located in a magnetic field would tend to orient itself in such manner that its lines of force would be parallel to those of the magnetic field" . . .

According to this law, the coil of Fig. 4 would, under the action of the combined magnetic fields, shift through an angle of 90 degrees to the position shown in Fig. 5, in which position there would be no further tendency for the coil to rotate, for it has attained the position established by the electrical law. . . . The coil no longer is subjected to a turning force. . . . As to the arrangement of the strong and weak magnetic fields around the conductor, the fact that the strong field is on the inside of the loop sides is due to the direction of the current flow through the coil and the direction of the magnetic field from the magnets. If

FIG. 5. Here the loop has rotated 90 degrees and now the turning force, shown in Fig. 4, is cancelled so that when the loop reaches this position, it remains stationary.
by chance the current flow through the coil was reversed, the coil would remain in the same position, but the location of the strong and weak fields would shift through 180 degrees around each side; the "bunched" lines now would be located on the outside of the coil sides and the weak field on the inside.

Naturally such a temporary shift in the position of the armature of the motor is of little value in practice. . . . What is needed is continuous rotation. This is accomplished by using an armature made up of a number of separate coils rather than a single loop as shown in Fig. 5 and also an arrangement whereby the exciting voltage responsible for the current flow through the armature coils is switched from one coil to the next as each coil swings from the active to the inactive position. All of this can be described as multi-coil armatures and the use of a commutator. The function of the commutator is to switch the armature exciting voltage from coil to coil.

A simple illustration of how continuous rotation is accomplished is shown in Figs. 6 and 7, wherein the armature consists of two separate coils and the exciting voltage is fed to the armature coils by means of the commutator and brushes. The four commutator

FIG. 6. Here two loops with sides AB and CD at 90 degrees, terminate in four commutator segments, shown below, with corresponding letters. Current flows through the loop A-B and the resulting interacting fields give the combination a clockwise rotation.
segments $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, and D^{\prime} are identified with the four coil sides A, B, C, and D. In Fig. 6, current is flowing through AB and the distribution of the magnetic field between the pole pieces is as shown in Fig. 4. In Fig. 7, we assume that coil AB has swung through 90 degrees into the position shown, which corresponds with that of Fig. 5, except that as a result of the rotation of the commutator segments which connect to the coil terminals, commutator segments $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ have moved away from the two brushes, so that the current now is flowing through coil CD and the magnetic field now is
acting upon these sides. The result is that coil $C D$ moves up into the position of $A B$ and the latter again is in the active position and the motor armature con-

FIG. 7. The loops are here shown advanced 90 degrees from their position in Fig. 6. Current is now flowing through C-D and none is flowing through the other; therefore, C-D is now doing the work of rotating the combination.
tinues rotating. . . . In practice the armature consists of more than two windings, as does the commutator consist of more than four segments. In this way the jerky motion of a two-coil armature is overcome and the rotation is smooth.

Speed Control

Let us now investigate some of the electrical characteristics of the simple motor shown in Figs. 6 and 7. The torque or turning force applied to the active coils in the armature depends upon the strength of the combined fields, hence an increase in the strength of these fields will tend to make the loop move faster, in other

words will increase the speed of rotation of the armature. Conversely any decrease in the strength of these combined fields will have the opposite effect: the motor speed will decrease. Hence we see that the speed of rotation of the motor is a function of those conditions which determine the strength of the combined fields.

Since the current through the armature coils is one of the contributors to the combined field, the magnitude of the armature current is a controlling agency, increasing the motor speed as the current increases and decreasing the motor speed as the current decreases. The magnetic field due to the magnets also is a controlling agency. Any decrease in this field strength will slow down the motor speed and an increase in the field strength will increase the motor speed. With permanent magnets used for the production of the field, the field would be fixed in strength, but there is no need for permanent magnets. Instead of permanent magnets, electromagnets can be used,-in fact are used in commercial units-in which case the current through the field windings becomes a controlling agency. The greater the strength of the field current, the greater the speed of the motor and the less the strength of the field current, the slower the speed of the motor. . . . Thus two basic forms of motor speed control exist for such d-c motors, namely either or both the armature and field currents.

Direction of Rotation

Let us now look into the direction of rotation of the revolving armature. As you witnessed in Figs. 4 and 7 , the direction of rotation is a function of the relative directions of the armature current and the direction of the current through the field winding. For any one motor, this is determined in the design as identified by positive and negative markings upon the input exciting

FIGS. 8A, left, and 8B. In Fig. 8A the current is flowing up out of the paper and in the opposite direction in Fig. 8B. Note that in each case the interacting fields force the wire upwards, which is because the polarity of the magnet has also been reversed as well as the direction of current flow.
voltage terminals of the motor. If we were to reverse the direction of motion of the coil sides in Fig. 6, it would be necessary to shift the bunched lines of the combined fields from the under side of locp side A to the upper side and from the upper side of loop side B to the underside.

This can be done in two ways, both of which entail a change in the direction of one of the two magnetic fields which make up the combined field. We can change either the direction of the current through the armature or the direction of the current through the field, but not both. If both are changed, the direction of rotation remains the same. This is shown in simple form in Fig. 8 A and B, which shows the magnetic lines of force around one side of the active turn of the armature winding, for the field and the current flow in one direction and then both field and current flow reversed. Note that the force exerted is upwards in both cases, which means that it would be downwards in both cases upon the other loop side of the same coil. . . . It is this which makes possible the design of a d-c motor which is suitable for use upon a-c power supply lines, in other words the universal motor.

Speed and Torque Characteristics

One of the major operating characteristics of motors in general is their behavior relative to the speed and turning power or torque. From what has been said you can gather that the speed of a motor may vary as a result of what conditions are created by changes in line voltage, as for example changes in either field or armature current due to changes in the exciting voltage applied to either or both of these parts of the motor. If the speed varies what happens to the torque developed by the motor?

These considerations introduce certain special conditions in motors of the kind being discussed. First they involve a basic electrical law which has not been mentioned as yet and which is associated with the armature, and second, they introduce cortain relationships between the armature and field arrangements. Let's take the first item, the reaction of the armature.

We know that the flow of current in the armature winding is responsible for the fact that the motor armature turns. Also that the greater the current in this armature, the greater the speed of ratation. If nothing but this one condition controlled the speed of a motor, it would be pretty much impossible to attain any semblance of constancy of speed or a variation in torque required to meet different conditions. However, there is another condition which exists in a motor: it is the reaction of the armature in motion upon itself.

When the armature is revolving in the magnetic field, it represents a series of conductors cutting a magnetic field. As is well known, one of the basic electrical laws states that when a conductor cuts a magnetic field, a voltage is induced in the conductor. This happens in the motor armature, so that during operation we have two voltages acting upon the armature: the impressed voltage from the power line and the back emf or counter electromotive force developed by the motion of the conductor in the magnetic field. It is the difference between these two voltages, or the effective emf, which is responsible for the amount of current which actually flows through the armature during operation.

At the instant before the armature starts turning, the back emf is zero, so that a very high value of current flows through the armature. This develops a very high torque, for the combined magnetic field acting upon the armature is very strong and this explains the very high starting current of motors. . . . As the

FIGS. 9, left, and 10. The simple series d-c motor is illustrated schematically in Fig. 9 and diagramatically in Fig. 10. Note that the field coils and the one in the armature, connected by means of the commutator and brushes, are in series with the source of voltage, the d-c line.
motor starts turning, back emf is developed in the armature and at every instant, the amount of current being forced through the resistance of the armature is the difference between the impressed voltage and the back emf, until at normal running speed the actual effective voltage responsible for the armature current may be but a few volts even though the impressed voltage is more than 100 volts.

Because of this condition it is proper to say that the speed of a motor is largely controlled by the back emf rather than the impressed voltage because the back emf is a function of the load. The greater the load, the slower the speed of the motor and the less the back emf, hence the greater the amount of current caused to flow through the armature and required to develop sufficient torque to overcome the drag of the load. As the motor picks up speed, having overcome the initial drag of the load, the required torque decreases, for as the motor speeds up, the back emf increases and the effective voltage decreases with consequent reduction in the current through the armature.

The manner in which this relationship, that is, torque and load, is established in a motor depends upon the way in which the currents in the field and armature circuits are controlled. This gives rise to three basic types of d-c motors differentiated in the form of the connections between the field and armature circuits. However only one of these is of interest in this limited discussion.

The Series D.C Motor

The simplest of the $\mathrm{d}-\mathrm{c}$ motors is that identified as the series type. By "series" is meant that the armature and field windings are connected in series, as shown in Figs. 9 and 10. As is evident the current is the same throughout all the windings. It should, of course, be understood that while the rotor is shown as a single winding, and it would appear as if the current flows through all of the windings at the same time, actually the current is fed only to one coil at a time.

FIG. 11. These curves show that as the series motor gains in speed, its torque and current, high at the start, decrease gradually as explained in the accompanying text.

That coil, which by virtue of its position between the pole pieces, is the active winding, as illustrated in simple form in Figs. 6 and 7. Since the armature and field windings are connected in series, any change in current causes a change in intensity of both magnetic fields; consequently, a definite change in the speed of the rotor.

When such a motor is used in a record-changer mechanism, it has to start up under full load, that of the drag of the turntable, the record, the various driving mechanisms, as well as the pick-up, the latter being the least of them all for as a rule pick-up devices are extremely light in weight. When the motor is switched "on" to the power supply, the full line voltage is therefore applied to the windings. Consequently, there is a momentary "rush" of current which is several times greater than the current existing at normal operating speed. The reason for this was explained previously in connection with the discussion of counter emf. The amount of current which will dlow during the instant of starting is limited only by the total resistance of the rotor or armature and field windings. Thus, both magnetic fields are at very high intensity; and since the torque or turning force is directly proportional to the reaction between the two magnetic fields, which is very high at the start, the motor is capable of starting easily with a full load. This happens to be one of the salient characteristics of the series type of motor. The relationship between the current and the torque for such a series motor is shown in Fig. 11

FIG. 12. These curves show that the value of the d-c voltage impressed on a series motor affects the torque, current, and speed, all of these increasing with an increase in voltage.

The decrease in torque concurrently with the decrease in current was explained previously in connection with the development of the counter emf and the fact that as the initial drag of the load is overcome, the required torque decreases and the motor speed increases. As the motor speed increases, the counter cmf likewise increases and the effective voltage across the armature decreases; hence the current through the armature likewise decreases.

In Fig. 12 it is seen that the voltage impressed does have a definite effect upon the characteristics of the series type d-c motor. This means that line voltage as well as load will cause a change in speed. If the line voltage rises above the average normal value, the speed is increased correspondingly; if it is decreased, the speed is reduced.

Since turntables used in record changers, phonographs, and recording devices must revolve at certain speeds, generally $331 / 3$ or 78 rpm , a governor or speed regulator assembly (discussed in detail elsewhere in this book) is provided with the motor assembly as well as speed reduction mechanisms whereby the highspeed armature is geared down to provide the proper number of revolutions of the turntable.

In view of the high instantaneous current fiow when a series type motor starts under load, it is customary to provide a current control series resistance. The purpose of this resistance is to reduce the magnitude of current flowing in the system at the instant of starting and thus avoid possible damage to the windings. In practically all motors of the variety suitable for use in record changers and other devices which employ fractional horsepower units, this series resistance is omitted because of the comparatively high resistance of the motor itself. This system does not apply without qualifications to the universal type of motor which will be discussed later, after the a-c types of motors have been introduced.

A-C MOTORS

Although we started this chapter with a discussion of the direct-current motor, it does not mean that those motors are the most popular; in fact just the reverse it true. The alternating-current motor is by far the most commonplace. It seems safe to say that fully 95 percent of all rotating machinery operated in the United States employs alternating current types of motors as the driving power. The reasons for this are simple and numerous. To mention just a few; it is far more economical to transmit electrical energy as alternating current rather than as direct current; also motors intended for a-c operation are much simpler to build, operate, and maintain than direct-current equipment.

In the field of automatic record changers and recorders, the same thing is true. In fact most of this equipment is intended for a-c operation and even when provision is made for d-c operation it is by means of a "universal" motor which is suitable for both a-c and d-c use. As far as d-c application is concerned, the basic series type d-c motor is the basis of the universal motor and it will be dealt with later. At the moment we wish to delve into those fractional horsepower motors which are intended for a-c operation.

You will recall that we mentioned earlier in this chapter the fact that comparatively few defects found in motors come within the province of the radio serviceman, although some few defects are within his scope. In the case of a-c motors this is even more true, for there are still fewer things in such motors which can go wrong. Nevertheless, a general understanding of the operation of a few types of a-c motors will do no harm.

Among the a-c motors which are used in recorders and record changers the most popular is the "induction" motor, hence that kind will be discussed first. As the name implies, the operation of the motor is based upon electromagnetic induction of electric current into one part of the system. As in the case of the d-c motor the turning force or torque is the result of the interaction between two magnetic fields. Such is true in the a-c motor too, but whereas in the d-c motor, a current-carrying conductor revolves within a magnetic field, which also is created by the flow of current through a conductor, in the induction type of a-c motor, the field is produced by the flow of current, but the rotor or armature has no electrical connection with the remainder of the system.

The rotor revolves as the consequence of electric current which is electromagnetically induced within the conducting surfaces of the rotor. We refrain from speaking about coils or windings of the rotor, because in the design of the small induction-motor rotor, which is the equivalent of the d-c armature, there are no coils, as we normally understand the term. About the best comparison between the electrical conditions existing in an induction motor and some other electrical device is an ordinary transformer with a multi-turn primary and a single turn secondary. The primary winding of the transformer is the equivalent of the field winding in the motor and the one turn secondary is the equivalent of the rotor.

To appreciate the manner in which this type of motor operates, it is necessary to go back to one of the early discoveries in the realm of electricity. No doubt you recall that a compass needle placed near a conductor carrying current will orient itself in a definite manner, depending upon the direction of the current flow through the conductor. Reversing the direction of the current through the conductor will reverse the orientation of the needle; or shifting the needle from below the current-carrying wire to a pasition above the current-carrying wire will also change the direction of the needle. In other words the magnetic field surrounding the wire which carries the current will react upon the magnetic needle and if the current through this wire were reversed at a definite rate and slowly enough, the needle will oscillate back and forth upon its suspension. This illustrates the fact that a changing field can cause motion in a neighboring element which also has a magnetic field.

But a more direct discovery which is related to the induction motor, is that wherein it was found that if a magnet were supported beneath a copper disc and this magnet was revolved, the copper disc also would revolve in the same direction as the revolving field (See Fig. 13). . . The copper disc would not revolve as rapidly as the magnet, but once a uniform rate of rotation had been set up for the magnet, the copper disc would also move at a uniform rate, although somewhat more slowly than the magnet.

FIG. 13. Because of the setting up of eddy currents in the copper disc by the revolving magnet and the resulting interaction of the magnet's field with that set up by the eddy currents, the disc will also rotate but more slowly than the magnet.

Obviously, since copper is a non-magnetic substance, the principle of operation could not be the same as that of the magnet needle and the currentcarrying wire. After due deliberation it was established that the reason behind the movement of the copper disc was that the original movement of the magnet under the surface of the originally stationary conductor (copper disc) was the equivalent of moving magnetic lines of force cutting a conductor. As a result eddy currents were induced in the conductor. Since current flow existed in the conductor, magnetic lines of force were created. The reaction between these two sets of flux lines was such as to tend to stop the magnet from revolving, for it is a basic law of electricity that if a changing flux links with a circuit and induces current in that circuit, the direction of that current flow and the consequent direction of the resultant magnetic field, is such as to oppose the change in the inducing flux. Since the force of the revolving magnet was stronger than that of the retarding action, a force was exerted upon the disc which tended to make it follow the revolving magnet. Since the disc was mounted upon a spindle which permitted it to turn, it followed the direction of the motion of the revolving field of the magnet. . . . It could never catch up to the magnet in speed, for if it did, there would be no cutting of flux lines by the conductor. It would be just as if the disc and magnet were moved simultaneously, in which case no voltage would be induced in the conductor, hence no current and no re-
sultant magnetic field and no interaction of the two fields to produce the turning force or torque.
The above is essentially the basis of operation of the induction motor. Expressed differently, it is that a revolving electromagnetic field is set up in the induction motor. This field surrounds the rotor and induces electric currents in it. A magnetic field is created by the current flow through the rotor and this field reacts with the revolving field; the result is a torque applied to the rotor and the rotor turns after the revolving field and will continue turning as long as the inducing field continues revolving. As in the case of the revolving magnet and disc, the motor rotor speed can never equal the speed of the revolving field, for then there would be no cutting of flux lines by the rotor. The difference in speed between the revolving field and the revolving rotor is known as the "slip" and in small motors may be as high as 40 percent. As you can readily appreciate, many factors can contribute to the "lag" between the revolving field and the revolving rotor, such as the friction of the rotor bearings, the load upon the motor, etc. . . .
Now, the problem of producing such a revolving field is interesting. It is easy to see that the use of revolving permanent magnets of even the most modern design, or even electromagnets instead of permanent magnets, would not be the most convenient method, for it would require a direct-current source to excite the electromagnets, the use of contact brushes and connections to the revolving circuits, a separate means of revolving the magnets, etc. The use of alternating current, however, does afford the means of attaining the desired condition, although certain conditions and arrangements must be set up.

FIG. 14. With sin-gle-phase alternating current creating two magnetic poles even thongh a changing field is set up, there will be no rotating field and so the rotor will not turn.

For exanuple, the use of two magnetic poles, like those shown in Fig. 14, with a rotor located between the pole pieces, would not be satisfactory, for while it is true that a changing field would exist between the two pole pieces and each pole would alternately be North and South, the arrangement would still be shy the rotating field. True that voltages would be induced in the conductors of the rotor due to the varying flux, but no rotating force would be applied to the conductors.

Incidentally, the type of rotor used in induction motors is like that shown in Fig. 15, wherein the conductors are a series of copper bars, or even castings of a light metal, attached to two end rings which short circuit the bars, forming one conducting member. This is known as a "squirrel cage" rotor. Various manufacturers use modified designs, as for example the entire rotor assembly with the exception of the shaft, is a casting.

Referring again to Fig. 14, that arrangement while not self starting, would still function as an induction motor, if the rotor is given an initial spin each time the motor is to be started. Once started, it will continue turning. While we will not show the exact things mentioned, since such arrangement is not used commercially, we can say that the rotor continues revolving, once it has been started, because it develops its

FIG. 15. The squirrel-cage rotor is a series of copper bars held in position by end rings that short-circuit the bars.
own magnetic field, which field is at right angles to that due to the excitation of the field magnets by the current from the power line. Just what is meant by these two fields being at right angles will become evident a little later; in the meantime, let it be known that as the rotor is caused to revolve by some external means, the conductors are cutting the lines of the field. This results in induced currents flowing in the rotor conductors. Since this rotor is entirely inductive, these currents lag behind the induced voltage by 90 degrees, hence the magnetic field created by these induced currents also lags the inducing field by 90 degrees. Thus two fields at right angles to each other exist in the mechanism. As the result of the change in polarity and direction of flux lines of the inducing ficld, the polarity of the induced fiek also changes, with the result that the reaction between these two fields causes the rotor to continue turning.

The simplest method, which however is not used in record changers and recorder motors because the
kind of electric power needed-two-phase supply-is not available, is the use of two-phase supply. We show this arrangement in order to illustrate the development of the rotating field. Later you will see how virtually the same thing is accomplished in commercial units by one or more ingenious arrangements which permit the application of conventional singlephase a-c supply.

FIG. 16. Voltage waves of two-phase alternating current wherein phase A leads phase B by 90 degrees.

In the example we shall show and in commercial units, one thing remains the same, namely the use of four-pole field magnets. These are electromagnets which are excited by current from the power lines. At the moment we shall assume the use of two-phase supply, which is nothing more than two a-c lines of like voltage, but wherein the two voltages are 90 degrees apart, as for example as illustrated in Fig. 16. One supply is identified as phase A and the other as phase B. The reference to "current" can just as readily be interpreted as "voltage." The arrangement of the field magnets is shown in Fig. 17. Between the pole pieces you can assume the existence of a squirrel cage rotor such as shown in Fig. 15. A commercial example of such rotor as used in a conventional automatic record changer motor is shown in Fig. 18.

The poles of the field magnet are numbered from 1 to 4 in a clockwise direction and they are arranged in pairs of 1 and 3 and 2 and 4. Phase A current windings are around poles 1 and 3 and phase B current windings are around coils 2 and 4 . When such an arrangement is connected to a two-phase power supply, there will be times when all coils are carrying current of varying magnitude, depending upon the phase relationships and other times when only one pair of coils

FIG. 17. Two of the field windings, 1 and 3 , are connected in series with phase A and the other two are connected in series with phase B, these being the components of the alternating voltage of Fig. 16.

will be carrying current, this too depending upon the phase condition. Just what we mean can be seen in Fig. 19, by referring to the curves of the two currents.

For example at the start of the cycle-and this point is arbitrarily selected-the current in phase A is maximum whereas in phase B it is zero. After a 45 -degree time lapse, the current in both phases is the same, except that one is increasing whereas the other is decreasing, although both are still positive. After a time interval of 90 degrees, or one-quarter cycle, the current in phase A is zero, whereas that in phase B is maximum. In like manner you can trace through and note the change in both magnitude as well as direction of the currents in both phases during a complete cycle. . . . Starting at any point other than as shown, makes no difference for the conditions shown still prevail.

Now, when these currents are applied to the field windings, the poles will become energized in accordance with the magnitude and direction of the currents shown in the wave curves. In the various illustrations of the flux lines existing between the poles of the field magnet, it is essential to understand one important condition. In those illustrations which indicate quartercycle changes, that is when only one pair of poles are being energized, as for example at 0 degrees, 90 degrees, 180 degrees, 270 degrees, and 360 degrees, the horizontal or vertical lines indicate the flux between the two poles, but in the other illustrations, the curved lines representative of flux between adjacent poles indicate the resultant flux due to the combined fluxes, for all poles are being excited as you can see by the examination of the current curves at the 45 -degree, 135 -degree, 225 -degree and 315 -degree positions. You may imagine in the lower four illustrations of the field magnets that some change has taken place in the mode of connecting the coils around the pole pieces. Such has not taken place. The connection of these windings is exactly the same for all cases, but as was stated, the direction and location of the flux lines is the result of the combination of the flux lines between the two pairs of magnets.

FIG. 18. A commercial type of rotor such as is used with an a-c motor employed in a record changer.

For proper understanding of the rotation of this field, you must realize that the polarity of any pole is dependent upon the direction of the current through the coil surrounding the pole piece. Thus pole 1 in the first illustration of the field magnets and pole 3 in the same illustration remain N and S respectively as long as phase A current is in the positive direction, that is, above the zero reference line of the current curves. When phase A changes, i.e., is in the negative direction, pole 1 becomes S and pole 3 becomes N.

In the same manner, when phase B is in the positive direction pole 2 is N and pole 4 is S , but when phase B is in the negative direction, pole 2 is S and pole 4 is N . Because of these conditions, when current is flowing through all the coils, the flux lines are caused to exist between those poles which are unlike in polarity but nearest to each other. The combination of these various fields gives rise to a resultant field which tends to move the rotor in the direction of the solid line arrow. If you wish you can assume a definite relationship between say the \mathbf{N} pole of the very first illustration of the field magnets of Fig. 19 and the rotor and imagine that whatever the reaction between this N pole and the rotor, it exists as the N pole of the field magnet systems swings around through 360 degrees.

What was just said is a perfectly logical method of visualizing the action taking place. Since the speed of rotation of the field is uniform, being determined by the frequency of the supply line, and we assume that the rotor also revolves at a uniform rate, (always less than that of the rotating field), it is possible to select some point on the rotor and view that point as always being a certain distance behind the rotating field, or for example the rotating N pole of the field magnet system. Of course you must remember that when we say "rotating N pole," we do not mean that the magnet itself revolves, physically speaking. . We simply mean that the position of what is the \mathbf{N} pole of the magnetic system revolves.

The basis of movement of the rotor within such a field has been described in connection with the disc and the magnet. The rotating field cuts the conductors of the rotor and induces current in them. A magnetic field then is created around the rotor conductors. This induced field reacts with the revolving field and causes the rotor to follow the revolving field.

You will recall that such two-phase supply is not available in those places where automatic record changers and recorders are used, yet such induction motors are employed. It is therefore of interest to learn how such a rotating field can be simulated with single-phase supply and still obviate the necessity of giving the rotor that initial spin to start it moving.

There are various ways is which this is accomplished. The most frequent are "shaded poles" and "phase splitting." Just what these terms mean will
become evident as we progress through the discussion. In all of these, as was stated earlier, the field magnet system consists of four poles.

Shaded Pole Type

The use of the shaded-pole magnet makes possible self starting of the induction motor with single-phase power supply and is representative of the majority of the a-c motors used in record changers.

The general construction of this type of motor is nearly the same as that of the two-phase variety, for certain definite requirements exist and these must be fulfilled. Thus the motor employs a four-pole magnet and it is still necessary to energize or excite the pole pieces; hence the field winding is required, except that in this case a number of different arrangements are used. In the most economically constructed units, a single winding is employed, which is so arranged that it weaves in and out or rather above and below each of the poles as shown in Fig. 20.

In more expensive units, four coils are used, each surrounding a pole piece and these are interconnected in such a manner as to produce the proper polarity at the various poles. This is shown in Fig. 21, which illustration also shows the four shaded poles.

FIG. 20. A commercial shaded-pole motor wherein a single field winding is used that weaves above and below the pole pieces.

By shaded poles is meant an arrangement in the structure of the poles whereby a short circuiting coil is placed around one portion of the pole piece. You can see in Fig. 21, that a portion of each pole is divided into two unequal parts by means of a slot. A solid copper ring is placed around the smaller part of the pole piece, thus creating two separate active areas at each pole.

FIG. 19. When two-phase alternating voltage is impressed across the two sets of fleld windings of a motor, such as shown in Fig. 17, the field set up by these electromagnets will rotate as shown, with the different conditions indicated for each 45 degrees of the complete cycle.

Under normal conditions when a magnetic pole is starting to develop flux, it will tend to spread out uniformly over the entire cross section area of the pole. As this takes place, it represents a varying flux, hence a voltage will be induced in the single-turn copper loop, that is, the "shading coil." This naturally in-

FIG. 21. The pole pieces of a shadedpole motor are divided, the main winding being around the entire pole and a singleturn copper loop around the smaller portion.
duces a flow of current in the coil, which in turn sets up its own magnetic field. The net result is that the field emanating from any one pole is not uniform in density or in the rate of change, for that which is due to the shaded pole lags behind that due to the regular pole, as shown in Fig. 22. The lag in time between the unshaded pole and the shaded pole does not appear upon this illustration, but the variation in density is evident. You can readily see that the unshaded portion of the pole develops the field first for there is nothing to hinder the growth of the field. Likewise it is the part wherein the field decays first as the current flow through the coil is decreasing.

But not so in the shaded portion. Here, current is induced in the shading coil during the original rise of the field as well as during the decay. Thus there appears a condition of a shift in the position of maximum flux density from the unshaded pole to the shaded pole and this is best illustrated in Fig. 23. The original plane of maximum flux density is as shown by the solid line A as being between one pair of N and S poles. After the current in the coils has started to decrease and the field to decay, the field in the shaded pole is first starting to increase, so that there has taken place a shift in the field to the new plane designated

FIG. 22. The density of the field from the unshaded portion of a pole is greater than that part of the field from the shaded portion and the latter field lags behind the former, as explained in the text.
by the dashed line $\mathbf{B} \ldots$. This is the equivalent of a "traveling" or "rotating" field, at least sufficiently so, when it takes place across all four poles, to start the motor turning. Once the rotor is turning it will keep on rotating as long as power is applied to the field windings. As to the direction of rotation, it is towards the shaded pole.

If you compare Fig. 23 with Fig. 19, you will see the similarity between the rotation of the original N pole in the magnetic field in the two-phase motor and the movement of the field in Fig. 23. True that the action of the shaded pole is really only a shift of the

FIG. 23. The line A-A indicates the plane of maximum field density between one pair of poles. When the lagging field, of the shaded portion of the poles, has reached its greatest density, the plane of the resultant field is at

B-B.
field, only about 45 degrees, as against the 90 degrees in the two-phase motor, but it is sufficient, for all that is needed is the starting torque, which it supplies very satisfactorily.

Split Phase Methods

We have seen in the various examples given so far that a basic requirement of self starting induction motors is the presence of two separate magnetic fields which are out of phase and which rotate in the space within the field magnets.
In the various examples given the field magnets were comprised of four poles, all of which were used in connection with the operation of the motor. There is, however, another arrangement, one which is quite popular, wherein a single-phase supply is used, but this phase is split. By splitting the phase we mean that two channels are provided for the current obtained from the supply and a phase difference is created between the currents in the two branches. One of these circuit branches is affiliated with two of the four poles and forms what is known as the "starting" field and the other branch is associated with the remaining two poles of the field magnet assembly and forms what is known as the "running" field . . You no doubt will recall that two poles are sufficient to keep the motor running, once it has been started.
One of the two most convenient methods of splitting the phase of the power-supply current is the use of capacity and inductance in one leg of the circuit as
against the presence of substantially pure inductance in the other. The other is the use of different values of inductance in the "starting" and "running" winding systems.

Capacity-8tart Motor

The schematic arrangement of the capacity system is shown in Fig. 24. As you can see the capacity is inserted into the starting circuit, shown in thin lines, whereas the normal circuit arrangement is used for the running windings, shown in heavy lines. In order to keep the value of the capacity low and still create the greatest phase difference between the starting and running fields, the running winding is generally wound with about twice as many turns as are used for the starting winding. The everage value of capacity used in this type of starting system employed to drive record changers, is between 1.0 and 1.5 mf . In larger motors, larger values of capacity are used. The general design of the starting winding in record-changer motors is to provide for continuous operation of this winding as well as the running winding. We make this reference so as to correct any misconceptions which may arise because of the nature of identification of the two windings and the previous statement that the motor can run upon just one winding, once it has been started. Also, because under certain conditions in the case of large sized motors, provision is often made to disconnect the starting winding automatically once the motor is running. Such automatic systems are seldom used in the fractional horse-power motors utilized in devices of the kind described in this book.

As to the manner of producing the rotating field by such phase splitting, you can understand in accordance with basic electrical theory that current through a condenser leads the voltage and current through an inductance lags the voltage. Thus when current from a circuit is caused to flow through two paths, one of which contains substantially inductance only, and the other path contains inductance as well as capacity, with the former at a minimum, a definite phase difference will be created between the currents in the two paths. The final phase of the current in the capacityinductance branch with respect to the current in the inductance branch is, of course, determined by the relative values of capacity and inductance in that branch. By making the capacity effect preponderant, the current in that branch is caused to lead the current in the inductance branch. In other words, the starting current leads the running current, so that the basic condition of a phase difference between the two currents which create the magnetic fields at the four poles, is caused to exist and the conditions resemble those which are obtained with the two-phase supply.

The circuital arrangements of the windings and the capacity are shown in Fig. 24, as well as an approximation of the phase difference between the two circuits. This wave diagram shows a phase difference of about 60 degrees which is not intended to portray specific constants for any one motor.

As to pertinent facts relating to the starting condenser, too small a value interferes with proper starting while too large a value impairs the running performance. As it happens, motors of the type which we have in mind afford sufficient leeway in the selection of the capacity

FIG. 24. By inserting a capacity in the starting winding of a single-phase induction motor, a phase difference is created wherein the current s, in the star ting winding, leads that in the running winding, see R in wave diagram at'left. Compare with Fig. 19.
value so that an ample tolerance is permitted. As a rule, capacity values between 1.0 and 1.5 mf , as stated before, represent a fair range from which to choose for replacement. Of course, the final basis for selection of the capacitor is identification of the value used in the original motor. This also applies to the voltage rating of the condenser, bearing in mind that the voltage rating should be at least twice the line voltage.

Inasmuch as these small fractional horse-power motor systems do not cut out the starting coils when the motor is running, it is imperative that the current flow in the starting winding, that is through the condenser, be kept within safe limits. General limits are about 0.65 to 0.8 ampere per microfarad during running, although the initial starting current will be greater.

At the same time it is necessary to appreciate that the capacity and inductance in the starting system are connected in series and voltage far in excess of the line voltage may be built up in the system, for the voltage across the inductive as well as the capacitative elements is a function of the reactance of the element and the current through it. The possibility of damage to the condenser due to excessive current load is something which deserves consideration during service operations. Refering again to the size of the condenser, a satisfactory description of its selection is that whereby the motor when running at normal speed does not stall during a temporary overload and whereby the motor speed will rise quickly to normal.

Inductive Method

Perhaps this is not the most perfect caption to describe the split-phase motor which operates upon the basis of a difference in value of inductance in the two current branches, but it will suffice since it does describe the basis of the system and we already have identified the general classification as well as the capacity type.

In the split-phase motor which depends for the production of the rotating field by the use of two dif ference values of inductance for the field windings, the required phase difference is established by using one value of inductance for the "running" winding" and another value of inductance for the "starting" winding. Now, since the general condition of "lag" between current and voltage holds in the case oí all inductances, the simplest method of creating a phase difference between currents in two branches of a supply is by a difference in the value of inductance present in each branch. When this is done, that branch wherein the inductance is less, will in effect "lead" the current in the other branch, because. the phase difference in two such branches is relative to each other,

By making the inductance of the "starting" winding less than that of the "running" winding, the field between the pole pieces and due to the current flow in the starting winding, will be displaced ahead of the field due to the current in the running windings. The net result will be a rotating field, equivalent in its effect, although not in its efficiency of operation, to the two-phase system.

A general idea of the schematic connection of such a split-phase system is shown in Fig. 25, with the running coils shown in heavy lines and the starting windings in light lines. The wave diagram illustrates in an arbitrary manner, the "lead" of the starting coil currents, hence the "lead" of the starting coil flux with respect to the running coil currents and the flux.

The double-pole switch shown in the schematic illustration, provides the means of disconnecting the starting windings after the motor has started turning. In the larger motors this action is accomplished by an automatic centrifugal switch.

In both cases, that is, the capacity-starting type and the difference-inductance type, if we may call the latter by that name, the speed of the rotating field is due to the frequency of the line supply, just as in the case of the two-phase system, but the rotor speed is less, as established by the "slip."

Referring again to the starting windings in such motors, practically all small installations of the kind being mentioned in this text provide for continuous operation of this winding. By suitable design, the current-carrying capacity of the starting winding is ample to permit their presence in the circuit without overheating.

Capacitor Synchronous Motor

Perhaps it might be better to classify this type of motor as used in record changers as operating upon the principle of magnetic hysteresis. The reference to capacity in the caption identifies that the supply current is split into two paths as in the capacity start induction motor. The reference to synchronous indicates that the rotor speed corresponds to the speed of the rotating field.

Such motors employ a four-pole field magnet system with the field current split into two phases by the use of a capacity in one leg. The rotor is of somewhat different design than that used in the induction motor because of the basis of operation. Both the rotor and the field magnet assembly are shown in Fig. 26. As you can see the rotor consists of a series of laminated rings placed side by side and forming what would be a circular core of laminations of a magnetic material.

As in the case of all motors, the motion of the rotor is dependent upon the interaction between the magnetic field due to the rotor and the field due to the field magnets; but the development of the rotor field is

FIG. 26. A commercial capacitor synchronons motor in which the field current is split into two phases by the insertion of a condenser in one circuit. See Fig. 24. Note the laminated construction of the rotor.
somewhat different in this case than in the normal induction motor. In the hysteresis motor, magnetic poles are induced in the core by the flux lines emanating from the field magnets. Further, the magnetism induced in the rotor does not die out immediately when the inducing field reaches zero due to the decrease in current. Because of the magnetic lag present in magnetic materials, in other words, due to the hysteresis effect, the core retains some of the magnetic state after the inducing field has reached zero. Consequently, if an initial state of attraction between poles is created by the effect of the inducing field upon the rotor and then the polarity of the field changes, the polarity of
the rotor as a magnet is still what it was before the freld polarity changed; hence a condition of repulsion action is created between the rotor poles and the field poles, so that the rotor continues revolving in the same direction.

As in the case of the induction motor, such a motor requires a revolving field in order to be self starting, hence the splitting of the phase, but it will operate with only two active poles, if the rotor is given an initial spin. This type of motor operates at synchronous speed under normal load. If, however, it is subjected to an overload so that the speed of rotation of the rotor is reduced, it operates as an induction motor. If the overload is reduced so that the rotor speed may again increase, it will increase in speed until it "locks in" with the speed of the rotating field, at which time it will again perform as a synchronous motor.

Since the speed of such a motor is greater than that required for the changer turntable, a reducing arrangement is used, which in its simplest form is a small rubber wheel acting as a friction drive for the turntable.

Eddy Current Motors

Hysteresis and eddy current motors are pretty much the same in general operating principles. Hence a brief description will suffice to explain the general action taking place.

Essentially a disc is located between excited electromagnetic pole pieces. Whatever is to be rotated is mechanically connected to this disc. By suitably arranging a rotating magnetic field, as for example by a split-phase method, poles of opposite polarity induce

FIG. 25. In order to get a difference in phase, the inductance of the starting winding is made less than that of the running winding, and so the current in the former will lead that of the latter, resulting in a displacement of the two fields.
cddy currents in the disc. These eddy currents then set up their own magnetic field which reacts with the field of the pole pieces. Since the direction of these eddy currents and the resultant field is such as to tend to stop the rotation of the inducing field, a pull is developed between the inducing field and the field due to the eddy currents. As a result of the nature of the mounting of the disc, this pull is manifest in the form of a torque upon the disc. . . . As you can see, this is nearly the same as the basic copper disc-rotating magnet arrangement illustrated in Fig. 13, except that in this case the rotating field is created by splitting the phase of the power supply by one of the methods already described.

Universal Motor

The universal motor is a modification of the simple series $\mathrm{d}-\mathrm{c}$ motor. A basic electrical representation of this unit would be like that of its d-c counterpart as illustrated in Fig. 9. . . . As stated in connection with the d-c motor, the basic magnetic effects created in the $\mathrm{d}-\mathrm{c}$ motor by the application of direct current to both the magnets and the rotor remain the same in the a-c system, despite the fact that the current flow is reversed periodically. The reason is that the direction of current reverses simultaneously in both rotor and stator, so that the forces acting upon the armature coils always remains the same. This was shown in the two illustrations Figs. 8A and 8B depicting the manner in which the magnetic lines of force combine around a conductor which is carrying current for simultaneously reversed field as well as current flow.
However, the fact that alternating current is present in the motor as compared with direct current, does introduce certain modifications into the motor which is intended for universal use. The commutator and brush arrangement for the rotating mechanism is retained and this is one of the very few instances when commutator and brushes are used in an a-c motor. However, in contrast to a field of many turns and a rotor or armature of comparatively few turns as used in the d-c unit, the universal motor employs a field of greatly reduced turns and an armature of many more turns and more slots, which means more commutator segments.

The reason behind this change is the necessity for reducing the voltage drop across the impedance of the field winding. Were the usual arrangement as used in d-c units employed in the universal motor, the voltage drop across the impedance of the field winding would very materially reduce the voltage available for operation across the rotor. By reducing the number of turns in the field and making the armature with more slots and more turns, the least drop takes place across the field winding impedance, the maximum voltage is available across the armature, and the proper amount of nagnetic reaction is developed so as to create the re-
quired amount of torque around the armature or rotor.
As it is, due to the reaction voltage developed across the field winding in the universal motor, less voltage is available across the armature, and the speed of this type of motor is less on a-c than it is on d-c. No doubt you must have noticed this effect if you have operated a universal motor on d-c and a-c supply lines.

Still another major difference between the normal series d-c motor and the universal motor is that of a change in the design of the various magnetic paths. Because alternating current supply may be used, it is necessary to minimize the effects of hysteresis and eddy-current losses. This is accomplished by using laminated materials instead of solid cores for the armature and the field magnets. Since such losses do not develop in d-c systems, solid forms may be used.

And yet another difference between the universal motor and the series $\mathrm{d}-\mathrm{c}$ motor is found in the arrangement of the armature coils. This too is brought about by the behaviour of circuits when operated upon alternating current. . . . During normal operation of such a motor, there are times when certain of the coils upon the rotor are short circuited by the brushes, as shown in Fig. 27, that is, during those moments when the brush contacts two, rather than one commutator segment. When this happens, the shorted-circuited coils behave just as if they were short-circuited secondary windings of a transformer, for while they are upon the rotating armature, they still are within the main alternating field of the field magnets. Thus current flows through these coils and if not controlled would interfere with proper commutation by creating excessive sparking, and also would shorten the normal operating life of the brushes.

These bad effects are partly overcome by the use of so-called "preventive" leads, which really are resistances which join the coil ends to the commutator segments. Such resistors are not used in d-c units.

MAINTENANCE OF MOTORS

After all is said and done, this is the most important portion of the section on motors, for it is here that the man who uses this Manual may look for troubles and remedies. But no matter how complete the listing, it is at all times impossible to cover every single ailment, and in the final analysis, general knowledge coupled with commonsense will prove to be far more valuable than a specific tabulation.

We said in the early part of this text that troubles in modern fractional horsepower motors of the kind used in record changers and recorders are comparatively few, for since the majority of these devices employ strictly a-c motors which have relatively few moving parts, the number of parts which may go bad or which may wear out are therefore anything but numerous.

However, some a-c motors, particularly those of the universal character, do make use of a commutator and brushes. Of these two items, the commutators give very little trouble. As to brushes, however, they do wear out, and no matter how well-made the motor may be, there comes a time when troubles arise as a result of the impaired performance of the brushes. Thus it seems most sensible to start this discussion by speaking about motor brushes.

It is by means of the brushes which make contact with the rotor or armature commutator that electric current is fed into the armature windings, and since the brush contacts are not stationary-that is, they make momentary contact with individual commutator seg-ments-it stands to reason that the nature of this contact is important if freedom from sparking is to be obtained. It is true that there are a number of conditions which create sparking that are not associated with the brushes themselves, as for example excessive load upon the motor or shorted coils, but there are a number of conditions which are directly associated with the brushes and which can cause sparking.

Inasmuch as the most perfectly arranged brushes will eventually have to be replaced, it is imperative to realize that proper bedding of the brushes to the commutator is necessary. By proper bedding is meant that the portion of the brush which makes contact with the commutator, is formed so that the distribution of current through the brush takes place over the entire area of the brush surface in contact with the commutator segment. Poor bedding of the brushes results in a high current density on one point on the brush, and this is to be avoided.

Looseness of the brush in its holder is another condition which will cause sparking, for it means that perfect contact between electrical connection to the brush holder and the brush itself is not attained. Incorrect alignment of brushes, that is, orientation of the brushes
with respect to the neutral plane of the armature, will unbalance the armature electrically and cause sparking. This is more commonplace with brushes which are mounted upon arms that can be moved, than those which are rigidly attached to the frame of the motor.

Continuity tests can be applied to show up the quality of brush contact on commutator type motors-that is, to establish if the connection between the brush and the commutator is good or intermittent-by disconnecting the motor from the power line and applying a voltage source of low voltage rating in series with a voltmeter across the motor. Twirling the rotor shaft will indicate the nature of the brush contacts by the steadiness of the voltage indication. Under normal conditions there will be but slight fluctuation of the meter pointer as the various commutator segments move under the brushes. If the pointer swings widely or if fluctuations are erratic, it is a sign of poor brush contact with the commutator. It is, of course, possible that the trouble lies in the commutator; that is, there may be high spots on the commutator, more than likely in the mica separators between the commutator segments. Or the commutator, because of previous sparking, has become badly pitted; in which case it will be necessary to send the entire armature assembly to a repair shop in order to have the commutator turned down to a smooth finish; or, if the pitting is not too bad, the commutator can be smoothed with sandpaper or glasspaper. Emery cloth should not be used because the grains are electric conductors, and if they stick to the mica separators between the commutator segments, they will form electric conducting paths and thus interfere with the function of the commutator, as well as the normal operation of the motor.

Brushes should be replaced if they become cracked or broken, or if for some reason full area contact to the commutator becomes impossible because the brushes have worn away. If inspection shows that but a small portion of the brush protrudes from the brush holder,

FIG. 27. In order to keep sparking to a minimum in universal motors, resistances are inserted in the connections between the coils and the commutator seg. ments, as explained in the text.

replacement should be made at that time rather than delaying replacement for a later date. In altogether too many cases the need to replace the brush is forgotten. Brush lengths when new may vary from about $1 / 2$ to $3 / 4$ inch on the different kinds of commutator motors, and should be discarded if they wear down to about half their original length. If permitted to wear down to a length that does not leave sufficient brush body within the holder, brush vibration or "chatter" as well as poor contact between the brush and the commutator segments, may develop. As a rule, the springs inside brush holders or sleeves are designed to have sufficient tension only with brushes of a certain length, and while they may expand sufficiently to provide a contact between a very short brush and the commutator, such contacts will not be as good as they should be.
As to the process of bedding new brushes, it is necessary to form a circular concave shape at the end of the brush, so that it will fit the commutator. This can be done by fastening (temporarily, of course) a short strip of fine sandpaper around the commutator, and oscillating the rotor shaft back and forth against the new brush or brushes which have been properly inserted into the brush holders. The sandpaper will apply and form the proper initial curvature to the brush ends. The final "shaping" of these brushes will be automatically effected by the normal wear of the commutator against the brushes during regular motor operation. Brushes which have been in service for quite a while, but are not worn away nor otherwise damaged, may be cleaned and readjusted for further service. The glaze or hardened surface which appears upon the face of the brush can be scratched away with a pen knife or a razor blade. A small piece of fine sandpaper wrapped around a circular object which has the same diameter as the commutator can be used to reshape the brush face. In fact, this is an alternate method of shaping new brushes to fit the commutator.

Oil should never be present on brushes or brush holders, since it may seriously interfere with electrical efficiency, as well as cause increased accumulation of dust. Brushes need no lupbrication. Wiping with a kerosene moistened cloth will remove all oil or grease which may have accumulated on the face of the brush.

Closely associated with the brushes is the commutator, hence while commutator-type motors are limited primarily to the universal classification it may be a good idea to consider them next in line. As far as commutator troubles are concerned, major troubles can seldom be repaired in the average shop handling record changers and recorders. In practically all cases it is necessary to send the entire assembly to a shop which specializes in such work. Minor troubles on the other hand come within the province of the average radio repair shop, hence can be considered here.

In order to inspect a commutator properly, it is necessary to disassemble the motor. When this has been
done, the commutator should be examined to establish whether it is tight and true in its shaft mountings. The segments should be examined for displacement or possible "scoring"; and the insulating strips of mica between the commutator segments should be examined for embodied metal or carbon particles. Wearing away of the brushes during operation takes the form of a fine carbon or graphite powder which often settles upon the insulation between commutator segments and if allowed to accumulate will eventually form a short-circuiting path between the segments and thus interfere with proper operation of the motor.

Coil connections and the coils themselves should also be examined for possible looseness or breaks. The proper fit of the rotor core in its shaft mounting should be noted, for slight looseness can seriously damage the coils and insulation during the operation of the motor. All in all a thorough physical check-up of the rotor is as important as that of the record changer mechanisms. A slight looseness of the commutator or rotor can be corrected by cautiously tightening the mounting "nuts," being careful not to displace the commutator position relative to the core. Caution must also be observed so as not to damage the insulation of the coils and connections, for the clamping arrangement which holds the rotor on its core, is such as not to permit adjustments; the rotor must be sent out for repair or replacement. Slight commutator "scoring" or scratch marks and "burrs," can be eliminated or corrected by wrapping a strip of very fine sandpaper around the commutator, and turning the commutator at uniform speed so as to obtain an even abrasive action around the entire commutator. This should be done with the rotor out of the motor. Extensive scoring and "burnout" spots caused by heavy sparking necessitate sending the rotor out for repair, for such a condition requires that the commutator be "turned-down" on a lathe so as to form a new even surface. Commutators which show a heavy "wear-groove" should be repaired which means that the motors should not be continued in operation.

If any of the insulation strips between commutator segments become displaced, so that they rise up above the commutator surface, they must be either pushed down, if that is possible, or the protruding surface must be cut away by means of a sharp knife or razor blade. In order to push this insulation down below the surface of the commutator, it is necessary to loosen the commutator assembly ring or insulated mounting nut. As a rule this is not recommended so that the other method of correcting the trouble is suggested. If, however, the commutator can be loosened, the insulation should first be pushed down between the commutator segments, for it may be possible to accomplish the required condition without cutting away any of the insulation. If the commutator segments become loosened
through operation, re-alignment is necessary. It is suggested that such work be given over to some one who is experienced; in other words, the latter should be sent to a regular repair shop. That the commutator should be perfectly clean and have a uniform surface is very important for high segments, protruding insulation, or any form of eccentricity will cause the brushes to bounce and produce arcs.

That's about all that we deem it prudent to say about the adjustment of brushes and commutators. In fact we will even go so far as to say that in anything other than a trifling defect, this in connection with the commutator, the wisest thing to do is to take the unit into a motor repair shop for service. It will prove cheaper in the long run.

COMMONPLACE TROUBLES

A motor is like any other electrical device in that specific continuity of circuit is necessary in order that the device operate. However, unlike other devices which come into the hands of the radio serviceman, very little information is available concerning such things as ohmic resistance of windings and the reaction of motor windings; consequently, it is useless to speak about the measurement of resistance as a means of determining the condition of the various circuits within a motor. This does not, of course, eliminate the possibility of making different types of continuity tests for they do serve a purpose; however, because of the limited servicing facilities available in the average radio service shop as far as motor maintenance is concerned, about the only form of continuity test that really means anything and which comes within the province of the radio repairman is that to establish whether or not current is flowing in a circuit or if the proper voltage is being applied.

If we break down the various classifications of troubles which exist in motors of the type being discussed here, they would amount to three. These are,

1. The motor does not start
2. The motor runs hot
3. Mechanical noise

Suppose that we consider these in the order in which they were presented.

Motor does not start:

In this case it is necessary to correlate the possible troubles with the type of motor. What we mean by this is that there may be certain items which are subject to scrutiny as possible causes for the creation of this condition, as applicable to a universal motor and not applicable to an induction motor. These must be borne in mind as the various contributing causes are considered.

The supply voltage is at all times an important item for if it is too low, the motor will not start because of the drag of the load. In fact, it may not start even without any load, hence, one of the important things to do, if not the most important item, in order to check why a motor does not start, is to measure the line voltage at the motor terminals. As a general rule, tolerances in motor voltages run approximately plus and minus 10%. If the voltage at the motor terminal seems normal yet the motor does not start but instead there is a hum, apparently from the motor, either the load is too great for the motor or some part of the motor mechanism, reduction gear mechanism, or turntable is jammed and prevents the motor from turning over. The fact that a hum is audible and seems to emanate from the motor is evidence of the fact that power is being applied to the motor. Whether or not this is correct is something else, but at least it is known that current is flowing through the motor windings.

The next logical step in order to identify the reason for not starting with voltage being applied, is to remove the load from the motor. An alternate method to establish if something in the drive arrangement is jammed or if the motor bearings are frozen, is to remove the supply voltage and to try and turn the motor by means of the turntable, or if the turntable has been removed from the recorder or record changer, to check the motor itself and see if the rotor can be turned. In those instances where reducing gears are used it may be necessary to open this case and check the condition of these gears for jamming. In some cases this may be somewhat difficult to do for in many installations the reduction gear and motor are one assembly. However, since the original parts were put together in the plant, it is possible to disassemble the two units and the first step should be the drive reduction gear mechanism.

Inasmuch as it is possible to have line voltage at the motor terminals, without necessarily having proper continuity through the motor windings, it is necessary to use whatever convenient means are available for establishing if current is flowing through these windings. If a current meter of the proper type is available, it can be inserted in series with one side of the supply voltage line and a motor terminal. This meter must first of all be of the proper type to accommodate the power being supplied, that is ac or dc. Second it must have a current rating, several times the normal current requirements of the motor when running under full load. The reason for this is that if the motor is locked so it cannot turn, the power consumption of the motor is increased above that when the motor can turn freely. Thus a motor which would normally require a .5 to 1 ampere meter for current checking, requires an ammeter rated at about 5 amperes full scale.

If the ammeter indicates the flow of current into the motor, the next step is to take the motor apart and check to see if the freezing of the rotor is due to bearing trouble. In the case of the majority of record changer motors, the bearings are of simple kind and more than likely will not freeze. In the case of universal motors any number of items, as for example too much tension on the brushes, lack of lubrication as to bearings, a sprung armature shaft, are among those which will tend to bind the rotor and prevent it from revolving. In addition, if any foreign particles have lodged in between the armature and the field pole pieces, that too may cause the rotor to stop and this applies as well to the induction motor as it does to the universal, hysteresis or any other type which is being used. Troubles due to foreign particles or to too much tension on the brushes can be repaired by the radio shop. But troubles of the other type, which require special machinery, should be taken care of by those who are qualified technically and have the equipment to do the work.

A very simple and effective method of establishing whether or not current is flowing through a motor which is not turning over, and measuring equipment is not available, is to check manually for heat being developed in the winding of the motor. A motor which is carrying current but which is not turning over, will become quite hot rapidly; that is, if it does not blow a fuse even before its temperature rises appreciably.

In the case of split-phase motors, trouble in the starting circuit may prevent the motor from starting. However, such a motor will run if started initially although it is possible that when under load the motor will stall. This depends entirely upon the design of a motor, that is, the extent to which the presence of the starting coil in the circuit contributes to its operation. Normally in the larger classifications of motors, these starting coils are disconnected from the circuit, and in the small record changer type of motors, the starting coil is left in the circuit and is always in operation. Inasmuch as the majority of split-phase induction motors used in record changers employ a condenser in one leg, trouble in such a starting circuit is invariably associated with this capacity and its connecting leads.

Since the condenser used in such split-phase systems is of the paper dielectric kind, normal tests applicable to condensers of this type are perfectly satisfactory. The fact that the condenser is used in connection with a motor does not introduce any special consideration into the test.

Short-circuited windings in either the stator or the rotor, or both, depending upon the type of motor involved, will prevent the motor from running. These can be checked by anyone of the methods already described, hence this reference is nothing more than a
supplementary listing of a condition which will prevent the starting of the motor.

Motor Runs Hot

We have already made some references to conditions which will cause a motor to run hot. Proper lack of lubrication is, of course, a very important item and the following should be of definite value.

In the majority of small motors which are used in record changers, the bearings are of very simple type and the means of lubricating the moving parts is in the form of oil-soaked felt washers which either surround the rotating shaft or make contact with it so that the oil gets into or between the moving parts. In some of the more elaborate motors as used in the recorders, specific lubricating holes are provided through which oil is caused to flow into the various bearings. As a rule, in the simple type of bearing arrangement, those which employ oil-soaked felt washers, the manufacturer of the motor at the time of production impregnates these washers sufficiently so that they can be used satisfactorily for long periods of time without any further oiling. If, however, oiling is necessary, a very thin motor oil such as SAE 10 or lower should be used. Some manufacturers specify that these oil-soaked felt washers provide proper lubricating for about one thousand hours of operation. When oiling is necessary, it does not take more than a few drops of the type of oil mentioned.

It is, of course, necessary to realize that those motors which employ such impregnated felt washers, must be dismounted from the motor board and taken apart in order to soak the washers. Motors of this type do not have lubricating holes. In the case of those motors which have lubricating holes, it is not necessary to remove the motor from the mounting board for lubrication. At times, however, it may be necessary to seek out the proper lubricating holes. In some cases these holes may be sealed with a screw plug and it is necessary to remove this plug in order to insert the oil.
As to conditions responsible for the motor running hot, the following should be known: If the bearings are too tight, yet not tight enough to freeze the shaft, the temperature at that point will increase and this increased heat will naturally be radiated throughout the unit and thus cause a rise in temperature. Shortcircuited coils in either the stator or the rotor will cause the motor to run hot. While it is possible to approximate the location of the shorted coil by virtue of the fact that it will be hotter than other coils, we do not recommend, as stated before, that such coils be removed and rewound by the radio repairman. Another condition which contributes, or may con-
tribute, to the motor running hot, is when the rotor is rubbing against the stator pole. Such a condition can be created by incorrect alignment of the rotor or side plate. As a rule, such a condition is accompanied by noise, that is due to the actual physical contact between the rotor and the stator pole.

Mechanical Noise

Mechanical noise is a major problem. As you can probably appreciate a new motor should run very quietly, but there are, of course, conditions associated with the motor, yet which are not all directly in the motor, which will contribute to the creation of noise. Consequently, in order to isolate the origin of such mechanical noise, it may be necessary to proceed in various ways, depending entirely upon not only the construction of the motor, but also upon the construction of the various drive mechanisms whereby the rotation of the motor is conveyed to the turntable. Very often a bad case of motor noise may appear to exist, whereas actually it is not as bad as it sounds. The fact that it is very loud is due primarily to the manner of mounting the motor to the mounting board. If the motor is rigidly fastened to the mounting board, any vibration in the motor will be conveyed to the mounting board which by itself will act as a sounding board and in that way amplify the motor noise. Proper mounting will in most cases remedy this situation: the absence of direct contact between the motor mounting support and the mounting board. An example of proper mounting is given in Fig. 28.

Then again, noise may seem to originate in the motor yet it actually originates in the reducing-gear mechanism if such is used; hence, if the driving arrangement involves a number of elements between the motor and the turntable, it is necessary, in order to establish the point of origin of the noise, to separate these various devices. In this instance, as well as that previously mentioned, it is imperative to check the noise without the use of the mounting board. This means that the motor and the gear assembly must be removed from the mounting board. If the noise which originates in the motor is not excessive and is amplified when the motor assembly is mounted upon the board, then it becomes necessary to check the means of mounting. Often times mountings as shown become rigid instead of remaining loose as they should be.

If particles of dirt or other foreign matter find their way into the spaces between the rotor and the field magnet poles, the result will be intermittent noise. To eliminate such noise it is necessary to take the motor apart. Previous handling of the rotor may have created a nick or burrs that are high enough to make contact with the stator pole pieces. If such is
found, this can be removed by means of sandpaper or emery cloth. In the case of the induction type rotor, which usually is a solid piece, an emery cloth can be used. You will recall that this type of abrasive is not satisfactory for use upon commutators or upon commutator type armatures.

Mechanical noise in the form of vibration may be due to a number of different conditions. One of them is loose bearings; another, is too much end play, and a third is a rotor which is not running true in its bearings. Improper centering of the rotor or armature in the flux gap will result in a non-uniform torque being applied to the motor. This is very important when reduction gear devices are used with the motor for it results in the non-uniform turning motion of these reduction gears and invariably causes a chatter.

FIG. 28. In order to keep the vibrations of the rotating motor away from the motorboard, rubber is used between the motor support and the motorboard as indicated.

Noise of various kinds such as buzzing will result if any of the accessories employed in the motor are not tight in their mountings or supports. This applies to the laminations as well as to all other parts. If the laminations are not tight, they will tend to move under the varying magnetic stress of the applied current and resultant fields. In some cases such buzzing sounds would seem to originate from the laminations and may indicate that the polarity of one of the field windings is wrong. As you can readily understand, this seldom is the case in a new motor but is a possibility in one which has recently been repaired.

General Considerations

As a rule, the permissible rise in temperature of a motor is between 60 to 100 degrees above the temperature of the surrounding air. As stated before, permissible tolerances in applied line voltage are plus and minus 10% and about 5% plus or minus in frequency. When measuring operating voltages, they should be determined with the motor functioning un-
der full load. Here again a 10% variation is permissible.

Anyone who is interested in more specific standards covering fractional horsepower motors, we refer them to the National Electrical Manufacturers Association which has published a bulletin identified as "Motor \& Generator Standards."

If it becomes necessary to clean those parts of the motor where the lubricant has become gummy, the best method to pursue is to take the motor apart and to clean those parts with kerosene.

As a matter of fact, such periodic cleaning of the motor is advisable after perhaps 500 hours of operation. Of course, if the performance of the device indicates that such cleaning is necessary, it should be done irrespective of how many hours the motor has been in use. Although, we have referred specifically to the motor, the comments also apply to the gears and the bearing in the reduction gear housing, if one is used with the moter.

As to the power consumption of motors of the type being considered in this volume, the average among those that are used on record changers is approximately 22 watts and the minimum to maximum range is from about 11 to approximately 40 watts. As to the normal speed of motors which are classified as synchronous and already adjusted by means of the drive arrangement to rotate the turntable at approximately 78 rpm , the normal range of such rotation is from about 77 to 81 rpm . With respect to the speed of induction motors, and for that matter some which are identified as capacitor-synchronous motors, the range is from about 1240 to approximately 3600 rpm . As to the motors which are used in recorders, their power consumption ranges from about 60 to about 85 or 90 watts under normal operating conditions.

FIG. 29. When the motor exceeds a certain speed, the governor balls E are forced outwards and so pull the friction disc G up against the pads H, which'have a braking effect that persists until the motor speed is back to normal.

SPEED REGULATOR DEVICES AND SPEED REDUCTION DRIVES

InASMUCH as certain types of electrical motors vary in accordance with the line voltage, and since practically all motors revolve at speeds which are far in excess of that of the turntable, it is necessary to use certain devices whereby the speed of the motor is maintained constant irrespective of line voltage variations and whereby the speed of the motor is reduced to that required for the rotating turntable. To maintain constant speed recourse is had to what is known as a "governor." In order to reduce the speed of the motor to that required for the turntable, various arrangements of gear mechanisms called speed reduction drives, are employed. Both of these are discussed in this chapter.

The most widely used device for automatic speed regulation is based upon the well-known "fly ball" governor originally used on steam engines. On motors of various types and manufacture, differing designs or physical arrangements of governors may be found; but all are based upon the same fundamental principle. A simple explanation of this basic principle is the following:

The basis of operation is the use of physical force to shift the placement of the two balls which comprise the essential part of the governor. These balls are attached to two flexible springs, which in turn are mounted upon a fixed rotating collar and a sliding collar. Attached to the sliding collar, is a friction disc. This friction disc is caused to move up against two "braking" pads which tend to slow down the rotation of the shaft to which is attached the fixed collar carrying the governor ball springs. Just what we have in mind is illustrated in Fig. 29.

Referring to this illustration, A is the motor or gear housing and B is the motor or gear shaft. Attached to this shaft is the permanently fastened collar C. Being attached by means of set screws to the rotating shaft, it naturally turns with this shaft. Mounted upon this shaft but at the other end, is another sliding collar F to which is attached the friction disc G. As you can see, the two governor weights are fastened to two springs D, each of which terminates at one end in the fixed collar C and at the other end upon the sliding collar F. Also attached to the assembly is a stationary frame I bearing two braking pads, indicated as H in the illustration. The direction of the friction disc is towards the braking pads as the movement of the governor weight pulls the sliding collar in towards the stationary collar.

As the motor speeds up, physical force causes the weights to fly outward and revolve in ever increasing circles, being restrained only by the relative stiffness of the springs D, which, as they distort their shape in an outward curve, cause the sliding collar F to slide
longitudinally along the shaft B. Thus, the revolving friction disc G comes in contact with the oil-saturated felt friction pads H , which are rigidly mounted on a stiff annular ring or prong bars. The pressure of the friction disc G against the pads H gives a braking action, which serves automatically to restrict the motor speed within certain narrow limits required to give proper turntable speed.

FIG. 30. A worm gear has been cut in the shaft of the rotor of this commercial motor. This worm drives the turntable through a gear on the turntable shaft. See C and D of Fig. 35.

The relative position of the structure supporting the friction pads H is longitudinally adjustable by means of a screw and sliding rod, cam and lever, or linkage of some kind; either by an adjusting screw or short lever reaching through the housing, or by a manually-operated speed-regulator lever protruding towards an outer edge or corner of the motorboard beyond the turntable. (These are not indicated in Fig. 29.) The latter usually has associated with it a graduated scale or "fast/slow" markings, either mounted on the motorboard or stamped in the metal. The speed-regulator lever is sometimes arranged so that it can be readjusted, relative to a different definite position for friction pads H so that it can indicate normai turntable speed on the scale in the event that the unit is moved to a location of differing average voltage ($100 / 110,120 / 125$, etc.), or current ($a-c, d-c$) where a universal motor is used.
Some record changers using universal motors, are provided with rheostats, the scale being graduated for the various voltages, currents, and frequencies. This gives a coarse speed adjustment over a wide a-c or d-c voltage range, as well as for the several a-c power-line frequencies; while the speed-regulator lever gives the fine adjustment by re-setting the governor limits. With this arrangement, a particular record changer can be universally operated on many different kinds of power-supply lines: 110/125 volts and $200 / 250$ volts $\mathrm{d}-\mathrm{c}$ or a-c; $25,40,50,60$ cycles; etc.

Some a-c motors are provided with "dual windings," each stator pole having two coils whose leads are brought out in individual groups to a terminal block for multi-voltage operation. The coils are series connected for 200/250-volt lines, for instance; and connected in parallel for $110 / 125$-volt supply. Also, some universal motors are provided with a fixed resistor and terminal block or switch for the same purpose. The connections are arranged so that for $200 / 250$-volt operation, the resistor is in series with the motor; while it is "shorted" by a link on the terminal block or by the switch for $100 / 125$-volt supply. This same scheme is also used for switching from a-c to d-c operation, the resistor serving to reduce the voltage applied to the motor terminals from the d -c line.

Speed Reduction Drives

Since record-changer mechanisms generally derive their operating power from the same motor that rotates the turntable, it would be useful to review briefly the various types of turntable speed-reduction drives-sometimes called "transmissions"--before the discussion of the actual mechanism-power "take-off" methods themselves.

A widely-used type of drive is the worm and gear variety as adapted from spring-wound motors; a typical example being illustrated in the photograph of Fig. 30. The worm gear on the motor shaft engages a pinion gear on the turntable drive shaft, all being enclosed on a gasket-sealed grease or oil-filled metal housing, to which the motor is rigidly attached. Both shafts are usually perpendicular to each other, revolving in sleeve bearings arranged to be selflubricating from the oil or grease inside the housing. The exposed end of the turntable-drive shaft is long enough, in this case, to serve also as the recordspindle and turntable mount. In another gear-drive arrangement, illustrated in Fig. 31, an "open" type of

FIG. 31. At the left is the motor proper on the shaft of which is a worm which drives the turntable. The speed is controlled by the governor at the right.
frame is used to house the motor and governor (if provided), as well as drive-gears, shafts, and bearings, oil and grease being applied periodically to bearings and gears directly.

On some kinds of record changers, the recordspindle is stationary; since it may be arranged to have a particular function in changing records. On these, the turntable-drive shaft in the reduction-gear housing may be in the form of a long sleeve (upon which the pinion gear is mounted) and which revolves on a "stud" bearing in the lower part of the frame. The upper part, protruding above the frame, serves as the turntable mount, being fitted with a pin or "nub" to engage a slot in the turntable hub. The record spindle is either an elongation of the stud bearing (being integral with it), or separately inserted through the turntable and drive-shaft (sleeve) -resting down upon the stud, and prevented from turning by "stepped" shoulders cut in the corresponding ends of each.

The motor and gear housing (including the governor, when so provided) are supported as a unit under the motorboard by mounting "lugs" or bracketseither separately attached to the gear-housing or motor frame, or being cast as an integral part. This is attached directly to the motorboard, or to a subpanel further down beneath the record-changer mechanism. The mounting is usually arranged to be somewhat flexible, to prevent transmission of motor vibration to the motorboard and turntable, by means of rubber "grommets" or "washers."

Flexible couplings are sometimes used for the same purpose. The pinion gear is then mounted on a short shaft, the end protruding through the gear housing, in turn driving the turntable by means of this flexible coupling. This is illustrated in Fig. 32, while the details of a typical flexible coupling are shown in Fig. 33. It will be noted here, that the turntable is supported by a thrust bearing mounted on the motorboard. Where no coupling is used, this thrust bearing

FIG. 32. In this system of turntable drive, the motor is hung off the motorboard with rubber washers inserted to take up vibrations. A flexible coupling further reduces the possibility of introducing vibrations to the mechanism. See Fig. 33.
is usually omitted; the gear housing or sub-panel being arranged to thrust support the turntable directly, either through the spindle shaft or a "hub" sleeve or "collar."

As some record-changers are designed to handle $331 / 3 \mathrm{rpm}$ records as well as the more conventional 78 rpm type, two-speed drives of various kinds are in use. One of these, arranged to form the complete turntable-hub assembly, is based upon the "planetary" principle, in which driving members rotate within each other. Change of speed is obtained by holding one member, which revolves at one speed, from turning during the second speed by means of a latch controlled by the speed-change lever. This is illustrated in Fig. 34.

FIG. 33. Details of the flexible coupling shown in the assembly of Fig. 32. The motor drive arm \mathbf{C} is connected to the rubber strips D. The rubber strips E arc held to \mathbf{D} by the frame F. The turntable drive $\operatorname{arm} G$ is supportcd by E, which provides the flexibility.

The turntable shaft or spindle A, driven from the motor reduction gearing and thrust supported by its housing, revolves continuously at 78 rpm ; regardless of the turntable speed. A pin B, extending through this shaft, engages a slot in the hardened-steel lower cup-shaped hub C of the turntable to provide a positive drive for that member. The upper hub, integral with the turntable, fits over the spindle and is thrust supported in the depression of lower hub C so that the turntable can revolve independent of recordspindle A.

The upper part D of the outer surface of C is accurately shaped and ground to a definite size and forms the inner "race" for the three equally-spaced hardened-steel balls E. These are held tightly between this inner race and a hardened-steel ring F, the inner surface of which being accurately shaped and ground to form the outer ball race. This ring F is split at points G for assembling convenience, being clamped tight by a nut and bolt through the lugs of a clamping ring around it. A three-hole steel balllocating ring H , which is integral with the turntable, forms the spacing member for the three balls.
The outer ring F is free to rotate independently of the turntable and spindle A. Its rotation is controlled by a latch I, pivoted on the lugs which are
an integral part of the clamping ring. A spiral spring J normally holds one end of latch I against a notched disc K firmly fastened to the turntable. When latch I is in its normal position, it engages one of the notches in disc K , locking F to the turntable, which is equivalent to locking the ball races of F and C together through the balls, since the ball-locating ring H is integral with the turntable. Thus, outer ring \mathbf{F} will revolve with lower hub C and the 78 -rpm rotation of the turntable shaft A is imparted to the turntable.

The sliding speed-change lever L , mounted on the main panel or motorboard, is arranged so that its notched inner end will engage and hold the lower end of the turntable latch I when the lever is pushed inwards towards its $331 / 3-\mathrm{rpm}$ position. Thus, when pushing in on lever L to change turntable speed, latch I turns slightly around its mounting on outer ring F so that the upper end of I becomes disengaged from the notches in disc K , and F stops rotating, since latch I is an integral part of F. As the lower hub C is still revolving at 78 rpm , friction against the balls E causes them to turn and travel slowly along the ball race of the stationary outer ring F , carrying locating-ring H along with them and causing the turntable to revolve at the slower speed. The required $331 / 3-\mathrm{rpm}$ speed
is obtained through the proper relationship between the circumferences of the steel balls E and the formed ball race D on the lower hub C .
It will be noted that spring-actuated turntablelatch I engages the V-shaped notches on disc K only when the sliding speed-change lever L is in its "out" or $78-\mathrm{rpm}$ position. Latch I can lock into any of these notches to give positive $78-\mathrm{rpm}$ turntable speed, after the turntable has gained sufficient momentum, the shape and proportions of the notches being designed to allow latch I to "ratchet" around disc K, passing over several notches when starting or changing speed, until full speed is reached.

Illustrated in Fig. 35 is another type of two-speed drive, which operates upon the same principle as the speed-change transmission on automobiles. Gear worm C, mounted on the motor shaft B, engages worm pinion-gear D , causing countershaft E to revolve continuously. Gears F and G , fastened to E , are engaged by gears H_{1} and H_{2} respectively; according to which speed is desired, being arranged so that when H_{1} engages F, H_{2} is disengaged from G and vice versa. H_{1} and H_{2} are integral with the grooved hub H_{3} and are key mounted to the turntable drive shaft J, being arranged to slide along an extended key-

FIG. 34. A two-speed turntable drive that is based upon the planetary principle. When the latch I is in a notch of K, the turntable rotates at 78 rpm ; when I is disengaged the turntable rotates at $331 / 3 \mathrm{rpm}$.
way I between limit collars K_{1} and K_{2}. Shaft J is thrust supported at L_{1} or L_{2}.

When the speed-shift lever (not shown in illustration) is moved to change the turntable speed, it turns speed-change spindle O, connected to it directly, or through a quadrant-sector gear and pinion or other coupling linkage to magnify the lever "throw." The space on the motorboard is limited; and when the lever moves in a small arc from one speed position to the other, spindle 0 will revolve through onequarter, one-half turn or more due to the "magnifying" ratio of the coupling linkage.

Illustration I of Fig. 35 shows the lower gears F and H_{1} in mesh for the first speed position. When spindle O turns to shift the gears for the second speed, step cam N_{1} also turns, since it is rigidly attached to 0 . The step on N_{1} thrusts upward against the symmetrically-stepped lift N_{2}, opposing the downward force of spring P , causing N_{2} to slide upwardly along spindle O. As shifting-fork M is integral with N_{2}, it also moves upward, causing gear unit $\mathrm{H}_{1}-\mathrm{H}_{2}-\mathrm{H}_{3}$ to slide upwards along the keyway on shaft J , since the prongs on M are in engagement with hub H_{3} through its grove. Thus, gear \mathbf{H}_{2} engages gear G while gear H_{1} has become disengaged from gear F and the turntable revolves at the second speed. Spring P serves to keep \mathbf{N}_{2} always in contact with N_{1} and to force N_{2} downwards when changing back to the first speed, thus automatically shifting the gears back to the first speed when the lever is so moved.

Some other types of two-speed drive based upon the planetary principle, previously discussed, have
the unit arranged on or inside the motor or gearreduction housing, differing in physical appearance and design, using discs or toothed wheels, as well as hardened-steel balls, but all operating along similar lines.

Some of the friction-type drives discussed in the following paragraphs are arranged for two speeds. The principle is illustrated in Fig. 36, in which the motor shaft carries a small rubber-tired drive wheel A. This drives the turntable through either of the two intermediate rubber-tired friction wheels B or C , according to the speed desired.

The relative ratios of the circumference (or diameter) of wheel A to that of either B or C, and in turn to that of the turntable, give the desired speed reduction. 'The difference in diameters of C and B , of course, depends upon the difference between the two speeds. Wheels B and C are mounted upon a frame D, which pivots around a bearing on the motorboard, and through which the motor shaft may protrude. A speed-change lever (not shown) shifts D through a linkage and "holding" ratchet or latch, moving either B or C into the proper position for the particular speed required. Depending upon the particular arrangement, B and C may revolve continuously, being always in contact with A , or only when either is individually shifted into respective "speed" position, being brought into contact with wheel A and the turntable at the same time.

Single-speed friction-type drives are arranged to drive the turntable in various ways: either through friction against the underside rim directly or by a separate drive-disc mounted integral with the turn-

FIG. 35. A type of two-speed drive which functions on the principle used in the transmission of automobiles. In the first-speed position, where gear F is driving $H 1$, the turntable shaft J rotates at 78 rpm. In the other position, where G is engaging H2, J rotates at $331 / 3 \mathrm{rpm}$. See text for other details.
table or the spindle. In the former, a rubber-tired drive wheel mounted on the motor shaft, protruding up above the motorboard underneath the turntable, bears directly against the underside rim of the turntable or against an intermediate drive-wheel that in turn rotates the turntable (similar to the two-speed drive just described). As shown in Fig. 37, the intermediate drive-wheel B revolves on a stud bearing on the motorboard, A being the motor-shaft drivewheel.

In some cases and especially when a comparatively high-speed motor is used, the motor shaft bears directly against the intermediate drivewheel, the motorshaft drive-wheel A not being used. This, of course, gives a greater speed reduction for the same size intermediate. This scheme is used also on the other kind of friction-drive just mentioned, in which the separate drive-disc is mounted integral with the turntable or spindle.

Fig. 38 shows one form in which a rubber-tired drive-disc is bolted or riveted to the underside of the turntable. An auxiliary rubber-tired idler wheel is frequently used on this type of drive to improve the frictional contact of the motor shaft against the drivedisc rubber tire. It also relieves the motor bearings of radial stress, the motor usually being mounted in a flexible manner in addition, so that the motor will tend to be "self-aligning." The idler wheel is mounted on a lever, center pivoted to the motorboard, and held against the motor shaft by means of a tensioned coil spring at the other end of the lever.

FIG. 36. The small rubber-tired wheel A is on the motor shafts and drives both B and C at the same time. Either one of these engages and so drives the turn. table at the speeds indicated.

Record-Changer Mechanism Drives

Although greater torque is needed to drive the record-changer mechanism when operating through its various phases of the record-changing cycle than that needed to drive the turntable only (with its record load) during reproduction of the recording, the speed of operation can be comparatively slower. Therefore, the same motor usually serves for both purposes on
most record changers, the mechanism being driven through speed-reduction devices of various types.
The most commonly used form employs a pinion gear that is firmly attached to the turntable spindle or drive shaft, underneath the motorboard; such as that shown in Fig. 33. This pinion gear engages and

FIG. 37. The rub-ber-tired wheel A is on the motor shaft and this drives the rubbertired wheel B that in turn makes contact with the rim under the turntable and so drives it.

drives a large gear, often referred to as the "main" or "drive" gear. This gear has a very large diameter (and many teeth) in contrast to the pinion gear, thus giving a large speed-reduction ratio and sufficient force to operate the record-changer mechanism. (On some record-changers, this main gear is integral with the cams which direct and control the motions of the various levers and linkages.)

Another type of gear-drive employs a worm gear on the turntable drive-shaft (or on the motor shaft) instead of the pinion gear, which drives a large gear to transmit motion to the record-changer mechanism cams and linkages. Also, in one instance, a special type of multi-groove cylindrical cam-similar in appearance to a large gear worm-is driven from a short turntable shaft underneath the motorboard transmitting motion to the mechanisms through a series

FIG. 38. The rub-ber-tired drive disc fastened to the under side of the turntable is driven by the motor shaft, which is maintained in contact with the drive disc by pressure of the idler wheel.

of "cam-followers" and levers. In another type a camshaft (carrying the mechanism operating cams) is driven, through a ratchet wheel and pawl, by a worm and gear reduction drive from the motor shaft. The ratchet wheel is engaged by the pawl, when released by the trip mechanism, to cause camshaft rotation.

According to the design of the particular types of record-changers, the main gear or cams may revolve continuously, as long as the turntable revolves, or only during the record-changing "cycle." In the former case, cam-followers or other pertinent parts of the mechanism, are caused to fall into engagement through actuation of the "trip" devices after reaching the end of record reproduction. In the latter, several different schemes are used.

In one of these, called a "mutilated gear," a short section of the main-gear periphery is without teeth, so that the main gear remains dis-engaged from the continually-revolving turntable-shaft pinion during record reproduction. In another scheme, the turn-table-shaft pinion is clutch mounted to the turntable shaft, so that it only rotates during the recordchanging cycle, the pinion and main gear always being in mesh but not revolving during record reproduction.

Instead of gear drives, power take-off on some record-changers is by friction drive from the underside turntable rim or through belts and pulleys from
the turntable spindle. In the former, a small rubbertired friction wheel is caused to contact the turntable, through actuation of the "trip" devices at the conclusion of record reproduction, and is held free by a "latch" or other device at all other times. Speed reduction is obtained through a small size double worm-and-gear drive, enclosed in an oil filled housing that is arranged to rotate slightly (around the shaft of the second "driven" gear) to allow free movement of the friction wheel.

In the other scheme mentioned, in which power take-off is through belts and pulleys, the speed reduction and torque increase are gained through the high ratio between pulley diameters. A smalldiameter pulley wheel, associated with the turntable hub, is belt connected to a large-diameter pulley. The shaft, upon which this large pulley is rigidly attached, also carries another firmly mounted small-diameter pulley, which in turn is belt connected to a fourth large-diameter pulley. Thus a double speed reduction is obtained from the $78-\mathrm{rpm}$ turntable speed to give a very slow speed to the fourth pulley, which drives the cams that direct and control the operation of the record-changer mechanism levers and linkages.

Additional details on these are included in the chapters on the operation and adjustments of the various types of record-changer mechanisms.

Cook, A. L., Elements of Electrical Engineering
Croft, T., Practical Electricity
Hausmann, E., Swoope's Lessons in Practical Electricity
Veinott, C. G., Fractional Horsepower Electric Motors

Chapter II

RECORDERS AND PHONOGRAPHS

Perhaps it is carrying coal to Newcastle to discuss the operating principles of recorders in a volume of this type, but since it is possible that those men who are interested in automatic record changers have not used recorders, we feel that a brief discussion of the highlights is worthwhile. It is also possible that the serviceman who is called in to make adjustments on an improperly operating recorder may be asked ques-

FIG. 1. Sound waves are transformed into electrical energy in the microphone; these are amplified and are transformed into mechanical energy in the cutting head. The cutting stylus is actuated and cuts the equivalent of the sound waves in the record groove.
tions by the owner and what we say in these pages may be of some aid.

In the fewest words, the function of a recorder is to translate sound into a semi-permanent record upon a phonograph disc. This is done by first converting audible sound impulses into electrical impulses in the microphone, amplifying these electrical impulses to
the proper level, and then converting them into the mechanical movement of a cutting stylus, whereby a spiral groove, governed in shape by the amplitude and frequency of the electrical impulses, is inscribed upon a record. Thus a number of energy conversions take place: from sound to electrical in the microphone; from electrical to mechanical in the recording head, and from one kind of mechanical motion into another in the recording head and cutting stylus. This sequence of events is shown in diagrammatic form in Fig. 1.

As to the general structure of the complete recorder mechanism, the electrical system is shown in Fig. 1. The mechanical arrangement embraces the means of rotating the record blank upon which the grooves are cut and the means whereby the cutting head is caused to travel across the record. The first of these is accomplished by means of a motor-governor arrangement whereby the turntable upon which the record blank rests is caused to rotate at a definite speed. Modern practice has adopted two speeds for recording as well as reproduction; one of these is 78.26 rpm , usually referred to as 78 rpm , and the other is $331 / 3 \mathrm{rpm}$. Practically all home recorders are of the $78-\mathrm{rpm}$ variety, whereas commercial recorders are arranged to function at either one of the two speeds mentioned. It is true, however, that a few home-recorder units are equipped with both speeds.

Inasmuch as the turntable speed of reproducing devices is definitely fixed, it is necessary that the speed

FIG. 2. An example of a commercial overhead carriage recorder, the cutting head being driven straight across the record blank by the drive screw, which in turn is driven by the drive flange and the worm gear. Courtesy of RCA Mfg. Co.

of rotation of the recorder turntable be constant at either of the two values mentioned, if proper reproduc. tion of the recording be obtained. Of course the reverse is also true, that is, since the recording is done at a certain speed of rotation, it is imperative that the reproduction be carried out at the same speed. To maintain this speed, is the function of the governor in those motor-drive arrangements which are not fixed in speed by the very design of the motor.

In addition to rotating the blank, an arrangement is provided in recorders whereby the cutter is caused to move across the record, thereby cutting the spiral groove of gradually diminishing radius. These cutterfeed arrangements are of three types, representing efficiency and cost. The most elaborate, used in the more expensive systems, is what is known as the "overhead carriage" and is represented in Fig. 2. The path of the stylus is straight across the record and is shown in Fig. 3. A less expensive system is shown in Fig. 4 and can best be identified as the "swinging arm" type.

Bearing in mind that choice of these types is associated with cost, the first is by far the closest approach to the ideal, followed in turn by that shown in Fig. 3, and then by that shown in Fig. 4. Actually the last is perfectly satisfactory for everyday use, as evidenced by the fact that it is employed in virtually all inexpensive recorders, whereas the first is the kind used in the more elaborate systems. There are various modifications of these two systems, but these special details need not be discussed here, because they are shown upon the various manufacturers' pages later in this volume.

With respect to comment concerning efficiency of the type of cross feed used to move the cutting head,
there are certain reasons why a straight-across motion is preferable to movement in the form of an arc. . . . When a recording is made, the cutting needle, about which you'll hear more later, goes through two motions. One of these is the downward motion due to the weight of the cutting head and the other is a side-to-side motion due to the movement of the armature within the cutting head. In order that best recording be accomplished, there exists a requirement which stipulates what the angle between the cutting needle and the record blank should be, as well as the position of the cutting stylus face with respect to the record blank. This last requirement is that the face of the cutting tool be directly in line with the radius of the record at the point of cutting. This is shown in Fig. 5. To maintain this position at all times, it is necessary that the cutting head move straight across the record, as shown in Figs. 2 and 3.

When the cutting head swings in an arc, as in Fig. 4, the required condition as stated is obtained onlv at one point. At all others the face of the cutting tool makes an angle with the radius of the disc. By lengthening the arm which supports the cutting tool, the arc made by the cutting head as it travels across the record, is kept as flat as possible. This is the condition in the recorders which employ this type of feed arrangement.

As to the actual feed arrangement, a worm screw geared to the motor and also to the cutting arm or head moves the cutting head across the record at a certain speed, thus determining the pitch of the spiral groove cut into the record. While the average number of grooves per inch is between 92 and 100, some recorders, as stated in the manufacturers' bulletins, cut as many as 120 lines per inch. The number of lines

FIGS. 3, left, 4. The dotted lines show the paths followed during recording; that of Fig. 3 is the straightacross method, using the mechanism of Fig. 2, and that of Fig. 3 is the swinging-arm method, which is more commonly used.
or grooves per inch cut into the record blank during recording does not in any way limit the use of such a record upon a record-changer turntable, for if the original recording is of sufficient depth, the pick-up needle will continue tracking. (By "tracking" is meant

FIG. 5. Front and side views of a cutting needle. The cutting face should be in the same line as the radius of the record.
that the needle will remain in the groove.) The depth of the cut, the significance of which is discussed later, has a great bearing upon such tracking, as well as upon a number of other conditions which contribute to satisfactory use of the recording.

Direction of Groove

Record grooves may be cut in one of two directions: from the outside of the record towards the center, which is known as "outside-in" and is typified by the commercial recordings which are sold to the public for use on phonographs, automatic-record changers, and the like; and the "inside-out" type of recording which is used for special records such as are employed in some talking-motion picture installations, broadcasting, and the like. In these latter records, the recording starts on the inside of the blank, near the center, and progresses outwards.

As a rule, most of the inexpensive recorders employ the outside-in arrangement for all recording at 78 rpm and the inside-out arrangement for all recording at $331 / 3 \mathrm{rpm}$. This, however, is not a rigid rule, in that outside-in cutting can be done at $331 / 3$ just as readily as at 78 rpm . Just which is used is, of course, a matter of design determined by the manufacturer and is stated in the service notes. As you can appreciate, a change from outside-in to inside-out cutting requires the reversal of the motor and the feed screw; or if the direction of rotation of the motor is held constant, a reversing gear arrangement is required in order that

FIG. G. In the left illustration is the "outside-in" type of recording and on the right is the "inside-out" type. In each case the turntable has a clockwise rotation.
the feed screw cause the cutting head to move in the proper direction. As to the records used on automatic record changers, only one type can be used, namely those recorded by the outside-in method.

The Record Blanks

Concerning the blanks used on recorders, several types are available, although two are the most popular, with one of these in greatest demand. The most popular type of record blank is that known as the "acetate" blank, which consists of a metal base upon which is baked a special type of lacquer coating or surface. This is the recording surface. This material is soft enough to be cut with a cutting stylus, yet is hard enough to withstand the wear of repeated playbacks without undue rapid changes in the character of the grooves cut during the original recording. Of course, every playing of the record wears away some portion of the groove, but when properly handled, the record will be useable several hundred times, provided that the original recording was satisfactory.

The other type of home-recording blank is the solid metal disc, inváriably of aluminum. This type is not as good as the coated disc, but neither is it as expen-

FIG. 7. When the stylus comes to a high spot it digs into the blank, indicated by the white spots along one edge of tho ungrooved portion, which is the part skipped over. The white spots on the opposite side indicate where the stylus digs into the record when it lands.

sive. Various types of pressed paper recording blanks are also available, but of the types mentioned, this is the least popular for recordings that are to be kept for quite some time and repeatedly played back. When it is necessary to make a copy of a home recording, recourse is had to what is known as "dubbing," wherein the record is played back upon one device and the signal developed in the phono pickup, is amplified and fed to the cutter of another recorder.

Concerning discs suitable for home recording, it may be helpful if we mentioned its requirements, although it is true that some of them are not visible to the naked eye. Starting with the coated disc, it is essential that the disc be perfectly flat. Any attempt to
record upon a disc which is not flat, will result in a ruined recording. In fact, the record is useless if it has even a small high spot or low spot, unless the position of this spot is such that sufficient useful recording area is available ahead of the spot or beyond the spot, depending upon the direction of the recording, so that what is to be recorded can be inscribed upon the record before the bad spot is reached. Recording with a high spot results in a record something like that shown in Fig. 7. One portion of the record, that which follows immediately after the high spot, will not be cut because the cutter will "bounce" off the record after it passes over the high spot.

To attempt to straighten a slightly bent record is useless because it cannot be done without impairing the surface and even if that is not a consequence, it is too difficult to do a job like that unless proper equipment is available. Such work should be left to the manufacturer of the disc. To try to cut such a record blank with a valuable recording, something which can be duplicated only with difficulty, is indeed poor economy.

A material which is suitable for proper cutting must, as we stated, be hard enough to maintain its condition after numerous playbacks, yet it must be of such material that will cut smoothly and will not tear as the cutter plows through it. If the material tears-that is, leaves rough edges-it will be productive of much noise. Incidentally, as you will learn later, this is also a function of the cutting tool or stylus, but since the record material itself is capable of contributing a great deal to surface noise, this condition is mentioned.

Proper recording requires that a smooth surface be available. This means that the coating upon the disc must be smooth and of the same thickness throughout as well as be free from air holes. Inasmuch as it is impossible to check for the presence of air holes other than by visual examination for air bubbles, much dependence must be placed upon the manufacturer of the blank. However, a cursory examination of the blank is possible. The entire surface must feel smooth to the touch.

It is also of significance to mention that while virtually all types of surfaces will take a "cut," the proper kind not only possesses proper frequency characteristics, by which is meant that the material cuts smoothly and easily for very rapid vibrations of the cutting tool, but that the ingredients do not act as harsh abrasive substances which wear away the cutting tool rapidly. It is for these reasons, as well as noise conditions, that the coated record blank is superior to either the pressed paper or the aluminum disc. It is also imperative-and this is another one of those conditions where the user must have faith in the advertiser-that the coating upon the blank, be of even consistency throughout its depth, as well as be of sufficient depth. Since the average proper depth of
cut is about .0025 to .003 inch, there must be ample material left beneath the bottom of the groove.

On the whole such a coated record is not volatile, but the shavings, that is, the material cut out when the recording is made, is highly volatile and should be kept away from open flames.

Recording blanks are available in various sizes from 6 inches to 16 inches. However, only the $6-, 8-, 10-$ and 12 -inch types are usually used for 78 rpm recording, whereas blanks used for $331 / 3 \mathrm{rpm}$ recording are the 10 -, 12 - and 16 -inch variety.

Because of the limitations, to be explained later, of the spiral radius nearest the center of the disc, the recording times of the $78-\mathrm{rpm}$ discs are approximately as follows:
6 inch about 1 minute, usually less
8 "
10 " about 2 minutes
12 " about 3 to $31 / 4$ minutes
about 5 minutes

In the case of the $331 / 3-\mathrm{rpm}$ records, the recording times are:

$$
\begin{aligned}
& 10 \text { inch about } 31 / 2 \text { minutes } \\
& 12 \text { " } \\
& 16 \text { about } 71 / 4 \text { to } 71 / 2 \text { minutes } \\
& 16 \text { about } 14 \text { to } 15 \text { minutes }
\end{aligned}
$$

The Cutting Head

We have already mentioned that the cutting head is the device whereby the electrical equivalent of the sound fed into the microphone is converted into mechanical energy. In order that this transformation of energy, from electrical to mechanical, be accomplished without altering the characteristics of the sound, certain requirements must be fulfilled. To show just what these are, it may be best to discuss the manner in which cutting heads function while they are performing this transformation of energy from one kind to another. What we shall discuss, however, relates strictly to the cutting head and for the present does not include the needle, although it is true that the cutting needle or cutting stylus is really an extention of the cutting head armature. Just what we mean by this will be clarified later.

One of the requirements of proper recording is the presence of the full range of frequencies which comprise the original sound as well as the correct amplitude relationship between these frequencies. While it is true that the amplifier system between the cutting head and the microphone, as well as the microphone itself, are parts of the system and can introduce their own effects, very much of the success attained in the inscription of the proper frequencies upon the record blank depends upon the operating characteristics of the cutting head. Thus the frequency response range of the cutter is important.

Just what this frequency range should be, is hard to state and there is a difference of opinion among recording engineers, for there are ways of compensating or equalizing the frequency characteristics of the cutter by suitable accentuating and attenuating networks in the amplifier. However, the majority of cutters in use have a frequency response up to about 6000 cycles, with higher cut-off limits in the better types of units. At the low end, response goes down to about 60 cycles, but here again, it is a matter of cost. Of course the ideal cutter from the theoretical viewpoint would be one which was capable of handling the full range of frequencies from say 30 cycles to 10,000 cycles, but such a frequency range is seldom if ever found in home recording systems, because the general design of the electrical system, as well as the recording blank. By limiting the frequency range of the cutter used with the usual home recording outfit to about 6000 or perhaps 7000 cycles, greater freedom from amplification of surface and needle noises is obtained, and the cost of the devices is kept reasonable. The range of frequencies handled by commercial recording systems is greater than that found in home recording units, being as high as 9000 to 10,000 cycles on the high end and as low as from 30 to 40 cycles on the low end. In the case of home-recording units, the low-frequency limit is between 60 and 100 cycles, being much closer to the higher figure than to the lower.

While it is a fairly simple matter to obtain flat overall frequency-response characteristics in audio amplifiers, the same condition does not hold true in the case of a recording cutting head. Yet certain definite requirements are sought in commercial recording, hence special provisions are made in the amplying system which precedes the cutting head in the form of accentuating and attenuating networks, to correct for the response of the cutter. Inasmuch as the frequencyresponse characteristics of home recording units are not identified other than with the low and high frequency limits, particularly as it relates to the cutter, the average unit must be accepted as is. In the case of commercial units, the manufacturer supplies the required data, even to the extent of stating the setting of the various amplifier controls, as for example in the Fairchild units shown in this volume.

As to kinds of cutters, two are in general use. One is known as the magnetic cutter and the other is known as the crystal cutter. As to principle of operation, they differ greatly, but as to application, they are very similar. In Fig. 8 is shown an illustration of a magnetic cutter assembly. Essentially, this is a movable armature surrounded by a coil of wire, with the entire assembly located between the pole pieces of a permanent magnet. As you can see, the armature is pivoted at one end, the lower end, and the upper end is free
to move from side to side under the influence of the electric current which is caused to flow through the armature winding. The electrical impulses which actuate the cutter are secured from the amplifier connected between the recorder input system, which in most instances is a microphone, and the cutting head.

When an alternating voltage is applied across the terminals of the armature coil, current flows through the winding and a magnetic field is created around the coil. At the same time the armature also is magnetized. Thus we have present in the unit a magnetic field due to the permanent magnet as well as one due to the alternating current. These two fields react upon each other and apply a force to the movable armature. As a result of the manner of pivoting the armature, the only possible motion of this lever is from side to side. Any extention to this armature, as for example the cutting stylus which is inserted into the lower end of the armature, would therefore also move from side to side, but in a direction opposite to that of the upper end of the armature.

When current flows in one direction through the winding, the coil is magnetized so that the upper end of the armature is North. Hence this end will be repelled by the N pole of the permanent magnet and will be attracted to the S pole of the permanent magnet. Hence the upper end of the armature swings to the right, whereas the lower end swings to the left. Of course, you realize that since the lower end of the armature is pivoted, it does not move to the same extent as the upper end.

FIG. 8. A magnetic cutter assembly. This consists of a pivoted armature in a coil which can be encrgized by amplifled signals from a microphone. The upper part of the armature swings in the field set up by the permanent magnet.

If the lower end were free to move, just as the upper end, that is, if the pivoting was done at the center of the armature, the upper end being \mathbf{N} would swing to the right and the lower end, being magnetized S, would swing to the left. When the current through the coil reverses, the magnetic poles created around the coil also change and the upper end of the armature becomes S and the lower end becomes N. The result is that the upper end of the armature now swings to the left, for the upper end of the armature now is S and is attracted to the N pole of the magnet,
thus causing whatever is connected to the lower end of the armature to move to the right.

Thus the electrical energy present in the amplifier is converted into mechanical energy in the form of motion of the cutter-head armature and motion of whatever is connected to the armature. The frequency of motion of the armature is, as you can readily appreciate, determined by the frequency of the current flowing through the coil. The exact nature of movement of the armature is also determined by the characteristics of the current through the coil, that is, whether it is a sine wave or a complex wave.

Taking this action as a whole, you now can understand how, when a cutting stylus is attached to the lower end of the armature and a record is passed beneath this moving stylus, a wavy line will be inscribed upon the surface as shown in Fig. 9. This is an important point to remember for you will later have reference to two motions on the part of the cutting needle. It is this side-to-side motion of the armature which results in the stylus cutting the modulating groove into the record blank. This is called "lateral" cutting.

In connection with this side-to-side motion of the armature, it stands to reason that being a mechanical element, there would be a tendency for the armature to swing past whatever position is set by the amount of attraction of the armature due to the current amplitude. To prevent such action, damping elements are used. These are located in various ways around the top end of the armature, the exact design depending upon the cost of the magnetic cutter; the more expensive the device, the more elaborate this design, for it does have a very material effect upon the general performance of the unit, particularly in connection with frequency responses.

In the simplest of devices, these damping elements consist of two rubber pads located as shown in Fig. 8 by the cross-hatched lines and identified as DP. In the more elaborate units, particularly in commercial recorders, oil damping is used. In this arrangement, the upper end of the armature is extended into an oil

FIG. 9. When signal currents flow through the armature coil of a magnetic cutter, the pivoted armature moves from side to side and the stylus attached to its lower end inscribes a corresponding groove in the record blank.
chamber. The extention of the upper end of the armature moves against the oil.

Figs. 8 and 9 show simple versions of a magnetic cutter. The finished article is more complicated, as you can appreciate, but the basis of operation is as has been outlined. From the mechanical angle, very little service work can be done by the average service organization, other than proper centering of the armature between the pole pieces. In some units a screw adjustment is provided for that purpose; where none is available, such adjustment requires opening of the unit. As to other defects, they may be loss of magnetization by the permanent magnet; hardening of the damping pads so that they do not give sufficiently during the movement of the armature; loosened pads which jam the armature; in general various mechanical defects. In addition, the armature coil may open, but repair of such a winding is not recommended; it is suggested that it be replaced entirely. The construction of some units may be such that disassembly of all the parts cannot be done with ease. When this is the case, it is best to replace the entire unit, rather than to attempt to do a machining job to correct a defect.

Some of the manufacturers represented in this volume offer service suggestions relating to adjustments on such recording ends. The serviceman will be wise who limits his service work to the extent stated by the manufacturers

The Crystal Cutting Head

The other type of recording head or cutting head is the crystal. Although not as popular as the magnetic type of cutting head, it is used in many installations. In principle it is markedly different from the magnetic unit, but in action it performs the same job. As to which is preferable, we have no opinion to render for each has good and bad features of its own. However, it cannot be denied that up to this writing, the magnetic type of cutting head seems to joy greater favor in the expensive commercial installations than the crystal unit. This is by no means a reflection upon the crystal cutter as used in home recording units, for in that category of instruments, there seems little to choose between the two types.

The operation of the crystal type of recorder cutter is based upon a phenomenon associated with quartz crystals. If a slab of this crystal is subjected to an electromotive force, certain conditions are created. The crystal will expand, bend, twist or vibrate depending upon the arrangement of mounting and the axis of the crystal. Whichever is attained depends upon the operating conditions created. In the case of the recorder cutter the twisting action is desired and this is accomplished by mounting one or two slabs of crystal, depending upon the cost and characteristics desired, between supporting members, in such a manner that
one end of the assembly is free to twist. This is shown in Fig. 10.

The cutting stylus is attached to that end which is free to move torsionally. When an alternating voltage is applied to the sides of the crystal, the torsional motion of the free end of the crystal moves the cutting stylus from side to side, in a manner similar to that

FIG. 10. Basic assembly of a crystal cutter. When the electrodes are energized, the crystals undergo a twisting movement in accordance with the signal voltages applied to the crystal faces from the amplifier. These twisting vibrations cause the cutting needle to have a side-to-side movement and so cut a groove, such as that in Fig. 9.
of the magnetic cutter. If this cutter is permitted to act upon a moving record blank, a wave type groove is cut into the blank, the contour of this wave being representative of the alternating voltage applied to the crystal. The larger the amplitude of this voltage, the greater the twisting action, hence the wider the inscribed groove. The flexure of the crystal is a direct function of the voltage applied. Temperature affects this condition, but only slightly.

Design details differ in the various models, but the basis of operation is as has been outlined. As to service troubles in such devices, there is very little that can be done in the average service shop in the cvent that one of these units goes bad. Any attempt to cement a bimorph crystal (double crystal) will seldom result in success, so that it is better not to try it.

Slight mechanical defects, such as a loosening of the various screws and support elements can be easily repaired, but defects associated with the crystal should not be attempted.

Unlike the magnetic unit, temperature has some effect, but even this is not much of a problem in daily use, because temperatures in excess of $125^{\circ} \mathrm{F}$ are needed in order to cause damage and these are seldom encountered in daily use. However, in the event that the location of the system is such that temperatures of this amount may be experienced, the possible results should be recognized.

As is to be expected, since the crystal cutter is in competition with the magnetic cutter, its frequency response range is in line with the magnetic type of unit.

In all of this discussion concerning the motion of the moving elements within the cutting head, it should be understood that the head itself does not swing from side to side. That motion is limited to the moving elements within the cutting head. In fact any tendency towards such motion on the part of the complete head is a defect and calls for definite correction.

The Groove

Two methods of recording upon phonograph discs are available; which means that there are two kinds of grooves. One of these recording methods is that which is standard today, namely the "lateral" or side-to-side recording, wherein the audio voltages applied to the cutting head cause the cutting stylus to swing from side to side and inscribe a wavy line upon the disc. An example of this is shown in Fig. 11. To indicate the difference in the type of groove which is cut with the audio signal applied, that is "modulated," and without any signal applied to the cutter, or "unmodulated," compare Figs. 11 and 12 ; the latter being an unmodulated groove. Note that the action of the signal applied to the cutting head is to widen the groove and to reduce the "land" area existing between grooves.

FIGB. 11, left, 12. A modulated groove is indicated in Fig. 11 by the black wavy lines, the "land" or material between the grooves, being white. The groove of Fig. 12 has been cut with a recorder without sound input. Courtesy of J. P. Seeburg Corp.

The other method of recording is known as the "hill and dale" or vertical. This differs from the lateral in that the depth of the cut varies in accordance with the modulation. This is in contrast to the width being the variable in the lateral system. In the hill-and-dale system the width is constant, whereas in the lateral arrangement the depth of the cut or groove is maintained constant. There are certain advantages to the hill-and-dale method, namely better frequency response, as well as the ability to put much more on to a record, because it is possible to cut more lines per inch, but the system is limited to special apparatus and is not commercially used.

Concerning the character of the groove used in lateral recording, there again we have two types, namely the sharp V and the V with rounded bottom, as shown in Figs. 13A and 13B. Both are used in practice, although in the commercial records the rounded bottom type of cut is standard. The sharp V cut is usually made with steel needles which have a sharp point like $13 \mathrm{~A}^{\prime}$ whereas the rounded bottom kind of cut is made with special needles using sapphire tipped, special alloy tipped, or diamond tipped cutting stylii, all equipped with a slight radius at the tip as shown in Fig. 13B'.

From the practical viewpoint there is no difference in the kind of recording possible with one type of groove as against the other, with the result that steel needles are still in use. The original selection was founded upon the fact that the material available for home-recording blanks was much harder than the wax disc used for commercial blanks and required a sharper cutting tool in order to produce a clean cut. Today, however, special tipped stylii are available as already mentioned and the only justification for the use of the steel needle is its low expense. In comparison with the

other types of needles, it has a very short life, some of them being suitable for about 60 minutes of recording time, whereas others are good for about 4 or 5 10 -inch records. Sapphire-tipped needles on the other hand are good for many hours of cutting time, as are the alloy tipped ones. Diamond-tipped cutting stylii have a very long life.

Depth and Width of Groove

You will recall that we spoke about the depth and width of the groove when we mentioned the basic cut. Both of these constants of the groove, if we may call them that, are of great importance. In the first place the depth of groove, which is associated with needle pressure, has a great bearing upon the quality of reproduction, assuming everything else normal. It also has much to do with the ability to play back the record properly. In other words upon it, with everything else equal, depends successful recording . . . Let's consider this subject in the order in which the various associated points of importance were mentioned.

We said that the width of the groove was determined by the side-to-side swing of the cutting-head needle, which motion originates in the application of the alternating voltage to the cutter head unit. The stronger this voltage the greater the swing of the cutting tool. Now, if you examine Figs. 13A and 13B, you can readily understand how the depth of the cut also determines the width of the groove. If the cut is very shallow it will approach a groove condition which is the equivalent of no modulation, for unless the depth of the groove is sufficient, only the tip of the point will be cutting through the blank material. Some side-to-side motion will be present even at the tip of the needle, but by no means will it be representative of the full amplitude of the signal voltage applied to the cutter system.

When such a record is played back, music and speech sound very "thin" and there is marked distortion as the consequence of unfaithful reproduction of the relative intensities of the different frequencies. Needle scratch is high in comparison because the signal level is insufficient to override the noise.

Another very important condition is created by a shallow cut. If the depth of the groove is insufficient, the needle of the playback pick-up will not ride the groove; instead it will jump out and slide across the face of the record or jump from groove to groove. This is particularly important when playing back home recordings. The material used for such blanks is very much softer than commercial records and one such incident of a sliding needle is capable of ruining a complete record. Then again, it is possible that the tone arm of the playback unit does not ride as freely as it should. When the groove is not deep enough, even a small amount of excessive friction at the swivel of the tone arm will cause the needle to jump out of the groove.
Still another condition associated with the depth of the groove is generally successful recording. If you glance at Figs. 11, 12 and 13 and bear in mind the side-to-side motion of the cutting needle during the time that a signal is being fed to the cutter head, you can readily appreciate how the groove width will
vary with the signal level, being limited to a fixed minimum by the width of the cutting tool point. It is this basic condition which established the amount of land or uncut area between the grooves, as in Fig. 12. If the cut is made deeper, the width increases, even if there is no modulating voltage applied to the cutter, for a greater portion of the cutting tool is digging into the blank material.

Now, if we add to this, the additional cut due to the side-to-side motion of the cutting stylus, we arrive at a condition where for loud signals one groove cuts into the next as in Fig. 14. If this happens, the playback needle will skip from groove to groove. Then again it is possible that the side walls of the groove may not have been broken through sufficiently at the time of recording, but they are so thin that the first or second playback breaks them down and the recording is useless.

The relationship between the depth of the cut, the width, and the land between the grooves is so important that no worthwhile recordings should be made without first making a test cut unmodulated and actually ex. amining the nature of the cut. For best results the land area between the grooves when unmodulated should be about $50-50$. Slight deviations either way are permitted, although some people prefer a drift towards a $40-60$ combination, the greater percentage being the groove. Some manufacturers consider the visual inspection of test cuts or recordings so important as to make available as a part or as an accessory of their apparatus, a small magnifying glass with which these test cuts can be viewed.

Still another important point relating to the depth of the cut is that if the cut is too deep, it may be possible to penetrate right through the coating material and dig the needle into the metal base. This not only ruins the recording, but is a sure way of damaging the stylus. While it is true that certain types of needles can be resharpened, that is no justification for carelessly digging into the metal base of the coated record.

Supplementing what has already been said, it might be well to add that while manufacturers of record blanks try to maintain a uniformity of thickness of coating, all are not the same, so that any one adjustment of cutter head pressure, which means depth of cut, which may be satisfactory for one record, is not necessarily satisfactory for another blank, unless it is definitely known that all of the blanks being used are alike . . . A test cut should be made when new blanks are being used and also when a cutting needle is changed.

In view of the fact that steel needles wear away quite rapidly, it may be necessary to increase the needle pressure each time the steel needle is used, after the first cutting. This, however, should not be done without examining a test cut. The special tipped needles, since they have a very much longer life need
not be readjusted for quite some time, because they hold their cutting edge very well.

In all of the references to depth of cut, we have not spoken about what may happen if too deep a cut is made with low signal level. This may pass unnoted even after a visual examination, for there will be land remaining between the grooves, but another undesired condition will be created. This is the slowing down of the turntable speed as the consequence of the drag of the cutting tool. Such a condition ruins the recording, unless means is available in the playback mechanism to adjust the turntable speed to be equal to that of the recorder while the recording was made. This, however, is difficult for the speed of the recorder is slowest when the drag is at the outer limits of the disc and becomes less and less as the center is approached, so that a confusing condition is created. The user cannot seem to account for the fact that the first portion of the recording is bad but seems to improve as the grooves towards the center of the record are being approached.
Still another condition which is associated with the depth of the groove is that best described as "double talk" or "echo" effects. This is due to having cut so deeply that the walls of the groove are so thin that the side to side movement of the cutting needle, while cutting one groove tends to alter the shape of

FIG. 14. When too loud a signal is impressed on the cutting head, the lateral movement of the needle is excessive and one groove is cut into the space that the next will occupy. This results in the playback needde jumping from one groove to the next. Courtesy of J. P. Seebury Corp.

the other side of the wall separating the groove being cut from the groove already cut. This may also be occasioned by too much signal level at the recording head, resulting in too great a swing of the cutting stylus and reduction of the land area between grooves to a very thin wall, which undergoes the same effects as previously mentioned.

Advance Shoe Recording

Actually the advance shoe is a small accessory available upon some professional type recorders rather than a form of cutting, but in order to include the name
in the caption of this paragraph we associated it with recording. The purpose of this advance shoe is to maintain the depth of cut uniform regardless of variations in the record, in the thickness of the record blank, etc. This advance shoe which may be a ball is located near the cutting stylus, and when adjusted to a certain height permits the needle to penetrate only to a certain depth. The advance shoe rides on the uncut portion of the record. An example of its use is to be found in the Fairchild recorder discussed on that manufacturer's pages elsewhere in this book.

Adjusting Needle Angle

There is general agreement among those whose business is recording equipment design and technique, that the adjustment of the cutting-needle angle with respect to the record being cut, is very important, but there seems to be some difference of opinion as to just what this should be.

For example, the majority of people agree that the face of the cutting stylus should be set at 90 degrees with respect to the surface of the record and that a line drawn along the face of the needle and its reflection in the record should be perfectly straight. Just what is meant by this is shown in Fig. 15, wherein a straight type of cutting needle is used. In the event of an offset type of stylus, the same condition holds, although this may call for a readjustment of the cutter head position so as to create the desired condition. This is shown in Fig. 16.

On the other hand, if you will look through the service notes concerning records published in this

volume you will find several references which do not agree with the aforementioned. You will find some comments which alter this setting from as little as 5 degrees to as much as 16 degrees. Since each manufacturer is referring to his specific unit, it seems most logical when adjusting the cutting angle with that manufacturer's equipment to use his recommended cutting angle. Some of the cutting heads have screw adjustments which move the entire head, whereas others move only the chuck and moving mechanism within the head.

To quote one manufacturer, Seeburg, "When using steel recording needles with a V point, the cutting angle must never be more than 90 degrees and should be less if the recording blanks are uneven or warped. The more expensive needles which have radii at the tip can be used at a cutting angle of 90 degrees provided the blanks are of good quality and perfectly flat. It will sometimes be found possible to have a slightly quieter groove under these conditions. . . ."

The cutting angle has a decided influence upon not only the kind of cut but upon the noise qualities of the cut. If the cutting angle is greater than 90 degrees, as shown in Fig. 17, the stylus is digging into the record and may result in a number of effects. It may chatter or bounce as it is moving across the surface of the disc. . . It may hiss and even give forth a squaling sound, both of which when evident in the cutting, will be evident in the playback. Reducing the depth of the cut or eliminating the chatter by raising the cutting head is not necessarily the remedy, although it may cure the trouble. What is required is to establish the correct angular setting, which under all reasonable conditions is a close approach to the 90 -

FIGS. 15, left, 16 . In some cases, it is recommended that the straight line drawn from the face of the needle should make a 90 degree angle with the record and that the reflection of the needle's face should be in the same straight line as the face. This holds for both the types of needles shown.
degree setting, unless otherwise noted in the manufacturer's bulletin.

If the cutting angle is less than 90 degrees, as shown in Fig. 18, so that the needle is being dragged across the surface, it may give rise to a hiss. At the same time, such an adjustment requires more than the normal amount of pressure in order to secure the proper depth of cut. Any change in adjustment from Fig. 16 to 17 or 18 obviously requires readjustment of the tone-arm pressure.

Because some manufacturers employ different methods of illustration and identification than others and some readers may wish to correlate these data with that of other manufacturers, it might be well to state that our reference to the angle between the cutting tool and the disc, is that existing between the front part of the tool and the disc. We call that the

FIGS. 17, left, 18. If the cutting angle is greater than 90 degrees, as in Fig. 17, then the stylus may bounce or chatter as it moves across the record. A hiss may be introduced if the cutting angle be less than 90 degrees, as in Fig. 18, for here the stylus is being dragged across the surface.
face. This face usually is on the opposite side from the flat side of the cutting tool shank which is inserted into the cutter head chuck. At any rate, irrespective of the design of the cutting stylus shank, the cutting angle is that described. The face of the cutting tool faces opposite to the direction of rotation of the disc. This is illustrated in Figs. 15 and 16 as well as in Fig. 19.

Recording Needles

Cutting heads supplied with modern recorders are arranged to accommodate a variety of cutting stylii. In a few instances, due to some special design features, the manufacturer of the recorder supplies needles with his machine and states that best results are obtained with the needle which he supplies. When such is the case, it is so stipulated in the service notes.

In general, however, the average recorder will accept that stylus which is available of which there are four basic types, which differ in the material of which they are made, the period of useful life, hence the price. The most commonplace needle is that made of carbon steel which has been hardened and ground to a V shape, such as shown in Fig. 19 Although we understand that carbon steel is very hard, the friction
developed in cutting a record is considerable with the result that the useful life of the cutting edge of such a needle is not very great, being between 30 to 60 minutes of cutting time under normal conditions. Cost varies between 10 and 50 cents.

FIG. 19. Front and side views of a cutting needle with the various parts identified.

Such needles being ground to a sharp point cut more easily than others which have a slight radius at the time, that is, as long as their cutting edge lasts, hence require less needle pressure than the other varieties.

The second type of needle is that which employs an alloy insert as the cutting edge. This is somewhat more expensive than the first and has a longer operating life because it is capable of retaining its cutting edge for a longer time. Its shape is like that shown in Fig. 20A. It differs in that instead of making a sharp V cut like that shown in Fig. 13A, the point has a slight radius and the type of cut is like that shown in Fig. 13B. Since the needle point presents a greater

FIG. 20. Different types of neodles. ('ourtcsy of Duotone Co., Inc.
area to the record while cutting, it requires somewhat more pressure upon the needle. On the other hand, it is much quieter in operation, that is, it is productive of a smoother cut, hence less surface noise. . . . And last, but by far not the least, is the important point that these needles can be resharpened and their cutting edge restored. This does not apply to all of them, it all depends upon the brand and when such rehoning is possible, the manufacturer stipulates it in his literature. Cost varies between 50 cents and $\$ 2.50$.
The third type is like the second, that is in appearance, although it employs an entirely different material for its cutting point. This is a sapphire insert. The sapphire being second in harness to the diamond, is very popular as a cutting stylus and with proper treatment affords a useful operating life of about 15 hours of cutting time, after which period it can be resharpened. This is about three times the life of the average alloy-tipped needle. Cost varies between $\$ 4.50$ and $\$ 7.50$.

Last and by far the best uses the diamond-chip insert as the cutting edge. This kind of cutting tool has almost an indefinite life, for the diamond is the hardest of all substances. Naturally it is the most expensive of all of the cutting tools. Some suppliers say that a diamond-chip cutting needle is good for recording 1000 aluminum records and several times that many for coated records.

Of special interest in connection with such cutting needles, is the strange condition that despite their hardness, they must be treated with extra special care. One of the greatest dangers is to drop the cutting head upon the record blank, thus banging the needle point upon the record. Despite the hardness, they are very brittle and will break or chip off. Being microscopic in size any damage will not be visible to the naked eye, and examination must be made with magnifying glasses. But when put to use, a minute chip is sufficient to ruin the recording.

The Shaving

By shaving is meant the material cut out of the disc during the recording process. The character of this material can be used to judge the conditions of recording as well as the condition of the cutting stylus. The same is true of the groove cut in the record.

Generally speaking the shaving should be dark, shiny, and straight. If it is not, something is wrong. If it is gray and the grooves cut in the record are lighter than the unrecorded portion of the disc, it is a sign of cutting with an improper edge; the edge is not as sharp as it should be. A kinky or wavy thread, although of the proper shade to indicate a sharp cuting edge, is a sign of incorrect cutting angle.

One of the problems of recording is the disposal of the thread cut out of the record during recording.

This can be an aggravating thing when cutting from outside-in, for unless the thread is disposed of properly, it may bunch up beneath the cutting needle or it may wind itself around the turntable spindle and pull upon the needle, thus making a non-uniform cut. Theoretically, the design of the cutting head inclusive of the needle chuck and the proper placement of the needle within the chuck, should throw this thread in towards the center of the disc. . . . But this does not always happen. . . . If no automatic means of removing it is available, it becomes necessary to use a soft brush as the recording is being made, for gently brushing the thread in towards the center.
If however, as the result of either negligence or because of some condition relating to improper setting of the cutting needle, the thread bunches up underneath the needle during a recording, nothing can be done other than to fervently wish that everything will turn out all right. Sometimes it does, but in most cases it does not; but to attempt to raise the cutter head and to remove the thread or to attempt to brush the thread away is inviting trouble, for more than likely pressure will be put upon the needle and the recording will be damaged.
The shavings can be used to estimate depth of cut. Considering the normal depth of about .002 to .003 of an inch, the shaving should be dark and about the thickness of the human hair. If the cut is too shallow, the shaving will be very silky and even gray in color. If the cut is too deep, the thread will be very black and thick.
As we stated earlier in connection with these shavings the positioning of the cutting tool in the cutter head chuck is supposed to take care of the gathering of the shavings. Sometimes this can be aided by the use of a round shank cutting needle and turning the needle slightly off line so as to cast the thread in towards the center. This can be done, when necessary with a flat-shanked cutting needle by filing the needle shank at a slight angle, at that point where the needle meets the set screw. This type of correction can be carried out by "shimming" the shank of the cutting needle with a wedge-shaped piece of metal placed between the shaft and the set screw which holds the needle in the chuck. The amount of shift of the cutter is very slight, several degrees, towards the inside. Very often the trouble is due to incorrect placement of the needle in the chuck. What seems to be correct placement is not so because of slight unevenness in the screw at the point of contact with the needle shank, or an unevenness in the flat portion of the needle shank.

Trouble Patterns Visible Upon The Record

The pattern which appears upon a recording blank after the recording has been completed is oftentimes
an excellent indicator of the defect existing in the system, although not necessarily of where the trouble is located. Visible patterns of wheel spokes radiating outwards from the center indicate alternating light and heavy cutting, due to some impulse which is recurrent at definite portions of the disc rotation cycle. Any form of physical vibration or non-uniform motion will cause such a condition. Thus a worn or dirty drive mechanism, chattering gears, non-uniform speed of the motor armature are contributing causes.
Heavy recording on one side of the disc indicates a departure from level mounting of the entire assembly. It is very important that the entire recorder mechanism be perfectly level, and that the rotation of the turntable be constant and that it be true. Improper governor action may contribute to this effect.
Moire or V-shaped patterns upon the disc indicate the presence of vibration or hum occuring at certain intervals, yet not necessarily during the entire recording.

Uneven spacing of the grooves is due to friction in the mechanism which moves the cutting head across the record. This can be caused by any number of things: dirt, strands of shavings, lack of lubrication.

Other troubles which may appear periodically without creating a definite pattern upon the disc so as to afford a clew are:

Loose elements inside the cutting head
Hardened damping pads
Swinging cutter head
Periodical physical shock of the entire recording assembly due to a shift in the position of the mounting upon which it is resting

Induction of momentary hum into the microphone leads

Intermittent in amplifier system
Variation in motor speed during sudden changes in line voltage

Improper action of governor
Slippage of the record.
In the accompanying illustrations are shown the recorded effects of some of the more common defects.

Minimum Diameter of Recording

There exists a very interesting detail of recording, which should be of interest to the man who wants to utilize every inch of available space upon a recording disc used at 78 rpm . For that matter the same applies to the normal use of $331 / 3-\mathrm{rpm}$ records, because it involves the same kind of condition, as well as equipment.

Many people who have made recordings have noted what appeared to be a strange phenemonon, wherein the quality of reproduction seemed to fall off badly as the reproduction of the recording near the center of the disc was played back. This is a definite condition which exists unless corrective measures are instituted, which incidentally are seldom available with homerecording equipment, hence home recording should never be made with groove diameters less than 4 inches.

The reason behind the change in quality, particularly the loss of high frequencies, is that the reproducing needle cannot properly follow the high-frequency undulations inscribed upon the record when the diameter of the groove is less than 4 inches. And the reason why it cannot follow it is that the radius of the tip of the needle will not fit into the cuts made in the walls of the groove. These cuts made in accordance with the movement of the cutting needle under the highfrequency electrical impulses are crowded together to such an extent that the needle just touches the high points or slides over them and the voltage generated in the pickup is not representative of the true amplitude or frequency.

This pinching of the inscribed wave comes about as the result of the difference in speed of travel of the disc beneath the cutting needle at various distances from the center of the disc. For example, in Fig. 21 is shown a segment of the record, actually a quarter of the whole record. If the cutting needle is going to trace a groove at a distance of $51 / 2$ inches from the center at a speed of 78 rpm , over this quarter segment it will make a groove $85 / 8$ inches long. However at a distance of 2 inches from the center of the record,

On the
left is a typical moire pattern, which is generally caused by some sort of vibration or hum introduced at regular intervals. The pattern on the right is formed by light and heavy cutting caused by some sort of mechanical vibra. tion.

the groove traced by the cutting tool would be only $31 / 8$ inches, yet the time elapsed to trace these two grooves would be exactly the same. Obviously then, the speed of travel of the disc beneath the cutting tool is a function of the diameter of the circle being inscribed; the smaller the diameter, the slower the speed of the cutter.

Now, if it takes about .32 second for the cutting tool to make the outer groove $85 / 8$ inches long, it would be possible to record about 2000 individual cycles (approximately) of a 6000 -cycle wave. The waves cut into the groove would occupy a certain space. Now if we consider the inner groove, that cut at a distance of 2 inches from the center, the time required to cut the groove $31 / 8$ inches long would still be .32 second and if we desired to record 2000 individual cycles of a 6000 -cycle tone, the reduced length of the line cut would force squeezing of the individual cycles. This is what happens and to an extent which does not provide sufficient space for the reproducing needle to get into the lines cut in the walls for each of the cycles.

FIG. 21. The quality of a recording is better in the outer grooves than it is in the inner grooves, because the cutting of high frequencies is spread over a greater length of groove near the outside of the record. The needle can follow them better than those near the center of the record.

The result is distortion, in fact the needle may not track at all. The reproducer needle can follow the various bends of the individual cycles when they are stretched out in the outer groove, but not very readily when they are compressed in the inner groove, particularly if the diameter of the inside grooves is less than 4 inches. In the case of $33-1 / 3 \mathrm{rpm}$, the equivalent minimum diameter should be about $71 / 2$ inches.

General Considerations

There are other phases of recording which we are not discussing in this portion of this volume because much excellent material of that character is to be found
among the manufacturers' pages listed elsewhere in this book. We recommend their reading.

Pickups

The electric phonograph pickup is a part of the recorder as well as the record changer and while it has a function which is just the opposite of the recorder

FIG. 22. Assembly of an electromagnetic pickup, which functions just opposite to the magnetic cutter, see Fig. 8, for here the mechanical motion of the pivoted armature induces a voltage in its winding, which is amplified and transformed into sound in the loudspeaker.
cutter, the basic principle of operation is pretty much the same. Whereas in the recorder head electrical energy is converted into mechanical energy, the reverse is effected in the pickup. This is true in the electromagnetic unit as well as in the crystal unit. Suppose that we discuss the magnetic type first.

One basic electrical law states that if a coil is subjected to a varying flux, an electromotive force will be induced, the direction or polarity of which will be determined by the direction of the flux lines. This principle is utilized in the magnetic pickup. In Fig. 22 we show a simple form of the magnetic pickup. An armature is pivoted between the poles of a permanent magnet. As the needle, which is held fast in the needlechuck, moves back and forth in the process of following the groove walls, the armature in turn is forced to vibrate in the magnetic field. As the needle moves toward the outer portion of a groove, the top part of the armature approaches, say the North pole of the magnet while the bottom part of the armature approaches the South pole. The flux through the coil wound around the armature consequently increases so that the voltage at the terminals of the coil also increases. When the needle moves in the opposite direction, that is, toward the inside of the groove, the armature approaches the midposition and the magnetic flux through the coil decreases, until at mid-position the flux is neutralized. As the needle continues moving in this same direction the
top of the armature approaches a South pole while the bottom of the armature approaches a North pole. The flux through the coil again increases but in the opposite direction from the case first mentioned, so that the voltage induced in the armature-coil is also of reversed polarity. Since the armature is compelled to vibrate at an audio-frequency rate, the voltage at the terminals of the armature-coil is an audio-frequency voltage, which, after amplification, may be delivered to a loudspeaker. The resulting sound is a reproduction of the original sound which was recorded on the record.
Although not invariably the case, magnetic pickups usually have a low impedence, ranging from about 50 to 500 ohms. Consequently, a magnetic and a crystal pickup are not interchangeable. If it is found necessary to employ a magnetic pickup, it must be remembered that a suitable step-up transformer must be connected between the pickup and the amplifier.
In the case of the crystal cutter we have already learned that the application of a voltage to the faces of crystal results in a deformation of the crystal. The reverse is also true, namely, if a crystal is twisted or bent, a voltage will appear on the faces of the crystal, the polarity of this voltage depending upon the direction of the bending or twisting. It is this principle which is employed in the crystal pick-up. A phonograph needle is held in a chuck which is mechanically connected to a crystal. As the needle vibrates in accordance with the audio-frequency undulations in the record groove, this motion is transmitted to the crystal to force it to bend or twist first in one direction and then in the other. Consequently an audio-frequency voltage appears on the faces of the crystal, this voltage varying in accordance with the original sound recorded on the record. Crystal pickups are high-impedance devices and may therefore be connected directly to the input circuit of a vacuum tube without the intervention of an impedance matching transformer.

Various defects may occur in pickups. In the magnetic type, loss of magnetization of the permanent magnet will result in a reduction of the output voltage. With age the damping blocks may become hard so that the pickup becomes unresponsive to the needle vibrations. Foreign particles may get in the air-gap and cause a fuzziness of reproduction. Further defects are an off-centered armature and an open-circuited or short-circuited pickup coil. Some of the foregoing defects in magnetic pickups may be corrected by the serviceman. In the case of crystal pickups, however, it is inadvisable to make any attempt to repair the crystal, it being preferable to replace the defective crystal with a new cartridge.

Recently a new type of pick-up unit has been marketed by the Philco Corp. This consists of a source of light, a tiny mirror attached to the permanent jewel stylus, and a selenium photoelectric cell, these being
arranged as shown in Fig. 23. As the jewel or needle follows the variations in the record groove, a lateral or side-to-side motion is given to it, which in turn is imparted to the mirror. Light from the lamp is reflected in corresponding varying amounts from the mirror to the selenium cell, wherein it is transformed from light energy into electrical energy. In other words, the flow of current from the cell is varied in accordance with the sound waves engraved in the groove of the record.
Several interesting problems arose in the development of this unit. Inasmuch as the light energy from the lamp is translated into sound, the usual 60 -cycle source could not be used, as this would superimpose a

FIG. 23. Light energy from the lamp falls on the mirror attached to the pick-up needle and is reflected in varying amounts to the selenium photocell, where it is transformed into electrical currents which are amplified.
hum of the same frequency onto the recorded music. This problem was overcome by energizing the filament of the gas-filled lamp from an $1800-\mathrm{kc}$ oscillator, this frequency being, of course, far above the audible range.

The mirror had to be as small as possible in regards to size and weight, so that the inertia of the vibrating jewel could be kept at a minimum. A mirror, such as is commonly used in moving-coil galvanometers, was mounted on a small block swinging on an axis that floats on a pair of flexible bearings.

Frequency Test Records

Frequency test records are useful tools for demonstrating the overall response of the amplifier and its associated equipment. Different types are made by both Columbia and RCA-Victor, and the characteristics of these records will be found below.

RCA-Victor No. 84522 is a 12 -inch record, the A side of which is continuously variable from 10,000 to 30 cycles. In order to make for easy identification of the different frequency ranges a buzzer signal is injected at $10,000,9000,8000,5000,4000,2000,1000$, $500,200,100,50$, and 30 cycles. The recording is of the constant velocity type for tones above 1000 cycles,
and of the constant amplitude type for tones below 500 cycles. The B side of the record contains two continuous constant-frequency test tones having an accuracy of 0.2%. The frequencies are 433 and 1000 cycles when played at 33.3 rpm , or 1000 and 2300 cy cles when played at 78 rpm .

The Speedy-Q No. 7884 is a 10 -inch record having a frequency range of 5000 to 50 cycles with a verbal statement of the frequency at the 1000 -cycle reference tone and at $5000,4000,3000,2000,1000,750,500$, $300,200,150,100$, and 50 cycles. This record is supplied with a supplementary chart which indicates the frequency response for various needles and pickups.

Columbia Audio-Tone No. 1 has a frequency range from 7000 to 50 cycles, with a verbal statement of what the frequency is at $7000,6500,6000,5500,5000$, 4500, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 700, $500,400,350,300,250,200,180,160,140,120,100$, $90,80,70,60$, and 50 cycles.

Columbia No. 10001-M is a warbled frequency record having a range of 10,000 to 100 cycles.

Columbia No. $10002-\mathrm{M}$ is a recording of a noise spectrum and has a sweep-frequency band which in 12 seconds covers the 10,000 to 40 cycle band.

Columbia No. $10003-\mathrm{M}$ has a frequency range of 10,000 to 50 cycles.

Output Level Indicators

The purpose of an output level indicator is to enable the operator to record at a sufficiently high level so as to obtain adequate response when playing back, without at the same time recording at so high a level that over-cutting occurs with consequent destruction of the groove walls. There are three principle types of output level indicators: the neon flasher, the visual indicator tube, and the sound level meter.

The double flasher neon type of output level indicator is indicated in Fig. 24, which is employed in the Fada Model RE187. The normal operating range of a-f voltage for the cutter is between 60 and 70 volts. Neon tube N_{1}, however, strikes at about 55 volts, so that it will continue to flash as long as the recording is above the ininimum level. Neon tube N_{2} has a resistor connected across it so that as a result of the voltage divider effect it will not flash until the a-f voltage has exceeded its proper range. The single flasher type of output level indicator employs only a single neon tube and the constants are adjusted so that proper operation is indicated when the tube flashes intermittently and for short periods of time.

One form of the visual indicator type of output level indicator is illustrated in Fig. 25. The two arrowheaded leads are connected across the a-f voltage at any suitable point and the circuit constants are designed so that the eye is just closed for normal output level of recording. Undue overlapping of the sectors indicate that excessive voltage is being fed to the recorder.

A sound level meter, as exemplified in Fig. 26, is employed in the Fairchild Model 219-2 recorder. The sound level meter is comprised of a 6 H 6 diode rectifier, a resistor, a condenser, and a $0-1$ milliammeter which is calibrated in decibels. The output voltage is increased to the normal operating level, and excessive a-f voltage is indicated when the meter reads too high.

Shielding

Recorder amplifiers possess a considerably greater gain than is the case of amplifiers in home receivers. This additional gain is needed to make up for the low sensitivity of the microphone. In order to avoid the possibility of hum and noise voltages, this higher gain

FIG. 24. The neon lamp NI strikes at about 55 volts and is a minimum indicator, while N 2, having the 50,000 -ohm resistor across it, will not flash until the a-f voltage has exceeded its proper range of about 70 volts.
necessitates the careful shielding of the input leads of the first tube. Considerable care is taken in the layout of the amplifier to make the input grid lead short, not only for the prevention of the pick-up of hum and noise voltages, but also so that the capacitance between the conductor and its shielding does not cause ex-

FIG. 25. When the tuning eye just closes in this indicator circuit, the a-f voltage is at the proper value, which, if exceeded, is shown by an overlapping of the shadows.
cessively high-frequency attenuation. The inversefeedback leads are also frequently shielded in order to prevent undesired interaction with other circuits.

Equalization

A considerable loss in high-frequency response occurs at the inside of the record due to the fact that the linear velocity is much less here than it is at the outside of the record. Accordingly, it is desirable to increase the gain near the inside of the record so that the recorded sound may possess a brilliancy which is comparable to that at the outside of the record. It should be remembered, however, that very high frequencies cannot be reproduced with the full intensity level of the original sound. This is due to the fact that with increasing frequency the needle-point diameter of the pick-up needle approaches and may even exceed the wavelengths of such high-frequency tones.

PHONOGRAPH NEEDLES

The subject of phonograph needles is in so highly controversial a state as to make it impossible to make definite statements regarding them. In the absence of quantitative data, the following comments are to be considered as tentative and are intended as a practical guide rather than as ultimate truths.

Material

Phonograph needles are made of metal (such as steel, chromium, or a rare-metal alloy), fiber (such as cactus or thorn), or jewel (such as diamond or sapphire). Since the material of which a needle is made has considerable bearing on record-wear, frequency
response, and needle scratch, we shall comment briefly on the various types.

Considering now only those pickups in which the needle is not an integral part of the pickup, the steel needle probably gives almost as good a frequency response as a chromium needle. The ordinary steel needle, however, should not be used for more than a single side of a 12 -inch record or for more than two sides of a 10 -inch record. This is due to the fact that commercial records incorporate an abrasive material whose function is to wear down the needle so as to make the needle better fit the groove. After this is accomplished, however, the abrasive action continues with the result that the needle develops a cutting edge which causes excessive record wear. A shadowgraphed needle, namely, one which has been examined by projection to determine that it initially possesses no irregular edges or breaks, may be used for two sides of a 12 -inch record. Since the steel needle has such a short life, it obviously should not be used with a record changer, since the large number of sides played will result in excessive record wear.

Of the metallic needles, chromium needles have perhaps the best frequency response. In addition they may be used with automatic record changers, since each chromium needle is good for about 24 record sides. Chromium-plated needles are, however, dangerous to use, since any unevenness in plating will result in uneven needle wear and this, in turn, will result in excessive record wear.

Fiber needles may also be employed with record changer equipment, since certain types of them will play from eight to ten sides before they require resharpening. Fiber needles do not have as good a frequency response as steel needles and this becomes progressively worse as the needle becomes duller. To some this may not be too important since the loss of high frequencies also results in decreased needle scratch.

Sapphire needles not only have a very good frequency response but have, in addition, a long life, since they are good for about 2000 record sides. Once a

FIG. 26. The milliamneter, calibrated in decibels gives direct indications of excessive a-f voltage.
sapphire needle which has been used for quite some time is removed from the needle chuck it should never be used again, for extremely excessive record wear would result in consequence of the needle not being placed back exactly in its original position. (This applies more strongly to steel and chromium needles.) If, due to a fall or other cause, the sapphire needle should become chipped, records will be destroyed due to the sharp cutting edge.

Play-back Needles

Play-back needles should be either shadowgraphed straight-shank steel, or else the trailing type. The difficulty with the straight-shank needle is that it may jam in the groove. The trailing needle, which has a bent shape and a blunter point, avoids the difficulty of jamming, but suffers from a rather poor frequency response.

A play-back needle which has too sharp a point will rapidly wear out the bottom of the groove and will also give poor frequency response. On the other hand, a needle with too blunt a tip will be incapable of following the undulations of the record groove.

Never use for play-back, a needle which has previously been used on a commercial recording, for excessive record wear would result. After the first playing the record should not change appreciably in color.

Such change in color indicates excessive record wear and indicates that the needle should be replaced.

Experience indicates that the most practical solution to the problem of play-back needles is the selection of a sapphire point. It is the most expensive of the general run of needles, but best in the long run because it eliminates all of the worries due to possible defects in cheaper needles which require frequent replacement. Considering the usual value of home recordings, any step taken to preserve the character of the recording is worthwhile.

Concerning sapphire-tipped play-back needles, there scems to be some discussion at the time of this writing concerning a change in the radius of the grooves cut into records and the radius of the tip of such play-back needles. Whereas it was generally understood that play-back needles with a tip radius of .0025 inch were satisfactory, it seems that after a period of use of pressing matrixes, the width of the groove in the finished record is increased, so that a larger radius is required upon the needle tip to prevent bottom of the groove travel. According to Radio Service Dealer, who is the source of these data, newly manufactured sapphire play-back needles have a tip radius of about .0027 inch and this seems to cure the distortion which was experienced with some records. The increased radius remains satisfactory for some of the older records which had grooves with the smaller radius.

Chapter III

AUTOMATIC RECORD CHANGERS

We have gathered in this volume a representative collection of data covering virtually all of the automatic record changers manufactured in the United States over the last ten years. In this group are to be found numerous varieties including such general types as "drop," "ejector or throw-off," "turnover," and the combination of the "drop-ejector" type.

By drop type is meant a mechanism whereby the stack of records is supported on two or more oscillating shelves, which are capable of slicing off the bottom record, which then slides down the spindle to the turntable. This arrangement is capable of playing only one side of each record and after the stack has been completed, manual "flopping" of the records is necessary in order to prepare them for the next playing. The majority of the automatic record changers sold during the past few years are of this type.

Incidentally, as you can see after examination of some of the service notes contained in this volume, any attempt to just "flop" the records and place them back upon the record changer would not result in the proper playing sequence. To overcome this difficulty both Victor and Columbia have announced albums of records which are intended to be used on such record changers. These records are arranged so that the renditions are in sequence upon the different records rather than upon the front and back of the same record. For example, in a four-record album for the drop type of changer, the sequence of playings upon the individual records is

$$
\begin{aligned}
& 1-8 \\
& 2-7 \\
& 3-6 \\
& 4-5
\end{aligned}
$$

Another type of automatic record changer is known as the "ejector or throw-off," wherein the record is actually pushed off the turntable into a sort of a hopper where the used stack is formed. In this type of changer, which incidentally never approached the popularity of the drop variety, are employed several different arrangements, which are native to the individual manufacturers, but in general, certain similarities exist among them all.

For example the stack of records instead of being located upon shelves above the turntable, are located upon the turntable. The spindle is movable in that it can slide down into the assembly below the turntable to the extent necessary to permit the approach of the
ejector arm and its contact with the top record already played. This means that the spindle recedes the amount equal to the thickness of the record, thus permitting the ejector arm to slide off the top record, but the remaining records are held in place by that portion of the spindle projecting above the turntable. An example of this arrangement is the RCA record changer identified herein as being used in the U-109 receiver. As we stated, this specific arrangement is not the only kind that is used in ejector type machines. There are various ways in which the record is cast off.

It was mentioned above that in the case of a series of records constituting an album, the second part of a selection was not on the back of the record on which the first part was recorded when the series was to be played on a drop type of record changer. The same is true in the case of the ejector or throw-off type, but here the arrangement is again different, and if when you consider the difference in the way the unplayed records are initially arranged on the record shelves in the drop type and on the turntable in the ejector type, you will see the necessity for the different sequence. The sequence for the ejector type is as follows:

$$
\begin{aligned}
& 1-5 \\
& 2-6 \\
& 3-7 \\
& 4-8
\end{aligned}
$$

Another type of record changer is known as the "turn-over" which is typified by some of the Capehart units. In this interesting arrangement the records to be played-there can be 20 of them at a time-are stacked horizontally in a hopper. When a record is to be played, this stack turns up on end and when in a diagonal position, the bottom record slides out upon the turntable. To prevent the rest of the records from falling, a frame which normally surrounds the turntable moves up to hold the outside records in place. . . .

After the record has been played, it is picked up off the turntable and carried back towards the stack, which again is up-ended. However, before it reaches the stack, a reversing arm comes into play. This reversing arm holds the vertical record momentarily against the record stack. Then the stack is tilted slightly and the reversing arm lets go, thus permitting the record to slide down again upon the turntable. . . . Now the record is reversed, for that side which was played was the side nearest the stack, and when the record slides again upon the turntable, the played side
is on the bottom and the side to be played is upon the top.

After the second side has been played, the record is lifted, but this time the reversing arm does not come into play. Instead the record is moved back upon the top of the stack and the next bottom record slides onto the turntable.

A recent development in automatic record changers is that device which is a combination of the ejector and drop types and is a double-side player. This is saying quite a lot and means that the placement of the record upon the rotating turntable is by means of a drop from record shelves. The ejection of the record after both sides have been played is by ejection into a hopper, although the mechanism is different from that previously described. In this unit, the entire turntable assembly is upon a swivel which tilts, as shown in Fig. 1, so as to permit the record to slide off onto a recess chamber after both its sides have been played.

As to the playing of both sides, this is done by means of two separate pick-ups, located upon a single tonearm. One pick-up makes contact with the upper face of the record when the top side is to be played and after this playing is finished, the upper pick-up is lifted and the lower pick-up comes into position. However, since the direction of rotation of the groove upon the underside of the record is opposite to that upon the upper side when the record is held in one position, the change in pick-ups is also accompanied by a reversal in the direction of rotation of the turntable.

The location of the record in playing position is shown in Fig. 2. As you can see the unplayed records are stacked upon the shelves. When a record is dropped into playing position, it contacts the turntable, which, unlike the conventional, has a diameter equal to only the diameter of the label in the center of the record. This is evident in the service notes which describe the RCA Model RP-151. One motor is used to operate the turntable and another motor is employed to perform the various cyclic operations associated with the tonearm, record changing, etc.

So much for the general description of the basic types of record changers as identified by how the record reaches the turntable and what happens to it after it has been played.

Mechanisms in Automatic Record Changers

It would be very nice if we could say that all record changers are alike. Unfortunately we cannot say that because it is not so, although, as you will learn after examining the service pages contained herein, many are alike, for in numerous instances the same record changer is sold to a number of different receiver manufacturers. However, there still remains a variety of changers with which the average serviceman must become familiar, if he is going to do this type of service work.

At first thought it may appear that the suggestion to become familiar with all types of record changers is a

FIG. 1. When both sides of the record have been played by the pick-ups, shown swung out of the way to the right, the entire turntable mechanism tilts and the record slips off the short spindle into a receptacle. Courtezy of RCA Mfg. Co.

FIG. 2. A new record has been dropped from the pile supported by the record shelves and the pick-up is shown just at the edge of the record.

Courtesy of RCA Mfg. Co.

tremendous task. Actually it is not so because the amount of familiarity needed is more in the form of general information rather than specific actions. Work upon automatic record changers is greatly expedited by the service notes which many manufacturers supply and when such notes are available and they are fairly complete, the functions of the various linkages are easily identified. However, there are times when such complete service notes are not available.

Because of the lack of such operating data in more than a few instances we feel the need for a logical method of approach when an individual faces a new record changer for the first time and has very little data with which to work. We have found that one of the reasons why men have experienced complications when servicing record changers is that they try to observe too many actions at the same time. It just cannot be done; a definite breakdown of motions is essential, otherwise a great deal of time will be wasted.

As we stated before, all record changers are not alike, yet certain basic mechanical similarities exist, not necessarily in the exact way in which a certain motion is attained, but rather in the motion which is needed. For example, the manipulation of the tone-arm must be the same in all cases, because all changers play like sized records, must start at the same point and end at the same point on the record in order to start and end the cycle. In completing this cycle many motions are involved and while it is true that various ways may be employed to accomplish these motions, the fact remains, nevertheless, that like motions must be completed.

Furthermore since it is the playing of the record which starts the tone-arm cycle, that is, when the pick-up needle reaches the last groove upon the record, and this is the same in all changers, it is possible to select the tone-arm as the key point of observation. And since when the pick-up needle starts moving across the record grooves, or is in the first record groove at the start of a record, most of the parts of the record changer mechanism are not moving,-this setting of the changer is the best starting point.

Because the operation of record changers involves a definite sequence of movement of the different parts, observation of the motion of the parts must be along certain lines. First is observation of those parts which are moving as the result of the existing motion and second, is the motion of those parts which are getting set to perform a certain function later.

For example when a record is being played, there is no driving force which is actuating the travel of the tone-arm, other than the fact that the pick-up needle is tracking in the record groove and as the record rotates the needle follows the groove and the tone-arm swings with it. However, at the end of the needle travel, that is when it reaches the last groove upon the
record, the next required operation is that the tone-arm be lifted from the record. This means that some linkage, set off by the final position of the tone-arm at the end of the playing, must go into action. Hence there must be some motion associated with the actual movement of the tone-arm in its swing across the record, which is being set into position to trip when the tonearm has reached its furthermost position at the end of the playing of the record. For example in one General Industries job, this motion is the gradual shift in the position of a lever shaped something like a shepherd's stick. This lever is coupled to the tone-arm swivel. As the tone-arm swings, it changes the position of this lever. Finally when the record is finished, this lever is in such a position that when the needle gets into the oscillating groove upon the record, the hooked end of the lever trips that mechanism which raises the tonearm off the record and carries it back to the starting point.

In another job, one of the RCA units, a lever linked to the tone-arm swivel trips a pawl, which in turn is coupled to two mechanisms. One is a cable attachment which raises the tone-arm; the other is a grooved cam arrangement, whereby the entire tone-arm is swung back to its starting point.

Now, the descriptions of mechanisms given here are not intended as an attempt to describe the entire actions, but rather to lead up to the statement of how the observations should be made upon a strange changer. In other words, commonsense dictates that it is impossible to follow all movements at the same time, hence one motion at a time must be observed. Such is the case in point. . . . Since the end of a playing of a record means that soon after, either the record will be ejected or thrown off, or another record will be dropped into place, certain parts associated with the ejector mechanism or with the record dropping mechanism, also are in motion. . . . But these are not of interest at the moment, for we are still concerned with what happens to the tone-arm. The motion of the tone-arm, starting from the first groove in the record, across the record during playing, and then raised off the record after the playing is finished, is just one half of the cycle. . . . The tone-arm, while raised, must be carried back to the starting point and again lowered to the record for a new playing. . . .

It is necessary, as we said, to find out how the tonearm gets back to its starting point and is again lowered to its playing position. When that operation is observed, the study of the operating cycle of the tone-arm is completed.

We realize solely from experience that such a description can be presented more rapidly than its actual fulfillment in practice. . . . It may be necessary for an individual to watch a half-dozen such cycles at slow speed before he grasps just what is happening. . . . The
slow-speed motion can be attained by rotating the turntable by hand. . . . It may be necessary to remove the turntable time and again so as to note what has happened to those parts which may be located below the turntable. This may be a nuisance, but you just cannot avoid such manifold operations, for if the description of the operating cycle is not furnished by the manufacturer, the serviceman must dig out everything for himself.

After the parts associated with the tone-arm motion have been identified, the next item should be the "Reject" button arrangement. This is the mechanism whereby the playing of a record can be stopped at will and the record changed. The reason for selecting this item as the next in line is because it is so closely associated with the mechanism which comes into play when the pick-up needle has reached the last groove upon the record. . . . The reject button does the same thing that is done by that system which is associated with the tone arm as it moves across the record while playing. In other words, the record "Reject" button does the same thing at any point along the record, as is done when the pick-up needle has reached the last groove in the record. And since the trip mechanism associated with the tone-arm has been identified, it is a relatively simple operation to follow the linkages between the "Reject" button and the tone-arm trip.

While all of these motions are being observed, other things are happening too, but again we reiterate, that only one thing should be watched at one time. . . . Whatever else is happening-let it happen. If you try to examine two different motions, all that develops is confusion.

After having checked the tone-arm cycle and the "Reject" button system, the next system to establish is that associated with the record drop or record throw-off, whichever type of unit is being considered. Since by far the majority of record players are of the drop type, we might just as well speak about the operation of the record shelves. These parts, as has already been mentioned, support the stack of records and slice off the bottom one.

Inasmuch as this operation must be performed simultaneously with the proper movement of the tone arm, there must be some association between the mechanism that moves the tone-arm and that which rotates the record shelves. At the same time, commonsense dictates that the new record cannot be placed into playing position until after the tone-arm has left not only the record, but has actually moved out of the way of the descending record, that is in between the record upon the turntable and the stack. This means that somewhere in the system, a set of wheels or linkages, whichever are being used, are being made ready to swing the shelves at the proper time. To identify what is happening, only the record-shelves mechanism should be observed, nothing else.

In the event that the changer is of the ejector type, record shelves are not used, hence the system to be checked after the entire tone-arm cycle has been observed, is the means whereby the ejector system is brought into play. This system, like the record shelves, can come into operation only after the tone-arm is out of the way, so that two processes exist which should be looked for. One is what we can perhaps call the priming system, that is, the movement of those parts of the ejector system which are being put into operating position by the motion of the tone-arm before it reaches its final position and then the actual ejecting process.

Strangely enough, that assembly of levers, wheels, and gears which makes up the works of a recordchanger unit, has two basic functions: to manipulate the tone-arm properly and to handle the record, so that after these two operations have been observed, it just about covers the lot with one addition, namely the changeover over from 10 -inch to 12 -inch records. . . . If you give this subject a little thought, you will realize that the change from 10 -inch to a 12 -inch record introduces but one difference, namely the positioning of the tone arm when it returns to the record to start a new playing. In other words, whatever the device which is tripped by the presence of a 12 -inch record in the stack, limits the distance of travel of the tone-arm from its furthermost position away from the record upon the turntable towards the record. When a 12 -inch record is on the turntable, having fallen off the stack, the travel of the returning tone-arm is shortened by about 1 inch.

Thus when investigating the action, we seek that agency which is associated with the return of the tonearm to the record as well as the mechanism set into play by the 12 -inch record trip upon the record shelf. . . .

Summarizing what has been said about the method of investigating the drop type of record changer so as to learn about its operation when service notes are absent, the routine would be as follows, which incidentally applies to other changers as well:

1. Tripping mechanism at the end of playing of a record
2. Method of carrying tone-arm back to starting point
3. Lowering of tone arm and return to starting point of 10 -inch record

4. Operation of reject button

5. Operation of record dropping mechanism (rec ord shelves)
6. Operation of mechanism which determines tone-arm return for 12 -inch record.

Troubles in Record Changers

The troubles in record changers can be divided into four parts. The first is that which involves the electrical power system, inclusive of the motor, governor, and whatever gear-reduction assembly is used. The second is the electrical system involving the pick-up. The third is the mechanical system involving the records themselves and this includes improper tracking. The fourth is the mechanical system of the changer itself.

To list all of the troubles which may be experienced in these systems is a difficult matter because of a number of conditions. In the first place, since all changers are not alike in the manner in which various motions are accomplished, it is impossible to state in a general way any trouble which is peculiar to any one unit, for if we do, it is necessary to take cognizance of how that motion is accomplished. Therefore, it seems most feasible to depend upon the service notes which the manufacturers supply and happily, information relative to such troubles is to be found in practically all service notes, even if the operating cycles are not given.

About the only comments that can be made as general information are those which refer to the motors and drive arrangements, the electrical pick-up and records. As to motors and drive arrangements inclusive of the governors, they are covered in another section of this text. The same is true of the drive arrangements as well as the governors. As to such things as friction drive wheels, about the only things that can be said is that since the drive is by friction, the contact between the driving and driven surfaces must be dry, so that proper friction will exist. At the same time it must be clean for the presence of anything which will prevent smooth, even turning will be transmitted to the entire system as a periodic jar. . . . If for any reason the drive arrangement is not dry and free from foreign substances, such as grease, slippage will develop and this means not only a loss of driving power but erratic operation as well.

Concerning pick-ups, the operating principles have been dealt with, as have a few troubles. But since the tone-arm also is associated with the operation of the pick-up, as is the tracking of the needle in the groove, freedom of motion of the tone-arm is important with the further assurance that slippage between the tonearm and the action of that device which is set to trip by the tone-arm motion, does not exist. Also, and this applies more to home-recorded records than to commercial records, the groove in the record is what determines to the greatest extent the ease of tracking. The grooves must be deep enough to keep the needle riding in them, otherwise the tone-arm assembly will slide right across the face of the record or jump from groove to groove.

A trouble associated with records and which may cause a mechanical difficulty by jamming the separator knives of the record shelves, is excessive thickness of the record as well as a rough edge. Both of these troubles are quite common. The rough edge can be rubbed smooth with sandpaper and the excessive thickness also can be remedied by sandpapering the edge so that the shelf knife edge can get between the records. Another commonplace trouble is chipping of the records. This is due to bending of the separator knives upon the record shelves. The remedy is to straighten the knives. How these knives are taken apart is a matter of individual design of the record changer assembly.

Concerning the mechanical assembly of the record changer, a few general statements are possible. In the majority of cases, actual remedies depend upon the construction of the unit and for this we refer you to the manufacturers' service notes.

It is often possible to clear a jam in the mechanism by rotating the turntable in a direction opposite to its normal direction of rotation. To do this the power should be shut off and the turntable rotated by hand. However, before this is done, it may be possible to locate what is at fault by the process of elimination, that is to rotate the turntable (by hand) in the proper direction, starting at the beginning of the tonearm cycle, as previously outlined, and note how far the mechanical system can function before the jammed parts stop operation.
In connection with mechanical troubles, it will prove valuable to remember that mechanical problems are not like electrical problems. . . . The defects are visible. And as far as defects are concerned, they invariably are of certain types, depending upon the kind of mechanical device involved. . . . For example, in the case of gears which are supposed to mesh and turn, gears which are too loose may jam just as readily as gears which are too tight, because the loose gear may get out of line. Gears with burred edges and broken teeth will jam. If lubrication is required, the lack of it may freeze a gear.
If a lever is connected to a pin set into one of the gears, the condition of this lever may stop the gear from turning. The lever may be bent out of line or it may have risen slightly from its normal plane and in that way is applying a force that is out of line with what it is supposed to be. If levers are moved so as to trip a stationary pin or a rotating pin a number of conditions may contribute to the failure of the lever to contact the pin. Either the lever or the pin may be bent out of line; the end of the lever which contacts the pin may be worn away sufficiently so that the contact is not firm enough to trip the mechanism, but instead slides off. It is possible that whatever rotates the pin into position to be tripped by the lever
is being delayed by friction and does not meet the pin at the right time.

In all of these operations it is important to remember that when a changer is being checked, its position may be correctly level, yet when the changer is installed into its normal place in a radio receiver, it may be out of line, so that some part which may be loose is permitted to swing out of correct line and thus cause a jam.

Springs are quite common in record changers and defects may be due to improper return of these springs to their correct condition, at rest or when stretched. Granted that the amount of tension applied to these springs is not supposed to be enough to affect the performance of the spring, the fact remains that it often does.

Push rods which are force-fit into place often come loose and if tripping devices are either attached to them or associated with them, any tendency for this rod to turn, may so displace that point which acts upon the tripping device, as to miss engaging the tripping device completely.

Of the most important considerations of mechanical devices is not to force motion in the device in the direction it is supposed to move. If this is attempted, some kind of damage is inevitable. In isolated cases, it may free the trouble, but this is rare indeed.
In fact mechanical devices should never be forced. . . . Just remember that during normal operation all parts of the changer function smoothly and evenly and that if forcing is necessary, something is wrong.

Last, but by far not the least, always bear in mind that certain parts of rotating or sliding machinery must be lubricated-not all-just some. . . . The customer as a rule forgets all about this during the time that he has the equipment. He thinks about it after something has gone wrong. . . . Lubrication is such a simple matter that most of us are prone to overlook its necessity, particularly when we hear of such things as "it need not be lubricated for 500 hours."
. . . Yet lack of lubrication is one of the most commonplace causes of troubles. . . . Make certain that you check the points which have to be lubricated in accordance with the manufacturer's instructions. . . . Don't lubricate friction drive wheels !

Chapter IV

RCA Model RP-152-C Record Changer

The cycle of operations of a "drop" type record changer can be roughly divided into these phases:

Lifting pick-up from record upon the completion of the reproduction

Moving pick-up away from turntable
Separation and release of bottom record from stack on shelves

Return of pick-up to turntable
Lowering pick-up to first groove in newly dropped record

It should be borne in mind that while these phases can be considered as being separate and distinct, yet more than one may be occurring simultaneously. For example, while the pick-up is being moved off to the side from beneath the stack of records, the shelves supporting these records have started to turn preparatory to slicing off and dropping the bottom record at the proper instant when the pick-up is clear of the descending record. In the following series of photographs you will see how some of these phases of the record-changing cycle overlap, yet because one part of the mechanism may be jammed or out of adjustment and so affect just one of the phases, they may be considered separately.

This particular "drop" type record changer was chosen for analysis inasmuch as it is typical of many now in the field, as far as the record-changing phases are concerned. It will also be found that its recordchanging mechanism will be alike or very similar to many that you are called upon to service. True, you will find variations in regards to motors, turntable-driving mechanisms, and in the levers, cams, pawls, etc. of the changer itself, but taken by and large their functions are similar to those described pictorially below. Once the functionings of the different parts of the mechanism of one of these changers are understood, it is logical that you should have an easier time diagnosing troubles in others.

In order to get a general picture of the functioning of the record changer as a whole, let us first run briefly through the several phases. The pick-up, starting at the outside groove of the record, is carried towards the center inasmuch as the record groove is a spiral. When the pick-up has arrived at the inner groove, a lever attached to the shaft of the tone arm carrying the pick-up, has shifted from its initial position so that it trips a release that starts up the record-changing cycle, the mechanism of which has been idle during the travel of the pick-up across the record groove.

As the tone arm has to be moved off to the side of the turntable out of the way of a descending record from the stack supported by the shelves, it is raised up off the record by means of a wire cable running through the hollow pedestal on which the tone arm turns. This pedestal is turned sufficiently so that the tone arm is swung off to the side. While this is occurring the two sets of shelves, supporting the stack of unplayed records, begins to turn and by the time the tone arm is out of the way, the upper pair of shelves has "sliced" off the bottom record which slides down the spindle onto the record that was just played.

Now the pick-up, still above the playing surface of the new record, starts back towards the turntable and stops just over the outer blank strip onto which it descends. While this is occurring the record shelves have been turning back to their original positions, supporting the stack of unplayed records on the upper shelves. The pick-up is slid across the blank space of the record into the outside groove by means of a spring that exerts just enough force to effect this short slide and no more, because if too much force were exerted by the spring the pick-up might jump the first two or three grooves.

The particular record changer described below is designed to play either 10 - or 12 -inch records, accomodating 8 of the former or 7 of the latter. (The manufacturer does not recommend that the two different sizes be played in mixed sequence.) The above description applies to the smaller diameter record. It can be seen that in the case of a 12 -inch record, the pick-up must be returned to a point approximately an inch further away from the center of the turntable than when a 10 -inch record is to be played. This change of initial placement is brought about by a tripping lever projecting up from the motorboard at the side of the turntable. This trip is of such a size that a 10 -inch record misses it when it is descending from the record shelves onto the turntable, but the extra inch radius of the larger size record engages the trip on the way down and pushes it away from the turntable. The new position of the lower end of the trip under the motorboard limits the travel of the mechanism that controls the return of the pick-up to the record's edge, so that the pick-up descends to the record sooner than in the case of a 10 -inch record. The trip or locating lever remains in the extended position during the playing of the record and returns to its normal position during the early part of the succeeding record-changing cycle.

As far as the adjustments of the record-changing mechanisms are concerned, they are slightly different for individual changers and will be found covered in the service data contained elsewhere in this book. Here we are interested mainly in the functioning of the mechanism itself. You will see that some of the following illustrations are paired: one view of the bottom of the motorboard corresponding with certain positions of the tone arm and record shelves during different phases of the record-changing cycle. From these you
can obtain an idea of just how the different levers, cams, pawls, etc. shift or are shifted throughout the progress of the cycle as outlined in the above paragraphs. Of course, if you have a record changer of this type "in the flesh," so much the better. Then you can place the pick-up near the inside end of the groove of a record on the turntable, which can be slowly turned by hand, and watch the mechanism while comparing its progress with the illustrations below. This is an ideal way to get a complete picture.

FIG. 2. Bottom view corresponding to Fig. 1. The following parts of the mechanism are actuated by the moving of the tone arm, attached to the hollow shaft 6, towards the center of the record: lever 20 ; link $20-1$; friction clutch plate $5-1$, and trip finger 7. This is check point No. 1.

FIG. 4. Bottom view corresponding to Fig. 3. The following parts have moved to new positions: $20,20-1,5-1$, and 7. Compare these with their positions in Fig. 2. This is check point No. 2.

FIG. 5. The pick-up has reached the end groove of the record, which shifts trip mechanism (see Fig. 6) to start record-chang. ing cycle. This is check point No. 3.

FIG. 7. Start of vertical motion of tone arm to lift pick-up from the record. This is check point No. 4.

FIG. 6. Bottom view corresponding to Fig. 5. The trip finger 7 has shifted trip pawl 22 into tripping position through friction clutch (not shown) on upper side of friction clutch plate 5-1. This is check point No. 3.

FIG. 8. Bottom view corresponding to Fig. 7. Trip pawl 22 has been turned further by the tripper dog on motorboard side of main gear 42 which is continually revolving. Pawl 22 shifts main lever 15 so that cam-follower roller at end of $15-\mathrm{R}$ enters cam slot on 42 . The arm $15-14$ frees latch $14-1$ and arm 15-C starts to pull back on lever 16 , to which is attached the pick-up lift cable 2. This is check point No. 4.

FIG. 9. Pick-up at top of its lift. The record shelves have partially turned. This is check point No. 5.

FIG. 11. The tone arm has traveled about ?alf way to position shown in Fig. 13 and it is still raised above the record. The record shelves have turned further. This is check point No. 6.

FIG. 10. Bottom view corresponding to Fig. 9. Lever 16 has moved to extreme right, having thus pulled pick-up to its maximum lift by cable 2. Arm $15-5$ contacts stud pin $5-5$ on plate 5-1 which shifts the tone arm away from the center. The end arms of the main lever 15 pull back on the toothed links 40 and 41 and so actuate the gears 10 that turn the record shelves. (See also Fig. 21.) This is check point No. 5.

FIG. 12. Bottom view corresponding to Fig. 11. The frictionclutch plate $5-1$ has been pushed partially outwards (thus moving the tone arm) so that pin 5-14 becomes latched to link 5-1 by latch pawl 14-1 and so with locating lever 14. The record shelves have been turned further by the inward movements of the toothed links 40 and 41. This is check point No. 6.

FIG. 13. The tone arm is now entirely out of the way of a record that has dropped on to the spindle from the lower of the pairs of record shelves 27, which are here at the end of their travel. When the record falls from the lower shelves, the rest of the unplayed records are supported by the upper halves of the shelves 25 . This is check point No. 7.

FIG. 15. The tone arm has returned to a position just over the outer rim of unplayed record. Record shelves have just started to return to their normal positions. This is check point No. 8.

FIG. 14. Bottom view corresponding to Fig. 13. The frictionclutch plate 5-1 has been moved to the end of its travel, thus shifting the tone arm to its extreme outward position. The locating lever 14 is pushed in the same direction by the pin 5-14. The trip finger 7 has returned to its outer position and trip pawl 22 has been returned to its original position by the main lever 15 pushing on the pin $22-5$. The record shelves have been turned to the end of their travel by the rack gears and pinions 40 and 41 and 10 . This is check point No. 7.

FIG. 16. Bottom view corresponding to Fig. 15. The main lever 15 has started to move back, retracting arm $15-5$ from the stud pin 5-5. The tone arm, still held above the record by the tension of lift cable 2, has been returned by the locating lever 14 being pulled by spring 35. Lever 14 moves clutch plate $5-1$ inwards by latch 14-1. Links 40 and 41 have started to move back and so turn the record shelves. This is check point No. 8.

FIG. 17. The pick-up now rests on the outer ungrooved surface of record. Record shelves are about half way back to their normal positions. This is check point No. 9.

FIG. 19. The pick-up is now in the first groove of unplayed record. Record shelves have returned to their normal positions, with the remainder of stacked records supported by the lower shelves and the upper shelves clear of the edge of the bottom record. This is check point No. 10.

FIG. 18. Bottom view corresponding to Fig. 17. The main lever 15 has been moved further. The pin $15-2$ on arm $15-\mathrm{C}$ has released lever 16 which takes tension of the lift cable 2 , thus allowing the pick-up to return by gravity to surface of the record. The record shelves are being returned towards their normal positions by the action of 40 and 41 . This is check point No. 9 .

FIG. 20. Bottom view corresponding to Fig. 19. The main lever 15 lias returned to its out-of-cycle position, being pushed beyond the cam by the projection of the cam at the end of $15-\mathrm{R}$ and held there by the spring 43. The arm 15-R holds latch pawl 14-1. The starting spring 26 causes pick-up needle to travel across the outer blank space of record into outside groove. Links 40 and 41 have returned to their normal positions. This is check point No. 10.

FIG. 21. The position of the rec-ord-discriminating lever 17 determines whether the pickup returns to the rim of a 10 -inch record or a 12 -inch record. The spring 28-V is partially removed to show the step end, A and B, of 17 , and the latch pawl 17-V pushed up.

FIG. 22. The lever 17 is in the vertical (10 -inch) position. Pin V, on the turned-up end of 14 (see Fig. 14), passing above the latch pawl $17-\mathrm{V}$, on lower end of 17 , as it nears upper step A on 17 just before pick-up is lowered onto record edge near the end of the cycle. See Fig 16.

FIG. 23. The lever 17 is in the slanted (12 -inch) position into which it has been pushed by a descending 12 -inch record. The pin V is passing under latch pawl 17-V which it pushes up as it nears the lower step B in the same part of the cycle described in Fig. 22.

FIG. 24. During the phase of the cycle covered by Figs. 11 and 12, the pin V on 14 slides along the end of the latch pawl 17-V as lever 14 begins to move away. This causes a downward force to be exerted on pin 17-2, which shifts 17 back into its normal vertical position. This view shows 17 about half way back to this vertical position and pin V nearly disengaged from $17-\mathrm{V}$.

FIG. 25. Bottom view when manual index lever is set for 12 inch records. Compare the angle of lever plate 12 with its position in Fig. 20 and the relative positions of the eccentric stud E with locating lever 14 . The movement of 14 being limited here by E, brings the pick-up needle down on the rim of a 12 -inch record, instead of when 14 is controlled only by 17 (Figs. 18 and 22) when pin V stops against the step A (Fig. 21) and the pick-up travels further towards the center and stops on the rim of a 10 -inch record.

FIG. 27. Bottom view when manual index lever is held in the "Reject" position, so that a new record will be dropped onto the one on the turntable before the latter has been completely played. The curved arm 12-1 of 12 moves against pin K on trip pawl 22, which is shifted into its trip position, so that the tripper dog on the upper side of the main gear 42 will start the record-changing cycle. The spring $12-2$ forces the plate 12 back into the 10 -inch position when the button on top of the motorboard is released. This spring also holds 12 in any one of the other three positions.

FIG. 26. Bottom view when manual index lever is set for "Manual" operation. Compare position of plate 12 with Figs. 20 and 25. Stud pin 12-19 releases lever 19 , which is pulled by a spring (not shown) so that its long side swings up against the pin on trip pawl 22 locking this in its out-of-cycle position.

FIG. 28. This shows the tone arm in the rest position with the pick-up over the needle cup. The record shelves have been swung outwards manually so that the played records on the turntable can be removed.
©John F. Rider

ㅌ

(28) IDLER BEARING

(25) IDLER TENSION SPRING
(24) MOTOR DRIVE SHAFT
(23) MIOATING POWER
MTG. FRAME
 IOLER WHEEL
IDLER BEARIMG SHAFT
IDLER WHEEL SET FOR 33// RPM

DAVID BOGEN CO., INC.

MODELS RA6, RAIO MODELS 16RC, 212RC NODELS 16RP, 212RP

DAVID BOGEN CO., INC.

sible to lift the turntable without striking the cutting head carriage in back of motor shaft (26) Fig.A. Motor shaft is machined in two steps (24) Fig. A. If ldler wheel is set to ongage lower step or larger diameter of motor shaft, the recorder is set for

CAUTION:- Handle rubber idior wheol gentiy an the rubber is ground Replace turntable carefully. Turntable shaft will slide freely if inserted properly, Never apply force but rotate gently and (awer slowly into place. t tion, ready for recording.

Sotting Cutting Needra:- (35) Fig.A., silde cutting head carriage all the way beck to the point nearest the hinge of the overhead crossbar assembly. the assembly to a convenient position. In this position the underpart of fastened into place.
 All outting needios have a plat or. Insert the needle so that this flat side
pits into the chuck of the outter
faces toward, and 1s locked by the needle thumb sorew (35) Fig. After An faoes toward, and 1s locked by the needle thumb sorew post at the right of
needio 1s inserted, lower orosibar assembly over rest post
turntable (1) Fig.A. This is the resting pooition for assembly when not re-

 blanks are not recommended, but if "t it desired, refer to "Raising or
Lowering Turntable" under section "mechanical Data". for necessary adjust- ments.

[^0] Power Coneumption:-
Yodel $212 \mathrm{RP}-35$ Watts
Model $16 \mathrm{RP}-117$ watts
Model $16 \mathrm{RC}-192$ watts
Model $212 \mathrm{RC}-110$ watt:
Model RA6 - 70 watts
Model RA10 -75 watts
For 110 volts AC 60 cycle An AC cord and plug is provided and connection is made by means of an AC
 Preparing Recorder for Operation:eans of slip hinges and sot on side. Pickup and crosebar lock sorew (30)
 car be lifted free of rest post (I) Fig.A.

Set dual action control lever (4) Fig.A on outtinghead oarriage (33) Fig.A
to up or horizontal position. Alway keep lever in this position only lower. to up or horizonta

Set recorder for $33-1 / 3$ or 78 RPM, at whichever apeed it is desired to record. On the Models 16 RC or 16 RP apeed change is accomplisind by
speed change control knob, which is located on bese plate in lower left hand speed change control knob, which is inder to eithor 33-1/3 or 78 RPM as desired
corner (9) Fig. Turn
and indicated by engraved plate under knob.

On Models 212RC or 212RP, speed change is effected by reversal of idier drive
Before making speed ohange on Models 212RC or 2l2RP, make sure to release This is accomplished by means of the idler release knob, loasted in the upper left hand corner of the base plate (of the left to position marked "OFFi on indicating plate, preas จษะโะ втөрок पо
post

To record from microphone, proceed as follows: First, make certain that
volume" (14) Fig.A. are turned all the way to the left to the noff" or "on
${ }^{\text {Turn }} \mathbf{~ s w i t o h}$ or to "Music" $\stackrel{1}{8}$

 to non on the scelle for maximurn peaks. If the average gwing of the neadre
goes beyond non the voiume 1 s too h1gh, and should be reduced by turning the control down toward the loft. If the needie barely swings on the lower
the

 direction all the way to 1 ts stop until it assumes a horinontal position. 1 ft cross-bar and swing 1 t over to rest post on the right. Bofore infling
 thread in metal contalner, as thread is inflammable. This precaution is not Recessary with Phonorlex. NoTES: Recording 1 ivel meter operates only in
Record position of nout put Selector Switch". If microphone 1s used close by recorder whili or ocouting, feecbeck may ocio or. Th1s 1 s denoted by a squeal or howl. To remedy, merely remove speaker plug while recording.

MODELS RA6, RA10 KODELS 16RC, 212RC MODELS l6RP, 212RP

${ }^{\text {in }}$ proper volume level as described paragraph above marked "To Record From Microphone" but use control marke Place crossbar assembly in recording position and record as cescribed proviousiy. To make a recording of a cormercial record (dubbing) the procedure
is the same as described for radio recording, except that an external phono1s the same as described for radio recording, except that an external phonooxternal phono pickup (high Impedance type only) to "External Input" jaok
by manns of an ordinary telephone plug and proceed with all other adjustments

DAVID BOGEN CO., INC.

 mix when recording \quad mith microphone against a musical background connect. To Mrcrophone 1 n manner described under Paragraph "To Record From Microphone"
 proper swing using both volume controls and proceed with recording in usual manner described above. Mixing can aliso be accomplishod for Public Address
ase by using the two vol ume controls on the amplifier panel simultaneously.

[^1]
 witch is in the "off" position. Always use the Af power switoh to start and
 to engage at the beginning of recording and to disengage when you are through recording.

DAVID BOGEN CO., INC.
MODELS 16RP, 212RP

HODELS RAG, RAIO
DAVID BOGEN CO., INC.

When test or short recording is taken in order to save blankis space, it is est recording, raise control lever, move cross bar assembly to rest post it is possible to continue the cut just where it left off in the previous out. The RALO and RA6 recording amplifiers have been especially designed and built for these recorders and are recommended to assure best results. However, im , podances and connections. Note that the recorder playback pickup works into IMPORTANT:

Always lower dual action control lever slowly.
Take care of Acetate shavings. They are inflammabie.
crassbar assembly over record blank.
Then lifting crossbar all the way over to change needle or oil lead screw,
make sure that carriage is either locked (lever down) or all the way bogen recorders compensate automatically for variation of drag and will not cause eny "wows" due to change of motor speed uniess the turntable has been
accidentally bent out of true or if the "floating power" motor mount ing has
become loose either in shipping or for any other reason.

Other possiblo causes for "wows" are as follows:Record Slipping:-
This may occur if the offset drive pin (27) Fig. A. were removed to play a
comercial record and it was attempted to record without replacing it. Al-
ways bure that the drive pin is in place on the turntable before recording.

Overhead Drive Screw Binds (9) Fig.A.
alignment thereby causing the drive screw (9) Fig. A. to bind. Adjustment
of the drive screw is described under "Crossbar Assembly".
Motor Drive Shaft or Idler Wheel Binds:-
The recessed turntables on Bogen recorders prevent the possibility of reoord
shavings falling underneath the turntable and becoming snarled or enmeshed shavings falling underneath the tumtable and becoming snarled or enmeshed come snarled in the motor shaft or idier wheel bearings (\#24-26-28) Fig. A. or (2-3-6-8-11-12) Fig. C, causing binding at any one of these points result
ing in "wows". If this occurs, carefully clean all shavings or foreign material from these points and make certain that all points are properly MODELS 16RP, 212RP All recorders are carefully adjusted for proper driving apeed, motor torque and pressure. However, there is a remote possibility that these adjustments might be loosened or jarred out of alignment. Check 1dier wheels (26) Fig.A
for $12^{n \prime}$ Models or ($8-12$) Fig. C. for $16{ }^{\prime}$ Modols, making cortain that no oij or grease is on the rubber surfaces of 1dier whe日la mhig certain that no oippage. Also check 1dier bearing arms (28) Fig. A. on 12^{H} Modols or (3-6-11) Fig. C. on $16^{\prime \prime}$ models to determine whether all parts move freely and are not Fig.c. for 16^{n} models, to be certain that these springs are maintaining tension, and that springs bring idier wheels into engagement with motor
drive shaft and turntabie rim when idier release knob on $12^{\prime \prime}$ Models is in

Recording Blanks:-
Hon cutting Acetate blanks, the needle should be adjusted to protruad $3 / 8$
of an inch from the cutting head surface. It 1s recommended that sapphire
needies be used for best results on Acetate, although steel needles are satisfactory. When cutting Phonoflex blanks, a short cutting needio should
be used and it ahould be inserted all the way in as far as 1 t will go before locking in position.

When cutting Phonoflex, the needle should protrude as little as possible from the cutting head surface.

It is recommended that steel needles be used for outting phonoflex. Steel
needles should be changed after cutting the equivalent of three $12^{\prime \prime}$ double
faced blanks.
ADJUSTMENTS:
 point to designate the depth of cut adjustment. The indicator moves up for
a 11 ghter cut and down for a deeper cut. Meke adustment on a blank record section as a teat, varying the depth of cut until the desired cut is obtained. the record is too dry end should not be used. Properiy cut thread should gleam and should not crumble when handled. Only fresh record blanks should
be used.

To Raise or Lower Turntabie:this adjustment 1 s changed, make sure that orosabar is horizontal to recor
blank within 006". (Refer to "Mechanical Data")

To Take Up Wear on End Play:-
Sorew and Nut at right end of square crossbar (6) Fig. A. When a "pattern"
or 1mper fection of cut groove 1s visible, loosen nut and screv in end play or imperfection of cut groove is visible, loosen nut and screw in end play
adjusting screw by hand. make adjustment carefully. Too tight an adjustment w1ll cause the motor to slow down and produce ${ }^{\text {mows }}$. Too loose will
cause an uneven groove cut.

To Change from 78 to $33-1 / 3$ RPM:- Reverse 1dler drive wheol on $212 R C$ and 212RP,
To Change from 100 11nes per 1nch to others:- Standard recorders are sup-
 lead acren.

To Change for Inside-Out Cutting:plied to cut outside-in. TO change elther type machine for outside-in inside-out, a set of special $\frac{70}{\text { To Chano }}$ Cutung
further into chuck or bringing needie out further before locking in chuck. On Models 16 RP and 16 RC angle of needio can be changed by adjustment collars
at the rear hinge of the cutting head. F1g. $\begin{aligned} & \text {. }\end{aligned}$ wire cutting angle adjustment key is furnished with the se modelis and should be inserted as shown in diagram Fig.D. Into two holes provided on hinge aollars. By moving these
collars up or down, angle of cut can be changed.

NoTES: - Due to a new design principle of the pickup, in which the needle
is the armature, needles of $.068^{n}$ must be used. Ten needies are eupplied with the recorder.

(C)John F. Rider

DAVID BOGEN CO., INC

Play Ba									
Insert playing needle in Playback pickup and place pickup on record at point where recording was started. Turn motor switch on and adjuat "Volume" control up to desired level.									
An external speaker may be used in place of the internal speaker by oonnecting a plug to the speaker leads and inserting it into the jack provided on the panel to the right of the tube opening. This will automatically cut out the internal speaker.									
If a commercial record is to be played, remove the offaet drive screw on the turntable.									
e meter will not register on playback, but on recording									
adio Recording or Dubbing:-									
To record from radio or to dub another record, an external input jack is provided on the panel to the left of the tube opening. Conneot two wires from voice coil of radio loudspeaker to ordinary telephone plug and insert into this jack. Turn "Play-Record" switch to "Record" position. Tune radio to desired station and adjust for proper recording level as described under "To									
Record from Microphone". Proceed with recording as described in that seotion.									
A record may be dubbed by plugging an external phonograph (High Impedance) into the dubbing jack and proceeding with recording as for radio.									
Amplifier Connections and Data RAlO:-									
Figure G shows the connections and cables for the portable recorders Models $212 R P$ and $16 R P$ when used in conjunction with the Model RAlO recording amplifier.									
The cables are furnished with the amplifier and their connections are clearly marked in the illustration. Please note that the recorder AC cable plugs into the receptacle on the amplifier, and the amplifier connects to the AC supply line directly.									
The RAlO Recording Amplifier has a power consumption of 75 watts, on 117 volts AC, 60 cycles.									
Tubes Used: 1-6F5G, 2-6C80, 2-6N6G, 1-5Y4G.									
The combination of the Model RAlO amplifier and either the Models 212RP or 16RP portable recorder is equivalent to the standard models 2l2RC or 16RC complete recording systems. The operation of the oomplete combination unit is described in this instruction book on page 8 and this may bo used in its entirety in the operation of the portable setup as illustrated in Figure G.									
Service Note:- The combination Models 212RC and l6RC have been designed so as to give quick and easy access to the tubes in the amplifier should it become necessary to do so.									
The amplifier is fastened to the front of the case, which is hinged on the bottom. Removing two screws in the upper corners of the large control panel, and two screws on the SIDES of the case, near the front, allows the amplin fier to swing forward on its hinges. All tubes are now acoessible for test or replacement. Figure E shows the position of these tubes, as well as the plug and socket arrangement for the amplifier.									
Should it become necessary to service the amplifier, it may easily be removed by disconnecting the sockets shown in Figure E, then removing the four mounting screws on the swinging front of the case. This front may be entirely separated from the case proper, as the hinges are slip type.									

re folned to one plug which is to be inserted at the amplifier. The cable elves its power from the amplifier and the amplifier connects to the AC supply ine by means of the AC cable provided.

The RA6 amplifier has a power consumption of 70 watts, on 117 volts $A C, 60$
cycles.
Tubes Used: -1-6J7G, 1-6K5G, 1-6L6G, 1-6X4G.
peration of RA6 Amplifier and Recorder:-
Refer to figure in this description.
cables as shown.
Turn amplifier on by rotating "Volume" control in a clockwise direction until a click is heard. Keep "Volume" control down, however, until ready to

Turn "Tone" control full on to the right in a clockwise direction. This is the brilliant position and is preferablo in recording, as it is essential Place "Record-Play" switch in "Record" position.

Turn "Volume" control to the proper recording level which is indicated by
the swing of the needie on the meter. To determine proper level place micthe swing of the needie on the meter. To determine proper level place mic-
rophone before the person making the recording and heve him speak in a normal tone. Advance the "Volume" control until the needle swings to "O" on
the scale for maximum peaks. The needie should not swing above "on at any After recording level has been determined, make sure cutting head carriage is set ready for recording as described in paragraph To Record it Slowly
 through recording, turn lever beck counter clockwise to its horizontal posioff, iff crossbar and swing it over to rest post on the right. Before amaging lead screw. After recording collect cut thread from record and mable. This precaution is not necessary with Phonoflex. Monitoring during recording may be done with earphones by plugging into jack on upper right of panel.

CONTINENTAL RADIO \& TELEV. CORP.
 RC51, RC52, RC53

ISSUE A 1941
SERVICE MANUAL

RECORD
 CHANGER

OPERATING INSTRUCTIONS

SETTING

Briefly, the Operating Instruction Manual as supplied to the customer contains the following:

MOUNTING

The changer is held solid by three channel shaped nuts under the changer. Loosen, three complete turns only, but do not remove. Tighten again for reshipping.

CAUTIONS

Either twelve $10^{\prime \prime}$ or ten $12^{\prime \prime}$ records, not intermixed, may be played. A starting groove or eccentric inside groove are not needed for automatic operation.

Do not use force to start or stop changer mechanism.
Do not leave records on supports when changer is not being used as they will warp and cause trouble in changing. Keep all records in albums.

The last record in the stack will keep repeating until the changer is stopped.

The needle should never require replacing with normal use-Never drop the needle-Never remove and then replace the same needle.

The top of the record holder post may be turned to either the $10^{\prime \prime}$ or $12^{\prime \prime}$ position. When the record holder clip is snapped toward the center, the changer is set to play the size record indicated on the clip.

LOADING

The records are placed over the center post, resting on the offset of the post, in the center, and the record post on the outside edge. Snap the clip down on top of the stack of records.

STARTING

Turn knob to ON position, after changer has at tained speed turn the knob to REJECT position and release, the entire stack of records will then play through.

REJECTING

Turn knob to REJECT and release. This may be done any time a record is playing.

UNLOADING

Turn knob to OFF, remove center post by pulling up, remove records, reinsert center post, turning until it drops into place.

THE CHANGE CYCLE

When the pickup (9) comes to the end of the record, screw (55) on the pickup mover arm (54) pushes against the trigger bracket (35 F) at point (X) starting the change cycle. This could also be done by turning knob (12) which causes lever (52) to push bracket (35F) at point (X).

This releases starting bracket (30) at point (Y) and allows (30) to protrude at point (Z), thereby becoming, in effect, one of the missing teeth in the large gear (35). The motor is constantly revolving the turntable, pinion shaft (21), and pinion gear (21B) at the toothless part of (35). When bracket (30) is released it engages a stud at the bottom of pinion gear (21B), starting the large gear (35).

As the large gear (35) begins its one revolution for a complete cycle, the raising pin (60) is pushed up by the outside ridge of gear (35) to remain there keeping the pickup above the record surface, until the cycle is finishing when the pin (60) is allowed to come down.

As soon as the pickup is above the surface of the record, the roller of mover arm (54) is pushed by the cam on (35), to move the pickup out beyond the edge of the record.

At $1 / 3$ rotation of gear (35) the end of mover arm (54) enters the outside groove of the cam on (35) and also the end of the " Z " lever (63) is beginning to be pushed by pulley (35C). This "Z" lever (63), from $1 / 3$ to $3 / 4$ rotation of (35) is in the process of turning 135° and then back, shaft (4 E) in the record holder post (4). As (4E) turns, its cam top pushes the record remover (4 F) toward the spindle and thereby pushes
one record off the edge of (4B) and allows the record to fall on the turntable.

The $1 / 4$ remaining distance that the large gear travels is used to bring the pickup (9) back to the edge of the record and set it down at the correct place for either a 10 or 12 inch record.
This is preset by turning the post (4) which rotates size cam (40) to either the 10 or 12 inch position, locked in place by the pressure of the detent spring (44). As this cam is rotated, it pushes the size lever (73) to either of two positions, and by means of its funnel shaped bracket at the end, guides the size switch (33) on the revolving gear (35) to the proper position opening either the 10 or 12 inch track and, therefore, directs the roller on the mover arm (54) to travel the correct track on the gear cam (35) setting the pickup over the proper place on the record, 10 or 12 inch.

Also, in this final $1 / 4$ revolution the starting bracket (30) is being moved back to its starting position by hitting the reset piece on the separating plate (36). When (30) is moved back, it is again caught at (X) by trigger bracket (35 F) ready to be released to start a future cycle.

As the larger gear (35) is approaching the completion of its one revolution, the pickup lift pin (60) is riding down the cam track and allowing pickup (9) to set down on the record.

Just as the gap on the large gear (35) meets the pinion gear (21B), and (35) stops, the detent spring (75) snaps against roller (35C) and holds gear (35) in this position completing the change cycle.

SERVICE ADJUSTMENTS

IF CHANGING CYCLE FAILS TO STOP

With the center post (3) out remove the large nut (2) in the center of the turntable (1) and lift off the turntable. Loosen the two screws (23) this will free the large cast gear (35). Push these screws to the point where the small gear (21B) is free in the blank part of the teeth in the large gear (35), but as far as possible from the starting teeth of the large gear when it is in the locked or stopped position. Tighten the screws (23) in the slots firmly and re-assemble the turntable and nut. Check and see if the starting lever (30) on the underside of the large gear (35) is cocked by trigger bracket (35F) when the large gear makes a complete revolution. If not, check springs (35A) and (35B). Spring (35A) pushes lever (30) to tbe engaging position when released by trigger bracket (35F) held against lever (30) by spring (35B).

PICKUP ARM ADJUSTMENTS
 VERTICAL MOVEMENT

To adjust the height of the pickup arm (9) turn the knurled screw (9I) on the underside of the pickup arm (9) directly above the pickup arm lift shaft (60): Turn the screw (9I) counter-clockwise to raise the pickup arm, and clockwise to lower the pickup arm.

HORIZONTAL MOVEMENT

If the pickup arm (9) does not come down on the record so the needle first touches the record about $1 / 8$ inch from the edge, an adjustment is required. The inside part of the large gear (35) has two tracks, the inner one for ten inch records and the outer one for twelve inch records. It is only necessary to set the pickup (9) for one size, either the ten, or twelve inch. Turn the large gear (35) around until the roller pin in the mover arm (54) is just about to leave one of the tracks. If the pin of the mover arm (54) is in the inside track a ten inch record must be on the turntable and if in the outside track a twelve inch record is required. Now loosen the two screws (57 and 59) that secure the pickup arm shaft (9D) to the mover arm (54) and turn pickup arm (9) to correct point. Tighten screw through the slot first (59) and then the set screw (57).

The pickup arm shaft (9D) has a small spring (58) fastened to it underneath the changer to push the needle over into the first groove on records without a starting groove. The force the spring (58) exerts is adjusted by moving the hook in the end of the spring (58) to another hole in the hook plate (62). Facing the underside of the changer with the plate (62) in the upper left hand corner, moving the hook in the spring (58) to a hole to the left will increase the tension, to the right will decrease the tension. If the needle jumps several grooves when pushed over the spring tension is too light, while if the arm does not move all the way over to the first groove more spring tension is required.

TRIP ADJUSTMENTS

The position trip adjustment is a screw (55) located near the end of the mover arm (54) underneath the changer. To trip earlier turn the screw (55) clockwise, to trip later turn the screw counter-clockwise. Lock adjustment with nut (56).

RECORD HOLDER POST ADJUSTMENTS

With the changer properly loaded the bottom record on the stack should rest for about to to $\frac{1}{13}$ of an inch on each side of the top (4B) of the record holder post (4), if not adjust as follows: With the center post (3) out remove the large nut (2) in the center of the turntable (1) and lift off the turntable. Loosen the two screws (18) in the slots in line with the record holder post and the center. Push the screw heads (18) the required amount toward, or away from the record holder post (4) and tighten the two screws (18).

The top of the record holder post (4) is fastened by the shaft on (4A) inside the post to the size cam (4D) underneath, which has two rectangular holes into which snaps a spring arm (44). The pressure this arm
(44) exerts on the above size cam (40) may be adjusted by the screw (45) which presses against the arm (44) The arm (44) should press firmly against the size can (40) so it will snap tightly into either of the two holes When the spring arm (44) is in the rectangular hole farthest from the outside of the size cam (40) the top of the record holder post (4) should be in the ten inch position. If the screw (45) is too tight it will be harc' to turn the top of the record holder post (4). The siz. cam (40) is fastened to the shaft of (4A) inside th. record holder post (4) by two hex head set screws (41)

If both sides of the record pusher (4F) on the top of the record holder post (4) do not push against the lower record at the same time, loosen the two hex head screws (41) and turn the top of the record holder post (4) slightly to the proper position. Tighten the screws (41).

SETTING FOR 10 OR 12 INCH RECORDS

The edge of the size cam (40) pushes against a knurled screw (71) on size change lever (73). This sets a switch (33) on the cam part of main gear (35), for the pickup (9) to drop for either a ten inch or twelve inch record by causing pin in the arm fastened to the mover arm (54) to travel through one of two tracks in the inside of the large cast gear (35). After adjustment is made tighten the lock nut (72) on the knurlec screw (71).

RECORDS FAIL TO DROP

If a record fails to drop during a changing cycle, but the record pusher (4F) on top of the record holder post (4) is operating and the adjustments under "Record Holder Post" are correct, proceed as follows: Set the large gear (35) in the locked position and the top of the record holder post (4) in either the ten inch or twelve inch position. Loosen the single hex head screw (70) which secures a "U" bracket (69) to the inside shaft (4E) of the record holder post (4) underneath the changer. Turn the shaft (4E) slightly until the sides of the record pusher (4F) are about of an inch back of the edge from where the records drop. The hex head screw (70) should now be firmly tightened.

While the large gear (35) makes one complete revolution, during a changing cycle, the pusher arm (4F) should extend past the edge from where the records drop, and return.

NOTE I

50 CYCLE OPERATION

If operation is desired on 50 cycle current, a small spring (15), see parts list, must be added to the motor shaft in the following manner:
With the center post (3) out, remove the large nut (2) in the center of the turntable (1) and lift off the hand. Hold conversion spring (15) in the right hand turntable. Hold motor rotor with fingers of the left with the extension upwards. Hook lower end of spring (15) over edge of rotor shaft drive pulley and with a downward twisting effort in a direction to unwind or enlarge the inside diameter of the conversion spring (15) force down over entire pulley length. The extension which is provided for ease of assembly only, should then be sprung away from the pulley sufficiently to allow it to be snipped off with a pair of disgonals, at the spring surface so no protrusion will remain to impair operation of the drive pulley. The motor shaft pulley thus enlarged will provide proper turntable speed with the motor operating on 50 cycle current.

NOTE II

RC-50 is standard 60 cycle record changer with Alden type socket for A.C. connection.

RC-51 is standard 60 cycle record changer except spring bushing has been added to motor shaft to increase size and provide correct speed on 50 cycle. Same A.C. connection as RC-50.

RC-52 is standard 60 cycle record changer with standard A.C. cord and plug.
RC-53 same as RC-52 except with 50 cycle bushing added as on RC-51.

TOP VIEW - COMPLETE

BOTTOM VIEW

GEAR AND BEARING ASSEMBLY REMOVED

1	RC-6000T	Turntable only	\$1.70
2	RC-3025	Turntable nut	15
3	GA-35	Offset center post	1.35
4	GA-31	Complete record changer post	3.00
5	RC-5003	Record clamp (Plastic)	. 20
6	RC-5002	Record changer shelf cap (Plastic)	15
7	RC-2003	Record shelf support post	. 65
8	RC-2005	Pickup arm support post	. 65
9	GA-32	Complete pickup arm assembly	7.75
10		Needle screw (Phillips type head)	15
11	RC-6008	Lifetime needle	1.50
12	RC-5001	Knob (Plastic)	10
13	RC-5000	Escutcheon (Plastic)	. 20

49	P-2328	Spring washer 50 GA-15	AC switch lever and stud assembly
		$\$.05$	

51 P-4626 Tinnerman clamps for mounting escutcheon
(13)1/2 doz.)

52 RC-4012	Reject lever		
53	RC-4003	Reject lever spring

.05

54 GA-27 Pickup arm mover assembly (with parts below to 59 , inclusive 1.50
$55 \mathrm{RC}-7002 \quad 8-32 \times 1^{\prime \prime}$ slotted screw, headless
. 05
56 RC-7024 Hex. nut(1/2 doz.) . 05
57 P-2729 Set screw(1/2 doz.) . 05
58 RC 4018
58 RC-7016
$60\left\{\begin{array}{l}\mathrm{RC}-3034 \\ \mathrm{P}-1399\end{array}\right.$
61 RC-7029
62 RC-1030
63 G-29
64 RC-4013
$65 \mathrm{RC}-3027$
P-206
P
P-214
P-269 A
67 RC-1006
$68 \mathrm{RC}-4001$
69 G-28

70 P-2692
71 RC-7000
72 P-993
73 GA-12 Size change lever as sembly (complete with screw \& lock nut)
.25
74 RC-4002 Size change lever spring 75 GA-34 Wire detent spring and bracket

MOUNTING HARDWARE
RC4010 Record changer mount-
ing spring, $1 / 2$ doz......... $\$.10$
RC7017 Record changer mount-
ing screw 05
P4781 Record changer mount-
ing bracket 10
Record changer mounting bracket (Slide-A Way only)

SLIDE-A-WAY PARTS

P4692	Changer base	\$3.20
P4528	Roller	15
P4529	Stud	10
P4548	Washers1/2 doz.	. 05
P413	Hex nut1/2 doz.	. 05
P424	Lock washers 1 doz.	05
P4693	Slide rail	. 30
P4523	Right door bracket.	. 40
P4524	Left door bracket.	40
P4526	Roller	15

All prices quoted are list
All parts should be ordered through local Admiral Distributor.

Shipments are F.O.B if ordered direct from the factory. When remitting in advance please include postage.

A handling charge of $\$ 0.25$ will be made on all orders under $\$ 0.75$ list.

Prices are subject to change without notice.

CONTINEN'TAL RADIO \& TELEV. CORP.

TOP VIEW - 1, 2, 3, REMOVED

BOTTOM VIEW - COMPLETE

14 RC-6000	M Motor only, 60 cycle (Type I or II) Type I shown $\$ 5.75$
15	50 cycle bushing (Fits over motor shaft, see note I)
16	Idler wheel 1.00
P-1518	$\left.\begin{array}{l}6 / 32 \times 5 /{ }^{\prime \prime} \text { mount- } \\ \text { ing screws } \\ \text { Lockwashers }\end{array}\right\}$ (3 each). 10
17\{P-269	Washers
	Sleeves Rubber grommets 05
$18 \mathrm{RC}-7006$	10-24 x 3/8" mounting screws and lockwashers
19 RC-7010	Cork washer 05
20 RC-6003	Thrust bearing
21 RC-3021	Pinion shaft 45
22 RC-7027	10-32 - $3 / 8$ " mounting screw and lockwasher
23 P-4080	$6-32 \times 1 / 4$ " Sems type mounting screws (Pr.) . 05
24 RC-1029	Arm rest
25 RC-5004	Arm rest cap (Plastic)
P-2437	6-32 x 省" round head screw
$26\left\{\begin{array}{l} \mathrm{P}-1466 \\ \mathrm{P}-825 \end{array}\right.$	Lockwasher ...(Set) . 05

$-32 \times 1 / 4$ " Sems type
ex. nut
\qquad

27	RC-6002	AC sw	5
28	RC-1011	AC switch mounting bracket	05
29	RC-4015	AC switch lever wire spring	. 05
30	GA-24	Starting bracket assembly	. 25
31	RC-3015	Starting bracket mounting stud	10
32	RC-1025	Starting bracket mounting washer	05
33	RC-2007	Size switch	10
34	RC-4007	Size Switch Mtg. Spring	. 05
35	RC-2000	Large gear and cam (Springs [35A] and [35B] attached)	2.00
36	GA-25	Separating plate and reset bracket	35
37	RC-7027	10-32 x 3/8" mounting screws and lockwashers (Pair)	. 05
38	RC-7006	$10-24 \times 3 / 8$ " mounting screws and lockwashers (Pair)	. 05
39	GA-33	Bearing assembly	. 75
40	G-30	Size cam assembly (Complete with set screws)	. 35
41	RC-7021	Hex head set screws (only) (1/2 doz.)	. 05
42	RC-3032	Spacer	. 05
43	RC-7029	Mounting nut	. 05
44	GA-13	Detent cam spring and bracket assembly (complete with screw \& lock nut)	. 30
45	P-1098	Adjusting screw	
	P-825	Adjusting lock nut	. 05
46	RC-6006	Soldering panel	. 05
47	RC-6009	AC cable and Alden plug for RC50 and 51 (as shown), see Note II	35
	RC-4894	AC line cord and plug for RC52 and 53	55
	-1692	AC cable clamp	. 05

```
MODELS RC50, RC51, RC52, RC53
```


		assembly	\$7.75
9 A	RC-2004	Pickup arm casting	. 85
9 B	RC-6001	Pickup crystal cartridge	4.50
9C		Needle screw only (Phillip's type head)	5
9D	G A-21	Pickup lower mounting bracket and sleeve	50
9 E	RC-4004	Pickup arm adjusting spring	. 05
9 F	P-3423	Washer (1/2 doz.)	05
9G	RC-4005	Pickup arm tension spring	05
9 H	RC-7026	Mounting screw (Pickup crystal cartridge) (Pair)	. 05
9 I	RC-7001	Pickup arm adjusting screw	05
9.J	P-270 A	4-36x $1 / 4$ " Screw ($1 / 2$ doz.)	05
9K	RC-1023	Bakelite washer ($1 / 2 \mathrm{dz}$.)	. 05
9L	RC-7013	Lockwasher(1/2 doz.)	05
9 M	RC-7018	Pickup arm adjusting washer(1/2 doz.)	. 05
9 N	RC-1013	Pick arm upper mounting bracket	. 10
90	RC-3008	Pickup arm pivot pin	. 05
P	RC-7008	ubber grommet.(Pa	05

4	GA-31	Complete record changer post	3.00
4 A	GA-17	Mounting shelf plate and sleeve.	. 60
4B	RC-2002	Record changer shelf	. 50
4 C	RC-4000	Record clamp spring	. 05
4 D	RC-3002	Record clamp spring pin	. 05
4E	GA-18	Small cam and shaft	. 25
4 F	RC-1001	Record remover	. 25
4G	P-7013	Lockwasher (1/2 doz.)	. 05
4H	P-270-A	$4-36 \times 1 / 4$ " screw ($1 / 2 \mathrm{dz}$.)	05
5	RC-5003	Record clamp (plastic)..	. 20
6	RC-5002	Record changer shelf cap (Plastic)	. 15

2	RC-3025	Turntable	\$
19	RC-7010	Cork washer (Pair)	05
20	RC-6003	Thrust bearing	75
21	RC-3021	Pinion shaft	45
21 A	RC-3024	Pinion gear fer	10
21B	RC-2001	Pinion gear	20
21 C	RC-7007	Allen head s	10
	GA.22	Large gear assembly (with parts below to 35 F , inclusive)	3.75
30	GA-24	Starting bracket assembly	5
31	RC-3015	Starting bracket mounting stud	. 10
32	RC-1025	Starting bracket mounting washer	5
33	RC-2007	Size switch	10
33A	RC-3013	Size switch stud	05
34	RC-4007	Size switch mounting spring	05
35	RC-2000	Large gear and cam (Springs 35A and 35B attached)	2.00
35A	RC-400	Starting bracket spring	. 05
35 B	RC-4009	Trigger bracket spring..	05
35 C	RC-3018	Ejector roller	10
35 D	RC-3019	Ejector roller stud	. 05
35 E	RC-3016	Trigger bracket stu	. 05
35 F	RC-1016	Trigger bracket	. 15
35 G	RC-3017	Large gear mounting post	. 20
35 H	RC-1023	Bakelite washer (Pair)	. 05
36	GA-25	Separating plate and reset bracket	.35
37	RC-7027	$10-32 \times 3 / 8$ " mounting screws and lockwash ers (Pair)	05
38	RC-7006	10-24 x $3 /{ }^{\prime \prime}$ " mounting screws and lockwashers \qquad (Pair)	05
39	GA-33	Bearing assembly	75

CROSLEY RADIO CORP.

RECORDER WITH AUTOMATIC CHANGER
PARTS LIST

(Parts for FIG. 1							
Item No.	Part No.	Description	No. Used	Item No.	Part No.	Description	No. Used
,	130659	Spindle Thrust Plate	1	27	130685	Clutch Spring	1
2	130937	Spindle and Feed Screw Housing	1	28	130686	Flat Washer	1
4	130662	Drive Gear Assembly	1	29	130587	Taper Pin	3
5	130938	Panel, Post and Stud Assembly	1	30	130688	Selector Shaft Drive Crank Assy. Post No. 2	1
6	130664	Selector Shaft Collar	1	31	130589	Drive Link Assy.	1
7	130665	Selector Shaft Crank Assy. Post No. 1	1	32	130590	Trip Rod	1
8	130666	Flat Washer	3	33	130691	Flat Washer	1
9	130667	"C" Washer	3	34	130692	Drive Gear Stud	1
10	130668	12" Set Link	,	35	130593	Switch Spring	1
11	130669	$12^{\prime \prime}$ Reset Link Spring	1	36	130694	Switch Mounting Rracket	1
12	130670	Tone Arm Locator and Bushing Assy.	1	37	130695	Switch Retainer Bracket	1
13	130671	Tone Arm Booster Spring ${ }^{\text {" }}$	1	38	130696	Switch	1
14	130672	Tone Arm L.ocator Shoe ($12^{\prime \prime}$)	1	77	130939	Tone Arm Shaft	1
15	130673	Tone Arm Locator Shoe (10")	1	78	130598	Reset Arm Stop Washer	1
16	130674	Tone Arm Locator Spring	1	102	130940	Manual Control Slide	1
17	130675	Tone Arm Latch and Guide Bracket	1	103	130941	Clutch Lock Slide	1
18	130676	Tone Arm Latch Lever	1	104	130942	Locator Lock Slide Spring	1
19	130677	Tone Arm Lever Assy.	1	105	130943	Slide Latch	1
20	130678	Trip Lever Assy.	1	105	130944	Locator Lock Slide	1
21	130679	Tone Arm Lift Plate Assy.					
22	130680	Thumb Nut	1				
23	130681	Tone Arm Trip Shoe	1				
24	130682	Trip Lever Spring	1				
25	130683	Shielded Pickup Wire	1				
(Parts List for FIG. 2							
Item No.	Part No.	Description	No. Used	Item No.	Part No.	Description	No. Used
39	130699	Clutch Reset Pawl Spring	1	97	130947		
40	130700	Clutch Reset Pawl	1	98	130948	Traverse Lever Bracket	1
41	130701	Latch Lever Shoulder Screw	1	99	130949	Lock Nut	2
43 79	130702	12"Set Arm Assembly	,	100	130950	Recorder Arm Shaft Sleeve	1
79 80	130703 130704	Engagement Clutch Cam Assy. Tone Arm Reset Link	1	101	130951	Bearing Center Screw	4
81	130705	Tone Arm Lifter Link Assy.	1				
42	130945	Set Arm Return Spring	1				
96	130946	Traverse Arm Support Bracket	1				

Item No.	Part No.	Description	No. Used	Item No.	Part No.	Description	No. Used
44	130706	Record Support Post No. 2	1	70	130719	Tone Arm Adjusting Screw	1
45	131024	Tone Arm Cartridge	1	71	130720	Adjusting Screw Lock Spring	1
46	130708	Tone Arm Swivel Bracket	1	72	130721	Thrust Wafer	1
47	130709	Tone Arm Mounting Bracket	1	73	130722	Thrust Washer	5
48	130952	Tone Arm Lifter Pin	1	74	130723	Ball Race Assy.	1
49	130953	Counter Balance Spring	1	75	130724	Rubber Bumper	1
50	130712	Spring Washer	1	76	130951	Turntable	1
51	130713	Roller	2	82	130726	Tone Arm Lifter Reset Spring	1
52	130714	Switch Return Spring	1	95	130955	Retractable Drive Pin	1
53	130715	Flat Washer	2	109	130956	Feed Screw and Gear Assy.	1
54 55	130716 130717	Switch Reject Slide Switch Collar and Reject Pin Assy.	1				
56	130718	$12^{\prime \prime}$ Set Rod	1				

Item No.	Part No.	Descri-tion	No. Used	Item No.	Part No.	Description	No. Used
57	130727	Control Knob	2	107	13076	Bearing Center Screw	1
58	130728	Selector Blade (10")	2	108	130968	Cartridge Pivot Screw	1
59	130957	Turntable Spindle	1			(Parts List for Fig. No. 5)	
60	130958	Tone Arm	1	89	130851	Cutter Cartridge	1
61	130731	Selector Arm No. 1	1	90	130970	Pressura Control Blade	1
62	130732	Special Washer Drive Gear Stud Lock Nut	1	91	130855	Pressure Control Cam	1
63 64	130733	Drive Gear Stud Lock Nut	1	92	130960	Bearing Center Screw	2
65	130959	Switch Control Knob	1	93	130969	Bearing Center Screw Lock Nut. Tone Arm Adjusting Screw	$\stackrel{2}{1}$
66	130870	Motor Assembly	1	9	131236	Tone Arm Adjusting Screw	1
67	130737	Record Support Post No. 2	1		131237	Spring-Lower-Base Mounting	4
68	130738	Selector Blade (12")	2		131238	"U" Nut-For Mounting Bolts	4
69	130739	Selector Arm No. 2	1		130381	1/4-20 R. H. M. Screws	4
83	130961	Rubber Idler Drive Wheel	1				
84	130962	Manual Control Escutcheon	1			PRICES SUBJECT TO CHANGE	
85	130963	Manual Control Button	1			WITHOUT NOTICE	
87	130965	Pressure Control Knob	1				
88	130966	Recorder Arm Adjustment Screw	1				

FOR OTHER DATA SEAS SEEBURG MODEL J-1A

AUTOMATIC RECORD CHANGER PARTS LIST

Item No.	Part No.	Description	No. Used	Item No.	Part No.	Description	No. Used
1	130659	Spindle Thrust Plate	1	47	130709	Tone Arm Mounting Bracket	1
2	130660	Spindle Bearing Housing Assy.	1	48	130710	Tone Arm Lift Pin	1
3	130661	Drive Pinion	1	49	130711	Counter Balance Spring	1
4	130662	Drive Gear Assy	1	50	130712	Spring Washer	1
5	130663	Panel, Post and Stud Assy. (Mocel 30)	1	51	130713	Roller	2
	131524	Panel, Post and Stud Assy. (Mociel 29)	1	52	130714	Switch Return Spring	2
6	130664	Selector Shaft Collar Assy Post No 2	1	53 54	130715	Flat Washer	2
7 8	130665 130666	Selector Shaft Crank Assy. Post No. 2	1	54 55	130716	Switch Reject Slide	1
9	130667	"C" Washer	3	56	130718	12" Set Rod	1
10	130668	12" Set Link	1	57	130727	Control Knob	2
11	130669	12" Reset Link Spring	1	58	130728	Selector Blade (10")	2
12	130670	Tone Arm Locator and Bushing Assy.	1	59	130729	Turntable Spindle	
13	130671 130672	Tone Arm Booster Spring Tone Arm Locator Shoe (12")	1	60 61	130730 130731	Tone Arm ${ }^{\text {Selector Arm No. } 1}$	1
15	130673	Tone Arm Locator Shoe (10*)	1	62	130732	Special Washer	1
16	130674	Tone Arm Locator Spring	1	63	130733	Drive Gear Stud Lock Nut	1
17	130675	Tone Arm Latch and Guide Bracket	1	64	130734	Switch Escutcheon	1
18	130676	Tone Arm Latch Lever		65	130735	Switch Control Knob	
19	130677	Tone Arm Lever Assy.	1	66 67	130736	Metor Support Post No. 2	1
20 21 2	130678 130679	Trip Lever Assy.	1	67	130737 130738	Record Support Post No. 2	1
22	130680	Thumb Nut	1	69	130739	Selector Arm No. 2	1
23	130681	Tone Arm Trip Shoe	1	70	130719	Tone Arm Adjusting Screw	1
24	130682	Trip Lever Spring	1	71	130720	Adjusting Screw Lock Spring	$\frac{1}{1}$
25	130683	Pickup Shielded Wire	1	72	130721	Thrust Water	$\frac{1}{5}$
27	130684 130685	Muting Switch	1	74	130723	Tall Race Assy.	1
28	130686	Flat Washer	1	75	130724	Rubber Bumper	1
29	130687	Taper Pin	3	76	130725	Turntable	1
30	130688	Selector Shaft DriveCrank Assy. Post No. 2	1	77	130697	Tone Arm Shaft	1
31	130689	Drive Link Assy.	1	78	1130698	Reset Arm Stop Washer	1
32	130690	Trip Rod	1	79 80	130703	Engagement Clutch Cam Assy	1
34	130692	Drive Gear Stud	1	81	130705	Tone Arm Lifter Link Assy.	1
35	130693	Switch Spring	1	82	130726	Tone Arm Lifter Reset Spring	1
36	130694	Switch Mounting Bracket	1	83	131083		$\frac{1}{4}$
37	130695	Switch Retainer Bracket	1	84	131236	Upper Mounting Spring (Base)	4
38	130696	Switch	1	85	131237	"U") Nut for Mounting Bolts	4
39 40	130699 130700	Clutch Reset Pawl Spring Clutch Reset Pawl	1	86	131238	"U" Nut for Mounting Boits	4
41	130701	Latch Lever Shoulder Screw	1	88	131102	Idler Wheel	1
42				89	131032	Spring-50 Cycle Motor Bushing	1
43	130702 130706	12" Set Arm Assy. Record Support Post No. 1				ARTS SUBJECT TO CHANGE	
44	130706 131024	Record Support Post No. 1 Tone Arm Cartridge	1				
46	130708	Tone Arm Swivel Bracket	1			E	

CROSLEY RADIO CORP.

RECORDER AS USED IN MODEL 33 BG
 PÁRTS LIST (Refers to Fig. 4 and Fig. 10)

Part No.	Description	Part No.	Description
131000	Retractable Pin Spring Washers	131048	Pickup Cartridge Hinge Damper Felt
131001	Motor Mounting Screw	131049	Tone Arm Post Complete
131002	Shakeproof Motor Housing and Bracket Lock	130748	Cutter Head with Leads
131003	$\xrightarrow{\text { Washer }}$ Hex Nut for Pivot Post	131051 131052	Cutter Head Bumper Cork (Magnetic)
131004	Mounting Bracket Assy. Washer	131053	$10^{\prime \prime}$ Weighted Turntable ($1 / 8^{\prime \prime}$ one piece T. T.)
131005	Lead Clip Mtg. Screw Lock Washer	131054	Mounting Bracket Assy. Screw Nut
131006	Motor Mounting Screw	131055	Motor Plate Rubber Grommet
131007	Retractable Pin Spring Screw (For 2 piece T. T.)	131056	Tone Arm Support Lock Washer
	Adjusting Screw (Follower Arm)	131057	Mounting Plate Grommet Sleeve
131009	Aux. Shaft Housing Mounting Screw	131058	Turntable Drive Disc Thrust Washer
131010	Retractable Pin Spring Screw (For $1 / 8^{\prime \prime}$ one piece T T)	$\begin{aligned} & 131059 \\ & 131060 \end{aligned}$	Rotor Shaft Pulley Set Screw (${ }^{6}$ " Shaft) Turntable Drive Disc Clip
131011	Aux. Shaft Housing and Motor Mounting Screw	131061	Aux. Shaft Housing Assy.
	Washer	131062	Lead Screw and Pinion Assy.
131012	Cutter Arm Mtg. Screw Washer	131063	Lead Screw End Thrust Screw
131013	Turntable Shaft Locking Screw	131064	Lead Screw End Thrust Screw Nut
131014	Pivot Saddle Plate Adjusting Screw Nut and	131065	Motor Mounting Plate
	Cutter Arm Holding Bracket Screw	131066	Rotor Shaft Pulley (For 9\%r2" Shaft)
131015	Turntable Shaft Locking Screw Nut	131067	Turntable Drive Disc Tension Spring Holder
131016	Adjusting Screw Nut (Follower Arm)	131068	Turntable Drive Disc Tension Spring
131017	Cutter Arm Holding Bracket	131069	Turntable Shaft
131018	Follower Arm Complete	131070	Aux. Shaft Housing Complete
131019	Pivot Post Bushing	131071	Turntable Drive Disc Complete
131020	Tone Arm Support	131072	Turntable Drive Disc Mtg. Bracket Assy.
131021	Base Plate Complete (Less Switch, Etc.)	131073	Motor Mtg. Plate Complete
131023	Pickup Cartridge Mounting Screw	131074	Retractable Pin Spring (For $1 / 8^{*}$ one piece T. T.)
131023	Pickup Cord Clip	131075	Retractable Pin (For $1 / 8^{\prime \prime}$ one piece T. T.)
131024	Pickup Cartridge (ONLY)	131076	Rotor Shaft Pulley (For 5 /6\% ${ }^{\text {a }}$ Shaft and two
MG5-130570	Recorder Base Assy. Complete ($110 \mathrm{~V} .-60 \mathrm{Cy}$.)		piece T. T.)
MG8-130570	Recorder Base Assy. Complete (110 V.-50 Cy.)	131077	Rotor Shaft Pulley Set Screw (5/6" Shaft)
131026	Tone Arm Assy.	131078	Rotor Shaft Pulley Support Ring
131027	Tone Arm Complete	131079	Rotor Shaft Pulley (For $1 / 8^{\prime \prime}$ one piece T. T.)
131028	Lift Lever	131080	Retractable Pin Spring (For two piece T. T.)
131029	Tension Adjusting Screw Lug	131081	Retractable Pin (For two piece T. T.)
131030	Cutter Head Tension Spring	131082	$10^{\prime \prime}$ Weighted Turntable (two piece T. T.)
131031	Cutter Arm Mtg. Screw	130820	Motor- 110 Volt, 60 Cycle
131033	Saddle Bushing Set Screw	130634	Needle Screw-Tone Arm
131034	Pivot Saddle Plate Adjusting Screw	130633	Needle Screw-Cutting Arm
131035	Pivot Saddle Plate Assy.	131126	Spring-50 Cycle-Motor Bushing
131036	Cutter Arm Holding Bracket Screw	130628	Spring-Base Mounting (8 Req.)
131037	Pivot Post Straddle Plate	38085	Wing Nut-Base Mounting (4 Req.)
131038	Tone Arm Support Bumper	130625	Screw-Base Mounting (4 Req.)
131039	Pivot Post Return Spring	130626	Stirrup-Shipping Clamp (4 Req.)
131040	Lead Clip Screw	130901	Cutting Nddle (1)
131041	Lead Clip	131785	Motor Bushing-Change 50 to 60 Cycles
1131042	Tone Arm Post Washer	47339	Play Back Needles (Pkg. 10)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Figure 4

DETROLA CORP.
MODELS N-100, N-200

FIG. 2
 NEW GERRLESS RECORD CHRNGER

This machine will play and automatically change a series of up to twelve ten-inch records or a series of up to ten twelve-inch records. Any ten or twelve-inch record of the 78 R.P.M. type with either a standard eccentric or spiral stopping groove will operate this machine automatically.

Very old records that have not a standard eccentric or spiral stopping groove can be played semi-automatically by operating the reject lever at the conclusion of each selection.

FIG. 3

PLAYS HOME RECORDINGS

To provide adequate protection for your most valued recordings and at the same time relieve you of the necessity of changing needles, this machine was designed to use an "EVERLRSTING" needle in conjunction with its "FEATMERWRIGHT" tonecrm. This needle will faithfully reproduce many thousands of recordings with mininum wear of your records.

The turntable has a pin for reproducing home recording discs at a constant speed.

This machine operates on 110 volt-60 cycle current only.

DETROLA CORP.

FOR AUTOMATIC OPERATION

1. Turn automatic record support for the size of record to be played-10-inch or 12-inch-and flip the record alignment plate away from the turntable.
2. Tonearm should be moved to engage notch marked "A" (automatic) on base of tonearm. (See Fig. 3).
3. Place a series of up to twelve ten-inch records or a series of up to ten twelve-inch records on center spindle and automatic record support. Flip record alignment plate on to records.
4. Move control lever to "ON" position, hold for about $1 / 2$ second to start automatic
operation, then release.

THE AUTOMATIC REJECT OPERATION

If, while playing a record, you desire to skip the remainder of the recording and pass immediately to the next record of the series, move the control lever to "REJ" (reject) position, then release.

the manual reject operation

If you desire to skip a number of records:

1. Lift the tonearm off the record and place in its normal or rest position, clear of the records.
2. Turn the manual reject knob clockwise, then release, dropping one record. Repeat until desired record is obtained, then carefully replace needle on edge of record.

TO REMOVE RECORDS

Always drop all the records from the automatic record support (see "manual-reject operation") before removing the records from the spindle.

1. Flip record alignment plate away from records.
2. Remove tonearm to its normal or rest position. 3. Lift records vertically.

TO PLAY HOME RECORDINGS

To play a home recording disc, up to 10 inches in diameter, move control lever to "OFF" position, then:

1. Turn automatic record support for a 12 -inch record.
2. Tonearm should be moved to engage notch marked " H " (home recording) on base of tonearm (See Fig. 2).
3. Move control lever to "ON" position and allow tonearm to go through its record changing cycle If the home recording disc is $10^{\circ "}$ in diameter, the tonearm will fall correctly on the record; but for smaller records, the tonearm must. pe placed on the record by hand.
4. At the conclusion of the home recording selection, either return the tonearm to the rest position by hand or move the control lever to "REJ" position, then release.

SEMI-AUTOMATIC OPERATION

Old records that have neither α standard eccentric nor spiral finishing groove dö not operate the automatic trip mechanism. They may be played either in a series or singly by moving the control lever to the "REJ" position at the conclusion of each
selection.

TECEINICAL SERVICE DRTA

1. There is no strain on the mechanism when the tonearm is accidentally rotated during its cycle. Merely return the fonarm to engage its proper notch-" H " for playing home recording discs or " A " for standard records.
2. The height-gauge prevents vertical shocks from reaching the mechanism. Rotate the heightgauge until the needle is approximately $1 / 16$ inch below the top surface of the turntable.
3. The set screws for adjusting the tonearm are above the motorboard. If it is necessary to loosen these screws while servicing, reset as follows: Tighten one set-screw, turn on the motor, allowing the changing cycle to proceed until the tonearm starts to drop, at which point turn off the motor, stop the turntable before the tonearm has completed its drop and loosen the set screw. Then, while holding the tonearm over the record so that the needle is midway between the outer edge of the record and the beginning of the recording, tighten the set screws.
4. The automatic record support can be turned in either direction when adjusting for 10 -inch or

12-inch records. The record support post is gauged in production so that the distance from the edge of the cuutomatic record support when adjusted for playing 10 -inch records to the nearest edge of the center spindle is $427 / 32$ inches.
5. The record changer is adjusted in production so that the automatic mechanism is tripped when the needle is between $121 / 32$ and $13 / 4$ inches from the edge of the center spindle. This adjustment is made by carefully bending the bracket that is formed down out of the tonearm trip lever (the tonearm trip lever is the $3 / 4$ inch wide steel strip with knurled end under the sub panel which rotates with the tonearm). Bending this bracket away from the tonearm bearing will cause the automatic mechanism to be engaged when the needle is at a greater distance from the spindle and bending the bracket towards the tonearm bearing will cause the engagement to occur when the needle is at a lesser distance from the spindle.
6. When replacing the four speed nuts that fasten the bottom strap, drive the three small speed nuts up tight with a hammer, but replace the large
speed nut on the center spindle firmly with the fingers.
7. The three main bearings are made of "Oilite" bronze. They contain an oil supply sufficient for the life of the machine. After two years of normal use add three drops of oil to the two felt washer reservoirs on the main motor bearing, a drop on the rubber tired motor idler pulley bearing and two drops on the ball thrust bearing at the bottom
of the center spindle. Operation of any record changer below normal room temperature will result in reduced turntable speed and consequently poor reproduction.

Keep the rubber belt and the rubber tire of the motor idler pulley free of grease, oil, and dirt. A cloth dampened with naptha is recommended for cleaning these rubber parts.

CAUTION

WARPED RECORDS

To prevent warpage, do not leave your records on the supports when the machine is not in use. We suggest that you keep your records in an album or cabinet in order to keep them flat and free of dust.

Badly warped records will slide while playing and reproduce poorly. You can flatten your warped records by pressing them between flat surfaces for several days in a warm place.

DO NOT MIX RECORDS

Do not mix 10 -inch and 12 -inch records in a series or stack.

THE NEEDLE

We have provided you with a fine needle of special steel. Together with the crystal it forms the one delicate part of this machine and deserves care.

Never leave the needle resting on a record or the turntable when the machine is not in use. If needle becomes damaged by accident, replace immediately. Never replace a used needle in the tonearm-because the needle assumes the contour of the record groove and readjustment will cause excessive wear of your records. Flat of needle should be parallel to head of tonearm.

REPLACEMENT PABTS

N-149-S	Tonearm complete (including tonearm lift assembly)
N-155-S	Tonearm lift assembly
L-26-S	Crystal (Wireless changers use L-24)
	Needle
	Shielded pickup cable
N-167-S	Manual reject knob (including lockwasher and dress washer)
N-148-S	Cam for same
N-161-S	Record alignment plate (including rubber bumpers and spring)
N-129-S	Cam shoe and shaft assembly (including spring)
N-168-S	Turntable
N-160-S	Motor complete
	Rubber tired motor drive pulley (including washers and hairpin)
N-165-S	Switch
N-132-S	Center spindle and Oilite bearing assembly, hairpin cotter, bottom strap and belt guide.
N-173-S	Ball bearing race
N-17l-S	Felt washer
N-172-S	Thrust washer 2 Req.
N-188-S	Rubber belt
N-140-S	41/2 inch diameter drum and bearing
N-137-S	Master cam assembly (including spring brake)
N-118-S	Tonearm trip assembly (including spring and 'C' washer)
N-122-S	Ratchet release assembly (including spring, washer and hairpin)
N-187-S	Speed nut (center spindle)
N-174-S	Speed nut (strap support) 3 Req.

Model F26-3 Recorder consists of

1 Unit 199-2 Portable Recorder Mechanism
1 Unit 214-3 Cutterheadi
1 Unit 219-2 Portable Recording Amplifier
1 Unit 199-3 Portable Recorder Mechanism
1 Unit 214-3A Cutterhead
1 Unit 219-2 Portable Recording Amplifier Model F29-2 Recorder consists of

1 Unit 199-2 Portable Recorder Mechanism
1 Unit 220-2 Auxiliary Portable Recording Mechanism
2 Unit 2l4-3 Cutterheads
1 Unit 219-2 Portable Recording Amplifier
Model F29-3 Recorder consists of
1 Un1t 199-3 Portable Recorder Mechanism
1 Unit 220-3 Auxiliary Portable Recording Mechanism
2 Unit 214-3A Cutterheads
1 Unit 219-2 Portable Recording Amplifier
The outline drawing illustrates the cable connections required to set up either a single turntable recorder, Model F26-2 or F26-3, or a double turntable recorder, F29-2 or F29-3.
Place the two recorder meohanisms side by side as close together as possible. Stand the reoorder amplifier trunk at the right of the group; the trunk should stand upright with the control panel facing the operator. operating procedure
A. As a Public Address Amplifier

1. The Unit 219 Recorder Amplifier is required only.
2. Connect microphone cable into MICROPHONE socket. (Be sure impedance of microphone and amplifier are properly matched.)
3. Connect power cable into A. C. LINE socket.
4. INPUT selecton switch to MICROPHONE.
5. OUTPUT selector switch to LINE.
6. SPEAKER VOL, to MAX.
7. POWER switch ON. Red warning lamp will light indicating that power is on. After about thirty seconds to allow amplifier tubes to warm up, the equipment is ready for operation.
8. Set VOLUME and TONE controls to whatever position gives the desired sound and tone quality from the speaker on the amplifier trunl.
9. If the microphone is too close to the loud speaker, it will be necessary to keep the volume control turned down; otherwise, a howl will be heard in the loud speaker due to acoustic feedback between the microphone and the speaker. Separation of the two will permit using a high sound level. Placing the diaphragm of the microphone at right Engles to the speaker and of \bar{i} to the side of the speaker will minimize this efrect.
10. As many as ten additional speakers can be added to the installation. Connect speakers to the 500 LINE jack on the amplifier panel. Set OUTPUT selector switch to LINE position.
11. Note that the internal speaker has an independent volume control SPEAKER VOL. Which can be set to MAX., intermediate, low or OFF positions. Therefore, the amplifier can be used in a separate room from the other speakers. The volume control may be set to the level required for the outside speakers. The internal spealer volume can then be adjusted to desired level and used to monitor the outside speakers.
B. Playing Back Records
12. Plug PICKUP CABLE and RECORDER CABLE into respective sockets on Recorder Amplifier Panel.
13. Connect power cable into A. C. LINE socket.
14. INPUT selector switch to P. U.
15. OUTPUT selector switch to LINE.
16. SPEAKER VOL. switch to MAX.
17. POWER switch "ON". Red warning lamp should light to indicate that equipment is turned on.
18. Insert type needle recommended for record in Pickup and firmly secure needie in place with set screw.
19. Turntable motor switch ON.
20. Lower Pickup needle into record groove.
21. Set VOLUME and TONE controls for desired volume and tone quality.
22. Extra speakers can be used by following instructions given in Item A-lo above.
C. Microphone Recording
23. Connect power cable into A. C. LINE socket.
24. INPUT selector switch to MIC.

FAIRCHILD AVIATION CORP.

3. SPEAKER VOL. switch to OFF if microphone is used close to amplifier to prevent feedback between microphone and speaker.
4. OUTPUT switch to REC.
5. POWER switch ON.
6. TONE control at 2.5 , although position will vary depending on recording conditions. After some practice, recordist will use his own judgment.
7. Adjust VOLUIE control while speaker is talking into microphone so that average peak swings of the CUTTER LEVEL meter needle reach the "O" reading in the meter scale, while occasional momentary peaks may hit plus 4 to 6 .
8. Carry out instructions on Recording Procedure on Turntable. Mechanisms in Paragraph E below.
9. When extra external loud speakers are used in an auditorium to reinforce the speaker's voice while simultaneously recording the speech, the Recording Equipment is usually kept in an adjacent room. The program is monitored by the amplifier's builtin loud speaker. The external speakers are connected into the 500 LINE jack on Amplifier Control Panei. The OUTPUT selector switch must be at BOTH. The cutterhead and the external loud speakers share the output power in this switch position.
If the recording equipment is in the same room as the microphone, a pair of headphones can be used to monitor the recording. Plug headphones in the PHONE MONITOR jack.

D. Radio or Broadcast Recording

1. Connect power cable into A. C. LINE socket.
2. Connect plug from 500 ohm output of radio set or broadcast line into 500 OHM LINE isck.
3. INPUT selector switch to LINE.
4. SPEAKER VOL. switch to MAX. or any other volume position desired by recordist.
5. OUTPUT switch to REC.
6. POWSR switch ON.
7. TONE control at 2.5 , although this position depends on recording conditions. It should be set to whatever position gives best results in the opinion of the recordist.
8. Radio Program must be carefully turned in on radio set to exact resonance. Adjust VOLUME control so that average peak swings of the CUTTER LEVEL meter needle reach the " O^{\prime} " reading on the meter scale. Occasional momentary peaks may reach to plus 4 or 6 .
9. Carry out instructions on Recording Procedure on Turntable Mechanism in Paragraph E below.
When extra external speakers are to be used simultaneously with recording, the extra spealiers must be connected into 500 LINE jack on Amplifier Control Panel and the OUTPUT selector switch must be set to BOTH. In this position, half of the amplifier output is fed to the cutterhead and the other half to the external speakers.

E. Recording Procedure on Turntable Mechanism

1. Plug Pickup Cable and Recorcier Cable into respective sockets on Recorder Amplifier Panel.
2. Place blank disc on turntable. If disc has stop pin hole then fit it over corresponding stop pin on turntabie, screw on clamping nut to prevent slipping.
3. Set turntable speed knob for either $33-1 / 3$ or 78 RPM.
4. Select desired pitch and direction of cut. A pitch of 118 will be used in general. Consult Recording Time Chart for recording time for each pitch at 78 and 33-1/3 RPM. On acetate-coated discs, cut from inside to outside. This is the general practice to avoid the difficulty of keeping the shavings from interfering with the cutting of a record. A brush, Cl99-A34, can be supplifed to mount on the tirmtable to clean off the shavings should it be necessary to cut "outside-in".
5. Throw turntable motor switch ON. When equipment is cold, it is good practice to allow a ten minute warm-up period so that the parts are thoroughly lubricated, warmed up and running smoothly.
6. Invert cutterhead to insert cutting stylus. If aluminum discs are to be recorded, insert diamond stylus in front hole on cutterhead. For acetate-coated discs, insert steel or sapphire stylus in rear hole. CAUTION: Avoid e stripping thresd on stylus set screw.

FAIRCHILD AVIATION CORP.

F. Continuous Recording - Double Turntable Operation

1. See outline drawing for the set-up on the Recording Amplifier and the two turntable Mechanism Assemblies for making continuous recordings.
The circumstances prevailing during a continuous recording will be that of one turntable recording nearing completion while the second turntable has a fresh side of a disc clamped upon it. The second cutterhead on the Auxiliary Recorder Turntable is placed ready to start cutting as soon as a slight pause in the program is anticipated, whereupon the power is switched to the second cutterhead.
2. The operation is similar to the Single Turntable Mechanism Procedure outlined in Paragraph E above. The Left Turntable must be completely set up in readiness for making a recording before the record on the Right Turntable is finished. The Left Turntable should be rotating with the cutterhead directly over the starting groove on the blank disc. When there is thirty to sixty seconds recording time left on the Right Turntable, drop the cutterhead stylus on the Lest Turntable disc, cutting several blank grooves until there is a momentary breal in the program, such as applause or the introduction of a new speaker. At this appropriate moment, throw the Cutterhead switch from RIGHP to LEFT, which starts the recording on the Left Turntable and finishes the recording on the Right Turntable. The Right Turntable is then unloaded and made ready for a blank disc before the recording time is finished

G. Duplication of Records

1. Set up the two turntable mechanisms and recording amplifier as in outline drawing.
2. In this description, the left turntable shall be selected for playing back the master record into the input of the recording amplifier. The duplicate record shal be made on the right turntable. The turntables can be used in a reversed manner, if desired, by reversing the position of the PICKUP and the CUTTER switches as stated in the text under Item 6 and 7 below.
3. INPUT selector switch to P. U.
4. SPEAKER VOL. to MAX. or any intermediate position desired.
5. OUTPUT selector switch to RECORD.
6. PICKUP switch at LEFT.
7. CUTTER switch at RIGHT.
8. POWER switch ON.
9. TONE CONTROL at 2.5, although position will vary depending on recording conditions. Recordist mey use his own judgment after some practice, setting this control to get
best results.
10. Carry out instmactions "Recording Procedure on Tarntable liechanism" in Paragraph E
11. Place master record on Left Turntable, insert type of playback needle recommended
12. Left Turntable motor switch on firmly secure needle in place with set screw.
13. Left Turntable motor switch ON.
14. Lower Pickup into the record groove.
15. Adjust VOLUME control so that average swings of the CUTPER LEVEL meter needle reach
16. "O" with occasional peak swings reaching plus 4.
17. It is desirable not to record the harsh clicking noise which occurs when the Pickup is lowered into the master record sound track at the beginning of the duplicating operation. This can be avolded by playing the first part of the master record with the equipment as set up above except that the cutter is not in operating position on the blank disc. Adjust the volume control to the position which gives the correct operating level on the CUTMER LEVEL meter, and make a note of the dial reading on
the VOLUNE scale.

Turn VOLUME control to zero, lower cutterhead on right turntable into operating position, lower pickup gently into starting groove of master record and gradually raise tie VOLUME control up to the setting previously noted. In this manner the duplicated record can be free from any disturbing noises introduced in the dupli-
cating process.

FAIRCHILD AVIATION CORP.

FAIRCHILD UNIT 199/220 RECORDING MECHANISM

Yanding and Packing - This is a piece of precision equipment containing finely machined parts closely adjusted for performing accurate work. While it is sturdily built and good for many years of service with proper care, a hard "jolt" or two in handling may necessitate an expensive trip to the factory for repairs or readjustment. Therefore, please observe the following points in handling:-

In carrying the cases for short distances by hand. AVOID BUMPS AND ALL SHOCKS.

In STORING for any length of time exceeding an hour or two, LAY THE RECORDER TIAT, TURNTABLE UP, as in oporation. In transporting in any vehicle carry in this same position removing turntable if roads are rough and storing it in top of trunk. Carried in this manner on the cushions of the automobile seat secured by strap to avoid falling between seats, Several of our recorders have been carried over 50,000 miles during a period of eighteen months with little or no difficulty in hundreds of exacting demonstrations. However, the operator was very particular to avoid sudden shocks to the trunks through careless handling. There is no reason why you cannot do as well by exercising the same care.

Remove cutterhead and always fasten securely in the place provided when moving recorder about.

Secure the cutterhead carriage by a rubber band. Be sure it does NOT engafe the feedscrew to avoid stripping the threads.

When corresponding please mention the unit number and the serial number of the equipment which you are discussing.

Application - The Fairchild Unit 199 or Unit 220 Recording Mechanism has been designed primarily for portable field service to meet the requirements of direct recording and the playback of recordings. The equipment is extremely flexible; usable either indoors or outdoors and set up in a few minutes with plug-in connectors.

For recording and playback the unit is provided with cables and plugs for instantaneous hookup to the Fairchild Unit 219 Amplifier. This combination provides a complete, self-contained, portable outfit for the direct recording of voice, music and sound and for the direct playback of this recording.

The Unit 199 or Unit 220 Recorder is supplied with a Unit 214-3 Cutterhead and matching transformer F43-19 for operation on a 500 ohm line at 20 db . power level.

The Unit 220 Auxiliary Recording Mechanism differs from the Unit 199 Recording Mechanism only in this respect - a pair of selector switches is added on the panel to instantaneously switch from left to right cutterhead and from left to right pickup; a pair of input sockets is added on the panel to connect the cutterhead cable and the pickup cable on the Unit 199 Recorder to the control switches on the Unit 220 panel.

The recording mechanism is contained on a single aluminum panel 17 x 21 inches. The panel may be removed from the trunk and flush mounted for permanent studio installation.

FAIRCHILD AVIATION CORP.

For notes oovering the lubrication of these recorders, see Model 3 CORRECTIONS: Interchange Numerals 3 and
4 on F43-19 Transformer Terminals.

FAIRCHILD AVIATION CORP.

General Adjustments -

1. Turntable Speed - The sixteen pound turntable is driven by an 1800 R.P.M. synchronous motor through a 54 to 1 gear and worm. It rotates at 33.3 R.P. M^{2}. when the shift pin, extending through the turntable shaft, is pressed down. It rotates at 78 R.P.M. when the pin is pulled upward. The OFF-ON switch on the right of the panel operates the turntable driving motor. Always shut off the motor when shifting speeds to avoid unnecessary strain on gear drive assembly.
2. Pitoh - The record may be cut at a pitch of $98,118,141$ or 161 lines per inch. The removable cover plate on the right side of the overhead feedscrew mechanism encloses the four pitch gears. The pitch is stamped on the gear shoulder. The desired pitch gear is locked on end of feedscrew shaft by means of slot in gear and cross pin on feedscrew. The spare gears are stored on the gear retainer pin provided for that purpose. Consult the Recording Time Chart for data on the recording time available at 33.3 or 78 R.P. W. at pitches of $98,118,141$ and 161 lines per inch.
3. Direction of Cut - The record may be cut either "inside-out" or "outsidein". On aoetate coated discs it is recommended that cutting direction be from inside to outside to avoid the difficulty of keeping the shavings from interfering with the cutting. A Brush Cl99-A34 can be provided to mount on the left front corner of the recorder panel to clear off the shavings should it be necessary to make "OUTSIDE-IN" cuts.

Direction of Cut Lever is accessible by removing the cover plate on the right side of the overhead feedscrew mechanism. The desired direction of cut is set by engaging ei ther the "IN" or "OUT" gear on the gear shift lever with the pitch gear on the feedscrew.
4. Stylus Ansle of Cut Adjustment - The Angle of Cut Screw on the cutterhead support casting permits adjusting the position of the cutterhead for the required stylus cutting angle.
5. Depth of Cut - The cutterhead supplied with the recording mechanism has a Depth of Cut Control knob for controlling the depth of cut when recording on acetate or similar materials,
6. Turntable Stop Pin and Clamping Nut - There is a removable stop pin on the two inch diameter of the turntable to prevent discs provided with suitably looated stop pin holes from slipping while recording. The stop pin may be removed with a sorewdriver when recording on discs which do not have these stop holes. A clamping nut with a right hand thread is supplied for holding diso securely to turntable.

The removable record stop pin may get mislaid when removed from turntable. To prevent this possibility, it may be secured in threaded hole approximately one inch above "OFF-ON" switch.
7. Feed Screw Engaging Lever - The feed screw engaging lever on the left side of the atterhead carriage when moved forward causes the feed clutah to engage with the feed screw. This operation moves the cutterhead carriage across the record surface at the desired pitch and direction of cut previously set by the recordist.
8. Gutterhead Lowering Lever - The cutterhead Lowering lever, on the right side of the cutterhead carriage, when moved forward causes a cam to lower the cutterhead on the record surface.
9. Cutterhepd Locknut and Washer - The outterhead must be held firmly on the carriage oasting with the spring washer and the shoulder screw. The outline drawing clearly shows this method of assembly. When properly tightened, the cutterhead can be rotated from the recording position back to a position where it is convenient to inspect or replace the recording stylus.
10. Pickup - The Fairchild Unit 209 Pickup has an adjustable counterweight and calibrated scale for varying the needle pressure from one to three ounces. In playing back acetate or aluminum records a two ounce pressure is generally satisfactory. When a steel neodle is used on aluminum records, use only a one ounce pressure.
11. Record Time Soale - The record time soale shows the recording time in minutes for each pitch and turntable speed, cutting "inside-out" or "outside-in". The left end of the scale shows the turntable speed (78 or 33.3 RPM) for the respective scale and the right end shows the pitch of $98,118,141$, or 161. The numerals along the graduation of the scales indicate the minutes of recording time. Rotate the scale into that position corresponding to the pitch gear and the turntable speed which you intend to use.

Before recording and while turntable is not rotating, lower the cutterhead so stylus bears on outer diameter of record about a quarter inoh from edge. Align Record Time Scale until index pointer on carriage lines up with desired recording minutes on scale. Slide cutterhead toward center of disc until index pointer is at "zero". This locates the starting groove for a record which has the required recording time, pitch and turntable speed, while still utilizing the outer part of the record where the quality of reproduction is the best.

MAINTENANCE ADJUSTMENTS - The Fairchild Recording Mechanism has adjustments provided at all important points. These are carefully set at the factory and locked at the position for best operation. Readjustments may be required from time to time either on account of loosening due to moving the equipment around or to general wear.

1. Vibration - Excessive vibration can be reduced by realigning the motor cradle suspension beneath the panel. The motor cradle is supported on four springs. The height of each spring is adjustable by means of a stud and looknut. The adjustment is very critical, only a fraction of a turn being required to make a considerable difference in the vibration level.

The rubber coupling connecting the motor to the drive may cause vibration if it is torn or if the cement loosens between the rubber and the collar. There are two end thrust adjustments on the two speed drive, the worm end thrust setscrew and the gear ond thrust setscrew. These may be readjusted after a period of time to remove vibration arising from wear in the gear and the worm assembly.
2. Grouping - Grouping may be removed from a record by the correct adjustment of the feed screw and carriage. The feed sorew is provided with an end thrust sorew and locknut which presses a steel ball against the left end of the feed screw. The right end of the feed screw bears against a thrust washer backed up by a spring which keaps the feed screw thrust directly against the steel ball under all operating conditions. See that ends are fully lubricated and set end thrust screw until there is no perceptible end play in the feed screw; also with feed screw clutch engaged and pitch gear removed, the feed screw must rotate without any binding spots. The carriage assembly rolls along the two guide rods on three rollers. There are four set screw adjustments beneath the two front rollers to restrict the carriage motion to a transverse motion only. These hardened ball surfaces bear on the undersurfaces of the front guide rod one hundred and twenty degrees from the roller contacting surface. The set screws are set up so that carriage is exactly centered on front guide rod and carriage rolls smoothly past the highest spot which may be on guide rods. The set screws are locked by putting Duco Household Cement on the threads. This adjustment is critical and was made at the factory. It should not be disturbed unless the replacement of parts has made it necessary.

Lubrication: The recording mechanism mast be lubricated at regular intervals to insure smooth, quiet operation and long life of the operating parts. Use a high grade light machine oil.

Under normal operating conditions the equipment should be oiled regularly every month. A more frequent lubrication may be necessary when the equipment is in continuous operation.

1. Motor - The front and rear bearings of the motor are lubricated through two oil pipes located at the bottom of the gear pitch housing. Remove the cover on the end of the gear pitch housing; there are two red tipped oil pipes just below the slotted opening in the panel. Lubricate each oil pipe every month with about ten drops of oil.
2. Drive Shaft Bearing - The drive shaft whioh operates the overhead feed sorew runs in a bearing which requires lubrication. This oil pipe is looated in the pitoh gear housing; it is directly behind the large diameter drive gear; the tip of the oil pipe is painted red. Squirt about ton drops of oil in this pipe overy month.
3. Pitch Change Gears - With the pitch gear cover removed and the mechanism operating, oil the bearing and gear teeth of the large drive gear, the "IN and OUT" gears and the pitch gear on the feod screw; push the "Direction of Cut ${ }^{n}$ arm in and out several times while applying a few drops of oil to the bearing on which it slides.
4. Feed Sorew Carriage - A general lubrication is necessary on the bearing and engaging surfaces of the overhead feed screw oarriage mechanism. Maintain a light film of oil on the surfaces of the guide rods and the feed screw. The cutter carriage rolls along the guide rods on three

The notes covering the general and maintenance adjustments of the Model 199/220 Recording Mechanism also apply to this model. See index for this information.
rollers which are packed with sufficient grease so as to require lubrication only at intermittent intervals; an occasional few drops of oil will stop any squeaks from these rollers. The cutterhead support arm moves vertically on a ball bearing adjustable hardened cone seat; this pivot point mast be kept frictionless by applying a few drops of oil on each bearing. The feed scrow olutch rides against a machined face on the cutterhead casting; these faces should preferably be lubricated with a light bodied bearing grease although machine oil wil serve the purpose; also maintain an oil film on the throad engaging surface of this clutch.
5. Two Speed Drive - The two speed turntable drive mechanism should be Iubricated every month; there is a hole in the turntable which gives access to an oil cup and two oil holes (painted red). The turntable should be removed every six months and the breather cap nut removed on the top face of drive to check the oil level. Use Esso \#l or an equivalent grade of oil and fill until level is $13 / 4$ inches below top face of drive cover as measured with a small rod.
6. Pickup - The pickup arm moves vertically and horizontally on four ball bearing adjustable hardened cone seats. Apply a drop of oil in each bearing every month.

MODELS 214-3,
 214-3A

FAIRCHILD AVIATION CORP.

APPLICATIOM - The Fairchild Unit 214-3A Cutterhead has been designed for direct lateral recording of sound at $33-1 / 3$ or 78 revolutions per minute on aluminum discs, plasticized cellulose nitrate or "acetate-coated" aluminum discs, plasticized thermo setting phenolic resin discs or gelatin composition discs.

This cutterhead may be mounted on the Fairchild Unit 199 and Unit 220 Recording Mechanisms. For Unit 199 Recorders bearing serial numbers 610 and below and Unit 215 Recorders, serial numbers 59 and below, it is necessary to use the Unit 214-3D Cutterhead which has an adapter bracket attached for setting the cutting angle of the cutterhead.

The cutterhead may be used on other makes of recording mechanisms by replacing the mounting ear on the back of the cutterhead with an adapter machined to mount on the feed carriage assembly. The outline drawing below shows general mounting dimensions required on the cutterhead.

It is recommended that the cutterhead be used with matching transformer F43-19 for connection to a 500 ohm output amplifier. A power level of 20 decibels (0.6 watts) will drive the cutting stylus at an amplitude of $0.002^{\prime \prime}$ at 1000 cycles.

It is recommended that the cutterhead be used with the matching network F43-33 and C214A28 for connection to a 500 ohm output amplifier. A power level of 24 decibels (l.5 watts) will drive the cutting stylus at an amplitude of 0.001 " at 400 cycles per second (2.5 inches/second stylus velocity).

The Unit 246-247 Fairchild Recording Amplifier is especially recommended in recording with this cutterhead when the ultimate in performance is required and the equipment is intended for a permanent installation.

The Unit 219 or 295 Fairchild Recording Amplifier is recommended for recording when the equipment must be portable and used out in the field.
"FLOATED" AND "ADVANCE SHOE" CUTTIMG - There are two methods of recording in common use the "floated" and the "advance shoe" cutterhead. Either method may be used when the cutterhead is mounted on the Fairchild Onit 199-3 and Unit 220-3 Recording Mechanisms.

In either case a perfect recording is dependent on the quality of the disc selected for recording. Discs that are warped or have a pronounced nonuniformity of the surface such ss pits, bubbles, bumps or hard spots may result in defective records.

The "floated" cutterhead requires a stylus pressure of about three ounces maintained by a spring adjustment and a stylus angle of 0 to 3 degrees normal to the record. The various types of record materials have different cutting characteristics so that the stylus pressure and angle should be adjusted to give the cleanest and most quiet cut. The depth of cut is dependent entirely on whether the record surface is flat and the material of uniform hardness and thickness. The cutterhead will plough through the "ups" and "downs" of the disc surface producing deep and shallow grooving with consequent variations in surface noise. On badly warped discs the stylus may bite into the aluminum undersurface and rain the stylus. "Wows" are also the direct result of an uneven record surface.

The "advance shoe" on the cutterhead reduces these hazards considerably, especially on warped discs. The depth of cut is fixed by the distance between the riding surfaces of the advance shoe and the stylus point. The shoe pressure of twelve ounces helps to keep a uniform depth of cut despite the presence of hard and soft spots on the discs.

However, failures due to uneven coating or excessive warping cannot be entirely eliminated by the advance shoe. Your disc supply is of the utmost importance. Discs supplied by Fairchild are inspected with reference to warping, thichess of coating and surface irregularities. They are supplied with the requirements of the Fairchild Recorder in mind. They cost no more than other discs which may or MAY NOT consistently produce good recordings.
STYLII - The Cutterhead has two stylus holes in the stylus chuck. The front hole is 19 degrees off normal to the recording surface for embossing aluminum discs with a polished diamond stylus. The rear hole is 6 degrees of f normal for cutting "acetate-coated" and similar type discs with a steel or sapphire cutting stylus.
The cutterhead is designed for use with a standard cutting stylus ($5 / 8^{\prime \prime}$ long and $0.064^{\prime \prime}$ to 0.065 " diameter). The "advance shoe" has sufficient travel for stylus lengths from $9 / 16$ to $11 / 16$ inches to permit using resharpened stylii.

We recommend Fairchild stylif for use with this cutterhead. Although others may be used successfully, ours are manufactured and inspected to specifications. Each sapphire and diamond is individually tested for surface noise and an inspection certificate is supplied.

FAIRCHILD AVIATION CORP. MODELS 214-3, 214-3A

The life of a sapphire stylus, depending on its care and use may range from zero to fifteen or more hours of cutting time. Used on old dry discs or others with particles of foreign matter in the coating, the cutting edge may be dulled quickly. cutting through to the aluminum will necessitate resharpening before the stylus can be used.
The steel stylus may produce as fine a recording as the sapphire for up to 60 minutes recording time. Ordinarily the sapphire is at least four decibels quieter than the steel. Most recordists prefer to change the steel stylus after every fifteen minutes recording when the disc is for broadcast or pressing purposes.

The diamond stylus used for aluminum recording has an indefinitely long life. With reasonable care, repolishing the diamond should not be necessary unless the stone is accidently chipped.

RECORDIMG ON ACETATE - Successful recording on acetate requires careful attention to details; otherwise, a large percentage of records will be spoiled. Nearly three quarters of a mile of shaving must be removed from a sixteen inch disc at lis lines per inch. In order to cut a smooth, polished groove on the entire record, the cutting stylus must have a precision cutting edge which does not dull too quickly. If this is not up to standard then the surface noice will be objectionable and the high frequency response will be limited. Th s stylus must be properly mounted and the disc surface lubricated to preserve this fine cutting edge. The following reconmendations are offered from actual recording experience. It is believed to be the best technique for consistently obtaining satisfactory recordings.

1. LUBRICATIOM - When recording on acetate, lubricate the disc before cutting with a thin coat of oil (Record Lubricant VJCOY) applied with a pad of lintless cotton cloth held on the rotating disc, working from inside to out. This is recommended for the following reasons: it provides a comparatively frictionless surface for the advance ball to ride on; it cleans the surface of dust, grit or shavings that might damage the cutting needle or collect under the advance bali; and, perhaps most important of all, it prevents the shavinga from sticking to the disc and increasing the chance of "balling up" around the stylus.
Only a VERY light coat of lubricant is needed. Too much makes the record "messy"; it collects dust and grit. NEVER use oil if recording is intended for processing and pressings. The oil interferes with plating processes. INSTEAD, use a liberal application of the Record Fixer VJCTD evenly applied with a clean intiess pad. This dries quickly, leaving a slight white deposit which does not interfere with plating. DO NOT apply this Record Fixer until immediately before recording since the record surface becomes much harder after standing for any length of time after such treatment.
2. THROW - The stylus may be set about 5 degrees from the normal position (cutting face ncirmal to sound track) so as to throw the shaving slightly toward the center. The amount of throw varies with the diameter at which you may be cutting. At the five-inch center, where test custs are usually made at 33.3 R . P. M., if shaving throws about $1 / 4$ inch it should be sufficient - less may be periectly satisfactory. Round shank stylii are preferred to those with flats on them as the former may easily be turned to throw the shaving as
desired.

To gauge the stylus throw requires considerable skill. The tendency is to install the stylus with a larger throw angle than necessary. In this case, the cutting edges of the stylus are not normal to the groove. Only one side of the groove is completely polished by the cutting edges of the stylus and causes an unnecessarily high surface noise.
A stylus can be supplied with a flat on end of shank; the face of the stylus is ground at the correct angle to this flat to plow shavings toward center of record; the cutting edges are lapped paraliel to this flat to maintain cutting edges normal to the groove, polishing both sides of the track. This stylus requires less skill to install and insures minimum surface noise.
3. CUTTIMG ANGLE - Adjustment of the position of the cutterhead is easily made so that the angle of the stylus may be varied to suit various individual requirements. This is accomplished by the control screw pressing on the seat at the rear of the head which, when turned clockwise, raises the front end of the cutterhead. Under usual recording conditions best results are obtained when the nose of the cutterhead is between zero and $1 / 16$ inch lower than the rear. (Equivalent to stylus angle of 6 to o degrees from normal to the record). This may vary with different styles of cutting stylii. Cutting stylii that first tests may indicate to be noisy often become quiet when the angle is properly adjusted.
4. DEPTH OF CUT - The depth of cut must be carefully adjusted on the sample test cuts. If too shallow a cut is made, the sound groove will not be deep enough for the pickup to track in. On the other hand, too deep a cut will increase the chance of penetrating the acetate coating (from. $003^{\prime \prime}$ to $.007^{\prime \prime}$ thick), cut into the metal under-surface and ruin the cutting stylus.

Adjustment for depth of cut may be made with the Advance Shoe Control Knob. Each full turn of the knob advances the shoe by 0.00056 inches. The knob has eight vertical index lines spaced forty-five degrees apart. Therefore, turning the knob equivalent to one index line increases the depth of cut by 0.0007 inches.

FAIRCHILD AVIATION CORP.

5. SHAVIMGS - With a good cutting stylus in proper adjustment and a satisfactory disc, little trouble need by experienced with the shavings on Fairchild Recorders. If the shaving starts to pile up, leave it alone; it will usually clear up of itself. This is hard to realize for operators of other recorders who have ruined many recordings because of shavings. Sometimes you may assist the clearing up process by blowing the shaving toward the center. Any touching or jarring of the cutterhead in this instance may min the groove. A specially designed brush, C199-A34, is available for mounting directly on the front right corner of the Unit 199 and Unit 220 Recorder Mechanisms to take care oi the shavings. This is absolutely necessary if you wish to cut from the "outside-in".
6. RECORDIMG LEVEL - Recordists accustomed to other types of cutting heads are often inclined to record at too low a level to avoid a "repeat". This results in a higher surface noise than is necessary. The volume indicator may swing to plus 24 and even plus 26 decibel on occasional peaks with no danger of "repeats" at 118 lines per inch. The only limitation is the quality which may break down or become generally unsatisfactory if the level is maintained above plus 24 decibel for more than the momentary peak. Do not be continually monitoring the volume control trying to hold a constant level. This destroys the natural dynamic volume range of the voice or masic when played back. Rather, establish through a preliminary test the loudest level and set the volume control to peak at plus 24 or even plus 26 decibel; then move the dial only as much as may be necessary to avoid too much surface noise during extremely low level passages.
7. SOFT DISCS - Occasionally the recordist will encounter soft discs, particularly when recording outdoors in the summer. It may be necessary at times to experiment with sample record materials which are very soft. In these cases the advances shoe will score the record surface when the normal twelve ounce pressure is used. Attach the Stylus Pressure Spring (on the Unit 199/220 Recording Carriage) and reduce the stylus pressure to about six ounces.
8. A dull stylus may cause the shaving to ball up. If in the midst of a recording, the only course open is to trust to chance it will "turn out all right" or switch over to a spare recorder and finish the recording on another disc.
9. Do not record closer than $1 / 4$ inch from the edge of the disc. Othervise perfect discs may be rough at the edge. This is especially true of discs that are manufactured by the "whirled" coating process.
10. Recordings intended for processing and pressings MUST be made on over-size discs. A 16 inch pressing requires a $17 \frac{1}{4}$ inch disc. The recorded portion MUST end, however at not over 15-3/4 inch diameter.

OPERATIMG SEQUENCE OK ACETATE RECORDIMG WITH "ADVANCE SHOE" - The sequence of operation which it is desirable to carry out when recording on acetate and using the "advance shoe" method is as follows:-

1. Select a disc which is reasonably flat and free from bad surface defects.
2. Select a recording stylus which has preferably been check for surface noise. Experienced recordists prefer to file away their recording stylii by serial number and log the surface noise and actual recording time. By systeratically keeping this data in leisure moments, it is possible to maintain a consistent standard op performance and predict when it is necessary to discard or resharpen a dullestylus. This practice minimizes the embarrassing discovery, only after an important recording is already started, that a stylus is bad.
3. Swing cutterhead to inverted position. Insert stylus fully into rear hole. Secure stylus firmly with the clamping screw after the cutting face has been set with the desired amount of "throw". A convenient tool for holding the stylus and making this throw adjustment accurately is shown in Figure l. It may be easily made up or purchased from Fairchild.
4. Turn Advance Shoe Knob clockwise until advance shoe will definitely prevent stylus point from touching record when cutterhead is swung back to the recording position.
5. Lubricate the surface of the disc with the oil lubricant.
6. Swing the cutterhead around to slightly past the horizontal position. The Angle of Cut Screw must butt against the stop on the rear of the cutterhead. The advance shoe should rest on record surface (not rotating). Turn Angle of Cut Screw clockwise until the stylus of the cutterhead is vertical to the disc or slightly dragging.
7. Swing the cutterhead around to slightly past the normal horizontal cutting position. The Angle of Cut Screw must butt against the stop on the rear of the cutterhead. The advance shoe should rest on record surface (not rotating). Turn Angle of Cut Screw clockwise until the undersurface of the cutterhead is horizontal with the disc or slightly nosed up.

FAIRCHILD AVIATION CORP. MODELS 214-3, 214-3A

7. Start a test cut on the five-inch diameter at 33.3 R.P.M. Turn Advance Shoe knob counter-clockwise until the stylus barely scratches the record surface. This is the "zero depth of cut". Thurn the knob counter-clockwise equivalent to from 2.75 to 3.00 index lines engraved on the Advance Shoe Knob. Each index line is equal to increasing the depth of cut by 0.0007 inches. The recommended depth of cut is 0.002 inches. This may be checked by measuring the shaving with a micrometer. However, the experienced recordist can usually judge the cutting depth by observing the shaving. Notice whether the shaving has the proper throw. Place pickup (connected to amplifier and speaker) in the blank groove and carefully listen for minimum surface noise while slowly turning the Angle of cut Screw clockwise. The optimum angle is about three degrees dragging for the average stylil and record material. However, there is a difference in the cutting characteristics of some record blanks and it is advisable to adjust the stylus for minimum surface noise, particularly when using unfamiliar brands of record materials or stylii for the first time. Make any necessary readjustments during the test cut to secure the best result.
8. Start to make a test cut on the five-inch diameter at 33.3 R.P.M. Turn Advance Shoe knob counter-clockwise until the stylus barely scratches the record surface. This is the "zero depth of cut". Turn the knob counter-clockwise equivalent to from 1.75 to 2.25 index Iines engraved on the Advance Shoe Knob. Each index line is equal to increasing the depth of cut by 0.001 inches. The recommended depth of cut is 0.002 inches. This may be checked by measuring the shaving with a micrometer. However, the experienced recordist can usually judge the cutting depth by observing the shaving. Notice whether the shaving has the proper throw and the stylus is cutting quietly. Make any necessary adjustments during the test cut to secure the best result.
9. The preliminary adjustments are completed and the cutterhead may be raised by lever on right side of cutterhead carriage mechanism. Start the recording on a six and a half inch diameter, cutting about three full revolutions with blank grooves before raising the amplifier volume control to the recording level.

OPERATIMG SEQUENCE OH ACETATE RECORDIMG WITH "FLOATED" CUTTERHEAD - The above procedure is for using the "Advance Shoe" method of cutting. For those recordists who prefer the "Floated" method of cutting, the following recommendations are offered.

First observe the suggestions in paragraphs one to six inclusive. Then attach the Stylus Pressure Spring and turm its control Knob (on the Unit 199/220 Recording Carriage) counterclockwise until the stylus pressure is three ounces (measured by a small four ounce spring scale fastened to nose of cutterhead). Note that the advance shoe has been deliberately left in a position to protect the cutting stylus during these early adjustments.

Raise the cutterhead off the record surface. Turn Advance Shoe Knob counter-clockwise until protective shoe permits stylus to ride freely on record. Gently lower the cutterhead and make a test cut on the five inch diameter at 33.3 R.P.M. Readjust the stylus Pressure Spring Knob if necessary to get the desired cutting depth. Observe whether the stylus is cutting quietly during this test cut and readjust stylus angle if necessary. Make any necessary readjustments to secure the best results.

The cutterhead may then be raised after satisfactory recording adjustments are attained on the test cut. Start recording on a six and a half inch diameter. Cut about three full revolutions with blank grooves before raising the volume control of the amplifier to the proper level.

OPERATIMG SEQUEMCE OK ALUKIMUM RECORDING - The embossing of aluminum requires much less skill and practice than acetate. Although it is possible to record a wide frequency range on aluminum the surface noise is objectionable for high quality work. The higher frequencies can be reproduced by using a steel needie in the pickup and a needle pressure of about one ounce but the record is bacily worn after only a few playings. Normally the records are played back with the thorn needle (code "VKDCL" or "VKDEK") to get longer record life and lower surface noise, despite the fact that frequencies about four thousand cycles per second are not reproduced.

The following recording sequence is outlined for recording on aluminum:-

1. Select a disc which is flat and free from bad surface defects. When the disc is warped take the trouble to bend the disc until it seats flat on the turntable.
2. Swing the cutterhead to the inverted position. Insert the stylus fully into front hole. Secure stylus firmly with the clamping screw. Thrn Advance Shoe Knob to raise the advance shoe clear of the record surface.
3. Lubricate the surface of the disc with a light film of oil Lubricant (Code VJCOY) if the record blank is not of the pre-lubricated type.

FAIRCHILD AVIATION CORP.

4. Swing the cutterhead around to slightly past the normal horizontal cutting position. The Angle of Cut Screw must butt against the seat on the rear of the cutterhead. Turn Angle of Cut Screw clockwise until the underface of the cutterhead is horizontal with the disc.
5. Make several test cuts on some waste aluminum records to find the best position to mount the stylus for minimum surface noise. A diamond may have one or two slight imperfections on the highly polished ball-shaped stylus point which forms the record groove. Rough edged particies of aluminum inbed themselves in these indentations and tear into the side walls of the record groove which causes a high noise level on the record. Therefore, it is desirable to orient the diamond in the stylus chuck to avoid these occasional bad spots in the recording stylus.
6. Once these adjustments are made to your satisfaction, a large number of aluminum records may be cut without the necessity of any further stylus or angle of cut adjustments.
CHECKIMG SURFACE NOISE, EFFICIENCY AND FREQUENCY RESPONSE - The recordist should adopt some method of checking a recording instaliation periodically for surface noise, efficiency and frequency response. The following paragraphs outline the inspection routine used at our factory. A beat frequency oscillator, output level indicator with a plus 36 to a minus 20 decibel range, and an RCA \#23 constant frequency record are required for making these measurements.

Drive the recording amplifier with the beat frequency oscillator. Malntain a plus 20 db. level across the 500 onm side of the matching transformer at all test frequencies. Cut inside-out on a 10 to 14 inch diameter at 33.3 R.P.M. Record successively frequencies of 1000, unmodulated groove, 50, 200, 400, 1000, 2000, 3000, 4000, 5000, 6000. Record each frequency including the unmodulated groove for about fifteen seconds with about a three second silent period between each frequency.

1. EFFICIEWCY - The efficiency of the cutterhead is measured by comparing the 1000 cycle per second groove of the test record with the 1000 cycle per second groove on the RCA 23B Record. First play the RCA 23B Record at 78 R.P.M. and adjust the playback amplifier output level to plus 20 decibel across a 500 ohm resistive load. Next play the 1000 cycle per second groove on the test record and observe the decibels above or below the 20 decibel reference level. This reading indicates the cutting efficiency in decibels of the cutterhead in terms of a representative 0.002 inch amplitude 1000 cycle per second groove at 78 R.P.M. when a 20 decibel level is maintained across the cutterhead. Normal cutterheads will be within three decibels of this reference level. If the level is below 8 decibels the crystal is cracked and must be replaced.
2. MOISE LEYEL - The noise level is messured by comparing the unmodulated groove on the test record with the 1000 cycle per second sound groove on the RCA 23B Record. First calibrate the pickup and playback amplifier for plus 30 decibel output across a 500 ohm resistive load using 1000 cycle per second groove on RCA 23B Record played at 78 R.P.M. as representative $0.002^{\prime \prime}$ amplitude groove. Then playback the unmodulated groove on test record with the calibrated pickup and amplifier. Read the noise level in decibels below this representative level.
The noise level on the surface of the turntable (-44 db. below plus 30 db. playback reference level on Unit 199/220 Turntables) will ordinarily mask the actual surface noise of good recording stylil and acetate discs at 33.3 R.P.M. particularly on diameters under ten inches. When interested in the relative superiority of disc material and cutting styli1, record the blank groove at a speed of 78 R.P.M. so that the surface noise due to cutting is above the vibration level of the turntable.
Noise level measurements will depend entirely on the record material, stylus and its adfustment. It also increases with record diameter and turntable speed.
Normal readings on acetate records on a twelve-inch diameter should be from -40 to -44 db . below the plus 30 db . playback reference level at 78 R.P.M., from -45 to -50 db . at 33.3 R.P.M.

Normal readings on aluminum records on a ten inch diameter should be from -24 to -26 db . below the plus 30 db . playback reference level at 78 R.P.M., from -32 to -36 db . at 33.3 R.P.M. When using a thom needle instead of a steel needie for playback these readings w1ll be from 4 to 6 db . lower.
3. FEEqUEMCY RESPOMSE - Playback the 1000 cycle per second groove on the test record with the plckup and playback amplifier calibrated at plus 20 db . level across a 500 ohm resistive load. Observe the output level indicator readings at the other test frequencies in decibels above or below this zero reference level.

Normal average readings should be as follows when the Unit 199 Recorder and the Unit 219 Amplifier is used for this measurement.

Frequency	1000	50	200	400	1000	2000	3000	4000	5000	6000
Level	$0(+20)$	-16	-8	-4	0	+2	+8	+4	+1	-5

3. FREQUEMCY RESPOKSE - The frequency response is measured by comparing the width of the diffraction pattern on the test record with calipers. The pattem should be uniform in width between 400 and 8000 cycles (within twenty-five percent of the 1000 cycle pattem). Each successive frequency pattern below 400 cycles should be about half the width of the adfacent higher frequency pattern.

(C)John F. Rider

FAIRCHILD AVIATION CORP.

Overall Gain - 50 ohm Mic. to 500 ohm Output	105 db .
150,000 ohm Pickup to 500 ohm Output	70 db .
500 ohm Line to 500 ohm Output	65 db .
Frequency Response within 1 db .	50 to $10,000 \mathrm{c} \cdot \mathrm{p} . \mathrm{s}$.
Distortion - c 500 ohm "RECORD" Output Secondary	$2.0 \%+20 \mathrm{db}$.
	$5.0 \% \frac{1}{4}+26 \mathrm{db}$.

Noise level below 20 db . (0.6 watts)

Mic. Input	-35 db.
Pickup Input	-60 db.
Line Input	-60 db.

Input Power
Fuse Protection 120 watts, $105 / 125$ volts, 50 to 60 oycles

2 amperes
50, 125, 200*, 250, 333, 500* ohme and bridging balanced center tap high impedance. *Balanced center tap.

Output Impedance
Tube Complement
Feight
Trunk Dimensions

Rack Panel Size

Clearance behind Panel
6 inohes

INPUT CIRCUITS - The amplifier is provided with three sorew type receptacles for Miorophone, Piokup and 500 Ohm Line input comections. The plugs to fit them are Amphenol Type MC3M plugs. The three position Input Selector Switoh located centrally with reapect to these three input receptaoles is provided for selecting these inputs.

1. The Miorophone receptacle is for conneotion to any standard microphone. The overall gain is such that it is unnecessary to use extra preamplifiers for picking up sound from large orchestras or sound several feet away from the microphone.

The microphone input transformer has $50,125,200,250,333$ and 500 ohm inputs available. The 200 and 500 ohm primaries are of the "balanced center-tap-to-ground type. The standard wiring to the microphone receptacles as shipped from the factory is 50 ohms. This input transformer is enossed in a high permeability case to reduoe hum pickup from stray magnetic fields and it is located of f the chassis and mounted in the rear left corner of the trunk to reduce hum pickup to a minimum.

The various input impedance taps are accessible by removing the top cover of the transformer held on by four screws. Relocate the leads for desired input impedance in accordance with connections shown on the sohematic diagram. A high impedance push-pull input
for crystal microphones or when using amplifier as a bridging device is available by removing control panel from amplifier and soldering jumpers from the respective two microphone receptacle input terminals to the 6 C 6 input tube grids.

FAIRCHILD AVIATION CORP.

2. The Pickup receptacle is for comection to the Fairchild Crystal Pickup or any similar high impedance device with an output from -40 db . to -10 db . The two output connections must be carried in a grounded shielded oable; neither side of device should be grounded.
3. The 500 Ohm Line receptacle is for connection to any 500 ohm line, with one side grounded and with a -20 to 0 db . level. In the event that a connection must be made to a "balance center-tap-to-cround" line, use the Miorophone receptacle as the input. Revise the input transformer connections either to match this line or use the amplifier as a bridging device as described above. It may be desirable to insert a 40 db . attenuator between the souroe and the amplifier in order to have a smooth range of control in the Volume control.

OUTPUT CIRCUITS - The output transformer has been designed with two separate secondaries to supply a 7.5 ohm and a 500 ohm load simultaneously; the 500 ohm seoondary has a 250 ohm tap for connection to two 500 ohm loads in parallel. A switch "LNE-BOTHRECOKD", a four position "SPEAKER" attenuator and three output receptacles are provided to take care of various output load requirements.

The monitor speaker is looated on the main panel and plugs into the chassis by means of a standard five hole socket. Output level to the speaker is controlled by means of the four position "SPEAKER control wioh inserts an attenuator network in the voice ooil cirauit. This control is provided to permit playing the speaker at a lower output than the level being maintained at the 500 ohm secondary which is usually driving a recording cutterhead at a plus $D \mathrm{db}$. level.

The LINE-BOTH-RECORD switoh will supply either an output signal to a 500 ohm recording cutterhead, to an outgoing 500 ohm line or to both simaltaneously. This latter condition is occasionally necessary where an audition may be required while the recording is in progress. The switoh connects the amplifier 500 ohm output seoondary to the "FECORDER" 4 prong, sooket or to the " 500 OHM LINE" jack when in the respective "RBCORD" and "LINE" positions. In the "BOTH" position the "RECORDER" 4 prong socket and the " 500 OHM LIAE" jack are conneoted in parallel to the 250 ohm tap on the output winding.

The "MONITOR" jack is wired to the 250 ohm output secondary. A high or low impedance headset may be plugged into this jack when it is desirable to use a headset rather than a loudspeaker for monitoring.

OUTPUT LBVEL INDICATCR - The Output Level Indicator is a milliameter and a 6F6 tube rectifier. The dial scale is calibrated in deolbels and the zero reading is equivalent to a plus 20 db . level (0.6 watts) aoross a 500 ohar resistive load. The indicator has a damping and speed approximating the standard general purpose instruments in ocmercial use. Fhen replacing the control panel after service and inspection take care not to short the binding posts on the rear of the indicator against the chassis. A proteotive insulating pad is provided on the rear of this instrument and it should not be omitted.

POWER SUPPLY DATA - This amplifier has its power supply integral with the chassis for operation on a oomercial 50 to 60 oyole, 105 to 125 volt A.C. line. The total wattage required is 120 watts. The amplifier is protected with a 2 ampere fuse. This fuse (radio type 1-1/4" long) is accessible by removing the four screws holding the illuminated nameplate. The fuse holder marked " A " is the amplifier fuse. There is also a fuse holder marked " $M^{\prime \prime}$ rated at 10 amperes on the right side. This fuse proteots the 115 volt connection to the large pins on the RECORD receptacle brought out on the control panel for a power oonnection to motors on assooiated equipment, e.g. the Fairohild Unit 199, Unit 220 or Unit 219 F Turntables.

The "OFF-ON" switoh controls the power supply to the amplifier and the external motor cirouits. The pilot lamp (Mazda bayonet base, round bulb, $6 / 8$ volts) serves as a warning when the equipment is turned on.

A small 4-hole socket is located on the top deck of the amplifier ohassis for supplying 6.3 volts, 1.5 amperes A.C. and 250 volts, 10 milliamperes D.C. to operate a small external radio tuner or preamplifier.

RACK MOUNTING - The amplifier, speaker and oantrol panel are mounted on a 17-1/2 $x 19$ inch standard size rack panel. The complete panel may be raak mounted when desired by removing the six large knurled thumb sorews holding the panel to the tray sticks of the trunk. He input transformer, which is comected to the amplifier chassis with two shielded cables, should be mounted on the rack at any convenient location. Care should be taken to mount it so that hum is not picked up from the amplifier power supply or from any other stray magnetic fields from equipment already mounted on the raok.

MAINTENANCE - In the event that the equipment fails to function in the normal manner check all input and output circuits for continuity. If a casual general inspection does not indicate the trouble turn the amplifier off. remove the tubes from the sockets and check them in a reliable tube tester. In case of a failure not traceable to either faulty input or output circuits or to tubes make a systematio point to point voltage test. For this test the tabes should be in their respective sookets and the power turned on. The voltage readings can be conveniently made by merely unsorewing etched control panel on the amplifier. This leaves the entire under-ohassis wiring open for inspection. The voltagereadings shaild agree with the values given on the sohematic diagram within ton percent.

The majority of service failures merely require tube replacements in amplifier equipanent. It is advisable to have a set of spare tubes set aside for this emergenoy. Before storing them away the tubes should be oarefully ohecked in the amplifier for normal gain, for freedom from microphonics and for absence of extremeous background noise.

TUBE REPLACEMENT - When it is necessary to make tube replacenents the following points should be considered for the most satisfactiory operation. For the input 6C6 stage use a pair of matched tubes which do not show any miorophonic tendenoies. This can be determined by tapping the input tubes with the monitor speaker on a full gain to see whether an acoustic howl will build up between the speaker and the input tubes.

Use matched sets of $6 C 6$ tubes on the second stage and a matohed set of 6B5 tubes in the output stage. The mutual conductance of the sets should be matohed within ten percent.

Defective 6B5 tubes may be recognized by a slight gurgling or a raspy wistling sound in the speaker when no signal is on the amplifier. Meak overall gain is also an indication of defective 6B5 tubes.

The 6 H 6 serves as the rectifier for the Output Level Indicator. Paulty operation of the Output Level Indicator is remedied generally by replacing this tube. Satisfactory performance will be obtained using an average good tube.

The 523 provides the necessary operating D.C. voltages for the amplifier. The seleotion of this tube is not oritical.

The tubes are acoessible for replacement by removing the oomplete panel from the trunk held in place by six thumb sorews. Tilt the panel forward and remove the tube shields and tubes. When replacing tubes make sure that the grid clamp on the grid cap of tube is not grounded on the top seotion of the tube shield.

FAIRCHILD AVIATION CORP.

MODEL 227

FAIRCHILD AVIATION CORP.

APPLICATIOH - The Fairchild Unit 227 Transcription Turntable has been designed to meet the demand for a high quality mechanism of rugged construction. Its performance specifications makes it worthy of the fine quality reproducers available today. All parts are assembled on the single panel so it can easily be mounted in a cabinet, control desk or table. When specified, the Unit 227 Transcription Turntable can be supplied in a trunk for portable use. Both lateral or vertical recordings up to 16 inches in diameter can be reproduced on this equipment and speeds of 78 RPM and 33.3 RPM are available by merely raising or depressing the center pin.

VOLTAGE AMD FREOUENCY - The Transcription Mechanism is supplied as standard for operation on a 115 volt/60 cycle power line. Equipment can be supplied on order for operation on 115 volts $/ 50$ cycles; 220 volts $/ 60$ cycles; 220 volts/50 cycles. The power consumption is 70 watts.

GEMERAL DESCRIPTIOM - The Transcription Mechanism (Model l) is contained on an aluminum panel ($21^{\prime \prime}-W, 17^{\prime \prime}-\mathrm{D}, 1 / 4^{\prime \prime}$ thick) finished in black crackle lacquer, for flush mounting in a permanent studio cabinet installation (see Dr. \#E227-29). A $1 / 50 \mathrm{HP}$ synchronous motor drives the turntable through a two speed drive, D199-A22. The motor is spring suspended from the panel. The motor shaft is connected to the two speed drive through a carefully balanced flexible rubber coupling Al99-Al6. The turntable Cl99-A8 is a 16 pound heat treated iron casting carefully machined flat and dynamically balanced. Net weight 45 lbs. A power connection should be made to the nerrest base receptacle with an extension cord attached to the \#7701 Twistlock plug located on the underface of the panel. This plug is supplied to insure a quick reliable connection that cannot be accidently disconnected. Pickups are mounted on the Transcription Panel only when specified. Pickups are wired to a short pendant cord located under the panel. An Amphenol MC3F Connector and ten foot of shielded cable is supplied in this instance, to connect the pickup to the lines or amplifier input.
Directly above the switch is a nameplate with general operating instructions on the Transcription Mechanism. The Unit Number, Serial Number, Voltage, Frequency, and Power Requirements are also included on this nameplate.

The Fortable Transcription Mechanism Assembly (Model IP) is identical to the above assembly except that two five foot cables are brought out of the top right of panel. Whatever type of plug-in connector is required for connection to the a. c. line and the pickup amplifier input may be aded at installation. The panel is mounted in a trunk and provisions are made made for storing the turntable in the top cover of the tmunk when transporting the equipment.

OPERATIOM

1. Turntable Speed - The sixteen pound turntable is driven by a synchronous motor through a jear and worm reduction. It rotates at 33.3 RPM when the shift pin, extending through the turntable shaft, is pressed down. It rotates at 76 RFM when the pin is pulled upward. The "OFF-ON" switch on the right of the panel operates the turntable driving motor. Always shut off the motor when shifiting speeds to avoid unnecessary strain on gear drive assembly.
2. Fuse - The motor circuit is protected by a fuse located at the left of the motor "OFF-ON" switch. Remove screw cap in fuse holder with a screwdriver to replace fuse. Use a standard $1-1 / 4^{\prime \prime}$ radio type 10 ampere fuse.
3. Turmtable Stop Pin and Clamping Nut - There is a removable stop pin on the two inch diameter of the turntable to prevent discs provided with suitably located stop pin holes from slipping while reproducing them. The stop pin may be removed with a screwdriver for those discs which do not have these stop holes. The removable record stop pin may get mislaid when removed from turntable. To prevent this possibility, it may be secured in threaded hole one inch above "OFF-ON" switch.

A clamping nut with a right hand thread is supplied for holiing discs, not provided with stop pin holes, securely to turntable.

MAIMTEMAMCE ADJUSTMEMTS - The Fairchild Recording Mechanism has adjustments provided at all important points. These are carefully set at the factory and locked at the position for best operation. Readjustments may be required from time to time either on account of loosening due to moving the equipment around or to general wear.

1. Vibration - Excessive vibration can be reduced by realigning the motor cradle suspension beneath the panel. The motor cradle is supported on four springs. The height of each spring is adjustable by means of a stud and locknut. The adjustment is very critical, only a fraction of a turn being required to make a considerable difference in the vibration level.

The rubber coupling connecting the motor to the drive may cause vibration if it is torn or if the cement loosens between the rubber and the collar. Excessive oil dripping on rubber will damage coupling.
There are two end thrust adjustments on the two speed drive, the worm end thrust setscrew and the gear end thrust setscrew. These may be readjusted after a period
Under normal operating conditions the equipment should be oiled regularly every month. A ore requent lubrication may be necessary when the equipment is in continuous operation.

1. Motor - The front and rear bearings of tho motor are lubricated through two oil oil pipes just below the opening in the panel. Lubricate pipes just below the open-
ing in the panel. Lubricate each oil pipe every three months with about ten drops
of oil

FAIRCHILD AVIATION CORP.

general sfecifications

Distortion measurements below were made with no equalization and controls set at 20 c.p.s. and 10 Kc . A minus 10 db . Input to 500 ohm " H " line position.

Frequency in C.P.S.												
LEVEL	$\underline{50}$	$\underline{80}$	$\underline{100}$	$\underline{400}$	$\underline{1000}$	$\underline{2000}$	$\underline{3000}$	$\underline{4000}$	$\underline{5000}$	$\underline{6000}$	$\underline{7000}$	$\underline{8000}$
plus 26 db.	1.4%	0.82%	0.75%	0.57%	0.6%	0.72%	0.85%	0.95%	1.35%	1.4%	1.7%	2.0%
Plus 33 db	3.0%	2.05%	1.75%	0.8%	0.82%	1.4%	1.95%	2.4%	2.9%	4.25%	4.4%	5.0%

Noise level below 0 level of .006 watts at full gain of amplifier with
bass and high controls off . - 18 db .
Current drain and AC wattage consumption @ 117 volt AC total wattage 117 watts
Fuse Protection
3 amp.
Input Power 117 watts, $105 / 125$ volts, 50 to 60 cycles.
Output Impedance 500 ohms "T" and "H" positions,

Tube Complement . 7-7A4; 2-6L6G; 1-6H6; 1-5U4G
Weight . 54 lbs.
Trunk Dimensions $17^{\prime \prime}$ width; $18^{\frac{1}{4} n}$ height; $11^{\prime \prime}$ greatest depth.
Power output . 500 ohm winding 12.5 watts
15 ohm winding 1.5 watts
ARPLICALIONS - The Fairchild Unit 295 Amplifier-Equalizer has been designed for portable use and all studio requirements in recording, playing baok records, and public addresswork. The unit is considerably more flexible than any previous amplifier, and is extremely compact in its light gauge metal trunk.

When the volume or level of a typical amplifier is reduced, the frequenoy extremes, that is, the bass and the high frequenoies attenuate or tend to disappear first. As the level is further reduced, the attenuation of bass and high frequencies apparently becomes still greater to the ear to that of the middle range. Thus the equalization element of the 295 is provided so that you may boost the extremes to compensate for this apparent falling off of bass and high frequencies. At any frequency from 20 to 100 cycles equalization of from 0 to 20 db . is available and at any frequenoy from 4000 to $10,000 \mathrm{cy}-$ cles equalization from 0 to 20 db . may be added. There is a negligible interaction between the controls, and they can be preset at any time to provide known amounts of equalization for any particular purpose. The increase or emphasis of both high and low frequency controls up to 20 db . above the average program level may be made without materially changing the output level of amplifier supplying cutterheads or loudspeakers. Thus, the volume or gain of amplifier need not be altered in the midst of a recording merely because the equalization is changed. The accompanying prints have been designed to show the amount of equalization you can obtain at any arbitrary setting.

For RECORDING and PLAYBACK the amplifier is provided with receptacles for instantaneous hookup to the Fairchild Unit 199 and 220 Recorders, or the Unit 227 Turntable Mechanism. These combinations provide a complete, self-contained, portable outfit for the direct recording of voice, music, and sound, and for the direct playback of such records.

For PLAYBACK service only, the amplifier may be similarly hooked up through the same receptacle to the Fairchild Unit 227 which is a transcription turntable with both 78 and $331 / 3 \mathrm{rpm}$.

For HEARING AID work the amplifier's 500 ohm " H " output position may be connected to the Unit 219C Hearing Aid Headset Matching Box, which provides the correct impedance match for multiple groups of hearing aid headsets. The value of the Unit 295 for this particular work is greatly increased by its ability to give considerable emphasis to recording or playback in a part of the audible range where special boost is desired.

For PUBLIC ADDRESS work the Unit 295's "H" 500 ohm line output may be connected to permanent magnet speakers mounted in suitable baffles or enclosures. The speakers should be supplied with a 500 ohm to voice coil matching transformer. A single transformer will be found satisfactory for multiple operations profided the voice coils are properly phased and proper impedance provided.

IMPUT CIRCUITS - The Unit 295 is provided with six screw type receptacles for a microphone of either 50 or 250 ohms impedance, two Fairchild $209-3$ crystal pickups, a "T" 500 ohm line and an "H" 500 ohm line for use with a radio tuner. If the Fairchild Unit 209-4 dynamic pickup is used, it should be connected to the 50 ohm microphone position. These receptacles are located on the rear of the chassis on the right hand side. A switch is provided on the front of the panel for selecting any one of these inputs. Equalization may be inserted, or not, on any input signal. The signal input to 500 ohm "H" or "T" should be held to minus 10 db . for best performance.

OUTPUT CIRCUITS - The selector switch on the right hand side of the amplifier allows the signal to go to both heads at once, either head, the " T " line or the " H " line. A separate attenuator is supplied on the right hand side of panel for the speaker which is mounted on the back cover of the trunk. This sacond attenuator provides for adjustment of monitoring level independent of level going through volume indicator to cutterheads or lines. In cases where a master record is being made and must be checked without playing, the signal is fed simultaneously to both cutterheads, allowing one record to be auditioned though the other is processed. The "H" line position provides an output to loudspeakers separate from equipment. The phone monitor jack is wired to 8 ohms output winding. A high or low impedance headphone set may be plugged into this jack which provides a comfortable audio level at normal recording levels.

POWER SUPPLY DATA - The power supply is integral with the chassis for operation on a commercial 50 to 60 cycle, 105 to 125 volt AC line. The total wattage required is 117 watts, and the Unit 295 is protected by a 3 ampere fuse at the rear of the chassis. The "OFF-ON" switch controls the power supply to the amplifier, but not external circuits.

OUTPUT LEVEL INDICATOR - Located at the central point of the panel is a milliameter and a 6 H 6 tube rectifier. The dial scale is calibrated in decibels, and the zero reading is equivalent to a plus 20 db . level (0.6 watts) across a 500 ohm resistive load. The indicator has a damping and speed approximating the standard general purpose instruments in commercial use. It is used in all output positions except the 500 ohm "H" line. This affords protection where levels greater than plus 26 db . are employed as in the case of public address work. When replacing control panel, be sure that meter leads are properly polarized. A red dot will be found on the terminal strip indicating the proper terminal for the red lead of the meter.

RACK MOUNTING - The Unit 295, when supplied for rack mounting, is shipped minus the rear cover of trunk and loudspeaker. Standard spacing is used for the rack mounting panel which is $211^{\prime \prime} \mathrm{x} 19^{\prime \prime}$. The part number is B295-A18. The necessary mounting screws and washers are supplied with this model.

MAINTENANCE - Should the amplifier and power supply fail to function in the normal manner, all external connections should be inspected. If the difficulty is not located, the power should be shut off and the tubes removed from their sockets and tested in a reliable tube tester. In case of fallure that cannot be traced to incorrect connections or defective tubes a systematic point to point voltage test should be made. For this test the tubes should be in their respective sockets and the power turned on. The voltage readings obtained should closely approximate the values tabulated on the schematic diagram. Reduction in hum noise can be obtained by careful adjustment with a screwdriver of a variable C. T. resistor located near the left hand side of the power supply deck on the rear of the unit. This adjustment cancels residual A.C. unbalance in the heater circuit. Stray magnetic fields may to some extent influence residual noise in the amplifier.

TUBE REPLACEMENT - The use of tubes matched for gain and plate current is recormended for future tube replacements. Under practically all conditions of normal operation this wlll be satisfactory. When it is necessary to make tube replacements, the following points should be considered. For the input 7A4G stage use tubes which do not show microphonic tendencies. This can be determined by tapping these input tubes with the monitor speaker on at full gain to see whether an acoustic howl will build up between the speaker and

FAIRCHILD AVIATION CORP.

7A4G's. The 6 H 6 serves as a rectifier for the Output Level Indicator. Faulty operation of this Indicator is generally remedied by replacing this tube. Satisfactory performance will be obtained using an average good tube. The 5U4G provides the necessary operating D.C. voltages for the amplifier. The selection of this tube is not critical. The 6L6G's are the power output tubes and should match reasonably well in characteristics. The tubes are accessible for replacement from the rear deck of the trunk.

CONTROLS - When unit is allowed to remain idle for several days the variable controls may develop a slight scratching noise due to oxidation of the wire-wound variable resistors. If each control is rotated several times throughout its range, this oxidation will be removed by the wiper element in each variable resistor. These controls should be checked before proceeding with recording.

The use of the Unit 295 Fairchild Amplifier-Equalizer necessitates some statements of fact and procedure for those who are not familiar with equalization and its use in recording, playback and audio amplifying systems. What follows applies directly to recording and reproducing sound with the use of Fairchild Recorders having our latest cutterhead and network VHAOA; to playback systems that are essentially flat from 50 to 10,000 cycles such as the Fairchild Dynamic pickup \#209-4, the Western Electric \#9A, RCA diamond point pickup, etc. It is obvious, of course, that other units in the systems such as amplifiers and speakers must also conform to similar frequency response characteristics, since the "over-all" quality and response can only be as good as the weakest unit in the system.

So far, only the frequency response has been mentioned. Distortion is equally important but not always adequately taken into account. The Fairchild "over-all" distortion at 400 cycles, using the \#3A or 3 AC cutterhead, \#295 Amplifier and \#209-4 Dynamic pickup is less than 5%. (Our laboratory tests show as low as 3%). This means that a recording made on our equipment and played back with our dynamic pickup through an adequate speaker system will come pretty close to perfection in the quality of "naturalness". There are cutterheads and pickups on the market whose distortion content is several times that of the Fairchild units. Speakers present one of the greatest problems to effective sound reproduction but several are now available that are quite adequate. Amplifiers good to 10,000 cycles and with low distortion content are easily available but amplifiers especially adapted to recording such as the Fairchild \#295 are comparatively rare.

Equalizing for Recording

The "highs" need to be boocted on the inside of a 16 inch diso (15 minute program, center about 8 inches using 118 lines per inch) so that in playing back the brilliancy will not suffer too much by comparison with that on the outside of the record. It is impossible to reproduce 10,000 cycles (8 inch diameter, $33-1 / 3$ speed) at full intensity due to the diameter of the reproducing needle point being greater than the wave length of a $10,000 \mathrm{cy-}$ cle note at that diameter. Bearing these facts in mind the set of the equalizer dials as given in the following diagram are for recordings for flat playback. (Orthacoustic is also given but should in no case be used unless sure that the record is to be played on a pickup with Orthac oustic Characteristics).

Equalizer dials (top row) are, for our purpose here, numbered from 1 to 4, left to right. No. 2 permits selection of any frequency from 20 to 100 cycles in the bass. Please refer to charts I, II, III and IV for the shape of the curve, $20,40,70$ and 100 cycles arbitrarily selected - (any others could be used.) Dial \#l regulates the amount of bass boost dosired. (Note the curves arbitrarily boosted at $5,10,15,20 \mathrm{db}$. - they would equally apply at any other set of the dial from 0 to 20 db.) Dial \#3 permits selection of any frequency on the high end of the frequency spectrum from 4000 to 10,000 cycles, also continuously variable, and Dial \#4 regulates the amount of the boost from 0 to 20 db . See charts V, VI, VII, VIII. Chart number IX shows effect on the amplifier when dials ("gain"), \#l and 4 are at 0 , etc. Please note that no matter where the dials \#2 and \#3 are set, there is no effect of the equalizer on the frequency response if the "gain" dials \#l and \#4 are at zero.

From this it will be seen that the initial adjustment, and three other 'sets' of the dials, is sufficient to equalize to meet the changing diameter needs and keep an even brilliancy from inside to out. The Fairchild cutterhead is especially adapted to equalization. By referring to curve of the cutterhead you will note it is 22 db . below reference at 50 cycles and flat at 1000 to 8000 cycles. These frequency characteristics are almost identical with equalized modern pickups which have a bass boost of 18 to 20 db . at 50 cycles and flat from 1000 to 8000 and beyond. By adding a small amount of bass as shown, the result will be found to be ideal.

You will note that 5 db . at 8000 is. left in from 7 th to 15 th minute. This theoretically would not give back a flat playback but in practice about this amount is necessary to com-

FAIRCHILD AVIATION CORP.

pensate for the softness of record material which does not actuate the playback needle at full strength.

You may find less bass boost necessary or more. Or you may wish to put in more highs in the center. In general the above has been found to give the most satisfactory response and wide variations from this pattern should be avoided.

Recording for flat playback	$33-1 / 3$ speed
	118 lines per inch

 (Dial 4)
Set at 8000 cycles
(Dial 3)
For Orthacoustic Recording
33-1/3 speed
118 innes per inch
Time (min.)
Bass boost in db .
(Dial 1)
Set at 70 cycles
(Dial 2)

High boost in $\mathrm{db} .=-=--17$
(Dial 4)
Set at 10,000 cycles
(Dial 3)

FAIRCHILD AVIATION CORP.
Fairchild cutters need to be boosted from 5 to 7 db, in the bass (70 aycies is probably
the most favorable peak, see Charts III and IV) to match the orthacoustic curve.

F|GURE 2

FIGURE 4
(CJohn F. Rider

FARNSWORTH TELEV. \& RADIO CORP.
MODSL P-2
CAPGHART
(Part 1)

FARNSWORTH - MODEL P-2 NOTOR DATA
Although standard speed of phono motors is 78.26 rpm manufacturing requires broad tolerance of speed limits commercial practice is 76.59 to 80.00 rpm .

New type stroboscope disc supplied by Farnsworth is arranged for 79.23 and 77.42 as well as the 2 speeds on the older one - 78.26 and 33.33 - and the upper and lower limits above (76.59 and 80.00).

FARNSWORTH TÉLEV. \& RADIO CORP.

MECHANICAL ADJUSTMENTS

1. TO Remove the turntable 13-51, (Fig. 1)

The Turntable unscrews from the Record Spindle, $56-123$ (Fig. 6) by rotating the Turntable counter clockwise. The Spindle Gear, 57-8 (Fig. 6) should be held by a screwdriver while unscrewing or while replacing the Turntable. Under no circumstances should you attempt to hold the Record Spindle in a pair of pliers when removing the Turntable. Care should be exercised while holding the Spindle Gear not to damage the teeth of the gear.

When replacing Turntable make sure that it is securely screwed down against the stop washer.

2. TO ADJUST OR REPLACE IDLER PULLEY 36-72, (Fig. 3)

The Idler Pulley is used to transfer power from the Motor Pulley 36-71 (Fig. 3) to the Turntable. Unless it is held under proper tension by the Idler Spring the turntable speed may be too high or too low, it should fall between 76.59 RPM and 80.00 RFM. This tension is adjusted by loosening screw 99-19-3 (Fig. 3) hold'ng the Spring Holder 45176 (Fig. 3) and turning the Spring Holder to secure the required tension. Be sure to tighten screw holding the Spring Holder.

To replace the Idler Pulley remove the Hair Pin Cotter 99-34-14 (Fig. 3) and the Thrust Washer 50209 (F1g. 3) After removing the Idler Pulley remove the other Thrust Washer 50209 underneath the Pulley. When replacing the Pulley it is best to replace both the Thrust Washers with new ones. A single drod of o1l should be used on the Pulley Stud when the Pulley is replaced.

CAUTION--Do not allow any 011 to get on either the Motor Pulley 36-71 (Fig. 3) the Idler Pulley, or rim of the Turntable.

3. TO replace turntable drive bracket and STUD ASSEMBLY 64216 (Fig. 3)

Alter removing the Idler Pulley and Sprine 39245 (Fig. 3), remove the Motor by removing the three RHMS 99-19-3 (Fig. 3) then remove the two nuts and the brass washer which are normally covered by the Idler Pulley. Next remove the Screw 99-19-7 (Fig. 3) and the Spacer 42165 (Fig. 3). When replaced, the Bracket and Spindle Assembly must move in all directions without binding or sticking. Be sure the double nuts are locked securely.

4. adjustment of record shelves 09-29 and 09-30

The center line of the record shelves should form a straight line passing through the center of the Record Spindle. They should be exactly $9-21 / 32 "$ apart when in the $10^{\prime \prime}$ position and equidistant from the spindlo. The shelves may be lined up by loosening the set screws on the shelf locking Cam and Gear 15-10 or 15-11 (Fig. 2). After alignment tighten set screws.

5. ADJUSTMENT LOCKING LEVERS AND ShELF LOCKING CAM. 07-26 AND 07-27 -- 15-10 AND 15-11 (Fig. 2)

The Front Record Shelf 09-29 (Fig. 1) should be lined up with the Record Spindle in the $10^{\prime \prime}$ position. The Shelf Locking Cam 15-10 (Fig. 2) is lined up with the center line of the Gear Sector assembly 07-28 (Fig.2) and adjusted until the Locking Lever is properly seated in the Shelf Locking Cam 15-10. The set screws of the Cam and Gear assembly are then tightened.

The rear record shelf 09-30 (Fig. 1) should be lined up with the Spindle and in the $10^{\prime \prime}$ position. The Locking Lever HexHead mounting screw 36-114 may be loosened if the adjustment of the Locking Lever to the Cam and Gear Assembly need be changed.

（Part 1）FARNSWORTH TELEV．\＆RADIO CORP．

DESCRIPTION

Sew，Motor Plug．
Sector \＆Reject iever
ndie Trust Plate．．
－炭造 ．号
告

[^2]
FARNSWORTH TELEV. \& RADIO CORP.

THE MODEL P-3 IS THE SAME AS MODRL P-2 EXCEPT THAT THE MODEL P-3 HAS A PLAY CONTROL ADDITION.

RECORDS FAIL TO DROP

A. Failure of records to drop may be due to:
l. Shifting of the spindle assembly, causing it to be too close to rear record shelf.
2. Shifting of record shelves.
3. Excessive pressure or jamming of spring between head of
plunger and its housing of $12^{1 /}$ plunger spring.
4. Record release plunger does not extend sufficiently beyond edge of record shelf.
5. Over size diameter record or center hole of record eccentric with relation to rim of record.

The first step in checking this operation is to determine if all adjustments are correct.

The spindle assembly should be checked first to determine if it is correctly centered. Loosen the three mounting screws. The rubber grommets in this assembly will tend to automatically center it when the screws have been loosened. Now retighten carefully. Iurn screws all down evenly, do not tighten one fully - and then the balance. It is best to tighten the left hand screw first - this will be less likely to shift the spindle assembly out of line. Careful checking with a $12^{\prime \prime}$ record as a gauge will indicate if the spindle assembly has shifted, and in which direction.
B. The relative position of the record shelves should next be determined as - described in the service notes. If either shelf (usually the rear) is too close to spindle or front shelf, the two screws holding the rear side of the record pest to the base plate should be retightened as securely as possible. If this does not correct the condition, it will usually be found that there is a fiber shim between the rear edge of the post and the base plate, which can be removed by loosoning the two screws and driving a thin wedge under the rear side of the post. The shim can then be worked out with a knife - and the screw retightenod securely after the wodge is removed.

Nake sure that the record release plunger on the rear racord shelf - when in full release position - extends up to $1 / 32^{\prime \prime}$ beyond the extreme edge of the record shelf.

If record release plunger acts sluggish make sure there is no metal burr or dirt retarding its action.

More effective release action can be obtained by filing the release plunger so as to have a slight downward taper - this taper or undercut should not exceed 15 degrees. Filing the release plunger so as to have a taper or undercut will facilitate releasing records which are slightly oversize.

IF TWO OR MORE RECORDS DROP

This condition might be caused by:

1. Rear shelf rolease plunger sticking or sluggish due to a burr or dirt.
2. Plunger support, part $756-125$ below base plate has shifted to either side. $12^{\prime \prime}$ retard plunger in front shelf has stuck in its housing. (early production).
3. Front or rear record shelf has shifted outward.

MODELS P-2, P-3 FARNSWORTH TELEV. \& RADIO CORP. CAPEHART
(Part 2)
screw in lower collar and turn the collar silghtly clockoise facing from the
underside of the changer.
2. Tripping before the end of a record may also be caused by the
 the changer. This threaded collar regulates the pressure on the friction
clutch assembly. 3. Another condition watch can cause premature tripping during
the playing of the latter part of the record is improper eetting of the spring blade $56-144$ on releasc trip assembly $\$ 64215$. Under normal eonditions this apring should be bent in toward the spindle approximatoly $1 / 16^{\prime \prime}$.
4. It is also possible that the bushing holding the release trip
 the turntable and tightening the screw holding the bushing.

In connection with the above it should be mentioned that holding the reject button rigidily in reject position during changer oporation is detrimental to prematurely. A quick flip of the reject button is all that is necessary to trip the mechanism.
 If the P-2 $\$ 45165$ may be binding on the reject lever part $\$ 56-132$.

To overcome this condition it may bo necessary to spring the friction trip
 base plate slightly.

Fither of the above conditions may bo noticed when the instrument is first
unpacked and are usually caused by rough handing during shipment, due to the fact that the tone arm is held against the spindle during shipment and when
in this position the friction trip lover is held in place over the reject lever RECORD UIIN NOT IRIP

1. If the changer will not trip when it anters the change grooves and will not oil on the bearing of the starting lover mi3-38. This trouble can be 2. If the chanfer will not trip by a fast carry-in of the tone arm within \quad frip assembly is too loose. Turn upper collar 43185 counter clock-
2. It is possible during handing in shipment that the end of release trip lever 464215 . The trip finger can be released by hand from the underside of the changer.

Motor spindle assembly has shifted forward.
Rear plunger springs for $10^{\prime \prime}$ or 12^{n} records has shifted out
short.
MARRBD CENTKR HOLE OF RBCORD
We are receiving some reports to the effect that the center hole in records is is more likely to occur on the $12^{\prime \prime}$ records.

Condition is not general on $10^{\prime \prime}$ records because of lightness

 of record. 10^{n} record weight between six to seven ounces. diameter and oxtra weight, approximately $3 / 4$ pound.
 alightly under size, or if the center hole has sharp or uneven edges. Marring of the center hole is more likely to happen on the first and second records
dropped from a stack, due to the incroased angle of fall. When more records are on the turntable the fall is lass, reducing the anglo.

An effective remedy is to dress the edge of the bevel on the lower taper on breaking the shoulder or corner on each side of the bevel on the lower taper of the spindle (see figure 1).

As a result of the above conditions, it is possible on rare occasions that a
record may be broken or badly cracked.

 as near a horizontal plane as possible.

GRRATIC OPGRATION OF TRIP MBCHANISM

 Others that it trips too soon, that the record will be playing along and for no apparent reason it will roject in the midile of a record. Tho orratic the convex spring in the friction clutch. This convex spring is convexod to approximately $1 / 16^{\prime \prime}$. If for any rasion it has boon excessivaly tightened,
its correct tonsion may have been destroyed, or if it is not sufficiently
 at eacis rotation of the turntablo.

1. This is usually caused by collar 66355 being turned too far
counter clockise thereby causing the spring $\$ 39228$ to trip the changer before
the needle comes within $1-7 / 16$ inches of the spindle. Curs is to loosen set

TRIP ADNUSTMENT		
	Adjustment of the brushes are set for a standard $5 / 8^{\text {n }}$ needle inserted fully in the pickup cartridge. If longer or shorter needles are used, it is obvious that a change will have to be made in the brush adjustment. The setting of the brush should be such that the brush bristles just engage in the record groove and affords the	
2. Spring wave washer \#39227.		
3. Cork washer 450203.		
This trip is so arranged that it will trip release lever 64215 , when the tone arm moves inward more than the width of tinree grooves in one revolution of the turntable after the needle has played to within $3-\frac{1}{2}$ " of the spindle. This friction trip arrangement will take care of standard records which are only proper amount of inward motion, without holding the needis from contact with the record. PICK-UP BOUNCES OR JMES A FEM GROOVES		
partially, transcribed, ouch as the last record of an album, which may not Me have received a few roports to the effect that the pick-up will occasicarry the change grooves to the center of the record.		
To further insure that records will trip properly, a spring trip arrangement occurs that the floxibly mountad motor board has been sat in motion from		
N 45165 and thereby trip the mechanism at any farther carry in of the tone arm.	Another factor which is important in tais connoction is the record brush adjustment, adjust as per section "K".	
If the changer mill trip by a fast carry in, but occasionally does not trip adjustment, adjust as per section "İ.		
lower collar \# 66355 sitghtly oountar clockwise and chock operation. \quad Since the record changer is mounted in its cabinet in such a way		
A clicking sound cach revolution of the turntable is caused by the resetting dog hitting the spring wh6-144. The clicy may be eliminated or minimized by		
loosening the friction trip assembly to the lowest pressure that will give may cause a heavy hum during phono operation. Remove the shipp consistent trip action.		
	th the cabinet lid oper	
Excessive clicking noise with the friction trip set at proper tension may be the front side up first. caused by using records with enlarged center hole or records on which the		
SQUEAIING MOISE	1. $12^{n \prime}$ needie landing. $>$	
due to the folloring: ${ }^{\text {2. }}$ (Spindio placoment with relation to record shelve		
the rim of the record. On the following items it is desirable to remove the changer. 3. Oversize diameter of record which causes excessive record 1. Record shelf positioning with relation to spin		
pressure against rear record support post and causes record to bind afainst spindle. 2. Friction trip adjustments. 3. Aligning record shelves.		
record to against the spindle and rear sholf.		
Then the squeaking noise is not caused by record pressure on the spindle, and is heard only at some time during the changer cycle, the trouble may be due to		
the following causes. 6. Lack of lubrication on tone arm lift roller 44058.		
Remedy by pressing returm levar hard against the cam by hand during three or SIDES OF SPINDLE WITH FINE FI		
change cycles.		

```
MODELS P-2, P-3
    CAPERART
    (Part 2)
(Part 2)
```


FARNSWORTH TELEV. \& RADIO CORP.

REFERENCE TABLE FOR AUTOMATIC MECHANISM ADJUSTMENTS

Symptom	Check and Correct
Does not play automatically.	Solenoid relay circuit and S2, S5, S6, L1, L8. Section 19. 20. S4 under recording arm open.
Keeps on repeating automatically.	Check S1, S2. Section 15, 26, 27.
Trips before record is finished.	Section 27.
Does not trip at end of record.	Section 27, 26.
Does not feed new record.*	Section 2, 3, 1
Record does not center on turntable.	Section 1, 7, 9, 10
Does not reverse records properly.	Section 1, 8, 11, 12, 13, 28.
Does not reverse record.	Section 1, 8, 18, 28, 25.
Pickup does not land correctly on record.	Section 5, 6, 16, 17, 14.
Chatter while changing record.	Section 21, or short circuit in relay trip system.
Ringing noise while changing record.	Section 4.
Record Selector Lever does not work properly.	Section 25, 23, 18
- Make sure record is not warped or chipped or has rough edges.	

NOTE: When Automatic Mechanism jams, shut Master "Power" Switch "OFF" before clearing the jam, as the turntable "Motor Switch" does not shut power to the motor off while the mechanism is in cycle.

Note:-When mechanism jams upon first being played after being unpacked, check to see whether the record magazine is lined up as stated in Adjustment 7. Also check to see if the Record Reverse Arm Lock No. 46 Fig. 2 is on top of the Record Reverse Arm Lock Stop No. 48 Fig. 2.

1. MAGAZINE LINK ADJUSTING SCREWS

 ("D") (Fig. 1).The record magazine should always come back snugly against the magazine stop screw, "C," Fig. 1. If it does not, it is necessary to loosen the two set screws ("D," Fig. 1) to a sliding tension and run the record changer through a cycle of change. When the magazine has reached the horizontal position, as shown in Fig. 1, press down on the lower end of the magazine; this will lengthen the link assembly. Then when the magazine returns to its normal position, the maga. zine link will adjust itself so that the magazine is snugly against the stop screw. Then tighten the magazine link screws "D."

2. RECORD SEPARATOR ADJUSTMENT.

The separator stop "J," Fig. 1, should be adjusted so that a small $10^{\prime \prime}$ record will positively clear the knife portion of the separator lever as shown in the following illustration. A

standard to use is to make certain that there is approximately $1 / 32^{\prime \prime}$ clearance between the edge of the small record and the point of the separator lever, as shown at " A " in illustration below. However, it may be necessary to vary one way or the other from this measurement, depending on whether or not the slotted end of the record separator lever goes over the hook (7) (Fig. 1) without binding.

3. RECORD SEPARATOR HOOK ADJUSTMENT.

After adjusting the record separator it will be necessary to check the record separator hook (7) (Fig. 1) to see that it enters the slot in the record separator without binding. This hook is threaded and by loosening the locknut the hook can be turned in either direction, to raise or lower it. After the correct adjustment is obtained, tighten the locknut.

It should never be necessary to change these adjustments on record changers unless they have been tampered with by an inexperienced person.

SEPARATOR HOOK AND ARM (7) (Fig. 7).

Be sure set screw " K " in Fig. 4 is screwed all the way in.

4. RECORD MAGAZINE BUSHING (Fig. 1).

If a ringing noise is heard while the instrument is changing records, i. e., such a noise that might be made by a spring, it will be found that the Durex bushing (13) (Fig. 1) is too tight, in which case it will be necessary to loosen the lock nut of the holding bolt, and back the bolt out, from a quarter to a half turn, then tighten the lock nut.

5. TO ADJUST THE TONE ARM HEIGHT.

To adjust the tone arm height, first place a $12^{\prime \prime}$ record on the turntable and adjust the tone arm stop lever (18) (Fig. 1) so that the record hits the rubber roller (21) (Fig. 1) in the center. Start the record changer through a cycle and stop it when the tone arm lever hook (22) (Fig. 1) just touches the stop lever assembly. In this position adjust the tone arm height so that the top of the stop lever is the same height as the center of the hook. This adjustment is made by loosening the two Allen set screws at the rear of the tone arm.

These Allen set screws are accessible by raising the tone arm by hand. After making the height adjustment it is necessary to make certain that there is a clearance of approximately $5 / 8^{\prime \prime}$ between the pickup head and the record tray. This distance may be checked between the bottom of the record tray and the bottom of the pickup when the record tray is approximately parallel with the pickup.

6. TO ADJUST THE STOP LEVER HOOK (22) (Fig. 1).

Always adjust the tone arm position on a $12^{\prime \prime}$ record before adjusting for a $10^{\prime \prime}$ record. Adjust the tone arm stop lever hook (22) (Fig. 1) by moving it in or out. This hook is locked in place by a set screw in the stud whose nut is shown in Fig. 1 as No. 2. This set screw is at the bottom of this stud. Adjust the hook so that it will pass through the notch in the pickup arm lever (18) (Fig. 1) without binding against the top or bottom of the notch, when in the playing position. With a $12^{\prime \prime}$ record on the turntable, the rubber roller (21) (Fig. 1) against the edge of the record and the stop lever hook (22) against the blade of the stop lever (18) the needle should stop on the record exactly $3 / 32$ " from the edge of the record.
With the record changer in exactly the same position as described above, and with a $10^{\prime \prime}$ record on the turntable and the hook (22) (Fig. 1) against the blade, the stop lever should allow the needle to stop on the record $3 / 32$ " from the edge of the $10^{\prime \prime}$ record. A 6.32 screw shown in Fig. 1 is provided for making this adjustment, simply by screwing it in or out. A check should be made for clearance between the roller and the tray, this roller should never bind on the record tray. This can be taken care of by slightly bending the tone arm stop lever (18) (Fig. 1) up or down. If it is necessary to bend the stop lever it will be necessary to readjust for $12^{\prime \prime}$ records.

7. THE ADJUSTMENTS OF THE RECORD MAGAZINE.

Before attempting to adjust the magazine, be sure that the center of the magazine pivot pins (6) (Fig 1) is $83 / 8^{\prime \prime}$ above the base plate. This height is very important and we recommead checking the height of the right hand pin, when look. ing at the magazine, before any adjustments are made.

The record magazine is positioned by moving it sideways on its bearing or pivot pins. The two set screws underneath the pivot pins lock the magazine in position. Loosen these set screws, then see that the left hand side of the record reverse assembly fork (part of 4 , Fig. 2) is between $1 / 32^{\prime \prime}$ and $1 / 18^{\prime \prime}$ inside the left hand side of the Reverse crank, when looking at the magazine. That is, the left hand edge of the record reverse fork is about $1 / 32^{\prime \prime}$ or $1 / 16^{\prime \prime}$ to the right of the left hand edge of the crank. After moving the magazine, lightly set up the set screws. Then with the selector arm in the "Repeat" position swing the record reverse arm around in front of the magazine, to see whether the record guide strikes either of the record support pins (55) (Fig. 2). If the guide strikes either of the support pins it will be necessary to bend the pin away from the guide so they can not strike. If it is necessary to bend either pin, set the control lever in the "Repeat" position, then raise the record tray by hand, with a 10 " record on it, observing the way the record strikes the support pins, the record should hit both pins about $1 / 10^{\prime \prime}$ from the end of the pin; if it does not it will again be necessary to adjust the pin until the record hits both pins an equal distance from the ends. If it is necessary to bend the pins, check the clearance between the record guide arms and the pins and between the arm carrying the record guide and the right hand pin. Also if the magazine has been shifted it is necessary to see that the two points, which extend down-
ward from the magazine, have ample clearance in the channels, in the record tray, which are provided for their passage. If there is possibility of the points striking it probably means the magazine has been shifted too much.

If the magazine has been adjusted, it is also necessary to see that the record separator hook (7) (Fig. 1) does not bind in the slot in the end of the record separator arm (45) (Fig. 2). If it does the section covering these parts give the adjustment.

8. MAGAZINE STOP SCREW.

The magazine stop screw "C," Fig, 1, should be adjusted so that the crank pin (part of 9. Fig. 1) is approximately $1 / 88^{\prime \prime}$ from the edge of the record reverse arm fork (part of 4 , Fig. 2) which is furtherest from the magazine, when the record reverse guide is in front of the magazine, that is, in the reversing position.

9. TO LOCATE AND ADJUST THE RECORD TRAY (29) (Fig. 2).

In assembling the record tray to the record changer, the first tooth of the driver quadrant (107) (Fig. 3) should mesh. with the second tooth of the driven quadrant of the tray as shown.

With the two gears properly meshed, loosen the Allen set screws which hold pins No. 8, Fig. 1, in place. This will allow you to move the record tray sidewise, adjust tray sidewise until the turntable spindle is exactly in the center of the $10^{\prime \prime}$ record level of the record tray. (The $10^{\prime \prime}$ record level is that part of the tray where the felts No. 24 are indicated in Fig. 2.)

With the control lever in the "one side" position, run the record changer through its cycle until the large hole in the main cam is exactly half way past the upper edge of the record tray cam follower, as shown at "A," figure 1. At this position, the points of the ten-inch felts (24) (Fig. 2) should be level with the top of the turntable felt. If this tray is too low or too high, it may be adjusted to the proper level by loosening the ecceptric screw (15) (Fig. 1) "B" and turning this screw until the proper level is obtained. Be sure to tighten the lock nut after adjustment.

If the tray is too high, at this position, the ten-inch records will not be centered over the turntable spindle. If the record tray is too low, the ten-inch records will slide out over the ten-inch tray shoulder and not properly center.

10. TQ ADJUST THE VERTICAL BUMPER GUIDE (10) (Fig. 2).

This guide is located back of the magazine cross bar (33) (Fig. 2). After the records are separated from the magazine they are guided in dropping off the separator so they hit the center of the record bumpers (31) (Fig. 2). This vertical bumper guide also guides the records when the elevating hook, on the rear of the record tray lifts the record. The vertical bumper should be set back just far enough to allow a $12^{\prime \prime}$ record to drop onto the record bumpers freely. The
lower part of the vertical bumper, which extends into the record well, should extend toward the center of the well rubber bumpers far enough to make sure that the upper edges of the records fall behind the points of the upper record support (39) (Fig. 2). This adjustment is not critical. In most cases it will be found that the upper end of the vertical bumper will just clear the elevating hook on the rear of the tray. In cases where it is found that $10^{\prime \prime}$ records are chipping about the edges, due to bouncing against the points of the upper record support (39) (Fig. 2) it will be necessary to bend the vertical bumper (10) (Fig. 2) back at the top to a point where it just barely clears the elevating hook at the rear of the tray. It should never be bent back far enough to raise the front of the tray.

11. RECORD REVERSE GUIDE (41) (Fig. 2).

With a $12^{\prime \prime}$ record in the magazine the record reverse guide assembly (41) (Fig. 2) should be parallel with the record when in the reversing position, in front of the magazine.

If the record reversing assembly is parallel with a $12^{\prime \prime}$ record as above, it should come around and lay against the reverse guide pin tubing (42) (Fig. 2), if the eccentric cam (77) (Fig. 4) is properly adjusted. This cam can be adjusted, by loosening the screw through the cam and turning it so that the record reversing assembly returns to the reverse guide pin tubing. Care should be taken when making this adjustment so that the crank pin (part of 9, Fig. 1) does not hold the reverse guide away from the pin tubing. This cam should be turned so that the reverse guide assembly just touches the pin tubing; if the cam is turned too far it will allow the reverse guide assembly to hit the pin tubing, but in the reversing position the assembly will not be able to assume a position parallel with a $12^{\prime \prime}$ record.

12. REVERSE ASSEMBLY LINK ROD.

Loosen lock nut "H," Fig. 6, while the record changer is in the reversing position, that is, when the reversing assembly (41) (Fig. 2) is in front of the magazine. Remove the screw (79) (Fig. 4) holding the reverse segment link (80) (Fig. 4) to the reverse segment (61) (Fig. 4) and lengthen or shorten the link, by the link thread until the reversing crank (9) (Fig. 1) stands with the crank pin just barely touching, but not binding, against the front side of the fork (4) (Fig. 2). After the adjustment has been made, lock the link in place with the lock nut "H," Fig. 6.

13. TO ADJUST REVERSE CAM ARM AND ROLLER ASSEMBLY (57) (Fig. 3).

See Section 7 under Instructions For Replacing a Reverse Cam.

14. LATERAL LOCATION OF THE MAIN CAM SHAFT.

Both end bearings of the main cam shaft are movable, and are used to locate the cam shaft in its proper lateral position, as well as adjust the amount of end play. The main cam shaft is located laterally so that the ball in the end of the tone arm lift rod (87) (Fig. 5) travels in the exact center of the tone arm lift cam (86) (Fig. 5). As shown at " M " in Fig. 5.

15. TO ADJUST THE CLUTCH THROWOUT LEVER AND CAM.

The clutch throwout lever cam is shown as No. 125 in Fig 7 and is adjusted by loosening the shoulder screw (69) (Fig. 4) to a sliding tension after the record changer has been stopped in the playing position. The clutch throwout lever
cam should just clear the point of the turntable throwout cam (93) (Fig. 5) with the clutch disengaged. Unless clearance between the turntable throwout cam and the clutch lever throwout cam is maintained the record changer will jam. If too much clearance is allowed the turntable throwout cam will not disengage the clutch and the record changer will continue to change records without playing them.

16. TO ADJUST THE PICKUP ELEVATION.

When the tone arm swings in towards the record, the pick up arm lever hook (22) (Fig. 1) comes to rest against the pickup arm stop lever (18) (Fig. 1) and when the tone arm lowers the pickup toward the record it pauses momentarily before the pickup arm lever hook goes through the stop lever. If the record changer is stopped during this pause, it will be found that the ball in the end of the pickup arm lift shaft (87) (Fig. 5) is at the point marked "L" in Fig. 5 on the lift cam (86) (Fig. 5). Now if the pickup, with a needle in the proper position, is moved beyond the edge of the record, the point of the needle will extend below the top surface of the record a distance equal to half the thickness of the record. The correct elevation of the pickup is made by the screw in the underside of the tone arm fork against which the pickup cover rests. Loosen the locknut, adjust the screw to bring the needle to the position mentioned above, then lock the lock. nut.

17. PICKUP FEED IN ADJUSTMENT.

The collar of the pickup arm swing lever and collar as sembly (84) (Fig. 5) should ride on the leather facing of the friction cam (96) (Fig. 5) until the pickup arm lever hook (22) (Fig. 1) has engaged the stop lever (18) (Fig. $1)$. Then a slight amount of friction should be maintained after the ball at the end of the pickup lift arm (87) (Fig. 5) has engaged with the lift cam (86) (Fig. 5). This friction should be maintained until the needle has touched the record, otherwise the pickup arm may move away from the stop lever and the needle miss the record. If the friction be maintained too long the needle may be forced beyond the first playing groove. To adjust this, the pin locking the friction cam to the main cam shaft should be driven out and the Allen set screw loosened to a sliding tension. The cam is rotated for ward, in the direction of rotation of the main cam shaft, to maintain the friction a longer time and backward to maintain it for a shorter time.

18. TO ADJUST THE REVERSE CAM SHIFT LEVER (105) (Fig. 7).

This lever is moved by the reeord control shaft (116) (Fig. 7) and is held in position by an Allen set screw. It should be positioned on its shaft so that the record reverse cam (85) (Fig. 5) is firmly engaged with its pin (74) (Fig. 4) in the "Both Sides" position. In the "One Side" and "Repeat" positions it should have good clearance with the pin. If any adjustment of this lever is made be sure to check the setting of the Reverse Cam Arm and Roller Assembly (57) (Fig. 4) as instructed in Section 7 of the instructions on replacing a reverse cam.

19. TO ADJUST THE SOLENOID MOTOR SWITCH (108) (Fig. 6).

After the switch cover has been removed the switch is exposed. The upper switch points should make good electrical contact, while the main clutch is disengaged, in this position the clearance between the bottom points should be approximately $\% a^{\prime \prime}$. While the clutch moves from the dis-
engaged to the engaged position the upper switch points should remain closed until the lower set of points are closed. When the clutch is fully engaged the lower points should make good contact and the clearance between the upper points should be approximately $3 / 32^{\prime \prime}$.

To adjust the switch loosen the screw through the bakelite switch base at the rear of the switch asscmbly. After the position is found where proper clearance is secured, with the clutch engaged and disengaged, the switch should be locked in position with the screw.

In some machines a headless set screw is used to lock the switch in position. This screw is near the point of the tapered bakelite insulating block. Loosen this screw and adjust switch to get proper clearance then lock the switch in position by the set screw.
The two upper contacts are in series with the auto trip switch and the two lower contacts are shunted across the motor switch. When the clutch is engaged the auto trip switch is out of circuit and the motor switch is shunted by the lower contacts thus insuring the completion of the change cycle even though the instrument is switched to radio or turned off.

20. CLUTCH CLEARANCE.

The clearance between the driven (70) (Fig. 5) and driv. ing (99) (Fig. 5) members of the clutch should be approximately $020^{\prime \prime}$ (Twenty thousandths), and is adjusted by loosening screw "N" Fig. 7 to a sliding tension and adjusting the clutch fork (121) (Fig. 7) and the solenoid to clutch lever and pin assembly until the proper clearance is obtained. After adjustment is made lock the screw "N," Fig. 6.

21. TO ADJUST SOLENOID WEDGE SPRING.

This phosphor bronze spring is located on one of the three spacers used to mount the solenoid plate bracket to the solenoid bracket. It is used to prevent clutch chatter or bounce when the clutch engages. The only adjustment is to bend the spring to a snug fit with a long screw driver so as to increase or decrease its pressure on the solenoid to clutch lever (118) (Fig. 7).

22. TO ADJUST THE RECORD REPEAT LOCK LEVER (82) (Fig. 7).

The purpose of this lever is to prevent accidental shifting of the Selector Arm while the instrument is not in the play. ing position. In the "Repeat" position this lever is on the side of the Solenoid to Clutch Lever (118) (Fig. 7) away from the main cam. In the "One Side" and "Both Sides" positions it is on the main cam side of the solenoid to clutch lever. With the tone arm in the playing position (Main Clutch Disengaged) this lock lever should clear the solenoid to clutch lever by approximately $Z_{18 \prime}$ " when moved under it.

23. TO ADJUST THE REVERSE CAM LOCK LEVER (115) (Fig. 7).

This lever should be on the main cam side of the solenoid to clutch lever when in the "Both Sides" position. And on the opposite side when in the "One Side" and "Repeat" positions. With the main clutch disengaged the lock lever should clear the solenoid to clutch lever by approximately $1 / 16^{\prime \prime}$ when moving under it.

24. TO ADJUST RECORD REPEAT THROW. OUT LEVER (119) (Fig. 7).
 No adjustment of this part is necessary.

25. TO ADJUST RECORD REPEAT CLDUTCH LEVER (83) (Fig. 7).

The adjustment of this lever is made by loosening the Allen set screw to a sliding tension then moving the part along the shaft. The sliding clutch should engage in the "One Side" and "Both Sides" positions, but should be disengaged in the "Repeat" position. The fork of this lever should not bind the sliding clutch in either the "Repeat" or "Both Sides" position.

26. TO ADJUST THE STOP TRIP SWITCH (137) (Fig. 8).

This switch is accessible by removing the turntable, which will expose the switch cover. To remove the switch cover it is necessary to remove the trip arm, which goes through the switch cover and the two flat head screws which hold the cover in place. The clearance between the contact points on the fixed and movable arms of the switch should be $1 / 32^{\prime \prime}$. After replacing the trip arm (27) (Fig. 8) in the switch, after the switch cover has been removed, set the turntable on the spindle, push stop trip arm (142) (Fig. 8) slowly about $1 / 4^{\prime \prime}$ toward the magazine and then turn the turntable through one complete revolution. This will insure the fibre cam, on the turntable, resetting the trip switch, the clearance between the trip arm and the moveable arm of the switch should be $1 / 2^{\prime \prime}$. The distance between the trip arm and the switch trip guard finger should also be $1 / 22^{\prime \prime}$.

To adjust the clearance between the trip arm hook (27) (Fig. 8) and the moveable switch arm, loosen the screw in the bakelite switch base, at the end nearest the tone arm. Move the switch until $1 / 32^{\prime \prime}$ clearance is secured between the trip arm hook and the moveable arm of the switch, then tighten the screw holding the switch. In making this adjustment be sure that the stationary arm of the switch is not
bent when tightening this screw.

On some models a headless set screw, near the end of the coil spring, is used to lock the switch in position; loosen this screw, adjust the switch, then tighten the set screw.

27. TO ADJUST THE FRICTION JOINT OF AUTOMATIC TRIP SWITCH.

The amount of friction necessary in the friction joint between the auto stop trip lever-long (27) (Fig. 8) and the auto stop trip lever-short (142) (Fig. 8) should be just sufficient to close the automatic stop trip switch (137) (Fig. 8). The friction is regulated by adjusting the screw which tightens the flat spring (141) (Fig. 8). If the tension is too great the instrument may trip before finishing a record, if not enough tension is had the instrument will not change records when the needle hits the automatic change groove.

28. INSTRUCTIONS FOR REPLACING THE RECORD REVERSE CAM AND ITS ADJUSTMENTS.

1. Set record changer in the playing position. Carefully mark the drive gear (92) (Fig. 3) on the main shaft and the driven gear as shown 81, Fig. 3, by prick punch marks or scriber, so that the same teeth can be engaged after reassembly, thus insuring proper timing.
2. Remove the two bolts, one (60) (Fig. 3) securing the magazine slide and roller assembly to the magazine slide arm lever, and one (15) (Fig. 1) securing the record slide arm and stud assembly to the record tray drive crank.
3. Looking in from the rear of the instrument, remove the Durex bushing from the end of the main cam shaft, nearest the motor drive shaft. This is accomplished by loosen. ing the bolt to the right of the main shaft. Care should be
taken when replacing this bushing so as not to tighten the bolt enough to crush the bushing; a snug fit only is required.
4. Remove lower half of bearing and Durex bushing from the other end of the main cam shaft and work the cam shaft out of the record changer. The same precaution against crushing this bushing should be taken with this one as with the one in the preceding section.
5. Remove taper pin from gear and loosen set screw in the collar, both shown as 81 in Fig. 4, of the reverse cam shaft assembly, as well as the pin (74) (Fig. 5) over which the reverse cam forks, when in the reversing position. After removing the collar and sliding the gear to one side, file all burs from the edges of the holes in the reverse cam shaft. Slide the shaft through its Durex bushing toward the rear of the instrument far enough to allow the removal and replacement of the reverse cam (85) (Fig. 5).
6. Reassemble the reverse cam shaft assembly, making certain that the taper pin holes in the shaft and gear are correctly aligned to permit the taper pins being properly inserted. The set screw in the collar at the end of the shaft should be properly tightened.
7. Remove the reverse cam arm and roller assembly (57) (Fig. 4) and make sure that the roller pin and arm are not bent, if either of these items are found bent we suggest that you replace the reverse arm and roller assembly.
8. In reassembling the reverse cam arm and roller assembly (57) (Fig. 4) in its proper position for alignment with the reverse cam, be sure the roller is about $1 / 32^{\prime \prime}$ inside the ridge on the reverse cam, when the cam is in the reversing position.
9. Remove the taper pin from the gear (92) (Fig. 5) on the main shaft, which drives the gear on the reverse cam shaft assembly (81) Fig. 5) and remount the main shaft to the record changer chassis, pushing the above gear, from which the pin was removed, to one side so that it will not mesh with its driven gear.
10. Locate the main shaft so that the lower end of the pickup arm lift shaft travels in the center of the pickup arm lift cam, as shown at " M " in Fig. 5. With the main shaft in this position, adjust the main shaft Durex bushings so that there is no end play in the main cam shaft assembly.
11. Rotate the main cam shaft to the playing position so that the pickup arm is lowered over the turntable.
12. Set the reverse cam in its lowest position, with the control lever in the "Both Sides" position, so that the fork of the reverse cam is meshed with the driving pin.
13. Mesh the reverse cam assembly driver gear (92) (Fig. 5) with the reverse cam assembly driven gear so that the identifying punch marks correspond to the original position. The taper pin for the driver gear should be inserted next. If the assembly has been properly made there should be approximately $1 / 32^{\prime \prime}$ clearance between the roller or the reverse cam arm and the reverse cam. See "F," Fig. 5.
14. Throw the control lever to the "One Side" position and rotate the reverse cam with the fingers until it is in the reversing position. Again throw the control lever to the "Both Sides" position. Now there should be approximately $1 / 2^{\prime \prime}$ clearance between the reverse cam and the roller. See "G," Fig. 5. If the clearance is not approximately $1 / 32$ " for both positions of the reverse cam it indicates either the gears are not properly meshed or the reverse segment link rod may be bent. A careful check of the latter while the main shaft is out will save time and trouble later.

29. INSTRUCTIONS FOR REMOVING THE AUTOMATIC MECHANISM FROM THE CABINET:

In most cases, any repairs and adjustments on this mechanism can be made with the mechanism in the cabinet. If
it is necessary to remove the mechanism for any reason, it is recommended that the following procedure be observed, and that two persons take part in the removal. Make sure the mechanism is not in cycle.

1. There is a great possibility, when removing the chassis from the cabinet, to mar or scratch the cabinet. If you will place a piece of cardboard around the record changer it will eliminate, to a great extent, the possibility of marring the finish. A rubber auto mat, with a hole for the record changer, the same size as the one in the cabinet makes an excellent pad. This pad can be split and is easily put in position and removed. Pad the sides of the cabinet with pieces of cardboard.
2. Remove the backs from the record changer, and amplifer compartments.
3. Remove the five prong socket cable from the solenoid assembly, remove the pickup lead from the terminal board, and free the shielded lead going to the shorting switch.
4. Remove the four bolts that hold mechanism to the shelf.
5. Loosen the two Allen set screws in the flexible coupling and allow it to slide down the drive shaft, so as to clear the record changer shaft.
6. Remove the screw marked " P " in Fig. 2. This is the middle of the screws of the upper record support.
7. Remove the magazine link shoulder screw No. 40 Fig. 2. This will allow the magazine to be swung parallel to the turntable, and take up less room.
8. Remove the pickup arm assembly by removing the three screws in the pickup arm base, swinging the pickup arm to the back of the mechanism and working the bottom of the pickup assembly out of the hole.
9. Carefully mark the drive gear (92) (Fig. 3) on the main shaft and the driven gear shown as part of 81 , Fig. 3, by prick punch marks or scriber, so that the same teeth can be engaged after reassembly, thus insuring proper timing.
10. Remove the two bolts, one (60) (Fig. 3) securing the magazine slide and roller assembly to the magazine slide arm lever, and one (15) (Fig. 1) securing the record slide arm and stud assembly to the record tray drive crank.
11. Looking in from the rear of the instrument, remove the Durex bushing from the end of the main cam shaft, nearest the motor drive shaft. This is accomplished by loosening the bolt to the right of the main shaft. Care should be taken when replacing this bushing so as not to tighten the bolt enough to crush the bushing; a snug fit only is required.
12. Remove lower half of bearing and Durex bushing from the other end of the main cam shaft and work the cam shaft out of the record changer. The same precaution against crushing the bushing should be taken as stated, in the preceding section.
13. From the rear of the cabinet, lift the mechanism straight up, and carry it straight back until the rear bearing bracket of the main shaft has cleared the shelf; then rotate the mechanism 90°, turning it so that the record magazine comes toward the back of the cabinet until the record magazine is clear of the cabinet. Then drop the record magazine end of the mechanism slightly so that the drive shaft will clear the bottom shelf, and remove the mechanism.

To Replace Mechanism:-1. Replace mechanism by reversing procedure of step 13 above.
2. Replace the main cam shaft and its bushings, but do not tighten the bushings in place. Make sure that the gears marked in (9) above are meshing properly as marked. Make sure the throw out cam 71 Fig. 4 is resting on top of the main shaft.
3. Replace the pickup arm assembly. Locate the main shaft so that the lower end of the pickup arm lift shaft travels in the center of the pickup arm lift cam, as shown at " M " in Fig. 5. With the main shaft in this position, adjust the main shaft Durex bushings so that there is no end play in the main cam shaft assembly.
4. Replace the two bolts removed in (4) (6) (7) and (10) above.
5. Adjust the position of the record tray as described under: "9. TO LOCATE AND ADJUST THE RECORD TRAY", by adjusting screw 15 (Fig. 1).
6. Turn the drive shaft or turntable with the fingers and put the mechanism thru a cycle to see that it is working correctly.
7. Replace the flexible coupling on drive shaft and replace connections to record changer.

Fig. 1

16	38024	Pin--Record Tray Slide
17	38055	Main Shaft Buabing
18	38131	Pickup Arm Stop Lever Assembly (Specify color)
19	88005	Escutcheon Plate Off-On
20	38001	Switch, Automatic
21	38094	Stop Lever Roller Tubing
22		Pichup Arm Lever Hook
23	38089	Lock Nut for Pivot Screw
		NOTE: In ordering any part that is painted, piease specily color wanted.

Fig. 2

[^3]FARNSWORTH TELEV. \& RADIO CORP.

Fig. 3

Refer- ence	Stock	
No.	No.	Description
56	38050	Spring-Reverse Arm
57	38128	Reverse Cam Arm and Roller Assembly
58	38038	Spring-Record Separator Hook Lever
59	38039	Spring-Magazine Slide Arm
60	38007	Shoulder Screw-Magazine Slide Arm
61	38031	Record Reverse Pinion Segment
62		Solenoid Plate Bracket
63	38000	Condenser-1.0 Mfd, 400.Volt (in can)
64	38037	Record Repeat Sliding Clutch Cam
65	38040	Spring-Record Repeat Clutch
66	38016	Screw Turntable Shaft Collar
67	38012	Shoulder Screw--Repeat Lever
81	38121	Record Reverse Cam Shaft Assembly
92		Gear-Reverse Cam Shaft Driver

FARNSWORTH TELEV. \& RADIO CORP.

Fig. 4

Refer-		
ence	Stock	
No.	No.	Description
9	38119	Reverse Pinion and Crank Assembly
56	38050	Spring-Reverse Arm
57	38128	Reverse Cam Arm and Roller Assembly
58	38038	Spring-Record Separator Hook Lever
59	38039	Spring Magazine Slide Arm
61	38031	Record Reverse Pinion Segment
64	38037	Record Repeat Sliding Clutch Cam
65	38040	Spring Record Repeat Clutch
67	38012	Shoulder Screw-Repeat Lever
68		Turntable Drive Shaft Assembly
69	38015	Screw-Clutch Throwout Can
70	38124	Worm and Bushing Assembly

Refer. ence No.	Stock No.	Description
71	38130	Clutch Throwout Lever and Spring Assembly
72	38013	Shoulder Screw-Clutch Throwout Lever
73	38043	Spring-Record Reverse Cam Control
74	38022	Pin-Reverse Cam Shaft
75	38095	Stop Lever Collar Pin Tubing
76	38046	Spring-Tone Arm Lever
77	38036	Reverse Segment Stop Cam
78	38101	Record Repeat Throwont Hook Lever
79	38010	Shoulder Screw-Reverse Segment Link
80	38021	Pin--Short--Reverse Segment
81	38121	Record Reverse Cam Shaft Assembly
82	38104	Record Repeat L.ock Lever
83	38102	Record Repeat Clutch Fork Lever

© John F. Rider

FARNSWORTH TELEV. \& RADIO CORP. MODEL 16E CAPEHART

Fig. 7

MODEL 16E CAPEHART FARNSWORTH TELEV. \& RADIO CORP.

Fig. 6

Refer- ence	Stock	
No.	No.	Description
14	38113	Chassis Plug 5 Prong Male
59	38039	Spring-Magazine Slide Arm
61	38031	Record Reverse Pinion Segment
105	38100	Record Reverse Cam Shaft Lever
106	38020	Pin-Long, Reverse Segment
107	38111	Record Tray Gear-Driver
108	38003	Switeh Assembly-Solenoid and Motor
109	38141	Solenoid Coil only
110	38047	Spring-Solenoid Lever Torsion

FARNSWORTH TELEV. \& RADIO CORP.
MODEL 16E CAPGHART

Fig. 8

Refer ence No.	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Description
4	38117	Record Reverse Arm and Fork Assembly (specify color)
18	38131	Pickup Arm Stop Lever Assembly (spe. cify color)
21	38094	Stop Lever Roller Tubing
26	38189	Turntable Drive Shaft Cap
27	38132	Automatic Stop Trip Lever Assembly
28	38023	Pin-Record Control Rod
42		Pin-Reverse Guide Stop
47	38052	Record Reverse Guide Spring
136		Selector Knob
137	38004	Record Trip Switch Assemblycomplete
141	38048	Spring-Automatic Trip Lever Pin
142	38071	Automatic Stop Trip Lever-Short
144	37292	Pickup Brush Assembly

STOCK No.

DESCRIPTION

MAGNETIC PICKUP ASSEMBLIES

14291 Armature-Pickup armature and spring

37292 Brush-Pickup brush and mounting bracket
14672 Coil-Pickup coil and support assembly
14292 Damper-Pickup armature damper block
37293 Housing-Finished pickup housing only-less mechanism and cover
Mechanism-Magnetic pickup unit only-leas housing and brush
Screw-Pickup needle screw
Terminal-Pickup connector block with set screws and mtg. screw
Pivot-Pickup unit pivot screw and locknut
Bearing-Pickup unit pivot bearing

FARNSWORTH TELEV. \& RADIO CORP.

FOR AUTOMATIC PHONOGRAPH PICK-TP SEE RCA MODEL MI-12701

Abstract

The cutting point of the stylus must be in perfect condition in order to make good record. ings

The condition of the stylus point can not be determined by ordinary visual inspection. If the recordings are noisy or poor in quality, first iry a new stylus.

The stylus cutting point can be ruined by dropping the cutter on the record, by cutting into the base metal of the recording blank, or by cutting into the paper label on the blank

Always stop the recorder before it reaches its inner limit as it will repeat in the last groove and may wear into the base metal, thereby ruining the stylus point: See that the instrument is perfectly level.

LUBRICATION.

Due to its careful design and precise workmanship, this record changer requires a minimum of oiling.

About once each year a light coat of vaseline or petroleum jelly should be applied to all moving surfaces which were coated with graphite at the factory.
A very light coat of vaseline should be applied to the surfaces of the magazine, indicated at " E " in Fig. 2. It is best to apply this coating every six months. The vaseline should be applied with, and removed by, the fingers, on the

Recorder

Cutter Head Drive:-The cutting head drive screw (lead screw) should rotate frecly and be free from end play. If end play is present loosen the jamb screw which locks the cone point bearing located at end away from driving gear and adjust this bearing until end play is eliminated (being careful not to cause binding), then tighten jamb screw.

Cutter Head Mounting:-Two cone pointed set screws support the cutter head and its mounting bracket. These should be adjusted to prevent ènd play but to permit frec movement of the cutter head up and down

Record Threads:-Keep the drive gears and lead screw free from record threads.
Equalizing Groove Width:-In order to keep the groove width cut at the inside and outside of record equal, it may be necessary to adjust the spindle bearing into which the swivel spindle of the recording arm is placed, and which is located at the right hand center of the phono board. To adjust this bearing loosen the set screw in the base and move bearing up or down as desired. If the grooves at the edge of record are shallower than those at center of record, lower the bearing. If grooves at edge of record are decper than those at center of record, then raise the bearing.

Lubrication:-Keep the drive gears, lead screw, and other bearing surfaces well lubricated with Vaseline or Petroleum Jelly.
"Automatic" Cut-Off Switch Under Recorder Arm:-When the Recorder Arm is swung in position over a record to make a recording, the weight of the arm is brought down on a switch mounted under the recorder arm swivel bearing, opening the switch and making the Automatic Phonograph inoperative.

This switch should be adjusted so that when the Recording Arm is on its rest, the switch is closed; i. e. the switch plunger is all the way up; and there should be about $1 /$ ene inch clearance between the top of switch, and the swivel shaft. When the Recording Arm is in the recording position, the switch is open; i. e. the switch plunger is pushed down.
Cutter Hcad:-

magazine faces. DO NOT USE EXCESSIVE AMOUNTS OF LUBRICANT ANYWHERE ON THE RECORD CHANGER.

A good grade of machine oil, not too light, should be used on the sliding clutches, reverse cam shaft and all eccentric and shoulder screws

NEVER OIL THE "DUREX" BUSHINGS (one of which is shown as No. 17 in Fig. 1), AS THIS WILL CAUSE THEM TO DISINTEGRATE.

Once each year the motor oil cups should be oiled with a good grade of motor oil. At the same time the gear box should be inspected, and the grease replaced if it has become hard. A good mixture to use here is 75% vaseline and 25% SAE 40 motor oil.

DRIVE CLUTCH.

The phono drive clutch is located on the drive shaft just above the reduction gear box. The clutch should be adjusted so that there is no slippage in the clutch during a cycle of the mechanism, yet the clutch should slip if the turntable is stopped by hand. To adjust clutch, loosen the two nuts above the clutch on the drive shaft, and move the lower nut down the shaft for more pressure in the clutch, or move the lower nut up for less clutch pressure.

Service

The cutter head used is of an improved design. There is a centering spring attached to the armature to maintain proper adjustment and to provide a limiting effect on the movement of the armature. Service operations which may be necessary on the cutter are as follows:

Centering Armature:-Refer to the figure showing the cutter inner structure. The armature " E " is shown in its proper relation to the magnet pole pieces, i. e., exactly centered. To center armature remove screw C and remove cutter cover. Insert a small rod or nail into the armature needle hole and tighten the needle holding screw to hold the rod securely. If the armature clamping screws D have not been disturbed, screw A should be loosened which will permit the armature to be moved from side to side, the rod acting as a lever to perform this operation. The proper adjustment is obtained when the armature is brought to the mid position between the pole pieces. Screw A should then be tightened. The armature position should then be central between the pole pieces and at right angles to them. Check to make sure that the armature is not touching the coil. The alr gap between the pole pieces and the armature should be kept free from dust, filings, and other foreign material which would obstruct the movement of the cutter armature

Replacing Coil:-Remove the cutter cover by removing sirew C. Remove screws D and A and lift magnet off coil assembly. Unsolder coil leads. Remove coil and bakelite board on which it is mounted. Replace with new coil and mounting board. Replace magnet. Replace screws A and D Solder new leads. Tighten serews D so that the armature is perpendicular to the pickup base. Center armature as described above.

To Replace Viscoloid Damping Block (F) or Replace Armature E:-Remove cover. Remove screws G. Remove Armature E:-Remove cover. Remove screws G. Remove
screws D and A. Remove magnet assembly. Unsolder coil leads. Remove coil assembly. Remove armature and viscoloid block. Remove nut B. Remove viscoloid from armature. Replace either new armature, new viscoloid or both as desired. When replacing nut B make sure that viscoloid is parallel to the armature and that it will not twist the armature when clamped under screws G. Tighten nut B so that viscoloid is firmly fastened on shaft. Replace parts in reverse order as removed above. Center armature as described above.

MODEL S30 CAPEHART
(Part 1) FARNSWORTH TELEV. \& RADIO CORP.

(C)John F. Rider

FARNSWORTH TELEV. \& RADIO CORP. MODEL S3O CAPEHART

© John F. Rider

FARNSWORTH TELEV. \& RADIO CORP.
(Part 1)

FIGURE 5

Part No.
-
FARNSWORTH TELEV. \& RADIO CORP. MODEL S30 CAPEHART

Part No.	DESCRIPTION	(Continued)	List Price
${ }^{*} 45173$	Bracket, escutcheon Panamuse	.10	

45174
46284
46284
46285
46285
46286
46287
46287
46288
46288
46289
46292
$* 46330$
46330
46293
46295
46297
46300
46301
46304
46305
46330
48216
48216
50173
50203
50204
50206
50209
50219
50223
50226
54107
54108
54110
61265
61265
61269
63119
63120
64213
64215
64219
66346
66347
66348
66349
66349
66350
66351
66353
66355
66356
66359
66366
66366
66371
66372
66391
99-12-1
99-13-3
-99-13-5
99-13-6
99-14-3
99-18-19
99-19-6
99-19-13
99-19-17
99-19-18
99-20-5
99-20-18
99
99-20-45
99-20-54
99-22-35
99-22-37
99-22-37
99-23-13
99-26-15
99-34-11
99-34-12
99-36-14
99-36-2
99-38-18
99-42-5
99-42-11

Bracket, escutcheon Panamuse
Bracket Record Support Panamus
Record Support Plate Farnsworth
Record Support Front 10^{*}
Record Support Rear 12"
Trip Finger
Main gear starting lever
Bracket, crystal cartridge
Bracket, tone arm lift.
Bracket Record Support
Trip finger stop
Record Support Rear 10"
Record Support Front 12"
Record Support bracket
Friction Trip
Reject Lever
Wire Clip
Record Support Plate
Insulating Washer tone arm
Tone arm bushing
Disc, friction trip drive
Washer, friction trip lever
Rubber grommet
Washer, thrust drive disc
Insulating sleeve
Mounting spacer
Decalcomania, $10^{\prime \prime}-12^{\prime \prime}$
Decalcomania "Reject"
Link, record lowering
Crank tone arm
Tone Arm Support Housing
Plug Shell
Plug male
Record lowering link assembly complete
Spindle support brack and bushing assembly
$12^{\prime \prime}$ rear record support and shaft assembly
Starting lever release trip and hub assembly complete
Turntable drive bracket and stud assembly
Tone Arm Bracket assembly
Tone Arm Lift Lever anc Bracket assembly
Tone Arm Lift Lever and Roller assembly
10" and 12" Record Support Assembly complete
Record Support Bracket assembly front
Record Support Plate and Pin assembly Farnsworth
Friction Trip Assembly
Tone Arm Return Assembly complete
Collar, pin and set screw assembly
Main Cam and starting lever assembly
Spindle, gear and bracket assembly
Tone Arm Crank and Clamp Screw assembly
Record Lowering Bracket and Standard assembly
Record Support Plate and Pin assembly Panamuse.
A.C. Motor 60 ohm with leads and plug

8-32 H.H. nut
10-24 H.H. nut
10-32 H.H. nut Panamuse
10-32 H.H. nut
t/2-28 H. Half nut
$1 / 4-28 \mathrm{H}$. Half nut
6-32x5/4 Mach. Screw
8-32x $7 /{ }^{\prime \prime}$ R.H.M.S.
8-32x 7/8" R.H.M.S.
8-32x5/16" R.H.M.S
$8-32 \times 5 / 16^{\prime \prime}$ R.H.M.S. Nickel
$8-32 \times 7 / 16$ " R.H.M.S.
$10-24 \times 1 / 2^{\prime \prime}$ R.H.M.S.
10-32x $1 / 4$ " R.H.M.S. Nicke
$10-32 \times 1 / 4 /$ R.H.M.S. Nickel...
$10-34 \times 2^{\prime \prime} \quad$ R.H.M.S.
$10-32 \times 11 /{ }^{\prime \prime}$ R.H.M.S
$6-32 \times 1 / 4$ oval H.M.S. Nickel.
$4-36 \times 1 / 8$ oval H.MS. oxidized
8-32x $\%$ oval H.M.S. Nickel
$10-32 \times$ \% $/ 8$ H.H.M.S.
Cotter Key Hairpin
Cotter Key Hairpin
Cotter Key Hairpin
1/2"x.170"x.042" brass washer
Washer
Keeper for $3 / 16^{\prime \prime}$ shaft
Turntable Stop Washer

$\cdots \quad .10$
7
(Part 1)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
Where (Capehart) appears behind a part, this part is used on Capehart Panamuse Instruments exclusively.

Where (Farnsworth) appears behind a part, this part is used on Farnsworth combinations ex-

FARNSWORTH TELEV. \& RADIO CORP. MODEL S30 CAPEHART

figure I

FIGURE 3

POSITION OF TRIP ARM WHEN RECORD IS PLAYING.

FIGURE 6

FIGURE 2-A

ADJUSTING GAUGE TEMPLATE

MODEL S30 CAPEHART
(Part 2) FARNSWORTH TELEV. \& RADIO CORP.

AUTOMATIC RECORD CHANGER

This record changer is mounted on a heavy metal base which is rubber mounted to the cabinet. The turntable is rim driven and in turn drives the suto. matic changing mechanism. Each changer is thor. oughly tested before it leaves the factory and should not need any further adjastments. It is possible that due to wide variationa in typer of records uned, minor adjustments in eetings may have to be made. Under the following headings are listed effectr, possible caure and method of corracting.
A word of caution when checking for quality.

1. Make sure that all the packing has been removed, around motor, turntable, etc.
2 Soe that the changer unit does not touch the cabinet, it must float on the four rubber mountings. The four screws which mount base to cabinet should be re inoved (AFTER RECEIVER IS IN POSITION).
2. ALWAYS USE A COOD NEEDLE AND SEE that it is seated and that the needle SCREW IS TIGHT.
3. Motor Will Not Stert.
4. Plug not in receptacle, house fuse blown, defec tive outlet.
5. Defective awitch (Phono-Radio), open motor winding or leads
6. Motor atopped in an overload position, i. e.. record drop cam and cam roller at point where roller is just bout to LOWER shelf. Tum the turnable (clockwise) two or three revolutions by hand.
NOTE: The turntable screws down on the record apindle. To remove, turn in clockwise diroction by hand until the curve on the apindle is toward the load. ing rack, then lock omall drive pinion in that position. ang rack, then loci amsil drive pinion in that position.
Spindle must NOT turn. Unecrew iumtable (counter Spindie mu
elockwise).
7. Friction drive pulley stuck, friction drive pulley not touching turntable rim or bushing on motor shaft not touching frietion drive pulley. Oil on friction drive pulley.
8. Center pinion shaft wuck or tight. Free and oil. When replacing be very careful so as not to bend or apring the friction drive pulley which will have to be puaned under the edge while ccrewing the turntable in position.
9. Tone Arm Does Not Drop In Correct Pouition. 1. 10 inch or 12 inch lever not in correct position for record being ployed. Check retting of lever.
10. Tone arm drop not set correctly to meet record
varistions. Records may vary as much as $1 / 2$-inch in diameter. Adjuat for average conditiona
To adjuat tone arm drop, place gauge on turntable, large hole (A) over apindle, place needle in tone arm and then place tose srms so the needle eeto in amall hole marked "NEEDLE SET FOR 10°. Throw $10{ }^{\circ}$ record lever in correct position. The tone arm adjust. ing lever, see Fig. 7, must have its stud in contact with the tone arm travel lever, this lever must be in contact with die cast cam and gear. Loomen acrew in adjuating lever and adjuat lever, then tighten. Check operation and repest until tone arm drops in correct position. and repeat until tone arm drops in correct position.
To adjuat for 12 inch records, throw lever to left for 12 -inch records. With gauge in place on turntable place tone arm in position marked "NEEDLE SET place tone arm in position marked "NEEDLE SET
FOR 12 . Loosen lock nut on tone arm travel lever and adjuat acrew to top. Tighten lock nut and check. Repeat until needle drops in correct position.
For the above adjuatmenta use a amall cotter pin instead of aneodle. This prevents any acratching or marring of recorda or turntable surface.
11. Trips Before Record In Finished.

This condition invariably is caused by the clutch being too ught. This elutch is the friction type and when the pickup moves at an increased speed toward
the center of the record, sufticient torque is developed to cause the tripping arm to act. To remedy it is "ecessary to have. No. 6 Briatol wrench to loosen the special set acrew in the collar neareat the base of changer, we Fig. 1. Loowen net screw and turn collar a iraction of in inch to the left (counter clockwise) tighten ret screw. Check and repeat until record playi In end.
4. Does Not Trip After Record Is Finished.

1. Center groove on record does not have subficient pith to develop enough torque to actuate clutch. This may reaule from improperly cut trip groove in record or loove clutch setting.
2. It may be pomible that the trip arm may have jumped to the wrong aide of the rocker bar trip arm see Fig. 7. It should be on the same side as reject arm 3. To chock the trip action adjustment, place the gauge (bole marked B) on the lower apindle and oel needle or cotter pin in hole marked TONE ARM TRIP $\left(11 / 8^{*}\right.$ centers). When in this position the cam on the center pinion ahaft should be pointing loward tone arm. With cam as utated, the starting lever should be touching cam when cam and atarting lever are in this louching cam when cam and arring lever are in this position. The tone arm tripping lever, should re int contact with the alarting lever. Likewike the rocker
bar (Fig. 3) tbar which engaget pin in pinion gear bart causing large cam gear to engage pinion gear)
musat be in contact (berieath) the end of the alarting lever (Fig. 3) The end of clarting lever mayy be bent sufficiently to make contact. The end of atarting lever auficienty to make conkal the ond or waring leve to center the other end of the rocker bar between the to center the other end of the rocker bar between the
cam and the pin on the small pinion gear (Fig. 3) cam and the pin
(ranning pooition).

After the above has boen checked and adjuated thr trip arm (while unit is running) chould come in con $31 /{ }^{3}$ whe the warting $31 / 2$ inchese from the center line of the apindle. This may be adjusted by loovening the Bristol net ucrew in tripping lever otop coller (Fig. 1) and turning collar a fraction of on inch to the left. Check operation ather tightening eet acrew.
4. The clutch may be too loove, thereby not developing sufficient torque. To adjuat loosen Bristol set screw in clutch enllar, rotate collar (Fig. 1) to the right a fraction of an inch. Tighten aet acrew. Check operation.
5. Becords Do Not Drop.

1. Record bole tight or record warped
2. Sbelf height not correct. To adjuut ree Fig. 4 for correct height; adjuut for 10° records first.
3. Spindles may not be in correct relation. See Fig. 4, for correct alignment. Top spindle adjuate ble
4. Record drop cam roller out of adjustment. Set correct thelf height (10^{-}strelf) by loosening lock nut and turning ecrew; tighten !ocknut.
5. Drope More Than One Record
6. Wurped record.
7. Spindle alignment and etc. Same procedure as listed under 5.
8. Tone Arm Drags On Record.
9. Too many recorde on the turntable.
10. Records may be thicker than average or warped.
11. Needle too long or not properly seated
12. Tone arm lift adjusting screw loose or out of adjustment.
To check the tone arm fur correct lift, rotate turntable (clockwire) by hand and puab reject button in order to actuate trip. Turn slowly until tone arm reaches maximum height and atarta to travel toward tone arm reat, then atop when the arm is approximately one inch from edge of turntable. Check the height of the tone arm from the surface of the tumtable as indithe tone arm irom the auriace of the turniable as indi-
cated in Figure 5 . From the lower edge of the tome arm to the top of the turntable the distance should be arm to the top of the turntable the diatance athould
between $17 / 16^{\circ}$ and $117 / 3 Z^{\text {a }}$. To adjuat the toma arm lift acrew (Fig. 2.A) loosen locknut and adjuan arm lift screw (Fig. 2.A) loosen locknut and adjum is within above tolerance, then tixhten screw unt
lorknut.

Although standard speed of phono motors is 78.26 manufacturing requires broad tolerance of speed limits - commercial practice is 76.59 to 80.00 rpm .

New type stroboscope disc supplied by Farnsworth - is arranged for 79.23 and 77.42 as well as the 2 speeds on the older one 78.26 and 33.33 - and the upper and lower limits above (76.59 and 80.00)

The click heard after the record changer is half played may be due to excessive friction in the trip assembly at the bottom of the tone arm assembly. A temporary repair may be effected by use of small piece of adhesive tape on face of spring where resetting dog strikes the spring.

FARNSWORTH TELEV. \& RADIO CORP.

MODELS P-41, P-44
First the Tone Arm is lifted off the record through the Tone arin
Lift Lever ($13-303$).
As this happens the Tone Arm Return Lever ($09-119$) moves the
As this happens the Tone Arm Return Lever (09-119) moves the
Tone Arm from under the record stack. The Rear Record Plunger moves
 Spindle and the Front Plunger does This pushes the record off the Rear Snelf where the Rear Record hook catches it. Both Front and Rear
 record pauses here until the Hooks move to center the record in respect to the Spindle. Then both Hooks snap back out of the way, allow-
ing the record to settle gently to the turntable. Next the Tone Arm swings into the proper position and is lowered to the record. A wire spring, against the Tone Arm Crank, keeps the Tone Arm from dropping
off the record before the needle setties on the record playing groove.

To accomplish the record feed there are three sections of the Main
Cam, together with the Centering Lever and Rocker Arm Assembly involved.
The first section of the main is a "Boss" 1llustrated at the end of the The first section ${ }^{2}$ or the main 1s a "Boss" illustrated at the end of the
Tone Arm Lift Lever in F1g. A. The Second ${ }^{3}$ section 18 the Trrp Roller Assembly on top of the main cam. The third ${ }^{4}$ section 18 the "slot" in the Tone Arm Lift portion of the cam adjacent to the Trip Roller The action is as foliows; As the Main Cam rotates, the "Boss" strikes the Centering Lever and Rocker as shown in Fig. B, this moves the Record a spring, variations in record diameter are of little consequence. After the Boss passes the Centering Lever, ${ }^{5}$ the Trip Roller strikes the Rear Rocker the first time moving the Rear Record Plunger forward and
the Front Record Plunger 1 s also moved forward, Fig. C. As the Main Cam

 "Slot" in the Main Cam, F1g. E, the Front and Rear Hooks are suddenly
withdrawn from the record and $1 t$ drops to the Turntable.

The Turntable is screwed onto the Spindle Gear and both are driven
through the Idier Puliey (3672) by the Motor. When the cycle is com-

The record shelves are set for the size record to be played (e1ther 10" or $122^{\prime \prime}$) by turning either shelf to the position indicated on the decal, then the correct number of records should be placed on
the record shelves. (Twelve 10 " or ten $12^{\prime \prime}$). The tone arm should be on 1ts rest.

Before loading the records on the shelves they should be examined
for rough edges (burs, flash or chips) and if any burrs are found they
should be removed with fine sandpaper.
 Turn on the control which starts the phonograph and next move the
reject button sidewise. The changer will go into cycle lint ing the tone arm off the rest and swinging it under the stack. The tone arm should swing clear of the record stack, a record should drop to the swing back and be lowered to the starting groove on the record. When the record is played the above cycle is repeated until the records have been played.

Now let's follow the above cycle through the mechanism.

 the Start Lever and Release Trip Assembly (64215) far enough to disengage it from the Starting Lever Assembly (13-38) Due to its construc-tion the starting Lever (which is part of the Main Cam Assembly) (13-296) t11ts down and engages with the starting Pin (3430.) to make

the Main Cam Gear mesh with the Spindle Gear (part of 13-297).

The Turntable is screwed onto the Spindle Gear and both are driven
through the Idier Puliey (3672) by the Motor. When the cycle is completed the Main Cam cear disengages from the Spindle Gear because several teeth are left
position, see F1g. A.
 the Main cam Assembay 18 moved forward mat properily. Then the Main Cam goes through a complete revolution.

MODELS P-41, P-44
CAPEHART
FARNSWORTH TELEV. \& RADIO CORP.

In the following five illustrations we are showing the cycle of operation of a P-40 Series Capehart-Farnsworth Changer.

Figure A is known as the playing position.

* In Figure B the Main Camhas advanced so the "Boss" on the Main Cam has moved the Centering Lever Return Arm away from the cam, which because of the Return Spring causes the Centering Arm thru the Rocker Levers and Plunger Shafts to move the Record Plungers toward the Spindle. Due to the motion being transmitted thru the Return Spring different diameter records are handled equally well. The equalizer spring aids in exactly centering the record in regard to the Spindle. Note, in this illustration the Tone Arm Swing Lever is part way up the Cam Shoulder.
* ABOVE PARAGRAPH FOR P-41 ONLY

In Fig. C the Trip Roller (part of Main Cam) has advanced to move the rear plunger rocker away from the spindre, at
the same time moving the front plunger rocker toward the spindle. Due to the Plunger Shafts, which transmit the motion of the Rockers to the Record Plungers the Record Plungers move in the opposite direction from the Rockers, 1.e. Front Record Plunger moves away from the spindle. This causes the record to be pushed off the Rear Shelf and drop to the Rear Hooks.

Between C \& D the Record Plungers ga through the central position and assume the position shown in Fig. D where the Rear Record Plunger moves away from the spindle causing the record to drop to the Front Hooks.

In Fig. E the Centering Lever Return Arm has dropped into the "Slot" in the Main Cam, moving both Plungers toward the Spindle, causing the Front and Rear Hooks to snap back, permitting the record to settle flat on the turntable. In this illustration the Tone Arm Swing Lever is returning to the normal position.

Figure A

FARNSWORTH TELEV. \& RADIO CORP.

MODELS P-41, P-44
CAPEHART

FIGURE C
TO REPLACE OR ADJUST IDLER PULLEY
3672.

コəTPI əЦ山
 the Idler Spring tension is incorrect the
 low, it should fall between 76.59 R.P.M.
 by loosening the Motor Mounting Screw holding the Spring Holder 45176 and turn-
 0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
SERVICE SUGGESTIONS
The Spindle Gear may be wedged, by a screwdriver between it and the Main Cam, to prevent its turning, the Turntable should be unscrewed irom the Spindle. When removing the Turntable make certain one of the Spacer Washers is not lost. These Washers often adhere to the Turntable because of an oil film from the Felt Washer 4949. When replacing Turntable make sure it is properly tightened. NEVER USE GAS PLIERS TO HOLD SPINDLE.

MODELS P-41, P-44 CAPEHART
 FARNSWORTH TELEV. \& RADIO CORP.

FIGURE D

> 3. ALIGNMENT OF RECORD SUPPORT SHELVES The center line of the record shelves should form a straight ine, in lo" position which passes through the center of the spindle. The shelves sholld be exactly $9-21 / 32^{\prime \prime}$ apart and the pindle should be equidistant from both. ln the event it becomes necessary to change the spacing of the record shelves it is recommended that shims be used to adjust them. In some cases if oversized or

FARNSWORTH TELEV. \& RADIO CORP. MODELS P-41, P-44

FIGURE 1

FIGURE 2

MODELS P-41, P-44 CAPEHART

FARNSWORTH TELEV. \& RADIO CORP.

FIGURE 3

FIGURE 4

FARNSWORTH TELEV. \& RADIO CORP. P-41, P-44 CAPEHART

FIGURE 5

FIGURE 5A

© ${ }^{\text {John F. Rider }}$

MODEL "LITTLE PRO" 12LP FEDERAL RECORDER CO.

EXPLANATION OF CONTROL PANEL FEDERAL "LITtLE PRO" RECORDER NO. 12LP Amplifier switch is at right; pilot light at upper left shows when amplifier is turned on. Cutter-speaker switch at lower left is down to "Cutter" position when recording; up to "Speaker" position when playing records, radio, or when recorder is used as a public address system. Dial at right is radio station selector, controlled by knob at right. Meter at left shows volume when recording. Jacks are provided for two microphones, each having a separate volume control. "Equalizer" adjusts high and low note emphasis. 8ass quality is obtained when knob is turned toward left; treble quality mhen turned toward right. "Phono" control regulates volume when playing records. "Radio" control turns on radio and regulates volume when playing radio or recording off the air. Jack at left of volume indicator meter is for headphones. MICROPHONE RECORUING With recorder plugged into 110 volt AC power outlet, throw amplifier switch to "On." Throw cutter-speaker switch at left to "Cutter." Plug microphone into either jack and use respective control to keep monitoring needle in volume indicator below red mark, except for occasional momentary peaks. High quality headphones aid in monitoring because they permit the operator to hear the program exactly as it is recorded, and make possible his instructing various individuals to speak louder or alter their distances from the microphone to achieve better balance. Speaker may be unplugged when monitoring with headphones. Put cutting arm mechanism in position by placing on pin in center of turntable. It will automatically mesh and lower itself when turntable begins to move. With cutting head swung back, insert stylus so flat cutting face is toward back of the cutting head and parallel to guice rod. Start motor by noving lever in uppor left hand cormer of machine to mark "78." Give the turntable a slight push at the same time so that it will be revolving when the rubber roller comes in contact with it. This prevente damage to rubber roller. Lock roller arm by turning knurled screw head. Plece cutting head in position so that the stylus is about one-cuarter of an inch in from the outside edge of the disk. (For models built to cut insideout, start cut at recormended minimum inside diameter.) First place the bar lightly on the load screw, then lower the cutting head gently onto the disc. Depth of cut is regulated by knurled nut on top of bar. Proper depth is shown by a straight shaving about the thickness of a human hair, end the width of the groove should equal the width of the space between grooves. Cut should be shiny and there should be no hiss or whine in cutting. Any suck noise indicates that the stylus is worn out and a new one should be used. BE SURE TO KEEP SHAVINGS BRUSHED TO CENTER AVAY FROM CUTTING STYLUS AT ALL TMES. When recording is completed, lift cutting head from disk and turn motor off hy moving lever to "OFF." Lift cutting arm mechanism from center pin and	place in rest before removing shavings. Brush all shavings off record before playing. Recomended cutting diameter limits: PLAY BACK OF RECORDINGS OR PHONOGRAPH RECORDS Turn amplifier on. Plug single speaker into left hand socket. If two speakers are used, plug them into the two sockets which are close together near the center, and do not use left hand socket. This automatically matches output impedences properly. Start motor and turntable as described above. Throw cutter-speaker switch to "Speaker." Use "Phono" control to regulate volume. Use "Equalizer" to regulate tone quality. Keep microphone controls at zero. any type of phonograph needle may be used. We recommend PURR needles especially. made for use with the Federal Recorder. RECORDING RADIO PROGRAMS Connect radio antenna (preferably an outside antenna) to binding post in right rear corner of machine. Turn on amplifier. Turn on "Radio" control, which also controis volume. Select stations by turning knob at right of radio dial. Throw cutter-speaker switoh to "Cutter" and proceed with recording just as for microphone recording, observing the volume indicator meter and adjusting the setting of the radio volume control. Both radio and microphone can be mixed together by plugging in a microphone and adjusting the volume of each with its respective control. Proper balance is most easily obtained by listening with high quality headphones. DUBBING To record froma record, set up a separate record player and plug output of its pick-up into FM-Dubbing jack at front right top panel. Turn on amplifier and then throw cutter-speaker switch to "Cuttor" and proceed with recording just as for mifrophone recording, using the volume indicator meter to adjust the setting of the "Phono" control. Either or both microphones, as well as radio, may be mixed in when dubbing from another record, by adjusting the volume of each source with its respective control. This is most easily done by listening with high quality headphones. PUBLIC ADDRESS SYSTEM AND RADIO Turn amplifier on. Plug in speaker or spaakers as directed under PLAY BACK, and throw cutter-speaker switch to "Speaker." For radio, turn on radio and adjust volume with radio control. For public address, plug microphone into either jack and use respective volume control. To avoid feed-back (howis or squeals) keep speaker as far as possible from microphone. Best position of

MODEL "LITTLE PRO" 12LP FEDERAL RECORDER CO.
For Recording at $33-1 / 3$ RPM
Sottinge of Zqualizer when recording midwe betwoen inide and outside of
the reorr should be about as when reoording at 78 RPM. Mhen recording near the inside, the Equalizer should be $1 / 4$ more toward the right. When recording near the outside, the position should be $1 / 4$ loss. In betwon, the Equal
should bo gradually moved in accordance with the position of the cutting stylus on the record. By doing this carofully, the natural decrease in high frequencies at the innor part of the record can mo.

IUPORTANT Instractions

Regular phonograph spoed of 78 RFY is obtained when rubber motor pulley is in standard position with larger diameter at top. Por Pointer lover can then bo moved to " 33^{n} as markod on plato. Be sure to repointer spring before starting motor. Always lock roller arm so that it will
plat move when machine is in operation.
In playing commercial records, it is not nocessary to remove the extra pin on the turntable. Simply place the record in position and the disk on the turntable for recording that one of the three holes fits over the oxtra pin. This prevents the disk from slipping.
Be sure to start the turntable revolving when you ongage the rubber motor pulley. This special al loy steol $17-1 \mathrm{lb}$. turntable is made oxtra heary so that
its flywheal action tmproves the quality of recordings. Starting it by hand its flywheel action improses on the rubber pulloy.
When inserting a now cutting stylus be sure that the fLar cutting face is
toward the beck of the cutting hesd and parallel to the guide rod. WHEN RECORD
 Moving parts, such as losd screm, motor, etc., should always be kept clean and oiled occasionally. Ho oil should over be used on the rubber roller except an
 odge of the rubber roller from time to time since dust and shatings may collect
and ceuse a slight noise when recording. Also clean shavings from the turntable shaft and grease the turntable shaft occasionally. To remove turntable, simply pull it up. Turntable may be renoved fran recorder, if desired, to reduce wight when carrying machine, but great care should be exercised to aroid
getting dirt into the bearing.
To atop motor, indicator lever must be returned all the way to "Off" position. To atop motor, indicator lever must on mill
If this is not done, the motor will continue runing even though the turntable
and motor pulley may be disengaged.
speaker is to left or right of microphone so that its side is toward the miorophone. Use equaliser to regulate tone quality if desired. Radio and control.

FI INPUT
For listening to frequency modulation transmissions plug audio output from
frequency modulation tuner into FM-Dubbing jack. This makes the audio system, in speaker or speakers as directed under PLAY BACK, throw speaker-cutter switoh to "Speaker" and control volume with ifantage is to be taken of the high quality possibilitios of this system, a special spealer, designed for frequency modulation and having an impedance of 8 ohms, is reoomended.

For recording frequency modulation transmisaions, plug audio output of
erequency modulation tuner into. Fin-Dubbing jaok and throw michophone recording, observing volume indicator meter and adjusting setting of "Phono" control. Bithor or both microphones may be mixed in when recording frequency modulation transmissions broper balance is most easily obtained by listening with high quality headphones.

USE OF EQUALIZER
The Equaliser is a special fenture of the Federal Recorder and is operable in all uses of the recorder -- radio, playback, public address, and recording from any source. It may be used to give emphasis oither to the low frequencenter position it acts similarly to the usual type of tone control to amphasize the bass. However, when it is turned toward the right it amphasizes the high irequencies. The circuit used introduces an 1500 eyoles, which reaches a maximum of 12 db . at 7000 cycles when the knob is turned fully toward the right.

By means of this high frequency emphasis it is possible, when playing radio or records, to obtain greater clarity and better articulation. Then recording, noise level and also to compensate for the difference in tone quality betwoen the inside and outside of the disk. By this means the careful operator oan produce really fine recordings of professional qual ine as starting points from which the individual operator can develop his own technique.

For speoch: set Equaizer at about $1 / 2$ of full distance to right.

For Recording at 78 RPy
For Speoch: Set Equal
For Music: Set Equal

SETTING UP RECORD CHANGER. Before plugging in line plug be sure the automatic record changer is properly set up ior operation. The bracket to which the pickup arm (l3-Fig. 2) is fastened should be removed as it is used for shipping purposes only. The bracket (28-Fig. 2) to which the recording arm (24-Fig. 2) is fastened should be removed and screwed in the position shown (28.Fig. 2). The turntable is next placed on the spindie and revolved until it drops into position.

PHONOGRAPH AND MOME EROADCASTER EUTTON. Prese this button to connect the set for phonograph operation.

MICROPMONE VOLUME. Turn this control to the extreme left or "off" position.

RADIO-PHONO VOLUME. Turn this control to the right. The dial will become illuminated, showing that the power is connected. Walt about 30 seconds for the amplifier to become properly heated before attempling to play the phonograph. Use this control to adjust the volume of the phonograph in the scme mamer as it is used to adjust the volume of the radio.

TONE CONTROL. Adjust this control to suit your own individual requirements. Turn to the extreme left for emphasis on the high notes or treble and turn to the extreme right to accentuate the bass notes. When this control is turned toward the right, the needle scratch will be reduced.
PiCKUP. The pickup (13-Fig. 2) is the small arm located at the left of the turniable. To insert a needle, lift up the pickup, booeen the thumb screw (14-Fig. 2) and insert the needle in the small hole underneath the arm. Next, tighten the screw securely to clamp the needle in place.

MOTOR SWITCM. Push this switch once to start the metor; push again at the end of the record to stop the motor.

playing records manually.

(1) Move the lever (1-Fig. 2) to the manual position.
(2) Place the record to be played on the spindle of the turntable.
(3) Push the motor switch to start the motor.
(4) Lift up the pickup and place on the smooth outer rim of the record.
(5) Adjust the volume and tone control to suit your requirements.

After the record has been finished, remove the pickup and return it to the left, press the motor switch button to stop the turntable and remove the record. Never leave a record on the turntable, as it is apt to warp. Always return the pickup to its reat after the record has been played. This phonograph will permit playing of records of any aize up to and including 12'" records.

PLAYING RECORDS AUTOMATICALLY.

(1) Set the lever (1-Fig. 2) to 10 or 12 depending on which size records are to played. Ten 12 inch or twelve 10 inch records can be stacked on the changer at one time. Do not mix ten and twelve inch records. After the records to be played have been selected, line them up with the center holes and slip them on to the center post of the turntable.
(2) Push the motor switch to start the motor.
(3) Push the reject button to place the first record in place. The records will be played in order and the last one will be repeated until the motor is turned off.
(4) Adjust the volume and tone control to suit your requirements.
(5) To reject a record, push the reject button and the next record will fall into the playing position. After the last record has been played turn the motor off and return the plckup to its
rest. To remove records, move the support post lever to the "remove records" "position and lift the records off the turntable. Never leave records on the support posts or the turntable except while playing the phonograph.
NEEDLES. Always use a good grade of needle for playing records, as you will obtain better tone quality and longer life from your records. Do not use fibre, bamboo, or cactus meedies. If ordinary steel needles are employed, never use them for more than one playing of a record. A needle which has once been used should never be reinserted into the pickup again, as the point becomes worn and will never fit in the groove properly again. It is also very important never to play a needle on one of your own recordings ofter it has been used on a standard recard.

A needle which has become worn on standard recards will spoil your own recordings. If long-life noedles cure used, never reinsert them after they have been taken out of the pickup. Your dealer will be glad to supply the proper needles for this machine as recommended by the manufacturer.

RADIO RECORDING

CUTTiNe miad. The cutting head is located in the large arm located at the right of the turntable (24-Fig. 2). To insert a stylus, lift the cutting head arm vertically, loosen the set screw and insert the stylus with the V-shaped point of the stylus up (See Fig 1). Insert the stylus to the full depth of the hole and tighten the set screw securely.
Cuttino mecomes. Move the lever (1-Fig. 2) to the manual position and place a blank disk on the turntable, making sure that the stud on the turntable projects through one of the three small holes near the center of the disk. Tune in a radio station as instructed in the section on radio operation. Push the button marked radio recorting and adjust the volume control marked radio-phoss unill the eye just closes on the peaks or loud passagos. Never allow the eye to overlap. The microphone volume control should be in the "off" position. After the proper level of recording has been determined, raise the cutting head to about 45 degrees and move it to the left until it is over the edge of the record. Lower the cutting head gently to the record. The radio program is now being recorded. At the record is being cut, a small shaving will be thrown off from the stylus and gradually will move towards the center of the record. The shaving can be pushed with the fingers towards the center and wadded up belore removing. After the record is complete, raise the cutung head to about a 45 -degree position, move it to the left and relurn it to its rest. The record is now cut and is ready for immediate playing. To play this record merely press the phosograph
and hoase broadcasting button and proceed to play the phonograph as you ordinarily would for any type of commercial record. Shavings should not be allowed to accumulate around the stylus. A soft brush will be of assistance in pushing the shavings towards the center of the record during the cutting process.
The cuiting head must not be allowed to cut too close to the conter of the record. The cutter should be liffed off the turntable before the stylus reacnes the labol or the uncoated portion of the record, as the fine point on the stylus will be damaged. Also do not allow the stylus to touch the stud on the turntable.
When placing the cutting head on a record, lift the head to a 45-degree position and move the head over the starting position on the record. Lower the head slowly to the record. If the stylus is not over the correct starting position, ralse the head to 45degrees before moving to a new position. Never move the cutting head until it is raised to a 45 -degree position.

MODEL 306

FEDERAL RECORDER CO.

TONE CONTROL. In the recording position the tone control is not connected in the circult. This feature was incorporated in the cir cuit to prevent you from spoiling records by cutting out the high made by commerclal methods. When you play back your recordIngs, the tone quallty can be adjusted by the tone control which is connected in the phonograph position notes, thus insuring that your recordings will be similar to those

HOME BROADCASTING

PHONOGRAPM AND HOME BROADCASTER BUTTON. When thls home broadcaster button, play the phonograph as you normally
button is pressed, the microphone is connected and can be used for home broadcasting purposes.

RADIO-PHONO VOLUME. Turn this control until the switch clicks and the pilot lights are illuminated. Do not turn this control any farther to the right
MICROPHONE VOLUME. This control is used to determine the output of the microphone. In order to do home broadcasting it is necessary to have the microphone as far away as possible from the loud speaker of the recelver. This is necessary, as the output from the speaker will be fed back into the microphone and cause a loud squeal or howl. In order to do home broadcasting successfully it is preferable to have the microphone in another room if possible. An extension cord can be obained for use with the microphone in order to place the microphone a long distance from the loud speaker. The tone control can be turned toward the bass position, giving more emphasis on the bass and also minimizing feedback trouble which may be experienced.

HOME BROADCASTING WITH PHONOGRAPH OR RADIO. TO home-broadcast with a phonograph, press the phonograph and
would, and adjust the volume of the phonograph with the radiophono volume control. The microphone can be controlled by the microphone volume control. To home-broadcast with radio, press the radio button and tune in the station as usual, adjusting the volume with the radio-phono volume control. Then adjust the microphone volume control for your microphone output.

FIGURE 2

MICROPHONE RECORDING

RADIO AND MICROPHONE RECORDING. Press this button and the set is automatically connected for microphone recording.

RADIO-PHONO VOLUME. Turn this control until the power is turned on but do not turn this control any tarther to the right.

RECORDING VOICE OR MUSICAL INSTRUMENTS. Place the mictophone as far away from the radio set as possible in order to prevent any leedback which may occur. When speech is to be recorded first make a trial test. Talk into the microphone and adjust the volume control of the microphone until the eye just closes on the peaks, but does not overlap. The blank record
should now be placed on the turntable and the turntable started. The cutting head should be moved into position and the record can now be made. The speaker must talk into the microphone during recording in the same manner as he did during the preliminary test. If musical instruments are to be recorded, the same procedure should be used as for recording voice - that is, make a trial playing, adjust the volume correctly so that the eye just closes but does not overlap, when loud passages are played. It will take a little experfence and practice in order to make successful recordings, but with a little patience and care really excellent results should be obtained.

RADIO AND MICROPHONE RECORDING

To cut a record with both radio and microphone takes some practice to do successfully. First, tune in the radio station as you normally would for radio recording with the radio and microphone recording button pressed. Adjust the volume until the eye just closes and note the position on the radio-phono volume indicator. You will note the scale around the knob of the control which is to be used for resetting this knob to the proper level for recording radio. Reduce this volume by turning the control to the left. Second, while speaking into the microphone, adjust the microphone volume until the proper level is obtained by observing the closing of the eye. Note the position of the microphone volume control. You have now obtained the correct control settings for recording either radio or microphone separately. If radio is to be
recorded first, turn up the radio-phono volume and start recording Then the volume control can be turned down gradually and the microphone volume control brought up to the proper level. In this manner the radio can be faded out slowly and the microphone can be brought up to the proper level. The microphone can be gradually turned down and the radio brought up to the proper volume again. With a little experience you can accomplish this quite successfully. Your voice can also be recorded along with the radio by turning the volume of the radio down slightly and by turning up the volume of the microphone. When recording, it is essential that the microphone be kept as far away from the loud speaker as possible in order to prevent feedback into the microphone.

GENERAL INFORMATION FOR MAKING RECORDINGS

STYLUS. Before cutting a record the stylus should be tightened, as it has a tendency to work loose due to the vibration of the cutting head. The fine point of the stylus should not be touched against any metal or otherwise abused, as it is liable to lose its cutting qualities. Only the best grade of stylus should be used for this purpose, as the success of recording depends to a large extent on the condition of the stylus point. Your Federal dealer will be glad to supply the proper stylus for this recorder as recommended by the manufacturer. Be sure the stylus you buy is the same length as the one now used, otherwise it may be necessary to change the cutting arm or head adjustment as described in the following paragraph. If the stylus is cutting properly, it will throw out a fine shaving towards the center of the record, and will cut quietly, without any scratching noise. The resulting grooves will be shiny, not dull, and the background noise when playing the record back will be very low.

CUTTING ARM AND HEAD ADJUSTMENT. The recorder unit was properly adjusted and records were cut on it at the factory, but uncut portion between grooves. Successful recordings cannot be there is a possibility that this eauipment may be thrown out of made unless the cutting head is correctly adjusted.
dustment due to shipping, and the following information is given so that you may determine if the head is properly adjusted for satisfactory recording. Place a blank record on the turntable without the motor running. Lower the cutting head to this record and note if the set screw which holds the stylus in place is in the center of the slot on the end of the cutting head. If this condition exists, the cutting head is in the correct position. If not, adjust screw (27-Fig. 2), which is located in the rear of the cutting arm and becomes exposed when the arm is lifted to a vertical position. To make the correct adjustment, this screw should be raised or lowered as required, and its lock nut tightened. Next, make a short blank recording to determine if the correct spring tension is applied to the cutting head. After this blank cutting is made, examine the record to see if the grooves are of the same width as the space between the grooves. If the groove is found to be too shallow (not as wide as the space), turn screw (25-Fig. 2), which is located on the top of the cutting arm, towards the rear, in a clockwise direction. This will increase the depth of cut. If, on the other hand, you find the groove is too deep (wider than the space), turn this screw to the left and make another test cutting to determine if the correct spring adjustment has been made. The proper adjustment is one in which the groove is exactly as wide as the

FEDERAL RECORDER CO.

CUTTING ONE RECORD FROM ANOTHER

With this radio-recorder unit it is possible to make a duplicate otherwise the high notes will be eliminated in your recording.
recording from another record. A turntable with a crystal pickup is necessary for this type of recording. Remove the plug from the rear of the set which is marked phonognaph pickup and insert a similar plug with the pickup from the external turntable connected to it. The record which is to be duplicated is placed on the external turntable and the blank which is to be cut is placed on the turntable which comes with your unit. It is necessary to push two buttons in order to make a copy of a record. Press the button marked phonograph and home broadcoster at the same time that you press the button marked radio reconding. Play the record on the external turntable and adjust to the proper recording level by means of the radio-phono volume control. The merophone volume control must be turned to the extreme left or eff position. The tone control should be turned to the extreme leth,

After the controls have been properly adjusted, start the motor on the cutting turntable and place the cutting head on the blank record. Then place the pickup of the external turntable on the record which is to be duplicated. At the end of the record remove the cutting head and return to its rest.

If several copies are to be made from one original always make them from the same original - do not make one duplicate from another duplicate, as the defects in recording are amplified with each duplication.

It is also possible, while making one record from another, to insert comments, announcements, etc. in the same manner as deecribed th the section on radio and microphone recording.

(1) Lever for setting to play 10 -inch or 12 -inch records, Manual playing or Remove records. Mechanism as shown is set for playing 10 -inch records.
(2) "On" and "Off" switch for operating the record playing mechanism. Not used on some models.
(3) Trip mechanism designed to handle automatically records with either spiral run-in or oscillating grooves.
(4) Fecord Support Fingers.
(5) Turntable Shaft.
(6) Trip Rod Tension Spring.
(7) Adjustment for run-in or spiral-grooved records.
(8) Adjusting lock screws for controlling position of power take off wheel (12).
(9) Rubber-tired Drive Wheel. By means of a spring, this wheel contacts the steel pulley on the motor and the inside flange of the turntable; driving the table in clockwise rotation.
(10) Adjusting screws for locking tone arm in position so that needle will rest properly on edge of record.
(11) Trip rod.
(12) Rubber-tired power take-off wheel. Through the trip mechanism, this wheel contacts the inside flange of the turntable during the change cycle from one record to the next, but does not operate during the playing of a record.
(13) Pickup Arm.
(14) Needle Set Screw.
(15) Record Support Arm.
(16) Master Trip Cam.
(17) Mounting Holes. Rubber washers or springs should be used when bolting changer in cabinet to absorb possible vibration.

(18) Reject Button. By pressing this button, changing mechanism operates immediately regardless of needle position on the record. Also by pressing this button, the first record will drop on turntable.
(19) Position for Lever (1) when playing 12 -inch records.
(20) Position for Lever (1) for Manual playing, Removing records or Cutting records.
(21) Adjusting screw for setting vertical movement of tone arm. If properly set, no further adjustment will be necessary.
(22) Adjustable Tie Bar used for positioning record support arms. The adjustment of this bar properly made should require no further attention.
(23) Rim Drive Electric Motor. Be sure Voltage and Cycles are correct for your Power Line.
(24) Cutter Arm. At all times except when actually recording. cutter arm is placed on cutter arm support rest (28).
(25) Adjusting Screw by which the tension on the cutter head equalizing spring may be varied for different types of records.
(26) Cutting Stylus clamp screw.
(27) Adjusting screw and lock nut for proper spacing between cutter arm and record.
(28) Cutter orm support rest. Prevents interference with reproduction and also removes all strain on cutter-head equalizing spring. Full lines show shipping position-dotted, Installa tion Position.
(29) Lead Screw.
(30) Follower Arm and Spring Cam. This arm and cam mesh with lead screw (29) to provide lateral motion of cutter arm - during recording.
(31) Depressible Pin in turntable for driving home recording disc.

THEORY OF OPERATION

As in most modern phonograph turntables, power is derived from an electric motor. This power is transmitted to the turn-table through a geared down rim drive of the iriction type.

The turntable is keyed to a small drive pulley, which in turn drives a large (3 inch) pulley, through a spring belt, both of these units being located on top of the base plate. (See Fig. 1). The 3 inch pulley transmits power by direct drive to another small pulley
located under the mounting plate. This second small pulley in turn drives the large (4 inch) main drive wheel, also located under the mounting plate.

When the turntable revolves, all of these pulleys and wheels mentioned sbove, also revolve-regardiess of whether or not the Changer is going through a cycle of changing a record. By means of this series of pulleys, a high ratio is obtained between the motor and the changing mechanism, which assures ample power.

GALVIN MFG. CO.

IMPORTANT
All service adjustments on Motorola Record Changers should be made with the instrument in a normal operating position.

Therefore, the instrument should be supported in such fashion that parts undermeath are accessible. A jig consisting of four comer support posts would be helpiul. A mirror would also permit the service man to make observations and adjustments without getting into awkward positions.

CHECK THE RECORDS FIRST

Before attempting to service or adjust this Record Changer, check the records first to make sure they are not causing the trouble. The instrument will handle most of the 10 or 12 inch records now available on the market, but it is not guaranteed to handle all of them. Records must be in good mechanical condition, and should not be chipped, particularly around the center hole. Do not try to play automatically, records that are too thick, too thin, or that are oversized or undersized, as regards diameter of record or center hole. Do not mix 10 and 12 inch records on the Changer.

Old records made before the days of automatic record changers may not change automatically, due to the differences in thickness, or to lack of a proper eccentric groove at the finish. Most of the old records, however, may be played one at a time.

CHANGING CYCLE

By referring to the various photographs and rigures which will be found in this Service Manual, you can readily follow through the changing cycle from the continuity given hereafter.

1. The needle in the pick-up finishes a record and enters the eccentric groove.
2. As the pick-up has slowly approached the eccentric groove, a phosphor bronze spring clif has gripped a fin of the automatic change switch.
3. When the needle enters the eccentric groove on the record, the pick-up oscillates slightly, which in turn causes the automatic change switch to make contact.
4. The pirst momentary contact of the automatic change switch is all that is necessary to start the changing cycle. When the switch closes, a small electro magnet is energized. The electro magnet pulls an armature back out of the way, permitting a drive pawl which is mounted on the cam wheel to fall down and engage in one of the notches which are provided on the upper surface of the main drive wheel. (See Fig. 2.)
5. Since the main drive wheel is already revolving, the engagement of the pawl now causes the cam wheel to revolve with it.
6. When the carn wheel starts to revolve, it causes several things to occur. In the first few degrees of revolution, it opens a circuit breaker switch (Fig. 3) which automatically opens the magnet circuit, thereby de-energizing $1 t$, to prevent "chattering".

7. The next few degrees of rotation causes the pick-up elevating pin to ride up on an inclined section of the cam, thereby elevating the pick-up and lifting the needle from the record which has just been played. (See Fig. 3).
8. A few more degrees of revolution cause the pick-up guide groove on top of the cam wheel. This part of the mechanism is not visible, since the cam wheel is mounted too close to the mounting plate, but Fig. 4 shows a drawing of the upper surface of the cam wheel. As the wheel revolves with the pin in the groove, it causes the pick-up to swing out beyond the edge of the record so it will be out of the way when the next record falls on the turntable.
9. The cam wheel continues its revolution, and at another point on its circumference a roller on the end of the trip-lever rides up an inclined section on the cam. This trip-lever is the copper-plated rod which is hinged approximately in the center by running through a die cast fulcrum block. As the roller on one end of the trip-lever rolls up the incline on the cam, the other end of the trip-lever bears against the push rod which operates the record release, which is located near the top of the spindle, causing it to push the next record off its support, thereby dropping it on the turntable.
(See Fig. 5).
10. The cam continues to revolve, the groove in the top bringing the pick-up back over the edge of the record to the proper position where the needle will fall near the first groove when it comes down.
11. A few more degrees of revolution, and the pick-up elevating pin rides down another incline, permitting the needle to settle gently on the first groove of the record. (Fig. 3).
12. At this point, the cam has completed one full revolution of 360 degrees. At the same time the needle touches the record, the drive pawl hits the magnet armature, which forces it up, thereby disengaging it from the notch in the drive wheel. The cam wheel therefore stops, the turntable continues to revolve, and the record is played.
13. During the last few degrees of revolution, the circuit breaker switch has again been closed, as its fibre stud rides up an incline on the lower surface of the cam. (Fig. 3). This switch must be closed at all times except when the instrument is going through a changing cycle, otherwise, it would be impossible to start a new changing cycle automatically.

The record support platform 18 adjustable for either 10 or 12 inch records, depending upon which "11p" is turned toward the center of the turntable. The platform may be swung in an arc of 180 degrees, 80 that e1ther the 10 or 12 inch 11p may point toward the spindle.

Underneath the mounting plate, and mounted rigidly to the record platform support shaft is an eccentric mechanism which moves
the $10^{\prime \prime}-12^{\prime \prime}$ selector lever when the platform 18 moved. The position of this selector lever determines the point where the needle will come down on the record at the end of a changing cycle. In other words, it adjusts the pick-up for playing automatically either 10 or 12 inch records, depending upon the position to which the record support platiorm is turned. The eccentric cam and the selector lever are shown in Figs. 4 and 6.

START-REJECT SWITCH

The push switch mounted near one corner of the mounting plete is connected in parallel with the automatic change switch previously discussed. When this switch is closed, 1t energizes the electro magnet exactly in the same fashion as does the automatic change
switch, thereby making it possible to start the changing cycle at any time, regardless of whether or not the record has been completely played. By this means a record can be "rejected". The wiring diagram showing switches and magnet can be seen in Fig. 2.

10"-12 ECCENTRIC CAM

TO ADJUST RECORD RELEASE

1. Place a stack of 10 inch records on the changer, after turning the record support platform to the "10 inch" position.
2. Start the turntable revolving,
3. Press the "Start-Reject" button.
4. If the ilirst record does not drop to the turntable, double check the record to make sure that it is not too thick, or that the diameter of the center hole is not undersized, causing it to bind.
5. If the record proves to be normal, and is not causing the failure, loosen lock nut (C) which locies adjustment screw (D), as shown in Figs. 5, 6, or 7.
6. With a slab-head wrench, turn screw
(D) a iraction of a turn clockwise, and press the "Start-Reject" button again, checking to $s e \theta$ if record is released.
7. If the record fails to drop, tighten screm (D) a trifle at a time, testing after each adjustment, until setting is reached, which releases record.
8. Tighten lock nut (C), after which a few more records should be changed, to make sure that this did not alter adjustment of screw (D).

NOTE: If the Changer stalls during the adjustment procedure, it may be an indication that screw (D) 18 too tight, in which case it should be turned back (counter-clockwise).

TO ADJUST PICK-UP POSITION

This adjustment 18 made to cause the needle to drop in the firgt groove of the record, as the Changer completes a changing cycle.

1. Turn the record support to the 10 inch position. (See Fig. 1).
2. Place a standard 10 inch record on the turntable and start it revolving.
3. Press the "Start-Reject" button. The Changer will now start a changing cycle.
4. Do not let the Changer complete the cycle, but stop it at the point where the plck-up starts to drop dowmward towards the
outer rim of the record. If the cycle 1 s stopped at the right point, the pick-up will still be "in cycle" and will not be free to swing back and forth. Check this gently. Do not exert too much sidewise pressure on the pick-up.
5. Now loosen the two hex-head set screws (A) in the bell crank casting (B), which you can see in Fig. 7.
6. With the set screws loose, the pickup arm can now be moved back and forth. Move it to the point where the needle rests directly over the first groove in the record.

FIG. 8
(The correct dimension for proper adjustment is $4-25 / 32^{\prime \prime}$ from the needle point to the center of the spindle.)
7. Tighten one set screw securely so that the shaft does not move while checking proper position of the pick up arm. After proper position has been located tighten both set screws securely.
8. Now place a 12 inch record on the turntable; turn the record support to the 12 inch position.
9. Press the "Start-Reject" button and let the Changer go through another cycle, watching carerully to make sure the needle comes down on the record at the proper point. If necessary, make minor read.justment.

TO LINE.UP RECORD PLATFORM

It is important that all points on the "lip" of the record support platform be equidistant from the center point of the spindle. This will assure that all points of the record will leave the platform at the same time. If the record support is too far out of alignment, the record would actually hang on the point nearest the spindle and rail to drop properly.

1. To check this alignment, turn the spindle-cap soit is in alignment with the rest of the spindle, which is the correct position for removing records. (See Fig. 8.)
2. Turn the record support platform to the "10 inch record" position, making sure it is turned all the way to the stop.
3. Slip a standard 10 inch record over the spindle and check to make sure it clears
the lip of the platiorm at all points. (See Fig. 9.)
4. If one point on the lip extends farther than the other, the position of the record support may be adjusted after loosening the two Bristo set screws (E), located directly under the numeral " 12 " on the record support. (See Fig. 9).

CAUTION: Make sure the eccentric selector cam, which is located under the base, is turned all the way to its stop. (See Fig. 4.)

TEST: After tightening the set screws, test the adjustment by running a 10 inch record through a complete cycle and check the point where the needle falls. If the needle misses the record by one inch, the record platform is 180 degrees out of ine with the eccentric cam, and should be turned one-half turn without turning the cam.

TO ADJUST AUTOMATIC CHANGE SWITCH

The Automatic Switch (See Fig. 7) starts the changing cycle after a record has been completely played. The switch is actuated by the oscillating of the tone arm in the eccentric groove of the record, through the spring clip which grips the movabie switch blade.

If the switch fails to operate positively, It may be readily adjusted by means of the adjustment screw (F). (See Fig. 7).

To make the adjustment, place a record on the turntable, start it revolving, and move the
pick-up over to the end of the record. Adjust screw (F) until switch closes the magnet circuit and starts the change cycle. Check points visually to make sure they do not remain closed after cycle is completed.

If the Changer immediately starts another cycle, it is an indication that the points are remaining closed or that the clutch release spring (G) (Fig.7) does not have enough tension. This tension may be increased by taking it up another notch.

PARTS PRICE LIST
MODEL B2RC (Used in Models 23RC and 23RCW)

PART NO.	DESCRIPTION	LIST	PART NO.	DESCRIPTION	LIST
4 A 1957	"C" Washer . 093 CPDOZ.	\$0.15	1×21479	Lever \& Stud Assembly.	\$0.10
2 S 7045	Nut 1/4-28×5/8 Hex-1/8Th CP. PER C.	. 60	1×21480	Arm \& Finger Assembly-Pickup	
357102	Set Screw 8-32x1/8" Bristo. .DOZ.	. 85		bottom. .	. 30
357114	Set Screw 8-32x1/4 SlABHD BQ PER C.	1.50	40 A 21482	Power Switch . .	. 65
357643	Washer 11/16-.021 CO . . . DOZ.	. 20	59B21484	Phono Motor \& Mounting Plate	5.25
457644	Washer 1/2-. $140-031 \mathrm{CO}$. . $\mathrm{CPRR} \mathrm{C}$.	. 80	1×21487	Pickup Shart \& Bracke t Assembly	. 25
66×10633	Bristo Head "L" Wrench	. 15	1×21488	Cam Wheel \& Bearing Assembly	. 55
66×10634	Slab Head Screw Driver	1.50	4 A 21491	Thrust Washer 9/16-.315-.020 .DOZ.	. 20
64 All 245	Switch Holding Plate .022. . DOZ.	. 25	1X21496		1.40
31411343	Terminal Strip 2 ins. 42 gnd	$\begin{array}{r}.15 \\ \hline\end{array}$	47A21497	Grooved Pin (Drive Pawl) CP. .DOZ.	. 25
66X12146		1.35 .30	47A21499 41 A21502	Grooved Pin Top Cap NP ${ }_{\text {Compression coil Spring } 3 / 8{ }^{\circ} \text { - }{ }^{\text {dOZ }}}$. 30
55421170	Needle Cup 10		Record Post PER C.	. 60
49 A 21268	Wheel - 3'0.D	. 25	1×21503	Push Rod \& Eyelet Assembly	. 10
$62 \mathrm{C21269}$	Main Drive Wheel only.	.40	1×21504	Trip Rod \& Block Assembly.	. 50
64A21271	Record Hold-Down Plate	. 10	$43 A 21505$	Trip Rod Roller.	. 05
45A21273	Fulcrum Block.	. 20	1X21508	Wheel \& Shaft Assembly 3".	. 35
64A21285	Detent Stop Plate.	. 05	1×21509	Drive Wheel \& Bearing Assembly	
46A21286	Shoulder Stud 3/8" Brass . . DOZ.	. 30		Record Post.	. 55
46 A 21287	Shoulder Stud 13/32 Cop. Pl. .DOZ.	. 40	1×21510	Release Magnet \& Brkt. Assembly.	. 35
34.21291	Record Push Rod Screw. . . .PER C.	. 95	1×21511	Bracket Assembly W/Armature .	. 10
7421293	Latch Bracket.	. 05	41A21516	Tension Coil Spring 7/32-	
45421294	Trip Rod - Cop. Pl	. 10		Armature . . . - . . PER C.	. 60
46A21295	Eccentric Shoulder St	. 10	1 K 21517	Circuit Breaker Switch	
47A21296	Idler Shart. ${ }^{\text {d }}$.	. 15		Assembly - Upper. . .	. 25
3 321297	Screw 12-24xl/4 Spec.Hd CO	. 90	1 K 21518	Automatic Change Switch	
47A21298	Cam Shaft - Cop. Pl. ${ }^{\text {a }}$. 35		Assembly - Lower.	. 25
47A21299	Record Selector Shaft 10"	. 10	37 A 21523	Rubber Grommet - Mtr. Mtg. . .DOZ.	. 40
49A21302	Pulley 1 \& 1/16 OD	. 15	1 X 21524	TurnTable Pulley \& Bearing	
7A21303	Release Bracket.	. 05		Assembly.	. 35
45421306	Latch Armature	. 05	40 K 21526	Push Switch - Momentary Contact.	. 40
$45 A 21307$	Drive PawlPER	1.00	43 K 21559	Bronze Bearing . 750 Long -	
46A21308	Pick-Up Drive Stud	. 05		Record Post . . .	
46A21314	Pickup Push Rod - Bent 05	1821560	Release Magnet Assembly.	
43421317	Detent Lever ${ }^{\text {a }}$. 30	13A21598	Switch Escutcheon.	
45A21325	Eccentric Top Cap (Spindle).	. 30	36A21662	Control Knob (Push-On)	
41421332	Tension Coil Spring - Record		59B21840	Phono Pickup Arm - Less Mtg.	4.75
	Hold-Down Plate ${ }^{\text {DOZ }}$.	. 25	4×21941	"C" Washer .437-.281-.020CP.PER C.	. 90
37A21333	Pickup Mounting Cushion. . . PER C.	1.00	38×22151	Plug Button.	. 05
41A21334	Compression Coil Spring		2 K 22211	Nut $1 / 2-27 \times 5 / 8$ Hex. Cop. Pl	. 05
	11/16 - Push Rod. FER C.	. 75	49×22573	Rim Drive Wheel \& Shart. .	1.50
46B21335	Record Post - Cop. Oxd . ${ }^{\text {d }}$ - ${ }^{\text {c }}$	1.05	59X22574	Pickup Crystal Cartridge only.	2.65
45A21336	Record Trip Lever - Cop. Oxd . DOZ.	. 30	4×22576	Flat Wesher - Lor Rim drive	
1421443	R.C. Switch Assembly	. 60		wheelDOZ.	. 30
4 A21444	Spring Washer 1/-.320-. 008 . PER C.	. 60	35×22577	011 Wick Washer - for Rim	
7A21445	Switch Mounting Bracket. 10		Drive Wheel DOZ.	. 30
35421448	Trip Rod Cushion-Felt.DOZ.	. 30			
41A21454	Compression Coil Spring 1/4-Record PostPER C.	. 55		MODEL BZRC (Used in Model 58FRC) (Same as B2RC except that power	
41 A 21455	Cam Pulley Spring Belt	. 10		switch is omitted) *	
41 A21456	Turntable Spring Belt.	. 10	38×22148	Plug Button (Light Brown	
42421457	Ring Clip .100-. 014 CP . . . PER C.	. 45		Hammerloid)DOZ.	. 30
46 A 21463	Pickup Mounting Pin.DOZ.	. 25	,		
59B21466	Phono Turntable 9" ${ }^{\circ}$	1.00		MODEL B4RC (Used in Models 62F1	
4A21469	Spring Washer 5/16-156-010 .PER 0	. 50		and 83F1)	
43 K 21471	Pickup Support Bushing	. 05		(Same as B3RC except for parts	
4.31 K 21472	Record Support Bushing	. 10		listed below)	
1×21474	Detent Plate \& Shaft Assembly.	. 15			
1×21475	Record Platform Assembly	1.40		Same as B3RC except:	
4 K 21476	Blank Cup - Chr.Pl. - Record Hold.	. 10	59B21483	Phono Plckup Arm-less mtg.	5.50
62 K 21477	Record Platform - Chr.	. 50	59×22575	Pickup Crystal Cartridge only.	3.10

PRICES SUB.JECT TO CHANGE WITHOUT NOTICE

MODEL W2R.C.

GALVIN MFG. CO.

FOR OTHER DATA SEE WEBSTER MODEL 22

general record changer and motor data

On some models designated with "A", this means 110 volt single range only.
(*) NOTE: Some Universal motors use Series Rheostat or fixed resistance for $200 / 250$ volt ranfe.
The R.C.2A Record Changer is fitted with a universal
motor and is for use on alternating and direct current.
It will operate on $100 / 130$ and $200 / 250$ volts D.C. and A.C.
$25 / 60$ cycies.
The mains leads should be connected to the mains terminals
on the slider resistance, (diagram 8) and the lead from the
resistance is connected to the motor terminals on the Changer.
This resistance has an engraved scale and the slider must
be set so correspond with the voltage, and frequency if A.C.
of the supply.
To adjust this nut, "A" on diagram 3, first loosen its locking
screw "B" on diagram 3, and lightrly tighten up the nut with
the the fingers as far as it will go, then unscrew the nut one quarter
of a turn and tighten up the locking screw.
This position will be approximately correct, but if the arm

If the pick-up arm diops on 10 " when a 12 " record has
fallen, or vice-versa, bend the small flat spring " \bar{B} " on diagram
I towards the front of the changer ; this can be done by pushing

casting; on later models this spring has been superseded by
a pivoted lever which does not require any adjusiment.
Brake Adjustment.
If the changer does not stop in the correct position, but
over-runs and does not drop the first record when loaded, the
brake pad requires adjustment.
This is provided for on the lever carrying the brake pad,
(diagram 4). When this adjustment is made, care must be taken
to see that the switch breaks contact before the pad touches
the turntable.
 These blades should be checked, and if necessary, bent to
the correct position. The distance between the underside of the blade and the lop of the platform should be $\frac{1}{16}$ inch. If an occasional slowing up is noticed in the reproduction,
the trouble is mosi likely due to the record slipping, through
being concave or warped. In these cases, the slipping can sometimes be stopped by
sticking a piece of stamp edging on the outer edge of the record
label.
Very often the motor is blamed for this slowing up, due record being played when the slowing up occurs should be placed If slowing up now occurs it is due to the motor, as the record Record slip may also be caused by burrs left round the centre
hole in the manufacture of the record and these burrs should
carefully be removed with a penknife.
Pick-up Arm Adjustment.
The Pick-up arm has been finely adjusted so that the needle comes on to the loin. record on 9 in . diameter circle, and comes
on to the 12 in . secord on $1 \frac{1}{\mathrm{~g} i \mathrm{in} \text {. diameter circle. These dimen- }}$ sions have been arrived at after checking over a very wide There may be a few records where the playing groove starts further away from the centre, and in these exceptional instances
the needle would come on to the record a few grooves in instead of on ti.e plain part. If the Changer was set for these excep-
tional records it would mean that the Pick-up would not be tional records it would mean that the Pick-up would not be
lowered \boldsymbol{n} to the edge of records of normal size.
Should the dropping position of the needle require adjustment, turn the knurled screw A on diagram 2 towards you to drop
the needle further out and the orposite direction to drop further Record Changer Motors.
The motor fitted to the "Garrard" R.C.1A Record Chang-

 to bring the speeds correct. To make this adjust
ment, first set the speed of the turntable at 78 R.P.K. while playing by means of the "Garrard" A.C. Record Changers. With D.C. using Universal Model, the speed should be checked with a watch.
 it points to 78 on the indicator plate, at the

Striker Adjustment.

 bush becomes badly worn, a tapping sound will become apparent, and the Trip may operate before the end of the record. This
faut may be rectified by turning the rubber bush round, in order On no account must the pick-up arm be forced into position,
if for any reason the pick-up arm is out of position, switch on reject - the pick-up arm wif then assume its
If the needle in the pick-up lands on the plain edge of the
record and does not run into the first plaving groove. see that the changer is reasonably level by testing with a spirit level
placed on a record on the turntable. Also make sure that the pick-up lead is not twisted or held
such a way as to prevent the free movement of the arm. The trouble may also be due to the adjusting nut on the
pick-up arm pivot being either too tight or too loose.
The mains lead should be connected to the mains change-
ver block situated on the top of the motor. To connect mains eads to motor, first remove round cover on Change-over Termwo screws marked "Mains," then replace cover with arrow
 with the ingers to ensure making good conact and 7

$$
\begin{aligned}
& \text { matic. trip plays an important part in the operation } \\
& \text { d changer, upon the certainty of the auto trip com. } \\
& \text { tion depends the whole operation of the record } \\
& \text { trip mechanism will operate on all makes of records } \\
& \text { un off", groove, either eccentric as } \mathrm{H} \text {. M.V., or spiral } \\
& \text { Decca, parlophone, etc, } \\
& \text { trip will not operate on records without a "Run } \\
& \text { and if trouble is experienced with the pick-up } \\
& \text { the end of a record and so preventing the changer } \\
& \text { ing, is advisable to see that he record has a } \\
& \text { rnoove before attempting to make any adjustment } \\
& \text { anis. } \\
& \text { Operation of Auto Trip. }
\end{aligned}
$$

The Automatic Trip.
The automatic. trip plays an important part in the operation
of the record clanger, upon the certainty of the auto trip com-
ing into action depends the whole operation of the record
changer.
The auto trip mechanism will operate on all makes of records
having a "run off", groove, either eccentric as H.M.V., or spiral
as Cohmbia, Decca, Parlophone, etc.
The atioto trip will not operate on records without a "Run
off" groove, and if trouble is experienced with the pick-up
remaining at the end of a record and so preventing the changer
from operating, it is advisable to see that the record has a
"run off" groove before attempting to make any adjustment

 to the advance made by the Pick-up. The Striker is fitted upon
the Main Spindle in order to push back the Trip Lever and prevent the Auto Trip from operating whilst the record is being played. When the Pick-up reaches the end of the playing
grooves and is moved into the "eccentric" or "run off" groove, allow of its being pushed back by the Striker, which strikes the alow of its being pushed back the siriker, which strikes the
metal Trip Lever itself, and by tripping it, operates the chang-
ing mechanism.
"run off" groov
to the mechanism

\cong \square

 the base plate and not setting up additional friction by rubbing
the plate.

Records and Record Dropping.

GARRARD ENG. \& MFG. CO. LTD.

MODELS RC4, RC5, GARRARD ENG. \& MFG. CO. LTD.

Series

TO REMOVE PICK-UP FROM THE ARM. On Types R.C. 4, R.C. 5, R.C. 6 and R.C. 8 Series	desi gned far any voltago betmeon 100/130 and 200/250 volts A.c. $50 / 60$ oyol
First remove the stop sorew underneath the pick-up arm, just behind the piok-up head. Now remove the pick-up cover and unsolder the leads from the tags; the piok-up can now be withdrawn." tracking error, to fit a different piok-up arm when converting from magnetio On these types of Record Chancers it is necessary, in order to minimise to erystal type of piok-up or vice versa.	contre screw and removing bakelite cover. ing the centre screw and removing bakelite cower supply aro accossible by unsorew All motors are set on 200/250 volt range before leaving our factory. If be removed and replaced as shown in diagram 8 below. the motor is required for use on the $100 / 130$ volt range, the two brass links should
On Types with Pluz-in Hoad.	D.C. or A.C. $25 / 60$ or 10 s . sories R.C.SA Reoord Changor--inoorporates the Universal Motor R.C. 5 . It is a
"Remove the pick-up stop screw and the smalluscrew on the left hand side be pulled out and the piok-up withdrawn." of the piok-up arm. This will release the terminal blook, the pick-up pluge oan	mounted on the Changer. Three terninala are provided, one being aommon and the other two being for the high and low voltage ranges respectively.
types of tecord Chanyers without alteration to the pick-up arm. on these trystal and various typas of our magnetic pick-ups can be interchanged SPEED SETTING. Due to the wide voltage range of the motors it ma	If the brushes are allowed to become dirty or worn, brush noise will occur. The be roplaced in the same holder and the same way as originally found. The brushes when new are $9 / 16$ inch. long under the springs; when they have worn down to $3 / 8$ in they should be replacod.
be necessary on some power supplies to make a slight rethe speed of the turntable corresponds with that shown on the	Conneot Both Bars Thus for 200/250 Volts Connect Bars Thus For 100/130 Volts
Io do this, first set the speed of the turntable at 78 revolutions per minute, whilst playing, by means of the "Garrard" Strobosoopic Speed Indicator enolosed with the "Garrard" A.C. Record Changers. With Universal Models, used on D. C. Power Supply, speed adjustment shoulत be ohecked with	
	Diagram? $D_{\text {iagram }} 8$ The R.C.4A and R.C. 8 A Motors are similar to the R.C.6A type, but for single voltage ranges only.
SERvice Instrucrions.	
ine prolonged final toste to be certain that it operates satiofactorily befo ine oury. Normaily, therefore, no diffioulty should be encountered.	
ies, as the record changing mechanism is the same in each oase. These Service Instructions apply to either types RC4, RC5, RC6 or RC8 motors. R.C.6A Record Changer -- is operated by a "Garrard" R.C. 6 Induction Motor,	Noxt, uns reve the platerarn operatine iever from the bottom of the motor casting motor can then be wit thramm. Now hold the motor with one hand and uncrow the throe motor fixing sorvers ; the

WHEN REISSEMBLING THE LOTOR, THE LARK ON THE TWO LARGE GEARS MUST
COINGIDE FOR CORRECT TIMING.
Before adjusting the screw make sure that the operating and trip lever "A"
(diagram l) is clear of the base plate and not setting up additional friotion by
To increase the friotion give the adfusting sorew "En(Diagram 1) a slight
5. SNITCH (AUTOMATIC) NOT OPEKATING AT THE END OF THE LAST RECORD.
See that all the levers are free and that all the springs are still fixed
in position. Verify that the centre spindle is free in the main spindle. It re-
in position.
When the weight of the last record is removed from the centre spindle it Whould automatioally lift slightly.
6. CHANGER OPERATES BEFORE PICK-UP REACHES THE END OF A RECORD.
Also bumping or tapping noises.
GARRARD ENG. \& MFG. CO. LTD.
MODELS RC4, RC5, RC6, RC8
Series
NOTE: If the motor refuses to start when switched on, oheck over all
the wiring conneations and make sure that the switoh contacts are clean.
In cases where mechanical feed back oocurs, it is suggested that the record changing unit be apring mounted in the cabinet. This will give sufficient nechanical insulation between the loud speaker
back occurring.
3. INTERFGRENCE FROM SWITCH CLICKS.
It is essential that the record ohanger ohassis be connected to earth
(ground). If the switoh olioks are unduly audible in the loud speaker, the follov
are suggested: ing remedies are suggested:
Connect a condenser or condenser and resistor, as shown in the diagrams
below, aoross the switch contacts.

The record platform is set to the correct position for all average records,
 a slight adjustment to the platform position.
This is done by removing the nut, washer and screw "A" on Liagram 2 and
turning the bush " $B^{\prime \prime}$, olockwise to accormodate large records, and anti-clockwise for small records. Replace the sorew, washer and nut. Cheok the record platform

8. FIRST RECORD NOT DROPPING WHEN CHANGER SITCHED ON.
This is due to the leather brake pad becoming worn and not braking the
turntable sufficiently.
To adjust, loosen the two screws ("F" in Diagram 1) and turn the brake
lever slightly to bring the leather pad nearer the turntable rim; now tighten up lever slight. After making this adjustment see that the switeh breaks contact
the scre.
before the leather pad touches the turntable rim.
The oondensers should have a woricing voltage of at least 300 volts A.C.
 The friction adjusting screw mentioned in paragraph 4 should be turned
slightly in a clookwise direction to decrease friction. As this adjustment is very
sensitive, do not move more than a quarter of a turn at a time.
RECORDS AND RECORD DROPPING by giving the bush a turn to present a now surface to the striker.

2. $\operatorname{IECHANICAL~FEED~BACK~AND~SPRING~MOUNTING.~}$

In cases where mechanical feed back oocurs, ban

CJohn F. Rider
9. PICK-UP ARM ADJUSTMENI.

SEE MAGNAVCX MODEL RC-4
The pick-up arm has been finely adjusted so that the noedle comes on to the $10^{\prime \prime}$ record in a $95 / 8^{\prime \prime}$ diameter circle and on 12^{n} record in a $115 / 8^{n}$ diameter circle. These positions were arrived at after checking a very wide seleotion of records of various makes.

There may be a few records where the record track starts further away from the centre (i.e., nearer the edge) and in these exceptional cases the needle would come on to the record a few grooves from the start of the record instead of on the plain part. If the Record Changer was set for these exceptional records it would mean that the piok-up would not be lowered on to the odge of the record track with records of normal size.

If the dropping position of the needle requires adjustment, the turntable should first be turned by hand to bring the pick-up from the loading positi on to the point where needle has dropped to within $1 / 16^{\prime \prime}$ of the record.

The screw marked "N" in Diagram 3, which is accessible through a hole in the unit plate, should then be turned either to the right or left according to requirements. A quarter of a turn in either direction will give you the maximum adjustment, which should afterwards be checked by starting the changer and noting the dropping position.

If desired the piok-up height oan be adjusted by loosening the set screw in the piok-up counterbalance weight (" M " in Diagram 2) and turning tine weight whilst holding the spindle.

CAUTION: Wher making any adjustments to the Piok-Up Arm it should NEVER on any account be forood into position. If the turntable is turned by hand, it should NEVER be turned backwards.
10. PICK-UP NEEDLE DOES NOT RUN INTO RECORD GROOVES but stops on the plain edge of the record.

First see that the record changer is level by placing a spirit level on a record on the turntable. Next make sure that the flexible wire leading to the pick-up is not twisted or held in such a manner as to prevent the froe movement of the pick-up arm.

See that the levers ("L" and Mon, Diagram 2) are froe and that the pin at the end of lever "C" is not rubbing on the bottom of the cam grooves.

$$
\begin{gathered}
\text { MODELS RC4, RC5, } \\
\text { RC6, RC8 } \\
\text { Series }
\end{gathered}
$$

GARRARD ENG. \& MFG. CO. LTD.

Diagram B

TYPES R.C.4, 5, 6 \& 8 RECORD CHANGING UNIT.

(takram	REFERENCE NUMBER cher	name of part	Price		RMFERESCK	name of part	Price
B34	15/9	Indicator lever.		B68	1952	Stop lever.	
B35	1862	Piatform.		B69	15/12	Screw for Stop Lever.	
B36	1849	Slide rods.		B70	1978	Screw for reject lever.	
B37	561	Screw for slide rod.		B71	1836	Spring for reject lever.	
B38	1947	Clutch trip lever.		B74	1950	Reject lever.	
B39	1945	Auto trip base plate.		B73	678	Stud for spring.	
B40	780	Screw collar and washer.		B74	1985	Knock off spindle quadrant.	
B41	1836	Spring.		B75	JJ 1/32*	Top plate for change-over block (O.T.).	
B42	G13/12	Nut for Selector spindle.		B76	$\mathrm{JJl} / 36^{*}$	Nut for top plate (Old Type).	
B43	1946	Kinuck off lever.		B77	JJ1/31*	Change-over block (Old Type).	
B44	1151	Friction spring.		B78	M1/9	Fixing Screw for terminal block.	
B45	1910	Operating lever.		1379	724	Screw for trip lever (rivet on latest types).	
B46	G13/24	Retaining coil.		B80	1911	Trip lever.	
B47	1158	Friction plate.		B81	730	Trip lever rubber.	
B48	1152	Adjusting serew.		B82	EE13/3	Clip for leads.	
B49	1944	Conuceting link.		B83	15/14	Kegulating plate.	
B50	DC2/13	Rubber grommet.		B84		Regulating plate screw.	
B51	635	Screw tor contact spring.		B85	15/12	Quadrant lever screw.	
B52	586	Switch block.		B86	1895	Quadrant lever.	
B52	2332	Switch cover.		B87	15/12	Quadrant screw.	
B52	594	Screw for cover.		B88	15/10	Quadrant.	
B53	591	Switch contact spring.		B89	1976	Unit plate.	
B54	15/12	Screw for brake pad lever.		B90	1200	Needle cup.	
B55	1807	Screw for pick-up base.		B91	1966	Change-over lever.	
B56	$\mathrm{CC13} / 6$	Step Screw (Connecting link screw).		B92		1'ivot screw collar and washer.	
B57	1929	Pick-up base.		B93	$\begin{aligned} & 1956 \\ & 1 \mathrm{~T} 1 / 26 \end{aligned}$	Spring.	
B58	650 1943	Screw for P.U. base cover. Control lever.		B94 B95	1T1/26 1968	Spring. Striker complete.	
B60	1893	Flex plate.		B96	1957	Delay lever.	
B61	5/24	Screw for fiex plate.		B97	1807	Pivot screw collar and washer.	
B62	780	Pivot screw collar and washer.		B98	1936	Instruction plate.	
B63	AS1/21	Leather brake pad and screw.		B99	1934	lixing screws.	
B64	1949	Switch lever.		B100	1807	Pivot screw collar and washer.	
B65	1951	Switch link.		B101	IT1/26	Spring.	
B66	1948	Catch lever.'		B102	1861	Platform spindle.	
B67	780	Pivot screw collar and washer.		B103 B145	672 1165	Spring for trip lever. Fixing screw for unit plate.	

*For New Type Change Over Block (RC6) and Terminal Block (RC4 \& 8) see Sheet M

SPARE PARTS LIST

Sheet C.

TYPES R.C.4, 5, 6 \& 8 RECORD CHANGING UNIT.

$\underset{\substack{\text { diagram } \\ \text { N(IMEER }}}{ }$	REFERENCE NUMBER	name of part	PRICE	Ofigram	$\underset{\substack{\text { REFERENCE } \\ \text { NUMBER }}}{\text { Ren }}$	name of Part	Price
Cl04	1940	Y'ick-up arm lever.		$\mathrm{Cl23}$	1051	Split pin for spring.	
C105	1880/1	Cam shaft.		C 124	1953	Change-over operating lever.	
Cl06	2043	Pick-up operating lever.		C125	1987	Motor fixing screws.	
C 107	1971	Adjusting spindle.		C126	1850	Platform lever.	
C108	M1/14	Terminal strip fixing screws.		C 127	1821	Release lever, not RCu.	
C109	1975	Terminal nut.		C 127	2119	Release lever, RC5.	
C110	1973/1	Pick-up terminal strip.		C 128	678	Stud for spring.	
C111	930	Spring for Latch.		C129	529	Pivot pin for release lever.	
C112	1890	Pressure Lever Shaft.		C130	584	Spring for release lever.	
Cl13	1958	Selector lever complete with spindle.		C 131	1051	Split pin for spring.	
Cl14	607	Fixing screw for cam gear.		C132	1977	Switch operating lever.	
C 15	2223	Pick-up lead, not RC5.		C133	1951	Switch operating link.	
Cl15	2224	Screened pick-up lead, RC5.		C134	2044	Latch.	
Cll6	1850/1	Tie rod.		C135	1879	Cam complete.	
Cl 17	1916	Tie rod extension.		C136	1953	Switch knock off lever, not RC5.	
C118	1/9	Fixing screw for slide rod.		C136	2109	Switch knock off lever, RC5.	
C119	1906	Rivets for instruction plate.		C137	EE1/14	Screw for cam end plate.	
C120	1847	Platform slide.		C138	1959	Cam end plate.	
C121	2543	Base casting.		C139	1843	Spring for switch knock-off lever.	
C122	IT1/26	Spring for change-over link.		C 140 C 141	$\begin{aligned} & \text { M1/14 } \\ & 1942 \end{aligned}$	Sctew for stop operating lever. Stop operating lever.	

GARRARD ENG. \& MFG. CO. LTD. MODELS RC4, RC5, RC6, RC8 Series
 SPARE PARTS LIST
 Sheet D.

TYPES R.C.4, 6 \& 8 MOTORS.

ditaram	(REFERENCE	name of part	Price	DIAGRAM NUMBER	$\underset{\text { Rfference }}{\text { RUMBER }}$	name of part	Price
D 1	V2/12	Screw for clutch spring.		D41	1965	Cover for clutch case.	
D 2	610	Clutch.		D42	1964/2	Clutch case.	
D 3	1964	Clutch gear.		D43	1960	Motor cover.	
D 4	561	Screw for cross shaft bush.		D44	1839	Main spindle with fibre gear.	
D 5	1963	Cross shaft gear.		D45	1838/2	Fixed spindle insert.	
D 6	1914	Pin for cross shaft gear.		D46	1838/3	Relaining coil.	
D 7	1961	Cross shaft.		D47	1838	Fixed spindle.	
D 8	1841	Fibre gear.		D48	1969	Regulating shaft with cam.	
D 9	LL7/3	Brake Swivel.		D49	6A/10	Split pin.	
Di0	J17/7	Brake pad.		D50	15/19	Washer.	
Dil	1998	Grommet. Not RC6.		D51	KK7/3	Spring washer.	
D12	2098*	Stator coils per pair connected.		D52	JJ7/2	Collar.	
D13	DD1/3	Thrust ball.		D53	5/24	Screw for governor ball.	
D14	G2/14	Screw for end cover plate.		D54	M1/14	Screw for motor cover.	
D15	1993	End cover plate.		D55	JJ7/11	Split pin for operating lever.	
D16	JJ1/17	Grommet. RC6.		D56	KK1/10	Screw for end cover.	
D17	1996	End cover.		D57	JJ2/10	Bobbin shield.	
D18	2097	Rotor and shaft complete.		D58	2096	Stator pack assembly less coils.	
L19	E6/3	Pin for bearing.		D59	DD5/1	Governor sleeve and disc.	
D20	JJ1/45	Rotor shaft bearing (large).		D60	5/21	Governor ball washer.	
D21	JJ7/11	Split pin.		D61	5/20	Governor ball.	
D22	JJ7/4	Brake operating lever.		D62	5/24	Governor fixing screw.	
D23	JJ7/10	Brake spring.		D63	JJ5/2	Governor collar.	
D24	5/27	Governor spring.		D64	1823	Release spindle.	
D25	2117	Rotor shaft.		D65	$\mathrm{DC} 2 / 8$	Fixing screws for fixed spindle.	
D26	1980	Motor frame.		D66	1928	Thrust plate.	
D27	$1 / 9$	Kearing screw.		D67	555	Thrust balls for main spindle.	
D28	DD1/3	Thrust ball.		D68	1927	Ball race case:	
D29	1905	liront bearing complete. Stop pin.		D69	$\mathrm{V} 2 / 12$	Name plate screws.	
D30	1892	Stop pin. Cross shaft bush.		D70	1970*	Name plate (state type of motor, R.C. 8,6 or 4).	
D32	1964/3	Clutch Lever.		D71	JJ1/10	Stator fixing screws.	
D33	613	Spring for clutch case.					

*Motors RC4, RC6 and RC8 are different only in respect of their Coils. Name Plates and Terminal Blocks. The Type of Motor, as specified on Name Plate, should therefore be quoted, in addition to Reference Number, when ordering replacements for these parts.

SPARE PARTS LIST
Sheet E.
TYPE R.C. 5 MOTOR.

DiAGRAM NL:MBER	REFERENCE	NAME OF PART	Price:	DIAGRAM NUMBER	REFERENCE NUMBER	name of part	PRICE
E 1	V2/12	Screw for clutch spring.		E33	1964/3	Clutch lever.	
E 2	610	Clutch.		E34	613	Spring for clutch lever.	
E 3	1964/1	Clutch gear.		E35	1965	Cover for clutch case.	
E 4	561	Screw for cross shaft bush.		E36	1964	Clutch case and gear complete.	
E 5	1963	Cross shaft gear.		E37	M.1/14	Motor cover fixing screws.	
E 6	1914	Pin for cross shaft gear.		E38	2103	Main spindle complete.	
E 7	1961	Cross shaft.		E39	2106	Fixed main spindle.	
E 8	1841	Fibre gear.		E40	2106/3	Retaining coil.	
E 9	LL7/3	Swivel for regulating brake.		E41	2106/2	Fixed spindle insert.	
E10	JJ7/7	Felt brake pad.		E42	$5 / 28$	Governor spring.	
El1	DDs $/ 1$	Governor sleeve and disc.		E43	$5 / 24$	Governor ball screw.	
E12	DD1/3	Thrust ball.		E44	JJ.1/15	Freld pack fixing screws.	
E13	2100	RCs Armature complete.		E45	LL. $2 / 1$	Field pack complete less coils.	
E14	AD1/16	Brush carrier bush.		E46	2099	Field coils (2 connected)	
E15	HH2/10	Felt pad.		E47	HH.3/8	Commutator washer.	
E16	HH2/9	Thrust disc.		E48	WB. $1 / 5$	Bearing Cover.	
E17	B5/9	Almature thrust ball.		E49	B. $1 / 7$	Bearing cover screw	
EJ8	LL2/5	Bearing cover fixing screws.		E50	HH.2/7	Felt Washer.	
E19	LL2/4	Brush carrier.		E51	LL. 2/7	Leatheroid Shield.	
E20	2101	Motor frame.		E52	LL. $2 / 6$	Pin for coil.	
E21	JJ7/11	Split pin.		E53	$5 / 20$	Governor ball.	
E22	JJ7/4	Brake operating lever.		E54	5/21	Governor ball washer	
E23	JJ7/10	Brake Spring.		E55	5/24	Governor fixing screws.	
E25	2337	Condenser.		E56	DD. $5 / 3$	Governor Collar.	
E26	B1/7	Fixing screws for condenser clip.		E57	2107	Release spindle.	
E27	830	Waisher for condenser clip.		E58	DC. $2 / 8$	Main spindle fixing screws.	
E29	$1 / 9$	Screw for bearing.		E59	1928	Ball race thrust plate.	
E30	1905	Armature shaft bearing.		E60	555	Main spindle thrust balls.	
E31	1892	Clutch stop pin.		E61	1927	Ball race case.	
E32	1962	Cross shaft bush.		E62 E63	$\mathrm{V} 2 / 12$ 1994	Name plate screw.	

© ${ }^{\text {(John F. Rider }}$

© John F. Rider

RODELS RC4, RC5, RC6, RC8 SERIES

GARRARD ENG. \& MFG. CO. LTD.

SPARE PARTS LIST 1.
Sheet F.
Comprising Sheets A, B, C, D, E, F, G.
TYPE R.C. 5 MOTOR \& RESISTANCE.

MOTOR-				RESISTANCE-			
DIAGRAM NUMBER	Reference NuMber	name of part	Pricte	Slagram	reference number	name of part	180\%
F64	15/19	Washer.		F 1	2377	${ }^{3}$ racket.	
F65	6A/10	Split pin.		F 2	KK1 / 19	Connecting tag.	
F66	2105	Brake shaft and cam.		F 3	2111	Resistance front plate.	
F67	KK7/3	Spring washer for brake shaft.		F 4	M1/14	Fixing screw for resistance.	
F68	2104	Motor cover.		F 5	B2/12	Screw for bracket.	
F70	2181	Rubber grommet.		F 6	2115	Screw for resistance.	
F71	CC2/27	Earthing tag.		F. 7	1266	Connecting screws.	
F72	HH2/22	Washer for brush cap.		F 8	UV19/7	Terminal washers.	
F73	WB2/16	Brush cap.		F 9	UV19/33	Terminal knobs.	
F74	HH2/11	Brush spring.		F10	2111/2	Terminal studs.	
F75	DC2/8	Brush tube fixing screw.		F11	2116	Distance piece.	
F76	HH2/23	Brush tube.		F12	WB11/22	Locking washers.	
F77	HH2/13	Carbon brush.		F13	G7/9	Nut.	
F78	2181	Rubber Grommet		F14	DD1/15	Terminal nut.	
F79	JJ1/43	Washer.		F15	2113	Resistance element complete.	
F81	H $\mathrm{H} 2 / 15$	Condenser clips.		Fi6	2112 2113/2	Resistance back plate Centre bar.	

SPARE PARTS LIST FOR
 "GARRARD" PICK-UPS.

Sheet G.

Standard Pick-up Unit. Used on: Types R.C. 4, 5, 6 \& 8 Record Changers. Types A \& B Radio Gram. Units.

DIAGRAM SUMRER	R1:FERFNCF NUMBER	NANE OF PAR'T	price
G 1	652	l'ick-up magnet.	
G 2	549	Pick-up body.	
G 3	552	Pole pieces.	
G 4	554	Screw for pole piece.	
G 5	553	Needle screw.	
G 6	550	Pick-up cover.	
G 7	1194	Rubber washer for hum bucking coil.	
G 8	551	Cover fixing screw.	
G 9	653	Adjusting plate.	
G10	CC2/26	Connecting tags.	
Gll	555	Bush for sleeve with ball and spring	
(i)2	1967	Rubber magnet packing.	
(i13	1125	Small rubber washer for hum buck'g coil	
G14	2191	Top connecting U piece.	
(ils)	554	Screw for connecting piece.	
(i16	654	Top damping rubber.	
(il7	795	Screw for adjusting plate.	
(i) 8	See below	Humbucking coil.	
(i19	See below	Pick-up coil.	
(320	656	Armature.	
Ci21	655	Bottom damping rubber.	
Ci22	2191	Bottom connecting U piece.	

Pick-Up Coils (Std. \& Type "E").

Red Band - 6000 ohms Pick-up coil.
Black Band - 2000 ohms Pick-up coil.
Green Band - 700 ohms Pick-up coil.
Orange Band - Humbucking coil (Standard Unit only).

Type "E". Pick-up Unit.
Used on : Type "E" Radio Gram. Units.

MAGRAM	REFERENCE NUMBER	name of part	Price
G23	2506/3	Rivet.	
G24	2506/2	Connecting Plate.	
G25	2536	Earthing Tag.	
G26	2508	Magnet.	
G27	795	Adjusting Plate Screw.	
G28	653	Adjusting Plate.	
G29	-	Empire silk tube.	
G30	2634	Insulating strip.	
G31	2506/1	Base plate.	
G32	2531	Pole Piece fixing screw.	
G33	656	Armature.	
G34	655	Damping Rubber (Bottom).	
G35	553	Needle screw.	
G36	see below	Bobbin.	
G37	654	Damping Rubber (Top).	
G38	2505	Pole piece.	
G39	2507	Side plate.	

"Piezo" Crystal Pick-up. Used (with special Pick-up Arms) on: Types R.C. 4, 5, $6 \& 8$ Record Changers.

Types A \& B Radio Gram. Units.

digram	R FFERENCE NUMEER	name of part	Price
G43	1141	Body.	
G44	1145	Crystal Cartridge.	
G45	1142	Fixing Plate " A ".	
G46	-	Needle screw.	
G47	1144	Fixing screws.	
G48	1143	Fixing Plate " B ".	
G49	-	Empire Sleeving.	
G50	CC2/26	Connecting Tags.	
G51	556	Connecting piece.	
G52	565	Bush for sleeve with spring and ball.	

© John F. Rider

© John F. Rider

GARRARD ENG. \& MFG. CO. LTD.
MODELS RC-10, RC-11 TYPES No. R.C. 10 \& R.C. 11 RECORD CHANGERS.

Densray	REGRRENCE vUMBER	Name of Part	Price
U 1	2510	Fixing Screw for Pick-up	
U 2	2511/1	Cover Plate for Pick-up Arm	
U 3	2511/2	Fixing Screw for Cover Plate	
U 4	3526	Pick-up Cam Lever	
U 5	$171 / 26$	Spring for Pick-up Lever	
U 6	2182	Fixing Screw for Pick-up Base	
U 7	3528	Pick-up Lifting Cam	
U 8	$\mathrm{CCl} / 6$	Nut for Pivot Screw	
U 9	1984	Collar for Pivot Screw	
U10	JJ1/41	Washer for Pivot Lever	
U11	18:35	Pivot Screw	
U12	3598	Roller for Pick-up Lifting Lever	
U13	512	Pin for Cam	
U14	1835	Pivot Screw	
U15	1 $\mathrm{J} 1 / \mathrm{l} 1$	Washer for Pivot Screw	
U16	CC1/6	Nut for Pivot Screw	
U17	$352!$	Pick-up Swing Cam	
U18	3600	Cam Shaft complete with Clutch and Cams	
U19	3535	Collar for Cam Shaft	
U20	AS1/28	Fixing Screw for Collar ...	
U21	1843	Spring for Knock-off Cam Lever	
U22	35.88	Knock-off Cam Lever	
U23	MM1/8	Spring for Cam Shaft	
U24	35.36	Bearing for Cam Shalt	
U25	35.57	Release Lever	
U26	561	Fixing Screw for Platform Spindle	
U27	3564	Pivot Pin for Release Lever	
U28	3566	Spring for Release Lever .	

Sheet U.

SPARE
PARTS LIST

FOR OTHER DATA
SEE MAGNAVOX RC-10, RC-11

TYPES No. R.C. 10 \& R.C. 11 RECORD CHANGERS. Sheet V.

DIAGRAM NURLBEK	$\underset{\substack{\text { reference } \\ \text { numbir }}}{\text { a }}$	Name of Pari
V65	3561	Rivets for Platform
V66	3537	Platform
V67	1835	Fixing Screw for Base Casting
V68	UV1/17	Pivot Washer
V69	1807	Pivot Screw for Change-over Lever
	11/16	Spring Washer ...
V70	3548	Change-over Lever with Knob
V71	35055	Change-over Plate
V72	2194	Rivets for Change-over Plate
V73	3501	Base Casting ...
V'4	3807	Unit Plate
V70	3504	Indicator Plate
V76	2194	Rivets for Indicator Plate
V7i	3584	Regulator Lever
V78	B2/12	Fixing Screw for Regulator Lever
V79	JJ1/51	Cover for Change-over Block R.C. 10
	2463	", ", ," R.C. 11
V80	JJ1/30	Change-over Block
V81	M1/9	Fixing Screw for Change-over Block
V82	730	Rubber Bush for Trip Lever
V83	3570	Auto 'Trip Base Plate
V84	3612	Fixing Screw for Auto 1 rip Base Plate
V85	672	Spring for Trip Lever
V86	183.5	Fixing Screw for Motor
V87	25.6	Trip Lever
V88	$\xrightarrow{2}+76$	Rivet, Collar and Washer
V89	3.977	Clutch Operating Lever
V90	3:54	Switch Control Lever
V91	219.4	Rivets for Switch Plate
V99	3 3 23	Switch Plate
V93	357	Switch Link
V94	2476	Rivet, Collar and Washer
V95	2901	Pick-up Arm Lor Magnetic Head

Dagram Number	KEFERENCE: NUMBER	name of part
V 95	2551	Pick-up Arm for Piezo Crystal Head
V 96	3572	Catch Lever ...
V 97	1T1/26	Spring for Catch Lever
V ! 9	726	Screw for Leather Brake Pad
V 99	ASl/21	Leather Brake Pad
V100)	3.71	Switch Lever
	1386	Switch Block
V101	$\{2332$	Cover for Switch Block
	(5)4	Fixing Screw for Cover
V102	3551	Selector Lever
V103	591	Switch Contact Spring
V104	J J $1 / 26$	Fixing Screw for Contact Spring
V10:	$2352 / 4$	Rivets for Switch Block
V106	JJ1/17	Rubber Grommet for Leads ...
V107	3579	Link for Auto Trip
	2009	Stud for Link
V10x	2352/4	Rivet for Link
	$2519 / 4$	Collar for Link
V109	3516	Pick-up Base
V110	3512	Fixing Screw for Base Casting
V111	731	Friction Washer for Operating Lever
V112	1151	Friction Spring for Operating Lever
V113	2547	Operating Lever complete with Trip Lever
V114	G13/24	Retaining Coil for Operating Lever
V115	1152	Friction Adjusting Screw
V116	B7/3	Felt Pad for Operating Lever
V117	3596	Friction Plate
V118	3550	Selector Link
V119	36.36	Knock-off Lever
V120	3608	Spring for Knock-olf Lever
V121	25.28	Rivet, Collar and Washer
1122	3560	Change-over Link ...

Diagram U

GARRARD ENG. \& MFG. CO. LTD.
MODELS RC-10, RC-11

Diagram V

MODELS RC-10, RC-11
GARRARD ENG. \& MFG. CO. LTD. SPARE PARTS LIST

Sheet W.
TYPES No. R.C. 10 \& R.C. 11 RECORD CHANGERS.

p1aciris NUSM13:		Name of part	Prices	- Dagkin	 	NaME of part	Pricte
W12:3	3504	Pivot Bracket with Spindle		W164	1071	Fixing Screw for Pivot Spindle	
W124	505	Balls for Yick-up Aim Pivot...		W165	3515	Piot Spindle for Pick-up Arm	
W12:	3 316	Pick-up Base		W166	3503	Pick-up Bracket	
V126	2747	Rubber Pad for Piek-up Rest		W167	2513	Fixing Screw for Pith-up Bracket	
W127	3.713	Pick-up Kest		W168	3539	Platform Spindic and Plate ...	
W12\%	WB11/22	Washer for Pick-up Rest		W169	3502	patform Support	
W129	($3.7 / 9$	Nut for Pick-up Rest		W17\%	3611	Fixing Screw for Platiorm Clip	
W130	2.516	Botom Washer for Pivot Spindle		W171	WB11/11	Washer for Fixing Screw ...	
W131	3615	Retaining Collar for Pivot Spindle		W172	3594	Pin for Bracket ...	
W132	2n51	Pick-up Arm (Piezo Crystal Type)		W173	3569	Bracket for Platform Clip ...	
W133	2.9.0.	Cover Plate for Crystal Cartridge		W174	3567	Platform Clip only	
	1145	Crystal Cartridge				Platform Clip complete	
W134	$2511 / 2$	Fixing Screw for Cover plate		W17ă	3592	Pin for Platform Clip	
W135	4S1/28	Fixing Screw for Collar for Pivot Spdle.		W176	2190	Spring for Platform Clip	
W1:36	3525	Eccentric Pin for Pick-up I-ever		W177	2775	Record Spindle Complete (Non-slip)	
W137	6: $1 / 10$	Split Pin ...		W178	2450	Springs, Record Spindle Sleeve, Set	
W138	15/19	Washer for Eccentric Pin		W179	18/2,	Turntable Covering and Eyelet	
W1:39	15/18	Spring Washer ...		W180	2487	Curntable ...	
W140	3522	Pick-up Arm Lever		W181	3562	Spring for Clutch ...	
W141	3523	Pick-up Lever		W182	3531	Clutch Body	
W142	561	Fixing Screw for Pick-up Lever		W183	3532	Clutch Lever	
W143	$3518 / 2$	Pin for Lifting Spindle .		W184	3598	Roller for Platform Cam Lever	
W144	561	Fixing Screw for Adjusting Collar		W185	DD1/16	Screw for Stop Lug	
W145	3521	Adjusting Collar		W18f	DD1/15	Nut for Stop Lug Screw	
W146	3563	Lifting Coliar		W187 W188	3543	Platform Cam Lever	
W147	1E6/3	Pin for Lifting Collar		W188	3545	Platform Lever	
W148	3520	Lifting Lever			1807	Screw for Eccentric	
W149	M1/14	Screll for Clip for Lead		W189	UV1/17	Washer for Eccentric	
W150	3595	Clip for Pick-up Lead			CCl 16	Nut for Screw	
W1al	3626	Pick-up I.ead . ${ }^{\text {a }}$		W190	3546	Eccentric for Platform Lever	
W1:2	3.549	Cam Rearing Spindie		W191	678	Pin for Spring	
W153	561	Fixing Screw for Cam Rearing Spindle		W192	1843	Spring for Platform Lever ...	
W134	3552	Overthrow Lever		W193	3547	Drag Link	
W1as	1835	Pivot Screw, Collar, Washer and Nut		W194	3541	Drag Stud	
W156	584	Spring for Overthrow Lever		W195	3542	Platform Trip Lever	
W107	678	Pin for Spring		W196	3540	Platform Support Spindle	
W15\%	3510	Rubber Fixing Washer for Unit Plate		W197	${ }^{3565}$	Spring for Platform Support	
W159	3508	Rubber Sleere		W200	$\mathrm{CCl}^{2} 23$	Fixing Screw for Unit ...	
W160	3.509	Rubber Collar		W201	2290	Fixing Cup	
W161	3 ll 1	Steel Fixing Washer for Unit Palte		W202	184 S	Top Washer for Fiving Screw	
W162	M11/14	Fixing Screw for Earthing Tag		W203	3607	Suspension Spring Fixine Screw	
W16.3	CC2/27	Earthing Tag		Wert W20:	$\begin{gathered} 1 \cdot v 1 / 17 \\ 2392 \end{gathered}$	Bottom Washer for Fixing Screw Lock Nuts for Fixing Screw	

SPARE PARTS LIST
Sheet X.
TYPES No. R.C. 10 \& R.C. 11 RECORD CHANGERS.

	R1aterivel	NAME: OF PART	PRICI:	Praknim	REFERINCR	name of Part	PRICE
S 1	358.3	Clutch		$\times 33$	AM1/8	Spring for Bearing	
X 2	1914	Pin for Clutch		X34	MM1/ 14	Plunger	
X:	1962/2	Bush for Cross Shati		$\times 35$	MMI/20	Spring for Plunger	
X 4	1963	Cross Shaft Gear		$\times 36$	MM1/9	Thrust Ball	
X 5	1914	Pin for Cross Shaft Gear		$\times 37$	M M1/6	Rotor Shaft Bearing	
X 6	1962/2	Bush for Cross Shaft		$\times 38$	3586	Rotor Shaft only ...	
S 7	3582	Cross Shaft		X39	3618	Bush for Rotor	
X 8	3585	Motor Cover		X 40	3610	Rotor complete with Shaft ...	
$\times 9$	809	Fixing Screw for Motor Cover		X41	3587	Name Plate	
X10	E. $6 / 3$	Pivot Pin for Regulating Brake			V2/12	Fixing Screws for Name Plate	
Xll	2181	Grommet for Leads		X42	3614	Spring Washer for Stator Fixing	
X12	3624	Stator (complete with Copper Bands		S42	J11/10	Fixing Screw for Stator	
		and Coils) \ldots...		X44	3505	Frame for Motor .	
X13	$\mathrm{CCL}^{2} 27$	Earthing Tag		X 45	J]5/2	Governor Collar	
X14	3625	Stator Coils (complete with Leads)		X 46	$5 / 24$	Fixing Screw for Governor ...	
X15	$2 / 12$	Fixing Screw for Bearing Plate		X 47	$5 / 20$	Governor Ball	
$\times 16$	MM1/10	Rear Bearing llate with Bush		X48	$5 / 21$	Washer for Governor Ball	
X17	3.506	End Cover		X49	$5 / 24$	Screw for Governor Ball	
$\times 18$	111/?	Fixing Screw for End Cover		< 50	$5 / 27$	Governor Spring ...	
$\times 19$	$3581 / 2$	Fixed Spindle Insert		N:1	DDs / 1	Governor Sleeve and Disc	
-20	3.980	Main Spindle with Fibre Gear		$\times 52$	3591	Release Spindle ...	
X21	183k/3	Retaining Coil \ldots		X53	DC2/8	Fixing Screws for Main Spindle	
$\times 22$	$35 \times 1 / 1$	Fixed Spindle		X 54	1928	Thrust Plate for Bearing ..	
X23	1840	Bush for Main Spindle ...		X55	1927	Ball Race ...	
X24	J17/2	Collar for Regulating Shaft		X 56	555	Thrust Balls for Main Spindle	
X25	35×4	Regulating Shaft (complete with Cain)		X57	MM1/6	Rotor Shaft Bearing \quad..	
X26	$6.1 / 111$	Split Pin ...		X 58	$2 / 12$	Fixing Screw for Bearing Plate	
X27	15/49	Washer for Regulating Shaft		- 59	MM1 /9	Thrust Ball for Rotor Shaft	
X24	15/14	Spring Washer for Regulating Shaft		$\times 60$	MM11/12	Front l hearing Plate with Bush	
X29	3.939	Spring for Regulating Brake		$\times 61$	2392	Nut for Thrust Screw	
X 30	3:80	Regulating Brake		$\times 62$	MM11/7	Thrust Screw ...	
X 31	$13: / 3$	Felt Pad for Regulating Brake		$\times 63$	MM1/ $/ 8$	Spring for Bearing	
X32	1131/7	Cone Washer for Bearing		$\times 64$	MMI/7	Cone Washer for Bearing	

GARRARD ENG. \& MFG. CO. LTD.

Diagram W

© John F. Rider

MODESS RC-10, RC-11 GARRARD ENG. \& MFG. CO. LTD.

GARRARD ENG. \& MFG. CO. LTD.
SPARE PARTS LIST
Sheet Y.

TYPES No. R.C. 10 \& R.C. 11 RECORD CHANGERS.

SPARE PARTS LIST
Sheet Z.

TYPE R.C. 11 MOTOR \& RESISTANCE.

MOTOR-				RESISTANCE-			
phagram number	REFERENCI NUMBER	name of part	Price	diagram	REFERENCE NUM13:R	name of part	
Z65	G2/14	Fixing Screw for Brush Insulator		Z76	2471	Insulator for Lead
ZGG	3702	Brush Insulator ...		277	2557	Asbestos Tube for Lead	\ldots
Z67	3710	Brush Holder		\%78	WB11/22	Spring Washer ...	
Z68	3711	Rivet for Brush Holder		279	G7/9	Nut for Fixing Screw	..
Z69	2337	Condenser ...		280	3514	Fixing Screw ...	
Z70	M1/14	Fixing Screw for Mounting Plate		281	WB11/22	Spring Washer for Bracket	
Z71	3713	Mounting Plate for Brush Gear		282	WB16/12	Spring Washer for Element	
Z72	3703	Carbon Brush		283	2464	Cover for Resistance	
Z73	3712	Brush Pressure Lever		Z84	2576	Resistance Element (Wound	complete)
Z74	JJ7/11	Split Pin for Brush Pressure Lever		Z85	2475	End Plate for Element	
275	1836	Spring for Brush Pressure Lever		286	G7/9	Nuts for Centre Rod	\ldots
				Z87	2474	Centre Rod	
				788	2461	Bakelite Bracket	
						Resistance Complete	\cdots

MODELS RC-10, RC-11 GERARD ENG. \& MFG. CO. LTD.
Diagram Y

$\begin{array}{llllllllllll}55 & 53 & 51 & 49 & 47 & 45 & 43 & 41 & 39\end{array}$ $\begin{array}{llllllllll}56 & 54 & 52 & 50 & 48 & 46 & 44 & 42 & 40 & 38\end{array}$

GARRARD ENG. \& MFG. CO. LTD. MODELS RC-10, RC-11

Diagram Z

© John F. Rider

Standard Pick-up Unit. Used on: Types RC4, 5, 6, 8, 50 and 51 Type "E"Pick-up Unit. Used on: Types RC10 and 11 Record Changers.

$$
\text { Red Band - } 6000 \text { ohms Pick-up coil. }
$$

$$
\text { Black Band - } 2000 \text { ohms Pick-up coil. }
$$

$$
\begin{array}{lr}
\text { Green Band } & -\quad 700 \text { ohms Pick-up coil. } \\
\text { Orange Band } & \text { Humbucking coil (Standard }
\end{array}
$$

SPARE PARTS LIST FOR Sheet G. SPARE PARTS LIST FOR
"GARRARD" PICK-UPS. Types " E ", " F ", and " G ' Radio Gram. Units.

"Piezo" Crystal Pick-up. Used on: Types RC4, 5, 6, 8, 50 and 51 Record Changers. Types A and B Radio Gram. Units.

$\frac{\ddot{U}}{\stackrel{U}{2}}$	

dimbram	REFERENCE NUMBER	name of part	Price
G 1	652	Pick up magnet.	
G 2	549	Pick-up body.	
G 3	552	Pole pieces.	
G 4	554	Screw for pole piece.	
G 5	553	Needle screw.	
G 6	550	Pick-up cover.	
G 7	1194	Rubber washer for hum bucking coil.	
G 8	551	Cover fixing screw.	
G 9	653	Adjusting plate.	
G10	CC2/26	Connecting tags.	
G11	555	Bush for sleeve with ball and spring	
G12	1967	Rubber magnet packing.	
G13	1125	Small rubber washer for hum buck'g coil	
G14	2191	Top connecting U piece.	
G15	554	Screw for connecting piece.	
G16	654	Top damping rubber.	
G17	795	Screw for adjusting plate.	
G18	See below	Humbuching coil.	
G19	See below	Pick-up coil.	
G20	656	Armature.	
G21	655	Bottom damping rubber.	
G22	2191	Bottom connecting U piece.	

Pick-Up Coils (Std. \& Type "E").

Orange Band Humbucking coil (Standard Unit only)

(C)John F. Rider

OPERATING INSTRUCTIONS.

1. Insert a needle of a type suitable for playing 10 records or more in the pick-up head, by turning it counterclockwise to bring the needle hole into view, then turn it back.
2. Place record spindle in position, the sloping part leaning towards the record platform.
3. Raise the overarm, place the records, any number up to eight- $10 \mathrm{in}, 12 \mathrm{in}$. or mixed-on the record spindle their lower edge resting on the platform, and lower overarm until it rests upon the top record.
4. Turn control knob to "start" position and close lid of cabinet.
The Record Changer will commence to play and after playing the last record will automatically stop. To remove records raise the overarm and withdraw the record spindle. The record changer can be stopped at any time by turning the control knob to the "stop" position. When switching on again the rejector comes into operation and the pick-up lifts and returns to the "rest" position.
NOTE.
If for any reason the changer has been stopped with the pick-up arm not on the rest, the arm must NOT be intertered with but the motor restarted by turning the control knob to "start" and the pick-up arm allowed to return to its normal position on the pick-up rest.

RECORD DROPPING AND SELECTING.

Should trouble be experienced with Record dropping, first see that the turntable brake is set correctly. (See under Auto Switch)

NOTE.
When brake pad is set correctly, the turntable will stop with pick-up arm on the rest, and the platform pushing pawl free to depress. If turntable over-runs so that the platform pushing pawl is against the 10 -in selecting stop the first record -if 12 -in.-will not drop

If pick up arm or platform does not select correctly the appropriate records, see that the selecting links and associated levers, diagram 1, are free

SPEED

SETTING.

Due to the wide voltage range of the motors it may be necessary on some power supplies to make a slight re-adjustment of the speed indicator lever so that the speed of the turn. table corresponds with that shown on the indicator scale.

To set speed on alternating current power supply, $50 / 60$ cycles, use the "GARRARD" Stroboscopic Speed Indicator enclosed with each Record Changer. To set speed on direct current power supply the turntable speed should be checked with a watch.

Now remove the turntable and carefully loosen the quadrant lever screw (diagram 8) and move the lever so that it points to 78 on the indicator plate, at the same time holding the quadrant stationary -then tighten quadrant screw. The speed should now be correct
Diagram 8

TO REMOVE MOTOR.

If the motor has to be removed from the Record Changer proceed as follows:-

Disconnect the motor power supply leads from the switch and terminals, also remove the packing plate from the base of the Record Changer. Next unscrew the platform operating lever from underneath the motor casting. Hold the motor by one hand and unscrew the three motor fixing screws; motor can now be withdrawn.
When replacing the motor, see that the timing of the motor and cam gear is correct; the mark on each gear must coincide when the changer is in the playing position.

POWER

CONSUMPTION.

R.C. $50 \quad 230$ volts 50 cycles- 12.5 watts.

RC. 51230 volts 50 cycles - 32.0 watts
230 volts Direct Current- 38.0 watts

FOR OTHER DATA
SEE MAGNAVOX RC-50, RC-51

GARRARD ENG. \& MFG. CO. LTD. SPARE PARTS LIST

Sheet 0 .

TYPES R.C. 50 \& R.C. 51 RECORD CHANGERS.

$\underset{\substack{\text { diagrim } \\ \text { NuMbik }}}{\text { and }}$	REFGENGE	name of part	PRICE	diagram number	$\underset{\text { RLFERENCE }}{\text { NUMEER }}$	name of part	Price
O- 1	1872	Pivor Pin		O-147	2702	Record Platform	
O- 2	G2/14	Screw for Pivot Pin ...		O-148	2713	Screw for Platform Lever ...	
O- 4	2439	Pick-up 1rm		O-149	2713	Screw for Pawl	
O- 5	3513	Pick-up Rest		O-150	2709	Pawl (Platform)	
O- ${ }^{6}$	947	Pick-up Stop Screw		O-151	2751	Rivet for Platform	
O- 7	2775	Record Spindle Complete (Non-Slip)		O-152	2708	Platform Stop	
O- 8	1984	Pivor Screw, Collar and Washer		O-153	809	Fixing Screw for Platform Stop	
O- 10	2487	Turntable		O-154	WB11/22	Washer for Fixing Screw, 809	
O-13	678	Stud for Spring, RC50 ...		O-155	2722	Platform Support Assembly ...	
	772	Stud for Spring, RC51		O-156	2736	Retaining Clip	
O- 14	1901	Spring for Clutch Overthrow Lever ...		O-157	2723	Ilatiorm Support Spindle ...	
O- 15	1979	Clutch Overthrow Lever ...		O-158	2712	Platfom Lever with Screw and Bush	
O- 16	2118	Packing Plate RC50		O-159	2725	Tilting Lever and Link	
	2196	l'acking Plate, RC5l		O-160	2724	Operating Spindle for Platform	
O-17	2182 $1 / 1 / 10$	Screws \& Washers, Pkg. Plate. RC: 0 Screws \& Washers, Pkg. Plate, RC5l		O-161	2223 2224 224	Pick-up Lead, RC50 Pick-up Lead, RC51	
O- 19	${ }_{1807} 181 / 0$	Screws \& Washers, Pkg. Plate, RCol Pivot Screw, Collar and Washer		O-162	2224 2733	Pick-up Lead, RCSprarm Spring ...	
O- 20	G7/9	l.ock Nut for Idjusting Nut		C-163	27 n 4	Overarm Mracket	
O- 21	B7/5	Locking Screw for Adjusting Nut.		O-164	2739	Spring for Overarm ...	
O-23	M1/14	Fixing Screw for Follower Retaining Spindle		O-165 $\mathrm{O}-166$	2732 2734 274	Pivot Spindle for Overarm Ocethrow Lever	
O- 24	1912	Spring for Pressure Lever ...		O-167	2705	Overarm ...	
O- 25	1913	Pressure Lever ...		O-168	27.4	I.eather Pad for Overarm	
O- 26	1941	Lifting Lever		O-169	G7/9	Nut for Pick-up Rest ...	
O-27	M1/14	Screw for Pick-up Balance Weight			WR11/2.2	Washer for Pick-up Rest ...	
O- 28	1939	Pick-up Balance Weight - ..		O-170	23.22	Lock Nuts for Fixing Screw	
O- 29	1930 A	Cover for Pich-up Arm Base		O-171	UV1/17	Bottom Washer for Fixing Screw	
O- 30	1982 1894 180	Pick-tup Arm Bracket Screw for Pick-up Arm Bracket		O-172	2752 1845	Suspension Spring Top Washer for Fixing Screw	
O-31	1894 1870	Screw for Pick-up Arm Bracket Lifling Screw		O-173	1845 2290	Top Washer for Fixing Screw Fixing Cup	
O- 32	1938	Elfting Tube		O-175	$\mathrm{CC1} / 23$	Fixing Screw	
O-33	B8/2	Turntable Covering and Eyelet		O-176	27.4	Rubber Pad for Piek-up Rest	
O-142	UV1/17	Steel Washer		O--177	2504	Rubber Pad for Overarm	
O-143	1933	Rubber Step Washer		O-178	2450	Springs, Record Spindle Sleeve, Set.	
O-144	1932	Rubber Distance Washer ...					
O-146	2701	Record Platform Bracket					

SPARE PARTS LIST
Sheet P.
TYPES R.C. 50 \& R.C. 51 RECORD CHANGERS.

DIAGRAM NUMBER	REFERENCF NUMBER	name of part	price	DIAGRAM NUMBER	REFERENCE Number	Name of Part	Price
P- 34	15/9	Indicator Lever		P- 79	2546/8	Rivet, Bush and Washer	
P- 38	1947	Clutch Trip Lever ...		P- 80	2546/4	Trip Lever	
P- 39	1945	Auto Trip Base Plate		P-81	730	Rubber Bush for Trip Lever	
P- 40	2477	Rivet, Collar and Washer ...		P-82	EE13/3	Clip for Leads	
P-41	1836	Spring for Clutch Trip Lever			635	Screvy for Clip	
P- 42	G13/12	Nut for Selector Spindle ...		P-83	15/14	Regulator Plate	
P - 43	1946	Knock-off Lever ...		P-84	743	Screw for Regulator Plate ...	
P- 44	1151	Friction Spring		P-85	15/12	Screw for Quadrant Lever ...	
P- 45	2546	Operating Lever with Trip Lever		P-86	1895	Quadrant Lever	
$\mathrm{P}-46$	G13/24	Retaining Coil \ldots		P-87	122/12	Screv for Quadrant ...	
	731	Friction Washer		P- 88	15/10	Quadrant ..	
P- 47	1158	Friction Plate		P-89	2742	Unit Plate	
P- 48	1152	Adjusting Screw		P-90	1200	Needle Cup	
P- 49	1944	Connecting Link		P-92	2477	Kivet, Collar and Washer ...	
P- 60	DC2/13	Rubber Grommet		P-93	1956	Cam Selector Link	
P- 51	JJl /26	Screw for Contact Spring		P-94	672	Spring for Cam Selector Link	
P-52	586	Switch Block ...		P-95	1968	Striker, Complete with Bush	
	2332	Switch Cover		P-96	1957	Delay Lever, with Pin	
	594	Screw for Cover ...		P-99	1934	Fixing Screw for Base Casting	
P- 53	591	Switch Contact Spring		P-179	2707	Bracket Cover Plate ...	
$\mathrm{P}-54$	2199	Screw for Brake Pad Lever		P-180	2/12	Screw for Cover Palte	
P- 55	650	Screw for Pick-up Base		P-181	2735	Fixing Screw for Overarm Bracket	
P- 56	$\mathrm{CC13/6}$	Screw for connecting Link		P-182	KK1/18	Washer for Fixing Screw 2735	
P-57	1929	l'ick-up Base ...		P-183	15/19	Washer for Control Lever Spindle	
P- 58	M1/14	Screw for Pick-up Base Cover		P-184	B2/12	Fixing Screw for Connector	
P- 59	1943	Control Lever		P-185	583	Brake Pad Lever	
P-62	2477	Rivet, Collar and Washer		P-186	2436	Pick-up Arm Connecior ...	
P-63	AS1/21	Leather Brake Pad		P-187	IT1/26	Spring for Catch Lever ...	
	726 1949	Screw for Brake Pad		P-188	JJ $1 / 51$	Cover for Change Over Block	
P-64	1949	Switch Lever		P-189	J J $1 / 50$	Change Over Block ...	
$\mathrm{P}_{-} 65$	1951	Switch Link		P-190	1809	Bakelite Knob \quad.	
P- 66	1948	Catch Lever		$\mathrm{P}-191$	B7/3	Felt Pad for Operating Lever	
P- 67	2477	Rivet, Collar and Washer		P-192	2528	Rivet, Washer and Collar ...	
P- 68	1952	Stop Lever ...		P-193	2730	Selector Lever ...	
P- 69	15/12	Screw for Stop Lever		P-194	600	Spring for Selector	
$\mathrm{P}-70$	1978	Screw for Reject Lever		P-195	678	Stud for Spring ...	
P-71	1836	Spring for Reject Lever		P-196	1807	Pivot Screw, Collar and Washer	
P-72	1950	Rejeci Lever		P-197	2731	Selector Link	
$\mathrm{P}-73$	678	Stud for Spring 1836		P-198	1807	Pivot Screw, Collar and Washer	
$\mathrm{P}-74$	1985	Quadrant for Knock-ofl Spindle		P-199	2706	Instruction Plate	
1-78	M1/9	Fixing Screw, Change Over Block		$\mathrm{P}-200$	2737	Fixing Screw for Bracket ...	

GARRARD ENG. \& MFG. CO. LTD.
MODELS RC-50, RC-51

(C)John F. Rider

GARRARD ENG. \& MFG. CO. LTD.

Diagram P

© ${ }^{\text {John F. Rider }}$

GARRARD ENG. \& MFG. CO. LTD.
SPARE PARTS LIST
Sheet Q .

TYPES R.C. 50 \& R.C. 51 RECORD CHANGERS.

SPARE PARTS LIST
Sheet R.

TYPE R.C. 50 MOTOR.

(tagram		name of part	PRICE		REFERENCE	name of part	PRICE
R 1	V2/12	Screw for Clutch Spring ...		R 53	5/24	Screw for Governor Ball	
R 2	610	Clutch ...		R 54	M $/ 14$	Screw for Motor Cover ...	
R 3	1964	Clutch Gear		R55	JJ7/11	Split Pin for Operating Lever	
R 4	561	Screw for Cross Shaft Bush		R60	5/21	Governor Ball Washer ...	
R 5	1963	Cross Shaft Gear		R61	5/20	Governor Ball	
R 6	1914	Pin for Cross Shaft Gear		R62	5/24	Governor Fixing Screw	
R 7	1961	Cross Shaft ...		R63	JJ5/2	Governor Collar ...	
R 8	1841	Fibre Gear for Main Spindle		K64	1823	Release Spindle ...	
R 9	LL7/3	Regulating Brake Swivel		R65	DC2/8	Fixing Screws for Fixed Spindle	
R10	JJ1/7	Felt Pad for Regulating Brake		R66	1928	Thrust Plate	
R16	JJ1/17	Grommet for Leads		R67	555	Thrust Balis ...	
R21	JJ7/11	Split Pin for Regulating Brake		R68	1927	Ball Race Cage ...	
R22	JJ7/4	Regulating Brake Operating Lever		R69	V2/12	Screws for Name Plate	
R23	JJ7/10	Spring for Regulating Brake		R72	2489	Front Bearing for Rotor Spindle	
R24	$5 / 27$	Governor Sp.ing				Complete ...	
R26	1980	Motor Frame		R73	JJ1/10	Fixing Screw for Stator ...	
R27	$1 / 9$	Fixing Screw for Rotor Shaft Bearing		R74	2776	Stator Pack with Copper Bands	
R 30	1892	Stop Pin for Overthrow Lever		R75	2229	Coils for Stator ...	
R31	1962	Cross Shaft Bush		R76	2492	End Cover for Motor	
R32	1964/3	Clutch Lever		R77	MM1/12	Bearing Plate ...	
R33	613	Spring for Clutch ...		R78	2392	Nut for Thrust Screw	
R41	1965	Cover for Clutch Case		R79	MM1/17	Thrust Screw ...	
R42	1964/2	Clutch Case		R80	$2 / 12$	Fixing Screw for Bearing Plate	
R43	1960	Motor Cover ...		R79	MM1/8	Spring for Bearing	
R 44	1839	Main Spindle with Fibre Gear		R82	MM1/9	Thrust Ball	
R45	1838/2	Fixed Spindle Insert ...		R83	MM1/7	Cone Washer for Bearing ...	
R46	1838/3	Retaining Coil for Fixed Spindle		R84	MM1/6	Rotor Spindle Bearing ...	
R47	1838	Fixed Spindle		R85	2498	Fixing Screw for End Cover	
R48	1969	Regulating Shaft with Cam		R86	2759	Distance Collar for Stator ...	
R49	$6 \mathrm{~A} / 10$	Split Pin for Regulating Shaft		R87	3610	Rotor	
Rō0	15/19	Washer for Regulating Shaft		R88	2491	Rotor Spindle only	
R51	KK7/3	Spring Washer for Regulating Shaft		R89	2740	Name Plate	
Kı2	JJ7/2	Collar for Regulating Shaft		R90	3618	Bush for Rotor	

GARRARD ENG. \& MFG. CO. LTD.

GARRARD ENG. \& MFG. CO. LTD.
Diagram R

(C)John F. Rider

GARRARD ENG. \& MFG. CO. LTD.

SPARE PARTS LIST
Sheet S.

TYPE R.C. 51 MOTOR

DIAGRAM NUMBER	REFERENCE NUMBER NUMBER	name of part	Price	diagram NUMHER	Reference NuMBER	name of part	Price
S 1	V2/12	Screw for clutch spring.		S33	1964/3	Clutch lever.	
S 2	610	Clutch.		S34	613	Spring for clutch lever.	
S 3	1964/1	Clutch gear.		S35	1965	Cover for clutch case.	
S 4	561	Screw for cross shaft bush.		S36	1964	Clutch case and gear complete.	
S 5	1963	Cross shaft gear.		S37	M. 1/14	Motor cover fixing screws.	
S 6	1914	Pin for cross shaft gear.		S38	2103	Main spindle complete.	
S 7	1961	Cross shaft.		S39	2106	Fixed main spindle.	
S 8	1841	Fibre gear.		S40	2106/3	Retaining coil.	
S 9	LL7 73	Swivel for regulating brake.		S41	2106/2	Fixed spindle insert.	
S10	JJ7/7	Felt brake pad.		S42	5/28	Governor spring.	
S11	DD5/1	Governor sleeve and disc.		S43	5/24	Governor ball screw.	
S12	DD1/3	Thrust ball.		S44	$\text { JJ. } 1 / 15$	Field pack fixing screws.	
S13 S14	2100 ${ }^{\text {AD } 1 / 16}$	RCbl Armature complete.		S45	$\text { LL. } 2 / 1$	Field pack complete less coils.	
S14 S15	AD1/16 HH2/10	Brush carrier bush.		S46	2099	Field coils (2 connected)	-
S15	HH2/10 HH2/9	Felt pad.		S47	HH.3/8	Commutator washer.	
S16 S17	$\mathrm{HH} 2 / 9$ $\mathrm{~B} 5 / 9$	Thrust disc.		S48	WB.1/5	Bearing Cover.	
S17 S18	$\mathrm{B} 5 / 9$ $\mathrm{Bl} / 7$	Atmature thrust ball.		S49	B. $1 / 7$	Bearing cover screw	
S19	LL2/4	Bearing cover fixing screws. Brush carrier.		S50	HH.2/7	Felt Washer.	
	LL2/5	Brush Carrier Fixing Screw.		S51	LL. $2 / 7$	Leatheroid Shield.	
S20	2101	Motor frame.		S53	LL.20	Pin for coil. Governor ball.	
S21	JJ7/11	Split pin.		S54	$5 / 21$	Governor ball washer.	
S22	JJ7/4	Brake operating lever.		S55	5/24	Governor fixing screws.	
S23	${ }^{137 / 10}$	Brake Spring.		S56	DD. 5/3	Governor Collar.	
S25	2337	Condenser.		S57	2107	Release spindle.	
S26 S27	$\mathrm{Bl} 1 / 7$ 830	Fixing screws for condenser clip. Washer for condenser clip.		S58 $\mathbf{S 5 9}$	DC. $2 / 8$	Main spindle fixing screws.	
S29	1/9	Screw for bearing.		S60		Ball race thrust plate.	
S30	1905	Armature shaft bearing.		S61	655 1927	Main spindle thrust balls. Ball race case.	
S31	1892	Clutch stop pin.		S62	V2/12	Name plate screw.	
S32	1962	Cross shaft bush.		S63	1994	Name plate.	

SPARE PARTS LIST

TYPE R.C. 51 MOTOR \& RESISTANCE.

MOTOR-				RESISTANCE-			
NUMBER number	number REFERENCE	name of part	Price	DIAGRAM NUMBER	REFERENCE NUMBER number	name of part	Price
T64	15/19	Washer.		T21	2471	Insulator for Lead	
T65	6A/10	Split pin.		T22	2557	Asbestos Tube for Lead ... \ldots	
T66	2105	Brake shaft and cam.		T23	M1/9	Fixing Screw for Adaptor Plate	
T67	KK7/3	Spring washer for brake shaft.		T24	2490	Adaptor Plate	
T68	2104	Motor cover.		T25	WB11/22	Spring Washer ...	
T70	2181	Rubber grommet.		T26	G7/9	Nut for Fixing Screw	
T71	CC2/27	Earthing tag.		T27	3514	Fixing Screw for Bracket ...	
T72	HH2/22	Washer for brush cap.		T28	WB11/22	Spring Washer for Bracket ...	
T73	WB2/16	Brush cap.		T29	WB16/12	Spring Washer for Element	
T74	HH2/l1	Brush spring.		T30	2464	Cover for Resistance	
775	DC2/8	Brush tube fixing screw.		T31	2576	Resistance Element (wound complete)	
T76	HH2/23	Brush tube.		T32	2475	End Plate for Element	
T77	HH2/13	Carbon brush.		T33	G7/9	Nuts for Centre Rod	
T78	2181	Rubber Grommet		T34	2474	Centre Rod	
T79	JJ1/43	Washer.		T35	2461	Bakelite Bracket	
T81	HH2/15	Condenser clips.					
						Resistance Complete	

MODELS RC-50, RC-51 GARRARD ENG. \& MFG. CO. LTD.

GARRARD ENG. \& MFG. CO. LTD,
FOR ADJUSTMENTS OMIY
SEE RAGAMVOX MODEL RC-50
SPARE PARTS LIST FOR
Sheet G. "GARRARD" PICK-UPS.
Standard Pick-up Unit. Used on: Types RC4, 5, 6, 8, 50 and 51 Type "E' Pick-up Unit. Used on: Types RC10 and 11 Record Changers.
Record Changers. Types A and B Radio Gram. Units.
Types " E ", " F ", and " G " Radio Gram. Units.

TYPE "E" PICK-UP UNIT.
232425

GENERAL ELECTRIC CO.

INSTALLATION INSTRUCTIONS

Section I-Cbassis Connections

A brown fabric-covered cable with a single-prong plug attached is provided for interconnecting the Recorder and Radio Receiver. This cable plug is to be inserted in the phono jack of the radio receiver. If the radio receiver is not provided with a jack consult your Recorder Dealer for connection requirements. Several methods of making connections to a receiver not provided with a phono jack are described in the following section.

Section 11-Special Chassis Connections

Method No. 1-(For Receivers Equipped with Two Phono Terminals and a Phono Switch)
Secure a phono jack, General Electric stock No. RB-1030. Drill properly spaced mounting holes in the chassis rear apron near the phono terminals for mounting the jack. Wire the center terminal of the jack to the high terminal of the phono terminal board. Also interconnect the ground terminals of the phono terminal board and the jack. The Recorder brown fabric-covered cable with a single-prong plug can now be connected to the receiver circuit through this jack.

Method No. 2-(For Receivers Equipped with Phono Terminals

 or Leads But No Phono SwitchConsult the instruction pamphlet which was supplied with your receiver to determine which phono terminals or leads are for connection to a record player. There may be three or four terminals or leads depending upon the type of radio. Determine which terminal or lead is connected to the high side of the volume control. For radio operation, there will be a connection bet ween this volume control terminal or lead and the radio diode load. On a three-terminal board, the remaining terminal or lead will be chassis ground. On a four-terminal board, one of the remaining terminals or leads will be chassis ground and the other a diode return.
Secure a double-pole, double-throw switch, General Electric stock No. RS-3065, and a phono jack, General Electric stock No. RB-1030. Mount the switch and jack on the chassis rear apron or on the cabinet shelf near the phono terminals. A small metal plate such as shown in Fig. 5 is one method of easily mounting the switch and jack. Interconnect the phono terminals, switch and jack as shown in Fig. 2. Solder alt wire connections. The Recorder brown fabric-covered cable with a single-prong plug can now be connected to the receiver circuit through the jack.
Method No. 3-(For Receivers Not Equipped with Phono or Pin-jack Terminals)
First, pull the receiver power cord plug out of the power supply receptacle; then remove the receiver chassis from the cabinet to allow access to the high side of the volume control. Unsolder the lead from the high side of the volume control and solder it onto one lead of a two-conductor shielded pair. This becomes the diode load lead. Solder the other conductor of the shielded pair to the high side of the volume control This becomes the volume control lead. This shielded pair should be long enough to extend to the rear of the chassis. Solder the shields to the chassis.

Secure a double-pole, double-throw switch, General Elec tric stock No. RS-3065, and a phono jack, General Electric stock No. RB-1030. Mount the switch and jack on the chassis rear apron or on the cabinet shelf. A small metal plate such as shown in Fig. 5 is one method of easily mounting the switch and jack. Referring to Fig. 2 "Switch Connections for 3 Terminals," perform the connection requirements as shown. The chassis ground lead is the shield of the twoconductor shielded pair. The Recorder brown fabric-covered cable with a single-prong plug can now be connected to the receiver circuit through the jack.

Section III-Loud-speaker Connections

Connecting the Recorder into the loud-speaker circuit is accomplished by using the remaining brown fabric-covered cable with four terminal connections. Two of the connections have pin plug terminals. The remaining two have pin plug socket terminals. These terminal provisions make possible quick connection into radio loud-speaker circuits which are equipped with pin plug terminals. The following procedure will assure quick and satisfactory results.
(A) For Single Speaker Receivers Equipped with Pin Plug Terminals. (See Fig. 3.)
(1) Locate the pin plug terminal board on the speaker and pull off the two chassis lead connections.
(2) Connect the chassis leads to the pin plug terminal connections on the Recorder cable.
(3) Connect the socket terminal connections of th Recorder cable to the pin plug terminals on the
loud-speaker. The black Recorder lead should be connected to the loud-speaker terminal which is grounded to the frame.
(B) For Dual Series-connected Speaker Receivers Equipped with Pin Plug Terminals. (See Fig. 3.)
(1) Pull off the two chassis lead connections.
(2) Connect the chassis leads to the pin plug terminal connections of the Recorder cable.
(3) Connect the socket terminal connections of the Recorder cable to the vacant loud-speaker plug terminals. The black Recorder lead should be connected to the terminal of the larger loud-speaker which is grounded to the frame.
(C) For Dual Parallel-connected Speaker Receivers Equipped with Pin Plug Terminals. (See Fig. 3.)
(1) Cut the chassis-to-speaker leads a few inches from the first loud-speaker to which the leads connect. To the two ends coming from the loud-speaker solder pin plug terminals, General Electric stock No. RT-952. To the two ends coming from the chassis solder socket terminals, General Electric stock No. RT-954
(2) Connect the pin plug terminal connections of the Recorder cable to the socket terminals just soldered.
(3) Connect the socket terminal connections of the Recorder cable to the pin plug terminals just soldered.

Section IV-Special Loud-speaker Connections

If the loud-speaker in your radio receiver is not provided with pin plug terminal connections then your dealer or serviceman should be called upon to install plug connections.
To install plug connections the following procedure is recommended:
(A) Loud-speakers with output transformers mounted on the lnud-speaker fall into two general classes; those which have rigid terminals for output transformer secondary leads and those which have insulated wire leads for output transformer secondary leads and which have the leads connected to a terminal post mounted on the loud-speaker frame.
(1) If the output transformer has rigid secondary terminals, unsolder the voice coil leads from the terminals. (See Fig. 4.) Mount the special terminal board, found in an envelope in the Recorder, on the loud-speaker frame. Solder the two voice coil leads to the pin plug terminals. Interconnect the rigid terminals of the output transformer with the two remaining terminals on the special terminal board. Loud-speaker connections between radio and recorder can now be made as described for the case of a single speaker with plug terminals, Section IIIA
(2) If the output transformer leads are of insulated wire which are in turn connected to a terminal board (see Fig. 4), proceed as follows: Disconnect the leads from the terminal board and replace the terminal board with the special terminal board enclosed. Solder the voice coil leads to the pin plug terminals and solder the output transformer secondary leads to the two remaining terminals on the special terminal board. Loud-speaker connections between radio and recorder can now be made as described for the case of a single speaker with plug terminals, Section IIIA
(B) For Loud-speakers Which Do Not Have Output Transformers Attached
(1) Determine which two leads coming from the chassis are the secondary leads from the output transformer.
(2) Cut these two leads somewhere near the chassis. To the two ends coming from the loud-speaker solder pin plug terminals, General Electric stock No. RT-952. To the two ends coming from the chassis solder socket terminals, General Electric stock No. RT-954
(3) The Recorder-loud-speaker connections can now be made as in the case of a single speaker receiver described in Section IIIA.

Section V-Matching Output Transformer Impedances

The Recorder matching transformer is located on the underside of the motorboard panel. It is connected at the factory to match a $3.5-\mathrm{ohm}$ output transformer secondary impedance. Transformer taps are provided for matching 1.75 - and 7 -ohm impedances. When connecting the Recorder
Into the loud-speaker circuit, check the output transformer possible by using the proper tap on the Recorder matching ransformer. are: 7 ohms-green, 3.5 ohms-yellow and red, 1.75 ohms-yellow and green.
The majority of General Electric receivers produced during the past three years have 3.5 -ohm output transformer secondimpedance was 7 ohms. Where two speakers were used in parallel, this impedance was 1.75 ohms.
TO LOUDSPEAKER VOICE
COLL TERMINALS
Model JM-7 Home Recording Record Player is a portable ceiver having more than one watt undistorted output.
The selector switch when turned to "Phonograph-Off" will disconnect the recorder from "Pradio circuits and wing allow normal radio operation. The "Phonograph-On" setting
of the switch converts the recorder into a conventional record player and starts turntable rotation. The "Recording-Radio", position permits radio program recording. Recording through the microphone is provided on the "Recording-Microphone"
position.
Unit designed to operate in conjunction with any radio re-
ceiver having more than one watt undistorted output.
The selector switch when turned to "Phonograph-Off"
will disconnect the recorder from the radio circuits and will
allow normal radio operation. The "Phonograph-On" setting
of the switch converts the recorder into a conventional record
player and starts turntable rotation. The "Recording-Radio"
position permits radio program recording. Recording through
the microphone is provided on the "Recording-Microphone"
position.
Section VI-Cutting Head Driving Power Adjustment
The recorder matching transformer is also provided with two output taps to allow adjustment of the driving power with an undistorted audio power output rating of more than two watts, the tap connection as made at the factory will be satisfactory. However, cases may arise, when this Recorder is used in conjunction with a receiver of 1 to 3 watts undis-
torted power output rating, where increased driving power torted power output rating, where increased driving power
for the cutting head is needed. In these cases the blue lead of the Recorder matching transformer should be connected
to the high side of the cutting crystal and the brown lead and
resistor disconnected. Caution Care must be exercised not to
use this Recorder with receivers of large output rating when of the Recorder matching transformer should be connected
to the high side of the cutting crystal and the brown lead and
resistor disconnected. Caution Care must be exercised not to
use this Recorder with receivers of large output rating when of the Recorder matching transformer should be connected
to the high side of the cutting crystal and the brown lead and
resistor disconnected. Caution-Care must be exerecised not to
use this Recorder with receivers of large output rating when

RECORDING ADJUSTMENTS

Fig. 6. Schematic Diagram
4-Recording-Microphone

ent positions

1-Phomaphof
2-Phonograph-On 3-Recording-Radio
4-Recording-Micro

the cutting arm rides. This should be adjusted so that when resting in the recording position on the record, the setscrew
 gap.

Lead Screw Follower Arm Pressure Adjustment
The pressure is varied by the phosphor
The pressure is varied by the phosphor bronze spring
adjustment underneath the phono assembly on the follower arm. The pressure should be great enough so that when the recording head is in the recording position, this phosphor
 groove. coo great pressure will cause binding, while too little
pressure is liable to cause overlapping of the grooves.
screw located midway back on top of the recording arm. The pressure should be adjusted so that by inspection with the grooves is the same width as the groove. At no time should pressure be great enough to cut through the acetate surface

A clockwise rotation of the setscrew increases pressure.
Custing Arm Adjustment
The adjustment at the rear and underneath the cutting
arm, controls the height above the record blank at which

GENERAL ELEC'TRIC CO.

Fig. 1. Control Location
Fig. 2. Phono Terminals, Jack, and Switch Connections

Fig. 3. Loud-speaker Connections

Fig. 4. Special Loud-speaker Connections

GENERAL ELECTRIC CO.
MODELS JM-6 AND JM-7

Stock No.	Description	List Price
	CUTTER ARM ASSEMBLY	
RA-420	ARM-Cutter arm complete	\$12.00
RC-2034	CUSHION-Crystal bumper cork (Pkg. 2)	. 05
${ }^{\text {R RS- }} 876$	SRREW-Crystal needle screw (11.50
RS-4022	SPRING-Crystal tension spring	10
RS-8008	SCREW-Cutter arm pivot screw (Pkg. 2)	10
	CUTTER ARM PIVOT ASSEMBLY	
RA-421	ARM-Follower arm complete	. 65
RB-640	BUSHING-Pivot post bushing	. 70
RL-957	LEVER-Cutter arm lift lever.	. 15
RP-2006	PLATE-Pivot saddle plate assembly	. 65
RP-2007		. 25
RS-4024	SPRING-Pivot posit helical spring	. 10
RS-8015	SCREW-Saddle bushing setscrew (Pkg. 2)	15
RS-8016	SCREW-Follower (copper strip) adjustment screw and nut (Pkg. 3)	05
$\begin{aligned} & \text { RW-128 } \\ & \text { RX-091 } \end{aligned}$	WASHER-Follower arm shaft washer (Pkg. 5)....	05
	$\begin{aligned} & \text { assembly } \\ & \hline \end{aligned}$. 15
RB-1124	BRACKET-Rubber-rimmed wheel mounting bracket.	\$0.20
RH.119	HOLDER-Tension spring holder (Pkg. 5) 05
RH-120	HAIRPIN COTTER-Rubber-rimmed wheel retaining cotter (Pkg .3)	
RP-2005	PLATE-Motor mounting plate	. 35
RS-631	SLEEVE-Motor mounting bushing sleeve (Pkg. 3)	. 10
RS-4008 ${ }^{\text {RS }} 80$	SPRING-Rubber-rimmed wheel tension spring (Pkg. 2)	. 05
RS-8010	SCREW-Motor mounting screw (Pkg. 5) WHEEL-Turntable drive wheel (Rubber-rimmed)	. 65
RX-088	ASSEMBLY-Motor mounting plate complete with bracket and wheel.	1.35
	TONEARM REST ASSEMBLY	
RC-2035	CUSHION-Tonearm support bumper (Pkg. 2)	. 05
RS-630	SUPPORT-Tonearm rest support25
	TONEARM AND PIVOT ASSEMBLY	
RC-2037	CLIP-Pickup cord clip (Pkg. 3)	05
RC-2038	CUSHION-Tonearm pivot damper felt (Pkg.3)	. 05
${ }_{\text {RC- }}^{\text {RP-410 }}$	CABLE-Pickup lead cable	35
R P-410	POST-Tonearm post and pivot assembly	1.05
RP-509 + RS-876	PICKUP-Tonearm crystal pickup	6.40
RS-8014	SCREW-Crystal needie screw (Pkg. 10) ${ }^{\text {S }}$ (Pkg - 5)	. 10
RT-934	TONEARM-Tonearm less pickup	70
R X-090	ASSEMBLY-Tonearm post mounting washers and nut. TURNTABLE ASSEMBLY	10
RP-409	PIN-Retractable	. 05
RS-4021	SPRING-Retractable pin spring	05
RS-8007	SCREW-Retractable pin spring screw (Pkg. 5)	10
RT-933	TURNTABLE-10-inch weighted turntable	3.60

GENERAL ELECTRIC CO.

FES-119

This automatic record-changing equipment has been designed to be simple and fool proof. Very little attention will be required over long periods of operation. When adjustments are required the following instructions will save much work and time.

Operating Instructions

The record changer is designed to automatically play eight 10 -inch or seven 12 -inch standard 78 r.p.m. phonograph records on one side. The last record remains on the turntable and is repeated

To shift from playing 10 -inch records to 12 -inch records all that is necessary is to set the shift lever (D) opposite the 12 -inch index.

Motor Adjustments

The speed of the motor turntable is controlled by a governor which allows correct adjustment of the turntable rotation to 78 r.p.m.
A.m. check of the turntable speed may be made by placing a piece of paper under a record on the turntable and counting the revolutions in a minute.

The gears and bearings are properly lubricated for long periods of operation. A ball and socket oil hole is located under the motor cam. Use a small quantity of SAE No. 10 oil when oiling these gears. If the motor chatters or runs uneven, place a few drops of light oil on the governor felt.

Record Removing.Arm

The arm is adjusted so that it will always leave one record on the turntable. This is done to prevent the phonograph needle from damaging the covering on the turntable.

Stop the motor in such a position that the unloading lever (O) Fig. 12, can swing by and clear the cam (P). Now by pulling the reject lever (L) Fig. 12, it will be found possible to swing the record removing arm over to where it just touches the edge of the record. The mechanism should move freely without binding. Place one record on the turntable and measure from the top of this record down to the base plate. This distance should be 1 inch. Now swing the record removing arm over and see that the finger just misses the top of the record. The record removing arm should rest on the stop screw which is located under the arm. This stop screw prevents the arm from dropping low enough to remove the last record. If the record removing arm raises a record from the turntable, and drops it back in place without removing it, check the lift adjustment stud (V) Fig. 12. This adjustment consists of an eccentric stud which is provided with a locknut, and is made by loosening the locknut and turning the eccentric stud. The lift adjustment should be set so that the hole in the center of the record just clears the turntable spindle when the arm is in operation.

Trip Mechanism

The tonearm lift lever (L) Fig. 12 latches with the square pin (U) on the unloading lever assembly (O), and holds this lever assembly out of engagement with the motor cam (P) while a record is being played. The square pin should engage the notch approximately one-half its depth. The depth of engagement is adjusted by the eccentric washer and screw (J)

The oval head screw (R) serves as a pivot for the lift lever. This screw should allow the lift lever to be raised by the latch bar to its maximum height without binding but also without any additional play.

The spring (E) is used to return the unloading lever (O) until the square pin engages the notch.

The spring (B) is used to pull the unloading lever into a position to engage with the motor cam when the trip mechanism releases the square pin.

The mechanism is designed to trip on a spiral trip groove record when the phonograph needle is $13 / 4$ inches from the edge of the hole in the center of the record.

When eccentric or oscillating trip groove records are used, tripping is effected by means of the hardened steel pin in the end of the tonearm lift crank (S) Fig. 15 engaging the serrated block on the trip lever (T) Fig. 12. Note that there must be a minimum of $\frac{1}{32}$ inch play between the end of the pin and the block, when, with a short needle ($5 / 8$ inch minimum length) the pickup is resting on one record on the turntable.

Shift Mechanism 10 to 12 Inch

This mechanism is manually controlled by the lever (D) Fig. 12 and has three functions. First, the Record Removing Mechanism is directly shifted by the movement of the control lever and is put in a position to handle the records desired. Second, the tonearm stop (F) Fig. 12 is directly shifted from the 10 -inch record position to the 12 -inch record position by the movement of the control lever and places the tonearm in the correct position to play 12 -inch records. Third, an automatic mechanism is provided for changing the tonearm stop from the 12 -inch record position back to the 10 -inch record position. This shift takes place after the control lever has been moved, and at a time during the cycle of normal operation of the unit when the phonograph needle is elevated above the playing surface of the record. The purpose of this delayed shifting of the tonearm stop is to prevent the phonograph needle from being dragged across the playing surface of a 12 -inch record, if the control lever were for any reason thrown from the 12 -inch position to the 10 -inch position.

If, after putting the control lever in the 10 -inch record playing position and the unit run through its complete cycle, the tonearm stop fails to shift to the 10 -inch record position, check the tonearm stop latch (G) Fig. 13. This latch should be so adjusted that the latch dog clears the notch in the dashpot support plate (K) Fig. 13 by slightly less than $\frac{1}{64}$ inch when the latch bar (O) Fig. 12 is in the farthest position which the cam (P) Fig. 12 will carry it. Adjustment is made by loosening the clamping screw, and shifting the cam (M) Fig. 13 to the desired position.

If the tonearm stop (F) Fig. 12 shifts from the 12 -inch record position to the 10 -inch record position simultaneously as the control lever (D) Fig. 12 is moved from the 12 -inch record position to the 10 -inch record postion, then check the pickup stop latch (G) Fig. 13. This latch must work freely with no binding. If the pickup stop latch works freely but the dashpot support plate (K) Fig. 13 is not being swung far enough for the notch to engage the pickup stop latch (with the control lever (D) Fig. 12 in the 12 -inch record position), then adjust the cam (W) Fig. 13. This adjustment must be set so that the latch just drops into the notch with practically no clearance.
CAUTION: If any change is made in the setting of the cam (W) Fig. 19 then all of the adjustments described under" Tonearm Lowering Mechanism' must be checked.

TONEARM LOWERING MECHANISM

The tonearm lowering mechanism has two functions. First it lowers the phonograph needle gently to the surface of the record approximately $\frac{3}{32}$ inch in from the edge of the record. This is accomplished by the stop (X) Fig. 15 on the underside of the tonearm coming in contart with the floating collar (Z) Fig. 12 on the dashpot stem as the tonearm swings outwardly. Note that as the tonearm stops strikes the foating collar, the collar is tilted against the dashpot stem, the dashpot stem acting as a stop. The tonearm support shelf now comes

Fig. 15 . Tonearm
to rest on the tip of the dashpot and the tonearm is lowered until the phonograph needle comes to rest on the record.

The second function of the tonearm lowering mechanism concerns the feeding of the needle in toward the center of the record so that the needle will enter the playing groove. This feeding in of the needle takes place after the needle comes in contact with the record and at a time when the tip of the dashpot drops away from the tonearm support shelf allowing the fioating collar (Z) Fig. 12 to right itself. As the floating collar drops back to its normal position the needle is fed in toward the center of the record.

If the tonearm descends too fast or too slow, adjust the speed of descent by turning the knurled thumb nut (I) Fig. 14 on the dashpot.

If the phonograph needle is not being lowered on the surface of the record approximately $\frac{3}{32}$ inch in from the edge of the record, the following adjustments will have to be checked. CAUTION: As each adjustment is dependent upon the preceding adjustment, all adjustments must be made in the order given or unnecessary trouble will be experienced.

1. Set the control lever (D) Fig. 12 in the 12 -inch record playing position, and with a 12 -inch record on the turntable, stop the unit with the tonearm in the maximum raised position. Then check the clearance between the underside of the tonearm support shelf and the tip of the dashpot. This clearance must be very slight or the tonearm will tend to bounce as it is lowered. There must be sufficient clearance however to allow the tonearm to swing out far enough so that the stop (X) Fig. 15 on the underside of the tonearm will tilt the floating collar (Z) Fig. 12 against the dashpot stem and form a positive stop. If adjustment is required, the height of the dashpot may be regulated by loosening the nuts on the bottom of the lift lever stud (W) Fig. 14 and changing their position on the stud. To raise the dashpot turn the nuts clockwise. Be sure to lock the nuts tightly together after adjustment is made.
2. Start the unit in motion and allow the tonearm to descend. If the needle does not set down on the record approximately $\frac{3}{32}$ inch in from the edge of the record, change the position of the stop (X) Fig. 15 on the underside of the tonearm until the needle does set down approximately $\frac{3}{32}$ inch in. To adjust the position of the stop (X) Fig. 15 turn the screw on the side of the tonearm.
3. Set the control lever (D) Fig. 12 in the 10 -inch record playing position, and with a 10 -inch record on the turntable, stop the unit with the tonearm in the maximum raised position. Now grasp the tonearm and swing it outwardly to make sure it is firmly against the stop. Now start the unit in motion. The needle should set down on the record approximately $\frac{3}{32}$ inch in from the edge of the record. If adjustment is required, loosen the clamping screws which hold the stop plate N Fig. 13 on the underside of the base plate, sufficiently so that the stop plate may be tapped with gentle blows in the direction desired. To allow the needle to be set down farther away from the center of the record, move the stop plate in a direction away from the dashpot. After resetting the stop plate, lock it in place and repeat the procedure outlined from the beginning of adjustment No. 3. When the adjustment is completed, give the stop plate locking screws a final tightening to assure that the stop plate is firmly located, or the lever (Q) Fig. 13 in snapping from the 12 -inch record playing position to the 10 -inch record playing position will shift the stop plate from its correct set ting.

Fig. 14. Dashpot and Lift Lever

4. With control lever (D) Fig. 12 in the 10 -inch record playing position and with a 10 -inch record on the turntable, stop the unit with the tonearm in the maximum raised position. Then check the clearance between the underside of the tonearm support shelf and the tip of the dashpot. This clearance must be very slight (see adjustment No. 1). If adjustment is required, the height of the dashpot may be regulated by means of the adjusting screw (Y) Fig. 14 on the underside of the dashpot lift lever. Be sure to tighten the lock nut after making this adjustment.

Stock No.
A-310
A-406

RA-406
RL-922
RP-103
RP-104
RP-105
RS-434
RS-860
RS-435
RS-385
RS-436
RS-861
| Description \mid
RECORD UNLOADING ASSEMBLY
ASSEMBLY-Unloading lever assembly and record unloading arm (O \& A).
ARM-Record unloading arm assembly (A)

LEVER-Shift lever (from 10 in to 12 in .) (D).

PLATE-Shift plate (10 in. to 12 in) washers and unloading arm stud
PIN-Unloading lever stop pin and screw.
PAWL-Pawl, spring, pivot, and pin
List
Price
3.75
1.75
.75
$\$ 1.50$

SPRING-Pawl tension spring on end of unloading lever (Pkg. of 5)
SCREW-Arm adjustment screw and lock nut.
SPRING-Unloading lever springs (Pkg. of 2) ($B \& E$)
STOP-Arm stop stud and lock nut (V).
SPRING-Shift lever tension spring (Pkg of 5).
SCREW-Unloading lever pivot screw and washers

PARTS LIST FOR MODELS $G-68$, $G=69$

PHONOGRAPH ASSEMBLY
MODEL G-68
*RA- 405 ARM-Pick-up tone arm
*RC-5000 CRYSTAL-Crystal pick-up
*RC-8021 CABLE-Radio-phono shielded cable
*RK-018 KNOB-Radio-phono switch knoh (Pkg.
*R $) ~$
*RM-107 MOTOR-Motor complete. $11.5-125$ (60 cy
*RM-108 MOTOR-Motor complete, $115-125 \mathrm{~V} .50$ cy
*RP-024 PLUG-To contact round female plug
*RP-025 PLUG-Male connector plug
*RS-366 SWITCH-Phono radio switch
$\begin{array}{ll}\text { *RS-374 } & \text { SWITCH-Automatic stop and switch (complete) } \\ \text { *RS-859 } & \text { SCREW-Needle screw }\end{array}$
*RS-859 SCREW-Needle screw
*RT-903 TURNTABLE-10-inch turntable (brown velveteen)
*RX-0.37 ASSEMBLY-Motor mounting assembly
PHONOGRAPH ASSEMBLY
MODEL G-69
RB-165 BRACKET-Pick-up locating lever mounting bracket RC-1982 CAM M - Cam and gear assembly (t)

RC-1983 CLUTCH-Trip lever friction clutch assembly
RC. 198 + COUPLING-Motor coupling complete with (5).... drive gear, rubber strips. motor coupling and drive
RC-ivol CRYSTAL
RC-ivOU CRYSIAL—Pick-up crystal cartridge and needle screw
RF- +02 FINGER-Trip lever friction finger assembly (7)
RG-j07 GUIDE-Main lever spring guide (11)
RG-701 GEAR IUng arm and rack gear for
RG-z02 GEAR (K)
RG-602 GEAR-Short arm and rack gear for front righthand
RG-703 GEAR recd pust (9)
Record post gear (10)
RL-92S LESVR——ndex lever assembly (12)
RL-429 LEver - index lever tension spring lever (13)
RL- 430 LEVER—Locating lever and pawl assembly ($1+$
RL-9:31 LEVER-Pick-up

RX-044 Assembly - Motorboard Mtg. 'springs, screws and washers
TONEARM LIFT ASSEMBLY (S)

PLATE-Trip lever plate (complete) (T).
1.25
-SPRING-Tonearm lift lever spring (H)

DASHPOT ASSEMBLY

CAP—Dashpot adjusting cap.
(Pkg. of 5)
PLATE-Dashpot mounting plate and
WASHER-Dashpot washer (small) (Pkg of 5). of 5).
WASHER-Dashpot washer, felt (Pkg. of WEIGHT-Dashpot weight

DASHPOT SHIFT ASSEMBLY

OLT-Bolts, nuts and washers for
LOCK-Shift lock lever assembly (M\& G).

PLATE-Dashpot mounting plate and shift lever assembly

RS-440 SPRING-Shift lock lever spring (Pkg. of 5) spring (Pkg. of 5)

FOR OTHER DATA SEE RCA 139B AND 139E

Fig. 8. Automatic Record Changer Mechanism

AUTOMATIC RECORD CHANGER

The record-changing mechanism used in this receiver has been designed to be simple and fool-proof. Under normal operating conditions, service difficulties should be negligible. Occasionally, however, certain adjustments may be required. These adjustments are explained in the following paragraphs. It is important when servicing the automatic record changer to have it placed on a level support. It is also important to refrain from forcing the mechanism if there is a tendency to bind or jam, since bent levers and possibly broken parts may result.

Operating Instructions and Service Adjustments

The record changer is designed to automatically play eight 10 -inch or seven 12 -inch standard 78 RPM phonograph records on one side. The last record remains on the turntable and repeats until more records are placed on the turntable or the mechanism is stopped.

To play 12 -inch records, referring to Figure 8, pull the thumb stop (K) on the right-hand side of the tonearm forward which allows the needle to locate on the edge of the record, also push the knob (D) at the left rear corner of the changer from 10 inch to 12 inch as marked on the base plate. Either 10 -inch or 12 -inch records may be repeated as often as desired by lifting the record removing arm (A) to an upright position.
To reject a record from the turntable while playing, pull the lever (L) at the right side of the turntable.

Motor Adjustments

The speed of the turntable motor is controlled by a governor which allows correct adjustment of the turntable rotation to

78 revolutions per minute. A pointer is provided under the turntable and the base plate is marked " F " and " S " to indicate direction to move pointer for faster or slower operation. A check of the turntable rotational speed may be made by placing a piece of paper under a record on the turntable and counting the number of times it rotates past a fixed point in one minute.

The motor bearings and gears are properly lubricated for long operation under normal weather conditions. If the motor chatters or runs uneven, place a few drops of light machine oil on the governor felt.

Trip Mechanism

While playing a record, the tonearm lifting mechanism (L) and the record removing arm (A) are held out of engagement with the motor cam by means of a latch which is formed by the vertical square pin in the pointed latch lever (I) and the notch in the side of the tonearm lift lever (L). This pin should engage the notch approximately one-half its depth, and is adjusted thus by means of an eccentric washer and screw in the trip lever (B) upon which is mounted the cerrated block (H).

The latch is held closed by means of a spring between the latch bar and the trip lever. Be sure the parts work freely without binding so that they will latch when the latch bar swings back past the notch after a record has been removed.
The record changer is designed to trip on an eccentric trip groove record. The eccentric trip is effected by means of a hardened steel pin which is pressed into the end of the tonearm lift crank. This pin ratchets over the top of the grooves in the cerrated block (H) on the trip lever (B). When the eccentric groove in the record swings the tonearm back and
forth it pushes the latch out of engagement. Care should be taken to insure that there is at least $\frac{1}{32}$ in. clearance for the end of the pin to raise over the cerrations to provide the ratchet action, when using a short phonograph needle riding on top of one record on the turntable.

The oval head machine screw, which serves as a pivot at the right-hand end of the left lever (L), should be set at such a height to allow the lift lever to be raised by the latch bar and so the roller is able to pass under the end of the lift lever without binding and also without too much clearance.

Unloading Mechanism

The record changer is intended to be operated with at least one record on the turntable in order to prevent the needle from damaging the turntable covering.

The motor mounting screws (G) should be adjusted so that the elevation of the turntable from the base plate to the top of one record is one inch.

The set screw and lock nut on the projecting member under the record removing arm (A) is provided for adjusting the elevation of the record separating and lifting finger. This screw should be adjusted so that the finger will remove the second record on the table but barely rise over, and not remove, the first record.

Record Lift Adjustment

To adjust the lift of a record while removing it from the turntable shaft and table the latch bar (I) should be placed in a position at its farthest throw against the face of the cam mounted on the motor spindle. Place a record between the separating finger and lever (A), the same way as the changer holds it while removing it. Let the other side of the record lie on top of the first record on the table. Adjust the lift by means of the eccentric stud and nut (P) at the left of the record removing assembly until the center hole of the record is off the turntable shaft and swings free of it.

Tone Arm Lowering

To adjust for the proper lowering of the tone arm on the edge of a 10 -inch record (the difference for the 12 -inch record
is adjusted at the factory) the screw above the shelf on the right side of the tone arm is provided for moving the tone arm stop right or left until the needle will lower to approximately $3^{3} \frac{\mathrm{in}}{}$ from the edge of the record.
To adjust the proper vertical clearance of the tonearm vertical pivot bearing, two jam nuts are provided on the end of the pivot sleeve, under the changer base plate. These nuts may be adjusted to take up unnecessary play.

Dash Pot Adjustment

Place the tonearm of the record changer in the position which results when the latch bar (I) is against the turntable motor cam at its furthest operating throw. (This position is the other extreme of the operating cycle as shown on Figure 8.) The tonearm stop should be against the cone-shaped cup of the dash pot while in the 10 -inch position.

Raise or lower the dash pot plunger by means of the two lock nuts which control the lift of the dash pot lever under the changer base plate. Adjust these two nuts so that there is a clearance of a post card thickness between the dash pot leather tip and the under-side of the tonearm shelf.

Lowering Speed of Dash Pot

The top of the dash pot is provided with a knurled screw cap for adjusting the lowering speed of the dash pot. In case the tone arm descends too fast, put a drop of light machine oil on the plunger above this cap and allow it to work into the felt packing gland. Tighten or loosen the cap to obtain the desired lowering speed.

Crystal Pickup

The pickup used in the phonograph unit is of the piezo electric crystal type. The crystal cartridge (\#1 Fig. 8) is a factory sealed unit and no adjustments are provided. The pickup and tonearm assembly should require very little servicing and if treated with reasonable care should perform its function without attention for long periods of time.

Fig. 9. Piezo Electric Crystal Pickup

Stock No.	Description	List Price
RPS-301	SWITCH-Radio-Phono S	\$1.00
RPX-002	SPRING ASSEMBLY-Suspension Springs, Washer and Bolt Assembly for Motor Board-One Bolt, Two Springs, One Rubber Tubing, One Washer and Two Nuts	. 50
RPA-003	ASSEMBLY-Latch Bar and Pawl Assembly (I).	\$1.55
RPB-001	BASE PLATE-14* x 15^{\prime} Base Plate (Brown Enamel Finish).	3.20
RPC-001	CAM - Motor Cam.	85
RPH-001	HANDLE - Mechanism 10 in. -12 in. Change Handle.	75
	LEVER-Lift Lever Complete.	1.30
RPL-002	LEVER-Motor Speed Regulat	. 30
R PL-003	LEVER-Trip Lever Complete.	1.00
RPP-001	PIN-Groove Pin for Mounting Unloading Arm.	10
RPP-002	PLATE-Sliding Plate for Mounting Unloading Arm.	. 85
RPP-003	PLATE-Turntable Drive Plate (metal)	. C
RPR-001	RIVET-Rivet for Pastening Latch Knee to Latch Bar (Pkg. of 10).	05
RPR-002	ROLLER-Roller Used in Crescent-shaped slot.	0
RPS-001	SCREW-Latch Bar Mounting Screw.	10
RPS-002	SCREW-Lift Lever Screw (Pkg. of 5).	20
RPS-003	SCREW-Motor Cam Set Screw (Pkg. of 10).	. 25
RPS-004	SCREW-Screw Which Holds Unloading Mechanism to Sliding Plate (Pkg. of 10)	. 50
RPS-005	SCREW-Sliding Plate Spring Stud (Pkg of 10).	10
RPS-006	SCREW-Trip Lever Mounting Screw (Pkg. of 10).	10
RPS	SPRING-Latch Bar Coil Spring. . .	. 10
RPS-008	SPRING-Latch Bar Pawl Tension Spring (Pkg. of 5)	60
RPS-009	SPRING-Lift Lever Spring (Pkg. of 5)...	. 15
RPS-010	SPRING-Sliding Plate Coil Spring (Pkg of 5)	15
R PS-011	SPRING-Speed Regulator Lever Spring (Pkg, of 5).	25
R PS-012	STUD-Unloading Arm Bumper Stud and Nut (P).	25
RPT-001	TURNTABLE-12 in. Turntable (Complete).	2.75
RPW-001	WASHER-Eccentric adjustment Washer for Trip Lever.	10
RPW-002	WASHER-Sliding Plate Washer (Pkg. of 5).	10
RPW-003	WASHER-Sliding Plate Washer ($1 / 4 \mathrm{in}$. Hole) (Pkg. of 5).	.15
RPW-004	WASHER-Star Mounting Washer ($1 / 4 \mathrm{in}$. Hole) (Pkg . of 10).	. 20
RPW-005	WASHER-Turntable Drive Washer (Rubber).	. 05
RPW-006	WASHER-Washer Used Between Latch Bar and Base Plate (Pkg, of 10)	25
RPW-007	WASHER-Washer Used Under Star Washer (Pkg. of 10) $\ldots \ldots \ldots \ldots$ W.	10
RPW-008	WASHER-Star Tension Washer (Pkg. of 10).	20
RPW-009	WASHER-Trip Lever Mounting Washer (Pkg. of 10)	. 10
	MOTOR ASSEMBLIES	
RPM-001	MOTOR-Motor Complete with Cam-78 R.P.M. 115 V. 60 Cycles.	17.50
RPM-002	MOTOR-Motor Complete with Cam-78 R.P.M. 115 V. 50 Cycles.	17.50
RPM-003	MOTOR-Motor Complete with Cam-78 R.P.M. 115 V. 40 Cycles.	19.00
RPM-004	MOTOR-Motor Complete with Cam-78 R.P.M. 115 V. 25 Cycles.	19.00
RPX-001	MOUNTING ASSEMBLY-Motor Mounting Spacer, Two Rubber Washers, Plain Washer, and Screw.	. 15
	PICKUP AND TONEARM ASSEMBLIES	
RPA-004	ARM-Tone Arm (2)	1.10
R PC-002	CRYSTAL-Crystal Cartridge Assembly (1).	6.75
R PC-003	3 CLAMP-Cartridge Support Clamp (14). .	. 35
RPC-004	4 CORD-Pickup Extension Cord (16).	. 25
RPK-001	$1 \begin{gathered}\text { KNOB-Blank Tonearm Knob (Diamond } \\ \text { Shape) } \\ \text { (7). }\end{gathered}$. 35

Stock No.	Description	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
RPP-004	PICKUP-Pickup Unit Complete.	\$11.00
RPP-005	PLATE-Pickup Cartridge Plate (15).	. 15
R PS-013	SCREW--Needle Screw (17) 05
R PS-014	STRIP-Terminal Strip Assembly (5).	. 50
RPW-010	WIRE-Lead Wire (Black) (3).	. 10
RPW-011	WIRE-Lead Wire (White) (4)	. 10

TONEARM SUPPORT AND OPERATING ASSEMBLIES

RPA-005	ASSEMBLY-Tonearm Base and Lift Mechanism Complete.

	Screws).
RPB-003	BRACKET-Bracket Upon Which Tone-

| RPB-004 | BUSHING-Tonearm Support Bushing... | .15 |
| :--- | :--- | :--- | ---: |
| RPC-005 | CRANK-Tonearm Lift Crank. | 1.75 |

| RPH-002 | HOOK -Tonearm Support Hook. | 1.15 |
| :--- | :--- | ---: | ---: |

RPN-002 RPP-006	
	NUT-Nut for Holding Pivot in Tonearm Base (Lower).
	N-Lift Crank

RPS-015 SCREW-Tonearm Adjusting Screw (M) $\quad .10$

RPS-017 $\begin{gathered}\text { NCREW Tonearm } \\ \text { Screw (Pkg. of 10) } \\ \text { Support Mounting }\end{gathered} \quad .05$

RPS-018	SPRING-Lift Crank Spring (Pkg. of 5).	.10	
RPS-019	STOP-Adjustable Needle Stop (K)10

RPS-019 STOP-Adjustable Needle Stop (K)......
RPS-020
SUPPORT-UPper Tonearm Support (Bracket).

| RPS-021 | SUPPORT-Lower Tonearm Support..... | .50 |
| ---: | :---: | :---: | :---: |
| RPW-012 | WASHER-Lift Crank Washer (Pkg. of | |
| | 10). | |

RPW-013	WASHER-Washer Used Above and Below	.05
	Tonearm Bracket Bearing (Pkg. of 10)	.10

 UNLOADING ARM ASSEMBLY
 | RPA-006 | $\begin{array}{c}\text { ASSEMBLY-Unloading Arm Assembly } \\ \text { (Complete) }\end{array}$ | 1.75 |
| :---: | :---: | :---: | :---: |

RPS-022 $\begin{gathered}\text { SCREW Unloading Arm Adjusting Screw, } \\ \text { Nut and Lock Washer. }\end{gathered} \quad .10$
DASH POT ASSEMBLY
RPC-006 CAP—Dash Pot Adjusting Cap.

RPD-001	DASH POT-Dash Pot Only
RPF-001	FELT-Dash Pot Adjusting Cap Felt

RPN-003 NUT-Dash Pot Mounting Nut (Pkg, of
RPP-007 PLUNGER-Dash Pot Plunger Assembly.
RPS-023 SPACER-Dash Pot Lift Lever Spacer.
RPS-024 SPRING—Dash Pot Lift Lever Spring
RPW-014 WASHER-Dash Pot Felt Washer (Pkg. of
RPW-015 WASHER-Dash Pot Washer (Smail)
(Pkg.of 5).....................
WASHER-Dash Pot Washer (Large)
(Pkg of 5).
WASHER-Dash
er (Pkg. of 10).
RPW-018 WEIGHT—Dash Pot Weight.
MISCELLANEOUS ASSEMBLIES
RPB-005 BOARD-Terminal Board for Pickup
Leads.
RPB-006 BOARD-Resistor Board (Chassis Front
Center).
RPC-007 CABLE-Phonograph Input Cable.
RPC-008 CORD-Phonograph Power Cord (Com-
RPP-008 PLATE-Radio-Phono Switch Plate.
*RPP-009 PLUG-Two Contact Male Connector

RPR-003	RESISTOR-330,
(RQ-119)	bon (Pkg. of 5)

 RECORD CHANGER MECHANISM
 ASSEMBLY
 RPA-001 ASSEMBLY-Unloading Arm and Latch
Bar Assembly.
RPA-002 ASSEM BLY-Latch Bar Assembly.

GENERAL ELECTRIC CO.

Fig. 1

Fig. 2

GENERAL

This record changer is designed to operate on a 110 volt 60 cycle power supply. It will automatically play twelve 10 -inch or ten 12 -inch records at a single loading. It will not play 10 -inch and 12 -inch records intermixed. The various controls are shown in Fig. 1.

OPERATION

Before loading, see that the pickup is in the rest position. If it is locked in some position other than on the rest, remove any records that might be on the supports and complete the change cycle by throwing the turntable switch ON. The pickup will follow through a change cycle and stop on the pickup rest. Throw the turntable switch OFF and the mechanism is ready for loading.

For 10 -inch records, turning the record support in the near left-hand corner one half a turn counterclockwise will position both the record support and the record separator for the smaller diameter records. For 12 -inch records the record support should be turned one half a turn clockwise.

With the turntable switch ON, pressing the Start-Reject button will start the mechanism and the entire series of records will play without any further attention. After the last record has been played, the pickup will return to its rest and the turntable switch should be turned OFF.

To reject a record, press the Start-Reject button.

CAUTIONS

1. Never use force to start or stop the motor or any part of the record changing mechanism.
2. The use of warped or damaged records may cause the mechanism to jam.
3. The use of cracked or chipped records may damage the sapphire.
4. The records should not be left on the record posts or on the turntable as they may warp, particularly in warm climates.
5. The use of warped records may result in unsatisfactory reproduction since they tend to slide on one another. Warped records may be flattened by placing them on a flat surface and loading them with a heavy flat article for a few days.
6. If the mechanism should stall, throw the turntable switch OFF and remove the records from the posts. Start the turntable by throwing the switch ON and allow the pickup arm to complete its cycle. (See Service Adjustments.)
7 . Do not tighten the copper-plated, cone-pointed screws until final adjustment has been made.

LUBRICATION

The LRP-158 turntables are driven by a drive disc screwed to the turntable. It is important that the drive motor spindle and the rubber tire on the friction drive disc as well as that on the idler wheel be kept clean and free from oil, grease, dirt, or any foreign material at all times. Any quick drying naphtha is satisfactory for cleaning these parts. The drive motor bearing is lubricated from. felt washers at the bottom and top. A light machine oil should be used at these points.

On all bearing surfaces except the motor bearings Houghton Stayput No. 320 should be used. On all other surfaces Lubriplate No. 110 is recommended.

REPLACEMENT OF SAPPHIRE

The sapphire is cemented in the pickup with a rubber cement (such as Goodrich Plasticon). To remove the sapphire grasp it firmly with a pair of tweezers, give it a few turns to loosen the cement and then pull it out. Much easier handling of the sapphire will result if the tweezers are first notched with a file as shown. Naphtha

Fig. 3 may be used as a thinner should difficulty with the cement be experienced.

Before inserting the new sapphire it should be dipped in the rubber cement, previously thinned with naphtha. After insertion, clean the point with naphtha.

TO REMOVE THE TURNTABLE

To remove the turntable, loosen setscrews " A " and raise the turntable (see Fig. 7).

TO REMOVE THE PICKUP ARM

One of the pickup arm bearings has a slotted head and can be turned out to facilitate removal of the pickup arm. Raise the pickup arm and loosen the bearing setscrew. Turn the bearing partly out through the hole in the side of the pickup arm and lift the arm off.

Symbol
7
8
7
8
9
10

Fig. 4
DESCRIPTION OF PRINCIPAL PARTS

Symbol

Function

Lift rod cushion

Oval head screw
Pivot arm spring
Bottom bearing and bracket
Record support belt drum
Motor field coil assembly

Symbol	Function
1	Lift rod cushion
2	Oval head screw
3	Pivot arm spring
4	Bottom bearing and bracket
45	Record support belt drum
6	Motor field coil assembly

Function

Steel ball for tone arm bearing
Drive gear
Record separator cap
Motor mounting bracket
Motor mounting grommet
Motor tension spring
Tone arm lever spring
Reject lever
Reject button
Speed nut for reject button
Drive belt
Record separator shaft bottom spring
Record separator spring
Ratchet lever
Tone arm lever
Separator support
"C" washer
"C" washer
Trip lever stud
ON-OFP switch
Lift rod
Trip pawl
Tone arm return lever
Trip lever pawl spring
Trip lever
Index finger
Record separator swivel shaft
Record separator belt drum
Record separator belt drum spring
Drive pin
Tone arm segment
Record separator shaft
Record separator lever
Record separator link
Record separator crank
Ratchet lever spring
Main carn
Drive shaft cam
Record support shaft cam pin
Record support shaft cam
Record support and shaft

CYCLE OF OPERATION *

When the Record Support is turned to its desired position, until the knife is carried high enough to be moved in, by the Record Separator post is positioned by means of a belt action of spring (19) over the top of the record. The separator drive (17). Loading the record supports pushes the separator shaft continues to turn until the knife supports all but the shaft (38) down against its spring and carries the tone arm bottom record, and the shelf moves out from under the segment (37) free of the index finger (32). When the Start- bottom record, allowing it to drop to the turntable. The Reject button is pressed, the reject lever (14) is moved in and separator shaft reverses rotation and the tone arm lever (21) pushes the ratchet lever (20) out of the eccentric step in the moves away from the trip lever stud, moving the tone arm main gear (43) shaft and releases the drive cam pawl. The in. The tone arm return lever (29) pushes against the trip lever drive cam pawl engages with the toothed wheel, carrying the drive gear (8) with it as it revolves. Revolving with the drive gear are the main cam and gear (43). The tone arm elevating lever rides on the ridge of the main cam (43), raising the tone arm by means of the elevating rod (27). The stud on the tone arm lever (21) rides in the top track on the main cam (43), moving the tone arm out and pushing on the trip lever stud (25). As the trip lever (31) moves out, the tone arm return lever (29) is carried along with it, by the trip lever

Fig. 5 stud (25) and by the stud on the main cam top track.

The stud on the separator lever (39) follows the main cam (43) bottom track, directing the motion of the lever (39), link (40) and crank (41) which rotates the record separator shaft (38).

Record Gauging and Releasing:

The record separator knife turns with the shaft and strikes the edge of the bottom record. The separator shaft continues to revolve as the teeth on the inner circumfer- Eight turntable revolutions are required ence of the knife ride up on the shelf teeth for one change cycle.

Fig. 6

GENERAL ELECTRIC CO.

MISCELLANEOUS SERVICE HINTS

Symptom	Check
Tone arm continues to repeat playing top record of the stack.	Check adjustment E. Record separator shaft, or the spring on which it rests, is binding on the shaft bushing. Pin on record separator shaft is binding in its slot. Shaft spring is too weak.
Improper landing on 10- and 12 -inch records.	Check adjustment F. Feed-in spring bent too far in front of tone arm return lever.
Irregular landing on 10 - and 12 inch records.	Check adjustment C. Insufficient tension on belt
Loud clicking noise resulting from drive cam pawl slipping out of teeth in cam wheel.	Check mechanism timing adjustment. Make certain that pickup arm lever is not binding on its stud.
Mechanism jams Tone arm continues to come down in rest position.	Check adjustment E. Record separator shaft or the spring on which it rests is binding on the shaft bushing. Pin on record separator shaft is binding in its slot. Shaft spring is too strong.
Trips continuously.	Reject button is binding in its bushing. Reject lever spring is too weak or the reject lever is binding on its guide slots.
Sapphire strikes motorboard.	Bend the pickup arm support bracket until the sapphire clears the motorboard by approximately $3 / 32$ of an inch.

REPLACEMENT PARTS LIST MODEL LRP-158

[^4]Prices subject to change without notice

This record changer is designed to operate on a 110 -volt 60 -cycle power supply. It will automatically play twelve 10 -inch or ten 12 -inch records at a single loading. It will not play 10 -inch and 12 -inch records intermixed. The various controls are shown in Fig. 1.

OPERATION

Before loading, see that the pickup arm is in its rest position. If it is locked in some position other than on the rest post, remove any records that might be on the record supports and complete the change cycle by throwing Power Switch ON and turning the Control Lever to STARTREJECT position and release. The turntable will revolve and the pickup will swing through its cycle of motion, and come to rest on the Stop Switch, turning OFF power.

The record support in the front left-hand corner must be turned for its correct position for 10 -inch or 12 -inch records as required. Turning the front record support automatically positions the rear support.

With the changer loaded and the turntable switch ON, pushing the START-REJECT lever to its "Start" position will start the change cycle allowing the first record to drop to the turntable and the pickup arm to move into playing position. The whole series of records will play through without further attention. When the last record is played, the pickup comes io rest on the Stop Button switch, thus shutting OFF the motor.

To reject a record being played, push the "STARTREJECT" lever to "START-REJECT" position and let go.

For automatic operation, each record must have the standard eccentric groove.

CAUTIONS

Before servicing the automatic changer, inspect the assembly to see that all gears, cams, springs, levers, etc. are correctly assembled and in good working order.

1. Never use force to start or stop the motor or any part of the record changing mechanism.
2. Warped or damaged records may cause the mechanism to jam. When jamming occurs, the safety clutch slips, causing a clicking sound.
3. A cracked or chipped record may damage the sapphire.
4. Warped records may slide on one another while playing and result in unsatisfactory reproduction.
5. Do not leave the records on the record posts or on the turntable as they may warp, particularly in warm climates. Warped records may be flattened by placing them on a flat surface with a heavy flat article plared on top of them for a few days.
6. If, for any reason, the merhanism stalls, turn off the turntable switch and remove the records from the posts. Start the turntable by turning the switch ON and allow the pickup arm to complete its cycle.
7. Do not tighten ropper-plated, cone-pointed screws until final adjustment has been made.

Fig. 2

PICKUP SERVICE

Specifications

$$
\text { Output at } 400 \text { cycles }
$$

75,000 ohms

Replacement of Complete Unit

Simply slide the unit out of the tone arm and insert a new one

Replacement of Sapphire

Caution: Never bend the sapphire support wire. Slide the pickup forward out of the arm.

Fig. 3
The nut on the sapphire holder assembly is locked by a light cement (such as Glyptal). Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal.

Remove the two screws holding the sapphire guard in place and take the guard off. Remove the small nut and washer on the threaded shaft of the sapphire holder and push the shaft through the hole in the viscoloid until the sapphire holder assembly comes free.

Insert threaded shaft of replacement sapphire holder through viscoloid and replace the washer and nut. Make sure that the flat sides of the shaft are firmly in place in the clamp and then tighten the nut very carefully so as not to strip the threads nor break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough beyond the guard so that the guard will not strike the record. If necessary, bend the guard a little. Apply a drop of light rement (such as Glyptal) to the sapphire nut holder.

Bend the spring contacts to make good contact with the slides in the tone arm.

Tone Arm Feed-in Spring

When the sapphire comes down on the record, the feed-in spring (shown in adjustment sketch, Fig. 10) acts to push the tone arm toward the music grooves. The spring should be adjusted to do this without causing the sapphire to skip grooves. This action is also related to cabinet leveling.

Cabinet Leveling

If the sapphire fails to enter the starting groove, raise the right-hand side of the cabinet by inserting thin spacers under the legs. If the pickup slides over a few grooves, raise the lefthand side of the cabinet.

Sapphire Pressure

In these mechanisms, the correct pressure is from 1 to $1 \frac{1}{4}$
ounces, measured at the sapphire. Adjust the spring (3) all tımes. Any quick drying naphtha is satisfactory for cleaning in the tone-arm base if necessary.

LUBRICATION

The drive motor bearing is lubricated from felt washers at the bottom and top. A light machine oil should be used at these points

On all bearing surfaces except the motor bearings Houghton Stayput No. 320 should be used. On all other surfaces Lubriplate No. 110 is recommended.

Do not oil the record separator shaft
It is important that the drive motor spindle and the rubber tire on the friction drive disc as well as the idler wheel be kept clean and free from oil, grease, dirt, or any foreign material at

CYCLE OF OPERATION
When the Record Support is turned to its desired position, the Record Separator post is positioned by means of a belt drive (20). Loading the Record Supports pushes the separator shaft (41) down against its spring and carries the tone arm segment cam (40) free of the index finger. When the Start-Reject Lever is operated, the control lever (17) is moved in and pushes the ratchet lever (21) out of the eccentric step in the main gear (46) shaft and releases the drive cam pawl. The drive cam pawl engages with the toothed wheel, carrying the drive gear (12) with it as it revolves. Revolving with the drive gear are the main cam and gear (46). The tone arm elevating lever rides up on the ridge of the main cam (46), raising tone arm by means of the elevating rod (36). The stud on the tone arm lever (34) rides in the top track on the main cam (46), moving the tone arm up and pushing on the trip lever stud (33). As the trip lever (35) moves out, the tone arm return lever (32) is carried along with it, by the trip lever stud (33) and by the stud on the main cam top track
The stud on the separator lever (44) follows the main cam (46) bottom track, directing the motion of the lever (44), link (43) and crank (42) which rotates the record separator shaft (41).

Fig. 5

Record Gauging and Releasing

The record separator knife turns with the shaft and strikes the edge of the bottom record. The separator shaft continues to revolve as the teeth on the inner circumference (see Figs. 10 and 11) thus lowering the elevating rod and of the knife ride up on the shelf teeth until the knife is tone arm. The knife is returned to the original position by carried high enough to be moved in, by action of spring (19) the separator shaft, allowing the stack of records to rest in Fig. 6 over the top of the record. The separator shaft on the shelf.

GENERAL ELECTRIC CO.

As the record begins to play the ratchet lever (21) rides down into the eccentric step on the main gear shaft and blocks the drive cam pawl, disengaging it from the drive cam wheel. The drive gear and main gear stop rotating and the tone arm lever (34) moves into cam to maintain disengagement.

The cycle of operation can be studied conveniently by pushing the reject lever and revolving the turntable by hand. Eight turntable revolutions are required for one change cycle. Block up the motor, so it is disengaged from the drive disc, to permit easier manual rotation of the turntable.

SERVICE ADJUSTMENTS

MECHANISM TIMING

Mechanism jams.
General irregularity of operation.

With the ratchet lever and the pawl on the drive shaft cam in playing position as shown, remove the bottom support bracket. Remove the " C " washer on the main cam shaft and slip the cam down far enough that it can be rotated with respect to the drive gear. Then rotate it until the timing notch is positioned as shown. Put the main gear back in mesh with the drive gear, replace the " C " washer, place the elevating lever on the cam ridge. Make certain the separator lever train is in its correct position and replace the bottom support bracket.

TURNTABLE BOTTOM BEARING POSITION

Turntable does not turn freely.

Loosen the bottom bearing screws "B" (Fig. 8), and position the bottom bearing plate until the turntable revolves freely. Tighten the screws and check by applying a.c. to the turntable motor, allowing it to reach full speed, then pull motor away from friction drive disc and noting that the turntable continues to make at least twelve revolutions.

SPACING BETWEEN RECORD POSTS

Records strike separator post or fail to stay on record shelf.

Turn the record support post to the ten-inch position. Loosen setscrews "C" (Fig. 9), hold the separator post against the end of its slot in the motorboard and turn the belt drum to take up any slack in the belt. Tighten the zinc-plated, blunt-nosed screw and check to see that a ten-inch record fits the posts as shown. Then tighten the copper-plated, cone-pointed screw.

The twelve-inch position is adjusted after that of the ten-inch, by changing the support post to take the twelve-inch record, and turning the eccentric stop until the edge of the record is halfway up on the record support bevel while the other edge is against the record separator post.

RECORD SHELF TIMING

Records do not drop at proper time.

Place a ten-inch record on the posts. Loosen the setscrews "D" (Fig. 9), and turn the record separator shaft until the edge of the record-separating knife is onesixteenth inch away from the edge of the record. The teeth on the inner circumference of the knife should be resting in the bottom of their slots at the time the adjustment is made. Tighten the zinc-plated screw first, run through cycle several times as a check, then tighten the copper-plated screw.

SEGMENT HEIGHT OR RADIAL POSITION

Tone arm continues to repeat playing of top record or jams when part way in on record.

Take all records off the posts. Loosen the setscrew "E" (Fig. 9 and Fig. 10). Set the record separator segment-cam so that the index finger of the tone arm return lever rides on the middle of the segment-cam, as shown. Rotate the segment-cam until it is in such a position that the index finger will not ride off either end. Check to see that the index finger rides in over top of the cam when the record shelf is depressed by the weight of one record. Tighten the setscrew.

Eig. 9

Fig. 10

PICKUP ARM POSITION WITH RESPECT TO TRIP LEVER

Sapphire does not land at correct point on 10 inch record.

Correct dimension from outside edge of spindle to sapphire $4 \frac{1}{6}$ inches.

Place a ten-inch record on the turntable and rotate the changer through cycle until the sapphire is just ready to land. Make sure that the index finger of the pickup arm return lever is against the record separator shaft and that the tone arm trip lever stud is held firmly against the return lever. Loosen the setscrews " F " (Fig. 11) and move the pickup arm to the correct landing position. See that there is a $1 / 32$ inch clearance between the pickup arm bearing and the setscrew collar. Tighten the zinc-plated screw, run the changer through cycle several times as a check, then tighten the copperplated screw.

The.twelve-inch landing position is automatically maintained.

Fig. 11

PICKUP ARM HEIGHT WHILE IN CYCLE

Top of pickup arm strikes stack of records or sapphire fails to clear the records on the turntable.

Rotate the changer through cycle until the pickup arm has risen to its maximum height above the turntable but has not begun to move out. At this point adjust the screw " G " (Fig. 11), until the distance between the turntable and sapphire is one and threesixteenths inch. Tighten the locknut.

Fig. 12
Set the control lever to "automatic." Loosen setscrew "H" (Fig. 12), and move the control cam until the stud on stop switch is centrally located as shown. Tighten setscrew "H."

Mechanism fails to start or automatic stop switch is inoperative in "automatic" position.

POSITION OF PICKUP SHORTING SWITCH

No output or noise during cycle.

Loosen screws "]" (Fig. 13). Position the switch to obtain ${ }^{\frac{1}{2}}$-inch clearance between the switch blades when the tone arm is in playing position. Tighten screws "J." Make certain that the pawl is on the correct side of the long leaf spring in the shorting switch.
POSITION OF PICKUP SHORTING SWITCH

No output or noise dur-
ing cycle.
:---
obtain
when the tone arm is in in playing position. Tighten
screws "J."Make certain that the pawl is on the correct
side of the longleaf spring in the shorting switch.

Symptom
$\frac{\text { Mechanism trips continuously. }}{\text { Turntable does not stop automatically. }}$.

Turntable fails to start.

Loud clicking noise resulting from drive cam pawl slipping out of teeth in cam sprocket.

Mechanism jams.
Irregular landing on 10- and 12-inch records.

Tone arm continues to repeat playing top record of the stack.

Tone arm continues to come down ir: rest position.

Sapphire strikes motorboard.

Separator knife jams on last record of the stack.

Check

Check to see that the ratchet lever engages drive cam pawl at end of change cycle. Bend lever if necessary. Check adjustment "H." Bend the control cam flat spring for greater pressure.

Check for bind in stop button bushing. Bend the flat bracket that limits outward movement of the trip lever, so that pickup lands on the stop button.

Check spacing of stop switch contacts to be certain that weight of stop button does not open them.

Check mechanism timing adjustment. Make certain that pickup arm lever is not binding on its stud. Any jam will cause the clutch to slip and produce clicking sound.

Check adjustment "C." Insufficient tension on belt.

Check adjustment "E." Record separator shaft, or the spring on which it rests, is binding on the shaft bushing. Pin on record separator shaft is binding in its slot. Shaft spring is too weak. Do not tighten setscrews " D " enough to distort the housing of the separator shaft spring. Do not oil the record separator shaft.

Check adjustment "E." Record separator shaft or the spring on which it rests is binding on the shaft bushing. Pin on record separator shaft is binding in its slot. Shaft spring is too strong.

Bend the pickup arm support bracket until the sapphire clears the motorboard by approximately $\frac{3}{32}$ of an inch.

Check the separator knife edge. It should not be sharp enough to dig in the record and carry the record up with it.

GENERAL ELECTRIC CO.

REPLACEMENT PARTS LIST

MODEL LRP. 160

* Used on previous receivers.

Prices subject to change without notice

FOR ADDITIONAL INFORMATION
 ON GENERAL ELECTRIC MODEL LRP-160, SEE RCA RP-160.

GENERAL ELECTRIC CO.

Fig. 1

Fig. 2

GENERAL

This record changer is designed to operate on a 110 -volt 50 - or 6θ-cycle power supply. It will automatically play twelve 10 -inch or ten 12 -inch records, of the 78 -rpm type, at a single loading. It will not play 10 -inch and 12 -inch records intermixed.

OPERATION

Before loading, see that the pickup arm is in its rest position. If it is locked, in some position other than on the rest post, remove any records that might be on the record supports and complete the change cycle by throwing the turntable switch ON. Follow the pickup through its change cycle, and when it drops on the first groove of the record throw the turntable switch OFF and carry the pickup to its rest post.
For 10 -inch records, the record support in the near left hand corner must be turned inward, and the record separator in the far right-hand corner must be lifted and put in the position nearest the spindle. For 12 -inch records, the supports must be in the outer positions so as to accommodate the larger diameter records.

With the changer loaded and the turntable switch ON pushing the start-reject button will start the change cycle, allowing the first record to drop to the turntable and the pickup arm to move into playing position. The whole series of records will play through without further attention, repeating the last record until the mechanism is turned off. The mechanism should be turned off and the pickup arm returned to its rest post just as the record commences a replaying.

To reject a record, push the start-reject button.
For automatic operation each record should have the stand ard eccentric groove.

so-cycle Conversion

To convert the record changer for use on a 50 -cycle power source, motor spindle sleeve (Cat. No. RS-963) should be mounted over the motor spindle. (See Fig. 2.) This will increase the drive ratio so that the turntable speed will be 78 rpm .
these points. On all bearing surfaces except the motor bear ings Houghton Stayput No. 320 should be used. On all other surfaces Lubriplate No. 110 is recommended.

It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free from oil, grease, dirt, or any foreign material, at all times. Any quick drying naphtha is satisfactory for cleaning these parts.

Cautions

1. Never use force to start or stop the motor or any part of the record changing mechanism.
2. A cracked or chipped record may damage the sapphire.
3. Do not leave the records on the record posts or on the turntable as they may warp, particularly in warm climates. Warped records may slide upon one another and result in unsatisfactory reproduction. Warped records may be flattened by placing them on a flat surface with a heavy flat article placed on top of them for a few days.
t. Damaged or warped records may cause the mechanism to jam. When jamming occurs, the safety clutch slips, causing a clicking sound.
4. Do not tighten the copper-plated, cone-pointed screws until the final adjustment has been made.

Cabinet Leveling

If the sapphire fails to enter the starting groove, the cabinet may need leveling, by raising the right-hand side. If the pickup slides over a few grooves, the left-hand side of the cabinet needs raising

Sapphire.Pressure

In this player, the correct sapphire pressure is approximately 4 ounces, measured at the sapphire. This pressure may be adjusted at spring 3, Fig. 10.

To Remove the Turntable

To remove the turntable loosen setscrews " A " and lift the turntable up (see Fig. 6).

To Remove the Pickup Arm

One of the pickup arm bearings has a slotted head and can be turned out to facilitate removal of the pickup arm. Raise the pickup arm and loosen the bearing setscrew. Turn tile bearing partly out through the hole in the side of the pickup arm and lift the pickup arm off.

GENERAL ELECTRIC CO.

Description of Principal Parts

Symbol	Function
1	Lift rod cushion
2	Screw
3	Pivot arm spring
4	Record support
5	Drive gear
6	Drive shaft cam
7	Steel ball bearing
8	Drive cam pawl
9	Record separator cap
10	Tone arm lever spring
11	Reject lever
12	Reject button
13	Main cam and gear
14	ON-OPF switch
15	Tone arm lever
16	Ratchet lever
17	Stud
18	Trip pawl spring
19	Record separator spring
20	Trip lever
21	Lift rod
22	Tone arm return lever
23	"C'. washer
24	"C'" washer
25	Record separator swivel shaft
26	Record separator shaft
27	Index finger
28	Record separator crank
29	Record separator link
30	Record separator lever
31	Ratchet lever spring
32	Idler wheel spring Motor

Fig. 3

CYCLE OF OPERATION*

When the Start-Reject button (12) is pressed, the reject lever (11) moves in and pushes the ratchet lever (16) a way from the drive cam pawl (8). The pawl is thus released to engage with the cam sprocket of the "safety clutch" and revolves, carrying the drive gear (5) with it, starting the change cycle.

With the clutch engaged, the drive gear (5) transfers the rotation of the turntable spindle to the main cam and gear (13). The pickup arm elevating lever (15) rides on the ridge on the main cam (13), and raises the pickup arm by means of the lift rod (21). The stud (17) on the pickup arm lever (15) rides in the top track on the main cam (13) directing the horizontal movement of the pickup arm lever.

The pickup arm lever (15) pushes the trip lever stud (17). moving the trip lever (20) out, and carrying the pickup arm out. The pickup arm return lever (22) is carried along by the trip lever stud (17) and by the stud on the main cam top track.

The stud on the separator lever (30) follows the main cam bottom track, turning the separator shaft (26) through the separator link (29) and crank (28). The separator knife turns with the separator shaft and strikes the edge of the bottom record. The separator shaft (26) continues to revolve and the teeth on the inner circumference of the knife rides up on the shelf teeth until the knife is carried high enough against the
action of spring (19) to move in over the top of the bottom record. (See Fig. 5.) The separator shaft continues to turn until the knife supports the stack of records, and the shelf moves out allowing the bottom record to drop to the turntable.

The separator shaft reverses rotation; the pickup arm return lever (22) pushes on the trip lever stud (17) moving the trip lever (20) in, and carrying the pickup arm in.

The index finger (27) on the pickup arm return lever (22) moves against the separator shaft to insure proper landing position of the pickup arm. The pickup arm elevating lever (15) rides down on the main cam ridge, lowering the pickup arm by action of the lift rod (21).

The knife is returned to its original position by the separator shaft, allowing the stack of records to rest on the shelf. As the sapphire moves into the first music groove the ratchet lever (16) rides down into the eccentric step on the main gear shaft blocking the drive cam pawl (8) and disengaging the pawl from the drive cam socket. The drive gear (5) and main gear (13) stop as the record begins to play, and the pickup arm lever (15) moves into the cam to maintain disengagement.
*The cycle of operation can be studied conveniently by pushing the Start-Reject button and revolving the turntable by hand. Eight turntable revolutions are required for one change cycle.

Fig. 5

GENERAL ELECTRIC CO.

REPLACEMENT OF SAPPHIRE

As an additional precaution against rough handling, the top of the sapphire is dipped in a rubber cement (such as Goodrich "Plasticon'") before being inserted in the pickup. To remove the sapphire, grasp it firmly with a pair of tweezers, give it a few turns to loosen the cement and then pull it out. Much easier handling of the sapphire will result if the tweezers

are notched with a file as shown. Naphtha mav be used as a thinner should difficulty with the rubber cement be experienced.
Before inserting the new sapphire it should be dipped in the rubber cement previously thinned with naphtha. After insertion clean the point with naphtha if there is any doubt as to the presence of cement.

MISCELLANEOUS SERVICE HINTS

Symptom	Check
Mechanism trips continuously	Check to see that the ratchet lever (16) engages the drive cam pawl (8) at the end of the change cycle. Bend lever if necessary.
Loud clicking noise resulting from drive cam pawl (8) slipping out of teeth in cam sprocket. Mechanism jams.	Check mechanism timing adjustment. (See Fig. 6.) Make certain that the pickup arm lever (15) is not binding on its stud. Any jam will cause the clutch to slip and cause a clicking sound.
Sapphire strikes motorboard	Bend the pickup arm support bracket until the sapphire clears the motorboard by approximately $3 / 32$ of an inch.
Separator knife jams on the last record of the stack	Check the separator knife edge. It should not be sharp enough to dig into the record and carry the record up with it.

FOR OTHER INFORMATION SEE

 R.C.A. MODEL RP-262REPLACEMENT PARTS LIST

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Symbol	Description	$\underset{\text { Price }}{\text { List }}$	$\begin{aligned} & \text { Cot. } \\ & \text { no } \end{aligned}$	Symbol	Description	List Price
	21	PICKUP AND ARM ASSEMBLIES ARM-Pickuparm shell only ARM-Pivot arm and shaft-less spring CRYSTAL-Pickup crystal cartridge sapphire and shielded cable CUSHION-Lift rod cushion (rubber) NUT-Speed nut to hold cable in arm PLATE-Bottom plate for pickup arm-less	$\begin{array}{r} \$ 1.00 \\ .95 \end{array}$	$\begin{aligned} & \text { RF. } 757 \\ & \text { RG. } 309 \end{aligned}$		ESCUTCHEON-Index escutcheon FERRULE-Pickup connector ferrule (insert)	$\$ 0.30$.05
$\begin{aligned} & \text { RA-430 } \\ & \text { RA-4.31 } \end{aligned}$						GROMMET-Rubber krommet for motor mounting (l set)	10 60
$\begin{aligned} & \text { RC-2072 } \\ & \text { RN-016 } \\ & \text { RP- } 2021 \end{aligned}$			$\begin{array}{r} 5.00 \\ \quad .20 \\ .05 \end{array}$	RL-974	1115	LEVER-Ratchet iever	${ }_{25}$
				RL-976		LEVER-Tone arm lever	45
				RL-977		LEVER-Tone arm return lever	. 45
$\begin{aligned} & \text { RR- } 949 \\ & \text { RS-8030 } \end{aligned}$		ROD-Lift rod-less cushion. headless set-SCREW-No. $40 \times 1 / 4 \cdot \mathrm{in}$.	. 10	RL-980	ce $\begin{gathered}22.27 \\ 29 \\ 29\end{gathered}$	LEVER-Triplever.	. 65
				RL-981		LINK-Record sepa	. 80
RS-8031		screw for pickup arm SCREW - No. $+40 \times 1 / 6-\mathrm{in}$. screw to mount	.05-5	RN-017		NUT-Speed nut or reject button.	
			.05-5	$\begin{array}{\|c} * R P-169 \\ \text { RR- } 950 \end{array}$		PLUG-Male plug for motor leads RATCHET-Ratchet wheel (clutch sprocket)	. 35
RS-8032		SCREW-No. 4-40 x the headless setscrew for pickup crystal (oval point)	10				
RS-8033						SCREW-Record separator cap screw	10
		arm bottom plate	.05-5		2	SCREW $-N$ o. $\mathrm{S}-32 \times 1 / 4-\mathrm{in}$. cone point screw	
RS-8034				RS-80.36 RS-×0.37		SCREW - No. $\times-32 \times 1 / 4 \mathrm{in}$, screw for ratchet	
"RS-4017$\mathrm{RS}^{2} 52 \mathrm{I}^{2}$		SPRING-Pivot arm spring STUD-Pivot arm spring stud and nut MOTOR ASSEMBLY	. 05	*RS		$\stackrel{\text { wheel }}{\text { SCREW }}$ - No $0-32 \times$ dith cone point screw	. 05
						for link and trip lever.	10-5
				*RS.8004		SCREW - No. 10-32 x 面-1n. screw for link and	
$\begin{aligned} & \text { RM• } 160 \\ & \text { RS. } 963 \end{aligned}$				RS-64	26	SEPARATOR-Record separator knife only	10
		MOTOR-105-125 volts, 60 cycle SLEEVE-Motor spindle sleeve for 50 cycle conversion	5.25	RS-645 RS-642		SPACER-Record separator shelf to knife	1.10
			. 25			SpRacer -Cam pawl spring SPRING-Idler wheel armspring	${ }^{105}$
		MOTORBOARD ASSEMBLY		-RS. 4017	3231		05
				RS-4055		SPRING-Ratchet lever spring , .n.....	10
$\begin{array}{r} \text { RA-43:3} \\ * \text { RB-302 } \end{array}$				RS-4058	19	SPRING-Record separator spring	
		ARM-Idler wheet arm and stud BALL- $-\frac{1}{6}-\mathrm{in}$. dia. steel ball for turntable spindle	. 25	RS-4064		SPRING-Reject lever sprink	10
			. 05	RS-4061	10		
RB-303		BALL-h.in. dial steel ball for pickup arm		RS.4062		SPRING-Tone arm return lever spring SPRING-Trip pawl spring	. 10
RS-644		BEARING-Recort separator support and bearing	05	RS-646	4	SUPPORT-Record spupport	180
			$\begin{aligned} & .50 \\ & .20 \end{aligned}$	*RS-3061		SWITCH-ON-OFF" switch	
$\begin{aligned} & \text { RB-647 } \\ & \text { RB- } 1050 \end{aligned}$		BEARING-Turntable spindle bearing BOARD-Motorboard with all riveted and welded posts, studs, and bearings-less all		RS-964		SWIVEI- - Record separator swivel	2.75 2.80
				*RW-125		WASHER - "C." washer for idler	05-2
		operating parts BRACE-Motorboard bottom brace and	7.50	RW	23	tone arm lever, or pickup pivot shaft	
RB. 649				*RW-1	24		
RB-651 RC-2073 $\mathrm{RC}^{\mathrm{R}}-2074$ RC-8233		BUTTON-Reject button CAM-Cam and pawl CAM - Main camand kear CAP-Record separator cap CONNECTOR-Pickup lead connector-less insert	.10.701.50.50.05	- ${ }^{\text {W }}$ -		lever, tone arm lever. link, or cam.	05
						WASHER-Felt washer for pickup arm	
						WASHER - Felt washer for turntable spindle	05
						Wattom bearing was her for turntable spinde	
						WHEEL-Idler wheel	5

* Used on previous receivers.

Prices subject to change without notice.

USED ON MODELS

GENERAL ELECTRIC CO.

H-79, H-118, HJ-119

The Model $\mathrm{H}-118$ automatic phonograph mechanism plays up to twelve 10 -inch records or ten 12 -inch records. The record-changing mechanism is equipped with a cycle switch which during a record-changing cycle prevents power interruption, by pressing the turntable switch to "Off," until the tone arm is in the starting position.

Pbono Kiey

To change from radio to phonograph reproduction press the "Phono-Tele" key. This operation likewise turns the power on if the radio has not been operating previously.

Pbono Switch

This switch is located on the forward left-hand corner of the motorboard and starts or stops turntable operation.

Push-button Controls

On the forward right-hand corner of the motorboard are located four push-buttons which control the operation of the automatic record changer.

The forward button, marked " R " is the reject control. To reject a record being played or to start the record-changing cycle after the records have been placed on the holders, simply press this button down and then release.

The second button from the front, marked " M " is the manual button. When records are to be played manually, this button should be pressed down until it locks in the depressed position. The record mechanism now operates as any manual record player.
The third button, marked " 12 ," when pressed, sets the mechanism to play automatically a series of 12 -inch records.

The fourth button, marked " 10 ," when pressed sets the mechanism to play automatically a series of 10 -inch records.

Record Holder and Release Lever

Located in rear left-hand corner and in the forward righthand corner are the record-holder posts supporting the record holders and release levers. The record holder is underneath the release lever on either post.

To load the holder with 10 -inch records, clasp one of the record holders with the left hand and with the right hand lift the release-lever knob turning the release lever until the figure " 10 " is opposite the index. Do the same with the other record holder and release lever. Now rotate the entire record holder and release lever assembly until the holder is pointed in toward the center of the turntable. It may be necessary to raise the assembly slightly to start rotation. A certain position will be found when the holder is pointed toward the center where the assembly will settle into a recess. This is the correct position of the holder for loading.

To load the holder with 12 -inch records, follow the above procedure except the release levers must be rotated with respect to the holders until the " 12 " markings are opposite their respective indices.

To remove records from the turntable, lift the holder assemblies and rotate the record holders until they clear the turntable area.

SERVICING

Oiling

The record-changer mechanism should be lubricated once a year with about a dozen drops of a good light machine oil at each of the following six points. All points can be reached from above, through holes in the mounting plate, as follows:

No. 1 Three oil holes on motor gear housing. Reach

No. 2 all three through two holes marked " A " on No. 3 drawing.
No. 4 Through hole marked "B," drop the oil upon flat surface of cam. It will distribute itself to proper points.
No. 5 Through holes marked "C," see felt wick, and drop the oil directly upon it.
No. 6 Through hole marked "D," see felt wick, and drop the oil directly upon it.
If squeaks are heard compare the squeak with and without a load of records, stacked records themselves sometimes squeak against a center pin. See that all five wicks are in position, including three $/ 4-\mathrm{in}$. wicks in frame of Motor. See that each wick is thoroughly saturated (as it may not be if insufficient oil or too heavy oil has been used). Lift out all three motor wicks, with tweezers; see if old oil has become gummy (commonly due to use of low-grade oil). If necessary, clean gummed-up wicks with kerosene. See that each is saturated with good oil; then, before replacing them, drop a little good oil into the holes.

Adjustments

There are three adjustments that can be made. All are correctly made at the factory, and ordinarily need never be altered. Should it become necessary to remake any of these adjustments, due to accident or tampering, proceed as follows:
A. Adjusting Landing Position of Needle on the: Record. (See Fig. 8.) This adjustment is made with a screwdriver from above-does not require removing Record Changer from cabinet. If needle comes down too far from edge of record, playing of records will not start at their beginning. Turn Needle-drop Adjustment Screw very slightly counterclockwise. If needle comes down too close to edge of record, needle may slip off edge of record. Turn the adjusting screw clock wise.

Compare also Paragraph 12 on page 11.
B. Adjusting Distance from Record Pin at Which Trigger Will Tripand Change-Cycle Will Begin. Tuin Trip Adjusting Screw 18, toward the trigger for earlier tripping, or a way from it for later tripping. This Record Changer does not depend, for automatic tripping, on the records being provided with any special grooves at end; it trips whenever needle comes within a certain distance of Record Pin. The factory adjustment is for $17 / 8 \mathrm{in}$. from center of Record Pin. This is the most generally satisfactory distance; no modern record will then be cut off before playing is finished, and none will fail to trip at end. For certain records of early manufacture, it may not be possible to find an adjust ment that will always trip and never cut off.
C. Adjusting Height to Which Tonf Arm Risis. The arm should rise, during the change-cycle. high enough so that it clears by only $1 / 8 \mathrm{in}$. the record above it, next to be played. (Be careful, before deciding that adjustment is necessary, to see that the record at bottom of stack is not a warped one.) To make this adjustment, loosen the lock nut on Pickup Sleeve 22 (see Fig. 10) and turn the sleeve to lengthen or shorten Pickup Plunger 21. When correct adjustment is found, tighten lock nut again.

Motor Replacement

The service mechanic may be called upon to adapt the Record Changer to a different power supply. For this purpose, or in case of any service fault within Motor. remove entire Motor (with Record Pin and connecting gear drive) from the Record Changer, and replace it with a suitable new Motor. (In ordering a replacement Motor, specify the power

OL HOLES IN MONTMG PLATE

Fig. 9. Oiling Diagram
supply.)
When mounting replacement Motor, it is most importiant to see that Record Pin is centered between the two posts of the Record Changer, that it stands perpendicular to Main Plate 53, and that it has not become bent so as to wobble. Even though the Posts are stout and not easy to bend, it is well to check them also, with a 12 -in rombination square laid clear across the concave upper surface of Main Plate. When the new Motor has been attached, with three screws through Grommet Sleeves 51 (spacers) into its frame, and Record Pin is seen to revolve without appreciable wobble (a wobble would indicate that it has been bent in transil from factory) the correct position of Pin midway between the Posts can be accurately checked in this way: Place a single $12-\mathrm{in}$. record on the Record Holder, press "R" button, and turn turntable forward by hand. Immediately after the Record Holders open and let it fall, turn Turntable slightly backward, and with other hand support the record between the Record Holders; it can then be readily seen whether Record Pin is off center. If it is, remove the record and Turntable, and loosen slightly the screw or screws nearest the Record Holder to which record appeared closest. This should improve evenness of operation. However, unless the unevenness was very slight, it will be necessary for a permanent repair to insert a shim or two on one or more of the three screws (or change shims from one screw to another). The shims used are shaped like an ordinary washer, cut out at one side (see cut-away view at 52 in Fig. 11 showing a shim in place upon one of the Grommet Sleeves). Shims can readily be cut out with shears and punch from thin metal or cardboard. They should be inserted, around proper screws (when screws have been sufficiently loosened) between Motor Frame and metal Grommet Sleeve. Do not insert shims next to rubber grommet. In wiring up, consult schematic diagram for particular installation. Use only Underwriters' approved wire.

Trouble Shooting

Cases of failure to operate satisfactorily will generally be found due either to neglect of proper lubrication, or to tampering with the mechanism after it leaves the factory, or to injuries accidentally sustained as by external vibration or by impact of some heavy object. In addition there is always the possibility that any kind of spring may "go dead" (cease to operate without any visible breakage) even though the utmost factory precautions are taken against it-or that setscrews may work loose due to some external vibration. Damage from tampering is likely to take the form of bent parts; never bend any part during examination. Be careful, especially, never to push upward from below on Cam Connecting Rod Lift 37 while mechanism is operating; bending may result, and even slight bending here might interfere with correct timing of the cycle operations.

Among the principal trouble symptoms to which such causes may give rise, are the following:

1. Mechanism Is Slow in Starting, or Stalls During a Change-cycle, But a Slight Forward Push With the Hand Starts It Again. May be caused by
a. Failure to lubricate properly. Oil thoroughly, per instructions above.
b. Loose setscrews.
c. Weakness of drive: line voltage may be abnormally low, or motor windings damaged.
2. Motor fails to Run, Even When It Is Entirely Disconnected from Other Wiring and Proper Voltage Is Applied Directly to the Two Ends of Its Windings. This indicates trouble in Motor windings. Unless the damage is easily seen and repaired, replace Motor, as above described.
3. Motor Is Slow in Starting.
a. Check oiling, as directed above. It may not have been properly done; old oil may have become gummy.
b. Changer may have been in a very cold place, and may not yet have reached room temperature. Give it a fair chance to get warmed up, before concluding that Motor is defective, and proceeding as in Paragraph 2 above.
4. Squears or Other Noises, During Playing of Records.
a. Check oiling, as directed above. (If squeaks are heard, they will usually be found to come from the records-not from the mechanism.)
b. See that all setscrews are tight.
c. Examine Motor windings; especially the shading coils which encircle a portion of each laminated pole and make the Motor self-starting. If coils have been jarred loose at any point, they may be tightened accordingly.
5. Changer Is Noisy When in Cycle. Check oiling.
6. Motion of Tone: Arm Toward Record Pin Will Not Trif Changer Mechanism.
a. It may be found that, instead of trigger being actuated, there is stretching of Swivel Spring 95 (joining the lugs at
ends of Swivel Spreaders 90 and 91), allowing the Spreaders to open. Increase tension of Spring 95 , by bending slightly the lug on either Spreader. If this increased tension causes needle to jump across the record, needle may be a little out of vertical, radially-it may "lean" toward center of record. To remedy this, grasp Pickup arm and twist it, very slightly, in a clockwise direction, so that it stands vertical, or even leans a little in out ward direction.
b. If trigger is being properly actuated, probably Cam Lever 39 is binding against Sub-Plate 41. Look for dirt or obstructions; see that rivets are working freely. If the Lever engages Cam Lever Pawl 34, so that Lift 37 forces its roller up into the groove on Cam gear 82, and if setscrews are tight, the change-cycle must operate, as Cam Gear turns.
7. Pressing "R" Button Doesn't Trip Changer Mechanism.
a. Check Push-button Switch Unit 75: see whether there is an obstruction or a bent part which prevents " R " button from going clear down to the end of its travel.
b. Examine Reject Rod 78. If it does not trip, even when properly revolved by complete depressing of "R'" button, the rod has probably been bent, and must be restored in same way. Grasp the two ends and twist it slightly.
c. If Trigger 16 is being properly actuated but without starting a change-cycle, see directions above, Paragraph 6-b.
8. Pressing "M" Button Fails to Put Changer Mechanism Out of action so as to Enable Manual Operation. Check Push-button Switch Unit as in preceding paragraph. First see that button goes clear down; then follow its action through Manual Rod 77.
9. Motor Stops Immediately When Phono Switch Is Turned Off During a Change-cycle (instead of continuing to run, as it should, until needle is again upon a record, and then stopping). Or-
10. Turning Phono Switch Off Fails to Stop Changer at All. Either of these two conditions would indicate failure of Cycling Switch 85 . Cycling Switch operates normally to short-circuit the manual Changer Switch (which may be located in position shown at 54 , or elsewhere) during changecycle only. Such damage to Cycling Switch (not likely to occur) would necessitate returning the entire Changer to factory.
11. Changer fails to Repeat Last Record. See Paragraph 6, above.
12. Nefdle Lands Properly But Fails ro Move Over into Record Groove. Tone arm is normally impelled toward center of records by Lead Spring 97 . Should a slight increase in its tension be found necessary, this can be easily obtained by bending the lug, to which it is attached, down against Main Plate. If tendency then appears for needle to jump across record, check angle of needle (see Paragraph 6-a above).
13. Records Fall Unevenly Upon Turntable. Seldom objectionable, this is due to Record Pin not being correctly centered between Posts. If necessary, it can be corrected as described above; see "Motor Replacement."
14. Last Recori, Drops on One Side Only. This sug. gests a Post bent out of perpendicular to Main Plate. Test with square as directed (see "Motor Replacement"). If Post must be straightened, be careful not to bend other parts.
15. Changer Continues Cycling. Due to failure of Lift 37 to fall back out of engagement with Cam Gear. Check the various rivets at which motion occurs, to find the

MODEL SPEC. \#T18J967-4
USED ON MODELS
H-79, H-118, HJ-119
GENERAL ELEC’RIC CO.

MODEL LC-608

GENERAL ELECTRIC CO.

Fig. 1--Top View of Record Changer

This record changer will automatically play a series of twelve $10^{\prime \prime}$ or ten $12^{\prime \prime}$ records of the standard 78 R.P.M. type. The records must be all one size when loading, and may consist of less records than listed above. Records with or without a starting groove will operate the changer satisfactorily and the inside stopping groove may be a spiral or an eccentric. This means that any type of record, regardless of make, will operate the automatic mechanism. Records of any size up to $12^{\prime \prime}$ may be played manually.
The records are supported for automatic operation in two points, in the center by the center post, and on the edge by the record holder post.

CAUTIONS

1. Never use force to start or stop the motor or any part of the record-changing mechanism or pickup arm.
2. No damage will be done if you forget to turn off changer after it has played its entire load of records. It will simply repeat the last record until stopped.

TO PLAY RECORDS MANUALLY: MANUAL OPERATION

Manual operation is used for all home recordings and for single records if desired:

1. Remove the center post by pulling straight up.
2. Lift pickup arm several inches and move to the right side, clear of the turntable.
3. Place record on turntable with desired selection upward.
4. Turn the control knob to the "ON" position.
5. Place pickup on record so the needle enters the outside groove of the record.
6. Close lid of cabinet to eliminate the slight mechanical reproduction of sound by the needle.
7. Adjust volume control to desired level.
8. When the playing is finished, be sure turntable is stopped and pickup arm is in the rest position. Never leave the pickup arm with the needle resting on a record or the turntable.

RECORD CHANGER PARTS

RM-155R	Motor	Motor 60 Cycle	5.75
RS-3120R	Switch	On-off Switch	45
RK-1046R	Knobs	Knobs (Plastic)	10
RE-223R	Plate	Escutcheon Name Plate	0
RS-9037R	Lift	Lift Spindle	5
RT-943R	Arm	Tone Arm	85
RX-106R	Lever	Return Lever Assembly (Pickup)	1.50
RX-107R	Head	Complete Ejector Head Assembly	3.50
RE-644R	Button	Buttons (Plastic)	15
RC-2059R	Clamp	Record Holder \& Indicator (Plastic)	20
RT-942R	Turntable	Turntable	1.70
RP-419R	Post	Center Turntable Post	1.35
RC-5011R	Crystal	Grystal Cartridge	50
RX-105R	Gear	Pinion Gear \& Bearing Center Spindle Assembly	2.50
RG-719R	Gear	Main Gear Assembly	0
RS-4041R	Spring	Record Clamp Spring	. 05
RS-4D42R	Spring	Lever Link Spring	. 03
RS-4043R	Spring	Pickup Arm Tension Spring	. 05
RS-4044R	Sprinc	Size Switch Mounting Spring	. 05
F.S-4045R	Spring	Reject Lever Spring	0
RS-4040R	Spring	Record Changer Mtg. Spring, 1/2 doz....	10

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

STARTING THE CHANGER

Turn the control knob counter-clockwise to the "ON" position; after the turntable has attained speed, turn the control knob all the way counter-clockwise to the "REJ." position for a few seconds and release. The bottom record will fall on the turntable and the unit will automatically play the entire stack of records. If the changing cycle should fail to start, repeat the above operation.

REJECTING A RECORD

To reject a record, it is only necessary to turn the control knob counter-clockwise to the "REJ." position for a few seconds and release. A record can be rejected anytime the needle is in contact with the record.

UNLOADING THE CHANGER

Turn the control knob to the "OFF" position and remove the center post by pulling straight up. The played records may now be easily removed after which the center post should be replaced. The center post must be turned as it drops into place in only one position.

FIGURE NO. 1

© John F. Rider

When eccentric or oscillating trip groove records are used, tripping is effected by means of the hardened steel pin in the end of tone arm lift crank at S Fig; 2 engaging the serrated block on the trip lever at T Fig. 2. There must be a minimum of $1 / 32^{\prime \prime}$ play between the end of the pin and

FIG NO. 2 the block, when, with a short needle, ($5 / 8^{\prime \prime}$ Minimum Length) the pickup is resting on one record on the turntable. If the pressure of the pin on the block is not sufficient to insure operation, then check the pressure spring which is located up under the pickup.

The oval head pivot screw at R Fig. I serves as a pivot for the lift lever at I Fig. 1. This screw should allow the lift lever to be raised by the latch bar to its maximum height without binding but also without any additional play.

If the Record Changer fails to trip, see if the phonograph needle is jumping out of a worn record trip groove. Next make certain that all parts of the mechanism work freely and smoothly. If it is found that the latch bar at O Fig. 1 is not dropping in far enough to engage the cam at P Fig. 1, then check the tension of the trip spring at B Fig. I.

RECORD REMOVING MECHANISM

The Record Changer is adjusted so that it will always leave one record on the turntable. This is done to prevent the phonograph needle from damaging the covering on the turntable.

In case the Record Removing Mechanism fails to operate smoothly, proceed as follows: First

FIG. NO. 3 make certain that all parts work freely with no binding in pivots or bearings, and that the record removing arm assembly rests on the stop screw at Q Fig. 3. Next stop the motor in such a position that the latch bar at O Fig. 1 can swing by and clear the cam at P Fig. I. Place just one record on the turntable and measure from the top of this record down to the base plate. This distance should be one inch. Now by pulling the reject lever at L. Fig. I first, it will be found possible to swing the record removing finger at Y Fig. 3 first, to where it just touches the edge of the record. If the adjustment is correct, the record removing finger should just barely rise over the edge of the first record. If adjustment is required it can be made by means of the stop screw at Q Fig. 3. In the event the record removing arm raises the record from the turntable and drops it back in place without removing it, check the lift adjustment at V Fig. 1 . This adjustment consists of an eccentric stud which is provided with a lock nut, and is made by loosening the lock nut and turning the eccentric stud. The lift adjustment should be set so that the hole in the center of the record just clears turntable spindle when the Record Changer is in operation.

PICKUP LOWERING MECHANISM

The pickup lowering mechanism has two functions. First, it lowers the phonograph needle gently to the surface of the record. Second, it feeds the needle toward the center of the record so that it will
enter the playing groove.

FIG. NO. 4 the dashpot. This clearance should be very small as otherwise pickup shelf at Z Fig. 2 and the tip of lowered. There must be sufficient clearance however to prevent the pickup shelf from rubbing on the tip of the dash pot, or the pickup will not swing out far enough to allow the adjustable stop at K Fig. 2 to come to rest against the dashpot. Check this clearance in both $10^{\prime \prime}$ and $12^{\prime \prime}$ record positions. If adjustment is required, the height of the dashpot may be regulated by loosening the nuts on the bottom of the lift lever stud at X Fig. 4 and changing their position on the stud. To raise the dashpot turn the nuts clockwise, to lower the dashpot turn the nuts counter-clockwise. Be sure to lock the nuts
tightly together after the adjustment is made.

GENERAL INDUSTRIES CO.

MODPL K only

OPERATING INSTRUCTIONS
The Model " K '" Record Changer plays eight 10 " Records automatically. The last record remains on the turntable and repeats as long as the Record Changer is in operation.

Records may be repeated as often as desired by raising the record removing arm at A Fig. 1 to the upright position.

To reject a record and play the next record below it, pull the latch lever at L. Fig. 1 forward.
MODELS L and 17 only OPERATING INSTRUCTIONS
The Model "L" Record Changer plays seven 12 " or eight 10 " Records automatically. The last record remains on the turntable and repeats as long as the Record Changer is in operation.

Records may be repeated as often as desired by raising the record removing arm at A Fig. 1 to the upright position.

To reject a record and play the next record below it, pull the latch lever at L Fig. 1 forward.
To adjust the record removing arm to handle $10^{\prime \prime}$ records set the record removing arm change lever at D Fig. 1 opposite the number 10 stamped on the base plate. For $12^{\prime \prime}$ records set the lever opposite the number 12 .

To adjust the pickup to play $10^{\prime \prime}$ records, push the pickup stop at K Fig. 1 back. (Away from the pickup needle). For $12^{\prime \prime}$ records pull the stop forward (toward the needle) as far as it will go.

Some units are equipped with two speed motors, and others with 78 RPM motors. When the two speed motor is used change from one speed to the other by simply moving lever at F Fig. 1 to position desired.

To start motor, throw switch (supplied on some models) at N Fig. 1 on the "on" position.

MODELS K, L and 17
 MOTOR LUBRICATION

The motor installed in the Record Changer is governor controlled, with all gearing enclosed, and leaves the factory lubricated for proper operation. For maximum satisfaction, lubricate the motor at regular intervals with SAE No. 10 oil. Please do not use any other grade of oil.

The governor disc engages with a ring of hard felt. This felt is impregnated with a lubricating solution sufficient for proper operation for approximately a year under normal conditions. It may be necessary, however, if the motor shows a tendency to chatter or waiver, to apply a drop or two of oil to this felt ring.

NODLES K, L and 17

MOTOR SPEED

The motor speed is adjusted by means of a lever at C Fig. 1 which is mounted under the turntable. The direction of swing to fast or slow is indicated by the legends F and S on the base plate.

33-1/3 RPM - 78 RPM SHIFT

LDDELS L and 17

Move the speed change lever at F Fig. 1 as far as it will go in the direction of swing in dicated by
(Two-speed motors only) the legends $33-1 / 3$ and 78 on the base plate.

If adjustment of the speed change lever is required for any reason, proceed as follows: First loosen the screw which clamps the lever to the motor shaft. This shaft is provided with a screw-driver slot in the end. Next, using a screw driver, turn this shaft in a clockwise direction until you feel it strike the stop. The motor is now in the $33-1 / 3$ RPM position. Now set the lever against the lug provided in the base plate and opposite the legend $33-1 / 3$ and tighten the clamp screw. This places the lever in the correct position on the motor shaft. The final step is the adjustment of the eccentric bushing at G Fig. 1 which limits the throw of the lever. First loosen the screw which holds the eccentric bushing. Next, throw the speed change lever to its farthest 78 RPM position, (using care that the lever does not slip on the motor shaft). Then turn the eccentric bushing around until it touches the side of the lever, and tighten it in place with the screw provided.

TRIP MECHANISM

MODELS K, L , and 17

The trip mechanism is the trigger that sets the Record Changer in motion. This is done by allowing the latch bar at O Fig. 1 to drop in front of, and be actuated by the cam at P Fig. 1. This cam is driven by the motor and is in motion as long as the motor is running. If this mechanism does not operate smoothly, the precautions outlined in succeeding paragraphs should be observed.

First of all, make sure that the square pin in the latch lever at U Fig. 1 latches properly in the notch in the lift lever at I Fig. 1. When latched, the notch should be engaged approximately one-half of its depth. The depth of engagement is adjusted by means of the eccentric washer and locking screw at J Fig 1. Now run the Record Changer through its cycle. If the square pin fails to engage the notch in the lift lever, first check the tension of the latch spring at H Fig. 1 to insure that the notch can engage the pin. Next check the tension of the reset spring at E Fig. 1. This reset spring should not be under tension when the latch bar is latched but should have enough tension when the latch bar drops back off of the cam to cause the square pin to over travel the notch in the lift lever. IMPORTANT - Before attempting to change the tension of any spring, be sure that the parts involved work freely without any tendency to bind, as of course any binding condition would preclude proper operation.

The Record Changer is adjusted at the factory to trip on a spiral trip groove record when the phonograph needle is $13 / 4^{\prime \prime}$ from the edge of the hole in the center of the record.

MAGNETIC CUTTER

FIG.A
A suggested circuit for inclusion of the magnetic cutter in
the voice coil circuit is shown in Figure A. While other arrangements are equally satisfactory this hookup can be used on all standard radio sets and amplifiers.

In connection with the table "Typical values for componuse values between 6 and 8 ohms for Z_{t} and Z_{v} possible to use values between 6 and 8 ohms for Z_{t} and Zv^{a}. A volume indicator is necessary to prevent cutting too
heavily. For this purpose a medium speed voltmeter can be connected across the cutting head in parallel with R_{1}. Where R_{c} has a value of 4 ohms as shown, the voltage peaks should be about 1 volt on speech and $11 / 2$ volts on music. Important when connecting a voltmeter in parallel with R_{1}, the value of R_{1} must be increased to the point
where the effective resistance of R_{1} and the voltmeter in parallel will equal the values for R_{1} as shown in the table. if the voltmeter has a resistance equal to the values for R_{i} it of course can be substituted for R_{1}.

TYPICAL VALUES OF COMPONENTS

$\begin{aligned} & R_{C} \\ & \text { OHMS } \end{aligned}$	$\begin{gathered} R_{1} \\ \text { OHMS } \end{gathered}$	z_{V} OHMS	R_{2} OHMS	Z_{T} OHMS	MONITORING ATTENU. ATION BELOW NORMAL PLAYING LEVELDB.
4	10	4	1	4	20
4	12	6	1.5	6	14
4	12	8	5.3	8	8
4	12	10	11	10	6
4	12	15	26	15	5

MATCH TO OUTPUT STAGE MMPEDANCE
(PUSH-PULLOR
SINGLETUBE)

CUTTING HEAD
I RADIO C
II-RADIO
z_{V} =VOICE COIL
\checkmark IMPEDANCE

To cut an approximation of the standard commercial recording characteristic with the crystal cutter, a 50,000 ohm
resistor should be placed in series with the cutter To emphasize high frequencies, this resistor should be shunted
 low frequencies the series resistor should be varied up to 250,000 ohms.

A volume indicator is necessary to prevent cutting too heavily. For this purpose a rectifier type AC voltmeter, 1,000 ohms per volt, $0-150$ volts scale, can be connected as indicated by "V. I." in Fig. B. For normal recording
the voltage peaks should be about 100 volts.

Important crystal cutters must be protected from tempertures higher than $120^{\circ} \mathrm{F}$., voltages in excess of 350 volts RMS and from DC voltages.

CRYSTAL CUTTEK
CRYSTAL CUTTEK

AMPLIFIER

The amplifier should be capable of at least 5 watts output in order to keep harmonic distortion down to a reasonable level and preferably have triode output or beam tubes with inverse feedback. Frequency response should be reasonably flat within the audible range. Hum level should be low enough so that hum is not discernible at the loud speaker with the volume adjusted to recording level. The amplifier should be stable at full volume and "microphonic"
tubes avoided. If the amplifier and recorder unit are to be installed in the same cabinet, all conditions of mechanical resonance and feed back must be avoided to preclude the possibility of recorded "rumble". The cabinet should be substantially built of comparatively heavy materials. If cabinet resonance is encountered, wooden braces glued to the inside surfaces of the cabinet will sometimes serve to correct this condition.

RECORDING FROM RADIO

For radio recording, it is desirable to leave the speaker connected for monitoring purposes. In Fig. A the circuit components are arranged for reducing the speaker volume during recording as shown in the table.

Referring to Fig. B, an "L" pad is shown in the voice coil circuit for reducing speaker volume during recording. When the radio is being used without recording this "L" pad should of course be disconnected.

RECORDING FROM MICROPHONE

When recording from microphone the speaker must be disconnected to prevent feed back and a resistor of the same value as the speaker voice coil substituted for the
voice coil, in order that the proper load impedance be reflected back to the output tubes.

PLAYBACK PICKUP

The crystal pickup leads may be connected directly to the phonograph input terminals provided on most amplifiers and radio receivers, or may be connected between "grid" and "ground" of the radio receiver's second detector tube if no other connection is provided. The "ground" connection
should be made to the outer conductor, or shield, of the pickup cable, while the inner wire of the cable should be connected to the "grid" of the tube. If these connections are reversed, an A. C. hum will be heard in the loud speaker when the equipment is arranged for playing records.

MICROPHONE

For making microphone recordings through the audio amplifier of a radio receiver, quite satisfactory results will usually be forthcoming by use of a diaphram type crystal microphone of reputable manufacture, connected to the phonograph input terminals of the radio receiver. Correct polarity of connections to the microphone cable should be observed, the same as for connecting the pickup cable. The shield of the cable should connect to "ground." This ar-
rangement will usually afford sufficent volume for microphone recording, although the microphone cannot be expected to produce the same loud speaker volume as is obtained in playing records with the pickup connected to the amplifier. The phonograph pickup delivers approximately from 1 to 2 volts to the input of the amplifier, while the microphone is capable of furnishing only approximately $1 / 100$ th of this voltage or from .01 to .02 volts.

PRE-AMPLIFIER FOR MICROPHONE

If it is within the scope of the constructor's knowledge and ability, the assembly and installation of a microphone pre-amplifier will prove to be a material aid in microphone recording service. The purpose of the pre-amplifier is to amplify the impulses generated by the microphone, before
being fed into the audio frequency amplifier, so that the amplifier will produce about the same amount of volume to the recording head, or cutter, whether recordings are made from microphone or from radio reception.

RECORDING MECHANISM ADJUSTMENTS

Before attempting to make recordings, after the recorder has been set up and properly connected to the amplifier or radio receiver, first make an inspection of the various
adjustments provided on the recorder, and make whatever corrections necessary to insure correct depth and spacing of the grooves cut into the record surface, as follows:

PROPER ENGAGEMENT OF FEED SCREW

With the recording arm raised to an angle of approximately 45 degrees, the follower arm (refer to Fig. 7) should be noticed to be completely disengaged from the lateral feed so that the recording arm may be moved horizontally across the turn-table. With the recording arm lowered to a position so that the bottom of the nose of the arm is 2 inches above the turn-table, the tongue of the phosphor bronze spring should just clear the lateral feed screw. The adjustment for this height may be accomplished by an adjustment of the phosphor bronze spring screw. In making this ad-
justment, note that the end of the adjusting screw bears against the phosphor bronze spring when the recording arm is lowered to recording position.

The pressure of the phosphor bronze spring, bearing against the lateral feed screw, should be sufficiently great so that the knife-edge tongue will not have a tendency to climb out of the grooves in the feed screw. The pressure should not be too great, however, or too much power will be required from the motor, producing "wows."

ADJUSTMENT OF CUTTING ARM AND HEAD

When the recorder is packed for shipment, all adjustments are in correct order, however, as these adjustments may become altered to some extent in handling the equip-
ment during installation, some correction of the adjustments may be required to restore them to their original postions.

GENERAL INDUSTRIES CO.

HEIGHT OF RECORDING ARM ABOVE RECORD

By referring to Figure 7, it will be observed that the correct height of the recording arm above the surface of the record (arm lowered to recording position) is $1 / 4$ inch. As the arm height has a definite bearing upon the uniformity of the groove cut into the record, this adjustment is very important, and the $1 / 4$ inch measurement should be made with an accurately calibrated steel scale. If the height of the arm is found to be incorrect, an adjustment of the ARM HEIGHT ADJUSTMENT SCREW should be made so that the lower edge of the front end of the arm is EXACTLY $1 / 4$ inch. To make this adjustment, raise the arm to its vertical position and loosen the lock nut which holds the adjustment screw in position.

The connecting wires from the cutting head should not be allowed to double up between the arm and arm platform, but should feed freely through the hole in the plat-
form as the arm is lowered. Otherwise, the wires doubled up may prevent the arm from coming to rest on the head of the height adjustment screw.

There is little likelihood that the arm height adjusting screw will get out of adjustment due to the lock nut becoming loosened. However, there is the possibility that the recording arm may be roughly handled by the operator. If the arm were to be forced backwards after having been raised to its vertical position,- or if, while being lowered to its horizontal position to the right of the turn-table, the arm were dropped or torced downward, the plate on which all of the recording mechanism is mounted, may be bent or sprung slightly. This would destroy the $1 / 4$ inch height adjustment, and readjustment of the arm height adjusting screw would be necessary to bring the nose of the recording arm to exactly $1 / 4$ inch above the record surface.

DEPTH OF CUT ADJUSTMENT

The depth of cut is regulated by an adjustment of the flat head screw on the top of the recording arm, FIGURE 2.

Turning the screw. to the right (clockwise) increases the depth of cut.

Tuining the screw to the left (counter-clockwise) decreases the depth of cut

Observe that the leads connecting to the cutting head are shaped to form an "S," FIGURE 3, and that these wires are kept in the clear-not touching the balance spring. Also, the wire leads should not be permitted to droop (arm horizontal) so that they will rub on the turn-table.

Make a trial cut of a dozen or so grooves on a blank recording disc and observe the depth of cut by use of a strong
magnifying glass. The correct depth of cut will cause the width of the groove to be about the same or slightly greater than the width of the "land" or uncut portion of record surface between grooves.
In criticalness of adjustment, one turn of the depth of cut adjustment screw makes a noticeable difference in the depth of the groove, therefore, the adjustment should be made in quarter or half turns rather than in complete turns either way.
The thread of shaving cut from the record surface should be firm, although neither coarse and stiff, nor light and "fluffy." The machine is cutting correctly if the total shaving cut from one surface of a $61 / 2^{\prime \prime}$ record, when wadded up or rolled into a ball, is approximately \mathcal{H}_{8} " in diameter.

ADJUSTMENT OF RECORDING ARM MOUNTING

The recording arm assembly is mounted on the upper end of the pivot post (Fig. 7) and held in correct position by means of the two hex-head set screws as illustrated in Fig. 8. In the event the recording arm should become loosened on the pivot post, the vertical position of the arm with respect to the pivot post, and also the horizontal position of the arm with respect to the follower arm should be observed, before tightening the hex-head set screws.
(a) The end of the pivot post should be flush with the bushing on the top side of the arm platform (FIGURES 4 , 7 , and 9) and when the recording arm is lowered to its hori-
zontal position, a small gap should exist between the pivot post bushings X and Y, FIGURE 4.
(b) Place the follower arm in a position so that it touches the follower arm stop located close to the motor underneath the recorder suspension plate, and place the recording arm in a position which allows the cutting stylus to rest on the record approximately $13 / 8$ inches from the turn-table center post. This will provide a maximum playing time of approximately $21 / 5$ minutes for the $61 / 2$ " record, $31 / 2$ minutes for the $8^{\prime \prime}$, and 5 minutes for the $10^{\prime \prime}$ dises.

MAKING A TRIAL RECORDING

After it has been determined that all of the aforementioned adjustments are in correct order, and the machine is cutting correctly, a trial record should be made to determine the correct level of volume for recording.

During recording, the tone control should be set to its treble or high pitch position to avoid the possibility of losing high frequencies in the recording.

In making microphone recordings, place the microphone
at a distance of about 10 to 18 inches for the speaking voice, and at correspondingly greater distances for recording vocal or instrumental musical renditions. When recording speech, the microphone should not be spoken into at close range, as lip sounds and sounds of breathing will be recorded, and because of shock to the microphone diaphram due to sudden bursts of sound impulscs entering the microphone, the voice is caused to be recorded unnaturally.

INSPECTION OF TRIAL RECORDING

After the trial recording has been made, an inspection of the record should be made, both visually and aurally. In viewing the grooves cut into the record surface, it will be observed that modulation laid in the grooves due to the lateral movement of the cutting stylus, caused by amplified electrical impulses fed into the cutting head, have caused the grooves to assume a "wavy" characteristic. It is this "wavy" characteristic of the groove which produces reproduction of recorded sounds, by causing the phonograph needle, during playback, to simulate the lateral excursion of the cutting stylus during recording, resulting in a reproduction of sounds exactly as they were recorded. The magnitude of the electrical impulses reaching the cutting head, governed by the loudness of sounds entering the microphone
and by the degree of amplification of sounds through the audio amplifier, determines the amplitude of the "wavy" characteristic of the groove. It can be seen that the use of too great a volume during recording would tend to cause over-cutting between grooves. If the wall of record material between grooves were cut completely through into the adjacent groove, the playback needle would readily jump grooves and the record would be rendered useless. If the grooves are not completely overcut, although sufficient volume has been used in recording to cause a very thin wall of record material to be left between grooves, the point of the playback needle in reproducing the record would tend to push the thin wall of material over into the adjacent groove. If this occurred, "echo" or "ghost" would be per-
MODELS R70, R7OL
GENERAL INDUSTRIES CO.

INSPECTION OF TRIAL RECORDING (Cont'd)
ceptible in playing the record. "Echo" is the faint repro- reproduction of recorded sound as the playback needle
duction of recorded sound as the playback needle travels travels in the adjacent groove preceding the groove in
uction of recorded sound as the playback needie travels travels in the adjacent groove preceding the groove in
in the adjacent groove following the groove in which the which the actual recording is contained. actual recording is contained, while the "ghost" is the faint actual recording is contained, while the gho

PROPER RECORDING LEVEL

If the recording is made at too low a volume level, the of volume for recording.
modulation laid in the grooves during recording will cause
the grooves to be only slightly "wavy" and the volume pro- If the volume is controlled while recording is in progress, volume control is turned up in playing the record to com- this should be done slowly as any abrupt change in volume pensate for the lack of recorded volume, surface noise recording, the volume control serves only as a means for groove will be quite noticeable After making a few trial sion of instrumental music or vocal selections will be imrecordings, the operator will be able to determine the prop- paired if loud and soft passages are compensated for by either decreasing or increasing the volume.

TONE CONTROL

In playing records, the use of the amplifier tone control \quad which may be accomplished without impairing the fidelity
will be found effective in diminishing record surface noise,

IMPORTANT NOTES

CUTTER HEAD LEADS
The cutting head connecting leads should be kept as short form of a howl or whistle in playing the record, grounding the voice coil circuit will usualiy correct this eads and wires. If any microphonism or audio feed-back is condition.
encountered during recording, which manifests itself in the

> LEVELING OF RECORDER

To derive the best operation from the recorder, the instru- \quad order for the cutting head to be correctly balanced in its
ment should be placed so that the turn-table is level, in mounting.
LUBRICATION
3. Oil the idler wheel bearing, using only one or two
drops of the oil so that it will not run out onto the rubber
af the wheel.
4. The lower motor bearing may be lubricated by saturating the felt wick which surrounds the lower end of the
5. Make an application of two or three drops of oil to
he recording arm pivot post, which may be seen by raising
 post between the two large metal bushings of the recording
arm mounting.

Although frequent oiling of the motor is not required, the use of a small amount of oil judiciously applied, two or three
times a year, will suffice to maintain the equipment in good

1. Remove the turn-table by applying upward pressure 1. Remove the turn-table by applying upward pressure
to the rim of the table, at the same time lightly tapping the end of the turn-table center post with a small tool.
2. Apply several drops of SAE No. 10 pure mineral oil to the side of the motor shaft, allowing the oil to run down
into the upper bearing.

(A) Turntable Shaft.

CUTTING HEAD AND ARM ADJUSTMENTS

There is a possibility that these adjustments may have been altered after mave the proper readjustments
With record blank on turntable, cutting stylus in cutting head and cutting arm lowered on the record, the cutting stylus clamp screw (J) should be
 when the underside of the nose of cutter arm is approximately $1 / 4$ inch
 ten turns should now be made on the record blank. Remove record and hold so light is reflected from surface just cut, then relative width of cut
can be observed.
When properly adjusted, grooves are just about as wide as space between grooves. For readjustments, turn adjusting screw (R) to right or clockwise to increase depth and width of cut and to left or counter clockwise

(K) Adjusting Screw and Lock
cutter arm and record
(L) Retractable Pin in turntable
for driving home recording disc.
(M) Lead Screw.
(N) Follower Arm and Spring lead screw (M) to provide lateral motion of cutter arm during recording.
(O) Adjustable Stop for lateral motion of follower arm.

(P) Rim Drive Electric Motor. Be

 sure Voltage and Cycles are correct(Q) Adjusting Screw for proper tension of spring cam on lead
screw (\mathbf{M}).
(R) Adjusting Screw by which the tension on the cutter head equaliz-
ing spring may be varied for differing spring may be varied for differ-
ent types of records.
HOW TO PLACE RECORD ON TURNTABLE
Place blank record disc on turntable in such a manner that the retractable pin (\mathbb{L}) protrudes through one of the three holes near the center of the record. This is absolutely necessary to prevent the record from slipping place record on turntable-weight of record will cause pin to depress into turntable and friction between record and table is sufficient to prevent slippage.

CAUTION

To obtain best results in playing back Home Recordings, a special needle for that purpose should be used.

HOW TO CUT RECORDS
Start motor, raise cutter arm from rest position to angle of approximately 55 degrees and move inward until white mark on front of cutter arm is just inside record periphery. Lower arm gently as far as it will go-if record is now being cut. Inside limit of travel of recording arm will be indicated by a "clicking" sound, due to follower arm (N) contacting the adjustable stop (\mathbf{O}). When this is heard, raise cutter arm immediately and place on rest (G). During time of cutting, fine threads will accumulate or turntable shaft by means of the thread collector (\mathbf{S}) attached to the inside of the cutter arm.

PHONOGRAPH PLAYBACK

With phonograph reproducing needle in pickup arm (C) start motor and lace arm on record.

(S) Thread Collector.

 wise rotation.(D) Needle Set Screw.
(E) Mounting Holes. Solid mountng, rubber washers or springs may be used when bolting recorder in ion.
(F) Pickup Rest Post.
(G) Cutter Arm Support Rest. Holds cutter arm out of the way
 spring.
(H) Cutter Arm. At all times cutter arm is placed on cutter arm support rest (\mathbf{G}).
(J) Cutting Stylus Clamp Screw.

HOW TO REPLACE NEEDLES

See that needle is securely fastened by means of small thumb screw (D) on the front of the pickup arm (C). We recommend the use of needles $5 / 8$ inch in length. Detailed information concerning length of needles and quality can be had by consulting your local dealer.
HOW TO INSERT CUTTING STYLUS
Raise arm (H) to vertical position, or nearly so, loosen screw (J) and insert stylus or cutting needle in under side of the cutter head, making sure that needle. Then, tighten screw firmly. needle. Then, tighten screw firmly.
Screw (J) should be checked for tightness before each recording as both
screw and cutting stylus are made of a hard material and may become loosened.
Extreme care should be taken to see that cutting stylus does not rest on urntable top or any other metallic object because of its razor-sharp point

MODELS C120, C12OL, GENERAL INDUSTRIES CO.

TOP VIEW WITH TURNTABLE REMOVED

(A) Lever for setting to play 10 -inch or 12 -inch records, Manual playing or Remove records. Mechanism as shown is set for playing 10 -inch records.
Sw "On" and "Off" switch for operating the record playing mechanism. Not used on some models.
(C) Trip mechanism designed to handle automatically records with either spiral run-in or uscillating grooves.
(D) Record Support Fingers.
(E) Turntable Shaft.
(F) Trip Rod Tension Spring.
(G) Adjustment for run-in or spiral-grooved records.
J-1 Adjustment controlling point where pickup needle comes to rest on outside edge of record. See (J).
(J) Screws for locking adjustment $J-1$ Must be loosened to adjust $\mathrm{J}-1$
(K) Trip Rod.
(L) Rubber-tired power takeoff wheel. Through the trip mechanism, this wheel contacts the inside flange of the turntable during the change cycle from one record to the next, but does not operate during the playing of a record.
(M) Pickup Arm.
(I) Mechanism drive-wheel shift control lever
(N) Upper record-handling "slicing" finger
(X) Trip-latch actuated by trip rod "K".
(B) Rubber-bumper stop
(Y) Control-lover holding latch

SC Needle Set Screw-Thumb type set screw supplied on Models C120, C125. Flush type set screw on Models C120L, C125L.
(O) Record Support Arm.
(P) Master Trip Cam.

15 Assemble mounting studs and shock absorbing springs when installing in cabinet.
(R) Reject Button. By pressing this button, changing mechanism operates immediately regardless of needle position on the record. Also by pressing this button, the first record will drop on turntable.
(U) Adjusting screw for setting vertical movement of tone arm. If properly set, no further adjustment will be necessary.
(V) Adjustable Tie Bar used for positioning record support arms. The adjustment of this bar properly made should require no further attention.
H-1 Adjustment controlling position of power take-off wheel (L). See (Y).

H Screws for lucking adjustment (X). Must be loosened to adjust (X).

12 Position for Lever " A " when playing 12 -inch records.
11 Position for Lever "A" for Manual playing or Removing Records.
(w) Drive motor
(T) Pick-up lifting cam
(Z) Holding-latch oamfollower lever
(Q) Record-drop actuating lever
(S) Camshaft
GENERAL INDUSTRIES CO.
MODELS Cl2O, C120L,

MODELS Cl20, Cl 2OL, C125, C125L (20) Dog (G) is set at the factory to trip when the pickup needle

An examination of the pickup positioning cams will reveal spring fingers at the termination of the cam rise. These spring fingers are provided to urge the pickup needle into the starting groove on records which do not have lead in grooves.
 up positioning cam follower is shifted up or down so as to engage the proper cam. The pickup positioning cam follower can easily be distinguished by the coil spring mounted thereon and linking the cam follower to its extension. This co:l spring will extend, preventing damage, if for any reason the pickup arm (M) becomes obstructed while the pickup positioning cam is forcing the pickup arm (M) inwardly.

 outwardly when the mechanism has been tripped.
 to release the pulley latch (Y) thus disengaging pulley (L) from the turntable rim at the completion of the change cycle. On the upper side of the latch control cam is mourted a roller which engages lever (G) and actuates the record
handiing fingers (D) through the connecting links provided. ADJUSTMENT OF SPIRAL TRIP MECHAN ISKi
 of the record, loosen the set screw holding $\operatorname{dog}(G)$ and move the dog (G) away from the end of the trip rod (K). (Read paragraph 20 betore making adjustment.)

sion is being moved each time. Before making any adjustment
it is also advisable to check the set screw in pulley (L) to make sure that pulley (L) is tight and not turning on the shaft which carries it. If latch (Y) fails to hold pulley (L) in position, check the latch to make sure that the latch fingers have not been bent Next check the apring on lever (2) to make sure that the spring is not defective or missing. MECHANISM REPEATS
GENERAL INDUSTRIES CO.

MODELS Cl20, C120L,
GENERAL INDUSTRIES CO. C125, Cl25L

CHIPPING OF RECORDS

(35) The record supports (D) and the record separating fingers (N) are so designed that no chipping of standard records will take place unless through rough handing the fingers (N) become bent. For proper operation the fingers (N) must be perfectly flat. To straighten the fingers (N) it is necessary to remove the large headed screws which hold the fingers in place after which the fingers (N) can be disassembled. Ordinarily straightening can be accomplished by holding the main part of finger (N) through which the clamping screw passes with one hand and then taking hold of the sickle shaped part of (N) with the fingers of the other hand, bending the sickle shaped part until it is lined up with the main body. After bending lay the finger (N) on a flat surface to make sure the straightening has been properly done.

78 R.P.M. Motor.
High quality, tangent tracking, crystal pickup.
Models GI-C120 and C120L available for all A. C. voltages and cycles and for AC-DC.
Models GI-C125 and C125L available for all A. C. voltages and cycles.

Base plate $14^{\prime \prime} \times 14^{\prime \prime} \times 3 / 8^{\prime \prime}$.
Height above lower edge of base plate $5-7 / 16^{\prime \prime}$.
Depth below lower edge of base plate $3-1 / 2^{\prime \prime}$.

C120 - Direct Drive Motor, Standard Pressure Pickup.

C120L - Direct Drive Motor, Low Pressure Pickup.

C125 - Rim Drive Motor, Standard Pressure Pickup.

C125L - Rim Drive Motor, Low Pressure Pickup.
GENERAL INDUSTRIES CO.

(C)John F. Rider
RECORD CHANGE：SEVYICINC
Lever for setting to play 10 －inch or 12 －nch records，Manual ploying or Rermove records．Mechanism as shown is set

＂On＂and＂Off＂switch for operating the record playing
mechanism．Not used on some models．
（3）Trip mechanism designed to handle automatically records
with either spiral run－in or oscillating grooves．
Record Support Fingers．
Turntable Shaft．

Adjustment for run－in or spiral－grooved records．
Adjusting lock screws for controlling position of power take
Rubber－tired Drive Wheel．By means of a spring，this wheel contacts the steel pulley on the motor and the inside flange
Adjusting screws for locking tone arm in position so that

needle will rest properly on edge of record． | D |
| :--- |
| D |
| 号 |

Rubber－tired power taikeoff wheel．Through the trip mech－
 but does not operate during the playing of a record． Pickup Arm．
Record Supter Trip Cam．
Mounting Holes．Rubber washers or springs should be used

 operates immediately regardless of needle position on the
record．Also by pressing this button，the first record will drop on turntable．（1）when playing 12 －inch records． Position for Lever（1）for Manual playing．Removing records
Position for Lever
or Cutting records．
Adjusting screw for setting vertical movement of tone arm．
 The adjustment of this bar properly made should require Rim Drive Electric Motor．Be sure Voltage and Cycles are

 Adjusting Screw by which the tension on the cutter head
equalizing spring may be varied for different types of records． Cutting Stylus clamp screw． Adjusting screw and lock nut for proper spacing between
 duction and also removes all strain on cutter－head equalizing
spring．Full lines show shipping position－dotted，Installa－ tion Position．
Lead Screw．
Follower Arm and Spring Cam．This arm and cam mesh
with lead screw（29）to provide lateral motion of cutter arm during recording．

ふO응
－్ㅓ骨会 웅 જ్ర우 웅

(C)John F. Rider

This Record Changer will play automatically a series of standard 10 - or 12 inch records of the type generally available today, or records of any size up to 12 inches changed manually. This Changer does not require any adjustment by operator for playing different size records. Stacks of mixed sizes may be played but this is not recommended or guaranteed. Records of the last few years with the standard eccentric or spiral finishing groove Aill operate the automatic mechanism.

Before operating the record changer, detach the pick-up arm which is fastened to the record sptndle post for shtpping purposes. Remove the two shipping bolts (the boits with the red heads) which are loccted undernecth the mounting board for the record changer. The record changer should float freety on the mounting sprinye.

This record changer is designed for operation on $110-120$ volts, 60 cycles and will automatically play 12 ten inch records, 10 twelve inch records or a mixed stack of ten and twelve inch records not exceeding a total of ten records.

RECORDS

For automatic operation use only the standard commercial type 10 and 12 inch records which are of unftorm thicknese. Home recording type records or records which are smaller in size and thickness can be played singly by operating the phonograph manually.

The use of records which have become warped, cracied or badly chipped along the edge may cause the changer mechomism to jam and damage the instrument.

Do not leave records on the changer selector blades when not in use as they are liable to warp, particularly so in warmer climates. Keep your records in a record file (album or cabtnet) when not in use.

Warped records may be satisfactorily straightened by placing them between two flat surfaces and prolected on each side by a thin sheet of paper. Place a sultable weight on top and leave in this position for a few days.

CONTROLS AND OPERATION

The control button is located in the lower right hand corner of the motor pamel and is indexed for four positions:-"OFF", "MAN", (manual operation), "AUT", (cutomatic operation) and "REJ" (reject).

MANUAL OPERATION

Pull upward on the record feeder aseemblies and rotate one-half turn. Place a record of either the ten or twelve inch size over the center spindle. Insert a good quallity needle in the tone arm and tighten securely with the thumb screw. Push the switch to the first or "Manual" position which starts the phonograph motor. Then place the pick-up arm over the record with the needle in the starting groove. When the record has been played through, place the pick-up arm in its rest position and slide the control button to the off position.

AUTOMATIC OPERATION

Rotate both record feeder assemblies until they fall into a locked
position. Examine the edge of all records to be played and make sure it ts suitably rounded or beveled and does not have any tmperfections which might cause the selector blades to fail to separate the lower record. Load the center spindle with records limited to twelve $10^{\prime \prime}$ size, ten $12^{\prime \prime}$ size or ten mixed $10^{\prime \prime}$ and $12^{\prime \prime}$ size. Use a long playing type needle when playing a series of records cutomatically.
Move the control button to the "REI" (reject) position and release. The changer will cutomatically play through the entire stack of records, repeating the last record until the control bution is moved to the "OFF" position.

Caution. Do not move the control button to the off position except after completion of the change cycle.
To reject a record before it has been played through, move the control button to the "REJ" (reject) pasition and release. The changer will go through a complete cycle and drop the next record in order.

NEEDLES

High quality needies are important to your enjoyment of phonograph music. Use only long playing chromium needles when playing, several records automatically. Steel needles may be used for a single playing when operating the record changer
manually.
To unload the record stack after moving the control button to the "off" position, lift and turn the record feeder assemblies so that the records may be lifted clear off the center spindle.

ADJUSTMENTS

Caution-Before attempting to make any adjustments on this record changer, it is imperative that the following instructions be carefully read and thoroughly understood.
Three adjustment points are provided to maintain positive action throughout the change cycle.

the positive trip adjustment

The function of the Positive Trip is to start a complete change cycle after a record has been played through. This change takes place when the needie reaches the conventional Eccentric Center Groove or the last concentric groove on records lacking the Eccentric center groove, but which are recorded sulficiontly near the center so that the positive trip comes into operation.
Adjustment of the Positive Trip will be necessary only when the change cycle commences before a standard record has been fully played or when the change cycle lags considerably after a siandard record has been played.

The Positive Trip can be adjusted to operate at a definite point from the center of the spindle in the following manner. Remove the snap button covering the hole on the left side of the pici-up arm pivot. Using a small screw driver turn the screw appearing through this hole. (Caution: This screw can be turned only onehalf turn or 180 degrees. Therefore, slight adjustments are all that should be required). A slight turn to the right or in a clociswise direction makes the trip operative earlier in the plafing cycle or farther from the center of the record. Turning this screw slightly to the left or in a counter-clockwise direction causes the positive trip to operate later in the playing cycle or nearer the center of the record.

PICK-UP ARM DROP POINT ADJUSTMENT

This record changer is provided with an adjustment controlling the position at which the pick-up arm is dropped on the outer edge of the record. This adjustment has a constant relationship for 10 or 12 inch records. Therefore, one adjustment on either size record will suffice. To make this adjustment, remove the snap button on the right side of the pick-up arm pivot and with a small screwdriver, rotate the exposed screw head slightly.
(Caution: This screw also can be rotated only one-half turn or 180 degrees. Therefore, slight adjustments are all that should be required.) Turning to the right or in a clockwise direction causes the needle to drop farther from the edge of the record. Turning to the left or counter-clockwise direction causes the needle to drop nearer the edge of the record. The proper position for the needle to drop is approximately $1 / \theta^{\prime \prime}$ from the edge of the record and in the blank space at this point, that is - in the space at the edge of the record where there are no grooves.)

PICK-UP ARM LIFT ADJUSTMENT

This record changer is designed so that the pickup will start at the proper position on the top record of 12 ten inch records on the turntable. This is based upon the use of a needle which is inserted wth approximately $5 / 16^{\prime \prime}$ protruding from the underside of the tone arm. Adjustment for this is readily available by lifting the plck-up arm to its maximum position. Turning the hexagon headed gcrew thus exposed on the underside of the pick-up arm makes the adjustment. Turning the screw to the left or counter-clockwise raises the operating position of the pick-up arm and turning the screw to the right, or clockwise, lowers its position.

OILING

The motor and mechanism in this changer should not require any oiling under normal operating conditions. Should ofling be
necessary after long hard uscge, a few drops of fine oil on the moving parts should be sufficient.

MECHANISM:

Do not rotate turntable in reverse direction or bend or strain turntable spindle when loading or unloading records.

RECORDS:

Do not use warped records; records with rough, stuare, or uneven edges; records that are extra thin or extra thick.

Do not use other than standard 10 inch or 12 inch records.
Do not leave records on record platforms. This will cause warpage.

C A U TIO N -- Read Carefully

This Changer is designed and built to play standard 10 - and 12 -inch records in good condition automatically. To obtain the benefit of satisfactory operation it is necessary that instructions be followed explicitly and in no case use force, as this may cause damage.

TOP VIEW - TURNTABLE REMOVED

VIEW LOOKING AT RIGHT SIDE

VIEW LOOKING AT BACK

SETTING UP	MANUAL OPERATION:

REPLACEMENT PARTS

 MODELS 201,
202,
203

Spindle Assembly
Feeder Cap Assembly Intermediate Drive Assembly Thrust Bearing Assembly Main Cam Assembly
Record Feed Lever Assembly Record Feed Lever Assembly
Feed Finger Assembly Feed Finger Assembly
Stop Lever Assembly
Sweep Lever Assembly Operators Lever Assembly

 Stationary Record Support Assembly Swinging Record Support Assembly... Turn Table Assembly ……...............
Lift Pin Record Feed Spring Stop Lever Spring
Tone Arm Pull In Spring. Record Support Friction Record Support Friction Spring.
Drive Wheel Tire Drive Wheel Tire
Feed Lever Roller Feed Lever Roller
Intermediate Gear Spacer Spacer for Motor Mounting REFERENCE
(C)John F. Rider

MODEL 220 SERIES

HOWARD RADIO CO.

PART
NUMBER
DESCRIPTION
$\underset{{ }_{\text {PRICE }}}{\text { LIST }}$

302R, 302RT LATE...

HOWARD RADIO CO.

G.I. RECORDER R-70.

302RA LATE... G.I.R-70 RECORDER,
RCA RP-145 OR RCA 139A R/C.

568R G.I. R-70 RECORDER.
568RA G.I. R-70 RECORDER, RCA RP-139A OR RCA RP-145.

general adjustments ON RECORDER MECHANISM.

CUTTING HEAD POSITIONING ADJUSTMENT

The cutting head position has been adjusted properly at the factory, using HOWARD Home Recording Blanks. However, check this adjustment by noticing if the Cutting Needle Locking Screw will locate itself in the Vertical Center of the clearance slot (See Fig. 1), when the record is being cut.

When necessary to change the position of this screw in the slot, loosen locking nut (See Fig. 2) and turn screw "A" to RIGHT to raise needle locking screw; or turn to LEFT to lower.

After any adjustment is completed, be sure to tighten locking nut.

CUTTING NEEDLE PRESSURE ADJUSTMENT
FIG. 3

For quality recordings, it is of vital importance that the right amount of pressure is obtained with the cutting needle. Observe the character of the shaving as the record is being cut. The size of the shaving should be about the size of a human hair (approx. . 003^{n}). If it is too heavy, the groove in the record may be too close to the adjacent groove which would cause distortion. If the shaving appears to be too fine and "kinky", an insupficient pattern will be cut with distortion as a result.
Before making any change in the amount of pressure, FIRST BE SURE THE CUTTING NEEDLE ITSELF IS NOT DEFECTIVE, LOOSE OR MOUNTED WRONG, since the conditions as mentioned above due to improper pressure can also be caused by a defective needle. Check needle ifrst.

When necessary to INCREASE thickness of shaving thread (See Fig. 3) TURN CUTTING PRESSURE adjustment " B^{\prime} to the right. TO DECREASE thickness of shaving thread, turn adjustment to the left.

THE CORRECT HEIGHT OF FOLLOWER ARM IN RELATION TO THE CUTTER ARM is obtained by seeing that the pivot post (which is a fixed part of the follower arm) is flush with the bushing on the top side of the arm platform. See Fig. 4. Also see that there is a small clearance between the pivot post bushings "C" and "D" when the cutting arm is lowered to the cutting position. The two hex. head screws "En - "E" permits both this adjustment and at the same time the very important FOLLOWER ARM ADJUSTMENT IN RELATION TO THE SWING OF THE CUTTERARM as follows: When the follower arm touches the follower arm stop, the cutting stylus should be just outside the edge of the paper label on the Howard Record blanks.

THE BRONZE SPRING ADJUSTMENT ON THE FOLLOWER ARM. When the cutting arm is in cutting position, the bronze spring tongue should seat firmly into the bottom of the spiral groove of the lateral feed screw. This pressure should be great enough so that there will be no tendency of the knife edge tongue to climb out of the thread causing uneven grooves and distortion. However, too much pressure is to be avoided. The screw ${ }^{\prime \prime} F^{\prime \prime}$ controls this tension, and if the spring lipts itself away from the tip of this screw in the cutting position, it indicates too much pressure. This may also be caused by the follower arm being too low or bent downward for some reason.

END PLAY ADJUSTMENT OF LATERAL FEED SCREW. Loosen locking nut for screw "G"; turn screw slowly to right until the end play cannot be felt; reverse screw slightly to left to allow running clearance, and tighten lock nut.

302R, 302RT LATE...
G.I. RECORDER R-70.

HOWARD RADIO CO ${ }^{568 R}$ G. I. R-70 RECORDER.
302RA LATE... G.I. R-70 RECORDER, RCA RF-145 OR RCA 139A R/C.

MIC. CIRCUIT GROUNDED

THE MASTER SWITCH
with which these features are selected, has seven positions as follows:

1. Radio
2. Record Radio \& Microphone
In the "Duplisate Record" position, the tuningeye is again in the circuit, for indication of proper cutting level, the cutting head circuit is complete, and the duplication is made from the original blank in position on the automatic turntable. The microphone is in use for another superimposed registration 11 desired.

With our automatic record changer models when duplicating from a small $6 \frac{1^{\prime \prime}}{}$ record, due to the fact that this record, having a small surface, 1s liable to slip on the turntable, we have provided a spring finger that slips over the spindle that locks this record in place.

All chassis models have the input socket for the automatic changer pick-up, or if the model is not equipped with the automatic changer, a conventional turntable and crystal pick-up may be plugged into this socket and the duplication of the record can be accomplished.

In the "Record-Radio \& Mic." position the radio circuit remains the same as in "Radio" position. The microphone circuit becomes effective as the short 19 removed from the Mic. Gain Control. The The percentage of radio and/or microphone $1 s$ then controlled with the dual control feeding the GQ7CT Audio and the Mic. Gain Control.

The 605 now becomes the visual amplitude indicator of the recording voltage. The voltage is taken from the output plate (BV6), rectified and applied to the grid of the 6U5.

The cutter head circuit is completed.
THE PROPER VOLTACE LEVEL FOR THE CUTTING OPERATION IS VERY IMPORTANT. TOO HIOH A LEVEL AS INDICATED BY. THE CONTINUOUSLY OVBRLAPPING OF THE TUNING-EYE RESULTS NOT ONLY IN FEED-BACK, BLT ACTUAL OVERCUTTTING OF THE RECORD, RESULTING IN DISTORTION. HOWEVER, IT SEEPS THAT THE GENERAL PRACTICE IS FOR THE OPERATOR TO MORE OFTEN
"UNDERCUT" THE RECORDING BY NOT PROVIDING, SUFFICIENT CUTTING VOLTAGE. THIS RESULLTS IN A HIGH BACKGROUND LEVEL AND POOR QUALITY.
The series condenser (.002) in one side of the cutting head circuit is a controliling compensator for high response when recording. Increasing the value of this condenser will increase the high frequency effect in recording.

In the "Record Mic." position, the radio diode circuit is opened, the bias circuit is opened at the mixer tube, cutting out the radio, and cutting head circuit is closed.

W1th the Howard "RA" Series, the automatic changer is included. With the switch in this position the audio system remains the same as in "Play-Back" position, except the pick-up arm of the changer is in use.
A pilot light is switched on over the changer unit when switch is in this position.

In the "Play-Back" position the pick-up connects to one section of the dual volume control from which the audio output is regulated in the conventional manner.
The resistor directly in shunt with the play-back or pick-up circuit is a compensator controlling the low frequency response at "Play-Back" position. Decreasing this value will decrease the low response.

MODELS RC-4, RC-5, RC-6, RC-8
Series

THE MAGNAVOX CO. INC. LUBRICATION

MODELS RC-50, 50C, 50X,
RC-51, 51C, 51X

The motor should always be well lubrioated as noise will develop is the bearings are allawed to run dry. All bearings are of the oil-retaining type and with average use, will require lubrication about once every three months. All oiling holes are accessible when the turntable is lifted from the motor spindle and are indicated on Fig. 1.

The pickup pivot is fitted with ball bearings and should be oiled only if it shows signs of sluggishness in moving into the playing grooves after it has lowered to the record. A few drops of very thin oil will be sufficient.

THE AUTOMATIC TRIP
The automatio trip plays an important part in the operation of the record ohanger, and upon the certainty of the automatic trip ooming into aotion, dea pends the whole operation of the reoord ohanger. The autcmatio trip meohanism will operate on all makes of reoords having a "run-off" groove, either eccentric or spiral.

OPERATION OF THE AUTOMATIC TRIP

The trip lever "A" Fig. 1, is connected to the piokup arm through a serios of levors and is moved forward towards the main spindle, a distanoe proportional to the advanoe made by the piokup. The striker arm "B" Fig. 1, is fitted on the main spindle in order to push baok the trip lever, preventing the automatic atop from funotioning while the record is being played. When the piokup reaches the ond of the playing grooves and is ourried into the "run-off" grooves, the movement transmitited to the trip lever is too great to allon its being pushed back by the striker arm. The striker arm then oontacts the metal trip lever which in turn operates the ohanging meohanism.

If the autamatio owitoh does not operate at the ond of the last reoord, make cortain that all of the levers are free and that all the springs are in place. Also make cortain that the turntable spindle is free in the main spindle -It should nove about $1 / 8$ " when depressed and shoula rise the same distanoe when released. This test should be made while the ohanger is in the ployine positiion. Switch tripping adjustment can be obtained by means of a amell quadrant adjustment on the top of the spindle operated by lever "p" Fig. 2.

STRIKER ADJUSTMENT

The correct functioning of the trip mechanism depends on the rubber busning " H^{\prime} Fig. 1, on the trip lever arm "G". When the bushing becomes badly worn, a tapping sound will become apparent, and the trip lever may operate before the end of a record. This condition may be corrected by turning the rubber bushing on the spindle in order to present a new surface to the striker arm " B ".

FRICTION ADJUSTMENT

If the changer fails to operate at the end of erecord, the reoord spindle should be removed, the turntable lifted fram the motor shaft so that the friotion adjusting screw "B" FiE.l, may be readjusted. Before adjusting this sorew it is advisable to make certain that the operatine trip lever "A" is not rubbing on the base plate, setting up additional friction.

To adjust the friction, give the friotion adjusting sorew "E" a small turn in a oounter olockwise direction to increase the friotion. If the changer trips before the piokup hus reaohed the end of the playing grooves, or if a bumping noise is heard in the speakers, the friction adjusting sorew should be turned in a clockwise direction to decrecse the friotion. This adjustment is very sensitive and the sorev should be turned not more than a quarter of a turn at one time.

PICKUP ARM ADJUSTMENT

On some records, the playing groove may start farther from the center than on standard records, and in these exceptional instances, the needle would contact the record a few grooves in, and not on the smooth surface. If the pickup arm was set for these exceptional records, the pickup would not be lowered on to the edge of normal-sized records.

Should the lowering position of the needle require adjustment, the turntable should first be turned by hand to bring the pickup fram the loading position to the point where the needle has dropped to within $1 / h^{\prime \prime}$ of the record. The screw "N" Fig. 3, which is accessible through a hole in the motorboard should be turned either to the right or to the left according to the requirements -- a quarter turn in either direction will give the maximm adjustment obtainable. The adjustment should then be ohecked by operating the changer and noting the lowering position of the pickup.

When making any adjustments to the pickup arm, it should never be forced into position and when the turntable is turned by hand, it should never be turned other than in a clookwise direction.

MCDELS $\begin{array}{r}\text { RC-4, RC-5, } \\ \text { RC-6, RC--8 }\end{array}$ Series

If the pickup is lowered so that the needle contacts the smooth surface of the record and does not run into the playins grooves, aheck to make certain that the motorboard is level. Then check the lead to the pickup, making certain that it is not twisted in any way to prevent free movement of the amm Also check levers "Q" and "R" Fig. 3, to see that they are free, and that the pin at the end of lever "Q" is not rubbing on the bottom of the cam grooves. If required, the pickup height can be adjusted by loosening the set screw in the pickup arm counter-balance weight "M" Fig. 2, and turning the weight while holding the spindle.

THE MAGNAVOX CO. INC.

OPERATING INSTRUCTIONS

This reoord ohanger plays eight twelve-inoh reoords or eight ten-inoh reoords (not intermixed) automatically, and the ohanger stops operating af ter the playing of the last record. A record may be rejeoted before playing the entire selection, by turning the right-hand knob on the motorboard, to the REJECT position.

To operate the ohanger, first turn the left-hand knob on the motorboard so that the indioator is pointing to the 10-inoh or the 12-inoh designation, depending on the size of the records to be played. With the record spindle in position -- angling seotion toward the record platform -- place from one to eicht reoords of either the ten or twelve-inoh type on the record spindle. Rotate the right-hand knob on the motorboord to the START position, placing the ohanger in operation.

THE MAGNAVOX CO. INC.

Illus. No.	Part No.
2.	150017
5.	101468
6.	630015
9.	630099
10.	630016
11.	630042
12.	$1{ }_{4} 0002$
13.	630098
	101192
	630014
	467690
	500013
	50001_{4}
	569659
	102044
	101469

PARTS PRICE LIST

Description
Price
Cartridge retainer plate 05
Tone arm pivot pin .05
Bakelite tone arm base .55 Tone arm only $\quad 2.30$ Record spindle 1.75

Turntable only 3.00
Bakelite oontrol knob .40
$\begin{array}{ll}\text { Record platform } & 1.75\end{array}$
Needle oup . 20
Striker assembly $\quad .65$
Shielded pickup oable per ft. . 05
Field coils for A.C. changer pair 3.00
Field coils for AC-DC changer, pair 5.25
$\begin{array}{ll}\text { Crystal oartridge only } & 5.00\end{array}$ Cartridge exchange price
2.00

Needle screw $\quad .10$
1/8" ball bearings -- per set of 30 . 40

FOR ADDITIONAL PARTS
$S E E$ GARRARD
all prices subject to change without notice

MODEL RC-10
MODEL RC-50

TYPE RC 50 DE LUXE "MIXXR"

THE MAGNAVOX CO. INC.

© John F. Rider

THE MAGNAVOX CO. INC.

FOR OTHER DATA
SEE GARRARD RC-10 SERIES

© John F. Rider,

THE MAGNAVOX CO., INC.

OPERATING INSTRUCTIONS
This rooord ohanger plays oight 10 and 12 -inoh rooords, intermixod in any order autarstioelly, end the ohanger stops operating after the playing of
the last record. A record may bo rojeoted bofore playine the ontire solootion by turning the motarboard knob to the REJECT position.
 til it reste on the top rocord. Turn the piokup head one-haf turn arim a oounter olookm so dirootion and insert a phonograph noedio, roturning the
 position may affeot the moohanian.
Turn the motarboard knob to the START position, sotting the ohangor in opora-
tion. Bo suro to hold the knob in this position until the mot or has otertod and beoonos orrgeged with the ohanger moohand san. Should the ohangor be tortop
 1nposod an tho motar when it is stoppod in suoh a position. If it in dosired
to stop the motor at any time, it may be done by rotating the motarboard knob to the srop position. BINDING
 in the stop levor. Loosen the set-Acrows mid nove the stop forme a amount. Tighten the set-porews and ohook the adjustmont. If the noohanism till binds, the stop lever should be advancod a 11 titio more. Thit position
1s quito oritioal and the lover ahould not bo moved more than $1 / 32$-inoh during oach adjustmont. 10, RC-11, $\mathrm{RC}-30, \mathrm{RC}-31, \mathrm{RC}-10, \mathrm{RC}-41$
THE AUTOMATIC TRIP
obanger, and upon the oortainty of the eut omatio trip coming into aotion, do-
pends the 1 man will operate on all makes of rocords having a "run-off" groove, oither operation of the automatic trip
The trip lever "A" Fig. 1, is oonnootod to the plokup arm through a serios of to the adranoe mado by the piokiup. The strikor arm "B" Fig. 1 , is fitted on tha nain apindle in ordor to push took the trip lever, proventing the auto-
matio totop rron funo toring while the rocord io heing playod. When the plokmp reaches the ond of the playing erooves and is oarritid into the run- porf"
uroves, the movement tranemitted to the trip lever 18 too groat to allow 1 to
 notal trip lever whith in turn ojerates the ohanging mechandsm.
If the ohanger falls to pierate at the ond of a rooord, the reoord spindlo tion adjusting sorem " $\mathrm{g}^{\mathrm{n}} \mathrm{FI}_{1 \mathrm{~g} \text {. } 1 \text {, nay be readjuated. Bofore adjusting this }}$
 not rubbing on the base plato, rotting up additional friotion.
To adjust the friction, give the friotion adjusting sorer " ${ }^{n} E^{n}$ a small turn in
oountor-0lookwise direotion to inorease the friotion. If the changer trips bofore the piokup has rached the ond of the playing grooves, or if a bumptarned in a olockrise direction to deorease the friotion. This adjustment la very sensitive and the sorew should be turned not more than a quarter of turn at one time.

FOR ADDITIONAL PARTS S ET GARRARD		PARTS PRIGE LIST	
Illus. No.	Part No.	Description	Prioe
1.	560022	Crystal cartridge	3.90
2.	630409	Cartridge retainer plate	. 06
3.	101527	Sorew for oartridge retainer plato	. 01
4.	101687	Composition apaoer	. 05
5.	630398	Cartridge retainer bracket	. 10
6.	520029	Cartridge housing with plates	2.65
7.	520163	Tone arm only - less cartridge housing \& base	- 2.30
8.	620052	Bakelite pickup receptaolo	. 10
9.	101571	Piocup reoeptaole screw	. 05
10.	520157	Pivot bearing sorew	. 10
11.	520158	Sot sorew for 520157 screw	. 05
12.	520166	Tone arm bracket and spindle	1.00
13.	660007	Tone arin counterbalance	. 35
14.	100654	Sorew for counterbalance	. 05
15.	520161	lifting tube spring	. 25
	520165	Pall hearing for tone arm pivot	
16.	520030	Lifting tube	. 50
17.	101639	Phillips-hoad needle sorew	. 05
	101648	Knurled-head needle sorew	. 10
16.	520187	Lifting tube weight	. 50

MISCELLANOUS PARTS

520155	Kocord spirdle	1.75
620202	Turntablo	3.00
101192	Noedlo oup	. 20
630014	Striker assembly	65
450051	Shielded piokup oable per	ft . . 05
500048	Fiold ootls for AC changer per	pr. 3.00
500049	Fiold ooils for AC-DC ohanger	5.25
101511	Cotter pin terminals	. 05
520168	Overarn assembly	1.75
520036	Rubber bumper for overarm	. 02
520016	Tone arm rest	. 0
520037	Rubber bumper for tone arm rest	. 02
520023	Rubber bumper for trip lever	. 05
520033	Turntable shaft and gear	2.00
500108	A.C. motor only	28.50
103731	\#10-32 \times 3-inoh motorboard mounting sorews	. 05
109134	Light mounting springs	. 05
109135	Heavy mounting springs	. 05
520051	Sorew for pushing pawl angle braoket	. 05
520027	Pushing pawl	. 25
520028	Screw for pushing pawl	. 05

MODELS $R C-30$, $R C-31$ THE MAGNAVOX CO. INC.
MODELS $R C-40, R C-41$

(C)John F. Rider

MAGINAVOX MODEL $\operatorname{k-40}$
FOR OTHER DATA SEE GENERAL INDUSTRIES MDDEL C-120

		PARTS LIST
520127	Spring	Presaure spring holding trip rod against ratohet
520128	Gear	Pibre gear only as used in motor
520129	Spindl*	Reoord mpindle complete with fibre gear
500099	Motor	Notor for M-25 reoord ohanger
560022	Cartridge	Crystal eartridge only
520130	Pulley	Rubber idler pulley
520131	Rod	Tone arm lifting rod
520132	Wesher:	Spring olip washers used in mochanism
520133	Spring	Small apring used above motorboard
520134	Spring	Modium apring used above motorboard
520136	Spring	Large spring used above motorboard
520136	Finger	Trip finger for trip rod
520137	Tarntable	Turntable for M-26 changer

MAGNAVOX MODEL M-60, M-70

PARTS PRICE LIST

FOR OTHER DATA SEE VEBSTER-MODEL 40
Part No. Description Price

500096	Motor, 117 Volt, 60 cycle	\$11.75
500097	Motor, 117 Volt, 50 cycle	13.00
520101	Rubber motor coupling	. 75
520102	Tone arm lift pin	.15
520103	Complete clutch assembly	2.15
520104	Top cork for clutch	. 06
520105	Middle cork for clutoh	. 05
520106	Bottom cork for clutch	. 05
520107	Turntable only	3.25
520108	"C" washers for mechanism	. 01
520109	Record separator knife	. 60
101639	Phillips-head needle screw	. 05
101648	Standard needle screw	. 05
800013	Wrench for Phillips-head needle screw	. 15
800017	Allen wrench 3/32" for mechanism	no charge
800016	Allen wrench 6/64 ${ }^{\text {" }}$ for mechanism	no charge
560023	Crystal cartridge only	3.60
520111	Return lever and bracket assembly	.45
520112	Recording head tension spring	. 15
520113	Recorder arm for Model M-70	1.70
520117	Push button "START-REJECT" knob	. 10
520118	"MANUAL-AUTOMATIC" pointer lmob	. 40
620119	Record spindle and gear assembly	4.00
520120	Complete switch assombly	2.60
520121	Tone arm "pull-in" spring	. 05

ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Occasionally a record may stiok to the spind1e and not drop to the turntable
as it should, The rocord may be oxeosivile thick and must be remoded frcm the angle in the spindle is not sufficiently wide to let the record silde into place. Never attempt to file this grove as it will then be possible for
two thin" rocords to drop to the turntable at one time.

If the spindlo should be bent, it wil1 either cause records to stick, or more than one record to feed to the turntable at one tine de depending on the direc
tion of the bend. Extreme carre should be used fo bend ng the spindo back into position, should this becone necossary, as it may be braken vory easily. BINDING
If the mechanism should bind during operation, it may be possitio to froe it by dopressing the pushing pawl "12 Figure 4, and allowing the piokup to come
to the reat position. rurn off the motor, side the nameplate that covers the meohaniss in the rocord platform, from its holdor, oxposing a small set-

 dur lng oach ad justment.

If the mochaniem should bind as a result of the turntable be ing rotated
manually 11
is probably caused by the fact that the motor end-tear ing has
 ing the motor governor set-screws to strike the main gear or the motor. To correct this condition, 100 one the sman 11 sot-sorow that holds the motor
end-bearing in place -- located adjacent to the neme-plate on the motor frame - pross the baring in as frar as it will go, and tighton the sot-
scrow. This ad fustment should pormit the motor to operate proper 1 y , how

 equal at all points. PICKUP
 is heard men the piokup is usod and the radio 18 opporating propor 1 y , it 1 is

 TO REMOVE THE CHANGER FROM CABINET

When romoving the rocord changor unt from the cabinot, first romove tho two
connocting cords from the rad 10 chasala by withdrawing the ir pluge fram the connocting cords from the rad 10 chasis by withdrawing the ir plugs fram the
sockets. Remove the nuts and springe from the four mounting gecrows and 11 ft
the the unit from the cabinet. When replacing the mechan 1 sm, bo sure that the

LUBRICATION
 A.C. MOTOR

 ofling holes aro accos

The tono arm pivot 1s fittod with ball boarings and ehould bo oflod only if it
shows aigns of gluggishnoss in moving into the playing grooves aftor $1 t$ has lowerod onto the record. A few drope of very thin ol wwill be urffiopent. A holpful but should be neceassary not oftenar then once a yoar.

A.C.-DC. MOTOR

 The Ac motor. If the brushe are allowed to become dirty and worn, bruah noise the motor body and pul11ng out the brushes by means of the springs. The brushos can be cleaned by sanding them with \&fine grade or sandpaper or croous cloth
and cloening the duast from the surface bofore replacing them. It to fimportant and the brushos be replecod in the same way in which they were originally in-

RECORD DROPPING AND SELECTING

If the first record does not drop when the changer 18 avitohed $O N$, this 18
due to the leather brake pad becoming worn end not breaking the turntable due to the loather braxe pad becoming worn and noted. To ad dast this pad,
 chock to soo that the esitch breaks contact beforo the loa ther brake pad
thenches the turntabie rin If the rocords do not drop properly, it is possiblo that the forkod arm is
sorung to the right, proventing the pushing pawl ${ }^{12}$ " Fig. 4 from pushing sprung to the right, proventing the puahing pawl ind Fig. Apom phe forked rocord contacts the smooth surface of the record platform. The vertical ${ }_{1}{ }^{n}$

If the reords do not food properiy from the spindle, it is possible that
the horizontal motion of the record plationm is not suffictent to push the

 Noow, chock the adjustrent by operating the mechan 1sm. If the omotion of the bushing should be turned a fow revolutions to furthar leng thon tha lover arm, however, it 1s not probebie that a second adjuatment will be requirod.

THE MAGNAVOX CO. INC

SPEED ADJUSTMENT

Due to the differences of line voltages in various localities, a slight adjustment of the s peed indicator lever (that projects from the edge of the turntable) may be necessary. To make this adjustment, first set the motor 8 peod to $78 \mathrm{r} . \mathrm{p} . \mathrm{m}$. using the stroboscope disc (on AC models) furnished with the unit, in making this adjustment. To set the speed on the AC-DC unit, operating on direct current, place a piece of paper under a record on the turntable and count the revolutions in a period of 30 seconds. If there are more or less than 39 revolutions, the speed adjustment lever should be moved a slight amount in the required direction, and the process repeated.

After the motor has been set at 78 r p.m., the turntable should be removed and the quadrant screw (under the spindle on the speed-control lever) should be loosened very carefully and the lever moved until the pointer is in position on "78" on the indicator plate, holding the quadrant stationary while making this adjustment. Now tighten the quadrant screw and replace the turntable.

THE MAGNAVOX CO. INC.
MODELS RC-50, 50C, 50X, RC-51, 51C, 51 X

WODEL $\mathrm{M}-4$
MODELS RC-50X, RC-51X
THE MAGNAVOX CO., INC.

PRIGES SUBJECT TO Change without notice RC- $\underset{\substack{\text { FOR } \\ \text { ADDE } \\ \text { SETHIONAL } \\ \text { GARPARD }}}{\text { PARIS }}$
Illus. No. Part No. Description

Price

1.	560022	Crystal cartridge	3.90
2.	101651	Reteiner plate screw	. 01
3.	101639	Phillips needle screw	. 05
4.	101527	Retainer plate screw	. 01
5.	660006	Tone arm weight	. 40
6.	101659	Tone arm weight serew	. 05
7.	630099	Tone arm only	2.70
8.	101660	Lifting tube spring	. 05
9.	520047	Tone arm bracket and spindle	. 70
10.	520030	Lifting tube	. 75
11.	101468	Tone arm pivot pin	. 05
12.	520053	Screw for pivot pin	. 02
13.	630331	Retainer plate	. 10
14.	630339	Lifting tube weight	. 20
15.	101652	Composition spacer	. 02
16.	520052	Plickup receptacle	. 15
17.	101571	Pickup receptacle screw	. 01

FIG. 5

Crystal cartridge 3.90
Reteiner plate screw . 01
lps noedlo screw
Tone arm weight . 40
Tone arm weight screw . 05
Tone arm only 2.70
Lifting tube spring . 05
Tone arm bracket and spindle .70
05

Retainer plate . 10
Lifting tube weight . 20
Clopition spacer . 15
Pickup receptacle screw . 01

MODEL $\mathrm{N}-4$, FOR OTHER DATA SEE RCA RP-139A

PART PRICE LIST
 MODEL $\mathrm{N}-4$

560012
101539
520011
630217
520012
500047
467690
520013
520019

Cryatal oartridge only 5.95
Neodie sorew only .15
Motor awitch .40
Turntable only 2.80
Springs, oomplete set for meoharism .60
Motor and spindle, 110 V .78 r.p.m. 60 oycle 18.50
Shielded pickup oable per ft. . 05
Large "C" washer for mechaniam
Smail "C" washer for meohanism RC-51C

RC-50C PARTS LIST

1.	560022	Crystal cartridge	3.90
2.	101527	Retainer plate screws	.01
3.	101639	Phillips needle screw	.05
	101648	Knurled nedle screw	.05
4.	630409	Cartridge retainer plate	.20
5.	660010	Tone arm weight	.30
6.	101254	Tone arm weight screw	.05
7.	100991	Tone arm weight screw	.06
8.	630390	Mounting bracket	.10
9.	101687	Composition spacer	.02
10.	520162	Tone arm only	2.75
11.	520161	Lifting tube spring	.05
12.	520160	Tone arm bracket and spindle	.75
13.	520159	Lifting tube weight	.20
14.	520030	Lifting tube	.75
15.	520052	Bakelite pickup receptacle	.15
17.	101571	Pickup receptacle screw	.01
18.	520157	Pivot bearing screw	.05
19.	520158	Set screw for pivot bearing screw	.05
20.	630398	Cartridge retainer bracket	.10
	520165	Ball bearing for tone arm pivot per pr.	01

all prices subject to change without notice

OPERATING INSTRUCTIONS

This changer is equipped with a constant-speed self-starting motor. Under all normal conditions, it starts automatically and rum at correct speed.

Each changer is designed to operate only a specific voltage and frequency (cycles). Be sure to look at your serial plate -- at the rear of the cabinet -- to make certain that the instrument conforms to the power supply, before plugging in the supply ∞ rd.

This mechanism a utomatically plays up to s ixteen ten-inch records or twelve twelve-inch records, or fourteen ten and twelve-inch records intermixed.

AUTOMATIC OPERATION

1. Place records on shelf plates which should be in a horizontal position.
2. Set pointer to A.
3. Push down red START-REJECT button.
4. To reject a record not desired, press the red START-REJECT button when the record starts to play.
5. The changer will stop automatically after the last record has been played.
6. DO NOT HANDLE THE TONE ARM.
7. The changer may be turned off at any time, by depresiing the STOP button on the motorboard.

REMOVING PLAYED RECORDS

First see that the motor has been switched off. Then grasp the played records and lift them from the turntable. It is not necessary to raise the shelf plates before removing the records as the shelf plates will be tilted so that only the edge of the stack of records come in contact with a special runner on the bottom of each shelf. The changer may then be loaded with a new stack of records.

MANUAL OPERATION

1. Set pointer to M.
2. Raise the shelf plates to place record on turntable.
3. Press red START-REJECT button to start the motor.
4. Lower the tone arm to the first groove of the record.
5. When record is completed, place the tone arm on its rest and press STOP button to turn off the changer motor.

LUBRICATION

The changer should be lubricated once a year with a few drope of a good grade of light machine oil at each of the following points: Oil holes in motor gear housing, turntable spindle bearings, and all other bearing points.

Also apply a generous amount of lubricant to the idler gear at regular intervals. NEVER OIL THE CORKY FRICTION CLUTCH OR IDLER PULLEY WHEELS AT ANY TDE, AS IT WILL CAUSE SLIPPAGE.

CARE OF RECORDS

Records may safely be left stacked directly upon each other on the turntable, but should never be left resting on the shelf plates of the changer. This three-point support, while best for its purpose, is not at all suitable for record storage.

THE MAGNAVOX CO.

Adjustments Nos. 1,2 and 3 can be made from above the motorboard and it is not necessary to remove the changer from the cabinet.

ADJUSTMENT NO. l -- ADJUSTING LANDING POSITION OF NEEDLE ON RECORD

The position at which the needle lowers to the record can be adjusted by inserting a screw driver through the hole (BJ) located just to the rear of the tone arm (shown in Figure 2). For adjusting the lo-inch set-down, insert the screw driver into the inside eccentric adjusting stud. For adjusting the l2-inch set-down, insert the screw driver into the outside slotted stud (see Figure l). Turn very slightly clockwise or counterclockwise to move the needle landing in or out.

ADJUSTMENT NO. 2

ADJUSTMENT NO. $2-$ - TONE ARM HEIGHT ADJUSTMENT
To adjust the height of the tone arm, insert a screw driver into the stud (AY) on Figure 2. The stud should be turned in a clockwise direction to lower the arm and in a counterclockwise direction to raise it. The tone arm elevating pin presses egainst this adjusting stud which should be adjusted so that the distance between the point of the needle in the pickup and the turntable surface is $13 / 8$ to $11 / 2$ inches which is the equivalent of approximately sixteen ten-inch records.

THE MAGNAVOX CO.

ADJUSTIENT NO. 3 -- ADJUSTMENT FOR CHANGER PLATES

To adjust the distance between the selector plate ($B A$) and the shelf plate ($B C$) for 10 -inch records, first select a flat 10 -inch record that is approximately . $075^{\prime \prime}$ thick. Then position it on the changer and start a change cycle to revolve the changer plates. Stop the turntable by hand just as the selector plate (BA) is about to touch the record, and shut off the motor (see Figure 4). Then slowly revolve the turntable by hand, allowing the sem lector plates to contact the odge of the record so that it just slides over the record, touching the surface lightly. Check all three selector plates and if adjustment is necessary, it can be done by inserting a No. 10 Allen wrench (Magnavox Part No. 800017) in the set screw holes located in the sides of the changer posts. Turn the set screw slightly clockwise to raise the selector plate and counter-clockwise to lower it. The set screw for adjusting the 10 -inch record setting, and the one for l2-inch record setting are shown above in Figure 5. To adjust for l2-inch records, select a flat 12-inch record that is approximately $.090^{\prime \prime}$ thick; then follow the same procedure as for adjusting for 10 -inch records. After the correct adjustmente have been made tighten the lociring callers securely.

ADJUSTMENT NO. 4

THE MAGNAVOX CO.

MODELS M-61, M-71
THE MAGNAVOX CO.

Flace one ten-inch record on the record shelves and start the change cycle, allowing it to continue until the blades are just about ready to drop the record. Using the master post as a standard, synchronize the remaining two posts so that the record will drop evenly. This is done by loosening the screws on the tape clamps (see Figure ll). Adjust the changer plates to synchronize with that of the master post so that the record will drop evenly. The tape line should have a very slight amount of slack. Check by grasping the tape line with the thumb and index finger moving it in and out approximately $5 / 8$ inch with a moderate pressure.

ADJUSTMENT NO. 9 -- RAISING LEVER PRESSURE ADJUSTMENT
To make this adjustment, first put the mechanism into a change cycle and stop it when roller (CD) -- see Figure 14-- is at the highest point on cam (FK); then loosen the lock nut and turn adjusting screw (BR) under the flat lifter spring clockwise until the tone arm elevating pin (FF) and tone arm shaft (FX) are completely raised, holding the clutch assembly firmly in the "high" position and only slightly deflecting the flat spring. Then tighten the lock nut and check the operation.

CAUTION: Never attempt to loosen the two Allen-head set screws in the tone arm collar except when it is necessary to disassemble the clutch for the replacement of parts. Be sure that there is a vertical clearance of $3 / 64$-inch as shown on Figure 14 . This is accomplished by inserting a $3 / 64^{\prime \prime} \operatorname{shim}$ (Magnavox No. 800036) between the shaft collar and bearing washer. Then with the clutch assembly in the "high" position, as mentioned above, tighten the set-screws in the collar to the shaft and remove the shim. Use 5/64-inch Allen wrench (Magnavor No. 800016) for making this adjustment.

ADJUSTMENT No. 10 -- SETTING CAM ADJUSTMENT

Start a change cycle and release a 10-inch record to the turntable -- shut off the power by depressing STOP button (CB) when the stop lever contacts the stud as shown in Figure 15. By means of the adjusting screw (CG) set the stop lever so that there will be at least $1 / 64$-inch overlap on the eccentric studs. If there is not sufficient overlap, the stop lever will slide off instead of holding on the eccentric studs while measuring the tone arm lowering position. If there is too much overlap, the stop lever will not release the tone arm and allow it to track in on the record after the change cycle is completed.

THE MAGNAVOX CO.

mISCELLANEOUS NOTES

A. If the changer continues to cycle without playing the record, set the switch knob to the "M" position as for manual operation. Then set the switch knob back to the " ${ }^{\prime}$ " position for automatic operation. If this does not correct the troub-
 le, the hook on the trip lever shown in the sketch should be bent nearer the intermediate gear.
B. If the motor continues to operate after the last record has been played it is probable that the mercury switch is out of level. Either the cabinet is not setting on a level floor or the mounting springs for the changer require adjustment to level the motorboard.
C. Whenever the turntable is remaved from the changer and replaced it is necessary to rotate the turntable by hand for a few revolutions so that the id ler'pulleys can properly contact the inside rim of the turntable.
D. If the turntable is slow during operation, it is probable that it is being driven by only one of the idler pulleys. Remove the turntable and slide each of the idler pulley assemblies -- see Figure 12 -- to make certyin that they do not bind at any place. Be sure that the tension springs are in place and do not hinder the free movement of the idler pulleys.
E. If records jam the mechanism when being dropped to the turntable and the blade adjustment No. 3 has been properly made, the cause is most likely to be off-size or defective records. Properly manufactured records have a uniform semi-circular edge which can be successfully handled by the changer even though the records vary in thickness. Records that prove troublesome in the selecting process can usuelly be corrected by using a piece of fine sand paper to round un tie edges.

© John F. Rider

(C)John F. Rider

THE MAGNAVOX CO.

	PRINCIPAL TROUBLE SYMPTOMS	CHECK ADJUSTMENT
a.	Changer fails to trip after playing record while set on "A" automatic position.	Nos. 4. 8.
b.	Trips too soon or before record has finished playing.	$\begin{gathered} \text { See Miscel } \\ \text { Notes. } \\ \hline \end{gathered}$
c.	Tone arm lifts imediately without playing record or continues cycling.	See Miscel. Notes.
d.	Tone arm lifts but does not swing out properly.	Nos. 8, ${ }^{\text {\% }}$
${ }^{\ominus}$.	Tone arm falls off record or misses record completely.	No. 1.
f.	Tone arm fails to pall into first groove on record properly.	No. 10
g.	Tone arm lands ton far out or in on record.	Nó. 1.
h.	Tone arm lands in middle of record.	No. 10
1.	Tone arm fails to clear stack of $1610^{\prime \prime}$ rocords.	No. 2.
j.	Tone arm lands for $10^{\prime \prime}$ record even on a $12^{\prime \prime}$ record.	Nos. 5, 6.
k 。	Records jam.	$\begin{aligned} & \text { Nos. } 3,5 . \\ & \text { Miscel. Notes. } \end{aligned}$
1.	$12^{\prime \prime}$ record is not dropped by one of shelves.	No. 5.
m.	One or more shelves drop 2 records at a time.	No. 3.
n.	Changer fails to turn off automatically after playing last record.	Nos. 4, 9.
\bigcirc	Records drop unevenly from shelf plates to turntable.	No. 7 .
P.	Motor speed is not constant.	See Miscel. Notes.
q.	Motor continues to operate after last record has been played.	See Miscel. Notes.

520399
520117
520118
520397
520398
500118
560023

ATTACHING THE RECORD-MAKER TO THE RADIO

The Airline Record-Maker may be used with a number of Airline radios and radio-phonograph combinations in which the radio chassis has been suitably wired and has the necessary sockets for proper cable connections.

First, mount the Junction Box. This is generally mounted at the back edge of the cabinet near the radio chassis. Several locations are shown in Fig. 1. In some models a wood block will be seen at the back of the cabinet on which the Junction Box may be mounted. In other models there is room on the chassis shelf for the Junction Box. In cabinets with a side and top rail at the back, mount the Junction Box to the rail even though only two screws, one on each flange, can be used. If
there is a built-in loop aerial, keep it as far away from this aerial as possible.

After the Junction Box is secured to the cabinet with the wood screws provided, complete the cable connections between the radio and the Junction Box as shown in Fig. 6. If there is a record player with the radio, the pickup lead should be connected as shown.

The Record-Maker may be placed on a table, stand, or on top of the radio, whichever is most convenient. The cable to the Junction Box is connected as illustrated in Fig. 6. The cover of the Record-Maker may be removed by tipping it back and lifting up.

The Record-Maker may be dis-
connected after being used by withdrawing the plugs on the end of the recorder cable from the Junction Box (See Fig. 6) and pushing the switch below to "out" position.

Fig. 1. Junction Box Locations

1. TO MAKE A RECORD FROM A RADIO PROGRAM
 A-Recorder arm in rest position-See Fig. 3.

B-Tone arm in rest position-See Fig. 2.
C-Microphone Volume Control in OFF position-See Fig. 2.
D-P.A.-Record Switch in RECORD position.
E-Phono-Radio Knob (On radio panel) in RADIO position.
F-Tune in the desired radio program carefully to room volume.
G-Place a blank record disc on the turntable with the small pin in the turntable extending through the hole in the disc.
H-The Tone Control on the radio panel should, for most recordings, be in the TREBLE position.
I-Lift up the cutting end of the recorder arm, see that the cutting needle is properly in place (See article "Recording Needles," page 4), move this arm over to the intermediate position and set it down gently

-See Fig. 3. The volume of the radio program will be reduced. Bring the volume up with the Radio Volume Control until the red indicator light just flashes on loud passages. Then back the volume down a slight amount so that the red indicator light does not flicker.
J-Push the Motor Switch Knob to the ON position (Fig. 2) and allow the turntable to come up to full speed.
K-Lift up the recorder arm and carefully let it down with the needle point about $1 / 4$ inch from the outside edge of the blank record.
L-Watch the volume indicator light as the recording is being made. It is not necessary to continuously adjust the position of the Radio Volume Controlmerely make sure that the red light does not flicker. A slight flicker on very loud passages only will not be harmful.
M-The thread which forms at the cutting needle may be pushed gently toward the center with a soft brush while the record is being cut. Considerable care must be taken that the operator does not tangle this thread around the cutting needle or that he does not slow up the turntable by touching it with his hands, as either condition will cause poor recordings. After the recording is completed, remove the thread from the record.

N -The record can be cut until the cutting needle is about $11 / 2$ inches from the center of the record or until a short distance before the paper label is reached. Shortly before the needle reaches its final position, reduce the volume to zero with the Radio Volume Control (without turning the knob to the OFF position on those models which have a combined Switch and Volume Control) and cut 3 to 5 blank grooves on the record. Then lift off the recorder arm and return it to the rest position. Push the Motor Switch Knob to the OFF position.

MONT(GOMERY WARD \& CO.

2. TO MAKE A RECORD USING THE MICROPHONE

Voice or music that can be picked up by the microphone with sufficient volume can be recorded. Keep the room quiet, as all extraneous noises picked up by the microphone will be on the record.
A-Recorder arm in rest position-See Fig. 3.
B-Tone arm in rest position-See Fig. 2.
C-Microphone Volume Control in OFF position-See Fig. 2.
D-P.A.-Record Switch in RECORD position.
E-Phono-Radio Knob (On radio panel) in PHONO position.
F-Insert the plug on the end of the microphone cord in the microphone socket (Fig. 2) on the motor panel and push this plug all the way down.
G-Turn the radio On-Off Switch (On the radio panel) to the ON position.
H-Place a blank record disc on the turntable with the small pin in the turntable extending through the hole in the disc.
I-The Tone Control on the radio panel should, for most recordings, be in the TREBLE position.
J-Keep the microphone at least one yard away from the radio loudspeaker at all times. If the recording is to be speech, keep the lips about 6 inches (for cutting) away from the microphone. If the recording is to be music or other sound, place the microphone near the sound source, moving it closer or farther away as the volume requires.
K-Lift up the cutting end of the recorder arm, see that the cutting needle is properly in place (See article "Recording Needles," page 4), move this arm over to the intermediate position and set it down gently-See Fig. 3.
Turn the Microphone Volume Control past the point at which the speaker silencing switch is felt to operate. This switch is at about the halfway mark on the control. Speak or start the music or sound into the microphone.
After the Microphone Volume Control knob has been
turned past the point at which the switch is thrown, the sound can no longer be heard through the radio speaker but the sound intensity will be shown by the red indicator light. Turn the Microphone Volume Control until the speech or sound picked up by the microphone causes the red indicator light to flicker. Then turn the Microphone Volume Control down slowly until the red light just disappears.
If in reducing the microphone volume, the knob is turned below the point at which the switch is felt to operate, the sound will again be heard through the radio speaker. The recording continues and no harm will result if the microphone is kept at least one yard from the radio speaker. If brought closer, a howl may occur.
L-Push the Motor Switch Knob to the ON position (Fig. 2) and allow the turntable to come up to full speed.
M-Lift up the recorder arm and carefully let it down with the needle point about $1 / 4$ inch from the outside edge of the blank record.
N-After 1 or 2 blank grooves have been cut in the record, start the speech, music, or sound into the microphone. Watch the volume indicator light as the recording is being made. It is not necessary to continuously adjust the position of the Microphone Volume Control-merely make sure that the red light does not flicker. A slight flicker on very loud passages only, will not be harmful.
O-Remove thread as explained in Article 1, Step M.
P-The record can be cut until the cutting needle is about $11 / 2$ inches from the center of the record or until a short distance before the paper label is reached. Shortly before the needle reaches its final position, reduce the volume to zero with the Microphone Volume Control and cut 3 to 5 blank grooves on the record. Then lift off the recorder arm and return it to the rest position. Push the Motor Switch Knob to the OFF position.

3. TO PLAY BACK THE HOME RECORDING; TO PLAY ORDINARY PHONOGRAPH RECORDS

The record made in Articles 1 and 2 may be played back immediately.
Also, ordinary commercial records may be played in the following manner:
A-Recorder arm in rest position-See Fig. 3.
B-Turn Phono-Radio Knob on radio panel to PHONO position.
C-Push Motor Switch Knob to ON position.
D-Lift tone arm, see that the needle is in place, and set arm down gently with needle in outside groove of record. See article on Home Recording and Ordinary Phonograph Needles.
E-Adjust volume by means of Radio Volume Control to desired intensity.
F-Adjust tone by means of Radio Tone Control to desired quality.
G-Lift up tone arm at end of recording, set it in its rest position, and push Motor Switch Knob to OFF position.

TO PLAY 12 INCH COMMERCIAL RECORDS, lift tone arm off rest and bend the tone arm rest over to a horizontal position.

4. TO USE MICROPHONE AND RADIO AS A PUBLIC ADDRESS SYSTEM

A-Recorder arm in rest position-See Fig. 3.
B-Tone arm in rest position-See Fig. 2.
C-Microphone Volume Control in OFF position-See Fig. 2.
D-P.A.-Record Switch in P.A. position.
E-Phono-Radio Knob (On radio panel) in PHONO position.
F-Insert the plug on the end of the microphone cord in the microphone socket (Fig. 2) on the motor panel and push this plug all the way down.
G-Turn the Radio On-Off Switch (On the radio panel) to the ON position.
H-Turn the Microphone Volume Control to about
the half-way mark. The speaker silencing switch at about the mid-point of the Microphone Volume Control is not effective when the recorder arm is in the rest position.
Keep the microphone at least one yard away from the radio speaker at all times. The lips should be about 2 inches (for public address) away from the microphone.
I-Speak into the microphone and adjust the volume by means of the Microphone Volume Control to the proper intensity. If this control is turned too high, a howl may result. Should this happen, turn down the microphone volume slightly, move the lips closer to the microphone, and move the microphone farther away from the radio speaker.

5. TO USE THE MICROPHONE FOR MAKING ANNOUNCEMENTS WHEN PLAYING RADIO OR PHONOGRAPH

Follow all of the steps as given in Article 4 except that for radio reception the Phono-Radio Knob is in RADIO position.

Reduce the radio or phonograph volume by means of the Radio Volume Control when making an announcement.

6. TO USE THE MICROPHONE FOR SUPERIMPOSING AN ANNOUNCEMENT OR accompanying the program when making a record of a radio program

The microphone can be used for superimposing an announcement on the record at any time when making a record of a radio program.
A musical instrument or a singing voice may be used to accompany a radio program while recording it.

A-Instructions for cutting the record are given in Article 1. Be sure P.A.-Record Switch is in RECORD position.
B-Insert the plug on the end of the microphone cord in the microphone socket (Fig. 2) on the motor panel and push this plug all the way down.
C-Keep the microphone at least one yard away from the radio speaker at all times. The lips should be about 6 inches away from the microphone.
D-If an announcement or title is to be inserted, reduce the volume of the radio program with the Radio Volume Control to any desired level, just before the announcement is to be made or the title is to be put in.
If a musical instrument or singing voice is to be used to accompany the radio program, the latter may be reduced with the Radio Volume Control or may be left at normal volume.

7. TO MAKE A RECORD FROM
 WITH A RADIO-PHONOGRAPH COMBINATION

If you have a radio-phono combination, play the record to be copied on the phonograph.

Follow all of the instructions as given in Article 1 except that the Radio-Phono Switch on the radio should be in the PHONO position.

E-Turn the Microphone Volume Control up to just below the point at which the speaker silencing switch is felt to operate. This switch is at about the half-way mark on the control. (Continuing to turn this knob in a clockwise direction would throw the switch, and the sound could no longer be heard through the radio speaker but the recording would continue.)
F-Speak, or start the sound into the microphone and observe the indicator light. To increase volume, speak louder and get closer to the microphone. To decrease volume, of course, reverse these procedures and turn down the Microphone Volume Control. Keep volume just below point at which red indicator light flickers.
G-When the announcement or accompaniment is completed, turn the Microphone Volume Control to the OFF position and if additional radio program recording is wanted, turn up the Radio Volume Control to just below the point at which the red indicator light flickers.

RECORD

WITH A SEPARATE ELECTRIC PHONOGRAPH

If you have or can borrow a small phonograph of the electric type, play the record to be copied on this phonograph. Place the recorder microphone about 12 inches away, then proceed to make the new record in the usual manner with the microphone-See Article 2.

MONTGOMERY WARD \& CO.

ADJUSTING THICKNESS OF THREAD (PRESSURE ADJUSTMENT)

The pressure on the cutting needle can be varied by the adjusting nut shown in Fig. 4. This pressure determines the thickness of the thread cut from the blank record.

All recorders are adjusted at the factory to cut grooves approximately .0015 inches deep. When cut at this depth, the thread will be approximately as thick as a human hair.

You can get a fairly good idea of the depth of the cut by examining the record with a magnifying glass. The width of the groove should be about equal to the space between grooves if the cutting needle is sharp and the cutting head is correctly adjusted.
The thickness of the thread is increased by rotating the pressume adjusting nut in a counterclockwise direction. Turning this nut clockwise will decrease the thickness of the thread. Before making any pressure adjustment, be sure that a good cutting needle is used and that it is properly inserted.

ADJUSTING HEIGHT OF RECORDER ARM

In Fig. 4 is shown the screw and locking nut for adjusting the height of the recorder arm above the turntable. This height is adjusted at the factory and ordinarily does not require readjustment.

To check for proper height, grasp the needle screw and lift it until
the cartridge assembly is felt to touch the recorder arm. The needle point will then be approximately $1 / 8$ inch above the record surface.

If, due to variations in recording needle length, the height must be adjusted, loosen the locking nut, adjust the screw to the proper height and retighten the nut.

HOME RECORDING NEEDLES-ORDINARY PHONOGRAPH RECORD NEEDLES

Fifty tone arm needles are supplied with this recorder unit. These may be used both to play back home recordings and to play ordinary commercial records on the recorder unit.
Needles which are used on home recordings may be used for ordinary commercial records, but those used on commercial records cannot be used for home recordings, as the latter would be ruined.

OILING

Oil the two bearings, one at either end of the worm shaft, fibre gear bearing, recorder arm hinge pivot and recorder arm shaft once a year.

CAUTION: Never oil the friction clutch or the felt washers on the rubber idler wheels. (The purpose of the felt washers is to silence the operation of the idler wheels and not to lubricate.)

HIGH PITCH

ON PLAY BACK
If the pitch when a home recording is played back appears to be
too high, it may be due to excessive depth of cut. This causes too great a load on the motor, slowing it down. The remedy, of course, is to reduce cutting needle pressure.

SAPPHIRE NEEDLE

If a sapphire cutting needle is used in place of a steel cutting needle, the needle pressure must be increased to maintain $.0015^{\prime \prime}$ depth of cut.

CUTTER CARTRIDGE VERTICAL STOP

With the cutting needle resting on a record, raise the cutting arm slowly. There should be from $1 / 8^{\prime \prime}$ to $3 / 16^{\prime \prime}$ of motion of the cutting arm before the cutting needle lifts from the record. This will allow free vertical movement of the cutter cartridge and compensate for any slight wobble of the turntable or record. To get slightly more or less movement, bend stop lug on male pivgt which bears against cutting arm, down or up-see Fig. 4.

TIMING YOUR RECORDS

The following is the approximate maximum time for each record: $6^{\prime \prime}$ size. .Each side $11 / 2 \mathrm{~min}$. $8^{\prime \prime}$ size. . Each side 3 min. $10^{\prime \prime}$ size. .Each side $41 / 2 \mathrm{~min}$.

REPLACEMENT PARTS LIST

(C)John F. Rider

MODELS 220, 221, 223, NEW PRODUCTS CORP.

320, 321, 323
Alphabetically arranged index letters are used in the illustrationa and in the description to facilitate locating of parts in the illustrations. Parts with the prefix letter "A" will be found in the illustration of the top of the record changer. Parta with the prepix letter "B" and "Cn will be found in the illustration of the bottom of the changer. Parta with the prefix letter "D" will be found in the illustration of the main cam gear assembly.

SUMMARY OF NECHANISM OPERATION:

The capacity of the instrument is ten $13^{\prime \prime}$ or twelve $10^{\prime \prime}$ records.
To load, turn the two large lower bladea AM (in top view) towarda the center of the turnt able, as shown. Then place the recorda over the turntable ohaft allowing them to rest on the blades. To start operation, trip Reject button AP. To unload after playing, grasp under lower blade, lift slightly, and turn 180 degrees allowing them to fall into the notches provided. There will then be no obstruction in taking the records off.

Set middle button $A Q$ to $10^{\prime \prime}$ or $12^{\prime \prime}$ in accordance with size of recorde. All records must be of anme size for each loading.

To change record anytime when needle is on the record, merely trip Reject button AP.
To play records one by one, turn changer blades back away from center of table, and set Manual-Automatic button AR for Manual operation.

DESCRIPTION OF CHANGE CYCLE:

Push Reject button AP which reieases latch CF (through reject link BG) that holds pawl CH. When CHis in starting (or neutral) position it is under sub-frame BJ and upon being released from latch GF enpages with lugs on pinion DG which is rotating. This turns main cam gear DQ sufficiently to engage first tooth shown at CHA and continues to rotate it for one complete revolution, which constitutes one cycle of the ohanger. Pinion DG is driven through the train from motor pulley $A D$ through the idler pulley $A C$ which drives on the rim of turntable $A B$ keyed to turntable shaft DA.

The pickup arm movement 1 a controlled laterally by the pickup arank $C B$, the end of whioh ridea in the cam track DPA of can gear DQ.

As the cam rim DPB slides on the head of lift pin CC raising pickup arm AJ, the roller on pickup crank $C B$, rolling in track DPA it forces outward (carrying outward with it pickup arm AJ) into the concentric portion of track DPA.

While the pickup arm 18 swung out in the raised position and the cam gear continues, the eccentric CE actuates the changer blades through eccentric arm $C G$, changer ahafta $C N$ and $B C$, and tie bar BF.

ADJUSTMENTS AND SYNCHRONIZING:

1. To set changer blades, $A M$ and $A N$, loosen screws on CM, $B D$, and $C P$, and place blade in position shown in top view with top blades about $1 / 16^{\prime \prime}$ from the edge of a i2" record and cam gear in neutral or playing position. The tie bar BF should then be pivoted over to within (mach of subame bi with driving crank BD pointing atraight out to left (machine in poition shown in bottom view). Then screw clamps CM, BD, ard CP tight.
2. To adjust the lift of the pickup arm, should it hit under the lower blade an or not clear over 10-12" records, merely tighten or loosen (by omall degrees) the hex head acrew on the under side of the pickup arm near the pivot end.

The lateral 8 wing is controlled by crank $C B$ riding in groove DPA.
To adjust the swing of pickup arm loosen the screw on the hub of CB, place a record (preferably a lin one) on the turntable, trip reject button and turn turntable by hand until pickup arm AJ lowers to record. Just before the needle touches, stop turning and push the arm sideways until the needle is about $3 / 32^{n}$ from the edge of the record then oontinue to turn turntable to gee if it lands that distance from the edge. Then tighten up the clamping ecrew on plokup crank CB.

The tripping adjustment or latch adjusting acrew CM controls the point at which the mechanism picks up the pickip arm AJ and removes it to allow the next record to be dropped. Should records not inish playing it 10 merely necessary to unscrew this screw untilit completes records properiy, or should machine fall to trip at end of record, turn serew in so that it will trip sooner.

REPLACING MOTOR:

Remove idier wheel $A C$ and the three motor mounting screws $A G$. Be sure to gave metal bushing spacers, which slip inside of rubber grommets. These prevent rubber from being equeezed out of shape which would prevent proper cushioning of motor. place motor of proper rating in same position as present motor and replace spacers, washera and screws as bepore.

$$
\text { AUGUST 14, } 1940
$$

MODELS 300 Series, 301
NEW PRODUCTS CORP.

TURNTABLE SUB FRAME WORM
MOUNTING TEE NUT MOTOR EJECTOR SPRING SWITCH
EJECTOR ARM PIVOT
EJECTOR ARM EJECTOR TRIGGER EJECTOR LINK housing INDEX LINK
THREE POLE TERMINAL PLUG \& CORD INDEX SPRING

PRESSURE ADJUSTMENT

NEW PRODUCTS CORP.

When follower CA engages in worm BC, lever CE is pivoted at CB lifting crank CK which raives tone arm AG. Crank CK is fatened to the lift pin. As this riees and atrikes the incline at the upper end of the pickup arm port cam CT, it caures a rotation of the crank CK which in turn swing. tone arm $A G$ inward until it trrikes index plate CH The uet down position for $1 \dot{\theta}^{\prime \prime}$ or $12^{\prime \prime}$ records io automatically controlled when the ejector AC is positioned so that the edge of the $10^{\prime \prime}$ or $12^{\prime \prime}$ record rest on the support brackel.

The record ejector AC can be set in the $10^{\prime \prime}$ or $12^{\prime \prime}$ position by merely tlighty lifting it and pulling or pubing it in or out until the $10^{\prime \prime}$ or $12^{\prime \prime}$ numbert ohow at the edge of the opering in the嚅

To adjust the uet down position of the tone arm, trip the reject bution, tum the turntable AK by hand until the crank CK atrikes the index plate CH, looven slighty the clamp screw, move the tone arm over until it is directly above the firt groove in a record of the size indicated on the ejector slide $A C$. Then retighten the clamp screw, and carry the mechanism through the remainder replacing motor

Remove ider wheel and the three motor mount. ing acrewa. Be sure to unve melal buubing specerr, which slip inside of rubber grommete. These prevent rubber from being requeced out of shape which would prevent proper cubhioning of motor. Place motor of proper rating in seme position as preeent motor and replace apacerr, wasber, and screws as before.

Index letters are alphahetically arranged to
facilitate rapid locating of parts. Prefix letters racilite rapid loca in of part. of record changer, $\mathrm{B} \& \mathrm{C}$ in photo of the bottom. The capacity of the instrument is ten $12^{\prime \prime}$ or twelve $10^{\prime \prime}$ records.

To load, turn the center spindle so that the
 instrument. Then slip a selected stack of records

 notch in the spindle and also on the ejector.

To start the instrument, turn on the switch Al, which will rotate the turntable. Then press a
0
0
0
0 once. This depresses the reject button on top of the tone arm rest post AE, and starts the cycle, which will automatically repeat until the entire tack of recorda has been played.

To change records anytime while the record is playing, merely press down on the reject button on top of the lone arm reat poas.

To play records one by one, remove center upindle by litting atraight up. Then turn the button on top of the tone arm rest post to the

 tion, merely turn the button to the left (counter clockwise) approximately one-quarter turn.

DESCRIPTION OF CYCLE
To tart the cycle on models with a switch on

 rest post AE, which in turn through link CD engages the follower CA, starting the cycle.

MODELS 320, 321, 323
NEW PRODUCTS CORP.

Figure 3

Abstract

This modification consists of a ratchet mechanism that trips the mechanism for the next record. It does this regardless of the distance from the eccentric groove to the center of the record. The positive stop mechanism 220 series is dependent for its operation upon the distance between the center of the record and the eccentric groove, and accardingly will not work with records that do not have the standard discence betmeen seceatitic groove and center.

OILING

Normally, this mechanism should require no additional lubrication. However, a drop of any good machine oil on all friction surfaces, and to the oil wicks on both ends of the motor shaft, may be applied about once a year, or more often if used extensively.

RATCHET TRIP MODELS

No. 320 This model is equipped with a ratchet mechanism that serves the purpose of tripping the machine for the next record when records occur that end in an eccentric groove too far from the center to allow the positive stop to trip. The Pickup arm crank $C B$ as it swings inward with the pickup arm during the playing of a record drags the Ratchet Pawl EA. across the serations in the arm of Ratchet latch EC. The Pawl EA, which pivots about its center, tends to maintain a position
pointing straight out from the end of the crank CB through the action of Ratchet Pawl Spring EB. Thus, a reversal of the direction of travel of the crank caused by the pickup arm following the eccentric groove at the end of a record, will cause the pawl EA to catch in the serations in latch EC pivoting it about one of the rivets $E D$ allowing the ratchet trip EF to pivot about the other Rivet ED through the spring action of Ratchet spring EE. The vertical protrusion on Ratchet Trip EF then trips the latch DN which starts the cycle for dropping the next record.

No. 221 \& No. 321 Same as 220 and 320 except that the power supply for these models is 50 cycle 110 V .

No. 223 \& No. 323 Same as 220 and 320 except that power supply is 25 cycle 110 V.

OAK MFG. CO.

OAK MFG. CO.
SETT ING FOR RECORD SIZE
This mechanism plays up to twelve 10 -inch or ten 12 -inch records at one set-up. All records must be of the same size for each set-up. To set for record size, it is necessary to move the 10-12 button so that it will indicate correct size record, and the Auto-Manual button to indicate Automatic.....See illustration.

LOADING

See that both lower shelf plates are turned toward center of turntable. If they are not, grasp the post just below the shelf plate and rotate post until it falls into proper position with both shelf plates correctly turned toward center of turntable. Place the stack of records over center pin so they will rest on the two shelf plates.

TO TURN THE PHONOGRAPH ON
Turn the radio On-Off switch knob to the "On" position...
tration. A click will be heard and the dial will light. Fait 30 seconds for the tubes to heat.

Turn the Phonograph-Radio knob to the Phonograph (P) position.
Push the Motor Switch to the "On" position. Motor will then start.
Push the button marked "Reject". This will release the first record and start the record changing mechanism.

REJECTING A RECORD

Push the button marked "Reject." This can be done any time after the needle has come in contact with the record. The mechanism will immediately start the change cycle.

TO TURN THE PHONOGRAPH OFF
Push Motor Switch to "Off" position.
Lift pickup arm; place it on the pickup rest.
ALWAYS BE SURE TO TURN OFF WHILE NEEDLE IS RESTING UPON A RECORD, OTHERWISE PICKJP CANNOT BE RETURNED TO ITS REST DUE TO UNIT BEING IN A CHANGE CYCLE.

Turn the radio "On-Off" switch knob to the "Off" position.
REMOVING PLAYED RECORDS
First switch off motor. Then take hold of both posts, just below the shelf plates, lift and turn them out of the way. Place pickup in position on arm rest. Lift the played records from the turntable. Taking hold of posts as before, move plates until post again falls into playing position. The changer may then be loaded with a new stack of records. See directions on previous page for loading.

OAK MFG. CO.

TONE ARM - AUTOMATIC OPERATION

CAUTION: To avoid damage to the mechanism, the Tone Arm should not be handled while the Auto-Manual button is in the "Automatic" position. If it is desired to remove the Tone Arm from a record, push this button to the "Manual" position. To return the pickup arm to its "Rest" position from Altomatic operation, follow the instructions under "To Turn the Phonograph Off."

IF CHANGER IS LEFT RUNNING

No damage will be done if you forget to turn off Changer after it has played its entire load of records. It will simply repeat the last record until stopped or reloaded.

MANUAL OPERATION
To play records one at a time as in an ordinary phonograph:
(1) Remove any records remaining on the turntable.
(2) Leave plates turned outward as for removing played records. DO NOT turn them back toward center of turntable.

Push Auto-Manual button to "Manual" position. Then place a record on turntable, switch on motor, and lift pickup into position.

TONE AND VOLUME CONTROL

The rolume and tone controls are used in the same manner for phonograph reproduction as they are for radio reception.

THIS PHONOGRAPH IS EQUIPPED WITH A PERMANENT POINT NEEDLE

This phonograph is equipped with a permanent point needle good for 2,000 record plays. Tighten the needle screw with a Phillips Head screwdriver every 500 plays.

CAUTION: Never change the position of the needle. If it should become bent or broken, remove the old needle by first loosening the needle screw. If a flat is provided on the shank of the new needle, place the needle all the way in with the flat portion of the shank facing the needle screw.

OILING

Normally, this mechanism should require no additional lubrication. However, a drop of any good machine oil on all friction surfaces, and to the oil wicks on both ends of the motor shaft, may be applied about once a year, or more often if used extensively.

(C)Joha F. Rider

OAK MFG. CO.

OAK MFG. CO.

© John F. Rider

OAK MFG．CO．

ELSCTRICAL CHARACTERISTICS

Speed，no load on turntable， 81 R．P．M．（Max．） Speed，needle in outside groove of 12 inch record， 76.6 R．P．M．（Min．）

The above are the maximum and minimum speeds of the turntable．The number of records on the turatable makes practically no difference in the revolutions per minute．

The following table lists the output level from the outside groove （ 1000 cycles）of an Audiotione $78-1$ record or Webster $P E 50$ ，using an average length of oickup cord（ 200 mm 。）terminated in a 500,000 ohm load．

Zero Level $=1.0$ Volts

CARTRIDGE	NE SDIE	PRTSSURE OZ．	OUTPUT DB。	1000 Cyoles Slgnal Level Table Rumble
$\begin{aligned} & \text { Nebster } \\ & \text { N1, N1-5 } \end{aligned}$	Steel	1.5	－7． 5	20 db 。min．
	AJl	1.5	－9．0	$n{ }^{\text {n }}$ n
	Floating Point	1.5	－9．5	＂\quad
	Pranstiel	1.5	－10．0	n n
$\begin{aligned} & \text { Wobster } \\ & \text { Nl-7, N1-8 } \end{aligned}$	Steel	1.5	－4．5	20 db ．min．
	AJl	1.5	－6．5	${ }_{n}{ }^{\text {a }}$
	Floating Point	1.5	－7．0	＂
	Pfanstiel	1.5	－7．5	－n－
Astatic LP－6	Saphire	1.25	-1.5	$20 \mathrm{db} . \mathrm{min}$.

OAK CO. MFG. CO
PART NO. FIGURE REFERENCE NO.

PHILCO RADIO \& TELEV. CORP.

Model HR-I Home Recording Unit is designed for use on Philco Record Changers equipped for home recording. The instructions for installing the unit on these changers are supplied with each unit. The information listed in this bulletin covers the replacement parts and procedure for making better home recordings.

(c)John F. Rider

When making home recordings, it is essential that the speed at which the record is cut, be kept at or near 78 RPM. The load imposed on the motor when cutting a record is much greater than when playing back the recording and, when the difference in speed between recording and playing is in excess of four RPM, it becomes quite objectionable. Increased satisfaction with home recordings will result when the following conditions are observed and adjustments are made for the most suitable operation.

1 - Allow the phonograph motor to become thoroughly warmed up before attempting to make a home recording. Play six records or more so that the grease in the gears becomes thoroughly loosened.

2 - The fiber gear on the home recording gear train that engages the spindle should mesh loosely with the spindle gear in order to avoid binding. It may be necessary to enlarge the mounting hole in the record changer base in order to obtain this condition.

3 - The cutting arm height adjusting screw should be set so that the cutting arm is just $1 / 4$ " above the record. Put the cutting needle in the crystal and place it on the record near the spindle. Check the cutting arm height $-1 / 4^{\prime \prime}$ above the record.

4-The needle pressure is very critical. Philco Scale, Part No. 45-2851, should be used, so that needle pressure can be adjusted accurately to $11 / 4$ ounces with the cutting needle placed near the spindle. The needle pressure must be checked just as the needle is raised from the record.

5 - The crystal "low level" stop should be adjusted, if necessary, to obtain $1 / 2^{\prime \prime}$ of free movement of the crystal in the cutting arm. With the needle resting on a record, raise the cutting arm slowly. There should be from $3 / 16^{\prime \prime}$ to $1 / 4^{\prime \prime}$ of motion of the cutting arm before the cutting needle lifts from the record. This will allow a free vertical movement of the crystal, compensating for any slight wobble in the turntable or record.

6 - At the first sign of fuzzy or poor tone when making home recordings, change the cutting needle, replacing it with a new Philco cutting needle. A cutting needle should make between ten and twenty good clear recordings before it becomes necessary to replace it.

Two types of needles have been furnished in the past. The first recording needle was of the type normally known as a plow type needle. The cutting face of this needle is curved so that it actually digs into the surface of the record. This type has been replaced with a newer type which can be distinguished very readily from the plow type because the cutting face of the needle is flat and is parallel to the axis of the needle. The plow type needle can be used to make $6^{\prime \prime}$ home recordings satisfactorily, but it should not be used to make $10^{\prime \prime}$ home recordings, since it cuts too deeply into the record and will slow up the phono motor while cutting the outer edge of the record. The new flat face needle will be satisfactory when making the $10^{\prime \prime}$ recordings.

PHILCO RADIO \& 'TELEV. CORP.

OPERATING INSTRUCTIONS

The Model "L" Record Changer plays seven 12 " or eight 10 " Records automatically. The last record remains on the turntable and repeats as long as the Record Changer is in operation.

Records may be repeated as often as desired by raising the record removing arm at A Fig. I to the upright position.

To reject a record and play the next record below it, pull the latch lever at L Fig. I forward.
To adjust the record removing arm to handle $10^{\prime \prime}$ records set the record removing arm change lever at D Fig. I opposite the number 10 stamped on the base plate. For $12^{\prime \prime}$ records set the lever opposite the number 12 .

To adjust the pickup to play $10^{\prime \prime}$ records, push the pickup stop at K Fig. I back. (Away from the pickup needle) For $12^{\prime \prime}$ records pull the stop forward (toward the needle) as far as it will go.

Some units are equipped with two speed motors, and others with 78 RPM motors. When the two speed motor is used change from one speed to the other by simply moving lever at F Fig. I to position desired.

To start motor, throw switch (supplied on some models) at NFig . I on the "on" position. MOTOR LUBRICATION
The motor installed in the Record Changer is governor controlled, with all gearing enclosed, and leaves the factory lubricated for proper operation. For maximum satisfaction, lubricate the motor at regular intervals with SAE No. 10 oil. Please do not use any other grade of oil.

The governor disc engages with a ring of hard felt. This felt is impregnated with a lubricating solution sufficient for proper operation for approximately a year under normal conditions. It may be necessary, however, if the motor shows a tendency to chatter or waiver, to apply a drop or two of oil to this felt ring.

MOTOR SPEED

The motor speed is adjusted by means of a lever at C Fig. I which is mounted under the turntable. The direction of swing to fast or slow is indicated by the legends F and S on the base plate.

33-1/3 RPM - 78 RPM SHIFT

(Two-speed motors only)

Move the speed change lever at F Fig. I as far as it will go in the direction of swing indicated by the legends 33-1/3 and 78 on the base plate.

If adjustment of the speed change lever is required for any reason, proceed as follows: First loosen the screw which clamps the lever to the motor shaft. This shaft is provided with a screw-driver slot in the end. Next, using a screw driver, turn this shaft in a clockwise direction until you feel it strike the stop. The motor is now in the $33-1 / 3$ RPM position. Now set the lever against the lug provided in the base plate and opposite the legend 33-1/3 and tighten the clamp screw. This places the lever in the correct position on the motor shaft. The final step is the adjustment of the eccentric bushing at G Fig. I which limits the throw of the lever. First loosen the screw which holds the eccentric bushing. Next, throw the speed change lever to its farthest 78 RPM position, (using care that the lever does not slip on the motor shaft). Then turn the eccentric bushing around until it toucties the side of the lever, and tighten it in place with the screw provided.

TRIP MECHANISM

The trip mechanism is the trigger that sets the Record Changer in motion. This is done by allowing the latch bar at O Fig. 1 to drop in front of, and be actuated by the cam at P Fig. 1. This cam is driven by the motor and is in motion as long as the motor is running. If this mechanism does not operate smoothly, the precautions outlined in succeeding paragraphs should be observed.

First of all, make sure that the square pin in the latch lever at U Fig. I latches properly in the notch in the lift lever at I Fig. 1. When latched, the notch should be engaged approximately one-half of its depth. The depth of engagement is adjusted by means of the eccentric washer and locking screw at J Fig I. Now run the Record Changer through its cycle. If the square pin fails to engage the notch in the lift lever, first check the tension of the latch spring at H Fig. I to insure that the notch can engage the pin. Next check the tension of the reset spring at E Fig. 1. This reset spring should not be under tension when the latch bar is latched but should have enough tension when the latch bar drops back off of the cam to cause the square pin to over travel the notch in the lift lever. IMPORTANT - Before attempting to change the tension of any spring, be sure that the parts involved work freely without any tendency to bind, as of course any binding condition would preclude proper operation.

The Record Changer is adjusted at the factory to trip on a spiral trip groove record when the phonograph needle is $13 / 4^{\prime \prime}$ from the edge of the hole in the center of the record.

PHILCO RADIO \& TELEV. CORP'

When eccentric or oscillating trip groove records are used, tripping is effected by means of the hardened steel pin in the end of tone arm lift crank at S Fig. 2 engaging the serrated block on the trip lever at T Fig. 2. There must be a minimum of $1 / 32^{\prime \prime}$ play between the end of the pin and the block, when, with a short needle,
 ($5 / 8$ " Minimum Length) the pickup is resting on one record on the turntable. If the pressure of the pin on the block is not sufficient to insure operation, then check the pressure spring which is located up under the pickup.

The oval head pivot screw at R Fig. I serves as a pivot for the lift lever at I Fig. 1. This screw should allow the lift lever to be raised by the latch bar to its maximum height without binding but also without any additional play.

If the Record Changer fails to trip. see if the phonograph needle is jumping out of a worn record trip groove. Next make certain that all parts of the mechanism work freely and smoothly. If it is found that the latch bar at O Fig. 1 is not dropping in far enough to engage the cam at P Fig. 1, then check the tension of the trip spring at B Fig. 1.

RECORD REMOVING MECHANISM

The Record Changer is adjusted so that it will always leave one record on the turntable. This is done to prevent the phonograph needle from damaging the covering on the turntable.

In case the Record Removing Mechanism fails to operate smoothly, proceed as follows: First make certain that all parts work freely with no binding in pivots or bearings, and that the record removing arm assembly rests on the stop screw at Q Fig. 3. Next stop the motor in such a position that the latch bar at O Fig. 1 can swing by and clear the cam at P Fig. 1. Place just one record on the turntable and measure from the top of this record down to the base plate. This distance should be one inch. Now by pulling the reject lever at L Fig. I first, it will be found possible to swing the record removing finger at Y Fig. 3 over to where it just touches the edge of the record. If the adjustment is correct, the record removing finger should just barely rise over the edge of the first record. If adjustment is required it can be made by means of the stop screw at Q Fig. 3. In the event the record removing arm raises the record from the turntable and drops it back in place without removing it, check the lift adjustment at V Fig. 1. This adjustment consists of an eccentric stud which is provided with a lock nut, and is made by loosening the lock nut and turning the eccentric stud. The lift adjustment should be set so that the hole in the center of the record just clears turntable spindle when the Record Changer is in operation.

PICKUP LOWERING MECHANISM

The pickup lowering mechanism has two functions. First, it lowers the phonograph needle gently to the surface of the record. Second, it feeds the needle toward the center of the record so that it will enter the playing groove.
 of descene pickup descends too fast or too slow, adjust the speed at W Fig. 2.

The unit is adjusted at the factory so that the needle will be set down approximately $3 / 32^{\prime \prime}$ in from the edge of the record. An adjusting screw is provided on the side of the pickup at M Fig. 2. If the needle is being lowered onto the playing surface of the record, and the adjusting screw at M Fig. 2 fails to correct the condition proceed as follows: First stop the record changer, with the pickup in the maximum raised position and check the clearance between the underside of the pickup shelf at Z Fig. 2 and the tip of the dashpot. This clearance should be very small as otherwise the pickup will tend to bounce as it is lowered. There must be sufficient clearance however to prevent the pickup shelf from rubbing on the tip of the dash pot, or the pickup will not swing out far enough to allow the adjustable stop at K Fig. 2 to come to rest against the dashpot. Check this clearance in both $10^{\prime \prime}$ and $12^{\prime \prime}$ record positions. If adjustment is required, the height of the dashpot may be regulated by loosening the nuts on the bottom of the lift lever stud at X Fig. 4 and changing their position on the stud. To raise the dashpot turn the nuts clockwise, to lower the dashpot turn the nuts counter-clockwise. Be sure to lock the nuts tightly together after the adjustment is made.

PHILCO RADIO \& TELEV. CORP.

Automatic record changer Part No. 35-1189 plays elght 10 " records automatically or eight 12 records manually. The last record remains on the turntable and repeats as long as the record changer is in oderation either in the manual or automatic position.

OPTOMATIC POSITION:

To load the mechanism lift the record removing arm at (A) Fig. 1 to the upright position. To adjust the pickup to play ion records, automatically, push the pickup stop at (K) Fig. 1 back away from the plckup. To play 12" records manually, pull the stop formard toward the needle as far as 1 t will go. Place records on turntable. Throw switch at (N) Fig. 1 to the "On" Dosition. Mechanism will now oderate and reject each record after it has been Dlayed through. To reject a record and play the next record below it, pull the latch lever at (L) Fig. 1 forward.

MANUAL POSITION:

To operate the mechanism in the manual position, lift the record removing arm at (A) Fig. 1 to the upright position. 10 or 1^{n} necords can then be played by the position of the Dickup stod at (K) Fig. 1. To play $10^{\prime \prime}$ records manualiy, push the plckup stod at (K) Fig. 1 back away from the pickup needle. For 12" records, pull the stod forward toward the needle as far as it will go.

MOTOR LUBRICATION

The motor installed in this Record Changer is governor controlled, with all gearing enclosed and leaves the factory lubricated for proper oderation. For best results, lubricate the motor at regular intervals with a pure mineral oil as 11 ght as obtainable. Under no circumstances use any oll heavier than an SAE 10 nor any oil containing mixtures of animal or vegetable olls.
The governor disc engages with a felt brake. This felt is impregnated with a lubricating solution sufficient for proper operation for approximately six months under normal conditigns. An oll hole is provided in the top of the governor housing for relubricating the brake felt.

MOTOR SPEED

The motor speed is adjusted by means of a slotted post (C) 3 Fig. 1 which is located under the turntable. To change motor speed rotate this post slightly by means of a screw driver.

TRIP MECHANISM

The trid mechanism is the trigger that sets the Record Changer in motion. This is done by allowing the latch bar at (0) Fig. 1 to drod in front of, and be actuated by the cam at (P) Fig. 1. This cam is driven by the motor and is in motion as long as the motor is running. If this mechanism does not operate smoothly, the precautions outilned in succeeding paragraphs should be observed.
First of all, make sure that the square pin in the latch lever at (U) Fig. 1 latches properiy in the notch in the lift lever at (1) Fig. 1. When latched, the notch should be engaged approximately one-half of its depth. The depth of engagement is adjusted by means of the eccentric washer and locking screw at (J) Fig. 1. Now run the record changer through its cycle. If the square pin falls to engage the notch in the lift lever, first check the tension of the latch spring at (H) Fig. 1 to insure that the notch can engage the pin. Next check the tension or the reset spring at (E) Fig. 1 . This reset spring should not be under tension when the latch bar is latched but should have enough tension when the latch bar drops back off of the cam to cause the square pin to over travel the notch in the lift lever.
IMPORTANT --- Before attempting to change the tension of any spring, be sure that the parts involved work freely without any tendency to bind, as of course any binding condition would preciude proper operation.

The Record Changer is adjusted at the factory to trid on a spiral trip groove record when the dhonograph needle is 1-3/4n from the edge of the hole in the center of the record.
When eccentric or osciliating trip groove records are used, tripDing is effected by means of the
hardened steel pin in the end of tone arm lift crank at (S) Fig. 2 engaging the serrated block on the trip lever at (T) Fig. 2. There must be a minimum of $1 / 3 \mathrm{E}$ " play between the end of the pin and the block, when, with a short needie, (5/8" Minimum Length) the pickup is resting on one record on the turntable. If the pressure of the pin on the block $1 s$ not sufficient to insure operation, then check the pressure spring which is located up under the pickup.
The oval head pivot screw at (R) Fig. 1 serves as a plvot for the lift lever at (1) Fig. 1. This screw should allow the lift lever to be ralsed by the latch bar to 1 ts maximum height without binding but also without any additional play.
If the Record Changer falls to trid, see if the phonograph needle 18 jumping out of a worn record trip groove. Next make certain that all parts of the mechanism work ireely and smoothiy. If it is found that the latch bar at (0) Fig. 1 is not dropding in lar enough to engage the cam at (P) Fig. 1 then check the tension of the trip spring at (B) Fig. 1.

RECORD REMOVING MECHANISM

The record Changer is adjusted so that it will always leave one record on the turntable. This is done to prevent the phonograph needle from damaging the covering on the turntable.
In case the Record Removing Mechanism falls to operate smoothly, proceed as follows: First make certain that all parts work ireely with no binding in Divots or bearings, and that the record removing arm assembly rests on the stod screw at (Q) Fig. 3. Next stod the motor in such a position that the latch bar at (0) Fig. 1 can swing by and clear the cam at (P) Fig. 1. Place Just one record on the turntable and measure from the top of this record down to the base plate. This distance should be one inch. Now by pulling the reject lever at (L) Fig. 1 ilrst, it will be found possible to swing the record removing linger at (Y) Fig. 3 over to where it just touches the edge of the record. If the adjustment is correct, the record removing finger should just barely rise over the edge of the ilirst record. If adjustment is required it can be made by means of the stod screw at (Q) Fig. 3. In the event the record removing arm raises the record irom the turntable and drops it back in place without removing it, check the 11 ft adjustment at (V) Fig. 1. This adjustment consists of an eccentric stud which is provided with a lock nut, and is made by loosening the lock nut and turning the eccentric stud. The lift adjustment should be set so that the hole in the center of the record just clears turntable spindle when the Record Changer is in operation.

PICKUP LOWERING MECHANISM

The pickup lowering mechanism has two functions. First, it lowers the phonograph needle gentiy to the surface of the record. second, it feeds the needle toward the center of the record so that it will enter the playing groove.
IF the pickup descends too fast or too slow, adjust the speed of descent by turning the knurled thumb nut on the dashpot sleeve at (W) Fig. 2.
The unit is adjusted at the factory so that the needle will be set down approximately $3 / 32$ in from the edge of the record. An adjusting screw is provided on the side, of the pickup at (M) Fig. 2. If the needle is being lowered onto the playing surface of the record, and the adjusting screw at (M) Fig. 2 rails to correct the condition proceed as follows: First stop the record changer, with the dickup in the maximum raised position and check the clearance between the underside or the pickup shelf at (2) Fig. 2 and the tip of the dashpot. This clearance should be very small as otherwise the plckup will tend to bounce as it is lowered. There must be sufficient clearance however to prevent the dickud shelf from ruboing on the tip of the dash pot, or the pickup will not swing out far enough to allow the adjustable stop at (K) Fig. 2 to come to rest against the dashpot. Check this clearance in both 10" and 12" record positions. If adjustment is required, the height of the dashpot may be regulated by loosening the nuts on the bottom of the lift lever stud at (X) Fig. 4 and changing their position on the stud. To raise the dashpot turn the nuts clockowise, to lower the dashpot turn the nuts counter-clockwise. Be sure to lock the nuts tightly together after the adjustment is made.

PHILCO RADIO \& 'TELEV. CORP.

SPECIFICATIONS

PHILCO INTER-MIX RECORD CHANGER, Part No. $35-1176$ plays and automatically changes with one loading 14 ten-inch and twelve-inch records mixed together in any order. This record changer will also separately play 15 teninch records or 13 -twelve inch records. In addition, the mechanism is designed to operate with slightly warped records.

Service information contained in this bulletin covers operation, care, and adjustments that may be necessary if the mechanism ceases to function properly.
When ordering parts, refer to the part number of the entire mechanism in addition to the number and name of parts shown in the figures of this bulletin.

PHILCO RECORD PLAYER NEEDLES

To obtain brilliant life-like tone quality, PHILCO Recori Player Needles are recommended. These needles are especially designed to give high fidelity tone reproduction - less record wear and less surface noise. One needle plays 15 to 20 records. The use of inferior needles in the pick-up of this mechanism will greatly affect the tone reproduction performance.

AUTOMATIC AND MANUAL POSITIONS

A control knob (1) Fig. 2 is provided for placing the mechanism in the automatic or manual operating position.
When changing from manual to automatic or automatic to manual positions, the mechanism should be turned off and allowed to complete its cycle. The knob can then be set for the position desired as follows

To operate the mechanism manually, press knob (1) Fig. 2 marked "Press-Turn" down and turn to the right (clockwise) until record support arm assembly (16) Fig. 1 is in the extreme clockwise position.
For the automatic operating position, control knob (1) Fig. 2 is turned to the left (counter-clockwise) until knob snaps up.

PICK-UP DOES NOT INDEX PROPERLY ON OUTER EDGE OF 10" AND 12" RECORDS

The pick-up is set for 12 " records by the trip cam (15) Fig. 1 that is pivotally mounted under the selector blade on main record support post (12) Fig. 1. This trip cam is operated by the edge of a $12^{\prime \prime}$ record compressing the cam when the record support arm moves in a clockwise direction. This cam moves trip lever blade (14) Fig. 1 and toggle bar and spring (38) Fig. 3 which pushes set lever blade (5) Fig. 3 into position to hold the tone arm locator (36) Fig. 3 in the $12^{\prime \prime}$ position.

After playing a record or the mechanism has been rejected, the set lever (5) Fig. 3 is reset for the $10^{\prime \prime}$ position by the control cam bracket lever (35) Fig. 3 mounted on the set lever shaft. The control cam bracket (35) Fig. 3 engages the control shaft cam pin (31) Fig. 3 at the start of rotation.
Adjustment of the tone arm when piacing the needle in the first groove of $10^{\prime \prime}$ and $12^{\prime \prime}$ records is controlled by tone arm locator (36) Fig. 3. When $10^{\prime \prime}$ or $12^{\prime \prime}$ adjustments are made, the $12^{\prime \prime}$ adjustment should be made first. If $10^{\prime \prime}$ adjustment alone is necessary, the $12^{\prime \prime}$ adjustment should be re-checked Adjustment of the locator lever is as follows:

12-inch Record Adjustment

1. Turn control knob (1) Fig. 2 to "manual" position.
2. Place a $12^{\prime \prime}$ record on the turntable.
3. Start mechanism and allow pick-up to position itself on the outer edge of the record. If the needle has not been placed in the center of the smooth outer rim of the record, adjust stop (2) Fig. 3 by loosening set screw. Move the stop in the direction necessary to center the needle on the smooth outer rim of the record.

PHILCO RADIO \& TELEV. CORP.

10-inch Record Adjustment

1. Set control knob (1) Fig. 2 to "automatic" position.
2. Load the mechanism with several $10^{\prime \prime}$ records.
3. Allow mechanism to set a record on turntable and place the pick-up on the smooth outer rim of the record.
4. If the pick-up does not come down in the center of the smooth outer edge of the record, adjust the following:
5. Loosen $10^{\prime \prime}$ record stop (1) Fig. 3.
6. Move the stop slightly toward or away from the stop pin as the case may be to center the pick-up needle on the outer edge of the record.

If, after making the above adjustments, it is found that the pick-up will not move into the first groove after the needle is centered on the outer edge of the record, examine the following parts:

1. Spring (2) Fig. 3 on $12^{\prime \prime}$ adjustment stop may be weak. 2. Tone arm lever or swivel shaft may be binding; examine and lubricate.

TONE ARM ELECTRIC REJECT SWITCH WILL NOT OPERATE

(When no record is on turntable)

The tone arm electric reject switch operates when the mechanism is first loaded and no records are on the turntable or no records are on the record support arms. This switch closes when the pick-up needle drops into a groove provided in the turntable; allowing the tone arm to go to a lower level and causing switch contact to close. Adjustment of this switch is as follows:

1. Adjust screw (9) Fig. 1 located in the tone arm directly above the end of the tone arm shaft. Turn this screw in the direction necessary to obtain a clearance of $1 / 10^{\prime \prime}$ between the bottom of the groove in the turntable and the bottom end of the needle.
2. With a record on the turntable and the needle resting on the record, a clearance of $1 / 1 s^{\prime \prime}$ between the top and bottom contacts of the tone arm electric reject switch should be obtained. Bend the moving contacts spring upward or downward to obtain the necessary clearance.
3. Also check the electric magnet (19) Fig. 3 and associated wiring for open circuits.
4. Check the small metal rod connecting the trip trigger (13) Fig. 3 and lever of electric magnet.

MECHANISM WILL NOT REJECT AT THE END OF RECORDS

The tone arm is designed to reject records with an oscillating or spiral reject groove. To make the adjustments for either type of records, proceed as follows:

1. See that the screw (10) Fig. 1 which clamps the tone arm swivel bracket is tight. Make sure that the set serews holding the tone arm lever (12) Fig. 3 to the tone arm shaft are tight.

2. Oscillating Groove Records

Records with an oscillating reject groove are rejected by the trip dog located on the end of the tone arm lever (12) Fig. 3 engaging the saw teeth of the trip trigger (13) Fig. 3. When the mechanism will not reject an oscillating groove record, either the screws mentioned in paragraph 1 are loose or the trip dog trip trigger (13) Fig. 3 or springs (15) Fig. 3 are at fault. When it is found that these parts have become worn or weak, they should be replaced.

3. Spiral Groove Records

Records with spiral reject grooves are rejected by the trip shoe (14) Fig. 3 located on the end of the tone arm lever (12) Fig. 3. This trip shoe (14) Fig. 3 hits the pin on the trip trigger (13) Fig. 3 releasing the clutch throwout bracket (29) Fig. 3. This should occur when the pick-up needle has traveled to within a distance of $17 / 8^{\prime \prime}$ from the center of the turntable spindle. Adjust the mechanism to properly reject this type of record as follows: If the pick-up does not reject the mechanism after traveling to within $17 / a^{\prime \prime}$ from the center of the turntable spindle (or $1 \psi^{\prime \prime}$ from the edge of spindle), loosen the knurled nut holding trip shoe (14) Fig. 3 to the tone arm lever (12) Fig. 3. Move trip shoe toward or away from the pin on the trip trigger (13) Fig. 3 until the trip shoe operates the mechanism properly. When this point is found, the knurled nut should be well tightened.

TEN AND TWELVE INCH RECORDS DO NOT SEPARATE PROPERLY IN A MIXED LOADING

Ten and twelve inch records in a mixed loading are separated by lifter cams (20) Fig. 1 located on the record support arms (6) (16) Fig. 1. These cams operate when the next record to be selected by the mechanism is $10^{\prime \prime}$ and are designed to lift a $12^{\prime \prime}$ record when one is located directly above the $10^{\prime \prime}$ record. This allows the selector blades (5) Fig. 1 and guide arms (4) Fig. 1 to slide under the $12^{\prime \prime}$ record so that a $10^{\prime \prime}$ record can be placed on the turntable. The lifter cams (20) Fig. 1 are caused to operate by the $10^{\prime \prime}$ record hitting the end of the cam. Check the following parts when mechanism does not separate records properly:

1. The lifter cam link (20) Fig. 1 should be approximately 3/32" above the surface of the record support arms (6) (16) Fig. 1 when no records are on support arms (6) (16) Fig. 1. This link is held in this position by the small return spring found under (20) Fig. 1 underneath the support arms (6) (16) Fig. 1. If link is not above the surface of support arms (6) (16) Fig. 1, check for loose spring; replace spring if necessary.
2. The selector blades (5) Fig. 1 should have a slight downward pressure on the top surface of the guide arms (4) Fig. 1 when in their return position ready for next selection.
3. In their full return position after a record has been placed on the turntable the selector blades should also pass the guide arm link pin (22) Fig. 1 so that the selector blades will carry the guide arm toward the edge of a record when making the next selection. If any one of the blades do not return enough to clear the guide arm link pin (22) Fig. 1, the blade should be adjusted as given in paragraph "RECORD SELECTORS DO NOT OPERATE IN SYNCHRONISM".
4. There should also be sufficient tension between the guide arm link pin (22) Fig. 1 and the end of the selector blade (5) Fig. 1 so that the guide arms (4) Fig. 1 will be pulled forward against the record when the selector blade (5) Fig. 1 moves to select the next record. Tension between guide arms and selector blades should be sufficient so that sloop on guide should lift a full load of records to proper height for selector blades to select bottom record. If guide arm pin (22) Fig. 1 does not have enough tension against end of selector blades (5) Fig. 1, check the springs holding the pin in position, also, for worn surface on side of pin.
5. Action of the selector guide arm (4) Fig. 1. The guide arm is designed to guide the selector blade (5) Fig. 1 and lift the record to the proper height necessary to separate the records. The top of the guide arm (4) Fig. 1 has two inclined surfaces. The outer surface for $10^{\prime \prime}$ records and the inner surface for 12" records. After the selector blades (5) Fig. ${ }^{1}$ have entered between the records, the guide arm (4) Fig. 1 is released and returned to its normal position. If it does not return to its normal position, check for a weak spring on the guide arms (4) Fig. 1 or binding between guide arm and record support post (2) Fig. 1. These springs are attached to record support posts (2) (12) Fig. 1 and a pin at the swivel of the guide arm.
6. In case of a warped $10^{\prime \prime}$ record with its concave face down, resting on a warped $12^{\prime \prime}$ record with the concave face upward, there is a tendency for the selector blades to jam against the edge of the $10^{\prime \prime}$ record instead of going in under it. In order to prevent this condition the blades must be bent down sufficiently to slide along the top surface of the $12^{\prime \prime}$ record.

SELECTOR BLADE (5) FIG. 1 FAILS TO SEPARATE BOTTOM RECORD FROM STACK

This is due either to a badly warped condition of the record, or to its being of a thickness considerably different from those now in standard use. The design of both selector blade and record support arms is such as to accommodate a maximum variation in thickness and flatness of records, but certain records may be found which are so far out as to be unfit for use in the automatic changer.

RECORD SELECTORS DO NOT OPERATE IN SYNCHRONISM

If the record selector blades (5) Fig. 1 do not operate in synchronism proceed as follows:

1. Set the control knob (1) Fig. 2 to "automatic" position. See page 1 "Automatic and Manual Positions". (Turn knob to the left until it snaps up). Place one $10^{\prime \prime}$ record on selector blades. After record has been dropped to record supports, pull lower plug and rotate turntable by hand until the selector blades are close to the edge of record. At this point all selector blades should be as nearly as possible the same distance from spindle. If the selector blades are not the same distance from the spindle due to replacement of gears, etc., the blades are resynchronized as follows:
2. With the mechanism in the same condition as outlined in paragraph 1 , remove the " C " washer from segment arms (23) or (27) Fig. 3 depending on which of these selector blades are out of time. Pull segment arm down so that gears are disengaged, then move selector blade (5) Fig. 1 in direction necessary to align it with other blades. When this position is found, mesh gears and replace "C" washer.

MECHANISM DOES NOT RETURN SELECTOR BLADES TO LOADING POSITION

If the selector blades will not return to the loading position (pointed toward spindle) after a record has been placed on the turntable

1. Look for trouble in the parallel cam switch (6) Fig. 8. The contact of this switch should be in a closed position, at the time a record is being played.
2. When the selector blades are in the proper loading position cam (37) Fig. 3 should open parallel switch (6) Fig. 3. To place the mechanism in the loading position, turn changer switch (8) Fig. 1 off. After the switch is off the changer shoild continue to operate until the next record is selected and dropped on the turntable. When the record is dropped on the turntable, cam (37) Fig. 3 should open parallel switch (6) Fig. 3. When the turntable stops rotating the selector blades should be pointed toward spindle.
3. To adjust cam (37) Fig. 3 loosen the two set screws and rotate cam on the shaft until proper position is obtained. Retighten set screws.

PHILCO RADIO \& TELEV. CORP.

NO REPRODUCTION WHEN NEEDLE IS OPERATING ON RECORD

A muting switch (177 Fig. 3, the purpose of which is to short the pick-up during the change cycle. This switch is mounted on the transmission frame, and is operated from the elutch throw-out (29) Fig. 3. When a record is on the turntable and the needle is in playing position, the contact of this switch should be in the open position.

AUTOMATIC CLUTCH DOES NOT COMPLETELY DISENGAGE AT THE END OF THE CYCLE

This trouble is identified by a steady thumping or clicking sound when the pick-up is in the playing position and is caused by the clutch not properly disengaging at the end of the automatic cycle. In most cases, this trouble is due to the clutch clearance adjusting plate not being in the proper position on the tone arm brake (8) Fig. 3. To eliminate this trouble, make the following adjustments:

1. Loosen the two screws that hold the clutch clearance adjusting plate to the tone arm brake lever (8) Fig. 3. Advance the adjusting plate until the clutch pawl [found in elutch housing (30) Fig. 3] clears the clutch sprocket.
2. If the clutch disengages before the pin on the drive drum (10) Fig. 3 reaches the inclined surface of the adjusting plate, the plate should then be retarded until the drive drum plate, the plate should over the humps and slides down inclined surface.

FAILURE OF UNIVERSAL DRIVE COUPLING

The Universal drive coupling consists of four strips of rabber held together by a frame having ears projecting into slots in the rubber.

If excessive strain is placed on the coupling, the projecting ars may slip out of the slots in the rubber, thus disconnecting the drive. In order to hold the coupling together more firmly, the outer end of these ears projecting through the rubber may be bent outward at right angles to form a hooik which will bold the rubber firmly in place. Do not make bend any more than $1 / 8$ " from end of ear. See Fig. 4.

REMOVING MOTOR TRANSMISSION

In removing the motor transmission, the following parts should be disassembled first:

1. Remove turntable shaft. (See paragraph - Removing Turntable Shaft Assembly.)
2. Unsolder pick-up wires
3. Unsolder pick-up wires. and the tone arm shaft and remove tone arm and shaft.
4. Remove the mounting screws which hold the tone arm post to the panel. Unsolder electric tone arm reject switch wire from the terminal strip and remove tone arm post.
5. Remove " C " washer from the drive link pin - this will sllow the drive link to be removed from the transmission and then remove the six mounting screws holding the transmission to the panel and take out the transmission.

TOP RECORD SLIPS WHEN PICK-UP IS IN THE PLAYING POSITION

If the top record slips in the playing position, check the following parts:

1. Check for excessively warped records. Records warped too badly should be replaced and not used in the changes.
2. Check for worn grooves in record, particularly old records. After the grooves of the records lose their gloss, the pick-up does not glide through the groove. This condition has a tendency to cause pick-up needle to drag resulting in the top record slipping.
3. Check record friction spring (16) Fig. 2 for tension. This spring should protrude far enough from the shaft to hold the top record from slipping when in the playing position. This spring when adjusted properly to hold a record, should also allow a $10^{\prime \prime}$ record to fall freely onto the turntable.
If the spring is in need of adjustment, see heading "Removing Turntable Shaft Assembly", Paragraph 4.

OILING AND GREASING MOTOR AND MECHANISM

The motor and mechanism should be oiled and greased every six months with a good grade of S. A. E. 10 oil.
Parts to Lubricate:

1. All bearings of the mechanism.
2. All sliding surfaces such as, cams, etc., should be lubricated with a very light grease.
3. Motor bearings and governor felt.

TURNTABLE SPEED ADJUSTMENT

If motor runs too fast or slow, the governor adjustment screw (27) Fig. 2 on the top side of the governor should be screwed in or out slightly as required. To do this, loosen the lock nut and turn screw, then retighten lock nut.

REMOVING TURNTABLE SHAFT ASSEMBLY

To remove the turntable shaft assembly, proceed as follows:

1. Loosen the two set screws holding the motor coupling
(21) Fig. 2 to the turntable shaft.
2. Loosen the two screws holding the turntable drive worm (23) Fig. 2 to the turntable shaft, then lift out turntable and shaft.
3. To remove the turntable from the shaft, remove the three serews and nuts which hold it to the hub.
4. The record frietion spring (16) Fig. 2 on the turntable shaft can be removed by pushing the hub downward toward the heavy end of the shaft - the spring can then be removed. If it is desired to increase the record friction on spring, bend upward the lower section of the spring which contacts with the bottom surface of the hub. To decrease the record friction against the spring, bend the spring downward.

The motor is removed as follows:

1. Remove the three $10,3: "$ machine screws which hold the motor to the motor mounting bracket. Three $1 / 2^{\prime \prime}$ spours will also be found which space the motor from the mounting plate.
2. There are two motor bracket locating pins on the underside of the changer base panel which pass through rubber grommets located in the motor mounting bracket. These are provided to keep the mounting panel and motor bracket in proper alignment.

MECHANISM AND CHASSIS MOUNTING

The mechanism is mounted in the cabinet as follows: 4 mounting studs are located in the bottom surface of the panel each threaded to take $1 / 4$ " No. 20 machine screws. The mounting panel rests on four tapered coil springs. The small end of each spring is pressed over a mounting stud and the large end of each spring fits into a screw in the top surface of the mounting shaft in the cabinet. Four spacing blocks $1 / 2^{\prime \prime}$ thick and with a s/a" hole are fastened to the lower side of the and with motor board. The $5 /{ }^{\prime \prime}$ hole in each block is centered cabinet motor board, The $h^{\prime \prime}$ hole in each block is centered with the $7 / 1 n^{\prime \prime}$ screw clearance hole. These are provided and located on the lower side of the cabinet motor board into which each of the lower mounting springs are to fit. The $1 / 4$ " No. 20 machine screws are turned through the four wing nuts until the head of each screw is against the head of the bottom side of each wing nut. The four lower springs are of smaller diameter than the upper springs. These lower springs are slipped over the nuts to each of the $1 / 4^{\prime \prime}$ No. 20 machine screws with the smaller end toward the head and resting on the wing nuts.

The $1 / 4^{\prime \prime}$ No. 20 machine screws are pushed through the $7 / 1 n^{\prime \prime}$ clearance hole and tightly screwed into the mounting studs. Wing nuts should be backed down on head of $1 / 4^{\prime \prime}$ No. 20 bolt to place changer in operation.

PHILCO RADIO \& TELEV. CORP.

REPLACEMENT PARTS

Several Parts were changed on the Mechanism in later production. The major change was made in the 'Selector Blade Guide $29,30,31,32$. Other changes are indicated in the in Fig. 1 , Page 119, Parts 1, 4, 6, 13, 16, and Fig. 2, Page 120 , Parts 6 , 16 , 27 , 28

FIGURE 1, PAGE 119
TOP VIEW OF RECORD CHANGER, PART NO. 35-1176

$\begin{gathered} \text { item } \\ \text { No. } \end{gathered}$	Description	Part No.	No. nsed per Instrument	$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Deacription	Part No	No. used per Inntrument
1	Nut. Selector Blade Post			9	Tone Arm Adjugting Screw.	W-2	Antrameat
	(Early Production) ...	W-2092	${ }_{2}^{2}$		Contact Spring Blade......	56-21663	1
	Spring Washer (Selector Post)	-35-2141	${ }_{2}^{2}$	110	Tone Arm Swivel Bracke	$\begin{array}{r}35-2182 \\ 35-2183 \\ \hline 3\end{array}$	1
	Rubber Bumpers	27-4926	3	12	Main Record Support Post	- $\begin{array}{r}35-2183 \\ 35-2148\end{array}$	1
${ }_{3}^{2}$	Record Support Post	35-2147	${ }^{2}$	13	Nut, Control Knob Selector P		
${ }^{3}$	Selector Blade Guide Arm and		1		(Early Production)	W-2091)
	Link Assem. (Early Production)	35-2105	3	14	Trip Lever	35-2139	1
	Selector Blade Guide Arm and			15	Trip Cam	35-2104	1
5	Selector Blade (Later Production)	$35-2135$ $315-1022$	3_{3}^{3}	16	Main Record Support		
8	Record Support Arm Assembily				(Later Production)	- $\begin{array}{r}35-2107 \\ 35-2137\end{array}$	1
		$35-2075$ $35-2136$	3 3	17	New Needle Cup.	+ $45-6091$	1
	Spring (Record Support Arm)			18	Used Needle Cup	$\begin{array}{r}45-6093 \\ \hline 456092\end{array}$	1
7	Tone Arm Assembly	35-2067	1	20	Lifter Cam	35-2149	${ }_{3}$
8	Crystal Pickup	35-2030			Springs for Lifter Cam	35-2150	
8	Screw Screw Nounting Cr	- ${ }_{\text {W }}^{\text {45-2788 }}$		21	Turntable Assembly	35-3039	1

FIGURE 2, PAGE 120
SIDE VIEW OF RECORD CHANGER, PART NO. 35-1176, AND MOTOR, PART NO. 35-1177

Item No.	Control Deseription	Part No.	No. uned per Intrament	$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Demeription	Part No.	No. need per Inetrument
1	Control Knob	35-2083	1	20			
2	Spring (Control Knob)	35-2164	1	21	Coupling Assembly (Motor Turn-	35-2187	1
3	Clutch Pawl Spring..	35-2102	1		table Spindie)	45-6098	1
5	Motor Spacer	35-2097	3	22 23	Motor Bracket	35-2100	1
5		35-2097	4	24	Warm Gear Bearnig Retainer Aspe. ${ }^{\text {Bably }}$	35-2179	1
6	Selector Blade Guide Arm and			25	Wall Berrnig Retainer Assembly.	35-2177	1
	Link Assembly (See Note "A"			26	Morm Thrust Washer	35-2178	2
	below) (Later Production)..	35-2135	3		(110 volts. 60 cycle)	35-1177	
8	Mide Arm Link Spring	$35-2138$ $35-2185$	3		(110 volts, 25 cycle)	35-1201	1
9	Rubber Grommet	$35-2186$ 35	2		(110 volts, 50 cycle)	35-1196	1
10	Spacer \ldots....	35-2099	7		(110-220 volts, 50 cycle)	35-1209	1
11	Rubber Grommet	35-2098	7	27	Motor Adjusting Screw	35-1210	,
12	Special Nut ('U"' Shaped Spacer)	56-1670	4	27	Note "A", The following parts		,
113	Spring (Small- Bottom Springs).	28-8961	4		from 28 to 32 were used parts		
14	Spring (Large-Top Springs)	28-8962	4		Early Production Changers. ${ }^{\text {fon }}$		
	Mounting Bults	W-359	4	28	Selector Blade Guide Arm and		
15	Guide Arm Return Spring				Link Assem. (Early Production)	35-2105	
3 f	Record Friction Spring	$28-8963$ $35-2088$	1	29	Link Pins (Early Production)	35-2151	3
17	Turntable Spindle ...	35-2087	1	31	Link Pin (Early Production)	35-2151	3
18	Turntable Hub..	45-6097	1	32	Guide Pin Spr. (Early Production)	28-8966	3
19	Turntable	35-3039	1		(Early Production)	28-8963	3

FIGURE 3, PAGE 121
BOTTOM VIEW OF RECORD CHANGER, PART NO. 35-1176

ASSEMBLY OF MOTOR TO BASE PLATE

The motor is attached to the base plate by three bolts, and mounted on rubber cushions.
The brace that is over the turntable spindle and bolted to the base plate serves as an excellent gauge for aligning the motor in the center.

When removing the two screws that hold the turntable locating plate over the turntable spindle, preparatory to operating the instrument, be sure that the locating plate lines up with the holes that the screws are just removed from.

If the motor has become shifted in transit there will be a tendency for the holes in the locating plate and base plate to not perfectly line up.

In this case it is necessary to slightly loosen the three bolts holding the motor to the base plate and shift the motor to such position that the holes in the brace and the base plate align perfectly, and while the brace is still in place, tighten the suspension bolts to hold the motor in that particular position. The brace must then be removed before the turntable is mounted on the shaft.

In placing the turntable on the shaft, be certain that the rubber driving washer is in proper place with clips over the spindle pin.

After the turntable is put on the shaft, force it down by hand to be sure that the rubber washer and turntable are making perfect contact.

To level the turntable, place a straight edge across the turntable and adjust the three suspension bolts holding the motor to the base plate until the same distance is obtained from the bottom edge of the straight edge to the base plate near the three points where the suspension bolts are located.

This measurement should be approximately $11 / 16^{\prime \prime}$. This adjustment must be made so that there is no free movement of the motor by either of the suspension bolts being too loose.

TONE ARM ADJUSTMENT FOR TEN INCH AND TWELVE INCH RECORDS

Pickup change lever No. 5509 is for changing the instrument from 10 inch to 12 inch record operation and vice versa.

The lever changes the position of the pickup return lever in such a manner that the needle is let down for the 10 inch or the 12 inch record, as desired.

To adjust for playing 10 inch records, loosen the forward lever stop No. 5526 and hold the lever in such a position that the needle will come down on a 10 inch record exactly $4-11 / 16^{\prime \prime}$ from the edge of the center pin. (A scale should be placed on the record with the end of the scale against the centering pin in such a position that the needle point will come down on the scale at the 4 11/16" inch position.)

When the proper location of lever No. 5509 is ascertained, then the front stop may be set snug against this lever and the screw tightened, which will allow the lever to always be thrown over to that exact position when desiring to play 10 inch records.

To adjust for playing 12 inch records, loosen the back lever stop No. 5527 and hold the lever in such position that the needle will come down exactly $5-11 / 16^{\prime \prime}$ from the edge of the centering pin. (A scale should be placed on the record with the end of the scale against the centering pin in such position that the needle point will come down on the scale at the $5-11 / 16^{\prime \prime}$ position.)

In the event you are unable to properly adjust for either 10 inch or 12 inch records by the above method, make the adjustment as nearly correct as possible then refer to instructions on Page 6 and check Tone Arm Bracket Lever adjustment making certain the adjustment is correct.

Then loosen the lock nut holding the adjustment screw on the tone arm return lever No. CA5687 and turn the adjusting screw either in or out, as the occasion requires, to bring the needle to the proper location for the size record you are unable to adjust for by the lever stop method. It will then be necessary to readjust the lever stop which was originally set in position for the other size record.

The lever stop screws must be set tight so the lever stops will not be jarred out of position as the lever is thrown from one position to the other.

ADJUSTMENT OF PICKUP WEIGHT

Make this adjustment while music is being played, and only one record is on the turntable. With a delicate pair of scales, having a range of 0 to 12 ounces, catch the needle screw and lift the pickup from the record until the audio quality breaks, at which time a reading of $51 / 2$ to 6 ounces should be shown on the scales. Raising or lowering the spring support No. 5575 which is affixed to the tone arm lifting rod No. 5553 adjusts the weight of the pickup.

PHILCO RADIO \& TELEV. CORP.

60 1/4-20 Hex Head Screw
5501 Drive Bracket.
5581 Link Spring-Lower.
5612 Trip Lever \& Cam Assy.
5613 Drive Sleeve Assy.

5619 Eccentric Spring Assy.
5641 Short Circuit Siwitch Assy
5643 Trip Lever Rod Collar Assy.
5698 Volume Control.
CA5687 Tone Arm Return Lever \& Fork Assy.

GOVERNOR ADJUSTMENT

If the turntable speed cannot be regulated to 78 R. P. M. by the speed control lever located under the turntable, then loosen the set screw holding the governor to the governor shaft and move the governor either in or out, as the case may be, to increase or decrease the speed of the motor.

This adjustment must be made when the speed control lever under the turntable is in the center position.

To increase the speed of the turntable motor, move the governor out, and to decrease the speed of the turntable, move the governor in.

Do not, under any conditions, change the adjustment of the end thrust bearing screws.
An occasional drop of oil on the governor brake will assist in maintaining a constant speed.

ASSEMBLY AND ADJUSTMENT OF OSCILLATING AND SPIRAL TRIP LEVER AND PICKUP SILENCER

To time the automatic switch so the instrument will automatically trip and change records, proceed as follows:
First: Thoroughly acquaint yourself with the different part numbers.
Second: Study the photographs carefully and note the relative location of the various parts. Third: Complete each of the following operations before going on to the next operation.
Operation No. 1.
Turn the master cam No. 5504 until the large timing mark is exactly above the timing mark on the tone arm lifting lever No. 5761.
Operation No. 2.
Hold the switch lever and cam assembly No. 5612 against the driven clutch No. 5616, so the radius of the cam will center against the clutch. (Be sure that cam No. 5612 is directly under the driven clutch No. 5616.)
Operation No. 3.
Set the pickup silencer switch No. 5643 against the casting bearing so the shaft of cam No. 5612 cannot be moved further toward the automatic switch.


```
62 11/4-28 Hex Head Screw.
5529 Spiral Trip Cam.
5783 Tone Arm Lift Rod.
5554 Eccentric Pin.
5563 Slide Finger Eccentric.
5582 Link Spring-Upper.
5583 Trip Lever Spring.
5611 Trip Lever & Hub Assy.
```

5618 Oscillating Trip Dog Assy.
5659 Tone Arm Bracket Lever \& Pin Assy.
5657 Oscillating Trip Lever Assy.
CA5709 Slide Finger \& Shaft Assy.
CA5733 Reject Stud Assy.
CA5742 Switch Panel Assy.
5765 Tone Arm Weight Adi. Spring
5775 Tone Arm Spring Hook.

PHILCO RADIO \& TELEV. CORP.

Operation No. 4.
Hold the tail of cam No. 5612 against the lug on the inside of the master cam No. 5504 and adjust the trip lever No. 5611 until it is $1,16^{\prime \prime}$ beyond the catch in the oscillating trip lever No. 5657. This adjustment is made while the tail of the cam No. 5612 is held against the outside of the lug inside the master cam No. 5504.)
Operation No. 5.
Care must be exercised to have the end play of the oscillating trip shaft just free. This is taken care of in adjusting the pickup silencer switch No. 5643 , so a good contact is made on the pickup short circuiting switch WHEN THE NEEDLE IS ON THE RECORD AND THE AUTOMATIC SWITCH HAS BEEN TRIPPED.
After the pickup silencer switch No. 5643 has been set according to the above instructions, the resetting of the automatic trip should allow the contacts on the pickup silencing switch to open.

If the above operations are followed out in detail, and adjustments properly made, the clutch will automatically disengage when the pin on the clutch No. 5616 has travelled approximately onehalf of the distance of cam No. 5612.

At the time the pin has travelled one-half of the distance of the clutch release cam, the small timing mark on cam No. 5504 should be exactly above the timing mark on the tone arm lifting lever No. 5761.

5612 Trip Lever \& Cam Assy.
A5615 Drive Shafe Assy.
5615 Drive Shaft Assy.
5616 Driven Rachet \& Pin Assy.
CA5651 Main Drive Assy.

5785 Switch Double Circuit H \& H.
5586 Clutch Spring.
5575 Motor, give voltage and cycles.
5690 Governor Assy.
5734 Record Lock Lever \& Hook Assy-Left.
5735 Record Lock Lever \& Hook Assy-Right
ADJUSTMENT OF THE SPIRAL TRIP CAM
To adjust the spiral trip cam, turn the master cam No. 5504 until the small timing mark is ex-
actly above the timing mark on the tone arm lift tever No. 5761 at which time the automatic trip can be manually reset or tripped at will. scale against the turntable spindle in such position that the needle rests on the scale. By sliding
the needle toward the center of the record, the spiral cam should cause the automatic trip to operate when the point of the needle is $1-49 / 64^{\prime \prime}$ from the edge of the turntable spinde. If the automatic trip operates be moved very slightly back, while, if the needle comes closer to
cam is set too far ahead and must be to the proper position.
 fore the music is finished, or and
To adjust the spiral trip cam No. 5529, slightly loosen the two screws holding the cam to auto-
matic switch lever No. 5657 and pry the cam forward or back as required to obtain the proper setting.
To test the position of the spiral cam, it is necessary to carry the pickup back to the edge of ASSEMBLY OF TRIP BRACKET TO BASE PLATE
The automatic trip bracket No. CA 5742 is mounted to the base plate by two nickle plated bolts
and lock washers.
The end that the bakelite panel is mounted on is to be mounted toward the front of the base plate in such a manner that the bearing aligns perfectly with the bearing in the drive bracke.
final alignment can be made when the trip lever shaft No. 5612 is being instailed and adjusted. TONE ARM BRACKET LEVER ADJUSTMENT
 holding the bracket lever No. 7704 to the bracket under the tone arm base, and around the bracket, is exactly centered on each side of the aligning notch cut in the lower tim of the bracke. against Then lay a scale, graduated in 64ths, on the turntable, placing the end of the scale against
the turntable spindle in such position that wher the needle is automatically let down the point of If the needle does not automatically come down at the $4-11 / 16^{\prime \prime}$ position refer to page 2 and make final adjustment at lever stop on the No. arm return bracket lever, allowing .015 inch clearance bethe arm bracket lever No. 5704 in place, which should leave ample clearance between the cork insert and the tone arm
housing to allow perfect freedom of the tone arm operation. If needle fails to feed into music groove, lift tone arm bracket lever No. 5704 tightly against
tone arm housing and manually move tone arm back and forth to relieve any uneveness that might O7 a. The record magazine pin No. 5555 must be tightened in the elongated hoe inde directly away
plate $N \mathbf{N}$. A 5736 in such a manner that the offeet at the bottom of the pin extends The magazine pin must also be adjusted to such a position that exactly $47 / \mathrm{s}^{\prime \prime}$ clearance is ob-
tained between the back center of the offset at the bottom of the magazine pin, and the extreme right and left corners of the record support shelf. This adjustment is to be made when the record
magazine is in 10 inch playing position. TO ADJUST THE RECORD SUPPORT HOOKS
First, throw lever No. 5509 to the 10 inch position, and place a 10 inch record on the magazine pin, bringing the magazine down to playing position.
The record suport hooks are adjusted by bending to proper position.
The record support hooks must be kept $1 / 16^{\prime \prime}$ from the edge of the record support shelf and must be adjusted far enough back to just clear the edge of a 10 inch record, as the record is re-
leased from the record support shelf. The record support hooks must also be low enough to clear the bottom side of the record, as it
is supported on the magazine shelf. is supported ond support hooks should operate freely in either 10 inch or 12 inch position.

MODELS 4585, 4586 PHILCO RADIO \& TELEV. CORP. 35-1178

9 10-32 Hex Head Screw.
21 A Acorn Nut.
60 I/4-20 Hex Head Screw.
$621^{1 / 4}-28$ Hex Head Screw. 89 10-32 Headless Set Screw 60 Point. 5504 Master Cam.
5509 Eccentric Handle.
5520 Record Shelf.
5601 Record Slide.
5525 Spring Hook.

5552 Tone Arm Lift Lever Pin
5555 Record Support Pin.
5563 Slide Finger Eccentric.
5576 Switch Finger Cam.
5580 Hook Spring
5599 Record Support Plate Screw. 15600 Record Shelf Shaft Assy. 5608 Tone Arm.
CA5651 Main Drive Assy.
CA5654 Tone Arm \& Bracket Assy.

A5691 Record Unloading Lever. A5732 Switch Panel Assy. A5736 Record Support Plate Assy. CA5741 Standard Assy.
5759 Record Weight \& Felt Assy. 5761 Tone Arm Lift Lever Assy. 5773 Tone Arm Insulating Bushing. 5774 Tone Arm Pivot Bushing. A5880 Tone Arm Bracket Assy.

After the above adjustment is made, check the instrument with one record on turntable, by shutting current switch off and see that instrument comes to an automatic stop position when the lug on the master cam No. 5504 has completely passed under the end of record release finger No. CA 5709. If the lug has not entirely passed under the end of the record release finger, then move cam No. 5576 to the left as little as possible to allow the lug to clear the cam when instrument stops automatically with one (1) record on turntable.

TONE ARM RETURN LEVER AND• ITS ADJUSTMENT

The tone arm return lever No. CA5687 is mounted on an eccentric pin with the bushing extended downward, the tone arm change and adjusting lever No. 5509 is mounted on the same shaft and located on the top back left corner of the chassis.

The sharp point of the cam, which is a part of the eccentric pin is to be mounted toward the tension spring which is affixed to the base plate, so that when the lever is thrown to 10 inch or 12 inch position the spring will hold the cam in that particular position.

The coil spring No. 5585 is attached from the lug on the tone arm return lever to the lug on the automatic trip bracket in such a manner that the spring is held as far down as possible by the lugs.
NOTE: The adjustment screw found on the tone arm return lever is covered in the instructions on page 1, and after once being properly set, should need no further adjustment.

Care must be exercised to have clearance between the high point of the master cam No. 5504 and the tone arm return lever.

MOUNTING AND ADJUSTMENT OF REJECTOR

The reject button is located at the right of the tone arm and is for the purpose of discontinuing a record before it has finished playing. With the automatic trip set and the instrument playing music, there should be $1 / 16^{\prime \prime}$ clearance between the bottom of the reject pin and the lateral pin affixed to the automatic trip lever No. 5657.

If this distance is too great, one will not be able to reject a record. If this distance is too small the automatic trip will not properly reset. Adjustment can be made by CAREFULLY bending the lateral pin to its proper position with relation to the rejector pin.

SPECIFICATIONS

PHILCO AUTOMATIC RECORD CHANGER Part No. 35-1180 automatically changes either twelve $10^{\prime \prime}$ or ten 12^{*} records. The service information contained in this bulletin covers the operation, care, and adjustments that may be necessary if the mechanism ceases to function properly.
When ordering parts for this mechanism, refer to the part number of the entire mechanism in addition to the number and names of the parts shown in the figures of this bulletin.

PHILCO RECORD PLAYER NEEDLES

To obtain brilliant life-like tone quality, PHILCO needles are recommended. These needles are especially designed to give high fidelity tone reproduction-less record wear and less surface noise. One needle plays 15 to $0^{*} 20$ records. The use of inferior needles in the pick-up of this mechanism will greatly affect the tone reproduction performance.

CHANGER OPERATION

Setting for Record Size

This changer plays up to twelve 10 -inch records or ten 12 inch records at one loading.

On each post you will see two plates. The lower one, on which the records rest, is the shelf plate. The upper one is the selector blade which selects the next record to be played from the bottom of the stack.

To set for record size. (1) Clasp one of the posts just underneath the shelf plate, with thumb and finger of left hand. With right hand, lift knob and turn selector plate until the figure 10 or 12 (whichever size you want to play) is opposite the pointer. Do the same with the other post. Both selector plates must be in 10 or 12 position. (2) Push button marked 10 or 12, as required (see Figure 1).

Loading

See that both shelf plates are turned toward center of turntable. As shelf plates near correct position you will feel the shelf plates drop into their indexing slots. Make sure both posts have dropped into their slots, if one is not in the slot, records may be damaged. Place the stack of recordis over center pin so they will rest on the two shelf plates.

Starting the Mechanism

To start motor and turntable (1) turn the switch to "ON" position. (2) Then push button " R ". This will relcase the first record and start the record-changing mechanism.

Rejecting a Record

To reject a record press the " R " button. This can be done any time after the needle has come into contact with that record.

Turning Off

Turn changer switch to "OFF" position. Lift pickup arm, place it on the pickup rest. (If you happen to turn off the changer switch while the mechanism is going through a "change cycle", you will notice that it does not stop until the cycle has been completed, and pickup is agair in playing position, ready to be lifted over onto the pickup rest.)

To avoid warping of records, never leave records resting on the shelf plates.

Removing Played Records

To remove records make sure motor switch is off, then take hold of both posts, just below the shelf plates, and turn

them out of the way. Lift the played records from the turntable. Taking hold of posts as before (below shelf plate) move plates until post again falls into indexed position as outlined under loading. The changer may then be loaded with a new stack of records.

Manual Operation

To play records one at a time as in an ordinary phonograph: (1) Remove any records remaining on the turntable, leave plates turned outward as for removing played records. Do not turn them back toward center of turntable. (2) Press button marked "M". Then place a record on the turntable, switch on motor and lift pickup into position.

LUBRICATION

The record changer will not need lubrication more than once a year and should be lubricated with a good light machine oil such as S.A.E. 10. There are 6 locations that will need oiling. These are shown in Figure 1. These lubricating holes can be reached from the top of the mechanism and are as follows:

1. The motor gear housing contains 3 lubricating wicks. These wicks are shown at "A" in Figure 1. Two of these wicks are reached through the hole directly in back of the turntable spindle and the other wick to the right of the turnable spindle.
2. A small quantity of oil should be dropped through hole marked "B" in Figure 1. Lubricating this point distributes oil to the various moving surfaces of the mechanism.
3. A felt wick directly below the hole marked " C " in Figure 1 should also be oiled.
4. Another felt wick marked " D " in Figure 1 should also be well oiled.

After long periods of use the oil becomes gummed in the above mentioned wicks. The wicks should be removed and cleaned with kerosene or carbon tetrachloride.

SQUEAKS OR OTHER NOISES DURING PLAYING OF RECORDS

If squeaks or various noises are heard from the mechanism during the playing of records or changing of records, the following items should be checked:

1. In the majority of the cases, these squeaks will be usually found to come from the friction between the stacked records and the turntable spindle. To check for this trouble, operate the mechanism with and without a load of records. To eliminate this condition, apply a very thin coat of light motor grease or vaseline to the turntable spindle.
2. Check the 5 wicks given under the paragraph on "Lubrication." Each wick should be thoroughly saturated with oil. All 3 motor wicks should be removed from the retaining holes with tweezers and examined to see if the oil has become gummy. In this case, the wicks should be thoroughly
cleaned and relubricated with oil and replaced in their cleaned and relubricated with oil and replaced in their
sockets.

If after adjusting the lead spring (97) it is found that the needle jumps across the record, it may be necessary to adjust the angle of the pickup in relation to the turntable spindle. This procedure is covered under paragraph "Mechanism Will Not Reject at the End of Records".

TONE ARM SLIDES INWARD ACROSS RECORD

This is caused by the guide arms stud (12) not releasing from the grooves in the upper side of the large cam gear (11). This may be due to friction at the shoulder screw (26) or the coil spring lifting the arm may be weak.

If the coil spring appears to be weak, it may be strengthened by shortening. If there is binding at the bearing, a little oil will help; also, a few movements by hand under considerable pressure will relieve the binding. If the binding is caused by the are being twisted out of line, the trouble can be sured by straightening up the parts.
3. Check all set screws to see that they are in place and tight. 4. Check motor windings. If coils have been jarred loose they should be tightened in place. The shading coils which encircle a portion of each laminated pole, the purpose of which is to make the motor self-starting, should be rigidly held in place by the retaining tape.

TURNTABLE SPEED VARIES

The turntable speed should be 78 R.P.M. + or -2 R.P.M. when a record is being played, and the mechanism will operateate satisfactorily. If the speed is below or above these limits, it indicates either trouble in the motor windings or bearings of the motor. Sometimes a few drops of oil on the bearings will increase the speed to normal. If upon investigation the normal speed cannot be obtained, replace the motor.

ADJUSTING LANDING
 POSITION OF NEEDLE
 ON RECORD

Adjustment of the landing position of the needle on records is controlled by the adjusting screw located in the hole shown in Figure 1. This adjustment is made with a screw driver from the top of the mechanism and does not require the removal of the changer from the cabinet. If the needle comes down too far from the edge of the record, playing of records will not start at their beginning. In this case, turn the needle positioning adjustment screw very slightly counter-clockwise. If the needle comes down too close to the edge of the record, the pickup may slip off the record. To adjust this

FIG. 2. Cutaway View Showing Parts under Sub-Plate Assembly (83) Fig. 3
 condition turn the adjusting screw clock-wise. If adjustment screw is too far to rear and cannot be adjusted through hole in base plate, depress "Manual" push button, and push bracket -Forward.

NEEDLE FAILS TO MOVE INTO RECORD GROOVE AFTER LANDING ON RECORD

Generally when the needle will not pull into the groove after landing on the record, trouble may be found due to lead spring (97) being weak. Increasing the tension of this spring or replacing spring will generally eliminate the trouble.

ADJUSTING THE RISING HEIGHT OF PICK-UP ARM

The pick-up arm should rise high enough during the change cycle so that the top of the tone arm clears the record resting on the support arms by $1 / 8^{\prime \prime}$. When the maximum load of records are on the turntable, the needle should clear the top record, if not adjust as follows:

Loosen the lock nut in pick-up sleeve (22). Turn the sleeve in the direction necessary to lengthen or shorten the pick-up plunger (21). After correct adjustment is found, tighten lock nut.

ADJUSTING DISTANCE FROM TURNTABLE SPINDLE AT WHICH REJECT WILL OPERATE AND CYCLE WILL BEGIN

The mechanism is designed to reject records of all types whether they are provided with special grooves or not. The mechanism is adjusted to operate $17 / \mathrm{s}^{\prime \prime}$ from the center of the record spindle; this distance has been found to be the most satisfactory point for all modern records so that they will be rejected after they have been played through. To adjust the reject mechanism for this distance or any distance that may be desired, a trip adjusting screw (18) is provided. By turning this screw toward the trip trigger (16), the mechanism is caused to operate at a closer distance from the spindle. Turning the adjusting screw (18) away from the trip trigger, operates the reject closer to the turntable spindle.

It may be found on some records of very early manufacture that it will not be possible to obtain a satisfactory adjustment that will always operate the changer mechanism.

MECHANISM WILL NOT REJECT AT THE END OF RECORDS

There are several parts that will cause the mechanism to fail in the operation of rejecting of recorls. These items are listed as follows

1. Examine swivel spring (95) for stretching. This spring is attached to the lugs at the end of the swivel spreaders (90) (91). The purpose of this spring is to keep the swivel spreaders (90) (91) closed, so that the trip trigger can be actuated. Increasing the tension of the spring (95) will prevent the swivel sprearls from opening allow the trip trigger to actuate properly.

If after increasing the tension of the spring (95) it is found that the needle jumps across the record, it may be necessary to adjust the horizontal level of the pickup. Sometimes the pickup leans towards the center of the record. To remedy this condition, the pickup mounting post should be examined for proper mounting position or the pickup arm may be twisted out of shape. In either of these cases the pickup arm should be replaced or adjusted to its original position. When the pickup arm is properly adjusted, it should lean slightly in an outwarl direction (toward the edge of the recoril).
2. After it is found that the trip trigger (16) is operating properly, trouble may be found due to the cam lever (39) binding against sub-Plate (41). In this case, look for some obstruction or foreign material on these two parts. Also see that the rivets are operating freely. If lever (39) engages cam lever pawl (34) so that lift (37) forces its rollers up into the groove on cam gear (82) and if the set screws are tight, the change cycle should go into motion as the cam gear (82) turns.
3. Sometimes friction between the trigger (16) and trigger catch (17) due to burrs or rough surfaces may also prevent the reject from operating. If the trigger unlatches but the cam lever (39) does not move, it indicates binding between sliding surfaces. This may be caused by above mentioned burrs or by the cam lever being slightly warped.

To eliminate this condition, locate the position where there is excessive friction. If it is found that the parts are out of shape due to being bent, new parts should be added or the old ones straightened. When it is found that trouble is due to a burr on the edge of the metal parts, burrs should be removed with a very fine file or scraper. After eliminating this trouble, a small amount of oil should be applied to the sliding surfaces.

REJECT BUTTON "R" WILL NOT OPERATE MECHANISM

If the " R " button does not cause the mechanism to go through a change cycle check the following parts:
a. Examine key control unit (75) for parts that have become out of shape or any obstruction that will prevent the " R " button from moving to its maximum length of travel.
b. Inspect reject rod (78). If this rod does not trip the mechanism even when properly revolved by complete depressing of " R " button, the rod has probably been bent out of shape. Replace the rod or reshape it to its former position.
c. If trigger (16) is properly actuated but without starting a change cycle see instructions as given under "Mechanism Will Not Reject at End of Records" paragraph 3.

PRESSING "M" BUTTON DOES NOT CHANGE

MECHANISM FROM AUTOMATIC TO

 MANUAL POSITIONSObserve action of "M" button. Button should travel far enough down when depressed to cause the manual rod (77) to actuate the key control unit. The key control unit (75) should also be checked for parts which have become out of shape or any foreign obstruction.

MOTOR STOPS IMMEDIATELY WHEN CHANGER SWITCH IS TURNED OFF DURING A CHANGE CYCLE

The normal action of the mechanism when the changer switch is turned off during a change cycle is to continue to operate until the needle is again on the record. The mechanism should then

FIG. 3
stop. This action is caused by the cycling switch (85) short circuiting the manual changer switch during a change cycle. The switch should be changed when the above mentioned trouble develops.

TURNING CHANGER SWITCH OFF FAILS TO STOP MECHANISM

If after turning the changer switch off the mechanism continues to operate it indicates trouble in the cycling switeh (85). Replace the switch when this trouble develops.

MECHANISM DOES NOT REPEAT THE LAST RECORD

If the mechanism does not repeat the last record, any one of the parts listed under "Mechanism Will Not Reject at End of Records" may be causing the trouble.

RECORDS FALL UNEVENLY ON THE TURNTABLE

Records falling unevenly on the turntable is generally due to the turntable spindle not being correctly centered between the record loading posts. To correct this trouble, see "Replacing Motor."

LAST RECORD DROPS ON ONE SIDE

This trouble is due in most cases to the loading posts being bent out of perpendicular to the main plate. To check for this trouble, test the posts with a steel square as directed under "Replacing Motor". Replace or adjust post so that it will be perpendicular to the main plate.

CHANGER CONTINUES CYCLING

If the mechanism continues to change records constantly, it indicates trouble in the lift (37). Failure of this lift to disengage with the cam gear (11), Fig. 2, will cause the trouble. Check the various rivets at which motion occurs to find a point where friction or binding is interfering with freedom of motion. The cam lever (39), Fig. 2, should also be checked for too much friction. Oil this part if necessary.

SELECTOR BLADE FAILS TO SEPARATE BOTTOM RECORD FROM STACK

This is due either to a badly warped record or to its being of a thickness considerably different from records now in standard use. The selector blade and shelf blades are designed to accommodate a maximum variation in thickness and flatness of records now in standard use. There are certain records, however, that may be found which vary in thickness so much as to be impracticable for use in the automatic changers.

SELECTOR BLADES JAM INTO EDGE OF RECORD

This is generally caused by too small a spacing between the selector plate and the spacing between the selector plate and the shelf plate. This space should never be less than .050 inch when selector plate is in 10^{*} position. Another cause of jamming is too sharp an edge on the selector plate.

To eliminate this trouble, check spacing of plates. Bend the selector plate slightly, if necessary. Smooth up the edge of the selector plate by means of a piece of fine emery cloth.

MECHANISM SLOW IN STARTING OR STALLS DURING A CHANGE OF CYCLE

Trouble is probably due to:
a. Motor mechanism is not thoroughly lubricated. See heading "Lubrication".
b. Check for loose set screws.
c. Line voltage may be abnormally low or motur windings damaged. If the windings of the motor are damaged, replace motor. To remove motor, see heading "Replacing Motor".

REPLACING MOTOR

Replacing the motor necessitates extreme care in aligning and correctly mounting the new motor. The procedure listed below should be followed closely. When replacing a new motor or ordering a new one from your distributor, specify the power supply from which the motor is to be operated. The motor electrical wiring is shown in Fig. 4.

When mounting replacement motor, it is most important to see that record pin is centered between the two posts of the changer, that it stands perpendicular to main plate (53), and that it has not become bent so as to wobble. Even though the posts are stout and not easy to bend, it is well to check them also, with a $12^{\prime \prime}$ combination square laid clear across the concave upper surface of main plate. When the new motor has been attached, with three screws through grommet sleeves (51) (spacers) into its frame, and record pin is seen to revolve without appreciable wobble, the correct position of the record pin between the record-mounting posts can be accurately checked as follows: Place a single $12^{\prime \prime}$ record on the shelf plates, press " R " button, and turn turntable forward by hand. Immediately after the shelf plates open and allows the record to fall, turn turntable slightly backward, and with other hand support the record between the shelf plates; it can then be readily seen whether record pin is off center. If the record pin is found to be off center, remove the record and turntable, and loosen slightly the motor mounting screw or screws nearest the shelf plate to which record appeared closest. This should improve evenness of operation. However, unless the unevenness was very slight, it will be necessary for a permanent repair to insert a shim or two on one or more of the three screws (or change shims from one screw to another). The shims used are shaped like an ordinary washer, cut out at one side (see cut-away view at 52 on photo, showing a shim in place upon one of the grommet sleeves). Shims can readily be cut out with shears and punch from thin metal or cardboard-or an assortment of shims of different thicknesses can be had from your distributor. (Order "Assortment of Part No. 45-2785"). They should be inserted, around proper screws (when screws have been sufficiently loosened) between motor frame and the metal grommet sleeve. Do not insert shims next to rubber grommet.

FIG. 4. Motor Electrical Connections

DISASSEMBLING THE CHANGER

Before attempting to remove sub-plate assembly (83) detach key control unit (75) from main plate. To do this, start with control unit truss bar (80). Then take out the serew which holds left end of adjusting rod lever (94). Next remove adjusting rod (92) and adjusting rod extension (79). Take out the screw holding spring (73); then the screws holding key control unit (75) to main plate. Rods (77) and (78) can then, with due care, be extracted without bending. Free the cam connecting rod (58) by loosening setscrew holding spreader and hub assembly (59). Sub-plate assembly can then be detached without bending parts. In reasaembling, reverse the procedure.

MODELS 35-1267, 35-1268,
35-1 269, $35-1270$, PHILCO RADIO \& TEILEV. CORP. 35-1271, 35-1276, 35-1279

MODELS 35-1231, 35-1233,
35-1239, 35-1241,
35-1259, 35-1261,
35-1266

Automatic Record Changers

35-1231, 35-1233, 35-1239, 35-1241, 35-1259, 35-1261, 35-1266, $35-1267,35-1268,35-1269,35-1270,35-1271,35-1276,35-1279$

PHOTO A-B, TOP VIEW.

REPLACEMENT PARTS - RIM DRIVE MOTOR CHANGER

35-1266, 35-1267, 35-1268, 35-1269, 35-1270, 35-1271, 35-1276, 35-1279 RECORD CHANGER 35-1276 (115 Volts, 60 (ycle), $35-1279$ (115 Volts, 50 Cycle)
The replacement parts listed below cover the turntable motor drive parts and selector plate assembly used in the rim drive record changers. All other parts used in this type changer are the same as those listed for the gear type motor changers on page two. The same mechanical adjustments listed in the Radio Service Bulletin No. 358 are also used for the rim drive motor changers

FIG. 2. PART LOCATIONS - BOTTOM OF CHANGERS RIM DRIVE TYPE
MODELS
$35-1231$,
$35-1233$,
$35-1239$,
$35-1241$,
$35-1266$,

PHILCO RADIO \& TELEVISION CORP. 35-1267, 35-1268, 35-1269, 35-1270, 35-127, 35-1276, 35-1279

© John F. Rider

MODELS 35-1231, 35-1233, PHILCO RADIO \& TELEV. CORP 35-1239, 35-1241, 35-1259, 35-1261, 35-1266

35-1267, 35-1268 35-1269, 35-1270 35-1271, 35-1276 35-1279

GENERAL DESCRIPTION OF THE
 dutiea an here pertomed bs uree meanamem

and into operation originanlly by the contact or of Lifter Cam DG with Paml Dl- is the simplest of the
three. It is driven by the cam grove (not visibe) throe. It is driven by the cam groove (not visible)
on under idide (in Photo CD) of Cam Gear rc. As Cam Lever is fored, by the Pawl, out underneath
Lift DJ (mbich is shown revolved to the right for Lift DJ (which is shown revolved to the right for
visibility) the Lift rises and forces roller DE into the ender groove in Cam Cear. The motion is trans-
ferred to Rear Changer Shatt (at ED) through Cam ferred to Rear Changer Shatt (at ED) through Cam
Connecting Rod EH, thence through Changer ConConecting Rod EH , thence throuxh Changer Con-
necting Rod FG to $\begin{aligned} & \text { Front Changer Shaft at FJ. }\end{aligned}$. (2) The pickuppoperating mechaniam - likewise brought into operation originally by the cam-andthe groven in upper (visible) side of Cam Gear. As the groove in upperee (inible) site or Cam Gear. As change cycle, asainst Link at Fo, it causes the Link to puah upward upon Pickup Plunger CA, thus lifting
needee from reoord. The ame pressure upon Link
 Guide Arm down into the grove oo the Canc Gean. This rotates the pickup arm, while Pickup Plunger
holds it up off record. It is sotated firat out bey ond
 the next record, thein rotated back to proper position
to start playing.
(3) The mechanism for bringing needle into corYect stanting moenhition must operate accurately for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records. Partiy due to this
requirement, the starting position is not deteruined regurement, the starting pposition is not deetroined
by the cam action. The upper grove on Cam Gear is deesigned so that it, icting alone, would carry the needle farther hack toward record pin than would
ever be deairable as a starting adjustment. Travel
 proper point for lowering onto the record, by action
of Lever Hub at Ce. The stopping takes phace as of Lever Hub at CQ. The stopping takes palace as
lug (upon the Lever Hub) strikes the shoulder on Rod (uro. This enables the entire mechanium rotated by cam action on Guide Arm to travel on past the prop,
er point of rotation for record-starting, while the
 is accurately stopped at proper record-starting

Correct adjustment for starting position of needle reacuires therefore only correct adjustment of Rods
FL and FP the radial difference of 1 inch between FL and FP ; the radial difference of 1 inch between
correct starting position for 10 and $12^{\prime \prime}$ records is carrencen care of by exact dimensioning, at the factory, of surfaces at right end of Rod FP which stop
against the "10" and "12"" key stems. Due to this, arene Adiusting Cam at FM is turned (as directed
mheow under Adiustment A) the starting position
12. NEEDLE LANDS PROPERLY ON RECORD BUT FAILS TO MOVE OVER INTO RECORD GROOVE.

Pickup arm is normally impelled toward center of records by Lead Spring EU. Should a slight increase in its tension be found necessary, this can be easily obtained by slightly bending the lug, to which it is attached, down against Main Plate.

13. WOW IN RECORD REPRODUCTION.

a. Record is warped or otherwise defective or instrument is not being operated at normal room temperature, $70 \mathrm{~F}^{\circ}$.
b. Motor mounting plate being bent will cause "wow." Straighten it if possible or replace with new plate if too badly bent to warrant straightening. This is only found where rough handling is evident.
c. Motor shaft out of alignment with the turntable shaft (also due to rough handling). To correct, move the motor on its mounting until motor shaft is parallel to the turntable shaft and the Universal coupling is exactly at right angles to motor and turntable shafts, then tighten motor mounting screws securely.

14. LAST RECORD DROPS ON ONE SIDE ONLY.

This suggests a Changer Post bent out of perpendicular to Main Plate. If Post must be straightened, be careful not to bend other parts.

15. CHANGER CONTINUES CYCLING.

a. Probably due to failure of Lift at DJ to be drawn back out of engagement with Cam Gear. Check the various rivets at which motion occurs, to find the point where friction or binding is interfering with freedom of motion.
b. Make sure that trigger spring is not disconnected. Also that clearance between trigger and clutch lever is sufficient. A sticking pawl will also cause this condition.

16. RECORD IS DRIVEN, BUT NOT HEARD, OR NOT HEARD WITH PROPER VOLUME.

See that Pickup cord is plugged in. Check amplifier and speaker and connections to them, thoroughly. If then trouble is still suspected in pickup, test its output with a vacuum-tube voltmeter. Playing an average record, output should test 1 to 2.5 volts if pickup cartridge is of crystal type. If pickup cartridge is found not to deliver proper output, remove it and install another.

See Service Bulletin No. 354 for Philco Photoelectric Reproducer adjustments.

17. RECORD JAMS.

Most slicing trouble (record jams) is due to offsize or defective records, and is no fault of the record changer or record changer adjustment. Properly manufactured records have a uniform semicircular edge and can be successfully handled by record changers, even though the records vary considerably in thickness.

Cross section of record edge showing a perfect and three imperfect edges.

Records that prove troublesome in the selecting or slicing process can usually be corrected by using a piece of fine sand paper or emery cloth to touch up the edge.

18. AUDIO HOWL.

Record changer not floating on cushions or spring mounting. See that shipping bolts are removed. If unit still does not float, loosen the nuts or mounting assembly allowing unit to rise and float.

19. TURNTABLE IS TIGHT.

This turntable is assembled to the turntable shaft with a taper lock fit in the center. To remove, grasp turntable with both hands, turn slightly forward and backward at the same time pulling upward, or run motor and grasp the turntable while it is revolving, and pull up.

20. THUMP HEARD IN RECORD REPRODUCTION.

This is caused by the motion of the friction clutch when it is momentarily released by the motion of the release lever, which in turn is actuated by the hump on the cam gear. If thump is objectionable, it can be reduced by adjusting the clutch lever at EO to allow only a slight amount of motion of the clutch assembly; also if the clutch spring is too strong, replace with a new spring or cut onequarter of the length of the old spring or whatever is necessary to assure satisfactory operation. Be sure that clutch assembly parts are free from dirt and burrs and work freely without binding.

PHILCO RADIO \& TELEV. CORP.

The De Luxe record changer automatically plays fifteen $10^{\prime \prime}$ records or thirteen $12^{\prime \prime}$ records at one setup or fourteen $10^{\prime \prime}$ and $12^{\prime \prime}$ records intermixed. Each of the three posts has three plates. The lower one on which the records rest is the shelf plate; the upper one is the selector plate which takes from the bottom of the stack the next record to be played and releases it to the turntable. The action of the center plate is to lift a $12^{\prime \prime}$ inch record up from a $10^{\prime \prime}$ record when the mechanism is loaded with intermixed records. To load for automatic operation see that all three shelf plates are turned down towards the turntable, then place the stack of records to be played over the turntable shaft so that they rest on the three shelf plates. Then see that pointer on control switch is set on "A," automatic, and press push button to put changer in operation.

To reject a record (or to start a change cycle as NOTE-In Model 41-616 the reject push-button on the changer is not used. To reject a record in this model press the "phono" push button on the Radio, this operates the reject relay.

for testing purposes) simply press the push button at any time while light beam jewel is upon a record. To play manually, turn shelf plates up, set control pointer (9) on "M," for manual, then place a record on turntable and press button to switch on motor then lift pick-up into position on record. The changer can be turned off at any time by pressing down on pickup rest.

PART DIFFERENCES, CHANGERS NOS.

35-1234, 35-1236

Mechanical operations of the record changers, Part Number 35-1234 (Model 41-611) and Part Number 35-1236 (Model 41-616) are identical. The record
changer No. 36-1236 (Model 41-616), however, has additional equipment which is controlled by Wireless remote control and push button control. These parts are indicated in figure (4). The parts are numbered and shown on the schematic diagram in Service Bulletin 373 and are as follows: Number 147, reject relay; number 154, reject series switch; number 148, cycling switch; and number 149, radio recording switch.

REPLACEMENT PARTS

When ordering parts for this mechanism, refer to the part number of the entire mechanism in addition to the number and names of the parts shown in the figures of this bulletin.

ILLUSTRATIONS

The six illustrations show all vital parts of the changer. Numbers are used to refer to parts shown on the photos Parts that are not numbered, cannot be separately supplied. Order the assembly containing them.

GENERAL DESCRIPTION OF CHANGE CYCLE

An automatic record player for records of two sizes has three principal duties to perform. These duties are here performed by three mechanisms interconnected and built together but largely separate in their operation. The motion for each is originated in one central cam gear which has three different and individual cam surfaces. The cam gear is normally at rest while a record is being played, but is put into operation by contaci of a latch lever (located on the cam gear) with the teeth of an intermediate drive gear. This motion only takes place when the unit is put into a change cycle. The cam gear then makes one full revolution to complete the change cycle and then comes to rest in a normal position.
(1) The record changing mechanism is brought into operation by a segment (or lever) with a roller at one end which runs in a cam
igroove in the cam gear which drives with an oscillating motion the three pulleys by means of a metal tape or belt. The pulleys are fastened to the lower ends of the changer shafts which in turn transmit their motion to the changer plates which are fastened with set screws to the upper ends of the shafts. When the changer plate assembly is revolved the record resting on the shelf plate is then dropped to the turntable.
(2) The pickup operating mechanism is likewise brought into operation originally by the cam surface on the cam gear which operates a raising lever which receives a rocking motion from the cam gear through a roller which is part of the raising lewer assembly. The flat spring on the opposite end of this lever is carried upward against a lifter pin which raises the pickup thus lifting the light beam jewel from the record. This motion also moves the hollow pickup shaft upward, pressing together the stop plate, the cork friction disc, and clutch bracket. While the light beam jewel is raised from the record, the clutch bracket receives an angular or swinging motion from the cam gear to a lever and link assembly and carries with it the locating plate which is directly connected to the pickup. The pickup is thus carried out beyond the turntable while the changer plates drop a record and is then brought back to the proper position to start playing. If there is no record on top of


```
Raisink Lever Adjust
    Nut (Adjusting Screw)
    Roller
    vut Cop.
A. C. Switch (Model 4i.
    Soe Fig( 4 fur Model

FIGURE 2

\section*{Tape Segment Assem.} Intermed. Gear Assem. Drive Pinion Gear Changer Blade Bracket Blade Hinge Pin. \(35-2334\)
\(35-2335\) \(35-2335\)
\(35-2336\) Blade Liftíng Pin Light Beam Pick-up Light Beam Pick-up Motor (115 v., 60 c .) Motor (115 v., 50 c.)
Raising Lever Trunnion Motor Rotor Adi. Screw

ing stud on the locating plate which accurately measures the starting point of the needle on a \(12^{\prime \prime}\) record. A \(10^{\prime \prime}\) record which is about to be played will not rest on the center plate, therefore the center plate and center pin and lever will be held upward by a spring on the pulley. The upper end of the center blade lifter lever will therefore be further away from the upper pulley and will travel on the outside of the crescent shaped cam moving the setting lever and stop lever in such a position that stop lever will touch the \(10^{\prime \prime}\) eccentric adjusting stud also on the locating plate which accordingly measures the starting point of the needle on a \(10^{\prime \prime}\) record. After the last record has been dropped from the changer plates and played, the lower changer blade is pushed upward by a spring which pushes up the no record control pin. The no record control lever is also carried up so that when pulley is oscillated the no record lever sweeps the setting lever and stop lever to the position where the stop lever engages with a heel on the locating lever and holds pickup out beyond the truntable. Then when the pickup descends it depresses the pickup rest, thereby tripping switch and shutting off the motor.

\section*{OILING}

The changer should be lubricated once a year with a few drops of good light machine oil at each of the following points:

No. 1. Three holes in motor gear housing.
No. 2. Turntable spindle bearings.
No. 3. All other bearing points. (Caution. Never oil the friction clutch (72) at any time as it will cause slippage.)

\section*{PHILCO RADIO \& TELEV. CORP}

\section*{TO CHECK OILING}

If squeaks are heard, compare the squeak with and without a load of records, as any stack of records in motion is apt to squeak with a pin through their centers. This can be corrected by rubbing a little wax on the turntable shaft. See that all three \(1 / 4^{\prime \prime}\) round wicks in the motor frame are in position and are thoroughly saturated with oil (as it may not be if insufficient oil or too heavy oil has been used.) Lift out all three motor wicks with tweezers. See if old oil has become "gummy" (commonly due to use of low grade oil or low viscosity oil.) If necessary clean gummed up wicks with kerosene. See that each is saturated with good oil, then before replacing them drop a little oil into the holes. The gear box of the motor is packed with a semi-fluid grease at the factory and it should never be necessary to take it apart for lubrication purposes. However, if at any time it is necessary to take the motor apart or remove the transmission cover from the motor frame, be sure that motor is not in a position so that when transmission cover is removed the grease will not run out of the transmission case.

\section*{REPLACING MOTOR}

In case of any serious fault within motor, it should be removed from the changer and replaced with a new motor. See that motor frame is well grounded by wire, soldered to lug on Sub-plate. (In ordering a replacement motor, specify the power supply and give model number.)

\section*{CHANGPR ADJUSTMMSNGS TROUBLBS}

Cases of failure to operate satisfactorily will generally be found due to either to neglect of proper lubrication, or to tampering with the mechanism after it leaves the factory, or to injuries accidentally sustained as by external vibration or by impact of some heavy object. In addition, there is always the possibility that any kind of spring may "go dead" (cease to operate without any visible breakage) even though the utmost factory precautions are taken against it - or that set screws may work loose due to some external vibration. For tightening set screws an Allen (hexagon) wrench is required. Be sure that set screws are properly seated on the holes or flat provided. Damage from tampering is likely to take the form of bent parts. Never bend any part during examination.

\section*{ADJUSTMENTS}

\section*{TONE ARM ADJUSTMENTS}

\section*{A. Tone Arm Rest Position Adjustment}
1. Start change cycle.
2. Then stop changer just before the tone arm starts to lower on the rest.
3. In this position the outer edge of the pickup should clear the hook of the rest (6) by \(1 / 18\) of an inch.
4. If it does not position properly on the rest make adjustments as follows: Hold clutch index lever (69) which moves with the tone arm, against the index hook sleeve (67). Then loosen the clamp screw on pickup mounting and move tone arm so that it sets down into the pickup rest.

\section*{B. Tone Arm Height Adjustment}

The tone arm when lifted to its maximum height, the light-beam jewel should clear fifteen \(12^{\prime \prime}\) records on the turntable, by at least \(1 / 16\) of an inch. If it does not clear records at this distance then the adjustment screw underneath the tone arm directly above the plunger in the pickup mounting bracket should be turned out to the proper distance required.

\section*{C. Adjusting Tone Arm to Index on 10 and 12 inch Records}

Adjusting landing position of light beam jewel on the record. The position at which light bean jewel lowers to record can be adjusted by inserting screw driver through hole (23) just in back of tone arm (shown in Fig. 1). For adjusting the \(10^{\prime \prime}\) setdown, insert screw driver into the inside eccentric adjusting stud. For adjusting the \(12^{\prime \prime}\) setdown, insert screw driver into the outside slotted stud. Turn very slightly clockwise or counterclockwise to move light beam jewel landing in or out. The factory adjustment for the light beam jewel landing on the record is \(1 / 8^{\prime \prime}\) in from the outer edge.

\section*{D. Reject Adjustment}

Adjusting the trip eccentric cam for correct clearance between trip lever (18) and trip arm (17); changer in neutral position out of cycle. Insert screw driver through hole (19) in main plate and locate it into slotted stud. Adjust eccentric cam so that the distance between the trip lever and trip arm is approximately .005 . This can best be done by first adjusting the trip eccentric cam so that there is no clearance or gap then back off very slightly until trip lever is free to pulsate with the clutch motion or action of the release lever. If the clearance is not sufficient between the trip lever and trip arm, the pulsating motion of the clutch release lever will gradually cause the trip lever to move the trip arm causing an early trip.

\section*{GAUGING AND SYNCHRONIZING RECORD SELECTOR BLADES}

To gauge and synchronize the record blades so that they will select \(10^{\prime \prime}\) and \(12^{\prime \prime}\) records properly proceed as follows:
1. With the changer out of cycle place a \(10^{\prime \prime}\) record and then a \(12^{\prime \prime}\) record on the record shelf plates. The records can be held tightly down on the record shelf blades by slipping a rubber grommet over the spindle. Loosen the two screws on the tape clamps on all pulleys. The slack in the tape line is then taken up by slightly pushing the tape segment (32) in the direction of forward motion (clockwise). In this position there should be a minimum clearance of \(1 / 6^{\prime \prime}\) between the leading edge of the cam (53) and the point of the lifter lever (52) (see Fig. 6). In this position the point of the lifter lever should also slide inside of the cam (53). If it is necessary to obtain this clearance rotate the shelf plate of pulley (51) in the proper direction. If the lifter levers do not just slide inside of the cam they can be adjusted by the screw and lock nut located on each lifter lever. Tighten the tape clamp set screws on this pulley (51). The lifter levers and cams on the other selector posts are then adjusted in the same manner as given for post (51) above. The tape clamps on these pulleys are then tightened after they are set.
2. Remove the \(12^{\prime \prime}\) record from the mounting plates and leave the \(10^{\prime \prime}\) record remaining. Start the changer through its cycle allowing it to continue until the shelf plates are just about ready to drop the record (see Fig. 5). If all shelf plates are not in the same position, they should be adjusted so that they are synchronized with the shelf plate (21). This is done by loosening the tape clamps of these pulleys and slightly moving the shelf in the direction necessary to synchronize the blades.

\section*{ADJUSTING SELECTOR BLADE CLEARANCE \\ The selector blades are adjusted to slide over \(10^{\prime \prime}\)} and \(12^{\prime \prime}\) records by two adjusting screws located in the side of each record mounting post. The upper

\section*{PHILCO RADIO \& 'T゚ELEV. CORP.}

\begin{tabular}{|c|c|c|}
\hline 51 & Ctr. Blade Raiging Pin & 35-2308 \\
\hline 52 & Center Blade Lifter Pl. & \\
\hline 53 & Center Arm lifter Cam & 35-2309 \\
\hline 54 & 8-32×518 R. H. Self Tap & \\
\hline 55 & Cord Clamp & \\
\hline 56 & Grd. Lead Assembly & \\
\hline 57 & Washer & \\
\hline 58 & Swiag Lever Spring & 35-2310 \\
\hline 69 & Trip Arm Spring & 35-2311 \\
\hline 60 & Roller & \\
\hline 61 & Swing Lever and & \\
\hline & Bracket Assembly & 35-2312 \\
\hline 62 & Stg. Lever Thumb Nut. & 35-2313 \\
\hline 63 & Trip Lever Spring & 35-2314 \\
\hline 64 & Swing Bracket Support & \\
\hline 65 & Clutch Brake Spring & 35-2316 \\
\hline 66 & No Record Select. Le & 35-231 \\
\hline
\end{tabular}

\footnotetext{
FIGURE 3
}

Cr. Blade Raising Pin 35-2308 Center Blade Lifter Pl. 8-32×518 R. H. Self Tap Screw
ord Clam
Grd. Lead Assembly Swiag Lever spring 35-2310 Roller ........... Bracket Assembly \(35-2312\)
\(35-2313\) Swing Bracket Support Clutch Brake Spring.... \(35-2316\)

Motor Mtg. Plate
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Cam Gear Assembly... 35-2299} & 35-2299 \\
\hline & (Give Model No.) \\
\hline Tone Arm Rest Shaft & \\
\hline Spring & 35-2300 \\
\hline Switch Latch Spring & 35-2301 \\
\hline Push-button Stem Spg. & 35-2302 \\
\hline Roller & \\
\hline Switch Latch & 35-2303 \\
\hline 8-32x1/4 Mtg. Screw & \\
\hline 10-32 Hex. Nut. & \\
\hline \multicolumn{2}{|l|}{Cord Clamp} \\
\hline Raising Lever Spring & 35-2304 \\
\hline Pick-up Cord & \\
\hline (Glve Model No.) & 35-2305 \\
\hline Tone Arm Elev. Pin & 35-2306 \\
\hline Tone Arm Shaft & 35-2307 \\
\hline
\end{tabular} Switch Assembly (Give Model No.)
Tone Arm Rest Shaft Switch Latch Spring. Push-button Stem Spg. wiler
- \(32 \times 1\) Mtg Screw Cord Clamp
Pick-up Cover Spring
35-2304 Tone Arm Elev. Pin. \(35-2306\)
\(35-2307\)

\section*{ADJUSTING NO RECORD PIN}

When there are no records on the turntable or record holding posts, the tone arm should not move from its rest. This is controlled by a no record pin (20), located inside of record selector post (21). This pin is actuated by the record shelf plate. The spring which holds up the pin should have enough tension to lift the pin fully and properly so that one \(10^{\prime \prime}\) record will fully depress the rod and lever. The adjustment is as follows:

With the set screw loose in (66) casting at the lower end of the rod, and the rod held down by the weight of one \(10^{\prime \prime}\) inch record, slide the casting down so that the selecting lever on the end of casting will just clear under the lower edge of the lower setting cam lever (67) by approximately .015 inches. Tighten set screw in this position.

\section*{TROUBLES}

Among the principal trouble symptoms to which such cause may give rise, are the following:

\section*{1. MECHANISM IS SLOW IN STARTING, OR MOTOR GETS HOT}

May be caused by:
a. Failure to lubricate properly. Oil thoroughly. See oiling instructions.
b. Check voltage. Line voltage may be abnormally low or high.
c. Motor windings damaged. If windings are found damaged, remove motor and return it to factory for repair.
2. MOTOR FAILS TO RUN, EVEN WHEN IT IS ENTIRELY DISCONNECTED FROM OTHER WIR ING AND PROPER VOLTAGE IS APPLIED DIRECTLY TO THE TWO ENDS OF ITS WINDINGS
This indicates trouble in motor windings. Unless the damage is easily seen and repaired, replace motor, as above described.

\section*{3. MOTOR IS SLOW IN STARTING}
a. Check oiling as directed above. It may not have been properly done; old oil may have become gummy.
b. Changer may have been in a very cold place, and may not yet have reached room temperature. Give it a fair chance to get warmed up before concluding that motor is defective. The changer is equipped with a constant-speed self-starting motor. Under all normal conditions it starts automatically and runs at correct speed


FIGURE 4
MODEL \(41 . \mathrm{B}_{1} \mathrm{G}\) REJECT RELAY AND CYCLING SWITCH LOCATIONS
98 Reject Relay \(\quad\). . . . .... 42-1631
\(\begin{array}{rll}99 & \text { Reject Relay } \\ 100 & \text { Cycling Power Sitch } & 42-1630 \\ \end{array}\)
4. SQUEAKS OR OTHER NOISES, DURING PLAYING OF RECORDS
Check oiling as directed above. (If squeaks are heard, they will usually be found to come from the records - not from the mechanism.)
5. CHANGER IS NOISY WHEN IN CYCLE

Check oiling. Also see if any part has become loose or bent and is rubbing against a moving part.
6. MOTION OF PICKUP TOWARD RECORD PIN WILL NOT TRIP CHANGER MECHANISM
a. See that control switch pointer (9) is not set on "M," manual.
b. Check friction clutch assembly (72) to be sure that parts are not disengaged. Also check for binding, bent or loose parts. c. Can also be caused by too much clearance between trip lever (18) and trip arm (17). There should be a few thousandths clearance between them. This can be adjusted by the eccentric screw on the trip arm (17) through hole in main plate (19)
7. PRESSING PUSH BUTTON DOES NOT TRIP CHANGER MECHANISM
a. See that control switch pointer is not set on "M," manual.
b. Check control switch unit to see whether there is an obstruction or a bent or loose part. Also check for loose set screws.
c. Follow through on action from the push button to cam latch (90) and see that every part is in proper working order.
d. If the mechanism will not reject when the push button is pressed look for trouble in the reject push button mechanism such as binding, or bent parts. In the Model 41-616 changer the push button is not used, but the mechanism is actuated by the reject relay. If the trouble develops in this changer look for open coil or parts that are binding.
8. SETVTING POINTER ON "M," MANUAL, FAILS TO PUT CHANGER MECHANISM OUT OF ACTION, SO AS TO ENABLE MANUAL OPERATION
a. Check for loose set screws in control switch.
b. Also check for loose or bent parts and be sure that manual latch (at 90 ) is holding the trip link rod to keep it from moving.
c. When the reject button is pressed with the selector switch in the "M" position the trip lever (17) must not bind of be under strain. The clearance at the rod hole on the end of the trip lever should be just taken up so that the shelf plate on the trip lever is not pushed off when the reject button is pushed down.
There should also be at least a few thousandths of an inch clearance between the trip lever (18) and the trip arm (17), otherwise the tone arm will backtrack and the tone arm shaft will bind due to the tension of the trip arm pushing the reject adjusting screw eccentric washer on the trip lever (18) against the fork lever (70) mounting bracket.
9. TRIPS TOO SOON OR BEFORE RECORD HAS

\section*{FINISHED PLAYING}
a. Not enough clearance between the trip lever (18) and trip arm (17). There should be a few thousandths clearance at this point. To get more clearance adjust eccentric by turning it slightly in a clockwise direction through hole in main plate (19).
b. Can also be caused by not enough clutch action (72). Bend forked release lever (70) slightly to increase clutch action.
c. Also check for loose parts.
10. TONE ARM FALLS OFF RECORD OR WILL NOT SWING INTO GROOVE OF RECORD
a. Light beam jewel sets down too close to edge of record. Not adjusted in far enough.
b. Can also be caused by too much clearance between cork clutch disc (72) and tone arm swing bracket (96). This can be adjusted by the thumb nut (62) being turned counterclockwise. Also it may be necessary to add more tension to the flat spring by turning the adjusting screw (65) \(1 / 4\) turn or whatever is necessary to assure satisfactory operation.
c. 1. To adjust the tone arm for proper swing-in after the light beam jewel lands on the record make the following adjustment:

With the mounting pivot of the tone arm just starting to come down after the light beam jewel lands on the record, the top cork of the clutch (72) should still be tight against the tone arm swing bracket (96). In this position the 10 or 12 -inch index eccentric adjusting screw, depending on record used should be against the hook stop lever (68). This prevents the tone arm from swinging in further when the clutch cork is under pressure.
2. As the mounting pivot of the tone arm drops further to the point of where the eccentric adjusting screw just is slipping off the hook stop lever (68) the tone arm swing bracket (96) should continue to swing slowly and pull the

\section*{PHILCO RADIO \& TELEV CORP.}
tone arm inward. If it does not do this, more pressure is required and is obtained by tightening the spring (65) by the adjusting screw.
3. The distance of the swing-in after the indexing sorews leaves the stop lever (68) is deternined by the length of time the clutoh cork remains in contact with the tone arm swing bracket (96). To obtain further swing-in loosen thumb screw (62). To shorten the amount of swing-in tighten thumb sorew (62).
4. After the tone arm swings into the groove of the record there should be a clearance between the top clutch cork (72) and the tone arm swing-in bracket (96) of \(1 / 16\) of an inch. At this point there should be a clearance between the clutch indexing lever (69) and the hook stop lever (68) of about \(3 / 64\) of an inch.
11. TONE ARM VARIES WHEN SET DOWN ON RECORD
a. Check for loose parts or loose set screws or possibly the swivel shaft head (24) may be loose on the swivel shaft.
b. Be sure that hook stop lever (68) engages the eccentric adjusting cams ( \(\mathrm{C}_{\mathrm{O}}\) ) for both \(10^{\prime \prime}\) and \(12^{*}\), bolding them securely until light beam jowel has set down on record. Height of stop lever is adjusted by screw (at 68).
12. TONE ARM SETS DOWN TOO FAR IN
a. Due to not measuring properly (see paragraph llb).
b. Out of adjustment. Probably due to tone arin being held, while in motion, from its original position on the swivel shaft. Also oheck for loose or bent parts.
13. LIGHT-BEAM JEWEL LANDS PROPERLY ON RECORD, BUT FAILS TO MOVE OVER INTO STARTING GROOVE
a. Refer to paragraph 10
14. LIGHT-BEAM JEWEL LANDS PROPERLY ON RECORD BUT SLIDES IN A FETV LINES ON RECORD
a. Turning thumb screw (62) slightly in a clookwise direction will probably correct this condition which necessitates a reverse adjustment for the condition in paragraph 10.
15. CHANGER CONTINUES CYCLING
a. No clearance between trip lever (18) and trip arm (17). To correct this condition adjust as in paragraph 9.
b. Also check for binding or bent parts.
16. "NOW" IN RECORD REPRODUCTION
a. Record is warped or otherwise defective or instrument is not being operated at normal room temperature, \(70^{\circ} \mathrm{F}\).
b. Motor mounting plate being bent will cause "wow". Straighten it if possible or replace with new plate if too badly bent to warrant straightoning. This is only found where rough handling is evident.
c. Notor shaft out of alignment with turntable shaft (also due to rough handling.). To correct move the motor on its mounting till motor shaft is parallel to the turntable shaft and the universal coupling is exactly at right angles to motor and turntable shaft. Then tighten motor mounting screws securely. 17. TURNTABLE IS TIGHT
a. This turntable is assembled to the turntable spindle cone with a taper look to fit in the center. To remove turntable grasp with both hands at the same time pulling upward while it is revolving.
18. THUMP HEARD IN RECORD REPRODUCTION
a. Probably caused by excessive motion of the friction clutch when it is moment arily released by the clutch release lever (71) which in turn is actuated by the two high spots on the intermediate gear. If thump is objectionable, it can be lessened by slightly bending the clutch release lever (71) so that the motion of this lever is lessened to allow only a slight amount of motion of the friction clutch.

\section*{PHILCO RADIO \& TELEV. CORP.}

The service information in this bulletin covers the adjustments and replacement parts for Philco automatic record changers Part No. 35-1285 (standard changer) and Part No. 35-1286, 35-1289 (Deluxe changers).

These record changers are identical with the exception' of the color of the mounting plate, plating of parts on top of changers, motor, Light Beam Reproducer, and electrical wiring circuits for operation. The differences are indicated in the Replacement Part List, page 4, and the Electrical wiring diagrams, page 5.
\[
\begin{aligned}
& \text { CHANGERS USED IN PHILOO MODELS } \\
& \text { Changer Part No. } \\
& \text { Philico Models }
\end{aligned}
\]

\section*{GENERAL DESCRIPTION OF CHANGE OYCLE}

An automatic record changer performs three principal functions.

1-Places record on turn table.
2-Lowers tone arm on record in playing position.
3-Raises tone arm at end of record or on reject.
These functions are controlled by three mechanisms, interconnected and built together, but each separate in its operation. The motion for each is orginated in one central cam gear which has three different and individual cam surfaces. The cam gear is normally at rest while a record is being played, but is put into operation by a saw tooth clutch which takes its power from the turntable and drives an intermediate drive gear. This only takes place when the record changer is put into a change cycle. The cam gear then makes one full revolution to complete the change cycle and comes to rest in a normal position.

The record changing mechanism which places a record on the turntable is brought into operation by a lever with a roller at one end. The lever is attached to the shelf plate mounting post and is operated by a notch under the

\section*{OLUTCH ROLLER AND LEVER ADJUSTMENT}

The teeth of the clutch should have approximately \(1 / 16\) inch clearance, when the lever roller is engaged snuggly in the cam gear. If the clutch does not have \(1 / 16\) inch clearance the clutch bracket should be slightly bent as indicated in Figure 1. Place ten, \(12^{\prime \prime}\) records on turntable when this adjustment is made.


FIC. 1
cam gear. This causes the mounting post to move slightly, pushing the bottom record off the stack onto the turntable.

The pick-up operating mechanism is likewise brought into operation by the cam gear surface on the top side of the cam gear. The raising lever, when removing the pickup from the record, receives a swinging motion from the cam gear through an eccentric track on the top outside surface of the cam gear. This eccentric track causes the pick-up to be carried out beyond the turntable while a record is being dropped on the turntable. The light beam pick-up is then brought back into playing position for \(10^{\prime \prime}\) or \(12^{\prime \prime}\) records (depending on the shelf positions on the shelf carrier.

The travel of the pick-up arm towards the turntable for lowering on a 10 or 12 inch record is stopped at the proper point for lowering by a movable track on the cam gear. This movable track is operated by a lever which is moved by a spring lever connected through a cord and spring attached to the \(10^{\prime \prime}\) shelf plate. When the \(10^{\prime \prime}\) shelf plate is lifted up the movable track is allowed to shift to the outer groove of the cam gear surface so that the pick-up needle will set properly on the outer edge of a \(12^{\prime \prime}\) record. When the \(10^{\prime \prime}\) shelf plate is in place for playing \(10^{\prime \prime}\) records, the cord holds the spring lever and causes the movable track lever to shift to the inner groove as the cam gear revolves.

The electric reject trip causes the clutch to engage and allow the tone arm to be removed from the record by the cam gear. The reject trip operates through a pulsating plate and movable contact on the tone arm raising lever. When the pulsating plate and movable contact make connection, the solenoid is energized, releasing the clutch so that the cam gear can be revolved.

\section*{SOLENOD ADJUSTMENT}

The solenoid Armature should set properly in the coil in order to prevent hum and chatter when the solenoid is ener gized. To make this adjustment, loosen solenoid mounting bracket screws and raise or lower solenoid until armature is set correctly in the coil. See Figure 2.


PHILCO RADIO \& TELEV. CORP.
KODELS 35-1285, 35-1286,

\section*{BUMP LEVER ADJUSTMENT \\ Set \(12^{\prime \prime}\) shelf eccentrics bumper in outer position. ncutral (large part of cam away from shelf) and then equalize each} Bumper to touch edge of \(12^{\prime \prime}\) record. See Figure 3.


FORWARD SHELF MOTION ADJUSTMENTMINTMUM SIZE
(12" Record Push-Off)
1. Place \(12^{\prime \prime}\) record on spindle and \(12^{\prime \prime}\) shelf as shown in Figure 4. Start changer in cycle and then stop the change cycle when the crown on the cam gear touches the roller on the shelf lever as shown in Figure 4.
2. In this position loosen screw " \(A\) " and lock nut on screw "C"; turn out screw "C" slightly and then retighten screw "C" until eccentric record bumpers fit snuggly against 12 " record. Then tighten screw " \(A\) " and lock nut of screw " \(C\)."


\section*{NEUTRAL SHELF POSITION}

\section*{(Bump Lever Eccentric)}

When the changer is in Neutral position (out of change cycle) the shelf lever should be in the position as shown in Figure 5. To make this adjustment, proceed as follows:
1. Place standard \(12^{\prime \prime}\) record on the turntable spindle and \(12^{\prime \prime}\) record shelf plate as shown in Figure 5. The roller of the shelf lever nust be off the crown of the cam gear when this adjustment is being made.
2. Hold record suuggly against the spindle and shelf bumpers.
3. Loosen screw and adjust eccentric (A) Figure 5, until it touches shelf lever.


\section*{10" SHELF ECOENTRIC ADJUSTMENT}

The \(10^{\prime \prime}\) shelf bump buttons are equalized as follows:
Place standard \(10^{\prime \prime}\) record on spindle and \(10^{\prime \prime}\) record shelf. The record should be snug against spindle notch as shown in Figure 5 for \(12^{\prime \prime}\) records.

Adjust \(10^{\prime \prime}\) shelf bump buttons so that they are equalized and just touch record.

Do Not Change "Bump Lever Eccentric" shown in Figure 5 and which should be adjusted as given in paragraph "Neutral Shelf Position."

\section*{TONE ARM HEIGHT}
1. Load the turntable with twelve \(10^{\prime \prime}\) records.
2. Start changer through its cycle, then stop when tone arm is in full raised position and swinging towards records on turntable. If adjustment is correct, the jewel needle will clear the top record by \(1 / 8^{\prime \prime}\) as the tone arm swings into position for landing on record. If it does not clear top record by \(1 / 8^{\prime \prime}\), adjust screw No. 14 in top of tone arm (see Figure 9) until distance is obtained.

\section*{ADJUSTING TONE ARM TO INDEX ON 10" AND 12" RECORDS}

The position at which the pick-up jewel lowers on the edge of the record is controlled by a vernier adjustment screw on the raising lever. This screw is reached through the hole (12) Figure 9 in the top of the base plate near the tone arm pivot. This screw is used for normal adjustments of the tone arm set down and moves the pick-up approximately \(1 / 4^{\prime \prime}\). Adjust the screw so that the tone arm needle will set down approximately \(1 / 8^{\prime \prime}\) in on record edge. When set for either size record, the adjustment will also take care of the other size record positioning point.

When the tone arm is removed for replacenment or greater movement of the tone arm is desired, beyond that obtainable with the preceding vernier adjustment, the two set screws in the collar of the pull-in lever underneath the changer should be adjusted. This is done by loosening one set screw and tightening the other, depending on which way the tone arm is to be moved. Under ordinary circumstances this adjustment will not be required as it has been preset at the factory for proper positioning. When making this adjustment, a . 005 shim gauge should be placed between the ball race washer and the tone shaft bearing.

\section*{PULSATING PLATE ADJUSTMENT}

When the turntable is revolving the pulsating plate of the reject mechanism should clear the main plate by \(1 / 32\) of inch when the crown on the cam attached to the underside of the turntable touches the pulsating lever roller at its highest point. See Figure 6. To make this adjustment proceed as follows:
1. Rotate turntable until the crown of the cam under turntable touches roller of pulsating lever as shown in Figure 6.
2. Adjust screw on pulsating lever until pulsating plate is \(1 / 32\) of an inch from nain plate (use gauge)


\section*{TRIP ARM ADJUSTMENT}
1. Rotate turntable so that the crown on the cam under the turntable is OFF roller of pulsating lever. (See Figure 7.)
2. Move tone arm in towards record until the rubber roller and contact is at the outer edge of pulsating plate. See Figure 7.
3. Turn screw (A) Figure 7 on trip arm until rubber roller just touches pulsating plate, then turn screw (A) slightly further so that the plate moves slightly.

NODELS 35-1285, 35-1286,

\section*{35-1289}


FIC. 7


\section*{REJECT CONTACT TRADEL ADJUSTMENT}

Place a record on turntable and tone arm in playing position about halfway in on playing lines of the record. In this position the contact operated by the rubber roller on the trip arm sloould be carried to within \(1 / 16\) to \(3 / 32\) of an inch of the pulsating plate as the roller moves towards center of changer, (See Figure 8) If contact does not have this spacing as the roller moves and pulls contact up, then adjust screw. (C) Figure 8 until correct spacing is obtained.

\section*{TURNTABLE SPEED ADJUSTMENT}

To set the turntable speed control for the speed range covered by the cuntrol, proceed as follows:

\section*{PHILCO RADIO \& TELEV. CORP.}
1. Push speed lever knob to the "normal" position. Turn ball knob until the motor mounting plate drops to its lowest position. In this position the turntable should be turning at approximately 77 R.P.M. This is indicated by the lines on the edge of the turntable appearing to be slightly moving backwards (counter-clockwise). In order to see these lines move the neon lamp must be energized
2. If the lines do not travel slightly backward, the nuts on the motor mounting plate retaining shaft should be loosened and the plate moved up or down to get the proper speed, then tighten nuts.
3. After this adjustment, set ball knob to the point where lines on turntable appear to be standing still.


PHONO MOTOR

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Photo No. & Description & Part No. P & Photo No. & Description & Part No. \\
\hline \multirow[t]{3}{*}{1.} & 10 inch Record Shelf (Changer 35-1285) & 318-2805 & 26. & Shelf Lever and Roller & 318-2814 \\
\hline & 10 inch Record Shelf (Changer 35-1286) & - \(35-2545\) & 27. & Spring & \\
\hline & 10 inch Record Shelf (Changer 35-1289
String Guide (Plastic) & & 28. & Eccentric Cam (Adjusting Shelf Lever) Mtg. Screw & \[
\begin{array}{r}
218-1404 \\
\mathrm{~W}-453 \mathrm{FA} 3
\end{array}
\] \\
\hline \multirow[t]{3}{*}{2.} & \multirow[t]{3}{*}{\begin{tabular}{l}
Record weight assembly (Changer 35-1285) \\
Record weight assembly (Changer \(3 \overline{\mathrm{j}}-1286\) 1287) \\
Mtg. Screws
\end{tabular}} & 318-2804 & 29. & Male Plug (Phono Input) & 217-1396 \\
\hline & & \[
\begin{array}{r}
35-2559 \\
\mathrm{~W}-685 \mathrm{FA} 9
\end{array}
\] & 30. & Intermediate Gear (2 required)
Screw & \[
\begin{array}{r}
218-1391 \\
\mathrm{~W}-2150 \mathrm{FA}
\end{array}
\] \\
\hline & & \[
318-2806
\] & & Washer & \\
\hline \multirow[t]{3}{*}{3.} & \begin{tabular}{l}
12 inch Record Shelf (Changer 35-1285) \\
12 inch Record Shelf Changer \(35-1286\), 1289)
\end{tabular} & \[
\begin{array}{r}
318-2806 \\
35-2546
\end{array}
\] & 31. & Shelf Lever Roller (Part of 26). & \\
\hline & \begin{tabular}{l}
Mtg. Shaft (Changer 35-1285) \\
Mtg. Shaft (Changer 35-1286, 1289)
\end{tabular} & \(218-1440\)
\(35-2550\) & 32. & Cam Gear Assembly Mtg. Screw & \[
\begin{array}{r}
318-2787 \\
\mathrm{~W}-2284
\end{array}
\] \\
\hline & Mtg. Spring & 218-1439 & 32 A . & Mtg. Bracket (Intermediate and Cam Gears) & 318-2768 \\
\hline \multirow[t]{3}{*}{4.} & \multirow[t]{3}{*}{\begin{tabular}{l}
Speed Control Knob (Changer 35-1285) \\
Speed Control Knob (Changer 35-1286-12S \\
Escutcheon (Changer Standard) \\
Escutcheon (Changer Deluxe) \\
Mtg. Screws
\end{tabular}} & \[
\begin{array}{r}
318-2815 \\
35-2548
\end{array}
\] & & Mtg. Screw (Brackets to spindle bracket) & \[
y_{-685 \mathrm{FA} 3}
\] \\
\hline & & \[
\begin{array}{r}
35-2548 \\
218-1473
\end{array}
\] & 33. & \begin{tabular}{l}
Cam Switch Assembly \\
Mty. Ring
\end{tabular} & \[
\begin{aligned}
& 318-2816 \\
& 218-1461
\end{aligned}
\] \\
\hline & & \[
218-1474
\] & 34. & Shelf Lever Bump (Part of 32). & \\
\hline 5. & Mtg. Serews & 218-1471 & 35. & Clutch Lever and Roller Assembly & \(318-2810\)
-685 FA \\
\hline 6. & Mtg. Springs & 218-1470 & 35A & Mtg. Screws & \\
\hline 7. & Changer Carrier Assembly & 318-2818 & \multirow[t]{3}{*}{36.} & Reject Solenoid & 312-1011 \\
\hline S. & Automatic-Manuel - Off Plate & & & Mtg. Screws & 218-1398
\(218-1397\) \\
\hline & (For Changer Standard) (For Changer Deluxe) & \[
35-2557
\] & & Mitg. Washers & \[
218-1397
\] \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{\begin{tabular}{l}
Knob (Standard) \\
Knob (Deluxe)
\end{tabular}} & \[
\begin{array}{r}
217-1393 \\
35-2552
\end{array}
\] & 37. & Manual Suritch Lever and Bracket Assembly Mtg. Screws & W-2150FA9 \\
\hline & & 412-1025 & 38. & Spring (Manual Switch Lever) & 35-2565 \\
\hline 10. & Reject Switch (For Changer Standard) (For Changer Deluxe) & - & 39. & Pulsating Plate and Lever Assembly Mtg. Screws & \[
\begin{array}{r}
318-2785 \\
-2150 \mathrm{FA}
\end{array}
\] \\
\hline \multirow[t]{2}{*}{11.} & \multirow[t]{3}{*}{\begin{tabular}{l}
Tone Arm Support (For Changer 35-1285) (For Changer 35-1286) \\
Mtg. Rivet
\end{tabular}} & \(318-2796\)
\(35-\mathbf{5} 49\) & & P'ulsating Spring & 218-1278 \\
\hline & & W-2293FA3 & 40. & Spring (Positioning Lever) & 35-2566 \\
\hline & & & 41 & Trip and Positioning Assembly & 318-2786 \\
\hline \multirow[t]{17}{*}{\[
\begin{aligned}
& 12 . \\
& 13 .
\end{aligned}
\]} & Tone Arm Positioning Adjusting Hole & & 41A. & Lead in Spring & 218-1463 \\
\hline & \multirow[t]{2}{*}{} & 35-2518 & 41B. & Lead in Spring Link & 218-1462 \\
\hline & & \[
\begin{array}{r}
35-2519 \\
318-2790
\end{array}
\] & 42. & Velocity Trip Lever (Part of 41) & \\
\hline & \begin{tabular}{l}
1289) \\
Tone Arm Support Bracket
\end{tabular} & \(318-2800\)
318 & 43. & Tone Arm Positioning Lever (Part of f1) & \\
\hline & Tone Arm Adjusting Ratchet and Shaft Assy Tone Arm Bracket & 218-1424 & 44. & Selector Cam & \[
\begin{array}{r}
917-1386 \\
97-0138 \mathrm{FA} 3
\end{array}
\] \\
\hline & Tone Arm Stem & 218-1428 & & Spring & 218-1393 \\
\hline & Nut (Adjusting Screw) & 218-1426 & 45. & Spring (Cam Switch) & 35-256? \\
\hline & \multirow[t]{2}{*}{Snap Ring} & 218-1431 & 46. & Spring (Shelf plate String) & 318-2817 \\
\hline & & 218-27 & \(47^{\circ}\) & Adjusting Screw (Pulsating Lever) & 218-1384 \\
\hline & \multirow[t]{2}{*}{Ratchet Spring
Counter Weight
Mtg. Screw} & 218 & & Spring Adjusting Serew & 218-135? \\
\hline & & 218-1466 & 48. & Trip Switch Assembly & 35-2563 \\
\hline & Tone Arm Ball Bearings
Retainer Assembly (Balls) & 218-1465 & & Rollew \({ }^{\text {Sum }}\) & ? \(218-138185\) \\
\hline & Washer (For Bearing Retainer) & 218-1464 & & Lock Nut & 218-1386 \\
\hline & \multirow[t]{2}{*}{Tone Arm Shaft Bearing (Deluxe)} & 35-2551 & & Contact Lever & 318-2770 \\
\hline & & 218-1467 & & Contact Lever Shaft & 218-1388 \\
\hline & Mtg. Nut & 18-1468 & & Pigitail & \(217-1383\)
\(218-1375\) \\
\hline & Mtg. Lockwasher & 218-1469 & & Pubtail Rer Roller & -217-1385 \\
\hline 14. & Tone Arm Height Adjusting Screw & & & Pulsating Lever (Part of 39) & \\
\hline 15. & Turntable (For Record Changer 35-12s5) & 318-2807 & 50. & Automatic Changeover Switch & 35-2547 \\
\hline & Turntable (For Record Changer 35-1286) & & 51. & Pulley Assembly (Cord Guide) & 318-2798 \\
\hline \multirow[t]{10}{*}{16.} & Spindle Assembly (Standard) & \(318-2794\)
\(35-2560\) & & Mtg. Screw & 218-1415 \\
\hline & Spindle Assembly (Deluxe) & \(35-2560\)
\(218-140 \mathrm{~S}\) & 52. & Rubber Grommet (Black) & 217-1391 \\
\hline & Spindle Nut
Spindle Sleeve Nut & 218-1409 & & Grommet Sleeve & \\
\hline & Ball Bearing and Retainer Assembly & 318-2793 & 53. & Rubber Grommet (Light Colo & W-1649FA3 \\
\hline & Washer & 218-1406 & & Grommet Sleeve & 218-1434 \\
\hline & Clutch and Gear (Bakelite) & 218-1401 & 54 & Drive Disc Assembly (Motor) & 35-2564 \\
\hline & Spring & 218-1403 & 55. & Turntable Drive Dise Assembly & 31s-2811 \\
\hline & Washer & 218-1405 & & Bearing & 21>-1449 \\
\hline & Sleeve (For Top of Spindle) Sleeve & \(218-1402\)
\(318-2795\) & & Brass Cup Washer & \[
218-1447
\] \\
\hline & \multirow[b]{3}{*}{Manuel-Automatic Positioning Plate (Part of
50} & & & Collar and Screw & \(318-2812\)
\(215-1446\) \\
\hline \multirow[t]{2}{*}{17.} & & & & Washer (2 required) & 218-1446 \\
\hline & & & & Turntable Drive Wheel & 218-1448 \\
\hline \multirow[t]{9}{*}{18.} & \multirow[t]{3}{*}{\begin{tabular}{l}
Motor (115 Volts, 60 cycles, for changer 3 j 1285) \\
(115 Yolts, 60 cycles for changer \(35-1286,35\) 1289)
\end{tabular}} & 318-2802 & \multirow[t]{3}{*}{56} & Neon lamp Socket & \[
318-2808
\] \\
\hline & & 5-2553 & & Neon Lamp (Standard) & \(34-2482\) \\
\hline & & & & Neon Lamp (Deluxe) & 35-2556 \\
\hline & Connectors Solderiess (cable) & 217-1395 & 57. & Clutch and Gear (Part of 16) & \\
\hline & Mtg. Washers (Copper) & 218-1433 & \multirow[t]{2}{*}{58,} & Turntable Hub and Core (Part of 15) & \\
\hline & Rubber Mtg. Grommets (Light Color) & 217-1390 & & Shelf Carrier ant Stud Assembly (Standard) & 318-2755 \\
\hline & Rubber Mtg. Grommets (Black) & 217-1391 & \multirow[t]{2}{*}{59} & \multirow[b]{2}{*}{Cartier Shaft} & 35-2561 \\
\hline & Mtg. Sleeves & 218-1434 & & & 218-1451 \\
\hline & Mtg. Screws & W-1649FA3 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{3 ( Carrier Clips}} & 218-1452 \\
\hline 19. & Spring (Drive Tension) & 218-1458 & & & 217-1392 \\
\hline 20. & Upper Bearing Support & 218-1478 & 80 & Spriug (Speed Adjusting Knob) & 218-1453 \\
\hline \(\stackrel{21}{22}\). & Spring (Upper Bearing Support) & \(218-1459\)
\(218-1460\) & 9 61. & Washer (Holds 60 in place) & 218-1456 \\
\hline \(\geq 2\). & Screw & W-317FA3 & 3 . & Wire Pin (Hoids 60 in place) & \(218-145\)
\(215-1457\) \\
\hline \multirow[t]{3}{*}{23.} & \({ }_{\text {Motor }}^{\text {Nuts }}\) Mtg & 318-2803 & 62. & Speed Control Hook & 218-1454 \\
\hline & \multirow[t]{2}{*}{Screws
Nuts} & \(\bigcirc 145 \mathrm{FA} 3\) & 63. & Spring (Sueed Lever) & 218-1455 \\
\hline & & W-3175 \({ }^{\text {a }}\) & 34. & Motor Control Assembly (Includes Shaft and & \\
\hline \multirow[b]{3}{*}{25.} & Screw (Shelf Lever) & \[
\begin{aligned}
& \text { W- } 1475 \mathrm{FA} 3 \\
& \mathrm{~W}-54 \mathrm{FA} 3
\end{aligned}
\] & & Bracket) & 318-2820 \\
\hline & Nut (Shelf Lever Adjusting Screw & - \(35-2567\) & 65. & Motor Control Adjusting Nuts & W-317 \\
\hline & Shelf Lever Adjusting Screw Nut & 35-256 & & W'ashers & 218-1442 \\
\hline
\end{tabular}

MODELS 35-1285, 35-1286, 35-1289

PHILCO RADIO \& TELEV. CORP.


(c)John F. Rider

MODELS \(\begin{gathered}35-1285,35-1286, ~ P H I L C O ~ R A D I O ~ \& ~ T E L E V . ~ C O R P . ~ \\ 35-1289\end{gathered}\).

(C)John F. Rider

\section*{PHILCO RADIO \& TELEV. CORP.}


TOP VIEW - TURNTABLE REMOVED


VIEW LOOKING AT RIGHT SIDE


VIEW LOOKING AT BACK

\section*{PHILCO RADIO \& TELEV. CORP.}

This mechanism consists of a rim driven turntable (not shown) running on a fixed bearing (1), which supports the record spindle (2). The spindle is equipped with a rotatable cap (3) to provide for holding records in automatic operation, when in one position, and removing records or playing manually when in the other position.

The outer edge of the record is held by record supports (4) and (5), adjustable for 10-and l2-inch, and is steadied by a rubber tipped, spring loaded finger (6).

Control of operation is by a single control button (7), having four positions: "Off" - "Man" - "Aut" - "Rej".

Automatic operation starts when rubber tired drive wheel (8) is moved into contact with turntable rim by tone arm movement or control button. All change functions are controlled by main cam (9) which is driven by drite wheel (8) thru a friction (10) and gear (11) train.

The main cam assembly consists of main cam (9) and automatic trip cam (12). The latter disengages the drive wheel (8) at the end of the change cycle.

The upper side of the main cam (9) controls tone arm swing by engagement with pin in sweep lever (13) attached to tone arm by means of clamp (14) around tone arm pivot sleeve (15). Tone arm lift is controlled by vertical section of main cam (9) operating tone arm thru lift pin (16) inside of sleeve. A boss projecting from the upper side of the main cam (9) displaces the stop lever (17) at the end of the change cycle to permit the tone arm to proceed across the record.

The lower side of the main cam (9) moves the feed lever (18) by means of a roller (19). This movement charges the feed spring (20) and at the proper time permits discharge of the spring causing the feed lever (18) to thrust the feed finger (21), (in top view), forward to feed the record. Connection between feed lever (18) and feed finger (21) is thru feed intermediate le ver (22) pivoted in record support post (23). (In top view.)

The stop lever (17), normally held out of engagement by the boss on the main cam (9), swings into position at the start of the change cycle. Its selection of stop points for 10 - or 12 -inch records is controlled by dog (24) on the record selector shaft running up front of record support post (23) and actuated by swinging record support (4).

The drive wheel (8) is mounted on the carrier lever assembly (25) which is pivoted about the intermediate drive (11). This assembly consists of the carrier lever with its bearings and the trip lever (26). The trip lever (26) carries a pin (27) engaging the automatic trip cam (12); a pawl (28) to engage the serrated edge of sweep lever (13); a positive trip screw (29) to interfere with sweep lever (13). Engagement of pin (27) with automatic trip cam (12) pulls drive wheel (8) out of engagement with turntable at end of


PHILCO RADIO \& TELEV. CORP.
MODEL 35-1293
change cycle. Reversal of the tone arm movement rotates pawl (28) to release trip lever (26). Thrust of sweep lever (13), when tone arm approaches spindle (2), against positive trip screw (29) releases trip lever (26).

The control lever (31) operated by the control button (7), -a- turns switch on and off, -b- prevents carrier lever assembly (25) from swinging when in manual position. -c- permits carrier lever assembly (25) movement to engage drive wheel (8) with turntable, when in automatic position, -d- displaces trip lever (26) causing drive wheel (8) engagement with turntable when pushed to Reject. Function (a) is accomplished by pin which engages dog of toggle switch. Functions (b) and (c) are controlled by shape of rear edge of control lever (31) and a fixed stud (32) in the carrier lever. Function (d) is accomplished by stud (33) in control lever (31) striking edge of trip lever (26) and unlatching pin (27) in same from automatic trip cam (12).

Bearings are separated and center distances maintained by aligning bracket (34) which also carries bearing for record feed lever (18).

ADJDSTMENTS

\section*{Positive Trip}

The tripping point is adjusted by turning positive trip screw (29) counterclockwise to trip earlier in playing cycle and clockwise to delay tripping.

Tone Arm
The drop point is adjusted by loosening the screw in clamp (l4) slightly to permit repositioning of tone arm in relation to sweep lever (13). Care must be exercised to see that tightening the screw does not cause bind in tone arm swing.

The rise and drop of tone arm is adjusted by bending short arm of lift pin (16) slightly. Long arm must not be distorted or it will bind in pivot sleeve (15).

\section*{Record Feed}

The feed finger (21) should strike only the bottom record of the stack. Record supports (4) and (5) should be adjusted up or down to obtain this result. Adjustments must be checked for both 10 - and 12 -inch records as one of the buttons is used in both cases.

Fixed record support (5) can be adjusted for engagement with record by removing hold down finger assembly (6) and loosening two screws under feed finger (21).

\section*{Friction drive}

The rubber wheel (10) engaging with the intermediate drive assembly (11) should be compressed just enough to prevent slipping or skidding at any portion of the change cycle. Compression is controlled by the nut and locknut, below the rubber wheel.

\section*{General}

Carrier lever assembly (25) must be perfectly free on its shaft and trip lever (26) must be perfectly free on the carrier lever. All moving parts should be lubricated with oil. Rubber drive wheels under the turntable and the rim of the turntable must be free of grease or dirt.

Turntable thrust bearing can be lubricated with heavy oil or light grease and radial bearing with light oil.

Pickup lead from tone arm must have slack to permit free movement of arm.

\section*{PHILCO RADIO \& TELEV. CORP.}

Basically, changes were made to overcome three conditions:
A - Rumble in the early production sets, particularly on the Models 42-1010 and 1016
B - Erratic operation of the trip mechanism.
C - Flutter and change of speed.
A. The rumble in the Models 42-1010 and 1016 can be easily corrected by replacing the turntable bearing. Remove the turntable and the spindle and then take out the brass cone and the ball bearings and washers. Rebuild the bearing, using the old washers and the new flat fiber washer and the concave steel washer. (See Figure 1). Add "Stay-Put Grease" or "Lubriplate" between the washers to eliminate friction. When replacing the spindle assembly, the spindle must be more than \(1 / 2\) turn loose while lining it up with the record support shelf.
B. The pulsating plate in the trip mechanism is actuated by
 the pulsating arm and the cam on the underside of the turntable. If the pulsating arm is loosely riveted to the bracket, the screw on the end of the pulsating arm will move back and forth over the pulsating plate. This changes the distance the plate is lifted by the pulsating arm and affects the trip adjustment. A spring has been added in production to hold the end of the lever under tension so that it does not move "in" and "out" and change the trip adjustment. On record changers not equipped with this spring, use the lead spring Part No. 28-8919 and connect as shown in Figure 2. Attach the spring to the wiring terminal on the end of the bracket and to the adjusting screw. Check to make sure that the pulsing roller does not scrape the hub on the under side of the turntable.
C. Flutter and change of speed is caused by friction in the vertical drive assembly and by the action of the regeneration spring (SEE MODEL 35-1285 SERIES) The following changes involving the regeneration spring and the vertical drive assembly should be made on every changer on which there in an opportunity to do so.

Remove the regeneration spring and the threaded adjusting screw and nuts. (See Figure 3).

Loosen the two, bell drive disc bearing screws on the bottom of the motor mounting bracket.

Push the motor drive disc and armature to the extreme right, against the thrust spring. Allow \(1 / 1 n^{\prime \prime}\) clearance between the rim of the bell drive disc and the motor drive disc and tighten the two bearing screws securely. (See Figure 4).

The change consists of removing the cupped washer and the flat washer below the upper bearing plate and adding two fiber washers, one on each side of the steel washers above the oilless


FIGURE 2 bearing. The collar should be reset allowing approximately \(1 /: / "\) clearance between the collar and the upper bearing support. The oilless bearing should seat in the upper bearing support and should not turn with the vertical shaft. (Figure 5).

There is a small fiber washer which is used to limit the motion of the upper bearing support assembly. (See Figure 3). Loosen the


FIGURE 3 screw holding this eccentric washer. Hold the vertical drive shaft at approximately \(3^{\circ}\) to the right of perpendicular and adjust the washer and fasten in place. (See Figure 6).

CLUTCH ROLILER AND LEVER ADJUSTMENT - The only change in the adjustment as given in the MODEL 35-1285 SERIES is that instead of spacing the clutch teeth \(1 / 1 \mathrm{n}^{\prime \prime}\) apart, the clutch should be adjusted in the cycling position. The teeth should be meshed but should have a slight clearance between the upper and lower teeth. In the playing position there should be \(1 / w^{\prime \prime}\) or more clearance between the two sections of the clutch.

The purpose of the clearance between the teeth when they are meshed is to insure that the turntable will not be lifted by the operation of the solenoid. Turntables are not interchangeable without readjusting the clutch lever and also the trip mechanism.

SOLENOID ADJUSTMENT - There are no changes to the instructions given in the bulletin. The action of the clutch and lever assembly should be checked for free operation. It should not require a pull of more than seven or eight ounces at the roller to bottom the solenoid. Solenoid brackets are easily bent out of adjustment when handling record changers. When a record changer is removed from a radio phonograph, set it down on its front edge, never lay it down on the top or bottom.

FORWARD SHELF MOTION ADJUSTMENT There may be a tendency when making this adjustment, to overpush the record against the spindle, causing wear of the hole in the record.

ADJUST TONE ARM TO INDEX ON 10" AND 12" RECORDS - If the shelf plate string is loose, the spring will not change the guide track properly on the large cam. The pulley on the corner of the motor mounting bracket can be moved to take up the slack.

PULSATING PLATE ADJUSTMENT - The spring should be installed to take up side play in the lever. The roller may roll freely or it may be tight and bind. Either way will be all right. Simply put some "Lubriplate" on the


FIGURE 4 cam on the bottom of the turntable hub.

It is important that clearance be maintained between the pulsing plate and the main plate to prevent clicking but, in conjunction with this adjustment, the pulsing plate should first be checked for


FIGURE 5 tension. Rotate the turntable until the roller is off the crown on the cam. Place the tone arm on the rest and back up the adjusting screw. The pulsing plate should project down at an angle of approximately \(30^{\circ}\). SEE MODEL: 35-1285 SERIES FOR FURTHER DATA If for any reason, a turntable is replaced, readjust the pulsing plate.

TRIP ARM ADJUSTMENT - Particular attention should be paid to obtain a slight clearance between the plate adjusting screw and the pulsing plate when adjusting the screw on the trip arm for the correct roller height. The edge of the pulsing plate should be parallel to the record changer base.

REJECT CONTACT TRAVEL ADJUSTMENT - It often is necessary to disregard the adjustment as given in the Radio Service
Bulletin 402. Some records are known as swingers because the playing grooves are not concentric with the hole in the record. These records cause the tone arm to swing back and forth with each revolution, requiring more latitude in this adjustment. Turn the screw back and, in severe cases, remove the screw entirely. If the adjustment originally specified is maintained, a swing record may cause pre-trip and will cause the tone arm drag and light beam pull-off.

TURNTABLE SPEED ADJUSTMENTS - In addition to the adjustments given in MODEL: 35-1285 SERIES there are some other precautions to observe. First, the change for the vertical drive assembly specified in the first part of this Service Summary should be made on all record changers worked on.

The record changers are adjusted for a minimum speed of 78 RPM and, in the slow speed position they can be adjusted for 39 RPM. The Neon lamp should be turned so that one of the plates faces the rim of the turntable, otherwise it will not indicate the markings on the turntable when running at slow speed.

Excess paint on the inside of the turntable rim will cause WOW's. A flat on the rim on the turntable, due to itr being dropped,


FIGURE 6 will cause the same trouble.

The upper bearing bracket of the vertical drive should have a soft gentle action against the turntable rim. If the action of this bracket is stiff the result will be WOW's. This can be freed up by striking the rivet with a center punch.

Flutter is caused by vibrations set up in the changer drive mechanism which in turn are transmitted to the tone arm and cause the light beam to shift back and forth across the photo electric cell at the frequency of the vibrations.

A flat or nick on the rim of the bell driye assembly or on the rim drive pulley will cause flutter. It can usually be discovered by a visual inspection of the parts. An unbalanced bell drive disc will wobble while turning and will cause flutter also.

If the flat, motor drive disc is not assembled properly on the motor shaft and is not true, this will cause flutter. This condition will probably only occur on the earlier models on which the drive disc was fastened to the motor shaft with a set screw. It can be detected with the motor running, since it will cause the vertical drive assembly to oscillate. The correction for these conditions is to replace the faulty part.

\section*{SERVICE HINTS}

The brass sleeve used on the shaft of the motor is to prevent the armature from slipping out of line. Some steel sleeves were also used, but these sleeves are apt to be noisy with the motor running. To overcome this, the steel sleeve can be cemented to the end of the armature with Philco Speaker Cement.

Due to the difficulty in getting materials, three different tone arms have been used:
1 - An aluminum arm.
2-A zinc arm.
3 - A moulded bakelite arm.
Since the weight of each kind of arm is different, three counterbalance weights are required. The aluminum arm requires a \(11 / 2\) ounce weight, the zince arm a 5 ounce weight and the bakelight a 3 ounce weight. The zinc arm has a yellow paint mark under the tone arm.

Regardless of which tone arm is used, the weight of the tone arm on the record should be \(11 / 4\) ounces. The correct counterbalance weight must be used and the final adjustment made with the screw on the side of the tone arm swivel assembly. Do not use the incorrect counter balance weight and then adjust for the balance with the spring in the tone arm swivel, since this puts a side thrust on the tone arm spindle and will very likely cause tone arm drag.

Use only a 20. SAE grade oll mixed with \(1 /\) special Shaler Rislone oil for lubricating the spindle. Other lubricants will cause the spindle assembly to stick, resulting tone arm drag. Tone arm drag may also be caused by the dress of the leads at the back of the tone arm. They should be dressed towards the turntable spindle at the end of the tone arm.

The tone arm spindle must be absolutely free. Any binding in either direction will cause the light beam to pull off the cell and produce WOW's and distortion. The drag should not exceed \(1 / 8\) ounce.

Do not, under any circumstances, try to adiust the angle of the jewel. The jewel normally extends \(1 / 4 z^{\prime \prime}\) below the guard. It should be vertical with respect to the surface of the record when viewed from in front of the pick-up head. When viewed from the side, the jewel is at quite an angle to the surface of the record. On \(1 / 4\) stack of records, the jewel should be at an angle of approximately \(20^{\circ}\). When playing the bottom record, the jewel will be at an angle of approximately \(13^{\circ}\). Do not attempt to change this angle. It permits the jewel to track in the groove with a minimum surface noise. Any change from the original setting will affect the frequency response, and if the angle of the jewel is less than given above, it will cause record wear.

Flutter, mistracking and distortion can all be caused by a stiff mirror and jewel assembly. Check the flexibility of this assembly. With the record changer stopped, put a record on the turntable and place the tone arm on the record. Open the peep hole in the pick-up cover-the light beam should be s/3:" wide and should be half "on" and half "off" the photo-electric cell. Hook the Philco Scale, Part No. 45-2851, under the cover at the nose and pull laterally, first toward the spindle and then away from the spindle. The jewel assembly should be sufficiently flexible to allow the light beam to be pulled completely off the cell and completely on the cell with less than 1 ounce of lateral pull - from \(1 / 2\) ounce to \(3 / 4\) ounce is the most desirable. Replace the mirror and jewel assembly if more than 1 ounce pull is
required.

\section*{PRESTO RECORDING CORP}

\section*{INSTRUCTIONS FOR OPERATING THE MODEL \(D^{n}\)}

The recorder comes packed without the tubes and tube shields in the sockets and to insert the tubes the following procedure is followed:

Remove tube screan oover located at the rear by removing the four sorews holding this cover down. Insert the tubes in their proper sockets as shown in figel. The tube shields are made in 3 pieces. The bottom piece is already fastened in place on the chassis. Aftor the tube is inserted in the sooket, the middle section of the shield (longest section) is placed over the tube and pushed in as tightly as it will go. The grid lead for each tube has mounted on it a grid oap and this oap should be fitted over the grid stud of the tube which is located on the top of the tube. If the cap fits loosely over the grid stud of the tube it should be removed and squeezed slightly and then pushed over the stud again. A loose grid cap can cause noise and hum wich will result in poor recordinge.

Plug the microphone plug into the 3 way polarized receptacle (2) Fig. 2, located at the rear right of the top panel. The receptacle has a red mark on one prong and this prong should coincide with the red marked prong on the plug. After this plug is inserted it should be locked by tightening the lock nut located on the plug.

Insert the A.C. plug into any 110 volt, 60 oycle A.C. receptacle. On the top of the panel, above the name plate, are two toggle switches. The one on the left (10) is for turning the motor "on" and "off" wile the one on the right (7) is



PRESTO RECORDING CORP.
MODEL D Compac

for turning the amplifier "on" and "off". After turning the amplifier switch "on" wait at least 30 seconds for the tubes to heat up before recordinge

Be sure thet the 2 pins on the ends of the cutter leads are inserted in the 2 pin jacks located next to the radio jack (39).

In the front loft hand corner is a knurled lock sorew (11) which
mochenically locks and unlocks the motor. The motor is mounted in live rubber and the shaft of the motor (35) Fig. 3 drives against a rubber idler (33) Fig. 3 whioh in turn drives against the outaide rim of the turntable. The motor is therefore free to swing freoly. If allowed to swing in this manner in transportation the machine will be damaged. When the machine leaves the factory the lock sorew (11) Fig. 2 is turned to the looling position, that is turned to the right as far as it will go. The motor is now held very rigidly and will not rook in transportion. To un-look the motor, turn the knurled sorew (11) Fig. 2 to the left as far as it will go. The motor is now ready for use, and throwing the motor awitoh (10) to the "on and off" positions will start and stop the turntable. Please note that if the machine is to be moved at all, the motor should be locked.
To oliminato the posaibility of any ham devoloping, the meohine should

RECORDTNG
To reoord from the miorophons turn the seleotor awitoh (9) on the front panel to the "record" position and operate the volume oontrol(6) in the"micro" position. The proper rolume to be used will be dotermined by the swing of the needle an the volume indioator motor (5). This noedle should ewing to mid-soale for average poiks. If it owings above mid-scoale the volume is too high and should be reduced by turning the volume control (6) to the left. If the needle barely owings, than the level is too low and the volume should be brought up. PLAYBACR
To pleybeok reoords, turn the selootor switoh (9) to the "phono" position and operate rolume oontrol (6) in the sootion marked "phono". If ordinary ocamorotal records are to be used for play baok, remove the 3 driving sorews, located on the turntable.
PUBLIC ADDRESS RADIO RECORDING
To the loft of the three way reseptacle (2) is loosted a radio fook (39) to be used
whon reoording from the radio reosivor. The inpedanoe of this outhet is 8 ohms.
(CJohn F. Rider
MODEL D Compac
PRESTO RECORDING CORP.
side. Arter these pivot sorows (24) are adfusted so that the outting
head (42) has a free up and down motion without any side play-
tigthen the lock nuts (25) and then ohook the movement again. Some-
times the tightening of look nuts (23) will tighten the pivot sorows
(24) and the vertioal motion mill be aluggish again. The pivot sorowe
should be held with sorew drivers while the look nuts are tightened.
NOTE: This head is adjustod at the faotory and there is no reason Why this adjustment should be made in the fiold. Before making this adjustment be sure that no other oause is the reason for the shallow
out.
Thess unstoady sounds may be caused by the reocard slipping or the worm shaft Model EJ-7. Also "wows" may be oaused by slippage betwoen the turatable and the motor, which is oovered belowt
When the recorder leaves the shop it has boon oarefully adjustod
to the proper driving speed and torque. However, there is a remote
possibility that this ad fustment might looson and oause waver. If so,
 and also loosen the right hand suspension sorow (44). Hote that this right hand suspension sorem slides in a slot. Aftor loosening these sorew, the ontire motor mounting oan be shifted either away from the rabber idlor (3s) or against it. Chook the table by applying proseure With the thumb againat the rim. If the table stops osaily, movo the right hand suspenaion sorow (44) towards the table and tighten both
 the rubber filer (33) should be suoh that a heavy prossure of the
 stopped then the right hand suspension sorew (4) should be moved away from the table.

 to judge mether the reproduction is falthful and constant. If,

PROPER GROOVE
 When the threed is cut out by the needie it should be about tho thickness of an ordinary human hair. It should be black and shiny. If the cut is too light the thread will be grayish and if too heavy it will be about the thickness of a very heary black sewing thread.

The depth of cut is dependent on the pressure on the noedle point. The cutting head is counterbelanced by means of a small pressure spring (20) Fig. 7 loonted on the cutting head oasting (22). This pressure spring is adjusted for the proper tension et the factory and this adjustment should not be tampered with umless absolutely necessary. In case an edfustment should be necessary on this spring the procedure outlined belom should be followed:

With a sorew driver looson slightly, pressure lug screw (26). This screw should be loosened enough so the \(t\) pressure lug (27) can be moved with slight pressure. If the thread of the groove \(1 s\) too licht increase the pressure
by moving prossure \(\operatorname{lug}(27)\) silightly to the rear. If the thread is too hoavy,
move pressure lug (27) siightly forward. Too deop out will oavee ocho in the record. A more exaot mothod of detormining the depth of out is by the use of a magnifying glass of about 20 power. A proportion of width of groove of 55 to 45 width of wall will give proper depth. This proportion is subject to slight variation. Approximatoly it should bo 6 to 4.
cutting bead does not have free up and down motion
This is duo to the bracket (43) holding the outting hoad (42) being too tight in the pivots. To ahook this, lift the outting up and down by pioking it up by the needle sorem with the fore fingor. If the movement is sluggiah then follow the prooedure outlined below in order to have the hoad move froely. With a small wronoh or a plir of pliers loosen the two look nuts (23) Fig. 7. Then loosen the two pivot set sorews (24) onough so that the hoad moves freoly up and down. The pivot sorews (24) must not be so loose that the bracket (43) mill have play from side to

however, the turntable wows, this reproduotion will also soumd uneven. One or two triale will enabie you to make the correct adjustment. After you have found the adjustment to be oorreot, look the two sorewa (44) securely with a henvy sorew driver.

For troubles due to jorky, intermittent reocrding, see Kodel EU-7 LUBRICATING THE COMPAC MODRL D RECORDER

There are three essential perts on the motor drive mechanim
that havo to be lubricatod.
1. The main turntable bearing ( 31 ) Fig. 8 must be lubrioated
woilly with a good grade of veselino. This may be acoamplished by lifting the turntable from the bearing (soe Fig. 8) and applying the vaseline to the turntable ahaft (51). There is a thrurt eteel ball at the bottom of this bearing and care must be takon thet this ball is not lost mon removing the turntable. Somotimes the ball will stick to the bottom of the turntable shaft, in whioh oase it should be removed and dropped into boaring ( 32 ).
2. Lubrication of the idlar shaft (34) is very essential, it should be dope dally, if the mohine is used a good deal. "3 in 1 " oil is advisable. One drop of 011 in the center hole of the idler shaft (34) is sufficient. Be sure that the oil does not got on the 1dler. Always wipe olean as this might oause loss of friotion.
3. The motor neod not oiled more than onoe in 3 monthe and then with the same quality of " 3 in 1 " oil as used on the idler ahaft (34). It is advisable not to oil the motor toomoh. Too frequent oiling might cause defeots in the winding of the motor. When oiling the motor, the ontire panel mounting must be raisod as shown in Pig. 9. The ofl oups (38) are shown; one at the bottom and one at the top. The oiling of the ovor head food mochaniam is of a vory aimple nature. Oso " 3 in 1" oil on the oonters (28) Pig. 6 of the foed sorew and the shaft that oarries the worm. The foed sorow can be kept moist with a little "3 in 1 " oil and the lubricating of the se elements oan be dane frequently at about one weok intervela.


MODEL D Compac
PRESTO RECORDING CORP.

(C)John F. Rider

\section*{PRESTO RECORDING CORP.}


PRESTO RECORDING CORP.

(C)John F. Rider

PRESTO RECORDING CORP.


14 - Amplifier for recording and playback. Gain 115 db . power output 4 watts.

15 - Bronze turntable bearing.
16 - Drive mechanism showing rubber idler wheels operating between motor shaft step pulley and turntable rim.

17 - Selector switch for recording, playback and public address operation.

18 - Loudspeaker, 8" dynamic type.
19 - Cutter carriage guide bar.
20 - Presto \(1-B\) high fidelity cutting head, response 50 to 6,600 cycles, impedance 8 ohms, required input level plus 20 db .

21 - Volume indicator meter.
22 - Amplifier power switch and bullseye.
23 - Double gain control for both recording and playback.

The Models "E" and " \(1 \in-X\) " recorders are now equipped with the new type shift lever for operating at \(331 / 3\) and 78 R.P.M. For operation first turn-on motor switch (10). To operate at 78 rpm loosen "lock-screw" (11) pull shift lever (11-A) towards numerals "78" on motor housing and lock screw. For operating at " \(331 / 3\) " rpm repeat operation and lock shift lever at "33 1/3" numerals. When machine is not in use return shift-lever (11-A) to neutral position and lock screw (11).

\section*{PRESTO RECORDING CORP.}


\section*{OPERATING INSTRUCTIONS FOR THE PRESTO}

\section*{MODEL "K" RECORDER}

\section*{READ CAREFULLY BEFORE ATTEMPTING TO OPERATE MACHINE}

\section*{Unpacking}

In removing the recorder from the carton, take care not to pierce the wrapping with a sharp instrument that might damage the finish of the case. The recorder will be found unlocked. The keys are in a small paper envelope attached to the inside of the cover. The cover may be removed if desired by swinging it all the way back.

Open the case and carefully remove the wrapping from the cutting mechanism and pickup. The recorder is shipped with the amplifier tubes in their sockets, ready for operation.

A roll of insulated wire, for the ground connection is inside the recorder case. The brass spindle (B2) is in an envelope, next to key envelope, inside the cover. It is used to collect the thread, which is cut from the surface of the disc, while recording. The microphone and stand are packed in three separate cartons. When assembling microphone stand make sure that the base and microphone are screwed on tightly to prevent metallic rattling while recording.

\section*{How to Set Up the Recorder for Operation}

Connect a wire from the binding post (A7) to a water pipe or radiator. This ground connection is essential for good results. Screw the microphone plug to the receptacle ( \(\mathrm{A} \mid 0\) ) on the amplifier panel. Insert the loudspeaker plug into the receptacle (A4). marked SPEAKER. If headphones are to be used while recording, insert the headphone plug into receptacle (A3) marked MONITOR

Insert a Presto cutting needle in the cutting head (B7) making sure that the flat side of the needle shank faces the cutting head set screw (B8).

\author{
PRESTO RECORDING CORP.
}

Push the needle all the way in and tighten the set screw firmly,

Insert a Presto red shank playing needle in the pickup head ( \(B 1\) ) and tighten the set screw.

Insert the power plug (A9) into a wall or lamp socket, first making sure that your power supply is ALTERNATING CURRENT. Plugging into a direct current outlet will blow the fuse in the turntable base. Throw the toggle switch \(\left(A_{i}\right)\) to the on position. The red bulls-eye (A2) should light indicating that the amplifier is on.

\section*{How to Make a Record}

Place a blank disc on the turntable, fitting the three holes over the pins near the center of the turntable. Fit the brass spindle (B2) over the turntable shaft. Set the switch (A|2) in the "Record" position. Turn the tone control knob \((A \mid 3)\) all the way to the right, pointing to zero. Speak into the microphone and at the same time turn the volume control knob (A||) slowly to the right until the hand on the meter \((A \mid 4)\) starts to kick upscale. When the hand begins to kick up within the green section it indicates that you are using the proper amount of amplification for recording. Push the cutting head
cam lever \((\mathrm{B} 6)\) all the way back so that it points away from you. Pull the lever (B4) toward you as far as it will go and move the cutting arm (AB) so that the cutting needle will start about one quarter inch inside the edge of the record. Holding the cutting head in position, push the lever (B4) all the way back to lock the cutting arm in place. After locking the cutting arm press it gently to the right and left to make certain that the gear and worm beneath the table are properly meshed. Because these parts are fitted very closely it is sometimes necessary to snap them into mesh. Start the turntable by pushing the lever (A8) all the way back. This lever engages the motor pulley with the turntable rim and also turns the motor on. Pull the cutting head cam lever (B6) forward all the way to lower the cutting needle onto the disc. A fine thread will start to collect in a ring on the surface of the disc about one half inch from the cutting needle.

You are now recording and any sound impressed on the microphone will be recorded. While cutting the record it is necessary to sweep the thread toward the center of the turntable occasionally letting it wind up on the brass-spindle (B2). The thread may be guided toward the center by resting your fingers lightly on the surface of the disc. Do

not allow the thread to become entangled under the cutting head as it will force the cutting needle off the disc and break the continuity of the groove, so that the record will not play properly.

\section*{How to Play the Record}

When the record has been completed, turn the switch (A|2) to the "Phono" position and cut a few grooves without sound to finish off the record. Push the cam lever ( \(B 6\) ) back to lift the cutting needle oft the disc. Pull the lever (B4) forward and swing the cutting arm all the way to the right. Then push the lever (B4) back to keep the arm clear of the turntable.

Place the playback pickup ( B I) in the outside groove of the record and turn the volume control (AII) slowly to the left until the record plays with the desired loudness. Adjust the tone control (A|3) to obtain what you consider the most natural reproduction. The proper position will usually be between 6 and 8 on the scale.

\section*{How to Operate the Presto Recorder as a Public Address System}

To operate as a public address system, the switch ( \(A \mid 2\) ) should be thrown to the "Phono" side and the volume control \((A \mid 1)\) turned slowly to the right noting the point where the loudspeaker begins to howl continuously. This is known as "feedback". and is caused by sound from the loudspeaker being picked up by the microphone and re-amplified. To correct this condition, place the microphone about ten or fifteen feet behind the loudspeaker so that it will not pick up too much of the direct sound. When the system is used in a fairly small room, sound reflected from the walls will also cause feedback. Therefore, it is always advisable to experiment with the location of the speaker and microphone to find the arrangement that permits using the maximum amount of amplification without feedback.

\section*{Recording from the Radio}

The jack (A5) is connected into the second stage of the recording amplifier. When a plug is inserted into the jack the playback pickup is disconnected. The input impedance at this point is 25,000 ohms. Connection should be made from this jack to the output of the 2 nd detector of the radio set. This work can best be handled by a local radio service man. Because of the differences in various radio set circuits, no specific information can be given in this booklet. As one side of the amplifier input is grounded, the polarity of the connections must be correct. The radio program will be heard through the loudspeaker of the recorder if the switch \((A \mid 2)\) is
thrown to the "Phono" side and the volume control (A|I) turned to the left. To record the program throw the switch \((A \mid 2)\) to the "Record" position and turn the volume control \((A \mid 1)\) to the left until the volume indicator meter kicks fo the green section.

\section*{Duplicating Presto Recordings}

To duplicate a Presto recording, play the original recording on a separate phonograph turntable. Connect the pickup on the external turntable to the jack (A5) and operate the same as when recording from the radio. For re-recording, a magnetic pickup having an impedance of 5,000 to 10,000 ohms should be used. The input impedance of the amplifier at this point is not suitable for the use of a crystal pickup.

\section*{COMMON FAULTS IN OPERATION AND HOW TO CORRECT THEM}

\section*{Cutting Needle Runs in Single Groove Cutting through Coating of the Disc}

You forgot to push the lever (B4) back before lowering the cutting needle onto the disc. Replace cutting needle.

\section*{Playback Pickup Repeats a Single Groove at Some Point in the Record}

The thread from the cutter became entangled under the cutting needle lifting it from the disc and causing it to break into the adjacent groove. Watch the thread more carefully and brush it to the center oftener.

\section*{Very Little Sound on the Record Making it Necessary to Use Excess Amplification on Playback}

Insufficient amplification used while recording. See that the meter needle kicks well within the green section on the meter scale.

When a speaker raises or lowers his voice or when music becomes louder or softer the volume control must be adjusted to keep the meter kicking within the proper range (about mid-scale). Avoid making rapid changes in the setting of the volume control. Try in all cases to anticipate changes in the sound intensity, shifting the volume control slowly to compensate for them.

\section*{Reproduction Ragged and Distorted}

This will usually occur if the instrument is not properly grounded.

Also caused by the meter kicking too high while

\section*{PRESTO RECORDING CORP.}
recording. Be careful to keep it kicking within the green section, but not beyond.

Sometimes caused by speaking too close to the microphone or shouting.

\section*{Playing Needle Will Not Stay in Groove-Slides Across Record}

Groove was cut too shallow. The thread from a groove of proper depth should be about the thickness of human hair. Adjust the tension of the spring (B5) behind the cutting head using the thumbserew (B3) to increase the pressure of the cutting needle on the disc.

If the groove is too deep the thread will be coarse and kinky. Adjust the spring to lighten the cutting pressure. Cutting too deeply will wear out the cutting needle quickly.

A worn playing needle will also fail to stay in the groove. Use a new needle each time a record is played and change the needle immediately if the pickup has been dropped or dragged across the surface of the record.
Tone of Music Wavers or Sounds Off Key

Usually due to oil or moisture on the rim of the turntable or because thread from the records has become fouled in the cutting head drive mechanism or motor shatt.

Clean the outside rim of the turntable with any household dry cleaning fluid such as, Carbona, Energine, etc. Lift the turntable out of its bearing to examine motor and feed mechanism and remove any thread or dirt which has become caught in moving parts.

Occasionally the motor may move out of adjust ment due to rough handling in transportation. This will necessitate loosening the screw \((\mathrm{B} \mid 1)\) and increasing or decreasing the pressure of the motor pulley against the turntable rim. If the pressure is not sufficient, the turntable will slip. If the pressure is too great, vibration will occur due to the motor being pushed off center. The pressure should be adjusted to give just sufficient traction.
Machine Has Tendency to Howl when Records are Played Loudly

Due to defective tube or tubes


\section*{Excessive Vibration}

This may be due to damage to the rubber tire on turntable. Remove the turntable from the bearing. Slip the tire off, and check to see that rim of turntable is clean. Turn the tire inside out, stretch it \(t_{i}\) and slip into rim by using a smooth instrument, such as a small screw driver. Be careful not to cut or mar the rubber. Then roll the turntable on a flat surface such as a table top, exerting appreciable pressure. This equalizes the tension of the tire around the entire circumference. Replace turntable into bearing.

Also may be caused by a bent motor shaft. In this case, the motor should be replaced. Also caused by a damage to the rubber cushions on which the motor hangs. Remove nuts ( \(\mathrm{B} \mid 0\) ) and examine mounting cushions. If damaged they should be replaced.

\section*{Lubrication}

Clean and lubricate turntable shaft and the worms and gears beneath the turntable with white vaseline. If the vaseline becomes stiff, add a few drops of light machine oil. Oil the motor once every three months, placing a few drops of " 3 inl" oil in the oil cups. To give proper results, the machine must be kept free of dust and dirt in all moving parts.


HON TO CIIANGE TURNTABLE SPEED
The turntable drive will operate at either 78 or \(33 \mathrm{l} / 3 \mathrm{rpm}\). To ohange the speed, lift the brass pulley (C5) off the motor shaft Loosen the thumbsca rew (c6) and push the motor housing toward the turntable using handle (C2). Then tighten (C6). Reverse this prom cedure and replace (C5) to change to 78 rpm .

\section*{PRESTO RECORDING CORP.}

\section*{INSTRUCTIONS FOR UNPACKING}

In removing the recorder from the carton take care not to pierce the wrapping with a sharp instrument that might damage the leatherette finish of the case. The recorder will be found unlocked. The keys are in a small paper envelope attached to the inside of the cover. The cover may be removed if desired, by swinging it all the way back.

Open the case and remove carefully the wrapping from the cutting mechanism and pickup.

Records, needles and Disclube will be found in a separate carton. The recorder is shipped with the tubes in their sockets. To get at the tubes, remove the screen cover by removing the screws holding this cover to the top panel and to the motor panel. See Fig. 1. Remove all packing from around tubes before turning on amplifier.


FIG. 1

\section*{PRESTO RECORDING CORP.}

MODEL J5

\section*{HOW TO SET UP THE. RECORDER FOR OPERATION}

Screw the microphone plug (13) to microphone receptacle (14) Fig. 2 on the amplifier panel. Insert the power plug (11) into any 110 volt, 60 cycle, A.C. receptacle. Connect a wire from the ground post (5) to a water pipe or radiator. THIS GROUND CONNECTION IS ABSOLUTELY NECESSARY FOR GOOD RESULTS. There are three switches that are used for controlling the different operations on this recorder. Control switch (16) is used for recording and playback position. Switch (19) turns the amplifier "on and off". Turn the amplifier switch (19) on and wait at least 30 seconds for the tubes to heat up before recording. Be sure that the 2 pins on the ends of the cutter
 leads are inserted in the 2 pin jacks located on the rear right of the motor panel. In the front lower right corner is a starting lever (20A) for operating motor starting switch (20). This starting lever starts and stops the motor and mechanically looks and unlooks it with respect to the turntable. To start turntable, push starting lever (2OA) forward to a stop. This will start and unlock motor. To stop turntable, just pull starting lever to original position.


\section*{PRESTO RECORDING CORP.}

EMYIGMY RO DMTA\&OFy
 moahanism (7) from the driving worm, and mellows the mochaniam to ant ang as possible, place the diso on the turntable so that the 3 holes will matoh the 3 Sosired starting point is reeohed meohanism (7) over the record until the

 driving worm. 8 tart the turntable and lower the outting hoad 81
record in order not to injure the point of the outting needie.
\[
\begin{aligned}
& \text { MOTE: THE PRESTO GREEN SEAL DISCS ARE NOT INPLAMMBLE, BUT THE } \\
& \text { SHAVINGS ARE, AND THKRETORB THE LATTER SHOULD BR DISPOSED OF IN A MFTNL CO }
\end{aligned}
\]

MOTE: THR PRESTO GRREN SEAL DISCS ARE NOT INFICNMABLE, BUT THE
SHAVINGS ARE, AND THKREFORB THE LATTER SHOULD BE DISPOSED OF IN A MRYAL CONTAINER.
The tone of the amplifier may be adjustod by the tone oontrol (17).
Turning this oontrol to the right inareases the high frequenoy reaponse while
turning it to the left deoreases the high frequenoy response. It may be used
turning it to the loft deareases the high frequenoy response. It may be uned
\(\xrightarrow{\text { PLAYBACK }}\)

If ordinary commercial phonograph records are to be reproduoed on this
Reoorder, remove the 3 drifing sorews (2) that are looated at the oenter of the Reoorder:

olther in the reoording or playback position.
It is recommended that in reoording the oontrol be turned to the
oxtreme right. cas piaybak adjust the oontrol to whet you consider the most
naturel reproduction.
When reproducing oomercial phonograph reoords, this oontrol will RADIO RECORDING
When reproducing oomereial phonograph reoords, this oontrol will
bo found very effeotive in reduoing exoessive needie scratoh.
To the right of the turntable is located a radio jack (8) Fige 2 to be used for recording fram the radio receiver. The impedance of this jeok is 5 ohms. Fram the voice coil of the radio loudspeaker bring two wires to an ordinary telephone plug and insert the latter into this jack. The output of the radio rooeiver is
now being fed to the cutting head and volume indicator (18) is in the oircuit. The above procedure is to be followed for recording either on acetate or aluminum. In reoording from the radio, the controls for recording are that are used are the radio receiver controle. The volume indioator is used and
 as outilined above.
 microphone in front of the radio loudspeaker and proceod as if recording fram the miorophone. The results obtained using this set-up will not be es good as the

Bolow will be found desoriptions of some troubles poouliar to the Model

If the lever (6) is not pushed back far enough, the feed meahanism
(7) Will not engage the driving worm and as result, the needle will not be fad
across the face of the record.
playback needle will not track
Nots: This head is adjusted at the factory and there is no roason adjustment be sure that no other oause is the reason for the shallow cut.
PLAYBACK PICKUP REPEATS A SINGLL GROOVE ON THE RECORD.
This is due to the thread from the cutter becaming ontangled under the
outting noedle, lifting it from the diso and oausing it to break into the adjacent groove.
In outting, the shavings should be kept away fram the outting needle.
Foliow the precautions outlined under \({ }^{\text {Recording on acetaten. }}\)
This condition shows itself usually when musioal recordings are made. The reproduoed sound will be unsteady-for example, piano will
PRESTO RECORDING CORP.

PRESTO RECORDING CORP.

© John F. Rider

(C)John F. Rider

MODEL J5

\section*{PRESTO RECORDING CORP.}

\section*{LUBRICATING THE J5 RECORDER}

1- The main turntable bearing (32) must be lubricated every two or three months with a good grade of vaseline. Pull lever (6) forward as far as it will come and then swing the mechanism to the right and remove the turntable from its bearings. See Fig. (11.). Apply the vaseline to the turntable shaft (36). There is a thrust steel ball at the bottom of this bearing and care must be taken that this ball is not lost when removing the turntable. Sometimes the ball will stick to the bottom of the turntable shaft, in which case it should be removed and dropped into the bearing (32).
2. Lubrication of the driving worm (34) and the main worm (36) is very essential and should be done every time the turntable bearing is lubricated. Use vaseline on these worms and also on the pinions (33) and pivots.
3. The motor need not be oiled more than once in three months. Too frequent oiling might cause defects in the windings of the motors. When oiling the motor, the entire panel mounting must be raised as shown in Fig. 12. The oil cups are shown; one at the bottom and one at the top. Use "3 in 1" oil.

(c)John F. Rider

PRESTO \(\mathrm{F} E C O R D I N G\) CORP.


FIG. 12


FIG. 13

MODEL J5
PRESTO RECORDING CORP.


FIG. 14

REAR VIEN OF ANFLIFIER


FIG. 15

PRESTO RECORDING CORP.


\section*{PRESTO RECORDING CORP.}


(C)John F. Rider

MODELS EU7, EU7E,
85, 85E

\section*{PRESTO RECORDING CORP}

\section*{MOUNTING TEE CUTTING HEAD ON THE FEED SCREN}

Grasp the feedscrew (40) in the left hand and loosen look screw (29) with the right hand. See Fig. 3. Now pull out removable pivot (30) slightly. The feedscrew can now be removed as shown in Fig. 4. The outting head with its assembly will be found in the compartmont (26) Fig. l at the front of the cese. Unwrap it carefully and proceed as follows: Hold the feedscrew (40) in the left hand with the worm gear (45) towards you and with the right hand hold the outting head casting (6). Push down on feed lever (5) and slide the casting (6) over the foedscrew (40) keoping the feed lever (5) held down. When the casting (6) is in about the center of the sorew, release the feed lever (5). This ongages the casting (6) with the feedscrew (40).

When inserting the feedscrew into the feed mechanism the worm gear (45) on the end of the feedscrew (40) is incerted first to mesh with the worm (44). The removable pirot (30) is then pushed in tightly and lock screw (29) is tightened. It is very importent that when this operation is completed that there be absolutely no play between the feedscrew and pivots. Check this by trying to move the screw from side to side. If there is any play, faulty cutting in the form of uneven grooves will result. Pivot (30) should then be reset. Now insert the cutter leads into the two pin jacks located behind the foed mechanism.


Pick up
Clamp
(42)

(29) Remotable Pivot

shift
Lever



CORDING CORP.

\section*{PRESTO RECORDING CORP.}

Above the preamplifier socket are located three binding posts (12) for microphone input. The input impedance of these posts is 200 ohms, and the middle post is ground so that a carbon microphone can be used if desired.

The tubes are packed in a separate box and should be unpacked carefully. Remove the tube screen oover (11) by romoving the 4 wood sorews and place the tubes in their proper sockets according to fig. 16, page 20. The 6C6's are shielded and care should be taken in replacing the cap of the shield in order not to ground the grid clip. Now replace the soreen cover and insert AC plug (13) into A 110 volt 60 cycle AC receptacle.

The proamplifior should be kept as far away from the main amplifier as possible to prevent any danger of hum pickup. Insert the five prong preamplifier plug (35) Fig. 2 into receptacle (14) Fig. 1, marked "pre-amp". and connect the two wire preamplifier cord (34) to the two outside microphone posts (12). The conter binding post is the ground post and need not be used oxoept when using a crystal mierophone. In that case it is imporative that it bo connected to a good ground such as a water pipe, radiator pipe or radio ground. Now insert the microphone plug (38) into the three way microphone receptacle (37) on the preamplifier and turn the input selector switch to the proper impedance. This impedance is usually determined from the folder supplied with the microphone. Dynamic microphones use the 50 ohm impedance, while inductor and ribbon microphones

use the 200 orm or 500 ohm impedence. If the Presto Recording Corporation supplies the ribbon or inductor miorophone, they will be 200 ohm impedance.

Insert the turntable plugs (20) and (21) into receptacles (23) and (25) respectively on the amplifier panel. If a second turntable is to be used for continuous recording insert the two plugs corresponding to plugs (20 and 21) into the second sot of receptacles (22 and 24). The equipnent is now ready for operation. When the amplifier power switoh (19) is thrown to the "on" position the pilot jewel to the right of the switch will burn red.

\section*{PRESTO RECORDING CORP.}

RECORDING ON ACETATE
Place disc on turntable. Now, grasp the handle (27) lift up, and swing the mechanism to the left end place it over the center spindle of the turateble so that the three screws that are spaced equidistant from the spindle on the turntable mateh the three holes in the driving flange (28) on the feod mechanism.

Insert the cutting needle into the cutting head as shown in FYg. 7. The shaft of the noedle has a "flat" ground along its length and the needla should be so inserted that the needle screw tightens up against this flat.

It is of utmost importance to use sharp cutting neodles in order to minimizo surface noise. Always examine cutting needles by making a test cut on the inside of the record before recording. If the neodle cuts quietly the reproduotion will be quiet. If the needle can be
 heard cutting noisily then the reproduction will have considerable surface noise. A good way to check this is to put one's oar as close to the neodle as possible and listen to the cutting. Under these conditions the neodie should be barely audible. A few tests will nake this procedure very oasy and a good noodle will be distinguishod quite roadily from a noisy noodle.

Set the cutting needle into the cuttor so that the angle, whon facing the outter, is approximately 95 degroos. See Fig. 7. If the noodle is set so that it is 90 degrees or less with the record, the chattering will be so bad thet the neadie will actually jump the record and take pieces out of the material. The angle of cut can be controlled by inserting the noedle further in or drawing it out until the proper angle is reachod.

The Presto neoiles should be inserted as far as possible because the head is adjusted for theso needlos, but at the same time the above mentioned precautions should be observed.

\section*{78 R.P.M. Recording}

The feod lever (5) Fig. 3, located on the top of the cutting head casting disengages this casting from the scrsw by pushing down on it. When this lever is pushed dow the cutting head is irge to be moved to any desired point on the record. If cutting from the outside towards the center leave at least \(3 / 16^{\prime \prime}\) from the outside. You may record to a \(3 \frac{1}{2}\) " diameter at the center. For inside out cuttine start at \(3 \frac{2}{2}{ }^{\prime \prime}\) diameter.

When the foed lever (5) is released the casting (6) engagos with the foodscrew and the table is now roady for recording. Before rocording, move the casting (6) from side to side to be sure that thet lever (5) has ongaged the bottom of the foodscrew throad and not the top. If it is resting on the top of the thread, moving the casting will cause it to fall into place at the bottom of the thread with an audible olick.

Start the turntable and then lower the cutter onto the record slowly in order not to injure the point of the cutting noodle.
the
but
Note:- The Prosto Groen Soal disos aro not inflammable,
33 1/3 R.P.Y. Aluminum Rocording than on aootate. This in itsolf is quite an objection.
"Miorophono Recording" PRESTO RECORDING CORP.

\section*{MODELS EU7, EU7E, 85, 85E}
shavings aro.

\section*{33 1/3 R.P.M. Aootate Rocording}
at 78 R.P.M. Due to the lower speed the surface notso problem is outlined undor 78 R.P.M. acetate recording.
 voliciona and the only remedy is to equalizo. This means that the amplifier over the entiro range.
The Prasto EUTE rocording amplifior desoribod has in- by the use of an oqualizor.

\section*{78 R.P A. ALOMINMM RECORDING}

\section*{}

\section*{How to Play the Prosto Groen Soal Diso} power supply from an amplifior can be used provided its power supply cord is wired

\section*{Radio Reoording} to a prong plug in eocordence with the markinge on Fis 16 in the radio recepta
\({ }^{0 . d_{d}} 0^{4}\)
 removed when recoritig on alualnum, a out" can be used with no precautions about shavings to be observed.
Use only fibre or thorn neodles when reproducing aluminum rocords.
Recording at this spoed on motal is not recoumended if a record longor than 5 minutos duration is roquired. Fibro playback noedlos do not have
Aftor the noodle has boon chocked and tostod turn the solector switoh
(8) on the amplifier unit to the "mike rec." position, then prooed to reoord. (8) on the amplifier unit to the mike rec. position, the
Start the turntable by throwing the switch (1) Ses Fig. 1 , to the "on" position.
Lowar the outtor slowly onto the dise in order not to injure the point of the outting noedlo. The amount of power being suppliad to the cutter is indioated by the volume indioator (9) locatod above the loud speakor. This noedie will swing in direct proportion to the sound boing put into the microphone. For good recording,

Reoording at \(331 / 3\) R.P.M. prosents a slightly difforont problean increased. It is very important, thoreforo, that onefully for quiet outting.
should bo used and the se should bo chookod very carefully for quiet outting. If
fiko a tost out with the outting noodle at \(331 / 3 \mathrm{R}\). P, M. at a radius of \(3^{n}\). If
 rooording below a diamater of at this speod, inis is due to the lowor neodie oircuit is rosonatod at the frequency dosirod either 4000,6000 or 8000 aychos.
 cutting head suoh as the prosto typo BA-1 cutting hoad be usod. This hoed has a uniform response to 6000 oyoles and is woll able to take an equalizer. Heads that
have a poor frequency responso above 4000 cyoles cannot be materially improved

\footnotetext{
Turn the seloctor switch (8) to "radio recording" and procesd to
rocord watching the volume indicator (9) in the same manner as rocording from
record watching
the microphone.
}
The Presto Groon Seal disc may bo playod imnediatgiy aftor it has boen
cut. No baking or drying process is necessary. Best rosults both in quality of Fig. 1. The Presto tuner has its own filament supply but obtaine its 3 supply from
the amplifior unit as show in Fig. 17. Any other tuner that has to obtain its The output impodance should be 200 ohms. If a receiver is used that has its own Tho output impodance should be 200 ohms, If a recoiver is used that has its own
A and \(B\) supply, then the output should be connected to the same prongs in the 4
prong plag as mentioned above. In this case, the "B" supply prongs are not used.
Proooduro in recording radio programs is the samo as outlined in re-
cording from the microphone oxoept that the radio rocoiver or tuner should bo usod

 cut. No baking or drying process is necessary. Best results both in quality of
roproduction and playing lifo will be obtained on turntables which are accuratoly roproduction and playing lifo will be obtained on turntables which are accuratoly producer. The lighter the pressure of the roproducing neadie on the record, the
 resting in the center, boaring equally against both sides. The playing life of a Green Seal Disc dopends upon the quality of reproduction required. If the disc is
to be usod as a high quality transeription for broadosting, the surface noise
will be ineudible throughout the reoord for about 6 playings. Surface noise on a


\[
\begin{aligned}
& \text { With this type of recording it is necessary to rocord at a higher } \\
& \text { wolume. This is necessary due to the heavy weight required for the head in order to } \\
& \text { cut a doop enough groove. This heavy woight dampens the neodle and therefore more } \\
& \text { power is necessary to drive the head. Incroase the recording level by at least } 3 \text { db. }
\end{aligned}
\]
Records identical with standard phonograph records or olectrisal
transcriptions cen also be mede from Presto reaordings. Such records are known
as pressings and the process involvad is known as plating.
 are to be made, two mastors are required. The ovor size master disos may bo out side may be acloctod for plating.
Radio Recoption \(\frac{\text { Radio Recoption }}{}\)
Turning the soleotor switch to the
Turning the seleotor switch to the radio position makes this unit a
rery powerful radio recoiver. It oan be used to fill a hall or sohool room with
radio recoption and tho procedure is the same as followed in publio address.

\footnotetext{
\section*{Location of Trouble}
enp eq ubo gyul
Gublaov no asion govatan hoin
to any one of three reasons.
The neodle should be chooked as outling inmediately.
The neodle should be chooked as outlined on page 9 and if found to be
 2. EAULTY RECORD Only the finest acotate blanks should be usod. Blanks that heve grit,
uneven surface, otc. will not be satisfactory for reoording. Presto blanks are supplied in air tight metal oontainers paoked in lots of comon boliof, these blanks to not beoone so hard when oxposed to the air that they cannot be out. Exposure to the air will mako them the hardor, but they can be oasily out by increasing the pressure on the
3. CUTTING WITH TOO LITTLE VOLUNE
 low volune of recording. This means that the neodie of the volume is

 GROOVE RUNS INTO AD
}
 this foed lever (5) rides on the top of the throad of the feedsorow it will oventu-
to modulate the previously modulated groove agaln. 0n00si 10ctod


Presto recording inoreases to that of an ordinary phonograph record after about
the 25 th playing. Theroafter, it has a life oqual to that of an ordinary shollec reoord. the shadowgraph stoel needle into the pick up. These shadowgraph needles ars
ordinary phonograph needles that have been inspeated under a microbcope to insure that no burrs are on them. If there are burrs on the noedle they will tend to rip the record. The use of shadowgraph needles is not necessary for the playing
back of ordinary shellac phonograph records because the shollac record contains an abrasive material whioh wears out the imperfeotions in the neodle so that the lattor will fit the record groove. Acotate does not contain any abrasive material
and it is for that reason that shadowgraph needles are reconmended at all times. These noedles are good for several playbacks and once removed from the plok up they
should not be reinserted. After 3 or 4 playbacks the needle should be disoarded. The volume for playback is controlled by the same volume oontrol (10) that was used during reoording.
 Corporation, manufactures a substance oalled DISCLUBE. DISCLIJBE is applied to a
rooord with a soft oloth immediately aftor cutting and tonds to hardon and lubricato the groove, reducing the wear aqused by the reproducing needie. DISCLUBE drys
with a fow seconds and will improve the playing life of the record considerably It is partioularly recomonded where reoords are to bo played on portable,

\section*{PUBLIC ADDRESS}

If the apparatus is to be used for public address work, only the
amplifior unit in conjunotion with the preamplifier and microphone aro used.

the microphone is used for oitner talking, sinfing or instrumental playing, the Will emanate from the loud speaker. If the microphone is used in the same room control will oause what is known as a "foed back". This manifesta itself by a
"howl" from the loud speaker. This is due to the fact that the microphone is to olose to the loud speaker. To minimize this "foed back" when using the microphone In the same roon, the microphone should be located behind the unit. To eliminate room that is completely closed off from the machine. However, for all practioal purposes, where reinforcoment in a class room or auditorium is desired, the placing room. If more powor is desired for an auditorium, a larger speaker than the one built into the unit is needed. This larger speaker should obtain its field should have an impedance of 500 ohms, terminating in an ordinary telephone plug.
This plug is now inserted into the external speaker jack (16). When this is done, the built in \(8^{\prime \prime}\) speaker is automatically cut. DUPLICATING PRESTO DISCS
 biorophone posts of the recording amplifier and the prooedure is followed as outlined under "Microphone Recording". This prooess oan bo repeated until the
PRESTO RECORDING CORP. \(85 \quad 85 \mathrm{E}\)
MODELS EU7, EUTE,
lover (31) fig. 5, in noutrel position and lcek socurely. Next,
loosen adjustmant sorew (63) silghtly and move braoket (64) slightly forvard.
The proper ad justanont is roachod when the following condition is satiefied. With the turntable removed and the motor running with the
shift lover looked in neutral position, the two idler pulleys should remair stationary, with this conditicn the table will run at a con-
adJUSTING THE PRESTO TYPE BA-1 CUTTER
If the armature of the double aotion hoad oollapses, prooeed as fol-
 Romove oovar sorew (56) Fg. 13, and oover. Grasp outting hoad (57) on
top and pull down. Soe FIg. 14. Loosen mounting sorews (61) and slide hasd off braoket. Now romove baok oovar plate. Whith bwall sorewdrivar
loosen looking sorews ( \(\left.A^{\prime} A^{\prime}\right)\) Fig. 12. The adjusting sorews ( \(A-A\) ) oan now be turned to oenter the armature. Refarenoe to Fig. 12 shows how
the oentering sarews ( \(A\) A ) oontrol the position of the armature. Whenthe oentering sorews \(A-A\) ) ontrol the position of the armaturs. Whan-
ever possiblo, it is strongly reocmmended that the outter be returned
the faotary for adjustment. spring sorem be moved. Failure to hoed this warning will throw the arnature
The mothod of holding the armature in the center is an oxolusive feature with this outtor and the armature ill not oollapse unless the look corews are tampered with. Treat your cutter as you rould a high grado watoh. Thore are thres essential parts on the motor drive mochanism that
have to be lubricatod.
 boaring, soo Fig. 16, and applying the vasoline to the turntable shaft (51). that this ball is not lost whon remoring the turntable. Sometimes the ball will stick to the bottom of the turntable shaft, in which caso it should be removed
and dropped into bearing (52). 2. Lubrioation of the idlor shafts (53) and (54) is very essential and should be done at the ond of oach 50 hours of oporation. \({ }^{3}\) in 1011 is reis sufficiont. Bo sure thet the ofl does not got on the idlers. Always wipe
 With the some quality of " 3 in \(1^{1 "}\) oil as usod on the idler shafts. It is advisthe winding of the motor. Whon oiling the motor, the entire panol mounting must


The depth of cut is dependent on the pressure on the needle point.
The pressure of the outting noedls on the disc is regulated by the tension spring (43) pressure is, located on the right hand side of the cutting hoed. This tension spric (42) suspied this nut (42) to the right decreases the pressurs on the cutting needio mille turning it to the left incrases the pressure. This adjustment is already made at the factory but if it gots out or adjustment it can be oasily not oxceod 4 oz. This can be doternined by using a small soale measuring, in pressure, and thon corrsoting it.

The best way to determino whether the proper groove is being cut is
to use a \(10-20\) power magnirying glass to oxamino the groova. A proportion of 55 width Chattering

If the recording needle starts to jump or ohattor on the record it
indicatos an impropor rooording angle of the outting hoad. This oan be corrected by pushing the outting hoad baok slightly along the swivol point of the cutting ad justment. Mako suro that something olso like a poor rocord with uneven surface or a poor rooording noedle is not causing this troublo before changirg the
angle of the hoad. This angle is properly adjustod at the factory and should

\section*{}
made. The roproduced sound whill be unsteady, for oxample, plano will sound like
a guitar end ary sustained note will waver. This is due to one of three reasons





SHAFT BINDS
If the throed from the reoord is not removed from around the worm and If the throlis liable to get in be weon the boaring and worm ahaft and the table so the driving flange (28) Fig. 3, cleare the tablo and give worm shaft knob (39) a spin. The worm (44) should spin freoly, If it doesn't, make sure that the shavings have all been removed.
Tho construotion of the feed meohanism ts such that there is very
littio ohange of binding due to shavirgs, but novertheloss, the above precautions should be observed.
3. SLIPPage between turntable and motor 3. SLIPPAGE BEICEN it is carefully adjustod to the
 propar driving speed and torquo.
that this adiustment might loosen and cause maver. If so, put shift

\section*{PRESTO RECORDING CORP.}

\section*{Equalized Amplifier}

The type EUTE amplifier has incerporated in its oirouit an equalizer for incroasing the response at \(4000,6000,8000\) and 10,000 oycles. The selection of the frequency to be equalized and the degree of equalization is obtained by means of the two equalizer controls located on either side of the volume indicator. The circuit is identically the same as the type EUT except that the second stage contains 6C5G's instead of \(76^{\prime} \mathrm{s}\). See fig. 10 . The use of the 6C5G tubes increases the gain of the amplifier by about 10 db . This is necessary to make up for the insertion loss of the equalizer.

There is no hard and fast rule for using an oqualizer, in recording. Its use will depend on the type of sound t'o bo recorded and the intelligent use of the equalizer will depend on the judgment of the operator. Fig. 9 shows the different characteristics at the different settings of the selector switohes.

Instantaneous recordings require equalizing at the high frequencies due to the fact that the reoording material is comparatively soft. Equalising at 78 rpm is not recomonded when using the Presto Type BA-1 outter. At \(33 \mathrm{l} / 3 \mathrm{rpm}\), where there is a greater loss of high frequencies, the equalizer can be used to advantage. For all ordinary reoording set "equalizer frequency" switch at position 6M and "degreo of oqualization" switch at position (4). On playback the equalizer should be disconneoted from the oircuit. This is done by turning oither selector switch to the zero position. The method of operation of the EUTE and the location of the different recoptacles, etc. are identical with that of the EU7 amplifior.


Fig. 9


The layout at the left is that of the Type EU-7E. The layout of the Type EU-7 is similar with the following exceptions:
Note 1. Type 76 tubes used instead of 6C5G.
Note 2. These controls not used on Type EU-7
Note 3. 200 ohms in Type EU-7.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{PRESTO RECORDING CORA 139-W IGTH ST NEW YORK} \\
\hline \multicolumn{3}{|l|}{FRONT PANEL DESIGNATION RECORDING AMPLIFIER TYPE EU-7E} \\
\hline SGF & 6-3-37 & B-127 \\
\hline \multicolumn{3}{|l|}{PRESTO RECORDING CORP 139 W IUTN ST NEW YORK} \\
\hline \multicolumn{3}{|l|}{FRONT PANEL DESICNATION RECORO'VG AMPLIFIER TYPE EU-7} \\
\hline SGF & -2.37 & B-120 \\
\hline
\end{tabular}

F1g. 10

Fig. 16

F1g. 15

\title{
PRESTO RECORDING CORP.
}

\section*{Jorky Intermittent Recording}

This is usually due to two reasons:-

Loose cutting needle or collapsed armeture in the cutting head. Tightenirg the noedle screw (55) Fig. 13, will take caro of the first condition. If the armature is collapsed it will be leaning either to the right or to the left as shown in Fig. 10A. The dotted line shows the armature in collepsec position. This condition can be quickly ascertainod by removing the needle screw (55) and cover serew (56) The cover can then be removed and the outting hoad inspected.

Two types of outting heads are used with this recorder, one is kown as the "single action hoad" while the other is lnown as the "double aotion hoad". The former is identified by its gold colored cover and its single coil, wile the latter has a dull ohrome cover and two coils and is known as tho "Presto type BA-1 outtor." Both heads operate on the - lectro-magnotio principle and are unaffected by melsture or high tomperature. However, if the armature of the single action collapses, it is a simple mattor to adjust it by following the procedure outlined below:
Remove warning label and magnet-holding strap. Now put a fairly stout ste日l keeper (66) across the magnet (65) as shown in Fig il. The magnet may now be removed from


FIG. 10 a the cutting head, taking oare that the keoper remains across the magnet. This is important in the preservation of the magnot strength.


Fig. 11


Slightly loosen the tro damper screws (69). Holding the damper housing (68) and with a touch of tho sor owdriver, shift the housing (68) slightly to the left or right, as may be noeded, then tighten the two damper sorews (69).

Jow replace the magnet (65) and magnet holding strap in their original positions, taking care that the magnet poles are firmly in contact with the pole shoes. After all parts are beck in their original positions, the keeper (66) may be removed and the cutter is ready for use as beforo.


PRESTO RECORDING CORP.


Fig. 17


Fig. 18

The

\[
\begin{array}{lll}
\mathrm{V}-8 & 6 \mathrm{C} 6 & \text { lst stage } \\
\mathrm{V}-\mathrm{E} & 6 \mathrm{C} 6 & \text { 2nd Etage }
\end{array}
\] INPTIT THPEANCE 5,300 and 5 M ohme. for EU7 amplifier and 500 ohms if supplied for EUTE amplifior
FILAMENT VOLTAGE 6.3 volts at 0.6 amps. PLATE VOLTAGE 250 volts . 005 anps.





PRESTO RECORDING CORP.
MODELS EU7, EU7E, 85, 85E
 sdo 000'1 te peol uyo 000 osz

\section*{GENERAL DESCRIPTION}


 set mounting for the pickup head gives an
angle between the needle and record grooves.
The motor is a manual starting, synchronous type,


 responding number of poles. Two field colis installed on
the stator furnish the energizing magnetic flux. The
 isolated from the turntable, motor mounting,
by adequate fexible couplings and supports.

\section*{CONNECTING RECORD PLAYER TO}




DO NOT CONNECT THE RECORD PLAYER INTO
PLATE OR CATHODE CIRCUIT It must










Radio-Phono Switch supplied with Record Player


SWITCH IN PHONO POSITION


SWITCH IN RADIO POSITION

Diagrams showing Switch in Radio and Phono positions

\section*{PHONOGRAPH AND MOTOR SERVICE DATA}

The synchronous motor used in this instrument is designed to be simple and foolproof. Among its many features are constancy of speed, low power consumption, single moving part, ease of starting, rubber damper, ease of repair and long life. The parts that may require attention are plainly shown in the figures. The motor is started by turning "on" the power switch and giving the turntable a clockwise spin with the hand. Smooth starting and running will be insured by keeping the bearings well oiled and cleaned.

The rotor and turntable assembly rests on the ball bearing at the bottom of the vertical bearing, and may be removed by lifting out. Do not turn player upside down without holding turntable.

For rotor adjustment use three 16 -mil shims for motors mounted in a solid base or for motors of the " T " hanger type use three 13 -mil shims, spaced equally around the gap between rotor and stator. When the rotor is suitably adjusted securely tighten the three screws which hold the rotor to the turntable. The centering operation is very similar to that done with a dynamic speaker.

If the top of rotor lamination assembly is not flush with the top of stator laminations, additional steel washers should be inserted beneath the stator until the two are aligned.

A small amount of hum when starting, decreasing to a negligible amount while running, is normal. If excessive vibration occurs either at starting or running it may be due to one of the following.
1. Insufficient lubrication, or any failure that will cause binding of bearings.
2. Leather washer not oiled. Check to be sure that leather and steel washers are arranged in proper sequence, as indicated in the drawing.
3. Motor not properly fastened in the cabinet. Check for loose mounting bolts.
4. Burrs on poles of rotor and stator.
5. Loose laminations of stator.
6. Slight eccentricity of rotor or spindle.
7. Improper horizontal alignment of rotor and gtator. Correct horizontal alignment is as shown in the figure. The position of the stator is raised or lowered by adding or removing washers below the leather washer.
The damper spring must fit without binding or chattering, in the slot in the stator. The stator must be free to defect and be flexible in either direction between the limits of the damper spring. Any binding in the washers or stator bearing which prevents the movement of the stator may cause speed variations in the motor. The damper spring must exert equal force in restoring the stator to its mid-position when the stator is deflected manually in either direction.

The following lead dress is important:
I. The power cord, stator leads and pickup cable should be dressed away from and not under the motor frame. Hum may be accentuated or rattles occur if this is not followed.
2. A periodic click will be heard when the power cord or stator lead rubs against the rotor. The leads should be dressed into the cabinet away from the rotor.
On high line voltages these players have considerable reserve torque. Any hum accentuated by such a condition may be further reduced at the expense of this reserve by inserting a 300 to 500 ohm 10 watt resistor in series with the line and motor winding.
The turntable is secured to the rotor drive table by means of a retaining ring and washer. In order for the turntable to be free of wobble, the rubber cushions between the drive table and the turntable must be secure in their positions. Slight wobble of the turntable can be eliminated by placing shims on the turntable side of these cushions, using that cushion where the table runs low.


Motor using Solid Base with Bolts for Mounting


Motor using "T" Shaped Rubber Hanger Mounting


\section*{RCA Victrola Motor Data}


\section*{MOTORS}
1. Q. How many different types of motors are used in the 1940 and 1941 lines of RCA record changer and home recorder mechanisms? What is the power rating of each? How does each operate?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
A. \\
Mechanism
\end{tabular} & Used in Models & \[
\begin{gathered}
\text { Motor } \\
\text { No. }
\end{gathered}
\] & Principle of Qperation & \[
\begin{gathered}
\text { Motor } \\
\text { RPM } \\
\hline
\end{gathered}
\] & * Rating \\
\hline RP-139A & \[
\begin{aligned}
& U-21, U-40, \\
& \text { etc. }
\end{aligned}
\] & 32871 & Shaded poleinduction & 77-81 & \(60 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 21\) watts \\
\hline RP -139A & & 32872 & Shaded poleinduction & 77-81 & \(50 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 21\) watts \\
\hline RP -139A & & 32873 & Shaded poleinduction & 77-81 & \(25 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 22\) watts \\
\hline RP-145 & \[
\begin{gathered}
\text { U-42 ( } 60 \\
\text { cycle) } \\
\text { U-44 (60 } \\
\text { cycle) }
\end{gathered}
\] & 34364 & CapacttorInduction & \[
\begin{aligned}
& 3200- \\
& 3280
\end{aligned}
\] & \(60 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 14.5\) watts \\
\hline RP -145 & & 36114 & Capacitorinduction & \[
\begin{aligned}
& 2480- \\
& 2560
\end{aligned}
\] & \(50 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 14.5\) watts \\
\hline RP -152 & \[
\begin{aligned}
& v-170, \\
& v-205, \\
& \text { etc. }
\end{aligned}
\] & 36254 & Capacitorsynchronous & 3600 & \(60 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 14\) watts \\
\hline RP -152 & & 36725 & Cepacitorsynchronous & 3000 & \(50 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 14\) watts \\
\hline RP - 152 & & 36726 & Capacitor synchronous & 1500 & \(25 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 14\) watts \\
\hline RP -153 & \[
\begin{array}{r}
\mathrm{V}-301 \\
\mathrm{~V}-302 \\
\mathrm{etc}
\end{array}
\] & 37295 & Shaded pole induction & 78-80 & \(60 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 24\) watts \\
\hline RP - 153 & & 37296 & Shaded poleinduction & \(78-80\) & \(50 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 25\) watts \\
\hline RP -155 & \[
\begin{aligned}
& \text { VHR -202, } \\
& \text { VHR }-207, \\
& \text { VHR -407 }
\end{aligned}
\] & 36820 & Shaded poleinduction & \[
\begin{aligned}
& 1600- \\
& 1640
\end{aligned}
\] & \(60 \mathrm{C}, 105 / 120 \mathrm{v}, \mathrm{AC}, 36\) watts \\
\hline \(\begin{aligned} & \text { RP }-155 \\ & \\ & * \text { All }\end{aligned}\) & Power ratin & \begin{tabular}{l}
37941 \\
are at \\
\hline
\end{tabular} & \begin{tabular}{l}
Shaced poleinduction \\
the maximum
\end{tabular} & \(1240-\)
1280
120 vo & \(50 \mathrm{C}, 105 / 120 \mathrm{~V}, \mathrm{AC}, 40\) watts ts. \\
\hline
\end{tabular}
2. Q. How does the 1.1 mfd . capacitor used with the capacitor synchronous type motor (RP-152) function?
A.


Flg. 1 - Mutor Schematic


FIg, 2 - Phase relationship

The capacitor is inserted in series with one of the pairs of windings, as shown in Figure 1 . This serves to split the phase, causing the voltage, \(V_{2}\), across one pair of windings to lead the voltage, \(V_{1}\), across the other pair by approximately 90 degrees. The result is good staring torque, and continuous running torque.

RCA MFG. CO., INC.

If this capacitor is open, the motor will not self-start, and will stall if started by external means. A too-small capacitor results in poor starting torque, while a too-large capacitor will cause poor running torque.
3. Q. It has been noticed that some turntables do not run at exactly 78.26 rpm . What can be done in the field to regulate this speed more closely?
A. This does not concerm the synchronous type motor used in the RP-152 mechanism which muns at constant speed and deviates from 78.26 rpm only in proportion to tolerance or drive ratio. With motors of the induction type, line voltage and load affect the speed. Factory specification tests limit speed variation between

> a minimum of 77 rpm (turntable fully loaded, pickup at atart of \(12^{\prime \prime}\) record)
and a maximum of 81 rpm (one \(10^{\prime \prime}\) record on turntable pickup on the last music groove)

If speed is too high due to a high line voltage, a dropping resietor of proper resistance and wattage is a practical solution. If speed is too low due to a low line voltage, a step up transformer or "Variac" will be found suitable. Low speed at normal line voltage requires an inspection of the mechanism to see that lubrication is adequate and that there are no binds in drive gears, turntable bearings, etc. to cause excessive loading.
4. Q. Where and what kind of lubricator is required on current phono motors?
A. RP-139A - After each 1000 hours of operation, a few drops of light machine oil (SAE 10 or lower) should be applied to the motor oil-hole adjacent to the spindle bearing. The oil-hole has a screw plug.

RP-145 (Stock No. 34364) and RP-152 (Motors No. 91655-1, 2, and 3). - These motors generally do not require lubrication in the field. Should it be found necessary, the plastic end cover should be removed and the rotor taken out. Care must be exercised not to disturb the center aligned stator laminations. A few drops of light machine oll (SAE 10 or lower) should be injected into the spindle receptacle.

RP-152 (Motor No. 91706-1) - After each 1000 hours of operation, the felt washers, on each end of the spindle, should be thoroughly saturated with a light machine oil (SAE 10 or lighter).

RP-153 - If the motor requires oiling, this may conveniently be done by means of two oll holes, one in the black collar surrounding the drive spindle bearing and another at the opposite end of the motor. A light machine o1l (SAE 10 or lower) should be used.

RP-155 - After each 1000 hours of operation, if the motor requires oiling, it should be removed from the motorboard. A light machine oil (SAE 10 or lighter) should be used to saturate the felt washer adjacent to the bottom bearing (nearest lead damping weight). The spout of the ofl can may be inserted in one of the holes on the top side, and a few drops injected on the top bearing.

RCA MFG. CO., INC.
QUESTIONS AND ANSWERS
RECORD CHANGER MECHAFISMS
TRIPPING - (Failure to Trip - Tripping ahead of time)
1. Q The friction clutch adjustment ("B" - in RCA-Victrola Service Notes) regulates tripping of the record-changing cycle when the pickup swings in the eccentric groove. Is friction clutch maladjustment always responsible for failure to trip and for premature tripping?

A Not always, although such conditions are often due to respectively too little and too great clutch friction, or to burrs and foreign material on the friction surfaces. Included among causes other than the friction clutch are the following:

Other Causes of Failure to Trip
(a) Trip lever friction finger (7) on wrong side of stop stud.
(b) Trip pawl (22) not free to move on shaft due to
(1) Bind between bushing and stud
(2) Bind between trip pawl and "drag" spring
(c) Too much tension in trip pawl "drag" spring.

FOR ILLUSTRATIONS USED IN
TEXT SEE RCA PAGE 430

Other Causes of Trippine Ahead of Time
(a) Trip pawl (22) touches latch rivet on notorboard side of gear (42).
(b) Trip lever friction finger (7) hitting body of trip pawl (22) instead of trip pawl stop pin.
(c) Burr on trip pawl (22) or gear latch (42)
*(d) Trip regulator lever (21) out of engage with the trip lever stud (5)
* (e) Stud on friction finger (7) getting over top of regulator lever (21)
(f) Trip detaining lever (19) on wrong side of trip pawl pin (causes tripping on manual position)
(g) Insufficient tension in trip pawl "drag" spring.
*This does not apply to changers without a trip regulator lever (21).
2. Q Should the friction clutch be oiled or greased?

A NO. Any oil or grease present should be removed with quick-drying naptha and a clean cloth to prevent erratic tripping.
3. Q What is the proper method of making the friction clutch adjustment?

A (I) Loosen adjusting screw ("B") (by turning in a counterclockwise direction) sufficiently so that tripping does not take place at the end of a record.

RCA MFG. CO., INC.
(2) Play a lo-inch record. While pickup is traveling over the music grooves, tighten screw "B" just to the point where travel of the pickup towards the center of the record is seen to cause a uniform travel of the trip lever friction finger (7) towards the trip pawl.
(3) Tighten screw "B" an additional half turn.
(4) Check tripping at the end of a record.
4. Q A rough latch rivet (on the motorboard side of the drive gear, 42, ) may be causing tripping ahead of time. How may it be repaired?

A Using a fine file smooth down any rough rivet edges. It will be found more convenient to remove the gear from the motorboard. A warped gear will accentuate this condition. To provide greater clearance between the latch rivet and the trip pawl. the brass washer on the gear stud may be transferred to the motorboard side of the gear.
5. Q How may the trip pawl (22) drag-spring tension be ad justedi

A Tripping difficulty may be the result of burrs or rough spots on the spring surface, or due to improper spring tension. The tension should be such that the trip pawl will readily move with applied force, but will not "coast." If the spring is suspected, remove the trip pawl assembly, inspect the spring for irregularities, and bend smoothly in the proper direction with a pair of long-nose pliers to increase or decrease tension, making sure that no irregularities or rough spots are introduced.

TONE ARM LIFT
1. Q What can be done to prevent binding of the tone arm in lateral motion
(a) during record playingi
(b) during record changing?

A (a) If the pickup needle repeats grooves, this may be a sign of tone arm binding due to a friction clutch adjustment which is too tight. The remedy is to loosen and readjust as outlined under "Tripping - \#2".
(b) In case the tone arm hesitates, binds or locks while at its outermost position (away from the turntable) during the change cycle, the probable cause is binding of the friction lever pin (5) by a burr or constriction in the locating lever pawl slot.

Should this be the case, smooth down the slot surface with a fine file, and apply a light machine oil such as 3 in 1 . For this work, the locating lever (14) maybe removed from the motorboard after first disengaging the lever spring (35) from its motorboard stud, and removing the "C" washer (see sketch). Also see that the friction lever pin is not riding over the corner marked " X " in the sketch.

\footnotetext{
A Due to improper record separation
}
1. Q What are the causes of improper record separation or "jamming" of the separator knives against the record edges?


A Although improperly adjusted knives, will of course cause jamming, this trouble is generally due to defective records. The defects are of three types:
(a) Non-uniform thickness. Records which are either of greater or smaller thickness than standard records may easily cause trouble. If a 10 -inch record, for example, is appreciably greater in thickness than the nominal .058 inches, there is a good possibility that the knives will jam against its edge. For a 10-inch record of appreciably less than .058 inches, there is a good possibility of janming against the edge of the record immediately above it. Abnormally thin or thick records should not be used on automatic operations.
(b) Rough edges. Record edges should be smooth and semicircular in shape, such as (a) in the figure below. A record with edge shape as in (b) may cause trouble especially if it is warped or thicker than normal, or if the record below it on the stack is thinner than normal, or if the knife separation adjustment is slightly incorrect. Records with rough edges should be smoothed down with sandpaper.

(c) Warpage. Warped records, besides giving "wowy" reproduction, cause the same effect as records of non-uniform thickness, and non-uniform edges. Such records should not be used.
\(B\) Due to locking of trip pawl stop pin
2. Q Are there other causes of "jamming"?

RCA MFG. CO., INC.
A Another possible cause is locking of the trip pawl stop pin ("K" in Service Notes) against the main lever short arm causing loosening of main lever (15) and trip pawl (22) studs and breakage of the thick trip pawl stop pin "K". In all such cases, the pawl has not been cleared or kept out of the way for one or more of the following reasons:
(a) The long main lever arm slides over the thin pawl pin instead of pushing against it during first half of cycle. CHECK FOR BENT MAIN LEVER ARM.
(b) After being cleared out of the way, the trip pawl bounces back due to vibration (dancing near the mechanism, etc). CHECK TRIP PANL PHOSPHOR-BRONZE SPRING FOR SUFFICIENT "DRAG" OR PRESSURE AGAINST PAIVL.
(c) The index lever is put into REJECT position while the mechanism is still in cycle. CAUTION CUSTOMER AGAINST THIS.

\section*{LANDING}
1. Q How may 10 -inch landing adjustment be made while the changer is in the cabinet?

A Follow the adjustment procedure outlined in the Service Notes up to the point where the tone arm set screws are about to be tightened. Tighten the blunt-nose screw to the point where it just grips the pickup arm shaft. Run the mechanism through cycle as a check, stopping just before the needle lands. Then if landing is obviously incorrect the pickup may be "forced" by hand outwards or inwards to the correct point. Run through another cycle as a check; after the correct landing has been obtained, tighten both adjustment screws.
2. Q How may the cone-pointed screw on 10 -inch landing adjustment be identified from the blunt-nose screw without removing either?

A In sketch "D",
the screw at the right is the cone-pointed screw - this is nearest the right hand side of the mechanism.
3. Q Once the cone-pointed landing adjustment screw has been tightened, it is difficult to obtain adjacent adjustments because the screw point tends to settle into its original groove. How may this be overcome?

A Move the set-screw collar either up or down the pickup arm shaft a trifle to permit a new position for the cone point. Be sure that a slight amount of play ( \(1 / 32\)-inch) is left between the pickup arm bearing and the set-screw collar.
4. Q What is the cause of a pickup suddenly "flopping" heavily on the record during landing?

A (a) Improper height adjustment (see adjustment "C"
(b) This may be due to the pickup lift cable being pinched or bound during the part of the cycle that the pickup should be descending

RCA MFG. CO., INC.
gradually. The sudden release allows the pickup to fall before the slack in the cable is taken up.
5. Q How may erratic landing be overcome?

A This trouble, in which the pickup lands near the correct point but varies on successive trials, maybe due to loose staking betwe en the set-screw collar and the trip lever. The remedy is to clamp firmly in a vise, and stake the set-screw collar sharply over the trip lever.
6. Q What causes the tone arm to land near the needle box, with the motor still running?

FOR ILLUSTRATIONS USED IN
A This may be happening because TEXT SEE RCA PAGE 430
(a) the locating lever is not getting through the record discriminating lever latch to get to the step "T" (see Service Notes No. 40, page 13, sketch "D"); or
(b) the locating lever proper hits the discriminating lever stop before the pin has had the opportunity to reach step "T".
7. Q On l2-inch landing adjustment (sketch "E", why must the eccentric stud be kept below the center line?

A To prevent obtaining a false landing adjustment. Usually, two positions of the eccentric one above and one below the center line will determine the same landing point on a l2-inch record; however, only the position below the center line will be the true one. A setting above the center line will interfere with the already set 10 -inch adjustment; this will cause incorrect landing on l0"-records
TRACKING INTO FIRST PLAY-GROOVE
1. Q Records manufactured since 1937 contain a starting groove which serves to "track" the needle from its landing point into the first play-groove. Will RCA changers "track" on older records without starting grooves?
A Yes. Should it be found that an RCA Victor changer does not track, proceed as follows:
1. See that the instrument is level (use a machinist's spirit level); a slope downard from left to right may be the cause raise the right-hand side of cabinet by placing thin spacers under the legs.
2. Look for the following:
(a) bind in the trip lever (20) stud.
(b) bind in the trip regulator lever (21) slot or between trip finger (7) pin and trip regulator lever (21) corner
(c) a very tight friction clutch (5) (see question 2 under Tripping)
(d) cable twisted at bottom of pickup arm pivot
(e) pickup arm starting spring (26) binding on bracket
(f) main lever (15) does not release clutch lever (5) from locating lever pawl (28) properly.
3. Increase tension of pickup arm starting spring (26) by cutting off \(1 / 2\) turn.
2. Q What is the cure for a needle sliding over several play-grooves after landing?

A 1. The needle may be badly worn - or broken. Try a new one.
2. See that the instrument is level (use a machinist's spirit level), a slope downward from right to left may be the cause raise the left-hand side of the cabinet by placing thin spacers under the legs.
3. Ease up a trifle on the pickup-arm starting spring (26) tension.

\section*{STALLING}
1. Q What should be done to prevent stalling of the RP-152 mechanism?

A Stalling going into cycle
1. Increase main lever spring tension by inserting an additional metal washer between the spring and its guide (11).
2. Check for oil on the drive disc rubber tire (under the turntable). Any oil should be removed by means of a quick-drying naptha solution and a clean cloth.
Stalling coming out of cycle (pickup at farthest distance from turntable)
1. Decrease main lever spring tension by removing any metal washers between the spring and its guide (11).

\section*{TURNTABLES AND TURNTABLE DRIVES}
1. Q What causes turntable spindle bearings to bind?

A Binding may take place due to
(1) lack of lubrication. Houghton Stayput \#240 oil may be used at this point.
(2) a bent spindle. The spindle tip should not be more than \(1 / 32\) inch from the vertical.
2. Q Must the turntable be removed in order to oil the turntable spindle bearing on the RP-152 mechanism? How may this be done?

A It is necessary to remove the turntable; however, this is relatively easy. The turntable spindle is fastened by a screw to the turntable shaft drive gear below the motorboard. To release the turntable it is necessary only to remove this screw.
3. Q How may the turntable on VHR models be removed?

A Pull the turntable upwards with the fingers. At the same time hit the spindle tip smartly with a light hammer.

RCA MFG. CO., INC.
QUESTIONS AND ANSWERS
4. Q Of what material is turntable spindle bearing?

A Brass
5. Q Can turntable flock be conveniently repaired or replaced?

A Ýes - consult your distributor.
6. Q May rubber tires for drive discs be ordered separately?

A Yes. This is listed as follows:

Stock No. 37873 Rubber Drive Tire for RP-152 (V-200, V-205, etc) MISCELLANEOUS
1. Q How may the tone arm be removed for pickup replacement?

A To remove tone arm
Remove each of the two pins with the use of a pair of long-nose pliers, (see sketch below). A slight pressure on the handle is sufficient to drive out the pin. The pickup will now be open to view.

To replace tone arm


Using a hard smooth surface as a backing to take up shock, hammer in each pin.
2. Q What lubrication is necessary on RCA Victor record changer mechanisms?

A Besides motor bearings (see section on "Motors") the only other part on RCA-Victor mechanisms that may require occasional lubrication is the turntable spindle bearing. Houghton's Stayput \#240 is recommended. Oil or grease on the friction clutch (5), and on the drive disc rubber tire will cause erratic operation. Remove with a quick-drying naptha and a clean cloth.
3. Q What is the cause of stioking record separator shafts?

A Lools for
(1) bind between shaft and gear (10) or in gear slot.
(2) a binding rack at its main lever stud (40) (41) (15) keeping pressure on the rack gears.
(3) binds in racks and rack slots.

The above may also be the cause of erratic shelf action.
4. Q Why does RCA continue to hold to a fairly complex mechanism in view of several "simpler" mechanisms now on the market?

\section*{RCA MFG. CO., INC.}

A RCA changers operate on the eccentric groove principle. This means that RCA mechanisms will trip properly on all records having such a groove regardless of its position on the record. In other words, the eccentric groove need not be at a fixed distance from the record's center. This flexibility is important when we consider that the groove was not standardized by record manufacturers at a fixed distance from the record center until 1933. Thus, on records made from recordings cut previous to 1933 the eccentric groove was cut in at the end of the selection, this position varying considerably from record to record. Some of these older recordings have been so popular that records continue to be made from them. It would be easier for RCA to design a simpler mechanism which would trip only when the pickup had reached a definite point or "common diameter" on the record. Such a mechanism, however, would be useless to the customer whose record library includes a number of the "non-standard" records. The "simpler" mechanisms now on the market will invariably be found to operate on the common diameter principle. Their operation is limited to standard records.
5. Q What is the time duration of a record-changing cycle?

A Six revolutions, or approximately 5 seconds.
6. Q Does RCA recommend playing \(10^{\prime \prime}\) and \(12^{\prime \prime}\) records in mixed sequence?

A NO.
7. Q Can speed be adjusted on friction drive instruments?

A (a) Synchronous Motor - NO
(b) Induction Motor - to lower - insert series rheostat
- to raise - use step-up transformer
8. Q What are the various possible causes for failure of crystal pickups?

A (a) Mechanical breakage (due to dropping of tone arm on turntable, etc.)
(b) Dehydration due to excessive heat or dryness.
(c) Loss of output due to moisture causing leakage.
(d) Connection of record player output leads to power line or plate voltage.
1. Q. Why doesn't RCA provide knob control for cutter pressure adjustment?
A. Once pressure has been correctly adjusted for one type of disk, no readjustment is necessary for that type. Knob control might termpt the layman to tamper unnecessarily with the adjustment.
2. Q. Does cutter pressure have to be readjusted when changing from one type of disk to another?
A. Due to variations in material composition and hardness among different types of disks, the same cutting pressure adjustment will not give equal depth of out on all types. Thus, it may be necessary to change adjustment when recording on a different type of disk.
3. Q. What is the cause of the high frequency whistle or squeak which sometimes appears during cutting of "Phonograms"? How can it be prevented?
A. This sound originates ir chatter of the stylus as it is cutting the "Phonogram". This usually occurs when the stylus is blunt, loose in its holder, or cutting at a slightly incorrect angle. The remedy consists of (1) Tightly inserting a new, perfect stylus or (2) Slightly repositioning the stylus in its holder.
4. Q. Can the cutter crystal ke overloaded to the point of breakage?
A. No. The crystal is sufficiently strong to withstand much higher voltages than the maximum obtainable ( 608 V .) on modulation peaks.
5. Q. How does the crystal cutter compensation network function?
A. (a) It is essentially a network whose tone response combined with that of the cutter results in a relatively flat overall tone response curve. (b) Because the cutter response peaks sharply at 6000 cycles the compensation network is designed to begin cutting off at about 4500 cycles.
6. 6. How much signal voltage is applied to the cutter head?
A. At the maximum undistorted power output of 12 vatts (VAR-207, 407) 430 volts r.m.s. or 608 volts peak is being applied to the cutter head. On model VHR-202, the corresponding figures are 350 volts r.m.s. or 495 volts peak.
7. (a) Q. What is the function of the speaker matching load on VHR models?
A. When cutting disks with loudspeaker turned off, the cutter is correctiy matched to the output tubes. If, then, the voice coil is connected directly, mismatching results. To restore balance, a matching load consisting of R39 and L15 (VHR-207, 407), is used to offset the unbalance due to the speaker.
(b) Q. Is there another reason for the use of the resistor (R39) and the AF choke (LI5), in the voice coil circuit of Model VHR-207, 407 ?
A. In the recording of a radio program on Models VFR-207, 407, aural con:pensation is kept out of the cutter circuit, by inserting 100,000 ohms, R-32, in series with the aural compensation network. Because as much as 5 watts audio power is needed for cutting whereas the listening level may be only 100 milliwatts, a dropping resistor, R39, is used in series with the speaker voice coil. To restore bass response, R39, is shunted by an A.F. choke, Li5.
8.(a) Q. Why is a 12 V . tube ( 12 K 7 GT ) used as a microphone amplifier on VFR-207, 4079
(b) Thy does the l2KrGT use d.c. on filaments while rest of tubes use a.c.?
(c) Thy does VHR-202 use 6Q7 for voice amplification while VFR-207, 4C7 use \(12 K \mathrm{FGT}\) as microphone amplifier?
(a)A. The l2K7GT is the only multim (remote cutmoff) tube available at present which has a shielded base. Due to the low input level and the high arplification needed in this stage, this freedom from hum is an important consideration,
(b) D.C. on the filaments is a further precaution against hum. Since the l2K7GT draws only \(150 \mathrm{~m} . a\). filament current, the set power supply is used without fear of overloading.

QUESTIONS AND ANSWERS

\section*{RCA MFG. CO., INC.}
(c) The VHR-207, 407 contractor oircuit requires a remote cut-off tube such as the 12 K 7 GT ; the VHR-202 does not contain this circuit and thus can use a tube such as the 6Q7.
9. Q. Does the height of the recording arm (within workable limits) above the turntable affect recording?
A. Provided the recording arm is not allowed to interfere with the cutting pressure, the height of the recording arm above the turntable does not appreciably affect recording.
10. Q. What is time - constant of contractor blasing circuit?
A. The time constant is approximately one second.
11. Q. Why is the follower-arm guide made flexible?
A. The vertical flexibility of the guide is an important design contribution to foolproof operation in unskilled hands.
12. ?. What is the cause of rumble? How may it be prevented?
A. Rumble is a low frequency vibration which appears sometimes during reproduction of home recordings. It has its origin in the motor whose vibration is transmitted to the turntable and to the cutter. During cutting this vibration may be superimposed on the selection or voice frequencies being recorded.

Due to many preventives incorporated in the design of these instruments, rumble will not be recorded if the following precautions are observed:

Leveling - See that the instrument is perfectly level.
Freeness - Be certain that the motorboard and mechanism is "floating" free from cabinet. All four mounting springs should be at approximately equal tension.

Follower Arm Damping Weight - See that the lead weight is in place attached to the follower arm underneath the motorboard.

Stylus - Make sure that a perfect stylus is tightly inserted in the cutter head. Because both stylus and retaining screw are of hard steel there is a tendency towards loosening during cutting. Tightness should be checked before each cut.

Input Level - Set for sufficient input level so that the "Nagic Eye" just closes on modulation peaks.

Tone Control Settings - During recording, the power-bass control should be set for maximum lows, just beyond the click of power switch. The treble tone control setting will depend on the degree of potential rumble present. For extreme cases, it should be set for minimum highs during recording only, in order that the low frequencies in the selection or voice may have a full chance to mask any possible rumble.

Depth of Cut - During recording, the shavings should be directed towards the spindle and prevented from obstructing the cutter path. The thickness of these shavings should be about that of human hair, or approximately . 003 inches. An

\section*{RCA MFG. CO., INC.}
additional check on depth of cut is to inspect the recording under a magnifying glass. The groove width should approach but not exceed the distance between grooves. Depth of cut may be varied by means of the cutting-pressure adjusting screw at the top of cutter arm.

Turntable Drive - If rumble persists, inspect the idler wheel (between motor spindle and turntable) for possible runout, flat spots, and scraping against bottom of turntable. Inspect the motor spindle sleeve or pulley (Stock No. 37037) which drives the idler wheel for possible eccentricity. Also inspect the turntable surface, which contacts the idler wheel, for rough spots. These may be removed by rubbing lightly with an abrasive such as sandpaper.

Recording Discs - Due to variations in material composition and hardness among different types of discs, the same cutting-pressure adjustment will not give an equal depth of cut on all types. Thus, it may be necessary to change the adjustment previously set for one type of disc, when recording on a different type.

\section*{NEEDLES}

12 How may the various \(\mathrm{RCA}-V i c t o r\) reproducing needles be classified?

A
Needle
Green shank chromium

Red Seal

Steel

Tungstone

Long-Life

Number of Playings
up to 50 10" sides
up to 10 10" sides

1
up to \(2510^{\prime \prime}\) sides
" " 100010 " sides

Special Characteristics and Uses
high fidelity; excellent for use in automatic changers.
low "needle chatter" and low scratch content.
high fidelity; availability in "soft," "full," and "extra loud" provides means of volume control in manual-acoustical phonographs. Low scratch content.
multi-playing; availability in "soft," "full," and "extra loud" provides means of volume control in manual-acoustical phonographs.
long life; high-fidelity; excellent for use in automatic changers.

2 Q What causes "needle chatter"?
A "Needle Chatter" is the name given to the sound reaching the ears by direct radiation from the pickup. As the needle tracks in the record play-groove, it is modulated and forced to vibrate. On passages of high intensity, this vibration is sufficiently strong to be audible.

\section*{RCA MFG. CO., INC.}

3 Q How may "needle chatter" be minimized?
A Many RCA-Victor 1941 models contain the "Tone Guard" which does an excellent joh of acoustically attenuating "needle chatter".

Q Compare frequency response of the sapphire vs RCA Long Life needle vs RCA chromium plated needle.

A Frequency response is a function more of size and shape than of material, so that in the test of identically shaped needles in these three types, little difference could be noted among the respective responses. Both the RCA Long Life needle and the RCA Chromium-Plated needle are designed for high-fidelity reproduction.
5 Q Which RCA-Victor needle is best for use in playback of home recordings?
A Anyone of the following may be used with good results provided it has not been previously used and reinserted in the pickup: Long Life, chromium. Red Seal and steel.

6 Q How does the "cactus" type needle affect frequency response and record wear?

A Frequency response: Lack of rigidity causes loss of the high frequenRecord wear: Although this type needle contributes little actual record wear, small pieces of the fibre ingrain themselves into the record and effectively shorten its life.

7 Q May sapphire stylii be resharpened at the RCA Plant?
A Yes. RCA supplies a resharpening service for MI-4878-A sapphire stylii. Consult your RCA distributor for details.

\section*{RECORDS AND HOME RECORDING DISCS}

1 Q (a) What causes surface noise in records?
(b) How do Victor Red Seal and Black Seal records compare with regard to surface noise?

A (a) Several compounds are used in the manufacture of phonograph records. The most common is that of a cotton binder, a mineral filler, carbon black, and a combination of shellac and other resins. These materials are finely powdered, carefully measured and thoroughly mixed. If grit or other foreign material is present, or if the compound materials are too coarse, objectionable surface noise results during reproduction due to modulation of the needle by these randon particles.
(b) Both Red Seal and Black Seal Victor records compare favorably with the best of competitive records from the standpoint of surface noise. Of the two, Red Seal records have less noise due to finer selected materials, and to more finely ground and more expensive fillers.

\section*{RCA MFG. CO., INC.}

A These preparations have yet to be proved consistently effective; they are at the presont obsolete.

6 Q What is the remedy for rough-edged records?

A
Smooth down with a fine abrasive such as sandpaper. A rough-edged record is often the cause of "jamming" on automatic record changers.

7 Q At times the top record will slide on the others during playing. What causes this?

A This is due to either or both of the top two records being so warped that there is insufficient contact area.

8 Q How can record warpage be avoided?
A (1) By correct storing (see next question).
(2) By removing records from the record changer shelves after playing.
\(9 \quad\) Q How should records be stored?
Home recordings made on Deluxe Recording Discs seem to have less needle scratch (surface noise) than commercial Bluebird and Victor records. To what is this due?

To insure long playing life and to prevent premature groove breakdown by worn needles, commercial records are made of comparatively hard material contairing a small percentage of abrasive. Small irregularities which would be overcone by the pickup inertia in the soft home recording disc sometimes causes an audible noise in the commercial type.

By what process is the recording disc material placed on the metal base?

By a special horizontal spray process. The former dipping system has been superseded because of difficulty in obtaining a uniform coating of material.

What is the average playback life of various recording discs?
25 to 50 playings on the average depending on pickup mass and stiffness and assuming, of course, that good reproducing needles are used. record is often the cause of janning on automatic record changers.

They should be stored on edge (vertically) in an even-temperature, dry space.

\section*{Quick-Reference Chart for Automatic Record Changer Adjustments}
Gencral irregularity of
operation.
\begin{tabular}{c} 
Fails to trip at end of \\
record.
\end{tabular}
\begin{tabular}{c} 
Needle repeats grooves \\
(docs not follow the groove)
\end{tabular}

Change cycle starts before record is finished.

With changer "out-of-cycle," the rolicr on main lever should clear the cam plate by \(1 / 16\)-inch. Bend the rubber bumper stud, if necessary, to obtain this clearance.


Decrease clutch friction by turning clutch screw counter-clockwise.
These troubles may also be caused by a defective record, binding of the pickup-arm bearing, twisted pickup output cable, or rubbing between the friction finger and the index-lever finger.


Pickup arm strikes lower coord in stack.

Pickup needle drags across top record on turntable.

Needle doesn't land at correct point on 10 -inch record.
(The correct landing point is \(4-5 / 8\) inches from the nearest side of the turntable spindle).

Needle doesn't land at correct point on 12 -inch record. (The correct landing point is \(5-5 / 8\) inches from nearest side of spindle).

Rotate the changer "in-cycle" to the point where the pickup arm is raised to its maximum height above turntable plate, and has not started to move outward. Adjust the liftcable screw and locknuts so needle point is 1 inch above top surface of turntable

Place 10 -inch record on turntable, push record-discriminating lever to forward postion, push index lever to "reject" and return it to "10." Rotate mechanism through cycle until needle is just ready to land on record. Hold pin on locating lever against step "T" as shown, loosen the two set screws at pickup arm shaft, and move pickup so needle is about \(1 / 32\)-inch beyond the outer groove of record, See that there is \(1 / 32\)-inch play between the pickup-arm bearing and set-screw collar, then tighten one (the blunt nose) set-screw.

Run mechanism through cycle as a check, and then tighten the cone-pointed set screw.

Adjust for correct 10 -inch landing, as described above, then place 12 -inch record on turntable, push index lever to "reject" and return it to "12." Rotate mechanism through cycle until needle is ready to land on the record. Turn eccentric stud to bring pickup needle about \(1 / 32\) inch beyond the outer groove in record. (Keep eccentric on stud toward rear of motorboard as indicated.)

Record knives strike edgc of records.
(This is generally due to warped records, and records zith rough edges).

Records are not releassd properly, or do not fall flat.
(If record shelves are bent, or not perfectly horizontal, improper operation and jamming of mechanism will resillt).
\begin{tabular}{|c|c|}
\hline Pickup arm suppori bent too low, or too high. & Bend the support (which is associated with the pickup arm bearing, so that with the mechanism out of cycle, the lower front edge of the pickup arm is \(5 / 16-\mathrm{inch}\) above surface of motorboard. \\
\hline Roller on main-lever won't enter cam. & Bend the trip pawl stop pin so that the roller on end of main lever, when entering the cam, will definitely clear the cam outer guide plate as well as the nose of the cam plate. (Adjustment "K.") \\
\hline Necdle lands in 10 -inch position on 12 -inch record, or misses record when playing both iypes mixcd. & Increase pressure of flat spring " M " at bottom of record dis. criminating lever. \\
\hline Needle fails to enter starting groove. & Raise the right-hand side of cabinet by placing thin spacers under legs. \\
\hline Necdle slides over a few grooers in landing. & Raise the left-hand side of cabinet by placing thin spacers under the legs. \\
\hline
\end{tabular}

It is essential that the spacing between the knife and the record shelf " 27 " be accurately maintained. The spacing for the 10 -inch record is nominally .058 inch, and for the 12 -inch record is .075 inch.
To adjust, rotate the knife to the point of minimum vertical separation from the record shelf and turn screw and locknut "F" to give \(055-061\) inch separation. Screw " \(G\) " must not be de, pressed during this adjustment. After setting screw "F," adjust screw "G" so that when its tip is depressed flush with top of record shelf, the vertical spacing between the knife, in its lowest rotational position, and the shelf, is \(.072-.078\) inch.

Place a 12 -inch record on the turntable, rotate mechanism to point in cycle where the shelves have turned clockwise as far as the mechanism will turn them. Lift record up so it is in contact with both knives and check clearance between record and edges of shelves. It should be \(1 / 16\) inch as shown. If the clearance at either or both shelves is not correct, loosen set screws " H " and shift the shelves to obtain this clearance, with the backlash taken up by pressing the shelves toward the record. Tighten one set screw (the blunt-nose one), run mechanism through cycle several times to check action, then tighten the other (cone-pointed) set screw

Bend the support (which is associated with the pickup arm bearing, pickup arm is \(5 / 16\)-inch above surface of motorboard.

Bend the trip pawl stop pin so that the roller on end of main lever, when entering the cam, will definitely clear the cam outer

Increase pressure of flat spring " \(M\) " at bottom of record dis. criminating lever

Raise the right-hand sidc of cabinet by placing thin spacers under the legs.

\title{
RCA VICTROLA MECHANISM DATA
}

RP-152, RP-153, RP-1 55 :
The following changes have been made in these Record Changers.
(a) Removal of Trip Regulator Lever (Part 21).
(b) Removal of Pin 1 on Trip Lever Friction Finger (Part 7).
(c) Repositioning of Stop Pin 2 from position " \(A\) " to position " \(B\) "
(d) Removal of Pin 3. Since this pin does not interfere with the operat


Trip Regulator Lever (21) is Removed in Some Production.

The Trip Regulator Lever was formerly used to prevent premature tripping due to a too early return of the Trip Lever Friction Finger at the end of each changing cycle. The same result is obtained by removing the Trip Regulator Lever
and repositioning the Trip Finger Stop Pin as and repositioning the
shown in the diagram.
Binding or Hesitation of Tone Arm:
This may be due to the following causes
(1) Small burr on edge "E." Correction: Carefully remove burr with a fine file until edge is entirely smooth.
(2) Binding of Pin 4 between edges " \(E\) ", and "F." Correction: File of edge " \(F\) ", with a fine file to give just enough clearance for smooth operation.
(3) Too far an outward swing of the Pickup Arm. This causes Pin 4 to be caught in the upper curved portion of edge Fick CorrecShaft can be rotated by loosening the nut under the motor board. Rotate sufficiently under the motor board. Rotate sufficiently to prevent Pin \(\begin{aligned} & \text { from riding into curved } \\ & \text { portion mentioned, when Pick-up Arm is in }\end{aligned}\) portion mentioned, when

On models where the Pick-up Arm Shaft is positioned by a locating key, it is neces. sary to bend Srop Guide "S", on Pick-up Arm towards Stop Ear "P" on Pick-up Arm Shaft so that the condition men. tioned in the above paragraph is obtainer.

\section*{RP-152 SERIES}

No. 38304 Spindle Bearing and Washer:
The turntable pindle bearing and washer for the RP. 152 Series automatic record changer mechanism, used in Models VA-15, V-170, V-200, V-201, V-205, \(\nabla \cdot 300\), and \(V \cdot 405\), are now stocked as No. 38304.

\section*{FLOCK FOR RP-152 TURNTABLE}

Dark taupe colored fock is a vailable as Stock No. 37952 ( 3 lb . package) for turntable repair on RP. 152 series record changers used in
Models V.170, V. 200 V. 201 , V. 205 , etc. The Models V.170, V-200, V-201, V-205, etc. The

\section*{MODELS U-9, U-10, U-12}

\section*{Turntable Assembly Stock No. 33899}

The turntable and tire assembly Stock No 33899 is superseded by
Stock No. 37971 -Turntable and spindle, less Stock No. 37872-Tire only
method of applying the flock is described on page 12 of the 1938 Bound Volume.

\section*{"RP" vs. "MODEL" NUMBERS}

RP-139A and RP-145 mechanisms are used in models U.40. U.42, U.43, U-44, and U.45. RP-152 and RP-153 mechanisms are used in the following models:
\begin{tabular}{|c|c|c|c|}
\hline Model No. & Mech. No. & Model No. & Mech. No. \\
\hline VA-15 & RP152 & V-300 & RP-152J \\
\hline V-170 & RP-152 & V-301 & RP-153 \\
\hline V-200 & RP-152A & V-302 & RP-153 \\
\hline V-201 & RP-152A & V-405 & RP-152J \\
\hline V-205 & RP-152B & & \\
\hline
\end{tabular} ing models VHR-202, 207, 307, and 407.

\section*{RP-152D AND RP-153}

\section*{Automatic Switch Adjustment:}

In RP-152D and RP-153, an automatic motor switch is mounted under the motorboard, near the pickup arm shaft.


When the index lever is set at its " 10 -inch" or " 12 -inch" position, a detaining lever holds the switch plunger in and keeps the motor running.

When the index lever is set at its "manual" position, the detaining lever moves aside and the switch plunger is then actuated by a cam on the pickup arm shaft. In "manual', position, when the pickup is on its rest, the switch plunger is out and the motor circuit is open. When the pickup is moved from its rest to the edge of a 12 -inch record, the cam pushes the switch plunger in and the motor starts. When the pickup needle reaches a point 18 inches from the centerline of the turntable spindle, the switch plunger is released by the sharp corner of the cam, thus shutting off the motor.
When the pickup is lifted off the record and moved to its rest, the motor starts momentarily. ADJUSTMENTS :
The slotted switch mounting holes permit positioning of the switch so that the plunger will be pushed in by the cam.
The eccentric stud on the cam should be turned so that the switch plunger is released by the sharp corner of the cam when the pickup needle is 13 inches from the centerline of the turntable spindle.

\section*{REPLACEMENT STUDS}

For Main Lever, Cam-and-Gear, or Trip Pawl :
In automatic record changers of the RP. \(139 A, 145,152,153,155\), and similar types, loosening of the mounting studs on which the main lever, cam-and-gear, or trip pawl are pivoted may be caused by jamming of the main lever against the pawl pin at the end of the change cycle due to one or more of the following reasons:
(a) The long arm of the main lever slides over the thin pawl pin instead of pushing against it during first half of cycle. Check for bent arm on main lever.
(b) After being cleared out of the way, the trip pawl bounces back due to vibration (dancing near mechanism, etc.) Chock the trip-pawl phosphor-bronze spring for suffi(c) The index lever is put into "REIECT" position while the mechanism is still in its change cycle. Caution customer against this.

Loose stids may be quickly and easily re placed by using special replacement studs that are fastened to the motorboard by means of a screw and washer. Three different studs are available:


Stock No.
38321 Main Lever replacement tud, with screw and washer.
38322 Cam-and-Gear replacement stud, with screw and washer.
38328 Trip Pawl replacement stud, with screw and washer

VHR-202, 207, 407 50-Cycle Motor Parts:
\begin{tabular}{|c|c|c|}
\hline Stock No. & Description & List Price \\
\hline 37943 & Bearing-Bottom bearing and bracket (50 cycle) & \$. 50 \\
\hline 37945 & Field-Motor field - 110 volts, 50 cycles & 7.76 \\
\hline 37941 & Motor-105-120 volts, 50 cycles & 14.00 \\
\hline 37944 & Pulley-Motor shaft pulley (50 cycle) & 35 \\
\hline 37942 & Rotor-Motor armature (50 cycle) & 4.25 \\
\hline Parts & originally listed in RP. 155 & vice \\
\hline Notes (V) & HR-202, VHR-207, and VHR & 407) \\
\hline are applic & cable to 110 volts, 60 cycle & notor \\
\hline only, exce & ept Stock No. 37040 Ring, w & ch is \\
\hline used on b & oth 60 and 50 cycle motors. & \\
\hline
\end{tabular}

\section*{V-301, V-302}

Mechanical Motor Noise:
Mechanical motor noise due to armature end play sometimes develops with wear in the above instruments which use type RP-153 record changers. This can be eliminated by tightening the armature thrust bearings. Care should be taken to avoid making them too tight which will cause binding.

\section*{REPLACEMENT OF RUBBER}

\section*{TIRES}

On Turntable Drive Discs:
Stock No. 37872 Rubber Drive Tire For RP-145, U-9, U-10, U-12-List Price, 75 c . Stock No. 37873 Rubber Drive Tire For RP-152 (V200, V205, etc.)-List Price, 75c.
1. Remove old tire by stretching and pulling
over drive disc edge
2. Thoroughly clean drive disc to remove burrs or foreign particles.
3. Place new tire over the irive disc. Avoid any twisting or excessive stretching of the any
4. Roll disc and tire on a flat clean surface while simultaneously applying a slight down. ward pressure on the disc shaft. This will ward pressure on the tire to seat itself pioperly in the "V" shaped groove on the drive disc and take up for any uneven stretching of the rubber tire.
5. Clean rubber tire with cartion tetrochloride (Carbona).

\section*{SUPPLEMENTARY DATA}

\section*{VHR-202, 207, 407}
"Rumble":
Any instrument with the sensitivity and tone response of these home recorders is capable of pricking up the mechanical vibrations of the motor. However, due to many preventives incorporated in the design of these instruments. rumble will not be recorded if the following precautions are observed
LEVELING-See that the instrument is perfectly level.

FREENESS—Be certain that the motor hoard and mechanism is "floating", free from the cabinet. All four mounting springs should be at approximately equal tension.

FOLLOWER ARM DAMPING WEIGHT -See that the lead weight is in place attached to the follower arm underneath the motorboard

STYLUS-Make sure that a perfect stylus is tightly inserted in the cutter-head. Because both stylus and retaining screw are of hard steel there is a tendency towards loosening dur ing cutting. Tightness should be checked before each cut.

INPUT LEVEL-Set for sufficient input level so that the "Magic Eye" just closes on modulation peaks.

TONE CONTROL SETTINGS - During recording, the power-bass control should be set for maximum lows, just beyond the click of power switch. The treble tone control set ting will depend on the degree of potential rumble present. For extreme cases, it should be set for minimum highs during recording only, in order that the low frequencies in the selection or voice may have a full chance to mask any possible rumble.

DEPTH OF CUT-During recording, the shavings should be directed towards the spindle shavings should be directed towards the spindle
and prevented from obstructing the cutter path. and prevented from obstructing the cutter path.
The thickness of these shavings should be about The thickness of these shavings should be about
that of human hair, or approximately .003 that of human hair, or approximately .003
inches. An additional check on depth of cut is inches. An additional check on depth of cut is
to inspect the recording under a magnifying to inspect the recording under a magnifying glass. The groove width should approach but
not exceed the distance between grooves. Depth not exceed the distance between grooves. Depth
of cut nay he varied by means of the cutting. of cut may he varied by means of the cutting-
pressure adjusting screw at the top of cutter press
arm.

TURNTABLE DRIVE-If rumble persists, mspect the idler wheel (between motor spindle and turntable) for possible runout, flat spots and scraping against bottom of turntable.

RECORDING DISCS-Due to variations in material composition and hardness among different lypes of discs, the same cutting pressure adjustment will not give an equal depth of cut on all types. Thus, it may be necessary to change the adjustment previously set for one type of disc, when recoraing on a different type.

\section*{Follower-Arm Weight:}

Two other methods, besides the one shown in the Service Notes, have been used in attaching the lead weight to the recorder follower arm. These are indicated in the following sketches. These are indicated in the following sketches. All three provide similar results, "C"
the method used in latest production.


WEIGHT TOP WEGGT MNERIEATH MEIBT ON SIDE
Thrce Mownting Arrangements of Follower-Arm Weight on Home Recording Models

The weight is packed separately for methods " \(\mathrm{A}^{\text {" }}\) and " B " and must be mounted as shown when the instrument is installed in the consumer's home. Excessive "rumble" occurs when the weight is not in place.

\section*{Pickup Arm Starting Spring:}

The pickup arm starting spring in RP-155 mechanism in the home-recorder models is Stock No. 36278

\section*{Motorboard Mounting Spring:}

Change Stock No. of Mounting Spring from 31470 to 37878 (4 required).

\section*{RCA MFG. CO., INC.}

\section*{RP-145, RP-152 RECORD CHANGER}

\section*{Centering Motor:}

Should centering of the rotor be necessary, it may be accomplished quickly in the follow ing steps:
(a) Remove the two long machine screws, and lift off plastic end cover.
(b) Loosen the two remaining screws suffi ciently to permit adjustment of stator laminations.
(c) Insert a .010.inch speaker shim between the rotor and each of the four stator field poles. Rotor should now be equidistan from each pole, and accurately centered.
(d) Tighten screws and replace plastic cover.

\section*{RP-152 RECORD CHANGER}

\section*{Stalling Going into Cycle:}

The mechanism should be loaded with one record on the turntable. If stalling going into cycle takes place, it is probably due to insuffi cient tension in the main lever spring or booster spring (43). An addjtional metal washer should be inserted between the spring and its guide.

\section*{Stalling Coming Out of Cycle:}

If the mechanism stalls just as it is coming out of cycle, that is, when the pickup is at its farthest distance laterally from the turntable, it is probable that there is too much tension in the hooster spring. Any metal washers in this assembly should be removed.

CAUTION: The mechanism is designed to handle a total of 8-10-inch records or \(7-12\) inch records.

\section*{RP-153 RECORD CHANGER}

\section*{Motor Data :}

Should it be necessary to rehuild or service any of these motors in the field by replacing end heads or using new rotors and shafts, it must be noted that the rebuilt motors should be operated continuously for at least 48 hours hefore installation. The use of bronze bearings, diamond-bored for accuracy, together with the hurnished steel shaft at the rotor provides a very close fit. As a result, the motor must be run in approximately 48 hours, after which the run in approximately 48 hours, after which the
oil has had a chance to fairly cover all contact surfaces of shaft and hearings, and a very smooth-operating long life bearing results.

RP-152, -152A

\section*{Tendency to Stall:}

Some RP. 152 and \(\cdot 152 \mathrm{~A}\) automatic record changer mechanisms in Model VA-15, V-170 V.200, and V-201 use a motor identified by stamping number \(91706-1\). Slow speed and


Motor Stamped No. 91706-1 Used in Some RP-152,-152A Automatic Record Changers.
tendency to stall in this motor may be due to the motor bearings becoming misaligned with respect to the motor spindle.
In most cases, the motor spindle may be freed by tapping the stator laminations while the motor is in operation
For a permanent remedy it is advisable to install an idler wheel asseinbly to reduce side thrust on the motor bearings. The following parts are required

\section*{NEW TYPE AUTOMATIC VICTROLA AND ELECTROLA}

The information contained in this Service Bulletin is intended as a guide in making adjust ments to the following automatic operating units:
\begin{tabular}{ccccc}
\(10-35\) & above serial number & 8126 \\
\(10-69\) & \(\because\) & \(\because\) & \(\because\) & 5001 \\
\(9-54\) & \(\because\) & \(\because\) & \(\because\) & 6401 \\
\(9-56\) & \(\because\) & \("\) & 1701
\end{tabular}

A correct understanding of the operation and a complete familiarity with the mechanical parts are highly desirable to the proper maintenance of the instruments. The instruction books and the following general information and service instructions should be read carefully.

\section*{GENERAL}
1. RECORDS-The instruments will not function as automatics unless Victor eccentric groove records are used. Warped records or those with chipped edges or centers should not be used.
2. LOADING RECORDS-When loading records into the magazine, always make certain that the records are placed centrally and are pushed back until they touch the two record support pins. Records should preferably be placed in the magazine one at a time, and should not be inserted while the changing mechanism is in operation.
3. REMOVING RECORDS-Do not allow more than one complete magazine of records (12) to accumulate in the record discharge compartment at one time. Damage to the records or to the mechanism may result if this point is not carefully observed


Fig. 1-Automatic Mechanism with Motor Board Removed
4. REGULATING SPEED-The speed regulator should never be changed except to regulate the speed of the turntable to 78 revolutions per minute while playing.
5. SOUND BOX AND PICKUP-Do not drop the sound box or the electric pickup forward or backward on its stop. If care is not observed, the vertical traveling height of the needle may be forced out of adjustment, which may, during operation, scratch the record or damage the sound box or pickup. The instruments should not be operated at any time with the sound box or electric pickup turned back to the stop. Fallure to observe this point may result in the stop. Failure to obserstriking the side of the cabinet or the lid support, thus "jamming" the mechanism, or causing the \(12^{\prime \prime}\) eccentric stop to be forced out of its correct adjustment.
6. LUBRICATION-Lubrication is an essential factor in the operation of the automatic instruments, and should be given careful attention. It is suggested that the motor and automatic mechanism be lubricated at least once a month with the proper lubricants. If the instrument is being operated in a public place on the usual average of eight hours a day, this lubrication period should be reduced to at least once a week. The oiling diagrams are shown in Figs. 20, 21 and 22.

\section*{SERVICING}

Before making adjustments to the mechanism, determine first that the trouble is not caused by badly warped records, records with damaged centers, or with chipped edges.


All the major adjustments including lubrication can be made without disturbing the position of the automatic unit in the cabinet. The unit is so mounted on steel runners that it can be moved out from the back should it become necessary to replace any of the parts under the motor board. Certain adjustments can be made by removing the unit only part of the way out of the cabinet.


Fig. 2-Adjusting Sound Box Lift Lever
1. FAILURE OF NEEDLE TO SWING INTO FIRST RECORD GROOVE-If the needle fails to swing into the first record groove after striking the smooth outside rim:
a. Determine if the instrument is level by placing a spirit level on the turntable.
b. If the right side of the cabinet Is low, raise this side If the right side of the cabinet is low, raise this side slighty by placing a thin wooden wedge or oth
c. If the condition is not corrected by the above adjustment:

Loosen the lock nut and adjust the sound box lift lever adjusting screw as shown in Fig. 2 untll there is a clearance of approximately \(\frac{1}{1 \prime}\) between the under side of the taper tube arm casting and ths top of the sound box lift lever as shown. This clearance can be checked by placing a thin plece of cardboard between the two points and obeerving whether or not there is a dragsing on the cardboard when the tone arm is moved toward the center of the record. This clearance is highly important and will affect other conditions of the mechonism if not properly adjusted.
2. EXCESSIVE WEAR ON RECORDS-If excessive wear on the records is noted, the same adjustments as described in subject 1 above should be made. It may be possible that the needle will move into the record groove after striking the smooth outside rim, but will cause excessive wear on the record due to a slight contact between the two points shown in Fig. 2 where the \({ }^{\frac{1}{2}}{ }^{2}{ }^{\prime \prime}\) clearance should exist.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{There are fifteen primary mechanical adjustments to the automatic unit. A correct knowledge of these, their functions, and the method of procedure as outlined.in the following pages should enable a service man to correct practically any of the more common troublea with the mechanism. It is suggested that in all cases a complete check of the adjustments be made in the order listed below.} \\
\hline ADJUSTER & PURPOSE & ILLUSTRATED \\
\hline I: Sound box lift lever adjustIng screw & Adjusting proper height of needle clearance above record & Fig. 2 \\
\hline 2. Sound box crook stop & Adjusting height of needle above record & Fig. 3 \\
\hline 3. Link pin adjuster & Adjusting for proper length of stroke on pusher plate & Fig. 4 \\
\hline 4. Hopper adjusting nuts and acrews & Adjusting height of hopper with respect to lift ring & Fig. 6 \\
\hline 5. Lift ring screws & Adjusting height of lift ring with respect to hopper & Fig. 8 \\
\hline 6. Spiral cam adjusting screws & Adjusting height of knives on record support plns & Fig. 9 \\
\hline 7. Lift ring spring adjusttnd nuts & Adjusting tension of lift ring spring & No. 69, Fig. 11 \\
\hline 8. Hopper arm adjusting screws & Adjusting hopper arms onto front of lift ring & Fis. 10 \\
\hline 9.12' eccentric & Adjusting overall horlzontal position of tone arm & Fig. 13 \\
\hline 10.10' eccentric & Adjusting horizontal position of tone arm for \(10^{\prime \prime}\) record & Fic. 14 \\
\hline 11. Inder trip lever & \begin{tabular}{l}
Adjuating for \(10^{\prime \prime}\) and \\
12' indexing and stop
\end{tabular} & Fld. 15 \\
\hline 12. Inder lever adjusting nuts & Adjusting height of inder lever & No. 36, Fig. 1 \\
\hline 13. Reject rod collar & Adjusting for proper reject action & Fig. 16 \\
\hline 14. Latch trip & Adjusting for proper eject action on eccentric groove & No. 33, Fig. 1 \\
\hline 15. Collara on stop rod & Adjusting for proper stop action & No. 86, Fig. 12 \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

Fig. 3-Adjusting Crook Stop
3. NEEDLE DOES NOT LOWER SUFFICIENTLY -When the \(\frac{1}{32}^{\prime \prime}\) clearance described in c of subject 1 above is obtained, the clearance between the needle point and the record should be approximately \(3^{\prime \prime} 8^{\prime \prime}\) on the return of the tone arm. If this clearance does not exist:
a. Examine the position of the tone arm cover plate. It should be so placed on the motor board that the tone arm does not touch the plate at any time. The ecrewn taken not to turn these so far that the nure being bottom are dropped, and the plate then the nuts on the to allow clearance of the tone arm. Re-tigiten the screws securely when the proper clearance has been obtained.
b. Framine the sound box or pickup crook stop. Loosen the lock nuts and turn the stop screw, which is an eccentric, until the proper lowering has been obtained. Re-tighten the lock nut when the proper
lowering has been obtained. See Fig. 3 .
4. NEEDLE DOES NOT CLEAR RECORD-If the tone arm does not rise sufficiently for the needle to clear the record on the return of the tone arm:
a. Examine the position of the tone arm cover plate and the crook stop making the same adjustments as described in subject 3 above except that the eccentric sctew must be turned in the opposite direction.
b. If the condition is still not corrected, particularly if there seems to be a slugglsh action of the return of the tone arm, remove the sound box lift lever spring shown in Fig. 2, and increase its tension by shortening the straight section of the spring, bending it nearer the
coiled section.


Fig. 4-Adjusting Link Pin Adjuster
5. LIFT RING DROPS SLIGHTLY WHEN DE-SCENDING-If the lift ring suddenly drops about \(1^{\prime \prime \prime}\) when first starting down, make the following adjustments:
a. Remove the turntable.
b. Loosen the lock screw in the link pin adjuster as shown In Fig. 4.
c. Turn the mechanism until the main slide is in its extreme forward position.
d. Turn the link pin adjuater until the rollers of the lift lever mechanism 48. Fig. 1 , are in the slots pressing against the extreme end of their track (cam).
NOTE-Do not advance the adjuiter so far that the oller: are too tight againat the end of the cam since there will be a strain and possibla binding of the entire mechanism.
e. Re-tighten the lock screw.
6. LIFT RING FAILS TO REMOVE RECORDIf the lift ring fails to remove a record,
a. The record may be warped. Place the record on a flat solid surface in a warm room, and weight the record with books or other records.
b. The vertical helght of the hopper (magazine) with respect to the lift ring is not correctly adjusted.
1. Loosen the hopper support screws as shown in
Fig. 6 . Fig. 6.
2. With the lift ring in its highest position, turn the hopper adjusting nuts so that the top surface of the hopper is exactly flush with the top of the lift ring. A straight edge can be used as a gauge for this height. It should be placed across the two surfaces as shownin Fig. 7. This eame method should then be used for gauging
the height on the opposite side of the hopper Turn the hopper support screws so that there can be an additional upward movement of the hopper of approximately it' on each side with


Fig. 5-Automatic Unit Front View
the hopper resting on each top adjusting nut. This amount of play will prevent any possible binding of the lift ring and hopper. Adjust the touch the under side of the hopper when the ring is in its highest position.
3. Note the action of the knives on the record support plns. The height of these should be teated by means of the gauges 52467,52458 and 52855. Pushing the top of the record support pins down, Insert the \(065^{\prime \prime}-.070^{\prime \prime}\) gauge, Part 53370 , under each knife. This adjustment should be made when lift ring is up and knives turned inward. If the knife is too high or too low, it
should be bent sightly by prying with a screw should be bent silightly by prying with a
driver until the proper beight is obtained. Part 52855 can be used to obtain the proper angularity as well as the \(.120^{\prime \prime}\) height. With the lift ring down, insert the pauge 52855


Fig. 6-Adjusting Height of Hopper


Fig. 7-Straight Edge on Lift Ring
as shown in Fig. 9. There should be no play in the height of the knives and the sharp edge should be against the curved surface of the gauge. If this condition does not exist, loosen the set screws in the spiral cams as shown in Fig. 9. Using a socket wrench such as part 52992 . make the necessary seting of the knivea, purhis the spiral cama toward the back cence of the
mechanism, and then re-tighten the set screws.
7. LIFT RING REMOVES IV two or more records are entirely removed from the
hopper and deposited on the lift ring at the same time:
a. Records are improperly loaded. (See Subject 2 under GENERAL).
b. Hopper improperly adjusted with respect to lift ring. See b of subject 6 above.
c. Hopper arm improperly aligned, allowing the two bottom records to pass under the arms. Lower the hopper arms by turning the smalloper arm spacers touch the lift ring when the latter is in its raised toution and thereare no records in the hopper. Spacposition and there are no recordsinld be between. \(093^{\prime \prime}\) ing for gat
and \(.107^{\prime \prime}\).
8. RECORD CENTER FAILS TO ALIGN WITH TURNTABLE SPINDLE-The mechanism is designed to allow a \(10^{\prime \prime}\) record to fall directly over the turntable spindle and a \(12^{\prime \prime}\) record to fall \(1^{\prime} 6^{\prime \prime}\) in back and then fall of its own weight forward over the spindle. If this condition does not exist:
a. Records are not properly loaded in hopper.
b. Record is warped.


Fig. 8-Adjusting Lift Ring Screws
c. Record guide pins 74 or 75 , Fig. 11, not fitting properly in holes of lift ring. This fit should allow a free vertical motion of the pins, but a minimum side movertica
d. Hopper improperly adjusted with respect to lift ring. Make the same adjustment as described in b of subject 6 above.
e. Note the position of the record pusher pins on the back edge of the record. If both plns do not touch the back edge of the record as the latter is being moved into position, loosen the upper screw in the pusher plate, if one of the pins is below the record, bend the pusher spring slighty until proper contact is made.
9. LIFT RING RISES TOO SLOWLY-If the lift ring rises too slowly with a resulting strain on the mechanism, or if it descends too fast, increase the tension of the spring 68, Fig. 11 , in the back of the mechanism in the following manner:
a. Loosen the two lock nuts on the eye screw.
b. Increase the spring tention by turning first the top and then the bottom lock nut toward the eye in the screw.
c. Test the adjustment by trial until the proper rising of the lift ring has been obtained and the ring descend slowly withouta record. The ring should slightly overbalance the spring when the former is in its lowered position.
10. LIFT RING RISES TOO FAST-If the Ift ring rises too fast, If it descends too slowly, or if it touches the under side of the record on the turntable during playing, decrease the tension of the spring 68, Fig. 11, in the following manner:
a. Loosen the two lock nuts on the eye screw.
b. Decrease the spring tension by turning first the bottom and then the top lock nut away from the eye in the screw.
c. Test the adjustment by trial until the proper rising of the lift ring has been obtained, and the ring descend slowly without a record.
11. LIFT RING VIBRATES IN DESCENDINGIf the lift ring does not descend evenly:
a. Oil the bearings of the lift lever rollers.


Fig. 9-Gauging Record Support Pin Knives
b. Examine the pusher plate and the portion of the ilft ring over which the plate moves, noting if there is any binding between the two when the pusher plate is advancing. Usually if there is contact between the two, a worn line will be noticeable on the lift ring, belng produced by the contact of the bottom of the plate on the lift ring. This condition can be readily eliminated by bending up the plate slightly on the side which is touching the ring.
c. Examine the pusher slide, noting if it is properly lubricated or if there is any grit or other foreign matter in
the channel of the side. It is important that this channel be clean and well lubricated at all times.


Fig. 10-Adjusting Hopper Arm Screws


Fig. 11-Automatic Mechanism Back View
12. NEEDLE LOWERS OUTSIDE 12" RECORD DIAMETER-Should the needle fail to lower on the smooth outside rim of a \(12^{\prime \prime}\). record, but lowers outside the : ecord:
a. Loosen the clamping screw for the eccentric screw, 32 , Fis. 1, in the taper tube arm casting with a short BC
b. With a small rod ur nall turn the eccentric adjustment as shown in Fig. 13.
c. Check the setting after successive trials until the proper position is obtained, and then re-tighten the clamping screw securely.


Fig. 12-Automatic Unit Side View
d. If the needle does not fall at the proper position on a \(10^{\prime \prime}\) record after making the above adjustment, refer to Fig. 13.
1. Place a socket wrench such as part 52324 over the lock nut on the under side of the \(10^{\prime \prime}\) eccentric stop 35, Fig. 1, and a short screw driver such as part 52323 down through the hole in the motor
board and into the slot of the \(10^{\prime \prime}\) eccentric stop.
2. Loosen the lock nut and turn the eccentric in elther direction as may be required.
3. Make a test after each successive trial until the proper setting has been obtained.
13. NEEDLE LOWERS INSIDE 12' RECORD GROOVES-If the tone arm swings inwardly too far before the needle lowers on a \(12^{\prime \prime}\) record, but not as far as the \(10^{\prime \prime}\) position:
a. Make the same adjustments as described in subject 12 above, but turn the \(12^{\prime \prime}\) eccentric in the opposite
b. Check the \(10^{\prime \prime}\) position, making any necessary adjustments as described in d of subject 12 above.
14. NEEDLE LOWERS OUTSIDE \(10^{\prime \prime}\) RECORD DIAMETER-Should the needle lower outside the diameter of a \(10^{\prime \prime}\) record, but lowers properly on a \(12^{\prime \prime}\) record, make the same adjustments as described in d of subject 12 above.
15. NEEDLE LOWERS INSIDE \(10^{\prime \prime}\) RECORD GROOVES-Should the needle lower inside the record grooves of a \(10^{\prime \prime}\) record, but lowers satisfactorily on a \(12^{\prime \prime}\) record, make the same adjustments as described in d of subject 12 above.

16. FAILURE TO SELECT \(10^{\prime \prime}\) AND \(12^{\prime \prime}\) POSITION -If the mechanism does not select the \(10^{\prime \prime}\) and \(12^{\prime \prime}\) position, that is, if the needle lowers in the \(10^{\prime \prime}\) position on a \(12^{\prime \prime}\), record, or on the rubber support block when a \(10^{\prime \prime}\) record is on the turntable:
a. Records are improperly loaded in hopper.
b. Tighten the set screw on the inder lever trip cam, shown in Fig. 15, so that it is against the fiat of the index trip lever shaft. Loosen the lock auk inat the index trip untll the inside pin lowers on the stop lever and screw until the inside pin lowers on the soop the index lever when the lift ring comes down without a record.


Fig. 14-Adjusting \(10^{\prime \prime}\) Eccentric Stop
c. If the mechanism still fails to select properiy, adjust the lock nuts 36, Fig. 1, over the index lever so that the taper tube return lever strikes near the top of the \(12^{\prime \prime}\) stop face on the index lever casting 41, Fig. 1 , when set for a \(12^{\prime \prime}\) record and the approximate midpoint of the \(10^{\prime \prime}\) eccentric stop pin when set for a \(10^{\prime \prime}\) record:
17. FAILURE TO REJECT RECORD--If the automatic mechanism does not trip when the "Reject" button is pressed, and the record is therefore not rejected:
a. Note that the condition ls not caused by a wire between the reject rod collar 87, Fig. 12, and the fork portion of the trip lever.
b. If the condition is not yet corrected, loosen the set screws in the collar as shown in Fip. 16, using a socket wrench such as part 53306, and set the collar approxt mately \(18^{\prime \prime}\) away from the trip lever. Re-tighten the set screws.
18. CONTINUED REJECTION-Continued rejection may be caused by any one of the following:
a. Collar on reject rod set too near trip lever, preventing latter from disengaging from end of pawl.
b. "Start" and "Reject" button stuck or binding.
c. Pawl 23, Fig. 1, sticking between teeth of clutch wheel.
d. Mechanism improperly timed. (See subject 26, below).


Fig. 15-Adjusting Index Trip Lever
19. FAILURE TO TRIP ON ECCENTRIC GROOVE -If the mechanism does not trip when the eccentric groove is reached:
a. Observe the action of the sound box crook, noting if It is too loose on the tone arm. The crook should be so isightened that it is free to move up and down, and yet sufficiently tight to prevent any side motion.
b. If the crook is found to be correct, remove the back of the cabinet, and with the aid of a flashlight, observe the action of the latch trip blade 33. Fig. 1, which 8 mounted on the 12 eccentric screw 32 , Flg. blade does not make contact with the latch plate, blade until proper contact is made with the plate.
20. FAILURE TO EJECT-If the eject lever 9, Fig. 1, fails to remove a record from the turntable, and the record lift ring raises the record, eliminate any binding in the eject lever cam 6, Fig. 1, near the end of the eject lever, by prying the cam away from the lever with a screw driver. The cam may be stuck slightly because of dirt or other foreign matter becoming lodged between it and the eject lever.
21. SLUGGISH ACTION OF EJECT MECHANISM OR RECORD EJECTS TOWARD FRONT OF CABI-NET-If the record is not entirely ejected from the turntable before the lift ring starts to rise, or if a record is ejected toward the front of the cabinet rather than in the discharge compartment:
a. Note the height of the record on the motor spindle, and compare this height with the correct height as shown in Fig. 17. If the record is considerably lower, raise the helght by placing one or more cork or fibre washers, part 51870 , under the turntable.
b. Examine the leather on the end of the eject lever. If this is worn smooth, roughen it by scraping with a sharp knife or file.


Fig. 16-Adjusting Reject Collar
22. FAILURE TO START-If the mechanism fails to start, look for any of the following:
a. Open circuit in power supply. Check all plug connections both inside and outside the instrument.
b. Defective motor coll.
c. Open or shorted 3 Mfd . condenser
d. Start switch position 83, Fig. 12, out of adjustment preventing switch slide 81, Fig. 12, from tripping switch.
e. Defective start switch 83, Fig. 12.
23. FAILURE TO STOP WHEN STOP BUTTON IS PRESSED-The mechanism will not stop if the button is pressed during the cycle until the cycle is completed. If the mechanism still fails to stop, look for any of the following:
a. Defective start switch 83, Fig. 12.
b. Defective cycle completing switch 15, Fig. 1 .
c. Improper adjustment of mechanical connection between stop lever 44, Fig. 1, and start switch. When facing the back of the mechanism, adjust the right hand coliar on the stop shaft until the collar on the when the stop button is out.


Fig. 17-Correct Height of Record on Turntable Spindle
24. FAILURE TO STOP AFTER LAST RECORDIf the mechanism fails to stop after the last record has been played, look for any of the following:
a. Improper adjustment of index trip lever, Fig. 15. See b, subject 16, above for proper adjustment
b. Defective start 8 witch 83, Fis. 12.
c. Defective cycle completing ewitch 15, Fig. 1.
25. PICKUP SHORTING SWITCH FAILURE-If the pickup shorting switch fails to open before the needle reaches the first music grooves, or fails to close after the eccentric groove has been reached:
a. Remove the turntable.
b. Loosen the screws in the switch with a small right angle acrew driver, and adjust the position on the switch untll the contacts are approximately \({ }^{17}\) "apart when the tone arm is in the playing position.
c. Examine the bakelite arm of the switch, noting if there is any binding. Such binding should be removed by prying the arm loose with a screw driver.
26. TIMING MECHANISM - When the motor or any of the gears have been removed, it will be necessary to re-time the mechanism in the following manner:
a. Remove the turntable.
b. Turn the mechaniam by hand until the roiler A, Fig. 18, is engaged in the slot \(B\) of the cam gear \(C\).
c. Loosen the set screw in the clutch wheel D, lift the wheel, the pawl and pawl carrier E, and turn the latter untl the roller \(F\) is in line with the slot \(G\).
d. Lower the pawl and pawl carrier and the clutch wheel, and then re-tighten the set acrew, aligning the screw with the spot in the motor spindle.


Fig. 18-Method of Timing Gears
27. POOR TONE QUALITY IN \(10-35\) AUTOMATIC ORTHOPHONIC VICTROLA-If the tone quality of the Automatic Orthophonic Victrola instrument is not up to standard:
a. Replace sound box, bearing in mind if this is done that it may be necessary to re-adjust the tone arm at described in subject 3 above.
b. If replacing the sound box does not correct the quallty, It is possible that there is an air leak in the sound system between the end of the cone arm and the horn.
c. Remove the sound box from the fone arm. Blow smoke lightly into the tube, taking care not to use too great force since the grease seal around the Joint at the base can be seen eacaping wherwise become broken. Smoke can be seen eacaping where the leak exlsts.
d. If the above tests show an air leak at the joint between the sound box crook and the tone arm:
1. Remove the crook. and distribute firm cup grease around the joints in the sleeve inside the tone arm.
2. Replace the crook, again test for air leaks.
-. If the leak has been found to exist in the joint at the base of the tone arm
1. Remove the tone arm by taking out the three screws.
2. Remove the spring 39. Fig. 1.
3. Distribute firm cup grease around the two surfaces as shown in Fig. 19.
4. Replace the tone arm, and again test for air leaks.
NOTE-Victor motor grease should not be used to seal joints as described above since this grease


Fig. 19-Tone Arm Removed, Showing Grease Seal
If the leak has been found to exist between the top of the horn elbow casting and the horn elbow flange:
1. Remove the screws which hold the automatic unit to the cablnet.
2. Remove the three ecrews which hold the flange to the unit.
3. Lift the back of the automatic unit alightly, and then lift the flange from the horn elbow casting.
4. Place firm cup grease around the inside surface which fits over the top of the horn elbow casting. and around the under side of the felt washer.
5. Place shellac over the fibre washer which seals the joint between the flange and the automatic undt.
6. Replace and re-connect the flange.
7. Replace the motor board screws.
Q. If the air leak has been found to exist in the joint between the horn elbow and the horn:
1. Tighten the four acrews in this joint.
2. If this does not correct the leak, remove the four screws.
3. Remove the screws which hold the automatic unit in the cabinet as described in \(f\) above.
4. Lift the automatic unit about two inches and support it in this raised positiom.
5. Remove the fibre gasket and shellac both its surfaces.
6. Replace the gasket and screws, and then tighten the joint securely.

It is suggested that in all cases a small amount of grease or oil be placed around the end of the sound box crcok so as to seal the joint between the sound box and the crook.
28. REMOVING MECHANISM FROM CABINET -Whenever possible, removal of the unit from the cabinet should be avoided. Certain adjustments to the controls on the control escutcheon will necessitate removing the mechanism part of the way out, and certain replacements will necessitate removing the unit entirely from the cabinet. The following is the procedure:
a. Remove the back of the cabinet.
b. Remove the four screws, at the sides of the motor board. NOTE-The automatic mechanism is supattempt to remove the motor board until the unit has been removed from the cabinet. The two back acrews are fastened with lock nuts which must be removed before the screws can be taken out.
c. On 9-54, remove the two support rods in the back of the unit. Thls can be done by turning the top nut to the upper end of the threads on the rod, loosening the lower nut elightly, and turning the rod until it can be dropped down and pushed over sufficiently to clear the unit when the latter is removed.
d. Disconnect the power plugs from the unit and from the power-amplifier (in the Electrola models).
e. On the automatic Electrolas, remove the pickup terminal strip from the cabinet partition and the sround lead from the terminal strip to the back support of the unit. On 9-54, remove ground lead from control panel to radio terminal strip at the latter point, marking the terminal so that the lead can be properly replaced.
f. On the \(\mathbf{1 0 - 3 5}\), remove the horn elbow.
g. Pull the unit out from the back of the cabinet. It is suggested that three metal supports such as part 51761, be used to hold the unit after it has been removed from the cabinet.
When replacing the unit in the cabinet, great care must be obseryed that the start switch 83, Fig. 12, is not pushed against any part of the cabinet and its position thus altered.
When replacing the \(10-35\) unit, be sure that the sealing washer between the horn and the unit is re-shellaced and properly placed and the screws securely tightened to form an air tieht joint.
29. REMOVING MOTOR BOARD FROM MECH-ANISM-Certain replacements will require the removal of the motor board from the mechanism after the latter has been removed from the cabinet. The following parts should first be removed in the order listed:
a. Sound box or plckup from the tone arm.
b. Speed regulator screw.
c. Turntable.
d. Tone arm cover plate.
e. Spring washers, one on each hopper shaft as indicated at 66, Fig. I1. Push washers from the shaft with a thin blade or special tool such as part 51719.
f. The two hopper support screws 80, Fig. 11.
Q. The three screws which hold the automatic unit to the motor board.


Fig. 20-Oiling Diagram Automatic Mechanism

Proceed in the following manner to remove the motor board:
h. Push the two hopper shafts 71, Fig. 11, inwardly as far as possible.
1. Turn the automatic mechanism by hand untll the lift ring is in its ralsed position.
j. Move the record pusher slide cam 56, Fig. 5, forward and at the same time raise the lift ring back far enough to allow the motor board to be removed.
k. Lift the motor board high enough to clear the hopper supports 7, Fig. 1, and then carefully turn the board at the same time to allow it to clear the tone arm.


Fig. 21 -Oiling Diagram Induction Disc Motor
30. LUBRICATION-A hollow motor spindle with openings at the various bearings permits lubrication of these parts as well as the back governor bearing from the oil hole shown in Fig. 20. The front governor bearing, the governor friction sleeve, and friction leather can be lubricated by inserting a long spout oil can down through the hole in the top of the mechanism below the intermediate gear.


Fig. 22-Oiling Diagram Universal Motor

\section*{Name of Part}


Record Locating Pin (R.H.)
Hopper Lacating Pin (L. H.)
Hopper Arm (R. H.)
Hopper Arm (L. H.)
Spiral Cam (R. H.)
Spiral Cam (L. H.)
Spiral Cam (L. H.)
3. Set Screw
7. Eject Lever Cam
- Hopper Suppor

Loct Washer
Nut
8. Leather
9. Eject Lever (Complete)
11. Rubber Pad

Switch Plat
Trip Lever
Clutch Wheel
. Sprind
15. Cycle Completing Switch

Lack
Lock Wacher (1 used)
17. Start and Reject Rod
18. Screw (2 used
\((10-35)\)
\((10-69)\)
(9-54)
20. Stop Push Rod (10-35)
(9-54)
\((9-56)\)
\((10-69)\)
21. Intermediate Gear
21. Clutch Release Lever
23. Pawl and Pawl Carrier
24. Spring
25. Maln Sude (Complete)
25. Maln
27. Main Slide Spring
28. Connector Link
29. Eccentric Stop Lever Bracket

Stop Lever Trip Plate
Screw
Nut
Lock Washer
30. Sound Box Lift Lever
31. Taper Tube Return Lever
32. 12" Eccentric Screw
33. Latch Trip Blade

Screw (2 used)
Washer (2 used)
34. Spring
35. 10"Eccentric Stop Nut
Lock Washer
36. Nut (2 used)
37. Sound Box Operating Lever

Adjusting Screw
38. Taper Tube (Complete) (10-35)
39. Spring
40. Hopper (Complete)
41. Index Lever (Compl
41. Index Lever (Complete)
2. Index Lever Extension
3. Index Trip Lever
44. Stop Lever
45. Latch Lever
46. Inder Lever Trip Cam
47. Link Płn Adjuster

Waaber
Screw
Lock Washer
48. LHt Lever (Complete)
4. Hopper Adjuading Nut
52. Nut
51. Motor Boand (complete)
52. Lift Ring Stop Screw Nut
53. Turntable

E4. Rabber Stop Pad
55. Motor Board Screw Lock Washer
56. Pusher Slide Cam
57. Rubber Button
58. Speed Regulating Screw Spring
59. Sound Boz Lift Lever Spring
6. \(10^{\prime \prime}\) Spring

Screw
Nut
61. 12" Spring (Same as No. 60)
62. Taper Tube Cover Plate
63. Screw ( 2 used)

Lock Washer
Nut
64. Motor Board Screw
65. Rubber Washer
67. Spring Washer

Mechanism Suppor
Lift Ring Spring
Nut (2 used)
Nut (2 used
Byebolt
Hopper Shaft
Hopper Pin
\({ }_{12}{ }^{\prime}{ }^{\prime}\)
73. 12' Record Stop Pin 10, Plunger
76. Pusher Plate (complete)
76. Pusher Plate (comp
77. Record Tenition Spring Clamp Record (2 used) Screw
78. Record Tenaton Spring
79. Screw Support Screw
81. Switch Sude
82.
83.
Switch Plate
Start Switch

Start Switch
Spring
85. Start and Reject Rod
86. Stop Rod
87. Reject Rod Collar
8. Screw (2 used)

Start and Reject Button
The mechanism should be oiled at least once a month, and in commercial installations, playing an average of eight hours a day, this period should be reduced to once a week. The gears and spirals should be greased once every six months.

The induction disc motor is for use on all Victor electric instruments operating on 105 to 120 volts, 25 to 60 cycles, alternating current, and consumes approximately 50 watts power. The following motor coils are in use, depending upon the service to which the motor is applied.
\begin{tabular}{lcr} 
Co11 & Part Number & For 105 to 120 Volta \\
No. 1 & 16355 & 40 to 60 Cycles \\
No. 2 & 17576 & 25 to 30 Cyclee \\
No. 3 & 17860 & 40 to 60 Cycles
\end{tabular}

FOR OPERATION ON 40 CYCLES-The 31 ohm resistor unit, part 19490, should be connected in series with the induction disc motor. Fig. 2 show the tapped resistor connected in the motor circuit. For convenience in removing the motor board at a later time, it is suggested that the resistor be connected in one side of the line between the attachment plug and the motor plug. The 21 ohm connection is for 110 to 115 volts, 40 cycles, and the 31 ohm connection for 115 to 130 volts. The earller type reastor with the pig tail terminals is connected in the same manner as the 31 ohm connection shown, but does not have the resistance tap. When operating instruments equipped with a power-amplifier unit on 40 cycles, the resistor should be connected in the motor circuit only, and not in the power circuit to the power-amplifier unit, nor in the main power supply circuit. In all cases the resistor should be mounted as far away from the motor as possible.

Heavy duty for use on Automatic instruments.
FOR OPERATION ON HIGH ALTERNATING CURRENT YOLTAGES-The following . 250 kFa 60 cycle transformers are available, and will supply sufficient power to operate a complete electrical reproducing instrument or power-operated radio combination.


Fig. 1

\section*{PARTS LIST}

See Parts Catalog when ordering replacements, as some of the items shown will be furnished only in assemblies.
```

 Name of Part
 1. Inductor 40-60 Cycles
2. Fuse Mounting (Early Type Motors)
3. Governor Spring
4. Governor Set Screw
5. Fuse (Early Type Motors)
6. Turntable Spindle Adjuating Screw
7. Top Plate
8. Connector Whre
9. Connector Wire CHIp
10. Inductor Screw
11. Terminal Block
12. Moulding
13. Motor Cord
14. Regulator
15. Redulating Shaft
```



Fig. 2

\section*{SERVICING}

The induction disc motor will not require any great amount of servicing, and if properly lubricated at least once every six months, the motor should run for years without attention. It should be remembered that two of the most common causes of motor failure are incorrect power voltage and lack of lubrication.

Too high voltage will cause the motor coils to heat excessively and thus destroy the insulation and dry the lubrication. Too low voltage will cause a lack of power and upstable operation. When servicing the induction disc motor, always check the power line voltage at the socket to which the motor is connected and if possible while the motor is running. This voltage should be between 105 and 120 volts. The servicing which the motor may require is in general of a minor nature, and in most cases adjustments will be mechanical rather than electrical.
1. LUBRICATION-In the majority of cases, the only servicing which the induction disc motor will require is proper lubrication. It is important that the motor be lubricated at least once every sin months and with the proper lubricants. A motor lubricating diagram is shown in all instruction books. Victor Motor Grease should be used on the teeth of the governor drive gear and governor spiral. Lubricate the governor bearings, governor friction sleeve, and upper and lower turntable spindle bearings with Victor Motor Oil. If this oil is not available, a similar high grade oil of equal body can be used. Do not use an oil of a thinner body as this may prove injurious to the motor. Neat's Foot oil is recommended for lubricating the governor friction leather.
2. OPEN CIRCUITS--If the motor fails to start, the wiring should be carefully checked for open circuits. Connect a lamp in series with the 110 volt line, and test between the various external connections, the switch, and the fuse (if one is used). If these connections test correctly, test between the two terminals of each coll. Failure of the lamp to light will indicate a burnt out coil, or a broken wire within one of the coils. If the motor runs intermittently, and the external wiring checks correctly, there is likely a broken connection or wire in one of the coils.


FIg. 3
3. REPLACING COILS-When replacing or changing colls on the induction disc motor, the following procedure should be used:
a. Remove the motor board from the instrument.
b. Tos all wires oo that they can be properly replaced.
c. Disconnect the wires from the 110 volt terminale bhown in Fige. 3 and 4.
d. Remove the three screw holding the motor coll to the frame or top plate.
- Lift the coll from the motor and replace with the new

\section*{4. FAILURE TO MAINTAIN CONSTANT SPEED} -There are three points to be checked if the motor fails to maintain constant speed.
a. Hirdened or Gummed Lubrication-Hardened lubricathon will anues the motor to be ungtable. Examine the moving parts; if necesaary, remove them and wanh with kerosene. Replace the parts and lubricate them as deecribed in subject 1 .
b. Shifting of Motor on Motor Board-In some casea a alight shifting of the motor on the motor board during shipment will cauce binding. Loosen the three motor board screws, and re-tighten, alternately, while the motor la runnind until the binding has been eliminated and the motor runs eteadily. c. Weak Colls-A third and less frequent cause of speed pariation is weak motor coils. If the lubrication and mounting and (b) above, and the condition etill exists, replace one or both of the motor coils as described in eubject 3 .
5. REMOVAL OF DISC-The motor disc and the governor drive gear are each fastened to the turntable spindle with set screws. When removing the disc, loosen the two set screws, and pull the spindie away from the top plate. Care should be observed that the ball bearing on which the lower end of the spindle rests is not lost. When replacing the disc, it will be noted that the spindle is spotted for the governor drive gear and disc set screws, and that these spots are in line with the pin on the turntable spindle.

Note:-On the Model 91 motor it is necessary to remove one of the coils before the disc can be removed.
6. ADJUSTING POSITION OF DISC-The disc should be properly alligned between the upper and lower section of each coil so that it does not touch the iron core of either and does not cause binding of the governor gears. In case the disc rubs against the iron, it should be adjusted by means of the spindle adjusting screw 6, Fig. 1, in the top plate. loosen the lock nut and turn the screw until the disc is evenly spaced between the upper and lower coils.
7. REDUCING HUM - There are a number of causes for hum in the induction diec motor, but in most cases any existing hum can be eliminated by proper adjustment.
a. Loose Coll Winding on Iron Core-This condition can be corrected by forcing a small wooden wedige between the outboth the upper and lower sections of each coll.
b. Coll Looee on Top Plate-The three
cofl on the top plate Thould be tiontened securely holding the coil on the top plate should be tightened securely.
c. Loose Laminations of Iron Core-The bolts clamplag the Inon core laminations together should be tightened securely. In aome cases, however, it may be found that the hum can be minimized by adjusting the tension of these bolts.
d. Motor Not Fastened Securely to Motor Board-Make certain that the nuts holding the motor to the motor board are fastened securely and with equal tension and that the felt washers between the motor and the motor board are not inJured.
0. Motor Not Properly Secured to Cabinet-In many cases motor hum can be ellminated or minimized by adjuating the four corner ecrews which hold the motor board to the cabinet. Placing a plece of felt between the motor board and the motor board rail will often help to eliminate hum.
8. REDUCING MECHANICAL NOISE-There are several features which may cause motor noise other than a hum.


Fig. 4
a. Governor Springe-A nolse or rattle may nometimes be caused by loose or broken governor springs. Tighten all the governor spring ocrews as shown in Fis. 4 . If this does not stop the nolse, loosen the screws on the disc end of the governor eprings and allow the motor to run for a minute or 80 to allow the eprings to assume thelr correct position. Stop the motor and re-tighten the screws. If any of the springs are broken or badly out of balance, they should be replaced. Removal of the governor can be accomplished by loosening the two governor bearing screws, one at each end of the shaft, and lifting the governor from the frame.
b. Governor Thrust Bearing-The thrust bearing at the disc end of the governor may sometimes cause nolse while the motor is running. Hold one finger over the end of the bearing. and loosen the set screw which holds the bearing in position, Adjust the bearing to the most quiet running position, and re-fighten the set acrew.
c. Governor Splndle-A bent governor spindle will cause binding in the gears and bearings as well as a nolse. The bent binding in the gears and bearings as well as
d. Governor Driving Gear-Remove the turntable spindle as described in subject 5 above and examine the gear for wear. If the wear on the teeth Is greater on one side than on the other. the turntable spindie is bent. The gear should be replaced.
bent or improperly adjust Disc-A bent turntable apindie or a bent or improperly adjusted diac will cause noise. The bent apindie may cause the disc to rub agalnst the iron core of one of the colls as described in subject 6 above. A bent spindle can be detected by placing a pencil fat on the motor board with the point agalnst the apindle. If the pencil point touches the apindie on one aide oniy while the motor is rumaing, the spindle
is bent and should be replaced.


Fig. 5-Wiring Diagram of Victor Induction Disc Motor
9. SPEED REGULATION-The governor will maintain a constant speed of the motor within a range of sudden voltage changes of 15 volts, providing all parts are correctly adjusted. All the points mentioned in subject 8 above will have a certain effect upon the regulation of speed and should be taken into account even though there is no actual mechanical nolse present.

\section*{UNIVERSAL ELECTRIC MOTOR}

The Victor Universal Electric Motor is deaigned for univeral operation at 32 volts A. C. or D. C. This operating voltage at the motor terminals is obtained from a power line of 100 to 230 volts by connecting the proper readstance in series with tho motor.

The standard reaistor units supplied for use on Victor Universal motors are listed below:
\begin{tabular}{ccc} 
Part Number & For Line Voltages & \multicolumn{1}{c}{ Reelstance Tope } \\
15728 & 100 to 130 Volts & \(189-205-230\) Ohma \\
19193 & 200 to 239 Volts & \(270-300-490-530-570\) Ohma \\
16228 & 220 Volts & Motor Realotor \(205-520\) \\
& & Lemp Rediator 1100 Ohme \\
& &
\end{tabular}


Fig. 1-100-130 Volt Resistor Unit
1. Operation on 100 to 130 Volts Direct or Alternating Current-Fig. 1 shows the \(100-130\) volt resistor unit, part 15728. This is the standard resistor for all Universal motor instruments operating from 100 to 130 volt circuits. On new instruments leaving the factory, the motor is connected to the 205 ohm tap, and the speed regulator adjusted at 110 volts to drive the turntable at 78 revolutions per minute. When installing Universal motor inotruments, if the motor does not develop euticient power when connected to the 205 ohm tap, shift to the 180 ohm tap, and re-adjust the speed of the turntable. If the motor runs too fast when connected to the 205 ohm tap, connect to the 230 ohm tap, and re-adjust the speed regulator. Always keep one wire attached to the end binding post shown in Fig. 1.


Fig. 2-200-230 Volt Realstor Unit
2. Operation of Universal Motor on 250-230 volts-Fis. 2 shows the \(200-230\) volt resistor unit, part 19193. The following table gives the resistance combinations of this unlt to be used with different voltages:
\begin{tabular}{lc} 
Uee Binding Poeste & For Line Voltasee \\
No. 1 and No. 4 & 200 to 210 Volta \\
No. 1 and No. 5 & 210 to 220 Volta \\
No. 1 and No. 6 & 220 to 230 Volts
\end{tabular}


Fig. 3-220 Volt Resistor Unit for Operatlon with Compartment Lamp
3. Operation of Universal Motor on 220 Volts with Lamp-The resistor, part 16228, shown in Fig. 3 , is designed for use on 220 volt circuits in which a compartment lamp is used with the instrument. Connection should be made between terminals No. 1 and No. 2 for the lamp, and between No. 3 and No. 4 for the motor. The circuit diagram for these connections is shown in Fig. 4.

In case it is desired to change from 220 volt to 110 volt operation, this unit can still be used by short circuiting the 1100 ohm resistor and connecting the wire on No. 4 terminal to the 205 ohm tap between terminals No. 3 and No. 4.
4. Operation on 32 Volt Power Source-The motor can be operated from a 32 volt power supply such as commonly used on farm lighting systems by connecting the power lines directly across the motor terminals without any series resistance. In those instruments using a compartment lamp it will be necessary to replace the standard 110 volt lamp with the 32 volt lamp, part 8594.

In all cases there can be a certain amount of voltage variation from that specified for a glven resistance. The increase or decrease in turntable speed can be cared for by adjusting the speed regulator. In no case, however, should the voltage across the motor terminals be allowed to exceed 36 volts, or to go below 30 volts. The most accurate method of determining the correct resistance to use for a given line voltage is to connect a direct current voltmeter across the motor terminals, and vary the resistance until the meter reads between 30 and 36 volts. High voltage at the motor terminals


Fig. 4-Circuit Diagram for Realator Unit Shown inFig. 3


Fig. 6-Changing Brushes
will cause excessive wear and overloading of the brushes, dirty commutator, and noise in the motor. It is important, therefore, that the motor terminal voltage be kept within the limits described above.

\section*{SERVICING}

The Victor Universal Electric Motor will not require any great amount of servicing with the


Fig. 7-Fitting Brushes
exception of occasional lubrication and renewal of brushes. Incorrect power voltage and lack of lubrication are the two most common causes of motor failure.
1. Lubrication-It is important that the motor be lubricated at least once every sir months and with the proper lubricants. In the case of the Automatic, however, it may be necessary to lubricate the motor more frequently, particularly when the instrument is being played several hours every day. A motor lubricating diagram is shown in all instruction books and in Fig. 5. Use Victor Motor Grease on


Fig. 8 Adjusting Governor Springs
the teeth of the governor drive gear, the governor spiral, and in the grease cups. Lubricate the governor bearings, governor friction sleeve, and turntable spindle bearings with Victor Motor Oil. If this oil is not available, a similar high grade oll of equal body can be used. Do not use an oil of a thinner body as this may prove injurious to the motor. Neat's Foot oll is recommended for lubricating the governor friction leather. If the leather has become hardened and glazed, it should be roughened with the sharp point of a knife so as to permit absorption of oil.
2. Renewing Brushes-The brushes should be replaced when they become badly worn. This condition will be noticed by excessive spariding and a noisy motor. Fig. 6 shows the method of changing brushes.
3. Sparding-Excessive sparking is usually caused by badly worn brushes or brushes that do not fit properly. Examine the brushes, and if necessary refit them by placing a narrow strip of No. 7-0 or No. 8-0 sandpaper around the commutator with the sand side out, rotating the commutator with
the eandpaper, at the same time placing preseure with the fingers on the tops of the bruah holder epring latches. (See Fig. 7.) Do not use emery paper or cloth.


Fig. 9 Circuit of Universal Motor
A worn or dirty commutator will cause excessive sparking. It is well when adjusting or renewing brushes to clean the commutator, while the motor is running, using a cloth dampened with kerosene.

A badly pitted commutator will cause sparking; an open armature winding will cause excessive sparking at one point on the commutator. In both cases the motor should be returned to your distributor for repairs.
4. Failure to Maintain Constant Speed-There are several causes for failure of motor to maintain constant speed.
a. Hardened or Gummed Lubrication-Hardened Iubrication will case the motor to be unstable. Eramine the moving parts; if necessary remove them and wash with kerosene. Replace the parts and iubricate them as described in subject 1 above.
b. Shifting of Motor on Motor Board-In some cases a slight shifting of the motor on the motor board during shipment will cause binding. Loosen the three motor board screws, and retighten them alternately until the blnding has been eliminated and the motor runs steadily.
c. Broken Armature Wires and Burned CommutatorArmature wires may sometimes become broken. causing intermittent contact. The commutator may become badly burned after a motor has been in hard service for a period. In such cases the motor should be returned to your distributor for repairs.
5. Reducing Mechanical Noise.
a. Governor Springs-A noise or rattle may sometimes be caused by loose or broken governor springs. Tighten all the governor spring screws as shown in Fig. 8 . If this does not stop the noise, loosen the screws on the disc end of the governor springs and allow the motor to run for a minute or so to permit the springs to assume their correct positions. Stop the motor and retighten the screws.
If it is found after this test that any of the springe are broken or badly out of balance, they should be replaced.
b. Governor Spindle-A bent governor spindle will cause binding in the gears and bearings as well as a noise. The bent spindle should be replaced with a new one
c. Governcr Driving Gear-Remove the turntable spindle and examine the governor driving gear for wear. If the wear on the teeth is oreater on one side than the other, the turntable spindle is bent. Both the gear
and the spindle should be replaced.
d. Worn Commutator - badly worn commutator or worn brushes will cause noise. This can be eliminated worn bruahes will cause nolse. This can be eliminated above.
6. Speed Regulation-The governor will maintain a constant speed of the motor within a range of sudden voltage changes from 6 to 8 volts, providing all parts are correctiy adjusted. All the topics under the subject of Servicing will have a certain effect upon the regulation of speed and should be taken into account even though there is no actual mechanical noise present.

\section*{AUTOMATIC SWITCHES AND AUTOMATIC BRAKES}

The automatic switch and the automatic brake described in this Supplement operate on the same principle as the earlier type switches and brakes, but their construction differs slightly. The switch and the brake are identical in construction except for the switch unit 15, Fig. 2 which is mounted on the brake plate. This unit is readily detachable; the automatic switch can be made into an automatic brake, or vice-versa.

The adjustments are the same as those described in Service Bulletin No. 11, and the points \(A\) and \(B\) in Fig. 2, correspond to the paints \(A\) and \(B\) of Fig. 3, Service Bulletin No. 11.

The switch shown in Fig. 2 will ordinarily require no adjustment. In some cases, however, the upper spring shown in Fig. 1, may become bent upward far enough to prevent the contacts from coming together when the hand lever is turned on. When such a condition is found, bend the upper spring


Fig. 2-Automatic Switch, Part 19950C
down until the contact points make a firm contact when the hand lever is turned on. When replacing the switch on the brake plate, care should be observed in properiy locating the switch on the plate so that the ewitch will make and break contact when the hand lever is turned on and off. The two screws shown in Fig. 2 can be loosened and the switch moved in the slot of the adjusting screw until the correct position is located. When the hand lever is in the off pooition, the contact points should be at least it inch apart to prevent excessive oparking when the switch is turned ofl.


Fig. 1-Automatic Switch With Top of Switch Unit Removed

PARTS LIST FOR AUTOMATIC BRAKE AND AUTOMATIC SWITCH
Name of Part
1. Friction Lever
2. Suart
Number
3. Spring Lever
4. Spring
5. Latch Trip
6. Switch Plate
7. Gam Lever
8. Hand Lever
9. Spring
10. Brake Leather
14. Screw
12. Latch Plate
13. Sprng
14. Latch
15. Switch
16. Screw


P4g. 5-Olling Dhatram
Note:-Dotted portion indicatea avto safety stop equipment of early type motors.

\section*{Automatic Victrolas and Electrolas}

10-50, 10-51, 10-70 and 9-55

The important points of operation are:
1. THIS INSTRUMENT WILL NOT FUNCTION AS AN AUTOMATIC UNLESS VICTOR ECCENTRIC GROOVE
2. Make sure that the Index lever is properly set to elther beinch or 12-inch, according to the size of recorde being played. Fallure to do this may cause damage to the sound box or pick-up.
3. Do not allow more than twelve (12) recorde to accumulate in the record drawer at one time. Breakage or "Jamming" of records will occur if this point ls not
4. ALWAYS PUSH THE RECORD DRAWER IN AS FAR AS IT WILL GO AFTER REMOVING THE RECORDS WHICH HAVE BEEN DEPOSITED THEREIN.
5. The speed resulator should never be changed except to maintain or set the opeed at seventy-dight (78) revolutions per minute.
6. When starting to play as a non-automatic machine, it may be found that the tone arm wll not awing or "ELECTROLA." Do nor force the arm-etart the motor and allow the automatic mechanism to complete its cycle.
7. When playing as a non-automatle instrument, the switch will not throw off automatically, but mutbe be operated by hand, and the sound box (or plcik-up) removed, as in a non-automatic instrument, from the record surface
8. When the record loader la being ueed to remove recorda from the program carriers, great care ehould be orercised in aligning the center holes. Chipping of the center holes and ruining of the records may result if
this point is not observed.
9. After records have been loaded on magazine spindle, carefully lower magazine stand into playing position. Failure to observe this precaution will result inchipping the record in contact with the hook of the makazine spindle.
10. Do not allow the sound box or pick-up to drop backward or forward on its stop. If care la not used, the horizontal traveling height of the needie may be thrown out of adjustment. which may, during operation, scratch the turntable felt or ruin the record.
sound box, (or pick-up.
11. Lubrication is an essential factor in the operation of the Automatic instrument and should be given careful attention. It is important that the motor and automatic mechanism be lubricated at least once
every six months, with the proper lubricants, but if the instrument is being operated in a public place on the usual average of eight hours a day, this plubre on thon period should be reduced to ar least once a week.

Re-Adjusting Tone Arm
After installing the electric pickup, it may be necessary to re-adjust the overall horizontal position of the tone arm in order to permit the needle to lower onto the smooth outside rim of the record.


Name of Part
\begin{tabular}{|c|c|c|c|}
\hline 1. & Motor Plate & 18. & Taper Tube Return Lever \\
\hline 2. & Lifter Ring Post Front & 19. & Connecting Link \\
\hline 3. & Lifter Ring Post Rear & 20. & Spring \\
\hline 4. & Sound Box Lift Lever Stud & 21. & Spring \\
\hline 5. & Slide Spring (Not Shown) & 22. & Spring \\
\hline 6. & Main Slide & 23. & Motor-60 Cycle \\
\hline 7. & Intermediate Gear & & -25-30 Cycle \\
\hline 8. & Cam Gear & & -Universal \\
\hline 9. & Index Lever & 24. & Screw (3 Used) \\
\hline 10. & Index Shaft & 25. & Thrust Washer (Not Shown) \\
\hline 11. & Sound Box Control Lever & 26. & Pawl Carrier \\
\hline 12. & Clutch Release Lever & 27. & Clutch Wheel \\
\hline 13. & Sound Bor Lifting Lerer & 28. & Spring \\
\hline 132 & Nut & 29. & Inder Control \\
\hline & Screw & 30. & Reject Lever \\
\hline 14. & Collar & 31. & Spring \\
\hline 15. & Shaft & 32. & Taper Tube Asoembly \\
\hline 16. & Nut & 33. & Screw (6 Used), \\
\hline 17. & Trip Lever & 34. & Screw (2 Used) \\
\hline
\end{tabular}

NOTE:-The operating unit of the Automatic Electrolae differs from the Automatic Victrolas in the taper tube return lever No. 18, Fie. 1. All \(10-50\) unita above serlal No. 8950, all \(10-51\) above serial No. R00, and all \(10-70\) and \(9-55\) have a motor plate with proviston for mounting the olectric pick-up shunt switch and the remote reject control.

\section*{SERVICING}
1. Should the sound box (or pick up) fail to swing into the record groove after the tone arm has descended to the playing position :


Check to see that the machine is level. If the right side (facing the front of the machine) is lower than the left, the sound bor will not swing over into the record groove. If the left side is low the sound box will skip the first few grooves of the record. This is because the tone arm is the arm to swing into the playing groove by force of gravity after lowering upon the smooth portion of the record.
True levelling is obtained by the use of a spirit level. The tevel should be placed on the turntable to accomplish the desired resuit. Level readings should be taken in a right angles to it. Obviously, the remedyent and also at ment not in a horizontal plane is to ment not in a horizontal plane is to place thin pleces of cardboard, or other avallable material under the feet of the lower end until the proper level is obtained. Bear in check the levelling frequently. remedy: it is advisabie to
2. If the record lift ring (No. 52, Fig. 2) fails to pick up record:
a. The mapazine spindle is bent either towards the front or back of the instrument.
b. The magazine spindie (No. 36, FIg. 2) should either be lowered or raised slightly as the case may warrant, by adjusting screw (Part No. 19322).
c. The record is warped.

NOTE:-To prevent interruption of the program it is IMPORTANT that BADLY WARPED recorde should not be used.
d. Lift ring shaft is bent.

10-51, 10-70
e. Operating unit and magazine stand are located either coo far away or too close together, and will not permit the records to mount the buttons properly. Remove sary so that the stand may be placed in the correct position with reference to the operating unit.
3. If the record drops into the drawer after being lifted from the magazine spindle or fails to line up with the turntable spindle:
a. The magazine spindle is bent either towards the front or the back of the instrument.
h. A warped record has been used.
c. Warped or bent lift ring.
d. Lifter ring posts ( 2 and 3. Fig. 1) out of line.
4. Should binding of the record lift pad (No. 50, Fig. 2) occur:
a. Remove the shaft (No. 49, Fig. 2.) If bent, it should be replaced with a new shaft.
b. Note if sidea of record lift pad are binding against nut of latch and link of record lift ring. If necessary, file the sides 80 as to clear the ring.
A bent shaft causes failure of the pad and lift ring to rise simultaneously. The record consequentily is not raised from the turntable equally and is thus forced by the revolving turntable to strike the side of the record chute. This condition may cause breakage of records.


Fig. 2
```

 Name of Part
 35. Screw
Nut (Not Shown)
36. Magazine Spindle
37. Magazine Stand
38. Tilting Lever
. Screv
Nut (Not Shown)
39. Nut
40. Latch
41. Base
Screw
42. Screw
43. Screw (Not Shown)
Record Guide
44. Latch
45. Link
46. Shaft
47. Record Lift Pad
48. Felt
49. Record Lift Ring
50. Felt
51. Screw
52. Switch
53. Roller
```
5. If the lift ring fails to discharge a record into the drawer after it has been played:

The amall spring (Part No. 16998) shown in Fig. 2 may be broken or dieconnected.


Fig. 3
\begin{tabular}{ll} 
& Name of Part \\
57. & Nut \\
58. & Screw \\
59. & Trip Lever \\
60. & Felt \\
61. & Screw \\
62. & Latch Trip
\end{tabular}
6. If the brake does not shut off at end of program:
a. The small screw (No. 58. Fis. 3) on the automatic stop is not properly adjusted.
b. Set screw (No. 70, Fig. 4) located under brasa plate on switch trip may be loose.
c. One of the springs (No. 63 or No. 64, Fig. 4) on the brake may not be properly adjusted, or has become loosened.
d. The electric switch contacts are sticking.

On 10-50 below serial number 8951 and 10.51 below serial number 801 proceed as follows:
Remove the bakelite cap of switch and spread contact points to permit easier operation. WHEN TAKING THE SWITCH APART BE CAREFUL TO OBSERVE THE POSITION OF THE INSULATING WASHERS SO THAT THEY CAN BE PLAC
POSITION WHEN REASSEMBLING.
On all other automatic instruments the following procedure should be used:
Remove bakelite top, loosen screws holding contact mechanism and with switch in closed position, move switch towards the shoulder of the latch, leaving enough clearance so that there is no pressure on open to their maximum polat and prevent arcing and open to their maximum point and
e. Warped lift ring.


Fig. 4

\section*{Name of Part}
63. Spring
64. Spring
65. Top Plate
66. Switch Lever
67. Nut
68. Cord
69. Plug
70. Screw
71. Bottom Plate and Switch Assembly

10-50 Below Serial No. 8951
10-51 Below Serial No. 801
All Other Automatics Bottom Plate Only
72. Spacer
73. Switch (Used wlth Bottom Plate 20305A)
7. Failure to reject a record when the reject button is pushed may be caused by:
a. Reject button having been forcibly pushed in, bending connecting link to reject mechanism. This can be remedied by removing the front panel on which mechanism back to Its orisinal position
b. Defective reject magnet circuit. (Models 10-70 and 9-55).
1. Bad awitch-dirty contacts.
2. Burnt out coli.
3. Broken witing.
8. Continued rejection when the button is not pushed may be caused by:
a. The button being stuck, having been forcibly pusbed In by the operator.
b. Heavy grease or foreign matter in the cam notches of gear (No. 8, Fig. 1).
c. Excesstve pull in epring (No. 28, Fig. 1) or worn teeth on pawl.
d. Worn trip lever.
e. Mechanism improperly timed.

CAUTION:-Use nothing but specifled springs throughout.
9. If the point of the needle rides over several grooves in coming to rest on the record, or does not rise high enough to clear the record on its return, proceed as follows:
a. Place Index lever in "Victrola" or "Electrola" position and permit mechanism to operate until the tone arm is in playing position and free.
b. Note distance of paint of needle below top of turntable. This should be between it and \(\frac{1}{1}\) of an inch.
c. If the distance is not approximately the same as that given in (b) make the following adjustment: Loosen screws holding crook stop to tone arm and alter the position of the crook stop until the correct distance of the point of the needle below the turntable is obtained.
d. Tighten screws.

NOTE:-Carelessness in mounting the sound bor or the pick-up on the tone arm, and failure to fir screw on pick-up in hole provided for this purpose, will of ten result in a condition noted at the beginning of this section.
10. Shoukd the mechanism trip when the index lever is in "Victrola" or "Electrola" position, and it has been definitely found that the cause does not lie in any of the points mentioned in subject 8 :
a. Remove the back panel of instrument and loosen taper tube adjusting screw (Fig. 1) one quarter (/4) turn.
b. Force the taper tube arm (the casting contalning the adjusting screw) UP until the trip lever clears the ratchet by approximately for of an inch, and retighten
adjusting screw.

NOTE:-The normal position of the collar should now be approximately \(\begin{aligned} & \text { of } \\ & \text { taper an inch below the base of the }\end{aligned}\) GAper tube, PROVIDINC ADJACENT PARTS IIAVE NOT BEEN BENT OR TAMPERED WITH.
11. If the sound box or pick-up does not lower at the proper position onto a ten- or twelve-inch record: falls into the record groove without first striking smooth outside margin: or does not reach the outside diameter of record before lowering:
a Place twelve-inch record on turntable with index lever in 12-inch position, start the motor and note the distance at which the needle strikes to right or to left of correct adjustment. (Needle should strike record
b. Turn Index lever to "Victrola" or "Electrola," allowing mechanism to complete cycle so that tone arm is free and in playing position.
c. Stop motor.
d. Move the tone arm towards the center of the record, past the eccentric groove untilit strikes the sup.
e. Slightly etch the record lathel at this point with the
needle.
f. Remove the back panel of the instrument, allowing access to "Taper Tube Adjusting Screw," as shown in Fig. 1.
g. Loosen the screw one quarter (1/4) turn so that the tone arm can be moved the proper distance in the casting either to the right or left of the etched mark an the record until the proper adjustment has been obtaimed. The adjusting screw should again betight-
ened, BEING VERY CAREFUL THAT THE TAPER TUBE ARM CASTING HAS NEITHER RAISEID NOR LOWERED WITH RESPEC' TO THE TONE ARM.
h. Remove twelve-inch record and replace with ten-inch one.
i. Start the automatic mechanism again and allow it to run until the taper tube return lever starts to draw the taper tube towards the record. Shut of power and revolve turntable by hand (if induction diac comes to rest on the record. (If it is noted that the horizontal travel of the needie changes to a slope just horizontal travel of the needie changes to a slope just
before reaching the record and continues so, until before reaching the record and continues so, unt mechanism is lowering the sound box or pick-up mechanism is lowering the tound box or pick-up
prior to the termination of the meedie's horizontal prior to the termination
travel towards the record.)
As a condition of this nature will sometimes cause the needle to drop outside of the record edge and damage the adjacent mechanisms, or, due to the greater velocity attained on the slope, break down the walls of the first grooves, the following adjustments should be made:
j. Slightly loosen lock nut (13A, Fig. 1) on cam button and with screw driver turn button about ten degrees in elther a clockwise or counter-clockwise direction.
h. Tighten nut and start the mechanism through its cycle, again noting the manner in which the needle cycle, again noting the record. Observations should show a needle ptrikes the record. Onservations shouldically horizontal until the needle is almost path practicaliy horizontal until the needie ts almos drop to the record's surface. In the event that this adjustment has not yet been reached, turn the cam button about ten degrees more in the same direction and repeat until the mechanism functions in the desired manner.
In order that this eradual adjustment is not carried too far and to prevent the cam button from resting too much on the slope of the main slide, a check may be made from the following requirements:
With the index lever in "Victrola" or "Electrola" position, and the needta resting on the margin of a ten-inch record, the clearance between the bottom of the fulcrum pin on the taper tube assembly and the fish rail on No. 13, Fix, 1, should he about th of an inch, providing the fish tail has not been bent.
From the above description it should now be evident that the main function of the cam button is to determine the tinie or position with respect to the horizontal travel of the sound box or pick-up. in which the needle is lowered onto the record, and its adjust ment should not therefore be altered for other fallures.
12. Should the pick-up shunt switch (shown dotted in Fig. 9) fail to close or should it momentarily open after the reject button has been operated, or fail to omen when the first music grooves are reached:

With rolter " \(G\) " engaged in pawl carrier at point "H," Fig. 9. loosen screws holding pdck-up ohtant owitch to the operating unit base, and adjust its position so that the contacts have a clearance of about it of an incta.
If the condition cannot be corrected by the above If the condition cannot be corrected by the above
adjustment, loosen the nut shown at 13 A . Fig. 1 , and adjustment. loosen the nut shown at 13 A .
turn the screw slightly as may be required.
13. Should the mechanism fail to trip in ten- or twelve-inch position:
a. Leosen set screw under crook foint collar of rone arm and tighten collar until all side play is removed, being careful. however. that the up and down move-
ment of the crcok is not impeded. ment of the creok is not impeded.
b. Remove any possible bind from trip pawl on fulcrum pin mentioned in (k), No. 11, above.
14. If the index lever does not point to the proper position on indicator plate, adjustment can be made in the following manner:
a. Remove back of cabinet to give access to gears con trolling index lever. The shaft and pinion are on a block which is attached to the top plate with two screws.
b. With a short screw driver loosen these screws until sears are clear.

\section*{RCA MFG. CO., INC.}
c. Set inder lover so that it pelmet to proper poultion on indicator plate.
d. Detighten the ecreme and then repince the beck of the ciplinet.

Figures 5, 6 and 7 explain details of olling and cleaning the entire mechaniam. DO NOT USE HRAVY GREASE. Heavy grease or foreign matter lodging in the cam notches or gears may cause fallure of operation.


Fig. 5


Fig. 6


Fig. 7
15. Should it become necessary to make accessible parts other than those which can be reached by removing the turntable:
a. Remove the gcrewa " \(A\) " (Fig. 8) on the ferrule around the record chute.
b. Remove the two (2) acrews "B' In the tone arm plate.
c. Remove the speed regulator acrew "C."
d. Loosen the set screw " \(D\) " on the record lift. ring
e. Push out the holding rod "E," and remove lift ring and pad.
f. Remove the four (4) large screws "F."
8. Remove turntable.
\(h\). Lift up on the motor board and pull apart plug connector to the motor starting switch. lifted out of the cablnet.
After the motor board has been replaced, the speed reatator should be readjusted to seventy-eight (78) revolutions per minute.
NOTE:-If it is desired to operate motor with motor board removed, be sure to replace and adjust the speed requlating screw. DAMAGE to the governor WILL RESULT if this point is not observed.

16. To replace a coil, turntable spindle, or disc on the motor, it will be necessary to remove the mechanism from the cabinet. This is accomplished in the following manner:
a. Remove the front panel on which the index lever is located.
b. Remove the three (3) bolte which hold the bed plate secure in the cabinet.
c. Remove the clips oecuring the motor wire to the cabinet.
d. On 10-50 and 10-51:
1. Remove the two (2) bolte which lock the first joint of the horn elbow to the tone arm.
2. Standing at rear of instrument, lift mechanism hidh enough to clear ceatering pine, and toward the rear of the cabinet until the end on which the redulator screw extenaion is located, can be raised over top of front rail. This allowa the end on which the tone arm is located to rest on end rail and mechanism can then be removed.
e. On 9-55 and 10-70:
1. On the 9-55 and \(10-70\) models, loosen screws holdtag pick-up shunt switch (shown dotted in Fig. 9) to operating unit base, and drop awitch.
2. Standing at front of the instrument, grasp the mechandism at the speed rexulator end and raise it, until the centering plas are cleared. Twist mechanism in a clock wise direction, at the same time lifting the left rear end and pushing the unit upward and towards the rear of the cabinet until the indez lever is raised clestr of the front ratl. The mechanism can now be drawn out without further difficulty.
Disconnect motor wires 80 that the wires will go back into position without crosslng. Mark the various terminals to that in reconnecting they will be replaced in the same order in which they were removed.
8. In replacing mechantim, great care should be used so that the centering pins are not forced above the top the bed plate. wiil "jam" and refuse to function.

\section*{RCA MFG. CO., INC.}
17. In removing either the turntable spindle or the disc:
a. Remove reject lever complete shown In Fis. 1, No. 30.
b. Leosen set screw on clutch wheel No. 27, shown in Fig. 1.
c. Remove chutch wheel No. 27 and pawl cartier No. 26, shown in Pig. 1.
d. Remove three (3) motor top phate bolts and drop motor away from bed plate. so that necemary reptacements may be made.
18. Precautions necessary in reassembling:
a. Replace thrust washer (No. 25, Fig. 1).
b. Remount motor on bed plate.
c. Retime mechantam in the following manner, referring to Fis. 9.
1. Hold cam pin afalnet cam slide and resolve gear in clock wise direction until pin strikes side of rise of cam.
2. Mark tooth of Intermediate gear paralhel with slide bar.
3. Revolve cam feer in counter-clockwise direction until cam pin touchee opposite stde of cam.
4. Mark tooth of intermediate gear paralkel whth slde bar.
These prellminary actions will allow the determination of the extremes of the cam and permit the distance to be referenced on the teeth of the Intermediate gear.
5. Divide the distance between the two merked teeth On the intermodtate gear and get the gear in a poodtion where the third caark will be parallel with the slide bar.
The urip lever pin will now be centraltsed with reference to the cam sides.
Upon replacing pawl carrier, "G" and "H" should be in position, as ahown in Fig. 9.
The center line of the connecting rod "A"" should be slightiy beyond the center of the dear "B" so shown. The face of the pawl "E" wrll then be agatact the trip lever " \(F\)."

(Dotted portion at left shows remote reject coll and on right electric pick-up shunt owitch both used on 9-55 and 10-70.)
d. Replace clutch wheel and tighten set screw In spotted point on turntable spindle.
e. Replace rejoct lever.
f. Replace mechanism in cabinet.
\&. Replace front panel.
h. Replace motor board.
1. Replace rear panel.
19. If the tone quality of the model \(10-50\) instrument is not up to standard:
a. Replace the gound box, bearing in mind if thin ie done that it may be neceseary to readjust the tome arm, at explained in oubject alne (9).
NOTE:-It also would be well at this time to place a amall amount of Victor Metor Grease on the end of the cound box crook, to male an alr thent joint between this potnt and the sound box.


Fig. 10
1. Loosen the horn elbow as shown in Pis. 10.
2. Insert a plece of card board large enough to block the sound passage.
3. Retighten horn elbow.
4. Remove seund box from taper tube. Blow Hehtly inte the tube, taking care not to une too great farce, for by co dolng, erease at the joint will be forced out.
NOTE:-If the passage is tight, a ellght resistance will be noticed and a pressure can be eetabltahed. If the passesge is open, it will be impoesible to If the pasespe is open,
establish a back pressure.
20. If the above test shows an air leak exists:


Fig. 11
a. Take the following precautions prior to loosening taper tube adjusting acrew:
1. Etch a mark across the gold plated portion of the base of the cone arm and taper tube arm as shown in Fig. 11, so as to mark the position of these two parts with relation to each other. The replacement can thus be made with a minimum of adjustment.
2. Note the height of the bage of the tone arm in thc taper tube arm (caoting).
b. Loomen the taper tube adjusting ecrew.
c. Remors the taper tube arm casting from the unit.
d. Remove the three (3) screws (one of which is shown in Fig. 1i) on the bace of the tone arm.
e. Lift the tone arm from the unit.


Fig. 12
f. Examine the felt washer (ahown in Fig. 12) to determine that it le properiy packed.


Fig. 13

10-51, 10-70
8. Piace a liberal quantity of FIRM CUP GREASE around the inside diameter of the washer so that the jolnt shown in Fig. 13 will be well sealed when the tone arm is replaced. This joint is the most likely point of air leakage, but when properly eealed it should remain air tight indefinitely.
NOTE:-THE BODY OF VICTOR MOTOR GREASE IS TOO LIGHT FOR THIS WORK AND SHOULD NOT BE USED.
h. Replace the tone arm.

NOTE:-Make sure that felt washer shown in Fig. 12 doe not overlap hole, as a careless replacement of this washer may cause taper tube to bind.
i. Again make tests for alr leaks.

\section*{RCA MFG. CO., INC.}
3. If the leak still remalns make certain that the other Jolnts of the horn elbow are tight. If there is any doubt about these joints they can be sealed with white lead.
k. When certaln that all alr leaks are closed, remove cardboard from horn elbow and tighten joint.
1. Adjust the tone arm until the mark etched on the two base parts correspond and the vertical position In the taper tube arm (casting) is the same as previously obser ved.
m. Make necessary tests with ten-inch ( \(10^{\circ \prime}\) ) and twelve inch ( \(12^{\prime \prime}\) ) records to check the adjustment of the tone arm
n. When all adjustments have been completed, replace the motor board

\section*{AUTOMATIC SWITCHES AND AUTOMATIC BRAKES}

The automatic switch is a system of cams and levers operating in such a manner that the movement caused by the eccentric groove in the record tripe the switch, forcing a friction leather against the turntable and at the same time cutting off the power to the motor. The automatic brake acts in the same way except that the braking effect on the turntable is stronger than in the case of the electric switch.
In the majority of cases there will be but two major adjustments to make. These adjustments outlined below apply to both the automatic switch and the automatic brake unless otherwise noted.
1. If the switch fails to trip, bend the lug A, Fig. 3, so that there will be a smaller bite of the hand lever at the point \(B\).
NOTE: Failure to trip may sometimes be caused by a loose trip arm. Make certain that all acrews of this assembly are tight.
2. If the switch trips before the completion of a record, bend the lug A back, so that there will be a larger bite of the hand lever at the point B, Fig. 3.

NOTE: Do not bend the lug too far as bending too often in opposite directions will snap off the lug.
In some cases it will be necessary to make the following adjustments:
3. The two surfaces at the point \(B\) must be square. If they have become worn round, they should be squared with a fine file.
4. If the switch lever 1, Fig. 1, swings with the eccentric groove, but the friction lever 2 fails to swing. or swings but slightly,

The latch trip 5 is probably caught in a burr on one of the teeth of the latch plate 6 . Rub the teeth of the latch plate with a piece of emery cloth, taking off any burrs that may be present.

\section*{AUTOMATIC SWITCH FOR VE 8-30}


Fig. 1
\begin{tabular}{ll} 
& \multicolumn{1}{c}{ Name } \\
1. & Switch Lever \\
2. Frictlon Lever \\
3. & Spring \\
4. Spring Trip \\
5. & Latch Trich Plate \\
6. & Latch \\
7. & Spring \\
8. & Latch
\end{tabular}
9. Hand Lever
9. Spring
1. Brake Leather Scrake Leather Screw Spring Body Switch Plate Cam Lover Brake Lever
5. If the latch trip does not engage with the latch plate properly when the tone arm is swung to the starting position:
a. Looven the scrown 12, Fis. 1.
b. Adjuat the phate 6 the required amoust.
e. Re-tidhtem the ecrewe.

NOTE-The adjusting of the latch plate has nothing eo do with the cripplag of the iateh.
6. If the brake does not stop the turntable soon enough, the condition can be remedied by one of the following:
. Examine the friction leather, making certaln that It is not worn down too far to make proper contact with the Inside rim of the turntable.
b. In the cape of the electric switch, place a drop of oll on the bearing between the brake lever 17, Fid. 1, and the cam lever 16. In the case of the automatic brake, place the ofl between the brake lever 33, Fig. 3, and the brake plate 29.
c. Increase the tension of the apring 10, Fig. 1, (or 32, Fig. 3) by cuttind off one or more of the coila and then repiacing the end of thespring over the lug. The tension of apring 10 must alvays be lee than that of epring 13 .
7. If the latch 28 does not strike the lug \(\Lambda\) when the hand lever is pulled to the ON position:
a. Increase the tenaton of the apring 31 in the amemanner se deecribed above In (c) of 5 .
b. Decrease the teacten of the epring 27 by stretching the colls.
8. If the 8 witch contacts stick:
a. Remove the two screws 19, Fis. 2, in the awitch body and remove the body from the plate, taking care the the two fiber washers are not lowt.
b. Emaine the contacta at 18 , and remove any corroaion that may be present.
c. Spread the contact fingere 20 with a small ecrew driver.
d. Care should be taken when re-amembling that the Aber whaner in the witch contact unit ere placed property.


Fig. 2

> Name
> 18. Contacts
> 19. Screw (2 Used)
> 20. Contact Flnger Lever
> Flber Washer (2 Used)

\section*{9. If the switch does not make contact:}
a. Proceed as for (a) and (b) of 8 above.
b. Pinch the contact fingers 20 closer together.
c. Replace the parts, taking care that the washer 21 is in Ite proper pooltion.



© John F. Rider



RCA MFG. CO.. INC. RAE-84


Top view of mechanism showing parls


Top view of mechanism with plate removed

RCA MFG. CO., INC.

MODELS \(\underset{U-105}{\mathrm{R}-97, \mathrm{U}-103,} \quad\) RCA MFG. CO., INC.


Figure 1-Details of Motor


\section*{Magnetic Pickup}

The pickup used in the phonograph unit is of an improved design. The horseshoe magnet is rigidly welded to the pole pieces and is irremovable. There is a centering spring attached to the armature to maintain proper adjustment and to provide a limiting effect on the movement of the armature. The fre quency response is substantially uniform over a wide range. Service operations which may be necessary on the pickup are as follows.

\section*{Centering Armature}

Refer to figure 15 showing the pickup inner structure. The armature is shown in its proper relation to the magnet pole pieces, i.e., exactly centered. Whenever this centering adjustment has been disturbed, the screws \(A, B\), and \(C\) should be loosened and the arm ature chmp adjusted to the point where the vertical axis of the armature is at night angles to the horizonta. This centering operation may be facilitated by insert. ing a small rod or nail into the armature needle hole, waing it as a lever to test the angular movement of the armature. The limitations of the movement in each direction will be caused by the armature striking the pole pieces. The proper adjustment is obrained when there is equal angular displacement of the armature and adjustment rod or nasl to each side of the vertical axis of the magnet and coil assembly. The screws \(A\) and \(B\) should then be secured, observing care not to disturb the adjustment of the armature clamp. Then place the pickup in a vise and secure the centering spring clamp by means of the screw C . allowing the centering spring to remain in the position at which the armature is exactly centered between the pole pieces. With a little practice, the
correct adjustment of the armature may be readily obtained. The air gap between the pole pieces and the armature should be kept free from dust, filings, and other such foreign materials which would ob sruct the movement of the pickup armature

\section*{Damping Block}

The viscolond block which is attached to the back end of the armature shank serves as a mechanical filter to eliminate undesirable resonances and to cause the frequency response to be uniform. Should it be necessary to replace this damping block, it may be done by removing screw D and the cover suppor bracket from the mechanism and taking off the old viscoloid block. The surface of the armature which is in contact with the viscoloid should be thoroughly cleaned with fine emery cloth. Then insert the new block so that it occupies the same position at it did originally. Make certain that the block is in correct vertical alignment with the armature The hole in the new viscoloid block is somewhat smaller than the di meter of the armature in order to permit a snus fit With the viscoloid aligned on the armature, screw D and the cover support bracket should then be re. placed. Heat should be applied to the armature (vis oloid side) so that the viscoloid block will fue coloid side) so that the viscoloid block will fuse at the armature A special-tip soldering iron consed to as shown in foure 10 will be found very usefuled performing this operation. The foun should be applied only long enough to slighely, melt the bloct and caed amall bulze on to slightly, melt small bulge on both sides
Replacing Coil

Whenever there is defective operation due to an open or shorted pickup coil, this coil should be re placed. The method of replacement will be obvious upon inspection of the pickup assembly and by study


Figure 5-Tone Arm and Motor Switch Adjustments (Model R-96)
of the cut-a-way illustrations. Make sure that the new coil is properly centered with the hole in the support strip and glued securely in that position. It is important to re-adjust the armature as previously explained after re-asocmbly of the mechanism. Only rosin core solder should be used for soldering the coil leads in the pickup. This same type of solder should be used when necessary for soldering the centering spring to the armature.

\section*{Magnetizing}

Loss of magnetization will not usually occur when the pickup has received normal care because the mag. net and pole pieces are one unit and the magnetic circuit remains practically closed at all times. When the pickup has been mishandled, subjected to a strong a \(\cdot \mathrm{c}\) field, jolted, or dropped, there may be an appreciable loses of magnetic strength, in which case it will be necessary to re-magnetize the entire structure. To do this, it will be necessary to first remove the pictup mechanism from the tone arm, and then remove the magnet assembly. Place the magnet assembly on the poles of a standard pickup magnetizer such as the RCA Stock No. 9549 Pickup Magnetizer and charg ing the magnet in accordance with the instructions accompanying the magnetizer. It is preferable to check the polarity of the pickup magnet and to re magnetize it so that the same polarity is maintained

\section*{Automatic Record Ejector}

The record changing mechanism is designed to be simple and fool-proof. Under normal operating conditions, service difficulties should be negligible. Occasionally however, certain adjustments may be ecasionally, however, certain adjustments may be plained in figure 13
It is important when servicing the automatic mech amism, to have it placed on a level support. It is also anism, to have it placed on a level support. It is also mere is a tendency to bind or jum since bent lever here is a tendeney to bind or jan, poseibly broken parts may result
The top of the record ejector is adjustable in re lation to the turntable spindle, the two being exactly coaxial when properly adjusted To align the tip, re nove the rubber silencer of the ejector assembly loosen ejector tip retaining nut and slide the tip assembly to the position where it is in true line with the axis of the turntable spindle This adjustment may be simplified by placing several records on the turntable, depressing the spindle through the top record hole and lining up the ejector tip in the spindle hole of the record.

To insure that the ejector tip rotates freely, apply a slight amount of oil to the shank of the tip at the point where it is in contact with the ball bearing

Remove the pickup mechanism and terminal board as described above. Remove screws A and B and the magnet assembly. Remove the bakelite coil support (with coil attached) and insert the new coil support assembly in its place, after which replace the magnet assembly and center the armature as described above, then re-assemble the remainder of the unit.

MODEL R-96 uses a single reoord phono turnbable only

The record changing mechanism is designed to be simple and fool-proof. Under normal operating conditions, service difficulties should be negligible. Occasionally, however, certain adjustments may be required. It is important to refrain from forcing the mechanism if there is a tendency to bind or jam, since bent levers and possibly breken parts may result.

\section*{Record Changer Adjustments}

Mount motor-board on a level support. Remove turntable and cover at right of turntable. Adjustment locations are designated on figure 9 as A, B, etc. The adjustments are explained under corresponding symbols below. Perform adjustments in the following order:
A.-Trip rod " \(A\) " should be engaged in "Switch Lever" slot. Adjust trip rod " \(A\) " to obtain about \(1 / 8\) of an inch clearance from motor-board.
B.-Adjust " \(B\) " to the position shown.
C.-With "Index Lever" in "Manual" position, "Pickup Arm" rotated to extreme left, and switch tripped to open contacts "C," adjust contact points " C " by bending the stiff contact arm until points are opened 10 to 30 thousandths of an inch.
D.-With "Index Lever" in "Manual" position, release set screw "D" and force "Manual Index Finger" as far as it will go towards "'Trip Pawl Stop Pin." Tighten set screw.
E.-Adjust at " \(E\) " to provide approximately \(1 / 32\) of an inch between outer end of "Link Slot" and screw when rubber "Bumper" is in contact with stop bracket.
F. and G.-Remove rubber silencer at " \(F\) " and adjust " \(F\) " and " \(G\) " so ejector tip " \(F\) " is in line with "Spindle." Longitudinal movement, with respect to "Ejector Arm," may be effected by loosening hex. head at "F." Lateral move. ment of "Ejector Arm" may be effected by adjustment "G."
H.-Adjust " H " so under side of pickup head can be raised \(21 / 2\) inches above motor board.
J.-Adjust screw " J ". until friction will just force " Trip Finger" to move "Trip Pawl" when "Index Lever" is in " 12 " inch position.
N.-Adjust needle pressure by turning screw under center of "Pickup Arm"' so that a force of 72 grams ( 2.5 ounces) is required to lift needle from record. Hook scale under needle screw to measure force.
K.-Adjustment "N" must be performed prior to this adjustment. With a 12 inch record on turntable, turn on "Motor Switch," place "Index Lever" to " 12 " position and adjust " \(K\) " so that "Cable" tension will allow needle to lower slowly on start of record at completion of eject cycle. Turn "Motor Switch" off after eject cycle is completed and check to see that "Cable" is slightly loose when "Pickup Arm" is moved against "Spindle." Replace turntable and put a needle in "Pickup."
L.-Adjust "L" so needle will drop into center of smooth portion at the start of a 12 inch record when" "Index Lever" is in " 12 " inch position and "Pickup Arm" is to extreme right.
M.-Loosen three screws " \(M\) " and rotate "Spacer" until pointer on "Spacer" is in line with screw to right of "Pick. up Arm."
P.-Adjust turntable height by insertion or removal of thrust washers at "P" so ejector tip " \(F\) " will not eject bottom 12 -inch record but will eject second from bottom record.
Q.-Adjust position of shorting switch at "Q" so switch closes when needle is just outside a 12 -inch record.
R.-Adjust screw "R" upward just enough so that with one record on turntable and ejector tip " \(F\) " resting on record surface, there is \(1 / 32\) of an inch clearance between screw "R" and "Ejector Arm."

\section*{Record Changer Service Hints}
1.-"Ejector Arm" goes through normal cycle but does not eject records. Adjust " \(F\) " and "G." See that "Spindle" slides freely.
2.-Ejects bottom record. Lower turntable by removing thrust washers at "P."
3.-Ejects records properly down to second from bottom of pile. Raise turntable by placing thrust washers at "P."
4.-Eject cycle does not start after needle reaches eccentric groove. Adjust "J" (turn screw clockwise).
5.-Eject cycle starts before eccentric record groove is reached. Adjust "J" (turn screw counter clockwise). Set "Index Lever" to " 12 " inch or " 10 " inch position after starting to play record. Do not jar motor-board during automatic operation.
6.-Lateral movement of "Pickup Arm" has no control over starting and stopping. Adjust clearance of rod "A." See that rod " \(A\) " engages in slot of "Switch Lever."
7.-Fails to eject top record of a pile because "Ejector Arm" strikes record in returning to center at end of eject cycle. Adjust screw "R" upward to provide greater incline so that roller in "Ejector Arm" will roll back during cycle.
8.-Pickup strikes record during eject cycle. Adjus " \(K\) " and "H."
9.-Starts playing record several grooves in from begin ning or needle misses record entirely. Adjust "L."
10.- Needle falls on smooth portion at start of record but does not move into playing groove. Adjust "M." Check to see that motorboard is level.
11.-Automatic stop does not operate after needle reaches eccentric groove. Adjust "B" and "C."
12.-Motor does not restart when "Pickup" is returned to rest position. Adjust "C." See that switch mechanism parts move freely and springs are functioning.
13.-Starts eject cycle although set for "Manual" operation. Adjust "D."
14.-Noise in loudspeaker while changing needles. Clean "Shorting Contact" and adjust "Q."
15.-"Wow" in record reproduction.-Instrument should be warmed to about \(65^{\circ} \mathrm{F}\). Ejector tip, should be centered and free to rotate (adjustments " F " and " G "). There should be no solid particles on gear teeth or in grease; no tendency to bind. Turntable plate should be in dynamic balance and "Spindle" should be straight. Proper lubrication is important.
Lubrication.-Clean motor gear-box thoroughly before regreasing. Apply less than a tablespoonful of a grease, such as "Cities Service No. 7035-A1" or "Koolmotor Universal Trojan No. \(1, "\) directly on gears taking care to get none in rotor bearings. Put medium motor oil (S.A.E. No. 30) in the oil holes. Cover main gear and cam of automatic mechanism with a light, grease such as "Socony-Vacuum No. 2. Any good house-hold oil, such as " 3 -IN-ONE" is suitable for the ejectortip " \(F\) " bearing.

\section*{Pickup}

An adjustment is provided to compensate for redaced sensitivity of the crystal pickup with age. Adjustment re quires the use of a 1,000 ohm'pervolt a-c voltrater (rectifier type, 10 volt range) and a frequency record. With the voltmeter connected across the loudspeaker voice coil, "Phonograph Volume" and "Fidelity" controls turned extreme clockwise, "Dynamic Amplifier" control turned counterclockwise, and "Exp.Off Switch Cable"-plug pulled out from apron of dynamic amplifier (see figure 10), adjust R101 (end of compensator unit) until an RCA Victor Technical Purpose Record Cat. No. 84519-A or 84505-B gives a volt Purpose Record Cat. No. 5 volts on 400 cycles. Adjustment of R101 will be facilitated by removing the compensator unit from the phonograph control panel, after removing control knobs and shaft bushing nuts. R101 should also be adjusted if pickup is replaced.


Illustration of Phonograph Board

The phonograpl mechanism is designed to play a series of eight 10 -inch or seven 12 -inch records automatically, repeating on the last record. Either 10 -inch or 12 -inch records may be played singly (manual operation). A speed-shift lever permits playing either the standard 78 r.p.m. records, or the long playing \(33 \mathrm{I} / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}\). records.

For automatic record-changing operation, or for automatic repeating of one record, the records must have the eccentric or spiral groove in the center. For self-stopping on manual operation, the records must have the eccentric stopping groove.

\section*{"Eject Cycle"}

Before operating the phonograph, be sure that the pickup arm and the ejector arm are down at playing level and can be moved easily by hand. If not, the index lever will be in position " 10 " or " 12 " and an eject cycle must be completed to bring the arms down. To do this, turn on the phono switch so that the turntable will revolve and the motion of the pickup arm will be resumed; when the pickup and ejector arms come down, turn off the phono switch.

CAUTION: Never use force to start or stop the motion of the record-changing mechanism or the pickup or ejector arms.

\section*{Automatic Operation}

\section*{Proceed EXACTLY as follows:}
1. See that the index lever is set at "manual," otherwise the pickup can not be moved out beyond the edge of the record. (See "eject cycle" above.)
2. Place the pickup over the needle gauge plate, with pickup arm resting on the two stud supports. Loosen needle screw, insert needle in needle hole in top of pickup, so that it drops all the way down against the needle gauge plate, then tighten screw.
3. Raise ejector arm and load records on turntable, not higher than spindle. Lower ejector arm onto spindle.
4. Turn phono switch "on." After turntable has picked up speed, lift the pickup arm and lower onto record, so that needle is in outer groove.
5. Move index lever carefully to position " 10 " or " 12 ," according to the size of records on the turntable.
6. Adjust the phono volume control.
7. To eject a record being played and start another one, lift the pickup arm, move it to center of turntable, and hold lightly until it is moved from your hand by the , automatic mechanism.
8. To reload the turntable wait until both arms are down in normal position at end of "eject cycle," and then
turn off the phono switch. Move index lever to "manual" and place pickup over needie gauge plate. Do not change this order. Then proceed as outlined in paragraphs 3, 4, 5, and 6 above.
9. The last record will repeat until the phomo switch is turned off, or the index lever placed at "manual." In the latter case, the turntable will stop automatically if the record has the eccentric stopping groove in the center; otherwise it will continue to revolve. To dis continue operation, turn off the phono switch.
10. To change needle, place pickup over needle gauge plate with pickup arm resting on stud supports, loosen needle screw, and turn needle ejector knob to right to drop needle into the used needle box. Replace with new needle as described in paragraph 2 above.

\section*{Manual Operation}
1. A single record, either 10 inch or 12 -inch may be played. If pickup and ejector arms are not down 60 that they can be moved freely by hand, complete the eject cycie as described previously. Move index lever to "manual."
2. Place pickup on needle gauge plate, and record on turntable.
3. Turn phono switch "on."
4. When turntable has picked up speed, lift the pickup arm and lower onto record so that the needle is in outer groove.
5. Adjust the phono volume control.
6. When record is finished, the turntable will stop automatically if the record has an eccentric stopping groove. To discontinue operation, turn the phono switch "off."

\section*{Needles}

The Green-Shank Chromium Needle is recommended for general purposes. As alternatives, either the Orange-Shank Chromium Needle, or the Tungstone Needle (Full Tone) may be used.

Never insert a used Chromium or Tungstone needle in the pickup, as damage to the record will result.

Transparent-faced (illustrated) and Victrolac records should never be played with Tungstone needles.

\section*{Leveling}

When a record has been played, the pickup moves out, the played record is ejected, and the needle is automatically placed in the starting groove of the next record. If the needle fails to enter the starting groove, raise the right-hand side of the cabinet by inserting thin spacers under that side of the cabinet. If the needle slides over a few grooves, raise the left-hand side of the cabinet.


Phonograph Oiling Points
Every six months apply a few drops of good quality light machine oil at the points shown above.

(C)John F. Rider

RCA MFG. CO., INC.

\section*{REPLACEMENT PARTS}
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { STOCE } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION \\
\hline & MOTOR ASSEMBLIES \\
\hline 9785 & Motor-105-125 volte-25 cyclea (M101) \\
\hline 9851 & Motor-105-125 voltt-50 cycles (M101) \\
\hline 9850 & Motor-105-125 volts-80 cycles (M101) \\
\hline 12050 & Suspension Spring-Motor mounting apring, washer and etud asembly-comprining six aprings, six cup washers, three spring washeris and three studs \\
\hline & MOTOR BOARD ASSEMBLIES \\
\hline \[
11881
\] & Base-Phonograph compartment lamp socket and baso \\
\hline \[
14819
\] & Cablo-Shielded pickup cable-connects shorting switch to compensator pact \\
\hline 12051 & Capacitor-2 Mfd., complete with 2 -contact male connector for use with motor, Stock Nos. 9650 or 9851 only (C104) \\
\hline 18101 & Capacitor-4 Mid., complete with 2 -contact male connector for use with motor Stock No. 9735 only (C104) \\
\hline 4674 & Connector-2-contact male connector for Stock Now. 12051, 13101 or phono compartment lamp leads \\
\hline 4577 & Connector-2-contact male connector for motor cable \\
\hline 11488 & Connector-2-contact female connector for motor leads \\
\hline 14760 & Cup-Used-needie cup \\
\hline 14762 & Damper-Turntable damper \\
\hline 11553 & Encutcheon-Index eacutcheon engraved "Manual-12- \\
\hline 14688 & Knob-Needle reat knob \\
\hline 4340 & Lamp-Phonograph compartment lamp-6.3 volts \\
\hline 3764 & Nut-Cap nut for motor board suspension \\
\hline 14761 & Rest-Pickup rest \\
\hline 14825 & Roller - Pickup arm cable gaide roller - compriaing bracket, roller and guide pin \\
\hline 11711 & Shado-Phonograph compartment lamp shade \\
\hline 14758 & Spacer-Pickup arm mounting spacer \\
\hline 14270 & Spring-Retaining spring for knob, Stock No. 14758 \\
\hline 4565 & Spring-Tension spring for needle rest \\
\hline 3783 & Suapension Spring-Suspension spring, washer and bolt assembly for motor board-comprising one bolt, two cup washers, two aprings, two "C" washera, and one cap nut \\
\hline 80157 & Switch-Pickup shorting switch (S105) \\
\hline 4871 & Switch-Operating awitch-toggle awitch (S104) \\
\hline 14759 & Turntable. complete \\
\hline & EJECT ARM ASSEMBLIES \\
\hline 14753 & Arm-Eiect arm, complete \\
\hline 11538 & Ball-1/16-inch diameter steel ball \\
\hline 10129 & Ball-3/16-inch diameter steel ball \\
\hline 11529 & Bearing-Eiector tip bearing and nut \\
\hline 11538 & Bracket-E ject arm bracket \\
\hline 11537 & Collar-Eject arm shaft collar and uet screw \\
\hline 11536 & Cushion-Counter balance roller cushion-located inaide of eject arm \\
\hline 4055 & Post-Vertical adjustment post-located on eject arm bracket \\
\hline 3729 & Roller-Eject arm counter balanco roller-located inside of eiect arm \\
\hline 4580 & Screw-No. 8-32-3/16-inch square head set screw for ciect arm collar \\
\hline 11534 & Screw-Na 8-36-7/32-inch special screw for eject arm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 11535 & \begin{tabular}{l}
tip center adjustment \\
Shaft and Collar-Eject arm vertical action shaft and cot lar astembly
\end{tabular} \\
\hline 11528 & Silencer-Ejector tip silencer \\
\hline 4067 & Spring-Ejector arm bracket spring \\
\hline 11531 & Soring-Ejector tip spring \\
\hline 11530 & Tip-Eiector tip with tip center, adjusting screw and cap \\
\hline 11539 & Yoke-Eject arm yoke assembly \\
\hline & PICKUP AND ARM ASSEMBLIES \\
\hline 10941 & Ball-Steel ball for pivot shaft bearing \\
\hline 3204 & Cable-Pickup lift cable \\
\hline 30101 & Cable-Shielded pickup cable-connects pickup unit to shorting switch \\
\hline 12850 & Damper-Pickup arm pivot shaft damper-compriaing one upper rubber damper and bearing, one lower rubber damper and one lower bearing \\
\hline 14820 & Mechanism-Pickup mechanism, complete with needle screw \\
\hline 14818 & Pickup and arm, complete \\
\hline 12546 & Plug-Pivot shaft bearing olug \\
\hline 14883 & Rod-Pickup arm brake trip rod \\
\hline 14822 & Screw-Needle screw \\
\hline 14824 & Screw-Piclup mechanism terminal \\
\hline 14913 & Spring-Pickup arm tension spring \\
\hline 14821 & Support-Pickup mechanism support \\
\hline & OPERATING MECHANISM \\
\hline 14754 & Cam-Cam and rear asembly \\
\hline 6808 & Clutch-Trip lever friction clutch \\
\hline 14756 & Cover-Metal cover for trip lever and friction finger assembly \\
\hline 6809 & , Finger-Manual index lever finger assembly \\
\hline 3870 & Finger-Friction finger assembly \\
\hline 11554 & Lever-Manual index lever-less pin \\
\hline 14755 & Lever-Main lever and link assembly \\
\hline 14914 & Lever-Pickup lift cable lever \\
\hline 11655 & Lever-Trip lever and friction clutch assembly \\
\hline 6503 & Pawl-Trip pawl assernbly \\
\hline 3672 & Pin-Manual index lever pin \\
\hline 13635 & Plate-Eject arm actuating plate assembly \\
\hline 4564 & Screw-Manual index lever finger set screw \\
\hline 4059 & Screw-Trip lever clutch tension adjustment screw \\
\hline 4686 & Screw-Special screw used to fasten main lever and link asembly bushing \\
\hline 13687 & Spacer-Pickup arm mounting apacer \\
\hline 13638 & Spring-Actuating spring \\
\hline 4565 & Spring-Manual index lever finger tension spring \\
\hline 4061 & Spring-Main epring lever tension epring or pickup uft cable soring \\
\hline 2893 & Spring-Trip lever latch plate tension \\
\hline 3676 & Soring-Cam and gear pawl tension spring \\
\hline 14916 & Spring-Pickup lift lever soring \\
\hline 4125 & Spring-Eiect arm horizontal action tension spring \\
\hline 13686 & Stud-Pickup arm lift cable stud and nut \\
\hline 2917 & Washer-Spring washer-" \(U\) " type \\
\hline 3994 & \begin{tabular}{l}
AUTOMATIC SWITCH ASSEMBLIES \\
Cover-Motor awitch cover
\end{tabular} \\
\hline 10184 & Plate-Avtomatic brake latch plate \\
\hline 10174 & Springs-Automatic brake abrines \\
\hline 8805 & Switch Assembly-Aitornatic avitch, complete \\
\hline 3322 & Switch-Motor mwitch (S10S) \\
\hline
\end{tabular}


> UNDERSIDE VIEW OF MOTORBOARD. ELECTRICAL CONNECTIONS.

Type.......................... Automatic Record Ejector Record Capacity......... Eight 10 -inch or seven 12 -inch Turntable Speed................................... 78 r.p.m. Type of Pickup........................................ . . Crystal Pickup Impedance.......... 80,000 ohms at 1,000 cycles

\section*{MI-4831 Portable}

The RP.139-A and RP. 145 automatic record changers are very similar in design and construction. Most of the parts and adjustments are identical on both. The RP-139-A turntable is driven through a worm gear in the motor housing while the RP- 145 turntable is driven through a friction drive disc mounted on the turntable spindle.
On Model RP-145 it is important that the drive motor spindle, and rubber tires on main driving disc and idler pulley be kept clean and free from oil, grease, dirt, or any foreign matter at all times. Any quick-drying naphtha is satisfactory for cleaning these parts. The RP- 145 drive motor bearing is lubricated from an oil well filled and sealed at the factory. It should not require lubrication in the field.

The RP- 145 turntable is not removable from the spindle. However, the rubber tired driving disc is fastened to the spindle by means of a tapered pin " 24 ." If necessary to remove these parts the tapered pin should first be removed. The driving disc can then be removed from the spindle and the turntable and spindle assembly lifted upward from the motorboard. If this is done, great care should be taken not to bend the spindle. At the same time the spindle bearing should be oiled and the cup and ball thrust bearing oiled and checked for proper position.

Before servicing the automatic record changer, inspect the assembly to see that all levers, parts, gears, springs, etc., are in good order and are correctly assembled.

A bind or jam in the mechanism can usually be relieved by rotating the turntable in the reverse direction.

The changer can be conveniently rotated through its change cycle by pushing the index lever to "Reject" and revolving the turntable by hand. Six turntable revolutions are required for one change cycle.

If the record changer or cabinet is not perfectly level, normal operation is likely to be affected.

The 10 and 12 inch records must be absolutely flat for smooth operation.

A pickup shorting switch, located under the motorboard, operates when the pickup is moved outward to the pickup rest.

\section*{MISCELLANEOUS SERVICE HINTS}

Incorrect adjustment of a particular mechanism of the changer is generally exhibited in a specific mode of improper operation. The following relations between effects on opera-

MODELS RP-139A, RP-140,
RP-145, RP-145E
tion and the usual misadjustments will enable ready adjustment in most cases.
1. For any irregularity of operation, the adjustment of the main lever " 15 " should be checked first as in "A."
2. Needle does not land properly on both 10 and 12 inch records-Make complete adjustments " \(D\) " and "E."
3. Needle does not land properly on 12 inch record but correct on 10 inch-Effect adjustment "E."
4. Failure to trip at end of record-Increase clutch " 5 " friction by means of screw "B." Also, see that levers " 7 " and " 12 " are free to move without touching each other.
5. Pickup strikes lower record of stack or drags across top record on turntable-Adjust lift cable per adjustment "C."
6. Needle does not track after landing-Friction clutch " 5 " adjustment " B " may be too tight; bind in tone arm vertical bearing; levers " 7 " and " 12 " fouled; or pickup output cable twisted.
7. Cycle commences before record is complete-Record is defective, or adjustment " \(B\) " of friction clutch " 5 " is too tight.
8. Wow in record reproduction-Record is defective; or instrument is not being operated at normal room tem. perature; on Model RP-145 oil, grease, dirt, or other foreign matter on motor spindle, main driving dise or idler pulley rubber tire. Clean with any quick drying naphtha. Also, on RP. 145 the motor support bracket "N" should be moved in its mounting holes until the motor spindle is parallel to the turntable spindly and motorly at right angles to the main driving disc " 29 ." The bracket mounting nuts should then be securely tightened.
9. Record knives strike edge of records-Records warped record edges are rough; or knife adjustments " \(F\) " and "G" are incorrect.
10. Record not released properly-Adjust record shelf as. semblies in respect to shaft by means of adjustment "H."
11. When playing both types of records mixed and needle either lands in 10 inch position on 12 inch record or misses record entirely-Increase tension of mixed record discriminating lever spring " M ."

\section*{INSTALLATION}

The Automatic Record Changer is supplied ready for mounting on a cabinet rail. This rail must be drilled in accordance with the information and dimensions shown on page 3. All necessary parts are included in your purchase.

To install the RCA Automatic Record Changer:
1. Place the Motorboard Unit in position on the cabinet rail with the upper mounting springs in place as shown on page 3.
2. Secure Motorboard in position using the screws and lower mounting springs as shown on page 3. Tighten up the four motorboard mounting screws to compress all eight mounting springs to the dimensions shown. Make sure that the Motorboard Assembly is level in the cabinet.
3. On the Stock RP-139-A the turntable, rubber spindle piece and washer are in a separate package, see page 4. Raise and swing out the record holder shelves, place metal washer over spindle so that the grooved extension fits over the pin in the spindle, place rubber spindle piece securely down over spindle and turntable securely down over rubber spindle piece. The turntable is attached in place on the RP-145.
The pickup and needle box are held by a Z-shaped bracket attached to the motorboard with a screw. Loosen the screw, remove the bracket and replace the screw to cover the hole.

\section*{Leveling}

When a record has been played the pickup moves out, another record is dropped down, and the needle is fed auto matically into the starting groove of this record. If the needle fails to enter the starting groove, raise the right-hand side fails the enternet by inserting thin spacers under the feet on that side. If the needle slides over a few grooves, raise the left-hand side of the cabinet in a similar manner.

\section*{Lubrication}

A few drops of good quality light machine oil should be applied about once every six months at the base of the spindle under the turntable. On the Stock No. 9865 the turntable may be lifted and the oil applied below the metal washer.

Either of these Record Changers will automatically play a series of eight 10 - or seven 12 -inch records of the 78 revolutions per minute type, or, if you so desire, you may change records, of any size up to 12 inches, manually. Records of
the last few years with the standard eccentric or spiral stopping groove will operate the automatic mechanism and change your records for you. The Record Changer is for operation on 110 volts, 60 cycles.
\[
\begin{array}{r}
\text { HODELS } \mathrm{RP}-139 \mathrm{~A}, \mathrm{RP}-140, \\
\mathrm{RP}-145, \mathrm{RP}-145 \mathrm{E} \\
\mathrm{MI}-4831 \text { Portabl } \theta
\end{array}
\]

\section*{RCA MFG. CO., INC.}

© John F. Rider

\section*{ADJUSTMENTS}
A. Main Lever.-This lever is basically important in that it interlinks the various individual mechanisms which control needle landing, tripping, record separation, etc. Rotate the turntable until the changer is out of cycle; and check rubher bumper bracket (A). The roller should clear the nose of the cam plate by approximately \(1 / 16\) inch.
B. Friction Clutch.-The motion of the tone arm toward the center of the record is transmitted to the trip pawl " 22 " by the trip lever "7" through a friction clutch "5." If the motion of the pickup is abruptly accelerated or becomes irreg. ular due to swinging in the eccentric groove, the trip finger " 7 " moves the trip pawl " 22 " into engagement with the pawt on the main gear, and the change cycle is started. Proper adjustment of the friction clutch "5" occurs when movement of the tone arm causes positive movement of the trip pawl "22" without tendency of the clutch to slip. The friction should be just enough to prevent slippage, and is adjustable by means of screw "B." If adjustment is too tight. the needle will repeat grooves; if too loose, tripping will not occur at the end of the record.
C. Pickup Lift Cable Screw.-During the record change cycle, lever " 16 " is actuated by the main lever " 15 " so as to raise the tone arm clear of the record by means of the pickup lift cable. To adjust pickup for proper elevation, stop the changer "in-cycle" at the point where pickup is raised to the maximum height above turntable plate, and has not moved outward; at this point adjust locknuts " C " to obtain 1 inch spacing between needle point and turntable top surface.
D. \& E. Needle Landing on Record. The relation of coupling between the tone arm vertical shaft and lever " 20 " determines the landing position of the needle on a 10 inch record. Position of eccentric stud " \(E\) " governs the landing of the needle on a 12 inch record; this, however, is dependent on the proper 10 inch adjustment.
To adjust for needle landing, place 10 inch record on turntable; push index lever to reject position and return to the 10 inch position; see that pickup locating lever " 17 " is tilted fully toward turntable; rotate mechanism through cycle until needle is just ready to land on the record; then see that pin "V" on lever " 14 " is in contact with "Step T" on lever " 17 ." The correct point of landing is \(45 / 8\) inches from the nearest side of the turntable spindle: loosen the two screws "D" and adjust horizontal position of tone arm to proper dimension. being careful not to disturb levers " 14 " and " 17. ." Leave approximately \(1 / 32\) inch end play between hub of lever " 20 " and pickup base bearing, and tighten the blunt nose screw "D"; run mechanism through several cycles as a check, then tighten cone pointed screw "D."
After adjusting for needle landing on a 10 inch record. place 12 inch record on turntable; push index lever to reject and return to 12 inch position: rotate mechanism through cycle until needle is just ready to land on the record; the correct point of landing is \(5 \% / 8\) inches from nearest side of spindle. If the landing is incorrect, turn stud " \(E\) " until the eccentric end adjusts lever " 14 " to give correct needle landing. The eccentric end of the stud must always be toward the rear of the motorboard, otherwise incorrect landing may occur with 10 inch records.
F. \& G. Record Separating Knife. - The upper plate (knife) " 25 " on each of the record posts serves to separate the lower record from the stack and to support the remaining records during the change cycle. It is essential that the spacing between the knife and the rotating record shelf " 27 " be accurately maintained. The spacing for the 10 inch record is nominally .055 inch, and for the 12 inch record is .075 inch.
To adjust, rotate the knife to the point of minimum vertical separation from the record shelf and turn screw and locknut "F" to give . 052 - 0.058 inch separation. Screw "G" must not be depressed during this adjustment. After setting screw " \(F\)," adjust screw " \(G\) " so that when its tip is depressed flush with top of record shelf, the vertical spacing between the knife, in its lowest rotational position, and the shelf, is . 072 .078 inch.

H. Record Support Shelf.-The record shelf revolves during the change cycle to allow the lower record to drop onto the turntable. Both posts are rotated simultaneously by a gear and rack coupled to the main lever " 15 ," and it is necessary that adjustment be such that the record is released from both shelves at the same instant. To adjust, place a 12 inch record on the turntable, rotate mechanism into cycle to the point where both separating knives have turned clockwise as far as the mechanism will turn them; lift record upward until it is in contact with both separating knives. Then loosen screws " H " and shift record shelves " 27 " so that the curved inner edges of the shelves are uniformly spaced approximately \(1 / 16\) inch from the record edge. Some backlash will be present in the rotation of these shelves. They should be adjusted so that the backlash permits them to move away from the record but not closer than the approximate " \(1 / 16\) inch specified above. Tighten the blunt nose screw "H," run mechanism through cycle several times to check action, then tighten cone pointed screw "H."
If record shelves or knives are bent, or not perfectly horizontal, improper operation and jamming of mechanism will occur.
J. Tone Arm Rest Support (not shown). - When the changer is out-of-cycle, the front lower edge of the pickup head should be \(5 / 16\) inch above surface of motorboard. This may be adjusted by bending the tone arm support bracket, which is associated with the tone arm mounting base, in the required direction.
K. Trip Pawl Stop Pin.-The position of the trip pawl stop pin " K " in relation to the main lever " 15 " governs the point at which the roller enters the cam. By bending the pin support either toward or away from trip pawl bearing stud, the roller can be made to enter the cam later or earlier, respectively. This adjustment should be made so that the roller definitely clears the cam outer guide as well as the nose of the cam plate.

Lubrication.-Petrolatum or petroleum jelly should be applied to cam, main gear, spindle pinion gear, and gears of record posts.

Light machine oil should be used in the tone arm vertical bearing, record post bearings, and all other bearings of various levers and pulleys on underside of motorboard. The turntable spindle bearing of RP- 145 must be lubricated from the top of the motorboard. Using an oil can with a long spout, reach in between the turntable and motorboard and apply oil directly to the spindle.

On Model RP-139-A apply a few drops of light machine oil (S.A.E.-10) to the motor oil hole adjacent to the spindle bearing after each 1,000 hours of operation. The oil hole has a screw plug.

Do not allow oil or grease to come in contact with rubber mounting of tone arm base, rubber bumper, rubber spindle cap, or rubber parts of friction drive mechanism of Model RP-145

Before operating the phonograph, either automatically or manually, be sure that the pickup is down and can be moved by hand. If not, a "cycle" must be completed to bring it down. To do this, throw Turntable Switch "on." The turntable will start to revolve and the cycle of motion of the pickup arm will be resumed. When the pickup arm comes down, turn off the Turntable Switch.

\section*{Cautions}
1. Never use force to start or stop the motor or any part of the record-changing mechanism or pickup arm.
2. The use of records which have become warped or damaged through improper care may cause the mechanism to jam and damage the instrument. In addition, records which have become warped will slide on one another when playing, resulting in unsatisfactory reproduction.
3. This instrument is NOT RECOMMENDED for playing 10 -inch and 12 -inch records in mixed sequence. If the user desires this service he must be positive that all records are perfectly flat and free from warp. The Index and Record Reject Lever must be set at " 10 " and after playing the last selection the pickup will come down in position for a 10 -inch record and repeat the playing of the record on a 10 -inch diameter unless the Turntable Switch is turned off. Any jamming of the mechanism under these conditions indicates that the records used are not perfectly flat or that their edges are not sufficiently smooth to permit normal operation of the separators in dropping each record in sequence onto the turntable.
4. Do not leave records on the record holder posta, as they are liable to warp, particularly 80 in warmer climates. Keep your records in a record file (album or cabinet) when not in use. If any records should become warped, place them on a flat surface with a flat heavy article, such as a large book, on top and leave them in this position for a few days.

\section*{Controls and Moving Mechanism}

Index and Record Reject Lever.-This lever is located near the right front corner of the motorboard with its index plate marked for four positions-"MANUAL," "12," " \(10, "\) and "REJECT." When you desire to change record selections manually, this lever should be set in the "MANUAL" position. With the lever in the " 12 " position, the mechanism is set to play a series of 12 -inch records automatically. To play either a series of 10 -inch records, or 10 - and 12 -inch records mixed, the lever should be set at the " 10 " position.

To reject a record being played, or to start the record. changing cycle in case the record just played does not have the standard eccentric or spiral stopping groove, simply push the lever to the "REJECT" position and let go. The pickup will raise up and swing outwards and the next record will drop down. Upon releasing the lever, it will automatically return to the " 10 " position. If you are playing a series of 12 -inch records, the lever should be returned to the " 12 " position after rejecting a record. Keep the lever in its "MANUAL" position when not actually playing records automatically.

Turntable Switch.-The switch located just in front of the Index and Record Reject Lever controls the current to the turntable motor. To start the turntable, set the switch to the "ON" position. To stop the turntable, set the switch to the "OFF" position.

Pickup and Top-Loading Needle Socket.-The pickup is the new crystal type, with a hole in the top for insertion of needles. When not playing records, the pickup arm should be moved out to the right beyond the turntable and placed at rest on the support with the edge of the pickup arm just beyond the vertical lug on the corner of the used needle box and the pickup over the needle gatuge plate. The pickup must be in this position to change needles.

To insert a needle initially, loosen the needle screw on the front of the pickup, place needle in hole at top so that it drops down against the needle gauge plate and then tighten up the needle screw.
Needle Ejector.-The extending tab on the needle gauge plate of the needle box operates the needle ejector. To change a needle, place pickup in rest position, loosen needle screw and press the extending tab on the needle gauge plate to drop the used needle into the box below. Release tab, allowing the needle gauge plate to swing back, and then insert a new needle in the pickup as described above.

The used needle box may be taken out and emptied by first lifting the pickup off its rest and allowing it to float between the rest and the turntable. Then tilt the box up. wards at the front and lift out. To replace the box, tilt it upwards at front and lower it into the hole with the lug on the back of the box in the slot in the motorboard. Slide the lug under the motorboard and push the box in place. Replace the pickup on its rest.

Record Holder Shelves.-To place a record on the turntable or to remove records, raise the record holder shelves by lifting the knobs, and swing clear of outer edge of record Also push back vertical lever adjacent to the rear record holder post. You now have clear access to the turntable. Before loading the magazine for Automatic Operation swing the record holder shelves back into position.

\section*{Automatic Operation}
1. See that pickup is over needle gauge plate with needle properly in place. If not, complete a "cycle" as explained in the first paragraph under "OPERATION."
2. With Index and Record Reject Lever at "MANUAL," place the first of the series of records on the turntable and the remainder of the series (up to seven 10 inch or six 12. inch records) on the record holder posts (as shown below). The records should be arranged in the desired order with the desired selection face up and the last selection on top.
3. Set the Index and Record Reject Lever to the proper position. (See CONTROLS: - INDEX AND RECORD REJECT LEVER.)
4. Throw Turntable Switch to the left-"ON"-turntable should commence to revolve.
5. When turntable has attained speed, lift pickup and lower gently onto the record so that the needle point enters the outside groove.
6. Close the lid of the cabinet to eliminate mechanical reproduction of sound by the needle.

The whole series of records will now play without further attention, and the last record will repeat until the Turntable Switch is turned off. Allow the record-changing mechanism to complete its cycle before the turntable is stopped. Then lift the pickup, swing the arm to the right beyond the edge of the record and lower it onto the pickup rest with pickup over needle gauge plate. The record player is then ready for reloading, or for manual operation.

\section*{Manual Operation}

To play records manually:
1. Proceed as in step 1, under "AUTOMATIC OPERA. TION."
2. Place record on turntable with desired selection upwards.
3. Set Index and Record Reject Lever to "MANUAL" position.
4. Proceed as in steps 4, 5 and 6 under "AUTOMATIC OPERATION."

When you have finished playing, be sure that the turntable has stopped and the pickup is in the rest position over needle gauge plate. Never leave pickup with needle resting on a record or on the turntable.


MODFL RP-145
MODELS RP-139A, RP-140,
\(\mathrm{RP}-145, \mathrm{RP}-145 \mathrm{E}\)

These record changers are available for operation on voltages and frequencies as follows:

RP-139.A \(\qquad\) \(105-125\) volts, 60 cycles, 21 watts
R.P.139-A

105-125 volts, 50 cycles, 21 watts
RP-139.A............... . . 105-125 volts, 25 cycles, 22 watts
RP-145................. . . \(105-125\) volts, 60 cycles, 15 watts
RP-145.
\(105 \cdot 125\) volts, 50 cycles, 15 watts

\section*{Replacement Parts}
insist on genulne factory-tested parts, which ore readily identifed and may be purchased from authorixed dealers.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit List Price & \[
\begin{aligned}
& \text { sTOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \begin{tabular}{l}
Unit \\
List \\
Price
\end{tabular} \\
\hline & PICKUP ARM ASSEMBLIES & & & OPERATING MECHANISM & \\
\hline 33906
33977 & Arm-Pickup arm shell
Cable-Pickup shielded & . 45 & 10129 & Ball-Steel ball for turntable bearing (Model RP-145) & . 02 \\
\hline 33977
33905 & Crystal-Pickup cartridge and needle screw (RP-
139-A only) & .50
4.25 & 33984 & Bracket-Record discriminating lever mounting bracket (3) & 20 \\
\hline 35171 & Crystal-Pickup cartridge and needle screw (RP- & & 33987 & Cam-Cam and drive gear (42) & 2.00 \\
\hline & 145 only) . & x \(\times\) & 68 & Clutch-Trip lever clutch (5) & . 35 \\
\hline 33976 & Pin-Used to fasten pivot arm in pickup arm shell & . 03 & 34 & \begin{tabular}{l}
Cup-Turntable bearing cup (Model RP-145) \\
(36)
\end{tabular} & 20 \\
\hline 33974
33975 & ( \({ }_{\text {Screw-Needle screw }}^{\text {Shaft Pickup pivot shaft and pivot arm. . . . . . . }}\) & .15
1.40 & 32883 & Damper-Rubber drive sleeve and damper plate for motor spindle (Model RP-139A) (45, 46) & 30 \\
\hline & Shat-Pickup pivot shat & & \(3 \pm 367\) & Disc-Turntable drive disc and tire (Model RP-
145) & 2.25 \\
\hline & (Model RP-139A) & & 31116
32879 & \begin{tabular}{l}
Finger-Trip lever friction finger (7) \\
Gear-Long arm and rack gear (41)
\end{tabular} & . 65 \\
\hline & & & 31121 & Gear-Record separator shaft gear (10) & . 90 \\
\hline 32956 & Coil-Field coil and laminations for 25 cycle motor & 7.15 & 32880
34368 & Gear-Short arm and rack gear (40).......... & . 55 \\
\hline 32955 & Coil-Field coil and laminations for 50 cycle motor & 5.90 & 34368 & (Model RP-145) (48) & . 08 \\
\hline 32954 & Coil-Field coil and laminations for 60 cycle motor & 5.35 & 33982 & Guide-Main spring guide (11). & 10 \\
\hline 32960 & Gear-Motor spindle gear and pin & 75 & 34370 & Idier-Turntable ider wheel and arm (Model RP-145) (39) & 60 \\
\hline 32873 & Motor-Motor complete, 25 cycle, 110 volt AC & 15.95 & 33986 & Lever-Index lever (12) & . 60 \\
\hline 32872 & Motor-Motor complete, 50 cycle, 110 volt AC & 13.75 & 31138 & Lever-Locating lever and pawl (14) & . 70 \\
\hline 32871 & Motor-Motor complete, 60 cycle, 110 volt AC & 13.25 & 33985 & Lever-Main lever (15)......... & 1.05 \\
\hline 30870 & Plug-2-prong male plug--used on motor leads
Spindl--Turntable spindle complete with metal & .35 & 33993 & Lever-10-inch and 12-inch record discriminat- & \\
\hline 32959 & Spindle-Turntable spindle complete with metal pinion and fibre gear for 25 cycle motor. & 2.90 & 31140 & \begin{tabular}{l}
ing lever (17) \\
Lever-Pickup lift cable lever and spring (16)
\end{tabular} & .85
.55 \\
\hline 32958 & Spindle-Turntable spindle complete with metal pinion and fibre gear for 50 cycle motor & 2.90 & 31130 & Lever-Record separator elevating lever with adjustment screws (18) & . 80 \\
\hline 32957 & Spindle-Turntable spindle complete with metal & & 31132 & Lever-Trip detaining lever (19) & . 30 \\
\hline & pinion and fibre gear for 60 cycle motor & 2.90 & 34874 & Lever-Trip lever assembly (20). & 1.85 \\
\hline 32875 & Switch-Motor control switch & 0 & 31131 & Lever-Trip regulator lever (21) & . 25 \\
\hline & & & 33992 & Link-Index lever setting link and butto & . 20 \\
\hline & MOTOR ASSEMBLIES
(Model RP-145) & & 31137
31133 & \begin{tabular}{l}
Pawl-Index lever pawl (13) \\
Pawl-Trip pawl assembly (22)
\end{tabular} & . 80 \\
\hline & (Model RP-145) & & 31535 & Pin-Drive pin for turntable drive disc (Model & \\
\hline 34513 & Armature-Complete armature and shaft for 60 cycle motor & xx & 31124 & \(\xrightarrow[\text { RP-145) }]{\text { Pin-Pin to }}\) (24) \(\ldots\) asten gear on record separator & . 03 \\
\hline 34512 & Cap-Bakelite cap for motor & xx & & shaft (23) ...................... & . 04 \\
\hline 34365
34364 & Capacitor- 1.25 mfd., for 60 cycle motor (38). & 1.75 & 31118 & Screw-Cone pointed set screw for record separator shelf (" H ") & . 06 \\
\hline 34364 & Motor- \(105 / 125\) volts, 60 cycle, complete with capacitor (37) & 6.75
35 & 14195 & Screw-No. 10-32 cone pointed set screw for trip lever hub ("D") & . 05 \\
\hline 30870 & Plug-2-prong male plug for motor leads. . . . . . MOTORBOARD ASSEMBLIES & . 35 & 33983 & trip lever hub "D" screw & .05
.15 \\
\hline & (Model RP-139A) & & 31117 & Screw-Special to adjust friction clutch & .03
1.85 \\
\hline & & & 33990
33988 & Separator-Record separator knife (25) Shaft-Record separator shaft (34) & 1.85
.70 \\
\hline 33981 & Base-Pickup arm mounting base. & . 60 & 33989 & Shelf-Record separator shelf (27) & 1.25 \\
\hline 33978 & Board-Motorboard complete with bearings and posts less operating mechanism.. & 6.50 & 3676
31136 & Spring-Cam gear pawl spring.
Spring-Index lever pawl spring ( 30\()\) & . 04 \\
\hline 33909 & Cup--Used needle cup, lid, and pickup & & 3666 & Spring-Lift cable spring (31) & 04 \\
\hline & rest (6) & 1.00 & 32436 & Spring-Locating lever spring (35) & 05 \\
\hline 33979
31150 & Escutcheon-Index escutcheon ..... & . 50 & 32882 & Spring-Main lever tension spring (43) ..... & 05 \\
\hline 31150 & Mounting-Pickup arm base rubber mounting complete & . 45 & 34876
14190 & Spring-Pickup arm starting spring (26) ...... & 10 \\
\hline 31155 & Spring-Used needie cup lid spring (49) & . 04 & & Spring--Record discriminating lever pawl spring or loćating lever pawl spring (28) & 08 \\
\hline & MOTORBOARD ASSEMBLIES & & 33994 & \(\underset{\text { (flat) }}{\text { Spring-Record }}\) (9) discriminating lever spring & 05 \\
\hline & (Model RP-145) & & 14191
34372 & \begin{tabular}{l}
Spring-Trip detaining lever spring (33) \\
Spring-Turntable idier wheel spring (Model
\end{tabular} & \\
\hline 33981 & Base-Pickup arm mounting base & . 60 & & RP-145) (47) ..................... & . 10 \\
\hline 34363 & Board-Motorboard complete with bearings and posts-less operating mechanisms & 6.70 & 34371 & Support-Turntable drive and motor support (Model RP-145) & . 70 \\
\hline 33909 & Cup-Used cup, lid, and pickup arm rest (6). & . 00 & 34875
33991 & Switch-Pickup shorting switch (44 & . 3.00 \\
\hline 33979
31150 & Escutcheon-Index escutcheon .............. & . 50 & 33991
34366 & Turntable and Spindle Shaft-(Model RP-145) & \\
\hline 31150 & Mounting-Pickup arm base rubber mounting complete & . 45 & 34366 & (32) & 3.35 \\
\hline 31155
32875 & Spring-Used needie cup lid spring (49)
Switch—Motor switch (4) & . 04 & 34373 & Washer-" \(C\) " washer for mounting idler wheel and arm (Model RP-145) & . 03 \\
\hline
\end{tabular}
xx Price upon afplication to your RCA Victor Parts Distributor.
ALL PRICES ARE SUBJECT TO CHANGE OR WITHDRAWAL WITHOUT NOTICE.

\author{
RCA MFG. CO., INC.
}
\begin{tabular}{|c|c|}
\hline Phonograph Type & Model U-126 \\
\hline Record Capacity. & one 10 -inch or one 12 -inch \\
\hline Turntable Speed. & . 78 R.P.M. (Adjustable) \\
\hline Type Pickup. & Crystal \\
\hline Pickup Impedance & 80,000 ohms at 1,000 cycles \\
\hline
\end{tabular}

\section*{Model U-128}

Automatic-Manual
Seven ten or twelve inch
78 R.P.M. (Adjustable)
Crystal
80,000 ohms at 1,000 cycles

Turntable Switch.-The switch located just in front of the Index and Record Reject Lever controls the current to the turntable motor. To start the turntable, set the switch to the "ON", position. To stop the turntable, set the switch to the "OFF" position.

Pickup and Top-Loading Needle Socket.-The pickup is the new crystal type, with a hole in the top for insertion of needles. When not playing records, the pickup arm should be moved out to the right beyond the turntable and placed at rest on the support with the edge of the pickup arm in the groove and the pickup over the needle gauge plate. The pickup must be in this position to change needles.

To insert a needle initially, loosen the needle screw on the front of the pickup, place needle in hole at top so that it drops down against the needle gauge plate and then tighten up the needle screw.

Needle Ejector.-The extending tab on the needle gauge plate of the needle box operates the needle ejector. To change a needle, place pickup in rest position, loosen needle screw and press the extending tab on the needle gauge plate to drop the used needle into the box below. Release tab, allowing the needle gauge plate to swing back, and then insert a new needle in the pickup as described above.

The used needle box may be taken out and emptied by first lifting the pickup off its rest and allowing it to float between the rest and the turntable. Then tilt the box up, wards at the front and lift out. To replace the box, tilt it upwards at front and lower it into the hole with the lug on the back of the box in the slot in the motorboard. Slide the lug under the motorboard and the box drops in place. Re. place the pickup on its rest.

Record Holder Shelves.-To place a record on the turntable or to remove records, raise the record holder shelves, by lifting with the fingers under the shelf, and swing clear of outer edge of record. Also push back vertical lever adjacent to the rear record holder post. You now have clear access to the turntable. Before loading the magazine for Automatic Operation swing the record holder shelves back into position.

\section*{Cautions}
1. Never use force to start or stop the motor or any part of the record-changing mechanism or pickup arm.
2. The use of records which have become warped or damaged through improper care may cause the mechanism to jam and damage the instrument. In addition, records which have become warped will slide on one another when playing, resulting in unsatisfactory reproduction.
3. This instrument is NOT RECOMMENDED for playing 10 -inch and 12 -inch reconds in mixed sequence. If the user desires this service he must be positive that all records are perfectly flat and free from warp. The Index and Record Rejact Lever must be set at " 10 " and after playing the last selecrion the pickryp will come down in position for a 10 -inch record and repeat the playing of the record on a 10 -inch diameter unlest the Turntable Switch is turned off. Any jamming of the mechanism under these conditions indicates that the records used are not perfectly flat or that their edges are not sufficiently amooth to permit normal operation of the separators in dropping each record in sequence onto the turntable.

\section*{Automatic Operation}
1. See that pickup is over needle gauge plate with needle properly in place. If not, complete a "cycle" as explained in the first paragraph under "OPERATION."
2. With Index and Record Reject Lever at "MANUAL," place the first of the series of records on the turntable and the remainder of the series (up to seven 10 inch or six 12 . inch records) on the record holder posts (as shown below.) The records should be arranged in the desired order with the desired selection face up and the last selection on top.
3. Set the Index and Record Reject Lever to the proper position. (See CONTROLS: - INDEX AND RECORD REJECT LEVER.)
4. Throw Turntable Switch to the left-"ON"-turntable should commence to revolve.
5. When turntable has attained speed, lift pickup and lower gently on to the record so that the needle point enters the outside groove.
6. Close the lid of the cabinet to eliminate mechanical reproduction of sound by the needle.

The whole series of records will now play without further attention, and the last record will repeat until the Turntable Switch is turned off. Allow the record-changing mechanism to complete its cycle before the turntable is stopped. Then lift the pickup, swing the arm to the right beyond the edge of the record and lower it onto the pickup rest with pickup over needle gauge plate. The record player is then ready for reloading, or for manual operation.

\section*{Manual Operation}

To play records inanually:
1. Proceed as in step 1, under "AUTOMATIC OPERA. TION.
2. Place record on turntable with desired selection upwards.
3. Set Index and Record Reject Lever to "MANUAL" position.
4. Proceed as in steps 4, 5 and 6 under "AUTOMATIC OPERATION."
When you have finished playing, be sure that the turntable has stopped and the pickup is in the rest position over needle gauge plate. Never leave pickup with needle resting on a record or on the turntable.

\section*{Controls and Moving Mechanism}

Index and Recond Reject Lever.-This lever is located near the right front corner of the motorboard with its index plate marked for four positions-"MANUAL," "12," "10," and "REJECT." When you desire to change record selections manually, this lever should be set in the "MANUAL" position. With the lever in the " 12 " position, the mechanism is set to play a series of 12 -inch records automatically. To play either a series of 10 -inch records, or 10 . and 12 -inch records mixed, the lever should be set at the " 10 " position.
To reject a record being played, or to start tne zerorfchanging cycle in case the record just played does not hav the standard eccentric or spiral stopping groove, simply fush the lever to the "REJECT" position and let go. The pickup will raise up and swing outwards and the next record will drop down. Upon releasing the lever, it will automatically return to the " 10 " position. If you are playing a series of 12 -inch records, the lever should be returned to the " 12 " position after rejecting a record. Keep the lever in its "MANUAL" position when not actually playing records automatically.

(C)John F. Rider

\section*{GENERAL INFORMATION}

Before servicing the automatic record changer, inspect the assembly to see that all levers, parts, gears, springs, etc.: are in good order and are correctly assembled.

A bind or jam in the mechanism can usually be relieved by rotating the turntable in the reverse direction.

The changer can be conveniently rotated through its change cycle by pushing the index lever to "Reject" and revolving the turntable by hand. Six turntable revolutions are required for one change cycle.

The turntable, spindle, and pinion gear are assembled by means of a \(3 / 32\) inch straight pin. This pin may be removed by gently driving with a standard pin punch.

If the record changer or cabinet is not perfectly level, normal operation is likely to be affected.
The 10 and 12 inch records must be absolutely flat for smooth operation when using a mixture of the two sizes.
A shorting switch, located in the pickup head, operates due to presoure when the pickup is placed on the pickup
rest.

\section*{ADJUSTMENIS}
A. Main Lever.--This lever is basically important in that it interlinks the various individual mechanisms which control needle landing, tripping, record separation, etc. One adjustment is provided for the main lever. Rotate the turntable until the changer is out-of-cycle; and adjust rubber bumper bracket (A) so that the roller clears the nose of the cam plate by \(1 / 16\) inch.
B. Friction Clutch.-The motion of the tone arm toward the center of the record is transmitted to the trip pawl " 22 " by the trip lever " 7 " through a friction clutch " 5 ." If the motion of the pickup is abruptly accelerated or becomes irregular due to swinging in the eccentric groove, the trip finger " 7 " moves the trip pawl " 22 " into engagement with the pawl on the main gear, and the change cycle is started. Proper adjustment of the friction clutch " 5 " occurs when movement of the tone arm causes positive movement of the trip pawl " 22 " without tendency of the clutch to slip. The friction should be just enough to prevent slippage, and is adjustable by means of screw "B." If adjustment is too tight, the needle will repeat grooves; if too loose, tripping will not occur at the end of the record.
C. Pickup Lift Cable Screw.-During the record change cycle, lever " 16 " is actuated by the main lever " 15 " so as to raise the tone arm clear of the record by means of the pickup lift cable. To adjust pickup for proper elevation, stop the changer "in-cycle" at the point where pickup is raised to the maximum height above turntable plate, and has not moved outward; at this point adjust locknuts " C " to obtain 1 inch spacing between needle point and turntable top surface.
D. \& E. Needle Landing on Record. - The relation ' of coupling between the tone arm vertical shaft and lever " 20 " determines the landing position of the needle on a 10 inch record. Position of eccentric stud "E" governs the landing of the needle on a 12 inch record; this, however, is dependent on the proper 10 inch adjustment.

To adjust for needle landing, place 10 inch record on turn. table; push index lever to reject position and return to the 10 inch position; see that pickup locating lever " 17 " is tilted fully toward turntable; rotate mechanism through cycle until needle is just ready to land' on the record; then see that pin "V" on lever " 14 "' is in contact with "Step T" on lever " 17 ." The correct point of landing is \(4-11 / 16\) inches from the "Dearest side of the turntable spindle; loosen the two screws "D" and adjust horizontal position of tone arm to proper dimension, being careful not to disturb levers " 14 " and " 17 " Leave approximately \(1 / 32\) inch end play between hub of lever " 20 " and pickup base bearing, and tighten the blunt nose screw " \(D\) "; run mechanism through several cycles as a check, then tighten cone pointed screw "D".
After adjusting for needle landing on a 10 inch record, place 12 inch record on turntable; push index lever to reject and return to 12 inch position; rotate mechanism through cycle until needle is just ready to land on the record; the correct point of landing is \(5 \cdot 11 / 16\) inches from nearest side of spindle. If the landing is incorrect, turn stud " \(E\) " until the eccentric end adjusts lever " 14 " to give correct needle landing. The eccentric end of the stud must always be toward the rear of the motor board, otherwise incorrect landing may occur with 10 inch records.
F. \& G. Record Separating Knife. - The upper plate (knife) " 25 " on each of the record posts serves to separate the lower record from the stack and to support the remain. ing records during the change cycle. It is essential that the spacing between the knife and the rotating record shelf " 27 " be accurately maintained. The spacing for the 10 inch record is nominally .055 inch, and for the 12 inch record is .07 .5 inch.

To adjust, rotate the knife to the point of minimum
vertical separation from the record shelf and turn screw and locknut " F " to give \(.052-.058\) inch separation. Screw " G " must not be depressed during this adjustment. After setting screw " \(F\) " adjust screw " \(G\) "' so that when its tip is depressed flush with top of record shelf, the vertical spacing between the knife, in its lowest rotational position, and the shelf, is .072-. 078 inch
H. Record Support Shelf.-The record shelf revolves during the change cycle to allow the lower record to drop onto the turntable. Both posts are rotated simultaneously by a gear and rack coupled to the main lever " 15 ," and it is necessary that adjustments be such that the record is released from both shelves at the same instant. To adjust, place a 12 inch record on the turntable, rotate mechanism into cycle to the point where tone arm is at maximum distance outward from turntable; lift record upward until it is in contact with both separating knives, then loosen screws " H " and shift record shelves so that the curved inner edges of the shelves are uniformly spaced at least \(1 / 16\) inch from record edge. Tighten the blunt nose screw "H," run mechanism through cycle several times to check action, then tighten cone pointed screw "H".
If record shelves or knives are bent, or not perfectly horizontal, improper operation and jamming of meckanism will occur.
J. Tone Arm Rest Support (not shown).-When the changer is out-of-cycle, the front lower edge of the pickup head should be \(5 / 16\) inch above surface of motor board. This may be adjusted by bending the tone arm support bracket, which is associated with the tone arm mounting base in the required direction.
K. Trip Pawl Stop Pin.-The position of the trip pawl stop pin " \(K\) " in relation to the main lever " 15 " governs the point at which the rolier enters the cam. By bending the pin support either toward or away from trip pawl bearing stud, the roller can be made to enter the cam later or earlier, respectively. This adjustment should be made so that the roller definitely clears the cam outer guide as well as the nose of the cam plate.

Lubrication.-Petrolatum or petroleum jelly should be applied to cam, main gear, spindie pinion gear, and gears of record posts.

Light machine oil should be used in the tone arm vertical bearing, record post bearings, and all other bearings of various levers on underside of motor board.

The felt washer between the turntable and spindle bearing should be soaked in light engine oil whenever the turntable is removed, or as required for proper operation.

Do not allow oil or grease to come in contact with, rubber mounting of tone arm base, rubber bumper, or flexible coupling of drive motor.

\section*{MISCELLANEOUS SERVICE HINTS}

Incorrect adjustment of a particular mechanism of the changer is generally exhibited in a specific mode of improper operation. The following relations between effects on opera. tion and the usual mis-adjustments will enable ready adjustment in most cases.
1. For any irregularity of operation, the adjustment of the main lever " 15 " should be checked first as in " \(A\) ".
2. Needle does not land properly on both 10 and 12 inch records-Make complete adjustments "D" and "E"
3. Needle does not land properly on 12 inch record but correct on 10 inch-Effect adjustment " E ".
4. Failure to trip at end of record-Increase clutch " 5 " friction by means of screw "B". Also, see that levers " 7 " and " 12 " are free to move without touching each other.
5. Pickup strikes lower record of stack or drags across top \({ }^{\text {record }}\) on turntable-Adjust lift cable per adjustment
6. Needle does not track after landing-Friction clutch " 5 " adjustment " \(B\) " may be too tight; bind in tone arm vertical bearing; levers " 7 " and " 12 " fouled; or pickup output cable twisted.
7. Cycle commences before record is complete-Record is defective, or adjustment " \(B\) " of friction clutch " 5 " is too tight.
8. Wow in record reproduction-Record is defective; fle:-ible coupling between motor and changer mech. anism not correctly assembled; or instrument is not being operated at normal room temperature \(\left(65^{\circ} \mathrm{F}\right)\).
9. Record knives strike edge of records-Records warped; " record edges are rough; or knife adjustments " \(F\) " and
10. Record not released properly-Adjust record shelf as semblies in respect to shaft by means of adjustment "H"
11. Needle lands in 10 inch position on 12 inch record or misses record when playing both types mixed-Increase tension of pickup locating lever spring " \(30^{\prime \prime}\).

\section*{RCA MFG. CO., INC.}

\section*{Turntable Mechanism Model U-126}

The crystal unit of the pickup is sealed in a metal case against extremes of climate. The offset mounting of the crystal unit in the pickup arm insures ideal tracking between needle and record grooves. If failure should occur due to a defective crystal, no attempt should be made to repair the crystal, but a new replacement crystal unit should be installed
The turntable drive is a self-starting, variable-speed, gov ernor-type, induction motor. The motor speed adjusting screw is located under the turntable, and may be adjusted by inserting a screwdriver thru one of the holes in the turntable, after the hole has been lined up with the screw. The flexible motor drive arrangement is similar to the U-128. The motor speed should be 78 r.p.m., and may be checked by placing a piece of paper between a record and the turntable, with the paper protruding beyond the edge of the record, and then counting the number of revolutions of the turntable per minute. The motor is designed to be simple and foolproof in operation. Occasionally, however, certain adjust ments and lubrication may be required. These are illustrated and explained in figure 12. In addition, an application of oil to the felt pad, which rubs against the governor disc, will insure smooth operation.

The turntable is started by pushing to the rear the motor starting lever, which appears to the right of the turntable. The adjustment on the automatic motor stopping switch should be made so that the switch will snap to the "off" position when the needle in the pickup head is \(13 / 4\) inches away from the center of the turntable. The locking screw and details of the switch mechanism are shown in figure 14. The locking screw and nut may be reached, from underneath the motor board, or, by an open end wrench, under the turntable.

ADJUST SWITCH TO TRIP WHEN NEEDLE
IS ON \(1-3 / 4^{\prime \prime}\) RAONS FROM \(\mathbb{C}\) OF MOTOR SPINDLE


Figure 14-Adjustment of Alutomatic Stop Switch


Figure 15-Pickup Connections

\section*{REPLACEMENT PARTS}
\begin{tabular}{|c|c|}
\hline  & DESCRIPTION \\
\hline & MOTQRBOARD ASSEMBLIES Model U-126 \\
\hline 31536 & Coupling-Flexible motor coupling complete \\
\hline 9848 & Cup-Used needle cup and lid complete..... \\
\hline 31465 & Mounting-Pickup arm base rubber mounting.. \\
\hline 31535 & Pin-Drive pin to fasten flexible coupling to turntable shaft \\
\hline 30870 & Plug-2-contact male plug for automatic switch \\
\hline 14195 & Screw-Set screw for fiexible coupling.... \\
\hline 30100 & Springs-1 set of springs for automatic switch \\
\hline 31155 & Spring-Used needle cup cover tension spring.. \\
\hline 31147 & Strip-Complete set of rubber strips for flexible couplings \\
\hline 31534 & Switch-Automatic switch and lever complete. \\
\hline 31467 & Switch-Switch only for automatic switch (S7) \\
\hline 31533 & Turntable-Turntable with spindle shaft and nose complete \\
\hline 31537 & \begin{tabular}{l}
Washers-Turntable bearing and shim washers. \\
MOTORBOARD ASSEMBLIES Model U-128
\end{tabular} \\
\hline 31149 & Base-Tone arm mounting base. \\
\hline 31152 & Board-Record changer base complete with ail welded and riveted posts and bearings-less all operating parts. \\
\hline 14209 & Bumper-Main lever rubber bumper (i) \\
\hline 9848 & Cup-Used needle cup, rest, and lid compl \\
\hline 31148 & Escutcheon-Index escutcheon \\
\hline 31151 & Guide-Pickup lift cable guide (coil spring, 80T 2 -in. large) (2). \\
\hline 31150 & Mounting-Pickup arm base rubber mounting complete \\
\hline 31155 & \begin{tabular}{l}
Spring-Needie cup lid tension spring \\
OPERATING MECHANISM Model U-128
\end{tabular} \\
\hline 31134 & Bracket-Pickup locating lever mounting bracket (3) \\
\hline 31144
6808 & Cam-Cam and gear assembly (4).......... \\
\hline +6808 & Clutch-Trip lever friction clutch assembly (5) Coupling-Motor coupling complete with turntable drive gear, rubber strips, motor coupling, and drive arm (6) \\
\hline 31129 & Cover-Cap for top of record post. \\
\hline 31116 & Finger-Trip lever friction finger assembly (7) \\
\hline 31119 & Gear-Long arm and rack gear for front lefthand record post (8) \\
\hline
\end{tabular}
31120
31121
31123
31114
31137
31138
31113
31140
31135
31130
31132
31115
31131
31133
31124
14207
31118
4563
14195
31117
31126
31122
31125
31141
3676
14190

31145
31136


PRICES SUBJECT TO CHANGE WITHOUT NOTICE


\section*{General Description}

The MI-4831 Portable Automatic Turntable has been designed for use in those applications when it is desired to play either manually or automatically a series of either eight 10 - or seven 12 -inch records such as in schools, recreational centers, dance halls, etc. It operates from 115 V . A. C. 60 -cycle power source and has an integral volume control. An output cable with telephone type plug is also supplied with the equipment.



Bottom View of Automatic Record Changer
NOTE: Numbers refer to part-letters refer to adjustments.

THIS DATA FOR MODEL RP-140
ONLY. FOR OPERATION AND
SERVICING SEE NODEL RP-139A


RCA MFG. CO., INC.


Motorboard and Controls
(C)John F. Rider
\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}

\section*{}


\begin{abstract}
Introduction
The RP-151 is an automatic record changer of revolu monary design. It will play a series of fifteen 10 -inch or twelve 12 -inch records on both sides, or one side, at will The pickup arm has two light-pressure, sapphire permanentpoint, crystal pickups mounted on one arm. One pickup plays the top side of each record; the other pickup plays the bottom side. The turntable rotates in reverse while the bottom side of a record is being played.
The mechanism has two motors. One motor is used solely to rotate the turntable; the cycling motor drive; the mechanism during the automatic record-changing cycle.

There are three simple controls.
1. A Record Support-Turn it one way to load a stack of 10 -inch records, the reverse way to load 12 -inch records.
2. A Control Lever-Push the lever to load position, then back to the "two-side" position to play both sides of each record, pull it forward to play only the top side of each record.
3. A "Start-Reject" Button-Push the button to start the mechanism or to reject a record when the inechanism is operating.

The mechanism uses a low-noise crystal pickup. Objection. able "needle chatter" has been removed by utilizing a low mass wire, suitably damped, to hold the sapphire point.
\end{abstract}

\section*{Coutions}

1 Do not oil the tone arm pivot shaft.
2. Never use force to start or stop the motor or any part of the record-changing mechanism or pickup arm
3. Warped or damaged records may cause the mechanism to jam
4. Do not leave records on the record-holder posts as they may warp, particularly in warm climates. Warped records may be flattened by placing them on a flat surface with a flat heavy article placed on top of them for a few days.
5. If for any reason the phonograph stalls, turn off the turntable switch and remove the records from the record holder shelves. Start the turntable and allow the pickup arm to complete its cycle.
6. Packing material and apecial ahipping brackets should be given to the customer at the time of inctallation. Advice as to their use may save mervice calls should the customer later move the inmrument any conmiderable disance.
7. Do not interfere with the motion of the tone arm at any time.

\section*{Service Procedure}

To remove the bottom plate assembly from the motorboard:
1. Disconnect pickup leads from terminal board
2. Remove the motor lead plugs from their sockets.
3. Loosen the set screws " \(C\) " and lift the tone arm out. Be careful not to lose the two ball bearings at the top and bottom of the tone arm pivot shaft
4. Remove the four bottom plate mounting screws

To remove the tone arm, turn out the slotted head bearing through the side of the arm. Then simply lift the arm off. When replacing the arm, do not tighten the bearing enough to cause a bind in vertical motion.

\section*{Lubrication}
1. Apply Houghton Stayput at all bearing surfaces
2. Apply graphite grease at cam and gear surfaces on the main cam and gear, pinion gear (1), and segment gear, pivot and cam surfaces on the slide, and the spring pin on the counterweight.
3. Apply Lubriplate No. 110 at all other points
4. The rubber tires must be kept clean and free from oil, grease, dirt, etc., at all times. Any quick-drying naphtha is satisfactory for cleaning the rubber.

\section*{Service Hints}

Last 10 -inch record drops before next to last record is out of the way.
Separating knife jams on record edge.

\section*{Record on turntable} strikes swivel posts.

Mechanism trips continuously.

Mechanism fails to
trip.
Mechanism jams.

Sapphire jumps grooves intermittently.

Sapphire repeats grooves intermittently.
Control Lever can be pushed to only one position.

Unequal output from the two pickups.
(Trimmer Balance)

Delay the knife timing by placing a \(1 / B\) inch spacer between the separator lever and the bottom bushing and then making
adjustment \(B\) adjustment \(B\).

Record warped. Irregularities on the record separating linife and shelf teeth impeding the "elevating search" feature of the knife. Spacing washer too thick.
Tighten the belt drum springs (11) by taking off turns.

Cycle motor leads impeding movement of mercury switch.
Smooth off the end of the cycling switch trip lever and the stud against which it works. Stud
Stud on main cam and stud on star wheel have hit head on. This generally results when operator improperly positions the control lever and leaves it midway between the "One Side" and the "Two-Side" positions.
Check dress of pickup cable in motorboard slot, making certain that it is free over the full range of tone arm movement. Feed-in spring is striking the trip lever pawl.


Check position of index lever with respect to the control lever shaft. When the control lever is in the two-side position, the stax wheel lever stud should be at the end of the index lever slot nearest the control lever shaft. A set screw in the index lever hub permits positioning of the index lever.

Adjust the trimmer capacitors until the outputs are at the same level. Since there is a. slight interaction between the trimmers it may be necessary to repeat the adjustment a second time.



\section*{The Low Noise Pickup}

Specifications. . . . Output at 400 cycles. . . . . . . . . . 0.50 volts Impedance at 1,000 cycles. . . 75,000 ohms
Replacement of
Complete Unit.
. Simply slide the unit out of the tone arm and insert a new one.

\section*{Replacement of} Sapphire.

Caution: Never bend the sapphire support wire. Slide the pickup forward out of the arm.
The nut on the sapphire holder assembly is locked by a light cement (such as Glyptal). Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal.
Remove the two screws holding the sapphire guard in place and take the guard off. Remove the small nut and washer on

\section*{Function of Principal Parts}

Record Support. . . . . . . . Drives two belts which act to position the record separator posts in unison. This allows for loading 10 . or 12 -inch records.

Record Separators . . . . . . . Provide shelves for holding stack of records and provide knives for separating bottom record from stack. Knives also support record stack during change cycle.

Control Lever Train..... Provides selection of two side or one-side playing. Acts through index lever and star wheel lever to position star wheel.

Start-Reject Button Train. Acts through button lever, reject lever, ratchet lever, cycling switch trip lever, and cycling switch pivot lever to tilt the mercury cycling switch and begin the automatic cycle.
Ratchet Lever. . . . . . . . . . Starts the automatic cycle by releasing cycling switch trip lever when acted upon by "eject lever or trip lever pawl.

Main Cam and Gear .,... Directs and corordinates all cycliz operations.

the threaded shaft of the sapphire holder and push the shaft through the hole in the viscoloid until the sapphire holder assembly comes free.
Insert threaded shaft of replacement sapphire holder through viscoloid and replace the washer and nut. Make sure that the flat sides of the shaft are firmly in place in the clamp and then tighten the nut very carefully so as not to strip the threads nor break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough beyond the guard so that the guard will not strike the record. If necessary, bend the guard a little. Apply a drop of light cement (such as Glyptal) to the sapphire nut holder.
Bend the spring contacts to make good contact with the slides in the tone arm.

Tone Arm Lever . . . . . . . . Directs horizontal movement of tone arm.

Tone Arm Return Lever. . Keeps tone arm moving in with receding tone arm lever and pro. vides proper landing. Provides feed-in spring to push sapphire into music grooves after landing.
Trip Lever............. Its pawl acts on the ratchet lever to trip the mechanism.

\section*{Record Separators' Lever}

Train .............. Directs motion of separator knives (Lever-Links-Cranks) and shelves.

Tone Arm Elevating Con-
trol Lever . . . . . . . . . . .
Directs vertical motion of tone arm through tone arm elevating lever and elevating rod.

Slide Train........... The slide roller lever is directed by the main cam and acts through the slide throw out lever and the slide control lever to move the slide.

Slide. .................. Directs tilting of the turntable. Directs motion of record separator lever train. Unlatches reversing 8 witch.
Reversing Lever. . . . . . . . Controls turntable rotation by means of reversing switch.

\section*{Two-Side Operation}

\section*{Slide Cycle}

Turn Record Support to \(10^{\prime \prime}\) or \(12^{\prime \prime}\) position as desired. Place Records on Posts.
Turn Control to "Load" position and return to "TwoSide" position.

Push "Start-Reject" button.
1. Record Separator posts position themselves in unison by means of belt drive.
of the cycling switch trip lever.
3. Switch trip lever moves the cycling switch pivot lever, thus tilting the switch and closing the circuit to the cycle motor.
4. Cycle motor starts.
5. Main cam is driven by cycle motor through a chain of gears.

Tone Arm Rises. 1. The elevating control lever is rotated because its stud rides on the outer guide on the bottom side of the main cam
2. Elevating control lever closes shorting switch.
3. Elevating control lever pushes reversing lever.
4. Reversing lever rotates.
5. Elevating control lever pushes elevating lever roller.
6. Elevating lever roller moves in allowing elevating lever to rise, thus pushing up on elevating rod and tone arm.
Tone Arm Swings 1. Reversing lever throws reversing Out. switch. Then it latches and holds the switch button in position.
2. Turntable rotates counter-clockwise.
3. Tone arm lever swings outward from motion of its stud against outer guide on top of main cam.
4. It pushes against stud on trip lever.
5. Trip lever moves out and latches to return lever carrying it along.
6. Feed in spring is depressed.
7. Cycling switch trip lever is reset by protrusion on main cam, and
thus moves out of way of ratchet lever stud.
8. Ratchet lever returns to its original position.

Turntable Discards 1. Eccentric track on top of main cam Played Record. moves slide roller lever.
2. Slide roller lever pushes slide throw. out lever.
3. Slide throwout lever moves slide control lever.
4. Slide control lever moves slide.
5. Underneath stud on slide moves along edge of turntable locating lever and finally rotates it.
6. Locating lever releases turntable assembly to control of counter. balance and spring, leaving sector gear free to move.
7. Slide strikes sector gear finger and rotates sector gear.
8. Sector gear rotates segment gear.
9. Segment gear, being fastened to turntable pivot shaft, turns this shaft and tilts the turntable.
10. Reversing lever is unlatched by slide at end of its travel. Turntable motor returns to clockwise rotation.
Record Drops from Stack to Motorboard.
1. Stud on top of slide moves into claw cam of the separator lever.
2. Lever rotates, thus moving link and crank.
3. Crank rotates separator assembly.
4. Record knife separates bottom record from stack.
5. Shelf rotates out from under bottom record and allows it to drop to motorboard.

Turntable picks up 1. Slide reverses direction of travel.
next record. 2. Shelf and knife return to original posi2. Shelf and knife return to original posi-
tion as top stud on slide releases separator lever.
3 Spring and counterbalance return turntable past its original position as slide recedes from sector gear finger.
4. Turntable spindle finds hole in record and picks record up.
5. Underneath stud on slide finally rotates locating lever
6. Locating lever takes control and returns turntable to exact orig. inal position.
7. Turntable drive wheel again contacts drive dise and rotates it.
8. Off-center stud on the main cam and gear pushes star wheel stud.
9. Star wheel rotates \(90^{\circ}\).
10. Stud on star wheel unlatches slide throw out lever.

Tone Arm Returns. \(\begin{aligned} & \text { 1. Main cam allows tone arm fever to } \\ & \text { recede. } \\ & \text { 2. This allows return lever to follow, }\end{aligned}\)
carrying trip lever along.
3. Return lever stops when its index finger reaches rear separator shaft.
4. Thus the trip lever and tone arm are stopped at the correct landing position.
\(\begin{array}{ll}\text { Tone Arm Lowers. } & \begin{array}{l}\text { 1. Lower outside face on main cam re- } \\ \text { cedes. }\end{array} \\ \text { original position. } & \text { 2. Elevating control lever returns to }\end{array}\)
original position.
3. Reversing lever reaches original position.
4. Elevating lever is lowered, elevating rod follows and tone arm
lowers.
5. Elevating control lever releases shorting switch
6. Release stud on the tone arm lever pushes back the latch on the return lever.
7. Release of the latch frees the return lever from the trip lever and the tone arm.
8. Cycling switch pivot lever drops off the end of the main cam
face.
9. Cycling switch returns to original position
10. Cycle motor stops.

Sapphire is pushed 1. Feed in spring returns to original posiinto music grooves. tion pushing stud on trip lever.
2. Trip lever carries tone arm slightly

Top side of Record Plays.

\section*{Non-Slide Cycle}

Sapphire Reaches 1. Trip lever receives backward motion Eccentric Groove. from tone arm.
Mechanism Trips. 2. Trip pawl pushes ratchet lever.
3. Ratchet lever stud moves away from cycling switch trip lever.
4. Cycling switch trip lever moves cycling switch pivot lever. Switch tilts, closing circuit.
5. Cycle motor starts.

Tone Arm Rises Same as previous cycle. and Swings Out.

Turntable Remains 1. Eccentric track on top of main cam in Playing Position moves the slide roller lever. and Turntable Rotation Reverses.
2. Slide throw-out lever is not picked up by star wheel since this lever was un latched during previous cycle.
3. Thus the slide does not move, the reversing lever remains latched and the turntable motor continues to revolve counterclockwise.
4. Offcenter stud on main cam pushes stud on star wheel.
5. Star wheel rotates \(90^{\circ}\).
6. Star whel latches slide throw-out lever

Tone Arm Returns. Same as previous cycle.
Tone Arm Lowers. Same as previous cycle except: 1. Revers. ing lever remains latched and does not return.

\section*{Bottom Side of Record Plays.}

Slide and non-slide cycles continue alternately until entire stack of records has been played.

After last record is played, mechanism trips, goes through cycle, and tone arm comes to rest on "Stop" button, thus opening the a.c.
circuit. circuit.
In the "One-Side" position, the star wheel is pushed out of the Fath of the main cam stud and all cycles are slide cycles.


RCA MFG. CO., INC.
MODEL RP-151


\footnotetext{
COUNTEREALANCE
LEVER AND WEIGHT
SEGMENT LEVER
}


RCA MFG. CO., INC.


Replacement Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION & Unit List Price & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit Liat Price \\
\hline & PICKUP AND ARM ASSEMBLIES & & 38533 & & \\
\hline \[
\begin{aligned}
& 38456 \\
& 38459
\end{aligned}
\] & Arm-Upper and lower pickup arms only. . . . . . Bracket-Pivot arm spring tension bracket and & 3.75 & 38496 & \begin{tabular}{l}
and 1 laminated) \\
Gear-Fibre drive gear and set screw-engagem
\end{tabular} & 15 \\
\hline & Ecrew & . 10 & 38495 & pinion on rubber-tired motor drive wheel (2). & . 90 \\
\hline 38457 & \begin{tabular}{l}
Cable-Shielded pickup cable - connects pickup crystals to shorting switch. \\
Note: Before ordering a replacement crystal pickup, inspect the used pickup. Order the stock number stamped on its case.
\end{tabular} & 75 & 38485
38505 & \begin{tabular}{l}
Gear-Pinion gear and shaft-engages cam gear (1) \\
Gear-Sector gear and lever mounted on bottom plate-engages segment on turntable motor p.vot shaft
\end{tabular} & .35
.50 \\
\hline 38598 & Crystal-Pickup crystal and holder with sap- & & \[
38526
\] & Gear-Turntable pivot shaft segment Grommet-Rubber grommet for mounting cycling & . 30 \\
\hline 38453 & \begin{tabular}{l}
phire and holder (bottom unit) \\
Crystal-Pickup crystal and holder with sapphire and holder (top unit)
\end{tabular} & 6.50 & 34368 & \begin{tabular}{l}
motor \\
Grommet-Rubber grommet for turntable motor
\end{tabular} & . 05 \\
\hline 38451
38452 & Damper-Viscoloid damper for sapphire holder. Guard-Sapphire guard & 6.50
.10
.08 & 38493 & \begin{tabular}{l}
mounting (2 required) \\
Lever-Cycling switch pivot lever or follower
\end{tabular} & . 08 \\
\hline 38452
38450 & Nuard-Special nut and wanher for sapphire holder & .06
.30 & & arm & . 20 \\
\hline 38458 & Nut-Speed nut to hold cable in pickrip arm... & . 30 & & Lever-Cycling switch & 20 \\
\hline 38454 & Pivot-Pivor arm and shaft assembly-less spring and adjusting screw & . 80 & 3851
3848
3949 & Lever-Reject lever . . . . . . & . 15 \\
\hline 38449 & Sapphire-Sapphire and holder-less & 3.50 & 39498
3850 & Lever-Slide control lever-engages slide...... & . 50 \\
\hline 37783
38455 & \begin{tabular}{l}
Screw-No. \(2-50 \times 1 / 8\) screw to moant sapphire guard (2 required) \\
Spring-Pivot arm spring (10) .................. \\
TOP PLATE ASSEMBLY
\end{tabular} & .04
.10 & 38544 & \begin{tabular}{l}
Lever-Turntable locating lever-engagea sector gear and lever on bottom plate. \\
Lever-Reversing lever, operates motor reversing switch \\
Lever-Elevating control lever, operates tone arm elevating lever and pickup shorting switch
\end{tabular} & .15
.15
.35 \\
\hline 38461 & Belt-Record separator belt (steel) (2 used) & . 35 & \[
38549
\] & Lever-Tone arm elevating lever-less roller... & . 30 \\
\hline 38484
38485 & Button-Pickup stop switch button (rubber) & . 20 & 38509
38518 & Lever-Tone arm lever . C - C
Lever-Tone arm ratchet lever & . 56 \\
\hline 38485
38473 & Button-Reject button ..........
Cam-Record support cam-less pin & .90
.45 & 38518
38506 &  & . 45 \\
\hline 38470 & Cap-Record separator cap (24) & 50 & & spring and damper & . 50 \\
\hline 38481 & Crank-Record separator crank with set screws -leas connecting lever ( 2 used) & . 45 & 38500
38474 & \begin{tabular}{l}
Lever-Slide throw-out lever. \\
Pin-Drive pin to fasten turntable bracket to
\end{tabular} & . 30 \\
\hline 38489 & Cushion--Rubber cushion for records (round) (under felt) & 10 & 38552 & \begin{tabular}{l}
spindle shaft \\
Pin-Pivot pin for tone arm elevating lever
\end{tabular} & . 08 \\
\hline 38441 & Decalcomania - "RCA Victrola - His Manter's Voice' & 15 & 38492 & Plate-Bottom plate complete with all riveted and welded brackets and studs, cycling awitch & \\
\hline 38482 & Drum-Record support belt drum ( 1 required). & . 85 & & trip lever, and cycling switch pivot lever and bracket & \\
\hline & Drum-Record separator belt drum(2 required) & . 40 & 38 & Roller-Cam roller for slide roller liever & 4.50
.10 \\
\hline 38476 & Escutcheon-Index & . 70 & 38502 & Roller-Slide roller, stud and nut (16) & . 35 \\
\hline 38486 & Felt-Top plate felt. & 2.75 & 38550 & Roller-Tone arm elevating lever roller & . 10 \\
\hline 38487
38477 & Knife-Record separator knife
Lever-Control or setection lev & 1.10
1.10 & 38527 & Screw-No. 10-24 \(¥ 7 / 16\) cone point set screw for turntable pivot shaft segment & . 05 \\
\hline 38481 & Lever-Index lever & . 45 & 38528 & Screw-No. 10-24 \(\times 7 / 16\) set screw for turn- & \\
\hline 38490 & Lever-Record separator lever-less lin & . 80 & 31118 & table pivot shaft segment & . 05 \\
\hline 38483
38478 & \begin{tabular}{l}
Lever-Button lever and bracket \\
Lever-Star wheel lever and bushing-less atar wheel and spring
\end{tabular} & . 20 & 31118 & Screw-No. 10-32 z 5/16 fillister head, cone point set screw for fibre drive gear and counter weight & . 08 \\
\hline \[
\begin{aligned}
& 38474 \\
& 38480
\end{aligned}
\] & \begin{tabular}{l}
Pin-Drive pin for record support cam \\
Plate-Finished top plate (cast) only, with pins
\end{tabular} & . 06 & 28 & Screw-No. \(10-32 \times 5 / 16\) set screw for counterweight (E) & . 01 \\
\hline 38469 & \begin{tabular}{l}
and studs-less operating parts \\
Screw-No. 6-32 oval head screw for recerd separator cap
\end{tabular} & 18.00
.08 & 38532
38553 & \begin{tabular}{l}
Screw-5/16-18 x 3/4 screw and nut for turntable spindle bottom bearing. \\
Screw-Special screw to hold tone arm elevating
\end{tabular} & . 05 \\
\hline 31118 & Screw-No. 10-32 \(\times 5 / 16\) fillister head cone point set screw for record separator belt drum, record separator crank, or inder lever & . 06 & 38520
38503 & \begin{tabular}{l}
lever spring \\
Shaft-Motor and turntable pivot sha Slide-Slide plate and studs assembly.
\end{tabular} & .05
.45
1.00 \\
\hline 32869 & Screw-No. 10-32 \(\times 5 / 16\) fillister head set screw for record separator belt drum and record separator crank & .06
.01 & 38537
38540 & \begin{tabular}{l}
Spring-Cycling motor ider arm spring-in. \\
long (18 turns) (17) \\
Spring-Cycling switch pivot lever spring -
\end{tabular} & . 05 \\
\hline 38468 & Shelf-Record separator shelf and shaft-less top knife, cap, and spring. & . 01 & 38507 & 13/16-in. long ( 34 turns) (21)... & .05
.55 \\
\hline 38471 & Spacer-Spacing washer for record separator & & 38513 & Spring-Reject lever spring (8).... & . 05 \\
\hline & \(k\) nife & . 04 & 38501
\(\mathbf{3 8 5 4 6}\) & Spring-Stide throw-out lever spring (15).... & 10 \\
\hline \[
\begin{aligned}
& 38488 \\
& \mathbf{3 8 4 8 8}
\end{aligned}
\] & \begin{tabular}{l}
Spring-Record separator spiral spring (25) \\
Spring-Spiral spring for record veparator belt drum (11).
\end{tabular} & 20 & 38546
38519 & \begin{tabular}{l}
Spring-Spiral spring for motor reversing awitch lever (5) \\
Spring-Spiral spring for cycling switch trip
\end{tabular} & . 05 \\
\hline 38475 & Spring-Spiral spring for record separator lever (20) & .10 & 38545 & lever (7) ........................ & . 06 \\
\hline 38487 & Spring-Spiral spring for record support belt drum (19) & . 15 & 38514 & Spring-Spiral spring for motor reversing switch & 10 \\
\hline 38480 & Spring-Spiral spring for star wheel & . 15 & & lever pawl (3) & . 06 \\
\hline 38472
33900 & Support-Record support and shaft (1 required)
Switch-Voff-On' & 4.50
.30 & 38508 & Spring-Spiral spring for pickup return lever (14) & \\
\hline 38482 & Switch-Stop switch-operated by pickup & . 65 & 38518 & Spring-Spiral spring for ratchet lever & . 06 \\
\hline 38464 & Swivel-Support and swivel for front record separator & 3.25 & 38554 & Spring-Spiral spring for tone arm elevating lever (22) & . 05 \\
\hline 38465 & Swivel-Support and swivel for rear record separator & 3.25 & 38515 & Spring-Spiral spring for tone arm return iever pawl (12) & . 05 \\
\hline 2917 & Washer-" \(C\) " washer for star wheel, record separator link and lever, record support belt drum, star wheel lever, and reject button & 3.2 .5
.03 & \[
\begin{aligned}
& 38510 \\
& 38524
\end{aligned}
\] & \begin{tabular}{l}
Spring-Tone arm lever apring (is) \\
Spring-Turntable drive motor idler arm spring spring (23)
\end{tabular} & .08
.05 \\
\hline \[
\begin{array}{r}
8078 \\
38479
\end{array}
\] & Washer-Spring washer for star wheel lever Wheel-Star wheel & .03
.25 & 38531 & Spring-Turntable drive motor tension spring (6) & 5 \\
\hline & OTTOM PLATE ASSEmBLY & & 38530 & Spring-Turntable pivot shaft counterbalance spring & . 15 \\
\hline 38536 & Arm-Cycling motor ider arm-less wheel & . 25 & 38521 & Support-Turntable support bracket and spindle bearing-less bearing screw and nut. & . 75 \\
\hline 38525 & Arm-Turntable drive motor arm-less wheel. . & . 25 & 38541 & Switch-Mercury tube with leads (cycling) & 1.75 \\
\hline 38547 & Board-Pickup shorting switch terminal board less mounting bracket, pickup elevating lever, and trimmer condensers. & 80 & 38844
38542 & Switch-Pickup shorting switch Switch-Turntable motor reversing switch and bracket & .45
.75 \\
\hline 38539 & Bracket-Cycling motor mounting bracket & 20 & 38534 & Turntable-Turntable, spindle shaft, and drive & \\
\hline 38551 & Bracket-Tone arm elevating lever and bracket & 20 & 2917 & \begin{tabular}{l}
disc assembled \\
Washer-"C" washer for slide control levers,
\end{tabular} & 2.50 \\
\hline 38523 & Bracket-Turntable drive motor mounting
bracket & . 80 & & tone arm lever, tone arm return lever, main cam, or slide throw-out lever & . 03 \\
\hline 38845 & Cable-Shielded output cable-connects to shorting switch & 50 & 20165 & Washer-"C" washer for tone arm elevating lever roller, elevating lever pin, cycling motor & \\
\hline \[
\begin{aligned}
& 38511 \\
& 38548
\end{aligned}
\] & Cam-Cam, gear, and bearing assembly Condenser-Trimmer condenser ( 2 required) & \[
\begin{array}{r}
1.50 \\
. .50 \\
.35
\end{array}
\] & & ider wheel, cycling motor drive wheel, and tone arm ratchet lever. & 05 \\
\hline
\end{tabular}

RCA MFG. CO., INC.

Replacement Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCKK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \text { Unit } \\
& \text { List } \\
& \text { Price }
\end{aligned}
\] & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \text { Unit } \\
& \text { List } \\
& \text { Price }
\end{aligned}
\] \\
\hline 33728 & Washer-" \(\mathbf{C}\) " washer for turntable drive wheel or idier wheel & . 02 & 10941 & \begin{tabular}{l}
miscellaneous assemblies \\
Ball- \(1 / 8\) diameter steel ball for pickup arm. or
\end{tabular} & . 02 \\
\hline 34373 & Washer-"C" washer for turntable idler wheel & . 03 & 38565 & Cable Output cable and plug-connects short- & \\
\hline 38.529 & Weight-Turntable pivot shaft counterweight & 1.25 & 13762 & ing switch to amplifier
Capacitor-1,500 mmfd. & 65
50
75 \\
\hline 885 & Wheel-Cycling motor rubber-tired drive wheel & & 38561 & Lever-Pickup arm trip lever--less spring & 75
.35 \\
\hline & and pinion gear....intable drive wheel or & . 65 & 30870 & Plug-2-prong male for power supphy cabl & . 15 \\
\hline 36274 & Wheel-Rubber-tired turntable drive wheel or & . 55 & \(\begin{array}{r}31572 \\ 31567 \\ \hline 3\end{array}\) & Plug-3-contact emale turntable motor leads & 15 \\
\hline & & & 35352 & Plug-4-contact female for motor cable & 25 \\
\hline & CYCLING MOTOR & & 35384 & Plug-4-prong male for power switch cable & . 25 \\
\hline 38556 & Motor-105-125 volts, 60 cycies & 4.00 & 38563 & Rod-Pickup arm elevating rod-less adjusting screw & 25 \\
\hline & TURNTABLE DRIVE MOTOR & & 38564 & Screw-No. 4-40 \(\times 5 / 16\) hex. head screw and nut for pickup arm elevating rod & 04 \\
\hline & Cap-Bakelite top cover for motor & . 50 & 31118 & Screw-No. \(10-32 \times 5 / 16\) cone point set screw for trip lever & \\
\hline 36955 & Capacitor-1.1 mid., 200 voits for 6 C or 50 cycle motors & 1.50 & 32869
38559 & Screw-No. \(10.32 \times 5 / 16\) set screw for trip lever Screw-5/16-18 \(\times 1 / 2 \mathrm{screw}\) to mount lower & . 01 \\
\hline 38557 & Motor-Motor and capacitor, 105-125 volts. 60 cycles & 8.75 & & \begin{tabular}{l}
unit to top plate \\
Spring-Spiral spring for trip lever latch (18)
\end{tabular} & . 10 \\
\hline \[
\begin{aligned}
& 38558 \\
& 38888
\end{aligned}
\] & Rotor-Rotor and shaft for 60 cycle motor Sleeve-Motor spindie sleeve for 50 cycle con- & 3.25 & \[
\begin{aligned}
& 38562 \\
& 38560
\end{aligned}
\] & Washer-Felt washer for pickup arm pivot shaft bearing. & . 04 \\
\hline
\end{tabular}
all prices are subject to change or withdrawal without notice.

POSITION WHEN NAIN CYCLE IS COMPLETED AND PLAYING TOP SIDE OF RECORD.


Position of mechanism part way thru cycle.

Turntable
Reversing
Switch in "reversed" position.

\section*{Tone Arm}
in neutral.


Electrical Schematic Diagram

Record Post Separator Knife Adjustment
Turn the main record support to the \(10^{\prime \prime}\) position, be sure the mechanism is out of cycle, and place a \(10^{\prime \prime}\) record on the shelves pushed over snuggly on the front record separator shart and separating knife is \(3 / 3\) and of an inch away fran is \(3 / 3\) and inch above
Be sure that the bottom of the set sorew dinc plated screw, run the mechanism through cyoles several times as a check, then tighten the copper plated sorew. Repeat this adjustment on the rear record separating post.
"C"

MODEL RP-151 ADJUSTMENTS
RCA MFG. CO., INC.

 outer edge of the record just outside of the music grooves after which the feed-in spring will move the sapphire over into the proper relationship between the pickup arm position with respect to the trip lever. Place a \(10^{n}\) record on the turntable and rotate the changer through cycle until the sapphire is just ready to land and has not quite touched rear record. Be sure that the pickup arm retur belt drum shaft and that the pin in the trip lever is set securely in the pickup arm return le shoulder on the pickup arm and placing as shown. Move the pickup arm to the point of proper landing, be sure that the set screw collar is up against the pickup arm pivot shaft bushing, and tighten the 2 inc plated screw. Remove feeler and run through cycle several times as a check and then tighten the copper plated screv. The \(12^{\prime \prime}\) landing
will then be correct also.

Piokup Pressure Adjustment

Run the mechanism through cycle so that it is in position to play the top side of a record. Use a amall postal soale which can be very readily obtained from almost any stationery store at a very nominal cost and measure the downward pressure exerted by the top sapphire when the tray of the scale table. Adjustment screw \({ }^{\prime} G^{n}\) should now be turned until the pressure is between one ounce and one and one-quarter ounces.

Run the mechanism through cycle again until it is in position to play the bottom side of a record. Now adjust the two lock nuts on serew "H" until and one and one-quarter ounces. This measurement must likewise be taken when the sapphire is raised up to a position where its point is levol with the bottom side of a record if one were placed on the turntable. Suitable referred to can have its zero adjustment chaned or the postal scale just of two ounces and it can then be pressed down on the pickup and the adjustment made so that the scale reading will be between three-quarters of an of the top pickup before the adjustment is made for pressure of the bottom pickup.

\section*{RCA-MFG. CO., INC. \\ MODEL RP-151 ADJUSTMEIVTS}

\section*{Illustrated Hints for RCA RP-151 Record Changer}

\section*{Caution: Do Not Handle The Tone Arm While The Mechanism Is Operating}


\section*{Fails To Pick Up Record}
or

\section*{12-Inch Record Rubs Tone Arm}

Check to see that turntable returns to level position. If necessary make Adjustments " \(D\) " and "E." Check turntable height.
Edge of hole in record is raised.


\section*{Incorrect Feed-In}

The feed-in spring has no effect until just after the pickup has landed. It then springs back to its original position, pushing on the trip lever stud and moving the pickup toward the music grooves. When feeding in on the top side of a record the feed-in spring is assisted by the rotational force of the record; on bottom side feed-in this force opposes the feed-in spring's action. Adjustment "I" should be made so that the sapphire does not jump grooves on top side feed-in and still accomplishes bottom side feed-in in less than ten seconds. Instrument is not level. Pickup cable binds.


\section*{Lands Incorrectly}

First check Adjustment " \(C\)." Make certain that turntable returns to level position making Adjustment " \(D\) " and " \(E\) "
if necessary. Be sure that sapphire clears record on turntable making Adjustment "F" if necessary. Pickup cable binds.


\section*{Repeats Grooves}

The mercury switch is operated to break the a.c. supply to the cycling motor a few moments before all the cycling operations are completed. The "coast" of the mechanism should then bring the tone arm lever stud against the return lever latch and disconnect the return lever from the trip lever. If excessive friction anywhere in the cycling motor or its gear train reduces this "coast" the pickup will land and repeat
grooves near the beginning of the record. Other causes for the repeating of grooves are shown below.
Check pickup pressure Adjustments "G" and "H."
Groove wall in record is broken.
Pickup cable binds.


\section*{Fails To Trip (or Fails to Cycle)}

Eccentric groove on record is too shallow or discontinuous. Defective mercury switch, circuit, or motor.


\section*{Record Drops Too Soon}

Check Adjustments " \(B\) " and " \(A\) " setting the knife spacing greater than \(3 / 32\) inches if necessary.

\section*{Adjustment Screws Slip}

Two cone-pointed set screws Stock No. 31118 may be used if Adjustment " \(D\) " fails to hold. Similarly on Adjustment "E" two cone-pointed screws Stock No. 38527 may be used.

\section*{RCA-MFG. CO., INC.}


\section*{Trips Early}

Off-center record.
Trip pawl not aligned with ratchet lever teeth.


Trips Continuously


No-Low-Distorted Output


Defective crystal. Shield over terminal board is shorting to cable lugs. Sapphire strikes guard. Nut on sapphire holder shaft is loose.


\section*{Slow or Varying Speed}

Motor support spring tension is incorrect.



\section*{Record Jams}

Record too thick, too thin, or warped. Separator knife shaft binds in its bushing.


\section*{Turntable Stops While Playing Record or Fails to Reverse Rotation}

First make certain that sapphires are equi-distast from the record on the turntable when the tone arm has been raised or lowered to its "in-cycle" position. Check Adjustment " \(F\) " if necessary.
See that turntable is level making Adjustments " \(D\) " and " \(E\) " if necessary.

Check reversing switch adjustment.
Check turntable height adjustment.
Warped record strikes automatic stop switch.
Automatic stop switch button binds on motorboard and fails to rise.
 fails to rise.


Tone Arm Action Erratic


RCA MFG. CO., INC.

\section*{MODELS RP-152, \(-\mathrm{A},-\mathrm{B}\), \(-\mathrm{C},-\mathrm{D},-\mathrm{J}\);}


Rottom I'icic of RP-152, -A, \(-B,-C,-J\) Automatic Record Changer
RP. 153 mechanisms are similar to above but have flexible coupling turntable drive, and automatic' switch
RP-152.D mechanisms are similar to above but include automatic switch.

\section*{Names of Mechanism Parts}


\section*{Names of Mechanism Adjustments}
"A" Rubber Bumper. -Maintains 3,1, inch clearance between roiler (un end of main lever) and cam plate.
"B" Friction Clutch Adjustment.-Regulates tripping of record changing cycle when pickup swings in eccentric groove.
"C" Pickup Lift-Cable Adjustment.-Regulates height that pickup arm is lifted during record-changing cycle
"D" Needle Landing Position for 10 -inch Records.-The relation between pickup shaft and trip lever " 20 ," which are fastened by set screws "D," determines needle landing position for 10 -inch records.
"E" Needle Landing Position for 12 -inch Records.—Eccentric stud " \(E\) " adjusts position of lever " 14 " which determines landing position for 12 -inch records.
"F" Record separator knife adjustment for 10 -inch records, adjusts spacing of knife with relation to record shelf so knife will accurately slice in between the bottom 10 -inch record and the rest of the stack
" \(G\) " Record separator knife adjustment for 12 -inch records, adjusts movement of elevating lever which raises knife to compensate for greater thickness of 12 -inch records.
"H" Record support shelf set acrew, to adjust record support self on each record post, so the shelves move out from under the bottom record at the same instant, permitting record to drop properly.
"K" Trip-pawl stop pin, regulates point at which the roller on main leser enters the sam.

\section*{RP-152 SERIES, \\ RP-153}

RCA MFG. CO., INC.

The RP. 152 and RP. 153 automatic record changers are very similar in design and construction. Most of the parts and adjustments are identical on both. The RP-153 turntable is driven through a worm gear in the motor housing while the RP- 152 turntables are driven through a friction drive disc mounted under the turntable.

On Models RP-152 it is important that the drive motor spindle, and rubber tires on main driving disc and ider pulley be kept clean and free from oil, grease, dirt, or any foreign matter at all times. Any quick-drying naphtha is satis factory for cleaning these parts. The drive motor bearing is lubricated from an oil well filled and sealed at the factory It should not require lubrication in the field

The rubber-tired drive disc on Models RP. 152 is not removable from the spindle. The turntable is fastened to the driving disc by three bolts. If necessary to remove these parts the spindle drive gear set screw should first be removed. The driving dise, turntable and spindle assembly can now be lifted upward from the motorboard. If this is done, great care should be taken not to bend the spindle.

To remove the turntable and spindle on the RP- 153 type it is necessary to first remove the tapered pin in the turntable drive arm assembly. The turntable and spindle can then be drawn up through the motorboard bearing.

Before servicing the automatic record changer, inspect the assembly to see that all levers, parts, gears, springs, etc., are in good order and are correctly assembled.

A bind or jam in the mechanism can usually be relieved by rotating the turntable in the reverse direction.

The changer can be conveniently rotated through its change :ycle by pushing the index lever to "Reject" and revolving the turntable by hand. Six turntable revolutions are required for one change cycle.

When a record has been played the pickup moves out, another record is dropped down, and the needle is fed automatically into the starting groove of this record. If the needle fails to enter the starting groove, raise the right-hand side of the cabinet by inserting thin spacers under the feet on that side. If the needle slides over a few grooves, raise the left-hand side of the cabinet in a similar manner.


\section*{FOR OTHER DATA SEE \\ R C A MODRL RP*139A}

When the RP-152-D and RP-153 type record changers are operated in the "manual" position, power to the drive motor is controlled by an automatic starting and stopping switch. The inounting holes on this switch are elongated for adjustment purposes. Proper adjustment is obtained when power is disconnected with the pickup needle \(13 / 4\) inches from the center of the turntable spindle.

\section*{Replacement Parts Model RP-152}
insist on genuine fectory-tested parts, which are readily ldentified and may be purchased from authorized dealen.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { sTOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \begin{tabular}{l}
Unit \\
List \\
Price
\end{tabular} & \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION & \begin{tabular}{l}
Unit \\
List \\
Price
\end{tabular} \\
\hline & PICKUP AND ARM ASSEMBLIES (RP-152) & & & \begin{tabular}{l}
MOTOR ASSEMBLIES \\
( 110 volts, 60 cycles)
\end{tabular} & \\
\hline 33906 & Arm-Pickup arm only-less crystal, cable, and & & & \begin{tabular}{l}
(Motor No. 91706 -1) \\
(RP. 152 - RP-152-A)
\end{tabular} & \\
\hline 36320 & \begin{tabular}{l}
pivot arm \\
Arm-Pickup pivot arm and shaft-less lift cable and rubber bushings
\end{tabular} & .45
1.00 & & NOTE: For complete 110 volts, 60 cycle & \\
\hline 34550 & Bushing-Rubber bushing for pickup pivot arm. & . 05 & & motor replacement order: 110 er & \\
\hline 32635 & Cable-Pickup lift cable ............. & . \(2 \pm\) & & 1-Stock No. 36254 Motor-with capacitor & \\
\hline 35694 & Cable-Pickup shielded cable (8) & . 40 & & 1-Stock No. 36274 Idler wheel & \\
\hline 35171 & Crystal-Pickup crystal cartridge and needle screw & 4.25 & & \begin{tabular}{l}
1-Stock No. 36275 Idler wheel arm \\
2-Stock No. \(33726^{\text {"C" }}\) " washer for idler wheel
\end{tabular} & \\
\hline 33529 & Screw-Pickup needle screw & 10 & & 1-Stock No. 30585 Spring for idler & \\
\hline & PICKUP AND ARM ASSEMBLIES (RP-152-A) & & \[
\begin{aligned}
& 37108 \\
& 37107 \\
& 37109
\end{aligned}
\] & \begin{tabular}{l}
Bearing-Bottom bearing and bracket \\
Bearing-Top bearing and bracket. \\
Bracket-Motor mounting bracket
\end{tabular} & .40
.40
.40 \\
\hline 36321 & Arm-Pickup arm only-less crystal, cable, and & & 37111
37110 & Coil-Motor field coil assembly, & 1.50
1.75 \\
\hline 36320 &  and rubber bushings & .75
1.00 & 37108 & Pad-Rotor thrust pad............ & . 05 \\
\hline 34550 & Bushing-Rubber bushing for pickup pivot arm & . 0.5 & & MOTOR ASSEMBLIES & \\
\hline 32635
35694 & Cable-Pickup lift cable. \({ }^{\text {Cable-Shielded pickup cable ( } 8 \text { ) }}\)........... & . 24 & & (Motor No. 91655-1, 2, and 3) & \\
\hline 35694
35171 & Cable-Shielded pickup cable (8)
Crystal-Pickup crystal cartridge and needie & 40 & 36954 & Armature-Motor armature and shaft for 25 & \\
\hline & screw … . . . . . . . . . . . . . . . . . . & 4.25 & & cycle motor & 7.85 \\
\hline 33974 & Screw-Pickup needle screw & . 15 & 36963 & Armature-Motor armature and shaft for 50 cycle motor & 4.00 \\
\hline & PICKUP AND ARM ASSEMBLIES (RP-152-B) & & 36255
36952 & Armature-Motor armature and shaft for 60 cycle motor Cap-Bakelite cap for motor & 2.75
.50 \\
\hline 36322 & Arm-Pickup arm only-less crystal, cable, and & & 36955 & Capacitor-1.1 mfd for 60 cycle motor. . & 1.50 \\
\hline 30320 &  & 1.80 & 36951
36726 & Capacitor- \(\mathbf{1 . 2 5}\) mid. for motors ( 1 required for 50 cycles) ( 2 required for 25 cycles) & 1.75 \\
\hline 34550 &  & 1.00
.05 & 36726 & Motor-105-125 volts, 25 cycle, complete with capacitor & 10.75 \\
\hline 32635 & Cable-Pickup lift cable................... & . 24 & 36725 & Motor-105-125 volts, 50 cycle, complete with & \\
\hline 35694 & Cable-Pickup shielded cable & . 40 & &  & 8.00 \\
\hline 37158 & Crystal-Pickup crystal cartridge and needie
screw & 4.25 & 36254 & Motor-105-125 volts, 60 cycle, complete with capacitor & 6.75 \\
\hline 33529 & Screw-Pickup needle screw & . 10 & & & \\
\hline
\end{tabular}

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

RCA MFG. CO., INC.
RP-152 SERTES
Replacement Parts Model RP-152 (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit Liat Price & \[
\begin{aligned}
& 31121 \\
& 36280 \\
& 33982 \\
& 31151
\end{aligned}
\] & \begin{tabular}{l}
Gear-Record separator shaft gear (10) Gear-Turntable shaft drive gear. \\
Guide-Main lever spring guide (11) \\
Guide-Pickup lift cable guide (sprin
\end{tabular} \\
\hline & \multirow[t]{2}{*}{PICKUP AND ARM ASSEMBLIES (RP-152-C)} & \multirow[b]{3}{*}{75} & 38264
\(\mathbf{3 6 3 8 0}\) & \begin{tabular}{l}
Lever-Index lever-RP-152 only (12) \\
Lever-Index lever-RP-152-A, RP-152-B, and RP-152-J
\end{tabular} \\
\hline & & & 3654 & Rer-Index lever-RP-152 \\
\hline 36591 & \multirow[t]{2}{*}{\begin{tabular}{l}
Arm-Pickup arm shell only \\
Arm-Pickup pivot arm and shaft-less lift cable and rubber bushings.
\end{tabular}} & & 36816 & Lever-Index lever-RP-152 \\
\hline 38320 & & 1.00 & 36273 & Lever-Locating lever and pawl-R 152-A, RP-152-B and RP-152-J. \\
\hline 34550 & Bushing-Rubber bushing for pickup pivot arm. & . 05 & 3113 & Lever-Locating lever and pa \\
\hline 32635 & Cable-Pickup lift & . 24 & & \\
\hline 32556 & Cable-Shielded pickup & 75 & 33985 & Lever-Main lever \\
\hline 35171 & Crystal-Pickup unit crys & \multirow{4}{*}{. 15} & 311 & Lever-Pickup lift cable lever and spring ( \\
\hline \multirow[t]{3}{*}{33974} & \multirow[t]{3}{*}{\begin{tabular}{l}
Screw-Needle screw \\
PICKUP AND ARM ASSEMBLIES (RP-152-D)
\end{tabular}} & & 3681 & Lever-Pickup discriminating lever and pa RP-152-D only \\
\hline & & & 36272 & Lever-Record discriminating lever and RP-152 only (17) \\
\hline & & & 36381 & Lever-Record discriminating lever and \\
\hline 37181 & \multirow[b]{2}{*}{Arm-Pickup pivot arm and shaft-less lift cable and rubber bushings} & \multirow[b]{2}{*}{1.00} & & RP-152-A, RP-152-B, and RP-152-J. \\
\hline 36320 & & & 3654 & ever-Record discriminating lever and RP-152-C only \\
\hline 34550 & \multirow[t]{2}{*}{Bushing-Rubber bushing for pivot arm. . . . . . .
Cable- Pickup lift cable.............} & . 05 & 3647 & Record separator elevating \\
\hline 32635 & & 24 & & \\
\hline 33905 & \multirow[t]{2}{*}{\begin{tabular}{l}
Crystal-Pickup crystal cartridge \\
Pin-Support pin used to fasten arm shell to pivot arm
\end{tabular}} & 4.25 & 3113 & Lever-Trip detaining lever (19) \\
\hline 33978 & & . & 36530 & Lever-Trip lever-less cam and 152-D only \\
\hline \multirow[t]{2}{*}{33529} & \multirow[t]{3}{*}{\begin{tabular}{l}
Screw-Needle screw \\
PICKUP AND ARM ASSEMBLIES \\
(RP-152-J)
\end{tabular}} & \multirow[t]{2}{*}{. 10} & 3628 & Lever-Trip lever-less friction finger and clutch -RP-152, RP-152-A, RP-152-B, RP-152-C, and RP-152-J (20) \\
\hline & & & 36525 & ink-Index link assembly \\
\hline 36322 & & \multirow[t]{2}{*}{,80} & & \\
\hline \multirow[t]{2}{*}{\({ }_{36320}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Arm-Pickup arm (shell only) \\
Arm-Pickup pivot arm and shaft-less lift cable and rubber bushings
\end{tabular}} & & & to fasten gear to separator shaft (23) \\
\hline & & . 00 & 3288 & Rack-Short arm and gear (40 \\
\hline 34550 & \multirow[t]{2}{*}{} & . 05 & 36281 & Ring-Retaining ring for set sis \\
\hline 32635 & & . 24 & & \\
\hline 35694
37158 & \multirow[t]{2}{*}{Cable-Shielded pickup cable to shorting switch Crystal-Pickup crystal cartridge} & . 40 & 3647 & Screw-No. 6-32 ball \\
\hline 37158 & & . 25 & & separator elevating \\
\hline \multirow[t]{2}{*}{33529} & Pin-Used to attach pickup arm to pivot arm Screw-Needle screw & . 10 & & rew-No, 6-32 \\
\hline & MOTORBOARD ASSEMBLIES & \multirow[b]{2}{*}{. 40} & 31118 & turntable drive gear crew-No. 10-32 \(\times\) 5/ \\
\hline 36259 & Base-Pickup arm mounting base-RP-152 only & & 32869 & for record separator shelf \\
\hline \[
36378
\] & Base-Pickup arm mounting base-RP-152-A, RP-152-B, and RP-152-J only. & & & record separator shelf \\
\hline \multirow[t]{2}{*}{\[
36811
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { only } \\
& \text { Basely } \\
& \text { only }
\end{aligned}
\]} & . 40 & 33983 & Screw-Record separator elevating lever point \\
\hline & & & 362 & ara \\
\hline 36257 & Board-Motorboard complete with bearings and posts-less operating parts-RP-152 only. & \multirow[t]{2}{*}{7.00} & 33890 & RP-152-A only \\
\hline \multirow[t]{2}{*}{36375} & \multirow[t]{2}{*}{Board-Motorboard complete with bearings and posts-less operating parts-RP-152-A, RP-152-B, and RP-152-J} & & 34775 & \multirow[t]{2}{*}{```
Separator-Record separator knife-RP-152-C
    only
```} \\
\hline & & \multirow[t]{2}{*}{7.00} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 33988 \\
& 36269
\end{aligned}
\]} & \\
\hline \multirow[t]{2}{*}{36256} & Board-Motorboard complete with bearings and posts-less operating mechanisms-RP-152-C only & & & \multirow[t]{2}{*}{Shelf-Record separator rotating shelf-leas set screw-RP-152, RP-152-A, and RP-152-C.} \\
\hline & & \multirow[t]{2}{*}{7.00} & \multirow[t]{2}{*}{33989} & \\
\hline 36813 & studs and bearing - less operating parts RP-152-D only. & & & screws-RP-152-B, RP-152-D, and RP-15 (27) \\
\hline \multirow[t]{2}{*}{32556} & \multirow[t]{2}{*}{Cable-Shielded pickup cable and plug, connects to shorting switch} & & \multirow[t]{2}{*}{26} & \multirow[t]{2}{*}{Shelf-Record separator rotating shelf-less set screws-RP-152-C only} \\
\hline & & \multirow[t]{2}{*}{. 75} & & \\
\hline \multirow[t]{2}{*}{36262} & \begin{tabular}{l}
Cup-Used needle (insert only for pickup rest) \\
-RP-152, RP-152-A, RP-152-B, RP-152-C
\end{tabular} & & \[
\begin{aligned}
& 33994 \\
& 32882
\end{aligned}
\] & Soring-Flat spring for record discriminator lever Spring-Main lever spring (43). \\
\hline & \multirow[t]{2}{*}{Cup-Used needle cup (insert for pickup rest) -RP-152-D only} & & \multirow[t]{2}{*}{6580} & \multirow[t]{2}{*}{Spring-Motor tension spring, for use with motor No. 91708 -1 - RP-152, RP-152-A, RP-152-B, RP-152-C, and RP-152-J} \\
\hline 18 & & \multirow[t]{2}{*}{. 40} & & \\
\hline 362 & Escutcheon-Index escutcheon - RP-152, RP-152-A, RP-152-B, RP-152-C and RP-152-J & & \[
\begin{array}{r}
36278 \\
3666
\end{array}
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
Spring-Pickup arm feed epring \\
Spring-Pickup lift cable spring (31)
\end{tabular}} \\
\hline & Escutcheon-Index escutcheon-RP-152-D only & . 50 & \multirow[t]{2}{*}{1419} & \\
\hline 36377
36260
36368 & \multirow[t]{2}{*}{Gauge-Pickup needle gauge...............} & \multirow[t]{2}{*}{. 15} & & Spring-Record discriminating lever pawl spring (28) \\
\hline 34368 & & & \multirow[t]{2}{*}{3676
30585} & Spring-Tension spring for cam pawl, \\
\hline 36263
30870 & Plate-Turntable shaft support and spring plate & . 40 & & \multirow[t]{3}{*}{\begin{tabular}{l}
Spring-Tension spring for idler assembly, for use with motor marked No. 91655 \\
Spring-Tension spring for locating lever and
\end{tabular}} \\
\hline 31048 & \multirow[t]{2}{*}{Plug-Plug for pickup leads-RP-152-D only. . Rest—Pickup arm rest-RP-152 only.} & . 15 & \[
30585
\] & \\
\hline 36261 & & 5 & 32436 & \\
\hline 硅 & Rest-Pickup arm rest-RP-152 only. Rest-Pickup arm rest-RP-152-A, RP-152-B and RP-152-J & & 31138 & Spring-Tension spring for roller index link-RP-152-D only \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 36812 \\
& 36543 \\
& 36798
\end{aligned}
\]} & Rest-Pickup arm rest-RP-152-D only & \multirow[t]{2}{*}{. 35} & 36921 & Spring-Tension spring for trip detaining lever. \\
\hline & Rest-Pickup arm rest-RP-152-C only & & 36279 & Spring-Tension apring for trip paw \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
board) \\
Switch-Motor switch (4) \\
OPERATING MECHANISMS
\end{tabular}} & & 36271 & Stud-No. 4-40 hex stud for trip lever clutch adjustment \\
\hline \multirow[t]{2}{*}{75} & & \multirow[t]{2}{*}{. 30} & 36529 & Switch-Automatic switch-RP-152-D only ... \\
\hline & & & 34875 & Switch-Pickup shorting switch-RP-152, RP-152-A, RP-152-B, RP-152-C, and RP-152-J. \\
\hline 36275 & \multirow[t]{2}{*}{Arm-Motor idler wheel arm and studs-less wheel-for use with motor marked No. 91655 Ball-Steel ball for spindle shaft} & . 25 & \multirow[t]{2}{*}{36283} & \multirow[t]{2}{*}{Turntable-Finished top plate only - RP-152, RP-152-A, RP-152-B, RP-152-C, and RP-152-J} \\
\hline \multirow[t]{2}{*}{10129
33984} & & . 02 & & \\
\hline & \begin{tabular}{l}
Ball-Steel ball for spindle shaft. \\
Bracket-Bracket and pin for locating post and lever (3)
\end{tabular} & . 20 & 36815 & Turntable-Finished top plate only-RP-152-D only \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
36277 \\
33987 \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{Bumper-Main lever rubber bumper (\(420 \ldots\)
Cam-Cam and drive gear complete} & . 10 & \multirow[t]{2}{*}{31608} & \multirow[t]{2}{*}{Washer- "C" washer for roller index link -RP-152-D only} \\
\hline & & 2.00 & & \\
\hline 36531
36266 & Cam-Trip lever cam and link-RP-152-D only & 75 & 33726 & \multirow[t]{5}{*}{\begin{tabular}{l}
Washer- " \(C\) " washer for motor idler-for use with motor marked No. 91655 \\
Washer-Spring washer for mounting record discriminator lever \\
Washer-Spring washer for mounting levers \\
Wheel-Motor idler wheel and bearing-less arm-for use with motor marked No. 91655.
\end{tabular}} \\
\hline 36266 & Clutch-Trip lever clutch-less adjusting stud (5) & . 25 & 8078 & \\
\hline 36282 & Disc-Turntable drive disc, rubber tire, and & & & \\
\hline & & & 2917 & \\
\hline 36265 & Finger-Trip lever friction finger (7) & 2.80
.50 & 36274 & \\
\hline
\end{tabular}

PARTS SUBJECT TO CHANGE WITHOUT NOTICE

Replacement Parts Model RP-153
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \begin{tabular}{l}
Unit \\
List \\
Price
\end{tabular} & \[
\begin{aligned}
& \text { stock } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit
List List
Price \\
\hline & PICKUP AND ARM ASSEMBLIES & & 31151 & Guide-Pickup lift cable guide (spring) (2) & 10 \\
\hline & & & 36520 & Lever-Index lever (12) . & .75 \\
\hline 36513 & Arm-Pickup arm shell only \({ }^{\text {Arm-Pickup support and pivat }}\) & 3.85
1.00 & 36375
33985 & Lever-Lecating lever and pawl & . 50 \\
\hline 34550 & Arm-Pickup support and pivot arm. .i. & 1.00
.05 & 33985
\(311+0\) & Lever--Main lever (15). & 1.05 \\
\hline 32635 & Cable-Pickup lift cable & . 24 & 31140
36522 & Leve:-Pickup 1 ft cable and spring (16) & . 55 \\
\hline 33905 & Crystal-Pickup crystal cartridge and needle screw & 4.25 & 36522
36476 & Lever-Record discriminating lever . . . & 1.30 \\
\hline 33976 & Pin-Pickup arm shell mounting pin & . 03 & & justment screws (18) . \({ }^{\text {den }}\) & 80 \\
\hline & MOTOR ASSEMBLIES & & 31132 & Lever-Trip detaining lever (19) & 30 \\
\hline & & & 36530 & Lever-Trip lever less cam and link & 1.60 \\
\hline 37300 & Armature-Motor armature and worm gear for & & 36525 & Link-Roller index link & 20 \\
\hline & 50 cycle moter & XX & 31133 & Pawl-Trip pawl (22) & 80 \\
\hline 37298 & Armature-Motor armature and worm gear for & & 31535 & Pin-Drive pin for turntable spindle shaft & 03 \\
\hline 37303 & \({ }_{\text {Bearing }} \mathbf{c}\) cycle motor. Fibre insert for motor spindle botto. & XX & 36268 & Pin-Pin to fasten gear to separator shaft (23) & 05 \\
\hline 37303 & Bearing-Fibre insert for motor spindle bottom bearing & & 36267 & Rack-Long arm and gear (4i) & 60 \\
\hline 37296 & Motor-105-120 volts, 50 cycles . & \(\underset{\mathbf{X X}}{ }\) & 32880
33983 & Rack-Short arm and gear (40) & .5.) \\
\hline 37295 & Motor-105-120 volts, 60 cycles & 32.00 & 33983 & Screw-Elevating lever pivot screw & 15 \\
\hline 37298 & Spindle-Motor spindie and fibre gear for 50 cycle motor. & 32.00
\(\mathbf{X X}\) & ¢ 36519 & Screw-No. 6-32 ball point screw for elevating lever & . 30 \\
\hline 37297 & Spindle-Motor spindie and fibre gear for 60 cycle motor & & 36477 & Screw-No. 6-32 ball point screw for record separator elevating lever & . 10 \\
\hline 37304 & Support-Motor mounting support plate & . 45 & 36526 & Screw-No. \(10.32 \times 5 / 16\) cup point set screw & \\
\hline 37301 & Washer-" \({ }^{\text {" }}\) washer for motor armature shaft (thrust bearing). & & 32869 & \begin{tabular}{l}
for record separator \\
Screw-No. \(10.32 \times 5 \cdot 16\) screw for record sepa-
\end{tabular} & . 30 \\
\hline 37302 & Washer-Felt washer for motor armature shaft & & & rato & 01 \\
\hline & (thrust bearing) & X X & 31118 & \(\underset{\text { Screw - No. }}{\text { Sam }}\) (10.32×5 16 set screw for trip lever & \\
\hline & MOTORBOARD ASSEMBLIES & & 14188 & Screw-No. \(10-32 \times 7 / 16\) set screw for motor & \\
\hline 36518 & Base-Pickup arm mounting base & & & coupling & . 06 \\
\hline 36514 & Board-Motorboard complete with bearings and & & +5683 & Screw-Pickup lift cable adjusting screw & . 04 \\
\hline & posts-less operating parts & & 36528
33988
3 & Separator-Record separator knife (25) & 2.00 \\
\hline 36517 & Brace-Motorboard strain brace & . 70 & \begin{tabular}{l}
33988 \\
36527 \\
\hline
\end{tabular} & Shaft-Record separator shaft (34)...1 & . 70 \\
\hline 32556 & Cable-Shielded pickup cable and plug, connects & & \begin{tabular}{l}
36527 \\
36524 \\
\hline
\end{tabular} & Shelf-Record separator rotating shelf (27) Spindle-Turntable spindle & 1.40
1.05 \\
\hline 36518 & Cup-Usting switch & . 75 & 36994 & Spring-Flat spring for record discriminator lever & 1.05
.05 \\
\hline 38377 & Escutcheon-Index escutcheon & . 40 & 32882 & Spring-Main lever spring (43) & . 05 \\
\hline 38260 & Gauge-Pickup needle gauge. & . 15 & 36278 & Spring-Pickup arm feed spring & 10 \\
\hline 30870 & Plug-2-contact male for motor leads & . 15 & 3666 & Spring-Pickup lift cable spring (31) & . 04 \\
\hline 31572 & Plug-Female, for switch leads & . 15 & 14190 & Spring-Record discriminating lever pawl spring & \\
\hline 36515 & Rest-Tone arm rest and needle cup holder & . 85 & & & . 08 \\
\hline 36798 & Spring-Index lever spring (riveted to motorboard) & . 20 & 31136 & Spring-Tension spring for automatic switch plunger & . 05 \\
\hline & & . 20 & 3676 & Spring--Tension spring for cam pawl & . 04 \\
\hline & OPERATING MECHANISM & & 32436 & Spring-Tension spring for locating lever and pawl (35) & . 05 \\
\hline & & & 36521 & Spring-Tension spring for trip lever cam & .05 \\
\hline 34009 & Arm-Motor coupling arm and gear-turntable & & 36921 & Spring-Tension spring for trip detaining lever. & 03 \\
\hline & & .70 & 36279
31147 & Spring-Tension spring for trip pawl. & 02 \\
\hline 33580
33984 & Arm-Motor coupling arm and hub-motor end & . 70 & 31147 & Strip-Complete set of rubber strips for motor & \\
\hline & and pin for locating post and & . 20 & 36271. & Stud-No. \({ }^{\text {coupling }}\)-40 hex stud for trip lever clutch & . 40 \\
\hline 36277 & Bumper-Main lever rubber bumper & . 10 & & adjustment . & \\
\hline 33987 & Cam-Cam and drive gear complete (42) & 2.00 & 36529 & Switch-Automatic switch & 1.10 \\
\hline 36531 & Cam-Trip lever cam and link-iess trip lever. & . 75 & 34875 & Switch-Pickup shorting switch & . 45 \\
\hline 36266 & Clutch-Trip lever clutch-less adjusting stud (5) & & 36523
8078 & Turntable-Turntable less spindle shaft Washer-Spring washer for mounting record & 4.50 \\
\hline 36265 & Finger-Trip lever friction finger (7) & 50 & & wiscriminating lever & . 06 \\
\hline 33581 & Frame-Motor coupling frame only & 20 & \(\begin{array}{r}2917 \\ 31808 \\ \hline 18\end{array}\) & Washer-Spring washer for mounting levers & . 03 \\
\hline 31121
33982 & Gear-Record separator shaft gear (10) & 90 & 31808
31143 & Washer-Spring washer to hotd index link ...
Washer-Washers for turntable bearing (i) steel, & . 01 \\
\hline 33982 & Guide-Main lever spring guide (11) & 10 & & \begin{tabular}{l}
1 bronze and 1 felt) \\
turntable bearing (1 steel,
\end{tabular} & . 15 \\
\hline
\end{tabular}

\section*{RCA MFG. CO., INC.}

Phonokiraph (RP-155)
Type.

\section*{\(\qquad\)}Capacity

Eight 10 inch or Seven 12 inch
Turntable Speed................................. 78 r.p.m. Drive... Motor drive through idler on inside rim of turntable
 Pickup Impedance........... 100,000 ohms at 1,000 cycles Average Output... \(11 / 2\) volts at 1,000 cycles across \(1 / 2\) meg. Recorder
Recording Head (cutter)
Crystal

Impedance of Cutter at 1,000 cycles Turntable Speed.

Approx. 60,000
Grooves Cut per Inch
Inches Cut per Minute
Approx 115 Approx. 713 inch

Resdig Blank Discs.
Recording Disc Diameter Coated metal-base or coated paperbase
Drive.:.... Motor drive through idler on inside rim of turn table; the turntable spindle drives a lead screw which guides the recorder arm from outside of recording blank to inside

FOR DATA ON RECORD CHANGER ADJUSTMENTS SEE MODEL RP-139A, AND FOR MECHANICAL DATA ON RECORD CHANGER SEE MODEL RP-152 SERIES.

\section*{Recorder Operating Instructions}

\section*{Preliminary.-}
1. See that cutter is functioning correctly as outlined on facing page.
2. Place recording disc on turntable with stud engaged in one hole.
3. Turn on powerbass control, just past the click of the power switch. Turn treble tone control full clockwise. Set radio phono volume control to soft, and microphone volume control fully counter clockwise

\section*{Radio Recording.-}
1. Tune in the desired radio program.
2. Turn service selector to position "3."
3. Turn radio phono volume control so the "Magic Eye" just closes during loudest passages.
4. Push turntable switch "on."
5. Lift the recording arm, move it over so the stylus is about \(1 / 4 \cdot\) inch inside the recording disc, and lower gently on the disc.
6. During the recording, listen to the loudspeaker, watch the "Magic Eye," and increase or decrease the radio phono volume control if the broadcast level becomes too low or too high
7. Use a fine hair brush occasionally to keep the area immediately ahead of the stylus free from chips and threads.
8. Before the cutter reaches its inner limit, lift the cutter head and place on rest. Turn off the turntable switch and remove the cuttings from the disc.
9. The recording may be "played-back" immediately: Turn the service selector to "Victrola," push the turntable switch "on," turn power-bass control fully clockwise, place pickup needle in outer groove of the disc, and adjust the radio phono volume control. Use a new needle for play-back.

\section*{Microphone Recording.-}
1. Turn service selector to position "1."
2. Turn radio phono volume control to its "off" position to prevent feed-back and "howl.
3. Turn powerbass control just past the click of the power switch. Turn treble tone control full clockwise
4. To obtain an approximate setting of the microphone volume control before making a recording, talk into the microphone (which should be left plugged into its receptacle at all times) and adjust the microphone volume control so the "Magic Eyc" Just closes. By talking in a fairly level tone, and by maintaining the same distance between the microphone and lips, the microphone volume control will not require continual readjustment.
5. Start the turntable and place cutier on the disc.
6. Talk into the microphone to make the desired recording, and readjust the microphone volume control if required, as indicated by the "Magic Eye."
7. Stop the recorder before it reaches its inner limit, turn the microphone volume control counterclockwise and play back the recording as described in " 9 " above.

\section*{Re-Recording.-}

A record may be rerecorded, or duplicated (that is, a "copy" may be made from an "original") by connecting an RCA Victrola Attachment (record player) to the "re'record. ing jack" on the rear of the radio chassis. The "original" record is played on the RCA Victrola Attachment, and the "copy" is cut or recorded on the Home Recorder.

Controls on VHR-207 and VHR-407. Model VHR-202 Controls are identical, ercept " \(B\) " Band is omitted.

The procedure is as follows
1. Turn the service selector to position " 1 ."
2. Connect the RCA Victrola Attachment pickup cable to the jack on rear of the Home Recorder radio chassis
3. Place the "original" record on the RCA Victrola Attachment, turn its volume control fully clockwise, and place its pickup on the "original" record.
4. Adjust the radio'phono volume control so the "Magic Eye " just closes on loudest passages, then lift pickup off the RCA Victrola Attachment.
5. Start the recorder by pushing turntable switch "on," and placing the recorder arm on the recording disc.
6. Put the RCA Victrola Attachment pickup arm on the "original" record. The recorder will cut a duplicate of this record, which may be played back as described previously.

\section*{Mixed Recording. -}

The RCA Home Recorders have complete flexibility for mixed recordings of radio, microphone, and phonograph. The various possible combinations are clearly shown in the illustration of the service selector control.
In mixed recordings, the radio phono volume control regulates the recording level for radio, and for the RCA Victrola Attachment.

The microphone volume control regulates the recording level of the microphone only. In using the microphone on mixed recordings, or mixed PA, it should be placed as far as fossible from the loudspeaker and faced away from the loudspeaker to avoid feed back howl. (An extension cord may be added if necessary.)

\section*{"Rumble". -}
1. Excessive cutting pressure will cause rumble. The width of the groove should almost equal, but not exceed, the distance between grooves

Check the groove width each time a new stylus is used, and each time a new disc is used.
2. When recording, use the maximum bass response, by turning the powerbass control to "full" (just past the click of the power switch).
3. On play-back, use the least bass response, by turning the power-bass control to "speech" (full clockwise)
4. Be certain that the motor board and mechanism is "floating" free from the cabinet.

RCA MFG. CO., INC.

\section*{Names of Mechanism Parts}
\begin{tabular}{|c|c|c|}
\hline 2 & Guide & -Pickup-lift cable guide. \\
\hline 3 & Bracket & --Record-discriminating-levér bracket. \\
\hline 4 & Switch & -Turntable motor switch. \\
\hline 5 & Clutch & -Trip-lever friction clutch. \\
\hline 7 & Finger & -Trip-lever friction finger. \\
\hline 8 & Cable & --Pickup shielded cable. \\
\hline 9 & Spring & -Record discriminating lever spring (flat) \\
\hline 10 & Gear & -Record-separatorshaft gear. \\
\hline 11 & Guide & -Main-lever-spring guide. \\
\hline 12 & Lever & - Index lever. \\
\hline 14 & Lever & --Locating lever and pawl. \\
\hline 15 & Lever & - Main lever. \\
\hline 16 & Lever & - Pickup lift-cable lever. \\
\hline 17 & Lever & -Record-discriminating lever and pawl. \\
\hline 18 & Lever & -Record-separator elevating lever. \\
\hline 19 & Lever & -Trip-detaining lever. \\
\hline 20 & Lever & -Trip lever. \\
\hline 21 & Lever & -Trip-regulator lever. \\
\hline 22 & Pawl & -Trip pawl. \\
\hline 23 & Pin & -Separator-shaft pin (engages gear) \\
\hline 25 & Separator & - Record-separator knife. \\
\hline 26 & Spring & --Pickup-arm starting spring. \\
\hline 27 & Shelf & --Record-suppurt shelf. \\
\hline 28 & Spring & -Record-discriminating-lever pawl spring, or locating lever pawl spring. \\
\hline 31 & Spring & -Pickup lift-cable spring. \\
\hline 34 & Shaft & - Record separator shaft. \\
\hline 35 & Spring & -Locating-lever spring. \\
\hline 40 & Gear & - Short arm and rack gear. \\
\hline 41 & Gear & --Long arm and rack gear. \\
\hline 42 & Cam & -Cam and drive gear assembly. \\
\hline 43 & Spring & - Main-lever spring. \\
\hline 50 & Casting & -Casting and bearing for spindle and lead screw. \\
\hline 1 & Screw & -Lead screw and pinion gear for recorder drive. \\
\hline 52 & Spring & -Tension spring for motor idler pulley arm. \\
\hline 53 & Arm & -Motor drive dise arm. \\
\hline
\end{tabular}

\section*{Names of Mechanism Adjustments}
"A" Rubber Bumper.-.Maintains 1,14 inch clearance between roller (on end of main lever) and cam plate.
"B" Friction Clutch Adjustment.-Regulates tripping of recordchanging cycle when pickup swings in eccentric groove.
"C" Pickup Lift-Cable Adjustment.-Kegulates height that pickup arm is lifted during record-changing cycle.
"D" Needle Landing Position for 10 -inch Records.-The relation between pickup shaft and trip lever " 20 ," which are fastened by set screws "D,", determines needle landing position for 10 -inch records
"E" Needle Landing Position for 12 -inch Records.-Eccentric stud " \(E\) " adjusts position of lever " 14 " which determines landing pusition for 12 -inch records.
" \(F\) " Record separator knife adjustment for 10 -inch records, adjusts spacing of knife with relation to record shelf so knife will accurately slice in between the bottom 10 inch record and the rest of the stack.
" \(G\) " Record separator knife adjustment for 12 -inch records, adjusts movement of elevating lever which raises knife to compensate for greater thickness of 12 -inch records.
"H" Record support shelf set screws, to adjust record support self on each record post, so the shelves move out from under the bottom record at the same instant, permitting record to drop properly.
"K" Trip-pawl stop pin, regulates point at which the roller on main lever enters the cam.

\section*{RCA MFG. CO., INC. Recorder Cutting Adjustments}

To insert or change a stylus, lift the recorder arm, loosen the stylus screw, and insert the stylus as far as it will go in the hole at bottom of cutter head, with the flat on the shank of the stylus toward the screw. Tighten the screw against the flat on the shank. Retighten the screw before making each recording. Do not use pliers or wrench.

To adjust the stylus pressure for the correct depth and width of cut, the best procedure is to cut some "blank"
grooves in a recording disc of the type that will be used: grooves in a recording disc of the type that will be used: The stylus pressure can be regulated, by means of the adjust-
ment screw on top of the cutter arm, to produce the correct ment screw on top of the cutter arm, to produce the correct
thickness of the hair-like cuttings. The procedure is as follows:
1. See that the phonograph pickup is on its rest, the turntable cleared of records, the record-holder shelves rotated back away from the turntable, index lever at "manual," a perfect stylus correctly inserted in the cutter head, and the stylus screw firmly tightened.
2. Place the blank recording disc on the turntable, with the spring stud that protrudes from the turntable engaged with one of the three holes at inside of the disc. This prevents the disc from slipping during recording.
3. Turn on powerbass control and turntable switch. Turn radio phono and microphone volume controls fully counter clockwise.
4. Lift the cutter arm well up and move it over so the stylus is about \(1 / 4\) inch inside the recording disc and lower GENTLY on to the disc.
5. The stylus will begin to cut, and the cuttings should collect toward the center of the recording disc. If they collect toward the outside, the stylus is not correctly inserted, and

\section*{IMPORTANT}

The cutting point of the stylus must be in perfect condition in order to make good recordings.

The condition of the stylus point can not be determined by ordinary visual inspection. If the recordings are noisy or poor in quality, first try a new stylus.

The stylus cutting point can be ruined by dropping the cutter on the record, by cutting into the bing the cutter metal of the recording blank, or by cutting into the paper label on the blank.

Always stop the recorder before it reaches its inner limit as it will repeat in the last groove and may wear into the base metal, thereby ruining the stylus point.
must be adjusted by removal and re-insertion. If the threads continue to collect toward the outside, use a new stylus.
6. When the stylus is correctly inserted, with the cuttings collecting toward the center of the disc, lift the cutter, place it on the cutter rest, and stop the turntable. Then examine the cuttings and the grooves in the disc.

The cuttings should be even, thin, hair like threads about threerthousandths of an inch across or approximately the diameter of a human hair.

The groove width should almost equal, but not exceed, the distance between grooves. A magnifying glass is helpful in examining the grooves. If the grooves are too shallow, the phonograph needle will slide over them on play-back. If the grooves are cut too deep, rumble will be excessive.

After examining the cuttings and the groove width, adjust the cutter pressure as required by means of the adjustment screw on top of the cutter arm. Turn this clockwise to increase pressure and increase size of cuttings. Turn counterclockwise to decrease pressure and decrease size of cuttings.

Check the new adjustment by running more blank grooves.
Check the cuttings and groove width each time a new stylus is inserted, and whenever a different type of recording disc is used.

The stylus pressure, when adjusted for correct cutting, is approximately \(13 / 4\) ounces, measured at the end of the stylus screw.

Always lift the cutterarm well up while moving it into cutting position, and while moving it back to the rest. Failure to do this will cause the follower-arm guide to drag across the lead screw under the motorboard.

\section*{Recorder Mechanism Adjustments}
" \(N\) " Recorder Arm Stop.-An extension on the cross-bracket under the motorboard limits the inward movement of the follower arm. In this stop position, the stylus screw should be \(11 / 2\) inches from the spindle.

The correct distance can be obtained by loosening set screws "N," moving the recorder arm in the required direc. tion, and tightening the set screws.
"O" Follower-Arm Guide Adjustment.-When the recorder arm is lifted, the follower arm rises up so that the followerarm is lifted, the followerarm clear the lead screw and permit the recording arm to be moved inward or outward.

Adjust the set screw and locknut "O" so that the guide clears the lead screw when the bottom-front edge of recorder arm is 3 inches above record.
"P" Recorder-Arm Height Adjustment.- With the recording stylus resting on a metal-base recording disc, and adjusted for correct cutting pressure, the stylus screw should be ap, proximately in the center of the hole in the recorder arm, and the cutter head should be free to move up and down. Adjust the recorderarm height adjustment screw and locknut " \(P\) " to obtain these conditions.

If the arnt is too low, the cork bumper on top of the cutter head will hit the inner top of recorder arm.

If the arm is too high, the stylus screw will hit the lower edge of the screw hole.

Also check to see that the stylus screw does not scrape against the side of the screw hole.

RCA MFG. CO., INC.

© John F. Rider

RCA MFG. CO., INC.

\section*{Automatic Record Changer Mechanism Cycle of Operation}

In automatic operation (index lever set to " 10 " or " 12 "), when the pickup needle enters the eccentric or spiral groove at the inside of the record, the pickup arm swings in the groove, and this motion acts through a friction clutch to "trip" or start the cycle of the automatic record changer mechanism which:
1. Lifts up the pickup arm and swings it out clear of the records
2. Turns the two record-holder posts, each of which has a "knife" and a "shelf": The knives enter between the bottom record and the rest of the stack. Continuing to turn, the shelves move from under the bottom record and it drops on the turntable, while the rest of the stack of records are supported by the "knives."
3. The pickup arm is then moved to correct position and lowered on the record, while-
4. The record-holder posts are turning back to their original positions, so that the records rest on the shelves, and the knives are in correct position to separate the next record from the stack.

The cycle is completed when the pickup comes down on the record. The pickup arm should not be moved while "in
cycle."

Record-Separating Knives. 12 -inch records are thicker than 10 -inch records: To accommodate this difference, the "knife" or record-separating lever on each record post is raised slightly when a 12 -inch record presses down against the ball. point screw that projects through a hole in the record-holder shelf on each post. (10 -inch records do not rest on these screws, and the knife clearance is then correct for a 10 -inch record.)
"Recond Discriminating Lever." In playing a mixed group of 10 -inch and 12 -inch records, the index lever is set at " 10 ." When the pickup arm moves out during the cycle of operation, the record discriminating lever (at left of the rear record-holder post) is moved to its forward position, toward the spindle, and sets the correct landing position of the pickup needle for a 10 -inch record. If a 12 -inch record drops down, it pushes the record discriminating lever back, and sets the correct landing position for the 12 -inch record.

\section*{Manual Phonograph Operation}

Inserting Needles.-To insert a needle, place pickup on its rest, loosen needle screw on the front of the pickup, place needle in hole at top of pickup so that it drops down against the polished gauge plate, press firmly on top of pick. up so it sits squarely on the pickup rest, and then tighten the needle screw. This procedure ensures that the needle will project the correct distance from the pickup.
1. See that the recording arm is in its rest position at rear of turntable.
2. Turn powerbass control on, turn service selector to "Victrola," and turn microphone volume control fully counter.
clockwise.
3. See that pickup is on the pickup rest.

\section*{Automatic Phonograph Operation table switch}
1. See that the recording arm is in its rest position at rear of turntabie.
2. Turn power-bass control on, turn service selector to "Victrola," and turn microphone volume control fully counter. clockwise.
3. See that the pickup is on the pickup rest. If it is not, complete a cycle of operation as described previously.
4. Push index lever to "manual." lift the knobs on the top of the record-holder posts and rotate the shelves back, away from the turntable. Push back the vertical lever at left of the rear record post.
5. Select a series of eight 10 -inch records, or seven 12 -inch records, and place the first one on the turntable. Swing the record-post shelves into position and place the remainder of the series of records on the shelves as shown in the illustration.
6. Push the index lever to " 10 " for a series of 10 -inch records, or to " 12 " for a series of 12 -inch records.
7. Push turntable switch "on" and when turntable has at tained speed, lift the pickup and lower it gently on the record, so that the needle point enters the outside groove.
8. Adjust the radio-phonograph volume control for the desired volume, and adjust the tone controls for best repro. duction.
9. Close the lid of the cabinet to eliminate mechanical sound. The whole series of records will play without further
4. Push index lever to "manual," lift the knobs on the top of the record holder posts, and rotate the shelves back, away from the turntable. Push back the vertical lever at left of the rear record post.
5. Place record on turntable.
6. Push turntable switch "on" and when turntable has attained speed, lift the pickup and lower it gently on the record so that the needle point enters the outside groove.
7. Adjust the radio-phonograph volume control for the desired volume, and adjust the tone controls for best reproduc-
tion. tion
8. To stop, place pickup on its rest and turn off the turn-
attention, and the last record will repeat until the turntable switch or the power-bass control is turned off.

To reject a record being played, or to start the recordchanging cycle in case the record just played does not have the standard eccentric or spiral stopping groove, simply push the index lever to the "reject" position and let go. The pickup will raise up and swing outwards and the next record will drop down. Upon releasing' the index lever, it will auto. inatically return to the " 10 " position. If playing a series of 12 -inch records, the lever should be returned to the "' 12 " position after rejecting a record. Keep the lever in at "manual" when not actually playing records automatically.
To stop the mechanism while a record is being played, push the index lever to "manual," place the pickup on its rest, and turn off the turntable switch.
To stop the mechanism at the completion of a record, frist allow the pickup to complete its cycle (the cycle is completed when the pickup comes down on the record). Then push the index lever to "manual," place the pickup on its rest, and turn of the turntable switch.
When discontinuing operation, turn off both the turntable switch and power-bass control.
To remove a record from the turntable, lift the knobs on top of the record-holder posts, swing the shelves back clear of the records, and push back the vertical lever at left of the rear record post.

\section*{RECORD CHANGER SERVICE DATA}

Before servicing the automatic record changer, inspect the assembly to see that all levers, parts, gears, springs, etc, are in good order and are correctly assembled.

The changer can be rotated through its change cycle by pushing the index lever to "Reject" and revolving the turntable by hand. Six turntable revolutions are required for one change cycle.

A bind or jam in the mechanism can usually be relieved by rotating the turntable in the reverse direction. The 10 and 12 -inch records must be absolutely flat for smooth operation.

A pickup shorting switch, located under the motorboard, operates when the pickup is moved outward to the pickup
rest.

The turntable in RP-155 can be removed by tapping smartly on the top of the spindle while pulling upward on opposite sides of the turntable.
Lubrication.--Petrolatum or petroleum jelly should be applied to cam, main gear, spindle pinion gear, lead screw and gears of record posts.

Light machine oil should be used in the tone arm vertical hearing, motor bearing, record post bearings, and all other bearings of various levers and pulleys on underside of motor. board and underneath turntable.

Do not allow oil or grease to come in contact with rubber idler wheel, bumper or rubber parts of the mechanism. Use quick drying naphtha to clean the rubber parts.

\section*{RCA MFG. CO., INC.}

\section*{RP-155 Recorder and Automatic Record-Changer Phonograph Mechanism}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit List Price & \[
\begin{aligned}
& \text { stock } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit List Price \\
\hline & PICKUP AND ARM ASSEMBLIES & & 36838 & Casting-Casting and bearing for turntable spindle and lead screw (50) & 1.90 \\
\hline 36322 & Arm-Pickup arm only-less crystal, cable and & 1.80 & 30340 & Clip-Motor drive disc retaining clip.......... & . 02 \\
\hline & & 1.80 & 36266
36831 & Clutch-Mrip lever clutch and rubber & .75 \\
\hline 36320 & Arm-Pickup pivot arm and shait-less lift cable and rubber bushings. & 1.00 & 36831
36265 & Finger-Trip lever friction finger (7). & .60
.60 \\
\hline 34550 & Bushing-Rubber bushing for pickup pivot arm & . 05 & 36267 & Gear-Long arm and rack gear (41) & . 60 \\
\hline 32635 & Cable-Pickup lift cable. & \(\xrightarrow{.} 40\) & 36839 & Gear-Pinion gear for turntable spindle & . 90 \\
\hline 35694 & Cable-Pickup shielded cable (8). & . 40 & 31121 & Gear-Record separator shaft gear (10) & . 55 \\
\hline 33905 & Crystal-Pickup crystal cartridge and & 4.25 & 32880
33982 & Gear-Short arm and rack gear Guide-Main lever spring guide (11) & .10 \\
\hline 33529 & Screw-Pickup needle screw & . 10 & 36830 & Guide-Pickup lift cable guide (2) & . 10 \\
\hline & MOTOR ASSEMBLIES & & 36380
36273 & Lever-Index lever (12)...... & . 50 \\
\hline & & & 33985 & Lever-Main lever (15).. & 1.05 \\
\hline 37039 & Bearing-Bottom bearing and bracket assembled & . 40 & 31140 & Lever-Pickup lift cable lever (16) & . 55 \\
\hline 37038 & Field-Motor field complete & 5.15 & 36381 & Lever-Record discriminating lever (17) & 5 \\
\hline 36820 & Motor-105-120 volts, 60 cycle & .75 & 36476 & Lever-Record elevating lever and screws (18) & 0 \\
\hline 37037 & Pulley-Motor shaft pulley & . 20 & 31132 & Lever-Trip detaining lever (19). & . 30 \\
\hline 37040 & Ring-Motor pulley support ring & .03
2.90 & 36284 & Lever-Trip lever less friction finger and clutch & \\
\hline 37 & & & 31133 & Pawl-Trip pawi assembly (22) & . 80 \\
\hline & MOTORBOARD ASSEMBLIES & & 36288 & Pin-Drive pin to engage gear to record separator shaft (23) & . 05 \\
\hline 36824 & Base-Pickup arm mounting base. & .40 & 36834 & Pin-Pin for turntable to hold disc while record- & \\
\hline 36821 & Board-Motorboard with riveted and welded bearings and studs less operating mechanism. & 7.50 & 36477 & & 15 \\
\hline 36822 & Brace-Motorboard brace. & . 75 & & "cew & 10 \\
\hline 32556 & Cable-Shielded pickup cable and plug. & . 76 & 31118 & Screw-Cone pointed set screw for record & 06 \\
\hline 36262 & Cup-Used needle cup-insert only for pic arm rest & . 15 & 36837 & \begin{tabular}{l}
separator shelf \\
Screw-Lead screw and pinion gear for recorder
\end{tabular} & . 06 \\
\hline 36258 & Escutcheon-Index escutcheon & . 15 & & drive (51) & 1.90 \\
\hline 36260 & Gauge-Pickup needle gauge & . 15 & 33983 & Screw-Record elevating lever pivot screw & 15 \\
\hline 36823 & Mounting-Motor mounting screw, spacer, ber cushion and washer (3 required)... & . 10 & 33990
33988 & Separator-Record separator knife (25) & 1.85
.70 \\
\hline 30870 & Plug-2-contact male plug for motor leads & .35 & 33988
33989 & Shat-Record separator rotating shaft (3) & 1.25 \\
\hline 36379 & Rest-Pickup arm rest-less needle cup... & 25 & \({ }_{36836}\) & Spindle-Turntable 'spindle. & 2.25 \\
\hline 38798 & Spring-Index lever spring (riveted to moto & & 3676
14190 & & \\
\hline 37348 & \begin{tabular}{l}
board) \\
Weight-Lead weight for motor
\end{tabular} & 2.25 & \(\begin{array}{r}14190 \\ \hline 7347\end{array}\) & Spring-Discriminating lever pawl spring (28).. & . 08 \\
\hline 37348 & HOME RECORDING ASSEMBLIES & & 37347 & Spring-Tension spring for motor idler pulley arm (52) & . 05 \\
\hline & & & 36835 & Spring-Flat spring for turntable recording disc & 08 \\
\hline 36829 & Arm-Follower arm and post assembly & .80
4.80 & 32436 & Spring-Locating lever spring (35) & 05 \\
\hline 37041
36827 & Arm-Recorder arm less Recorder head. & 4.80
.90 & 32882 & Spring-Main lever spring (43). & 05
.04 \\
\hline 36827
37044 & Bushing-Recorder arm pivot post bushing
Nut-Special hex nut for recorder arm pivot & & 3666 & Spring-Pickup lift cable spring (31).... & 04 \\
\hline 37044 & bushing & .08
.30 & 33994 & Spring-Record discriminating lever spring (flat) (9) & 05 \\
\hline 36828 & Plate-Straddle plate for recorder arm pivot post & . 30 & & Spring-Trip detaining lever spring (33) & . 03 \\
\hline 33168 & Plug-2-contact male for recorder head leads & 11.50 & 36279 & Spring-Trip pawl spring. & . 02 \\
\hline 37042
36825 & Recorder-Recorder head only-less arm & 11.40 & 38271 & Stud-Trip lever clutch adjustment stud "E". & . 08 \\
\hline 36825
37045 & Rest-Recorder arm rest & . 10 & 32875 & Switch-Motor switch (4)........... & . 30 \\
\hline 37045
36828 & Screw--Recorder head needie screw
Spring-Recorder arm pivot post compressing & . 10 & 34875
36833 & Switch-Pickup shorting switch. & .45
4.00 \\
\hline & pring-Recording (spiral) & .15 & 36833 & Turntable-Turntable assembly complete. & 4.00 \\
\hline 37043 & Spring-Recorder head tension spring & 10 & 2917 & Washer- C. washer used to mount all levers & 03 \\
\hline 37349 & \begin{tabular}{l}
Weight-Lead weight for recorder head \\
OPERATING MECHANISM
\end{tabular} & 1.00 & 8078 & Washer-"C washer for mounting record discriminating lever. & . 06 \\
\hline & & & 37046 & asher-Rubber washer for turntable drive wheel & \\
\hline 36832 & Arm-Motor drive disc arm (53) & . 25 & & & \\
\hline 36277 & Bumper-Rubber bumper " \(\mathrm{A}^{\prime}\) ". & . 10 & 20165 & W asher-Spring washer to mount rack gears and & . 05 \\
\hline 33987 & Cam-Cam and drive gear assembly (42) & 2.00 & & trip detaining lever......... & . 05 \\
\hline
\end{tabular}

ALL PRICES ARE SUBJECT TO CHANGE OR WITHDRAWAL WITHOUT NOTICE.

\section*{Public Address}

The microphone, amplifier, and loudspeaker in the Home Recorder forms a public address (PA) system, and may be mixed with the phonograph or radio.
The various combinations are shown in the illustration of the service selector control.

\section*{Microphone Volume "Contractor"}

Models VHR-207 and 407 incorporate a "contractor" or sound leveller in the input circuit of the microphone preamplifier. This tends to prevent over-recording and distortion. Thus when shouting into the microphone, the contractor will lower the recorded sound sufficiently to make a good record yet preserve good contrast.
* The cuttings of rises with coatings of cellulose mitrate or other infiaminable materials. which does not include the RCA paper-base discs, should be disposed of with special care. The threadlike cuttings or shavings must be carefully removed immediately after the record is made, and destroyed in a safe manner, as they are very inflammable

\footnotetext{
** Approximate life is 15 minutes.
}

\section*{Blank Recording Dises*}

Styli (Cutting Needies) for Recording
Steel**
.six . . . MI-4879A.
Sapphire one . . MI-4878A. . . 6.00

The RP- 158 is a record changing mechanism designed for the automatic playing of records. It will play twelve 10 -inch or ten 12 -inch records at a single loading.

\section*{To Operate:}
1. Turn the record support located at the left front corner to the 10 -inch or 12 inch position as desired.
2. Place the records on the record support and record separator posts.

The changer can be conveniently rotated through the change cycle by pushing the reject button and revolving the
3. Push the turntable switch to the "On" position
4. Press the "Start-Reject" button. The entire series of records will now play without further attention and the pickup will swing to its rest position at the end of the last record. (For completely automatic operation all records must have the standard eccentric tripping groove. Otherwise it may be necessary to press the "Start-Reject" button to change the record)
5. When the last record has been played, push the turn table switch to stop the turntable. The mechanism is now ready for another loading
6. To reject a record being played, press the "Start. Reject" button

\section*{Lubrication}

The RP- 158 turntables are driven by a drive disc screwed to the turntable. It is important that the drive motor spindle and the rubber tire on the friction drive disc as well as that on the idler wheel be kept clean and free from oil, grease, dirt, or any foreign material at all times. Any quick drying naphtha is satisfactory for cleaning these parts. The drive motor bearing is lubricated from felt washers at the botton and top. A light machine oil should be used at these points.

On all bearing surfaces except the motor bearings Hough ton Stayput No. 320 should be used. On all other surfaces Lubriplate No. 110 is recommended.

\section*{Cycle of Operation}
\begin{tabular}{|c|c|c|}
\hline & Function & \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& \text { o } \\
& \text { 04 } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & Turn Record Support to \(10^{\prime \prime}\) or \(12^{\prime \prime}\) Position as Desired & 1. Separator post positions itself by means of belt drive. \\
\hline & Place Records on Posts & 1. Separator shaft is pushed down against its spring and carries segment out of path of index finger. \\
\hline & Press Start Button & \begin{tabular}{l}
1. Reject lever moves in and pushes ratchet lever. \\
2. Ratchet lever is pushed out of eccentric step on main gear shaft and releases drive cam pawl. \\
3. Drive cam pawl engages toothed wheel and it revolves carrying drive gear with it.
\end{tabular} \\
\hline \multirow{8}{*}{} & Tone Arm Rises & \begin{tabular}{l}
1. Main cam ard gear revolves with drive gear. \\
2. Stud on tone arm lever rides in top track on main cam and directs movement-of the lever. \\
3. Tone arm elevating lever rides up on ridge on main cam and pushes tone arm up by means of elevating rod.
\end{tabular} \\
\hline & Tone Arm Moves Out & \begin{tabular}{l}
1. Tone arm lever pushes on trip lever stud \\
2. Trip lever moves out. \\
3. Tone arm return lever is carried along by trip lever stud, and by stud on main cam top track.
\end{tabular} \\
\hline & Record Knife Separates Bottom Record from Stack after Gauging Thickness of Record & \begin{tabular}{l}
1. Stud on separator lever follows main cam bottom track and directs the motion of the lever. \\
2. Through the separator link and crank, the separator lever turns the separator shaft. \\
3. Knife turns with shaft and strikes edge of bottom record \\
4. Separator shaft continues to revolve and teeth on inner circumference of knife ride up on shelf teeth until knife is carried high enough against the action of spring 19 to move in over top of record.
\end{tabular} \\
\hline & Record Drops to Turntable & 1. Separator shaft continues to turn until knife supports stack of records and shelf moves out from under bottom record. \\
\hline & Tone Arm Moves In & \begin{tabular}{l}
1. Separator shaft reverses rotation. \\
2. Tone arm lever moves away from trip lever stud. \\
3. Tone arm return lever pushes on trip lever stud. \\
4. Trip lever moves in.
\end{tabular} \\
\hline & Tone Arm Lowers Sapphire on to Record & \begin{tabular}{l}
1. Index finger on tone arm return lever moves against separator shaft to insure proper landing position. \\
2. Tone arm elevating lever rides down on main cam ridge thus lowering the elevating rod and the tone arm. \\
3. Separator shaft returns knife to original position and allows stack of records to rest on shelf.
\end{tabular} \\
\hline & Sapphire Moves In to Music Groove & 1. Feed-in spring on tone arm return lever pushes against stud on trip lever. \\
\hline & Record Begins to Play & \begin{tabular}{l}
1. Ratchet lever rides down into eccentric step on main gear shaft and blocks drive cam pawl. \\
2. Pawl is disengaged from drive cam wheel. \\
3. Drive gear and main gear stop.
\end{tabular} \\
\hline
\end{tabular}
turntable by hand. Eight turntable revolutions are required for one change cycle.

\section*{Function of Principal Levers}

Main Cam and Gear
Tone Arm Lever
Tone Arm Return Lever

Trip Lever
Record Separator Lever Train (Lever-Link-Crank)
Ratchet Lever

Directs and coordinates all cycle operations.
Directs horizontal motion of tone arm. Keeps tone arm moving in with re. ceding tone arm lever and provides proper landing.
Its latch acts on ratchet lever to start the automatic cycle.
Directs motion of separator knife and shelf.

Transfers motion from trip lever or reject lever to start automatic cycle.

Tone Arm Elevating Lever
Tone Arm Elevating Rod
Reject Lever
Separator Knife
Separator Shelf Drive Gear

Drive Cam Pawl and Wheel

Directs vertical motion of tone arm.
Transfers motion of elevating lever to tone arm
Starts automatic cycle at will of oper, ator
Separates record from stack and sup. ports stack during cycle.
Supports stack during playing time.
Transfers motion of turntable to main cam and gear.
Engage to connect turntable spindie to drive gear during cycle.

\section*{ALSO SAME FOR NODEL RP - 162}

As an additional precaution against rough hand ling, the top of the sapphire is dipped in a rubber cement (such as Goodrich "Plasticon") before being inserted in the pickup. To remove the sapphire, grasp it firmly with a pair of tweezers, give it a few turns to loosen the cement and then pull it out. Much easier handling of the sapphire will result if the tweezers are

\section*{Replacement of Sapphire}

notched with a file as shown. Naphtha may be used as a thanner should difficulty with the rubber cement be experienced.
Before inserting the new sapphire it should be dipped in the rubber cement previously thinned with naphtha. After insertion clean the point with naphtha if there is any doubt as to the presence of cement.

To Remove the Turntable.-
To remove the turntable, loosen set screws " \(A\) " and lift the turmable up.

To Remove Pickup Arm.-
One of the tone arm bearings has a slotted head and can be turned out to facilitate removal of the tone arm. Raise the tone arm and loosen the bearing set screw. Turn the bearing partly out through the hole in the side of the tone arm and lift the arm off.

RCA MFG. CO., INC.
MODELS RP-158, RP-160
Series, RP-162
Illustrated Hints

\section*{Fails to Trip:}

First check adjustment " \(F\) " Do not tighten screws " \(F\) " too tightly or the hollow pivot shaft will be distorted.

\section*{Jams Records:}

Record too thick, too thin, warped, or has rough edge.

\section*{Lands Incorrectly:}

First check adjustments " \(\mathrm{F}^{\prime \prime}\), "C", "M", "E".

\section*{Fails to Track or Distorts:}

\section*{Repente Ploying of Last Record:}

First check adjustment " E "

\section*{Incorrect Feed-in:}

The feed-in spring does not have any effect unitil just after the pickup has landed on the record. It then springs back to its original shape pushing against the trip lever stud and moving the pickup toward the music grooves.

\section*{Repeats Grooves:}

First check adjustment " \(G\) ".

A replacement sapphire for the RP-158 and RP-162 crystal pickup is available as Stock No. 39564, list price \(\$ 2.00\).

KEEP PICKUP CABLE \(\%\) SHORTING SWITCH LEADS

RECORD NOT SUPPORTED

Slow Speed: Turntable spindle binds on bottom bearing. Incorrect.tension on motor support spring.

Perspective view of top of record changer. Models: RP-158, RP-162

FOR MODELS: RP-158, 160 series, 162
Before servicing the automatic changer, inspect the assembly to see that all gears, cams, springs, levers, etc., are correctly assembled and in good working order.
1. Never use force to start or stop the motor or any part of the record changing mechanism.
2. Warped or damaged records may cause the mechanism to jam.
3. A cracked or chipped record may damage the sapphire.
4. Warped records may slide on one another while play. ing and result in unsatisfactory reproduction.
5. Do not leave the records on the record posts or on the turntable as they may warp, particularly in warm climates. Warped records may be flattened by placing them on a flat surface with a heavy flat article placed on top of them for a few days.
6. If, for any reason, the mechanism stalls, turn off the turntable switch and remove the records from the posts. Start the turntable by turning the switch on and allow the pickup arm to complete its cycle.
7. Do not tighten copper-plated, cone-pointed screws until final adjustment has been made.

ADJUSTMENTS FOR MODELS RP-158, 160

Illustrations Show Details of Record Separator SAME FOR RP-158, 160 series, 162

Control Cam and Stop Switch
The relationship between the start-reject lever on top of the motor board and the control cam show in this view is governed by the rotation of the control cam with respect to the shaft coming down through the motor board from the start-reject lever. The control cam should be turned so that the stud on the stop switah is centrally spaced between the control cam jaws as shown in this view when the startreject lever is turned tc its middle or "AUTOMATIC" position. Sufficient vertical" clearance must be allowed so that there will be no binding and then the sot screw " H " should be securely tightened.

\section*{FOR MODEL RP-162 only}

\section*{Cabinet Leveling.-}

If the sapphire fails to enter the starting groove, raise the right-hand side of the cabinet by inserting thin spacers under the legs. If the pickup slides over a few grooves, raise the left-hand side of the cabinet.

\section*{Sapphire Pressure.-}

In these mechanisms, the correct pressure is approximately 4 ounces, measured at the sapphire. Adjust the spring (3) in the tone-arm base if necessary.

\section*{To Remove the Turntable.-}

To remove the turntable, loosen set screws "A" and lift the turntable up.

\section*{To Remove Pickup Arm.-}

One of the tone arm bearings has a slotted head and can be turned out to facilitate removal of the tone arm. Raise the tone arm and loosen the bearing set screw. Turn the bearing partly out through the hole in the side of the tone arm and lift the arm off.

RCA MFG. CO., INC.

This mechanism is designed to play a series up to twelve 10 inch, or ten 12 inch records of the 78 r.p.m. type. It will also play single records of any diameter up to 12 inches.

\section*{Features Include}
1. Light-pressure sapphire-point plug-in crystal pickup
2. Positive ratchet trip, actuated by eccentric groove at end of record.
3. Safety clutch, relieves strain on mechanism due to jam. ming. (The clutch makes a clicking sound if the mechanism jams.)
4. Stop switch, shuts off the motor after the last record is played. This switch is the pickup "rest."
5. Pickup shorting switch, shorts pickup during recordchanging cycle to prevent noise.
6. Simplified mechanism.

\section*{Manual Operation}
1. See that the mechanism is out of cycle, with the pickup on its rest.
2. Set the "start-reject" lever at "manual."
3. Place record on turntable and push turntable switch "on."
4. Lift the pickup and set it down on the record.
5. When the record is finished, the pickup will swing in the eccentric groove, or run in the last groove, until the power is shut off.
6. Lift the pickup and place it on its rest.

\section*{Automatic Operation}

The pickup "rest" is a button on the stop switch that opens the motor circuit when the pickup comes down on the rest after completion of the cycle following the last record. Before starting automatic operation, see that the mechanism is out of cycle and that the pickup is on its rest. If it is not, start the motor and allow to run until the pickup comes down on its rest.
1. Turn the "record support" in front left-hand corner, to its position for 10 -inch or 12 -inch records as required. Turning the front record support automatically positions the rear support.
2. Load the records on the supports, with required selections upward, the last record to be played on top. Be sure that the rear record support is pushed down.
3. Push turntable switch "on."
4. Push the "start-reject" lever towards the back to its "start-reject" position, and let go. The first record drops on turntable, and the pickup moves onto the record.
5. When the last record is finished, the pickup moves out and comes down on its rest. This depresses the rest button and opens the stop switch, thus shutting off the motor.
6. To reject a record being played, push the "start-reject" lever to "start-reject," and let go.
7. For automatic operation, each record must have the standard eccentric groove.

\section*{Lubrication}

The drive motor bearing is lubricated from felt washers at the bottom and top. A light machine oil should be used at these points.
On all bearing surfaces except the motor bearings Houghton Stayput No. 320 should be used. On all other surfaces Lubriplate No 110 is recommended.

\section*{Cabinet Leveling.-}

If the sapphire fails to enter the starting groove, raise the right-hand side of the cabinet by inserting thin spacers under the legs. If the pickup slides over a few grooves, raise the left-hand side of the cabinet.

\section*{Tone Arm Feed-in Spring.-}

When the sapphire comes down on the record, the feed-in spring (shown in adjustment sketch "E," acts to push the tone arm toward the music grooves. The spring should be adjusted to do this without causing the sapphire to skip grooves. This action is also related to-

\section*{Do not oil the record separator shaft.}

It is important that the drive motor spindle and the rubber tire on the friction drive disc as well as that on the idler wheel

\section*{To Remove the Turntable. -}

To remove the turntable, loosen set screws "A" and lift the turntable up.

\section*{To Remove Pickup Arm.-}

One of the tone arm bearings has a slotted head and can be turned out to facilitate removal of the tone arm. Raise the tone arm and loosen the bearing set screw. Turn the bearing partly out through the hole in the side of the tone arm and lift the arm off.

\section*{Sapphire Pressure. -}

In these mechanisms, the correct pressure is from 1 to \(11 / 4\) ounces, measured at the sapphire. Adjust the spring (3) in the tone-arm base if necessary.
be kept clean and free from oil, grease, dirt, or any foreigo material at all times. Any quick drying naphtha is satisfactory for cleaning these parts.

\section*{Cycle of Operation}

The changer can be conveniently rotated through the change cycle by pushing the reject button and revolving the turntable by hand. Eight turntable revolutions are required
for one change cycle. Block up the motor, so it is disengaged from the drive disc, to permit easier manual rotation of the turntable.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
Function \\
Turn Record Support to \(10^{\prime \prime}\) or \(12^{\prime \prime}\) Position as Desired \\
Place Records on Posts \\
Press Start Button
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Tone Arm Rises}

Tone Arm Moves Out

Record Knife Separates
Bottom Recond from Stack
after Gauging Thickness of Record

\section*{Automatic Cycle}

Record Drops to
Turntable
Tone Arm Moves In

Tone Arm Lowers Sap-
phire on to Record

Sapphire Moves In to
Record Groove
Record Begins to Play

\section*{Explanation}
1. Separator post positions itself by means of belt drive.
1. Separator shaft is pushed down against its spring and carries segment-cam out of path of index finger
. Reject lever moves in and pushes ratchet lever.
2. Ratchet lever is pushed out of eccentric step on main gear shaft and releases drive cam pawl.
3. Drive cam pawl engages cam sprocket and it revolves carrying drive gear with it.

\section*{1. Main cam ard gear revolves with drive gear.}
2. Stud on tone arm lever rides in top track on main cam and directs movement of the lever.
3. Tone arm elevating lever rides up on ridge on main cam and pushes tone arm up by means of elevating rod.
1. Tone arm lever pushes on trip lever stud.
2. Trip lever moves out.
3. Tone arm return lever is carried along by trip lever stud, and by stud on main carn top track.
1. Stud on separator lever follows main cam bottom track and directs the motion of the lever.
2. Through the separator link and crank, the separator lever turns the separator shaft.
3. Knife turns with shaft and strikes edge of bottom record.
4. Separator shaft continues to revolve and teeth on inner circumference of knife ride up on shelf teeth until knife is carried high enough against the action of spring 19 to move in over top of record.
1. Separator shaft continues to turn until knife supports stack of records and shelf moves out from under bottom record.
1. Separator shaft reverses rotation.
2. Tone arm lever moves away from trip lever stud.
3. Tone arm retarn lever pushes on trip lever stud.
4. Trip lever moves in.
1. Index finger on tone arm return lever moves against separator shaft to insure proper landing position.
2. Tone arm elevating lever rides down on main cam ridge thus lowering the elevating rod and the tone arm.
3. Separator shaft returns knife to original position and allows stack of records to rest on shelf.
1. Ratchet lever ride's down into eccentric step on main gear shaft and blocks drive cam pawl.
2. Pawl is disengaged from drive cam sprocket.
3. Drive gear and main gear stop.
4. Tone arm lever moves into cam to maintain disengagement.

Specifications. . . Output at 400 cycles. 0.50 volts Impedance at 1,000 cycles. . . 75,000 ohms

\section*{Replacement of}

Complete Unit... Simply slide the unit out of the tone arm and insert a new one.

\section*{Replacement of} Sapphire.

Caution: Never bend the sapphire support wire. Slide the pickup forward out of the arm.
The nut on the sapphire holder assembly is locked by a light cement (such as Glyptal). Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal.

Remove the two screws holding the sapphire guard in place and take the guard off. Remove the small nut and washer on the threaded shaft of the sapphire holder and push the shaft

through the hole in the viscoloid until the sapphire holder assembly comes free.
Insert threaded shaft of replacement sapphire holder through viscoloid and replace the washer and nut. Make sure that the flat sides of the shaft are firmly in place in the clamp and then tighten the nut very carefully so as not to strip the threads nor break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make cer, tain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough beyond the guard so that the guard will not strike the record. If necessary, bend the guard a little. Apply a drop of light cement (such as Glyptal) to the sapphire nut holder.

Bend the spring contacts to make good contact with the slides in the tone arm.

Before servicing the automatic changer, inspect the assembly to see that all gears, cams, springs, levers, etc., are correctly assembled and in good working order.
1. Never use force to start or stop the motor or any part of the record changing mechanism.
2. Warped or damaged records may cause the mechanism to jam. When jamming occurs, the safety clutch slips, causing a clicking sound.
3. A cracked or chipped record may damage the sapphire.
4. Warped records may slide on one another while playing and result in unsatisfactory reproduction.
5. Do not leave the records on the record posts or on the turntable as they may warp, particularly in warm climates. Warped records may be flattened by placing them on a flat surface with a heavy flat article placed on top of them for a few days.
6. If, for any reason, the mechanism stalls, turn off the turntable switch and remove the records from the posts. Start the turntable by turning the switch on and allow the pickup arm to complete its cycle.
7. De not tighten copper-plated, cone-pointed screws until final adjustment has been made.

\section*{Trip Lever}

When the tone arm swings in the eccentric groove, the trip lever latch acts on the ratchet lever to start the automatic cycle.

\section*{Ratchet Lever}

Transfers motion from trip lever or control lever to start automatic cycle by allowing pawl to engage with sprocket of safety clutch.

\section*{Drive Cam Pawl and} Sprocket
(This is the "safety clutch")
Engages turntable spindle to drive gear during cycle (see sketch " \(A\) ")

\section*{Drive Gear}

Transfers rotation of turntable spindle to main cam and gear when the clutch is engaged.

\section*{Main Cam and Gear}

Has four "tracks" which control hori. zontal and vertical motion of tone arm,

\section*{Function of Principal Levers}
and rotation of record separator knife and shelf. The bushing on this gear governs position of the ratchet lever.

\section*{Control Cam and Lever}

In "manual" position, it keeps the mo. tor stop switch closed, and disengages the ratchet lever and safety clutch so the mechanism cannot go into cycle.
In "automatic" position, it permits operation of the ratchet lever, safety clutch, and stop switch.
In "start-reject" position, it closes the motor stop switch, and moves the ratchet lever away from the drive cam pawl, permitting the clutch to engage and thus start the change cycle.

\section*{Shorting Switch Pawl}

Closes the pickup shorting switch when the pickup is outside the 12 -inch land. ing position.

\section*{Tone Arm Lever}

Directs horizontal motion of tone arm.

Tone Arm Return Lever
Keeps tone arm moving in with re ceding tone arm lever and provides proper landing.

\section*{Tone Arm Elevating Lever}

Directs vertical motion of tone arm.

\section*{Tone Arm Elevating Rod}

Transfers motion of elevating lever to tone arm.

\section*{Record Separator}

Lever Train
(Lever-Link-Crank)
Directs motion of separator knife and shelf.

\section*{Separator Knife}

Separates record from stack and sup ports stack during cycle.

Separator Shelf
Supports stack during plaving time.

Replacement Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION & \begin{tabular}{l}
Unit \\
List \\
Prico
\end{tabular} & \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION & Unit List Price \\
\hline & \multirow[t]{2}{*}{PICKUP AND ARM (Aluminum Arm) (Aluminum Case Crystal)} & \multirow{4}{*}{1.90} & 38653 & Board-Motorboard with all welded or riveted studs, posts, or bearings - lens operating mechan.sm & 8.00 \\
\hline & & & 38630 & Brace-Angle brace, or bottom support & \\
\hline 38650 & \multirow[t]{3}{*}{\begin{tabular}{l}
Arm-Pickup arm shell (aluminum casting) less crystal, cable, and pivot arm \\
Arm-Pivot arm and shaft for pickup arm-less
\end{tabular}} & & 38620 & and bearing plate & 65
30 \\
\hline \multirow[t]{2}{*}{38603} & & & 38688
39388 & Button-Stop switch button... & 10 \\
\hline & & 95 & 39386 & Cable-Shielded pickup cable and plug-con- & \\
\hline 35694 & \begin{tabular}{l}
spring \\
Cable-Shielded pickup cable-connects pickup to shorting switch
\end{tabular} & . 40 & 38627 & nects shorting switch to amplifier & . 70 \\
\hline 38453 & \multirow[t]{2}{*}{Crystal-Pickup crystal cartridge with sapphire and holder} & & 38641 & Cam-Main cam & 1.50 \\
\hline & & \multirow[t]{2}{*}{6.50} & 38646 & Cam-Record support shaft cam & . 40 \\
\hline 38607 & \begin{tabular}{l}
and holder \\
Cushion-Rubber cushion (1) for pickup arm push rod
\end{tabular} & & 38470
38685 & Cap-Record separator cap (9) & 50 \\
\hline 38451 & \multirow[t]{2}{*}{Dush rod \(\begin{gathered}\text { pascoloid damper for sapphire holder. }\end{gathered}\) Guard-Needle guard} & 10 & 38665
38657 & Cover-Stop switch cover and stud & . 25 \\
\hline 38452 & & . 06 & 38463 & Drum-Record separator belt drum & \\
\hline 38450 & Guard-Needle guard wecial nut and washer for sapphire holder & . 30 & 38617 & Drum-Record support belt drum & 40 \\
\hline 38458 & \multirow[t]{2}{*}{Nut-Speed nut to hold cable in pickup arm....
Rod-Sickup arm push rod-less cushion. . . .} & . 05 & 38660 & Escutcheon-Index escutcheon ("Manual,"' "Au- & \\
\hline 38608 & & . 50 & & tomatic," "Start-Reject") (.............. & 30 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
38449 \\
37763
\end{array}
\]} & & 3.50 & 34368 & Grommet-Rubber grommet for motor mount- & \\
\hline & Sapphire-Sapphire and holder-less nut. Screw-No. 2-56 \(\times 1 / 8\) screw to mount needle guard (2 required) & . 04 & 38467 & Ing (10) . \({ }^{\text {Knife-Record }}\) separator kni & .08
.10 \\
\hline 38609 & Screw-No. 4-40 \(\times 1 / 4\) headless set screw for pickup arm & 05 & 39106
38622 & Lever-Index control lever and & 95 \\
\hline 38608 & Screw-No. \(6-32 \times 9 / 22\) headiess set screw for pickup arm & . 05 & 38622 & Lever-olink and lever
record separator shaft
Lever-Manual lever. & 65
35 \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& 30585 \\
& 38604
\end{aligned}
\]} & \multirow[t]{3}{*}{Spring-Pivot arm spring (31 turns) (3) Stud-Pivot arm spring stud, and nut.} & . 06 & 38656 & Lever-Ratchet leve & . 60 \\
\hline & & \multirow[t]{2}{*}{.10} & 38633 & Lever-Tone arm lever & . 45 \\
\hline & & & 38631 & Lever-Tone arm lift lev & 15 \\
\hline & M & & 38618 & Lever-Tone arm return le & 45 \\
\hline & \begin{tabular}{l}
(Zinc Arm) \\
(Aluminum Case Crystal)
\end{tabular} & & 38619 & Lever-Tone arm segment-fastens on record separator shaft-less screws. & 0 \\
\hline & & & 38632 & Lever-Trip lever-less pawl spring & . 65 \\
\hline & Same as Pickup and Arm (Aluminum Arm) & & 32943
38740 & Nut-Speed nut for stop switch button.
Pin-Drive pin for record separator shat & . 01 \\
\hline & & & & bushing & . 05 \\
\hline 39871 & Arm-Pickup arm shell (zinc casting)-less crystal, cable, and pivot arm. & 2.50 & 38474
38663 & Pin-Record support shaft cam pin (13)
Plate-Index control lever plate and screw & . 06 \\
\hline \multirow[t]{2}{*}{39672} & \multirow[t]{2}{*}{Arm-Pivot arm and shaft for pickup arm-less spring} & \multirow[b]{2}{*}{. 75} & 30868 & Plug-Female plug for motor extension cable & 35 \\
\hline & & & 30870 & Plug-Male plug for motor and switch leads and & \\
\hline 39674 & Rivet-Rivet to hold pivot arm spring-Pkg. of 5 & . 02 & 38624 & \begin{tabular}{l}
extension cable. \\
Ratchet-Ratchet wheel (drive cam sprocket)
\end{tabular} & . 35 \\
\hline \multirow[t]{9}{*}{39673} & Spring-Pivot arm spring (19-1/2 turns) ... & \multirow[t]{2}{*}{. 10} & & for turntable spindle (14) & . 40 \\
\hline & NOTE: The zinc arm may be identified by the & & & Screw-Oval head screw for record separator cap (2) & . 08 \\
\hline & \multirow[t]{6}{*}{\begin{tabular}{l}
NOTE: The zinc arm may be identified by the fact that it has a \(1 / 8-\mathrm{in}\). hole in the back end, for the rivet which holds the pivot arm spring. This hole is not present in the aluminum arm. When replacing an aluminum arm with a zinc arm (Stock No. 39671) it will also be necessary to replace the pivot arm and spring; use Stock No. S9672, Pivot Arm, and Stock No. 39673 , Spring. \\
MOTOR ASSEMBLIES
\end{tabular}} & & 38626 & Screw-No. 8-32 \(x\) in. cone point set screw for ratchet wheel (drive cam sprocket) & . 04 \\
\hline & & & 38625 & Screw-No. 8-32 x \(\ddagger\) in. set screw for ratchet wheel (drive cam sprocket) & . 02 \\
\hline & & & 31118 & Screw-No. 10-32 \(\times 5 / 16\) in. & \\
\hline & & & 32869 & screw for index lever plate. Screw-No. \(10-32 \times 5 / 16 \mathrm{in}\). set screw for drum, tone arm segment, record separator crank, and trip lever & .06
.01 \\
\hline & & & 38652 & Shelf-Record separatur shelf and & . 10 \\
\hline & & & 38471 & Spacer-Record separator spacer (washer) & . 04 \\
\hline & \multirow[t]{2}{*}{Armature-Motor armature and shaft for 25 cycle motor} & & 38828
38689 & Spring-Cam pawl and ratchet lever spring & . 10 \\
\hline 36954 & & 7.85 & 30585 & Spring-Motor idler arm spring. & . 06 \\
\hline 36255 & \multirow[t]{2}{*}{\begin{tabular}{l}
cycle motor \\
Armature-Motor armature and shaft for 60 cycle motor
\end{tabular}} & & 38643 & Spring-Motor tension spring (15) & .10 \\
\hline & & 2.75
.40 & 39679
38642 & Spring-Ratchet lever spring (16)......... & . 10 \\
\hline 37108
37107 & & . 40 & 38642
38621 & Spring-Record separator belt drum spring (17) & .10 \\
\hline 37109 & Bracket-Motor mounting bracket (5)....... & 40 & & (18) & . 10 \\
\hline 36952 & Cap-Bakelite cap for motor. & 50 & 38468 & Spring-Record separator spring (19 & . 20 \\
\hline 36955 & Capacitor- 1.1 mfd for 60 cycle motor & 1.50 & 39554 & Spring-Reject button spring & . 10 \\
\hline \multirow[t]{2}{*}{38951} & Capacitor-1.25 mid. for motors (2 required for & & 38634 & Spring-Tone arm lever spring (20) & . 10 \\
\hline & \multirow[t]{2}{*}{Coib-Motor field coil assermbly (6)} & 1.75 & 385997 & Spring-Tone arm return lever spring & 10 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 37111 \\
& 36726
\end{aligned}
\]} & & 1.50 & 38867
38562 & Spring-Tone arm switch spring.
Spring-Trip level pawl spring. & 105
10 \\
\hline & \multirow[t]{2}{*}{} & 10.75 & 38666 & Stud-Tone arm switch pivot stud & 08 \\
\hline \multirow[t]{2}{*}{36254} & & & 38645 & Support-Record support and shaft. & 1.70 \\
\hline & \multirow[t]{2}{*}{} & 6.75 & 39085 & Support-Separator support (2 used) (22) & 50 \\
\hline 38612
37106 & & \(\begin{array}{r}6.75 \\ \hline .05\end{array}\) & 32875
38844 & Switch-"On-Off" switch. & 30 \\
\hline 37110 & Rotor-Motor rotor complete with fan & \multirow[t]{3}{*}{1.75} & 3884

38664 & Switch-Pickup shorting switch & 45 \\
\hline \multirow[t]{3}{*}{38847} & Sleeve-Motor spindle slecve for 50 cycle con- & & 38615 & Switch-Stop switch-less leads & . 75 \\
\hline & version of motor No. 91706-1, Stock No. & & 37873 & Tire-Rubber tire only for drive disc & . 75 \\
\hline & 38612 & \multirow[t]{2}{*}{25} & 38623 & Turntable-Finished turntable plate & 1.10 \\
\hline \multirow[t]{3}{*}{38848} & \multirow[t]{2}{*}{Sleeve-Motor spindle sleeve for 50 cycle conversion of motor No. 91655-1 or 6, Stock No. 36254} & & 33726 & Washer-" C " washer for motor idler arm or idler wheel. & 02 \\
\hline & & \multirow[t]{2}{*}{. 25} & 20165 & Washer-" "C" washer for ratchet lever, tone arm lift lever, or tone arm lift rod (23) & . 05 \\
\hline & MOTORBOARD ASSEMBLIES & & 2917 & Washer-" \(C\) " washer for tone arm lever, tone arm return lever, record support belt drum & \\
\hline 38640 & Arm-Motor idler arm-less wheel & . 25 & & link, or cam (24).......... & . 03 \\
\hline 3658 & Ball-3/32 stecl ball for tone arm bearing (7). & . 02 & 38560 & Washer-Felt washer for tone arm bearing & . 04 \\
\hline 10129
38647 & Ball-Bearing ball for spindle.... & . 22 & 38629 & Washer-Felt washer for turntable spindle bottom & \\
\hline 38616 & Bet-Record support to separator belt (8) & . 25 & 36274 & Wheel-Motor idier wheel & . 65 \\
\hline
\end{tabular}

\section*{WODEL RP-160 only Miscellaneous Service Hints}

Mechanism trips continuously.

Turntable does not stop antomatically.

Turntable fails to start.

Loud clicking noise resulting from drive cam pawl slipping out of teeth in cam sprocket.

Mechanism jams.

Irregular landing on 10 and 12 inch records.

Tone arm continues to repeat playing top record of the stack.

Tone arm continues to come down in rest position.

Sapphire strikes motorboord.

Separator knife jams on last record of the stack.

Check to see that the ratchet lever engages drive cam pawl at end of change cycle. Bend lever if necessary. Check adjustment "H." Bend the control cam flat spring for greater pressure.

Check for bind in stop button bushing. Bend the flat bracket that limits outward movement of the trip lever, so that pickup lands on the stop button.

Check spacing of stop switch contacts to be certain that weight of stop button does not open them

Check mechanism timing adjustment. Make certain that pickup arm lever is not binding on its stud. Any jam will cause the clutch to slip and produce clicking sound.

Check adjustment "C." Insufficient tension on belt.

Check adjustment "E." Record separator shaft, or the spring on which it rests, is binding on the shaft bushing. Pin on record separator shaft is binding in its slot. Shaft spring is too weak. Do not tighien set screws " \(D\) " enough to distort the housing of the separator shaft spring. Do not oil the record separator shaft.

Check adjustment "E." Record separator shaft or the spring on which it rests is binding on the shaft bushing. Pin on record separator shaft is binding in its slot. Shaft spring is too strong.

Bend the pickup arm support bracket until the sapphire clears the motorboard by approximately \(3 / 32\) of an inch.

Check the separator knife edge. It should not be sharp enough to dig in the record and carry the record up with it.

MODEL RP-162 only Replacement Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & Unit List Price & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \text { Unit } \\
& \text { List } \\
& \text { Price }
\end{aligned}
\] \\
\hline & PICKUP AND ARM ASSEMBLIES & & \[
\begin{array}{r}
4286 \\
39039
\end{array}
\] & \begin{tabular}{l}
Ferrule-Pickup connector ferrule (insert) \\
Grommet-Rubber grommet for motor mounting
\end{tabular} & . 03 \\
\hline 38602 & Arm-Pickup arm shell only. & 1.00 & & (1 set) & 10 \\
\hline 38603
38610 & Arm-Pivot arme and shaft-less spring & & 38656
38637 & Lever-Ratchet lever & 60 \\
\hline & shielded cable & 5.00 & 38633 & Lever-Tone arm lever & 45 \\
\hline 38607 & Cushon-Lift rod cushion (rubber) (i) & . 20 & \({ }_{38631}\) & Lever-Tone arm lift lever & 15 \\
\hline 38468 & Nut-Speed nut to hold cable in arm. & . 05 & 38618 & Lever-Tone arm return lever & 45 \\
\hline 38387 & Plate-Bottom plate for pickup arm-less acrews & . 10 & 38632 & Lever-Trip lever & 65 \\
\hline 38808 & Rod-Lift rod-less cushion & . 50 & 39086 & Link-Record separator link & . 80 \\
\hline 38609 & Screw-No. 4-40 \(\times\)-in. headless set screw for & & 33225 & Nut-Speed nut for reject button & 0.1 \\
\hline 38 & pickup arm-Pkg of 5 & . 05 & 38740 & Pin-Drive pin for record separator shaft..... & 05 \\
\hline 38605 & Screw-No. 4-40 \(x\) tin. screw to mount crystal, Pkg. of 5 & . 02 & 30870
38624 & Plug-Male plug for motor leads
Ratchet-Ratchet whoel (clutch sprocket) (1i4) & . 35 \\
\hline 58611 & Screw-No. 4-40 \(\times 3 / 16\)-in. headless set screw & & & less screws & 40 \\
\hline & for pickup crystal (oval point)-Pkg, of 5. & . 10 & 38469 & Screw-Record separator cap screw (2) & 08 \\
\hline 59388 & & 02 & 38626 & Screw-No. \(8.32 \times\)-in. cone point screw for ratchet wheel & . 04 \\
\hline 38608 & Screw-No. 6-32 \(\times\) 0/32-in. headless set screw for pickup arm-Pkg. of 5 & . 03 & 38825 31118 & Screw-No. 8-32 \(\times\)-in. screw for ratchet whel Screw-No. \(10-32 \times 5 / 16\)-in. cone point screw & . 02 \\
\hline 30585
38604 & Spring-Pivot arm spring (3) & . 06 & & for link and trip lever. & . 06 \\
\hline 38604 & Stud-mivot arm spring stud and n & . 10 & 32869 & \(\underset{\text { trip }}{\text { Scewer }} \mathbf{N o . 3 2} \times 5 / 16\)-in. screw for link and & 01 \\
\hline & MOTOR ASSEMBLY & & 38467 & Separator-Record separator knife only & 1.10 \\
\hline & (No. 91647-5) & & 39035 & Shelf-Record separator shelf and shaft & 1.10 \\
\hline 39031 & Motor-105-125 volts, & 5.25 & \begin{tabular}{l}
38471 \\
38628 \\
\hline
\end{tabular} & Spacer-Record separator shelf to knifo spacer.
Spring-Cam pawl spring & . 10 \\
\hline 38850 & Sleeve-Motor spindle sleeve for 50 cycle con- & & 30585 & Spring-Ider wheel arm sprin & \\
\hline & ion & . 25 & 38635 & Spring-Ratchet lever spring (16) & 10 \\
\hline & MOTORBOARD ASSEMBLY & & 38468
38636 & Spring-Record separator spring (19) & 20 \\
\hline & & & & Spring-Reject lever apring & 10 \\
\hline 38402 & Arm-Idler wheel arm and stud. & . 25 & 38634 & Spring-Tone arm lever spring (20).. & 10 \\
\hline 10129
3658 & & . 02 & 39038 & Spring-Tone arm return lever spring & 10 \\
\hline 3658 & Ball-3/32-in. dia. steel ball for pickup arm bearing (7) & . 02 & 38562
39033 & Spring-Trip pawl spring (21) & . 10 \\
\hline 38648 & Bearing-Record separator support and bearing & . 50 & 32875 & Switch-"On-Off" switch & . 30 \\
\hline S8647 & Bearing-Turntable spindle bearing. & . 20 & 39034 & Swivel-Record separator swivel & 2.75 \\
\hline \(\mathbf{3 9 0 3 2}\) & Board-Motorboard with all riveted and welded posts, studs, and bearings-less all operating & & \(\begin{array}{r}39037 \\ 33726 \\ \hline\end{array}\) & Turntable-Record turntable and spindie
Washer-"C" washer for idler wheel & 2.80 \\
\hline & parts & 7.50 & 20165 & W asher-" \({ }^{\text {", washer }}\) wor for ratchet lever, tone arm & \\
\hline 38630 & Brace-Motorboard bottom brace and bracket & . 65 & & lever, or pickup pivot shaft (23) & . 05 \\
\hline \begin{tabular}{l}
38638 \\
\hline 8627
\end{tabular} & Button-Reject button
Cam-Cam and pawl & . 10 & 2917 & Washer-"C"' washer for tone arm return lever, & \\
\hline 38641 & Cam-Mam and pawl & 1.50
1.50 & & & . 03 \\
\hline 38470 & Cap-Record separator cap (9) & . 50 & 38629 & Washer-Felt washer for turntable spindle bot- & \\
\hline 4288 & Connector-Pickup lead connector-less insert. & . 03 & & tom bearing & . 04 \\
\hline 38638 & Escutcheon-Index eacutcheon & . 30 & 36274 & Wheel-Ider wheel & . 55 \\
\hline
\end{tabular}
all prices are subject to change or withdrawal without notice

\section*{RCA MFG. CO., INC.}

Before starting automatic operation, see that the mechanism is out of cycle and that the pickup is on its rest. If it is not, start the motor and allow to run until the pickup comes down to playing level.
1. Turn the "record support" and "record separator" to position for 10 -inch or 12 -inch records as required.
2. Load the records on the supports, with required selections upward, the last record to be played on top.
3. Push turntable switch "on."
4. Push the "start-reject" button. The first record drops on turntable, and the pickup moves onto the record.
5. The whole series of records will play without further attention, and the last record will repeat. Turn off the turntable switch as the pickup commences a replaying, lift the pickup and place on rest.
6. To reject a record being played, push the "start-reject" button and let go.
7. For automatic operation, each record must have the standard eccentric groove.

\section*{Miscellaneous Service Hints}
\begin{tabular}{|c|c|}
\hline Mechanism trips continuously. & Check to see that the ratchet lever engages drive cam pawl at end of change cycle. Bend lever if necessary. \\
\hline \begin{tabular}{l}
toud clicking noise resulting from drive cam pawl slipping out of teeth in cam sprocket. \\
Mechanism jams.
\end{tabular} & Check mechanism timing adjustment. Make certain that pickup arm lever is not binding on its stud. Any jam will cause the clutch to slip and produce clicking sound. \\
\hline Stuphire strikes motorboard & Bend the pickup arm support bracket until the sapphire clears the motorboard by approximately \(3_{32}\) of an inch. \\
\hline Separator knife jams on last record of the stack. & Check the separator knife edge. It should not be sharp enough to dig in the record and carry the record up with it. \\
\hline & Cycle of Operation \\
\hline
\end{tabular}

The changer can be conveniently rotated through the change cycle by pushing the reject button and revolving the turntable by hand. Eight turntable revolutions are required
for one change cycle. Hold idler arm back so idler whee! is away from turntable to permit easier manual rotation of the turntable.
\begin{tabular}{|c|c|}
\hline Function & Explanation \\
\hline Prese "Start-Reject Button" & \begin{tabular}{l}
1. Reject lever moves in and pushes rachet lever, thus releasing drive cam pawl. \\
2. Drive cam pawl engages cam sprocket and it revolves carrying drive gear with it.
\end{tabular} \\
\hline Tone Arm Rises & \begin{tabular}{l}
1. Main cam and gear revolves with drive gear. \\
2. Stud on tone arm lever rides in top track on main cam and directs movement of the lever. \\
3. Tone arm elevating lift rides up on ridge on main cam and pushes tone arm up by means of lift rod.
\end{tabular} \\
\hline Tone Arm Moves Out & \begin{tabular}{l}
1. Tone arm lever pushes on trip lever stud. \\
2. Trip lever moves out, carrying the tone arm out. \\
3. Tone arm return lever is carried along by trip lever stud, and by stud on main cam top track.
\end{tabular} \\
\hline Record Knife Separates Bottom Record from Stack after Gauging Thickness of Record & \begin{tabular}{l}
1. Stud on separator lever follows main cam bottom track and directs the motion of the lever. \\
2. Through the separator link and crank, the separator lever turns the separator shaft. \\
3. Knife turns with shaft and strikes edge of bottom record. \\
4. Separator shaft continues to revolve and teeth on inner circumference of knife ride up on shelf teeth until knife is carried high enough against the action of spring 19 to move in over top of bottom record.
\end{tabular} \\
\hline Record Dropa to Turntable & 1. Separator shaft continues to turn until knife supports stack of records and shelf moves out from under bottom record, which drops to turntable. \\
\hline Tone Arm Moves In & \begin{tabular}{l}
1. Separator shaft reverses rotation. \\
2. Tone arm return lever pushes on trip lever stud. \\
3. Trip lever moves in, carrying the tone arm in.
\end{tabular} \\
\hline Tone Arm Lowers Sapphire on to Record & \begin{tabular}{l}
1. Index finger on tone arm return lever moves against separator shaft to insure proper landing position. \\
2. Tone arm elevating lever rides down on main cam ridge thus lowering the elevating rod and the tone arm. \\
3. Separator shaft returns knife to original position and allows stack of records to rest on shelf.
\end{tabular} \\
\hline \begin{tabular}{l}
Sapphire Moves In to Record Groove \\
Record Begins to Play
\end{tabular} & \begin{tabular}{l}
1. Ratchet lever rides down into eccentric step on main gear shaft and blocks drive cam pawl, disengaging the pawl from drive cam socket. \\
2. Drive gear and main gear stop. \\
3. Tone arm lever moves into cam to maintain disengagement.
\end{tabular} \\
\hline
\end{tabular}

\section*{Trip Lever}

When the tone arm swings in the eccentric groove, the trip lever latch acts on the ratchet lever to start the automatic cycle.

\section*{Ratchet Lever}

Transfers motion from trip lever or reject lever to start automatic cycle by allowing pawl to engage with sprocket of safety clutch.

Drive Cam Pawl and Sprocket
(This is the "safety clutch")
Engages turntable spindle to drive gear during cycle (see sketch " \(A\) ")

\section*{Tone Arm Lift Lever}

Directs vertical motion of tone arm.

\section*{Function of Principal Levers}

\section*{Drive Gear}

Transfers rotation of turntable spindle to main cam and gear when the clutch is engaged.

Main Cam and Gear
Has four "tracks" which control horizontal and vertical motion of tone arm, and rotation of record separator knife and shelf. The bushing on this gear governs position of the ratchet lever.

\section*{Reject Lever}

When the reject button is pushed, the reject lever moves the ratchet lever away from the drive cam pawl, permitting the clutch to engage and thus start the change cycle.

\section*{Tone Arm Return Lever}

Keeps tone arm moving in with re ceding tone arm lever and provides proper landing.

Tone Arm Lift Rod
Transfers motion of elevating lever to tone arm.

\section*{Record Separator}

\section*{Lever Train}
(Lever-Link-Crank)
Directs motion of separator knife and shelf.

Separator Knife
Separates record from stack and supports stack during cycle.

Separator Shelf
Supports stack during playing time.

\section*{Tone Arm Lever}

Directs horizontal motion of tone arm
MODELS 331, 341, 380, 380HR, 381, RCA MFG. CO., INC.
 MI-6982

Better control of volume is obtained on subject phonograph units if the pickup wiring is changed to agree with Figure 1 below. This change involves the addition of two \(1 / 2\) watt resistors. \(R-5,220\) ohms stock \(\# 5201\), and \(R-6\), 120 ohms stock \#30189, should be wired to \(R-1250\) ohms volume control as shown in Figure 1.

\section*{Figure 1 - MI-4814-A Schematic}

PARTS LIST FOR MODELS MI-12701, MI-12702
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { stock } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION & \[
\begin{aligned}
& \text { Unit } \\
& \text { List } \\
& \text { Price }
\end{aligned}
\] & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \begin{tabular}{l}
Unit \\
List \\
Price
\end{tabular} \\
\hline \[
\left.\begin{array}{c}
20134 \\
32679
\end{array}\right)
\] & MOTORBOARD ASSEMBLY
Arm-Motor starting switch actuating arm & & \[
\begin{array}{r}
4340 \\
32055
\end{array}
\] & \begin{tabular}{l}
Lamp-Pilot lamp. \\
Socket-4-contact microphone input socket
\end{tabular} & \[
.17
\] \\
\hline \[
\begin{aligned}
& 32679 \\
& 10194
\end{aligned}
\] & Arm-Motor starting switch actuating arm Ball-Turntable shaft ball bearing. & 1.95
.02 & \[
\begin{aligned}
& 32055 \\
& 32804
\end{aligned}
\] & Socket-Pilot lamp socket, bracket, and jewel & 30 net \\
\hline \[
\begin{aligned}
& 10194 \\
& 32677
\end{aligned}
\] & (\({ }^{\text {Ball-Turntable shaft ball bearing }}\) Base-Recorder arm base assembly & 3.40 & 32629 & Speaker-P.M. dynamic speaker complete . . . & 6.45 \\
\hline 32683 & Bearing-Feed screw bearing complete with eccentric and screw. & 4.00 & 17507 & Switch-D.P.D.T. Recording-Phonograph switch (S2) & \[
\begin{array}{r}
1.60 \\
.85
\end{array}
\] \\
\hline 32590 & Jack-Hex head tip jack for recorder cable tip. & .10 & \[
\begin{aligned}
& 13462 \\
& 32607
\end{aligned}
\] & \begin{tabular}{l}
Switch—S.P.S.T. "On-off" switch (SJ) \\
Tone Control- 5,000 ohms tone control (R8)
\end{tabular} & \[
\begin{array}{r}
.85 \\
1.00
\end{array}
\] \\
\hline 32648 & Knob-Motor starting switch knob. & . 70 & \[
\begin{array}{r}
32607 \\
32606
\end{array}
\] & Tone Control- 5,000 ohms & \\
\hline 32516
32613 & Meter-Volume level indicator meter
Motor- 110 volt, 50 cycle motor........ & \(\xrightarrow[16.60]{\text { X }}\) & 32606 & (R6) & 1.00 \\
\hline 32612 & Motor-110 volt, 60 cycle motor & 16.60 & & AMPLIFIER ASSEMBLY & \\
\hline 32744 & Mounting - Motor mounting assembly consisting of 2 screws, 4 lockwashers, 5 washers, £ spa- & & 12635 & Capacitor-1,000 mmfd. (C5) . . & 50 \\
\hline & cers, 2 grommets and 1 cap nut & 60 & 4886 & Capacitor-. 05 mfd . (C3, C7) & 20 \\
\hline 33080 & Nut-Motor board knurled nut and screw & . 40 & 4839

12484 & Capacitor- 0.1 mfd. (\(\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 6\) & 30 \\
\hline 32685
32647 & Pad-Rubber turntable cover pad & 1.00
.45 & 12484
3232 & & 2.05 \\
\hline 32647
32681 & \begin{tabular}{l}
Plate-Recorder feed plate \\
Pulley-Turntable drive pulley with vulcanized
\end{tabular} & . 45 & 32332
32331 & & 2.85
2.80 \\
\hline 32681 & Pulley-Turntable drive pulley with vulcanized rubber tip 50 cycle operation. & 2.25 & \[
\begin{aligned}
& 32331 \\
& 32020
\end{aligned}
\] & & 2.25
4.18 \\
\hline 32680 & Pulley-Turntable drive pulley with vulcanized & & 14133 & Fuse-1 ampere (F1) & \[
\begin{array}{r}
.18 \\
1.00
\end{array}
\] \\
\hline & rubber tip 60 cycle operation.... & 2.00
4.15 & 32059
30789 & Post-Fuse post \({ }^{\text {Resistor-33 ohms, }}\) (watt (R16, R17) & 1.00
.20 \\
\hline 32676
33079 & Screw-Feed screw and pinion .icion nut and & 4.15 & 30789
32330 & Resistor- 33 ohms, \(\frac{1}{\frac{1}{2}}\) watt (R16, R17)
Resistor-40 ohms,
watts (R15) & . 1.30 \\
\hline & thumb screw (1 ea.) & 40 & 30681 & Resistor-470 ohms, 1 watt (R14) & . 22 \\
\hline 32678 & Spring-Coil spring for recorder arm base as- & & 30731 & Resistor-1,200 ohms, watt (R9) & 20 \\
\hline & sembly & . 20 & 30930 & Resistor-1,800 ohms, \(\frac{1}{5}\) watt (R3) & . 20 \\
\hline 32745 & Spring-Motor bracket tension spring & 15 & 32329 & Resistor-1,800 ohms, 5 watts (R21) & \\
\hline 02004 & Spring- Reeordac-bead tontion-gpaing . . & . 26 & 30730 & & 20 \\
\hline 32746 & Support-Pickup arm support bracket and spring & 65 & 30225 & & 25 \\
\hline 14804 & Switch-Motor starting switch and flash cap (S3) & . 60 & 3252
30180 & Resistor- 100,000 ohms, watt (R1, R1
Resistor- 120,000 ohms, watt (R12). & 20 \\
\hline 32649 & Turntable-Turntable and shaft assembly & 12.85 & 14583 & Resistor-220,000 ohms, watt (R11) & 20 \\
\hline & & & 30651 & Resistor-270,000 ohms, \(\frac{1}{2}\) watt (R5) & 20 \\
\hline & RECORDER HEAD ASSEMBLY & & 30784 & Resistor- 330,000 ohms, watt (R7), & 20 \\
\hline 32475 & Armature-Armature and spring assembly & & 11988
30162 & Resistor- 390,000 ohms, \({ }^{2}\) watt (R1, R10) & 20 \\
\hline & plete & 4.10 & 30162
33084 & Socket-Octal base tube socket and speaker socket & 25 \\
\hline 32480 & Cable-Lead wire for recorder head & . 50 & 7852 & Transformer-Output transformer (T & 0 \\
\hline 32476 & Coil and sleeve assembly . . . & . 75 & 31380 & Transformer-Power transformer XT-2741C & \\
\hline 32459 & Cover-Recorder head cover assembly & 2.30 & & 110-120 volts, 50-60 cycles (Model MI-12701 & \\
\hline 32477
32458 & \begin{tabular}{l}
Damper assembly \\
Recorder-Recorder head complete
\end{tabular} & 18.00
18 & & only) (T3) & 4.75 \\
\hline 32458
12539 & Recorder-Recorder head complete Screw-Needle holding screw & 18.00
.15 & 31575 & Transformer-Power transformer-110-220 volts, & \\
\hline 12539 & \begin{tabular}{l}
Screw-Needle holding screw. \\
PICKUP AND ARM ASSEMBLY
\end{tabular} & . 15 & & \begin{tabular}{l}
\(50-60\) cycles (Model MI-12702 only) (T3) \\
MICROPHONE ASSEMBLY (MI-6228-C)
\end{tabular} & 8.35 \\
\hline 33053 & Arm-Arm complete-less pickup unit & 6.75 & 30842 & Adapter-Ball joint, swivel type, microphone & \\
\hline 33054 & Base-Pivot arm and base assembly & \(\begin{array}{r}.95 \\ 4.95 \\ \hline\end{array}\) & & stand adapter....... cable with strain relief & 8.80
1.40 \\
\hline 31100 & Pickup-Pickup unit only. & 4.95 & 32584 & Cable-10 ft. microphone cable with strain reliet & 1.48 \\
\hline 3811 & Screw-Needle holding screw & 10
30 & 31452 & Cap-Front cap and screen assembly & .85
1.80 \\
\hline 33095 & Spacer-Pickup arm assembly & . 30 & \[
\begin{aligned}
& 32054 \\
& 30052
\end{aligned}
\] & \begin{tabular}{l}
Plug-4-prong microphone plug \\
Transformer-Microphone transformer XT-2651
\end{tabular} & 4.80 \\
\hline & CONTROL PANEL ASSEMBLY & & & & \\
\hline 32630 & Cone-Cone complete with mounting bracket and centering web & 1.75 & 16823 & Cable-Power cord and plug. & 5 net
60 \\
\hline 30187 & Jack-"Monitor" jack (J1) & . 75 & 26573 & Plug-8-prong speaker plug & 60
60 \\
\hline 30247 & Knob-Volume or tone control knob & . 25 & 25941 & Plug-Power cord plug & 60 \\
\hline
\end{tabular}

ALL PRICES ARE SUBJECT TO CHANGE OR WITHDRAWAL WITHOUT NOTICE.
\(X\) Price upon application to local RCA distributor.

MODELS \(1: 1-4814\), MI-4823

X-Price upon application to local RCA Distributor.
all prices are subject to change or withdrawal without notice.

RCA MFG. CO., INC.

adjustments, see Model MI-12700

For magnetic pickup and turntable

\section*{M1-4819; MI-4821 RECORDER SCREWS}

In order to install a new, or reverse, Recorder Screw from that which comes with the equipment, the following procedure is necessary:
1. Loosen set screw "A" (in picture) and remove cone bearing from right end. The entire recorder screw and worm gear can then be removed by manipulating with the hand to disengage the worm gear.
2. Place the new recorder screw and worm gear in place, and shove the cone bearing into the proper position. Adjust the recorder screw by moving the cone bearing inward to remove all loose play; but not so far that the screw will bind. when the proper adjustment is obtained, tighten the set screw "A".
imstallation of feed plate

To install a new feed plate proceed as follows:
A. Raise carriage upward to the "rest" position and remove the two nuts and screws holding the feed plate in place.
B. Insert the new feed plate in place and replace the two screws and nuts.
C. Before tightening the nuts lower the carriage, in order to make sure that the feed plate engages the threads of the recorder screw, then tighten nuts.
float stabilizer

The float stabilizer supplies critical damping to the cutter head and float arm. This critical damping eliminates any vertical oscillation of the cutter head and float arm.

ADJUSTMEMTS

Located within the collar of the base casting is the adjusting sleeve, the adjustment of which must be such that it will insure motion of the recorder head cutter parallel to the upper surface of the record. The sleeve is locked in position by means of a set screw "B", which is threaded through the collar of the support casting. It is essential that vertical adjustment of this sleeve be very carefully made in order to insure the same depth of groove throughout the run of the record. There is a tendancy for the cutter to cut a deeper groove at the inner section of the record than at the outer section, if the adjusting sleeve is not properly adjusted. The sleeve is adjusted before the mechanism leaves the factory, but at the same time, it may become necessary to readjust it. If the groove is being cut deeper at the outer edge of the record, raise the sleeve, and vice versa. By using a spirit-level, the recording mechanism may be readily adjusted parallel to the record surface.

Depth of the cut should be maintained with fairly close precision. it is best determined by observing the width of the groove in comparison with the width of the remaining wall. A standard feed screw such as the Ml-4819 or M1-4821 will cut 112 grooves per inch, and the proper width of groove is equal to but never greater than, the width of remaining wall. This procedure will make the respective width of grooves and walls about \(.0045^{\prime \prime}\) in each. The depth of groove will then be about .0025 inch.

After some practice, the groove-to-wall width ratios can be estimated with fair accuracy by eye, using a small magnifying glass. of course, a calibrated microscope is much better if it is available.
in order to properly adjust the feed screw member, procedure should be as follows:
Loosen the set screw "A" (which holds the cone bearing for the right end of the feed screw shaft in \(t\) he housing). Push the cone bearing irward to tighten the shaft; and outward to loosen the shaft. When the proper adjustment has been made, tighten the set screw, thus locking the bearing in place.

\section*{LUBRICATION}

A clean, high grade, light body grease such as vaseline should be applied to both the worm gear and worm wheel every two or three months.

The feed screw should not be lubricated since it would collect dust. Also, the upper and lower support rods should not be lubricated. Instead, if these items become dusty or dirty, the dust should be wiped off with a clean, dry rag free from lint.

MODELS MI-4815, MI-4819, RCA MFG. CO., INC. IB-24145-1

\section*{InStallation}

MI-4815; MI-4820 RECORDING ATTACHMENTS

The installation may proceed as follows:

Remove the panel from the back of the cabinet by taking out the screws. Remove the plug but ton in the motor board (near the base of the pickup arm) by knocking out from the under side; and in its place insert the stud (rest for recorder attachment). The stud is secured from the under side by 1 washer, 1 lockwasher, and 1 nut.

Remove the plate covering the hole for the base assembly. Insert the base assembly and secure by the three bolts, washers, and nuts, provided for that purpose. check to see that the sleeve for the base assembly is secure in its place.

The recording attachment may then be mounted by inserting the shaft into the sleeve of the base assembly down to the yoke. The abovementioned sleeve is held in position by the set screw "B" on the collar of the base casting. Thus the sleeve may be raised and clamped by the set screw.

On the end of the lead from the recorder head may be found two audio pins. Insert these pins into the pin jacks provided for same (pin jacks are located near the base of the recording attachment).

TECHMICAL DATA
MI-48I5 RECORDING ATTACHMENT (OUTSIDE-IN)
MI-4820 RECORDING ATTACHMENT
(INSIDE-OUT)
MI-48I9 RECORDER SCREN
MI-482I RECORDER SCREN
(INSIDE-OUT)
(OUTSIDE-IN)

\section*{DRIVING SOURCE}
1. MI-12700 Instant aneous Recording
and Play-Back Equipment
2. M1-4814 Portable Turntable
\begin{tabular}{lll}
Width \(-13-3 / 4\) & Inches \\
Depth -8 & Inches \\
Height \(-5-3 / 4\) & Inches \\
Weight \(-8-1 / 2\) & Pounds
\end{tabular}
```

MODELS MI-4824-B,
MI-4824-C
RCA MFG. CO., INC.

figure 1 - portable turntable and recording attachment in operation.
(c)John F. Rider

RCA PORTABLE TURNTABLE AND RECORDING ATTACHMENT

(MI-4822-B	OUTSIDE-IN,	60 CYCLES)
(MI-4822-C	INSIDE-OUT,	60 CYCLES $)$
(MI-4824-B	OUTSIDE-IN,	50 CYCLES)
(MI-4824-C	INSIUE-OUT,	50 CYCLES $)$

The RCA Portable Turntable and Recording Attachment consists essentially of motor and drive mechanism, a record plate, a recording attachment, a pickup and arm, and a control panel, mounted in an umber gray carrying case. This Portable Turntable and Recording Attachment may be used with suitable, existing microphones, amplifiers, loudspeakers, etc. thereby making a flexible arrangement for schools, public address installations, and other purposes. The M1-6719 Desk Console and similar equipment, where available, afford a convenient source of amplifier and loudspeaker.

## CAUTION:

Lift and remove the cover for this equipment before operating the equipment. Never drop the cover backward or allow the cover to be supported by the hinges, as damage to the cabinet and hinges may result.
lt is impossible to give detailed installation instructions as installationswillvary with local conditions and with the accessories used. The following general instructions are given as a guide.

Exercise care during unpacking and set-up to prevent injury tothe precision mechanism, and to prevent dust and other foreign matter from entering the mechanism. Unpack and install carefully the record plate. Install the additional items, as power cord, needle cup. etc.

The support (table, etc.) should be free from excessive vioration, and a location free from such extraneous noises as automobile horns, the singing of birds, should be chosen.

The four (4) male plugs should be connected as shown in Figure 3, using the type of cables indicated. Insert the plugs in the control panel.

To install the Recording Mechanism (M)-4815 or MI-4820) proceed as follows: Remove the three (3) machine screws and the cover plate at the right-hand rear corner of the motor board. Use these same three screws and install the recorder mechanism base casting, but do not tighten the screws. Place the drive flange on the turntable spindle. By using a spirit level, adjust the drive screw parallel to the record plate lSee "Cutting METHOD AND ADJUSTMENT" On page 6.) At the same time, check to make sure that no binding exists between the record plate and recording mechanism, and then tightenthe three screws.

Install a cutting stylus in the recorder head, making sure that the flat at the blunt end of the cutting stylus is toward the set screw. See diagram opposite.

Insert a chromium reproducing needle in the pickup.


OIRECTION OF ROTATION
9-140372-0
figure 2 - inserting cutting stylus in RECORDER HEAD.

RCA MFG. CO., INC.

AMPLIFIER
SPEAKER
© John F. Rider

## MODELS MI-4822-B, MI-4822-C

RCA MFG. CO., INC.
MODETS MI-4824-B,
HOW TO MAKE A RECORDING
When the equipment has been set up, connected to an AC power supply, and the groove depth has been checked, (see "PART $\mid V$ "), recordings may be made as follows:
(A) On the amplifier, throw the AC power switch to the "OFF" position, turn the volume control to "O", and set the tone control at a position to obtain a maximum of high frequencies.
(B) Throw the motor switch to the "OFF" position.
(C) Throw the amplifier power switch to the "ON" position labout thirty seconds are required for the Radiotrons to heatl.
(D) Turn the "RECORDING-REPRODUCING" knob to the "RECORDING" position.
(E) Flace a blank recording disc on the record plate.
(F) Adjust the speea changeover knob for the desired speed. This knob shouldbe "Up" for $331 / 3$ R.F.M., and "DOWN" for 78 R.P.M.
CAUTION: The motor switch must be shut "OFF" when the speed changeover knob is either pushed down ur raised.
(G) With the carriage in the raised (non-recording) position, move the recording flange over the record plate so that the drive the the drive flange pins rest on the record.
$(H)$ Hold the drive flange with the thumb and forefinger, and rotate the turntable by hand until the drive flange pins engage both the record and the turntable. Positive drive is thus obtained between the turntable, the record, and the recording mechanism.
(I) If possible, test the sound to be recorded, and adjust the amplifier volume control so that the needle of the volume indicator meter will indicate in the section of the meter scale between -3 and +3 during average recording passages. Fractice will determine the proper adjustment

NOTE: If piano recordings are being made, the needle should not reach. the section of the scale between -3 and +3 , or distortion will occur.
(J) Start the turntable motor by moving the motor switch to the "ON" position.
(K) Slide the carriage on the support rod until the cutter is in the approximate position over the record, and then, by means of the lift finger on the recorder head. carefully lower the cutter to the proper position on the record.
CAUTION: DO not record nearer than $1 / 4$ inch to the outer diameter, or nearer than a 2 inch radius to the center of the record.
(L) The recording may now be made. Enunciation should be clear and distinct.
$(M)$ When the recording is completed, lift the recorder head from the record before shutting off the motor.
$(N)$ The cuttings should be removed from the record by moving the fingers, or a small, soft brush, in a gentle, circular motion over the record. Do not scratch the record.
HOW TC PLAY-BACK A RECCRDING.
The recording may be played back immediately as follows:
(a) Lift the recording mechanism, and place it in the "rest" pusition.
(b) Turn the amplifier volume control to "0".
(c) Turn the "RECORDING-REPRODUCING" knob to the "REPRODUCING" position.
(d) Carefully move the tonearm over the record and lower the needle to the record. Adjust the amplifier volume control for proper volume, and adiust the amplifier tone control to reduce needle scratch and to obtain the desired tone.

## PARTIX - ADJUSTMENTS AND ADDITIONAL INFORMATION

## CUTTING METHOD AND ADJUSTMENT

The depth of cut is controlled directly by the weight of the recorder head as it rests on the disc. This weight should be from two to four ounces, and an adiusting spring and a knurled nut are provided to alter the pressure. If the pressure of the cutter on the record is too great, the cut becomes too deep, and the remaining wall between grooves then becomes too thin, causing "cross-talk" or distortion.

The depth of the groove should be accurate over the surface of the record. Located within the collar of the recording mechanism base casting is the adjusting sleeve, the adjustment of which must be such that it will insure motion of the recorder head parallel to the surface of the record. The sleeve is locked in position by means of a set screw which is threaded through the collar of the support casting. It is essential that vertical adiustment of this sleeve be very carefully made to insure constant depth of groove throughout the run of the record. There is a tendency for the cutter to cut a deeper groove at the inner section of the record, if the adjusting sleeve is not properly adjusted. If the groove is being cut deeper at the outer edge of the record, raise the sleeve and vice versa By using a spirit level, the recording mechanism may be readily adjusted parallel to the record surface.

A good method of determining the depth of cut is to observe the width of the remaining wall by means of a microscope. They should be the same. After some practice, the groove-to-wall width ratios can be estimated by the eye, or with a small magnifier.

Groove depth may vary somewhat depending on the softness or freshness of the record, and it is desirable to recheck frequently the groove dimensions as explained above.

## CUTTER ANGLE

The angle between the cutting stylus and the record surface has been adiusted at the Factory for slightly less than 90 degrees. It may be necessary in certain cases, such as when using reground cutters, etc., to readjust the cutter angle as follows: Loosen the two screws at the back of the recorder head. These two screws secure the recorder head to the carriage assembly. If the cutter angle is to be increased, the recorder head should be raised with respect to the mounting bracket; and if the cutter angle is to be decreased the recorder head should be lowered with respect to the mounting bracket. The recorder head must not be rotated sidewise when the above adjustment is made.

If cutter sing or chatter is experienced, the cutter angle should be changed slightly until proper operation is obtained, and the two mounting screws should then be securely tightened.

## THE CUTTING POINT.

A sharp cutting tool is imperative for a smooth groove free from excessive surface noise. Steel cutters are satisfactory for about fifteen minutes of recording. Sapphire cutters are recommended. which last approximately twelve times as long.

A sharp cutting tool will remove the thread quietly and smoothly. The only noise heard should be that of the recorder head itself, which talks audibly during the louder passages. In other words, when test cuts or blank grooves are cut, there should be no tearing or scraping sound. By placing the ear close to the record, the cutting should sound even in character, and have a faint, steady hiss.

The amount of noise heard while cutting a blank groove is a fairly reliable indication of how much surface noise will exist in the finished record. Sapphire cutters cut more smoothly than the steel type, and their increased cost is warranted if maximum quality and minimum surface noise are sought.

CUTTER CHATTER
Occasionally a steel cutting tool will be found which chatters or cuts with a whistling sound. If the groove dimensions are correct, the fault is apt to be caused by a defective tool, and a new tool should be tried. Do not attempt io use a steel cutter for over fifteen minutes of recording.

## DIRECTION OF FEED.

The RCA Portable Turntable may be used with the proper recording attachment to feed either "inside-out" or "outside-in", that is, from the inside of the record to the outside, or from the outside of the record to the inside.

The following are available for use with this equipment:
(A) MI-4815 Outside-In Recording Attachment
(B) MI-4820 Inside-0ut Recording Attachment
(C) MI-4821 Outside-In Recording Drive Screw
(D) MI-4819 Inside-Out Recording Drive Screw

The threads shrink in size when cut from the record, and therefore tend to lie near the inner diameter of the record. For this reason, there is no difficulty when recording from "inside-out", but when making long recordings from "outside-in", difficulty is sometimes encountered due to the cutter becoming entangled with the shavings. When recording intermittently from "outside-in", opportunity should be taken during pauses in recording to remove the shavings. A fine camel hair brush about $1^{\prime \prime}$ wide may be used to free the cutter from the shavings.

## RECORD SUFFLY

Since the instantaneous recording discs contain a volatile softner which gradually evaporates, records should be purchased in quantities suited to immediate needs, and should be stored in metal containers sealed with tape until used. Sealed containers prolong the useful life before cutting.

## AVAILABILITY OF BLANK RECORDS.

Blank records are available on short notice, and a little planning as to requirements will insure maximum quietness in the completed record.

For the most satisfactory recordings, use RCA Recording Blanks.

## REPEATED FLAYING CF RECORDINGS.

Repeated playing does not materially affect the quality of the record up to fifteen or twenty times.

## RECORDING FROM RADIOS.

Figure 4 shows two methods of recording from radio receivers. The preferable method, if convenient, is tu use the adaptor and plug into the inverter tube socket of the radio.

In case of emergency, a recording may be made from the radioby placing the microphone about two feet from, and at an angle of about 45 degrees from, the radio loudspeaker, but this method is not recommended as standard practice due to the superior results obtained by the above methods.

## CORRECT USE OF THE TONE CONTROL

When recording, it is generally preferable to set the amplifier tone control for a maximum amount of high frequencies, and when reproducing to stard the tone control sufficiently to obtain the desired tone and to reduce needle scratch. To secure professional type results, however, the tone control should be adjusted several times during a recording

## MODELS MI-4824-B, MI-4824-C

RCA MFG. CO., INC.

This is because the higher frequencies are considerably more in evidence at the outer diameter of the record. When recording from "inside-out", the tone control should de adiusted for a maximum of high frequencies at the start of the recording, and gradually changed to reduce high frequencies at the outer diameter of the record. When recording from "outsidein", the reverse procedure should be followed. A little practice will make it easy to fol low the above procedure and thus secure the best results.

## LUBRICATION AND MAINTENANCE.

The motor should be lubricated once every three months by dropping a few drops of high-grade S.A.E. $\# 50$ oil in the oil wick at each end of the motor housing. The oil holes are painted red for identification. The upper oil hole is located under the cover plate. and the lower oil hole is reached by removing the motor board.

The worm gear and worm wheel of the recording mechanism should be lubricated every two or three months with a small amount of clean, high grade, light-body grease, such as vaseline. No further lubrication of the recording mechanism is required.

The equipment supplied by the manufacturer is as follows:
1 Portable Turntable in carrying case, either,
(a) MI-4814-A (105-125 Volts, 60 Cycles)
(b) MI-4823-A (105-125 Volts, 50 Cycles)

1 Recording Attachment, either
(a) MI-4815 Outside-In Attachment, or
(b) MI-4820 Inside-Out Attachment

6 Steel Cutting Stylii
6 Chromium Reproducing Needles
4 Male Plugs
The following, not supplied, are required for operation:
Suitable Microphone
Suitable Amplifier
Suitable Loudspeaker
Blank Recording Discs
Fower Supply of 105 to 125 volis, and of the proper frequency.
The following accessories, not supplied, may be used:
1 Volume indicator Meter, RCA Drawing No. K-180840 which can be mounted in a suitable case and provided with jack tips by the customer.
1 Pair of High-Quality Headphones (for monitoring)
1 High Quality Radio (for Radio recording)
1 Microscope (10 power or greazer, for checking groove depth, etc.)

## CONTROLS PROVIDED

PHYSICAL SPECIFICATIONS
(A) Motor Switch
(B) Fhonograph Volume Control
(C) Recording-Reproducing Switch
(D) Speed-Changeover Control

TURNTABLE DIAMETER
16 Inches (For $12^{\prime \prime}, 14^{\prime \prime}$ or $16 "^{\prime \prime}$ Records.)

Width - 27 3/4 Inches
Depth - 23 Inches
Height - 14 Inches
Weight - 82 Pounds
POWER REQUIRED
105-125 Volts
(of the proper frequency)
80 Watts
TURNTABLE SPEEDS

78 and 33-1/3 rpm


SCHEMATIC DIAGRAM OF ABOVE ADAPTER


$\triangle M P L I F I E R$ FOR M1-12700 P.170221.4
Figure 6

( $\frac{1}{5}$
Figure 7
MODELS MI-12700, $\quad$ RCA MFG. CO., INC.

Maximum Input Levels
Microphone receptacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -28 db*
Radio input jack............................................................................................................. -13 . $\mathrm{db}^{*}$
Average Over-all Amplifier Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 db
Over-all Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $60.6,500$ cycles per second
RCA Radiotron Complement


Mechanical
$351 / 4$ inches 27 inches

Specifications

Depth


Width


Figure 1
Lubrication
Approximately once every three months or oftener if the instrument is subjected to constant use, remove the turntable and metal cover plate over the drive mechanism. Place a few drops of S.A.E. No. 50 oil in the oil wick at top of motor housing. At the same time place a drop of oil on the idler pulley bearing and also in the turntable bearing. Great care should be taken to keep the rubber tire on the idler pulley free from oil and grease at all times. At the same time the worm gear and worm wheel of the recording mechanism should be lubricated with a small amount of clean, high. grade, light-body grease, such as vaseline. The feed screw, upper, and lower support rods should never be lubricated. If they become dusty or dirty they should be wiped off with a clean, dry rag free from lint.

## General Description

The MI-12700 and M1-12700-A Disc Recording Equip. ments consist of a microphone, amplifier, edge-driven 16 -inch turntable, recording cutter head with feed mechanism, playback pickup, speaker and V.I. meter, together with all necessary switches and controls, all mounted in a cabinet fitted with casters.

The only difference in these instruments is that the MI-12700 cutter head feeds from outside in while the MI-12700-A cutter head feeds from inside out.

This instrument will record and instantly play back records of the lacquer coated aluminum disc type. Either a steel or sapphire cutting tool may be used. The steel cutter is satisfactory for approximately 15 minutes of recording, after which it must be discarded, while the sapphire can be used for approximately three hours of recording and at this time can be returned to the factory for re-sharpening. The sapphire cutter makes records having less surface noise than the steel cutting tool makes; however, the surface noise is very low on records made with the steel cutter.

This instrument can also be used to play any other laterally cut records up to 16 inches in diameter. Records can be recorded and played at either 78 or $33 \frac{1}{2}$ r.p.m.

The cutting head is equipped with a "float stabilizer" which is mounted to the side of the cutting head by means of viscoloid damping blocks.

## Turntable Drive Adjustment

The turntable drive motor is suspended on rubber mountings to prevent vibrations from being transmitted to the rest of the equipment. It is extremely important that these rubber mountings be in their proper positions at all times and that the motor should not come in direct contact with any of the adjacent parts except the idler pulley. Improper turntable drive may result if the rubber tire on the idler pulley becomes dried out, has flat spots worn on it, or collects oil, grease, or dirt. Likewise, improper driving action will result if the spring which pulls this idler pulley against the motor pulley and the turntable has insufficient tension.

The idler pulley bearing may occasionally bind due to an accumulation of thread cut from records wrapping up under it. This will not be visible from the top, hence, at occasional intervals the pulley should be removed, thoroughly cleaned, oiled and replaced.

When the instrument is received from the factory the cutter head and its driving mechanism, completely assembled, are packed separately. Remove the flat metal plate on the back of the motor board. Place the mechanism in position over the turntable, as shown in Figure 1, with its swivel in the clearance hole through the motor board. Rotate the driving flange of the cutter mechanism until its three pins engage the three holes in the turntable and be sure that driving flange center is accurately fitted over top of the turntable spindle. Using the bolts which originally held the flat metal plate to the motor board, fasten the swivel to the motor board, being extremely careful not to let the mechanism slip out of position while tightening these bolts.

Plug the cutting head leads into the two pin jacks provided on top of the motor board.

## FOR FURTHER DATA ON CUTTER HEAD SEE MODEI MI-12701 <br> Adjustments to Cutter Head Drive Mechanism

The cutting head drive screw should rotate freely and be free from end play. If end play is present loosen the jamb screw which locks the cone point bearing located at end away from driving gear and adjust this bearing until end play is eliminated (being careful not to cause binding), then tighten jamb screw.

Two cone pointed set screws support the cutter head and its mounting bracket. These should be adjusted to prevent end play but to permit free movement of the cutter head up and down.

The depth of the groove should be maintained with fairly close precision. In order to maintain constant depth of groove, the leveling set screw located on swivel base can be adjusted so that the recording mechanism is raised slightly more at the inner diameter of the record than at the outer diameter (approximately $1 / 64$ inch). This is to offset the tendency to cut deeper at the inner diameter of the record where the surface speed is less. Compare the grooves and walls at the inner diameter of the record by means of a microscope or magnifying glass, with the grooves and walls at the outer diameter of the record. They should be the same.
A good method of checking the depth of cut (controlled by adjusting tension of cutter head supporting spring) is to observe the width of the cut groove in comparison to the width of the remaining wall by means of a microscope. The standard feed screw cuts 112 grooves per inch, and the proper width of groove is equal to, but never more than, the width of the remaining wall. The widths of groove and wall will then be about 0.0045 inch each, and the depth of the groove will be about 0.0025 inch. These measurements are all made with blank grooves (no input sound).

Groove depth may vary somewhat, depending on the softness or freshness of the record, and it is desirable to recheck frequently the groove dimensions as explained above.

The cutting head is adjusted on its mounting bracket at the factory so that the angle formed by the front of the cutting tool and the record is approximately $881 / 2$ degrees. This may sometimes have to be changed in order to prevent sing or chatter and to cut a clean polished groove when using reground cutting points or different records. Loosen the two ground
screws which fasten the cutter head to its mounting bracket and with respect to this bracket raise the head to decrease the angle or lower the head to increase the angle. Then tighten the screws securely.
Check cutter head drive spring to be sure it is not bent and that it engages drive screw properly.

## Practical Operating Hints

Practical experience with these instruments in the feld ind, cates that the following points should be carefully observed in order to secure the best possible recording:

1 - Be sure the instrument is level at all times.
2-Be sure the cuiter supporting carriage is parallel to the turntable or approximately $1 / 64$ inch closer at the outer edge of the record than at the inside. This adjustment should be made by means of the leveling set screw located in the main swivel.

3-Depth of cut is very important. It is controlled by increasing or decreasing the tension on the spring which supports the cutter head. The depth should be adjusted so that the width of each groove is approximately equal to the space between the grooves. This can be readily observed by look. ing at a test cut through a small magnifying glass.

4 -Since sapphire cutting tools are rather expensive, they should be used with care. If the groove depth is too great, it is very easy to chip the sapphire cutting tool if it cuts all the way through the lacquer coating and touches the aluminum disc.

5-When recording an orchestra there is very likely to be considerable vibration transmitted to the instrument through the floor. If such is the case it is advisable to place the instrument on soft, felt pads to prevent this vibration from being transmitted directly to the instrument from the floor.

6 -Correct grouping of recording artists and correct micro. phone placement are of extreme importance in order to get the best possible results. This grouping and placing will be facilitated by listening in a pair of RCA High Fidelity Head. phones such as MI-3453-B plugged into the monitoring jack on the top motor board, prior to making a recording.

7-No artist, speaker, or singer should ever get closer than approximately one foot to the microphone. Best results are usually obtained when they never approach the microphone closer than approximately three feet. When a person does come too close to the microphone his voice usually becomes very boomy and unnaturally deep-throated.

8 -On the back of the amplifier is located a jack into which radio output may be plugged in order to make recordings of an incoming radio program.

If desired, a more simplified method of connection can be used by removing the first audio tube from the radio set and connecting its grid contact through a 1 -megohm resistor to the tip of a telephone plug inserted in this jack and connecting the sleeve of this plug to the ground of the radio chassis.

9-Regardless of what method of connection is used for making radio recordings, it is important to keep the radio volume control turned down low enough so that the first tube in the recording amplifier unit is not overloaded. The surest way to get this correct adjustment is to set the main volume control on the recorder at approximately No. 5 position and then adjust the radio volume control so that the average peaks of the incoming signal show an indication of zero level on the recording level meter and the occasional very loud peaks show a level of approximately plus 3 on this meter.

10 -When cutting a record it is advisable to lower the cutter head and let it cut two or three blank grooves before starting the modulation. At the end of the recording when the modulation has stopped, the cutter head should remain on the record to cut two or three blank grooves before it is raised.

11-When recordings of speech only (not music) are being made, superior results will usually be obtained if the RCA MI- 6226 aerodynamic microphone is used. However, music recordings should be made with the velocity microphone supplied with the equipment.

12 -The recording level is extremely important and is con. trolled by the volume control located on the motor board. The signal actually being fed to the cutter head is measured by the V.I. (volume indicator) meter also mounted on the motor board. During all recordings the volume control should be adjusted so that the average peaks show an indication of zero level on the V.I. meter and the occasional very loud peaks show a level of approximately plus 3. Experience is very valuable in adjusting the level for various types of recordings. In general the level should be as high as possible (in order to override surface noise) and still avoid distortion or "cross talk" from adjacent grooves in the record.

## Centering Loudspeaker Cone

To center the loudspeaker cone, first remove the front dust cover, then loosen the spider screws and insert three narrow feelers at equal distances in the gap. Tighten spider screws, remove the feelers and fasten a new dust cover in place with loudspeaker cement.

## RCA MFG. CO., INC.



## Record Thread

It is important to keep all record thread which accumulates from cutting cleaned out of all bearings at all times. Failure to do this will cause sticking and binding.

## Magnetic Pickup and Tone Arm

A flat bronze spring for adjusting needle pressure on the record is located between the tone arm and its horizontal supporting arm. This spring should be bent upward or downward as necessary so that the needle pressure on the record will be approximately three ounces.

Refer to Figure 4 showing the pickup inner structure. The armature is shown in its proper relation to the magnet pole pieces, i.e., exactly centered. Whenever this centering adjustment has been disturbed, the screws $\mathrm{A}, \mathrm{B}$, and C should be loosened and the armature clamp adjusted to the point where the vertical axis of the armature is at right angles to the horizontal axis of the pole pieces, and centered between them.


Figure 4

This centering operation may be facilitated by inserting a small rod or nail into the armature needle hole, using it as a lever to test the angular movement of the armature. The limitations of the movement in each direction will be caused by the armature striking the pole pieces. The proper adjustment is obtained when there is equal angular displacement of the armature and adjustment rod or nail to each side of the vertical axis of the magnet and coil assembly. The screws A and B should then be secured, observing care not to disturb the adjustment of the armature clamp. Then place the pickup in a vise and secure the centering spring clamp by means of the screw C , allowing the centering spring to remain in the position at which the armature is exactly centered between the pole pieces. With a little practice, the correct adjustment of the armature may be readily obtained. The air gap between the pole pieces and the armature should be kept free from dust, filings, and other such foreign materials which would obstruct the movement of the pickup armature.

Specisl Soldering Iron Tlo


Figure 5

The viscoloid block which is attached to the back end of the armature shank serves as a mechanical filter to eliminate undesirable resonances and to cause the frequency response to be uniform. Should it be necessary to replace this damping block, it may be done by removing screw $D$ and the cover support bracket from the mechanism and taking off the old viscoloid block. The surface of the armature which is in contact with the viscoloid should be thoroughly cleaned with fine emery cloth. Then insert the new block so that it occupies the same position as it did originally. Make certain that the block is in correct vertical alignment with the armature. The hole in the new viscoloid block is somewhat smaller than the diameter of the armature in order to permit a snug fit. When the viscoloid is aligned on the armature, screw $D$ and the cover support bracket should be replaced. Heat should be applied in the armature (viscoloid side) so that the viscoloid block will fuse at the point of contact and become rigidly attached to the armature. A special-tip soldering iron constructed as shown in Figure 5 will be found very useful in performing this operation. The iron should be applied only long enough to slightly melt the block and cause a small bulge on both sides.

Whenever there is defective operation due to an open or shorted pickup coil, this coil should be replaced. The method
of replacement will be obvious upon inspection of the pickup assembly and by study of the cut-a-way illustrations. Make sure that the new coil is properly centered with the hole in its support strip and glued securely in that position. It is important to readjust the armature as previously explained after re-assembly of the mechanism. Only rosin core solder should be used for soldering the coil leads in the pickup. This same type of solder should be used when necessary for soldering the centering spring to the armature.

Loss of magnetization will not usually occur when the pickup has received normal care because the magnet and pole pieces are one unit and the magnetic circuit remains prac. tically closed at all times. When the pickup has been mis. handled, subjected to a strong a-c field, jolted, or dropped, there may be an appreciable loss of magnetic strength, in which case it will be necessary to remagnetize the entire structure. To do this, it will be necessary to first remove the pickup mechanism from the tone arm, and then remove the magnet assembly. Place the magnet assembly on the poles of a standard pickup magnetizer such as the RCA Stock No. 9549 Pickup Magnetizer and charge the magnet in accordance with the instructions accompanying the magnetizer. It is preferable to check the polarity of the pickup magnet and to re-magnetize it so that the same polarity is maintained.

## REPLACEMENT PARTS

Insist on genuine factory-tested parts, which are readily identified and may be purchased from authorized dealers.

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	Unit List Price	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	Unit List Price
	AMPLIFIER ASSEMBLIES			TURNTABLE DRIVE ASSEMBLIES	
30314	Cap-Grid	. 03	32941	Capacitor-2.5 mfd. motor capacitor (C1)	3.70
12635	Capacitor-1,000 mmfd. (C5)	. 50	32246	Motor-110 volts, 60 cycle turntable motor	X
4886	Capacitor-. 05 mfd . (C3, C7).	. 20	32512	Pulley-Idier pulley, tire, and bushing	7.75
4839	Capacitor-1 1 mfd. (C2, C4, C6)	. 30	32513	Pulley-Motor pulley assembly . . . . . .	3.40
12484	Capacitor-25 mid. (C13).	. 30	32511	Spring-Eccentric "U" spring	. 15
32332	Capacitor-10-10 mfd. (C9-C10)	2.05	32862	Spring-Roller tension spring.	. 25
32331 32020	Capacitor-20-20 mfd. (C1, C8)	2.80 4.25	32514 14804	Spring-Speed-shift coil spring. ${ }^{\text {S }}$ ( ${ }^{\text {S }} 3$ )	. 60
32020 14133		4.25 .18	14804	Switch-Turntable motor switch (S3)	60
30187	Jack-Radio jack (J2)	. 75		PICKUP AND ARM ASSEMBLIES	
32059	Post-Fuse post	1.00	32358	Arm-Arm less pickup unit.	12.80
30789	Resistor-33 ohms, $\frac{1}{}$ watt (R16, R17)	20	12540	Armature and spring assembly	2.20
32330	Resistor-40 ohms, 2 watts (R15)	1.30	32364	Cable-Pickup cable . . . . .	. 70
30881		. 22	12541	Coil	1.05
30731 30930	Resistor-1,200 ohms, Resistor-1,800 ohms, watt (R2, R9) (R3)	. 20	32360	Cover-Front cover for pickup	1.15
30930 32329	Resistor-1,800 ohms, Resistor-1,800 ohms, 5 watt (R3) ${ }^{\text {a }}$ (R21)	.20 1.60	32361	Cover-Back cover for pickup.	25
30730	Resistor- 2,700 ohms, $\frac{1}{2}$ watt (R20).	. 20	14115	Mechanism-Comprising armature, spring, clamp and damper	2.30
30225	Resistor-68,000 ohms, 2 watts (R19)	. 25	12539	Needle screw	. 15
3252	Resistor-100,000 ohms, watt (R18)	. 20	32357	Pickup unit comple	9.65
30180	Resistor-120,000 ohms, watt (R12)	. 20	32359	Spring-Phosphor bronze spring	.25
14583 30651	Resistor-220,000 ohms, Resistor-270,000 ohms, watt (R11) watt (R5)	. 20			
30651 30784	Resistor-270,000 ohms, watt (R5) Resistor-330,000 ohms, watt (R7)	. 20		MISCELLANEOUS ASSEMBLIES	
11988	Resistor-390,000 ohms, watt (R13)	. 20	27833	Bracket-Pilot lamp bracket	X
30182	Resistor-1.2 meg., $\frac{1}{\text { datt (R4, R10) }}$	20	16823 32805		
33084	Socket-Octal tube and output socket	. 25	188805 4340	Jewel-PLlot lamp red jewrel and nut	17
30251	Transformer-Input transformer X T-2452 (T1).	8.80	32054	Plug-4-contact microphone plug	1.00
7852	Transformer-Output transformer (T2).	${ }_{6}^{2.00}$	26573	Plug-4-contact microphone plug. .ild	1.60 .60
31380	Transformer-Power transformer XT-2741-C (T3)		25941	Plug-For power cord............	60
			32333	Resistor-5 ohms, 10 watts (R3)	1.95
	SPEAKER ASSEMBLIES (MI-6247)		30732	Resistor-47 ohms, watt (R5)	20
			13961	Resistor-82 ohms, watt (R9)	20
31275	Co	1.75	30540	Resistor-100 ohms, watt (R1, R2, R4, R7).	20
31825	Dust Çap	. 05	5164	Resistor-560 ohms, watt (R10)	20
	CONTROL PANEL ASSEMBLIES			INSTANTANEOUS RECORDING DEVICES (MI-4815 Outsidein)   (MI-4820 Inside-out)	
26714	Bracket-for recording-reproducing switch (S2).	1.25	32475	Armature and spring assembly complete	4.10
23421	Jack-Monitor Jack (J1) ................	. 55	32479	Cable-Lead wire for recorder head	. 95
30075	Knob-Volume, tone or (S2) control knob	. 50	32476	Coil	75
32334	Meter-Decibel meter	X	32457	Cover-Front cover for recorder head	2.40
32055	Socket-4-contact microphone socket (P1)	. 70	32.477	Damper Assembly	35
17507	Switch-D.P.D.T. switch part of (S2)	1.60	32460	Feed plate and spring assembly (MI-4815 only).	4.89
30163	Switch-D.P.S.T. switch part of (S2)	. 75	32461	Feed plate and spring assembly (MI-4820 only).	4.89
13462	Switch-Power switch (S1) (8g)	. 85	MI-4821	Feed screw and gear assembly (MI-4815 only)	$\mathbf{X}$
32607	Tone Control-5,000 ohms (R8)	1.00	M I-4819	Feed screw and gear assembly (MI-4820 only)	X
32606	Volume Control-500,000 ohms (R8)	1.00	32482	Screw-No. $6-32$ slotted for recorder head bracket	. 30
			12539	Screw-Needle holding screw........	15
	MOTORBOARD ASSEMBLIES		32465 32456	Screw-tension adjustment screw and nut Recorder-Recorder head complete.	18.00
32654	Ball-Turntable shaft ball-bearing	06	32463	Spring-Recorder head tension spring	. 25
32608	Capacitor-2 mfd., 300 volts (C2)	2.00			
11881	Lamp Base Assembly . . . . . . .	90		Y MICRO	
11711	Lampshade ........	. 65		VELOCITY MICROPHONE	
4340	Lamp-6.3 volts	. 17	32585	Cable-30 ft . microphone cable with strain relief	4.20
32590	Jack-Hex tip jack	. 10	20911	Ribbon	. 75
11782	Needle box and lid	. 50	14140	Screen	8.50
32515	Turntable-Turntable disc	16.80	14141	Transformer	6.25

## RCA MFG. CO., INC.

Power Supply

```
MI-12701
MI-12702.. vols, 60 cycles
```

Power Consumption
Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 watts

Input Impedance (Microphone receptacle).
100,000 ohms

Power Output ( $5 \%$ distortion).
3 watts
Power Level (. 006 watt Reference Level)........................................................................................ 27 . 27 db
Voltage Required for Cutter Head
3.5 volts

Maximum Input Level.
$-28 \mathrm{db}$

Frequency Response
60 to 6,500 cycles
Record Lines Cut. 112 Lines per inch

## RCA Radiotron Complement

(1) RCA-6J7
(3) RCA-6F6
Power Output
(2) RCA-6J7.
Driver
(4) RCA.5Y4.G. .... Rectifier
Speaker
Type. ( Coil Impedance. 6-inch Permanent Magnet 6 ohms at 400 cycles

## Mechanical Specifications



Depth. Weight $\qquad$ $171 / 2$ inches 371/2 pounds

## General Description

The MI-12701-12702 are portable type instantaneous disc recorders consisting of a turntable, cutter head, pickup head, 3 watt amplifier, dynamic speaker and MI-6228 type microphone. The turntable speed is 78 r.p.m. and the turntable

Figure 1.-MI-12701 Portable Recorder
 will accommodate discs of any diameter from six to twelve inches. The MI-12701 Recorder is for use on $105-125$ volts a.c., 60 cycles only. The MI 12702 Recorder is normally shipped connected for 220 volt 50 cycle operation. If it is desired to operate this unit on 110 volts, the power trans. former connection may be changed to the 110 volt tap. If it is desired to operate this unit on a 60 cycle supply line, a 60 cycle drive pulley may be substituted for the 50 cycle pulley on the motor drive shaft. When the pulleys are changed, it may be necessary to adjust the position of the motor for proper turntable drive. See "Adjustments." It is recom. mended that RCA instantaneous Recording diccs be used for recording with this equipment.

The equipment may also be used for playing standard 78 r.p.m. records. RCA Victor Green Shank Chromium Needles are recommended for this use.

This instrument will record and instantly play back records of the lacquer coated aluminum disc type. Either a steel or sapphire cutting tool may be used. The steel cutter is satisfactory for approximately 15 minutes of astual recording after which it must be discarded, while the sapphire can be used for approximately 12 hours of recording and then may be returned to the factory for re-sharpening. Records made with a sapphire cutter tend to have less surface noise than records made with a steel cutting tool, however, the surface noise is very low on records made with either type of cutter.

## Adjustments

Drive Mechanism. -The feed screw should be adjusted so that it has a minimum amount of end play yet rotates freely. Loosen the two set screws before attempting to adjust the cone pointed end play screws. The feed plate should be adjusted so that there is no back lash and no play between the feed plate and the feed screw.

The motor should be adjusted so that when the motor switch is in the "off" position, the motor pulley does not touch the edge of the turntable. When the motor switch is in the "on" position, the motor pulley should engage the turntable securely. This adjustment may be made by loosen. ing the right-hand motor mounting screw and moving it in its slot in the desired direction.

Pickup Arm.-A flat bronze spring for adjusting pickup needle pressure on the record is located between the tone arm and its horizontal supporting arm. This spring should be bent upward or downward as necessary so that the pickup needle pressure on the record will be approximately three ounces.

Lubrication.-The feed screw and feed plate should be lubricated every two or three months with a small amount of clean high-grade light body grease, such as vaseline.

The motor should be lubricated about every 500 operating hours with a few drops of S.A.E. No. 50 oil placed in the two red oil holes one at each end of the motor. Access to the motor is gained by removing the motorboard.


## RCA MFG. CO., INC.

## Recording Cutter Head

Figure 4 shows the cutter head inner structure. It should be noted that the armature is shown in its proper position, correctly centered between the magnet pole pieces. Whenever this centering adjustment has been disturbed, the screws "A," "B," and "C" should be loosened and the armature adjusted to a point where its vertical axis is at right angles to the horizontal axis of the pole pieces, and exactly centered between them.

This centering operation may be facilitated by inserting a small nail or rod into the armature needle hole and using it as a lever to test the angular movement of the armature. The proper adjustment is obtained when there is equal angular displacement of the armature and adjustment nail or rod on each side of the vertical axis of the magnet and coil assembly. When this adjustment has been obtained screws " $A$ " and " $B$ " should be tightened. Then place the cutter head in a vise and secure the centering spring by means of screw "C" allowing the centering spring to remain in the position at which the armature is exactly centered between the pole pieces. The air gap between the pole pieces and the armature should be kept free from dust, filings, or any other foreign material.

Figure 5 shows a rear view of the cutter head with the back cover plate removed. This view shows the viscoloid damping block fastened at the top under screw " $A$ " and at the bottom fastened to the armature by means of nut and washer "C." If the armature requires much readjustment as described above, the nut " C " should be loosened thereby allowing the viscoloid block to find its own correct position on the arma ture after which nut " C " should be securely tightened

Loss of magnetization will not usually occur unless the cutter head has been mishandled, subjected to a strong a 0 c field, jolted, or dropped. However, if remagnetizing is necessary, the cutter head should be removed from its bracket and the magnet assembly removed from the cutter head. Place the magnet assembly on the poles of a standard pickup mag. netizer such as RCA Stock No. 9549 and charge the magnet in accordance with the instructions accompanying this mag. netizer. It is preferable to check the polarity of the magnet and to remagnetize it so that the same polarity is maintained

## Magnetic Pickup

The pickup used is of an improved design. The horseshoe magnet is rigidly welded to the pole pieces and is irremov. able. There is a centering spring attached to the armature to maintain proper adjustment and to provide a limiting effect on the movement of the armature. The frequency response is substantially uniform over a wide range. Service operations which may be necessary on the pickup are as follows:


Figure 2.-Details of Pickup
Centering Armature.-Refer to the figure showing the pick, up inner structure. The armature is shown in its proper rela. tion to the magnet pole pieces, i. e., exactly centered. When ever this centering adjustment has been disturbed it will be necessary to remove the pickup mechanism from the tone arm by removing the needle holding screw and the two mounting screws from the front of the tone arm, holding the pickup assembly to keep it from dropping. Unsolder the two leads from the lugs on the terminal board at the rear of the pickup. Insert a small rod or nail into the needle hole and replace the needle holding screw, tightening it to hold the rod securely. If the armature clamping screws $A$ and $B$ have


Figure 4.-Front Vicw Cutter Head


Figure 5.-Rear Vicze Cutter Head PH-47996
not been disturbed, screws C should be loosened which will permit the armature to be moved from side to side, the rod acting as a lever to perform this operation. The proper ad. justment is obtained when the armature is moved to the extreme position on each side (the movement being limited by the armature striking the pole pieces) and then brought to the mid position between these two extremes. Screws $C$ should then be tightened. The armature position should then be central between the poie pieces and at right angles to them. With a little practice, the correct adjustment of the armature will be obtained. The air gap between the pole pieces and the armature should be kept free from dust, filings, and other foreign material which would obstruct the movement of the pickup armature.

Damping Block.-The viscoloid damping block which is attached to the front end of the armature shank servest as a mechanical filter to eliminate undesirable resonances and to cause the frequency response to be uniform Should it be necessary to replace this damping block, the pickup mecha. nism should be removed from the tone arm as explained above. Remove screw $D$ and the damping block from the pickup assembly. Make sure that the shaft of the armature which contacts the viscoloid is clean. Then insert the new damping block so that it occupies the same position as that of the original block, and is in correct vertical alignment with the armature. The hole in the block is somewhat smaller than the diameter of the armature in order to permit a snug fit. With the damping block properly aligned on the armature, screw $D$ with its washer should then be replaced. Heat should be applied to the armature (viscoloid side) so that the damping block will fuse at the point of contact and become rigidly attached to the armature. A special tip soldering iron, constructed as shown, will be found very useful in perform.

MI-12702
ing this operation. The iron should be applied only long enough to slightly melt the block, causing a small bulge on both sides.

Replacing Coil.-Remove the pickup mechanism and terminal board as described above. Remove screws A and B and the magnet assembly. Remove the bakelite coil support (with coil attached) and insert the new coil support assembly in its place, after which replace the magnet assembly and center the armature as described above, then re-assemble the remainder of the unit. Only rosin core solder should be used for soldering the coil leads and pickup leads to the pickup terminal board. This same type of solder should be used when necessary for soldering the centering spring to the armature.
Magnetizing.-Loss of magnetization will not usually occur when the pickup has received normal care. When the pickup has been mishandled, subjected to a strong $\mathrm{a} \cdot \mathrm{c}$ field, jolted, or dropped, there may be an appreciable loss of magnetic strength, in which case it will be necessary to remagnetize the entire structure. To do this, it will be necessary to first


Figure 3.-Special Soldcring Iron Tip
remove the pickup mechanism from the tone arm, and then remove the magnet assembly. Place the magnet assembly on the- poles of a standard pickup magnetizer such as the RCA Stock No. 9549 Pickup Magnetizer and charge the magnet in accordance with the instructions accompanying the mag. netizer. It is preferable to check the polarity of the pickup magnet and to remagnetize it so that the same polarity is maintained.
mints
1 -Be sure the instrument is level at all times.
2-It is advisable to test for depth of \&ut of the cutter after the cutter has been changed. The proper depth of cut may be determined by looking at a test cut through a magnifying glass. As the width of the cut depends on the depth, because of the shape of the cutter head, the depth of each groove is properly adjusted when the width of each groove is approximately equal to the space between the grooves. It may be advisable to have an extra blank record to test for depth of cuts before each recording. See pote below
To adjust for depth of cut, proceed as follows:
To cut a shallower groove loosen the machine screw that holds the clip in place on the recorder arm, slide the clip toward the base of the recorder arm a very small amount and tighten the machine screw. Cut a new groove and test for depth and width. If the groove is still not shallow enough, proceed as above until the desired depth is obtained.
To cut a deeper groove proceed as above except move the clip toward the recorder head thus removing some of the tension from the weight adjusting spring
3-To remove any "flutter" or needle "chatter," it is necessary to change the angle of the cutter, this may be accomplished as follows:
Loosen the two screws which hold the recorder head to the casting, slide the recorder head upwards slightly and tighten the two screws. This adjustment will cause the stylus to cut more perpendicularly to the record and may remove the "flutter." If raising the recorder head does not eliminate the "flutter," then the reverse should be done, that is, lower the recorder head nearer to the record.

4-Before recording, the volume of voice or music or whatever it is desired to record should be tested at the actual volume to be used while recording, and the volume control set so that the meter indicates in the green area of the meter dial during average recording passages.
5-Do not shut "off" the motor switch before lifting the recorder head off the record.

6-The cuttings should be removed from the recording by moving the fingers or a small fine brush in a gentle circular motion over the record. Do not scrub.

7-When a new cutter is used, loosen the machine screw which holds the spring adjusting clip in place on the recorder arm, slide the clip toward the base of the recorder arm and tighten the machine screw. This is to make sure that the groove depth for the new cutter is not too deep. If the groove is too deep the cutting tool may be easily chipped, if it cuts through the lacquer coating and touches the aluminum disc.
8-Correct grouping of recording artists and microphone placement are of extreme importance in order to get the best possible results. This grouping and placing will be facilitated by listening in on a pair of RCA High Fidelity headphones, such as MI-3453-B, plugged into the monitoring jack on the front panel, prior to making a recording.
9-When cutting a record it is advisable to lower the cutting head and let it cut two or three blank grooves before starting the modulation. At the end of the recording, when the modulation is stopped, the cutter head should remain on the record to cut two or three blank grooves before it is raised.


CUTTER HEAD In order to facilitate adjustment of outter head for depth of out, the thumbsorew adjustment shown above is now used. To out a shallower groove inorease the tension on the weight adjusting spring by means of the kmurled nut. Cut a now groove and test for depth and width. To cut a deeper groove deorease the tension on the spring, thus allowing a greatr ov portion of the weight of the cutter hoad on the recard. See Hint 2 above.


ISSUE A 1941
RECORD
CHANGER

RC50

## OPERATING INSTRUCTIONS

## SETTING

Briefly, the Operating Instruction Manual as supplied to the customer contains the following:

## MOUNTING

The changer is held solid by three channel shaped nuts under the changer. Loosen, three complete turns only, but do not remove. Tighten again for reshipping.

## CAUTIONS

Either twelve $10^{\prime \prime}$ or ten $12^{\prime \prime}$ records, not intermixed, may be played. A starting groove or eccentric inside groove are not needed for automatic operation.

Do not use force to start or stop changer mechanism.
Do not leave records on supports when changer is not being used as they will warp and cause trouble in changing. Keep all records in albums.

The last record in the stack will keep repeating until the changer is stopped.

The needle should never require replacing with normal use-Never drop the needle-Never remove and then replace the same needle.

The top of the record holder post may be turned to either the $10^{\prime \prime}$ or $12^{\prime \prime}$ position. When the record holder clip is snapped toward the center, the changer is set to play the size record indicated on the clip.

## LOADING

The records are placed over the center post, resting on the offset of the post, in the center, and the record post on the outside edge. Snap the clip down on top of the stack of records.

## STARTING

Turn knob to ON position, after changer has attained speed turn the knob to REJECT position and release, the entire stack of records will then play through.

## REJECTING

Turn knot to REJECT and release. This may be done any time a record is playing.

## UNLOADING

Turn knob to OFF, remove center post by pulling up, remove records, reinsert center post, turning until it drops into place.

## THE CHANGE CYCLE

When the pickup (9) comes to the end of the record, screw (55) on the pickup mover arm (54) pushes against the trigger bracket (35F) at point (X) starting the change cycle. This could also be done by turning knob (12) which causes lever (52) to push bracket (35F) at point (X).

This releases starting bracket (30) at point (Y) and allows (30) to protrude at point (Z), thereby becoming, in effect, one of the missing teeth in the large gear (35). The motor is constantly revolving the turntable, pinion shaft (21), and pinion gear (21B) at the toothless part of (35). When bracket (30) is released it engages $a$ stud at the bottom of pinion gear (21B), starting the large gear (35),

As the large gear (35) begins its one revolution for a complete cycle, the raising pin (60) is pushed up by the outside ridge of gear (35) to remain there keeping the pickup above the record surface, until the cycle is finishing when the pin (60) is allowed to come down.

As soon as the pickup is above the surface of the record, the roller of mover arm (54) is pushed by the cam on (35), to move the pickup out beyond the edge of the record.

At $1 / 3$ rotation of gear (35) the end of mover arm (54) enters the outside groove of the cam on (35) and also the end of the " $Z$ "" lever (63) is beginning to be pushed by pulley (35C). This " $Z$ " lever (63), from $1 / 3$ to $3 / 4$ rotation of (35) is in the process of turning $135^{\circ}$ and then back, shaft ( 4 E ) in the record holder post (4). As (4E) turns, its cam top pushes the record remover ( 4 F ) toward the spindle and thereby pushes
one record off the edge of (4B) and allows the record to fall on the turntable.

The $1 / 4$ remaining distance that the large gear travels is used to bring the pickup (9) back to the edge of the record and set it down at the correct place for either a 10 or 12 inch record.

This is preset by turning the post (4) which rotates size cam (40) to either the 10 or 12 inch position, locked in place by the pressure of the detent spring (44). As this cam is rotated, it pushes the size lever (73) to either of two positions, and by means of its funnel shaped bracket at the end, guides the size switch (33) on the revolving gear (35) to the proper position opening either the 10 or 12 inch track and, therefore, directs the roller on the mover arm (54) to travel the correct track on the gear cam (35) setting the pickup over the proper place on the record, 10 or 12 inch.

Also, in this final $1 / 4$ revolution the starting bracket (30) is being moved back to its starting position by hitting the reset piece on the separating plate (36). When (30) is moved back, it is again caught at (X) by trigger bracket ( 35 F ) ready to be released to start a future cycle.

As the larger gear (35) is approaching the completion of its one revolution, the pickup lift pin (60) is riding down the cam track and allowing pickup (9) to set down on the record.

Just as the gap on the large gear (35) meets the pinion gear (21B), and (35) stops, the detent spring (75) snaps against roller (35C) and holds gear (35) in this position completing the change cycle.

## RADIO PRODUCTS CORP.

RC52, RC53

## SERVICE ADJUSTMENTS

## IF CHANGING CYCLE FAILS TO STOP

With the center post (3) out remove the large nut (2) in the center of the turntable (1) and lift off the turntable. Loosen the two screws (23) this will free the large cast gear (35). Push these screws to the point where the small gear (21B) is free in the blank part of the teeth in the large gear (35), but as far as possible from the starting teeth of the large gear when it is in the locked or stopped position. Tighten the screws (23) in the slots firmly and re-assemble the turntable and nut. Check and see if the starting lever (30) on the underside of the large gear (35) is cocked by trigger bracket (35F) when the large gear makes a complete revolution. If not, check springs (35A) and (35B). Spring (35A) pushes lever (30) to the engaging position when released by trigger bracket ( 35 F ) held against lever (30) by spring (35B).

## PICKUP ARM ADJUSTMENTS VERTICAL MOVEMENT

To adjust the height of the pickup arm (9) turn the knurled screw ( 9 I ) on the underside of the pickup arm (9) directly above the pickup arm lift shaft (60). Turn the screw (9I) counter-clockwise to raise the pickup arm, and clockwise to lower the pickup arm.

## HORIZONTAL MOVEMENT

If the pickup arm (9) does not come down on the record so the needle first touches the record about $1 / 8$ inch from the edge, an adjustment is required. The inside part of the large gear (35) has two tracks, the inner one for ten inch records and the outer one for twelve inch records. It is only necessary to set the pickup (9) for one size, either the ten, or twelve inch. Turn the large gear (35) around until the roller pin in the mover arm (54) is just about to leave one of the tracks. If the pin of the mover arm (54) is in the inside track a ten inch record must be on the turntable and if in the outside track a twelve inch record is required. Now loosen the two screws ( 57 and 59 ) that secure the pickup arm shaft (9D) to the mover arm (54) and turn pickup arm (9) to correct point. Tighten screw through the slot first (59) and then the set screw (57).

The pickup arm shaft (9D) has a small spring (58) fastened to it underneath the changer to push the needle over into the first groove on records without a starting groove. The force the spring (58) exerts is adjusted by moving the hook in the end of the spring (58) to another hole in the hook plate (62). Facing the underside of the changer with the plate (62) in the upper left hand corner, moving the hook in the spring (58) to a hole to the left will increase the tension, to the right will decrease the tension. If the needle jumps several grooves when pushed over the spring tension is too light, while if the arm does not move all the way over to the first groove more spring tension is required.

TRIP ADJUSTMENTS
The position trip adjustment is a screw (55) located near the end of the mover arm (54) underneath the changer. To trip earlier turn the screw (55) clockwise, to trip later turn the screw counter-clockwise. Lock adjustment with nut (56).

## RECORD HOLDER POST ADJUSTMENTS

With the changer properly loaded the bottom record on the stack should rest for about is to $\frac{1}{3}$ of an inch on each side of the top (4B) of the record holder post (4), if not adjust as follows: With the center post (3) out remove the large nut (2) in the center of the turntable (1) and lift off the turntable. Loosen the two screws (18) in the slots in line with the record holder post and the center. Push the screw heads (18) the required amount toward, or away from the record holder post (4) and tighten the two screws (18).

The top of the record holder post (4) is fastened by the shaft on ( 4 A ) inside the post to the size cam (4D) underneath, which has two rectangular holes into which snaps a spring arm (44). The pressure this arm
(44) exerts on the above size cam (40) may be adjusted by the screw (45) which presses against the arm (44) The arm (44) should press firmly against the size cam (40) so it will snap tightly into either of the two holes. When the spring arm (44) is in the rectangular hole farthest from the outside of the size cam (40) the top of the record holder post (4) should be in the ten inch position. If the screw (45) is too tight it will be hard to turn the top of the record holder post (4). The size cam ( 40 ) is fastened to the shaft of (4A) inside the record holder post (4) by two hex head set screws (41).

If both sides of the record pusher ( $4 F$ ) on the top of the record holder post (4) do not push against the lower record at the same time, loosen the two hex head screws (41) and turn the top of the record holder post (4) slightly to the proper position. Tighten the screws (41).

## SETTING FOR 10 OR 12 INCH RECORDS

The edge of the size cam (40) pushes against a knurled screw (71) on size change lever (73). This sets a switch (33) on the cam part of main gear (35), for the pickup (9) to drop for either a ten inch or twelve inch record by causing pin in the arm fastened to the mover arm (54) to travel through one of two tracks in the inside of the large cast gear (35). After adjust ment is made tighten the lock nut (72) on the knurled screw (71).

## RECORDS FAIL TO DROP

If a record fails to drop during a changing cycle, but the record pusher ( 4 F ) on top of the record holden post (4) is operating and the adjustments under "Record Holder Post" are correct, proceed as follows: Set the large gear (35) in the locked position and the top of the record holder post (4) in either the ten inch or twelve inch position. Loosen the single hex head screw (70) which secures a "U" bracket (69) to the inside shaft ( 4 E ) of the record holder post (4) underneath the changer. Turn the shaft (4E) slightly until the sides of the record pusher ( 4 F ) are about of an inch back of the edge from where the records drop. The hex head screw (70) should now be firmly tightened.

While the large gear (35) makes one complete revolution, during a changing cycle, the pusher arm (4F) should extend past the edge from where the records drop, and return.

## NOTE I

## 50 CYCLE OPERATION

If operation is desired on 50 cycle current, a small spring (15), see parts list, must be added to the motor shaft in the following manner:
With the center post (3) out, remove the large nut (2) in the center of the turntable (1) and lift off the hand. Hold conversion spring (15) in the right hand turntable. Hold motor rotor with fingers of the left with the extension upwards. Hook lower end of spring (15) over edge of rotor shaft drive pulley and with a downward twisting effort in a direction to unwind or enlarge the inside diameter of the conversion spring (15) force down over entire pulley length. The extension which is provided for ease of assembly only, should then be sprung away from the pulley sufficiently to allow it to be snipped off with a pair of diagonals, at the spring surface so no protrusion will remain to impair operation of the drive pulley. The motor shaft pulley thus enlarged will provide proper turntable speed with the motor operating on 50 cycle current.

## NOTE II

RC-50 is standard 60 cycle record changer with Alden type socket for A.C. connection.

RC-51 is standard 60 cycle record changer except spring bushing has been added to motor shaft to increase size and provide correct speed on 50 cycle. Same A.C. connection as RC-50.

RC-52 is standard 60 cycle record changer with standard A.C. cord and plug.
RC-53 same as RC- 52 except with 50 cycle bushing added as on RC-51.


TOP VIEW - COMPLETE


## BOTTOM VIEW <br> GEAR AND BEARING ASSEMBLY REMOVED

1	RC-6000T	Turntable only	\$1.70
2	$\mathrm{RC}-3025$	Turntable nut	15
3	GA-35	Offset center post	1.35
4	GA-31	Complete record changer post	3.00
5	RC-5003	Record clamp (Plastic)	20
6	RC-5002	Record changer shelf cap (Plastic)	15
7	RC-2003	Record shelf support post	. 65
8	RC-2005	Pickup arm support post	65
9	GA-32	Complete pickup arm assembly	7.75
10		Needle screw (Phillips type head)	. 15
11	RC-6008	Lifetime needle	1.50
12	RC-5001	Knob (Plastic)	10
13	RC-5000	Escutcheon (Plastic)	. 20


49	P-2328
50	GA-15
51	P-4626
52	RC-4012
53	RC-4003
54	GA-27

$55 \mathrm{RC}-7002$
56 RC-7024
57 P-2729
$58 \mathrm{RC}-4018$ 59 RC-7016
$60\left\{\begin{array}{l}\mathrm{RC}-3034 \\ \mathrm{P}-1399\end{array}\right.$
${ }_{61} \mathrm{P}$ P-1399 $\mathrm{RC}-7029$
$62 \mathrm{RC}-1030$
63 G-29
$64 \mathrm{RC}-4013$
65 RC-3027
$66\left\{\begin{array}{l}\mathrm{P}-206 \\ \mathrm{P}-993 \\ \mathrm{P}-214 \\ \mathrm{P}-269 \mathrm{~A} \\ 67 \mathrm{RC} \\ 68 \\ \mathrm{RC}-4006 \\ 69 \\ 69 \\ \mathrm{G}-28\end{array}\right.$

70 P-2692
71 RC-7000
72 P-993
73 GA-12

74 RC-4002
75 GA-34

Spring washer
AC switch lever and stud assembly ..........
Tinnerman clamps for

mounting escutcheon	
(13)	
Reject lever	$\ldots . . .1 / 2$ doz.)
.05	


(13)		. 05
Reject	lever	. 10
Reje	lever sp	. 05

Pickup arm mover as-
sembly (with parts
below to 59 , inclusive 1.50
$8-32 \times 1$ " slotted screw,
headless
$\$ .05$

Hex. nut ….......11/2 doz.) 05
Set screw ….....(1/2 doz.) . 05
Lead in spring
$8-32 \times 5 / 8{ }^{\prime \prime}$ Fil. head
screw ........ (1/2 doz.) . 05
$\left.\begin{array}{l}\text { Raising pin } \\ \text { Horseshoe washer }\end{array}\right\}$
Pickup arm support post
mounting nut
mounting nut .....
plate
"Z" Bracket assembly
"Z" Bracket spring stud
. 10
head Round
head screw
Hex. nut
(Set)
.05
Lockwasher
Washer
Lever link ........................ . 05
Lever link spring
"U" Bracket assembly
(complete with set
screw)
.25
"U" Bracket set screw,
(1/2 doz.) 05
Size change adj. screw
Size change adjusting $\}$. 05
lock nut

Size change lever assembly (complete with screw \& lock nut)
Size change lever spring
Wire detent spring and bracket

MOUNTING HARDWARE
RC4010 Record changer mount-
ing spring, $1 / 2$ doz......... $\$ .10$
RC7017 Record changer mount. ing screw
P4781 Record changer mounting bracket ................
P4694 Record changer mount-
ing bracket (Slide-A-
Way only)

## RADIO PRODUCTS CORP.

WODELS RC50, RC51,
WODELS RC50, RC51,
RC52, RC53
RC52, RC53

TOP VIEW - 1, 2, 3, REMOVED


BOTTOM VIEW - COMPLETE

27	RC-6002	AC switch and cover	
28	RC-1011	AC switch mounting bracket	. 05
29	RC-4015	AC switch lever wire spring	. 0
30	GA-24	Starting bracket assembly	. 25
31	RC-3015	Starting bracket mounting stud	
32	RC-1025	Starting bracket mounting washer	
33	RC-2007	Size switch	10
34	RC-4007	Size Switch Mtg. Spring	. 05
35	RC-2000	Large gear and cam (Springs [35A] and [35B] attached)	2.00
36	GA-25	Separating plate and reset bracket	35
37	RC-7027	$10-32 \times 3 /{ }^{\prime \prime}$ mounting screws and lockwashers   (Pair)	. 0
38	RC-7006	$10-24 \times 3 / 8$ " mounting screws and lockwashers   (Pair)	05
39	GA-33	Bearing assembly	75
40	G-30	Size cam assembly (Complete with set screws)	. 35
41	RC-7021	Hex head set screws (only) .......... (1/2 doz.)	. 05
42	RC-3032	Spacer .anc.a......	. 05
43	RC-7029	Mounting nut	05
44	GA-13	Detent cam spring and bracket assembly (complete with screw \& lock nut)	30
45	P-1098	Adjusting screw 6-32x $3 /{ }^{\prime \prime}$	05
	P-825	Adjusting lock nut	05
46	RC-6006	Soldering panel .....	. 05
47	RC-6009	AC cable and Alden plug for RC50 and 51 (as shown); see Note II	. 35
	RC-4894	AC line cord and plug for RC52 and 53 .	. 55
	P-1692	AC cable clamp	. 05



9	GA-32	Complete pickup arm   assembly
$9 A$	RC-2004	Pickup arm casting

A RC-2004 Pickup arm casting...... 85
B RC-6001 Pickup crystal cartridge 4.50 9 C -6001 Pickup crystal ca (Phillip's type head) .. $\quad 15$
9D GA-21 Pickup lower mounting $\quad .0$

9 E RC-4004 Pickup arm adjusting | spring.........................$~$ |
| :---: | 05

9F P-3423 Washer (1/2 doz.) . 05
9 G RC-4005 $\begin{gathered}\text { Pickup arm tension } \\ \text { spring }\end{gathered}$
9H RC-7026 Mounting screw (Pickup crystal cartridge) (Pair)
9I Ra.7001 Pickup arm adjusting $\begin{gathered}\text { screw }\end{gathered}$ $\begin{array}{lllll}9 \mathrm{~J} & \text { P-270 A } & 4-36 \times 1 / 4 \text { Screw (1/2 doz.) } & .05 \\ 9 \mathrm{~K} & \text { RC-1023 } & \text { Bakelite washer (1/2 dz.) } & .05 \\ 9 \mathrm{~L} & \text { RC-7013 } & \text { Lockwasher .... (1/2 doz.) } & .05\end{array}$
9 M RC-7018 Pickup arm adjusting washer .........(1/2 doz.) . 05
9 N RC-1013 Pick arm upper mount- 10
90 RC-3008 Pickup arm pivot pin...... . 05 9 P RC-7008 Rubber grommet. (Pair) . 05

	GA-31	Complete record er post	
4 A	GA-17	Mounting shelf plate and sleeve.	
4 B	RC-2002	Record changer shelf	50
4 C	RC-4000	Record clamp spring	05
4 D	RC-3002	Record clamp spring pin	05
4E	GA-18	Small cam and sha	25
4 F	RC-1001	Record remover	
4G	P-7013	Lockwasher .... (1/2 doz.)	. 05
4 H	P-270-A	4-36x $\mathrm{I}_{4}{ }^{\prime \prime}$ screw ( $1 / 2 \mathrm{dz}$ )	05
5	RC-5003	Record clamp (plastic)	
6	RC-5002	Record changer shelf cap (Plastic)	


2	RC-3025	Turntable nut	\$ . 15
19	RC-7010	Cork washer (Pair)	05
20	RC-6003	Thrust bearing	75
21	RC-3021	Pinion shaft	45
21 A	RC-3024	Pinion gear ferrule	10
21B	RC-2001	Pinion gear	0
21 C	RC-7007	Allen head set screw	0
	GA-22	Large gear assembly (with parts below to 35 F , inclusive)	3.75
30	GA-24	Starting bracket assembly	25
31	RC-3015	Starting bracket mounting stud	. 10
32	RC-1025	Starting bracket mounting washer	. 05
33	RC-2007	Size switch	10
33 A	RC-3013	Size switch stud	05
34	RC-4007	Size switch mounting spring	. 05
35	RC-2000	Large gear and cam (Springs 35A and 35B attached)	2.00
35	RC-4008	Starting bracket spring	. 05
35B	RC-4009	Trigger bracket spring.	. 05
35 C	RC-3018	Ejector roller	10
35 D	RC-3019	Ejector roller stud	05
35 E	RC-3016	Trigger bracket stud	5
35 F	RC-1016	Trigger bracket	5
35G	RC-3017	Large gear mounting post	20
35H	RC-1023	Bakelite washer (Pair)	5
36	GA-25	Separating plate and reset bracket	35
37	RC-7027	10-32 x 3/8" mounting screws and lockwashers   (Pair)	. 05
38	RC-7006	$10-24 \times 3 / 8{ }^{\prime \prime}$ mounting screws and lockwashers   (Pair)	05
39	GA-33	learing assembly	75



## MOUNTING DIRECTIONS

1. Insert brass drive pin in turntable as per instructions on stroboscope template
2. Place record on turntable.
3. Place REK-O-KUT on record so that spindle (1) fits over turntable shaft and drive pin. HOLD SPINDLE FLUSH TO RECORD.
4. Place cork spacer on record near outer edge under slide bar (5).
5. Place end support (22) on motor board. Loosen set screw in slide bushing (23); lift REK-O-KUT to permit slide bar (5) to rest on cork. Hold spindle flat while tightening set screw on slide bushing.
6. Fasten end support to motor board with three screws (use No. 10 wood or machine screws as needed).
7. Before final tightening of screws on motor board, lift spindle from record and replace. Spindle should drop over turntable shaft and drive pin freely. Fasten end support screws tightly. REK-O-KUT should now be resting flush on record and should be parailel to turntable.

## LUBRICATION

Keep REK-O-KUT lubricated with light machine oil or light vaseline as indicated.
 comes between the index and third fingers. Move carriage to pin stop on slide bar. Start turntable. lower carriage on feedscrew and then lower the head gently on the record. The REK-O-KUT is now operating. Upon completion of the recording, lift carriage as far back as it will go. This will permit spring lock to catch and hold carriage firmly in place.

The REK-O-KUT records inside out on acetate only. Place thumb of right hand on cutter and grip carriage with index and third fingers. as illustrated, so that cutter carriage shaft

## OPERATION

Your REK-O-KUT and cutter have been carefully set and adjusted at the factory for proper recording. However, for varying conditions and thicknesses of records, the pressure on the cutting stylus will have to be varied. This is done by loosening cutter adjustment nut (11) for deeper cuts and tightening for lighter cuts as required. The depth of your cut should be equal to about the thickness of a hair, which is approximately .0025".

Should threads from the record catch in the working part of worm spindle, remove spindle by removing spindle collar (2) and turning spindle counterclockwise and pulling gently. Clean out all threads and replace spindle and spindle collar. Make sure the spindle spins freely.

Alphabetically arranged index letters are used in the illustrations and in the description to facilitate locating of parts in the illustrations. Parts with the prefix lettar "A" will be found in the illustration of the top of the record changer. Parts with the prefix letter "B" and "C" will be found in the illustration of the bottom of the changer. Parts with the prefix letter "D" will be found in the illustration of the pickup arm control mechanism.
DESCRIPTION OF OPERATION:
To load the instrument with records, turn the changer blades $A J$ to the position as shown in the top view (counter-clockwise) and place a stack of ten $12^{\prime \prime}$ or twelve $10^{\prime \prime}$ records on the center spindle, allowing them to rest upon the lower changer blades.

The operation of the changer mechanism is controlled by means of the single button ag on the base plate AK. Turn the button to point to Automatic. Then press down to start cycle. The changer will then automatically play all records in the order stacked.

To remove records, after all have been played and the turntable switched off, lift aach set of changer blades AJ slightly and turn them clockwise approximately one half a turn. Records can then be removed.

To change records any time when the needle is on the record, merely press the control button down momentarily.

To play records singly, turn changer blades AJ away from center of table, and turn the control button to Manual.

There are three conditions which cause the mechanism of the instrument to trip and proceed through the change cycle. (i.e., automatically to remove the picixup arm from last played record, release the next record, and replace the pickup arm in its playing position.

1. Pressing down control button $A G$ rotates the reject rod $B D$. The bent end of $B D$ (which is same as $\mathrm{DC})$ strikes the ratchet casting DF, which is fastened to trip rod DE ( BE in bottom view), rotating rod BE . This pivots the bent end of $B E$ away from the end of follower CL, allowing the heavy end of follower CL to drop, pivoting about its axis (which extends through follower arm BJ and drive arm GJ) and engaging it in the worm CN. The worm $C N$ has a left and right thread which carries the follower CL to the opposite end of $C N$ and returns it. This action through the axis pin of follower CL causes the pivoting of drive arm CJ and clutch arm CX about their common axis.

The construction of drive arm CJ and clutch arm CX together with the clutch spring CG, provides protection against breakage of the instrument or records in case of jamming.

The ciutch arm CK thrusts the drive link BL, actuating the blade bell crank BM, and in turn the blade crank CE through tie bar CF which is riveted to the blade bell crank Bia. This action operates the changer blades AJ.
2. When a record has been played and the pickup arm has reached a definite distance from the center spindle following the spiral groove towards the center of the record, the stop adjusting screw $D V$ in the pickup crank strikes the ratchet casting DF, which in turn rotates the trip rod DE, causing the engagement of the follower CL, etc.
3. Records that have an eccentric groove inside of the playing or modulated grooves will give the pickup arm $A C$ an oscillatory movement. This oscillation is transmitted to the pickup crank DT, which, when in the playing position, drags the pawl DU across the ratchet $D F$, with the pawl spring DS tending to hold the pawl DU straight out, and any back movement of the arm DA and crank DT causes the pawl DO to catch on the ratchet DF, pushing it away against the tension of ratchet spring DG and rotating trip rod DE. DE in turn releases follower CL , engaging it in worm CN , etc.

The operation of the pickup arm DA (AC in top view) is controlled by the cam DW which is synchronized with the changer blades AJ. The rack link BH transmits action from the blade bell crank $B M$, through the rack $D D$, ( $B C$ in bottom view) to cam pinion DH.

The determination of the set down position of the pickup arm AC originates at the selector AA. As the changer blades AJ pivot in operation, the selector $A A$ is intercepted by the edge of a record. This stops the rotation of the selector crank CC fastened to the selector, ( $C D$ in bottom view) and in turn the axial movement of selector rod CB (same as DP), said axial movement being caused by selector spring DM.

The rod CB interferes with the arcial movement of the pickup crank DT, in accordance with the size of the record passing through the blades AJ, causing the cam follower $D R$ to follow the outer groove or to be allowed to ride into the inner groove in the face of cam DF. The outer groove controls the setdown position for $12^{n}$ records, and the inner controls the $10^{\prime \prime}$ records.

## AJJUSTMENTS :

Should the changer blades AJ be forceably turned out of proper adjustment, loosen the clamping screws in the blade crank CE and/or the blade bell crank $B M$, and with the machine in neutral at the end of a cycle or in the playing position, turn the blades so that the upper blades are equi-distant and within $1 / 8^{\prime \prime}$ of the edge of a $12^{\prime \prime}$ record. Then clamp screws securely.

To adjust the setdown position of tone arm, turn off the machine during cycle just before the pickup arm descends to a record, loosen the set screw in crank DT, and while holding the crank DT in place, turn the pickup arm AC until it is straight above the outside groove of the record. Then retighten the set screw.

The adjustment of the ratchet $D F$ on rod $D E$ ( $B E$ in bottom view); the selector crank CC on the switch button shaft; the small casting on the straight end of DC (BD in bottom view); and the selector crank CC on the selector $C D$ are limited and are obvious from the description of the cycle.

© John F. Rider
(Chassis 101.584,-1,-2,-3) SEARS ROEBUCK CO. SUBJECT: ADDITION OF SUFFIX NUMBER -3 TO 101.584 CHASSIS:

MODELS 6346, 6346A, 6446, 6446A

Assemblies identifled as $101.584-3$ are the same as 101.584 except that they use a different tone arm and pickup cartridge, not interchangeable with the ones used in 101.584. The arawings below illustrate the tone arms and cartridges used in lol. $584,-1,-2,-3$. Be sure to give the proper part number and also mention the complete identification number including the daah number when ordering these parts.


CARTRIDGE A ARM USED IN 1OI.584-2,-3
FOR CHASSIS
(101.584,-1,-2,-3) ONLY

CARTRIDGE \& ARM USED IN 101.584,-I
SUBJECT: ADDITION OF SUFFIX NUMBERS -4 AND -5 TO CHASSIS IDENTIFICATION NUMBER 101.584
Chassig 1 dentified by the suffix number -4 are the same as those identified by the suffix number -l except that the record changer unit has certain changes incorporated, as explained below.

Chassis identifled by the suffix number -5 are the same as those identified by -3 except that the record changer unit has certain changes incorporated, as explained in the following paragraphs.

The record changer deaign has been changed ao that the adjustment, controlling the distance from the record pin at which the trigger will trip and the change cycle will begin, can be made through a hole in the top plate, marked "AR" in the photograph. furn the acrew head clockwise for earlier tripping; counter-clockwise for later tripping. (The effect is to alter the position of the Cam CJ which strikes the mrigger CP. It may be found that the cam has been revolved through a half turn; in this case, the above directions would apply only after the cam has been returned to the correct position by revolving the screw head half
a turn.)

In the original RL, under "ADJUSTING HEIGHT TO WHICH PICKUP ARM RISES", inatructions were given that the arm should be adjusted to clear the otack of records by only $1 / 8^{\prime \prime}$. This dimension may be made $1 / 4^{\prime \prime}$. If the plckup 1 m made to rise too close to the bottom record, the stud may never clear the groove in the cam gear and the arm will keep moving back and forth continuously.

With the revised design, the following parts, contained in the Parts $L 1 \operatorname{st}$ of the original
RL, are omitted.
LOCATION
See Photograph
of Or1g1:al RL


FOR OTHER INFORMATION
SEE WEBSTER MODEL 210
SELL ING
PART NUMBER DESCRIPTION
PRICE
EACH

10164408051	Cangear assembly	1.87	
10164408362	Gulde armassembly	2.74	FOR CHASSIS
1016420874	Trigger spring	.05	(101.584-4, -5)
1016440811	Trigger	.13	.02
1016440873	Lock spring	.36	ONLY
1016440806	Camlever	.10	
1016440870	Rejectrod	.38	
10164408151	Lever hub assembly		

Required additions to the Parts List, shown in the following photographs, are: LOCATION

FART NUMBER
SELLING PRICE
$\stackrel{\mathrm{AI}}{\mathrm{BK}}$
10164409312 P1ckup Support Bracket Assembly
LLL

BK-BL 1016440801
1016442413
10164
10164408363
016440842
64408052 Cam Lever and Trigger Adj. Assembly
.17
Slckup Support Bracket Assembly
.17
Swlvel Shaft and Head Assembly
.57

10164408052 Cam Gear
1.36
6.33

Ohanger Shaft Collar .46
Sub-Plate and Gear Assembly (DI) 6.33
1016443334 Rejection Rod Support
6.33

1016442414 Male Plug with ${ }^{2} 7003$ shell
.04 PRICES SUBJECT
$\begin{array}{ll}1016442414 & \text { Male Plug with } 7700 a \\ 1016443415 & \text { Sh1m- (Assortment }\end{array}$
.08 TO CHANGE WITH-
1016442347 Rejection Rod
.11 OUT NOTICE.
1016443417 Tone Arm Lift Plate
.16
1016443418 Hinge Pin Spring
.04
1016442351 Tone Arm Hinge Pin
.04
J. P. SEEBURG CORP.
Automatic Record Changer Operating Instructions

PHONOGRAPH NEEDLES Various types and kinds of needles are available for use in phonograph tone arms. All have their phonographs, where needles can be changed after each record. For playing ten or more records at one setup, as with this Changer, no attempt should be made to use ordinary steel or fibre points, since continued use of worn points will be likely to ruin both quality of reproduction and the records as well. Any enough to play ten records or more without demaging them.

In general there are two types of needles which can be satisfactorily used on an Automatic Record Changer: those which require changing after approximately 12 records, and the so-called permanent type needles which are rated in terms of "hours of service". In no case should the manufacturers' claims
 ity the needles are rated in terms of their maximam life. If at any time short of the rated life, parneedles, there is any reason to suspect that the needle has become unduly worn, it would probably be advisable to replace it with a new one. For your convenience suitable provision has been made for playing "home" or "instantaneous" recordings by means of a retractable drive pin in the turntable (see Turntable Drive Pin). Special needles ore recommended for use with home recordings in order to
 ity. Needle manufacturers designate this particular "Transcription", and other similar names all of which are intended to indicate that the needle has a perfectly rounded point which will not damage the most fragile records. In general this type of neede is not suitable for commercial records. Any record should never be used to play back a home re cording.

For convenience, the tone arm on your changer the needle may be easily inserted; the needle screw should be tightened firmiy.

## J. P. SEEBURG CORP.

On each post you will see selecting arms. The position of these arms determines the setting for different size records. To set for 10 or 12 inch records, it is merely necessary to grasp the posts by the knobs at the top, lift, and turn until the $10^{\prime \prime}$ or $12^{n}$ arrows are pointing toward the center of the turntable. When in either the $10^{\prime \prime}$ or $12^{\prime \prime}$ position, the posts will snap into place except when they are held up by hand. Be sure to set both posts for the same size record.

Figure (1) shows the Changer with the selecting arms set for $10^{\prime \prime}$ records and ready to be loaded; the tone arm is in the rest position and the switch is in the "OFF" position.

FIGURE (2)


Figure (2) shows the Changer set for $12^{n}$ records and ready to be loaded; the tone arm is in the rest position and the switch knob is in the "OFF" position.

## LOADING

See that the selecting arms of both posts are turned toward the center of the turntable as indicated by the engraved arrows, and that both sets of arms are set for the same size (10" or 12") records as described in the preceding paragraph.

Place the stack of records (up to fourteen $10^{\prime \prime}$ or ten $12^{\prime \prime}$ ) over the center pin so that they will rest on the selecting arms.

## STARTING THE CHANGER

1. Turn on the radio (allowing approximately 30 seconds for the tubes to warm up) and throw the phonograph-radio knob, or control to the phonograph position.
2. Move the switch knob on the record changer panel, (see Figure 3) to the "reject" position. The motor will start, the record changer will go into automatic operation, and, at the same time, the switch knob will, of its own accord, move to the "automatic" position.

FIGURE (3)


## HOW TO REJECT A RECORD

Move the switch knob on the changer panel (see Figure 3) to the "reject" position. You can do it at any time after the needle has come into contact with that record.

## PLAYING INDIVIDUAL COMMERCIAL RECORDS

Should it be desired to play an individual record merely set up the machine as described above for the proper size ( $10^{\prime \prime}$ or $12^{\prime \prime}$ as indicated on the selecting arms), place the record on top of the arms as described under "Loading", and set the machine in operation by means of the switch knob described under "Starting the Changer". In other words, play an individual record in the same manner as you would play a stack of that size.

## MANUAL OPERATION

This changer can be operated manually (that is, as though the machine were an individual record player without any automatic features) by merely moving the switch knob to the "manual" position (see Figure 3). With the switch knob in this position the tone arm is perfectly free to move beck and forth as the operator desires. Home recordings are best played in the manual position as well as old or odd sized records not intended for automatic usage. The change from "manual" operation to automatic operation is controlled solely by the switch knob show in Figure 3 and the change can be made at any time. Should the change from "automatic" to "manual" be made while the mechanism is in the midst of a changing cycle, the machine will complete the cycle after which the tone arm will be free and in the manual operating condition.

## TURNTABLE DRIVE PIN

For convenience in playing "home" or "instantaneous" recordings, the turntable on your machine has been provided with retractable drive pin. This pin will project through a hole in one of the above type records to prevent slippage while that record is being played. The weight of a commercial record will depress the pin until it is flush with the turntable surface so that it has no effect.

## UNLOADING

First switch off the motor by moving the switch knob to the "OFF" position (see Figure 3). Move the tone arm to the rest position by raising it just enough so that the needle clears the record and move it to the extreme outside. A click will be heard and the tone arm will then remain in the rest position until the changer is again ready to be operated. (If the tone arm is in the midst of a change cycle, time should be allowed for the machine to complete this cycle and the needle to come to rest on the record before the control knob is thrown to the "OFF" position.) Grasp each post by the control knobs at the top and turn them out of the way.

FIGURE (4)


Figure 4 shows the selector arms turned for unloading, the tone arm in the rest position, and the control switch in the "OFF" position.

Lift the played records from the turntable, then return the posts to the proper playing position on the selecting arms (see Figures 1 and 2.) The Changer may then be loaded with a new stack of records according to the size show on the selecting arms.

## USE OF TONE CONTROL

If the radio through which this Changer is being played has a tone control switch, do not forget to adjust it, as well as the volume control, to the position which best brings out the tonal qualities of the kind of records being played.

## TURNING OFF CHANGER

1. Move the switch knob to the "off" position. (See Figure 3.)
2. Liet the tone arm and move it to the rest position at the extreme outside of the changer panel. If the changer is going through a "change cycle" allow the tone arm to come to the playing position before attempting to place the tone arm in the rest position. If you prefer to turn of your Chenger by the use of any other switch than the one on the Changer itself, be sure to turn it off while needle is resting upon a record; otherwise, the selecting arms cannot be correctly reset.
3. To avoid warping of records, never leave records resting on the selector arms.

## IF CHANGER IS LEFT RUNNING

No damage will be done if you forget to turn off Changer after it has played its entire load of records. It will simply repeat the last record until stopped or reloaded.

## FAILURE TO PLAY THE NEXT RECORD

An old record may occasionally be found (made before the introduction of automatic changers) which does not carry the needle close enough to center-pin of turntable to set the changer mechanism in operation. Should one of these old records be found in the stack, merely moving the switch knob to the "reject" position will instantly set the Changer mechanism in action again. Any need for doing this can be avoided by placing the old record at top of stack to be played, so that it will come into position last.

## CAUSE OF NOISY RECORDS

A background of noise and scratching indicates worn records. Poor tone may be evidence of a worn needle. Some records will wear longer than others, even if kept equally clean. This is due not only to quality of manufacture, and care given the records, but also to the kind of music recorded.

## CARE OF RECOFDS

To insure long life for your requires only slight effort. Do not expose them to heat from the sun, nor to beat from nearby stoves or radiators. Store them preferably in albums, but in any case keep them always in a cool, dry place, resting vertically or horizontally. Remove dust and dirt, using soft cloth and light circular motion. If fluids are used for lubricating record surfaces, keep in mind that these of ten tend to attract dust, and extra effort is necessary to clean it off. Even a fine film of dust very offen contains abrasive particles which, when ground against the record surface by the steel needle, can cause very rapid wear of the recorded music.

THE AUTOMATIC RECORD CHANGER UNIT IS CONSTRUCTED of a minimum number of working parts, and in operation is simple and reliable. As with all mechanical articles, minor adjustments may be necessary at time by your authorized service man.

CAUTION: The lead wire which emerges from the rear of the tone arm and goes down thru the metal base plate is so placed and arranged that it will not restrict the free movement of the tone arm across the record. It is important that this wire be free and loose at all times. Do not attempt to push the excess wire thru the panel.

## J. P. SEEBURG CORP.


tion; merely move it to that
the its own
 arm has been provided in order changer (see separate operating tion of the tone arm is obtained by lifting it from the record the

 changer sub-panel and remain
knob is in the "Automatic" posi-
OSi-
NOIIVy3do


> Under automatic conditions, the tone arm is controlled during the change cycle by means of the various cams, acting through levers, on the large drive gear (see Fig. I, Item I) which also synchronizes, through the drive link, the movement of the selector arms.

## UBRICATION

$$
\begin{aligned}
& \text { one or two drops of a light } \\
& \text { grade oil. Do not over-oil! } \\
& \text { The top bearing can be olled } \\
& \text { by lifting off the turntable. } \\
& \text { Make sure, when replacing the } \\
& \text { turntable, that the pin in the } \\
& \text { Turntable Spindle slips into the } \\
& \text { slot on the bottom surface of } \\
& \text { the turntable hub. Also, care } \\
& \text { should be taken not to damage } \\
& \text { the Motor Idler Pulley. }
\end{aligned}
$$


 'I - 8fa əәs) дeəs 7 ses әfp ә8лet


 - AI
The motor is equipped with
oflless bearing and requires no
lubrication.
B. TURNTABLE SPINDLE BEARINGS
Turntable spindle bearings
are lubricated at the factory
and do not require any lubrica-
tion for one year After one
year they should be oiled with year they should be oiled with
that the turntable properly engages the drive pin (Fig. IV
 ith the standard Model "B" NoTE: Some models use only the upper mounting springs and The changer panel assembly gufing səmf7 ite fe siufads suf normal playing operation.
11. GENERAL FUNCTION OF THE RECORD CHANGER

## AUTOMATIC OPERATION

 courteen $10^{\prime \prime}$ records or ten 12" the changer has been properly loaded (see separate operating switch knob to the "Reject" posi-
 automatic operation. The switch
 tion of its own accord and the entire loading of records without urther attention. Af have been




$$
\begin{aligned}
& \text { With the switch knob (see } \\
& \text { Fig. IV, Item 67) in the "Manual" } \\
& \text { position, this changer is de- } \\
& \text { signed to operate as a single } \\
& \text { record-player and as such can be } \\
& \text { used to play individual records } \\
& \text { of any diameter up to and includ- } \\
& \text { ing li". The turntable is } \\
& \text { equipped with a retractable pin } \\
& \text { (Fig. III, Item 60) so that it is } \\
& \text { possible to play home recordings } \\
& \text { as well. Moving the switch knob } \\
& \text { to the "Manual" position starts } \\
& \text { the turntable and locks out all } \\
& \text { of the automatic features of the } \\
& \text { record changer. The tone arm } \\
& \text { must be lifted by hand and } \\
& \text { placed on the record; after the } \\
& \text { record is played it is neces- } \\
& \text { sary to remove the tone arm by } \\
& \text { hand. During any of the time } \\
& \text { that the record is being played, } \\
& \text { it is possible to move the tone } \\
& \text { arm in or out on the record at } \\
& \text { will; it is also possible to } \\
& \text { play either ninside out" or }
\end{aligned}
$$

## J. P. SEEBURG CORP.

## In general the pickup indexing

justment to obtain approx-
imately correct indexing.

## 4. Place a $12^{\prime \prime}$ record on the

 turntable, put the machineinto automatic operation into automatic operation
by pulling the switch knob
to the "Reject" position to the "Reject" position the point at which the margin of the $12^{\prime \prime}$ record. to indicate the fact that after the needle has booster spring will atin toward the center. Proper seting ofition is concerned only with the point at which the needle
first makes contact with the record, for this reason it may be advisable
to slow down the movement of the tone arm by partable so that the action served during adjustment.) If the needle did not
strike the record approx-
imately an eighth of an

 a slight amount by slip-
ping the tone arm lever

 loop screw (see Fig. II,
6. After obtaining a correct indexing of the tone arm ords, check the indexing
on a $10^{\prime \prime}$ diameter record

3 WLS ITOU NY甘 3 NOL
 balance spring (see Fig. VI) at tension has been set to provide the needle pressure necessary
for correct operation of the pickup. Should it be necessary
counter balance spring, it is generally advisable to contact
your factory service department
 be sure to include the part num-
ber stamped on the under side of the crystal cartridge and the model number of the set. Care balance spring does not rub arm skirt or any associated parts in such a way that it impedes or
binds the free vertical movement of the tone arm. (CAUTION: It is a popular fallacy that it is

 attempt will probably increase record and needle wear as well as of the instrument. The correct

Never under any circumstance
allow oil to come in contact
with Motor Ialer Pulley.

## J. P. SEEBURG CORP.



locked in position by means of a satisfactorily completed. This screw must be adjusted thru a hole the machine is not in a change cycle. (See point e, Fig. I
In order to make the trip
ction of the changer mechanism operate under various conditions, included which operates due to arm after it has played to within approximately $2-1 / 2^{\prime \prime}$ of the

ratchet combination (see Fig. II, Item 44) and is adjusted at the
factory.

## SPRING adJUSTMENTS

wire (see Fig. II, Item 30). The
side pressure exerted by this
spring should be just sufficient across the margin of a record which contains no lead-in groove. booster spring, check its opera-
tion on both lon and $12^{n}$ records tion on both $10^{\prime \prime}$ and $12^{\prime \prime}$ records
to make sure that it functions operating pressure of the booster spring to such a point that it across the riress to the booster
 tone arm is in the "Rest" positurned off, by moving the tone

 justment of the spring tension

A. BOOSTER SPRING SETTING
The function of the booster
spring (Fig. II, Item 30 ) is to
move the needie from the margin
move the needle from the margin
groove automatically. Most known as a "lead-in groove"
which automatically carries the needle from the margin of the record into the record grooves.
In the case of the older type records, and particularly those of the mechanically recorded
grooves, the booster spring sup-
plies just enough pressure to move the needle across the margin to the record grooves. This
booster spring is built into the tone arm Iocator lever (see Fig. single piece of light spring

## J. P. SEEBURG CORP

under $B$, the tone arm   (Fig. II, Item 31) and the upper	playing on the outside of a $12^{\prime \prime}$ record. (See Section X also).
ide (Fig. II, Item 36) hook	
ogether at point "g" during	D. "REJECT"
manual operation. When the	
switch knob is then thrown into	witch knob is
"Automatic" or "Reject" posi-	thrown to the "Reject" position,
tion, these two parts completely	it acts through levers (Fig. II,
disengage during the next change	Item 36, Item 20)
cycle due to the cam action of	lever (Fig. II, Item 44) clear-
the main drive gear which force	ing the clutch engagement lev
the tone arm lever to the outer	(Fig. II, Item 41) so that it
edge of the sub-panel and allows	will drop down and engage one of
the upper slide (Fig. II, Item	lower projections
36) to clear the tone arm	pinion gear and thus set into
locator lever at point "g". See	peration the automatic change
lso Fig. VIII.	mechanism. In the "Reject" position of the switch knob,
The tone arm locator lever	roller lever and roller assembly
ovides the $10^{\prime \prime}$ or $12^{\prime \prime}$ indexing	(Fig. I, Item 6) together with
for the tone arm during automatic	its spring (Fig. I, Item 9) is
operation by its engagement with	intended to exert a continuous
the 12" reset lever (Fig. II,	pressure on the main control
Item 37). The two levers must	slide (Fig. II, Item 36) so th
ook securely behind the project-	as soon as the switch knob is
tip on the tone arm locator	leased, the latter will be
ver (as shown at point "c" on	turned to the "Automatic"
g. II) when the 12" record is	position. Failure of the
played. This is to pre-	nob to return to the "Au
nt the tone arm locator lever	position when released can re-
also the tone arm from	sult from improper action at
weeping toward the center	this point, as well as bindin
ould the 12" setting of the	the main control slide at
selector arm blade be changed	lous bearing surfaces.
10 while the tone arm	
ELECTOR	Rm" adjustments
ry conditio	correct when the blad
should not be necessary to	slightly upon engaging
ke any adjustment of the	of average thickness.
lector blades themselves	
ould such an adjustment beco	
cessary it can best be accom-	arm (Fig. III, Item 54) controls
lished by using a standard make	the tone arm indexing for $10^{\prime \prime}$ or
record of the proper diameter	12 " records through its engage-
nd of average thickness for	ment with the 12 " set rod at
uging the selector blades	point "k" (Fig. III). Motion of
Fig. III, Items 54 and 55).	the 12 " set rod is transmitted
e setting of these blades can	through the changer base panel
accomplished by means of a	to the 12" reset lever (Fig. II
ir of long nosed pliers and	Item 37). Sufficient tension is

arm lever (Fig. II, Item 25);
otherwise the tone arm will be scraped across the turntable. Also, it is essential that the engagement at "g" be such that
there is a hooking action (see Fig. VIII) at this point in order to prevent the tone arm locator (Fig, il, I tem
tone arm from sweeping toward the center when the switoh is
moved out of the manual posimoved
 the
arm latch at point " $f$ " and tone
arm locator locking at poing "g" when the switch knob is moved to an additional action of the control lever (Fig. II, Item 36) Lever (Fig. II, Item 20) which restrains the trip dog from act-
ing. This latter operation results in the tone arm belng freed from the automatic tripping tions of the switch knob other is only necessary that the Manual and Reject Lever so engage the Item 41) that the latter cannot drop sufficiently far to engage
any of the lower projections of any of the lower
C. "AUTOMATIC" POSITION

วप7 UT qOUY प०7TMS a47 47TM
 $\left.{ }^{24}\right)^{\prime \prime}$ (Fill lock the arm at point the tone arm is moved to the arm latch is released during a

point "f" (see Fig. II) At the
same time the tone arm iocator same time the tone arm locator at point "g" (Fig. II) by the upper slide VIII). In this position, it is essential that the engagement between he upper be positive as shown in sketch tions of the switch knob, the ( $9 \varepsilon$ wə quTod qe tone The purpose of the spring (Fig. II, Item 32, also see Fig.
VIII) attached to the upper slide is to provide a means

 "Manual" position when the tone not in the outward position. when the switch knob is moved from the "Automatic" position to the
"Manual" position while a record is being played). The tone arm

 the tone arm is swung into the
outside rest position, the tone arm locator (Fig. II, Item 31)


When the tone arm is in the
\#Rest ${ }^{\text {mosition and the switch }}$ knob is thrown to nmanual, ise carefully observed between (Fig. II, Item-24) and the upper slide (Fig. II, point "g"). The
latter should be in a position



## J. P. SEEBURG CORP



－xə asn पวケчル səułपวеш

F．INSUFFICIENT POWER TO COM－


$$
2+50+0.4
$$

JAMMING OF THE MECHANISM
$\dot{5}$

> TONE ARM DOES NOT INDEX COR－
RECTLY
> Refer to Sections $V$ and VIII， for complete information on set
> 玉
3．Inspect the meshing of
the drive gear（Fig．I，


 damaged or missing parts． VI）
Motor Assembly（Fig．IV，
Item 63 ）

## RECORD CHANGER PARTS LIST

your factory service department
be consulted for special parts not shown in this iisting．
slightly from the standard
model．It is suggested that
XII．STANDARD MODEL
אues stopow xetnofzied
 selector arms with the
records being changed，
remove the records and
 two gears mesh properly әtqestape st 71 paddfu7 ustueyoวu Jo3ueपว วч7 7 eप7




$$
\begin{aligned}
& \text { Selector Arm and Blade As- } \\
& \text { sembly No. } 1 \text { (Fig. III, Item } \\
& 54 \text { ) } \\
& \text { Selector Arm and Blade As- }
\end{aligned}
$$ sembly No． 2 （Fig．III，Item

Tone Arm Mounting Assembly （Fig．III，Item 58 and $F i g$ ．

## J. P. SEEBURG CORP.

figure 1 - umderside view of changer mechanism

(*) See Fig. V for Detaill Assembly

FIGURE II - UNDERSIDE VIEW OF CHANGER MECHANISM, DISASSEMBLED


ITEM NO.	PART NO.	DESCRIPTION	No. USED	ITEPNO.	PART NO.	DESCRIPTION	NO. USED
20	B-27029	- Manual and Reject Lever.	1	37	B-27075	- 12" Reset Lever.	1
21	10069	- Terminal Strip.	1	38	J-22121	- $12^{\prime \prime}$ Reset Lever Spring	1
22	J-22136	- Shielded Wire. . . .	1	39	B-27130A ${ }^{*}$	- Spindle and Pinion Gear	
23	J-22094	- Tone Arm Locator (and Latch) Spring	2	40	J-22406 (*)	Assembly .   - Turntable Spindle Assembly	1
24	B-27030	- Tone Arm Latch Lever . .	1	41	B-27057	- Clutch Engagement Lever.	1
25	8-27352-A	- Tone Arm Lever Assembly. .	1	42	B-27047 (*)	- Stop Lever Pivot Pin . . .	1
26	B-27028	- Connecting Link. . . .	1	43	B-27097(*)	- Drive Gear Stop Lever Assent-	
27	B-27003	- Tone Arm Lift Pin.	1			bly. . . . . . . . .	1
28	71177	- Cap Screw 1/4n-20.	1	44	B-27351-A	- Trip Lever Assembly. . . . .	1
29	8-27036	- Trip Shoe. .	1	45	B-27060	- Trip Lever Shoulder Screw.	1
50 31	B-20129	- Booster Spring . . . Arrn Locator Assembly.	1	46 47	B-27088	- Retard Lever Shoulder Screw.	1
32	B-27083	- Tone Arm Locator Assembly	1	47	8-27067	- Retard Lever Spring. . . . .	1
53	J-22365	- Lower Slide Spring	1	49	B-27065	- Tone Arm Retard Lever	1
54	B-27026	- A.C. Switch.	1	50	$\mathrm{B}-27092$	- Trip Lever Spring.	1
35	B-27354-A	- Switch Plato Assombly. .	1	51	B-27058	- Clutch Engagement Lever Pin.	1
36	B-27355-A	- Control Lever Assembly . .	1				

(*) See Fig. V for Detail Assembly View

MODEL B
J. P. SEEBURG CORP.
figure III - top view of record changer


ITEM NO.
PART NO.
DESCRIPTION
NO. USED

52	J-22278	-	Turntable.	1
53	B-27079	-	Control Knob	2
54	B-27132-A	-	Selector Arm and Blade Assembly No. 1.	1
55	B-27133-A	-	Selector Arm and Blade Assembly No. 2.	1
56	H-20014	-	Thrust Washer.	4
57	B-27507	-	Tone Arm .	1
58	B-27137-A (*)	-	Tone Arm Mounting Assembly	1
59	B-27090	-	Tone Arm Cartridge . . . .	1
60		-	Retractable Pin. .	1
61	J-22063	-	12" Set Rod. .	1

(*) See Detailed Assembly View Fig. VI

(C)John F. Rider

J. P. SEEBURG CORP.

FIGURE VI - TONE ARM MOUNTING ASSEMBLY


FIGURE VII - MOUNTING PARTS


PART NO.
DESCRIPTION
NO. USED

H-20143	Upper Mounting Spring . . . . . . . . . . . . .	4
H-20198	-	Lower Mounting Spring . . . . . . . . . . . . .

(Panel Mounting Stud shown on Fig. I, Item 14)
(NOTE: Some models use only the Upper Mounting Spring)
FIGURE VIII - SKETCH SHOWING LOCKING OF LOCATOR LEVER IN MANUAL POSITION


The lead wire which emerges from the rear of the tone arm and goes down through the metal panel is so placed that it will not restrict the free movement of the tone arm across the record. It is important that this wire be free and loose at all times. DO NOT ATTENPT TO PUSH THE EXCESS WIRE THROUGH THE PANEL.

Holding the turntable while the motor is running will damage the mechanism - throw the switch knob to the "OFF" position before slowing down or stopping the tumtable.
11. MANUAL OPERATIOM

This changer can be operated manually (that is, as though the machine were an indluidual record player without any automatic features) by moving the control knob to the "MAMUAL" position (See figure 4). With the control knob in this gosition the tone arm is froc of all automatic mechanism. The Selector Arms ay be turned out of the way as shown In figure 5, and discussed under "UNLOADING". Home recordings and old or odd sized recorda not intended for automatic usage should be playad with the Control Knob in the "MAMUAL" position. Should the change from "altomatic" to "ManUaL" be mado while the mechanism is In the midst of a changing cycle, the achine will complete the cycle after which the tone arm will be froe and In the manual operating condition.

Should it be desired to play an individual comercial record, set the selector Arms as described above for the proper size ( 10 -inch or 12-inch). Place the record on top of the arms as described under "LOADIMG" and start the changer as described under "STARTIMA TME CHAMGER". In other words, play an individual comercial record in the ame manner as you would play a stack of that dieneter.
III. NOTES ON OPERATION OF THE RECORD CHANGER

A HOW TO REJECT a RECORO
In the event that you do not care to listen to a particular record which is being played automatically, you may reject it at any time after the needle has come to rest on that record by puahing the Control knob into the "REJECT" position and then releasing.
B. USE OF RETRACTABLE PIM

For making or playing "home" recordings, the turntable on your machine has been provided with a retractable pln. This pin wlll project through a hole in the home recording blank to prevent slippage while that record is being played or made. The weight of a comercial record wlll depress the pin until it is flush with the turntable surface so that it has no effect.
c. USE OF TOME CONTROL

If the radio through which this Changer is being played hat a tone control, do not forget to adjust it, ss well as the volume control, to the position which best brlngs out the tonal qualities of the kind of recorde being played.
D. if Chamger is left rummiag

No damage will be done if you forget to turn off changer after it has played its entire load of records. It will simply repeat the last record until stopped or reloaded.
E. fallure to play the mext record

An old record may occasionally be found (aado before the Introduction of automatic chaligers) wich does not carry the neade close enough to center of turntable to set the changer mechaniam in operation. Should one of these old records be found in the stack, moving the control knob to the "reject" position will instantly set the changer mechanism in action again. Any need for doing this can be avolded by placing the old record at top of stack to be played, so that it will come into position last.
VII. OPERATIOH OF THE RECORDER MECHANISM
a. IMSERTIOM OF CUTTIMG MEEDLE

The recorder arm, shown on a preceeding page in figure 12 may be raised to a nearly vertical position for easy Insertion of the "cutting" or "recording" needle. Additional Information on recording needlee will be given in another section.
a. Insert the needle as far as possible into the cutter head.
b. Be sure that the needle is so positioned that the geedle scrow tightens against the flat on the needle hank (See Flgure 22).
c. See that the needle screw is firaly tightened.
6. EmDIMG THE CUT

At the conclusion of the recording, the Recorder Arm Control Lever should be raised up and thrown back to the disengaged position and the entire recording arm swung out until it lies along the outer odge of the panel. The Recorder Arm Control lever can then be lowered to the horizontal position in order to lock the recording arm in its rest position (see Figure 12).
D. hojusting volune control

After first allowing the needle to cut two or three quiet grooves, turn up the volume control, slowly, until the desired volume level has been obtained; the correct lovel to be used while recording is digcussed in detail under the title "Recording Level".
insofar as possible this volume control setting should be determined to some extent before actually starting the recording. at the end of the record slowly turn down the volume control and allow the neadle to run a fow quiet grooves before lifting it from the blank. Fading in and fading out the program by means of the volume control together with the quiet grooves at the start and finish of the record will result in a much more pleasing overall effect upon playback, particularly when recording from the radio since it is often necessary to start and stop during a program.
vill. adjustments
Two adjustments are provided: recorder arm height adjustment and depth of cut adjustment. The recorder arm height adjusting screw and the depth of cut adjustaent knob are both shown on Figure 15 .

The recorder arm height adjusting scrow controls both the recorder arm height and the cutting needle angle. The depth of cut adjustment controls the depth of cut by varying the needle pressure. The method and purpose of these adjustments are explained in the section immediately following.

## IX. ADJUSTING RECORDER ARM HEIGHT

The height of the recorder arm can be varied by means of the slotted screw had which is on the top of the recorder arm and toward the back, approximately flush with the surface (See Figure 16). In order to make this adjustment, it is necessary to insert a cutting needle, and with the switch knob turned "OFF" and a record blank on the turntable, place the recorder arm in the cutting position. Now, raise or lower the recorder amm by means of the above mentioned adjuatment screw until the needle screw is blighty below center in the slot at the front end of the recorder arm. Figure 16 shows this needle serew in the nomal, correct position.

The purpose of this adjustment is to allow sufficient up ana down movement of the cutter head so that it can follow minor variations in the record surface during cutting. The movement of the needle serew in the slot while recording is good indication of the flatness of the recording blank being cut. Warped or uneven recording blanks will cause excessive up and down movements of the cutter head, as indicated by the needle screw; be sure that this noedle screw does not touch at the top or bottom of the slot while recording.

The same adjusting screw which controls the recorder arm height can al so be usad to change the angle of the cutting neade. This adjustment is described in a following section.

## meEde pressure

The pressure on the cutting needle can be varied by means of the chrome-plated knob on top of the Recorder Arm (See figure 15) and it controls the depth of cut. This knob has engraved upon it the letters "L", "M" and "H", indicating light, modlue and heavy pressures and provides an easy means of compensating for different types of needies and blanks.

## J. P. SEEBURG CORP.



Figure 1
Fig. (1) shows the Changer with the selector arms set for 10 inch records and ready to be loaded. The tone arm is in the rest position and the switch knob is in the "OFF" position.

Fig. (2) shows the Changer set for 12 inch records and ready to be loaded. The tone arm is in the rest position and the switch knob is in the "OFF" position.

Figure 2


Figure 5
Fig. (5) shows the Selector Arms turned for unloading, the tone arm in the rest position, and the switch knob in the "OFF" position.
J. P. SEEBURG. CORP.

MODEL BR (MODIFIED)

## RETRACTABLE PIN



Figure 13

MODEL BR (MODIFIED) J. P. SEEBURG CORP.

Sorvice Manual Automatic Record Changer

1. settimg up record changer mechamism

Service Manual Automatic Record Changer
mechanism. Allow the mechanism
to go through its change cycle
and the needle to come down on
the next record without hindrance
after which the tone arm may be
moved to the "Rest" position).
If the tone armis in the "Rest"
position and the switch knob in
the "Automatic" position, it is
merely necessary to momentarily
move the switch knob to the "Re-
ject" position and release it in
order to again set the changer
into automatic operation. into automatic operation.
The record changer belongs to is inoperative and so that the The record changer belongs to is inoperative and so that the
the general classification of the tone armis free. Under automatic conditions,
the tone arm is controlled during the change cycle by means of the levers, on the large drive gear
 ICATIon
turntable, that the pin in the
Turntable Spindle slips into the
slot on the bottom surface of
the turntable hub. Also, care
should be taken not to damage
the Motor Idler Pulley.
Never under any circumstance
allow oil to come in contact
with Motor Idler Pulley. SQUEAK DUE TO RFCORDS RUBBING
ON TURNTABLE SPINDLE This can be eliminated by
gently lining up the stack of
records. tion of the tone arm is obtained
by lifting it from the record
 extreme outside position. The along the outside edge of the
changer sub-panel and remain there even though the switch knob is in the "Automatic" position OTE: If the tone arm has lifting the tone arm or moving it

## 

moving the switch knob to the
"Reject" position and releasing
is all that is necessary to set the changer in automatic operation. The switch knob will reto the "Automatic" position of will change and play the entire will change and play the entire ther attention. After playing loaded, the machine will continue
to repeat the last record until
it is turned off.

 SONIGYTE GTONIDS FTGYLNHOL •G Turntable spindle bearings are
lubricated at the factory and do
not require any Iubrication for not require any lubrication for should be oiled with one or two drops of a light grade oil. Do The top bearing can be oiled
by lifting off the turntable.
Make sure, when replacing the mutilated gear type. This means ord is being played the large gear (see Fig. V, Item 2) and all
associated mechanism is at rest.
Under the condition of manual operation, the automatic opera-
tion of the mechanism is locked
$1 \vee$.
A. MOTOR

## ou sexfnbas pue 8utabaq ssetfo <br> The motor is equipped with



$$
\begin{aligned}
& \text { This can be eliminated by } \\
& \text { gently lining up the stack of } \\
& \text { records. }
\end{aligned}
$$


With the switch knob (see
Fig. I, Item 7) in the Manualn
position, this changer is de-
signed to operate as a single
record-player and as such can be
used to play individual records
of any diameter up to and includ-
ing la inches. Moving the switch
knob to the "Manual" position
starts the turntable and locks
out all of the automatic features
of the record changer. The tone
arm must be lifted by hand and
placed on the record; 日fter the
record is playedit is necessary record is played it is necessary
to remove the tone arm by hand.
During any of the time that the During any of the time that the possible to move the tone arm in is also possible to play either "inside out" or "outside in" re-
cordings.
B. AUTOMATIC OPERATION

> The Changer is designed to change automatically, EITHER fourteen lo inch records or ten l2 inch records at one loading. After the changer has been properly loaded (see separate operating instruction sheet), changer (see separate operating
instruction sheet). This posiMANUAL PLAYBACK of any diameter up to and includ-
ing i2 inches. Moving the switch starts the turntable and locks
out all of the automatic features of the record changer. The tone
arm must be lifted by hand and placed on the record; after the needle has come to rest on the
 ject" position; merely move it
after which the knob will return to the "Automatic" position of
1ts own accord.
A "Rest" position of the tone
arm has been provided in order arm has been provided in order
J. P. SEEBURG CORP.

MODEL C
J. P. SEEBURG CORP.
Service Manual Automatic Record Changer
SOY003y "ZI ONV "OI NO ONIXGONI WAV JNOL •A
 ing it. Note the point at strikes the margin of the "first" is used to indicate the fact that after
the needle has touched the
 needle in toward the
 position is concerned only with the point at which the needle first
makes contact with the
record; for this reason, it
may be advisable to slow
may be advisable to slow
down the movement of the tone arm by partially
holding the turntable
ing adjustment.)

If the ne the record approx-


slight amount by slipping

has been previously
screws (see Fig. $V$, point
 This changer incorporates a
dual trip to insure positive cut-
off on various types of records.
A. MINIMUM CIRCLE DIAMETER TRIP
After the tone arm has played
in far enough so that the dis-
cance of the needle from the

## J. P. SEEBURG CORP.

## vent action of the Booster opring (Fig. $V$, Item li) until the needle has lowered onto the outer edge of the record to be played. Insufficient tension of the Tone Arm Retard Iever Spring (Fig. $V$, Item 3 ) will permit action of the booster spring before the needle comes to rest on the record, giv- ing the effect of incorrect tone arm indexing. Excessive pressure of the tone arm retard lever spring will cause rough, jerky action of the tone arm as it moves from the outer edge of the changer panel. needle has lowered onto the outer Insufficient tension of the Tone Arm Retard Lever Spring (Fig. V, booster spring before the needle ing the effect of incorrect tone of the tone arm retard lever spring will cause rough, jerky <br> moves from the outer edge of the

Service Manual Automatic Record Changer
booster spring may be overcome or
overemphasized. This lead must overemphasized. This lead must
be checked before attempting any
booster spring adjustments.
B. TONE ARM RETARD LEVER ADJUST-

The function of the Tone Arm
Retard Lever (Fig. V, Item 4) is
to provide a smooth motion of
the tone arm as it moves from
the outer edge of the panel in
to be played, during an automatic
change cycle.
An additional function of the
tone arm retard lever is to pre-
1X. ACTION OF
In general, the switch knob
ontrols both the tone arm action and the electrical "On-Off" switch knob, excepting the "off" position, the electrical circuit
through the switch is closed. A. MOF'FM POSITION

Item 2l) Which partially disen-
gages the Tone Arm Latch Lever
by striking it on its projection by striking it on its projection same time the tone arm locator lever (Fig. IV, Item 25) is held






 arm lever (Fig. IV, Item 24) is
booster spring may be overcome or vent action of the Booster opring

## SE SWITCH XHOB

When the switch knob is thrown
to the "Manual" position, the
electrical switch circuit is
closed and the tone arm is freed
from its locked position due to
the action of the projection on the Main Control Silde (Fig. IV at point "e" (Fig. V). At the With the switch knob in the
"Off" position, the tone arm will lock at the extreme outside edge of the changer panel. This posi-
tion of the tone arm logically accompanies the "Off" position of the electrical switch in order to ing of records either for automatic or manual operation. This results from the engagement of IV, Item 1) with the projection
on the Tone Arm Lever (Fig. IV, Item 24, point d).

Service Menual Automatic Record Changer

| Variations in adjustment or read- | B. ECCENTRIC GROOVE TRIP |
| :--- | :--- | :--- |
| justment of this operation can be |  |
| obtained by moving the trip shoe |  |
| (see Fig. IV, Item 23) slightly. | action order to make the trip changer mechanism |
| The trip shoe is locked in posi- | operate under various conditions, |
| tion by means of a screw when the | a second tripping device has been |
| adjustment has been satisfactor- | included which operates due to |
| ily completed. This screw must | any outwardmovement of the tone |
| be adjusted thrua hole cut in | arm after it has played to within |
| the main drive gear, when the | approximately $2-1 / 2$ inches of the |
| machine is not in a change cycle. | center spindie. This trip is |

$\stackrel{\infty}{\sim}$
 at the factory.
first few record grooves. Access to the booster spring can be ob the "Rest" position, with the moving the tone arm locator lever assembly out toward the edge of finger. Adjustment of the spring pair of light pliers or with the

 IV, Item 24) is set at the fac-

 (cartridges requiring extremely quire a light booster spring ten-
 tween the tone arm and the point where the tone arm lead enters arm; otherwise the action of the

## BOOSTER SPRENG SETTING

The function of the booster
spring (Fig. V, Item ll) is to
move the needle from the margin groove automatically. Most
nown as a lhe
needle from the margin of the
In the case of the older type
records, and particularly those
of the mechanically recorded
rooves, the booster spring supplies just enough pressure to
move the needle across the margin to the record grooves. This tone arm locator lever (see Fig.
 see Fig. V, Item 11). The side pressure exerted by this spring the needle will move across the
 justment of this booster spring,
 sure that it functions properly.

## J．P．SEEBURG CORP．

Sorvice Manual Automatic Record Changer
Sorvice Manual Automatic Rocord Changer

record is being played．This is $\quad$| Switch Lever（Fig．IV，Item n） |
| :--- |
| to prevent the tone arm locator |$\quad$ will rest aganst the panel stud record is the tone arm locator

to prevent the
lever and the tone arm from sweeping toward the center should
the 12 inch setting of the selec－ the arms be changed to 10 inch while the tone arm is playing a 12 inch record．（See section $x$
also）．
D．＂REJECT＂POSITION
Through its engagement with the projection on the main Silde（Fig．IV，Item 21）， the Detent Lever（Fig．IV，Item
 Further movement of the Main
 Switch Spring（Fig．V，Item 10）
tension which will return the
slide to the＂Automatic＂posi－
 from the switch knob．
2प7 पT ST qOUY पO7IMS aपय品
 $n$ ）is against the panel stud to the left of the A．C．Switch， This position of the switch position of the Switch Lever 5
5
0
0
0
0
0
0
0
 direction．
adjustments necessary it can best be accom－
plished by using a standard make of record of the proper diameter gauging the setting of the selec－ әq urs sepriq əsau7 50 8utz7as A．SELECTOR BLADES
Under all ordinary conditions
1t should not be necessary to
make any adjus tment of the
selector blades themselves
Should such an adjustment become located just to the lower right Item 22）．The Switch Lever （Fig．IV，Item n）will then position．
 moransmitted to the Manual and Re－ ject Lever（Fig．IV，Item 17）（as described under Section B）．The
projection at ${ }^{n}{ }^{n}$（Fig．V）en－

 Clutch Engagement Lever（Fig．III， The switch knob should not re－


 （Fig．V，Item 10 ）acting on the E．＂A．C．＂SWITCH OPERATION In Figure IV the switch knob
is in the＂off position．The
electrical motor switch is open．
If the switch knob and the Main
Control Slide（Fig．IV，Item 21）
are moved downwards，referring to
Fig．IV，into the NAutomatic＂
position，the right end of the y010373s．$\cdot x$
suot?
projection on this lever at point


Lever（Fig，III，Item 6）at point ＂h＂（Fig．IV）and so prevents the gaging the lower projections of the continuously rotating pint of a change cycle．

C．＂AUTOMATIC＂POSITION With the switch knob in the ＂Automatic＂position，the tone 1 ） will lock the tone arm lig．IV）at any time when the tone arm is moved orm outside position．This tone arm S

 slide（Fig．IV，point＂pn）hook
together at point $\mathrm{mr}^{n}\left(\mathrm{Fig}^{n}\right.$ ．V）



 drive gear which forces the tone
arm lever to the outer edge of号 upper slide（Fig．IV，point clear the tone arm locator The tone arm locator lever
ovides the 10 inch and 12 inch indexing for the tone a ts en－ gagement with the 12 inch reset是


not in the outward position．when Such an an knob is moved from the＂Automatic＂position to the is being played）．The tone arm locator lever（Fig．IV，Item 25） would then be aganst exing
10 inch or 12 inch indexing top，and as the tone arm is stoung into the outside rest posi－ tion，the tone arm lacator lige Item 25）must be able
Fig， When the tone arm is in the
Rest＂position and the switch knob is thrown to MManual＂，it is essential that the sequence the action of the latch lever （Fig．IV，Item 1）and the upper slide（Fig．V，point ${ }^{n \prime \prime}$ ．${ }^{\prime \prime}$ The
upper slide should be in a posi－ tion to provide a positive stop for the tone arm locator lever
（FIg．IV，Item 25）BEFORE the
latch lever（Fig．IV，Item 1） latch lever（Fig．IV，Item 1） （Fig．IV，Item 24）；otherwise the tone arm will be scraped is essential that the engagement at＂r＂be such that there is a
hooking action at this point in order to prevent the tone arm and the tone arm from sweeping toward the center when the switch
is moved out of the nManual＂ position．
The switch knob performs the
additional function of preventing
the trip mechanism from operating
when the switch knob is in the
＂Manual＂position．The motion of
the Main Control Slide（Fig．IV，
Item 2i）is transmitted through
the Connecting Link（Fig．V，
Item 12）to the Manual and Reject
Lever（Fig．IV，Item 17）．The

## J. P. SEEBURG CORP.

sebueyd prooey offeurołnt [enuew eopareg

serves as a stop for the Tone Arm
Locator (Fig. IV, Item 25 ) at
point "v" for 12 inch records, or
point ${ }^{\prime \prime} r^{\prime \prime}$ for 10 inch records.
 (Fig. V, Item 9) must be stronger
than the 12 inch Reset Slide Spring (Fig. V, Item 9). Polnt should then hook securely with
point ${ }^{\prime \prime} \mathrm{g}^{\prime \prime}$ on the 12 inch Reset Slide if the setting of the the ten inch setting while the changer is playing a twelve inch
record automatically.
-und Swey dowjatas io NOIwJH

 The Selector arms by the Drive
Item 4) are rotated Drive Link is moved by the cirthe main Drive Gear Assembly the Drive Link (Fig. IV, Item 4)
 Fig. IV, Item 6) and the Drive
Crank Pawl-Ratchet Washer combination (Fig. IV, Item 9, 10).
Failure of the Drive Crank Pawl (Fig. IV, Item 9) to engage the will prevent the Selector Arms


景 Pawl Spring (Fig. IV, Item 7) or a bind in the Drive Crank Pawl (Fig
IV, Item 9 ) will result in im-
proper record selection.
accomplished by means of a pair accomg nosed pliers and is cor-
of long
rect when the blades lift
slightly upon engaging a record slightly upon engaging
of average thickness.

The 12 inch selector blade
(see Fig. VII) is held in the level position, when not select-
ing records, by the 12 inch blade spring. This blade must be free to move upwards during record
selection but must return to the level position, after selection, under the influence (Fig. VII shows a cross section of these
parts).
B. SELECTOR KNOBS

The plastic knobs (Fig. I,
tem 3) on top of each seiector
 used to set the selector arms
(see separate operating instrucThe plastic knobs rotate on
the Selecttro Knob Support Screw
(see Fig. VII) and can be re(see Fig. VII) and can be re-
moved by prying them upwards. Repeated removal of the knobs will necessitate their replace-
ment.
C. SETTING of SELECTOR aRMS

The position of the selector
arms (Fig. I, Item 4) determines arms tone arm indexing for ten through the position of the 12 inch Set Cam (Fig. IV, Item 20). mines the position of the 12 inch Set Lever (Fig. V, Item 19) which
communicates the motion of the communimates the motion of the
Set cam to the 12 inch Set Slide
(Fig. Iv, Item 18). The 12 inch
J. P. SEEBURG CORP.
Sorvice Manual Automatic Record Changer

arm. The Shlelded Lead
should be so positioned
that it loosely rests near
the tone arm post immedi-
ately below the point at
which it leaves the tone
arm bracket. Under no
circumstances should the
Shielded Wire be fastened
in place, pulled taut, or
restrict free tone arm
movement. This is par-
ticularly important in
machines which use ex-
tremely light pressure
pickup cartridges.
F.
INSUFFICIENT POWER TO COM-
PLETE A CHANGE CYCLE
I. Inspect the bearing of
the main drive gear
(Fig. V, Item 2 for ex-
cessive friction or bind-
ing.
JAMMING OF THE MECHANISM

Should the changer jam at
any time during a change
cycle for some reason
other than jamming of the
selector arms with the
records being changed,
remove the records and at-
tempt to free the machine
by rotating the turntable
in a reverse direction
through a quarter turn,
If the jam is apparentiy
cleared by such action,
the machine should be
checked by operating it
automatically several
times, but with no rec-
ords.
 in a reverse direction, inspect the underside of

		Repeated tripping may also be due to the fact that the switch knob does not return to the "Automatic" position when released. This condition can result from insufficient tension in spring (Fig. V, Item 10), or excessive friction or binding in the motion of the Main Control Slide (Fig. IV, Item 21).
E.		URE TO TRIP
		Turn of $f$ the changer during a change cycle so that the Clutch Engagement Lever (Fig. III, Item 6) may be actuated with the finger while the trip lever is being held away, so that the Clutch Engagement Lever does not lock in the "up" position. The Clutch Engagement Lever must fall by gravity. CAUTION: It is not advisable to use any lubricant at the bearing point of the clutch engagement lever (Fig. III, points c); this bearing is intended to be a loose fit, and must be checked for binds.
	2.	Excessive pressure on spring (Fig. IV, Item 1l) would tend to make the needle jump out of the cut-off groove of the record (see paragraph D-1 above) and prevent tripping.
		The Shielded Pickup Lead Wire (Fig. II, Item 2) must have sufficient slack between the tone arm and the point where the tone arm lead enters the subpanel to permit free sidewise movement of the tone

J. P. SEEBURG CORP.

FIGURE I - TOP VIEW OF RECORD CHANGER


ITEM PART NO.
DESCRIPTION
NO. REQ.

1	C-29048	- Turntable
2	72025	- Thrust Washer
3	C-29135	- Selector Knob
4	C-29156-A	- Record Support Arm, Blade and Shaft   Assembly (See Fig. VII for Details)
5	B-27091	- Plug Button .
6	B-27074	- Control Escutcheon.
7	C-29136	Switch Control Knob

FIGURE II - TOP VIEW OF RECORD CHAMGER, DISASSEMBLED


ITEM PART NO.
DESCRIPTION
NO. REQ.


## J. P. SEEBURG CORP.

FIGURE $1 \|$ - BOTTOM VIEW OF RECORD CHANGER


ITEM PART NO.
NO. REQ.

1	H-20198	- Panel Mounting Spring	4
2	C-29114	- Spring Retainer Cup .	4
3	79024	- Rivet	4
4	C-29074	- Drive Gear Shaft.	1
5	C-29088	- Clutch Engagement Lever Pin	1
6	C-29087	- Clutch Engagement Lever . .	1
7	10069	- Terminal Strip.	1
8	C-29077	- *Drive Gear Stop Lever.	1
9	C-29067	- *Stop Lever Shoulder Rivet.	1
10	C-29086	- *Stop Lever Spring. . . . . . . . .	1
11	C-29125-A	- *Spindle Housing and Stop Lever Assy.	1
12	C-29090	- Thrust End Spindle Bearing Retainer.	1
	NOTE:	*See Fig. VI for Detailed Assembly View	

MODEL C
J. P. SEEBURG CORP.

FIGURE IV - BOTTOM VIEW OF RECORD CHANGER, DISASSEMBLED, SWITCH "OFF"


ITEM	PART NO.	DESCRIPTION	NO.REQ.	ITEM	PART NO.	DESCRIPTION	NO.REQ,
1	C-29018	- Tone Arm Latch Lever	3	14	C-29162-A	- Trip Lever Assembly.	1
3	J-22021	- Mrive Link and Crank	3	15	C-29100	- Trip Lever Shoulder	
		Assembly . . . .	1	16	B-27063	- Trip Dog Spring.	1
4 5	C-29079	- Drive Link . ${ }^{\text {c }}$ -	1	17	C-29063	- Manual and Reject Lever.	1
	C-29083	- Drive Crank Shoulder		18	C-29059	- $12^{\text {n }}$ Set Silde. . . . ${ }^{\text {a }}$	1
6	C-29105	- Drive Crank.	2	19	C-29060	- 12n Set Lever.	1
7	C-29129	- Drive Pawl Spring.	2	21	${ }_{\text {C-29113 }}$	- $12{ }^{\prime \prime}$ Set Cam.	
8	C-29118	- Drive Pawl Shoulder	2	22	B-27026	- Main Control $\begin{aligned} & \text { sembly } \\ & \text { - Switch }\end{aligned} .$.	1
9	C-29112	- Drive Crank Pawi	2	23	C-29011	- Trip Shoe.	1
10	C-29036	- Ratchet washer.	2	24	C-29151-A	- Tone Arm Lever Assembly	1
11	B-27092	- Trip Lever Spring.	1	25	c-29019	- Tone Arm Locator .	1
12	C-29089	- *Spindle Bearing Retainer	3			- 12" Set Cam Pin (Not shown - used with	1
13	C-29158-A	- *Spindle and Gear Bracket Assembly (Complete) . . .	$1$			Item 20) . . .	1

J. P. SEEBURG CORP.

MODEL C

FIGURE V - BOTTOM VIEW OF RECORD CHANGER, DISASSEMBLED, SWITCH "ON": "MANUAL" POSITION


ITEM PART NO.
DESCRIPTION
NO. REQ.


MODEL C
J. P. SEEBURG CORP.


© John F. Rider

## J. P. SEEBURG CORP.

## GENERAL INSTRUCTIONS

## 1. FUNCTION OF RECORD CHANGER WHEN IT IS GOING THRU A CHANGE CYCLE -

The Model "J" Record Changer plays and automatically changes 14 or less ten-inch records or 10 or less 12 -inch records.

The Record Changer is started by turning the switch control knob, (Item 65, Fig. 4) to "ON" this starts the motor and moves trip rod (Item 32, Fig. 1), which rotates trip lever assembly (Item 20, Fig. 1), causing it to disengage from Engagement Clutch Cam, (Iten 79, Fig. 2). The Engagement Clutch Cam will then rotate due to tension from spring, (Item 27, Fig. 1). This causes it to contact the pin on the top side of Drive Gear Assembly, (Item 4, Fig. 1), as it rotates, and in turn, moves the Drive Link Assembly, (Item 31, Fig. 1), and the Selector Shaft Crank Assembly \#1 and \#2 to the position shown in Fig. 2. Also the tone arm reset link (Item 80, Fig. 2), has moved to where it has released the latch, (Item 18, Fig. 1), and carried the tone arm to its extreme outward position. The Tone Arm lifter link (Item 81, Fig. 2), has raised the tone arm to its extreme height, by means of the Lifter Plate Assembly, (Item 2l, Fig. 1). The tone arm is kept from "floating" free by the friction of the Tone Arm Brake Spring which also compresses the tone arm booster spring, (Item 13, Fig. I) due to its very light tension.

The Drive Gear Assembly (Item 4, Fig. 1), continues to rotate which causes the top pin to disengage from the Automatic Engagement Clutch Cam which is moved back to latch with the tone arm trip lever, and the lower pin to engage the drive link assembly, moving it back to its initial position. This swings in the tone arm to either the lo-inch or l2-inch record playing position and lowers it to the record. At the same time it releases the Tone Arm Brake Spring allowing the Tone Arm Booster Spring to act.

## 2. PHONOGRAPH NEEDLES --

Various types and kinds of needles are available for use in phonograph tone arms.

For playing ten or more records at one setup with this Record Changer, no attempt should be made to use ordinary needles with steel or fiber points since continued use of worn needle points will damage the records being played.

Any needle can be used that is designed to play 15 or more records.
It is well to keep in mind that even if the amplifying system, speaker and tone arm are of the best quality, a poor needle will result in poor reproduction of music.

There are a number of good semi-permanent types of needles on the market which are rated in number of plays. It is usually more economical to use one of these needles which is rated at 1000 plays or more.

It is very important to remember not to remove and then replace any needle that has been used.

## 3. CHASSIS MOUNTING

On the bottom surface of the panel are four mounting studs, each threaded to take a 1/4-20" machine screw. The mounting panel rests on four tapered coil springs, the small end of each spring is pressed over a mounting stud and the large end of each spring fits into a socket in the top surface of the mounting shelf in cabinet.

Four spacing blocks $1 / 2^{\prime \prime}$ thick and with a $5 / 8^{\prime \prime}$ hole are fastened to the lower side of the mounting shelf. The $5 / 8^{\prime \prime}$ hole in each is centered with the center of the 7/16" screw clearance hole. These are to be provided and located on the lower side of the mounting shelf into which each of the lower mounting springs are to fit.
J. P. SEEBURG CORP.
MODEL
J Series
(Early)

The $1 / 4$ n- 20 machine screws are turned through the four wing nuts until the
head of each screw is against the bottom side of each wing nut.
UNLOADING RECORDS
6. UNLOADLA

Remove any records remaining on the selector arms.
Move tone arm outward until it catches in outward Turn selector arms so that records will clear them.

Remove records from turntable.
7. LUBRICATION

The four lower springs which are of smaller diameter than tne upper springs tapered end toward the head and resting on the wing nuts

OPERATING INSTRUCTIONS

1. TO PREPARE CHANGER FOR OPERATION --
(A) Setting Record Changer to Play Ten Inch Records: turntable. When in this position any number up to and including fourteen 10-inch records can be played.
(B) Setting Record Changer to Play Twelve Inch Records:
center of the turntable. When in this position any number up to and including ten 12 -inch records can be played.

## ๑NIGVOT • $\boldsymbol{z}$

$$
\begin{aligned}
& \text { (A) If lo-inch records are to be played, set knobs as described in (A) } \\
& \text { above and place any number up to and inciuding li records (ten inch oniy) } \\
& \text { over center pin so that they will rest on the selecting arms. } \\
& \text { (B) If } 12 \text {-inch records are to be played, set knobs as described in (B) } \\
& \text { above and place any number up to and inciuding } 10 \text { records (twelve inch only) } \\
& \text { over center pin so that they will rest on the arms. }
\end{aligned}
$$

3. STARTING THE RECORD CHANGER -

## Turn on the radio (allowing approximately 30 seconds for the tubes to warm up) and throw the phonograph-radio knob or control to the phonograph position. <br> Turn the switch knob on the Record Changer panel to "ON". The matic operation of its own accord.

4. PLAYiNG an individual record --

An individual record can be played in the same manner as a stack of records
would be played, i.e., if it is a l0-inch record, follow the instructions pertaining to lo-inch reoords. If it is a 12 -inch record, follow the instructions

A lo-inch record may be played manually by turning the selecting arm knobs A lo-inch record may be played manually by turning the selecting arm knobs
to the unloading position and leaving them in this position-records may then be it catches, and placing the 10-inch records over the spindle and down onto the
turntable. The noNn and NOFFn switch knob is then pushed down and the 10-inch record will be played and repeated if left on the turntable. To remove the record it is only necessary to move the tone arm outward until it catches, and lift
the record of of the turntable. 5. TURNING OFF RECORD CHANGER -

[^5]```
MODEL J Series
    (Early)
```

J. P. SEEBURG CORP.

J. P. SEEBURG CORP.

(Early)

Figure 1

Figure 2

(43)
model "J" record changer
Fig. 1
PART No. DESCRIPTION no.
J-22096
J-民z808 Spindle Bearing Housing Assy.
J-2z010 Drive Pinion
J- 22810 Drive Gear Assy.
J-22149 Panel, Post \& Stud Assy.
F-1063 Selector Shaft Collar
J-22803 Selector Shaft Crank Assy. Post \#l
72021 Flat Washer
H-20065 "C" Washer
J-22041 22^{n} Set Link
J-22121 2Kn Reset Link Spring
J-22147 Tone Arm Locator \& Bushing Assy.
H-201E9 Tone Arm Booster Spring
J-22036 Tone Arm Locator Shoe $12^{\prime \prime}$
J-28037 Tone Arm Locator Shoe $10^{\prime \prime}$
J-£2094 Tone Arm Locator Spring 1
J-£̌0z8 Tone Arm Latch \& Guide Bracket
J2k101 Tone Arm Latch Lever
J- 28807 tone arm lever assy.
J-22812 Trip Lever Assy
J-22813 Tone Arm Lirt Plate Assy. 1
10380 Thumb Nut
10355 Tone Arm Trip Shoe
J-22058 Trip Lever Spring
J-22136 Pickup Shielded Wire
J-22126 Muting Switch
J-2E090 Clutch Spring
$720{ }^{2} 4$ Flat washer 80035 Taper Pin
J-22805 Selector Shart Drive Crank
J-2 2816 Drive Link Assy.
J-£2055 Trip Rod
$720 \varepsilon 4$ Flat washer
J-22002 Drive Gear Stud
J-2天1E2 Switch Spring
J-2810E Switch Mounting Bracket
J-2 2103 Switch Retainer Bracket
J-RE118 Switch
J-22067 Tone Arm Shaft
J-22134 Reset Arm Stop Washer 1
Fig. 2
39 J-22017 Clutch Reset Pawl Spring 1
J-22016 Clutch Reset Pawl
J-2\&je3 Latch Lever Shoulder Screw
J-228ג1 12" Set Arm Assy.
J-22802 Engagement Clutch Cam Assy.
J-2г804 Tone Arm Reset Link
J-28806 Tone Arm Lifter Link Assy. 2

```
MODEL J Series
    (Early)
```

J. P. SEEBURG CORP.

SERVICENOTES

1. PICKUP DOES NOT INDEX PROPERLY ON TEN INCH OR TWELVE INCH RECORDS -
(A) Adjustment for correct indexing of lo-inch records:
2. Swing tone arm outward until tone arm lever assembly, (Item 19, Fig. l) latches with tone arm latch lever, (Item 18, Fig. 1) which is held to tone arm shaft, (Item 77, Fig. 1) by two setscrews.
3. Make sure these setscrews are tight and that there is a slight play between the tone arm lever assembly and the panel, (Item 5, Fig. 1). This will give proper clearance at ball race assembly, (Item 74, Fig. 3).

The tone arm lever assembly, (Item 19, Fig. 1) is held against tone arm latch lever, (Item 18, Fig. 1) by the tension of tone arm locator lever spring, (Item 16, Fig. 1).
3. Next loosen the clamping screw in the Swivel Bracket Assembly (Item 46, Fig. 3).
4. Now move tone arm, (Item 60, Fig. 4) until its outside edge is $1 / 8^{\prime \prime}$ from the outside edge of the panel (Item 5, Fig. 1) and retighten screw securely.
2. RECORD CHANGER DOES NOT OO INTO ITS CHANGING CYCLE AT END OF RECORD -
(A) Worn or Damaged Stop Groove: If the stop groove in the record is worn out or damaged, discard such a record.
(B) Cut-off Adjustment May Be Incorrect: The Record Changer should go into its changing cycle when the needle enters the stop groove and has traveled to within a distance of $1-7 / 8^{\prime \prime}$ from the center of the turntable shaft.

If the Record Changer does not go into its changing cycle when the needle has reached the above mentioned distance, the Tone Arm Trip Lever Shoe, (Item 23, Fig. 1), should be moved toward the outside edge of the panel. To do this, it is necessary to loosen the thumb nut, (Item 22, Fig. 1), and then retighten after adjustment has been made.

If the Record Changer goes into its changing cycle before the needle has reached a distance of $1-7 / 8^{\prime \prime}$ from the center of the turntable, the Tone Arm Trip Lever Shoe should be moved inward toward the center of the Record Changer.
3. RECORD CHANGER DOES NOT GO INTO ITS CHANGING CYCLE WHEN SWITCH KNOB IS TURNED ON -

When the switch is turned to "ON" the Record Changer should start its changing cycle. If it does not, the following points should be checked.

1. Make sure motor is running.
2. Check Trip Rod, (Item 32, Fig. 1), to make sure it releases Trip Lever Assembly, (Item 20, F1g. 1), from Engagement Clutch Cam Assembly, (Item 79, Fig. 2), when Switch Knob is being turned on. If Trip Lever Assembly is not released, Trip rod should be shortened by bending until Trip Lever clears Engagement Clutch Cam Assembly, when Switch Knob is turned.

J. P. SEEBURG CORP.

3. Make sure that Clutch Reset Pawl, (Item 40, Fig. 2), clears Drive Link Assembly, Item 31, Fig. 1.
4. RECORD CHANGER CONTINUES TO REPEAT ITS CHANGING CYCLE WITHOUT PLAYING RECORDS -
(A) Trip Lever Assembly (Item 20, Fig. 1) does not latch in Engagement Clutch Cam Assembly (Item 79, Fig. 2), which may be due to causes 11sted below:
5. Trip Rod (Item 32, Fig. 1), may be bent so that it is too short, holding Trip Lever Assembly from contacting Engagement Clutch Cam Assembly.

Fig. 1
2. Springs (Items 24 or 35, Fig. 1) may be disconnected.
5. NO SOUND WHEN NEEDLE IS ON MOVING RECORD -

1. Muting switch (Item 26, Fig. 1), may be out of adjustment. The contacts of this switch should be open whenever its long blade is not resting on the shoe of the Engagement Clutch Cam Assembly (Item 79, Fig. 2). If the contacts remain closed after the long blade has left the shoe, they should be adjusted by bending until there is a separation of approximately 1/32".

Switch should be checked to make sure contacts are closed when long blade is resting on the shoe of the Engagement Clutch Cam Assembly.
2. The lugs on the Muting switch may have been bent together.
3. Pickup cartridge in Tone Arm may have been damaged or may be defective.
6. TONE ARM ADJUSTMENTS FOR $12^{\prime \prime}$ RECORDS -

1. Turn both Control Knobs until the arrows marked " 12 " are pointing toward the center of the turntable.
2. Place a twelve inch record on the turntable.
3. Start Record Changer and note where needle contacts record. Correct contacting is about $1 / 8^{\prime \prime}$ from the outside edge of record.

Fig. 2
4. Set Rod (Item 56, Fig. 3) is operated by Selector Arm (Item 61, Fig. 4). The 12^{n} Set Link (Item 10, Fig. 1) operates as a stop when Record Changer is set for $12^{\prime \prime}$ records. When Tone Arm Locator Assembly (Item 12, F1g. 1) contacts 12^{n} Set Link the Tone Arm should be in the correct position to play a $12^{\prime \prime}$ record.

If at this point, the position of Tone Arm is incorrect, loosen the screw which holds the Tone Arm Locator Shoe 12" (Item 14, Fig. 1) and move in either direction as required and tighten screw.
7. TONE ARM ADJUSTMENTS FOR 10" RECORDS -

1. Turn both knobs until the arrows marked " 10 " are pointing toward the center of the turntable.
2. Place a $10^{\prime \prime}$ record on the turntable and start Record Changer.
3. Note where needle contacts record. Correct contacting 18 about $1 / 8^{\prime \prime}$ from the outside edge of record. If contacting of needle is not correct as mentioned, loosen the screw which holds Tone Arm Locator Shoe 10" (Item 15, Fig. 1) and slide shoe in or out as required, then tighten screw.

8. TONE ARM HEIGHT ADJUSTMENTS -

Set the Record Changer for ten-inch records, turn Switch to "ON" and allow Record Changer to go thru a changing cycle with no record on the Turntable. The clearance between Turntable and the bottom surface of the Tone Arm should be approximately $1 / 8^{n}$. Usually this clearance can be obtained by adjusting the Tone Arm Adjustment Screw (Item 70, Fig. 3). It is well to check the following points before making any adjustment.

Check clearance between Roller (Item 5l, Fig. 3) and Selector Crank Shaft Assembly (Item 7, Fig. 1). There should be approximately $1 / 32^{\prime \prime}$ clearance at this point. If the clearance is greater, it would be due to the pressure on the Spring Washer (Item 50, Fig. 3) being too great. This will prevent the Tone Arm Lifter Reset Spring (Item 82, Fig. 3) from returning the Tone Arm Lifter Link Assembly (Item 81, Fig. 2) sufficiently. To relieve the pressure on the Spring Washer, lower the Selector Shait Collar (Item 6, Fig. 1) slightly.

J. P. SEEBURG CORP.

9. TONE ARM LOWERS ON RECORD TOO SUDDENLY -

If the Tone Arm lowers too suddenly, the Spring Washer (Item 50, Fig. 3) which is located between the Tone Arm Lifter Link Assembly (Item 81, Fig. 2) and Selector Shaft Crank Assembly Post (Item 7, Fig. 1) is not under sufficient pressure. The setscrews in the selector Shart Collar (Item 6, Fig. 1) should be loosened and the Selector Shapt Collar pressed upward slightly and set screws tightened.

SERVICE NOTES (RECORDER)

Fig. 3

1. FUNCTION OF MANUAL CONTROL BUTTON AND RELATTVE PARTS

When Mamual Control Button (Item 84, Fig. 4) is moved to the Manual Play-Back recording position, it moves the Manual Control Slide (Item lo2, Fig. 1) which in turn moves Clutch Lock slide (Item 103, Fig. 1) into a position which prevents Engagement Clutch Cam Assembly (Item 79, Fig. 2) from rotating. When Engagement Clutch Cam Assembly is in the above mentioned position and is not free to rotate, the Changer will not go into its changing cycle.

Also when the Manual Control Button is in the above mentioned position, the Manual Control Slide has moved the Locator Lock Slide (Item 106, Fig. 1) into a position where it engages the Tone Arm Locator \& Bushing Assembly (Item 12, Fig. 1) and prevents same from bearing against Tone Arm Lever Assembly (Item 19, Fig. 1) allowing the Tone Arm to swing ireely without hindrance and without setting Changer into its changing cycle. When the Manual Control button is in the automatic position the Changer will function nomally as an automatic record changer.
2. POSSIBLE MECHANICAL CAUSES OF POOR RECORDINGS
(A) Threads from record cuttings getting down onto Rubber Idler drive wheel (Item 83, Fig. 4) and between drive wheel and motor pulley. This will cause very bad speed variation of the turntable and, of course, will result in very inferior recording. Cuttings may also wrap around motor shaft and cause motor to slow down or stop.

To remove the record cuttings, the turntable should be lifted by applying an even lifting force at opposite edges of the turntable while the turntable spindle is gently tapped downward on its top end, and the record cuttings then removed. The Rubber Idler Drive Wheel should be taken off - this can be accomplished by unsnapping the small snap cotter ring and slipping Rubber Idler Drive Wheel off its shaft, after which all record cuttings can be removed.

Fig. 4

Note: It is very important that no grease or 011 be gotten on the surface of the Rubber Idler Drive Wheel.
(B) Tight pivot bearings: Check cartridge pivot screw (Item 108, Fig. 4) for binding. Also recording arm pivot screw (Item 107, F1g. 4) and Traverse arm pivot screws (Item 101, Fig. 2). These bearings should all be free, but have no looseness or play.

If the pivot screw, (Item 108, Fig. 4) of the Cutter Cartridge is tight, the Cutter Cartridge cannot follow a slight up and down variation of the record or turntable. A record cut in this manner will, when played back, have a high scratch level, rough cutting and a tendency for the needle to fump from one groove to another.
(C) Damaged Rubber Idler Drive Wheel (Item 83, Fig. 4)

Rubber Idler Drive Wheel may have become damaged by:

1. Allowing 011 or grease to come in contact with same.
2. By allowing turntable to drop and cut into the outside surface of the Rubber Idler Drive Wheel.
3. Stopping the turntable by hand while the motor is munning will cause a flat spot on the surface of the Rubber Idler Drive Wheel.

Note: If the Rubber Idler Drive Wheel has been damaged in any of the above mentioned ways, it should be replaced with a new one.
(D) Vibration Reaching the Recorder While A Blank is Being Recorded: It is very important the floor or the surface upon which the Recorder rests remain quiet as any vibration such as people walking across the floor or shaking of the instrument in which the Recorder is mounted will seriously effect the quality of the finished recording.
(E) Recorder Not Level: It is very important that the Recorder is standing level. This can be checked by placing a small level on the turntable and checking same in two positions at right angles to each other and then leveling instrument in which Recorder is mounted.

J. P. SEEBURG CORP.

(F)

Bent or Damaged Turntable Spindle: If the Turntable Spindle (Item 59, Fig. 4) has been bent in shipment, or by someone exerting a heavy pressure on one side, it should be replaced with a new one. A bent Turntable Spindle will cause the surface of the Turntable to move up and down while it is turning and, of course, will seriously effect the quality of both record1ng and play-back.

Note: When removing the Turntable an even upward lifting force should be applied at opposite edges of the Turntable while Turntable Spindle is gently tapped downward on its top end.

Fig. 5
(G) Recard Cuttings Causing a Bind Between Turntable Spindle (Item 59, Fig. 4) and Its Bearing:

It is very important that all record cuttings are removed from Turntable Spindle and its bearing.
(H) Tension On Rubber Idler Drive Wheel (Item 83, Fig. 4) Too Great: If the tension on the Rubber Idler Drive Wheel is too great, this will result in a "wow" or a rumble in the reoording. To decrease the tension on Rubber Idler Drive Theel, loosen the sorew holding the lug which is located beneath the Rubber Idler Drive Wheel and turn it slightly in a olockwise direction. This will reduce the spring tension on the Rubber Idler Drive Wheel. When the spring tension is correot, the spring will be approximately at right angles to the lug.
(I) Tension On Rubber Idler Drive Wheel (Item 83, Fig. 4) Too Weak: This will cause very bad speed variation. Turntable will slow down and then speed up as audio current of varying intensity reaches the cutter cartridge.

general instructions

1. FUNCTION OF RECORD CHANGER WHEN IT IS GOING THRU A CHANGE CYCLE --

The Model "J" Reoord Changer plays and automatically ohanges l4 or less ten-inch records or 10 or less 12 -inch records.

The Record Changer is started by turning the switch control knob, (Item 10, Fig. 1) to "ON" this starts the motor and moves trip rod (Item 35, Fig. 2), which rotates trip lever assembly (Item 2l, Fig. 2), jausing it to disengage from Engagement Clutch Cam, (Item 25, Fig. 2). The Engagement Clutch Cam will then rotate due to tension from spring, (Item 29, Fig. 2). This causes it to contact the pin on the top side of Drive Gear Assembly, (Item 4, Fig. 2), as it rotates, and inturn , moves the Drive Link Assembly, (Item 34, Fig. 2), and the Selector Shaft Crank Assembly \#7 and \#33 to a new position. Also the tone arm reset link (Item 12, Fig. 2), has moved to where it has released the latch, (Item 19, Fig. 2), and carried the tone arm to its extreme outward position. The Tone Arm lifter link (Item 23A, Fig. 2), has raised the tone arm to its extreme height, by means of the Lifter Plate Assembly, (Item 23, Fig. 2). The tone arm is kept from "Floating" free by the friction of the Tone Arm Brake Spring which also compresses the tone arm booster spring, (Item 13, Fig. 2) due to its very light tension.

The Drive Gear Assembly (Item 4, Fig. 2), continues to rotate which causes the top pin to disengage from the Automatic Engagement Clutch Cam which is moved back to latch with the tone arm trip lever, and the lower pin to engage the drive link assembly, moving it back to its initial position. This swings in the tone arm to either the lo-inch or l2-inoh record playing position and lowers it to the record. At the same time it releases the Tone Arm Brake Spring allowing the Tone Arm Booster Spring to sot.

2. PHONOGRAPH NEEDLES --

Various types and kinds of needles are available for use in phonograph tone arms.

For playing ten or mare records at one setup with this Record Changer, no attempt should be made to use ordinary needles with steel or fiber points since continued use of worn needle points will damage the records being played.

Any needle can be used that is designed to play 15 or more records.
It is well to keep in mind that oven if the amplifying system, speaker and tone arm are of the best quality, a poor needle wibl result in poor reproduction of music.

There are a number of good semi-permanent types of needles on the market which are rated in number of plays. It is usually more economi ael to use one of these needles whioh is rated at 1000 plays or more.

It is very important to remember not to remove and then replace any needle that has been used.
3. CHASSIS MOUNTING --

On the bottom surface of the panel are four mounting studs, each threaded to take a $1 / 4-20^{N}$ machine screw. The mounting panel rests on four tapered coil springs, the small end of each spring is pressed over a mounting stad and the large end of each spring fits into a socket in the top surface of the mounting shelf in cabinet.

Four spacing blocks $1 / 2^{\text {n }}$ thick and with a $5 / 8^{\prime \prime}$ hole are fastened to the lower side of the mounting shelf. The $5 / 8^{n}$ hole in each is centered with the center of the $7 / 16^{\prime \prime}$ screw olearance hole. These are to be provided and located on the lower side of the mounting shelf into whioh each of the lower mounting springs are to fit.

J. P. SEEBURG CORP.

The $1 / 4^{n \prime}-20$ machine screws are turned through the four wing nuts until the head of each sorew is against the bottom side of each wing nut.

The four lower springs which are of smaller diameter than the upper springs are slipped over the ends of each of the $1 / 4^{n}-20$ machine screws with the tapered end toward the head and resting on the wing nuts.

OPERATING INSTRUCTIONS

1. TO PREPARE CHANGER FOR OPERATION --
(A) Setting Record Changer to Play Ten Inch Records:

Turn both knobs until the arrows are pointing toward the center of the turntable. When in this position any number up to and including fourteen l0-inch records can be played.
(B) Setting Record Changer to Play Twelve Inch Records:

Turn both knobs until the arrows marked "12" are pointing toward the oenter of the turntable. When in this position any number up to and including ten 12 -inch records can be played.
2. LOADING --
(A) If lo-inch records are to be played, set knobs as described in (A) above and place any number up to and inoluding 14 reoords (ten inch only) over center pin so that they will rest on the selecting arms.
(B) If l2-inch reoords are to be played, set knobs as desoribed in (B) above and place any number up to and including 10 records (twelve inch only) over center pin so that they will rest on the arms.
3. STARTING THE RECORD CHANGER --

1. Turn on the radio (allowing approximately 30 seoonds for the tubes to warm up) and throw the phonograph-radio knob or control to the phonograph position.
2. Turn the switch knob on the Record Changer panel to "ON". The motor will then start and the record changer will go into automatic operation of its own accord.
3. PLAYING AN INDIVIDUAL RECORD --

An individual record can be played in the same manner as a stack of records would be played, i.e., if it is a lo-inoh record, follow the instruotions pertaining to lo-inch records. If it is a 12 -inch record, follow the instructions pertaining to 12 -inch records.

A lo-inch record may be played manually by turning the selecting arm knobs to the unloading positi on and leaving them in this position-records may then be put on or taken off the turntable by merely moving the tone arm outward until it catches, and placing the lo-inch records over the spindle and down onto the turntable. The "ON" and "OFF" switch knob is then pushed down and the 10 -inoh record will be played and repeated if left on the turntable. To remove the record it is only necessary to move the tone arm outward until it catches, and lift the record of f of the turntable.
5. TURNING OFF RECOLD CHANGER --

Turn spitoh knob to "OFF" position while the tone arm is still on the reoord. If the switch knob should be turned off while Record Changer is going through a change cycle, it will be difficult to adjust the selector arms correctly for the Automatio playing of 10 -inch or 12 -inch records.
6. UNLOADING RECORDS --

1. Turn switoh knob to Off position.
2. Remove any records remaining on the selector arms.
3. Move tone arm outward until it oatches in outward position.
4. Turn selector arms so that records will olear them.
5. Remove records from turntable.

7. LUBRICATION --

(A) Motor: The motor is equipped with oilless bearing and requires no Iubrioation.
(B) Turntable Spindle Bearings: Are lubricated at the factory and do not require any lubrication for one year. After one year they should be oiled with 1 or 2 drops of a light grade oil.

The top bearing can be oiled by lifting off turntable. Make sure when replacing turntable to see that pin in Turntable Spindle slips into slot on bottom surface of Turntable hub and also care should be taken not to injure Rubber Ider Drive Wheel.
Never under any circumstances allow oil to oome in contact with Rubber Idler Drive Theol.
(C) Squeak Due to Records Rubbing on Turntable Spindle: This can be eliminated by gently lining up the stack of records.

SERVICE NOTES

1. PICKUP DOES NOT INDEX PROPERLY ON TEN INCH OR TWELVE INCH RECORDS --
(A) Adjustment for correot indexing of 10-inoh records:
2. Swing tone arm outward until tone arm lever assembly, (Item 20 Fig. 2) latches with tone arm latch lever, (Item 19, Fig. 2) whioh is held to tone arm shaft, (Item 22, Fig. 2) by two setsorews.
3. Make sure these setscrews are tight and that there is a slight play between the tone arm lever assembly and the panel, (Item 5A, Fij. 2). This will give proper olearance at ball race assembly, (Item 10, Fig. 3).

The tone arm lever assembly, (Item 20, Fig. 2,) is held against tone arm latoh lever, (Item 19, Fig. 2) by the tension of tone arm locator lever spring, (Item 16, Fig. 2).
3. Next loosen the olamping screw in the Swivel Bracket Assembly (Item 4, Fig. 3.)
4. Now move tone arm, (Item 5, Fig. 1) until its outside edge is $1 / 8^{\prime \prime}$ from the outside edge of the panel (Item 5A, Fig. 2) and retighten screw securely.
2. RECORD CHANGER DOES NOT GO INTO ITS CHANGING CYCLE AT END OF RECORD --
(A) Worn or Damaged Stop Groove: If the stop groove in the record is worn out or damaged, discard such a reoord.
(B) Cut-off Adjustment May Be Incorrect: The Record Changer should go into its changing cyole when the needle enters the stop groove and has traveled to within a distance of $1-7 / 8^{\prime \prime}$ from the center of the turntable shaft.

If the Record Changer does not go into its changing cyole when the needle has reached the above mentioned distance, the Tone Arm Trip Lever Shoe, (Item 24A, Fig. 2), should be moved toward the outside edge of the panel. To do this, it is necessary to loosen the thumb nut, (Item 24, Fig. 2), and then retighten after adjustment has been made.

If the Reoord Changer goes into its changing cycle before the needle. has reached a distance of $1-7 / 8^{\prime \prime}$ from the center of the turntable, the Tone Arm Trip Lever Shoe should be moved inward toward the center of the Record Changer.
3. RECORD CHANGER DOES NOT GO INTO ITS CHANGING CYCLE WHEN STWITCH KNOB IS TURNED ON --

When the switch is turned to "ON" the Record Changer should start its ohanging oyole. If it does not, the following points should be cheoked.

1. Make sure motor is ruming.
2. Check Trip Rod, (Item 35, Fig. 2), to make sure it releases Trip Lever Assembly, (Item 21, Fig. 2), from Engagement Clutoh Cam Assembly, (Item 25, Fig. 2), when Switoh Knob is being turned on. If Trip Lever Assembly is not released, Trip rod should be shortened by bending until Trip Lever olears Engagement Clutoh Cam Assembly, when Switoh Knob is turned.
3. Make sure that Clutch Reset Pawl, (Item 33A, Fig. 8) elears Drive Link Assembly, Item 34, Fig. 2).
4. RECORD CHANGER CONTINDES TO REPEAT ITS CHANGING CYCLE WITHOUT PLAYING RECORDS --
(A) Trip Lever Assembly, (Item 21, Fig. 2) does not latoh in Engagement Clutch Cam Assembly (Item 25, Fig. 2), which may be due to causes listed below:
5. Trip Rod (Item 35, Fig. 2), may be bent so that it is too short, holding Trip Lever Assembly from contaoting Engagement Clutch Cam Assembly.
6. Springs (Item 26 or 11, Fig. 2) may be disconnected.
7. NO SOUND WHEN NEEDLE IS ON MOVING RECORD --
8. Muting switoh (Item 28, Fig. 2), may be out of adjustment. The contacts of thisswitoh should be open whenever its long blade is not resting on the shoe of the Engagement Clutoh Cam Assembly (Item 25, Fig. 2). If the contacts remain olosed after the long blade has left the shoe, they should be adjusted by bending until there is a separation of approximately $1 / 32^{*}$.

Switch should be checked to make sure contaots are olosed when long blade is resting on the shoe of the Fagagement clutoh Cam Assembly.
2. The lugs on the Muting switch may have been bent together.
3. Piakup cartridge in Tone Arm May have been damaged or may be defective.
6. TONE ARU ADJUSTNENTS FOR $12^{\prime \prime}$ RECORDS --

1. Turn both Control Knobs until the arrows marked " $12^{\prime \prime}$ are pointing toward the center of the turntable.
2. Plaoe a twelve inch record on the turntable.
3. Start Record Changer and note where needle contacts record. Correct contacting is about $1 / 8^{\prime \prime}$ from the outside edge of record.
4. Set Rod (Iten 19, Fiz. 3) is operated by Selector Am (Item 6, Fig. 1). The 12^{n} Set Link (Item 10, Fig. 2) operates as a stop when Record Changer is set for $12^{\prime \prime}$ records. When Tone Arm Locator Assembly (Item 12, Fig. 2) contacts $12^{\prime \prime}$ Set Link the Tone Arm should be in the correct position to play a $12^{\prime \prime}$ record..

If at this point, the position of Tone Arm is incorrect, loosen the sorew which holds the Tone Arm Locator Shoe $12^{\prime \prime}$ (Item 14, Fig. 2) and move in either direction as required and tighten screw.
7. TONE ARM ADJUSTMENTS FOR 10 RECORDS --

1. Turn both knobs until the arrows marked "lo" are pointing toward the center of the turntable.
2. Place a $10^{\prime \prime}$ record on the turntable and start Record Changer.
3. Note where needle contacts record. Correct contacting is about $1 / 8^{\prime \prime}$ from the outside edge of record. If contacting of needle is not correct as mentioned, loosen the screw which holds Tone Arm Locator Shoe 10" (Item 15, Fig. 2) and slide shoe in or out as required, then tighten sorew.

8. TONE ARM HEIGHT ADJUSTMENTS --

Set the Record Changer for ten-inch records, turn Switch to "ON" and allow Kecord changer to go thru a ohanging cyole with no record on the Turntable. The clearance between Turntable and the bottom surface of the Tone Arm should be approximately $1 / 8^{n}$. Usually this clearance can be obtained by adjusting the Tone Arm Adjustment Screw (Item 5, Fig. 3). It is well to oheck the following points before making any adjustment.

Check clearance between Roller (Item 51, Fig. 3) and Selector Crank Shaft Assembly (Item 7, Fig. 2). There should be approximately $1 / 32^{n}$ olearance at this point. If the clearance is greater, it would be due to the pressure on the Spring Washer (Item 14, Fig. 3) being too great. This will prevent the Tone Arm Lifter Reset Spring (Item 11, Fig. 3) from returning the Tone Arm Lifter Link Assembly (Item 23A, Fig. 2) Sufficiently. To relieve the pressure on the Spring Washer, lower the Selector Shaft Collar (Item 6, Fig. 2) slightly.
9. TONE ARM LOWERS ON RECORD TOO SUDDENLY --

If the Tone Arm lowers too suddenly, the Spring Washer (Item 14, Fig. 3) which is located between the Tone Arm Lifter Link Assembly (Item 23A, Fig. 2) and Selector Shaft Crank Assembly Post (Item 7, Fig.2) is not under sufficient pressure. The setscrews in the Selector Shaft Collar (Item 6, Fig. 2) should be loosened and the Selector Shaft Collar pressed upward slightly and set screws tightened.

Model "J" Standard Record Changer

MODEH J "Std."
(Late)
J. P. SEEBURG CORP.

(C)John F. Rider

FIGURE II - MODEL "J" STAMDARD

```
MODEL J "Std."
    (Late
```

J. P. SEEBURG CORP.

(9

J. P. SEEBURG CORP.

NODEL J "Std."

FIGURE IV - MODEL "J" STAMDARD
J. P. SEEBURG CORP.

FIGURE V - MODEL "J" STANDARD

J. P. SEEBURG CORP.

KODEX M "Std." (Late)

SECTION II
Model "JM" Standard
Additional Service Parts for Standard Record Changer with "Automatic-Manual" Feature.

FIG. VI

FIGURE VI - MODEL "JM" STANDARD.

(C)John F. Rider

MODEL JR "Std."
(Late)
J. P. SEEBURG CORP.

FIGURE VII - MODEL "JR" STANDARD
J. P. SEEBURG CORP.

FIGURE VIII - MODEL "JR" STANDARO

J. P. SEEBURG CORP.

FIGURE IX - MODEL "JR" STANDARD
J. P. SEEBURG CORP.

MODEL JR "Std." (Late)

FIGURE X - MODEL "JR" STANDARD

J．P．SEEBURG CORP．
MODEL JR＂Std．＂ （Iate）
Model＂JR＂Standard Record Changer with Recorder Mechanism

| 曷 |
| :---: |
| 号 |

NO．USED

윽 SECTION
Complete Service Parts List
for Standard Model nJ^{n} Changer．

Additional Service Parts List
for Standard Model ${ }^{\text {NM＂Record Changer．}}$
Additional Service Parts List
for Standard Model nJRn Record Changer Service Parts List for Non－standard
Model＂J＂Record Changers． Service Parts List for Mon－standard
Model＂JM＂Record Changers． Service Parts List for Non－standard
Model ${ }^{\text {JJR }}$ Record－0－Matics＂． H H H II $\stackrel{H}{8}$
NO．USED

FIG.
\qquad Ton
Was
Was
Was
Sprin
Spri
Snap
Snap

 Trip Dog Spring ．．．．．．．．．． Shoulder Screw ．．．．．．．．．
Tone Arm Trip Dog．

 Trip Lever Assembly．．．．．．．． T2＂Set Rod．．．${ }^{\text {Tone }}$ Arm Booster Spring．．．．．．． Tone Arm Locator Assembly．．．．．．

 Selector Shaft Assembly \＃l ．．．． Recorder Arm Bracket Thrust Washer Thrust Washer．Lifting Pin ．．．．
 Lone Arm Lirt Pirlinge Pin．．．．．
Lifitch Bracket Hinge SwItch Reject Slide．．．．．．．．
12 Set Link Spring．
Spring

 Clutch Spring．．．．．．．．．．．
Trip Rod． Mrip Rod Switch．．．．．．．． Selector Drive Crank Assembly．
Traverse Bushing \＆Blade Assembly．
 Bearing Center Screw 1／4－28．
密．

（c）John
F．Rider
MODEL J Series (Late) J. P. SEEBURG CORP.

| PART No. | description | no. used |
| :---: | :---: | :---: |
| | J-10 | |
| J-22272 | - Lead \& Plug Assembly. | |
| J-22273 | - Switch (Radio-Phono). | 1 |
| J-22274 | - Shielded Lead Assembly. | 1 |
| 10532 | - Rubber Feet. | 4 |
| J-22292 | - Strain Relief. | 1 |
| 78002 J-22383 | - Rubber Grommet. | 1 |
| $\begin{array}{r} \mathrm{J}-22383 \\ 82126 \end{array}$ | | 1 |
| H-20143 | - Panel Mtg. Spring (Jpper) | |
| | (omit from Standard List) | 4 |
| H-20198 | - Panel Mtg. Spring (Lower) | |
| H-20199 | - Spectal Clamp lut (omit from Standard List) | ${ }_{4}^{4}$ |
| | Same as $\begin{aligned} & \mathrm{J}-1 \mathrm{E} \\ & \mathrm{J}-1 \mathrm{C} \\ & \text { except: }\end{aligned}$ | |
| J-22430 10532 | - Base Assembly | 1 |
| J-22142 | - 2 Prong Plug (omit from Standard List). | 1 |
| | J-IF
 Same as J-1B except: | |
| $\begin{gathered} J-22421 \\ J-22433 \end{gathered}$ | - Radio Phono Escutcheon.
 - Base Assembly. . | 1 |
| | J-2A | |
| J-22278 | - Turntable . . | 1 |
| | J-3A | |
| J-22382 | - Tone Arm. | |
| J-22187 | - Panel Mtg. Studs. | 4 |
| J-2186 | - Panel Mtg. Spring | 5 |
| J-22173 | - Pickup Extension Lead Lemp Lead Plug. | 1 |
| J-22177 | - Control Knob. - | 2 |
| J-22231 | - Motor Plug \& Shield | 1 |
| H-20198 | - Mtg. Spring (omit from Standard List) | 1 |

MODEL J Series
Non-Standard
(late)

| PART NO. | DESCRIPTION | NO. USED |
| :---: | :---: | :---: |
| | J-7A - Continued | |
| 10062 | - Terminal Strip. | 1 |
| J-22186 | - Chassis Spring. | 5 |
| 80462 | - 1.5 Megohm 1/4 Watt 10\% Resistor. . . . | 1 |
| J-22187* | - Chassis Mtg. Stud | 4 |
| 82939 | - 500, CJO OHM 1/4 Watt 10\% Resistor . . | 1 |
| 85002 | - 50 MMF Mica Condenser 20\% (.00005 MFD). | 1 |
| H-20198 | - Lower Mtg. Spring (omit from Standard List) | 4 |
| | $J-7 A-125$
 Same as J-7A except: | |
| J-22167 | - Motor Assembly (115 v. 25 cycles) | 1 |
| J-22158 | - Turntable | 1 |
| | $J-7 A-150$
 Same as J-7A except: | |
| J-22162 | - Motor Assembly (115 v. 50 cycles) | 1 |
| | $J-78$ | |
| J-22230 | - Pichup Lead | 1 |
| J-22175 | - Pickup Lead Plug. | 1 |
| J-22231 | - Motor Plug. | 1 |
| | $J-7 B-125$
 Same as $J-7 B$ except: | |
| J-22163 | - Motor Assembly (115 v. 25 cycles) | 1 |
| J-22190 | - Turntable | 1 |
| | $J-7 B-150$
 Same as $J-7 B$ except: | |
| J-22162 | - Motor Assembly. | 1 |
| | J-7C | |
| J-22175 | - Pickup Lead Plug. . . | 1 |
| J-22382 | - Tone Arm. | 1 |
| J-22179 | - Pickup Lead | 1 |

Model＂J＂Non－Standard Record Changer
NO．USED
J．P．SEEBURG CORP．

\qquad

quou to．x
Spindle
．．
PART NO

J－22243
$J-22235$
$J-22239$
$J-22240$
$J-22258$
$J-22259$
$J-22226$
78001

Motor Plug Assembly．
Pickup Cartridge ．．
Muting Switch．．．
Shielded Lead．．．． $\begin{array}{ll}J-22214 & - \text { Muting Switch．．．．．．．．．．．．．．} \\ J-22205 ~ & \text { Shielded Lead．}\end{array}$
がいい

MODEL J Series $\begin{aligned} & \text { Non-Standard J. P. SEEBURG CORP. } \\ & \begin{array}{l}\text { (Late) }\end{array}\end{aligned}$

| Model "J" Mon-Standard Record Changer | | |
| :---: | :---: | :---: |
| PART NO. | DESCRIPTION | NO. USED |
| | J-23A | |
| J-22189 | - Motor Plug | 1 |
| | J-23B | |
| J-22127 | - Pickup Cartridge . | 1 |
| J-22427 | - Motor Plug | 1 |
| 10083 | - Terminal Strip | 1 |
| J-22428 | - P1ckup Extension Lead. | 1 |
| J-22429 | - Plckup Lead Plug | 1 |
| J-22411 | - Pickup Lead. | 1 |
| | J-24A | |
| J-22158 | - Turntable. . . | 1 |
| J-22414 | - Motor Assembly | 1 |
| J-22413 | - Line Cord \& Plug Assembly. | 1 |
| J-22416 | - Motor Switch Assembly. . . | 1 |
| J-22417 | $J-24 A-126$
 Same as J-24A except: | |
| | - Motor Assembly (115 v. 25 cycles). | - 1 |
| | J-25A | |
| J-22432 | - Pickup Cartridge | 1 |

(C)John F. Rider

(c)John F. Rider

MODEL JM Series Non-Standard (Iate)

| | Model "JM" Non-Standard Record Changer | |
| :---: | :---: | :---: |
| PART NO. | DESCRIPIION | NO. USED |
| | $J M-9 A$
 See Standard Model | |
| | $\begin{gathered} J M-9 A-125 \\ \text { Same as JM-9A except: } \end{gathered}$ | |
| $\begin{aligned} & J-22167 \\ & J-22158 \end{aligned}$ | - Motor Assembly (115 v. 25 cycles). | 1 |
| | - Turntable. | |
| | JM-9B | |
| $\begin{aligned} & J-22400-A \\ & B-27090 \\ & J-22396 \\ & J-22375 \end{aligned}$ | - Light Pressure Trip Assembly | 1 |
| | - Pickup Cartridge | 1 |
| | - Tone Arm | 1 |
| | - Needle | 1 |
| | $J M-13 B$ | |
| $\begin{aligned} & J-22246 \\ & J-22252 \\ & J-22243 \\ & J-22234 \\ & J-22383 \\ & J-22249 \\ & J-22263 \\ & J-22177 \end{aligned}$ | - Tone Arm. | 1 |
| | - Pickup Cartridge. | 1 |
| | - Turntable | I |
| | - Motor Assembly. | 1 |
| | - Switch Assembly | 1 |
| | - Drive Gear Assembly | 1 |
| | - Drive Gear Mtg. Stud. | 1 |
| | - Control Knobs | 2 |
| | JM-21A | |
| J-22189 | - Motor Plug | 1 |
| $\begin{aligned} & \mathrm{H}-20105 \\ & \mathrm{H}-20198 \\ & \mathrm{H}-20143 \\ & \mathrm{H}-20199 \end{aligned}$ | - Panel Mtg. Studs (omit from Standard List). | 4 |
| | - Mtg. Spring (omit from Standard List) . . | 4 |
| | - Mtg. Spring omit from Standard List . . . | 4 |
| | - Special Nut (omit from Standard List) . . . | 4 |

| PART NO. | DESCRIPTION | NO. USED |
| :---: | :---: | :---: |
| | JM-7E - Continued | |
| J-22185 | - Motor Plug | 1 |
| J-22186 | - Panel Spring | 5 |
| J-22187 | - Mounting Studs | 4 |
| J-22202 | - Pickup Cartridge | 1 |
| J-22278 | - Turntable. . . | 1 |
| H-20198 | - Lower Mounting Spring (omit from Standard List) | 4 |
| | $\begin{gathered} J M-7 E-125 \\ \text { Same as JM-7E except: } \end{gathered}$ | |
| $J-22163$ | - Motor Assembly (115 v. 25 cycles). . . | 1 |
| | $\begin{gathered} J M-7 E-150 \\ \text { Same as JM-7E except: } \end{gathered}$ | |
| J-22162 | - Motor Assembly (115 v. 50 cycles). . . . | 1 |
| | $\begin{gathered} J M-7 E-260 \\ \text { Same as JM-7E except: } \end{gathered}$ | |
| J-22160 | - Motor Assembly (220 v. 60 cycles). . . . | 1 |
| | JM-7G | |
| J-22230 | - Pickup Lead. | 1 |
| J-22175 | - Pickup Lead Plug | 1 |
| J-22231 | - Motor Plug | 1 |
| J-22278 | - Turntable. | 1 |
| J-22163 | $\begin{gathered} J M-7 G-125 \\ \text { Same as JM-7G except: } \end{gathered}$ | |
| | - Motor Assembly (115 v. 25 cycles). . | 1 |
| | $J M-7 G-150$
 Same as JM-7G except: | |
| J-22162 | - Motor Assembly (115 v. 50 cycles). | 1 |

J. P. SEEBURG CORP.
 MODEL JR Series Non-Standard (Late)

| PART NO. | DESCRIPTION | NO. USED |
| :---: | :---: | :---: |
| | JR-3i | |
| J-22179 | - Shielded Lead. . | 1 |
| J-22175 | - Pickup Lead Plug | 1 |
| J-22396 | - Tone Arm | 1 |
| J-22177 | - Control Knob . . . | 2 |
| J-22401 | - Tone Arm Cartridge . . | 1 |
| J-22827 | - Cutter Cartridge . . . | 1 |
| J-22203 | - Cutter Cartridge Plug. . | 1 |
| J-22186 | - Mtg. Spring. | 5 |
| J-22187 | - Chassis Mtg. Stud. | 4 |
| J-22185 | - Motor Plug | 1 |
| J-22373 | - Manual Control Escutcheon. | 1 |
| J-22217 | - Switch Knob. . . . | 1 |
| J-22348 | - Switch Escutcheon. | 1 |
| J-22379 | - Guide Plate (Traverse Lever) | 1 |
| J-22400-A | - Trip Lever Assembly. | 1 |
| H-20198 | - Mtg. Spring (omit from Standard List) | 4 |
| | JR-48 | |
| J-22183 | - Motor Plug Assembly. | 1 |
| J-22824 | - Cutter Cartridge . | |
| | $J R-4 B-150$
 Same as JR-4B except: | |
| J-22352 | - Motor Assembly (115 v. 50 cycles). | 1 |
| | JR-58 | |
| J-22220 | - Pickup Cartridge | |
| J-22183 | - Motor Plug . . | 1 |
| J-22215 | - Cutter Lead Plug | 1 |
| | JR-6日 | |
| J-22204 | - Shielded Pickup Assembly | |
| J-22199 | - Motor Plug | |
| J-22824 | - Cutter Cartridge . | 1 |
| J-22£16 | - Five Prong Plug. | 1 |
| H-20199 | - Special nut (omit from Standard List) . | 4 |

622
MODEL JR Series
Non-Standard
(Jate) J. P. SEEBURG CORP.

Model ${ }^{\text {"JR }}$ " Non-Standard Record Changer with Recorder Mechanism
PART NO. DESCRIPTION USED
PART NO.
-22179
$\begin{aligned} & \text { J-22179 - Shield Lead } \\ & \text { J-22384 } \text { - Recorder Arm. }\end{aligned}$

Recorder Arm

JR-70-Continued
Pickup Lead Plug. Pickup Lead Control Knobs . . Cutter Cartridge. Cutter Cartridge Plug Chassis Mtg. Spring
Chassis Mtg. Stud. Motor Plug. ... Switch Assembly
Traverse Arm Guide plate Lower Mtg. Spring (omit JR-8A
-22175
22382
 22202
22827
22203 22203 22186

22187 | 22187 |
| :--- |
| 22185 |
| 29217 | -22217 H-20198 -22206

-22205 222205

-22826 -22383 | -22217 |
| :--- |
| -22208 | J-22214 \qquad -22209

-22210 22211
22213
22212 22212 J H-20199

| $\mathrm{J}-22233$ |
| :---: |
| $\mathrm{~J}-22232$ |

Same as JR-10A ex
Same JR-10A except:

> $J R-10 A-150$
Same as JR-10A except:

J-22352 - Motor Assembly (115 v. 50 cycles). Motor Assembly (115 v. 50 cycles).

SPEAK-O-PHONE RECORDING \& EQUIP. CO.

MODEL 1-52
MODEL 100
SPEAK-O-PHONE RECORDING \& EQUIP. CO.

SPEAK-O-PHONE RECORDING \& EQUIP. CO.

Engineering Data

 convenient shape to fit into a limited space provided in the top portion of a console radio cabinet or into a special small phonograph cabinet. This allows the complete unit to be removed
from the cabinet, and placed on a bench or table where all of the operating parts will be completely accessible for servicing purposes.

Proceed as follows:
a) Disconnect the cabinet lid, lift stay so as to allow this lid to be turned back providing full accessibility to the phonograph compartment. This can be done from rear of the rod from pivot stud, taking care that the counterbalance spring lug does not snap back and pinch the finger.
(b) Remove the six phonograph chassis mounting screws, located at points marked "A" and "B", Fig. 1
(c) Remove turntable by lifting it off the center spindle.

Disconnect the two cords which connect the No. 2 Phonograph Unit to the radio chassis by pulling out the plug and cord tips from the jacks and receptacle on the back of
chassis. chassis.
(e) Slide the No. 2 Phonograph Chassis toward the rear of the cabinet as far as it will go, so as to provide an opening between the front of this chassis and the front inside of
the cabinet.
(f) Now, take two pieces of woven webbing or heavy wrapping cord, pass completely around the No. 2 Phonograph Chassis, one near each end, and tie so as to provide two
slings for lifting chassis from the cabinet.
(g) Lift No. 2 chassis out of cabinet, taking care not to mar the inside finish of the cabinet Placing several strips of cardboard or heavy paper at front, back, and both ends so
as to cover the finished wood surfaces will provide protection against marring as to cover the finished wood surfaces will provide protection against marring.
(h) Rest the No. 2 Phonograph Chassis on blocks of wood about 7 inches high, located at bends, puc on a level bench or fable, so as to give accessibility to working parts. A Carlson SK-3169) designed to be inserted into the four chassis screw mounting holes these four holes to allow these metal legs to be inserted in the metal frame of the chassis.
(i) If the servicing operations require accessibility to the top mechanisms, as shown in Fig. 4, it will be necessary to remove the walnut finished motor board and brown
enamel finished metal plate as described in Sections 22 and 23 .
 lowering the unit in place.
S'TROMBERG-CARLSON TEL. MFG.CO.

SPEED CHANGE LEVER NO. 5
Fig. 1
(C)John F. Rider

STROMBERG-CARLSON TEL. MFG. CO.
9. Trip Operater Before Completion of Record.
Loosen screws in shaft collar No. 73, Fig. 6, and worm No. 67. Fig. 6. Advance trip
worm shaft by turning in on adjusting screw No. 60, Fig. 6, until the pawl falls clear. Reset worm gear No. 67, Fig. 6, and collar No. 73, Fig. 6. See Section 8c

(a) Pawl collar No. 57, Fig. 6, on trip worm No. 76, Fig. 6, set back too far. See Section 8 c for proper setting.
(b) Clutch trip lever No. 43, Fig. 4, does not drop.
May be out of position if gear has been taken off. Slide toward back of cabinet. (c) Timing is improper.
See Section 22 for correct "Timing".
(d) Clutch spring No. 71, Fig. 6, weak or entirely off.
(e) Clutch tooth lever No. 66, Fig. 6, sticking.
(f) Vertical clutch shaft has too much end play.
tical clutch shaft has too much end play.
Adjust screw No. 75, Fig. 6, at bottom of
Adjust screw No. 75, Fig. 6, at bottom of clutch shaft.
11. Clicking of Clutch at Completion of Cycle.
(a) Timing may be improper if gear has been removed and replaced. See Section 22 for correct "Timing".
(b) Star lever No. 68, Fig. 6, not snapping-in properly, or sticking.
(c) Star lever spring No. 70, Fig. 6, weak or missing.
(a) Felt pads on governor No. 46, Fig. 4, and friction disc No. 44, Fig. 4, are dry Oil these pads.
(b) Bearings are dry.
Fill grease cups.
Fill grease cups.
(c) Main shafting No. 72 ,
Ain shafting No. 72, Fig. 6, is tight.
Adjust screw No. 61, Fig. 6.
(d) Dirt or grit in gears.
Clean thoroughly
If the record does not pass over turntable spindle No. 18, Fig. 2, and slides over tongue No. 15, Fig. 2. and under shoe No. 14, Fig. 2, adjust by means of screw No. 17, Fig. 2. The pickup Use a flat, true record for this test.
5. Pickup Head Drops Outside Record or Inside Playing Grooves.
(a) Locking Screw No. 16, Fig. 2, in top of pickup head is loose or missing.
(b) Record does not rest on tongue No. 15, Fig. 2.
(c) Set Position Lever No. 27, Fig. 2, has been bent.
Replace with new lever, or correct by removing and bending in a bench vise. Bend
"in" if needle drops outside record, or "out" if needle drops inside too far.
6. Needle Drops in Proper Position But Does Not Carry Into Playing Grooves.
(a) Pickup Arm No. 2, Fig. 1, is binding.
Test to be sure pickup arm is not binding. There should be a slight up-and-down
play on balls No. 20, Fig. 2, of center post No. 21, Fig. 2. This play can be obtained
by adjusting the friction collar No. 25 , Fig. 2 .
(b) Tension too light on springs No. 79 and No. 80, Fig. 7.
Adjust separately for 10 -inch and 12 -inch records.
7. Needle Drops in Proper Position But Jumps Over Several Playing Grooves.
Springs No. 79 and No. 80, Fig. 7, tension too strong.
Adjust separately for 10 -inch and 12 -inch records.
8. Trip Does Not Operate at Completion of Record.
(a) Stop grooves in record are larger than $63 / 4$ inches in diameter
(This is not standard or customary recording practice.)
(b) Trip Pawl No. 63, Fig. 6, sticking.
Clean. Pawl should fall down from slightest lift.
Set this collar so that pawl tip just clears top of threads after pick up arm has been
brought to outside of record or to the Pickup rest No. 3, Fig. 1. Move arm out slowly when setting.
(d) Too much end play in trip worm shaft No. 59, Fig. 6.
Test to make sure shaft end play is slight.

MODEL 2
STROMBERG-CARLSON TEL. MFG. CO.
13. Failure of Machine to Shut Off After End of Last Record.
(a) The On-Off Switch No. 23, Fig. 2, is loose in switch bracket No. 22, Fig. 2, or the switch bracket is loose on the chassis. Fasten securely.
(b) Stop Plate No. 82, Fig. 7, has been moved.
Loosen screws and move back slightly until lever No. 81, Fig. 7, engages shut-off
lever No. 33, Fig. 3, which throws pickup arm into off position thereby operating lever No. 33, Fig. 3, which throws pickup arm into off position thereby operating on power
14. Pickup Goes to Off Position After Dropping Record on Turntable Without Playing It.

(a) Lever No. 81, Fig. 7, needs adjusting.

See Section 13b.
(b) Guard No. 34, Fig. 3, not set closely against edge of cam No. 77, Fig. 7.
Loosen screws, push leg of guard tightly against edge of cam and tighten screws
(c) Point of lever No. 81, Fig. 7, touching insulation of 15-Record Switch.
Loosen screws holding switch, force away and tighten.
15. Machine Will Play More Than Fifteen 12-Inch Standard 78-R.P.M. Records.
 ing proper
thin type.
16. Machine Will Not Play Fyfteen 12-Inch Standard 78-R.P.M. Records.
Adjust height of switch lever No. 28, Fig. 2, and see Section 15.
17. Rubber Cam No. 56, Fig. 5, Fails to Push Records Back Against Record Stop.
(a) Rubber is dirty.
> (a) Slide guides No. 50, Fig. 5, may be too loose.
20. Record Carrier Arm Chatters During Movement.
(b) Remove the screw connecting slide link No. 41, Fig. 3, to the long lever No. 38, Fig. 3,
disengaging slide block No. 51, Fig. 5, and move by hand. See that slide block does not bind at any place on the slide during its movement.
21. Record Sticks to Shoe on Pickup Head (Does Not Drop on Turntable Flat).
(a) Shoe No. 14, Fig. 2, too low, pinching record tightly between tongue No. 15, Fig. 2, and Readjust.
(b) Pickup arm is too tight to move freely. Loosen screws on friction collars No.
screws again. Do not leave too free.
If the large gear is removed, it is necessary that it be replaced properly. See that triangular

 angular piece goes to the bottom of slot in the clutch dise or against stop pin.
23. Removal of Motor Board.
Take out the screw's which fasten record stops No. 8, Fig. 1, to metal chassis frame No. 29,
Fig 3. Remove speed control knob No. 6, Fig. 1, by pulling off end of shaft. Remove
 high enough to clear the top of motor speed control shaft No. 6, Fig. 1, and slide motor board to the right out from under the record slides No. 4, Fig. 1.
24. Removal of Metal Plate Under Turntable.

Record Shifting Arm Head No. 48, Fig. 4, Fails to Drop on Records in Magazine After Deposit-

Ball races No. 10, Fig. 1, sticking.

(C)John F. Rider
STROMBERG-CARLSON TEL. MFG. CO.
(i) Test for each adjustment of the realigning nuts No. 42, Fig. 4, by deflecting
the motor by tapping it with the fingers to give it about $1 / 4$ " movement in different directions, allowing it to freely oscillate back to rest. (Forcing the motor in one direction and allowing it to come back slowly to rest may give a false indication.)
(j) After alignment is made correct, as indicated by the gauge and the opening in coupling No. 10, Fig. 3, set the coupling back in place, so as to connect the motor shaft to the main shaft No. 72, Fig. 6. Run the motor for a short time
to be sure that it rotates free from oscillation, then make a final check on the alignment of the motor shaft on the free end of motor by means of the special motor aligning gauge, after which the brass dust cover can be pressed into place in shaft opening.
(k) Set up tight all eight jam nuts on the motor adjusting screws No. 42, Fig. 4, to retain the new adjustments just made. Also, he sure that all set screws in
(1) Replace motor board and metal plate and install the complete No. 2 Unit in cabinet, as described under heading "Removal of Complete No. 2 Unit from
Cabinet" on page 1 .

All high speed shafting is supplied with grease cups. Check about every six months and refill with oil or grease. A few drops of oil on slow moving shafts applied at the time
greasing is done should be sufficient. greasing is done should be sufficient
27. Shipping Precautions.
26.

Set the Second Shifting Arm No. 9, Fig. 1, in a position over the turntable, so that Long Lever No. 38, Fig. 3, is away from motor end of chassis.

Rest the complete No. 2 Multi-Record Phonograph Unit in the same horizontal
position it occupies when mounted in its cabinet by resting the two ends on vertical supports (see paragraph "h", pase 1) and remove motor board and metal plate as described in Sections 23 and 24.
The driving motor "M", Fig. 3, for this No. 2 Multi-Record Phonograph must be accurately aligned with the main shaft No. 72 , in order to insure smooth operation and minimum
movement. Excessive movement of this motor when operating will cause a fluttering in the audio reproduction of phonograph records. Alignment of this motor is obtained by adjusting the tension on the eight spiral springs that suspend the motor to the metal chassis framework No. 29. This adjustment should never be attempted unless a suitable motor alignment gauge (Stromberg-Carlson ST-31746) is available. Proceed as fol-
lows:
(e) Insert the two red painted cap screws, with lock washers, into the two holes "D", Fig. 3, tightening these screws with a wrench so as to hold the motor securely to the bracket "C", Fig. 3. When tightening these cap screws be sure that there is at least $\frac{1}{16}$ " clearance between the end of the motor shaft and the coupling No. 40 , which now is slid back over end of main shaft as described in paragraph "b".

In addition to the above, see that the turntable is packed as in the original factory shipment, and that the Pickup Arm No. 2 is tied with tape or cord to Pickup Rest No. 3, Fig. 1. Also block up Record Shifting Arm No. 9 with the Balsa wood block used in original factory shipment, or some equivalent blocking

Fig. 7
CLUTCH TOOTH LEVER NO. 66

 CLUTCH SPRING NO. 71
WORM GEAR NO. 67

 PAWL COLLAR NO
TRIP WORM SHAFT NO. 59

© John F. Rider

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO. VIEW LOOKING DOWN ON TOP OF UNIT

VIEW LOOKING DOWN ON TOP OF UNIT

Fig. 3-Schematic View of Record Carrying Mechanism.

Fig. 4 - Automatic Placing of a Record on Turntable.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

STROMBERG-CARLSON TEL. MFG. CO.
MODELS 5, 6, 7, 9
in the following sections:
1- Turntable Rotating Mechan 1 sm :
Fie. 2 shows in ajagramatio form Fig. 2 ghows in diagramatio form the rotating mechanism of the "Wo. 5 Phonograph Unit.
A spring suapende governor type single phase induction motor "M" operates through flexinle couplings the horizontal main dire shaft "IM". At the left hand end or
this drive shafis the worm gearing for rotating the vertical turntable spinde at 78 R.P. H. Ad Aditional dotails of the turntable rotating mechanimm are shown in figa.
22,27 and 28 . A ball type speed reduction mechanism for $33-1 / 3$ R.P.M. operation 1 is contained in Speed Thrntable Mechanism".
 the chasils and the enclosing cabinet. This inaures quitet operation.

- Record Chanaing Mechan1smi

 shown orive lever by means of the icam Theel Link frova the normal position, marked innes) and then to an extreme left hand position, marked "3" (shown in dashad Iines). The free end of this long drive lever, acting through the "slide Drive Link" moven
 the turntabie, after which it reverses motion and returns to its normal (stopped)
position over the magazine. See Elg. 28 for additional mechanical details.

In addition to moving the record oarrying arm horizontally, provision is made to record carrying arm is supported by hall bearings in a vertical track so as to move
 the latter be ing shaped, Fig. 21, so as to cause the complete record carrying arm
to be raised as 1 t moves towards the turntable. The object of this movament is to

 complets fresdom of both hands in filline the magazine space with reoords or in election (in ruil view) is the one to be played next on the turntable. The Record order that the transfer fingere hill be in proper poaition to engage the top record when a record shifting operation occurs.

When the record carrying arm starts its short movement to the right, the sort rubber cam (R-22438) Fig. 4, engages the top record, forcing 1t back agsingt the two "Record
Stopa" F1g. 1, so that this record will become "centered" and properiy lined up for the Record Trangigr Finger" P-21785. This movement of the arm to the right also
causes the rubber cam to rotate jugt enough to raise the "Record Carrying Head" so

Now, when the Record Carrying Arm starta its movement to the left the rubber cam swings back to its normal position, allowing the record trafafer finger to reat on portion of the record (not on the record groore portion) untis it drop into the enter hole in the record. The top record is now moved positively to the 1 ert,
alsing on the inclined record slides so as to pass over the toi end of the turn-

Just prior to the carrying of the record to the top of the "Record slides" the

STROMBERG-CARLSON TEL. MFG. CO.

The completion of a single rotation of the carn wheel does not caube any further
movemente of the pickuy Arm. The Plckup Arm, however, does not always follow the
movemente of the
Bequence of opuy arm. The pickup Arm, homever, does not alway
and After the last record from the magazine has been played or when (for any accidental
reason) the Record Carrying Anm does not carry a record to the turritable, the pickup
head pickup Positioning Iever to engage the short end "S" of the operation Selecting lickup Positioning when the laree cam wheel rotates, as shown in the first view of Fig. 7. This on the PICkup Arm Restoring Lever" as the com wheel continues ita rotation as shown n the second view of Fig. 7. Further rotation of the cam Fheel causes the Pickup Arm back to the Pickup Arm Rest as shown in dotted lines in the second viem of
 and upon the conplet1on of the rotze tion
mot or (see Cirouit Diagram F1g. 17).

In order to prevent bringing over more records from the magazine than the neight of the turntable spindle will accommodate a Record Limiting Switah" is provided as engaging the pickup arm connecting rod anown in ${ }^{\text {and }}$ this switch are so adjusted that when the surface of a top record on the turntable comes within $1 / 4$ inch of the top of the turntable spindle, these contacts open and
prevent rotation of the phonograph motor. Thus, if at any time the pickup arm is raised by hand to a position above the top of the turntable spindle, the phonograpn
motor is stopped and the turntable rotation ceases. 4-Automatic Tripping Yechanism:

The rotation of the large cam wheel is controlled by the autametio record tripping When the pichup arm is carried towards the center of the turntable by the action of the needie in following the playing grooves of the record, the tripping pewl
pivoted on the end of the Pickup Arm Tripping Lever will move alone on the fine teeth of the "Retchet Plate" as shown in Fig. 9. Now, if the motior. of the Plchup Arm is reversed, as when the needie enters an eccentric (Victor) type tripping
groove in a record, the mong Tripping Lever will be raised as show by the dotted lines in Fig. 9 .

In case the motion of the Pickup arm is oontinued towards the center of the record
an a spiral type of tripping grove (instead of an eccentric type of tripping groove) by a spiral type of tripping groove (instead of an eccentric type or tripping gre into The location of this Permanent Stop Lug is adjustable and is set at the factory for
tripping on records having $3-3 / 4$ inch diameter tripping grooves. Before the etripping" action occurs, the hooked end "H" of the Automitic clutch
rawl is in engagement "ith end "K" of the "Cluth Dog" as showm in the first view
of Fig. lo. A lug "J" on one of the arms of the "Complete Cycle Lever" (rig. I2) forces the automatic clutch pawl asainst the end "K" Ifrst View of Pig. 10) of
the clutch dog, so as to force this dog into s poition where the "Clutch Dog Tooth" (Fig. ll) will clear the ends of the teeth in the note
and avoid "cilacing" sounde when the phonograph is operating.

When "tripping" occurs, the end "G" (Fig, 9) of the lone trippang lever raises end
 clutch dog, as shown in the second view of Big. 10. The clutch dog tooth now enter
one of the notches in the notahed clutch wheel, shown in second view of Fig. 11,
causing the clutch diso, to which the clutch dog is pivoted, to rotate.

It is necessary here to mention that the vertiosi clutah shaft is continuousiy
rotatad at all times when the phonograph motor is turned mon", and thet the notahed clutch disc, to
dog tooth engages the notched whael at the top of this vertical clutch shart. the the
that the pinion for driving the large cam wheel gear is permanontly attached to

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

Fig. 10 - Automatic Clutch Pawl Operation.

Fig. 11-Automatic Clutch Dog Operation.

Fig. 12 - Complete Cycle Lever and Switch Operation.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

Then the end of this ohyfting lever is set at the left hand or "Automation position,
 When the end of this ahifting tever 1 s get at the right hand or -single Record"
 tripping. This an the complete reedom or movement of the Pickup Arin in play ing
reords.
shifingly on the mechanism.

7- Two-Speed Turntable Kachanasms

The No. 5 Phonograph Unit provides for $33-1 / 3$ speed by a ball sped reducing meahantam
contan ined in the hub of the turntable, as shown in Fig. ${ }^{16}$. The turntable gheft contained in the mub of the turntable, as ahown in Fig. 15 . The turntable ghaft
rotates at 78 R.p., regardlase of the speod of the turnable. A pin extending through this shaft engages a key shot in the hardened steel inner hub of the turn-
table so ab to provide posirive drive to that member The outer surfaco of this
hub is accurately ground to a efinite size and forme the inner race for the three

The outer ball race is free to rotate 1 ndependent of the turntable or the turntable
spindie, its rotation, however, being controiled by a latch nBu which is pivoted too

 to the turntable, whith is equivalent to locking the bail races together as the ball
locating ring also is fastened to the turntable. In this way the 73 R.P.M. rotation of the turntable shaft is 1 mparted to the turntable.

A sliding type of speed chane lover is mounted on the framevork of the phonograph
 this latch 1 s forced out of ent, ament with the notches "A" of the turntable diso, is rotated by the turntable shaft at 78 R.P.M. and as the outor ball raoe 18 held which in the design of this turntable 18 made exact1y $33-1 / 3$ R.F.M.
 lever is in its "out " or 78 R.P.M. position. These "V" shaped notches are designed
 8 - Motor C1rcuit:

This ofrcuit, show in Fig. 17 , connects the 110 -rolt A.c. operating current to the
.

First - The maln on-opf switoh contecte in the radio ohassis, which also
control all A.C. operating current used in the radio chasis1s. This
insures that the phonograph motor will be shut off when the radio
cheses is is turned off.
Second - Special contaots on the phonograph awitch in the Stromberg-carieon Nos. 51 and 54 Reosivers, whioh extond the A.C. operating current is turned to the "Phonograph On" position and which open this A.C; circuit when this phonograph switoh is sot at the MPhonograph off
position when switching from phonograph to radio reproduction.

MODELS 5, 6, 7, ${ }^{9}$ STROMBERG-CARLSON TEL. MFG. CO.

WHEN LATCH "B" IS IN NORMAL POSITION (NOT
ENGAGED BY SPEED CHANGE LEVER) IT ENGAGES ONE OF THE NOTCHES "A" OF TURNTABLE DISC, LOCKING BALL RACES TOGETHER AND GIVING 78 R.P.M IO TURNTABLE

Fig. 15-Single Record Clutch Pawl Operation.

WHEN LATCH "B" IS ENGAGED BY SPEED CHANGE LEVER, IT DISENGAGES NOTCHES "A" OF TURNTABLE DISC HOLDING OUTER BALL RACE FROM ROTATING, THEREBY CAUSING BALLS TO ROTATE TURNTABLE
AT 33-1 3 R.P.M

Fig. 16-Two-Speed Turntable Operation.

ALLOW 1,32 INCH CLEARANCE BETWEEN HOOKED PORTION "I" OF SINGLE RECORD CLUTCH PAWL AND END " K " OF CLUTCH DOG, WHEN RAISED END "J" OF COMPLETE CYCLE LEVER IS ACTUATED BY OPERATION OF LARGE CAM WHEEL.

STROMBERG-CARLSON TEL. MFG. CO.

2 - Record Carrying Arm Falls to Plok UR Record.

Fig. 19 - Releasing Cabinet Lid Stay.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.
(d) Pickup Positioning Lever, Fig. 6, incorrectly adjusted.

- Loosen Screys "C" and "r", Fig. 25, and move pickup arm positioning lever to right for bringing needle towards starting groove of record. Moving this lever to left brings needle towards edge of record. tighten screws after each adjustment.

7 - Needle Lowers in Proper Position on Record Edge But Does Not Caryy Into Playing Grooves.
(a) Pickup Arm, Fig. 1, is binding.

- Test to be sure pickup arm swings freely on its bearings and is not binding. There should be a slight up-and-down play on ball bearing, Fig. 25. This play can be obtained by adjusting pickup arm thrust collar as described in paragraph "a" Section 2l.
(b) Tension too light on First Groove springs. See Fig. 26.
- Increase tension separately for 10 -inch and l2-inch records by turning adjusting screws Fig. 26 in clockwise direction (looking at slotted end of screws) so that needle is positively forced over surface of record and just enters first groore in record. Have turntable rotating when adjustment is tested. Too ruch tension will cause needle to jump over several grooves.

8 - Leedle Lovers in Proper Position But Junps Over Several Playing Grooves.
First Groove Springs, Fig. 26, tension too strong.

- Adjust separately for $10-i n c h$ and 12 inch recorda as described in Section "7b".

9 - Record Changing Trip Does Not Operate at Completion of Record.
(a) Tripping grooves in record are larger in diameter than customary or standerd recording practice. Records having "eccentric" type (Victor) tripping grooves larger than 7-inches in diameter or "spiral" type tripping grooves larger than 3-3/4 inches in diameter are special" for automatic record changers and should not be mixed with records to be played automatically". This phonocraph is provided with a "Single Record setting for playing singly moff standard records.
(b) Spiral Spring on Tripping Pawl, Fig. 9, missing.

- Keplace with new P-23312 Spring (See Section 32 for list Replacement

Parts).
(c) Pickup Arm Tripping Lever, Fig. 9, too low at Tripping Pavi End.

- Bsise this arm bodily by first loosening the two retaining screws "C" and " $\mathrm{Fl}^{\prime \prime}$, Fig. 25, setting to the correct position and then tightening the two screws. The correct height is checked by observing the movement of the lug "H" Figs. 9 and 10 on the Automatic Clutoh Pawl. When the pickup head is swung in close to turntable spindle, lug "H" should be raised so as to clear the end "K" of the clutch dog at least $1 / 32$ inch. Find of long tripping lever "G"Fig. 9 should not be raised high enough to bind on end "r" of Automatic Clutch Pawl. When making adjustments of pickup arm tripping lever, Fig. 9, be sure that other branch of this lever (pickup arm positioning lever, fig. 6) is correctly positioned with respect to the cam wheel surfaces before tightening the two lever retaining screws "C" and "E", Fig. 25. The end of this positioning lever should pass over the to ps of lugs "L"Fig. 6, without touching. (About 1/32" clearance).
10 - Trip Operates Before Completion of Record.
(a) Diameter of playing grooves in center portion of record is less than customary or standard recording practice (lees than 3-3/4 inches diameter).
- Play off Standard" records singly, with phonograph set at "Single Record" position.
(b) Permanent Stop Lug "m"Fig. 9 of ratched plate, out of adjustment.
- Loosen two screws ${ }^{\prime \prime}$ Dig. 9 and adjust plate to trip the clutch dog " $\mathrm{K}^{\prime \prime}$ Fig. 9 when nesdie in pickup head is moved towerds center of turntable and just reaches a point $1-7 / 8$ inches from center of turntable spindle. Set two screws "D Fig. 9 tight after this adjustment.
11 - Clutch Fails to Hold at Completion of Cycle (Continuous Tripping).
(a) Incorrect timing of large cam gear, if gear has been taken off.
- See Section 27 for "Timing of Mechanism".
(b) Clutch dog spring " Fig. 11 weak or misoing.
- Readjust tension to cause clutch dog to operate positively.
(c) Shouldered screw "S" Fig. 11, used for holding clutch dog lever to notched clutch disc, is loose so as to allow end "K"Fig. 10 of this dog to drop down mearly flush with surface of disc.
- Set this screw "S" just tight enough to hald clutch dog in proper

MODELS 5, 6, 7, 9 STROMBERG-CARISON TEL. MFG. CO.

Fig. 24 - Diagram Showing Correct Turntable Spindle Adjustment.

| | Fosition, but not tight enough to bind. Stake over end of screw "S" |
| ---: | :--- |
| vith a center punch to prevent loosening. Check freedam of movement | |
| of clutoh dog ofter latter operation. | |

MODELS 5, 6, 7, 9 S'TROMBERG-CARLSON TEL. MFG. CO.

POSITIONING LEVER SCREWS P-2546
Fig. 25 - Diagram of Pickup Arm Adjustments.
PICKUP ARM POSITIONING

Fig. 26-Cam Wheel Assembly and Details.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON -TEL. MFG. CO.

STROMBERG-CARLSON TEL. MFG. CO. MODELS 5, 6, 7, 9

Fig. 29-Diagram Showing Removal of Record Carrying Arm.

Fig. 30 - Photograph of $\mathrm{St}-31746$ Motor Aligning Gage.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

Fig. 31 - Diagram Showing Use of Motor Aligning Gage.

Seoond, mesh the teath of the large cam gear, Fig. 26 , with the teeth

 of the ciutch inctah of ring cem as shom in Fig. 12.Third, check eccuracy of above operations by inserting the red colored Shipping Pin" through the hole "U'Fig. 22 provided for thie pin in the stud A^{*}, Dig. 12, "ill remain in the notch in the edge of clutch diso.

Pourth, now operate the Refect Record lever Fig. 13 and turn drive shaft
by hand (being sure that red colored ahipping pin is removed) and note that lever arm "B", Pig. 12, comes out of notch "Fi and clears ring cam. Gomplete rotation of large Cam wheel and see that the trianguar bottom of notch in the clutch disc and that the mpring arm"
goes to the presses agalnat the complete cycle lever stop
large cam wheel finishes its single rotation.

Ilgnment of Yotor.

The driving motor oy", Fig. 2, for this No. 5 Phonograph must be accurately

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

Fifth, with all operating parta in their normal positions, as shown in Fis. 1, press Automatic Start" button and rotate main drive shaft N^{m} Fig. 2, about six complete revolutions, closing "Complete Cycle Switch" Contacts "r", Figs. 12 and 17. Remove pressure from "Automatic Start" button (opening starting contacts ${ }^{\circ}{ }^{\circ}$ Figs. 13 and 17) and it will be found that a circuit exists from prong A^{*} to prong ${ }^{\circ}{ }^{\prime \prime}$ of plug, including contact " T " and motor.

Pickup Head Circuit, Fig. 18

(b)The winding of the pickup head is connected to a terminal blook (mounted on under framework of phonograph chassis) by two flexible cords; completely insulated from all metal work of the phonograph. A plug connector is provided in the pickup head stem and a jack connector is provided in the end of pickup arm, thus allouing pickup head to be completely removed by first loosening pickup holding screw (See Fig. l) and then pulling the head directly out from end of pickup arm.

When replacing pickup head, check for correct adjustment by following instructions given in paragraph "a" Section 6.

Note that flexible pickup cord Fig. 18 connects to pin jacks in top of Mickup Transformer, the latter being located near bottom of cabinet. The frame of this pickup transformer must be connected to "ground" by means of a wire extending to either terminal of the voice coil of the dynamie speaker (when No. 5 Phonograph is mounted in a radio cabinet). High pitched "hum" will result if this "grounding" circuit is omitted or is accidentally disconnected.

Another "grounding" connection should be provided, and maintained, from the metal framework of the No. 5 Phonograph chessis and the ground (GND) binding post of the radio receiver chassis. If tils connection is omitted or accidentally opened, high pitched hum will result.

STROLIBERG-CARISON NO. 5 MULTI-EECORD PHONOGRAPH UNIT
Stromberg-Carlson Telephone Mfg. Co. Rochester, New York.

MODELS 5, 6, 7, 9 STROMBERG-CARLSON TEL. MFG. CO.

WEBSTER-CHICAGO CORP.
to inbert a $\frac{\text { shim }}{\text { in }}$ or two on one or nore of
scrow to another). The shins used are shaped like an ordinary washer, cut out at one side ses cut-away view at 52 on photo, showing
shim in place upon one of the Gro mmot
sleeves). Shims can be cut out with shears and purch from thin metal or cardboard-oor an

This Chart is iesigned for the use of the
orvice Mechanic only, and is intended to

For the Service Man

 Service Mechanic only, and is intended to records themselves sonotines squeak against facilitate as rar as possible his work of a center pin. Se that all five wicks arecaring for the Changer nechanism, whether ing in position, including three tiv wicks in
he is called in for the purpose of insuring fres ho is callod in for the purpose of insuring frane of Motor. See that oach wick is
its continued satisfactory operation, or to the

Trouble Shooting

Cases of failure to operate well, will
generally be foumd due to noglect of proper
lubrication, or to taparing with mechanism
after it leaves the factory, or to injurios
acridentaliy sustained as by external vibra-
tion or by inpact of some neary object. There
 "go doad" over though the utmost factory pretion. Damage froin tampering may take the form of bent parts; nover bend any part during oxamination. Be careful navor to push upward
from be ow on Cam Connecting Rod 1 ift 3 Thile mochanisia is operating; bending may result,
and ever slight bending hare might interfere with correct timing of the cycio operations.
Among the principal trouble symptons to
wich such causoz may sive rise, era 1. Mechanism is slow in sthring, or
Stalis during a chavge cycle, but a slight FRRI:ARD PUUR i. ITH TBE HAND SThats it again.
a. Failure to lubricate properly. oil
b. Loose set screws. abnormally low, or motor windings danaged.
If windings are found damaged. remove notor and return it to factory for repair or re-
placoment. See above: "Replacing Motor."
 ENDS OP ITS MINDTNGS. This indicates trouble
 The service mechanic may be called upon
to adapt the Changer to a different power
supply. For this purpose, or in case of any service failt within Rotor, remove entire
Motor (with Record Pin and connecting gear Motor (with Record Pin and connecting gear
drive) from the Changer, and replace it with a suiteble new Sotor. (In ordering a replace
ment Lotor, specify the power supply and maice and model number of phono-radio or other

When mounting roplacement Motor, it is centered between the tro Posts of the Changer that it stands perpendicular to Main Plate
53, and that it has not become bent so as
to wobble. Even though the Posts are stout
 then al so, with a $12^{\prime \prime}$ combination square laid Main Plate. When the new wotor has been attached, with three screws through Gromet
Sleeves 51 (spacers) into its frame, and Record Pin is seen to revolve whthout apprec it has been bent in transit from factory) the correct position of Pin midway between the Posts can be accurately checked in this
 forward by hand. Immediately after the Shelf Plates open and let it fall, turn
Turntable slightly backward, and with other
hand support the record between the Shelf

 the serew or scraws nearest the Shelf Plate should inprove evenness of operafion. However, uless the unevenness was very slight,
it will be necessary for a permanent repair

 thoroughly saturatod (as it nay not of if
insufficient oill or too heavy oil has been used). Lift out all three motor wieks, with twazzars; zee if old oil has become gurnny
(comnonly due to use of low-grade oil). If necessary, clean gurrued-up wicks with good OII; then, before replacing them, drop
alittle good oll into the holes.

Ad justiments

 There are throe adjustments that can bemadd. All are correctly made at the factory,
and ordinarily ned never be altered. Should
it become necessary to remake any of these it become ne, dusary to remaie any of these
adjustants, due to accident or tampering, proceed as follows:
 nent is mado with a screwdriver from abovenet.) If needle comes dom too far fram
edge of record, playing of records will not tert at their beginning. Turn Needle Landing Adjusting Screw very singhty counter dge of record, needle may slip off edge of record. Turn the adjusting scrow clockwise. Compare also Paragraph 12 below. B. ADJUSTING DISTANCE FROX RECORD PIN
AT ICH TRIGGRR WILL TRIP AND CHANGE CYCLE WILL BEGIN. Turn Trip Adjusting Screw 18, away froin it for later tripping. This Changer does not depend, for automatic tripany special grooves at end; it trips whenof Record Pin. The factory adjustment is
 ho modern record will then be cut off before playing is finishod, and none will fail to
trip at end. For cortain records of early trip at end. For certain records of early
nanufature, it may not be possiole to find an adjustrent that will always trip and
never cut off.

WEBSTER-CHICAGO CORP.

in Motor windings. Unless damage is easily seen and repaired, replace Motor.

3. MOTOR IS SLOW IN STARTING.

a. Check oiling, as directed above. It may not have been properly done; old oil may have become gumay.
b. Changer may have been in a very cold place, and may not yet have reached room temperature. Give it a fair chance to get warmed up, before concluding that motor is defective, and proceeding as in Paragraph 2 above.
4. SQUEAKS OR OTAER NOISES, DURING PLAYING OF RECORDS.
a. Check oiling, as directed above. (If squeaks are heard, they will usually be found to come from the records--not from the mechanism).
b. See that all setscrews are tight.
c. Examine Motor windings; esnecially the shading coils (not visible in photos) which encircle a portion of each laminated pole and make the Motor self-starting. If coils have been jarred loose at any point, they may be tightened accordingly.
5. CHANGER IS NOISY WHEN IN CYCLE. Check oiling.
6. MOTION OF PICKOP TOWARD FECORD PIN WILL NOT TRIP CHANGER MECHANISM.
a. It may he found that, instead of trigger being actatated, there is stretching of Swivel Spring 95 (joining the lugs at ends of Swivel Spreaders 90 and 91), allowing the spreaders to open. Increase tension of Spring 95, by bending slightiy the lug on either 8preader. If this increased tension causes needle to jump across the record, needle may be a little out of vertical, radially--1t may "lean" toward center of record. To remedy this, grasp Pickup arm and twist ft, very slightiy, in a clockwise direction, so that it stands vertical, or even leans a little in outward direction.
b. If trigger is being properly actuated, probably Cam Lever 39 is binding against Sub-Plate 41. Look for dirt or obstructions; see that rivets are working freely. If the Lever engages Cam Lever Pawl 34, so that Lift 37 forces its roller up into the groove on Cam Gear 82, and if setscrews are tight, the change cycle must operate, as Cam Gear turns.
7. PRESSING "R" BUTTON DOESN'T TRIP CHANGER MECHANISM.
a. Check Key Control Unit 75: see whether there is an obstruction or a bent part which prevents " $\mathrm{R}^{\prime \prime}$ button from going. clear down to the end of its travel.
b. Examine Reject Rod 78. If it does not trip, even when properly revolved by complete depressing of " $R^{\prime \prime}$ button, the rod has probably been bent, and must be restored in same way. Grasp the two ends and twist it slightly.
c. If Trigger 16 is being properly actuated but without starting a change cycle, see directions above, Paragraph 6-b.
8. PRESSING "M" BUTTON FAILS TO PUT CHANGER MECHANISM OUT OF ACTION SO AS TO ENABLE NANUAL OPERATION. Check Key Control Unit as in preceding paragraph. First see that button goes clear dom; then follow its action through Manual Rod 77.
9. MOTOR STOPS IMMFDIATELY WHEN CHANGER SWITCH IS TURNED OFF DURING A CHANGE CYCLE (instead of continuing to run, as it should, until needle is again upon a record, and then stopping). Or--
10. TURNING CHANGER SWITCH OFF FAILS TO STOP CHANGER AT ALL. Either of these two conditions would indicate fallure of Cycling Switch 85. Cycling Switch operates normally to short-circuit the manual Changer Switch (which may be located in position show at 54, or elsewhere) during change cycle only. Such damage to Cycling Switch (not likely to occur) would necessitate retuming the entire Changer to factory.
11. CHANGER FAILS TO REPEAT LAST RECORD. See Paragraph 6, above.
12. NEEDLE LANDS PROPERLY ON RECORD BUT FAILS TO MOVE OVER INTO RECORD GROOVE. Pickup arm is normally impelled toward center of records by Lead Spring 97. Should a slight increase in its tension be found necessary, this can be easily obtained by bending the lug, to which it is attached, down against Main Plate. If tendency then appears for needle to jump across record, check angle of needle (see Paragraph 6-a above).
13. RECORDS FALL UNEVFNLY UPON TURNTABLE. Seldom objectionable, this is due to Record Pin not being correctly centered between Posts. If necessary, it can be corrected as described above; see "Replacing Motor."
14. LAST RECORD DROPS ON ONE SIDE ONLY. This suggests a Post bent out of perpendicular to Main Plate. Test with square as directed (see "Replacing Motor"). If Post must be straightened, be careful not to bend other parts.

WEBSTER-CHICAGO CORP

15. CHANGER CONTINUES CYCLING. Due to fallure of Lift 37 to fall back out of engagement with Cam Gear. Check the various rivets at which motion occurs, to find the point where friction or binding is interfering with freedom of motion.
16. RECORD IS DRIVEN, BUT NOT HEARD, OR NOT HEARD WITH PROPER VOLUME. See that Pickup cord is plugged in. Check amplifier and speaker and connections to them, thoroughly. If then trouble is still sus pected in pickup, test its output with a vacuum-tube voltmeter. Playing an average record, output should test 1 to 2.5 volts if pickup cartridge is of crystal type, or 0.5 volt if of magnetic type. If pickup cartridge is found not to deliver proper output, remove it and install another.
17. SELECTOR PLATE FAILS TO SEPARATE BOTTOM RECORD FROM STACK. This is due either to a badly warped condition of the record, or to its being of a thickness very comsiderably different from those now in standard use. The design of both Selector and Shelf Plates is such as to accommodate a maximum variation in thickness and flatness of records, but certain records may be found which are so far out as to be impracticable for use in automatic changers.
If Necessary to Disassemble the Changer
Before attempting to remove Sub-Plate Assembly 83, detach Key Control Unit 75 from Main Plate. To do this, start with Control Unit Truss Bar 80. Then take out the screw which holds left end of Adjusting Rod Lever 94. Next remove Adjusting Rod 92 and Adjusting Rod Extension 79. Take out the screw holding Spring 73; then the screws holding Key Control Unit 75 to Main Plate. Rods 77 and 78 can then, with due care, be extracted without bending. Free the Cam

Connecting Rod 58 by loosening setscrew holding Spreader and Hub Assembly 59. SubPlate Assembly can then be detached without bending parts. In reassembling, reverse the procedure.

Replacement Parts

When spare parts or sub-assemblies are required, order them direct from factory, by number and name as given on photos. Where no number is given, order by FULL AND EXACT description, specifying model on which part is to be used.

Questions Not Covered
The sorvice mechanic should not hesitate to inquir of the factory regarding any difficulty cnoovaterad whieh does not eeen to be covered by this Servicing Chart.

Typical Wiring Diagram

WEBSTER-CHICAGO CORP.

© C ohn F. Rider

WEBSTER-CHICAGO CORP

MODELS 21, AC-21, $A C-D C 21 J$

WEBSTER-CHICAGO CORP.

For the Service Man

This Manual is designed for the use of the service mechanic only, and is intended to facilitate as far as possible his work of caring for the changer mechanism, whether he is called in for the purpose of assuring its continued satisfactory operation, or to remedy some difficulty which has appeared. For his convenience, the "Operating Instructions", supplied to user by the factory, may be summarized as follows:

The Changer plays twelve $10^{\prime \prime}$ or ten $12^{\prime \prime}$ records. . . . To reload, revolve the two posts slightly, grasping them underneath the Shelf Plates. Turn them back after the played records are removed; they will fall and lock when in proper position. Then place the new records on the Shelf Plates and push " R " button to put Changer in operation. . . . To play the other size records, turn the knob at top of each post until proper figure is opposite pointer, and press the "10" or "12" button, to agree with pointer setting. . . . To reject a record (or to start a change cycle as for testing purposes), simply press the "R" (Release or Reject) button, at any time while needle is upon a record. . . . To play manually, turn plates out of the way as for reloading, and press " M " button.
(What are here called the "plates" of the Changer are frequently known among mechanics as "blades" - a name best avoided when talking with users because it may convey to some an exaggerated impression of danger in the movement of these parts.)

lllustrations

The three photos illustrate all vital parts of the Changer. Letters are used alphabetically, to refer to points on the photos; thus, Motor Oiling Holes "AI" are found by simply glancing down Column A (left side of photo A-B) to letters AI. Reference letters must NOT be used for ordering parts: Order only by the factory numbers. Where no number is given, part cannot be separately supplied; order the Assembly containing it.

Oiling (reprinted from Operating instructions)

The Changer should be lubricated once a year with about a dozen drops of a good light machine ofl at each of the following 6 points. All points can be reached from above, through holes in the mounting plate as follows:

No. 1) Three oil holes on motor gear
No. 2) housing. Reach all three
No. 3) through two holes AI.

WEBSTER-CHICAGO CORP.

No. 4
Through hole marked AJ, drop the oll upon flat surface of cam. It will distribute itself to proper points.

No. 5 Through hole marked AK, see felt wick, and drop the oil directly upon 1 t.

No. 6 Through nole marked AL, see felt wick, and drop the oll directly upon 1 t.

To Check ofling

If squeaks are heard, compare the squeak with and without a load of records; any stack of records in motion is likely to squeak a little against a pin through their center. This can be corrected by rubbing a little wax on record pin. See that all five wicks are in position, including three $1 / 4^{\prime \prime}$ round wicks in frame of motor, one washer-shaped wick ("No. 5") on Lift DK, and one ("No. 6") on Cam Lever DI. See that each wick 1 s thoroughly saturated (as 1t may not be if insufficient oll or too heavy oll has been used.) Lift out all three motor wicks, with tweezers; see if old o1l has become gummy (commoniy due to use of low-grade oll or low viscosity 011). If necessary, clean gummed-up w1cks with kerosene. See that each is saturated with good oil; then, before replacing them, $\frac{d r o p}{\text { a little good oil into the holes. The }}$ gear box of the Motor is packed with a sem1-fluid grease at the factory, and it should never be necessary to take 1t apart for lubrication purposes.
General Description of the Change Cycle
An automatic record player for records of two sizes has three principal duties to perform. These duties are here performed by three mechanisms, inter-connected and built together, but largely separate in their operation.
(1) The record-changing mechanism-brought into operation originally by the contact of Lifter Cam DH with Pawl DJ-is the simplest of the three. It is driven by the cam groove (visible on under side in photo E-F) of Cam Gear DC. As Cam Lever DI is forced, by the Pawl, out underneath Lift DK (which is shown revolved to the right for visibility) the Lift rises and forces roller DE into the under groove in Cam Gear. The motion is transferred to Rear Changer Shaft (at ED) through Cam Connecting Rod DB (EH), thence through Changer Conrecting Rod FG to Front Changer Shaft BB.
(2) The pickup-operating mechanism--likewise brought into operation originally by the cam-and-pawl action upon Cam Lever DI-is driven in part by the groove in upper (visible) side of Cam Gear DC. As cam Lever is forced out, at the beginning of the change cycle, against Link FO, it causes the Link to push upward upon Pickup

Plunger CA , thus lifting needle from record. The same pressure upon Link FO works, through Guide Arm CJ, to force Stud down into the groove on the Cam Gear. This rotates the pickup arm, while P1ckup Plunger CA holds it up off of record. It is rotated first out beyond the turntable until Selector Plates BK have dropped the next record, then rotated back to proper position to start playing.
(3) The mechanism for bringing needle into correct starting position must operate accurately for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records. Partly due to this requirement, the starting position is not determined by the cam action. The upper groove on Cam Gear is designed so that it, acting alone, would carry the needle farther back toward record pin than would ever be desirable as a starting adjustment. Travel of pickup arm toward Record Pin is then stopped, at proper point for lowering onto the record, by action of Lever Hub CQ. The stopping takes place as lug CQ (upon the Lever Hub) strikes the shoulder on Rod FP. This enables the ent1re mechanism rotated by cam action on Guide Arm CJ to travel on past the proper point of rotation for recordstarting, while the pickup arm 1tself, which is held rigid to Lever Hub CQ, is accurately stopped at proper record-starting point.

Correct adjustment for starting position of needle requires, therefore, only correct adjustment of Rods FL and FP; the radial difference of $l^{\prime \prime}$ between correct starting position for $10^{\prime \prime}$ and $12^{\prime \prime}$ records is taken care of by exact dimensioning, at the factory, of surfaces at right end of Rod FL which stop against the "10" and "12" key stems. Due to this, when Adjusting Cam at FM is turned (as directed below under Adjustment A) the starting position of needle is simultaneously altered for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records.

Adiustments

There are two adjustments that can be made, FROM ABOVE: CHANGER NEED NOT BE REMOVED FROM CABINET. All adjustments are correctly made at the factory, and ordinarlly need never be altered. Should $1 t$ become necessary to readjust, due to accident or tampering, proceed as follows:
A. ADJUSTING LANDING POSITION OF NEEDLE ON THE RECORD. If needle comes down on the sound track, playing of records will not start at their beginning. Insert screw driver through hole AH. Turn Screw head on Needle Landing Adjusting Cam FM very slightly counter-clockwise. If needle comes down too close to outer edge of record, or out beyond edge of record, turn Adjusting Cam clockwise.

The factory adjustment of needle landing is $1 / 8^{\prime \prime}$ in from outer edge of record.

Compare also Paragraph 12 below.
B. ADJUSTING HEIGHT TO WHICH PICKUP ARM RISES. The arm should rise, during the

MODELS 21, AC-21, $A C-D C 21 J$

WEBSTER-CHICAGO CORP.

 Properly manufactured records have a uni-
form semi-circular edge and can be success form semi-circular edge and can be succes
fully handled by record changers, even
though the records vary considerably in thickness.
 Records that prove troublesome in the sel-
ecting or slicing process can usually be
corrected by using a piece of fine sand
paper or emory cloth to touch up the edge. paper or emory cloth to touch up the edge. 18. AUDIO HOWL. Record changer not
iloating on cushions or spring mouting.

19 TURNTABLE IS TIGHT This turntable 19. TURNTABLE IS TIGHT. This turntable

 pull up.

it is released from the trigger.
9. TRIPS TOO SOON OR BEFORE RECORD HAS
FINISHED PLAYING. This can be caused by

 direction a half-turn or whatever 1s
essary to make tone arm trip on $1 / 4^{n}$

號
 ing adjusting cam FM is reversed. Should
contact lug on adjusting rod extension FL
on the long side of cam. Check pickup on the long side of cam. Check pickup
leader spring EU. It may have become
loose; more tension can be given it by
 to adjusting rod FP binding and not measur-
ing properly. If found to be bent, should be straightened to correct shape so that
will operate freely.

12: NEEDLE LANDS PROPERLY ON RECORD BUT
FAILS TO MOVE OVER INTO RECORD GROOVE.
PIckup arm is normally impelled toward Pickup armeis normalead Spring EU.
center of records by Lead in be
Should a slight increase in its tension be

$$
2
$$

 the turntable shaft and the Universal to mopor and turntable shafts, then tighten
motor mounting screws securely.
14. LAST RECORD DROPS ON ONE SIDE ONLY.
a. This suggests a Changer Post bent out
of perpendicular to Main Plate. If Post
must be straightened, be careful not to
bend other parts.
b. one selector set for 10 while
playing 12 records.

2. MUIOK HAILS QO RUN, EVEN WHEN IT IS
ENTIRELY DISCONNGCTED FROM OTHER WIRING

| 124568 | Pickup plunger CA |
| :---: | :---: |
| 124537 | 7 Lifter guide CB |
| 26 AO20 | Hinge spring screw CC |
| 214004 | Hinge spring \cdot. CD |
| 114718 | Key control assembly CE |
| 124097 | 7 Pickup plunger spring CF |
| 124077 | 7 Manual key rod CG |
| 124565 | 5 Rejection rod CH |
| 124096 | 6 Pickup plunger sleeve CI |
| Swivel | guide arm $\mathrm{CJ}^{\text {d }}$ |
| 11 A714 | Swivel tube \&trunnion assm. CK |
| 124072 | 2 Trunnion should.screw (2).. CL |
| Clutch | release roller |
| 12.4573 | 3 Guide arm spring CN |
| 124089 | Swivel spreader spring CO |
| 12 A 709 | Spring CP |
| 11 A726 | 6 Clutch assembly CQ |
| 11 A 72 | 4 Clutch Lever \& sleeve assm . CR |
| 12A593 | 3 Clutch lever \& sleeve spg .. CS |
| 12454' | 7 Clutch spring retainer CT |

Replacing Motor

The service mechanic may be called upon to adapt the Changer to a different power supply. For this purpose, or in case of any serious fault within Motor, remove entire Motor EA from the Changer, and replace it with a suitable new Motor. See that Motor Frame is well grounded by wire, DF, (in photo C-D) soldered to lug on Sub-Plate DG. (In ordering a replacement Motor, specify the power sunply and give Model Number at EQ; also make and model number of phono-radio or other type of installation.)

AUTOMATIC RECORD CHANGER

Operating Instructions

Your - WEBSTER-CHICACO - Automatic Record Changer will multiply many-fold your enjoyment of recorded music. These instructions are written for the purpose of enabling you to get the benefits this equipment affords. With proper care, it should give many years of satisfactory service. With it, you can enjoy from 15 minutes to nearly an hour of your favorite music without interruption, and without attention to the instrument.

MODERN RECORDING

Modern records are made by electrical processes and the bringing out of their full tonal perfection requires a well-designed electrical pickup such as is provided in this Record Changer.

Fully as remarkable is the wide variety of selections that are obtainable. They range from the latest hit tunes played by the most popular bands, to complete operas and symphonies recorded by the world's leading artists. These longer works are to be had in the form of a set of double sided records so arranged that the first half of the work is heard by playing one side of all the records, and the last half by playing the other side.

MOTOR AND POWER SUPPLY

The Changer is equipped with a constant-speed selfstarting motor. Under all normal conditions it starts automatically and runs at correct speed.

Each Changer is designed to operate on a certain voltage and frequency (cycles) only. Be sure to look at your nameplate and see that the instrument you have conforms to your power supply before plugging in cord.

SETTING FOR RECORD SIZE

This mechanism plays up to twelve $10^{\prime \prime}$ records or ten 12 " records at one set-up. All records must be the same size for each set-up.

On each post you will see two plates (shown in large drawing). The lower one, on which the records rest, is the shelf plate. The upper one is the selector plate, which takes from the bottom of the stack the next record to be played.

To set for record size two things must be done.
(1) Clasp one of the posts just underneath the shelf plate, with thumb and finger of left hand. With right hand, lift knob and turn the selector plate until figure 10 or 12 (whichever size you want to play) is opposite the pointer. Do the same with the other post.
(2) Push button marked 10 , or 12 , as required.

LOADING

See that both shelf plates are turned toward center of turntable. If they are not, again grasp the post just below shelf plate, and rotate post until it falls into proper position, with both shelf plates correctly turned toward center of turntable. Place the stack of records over center pin so they will rest on the two shelf plates.

ADJUSTING NEEDLE SO THAT PLAYING WILL START AT BEGINNING OF RECORD

The correct adjustment is made at the factory, and thereafter no further adjustment may be necessary. Should need arise, the position at which needle lowers to record can be adjusted by inserting small screw driver thru the hole shown in the illustration. Turn very slightly either way. Clockwise turn moves needle in; counterclockwise moves needle out.

STARTING THE MECHANISM

To start motor and turntable:
(1) Turn the switch to "on" position. (On some models the switch is located in a different place from that shown in illustration.) Motor will then start.
(2) Push button " R ". This will release the first record and start the record-changing mechanism.

REJECTING A RECORD YOU DON'T WANT TO HEAR

Merely press the " R " button. You can do it any time after the needle has come into contact with that record.

REMOVING PLAYED RECORDS

First switch off motor. Then take hold of both posts, just below the shelf plates, and turn them out of the way. Lift the played records from the turntable. Taking hold of posts as before (below shelf plate) move plates until post again falls into playing position. The changer may then be loaded with a new stack of records: see directions above, for loading.

MANUAL OPERATION

To play records one at a time as in an ordinary phonograph-
(1) Remove any records remaining on the turntable: see directions just preceding.
(2) Leave plates turned outward, as for removing played records. Do not turn them back toward center of turntable.
(3) Press button marked " M ". Then place a record on turntable, switch on motor, and lift pickup into position.

OILING (HODEL 210 ON (r)

The changer should be lubricated once a year with about a dozen drops of a good light machine oil at each of the following 6 points. All points can be reached from above, thru holes in the mounting plate, as follows:

No. 1 Three oil holes on motor gear housing. Reach
No. 2 all three thru two holes marked " A " on draw-
No. 3)ing.
No. 4 Thru hole marked " B ", drop the oil upon. fiat surface of cam. It will distribute itself to proper points.
No. 5 Thru hole marked "C", see felt wick, and drop the oil directly upon it.
No. 6 Thru hole marked "D", see felt wick, and drop the oil directly upon it.

OILING (MODEL 22 ONLY)
The changer should be lubricated once a year with about a dozen drops of a good light machine 011 at each of the following 3 points. All points can be reached from above, thru holes in the mounting plate, as follows:

> No. 1. Thru hole marked "A", drop the o1l upon flat surface of cam. It will distribute itself to proper points. No. 2. Thru hole marked "B", see felt wick, No. 3. Thr Arop the oil directly upon 1t. marked "C", see felt wick, and drop the o1l directly upon 1t.

TONE AND VOLUME CONTROL

If the radio or amplifier through which this changer is being played has a tone control, adjustments may be made for various types of musical selections and acoustical conditions.

If it is desirable to control volume by means of the control on the changer, the volume control on the radio or amplifier should be set slightly higher than necessary for the maximum volume level required. If the user prefers to control volume by means of the control on the radio or amplifier, the control on the changer should be set at approximately a "half-way" position. This latter method is not recommended, however, because of the necessity of changing the control setting each time the changer is stopped for reloading.

WEBSTER-CHICAGO CORP

tonal qualities of the kind of records being played.

TURNING OFF

(1) Throw Changer switch to "off" position.
(2.) Lift pickup arm, place it on the pickup rest. (If you happen to turn off the Changer switch while the mechanism is going through a "change cycle," you will notice that it does not stop until the cycle has been completed, and pickup is again in playing position ready to be iifted over onto the pickup rest. If you prefer to turn off your Changer by the use of any other switch than the one on the Changer itself, be sure to turn it off while needle is resting upon a record: otherwise pickup cannot be returned to its rest).
(3) To avoid warping of records, never leave records resting on the shelf plates.

IF CHANGER IS LEFT RUNNING

No damage will be done if you forget to turn off Changer after it has played its entire load of records. It will simply repest the last record until stopped or reloaded.

IF CHANGER WILL NOT GO ON TO NEXT RECORD ABOVE
An old record may occasionally be found (made before the introduction of automatic chanfers) which does not carry the needle close enough to center-pin of turntable, to set the changer mechanism in operation. Should one of these old records be found in the stack, a touch of the "R" button will instantly set the Changer mechanism in action again. Any need for doing this can be avoided by placing the old record at too of stack to be played, so that it will come into position last.

WHEN NOISE DEVELOPS

Noisy scratching indicates worn records. Poor tone is evidence of a worn needle. Some records will wear longer than other's, even if kept equally clean. This is due not only to
quality of manufacture, and care given the records but also to the kind of music recorded.

CARE OF RECORDS
To insure long life for your records requires only slight effort. Do not expose them to heat from the sun, nor to heat from nearby stoves or radiators. Store them preferably in albums, but in any case keep them always in a cool, dry place, resting vertical or flat horizontal. Remove dust and dirt, using soft cloth and light circular motion. If fluids are used for lubricating record surfaces, keep in mind that these often tend to attract dust, and extra effort is necessary to clean it off. Dust is much more troublesome in some localities than in others.

Records may safely be left stacked directiy upon each other (as on the turntable) but should never be left resting on the shelf plates of the Changer. This two-point support, while best for its purpose, is not at all suitable for record storage.

RECORD NEEDLES

Various types and kinds of needles are available for use in phonograph plckups. All have their virtues, as well as their faults, for use In ordinary phonographs, where needles can be changed after each record. For playing ten or more records at one set-up, as with this Changer no attempt should be made to use ordinary steel or fibre points, since continued use of worn points will be ilkely to ruin both quality of reproduction and the records as well. Any kind of needie can be used, which has a point durable enough to play ten records or more without damaging them.

Automatic Record Changer unit is constructed of a minimum number of working parts, and in operation is simple and reliable. As with all mechanical articles, minor adjustments may be necessary at times. Should additional information be required, particulars will be given upon application to the manufacturer.

RIGHT: General Illustration Showing
Name and Location of Parts
SELON: Oil Holes As Seen in Mounting Plate After Lifting off Turntable

WEBSTER-CHICAGO CORP

Model 24 is similar to Models 22 and 23 except for the following: The trip circuit is similar to that used in model 22. The changer posts are similar to those used in model 23 , the rear record post having been changed from two plate assembly to a stationary single plate, i.e.

On Model 22, Onit
For Model 24, Add

On Model 22, Omit
For Model 24, Add

11 All7 Changer Plate Assembly (2 required)
1 1A117 Changer Plate Assembly (1 required) $12 A 737$ Stationary Changer Post (l required) 11 A836 Stationary Changer Plate Assembly (1 required)
17 Al 68 TT Spindle \& Cone Assem.
llB852 TT Spindle \& Housing Assem.
17 A 026 TT Spindle \& Cone Assem.
11 B 835 TT Spindle \& Housing Assem.

FOR THE SERVICE MAN

This Mamual is designed for the use of the Service Mechanic only, and is intended to facilitate as far as possible his work of caring for the changer mechanism, whether he is called in for the purpose of assuring its continued satisfactory operation, or to remedy some difficulty which has appeared. For his convenience, the "Operating Instructions", supplied to user by the factory may be summarized as follows:

The Changer plays twelve $10^{\prime \prime}$ or ten $12^{\prime \prime}$ records. . . To reload, revolve the two posts silghtly, grasping them underneath the Shelf Plates. Turn them back after the played records are removed; they will fall and lock when in proper position. Then place the new records on the Shelf Plates and push " R " button to put Changer in operation. . . . To play the other size records, turn the knob at top of each post until proper figure is opposite pointer, and press the "10" or "12" button, to agree w1th pointer setting. . . . To reject a record (or to start a change cycle as for testing purposes), simply press the " R^{n} (Release or Reject) button, at any time while needle is upon a record. . . . To play manually, turn plates out of the way as for reloading, and press " M " button.
(What are here called the "plates" of the Changer are irequently known among servicemen as "blades" -- a name best avoided when talking with users because it may convey to some an exaggerated impression of danger in the movement of these parts.)

illustrations

The three photos illustrate all vital parts of the Changer. Letters are used alphabetically, to refer to points on the photos. Reference letters must NOT be used for ordering parts: Order only by the factory numbers. Where no number is given, part cannot be separately supplied; order the assembly containing it.

OILING (REPRINTED FROM OPERATING INSTRUCTIONS)

The Changer should be lubricated once a year with about a dozen drops of a good light machine oil at each of the following 3 points. All points can be reached from above, through holes in the mounting plate, as follows:

No. 1. Through hole marked (BH), drop the oll upon flat surface of cam. It will distribute itself to proper points.

WEBSTER-CHICAGO CORP

No. 2. Through hole marked (BE), see felt wick, and drop the oil directly upon 1 t.

No. 3. Through hole marked (BD), see felt wick, and drop the oil directly upon it.

TO CHECK OILING

If squeaks are heard, compare the squeak with and without a load of records, any stack of records in motion is likely to squeak a little against a pin through their center. This can be corrected by rubbing a little wax on the turntable spindle. See that all four felt washer-shapedwicks are in position, including two washer-shaped wicks (AE) on Idler Wheels (AI), one wick ("No. 2") on lifter lever and one ("No. 3") on Cam Lever (DG). See that each wick is thoroughly saturated (as it may not be if insufficient oil or low grade or low viscos1ty oil has been used). ("CAUTION". Do not over saturate the two Idler Wheel oll wicks (AE) as centrifugal force will throw the excessive oil out over the edge of Idler Wheel (AI) and cause loss of traction to turntable, therefore always wipe excess oll off Idler wheels before starting motor.) Also check the two oll wicks on the motor at (EA) to see that they are thoroughly saturated. Also check lubrication on Turntable Spindle bearings. The top bearings can be olled by removing turntable and oiling at (AN) then oll lower bearing from below, also check lubrication at all other bearing points.

general description of the change cycle

An automatic record player for records of two sizes has three principal duties to perform. These duties are here performed by three mechanisms, interconnected and built together, but largely separated in their operation.
(1) The record-changing mechanism -brought into operation originally by the contact of Lifter Cam (DE) with Pawl (DH) is the simplest of the three. It is driven by the cam groove (visible on under side in Photo E-F) of Cam Gear (DC). As Cam Lever (DG) is forced, by the Pawl, out underneath Lift, it rises and forces roller into the groove in underside of Can Gear. The motion is transferred to rear Changer Shaft (at EC) through Cam Connecting Rod (EF), thence through Changer Connecting Rod (FG) to Front Changer Shaft (AR).
(2) The pickup-operating mechanism --like-wise brought into operation originally by the cam-and-pawl action upon Cam Lever (DG) -- is driven in part by the groove in upper (visible) side of Cam Gear (DC). As Cam Lever is forced out, at the beginning of the change cycle, against Link (FN), it causes the Link to push upward upon Pickup

Plunger (CB), thus lifting needle from record. The same pressure upon Link (FN) works, through Guide Arm (CK), to force Stud down into the groove on the Cam Gear (DC). This moves the pickup arm with a swinging movement while Pickup Plunger (CA) holds it up off of record. It first swings out beyond the turntable until Shelf Plates have released a record, then swings back to proper position to start playing.
(3) The mechanism for bringing needle into correct starting position must operate accurately for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records. Partly due to this requirement, the starting position is not determined by the cam action. The upper groove on Cam Gear is designed so that it, acting alone, would carry the Pickup Arm farther toward the Turntable spindle than would ever be desirable as a starting adjustment. Travel of pickup arm toward Turntable Spindle is then stopped at proper point for lowering onto the record, by action of Stop Lever (CP). The stopping takes place as lug (CP) (on the Stop Lever) strikes the shoulder on Rod (FP). This enables the entire mechan 1 sm , rotated by cam action on Guide Arm (CK), to travel on past the proper point of rotation for recordstarting, while the pickup arm itself, which is held rigid to Stop Lever (CP) is accurately stopped at proper record-starting point.

Correct adjustment for starting position of needle requires, therefore, only correct ad justment of Rods (FL and FP); the radial difference of 1 " between correct starting position for $10^{\prime \prime}$ and $12^{\prime \prime}$ records is taken care of by exact dimensioning, at the factory, of surfaces at right end of Rod (FL) which stop against the "10" and "12" kev stems. Due to this, when Adjusting Cam (FM) is turned (as directed below under Adjustment A) the starting position of needle is simultaneously altered for both $10^{\prime \prime}$ and 12^{n} records.

AD JUSTMENTS

There are two adjustments that can be made, FROM ABOVE: CHANGER NEED NOT BE REMOVED FROM CABINET. All adjustments are correctly made at the factory, and ordinarily need never be altered. Should it become necessary to readjust, due to accident or tampering, proceed as follows:
A. ADJUST ING LANDING POSITION OF NEEDLE ON THE RECORD. If needle comes down on the sound track, playing of records will not start at their beginning. Insert screw driver through hole (BG). Turn Screw head on Needle Landing Adjusting Cam (FM) very slightly counter-clockwise. If needle comes down too close to outer edge of record, or out beyond edge of record, turn Adjusting Cam clockwise.

The factory adjustment of needle landing is $1 / 8^{\prime \prime}$ in from outer edge of record.

Compare also Paragraph 12.

WEBSTER-CHICAGO CORP.

some heavy object. In addition, there is always the possibility that any kind of spring may "go dead" (cease to operate without any visible breakage) even though the utmost factory precautions are taken against 1t -- or that set screws may work loose due to some external vibration. For tightening set screws, a No. 8 size Allen (hexagon) wrench is required: Be sure that set screws are properly seated on the holes or flats provided. Damage from tampering is likely to take the form of bent parts; never bend any part during examination.

Among the principal trouble symptoms to which such causes may give rise, are the following:

1. MECHANISM IS SLOW IN STARTING, OR MOTOR GETS HOT.

May be caused by:
a. Fallure to lubricate properly. 011 thoroughly. See oiling instructions.
b. Check voltage. Line voltage may be abnormally low or high.
c. Motor windings damaged. If windings are found damaged, remove motor and return it to factory for repair or replacement.
2. MOTOR FAILS TO RUN, EVEN WHEN IT IS ENTIRELY DISCONNECTED FROM OTHER WIRING AND PROPER VOLTAGE IS APPLIED DIRECTLY TO THE TWO ENDS OF ITS WINDINGS.
a. This indicates trouble in Motor windings. Unless the damage is easily seen and repaired, replace motor, as above described.
b. Check motor rotor by turning the drive sleeve with finger and thumb if it seems to bind slightly it can usually be corrected by lightly tapping the bottom bearing bridge, this will align the two self aligning shaft bearings and allow the rotor to turn freely.
3. MOTOR IS SLOW IN STARTING.
a. Check olling, as directed above. It may not have been properly done; old 011 may have become gunmy.
b. Changer may have been in a very cold place, and may not yet have reached room temperature. Give it a fair chance to get warmed up before concluding that Motor is defective, and proceed as described above (see paragraph 2.).
4. SQUEAKS OR OTHER NOISES, DURING PLAYING OF RECORDS.

Check olling, as directed above. (If squeaks are heard, they will usually be found to come from the records--not from the mechanism.)
See "To Check O1ling".
5. CHANGER IS NOISY WHEN IN CYCLE. Check olling. Also see if any part has become loose or bent and is rubbing against
a moving part, such as the swivel Guide Arm, (CK) against the Cam Gear, (DC).
6. MOTION OF PICKUP TOWARD TURNTABLE

SPINDLE WILL NOT TRIP CHANGER MECHANISM.
a. See that the manual button is not pressed down. See that shipping bolts are removed.
b. If trigger (DL) is being properly actuated, probably Cam Lever (DG) is binding against Sub-Plate (DI). Look for dirt or obstructions: such as the manual rod (CI) binding in hole in SubrPlate; See that Pawl (DH) and trigger (DL) are working freely on their rivets.
c. Check to see that there is not too much clearance between the trigger (DL) and the clutch lever assembly (CS). To correct, turn clutch adJusting screw (DM) counter clockwise until clearance is approximately $1 / 64$ " between trigger and " U " shaped bracket on clutch lever assembly (CS).
d. Check clutch release jack (FO) to see that it has returned to a neutral position as it may be sticking and holding clutch open. If clutch is held open, clutch lever assembly (CR) will not be actuated to trip trigger (DL) and change cycle will not start.
7. PRESSIING "R" BUTTON DOESN'T TRIP CHANGER MECHANISM.
a. Probably due to shipping bolts not being removed, causing a bind on manual rod (CI) or manual button is down.
b. Check Key Control Unit (cG). See whether there is an obstruction or a bent part which prevents "R" button from going clear down to the end of its travel.
c. Examine Reject Rod (CH). If it does not trip, even when properly revolved by complete depressing of " R " button, the rod has probably been bent, and must be restored in same way. Grasp the two ends and twist it slightly.
d. If Trigger (DL) is being properly actuated but without starting a change cycle, see directions above, Paragraph 6.
8. PRESSING "M" BUTTON FAILS TO PUT CHANGER MECHANISM OUT OF ACTION SO AS TO ENABLE MANUAL OPERATION.
a. First see that " M " button goes clear down; then follow its action through Manual Rod (CI).
b. Probably caused by the manual rod being bent and not projecting up through sub-plate (DI) and stopping cam lever ($D G$) when it is released from the trigger (DL).
9. TRIPS TOO SOON OR BEFORE RECORD HAS FINISHED PLAYING.
a. This can be caused by too little clearance between the trigger (DL)

WEBSTER-CHICAGO CORP

and the clutch lever assembly (CS). To get more clearance on this adjustment, turn the adjusting screw (DM) in a clockwise direction a half-turn or whatever is necessary to make tone arm trip on $1 / 4^{\prime \prime}$ motion.
b. If friction clutch (CR) is not being opened momentarily by the motion of release lever at (FB) which is actuated by the four raised portions on can gear (DC), then normal tracking of tone arm on record will cause clutch lever (CR) to trip trigger. To correct, adjust screw (FB) so that clutch opens momentarily approximately 1/64", thereby allowing "U" bracket on clutch lever to be reset to normal each time clutch opens.
10. TONE ARM FALLS OFF RECORD. Needle sits down too close to edge of records, not adjusted in far enough, or needle landing adjusting cam (FM) is reversed. Should contact lug on adjusting rod extension (FL) on the long side of cam. Also check pickup leader spring (EN). It may have become loose; more tension can be given it by bending down lug.
11. TONE ARM SITS DOWN TOO FAR IN.
a. Probably due to adjusting rod (FP) binding and not measuring properly. If found to be bent, it should be straightened to correct shape so that it will operate free1y. Read Item \#3 on General Description of Change Cycle.
12. NLEDLE LANDS PROPERLY ON RECORD BUT FAILS TO MOVE OVER INTO RECORD GROOVE.

P1ckup arm is normally impelled toward center of records by Lead Spring (EN). Should a slight increase in its tension be found necessary, this can be easily obtained by slightly bending the lug, to which it is attached, down against Main Plate.
13. "WOW" IN RECORD REPRODUCTION.
a. Record is warped or otherwise defective or instrument is not being operated at normal room ternperature, $70^{\circ} \mathrm{F}$.
b. Also may be caused by oll on Idler wheels, or inside rim of turntable. (See "To Check o1ling" Caution note.)
14. RECORD DROPS ON ONE SIDE ONLY.
a. This suggests a Changer post bent out of perperdicular to Main Plate. If Post must be straightened, be careful not to bend other parts.
b. One selector set for $10^{\prime \prime}$ while playing $12^{\prime \prime}$ records.
15. CHANGER CONTINUES CYCLING.
a. Probably due to fallure of Lift to be drawn back out of engagement with Cam Gear (DC). Check the various rivets at which motion occurs, to find the point where friction or binding is interfering with freedom of motion.
D. Make sure that trigger spring is not disconnected. Also that clearance between trigger (DL) and clutch lever (CR) is approximately $1 / 64^{\prime \prime}$ max. A sticking pawl (DH) w1ll also cause this condition.
16. RECORD IS DRIVEN, BUT NOT HEARD, OR NOT HEARD WITH PROPER VOLUME. See that p1ckup cord is plugged in. Check amplifier and speaker and connections to them, thoroughly. If then trouble
is still suspected in pickup cartridge (EQ), test 1 ts output with a vaccum-tube voltmeter. Average voltage at 1000 C.P.S. using an Audio Test Record No. I should read from .5 volts to 2.5 volts depending upon type of crystal cartridge used. If pickup cartridge is found not to deliver proper output, remove it and install another.
17. RECORD JAMS. Most slicing trouble (record jams) is due to off-size, defective or warped records and is no fault of the record changer or record changer adjustments. Properly manufactured records have a uniform semi-circular edge and can be successfully handled by record changers, even though the records vary considerably in thickness.

Cross section of record edge showing a perfect record and three imperfect edges.

Records that prove troublesome in the selecting or slicing process can usually be corrected by using a plece of fine sand paper or emory cloth to round up the edges.
18. AUDIO HOWL. Record changer not floating on cushions or spring mounting. See that shipping bolts are removed. If unit still does not float, loosen the nuts or mounting assembly allowing unit to rise and float.
19. TURNTABLE IS TIGHT. Th1s turntable is assembied to the turntable spindle with a taper lock fit in the center. To remove, grasp turntable with both hands, turn slightly forward and backward, at the same time pulling upward. When replacing turntable, care should be taken not to injure Rubber Idier mrive Wheels (AI).

CAUTION:

If P1ckup cartridge has a permanent point sapphire needle, utmost care must be taken to avoid breakage. Should the needle be broken it is necessary to replace the entire cartridge. Never attempt to remove permanent point sapphire needle from the cartridge since it 15 an integral part and cannot be removed without damaging the cartridge. Needles can only be replaced in cartridges having a needle screw.

replacement parts

When spare parts or sub-assemblies are required, order them direct from the factory, by factory number and name as given on photos -- not by reference letters. Where no number is given, order by full and exact description. Always specify Serial Number and Model Number as seen at (EJ). Parts shown in above photographs, but not given factory numbers, are furnished only in assemblies as shown with factory numbers. Refer to replacement parts list.

(C)John F. Rider

| (Give Model No. as at EM) Motor.................... | EA |
| :---: | :---: |
| (Give Model No.) Main Mtg. Plate................... | EB |
| Stationary Changer Shaft Assem...........114840 | EC |
| Changer Shaft Collar \& Screw Assem....11A736 | ED |
| Spring Roller..l12A045 | EE |
| Changer Spreader Spring........................12A088 | EF |
| Cam Connecting Rod Assembly................ 11 ll 14 | EG |
| Return Spring... 124087 | EH |
| Return Spring Catch..............................12A525 | EI |
| Connecting Rod Nut................................ 26.2028 | EJ |
| Cam Connecting Rod Lift Spring...........12A083 | EK |
| Adj. Rod Lever Spring............................12A577 | EL |
| Changer Serial \& Model No............................... | EM |
| Lower Swivel Spreader............................12A543 | EN |
| Plckup Leader Spring..............................12A574 | EC |
| Upper Swivel Spreader...........................12A542 | EP |
| (3) Post Nut... 124053 | EQ |
| (3) Lockwasher..\#1228 | ER |
| (Give Model No.) Pickup Cartridge................. | ES |
| (Give Model No.) Lift Plate............................ | ET |

FA Ground Lead 20A295
FB Washer 25A2519
FC Rubber Grommet 25A032
FD Motor Mounting Stud 12A739
FE M-21 Plug \& \#7002 shell
FF Trip Adjusting Eam
FG Changer Connecting Rod Assem. lla842
FH Tee Nut
FI Manual \& Rejecting Rod Spring $12 A 090$
FJ Changer Lever \& Hub Assem. - Front
FK Adjusting Rod Spring 12A087
FL Adjusting Rod Extension
FM Idler Gear 12A560
FN Needle Landing Adjusting Cam
FO Link (Swivel Guide Arm Assem. 1lA730)
FP Adjusting Rod Bracket 12A036
FQ Adjusting Rod
FR Adjusting Rod Assembly 11B717

WEBSTER-CHICAGO CORP.

FOR THE SERVICE MAN

This Manual is designed for the use of the Service Mechanic only, and is intended to facilitate as far as possible his work of caring for the changer mechanism, whether he is called in for the purpose of assuring its continued satisfactory operation, or to remedy some difficulty which has appeared. For his convenience, the "Operating Instructions", supplied to user by the factory, may be summarized as follows:

The Changer plays twelve $10^{\prime \prime}$ or ten $12^{\prime \prime}$ records. . . To reload, revolve the two posts slightly, grasping them underneath the Shelf Plates. Turn them back after the played records are removed; they will fall and lock when in proper position. Then place the new records on the Shelf Plates and push "R" button to put Changer in operation. . . . To play the other size records, turn the knob at top of front post until proper figure is opposite pointer, also raise and turn rear stationary changer plate until proper figure is facing turntable spindle, and press the $10^{\prime \prime}$ or $12^{\prime \prime}$ button, to agree with pointer setting. . . To reject a record (or to start a change cycle as for testing purposes), simply press the "R" (Release or Reject) button, at any time while needle is upon a record. . . . To play manually, turn plates out of the way as for reloading, and press " M " button. (What are here called the "plates" of the Changer are frequently known among servicemen as "blades" - a name best avoided when talking with users because it may convey to some an exaggerated impression of danger in the movement of these parts.)

ILLUSTRATIONS

The three photos illustrate all vital parts of the Changer. Letters are used alphabetically, to refer to points on the photos. Reference letters must NOT be used for ordering parts: Order only by the factory numbers. Where no number is given, part cannot be separately supplied; order the assembly containing it.

OILING (REPRINTED FROM OPERATING INSTRUCTIONS)

The Changer should be lubricated once a year with about a dozen drops of a good light machine oil at each of the following 3 po ints. All points can be reached from above, through holes in the mounting plate, as follows:

No. 1. Through hole marked (BH), drop the o1l upon flat surface of cam. It will distribute itself to proper points.

No. 2. Through hole marked (BE), see felt wick, and drop the oil directly upon 1 t.

No. 3. Through hole marked (BD), see felt wick, and drop the oil directly upon it.

TO CHECK OILING

If squeaks are heard, compare the squeak with and without a load of records; any stack of records in motion is likely to squeak a little against a pin through their center. This can be corrected by rubbing a little wax on the turntable spindle. See that all four felt washer-shaped wicks are in position, including two washer-shaped wicks on Idier Wheels (AH), one wick ("No. 2") on Lift (DI) and one ("No. 3") on Cam Lever (DH). See that each wick is thoroughly saturated (as it may not be if insufficient oil or low grade or low viscosity oll has been used. ("CAUTION". Do not over saturate the two Idler Wheel 011 wicks (AE) as centrifugal force will throw the excessive oil out over the edge of Idler Wheel (AH) and cause loss of traction to turntable, therefore always wipe excess oll off Idler Wheels before starting motor.) Also check the two oll wicks on the motor at (EA) to see that they are thoroughly saturated. Also check lubrication on Turntable Spindle bearings. The top bearings can be olled by removing turntable and oiling at (AN) then 011 lower bearing from below, also check lubrication at all other bearing points.

general description of the change cycle

An automatic record player for records of two sizes has three principal duties to perform. These duties are here performed by three mechanisms, interconnected and built together, but largely separated in their operation.
(1) The record-changing mechanism broucht into operation originally by the contact of Lifter Cam (DF) with Pawl (DM) -is the simplest of the three. It is driven by the cam groove (visible on under side in Photo E-F) of Cam Gear (DC). As Cam Lever (DH) is forced, by the Pawl, out underneath Lift (DI) (which is shown revolved to the right for visibility) the Lift rises and forces roller (DE) into the under groove in Cam Gear. The motion is transferred to Stationary Changer Shaft (at EC) through Cam Connecting Rod (DB) or (EG), thence through Changer Connecting Rod (FG) to Front Changer Shaft (AR).
(2) The pickup-operating mechanism --like-wise brought into operation origirally by the cam-and-pawl action upon Cam Lever (DH) -- is driven in part by the groove in upper (visible) side of Cam Gear (DC). As Cann Lever is forced out, at the beginning of the charige cycle, against Link (FO), it causes the Link to push upward upon Pickup Plunger (CA), thus lifting needle from

WEBSTER-CHICAGO CORP.

record. The same pressure upon Link (FO) works, through Guide Arm (CK), to force Stud (DD) down into the groove on the Cam Gear (DC). This moves the pickup arm with a swinging movement while Pickup Plunger (CA) holds it up off of record. It first swings out beyond the turntable until Shelf Plates have released a record, then swings back to proper position to start playing.
(3) The mechanism for bringing needle into correct starting position must operate accurately for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records. Partiy due to this requirement, the starting position is not determined by the cam action. The upper groove on Cam Gear is designed so that it, acting alone, would carry the Pickup Arm farther toward the Turntable spindle than would ever be desirable as a starting adjustment. Travel of pickup arm toward Turntable Spindle is then stopped at proper point for lowering onto the record, by action of Stop Lever (CP). The stopping takes place as lug (CP) (on the Stop Lever) strikes the shoulder on Rod (FQ). This enables the entire mechanism, rotated by cam action on Guide Arm (CK), to travel on past the proper point of rotation for recordstarting, while the pickup arm itself, which is held rigid to Stop Lever (CP) is accurately stopped at proper record-starting point.

Correct adjustment for starting position of needle requires, therefore, only correct adjustment of Rods (FL and $F Q$); the radial difference of $l^{\prime \prime}$ between correct starting position for $10^{\prime \prime}$ and $12^{\prime \prime}$ records is taken care of by exact dimensioning, at the factory, of surfaces at right end of Rod (FL) which stop against the " 10 " and "12" key stems. Due to this, when Adjusting Cam (FN) is turned (as directed below under Adjustment A) the starting position of needle is simultaneously altered for both $10^{\prime \prime}$ and 12" records.

ADJUSTMENTS

There are three adjustments that can be nade, FROM ABOVE: CHANGER NEED NOT BE REMOVED FROM CABINET. All adjustments are correctly made at the factory, and ordinarily need never be altered. Should it become necessary to readjust, due to accident or tampering, proceed as follows:

A. ADJUSTING LANDING POSITION OF NEEDLE

 ON THE RECORD. If needle comes down on the sound track, playing of records will not start at their beginning. Insert screw driver through hole (BG). Turn Screw head on Needle Landing Adjusting Cam (FN) very slightly counter-clockwise. If needle comes down too close to outer edge of record, or out beyond edge of record, turn Adjusting Cam clockwise.The factory adjustment of needle landing is $1 / 8^{\prime \prime}$ in fron outer edge of record.

Compare also Paragraph 12.
B. ADJUSTING HEIGHT TO WHICH PICKUP ARM RISES. The arm should rise, during the change cycle, high enough so that it clears by only $1 / 4^{\prime \prime}$ the record above it, resting on shelf plates. (Be careful, before deciding that readjustment is necessary, to see that the record at bottom of stack is not a warped one.) To make this adjustment, loosen Lock Nut (CH) and turn Pickup Sleeve (CF) to lengthen or shorten Pickup Plunger (CA). However, if Pickup is made to rise too close to bottom record, Stud (DD) on Guide Arm (CK) may never clear the Cam Gear. In making this adjustment, therefore, care must be taken to see that Pickup Arm does not keep moving back and forth continuously (due to Stud remaining in engagement with groove). When correct adjustrent is found, tighten Lock Nut securely.
C. ADJUSTING DISTANCE FROM TURNTABLE SPINDLE AT WHICH TRIGGER WILL TRIP AND CHANGE CYCLE WILL BEGIN. Insert screwdriver through trip adjusting hole (BB). Turn screw head on Trip Adjusting Cam (FF) clockwise for earlier tripping, or counterclockise for later tripping. (Effect is to alter position of the Carn which strikes Trigger (DN). It may be found that Cam has been revolved through a half-turn; in this case, above directions would apply only after cam has been returned to correct position by revolving screw head one-half turn).

This Changer does not depend, for automatic tripping, on the recoras being provided with any special grooves at end; it trips whenever needle comes within a certain distance of T.T. Spindle. The factory adjustinent is for $1-13 / 16^{\prime \prime}$ to $1-15 / 16^{\prime \prime}$ fron center of T.T. Spindle. This is generally the most satisfactory adjustment; no modern record will then be cut off before playing is finished, and none will fail to trip at end. For certain records of early manufacture, it may be impossible to find an adjustment that will always trip and never cut off, but these records hay always be played manually.

REPLACING MOTOR

The service man may be called upon to adapt the Changer to a different power supply. For this purpose, or in case of any serious fault within Motor, remove entire Motor (EA) from the Changer and replace it with a suitable new Motor. See that Motor Frame is well grounded by wire, (FA) (in photo E-F). (In ordering a replacement Motor, specify the power supply and give Model Number at EM; also Make and Model Number of phonoradio or other type of installation.)

TROUBLE SHOOTING

Cases of failure to operate satisfactorily will generilly be found due either to neglect of proper lubrication, or to tampering with the
mechanism after it leaves the factory, or to injuries accidentally sustained as by external vibration or by impact of some heavy object. In addition, there is always the possibility that any kind of spring may "go dead" (cease to operate without any visible breakage) even though the utmost factory precautions are taken against it -- or that set screws may work loose due to some external vibration. For tightening set screws, a No. 8 size Allen (hexagon) wrench is required: Be sure that set screws are properly seated on the holes or plats provided. Damage from tampering is likely to take the form of bent parts; never bend any part during examination.

Among the principal trouble symptoms to which such causes may give rise, are the following:

1. MECHANISM IS SLOW IN STARTING, OR MOTOR GETS HOT.

May be caused by:
a. Fallure to lubricate properly. 011 thoroughly. See olling instructions.
b. Check voltage. Line voltage may be abnormally low or high.
c. Motor windings damaged. If windings are found damaged, remove motor and return it to factory for repair or replacement.
2. MOTOR FAILS TO RUN, EVEN WHEN IT IS EVTIRELY DISCONNECTED FROM OTHER WIRING AND PROPER VOLTAGE IS APPLIED DIRECTLY TO THE TWO ENDS OF ITS WINDINGS.
a. This indicates trouble in Motor windings. Unless the damage is easily seen and reoaired, replace motor, as above described.
b. Check motor rotor by turning the drive sleeve with finger and thumb, 11 it seems to bind slightly it can usually be corrected by lightly tapDing the bottom bearing bridge, this will align the two self allgning shaft bearings and allow the rotor to turn freely.
3. MOTOR IS SLOW IN STARTING.
a. Check oiling, as directed above. It may not have been properly done; old 011 may have become gummy.
b. Changer may. have been in a very cold place, and may not yet have reached room temperature. Give it a lair chance to get warmed up before concluding that Motor is defective, and proceeding as in Paragraph 2 above.
4. SQUEAKS OR OTHER NOISES, DURING PLAYING OF RECORDS.

Check olling, as directed above. (If squeaks are heard, they will usually be found to come from the records - not from the mechan1sm.)

See "To Check 0111 ng ".

5. CHANGER IS NOISY WHEN IN CYCLE. Check olling. Also see 11 any part has become loose or bent and is rubbing against a moving part, such as the swivel Guide Arm, (CK) arainst the Cam Gear, (DC).
6. MOTION OF PICKUP TOWARD TURNPABLE

SPINDLE WILL NOT TRIP CHANGER MECHANISM.
a. See that the manual butt on is not pressed down. See that shipping bolts are removed.
b. If trigger (DN) is being properly actuated, probably Cam Lever (DH) is binding against Sub-Plate (DG). Look for dirt or obstructions: such as the manual rod (CJ) binding in hole in Sub-Plate; See that Pawl (DM) and trigger (DN) are working ireely on their rivets. If the Lever engages the Pawl so that Lift (DI) eorces roller (DE) up into the under groove on Cam Gear (DC), and if set screws are tight, the change cycle must operate as Cam Gear turns.
7. PRESSING "R" BUTTON DOESN'T TRIP CHANGER MECHANISM.
a. Due to shipping bolts not being rew moved, causing a bind on manual rod (CJ) or manual button is down.
b. Check Key Control Unit (CG). See Whether there is an obstruction or a bent part which prevents ${ }^{7 R}{ }^{n}$ button from going clear down to the end of 1ts travel.
c. Examine Reject Rod (CI). If it does not trip, even when properly revolved by complete depressing of "R" button, the rod has probably been bent, and must by restored in same way. Grasp the two ends and twist it slightiv.
d. If Trigger (DN) is being properly actuated but without starting a change cycle, see directions above, Paragraph 6.
8. PRESSING "M" BUTTON FAILS TO PUT CHANGER MECHANISM OUT OF ACTION SO AS TO ENABLE MANUAL OPERATION.
a. First see that " M " button goes clear down; then follow its action through Manual Rod (CJ).
b. Probably caused by the manual rod being bent and not projecting up through sub-plate (DG) and stopping cam lever (DH) when it is released from the trigger (DN).
9. TRIPS TOO SOON OR BEFORE RECORD HAS FINISHED FLAYING.
a. Adjust as described in adjustment "C". (Refer to adjustments).
b. If satisfactory adjustment cannot be made then check stop lever (CP). It may be loose on Swivel Shaft (CB). If so, reset and tighten set screws.
10. TONE ARM FALLS OFF RECORD. Needle sits down too close to edge of records, not adjusted in far enough, or needle landing adjusting cam (FN) is reversed. Should contack lug on adjusting rod extension (FL) on the long side of cam. Also check pickup leader spring (EO). It may have become loose; more tension can be given it by bending down lug.
11. TONE ARM SITS DOWN TOO FAR IN.
a. Properly due to adjusting rod (FQ) binding and not measuring properly. If found to be bent, it should be straightened to correct shape so that it w1ll operate freely. Read Item \#3

WEBSTER-CHICAGO CORP.

on General Description of Change Cycle.
b. Refer to Paragraph \#9, Item \#2 above.
12. NEEDLE LANDS PROPERLY ON RECORD BUT FAILS TO MOVE OVER INTO RECORD GROOVE.

Pickup arm is normally impelled toward center of records by Lead Spring (EO). Should a slight increase in its tension be found necessary, this can be easily obtained by slightly bending the lug, to which it is attached, down against Main Plate.
13. "WOW" IN RECORD REPRODUCTION.
a. Record is warped or otherwise defective or instrument is not being operated at normal room temperature, 700 F.
b. Also may be caused by oil on Idler wheelsselecting or slicing process can usually be (See "To Check Oiling" Caution note. corrected by using a plece of fine sand
14. RECORD DROPS ON ONE SIDE ONLY.
a. This suggests a Changer Post bent out of perpendicular to Main Plate. If Post must be straightened, be careful not to bend other parts.
b. Selector Plate set for $12^{\prime \prime}$ while play-or ${ }^{\prime \prime}$ still does not float, loosen the nuts ing $12^{\prime \prime}$ records, but stationary plate and float. is set for $10^{\prime \prime}$.
15. CHANGER CONTINUES CYCLING.
a. Probably due to failure of Lift (DI) to be drawn back out of engagenent with Cam Gear (DC). Check the various slightly forward and backward, at the same rivets at which motion occurs, to find time pulling upward, or run motor and grasp the point where friction or binding is the turntable while it is revolving, and interfering with freedom of motion.
b. Make sure that trigger spring is not disconnected and that trigger (DN) holds cam lever (DH) in a neutral position. More tension can be given trigger spring by bending lug to stretch spring. A sticking pawl (DM) will also cause this condition.
16. RECORD IS DRIVEN, BUT NOT HEARD, OR NOT HEARD WITH PROPER VOLUME. See that pickup cord is plugged in. Check amplifier and speaker and connections to them, thoroughly. If then trouble is still suspected in pickup cartridge (ES), test its output with a vacuum-tube voltmeter. Playing an average record, output should test 1 to 2.5 volts if pickup cartridge is of crystal type, or 0.5 volts if of magnetic type. If pickup cartridge is found not to deliver pull up. When replacing turntable, care should be taken not to injure Rubber Idler Drive Wheels (AH).

REPLACEMENT PARTS

When spare parts of sub-assemblies are required, order them direct from the factory, by factory number and name as given on photos -- not by reference letters. Where no number is given, order by full and exact description. Always specify Serial Nunber and Model Number as seen at EM. Parts shown in above photographs, but not given factory numbers, are furnished only in assemblies as shown with pickup cartridge is found not to deliver parts list. proper output, remove it and install another.
17. RECORD JAMS. Most slicing trouble (record jams) is due to off-size, defective or warped records and is no fault of the record changer or record changer adjustments. Properly manufactured records have
paper or emory cloth to round up the edges.
a uniform semi-circular edge and can be successfully handled by record changers, even though the records vary considerabiy in thickness.

Cross section of record edge showing a perfect record and three imperfect edges.
18. AUDIO HOWL. Record changer not floating on cushions or spring mounting. See that shipping bolts are removed. If unit still does not float, loosen the nuts
19. TURNTABLE IS TIGHT. This turntable is assembled to the turntable spindle with a taper lock fit in the center. To remove grasp turntable with both hands, turn
\square factory numbers. Refer to replacement

WEBSTER-CHICAGO CORP.

Operating Instructions

Your - WEBSTER-CHICAGO - Automatic Record Changer will multiply many-fold your enjoyment of recorded music. These instructions are written for the purpose of enabling you to get the benefits this equipment affords. With proper care, it should give many years of satisfactory service. With it, you can enjoy from 35 minutes to nearly an hour of your favorite music without interruption, and without attention to the instrument.

MODERN RECORDING

Modern records are made by electrical processes and the bringing out of their full tonal perfection requires a well-designed electrical pickup such as is provided in this Record Changer.

Fully as remarkable is the wide variety of selections that are obtainable. They range from the latest hit tunes played by the most popular bands, to complete operas and symphonies recorded by the world's leading artists. These longer works are to be had in the form of a set of double sided records so arranged that the first half of the work is heard by playing one side of all the records, and the last half by playing the other side.

MOTOR AND POWER SUPPLY

The Changer is equipped with a constant-speed selfstarting motor. Under all normal conditions it starts automatically and runs at correct speed.

Each Changer is designed to operate on a certain voltage and frequency (cycles) only. Be sure to look at your nameplate and see that the instrument you have conforms to your power supply before plugging in cord.

SETTING FOR RECORD SIZE

This mechanism plays up to twelve $10^{\prime \prime}$ records or ten 12" records at one set-up. All records must be th same size for each set-up.

On each post you will see two plates (shown in large drawing). The lower one, on which the records rest, is the shelf plate. The upper one is the selector plate, which takes from the bottom of the stack the next record to be played.

To set for record size two things must be done.
(1) Clasp one of the posts just underneath the shelf plate, with thumb and finger of left hand. With right hand, lift knob and turn the selector plate until figure 10 or 12 (whichever size you want to play) is opposite the pointer. Then raise and turn rear shelf plate until proper figure is facing turntable spindle.
(2) Push button marked 10 , or 12 , as required to agree with pointer setting.

LOADING

See that both shelf plates are turned toward center of turntable. If they are not, again grasp the post just below shelf plate, and rotate post until it falls into proper position, with both shelf plates correctly turned toward center of turntable. Place the stack of records over center pin so they will rest on the two shelf plates.

ADJUSTING NEEDLE SO THAT PLAYING WILL. START AT BEGINNING OF RECORD

The correct adjustment is made at the factory, and thereafter no further adjustment may be necessary. Should need arise, the position at which needle lowers to record can be adjusted by inserting small screw driver thru the hole shown in the illustration. Turn very slightl? either way. Clockwise turn moves needle in; counter clockwise moves needle out.

STARTING THE MECHANISM

To start motor and turntable:
(1) Turn the switch to "on" position. (On some models the switch is located in a different place from that shown in illustration.) Motor will then start.
(2) Push button " R ". This will release the first record and start the record-changing mechanism.

REJECTING A RECORD YOU DON'T WANT TO HEAR

Merely press the " R " button. You can do it any time after the needle has come into contact with that record.

REMOVING PLAYED RECORDS

First switch off motor (see turning off instructions). Then take hold of both posts, just below the shelf plates, and turn them out of the way. Lift the played records from the turntable. Taking hold of posts as before (below shelf plate) move plates until post again falls into playing position. The changer may then be loaded with a new stack of records: see directions above, for loading.

MANUAL OPERATION

To play records one at a time as in an ordinary phonograph-
(1) Remove any records remaining on the turntable: see directions just preceding.
(2) Leave plates turned outward, as for removing played records. Do not turn them back toward center of turntable.
(3) Press button marked " M ". Then place a record on turntable, switch on motor, and lift pickup into position.

OILING

The changer should be lubricated once a year with about a dozen drops of a good light machine oil at each of the following 3 points. All points can be reached from above, thru holes in the mounting plate, as follows:

No. 1 Thru hole marked "A", drop the oil upon flat surface of cam. It will distribute itself to proper points.
No. 2 Thru hole marked "B", see felt wick, and drop the oil directly upon it.
No. 3 Thru hole marked "C", see felt wick, and drop the oil directly upon it.

TONE AND VOLUME CONTROL

If the radio or amplifier through which this changer is being played has a tone control, adjustments may be made for various types of musical selections and acoustical conditions.

If it is desirable to control volume by means of the control on the changer, the volume control on the radio or amplifier should be set slightly higher than necessary for the maximum volume level required. If the user prefers to control volume by means of the control on the radio or amplifier, the control on the changer should be set at approximately :" "half-way" position. This latter method is not reconinended, however, because of the necessity of changing the control setting each time the changer is stopped for reloading.

TURNING OFF

(1) Move Changer switch to "off" position.
(2) Lift pickup arm, place it on the pickup rest. Always be sure to turn off while needle is resting upon a record: otherwise pickup cannot be returned to its rest due to unit being in a changed cycle.
(3) To avoid warping of records, never leave records resting on the shelf plates.

IF CHANGER IS LEFT RUNNING

No damage will be done if you forget to turn off Changer after it has played its entire load of records. It will simply repeat the last record until stopped or reloaded.

IF CHANGER WILL NOT GO ON TO NEXT RECORD ABOVE

An old record may occasionally be found (made before the introduction of automatic changers) which does not have an eccentric oscillating groove, to set the changer mechanism in operation. Should one of these old records be found in the stack, a touch of the " R " button will instantly set the Changer mechanism in action again. Any need for doing this can be avoided by placing the old record at top of stack to be played, so that it will come into position last.

WHEN NOISE DEVELOPS

Noisy scratching indicates worn records. Poor tone is evidence of a worn needle. Some records will wear longer than others, even if kept equally clean. This is due not only to quality of manufacture, and care given the records, but also to the kind of music recorded.

RIGHT: General Illustration Showing Name and Location of Parts.

BELOW: Oil Holes As Seen in Mounting Plate After Lifting Off Turntable.

CARE OF RECORDS

To insure long life for your records requires only slight effort. Do not expose them to heat from the sun, nor to heat from nearby stoves or radiators. Store them preferably in albums, but in any case keep them always in a cool, dry place, resting vertical or flat horizontal. Remove dust and dirt, using soft cloth and light circular motion. If fluids are used for lubricating record surfaces, keep in mind that these often tend to attract dust, and extra effort is necessary to clean it off. Dust is much more troublesome in some localities than in others.

Records may safely be left stacked directly upon each other (as on the turntable) but should never be left resting on the shelf plates of the Changer. This twopoint support, while best for its purpose, is not at all suitable for record storage.

RECORD NEEDLES

Various types and kinds of needles are available for use in phonograph pickups. All have their virtues, as well as their faults, for use in ordinary phonographs where needles can be changed after each record. For playing ten or more records at one set-up, as with this Changer, no attempt should be made to use ordinary steel or fibre points, since continued use of worn points will be likely to ruin both quality of reproduction and the records as well. Any kind of needle can be used, which has a point durable enough to play 15 records or more without damaging them.

THE-WEBSTER-CHICAGO_Automatic Record Changer unit is constructed of a minimum number of working parts and in operation is simple and reliable. As with all mechanical articles, minor adjustments may be necessary at times. Should additional information be required, particulars will be given upon application to the manufacturer.

operating the recorder: It is important to note that the cutting needle mist be inserted in the recording head in the proper manner to insure the necessary cutting action. A close inspection of the cutting needle will show it to have a ilat spot on the shank opposite the cutting face. It is important that the needle be inserted in the sutting head with the flat spot toward the front of the cutting head so that the needle holding screw bears against the flat on the needle shank.

First he sure that volume level and recording level settings are satisfactory, then lift the recording arm off the rest and place the cutting needle on the record approximately $1 / 4$ inch in from the outside edge of the record, allow the recorder to operate and cut several grooves for the beginning of the record, then turn the volume control up to a previous established setting for proper recording level and give signal that the record is being cut. It is important that a constant level be maintained by carefully watching the volume level indicator. The recording process can be continued until the recording head comes to within approximately $11 / 2^{\prime \prime}$ of the center pin. at which time the volume control should be turned back to "o" and allow several blank grooves to be cut. This completes the recording. Then raise recording arm and return to rest.

This recorder is designed for using a short type of needle having a length of approximately $5 / 8^{n}$. The length of time required for cutting the various size records at $78 \mathrm{r} . \mathrm{p} . \mathrm{m}$. is as follows:

| 6^{*} | diameter | -1.3 | minutes |
| :--- | :--- | :--- | :--- |
| $8^{\prime \prime}$ | $"$ | -2.6 | n |
| $10^{\prime \prime}$ | $"$ | -4.0 | n |
| $12^{\prime \prime}$ | $"$ | -5.2 | $"$ |

The figures given above are conservative, and slight additional time can be added to compensate for the unmodulated grooves at the start and innish of the record.

It will be noted after the ifst recording has been made, that the thread which has been cut out of the groove by the recording needle is a certain thickness. All recorders are adjusted to cut grooves approximately .0015 inches deep, and it will be found that records of various materials or the shapes and types of the needles used will change the depth of the groove. While there is not always a micrometer handy to measure the thickness of the thread cut, we refer you to a very fine human hair as the approximate thickness of the thread when cut at .0015.

ADJUSTING HEIGHT OF RECORDING ARM: The adjusting screw and nut No. 1 and No. 2 are for adjusting the height of the recording arm above the turntable. The height of the tip of the needle, No. 6 , is approximately $1 / 8^{\prime \prime}$ from the record surface when the cartridge, No. 5 , is held by the screw, No. 7, in the "up" position. This is adjusted at the factory, and under ordinary circumstances, does not require re-adjusting unless recording needles vary from standard. If, under certain conditions, it is necessary to raise the arm to provide a final adjustment of the cutting needle pressure, loosen lock nut, No. 2, with a screw driver, turn adjusting screw, 1^{19} counter-clockwise to raise the arm or clockwise to lower the arm, locking it by tightening the lock nut, No. 2.

OILING: The recorder mechanism should be lubricated once a year with a few drops of good light machine oll at each of the bearing points as shown on sketch, also place a little light grease on each of the gears (caution:- NEVER OIL THE FRICTION CLUTCH AT ANY TIME AS IT WILL CAUSE SLIPPAGE).
adjusting depth of recording needie cut: all recorder mechanisms are properly adjusted and tested before leaving the pactory, with a steel cutting needle, but there will probably be need for a slight adjustment of the needle pressure, which can be made in the following manner referring to sketch below showing a cross-sectional view of the recording arm: The adjustment for depth of cut or needle pressure is thumb screw 13. This adjustment regulates the spring tension of pressure spring $\neq 4$ on the pivoted cutting head, No. 5, and by turning the thumb screw to the left or right will increase or decrease the pressure on the needle.

Turning this screw so that the spring moves away from the thumb screw and to the top of the recording arm, increases the pressure on the recording needle, allowing a deeper cut in the recording blank; turning the screw to bring the spring toward the thumb screw decreases the pressure on the recording needie and will provide a more shallow groove in the record blank.

AD JUSTMENT NO. 1

ADJUSTMENTS

Adjustments Nos. 1, 2 and 3 can be made from above. Changer need not be removed from cabinet. All adjustments are correctly made at the factory and ordinarily need
never be altered. However, should 1t become necessary to re-adjust due to accident or tampering, proceed as follows:

Adjustment \#l. ADJUSTING LANDING POSITION OF. NEEDLE ON THE RECORD.
The position at which needle lowers $12^{\prime \prime}$ set-down, insert screw driver to record can be adjusted by inserting screw driver through hole (BJ) just in back of tone arm
(shown in Fig. 1). For adjusting the $10^{\prime \prime}$ setdowm, insert screw driver into the inside eccentric adjusting stud. For adjusting the
into the outside slotted stud (see Fig. 2). Turn very slightly clockwise or counter-clockwise to move needle landing in or out. The factory adjustment of the needle landing is $1 / 8^{\prime \prime}$ in from the outer edge of the record.

(C)John F. Rider

MODEL 40

Adjustment \#3. ADJUSTMENT FOR CHANGER PLATES.

To adjust the distance between the selector plate (BA) and the shelf plate ($B C$) for $10^{\prime \prime}$ records, first select a $10^{\prime \prime}$ record that is approx- in the set screw holes located in imately. $070^{\prime \prime}$ thick. Then position the sides of the changer posts. it on changer and start a change Turn set screw slightly clockwise cycle to revolve changer plates. to raise the selector plate and Stop the turntable by hand just as counter-clockwise to lower it. The the selector plate (BA) is about to set screw for adjusting the $10^{\prime \prime}$ touch the record, and shut off the record setting, and the one for 12" motor (see f1g. 4). Then slowly revolve the turntable by hand, allowing selector plates to contact edge of record so that it just slides over record, touching the surface lightly. Check all three
selector plates and if any adjustment is necessary, it can be done by inserting a No. 10 Allen wrench n the set screw holes located in record setting is shown above in 11g. 5. To adjust for 12 " records, select a 12 " record that is approximately .090" thick, than follow same procedure as for adjusting $10^{\prime \prime}$ records.

WEBSTER-CHICAGO CORP

ADJUSTMENT NO. 4

The following adiustments cannot be made from above, and therefore it may be necessary due to position of changer to remove it from cabinet.

Adjustment \#4. NO-RECORD SELECTING LEVER ADJUSTMENT

First be sure that spring tension on spring (DI) is strong enough to lift the center blade raising pin (EA) properly and fully, but not so strong that one $10^{\prime \prime}$ record will not fully depress pin and lever (see 11g. 7). Then with set screw loose in no-record selecting lever (EP) see fig. 6, and pin held down by weight of one $10^{\prime \prime}$ record, slide norecord selecting lever (EP into position so that it will just clear under lower edge of the lower cam
setting lever (EQ) by approximately 1/64" clearance (see f1g. 7). Then tighten set screw and check adjustment with and without a record, also be sure that without a record, the fin on no-record selecting lever (EP) swings above cam setting lever (EQ) and portion of lever (EP), indicated by arrow on fig. 7, sweeps stop lever (EQ) on cam setting lever into position shown in Fig. 16.

WEBSTER-CHICAGO CORP.

ADJUSTMENT NOS. 5 and 6

Adjustment \#5. LIFTER LEVER DIFFERENTIAL ADJUSTMENT.

Place a 12 " record over the turntable spindle so that the record rests on the shelf plates. Then check the center plate lifter lever (EB) and see that point of this lever will just slide inside of center arm lifter cam (EC) see Fig. 8. Then place a $10^{\prime \prime}$ record under the $12^{\prime \prime}$ record so that the $10^{\prime \prime}$ record will rest on shelf plate (BC) and the 12 " record will then touch center plate (BB) which presses down center pin (EA) and moves lifter plate (EB) closer to
outside face of lifter cam (EC) than it would be without the $12^{\prime \prime}$ record on top of the $10^{\prime \prime}$ record (see flg. 10). The lever (EB) should then follow the outside of the center arm lifter cam (EC) see Fig. 9. If it is necessary to readjust this can be done by means of adjusting screw (CE) and lock nut (CF) to balance out the contact of lever (EB) on both sides of cam (EC) in relation to starting point of cam (see 11g. 10).

Adjustment \#6. LIFTER LEVER CLEARANCE ADJUSTMENT.

Check the distance between the leading edges of the center plate lifter lever (EB) and center arm lifter cam (EC) with a $12^{\prime \prime}$ record resting on the shelf plates. It should be a minimum op $1 / 16^{\prime \prime}$. See Fig. 8. It should not be necessary to check this adjustment unless the tape clamp screws on the pulley (FG) have been loosened. See Fig. 11. To re-adjust after screws have
been loosened, first set pulley so that when the slack in the tape line is taken up in the direction of forward motion of the tape segment (CH), there will be the necessary $1 / 16^{\prime \prime}$ clearance as mentioned above.
Note: If this adjustment is "Off" most likely changer plate synchronization will also be off. Check Adjustment No. 7.
ADJUS TMENT NO. 7

ADJUSTMENT NOS. 8 and 9

FIG. 13

Adjustment \#8. CLUTCH RELEASE LEVER ADJUSTMENT.

The fork on clutch release lever
(ET) should be adjusted so that it only slightly moves the friction clutch with a sharp kick rather than a wavy movement. To get more or less movement of the clutch, bend the release lever (as shown Fig. 13).

Also be sure that both prongs of fork on release lever (ET') contact the pressure release sleeve (EU) simultaneously. At no time should fork ride the pressure release sleeve between impulses, as the clutch would then be held open and changer would not trip.

Adjustment \#9. SETTING CAM ADJUSTMENT.

By means of the adjusting screw (ER) set stop lever (EQ) so that there will be 1/32" maximum overlap on eccentric studs (ES). If there is not enough overlap, the stop
lever (EQ) will slide off instead of holding on eccentric studs (ES) on stop lug, while measuring setdown of tone arm (AG).

SLIDE-IN ADJUSTMENT.

To adjust the power of the Tone Arm Lead-1n, bend the lug on Leadin spring to give it more or less tension, too much tension may cause needle to slide in on record. (See Fig. 14). The knurled nut (EL) adjusts the distance Tone Arm will
swing in, before clutch is disengaged. If clutch is still engaged after needle lands on record it may cause slide-in. Turning nut (EL) clockwise should correct "slide-in" if lead-in spring tension is correct.

WEBSTER-CHICAGO CORP.
ADJUS TMENT NO. 10

FIG. 15

Adjustment f10. TONE ARM HEIGHT ADJUSTMENT.

This can be ad Justed by means of an adjusting screw in the tone arm assembly (AG). The tone arm elevating pin (FW) presses against this screw which should be adjusted so that the distance between the point of needle
(in tone arm $A G$) and the turntable is $1-3 / 4^{\prime \prime}$ to $1-7 / 8^{\prime \prime}$, which is the equivalent of approximately seventeen 10 records. When correct height adjustment is made, tighten lock nut on ad justing screw securely.

Adjustment \#ll. TONE ARM SWING ADJUSTMENT

First raise tone arm (AG) by hand and slightly loosen clamp screw on tone arm shaft head (see 11g. 17). Then start a change cycle and shut off power supply to motor when tone arm (AG) is being held in stop position above the tone arm rest (AH) and stop lever (EQ) (on setting cam assem.) is contacting stop lug on locator plate (which is part of the tone arm shaft assem.) see fig. 16. Then insert a $5 / 64^{\prime \prime}$ shim between tone arm
shaft head and bearing race to set vertical clearance (which must be approx. 5/64") so that clutch will be engaged for moving trip lever when tone arm is down on record and align tone arm (AG) flush with tone arm rest (AH) as shown in fig. 16. Tighten clamp screw securely and remove $5 / 64^{\prime \prime}$ shim, then check action of tone arm and adjust needle landing as in adj. \#l, if necessary.

Adjustment \#12. RAISING LEVER PRESSURE ADJUSTMENT.

To make this adjustment first put unit into change cycle, then stop it when roller (CD) is at the highest point on the cam ($F K$), then loosen lock nut and turn screw under flat lifter spring clockwise until tone arm elevating pin
(FW) and shaft (FX) are completely
raised and flat springs contacts the tone arm shaft (FX) holding clutch assembly firmly in the high position against tone arm swing bracket (FY) and only slightly deflecting the flat spring (see 1ig.17). Then tighten lock nut securely.

Adjustment f13. SWITCH SHUT-OFF ADJUSTMENT.

Start a change cycle by pressing push button (AK) so that roller (FP) holds switch latch (FQ) in a loaded position. Then stop turntable by hand when cam gear is in position (shown above) and pin on rest shaft is sliding down decline from shoulder on cam gear, allow the rest
shaft (FM) to come down gradually and when switch latch (FQ) trips, hold rest shaft in that position and adjust screw (CB) to within approx. 1/32" from end of shaft (FM), tighten lock nut (CC) securely and check operation.

| | | |
| :---: | :---: | :---: |
| A. | Changer fails to trip after playing record while set on "A" automatic. | Nos. 2, 8. |
| B. | Changer fails to trip when push button is pressed. (See that pointer is set on "A"). | No. 2. |
| C. | Trips too soon or before record has finished playing. | NO. 2. |
| D. | Tone Arm lifts imnediately without playing record or continues cycling. | No. 2. |
| E. | Tone arm lifts but does not swing out properly. | No. 12. |
| F. | Tone arm falls off record or misses record completely. | Nos. 1, 11. |
| G. | Tone arm slides in several lines on record. | No. 9. |
| H. | Tone armfails to pull into first groove on record properly. | No. 9. |
| I. | Tone arm lands too far out or in on record. | No. 1. |
| J. | Tone arm lands in middle of record. | No. 9. |
| K. | Tone arm fails to clear stack of $1610^{\prime \prime}$ records. | No. 10. |
| L. | Tone arm lands for $10^{\prime \prime}$ record even on a $12^{\prime \prime}$ record. | Nos. 5, 6. |
| M. | Changer cycles with pointer set on "M" for Manual operation. | No. 2. |
| N. | Changer jams and stops. | No. 7, 13. |
| 0. | Records jam (check record edges). Also check. | No. 3. |
| P. | $12^{\prime \prime}$ record is not dropped by one of shelves. | No. 5. |
| Q. | One or more shelves drop 2 records at a time. | No. 3. |
| R. | Changer falls to turn off automatically after playing last record. | Nos. 4, 9, 13. |
| S. | Records drop unevenly from shelf plates to turntable. | No. 7. |

to the service man
This service manual has been designed for the purpose of assisting the service man as far as possible, in h1s work of caring for the record changer mechanism, whether he is called to remedy some difficulty which has appeared in the field or to assure its continued satisfactory operation. For his convenience, the operating instructions supplied to the user may be summarized as follows:

The deluxe record changer automatically plays siyteen $10^{\prime \prime}$ records or twelve $12^{\prime \prime}$ records at one set-up, or fourteen $10^{\prime \prime}$ and $12^{\prime \prime}$ records inter-mixed. Each of the three posts has two plates; the lower one on which the records rest is the shelf plate, the upper one is the selector plate which takes from the bottom of the stack the next record to be played
and releases it to the turntable. To load for automatic operation, see that all three shelf plates are turned down toward the turntable, then place the stack of records to be played over the turntable spindle so that they rest on the three shelf plates.

Then see that pointer on control switch is set on "A" (automatic), and press "start" button to put changer in operation. (What are here called the selector plates of the changer are commonly known among service men as "blades" or "knives", names which are best avoided when talking to the user, as they may convey an exaggerated impression of sharpness or danger in the movement of these parts.)

To reject a record (or to start a change cycle as for testing purposes), simply press the "reject" button at any

WEBSTER-CHICAGO CORP.

time while needle is upon a record. To play manually, turn shelf plates up, set pointer on "M" (for manual), then place a record on turntable and press "start" button to switch on motor, then place pick-up arm into position on record.

The changer can be turned off at any time by pressing down on stop button. If changer is left running, no damage will be done, as it will shut off automatically after the last record has been played.

REPLACEMENT PARTS

When ordering parts for this mechanism refer to the part number and model number of the entire mechanism, as shown on bottom view photo, in addition to the numbers and names of the parts shown in the illustrations.

ILLUS TRATIONS

The illustrations show all the vital parts of the changer. Code numbers are used to refer to parts shown in the numbered figures on the two photos, the numbered figures referred to are complete assemblies, the replacement parts list shows the complete assembly and below it are the component parts that can be supplied. Parts that are not listed cannot be separately supplied, therefore, order the assembly containing them.

OILING (reprinted from operating instructions)

The changer should be lubricated once a year with a few drops of good light machine oil at each of the following points:

Two oil wicks on motor bearings. Turntable spindle bearings.
All other bearing points.
(CAUTION: Never oil the friction clutch at any time, as it will cause slippage.)

TO CHECK OILING

(a) If squeaks are heard, compare the squeak with and without a load of records; any stack of records in motion is likely to squeak a little against a pin through their center. This can be corrected by rubbing a little wax on the turntable spindle.
(b) "Caution": Do not oil felt washers on the two idler wheels as centrifugal force will throw the excessive oll out over the edge of 1dler wheel and cause loss of traction to turntable. (The purpose of the felt washer is to silence the idler
wheel operation and should not be used as an oll wick.
(c) Check the two oll wicks on the motor to see that they are thoroughly saturated.
(d) Check lubrication on turntable spindle bearings. The top bearings can be olled by removing turntable (When replacing turntable, care should be taken not to injure rubber idler wheels.) Then oll lower bearings from below.
(e) Check lubrication at all other bearing points.

REPLACING MOTOR:

The service mechanic may be called upon to adapt the changer to a different power supply. For this purpose, or in case of any serious fault within motor, remove entire motor (Fig. 27) from the changer and replace it with a suitable new motor. See that motor frame is well grounded by wire. (In ordering a replacement motor, specify the power supply and give model number, also make and model number of phono-radio or other type of installation.)

TROUBLE SHOOTING:

Cases of fallure to operate satisfactorily will generally be found due to aither neglect of proper lubrication, to tampering with the mechanism after it leaves the factory, or to injuries accidentally sustained as by external vibration or by impact of some heavy object. In addition, there is always the possibility that any kind of spring may "go dead" (cease to operate without any visible breakage), even though the utmost factory precautions are taken against it -- or that set screws may work loose due to external vibration. For tightening set screws, an Allen (hexagon) wrench is required. Be sure that set screws are properly seated on the holes or flats provided. Damage from tampering is likely to take the form of bent parts. Never bend any part during examination.

Among the principal trouble symptoms to which such causes may give rise, are the following:
(1) MECHANISM IS SLOW IN STARTING, OR MOTOR GETS HOT
(a) Check lubrication. 011 if necessary. See oiling instructions.
(b) Check voltage. Line voltage may be abnormally low or high.
(c) Motor windings damaged. If windings are found damaged, remove motor and return it to factory for repair or replacement.

WEBSTER-CHICAGO CORP.

Records that prove troublesome in
the selecting or slicing process can
usually be corrected by using a
piece of fine sand paper or emery
lioth to round up the edges.
(b) If it is suspected that changer

(21) 12^{*} RECORD IS NOT DROPPED BY ONE OF THE CHANGER PLATES
Check Adjustment $\ddagger 5$. (22) ONE OR MORE CHANGER PLATES RELEASE
TWO RECORDS AT A TIME Two Records at a time
Check adjustment $\mathbf{f 3}$. (23) RECORDS DROP UNE VENLY (23) RECOROS DROP UNEVENLY FROM CHANGER
PLATES TO TURNTABLE
Check Adjustment $\$ 7$.
(24) CHANGER FAILS to SHUT OFF AUTOMAT-
ICALLY AFTER PLAYING LAST RECORD
ICALLY AFTER playing LaSt RECORD
Check Adjustments $\ddagger 4$ and $\ddagger 9$.

This turntable is assembled to the tumtable spindle cone with a taper
lock fit in the center. To remove
 (26) MOTOR RUMBLE HEARD IN RECORD Shipping screw not removed from notor as instructed. They may be pulled too tight, not allowing
motor to float properly. CAUTION:
If P1ckup cartridge has a permanent
point sapphire needle, utmost care must be taken to avoid breakage. Should the the entire cartridge. Never attempt to
remove permanent point sapphire needle

 Convenient Reference
Large service stations
Large service stations having more frequent
 (14) TONE ARM RAISES BUT FAILS TO
(19) RECORD IS DRIYEN BUT NOT HEARD OR
NOT HEARD WITH PROPER YOL UME
(a) See that pick-up cord is properly plugged 1n.
Check amplifier and speaker and (b) Check amplifier and speaker and
(c) Connections to them thoroughly.
(ck-up cartridge, and recheck pick-up cartridge, and re-
place with new one if found to be
defective. (20) RECORD JAMS
(a) Most slicing trouble (record Jams) record changer or record changer

 fully handled by a record changer
oven though the records vary con-
siderably in thiciness
 (8) SETTING POINTER ON "M* (MANUAL)
(2) MOTOR FAILS TO RUN, EVEN WHEN IT IS

DIRECTLY TO THE TWO ENDS OF ITS
This indicates trouble in motor windings. Unless damage is easily seen and repaired, replace motor, as above
described. (3) MOTOR is sLow in starting (a) Changer may have been in a very cold place and may not yet have reached
room temperature. Give it a fair chance to get warmed upp before con-
cluding that motor is defective and (b) The changer is equipped with a constant speed self-starting motor.
Under all normal conditions it starts automatically and runs at correct
(4) SQUEAKS OR OTHER NOISES, DURING PLAY-
ING OF RECORDS

Check oiling as directed above. (If
squeaks are heard, they will usually squeaks are heard, they will usually
be found to come from the records -
not from the mechanism.) See "To check ofling".
(5) CHANGER IS NOISY When in cycle

Check oiling. Also see if any part
has become loose or bent and is rub-
bing against a moving part.

(6) MOTION OF PICK-UP TOWARD TURNTABLE
SPINDLE WILL NOT TRIP CHANGER MECKSPINDLE WILL NOT TRIP CHANGER MECK-
ANISM

See that control switch pointer is
not set on ${ }^{\mathrm{M}} \mathrm{M}^{\mathrm{l}}$ (MANUAL).
(7) PRESSING PUSH BUTTON DOES NOT TRIP
CHANGER MECHANISM
(a) See that control switch pointer is
(b) Check control switch assembly (Fig.
(13) NEEDLE LANOS PROPERLY ON RECORD BUT
SLIDES IN ON RECORD
(a) No needle in pick-up cartridge.
(b) Broken permanent sapphire point in
LP type cartridge.
(a) Pick-up cord may be holding arm at
back end, binding its action.
(b) Check Adjustment $\$ 8$.
 ING GROOVE
11) TONE ARM LANDS TOO FAR IN OR OUT ON
RECORD
(a) Due to not measuring properly. (see
 eccentric adjusting cams
10^{n} and 12^{n}, holding them securely (Check Adjustment $\ddagger 8$.)

arm shart head, may be loose on the
(b) Be sure that stop lever engages the Needle lands too close to edge of
record. Not adjusted 1n far enough.
(Check Adjustment \#1.)

(10) TONE ARM YARIES WHEN SET DOWN ON

(b) Also check for loose or bent parts is holding the trip link rod to keep it irom moving.
(9) TOME ARM FALLS OFF RECORD

FAILS TO PUT CHANGER MECHANISM OUT
OF ACTION SO AS TO ENABLE MANUAL
OF ACTION SO AS TO ENABLE MANUAL
OPERATION
(a) Check for loose set screw in control spood.
(5) CHANGER IS NOISY WHEN IN CYCLE
,
struction or a bent or loose part.
(c) Follow through on action from the

MODEL 41

WEBSTER-CHICAGO CORP.

AD JUS TMENTS

Adjustments Nos. 1, 2, and 3 can be made from above. Changer need not be removed from cabinet. All adjustments are correctly made at the factory and ordinarily need never be altered. However, should it become necessary to readjust due to accident or tampering, proceed as follows:

Adjustment \#1: ADJUBTING LANDING

 POSITION OF NEEDLE ON THE RECORDThe position at which needle lands on record can be adjusted by inserting screw driver through needle landing adjusting hole just in back of tone arm (shown in Fig. 1). For adjusting the needle landing on a 10^{n} record, insert screw driver into slot in $10^{\prime \prime}$ adjusting stud. For adjusting the needle landing on a 12^{n} record, insert screw driver into the slot in $12^{\prime \prime}$ adjusting stud (See Fig.2). Turn very slightly clockwise or counter-clockwise to move needle landing in or out. The factory adjustment of the needle landing is $1 / 8^{\prime \prime}$ in from the outer edge of the record. (See Fig. 1).

Adjustment \#2: TONE ARM HEIGHT ADJUSTMENT

To adjust, insert screw driver into adjusting screw (6) through tone arm height adjusting hole in tone arm (1), shown above; to increase height to which tone arm rises, turn screw clockwise; to lower, turn counter-clockwise. The tone arm elevating pin (12) presses against this screw which should be adjusted so that the distance between the point of needle (in tone arm (1)) and the turntable is $1-3 / 8^{\prime \prime}$ to $1-1 / 2^{n}$, which is the equivalent of approximately sixteen $10^{\prime \prime}$ records.

WEBSTER-CHICAGO CORP.

Adjustment \#3: ADJUSTMENT FOR CHANGER PLATES

To adjust the distance between the selector plate (21) and the shelf plate (23) for $10^{\prime \prime}$ records, first select a $10^{\prime \prime}$ record that is approximately .070" thick. Then position it on changer and start a change cycle to revolve changer plates. Stop the turntable by hand just as the selector plate (21) is about to touch the record, and shut off the motor (See Fig. 4). Then slowly revolve the turntable by hand, allowing selector plate to contact edge of record so that 1t just slides over record, touching the surface lightly. Check all three selector plates, and if any adjustment is necessary, it can be done by inserting a \#10 Allen wrench in the adjusting set screws (29). Turn set screw slightly clockwise to raise the selector plate and counter-clockwise to lower 1 t. The set screws for adjusting the $10 "$ record setting, and the 12 record setting are shown above in Fig. 5. To adjust for 12 " records, select a $12^{\prime \prime}$ record that is approximately .090" thick, then follow same procedure as for adjusting 10 " records. After correct adjustments have been made, tighten the locking collars (30) securely.

The following adjustments cannot be made from above, and therefore, 1t may be necessary, due to position of changer, to remove it from cabinet.

Adjustment \#4: NO-RECORD SELECTING LEVER ADJUSTTMENT

First be sure that spring tension on spring (33) is strong enough to lift the center blade raising pin (34) properly and fully, but not so strong that one $10^{\prime \prime}$ record will not fully depress pin and lever (See Fig. 7). Then, with set screw loose in no-record selecting lever (32) (See Fig. 6) and pin held down by weight of one 10" record, slide no-record selecting lever (32) into position so that it will just clear under lower edge of the lower cam setting lever (79) by approximately 1/64" clearance (See F1g. 7). Then tighten set screw and check adjustment with and without a record, also be sure that without a record, the fin on no-record selecting lever (32) swings above cam setting lever (79) and portion of lever (32), indicated by arrow on Fig. 7, sweeps stop lever on cam setting lever into position shown in Fig. 15.

FIG. 4

Adjustment $\# 5$: LIFTER LEVER DIFFERENTIAL ADJUSTMENT

Place a 12 " record over the turntable spindle so that the record rests on the center changer plate (22). Then check the center plate lifter lever (35) and see that point of this lever will just slide inside of center arm lifter cam (37). (See F1g. 8). Then place a $10^{\prime \prime}$ record under the $12^{\prime \prime}$ record so that the $10^{\prime \prime}$ record will rest on shelf plate (23) and the $12^{\prime \prime}$ record will then touch center plate (22) which presses down center pin (41) and moves lifter lever (35) closer to outside face of lifter cam (37) than 1t would be without the $12^{\prime \prime}$ record on top of the 10 " record (See Fig. 10). The lifter lever (35) should then follow the outside of the center arm lifter cam (37) (See Fig. 9). If $1 t$ is necessary to re-adjust, this can be done by means of adjusting screw (45) and lock nut
(44) to balance out the contact of lifter lever (35) on both sides of cam (37) in relation to starting point of cam (See Fig. 10).
Adjustment \#6: LIFTER LEVER CLEARANCE ADJUSTMENT

Check the distance between the leading edges of the center plate lifter lever (35) and center arm lifter cam (37) with a 12^{n} record resting on the shelf plates. It should be a minimum of 1/16". (See Fig. 8). It should not be necessary to check this adjustment unless the tape clamp screws (49) on the pulley (36) have been loosened. (See F1g.11). To re-adjust after screws have been loosened, first set pulley so that when the slack in the tape line is taken up in the direction of forward motion of the tape segment (See Fig. 25 Bottom view photo), there will be the necessary $1 / 16^{\prime \prime}$ minimum dimension as show in Figs. 8 and 9.
NOTE: If this adjustment is "off", most likely changer plate synchronization will also be off. Check adjustment \#7.
Adjustment $\ddagger 7$: CHANGER PLATE SYNCHRONIZATION

The synchronization of changer plates can be checked by placing one $10^{\prime \prime}$ record on the shelf plates. Then start a change cycle allowing it to continue until plates are just about ready to release the record. It can then be determined which plate is either slow or fast (See F1g. 12). Th1s plate can then be adjusted by loosening the tap clamp screws (49) on the tape clamp plate (48) which hold the tape (47) from slipping on the pulley (36) (See Fig. 11). Then slightly move changer plate whatever is necessary to symchronize it with the other two plates so that record will drop evenly. Then tighten tape clamp screws (49) securely. (Also check adjustment $\# 6$).

NOTE: Tape line (47) should have a very slight amount of slack. Check by grasping tape line with thumb and index inger and móving 1 t in and out approximately 5/8" with a moderate pressure.

(C)John F. Rider

WEBSTER-CHICAGO CORP.

Adjustment \#9: TONE ARM SWING ADJUSTMENT

First slightly loosen clamp screw on tone arm pivot assembly (See Fig. 16). Then start a change cycle and shut off power supply to motor when tone arm (1) is being held in stop position above the tone arm rest (2), and stop lever (on setting cam assembly) is contacting stop lug on locator plate (which is part of the tone arm shaft assembly (73)). (See Fig. 16). Align tone arm (1) flush with tone arm rest (2) as shown in Fig. 15, and tighten clamp screw. Then check action of tone arm and adjust needle landing as in adjustment $\ddagger 1$, if necessary.

CAUTION: Never attempt to loosen set screw (14) except when it is necessary to disassemble clutch for replacement of parts. Be sure that vertical clearance of $1 / 32^{\prime \prime}$ (as shown above, between shaft collar and bearing washer) is allowed when reassembling. This is accomplished by inserting a $1 / 32^{\prime \prime}$ shim between the shaft collar and bearing washer. Then, with clutch assembly in high position as mentioned above, tighten set screw in collar to shait, and remove shim.

Adjustment $\ddagger 10$: RAISING LEVER PRESSURE ADJUSTMENT

To make this adjustment, first start a change cycle, then shut off power supply to motor when roller (115) is at the highest point on the cam gear (100), then loosen lock nut (44) and turn adjusting screw (45) under plat lifter spring (62) clockwise, until tone arm elevating pin (12) and tone arm shaft (73) (See Fig. 14) are completely raised, holding clutch assembly firmly in the high position and only slightly deflecting the flat spring (62) (See F1g. 16). Then tighten lock nut (44) securely and check operation.

WEBSTER-CHICAGO CORP.

Top View

Raising Lever Assembly
(F1g. 14)
Model No. and Part No
Control switch Assembly
(F1g. 17)

Mounting stud
(F1g. 28)
Tape
(F1g. 11)

Bottom View
MODEL 41
WEBSTER-CHICAGO CORP.

| $\begin{aligned} & \text { Loc. } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Part } \\ & \text { No. } \\ & \hline \end{aligned}$ | Part Name | $\begin{aligned} & \text { Loc. } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$ | Part Name | Loc. | $\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$ | Part Name | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | | F1g. 3 | 46 | F1g. 10--Continued | | F13. 14--Continued | | |
| | | Tone arm assembly (sive Model No. Pickup cord (Eive model No.) | | 264087 | 8-32x1/4 Cone point - Allensocket,headless set screw | 767778 | $\begin{aligned} & 12 A 636 \\ & 11 A 904 \end{aligned}$ | Cork friction disc (small) Swing lever assembly |
| | | | | | | | | |
| 2 | 124907 | Tone arm rest | | 26 Al56 | 8-32x1/4 cup point - allen | | | Tone arm bottom friction cup |
| 4 | 12A920 | Tone arm blank | | | | 78 | | F1g. 14 |
| 5 | 124919 | Tone arm blank | | Fig. 11 | | 79 | 112900 | Setting cam assembly |
| 6 | 12682298 | Adjusting screw | | 124675 | | | | |
| 8 | 12A922 | Tone arm spacer | 48 | 124676 | Tape clamp | | | assembly ${ }^{\text {a }}$ |
| 9 | 124921 | Tone arm spacer | 49 | 26A093 | | $\begin{aligned} & 81 \\ & 82 \end{aligned}$ | 12 A | |
| 10 | 26A021 | Screw | | | 75 Internal tooth lockwasher | | 254057 | Washer |
| 11 | 12A923 | Tone arm bracket | | | | | | 83 | $\begin{aligned} & 25 \mathrm{AO} 048 \\ & 26 \mathrm{AO} 77 \end{aligned}$ | Spring was |
| $\frac{12}{12}$ | 12 l 1209 | Tone arm elevating pin | | F1g. 13 | | 10-32 Hex nut | | | |
| 14 | 264008 | 8-32x.218 Headless set screw | | 11 A913 | т.T. spindie \& housing | | F1g. 17 | | |
| 15 | $12 \mathrm{A692}$ | Bearing race washer | 50 | | $\frac{\text { assembly }}{\text { Intermediate }}$ | | 118896 Control switch assembly | | |
| 16 | 114781 | Bearing assembly | | 114912 | | | | | | | |
| 17 | 11 A919 | Tone arm shaft coll assembly | 5 | ${ }_{12 A 561}$ | Drive pinion gear | 84 85 | | Manual arm assembly | |
| 18 | 26 AO | ${ }_{6-32 \times 1 / 2}{ }^{\text {assembly }}$ R.H.M.S. | 53 | 12A832 | Idier gear shart | 86 | 1 LA824 | Switch base \& spring brk | |
| | 124625 | Swivel head clamp sleeve | 54 | 17A217 | T.T. spindle housing | | | | |
| 20 | 12A631 | Swivel head clamp | 55 | 17A213 | Spindle housing end cap | 88 | ${ }_{12 A 618}$ | Trip kick lever | |
| | 26 AO 4 | 4-40x5/16" R.H.S.T. screw | 56 | 17 A 223 | T.T. spindle and cone | 89 | 124620 | | |
| | 214128 | Plug (cinch) | | | Thrust discIntermediate gear thrust | 90 | | Switch latch | |
| | | Cartridge support | $\begin{aligned} & 57 \\ & 58 \end{aligned}$ | $\begin{aligned} & 17 \mathrm{~A} 1355 \\ & 25 A 048 \end{aligned}$ | | 91 | 12 A 623 | Manual latch | |
| | | Fig. 5 | | | Mrermedate gear thrustwasher$4-36 \times 1 / 4$ B.H.M.s. | 93 | 12 A701 | Push button stem springSpring | |
| | | | 5960 | 26 A | | 94 | | | |
| | 114 | Changer plate assembly | | $\begin{aligned} & 25 A 064 \\ & 26 \mathrm{~A} 098 \end{aligned}$ | F1sh paper washer
 $8-32 \times 3 / 8$ f11. H.M.S. for | 95 | ${ }_{12 A 835}$ | Switch cam roller | |
| 21 | 123846 | Upper changer plate | | | | | | Switch cam roller pin | |
| 23 | ${ }_{128848}^{123847}$ | Center changer plate | | | | 97 | 25A026 | Trigger spacer | |
| 24 | $12 \mathrm{B603}$ | Changer plate bracket | | | F1g. 14 | 98 | ${ }^{324002}$ | ${ }^{\text {AC Smitch }}$ | |
| 25 | 264087 | 8-32x1/4 Headless set screw | | | | | ${ }_{32 \mathrm{~A}}$ | Soring clip | |
| 27 | ${ }_{50} 124658$ | Flate hinge pin | 61 | $\frac{114898}{114897}$ | $\frac{\text { Raising lever assembly }}{\text { Rasins ling lever \& bushing }}$ | | 261127 | $8_{8-32 \times 3 / 8^{n}}$ R.H.S.T. P.K. | |
| 28 | 12A663 | Adjusting pin | | | assembly | | | Mounting screw | |
| 29 | 264090 | Adj. set screw | 115 | 124060 | Cam roller | | 264129 | Mounting screw | |
| | 264382 | Ad.j. set screw lock nut | | 12A669 | Cam roller stud | | | | |
| | 12A906 | Lifter pin | 45 | $\begin{aligned} & 12 A B 59 \\ & 26 A 077 \\ & 26 A 085 \end{aligned}$ | Raising lever flat spring 10-32 hex nut | | F1g. 18 | | |
| | | Fig. 7 | | | $10-32 \times 5 / 8^{\prime \prime}$ headless set | | 119906 | Cam gear assemb | |
| | | | | | screw | 100 | 11 A 905 | cam gear \& bushing assembly | |
| 32 | 12 Cam | Control post pulley assembly | 64 | \#1110 | Shakeproof lock washer | 102 | ${ }_{124656}$ | Cam latch \& trigger assembly Latch plate | |
| 33 | 12A668 | Selecting lever spring | 65 | 12 A 916 | Raising lever spring | 103 | 264029 | Latch plate screw | |
| 34 | 12 A 905 | No-record raising pin | 66 | 264049 | $4-40 \times 3 / 16^{\prime \prime}$ B.H.S.T. ${ }^{\text {cherew }}$ | 104 | 124660 | Swivel pin | |
| | 26 AO 11 | $8-32 \times 3 / 16^{\prime \prime}$ headless set | 67 | 32A026 | Mercury switch | 105 | | Spring | |
| | | screw | 68 | 124987 | Ra1sing lever trunnion scr | | | washer | |
| | | | | 264077 | | | | Flg. 19 | |
| 35 11A759 | | Center blade lifter assembly | | \$10 | Kantlink lockwash | | eel | | |
| | | | 106 | | | | | | | |
| $\begin{aligned} & 36 \\ & 37 \end{aligned}$ | ${ }_{124661}^{12607}$ | | Post pulley Center blade lifter cam | | F1g. 14 | | 107 | 17A1363 Spring clip | |
| 38 | 26A127 | 8-32x3/8" R.H.S.T. P.K. | | 108 | | | 254030 | Felt washer | |
| | | | | Clutch Assembly | | 110 | ${ }_{27 A 003}$ | Flsholder rivet | |
| 39 | 12A665 | Blade post stem | 78 | $\begin{aligned} & 12 A 703 \\ & 12 A 815 \end{aligned}$ | Lead-in springTone arm top friction disc | 111 | 114833 | Idler wheel IInk \& stud | |
| 40 | 124667 | Blade pivot pin | | 254058$12 A 803$ | | | 12 A 750 | | |
| 41 | 12A672 | Center blade raising pin | 72 | | Trip lever | 112 | | | |
| 4 | 12A673 | Lifter spring pin | 12 | 12A909 | | | | F1g. 20 | |
| | ${ }_{264077}$ | Center blade lifter spring | | | Tone arm shaft assembly Trip \& replace lever cork friction disc (large) | $\begin{aligned} & 113 \\ & 114 \end{aligned}$ | $12 A 720$114657 | Spring
 Idler wheel link \& stud assembly | |
| 45 | 26.085 | 10-32x5/8" ${ }^{\text {neadless }}$ set | $\begin{aligned} & 74 \\ & 75 \\ & 75 \end{aligned}$ | | | | | | |
| | | screw | | | | | | | |

WEBSTER－CHICAGO CORP．
Changor Post Washor ．．．．．．P－ 12093
崮思 品品
BD On－Off 3witoh（Give yodal No．；seo at EN）

PROTO A－S．TOP Viow．
© John F．Rider

WEBSTER-CHICAGO CORP.

To Check Oiling

If squeaks are heard compare the squeak with and without a load of records; any stack of wax records in motion is likely to squeak a little against a pin through their conter. See that all five wicks are in position, including three $1 / 4^{\prime \prime}$ round wicks in frame of kotor, one washer-shaped wick ("No. 5") on Lift CV, and one ("No. 6") on Cam Lever CS. See that each wick is thoroughly saturated (as it may not be if insufficient oil or too heavy oil has been used). Lift out all three motior wicks, with tweerers; see if old oil has become gumay (commonly due to use of low-grade oil or lowviscosity oil). If necessary, clean gumenedup wicks with kerosene. See that eadis saturated with good oil; then, before replacing them, drop a little good oil into the holes. The gearbox of the Motor is packed with a semi-fluid grease at the factory, and it should never be necessary to take it apart for lubrication purposes.

General Description of the Change Cycle
An automatic record player for records of two sizes has three principal duties to perform. These duties are here performed by three mechanisms, interconnected and built together but largely separate in their operation.
(1) The record-changing mechanism--brought into operation originally by the contact of Lifter Cam DG with Pawl DH--is the simplest of the three. It is ariven by the cam groovement A) the starting position of needle is (not visible) on under side (in Photo C-D) of simultaneously altered for both $10^{\prime \prime}$ and $12^{\prime \prime}$ Cam Gear DF. As Cam Lever CS is forced, by records. the Pawl, out underneath Lift CV (which is shown revolved to the right for visibility) the Lift rises and forces roller DJ into the under groove in Cam Gear. The motion is transferred to Rear Changer Shaft (at ED) through Cam Connecting Rod DE (EC), thence through Changer Connecting Rod FD to Front Changer Shaft BB.
(2) The pickup-operating mechanism-likewise brought into operation originally is driven in part by the groove in upper (visible) side of Cam Gear DF. As Can Lever is forced out, at the beginning of the change cycle, against Link CG, it causes the Link to push upward upon Pickup Plunger DA, thus lifting needle from record. The same pressure upon Link CG works, through Guide Arm CD, to force Stud DD down into the groove on the Cam Gear. This rotates the pickup

Should it become necessary to readjust, due
arm, while Pickup Plumger DA holds it up off of record. It is rotated first out beyond the turntable until Selector Plates BL have dropped the next record, then rotated back to proper position to start playing.
(3) The mechanism for bringing needle into correct starting position must operate accurately for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records. Partly due to this requirement the starting position is not determined by the cam action. The upper groove on Cam Gear is designed so that it, acting alone, would carry the needle farther back toward record pin then would ever be desirable as a starting adjustment. Travel of pickup arm toward Record Pin is then stopped, at proper point for lowering onto the record, by action of Lever Hub CL. The stopping takes place as lug Ew (upon the Lever Hub) strikes the shoulder on Rod EX. This enables entire mechanism rotated by cam action on Guide Arm CD to travel on past the proper point of rotation for record-starting, while the pickup arm itself, which is held rigid to Lever Hub CL, is accurately stopped at proper recordstarting point.

Correct adjustment for starting position of needle requires therefore only correct adjustment of Rods $E X$ and $F K$; the radial difference of 1 inch between correct starting position for $10^{\prime \prime}$ and $12^{\prime \prime}$ records is taken care of by exact dimensioning, at the factory, of surfaces at right ond of Rod FK which stop against the " 10 " and " 12 " key stems. Due to this, when Adjusting Cam at FP is turned (as directed below under adjust-

Adjustments

There are three adjustments that can be made. Except on certain early Changers (See B, below), ALL THREE CAN BE MADE FRON ABOVE: CHANGER NEED NOT BE REMOVED FROM CABINET. All adjustments are correctly made at the factory, and ordinarily need never be altered. to accident or tampering, proceed as follows:
A. ADJUSTING LANDING POSITION OF NEEDLE ON THE RECORD. If needle comes down on the sound track, playing of records vill not start at their beginning. Insert screvdriver through hold AJ. Turn screw head on Neodle Landing Adjusting Cam FP very silghtly counter-clockwise. If needIe comes down too close to outer edge of record, or out beyond

WEBSTER-CHICAGO CORP.
edge of record, turn Adjusting Cem clockwise.

The factory adjustment of needle landing is $1 / 8^{\prime \prime}$ in from outer edge of record.

Compare also Paragraph 12 below.
B. ADJOSTING DISTANCE FROM RECORD PIN AT WHICH TRIGGER VILL TRIP AND CHANGE CYCLE WILL BEGIN. Insert screwdriver through hole AR. Turn screw head on Trip Adjusting Cam CJ clockwise for earlier tripping, or counterclockwise for Fater tripping. (Effect is to alter position of the Cam which strikes Trigger CP. It may be found that cam has been revolved through a half-turn; in this case, above directions would apply only after Cam has been returned to correct position by revolving screw head one-half turn).

On some models of this Changer no hole will be found in Main Plate at AR. To make the adjustment on these Changers, access must be had to the under-side of the mechanism. Instead of Cam CJ, there will be found a Trip Adjustment Screw, so placed that its end strikes the trigger directly. For earlier tripping, turn this Screw clockwise; for later tripping turn it counter-clockwise.

This changer does not depend, for automatic tripping, on the records being provided with any special grooves at end; it trips whenever needle comes within a certain distance of Record Pin. The factory adjustment is for 1-3/4 $4^{\text {n }}$ to $1-7 / 8^{n}$ from center of Record Pin. This is the most generally satisfactory distence; no modern record will then be cut off before playing is finished, and none will fail to trip at end. For certain records of early manufacture, it may be impossible to find an adjustment that will always trip and never cut off, but these may always be played manually.
C. ADJUSTING HEIGHT TO WHICH PICKUP ARM RISES. The arm should rise, during the change cycle, high enough 80 that it clears by only $1 / 4^{n}$ the record above it, next to be played. (Be careful, before deciding that readjustment is necessary, to see that the record at bottom of stack is not a warped one.) To make this adjustment, loosen Lock-Nut AP (CE) and turn Pickup sleeve DB to lengthen or shorten plckup Plunger DA. However, if Pickup is made to rise too close to bottom record, Stud DD may never clear the groove in Cam Gear. In making this adjustment, therefore, care must be taken to see that Pickup arm does not keep moving back and forth continuously (due to Stud DD remaining in engagement with groove). When correct adjustment is found, tighten Lock Nut securely.

Replacing Motor
The service mechanic may be called upon to adapt the Changer to a different power supply. For this purpose, or in case of any serious fault within Motor, remove entire Notor EA (with Record Pin and connecting gear drive) from the Changer, and replace it with a suitable new Motor. (In ordering a replacement Notor, specify the power supply and give Model Number at EN; also make and model number of phono-radio or other type of installation.)

When mounting replacement Motor, it is most importent to see that Record Pin is centered between the two Posts of the Changer, that it stands perpendicular to Main Plate $E B$, and that it has not become bent. When the new Motor has been attached, with three screws through Grommet Sleeves FF into its frame, and Record Pin is seen to revolve without eppreciable wobble (a wobble would indicate that it has been bont in transit from factory) the correct position of Pin midway between the Posts can be accurately checked in this way: Place a single 12^{n} record on the Shelf Flates BK, press " R " button, and turn Turntable forward by hand. Immediately after the Shelf Plates open and let it fall, turn Turntable slightly backward, and with other hand support the record between the Shelf Plates; it can then be readily seen whether Record PIn is off center. If it is, remove the record and Turntable, and loosen slightiy the screw or screws BF nearest the Shelf Plate to which record appeared closest. This should improve evenness of operaEfon. However, unless the unevenness was slight, it will be necessary for a permanent repair to insert a shim or two on one or more of the three scrows (or change shims from one screw to another). The shims used are shaped like an ordinary washer, cut out at one side (see cut-aray view at FE, showing a shim in place upon one of the Grommet Sleeves). Shims can readily be cut out with shears and punch from thin metal or cardboard-or an assortment of shims of different thicknesses can be had from factory (order "Assortment of P-1397 Shims"). They should be inserted, around proper screws (when screws have been sufficiently loosened) between Motor Frame and the metal Gromet Sleevo. Do not insert shims next to rubber gromet.

Before tightening screws, drop Drive Pinion Assembly AH into mesh with Idler Gear (but not down far enough to seat upon drive pin). Then make sure that when the three screws are tightened, Drive Pinion and Idler still

WEBSTER-CHICAGO CORP.

work freely together and do not bind. If necessary, loosen screws again, and shif't them until proper tooth clearance is obtained. Then tighten screws, and test. as above directed, the centering of Record Pin between Changer Posts.

In wiring up, consult wiring diagram for particular installation. Use only Underwriters' approved wire. See that Motor Frame is well grounded by wire soldered Eo Iugs, as shown on Bottom vier photo.

Trouble Shooting
Cases of failure to operate satisfactorily will generally be found due either to neglect of proper lubrication, or to tampering with the mechanism after it leaves the factory, or to injuries accidentally sustained as by external vibration or by impact of some heavy object. In addition there is always the possibility that any kind of spring may "go dead" (cease to operate without any visible breakage) even though the utmost factory precautions are taken against it--or that setscrews may work loose due to some external vibration. For tightening setscrews, a No. 8 size Allen (hexagon) wrench is required: be sure that setscrews are properly seated on the holes or flats provided. Danage from tampering is likely to take the form of bent parts; never bend any part during examination. Be careful, especially, never to push upward from below on Cam Connecting Rod Lift CV wile mechanism is operating; bending may result, and even slight bending here might interfere with correct timing of the cycle operations.

Among the principal trouble symptoms to which such causes may give rise, are the following:

1. MECHANISM IS SLOW IN STARTING, OR STALLS DURING A CHANGE CYCLE, BUT A SLIGHT FORWARD FUSH WITH THE HAND STARTS IT AGAIN. May be caused by
a. Failure to lubricate properly. 0il thoroughly, per instructions above.
b. Loose setscrews.
c. Weakness of drive: line voltage may be abnormally low, or motor windings demaged. If windings are found damaged, remove motor and return it to factory for repair or replacement. See above: "Replacing Notor."
2. MOTOR FAILS TO RUN, EVEN WHEN IT IS ENTIRELY DISCONNECTED FROM OTHER WIRING AND PROPER VOLTAGE IS APPLIED DIRECTLY TO THE TWO ENDS OF ITS WINDINGS. This indicates trouble in Motor windings. Unless the dam-
age is easily seen and repaired, replace Motor, as above described.

3. MOTOR IS SLOW IN STARTING.

a. Check oiling, as directed above. It may not have been properly done; old oil may have become gumay.
b. Changer may have been in a very cold place, and may not yet have reached room temperature. Give it a fair chance to get warmed up before concluding that Notor is defective, and proceeding as in Paragraph 2 above.
4. SQUEAKS OR OTHER NOISES, DURING PLAYING OF RECORDS.
a. Check oiling, as directed above. (If squeaks are heard, they will usually be found to come from the records--not from the mechanism).
b. See that all setscrews are tight.
5. CHANGER IS NOISY RHEN IN CYCLE. oiling.
6. MOTION OF PICKUP TO:ARD RECORD PIN WILL NOT TRIP CHANGER MECHANISM.
a. (Only on models not having Trip Adjustment Hole $A R$) It may be found that, instead of trigger being actuated, there is stretching of Swivel Spring CK, allowing the spreaders to open. Increase tension of the Spring, by bending slightly the Iug on either Spreader. If this increased tension causes needle to jump across the record, needle may be a little out of vertical, radially--it may "lean" toward center of record. To remedy this, grasp Pickup arm and tviist it, very slightly, in a clocknise direction (looking from needle end) so that it stends vertical, or even leans a little in outward direction.
b. If trigger is being properly actuated, probably Cam Lever CS is binding against Sub-Plate CU. Look for dirt or obstructions; see that Pawl DH and Trigger CP are working freely on their rivets. If the Lever engages the Pawl so that Lift $C V$ forces roller DJ up into the under groove on Cam Gear, and if set screws are tight, the change cycle must operate, as Can Gear turns.
7. PRESSING "R" BUTTON DOESN'T TRIP CHANGER MECHLANISM.
a. Check Key Control Unit FM: see whether there is an obstruction or a bent part which

WEBSTER-CHICAGO CORP.

prevents " R " button from going clear down to the end of its travel.
b. Examine Reject Rod FI. If it does not trip, even when properly revolved by complete depressing of " $R^{\text {" }}$ button, the rod has probably been bent, and must be restored in same way. Grasp the two ends and twist it slightly.
c. If Trigger $C P$ is being properly actuated but without starting a change cycle, see directions above, Paragraph 6-b.
14. LAST RECORD DROPS ON ONE SIDE ONLY. This suggests a Changer Post bent out of perpendicular to Main Plate. Test as direced above under "Replacing Motor." If Post must be straightened, be careful not to bend other parts.
8. PRESSING " M " BUTTON FAILS TO PUT CHANGER MECHANISM OUT OF ACTION SO AS TO ENABLE MANUAL OPERATION. First see that button goes clear down; then follow its action through Manual Rod FH.
9. MOTOR STOPS IMMEDIATELY WHEN CHANGER SWITCH IS TURNED OFF DURING A CHANGE CYCLE (instead of continuing to rum, as it should, until needle is again upon a record, and then stopping). or--
10. TURNING ON-OFF SWITCH FAILS TO STOP CHANGER AT ALL. Either of these two conditions would indicate fai lure of Cycling Switch EH. Cycling Switch operates normally to short-circuit the manual On-Off Switch (which may be located in position shown at FA or elsewhere) during change cycle only. Such damage to Cycling Switch (not likely to occur) would necessitate returning either the Sub-Plate Assembly or the entire Changer to factory.
11. CHANGER FAILS TO REPEAT LAST RECORD. See Paragraph 6, above.
12. NEEDLE LANDS PROPERLY ON RECORD BUT FAILS TO MOVE OVER INTO RECORD GROOVE. Pickup arm is normally impelled toward center of records by Lead Spring ER. Should a slight incresse in its tension be found necessary, this can be easily obtained by bending the lug, to which it is attached, down against Main Plate. If tendency then appears for needle to jump across record, check angle of needle (see Paragraph 6-a above).
13. RECORDS FALL UNEVENLY UPON TURNTABLE. Seldom objectionable (some unevenness may even be advantageous) this is due to Record Pin not being correctly centered between Chenger Posts. If necessary, it can be corrected as described above; see "Replacing Motor."
16. RECORD IS DRIVEN, BUT NOT HEARD, or NOT HEARD WITH PROPER VOLUME. See that Pickup cord is plugged in. Check amplifier and speaker and connections to them, thoroughly. If then trouble is still suspected in pickup, test its output with a vacuum-tube voltmeter. Playing an averege record, output should test 1 to 2.5 volts if pickup certridge is of crystal type, or 0.5 volt if of magnetic type. If pickup cartridge is found not to deliver proper output, remove it and install another.
17. SELECTOP PLATE FAILS TO SEPARATE BOTTOM RECORD FROM STACK. This is due either to a badly warped condition of the record, or to its being of a thickness very considerably different from those now in stanaard use. The design of both Selector and Shelf Plates is such as to accommodate a maximum variation in thickness and flatness of records, but certain records may be found which are so far out as to be impracticable for use in eutomatic changers.

If Necessary to Disassemble the Changer
First detach the entire changer mechanism (except Changer Connecting Rod Assembly FD and Cam Connecting Rod Assembly DE, also seen at EC) from Main Plate EB. To do this, first take out Shoulder Screw CT, to free the rest of the mechanism from Assembly DE. Tisen remove the three screws AO, which hold Sub-plate Assembly DI to Main Plate EB. Also remove Screw BN, which holds Cam Gear DF. Pull off the four Key Control Buttons. Remove, then, the two screws that hold Key Control Unit FN to Main Plate. Now remove Control Unit Truss Bar FO, Rejection Rod Support EP, and Extension Rod Bracket FQ-this means taking out five screws. Remove Flet Spring FJ, by taking out one screw. Rods FH and FI can then, with due care, be extractod without bending. Free the Cam

WEBSTER-CHICAGO CORP.

If Landing position of needle is not constant
OR PICKUP ARM CANNOT BE ADJUSTED TO SET
NEEDLE DOWN IN STARTING GROOVE OF RECORD
In the first production of the automatic record changer, the pickup arm may display the following symptons:

1. After the pickup arm has been set for the correct landing position, the needle does not lower consistently to the starting groove of a record during the playing of any one size of records.
2. The needle lowers so far away from the starting groove of the record that turning the needle landing adjusting screw does not bring the needle to the etarting groove.

In early production, the pickup lead was permitted to hang down directly below the foot of the pickup.. In such instances, the lead may become entangled with the rotating mechanism for the pick-up arm. This will produce either one of the above actions.

To remedy the condition, clamp the pickup lead to the bracket - See Fig. 1, leaving enough slack in the lead to permit free action of the pickup arm. That portion of the lead under the clamp should be covered with tape.

The clamping arrangement consists of a small clamp, a No. 6 shakeproof lockwasher, and a 6-32 shakeproof self-tapping machine screw. on request, these items will be supplied free of charge by the factory.

IF PICKUP ARM DOES NOT SET NEEDLE DOWN IN STAFTING GROOVE OF BOTH $10^{\prime \prime}$ and $12^{\prime \prime}$ RECORDS

It may be found that any one setting of the needle landing adjusting screw will not cause the phono pickup arm to set the needle down in the starting groove for both $10^{\prime \prime}$ and $12^{\prime \prime}$ records.

This condition may be remedied as follows: Set the automatic record changer for $10^{\prime \prime}$ record operation. Turn the needle landing adjusting screw so that the pickup arm sets the needle down in the starting groove of a $10^{\prime \prime}$ record.

Peplace the $10^{\prime \prime}$ record with a $12^{\prime \prime}$ record and set the automatic record changer for $12^{\prime \prime}$ record operation. Start the mechanism. Note the landing position of the needle.

WEBSTER-CHICAGO CORP.

If the needle does not set down on the record or sets down to o near to the edge of the record, bend the shaft of the 12" button (See Fig. 2) a VERY SLIGHT AMOUNT away from the extension rod. If the needle sets down on the record past the starting groove (toward the center of the record), bend the shaft of the 12^{n} button a VERY SLIGHT AMOUNT toward the extension rod.

MODEL A－93，A－94

WILCOX－GAY CORP．

|
 નキニコニコ |
 | |
| :---: | :---: | :---: |
| 勺勺勺心⿹勹巳勺 | | civonex |

2
0
0
Mow

WILCOX－GAY CORP．
MODEL A－101，A－102

| ¢0\％ | |
| :---: | :---: |
| 古 | 薙兌 |
| \sim | 우우 |

品品品品

```
*
```


 Handis，cord and Plug

－ －

HOW TO USE THE INDEX

The Index to "Automatic Record Changers and Recorders" is divided into two parts: one pertaining to the text portion, pages 1 to 60 , and the second covering the manufacturers' service data, pages 61 to 733 . The latter portion requires a word of explanation so that the user can find the needed data as quickly and as easily as possible.

The left-hand column (see example below) lists the model numbers of radio-phonograph combinations in which a record changer is employed; such a combination may or may not have a recorder also. The next column lists the radio manufacturer's model number of the record changer and/or recorder used. The third column lists the manufacturer of the record changer or recorder and that company's model number of the unit. The last column lists the pages on which the data pertaining to the unit appear.

| Radio
 Combination
 Model No. | Record Changer or Recorder | | |
| :---: | :---: | :---: | :---: |
| Model No. | Manufacturer | Pages | |
| 8AE1 | 104263 | General Instrument 102 | 257 to 260 |
| 796 | - | RCA | RP-139-A |

The Belmont model number of the radio combination is 8 AE 1 and the Belmont number for the record changer used in the model 8AE1 is 104263 . This record changer is manufactured by General Instrument Corp. and that company's model number is 102 . The service data covering the nodel 102 will be found in the General Instrument section on pages 257 to 260 inclusive. The record changer used in Belmont model 796 is made by RCA Mfg. Co., the RCA number being RP-139-A and the data appearing in the RCA section on
pages 463 to 467 inclusive. In other words, if you want to know the make and model number of a record changer or recorder that is used in a radio-phonograph combination, -look up the name of the manufacturer of the combination, as Belmont, Galvin, Zenith, etc., and opposite the combination model number in the first column you will find the desired information together with the page numbers on which the data appear.

In several instances the same manufacturer makes both radio combinations and record changers, as RCA Mfg. Co. In the first column will be found model numbers of any combinations in which record changers or recorders are used and in the second column will be found the model or specification numbers of the record changer. In such cases, the third column will be blank, as the number already appears in the second.

In some cases a receiver manufacturer has furnished specifications to a record-changer manufacturer for a changer that is similar to a model of the latter's regular line. In order to avoid repetition, such changers are listed as being similar to a certain model of the record-changer manufacturer. An instance will be found in the listing of model H-79 of the General Electric Co., in which is used a record changer that is similar to the Webster model 11.

In those instances where you know the name of the manufacturer of the record changer or recorder, look up the model number of the unit under the manufacturer's name. The first column is blank, as this is only for radio-combination model numbers, the model number of the unit being found in the second column. The page numbers on which the data will be found are in the last column.

TEXT INDEX

(Manufacturers' Index on following page)

MANUFACTURERS' INDEX

DAVID BOGEN CO., INC
RA6. RA10,
$16 \mathrm{RC}, 16 \mathrm{RP}$ \qquad

BRUNSWICK DIVISION-MERSMAN BKOS

DETROLA

GENERAL ELECTRIC

EKWOOD SOUND EQUIPMENT CO.
New Prod. 220, 221, 223,
New Prod, 300 Series 301310-314
Oak RC-1, 4200 Series315-323

| | EsPEY MFG. CO. |
| :---: | :---: |
| C20 ACSeeburg J584-588, 595-606, | |
| $\mathrm{RC}_{145} \mathrm{R}^{\text {AC }}$ AC-DC | Gen. Ind. C120248-253 |
| | Seeburg J584-588, 614-618 $_{\text {595-606, }}$ |
| 1445 U AC-DCGarrard RC31198-200 | |
| 1423 AC Seeburg J584-588, 595-606, | |
| | |
| | |
| | |
| | |
| | |
| | |
| WQXR-U Also refer to279, 280, 282, 283 | |
| | |
| | Garrard RC31198-200 |
| | Also refer to279, 280, 282, 283 |

FAIRCHILD AVIATION CORP.

| | |
| :---: | :---: |
| 199/220 | $82-85$ $86-90$ |
| 199/220- | |
| Model 3 | 86, 88-91 |
| 214.3, 214-3A | 92-98 |
| 219-2 | 99-103 |
| 227 | 104-105 |
| 295 | 106-112 |

FARNSWORTH TELEV. \& RADIO CORP.

| $\begin{aligned} & \text { FARNSW } \\ & \text { RADIO } \\ & \text { COMBINATION } \\ & \text { MODEL NO. } \end{aligned}$ | WORTH TELEV. \& RADIO COR REGORD CHANGER OR RECORDER MODEL NO. MANUFACTURER | PAGES |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { BK-106, BK-107, } \\ & \text { BK.108, BK.110. } \\ & \text { BK.111, BK-112. } \end{aligned}$ | | |
| BK-1030 |Capehart P.2 | |
| Capehart De Luxe100H Series, | | |
| 100 K Series, | | |
| 400 K Series, | | |
| | | |

FEDEKAL RECORDER CO.
"Little Pro"

FIRESTONE TIRE \& RUBBER CO.
(AIR CHIEF)

GALVIN mfg. Co.

GAMBLE-SKOGMO INC.
(CORONADO)
671 ..Seeburg J.......................584-588. 595-606,

797 …..463-464.247
C901 Recordioeeburg JR …..................589-594, 608-613,

| | | 621,622 |
| :---: | :---: | :---: |
| 4956 | Oak RC-1 | . 315-323 |

GARRARD ENG. \& MFG. CO. LTD.
General Record
Changer and

RC-4, RC-5,
RC-6, RC-8.

RC-30, RC-31;

RC-50X RC. 51
RC-50.
RC-51X
R.
Also refer to ...198, 274, 285-288
GENERAL ELECTRIC $C O$.

MAGNAVOX
MONTGOMERY-WARD

| | MIDWEST RADIO CORT. |
| :---: | :---: |
| 38-12-YY | |
| $\begin{aligned} & 38-16 \text {-YY } \\ & 38 \cdot 18 \text {-YY } \end{aligned}$ | Gen. Ind. Packard "L' |
| 39-12.CP. | |
| 39-17.CP | . Gen. Ind. Packard "K"239-241 |
| 40-12.CP | .. RCA RP-145 (9865A)463-467 |
| 40-17.CP | RCA RP-139A (9865)463-467 |
| 41-12K, 41.12 N . | Gen. Ind. C-120248-253 |
| 41.12 KR . | |
| 41-12NR | ..Gen. Ind. RC-130 $255-256$ |
| 41-18K, $41-18 \mathrm{~N} . ~ G e n . ~ I n d . ~ C-120 ~ .248-253 ~$ | |
| 41.18 NR |Gen. Ind. RC-130255-256 |
| | MONTGOMERY-WARD |
| | (AIRLINE) |
| 04BR-615A |Gen. Ind. |
| 04BR-620A | ….... Seeburg J584-588, $\underset{614-618}{595-606,}$ |
| 04BR.904A. | |
| 04BR-906A. Serburg or JP 584-622 | |
| | |
| 04JP.399A, B, | |
| C. DSeeburg JR589-594, 608-613 | |

| PHILCO RADIO \& TELEV. CORP.-(Cont.) | | | |
| :---: | :---: | :---: | :---: |
| RADIO RECORD CHANGER | | | |
| COMBINATION OR RECORDER | | | |
| MODEL NO. | MODEL NO. | MANUFACTURER | PAGES |
| 42-1008, | | | |
| $42 \cdot 1009 \mathrm{M}$, | | | |
| $42 \cdot 1009 \mathrm{~W}$, | | | |
| 42-1010, | | | |
| 42.1011 M , | | | |
| 42.1011 W , | | | |
| 42.1012, | | | |
| 42-1013, | | | |
| 42.1015 , | | | |
| 42-1016 $\quad \begin{array}{r}\text { (.....35-1285, } \\ \\ \\ \text { 35-1286, }\end{array}$ | | | |
| | | | |
| 35-1289 .. 356-362 | | | |
| * $45-2820$ Kit.... | R-1 | | 324-325 |
| 10735-1169 ... 328 8-329 | | | |
| 116PX35-1108 ... 326-327 | | | |
| | | | |
| 50135-1011 | | | |
| 50935-1011. | | | |
| 3 | $5 \cdot 1100$ | | |
| 1942 Models | eneral Dats | | 366-368 | * All automatic record changers using Photoelectric Reproducers adapt-

able for HR-1 Home Recording Kit installation.

PILOT RADIO CORP.

PRESTO RECORDING CORP.

| D Compac | 369-377 |
| :---: | :---: |
| E, 16X | 378-379 |
| K | 380-383 |
| $\begin{aligned} & \text { EU7-85A } \\ & \text { EU7E-85E } \end{aligned}$ | 395-409 |
| \mathbf{J}_{5} | 384-394 |

SEARS, ROEBUCK

RADIO PRODUCTS CORP.
RC•50, RC•51,
\qquad

REK-O-KUT
R12, R16 .. 546
SEARS, ROEBUCK \& CO.
(SILVERTONE)
R5501
($101.618,-1 \mathrm{~A}$),
5509
(101.618-2)
5511

5511
(101.619)

| (101.619) | 101.220 | Series | |
| :---: | :---: | :---: | :---: |
| | 101.320 | '4.....(Erwood) | New Prod. 220. |
| 55114 | | | 320 Series .. | (101.619A)

5561

5571
(101.631),

5571 A

5601
(101.628).

5601 A
(101.628-1A) ..101.340.
101.341

549

SEARS, ROEBUCK WEBSTER-CHICAGO

| | SONORA RADIO \& TELEV. CORP | |
| :---: | :---: | :---: |
| TXF, TXF67 | |463-467 |
| KXF, KXFU, | | |
| KXF95 | Gen. Inst. 101 | 257-260 |
| KSA, KSAU. 255 | | |
| KSA 96 | Gen. Ind. RC-130 | 255-256 |
| KL-185 | Gen. Ind. RC-130L | 255-256 |
| Lぐ.186 | Oak 4200.39 | 315-323 |

SPAKKN-WITHINGTON CO
(SPARTON)

| 85 | Genersl Industries K7 (Similar to Model K) | 239-241 |
| :---: | :---: | :---: |
| 105X. 105XS | ${ }^{4}$ | " ${ }^{\text {" }}$ |
| $766 \mathrm{XP}, 766 \mathrm{XS}$ | - " | " |
| $1166 \times \mathrm{P}$, 1166 XS | " | " |
| $1176 \mathrm{XP}, 1176 \mathrm{XS}$ | ، | , |

SPEAK-O-PHONE RECORDING \& EQUIPMENT CO.

| $\begin{gathered} \text { RADIO } \\ \text { COMBINATION } \\ \text { MOIELE NO. } \end{gathered}$ | SPIEGEL, INC. | PAGES | |
|---|---|---|---|
| | RECORD CHANGER | |
| | OR RECORDER | |
| | DEL. NO. MANUFACTURER | |
| A-2080 (7C.PH) | RCA RP-139B | 468-471 |
| | | |
| | | | |
| drop type468-471 | | |
| CP-5060 | Gen. Inst. 101 | 257-260 |
| B5P6570 (832F) Erwood 402 | | |
| DP-7016, DP-7662 (Erwood) New Prod. $300 \ldots \ldots312-313$ | | |
| DP. 7064Gen. Ind. RC-130L255-256 | | |
| Z.7080 (7C-PH) |RCA RP-139B |468-471 |
| STEWART-WARNER CORP. | | |
| O1.6C9 | | |
| | | | |
| $11.6 \mathrm{~V} 9,11.7 \mathrm{~A} 8$ | | |
| $11.7 \mathrm{~A} 9,11-8 \mathrm{I} 6$ | | |
| 11-8D7, 11-8I8, | | |
| | | |
| 11-8R8Gen. Ind. R-70242-247 | | |
| 11.8R9 Seeburg Jk-5B589-594, 608-613, | | |
| 11-10A6, 11.10A8, | | |
| 11-10A9, 11-10A10Seeburg J584-588, 595-606, | | |
| 17-788, 17-8E6 | .. Gen. Ind. $\mathrm{C} \cdot 120$ | .248-253 |
| 1269 -P | . Gen. Ind. "L" | 239-241 |

See WESTERN AUTO SUPPLY CO.

WARWICK MFG. CO.
(TROUBADOR)

WEBSTER-CHICAGO CORP

| 11 .. 6650.669 | |
| :---: | :---: |
| 21. AC-21, 670-676 | |
| | |
| 22 | 675-682 |
| 23 | 683-690 |
| 24 | 677-682 |
| 25 | 691 |
| 40 | 692-702 |
| 41 | 703-712 |
| 210 | 713-721 |

WELLS-GARDNER
 ZENITH

[^0]: Remove crosabar assembly from rest post and swing over to turntable center
 ping in position shom in Fig.A. Lower crossbar assembly to fit over center

 flatord surface before recording.

 If recorder 1 s set for "inside-out" recording, silde cutting head carriage carriage back to the right just far enough to permit the cutting head to olear the center post base ing blank when cutter is lowered for recordingo in either cas recording.

[^1]:

[^2]: 客

[^3]: 20
 0
 0
 0
 0
 9

 Stock
 No. 38083
 98136 38136
 38080 38080
 38106 38106
 38008 38126

 38011
 38108
 38127 38072 38052
 38074

 38071
 38110 38088
 98140

 Description
 Magazine Side Fel
 Record Magazine Assembly
 Record Magazine Felt
 Record Support-Upper
 Shoulder-Screw.Magazine Link Record Reverse Guide Assembly Pin-Reverse Guide Stop Shoulder Screw-Separato Record Reverse Guide Record Separator and Hub Assembiy Record Reversing Arm Lock Record Reverse Arm Lock Stop Pickup Arm Base Automatic Stop Trip Lever, Short Pickup Arm Casting only Record Tray Bumper-Front Pin-Record Support

[^4]: *Used on previous record players.

[^5]: Turn switch knob to "OFF" position while the tone arm is still on the rec-
 ord. If the switch knob should be turned off while Record Changer is going
 through a change cycle, it will be difficult to adjust the selector arms cor-

