Sassie - sweetest sound in cassettes (see page 57)

WHITE'S RADIO LOG

- AM Stations

- Worldwide Shartwave
- Police/Energency

Happiness is having our

project 1: Speed Flash dial X and fire
project 2: Robot Slave light when and where
you need it

Plus

Photography Speed Lites what makes the
pro units tick

Dazzle your friends with lightworks.
 Sound n' Color
 ElCO All Enertion Syld Sire Aurioc. yor
 Translators

Build the Stereo Kits praised by experts.

Build for fun and use with Eicocraft jiffy project kits.

Shape up your own car/boat with EICO Engine Analyzer

The first and only solid state test equipment GUARANTEED FOR 5 YEARS

EICO 240 Solid-State FET.TVOM $\$ 59.95$ kit,

EICO 379 Solid-State
Sine Square Wave Gene
$\$ 69.95$ kit, $\$ 94.50$ wired

EICO242 Solid-State
Deluxe FET.TVOM

EICO 150 Solid-State Signal Tracer

EICO 330 Solid-State RF Signal Generator
$\$ 59.95$ kit, $\$ 84.50$ wired

You save up to 50% with ElCO Kits. Since 1945, Best Buys in Electronics. Over 3 Million EICO Instruments Now in Use.
FREE 1970 CATALOG
SE- 10
जाज
EICO Electronic Instrument Co.. Inc.
EICO Canada Ltd.

The New 1970 Improved Model 257
 A REVOLUTIONARY NEW TUBE TESTING OUTFIT

COMPLETE WITH ALL ADAPTERS AND ACCESSORIES, NO "EXTRAS"

STANDARD TUBES:

Tests the new Novars, Nuvistors, 10 Pins, Magnovals, Compactrons and Decals.
More than 2,500 tube listings.
Tests each section of multi-section tubes individually for shorts, leakage and Cathode emission.
Ultra sensitive circuit will indicate leakage up to 5 Megohms.

- Employs new improved $41 / 2^{\prime \prime}$ dual scale meter with a unique sealed damping chamber to assure accurate, vibration-less readings.
Complete set of tube straighteners mounted on front panel.
- Tests all modern tubes including Novars, Nuvistors, Compactrons and Decals.

\author{

- All Picture Tubes, Black and White and Color
}

ANNOUNCING... for the first time

A complete TV Tube Testing Outfit designed specifically to test all TV tubes, color as well as standard.
Don't confuse the Model 257 picture tube accessory components with mass produced "picture tube adap. ters" designed to work in conjunction with all competitive tube testers. The basic Model 257 circuit was modified to work compatibly with our picture tube accessories and those components are not sold by us to be used with other competitive tube testers or even tube testers previously produced by us. They were custom designed and produced to work specifically in conjunction with the Model 257.

BLACK AND WHITE PICTURE TUBES:

\checkmark Single cable used for testing all Black and White Picture Tubes with deflection angles 50 to 114 degrees.
The Model 257 tests all Black and White Picture Tubes for emission, inter-element shorts and leakage.

COLOR PICTURE TUBES:

, The Red, Green and Blue Color guns are tested individ. wally for cathode emission quality, and each gun is tested separately for shorts or leakage between control grid, cathode and heater. Employment of a newly perfected dual socket cable enables accomplishments of all tests in the shortest possible time.

The Model 257 is housed in a handsome, sturdy, portable case. Comes complete with all

We have been producing radio, IV and electronic fest equipment since 1935, which means we were making Tube Jesters at a time when there were relatively few fubes on the market, way before the advent of TV. The model 257 employs every design improvemeht and every technique we have learned over an uninterrupted production period of 34 years.

Accurate Instrument Co., Inc.

SEND NO MONEY WITH ORDER
 PAY POSTMAM MOTHING OM DELIVERY

Pay Cash or in EASY MONTHLY PAYMENTS AFTER 15 Day Trial!

Try it for 15 days before you buy. If completely satisfied remit $\$ 52.50$ plus postage and handling charge. (If you prefer you may PAY MONTHLY ON OUR EASY PAYMENT PLAN.) if not completely satisfied, return to us, no explanation necessary.
ACCURATE INSTRUMENT CO., INC. 10467
Please rush me one Model 257. If not satisfactory I agree to pay at the terms speoified at left. If not satisfactory, I may return for eancellation of aceount.
Name
\qquad
Address.
city \qquad Zone \qquad 8tate \qquad I
\square Save Money! Check here and enclose $\$ 52.50$ with coupon and we will pay all shipping and handling charges. You still retain privilege of returning after 15 day trial for full refund.

THOUSANDS OF BARGAINS TOP VALUES IN ELEETRONIC	
Transistors, Modules, C. B., Speaker, Stereo, Hi-Fi, Photo Cells and Thousands of Other Electronic Parts. Send for FREE Catalogue	
ELECTRONIC DISTRIBUTORS INC.	
EDI	
	EDI Dept. TA-2, 4900 Eiston (icago, III. 60630 rush ca
	Name.................
Address	
	State.

For your free copy, fill out coupon and mail. Dept. TV FAIR RADIO SALES 1016 E. EUREKA BOX 1105 - LIMA, OHIO - 45802

	WHY PAY MORE
	FOR A METAL LOCATER?
	The "Prospector"
	\$10.95 Postpaid
	USE ANY INEXPENSIVE TRANSISTOR RADIO! THE "PROSPECTOR"
NOT A KIT!	
USE YOUR OWN RADIO	
operating instructions, battery, included. antique JEwELRY,	
GUARANTEED	
MAIL	
YOUR ORDER NOW!	FOR: TREASURE HUNTERS, COIN COLLECTORS, PROSPECTORS OF EVERY AGE.ITS'A GREAT HOBBY!
Send: Name, Add D.A.R.E. divisio BOX 419A	Ess, Zip, \& $\$ 10.95$ (check, M.O., cash) to of Allied technology inc TROY, OHIO

Science and Electronics

Volume 28

JULIAN M. SIENKIEWICZ, WA2CQL Editor-in-Chiej

RICHARD A. FLANAGAN, KQD2566
Managing Editor
CHARLES S. HARRIS
Technical Editor
ROBERT WOLLINS
Assistant Editor
HELEN PARKER, KQD7967
News Editor

JIM MEDLER

Art Editor and Associate Art Director
ARTHUR S. COOKFAIR; WEBB GARRISON: ERNEST A. KEHR; MARSHALL LINCOLN, W7DQS; JACK SCHMIDT
Contributing Editors

-

JOSEPH A. D'AMATO, Art Director IRVING BERNSTEIN, Cover Art Director ANTONY BARONOWSKI, Art Associate
DAVID J. MILLER, KCX7268, Advertising Director
CARL BARTEE, Production Director
GERTRUD BORCHARDT, Production Manager
Marilyn Vargas, Assistant Production Manager WILFRED M. BROWN,
Instruments Division Manager
ROGER G. CAVANAGH,
Circulation and Marketing Director
B. G. DAVIS, Chairman of the Board joel davis, President and Publisher LEONARD F. PINTO,
Vice-President and General Manager VICTOR C. STABILE, KBP0681,
Vice-President and Treasurer

SCIENCE AND ELECTRONICS is published bi-monthly by Science \& Mechanics Publishing Co., a subsidiary of Davis Publications, Inc. Editorial, business, and subscription offices: 229 Park Avenue South, New York, N.Y. 10003 . Oneyear subscription (six issues)- $\$ 4.00$; two-year subscription (12 issues) - $\$ 7.00$; and three-year subscription (18 issues)$\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canada. Advertising offices: New York, 229 Park Avenue South, 212-OR 3.1300; Chicago, 520 N . Michigan Ave. 312-527-0330; Los Angeles: J. E. Publishers Rep. Co., 8560 Sunset Blvd. 213-659-3810; Long Island: Len Osten, 9 Garden Street, Great Neck, N.Y., 516-487-3305: Southwestern advertising'representative: Jim Wright, 818 Olive St., St. Lovis, 314-CH-I-1965.
EDITORIAL CONTRIBUTIONS must be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or photographs. All contributions should be addressed to the Editor, SCIENCE AND ELECTRONICS, 229 Park Avenue South, New York, N.Y. 10003.

Second class postage paid at New York, New York and at additional mailing office. Copyright 1970 by Science and Mechanics Publishing Co.

Julian M. Sienkiewicz editor-in-chief

Here's to a fine gentleman and an excellent organization! We are toasting none other than Pete Kreer and ReACT-Radio Emergency Associated Citizens Teams. Pete Kreer, a Chicago advertising executive, is the man responsible for thinking up and giving impetus to the organization CBers lovingly refer to as REACT. At the present time, REACT is sponsored by General Motors Research Laboratories as a public service with Pete at the helm as National Director. This mighty duo, combined with enthusiastic Citizens Banders throughout the nation, has created a public service organization that not only fills voids where public emergency services fail or cannot serve, but represents the entire Citizens Band group with a mighty voice at FCC headquarters in Washington. Case in point is the new ruling by the FCC that Channel 9 become the emergency calling channel for the Citizens Band radio service. Admittedly, REACT did not do it alone, but this Editor believes that this organization had the largest and most influential voice.
However, a problem now falls before us. CBers have been accustomed to using Channel 9 as a general calling channel throughout the nation. Motorists, businessmen in general, and the often-deigned chit-chatters have always used Channel 9 as the one channel to get into the action. This no longer can be done on Channel 9. Therefore, REACT National Headquarters has come up with a plan to use Channel 11 as the national calling channel for all legal situations other than emergencies. Many reasons can be given for this selection, but this Editor feels that the most important reason is that more people have Channel 11 crystals, with the exception of Channel 9, than any other channel crystal. Another good reason is that antenna systems, no matter how well they cover the entire spectrum of the 23 CB channels, serve most efficiently at a particular frequency. Antenna systems, therefore, should be tuned to Channel 9 , the emergency calling channel, for best standing-wave-ratio figure of merit. To take advantage of this efficiency, the nearest general-purpose calling channel would be Channel 11. That in itself (Continued on page 99)

PRICE BREAKTHROUGH IN LARGE SIZE

OPAQUE PROJECTOR
Best Opaque of its Kind Under $\$ 200^{\circ}$ Projects brilliant, share $41 / 2$ foot square inzage from 8 feel away using up to $5^{\prime \prime} \times 5^{m}$ color, b \& w illustrations, Retains ali
original colors and proportions. oriplnal colors and proportions. watercolors, pletures, stamps, coins, other objects. Features high speed, 200 mm anastig.
 quartz halogen lamp it 50 hr . life); unique intermal reflecting system. Gives maximum brightness, entire tield focus. Flat stage and removable magnetic platen enable use upside down. Turbo-blower No. 71,272HP (83/4" $\times 6^{\prime \prime} \times 121 / x^{\prime \prime} \rightarrow 1$

4 GIANT 180' DAY GLOW TYPES!

CHROMATIC 'MACHINE-GUN'" STROBE

BLACK-LIGHT MIGHTY MITES

Relatively snall (12") fxtures
give surprtsingly bright lidack. give surprisingly bright lilack. makes instant starting 8-watt, highintensity bulb look like 40 .
watter. watcer jong to 5,000 hours of
safe
light light to really turm-on parties, light \& theatrical shows. psy:
chedelic decors. hollday decor: chedelic decors. holiday decor-
ations. shockproof endeaps re. move for safe, easy replace: ment of bulb and starter. Stands upright or horlzontal. Aluninum uprigh
Stock No. 71,274HP
DELUXE OUTDOOR/INDOORMODEL
Stock No. $71,299 \mathrm{HP}$.........
$\$ 14.95$ Ppd.
$\$ 19.95$ Ppd.
PSYCHEDELIC LIGHTING HANDBOOK

100 information packed pages! Fully explains the latest in psy-
chedelichirhting equipment. fechnlques, developments. Covers all facets of psychedelic light-show Production biack lignts. projeludors. erystals. orkanic slides, mirrors, color organs. polarized color, light toxes, 'insychedelize, etc. Shows how to groups, shows parties, musical

. \$3.00 Ppd.
Order by Stock No.-Check or M.O.-Money Back Guarantee
EDMUND SCJENTIFIC CO., 300 Edscorp Bldg., Barrington, N.J. 08007
WRITE FOR GIANT FREE CATALOG "HP"

Completely
New
new 1071
categories,
editionstra: tions. 148 easy-to-read pages packed with 4000 unusual thems. Dozens of electrical and electroEnomelte listris. accessories. nomical Telescopes, Microscopes. Binoculars. Mastitiers, Magnets. Lenses, Prisms Many war surWenters, workshops. factory. Write for catalog HP. Include
Zip.

cosersemeralec. BARAINGTON, NEW JERSEY 08007

New Heathkit ${ }^{\circ}$ Solid-State

Design and performance features add up to one-of-a-kind superiority.

Over five years were spent in research and development to achieve the notably superior performance, improved convenience features, and ease of service now embodied in the new GR-270 and GR-370. They are premium quality receivers in the truest sense, and, we believe, the finest color TV's on today's market. Here's why ...

Compare these features:

- Madular plug.in circuit board construction.
- MOSFET YHF tuner and 3-stage IF.
- Adjustable video peaking.
- Sound instantly, picture in seconds.
- Built-in Automatic Fine Tuning.
- Pushbutton channel advance.
- Tilt-out convergence and secontary contrals.
- Hi.fi sound outputs - for amplifier.
- Virtually total self-service capability with built-in volt-ohm meter, dot generator, and comprehensive manual.
- Premium quality bonded-face etched glass picture tubes.
- Choice of $\mathbf{2 9 5} 5^{\prime \prime}$ or $227^{\prime \prime}$ picture tube sizes.

Exclusive solid-state circuitry design...total of 45 transistors, 55 diodes, 2 silicon controlled rectifiers; 4 advanced Integrated Circuits containing another 46 transistors and 21 diodes; plus 2 tubes (picture and high voltage rectifier) combine to deliver performance and reliability unmatched by conventional tube sets.

Exclusive design solid-state VHF tuner uses an MOS Field Effect Transistor for greater sensitivity, lower noise, and lower cross-modulation ... gives you sharply superior color reception, especially under marginal conditions. Gold/ Niborium contacts give better electrical connections and longer wear. Memory fine tuning, standard. Solid-state UHF tuner uses hot-carrier diode design for increased sensitivity.

3-stage solid-state IF has higher gain for better overall picture quality. Emitter-follower output prevents spurious signal radiation, and the entire factory-aligned assembly is completely shielded to prevent external interference.

Automatic Fine Tuning - standard on both sets. Just push a button and the assembled and aligned AFT module tunes in perfect picture and sound automatically... eliminates manual fine-tuning. Automatic between-channel defeat switch prevents tuner from locking in on stray signals between channels. AFT can be disabled for manual tuning.

VHF power tuning...scan through all VHF and one preselected UHF channel at the push of a button.
Built-in automatic degaussing keeps colors pure. Manual degaussing coil can be left plugged into the chassis and turned on from the front panel... especially useful for degaussing after the set is moved some distance.

Automatic chroma control eliminates color variations under different signal conditions.
Adjustable noise timiting and gated AGC keeps pulse-type interference to a minimum, maintains signal strength at constant level.

High resolution circuitry improves picture clarity and new adjustable video peaking lets you select the degree of sharpness and apparent resolution you desire.
"Instant-On". A push of the power switch on the front panel brings your new solid-state set to life in seconds. Picture tube filaments are kept heated for instant operation, and extended tube life. "Instant-On" circuit can be defeated for normal onoff operation.

Premium quality color picture tubes. Both the 227 sq. in. GR270 and 295 sq. in. GR- 370 use the new brighter bonded-face, etched glass picture tubes for crisper, sharper, more natural color. And the new RCA HiLite Matrix tube is a low cost option for the GR-370. See below.

Adjustable tone control lets you choose the sound you prefer from deep, rich bass to clean, pronounced highs.

Hi-fi output permits playing the audio from the set through your stereo or hi-fi for truly lifelike reproducton. Another Heath exclusive.

Designed to be owner serviced. The new Heath solid-state color TV's are the only sets on the market that can be serviced by the owner. You actually can diagnose, trouble-shoot and maintain your own set.
Built-in dot generator and tilt-out convergence panel let you do the periodic dynamic convergence adjustments required of all color TV's for peak performance. Virtually eliminate technician service calls.

Snap-out glass epoxy circuit boards with transistor sockets add strength and durability and permit fast, easy troubleshooting and transistor replacement. Makes each circuit a module.

Built-in Volt-Ohm Meter and comprehensive manual let you check circuits for proper operation and make necessary adjustments. The manual guides you every step in using this built-in capability. Absolutely no knowledge of electronics is required.

Easy, enjoyable assembly . . . the Heathkit way. The seven-section manual breaks every assembly down into simple step-bystep instructions. With Heath's famous fold-out pictorials and simple, straightforward design of the sets themselves, anyone can successfully complete the assembly.
Heathkit Solid-State Modular Color TV represents a significant step into the future... with color receiver design and performance features unmatched by any commercially available set at any price! Compare the specifications. Then order yours today.
Kit GR-270, all parts including chassis, 227" picture tube, face mask, UHF \& VHF tuners, AFT \& $6 \times 9^{\prime}$ speaker, 114 lbs . $\$ 489.95^{*}$ Kit GR-370, all parts including chassis, $295^{\prime \prime}$ picture tube, face mask, UHF \& VHF tuners, AFT \& $6 \times 9^{\prime \prime}$ speaker, 127 Ibs. $\$ 559.95^{*}$ Kit GR-370MX, complete GR-370 with RCA matrix picture tube, 127 lbs. . $\$ 569.75 *$
GR-270 AND GR-370 SPECIFICATIONS - PICTURE TUBE SIZE: GR-370 ADproximate Viewing Area: 295 Sq. In. GR-270 Approximate Viewing Area: 227 Sq. In. DEFLECTION: Magnetic, 90 degrees. FOCUS: Electrostatic. CONVERGENCE: Magnetic. ANTENNA INPUTIMPEDANCE: VHF 300 ohm balanced or 75 ohm unbalanced. UHF: 300 onm balanced. TUNING RANGE: VHF TV channels 2 through 13. UHF TV channels 14 through 83. PICTURE IF CARRIER: 45.75 MHz . SOUND IF CARRIER: 41.25 MHZ COLOR IF SUBCARRIER. 42.17 MHZ . SOUND IF FRE: QUENCY: 4.5 MHz VIDEO IF BANDWIDTH: 3.58 MHZ . HI-FI OUTPUT: Output impedance -1 k ohm. Frequency response $- \pm 1 \mathrm{~dB} 30 \mathrm{~Hz}$ to 10 kHz. Harmonic distortion-less than 1% at 1 kHz , Output voltageohm Ous nominal. RUDIG ouTPUT: Output impedance- -4 ohm or 8 ohm. Output power - $\mathbf{2}$ watts. POWER REQUIREMENTS: 110 to 130 libs.

Modular Color Television!

Exclusive Modular Design... Circuit Boards snap in and out in seconds for easy assembly, simple servicing

New Expedited 40-Hour No-Charge Warranty Service Pian for SolidState TV Modules! Special service facilities have been established at the factory and all Heathkit Electronic Centers to expedite service and return of Solid-State TV circuit modules within two working days. During the 90 -day warranty period, TV modules wit be serviced or replaced with no charge for labor or parts. After the initlal 90 -day warranty period expires, Ter modules will be serviced or replaced at a fixed charge of $\$ 5.00$ per module for labor and
parts for a period of two years from date of original kit purchase.

Add extra convenience and versatility to your new GR-270 or GR-370 Solid-Stete Color TV with this new uitrasonic remote control kit. Lets you turn the set on and off, adjust volume change VHF channeis and adjust color and tint from the comfort of your chair. Assembles and installs completa in recelver makes fina adjustment a matter of minutes.
.304.95*

Choose One Of These Handsome, Factory Assembled Cabinets

 3 models in 295 sq. in.

3 models in 227 sq. in.

NEW

FREE 1971 CATALOG! Now with more kits, more color. Fully describes these along with over 300 kits for stereo/hi-fi, color TV, electronic organs, gultar amplifiers, amateur radio, marine, educatlonal. CB. home Heath Company genton Har Hor, Michigan 49022.

Handy Roll-Around Cart and Cabinet Combina-
tlon. Features the GRA203.20 walnut cabinet plus a walnut-trimmed wheeled cart with storage shelf. Assembled Gin-203-20 Cablnet, 45
 Combe, 58 lbs. $\$ \$ 9.55$

- HEATY COMPANY, Dept 19-10

Benton Harbor, Michigan 49022

 a Schlumberger company

- Enclosed is $\$$ \qquad plus shipplng.
Plosse send model (s)
- Please send FREE Heathkit Catalog. - Please send Credit Application.

Name
Address
\qquad
City \qquad State \qquad
-Mall order prices; F.O.B. factory. Prices a specifications subject to change without nottce. CL-387R

Olson ELECTRONICS
 File Catalog

Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS' Fantastic Value Packed Cafalog - Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Sterea Amps, Tuners, CB, and other Values. Credit plan available.
NAME
ADDRESS
CITY \qquad STATE
GIVE ZIP CODE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS

DEPT. M-JM 260 S. FORGE STREET, AKRON, OHIO 44308

****************** N..

Meanwhile, Back at the Range . . .

Here's something the Little Woman will appreciate! Called Thermal Magic by its inventor, Energy Conversion Systems, it's a cooking pin that causes meat to cook from the inside at the same time it's cooking normally from the

Energy Conversion Systems Thermal Magic
outside. You can fiddle around with Thermal Magic-insert the pin halfway and produce roast beef done both rare and well. Cooking time is reduced by one half, and juices are retained, reducing shrinkage and eliminating the need for basting. Price is $\$ 9.95$, and you can send for information to Energy Conversion Systems, Inc., 623 Wyoming S.E., Albuquerque, N.M. 87112.

Mike Joins War Against Pollution

Something ingenious from Ingenuics, Inc. is a new microphone which features switchable control of environmental sounds. Mike has distance discrimination network which permits a choice of accepting or rejecting background noises and other audio pollutants that you

PRODUCTS

bump up against in recording and broadcasting. The " T " shape of the microphone comes from two cartridges whose outputs are reversed from add to subtract when it's switched from Super Omni mode to Noise Cancel mode. The company calls their new microphone the Environ, and if you want to order it, it's Model 2N1. Price is $\$ 189.00$ FOB from Ingenuics, Inc., 16000 Industrial Dr., Gaithersburg MD 20760.

AM/FM-Stereo Deluxe

H. H. Scott has introduced an elegant new AM/FM-stereo receiver, the 3800 . Scott's Perfectune indicates stereo and best reception tuning. The 3800 features instant-acting electronic protection circuits and electronically regulated power supply involving a circuit breaker-no output fuses to burn out. The IF section has a quartz crystal lattice filter, which, they say, never needs alignment and gives selectivity of 40 dB . Controls include dual bass and treble, stereo balance, input selector, tape monitor, speakers on/off, power on/off, volume, volume

H.H. Scoff 3800 Receiver
compensation, muting, noise filter, automatic tuning indicator, stereo indicator light, precision signal strength meter, front panel stereo headphone output, tuning, stereo/mono mode switch. Total power is $+1 \mathrm{~dB}, 210$ watts (a) 4 ohms, IHF dynamic power 85 watts per channel @4 ohms, continuous power 53 watts per channel @ 4 ohms. Frequency response is +1 dB $15-30,000 \mathrm{~Hz}$. Price of the 3800 is $\$ 399.95$ and you can write for more specs to $\mathrm{H} . \mathrm{H}$. Scott, 111 Power Mill Rd., Maynard MA 01754.

Music of the Sphere

Maximus Sound Co. calls these new speakers "Round Sound Machines." They are recommended for the patio or pool as well as indoors. The heavy-gauge steel sphere, 8 inches in diameter, houses a high compliant air suspension driver. It's quite weatherproof and will deliver 20 watts of music power and has a frequency range of $55-15,000 \mathrm{~Hz}$. The Round Sound Machines are available in decorator colors. Each speaker is mounted on a universal swivel base so it can be hung on a wall, a tree,

now...a dozen fools tor dozens ol jobs in a hip pocket set!

*************** more NEW PRODUCTS

Maximus Round Sound Machine Speaker
a post, or just standing on a bookshelf. The Round Sound Machine will sell for $\$ 49.95$ and you can write for literature to Maximus Sound Div. of American Recreation Group, Inc., 809 Stewart Ave., Garden City NY 11530.

Shape Up Your Tool Box

Man's been making tools for a couple of millions years but he keeps coming up with improvements. Here's one from Techni-Tool, which they call the Plike. It's a combination wire cutter stripper, terminal crimper, and wiring plier. Plike will accommodate stripper solid wire from 12 to 22 AWG and stranded wire

Techni-Tool Plike Combination Tool
from 14 to 24 AWG. The terminal crimper handles all standard solderless connectors, while the plier jaws are of the serrated flat nose configuration. Price of Plike is $\$ 2.75$, and for further information and free catalog, write TechniTool. Inc., 1216 Arch St., Philadelphia PA 19107.

Permacolor

No, it's not a hair dye. Permacolor is a new line of TV FM outdoor antennas from RCA Parts and Accessories. The name derives from the line's new feature-permanent connections between the elements and the feed lines, thus eliminating reception problems caused by poor
electrical connections. The Permacolor line includes a full range of UHF/VHF/FM combinations, as well as VHF-FM models, for application in virtually every reception area from

RCA Model 4BG23 Permacolor Antenna
metropolitan to deep fringe. The combination models feature an improved UHF corner reflector which also augments VHF reception, plus a wide-band, bow-tie UHF dipole. Snap-off elements are provided on most models for adjusting the Permacolor antenna to local FM and UHF reception requirements. Their permanent connections are achieved through a flexible strap riveted to the element and the feed line. The antennas are finished in blue and gold vinyl, and the price of one, model 4BG23, for example, is $\$ 42.50$. For further information write RCA Parts and Accessories, 2000 Clements Bridge Rd., Deptford NJ 08096.

Car Stereo Tape Is No.Steal

A new 8-track car stereo tape player from Panasonic, Model CX-451, is designed to go into the glove compartment when not in use, thus greatly lowering the risk of theft or vandalism. The tape player can be installed in every make of car by means of adjustable shafts. The CX-451 uses Panasonic's 2-stage preamp, dual channel amplifier, and a vertical head movement system for hi-fi performance. Unit has variable tone control for balancing treble and bass, a program selection button with illuminated channel indicator for manual

operation, and an automatic channel changer for continuous listening. Price of Model CX451 (also known as the Daytona) is $\$ 84.95$. For more details write to Panasonic, Matsushita Electric Corp. of Americá, 200 Park Ave., New York NY 10017.

From all those other guys all you can get is a very sincere promise.

It's not that those other big city car outfits ever mean to leave you without wheels. It's just that at the moment they promise you a car they have no real way of knowing for sure that it will be there.
National does. Us country boys from Minnesota now have Max, the computer. You can call us for a reservation any time from anywhere in the U.S. toll-frec by dialing 800-328-4567. Max knows, at the instant you call, what cars are available everywhere in the U.S. Before we guarantee your teservation, we talk to Max.
When you reserve a National Car at any of our locations, you also know you'll have your choice of a GiM or other fine make, and that you'll get a fistful of free $\mathbf{S} \& H$ Green Stamps.
Il's your choice: a sincere promise or a National Guarantec. You can get either in about the same length of time.

We make the customer No. I

Meters Hurtz

Recently I have heard shortwave radio stations announcing their frequencies in meters. How may I convert meters into megahertz or kilohertz?
-A.B., Winnipeg, Manitoba
There was a time that all radio frequencies were referred to interms of wavelength (meters). Why anybody does today is amusing. To convert meters into kHz or MHz is easy. Frequency in kHz (kilohertz) or kilocycles per second is equal to:

$$
\mathrm{kHz}=\frac{300,000}{\text { meters }}
$$

And frequency in MHz (megahertz) is equal to:

$$
\mathrm{MHz}=\frac{300}{\text { meters }}
$$

For example, 300 meters divided into $\mathbf{3 0 0 , 0 0 0}$ is equal to 1000 kHz . And, 2 meters divided into 30 is equal to 150 MHz . Gee, that didn't hurtz at all!

Build It Nut

Can you give me a list of magazines which have plans for shortwave radios that almost anyone can build?
-I.W., Yonkers, N.Y.
You'd have to be out of your skull to build a shortwave receiver from scratch. Especially if you desire to become a serious shortwave listener. The day of building a shortwave receiver is gone. If you must assemble your own unit and want quality results, we suggest you contact the Heath Company, Benton Harbor, Mich. 49022 and EICO Electronics, 283 Malta St., Brooklyn, N.Y. 11207, and ask for their catalogs. If you insist on building a quality receiver, in spite of all obstacles that may fall before you, then we suggest you get a copy of "Radio Amateur's Handbook" which is on sale at most local parts
stores that cater to the amateur radio hobbyist. In it they give the plans for many ham receivers that can be adapted to the shortwave bands.

They're All the Same

Are these two circuits the same (see diagrams A and B). I get conflicting answers from sources I have checked.
-J.T.H., Pitsburgh, Pa.
Yes, diagrams A and B are exactly the same. The Zener diode D1 and filter capacitor C1 are connected in parallel. These diagrams could be redrawn as shown in diagram C and all three would still be the same-identical. One word of advice, stay away from those "advice" sources who disagree with us on this question.

Just Wrap Some More

I have construction plans on how to make a 15-meter "flea-watter" transmitter. What would I do, besides changing the crystal, to convert the transmitter to 40 meters?
-R.D., Chagrin Falls, Ohio
Use coils with about twice as many turns. You'll have to experiment with turns and turn spacing until you hit it right. Have fun!

Zap, Zap, Zap . . .

I have been looking for a strobe circuit which is capable of operating on house current and which will drive a regular 100-watt household light bulb at a variable strobe rate.
-L.B., Houston, Texas
An incandescent lamp won't work in a strobe circuit because it won't brighten or black out fast enough. You need a gas-filled tube which requires high voltage to fire it. Why don't
(Continued on page 16)

a splendid opportunity...

 for the ambitious man who seriously wants the challenge, the high income, and the prestige of a top management position.... and wants it soon
The key word is seriously

If you are serious about achieving outstanding success in your chosen field, then you must realize the vital importance of getting an advanced education in management.
Management today is just as much a protession as law or medicine. To practice it well and reap its rich rewards, you must prepare for it as diligently as a lawyer or physician prepares for his career. And you must do this within a structured learning environment.
But what if you cannot afford the time and money it takes to attend business school on some distant campus? Then we suggest that you enroll in the AMA Extension Institute.
The AMA Extension Institute trains capable men for top management through private, self-paced study at home under the guidance of a qualified AMA instructor. You do not have to teave your job or give up current earning power. Yet you can take management courses whose content and level of sophistication rate on a par with the best in management education.
In fact, Institute courses employ the same case method of instruction made famous by the Harvard Graduate School of Business Administration.
Here you have a great opportunity to acquire the special viewpoints, the habits of thinking and keen judgment, and the skills of decision-making and problem-solving typical of top-level managers everywhere. There is no better way to qualify for rapid promotion and higher income.

AMA is now accepting enrollments for its Extension Institute courses in Management and the Computer, General Management Skills, Marketing Management, and Managerial Finance and Control. Why not let us send you full information about these four courses?

Just mail the coupon below. We'll promptly send you our illustrated brochure carrying futl details about the Institute and the management courses it offers to ambitious, serious-minded imen.

American Management Association
Extension Institute
AMA Buitding
DP-12
135 West 50th Street
New York, N. Y. 10020
Please send me your illustrated brochure giving full information about the AMA Extension Institute and its series of advanced courses in management. No obligation on my part.

Name.
Title.
\qquad
Address..
City. \qquad State. \qquad Zip Code.....

(Continued from page 14)
you get a copy of Elementary Electronics March/April 1970 issue and check "Pennypincher's Stroboscope" on page 29. It's an easy-to-build project that may fill your needs.

The Police Stole "1"

What is television Channel "one" used for? I've heard so much about it and how hard it is to get a TV receiver with channel "one" on it.
-J.B., Oklahoma City, Okla.
There ain't no such channel. When the TV channels were first allocated, there was a Channel 1. Then, the frequency space of Channel 1 was reallocated to the $30-50 \mathrm{MHz}$ land mobile radio services (police, etc.). Why the channels weren't renumbered is a mystery. If you had a receiver that could tune through the $48-54 \mathrm{MHz}$ range, you might hear "Car 54 , where are you?", but you wouldn't see it.

Going CB

I am just starting in $C B$ radio and would like to know which is the best CB set. This is very important to me, so please give a factual answer.
-G.J.G., Kensington, Conn.
It all depends upon what you're looking for, a base station or a mobile unit or both. Also, how much scratch (\$) do you have? There are several really good ones just as LincolnContinental, Cadillac, and Imperial are great cars. If you can afford to spend a lot of money for a base station take a look at the Browning Golden Eagle, Regency Imperial, and Tram Titan II. Johnson makes some excellent CB sets and Lafayette imports some dandies. Why don't you take a peek at our 1970 CB Year-воок-we include test reports which are quite conclusive!

- The first time we visited East Africa, tribesmen still sent messages through the jungles by banging primitive drums. It was a spec tacular feeling, then, to see the final touches being put on a $\$ 7$ million Earth Station that will enable tomorrow's citizenry to communicate with any part of the world in a matter of minutes. The modern installation was commemorated by four stamps issued in East Africa while we were there, even though the station is not expected to operate until later this year. Designs of the stamps, each printed in natural color, (30,70 cents, $11 / 2$ and $21 / 2$ shil-

Kenya-Uganda-Tanzania
East African Satellite Earth Station Issue 30¢, 70, 1.50 and 2.50 Kalues
ling) show various pictures of the facility plus a symbolic one linking earth with Intelsat II.

- Construction and operation of the facility was entrusted to the East African External Telecommunications Company, Ltd., and is located on Mount Margaret, only 27 miles north of Nairobi in Kenya's Rift Valley.
- The main feature of the station, which will be in touch with a satellite launched to a geostationary orbit, 22,300 miles over the Indian Ocean, is a fully steerable microwave "dish" 97 feet in diameter. This is a high precision aluminum-coated parabola antenna weighing

200 tons and from which messages and telephone calls will be beamed on a sky journey and back to earth in less than a quarter of one second. It is controlled by a complex system which enables it to accurately point at the satellite at all times.

- Apart from the equipment housed in the aerial tower, most of the communications equipment is housed in the control building from which the national network is to be fed. The whole represents the most modern and sophisticated of today's telecommunications instruments.
- This East African Earth Station and the Satellite will provide a capacity of 1.200 voicechannels and visual waves from the United Kingdom in the west, and Japan and Australia, in the East. The bulk of these will be used for telephone service and serve the complete needs of Kenya, Tanzania and Uganda which comprise East Africa in the wide-band media. It provide a vastly improved service compared with the present High Frequency Radio circuits, which are subject to the normal vicissitudes of this facility.
- While in Kampala. Uganda, we visited the telephone office and discovered that overseas calls had to be wait-listed because of difficulties in getting through to destination. All of that will be eliminated once the Earth Station in neighboring Kenya opens and is linked with Uganda; the only consideration will be that of taking into account the time differences between East Africa and the other continents.
- At the same time, Korea, which also is linked with the Intelsat III, issued a single 10 won pale and bright blue stamp showing its Earth Station at Kum San. Shown in this design, created by Kang Choon Hwan, a local artist, is the antenna beamed at the satellite against a modern map of the earth. This installation, which already is in operation, was jointly financed by the Korean Ministry of Communications, the Export-Import Bank and the Philco-Ford Corporation, which was commissioned to construct it.

Korea Intelsat III Issue

- From East Germany, which is not a member of the Universal Postal Union, but whose mail, nevertheless, is accepted for international transportation through Communist nations which do hold membership, comes word that it
has marked the 25 th anniversary of the German Democratic Republic's Radio Service. Two stamps were issued as part of the observation; one depicts a high-power transmitting antenna head place against a background of the globe. the other shows the administration-studios building of the DDR Radio Organization in Berlin.
- Radio service was available throughout Germany for more than half a century. But only five days after the conquest of Hitler's Nazism, the Red Army, upon taking possession of the Eastern Zone, occupied the Berlin broadcasting studios. At 10 p.m.. on May 13. 1945, the

East Germany Universal Postal Union Issue
first Soviet programs were transmitted from the appropriated facilities, which then were called the German Democratic Republic Rundfunk (radio.)

- Located as it is. this operation has become a propaganda instrument of no small importance. Programs are beamed not only to East Germany, but to other parts of Europe and the world-in a variety of languages intended to spread the messages of East Germany to listeners Communists hope will join their cause.
- It's somewhat late, but only recently did we learn of a special exhibition staged at the headquarters of the International Telegraph Union, in Switzerland. Prepared by an unidentified staff member who also is a philatelist. it contained stamps and postal markings authorized by many of the world's member nations for use on May 17, 1969, which was designated as ITU Day. The show was formally opened by W. J. Wilson, Chairman of the ITU's Administrative Council. Writing in "La Suisse," a journalist said, "This perfectly balanced and homogeneous exhibition does honor not only to the philatelic community of Geneva. but to philately throughout the world."
- Collectors who obtain covers with new United States and UN stamps postmarked on the date they are officially released will be interested in a new edition of "The Specialized First Day Cover Catalogue." annually published by the Washington Press, Maplewood, NJ 07040. This price guide costs $\$ 1$ and provides some startling revelations as to the value of certain domestic stamps. While the majority of listed items are in the "under $\$ 10$ " range, there are a number whose worth is quoted in excess of $\$ 1,000$ each.

10 Reasons why RCA Home Training is

your best investment

 for a rewarding career in electronics:
1LEADER IN ELECTRONICS training

When you think of electronics, you immediately'think of. RCA...a name that stands for dependability, integrity and pioneering scientific advances. For over a half century, RCA Institutes, Inc., a service of Radio Corporation of America, has been a leader in technical training.

2
 RCA AUTOTEXT TEACHES ELECTRONICS FASTER, EASIER, ALMOST AUTOMATICALLY

Beginner or refresher, AUTOTEXT, RCA Institutes' own method of programmed Home Training will help you learn electronics more quickly and with less effort, even if you've had trouble with conventional learning methods in the past.

3

thousands of well paid jobs ARE NOW OPEN TO MEN SKILLED IN ELECTRONICS
RCA Institutes is doing something positive to help men with an interest in electronics to qualify for rewarding jobs in this fascinating field. Every year, literally thousands of high paying jobs in electronics go unfilled just because not enough men take the opportunity to train themselves for these openings.

\triangle WIDE Choice of career PROGRAMS

Start today on the electronics career of your choice. On the attached card is a list of "Career Programs", each of which starts with the amazing AUTOTEXT method of programmed instruction. Look the list over, pick the one best suited to you and check it off on the card.

$5 \begin{aligned} & \text { specialized advanced } \\ & \text { training }\end{aligned}$

For those already working in electronics or with previous training, RCA Institutes offers advanced courses. You can start on a higher level without wasting time on work you already know.

6
 PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your training is supervised by RCA Institutes experts who become personally involved in your efforts and help you over any "rough spots" that may develop.

7 VARIETY OF KITS YOURS

To give practical application to your studies, a variety of valuable RCA Institutes engineered kits are included in your program. Each kit is complete in itself. You never have to take apart one piece to build another. At no extra cost, they're yours to keep and use on the job.

FROM RCA INSTITUTES ONLY TRANSISTORIZED TV KIT,
VALUABLE OSCILLOSCOPE
Those enrolled in RCA's television course or program receive complete transistorized TV Kit. All students receive a valuable oscilloscope-both at no extra cost and only from RCA Institutes.

0 UNIQUE TUITION PLAN

With RCA Home Training, you progress at the pace that is best for you! You only pay for lessons as you order them. You don't sign a long-term contract. There's no large down-payment to lose if you decide not to continue. You're never badgered for monthly
bills. Even if you decide to interrupt your training at any time, you don't pay a single cent more.

10 RCA INSTITUTES GRADUATES GET TOP RECOGNITION

Thousands' of graduates of RCA Institutes are now working for leaders in the electronics field; many others have their own profitable businesses. This record is proof of the high quality of RCA Institutes' training.

CLASSROOM TRAINING ALSO AVAILABLE

If you prefer, you can attend classes at RCA Institutes Resident School, one of the largest of its kind in New York City. Coeducational classroom and laboratory training, day and evening sessions, start four times a year. Simply check "Classroom Training" on the attached card for full information.

JOB PLACEMENT SERVICE, TOOI

Companies like IBM, Bell Telephone Labs, GE, RCA, Xerox, Honeywell, Grumman, Westinghouse, and major Radio and TV Networks have regularly employed graduates through RCA Institutes' own placement service.
SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION! NO Salesman will call!

All RCA Institutes courses and programs are approved for veterans under the New G.I. Bill.

RCA INSTITUTES, DEPT. 764-010-0 320 West 31st Street, New York, N.Y. 10001

Accredited Member National Home Study Council

REת

Keep it Cool! Here's an easy-to-understand guide-How to Repatir Home \& Alto Air Con-ditioners-complete with easy-to-follow, illustrated step-by-step instructions. Air Conditioner servicing is a breeze with this brand-new, simplified handbook. All phases of the subject are covered-from the electric wiring to refrigeration, and presented in down-to-earth language so the information can be put right to work. One doesn't have to be a refrigeration expert to get started-it's all here, from the basics on refrigeration to electrical controls and wiring. The authors tell how to determine what size

Soft cover 208 pages $\$ 4.95$
air conditioner is needed for a given room, how to compute BTU or tonnage needed, and the wiring required to handle the load. An entire chapter is devoted to the refrigeration cycle as it applies to air conditioners, with a simple yet detailed how-it-works explanation . .! plus all about the various refrigerants commonly used, too. Available from Tab Books, Blue Ridge Summit. Pa. 17214.

From One SWL to Another. Operating on the premise that it makes more sense for one literate knowledgeable author to explain shortwave listening-rather than depending upon the output of a hodge-podge of writers-world-renowned SWL Richard E. Wood has written a first-rate book. Titled Shortwave Voices of the

Soft cover 96 pages \$3.95

World, here is a book that takes the "gee-whiz" out of SWLing and puts the hobby in its proper sensible perspective. Dealing only with international broadcasters, Wood tells why certain nations spend millions of dollars and other countries ignore SW broadcasting. How the frequencies and schedules are arranged, the problems of jamming, broadcasting in the tropics. and of greatest importance-how to report and get back meaningful verification QSL cards. The book is superbly organized with many illustrations of stations and rare verifications. You can tell that the author has gone "all-out" to get his enthusiasm and knowledge on paper. Copies are available in many radio stores, or direct from Gilfer Associates. Inc., P.O. Box 239, Park Ridge, N. J. 07656.

Pick A, B, C or D. Radio Telegraph Operator's License Q and A Manual provides all the necessary study material, arranged by FCC Test Elements, for successful completion of the FCC examinations for any of the three classes of Radiotelegraph Operator's license as well as for endorsements for ship radar and aircraft radiotelegraph operation. Written by the wellknown authority, Milton Kaufman, the book answers the need for a complete, up-to-date guide in this important field. Following the FCC Study Guide faithfully, the book presents the essentials clearly and logically. Each Element contains a series of pertinent questions and concise answers. Most of the answers are followed by more detailed explanations in discussion sections, which contribute considerably to the reader's comprehension of radiotelegraphy in general as well as further clarifying specific questions. Eliminating the need for

Hard cover 400 pages $\$ 11.95$
other references and making this a self-contained volume, these discussion sections save valuable time. Published by Hayden Book Company, Inc., 116 West 14th St., New York, N.Y. 10011.

- Kwicky Reviews

- SWL Antenna Construction Projects by Edward M. Noll-a great beginner's guide to the basics and construction of SWL antennas-both outdoors and indoors. (Published by Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, Ind. 46268; soft cover, 128 pages, $\$ 2.95$.)
- How To Use Test Instruments in Electronics Servicing by Fred Shunaman-a practical handbook on test equipment applications for the novice or experienced serviceman and technician. (Published by Tab Books, Blue Ridge Summit, Pa. 17214; soft cover, 256 pages, over 200 illustrations, \$4.95.)
- Introduction to Solid-State TV SystemsColor and Black \& White-by Gerald L. Han-sen-a comprehensive text covering the theory of television systems. Written for students of technical institutes, colleges and high schools. An excellent reference text not bogged down in mathematics. (Published by Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632; hard cover, 449 pages, $\$ 15.00$.)
- The Radio Amateur's Handbook, 12th Edition, revised by Robert Hertzberg, W2DJJ-an up-to-date information-packed guide to everything the beginning ham needs to know, from the fundamentals of electricity to getting his first rig on the air. (Published by Thomas Y. Crowell Co., 201 Park Ave. So, New York, N.Y. 10003; hard cover, 374 pages, $\$ 5.95$.)
- FET Applications Handbook by Jerome Einbinder-a technical source book on practical design data of FET circuits, updated and expanded second edition, over 250 circuit drawings and graphs. (Published by Tab Books, Blue Ridge Summit, Pa. 17214; hard cover, 352 pages, \$14.95.)
"This is terrible, Thurber. We'll have to report this ... unless, of course, he comes up with the correct answer."

A Complete Course in ELEGTRONIG COMPUTERS for only \$2.95!

You get all the basics you need - at your own pace - whether you're entering the exciting computer field or your work is affected by computers. This giant book has all the latest, step-by-step learning aids; nearly 200 diagrams and circuits; full data on digital and analog computers - covering math background, servomechanisms, digital computer logic, programming, control and communication. PLUS handy glossary, self-review tests, summaries. All at a fraction more than a penny a page!

A Complete Course in ELECTRONICS for only \$1.95!

From fundamental electronic principles and devices right through their application in operating circuits, this famous, bestselling book covers everything - with major sections on electron tubes and transistors, amplifiers, oscillators, radio, TV, radar and electronic navigation, high fidelity, detection systems. With 227 diagrams and circuits - 191 big pages.

Inthe jargon of 20th century America, where disk-jockey shows crowd the airwaves and a phonograph can be found in almost any home, the word "disk" has become a symbol of recorded sound. From Rachmaninoff to the Rolling Stones, from Caruso to Crosby, the sounds of our century are stored on thin black platters. The ubiquitous disk has become so much a part of the modern scene that the latest dictionaries list "phonograph record" as one of the acceptable definitions of the word.

But it wasn't always so. Before the turn of the century, when talking machines were the latest in scientific gadgetry, records were made in the shape of cylinders. The "record" Edison used in his first crude phonograph was a cylinder, three and onehalf inches in diameter, wrapped in tinfoil.

Like many another great invention, the first model appeared to be little more than a toy. Edison patented the basic invention in 1877, but his versatile mind was soon diverted into other channels. For nearly ten years he set the phonograph aside while he concentrated on research on the electric light.

Time Waits for No One! But the invention was too important to be ignored and others quickly picked up where Edison had left off. Among the first experimenters to improve on Edison's phonograph were Charles Summer Tainter and Chichester Bell (a cousin of Alexander Graham Bell.) By 1887, Tainter and Bell had developed the "graphophone" ("phonograph" with the syllables reversed), the first commercial talking machine. The records were cardboard cylinders coated with hard wax.

Sound impressions were made with a cutting stylus that moved up and down, following a helical groove, to form what is now known as a "hill and dale" track. Unfortunately, there was no process for mass reproduction of cylinder records. Each one was an "original," cut individually at a live performance -hardly an economic method for an industry that was destined to sell millions of copies of a single record.

It was apparent that if records were to become cheap enough to make them available to the average person, a process of record duplication would have to be found. The key to the problem came in the form of a flat disk record developed by a young immigrant, Emile Berliner. Attracted by tales of the "Land of Opportunity" Berliner had migrated from his native Germany in 1870, at the age of nineteen. Although his formal education had ended with high school, he was not content to stop learning. Working as a clerk in a store by day, he spent his evenings in his Washington, D.C. room, studying acoustics and electricity. The first results of his self-education in science came in 1877 when he invented and patented a carbon granule microphone. The sale of this invention to Bell Telephone

Company,provided Berliner with both money and leisure time to devote to research.

It's in the Cut. Berliner's approach to sound recording differed in two important ways from the Edison and the Bell-Tainter systems. Instead of the hill and dale track, he used a side-to-side cut, known today as the "lateral cut". He abandoned the cylinder records in favor of a flat disk.

Berliner received several patents on his talking machine (he called it a "gramophone") the first of which was granted in 1887. In 1895, he was granted U.S. Patent 548,623 for a method of making duplicate records from a metal stamper or master record plate, by pressing it into the surface of a heated hard rubber disk-the beginning of mass production of records.

Perhaps it was his lifelong interest in music that led Berliner to study sound recording. The result of his effort-the disk record-has helped to provide music for millions. Today's gigantic recording industry is the result of the efforts of Edison, Bell, Tainter, and hundreds of others; but the industry's symbol is Berliner's disk.

[^0]
Learn more about electronics this easy way by mailing the coupon below

EVERY ISSUE of ELEMENTARY ELECTRONICS brings you easy-to-follow aids for better understanding of theory and applications of electricity and electronics... in word and picture with diagrams that are easy to follow... a source of up-to-theminute information for everyone interested in electronics who wants to increase his knowledge...followed every issue by thousands of CBers, Hams, SWLs, Experimenters.

MAIL THE COUPON below today and you can save up to $\$ 3.50$ over the cost of buying copies on the newsstand and be sure you don't miss a single information-packed issue... because the mailman will bring your copy to your door just as soon as each issue is off the press.

Elementary Electronics, 229 Park Ave. South, New York, N. Y. 10003
I.don't want to miss a single issue. Enter my subscription for:

Dept. 304
$\square 3$ years-18 issues-\$10.00 SAVING ME $\$ 3.50$ over the newsstand price
$\square 2$ years - 12 issues - $\$ 7.00$ SAVING ME $\$ 2.00$ over the newsstand price
$\square 1$ year -6 issues $-\$ 4.00$ SAVING ME $50 ¢$ over the newsstand price

Michael Faraday-the apprentice bookbinder who ushered in the electrical age!

GREAT MEN OF SCIENCE

... Apprentice Bookbinder.

Michael Faraday penned the titles as an afterthought. Maybe it would cause his letter of application to be read.

Sir Humphry Davy, known throughout the world in 1810, barely glanced at the signature and title. But he was intrigued by the unconventional application.

There was no resumc. Simply notes taken at some of Davy's public lectures. A brief memo indicated that Michael Faraday, Apprentice Bookbinder, would be most honored to enter Davy's employment.

He got the job.
Rather, he got a job. Not the post he wanted as assistant to Davy, but that of handyman with responsibility for sweeping floors, cleaning desks, filling inkwells-at a cut in salary.

Son of an impoverished blacksmith, Michael had seldom had a full stomach during childhood. He had known the meaning of physical hunger. Now he was intellectually hungry. So he accepted Davy's offer with delight.

As youth-of-all-duties in laboratory and household, the blacksmith's son proved surprisingly competent. His schooling, received a few months at a time, had ceased at 13. By all logical standards he should have spent his life as a barely-literate workingman.

Chance or fate or the gods ruled otherwise.

When he began hunting full-time work just one opening was available. It was at the stall of George Riebau, bookseller and stationer at \#2 Bandford Street in London.

Riebau put the bright-eyed boy to running errands. When he showed ability and initiative he was given an opportunity to become an apprentice. Though this meant he would eventually earn a good living as a bookbinder, the economic advantages didn't appeal to Faraday. He was thrilled with the fringe benefits of work as an apprentice; his master actually let him read some of the books brought to the shop for binding!

He was especially enthralled with long articles on electricity in The Encyclopedia Britannica (then published in many thin sections), plus a volume of Conversations on Chemistry.

These books whetted his appetite. He began attending lectures by scientists. Eventually he dared to write Sir Humphry Davy asking for work-and got it.

By the time he was 22, the one-time apprentice had accompanied Davy on a long European tour. They visited the continent's chief scientific centers, had formal and informal meetings with great discoverers.

Back in London the youthful assistant technician (as he was called by 1815) decided that he could support a wife on thirty shillings a week. He married Sarah Barnard. who devoted her life to him.
(Continued on page 102)

LITERATURE LIBRARY

1. Allied's catalog is so widely used as a reference book that it's regarded as a standard. The surprising thing is that it's free!
2. Now, get the all-new 512-page, fully illustrated Lafayette Radio 1970 catalog for CB gear, test equipment, ham gear, tools, books, hi-fi components, etc.
3. Get all the facts on Progressive Edu-Kits Home Radio Course. Build 20 radios and electronic circuits; parts, tools and instructions included.
4. Olson's catalog is a multi-colored newspaper that's packed with more bargains than a phone book has names.
5. Edmund Scientific's new catalog contains over 4000 products that embrace many interests and fields.
6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest 8-page fiyer.
7. Before you build from scratch, check the Fair Radio Sales latest catalog for surplus gear.
8. Get it now! John Meshna, Jr.'s new 96 -page catalog is jam packed with surplus buys.
9. Troubleshooting without test gear? Get with it-let Accurate Instrument clue you in on some great buys.
10. Burstein-Applebee offers a new giant catalog containing 100 s of big pages crammed with savings.
11. Now available from EDI (Electronic Distributors, Inc.): a catalog containing hundreds of electronic items.
12. C. B. Hanson's new Automatic Control records both sides of a telephone call automatically.
13. A dozen tools for dozens of jobs in Xcelite's 99PS-50 hip pocket set! Contains handle, plus interchangeable nut drivers, slot and Phillips screwdrivers and 4 -in. extension. Get the facts.
14. Custom Alarms reveals how inexpensive professional alarms can really be. Circle 15 for exclusive catalog.
15. Great bargains in electronic surplus, kits, components, computers, ICs and more in B\&F Enterprises catalog. Get a copy now!
16. Here's a free 20-page booklet that telis you how to improve your TV pic and a do-it-yourself approach to installing a Master Antenna TV (MATV) system. Mosley Electronics will wing it your way.
17. RCA Experimenter's Kits for hobbyists, hams, technicians and students are the answer for successful and enjoyable projects.
18. Get your copy of E. F. Johnson's new booklet, "Can Johnson 2-way Radio Help Me?"
19. Kit buider? Like wired products? EICO's 1970 catalog takes care of both breeds of buyers.
20. No electronics bargain hunter should be caught without the 1970 copy of Radio Shack's catalog.
21. Get with 1970's hi-fi jet set. H. H. Scott sets the pace with their fantastic line of audio components. some in kit form too!
22. Heath's new 1970 full-color catalog is a shopper's dream. Its 116 pages are chuck full of gadgets and goodies everyone would want to own.
23. CBers, Hams, SWLs-get your copy of World Radio Labs' 1970 catalog. Circle 45 now!
24. Hy-Gain's new CB antenna catalog is packed full of useful information. Get a copy.
25. Get two free books-"How to Get a Commercial FCC License" and "How to Succeed in Electron-ics"-from Cleveland Institute of Electronics.
26. You can get increased CB range and clarity using B\&K's hot "Cobra" transceivers.
27. Want a deluxe CB base station? Then get the specs on Tram's super CB rigs.
28. Get the scoop on VersaTronics' Versa-Tenna with instant magnetic mounting.
29. Prepare for tomorrow by studying at home with Technical Training International. Get the facts on how you can step up in your present job.
30. Pep-up your CB rig's performance with Turner's $M+2$ mobile microphone.
31. National Schools will help you learn all about color TV as you assemble their $25-\mathrm{in}$. color TV kit.
32. Bone up on CB with the latest Sams books. Titles, range from "ABC's of CB Radio" to "99 Ways to Improve your CB Radio."
33. You can become an electrical engineer only if you take the first step. Let ICS send you their free illustrated catalog describing 17 special programs.
34. Take a gander at Cornell Electronics' latest catalog. It's packed with bargains like 6W4, 12AX7, 5U4, etc., tubes for only 334.
35. CB antenna catalog by Antenna Specialists makes the pickin' easy.

SPEEDY-FLASH

they must stand by for their first kiss as your electronic flash recharges.

Fact is, the early models of electronic flashes (improperly called strobes by many photography buffs) were called speedlights, and for good reason. Unlike a flashbulb, a speedlight produces all its light in about $1 / 1000$ second. Then too, speedlights recharge almost instantly; in fact by the time
the photographer has racked the film advance, the speedlight is recharged and is ready for the next picture.

The secret of success in what appears to be almost instant recharging of the speedlight is the use of a high-voltage battery of the magnitude of the one we used in our Speedy Flash. Since it's the high voltage, at very low current, that fires the lamp, it takes just two or three seconds to recharge the storage capacitor. Low voltage supplies, on the other hand, take from 15 to 25 seconds to recharge the capacitor, depending on the

condition of the batterys charge.
Our Speedy Flash has another very useful feature, interchangeable flash heads. This was common to early professional speedlights that somehow lost favor along the way. By using several sizes of interchangeable flash heads the photographer can more or less tailor the light to his specific needs. For example, he can plug in just the flashtube less reflector for bare-buib, non-concentrated lighting; or he can mount the flashlube in a plug-in 3-cup aluminum saucepan size reflector and have a standard coverage reflector with an ASA25 guide number of approximately 56 . If he places the flashtube in a cheap deep-dish reflector, similar to the one shown in the photos, he can have a telephoto electronic flash packing all its light into the correct angle for the $135-\mathrm{mm}$ lens of a $35-\mathrm{mm}$ camera, and then be able to work with an ASA25 guide number of approximately 110 . Naturally, the exact guide numbers depend, to a large extent, on the particular reflector used and how the flash-
lube is mounted in the retlector.
Speedy-Flash consists of three units. The battery capacitor pack (carried on a shoulder strap) ; the flash head, which takes plugin flashtubes; and a charger. a device used for reforming the storage capacitor so the battery doesn't have to literally spill its guts out trying to reform a capacitor that hasn't been used for weeks or months.

Construction is not critical, especially if the general layout we used is followed. Most important, none of the wires between storage capacitor C1 and Hashtube FT1 should be smaller than \#18 gauge (you can use zipcord). Number 16 wire is even better since the larger the wire the lower the voltage loss. Then when Cl discharges it gives a little more light output.

We built the Hash-head in a $4 \times 21 / 8 \times$ $15 / 8-\mathrm{in}$. Bakelite utility case. No parts are mounted on the aluminum cover plate supplied with the utility case. All wiring must be inside the Bakelite case for maximum safety. Mount octal socket SO 3 as close to

Here's complete Speedy-Flash package showing camera ready for action including charger for forming

Cl . Only time it's needed is if you don't make shots every day (it takes a load off expensive battery). Surplus battery case from old flash gun makes neat support for Speedy-
Flash flash head. Plug-in reflectors add versatility to use best flash concentration for effective lighting

SPEEDY-FLASH

one of the ends as possible. Though only three connections are needed for flashtube FT 1 , the 8 -pin octal socket is used because the unused terminals provide convenient tie points for other components. Install SO3 so the keyway points to the side of the case. Place a large blob of silicon rubber (RTV) adhesive inside the case adjacent to pin connection 3 of SO3 on the Bakelite bottom of the case and press trigger coil T1 into the blob. Make sure the red terminal of T1 is directly opposite pin connection 3 of SO3.

T1 is a special high-voltage trigger trans-
even though only two pins are used. The reason for this is because when inexpensive miniature plugs are used, the extra pins, when seated in the socket, provide a firm, rigid seating and tend to hold the plug tighter in the socket.

Ready Light. The ready light for the next flash pilot, I1, is an NE-2 neon lamp wired to the terminal strip using full length leads. To avoid shorts, place a piece of sleeving on each lead. Run the leads straight up from the tie strip and then fold the lamp over at right angles. Drill a $1 / 4-$ in hole in the cover plate that will allow viewing the ready light.

Finally, install a standard camera tripod socket on the bottom of the case so the

Full 300 volts from baftery specified and large, $1100-\mu \mathrm{F}$ capacitor produces more than adequate light of fairly high recycling time so you can make really speedy action shots. Portable photo accessory case makes for easy shoulder-strap carrying of power unit. If you have a different sized case that's surplus, use if. You may prefer using different battery; that's OK, just remember, it's the higher voltage we used that makes fast recharging of C1 possible. Current drain is small so battery lasts a long time.

former and no other type should be substituted. The flashtube may not fire at low battery voltage with a trigger transformer having different characteristics. For that matter, don't substitute a different flashtube than the one listed, either.

When the adhesive holding T1 is completely set, install the remaining flash head components. For maximum convenience, the connecting cable should be about 50 inches long, and should be firmly secured to the inside of the case. If available, use a good-quality strain relief for this purpose. Connecting plug PL1 should be a 4 -pin type
flash head can be mounted on a flash bracket, or an accessory shoe bracket, or the battery holder from a conventional flash gun like the one shown in the photos.

The Flash Tube. The flash tube is connected to pins 1,3 , and 5 of octal plug PL3. First, and most important, identify FL1's cathode terminal. Note that FL1 is an U-shaped glass tube with a lead sticking out each end of the glass U tube. A third lead connects to a metal band encircling both the open ends of the U. By careful observation of both ends of the U, you will also note that the lead on one end is at-

Undercover work in flash head detailing location of various parts. Note ready light supported by its leads to position it near viewing port drilled in metal cover of bakelife housing. 52 let's you fire flash manually if needed.

tached to a small piece of screening inside the tube. The lead attached to the screen is the cathode and connects to the B through pin 1 of PL3. Anode of FT1 connects to the $\mathbf{B}+$ through pin 5 , while its trigger lead, the third lead, connects to pin 3.

In order to use just a bare flash tube (FT1) without a reflector, it should be mounted in an octal plug, or the salvaged octal base from an old tube. If you use either the saucepan type standard reflector, (actually a 3 -cup aluminum saucepan with a hole drilled in the middle of the dome for flashtube socket) or a deep-dish type telephoto reflector (see Parts List), mount a Cinch-Jones 8PB-8 octal plug in the center of the reflector and then install F1.

High Voltage Battery. Battery B1 and capacitor Cl are housed in any standard photo accessory case. The one used for Speedy Flash is a Rowi, measuring $71 / 4 \times 5 \times 23 / 4 \mathrm{in}$. Capacitor C1 is secured to the case with a heavy blob of silicon rubber (RTV) adhesive. Battery B1, a 300 -volt Eveready 493, comes equipped with banana jacks. You may substitute a 250 -volt photoflash battery if you want to lower the battery cost (it lasts for hundreds of flashes, depending on its age). Or you can series-connect any other type of battery to obtain the high voltage between 250 and 300 volts (e.g., four $671 / 2$ volt miniature batteries could be used).

Resistor R1 is used only to quench the flash tube. When the tube fires the voltage across C 1 falls and the tube turns off. Though it appears R1 does nothing, it ac-

tually supplies current limiting for C1. R1 can be any 4 - to 10 -watt resistor rated from 500 to 5000 ohms. The higher the resistance the longer the battery life, because Cl's charging current is held to low values. However, the higher the resistance the longer the time to charge C1. A good compromise for R 1 is 2500 ohms. It charges C 1 in about 2 seconds as indicated by the ready light. A 5000 -ohm R 1 will take about 5 seconds to recharge, whereas a 500 -ohm R1 will recharge before you can wind the film.

Cl Charger. No, the purpose of the charger isn't to recharge battery B1; the charger is used to reform Cl after it has been idle for more than 7 days. We housed the charger shown in the photo in a $21 / 4 \mathrm{x}$

He's plugging in telephoto reAector to flash head. This plug-in arrangement gives user many options to get best lighting for his shot.

SPEEDY-FLASH

$15 / 8 \times 21 / 8-\mathrm{in}$. Minibox. The charger is connected directly to the AC power line without any isolation from a power transformer, and, therefore, no ground connections should be made to the metal cabinet. The charger is a half-wave voltage doubler. Make certain to connect PL2 to SO1 before connecting the charger to the power line.

AC Operation. In anticipation of the question, yes, the charger can be substituted in place of the battery to make an AC-powered speedlight. You'll have to change C3. An 8$u \mathrm{~F}$ will provide a 7 -second charge time and

15 minutes. S1 must be off when using the charger. Now disconnect the charger, plug a flash tube into the flash head and plug PLI from the flash head into SO1 on the battery pack. Because Cl is charged, the ready light Il will probably go on when the flash head is plugged in. Fire off the flash with openflash button PB1. To use the flash, simply set S1 to on; the flash will be ready to go before you can reach for the shutter release.

Although the average flash uses a polarized flashcord socket, this isn't necessary for Speedy Flash. Synchronized connection socket SO2 is non-polarized and the flashcord can be plugged in irrespective of polarity.

Phofog's charger doesn't have feet but it gets him where he wants to go insofar as good pictures are concerned. This charger's used to form capacifor Cl after Speedy-Flash has been idle for more than a day. It provides heavy initial current without excess drain on high voltage battery. You can also use it for AC operation without baftery-see texf.

$25 u \mathrm{~F}$ will give approximately 4 seconds of charge time. Remember that R1 must still be used in series with C1. Also, to double the Speedlight's watt-second rating, a second storage capacitor can be connected in parallel with C1.

Using the Super Speedlight. Plug the charger in to SO1, apply power to the charger and allow C1 to "form" for at least

One note of caution: high-voltage flash batteries often sit on the shelf for months at the electronics dealer's, and may be half dead due to shelf-life deterioration by the time they get to the user. It is, therefore, suggested that if possible you obtain the battery from a photo equipment dealer known to have a professional clientele (pros use high-voltage flash equipment).

Ma Bell's hiss may cause your phone miss

If someone tells you your phone troubles are a lot of air, believe him! Many overhead cables are pressurized with dehumidified air to prevent water or moisture damage when punctured. As air escapes, a hiss is generated that may be heard from the ground by using a long pole equipped with a microphone. But down with long poles and up with young ladies packing microphone guns. The gun is nothing more than a parabolic reflector with a mike at its focus. The gun-toting miss aims the device at the suspected overhead line detecting leaks with ease.

A slave flash to wash out shadows and make your photos like the pros

by Stephen Daniels, WB2GIF

Are you fed up with dragging extra floods and pedestals, not to mention tangled extension cords, to place them for just the right light when doing portraits? Do you have a speedlight but find you need a little more light to get the right effects in your pictures? Do you have problems with shadows? Our Li'l Blitzer is just the thing to solve your lighting problems and help you make more

What Is It? Li'l Blitzer is a completely selfcontained and self. powered slave electronic flash. Triggered through its solar cell (SC1)/silicon-controlled rectifier (SCR) circuit by light from the master flash, it provides that extra illumination needed to make your photos look like they were taken by a pro! It's a relatively inexpensive photo accessory you can easily build that will repay you many fold by improving your photographic techniques.

How It Works. A transistorized oscillator (Q1), energized by a 6-VDC battery (B1) develops the high voltage AC through transformer T1. Transformer T1 is a 117 VAC to 12.6 VCT filament transformer whose normal primary and secondary windings have been operationally reversed for this application. The 12.6 VCT secondary is used as a primary and the 117 V primary becomes the secondary in Li'l Blitzer's oscillator. Thus the 6 VDC from B1 is stepped up many times to produce required high voltage. This high voltage AC is rectified to high voltage DC required to charge storage capacitor C1 by diodes D1 and D2. When the charge voltage approaches approximately 350 volts, NE- 2 neon bulbs 11, 12, and 13 fire. This stabilizes the charging voltage and also serves as a ready light. All but I1 are covered to avoid confusion. Resistors R3 and R4 from a voltage divider to charge C2 to approximately 150 VDC.
(Turn page)

Silicon solar cell SC1 generates a voltage pulse when exposed to the flash of the master electronic flash. This triggers SCRI, discharging C 2 through the primary of trigger transformer T2 and produces a pulse of approximately 4 kV that ionizes the gas in flashtube FTI, firing it.

Thus is produced the auxiliary flash used as secondary lighting for the scene being photographed. Reaction time of the SCR with respect to the initial flash from the master flash lamp is extremely fast; therefore it's not necessary to synchronize the flashes from the master and slave flash lamps. (You might even call them self-synchronizing.)

Construction. The author housed Li'l

Blitzer in an attractive, practical metal cabinet. Unfortunately the size he used is not readily available from parts supply houses. Since component placement is not too critical, and you may have to make substitutions for other components (e.g., T1, C1, etc.), it's not absolutely necessary to use the housing tabulated in our Parts List. You can build your unit in any size to suit your particular desires. In any event the size of the housing will be determined basically by the physical size of CI you use.

The Mini-Cool box shown in the photos is $8 \times 2 \times 21 / 2-\mathrm{in}$. and is easy to use since the four sections that make up the box are extrusions that slide into one another forming a fairly rigid rectangle. This permits mounting all components except for S 1 on the base of the box. In detailing construction we will assume you're using the Mini-

Two-conductor cable connecting SCRI, SCI to perfboard may be any length you wish. Studio photographers'll perch this sub-assembly on tripod in immediate vicinity of main flash source; this guarantees positive snyc between Li^{\prime} l Blitzer, main flash assembly. Li'l Blitzer draws 'bout 175 mA from B1, so you might want to substitute line-operated 6 V supply in its place especially if you're doing lots of indoor portraiture work.

Cool box used by the author.
In our unit a $17 / 8 \times 61 / 8-$ in piece of perfboard was used to mount and wire all of the components except for S1, SC1, and FT1. When mounting the board on the cabinet base raise it above the metal with spacers so that none of the wiring can be shorted by the metal of the cabinet. Switch S1 is mounted on the rear end of the box. Flashtube FT1 is mounted on a tie strip (4 point with center mounting foot. A scrap of aluminum or stainless steel is curved slightly and held in place behind FT1 by a solder lug mounted on the same bolt that holds the tie strip in place. Notch out the end to clear wire connections to FT1.

Mount all parts as shown in our photos. We suggest you use push-in terminals for mounting and connecting the resistors, capacitors, neon bulbs, etc. for neater and stronger construction. At the time our model was built the author didn't have them available but we strongly recommend that you use them.

Position I1 so that it can be easily seen through the hole marked indicator, I2 and I3

can be mounted against the perfboard and wrapped in black insulating tape. After all you're interested only in the glow of I1 to indicate the unit is ready to be flashed.

Solar cell SC1 can be mounted on a swivel joint to permit facing it strategically to pick up only the flash from the master flashtube. A good, inexpensive, easily avail-

Major components of slave flash are depicted in this pix. Make cerfain you mount FT-I so wires cannot short to metal case. Mount 11 to case's side so you can see it.

LIL BLITZER

able swivel joint for this purpose is the pen holder swivel used for holding a pen on a desk set. You can salvage one from a desk set base or you'll find them in many shops selling handicraft supplies.

Speaking of swivel joints, a larger one, as used on photoflood or trouble lamp clamps, along with the clamp, makes an excellent holder for Lil Blitzer. It'll stay put in any position you point it and if SCl is also swiveled you are free to position the unit so that the flashtube and reflector will spot the light exactly where you want it and still be able to point the SC1 towards the master flash.

First step in perfboard assembly is to mount Ql and then transformer Tl . We used an aluminum channel $3 / 8 \times 7 / 8 \times 23 / 8 \mathrm{in}$. (HWL), formed from a scrap of metal, to support Tl (see photo). If you prefer, TI can be fastened directly to the perfboard. Next mount diodes D1 and D2 and established power supply buses. The neon lamps can be mounted against the perfboard except for II: leave its leads fairly long so it can be positioned for easy viewing. Trigger coil T2 can be held in place with cement (RTV or Duco, etc.). The high voltage output trigger lead to the flashtube should be roughly 5 -in. long and should be insulated with a length of spaghetti tubing. Once FTI

is in position the end of this lead should be formed into a single loop slipped over the tube near its center

Flashtube and Reflector. Once you've mounted and wired all the components on the perfboard you can mount the board assembly in Li" Blitzer's housing and then you're ready to tackle mounting FT1 and its reflector. A 4 -point tie strip that has a mounting foot centered between the end points is used to hold the flashtube. Clip off the two inner lugs leaving those on the extremities for connecting to and supporting the Hashtube. Use stiff wire (at least 16 gauge) to act both as a connection and a support. Make a small loop at the tube end
(Continued on page 98)

Li'l Blitzer's fore, aft views displayed. Left pic of unit shows flash tube verfically mounted; horizontal mounting, use is also permissable. Photo on right shows where lamp 11 lives in unit. Before you take Li'l Blitzer on assignment, shoot at least one roll of black ' n white film with Lil Blitzer working as fill light. Stop down your camera lens one f/stop per frame as you shoot test subject. Develop film in normal manner; pick frame giving you best contrast ratio.

Discover why an electronic flash is a fotog's best friend! Now get to know how they work and how to make one!

HAT does a drop of milk look like at the instant it splashes on a tile floor? How does a cat manage to always land on its feet when dropped? Does an egg bounce before it breaks?

Not very long ago, answers to these questions and many more like them involving split-second phenomena simply couldn't be answered.

Today you can buy an electronic flash for your camera at less than $\$ 20.00$ and take quick-as-a-wink photos which reveal the answers. You can build an electronic flash ${ }^{*}$ unit at even less expense.

Just a few short years ago, electronic flash equipment was used only by professional photographers and cost hundreds of dollars. Now, however, most cameras having a flashbulb attachment can be connected to a speedlight to produce frozen-action photos.

What is this miracle of modern photography, and how does it achieve its results? How can your build your own? On what features should you concentrate, regardless of building or buying? We're going to look into these and several other questions-but
first let's go back a few years and study a little history.

The First Flash Photo. The first photograph made with light from an electronic flash was taken by W. H. Fox-Talbot, a British scientist and one of the inventors of practical photography using light-sensitive paper. The electronic flash feat was accomplished about 1850. Fox-Talbot put a piece of newspaper (probably The London Times) on a whirling wheel, and took his picture by the light from a spark flashed across a gap connected to a Leyden jar.

What made this so remarkable is the fact that in those days film and plates photographically were so slow that outdoor daylight exposures required many minutes, and indoor studio photography was nearly impossible. Yet Fox-Talbot flashed a spark by storing energy in his Leyden jar and produced a split-second picture.

Dr. Harold E. Edgerton, the man credited with inventing modern electronic flash units, in recounting the accomplishment of FoxTalbot, adds: "Fox-Talbot would enjoy seeing a modern installation." The same basic Fox-Talbot principle is used today in elec-

tronic flash photography. In modern flash units a xenon-vapor flashtube replaces the crude spark gap, and a high-capacitance energy-storage capacitor replaces the Leyden jar, but the principle remains unchanged.

In Between. However, the route from FoxTalbot's flash experiment to today's electronic speedlights wasn't as direct and straight a path as you might expect in spite of the similarity of principles. First came flash powder, during the period between Talbot's flash and modern electronic flash units, then flashbulbs.

From the 1860s until 1931, the professional photographer's standby for indoor photography was a pyrotechnical substance known as flash powder. While most photographers had their private recipes for flash powder, all of them incorporated powdered magnesium-often mixed in combination with a little sugar. When the powder mixture was touched off by a spark, it would ignite into a huge flare to provide light for the picture.

Flash powder had several disadvantages, not the least of which was the fact that immediately after the flash of light the room filled with a powdery white smoke as blinding as a London fog. When the smoke settled after a period of many minutes, it left a white powder residue that resisted all efforts to remove it.

Another disadvantage was the explosiveness of the powder. Many old-time photographers were missing at least one or two fingers, courtesy of their flash pans.

All of these problems with powder led to the introduction of the flashbulb. Originally. the flashbulb consisted of a sheet of magnesium foil sealed into a bulb filled with oxygen. As time passed the foil sheet was changed to a mass of shredded foil, and the bulb kept shrinking in size until today's flashbulbs were evolved. The excellence of flashbulbs is proved by the large volume of bulbs still being consumed in spite of the increase in popularity of electronic flash units.

But flashbulbs too have several disadvantages for many photographers. One is that a bulb can be used only once. Also, too
many good pictures were missed because the interesting action occurred while a used flashbulb was being exchanged for a new one. In addition, the one-time-use bulbs are expensive.

Still another disadvantage is the relatively small amount of light available. True, flashbulbs at 10 -foot distances can be four times as bright as sunlight-but for color shots of action events much more light than this is needed.

Not too many photographers consider the slow response of flashbulbs a major disadvantage; flashbulbs can be used at exposure times as short as $1 / 1000$ second. However, Dr. Edgerton found 1/1000 of a second far too long an exposure for some of the work he had to do.

Dr. Edgerton's Baby. Dr. Edgerton, together with Kenneth Germeshausen and Herbert Grier, was researching methods of achieving extremely brief exposure times when he arrived at his design for the repeating flashbulb. The major difference between Edgerton's unit and Fox-Talbot's original flash device is that Edgerton's uses a gas-filled tube rather than an open spark -but that difference has an astonishing effect!

The first announcement of the repeating flashbulb was made about 1937. At that time the only working models were those built at M.I.T. by Edgerton, Germeshausen and Grier. Not until 1940 did the first widespread use of the new device by press photographers come about.

Once press photographers got hold of the repeating flashbulb, they really went all out for it. That same year, a walloping 27% of the entries in the annual exhibit of the New York Press Photographers Association were photos made with the repeating flashbulb, or specdlight. This despite the fact that the equipment weighed hundreds of pounds and cost hundreds of dollars.

Just as this new device began to enjoy widespread acceptance in all phases of professional photography, along came World War II and civilian use of speedlights came to a virtual halt.

However, the war accelerated the development of electronic flash equipment, just as it did so many other electronic devices. By the war's end, mammoth installations weighing up to two tons that developed as much as 57,600 watt-seconds of energy were being installed in B 24 bombers for reconnaissance photography. Night photos

Fig. 1. Basically all electronic flashes are comprised of four major units connected as shown in block diagram. Depending on parficular unit, each may have either a simple or complex individual circuif. Needs of flash fube, dependabilify determine complexity of circuit.
were made from altitudes up to 20,000 feet with this gear. Immediately after the war this same equipment made it possible to take action color photographs that were impossible to make with previously designed units.

Just a little more development was required to make the speedlight suitable for the vast army of amateur photographersand this was achieved in the years between 1951 and 1954. The weight, size, and cost of the equipment were all reduced, while retaining the performance characteristics which had made speedlight such a favorite of the professional shutter snappers.

So What is It? The basic circuit of a speedlight has undergone hardly any change since Dr. Edgerton's earliest designs. In all cases, a high-voltage power supply charges an energy-storage capacitor. The energy stored in the capacitor is then discharged through a flashtube upon demand. This discharge creates a brief, brilliant burst of light from the flashtube.

The amount of light produced in each burst depends on many things. Assuming the flashtube and reflector are not changed, the light output is determined only by the amount of energy stored in the capacitor. This energy is easily measured in watt-seconds and very early in the game watt seconds came to be an accepted unofficial standard for comparison.

However, flashtube and reflector characteristics have at least as much effect upon the light output as does the stored energy. Modern authorities recommend rating on the basis of effective-beam-candle-power-seconds or EBCPS. Most photographers stick to watt-seconds.

The simple basic circuit (Fig. 1) for electronic flash units appears in several variations. Most fundamental concern is the manner of firing the flash. The low-pressure type flashtube will flash whenever voltage is applied. The more common high-pressure tube withstands operating voltage without flashing; when desired, the flash is triggered by applying a pulse of extremely high voltage to a trigger electrode wound around the outside of the flashtube itself. This triggering
pulse ionizes the gas inside the flashtube, causing it to break down and conduct, which results in the flash.

In the early days, many circuits using the low pressure flashtube were employed. However, virtually all present-day units use highpressure tubes with trigger electrodes, since the trigger pulse allows much more precise synchronization of the flash.

Another variation in circuitry involves the voltage to which the capacitor is charged. Until the 1950s all flashtubes required several thousand volts for proper operation -most popular voltage was 2500 to 3000 volts. This high voltage created insulation breakdown problems in the connecting cables, as well as raising the cost of the unit. Primarily the development of low-voltage flashtubes was the breakthrough of the early '50s. This permitted using relatively inexpensive electrolytic capacitors and less costly power supplies for electronic flashes.

The first low-voltage tube developed required 900 volts. This was still uncomfortably high voltage for electrolytic capacitors, but satisfactory operation was achieved by connecting capacitors in series in order to withstand the voltage. Almost immediately thereafter a 450 -volt flashtube was released. The majority of amateur-oriented speedlight equipment still employs flashtubes operating in the 400 to 525 volt range. Today there are flashtubes available that operate on voltages as low as 150 VDC. However, since energy increases as the square of the voltage, but is directly proportional only to capacitance, you still get most efficient operation with the highest practical voltage.

Theory in a Nutshell. Now that the history is out of the way, let's take another look at the typical speedlight and how it works.

The speedlight circuit, regardless of power or voltage, consists of four major sections. These are 1) the power source, 2) the storage capacitors, 3) the trigger circuit, and 4) the flashtube itself.

Power Source. The power source steps up the initial supply voltage to the value required by the flashtube. The initial supply voltage may be as little as 3 volts, derived

from a pair of flashlight cells connected in series. It may be ordinary 117-VAC power. or may be a 500 -volt dry battery. The flashtube voltage may be anything between 150 and 3000 volts. but 450 to 510 volts is the most widely used range.

Storage Capacitors. The storage capacitors store the energy developed in the power source. until it's dumped through the flashtube to produce the flash. Storage capacitors make it possible to store energy at a practical rate, and dump it all in a small fraction of a second to produce a brief, high-energy burst of light. This is the reason why the flashtube produces its high intensity light. Storage capacitors may range in size from $4 \mu \mathrm{~F}$ to more than $1000 \mu \mathrm{~F}$. depending upon the power desired. At voltages below 525 , electrolytic capacitors are normally employed: above this level, oil-filled paper capacitors are used.

Trigger circuit. The trigger circuit produces the pulse required to dump the energy stored in the capacitors into the flashtube. Depending on the type of flashtube used. and the designer's preferences. this circuit may contain only a single relay, or may be

a maze of thyratron tubes, resistors, and capacitors. In newer designs, silicon-controlled rectifiers are being employed.

Flashtube. The flashtube consists of a Pyrex or quartz tube. filled with an inert gas, and has electrodes sealed into each end. The tube may be any shape desired; most are either helical or U -shaped. While this sounds simple enough, the preparation of electrodes and glass is a tedious process to assure proper sealing. Light output. light color, and flash duration can be adjusted by the choice and pressure of gas.

Power Source. The purpose of the power source, as previously stated, is to produce the required output voltage from the available power input. The complexity of the power source depends on the complexity of the job.

One of the simplest possible power sources is a dry battery producing the desired output voltage directly. The Heiland Strobonar VII. introduced in 1954. was one of the first commercial units employing this principle. This unit used a special 510 -volt battery that weighed only 3 lb . While at that time the battery cost nearly $\$ 16.00$, this cost amounted only to 16 per flash when used by a professional or commercial photographers who take a large number of pictures before depleting battery output.

An earlier version of the same idea was popularized by the Sprague Electric Co., the capacitor manufacturer. Their circuit used five 90 -volt radio B batteries in series. Cost was considerably less but bulk was considerably greater. The author owned and used both of these units. Performance was similar; the only reason for choosing one over the other was weight or bulk. Fig. 2 shows the circuit for a power source of the Sprague version.

For more sporadic flash sessions, a portable power source employing flashlight bat-

Fig. 3. This transistorized power source produces 450 volts output from three D-size dry cells. It's capable of charging 60-watt-second storage capacitors in ten seconds. It's nat necessary ta insulate the transistars from the heat sink because af the comman collector circuit. This is the Amgla model D-450 commercially ovailable power source that is factary-assembled, ready for use. It's easy to build if yau want ta try ane.

Fig. 4. Least expensive method to aftain 450 volts for charging storage capacitors is to use voltage tripler circuit shown here. You should use a 1:1 ratio transformer between line and the voltage tripler to isolate the supply. Diodes D1, D2, and D3 are all 700 PIV, 750 mA silicon rectifiers.
teries as input power has long been popular. Transistorized power supplies are a natural for this application. Fig. 3 shows the transistorized circuit recommended by the Amglo Corp., a leading flashtube manufacturer. It provides 450 VDC from three D size cells as input power. This circuit, according to Amglo, will charge storage capacitors of up to 60 watt-second capacity within 10 seconds.

When portability is not a requirement, a conventional supply operating from the 117VAC power lines will do admirably. When high voltage output at lowest possible cost is a requirement, the transformerless, volt-age-tripler circuit shown in Fig. 4 can supply a capacitor charge for up to 200 watt-seconds of storage, and recharge the capacitor to full capacity within 10 seconds. To avoid the possibility of shock it is recommended that a $1: 1$ ratio isolation transformer be used on the input from the $117-$ VAC source.

As a further precaution while on the subject of safety, never forget that all speedlights use voltages and currents which have the potential to kill. In particular, be certain that all wiring is adequately insulated for voltages involved, and that all capacitors are fully discharged when working with a unit. A 50-watt-second speedlight stores enough energy to literally vaporize the tip of a common screwdriver!

All power supplies discussed so far have been for the 450 -volt operating range. For 900 -volt designs, substitution of a different transformer will suffice. For flashtubes requiring 2500 volts, the circuit shown in Fig. 5 may be used. With this power source and 75 watt seconds of storage capacity, flash speeds ranging from 90 to 700 microseconds can be achieved.

In many applications, portable operation is desirable as an extra, but for indoor use primary power source can be AC. Fig. 6 shows the circuit of the Amglo DAC-450 power supply, which charges to 110 wattseconds capacity and also features automatic recharge of the storage batteries when the supply is operating from AC power lines.

Energy-Storage Capacitors. Next to the flashtube proper, the energy storage capacitors are the most important portion of the entire speedlight. While almost any kind of power source can be employed, the storage capacitors must meet certain rather strict requirements to provide reasonable flash performance.

Prime requisite of the energy storage capacitors is that they have high capacitance since the greater the capacitance the more energy they can store. The watt-second rat-

Fig. 5. This 2500 -volt power source uses either 117 VAC or 4 VDC from a self-contained battery as its primary power. The battery drives a vibrator to convert the $D C$ to " $A C^{\prime \prime}$ ", which is then stepped up to high voltage through il power transformer and rectified to DC at 2500 V to charge storage capacitors. Wire should be insulated for $20,000 \mathrm{~V}$. Cathode ray tube wire such as Belden type 8869, or auto ignition high volfage wire is ideal.

QUICK [ishsin

ing of a speedlight is determined by the operating voltage and the storage capacitance, according to the equation:

Watt-seconds $=\mathrm{C} \times \mathrm{E}^{2}$,
where C is in $\mu \mathrm{F}$ and E in volts.
Thus a $500-\mu \mathrm{F}$ capacitor charged to 400 volts will store:
$500 \times 400 \times 400 / 2,000,000$
or 40 watt-seconds

This relationship shows that a higher voltage provides more energy than proportional increase in capacitance would achieve. Should the voltage in the example above be doubled to 800 and the capacitance halved to $250 \mu \mathrm{~F}$, the stored energy capacity would be 80 watt-seconds. This is the reason why designers like to operate speedflash at as
high a voltage as practical-but 500 volts is about the limit for reasonably-sized and priced speedlights, which is determined by use of electrolytic capacitors.

Special Capacitors Preferable. Commõn garden variety electrolytic capacitors are not suitable for energy-storage use. The capacitors used for this purpose must be especially designed for rapid discharge operation. In speedlight circuits conventional capacitors will have exceptionally short life.

Capacitors may be connected in several combinations to provide a wide range of operating characteristics. The series connection shown in Fig. 7A results in a total capacitance half that of each capacitor, capable of withstanding double the voltage and having double the energy storage capacity. In addition, the duration of the flash is cut in half. The parallel connection (Fig. 7B) produces double the capacitance with voltage capabilities unchanged and flash duration doubled; energy-storage capacity is also doubled. In either circuit application,

Fig. 7. Capacitors may be either in series or paralleled to double energy sforage capabilify. Storage charge time will also be doubled when doubling energy storage capability. Schematic A shows capacitors in series. This hookup cuts fotal capacity in half, but af the same time permits double basic working voltage of individual capacifor to be applied across series hookup. Schematic B has capacitors in parallel, doubling total capacitance without changing working voltage capability. See text for a discussion of relative merits of each arrangement.

Fig. 8. Schematic shows how to achieve dual charging capability by addition of a capacitor. Capacitors C1 and C2 are identical in capacifance and volfage ratings, dictafed by design requirements of power source. If Cl and C2 have a capacitance of $525 \mu \mathrm{~F}$ at 450 VDC, low position (one capacifor) provides 50 -watf-second capacify and high posifion provides 100-watt-second capacify.
two capacitors take twice as long to charge as one.

Therefore, the choice between series and parallel connection is determined primarily by two factors; flashtube operating voltage, and the duration of flash desired.

Another desirable feature is the possibility of adjusting energy-storage by switching in additional capacitors. Such a circuit is shown in Fig. 8, and can be accomplished only by using capacitors connected in parallel. Resistor R1, shown at the midposition of the low-high power selection
switch, is required to limit current since the abrupt connection of a fully discharged capacitor across a fully charged one causes destructively intense current flow in both capacitors. At the very least, the switch would be damaged; it's possible the entire unit could be destroyed. When switching from half to full power, the switch should be left in the mid position for about one second, to allow equalization. The unit should never be switched back to half power with C2 still charged.

Whenever working with the energy-storage capacitors, care must be taken to prevent skin contact with the live parts of the circuit. All capacitors should be discharged-but not by shorting them. A 1000 to 5000 ohm, 10 to 25 -watt resistor should be used to discharge the capacitors. This will remove total charge yet prevent destructive current levels. Fig. 9 shows how such a safety resistor can be connected into a circuit with an interlock to the main power switch. In addition to this type of connection, a similar resistor, with insulated clip leads attached, is convenient when working with flash units. Clipping the resistor to live terminals (one terminal at a time, with extreme caution) discharges the capacitor and makes the unit safe. The re-

Fig. 9. Resistors to discharge high voltage capacitors should be included, wired in such a manner that they perform their job whenever case is opened. Schematic A shows basic interlock swifch that is open circuif when the case is closed buf closed circuif whenever case is opened. In schematic B we have combined an interlock circuit with the power on/off switch for the dry baffery pack detailed in Fig 2. With this circuit, capacitor is always discharged when batfery power is turned off. Best dry-battery economy is accomplished with Schematic A.

OUCK

sistor may be left connected to assure safety from shock while you work in the circuit.

Trigger Circuits. The trigger circuit controls the timing of the flash. Since almost all modern speedlights use high-pressure flash tubes, which require ionizing trigger pulses, we'll discuss these circuits first.

Nearly all sach trigger circuits are derived in one way or another from the basic circuit shown in Fig 10. Fig. 10B shows a variation of this circuit frequently encountered. The transformer in this circuit may be either a

Fig. 11. Here's a typical 450-volt flash-head trigger circuit. Resistors R1, R2, and R3 make up a high-impedance voltage divider. When storage capacitors are charged, voltage drop across R1 charges capacitor C1, which, in turn, discharges through neon bulb 11 , firing it, making 11 a ready indicator. When camera shutfer sync contacts are closed, C2 is discharged through primary of $T 1$ and produces trigger pulse for firing flashtube FTI.
special photoflash trigger transformer (suitable units are made by both Stancor and Amglo), or a model-airplane spark coil (if you can locate one). The trigger circuit is functionally similar to the speedlight discharge. The capacitor charges slowly through the resistor to about 200 volts. When a flash is desired, the charged capacitor is discharged through the transformer primary. A trigger pulse of some 4 to 50 kilovolts (depending on transformer and circuit used) is produced in the secondary. This trigger pulse, applied to the flashtube trigger electrode, causes breakdown of the gas in the tube and allows the main energy capacitor to discharge through the flashtube.

Fig. 11 shows the Amglo 450 -volt lamphead circuit. This is the basic trigger circuit with a neon flasher ready light added and the flashtube shown connected. Fig. 12 is the 900 -volt circuit, which is similar except for resistance values, and Fig. 13 is the 2500 -volt circuit.

Note that all these trigger circuits apply a relatively high voltage to the associated camera flash contacts since the trigger capacitor must discharge through these contacts. This high voltage can damage the camera and perhaps cause mild shocks to the user.

These undesirable conditions can be avoided by connecting a thyratron tube (V1) into the circuit as shown in Fig. 14. This circuit is for a 450 -volt power source and can be substituted for that shown in Fig. 11. The only change necessary to adapt the circuit to higher operating voltages would be to increase the value of resistor R4

In this circuit, a moderately-low resistance path through the synchronizing con-

Fig. 12. Circuit for operation from a 900 -volt power source is very similar to that for lower voltage one discussed in Fig. 11. Isolation of sync circuit from. high-voltage circuit is major difference. Other differences are elimination of one capacitor and steady indication rather than blinking indication of ready light when storage capacifors are recharged. Flashtube FT1 must be rated at or above 900 volts. Since dangerous voltages are prevalent in this circuit, care must be taken and all wire insulation should be rated above 1000 volts for safety's sake.

Fig. 13. With the exception of different values of some resistors, a flashtube rated of 2500 volts and 17 trigger transformer to match voltage requirements of flashlube, there's little difference between this 2500 -volt trigger circuit and the one in Fig. 12. Precautions mentioned in previous figures regarding the handling of high voltages ore more necessary with this circuit because of considerable increase in voltages, which in this unit are comparable to those employed in the electric chair when executing a guilty criminal.

Fig. 14. It's possible to reduce the damage to comera sync contacts by 100 times or more just by adding a few components. Thyratron VI acts as an electronic switch. When Cl discharges between grid and cathode of VI, tube sharts, and, in turn, discharges C2 through primary of II, thus developing high voltage on its secondary to fire flashtube. By adding phatocell PC1 the unit can be used as a slave flash. Although all three neon tubes (11. 12, 13) serve to regulate thyratron valtage, only 11 is used as a ready indicator (see Li'l Blitzer elsewhere in this issue).
tacts will fire the flash. Such a path can be provided also by a photocell, as shown in dotted lines. Such a slave flash will respond within $1 / 100.000$ second to the original flash, at distances up to 100 feet, thus providing the serious photographer with an advantageous accessory.

An SCR substitute for the thyratron is shown in Fig. 15. A General Electric C-20B or equivalent SC'R is recommended. Resistor R4 serves as a sensitivity control.

By replacing the SCR in Fig. 15 with a light-activated SCR, such as the GE 4JL8B or equivalent. you provide slave operation. Resistor R4 should be adjusted in this application to the lowest point at which the unit does not trigger itself off.

If low-pressure or self-ionizing flashtubes are used, no special trigger circuit is necessary. Instead, an isolation relay capable of switching the required energy is used (see Fig. 16).

The Flashtube. The flashtube, of course. is the heart of the unit. Flashtube charac-
teristics determine operating voltage, flash duration. and color of light.

The Hashtube consists of a sealed tube containing a gas and two electrodes, with a third trigger electrode mounted outside the tube. The type of gas used in the flashtube determines the color of the flash. Xenon gas is most popular since it produces a flash having a color closely approximating noon sunlight, and. therefore, is suitable for color photography. Neon gas will produce a flash rich in red and infrared. while argon gas will produce a bluish-violet flash that's rich in ultraviolet. The various gases may be mixed to produce light of almost any desired characteristics.

Operating voltages are dependent on several factors. The higher the gas pressure within the tube. the greater will be the voltage required to produce a flash. Additionally, the greater will be the voltage at which the tube will flash without application of a trigger pulse. Most low-voltage flashtubes (150 to 900 volt ratings) are filled at 60 -

OUCK

200 mm pressure, while high-voltage tubes are filled at $200-400 \mathrm{~mm}$.

Flashtube Life. Flashtube duration depends upon operating voltage, size of the storage capacitors, and external circuit design. Flashtubes have longest operating lives when used to produce relatively slow flashes in the range from $1 / 300$ to $1 / 1000$ second duration. However, even when producing $1 / 25,000$ to $1 / 100,000$ second flashes, flashtubes designed for such brief flash service give up to 10,000 flashes (the life of the flashtube is defined by the number of flashes it produces before its light output is reduced to half of its original value). When operated
uses, a 50 -watt-second unit is adequate. Many of the less expensive factory units available today produce only 20 to 25 wattseconds. Since effective-beam-candle-powerseconds are the actual measure of light produced, rather than watt-seconds, most guide-number determinations are based on EBCPS. Roughly EBCPS equals 15 times the watt-second rating. This figure may vary as much as four times in either direction because of differences in reflectors, but provides a starting point for design.

Of course the power source characteristics must be checked. If portability is a requirement you would find an AC-only unit useless. Similarly, if all work is to be done indoors there's no need to become involved with the battery replacement or recharging problems that go with portable units.

Adaptability to slave flash accessories and other such features should also be considered before making any final decisions.

with slow flashes and less than maximum power input, flashtube life is extended into millions of flashes.

Rolling Your Own. If you're interested in building your own electronic flash unit, you can do so easily (see "Speedy Flash" elsewhere in this issue). Virtually all the circuits shown so far in this particular dissertation are compatible with each other. You can select a power source, a hookup for energy storage capacitors, and a flash-head circuit and combine them into your own design.

The only point which may give you problems in the design phase is determination of the power rating you desire. For most

THERE are many transistorized SW receivers available today in the price range from less than $\$ 15$ to several hundred dollars. The author owns one of these low priced versions that, after a little diddling turned in a pretty good record in receiving DX.

One reason for this success with a low priced receiver is the fact that the listening point is located in a rural community away from big city areas that are congested with electrical interference from machinery, appliances and an overabundance of radio stations in the immediate vicinity. Also, the -house is atop a hill at least $100-\mathrm{ft}$. high, with the antenna somewhat higher than this since its installed on the roof. All are conditions known to be ideal for SWLing.

Of course, knowing a thing or two about what it takes to wring the most out of a set helps too. Following are a few tips that have helped tremendously and are in easy reach of the average experimenter.

Grounding. One major aid to improve reception is to use a good earth ground. If your set doesn't have a ground terminal, check out the circuit for the common ground bus and connect a lead to this bus and thence to a cold water pipe. Or, run a ground wire to a rod sunk at least 4 - ft . into the earth. To be effective the ground wire
must make a good contact with the water pipe or ground rod. You can buy a ground clamp designed to dig past the dirt and oxidation on the pipe or rod, thus ensuring a good ground connection.

Using An Outside Antenna. Certainly a properly erected antenna, the higher the better will bring stronger signals to the set's input. In the event your set doesn't have a terminal to connect an external antenna, you can connect the lead-in to the whip antenna built into the set, with an aligator clip. This will make it easy to disconnect so you can take the set with you on an outing or to the beach.

Boosting Sensitivity. Next, let's consider a way to improve the sensitivity of the receiver. In all probability, because the set is an economy model and was rushed through the production line to keep down the cost of manufacture, the IF transformers may not be peaked for maximum tuning to track with the output of the set's mixer oscillator. A simple aligning tool, similar to GC type 5000, long enough to reach the tuning screws and small enough to fit into the openings for them, will help to overcome this deficiency. Initially, just tune the set to a weak BCB signal (if the set tunes the BCB) and then slowly rotate the adjusting screws,

back and forth from their original position, for maximum signal level. Then tune in a weak SW signal, such as the weakest WWV transmission, and recheck these adjustments. If your set boasts an S meter, all the better; make your adjustments for maximum S reading on the meter.

If you really want to go all out for increased sensitivity, try building the Station Blazer RF Preamp detailed in the April/ May 1969 issue of Science and Electronics. For an investment of about $\$ 6$ and a few hours in construction time it'll take any SW receiver out of the mediocre class. And, if your set lacks audio oomph to drive a speaker to your satisfaction, you might try adding a packaged transistor audio amplifier and separate speaker. How about building the Universal Utility Amplifier described in the November/December 1969 issue of Elementary Electronics? If you don't want to build, you can buy low cost, factory built, transistor amplifier from most parts suppliers.

Adding Bandspread. One other disadvantage of the lower priced SW receivers is a lack of bandspread tuning, a most useful assist in separating closely spaced stations at the higher frequencies. With a little patience, and a few parts and tools you can also add this feature to most economy model SW receivers. All you need in the way of parts is a $15-\mathrm{pF}$ variable capacitor, an inexpensive vernier dial, a small aluminum box and a short length of low capacity, shielded two
conductor cable. Once you've mounted the capacitor and dial in the aluminum box as shown in our drawing, you're ready to hook it up. Locate the oscillator section of the tuning condenser gang in your SW receiver and connect this externally mounted variable capacitor in parallel with this section of the set's tuning gang. Ground one end of the shield from the interconnecting cable to the common ground bus in your SW receiver and the other end of the cable shield to the box used to house the external $15-\mathrm{pF}$ capacitor. Connect one end of the two conductors of this shielded cable to the two connections of the oscillator section of the ganged tuning capacitor in your receiver, and to the two connections of the $15-\mathrm{pF}$ variable capacitor in the aluminum box. Keep this piece of cable as short as possible.

To use the bandspreading feature you've just added to your set start off by setting the new capacitor's dial to zero and tune the receiver in the normal way. Once you tune in a station (in all probability you'll get several stations interfering with one another in a congested portion of the band), you then use the bandspread dial to improve the signal by separating these stations near the same frequency. With a little practice you'll soon learn how best to use the band spread to your advantage.

Now that we have given you tips on how to get into the swing of things better with your economy model SW receiver-go to it, have more fun out of SWL.

by MARSHALL LINCOLN

Business and Hamming Don't Mix

I_{T}was hard to believe my ears. What I was hearing couldn't be happening on a ham frequency, could it? Other listeners assured me it really was happening-it wasn't just a bad dream.

There they were-two young fellows who somehow had passed amateur exams, but seemed to have no idea of the function and purpose of ham radio. They were deliber. ately and unashamedly providing on-thespot broadcast "news coverage" by means of ham radio for a broadcasting station!

One fellow freely admitted he was operating "portable" at the commercial station's studio, and the other fellow was driving around town. apparently with a "news man" from the station. This mobile amateur operator would make brief transmissions describing certain events which he saw, and this information would be repeated on the air by the commercial station's announcer a couple minutes later.

As if this wasn't bad enough. those of us listening soon heard the mobile operator tell the portable operator to "get the tape recorder ready." Then the mobileer began what was obviously intended as a transmission to be replayed over the commercial station!

Just then another ham who also had been listening to this wild goings-on broke in and notified the two would-be news broadcasters that they were violating amateur regulations. The ham operating the portable ham rig at the broadcast station then became violently angry and severely criticized this breaker on the air, with language bordering on profanity, for breaking in!
"What's wrong with what we're doing? We're just two hams talking to each other and describing what we see. What's wrong
with that?", was the general substance of his indignant reaction.

The breaking operator patiently, but firmly, explained that the intem oi their operation was obviously more than a mere innocent visit between two hams.

Of course these two fellows had that in mind right from the start. The asounding thing is that they had the brass to pretend to be innocently conducting all amateur QSO to cover up the obviously illegal use they were making of ham radio. They quickly modified their big plans for broadcast radio news coverage after they were caught in this illegal operation by an alert and concerned fellow ham.

Radio is so Easy. Fortunately. few hams would try such an openly brazen operation. However, the fact that it happened at all is evidence that the ease with which nearly everyone can use radio nowadays catuses some persons to fail to think about the farreaching effects of radio communciationsand the purpose of specific types of radio communications.

It doesn't take any brains to pick up a mike and push a transmit button. With com-mercially-built and tuned equipment available for use on ham frequencies, it's possible to operate on the ham bands with absolutely no technical knowledge. Uniortunately, this mental vacuum sometimes is accompanied by a lack of perspective in regard to the uses of radio communications. A radio frequency becomes nothing more than a gathering place for a gaggle of gossiping housewives or a gang of hoys at the corner pool hall.

Conversations on the air become just as casual as conversations in person . . . and
(Continued on page 56)

Discover the ease and excitement of learning Electronics with programmed equipment

 NRI sends youmwem with your hands as well as your head. You learn the WHY of Electronics, Communications, TV-Radio the NRI pioneering "3-Dimensional" way. NRI training is the result of more than half a century of simplifying, organizing, dramatizing subject matter, and providing personal services unique for a home study school. You get the kind of technical training that gives you priceless confidence as you gain experience equal to many, many months of training on the job.$$
\text { NR/—The } 53 \text { Year Leader in Electronics Training }
$$

APPROVED UNDER NEW GI BILL 1 y you served since January 31, 1955, or are in service check GI line in postage-free card.

Earn $\$ 5$ or more an hour spare or full time in TV-RADIO SERVICING

Color Television has arrived. Sales are soaring, along with the continu. ing popularity of other home entertainment equipment like portable radios, tape recorders, hi.fi sets, phonographs and auto radios. TV. Radio servicing is one of your best routes to spare-time earnings, a good paying job or a business of your own. NRI not only trains you quickly and expertly, but also shows you how to get started in Servicing soon after you enroll, earning as you learn. NRI trains you in today's methods of installing and repairing all Electronic equipment for the home-including booming Color TV. You even build, experiment with and keep to enjoy your own solid-state radio and your choice of black-andwhite or Color TV receiver. Like thousands of others, you can be earning $\$ 5$ or more an hour extra in spare time starting soon.

There's money and success awaiting you in BROADCASTINGCOMMUNICATIONS

The experience you gain from intensely practical NRI training in Complete Communications equals as much as two years of training on the job. With NRI, you can train for a choice of careers ranging from mobile, marine and aviation radio to TV broadcasting and space communications. You learn how to install, maintain and operate today's remarkable transmitting and receiving equipment by actually doing it. You build and experiment with test equipment, like a VTVM you keep. You build and operate amplifier circuits, transmission line and antenna systems, even build and use a phone-cw transmitter suitable for transmission on the 80 -meter amateur band. Whichever of five NRI Communications courses you choose, you prepare for your FCC License exarms, and you must pass your FCC exams or NRI refunds your tuition in full.

Move ahead in America's fast growing industry as ELECTRONICS TECHNICIAN

Electronics touches everyone's lives. This vast field of opportunity is open to you with NRI training. Industrial/ Military Electronics training-like all NRI courses-prepares you quickly. thoroughly the practical 'hands on'" way. You build with, and learn to understand the functions of, today's miracle solid-state components like printed circuits, diodes and transistors. You build and experiment with Electronic circuitry used in automation, data processing, ultrasonics, telemetry. Whatever your interest in Electronics, NRI training can fill your needs. Prove to yourself what nearly a million NRI students could tell you . . . that you get more for your money from NRI. Check the postage-free card and mail it today for your FREE NRI Color Catalog. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington. D.C. 20016.

YOU GET MORE FOR YOUR MONEY FROM NRI-Euild, test,

 explore, discover. Everything you see here is included in one MRI course-including Color TV. Other courses equally complete. And you'll be surprised at the low tuition costs. Text for text, kit for kit, dollar for dollar-you get morefor your money from NRI.

Ham Tratfic
 (Continued from page 51)

pretty soon idle rumor mongering, petty back-biting and foul language become a part of a QSO. One evil leads to another until soon a distasteful situation becomes a downright illegal one, as I have described.

Occasionally. ham frequencies are used in local areas by hams who also are in the commercial radio business. Sometimes you can hear these guys informally conducting a little commercial business mixed in with their ham "QSOs." This is strictly out of order on the ham bands. First, it's illegal. and second. it's just not in the spirit and purpose of ham radio.

Ham radio exists specifically as a technical training ground, a place for noncommercial technical experimentation, and a system of public service communications. It definitely is not intended for any commercial use.

The FCC has said repeatedly that hams may make "deals" on the air among themselves for buying. selling or trading ham gear from man to man. but that all other references to transactions involving exchange of money are forbidden on ham frequencies. Guys who want to set up business appointments, and make arrangements for work to be done on commercial radio installations should use a commercial radio channel. or the telephone.

Even if the guys who violate this provision don't care about jeopardizing their own ham licenses. it would be nice if they had respect for the rest of us who would rather use ham radio for its intended purpose instead of listening to business deals being cooked up.

Needless ID Yakking. For the 99.9% of
the ham population who use ham radio for its intended purpose, there's still much to be learned to make our operations more efficient and useful.

One particular bit of sloppy operating that always makes me turn purple around the gills is excessive identification of stations.

Some guys and gals seem to think that every time they make a short transmission they must go through the entire ID procedure. Even in the "tastbreak" type of operation which is so useful, and easy to do on SSB and FM especially, these folks still fill the air with call letters every few seconds, it seems.

This is all so useless. and it makes ham QSOs sound like a series of computers talking to each other instead of a bunch of hams on first-name basis.

Wish these folks would learn: you only have to identify once each ten minutes. plus once at the beginning and once at the ending of your qso. And you only have to identify your station. When you sign off, you need to identify only one of the stations to whom you were talking. And that's all. dad gum it!

Sometimes it helps to use call letters at certain other times. even though not required by the FCC. to maintain order in an exchange involving several stations. But there's seldom any need to go through the full ID procedure with every transmission when using a rapid "dispatch style" of operating consisting of rapid brief exchanges like a normal face-to-face conversation.

Often this excessive ID has been picked up as a habit after hearing someone else do it. There is an important lesson to be learned there: be careful who you pick up your habits from!

The world's largest airliner, the gigantic Boeing 747, is the eye-catching illustration on the QSL card used by WA7BIYwho made the photo himself! "By" (for Byron) is a photographer for the Boeing Company, and frequently goes aloft to photograph the company's airliners. Many of the striking color photos you've seen in magazines of this new Boeing jef were made by him. He's also among those Boeing hams who have been allowed to operate ham radio on board a 747 while on test flight.

SIX years ago no self-respecting audiophile seriously considered slipping the Beatles into his hip pocket. And no stereophile envisioned cramming all those Monkees into, say, a tote bag. But all you Beautiful People know how time eventually changes fiction into fact. Today it's easy to hold the Boston Symphony in your hand. Spouting off at the tonsils aside, you've got a lot to like with a new-as-tomorrow tape cassette.

Since its introduction in the mid-1960s, the taje cassette has achieved immense popularity among novice and experienced audiophiles. The ease of loading this $1 / 2$-in. wide, self-contained marvel into its record/playback unit consistently earns hurrahs from anyone who has ever fumbled with a conventional, reel-to-reel tape recorder. But it turns out all's not perfect in cassette country.

Like a small battery-operated transistor radio, a cheapie cassette player's playback sound oftentimes leaves a little something to be desired. Seems the commemorative-stamp sized speaker found in the majority of cassette players stumble and fall way down in the bass-reproduction department. One solution might have us tack on a larger speaker having better frequency response. But did you ever try driving that hi-fi speaker of yours with a cassette player? It's all show and no go as the fleapowered player struggles against your mighty inefficient speaker.

Room-filling sound for little expense is surely the password for our

gives you the sweetest sound...

Cassie. She gives you the sweetest sound you've ever coaxed out of your cassettes! You won't have to sell your kazoo to build Cassie, either. Handily lifting Bacharach or Bach from soupy to silvery, Cassie tootles to a 20 -buck tune. We think you'll be glad you found a couple of constructive hours and a finger for your solder gun trigger, after you've heard Cassie perform.

Our photos show Cassie in all its glory. You can easily see how speaker and internal amplifier fit into the cabinet, with neither cramped for breathing room. We did a bit of catalog page twisting and found a fullrange $8-\mathrm{in}$. speaker tucked within a deluxe baffle for an unheard-of $\$ 6.95$. And another six dollars and 95 c later, we fished up an amplifier whose internals can easily drive the speaker.

Cassic can find happiness indoors with its own internal power supply, or outdoors by connecting a 12 -volt battery to the terminals provided for this purpose. Making our Cassie even more electrically attractive are two inputs: one for high-level signals ordinarily cranked out by cassette players, another for low-level signals such as you'll find from phono cartridge, guitar pickup, or even a microphone.
These features make Cassie ideal for all those indoor or outdoor gatherings where you want your vocal cords or rock vibrations to carry a lot more zonk.

Prancing Through Cassie. The electrical body of Cassie consists of two major organs.

Cassie is a handsome addition to any system. Not only does it add tone quality to your cassette player, it's good to look at too.

One's a solid-state, store-bought, 1-watt power amplifier; the other's a home-brew 12-VDC power supply.

The power amplifier has a frequency response running out to 15 kHz . What's more, when presented with 4.5 millivolts at the head end, itll zap its output into an 8ohm speaker without busting a gut. And all this razzmatazz is yours with only 150 mils squeezed out of the power supply!

The 8 -ohm speaker and enclosure were found hiding together in McGee Radio Co.'s catalog. You'll find it lurking as no. SLDC8S. The speaker's a no-nonsense coaxial job with a frequency-response curve considerably wider and flatter than the squawker found in most cassette players.

From Full Wave to No Wave. Taking a peek at Cassie's schematic, you'll see that

Guts of Cassie layed bare here for all good constructors to see how easy it is to place all the units for easy accessibility without affecting speaker. Circuit board construction of amplifier and power supply lends itself to placement that fits spaces available. Controls are placed within easy reach from exterior.

PARTS LIST FOR CASSIE

Al-l-wath, solid-state amplifier (Lafayette 99E90383 or equiv.)
C1-160- $\mu \mathrm{F}, 25$ VDC electrolytic capacitor (Lafayette 34 E85687 or equiv.)
C2-100- $\mu \mathrm{F}, 16$ VOC electrolytic capacitor (Lafoyette 34 E85547 or equiv.)
Di-D4-50-IV, 1-A silicon rectifier (Motorola HEP. 154 or equiv.)
J1, J2-RCA phono jacks (Lofayette 99E62341 or equiv.)
J3, J4-Insulated banana jacks; red (Lafayetfe 32E64942 or equiv.), black (Lafayette 32E64959 or equiv.)
R1-330-ohm, $1 / 2$-watt carbon resistor
R2-10,000-ohm, $1 / 2$-watt carbon potentiometer (Lafayette 32E22528 or equiv.)
R3- $1,000,000$-ohm, $1 / 2$-watt carbon resistor

R4-1,000-ohm, $1 / 2$-watt carbon resistor
S1-Spst on/off switch (part of R2)
52-Spdt toggle switch, center off (Lafayette 99E61558 or equiv.)
*5PK1-8-in., 8-ohm coaxial speaker with wall boffle
T1-Power transformer: primory, 117 V $50-60$ $\mathrm{Hz}_{\text {; secondary, }} 12.6 \mathrm{~V}$ @ 2 A (Stancor P. 8130 or equiv.)
1-2-ft. length shielded wire (Belden 8431 or equiv.)
Misc.-knob, 6-ft. line cord with plug, wood screws, solder, wire, etc.
*SPKI availabla from McGee Radio Co., 1901 Mc Gee St., Kansers City, Mo. 64108 for $\$ 6.95$ plus postage. Specify stock no. SLDCBS.
switch S 1 is the power on/off switch socking 117 volts to transformer T1's primary winding. Transformer T1's secondary is connected to the power supply, which is four silicon diodes, two capacitors, and two resistors. Diodes D1 through D4 are connected as a bridge rectifier; the output from this bridge is smoothed by capacitor C1 to provide a relatively hum-free DC output of approximately 20 volts. Resistor R1 drops the DC output voltage down to the 12 volts required to breathe life into our power amp. Capacitor C 2 provides additional filtering.

There's nothing spectacular about switch S2. A prune-juice-regular, three-position toggle switch, it selects either the output from the internal power supply, or an external 12 -volt supply connected 'twixt jacks J3 and J4. The center-off position of S2 also provides you with a means of turning Cas-

gives you the sweetest sound...

sie on or off when an external source springs it to life.

Longnose Looping. Okay, it's time to dig out your dikes. But before you'll read more of our sage construction advice to the shopworn, you'll need to perform a minor surgical operation on the power amplifier.

Solder the power on/off wires (coming out of the amp) together, and wrap them in a piece of electrical tape. These wires normally run to an external switch which performs the on/off function. In Cassie's case, however, we halt those jolts with our volume coutrol-mounted switch. If you're still in the dark over which two wires to solder together, consult the directions accompanying your amp: it'll call ont two leads marked "to on/off switch." After youve taped up the patient, place it aside.

Don't let that bright ' n ' shiny speaker talk you into mounting it into the baffle while you're still in the early construction phises. Few speakers improve their tone when they re subjected to holey indignities like screwdriver blades, drill bits, and solder gun tips.

Prior to mounting the electronics within the speaker cabinet, drill a $7 / 16-\mathrm{in}$. hole on the left-hand side of it. This hole is for switch S2, and it's positioned about $31 / 4-\mathrm{in}$. up from the bottom and $11 / 2-\mathrm{in}$. from the back of the speaker baffle. Also drill two $1 / 4$-in. holes spaced $3 / 4$-in. apart on the side of the speaker cabinet. That's where you'll mount jacks $J 3$ and J4.

Cutting, bending, and drilling the input jack panel is the toughest job on Cassic. Take a $2 \times 2-\mathrm{in}$. piece of aluminum stock, and drill two $1 / 4-n$. holes about an inch apart, as our diagram shows. Then drill two $1 / 8$-in, holes about an inch apart at the opposite end of the duminum plate. Scribe a line $1 / 2-\mathrm{in}$. in from this side and bend the metal so it forms a 90° angle along the iine. This aluminum mashery becomes the mounting plate for your high- and low-level input phono connectors. Finally, attach this assembly with round-head screws to the cabinet base.

Screw both RCA phono jacks onto the mounting plate. After you solder a 1-megohm resistor between both center conductor pins, drill a hole for the volume control on/off switch assembly on top of the baffle and mount it in the newly-created hole. Be sure you orient the potentiometer terminals so they face the amplifier.
The power supply assembly can be tackled by any soldering iron wielder. The author built his volt smoother on a small piece of Bakelite, but we suggest you delve into your spare parts collection for a 3×2-in hunk of perfboard. Betore you loose your won-der-watter upon the components, remember that diodes and electrolytic capacitors are like polar bears. They lose their cool if jabbed too often with a hot iron.

Once you've wired the power supply, mount it to the speaker baffle's bottom with spacers between perfboard and mounting screws. Only four connections are made to one power supply-transformer TI's second-
(Continued on page 101)

Cassie's with it for other than cassette players. You can use it to sweeten up your tuner or build two of 'em for stereo. Too, it makes an OK phono amplifier when you feed it from a record changer. Need a small PA? That's right, just add a mic and you've got one rarin' to boost that weak voiced politico. In fact it fills the bill for just about any audio application where there's need to faithfully raise the signal level with low distortion and good frequency response.

DIGITALOCK

only arm yourself with a screwdriver, and we don't mean the 86 -proof version!

The lock's control logic is housed in a $3 \times 5 \times 7-\mathrm{in}$. aluminum box. The remote digit key sender may be located wherever it's needed, up to several hundred feet from the control box. DL is normally powered by $117-\mathrm{VAC}$ line current, but worry not about your monthly electric bill, because consumption is about the same as a small night light. Brown-outs won't bother DL, as provision has been made for the inclusion of a backup battery power pack.

Maxwell's Smart Circuit. Circuit complexity was reduced, and reliability enhanced, through the use of five low-cost, plasticencased integrated circuits. Combined, these ICs replace 41 transistors and 60 resistors for a total cost hovering under six bucks.

Before we tell you how to solder this or
that part, and fasten down that gizmo, let's steal some build 'em time and take a good look at the real heart of the device, a basic NOR gate.

The NOR gate, short for NOT OR, is actually a simple device. When one, or all, of the gate's inputs receives a positive voltage (above 0.85 V in $D L$'s case), it merely sits like a bump on a log, refusing to pass a positive output. The gate's output only goes positive, or high (above 0.85 volt) when all inputs are low, or grounded (below 0.46 volt). Our figure shows a single 2 -input NOR gate, its logic symbol, and equivalent schematic.

As useful as the basic NOR gate is by itself, it can be made to perform some neat electronic tricks, and even a couple of useful functions when several gates are interconnected together. Taking a look at our NOR circuit, you'll see a pair of gates crosscoupled to form a Reset-Set (RS) flip-flop. Unlike the simple Simon NOR gate we first

Follow this photo as parts placement layouf guide. All wiring's underneath perfboard, point-to-point. Fuse FI is partially hidden behind transformer TI; fuse holder's mounted to perfboard with 6-32 hardware. Wire, test power supply first.

Digitalock's flow diagram showing how code example 45-67-89 is wired. Bracketed lefters A-F are connected to switches S1-10 in sequence, thereby determining code.

PARTS LIST FOR DIGITALOCK

C1-12, 15, 16-0.001-uF, 1000-VDC disc ceramic capacitor
C13-470-pF, 1000-VDC disc ceramic capacitor
C14, C18-250-uF, 6-VDC miniature electrolytic capacitor (Lafayette 34 E 85380 or equiv.)
D1-50-PIV, 1-A silicon diode (Motorola HEP. 154 or equiv.)
IC1-3, 5-Quad 2-input NOR gate (Motorola MC724P)
IC4-Triple 3 -input NOR gate (Motorola MC792P)
K1-Dpdt, 6-VDC subminiature relay (Potter \& Brumfield KMIID or equiv.)
Q1, Q2-Npn silicon transistor, Motorola HEP-50 (Lafayette 19E54544)
R1-1500-ohm, $1 / 2$-watt resistor
R2-470-ohm, $1 / 2$-watt resistor

R3, R4-2200-ohm, 1/2-watt resistor
R5-100,000.ohm, $1 / 2$-watt resistor (see text)
R6- 1000 -ohm, $1 / 2$-watt resistor
Sl-11-Spst push-to-make switch (Lafayette 99E62184)
TB1, TB2, TB3-7-point terminal strips (Lafayette 32E12206 or equiv.)
$1-5 \times 7 \times 3$-in. aluminum box (LMB 145 or equiv.)
$1-23 / 4 \times 3 \times 4$-in. cabinet (LMB 275 N or equiv.)
Misc.-Fuse holder for 3AG fuse, grommets, \#6-32 hardware, line cord strain relief, line cord and plug, Vector H- or P-pattern perfboard, push-in terminals, solder, vinyl material, wire, etc.

DIGITALDCK

saw, an RS flip-flop has a memory. It remembers which of its inputs, Set or Reset, last received a positive input,

An RS flip-flop provides the user with two complimentary outputs. Called Q and \bar{Q}, one output is always in an opposite state to its sister output. For example, if the Set (S) input is momentarily driven with a positive current, the Q output will go to a positive state. It'll remain positive, even if you remove the input current source. That's what we mean when we say an RS flip-flop has a memory.

Now let's take this one step further. If a positive pulse is now applied to the Reset (R) input, the flip-flop switches states, so that now the \bar{Q} output is high and the Q output low. Now that we understand the basic NOR gate and the magna cum laude RS flip-flop, we can go to the head of the class and take a look at DL's operation.

We Practice What We Preach. DigitaLock's operation really centers around flip-flops 1-6. Refer to our functional diagram to follow the action. Properly conditioning these

Terminal strips TBT-3 can be lettered for identification of wires in both cable sets. Cable strap in left corner holds both 7 -conductor cables in place.
inputs by driving them positive by your pushbutton combination, you'll find all the flip-flop's \bar{Q} outputs will be in a low state. This condition is detected by gates G1, and 2 , whose inputs are connected to the flipflop's \bar{Q} outputs. When the correct number sequence is entered by your switch combination, the output from gates G1 and 2 will go positive, eventually closing a relay which operates your external device.

Perfboard terminal points are shown here, excepting points A-F, which were called out on page 63. Wires from all unused code digits terminate at terminal point R. Substifute spst switch for S12 if you don't build in stondby battery pack feature.

Let＇s take another example．In our func－ tional diagram，the correct combination．as shown，is：45－67－89．This really means that switches S4 through S10 must be depressed in that order for the relay to work．

As you punch the correct buttons in sequence，each flip－flop is set，so its Q output goes high．This produces a positive pulse that is coupled to the Reset input of the next⿴囗⿱一一

So，until flip－flops 1－6 have been driven posi－ tive in order，there will always be at least one flip－flop with its \bar{Q} output remaining in a high state．

While any flip－flop $\overline{\mathrm{Q}}$ outputs to gates GI and G2 remain high，the gate＇s output will sit in a low condition．The lock remains closed．Safeguarding $D L$ against accidentally opening doors＇ n ’ safes．capacitors $\mathrm{Cl}-6$ and C16 bypass to ground switching transients

Digitalock＇s wiring diagram is shown here；power－supply schematics are shown on pages 66，67．Two Belden type 8447 cable＇s connect switches S1－11 with ferminol strips TBI－2．

DIGITALDCK

which could cause erratic operation of the flip-flops.

Okay, let's assume for the moment you've entered the correct combination. The output from gates G1, 2 will be positive. Depressing the optional Program Enter switch S11 will then set flip-flop 7. Flip-flop 7's Q output jumps to its high state and shoves positive current into relay driver transistor Q1.

Lo and behold, the relay K1 is energized! The relay's dpdt contacts are brought out through terminal strip TB3, and, in turn, control any external device or circuit you wish. Hanging in there like a faithful sheep dog, diode D1 protects transistor Q1 from breakdown voltages. These semiconductorkilling spikes are caused by the relay coil generating a reverse voltage whenever the coil is released.

When flip-flop 7's Q output goes high, it also triggers a monostable multivibrator consisting of gate G4 and transistor Q2. A monostable has two states, stable and untable. When triggered it switches from its stable state into its unstable state.
The amount of time that it spends in the unstable state is dependent on the RC time
constants involved in its coupling network. Here, it's about 25 seconds, and is dependent on the values of capacitor C14 and resistor R5.
The monostable's output is fed to gate G5, lashed up as a simple inverter. If G5's input is high, its output is low. After the monostable flips back into its stable state, gate G5 shakes a leg, and, if terminals X and X^{\prime} are connected together, flip-flop 1 is automatically reset.
The Q output from flip-flop 1 does its positive thing, telling gate G1's output to swing low. Gate G3 picks up G1's output, inverts the signal, and supplies a positive voltage resetting flip-flop 7. Sounds like DigitaLock's circuit is busier than a onearmed paper hanger, but it's the most foolproof way we know to de-energize K1.
Sometimes $D L^{\prime}$'s auto-reset feature isn't a terribly important matter. By not connecting terminal points \mathbf{X} and \mathbf{X}^{\prime}, its relay remains energized, allowing your external equipment to continue functioning. The circuit remains in this state until it's manually reset by depressing one of the switches not used to enter the combination. In our example, punching any switch labeled 1 through 4 (S1-S4) would de-activate DigitaLock.
Voltage for all integrated circuits-amounts

PARTS LIST FOR DIGITALOCK STANDBY POWER SUPPLY

to a whopping plus 3.6 volts. This flea-power requirement is provided by a simple Zenerregulated, series-pass transistor supply. Transformer T1, a simple 6.3 VAC affair, sends its greetings to rectifier CR1.

The rectifier's output is filtered by capacitor C17. After Zener diode D2 regulates Q3's base voltage, the output volts appear at Q3's emitter and is sent to the ICs. Positive 8 volts is also supplied for the operation of transistor Q1 and K1.

Locking Down the Cabinetry. DigitaLock's mechanical layout can take any shape you desire. The author's layout shown serves best for most installations. As you can see, the device is built into two separate boxes. A small $23 / 4 \times 3 \times 4$-in. cowl-shaped box
houses the digit key sender. The control logic electronics find a home in a $3 \times 5 \times$ 7 -in. box. Both containers are interconnected with a multiconductor cable.

Both prototype cases were covered with a vinyl contact material. The author thought that although the cases could have been spray painted, covering them with vinyl takes first place in the appearance department. Vinyl material needs no drying time, multiple coats, or special ventilation during application.

No matter what your outer covering preferences are, wash the case down with rubbing alcohol to remove surface dirt and oil film. This film will prevent any covering from forming a good, long-term bond with

This is what Digitalock should end up looking like. Mount perfboard assembly to chassis with 6-32 hardware. Use three nuts per screw; one nut fastens screw to chassis, other nuts hold perfboard to screw. Many variations on construction theme are possible with our DL. Switch S12, pilot-lamp assembly Tl can be mounted adjacent to terminal boards TB1-3. If you want to miniaturize $D L$, use two perfboard assemblies that are as wide as chassis is high. Mount both assemblies in vertical position with aluminum angle strips running along bottom of perfboard assemblies. This modification gives you room to mount switches S1-11 on chassis cover, if this modification of your DL warrants.

DIGITALDCK

the aluminum surface of any box or chassis.
Should you go the scissor 'n' stick route, cover both case halves with a single section of material. Cut your vinyl pattern well oversize, and remove the protective paper backing. Apply it to each side of both cases. Fold it over the case's sides, trimming as

needed with a sharp knife to remove excess material.

Hold on podner, you're not finished yet! Press all those inevitable air bubbles out towards an edge, or puncture with a pin. Remove excess vinyl over the various holes and cutouts with your knife.

Dike Doings. To simplify DigitaLock's construction, you build and test the device in several stages. Most components (excepting capacitors $\mathrm{C} 1, \mathrm{C} 6, \mathrm{C} 16$) are mounted to your perfboard's topside. Vector H or Ppattern perforated board is particularly easy to work with; the hole pattern fits the integrated circuits' lead arrangement.

The author found miniature eyelets and push-in terminals were in his economic ball park, but you'll probably want to work solely with push-in terminals. Point-to-point wiring with \#26 gauge wire was used throughout.

The first section you'll tackle is the power supply. Mount the transformer and fuse block with 6-32 hardware, then wire them as shown in our schematic wiring diagram.

The transistor specified for Q3 comes with a heat sink pre-attached. If your spare-parts box blesses you with a different type of transistor, make sure it's capable of dissipating at least 6 watts.

After the power supply wiring has been completed, and you've checked it for shorts, connect 117 VAC to the input. Eyeballing your VOM, you should see 3.6 volts on Q3's emitter, and 6 to 8 volts on its collector.

With the power supply squared away, we'll wire up flip-flops 1-6 and gates G1-3. You can lickety-split your way through your wiring chores if you solder jumpers across pins 1,$14 ; 3,12 ; 5,10$; and 7,8 on appropriate ICs. Wire the power and ground bus to pins 11 and 4, respectively, on all ICs. After you've soldered all coupling and bypass capacitors in place, connect the Set inputs of flip-flops 1-6 to terminals A-G.
(Continued on page 99)

Note rubber feef on botfom of switch box. DL's switch box can be waterproofed with Silastic compound if mounted out of house.

Goblins and spooks, beware! CBers and Hams are united!

by Lynn W. Bennett

t's Hallowe'en in Huntsville, Alabama!
An innocuous, privately-owned Oldsmobile, lights out, is parked unobtrusively on an elm-shaded street. Two men are in the front seat; one holds a mike.
Kids troop past in twos, threes, half a dozen - . - pirates, hobos, spacemen, ghosts and ghouls kids of early grammar school age, each clutching his treasure-laden bag of treats barely clear of the sidewalk.
The two men in the inconspicuous car comment occasionally on the cleverness of the costumes as they observe a scene being played in the thousands of Ameriican cities and towns. A CB transceiver beneath the dash is tuned low. Another small band of outlandishly dressed kids passes.
Now, suddenly, the man holding the mike nudges his partner, points to four larger figures following stealthily in the shadows. These are not little "spooks,"
they are in the 18-19 age group; they carry no shopping bags, their "costumes" are black jackets and tight pants. They seem unduly interested in the younger kids as they lurk in the shadows marked only by glowing cigarette tips while the band of trick or treaters extracts tribute from an affable housewife under a porch light.
The word "stalking" hits both men in the car simultaneously. Words pour into the microphone. Huntsville's CB club, the Emergency Citizen's Band Monitors, Inc., "Spook Patrol" is in action.
CB in Action. At the club's headquarters (KOM6753) atop an 11-story office building in central Huntsville the message of potential trouble is received by ECBM's duty operator, relayed by telephone to police headquarters with, "This is REACT calling-'", to clear the way. A radio-dispatched police cruiser is on the scene in minutes. The stalkers, who had never noticed ECBM's mobile unit under the elms, react to the sudden appearance of the police car by fading away down a side street. A possible unsavory incident has been averted by volunteer CBers.

SPOOK PATROL

Augmentation of the police department by a civic-minded radio club is not new in Huntsville. The Spook Patrol was started about eight years ago by the Huntsville Amateur Radio Club, a HAM organization. This year's venture was a combined effort of the HARC, and the Emergency Citizens' Band Monitors. It was a very effective melange of HAM and CB. It is already scheduled for next Hallowe'en and will be listed in ECBM's annual publication, Radio Calls, on the Special Events page.

What a Combination! The Hams and CBers found themselves in the same bed as the result of a suggestion by a member of the Ham club who had joined the CB organization. He quickly learned that CB was ideal for fast, accurate communication within Huntsville's 107 square miles. He recalled the Hallowe'ens when he and his fellow Hams could reach halfway across the nation, but had difficulty reading loud and clear halfway across town.

In setting up Operation Spook Patrol, representatives of both clubs combined to offer their services to the police department through a member of ECBM, who is also Huntsville's Traffic Engineer. The town of 148,000 residents was divided into eight operational zones based roughly on ZIP code areas. A total of 35 mobile units was mus-tered- 20 from the CB club, 15 from the Ham organization. These were assigned to the eight zones in accordance with population density and history of vandalism from previous Spook Patrol operations. In outly-

Ken Cowley, KQM6634 (leff) and Ty Wilkinson scan a map of the Huntsville area and duty board listing all volunteer CB units.

Mobile unit (above) calls Operation Spook Patrol's console operator (below) Tom Overall, KOM4664. Console is equipped with two FM (152-174 MHz) receivers to monitor police.

ing "low-incidence" zones, one or two mobiles were assigned; in populous "high-incidence" zones as many as five mobiles went on patrol. When an area became more "active" than was anticipated, mobile units were shifted around to provide greater coverage where it was needed.

It was emphasized by the police department that the Spook Patrol volunteers would not be armed, and would not actively attempt to stop vandalism or other unlawful acts. It was realized that their most effective weapon was a microphone and a gond transceiver. These enabled them to virtual(Continued on page 101)

Science ${ }_{\text {and }}$ Electionics

RCA MODEL WO-505A

5-in., Solid-State
Technician's Oscilloscope

FOR almost 20 years, RCA's 5 -in. oscilloscope has been the hobbyist's and technician's favorite test scope. That popularity's heaped on an instrument all because of a simple device. The tech sees his measured voltage displayed on the CRT face, and he interprets his measurement with a directreading graticule position directly in front of the CRT proper. This seemingly insignificant feature allows the technician to eyeball his input voltage directly, just as he would with a voltmeter.

Without an RCA scope working for him, he has to count centimeters, or units of voltage, from an uncalibrated graticule-and then multiply this visual interpretation by a vertical attenuator voltage multiply factor. Under these conditions, Murphy's Law lurks just around the corner.

Before RCA went to work on their new scope, they sat down and decided which time-saving features were worth retaining from their previous scope offerings. After some laboratory breadboarding, they unveiled their latest scope. Called the WO505 A , it's all solid state. But more important, this scope retains the direct-reading graticule feature.

Why their Graticule Makes It. RCA's scope graticule contains two separate vertical channel (V) calibration scales. One scale

Dual-action probe enables you to measure signals from $D C$ to 500 kHz simply by flipping switch located on probe's body.

reads from 0 to 15 , while the other scale runs from 0 to 5 . The V attenuator is directly calibrated from .05 to 150 volts, thanks to the graticule's read-out feature.

You work with the appropriate graticule scale by matching the V attenuator setting to its corresponding scale. For example, if you've set the V attenuator to read 5 volts, the $0-5$ scale represents 5 volts full scale. Suppose your trace falls between 0 and 4.3. Now, the signal voltage is 4.3 volts P-P. Similarly, if the V attenuator is set to 150 , and the trace falls between 0 and 62 on the 0 to 15 scale, you're looking at a 62 volts P-P signal voltage. Easy, isn't it?

On the outside, the WO-505A resembles any other scope. You're presented with the usual control lineup: Intensity, Focus, and Phase. Horizontal and Vertical centering is also accounted for on the front panel, as is scale illumination, fine and coarse sweep frequency range, sync selector and horizontal gain. Last, but not least, you'll find a stepped vertical attenuator and infinitelyvariable vertical gain control.

You'll also run across a Vertical Polarity control. Not usually seen on a service-grade scope, this switch can flip an input signal's polarity so that negative-going pulses are displayed right side up. The last position this control provides for is direct connection to

LABBCHECK
the CRT plates without need to fumble with electrically hot connecting jumpers.

Even though the WO-505A is solid state, its $5-\mathrm{in}$. CRT still dictates the overall size of the instrument. But all things considered, the name of RCA's $113 / 8 \times 9 \times 161 / 2$-in. game is portability.

What's Inside. Now let's go inside WO505A to see how it works. The sweep range is spread between 10 Hz and 1 MHz in 6 switch-selected steps. Two additional switch positions provide $30-\mathrm{Hz}$ and $7875-\mathrm{Hz}$ sweep frequencies for TV servicing. RCA tried several sweep circuits for this scope, but finally decided upon their tried ' n ' true freerunning (or recurrent) sweep generation system.

There's no stinting in the bandwidth department. Ver-tical-input frequency response is rated $\pm 1 \mathrm{~dB}$ from DC to 5 MHz , but the WO-505A's usable to 8 MHz . You need this extra bandwidth when you're probing about in hamradio gear, or a color TV's video IF stage.

Input to the scope's V attenuator is either direct for DC signals, or through a switch-selected capacitor for AC voltages. Frequency response in the AC mode starts from 5 Hz and works its way up to 8 MHz .

Top photo shows how CRI's neck is shielded against stray magnetic fields. Vertical setup of chassis saves space, also makes if easier to service $P C$ board circuit modules. Trimmer capacifors on vertical attenuator are easy to get to for servicing. Left photo shows sweep-circuit board, power supply board next to it. Power transformer's shielded for minimum $60-\mathrm{Hz}$ radiation. Note that all potentiometers are easily reached; 30-, 7875Hz frequency-adiust pots are knurled so you con adjust both units by hand if necessary.

M have built-in electronic movement protec tion. It's meant to guard the fragile, tautband meter movement from the aftermath of accidentally trying to measure volts when the meter's selector knob tells you to read current. But what about those day-to-day thumps, thuds, and jars accumulated while your VOM tries living in a tool box? Or, how 'bout your VOM taking an occasional pendulum-like swing from the ends of your test leads. Followed, of course, by a fast trip to the floor when both leads jerk from their sockets.

Meter fatalities may not always be so spectacular, but it's another matter to an ever-famished wallet. And when a VOM finds itself hung across everything, from the switching circuit of the attic fan to the field coil on the sump pump, accidents are sure to occur a lot more frequently. For those around-the-house jobs where you've only got to check the circuit's continuity, we introduce you to CON-TEST, our faceless, scaleless continuity tester.

Our CON-TEST won't give you a voltage, current, or resistance reading. But it can surely check vacuum-tube filaments, auto fuses, power supply transformers and chokes, and heating elements from electric broilers or hotplates. Fact is, it's sensitive enough to handle most point-to-point testing where element continuity, rather than an exact resistance reading, is your unknown variable.

Since CON-TEST has no meter movement to damage, it's rugged enough to survive in a handyman's tool box. And with this beeper in your pocket, you avoid the need to juggle a delicate meter and two probes on your knee while crouching behind the kitchen range or balanced on a stepladder.

Budding radio amateurs also take to our tester, and for good reason. By connecting a key in place of the test leads, our ham has a very realistic practice oscillator for learning code! Between wrist-twister sessions, and after he's earned his ticket, our novice happily finds that his tester leads a double life as it earns its keep on a variety of household maintainence chores.

Total cost is less than $\$ 4.00$, and it can be assembled in an evening with no danger of missing the late show.

Cheapy Beepy. CON-TEST (for Continuity Tester, see?) keeps costs to a minimum by having its panel serve as a chassis. Starting with the speaker, all parts except both transistors, and the capacitor, can be assembled directly on the front panel. The speaker opening was cut for a $2-\mathrm{in}$. speaker; it's about $1-\mathrm{in}$. high by $11 / 2-\mathrm{in}$. wide.

The author home-brewed his battery holder from light aluminum stock and shaped to enclose a Burgess 2U6, or equivalent, 9-V transistor battery. No attempt was made to search the spare parts collection for subminiature parts. An alternate subminiature potentiometer with on/off switch is included in the Parts List. This pot eliminates

Confessions

cutting ' n ' filing chores for the slide switch.
Both transistors and the $0.02-u \mathrm{~F}$ capacitor are mounted on a board approximately $13 / 4$ $\mathrm{x} 1^{1 / 4} \mathrm{in}$. cut from $1 / 8-\mathrm{in}$. masonite or hardboard stock. This assembly is supported on two speaker bolts. If you don't have masonite or hardboard in your workshop, old reliable perfboard makes our construction scene just as well.

Your choice of transistors is not critical. For transistor Q1, the author found a bar-gain-basement 2 N170 to his liking. And after thumbing through an electronics parts catalog, he tried several universal npn replacements jobs from those 20 -for-a-buck assortment bags, with equally good results. Transistor Q2 can be any pnp power pusher, so long as it's happy with a 9- or 12 -volt supply. In spite of the awkward size of Q2's TO-36 case, we found the 2 N 173 equivalent shown worked AOK in this circuit. The alternates given in the Parts List for Q2 would be just as satisfactory; any transistor enclosed in a TO-3 package would be smaller and easier to fit.

Log Taper Turn On. Resistor R1's a you-seen-'em-once-you've-seen-them-all $1 / 2$-watt carbon potentiometer. Controlling circuit feedback, this 1-megger helps produce a low audio tone from the speaker, with minimum drain on the battery. Obviously you'll need less resistance as the battery ages, or if you're testing a high-resistance circuit. While your family's ham cures his code by using our CON-TEST as a practice oscillator, potentiometer R1 serves as pitch control. Don't be too surprised if his speed sweetens considerably, for a very realistic effect can be produced by our baby beeper!

Generations of budding hams have relied upon publicafions made available by The American Radio Relay League. One particular manual, entitled "Learning The Radiotelegraph Code" is perfect companion for CON-TEST when you use if as code practice oscillafor. Affer you earn your tickef, CON-TEST'll earn its keep in your shack.

It was found that small binding posts work better in place of the usual jacks, as they lock solidly on the test leads. They're also more convenient for inserting connecting wires from a Morse Code key.

Wire Rapping. Needless to say, the wiring is straightforward. You can get a detailed picture from our schematic. The battery's negative side, a speaker terminal, one side of the optional jack, and the emitter of Q1

Almost all parts are mounted to front panel. Only transistors Q1-2, capacitor C1 sit on masonite board. Board's attached to front panel with $11 / 2$-in. screws which also hold speaker, grille to front panel. Exercise caution when mounting binding posts BP1-2 to panel; take care not to crack plastic insulators as you tighten down mounting nuts with hex wrench.


```
B1-9-V Battery (Burgess 206 or equiv.)
BPI, 2-Binding posts, one red, one black (La-
        foyette 99E62333 or equiv.)
Cl-. \(02 \mu \mathrm{~F}, 50\) VDC disc capacitor (Lafayette
    32E09491 or equiv.)
J1-Phone jack, closed-circuit (Lafayette
    \(34 E 60668\) or equiv.)
Q1-Transistor, npn replacement type (Lafayette
    \(19 E 27029\) or equiv.)
Q2-Transistor, pap power replacement type
    (Lafayette 19E15032 or equiv.)
```


B1-9-V Battery (Burgess 206 or equiv.)

```
BPI, 2-Binding posts, one red, one black (Lafoyette 99E62333 or equiv.)
Cl-. \(02 \mu \mathrm{~F}, 50\) VDC disc capacitor (Lafayette 32E09491 or equiv.)
J1-Phone jack, closed-circuit (Lafayette \(34 E 60668\) or equiv.) 19E27029 or equiv.) (Lafayette 19E15032 or equiv.)
```

R1-1,000,000-ohm, carbon potentiometer (Lafayette 99E63521 or equiv.)
S1-Slide switch, spst (Lafayette 34E37035 or equiv.)
SPK1-8-ohm, 2 -in. speaker (Lafayette 99E60630 or equiv.)
1-Case, $51 / 8 \times 25 / 8 \times 15 / 8-\mathrm{in}$. (Lafayette 99E80756 or equiv.)

Misc.-Hardware, solder, wire grille, solder lugs, wire, etc.
are all connected to the front panel. If your ear lobes don't take kindly to headphones, the phone jack can be omitted.

The remaining speaker terminal's connected directly to Q2's collector terminal. Power transistor Q2, and the capacitor, can be wedded to your choice of board before uniting this assembly with the panel. Metal-to-metal contact between Q2's case and the panel or potentiometer should be avoided.

As you can see from our photo, all connections excepting one capacitor lead are
easily accessible, and can be soldered with the circuit board in place. Transistor Q1 and the battery snap were installed last because their leads are the most fragile.

The current you induce through a component being tested will run between .02 mA and .06 mA . You should be able to wring at least 30 hours of life from the battery as drain will average about 7 mA throughout its life. If you can bear to lose a little audio, your CON-TEST will operate with as little as 5 volts from Battery B1.

With careful lead placement, transistor Q1 can be mounted to masonite panel with single $1 / 4$-in. hole. Pencil's pointing to Q1's collector lead; it is soldered directly to base pin of fransistor Q2. Grasp leads with longnose pliers while soldering transistors in place since heat could easily ruin them. Transistor Q2 is bolfed to board. Solder lug underneath bolt is Q2's collector lead. Make sure it doesn't touch front panel or emitter lug just below it.

MASHED potatoes The Hard Way

by Joe Gronk

It's easy to sink your teeth into mashed potatoes, but did you ever imagine how they were prepared commercially? Well, one London concern ran a contest, sup. plied the recipe for their brand of instant mashed potatoes, and invited all comers to design a machine which appeared to duplicate the factory's process in a bizarre way. More than 800 people entered their machines in the competition. Before long the entries were flooding in and after a preliminary heat, 22 machines were selected for final judging. The judge was Rowland Emett-himself no mean designer and the man responsible for the fantasmagorical car that starred in the film "Chitty Chitty Bang Bang."

First prize was awarded to 18 -year-old

The marhine shown above gets it: power from a minied-miss whenever battery power failed-which occurred often.

As she pedaled around, false teeth (left) chomped away at a spud - the first step in the simulated process. The machine awarded first prize (below) used conventional power -how dull?

Michael Haynes whose spectacular construction made great use of bortowed vacuum cleaners and typewriter motors. One entry was made from five bicycles and was too large to fit into the exhibition hall. Some of the machines are on permanent display at Dornay Foods, King's Lynn, Norfolk, England.

An up-to-date Directory of North American AM, FM, and TV Stations, including special sections on World-Wide Shortwave Stations and Emergency Stations for Selected Areas

WHITE'S RADIO LOG CONTENTS FOR 1969-1970

S\&E Issue Listing Page
Oct./Nov. U.S. AM Stations by Call Letters 78
1970 World-Wide Shortwave Stations 91
Emergency Radio Services-Philadelphia Area 94
Aug./Sept. U.S. FM Stations by States 82
1970
Canadian AM Stations by Location 88
Canadian FM Stations by Location 88
World-Wide Shortwave Stations 89
Emergency Radio Services-Pacific Northwest 93
June /July U.S. AM Stations by Location 801970World-Wide Shortwave Stations94
Emergency Radio Services-Detroit Area 97
April/May U.S. TV Stations by States 82
1970 Canadian TV Stations by Cities 84
Canadian AM Stations by Frequency 86
World-Wide Shortwave Stations 91
Emergency Radio Services-Southern California 95
Feb./March U.S. AM Stations by Frequency 82
1970
World-Wide Shortwave Stations 96
Emergency Radio Services-Florida 100
Dec./Jan. U.S. FM Stations by Call Letters 82
1969-70 Canadian AM Stations by Call Letters 92
Canadian FM Stations by Call Letters 92
World-Wide Shortwave Stations 93
Emergency R. Services-Washington-Baltimore Area 96

MHITE'S

[(OG

Call Location
KAAA Kingman, Ariz KAAY Littie Rock, Ark. KABH Midland, Tex. KABI Abilene, Kans. KABQ Albuquerque. N.M. KABR Aberdeen, S. Dak. KABR Aberdeen, S.Dak
KACE Riverside, Calif. KACI The Dalles, Dreg. KACL Santa Barbara, Cal. KACY Port Hueneme KACY Port Hueneme, Callf. KADA Ada, Okla.
KADO Pine Bluff, Ark.
KADO EIk City, Okia.
KAFE Sante Fe, N.M.
KAFF Flagstaff, Ariz,
KAFY Bakersfield, Callf.
KAGE Winona, Minn.
KAGI Grants Pass, Dreg.
KAGT Anacortes, Wash.
KAHI Auburn, Calif.
KAHU Waipahu, Hawal
KAIN Nampa, Ida.
KAIR Tucson, Ariz. KAJN Crowley, La,
KAJD Grants pass, Oren.
KAKC Tulsa, Okla.
KAKE Wichita, Kan,
KALB Alexandria, La.
KALG Alamogordo, N.Mex.
KALI San Gabriel, Cal.
KALM Thayer, Mo.
KALN Iola. Kan.
KALO Little Rock, Ark.
KALT Atlanta, Tex.
KALV Alva, okla.
KAMI Cozad, Neb.
KAML Kenedy-Karnes City,
KAMO Rogers, Ark.
KAMP El Centro, Calif.
KAMX Albuquerque, N. K .
KAND Corsicana, Mont.
KANE New lheria, La
KAN Wharton, Tex.
KANN Ogden, Utah
KANS Larned, Kan.
KAOH Duluth, Minn
KADK Lake Gharles, La.
KADL Carrollton. Mo.
KAOR Oroville, Calif,
KAPA Raymond. Wash
KAPA Marksville, La.
KAPE San Antonio,
KAPR Douglas, Ariz
KAPS Mt. Vernon, Wash.
KAPY Port Angeles, Wash.
KARE Atchison, Kan.
KARI Blaine, Wash.
KARK Little Rock, Ar
KARR Great Falls, Mont.
KARS Belen, N.M.
KART Jerome, Idaho
KARV Russeliville, Ark.
KARY Prosser, Wash.
KASA Phoenix, Ariz
KASH Eugene, Ore.
KASI Ames, lowa
KASL Neweastle, wyo.
KASM Albany, Minn.
KASO Minden, La
KAST Astoria, Dre.
KASY Auburn, Wash.
KATA Areata, Calif.
KATE Albert Lea, Minn
KATL Miles City.
KATL Miles City, Mont. KATO Boise, lda.
KATD Safford, Ariz.
KATR Exarkana, Tox
KATR Eugene, Dre.
KAUS Austin.
KAUS Austin, Minn.
KAVE Carishad, N. Mex.

kHz_{2}

1230
1090
790
1510
1560
1560
960
1350
1420
1570
1300
1570
12960
1360
1360
1520
1230
1230
1270
1270
1410
1240
4240
810
890
810
930
550
1380
800
930
1150
1540
1340
950
840
1340
1340
1490
1590 KBER Sarrizo Sprintonio, Tex.
970
1240
240
580
960
1230
1430
h
1290
1370
1370
1250
1250
900
1430 KBiG Avalon, Calif.
910 KBIM Roswell, Mo.
1580
990
1390
1430
390
1390
1530
1520
.

580
1340
1240
1500
1240
1500
1090
1470 KBLF Red Biuff, Cailf.
1510 KBLI Black foot, Idaho.

U. S. AM Stations by Call Letters

Call	Locałion	kHz	KOAM Plttsburg, Kans. KOB Albuquerque, N. Mex. KOBE Las Cruees, N. Mex.
KMAN	Manhattani, Kans.	1350	KOBH Hot Springs, S.Dak.
K HAQ	Maquoketa, lowa	1320	KOBO Yuba City, Cal. KOBY Reno, Nev
KMAR	Winnsboro, La.	+1570	KOCA Kilgore. Tex.
AV	Mayvilie, N.D.	1520	KOCY Oklahoma City, Okla.
KMAX	Albuquerque, N .	1520	KODA Houston. Tex.
KMBL	Junction. Tex.	1450	KODE Joplin, Mo.
	Monterey, Calif.	1240	KOOI Cody, Wyo.
KMBZ	Kansas City, Mo.	980	K00L The Dalles,
KMCO	Fairfleld, lowa	1570	KOOY North Platte, Nebr.
K MCL	MeCall, Ida.	1240	KOFE St. Marios, Idaho
KMCM	meminnville, Ores.	$\begin{array}{r} 1260 \\ 900 \\ \hline \end{array}$	KOFI Kalispell, Mont.
CW	Augusta, Ark.	ri90	KOFO Ottawa, Kans.
K HDO	Ft. Scott, Kan	1600	KOFY San Mateo, Calif.
KMED	edford, Ore	. 1440	KOGA 0oalla
KMEL	Wenatchee, Wash.	1340	Kogo San Diego,
KMEN	San Bernardino,	1290	KOH Reno, Ney.
KMEO	Phoenlx, Ariz.	740	KOHI St. Hel
KMER	Kemmerer, wy	950	KOHO Honolulu, Hawaii
KMFB	Mendocino, Cal.	1300	KOHU Hermiston, Oreg.
KHHL	Marshall, Minn.	1400	KOL Omaha,
HHT	Marshall. Tex	1450	
KMIL	Cameron,	1330	$\begin{aligned} & K 0 \\ & K 0 \end{aligned}$
	ortageville,	980	KOKE Au
S	ortagevilie,	1050 580	KOKL Okmulgee, Okia.
MLB	Monroe, La.	1440	KOKO Warrensburg, Mo.
MLO	VIsta, Cal.	1000	
KMMJ	Grand Island, Neb	750	
	Marshall, Mo.	1300	
KMNS	Sioux City, lowa	620	KOLI Coalln
0	Tacoma, Wash	1360	KOL」 Qu
KMON	Great Falls, Mont.	560	KOLM Rochester, Minn.
MOR	Murrav, Ut	1230	KOLO Reno, Ne
KMOX	St. Louis. Mo.	1120	KOL8 Pryor
KMPC	Los Angotes. Callf.	710	K0
PG	Hollister, C	1540	KOLY Mobridge, S.Dak.
		1520	
KMRC	Morgan City, La.	1430	KOMO Seattle
MRE	Anderson, Cal.	1580	
KMRS	Morris, inin	1230	KOMY Watsonville, Calif.
KMSL	h.	1250	KONA Kennewick, Wash.
M U	Muleshoe, Tox-	1380	
US	skoges	1380	KONI Spanish Fork, Utah
W	aki	1460	KONO San Antonio, Tex.
WYC	Marysville, Calif.	1410	KONP Port Angeles, Wash.
KMYO	Littio Rock, Ark.	1050	K000 Lakewood
KNAB	Burlinpton, Col	1140	
KNAF	Frederickshurg, Tox.	910	K00K Billings,
	Agana, Guam	610	KOOL Phoenix,
KNAK	Salt Lake City, Utah	1280	K000 Omaha,
KNAL	Victoria, Tex.	1410	KOOS Coos
KNBA	Vallejo, Cali	1190	KOPO Tueson, Ariz.
KNBI	Norton, Kan.	1530	KOPR Butte, mont.
KNBO	New Boston, Tex.	1530	KOPY Alite, Tex.
KNBR	San Francisco, Cal.	680	K0at Bellingham. Wash.
KNBY	Newport. Ar	1280	Kora Bryan, Tex.
KNCB	Vivian, La.	1600	KORC Mineral Wells, Tex.
KNCK	Concordia, Kans.	1390	KORD Pasco, Wash.
KNCR	Fortuna, Cal.	1090	KDRE Springfleld-Eugene,
KNOC	Nebraska City, Neb	1600	KORE L ${ }^{\text {OR }}$ Vegas Nev
KNOC	Hettinger, N.Oak.	1490	KORK Las Vegas
KNO!	Honolulu, Hawaii	1270	KORL Honolulu, H
NOK	Langdon. N.D	1080	KORN Mitchell, S.
KNOY	Marysville, Kans	1570	KORT Grangeville, Idaho
KNEA	Jonesboro. Ark.	970	KOSE Osceola,
KNEB	Scottsbluff, Nebr.	960	KOSG Panshuska,
N	McAlester, Okla.	1150	KOS Aurora, Colo.
E	Waukon, la.	1140	KOSY Texarkana,
NEL	Brady, Tex.	1490	KOTA Rapid City, S.Dak.
KNEM	Nevada. Mo.	1240	KOTD Plattsmouth
KNET	Palestine, Tex.	1450	KOTN Pine Bluff, Ark.
KNEW	Oakland, Cal.	910	KOTS Deming, N.M.
NEX	McPherson, Kans.	1540	KOUR Independence, Jowa
KNEZ	Lompoc, Calif.	960	KOVC Valley City, N.Dak.
${ }^{\text {r }}$	Bayard. N.M.	950	KOVE Lander, wyo.
NGS	Hanford. Calif.	620	KOVO Provo, Utah KOWB Laramie. Wyo.
NiC	Knoxville. Winfield. Kama	1320	KOWB Laramie, wyo. KOWL South Lake Taho
Nim	Maryvilie, Mo.	1580	ca
KNIN	Wichita Falls, Tex.	990	KOWN Escondido,
KNIR	New Iberia, La.	1360	K $0 \times$ R Oxnard, Cali
NIT	Abilene. Tex.	1280	KOY Phoenix, Ariz.
V	Ord, Neb.	1060	KOYL Odessa. Tex.
KNND	Cottage Grove, Oreg.	1400	KOYN Billings, Mont.
KNNN	Friona, Tex.	1070	KOZA Odessa, Tex.
KNDC	Natchitoches. La,	1450	KOZE Lewiston, Idaho
KNOE	Monroe. La.	540	KOZI Chelan, Wash.
KNOK	Ft. Worth. Tex.	970	KOZN Omaha,
NOP	N. Platte, Nebr.	1410	KOZY Grand Rapids, Minn.
KNOR	Norman, Okla,	1400	KPAC Port Arthur, Tex.
KNOT	Prescott, Ariz.	1450	KPAL Palm Springs, Calif.
KNOW	Austin, Tex.	1490	KPAM Portland, Oreg.
KNOX	Grand Forks, N.Dak.	1310	KPAN Hereford. Tex.
KNPT	Newport, Ore.	1310	KPAR Albuquerque, N.M.
NU!	Kahalul, Hawaii	1310	KPAS Banning, Calif.
$\begin{aligned} & \text { KNUJ } \\ & \text { KNUZ } \end{aligned}$	Now UIm. Minn. Houston, Tex.	$\begin{aligned} & 860 \\ & 1230 \end{aligned}$	KPAT Borkeley, Calif. KPAY Chieo, Calif.

kHz	Coll Lecation	kHz
90		
1510		
1580	KRNO San Bernardino, Calif.	1240
1370	KRNR Roseburg Oreg.	
1530	KRNS Burns, Oreg	1230
1340	KRNT Des Moines, low	
800	KRNY Kearney, Nebr.	1460
1380	KROB Robstow	
1420	KROC Roches	40
1420	KROD El Paso. Tex.	0
690	KROE Sheridan, wyo	930
91	KROF Abbeville, La,	
1580	K ROP Brawley, Callf.	1300
1260	KROS Clinton, lowa	1340
1470	KROW Dallas, Ore.	1460
1490	KROX Crockston, M	1260
1240	KROY Sac	1240
1560	KRPL Moscow Idaho	
50	KRPT Anadarko, okla.	
1120	KRRR Ruidoso, N.Mex.	-
1420	KRRV Sherman,	
1310	KRSA Salinas, Cal	1570
910	KRSC 0thello	
1380	KRSO Rapid City, S. Oak.	1340
$\begin{aligned} & 1330 \\ & 1540 \end{aligned}$	KRSI St. Louls Park, minn.	
1110	KRSN Los Alamos, N .	
137	KRSP Salt Lake Ci	1060
1370	KRSY Roswell,	1230
1260	KRTN Raton, N	0
1240	KRTR Thermonolis,	1490
$\begin{array}{r} 560 \\ 1240 \end{array}$	KRUN Ballinger, T KRUS Ruston,	1400 1490
950	KRUX Glendale,	1360
1250	KRVC Ashland, Or	1350
1340	KRVN Lexington,	
12	KRWB Roseau, Mi	1410
1240	KRWL Carson City, Nev	
1440	KRXK Rexburg.	1230
1590	KRYS Corpus Chr	
1260	KRYT Colo Sprin	
1340	KRZE Farmin	1280
	KRZY Albuque	
148	KSAC Manhattan,	580
1170	KSAL Sallna,	
1150	KSAM Huntsvilie	1490
1440	KSAY San Francise	
114	KSCB Liberal,	
1050	KSCJ Sioux City, low	
970	KSCO Santa Cruz	
1240	KSO St, Louis,	
920	KSON Aberdeen	
1230	KSOO San Di	1130
	KSOR Watert	
1400	KSEE Santa Mar	880
1400	KSEI Pocatello, Ida	
930	KSEK Plitshurg, Ka	1340
1440	KSEL Lubboek, Tex.	
1410	KSEM Mosos Lake,	1470
1550	KSEN Shelby, Mont.	
15	KSEO Durant, Okla.	50
1560	KSET EI Paso, Tex	1340
	KSEW Sitka, Alask	
1480	KSEY Seymour, Tex	1230
550	KSFA Nacogdoches	800
1140	KSFE Needies, Cal	340
1240	KSFO San Franciseo, C	
1340	KSGM Chester, III.	980
1280	KSGT Jackson, Wyo.	
1360	KSHA Medford, Ore	860
134	KSIB Creston, lowa	1520
1470	KSIO Sidney, Nebr,	340
1310	KSIG Crowley, La.	1450
1450	KSIL Silver City, N,	1340
1560	KSIM Sikeston, Mo.	1400
690	KSIS Sedalia, Mo	1050
1230	KSIW Woodward, Okla	1450
124	KSIX Corpus Christi,	1230
1230	KSJB Jamestown, N.	600
1190	KSKI Hailey, Ida.	340
1240	KSKY Dallas, Tex.	660
1480	KSL Salt Lake City,	1160
900	KSLM Salem, Oreg.'	1390
1550	KSLO Opelousas, La	123
1550	KSLV Monte Vista,	12
1370	KSLY San Luis Obispo. Cal.	
970	KSMA Santa Maria, Calif.	1240
1400	KSMK Kennewick. Pasco-	
1230	Richland. Wash.	134
o. 1100	KSMM Shakopee. Minn.	1530
1390	KSMN Mason City. Iowa	10
1600	KSMO Sajem. Mo.	1340
1430	KSNO Seattle. Wash	1590
1550	KSNN Pocatello, Ida	1290
1290	KSNO Aspen, Colo.	1260
1350	KSNY Snyder, Tex.	1450
1490	KSO Des Moines, lowa	1460
1410	KSOA Ava, Mo.	1430
990	KSOK Arkansas City, Kans.	1280
910	KSOL San Francisco, Cal.	145
1230	KSOM Ontario. Cal.	1510
1490 1380	KSON San oiego. Calif.	1240
1380	KSOO Sioux Falls. S. Dak	1140
990 1110		124
110	KSPI Stillwater, Okla.	1240
1350	KSPL Diboll. T	26
1080	KSP0 Spokane, Wash	123
1400	KSPR Springdale. Ark	159
1320	KSPT Sandpolnt, Idaho	140
1340	KSRA Salmon, Idah	96
1460	KSRC Socorro. N.Mex.	129
$\begin{array}{r} 740 \\ 1410 \end{array}$	KSRM Soldatna, A K8RO Santa Rosa.	

WHITES
 [(OG)

Cail
 Location

WADO New York, N.Y. WADS Ansonia, Conn WAEB Allentown. Pa. WAEL Mayaquez, P. Rico WAFC Staunton, Va. WAFT Middlesboro, Ky. WAGC Centre. Ala. WAGE Leesburg, Va. WAGG Franklin, Tenn. WAGM Presque isle, Maine WAGN Menominee, Mich. WAGO Oshkosh, Wis. WAGR Lumberton, N.C WAGY Forest City, N.C. WAHT Annvillececieona, Pa. WAIK Gainesburg, III. WAIL Baton Rouge, La. WAAN Columbia, Ky. WAIR Winston-Salem, N.C. WAJF Decatur, Ala, WAJR Morgantown, W.Va. WAKI McMinnvilio, Tenn WAKN Aiken, S.C. WAKR Akron, Ohio WAKS Fuquay-Varina, N.c WAKX Superior. Wisc. WALD Walterboro, Sy. WALE Fall River. Mass. WALK Albany, Ga,
WALL Middlotown. N. $\mathbf{N} . \dot{Y}$. WALO Humacao, P.R.
WALT Tampa, FIa.
WAMA Selma, Ala
WAMB Donelson, Tenn.
WAMD Aberdeen, Md. WAMG Galatin, Tenn.
WAMI Opp, Ala.
WAML Laurel, Miss. WAMO Homstead. Pa. WAMR Veniee, Fla, WAMS Wimington, Del. WAMY Amory, Miss. WANB Waynesburg. Ala WANL Linevilie, Ala. WANO Annapolis, M WANS Anderson, S.C WANV Waynesboro, Va. WANY Albany, Ky' WAOK Opelika, Ala WAOP Ottego, Mich. WAOV Vincennes. Ind. WAPA San Juan, P.R. WAPC Riverhead, N.Y. WAPF MeComb, Mlss WAPI Birmingham. WAPL Airmingham, Ala. WAPR Appleton. Wis. WAPX Montpomery, Ala. WAQY Birmingham Ala WARA Attleboro, Mass. WARE Covington, Mass WARE Ware, Mass WARF Jasper, Ala. WARI Abbevilie, Ala, WARK Hagerstown. Md. WARM Scranton, Pa. WARO Canonsburg, Pa. WARR Warrenton, N.C WART Moulton, Al WARY Warwick.
E. Greenwieh, R.I.

WASA Havre de Grace. Md. WASC Spartanburg S.C

kHz

1280
6880
690

790
600
600
1330

900
150

1560
1480
1550
1290
950
1560
$\begin{array}{r}1560 \\ 950 \\ \hline\end{array}$
1340
690
580
5880
1320
13
1510
1590
1260
1230
1270
1340 1340
820 1490 1440
1500
1230 1500
1230 990 1590 1320 790
1060 1060
1400 $\begin{array}{r}1400 \\ \$ 590 \\ \\ \hline\end{array}$

1370 1340

Call Location

WASP Erownsville, Pa WASR Wolfeboro, N.H WATA BoOne, N.C. WATE Knoxville, Tenn. WATI Indianapolis, Ind. WATK Antigo. Wis. wat Amore an WATO Oak Ridge, Tenn.
WATP Marion, S.C. $k H$

Location
1130 WBHN Bryson City N 1420 WBHP Huntsville, Ala,
1450 WBHT Brownsville. Tenn.
1450 WBHT Brownsville. Te
900 WBiA Augusta, Ga.
920 WBiE Centevile, A

970	
810	WBIE Marietta. Ga.

810
900
WBIP Breensboro, N.C.
WB
WBIS Bristol, Conn.
WBIW Bedford. Ind.
Fla.
WBIZ Eau Claire, Wis.
WBJM Lemmon, S. D.
WBKC Chardon, O.
WBKH Hattiesburg, Miss
WBKN Newton, Miss.
WBKN Newton, Miss.
WBKV West Bend, Wis. Elizahethtown, N.C.
Lenoir City, Tenn. Batesville, Miss.
Bellefonte. Pa Dalton, Ga. Batesburd, S.C.
Bedford, Va. LU Salem, Va. WBLY Saiem,
WBAM. Ohio
WBA Beaufort, N.C. WBMA Beaufort, N.C.
WBMC MeMinnville, Tenn. WBMO Baltimore,
WBME Belfast, Me.
WBMJ San Juan. P. R. WBMK West Point, Ga,
WBML Macon, Ga.
WBMS Black Mountain, N. WBMS Black Mountain,
WBNC Conway,
W.H. WBNC Conway, N.H.
WBNL Boonvilie. Ind
WBNO Bryan. Ohio WBNO Bryan, Ohio
WBNR Beacon, N.Y WBNR Beacon, N. Y
WBNS Columbus. Oh WBNT Oneida, Tenn.
WBNX New York, N.
WBOB Galax WBOB Galax, Va.
\qquad WBOL Bolivar, Tenn. W800 Baraboo, Wis. WBop Pensacola. Fla. WBOW Terre Haute, Ind WBOX Bogalusa, La. WBOY Clarksburg, W.Va. WBPZ Lock Haven, Pa.
WBRB Mt. Clemens, Mich. WBRC Birmingham, Ala WBRD Bradenton, Fla. WBRG Lynchburg, V a. WBRG Lynchourg,
WBRI Indianapolis, In
WBRJ Marietta 0

80

460 WBRK Pittsfield, Mass.
740 WBRL Berlin, N.H.
740 WBRM Marion, N.C.
1240 WBRN Big Rapids, Mich.
1360 WBRT Bardstown, Ky,

550	WBRO Waynesboro, Ga,
1580	WBRV Boonville. N.Y.

20 WBRX Berwick' Pa
920 WBSA Boaz, Ala. 9 .
1230 WBSG Blackshear, Ga.
480 WBSR Pensacola. Fla.
780
1340
158
158
290
340
WBTE Windsor, N.C.
240 WBTM Danville. Va,

1380	WBTN Bennington,
1380	WBTO Linton. Ind.

1230 WBTS Bridgeport, Ala.
110
1490
WBUC Buckhannon, W.V. Wa.
1490 WBUG Trenton, N.J.
740 WBUG Ridgeland,
740 WBUT Butler, Pa.

930	WBUX Doylestown, Pa.
1440	WBUY Lexington, N.C.

540 WBUZ Fredonia. N.
460 WBYM Utica, N.Y.
420 WBVP Beaver Falls, Pa.
$\begin{array}{ll}1570 & \text { WBYB St. Pauls, N.C } \\ 1240 & \text { WBYE Calera, Ala. }\end{array}$
1380 WBYG Savannah, Ga

1380	WBYG Savannah, G
930	WBYS Canton. III.
950	WBZ Boston.

950	WB2 Boston. Mass.
460	WB2A Glens Falls, N.Y.

960 WB2A Giens Falis,

960	WBZB Seima, N.C. Pa.
1430	WBZY New Castle. Pa.

490 WCAB Rutherfordton. N.
1540 WCAL Northfleld, Minn.
1500 WCAM Camden, N.J.
1240 WCAO Baltimore. Md
1340 WCAP Lowelt, Mass.
1240 WCAS Cambridge, Mass.
1270 WCAT Orange. Mass.
1450 WCAU Philadelphia. Pa,
1550 WCAW Charleston. W.Va,

	Call Location	kHz
		620
1230	WCAZ Cartháge.	
1520	WCBA Corning, N.Y	13
1230	WCBG Chambersburg.	
10	WCBI Columbus,	
1080	WCBK Martinsville. Ind	1540
1470	WCBL Benton. Ky.	
1400	WCBM Baltimore.	680
1440	S New	
70	WCBT Roanoke Rapids, N.C.	
40	WCBX Ede	1130
	WCBY Cheboy	
1010	WCCC Hartfor	1290
1400	WCCF Punta Gorda.	1580
1400 1560	WCCM Lawrence, WCCN Neillsville,	800
	WCCO Minneapolis.St. Paul.	
,		
1470 1440	WCc	560
	WCcw Tra	
1290	WCDJ Edenton, N.C	1260
	WCDL Carbondale,	1440
300	WCDQ Hamden. Con	220
1230	WCDS Glasgow, Ky.	0
1430	WCEC Rocky	
1350	WCED DuB	1420
1480	WCEF Parkersburg,	
1680	WCEH Hawkinsville.	610
1400	WCEM Cambridge.	
	WCEN Mt. Pleasant,	1150
1230	WCER Charlot WCFL Chicago	
1230	WCFL Chi WCFR Spr	1000
	ft	
1240	Pas	65
	WCGC Belmont.	
	WCGO Chicago Hghts. WCGR Canandaigua,	1600 1550
1520	WCHA Chambersbu	800
1260	WCHE Inkster, Mi	1440
1460	WCHE Westchester,	520
1310	WCHI Chillicothe. Ohi	
138	WCHJ Brookhaven. Mi	1470
1360 960	WCHK Cant	
${ }_{230} 9$		
15	WCHO Washington	
740	House, Ohio	1250
1600	WCHQ Camuy.	
1600 1230	WCHS Charleston. WCHV Charlottesvill	580
$\begin{array}{r} 1230 \\ 920 \end{array}$	WCHV Charlottesvill WCIL Carbondale.	
1400	WCiN Cineinnati. Ohio	180
1230	WCIR Beckley, W. Va	1070
1430	WCIS Moss Point,	60
960	wCIT Lima, Ohio wCJU Columbia.	1450
1420	wCJU Columbia, \quad. WCKB Dunn, N.C.	1450
1050	WCKD Ishpenning. Mieh.	970
1500		300
910	WCKL Catski	56
1340	WCKM Winnsboro, S.C	1250
1400	WCKY Cincinnati. Oh	0
1250	WCLA Claxton, Ga. WCLB Camilla. Ga.	70
1320	WCLC Jamestown. Tenn	1260
1310	WCLD Cleveland, Miss.	
900	WCLE Cleveland, Tenn.	570
1280	WCLG Morgantown.	1300
13500	WCLO Janesvile, Wis.	1450 1230
1350	WCLS Columbus, Ga.	1580
1420	WCLT Newark, Ohlo	1430
1450	WCLU Covington, Ky.	320
110	WCLW Mansfield, 0 O.	
1490	WCMA Corinth, Miss.	1230
1540	WCMB Harrisburg, Pa	230
990 1400		0
1330	WCMI Ashland, Ky	1340
370	MN Arecibo. P.R	咗
1600	WCMP Pine city, Mi	1350
480	WCMR Elkhart, Ind.	1270
1460	WCMS Norfolk. Va.	1050
1260	WCMT Martin, Tenn	1410
1430	WCMY Ottawa, III.	430
050	WCNB Connersville., Ind.	1580
1570	WCNC Elizabeth City, N.C.	1240
1440		940
	WCNH Quincy, Fla. WCNL Newport. N.	1230 1010
230	WCNR Bloomsburg. Pa	930
1060	WCNU Crestview, Fla.	1010
1370	WCNW Fairfeld, O.	1560
1450 1560	WCNX Middletown. Conn. WCOA Pensacola, Fia.	1150 1370
1560 1030	WCOA Pensacola, Fla.	1370 910
1410	WCOF Immokalee, Fla.	1490
1090	WCOG Greensboro. N.C	1320
1140	Newnan, Ga.	1400
590		1420
1350		1060
770	WCOL Columbus. Ohio	1230
1310	wCON Cornelia. Ga.	1450
600	WCOP Boston, Mass.	1150
980	WCOR Lebanon, Tenn.	900
130	WCOS Columbia, S.C.	1400
740	wCOU Lowiston. Maine	1240
1390	WCOY Montgomery, Ala.	1170
	wcow Sparta, Wis. wcox Camden, Ala.	290

WHITE： RADIO ந๑G

Call Location

 WGNP Indian Rocks Beach WGNS Murfreashoro，Tenn． WGNU Granite City，III． WGNY Newburgh，N．Y． WGOE Richmond，Va． WGOG Walhalla，S．C． WGOK Mobile，Ala WGOM Marion，Ind． WGON Munsing，Mich． WGOW Chattanooga．Tenn． WGPC Albsiny \mathbf{G} ． WGR Buffalo NY WGRA Calro．Ga WGRD Grand Rapids，Mich． GGRI Grifin，Ga． WGRO Lake Clty，FIa WGRP Greemville $\mathbf{P a}$ WGRT Chleago．fil． WGRV Greeneville，Tonn． WGRY Grayling．Mith． WGSA Ephrata，Pa． WGSM Huntington，N．Y． WGSR Millen．Ga．WGSV Guntersville，Ala WGSW Gretnwood，8．C． WGTA Summerville，Ga WGTL Kannapolis，N．C． WGTM Wison．N．C． WGTN Georgetown．s．c． WGTR Natiek．Mass．

WGUL New Port Richey， WGUN Atlanta－Decatur
WGUS North Augusta，S．C． WGUY Bangor，Maine
WGVA Genova，N．Y． WGWC Selma，Ala． WGWR Asheboro，N．C． WGY Sehenectady．N． WHA Madison．Wis WHAG Halfway，Md WHAI Greenfield Mass WHAK Rogers City，Mich． WHAL Shelbyville，Tenn． WHAM Rochester，N．Y． WHAN Haines City，Fla WHAP Hopewell，Va． WHAR Clarksburg，W WHAT Philadelphia． WHAV Haverhili，Mass WHAW Weston，W．Va． WHAZ Troy．N． WHB Kansas City，Mo． WHBB Selma，Ala， WHBF Rock Island，Ill． WHBG Harrisonburg，Va WHBL Sheboygan．Wis， WHBN Harrodshurg，Ky． WHBO Tampa，Fla． WHBQ Memphis，Tenn． WHBT Harriman，Tenn． WHBU Anderson，Ind． WHBY Appleton，Wis．
WHCC Waynesville．N．C WHCC Waynesville． w HCQ Spartanburg，S．c． WHCO Ithaca，N．Y WHDF Houghton．Mieh WHDL Dlean．${ }^{\text {W }}$ W WHDiM MeKenzie．Tenn WHEB Portsmouth，N．H WHEE Martinsville V． WHEL New Albany，ind WHEN Syracuse．N， Y ． WHEO Stuart，Va． WHER Memphis．Tenn． WHFB Benton HarboreSt． WHGR Hough． WHHH Warren Ohig meh． WHHM Henderson，Tonn． WHHO Horninl Lity．

WHz

1520 1450
 1450 920
 1410 1410 1240
 98N
 960 950 950
 940 950 1340
 1340 $\$ 590$
 1590 1310 1480
 1480 740
 15
 9
 解
 $\begin{array}{r}1590 \\ 870 \\ 590 \\ \hline\end{array}$
 a． $\begin{array}{r}540 \\ 1060\end{array}$

Mich．I

1280
1500
1010
1380
1380
1250
1240
1250
1240
1260
260
1340
1280
1280
1380
188
1380
970
1410
1410
1240
960
140
领含宫
为合菅
1340
840
1340
1340
490 WHWB Hyde Park．N． WHWH Princeton， WHYD Columbus，Ga． WHYL Carlisie，Pa WHYN Springfieid，Mass． WHYP North East，Pa． WHYT Noblesville，Ind WHYZ Greenville，S．C
WHZN Hazleton，Pa． WHZN Hazleton，Pa．
WIAC San Juan，P．R
WIAM Williamston， WIAM Williamston，N．C． WIBA Madison．Wi
wIBB Macon．Ga WIBB Macon．Ga． WIBC Indianapolis．Ind．
WIBG Philadelphia．Pa． WIBG Philadelphia．Pa
WIBM Jackson．Mich． WIBQ Warwick，N．Y WIBR Baton Rouge，La WIBV Belleville WIBV Belleville III．
WIBW Topeka，Kans． WiCC Bridgepnrt，Conn． WICE Providence，R．I． WICH Norwich，Conn $\$ 570$ WiCO Salishury．Md 620 WICY Malone，N．Y． 270 WIDE Bidderord，Maine 430

430
WIDG St．Ignace，Mich． 1060 WIDU Fayetteville，N．C． 1290 WIEL Elizabethtown．Ky．
1440
440
1580
1320 WIFM Auburn．Ind
1440 Wi GG Winains，Miss．

kHz	Call
1400	WIGM
1440	WIGO Atianta．
1520	WIGS Gauvernaur，
1320	WID Garden City，Mleh．
1400	WII Homestes
1430	
1110 1010	WIKB Iron Rlver，Mich． wIKC Bogalusa，La．
1290	WIKE Newport，Vt．
1350	WIKI Chester
1230	WIKY Evansvi
1440	WIL St．Louls
1240	WILD Boston．
620	WILE Cambridge，Oh
1360	WILI Willimantic，Conn．
1420	WILK Wikes－Barre，Pa．
1450	WILL Urbana，III．
1290	WILM Wimington．
1400	WILS ${ }^{\text {Wrankior }}$
1400	wily Centralia，III．
1100	WILZ St．Petersturg Beae
1600	
550	WIMA Lima，Ohio
1410	WIMO Winder，Ga．
640 1570	WIMS Michigan City，Ind． WINA Charlottesville，Va，
1450	WINC Winchester，va．
1300	WIND Chieago，lit
1170	WINE Brookneld，Co
1150	WING Dayton，ohio
1350	WINH Georgetown，8． C ．
1400	WIN M Murphyshoro．In．
1050 890	WINN Loulsville．
1250	WINQ Tampa．Fla．
1040	WINR Binghamton，N．Y．
870	WINS New York．N．Y．
1490	WINU Winter Haven，Fils．
1320	WINW Canton
1600	WINX Roekvilio，Md．
1480	WINY Putnam，Conn．
930	WNZ Miami，Fla．
990	WIOD Mlami，Fla． WIOI New Boston，Ohio
1230 800	wlok Normal．
1330	WIOM Plitsfteld，Mass．
1340	Wion lonla，Mich．
1520	wios Tawas Cit
$\begin{array}{r} 1210 \\ 580 \end{array}$	
1390	WIOU Kokomo Ind
1070	WIP Philadelphia，Pa．
610	WIPC Lake Wales．Fla．
1570	WIPR San Juan．
1440	WIGQT Horsehea
860 1450	WIRA Ft．Pierce．
1490	WIRB Enterprise．
910	WIRC Hickory，
1230	WIRE Indianapolis
1410	WIRJ Humboldt，T＇
1000	WIRK W．Palm Beach，Fla
1400	WIRL Peoria，IIt．
1230	WiRV Iryine，Ky．
1240	WIRY Plattsbura．N．Y．
1470	Wis Columbia．S．C．
1600	WISA Isabella，P．R．
1280	WISK Amevilfe．N．C．
950	WISL Shamokin，Pa，
1350	WISM Madison，W
1270	WISN Milwaukee，Wis．
960	WISO Ponce，P．R．
560	WISR Butler，＇Pa．
1110	WISS Berlin．Wis．
1070	WIST Charlotte．N．C．
1300	Wisz Gren Burnie，Mis
740 900	WITH Baltimore．Md．
1310	WITL Lansing，Mich．
1280	WITN Washington，N．C．
1070	WITZ Jasper．ind．
1990	WIVE Ashland，V
1110	WIVK Knoxvilie．Tenn．
1300	WIVS Grystal Lake．III．
1240	WIVY Jacksonville．Fl
1260	WIXE Monrne．N．C．${ }^{\text {Wla }}$
580	
950	WIXK New Richmend，wis
1298	WIXX Oakland Park，Fla，
1310	WIXY Cleveland， 0 ．
1420	wixz McKeesport，Pa．
1390	WIYN Ro
1400	WIZE Sprinofield．Ohio
1520	WizR Jnhnstown．N ．${ }^{\text {W }}$ ，
940	WIzS Henderson．N．
1600	WIzz Streator，III．
1400	WJAB Westhronk，Me．
1310	WJAC Johnstown．Pa．
1570	WJAG Norfolk．Nebr．
1540 1420	WJAK Jackson，Tenn． WJAM Marion，Ala．

kHz	Call Lecor	kHz
		920
40	WJAS Pittshurd	1320
123	WJAT Swal	
1090	WJAX Jacksonvilie，Fla	－
1430	WJAY Mullins，S	1280
970	WJAZ Albany，	
1230	W JBB Haloyville，Ala．	－
1490	WJBC Bloomington，III．	1230
1490	WJB0 Salem，	1350
$\begin{array}{r} 1410 \\ 820 \end{array}$	WJBE Knoxville． wJBL Holland．	14360
1430	WJBM Jerseyville．	1480
158	WJB0 Baton Roug	
1090	W JBY Gadsden．A	
1270	WJCD Seymour．	
1400	W JCM Sebring．F	0
	W JCO Jackson．M	
580	W JCW Johnson City．T	－
15	WJDA Quincy，Mass，	
1570	WJob thom	
1210	WJDY Salisbury，Md	
	WJEF Grand R	
1590	WJEH Gallipal	－
	WJEJ Hagerstown，M	
1300	WJEM Valdosta．Ga．	
1420	WJER Dover－N	
140	WJES Johns	
560	WJET Erie，Pa	
940	WJFC Jefferson City，	
12	WJGA Jackson，Ga．	－
1410	WJHO Opelika．Ala．	－
1470	WJIC Salem，	0
1420	WJIG Tullahoma，Tenn．	40
1240	WIIL Jaeksonvllie，III．	50
$\begin{aligned} & 1240 \\ & 1010 \end{aligned}$	wilt San Juan，P．R．	140
680	WJJC Commer	0
101	WJJO Chicag	
1360	WJJJ Christianshu	0
	WJJL Niagara Falls．N．	
1520	WJJM Lewisburg．T	1490
1600	WJJZ Mt．Holl	
1350	WJKM Hartsvilie．	90
	WJKY Jamesto	
810	WJLB Detroit，M	－
1010	WJLD Homewood	
1	WJLE 8 mithvill WJLK Asbury P	10
	WJLS Beckley，W．V	56
00	WJMA Orange	
	WJMB Brookhaven，Mis	10
1480	WJMC Riee Lake，Wis．	240
13	WJML Petoskey，Mic	0
	WJMR Cew Orleans．La	
940	w	
1250	WJMW Athens．	730
1000	WJMX Floreis	
1400	WJNC Jacksonville，N．C．	1240
	WJNO W．Palm Beach，Fla	1230
	W108 Hammond，Ind．	1230
，	WJoE Port St．Job，Fla．	
1430	Wjol Florenec Ala．	1340
740 1290	WJoL Jollet． 111.	1340 1240
	W JDR South Hav	
1230	W JOT Lake City． S	1260
	WJoy Bur	
1340	WJPA Washington，	
	WJPD Ishpeming	
1390	WJPF Herrin．III．	1340
	WJPR Greenville．Mi	
1390	WJPS Evansville，In	1330
148	WJPW Rockford，Mich	810
48	WJas Jackson．Miss．	00
1130	W／R Detrolt，Mich	60
1260	WJRC Joliet．III．	1510
1230	WJRD Tuscaloosa，A	1150
680	WJRI Lenoir．N．C．	1340
1098	WJRL Calhoun City，Mlss	1530
1240	WJRM Troy，N．C．	1390
1360	WJRZ Hackensack．N．J．	970
590	WJSB Crestyiew，Fla．	
1230	WJSM Martinshura．Pa	1110
1010	WJSO Jonesboro，Te	1590
930	wJST Jupiter，Fla．	1000
	W JSW Maplewood，	1010
990	WJTN Jamestown，N．Y．	1240
1430	WJTO Bath，Me．	730
850	WITS Jupiter，Fla．	1090
	WJUN Mexico，Pa．	1220
1370	WJVA South Bend．Ind	1580
1050	WJW Cleveland．Ohio	850
1190	WJWL Georgetnwn，Del	900
1280	WJWS South Hill，V	1370
1590	WIXN Jaekson．Miss	9450
	wJzM Clarksville．Tenn．	1400
1520	WKAC Athens．Ala．	1080
4269	WKAI Macomb，III．	
1360	WKAJ Saratoga Springs，	
3640	Na．	900
3340	WKAL Rome，N．Y，	450
3380	WKAM Goshen．Ind．	460
930	WKAN Kankakee．III，	－320
1456	WKAP Allentown．P	1320
1250	WKAQ San Juan，P．	
1440	WKAR East Lansing，Mich．	
850	WKAT Miaml Beach．Fla．	360
80	WKAU Kaukanna．Wis．	1050
1450	WKAY Glasgow，Ky．	1490

WHITE RADCO ட(OG

Call Location
WNDE Daytona Beach, Fla. WNDR Syracuse, N.Y. WNEB Worcester, Mass. WNEG Taccoa. Ga. WNER Live Oak. F WNES Central City, Ky WNEU Wheeling, w. Va WNEW New York, N.Y. WNEX Macon, Ga. WNGL Green Bay, Wis WNGO Mayfild, Ka.
WNGR Gainsvilfe, Ga WNHC New Haven, Conn. WNHV White River Jet., Vt. WNIA Cheektowaga, N WNiL Niles, mich. WNJH Hammonton, N.S. WNJR Newark, N.J WNLC Nen London, Conn. WNLK Norwalk, Conn
WNMP Evanston, tll. WNMT Garden City. Ga. WNNC Newton, N.C. WNNT Warsaw, Va WNOG Naples, Fla. WNOO Chattanooga, Tenn WNOP Newport, Ky WNOR Norfolk, Va. WNOY Milwaukee, Wis. WNOX Knoxville. WNPS Knoxvilie, Tenn. WNPS New Orleans. La. WNPT Tuscaloosa, Ala. WNRG Grundy, Va. WNRI Woonsocket. R.t. WNRK Newark Del. WNRV Narrows-Pearisburg,

WNSL Laurel, Miss. WNTT Tazewell, Tenn. WNTY Southington, Conn ${ }^{\text {W }}$. WNUS Chleago, III. WNVA Norton, Va. WNVY Pensacola, Fla. WNWI Valparaiso, Ind. WNXT Portsmouth, Ohio WNYC New York,
WNYN Canton. WNYR Rochester, N.Y.
WOAI San Antonio. Tex. WOAI San Antonio, Te
WOAP Owosso. Mich. WOAY Oak Hill, w.Va. WOBL Oberlin, o WOBR Wanchese, N.C. wOBT Rhinelander, Wis WOC Davenport, lowa WOCB W. Yarmouth, Mass. WOCN Miami, Fla W00I Brookneal, Va. WODY Bassett, Va. WOGO New Smyrna Beach, WOHI E. Liverpool, Ohi WOHO Toledo, Ohio Wol Ames, towa woic Columbla, S.C WOKA Douglas, Ga. WOKB Winter Garden. Fia. WOKC Okeechobee. Fla WOKE Charlesto Miss. wokK Meridian. Miss WOKL Eau Claire, Wis. woko Albany, N.Y. WOKS Columbia, Ga. WOKY Milwaukee, Wis. WOKZ Alton, JII.
WOL Washington. D
WOLD MarJon, Va.

kHz

1150 1260 1490 1230
630 630

1250

1470 1130

1400
1440
1440

1320 1130 1340

. 1230 1230 1290 1540
1580 1580
1430 1430
1480 1510
135 1360
1350 1590 1520
1230
1360 1230
1360

1230
1260
740
$\begin{array}{r}740 \\ 1230 \\ \hline\end{array}$
1590
$\begin{array}{r}860 \\ 1250 \\ \hline 950\end{array}$
$\begin{array}{r}1250 \\ 990 \\ \\ \hline\end{array}$
1450
1280

940 1380

1260
1290 990
1260
1550 $\begin{array}{r}1560 \\ 1250 \\ \\ \hline 990\end{array}$ $\begin{array}{r}99 \\ \hline 140 \\ \hline\end{array}$ 1400
1390
1230
1390 $\begin{array}{r}1230 \\ 1350 \\ \\ \hline 250\end{array}$ 1250
1230 1230
1080 1260
830
900
680
1200
1080
1080
860
1570
1530
+1360
1360
1240
1420
1240
1460
1450
1250
1260

900

1540
1550

1490

730 640

 1320 1060 13101600
1570 WPMB Vandalia, I11.
1340 WPMP Portsmouth, \mathbf{V}_{a}.
1550 WPMP Pascagoula, Miss.
1450
1050
1460
1460
1340 WPNO Plymouth, N. H.
920 WPNX Murricane, w. Va 1570 WPOK Pontiac, III. 1450 WPON Pontlat, Mith. I330 WPOP Hartford, Conn.

Call	Location	kHz	Call Location	kHz	Cal	Location	kHz_{2}
WOLF	Syracuse, N	1490	WPOR Portla	1490			90
w	Florence, S. \mathbf{C}.	1230	WPOW New Y	1330		al Gables, Fia.	50
WOM1	Owensboro,	1490	WPPA Pottsvil	1360 890	WR	Maunston, wis.	1270
OMP	Bellaire, 0	1290	WPRC Lineo	1370	WRJW	倞	1320
OMT	Manitowoe, Wis.	1240	WPRE Prairic Du Chien, Wls.		WRKB	Kannapois, N.C.	1460
WONA	Winona, Miss.	1570	WPRS Parsippany-Troy Hills,		WRKD	Rockland, Maine	1450
WOND	Pleasantville, N.J.	1400		1310		Rockwood, Tenn.	80
WONE	Layton,	1230	WPRO Providence, R.I.	630	WRKM		1350
WONS	Tallahassee. Fi	1410	WPRP Ponce, P.R.	910	WRKN	Brando	910
WONW	Defance,	1280	WPRS Paris. Ill.	1440	WRKO	Boston	680
wood	Grand Raplds, Mich.	1300	WPRT Prestonsburg, Ky.	960	WRKT	Cocoa Beach, Fla	300
	Dothan,	560	WPRV	1600	W	Rockrille, Conn.	00
W00k	Washington, D.C.	1340	WPRW Manassas, Va.	1480	WRL		
W00w	Greenville, N.C.	1340	WPRY Perry. Fia.	1510	MA	Montgomery, Ala.	1490 950
wopa	Oak Park, 111.	1490	WPTF Raleig	680		Titusv	1050
PI	ristol. Ten	1490	WPPT Canton, N.C.	920	WRMG	Red Bay, Ala.	1430
R	W York.	710	WPTN Cookevilie. Ter	1500	WRMN	Elgin, III.	1410
	Mayaquez, P.R.	760	WPTR Albany, N.Y.	1540	WRMS	Beardstown, III.	790
ORC	Worcester, Mass.	1310 910	WPTS Pittston, Pa. WPTW Piqua, Ohio	1540 1570	WRMT WRNB	Rocky Mount. N.C. New Bern, N.C.	1490
WORG	Orangeburg. S. S.	1580	WPTX Lexington Pk., Md.	920	WRNC	Raleigh, ${ }^{\text {N }}$	1240
WORJ	Orlando,	1270	WPUL Bartow, Fla	1130	WRNG	N. Atlanta, Ga.	680
RK	York.	1350	WPUT Brewster, ${ }^{\text {W }}$	1510	WRNL	Richmon	. 910
WORM	Savantah, Tenm.	1580	WPVA Colonial Hights.. Va.	1290 180	WRNY		1350 1390
ORX	Madison, Ind.	1270	WPVL Painesville, Ohio	1460	WROB	West Point,	1450
wosc	Fulton, N.	1300	WPXC Prattville, Ala.	1410	WROC	Rochester, N	1280
OSH	Oshkosh, Wi	1490	WPXE Starke, FI	1490	WRO	Daytona Beach, Fla.	1340
wosu	Columbus, Ohio	820	WPXY Green	1550	WROK	Rock ford. 111.	1440
	Watert	1410	WQam Miami,	560	WRO	Rome,	710
OTw	Nashua,	900	WQBA Mlami. Fla	1140	WRON	Ronceverte, w.va.	1400
W0UB	Athens,	1340	WQBC Vlekshurg, Miss.	1420	WROS	Scottsboro.	1330
OVE	Welch. W.	1340	WQBS San Juan, P.R.	650	WROV	Roanoke,	1240
Ow 0	Omaha. Neb	590	WQDY Calais, Maine	1230		Alb	590
	Florence, Ala.	1240	WQIC Merldian, Miss	1390	Wrox	Clarksdale.	1450
wowo	Ft. Wayne. In	1190	WQ1k Jacksonville,	1090	WROY	Carmi, III	1460
wowy	Naupatuck, Conn. Clewiston, Fla.	1590	WQMA Marks, Mis	1520	WROL	Evansvili	
W0XF	Oxford, N.C.	1340	WQMR Silver Spring, Md.	1050	WRPM	Poplarville, Miss.	1530
W0ZK	Ozark.	900	WQOK Greenville, S.C.	1440	WRR	Dallas,	1310
WOZN	Jacksonville, Fla.	970	WQSN Charleston.	1450	WRR	Rockford, 111.	1330
PAB	Ponce, P.	550	WQTC Two Rivers. Wis.	1590	WRRZ	Clintor, N	80
WPAC	Patchoque	1580 1450	WQTE Monroe, Mich. WQTW Latrobe Pa.	560 1570	WRSA	Saratoga	1280
PAD	aducah.	1450	WQTW Latrobe, Pa. waty Montgomery, Ala.	1570	$\begin{aligned} & \mathbf{w} \\ & \mathbf{W} \end{aligned}$		1390 1090
WPAL	Charleston. S.C.	730	WQUA Moline. Ili.	1230	WRS.	Bayamon. P. R.	1560
WPAM	Pottsvil	1450	WQVA Quantico, Va.	1530	WRSL	Stanford, Ky.	1520
WPAR	Mount Airy, N.C	740	WQXI Atlanta, Ga.	790		Warsaw,	480
WPAR	Parkersburg, W.V	1450	WQXL Columbia, ${ }^{\text {S }}$	1320	WRT	Altoona,	1240
	zephyrhills.	1400	waxa Ormond	1380		Wood River,	
PAT	ater son,	930	WQXR New Yor	1560			8
PAW	E. Syracuse, N.Y.	1540	WQXT Patm Beach	1340	WRUF	Gainesville. Fla.	850
PAX	Thomasvilie, Ga.	1240	WRAA Luray, Va.	1330 1380	WRUM	Rumford, Main	790 1150
AZ	P	1370	WRAB Arab, Ala,	13880		Ut	150
+	Rich	980	WRAD Radfor	1460			140
WPGC	Clinton, S . ${ }^{\text {c }}$	1400	WRAG Garrollton, Ala.	590	WRVK	Mt. Vernon, Ky	1460
WPCF	Panama City, Fla.	1430	WRAI San Juan, P.R.	1520	WRWD	Augusta, Ga.	1480
WPC0	Mt. Vernon, Ind.	1590	WRAJ Anna, III.	1440	WRWH	Cleveland. Ga.	1380
WPDE	Paris,	1440	WRAK Williamsport, Pa	1400	WRX	Roxbor	1430
WPDF	Corydon, Ind.	1550	WRAM Monmouth, ill.	1330	WRY	New Britain. Conn.	840
PDM	Potsdam, N	1470	WRAN Dover;	1510		Boston Mas	950
Pot	Jacksonville, F	800	WRAP Norfolk, Va.	850		Fort Knox,	1470
PDR	Portage. W	1350	WRAR Tappahannock. Va.	100		Cincinnatl, Ohio	1220
WPPE	Clarksburg, W.Va.	750	WRAW Reading.			neinnati, Ohio	
WPEH	Louisvilie, Ga.	1420	WRAC Jackson, ${ }^{\text {W }}$ M is	1300	WSAL	Logansport, Ind	1230
WPE	Montrose, Pa.	1250	WRBD Pampano Beach, Fla.	1470	WSAM	Saginaw, Mich.	1400
WPEN	Philadelphia, Pa.	950	WRBJ St. Johns, Mich.	1580	WSAN	Allentown, P	1470
WPEO	Peoria, III.	1020	WRBL Columbus, Ga.	1420	WSAO	Senatobia, Miss.	1550
WPEP	Taunton,	1570	WRBN Warner Robins, Ga.	1600	WSAR	Fall River, Mas	1480
PFA	Greenshoro, N.C.	950	WRC Washington, D.C.	980	WSAT	Salisbury. N.C.	1280
WPFA	Pensacol	790	WRCD Dalton, Ga.	1430	wSAU	Wausa	
PGA	Middletown, Ohio	910	WRCH New Britain, Conn.	910	WSAV	俍	630
WPGA	Perry, Ga	980	WRCK Tuscumbia, Ala-	14	WSAY	Roches	1370
WPPGC	Bradbury Hghts., Md,	580	WRCO Richland		WSAZ	Huntington, W.Va.	
WPGM		4470	WRCP Philadelphia, Pa	540			0
WPGW	Portland, Ind	1440	WRCS Ahoskie, N.C.	970	WSBB	New'Smyrna Beach,	
WPHB	Philipsbury, Pa.	1260	WRDE Reedsburg. Wis.	1400			1230
M	Waverly, Tenn.	1060	WRDN Durand. Wis.	1430	WSBC	Chleago,	1240
WPPM	Port Huron, Mich.	1380	WROO Augusta. Maine	1400		Boca Raton,	740
w	Sharon, Pa.	790	WROS S. Charleston, W.Va.	1410	WSBS	Gt. Barrington, Mass.	860
	Alexandria. V	1280 730	WREB Holyoke,	480 930	WSBP	Chattahooche	960 580
WPIP	Collierville. Tenn.	1590	WREC Memphis. Tenn.	600	WSGM	Panama City Beach,	
PIT	Pittsburgh, Pa.	730	WREL Lexington, Va.	1450			1290
WPJD	Daisy, Tenn	1550	WREM Jenkins, Ky.	1000	WSCO	Taylorsville, Miss.	1280
KE	Pikeville, Ky.	1240	WREN JenkIns, Ky.	1000	WSCR	Seranton, Pa.	1320
PKO	Waverly, Ohio	1380	WREO Ashtabula, Ohio	970	wScv	Peterborough, N.H.	1050
PKY	Princeton, Ky.	1580	WREV Reidsville, N	1220	WSOR	Sterling: III	1240
	Plant City, Fla.	910	WREY New Albany, Ind.	1290	wsos	Ypsilanti, Mich	1480
WPLB	Greenville, Mich,	1380	WRFC Athens, Ga.	960	WSEB	Sebring, Fla.	340
PLK	Rockmart, Ga.	1220	WRFD Worthington, Ohio	880	WSEL	Pontotoc, Miss.	1440
PLM	Plymouth. Mass.	1390	WRFS Alexander City, Ala.	1050	WSEM	Donalsonville. Ga.	1500
WPLO	Atlanta, Ga.	590	WRGA Rome, Ga.	1470	WSEN	Baldwinsville, N.Y.	1050
WPLY	Plymouth, Wis.	1420	WRGM Richmond, Va.	1540	WSER	Elkton, Md.	1550
PMB	Vandalia, 111.	1500	WRGS Rogersville, Tenn.	1370	WSET	Glen Falls, N.Y.	1410
WPME	Punxsutawney, Pa .	1540	WRHC Jacksonville, Fla.	1400	WSEV	Sevierville. Tenn.	930
WPMP	Portsmouth, Va.	1010	WRHI Rock Hill, S.C.	1340	WSEW	Sellingsgrove, Pa.	240
WPMP	Pascagoula, Miss.	1580	WRHL Rochelle, III.	1060	WSFB	Quitman. Ga.	1490
NF	Plymouth, N.C	1470	WRIB Providence, R.I.	1220	WSFC	Somerset, KY	1240
PNH		1240	WRIE ErIe. Pa.	1330			1220
PNO	Auburn, Me.	1530	Wrig Wausau, Wis.	1400	WSFW	Seneca Falls. N.Y.	1110
WPNS	Hurricane, W. Va.	1080	WRIM Pahokee, Fla.	1250	WSGA	Savannah. Ga.	1400
NX	Columbus, ${ }^{\text {Ca. }}$	1460	WRIN Rensselaer, Ind.	1560	WSGB	Sutton, W.Va.	1490
OK	Pontiac, III,	1080	WRIP Rossville, Ga.	980 1410	WSGC	Elberton, Ga.	610
WPOP	Hartford, Conn.	1410	WRIT Milwaukee, wis.	1340	WSGO	Oswego, N.Y. ${ }^{\text {a }}$	44

"Bell \& Howell's proven programs turn out the kind of men we want;"

Say men who do the hiring for top firms in computer, aerospace, TV-Radio and automation electronics

A leading computer company: "He has abilities and knowledge not found in men from other programs."
A major aerospace firm: "Your men come well prepared to stay abreast of rapid changes in our industry."
An electronics company: "Perhaps the most valuable asset these 30 men have is adaptability to new projects." A top TV-Radio manufacturer: "The men you have sent us show Bell \& Howell Schools have consistently kept up in the field of electronics."
Note: Firm names available on request.

Why you'll become "the man they want"

There is one very real advantage to getting your Electronics training from Bell \& Howell's Proven Programs.
You get what business and industry recognize as the most up-to-date, practical and thoroughgoing preparation available. Because we spend more than $\$ 100,000$ yearly simply to keep our programs in step with the constant changes in Electronics.
Bell \& Howell's Lab-at-Home Plans are based on valuable experience gained in our own nation-wide technical colleges. (Information not available anywhere else.)
These Plans enable you to obtain current theory reinforced by the most modern and usable applications. In short, you'll really know your stuff! Naturally you can choose what interests you. You go at your own pace and you receive everything you need-direct from Bell \& Howell Schools-in easy steps-including films and a projector . . . plus our exclusive Electro-Lab ${ }^{\text {® }}$ and precision electronic equipment you'll want to keep and use throughout your career.
You'll also get personal guidance-every step of the way-from exceptionally well qualified instructors. And Bell \& Howell's free-for-life National Employment Service will help you locate better-paying positions in Electronics.

Join the thousands of skilled electronics men who have found new opportunity through Bell \& Howell's Proven Programs. Mail the postagefree card now for your Free Booklet and complete information.

Mail postage paid card for FREE BOOKLET

If card is detached, mail this coupon for your
Free Booklet and complete information on
career opportunities in Electronics to:
BELL \& HOWELL SCHOOLS, 4141 Beimont
Chicago, Illinois 60641
Name (please print)
Address
City
State
306

White's World-Wide Shortwave Stations

Prepared by Don Jensen

Though our closest continental neighbor, South America is for many shortwave listeners a real problem area. As a result, too many SWLs ignore or studiously avoid what is one of the richest DX targets in the world.

Based on our mail, the complaints are quite similar. Stations are too hard to hear. They never broadcast in English. Why bother with them anyway, they never QSL.

These generalizations are broad, but not entirely untrue. Yes, many of the South American shortwave outlets are weak and hard to tune. Few transmit English programs. Obtaining verifications from them can be tough. Still these difficulties are not insurmountable. The personal satisfaction of overcoming these obstacles can be a real ego booster!

Perhaps the best way to go after South American DX is to cut your teeth on the easy ones, then, as you gain some experience, dig deeper for the rarer ones.

Most of the programming you'll hear will be in Spanish. Brazilian stations broadcast in Portuguese. Contrary to popular belief, there are a few English transmissions and announcements to be heard from these Latin Americans.

A year or two of high school Spanish will stand you in good stead, but even of you don't know the language, it isn't too hard to pick out a few key words from the station ID.

To start you off, here's our "No Sweat Guide to South America," listing some best bets from each of the countries currently broadcasting on shortwave.

- Argentina-An English transmission to North America, from Radiodifusion Argentina al Exterior (RAE), the government station in Buenos Aires, can be heard at 0600 GMT on $9,690 \mathrm{kHz}$.
- Bolivia-Try $5,025 \mathrm{kHz}$, around 0300 GMT for English announcements over missionary station, La Cruz del Sur, operating from La Paz, Bolivia's 12,000 foot high capital. Earlier you'll find Spanish programming.
- Brazil-Currently a good bet is Radio Rural, a station of the Brazilian ministry of agriculture at Rio de Janeiro. Programming in Portuguese is noted around 2000 to 2330 GMT, on 15.105 kHz .
- Chilo-Chalk up this country in the south of South America by logging Radio Presidente Balmaceda in Santiago. Programming in Spanish again. Roll out of bed around 1000 GMT for this one.
- Colombia-With the Colombians you "pay your money and take your choice!" Plenty to choose from here. But two of the easiest are Transmisora Caldas, located at Manizales, $5,020 \mathrm{kHz}$., and Radio Sutatenza, a Roman Catholic missionary outlet, $5,075 \mathrm{kHz}$. For Colombian stations, any time during the early evening is good.
- Ecuador-It's HCJB! What more can be said? Of the many frequency/time combinations we could name, how about $11,740 \mathrm{kHz}$. at 0300 GMT ?
- French Guiana-Here's an exception to the general rule. The language here is French, ob-

Propagation Forecast for October/November 1970
Prepared by C. M. Stanbury II

LISTEMER'S STANDARD TIME	ASIA (except Near East)	EUROPE, NEAR EAST \& AFRICA (N. of the Sahara)	AFRICA (S. of the Sahara)	SOUTH	LATIN AMERICA
0000-0300	31	(41), 49	31w, 60, 90e	41	(49), 60, 90
0300-0600	41,49	(31-poor)	19w, 31e	49,60	49,60,90
0600-0900	31	(16), 19	19	25, 31	49
0900-1200	19, 25	16,19	19, 25	(25-poor)	25,31
1200-1500	19, 25	16, 19	19, 25	(19-poor)	19, 25
1500-1800	19	25,31, (49)	41w, 60, 906	19, 25	25,31
1800-2100	19, 25	31,41, (49)	25, 31e, 60, 90w	(16), 19	(49), 60, 90
2100-2400	19,25, (31w).	(31), 41, 49	60,90	25, (31w)	(49),60,90.

WHITE'S SHORTWAVE SECTION

viously, not Spanish or Portuguese. The Office de Radiodiffusion-Television Francaise station at Cayenne may give you some trouble. It's not as easy to \log as the preceding ones. Get up early, say 1000 GMT, and listen on $3,385 \mathrm{kHz}$.

- Guyana-This is the former British Guiana, so most programming is in English on Radio Demerara. But don't be startled if you hear some East Indian music programmed for Guyana's sizeable Asian community. When you're up tuning for French Guiana, look for this one just 20 kHz . Iower on $3,365 \mathrm{kHz}$.
- Paraguay-This is probably the hardest of the South American countries to log on shortwave. About the only one now being heard is Radio Encarnacion operating on 11,945-47 kHz , around 0030 or 0100 GMT .
- Peru-A number of Peruvian stations are putting in good signals these days. One of the better ones is Lima's Radio Nacional del Peru, heard throughout the evening hours on 6,082 kHz .
- Uruguay-Like its neighbor, Paraguay, this country will give some trouble. We'll give you two to try here; SODRE, CXA18, a Montevideo station on $15,275 \mathrm{kHz}$., and Radio El Espectador on $11,835 \mathrm{kHz}$. You may find interference a problem, but try around 0100 to 0200 GMT.
- Venezuela-Many, many fine signals being heard now, but two of the best throughout the evening hours are Radio Barquisimeto on 4,990 kHz ., and Radio Rumbos on $4,970 \mathrm{kHz}$.

How many can you log? Give yourself ten points for each South American country you can tune. If you score less than 50 , revolting!

This Issue's Shortwave Contributors
Richard Wood (Hawaii), Rick Anderson (III.), Thomas Jones (Minn), John Tuchscherer (Wis.), Jim Weber (Cal.), Leo Alster (N.J.), Grady Ferguson (N.C.), Sam Rowell (Wash.), Chris Lobdell (Mass.), Craig Koukol (III.), Edward Shaw (Cal.), A. R. Niblack (Ind.), Alvin Sizer (Conn.), Steven Handler (III.), Roderick Corkum, Bob Smith (Mich.), Gladys Sienkiewicz (N.Y.), Gerry Dexter (Wis.), Bill Sparks (Cal.), Dan Henderson (Md.), Gregg Calkin (Canada), Bob Padula (Australia), Robert Fisher (Cal.), Alan Jeeves (Pa.), David Potter (Fla.), Leslie Marcus (Canada), Newark News Radio Club (215 Market St., Newark N.J.), North American SW Association (Box 989, Altoona, Pa.)

Hit 120? Magnifico! If you're in between, keep trying!

Something for nothing? Not quite, but about as close as you can come these days is the interesting and highly useful little bulletin put out by Radio Sweden's "Sweden Calling DXers" program.

You may be familiar with this popular DX program aired weekly by Radio Sweden. But you might not know that a written summary of each week's script, with plenty of DX data, is airmailed-free-to listeners who ask to be put on the mailing list.

You are required, however, to send reports to the SCDX program, telling about some of your recent SWL loggings. You, and others like you, provide the information on new stations, frequencies and schedules that make up the popular program's content.

Write to "Sweden Calling DXers," Radio Sweden, S-105 10, Stockholm, Sweden.

WORLD-WIDE SHORTWAVE STATIONS

	Cal	Station Name	Location	GM	
90-Meter Band-3200					
5	YVOE	Ondos Panamericanas	El Vigia, Venezuelo	㖪	
$\begin{aligned} & 3230 \\ & 3240 \end{aligned}$	VRH8	R. Fiji R. Baghdad R. Kerema	Suva, Fiii Baghdad Irag Kerema, Papua/ N. Guinea	0800	
	VL8BK				
3245	YVǨT	R. Libertador	Caracas. Venezuela		
32553259	ELBC	Liberian Bc. Co. Nippon H.K.	Monrovio, Liberia Sendai, Japan	06000900	
3280	-		St. Gearges		
3300	-	Svc. R. Nat. Repub- lique Burundi R. Betize	Buiumbura Burundi		
3300	-		Belize.		
3316	-	R. Sierra Leone	Br. Honduras Freetown Sierra Leone Kieta, Bougainville Is.		
3322	VL9BA	R. Bougainville			
33325	YVRA	R. Monegas R. Wewak	Maturin, Venezue		
	VL9CD		Wewak, Pa N. Guine	,	
3346		R. Zambia L. V. de La Romana L. V. de Nahuala	Lusaka, Zambia La Romana, Dominican Rep.		
	HIBD				
3360	TGVN		Nahuola. Guatemala		
$\begin{aligned} & 3375 \\ & 3380 \\ & 3385 \end{aligned}$	CR6RZ	Emis. Oficiol Malawi Bc. Corp. O.R.T.F.	Luanda, Angola 2315 Blantyre, Malawi 0400 Cayenne.		
	-				
	-				

kHz	Call	Station Name	Locotion	GMT
3395	-	R. Clube Conquista	Fr. Guiana Vitorio de Con-	0930
3910	-	Far Enst Network	tokyo, Japan	

60 -Meter Band- -4750 to 5060 kHz

$\begin{aligned} & 4635 \\ & 4650 \end{aligned}$	$\overline{\mathrm{HCAK}} 2$	R. del Ecuador	Dushanbe, U.S.S.R. Guayaquil, Ecuador	0100 0615
4680	HCWEI	R. Nac. Espejo	Quito, Ecuadar	0400
469		R. Reloi	San Jose, Costa Rica	0140
4750	YDQ4	R. Republik Indonesia	Makassar. Indonesia	1230
4755	ZY	R. Brosil	Campinas, Brazil	0145
4767	HJDY	R. Catatumbo	Ocana, Colombia	0230
4770	ELWA	Sudon Interior Mission	Monrovia, Liberia	2230
4777		R-TV Gabonaise	Libreville, Gaborr	0500
4780	HRRZ	R. Juticolpa	Juticalpa, Honduras	0345
4815	-	R-TV Voltaique	Ouagadougou, Upper Volta	0600
4825	HIFA	L.V. Fuerzas Armadas	Santo Domingo, Dominican Rep.	0100
4865	PRC5	R. Clube do Para	Belem, Brozil	0900
4870		R. du Dahomey	Cotonou, Dahomey	2145
4872	8FW20	R. Republik Indonesia	Sorong, Indonesia	1200
4890	VLT4	Australian BC. Corp.	Port Moresby, N. Guinea	1/30
4915	-	R. Ghana	Acra, Ghana	0600

kHz_{2}	Call	Station Name	Location	GMT
4920	VLM4	Australian Bc. Coro.	Brisbane	0800
4926	EAJ206	R. Ecuatorial	Bata, Rio Muni	0500
4932		Nigerian Bc.	Benin City, Nigeria	2300
4938	OAX9E	R. Tropical	Tarapoto, Peru	0130
4950	-	R. Malaysia	Kuching, Sarawak	300
5010		Forces Bc. Svc.	Singap	1300
5025	CP75	La Cruz del Sur	La Paz, Bolivia	0300

kHz_{2}	Call	Station Name	Location	GMT
9640	-	V. of Free Korea	Seoul, Kor	1100
9645		R. Norway	Oslo, Nor	000
9655	OAX9G	R. Nor Peruanc	Chachapoyas, Peru	-
9660	YVLK	R. Rumbos	Caracas,	30
9675	ZYT29	R. Diario de	Florianopolis,	
		Manha	Brazil	0935
9690	LRA32	R.A.E.	Buenos Aires, Argentina	00
9695	-	R. RSA	Johannesburg	
			South Africa	. 2330
9695	ZYB22	R. Rio Mar R. Nat. Khmer	Manaus, Brazil	1030
			Cambodia	1330
9702	Z	R-TV Niger	Niamey, Niger	0700
9705	ZYZ24	R. Maua	Rio de Janeiro, Brazil	0930
9710	HCJB	V. of the Andes	Quito, Ecuador	0330
15	-	R. Nederland Relay	Bonaire, Neth. Antilles	0530
9720	-	Swiss BC. Corp.	Berne Switzerland	0515
9725		R. Sweden	Stockholm, Sweden	0330
9730	-	R. Berlin	Berlin, E. Germany	0100
		International		
745	XERM	R. Mexico	Mexico City,	
9770	-	Oesterreich R.	Vienna, Austria	0000
9833	-	R. Budapest	Budapest, Hungary	Y 0130
9850		R. Cairo	Cairo, Egypt	2230
9945	-	R. Peking	Peking. Chino	2230

25-Meter Band-II700 to 11975 kHz

19-Meter Band-15100 to 15450 kHz

15013	V. of Vietnam	Hanoi, N. Vie	2000
15048	R. Liberation	Clandestine	2030
15083	R. Euzkadi	Clandestine	2130
15105	All India R.	Delhi, India	30
15105 ZYZ32	R. Rural	Rio de Janeiro, Brazil	2300
15110 XERR	R. Comerciales	Mexico City,	
20	Vatican R	Mexico Vatican City	0100 1500
15135	R. Cairo	Cairo, Egypt	2100
15150 CEI515	R. Corporacion	Santiago, Chile	0100
15155 ZYB9	R. Sao Paulo	Sao Paulo, Brazil	0030
15160 TAU	R. Ankara	Ankara, Turkey	2200
-15165 -	Syrion Be. Sve.	Damascus, Syria	2030

WHITE'S SHORTWAVE SECTION

kH_{2}	Coll	Station Name	Location	GMT
15165	ETLF	R. V. of the Gospel	Addis Aba Ethiopia	1500
15170	-	R. Veritas	Manila, Phi	1430
15175	LLM	R. Norway	Oslo, Norwa	2115
15185	-	Far East Be. Assoc.	Victoria, Seychelles	0345
15185	OIX4	Finnish Bc. Co.	Pori, Finland	1815
15200	-	R-TV Belge	Brussels, Bel	2300
15230	-	R. Ceylon	Colombo,	0100
15245	-	R. Kinshasa	Kinshasa, C	0400
15250	-	R. Bucharest	Bucharest Rumanio	0730
15275	4VWI	R. Evangelique	Cap Haitie	0100
15310	-	R. Sofia	Sofia, Bulga	2030
15345	-	N.B.t.	Athens, Gree	2000
15365	-	R. Nac. Espana Relay	Tenerife, Canary Is.	0300

16 -Meter Band- 17700 to 17900 kHz

$17605-$	R. Peking	Peking, China	0230
$17705-$	All India R.	Bomboy, India	0430

| $\boldsymbol{k} \boldsymbol{H}_{\boldsymbol{z}}$ | Coll | | Stotion Name | Location |
| :--- | :--- | :--- | :--- | :--- | GMT

13-Meter Band-21450 to 21750 kHz

21485	-	R. Australia	Melbourne. Australia	0000
21515	DZ19	Far East Bc. Co.	Manila, Philipp	0315
21580	-	O.R.T.F.	Paris, France	2030
21590	-	Windward Is. Be. Svc.	St. Georges, Grenada	2100
21605	-	R. Afghanistan	Kabul, Afghanistan	1230
21640	-	R. Japan	Tokyo, Japan	0200
21655	-	R. Norwoy	Oslo, Norway	0700
21695	-	R.A.I.	Rome, Italy	1600
21740	-	R. Australia	Melbourne, Australia	0130

White's Emergency Radio Station Listings for Ohio-Part 1

SCIENCE AND ELECTRONICS furnishes this exclusive listing of Ohio, Part 1, emergency radio stations as an aid to our many readers now engaged in the fascinating and rapidly growing hobby of monitoring emergency radio communications. Part 2 will follow in our next issue. We have and will be publishing similar lists devoted to different metropolitan areas in forthcoming issues so that you'll be able to accumulate a sizable array of this difficult-to-obtain data. Refer to the index on page 77 for our 1969/1970 program of emergency radio station listings.

If you desire to obtain similar lists from
other areas in the United States that have not been published in this magazine, then we suggest you write to Communications Research Bureau, Box 56, Commack, N.Y. 11725. They may have a list of emergency radio services that covers your locality. Include a stamped, self-addréssed envelope with your request.

Due to space limitation, small town listings for the State of Ohio have been omitted. However, the Communications Research Bureau (see above) does offer a more complete (if not complete) listing for Ohio!

All frequencies are megahertz (MHz). unless otherwise noted.

	FB	KDT323	33.94
Batavia	PDC	KDX445	39.58
	PDC	KQB932	155.37
	FDC	KDS620	33.94
Bath Twp	PD	KLK535	39.34
	PDC	KJK556	39.58
	PDC	KJK556	39.62
	PDC		460.10
	PDC		460.175
	PDC		460.25
	PDC		460.425
	FD	KQF420	33.86
" (Fairborn)	PD	KE0310	39.58
" ${ }^{\prime}$	FD	KDQ319	154.07
" (Lima)	FD	KQH550	154.37
Bay Village	PD	KQA774	155.61
	PD	mobile	155.85
	LG	KGP673	46.58
	LG	KF1573	154.98
	FD	KAP967	154.25
Beachwood	PD	KJE337	39.42
	PD	KJE337	155.535
	LG	KJB963	46.58
	LG	KQK355	158.76
	FD	K12571	46.46
Beavercreek Tp	PD	KEY903	39.58
	PD	KGK568	39.58
	LG	KDB417	453.10
	LG	KP128	458.10
	FD	KQD726	46.18
Bedford	PD	KDZ380	39.42
	PD	KQB388	155.13
	PD	mobile	39.58
	PD	mobile	154.89
	FD	KCU835	46.46
Bedford Hts	PD	KGJ684	39.42
	LG	KEM572	46.58
	FD	KCR246	46.46
Bellaire	PD	KQA837	155.61
	PD	mobile	155.85
Bellbrook	PD	KUA778	39.58
	FD	KQ1690	154.07
Bellefontaine	PD	KQD767	155.70
	PDC	KQA776	39.58
	LG	KFR717	158.925
	FD	KDV724	46.46
Bellevue	PD	KQB410	39.58
	FD	KDS698	46.06
Belleville	FD	KQR438	153.77
	FD	KQR438	154.25
Beloit	PD	KFT540	155.415
	FD	KF1652	154.07
Belpre	PD	mobile	39.58
	PD	mobile	155.49
	PD	mobile	156.15
	FD	KQE319	46.14
Bentleyville	PD	mobile	39.42
	FD		46.46
Berea	PD	KQB373	155.61
	LG	KD7394	156.00
	FD	KAT244	154.25
Bethel	PD	KQD762	39.58
	FD	KBW422	33.94
Bettsville	PD	KQJ273	39.58
	FD	KFM390	46.06
Bexley	PD	KJC964	154.65
	PD	KJC964	155.25
	LG	KJU885	154.115
Blanchester	PD	KFA428	3958
	FD	KDY273	33.94
Boardman Twp	PD	KFG437	155.13
	LG	KCT637	155.94
	LG	KQK491-2	155.94
Boston Hts	PD	KQE907	39.58
	FD	KJL606	33.86
Bowling Green Univ	PD	KQA251	39.58
	PD	KBD554	155.31
	PDC	KET263	39.58
	LG	KDR360	155.025
	LG	KL0385	155.025
	LGC	KQM691	155.145
	LGC	KJW781	155.82
	LGC	KQK541	155.82
	LGC	mobile	158.94
	FDC	KQH447	153.89
Bradford	PD	KQF372	155.13
	FD	KQF369	154.19
BrecksvilleBridgeport	PD	KQH857	39.22
	PD	KQH857	39.42
	LGC	KUH78	458:35
	LGC	KUH78	458.55
	FD	KDL890	46.10
	FD	KDL890	46.48
	PD	KQH824	155.61

Brilliant	PD	mobile	155.85
	PD	KQE916	39.58
	FD	KDE672	33.94
Brimfield Twp	LG	KBM926	154.10
	FD	KBM641	154.13
Broadview Hts	PD	mobile	39.02
	PD	mobile	39.22
	FD	KCl982	46.10
Brookfield	PDC	KLH986	39.58
	PDC	KLH986	155.13
Brookfield Tp	PD	KAX358	155.13
	FD	KAF982	154.25
Brooklyn	PD	KQB514	39.02
	FD	KCK534	46.10
Brooklyn Hts	PD	mobile	39.02
	PD	mobile	39.42
	FD		46.10
Brook Park	PD	KQD294	39.02
	PD	KQD294	155.61
	LG	KGV278	154.025
	FD	KDG265	46.10
Brookville	PD	KQE878	155.61
	PD	mobile	155.85
	FD	KQF357	154.19
Brunswick	PD	KBE478	155.13
	PD	mobile	154.89
	PD		460.025
	PD		465.025
	LG		45.08
	LGC	KCK532	45.32
	LGC	KFZ889	45.32
	FD	KQG663	46.38
Bryan	PD	KQF877	155.61
	PDC	KQB391	39.50
	PDC	KQB391	39.58
	FD	KQE354	154.145
	FD	KQE354	154.25
Bucyrus	PD	KQA229	39.58
	PDC	KCN703	39.58
	LG	KEL382	154.025
	FD	KCR956	154.25
Burton	PD	KJP296	39.58
	LGC	KCR240	45.48
Cadiz	PD	mobile	39.58
	PDC	KQA604	39.58
	FDC	KCY204	33.94
Caldwell	PD	mobile	39.58
	PDC	KQD890	39.58
	FD	KDV398	33.90
Cambridge	PD	KQA501	39.58
	FD	KDN598	33.90
Camden	PD	KJN786	155.13
	PD	mobile	154.89
	FDC	KQH304	154.19
Campbell	PD	KLL532	158.82
	PD	KLL533	155.37
	PD	mobile	158.91
Canai Fulton	PD	mobite	44.86
	PD	mobile	45.02
	FD	KGP722	33.82
Canfield	PD	KFN589	155.37
	LG	KFN596	155.055
Canton	PD	KQB528	158.79
	PDC	KQA925	39.50
	PDC	mobile	39.38
	LGC	KGK543	158.94
	FD	KQH355-64	4154.25
	FDC	KDE280	33.82
Canton Twp	LG	KGJ697	155.745
	FD	KQM648	33.82
Carey	PD	KQE300	39.58
	FD	KQG966	154.43
Carlisle	PD	KQJ331	39.58
	PD	KQJ331	155.13
	PD	mobile	154.89
	FD	KJR290	154.145
Carlisle Two	LGC	KBR977	45.44
	FD	KQD948	154.37
	FDC	KEL346	154.37
Carrollton	PDC	KQA503	39.58
	FDC	KDE636	33.94
Castalia	PD	KAW776	39.58
	FD	KDK806	46.06
Cedarville	PD	mobite	39.58
	FD	KCL752	154.07
Celina	PD	KQG358	155.13
	PDC	KQD624	39.58
	FD	KQG357	154.31
Center Twp	LG	KLK638	155.775
	FD	KDV791	153.89
Centerville	PD	KLM600	453.80
	PD	KDX484	155.37
	LG	KQJ948	45.08
	FD	KQF294	154.13
Chagrin Falls	PD	KF0945 KF0945	39.42 39.58

Chardin	FD	KQH289	46.46
	PD	KBC200	39.58
	LGC	KCR230	45.48
	FD	KBT793	46.14
Cheviot	PD	mobile	39.58
	FD	KBZ422	33.82
Chillicothe	PD	KQA412	155.13
	PD	mobile	159.03
	PDC	KQB924	39.58
	LG	KBB987	155.715
	FD	KQG214	154.13
	FDC	KAX777-8	\% 154.13
	FDC	KQC74	154.445
Chippewa/Lake	LGC	KFZ888	45.32
	FD	KQG659	46.38
Christiansburg	PD	KQE829	39.58
	FD	KCT631	154.19
Cincinnat	PD	KQA387	155.64
	PD	KQA387	156.15
	PD	KQA387	158.85
	PD	KLY957	460.10
	PD	KLY957	460.20
	PD	KLY957	460.25
	PD	KLY957	460.275
	PD	KLY957	460.325
	PD	KLY957	460.425
	PD	mobile	155.70
	PD	mobile	156.09
	PD	mobile	158.91
	PD	mobile	159.15
-.s.U.	PD	KDU588	453.80
	PDC	KCU760	39.14
	PDC	KQA230	39.14
	PDC	KEQ81	458.50
	PDC	mobile	39.30
	LG	KLS617	453.35
	LG	KMM50-4	458.35
	LG	KFR658	155.76
	LG	KQ1919	155.76
	LGC	KJY795	158.76
	LGC	KGY327	158.805
	LGC	KQH803	158.82
	FD	KQC767	153.83
	FD	KQC767	154.07
	FD	KQC767	154.01
Airport	FD	mobile	153.89
	FD	mobile	154.19
	FDC	KQ1316	33.90
	FDC	KCU761	33.90
	FDC	KES95	458.50
	FDC	mobile	33.58
Circleville	PD	KQA304	155.61
	PD	mobile	155.85
	PDC	KQA930	39.58
	FDC	KF0822	33.86
Clarksburg	FDC	KAX773	154.13
	FDC	KQK71	154.445
Clay Twp	PD	mobile	39.58
	FD	KFB981	33.74
	FD	KFB989	33.74
Clay Center	PD	mobile	39.58
Cleveland	FD	KDR759	33.86
	PD	KQA550	37.18
	PD	mobile	37.34
	PD	KQA550	155.01
	PD		460.125
	PD		460.15
	PD		460.225
	PD		460.275
	PD		460.35
	PD		460.40
	PD		460.45
	PD		460.475
	PD		460.50
	LG	KFl606	154.10
	LG	mobile	155.925
	LG	KQK354-5	158.76
	LGC	KUH75	458.35
	LGC	KUH75	458.55
	LGC	KUH75	458.60
	LGC	KUH75	458.70
	LGC	KUH91	same
	FD	KQA216	33.58
	FD	KQA216	33.90
	FD	KQA216	153.83
	FD	KQA216	153.95
	FD	KQA216	154.01
Cleveland Hts	PD	KQA605	39.98
	LG	KDB535	46.54
	FD	KBU407	154.19
Cleves	PD	KQ1286	155.13
	PD	moblle	154.89
Clifton	PD	mobile	39.58
	FD	KFI454	154.07
	FD	KFI545	154.37
Clinton Twp	PD	KDX462 KQK542	39.50 33.86

Girard	PD	KQD920	155.13
	FD	KDN529	154.43
Glenwillow V/g	PD	mobile	39.42
	FD		46.46
Grandview Hts	PD	KQG687	155.07
	PD	mobile	39.58
	PD	mobile	154.65
	FD	KDQ270	153.89
Granger Twp	PDC	KJV267	460.20
	FD	KC0369	46.38
Granville	PD	KCZ856	39.58
	FD	KBW856	33.86
Greenfield	PD	KQD320	39.58
	FD	KDN609	33.94
Greensburg	FD	KBK517	33.74
	FD	KBK517	33.86
	FD	KLW311	same
Green Springs	PD	KQD902	39.58
	FD	KDN457	46.06
Greenville	PD	KQA462	39.58
	FD	KB0791-2	154.19
Grove City	PD	KQF365	39.38
	PD	KQF365	39.42
	LG	KDC338	45.28
	FD	KAR328	33.86
Groveport	PD	KFX269	39.58
	LG	KLJ221	39.10
	FD	KAY990	33.86
	FD	KAY990	33.90
Hamden	FD	KQS505	46.14
	LGC	KBV811	46.58
Hamilton	PD	KQA527	156.21
	PD	mobile	155.97
	PDC	KQE927	154.80
	LG	KJP540	153.785
	LG	KQJ399	154.025
	CDC	KLU443	45.44
	LGC	KQU214	453.90
	LGC	WAU76	458.90
	FD	KQA879	154.13
	FDC	KBH629	154.37
Hartford	PD	KJS745	155.13
	FD	KBZ960	33.86
Heath	PD	KET240	39.58
	PD	KET240	154.74
	PD	mobile	158.79
	LG	KDT265	155.715
	LG	KSA76	158.865

Hicksville	FD	KLR398	33.86
	PD	KQJ300	39.58
	FD	KGJ725	154.25
Hilliards	PD	KQH286	39.54
	PD	KQH286	39.58
	FD	KJP275	33.86
	FD	KQJ862	33.86
Hillsboro	PD	KQE379	39.58
	PDC	KCQ234	39.58
	FD	KQ0861	33.94
Hiram	PD	KLD730	39.58
	PD	KLD730	39.66
Holgate	PD	mobile	39.58
	FD	KCL529	154.13
Howland Twp	PD	KFZ911	155.13
	FD	KQH979	33.78
Hubbard	PD	KQF250	155.13
	PD	mobile	154.89
	LG	KBW784	154.04
Hudson	PD	KBX488	155.37
	PD	mobile	39.58
	LG	KBW785	155.715
Huntington Twp	FDC	K12394	154.131
	FDC	KHH62	154.445
Huron	PD	KQF511	39.46
	PD	KQF511	39.58
	FD	KDR779	46.06
Independence	PD	KE0311	39.22
	PD	KE0312	39.42
	LG	KJY899	153.80
	FD	KRB528	46.48
Ironton	PD	KQA330	155.565
	PDC	KCW381	39.58
	PDC	KET21	453.15
	PDC	KET22	458.15
	LG	KJI628	154.04
	LG	KAW377	155.94
	LGC	KQJ55	453.35
Jackson	PD	KQB910	39.58
	PD	KQG209	39.58
	LG	KDN611	155.10
Jefferson	PD	KDD957	39.58
	PDC	KQA528	155.13
	FD	KQH862	154.13
	FDC	KQ1455	154.13
Jewett	PD	KQC858	39.58
	FD	KDE249	33.94
Johnstown	PD	KJK546	39.58
	FD	KCZ887	33.86
Junction City	PD	KEP589	39.58
	FD	KJS791	33.86
	FD	KJS791	33.98

(Continued next issue)

Li'l Blitzer

Continued from page 38
of each lead that will slip over the connecting pins on the flashtube. Form the stiff wire to hold the tube about $1 / 2-\mathrm{in}$. in front of the tie strip and connect to the lugs on each end.

Form the reflector from a scrap of bright aluminum, stainless steel or a polished tin can. The reflector is $15 / 8 \times 1-\mathrm{in}$. before rolling it around a broomstick to form a concave reflector. Notch each end on the center line to clear the connecting leads. Solder or cement a solder lug midway along the bottom edge so that it can be placed over the mounting screw for the tie strip, thus holding the reflector in position behind the flashtube.

Solar Cell. The plastic box in which the solar cell (SC1) is shipped is ideal to use as a final housing for it in this application. Cement the cell to the clear plastic half of the container so that the active surface faces
out when the container is closed. Use Duco or a similar clear cement for this.

The cathode tab of silicon-controlled rectifier SCR1 is soldered directly to the back of SC1. Cut the tabs of SCR1 to about half original length and connect the red (+) lead of the solar cell to the gate of SCR1. The black (-) lead of the solar cell connects to the ungrounded primary terminal of T 1 and the cathode of SCR1. The anode of SCR1 connects to the juncture of R3 and R4. A red and a black wire twisted together runs from the solar cell/SCR assembly to the main assembly to interconnect them. A Vee notch cut with a hot soldering iron permits feeding the leads out of the enclosure when its back is snapped in position.

The solar cell assembly must be capable of being oriented in all directions to ensure that the flash from the master flashtube reaches it directly and with a reasonable amount of intensity. Though not shown in the photos of the model we suggest you use an universal joint used to mount a desk pen on the base of the desk set. If you can't find one in a handicraft shop you certainly can
-rob one from an inexpensive desk set.
The four AA cell plastic battery holder fits inside the housing for the basic unit. A conventional 9 V transistor battery connector should be used between the battery holder and the electronics sub-assembly to provide quick disconnect and reconnect.

Testing Li'l Blitzer. Insert four fresh AA cells in the battery holder, plug it into the flash unit and turn on Sl. If your ears are sharp you may be able to hear a very slight humming from the T1 end of the assembly. In about 10 seconds the ready lamp should light, indicating that Cl is now charged again and Li'l Blitzer is ready to fire the flashtube. Fire your master flash lamp a few feet away from Li'l Blitzer and observe the flash of Blitzer's flashtube, that is, of course, assuming you did a good job of building Li'l Blitzer. If it doesn't fire check connections of various components for mistakes in wiring. Be sure diodes D1 and D2 and capacitor Cl are properly polarized and the batteries are correctly inserted and deliver a full 6 VDC output.

Using Li'l Blitzer. The unit can be handheld and pointed where the additional light is wanted. Just be sure that SC 1 is facing the master flash which triggers Li'l Blitzer.

You should mount a standard tripod sock-

et on the bottom of Li'l Blitzer to assist in placing it exactly where it's needed. You might like to equip your Li'l Blitzer with a clamp and universal joint like those furnished with portable lamps.

We used an $80-\mu \mathrm{F}$ capacitor at C 1 which produces about 6 watt seconds of light. You may use up to $400 \mu \mathrm{~F}$ for this capacitor which will increase output accordingly. We've included a chart that gives approximate watt-seconds output for various sized capacitors, starting at $80 \mu \mathrm{~F}$ and increasing up to $400 \mu \mathrm{~F}$ (which produces 30 -wattseconds of light, the maximum output attainable from the MFF45S flashtube used).

Once you've checked out Li'l Blitzer and are assured it's working properly, close up its box and have some fun trying it out on a new batch of photos.

Positive Feedback

Continued from page 7
is reason enough to lock down Channel 11 as calling Channel No. 1.

This Editor call upon all CB clubs throughout the nation to promote Channel 11 as the principal calling channel for all stations. This would cause some small financial burden, because many organizations have placed highway signs at strategic locations urging the use of

Channel 9. These must come down immediately and new ones must be substituted for them as soon as possible. It is incumbent upon the clubs to inform their members of this action and to encourage them to use Channel 11. For it's through the action of individual clubs in concert with REACT that CBers will be unified and consolidated into one efficient organization. Through practice by concerted effort, the FCC may eventually legalize Channel 11 as the general calling channel. Let's all get behind REACT and see if we can pull this one off!

Digitalock

Continued from page 68
And remember to run a lead to the Reset input from flip-flop 1 to pin R.

By now you must be anxious as all getout, wondering if those black plastic 14 legged jobs do anything. Go ahead and apply power to 'em. With the jumper from point V on our functional diagram, reset flip-fiop 7. Its Q output should be low. Temporarily jumper points Q and Q^{\prime} together; with flipflops $1-6$ set, flip-flop 7 should set auto-
matically. Its Q output should zip up. If you've wired your circuit up to K1, and associated components, you'll see the relay pull in.

Now let's do an about face. The relay should drop out, and flip-flop 7 reset, when the lead from point V is touched to the Reset input of any of the input flip-flops 1-6. Yes, Virginia, it really works!

Complete your perfboard assembly by wiring the monostable. This stage consists of gates G4 and G5 and transistor Q2. Incidentally, you can vary the automatic reset delay time. Wire a 2200 -ohm resistor in
series with a 100,000 -ohm potentiometer, and substitute this combination in place of, resistor R5.

The components specified in our Parts List provide a maximum delay of 25 seconds. For longer time delays you can increase the capacity of C14. But don't increase the value of R5 beyond 100,000 ohms or erratic operation may result.

Assuming DigitaLock has a clean bill of health, proceed with the final phases of construction. Two wiring options are available. The first is the automatic reset provision, which resets the lock after a specified period of time. If you want this option, build the device as shown, and jumper points X and X^{\prime} together. Without the jumper, DigitaLock opens after the correct combination is entered. It's reset by depressing one of the four buttons not used in entering the combination.

If you don't need the auto-reset feature, you can save some scratch by eliminating resistors R3-6 and capacitors C11-15. Also forget about transistor Q2, and the wiring to gates G4 and G5 of IC5.

The second option reminds us of that hair coloring ad proclaiming only your hairdresser knows for sure. DigitaLock provides autoprogramming by jumpering terminal points Q and Q^{\prime}. This means if you add Program Enter Switch S11, you'll greatly increase the odds against someone not knowing the combination from tripping the circuit. Switch S11 is guaranteed to give your neighborhood burglar-in-residence gray hair fast!

When you are connecting up your digit

RCA Oscilloscope

Continued from page 72

It's an electrical fact of life that all components age. RCA clearly gave the matter some thought by grouping the critical calibration adjustments so they're accessible through holes in the cover. These adjustments include DC Balance, Horizontal and Vertical fixed Sweep Frequency adjustments, and Astigmatism control.

Showing You the Way. The instruction manual accompanying the WO-505A is jampacked with useful information. You'll find construction details, and use of an easy-toassemble Vectorprobe. That'll come in mighty handy for those tricky color TV
input switches $\mathbf{S} 1$ through $\mathbf{S 1 0}$, remember, the first digit in the combination should set flip-flop 1. The second digit, or second switch, sets flip-flop 2 , and so on down the row. Any 6 -digit number works here, but don't let any digit repeat itself.

Any digit switches that aren't used in the combination should be connected to terminal point R.

Suppose you don't want a combination with six digits. DigitaLock's flexibility is on your side-all you have to do is connect the first flip-flops in the line. Connect all unused Set inputs to +3.6 volts through 1500 -ohm resistors.

DigitaLock's Shakedown Cruise. With metal joint agleam and hull freshly covered, you're ready to send your DigitaLock down the ways. First step's christening her, so go ahead, Cap'n, flip on the power! After entering your combination and depressing switch S11, the relay will pull in.

Depressing any button not used in the combination causes K1 to drop out immediately. For added security, an opaque plastic or metal shield can be placed over the key sender. Add this fillip if you want to hide the combination, as it's being entered into DigitaLock, from unauthorized eyes.

Even if you had Maxwell Smart's smarts you'd still want DigitaLock to continue its operation during a power failure. Referring back to our schematic, you'll see you need an extra relay, a few spare parts, and four alkaline batteries. Alky batteries can power our DL's innards for more than 48 hours; more than enough time to boggle burglars.
alignment procedures that are very common.

Photos clearly illustrate actual waveforms you should see in TV receivers. And pictorial charts further guide you through the TV receiver's thicket by illustrating representative waveforms for both horizontal adjustment and overall alignment check.

The scope's 1 -megohm input impedance is obtained through the use of field effect transistors (FETs). Horizontal input's also high impedance; again an FET does the trick.

The term solid state means different qualities to different test gear manufacturers. In RCA's case, it translates as lightweight test gear. And WO-505A's true to form as the scope weighs in at 25 lb . Solid state also spells cool running in their dictionary. Once you adjust WO-505A (after a minute or two
of warm-up time) it holds its adjustments hour after hour.

In fact, this scope's notably free of bounce and jitter. What you see is a trace essentially as stable as you'd find on a lab-quality job.

Power consumption for the unit is a rockbottom 30 watts. What's more, a WO-505A could easily be powered off a DC to 117VAC inverter, if field use dictates. Which all goes to show that if you can't heft a backbreaking chassis to your scope, now at least you can tote your scope to the chassis.

Extending WO-505A's Usefulness. A dualaction probe is supplied with the scope. It's RCA's WG-400A model. By flipping a builtin switch, you can measure DC or lowfrequency (up to 500 kHz) AC waveforms. This eliminates the nuisance of having to stop in midstream to change probes.

You've also got two probe accessories to choose from. One's an RF probe, WG-302A, which extends your measurement capability from 500 kHz up to 250 MHz . You'll need this baby if you do much poking around the latest state-of-the-art ham gear.

The other probe makes sure you don't get a charge out of its operation. Type WG354A gives the wherewithal you want for hunting around high-voltage circuits (TV horizontal sweep generators, for instance) with confidence. This capacitive voltagedivider probe lets you conquer those high volts-up to 5 kV 's worth.

The suggested list price for RCA's WO505A oscilloscope is $\$ 298.50$. For more information write to RCA Electronic Components and Devices, Building H-23-2, Harrison NJ 07029.

Cassie
 Continued from page 60

ary leads and the leads running to switch S2. Don't forget to run a ground lead from amp to supply.

After you've soldered and screwed the amp and power supply in place, fasten the power transformer to the baffle's bottom with a couple of wood screws. A 3-lug terminal strip should be placed under a convenient transformer mounting foot to make your chores easier.

Having consulted our astrologer-in-residence, we decided to buy a handful of $1 / 4-\mathrm{in}$.
round-head screws for those remaining mounting jobs. While you're hanging around the hardware store, buy four \#6 fiber washers. They'll reside at each corner of the amp between the printed circuit board and the speaker cabinet. It wouldn't be especially smart if you crack your amp's PC backbone as the mounting screws are tightened. And as a final cutting remark, our astrologer told us to dress the amplifier output wires to a reasonable length for future connection to the speaker.

You've now reached the last step in decorating our tonal tortoni. Handle your Coaxial Caruso with TLC as you mount it in place. Finally, garnish the speaker lugs with amp output leads. Mamma mia, bel canto!

Spook Patrol

Continued from page 70
ly double the effectiveness of their city's hard-working police department by adding 35 sets of mobile eyes, ears and voices to the on-duty fleet of police cruisers

It's in the Record! The duty operator at the headquarters console, on October 31 tells it like it was: "Traffic was pretty wild when the gang went on station at 5:00 P.M.everybody calling in, checking his equipment, confirming his location, etc. After we got settled in and the "business" calls started coming, I did most of the relaying by telephone to the police station. Dick Kramer, our city Traffic Engineer (KBL4848), who
is a member of our club, also used his FM radio to relay to the police cars. He is on the police net with the city and, of course, our CB network. We worked on channel 17 and just about everybody who operates CB in this area knows about the Spook Patrol and stayed off the channel. When somebody who hadn't gotten the word came on, we told them what we were doing and they cooperated by using another channel or staying off the air.
"Some of the calls were pretty interesting Our mobiles reported two firearms in-cidents-one, a woman, apparently got carried away with the spirits of Hallowe'en and was banging away at nothing in particular with a pistol.
"Another guy, who hadn't caught the trick or treat spirit-especially the "trick"
part, took off after a bunch of bigger kids with a rifle; they had thrown a bottle through the window of his house. One of our mobiles spotted this action and we got the police in quickly before any harm was done.
"Another group of about 50 kids was on the golf course shooting off some real heavy-gauge firecrackers and cherry bombs. Fireworks are illegal in the city limits, so we got a police car headed out there before somebody got hurt. It was a pretty active evening. As a CB'er, it was a lot of fun, but mostly it made us feel good because we know we did some good."

It is doubtful if many residents of Huntsville realize how much good is done by these men who volunteer their time, equipment, and private cars to Operation Spook Patrol

Although the city has doubled in population and nearly doubled in area since the Spook Patrol was inaugurated eight years ago, incidents requiring direct police action have steadily declined. Operation Spook Patrol is well publicized in newspapers and radio a week before Hallowe'en. Every kid knows about it. Those 35 unmarked cars with bare-ly-visible little antennas unobtrusively patrolling the city's 107 square miles have a restraining effect.

On major roads entering Huntsville's city limits the Emergency Citizen's Band Monitors, Inc., have erected REACT signs and the club's emblem. Incorporated in the ECBM emblem is the Latin phrase, "Pro bono publico." Its translation, "For the good of the public", is most appropriate.

Great Men of Science

Continued from page 26

Michael soon showed that he could make money. As an "expert witness" in cases involving chemistry and electricity in one year he earned the equivalent of about $\$ 6,000$ from attorneys.

Friends encouraged him to make a career in the law courts. With a little effort, they said, he could multiply his income 500%.

To the disgust of most of his friends, Faraday abandoned this activity. Faced with a choice, he decided in favor of the Royal In-stitution-at a salary of $£ 100$ (about $\$ 600$) a year "plus house, coals, and candles."

His experiments with electricity began about 1821, continued for more than a decade.

Links between the strange new force and magnetism had already been discovered. It was known that a flow of current can be made to produce a magnetic field.

If electricity could create magnetism, it seemed to Faraday only logical that magnetism could generate electricity. Most scientists with whom he discussed this notion laughed at it. Well trained in the knowledge of their day they knew this experiment had been tried without success.

Faraday had the advantage of ignorance. He didn't know his concept was ridiculous.

So he wound wire around one segment of a 6 -inch soft iron ring and attached the coil to a battery. Another coil halfway around the ring was linked with a galvanometer. Current flowing through the first coil, he
reasoned, should produce a magnetic field that would induce a flow of electricity in the second coil.

On August 29, 1831, he recorded: "Success!"

Analyzing his results, Faraday correctly reasoned that the magnetic field itself didn't start electricity flowing. It was the process of creating or breaking the field that did the trick.

How could his phenomenon be made to yield a continuous current?

Faraday wound wire around a paper cylinder, inserted and then withdrew a bar magnet. Each time the magnet moved the galvanometer pointer was deflected. But pushing and pulling a magnet by hand was awkward business.

Eleven days later he mounted a 12 -inch copper disc on an axle, then rotated this crude armature between poles of a big magnet. Continuous current flowed!

Self-taught Michael Faraday had for the first time in history converted mechanical energy into electricity. He had perfected essential elements of the dynamo, transformer, and electric motor.

Once his work was shown to be sound, Faraday turned to other interests. He applied for no patents, formed no corporations. Money didn't appeal to him. Neither did honors. He turned down invitations to knighthood and presidency of the Royal Society.

In keeping with his aim in life he died "plain Michael Faraday," poor in pounds but rich in satisfaction that single-handed he had ushered mankind into the electrical age.

CLASSIFIED NTarfiet Olace
 FOR BIGGER PROFITS! NEW CAREER OPPORTUNITIES! READ AND REPLY TO THESE CLASSIFIED ADS

Classified Ads 65t per word, each insertion, minimum 10 words, payable in advance. For information on Classified ads-to be included in our next SCIENCE \& ELECTRONICS-write to C. D. Wilson, Mgr., Classified Advertising, 229 Park Avenue South, Now York, N. Y. 10003.

ADDITIONAL INCOME

UP To \$151.00 Proft A Race Day With $\$ 2.00$ Stakes And Wonderiul Pencliff. World's Top Horse Race Computer. $\$ 4.000$ Latest Checkable, Fabulous Results Supphted. Have Fun-Plus Profits. RH-D1 5715, Carmel, California 93921.

LEARN How High Priced Professtonals Reflinsh and Restore Dilapidated Bargain Pleces Into Beautiful Antique Show Items If You Collect Antiques This Book Is Worth Its Weight In Gold. Send $\$ 1.00$ Super. 640 Magnus Lane, Coraopolis. Penna. 15108

ATHLETIC EQUIPMENT \& BODY BUILDING

NEW High-Speed Whipper-Joggers inproves shape fast! Better than jogging calisthenics, belts. diets. Free Details Whipper-Joggers, 2515 Euclid, Santa Monica, Calif 90405

AUTHOR'S SERVICE

PUBLISH your book! Joln our successful authors: publicity advertising promosend for free manuscript report invited talled booklet. Carlton Press. Depi. SMH 84 Fifth Avenue, New York 10011 .

BUSINESS OPPORTUNITIES

I made $\$ 40.000$ Year by Mailorder Helped others make money! Starl with \$10.00-Free Proof! Torrev, Box 318-T Ypsilanti, Michigan 48197.
FREE Book "goo" Successtul LittleKnow'n Businesses." Fasclnating! Work home! Plymouth 4i1-M, Brooklyn, N. Y 11218.

HOW To Build Your Own Proftable Mall-Order Business Fast! Free Delails! Act Now. W. Hasting. P.O. Box 1055. Bonita Springs, Fla. 33923

COINS, CURRENCY \& TOKENS

100 Indian and Lincoln Cents. 1920 's and Older $\$ 5.00,40$ Mixed Buifalo Nickels \$5.00. Wesly Rood, West Union, Lowa 52175

EDUCATION \& INSTRUCTION
EARN College Degrees at home Many Subjects. FLORIDA STATE CHRISTIAN COLLEGE. Post Office Box 1674, Fort Lauderdale, Fla. 33302
ELECTRONIC COMPONENTS \& KITS
FREE CATALOG. Electromic modules, kits, booklets COMP-U-KIT Logic Lab. pulse generators and many others. Write now. Scientific Measurements. C126, 9701 Kenton, Skokie, 111. 60076

FOR SALE-MISCELLANEOUS

COMPUTER LOGIC LAB for $\$ 39.00$ postpid. Ten circuits including clock, displays. TTL IC's: 20 patchcords: outstanding Losic book. Write for Free literature Scientific Measurenents, C127. 9701 Kenton, Skokie, Ill. 60076.

INVENTIONS WANTED

WE elther sell your invention or pay cash bonus. Write for delails. Universal Inventions 298-5, Marton. Ohio 43302.

MAIL ORDER OPPORTUNITIES
FREE Magazine Mail Orcler Information. Suell's, Box 682-D3. Bath. N.Y. 14810.

MISCELLANEOUS

ADULT Books. Magazines! Full Color Catalogue-200 Photos! 25t (handilng) State Age Clifton's. Box 1068-SC, Saugus. Calii. 91350.
OVER BO peanmt butter sandwich rectpes. Send $\$ 1.00$. Lee Carroll, Bos 1315. Punta Gorda. Fla. 33950.

OVERWEIGHT? Slimming Hypnosis Recording $\$ 10.00$. Neale Institute. Box 923-M, Edmonton, Canada

PSYCHEDELIC Catalog 50 Pakes. Send 50c. Hole In The Wall, 6055-SM. Lankershim, No. Hollywood, Calif 91606

MONEYMAKING OPPORTUNITIES
MAKE Big mones raising chinchillas, rabbits, guinea pigs for us. Calalog 256 Keeney Brothers, New' Freedom. Pa 17349

EASY-to-start rubber stamp buslness at home in sare time Make up $10 \$ 16.50$ an hour without experlence Facts free. Write
to: Roherts 1512 Jarvis. Room CR-105-E to: Roberts, 1512 Jarvis. Room CR-105-E
Chicako. Ill 60626 . Chicako. III. 60626.
-HOW to be your own boss! Work al home-huge profits. Free plans tell how! Get started today. Enterprises. P.O. Box 1069. Bonita Springs. Fla. 33923

BIG money maker. Ceramic Christmas Tree (electrified). Retidl $\$ 14.95$. Sample, detalls $\$ 9.95$. Em-E), 10 Vesper Hill Trumbull. Conn. 06611.
LEARN
Thompson,
Dept. Cleveland. Ohio 44128 .

OF INTEREST TO WOMEN

ADDRESSERS and Mailers Needed Send Stamp For Information ' T Lindbloom 3636 Peterson, Chicaro 60645

PERSONAL

ELIMLNATE Debis Withoul Borrowing Parttculars Free. Helper. 10639 Riverstle No. Hollywood. Callf. 91002
rHERE is no charge for the Zip Code. Please use it in your Classifled Ad

RADIO \& TELEVISION

THOUSANDS AND THOUSANDS of types of electronic parts, tubes, transistors, instructions, etc. Send for Free Catalog. Arcturus Electronics Corp. MRT 502-22nd Street Union City, N. J. 07087.

RADIO \& TV Tubes $33 c$ Free Catalog Cornell. 4217 West Universils, San Dlego Culıornia 92105
RECEIVING \& INDUSTRIAL TUBES. TRANSISTORS, All Brands-Bipgest Discounts. Techniclans. Hobbvists. Experimenter -Request Free Giant Calalog and Save! Zabytron, 469 Jericho Turnpike, Mineola, N Y. 11501.
'CRYSTAL Experimenter's Hundbook' -504. "20 Distance Crystal Plans Handbook: - 50 C Catalog Laboratories. 2 tin-H Butano. Sacramento. Calif. 95821

BLACK and White Television Converted To Color Patented System. Do It Yourself Kir Write For Free Brochure Bele Electronics Corp. 111 N.E. Second Ave. Mhaml. Fla. 33132.

EXCITING Listening! Police-FireEmergency calls on your broadcast radio $\$ 19.95$ up! Also crystals-recelvers, Scanders. dualband High Low. Brochures $10{ }^{\circ}$ Galch Company, woodsboro 39. Tesus 78393

RECORDS, RECORDERS, SOUND EQUIPMENT

BLANK'S 8 Track Do Youl Own Record-

 ing. For Information Write Wade's Korner, 100 South Gilbert, Fulleston. Callf. 92633.
REMAILING SERVICE

NAPLES, Flotida $\$ 3.00$ Mon hly $25 c$ Single. Walt. PO. Box 1055. Bonfta Springs, Flotida 33923
YOUR Califorma Mailing Address-Re-liable-Confidentlal Singles $25 c$. $\$ 3.00$ monthly Ernest, $2167-6$. Ocala Avenue. San Jose, Callit. 95122.

TREASURE FINDERS-PROSPECTING EQUIPMENT

BURIED Treasure Is Evervwhere! New Map Book Shows Over 400 U.S. LocaMons. Detans Free, Treasurt Follo

FOR GREATER CLASSIFIED PROFITS, RESULTS AND SAVINGS

> Place your ad in one of our SPECIAL COMBINATIONS: Business, Science \& Mechanics, or Davis Combination. Each Cambination is designed to give your ad the largest audience available. For further information write to C. D. Wilson, Manager, Classified Adverfising, Science 8 Mechanics, 229 Park Avenue South, New York, N.Y. 10003.

Hunting for a better job?

Fere's the
license you heed to go after the big ones

Abstract

A Government FCC License can help you bring home up to $\$ 10,000, \$ 12,000$, and more a year. Read how you can prepare for the license exam at home in your spare time-with a passing grade assured or your money back.

I'youre out to bag a better job in Electronics, youd hetter have a Govemment FCC License For vou'll need it to trach down the ct oicest. hestpaying johs that this booning field has to offer

Right now there ate 80.000 new openings every year for electronics specialists-iobs paying un to $\$ 5$, $\$ 6$. even $\$ 7$ an hour... $\$ 200 . \$ 225 . \$ 250$ a week. $\$ 10,000$. $\$ 12.000$, and up a year! You don'i need a college education 10 make this hind of money in Electronies, or even a high school diploma.

But you do need knowledge, knowledge of electronics fundamentits. And there is only one nationally accepted method of measuring this knowledge...the licensing program of the FCC (Federal Communications Commission).
Why a license is important
An FCC License is a legal requirement if you want to hecome a Broadeast Fingineer or get into serv. icing any obher kind of transmitting equipment-two-way mobile radios. microwave relay links, radar, etc. And even when it's not legally required. a license proves to the world that you anderstand the principles involved in any electronic device. Thus, an FCC "tiche"" can open the doors to thousambe of exciting. high-paying jobs in communicalions. radio and broadeasting, the acrospace programa, industrial athomation. and many other areas.

So why doesnit everyone who wants a good job in Electronics get an FCC Licence and start cleaning up?

The answer: its not that simple. The governments licenving exam is tough. In fact, an average of two out of every three men who tahe the FCC exam fail.

There is one way, however, of being pretty certain that you will pass the FCC exam. And that is to take one of the FCC home study courses offered by Cleveland Institute of Electronics.

CIE courses are so effective that better than 9 out of 10 CIE graduates who take the exam pass it. That's why we can back our courses with this ironclad Warranty: Upon completing one of our FCC courses, you must be able to pass the FCC exam and get your license-or you'll get your money back!

They got their licenses and went on to better jobs

The value of CIE training has been demonstrated time and again by the achievements of our thousands of successful students and graduates.

2 NEW CIE CAREER COURSES

1. BROADCAST (Radio and TV) ENGINEERING now includes Video Systems. Monitors, IM Stereo Multiplex. Color Transmitter Oneration and CATV

2. EIECTRONICS ENGINEIRRING covers steady

 state and wansient network theory, solid state physics and circuitry, pulse techniques. computer logic and mathematics through calculus. A college-level course for men already working in Electronics.Ed Dulaney. Scottsbluff, Nebrasha, for example. passed his lat Class FCC License exam soon after completing his CIE ltaining...and today is the proud owner of his own mobile radio sales and servwe business. "Now I manufacture my own two-way equipment," he "rites, "with dealers who sell it in seven ditierent states, and have seven full-time employecs on my payroll."

Daniel J. Smithwich started his CIE training while in the service and passed his and Class eatm soon after his discharee. Four months later, he reports, -I was promoted to manager of Bell Telephone at La Moure. N.D. Thiswas a very fast promotion and a greal dead of the credit goes to CIE."

Fugene Irost. Columbus, Ohio, was stuch in lowpaying TV repair work before enrolling with CIE and earning his FCC License. Today, hes an inspee tor of major electronics systems for North Amerticat Aviation. "1"m working 8 hours a weeh less," says Mr. Frost, "and carning $\$ 28$ a month more"

Send for FRLE book

If you'd like to suceed like these men, send for our free 2.-page booh "How To Get A Commercial FCC License." It tells you all about the FCC License . requirements for getaing one . . dypes of Jicenses available... how the exams are oremized and what hinds of questions are ashed... where and when the exams ate held, and more.

With it jou will also receive a second rree booh, "How To Succeed In Electronics." To get both books "ithout cost or obligation, just matil the attached pustpad card. Or, it the card is missing, just mail the coupon below.

EVROIL LNDER NEW G.1. BH.L. AH CIE course are abalable under the men G.1. Bill. It you serbed on adtive duty since Jan. 31. 1955, or ate in sorvice now. chesh box on leply card for complete derails

CIE
 Cleveland Institute of Electronics

1776 E.17th St.. Cleveland. Ohio 44114
Aceredited Menter National Home Study Council A Leader m Electronics Trathing. . . Smee 19:4

BUILD 20 RADIO

 and Electronics Circuits PROGRESSIVE HOMERADIO-T.V. COURSE
Tow Includes

+ 12 RECEIVERS
+ 3 TRANSMITTERS
* SQ. WAVE GENERATOR

SIGNAL TRACER
(SGNAL TRA

* SIGNAL INJECTOR
+ CODE OSCILLATOR

\star No Knowledge ol Radio Necessary
\star No Additional Parts or Tools Needed
\star EXCELLENT BACKGROUND FOR TV
\star SCHOOL MACUIRIES INVITED
\star Sold In 79 Countries

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

The "Edu-Kit"" offers you an outstanding PRACTICAL HOME RADIO COURSE at a rock-bottom price. Our Kit is designed to train Radio \& Electronics Tecrnicians, making Use of the most modern methots of home trainink. You wiil learg radio theoryi construcfon practice and servicimk rhis is A comprebuar schernatics: how to wire and solden In a prolessional manner: how to service radios. You will work with the standard type of
punched metal chassis as well as the latest development of printed circuit chassis. You will learn the basic princibles of radio. You will construct. study and work with RFd practice code, using the progressive code oscillator, You will tearn and practice Trouble-shooting, using the Progressive signal Tracer, Progressive Sifnal fniector, Profingimstructronal material, for the Novice, Technician and General Classes of F.C.C. Radio Amateur Licenses. You will build Receiver, Transmiter, Square wave Generator, Code Oscillator, Signal Tracer and signal Injector circuits, and learn how to operate them. You will receive an excellent background for relevision. or science is required. The "Edu.kit" is the product of many years of teaching and engineering experience. The provide you with a basic education alone is worth more than the price of the kit

THE KIT FOR EVERYONE

You do not need the slightest background n radio or science. Whether you are interwant an interesting hoblyy a Well payyng business or
ages and backgrounds have successfully used the "Edu-kit" in Hore that 79 councarefuny designed. step by step. so that you cannot make amistake. The "Edu-kit", allows you to teach yourself at
rate. No instructor is necessary.

WPROGRESSIVE TRACHING METHOD

The Frogressive Radio "Edu-KIt" is the foremost educational radio kit in the world
 learn schematics. study theory, practice trouble shooting interestimg background in radio. gram designed to provide an easilyearnedio oarts of the "Edu-kit," You then learn the function, theory and wiring of these parts. Then you build a simpie radio. wractice testing set you will enioy listenimg to regular broadcast stations, bearn theory practiced theory and troubte-shoot int. Then you taulda moresessive manner, and at your own rate, you will and techniques. Gradiaky more advanced multi-tube radio circuits, and doing work like a professionat Radio Technician. course are Receiver, Transmitter, Code Oscillator. Sigmal Tracer, Square Wave Generator and Signal injector Circuits. These are not unproisssional wiring and soldering on metal chassis, plus the new method of radio construction current
as "Printed circuitry." These circuits operate on your regular Ac or
THEA
You will receive all parts and instructions necessary to burd twenty tube socke electronics circuits, each guaranteed to operate. Oifroits contain tubes, able, electrolytic, mica, ceramic and paper dielectric condensers, hook-up wire, solder, belanium, rectificrs, coils, volume controls and switches, etc. . special tube sockets, hardware and instructions. You also receive a useful set of tools, a
 in addition to F.C.C. Radio Amateur License training. You will also receive lessons for servicing with the Progressive Signal Yoceve membership in Radior TV Club, Free consultaw tion Service, Certificate of Merit and Discount Privileges. You recelve all parts.
instructions, etc. Everythino is yours to keed.

Progressive

UNCONDITIONAL MONEY-BACK GUARANTEE - - - - - -

Please rush my expanded "Edu-Kit" to me. as indicated below
Check one box to indicate choice of model
regular model $\$ 34.95$. same as regular model excopt with superior parts and
Superior model $\$ 39.95$ (same as regular mode
Check one box to indicate manner of payment
I enclose full payment. Ship "Edu-Kit"post paid. Send me FREE additional information describing "Edu-Kit.
Name
Address
City $\&$ Stat
Zip
PROGRESSIVE "EDU-KITS" INC.
189 Broodway Dept. 562 NN. Hewlett, N. Y. 11557

[^0]: Capies of Berliner's Flat Disk Recard patent are available for fifty cents each fram the U.S. Patent Office, Washingtan, D.C. 2023I. In ordering, give the number of the patent-No. 548,623.

