Dazzle your friends with lightworks.
 Sound n' Color

 EICO Ali Electronic Solid-State Audio-Color Organs transtorm sound waves inio moving synchronzed colo images. Connect easily to speaker leads of hi-1i or radio From $\$ 29.95$

 The electronsos you need to create audio imagination. Acluates Light Display Units Sirobe Lites. any lamp configuration (Xmas trees, pallo lights etc.) from $\$ 3495 \mathrm{ki}$:
 High-inlonsily bursts of winte lioht lrom Xenon
 lube llash in cadence wilh each beat of audio. From $\$ 2495 \mathrm{k}: 1, \$ 3995$:ured.

Build the Stereo Kits praised by experts.

70.Wa:t AM/FM Siereo Hoceiver including cabinet. Coltina $3770,518995 \mathrm{k}$
527995 wred
70-Walt FM Stereo Recoiver including cabinet. Cortina 3570 , $\$ 16995 \mathrm{kIt}$,

Amplifier including cabinet. For the audio perfectionist Cortimat $3150, \$ 12995 \mathrm{klt}$. $\$ 225$ wired
70-Watr Silican Solid-Stale Stereo 3070

Cortina $3200 . \$ 99.95 \mathrm{kis}$, $\$ 139.95$ wired

Build for fun and use with Eicocraft jiffy project kits.

Shape up your own car/boat with EICO Engine Analyzer

The first and only solid state test equipment GUARANTEED FOR 5 YEARS

You save up 1050% with EICO Kits. Since 1945, Best Buys in Electronics. Over 3 Million ElCO Instruments Now in Use.
FREE 1969 CATALOG Send me FREE catalog describing the
tuI EICO line of 200 best buys, and name of nearest dealer

Name
-THT/ (b) EICO Electronic Instrument Co.. Inc. EICO Canada Lid.

[^0]

NTS digs deep into electronics. Proot? Look at the close-up at the left. It's the first transistorized digital computer-trainer ever offered by a home study school.
Fascinating to assemble, the NTS Compu-Trainer (3) introduces you to the exciting world of computer electronics. Its design includes advanced solid-state NOR circuitry, flip-flops, astable multivibrators and reset circuits. Plus two zener and transistorized voltageregulated power supplies. The NTS Compu-Trainer can perform 50,000 operations per second, and is only one of many ultraadvanced kits we offer to give you incomparable, in-depth career training.
NTS ... THE FIRST HOME STUDY SCHOOL TO OFFER LIVE EXPERIMENTS WITH INTEGRATED CIRCUIT KITS
With NTS Project-Method Home Training, you build a computer sub-system using the new, revolutionary integrated circuits. Each one, smaller then a dime, contains the equivalent of 15 resistors and 27 transistors.
With Project-Method, kits are carefully integrated with lesson material. All our kits are real equipment-not school-designed versions for training only. Project-Method was developed in our giant resident school... and proven effective for thousands of men like yourself. It's the practical-experience approach to learning. Gets you going in a hurry!

- COMMUNICATIONS

This Transceiver is included in Communications. courses. It's yours to build. . . to easily prepare for F.C.C. License exam...To become a fullytrained man in communications.

- COLOR TV, 295 SQ. IN. PICTURE Included in Color TV servicing courses. Building this advanced receiver gets you deep into color circuitry advances you into this profitable field of servicing - the easy way. Color is the future of television, and your future, too!
GET THE FACTS! SEE ALL NEW KITS AND COURSES OFFERED IN THE NEW NTS COLOR CATALOG. SEND THE CARD TODAY! No obligation. No salesman will call.
Classroom Training At Los Angeles. You can take classroom training at Los Angeles. NTS occupies a clty block with over a million dollars in facilities devoted exclusively to technical tralning. Check box on coupon.

- INDUSTRIAL \& COMPUTER ELECTRONICS
New ideas, new inventions, are opening whole new fields of opportunity. Electronic control systems, computers, are being applied to great numbers of manufacturing processes every day. We train you for this new field, fast! With advanced control systems devices, a new $5^{\prime \prime}$ oscilloscope, and the NTS CompuTrainer. Modern, quick and easy training prepares you to enter this brand-rew world like a pro.

NATIONAL Rectat SCH00LS
WORLD-WIDE TRAINING SINCE 1905
4000 So. Figueroa Street Los Angeles, Calif. 90037
APPROVED FOR VETERANS
Accredited member: National Home Study Council National Association of Trade and Technical Schools,

Science and Electronics

SPECIAL CONSTRUCTION PROJECTS

\bullet	
$\star \quad 31$	
$\star 39$	
$\star 49$	
$\star \quad 57$	

Magnetic Beam Balance-great way to weigh a gnat's eyelash! Super Stable Receiver-"United 293 to tower, we hear you" Universal Regulated Power Supply-0 to I0V @ 0 to 300 mA Lover's Lamp-one click does the trick!

SCIENCE SPECIALS

20
23
62
73

35
44

$$
46
$$

- SCIENCE SHORTIES

This Call Girl Is Legit-and her number is yours
Infrared Mockfare-lots of bark, little bite

REGULAR DEPARTMENTS

10 Positive Feedback-a word from the boss
Stamp Shack-philatronics
Ask Me Another-readers' $Q \& A$
New Products-gadgets and gimmicks
Bookmark-by Bookworm
24 Literature Library-yours for two bits
White's Radio Log, Vol. 52, Part 1—page 80
Emergency Radio Services-Florida Area-page 100

Cover illustration by Len Goldberg

The New 1970 Improved Model 257

COMPLEIE WITH ALI ADAPTERS AND ACCESSORIES, NO "EXTRAS"

STANDARD TUBES

Tests the new Novars, Nuvistors, 10 Pins, Magnovals, Compactrons and Decals.
More than 2,500 tube listings
Tests each section of multi-section tubes individually for shorts, leakage and Cathode emission.
Ultra sensitive circuit will indicate leakage up to 5 Megohms.

- Employs new improved $4 \frac{1}{2 \prime \prime}$ dual scale meter with a unique sealed damping chamber to assure accurate, vibration-less readings.
Complete set of tube straighteners mounted on front panel.
- Tests all modern tubes including Novars, Nuvistors, Compactrons and Decals.
- All Picture Tubes, Black and White
and Color

ANNOUNCING...for the first time

A complete TV Tube Testing Outfit designed specifically to test all TV tubes, color as well as standard. Don't confuse the Model 257 picture tube accessory components with mass produced "picture tube adap. ters" designed to work in conjunction with all competitive tube testers. The basic Model 257 circuit was modified to work compatibly with our picture tube accessories and those components are not sold by us to be used with other competitive tube testers or even tube testers previously produced by us. They were custom designed and produced to work specifically in conjunction with the Model 257.

BLACK AND WHITE PICTURE TUBES:

- Single cable used for testing all Black and White Picture Tubes with deflection angles 50 to 114 degrees.
The Model 257 tests all Black and White Picture Tubes for emission, inter-element shorts and leakage.

COLOR PICTURE TUBES:

- The Red, Green and Blue Color guns are tested individually for cathode emission quality, and each gun is tested separately for shorts or leakage between control grid, cathode and heater. Employment of a newly perfected dual socket cable enables accomplishments of all tests in the shortest possible time.

The Model 257 is housed in a handsome, sturdy, portable case. Comes complete with all adapters and accessories, ready to plug in and use. No "extras" to buy. Only

We have been producing radio, TV and electronic test equipment since 1935 , which means we were moking Tube Testers of a time when there were relotively few tubes on the morket, woy before the adveni of TV. The model 257 employs every design improvement and every technique we hove learned over an uninterrupted production period employs every design improvement and every technique we hove learned over an uninierrupled produchion period
of 34 years.
Accurate instrument Co., Imc.

SEND NO MONEY WITH ORDER PAY POSTMAN NOTHING ON DELIVERY

Pay Cash or in EASY MONTHLY PAYMENTS AFTER 15 Day Trial!

Try it for 15 days before you buy. If completely satisfied remit $\$ 52.50$ plus postage and handling charge. (If you prefer you may PAY MONTHLY ON OUR EASY PAYMENT PLAN.) If not completely satisfied, return to us, no explanation necessary.

2435 White Plains Road, Bronx, N. Y. 10467
Please rush me one model 257. If satisfactory I agroe to pay at the terms specifed at left. If not satistactory, I may return for cancellation of account.

Name

\qquad
Address
City \qquad Zone \qquad State
\square Save Money! Check here and enclose $\$ 52.50$ with coupon and we will pay all shipping and handling charges. You still retain privilege of returning after 15 day trial for full refund.

Great cift Ideas From The

Announcing The New Heathkit AR-29 100-Watt AM-FM-FM Stereo Receiver

Quietly distinctive when not in use . . . its impressive midnight black and chrome face unmarred by dial or scale markings. A touch of the power switch and the dial and scale markings appear

- An solid-state design - 100 watts musle power output at 8 ohms $7-60,000 \mathrm{~Hz}$ frequency response Less than 0.25% Harmonic \& 0.2% IM Distortion at full output - Transformerless, direct-coupled outputs with dissipation-Ilmiting circuitry for output protection. Ball-bearing inertia flywheel tuning • Advanced L-C filter gives 70 dB selectivit' and ellmination of IF alignment © Assembled, aligned FET FM tuner for better than 1.8 uV sensitivity © New Mute Contral attenuates between-station FM noise * New Blend Control attenuates noise on FM-Stereo stations - SCA filter - LInear Motion Controls for Bass, Treble. Balance \& Volume - Individually adjustable input level controls for each channel of each input keeps volume constant when switching sources. Switches for 2 separate stereo speaker systems - Center speaker capability © Two fromt panel meters for precise station tunlng * Stereo indicator light * Stereo headphone jack - Swivel AM rod antenna - 300 \& 75 ohm FM antenna lnputs - Massive, electronically regulated power supply © Now Modular Plug-In Circult Board designed for easy enjoyable assembly
Another Design Leader . . - reflecting the heritage of the world-famous Heathkit AR-15. A new milestone in audio history is here; the world's finest medium power stereo receiver . . . the Heathkit AR-29.
The Finest Stereo Amplifier In Any Receiver . . . delivers a full 100 watts music power, 70 watts continuous - drives even the most inefficient speakers. A giant fully regulated \& filtered power supply, 4 individually heat-sinked and protected output transistors and the best specs in the industry add up to unmatchable audio fidelity.
The Heath Mark Of Quality: FM Stereo Performance ... now more apparent than ever. The assembled. aligned tuning unit uses FET circuitry for high overload capability, low cross modulation and 1.8 uV sensitivity. Three IC's in the IF give greater AM rejection, hard limiting, excellent temperature stability \& reliability. Another IC in the Multiplex section performs four different functions . . . assures perfect stereo reproduction.
Kit Exclusive: 9-Pole L.C Filter ... detivers an ideally shaped bandpass with greater than 70 dB selectivity, superior separation and eliminates IF alignment forever.

AM That Sounds Like FM. Three FET's In the AM RF section combine superior sensitivity with greater signal handling capability to give the finest AM reception available. A buitt-in AM rod antenna swivels for best signal pick-up.
Kit Exclusive: Modular Plug-In Circuit Board Construction ... Ab simplified assembly . . . easier, faster service.
Kit Exclusive: Built-In Test Circuitry lets you not only assemble, test a align your new AR-29, but also completely service it - without external test equipment.
You Be The Judge Compare the specifications . . . exciting styling concepts . . . the dozens of feature's . . . the price. You'll find that the new Heathkit AR-29 is, indeed, the world's finest medium power stereo receiver. Order yours soon
Kil AR-29, (less cabinet), 33 fbs. \qquad $\$ 285.00^{\circ}$
Assembled AE-19, oiled pecan cabinet. 10 lbs . . $\$ 19.95^{*}$

PARTIAL AR-29 SPECIFICATIONS - AMMLFIER: CONtInuous power output per chawnol: 35 walth. 8 ohms. IHF Power outpul per channel: 50 whits, 8 ohms. Frequency responses -1 d8, $7.60,000 \mathrm{~Hz}$, 1 watl level. Power Bandwidth for constant 0.25% THD Lasi thom 5 Hz to grecter thon 30 kHz . Total hormonic distortion: (Full power output on both chonnels) Less than $0.25 \%, 20-20,000 \mathrm{~Hz}$; less than 0.1% (6) 1000 Hz . IM Oistortions Less than 0.2% (full output, bath channels). Lass than 0.1% (1 wott output, both chonnels) Hum and nolse: (phono input) - 65 dt relative to 100 uV signal. Phono input sensitivitys 2.2 millivolts foveriood 155 millivots). FM: Sensitivity: 1.8 uV or betrer. Voiume sensitivitys Below measurable level. Selectivity: Greater thon 70 dB . Imoge rejection: 90 dB . If Reo iection: 90 dB . Copture ratio: 1.5 dB . Total harmonic distorion: 0.5% or less. IM Dis tortion: 0.4% or iess. Spurious rejection: Greater than 90 dB . FM STEREO: Separallonm 40 dB min. (3) mid.frequencias; 30 dB @) $50 \mathrm{~Hz} ; 25 \mathrm{~dB} @ 10 \mathrm{kHz} ; 20 \mathrm{~dB}$ @ 15 kHz . Frequency esponse: $\neq 1 \mathrm{~dB}, 20.15,000 \mathrm{~Hz}$. Total harmonic distortion: 0.5% or less $(\mathbf{m} 1000 \mathrm{~Hz}, 100 \%$ modulation. 19 kHz \& 38 kHz . Suppression: 55 dB . SCA Suppression: 55 dB . AM SECTIONz Sensitivity: (using built-in rod antenno). $200 \mathrm{uV} / \mathrm{M}$ (a) $600 \mathrm{kHz} ; 300 \mathrm{uV} / \mathrm{M}$ (9) 1400 kHz (1 HF reted). Selectivity: Gregter than 40 dB otternate chamel. Image reiection: 60 d8 (a) 600 $\mathrm{kHz} ; 45 \mathrm{~d}$ @ 1400 kHz . If Rejection: Greater than 50 dB . Harmonic distortions Less than
2\%. Hum Noise: -35 dB

Leader In Electronic Kits

HEATHKIT AR-15 Deluxe Solid-State Receiver

The Heathkit AR-15 has been highly praised by every leading audio and electronics magazine, every major testing organization and thousands of owners as THE stereo receiver. Here's why. The powerful solid-state circuit delivers 150 wats of music power, 75 watts per channel, at $\pm 1 \mathrm{~dB}, 8 \mathrm{~Hz}$ to 40 hHz response Harmonic \& 1 M distortion are both less than 0.5% at full rated output. The world's most sensitive FM tuner includes these advanced design features ... Cascode 2 -stage FET RF amplifier and an FET mixer for high overload capabiliy, excellent cross modulation and image rejection ... Sensitivity of 1.8 uV or better ... Harmonic \& IM distortion both less than 0.5%. . . Crystal Filters iat the IF section give a selectivity of 70 dB under the most adverse conditions. Adjustable Plase Control for maximum separation ... elaborate noise operated squelch ... sterco only switch . . . stereo indicator light . . . two front panel stereo headphone jacks . . . front panel input level controls, and much more. Easy circuit board construction. For the finest stereo receiver you can buy answhere, order your AR-15 now. 34 Ibs. Optional walnut cabinet, AE-16. 10 Ibs... $\$ 24.95^{*}$

HEATHKIT AD-27 "Component Compact"

Heath engineers combined the circuitry of the famous Heath AR-14 Sterco Receiver with the precision BSR McDonald 500A. Automatic Turntable and put them both in a sliding door walnut cabinet. The result is a stereo compact with component performance: a solid 30 watts music power output $12-60,000 \mathrm{~Hz}$ frequency resnonse, . . less than $1 \% \mathrm{IM}$ \& Hammonic Distortion at full output . . e effortless flywheel tuning . . . excellent sensitivity \& selectivity . . adjustable phase control for perfect sterco separation . . . automatic sterco indicator light. The BSR 500A jncludes features such as cucing/pause control .. stylus pressure adjustment . . . anti-skate control . . . and comes with a famous Shure diamond stylus magnetic cartridge. Put the top performing, attractively styled Heathkit AD. 27 "Component Compact" in your home now. 41 lbs .

These Kits Make Excellent Gifts For Beginners

HEATHKIT GR-88 VHF-FM Monitor Receiver

- Tunes narrov wide band FM from $\mathbf{1 5 2 - 1 7 4} \mathbf{M H z}$ for polick, fire and weather broadcasts. Highly sensitive - Very selective - 6 -t 1.1 vernier tuning plus singie-channel crystal control * Noise-operated squelch . All solid-state design. Battery operated - Built-in whip antenna and external antenna jack - Easy assembly with preassembled tuner - 5 lbs .

HEATHKIT GD-48 Metal Locator

- All solid-state circuitry for long, trouble-free life, low current drain and light weight - High sensitivity from the Induction Balance circuitry Detects metal accurately down to 6 ft . Built-in speaker signals presence of metal - Headphone jack - Telescoping shaft \& swivel search head - Rugged, lightweight construction - weighs just 3 lbs. - Fast 6-8 hour assembly * 4 lbs.

HEATHKIT GD-107 Portable Stereo Phonograph

- Automatic or manual stereo and mono play of all speeds and sizes - All solid-state - Includes ceramic cartridge . Twin $4 \times \mathbf{6}^{*}$ speakers for wide response - Handsome avocado green \& ivary stylling * Easy 3-4 hour assembly - 29 lbs.

New HEATHKIT JR. ${ }^{\text {® }}$ JK. 18 Electronic Workshop

- 35 easy-to-build, fun-to-use experiments that teach basic electronic circuits - Safe - battery operated - No soldering - Builds radios, transmitters, alarms and dozens more circuits - Simple instructions any youngster can follow - 10 lbs.

There's a Heathkit Gift

New Heathkit " "Component Credenza"

- Combines all solid-state FM stereo receiver, 4-speed automatic turntable with diamond stylus and two fullrange, two-way speaker systems into a luxurious Mediterranean cabinet 15 watts per channel music power output - Full range tone controls • Very low Harmonic \& IM Distortion. Excellent channel separation - Transformerless output circuit for minimum phase shift, wide response - Electronically filtered power supply * Stereo headphone jack - Auxiliary input - Filtered tape output Excellent FM tuner selectivity \& sensitivity - 4-stage $1 F$ - AFC - Stereo indicator light - SCA filter - High quality BSR McDonald 500A Automatic Turntable with low mass counterbalanced aluminum tone arm plays up to 6 records - Comes with Shure diamond stylus magnetic cartridge . Vernier stylus pressure adjustment - Anti-Skate control - Cue/Pause control- Two ducted-port reflex 2-way speaker systems for performance comparable to fine com-ponent-type separate speaker systems. Each system contains $10^{\prime \prime}$ high compliance woofer $\& 3^{1 / 2^{\prime \prime}}$ ring-damped tweeter for $60-16,000 \mathrm{~Hz}$ response . Complete system housed in a magnificent factory assembled Mediterranean cabinet of beautiful oak veneers with solid oak trim. Easy assembly with the famous Heathkit Manual . . . build only the receiver $\&$ install the components. The finest value anywhere in quality stereo consoles

Mediterranean Styling ... 30-Watt FM-Stereo Receiver 4-Speed Automatic Turntable ... Full-Range Speaker Systems

Real Stereo Performance Demands Real Stereo Components . . . the kind used for custon-designed systems. The new "Component Credenza", as the name implies, integrates separate components into a single functional unit. Here are those components...
Component-Quality FM Stereo Receiver. The heart of the new AD-19 is the famous Heathkit AR-14 FM-FM-Stereo Receiver circuitry. The amplifier produces a solid 30 watts IHF music power. The FM Stereo tuner featurcs 5 uV sensitivity, excellent separation and flywheel tuning. The AR-14 has been rated as the best value obtainable in a medium power receiver.
Component-Quality 4-Speed Automatic Turntahle with such professional features as Cue/Pause control, Anti-Skate control, adjustable stylus pressure and famous Shure diamond stylus magnetic cartridge.
Component-Quality Speaker Systems. Two independent, ported speaker systems, each with a $10^{\prime \prime}$ woofer and $33^{1 / 2}$ tweeter deliver $60-16,000 \mathrm{~Hz}$ response for remarkable fidelity.
Elegint Mediterrancan Oak Cabinct . . . a fine example of cabinetmaking, flawlessly execued in oak veneer with solid oak trim Riddy constructed using fine-furniture techniques.
Th \& New Heathkit AD-19 "Component Credenza". . . A Masterpiece in sight and sound. Put it in your home now.

Kit AD-19, 158 lbs. $\$ 299.95^{*}$

NEW Heathkit GR-78 Solid-State General Coverage Receiver. .e Tunes 190 kHz To 30 MHz In Six Bands

The new GR-78 combines wide coverage, superior performance and portability with sharp styling to provide a remarkable value in general coverage receivers. Tunes AM, CW \& SSB signals from 190 kHz to 30 MHz in six switch-selected bands. The all solid-state circuit employs modern FET's in the RF section and 4 ceramic filters in the IF to deliver maximum sensitivity and sharp selectivity. Bandspread Tuning is built-in, and can be calibrated for either Shortwave Broadcast or Amatcur Bands. Completely portable . . . comes with a nickelcadmium rechargeable battery pack and built-in charger that operates from 120 or 240 VAC and 12 VDC. Many built-in features... 500 kHz crystal calibrator ... switchable Automatic Noisc Limiter ...switchable Automatic Volume Control . . . Receiver Muting . . . Headphone Jack and many mora Order yours today. 14 lbs.

NEW Heathkit Deluxe Radio-Controlled Screw-Drive Garage Door Opener Semi-Kit

The next best thing to a personal doorman. The "wireless" factory assembled transmitter operates up to 150 feet away. Just push the hutton and your garago door opens and the light turns on ... and stays on until you're safely inside your home. The giant 7 ft . screw mechanism coupled with the $1 / 4 \mathrm{HP}$ motor mean real power and reliability and the adjustable spring-tension clutch automatically reverses the door when it meets any obstruction . . . extra safety for kids, pets, bikes, even car tops. Assembles completely without soldering in just one evening. Easy, fast installation on any 7^{\prime} overhead track (and jamb \& pivot doors with accessory adapter). Order yours now. 66 lbs .
Adapter arm for jamb \& pivot doors, Model GDA-209-2, \$7.95*

Idea For Every Budget

Heathkit "681" Color TV... AFT... New Brighter Picture Tube For More Vivid Colors, Better Resolution
The new Heathkit GR-681 is the world's most advanced Color TV with more built-in features than any other set on the market. Automatic Fine Tuning on all 83 channels... power push button VHF channel selection, built-in cable-type remote control or you can add the optional GRA-681-6 Wireless Remote Control any time ... plus the built-in self-servicing aids that are standard on all Heathkit color TV's. Other features include high \& low AC taps to insure that the picture transmitted exacely fits the "681" screen, automatic degaussing, 2 -speed transistor UHF tuner, hi-fi sound output, two VHF antenna inputs, top quality American brand color tu'se with 2-year warranty. With optional new RCA Matrix picture tube that doubles the brightness, Model GR-681MX only $\mathbf{\$ 5 3 5 . 0 0}$.
GRA-295.4, Mediterranean Cabinet shown.
..........
Heathkit "295" Color TV...New Picture Tube
For Brighter, Sharper Pictures
With Optional RCA Matrix Tube ... with the same high performance features and built-in servicing facilities as GR-681 above . . . less AFT, VHF power tuning and built-in cable-type remote control. You can add the optional GRA-295.6 Wireless Remote Control at any time. New optional RCA Matrix tube doubles the brightness, Model GR-295MX, \$485.00.
GRA-295-1, Contemporary Walnut Cabinet shown. *84.95* Both the GR-681 and GR-295 fit into the same Heath factory assembled cabinets; not shown Early American style at $\$ 109.95^{*}$

Heathkit "581" Color TV... Sharper, Brighter Viewing With New Picture Tube ... AFT

The new Heathkit GR-581 will add a new dimension to your TV viewing. Brings you color pictures so beautiful, so natural, so real ... puts professional motion picture quality right into your living room. Has the same high performance features and exclusive self-servicing facilities as the GR-681, except with 227 sq. inch viewing area, and without power VHF tuning or built-in cable-type remote control. The optional GRA-227-6 Wireless Remote Control can be added any time you wish. And like all Heathkit Color TV's you have a choice of different installations ... mount it in a wall, your own custom cabinet, your favorite B\&W TV cabinet, or any one of the Heath factory assembled cabinets. GRA-227-2, Mediterranean Oak Cabinet shown. \$109.95*

Heathkit " 227 " With New Picture Tube For Increased

Brightness \& Better Resolution

Same as the GR-581 above, but without Automatic Fine Tuning ... same superlative performance, same remarkable color picture quality, same built-in servicing aids. Like all Heathkit Color TV's you can add optional Wireless Remote Control at any time (GRA-227.6). And the new Table Model TV Cabinet and roll around Cart is an economical way to house your " 227 ". ... just roll it anywhere, its rich appearance will enhance any room decor
GRS-227-5, New Cart and Cabinet combo shown. 854.95^{*} Both the GR-581 and GR-227 fit into the same Heath factory ass ${ }^{\text {mbled }}$
cabinets; not shown, Contemporary cabinet $\$ 64.95^{\circ}$

Heathkit "481" Color TV with AFI

The new Heathkit GR-481 has all the same high performance features ald exclusive self-servicing aids as the new GR-581, but with a smaller tube size ... 180 sq. inches. And like all Heathkit Color TV's it's easy to assemble . . . no experience needed. The famous Heathkit Color TV Manual guides you every step of the way with simple to understand instructions, giant fold-out pictorials 7.. even lets you do your own servicing for savings of over $\$ 200$ throughout the life of your set. If you want a deluxe color TV at a budget price the new Heathkit GR-481 is for you.
GRA-180-1, Contemporary Walnut Cabinet shown.
........... . $\$ 49.95^{*}$
Heathkit "180" Color TV
Feature for feature the Heathkit " $180^{\text {" }}$ is your best buy in color TV viewing . . . has all the superlative performance characteristics of the GR.481, but less Automatic Fine Tuning. For extra savings, extra beauty and convenience, add the table model cabinet and mobile cart. Get the value.packed GR-180 today GRS-180.5, Table Model Cabinet \& Cart combo................... 42.50* Both the GR-481 and GR-180 fit the same Heath factory assembled cabinets; GRA-180-2, Early American Cabinet $\$ 94.95^{\circ}$.
Add the Comfort And Convenience Of Full Color Wireless Remote Control To Any Rectangular Tube Heathkit Color TV . . . New Or Old! Kit GRA-681-6, for Heathkit GR-681 Color TV's. \$84.95*. Kit GRA-295-6, for Heathkit GR-295 \& GR-25 TV \qquad Kit GRA-227-6, for Heathkit GR-581; GR-481 \& GR-180
\qquad 69.95
69:95

Now There Are 6 Heathkit Color TV's To Choose From

2 Models In 295 Sq. Inch Size NEW
Kit GR-681 With AFT
${ }^{5} 49995{ }^{*}$
(less cabinet)

2 Models In 227 Sq. Inch Size

heath company, Dept. 1e-12

 Benton Hartor, Michigan 4902 z(1) Enclosed is \$

Please send model (s)

- Please send FREE Heathkit Catalog. - Please send Credit Apslication

Name
Address
City
State
State \qquad Zip_ Mail order prices; F. 0.8 factcry Prices \& spectications subject ta chang without notice.
a Schtumberger subsidiory. plus shippiag.

2 Models In 180 Sq. Inch Size

NEW

FREE 1970 CATALOG! Now with more kits, more color. over 300 kits for stereo /hi-fi, color TV, electronic organs, elec-: tric guitar \& amplifier, amateur radio, marine, educational, CB , home $\&$ hobby. Mail coupon or write Heath Company, Bentor
Harbor, Michigan 49022 .

Volume 28

Number 1

JULIAN M. SIENKIEWICZ, WA2CQL Editor-in-Chief

RICHARD A. FLANAGAN, KQD2566
Managing Editor
CHARLES S. HARRIS
Technical Editor
HELEN PARKER, KQD7967
News Editor

JIM MEDLER

Art Editor and Associate Art Director
ARTHUR S. COOKFAIR; ERNEST A. KEHR; MARSHALL LINCOLN, K9KTL/W7DQS; ROY K. MARSHALL, PH.D.; JACK SCHMIDT Contributing Editors

JOSEPH A. D'amato, Art Director IRVING BERNSTEIN, Cover Ari Director barbara altman, Alt Associate JIM CAPPELLO, Advertising Direcior CARL BaRTEE, Production Director gertrud borchardt, Production Manager marilyn vargas, Assistant Production Manager WILFRED M. BROWN, Instruments Division Manager ROGER G. CAVANAGH,
Circulation and Marketing Director
B. G. DAVIS, Chairman of the Board JOEL DAVIS, President and Publisher LEONARD F. PINTO,
Vice-President and General Manager VICTOR C. STABILE, KBPø681,
Vice-President and Treasurer

[^1]

Julian M. Sienkiewicz
EDITOR-N-CHIEF

B

 By now almost everyone has had the opportunity to visually inspect the color quality of several television receivers of different manufacturers in their homes and the homes of friends. So much so that the average consumer has enough savvy to criticize one brand vs. another, or even damn one, some, or all. Therefore, you can expect the Editor to have even more savry than most consumers in the color TV marketplace. Without further ado about my credentials as an expert on color TV, I'd like to make the following statements to my readers with all candor and honesty.It's a rather universally accepted fact among many color TV experts-and that includes anyone who has lived with it-that Heathkit color TV sets have always had the best color pictures. Natyrally, I have to mention that this statement is Wised on an informal survey conducted by mygelf during the past several years and that I am in full agreement with it. So, naturally, I was surprised to discover Heath has gone three steps better in their upcoming color TV kit program.

The 1970 Heathkit color TV line has three improvements-two of them contribute to picture quality and the third is a safety touch.

A change in circuit parameters in the video amplifier has resulted in a broader bandpass which provides greater detail in the pictures. This is clearly evident in increased test pattern resolution and also can be noted in sharper broadcast pictures. The change has been made in all production of Heath color TVs--and, as is typical of how Heath takes care of its own, a modification kit has been offered free by Heath to any Heathkit color TV owner.

The second improvement involves the picture tube itself. Heath has continued its policy of offering the latest in picture tube advances by now including as standard equipment the new brighter tube you've read about. The new tube is brighter and gives more vivid colors as well as increased resolution.

The third change involves an added AC interlock to all future Heathkit color TV cabinet production. The interlock also is available free to any Heathkit color TV cabinet owner.

One finat note should be mentioned about the Heath color TV kit. The Heathkit set used by my family is over six years old and serviced by yours truly. Through the years this set has had its normal shares of tube failures as compared to other color sets and two black-and-white sets in my house. As a gag, I have always billed myself for service calls to prove to my wife how valuable I am to have around the house. Also, once a ycar, I readjust the set following the procedure outlined in the Heath manual supplied with the kit. Conservatively estimated, I have saved over $\$ 250.00$ in service calls, had a down time measured in hours and not days or weeks (you have to wait for TV servicemen to show up), and had a superior picture throughout this period than other sets could have even when covered by "service contracts."

What's New? We published a few good news items in earlier columns and our readers want more. So, here it comes:

- Louisville-It was Loose Juice, America's most famous three-year-old Mylar, in the lead all the way as thousands of racing fans filled the stands at Churchill Downs in the 95th Annual Kentucky Derby. A full field of the country's top race horses competed. The winning jockey was Skip Zone, who just last year extinguished himself after being fired by rich stable owner Jojo Vasterbulge, as Rider of the Decade.

Jockey Shoriz was disqualified after a saliva test disclosed that his plug had been doped. An official became suspicious when, he said, "I detected his mount with a Blonder-Tongue." On several other occasions Shortz has been suspected of checking his horse with a cheater gord.

* Baltimore-A battery of smart law, ers was unable to keep Elsie Philter, notorious student striker, from resting in a cell today. While she claimed responsibility for smoothing the flow of current campus thought, school authorities demanded that she be jailed on the grounds that she intended to short out higher education with a girlcott.

University officials maintained that she had used improper channels of communication and appealed to the courts for a uni-junction.

Her brother, Infra-Red, a low voltage dropout, was also picked up as an accessory to the charge. Red, a violent speaker, citing Ohm's Law, insisted that the judge was prejudiced and called the entire case a "bench frame." Declared the judge, "Your sentence is thirty days in prison. Watts more, keep talking and l'll Triplett."

Let Us Know. Okay, you got some good ideas on how to run a magazine. So what, if you don't tell the Editor, it's down the ol drain. So put on your thinking cap and send us your story ideas. Man, if you don't clue us in, we're in No-man'sville without a street guide.

VISUAL EFFECTS PROJECTOR SET

pazzling. avante-garde visual effects. Fantastic variety. Incredoffer contains all neecessary apparatus. Create floating, exploding, fiery bursts of color "like "Symphony of Spheres" "Chromatic burst." Features 35 mm 500 W fan cooled projector-produces big image at short distance. Ac cepts two $9^{\prime \prime}$ diam. Wheels (Dry cylindrical accessories (6
cy ${ }^{\prime}$ col-
internal mirrored wals) Peried Cloud \& $5^{* \prime}$ Hexidoscope w/six internal mirrored walls. Per

Create tremendous variety of unusual \& beautiful lighting effects with this low-cost top quality,
1500 Watt unit 500 W. per channei). Compares with oiners sell ing for twice the price. Has pilot light, plus individual sensitivity controis \& channel indicatorlights; Can 2000 XImas lights. Uses reg. house current-attaches to audio source w/fCA-type phono plas.
$51 /{ }^{\prime \prime} \times 63 / 4^{\prime \prime} \times 21,2^{\prime \prime}, 21 / 2$
Thermal setting plastic case, 6 ft. culd. linel. cunngh. instruc.
Stock No. $71,223 \mathrm{HP} . .$.
.$\$ 34.95 \mathrm{Ppd}$. LONG-WAVE BLACK LIGHT FIXTURE

Extremely versatile, compactly $4{ }^{\text {designed, long }} 400$ wave (3200fultraviolel) fxtare. Has 6-wat,
lio-v lamp with bultin filtelt $110-V ~ l a m p$ with built-in filter-
eliminates harmful shorter wave eliminates harmful shorter wive minerals, fungi, bacteria-check for surface flaws, oil and gas
leakage-perfect for displays with leakage-lperfect for paintays whith fuorescent paper, paints, chalk,
crayons, trace powder, Incl.
adjustatile aluminum refector. crjustatile aluminum reflector.
Mount vert., horr. or on evrner.
10" L., $11 / 2^{\prime \prime}$ W., $1 / 4^{\prime \prime} \mathbf{H}_{\text {. }}$ Mount vert., horr. i or on eurner.
$10^{\prime \prime} 1.11 / 2^{\prime \prime}$ W., $11 / 412.50$ ppd. Stock No. $70,364 \mathrm{MP}$
Stock No. $60,124 \mathrm{HP}$ REPLACEMENT BULBS

Go treasure hunting or the bottom! Fascinating fun $\begin{gathered}\text { pometimes profitable. Tie a }\end{gathered}$ sime to our $5-1 b$ Magnet-drop it overboary in bay, river, lake or ceean. "Troll it along bot-
tom-your "treasure" haul can bem-your outhoard motors. anchors be outhoard motors. anchors,
other metal valuables. $5 \cdot 1 \mathrm{l}$. Magnet is war surplus-Ainico Vype-Gov't. cost $\$ 50$. Lifte
over 150 bs. on land-much .$\$ 14.00 \mathrm{Ppd}$.
$\mathbf{\$ 8 . 7 5} \mathrm{Ppd}$. .$\$ 8.75 \mathrm{Ppd}$.
$\$ 33.60$ Fpp $\$ 33.60 \mathrm{~F}$
ANER

Top-quality $1 /$ grd pint unit for completely, quickly, safely. Small delicate parts, precision efectionic items, lab insuruments. jewelry.
coins, even denture sparkle like coins, even denture sparkle like rew. American-made-operateson generntor w/autonnatic turn-off.
fower regulating knob. No shocks rower regulating knob. No shocks.
No radio inverierence. $6^{\prime \prime} \mathbf{x} 4^{\prime \prime}$ \& 4" stainless.
Slock NO. $71,003 \mathrm{HP}$
QUART SIZE
. $\$ 3$. $\$ 39.95$ Ppd.

PSYCHEDELIC LIGHTING HANDBOOK

WRITE FOR GIANT FREE CATALOG

Completely new 1970 edition. tions, 148 categories, illustrapacked with 400 unu ual items. Dozens of electrical and electromous selection of Astronomical Telescopes, Microscopes, Binuculars, Magnifiers, Magnets, Lenses, Prisms. Many war surplus items; workshoys factory. Write for
catalog "if
Incluae Zip. catalog "If ". Include Zip. ONIY OLUER : MONEY-FACN GUARANTIE

- On March 29, 1968, the tiny Caribbean island of Antigua released a quartet of orange and black stamps to commemorate the dedication of the Dow Hill Tracking Station by local officials and the National Space Administration.

The success of early Space exploration culminated by Mercury and Gemini Projects, made it mandatory for NASA to find a spot in the eastern Caribbean to assure adequate iracking and communications coverage during the critical phases of lift-off of future Apollo flights. After carefully investigating many islands of the area, NASA's Site Selection Committee chose Antigua for its many advantages. Negotiations were undertaken and agreement signed on Jan. 23, 1967, to build and operate Dow Hill.

Located in a valley surrounded by low mountains, Dow Hill is ideal for the Apollo missions: locally generated radio signals do not interfere with the weak ones of the Spacecraft; it is relatively immune from automobile and airplane ignition noises.

- Heart of the station is the unified S-band equipment and its immense antenna, which is depicted on the four-cent denomination of the stamp set. This USB is an unique tracking system. It utilizes a single carrier frequency to fransmit and receive all information between ground and Spacecraft. In other words, it "unifies" the measurement of range and velocity of the Spacecraft, the transmissions of radio commands and voice communications with the vehicle, and the reception of hundreds of Spacecrait measurements onto a single carrier frequency. It was adopted to reduce the amount of equipment required aboard Apollo and, more important, to reduce the amount of electrical power necessary to transmit information to the ground.

Behind the 30 -foot diameter of the antenna but not visible in the stamp's design, is an expansive shack packed with the most modern,
sophisticated electronics and computer equipment in existence today.

And to eliminate dependence upon any outside sources, Dow Hill Tracking Station has its own generating plant for electricity and a water pumping and storage complex.

- The other three stamps of the set are related to the Apollo project rather than to the tracking station, the dedication of which they commemorate. The 15 -cent shows a Spacecraft rising above the clouds immediately after lift-off and headed for the moon, while the Dow Hill antenna is in the foreground.
- During the Apollo 7, the first manned mission, and Apollo 9, Dow Hill was extremely active since both of these were earth orbital missions. During Apollo 8, 10 and 11, the Station served in a back-up posture to the 85 -foot antenna stations at Gladstone, Calif., Madrid and Australia's Honeysuckle Creek installation. During Apollo 12's launch it became particularly important because of the momentary difficulties when power systems aboard the Spacecraft went out and had to be augmented by batteries.
- The 25 -cent shows the nose cone of an Apollo mission in orbit around the moon, its Lunar Module still attached prior to landing.

The 50 -cent shows the nose cone leaving the moon and headed for re-entry to the earth's atmosphere and final landing on the high seas.

WHAT'S NEW?

- With more and more postal administrations of the world issuing special stamps for the various phases of the conquest of Space, it is increasingly difficult for collectors to mount their specimens in normal stamp albums. The Western Publishing Company, Racine, Wisc. 53404, has solved this problem.

The firm, which publishes many useful philatelic accessories, has just released special "do it yourself" pages. The pages, which will fit into any standard three-ring binder, are captioned

Antigua 1968 Tracking Station 4¢ and 15¢; lettering reading " 15 "" failed to reproduce on engraving.

Antigua 1968 Tracking Station 50 and 25\$
by a picture of a Lunar Module about to land on the moon, and an inscription, "Conquest of Space." The rest of the page is blank, enabling the owner to mount his Space stamps to suit his individual taste. The pages come in packets of 15 and cost $\$ 1$, postpaid. A sample page will be sent without charge upon request if the S tamp Shack is mentioned.

- That stamp collecting is still the world's most popular hobby and that the demand for stamps is greater than ever is evidenced by the new "Scott's Standard Postage Stamp Catalogue." This annual guide to current market conditions has upped its price quotations throughout. The increases are conspicuous in the older issues that have been put into service by responsible governments, and the classics of the 19th century. More recent stamps -especially those that have come in for speculative cornering and those produced by energing nations more for sale to the uninformed stamp market than for genuine postal usage-had their value untouched or actually reduced.

now there are 3 time \& tool-saving double duty sets

New PS88 all-screwdriver set rounds out Xcelite's popular, compact convertibie tool set line. Handy midgets do double duty when slipped into remarkable hollow "piggyback" torque ampli. fier handle which provides the grip, reach and power of standard drivers. Each set in a slim, trim, see-thru plastic pocket case, also usable as bench stand.

PS7

Olson EIECRONICS

FRE

Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS' Fantastic Value Packed Cofalog - Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Values. Credis plan available.
NAME

ADDRESS
CITY \qquad STATE
GIVE ZIP CODE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

```
OLSON ELECTRONICS
570 S. FORGE STREET, AKRON, OHIO 44308
```


Cheap is Cheap

Numerous times I have seen you mention that a standard FM receiver could not be used for the reception of $A M$ aircraft frequencies. I have had three different FM receivers here at the store and all have picked up aircraft on an image frequency 21.4 MHz ahove my dial setting. How come AM on FM?
-J. H., St. Clairsville, Ohio
Obviously, they're not very good FM receivers. or the aviation band signals, picked up on an image basis, are too weak to saturate the receivers' limiter, if they have limiters.

Fussy, Fussy, Fussy

I am interested in huying a general coverage communications receiver (0.54 to 30 MHz) with accurate frequency calibration. The Collins 515l would be perfect if it were not for its $\$ 2000$ price tag. Can you recommend a receiver in the $\$ 300$ price class that has good frequency calibration? For example. I would like to be able to dial 10.0 MHz on the receiver and expect to find WWV there-not at 9.9 or 10.1 MHz .
-V. M. S., Dover, N.J.

Drive into New York City to Harrison Radio or some other equipment dealer and look over some of the fine receivers that are available, such as the Hammarlund HQ-200. Getting WWV at 9.9 or 10.1 MHz is not so bad. It's hard to get better than 1% accuracy with a tunable receiver. That's why some include a frequency calibrator.

Flash!

Where can a circuit for a strobe light with a 400 watt second outpitt be obrained that has a continuous flash output adjustable from one to ten flashes per second? From what manufacturers could the components be obtained?
-J. M., Bremerton, Wash.
Write to Amglo Corp., 4333 N. Ravenswood,

Chicago. Amglo makes the lamps and should have application information available.

He's Up, They're Down

Recently I bought myself a five-band radio. On one of the bands I can pick up messages from police, fire, taxis, etc., in the 144 to 172MHz range. Later, I found that our fire department is on a $34-\mathrm{MHz}$ frequency which I cannot pick up. Is there any way I can change my receiver to cover the low mobile radio hand?
-C. C., Federalshurg, Md.
It would be a messy job and you might not be happy with it. Instead. get an outboard converter and use it with your set when it is set for AM on the BCB. Better still, pick up a pocketportable unit. They're available with the broadcast band and the price is right.

No Coils at All

I want to know how to reduce 12 volts DC to 6.3 wolts $D C$ without using a transformer, only resistors, capacitors, etc.

> -A. M. C., Chatham, Va.

You can use a series resistor as shown in diagram A if the load current is constant. The value of R is equal to 5.7 divided by load current (in amperes). If it's $57 \mathrm{ma}, \mathrm{R}$ would be 100 ohms. If the load current varies a little bit. you can use a voltage divider as shown in diagram B. If R2 is 220 ohms and the load current is 28 ma. R I should be 100 ohms. To get steady output voltage, you can use a Zener diode rated at the voltage closest to 6.3 volts and for adequate power. Refer to a Zener diode manual for se-

(A)

(B)

(C)

4219 E UNIVERSITY AVE., SAN DIEGO, CALIF. 92105

Technical Excellence in Electronics

 On our small friendly campus the emphasis is on Living as well as Learning. Extra-curricular socia! activities, student clubs, a student-operated radio station, student government, new dormitory, a full sports program help provide a world of your own in which to prepare for the world of tomorrow". Diploma in Electronic Technology and Assoriate Degree in Electronic Figineering Technology. B.S. obtainable. GI approved.VALPARAISO TECHNICAL INSTITUTE
|DEPT. SE
VALPARAISO INDIANA 4638

ASK ME ANOTHER

lecting a Zener and determining value of R. You must know maximum load current.

In diagram A, output voltage (E) will be 12 volts regardless of the value of R if load current is zero. In B, the ratio of R1 and R2 determines E with zero load current. In B, E remains steady as long as maximum load current does not exceed design value.

Needs 9, Not More

How can I operate a portable transistor radio, which employs a 9-volt battery, from my car battery?
-C. H., Chicago, Ill.
With the engine off, the voltage is 12.6 . With the engine running, it can rise to 14.4 volts, sometimes as high as 15 . Your radio needs 9 volts, but "might" stand more. It can be done, but you will need a voltage regulator such as a

Zener diode. You can rig up a device that plugs into the cigarette lighter socket, using the circuit shown in the diagram. Use a 1 -watt, 9.1 volt Zener diode for CR. Only the value of series resistance R is critical. For R start with a 1000 -ohm resistor and measure the DC voltage across the Zener with the radio connected, turned on and the volume up (so it will draw maximum current), and the car engine not running. Reduce the value of R, but not to less than 600 ohms until you get 9.1 volts with the engine off or running, and with the radio on or off, and at all volume levels. The diagram shows Zener polarity for negative ground vehicles. If positive battery terminal is grounded, reverse the Zener connections.

Oh, for a Pair of Cans

1 am an SWLer and my little National receiver conked out. I am now looking for something pretty up-to-date. When I started looking, I was unfamiliar with what was available. I am now convinced that 1 want an $S S B$ receiver. I would appreciate your comments and advice. First off, I can't make up my mind whether I want to go portable or non-portable. The advantages of the portable models are obvious, especially when the rest of the family wants to watch TV. But would I be losing something in a portable compared to non-portable? I want frequency coverage at least to 30 MHz and would like to have $L W, 150$ to 400 kHz .
-A. I. L., Annville, Pa.
A professional table model communications
receiver should be superior to a portable, but costs more. On SSB you will hear hams, commercial stations and marine communications. If you really want good SSB reception, pick a receiver designed for SSB, employing a product detector, not just an AM receiver with a BFO. And don't worry about the family-use a beadset!

Trucks, Trucks, Trucks

I have an Allied KN-2580 citizens band transceiver which works very well until heavy trucks or any heav'y duty vehicle passes in fromt of my house. When that happens my CB sounds as if it is shifting gears with the vehicle. Do you have any solution for this problem?
-M. J. G., Chicago, Ill.
Sounds like ignition noise which can carry quite far when severe. If possible, move your antenna farther away from the street. It may help some.

Need Wire

I have an old Majestic wire recorder. I can't find any wire for the thing. I ordered some from a company that specializes in magnetic recording wire and found that the wire didn't work on my recorder. It seems to be too small for the recording head. My machine requires a 21/4" diameter spool (inside diameter). I was wondering if you or any of your readers could help me find some wire of the right size.
-L. D., Onslow, lowa
Wire recording went out when tape came in because tape is better and cheaper. Any reader knowing where L. D. can get the right wire can reach him at P.O. Box 12 in Onslow, Iowa.

Noise Killer

Can you give me a design for a filtering system which will permit me to eliminate a separate 12-volt dry cell for running a depth finder on my boat? There is too much electronic noise in my boat wiring system to get accurate readings when the depth finder is hooked up to it. The boat power system consists of a 12-volt storage battery, alternator charger, and transistorized ignition.
-A. M. K., South Natick, Mass.

You can try a low-pass filter, connected as shown in the diagram. Use radio frequency

chokes for L1 and L2 and put all the compoments in a metal box. Values are not critical!

Hiss

I have an old Crosley radio, model number 7V2. Every once in a while it starts to make a hissing and cracking noise. I was wondering if you could give me some information on where to get a schematic diagram for it. Also I was wondering if you could tell me how old it is.
-M. K., Belvedere, Ill.
Sorry, we don't have a schematic diagram nor do we recall that model's vintage. Your trouble sounds like an AF transformer giving up. Temporarily short point X in the diagram to Y (cathode). If the noise gets worse replace the transformer with a standard interstage type. Because of the age of the set, it would pay to replace all fixed capacitors.

Don't Ask Why
Without having to modify the power supply of an old Majestic radio which uses type 27 triode tubes, can you suggest a 2.5 -volt filament tube I can use in place of 27s?
-J. K., Teaneck, N.J. The $2 \mathrm{HA} 5 / 2 \mathrm{HM} 5$ is a triode tube with a $2.4-$ (Continued on page 106)

At home, in your spare time, Prepare For Your

We teach you electronics from the beginning, and then how to pass F.C.C. license examinations for your 3 rd, 2 nd, and 1 st class radiotelephone license-all by home study. This training is approved under the G.I. Bill. For details, write:

Dept. E-9

Pathfinder School of Electronics
1509 N. Western Ave.
Hollywood, California 90027

THOUSANDS OF BARGAINS
TOP VALUES IN ELECTRONIC
Transistors, Modules, C. B., Speaker, Stereo, Hi-Fi, Photo Cells and Thousands of Other Electronic Parts. Send for FHEE Catalogue

ELECTRONIC DISTRIBUTORS INC.

Keep
up to date with SCIENCE \& MECHANICS

Science \& Mechanicsthe only magazine that keeps you right up to date on developments in space tecbnology, weapons, automobiles, medicine, boats, planes, tools, new products, and exciting world events.
Keep up to date. Make sure of your home delivered copy by returning the coupon today.

SCIENCE \& MECHANICS, Dept. 200
229 Park Ave. S., N. Y., N. Y. 10003
12 issues $\$ 4$; 24 issues $\$ 8$; 36 issues $\$ 12$. (Foreign:
Add $\$ 1$ a year.)
| Please enter my__year(s) subscription.
| ロ| enclose $\$$ \qquad \square Bill me. (No stamps)
I Name. \qquad (Please Print)

Address

City
State \& Zip

Pencil in that Design

A slim, 3-oz. instant heat pencil iron that will do the work of much heavier pistol-type guns has been brought out by Wall Mfg. as their Model IDL. Its slimness came about by using a dual heat element controlled by a thermal time delay relay, nixing the need for a transformer. When a switch on the handle is depressed, a high-wattage element brings the tip temperature up to operating heat in seconds. The relay then cuts in a lower wattage element that maintains the proper sol-
(Continued on page 106)

Wall Soldering Pencil

Maybe someday the other guys will have a guaranteed, million dollar reservation system like Max.

Maybe.

When the other guys reserve a car for you, they assume it'll be there. National knows. Because right now-today-National has Max, a million dollar computer.
Max knows the whercabouts of every car in our fleet. When you call us toll-free at 800-328-4567, Max tells us instantly what's available so we can guarantee your reservation.
Max isn't the only diference, cither.
National has GM cars, S\&H Green Stamps and a trusting nature that prompts them to accept any recognized credit card at any of their 1800 locations.
Maybe someday the other guys will have all of those things. But why wait? National guarantees your reservations now!

We make the customer No. 1.

WTH US, MINEY is No EXPENSE.

In 1902, radio (dots and dashes variety) was just beginning. The year before, Marconi had astounded the world by transmitting the single letter " S " in Morse code, from England to Newfoundland. Years were to pass before Fessenden would add voice to radio.

Yet on March 20, 1902, an unknown inventor from Kentucky actually made a ship-to-shore wireless telephone transmission to a small group of astonished scientists in

Washington, D. C. Reports of his earlier experiments in Kentucky had led the scientists to invite Nathan B. Stubblefield to demonstrate his discoveries in the Capital. He operated his transmitter from the deck of the steamship "Bartholdi" in the Potomac River. The witnesses on shore heard his voice from a mysterious box that housedand concealed-the receiving apparatus. Fearful of having his secrets stolen, the in-
(Continued on page 110)

ANNOUNCING-

Pracical:Handymans Gigantic

F98,500 AIVENHIT

 for budget wise men and women who want to save extra $\$ \$ \$$ with exciting "DO-IT-YOURSELF" home projects!Mail Claim Check Coupon below to get your share of Practical Mandyman's
$\$ 99,500$ Giveaway! Yes, if you want to cut costly home repair bills, increase the beauty and value of your home - YOU HAVE HIT THE JACKPOT! During the next few months 85.000 copies of Volume One of the PRACTICAL HANDYMAN'S ENCYCLOPEDIA (a whopping $\$ 99.500$ value) will be given away to readers of this publication and other home handymen and their wives ABSOLUTELY FREEI

Mar. the CLATM CHECK COUPON for your share of GIGANTIC $\$ 99,500$ GIVEAWAY! Yes, take FREE everything you want to know about every moneysaving home handyman project!

SEND FOR YOUR FREE VOLUME 2... with more than 200 giant $73 / \mathbf{c}^{\prime \prime} \times 10^{1 / 2}$ * pages, filled to overflowing with more that 400 "how to" pictures and projects!

SEND FOR YOUR FREE VOLUME ...packed with interesting "do-it-yourselfprojects such as Built-In-Closets and Drawers - Auto Tune-Ups-Air Conditioning of Home and Car-TV Adjustments-Motor RepairingAttic Ventilation-Aluminum Projects-Garden Accessories-and many, many more.

SEND FOR YOUR FREE VOLUME ...find such "money-in-your-pocket" projects as: Appliance Repairs-TV Antennas-Emergency Car Repairs - Spray Painting-Burglar Alarms-Additional Bedrooms-Boosting Gas Muleage-and many, many more!

SEND FOR YOUR FREE VOLUME . discover the pleasure and sense of accomplishment in such projects as: Home Venti-iation-House Framing - Window Framing - Skylights - Barbecues - Weatherproofing \rightarrow and many, many more!
THOUSANDS OF DOLLARS WORTH OF EXPERT ADVICE
There is no obligation! We give you this valuable FREE VOLUME so that you may seeat our expense-just how wabl the RAC TICAL HANDYMAN'S ENCYCLOPEDIA can be for you and every member of your family! 22 Superb Volumes! 4,056 fact-filled pages. Over 7,250 Show-How Pictures! Over 1,000,000 Instructive Words! Hundreds of Expert Contributors - Thousands of PleasureGiving Ideas and Projects! Alphabeticaly Ar
ranged Complete Cross-Referce Index!

> NOW YOU CAN SAVE SSSS BY DOING IT YOURSELF!
Think of it! You can SAVE \$325 on a cedar closet-SAVE over $\$ 1,000$ by building your own garage-SAVE up to $\$ 100$ by covering your backyard patio yourself - SAVE $\$ 50$ by installing acoustical tule on playroom ceilingSAVE up to $\$ 2,000$ by constructing your own sacation cabin!

18 ENCYCLOPEDIAS IN ONE
HANDYMAN'S LIBRARY
Here's an Encyclopedia that thoroughly covers just about EVERY kind of Home Repair

and Improvement, including: Carpeniry. Plumbing, Electrical Wiring. Appliance Ro pair, Masonry and Cement Work, Painting Flooring, Uphokstery, Roofing. AND IT IS.. DENJNG with hundreds of paces on Home Landscaping. Making a Pcrfect Lawn. Flower Raising, Roses, Cold Frames, Garden Furniture. Arbors. Walkn!
.. ALSO AN ENCYCLOPEDIA OF FURNITURE MAKING, including hundreds of handsome Chairs, Closets. Sofas. Beds. Desks, Tables-for Living Room. Bedroom, Nursery, Playroom. Den. Library, Patio-for every room in your house or apartment!
ENALSO A HI-FI, STEREO, AND TV ENCYCLOPEDIA, including Assembling Systems. Equipment lmprovement. Tape Recorders. Picture-Tube Installations. TroubleShooting and Repairs! ALSO A TOYS-AND-GIFTS ENCY. CLOPEDIA, with complete illustrated instructions for Swings. Hapry. Clown Slide , recus Wagon, Tcen-Age Hi-Fi, etc
A. ALSO A CAR OWNERS ENCYCLO PEDIA, covering Engines, Brakes. Fuel, Igni fion and Cooling Syctens. Trotible-Shooting Emergency Repairs, Building a Midget Auta HotRod. a Go-Cart!
ALSO A WORKSHOP ENCYCLOPEDIA. covering all types of Power Tools Hand Tools. Work Benches, Building an Equipping Workshops! PLUS... 12 others!

FOOIPROOF STEP-BY-STEP
DIRECTIONS THAT CAN'T FAIL:
Here is a partial list of the foremost experts who creatcd the "Can't-go-wrong" projects: Bernard Gladstone. I Tome Improvement Edi tor, New York Times; Walter Fischman. "how-to" writer. New York New's and Popular Science; Robert Herizberg, famed elecronics expert: Art Margolis, who conducts TV Repair Department of Popular Science; Fred Russell. dean of car experts-and hum dreds of others!

CLAIM YOUR SIHARE OF $\$ 99,500$ GIVEAWAY-GIANT VOLUMEONE FREF-IOU RISK NOTHING:
Mail the CLAIM CHECK COUPON below today! Volume One of the PRACTICAL HANDYMAN'S ENCYCLOPEDIA will be sent absolutely FREE! You do not have to subscribe to anything in order to get this book.

But you may if you wish, go on to accumu. late further volumes of this Encyclopedia. Each big. new volume will come to you ENTIRELY ON APPROVAL for 7 days FREE EXAMINATION.
Volumes 2,3 and 4 will come to you about one a month. After that, remaining volumes
vill come in two shipments...all ON AP. PROVAL, Within 7 days FREE EXAMI. NATION you may decide whether to keep the shipment or not-you may decide to return it and owe nothing, or you may remit the low price of just $\$ 3.49$ per volume plus a few cents for shipping - for only one book each month. You may buy as few volumes as you wish, even none at all if you so choose, and no volumes will be sent after your cancella. ton is received.

mail Claim chick CODPPON BLDLOW TO clam your shame of S!9, into giveaway!

[D Hint of Tint. A brand-new full-size color service manual, covering 23 RCA Color chassis has been written by Carl Babcoke. The book includes complete schematic diagrams for 12 chassis, from the CTC12 to the CTC 40 alltransistor model. Here in one compact. handy manual is everything needed to quickly and completely repair any RCA color set. RCA expert Carl Babcoke has put together an all-inone reference manual, encompassing both general and specific trouble-shooting data applicable to all RCA chassis. The profusely illustrated text delves into each section (video, chroma, vertical, horizontal, etc.), and points ont specific problenis based on the author's extensive experience, plus valuable information gained through contact with literally hundreds
of technicians throughout the country. Troubleshooting tips on each chassis, including circuit changes and factory modifications, are thoroughly covered so the reader can solve many otherwise tough problems in short order. While this material is related directly to RCA sets, much of it is applicable to other sets patterned after RCA designs, under licensing agreements; so this book is not limited strictly to RCA. Not only does the book include 12 complete schematic diagrams, covering every basic chassis manufactured since 1963, but also all the setup data, alignment procedures, and meaningful trouble cures applicable to practically all color receivers. Variations from the 12 basic sche-
(Continued on page 30)

Soft cover
212 pages
$\$ 7.95$

Learn more about electronics this easy way by mailing the coupon below

EVERY ISSUE of ELEMENTARY ELECTRONICS brings you easy-to-follow aids for better understanding of theory and applications of electricity and electronics...in word and picture with diagrams that are easy to follow... a source of un-to-theminute information for everyone interested in electronics who wants to increase his knowledge...followed every issue by thousands of CBers, Hams, SWLs, Experimenters.

MAIL THE COUPON below today and you can save up to $\$ 3.50$ over the cost of buying copies on the newsstand... and be sure you don't miss a single information-packed issue... because the mailman will bring your copy to your door just as soon as each issue is off the press.

Elementary Electronics, 229 Park Ave South, New York, N. Y. 10003
I.don't want to miss a single issue. Enter my subscription for:

STREET ADDRESS city

STATE
ZIP CODE
Outside U.S. and Canada: Add $\$ 1.00$ per year

WHEN THE MOON GETS IN THE WAY

t Early in the evenings in February we find the full blazing beauty of the winter sky. The great triangle of Sirius, Procyon, and Betelgeuse is due south about 9 p.m. Almost directly overhead are Castor and Pollux as the heads of the Twins; red Aldebaran in the eye of Taurus, the Bull; and golden Capella as the little She-Goat on the shoulder of Auriga. Sliding westward from the zenith are the Hyades and Pleides (see our illustration above).

* If you're one of those who are bothered by a far from dark sky because of city lights, I'll give you a trick taught to me by one of my teachers, long ago, so you can enjoy some fainter objects that you might otherwise miss. Find a small mailing tube or similar device, like the core of a roll of paper towels, and use it as a hand-held spy-glass without any lenses in it. When you settle one end down on your eye-socket and look through the tube, the diffuse sky light will be shielded from your vision. As a result, you'll be able to see fainter objects, such as more stars in the Pleides, the Hyades, and the area of the Orion nebula, below the three
stars marking the Belt of the Giant HunterWarrior. With this scheme, or, better still, with binoculars, you might try to see the Double Cluster in Perseus, between the star Marfak and the "W" of Cassiopeia.
* In February, look for red Mars in Pisces, moving into Aries, where Saturn will be found as a fair star not on the map. Later at night, bright golden Jupiter will be found in Virgo. Find it and follow it on through the winter and spring. And, speaking of spring, it will arrive officially as the sun again crosses the celestial equator, moving northward, at about 8 p.m., EST, on March 20.
\star - If you haven't anything more important to do on Saturday, March 7, why not keep a date with a total eclipse of the sun? If you don't try this time, you'll have to wait until July 10, 1972, when the next one occurs in North America. That one will begin in Alaska, sweep eastward across northern Canada and finally over Nova Scotia before jumping off into the Atlantic. Better shoot for the earlier one, on March 7, 1970.
(Continued on page 26)

ELECTRONIC PARTS

*2. Now, get the all-new 512 -page. fully illustrated Lafayette Radio 1970 catalog. Discover the latest in CB gear, test equipment, ham gear, tools, books, hi-6 components and gifts. Do it now!
*5. Edmund Sciemific's new cataKog contains over 4000 products that embrace many interests and fields. Ti's a 148 -page buyers' guide for Science Fair feas.
*4. Olson's catalog is a multi-colOred newspaper that's packed with more bargains than a phone book has names. Don't believe us? Get a copy.

1. Allied's catalog is so widely used as a reference book that it's regarded as a standard by people in the electronics industry. Don't you have the 1970 Allied Radio catalog? The surprising thing is that it's free!
± 7. Before you build from scratch, Check the Fair Radio Sales latest catalog for electronic gear that can be modified to your needs. Fair way to save cash.
2. Get it now! John Meshna, Jr.'s new 96 -page catalog is jam packed with serplus buys--surplus radios, new parts, computer parts, etc.
3. How cheap is cheap? Well, lakc a gander at Cornell Electronics' latest catalog, It's packed with bargains like 6W4, $12 \mathrm{AX7}$, SU4, etc., lubes for only 336. You've got to see this one to believe it!
4. $R C A$ Experimenter's Kits for hobbyists, hams, technicians and students are the answer for successful and enjoyable building. creating, experimenting and learming. Find out for yourseff by circling 135 now!
5. With 70 million TV and 240 million radios somebody somewhere will need a vacuum tube replacement at the rate of one a second! Get Universal Tube Co.'s Troublesbooting Chart and facts on their $\$ 1.50$ flat jate per tube.
6. Burstein-Applebee offers a new giant catalog containing 100 s of big pages crammed with savings including hundreds of bargains on hi-i kits. power tools, tubes, and parts.
til. Now available from $E D /$ (Electronic Distributors, luc.): a catalog containing hundreds of electronic items. EDI will be happy to place you on their mailing hist.
7. Bargains galore, that's what's in store! Poly-Paks Co will send you their latest 8-page lyyer chock-full of Poly-Paks' new $\$ 1 .(0)$ electronic and scientific "blis-dor" paks and equipment.
8. No electronics bargain humter should be caught without the 1970 copy of Radio Shack's catalog. Some equipment and kit ofters are so low, they look like misprints. Buying is believing.

C8-AMATEUR RADIO SHORTWAVE RADIO

102. No never mind what brand your CB set is. Sentry has the crystal you need. Same goes for ham nigs. Seeing is believing, so get Sentry's catalog today. Circle 102.
103. It may be the first-Gilfer's speciality catalog catering to the SWI. Books, rigs, what-nots-everything you need fot your listening post. Go Gilfer, circle 146!
104. You can get increased CB range and clarity using the "Cobra$23^{\prime \prime}$ transceiver with speech compres-sor-receiver senstivity is excelient. Catalog sheet will be mailed by $B \& K$ Division of Dynascan Corporation
105. Newly-designed CB antenna catalog by Antenna Specialists has been sectionalized to facilitate the picking of an antenna or accessory from a handy index system. Man, Antenna Spectalists makes the pickin' easy.
106. Bone up on the CB with the latest Sams books. Titles range from "ABC's of CB Radio" to "99 Ways to Improve your CB Radio." So Circle 130 and get the facts from Sams.
107. Want a deluxc CB base station? Then get the specs on Tram's all new Titan [1-it's the SSB/AM rig you've been wailing for!
108. Get your copy of E. F. Johnson's new booklet, "Can Johnson 2Way Radio Help Me?" Aimed for business use, the booklet is useful to everyone.
109. Boy, oh boy-if you want to read about a flock of $C B$ winners, get your hands on Lafayette's new 1970 catalog. Lafayette has CB sets for all pocketbooks.
110. Pick up Hallicratters' new fourpage illustrated brochure describing Hallicrafters' line of monitor receivers -police, fire, ambulance, emergeucy, weather, business radio, all yours at the flip of dial.
111. Pep-up your CB rig's performance with Turner's $\mathrm{M}+2$ mobile microphone. Get complete spec sheets and data on other Iurner mikes.
112. Hy-Guin's new CB antenna catalog is packed full of useful informtion and prodict data that every CBer should know. Get a copy.
113. Get the scoop on ''ersa-Tronics' lersa-Tenna with instant magnetic mounting. Antenna models available for CBers, hanis and mobile units trom 27 MHz to 1000 MHz .
*45. CBers, Hans, SWLs-get your copy of World Radio Labs' 1970 catacopy of World Radio Labs 1970 cataperimenter, you'll take to this catalog.
114. If it's a CB product, chances are Imternational Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB-oriented company can be relied on to fill the bill.
115. Squires-Sanders would like you to know about their CB transceivers the " 23 'er" and the new "SSS." Also, CB accessories that add versatility to their 5 -watters.

TOOLS

$\star 78$. Do more jobs with fewer tools! Double-duty X celise sets contain midget nut and screwdrivers plus special "piggy-back" handle that gives power and reach of standard drivers. Three sets are described in Xcelite's Catalog 166 . Get copy today!
118. Secure coax cables. speaker wires, phone wires, etc., with Arrow staple gun tackers. 3 models for wires and cables from ${ }^{3} \mathbf{i s}^{\prime \prime}$ to $1,2^{\prime N}$ dia. Get tact-full Arrow literature.

ELECTRONIC PRODUCTS

143. Bing new life to your bobby. Exciting plans for sew projects-lat Electronics Hobby Shop give you the dope. Circle 143, now.
*44. Kit builder? Like wired products? EICO's 1970 catalog takes care of both breeds of buyers. 32 pages full of hi-fi, test, CB, ham, SWL, automotive and hobby kits and products -do you have a colyy?
$\star 42$. Hearh's new 1970 full-color catalog is a shopper's dream. Its 116 pages are chuck full of gadgets and goodies everyone would want to own. Mosily kits are shown but many fac-tory-wired products are available. Get your catalog today!
144. Hear today the organ with the "Sound-of-Tomorrow," the MeloSonic by Whippany Electronics. It's portable-take it anywhere. Send for pics and descriptive literature.
145. C. B. Hanson new Automatic Control records both sides of a telephone call automatically-turns off automatically, too! Get all the details -today!
146. Did you dig Delfa's new literature package chucked full of pics and
specs on such coodies as an FETVOM. SCR ignition system. computerized auto tach. hi-voltage analyzer, etc.? Man, then let Delta know you're alive! Clrcie 126 now!
147. Seco offers a line of specialized and standard test equipment that's ideal for the home experimenter and pro. Get specs and prices today.
\star *. Troubleshooting without test gear? Get with it-let Accurate Instriment clue you in on some great buys. Why do without?
148. Alco Electronic Products has 28 circuit ideas using their remote control relay. Get 100 -and-one odd jobs done at home without calling an electfician. Get all the facts today!

SCHOOLS AND EDUCATIONAL

-136. You can become an electrical engineer only if you take the first step. Clrcle 136 and ICS will send you their free illustrated catalog describing 17 special programs. ICS also has practical electrical courses that'll increase your income.
*74. Get two free books-."How to Get a Commercial FCC License" and "How to Succeed In Electronics"from Cleveland Instituse of Electronics. Begin your future today!
4. Get all the facts on Progressive Edu-Kils Home Radio Course. Build 20 radios and electronic circuits; parts, tools and instructions come with course.
142. Radio-Television Training of America nrepares you for a careernot a job. 16 big kits help you learn as you build. 120 lessons. Get all the facts today!
114. Prepare for tomorrow by studying at home with Technical Training International. Get the facts today on how you can step up in your present job.
137. For success in communications, broadcasting and electronics get your First Class FCC license and Grantham School of Electronles will show you how. Interesting booklets are yours for the asking.

HI-FI/AUDIO

26. Get with today's hi-fi let set. H. H. Scoll sets the pace with their fantastic line of audio components, some in kit form, too! Scolt will send you all the poop if you circle 26 !
27. You can't heat FM stereo unless your FM antenna can pull 'em in. Learn more and discover what's available from Finco's 6-pages "Third Dimensional Sound."
28. Kenwood puts it right on the line. The all-new Kenwood FM-stereo receivers are described in a colorfu booklet complete with easy-to-read-and-compare spec data. Get your copy today!
29. Shure's business is hi-fi-cartridges, tone arms, and headphone amps. Make it your business to know Shure!
30. Mikes. speakers, amps, ro-celvers-you name it, Elecro-Voice makes it and makes it good. Get the straight poop from E-V today.
31. Get the inside info on why Koss/Acoustech's solid-state amplifiers are the rage of the experts. Colorful brochure answers all your ques tions.

TAPE RECORDERS AND TAPE

14. You just gotta get CralR's new pocket-size. full-color folder illustrating what's new in home tape record-ers-reel-to-reel, cartildge and cassette, you name it! It looks like a who's who for the tape industry.
15. Yours for the asking-Elpa's new "The Tape Recording Omnlbook." 16 jam-packed pages on facts and tips you should know about before you buy a tape recorder.
16. All the facts about Concord Electronics Corp. tape recorders aro yours for the asking in their free 1970 catalog. Portable, battery operated to four-track, fully transistorized stereos cover every recording need.
17. "All the Best from Sony" is an 8-page booklet describing Sony-Superscope products-tape recorders, microphones, tape and accessories. Get a copy today before you buy!
18. If you are a serious tape audrophile, you will be interested In the all new Viking Telex line of quality tape recorders.

TELEVISION

* 70. The all new Heathkit 1970 catalog is Jammed with 7 color TV kits, plus buys on antennas, rotors, towers and other accessories, and TV test gear. Get your copy by circling item 70 below.

127. National Schools will help you jearn all about color TV as you assemble their 25 -in. color TV kit. Just one of National's many exciting and rewarding courses.

SCIENCE AND ELECTRONICS

 Dept. 370229 Park Avenue South
New York, N.Y. 10003
Please arrange to have the literature whose numbers I have circled at right sent to me as soon as possible. I am enclosing 25¢ to cover handling. (No stamps, please.)

Sorry, only 20 circled items maximum.

Indicate total number of booklets requested

1	2	3	4	5	6	7	8	9	10
11	12	14	17	23	26	30	31	34	35
42	44	45	46	48	70	74	78	96	99
100	101	102	103	104	106	107	109	111	114
116	118	119	123	126	127	129	130	135	136
137	140	141	142	143	144	145	146		

NAME
ADDRESS
CITY
STATE
$21 P$ \qquad

The Skies Above Us

(Continued from page 23)

* Don't hold me to it, but the statistical probability of clear sky (less than 0.3 cloud cover) along the eclipse path from near Tallahassee, Fla., to Norfolk, Va., tuns between 40 and 50 percent at midday in early March. At Bangor, Me., on July 20, 1963, the last time 1 hoped to see a total solar eclipse by traveling about 400 miles away from home, the statistics were all on my side-until about 30 minutes before totality when the clouds and the rain came!
* An eclipse occurs, of course, because the moon sometimes can pass between the Earth and the sun and cast a shadow on an area of the Earth. Sometimes the shadow's center doesn't fall on the Earth; then the eclipse is only partial and only a bite, large or small, appears to have been taken out of the edge of the sun. Sometimes the moon is too far from the Earth and its black disk is too small to cover all of the sun but appears as a black hole in it, so the uncovered part of the sun appears to be a bright ring; this is called an annular eclipse. But when the tip of the moon's shadow does reach the Earth and sweeps across sea and land, those who are in the path will see a total eclipse
and those on either side will see a partial eclipse-a big bite if they are close to the total path, diminishing in importance as they are farther from it.
* The path may be about as long as half the circumference of the Earth. But it can be no wider than 169 miles and, as the shadow sweeps along, it can not take longer than 7 minutes 31 seconds to pass over a given point. But this can occur only when the Earth is closest to the moon and farthest from the sun at the same time, a rare circumstance which will almost occur on July 16, 2186 (it will fall two seconds short!).

Our total eclipse this year is wasted for the first 5000 miles of its path, from the point where the moon's shadow first touches the Earth just south of the equator, far out in the Pacific, until it has curved northeastward to come ashore on Mexico's Pacific coast at the Isthmus of Tehuantepec, south of Oaxaca, where the real shadow, called the umbra, is 95 miles wide and moves at 1500 miles an hour. At any given point on its central line, it requires 3 minutes 28 seconds to pass, during which time the sun's disk will be entirely hidden by the moon.

Even today, there may be natives there, descendants of the ancient Olmec, Zapotec, Mixtec, and Aztec cultures, who will revert to their traditional fears that the great god,
(Continued on page 107)
act The maps show the principal stors which are above the horizon of latitude 34° North at about 9 p.m. standard time of the middle of the month. These maps are practical star location guides anywhere in the United States throughout the month showing the sky of 10 p.m. on the first and at 8 p.m. on the last of the month. To look of the night sky in February and March, select the proper map and hold it vertically. Then turn the map so that the point of the compass toward which you are facing shows of the bottom of the mop. sisit Our special thonks go to the Griffith $O b$ servatory in Los Angeles, Cali-

You can pay ${ }^{\text {s }} 600$ and still not get professionally approved TV training. Get it now for ${ }^{5} 99$.

Before you put out money for a home study course in TV Servicing and Repair, take a look at what's new.

National Electronic Associations did. They checked out the new TV training package being offered by ICS. Inspected the six self-teaching texts. Followed the step-by-step diagrams and instructions. Evaluated the material's practicality, its fitness for learning modern troubleshooting (including UHF and Color).

Then they approved the new course for use in their own national apprenticeship program.

They went even further and endorsed this new training as an important step for anyone working toward recognition as a Certified Electronic Technician (CET).

This is the first time a self-taught training program has been approved by NEA.
The surprising thing is that this is not a course that costs hundreds of dollars and takes several years to complete. It includes no kits or gimmicks. Requires no experience, no elaborate shop setup.

All you need is normal intelligence and a willingness to learn. Plus an old TV set to work
on and some tools and equipment (you'll find helpful what-to-buy and where-to-buy-it information in the texts).
Learning by doing, you should be able to complete your basic training in six months. You then take a final examination to win your ICS diploma and membership in the ICS TV Servicing Academy.
Actually, when you complete the first two texts, you'll be able to locate and repair 70\% of common TV troubles. You can begin taking servicing jobs for money or start working in any of a number of electronic service businesses as a sought-after apprentice technician.
Which leads to the fact that this new course is far below the cost you would expect to pay for a complete training course. Comparable courses with their Color TV kits cost as much as six times more than the $\$ 99$ you'll pay for this one.
But don't stop here. Compare its up-to-dateness and thoroughness. Find out about the bonus features-a dictionary of TV terms and a portfolio of 24 late-model schematics.

Get all the facts. Free. Fast. Mail the reply card or coupon below.

BOOKMARK

Continued from page 22
matic diagrams are illustrated and described in the sections on each of the 23 chalssis covered You can get your copy by writing directly to the publisher, Tab Books, Blue Ridge Summit, Pa. 17214.
. Getting Started Right! Once you have decided to discover the world of electronics, you should kick-off the building of your reference library with Electrical Fundumentals by J. J. DeFrance. Although it's a great reference book after you are well advanced, it is a sound and excellent text for a beginner to read and from which to study. To make the subject matter "live" and easy to understand, a conversational style is used, and emphasis is placed on concept rather than mathematical derivations. However, sufficient quantitative information is given to meet the realistic needs of practicing technicians. In this respect, a sound working knowledge of high school basic algebra. and skill in the use of a slide rule are assumed. Numerous "small bit" review questions are given at the end of each chapter to provide a programmed learning. No book teaches everything about any subject. Much remains for the beginner to

learn on the job or the practice of his hobby. Electrical Fundamentals does a great deal in preparing the reader for the practical job ahead. Available at local and college bookstores, or direct from the publisher, PrenticeHall, Inc., Englewood Cliffs, N. J.
\square Meters. Here, in one single volume, is the most important and useful tool you can find for working with electronic meters. It's a new book entitled Handbook of Electronic Meters. Designed for electronics engineers and technicians, the text provides not only the "how-to" of a great variety of electronic test procedures, but offers detailed, easy-to-follow explanations of the reasoning behind each test. If you have need of any type of electronic meter, this is a handbook without which you cannot afford to be.

Detailing the greatest number of meter applications available in a single handbook, this manual covers a full range of practical solid-
statc and integrated circuit data. It spans the entire subject, heginning with simplified presentations of operating principles and the characteristics of typical laboratoty and shop meters, and accessory equipment. The descriptions include test connection diagrams for each operation and are all illustrated in hlock diagram or simplified schematic level, thereby offering an ideal source of easily accessibie facts on meter theory and application. A valuable feature of

this handbook is the self-contained aspects of each meter procedure and application, thus eliminating any need for cross-checking data elsewhere in the book. And since every practical, experience-proven application for modern meters is included, this handbook represents not only the most complete one available, but virtually the only one you will need to master the full sange of basic modern electronic meter theory and procedure. You can get a copy by writing to Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632.

by Thomas R. Sear WA6HOR

How many times have you wondered about that statement that the lowly ant can tote a load more than twenty times greater than his own weight? And, still on that theme, just how much does an ant weigh? Or, as a matter of interest, how does one go about weighing an ant without having to invest a lot of hard-earned cash in a delicate chemical balance? If not the ant, perhaps you have been curious about the weight of a fly's wing, or the weight of one whisker from your new mustache, or, for that matter, any number of things that, for most practical purposes, are so

Magnetic Beam Balance

infinitesimally light in weight that they simply can't be weighed on standard scales.

What is needed to weigh items with such small mass is a very expensive, very sensitive and delicate lahoratory beam balance. However, sensitive electrical meters and reliahfe current sources are relatively low in cost and within easy reach of the average experi-
menter. And, with just a little mechanical dexterity and ingenuity, you can produce an ultra-sensitive device to meet your needs for weighing extremely lightweight objects at a modest cost.

How If Weighs. Our Magnetic Beam Balance or MBB , though quite sensitive, is really a very simple device. If you're familiar with the conventional moving-coit meter movement, you know that its pointer is deflected in direct proportion to the amount of current flowing through its mov-

PARTS LiSt FOR MEB

Cl-100-uF, 15-VDC electroiytic capacitor (Allied 46A6633 or equiv.)
D1-200-PIV, $750-\mathrm{mA}$ silicon rectifier iAllied 24 A9692 or equiv.)
F1-Panel-mounting fuse holder (Allied 57A3001 or equiv.) with type 3AG, $1 / 4-A, 250$ V fuse (Allied 57A3111 or equiv.)
11 -Panel mounting pilot lamp assembly (Allied 60A7781 or equiv.l with $12-V$, bayonet base lamp (Allied 60A7361 or equiv.)
M1-0-100-UA, DC meter (Allied 52E8197 or equiv-see text.)
M2-0-50-UA, DC meler (Lafayette 99E50429 or equiv.l
R1-10-ohm, $1 / 2$-watt resistor
R2-22,000-ohm, $1 / 2$-watt resistor
R3-2700-ohm, $1 / 2$-watt resistor
R4-1000-ohm, $1 / 2$-watt resistor
R5, R7, R8-1 80 -ohm, $1 / 2$-watt resistor
R6-100-ohm, $1 / 2$-watt resistor
R9-1000-ohm, 2 -watt potentiometer, linear
taper (Lafayette $30 E 80082$ or equiv.)
R10-10,000-ohm, 2-watt poientiometer, linear taper (Lafayette 30E80140 or equiv.)
R11-50,000-ohm, 2-watt potentiometer, linear taper (Lafayette 30E80181 or equiv.)
R12, R13-50,000-ohm, 2-watt potentiometer, linear taper (Lafayeffe 30E80249 or equiv.)
S1-Spst toggle switch (Lafayette $34 E 33026$ or equiv.)
S2-3-pole, 4-position rotary switch (Lafavette 30E40185 or equiv.)
Tl-Filament transformer: primary $117-\mathrm{V}, 50-$ $60-\mathrm{Hz}$; secondary $12.6-\mathrm{V}$ @ $1.5-\mathrm{A}$ (Allied 54A4136 or equiv.)
$1-8 \times 12 \times 3$-in. aluminum chassis (Lafayette 12 E82128 or equiv.)
$1-8 \times 12$-in. aluminum chassis base (Lafayette 12 E83050 or equiv.l
Misc.-Hookup wire, hardware, solder, knob, rubber feet, etc.

ing coil, which is attached to the pointer. The coil is suspended in a fixed magnetic field and is mounted on jeweled pivot bearings to reduce friction to a minimum. Except for the pull of the hair-spring, used to return the pointer-and-coil assembly to an established zero point when no current is flowing, this assembly has very little mass. As a result, it's easily deflected from the zero position by small increments of current flowing through the coil.

What we have done is to mount a movingcoil meter movement (M1) 90 deg. off its normal mounting axis so that the pointer is in a horizontal rather than the normal vertical position. The tip of the pointer has been modified so that it can serve as a platform on which the object to be weighed can be placed. In addition, we added limit pins to restrict movement of the pointer over a narrow range after first mechanically adjusting the normal zero-rest position to mid scale. An arbitrary true zero is established by placing a mark on the meter face plate that is midway between these two limit pins.

This meter movement is wired in series with a relatively constant source of DC, a potentiometer to adjust the current flow, and a microammeter which acts as a voltmeter to measure the amount of voltage developed by the flow of current during the weighing process.

Standard Weighing Charts. The fly's wing, mustache hair, or whatever low-mass object is to be weighed, is placed on the weighing platform. This, of course, causes physical displacement of the pointer below the newly established zero rest point. When the null potentiometer (R9) is adjusted to

View of MBB innards showing simple layout. There's plenty of room here to make a neat wiring job; note that most resistors and capacitors are supported by their own leads.
restore the pointer to the arhitrary true zero point, a reading is taken on M2. What actually has occurred is that the electromagnetic force, created by the current flowing through the moving coil, is adjusted so that when the pointer (weighing platform) is back to the zero point, it just balances the mass of the material heing weighed. By correlating current readings with standard weights a chart can be prepared so you know exactly what weighs what.

You can purchase sets of standard weights having very small mass from most laboratory supply houses (e.g., Edmund Scientific, Fisher Scientific). These can be used to establish your weighing chart. Tahulate the current reading you get for each increment of the standard weights in creating your chart. You can, of course, combine individual weights to arrive at a weight equal to the unit increment you have established for your chart. The MBB is designed to be adapted to many weight ranges hy changing the range of the electrical readout. The range switch switches the appropriate multiplier into the circuit to permit higher current readings. These represent heavier weights, as read on meter M2.

Building the MBB. We housed our MBB in an $8 \times 12 \times 3-\mathrm{in}$. aluminum chassis fitted with a bottom plate. We used aluminum to make it easier to cut out the openings for the two meters. The overall layout isn't critical. The one we used, however, is very convenient for interwiring the components. so we suggest you follow it-unless you feel that you would prefer to design a layout more adaptable to your specific applications of the MBB.

The only part of the construction that does test your dexterity is the modification to the moving-coil meter movement to convert it to a weighing platform.

Making the Weighing Platform. Once all of the holes have been drilled in the chassis. the parts have been mounted and wired and you have completed everything but the installation and hookup of M1, you should proceed to modify the meter so that it can be used as your weighing platform.

We purposely selected a meter that has the protective glass cover mounted separately in the bezel in order that it could be removed easily without destroying the bezel. The glass must be permanently removed to provide access to the weighing platform.

Incidentally, the cost of the meter specified in the Parts List is quite high when pur-

Magnetic Beam Balance

chased new and used just for this one project. Since you'll have to remove the protective glass from the meter bezel and also bend the pointer. the instrument will probably he unsatisfactory for any other project you may want to try. Therefore, we suggest you try to pick up a used one in order to hold the cost of the project down.

Since the calibrated scale that comes with the meter is meaningless for our MBB, we suggest you remove the scale and replace it with a blank piece of metal or plastic of the same thickness and shape as the original; alternatively, you can reverse the original scale so that its blank side is facing out. Make a mark in the center of the arc that the pointer follows when moving across the scale. Cut two pieces about $1 / 2-\mathrm{in}$. long from an ordinary straight pin and cement one about $1 / 2$ in. above and below the center mark.

Before replacing the bezel on the meter case, move the lever that controls the zero positioning of the pointer assembly until the pointer rests mid-scale when no current is flowing. Incidentally, when putting the scale back onto the meter movement take care that the pointer can move freely between the two limit pins that have been installed on the face plate.

The final step before mounting and wiring this meter is to bend the pointer so that the arrow head on its free end is perpendicular to the face plate. This then becomes the

Business side of MBB shows MI containing platform to hold material to be weighed. Always make certain that platform and material do not rub against M1's faceplate.
platform on which material to be weighed is placed. Make certain that the arrowhead platform doesn't rub against the face plate, otherwise any readings you make will he inaccurate.

Adjusting the MBB. Now that you've completed construction and checked for any wiring errors, you're ready to adjust the assembly to ensure accuracy in weighing. A VTVM (or the Hi-Fet Voltmeter described in the January/Fehriary 1970 Elementary Electronics) should he used for these adjustments as you will he dealing with critical circuits that could be affected by the relatively low resistance of a conventional VOM. Before applying power to the MBB, place the null contiol (R9) in a full counterclockwise position and set potentiometers R10, R11, R12, and R13 at midpoint. Remember, always begin every new range adjustment with the null control in the full counterclockwise position.

Connect the VTVM between the arm of R9 $(+)$ and the chassis (-) of the MBB. Use a low voltage scale of the VTVM. Set the range switch (S 2) to the X .0002 position, turn on the power and adjust the null control until the VTVM reads 0.29 VDC. Then adjust R 10 until M2, the $50-u \mathrm{~A}$ meter, reads full scale. You may find some interaction between R9 and R10; if so juggle the two until you get the VTVM reading of 0.29 V with M2 reading full scale.
Once you've adjusted this range, proceed to the X .001 range and follow the same steps-except that the VTVM should now read 2.0 V and you will adjust R11 along with R9 instead of R10. You can expect the same possible interaction between R9 and R11 that you experienced between R9 and R10

The other iwo positions of the range switch are adjusted in exactly the same manner. When adjusting the X. 002 range the VTVM should read 4.1 volts and when adjusting the X. 004 range it should read 8 volts. R12 is used for the X. 002 range and R13 is used for the X. 004 range. Once each range has been adjusted and the VTVM has been disconnected, it's a good idea to move the range switch to each position to make certain that M2 can be set to full scale by rotating R 9 , the null control, for each range switch setting.

Using Mbs. Now that you have adjusted the various ranges, how do you use MBB to weigh a lly's wing or an ant or any other
(Continued on page 108)

Rejuvenate that old rig fora

Old communications receivers often go abegging. And wise is the man who knows a bargain when he sees one.

by Joseph J. Carr

\square Even a quick, nonchalant glance through electronics catalogs often nips novice SWL and ham aspirants in the bud. Prices generally range from $\$ 200.00$ up for a decent, general-coverage shortwave receiver. The fellow on a limited budget (and who isn't these days?) will have to make a substantial sacrifice if he wants to break into the amateur radio or SWL fields or will he? Though little can be done for the newcomer absolutely lacking in electronics knowledge, the person with a few basics under his belt (or perhaps, a lot of self-confidence) can save himself a pile of money by reconditioning an old receiver.

The receivers under consideration are those that were, in their day, the mainstays of amateur, commercial, and military communications. The three main manufacturers of communications receivers during the 1935-1950 era were Hallicrafters, Hammarlund, and National. There is still a surprisingly large number of receivers by these firms stuffed under workbenches, lying in attics, or just gathering dust in somebody's ham station; they surface but rarely, and then only for an occasional hamfest auction or classified listing.

Except for a few units subject to a form of "my first . . ." nostalgia, most can be purchased for under $\$ 50.00$. It is even possible to find one available on a "get-the-darn-thing-outa-my-way" basis. Quite often, the only reason for them being discarded was the much more exacting requirements of modern, single-sideband operation, or possibly the snob appeal of a shiny, new Super

Inhaler Mark X. Thing is, the National HRO and NC series, the Hammarlund Super Pro line, and the venerable Hallicrafters SX-28 can all be given a new lease on life (plus additional years of service) by following the procedures we're about to outline.

During the preliminary stages of buying an old receiver, it's wise to look into several aspects of its condition. Of course, if it works and isn't beaten half to death, it's probably in reasonably good shape. However, look for
\checkmark Mechanical Condition. You probably wotildn't want to attempt to repair a rig that's been rolled down the side of a mountain, so be wary of a "bargain" that is badly bent up or otherwise mutilated. Look at the paint job for signs of excessively rough handling. Be aware, however, that you aren't likely to find one in factory-new condition. Even so, it's sort of a truism that a well-taken-care-of unit will appear to have been well taken care of.
\checkmark Missing Parts. It may prove impossible to locate replacements for some of these, so beware! Missing components may indicate cither a prior repair attempt that was aborted, or the fact that the piece has been cannibalized. Either case is liable to make restoration a lot bigger headache, perhaps bigger than the receiver is worth.
\checkmark Evidence of Burning. Nobody who has been exposed to the acrid stench of an overworked or shorted transformer is ever likely to forget it. This stench, which is noticeable even to the uninitiated, is often faintly detectable for years after the burning took place.

SHACK ON A SHOESTRING

Another clue to a burned-out transformer is the presence of a dark brown to black mess congealed on surfaces close to or beneath the suspect part. If either clue is present, use your own judgment. Transformers can usually be replaced with a new substitute, even if an original replacement is no longer available.

Once you have your set, hold off on restoration until you're at least partially familiar with it. If the previous owner failed to supply an instruction manual, try a few other sources. A letter to the manufacturer (plus a nominal fee) may be all that's necessary to acquire a manual. If this fails, try Sams Photofacts, the Rider books, or (in the case of military sets) the various surplus conversion books on the market. A lot of aggravation can be saved by this procedure.

After all is readied, try and work up a plan of action. If the work is layed out in advance, there is less possibility of skipping some vital portion of the process.
\checkmark Getting Started. First, take the receiver out of its cabinet and set it on the work bench or table. Place all screws and other small hardware in a paper bag or other suitable container, and put it in a safe place. When this is accomplished, remove all the dust and accumulated crud with a small paint brush or vacuum cleaner.

Second, remove all tubes for testing. If you have a tester available, this should be done on a one-by-one basis. Otherwise, mark each tube and make a diagram showing where each tube came from. Don't overlook the possibility that they may have been placed in the wrong sockets during a previous repair attempt. Some receivers have the tube numbers printed or stamped on the chassis close to the sockets. Sometimes a tube layout chart can be found on the chassis, cabinet, or covers. If a manual is available, it will probably contain such a chart. In most instances, the emission-type tube testers

[^2]found in drug stores, etc., will suffice, though the mutual-conductance grid-emission type tester is generally far superior. Most TV repair shops will test your tubes on such equipment either free or for a small fee. When this test is completed, and bad tubes replaced, return all tubes to their respective sockets.

Next, obtain an aerosol can of control/ switch contact cleaner, and a tube of white grease such as Lubriplate. Squirt cleaner into all potentiometers (AF gain, RF gain, etc.) and rheostats. After spraying a control, run it vigorously back and forth through its range several times. When the controls are finished, start on the switches. On the rotary types (the main rotary switch may be hidden inside a metal shield box), spray each wafer on both sides. As with the controls, run switches through their range several times.

Switch bearings, shafts, and bearing plates should be cleaned thoroughly and lubricated with white grease. Variable capacitors often have a leaf-spring grounding wiper at one or both ends of the rotor shaft. These and their respective contact surfaces should be cleaned to a bright luster. They should be free of dust, dirt, corrosion, and grease because this is often the only method for grounding the rotor shaft.

When this preliminary maintenance has been performed, the set will be ready for ar "air test." If the receiver operates properly, there is, of course, no cause for any furt ler

Fig. 1. Above and right, two ways to use silicon diodes to replace obsolete 523 rectifier. All diodes are 800 PIV, 1 A types; resistors R1, R2, R3, and R4 at right are 470k, $1 / 2$-watt units; resistors R5 and R6 are 1 -ohm, 2-watt units; capacitors C1, C2, C3, C4 are standard .001-uF, 1000-V ceramics.
troubleshooting. Even so, there is probably pressing need for a substantial amount of preventive maintenance to eliminate the necessity for troubleshooting in the near future. \checkmark Wires and Leads. Wires that are excessively corroded or whose insulation is dry rotted, cracked, or brittle should be replaced. Good quality hookup wire of the same gauge as the original should be used. \checkmark Electrolysic Capacitors. These components have an ornery reputation for ageinduced failure. Because of this. they shouki be replaced as a standard procedure. Get a top-quality universal replacement as close as possible to the original. Note of caution: Capacitors can store a charge for lengths of time sufficient to induce carelessness into the unwary worker. Always bleed off a capacitor with a suitable resistor (say 47 k) touched between positive and negative leads before starting work.
\checkmark Small Capacisors. Any capacitor can develop leakage resistance or short out entirely. If DC voltage is passing through the capacitor, or if an ohmmeter indicates leakage resistance, then the capacitor should be replaced. If the capacitor is swollen, or has the ends broken out, replace it regardless of what a leakage check shows. Mica and eeramic capacitors shoukl be replaced with equivalent parts; paper capacitors, however, are best replaced with the more modern mylar units.
\checkmark Pixed Resistors. Heal, humidity, and (so say wizened old pros) the occult powers

Cause carbon composition resistors to change value. An old resistor color coded for, say, 100,000 ohms may actually be closer to $1,000,000$ ohms after all these stresses have taken place. Discolored, swollen, burned, or cracked resistors are best replaced, as any resistor that causes a voltage drop larger than is called for by the schematic. It's quite possible for a resistor to change value and still give no outward signs.
\checkmark Controls and 5 witches. Any control or switch that fails to operate properly after cleaning is a prime candidate for replacement. The most common symptom is an unusual amount of noise or static when the part is operated. Fortunately, switches of all kinds are normal stock items at most electronics parts stores.

As for controls, even the most odd-ball units can be made up by using one of universal assembly kits put out by most of the resistor manufacturers. A good parts store will carry these items, and most will assemble them for you. Rotary switches will probably have to be specially ordered. As for the master bandswitch. better let a person with loads of experience handle this one.
\checkmark Obsolete Parts. One of the things that is likely to make you want to throw in the towel is finding, after all that work, that a bad part is obsolete and no longer available. For instance, have you tried lately to find a $5 Z 3$ rectifier for an SX-28 receiver? Some dealers still carry them, but they are a precious few.
(Turn page)

SHACK ON A SHOESTRING

Two alternatives present themselves in this case: change the socket of the obsolete rectifier with the type socket used by a more modern type (a $5 \mathrm{U} 4-\mathrm{GB}$, say), or use silicone diode rectifiers. Figure 1 shows two ways to use silicon diodes in place of a 523 tube rectifier. 'The version on the right is to be preferred because of the extra protection it affords the diodes.

Fig. 2. Best way to cieal with problem of old, obsolete tubes is to replace them with new, miniature types. As pointed out in text, most octal tubes have 7 - or 9-pin miniature equivaients, so finding a replacement is ordinarily duck soup (just consult a fube manval or, better yet, a tube substitution guide). Home-made adaptor, pictured here works fine.

OCTAL BASE SALVAGED FROM OLD TUBE (SHOWN CUT-AWAY AND WITH PINS CUT FOR ILLUSTRATION ONLY)

Other tube types can be replaced either by finding a direct substitute (consult one of the guides published for this purpose), or by using a newer type. This may require changing the socket or using an adapter. Figure 2 shows an adapter for replacing the old-fashioned octal socket with a standard 7-pin miniature socket. Consulting a tube manual will often reveal which still avail-
able type is electrically similar to the type you wish to replace. For example, the octalbase 6SG7 remote cutoff pentode is close to the 6BA6, just as the 6SA7 pentagrid converter is close to the 6BE6. Such equivalent types can be used interchangeably in most applications.

IF transformers can be particularly sticky problems. If they have one of the standard configurations, however, the coil/transformers manufacturers may still supply them. Several of these companies still list the old, large-style IF transformers
 in their current catalogs. If the price is too high, or a particular type is simply not available, then try using one of the smaller ("miniature") types that have become standard. Most manufacturers can supply adapter plates already cut for the newer IF's. These can be bolted or soldered over the gapping hole left when the old transformer was removed.

Naturally, you'll have to watch terminal connections carefully to ensure the new unit is hooked up properly.
As we've already cautioned, most power and audio transformers can be replaced with standard substitutes. Even if the mechanical arrangement isn't the exactly the same, it should produce few problems. This type of substitution is often only a matter of matching up specifications and mounting styles in a parts catalog.

Handy, Self-Polarizing Connector

Next time you're in need of a two-post connector for a pair of speaker leads or a quickdisconnect plug for a transistor-equipment power supply, give this idea a try. Just pull a couple of dead $9-V$ transistor radio batteries out of your wastebasket and carefully remove their terminal strips. Put what's left back in the wastebasket again and take a good look at the handy, self-polarizing connector you've just concocted. Plug one into the other, solder up the appropriate leads, and give yourself a pat on the back for good old ingenuity. No reason to color-code for polarity, either-this one is self-polarizing, remember"? -Bob Stephens

SUPER stable RECEIVER

SINCE AIR-TO-GROUND communications is in the vhf band, radio listeners are evi-

by Robert E. Kelland dencing an increasing interest in this band.

Our project covers a receiver tunable over the normal 117 to 150 MHz aircraft band and also the 2 -Meter amateur band. Though the basic receiver includes an AC powersupply for operation from nominal $117-\mathrm{V}$, $50 \cdot 60 \cdot \mathrm{~Hz}$ power lines, it can be operated as a portable receiver from a standard 9.V transistor radio battery.

This receiver is comprised of three sections: a superregenerative detector, an audio amplifier, and an AC power supply. It is completely solid-state and quite stable. The detector employs a pnp-type GE-9, RF transistor that is readily available from most supply houses. To let the constructor experiment with different transistors we used a standard transistor socket so that different transistors can be plugged into the socket when experimenting to find other suitable transistors for the circuit.

Signals picked up by the antenna are coupled to the tuned circuit, comprised of L2-C1 through primary winding L1. They

SUPER STABLE RECEIVER

are then fed to Q1 where they are amplified and detected. Superregeneration, which accounts for the tremendous amplification of the circuit, is controlled by varying capacitor C5.
The audio signal, produced by the detection function of the circuit, is coupled to a separate, prefabricated audio amplifier through transformer T1.

The low-voltage power supply is regulated by means of a Zener diode (D2) to maintain 9 VDC . It's necessary to use a regulated power supply in order to prevent instability in the superregenerative portion of the receiver.

Construction. We built the receiver on a $5 \times 7 \times 2$-in. aluminum chassis with a $51 / 2 \times$ $7 \times 1 / 16-\mathrm{in}$. front panel. The power supply and audio amplifier nearly fill the space on the underside of the chassis. Most of the components in the basic superregenerative circuit, with the exception of the regenerative control C5 and L3, are mounted on the top of the chassis. L3 is self-supported by its leads which are connected to C5. C5, in turn, is fastened to the underside of the chassis through a small right-angled bracket. The socket for Q1 and components L1, L2, $\mathrm{C} 2, \mathrm{C} 3$, and RI are mounted on a $1 / 2 \times 1-\mathrm{in}$.
piece of perf board which is fastened to the top of the chassis by means of a small rightangled bracket. Both C1 and C5 have insulated mounting inserts to isolate these capacitors from the common chassis ground and still allow them rigid mounting to their respective bracket assemblies.

A capacitor, referred to in the schematic as "gimmic" C is made by soldering $1 / 2$-in. lengths of insulated hookup wire to the collector and emitter pins of the transistor socket and then twisting the free ends together for a turn or two.

Insulated, flexible couplings were used to isolate the variable capacitors from their respective tuning knobs, to prevent any receiver instabillty that may be created by hand capacity when adjusting the receiver. Straight through, insulated bushings can be substituted for the flexible couplings.

The location of components making up the superregenerative detector portion of the circuit is critical. We suggest you follow the layout as seen in the photographs. The power supply and audio amplifier section isn't critical and therefore can be laid out in a plan that best suits your desires. Ali leads should be kept as short and direct as possible.

Coil Making. L1 is made by closely winding three turns of 20 -gauge insulated hookup wire into a self-supporting coil $1 / 2$ in. in diameter (see photo). L2 is made by winding $21 / 2$ turns of \#12 AWG bare copper wire within a length of $1 / 2 \mathrm{in}$. Diameter of the windings should be $1 / 2 \mathrm{in}$. Adjustment of the spacing between turns may be necessary to set the desired frequency. Coil L2 is self-supporting and is mounted directly on capacitor C 1 .

L1 is self-supported by mounting it directly to the two input binding posts (BP1 and BP2), both of which should be insulated from the common chassis ground.

L3 is made by winding 18 turns of \#30 AWG enameled copper wire around the insulated form of a very high resistance 1 -watt carbon resistor. The ends of the coil are soldered directly to the resistor pigtail.

PARTS LIST FOR SUPER STABLE RECEIVER

B1-9-V transistor radio battery llafayette 32E48077 or equiv.l loptional-see textl BP1, BP2-5-way, red binding post LLafayette 99E61202 or equiv.)
Cl-2.8 to $17.5-\mathrm{pF}$ variable capacitar (Lafayette 40E28817 or equiv.)
C2, C3-0.005-uF, 75-V ceramic dise capacitor (Lafayette 33E69048 or equiv.)
C4-0.02-uF, $75-\mathrm{V}$ ceramic dise capacitor (Lafayette 33569063 or equiv.)
C5-3.2 to 36.0 pF variable capacitar thafayette 4OE28825 or equiv.)
C6A, C6B-1000-1000 uF, 15-VDC dual electralytic sapacitar, Sprague TV6-2160 (Allied 43A9120 or equiv.)
D1-750-mA, 400-PIV silicon diode llafayette 19E50021 or equiv.)
D2-Zener diode, 9.1-V, 1-watt Motorola HEP104 (Lafayette $19 E 54056$ or equiv.)
L1-Coil, made from \#20 insulated wiresee text
L2-Coil, made from \#12 bare copper wire -see text
L3-Coil, made from \#30 enameled copper wire-see text
Q1-Pnp RF type transistor, GE-9 or Motorola HEP-3
R1-470,000-ohm, $1 / 2$-watt resistor
R2- 50,000 -ohm, linear taper potentiometer (Lafayette 33E12634 or equiv.)
R3-220-ohm, $1 / 2$-watt resistor
R4-470-ohm, $1 / 2$-watt resistor
R5-1000-ohm, $1 / 2$-watt resistor
R6-1.0-ohm, $1 / 2$-watt resistor

S1—Spst toggle switch (Lafayette 34 E33026 or equiv.)
S2—Spdt toggle switch LLafayette 34 E33059 or equiv.) (optional-see text)
T1-Interstage audia transformer: primary 10,000 ohm; secondary 2000 ohm (Lafayette 99E61244 or equiv.l
T2-Filament transformer: primary 117-V, 50$60 \mathrm{~Hz}_{\text {; }}$ secondary $12.6 \mathrm{~V} @ 2 \mathrm{amps}$. (Lafayette 33E81191 ar equiv.)
1-Amplifier assembly, transistorized pushpull output@ 100 mW into 8 -ahm speaker (Lafayette 99190425 or equiv.)
1—AC line card LLafayette 12 E39011 or equiv.)
1 - $5 \times 7 \times 2$-in. aluminum chassis (Lafayette 12E81955 or equiv.)
1-3-in. diameter, 8 -ohm voise coil speaker (Lafayette 99 E60329 or equiv.)
1-Transistor socket (Lafayette 32 E42211 or equiv.)
1-2-in. diameter, 8 to 1 ratio vernier dial (Lafayette 99R60303 or equiv.)
Mist-Bolts, nuts, grommets, perforated metal, $51 / 2 \times 7 \times 1 / 16$-in. aluminum sheet for panel, perfboard, aluminum right angle for mounting brackets, tie strips, flexible couplings, $1 / 4-\mathrm{in}$. bushings, hookup wire, solder, scraps of \#12 gauge bare copper wire, \#20 gauge solid insulated wire and \#30 gauge enameled wire to make coils i1, L2, L3, knobs, press-on letters for marking panel, 300 -ohm twin lead for antenna, etc.

L3 is then self-supporting when mounted directly to C5. Use a rubber grommet to protect the leads from L3-C5 as they pass through the chassis from bottom to top.

The audio volume control (R 2) is centered on the front apron of the chassis. The prefab audio amplifier is mounted on the underside of the chassis so that leads be-
tween the amplifier and volume control are short in length. Raise the amplifier about $1 / 4 \mathrm{in}$. above the metal of the chassis with spacers to prevent shorting out the circuit board.

The power switch (S 1) is also mounted on the front apron of the chassis to balance the controls. All other components of the

SUPER STABLE RECEIVER

power supply, with the exception of the power transformer T1 and filter capacitor C6A \& C6B, which are mounted on the top of the chassis, are fastened to tie strips mounted on the underside of the chassis.

The speaker is mounted on the front panel. We made a simple grille by backing with perforated metal, two rows of $5 / 8-\mathrm{in}$. diameter holes drilled perpendicularly in the form of a red cross. You may have other ideas for a grille so don't necessarily stick to our pattern.

Be sure all electrolytic capacitors and diodes are properly polarized before soldering them into the circuit. Check the wiring for errors before turning on the power.

Checking and Aligning. Now that you are certain that the hookup is correct you are ready to turn on the power and align the receiver.

Top side view of chassis shows simple arrangement of components. Grouping at left are funing units; T2 is at right.
control (C5) may have to be reset at least once over the full tuning range of the receiver. As you operate the receiver you will gain knowledge as to where the best settings are to cover specific portions of the tuning range.

It's suggested that you make a notation of the dial setting for each station received, and also note the station's frequency. From this you can produce a calibration chart or curve covering the entire band. Remember, to a certain extent, the dial setting can be affected by the adjustment of the regeneration control, so it would be wise to note the setting of the regeneration control for each

When you first turn on the power you should hear some evidence of audio output, which may be in the form of noise. Note changes in the tone of this noise by adjusting the regeneration control (C5). There will be a soft rushing sound, sans low-frequency hum, at one setting of this control. When this point is reached, the receiver will be set at its most sensitive condition.

You now leave this control set at this point and tune the receiver over the band. You should be able to tune in transmitters operating in the band. Variations in transistors and other components as well as your actual construction work may affect the receiver to the extent that the regeneration

Upper schematic details modification for operating receiver from your car battery. Spdi switch 52 will facilitate transfer from built-in power supply to car battery. Lower schematic shows similar modification to adapt receiver for portable battery operation. Standard 9volt transistor radio battery should be used.

Heart of Super Stable receiver is, except for regeneration control, shown. Note positioning coils and circuit card.
dial calibration. Another cause for variation in the original calibrations could be a change in transistor Q1.

Base-bias resistor R1 may require a change in value to suit the particular transistor being used. The value of R1 should never be less than 100,000 ohms to prevent damage to the transistor. You may arrive at a correct value by the cut-and-try method of substituting different values and checking the performance of the receiver or you can arrive at the correct value by measuring the collector current flow. Open the lead of T1 at A on the schematic and insert a $0-5$ mA milliammeter. The best value for R1 will produce a current flow of between 0.5 to 3.0 mA , depending on the characteristics of the transistor used.

Antenna Recommendations. At these frequencies antenna design is somewhat critical to ensure maximum signal strength being fed to the receiver.

Obviously best results will be obtained by using a commercially-built antenna designed for this frequency band. A $1 / 4$ - or $1 / 2$-wave whip antenna will be satisfactory only for receiving strong signals.

You can make an antenna that will be quite satisfactory. Just follow the dimensions and construction details shown in the
the receiver to warm up bafore using the chart once it's been made.

In the event you want to operate the receiver from a $9-\mathrm{V}$ battery, all power supply components up to point B in the schematic are not required and battery + is connected at this point. If, by chance, you operate the receiver from your $12-\mathrm{V}$ automotive battery, R3 will be required and auto battery + is connected at point C. The value of R 3 may have to be increased to hold the voltage applied to the Zener diode (D2) to a safe level to prevent its destruction.

You may want to build the receiver for both battery and AC power line operation. By placing an spdt switch at point (B) when using a $9-\mathrm{V}$ transistor radio battery or point (C) when using a car battery, the receiver can be switched to operate either on the AC line or from a battery. See schematic drawing for details. drawing for a folded dipole antenna. This antenna may be supported by pinning the ends to a wall, using small wire brads.

A closing hint: to be sure of the accuracy of your calibration chart, allow the receiver at least 5 to 15 minutes before starting to make the calibration chart, and always allow

This folded dipole antenna, made from 300 -ohm twinlead, is ideal for use anywhere indoors. It's cut to be used in the aircraft/2-Meter band.

$\mathbf{O}_{\substack{\text { peration } \\ \text { Hatec-lift }}}^{\text {per }}$

Convenience is the keynote in this custom platform for your shack

Gear can be weighty, so strive for rigidity when constructing your platform. Angle brackets and wooden braces will turn the trick -use both screws and glue on wooden braces for extra strength.
\square DXers, SWLs, novice hams call give their hobby a lift by hoisting it up on an operating platform similar to the one pictured here. Construction is easy and economical, and the benefits and convenience certainly balance out the small amount of time required for construction. In fact, this simple accessory, tailored to your needs, can easily multiply the usefulness and enjoyment you receive from all your other equipment.

Need for this accessory is usually spawned by normal growth of the radio shack inventory. Just about the time the radio hobhyist acquires his third or fourth major piece of equipment, he begins scratehing his head in hewilderment over where to put all the gear. By this time, the radio table is becoming overburdened and it's easy for the hobbyist to give in to inconvenient stacking of one piece of gear on top of another. The result is inconvenient at best, and sometimes just plain dangerous.

An operating platform, however, eliminates these

Far left, fypical operating platform. If alfows addition of considerable equipment io basic station, yet takes up no more table space and succeeds in keeping everything handy for use. Left, measure highest item you intend to place under platform top (it's a beam rotor control box in our photo), then make supports for platform top about $1 / 4-\mathrm{in}$. higher than selected item. This way, everything should fil beneath shelf without problems.

Lefi, panal for switches controlling various items of equipment can be made from medi-um-gauge steel or aluminum, painted for pleasing appearance, then mounted beneath operating platform on angle brackets attached to underside of platform top. Above, small pieces of equipment, such as this aircraft receiver, can be attached to bottom side of platform top with mounting straps made of sheet metal. Use wood screws to hold bracket to underside of platform top.

by Marshall Lincoln, W7DQS

disadvantages. And it brings with it a number of convenient features which can't be obtained any other way. Purpose of such a platform is to lift the main pieces of radio gear a few inches above the table top they normally sit on and allow space beneath this gear for smaller equipment-antenna rotor controls, telegraph keys, control switches and inter-connecting wiring, file boxes, note books, pencils, log books, etc.

Besides keeping these items handy to reach, the platform makes it easier to rearrange equipment without producing a major upheaval of your entire station.

Planned To Please. Such a platform must be custom designed to fit the needs of the individual user, since no two persons have the same line-up of equipment. However, the one shown here illustrates the basic idea and will serve as a working model for your own design.

Generally, $3 / 4-$ in. plywood is the best material to build the platform out of. It's strong enough, when properly braced, to hold just about any piece of radio gear you're likely
(Continued on page 108)

About l-in. of bottom rear corner of vertical supports should be mitered off to allow space far line cords and other wiring to pass along table top between platform and wall. Supports should extend about 3 in . beyond top of platform at rear to prevent equipment from being pushed flush against wall.

Radio

by Jorma Hyypia

Since SW radio is affected by solar X-rays, data from SW listeners'round-the-world pinpoints astronomical happenings.

It was lucky that astronomer David Meisel's shoestring budget could not stand the strain of buying an earth-orbiting satellite observatory which modern astronomers consider essential to the study of solar X-rays. Otherwise he might never have discovered that solar research can be done by mail!

It all hegan when Meisel-then still a graduate student-watched the 1963 solar eclipse while stationed with a Cree Indian tribe in Canada. During the eclipse period, Meisel noticed that the signal strength of his shortwave communications receiver fluctuated oddly. Figuring out why this happened wasn't too tricky. Meisel's real ingenuity was displayed by his sulsequent discovery that these signal fluctuations can be used to pinpoint the locations of solar "hot spots" that produce X-rays.

D-LAYER ABSCRPTION As any radio ham knows, long distance shortwave radio reception is not as good during daylight hours as at night. The reason: during the day, X-rays emanating from the sun
create the so-calley "D-laye!" of the Inwer ienosphere of the Earth. This fonized layer absorbs radio energy, the riby weasenting radio signals transmitted through the 0 -layer, In fact, energy absorption takes jlace at least twice on a iong. distance transmission because the signal musi pass through the D-layer en the way to the refrecting F, layer of the uppe ionosphere, and again on the way Jack to Eart 7.

At night, when solar $\mathrm{X} \rightarrow$ ay; no longer reach the dark side of the Earti's atmosphere, the D-layer vanishes and radio transmission improves. Likewise, duting the "twilight" period of an eclipse, sclar X-rays are blocked from those parts of the ionssphere that lie within the eclipse zone. This a short-wave radio signal passing through mon-shadowed area of the ionosphere is brieily strengthened because the energy-absorbing power of the D-layer, in that area, is temporarily reduced.
abrupt fluctuations Meisel observed that the signal fluctuctions in radio reception were remarkably abrupt. This coud only mean that tocalized hot-spot scurces of X-rays on the sun were being detected. The idea followed that radio signal fluctuations might be used to locate the exact positions of sola- hot spots.

This could not be toile using oniy one radic receiver because, as far as it couid indicate, any given solar X-ray source in the process of being blocked off ty the moon might lie anywhere behind the leading edge of the moon. The exact position would have is be determined by mathematical triangulation, using data obtained simultaneously by several widely separated monitoring stations.

The accomparying diagrami will help make this clear. Note that the simultaneous positions of the moon represent viewing positions 1,2 3 in the D-layer of the Earth's ionosphere, not

SW listener sealches for a "hot-spo!" that is prodiucing X-rays during a recent solar eclipse. Key is an oddly fluctuating signal.

Left hand drawing details how solar X-rays create the D-layer during daytime hours. This layer abso:bs radio energy. Right hand drawing shows that during a scla. eclipse a reduct on in ionization of D-layer reduces racio absorption and increases signal energy.

Radio Astronomy

at ground positions. However, radios on the ground, beamed through these ionospheric areas, can detect changes in radio signal transmissions as they are affected by changing X-ray concentrations.

As seen from ionospheric positions 1 and 3 , the moon (in this hypothetical case) is
over European radio stations as far east as Budapest. The unique experiment was to take place during the September 22, 1968, solar eclipse.

Each listener was to beam his radio into the eclipse zone and listen, for at least two hours, to a broadcast station at least 2000 kilometers away. He was to record all signal strength fluctuations on a chart, then send the data to Meisel, at the University of Virginia, for analysis.

The result? Meisel received about 350

During an eclipse, solar X-rays that reach the earth's ionospheric D-layer are modulated by the moon. X-ray intensity decreases at A, minimum at C, and increases at B.
just about to pass over an X-ray hot spot on the sun; blocking of the X-rays will cause a strengthening of radio signals reaching ground monitoring stations after passing through these two areas in the ionosphere. On the other hand, radio waves passing through ionospheric position 2 have already been strengthened because the moon, as seen from position 2, already covers the same X-ray source. Thus signal fluctuations observed by three or more ground stations can be used to determine the exact position of the hot spot on the sun. Observations made by other monitoring stations can, of course, be used as verification.

MAIL-ORDER MONITORS. To detect and locate many solar hot spots. Meisel realized, would call for the use of hundreds of ground monitoring stations. That seemed like a practical impossibility, until Meisel conceived the idea of enlisting the aid of shortwave radio listencrs spread out all the way from Eastern Europe to the Cook Islands in the Pacific.

So Meisel dipped into his "shoestring" research fund to pay for postage stamps, envelopes, and a tew hundred mimeographed questionnaires. He sent about 650 survey forms to shortwave listeners in 35 countries and in the U.S. Transcript describing the experiment and requesting aid were read
replies, mainly from listeners having no previous technical experience, but also some from such experienced observers as radio station engineers, astronomers, teachers and students. Meisel now reports that preliminary analysis of the reports indicates the presence
(Continued on page 109)

Here is how the path of the moon blocks out an X-ray source on the sun as seen from one spot on the surface of the earth. Each observer's location sees a different arrangement which sauses different radio wave absorption.

UNIVERSAL ReGulated POWER SUPPII

Reliable
current-
and
voltage-
regulated
low-
voltage
supply
powers
experiments
using
solid-
state
devices
by Herb Cohen

Many solid-state projects require a reliable source of low voltage power. Therefore, why not equip your shop with one or more DC power supplies having both current and voltage regulation to provide the necessary reliable low voltage power needed for various projects?

Best way to acquire this power source is build your own. As a starter, try the power supply detailed on the following pages. It's designed to have a 10 -volt output at a maximum of 300 mA that is both voltage and current regulated.

Voltage Limitimg. Reference batiery, BI, maintains a voltage flow through R9, RLO and KII to the negative side of the power supply, which is at zero potential. Therefore, the gate of the FET (Q1) is positive and Q 1 is turned off. This heing the

UNIVERSAL REGULATED POWER SUPPLY

PARTS LIST

B1-9-V fransistor radio battery Llafayette 32E48077 or equiv.)
BPI-Red binding post, accepts banana plug or phone fip (Lafayefte 99E61202 or equiv.) BP2-Black binding post, accepis banana plug or phone tip (Lafayette 99E61210 or equiv.) C1-500-uF, 25-VDC electrolytic capacitor (Lafayette $34 E 55243$ or equiv.)
C2-0.01-uF, 100-VDC ;aper fubular capacitor (Lafayetfe $34 E 67057$ or equiv.)
C3-100-uF, 25-VDC electrolytic capacitor (Lafayette 34 E85682 or equiv.)
C4-30-uF, 16-VDC electrolytic capacitor (Lafayefte $34 E 85505$ or equiv.)
D1, D2, D3, D4, D5, D6-750-mA, 400-PIV diode (Lafayctie $19 E 50021$ or equiv.)
D7-5.6-V, 250-mW Zener diode, IR type 1 N708 or Motorole: HEP 603
M1-0-1-mA, 1 9/16-in. square mefer SLafayette 99E50528 or equiv.l
Q1-FET, Motorola MPF 155

Q2, Q4_-Npn silicon transistor, Motorola HEP 54
Q3-Pnp Silicon transistor, Motorola HEP 57
Q5-Npn silicon transistor, RCA 40316
RI, R4, R8-560-ohm, $1 / 2$-watt resistor
R2- 9100 -ohm, $5 \%, 1 / 2$-watt resistor
R3-1000-ohm, $1 / 2$-watt resistor
R5-2.7-ohm, $1 / 2$-watt resistor
R6-1.0-ohm, $1 / 2$-watt resistor
R7-1500-ohm, $1 / 2$-watt resistor
R9-220,000-ohm, $1 / 2$-watt resistor
R10, R12-500,000-ohm, subminiafure, printed circuif type potentiometer (Lafayefte 99 E614678 or equiv.)
R11-500,000-ohm, linear taper potentiometer with spst switch S2 (Lafayette 33T1277 or equiv.)
R13-75,000-ohm, 5%, $1 / 2$-watt resistor
R14-3300-ohm, $1 / 2$-watt resistor
Sl-Spst toggle switch (Lafayette $34 E 33026$ or equiv.)
S2-Spst switch (part of R11)
T1—Filament transformer: primary $117 \mathrm{~V}, 50-$ 60 Hz ; secondary 12.6 V (C) 2 A (Lafayefte 33E81191 or equiv.)
1-AC line cord LLafayette 12E39011 or equiv.)
$1-6 \times 9 \times 5$-in. aluminum utility box with removable sides LLafayette $12 E 83530$ or equiv.)
1-Baftery connector for 9 -volt transistor radio battery (Lafayette 99E62879 or equiv.)
Mics.-Bolts, nuts, screws, insulated sleeving, push pins, perf board, grommets, hook-up wire, solder, press-on-letters, etc.

Here's what's inside our regulated supply. Note accessibility of components on circuif board. Because power transformer is relatively heavy, if needs extra support to prevent board from cracking.
voltage drops, Q3 begins to turn off, which turns on Q4 and Q5, increasing the output voltage. In essence, we have a feedback amplifier that tries to maintain constant output voltage irrespective of the load.

Current Limiting. In this
case, no current flows through R8 and the base of Q2, so Q2 is also turned off. With Q2 off, no current flows and therefore Q3 is turned off. This effectively turns off Q4.

Transistor Q+ bypasses the base current of Q5, the series pass transistor that regulates the output voltage, and turns it off. With Q4 turned off, Q5 gets all of its base current and turns on, which causes the negative side of the power supply to rise off zero voltage. As this voltage rises, the gate of Q1 becomes less positive, and at a pre-set voltage, Q1 starts to conduct. The series pass transistor Q5 is now controlled and holds the voltage at the pre-set level.

The output voltage is controlled by programming series network R12, R11, R10which serves as a sensitivity network. When R11 is turned on S2 is closed, shorting out R12, and R11 controls the output voltage. Its range is controlled by R10. When R1I is set at minimum resistance, $S 2$ opens and R12 will control the voltage. (See paragraph on adjustments for correct setting of R12 and R10.)

When Q2 is turned on, it compares the voltage to that of D7, the Zener diode. The difference between the two voltages determines the amount of conduction of Q3. As the output voltage increases, the base voltage of Q3 increases, turning it on even more. This reduces the base current of Q 4 , which, in turn, reduces the conduction of Q5, thus reducing the output voltage. If the output
supply, current limiting will start at 250 mA and output current won't exceed 300 mA with a full short across the output.

Current limiting is effected through R5, R6, and D6. A load placed across the output draws the current through R5 and R6. Normally the base of Q3 is -0.5 V with respect to its emitter, and D6 is reverse biased. When current through R5 and R6 reaches 250 mA , D6 is forward biased and conducts current into the base of Q3, turning it on hard. Q3, in turn, turns on Q4, which controls current through Q5, the series pass transistor. Q1 and Q2 no longer control the output, being overridden by the current sensing circuit R5, R6, and D6. When the excessive load is removed, D6 is reverse biased again the voltage regulators Q1 and Q2 take over again.

Building The Supply. A $6 \times 5 \times 5 \times 9$-in. (HWD) aluminum utility cabinet with removable sides houses the power supply. The voltmeter (M1), switch S2, potentiometer R11, and output binding posts BPI and BP2 are mounted on one of the $5 \times 6-\mathrm{in}$. ends of the cabinet as shown in the photos. All other components are mounted on a piece of perf board that is fastened to one of the removable 6×9-in. sides. It is raised from the metal side by $1 / 4-\mathrm{in}$. bushings to prevent shorts in the wiring on the under side of the circuit perf board.

If possible, use two additional mounting (Continued on page 56)

Can you solve these two basic problems in electronics?

This one is relatively simple:
When Switch S_{2} is closed, which lamp bulbs light up?

Note: If you had completed only the first lesson of any of the RCA institutes Home Study programs, you could have solved this problem.

This one's a little more dificult:
What is the output voliage ($p-p$)?
Note: If you had completed the first lesson in the new courses in Solid State Electronics, you could have easily solved this problem.

These new courses include the latest findings and techniques in this field. Information you mus? have it you are to service today's expanding multitude of solid state instruments and devices used in Television, Digital, and Communications Equipment.

If you had completed an entire RCA Inslitutes Home Study Course in Semiconductor Electronics, Digital Electronics, or Solid State Electronics, you should now be qualified for a good paying position in the field you choose. Send for complete information. Take that first essential step now by mailing the attached card.

RCA Institutes Autotext learning method makes problem-solving easier. gets you started faster towards a good-paying career in electronics

Abstract

Are you just a beginner with an interest in electronics? Or, are you already making a living in electronics, and want to brush-up or expand your knowledge? In either case, RCA has the training you need. And Autotext, RCA Institutes' own method of Home Training will help you learn more quickly and with less effort.

Wide Range of Courses

Select from a wide range of courses. Pick the one that suits you best and check it off on the attached card. Courses are available for beginners and advanced technicians.
Electronics Fundamentals Black \& White Television Servicing (Transistorized TV Kit Available) Color Television Servicing (Color TV Kit Available) FCC License Preparation
Automatic Controls Automation Electronics Industrial Electronics Nuclear Instrumentation Electronics Drafting Computer Programming

Plus these new up-to-the-minute courses

Semiconductor Electronics
Digital Electronics
Solid State Electronics Communications Electronics

Prepare for good paying positions in fields like these
Television Servicing
Telecommunications
Mobile Communications CATV
Broadcasting
Marine Communications Nuclear Instrumentation Industrial Electronics Automation
Computer Programming Solid State
Electronics Drafting

Build and keep this valuable oscifloscope.

In the new program on Solid State Electronics you will study the effects of temperature and leakage characteristics of leakage cha
transistors.
REת

Variety of Kits-Yours to Keep

A variety of RCA Institutes engineered kits are included in your program of study. Each kit is yours to keep when you've completed the course.
Among the kits you construct and keep is a working signal generator, a multimeter, a fully transistorized breadboard superheterodyne AM receiver, and the all-important oscilloscope. These 4 kits are at no extra cust. Compare this selection with other home study schools.

Two Convenient Payment Plans

Pay for lessons as you order them. No coniract obligating you to continue the course. Or, you can take advantage of RCA's convenient monthly payment plan. No interest charges!

Classroom Training Also Available

RCA Institutes operates one of the largest technical schools of its kind. Day and evening classes. No previous training is required. Preparatory courses are available. Classes start four times a year.

Job Placement Service, Too!

Companies like Bell Telephone Labs, GE, Honeywell, IBM, RCA, Westinghouse, Xerox, and major radio and TV networks have regularly employed graduates through RCA Instituies' own placement service.
All RCA Institutes courses and programs are approved for veterans under the new G.I. Bill.
Send Altached Postage Paid Card Today. Check Home Study or Classroom Training.
Accredited Member National Home Study Council.

UNIVERSAL REGULATED POWER SUPPLY

screws and bushings to add support to the perf board where the relatively heavy power transformer is mounted. (We lost a perf board because this additional support had not been included in the model.)

Push pins should be used for mounting and connecting components. They make it easier to replace defective components and tend to reduce heat damage from soldering. Spray paint the outside of the cabinet in a distinctive color and use press-on letters to mark the various facilities and controls on the front panel. You may want to add a carrying handle to the top to facilitate moving the power supply.

Be sure all diodes and electrical capacitors are property polarized and all transistors are correctly connected before soldering them into the circuit.

Adjustments. R10 and R12 are set during construction and normally are not adjusted again. Therefore we used miniature

Output and conirol panel of this compact, utilitarian, low-voltage, regulated power supply usable either in experiments or as primary supply for operating equipment.
potentiometers that mount directly to the circuit board. R9 is a standard-sized, panelmounted potentiometer complete with switch that's mounted on the front panel since it is the means to adjust output voltage and should be readily accessible.

R 10 is adjusted so that output is zero volts when R11 is at minimum resistance and 10 volts with R11 at maximum resistance.

When S2 is open (R1I at minimum resistance), RI2 is adjusted so that output voltage is 9 volts.

This Call Girl Is Legit

Produced by firm in Wisconsin, Call Girl telephone stems from clever play on words. Girl she isn't, but call she can and does.

Her name is Call Girl and she stands about I 3 ft . high, all gleaming. Just above her rounded breasts there lurks a dial: high on her right thigh is a coin-return slot. Her navel is discreetly concealed by a locked panel. Her left arm is missing, but her right arm has been replaced by a length of coiled Hlex. Instead of a hand she has a telephone headset. She doesn't even have a headjust a few slots like a pay phone. Put in a few dimes, and there'll be a satisfied ping issuing from her stomach.

In case you haven't guessed by now, whe is the latest thing in U.S. telephone design.

An American firm is already marketing this kooky piece of telephone art in three colors: black, white, and psychedelic with chrome fittings. Call Girl can be installed over an ordinary standard issue subscriber relephone. Once sel up, she's sure as shootin' to set every man Jack rushing off to make a phone call.

A Aint Yalentime's 马ay gift suggestion
from the Cexitors of Bricute \& Clectronics
 that frees your fingers for other things

by Chris Jameson

\square Nothing is more gauche than the character, who, after an evening of dancing, gentle conversation, and sweet music, leaves his date to turn down the lights to create a romantic setting. This may be okay for the movies, but most modern chicks will turn off with the lights. How much better to turn your chick on by murmuring soft nothings in her ear a
the lights snap off or diminish

Circuit board for Lover's Lamp appears here exact size- $63 / 4 \times 33 / 4$ in. Small V within 10 -pin circular configuration at busier end of board indicates pin 1 of integrated circuit IC1. See text for information re sizes of bits to use for holes.
in intensity as if by magic. (That's class!)
The magical light control is accomplished through our Lover's Lamp, a device that operates a room lamp by the soft snap of a finger or a gentle whistle. And it's strictly a one-shot device. Once the lamps go down or off they stay that way. There's not a chance in the world of their popping back on again just as you've got your date convinced you're the greatest gift to women.

Of course, if you're not romantically inclined or if you score without need for electronic contrivances, our Lover's Lamp makes a great lighting control for such things as hot studio lights. You can set up your lighting arrangement with low wattage "cool" lamps, then turn the floods on anytime you want with just a whistle or finger snap. Or, you can use the device as a sound tripper for strobe lights by simply eliminating the control relay (as we'll show later).

How It Works. As shown in the schematic, our Lover's Lamp consists of a tuned amplifier, a Triac tripper, and a relay whose contacts do the actual switching of lamps.

Integrated circuit ICl is an operational amplifier tuned to approximately 5 kHz by the notch filter network consisting of R6, R7, R8, C7, C8, and C9. A notch filter is a device that attenuates a given frequency, passing frequencies other than the one it's tuned to. In the operational amplifier shown, the attenuation characteristic of the filter is used to peak the amplifier response in the following manner.

The overall AC gain of an operational amplifier is determined by the ratio of the feedback impedance from the output (pin 5) to the inverting (一) input divided by the impedance from the inverting input to ground (R 5 and C 6). At about $5 \mathrm{kHz}, \mathrm{C} 6$'s impedance is less than I/10 that of R5 so it can be ignored; as a result, the amplifier's gain becomes the Network Impedance/R5.

At the frequencies other than 5 kHz , the network impedance is predominantly that of R6 and R7, so the gain is approximately $100 \mathrm{k} / 5 \mathrm{k}$ or 20 . At 5 kHz the network impedance appears as approximately 500 k , so the amplifier gain is roughly $500 \mathrm{k} / 5 \mathrm{k}$ or 100

All circuitry, including AC power supply, is assembled on printed circuit board. Photo shows location of most major components.
(40 dB). (Actually, the gain will run even higher depending on the matching of the network components.) As we've shown, the operational amplifier's output is the inverse (opposite) of the filter when the filter is in the inverting input feedback loop; hence, the notch filter actually peaks the Opamp's response.

The Opamp's output signal is used to trigger Triac Q1. Note that even though Kl's power source is DC, we still use a Triac. This is because the Triac will respond to the Opamps AC output signal, whereas an SCR would require an additional handful of components.

Diode DI suppresses the inductive kickback voltage across Kl's coil, while R9 simply provides additional holding current for the Triac. (R9 can be eliminated if a heavier-duty relay-i.e., one drawing more current-is substituted for the specified K). The B+ power source is 24 VDC , and you must take care not to exceed this value to avoid damage to 1 C 1 . You can use a few volts less but not more.

Once our Lover's Lamp is tripped-by a finger snap, a whistle, or a click-it can be reset by turning off power switch S! for approximately 5 seconds. This is the time needed for C11 to discharge.

Construction. All the electronics including the power supply is assembled on a $6^{3 / 4}$ in. x $33 / 4 \mathrm{in}$. printed circuit board. The PC template shown provides all the connections for the unit shown in the photographs and sehematic, right down to the K1 connections. If you study the board carefully you'll note that there is considerable board arca around the KI-DI-R9 location which allows you to substitute a heavier relay it desired . . . simply add your own P'C layout. However, don't under any circumstances change the PC layout for the IC amplifier or its related components.

The component holes are drilled with a \#57 bit, those for ICl 's socket with a \#54 bit. The holes for T1 and K1 and any other components depend on the particular item; \#6 screw body holes should do for T1 and \# + screw body holes for KI. Connections between the cabinet conponens a.ad the PC board are made via push-in terminals which will fit a hole made with a \# 54 bit.

The tab on ICI's case and socket corresponds to pin \#1; make certain the socket tab is oriented opposite the \#1 pin, which is indicated on the PC template by the " $<$ " symbol. The symbol's tip points to the \#1 pin.

BRI is a packaged diode bridge rectifier. The leads from TI connect to the two terminals indicated by the "~" symbol; the DC output is indicated by " + " and " - ". When using the BR1 specified in the Parts List, proper output polarity is ensured if the bridge is mounted with the side having the symbols against the PC board. The end of BRI's leads are about twice as thick as the rest of the lead and this excess width must be cut away in order for the leads to fit the \# 57 holes. We suggest you trint the excess rather than enlarge the hole, since the flat leads might be somewhat difficult to solder into a round, oversize hole.

Triac QI's triangular-arranged leads match the triangle holes in the PC board. Allow about $1 / 4-\mathrm{in}$. between the base of Q1 and the PC board.

The PC layout will accommodate the component types specified in the Parts List if the resistors are end-mounted. However, if you don't use the miniature components specified, it is possible the component leads

Perf-board type push-in terminals provide tie-points for amplifier input, AC power input, and connections to relay Kl's terminals.

will require some bending to fit the PC holes. Again, we strongly advise against modifying the layout of the IC 1 circuit foils, since instability may result if the foil area and positions are changed.

Circuit Modifications. You may safely substitute any 24 VDC relay for K 1 as long as it doesn't require more than 35 mA . for operation.

To use the unit as a sound-activated strobe light tripper, eliminate relay K 1 and connect
a sync cord (for the strobe) across Q1. Polarity of connections to the strobe sync isn't important, since the Triac-unlike an SCR-will trigger the strobe regardless of polarity. When used for strobe sync, the Lover's Lamp automatically resets itself after each flash. Also, since the Opamp itself uses only about $2 \mathrm{~mA}, \mathrm{~T} 1$ and BRI can be eliminated; any battery arrangement that provides 18-24 VDC can be used in their place as the power supply.

Final Assembly. The Lover's Lamp can be mounted in any convenient cabinet; the unit shown is mounted in the U-section of a 5-x 3-x 7-in. Minibox. Sockets SO1 and

PARTS LIST FOR LOVER'S LAMP

BR1—Bridge rectifier (Motorola HEP-175 or equiv.)
Capacitors-All 75 VDC unless otherwise indicated
Cl-.01-uF subminiature (Lafayette 33 E 690551
C2-100-uF, 15-V electrolytic
C3-.005-uF subminiature Lafayette 33 E 69048)

C4-1000-uF, 25-V electrolytic
C5-. 2-uF subminiature (Lafayette 33 E 69097)

C6, Cll-uruF subminiature (Lafayette 33 E 69089)

C7, C8, C9-. 0012-uF, 200-VDC (Sprague "Pacer"-Allied 43 A 0336)
C10-47 pF, 1000-V ceramic disc
D1-Silicon diode (100 PIV or higher)
IC1-Motorola MC1433G integrated circuit (Allied 50F26 MC1433G MOT, \$9.75)

Jl—RCA phono jack
K1—Spdt relay (Potter \& Brumfield RS5D-2500 ohms or equiv.-see text)
Q1-40525 Triac (RCA—Allied 49F1 40525 RCA, \$1.571
Resistors-All $1 / 2$-watt, 10% unless otherwise indicated
R1, R3, R5-4700 ohms
R2- 100,000 ohms
R4- 100 ohms
R6, R7-47,000 ohms, 5%
R8- 3900 ohms
R9—1000 ohms
S1-Spst switch
SO1, SO2-AC chassis receptacle
Tl-Power transformer: primary, ll7-VAC; secondaries, $10-20 \mathrm{CT}$ and 40 CT @ .035 A (Allied 54 A 4731 or equiv.)
Misc.-Microphone, cabinet, wire, terminals, etc.

SO2 are chassis-type AC receptacles; one provides for the high-intensity lamp, one for the low. In the model shown a microphone connects to Jl so that the mike can be positioned some distance from the control unit. However, the mike can be placed directly in the cabinet by eliminating JI and cementing a mike element to the front panel.

Checkout. Connect a crystal or ceramic mike to JI and turn SI on. Snapping your finger within, say, 10 ft . of the mike should cause Kl's armature (wiper contact) to pull down. The unit should be resistant to normal speech or music at distances greater than two feet from the mike. Depending on the characteristic of the components used in the filter network (how closely they're matched), the unit should respond to snaps or whistles from 15 to 30 ft .

If the unit doesn't function, first check for proper $\mathrm{B}+$ voltage, then check that the voltage to ground at the RI-R3 junction and at ICl pin 5 is approximately one-half the $\mathrm{B}+$ voltage. If the voltages check out make

Completed PC assembly fits easily in base of $3 \times 5 \times 7$-in. aluminum cabinet. Use at least \#18 wire to connect up SO1 and SO2.
certain the filter network is properly installed hy connecting a signal generator set to approximately 100 mV output to Jl and a scope or VTVM across the Opamp output.

Sweep the frequency band from approximately 500 Hz to 10 kHz ; the output should peak sharply-about 40 dB -in the vicinity of 5 kHz . If the output doesn't peak, something is wrong with the filter network. If the output is correct, check Ql’s connections, and make certain that D i isn't installed with reversed polarity (KI won't operate if DI is reversed).

Using Lover's Lamp. Connect a 100 -

To prevent foil from shorting to chassis. place $1 / 4-\mathrm{in}$. spacers between PC board and aluminum chassis box at each mounting screw.
watt lamp to the high socket (SO1) and a low-wattage lamp, say 15 watts, to SO2. Activating the device with sound will cause the 100 -watt lamp to extinguish and the low. wattage lamp to go on and stay on.

The maximum lamp wattage is determined by the relay contacts. For the relay specified, 100 watts is maximum. Larger relays with heavy contacts can naturally handle much larger lamp loads.

If the device is used to control photoflood lamps, the specified Kl should be used to control a second relay with contacts rated at least 15 A . Reason: photoflood lamps of the \#2 type pull approximately 4 A each.

There are plenty of other uses for Lover's Lamp, of course, in addition to the roles already outlined. Since the unit is basically a sound-actuated relay. you might try using it as a burglar alarm. Set up in an oftice. say, the device could be turned on after all the husy beavers have gone home to din-din; any noise created by intruders could be used to set off an alarm remote from the area under surveillance. Then, too, the unit could also be used to trigger a new telephone gadget that automatically calls the nearest police station and continually repeats a recorded message stating the address of the location and the fact that an unauthorized entry has occurred.

What did that bus say?

Just as some of the airlines provide taped music and conversational programs to make flights more pleasant, some educators are now experimenting with "cultural enrichment" on a school bus.

At this time the idea is unique with the Board of Education of Gunnison, Colorado, and the children who enjoy a "talking" school bus. But soon the idea will spread because of so much success in Gunnison.

Many Gunnison kids live on ranches spread far and wide from the center of town. Some spend as much as one-and-a-half hours on a one way trip to and from school as some of the children live as far as 30 miles
from the school or more. Thus the idea of occupying that length of time from home to school with something instructive was the idea of Aton Christoff, one of the directors at the school in Gunnison. He and his colleagues at the Central School designed the project to help students pass time faster, and more valuably.

Their first dream was closed circuit TV in a school bus, but the $\$ 250,000$ tab was a bit too steep. Mr. Christoff arranged a grant for $\$ 43,685$ to buy a transit-type bus with audio tape equipment installed. There were funds left over also, and this was used to buy more tapes.

Jack Shepard (below, left) and Roland Ruffe are men responsible for recording material for bus programs. Right, each headset in bus is equipped with individual volume control.

Kids out Gunnison, Colo. way still spend many an hour traveling twixt home and school. Thing is, a talking school bus has turned their daily trips into educational experiences that most everyone enjoys.

How It Works. The students can don earphones that hang at each child's seat and tune in any of five taped programs especially chosen for them. The bus driver operates the master switch, and in this case it is Steve Price who is studying for his Master's degree in Education.

Each morning before the bus leaves the garage new pre-selected tapes are inserted in each channel, and for the afternoon return trip the tapes were changed again.

What the Kids Say. "I like the tapes a lot," said one of the Gunnison kids as he rode along, "because the other guys don't shoot paper wads at me." Another girl com-
mented, "and the music kind of soothes me on the way home. I just kind of dream, and think about school tomorrow, and how nice it will be."

So it seems that the children benefit from the program. It also stimulates conversation on a subject that is later discussed in class. And as a result more library books have been issued it seems, because of an interest in a variety of subjects by the children, who were stimulated to read more on the subjects programed in the bus.

Mr. James R. Raine, who is also a project director, said he is trying to get funds for
(Continued on page 109)

Each youngster selects his own program (far left), so there's no attempt to force children to listen to anything they don't want to. However, many of things heard on tapes are dealt with later in classroom. Driver (left) knows what's going on, since he's furnished with complete program of week's fare on tape. Cartridges (right) are changed daily for afternoon trip back home.

Technician applies decorative paint over wall that has been fitted with paint-it-on central heating system.

Figland may have some disabling weather, but it also has some able minds trying to cope with it. Their latest brainchild: a central heating system you paint on the wall.

Secret behind the system is the paint itself, which has a conductive form of carbon gronnd into it. In the words of one of the system's developers, "We were looking for a new paint binding agent and then we found this blend would conduct electricity. (Now) . . . it looks as if it's going to revolutionize the heating industry."

Test setup at Paint Research Station in Teddington, England. Current fed through conductive paint is converted to heat, radiated into room.

Science and Electronics

SOLA ELECTRIC COLORVOLT

Automatic Line-Voltage Regulator
 For Color TV Receivers

For really top-notch color-TV reception, the circuits in a color set should be voltageregulated. Reason is that just a small line surge or voltage change-which generally goes unnoticed on a B\&W set-is sufficient to cause color changes and perhaps even affect picture brilliance. Regulators aren't built into TVs for a very simple reason: they

would cause a sharp rise in the price of the television receiver.
The next best thing, if you're plagued with a "soft" power line, is a Sola ColorVolt.

Photos above show color-TV set under four different sets of operating conditions. In photo 1, set displays normal picture with $117-\mathrm{V}$ power line. In photo 2, line voltage has been deliberately cut to 95 V ; picture has shrunk, gone out of focus, and shifted color. In photo 3, line voltage is again 95 V , but ColorVolt is now in circuit, so set receives normal 117 V . Acid test of ColorVolt's prowess was conducted when large air conditioner on same side of pawer line was switched on; ColorVolt almost totally absorbed heavy line surge, mainfaining reasonably normal picture with but slight shrinkage at extreme bottom of screen (phote 4).

LABBCHECK

Basically, it's a device that regulates the voltage fed into the TV. You might also call it a miniature version of the regulators TV broadcast stations use to regulate their power supplies to color-transmission equipment. Connected between the power line and the TV, it holds output voltage reasonably steady even though input voltage swings between 95 and 130 volts.

Easy On and Off. The ColorVolt is automatically switched on by the TV and is therefore left permanently connected. The TV plugs into a socket on the ColorVolt and the ColorVolt in turn is plugged into the power line. Since the ColorVolt is effectively in series with one leg of the power line, a relay connected in this leg turns the ColorVolt on and off. When the TV is turned on, the current through the relay connects the regulator; conversely, when the TV is turned off, the relay automatically drops the regulator off the line.

The photographs illustrate the effect of the ColorVolt. (Room light reflections are on
the $95-\mathrm{V}$ power line, but this time it's regulated by the Color Volt, which is delivering 117 V . Note that the picture fills the screen and is back in focus.

Photo 4 was taken the instant a 19,000 BTU air conditioner on the same side of the power line was started. Normally, the picture gets a severe color shift and shrink due to the surge current. Note that the ColorVolt held the picture despite the resulting dip in the line voltage, with only a slight (though noticeable) shrink apparent at the bottom of the CRT.

Volts and Loads. The ColorVolt's output is by no means rock steady. Over a 90 to 130 volt input range the regulator held the output voltage between 115 and 120 volts. Even so, this is sufficient for good color presentation.

The ColorVolt's automatic relay is supposed to work with a power line load in excess of 150 watts; if not, you can remove the relay. Unfortunately, the relay in our model gave intermittent operation up to a 200 -watt load. And as for removing the relay, no instructions are given with the ColorVolt (other than "see a serviceman"-who will also have trouble), though it is easy for

Though no instructions are furnished, relay within ColorVolt can be removed if unit is to be operated with loads under approximately 150 W . Effect is to cause regulator to operate on con-tinuous-duty cycle. Alternatively, simple spst switch can be installed.
the screen because we wanted to show the test setup consisting of a voltmeter, variable AC supply, and the ColorVolt.) Photo 1 shows the normal picture with $117-\mathrm{V}$ normal line voltage. Photo 2 is the result of a $95-\mathrm{V}$ power line. Note that the picture has shrunk and is out of focus. You might also notice that the brightness has decreased. Because the photo is in black-and-white you cannot see the purple flesh tone caused by the $95-\mathrm{V}$ power line. Photo 3 is again with
any intelligent soul to figure out.
The ColorVolt is rated at 3.1 A. Heavier loads won't cause damage, but they will interfere with the regulating action.

Summing Up. The Sola ColorVolt, priced at $\$ 39.95$, does exactly what it claims to do. And its use is generally a lot cheaper than rewiring for a "hard" power line.

For additional information write to Sola Electric, Dept. D, 1717 Busse Rd., Elk Grove Village, Ill. 60007.

Fitted with laser simulator on top of gun barrel, British-made Chieftain tank rumbles into battle on training exercise. Tank's engine, radio, and gun go dead when hit with electronic shells; smoke aulomatically pours from tank when hit would have left it totally disabled.

INFRARIND MOCKKARIE

Alarge Chieftain tank moves in on its target: another tank. It fires several times. The target tank comes to a hait and dense smoke pours ever upwards. The tank has "destroyed" its target. Thing is, the target tank and the crew inside it are unharmed. Reason is that the Chieftain was using a new British gunnery simulator which fires electronic shells instead of real ones.

Because of the danger and the high cost of live shells (roughly \$180.00 each), mock tank battles with real ammunition were no privates' picnic. Therefore, the simulator was developed by a British firm to give tank crews practical experience in full-scale armored warfare under realistic conditions. The simulator consists of a 12 -in., low-

Infrared projector is mounted on top of tank's gun barrel in matter of minutes. It, not gun, will be source of deadly barrage.
powered infrared projector fitted on the tank's gun barrel. The device emits infrared rays which are registered by special detectors on the target tanks.

With the simulator, tank crews are able to engage and destroy each other in war exercises without firing live shells. When a tank has received a direct hit from an infrared gun. its engine, radio, and its own gun become unserviceable. A smoke generator sends up smoke to indicate when a tank is completely disabled and no longer in battle. Also part of the mock warfare setup is a control box which registers the number of shots fired. When the alloted ammunition is used up, the tank's infrared gun goes deader than a dozen dormouses.

Two detectors mounted on sister tanks register whether target has been hit or missed. Each hit is immediately relayed to aftacker.

The Thinking Ham's Frequencies

What's your favorite band? Do you sperd most of your time on 40 ? Or maybe on 15 ? Or possibly on 2 meters?

If you're a thinking ham, your answer would be "It all depends on what I want to do."

For, with most hams today set up for operating on more than one band, the actual choice of which one to use should depend on what they want to accomplish. There's no single band that serves for all purposes all of the time.

Anyone who tries to use a band for something that just won't work well is hurting both himself and his fellow hams. He's hurting himself by deliberately being inefficient. And he's hurting his fellow hams by walking over their toes with brute force.

Let's look at some examples to see how this works.

The whole thing is primarily a matter of different frequencies being usable for communication over different distances. An added complication is the fact that these effective distances change-at different times of the year, and from year to year.

Blame It On Sunshine. Basically, the changes are brought about by the Sun. As Ol' Sol beams down those bright rays of light and heat, he creates changes in the ionosphere--that invisible blanket of radioreflecting particles about a hundred miles or so over our heads.

During summer in the northern hemisphere, the sun shines for longer than in the winter, so its effects on the ionosphere are stronger. In the winter, when the sun moves south it has less effect on the ionosphere over our part of the world, and so has a different effect on radio communications.

Another factor is the sunspot cycle. Sun-
spots are violent storms on the surface of the sun. They increase the radiation which hombards our ionosphere, so they also have a strong e.fect on which radio signals are reflected part way around the earth. These sunspots generally fluctuate in an |l-year cycle. That is, the times of maximum sunspot activity occur about 11 years apart. Between these sunspot peaks. the spots taper off slowly, then build up slowly for the next peak 11 lears later.

So, what does all this do to our ham bands? Basically, it works like this: the higher of our HF bands, say 10,15 and 20 meters, work best for long distances during daytime, in the summer, and during sunspot maximum periods. At the same time, the 40 and 80 meter bands are best for local or medium distance communication.

However, in the winter time, and at times of sunspot minimums, the 40 and 80 meter bands begin to take on long distance characteristics. especially at night, while the 10 , 15 and 20 meter bands become very weak, and sometimes go completely dead, except for contacts of a few miles!

These changes don't occur suddenly, but rather they take place slowly, over a period of several months. So, anyone who understands what's happening can switch bands as necessary to carry on with his favorite operating activity.

The DXer. for example. will be really happy on 10,15 and 20 during a period of high sunspot activity. When the sunspots decline, however. as they are beginning to do now. he will have to switch to 40 or maybe even 80 to maintain his worldwide contacts.

The traffic man. who usually finds 80 (or 75) exactly to his liking for a state-wide net. may have to move his net to earlier in
the evening or even into the afternoon, or else switch to 160 , because the will find his favorite band being cluttered during the mid and late evening by stations on the other side of the world!

All this is necessary, if we're to make intelligent use of our frequencies. We can't battle the foreign interference on a net, so we must switch bands or operating times to avoid it. And we can't bulldoze a DX contest signal around the world if the band is dead to distant operating. You just can't fight it; you must switch!

There's an element of courtesy involved too, by understanding why some stations you never heard before are heginning to cause you interference. These fellows aren't doing it deliberately, usually. They're just victims of circumstances, just as you are. The ionosphere is beginning to play tricks with their signals to create different "paths" than existed last month or last year.

By understanding how come this is happening, and putting this understanding to work for you, you will become a more effective radio operator-and a happier one as a result.

For Speedier Messages. Anyone who has ever received a traffic message on the air and then had to deliver it by telephone knows it's much easier if the telephone number of the addressee is included in the address portion of the message. Many times, though, the station which originates the mes-
sage doesn't know this number, so he naturally doesn't include it in the message when he sends it out in the first place.

Thanks to the Direct Distance Dialing system that Ma Bell is now providing in most areas, there's a quick and simple way to get this number-and it doesn't cost a cent!

All you have to do is dial the information operator in the city to which you are sending the radio message. Give her the name of the person to whom the message will be sent, and ask for that party's phone number. (Don't confuse the girl by explaining why you want the number, though; that could upset her whole day by trying to understand what you're talking about.)

Include the number she gave you in the address portion of your radio message when you take it to the traffic net. That way, the number will be there for the receiving ham in that city, making it possible for him to quickly call the party on the phone and deliver the message.

These information calls are not charged against your phone bill, since Ma Bell wants to encourage everyone to use Direct Distance Dialing instead of going through the long distance operators. (Personally, I think some of Ma's long distance operators need the practice, but that's another story).

You can find the procedure for making an information call in the front of your phone book, if it's possible to make such calls from your area. (Conilinued overleaf)

Simple, low-cost way to put up single-band ham antenna in sketch submitted to Ham Traffic by Jim Ingham, WN5VFW, of Fort Worth, Tex., who received it from Bob Gooding, W301I, of Beltsville, Md. It uses a bamboo fishing pole as a support for a piece of wire which forms radiator of ground-plane vertical; ground radials are similar sections of wire stretched downward from mounting point to fixed anchors. Cut vertical element and ground radials to quarter wavelength on your favorite frequency on 10,15 , or 20 meters. Feed with 52 -ohm coax: connect shield from coax to radials, center conductor to bottom of vertical element.

HAM TRAFFIC

Tin Badges of Conceit. That's what some so-called public official once called the special license plates issued by many states to special groups, including ham radio operators.

Practically every state has them now, but it's well to continually review why they exist.

Although some special interest groups really do use special plates as status symbols in some states, the original intent of ham radio call letter license plates was to make it possible to quickly identify a trained radio operator in cases of emergency.

All too often, many hams have used them just to show off their hobby, with no real serious effort to maintain their ability to use ham radio if called upon in an emergency.

Consequently, every so often some longwinded politician gets on a soap box and screans that these special plates should be abolished, or that the price for them should be raised sky high.

I maintain that these plates serve a useful function and should be retained, at the lowest possible price, but along with that, I believe we should continue to show that we deserve to have them. If we become complacent in our obligations, then we deserve to have them taken away.

It's interesting to note, as reported in the Lockheed Employees Radio Club Bulletin (Burbank, Calif.), that Alaska has reduced the cost of ham call letter places to $\$ 1$ a year in recognition of the fine job hams did during the 1964 earthquake and the 1967 Fairbanks flood! Now that's what I call putting your money where your mouth is! My hat's off to the good folks of Alaska and to the deserving hams involved.

Don't Knock It 'Till You've Tried It. The guys who sneer at CW and say it's oldfashioned and useless in this space age could take a lesson from crewmen of the USS Ptueblo who were prisoners of the North Koreans.

After their release, it was revealed that some of those fellows communicated between their prison cells by using Morse Code. A tap was a "dit" and a scrape was a "dah." Primitive, to be sure, but it was all they had, so they used it.

Before their capture, they had at their
finger tips some of the most modern gear in existence. When this was taken from them, though, they weren't rendered completely helpless. They put to use a part of their training as radio operators-the still useful and practical ability to communicate with dots and dashes.

Anyone who scoffis and says we hams don't need Morse Code because we don't expect to be thrown into a communist prison should stop and think-these guys didn't expect it either! You never know when the unexpected will happen and a little Morse ability will come in handy. And ours is the only "hobby" that requires it!

Watch That Meter. Most every modern transceiver is equipped with a front panel relative power meter. It functions differently from the older plate current meter that used to be so common on ham rigs, and often a misunderstanding exists on just how to make use of it.

W5VCE wrote a brief description of do's and don'ts regarding this meter, which has been reprinted in the Amateur Radio News Service Bulletin and in the Penn Wireless Association X-Mitter.

Here's what he has to say:
"Can this meter be used to adjust the transmitter controls for maximum output? Yes!
"Is a higher reading on this meter an indication of a properly tuned antenna? Absolutely not!
"Odd as it may sound, the relative output meter will read less and less as the antenna is tuned or pruned to optimum," he says. How come?
"These meters are usually simply uncali. brated RF voltmeters which read the RF voltage at the transmitter antenna connector," he explains. "The antenna always presents its lowest impedance, that is, nonreactive. Consequently, the relative power meter or RF voltmeter will be measuring the RF voltage across the minimum impedance when the antenna is correctiy tuned.
"So, as you move up and down the band either side of the frequency for which the antenna is resonant, you will find the relative output minimum at the point where you are actually radiating hest. Don't be fooled by high readings on the relative power meter. It may be used for tuning the transmitter for maximum output and as a relative indication of whether the transmitter and antenna are still like they were yesterday on a given frequency."

EmLABCHECK

TANDBERG MODEL 1641X Cross-Field Bias 4-Track Stereo Tape Deck

\square Tandberg recorders have always enjoyed a justified reputation for quality . . . which happened to go hand in hand with cost and weight. A Tandberg recorder could easily cost as much as all the other components of a hi-fi system; tied to a string, it made an excellent boat anchor. But now, using the latest in solid-state techniques and cross-field bias, the new model 1641 X delivers the expected Tandberg performance at considerably reduced weight, and a competitive cost of $\$ 249.50$.

The 1641 X is a 4 -track stereo recorder with inputs for low-impedance microphone, magnetic pickup, and line (tuner, etc.). Three speeds ($71 / 2,33 / 4$, and $17 / 8$ ips) are provided, with automatic equalization by the speed selector. Independent volume controls and VU meters are featured, along with independent record locks for each channel. Mechanical operation is controlled by a single, four-position joystick that provides for play, fast forward, fast reverse, and unlocked reels (for easy threading). A reset counter

Top of Tandberg deck is conventional in appearance. Hub at right is for takeup reel.

and locking pause control are also part of the picture.

While the list of features reads about the same as for any other similarly priced tape deck, performance is something else, starting off with the cross-field bias.

Why Bias? A tape's magnetizing curve is non-linear; in simple terms, this means that you would normally get a distorted playback of whatever you tried to record. To overcome the distortion, an ultrasonir bias signal is ordinarily mixed with the inpat signal in the record head; the bias signal "stretches" the linear portion of the tape magnetization, allowing a much higher input signal. Simultaneously, output level and signal-to-noise ratio increase sharply, while distortion goes way, way down. Unfortunately, the bias level needed for good low-speed operation often requires extreme frequency

Tape path is straightforward, but bias heads are mounted across from play/record heads.

LABCHECK

equalization. Result is that it's difficult to interchange recorded tapes between recorders of different manufacture, and distortion of high frequencies is often excessive.

Cross-field bias is a fairly new way of applying the bias signal. It generally results in better equalization and lower distortion, particularly at the slower tape speeds. Instead of being applied as a mix in the record head, the bias signal is fed to a separate head which presses on the back of the tape, directly opposite the record head. The nlagnetizing field from the bias head crosses through the tape to the oxide coating, "stretching" the tape's magnetization to obtain lowest recording distortion when the input field is applied from the record head.

Cross-Field Performance. Though the 1641X is specified for use with low-noise tape, such tape is both relatively expensive and not generally available. Therefore, our tests were conducted with "standard" tape as would be used by the average tape fanthe equivalent of Scotch type 111 or Audiotape 1251. (Tests with low-noise tape showed the 1641X to be essentially right on the claimed specifications.)

At $31 / 4$ ips the 1641 X will play back a standard NAB equalized test tape within $-0,+3.5 \mathrm{~dB} 100$ to $7500 \mathrm{~Hz} \ldots$ the test tape limits. At $71 / 2$ ips the NAB playback checked out within the test tape limits of 50 to $15,000 \mathrm{~Hz}$ as $-0.5,+5 \mathrm{~dB}$ (very good for a "home" machine).

The overall recorder response from microphone input to its line-level output was within 3 dB from 40 to $20,000 \mathrm{~Hz}$ at $71 / 2$ ips and within 4 dB from 40 to $12,000 \mathrm{~Hz}$ at $33 / 4$ ips. Response at $17 / 8 \mathrm{ips}$ was $-4 \mathrm{~dB},+2 \mathrm{~dB}$ from 40 to 8000 Hz .

Combined wow and flutter at all speeds was well within professional standards, measuring 0.05% at $71 / 2 \mathrm{ips}, 0.08 \%$ at $33 / 4 \mathrm{ips}$, and 0.15% at $17 / 8 \mathrm{ips}$. With standard tape the noise measured -53 dB (very good) below maximum recording level and -59 dB with low noise tape (almost dead quiet).

No Magic Eyes. Unlike earlier Tandberg recorders, the 1641X has no "magic cye" record level indicators. In their place, the 1641X has VU meters. But unlike conventional recorder VUs which are frequencyequalized to show a flat input level even after the record equalization, the 1641 X 's meters
are unequalized. This means that they will tend to show the exact input level to the record head.

By way of explanation, let's assume you have a typical recorder with an equalized VU meter and that you're trying to record a high-pitched sound-chimes, say. If you set the record gain so the meter indicates zero level (maximum recording level), the actual signal delivered to the head can be up to 10 dB or even more. This is because of the record equalization (which is de-emphasized in playback to improve signal-to-noise ratio). The result would be tape overload and severe distortion.
Thing is, with the 1641X's meters, which are not equalized, you would be aware of the excessive recording level, and you would reduce the record gain so as not to drive the tape into distortion.

Summing Up. Typical of the more expensive Tandberg models, the 1641 X is a beautiful piece of machinery. And, though reasonably priced, it delivers a performance level generally expected of professional type studio recorders.

For additional information, write Tandberg of America, Inc., 8 Third Ave., Pelham. N.Y. 10803.

Thanks to use of printed circuits, underside of Tandberg is clean and uncluttered.

life maitenaics

28	784	21952	5.2915	148.16	1.9473	. 03571429	87.9645	615.7522
29	841	24389	5.3852	156.17	1.9610	. 03448276	91.1061	660.5198
80	900	27000	5.41072	164.32	1.9744	. 03333333	94.2477	706.8683
31	961	29791	. 1414	172.00	1.9000	03225806	97.3893	754.7676
32	1024	32708	3.1748	181.02	2.000	- 3125000	100.5309	804.2477
33	1089	35937	3.207	189.57	2.0125	$\square \times 303$	103.6725	855.2986
34	1156	39304		198.25	2.0244	76	106.8141	907.9203
35	1225	4287		207.06	2.0362		109.9557	962.1127
36	1296	460	9	216.00	2.0477		113.0972	107.3760
37	1369	506	22	225.06	2.0589		116.2388	1075.2101
38	1444	548	20	234.25	2.0699		119.3804	1134. 1149
39	1521	59.	12	243.56	2.0807		122.5220	1194.5906
40	1600	640	80	252.98	2.0913		125.6636	1256.6371
41	1681	689.		262.53	2.1016		128.8052	1320.2543
42	1764	7408		272.19	2.1118		131.9468	i 385.4424
43	1849	7950.		281.97	2.1218		135.0884	1452.2012
44	1936	85184		291.86	2.1319		138.2300	1520.5308
45	2025	91123	556	21.87	2.151	2	141.3716	1590.4313
46	2116	97336			1506	13	144.5131	1601.9025

"Wagner's music is better than it sounds." observed Mark Twain. Had the sly humorist been a musical mathematicianor a mathematical musician-he might have made this more general observation: "Most music sounds better than it really is."

The fact is that almost all of the music we hear today, whether Wagnerian opera or high-decibel Rock in Roll, is less than perfect. This has nothing to do with room acoustics, poor hi-fi equipment. or mediocre musicianship. For even under the best of conditions, most music is of necessity somewhat less than ideal.

It may come as a minor shock to many a music lover to learn that his favorite concert pianist. who appears to be making sublime music with his Steinway, is actually playing his thirds and sixths somewhat sharp. and his fifths slightly flat! He can't avoid it. That's the way his piano is tuned. Then why not call in the piano tuner and have things set right? Because this would force the pianist to use an instrument having over 500 keys instead of the usual 88!

To appreciate the scientific basis and the unavoidable arbitrariness of music, let's delve a bit into the underlying mathematics. Though musical mathematics can become

OIMUSIC
bv Jnrma Hvvnia
97.96451615 .7522

1061 660.5198
706.8683
97.3893754 .7676 804. 2477
$106.8141 \quad 907.9203$ 109.9557962 .1127 116.23881075 .2101 $119.3804 \mid 1134.1149$ 125.66361256 .6371 $128.8052 \mid 1320.2543$ $135.0884 \mid 1452.2012$ 138.230011520.5308 $144.5131 / 1661.9025$
extremely complex, the basics can easily be grasped by anyone having only rudimentary knowledge of plain old arithmetic.
Even the briefest excursion into musical mathematics can be fascinating. On the one hand. it's most satisfying to discover that there's a certain mathematical neatness about harmonic chords. On the other hand. you may be surprised to learn that dissonance, properly utilized in the plaving of even The Star-Spangled Banner, can make music more enjoyable than it would be if the music were virginally "pure." And it may be more than a little disconcerting to discover that A above middle C, the traditional tuning note, has not always heen what it is today!

Diatonic Scale. Though there is a distinct mathematical basis to all music. we must realize that there is no such thing as a single "natural" scale system. The scale system used in the Western world seems natural enough to us; the scales used by other cultures to produce music strance to our ears seem equally natural to those alien cultures. All have sound mathematical bases.

Our diatonic scale is the result of considerable experimentation throughout the musical ages. The term diatonic pertains to or designates a standard major or minor scale of eight notes to the octave. For ex-

Inemailemilicsolmisic

ample, a major diatonic scale would be represented by eight consecutive white keys on a piano. Add to these eight notes the five intermediate (black keys) semitones, and you have a chromatic scale.

Are these 13 notes per octave sufficient to produce top-quality music? The answer depends on how you define top quality. If you mean adequately pleasing harmony that can be created by physically manageable instruments, then the answer is yes. If you are thinking about complete tonal purity, the answer is no. You can't have hoth at the same time if you include the use of percussion and valve instruments. The reason will become clear later.

True Scale. In order to understand why we are forced to use a somewhat inexact compromise scale, it's necessary to begin with consideration of a true scale. As a convenient example, let's take the key of C major scale beginning with middle C on the piano:

C, D, E, F, G, A, B, C ${ }^{1}$

As it happens, A above middle C was long ago selected as the basic pitch for instrumental tuning. In terms of the vibrational frequency of the fundamental tone of A, this note has been many things throughout musical history. The pitch of a musical note was first determined by Père Mersenne (1648), a French ecclesiast and mathematician. During his time, the lowest church pitch of A was 373.7 Hz while the chamber pitch was 402.9 Hz . In 1751 Handel used an A of 422.5 Hz .

In 1834, a group of physicists meeting at Stuttgart, Germany, settled on a standard of 440 Hz , but 25 years later an orchestral A of 435 was legalized in France. This lack of uniformity created problems. For example, instruments made in one country wouldn't be in tune with those manufactured in some other country. A singer trained in one country might be forced to sing at an unaccustomed pitch when performing with a foreign orchestra.

In 1939 the problem was at long last resolved. An international conference held in London set the standard pitch of A above middle C at 440 Hz .

The term pitch can be misunderstood. The
pitch of a played or sung note is related to, but not synonymous with, the vibrational frequency of the fundamental tone. Pitch is a subjective characteristic of sound that depends not only on the vibrational frequency of the note, but also on the loudness of the sound. Moreover, the pitch of a musical sound pertains to a complex sound consisting of the fundamental frequency (e.g., 440 Hz for A) plus many related frequencies called overtones. To avoid confusion, we'll henceforth talk only in terms of fundamental frequencies and avoid the use of the term pitch.

To grasp the difficulties that a true scale would impose on musicians, consider what happens when a musician decides to switch from one key to another-for example, from the key of C to the key of D. In terms of vibrational frequencies, the following changes would have to be made:

	Frequencies (Hz)	
Note	Key of C	Key of D
C	264	-
D	297	297
E	330	$\overline{334}$
F	352	$\overline{371}$
G	396	396
A	440	445
B	495	495
C1	528	557
D1	-	594

Note that the four underlined notes in the key-ot-D scale have frequencies that differ from the frequencies of the corresponding notes in the key-of-C scale. In order to switch from the key of C to the key of D, a musician would have to use an instrument which had several new notes added. But that isn't all. Still more new notes would be required when switching to each of the other keys. To complicate matters more, additional notes would be required for the various minor scales. Consequently, at least 72 notes would be needed for each octave of an instrument's total range. Since the piano has seven octaves, more than 500 keys would be needed. This would clearly be impractical.

Percussion instruments such as the piano, and valve instruments such as woodwinds, would be most seriously affected. Stringed instruments such as the violin, and the human voice, could theoretically at least provide all of the tonal nuances demanded by the true scale.

Frequency Calculations. It's a simple matter to calculate the tonal frequencies for any diatonic scale. For example, the key of D scale, above, was developed from the tonic D (a tonic is the first or lowest note in any scale) by multiplying this basic frequency ($\mathrm{D}=297 \mathrm{~Hz}$) by the appropriate ratios for musical thirds. fourths, fifths, etc. These values are given in Fig. 1.

For example, the frequency ratio of a musical fifth (the interval between the first and fifth notes of the scale) is 3 to 2 . In the key of D scale, note A represents a fifth. Thus, by setting up the proportion $3: 2=$ X:297, and solving for X, we obtain 445 Hz as the frequency of A in the key of D scale. Other values are determined in exactly the same way. The octave D^{1} of course has just twice the frequency of the tonic D.

Musical Intervals. There are two kinds of musical intervals. First, those between various notes of a scale and the tonic note (the low "do"). These intervals are identified as thirds, fourths. fifths. etc. Secondly, there are tone intervals represented by adjacent notes in a scale.

In Fig. 1, note that there is one octave interval with a 2 to 1 frequency ratio, tivo major sixths $(5: 3)$, one minor sixth (8:5),
three fifths ($3: 2$), four fourths $(4: 3)$, three major thirds $(5: 4)$, and two minor thirds (6:5). The diflerences between the major and minor categories are somewhat arhitrary, but important to understanding music's math. For example, if the frequency of E is divided by the frequency of C , (a "third") the simplest ratio that results is 5:4. The same applies to the F-A third and the G-B third.

On the other hand, the G-E and $C^{1}-A$ thirds yield a numerically smaller-hence "minor"-ratio of $6: 5$. The size relationship is clearer if the fractions are changed to decimal forms : $5 / 4=1.25$ while $6 / 5=1.20$. The same explanation holds for the difference between the major and minor sixihs.

But haven't we overlooked something? What of the seeming D-F third? Is it major or minor? Neither. because the frequency ratio of 352 to 297 cannot be further simplified. Further, this tone interval isn't musically significant according to the law of Pythagoras, which demands that the tonal relations must be reducible to simple wholenumber ratios.

Figure 2 shows how these various intervals are calculated. In line three, the frequency of each note is divided by the frequency of

MUSICAL INTERVALS OF THE DIATONIC SCALE									
		C	D	E	F	G	A	B	${ }^{1}$
Interval	Freq. ratio	264	297	330	352	396	440	495	528
Octave	2:1		,	,	nor			,	
Sixth (Major)	5:3		\%	n	\%	~	\sim	n	
Sixth (Minor)	8:5				m	,	m	m	n
Fifth	3:2		m	\%	น	m	m		
Fourth	4:3	m	~	m	\%	m			
Third (Major)	5:4	\sim	m		*	,			
Third (Minor)	6:5				nem	\cdots	\sim	m	

Fig. 1. Musical intervals and their frequency ratios for diatonic scale. Since interval ratios are constant, they can be used to find frequencies for scale in another key.

Inemailewilicolimisic

the tonic (264). The next line shows the simplified ratios, just as they appeared in Fig. 1.

Some music mathematicians, disliking fractions, eliminate the fractions by multiplying with a common factor, in this case 24. This yields the relative frequencies shown in line five. What do they mean? Simply this: in the time that the tonic C vibrates 24 times, D vibrates 27 times, E vibrates 30 times, etc.

By dividing the relative frequencies of adjacent notes, the adjacent tone interval ratios shown in the last three lines are obtained. Note that there are three $9: 8$ major intervals (four if the scale is extended by one note), two 10:9 minor intervals, and two 16:15 semitone intervals. In this case the terms major and minor are used simply to indicate the relative numerical sizes of the ratiosi.e., $9: 8$ represents a bigger number than 10:9.

Figure 3 illustrates the tone intervals in major and minor scales. The minor scale has three flatted notes with frequencies somewhat lower than those of the corresponding notes in the major scale. The last two lines
reveal that the same intervals occur in both major and minor scales but in different order. Both scales fully satisfy the law of Pythagoras by adhering to simple numerical ratios between adjacent notes.

Mathematical hint: when handling numbers having decimal fractions, first multiply both denominator and numerator by a common factor (usually 10) to clear the decimal, then reduce to the simplest fraction. For example, to calculate the G-A flat interval:

$$
\frac{442.4}{396}=\frac{4224}{3960}=\frac{16}{15}
$$

Tempered Scales. In order to avoid using an inordinately large number of notes per octave, thus necessitating very complicated musical instruments, musicians throughout the centuries have attempted to devise compromise scales called tempered scales. The most important of these have been the Pythagorean, the mean tone temperament, and the now generally accepted equal temperament scale established about 150 years ago.

In the equal temperament scale, each octave is divided into twelve equal divisions called tempered semitones. Two semitones are equivalent to one full tone.

FREQUENCY RATIOS OF THE TRUE SCALE (KEY OF C MAJOR)									
Note	C	D	E	F	G	A	B	${ }^{1}$	D ${ }^{\text {I }}$
Frequency (Hz)	264	297	330	352	396	440	495	528	594
Ratio to tonic	264	297	330	352	396	440	495	528	594
note C	264	264	264	264	264	264	264	264	264
Simplified	1	9	5	4	3	5	15	2	9
ratio	1	8	4	3	2	3	8	1	4
Relative frequency									
(Ratio x 24 to clear	24	27	30	32	36	40	45	48	54
fractions)									
Major tone									
intervals									8
Major tone									
intervals									
Semitone									
intervals									

Fig. 2. Frequency ratios between notes in diatonic scale. In line five, simplified ratios in line four have been cleared of fractions in order to show relative frequencies.

Fig. 3. Frequencies and tone intervals for major and minor scales in key of C. Interesting here is that very same infervals occur in both scales, though in different order.

Une important consequence of this type of tempering is that flats and sharps lose their original significance as different tones. For example, $G H$ and A^{\prime} are now identical. In effect, five new notes (the black keys on a piano) were added to the original diatonic scale (white keys). This arrangement is diagrammed in Fig. 4

It's obvious that when these thirteen notes

Fig. 4. Equal temperament scale now in common use allows no difference between sharps and flats ($D \#$ and $E b$ are thus identical).
of an octave are asked to do the job of 72 notes in a true scale system, there must be some sacrifice of tonal quality. An instrument tuned to the equal temperament scale has only one correct interval-the octave. All other intervals are to some degree in error; thirds and sixths are a little sharp, while fifths are flat.

Note that middle C now has a frequency of 261.7 Hz instead of the 264 we have so far talked about in relation to the true scale.

This adjustment is necessary in order to make the frequency of the standard \mathbf{A} work out to 440 Hz .

Figure 5 compares the frequencies of the true scale with those of the equal temperament scale. Note that A is the only note having the same frequency in both scales. The frequency of C^{1} is of course just twice that of its lower octave, C. When the five half tones are added to this diatonic scale, the frequency range between C and C^{1} must be divided into twelve equal parts. Mathematically, each twelfth part is the 12 th root of 2 because the frequency of C must be multiplied by 2 to obtain C^{1}.

$$
\text { Thus: } n=\sqrt[12]{2}=1.05946
$$

Figure 6 shows how the frequency ratios work out for each note. These ratios are ob-

SCALE FREQUENCIES $(A=440 \mathrm{~Hz})$		
Equal Note C True scale (Hz)		
D	264	$(\mathrm{~Hz})$
E	297	261.7
F	330	293.7
G	352	329.7
A	396	349.2
B	440	492
C	495	493.9

Fig. 5. Frequencies of true scale compared with those of equal temperament scale. Only note having same frequency in both is A.

tained by multiplying each successive ratio by the common factor of 1.05946 to obtain the next ratio. For example, to derive the ratio for F , multiply the previously calculated ratio for E (1.2598) by 1.05946 . The derived ratios can then be used to calculate actual note frequencies. For example, by multiplying 261.7 (tonic C) by 1.6818 (ratio for A), the frequency of 439.985 is obtained for A-very close to the standard 440 Hz .

It's important to remember that when intervals are to be added, their ratios must be multiplied. For example, to add the C-F fourth to the C-G fifth, one would multiply 1.3347×1.4982 to obtain 1.9996 which is almost 2, the expected octave ratio. To avoid such complicated mathematics, other more empirical systems of indicating frequency intervals are sometimes used. The cent system (Fig. 6) is a numerical scale in which the tonic is 0 , the tonic octave is 1200 , and each semitone interval is equivalent to 100 cents.

Unlike the decimal frequency ratios, these values can be added. For example, the C-F fourth is represented by 500 cents and the C-G fifth by 700 cents. The sum of these two numbers is 1200 indicating that a fourth plus a fifth is equal to an octave. Another

FREQUENCY RATIOS OF THE EQUAL TEMPERAMENT SCALE Note C Frequency ratio		
Cents from tonic		
C\# (Db)	1.0000	0
O	1.05946	100
D\# (Eb)	1.1224	200
E	1.1891	300
F	1.2598	400
F\# (Gb)	1.3347	500
G	1.4141	600
G\# (Ab)	1.4982	700
A	1.5873	800
A\# (Bb)	1.6817	900
B	1.7817	1000
C	1.8876	1100

Fig. 6. Frequency ratios of equal temperament scale. Since scale comprises twelve equal parts, common factor is 1.05946 .
somewhat similar numerical system makes use of units called savarts.

Incidentally, you now have enough information to easily calculate the frequency of any note, in any octave of the equal temperament scale. The frequencies of all the Cs on a piano are given in Fig. 4. To obtain the frequency of any other note, use the frequency ratios in Fig. 6.

Let's assume you want to know the frequency of E_{3} which is the E in the octave below middle C. First find the frequency of E_{4} (E above middle C) by multiplying 261.6 by the E-ratio 1.2598. The answer is 329.56. To drop down one octave, simply divide by 2 to get 164.78 Hz as the frequency of C_{3}. Halving this number would give the frequency of E_{2} in the next lower octave. Obviously, to find the value of E in a higher octave, you simply multiply instead of divide by two.

Harmonic Triads. There are certain naturally agreeable ("harmonious") note combinations which chords can be derived from by the addition of a fourth note. (This note, incidentally, must be an octave of one of the three notes comprising the triad.) To show how triads can be discovered by mathematical analysis, it's preferable to work with the true scale because the mathematical relationships are simpler and more exact.

Derivation of the harmonic triads in the key of \mathbf{C} major is shown in Fig. 7. First set up the diatonic scale and extend it by one note (D^{1}) and set down the vibrational frequency for each note. Now simplify these frequency relationships by dividing all frequencies by eleven to obtain the relative frequencies shown in line three ($\mathrm{C}=24$, $D=27$, etc.). It will now be discovered that certain numbers can be divided by 6 to yield still smaller whole numbers; these are C, E, and G which have frequency ratios of $4: 5: 6$. Dividing by 8 and then by 9 will yield two more 4:5:6 triads-FAC ${ }^{1}$ and GBD ${ }^{1}$.

Incidentally, note what happens if the same calculations are made using the corresponding frequencies in the equal temperament scale $(\mathrm{C}=261.7, \mathrm{E}=329.7, \mathrm{G}=392)$. In this case the CEG ratio would work out to approximately 4. 1:5. 1:6.1, which is close to what is obtained with the true scale. Even so, it doesn't provide the small whole number relationships that are characteristic of highest consonance or harmony.

Figure 8 shows a similar derivation of the three triads in the scale key of C minor.

MAJOR HARMONIC TRIADS (KEY OF C)										
Note	C	D	E	F	G	A	B	${ }^{1}$	${ }^{1}$	
Frequenay (Hz)	264	297	330	352	396	440	495	528	594	
Freq. $\div 11$	24	27	30	32	36	40	45	48	54	
$\div 6$	4		5		6	(CEG)				
$\div 8$	6			4		5		6	(FAC)	
$\div 9$		3			4		5		6	(GBD)

Fig. 7. Derivation of major harmonic triads for diatonic scale in key of C major. Dividing frequencies by 6,8 , and 9 reveals three triads, each having frequency ratios of 4:5:6.

The mathematical procedure has been modified slightly in order to handle the decimal values more easily. The frequencies are first all multiplied by ten to eliminate the decimal fractions, after which basic simplification is achieved by dividing by 22 . When the simplified relative frequencies are then divided by 12,16 , and 18 , three sets of minor triads having frequency ratios of $10: 12: 15$ are discovered. Note that though the frequency ratios are different from those obtained with major triads, the same notes still make up the triads.

Incidentally, there's nothing mysterious about the primary divisors used in each case (11 for major triads, 22 for minor triads). Perusal of the frequencies indicated that these divisors were merely convenient for reducing the sizes of the numbers. You could in fact skip this step and divide the major frequencies directly by 66,88 , and 99 and arrive at the same conclusions.

Figure 9 helps show just what the triad
ratios mean. Consider the CEG major triad. In the time period that the note C vibrates through four cycles, E will go through 5 cycles, and G will vibrate six times. In the case of the CEG triad, this happens in one 66 th of a second. The same vibrational relationships hold for the FAC^{1} and GBD ${ }^{1}$ triads except that the time periods are shorter.

For the record, the CEG triad is known as the tonic triad, GBD^{1} is the dominant triad, and FAC^{1} is the sub-dominant triad.

A number of different chords can be developed from the major and minor triads by a procedure called inversion. For example, the chord CEG is called the common chord. A first inversion is obtained by using the octave of C to form the chord EGC ${ }^{1}$. A second inversion is obtained by using E that is an octave higher to obtain the chord $\mathrm{GC}^{1} \mathrm{E}^{1}$. Similar inversions can be made with the minor triads.
(Continued on page 104)

MINOR HARMONIC TRIADS (KEY OF C)										
Note	C	D	Eb	F	G	A ${ }^{\text {b }}$	B ${ }^{\text {b }}$	C^{1}	${ }^{1}$	
Frequency (Hz)	254	297	316.8	352	396	422.4	475.4	528	594	
$\times 10$	2640	2970	3168	3520	3960	4224	4754	5280	5940	
$\div 22$	120	135	144	160	180	192	216	240	270	
$\div 12$	10		12		15	(CEG)			-	
$\div 1 E$				10		12		15	(FAC)	
$\div 18$					10		12		15	(GBD)

Fig. 8. Derivation of minor harmonic triads for diatonic scale in key of \mathbf{C} minor. Even though frequency ratios differ from those in Fig. 7, triads are comprised of same notes.

WHITE'S Rist

> An up-to-date Directory of North American AM, FM, and TV Stations, including special sections on World-Wide Shortwave Stations and Emergency Stations for Selected Areas

\squareWhite's Radio Log was founded in Providence, R. I. by Charles De Witt White as an extension of his carlier publishing activities. Interestingly enough, these, in turn, were a continuation of the business established by his father: the publication of city directories, strcet guides, and municipal tax guides.

In the early days of broadcasting, compiling a list of operating stations and their frequencies was no simple task. Reason was that prior to the Dill-White Radio Act of 1927, any feed merchant, auto dealer, barber, or undertaker who wanted to advertise his wares or services had only to select a frequency and go on the air. A great many experimenters and businessmen did just that.

Nevertheless, Mr. White's directory publishing experience had convinced him that he could successfully assemble a radio log. In 1924 he justified this conviction with The Rhode Island Radio Call Book. following this shortly after with White's Triple List of Radio Broadcasting Stations.

In 1927 the two publications were merged and nation-wide distribution established. In ensuing years related publications, such as Sponsored Radio Programs, Radio Announcer's Guide, Short-Wave Schedule Guide, and a special Canadian edition of the Log (which had had its title shortened to the one it bears today), were also issued.

The \log itself eventually reached a combined circulation of well over a million copies. It also came up with some rather
unusual bedfellows. In |929-3। it was distributed as the Enna Jettick Radio Log (to promote the sale of shoes): in 1938-9 as the General Electric Radio Lig to promote General Electric's "sensational 1939 receivers with pushbutton tuning."

The Fall-Winter number of the 1927 Los listed 701 U.S. stations. Most powerful were WEAF (now WRCA), New York with 50,000 watts; KDKA. Pittsburgh; WGY, Schencetady; and WJZ (now WABC), New York, each with 30,000 watts: WGN-WLIB, Chicago, with 15,000 watts: and Boston's WBZ, also with 15.000 . Five stations listed (one a Junior High School in Norfolk, Va.) operated on a mighty 5 watts: more than 100 stations had outputs of less than 100 watts.

The current Log cress index -s over 4244 U.S. standard-broadcast (AM) stations, over 2247 U.S. frequency-modulation (FM) and over 810 television stations, has a complete compilation of Canadian broadcasters, and, in addition, has a comprehensive world-wide roster of shortwave stations.

With the success of his Log, Charles De Witt White (a direct descendant of Peregrine White, the first child born on the Mayflower's historic crossing and bearer of the name of another illustrious ancestor, De Witt Clinton) disposed of his city directory and street guide interests. In time, he transferred his editorial operations to Bronxville. N. Y., a suburb of New York City, where he could remain in close touch with the
broadcasting industry. On April 6, 1957, having only recently completed revising and updating material for the 34th consecutive year of his Log, Mr. White died in his sleep. He was 76 years old.

Charles De Witt White's daughter and heir, Mrs. W. R. Washburn, sold all rights in and to the Log to Science \& Mechanics Publishing Co., and entrusted us with continuing her father's work. This we were proud to do back in 1958 in Radio-TV Experl-MENTER-which later became the current Science and Electronics.

Beginning with our first bimonthly issue in 1964, White's Radio Log was divided into three parts (it had grown to 60 pages in size and was much too large to incorporate in any one issue). From 1964 until the present, we published the Log in three parts, updating each part right up to press time.

Now, in 1969, the size of the Log again necessitates a change. Therefore, White's Radio Log will be published in six parts during 1959. In each issue we will include a major listing for either AM Broadcasting

Stations, FM Broadcasting Stations or Television Stations; plus the expanded WorldWide Shortwave Section (brand new for each issue); plus the all-new Emergency Radio Listing for major U.S. cities (a different major city will appear in every issue).

In this issue of Science and Electronics, White's Radio Log contains U.S. AM Stations by Frequency, World-Wide Shortwave Stations, and Emergency Radio Listings for Florida.

As always, as we go to press on each issue of White's Radio Log, station additions, changes, and deletions are made by the U.S. and Canadian governments. The same holds true for the world-wide shortwave broadcasters. Therefore, the Editor cordially invites all readers to inform him of any changes that must be made to keep the \log up to date. (In some instances our readers discover and notify us of changes before the FCC or DOT officially inform us.) Keep your cards and letters coming - they are most sincerely appreciated, and it's the one way you can help us make a better Log.

WHITE'S RADIO LOG CONTENTS FOR 1969-1970

S \& E Issue	Listing	Page
April/May	U.S. TV Stations by States	92
1969	Canadian TV Stations by Cities	94
	Canadian AM Stations by Frequency	95
	World-Wide Shortwave Stations	97
	Emergency Radio Services-New York City Area	99
June/July	U.S. AM Stations by Location	84
1969	World-Wide Shortwave Stations	98
	Emergency Radio Services-San Francisco Area	101
Aug./Sept.	U.S. FM Stations by States	82
1969	Canadian AM Stations by Location	88
	Canadian FM Stations by Location	88
	World-Wide Shortwave Stations	89
	Emergency Radio Services-Boston Area	92
Oct./Nov.	U.S. AM Stations by Call Letters	84
1969	World-Wide Shortwave Stations	96
	Emergency Radio Services-Philadelphia Area	99
Dec./Jan.	U.S. FM Stations by Call Letters	82
1969-70	Canadian FM Stations by Call Letters	92
	Canadian AM Stations by Call Letters	92
	World-Wide Shortwave Stations	93
	Emergency R. Services-Washington-Baltimore Area	96
Feb./March	U.S. AM Stations by Frequency	82
1970	World-Wide Shortwave Stations	96
	Emergency Radio Services-Florida	100

U．S．AM Stations by Frequency

U．S．stations listed alohabetically by states within grouns，Abbreviations： kHz ．frequeney in kilocyeles； W．P．，power in watts；d，onerates daytime only：n ，onerates nightime only．Wave length is given in meters． Listing indicates stations on the air up to October 14， 1968.

540－555．5
K VIP Redring．Galif． WGIO cypress Gardens．

WAK Columbus．Ga． KWMT Ft．Dodge．lowa WDHV Pocomoke City，Nd． 500 d WLIX Islin．N．Y．
LIC Wendeli－Cebluar．
WARO Canonsburg，Pa． WYNN Florence，S．C． WOXN Clarksville．Tenn． WRIC Richlands．Va． WYLO Jackson，Wisc
550——545．1
KENI Anchorage．Alaska KFY Bak．Ariz．Calif KRAI Craig．Colo． warh uranuetrark， W Gisa Gaillesvitle，Fla Kuva wailuku．Hawaii KFRM Salina，Kans． WCBI Corunaus，Miss K tu st．Louis，No． K BoW Butte，Mont． WGR Bullalo．N Y wU 心h ttatesville，N．C． KF YR Bistharck．N．Oak WKRC Cincinnati．Ohio KUAC Corvallis．Oreg． wh Hal Bloomsburg，Ha WAD Fonce，P．R． MXR Pawtucket．R．I kins Midand．Tex． KisA San Antonio．Tex． WSVA Harnorbonuurg，Va WSVA Harisonuurg， KARi Blaine，Wash．

560－535．4

WOOF Dothan．Ata， KYU Yuina，Ariz．
KSFO San rranl．，Calif． KLZ Denver，Colo． WQAM Miami，FIa WMIK Mlddiesboro，Ky． WGAN Portland，Maine WFRB Frostburg．Md． WHYN Springlleld，Mas WQTE Monroe，Mich． WEUC Duluth，Minn． WWTO Springfield，Mo KMON Great Falls．Bion WCKL Catskill．N．Y． WGAt Elizabeth City，N． WFIL Philadeluhia．Pa． WIS Columbia，S．C． WHBQ Membihis，Tenn KLVI Beaumont，Tex． KPQ Wenatchee，Wash WJLS Beckley．W．Va．

570－526．0
WAAX Gadsder．Ala． WFSO Pinellas．Cark．Fla WACL waycross，Ga． WKYX Patlucah．Ky WGAS Bethesila，Md， KGRT Las Cruces．N．Mex． WMCA Now York．N．Y． WSYR Syracuse．N．Y WWNC Asheville，N．C． WLLE Ralciph．N．C WKBN＋oung town．Ohio WNAX Yankion S Dak WFAA Dallas．TEX WBAP Ft．Worth KLUB Salt Lake Cits．Utah VI Shattle．Wash．

58C－516．9
WABT Tuskeque，Ala
KIKX Tuc．ntr．Arlz KUBC Mantrose Co WDRC Orlande．Cla GGAC Fianto．Fia
KFXD Nampa，Ifaho
．P ．
○日月にに口

WILL Urbana．III， KSAC Manhattan，Kans． WIBW Toweka．Kans． KALB Alexandria．La． WTAG Worcoster，Mass KANA Anaconda，Mont． WAGR Lumberton．N．C KWIN Ashland，Oreg． WKA Harrisburg．Pa． KORH Hot Surinos．S．S． WRKH Rockwood，Tenn WLES Lawrenceville，Va WCHS Charleston．W．Va
WKTY LaCiosse．Wis．
590－508．2
5000
1000 5000 1000 a 5000
500 u 5000 d 1000 1000
5000 5004
1000 1000
5000 5000
5004 5000 5000 5000 1000 5000 1040 5000 5000 5000 5000
5000 su00

5000d
1000
5000
WIRB Enterprise，Ala． KCLS rlagstaff．Ariz． KVCV Retling．Calif．
KOGO San Diego．Calit． KEWE Ft．Collins．Colo． WICC Bridoeport，Conn． WPDQ Jacksonville．Fla． WMT Cedar Rallids．lowa WWOM New Orleans．La WFST Caribou．Maine WCAO Baltimore．Md WLST Escanaba，Mich WTAC Flint．Mieh． KGEZ Kalispell，Mont．
WCVP Murphy，N，C． WSJS Winston－Salem，N．C． ISSJB Jamestown．N．D WSOM Salem，Ohio WAEL Mayaguez，P．R． WROD membhrs．Tenn KERB Kermit Tex KERB Kermit．Tex 5000 5000 d
500 d 500 d
5000 5000
1000 1000
5000 1000
1000 H $5000 d$ 5000 5000 5000
5nnd 5000
5000 5000
5000 5000
5000

WMATE S

C（G）

kHz Wave Length

 WINZ Miami，Fla．WMAZ Macon，Gat． KAHU Wainahu．Hawaii WMIX Mt．Vernon．Ill． isIOA Des Mnines，Inwa WCND Shelbyville，Ky， WYLD New Orleans La
WiOG St．Ionace，Mich． WIOR South Havert Mich
WCPC Houston，Miss． WCPC Houston，Miss． KSWM Aurora，Mn．
KVSH Valentione．Neb WFNC Fayetteville，N．C WCIT Lima，Ohio， WNAL Nelsonvic，ohlo KGRL Bend．Oreg
KWRC Voodiburn，Ore
WESA Charleroi．Pa．
WESA Charleroi．Pa．
WIPR San Juan．P．R
KTON Belton．Tex． WNRG Grundy Vax WFAW Ft．Atkinsorn．Wis． WCSW Shell Lake，Wis．

$950-315.6$

WRMA Montgomery，Ala． KXSA Forrest City，Ark KAHI Aulurı．Calif． whof Denver，Colo WGOF Oriando．Fla． WGOV Valdosta．Ga． CER Boise．Ida． WGERT Crofino．Ida WXL．W Indianabolis，Ind． KOEL Oclwein．la． KJRG Newton，Kans． WYWY Barbourville．Ky． WAGM Bresiue isie．Maino WRYI Boston，Mass KRSI St，Louis Park，Minn， WBKH Hatticsturg．Miss． KLIK Jefferson City．
KNFT Bayard，N．M． WHVW Hyrle Park． WBBF Rochester，$N . Y$ ． WBBF Utica．N．Y WPFT Greenshoro．N．C． KYES Roseburg，Oreg WPEN Philadelphia，P
WRER Moncks Corner． WSPA Spartanburg．S．C． WAAT Wate！towir．S．Dak． CDSX Denison－Stierman，Tex KPRC Houston．Tex． KSEL Lubhock，TeX． JR Seattle．Wash． WERL Eagle River， Wis． WKAZ Charleston．W．Va． WKTS Sheboygan．Wis．
960－312．3
WBRC Birmingham，Ala． KOOL Mohile，Ala． KAVR Abnle Valley．Calif． 5000 n KNEZ Lnmmoc，Callif， WELI Now Haven．Conn． WGRO Lake City．Fla． W JCM Sebring．Fla， WJAZ Alhany．Ga． WRFC Athens．Ga． WDLM E．Moline．Ilt WSBT South Bend，Ind， KMA Shenandoah．lowa WPRT Prestonsburg．Ky． KROF Abheville．La． WFGL Fitchbura．Mas WHAK Rogers City，Mich． KLTF Little Fails，Minn WABG Greenworn．Miss． KFVS Cane Girarieau，Mo． K－FLN Baker．Mont． KNEB Scottshluff．Nahr． KWYK Farmington．N．Mie
WEAV Plattsburg．N．Y． WAAK Dallas，N．C
WFTC KInston，N．C．

50000
50000 1000 n 5 mond
1
noma
250 d 1 1月n00 $5000 d$ Inomr 50月nad
kHz Wave Length

WWST Wooster．Ohio WHYL Garlisle．Pa WKZA Kane．Pa． WBEU Bealifnrt．S．C． WBMC MCMinnville．Tenn． KGKL San Angelo．Tex． KOVO Frnva．Ulah WDBJ Rfanoke．Va KALE Richland．Wash． $970-309.1$

WERH Hamilton．A

 WTBF Trov．Ald．KVWM Show Low．Arle． KNEA Johestinern．Ark．
KBIS Beknrsfoid．Calif，
KCHV Conetholla，Calif KCHV Constheila，Calif．
KBEE Monesto．Calif． KBEE Moresto．Cal WBOM Jacksonville，Fla．
WFLA Tamoa，Fla． WFLA Tamoa，Fla． WVOP Vidalia．Ga． KPUA Hilo．Hawaii
KAYT Rupert．Idaho WMAY Springfield，III． WAVE Louisville，Ky．
KSYL Alexandria，La．
WCSH Portland， WCSH Porthand．Maine
WAMO Aberdeen．Md． WESO Southbridge．Mass． WKHM Jackson．Mich．
KQAQ Austin．Minn． WRKN Brandoll．Miss KOOK Billings．Mont． KJLT No．Platte，Nebr．
KVEG Las Vegas．Nev． WJRZ Hackensack，N．J． KDCE Espanola．N．A1． WEBR Buffalo．N．Y．
WCHN Norwicli．N．Y． WRCS Ahoskie．N．C． WWIT Canton．N．C．
WDAY Fargo．N．Dak WRED Ashtabula．Ohio WATH Athens．Ohio KAKC Tulsa，Okla． $K O I N$ Portland．Oreg．
WWSW Pittsburah．Pa． WJMX Florence S．C． KTAP Austil．Tex． KBSN Crane．Tex． KNOK Ft．Worth．Tex， WSTX Chuistiansted．
WYPR Danville，Va． WANV Waynesboro．Va． KREMI Snokane．Wash． WWYO Pireville．W．Va
WHA Madison，Wis．

980－305．9

WKLF Clanton．Ala． WXLL Bio Delta．Alaska KCAB
KiNS Eureka，Calif． KKEAP Fresno，Calif． KFWB Los Angeles．Calif． KCTY Salinas．Callf． K

WSUB Groton，Conn． WRC Washington．D，C
WDVH Gainesville．Fia， WTOT Marianna．Fla， WBOP Pensacola．Fla． WKLY Hartwell．Ga． WPGA Perry，Ga， WRIP Rossville．Ga．
KUPI Idaho Falls．Ida KSGM Chester．III． WITY Danville．III， KCIJShrevonort．La．
WCAP Lnweil．Mass． WAOP Otsegn，Mich． WPBC Richfleld．Minn． WAPF McComb．Miss， WKOR Starksville．Miss
KMRZ Kansas City．Mo． KLYQ Hamilton，Hiont KVLV Fallon．Nev． KICA Clovis，N．Mex． KMIN Grants．N．Mex WTRYM Wroy，Nilmgton，N．C． WAAA Win．－Salem．N．C． WONE Dayton．Ohio WILK Wilkes－Barre，Pa．
WAZS Summerville，S．C． WYCL York，S．C．

KDSJ Deadwond．S．Dak． WSIX Nashville．Tenn．

 KFRD Rosenlieri．RIchmond KSVC Richfeld，UtahWFHG Bristol，Va．

W．P． 1000 d 1000 5000 d 1000 d 1000 n 1000 d 500 A 1000 n 5000 5000 5000 1000 1000

5000 d 5000

 990－302．8
WEIS Centre．Ala
WWWF Favete WWWF Favette．Ala．
WTCB Flomaton．Ala．
KTKT Tilssn．Arle． 250d $\begin{array}{lr}\text { KTKT Tilesnn．Arie } & 500 \mathrm{~d} \\ \text { KKIS } & 1000 \\ \end{array}$ KGUD Santa Barhara，Callf 5000 KLIR Denver，Coln．Inn0त $\begin{array}{ll}\text { WNTY Southington．Conn．} & 50 n 11 \\ \text { WFAB Minmi．Fla．} & 5000\end{array}$ WHOO Orlando Fia WHOO Orlando，Fla．
WOWO Dawson．Ga． WGML Hinasville，Ga 50001

$$
\begin{aligned}
& \text { WGML Hinasvilto, Gia } \\
& \text { KTRG Honolulu, Hawall } \\
& \text { WCAZ Carthage. III. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WCAZ Carthage. III. } \\
& \text { WITZ Jasper, Ind. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WITZ Jasper, Ind. } \\
& \text { WERK Muncie. Ind. }
\end{aligned}
$$

$$
\begin{aligned}
& 5000 \\
& 100 \pi n \\
& 1000 \mathrm{~d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WERK Muncie. Ind. } \\
& \text { KAYL Storm Lake, Inwa } \\
& \text { KRSL Russell. Kans. }
\end{aligned}
$$

$$
2500
$$

$$
\begin{array}{ll}
\text { KAYL Storm Lake, Inwa } & 250 \mathrm{~d} \\
\text { KRSL Russell, Kans. } & 250 \mathrm{~d} \\
\text { WJMR New Oileans. La. } & 250 \mathrm{~d}
\end{array}
$$

$$
\begin{array}{ll}
\text { WJMR New Oileans. La. } & 250 d \\
\text { KRIH Rayville. Las. } & 250 d
\end{array}
$$

$$
\begin{aligned}
& \text { ISRIH Rayville. La. } \\
& \text { WCRM Clare. Mich. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WCRM Clare. Mich. } \\
& \text { WABO Waynesboro, }
\end{aligned}
$$

$$
\begin{array}{lll}
\text { WABO Waynesboro, Miss, } & 250 d \\
\text { KRHO Monett. Mo. } & 250 \mathrm{~d} \\
\text { KSVP Artesia. Nox. Mer } & \text { InOn }
\end{array}
$$

$$
\begin{array}{lr}
\text { KRAO Monett. Mo. } & \text { 250d } \\
\text { KSVP Artesia. N.Mex. } & 1000 \\
\text { WFFR Snuthorn Pinet. N F. }
\end{array}
$$

$$
\begin{aligned}
& \text { KSVP Artesiat N. Mex. } 1000 \\
& \text { WEEB Southern Pines, N.C. } 5000 \mathrm{~d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WEEB SOUTE日R Windsor. N.C } \\
& \text { WBT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WBTE Windsor. N.C } \\
& \text { WJEH Gallinolis. Ohio }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WTIG Massillon, Ohio } \\
& \text { KRKT Albany. Oreg. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ohio } \\
& \text { ing. } \mathrm{Pa}
\end{aligned}
$$

$$
\begin{aligned}
& 1000 \mathrm{~d} \\
& 250 \mathrm{l} \\
& 250 \mathrm{~d}
\end{aligned}
$$

500
5000

$$
\begin{aligned}
& \text { WIBG Philadelphia. } \\
& \text { WVSC Somerset. Pa }
\end{aligned}
$$

5000 d
500 d
5000

500 d 5000 000 d

Wave Length

W．P

WRFS Alexander City．Ala． WCRI Scottsboro．Ala．	$\begin{aligned} & 1000 \mathrm{~d} \\ & 250 d \end{aligned}$
KMYO Little Rock．Ark．	1000 d
KTOT Big Bear Lake，Cal	250d
KOFY San Mateo．Calif．	1000 d
KWSO Wasco，Cilif．	1000 d
W ISB Crestview．Fla．	1000d
WIVY Jacksonville，Fla	1000 d
WHBO Tamna，Fla．	250d
WRMF Titusville，Fla．	509 d
WAUG Augusta．Ga．	5000d
W MNZ Montezuma，Ga，	250d
WDZ Decatur．III．	1000 d
WTCA Plymouth．Ind．	250d
KUPK Garden City，Kan．	$5000 d$
WNES Central City，$<1 \times y$ ，	500d
KLPL Lake Providence．La．	259 d
KREB Shrevenort．La．	250d
KVPI Villa Platte．La．	250 d
WMSG Oakland．Md．	500 d
WQMR Silver Siırg．，Md	100nd
WPAG Ann Arbor．Mich	5000 d
KLOH Pinestone，Minn．	1000d
WACR Columhus．Miss．	1000 d
KMIS Portageville．Mo．	1000 ai
KSIS Sodalia．Mo．	1000 d
WBNC Collway，N．H．	1000 d
WSCV Peterhorough．N．H．	1000d
WSEN Bildwinsville．N．Y．	2506
WYBG Massena，N．Y．	10008
WHN New York，N．Y．	50000
WFSC Franklin，N．C．	1000 d
WLON Lincolnton．N．C	1000 d
WWGP Sanford，N．C．	1000 d
WZIP Cincinnati，Ohio	1000 d
KCCO Lawton．OkIa，	250 d
KFMJ Tulsa．Okla，	1000 d
KORE Eugene．Ore．	1000 d
WBUT Butler．Pa．	250 d
WSKE Everett，Pa．	2500
WLYC Willamsport．Pa，	1000 ${ }^{\text {d }}$
WCGB Pastillo．P．R．	1000 d
WSAIT Sparta．Tenn．	1000 d
KLEN Killeen．Tex．	250 d
KPXE Liberty，Tex．	2508
KCAS SIaton，Tex．	$250 d$
WGAT Gate City．Va．	1000 d
WBRG Lynchbura．Va．	1000 d
WCMS Norfolk．Va．	5000d
KBLE Seattle．Wash．	5000 d
WCEF Parkersburg．W．Va．	5000d
W0kL．Eats Claire．Wls．	I0nno
WikAU Kaukauna，Wis．	100 nd
WLIP Kenosha，Wis．	25nd
KWIV Douglas．Wyo．	250 d

1060－282．8
KUPD Tempe．Ariz． 500 KLAY Chico，Cali， WMCL MCLeansboro， $111 . \quad 250 \mathrm{~d}$ $\begin{array}{ll}\text { WRHL Rachelle．III．} & \text { 250d } \\ \text { WJKY Jamestown，Ky，} & 100 \mathrm{~d} \text { d }\end{array}$ WNOY Jomestown，Ky， 50000 WGTR Natick，Mass． WHFB Benton Harbor－ St．Joserbh．Mich， 5000 d KFIL Preston，Miss．I000d
KNLV Ord，Neb． W MAP Monroe．N．C． 1000 C $\begin{array}{lll}\text { WBYB St．Pauls，N．C．} & 250 d \\ \text { WCOK Sparta，N．C．} & 250 d\end{array}$

KYW Philarlefthia，Pa，	
WRJS San German，P．R．	$5000 n$

WPHC Waverly，Tenn．
1000 d

L L	W	ave L	Wave Length W.P	Vave Length
	250 d	WELX Xenia, Ohio 250d	KBER San Antonio, Tex. 1000 d	e. 1000d
KRSP Salt Lake City, Utah	100	KEOR Atoka, Okla. 5000d	KPUL Puliman, Wash. 1000 d	WJUN Mexico, Pa. ${ }^{\text {WRIB Providence, }}$ R.I 1000 d
1070-280.2		KBND Bend, Oreg. 5000 WISM Martinsburg, Pa. 1000 d	$\begin{array}{lr}\text { KAYO } & \text { Seattle, Wash. } \\ \text { WABH } \\ \text { Deerfield, } & 5000 \\ 1000 d\end{array}$	WRIB Providence, R.I. 1000d WFWL Camden, Tenm. 250d
		WNAR Norristown. Penn. 50000 d	WELC Welch. W.Va. 1000 d	1000 d
Los Angeles, Calif.	50000	WVJP Caguas, P.R. 250	WAXX Chippewa Falls, Wis. 5000 d	K
	50000	WHIM Providence. R.I. loo0d	2585	KVLL Wooclville, Tex. 250 d
KILR Esthe	25	d		WLSD Bio Stone Gals. Va. 100
DI Wichita,	10000	1120-267.7	KSL Salt Lake City. Utah 50000	WFAX Falls Church, Va. 5000d
KHMO Hannibal.	00		$1170-256.3$	KASY Auburn, Wash. 250d
NCT Greenvi	10000		1170-256	1230-243.8
HPE High P	1000d	WWOL Buffalo. N.Y. ${ }^{\text {M }}$ (000d	WCOV Montgomery, Ala. 10000	WAUD Auburn, Ala. 1000
WISOK Sunhury	10000	KPNW Eugene, Ore. 50000	KCBQ San Diego. Calif 50000	WJBB Haleyville, Als. 1000
WMIA Arecibo, P.R.	500	KCNW Springtield, Or	KLB San Diego. Calir 50000	WBHP Huntsville, Ala, 1000
WHYZ Gree	5000001	KCLE Cleburne, Tex.	KUAD Windsor. Colo. 1000d	WNUZ Talledega, Ala. $\quad 1000$
		1130-265.3	KOHO Honolulu. Hawaii 5000	WIBC Tuscaioosa, Ala. 1000
OPY Alice. Tex.	1000		WLBH Mattoon, III. 250d	KSUN Eisbee, Ariz 250
KNNN Friona, Tex.	250 d	KROU Dinuba, Calif. 1000	KSTT Davenport. lowa 1000	KAAA Kingman Ariz. 1000
KENR Housten. Tex.	5000 d			KRIZ Phoenix, Ariz. 250
WINA Charlottesville. V	5000	WPUL Bartow, Fla.	WWLE Cornwall, N.Y. 1000d	KATO Safford, Ariz, 250
WCIR Berckley. W.Va.	10000d	WMGA Moultrie, Ga. 10000	50000	KINO Winslow, Ariz $\quad 1000$
WKOW Madison. WIs.	00	KLEI Kailua, Hawaii 10000		KCON Conway. Ark 250
				KFPW Ft. Smith. Ark. 1000
0-277.6		KWKH Shreveport. La. 50000	50000	00
WKAC Athens, Ala.	1000	Detroit, Mich. 50000	WLKE Waupun, Wis. 1000d	Conway, Ark. 1000
KSCO Santa Cruz. Ca	1000		1180-254.1	0
WTIC Hartford, Conn	50000	WNEW New York, N.Y. 50000		00
WVCG Coral Gables. F	10000	WPYB Benson, N.C. 1000 d	Kacksonvili. Mo, 50000	Centro, Calif 250
WFIV Kissimmee.	5000 d	WASP Brownsvilte, Pa. 1000 d	WHAM Rochester. N.Y, 50000	Brago, Calit. 250
WJOE Port St. Joe, Fla	1000d	KBGH Memphis, Tex. 1000d		KGFJ Los Angeles, Ca
WBE Marietta, Ga. WPOK Pontiac, III.	10000 d 1000 d	WDTM Selmer, Tenn. 25011	1190-252.0	KPRL Paso Robles. Salif. 1000
WNWI Valparaiso. Ind	5000 d	50	Ozark, Ala. 1000d	KRDG Redding, Calif. 250
KOAK Red Oak. Iow	500d	1	KRDS Tolleson, Ariz. 250	tock
WIKLO Louisville, K	10000	1	KMCW Augusta, Ark. 250d	KEXO Grand Junction, Colo. 1000
WOAP Owosso, Mich	1000d	KRAK Sacramento, Calif. 50000	KEZY Anaheim, Calif 5000	KBRR Leadville, Colo. 1000
KYMN Northfield, Min	1000d	KNAB Burlingtor. Colo. 1000d	KNBA Vallejo. Cal.	A Pueblo, Colo. lo00d
KYMO East P	250d	WQBA Miami, Fla. 10000	WAVS Ft. Laticlerdale,	00
WUFO Amherst.	1000d	KGEM Boise, Idaho 10000	WGKA Atlanta. Ga. lo00d	
WEWO Laurinburg. N.	5000	WSIV Pekin, III. 5000 d	OWO Ft. Wayne, Ind. 50000	N Lak
WKGX Lenoir, N.C.		WAWK Kendallville, Ind. 250 d	WANN Annapolis, Md. 100000	WMAF Madison. Fla
WWDR Murfreeshoro. N.C.	1000	KNE1 Waukon, lowa 10000	WKOX Fram'oham, Mass. 1000 d	WSBE Naw Smyrne
KNDK Langdon,	1000 d	KBIL Liberty, Mo. KPW B Piedmont. Mo. 1000 d	KHAD DeSoto, Mo. ${ }_{\text {KPAR }}{ }^{\text {Klbugurgue, }}$ N. M. 10000 d	,
MVR Sidne	250d	KLUC Las Vegas, Nev. 10000 d	KPAR Albuquerque, N. M. 1000 d	Pensacola, Fla.
5	$\begin{array}{r} 500 \\ 5000 \end{array}$	WCLW Mansfield, Ohio 250d	$\begin{array}{r} 100 d \\ 500 \end{array}$	WCNH Quincy, Fla. 100
LEY Cayey, P.R.	250	00d	500 d	W JNO W. Palm Beach. Fla. 250
BLD Dallas	0000	WBZ New Castle, Pa. 5000 d	KEX Portland, Oreg. 50000	usta, Ga. 1000 d
WKBY Chatham,	1000 d	WITA San Juan. P R , Ic000	WRAL Rio Piedras. P.R. 500	WBLI Datton, Ga. 1000
		Sioux Falls. S.Dak. 10000	WBMJ San Juan, P.R. 10000	
1090-275.1		KORC Mineral Wells, Tex. 250d	KLIF Dallas, Tex. 50000	1000 1000
KAAY Little Rock. Ark.	50	d, Va. 500	, Tenn. 250d	$1, G A$. 1000 Gs. 1000
NCR Fort	10000d	11	1	KBAR Burley, Idatm 1000
WQ1K Jacksonville, Fla.	50000 d			KORT Crangeville, Ida. 1000
WWSD Mon	000d	WGEA Geneva, Ala. lued	W0al San Antonio. Tex. 5000	KRXK Rexburg, Itaho 1000
wbaf Barne		WJRO Tuscaloosa, Ala. 5000	$1210-2478$	Bloomington, III. 1000
WCRA Effingham, 111	10	KCKY Coolidge, Ariz. 1000		WQUA Moline, III. 1000
WGLC Mendota, III.		KXLR No. Little Rock, Ark. 5000	K200 Honolulu. Hawaii 1000	WHCO Sparta. Ill. 250
KHAI Honolulu, Haw	5000	KRKO Los Angeles, Calif. 5000	WILY Centralia, III. 1000d	W10B Hammond. lid. 1000
Fort Wayne. Ind.	1000d	KPLS Santa Rosa, Galif. 5000	WKNX Saginaw, Mich. 10000d	WSAL Logansport, ind. 1000
KVDB Sioux City, lowa		KGMCC Englewood. Colo. 1000 d	WADE Wadesboro. N.C. 1000d	CJ Tell City
KNWS Waterloo, lowa	1000d	WCNX Middletown, Conn. 1000 d	WAVI Dayton, Ohio 250d	WBOW Terre Haute. Ind
WSLG Donaldsonville, La.		WDEL Wilmindon, Dei, 5000	KGYN Cuymon, Okla. 10000	KFJB Marshalltown lowa 1000
WBAL Baltimore, Md.	50000	WNOB Oaytona Beh., Fla. 1000	WCAU Philadelphia. Pa. 50000	WHIR Oanville, Ky. loood
WILD Boston. Mass.	1000」	WTMP Tampa, Fla. 5000 d	1000¢	HOP Hopkinsville Ky. 1000
WMUS Muskegon. Mich.	1000d	WFPM Fort Valley, Ga. 1000 d		ANO Pilleville. K\%. l000d
TAK Garden City, Mich		WJEM Valdosta, Ca. 1000 d	1220-245.8	KLIC Monroe, La. 1000
E Exce		WGGH Marion. 1II. 5000d		BOK New Orleans La. 100
		WYFE Rockford, 111. 500d	000d	KSLO 0pelousas. La. 100
	1000 d	KYND Burlington, la. 500 d	KVSA McGehee, Ark, lond	BME Belfast, Me. 250
TGO Tioga, N. O	250d	KWKY Des Moines, 10wa 1000	KLIP Fowler Calif. 250 d	Calais. Maine 1000 d
MWM Wilmington,	1000ı1	WIFF Auburn, Ind. 250d	KLIP Fowler, Callit 250 d	Madawaska, Me. 1000
WKSP Kingstree. S.C.	500 d	KSAL Salina, Kans. 5000	KKAR Poma Cait so0d	H Baltimore, Md. loood
WBzB Selma, N	1000d	WMST Mt. Sterling, Ky . 500d	KKAR Pomona, Calit. 250 d	WCUM Cumberland. Md. 1000
WENR Englewood, Tenn.	1000d	WLOC Munfordville. Ky. 1000d		WMNB No. Adams. Mass. 1000d
WJKM Hartsville. Tenn.	250d	WJ80 Baton Rouge. La. 5000	Arinden, Conn. $1000{ }^{\text {d }}$	WESX Salem, Mass 1000
WGOC Kingsport, Te		WCHM Skowhegan. Maine 5000d	WACY Kissimmee, Fla,	W NEB Worcester. Mas
KANN Ogden, Utah	1000 d	WHMC Gaithersburg, Md. 1000		WJEF Grand Rapids. Mich. 1000
KING Seattle.	50000	WCOP Boston, Mass. 5000		W/KB Iron River, Wich. 1000
WISS Berlin, Wis.	500 d	WCEN MI. Pleasant, Mich. 1000	WCLB Camilla. Ga. $\quad 1000$ did	Mich. 1000
-272.6		KASM Albany, Mrn. 0000	WPLK Rockmart, Ga. 500d	St
-272.6		KRMS Osage Beach, M	WSFT Thomaston, Ga. 250d	WSTR Sturgis, Mich. 1000
X San Francisco, Calif. 5	50000	KOEF Albuquergue, N. M. 5000	WLPO LaSalle. III. 1000 d	WKLK Cloquet, Minn, Minn 250
X		WRUN Utica, N.Y. N. M. 5000	WKRS Waukegan, III. 1000d	KGHS Internat'l Falls, Minn. 250
		WBAG Burlington. N.C. 1000 d	WSLM Salem, Ind. 5000d	KMRS Morris.
WLBB Carroliton, Ga,	$10000 d$	WGBR Goldsboro. N.C. 5000	KJAN Atlantic. Iowa 250d	
WHLI Hempstead, N.Y.	10000 d	WCUE Cuyahoga Falts, Ohio 1000d	KOUR Independence, lowa 250d	000
WKYC Cleveland, ${ }^{\text {W }}$, WGPA Bethlehem.	50000	WIMA Lima, Ohio 1000	KOFO Ottawa, Kans. 250d	NO Winona, Minn. ${ }^{\text {l }} 000 \mathrm{~d}$
WGPA Bethlehem.	250d	KNED McAlester, Okla. 1000	WFKN Franklin. Ky. 250d	Winona, Minn.
1110-270.1		KAGO Klamath Falls, Ores. 5000	KBCL Shreveport, La, 250d	$\begin{array}{ll}\text { Hattiesturg. Miss. } & 1000\end{array}$
1110-270.1		KKEY Portland. Ore. 5000d	WLBI Denham Springs, La. 250 d	WSSO Starkville, Miss. 1000
WBCA Bay Minette. Ala	100niod	WHUN Huntington, Pa. l000才	WSME Sanford, Maine 1000d	AZF Yazoo City. Miss. 1000
WBIB Centreville, Ala.	1000 d	WYNS Lehighton. Pa, 1000d	WBCH Hastings, Mich. 250d	KOOE Joplin, Mo. 1000
Krla Pasatena, Cal.	50000	WKPA New Kensington. Pa. 1000 d	WAVN Stillwater. Minn. 5000d	KLWT Lebanon, M4. 1000
KPOP Roseville, Cal.	500	WOIX Orangeburg. S.C. 5000	WMDC Hazlehurst, Miss. 250d	Kwix moberly. Ma. 100
WALT Tampa, Fla. 5	50000 d	WTYC Rock Hill, S.C. 1000d	KZYM Gape Girardeau, Mo. 250d	KBMN Bozeman. Mont. 1000 d
WEBS Calhoun, Ga.	250 d	WSNW Seneca. S.C. 1000d	KBHM Branson, Mo. 1000d	KHDN Hardin. Mout. 1000
KIPA Hilo. Hawaii	1000	KIMM Rapid City, S.Dak. 5000d	KLPW Union, Mo. lo00d	KXLO Lewistown. Mont. 1000
WMBI Chicago. III.	5000d	WGOW Chattanooga, Tenn. 5000	WL8K Kene. N.H. $\quad 1000 \mathrm{~d}$	KLCB Libby. Mont 1000
WKOZ Cadiz, Ky.	1000 d	WCRK Morristown. Tenn.	WGNY Newburgh, N.Y, 5000d	KTNC Falls City. Nebr. 100
WFGG Franklinton,	1000d	wtaw College St	WSOQ N. Syracuse. N.Y. 1000 d	KHAS Hastings, Neb. 1000
WUNN Mas		0x. 1000 d	WKMT Kings Mtn.. N.C. 1000d	KELY EIY. Nev. ${ }^{\text {K }}$, 250
W KRA Holly Springs,	1000 d	KCCT Corpus Christi, Tex. 1000 d	WREV Reidsvilie, N.C. 1000 d WENC Whiteville, N.C.	KCAN Las Vegas. Nev. 1000°
KFAB Omaha, Neb	50000	KVIL Highland Park. Tex. 1000d	KEYD Oakes. N.Dak. 1000 d	1000
WSFW Seneca Falls. N.Y.	1000	KJBC Midland. Tex. 1000 tr	WGAR Cleveland. Olin 50000	Claremont, H.H. 1000
\mathbf{T}	50000	KPNG Port Neches. Tex. 500d	WERT Van Wert. Ohio 250d	.J. 1000

GET A FASTER START IN THE COURSE YOU CHOOSE WITH NRI'S REMARKABLE ACHIEVEMENT KIT

When you enroll with NRI we deliver to your door everything you need to make a significant start in the Electronics field of your choice. This remarkable, new starter kit is worth many times the small down payment required to start your training. And it is only the start . . . only the first

example of NRI's unique ability to apply 50 years of home-study experience to the challenges of this Electronics Age. Start your training this exciting, rewarding way. No other school has anything like it. What do you get? The NRI Achievement Kit includes: your first set of easy-to-understand "bite-size" texts; a rich, vinyl desk folder to hold your training material in orderly fashion; the valuable NRI Radio-TV Electronics Dictionary; important reference texts; classroom tools like pencils, a ball-point pen, an engineer's ruler; special printed sheets for your lesson an-swers-even a supply of pre-addressed envelopes and your first postage stamp.
 Learning electronics at home is faster, easier, more interesting with new achievement kit

Only NRI offers you this pioneering method of "3 Dimensional" home-study training in Electronics, TV-Radio ... a remarkable teaching idea unlike anything you have ever encountered. Founded more than half a century ago - in the days of wireless - NRI pioneered the "learn-bydoing" method of home-study. Today, NRI is the oldest, largest home-study Electronics school. The NRI staff of more than 150 dedicated people has made course material entertaining and easy to grasp. NRI has simplified, organized and dramatized subject matter so that any ambitious man-regardless of his education - can effec. tively learn the Electronics course of his choice.

DISCOVER THE EXCITEMENT OF NRI TRAINING

Whatever your reason for wanting knowledge of Electronics, you'll find the NRI "3 Dimensional" method makes learning exciting, fast. You build, test, experiment, explore. Investigate NRI training plans, find out about the NRI Achievement Kit. Fill in and mail the postage-free card. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D. C. 20016

ELECTRONICS COMES ALIVE AS YOU LEARN BY DOING WITH CUSTOM TRAINING EQUIPMENT

Nothing is as effective as learning by doing. That's why NRI puts so much emphasis on equipment, and why NRI invites comparison with equipment offered by any other school, at any price. NRI pioneered and perfected the use of special training kits to aid learning at home. You get your hands on actual parts like resistors, capacitors, fubes, condensers, wire, transistors and diodes. You build, experiment, explore, discover. You start right out building your own professional vacuum tube voltmeter with which you learn to measure voltage and current. You learn how to mount and solder parts, how to read schematic diagrams. Then, you progress to other experimental equipment until you ultimately build a TV set, an actual transmitter or a functioning computer unit (depending on the course you select). It's the practical, easy way to learn at home - the priceless 'third dimension" in NRI's exclusive Electronic TV-Radio training method.

SIMPLIFIED, WELL-ILLUSTRATED "BITE-SIZE" LESSON TEXTS PRCGRAM YOUR TRAINING

Lesson texts are a necessary part of training, but only a part. NRI's "bite-size" texts are as simplified, direct and well-illustrated as half a century of teaching experience can make them. The amount of material in each text, the length and design, is precisely right for home-study. NRI texts are programmed with NRI training kits to make things you read come alive. As you learn, you'll experience all the excitement of original discovery. Texts and equipment vary with the course. Choose from major training programs in TV-Radio Servicing, Industrial Electronics and Complete Communications. Or select one of seven special courses to meet specific needs. Check the courses of most interest to you on the postage-free card and mail it today for your free catalog.

Available Under NEW GI BILL

If you served since January 31. 1955. or are in service, check Gl line in postage.free card.

custom training kits "bite-size"texts

MHITES		Hz Wave Length		ve Length		e	W.P.
			000	KGY Olympia, Wash	-	WBNR Beacon,	d
		WLCO E	1000	WKOY Bluefield. W.	0	NDR Syracuse. N.	00
		WINK Ft. Myers. Fla. WMMB Melbourne, Fia.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	WTIP Charleston, W.Va. WDNE EIkins. W.va.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	WGWR Asheboro, N.C wCDS Edenton. N.C.	$\begin{array}{r} 5000 \\ 5000 \end{array}$
		WFOY St. Augustine, Fia.	$\begin{aligned} & 1000 \\ & 1600 \end{aligned}$	WDNE Elkins. W.V. 'VOMT Manitowoc, Wis.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	wCDS Edenton. N.C. wIXY Cleveland. 0.	$\begin{gathered} 000 \mathrm{~d} \\ 5000 \end{gathered}$
		WBHB Fitzgerald, Ga.	1000	WIBU Poynette. W is.	000	WNXT Portsmouth.	$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$
		WDUN Gainesville, Ga.	1000	WOBT Rhinelander; Wis.	1000	KWSH	
		WLAG LaGrange,	1000	WJMC Rice Lake. Wis	000		000
		WBM! Macon. Ga.	1000	KFBC Cheyenne, wyo.	1000	KMCM McMinnville, Orea.	0
kHz Wave	.P.	WPAX Thom		KEVA Evanston, Wyo.	1000		0
		WTWA Thomson.	250				5000 d
		KVNI Coeur d'Alene, Ida	1000				
VA Gallup	$\begin{aligned} & 250 \mathrm{~d} \\ & 1000 \end{aligned}$	KFLI Mountain Home, Idaho	250	1250	00	wjot Lake Ci	5000 d
KFUN Las Vegas,	1000	KMCL McCall, Ida.	50	1250-239.9		KWYR WInner, S.	5000 d
KRSY Roswell. N.	1000	KWIK Pocatello. Ida.	1000	W20B Ft, Payne, Ala	1000	WNOO Chattanooga, Ten	1000d
WNIA Cheaktowag	500		1000 d		5000 d	WMCH Church Hill, Ten	1000d
WENY Elmir	1080	WEDC Chicago, If1.	250		5000 d	WDKN Dickson.	0d
WIGS Gouverneur, N .	-		0	KHWW Wickenburg. Ariz.		WCLC Jamestow	1000d
WHUC Hudson,	1000	W EBA Harrisburg.	000	KFAY Fayetteville, Ark.	5000 d	KSPL Diholl. Tex	1000 d
WLFH Little Fals,	1000	WSDR Sterling. III.	500	KALO Little Rock. A	1000	KPSO Falfurias,	500 d
WFAS White	1000		1000	KHOT Madera, Ca	500d	KWFR San Angelo.	1000d
WSKY Ashevil	1000	KOEC Decorah. Iowa	1000	KTMS Sa		KTUE Tulia, Tex.	000d
WFAI	000	KWEC Decorah. lowa	000				1000d
WMFR High P	000	KBIZ Dtcma lowa	1000	Californiá		Char	5000
WISP Kinston,	000			h. CaI .		WIJJ Christiansburg.	1000d
WNNC Newton, N .	0	KIUL Garden City, Kans,	1000	WNER Live Oak. Fla.	1000d	Q Moses Lake.	1000d
WCBT Roanoke Ray., N. C.	0	KAKE Wichita, Kans.	1250	WDAE Tampa. Fla.	5000	W Graston,	d
KDIX Dickinson. N	0	WINN Louisvilie, Ky.	1000	, Ga			
WUBE Cincin		WFTM Maysville, Ky	1000	WYTH Madison, Ga.			
WCOL Columbus.	1000	WPKE Pikeville Ky	1000	W 122 Strea	500 d	2	0d
WIRO Ironton,		WSFC Somerset,	1000	WGL ft. Wayne			
CWA Toledo, 0.	1000	KASO Minden, La	1000	WRAY Princeten, Ind.	1000 d	KPOW Poweli. Wyo	0
KADA Ada. Okla.		KANE New lleeria	1000	KCFI Cedar Falls, lowa	500 d		
WBBZ Ponca City. Okla.	250	WCOU Lewiston,	1000	KFKU Lawronce, Kans.	5000	1270-236.1	
KVAS Astoria,		WMKR Millinocket, Me.	1000	WREN Topeka. Kans.	5000		
KRNS Burns. Or	1000	WCEM Ca	1000	WNVL Nicholasville	500 d		
KOOS Coos Bay, Ore.	00	WJEJ Hagerstown, Md.	1000	WLCK Scottsville, Ky.	500 d		
KRDR Gresham, Oreg	000	WHAI Grieenfield, Mass.	1000	WGUY Bangor. Maine	5000 d	KDJI Holbrook.	
KYJC Medford, Oreg.	1000	WOCB W, Yarmouth, Mass.	1000	WARE Ware. Mass.	1000		
	1000	dillac,	000	WX0X Bay City, Mich.	1000d		
		WCBY Cheloygan, Mich	1000	KBRF Fergus Falls, Min	1000	KGOL	
WEEX Easton, Pa.	000	WJPD Ishpe	1000	KCUE Red Wing, Minn	1000d	KCOK	
WKBO Harrisburg	,	JM Lansing. Mich	1000	WHNY MeComh, Miss.	5000	w	500 d
RO Johnstown,	1000	FG Hibbing,	1000	Ston. Mo.			
W BPZ	10	KPRM Park Rapids. Min	1000	WKBR Manchester, N	5000	WTNT Talia	5000
,	10	WJON St. Cloud, Minn.	100	WMTR Morristown, N.	5000 d	W	
WNIK Areci	100	WMPA Aberde日, Miss.	1000	WIPS Ticonderoga, N.Y	1000d	WHYO Colu	5000 d
WERI Westerl	1000	RM Greenwood, Mis	-	WFAG Farmville N.C.	500 d	WiJc Comm	1000 d
WAIM Ande	1000	WGCM Gulport, Miss.	1000	WBRM	1000d	KNDI Honolulu, Hawa	5000
WNOK Colu	10		1000			KTFI Twin Falls, Ida	5000
OLS Floren	1000	KFMO Flat River, mo.	1000	naton Court		WEIC Charle	1000 d
KISD Sioux Fa	1000	WOS Jefferson City. M	1000	Pe. Ohio	500 d	WHBF Rock Island.	5000
WAKI McMinnville, Tenn.	1000			WPEL Mont		WCMR EIkhar	5000
KSIX Corbus Christi. Tex.	1000	KLTZ Glasoo.				WWCA Gary, Ind.	1000
KDLK Del Rio. Tex		Helena.		W NOW York Pa,	-	WORX Madison. Ind.	000d
KNUZ Houston, Tex.	1000	KFOR Lincoln. Ne	1000		5000	KSCB Liberal, Kans,	1000
KERY Kerrville, Tex.	1000	KODY North Platte, Nebr.	1000	W	500	IN Columbia,	0006
KLVT Levelland, Tex.	1000	KELK Nolko, Mev. ${ }^{\text {a }}$	10		500		1000d
KEEE Nacogdoches, T	1000	W	250		1000d	K	1000 d
KOZA Odessa, Tex.	1000	w	1000	WNTY Ta	500 d	OK Cumberland, M	5000
KGRO Pampa. Tex.	50	KAVE Carlsbad. N.Me	1600	KPRE Paris Tex		Springfeld, Mas	5000
KSEY Seymour, Tex.	1000	KCLV Clovi	1000	KPAC Port Arthu	5000	2 Detroit.	5000
KSST Sulahur Spros.,	000	WGB8 Fre	1000	KUKA San	5000	KWEB Rochester. M	000
KWTX Waco, Tex.	1000	W	1000	kikz Seminole. Tex.	1000d	WVOM luka	1000 d
KMOR Murray Utah	1000	WJTN Jame					5000 d
KOAL Price Utah	1000	WVOS Liberty	1000	wova Danville.	50000	KUSN St. Joseph, Mo.	1000 d
WJOY Burlington, Vt.	1000		1000	WYSR Franklin, Va.	1000 d	KFBD Waynesville. Mo	500 d
WBEI Abingion, Va.	1000	WSNY Sche	1000	WEER Warrenton.	1000 d	KBUB Sparks. Nev.	5000 d
WODI Brookneal, Va.	1000	WATN Watertown, N . \dot{Y}.	1000	KWSU Pullman, Wash		WTSN Dov	5000
WCFV Cliston Forde,	1000	WPNF Brevard,	1000	KTW Seattle, Was	00	WDVL Vineland, N.J.	
WFVA Fredericksbura,	1000		1000	WEMP Milwaukee. Wis.	5000	KINN Alamogordo. N.M.	10000 d
WNOR Norfolk, Va.	1000	WJNC Jacksonvillo	1000	WEMP Miwaukee. Wis.	500	WHLD Niagara Falls. N.Y.	5000d
K0zI Chelan. Wash.	1000	WRNC Raleigh, N.C	1000	1260-238.0		WOLA Walton. N.Y.	1000d
		WWWC Wilkesbo					1000
KSPO Snoka	1000		250			WMPM Smithfield, N.C.	5000d
KREW Sunnyside, Wast	1000		1000			KBOM Ma	1000
WLOG Logan. W.Va.	1000	WHIZ Zanesville.	1000	KCCB Corning, Ark.	1000 d	Cambridge, Ohio	000d
WTAP Parkersburg, W.	1000		1000	KBHC Nashville, Ark.	500 d	KWPR Claremore, Okl	$500 d$
WHBY Appleton, Wis.	1000		250	KGIL San Fernando, Calit.	5000	KAJO Grants Pass, Ore	5000 d
WCLO Janesville, Wis.	1000	KBEL \|dabel. Ókla.		KYA San Francisco,	000	WLBR Lebanon, Pa.	5000
WXCO Wausau, wis.	1000	la. KOKL Okmulgee. Okla	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	KSNO Aspen. Colo. Ala.	5000 d	WBHC Hampton. S.C.	1000d
Kvoc Casper, Wyo.	00	KFLY Corvallis, Oreg.	1000	WMMM Westport. Conn.	5000 d 1000 d	KNWC Sloux Falis, S.Dak	1000
1240-241.8		KTIX Pendieton, Oreg.	1000	WNRK Newark, De	500d	Newport, Tenn.	5000
		KPRB Redmond. Ore.	1000	WWOC Washingto	0	Bay	1000 10000
WEBJ Bre	50	KQEN Roseburg, Ore.	1000	WFTW Fort Walton Beach,		Eaple Pass. Tox	1000 d
WPRN Butler, Ala.	1000	W RTA Altoona, P8,	100		1000 d	Fort Worth, Tex	5000
WULA Eıifaula, Ala.	1000			WWOK Miani, Fla,	5000	WTID Newport News, Va.	10000
WOWL Florence. Ala.	1000	WSEW Selinsgrove	1250	WWPF Palatka, Fla.	1000	WHEO Stuart, Va.	1000 d
WARF Jasper, Ala.	1000	WBAX Wikes-	100	WUFE Baxley, Ga	5000 d	KCVL Colville, Wash.	1000 d
KVRD Cottonwood, Ariz.	250	N W	1000 1000	WBEK Blakely, Ga.	1000 d	BaM Lonoview, Was	5000 d
KZOW So. of Globe. Ariz.	1000	WKON W	1000	WTJH East Point. Ga.	5000 S	WRJC Mauston, Wis.	500 d
KVRC Arkadelohia, Ark.	1000	WDXY Suniter	1000	KWE dahorals,	$\begin{aligned} & 5000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	WWIC Superior, Wis.	50000
KTLO Mountain Home, A	1000	KCCR Pierre, S. ${ }^{\text {d }}$	1000	WIBV Belleville. III.	5000	KIML Gillette, wyo.	5000
KWAK Stuttgart, Ark	1000	WBEJ Elizabethton, Ten	1000	WFBM Indianapolis, Ind	5000		
KPLY Crescent City. Calif.	250	WEKR Fayetteville, Ten	000	KFGQ Boone, lowa	1000 d	1280-234.2	
KOAD Lemoore, Cal.	250	WBIR Knoxville. Tenn.	100	KWHK Huthhinson, Kans.	1000	PID Piedmont. Ala	1000 d
KMBY Monterey, Calif.	1000	WKDA Nashvilfe. Tenn.		WAIL Baton Rouge, La.	1000 d		$\begin{aligned} & 5000 \\ & 1000 \mathrm{~d} \end{aligned}$
KPPC Pasadena. Calit	100	WENK Union City, Tenn. KVLF Alpine, Tex.	1000 1000	WEZE Boston, Mass.	5000 1000	KHEP Phoenix, Ariz, KNBY Newport, Ark.	1000d
Kloa Ridgecrest, Calif,	1250	KEAN Brownwood, Tex.	1000	WALC Alblon, Mich.	5000	KNBY Newport, Ark	10008 1000
RNO Sacramento, Calif.	. 1000	KORA Bryan, Tex.	1000	WJBL Horland, Mich	1000	KNC ${ }^{\text {K }}$ Fortuna, Cal.	5000d
KSON San Diogo, Calif.	250	KOCA Kilgore, Tex.	1000	KDUZ Hutchinson, Minn.	1000 d	KFOX Lond Beach Casif.	1000
SMA Santa Maria, Calif.	250	KSOX Raymondvilte, Tex	250	WGVM Greenville, Miss.	5000 d	KJOY Stockton, Calif.	1000
KSUE Susanville, Cali	1000	${ }_{\text {Kxox }}$ Sweetwater. Tex.	1000	WNSL Laurel, Miss.	5000 d	KTLK Denver. Colo	5000
KRDO Colo. Springs, Colo.	1000d	WSKI montpelier. Vt.	1000	WCSA Ripley, Miss.	500d	WSUX Seaford, De	1000d
KDGO D		oanoke, Va.		KGBX Sprinofeld. Mo	5000		
KSLV Monte Vista, Colo	$\begin{array}{r} 1000 \\ 250 \end{array}$	WTON Staunton, Va.	1000	WBUD Trenton. N .	$1000 d$ 5000	Lak	1000 d
WWCO Waterbury, Conn.	1000	KXLE Ellenshurg, Wash.	1000	KVSF Santa Fe , N.Mex.	1000	WYND Sarasota, Fia.	500d

		$\mathbf{k H z}$	W.P.	kHz Wave Length			W,P.
D 1			5000 d				
		KLYO Bakersfeld, Galif.	1000 d	WNAH Nashville, Tenn.	$\begin{aligned} & 1000 \\ & 1000 d \end{aligned}$	WWKY Winchester, Ky, WYNK Baton Rouge, La.	$\begin{gathered} 1000 \mathrm{~d} \\ 500 \mathrm{~d} \end{gathered}$
		KCKC San Bernardino, Cal.	$\begin{array}{r} 5000 \\ 5000 \end{array}$	KRAY Amarillo, Tex. KACT Andrews, Tex.	$\begin{aligned} & 500 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	WKTJ Farmington, Mo WPHM Port Huron Mich	$\begin{aligned} & 5000 \\ & 1000 \mathrm{~d} \end{aligned}$
L		KKAM Pueblo, Colo.	5000	KWBA Baytown, Tex,	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \end{aligned}$	WPHM Port Huron, Mich. WPLB Greenville, Mich.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$
		WNLK Norwalk. Conn.	1000	KRYS Corpus Christi, Tex.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	reenve, Mich KLIz Brainerd, Minn.	$\begin{aligned} & 1000 \\ & 5000 \end{aligned}$
		WiNY Putnam, Con WEZY Cocoa. Fla,	1000 d	KXOL Ft, Worth. Tex.	5000	GE Winona, Minn.	$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$
		WDGF Dade City, Fla,	$\xrightarrow{10000}$	WBOE Galax. WHEG Harris		WOLT Indianola, Miss.	d
kHz Wave Length	W.P.	WCAI Ft. Myers.	1000 d	KFDR Grand Coules, Wash.	$\begin{aligned} & 50000 \\ & 1000 \mathrm{~d} \end{aligned}$		$\begin{aligned} & 100 \\ & 01 \end{aligned}$
		WBSG Black	500d	KMOTac			
		WRWH Cleveland, Ga.	1000d	WHJC Ma	1000 d	2 Pa	
WLM Willmar, M	1000	WAVC Warner Robins, Ga.	5000 d	WMOV Ravenswood, W.V.	1000 d	WFSR Bath,	$\begin{aligned} & 5000 \\ & 500 \mathrm{~d} \end{aligned}$
JMB Broohhaven.	1000	KTOH Lihue. Hawaii	000	WBAY Green Bay	5000		00
KOZ Kosciusko. Miss.	1000 d	KRLC Lewiston, Ida.		WISV Virotua,	1000	WKKE Ashov	5000
AML Laurel, Miss.	1000	Clarkston, Wash.	5000 d	WMNE Menomonie,	1000 d	WTOB Winston-Salem, N	0
KXEO Mexico, Mo.	1000			KVRS Rock Springs, Wyo.	1000	WPKO W averiy, 0 hio	1000 d
KLIO Poplar Bluff.	1000	WIoU Kakoma, in	5000			KSWO Lawton, Okla	1000
KSGM St. Genevieve,	1000	KRNT Des Moines. Iowa				KMUS Muskogee. OkI	000
KSMO Salem, Mo.	1000	KMAN Manhatan. Kans.	5000	wbye Ca	1000d	KBCH Ocean La	000d
KICK Springfield, M	1000		5000 d	KAWW		KSRV Ontario,	5000
KCAP Helena, Mont	1000		5000d		1000 d	WACB Kittanning,	1000d
KPRKK Livingston, Mont.	1000	WHMI HoweH,	500	KTPA Pre	,	WMLP Milton.	1000d
KATL Miles city, Mont.	1000	WTMF Nowed, mich	500	KREL Corona,	5000	WAYZ Waynesboro. Pa,	1000 d
KYLT Missoula, Mont		KDiO Ortonville Mini		KPCO Quincy, Cal.	500 d	WNRI Woonsocket, R.I.	1000d
KHUB Fromont, N	0	KDio Ortonville. Mini.		KEEN San Jose, Call	5000	WAGS Bishopvilte.	1000 d
KGFW Kearney, N	1000	WISCU Corinth, Mi		KGEN Tulare. Cal	1000 d	WGUS N. Aug	1000d
k SID Sidncy, Ne	1000	WKOZ Corinth,		WKMK Blountstown, Fla.	500 d	KOTA Rapid	5000
RAM Las Vegas,	10	KCHR Charleston, Mo.	5000 d 1000 d	WWKE Ocala, Fla,	5000 d	-	500d
BET Reno,	1000	KCBR Charleston, Mo.		WCOA Pensacola,	5000	WYSH Clinton, Tenn.	000d
DCR Hanover, N.	1000	W		WAXE Vero Beach, Fi	1000d	WIZ0 Franklin, Tenn.	
MAD Atlantic City.	000	WHWH Princeton. N.J.	5000	WLOP Jesup, Ga.	5000	WTNN Millington,	500 d
KRRR Ruidoso, N. M	1000	KABQ Albuquerque, N.M.	5000	WFDR Manchester, Ga.	1000 d	KBWD Brownw	
KK1T Taos, N.M	250	WCBA Corning	1000 d	C Lincoln		KCRM Grane. Tex.	000d
SiL Silver City	10	WRNY Rome.		WTTS Blooningto	5000	KTSM El Paso. Tex.	5000
MBO Auburn, N.Y	1000	WBMS	00d	WLTH Gary. Ind.	1000 d	KMUL Muleshoe, Tex	1000 d
ENT Gloversville,			d	KDTH Dubuque.	5000	KBOP Pleasanton. Tex	1000d
KSN Jamestown,	250		1000 d	KGNO Dodge City. Kans.	5000	WSYB Rutland, Vt.	
USJ Locknort,	250		$1000 d$	KALN Iola, Kans.	500 d	R Richmond, Va.	
WMSA Massena,	100		500 d	WABD Ft. Camphell, Ky.	500 d	KRKO Everett, Wash.	0
WALL Mlddletown	100		5000	WGOH Grayson. Ky.	5000 d		d
W/RY Plattsburgh	1000	WCH1 Chillicoth	1000 d	WTKY Tompkinsville, Ky.	1000 d	WMTD Hinton, W.Va.	1000d
W		KRHO Duncan, Okla	250	KAPB Marksville.	1000d		
WOXF 0 xford.	1000	KTLQ Tahlequah, Okla	1000 d	WOEA Ellswor			
W00w Greenv	1000	KRVC Ashland, Ores	1000d	W H H Bradioek		WHMA Anniston, Ala,	000
WGNI Wilmington,	1000			WW	100	KDQN Ded	00d
WAIR Winston-Salem, N	1000	BR	1000d	ch.			1000 d
KGPC Gratton. N. Dak.	1000	WDAR Darlington,	1000 d	KSUM Fairmont, M	1000	KCEY Turlock, Calif.	5000
W NCO Ashland,	1000	WGSW Greenwood. S.C	1000 d	WMKT S. St. Paut.		KFML Denver. Colo	5000d
woub Athens,	2	WRAR	1000d	WMGO Canton, Miss.	1000 d	Wavp Avon	1000d
				KWRT Boonville,	1000d	w	5000d
WSTV Steubenville, Ohio KIHN Hugo, Okla.	$\begin{array}{r} 1000 \\ 250 \end{array}$	KCOR San Antonio.	10000 5000	KCRV Caruthersvilio, Mo.	1000d	WISK Amer	d
KOCY Okla. Ci	1000	WBLT Bedford.	1000d	KXLF Butte, Mont	5000	WNUS Chic	000
KTOW Sand Springs.	500	WFLS Fredericksburg	1000 d	KAWL York, Nebr	500 d	WFIW Falr	1000
KLOO Corvallis, Ore.	1000	WNVA Norton, Va.	5000 d		5000	WJCD Seymour. Ind.	1000d
KWVR Enterprise, Oreg.	250	WCVU Portsmouth, Va.	5000	W ${ }^{\text {W }}$	500 d	KCLN Clinton, lowa	
KIHR Hood River, Or	1000	W	000d	WSAY Rachester,		KCBC Des Moines, lowa	1000
bBR N. Bend, Ore						,	
WCVI Connellsville, Pa.	1000	1360-220.4		W	5000 d	W ANY Albany, Ky.	1000 d
WSAJ Grove City. P	100				5000 d		
WKRZ Oit City, Pa.	1000		1000d	WSPD Toledo, 0	5000	WEGP Pres	
WHAT Philadelphis, P	1000	WMFC Mobile. Ala,	5000 d	KVYL Holdenville, 0	0 d	KJPW Waynesville, Mo.	1000d
Wraw Reading, Pa.	1000	W MFC Monroevilie.	1000d				
WTRN Tyrone, Pa.	1000	WELR Roanake, Ala.	1000 d	K FIR Sweet Home	1000	WPLM Plymouth, Mas	5000
WBRE Wilkes-Barre, P	1000	KRUX Glendalo,	5000	WOTR Corry, Pa.	1000		
WWPA Williamsport, P	1000			WPAZ Pottstown. Pa	1000 d	KAOH Duluth, Min	00
WUNA Aquadilla, P.R.	250	KFFA Heiena,					
WOKE Charleston, S.C.	1000	KFIV Modesto, Cal	5000	W	1000	WROA Gulf	$1000{ }^{\text {d }}$
WRHI Rock Hill, S.C.	1000	KRCK Ringecrest. Ca	1000 d			W01c	
WSSC Sumter, S.C.	1000	KGB San Diego, Gallf.	5000		5000	KJPW Waynesville.	1000d
KIJV Huron. S. D.	1000	WDRC Hartford, Conn.	5000	WDXE La		KENN Farmington. N.	5000
KRSD Rapid City, S.	1000	WOBS Jacksonvilte, Fla	500	WRGS Ro	1000 d	KHOB	5000d
WBAC Cleveland. Tenn.	1000	WKAT Miami Beach. Fla.		WOKE Au			50000
WKRM Columbia, Tenn,	1000	WINT Winter Haven. Fla.	1000d	KFRO Longview. Tex	1000	WRIV River	1000 d
WGRV Greeneville. Tenn	1000	WAZA Bainbringe	1000 d				
WKGN Knoxville. Ten	1000	WLAW Lawrenceville, Ga,	1000d	KSOP Salt Lake City, Utah	1000 d	WEED Rocky Mount, N.C.	5000
WLOK Memphis, Ten	1000	WMAC Met	500 d			ADA Shelby, N.C.	
WCDT Winchester, ${ }^{\text {T }}$	1000	WIYN Ro	500	WHEE Martinsville, Va.	5000 d	WJRM Tr	1000 d
KWKC Abilene, Tex.	1000	WLBK Dekaib, 11.	10000	wJws			
KISL Burnett, Tex.	250	WVMC Mt. Carmel, 11.	500 d	KPOR Quincy, Was	1000 d	WTOO Bellefontaine,	500
KAND Corsicana, Tex	1000	WGAAK Cedar Rapids. Iowa	1000d	WEIF Moundsville, W. Va.	1000d	WMPO Middlepor	
KLBK Lubhock. Tex.	250 1000	KXGI Ft. Madison, Iowa	1000 d	WCCN Neillsville, Wis.	5000d	Pomera	000d
KRBA Lufkin, Tex.	1000	KSCJ Sioux City, lowa		KVWO Cbeyenne, Wyo.	1000d	WFMJ Youngstown. Ohio	5000
KPDN Pampa. Tex.	1000	K BTO EI Dorado, Kans.	500 d			,	
KOLE Port Arthur, T	250	WFLW Monticello, Ky.	1000d	1380-217.3		KSLM Salem, Oreg.	5000
KTEO San Angelo, Tex	250	KDXI Mansfteld, La.	1000d	WRAB Arab, Ala.		-	0
KVIC Victoria, Tex.	250	KNIR New lberia, La.	1000 d	WGYV Greenville, Al	1000 d	WRSC State Colleae, Pa	10 n d
WTWN St. fohnsbury	1000	KTLD Tallulah, La.	500d	WVSA Vernon, Ala.	1000 ± 1	WHPB Belton, S.C.	1900 d
WSTA Charlotte Amalie, V.i.	. 250	WEBE Baltimore, Md.	5000 d	KDXE N. Little Rock. Ark	1000 d		5000
WKEY Covington. Va.	1000	WLYN Lymn, Mass.	1000d	KBVM Lancast	1000d	K	50nd
WHAP Hopewell. Va.	1000	WKYO Caro, Mich.	$500 d$	KGMS Sacramento. Cali	1000	WYXI	00d
WJMA Orange, Va.	1000	WKMI Kalamazoo, Mich.	5000	KTOM Salinas. Cal.	5000	WTJS Ja	5000
KAGT Anacortes, Wash	250	WFFF Columbia, Miss.	1000d	KFLJ Walsenburg. Colo	1000d	WMCT Mountain City.	
KSMK Kennewick, Wash	1000	KLRS Mountain Grave, Mo.	1000d	WOWW Natrgatuck.	5000	KULP EI Campo, Tex	500 d
KAPA Raymond, Wash.	1000	KICX McCook, Nebr.	1000d	WAMS Wilmington, De	5000	KBEC Waxahachie. Tex	
KMEL Wenatchee. Wash	250	W NNJ Newton. N.J.	1000 d	WLIZ Lake Worth, Fl	1000	KBLW Logan, Utan	000
AR Clarksburg, W. Va.	1000	WWEZ Vineland, N.J.	1000	WDAT Ormond Bch. Fí	1000 d	WEAM Arfington, Va	5000
WEPM Martinsburg, W. Va.	1000 1000	WKOP Binghamton, N.Y	5000	WLCY St. Petersburg, Fla.	50	WWOD Lynchbura. Va.	5000
WOVE Welch, W.Va.	1000	WCHL Chapei Hill, N.C.	1000	WSIZ Ocilla, Ga		WKLP Keyser, W.Va.	1000 d
LDY Ladysmith, Wis.	1000	KEYZ Williston. N.D.	5000	KPOI Honolulu, Hawai	5000	KBBO Yakima, Wash	1000
RIT Milwaukee. Wis.	1000	WSAI Cincinnati, Ohio	5000	WBEL So. Beloit. 111	5000	1400-214.2	
YGT Jackson. Whyortland. Wyo.	10	WWOW Conneaut, Ohio	500d	WWCM Brazil, ind.	500 d		
YON Wheatland Wyo.	250	KUIK Hillsboro. Oreg.	1000 d	WKJG Ft. Wayne. Ind.	5000	WMSL Decatur. Ala.	1000
OR Worland, wyo.		WIXZ Mckeesnort. Pa.	50004	KC1M Carroll. Lowa	1000	WXAL Demopolis, Ala.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$
50-222.		WPPA Pattsville. Pa.	5000 $1000 d$		Od	WFPA Ft. Payne, Ala. WJLO Homewood. Ala.	1000 1000
VELB Elba, Ala.	1000d	KLGM L,ancaster, S.C.	1000	WMTA Central City, Ky	500 d	WJHO Opelika, Ala.	100

WHITESS

kHz Wove Length W.P

KYEN Sonora, Calif. KOEN Vontura. Calif kGiw Yuia City, Cal KYOU Greeley, Colo. WNAB Bridgeport, Conn WILM Wilmington, Del. WOL Washington, D. C. WWJB Brooksvitio, Fla. WMF D Daytona Beach, Fla WOCN Miami, Fla.
WESR Pensacola. Fla.
wSPR Sarasota Fla WSPB Sarasota, Fla
WSTU Stuart, FJa. WTAL Tallahassee, Fla. WGPC Albany. Ga. WBHF Cartersville, Ga WKEU Griffin, Ga. WMVG Milledgeville, Ga. WBYG Savannah, Ga. KVSI Montpelier, Ida KEEP Twin Falls, Idaho WKE1 Kewane WKEV Springfield, ill. WLYV Ft. Wayne. Ind. WXVW Jeffersonville, Ind, WAOV Vincennes, ind KLWW Cedar Rapids, la. KYET Payette, Ida. KWBW Hutchinson. Kans WWXL Manchestor Ky WPAD Paducah, Ky. WLKS W. Liberty, KSIG Crowley, La. WNPS Natchitoches, La WLKN Lincoln. Me. WKTO Rockland, Maine WTBO Cumberland. Md. WTHU Thurmont, Md. WATZ Alpena Township. Michigan 1000
WHTC Holland, Mich.
WMiQ iron Min. Mich WMIQ Iron Mtn.. Mich. WIBM Jackson. Mich. WNBY Newberry, Mich WHLS Port Huron, Mich KATE Alhert Lea, Minn KBMW Wahpeton. N. \mathbf{D} WELY Ely, Minn. KFAM St. Cloud. MInn WCIU Columbia Miss WJXN Jackson, Miss. WOKK Meridian. Miss. WNAT Natchez. Miss. KFTW Fredericktown. MO WMBH Jonlin. MO. KOKO Wirksvile, Mo. KWPM West Plains, Mo. KXXL Bozeman, Mont. KGMY Missoula. Mont KRB KRBN Red Lodge. Mont.
KVCK Woff Point, Mont. KWBE Beatrice. Neb. KONE Reno, Nev. WKXL Concord, N.H. WFPG Atlantic City, N.J. WCTC New Brunswick. N.
KRZY Albuquerque. N. M. KRZY Albuquerque. N.
KLMX Clayton, N. Mex. KOBE Las Cruces. N. Mex KENM Portales. N. Mex WCLI Corning, N. WWSC Glen Falls. N.Y WKIP Poughkeeps WKAL Rome, N. Y WGAA Gastonia N WIZS Henterson N. WHKP Hendersonvilie, N.C WHIT New Bern, N.C. WFBS Spring Lake. N.C. KGCA Rugby, N. D WMOH Hamilton, ohio Ohio 1000

Prepared by Don Jensen
 \title{
White's World-Wide Shortwave Stations
}
 \title{
White's World-Wide Shortwave Stations
}

Suddenly, it seems, the Philippines has become one of the world's "hottest" DX countries. Until recently, to most SWLs, the Philippines meant the Voice of America relays or the missionary outlets of the Far East Broadcasting Company. period!
But things have changed. Now. fully a half dozen broadcasters have powerful transmitters -50 kw . or more--operating from this republic of 7.000 islands.

FEBC, granddaddy of the Manila-based religious stations, has heen joined by two other missionary broadcasters. One, SEARV, the South East Asian Radio Voice, is a Protestant
station serving the Christian Councils of South East Asia with a 50 kw . transmitter at Bulacan. The second, and newer, Radio Veritas, 100 kw., was built and is operated by the Roman Catholic Church for Asian listeners unable to get good reception from Vatican Radio.

Even more recently, the first three of a battery of ten 250 -kilowatt Voice of America transmitters have been installed at Tinang. Along with the less powerful stations at Poro, they relay the VOA's programs to the Far East.

The opening of the Tinang complex during the summer freed severa! 20 -year-old VOA transmitters. A commercial station, the Philip-
pine Broadcasting Service is now using a couple of the units at the Poro site, relaying VOA programs until 0830 GMT, then switching to its own features.
The VOA plant at Malolos, just north of Manila, apparently has been peddled to the Philippine government. Activated on new frequencies, at least one of the new stations has been heard in the U.S. recently. This operation identifies as "The Voice of the Philippines" and is "owned and operated by the Republic of the Philippines."
So set your Big Ben for an early hour and start tuning! How many of these Philippine goodies can you snare?

1. VOA-Tinang/Poro-You can expect to hear a few English programs and IDs but most programs in Asian lingos. Try 9,665, 11,965 or $15,105 \mathrm{kHz}$ any time between 1000 and 1700 GMT.
2. Far East Broadcasting Company-This religious outlet uses many-would you believe 40-different dialects and languages for its Oriental audiences, but you can hear English from 1245 to 1400 GMT on about $15,440 \mathrm{kHz}$. If not, there's always 9,504 and $11,920 \mathrm{kHz}$.
3. South East Asia Radio Voice-Not as easy as you might think for their antennas are aimed the other way. Winter catches possible on $15,420 \mathrm{kHz}$ from 1100 to 1300 GMT .
4. Radio Veritas-Another one you'll really have to try for. A New Yorker recently heard Veritas on $15,170 \mathrm{kHz}$ around 1230 GMT. Also listen on 11,830 between 1000 and 1300 GMT.
5. Philippine Broadcasting Service-Lately PBS has been putting "socko" signals into the Midwest between 1000 and 1100 GMT on $6,170 \mathrm{kHz}$. Its commercial program format is pretty good listening too. Both English and Tagalog, the Philippine language, are used.
6. Voice of the Philippines-QRM is a real headache on VOP's frequencies- 9,580 and $11,950 \mathrm{kHz}$. Look for breaks in the interference, like before 1100 and between 1300 and 1330 GMT. Full morning sked is 0900 to 1400 GMT.

For the hard-nosed, calloused-eared crowd, here are a couple of "ultras!"
7. Mindanao Broadcasting Network-This 500 watter, located in Davao City (others say its "Voice of the City" ID means Manila), signs off early- 0800 GMT. It's listed for $7,280 \mathrm{kHz}$,

This Issue's Shortwave Contributors

Ernest Behr (Ontario); Steve Kamp (Texas); Bill Berghammer (New York); Dan Ferguson (Florida); R. S. Heggs (Br. Columbia); David Williams (Oregon); Bob Hagerman (Michigan); Gerry Dexter (Wisconsin); Stanley Cabral (California); Richard Murphy (Texas); Richard Fortson (Texas); Gladys Sienkiewicz (New York); Sam Rowell (Washing. ton); Carter Scholz (New Jersey); Del Hirst (Texas); Newark News Radio Club (215 Market St., Newark, N.I.); North American SW Assn. (Box 989, Altoona, Pa.); Japanese SW Club (Sendai, Japan).

Introducing White's Radio Log New Shortwave Columnist

Don Jensen tuned his first station, Ecuador's HCJB, at the tender age of 11. That was 22 years ago. Since then he has
 heard and verified shortwave stations in nearly 200 countries. SWLs have read his articles and column on shortwave broadcasting in Elementary Electronics, Science and Electronics' sister magazine, and in other electronics publications.

Though an ex-ham (KN4ISC) and exCBer (18W6098), his first love is DXing. Like most serious listeners, Jensen belongs to DX clubs here and abroad holding executive positions in several. He has edited SWBC columns in a few radio club bulletins. He founded the Association of North American Radio Clubs, an organization linking all the major listeners clubs in the continent.

He knows DXing and DXers. A former radio and TV staffer, he aiso knows the broadcaster's point of view. He's visited stations in Europe, South America and the Caribbean and seen how they operate. A newspaper reporter, Jensen relates DX happenings to contemporary world events. He tells it like it is.

The Editor hopes you'll read the shortwave section in White's Radio Log regularly for the inside story of what's happening in the DXing world today. He believes that Don Jensen's shortwave news and views will become a steady ciet for our growing DX-SWL crowd.
but we can tell you it skips around a bit, varying to 7,265.
8. Voice of the State University-DUH9, on 7,160 , but varying to $7,150 \mathrm{kHz}$, will drive you nuts. A measly thousand watts is all this University of the Philippines station runs. It's located at Quezon City, just outside Manila, and is scheduled from 0900 to 1300 GMT, MondaySaturday, mostly in English.
9. National Civil Defense Administra-tion-This government agency statior uses two channels, each one tougher than the other, 3,305 and $5,970 \mathrm{kHz}$. Schedule is 0800 to 1100 GMT.

Scoring-Give yourself 5 points for each VOA and FEBC frequency you hear. Numbers 3 through 5 rate 25 points each.

Total less than 25? Keep trying. Score 50 points? Bully for you. One hundred puts you up with the pros. Log any one of the last three and you, Bunky, take home all the marbles!

1970 DX Census. Ever wonder how many of us there are around? So does the Association of North American Radio Clubs, the continent-

WHITE'S RADIO LOG-SW

wide organization linking the various SWL hobby clubs. To find out the answer, ANARC is conducting a DXer census.

If you want to be tallied too, jot down the following information: Name, address, age, occupation, education level and the type of DXing you prefer, long wave, medium wave, shortwave broadcast, amateur listening or what have you.

kHz	Call	Name	Location	
90 -Meter Band--3200 to 3400 kHz				
3305	VL8BD	R. Western District	Daru, Papua Territory	1115
3315	-	ORTF	Ft. de France Martiniaue	0100
3316	-	R. Sierra Leone	Freetown, Sierra Leone	0600
3322 3325	VL9BA YVRA	R. Bougainville R. Monegas	Kieta, Bougainville Maturin, Venezuela	$\begin{aligned} & 1130 \\ & 0230 \end{aligned}$
3346		R. Zambia	Lusaka, Zambia	0410
3380	TGCH	R. Chortis	Jocotan, Guatemala	0245
3390	HCOTI	R. Zaracuy	Sto. Domingo Cds. Ecuador	0700
3910	-	Far East Network	Tokyo, Japan	1230
3995	一	SIBS	Honiara, Solomon Is.	1100

kHz	Call	Name	Location	
60 -Meter Band- -4750 to 5060 kHz				
4765	-	R-TV Congolaise	Brazzaville, Congo Rep.	0530
$\begin{aligned} & 4770 \\ & 4795 \end{aligned}$	ELW'A	$\bar{R} \cdot \mathrm{C}$	Monrovia, Liberia Sa da Bandeira.	0600
			Angola	0600
4841	HCCRI	R. Casa de la Cultura	Quito, Ecuador	0330
4865	-	Brunei Broadcasting Sve.	Berakas, Brune	1300
4907	-	Radio Cambodia	Phnom Penh. Cambodia	1230
4910	HIN	Radio HIN	Sto. Domingo, Dom. Rep.	2300
4912	-	R. Tarawa	Betio, Tarawa, Gil bert and Solomon is.	0800
4932	-	Nigerian Bc. Corp.	Benin City. Nigeria	0600
4950	-	R. Senegal	Dakar, Senegal	0600
4972	-	R. Yaoundi	Yaoundi, Cameroon	0500
4975	OCX4 ${ }^{-1}$	R. del Pacifico	Lima, Peru	0230
4976		R. Uganda	Kampala, Uganda	1830
4995	ZYX9	R. Brasil Central	Goiania, Brazil	0830
5015 5040	-	R Valparaiso	Vladivostok, USSR	1200 0100
5040	-	R. Valparaiso	Port de Paix, Haiti	0100

$\mathrm{kHz} \quad$ Call	Name	Location
$49-$ Meter Band-5950 to 6200 kHz		

5987	-	Radio Republik Indonesia		100
6005	-	RIAS	Berlin, Germany	0300
6010		BBC Relay	Limasso!, Cyprus	0200
6015	PRA8	R. Clube de Pernambuco	Recife, Brazil	0815
6030	CFVP	Voice of the		
		Prairies	Calgary. Canada	1230
6065	-	R. Singapura	Singapore	1145
6095	HJIW	La Voz del Centro	Espinal. Colombia	0330
615	OBZ40	R. Union	Lima, Peru	1130
6140	-	L.V. del la	Bujumbura,	
		Revolution	Burundi	0430
6145	-	\checkmark of Biafra	Orlu, Biafra	0530
6170	-	Philippine Bc. Svc.	Manila, Philippines	1045
6192	-	R-TV Tunisienne	Tunis, Tunisia	0400
kHz^{2}	Call	Name	Location	

$\frac{41 \text {-Meter Band- }-7100 \text { to } 7300 \mathrm{kHz}}{7140-}$| Radio Republik |
| :---: |
| Indonesia |\quad Ambon, Indonesia 1230

If you belong to any radio hobby clubs, note which ones. Do you have an amateur or CB license? What type of receiver, auxiliary equipment and antenna do you use? Do you build, repair or maintain any of the equipment you own? What electronics magazines do you read and what types of articles do you prefer?

Send your data to ANARC Census. 152 Third Street, Leominster, Mass., 01453. When results are tallied. we'll let you know.

kHz_{2}	Call	Name	Location	
7155	-	ORTF	Paris, France	0530
7170	-	R. Noumea	Noumea, New Caledonia	1045
7173	-	VTVN	Saigon, S. Vietnam	1145
7200	-	V. of Righteousness	Tajpei, Taiwan	1100
7205	-	R. Australia	Melbourne, Australia	1200
7225	-	Deutsche Welle		
		Relay	Kiqali, Rwanda	0330
7235	-	8BC Relay	Johore Baru. Malaysia	
7265	-	Sudwestfunk	Rohrdorf Germany	0600
7300	-	R. Tirana	Tirana. Albania	0200
kHz_{2}	Call	Name	Location	

$\begin{aligned} & 9505 \\ & 9515 \end{aligned}$	OAX4V	R. America	Lima Peru	0530
	XEWW	L.V. de la America Latina	Mexico City. Mexico	0440
	-	R. Ankara	Ankara, Turkey	1800
9520	-	R. Denmark	Copenhagen, Denmark	0200
	VLT9	$A B C$	Port Moresby, New Guinea	0700
9540	-	R. Lubumbashi	Lubumbashi, Rep. of Congo	0500
9550	-	R. Tanzania	Dares Salaam, Tanzania	1300
9553	YSS	R. Nac. de El Salvador	San Salvador, E Salvador	0340
$\begin{aligned} & 9570 \\ & 9575 \end{aligned}$	CE956	R. Portales	Santiogo, Chile	0330
	-	RAI	Rome, Italy	0500
		All India Radio	Bombay, India	1300
9576	ZYN29	R. Cultura de Bahia	Salvador. Brazil	2330
	-	L.V. del Comercio	Santa Ana, EI Salvador	1740
9580	-	V. of the Philippine	Manila Philippines	100
9581	YNTP	R. Mar	Puerto Cabezas, Nicaraguo	1330
$\begin{aligned} & 9600 \\ & 9605 \end{aligned}$	-	R. Tashkent	Tashkent, USSR	1315
	-	Trans World Radio	Bonaire, Neth. Antilles	0000
9615	-	R. Pyongyang	Pyongyang, N. Korea	1350
	TIRICA	L.V. de la Victor	San Jose, Costa Rica	0200
9655	OAX9C	R. Nor Peruana	Chachapoyas, Peru	0315
9683	LRA32	RAE	Buenos, Alres, Argentina	0300
9700	-	R. Sofia	Sofia, Bulgaria	2200
9705	-	R. RSA	Johannesburg, South Africa	0100
9710	HCJB	L.V. de los Andes	Quito, Ecuador	0600
9730	-	R. Berlin International	Berlin, E. Germany	0130
9760		R. Nac. de Espana	Madrid, Spain	0230
	JOZ7	Nihon Sw. Bc. Co.	Tokyo, Japan	0050
kHz	Coll	Name	Locotion	

$25-$ Meter Band-l1700 to 11975 kHz

11706	TGQB	R. Nacional de		
Quetzaltenango				Quetzaltenango,
:---				
Guatemala	$\quad 0200$			

Science and Electronics Propagation Forecast for February/March 1970 Prepared by C. M. Stanhury II

LISTEMER'S STANDARD TIVE	$\begin{gathered} \text { ASIA } \\ \begin{array}{c} \text { (except } \\ \text { Near East) } \end{array} \end{gathered}$	EUROPE, NEAR EAST \& AFRICA (N . of the Sahara)	AFRICA (S. of the Sahara)	SOUTH PACIFIC	$\begin{aligned} & \text { LATIN } \\ & \text { AMERICA } \end{aligned}$
0000.0300	25, 31	41,49	60e, 90e	31e, 41w	(49), 60, 90
0300.0600	41,69	31 (poor)	19w	49, 60, (90)	49, 60, 90
0600-4900,	25, 49w	16, 19	19	25,31,(41),(49)	31, 49
0900-1200	19, 25	13, 16, 19	19, 25	19 (poor)	(19), 25, 31
1200-1500	16, 19	13, 16, 19	19, 25	19 (poor)	(19), 25, 31
1500-1800	16, 19	(25), 31, (41), 49	31w, 60e	19, 25	31
1800-2100	16, 19	25, 31	25e, 31e, 60w	16, 19	49, 60, (90)
$2100 \cdot 2400$	16, 19	31, 41, 49	60,90	16, 19, 31w	49, 60, (90)

kHz_{1}	Call	Name	Location		kHz_{2}	Call	Name	Location						
$\begin{aligned} & 11770 \\ & 11780 \end{aligned}$	-	$\begin{aligned} & \text { R. Niger } \\ & \text { R.A.E. } \end{aligned}$	Lagos, Nigeria 1900 Buenos Aires, Araentina 0530 Kakul Afahanistan 1730 Sta. Cruz de Tenerife				88C	Ascension is. Damascus, Sytia Addis Ababa	0200 1930					
		R. Afghanistan R. Nacional de Espana R.A.1. R. Ceylon R. Australia				ETLF	the	Addis Ababa, Ethiopia						
800					528	ZL	New Zeal	ellington.						
			-					Zealand						
			Rome, Italy 2100 Colombo, Ceylon Melbourne. 1100		$\begin{aligned} & 15285 \\ & 15290 \end{aligned}$	\bar{Z}	R. Lebanon R. Clube Mozambique	Beirut,' Lebamon						
11810								880						
			Australia Warsaw, Poland	$\begin{aligned} & 1000 \\ & 1800 \end{aligned}$										
	$\overline{X E} E R$	R. Warsaw El Heraldo de Sonora R. Tahiti R. El Espectador						ckholm, Sweden						
			Papeete, Tahiti 0600 Montevideo,		$\begin{aligned} & 15335 \\ & 15345 \end{aligned}$	-	A.I.R. N.H.i. Deutsche Weile	New Delhi, Itidia Athens, Greece	1415					
$\begin{aligned} & 11825 \\ & 11835 \end{aligned}$	CXA					2100								
			Uruguay Quito, Ecuador	02200500										
$\begin{aligned} & 11870 \\ & 1 \mid 875 \end{aligned}$	HCJB	L.V. de los Andes R. Nacional de Nicaraqua R. Malaysia			kHz_{1}	Call	Nam	Locafion						
			Managua, Nicaragua		r Band-I7700									
			Kuala Lumpur Malaysia	1050										
11920		R. TV Ivorienne	Abidian, Ivory Coast		7765	=		airo, UAR erlin. Germany	00301230					
930		VoA	Tinang, Philippines Encarnacion. Paraguay	150			International V. of Free China							
	ZPAS			0100	BED			Taipei. Taiwan	00					
11950		V, of the Philippines Deutsche Welle Relay	Manila, Philippines Kigali, Rwanda				Swiss Bc. Corp.	Bern, Switzerland						
				$\begin{array}{r} 1350 \\ 2100 \end{array}$	$\begin{aligned} & 17795 \\ & 17825 \\ & 17845 \end{aligned}$	-			183015002200					
11965						WN	R.	New York. N.Y.						
kHz_{2}	Ca	Nome	Locotion				R. Havan		00					
Meter Band- 15100 to 15450 kHz														
					kHz^{2}	Coll	Name	Locotion						
			Wellington, New Zealand, 0505 Tehran, Iran 2000		3-Meter Band-21450 to 21750 kHz									
$\begin{aligned} & 15135 \\ & 15145 \end{aligned}$	ZYK33	R. Iran R. Jornal do Comercio R. Ankara R. Budapest R. Denmark												
			Recife, BrazilAnkara, Turkey 1350 2200 Budapest, Hungary 0110 Codenhagen,			-	R. Berlin International A.I.R. R. Brazzaville		15					
	-							New Delhi, India Brazzaville, kep. Congo Bern, Switzerland Kuwait Vatican City Paris, France St. George, Grenoda						
15165	-					-			$\begin{aligned} & 1330 \\ & 1400 \\ & 0900 \\ & 2300 \\ & 1745 \\ & 2200 \end{aligned}$					
		Finnish Bc. Co. Austrian R. R. Pakistan R. TV Nationale Congolais	Cenmark 2045 Amman, Jordan 2330 Porit Finland 1800 Vienna Austria 2000 Karachi, Pakistan 2030 Kinshasa, Congo 2200		21520 二215252157021645$21690=$									
	O1×4				Swiss Bc. Corp. Kuwait Bc. Sve. Vatican Radio ORTF W.I.B.S.									
	-													
15240	-													
45	-													

White's Emergency Radio Station Listings for Florida Statewide

5CIENCE AND ELECTRONICS furnishes this exclusive listing of emergency radio stations as an aid to our many readers now engaged in the fascinating and rapidly growing hobby of monitoring emergency radio communications. We have and will be publishing similar lists devoted to different metropolitan areas in forthcoming issues so that you'll be able to accumulate a sizable array of this difficult-to-obtain data. Refer to the index on page 81 for our 1969 program. Our 1970 brand new schedule will be announced in the next issue.

If you desire to obtain similar lists from other areas in the United States that have not been published in this magazine in 1969, then we suggest you write to Communications Research Bureau, Box 56, Commack, N. Y. 11725. They may have a list of emergency radio services that covers your locality. Include a slamped, selfaddressed envelope with your request.

All frequencies are megahertz (MHz) unless otherwise noted.

MIAMI FIRE DEPT.

MIAMI BEACH POLICE DEPT.

| KGN543 | 156.03 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| K16563 | 156.03 | 156.09 | | | |
| KLL680 | 460.40 | 460.425 | 460.45 | 460.475 | 460.50 |

MIAMI BEACH FIRE DEPT.

$\begin{aligned} & \text { KCT269-71 } \\ & \text { KGN542 } \\ & \text { KLL510 } \\ & \text { KLL511 } \end{aligned}$	M\|AMI	ACH FIRE DEPT.
	154.01	
	154.01	
	453.225	453.275
	460.525	460.55
	OTHER MI	IAM/ BEACH DEPTS.
KEY902	453.25	

DADE COUNTY.OPERATED STATIONS SHERIFF'S DEPT.

Bar Harbor	KLW52	158.73			
Bay Harbor	KLW56	158.73			
Fla. City	KOO91	158.91			
Golden Bch.	KVS27	158.73			
Homestead	KJZ85	158.73	158.91	158.97	159.03
Isiandia	K0095	158.91			
Medley	KLW51	158.97	159.03		
Miami	KDG915	154.80			
	KGV297	154.80			
	KLW50/54	+58.73			
	KNS94	158.73	158.91	158.97	159.03
	KLW59	158.91			
	K0092	158.91	158.97		
	KTO78	158.97			
	KCT281	453.55			
N. Bay Vlg.	KLW57	158.73	159.03		
N. Miami	KLW55	158.73			
N. Miami Bch.	KLW58	158.73			
Opa-Locka	KCU472	154.74	453.60		
	KLW48	158.73			
Perrine	KGV298	154.86			
	KDG273	154.95			
Surfside	KLW53	158.73			

COUNTY FIRE DEPT.

Fla. City Miami	KBY528	453.70	453.80	
	KIM654 KGP675	$\begin{array}{r} 33.70 \\ 153.77 \end{array}$		
	KBY519-27	453.70	453.80	
	KCR938	453.70	453.80	
	KCR940	453.70	45380	
	KDE263/5	453.70	453.80	
	KIM654	453.70	453.80	
N. Miami Bch.	K Y 517	453.70	453.80	
Opa-Locka	KBY518	453.70	453.80	
S. Miami	KJD899	153.77	453.70	453.80
Suriside	KDE264	453.70	453.80	
Virginia Gdns.		453.70	453.80	

OTHER DADE COUNTY AGENCY STATIONS

KEM595/453.85 K1R227/453.65 KRQ72-4/458.65
KSZ50.1/458.65 KTN89/458.65
$154.085 \quad 158.865$
$453.525 \quad 453.925 \quad 453.975$
MISC. OTHER FLORIDA STATIONS \& NETWORKS

STATE LAW ENFORCEMENT AGENCIES

Channels/Stations:
$37.30 \mathrm{KJ} 1430 \mathrm{K}$. GP789
45.06 (Highway Patral) KAV733 KBQ738 KBV731.4 KBX376 KBZ941 KCO299 KCR971 KEY 959 KFN559-60 KFY387 KGT6I7.9 KIA 285 KIB47I KIB472.4 KIB479-87 KIB490-I KIC734 KIC854 KID295 KID490 KID533 KID680 KIJ281-2 KIK502 KIM 776 KIM 939 KIP346 KIQ722 KIR486.7 K1R620 KIW246 KIW553 KJN747 KLG645 KLK645 KLU 468 KLW285
45.10 (Beverage Dept.) KFY412 KGJ672 KGV216 KGW783 KIS435 KIV747-8 KIW304 KIW586 KIW904 KIW978 KJB875 KJF963 KIW977
45.42 (Div. Corrections) KBE342-3 KBL757 KFT238
KFX230 KGW698 KII794
KIJ666 KIK222 KIM752
KIN318 KIN946 KJY745
45.46 KLJ285-7
45.82 KFS997
154.95 KIL 349
156.15 (repeater) KJF24
453.10 KHM 80 KYH 39
453.50 KTU89
458.10 KHM8I KYH38
458.50 KTU90
$460.15 \mathrm{KLP923}$
$460.20 \mathrm{KLP923.9}$
$460.25 \mathrm{KLP9} 24.6 \mathrm{KLP9} 28-9$
460.30 KLP924-6 KLP928-9
460.35 KLP924-9

Locations/Stations:
Arcadia KI K502
Avon KIN946
8elle Glade KEL757 KIK222
Bradenton KI3474
Brooksville KIA6BO
Bushnell KFT238
Campbellton KIR486
Chattahoochee K GP789 KI1794 KIN318 KJI430
Crestriew KIA285
Cross City KIB472
Daytona Bch. KGT619 KGW783
Deland KIB483
Eastpoint KJF24
Everglades KFN560
Ft, Lauderdale KIM776
Ft. Myers KIB481
Gainesville KAV733 KJY745
Havana KBZ941
Hiahland City KIB480
Inglis KCR971
Jacksonville KBV731.4 KFN559 KIB485 KIW246 KLJ286 KLP926
Lake Butler KGW698
Jennings K| Ros20
Lake City KIE486
Lake Placid KGTbI7
Lakeland KTU90
Leesburg KEY959
Live Oak KIV747
Lowe!I KBE342
Madison KGTEI8
Marathon KID533 KIW586
Marianna KIB490 KIM752
Melbourne K18484
Miami KBX376 KFS997 KIW978 KLU468
Monticello KIR487
Naples KLG645
Ocala KIB49I KIW904
Okeechobee KBE343
Orlando KIC854 KJN747
KLJ285 KYH38
Pahokee KIB479
Palatka KIB47I
Panama City KIC734
Pensacola KGJ672 KIB473 KLP923
Perry KIW553

Pinellas Pk. KIM939
Quiney KBQ738
Raiford KIJ666
St. Augustine KID680 KLW285
Sarasota KGV216
Starke KIP346
Sunshine Skyway KIJ281-2
Tallahossee KCO299 KFX230
KFY387 KIL349 KIW304 KLK645 KLP924
Tampa KFY412 K1B487 KLJ287 KLP928 KTU89
Tavernier KIS435
Wausau KIV748
W. Hollywood KLP929
W. Palm Beh. KHM80-I

KIB482 KJ B875 KLP927
Winter Garden KIW977
KLP925 KYH39
Yeehaw KID295
Yulee KIQ722
portable KID490 KFJ963

TURNPIKE AUTHORITY

Channels/Stations:
155.37 KFI 592 KIM 778
156.18 KAU728 KCW688-90

KDY446-8 KFF376 KIM285-8 KIM291-2 KIM295
156.24 KAU728 KCW687 KDJ442 KFI513 KGY296 KIM283-4 KIM289-90 KIM293.4 KIY284
159.12 KCWb80.6 KCY2II K1M274 KIM276 KIM279 K1M281-2 KLD822
159.18 KCW 680.6 KCY2 11 K!M275 KIN1277-8 KIM280 KIM283 KLD822
(UHF: 453.575453 .625 453.675 453.725)

Locations/Stations:
Boca Raton KIY284
Broward Co. KDY446 KIM284 KIM287-8 KIM293 KIM295
Dade Co. KIM 289
Ft. Pierce KCY21! (+ UHF)
Jupiter KIM274
Kenansville KCW684
Kissimmee KDJ442
Lake Co. KCW680 KLD822
Lake Worth KIY283
Martin Co. KIM280-1
Okeechobee KCW690
Orange Co. KCW689 KGY296
Orlando KCW681-2 KFI592 (+ UHF)
Osceola KCW683 KCW686
Palm Bch. Co. KDY448 KIF513 KIM275 KIM277 KIM282-3 KIM291-2
Pompano Bch. KAU728 KIM294 (+ UHF)
St. Lucie Co. KDY447 KIM285-6 KIM290
Sumter KCW6B7. 8
Vero Bch. KCW685
W. Palm Bch. KIM276 KlM778

*SERVICE/USE CODES:

AV Aviation Authority
CD Civil Defense
FD Fire Department
HA Housing Authority LG Local Government MC Mosquito Control PA Port Authority
PD Police Department PI Bur. Public Instruction PW Fublic Works
RB Roads \& Bridges
SO Sheriff's Dept.
ZC Zoning Commission

COUNTY OPERATED UNITS

ColCity * Call MHz_{2}

Alachua Co.. Gainesville SD KIA 305 I 54.83
SD KIA305 154.95
Bay Co., Panama City SD KIL237 37.30 LG KDR436 154.965
Baker Co.. MacClenny
SD KIC740 154.725
SD KIC740 154.95
Bradford Co., Starke
SD KIG514 154.95
LG KFK524 153.92
Brevard Co., Cocoa
SD KIB675 154.89
SD KIG499 154.89
LG KIW652 155.715
LG KCS26 158.94
LG KDA72-3 158.94
LG KSZ75 158.94
HA KGL494 453.15
Eau Gallie
LG KDA7I 158.94
LG KDG21 158.94
LG KHJ40 158.94
Melbourne
LG KFM333 155.715
LG KBX89 158.94
LG KEX35 158.94
Merritt 1.
LG KDG22 158.94
LG KUX37 158.94
Palm Bay
SD Kll346 154.89
LG KDA69 158.94
Rockledge
LG KFX275 155.865
LG KES99 158.94
Titusville
LG KGT517 155.715
LG KBS75 158.94
LG KDA70 158.94
LG KDG20 158.94
LG KEX34 158.94
LG KRT69 158.94
Broward Co., Dania LG KFW71' 153.755
Ft. Lauderdale SD KIG937 154.71 SD KIG937 154.83
SD KIP442 154.71
SD 155.46
LG KFW70/2 153.75:
LG KBR500 453.95
PA KAS436 156.00
CD KDG742 | 58.775
W. Hollywood

SD KIP441 154.71
Cathoun Co., Blountstown SD KIK958 37.30
Charlotte Co., El Jobean SD KIZ201 45.90
Punta Gorda
SD KIJ289 45.90
SD KEV432 155.10
SD KLU232 155.56 !
SD KND53 158.97
Citrus Co.. Homossasa Sp. LG KDK기 158.94
Inverness
SD KID654 45.14
LG KDN937 155.10
Lecanto
LG KBU680 155.10
Clay Co., Green Cove SD KIF637 154.95
Keystone Ht .
SD KFK678 154.95
Orange Pk.
SD KGJ761 154.95
Collier Co., Immolakee SD KIN850 46.02 SD KCS22 158.88
Miles City
LG KBG767 155.82
Naples
SD KIJ601 46.02 SD KCS23.4 158.88 LG KLS459 $158 . \mathrm{B}_{2}$
Columbia Co., Lake City SD KIF433 154.95

DeSoto Co. Arcadia SD KiC372 46.02
Dixie Co.. Cross City SD KIP485 155.85
Duval Co. Jacksonville SD KJH224 453.30 SD KJH224 453.35 SD KJH224 453.40 5D KJH224 453.45 SD KVL97 458.30 SD KVL97 458.35 PI KBE489 | 55.76 LG KEM616 155.82 LG KGT622 155.82
Escambia Co., Century SD KJV49 154.83
Gonzalez
SD KIN947 159.15
SD KDK716 159.18
SD KCK315 155.82
Pensacola
SD KIW42 154.83 CD KBC767 |55.28 P1 46.52 LG KTX88-9 155.88
Flagler Co., Bonneli SD KIC520 154.95
Franklin Co., Apalachicola SD KIP556 37.30
Gadsden Co., Quin=y SD KIK393 37.30
Gilchrist Co., Trenton SD K11347 154.95
Glades Co.. Moore Haven SD KJD852 27.265
Gulf Co., Pt. St. Joe SD KIH759 37.30
Hamilton Co., Jasper SD KIL452 155.58
Hardee Co., Wauckula SD KIG805 45.58 SD KCN356 155.0^{4}
Hendry Co., LaBelle SD KIL246 155.595
Hernando Co., Brooksville SD KIF340 45.14
Highlands Co., Sekring SD KIC938 46.02
Hillsborough Co.., Plant City PI KET51 158.94
Tampa
SD KIB660 154.785 SD KGY286-7 453.30 SD KCW733 453.35 SD KOO 35.7458 .30 AA KLD747 453.40 PI KCV405 154.98 PI KET52-5 158.94 SD KIB660 155.19
LG 453.475
Holmes Co.. Bonifay SD KIK982 37.30
Indian River Co., Vero Beach SD KIT743 155.565 RB KIO919 45.64 MC KJS853 46.56
Jackson Co., Marianna SD KIA62| 37.30
Jefferson Co., Monticello SD KIK947 37.30
Lafayette Co., Mayp
SD KIH796 155.13
Lake Co. Tavares SD K18853 39.86
LG KFT570 45.40
Lee Co. Ft. Myers
SD KIC303 45.98
SD KBK529 155.655
SD KLE380 155.655
SD KHI52-4 158.9]
SD KBA483 158.82
LG KBT90-1 153.86
LG KFM24 153.86
LG KNP83 153.86
LG KYT40 153.86
LG KEB73 153.86
LG KGK538 453.15
MC KIX496 158.76
Ft. Myers Beh.
SD KHI55 158.91
Lehigh Acres
SD KNF98!58.91
Sanibel
SD KHQ34 158.91
Leon Co., Tallahassee SD KIH616 37.30

WHITE'S EMERGENCY STATIONS

Levy Co., Bronson
SD KIF638 154.95
iberty Co., Bristol
SD KIK959 37.30
Madison Co., Madison SD KIS862 155.61
Manatee Co., Bradenton SD KIG803'155.79 LG KEW970 154.025
Marion Co., Ocala SD KIB649 155.07 SD KIB649 154.95
Martin Co., Salerno
LG KDK790 155.085
Stuart
SD KIB437 154.86 LG KCR24| 155.085
LG KDO264 155.085
Monroe Co., Key West
SD KIG769 45.10
$\begin{array}{ll}\text { LG KDW87 } & 154.98\end{array}$
LG LCL210 158.76
Marathon
SD KIW586 45.10
LG KCL208 158.76
avernier
SD KIS435 45.10
LG KDW88 154.98
LG KCL209 158.76
Nassau Co., Boulougne
LG KD123 153.845
Bryceville
LG KD I22 153.845
Callahan
LG KDI26 153.845
LG KHW94 153.845
SD KJE209 45.70
Fernandina B.
SD KIB712 45.70
LG KGK611 158.775
LG KDI25 153.845
LG KD $127.8 \quad 153.845$
$\begin{array}{lll}\text { LG KHW90-3 } & 153.845\end{array}$
Hilliard
LG KDI20.4 T53.845
LG KHW96 153.845
Yulee
LG KHW95 153.845
LG KGK610 158.775
Okaloosa Co. Crestview
SD KIF502 37.30
Okeechobee Co.
Okeechobee
SD KIB703 158.73
LG KFG496 46.54
Orange Co., Orlando SD KIN201 154.65 SD KIH341 154.74 LG KFK532 155.055 PI KAT550 155.82 ZC KIY433 158.76
Winter Garden
SD KJF202 154.65
Osceola Co.. Keenansville SD KII832 155.25
Kissimmee
SD KIK983 | 55.25
SD 465.375
St. Cloud
LG KJB222 155.025
SD 460.375
Palm Beach Co.
Beile Glade
SD KJB872 45.60
SD KCC96 154.725
LG KGY529 453.25
Lake Worth
LG KJI545 153.905
Palm Beach
SD KLJ220 155.565
W. Palm Beach SD KLK539 155.565 SD KIW388 45.60 SD KCA68 154.725 SD KAPB7 154.845 SD KCN975 155.25 SD KDG229 155.25 SD KIS457 I55.25 LG KAX583.4 153.80 LG KCW719 453.25
Pasco Co., Dade City SD KIB662 45.14 LG KRQ89 153.845
lacoochee
SD KIZ532 45.62
New Pr. Richey SD KID654 45.14
LG KRQ36 153.845
San Antonio
LG KFG473 158.895 LG KLR476 453.15
Pinellas Co. Clearwater SD KIQ88i 155.64 SD KIQ881 156.09 SD KIR525 158.76 LG KIR823 153.80
St. Petersburg SD KIG503 155.64 SD KIR621 158.76 SD KHW66 154.755
St. Pete Bch. SD KCZ857 155.64 SD KDB395 158.76
SD KYA6O 154.755
Polk Co., Bartow SD KIA730 155.595 SD KIA730 155.70 LG KEP584 158.805
Putnam Co. Crescent City SD KIC759 154.95
E. Palatka LG KFF304 158.835
Palatka
SD KIL759 154.95
SD KIL759 155.55
St. Johns Co., Ponte Verde E. SD KDZ462 39.50
St. Augustine
SD KIC244 39.50
LG KCR886 158.745
St. Lucie Co., Ft. Pierce SD KIN499 155.79 SD KNI24 155.85 LG KBA750.1 155.82
portable
LG KFZ829 155.82
Santa Rosa Co., Milton SD KIA279 45.22
Sarasota Co. Sarasota SD KDY $327^{\prime \prime}$ |55.43 SD KIB685 155.43
SD KGV55 159.03
Seminole Co., Sanford SD KIG992 154.95 SD KIG992 155.535 LG KAV735 153.815
Sumter Co., Bushnell SD XIB405 45.14
Suwanee Co.. Live Oak SD KIL288 45.22

Taylor Co., Keaton Bch.

 SD KBJ639 37.30Perry
SD KIL238 37.30
Steinhatchee
SD KUT274 37.30
Union Co., Lake Butler SD KIH947 154.95
SD KJI355 154.95
Raiford
SD KEL4I8 154.95
Volusia Co., Daytona Bch. SD KIT657 154.95
LG KBU993-4 155.88
MC KJZ916 153.955
CD KLP872 37.26
Deland
SD KIB94। 154.86 SD KIB941 154.95
Holly Hill SD KIC281 154.95
New Smyrna B. SD KEL388 154.95
Ormond Bch. LG KBU995 155.88
Smyrna Bch. MC KJZ915 153.985
Wakulla Co., Crawfordville SD KiL2I8 37.30
Walton Co., Se. Funiak Sp. SD KIE933 37.30
Washington Co., Chipley SD KIL238 37.30

FLA. MUNICIPAL AGENCY STATIONS

City

Apalachicola
PD KIL595 |55.43
Apopka
PD KIY379 |55.01
FD KDC925 154.43
Arcadia
PD KIP567 45.94
LG KDF608 46.54
Atlantic Bch.
LG KCN848.9 154.10
Auburndale
PD K11612 155.07
LG KCW693 154.04
Avon Park
LG KDO295.6 155.94
Bartow
PD KIA766 155.31
FD KDA73! 154.385
Belle Glade
PD KIB440 |56.21
LG KlY425 155.04
Boca Raton
PD KIR95। 155.52
FD KBR98। 154.40
LG KIR65। 155.82
Boynton Bch.
PD KIP849 155.61
FD KDJ435 154. 145
FD KDJ435 153.95
LG KBO563 155.10
Bradenton
PD KID220 37.10
FD KBV800 154.37
FD KBW827-8 154.37
FD KDB431 154.37
FD KIR872/4 154.37
Brooksville
PD mobiles 45.14
LG KGR26। 45.20
Cape Canaveral
PD KCP602 155.64
Chattahoochie
LG KDS637 154.055
Chipley
LG KLP977 155.745
Clearwater
PD K11631 154.725
PD K11631 155.01
FD KDF524 154.28
FD KDF524 154.40
Clermont
LG KCR263 153.86
Clewiston
PD KFM460 154.785
LG KIV830 154.04
Cocoa
PD KIW494 155.19
FD KCT610 154.16
FD KFF217:54.16
FD KIY376 154.19
LG KJY676 153.905
Cocoa Bch.
PD KIW493 155.97
FD KDU528 154.13
FD KFN642 154.13
LG KCY201 154.98
LG KFN637 154.98
LG KIZ614 154.98
Coral Gables
PD KIC792 158.79
PD KAS745 155.04
PD KIH45I 458.05
Crestriew
PD KIK493 155.31
Dade City
PD KIM684 45.22
FD KJC942 27.265
LG KDN612 45.44
Dania
PD KIX348 155.55
LG KDN547 155.865
Daytona Bch.
PD KIA218 155.25
FD KCY227-9 154.175
FD KCY617 154.175
FD K1H757 154.175
LG KEO325 153.98
LG KET384 154.04
Deerfield Bch.
PD KIM223 159.21
FD KCO323 154.325
LG KBK410 158.94

Deland
PD KIB935 158.85
FD KIJ637 154.22 Delray Bch.

PO KIB461 155.07 FD KCR882 153.95 FD KFV797 154.19
FD KFV797 154.265
$\begin{array}{llll}\text { FD KIH757 } & 154.205 \\ \text { FD KIH }\end{array}$
LG KIR950 158.88
Dunedin
PD KDP4I9 155.58
LG KBA460 155.94
Eau Gallie
PD KFB937 155.37
FD KCU272 154.16
Englewood
FD K!P537 46.06
Eustis
PD KIC897 39.92
LG KCX432 45.52
Fernandina B.
LG KBR640 I55.10
Ft. Lauderdale
PD K1B713 155.13
PD KJU894 155.31
PD K18713 155.97
FD KII907 154.22
FD K11907 154.37
FD KIQ233 154.25
FD KBQ620 154.37
FD KDV689 154.37
FD KDV690 154.37
FD KEX270.1 154.37
FD K1P447 154.37
FD KIZ241 154.37
FD KJU867 154.37
LG KEW949 153.815
LG KEW968 153.92
LG KIY387 153.92
LG KIW638 154.10
LG KJJ559 155.085
Ft. Meade
PD KIF954 155.85
LG KDK754 155.88
Ft. Myers
PD KIA407 155.535
LG KIU233 153.92
FD KBS981-2 154.43 FD KBS981.2 154.325 FD KDZ502 154.325
FD KFX387 154.325
Ft. Pierce
PD KIA929 159.21
PD KJB965 155.94 FD KBY738-9 154.22 FD KEU991 154.22
FD KEW960 154.22 LG KIV367 158.82 LG KJB965 158.955
Ft Walton B .
PD KAQ276 155.49 IG KAR456 155.94
Frostproof
LG KFB998 158.745
Gainesville

- PD K18903 156.03

PD 460.025
PD 460.125
PD 460.275
$\begin{array}{ll}\text { PD } 460.375 \\ \text { FD KCT624 } & 154.40\end{array}$
LG KCQ279 155.04
LG KJR281 453.50
LG KJR281 453.75
Green Cove S.
PD KIF496 155.19
LG KDP316 155.895
Gulfport
PD KIT275 155.37
PD KDQ260 153.965
Haines City
PD KIG993 | 56.45
LG KDK639 155.10
Hallandale
PD K11425 158.85
LG KGR266 154.98
LG KDG245 154.98
Hialeah
PD KIG578 154.77
FD KBW804 154.07
Holly Hill
PD mobiles 155.25
LG KEP597 |54.115
FD KDG847 154.22
Hollywood
PD KiB746 155.91

PD 460.07
PD 460.175
PD 460.225
PD 460.275
LG KIS598 153.98
LG KYR50-1 155.805
FD KCW 385-7 154.13
FD KFB886 154.13
FD K 10294154.13
LG KJP297 153.875
LG KRP93-5 155.835
Jacksonville
PD KAY870 155.67
PD KAY870 158.73
PD KIB246 155.67
PD KLU234 155.67
PD KHJ26 155.91
PD KFM493 158.73
PD KLU340 158.73
PD 153.755
PD KJW779 453.05
PD KJW779 453.10
PD KJW779 453.15
PD KJW779 453.20
PD KIZ478 453.55
FD KIL436 33.74
FD KLI995 154.355
FD KIB306 154.445
Jacksonville Beh.
PD KIB708 159.21
LG KIS439 158.82
Key West
PD KIB564 155.43
FD KCZ471 154.13
LG KFX 37545.56
Kissimmee
PD KIA290 158.97 LG KCR280 158.835
Lake City
PD KIB433 155.01
FD KIF863 154.37
LG KDK755 154.10
Lakeland
PD KIA275 460.225
PD KIA275 480.40
PD KIA 275460.45
PD KIA275 460.50
FD KIF995 154.19
FD KEY939 154.295
FD KEY939 154.325
PD KDL888 39.06
PD KDL888 45.28
Lake Park
PD mobiles 155.85
FD KQC284 154.19 LG KDN549 155.955
Lake Wales
PD KIC842 155.43
FD KDX377 154.145
LG KDF586 153.86
Lake Worth
PD KIA608 155.43
FD KDG814 154.235
LG KIR625 1S5. 76
Lantana
PD KFX404 155.37
PD KFV944 155.145
FD KJB981 153.95
FD KJB98I 154.265
Lapao
PD KFO947 156.03
Leesbura
PD KIB533 155.49
LG KAU282 158.82
Live Oak
PD KIK696 155.07 LGKDL946 155.10
MacClenny
LG LAW757 158.76
Madeira Bch
PD K11277 i59.09 PD KBX937 158.88 PD KDP294 158.88
Madison
PD KIM606 155.61 LG KDU471 155.88 LG KEY938 155.88 Maitland
PD KJJD290 I55.625
FD KJU38: 154.40 FD KJU381 154.43 LG KIV963 155.94
Margate
PD mobiles 154.71
FD KJN777 154.25
Marianna
PD KIB312 155.07 LG KDV395 155.04

Meibourne
PD KIA477 158.79
FD KJU247 154.16
Merritt I.
FD KCT608 154.16
Miami Spgs. PD KAT759 155.67
Milton
LG XIY43I 158.76
Miramar
PD KAT794 156.15 LG KCV353 155.775 LG KJU317 155.775
Mt. Dora
PD KIC5II 39.82 LG KDK66। 158.955
Mulberry
PD KCY559 155.37 PD KBF850 155.76
Naples LG KIV649 155.76 FD KJW 439155.145
Neptune Bch. LG KFG570 154.10
New Pr. Richey PD KBG76| 155.37 PD KJY826 27.245 PD KJY826 27.275
New Smyrna B . PD K18401 154.95 FD KGK652 46.08 LG KEW984 45.60 LG KIQ922 45.60 LG KIQ922 154.115
No. Miami
PD KBD928 155.67
No. Miami Bch. LG KBG784 453.40
No. Palm Beh PD KIW583 156.09
Oakland Pk.
PD KIP604 155.73 LG KAY226 155.94
Ocala
PD KIBE20 155.61
LG KDZ433 154.085
Ocoee
PD KLO220 155.37 PD KDP978 154.10 PD KFD636 154.10
Orange Pk.
LG KCI595 154.995
Orlando
PD KGV239 154.80 PD KGV239 | 55.13 PD K18287 155.13 PD 460.05
PD 460.10
PD 460.40
PD 460.45
FD KIB5்73 153.89
FD KIB573 154.43 FD KDG891 154.43
Ormond Bch. PD KIG623 155.31 PD KIL303 155.31 LG KDG243 156.00
Pahokee
PD KIB542 155.31
Palatka
PD KIC997 155.43
FD KIS622 154.19 LG KiY385 153.80
Palm Bay LG KGP718 155.805 FD KFK533 154.16 FD KLP895 154.16
Palm Bch.
PD KDN4I8 153.755
PD KIA405 155.01
FD KDP761 154.265
FD KDP761 154.34 $\begin{array}{llll}\text { FD KDL836 } & 154.34\end{array}$ FD KFA465 154.34 FD KLL578 154.265
Palmetto
PD KAV264 159.15 FD KIR873 154.37 FD KUA785 154.37 LG KDU544 154.965
Palm Sprgs.
PD mobiles 155.43
PD KGW805 155.37
PD KGW804 154.965
Panama City
PD KIB396 158.79
LG KIR752-3 158.82

Pensacola
PD K1B775 155.61
PD KHI26 158.91
FD KIC237 154.37
FD KIL. 568154.43
Perry
PD KIK255 154.65
LG KDU470 153.98
Finellas P_{k}.
PD K|l218 155.07
FD KIZ365 |54.145
FD KIZ365 154.34
LG KIW274 |55.88
Plantation
PD KBT212 155.07
PD KGK733 155.055
FD KCR272 154.445
Plant City
PD KIB648 155.67
LG KDT306 155.805
Fompano Bch
PD KFA $462 \quad 159.09$ PD KIS855 159.09
LG KIV402 154.04 LG KFB853 154.04 FD KCJ683 154.25 FD KFF322 154.25
FD KFR642 154.25
Punta Gorda
PD KII $85!155.625$ LG KFF400 155.88 LG KDL919 155.88
Quincy
PD KIB807 154.845
LG KDC298 154.98
Riviera Bch.
PD KIG373 155.85
FD KLO377 154.265
LG KB1972 153.875
LG KDA350 | 56.015
Rockledqe
PD KFT464 155.115
FD KFV933 | 54.16
FD KJU248 154.16
St. Auqustine PD KIER04 159.15 LG KDG228 158.94
St. Cloud
PD KIQ577 155.655
LG KIR225 155.76
St. Petersbura
PD KIA439 155.91
FD KJY886.7 46.12
FD KIB305 154.07
LG KIW306 158.82
LG KDT292 453.20
LG KGU82 458.20
LG KGV51 458.20
LG KYT49 458.20
LG KGU8। 458.20
Sanford
PD KIB373 : 54.77
PD KIQ770-I 154.77
FD KIQ772-4 154.43
LG KIS54B 45.56
Sarasota
PD KIB747 154.815 FD KDE709 46.06 FD KGY208 46.06 FD KIP536 46.06 FD KIP536 46.16 FD KIP708 46.06 FD KIX767 46.06 FD KIS545 154.31
LG KIW705 154.10
Sebrina
PD KIK672 154.77
FD KBE479 154.34
LG KB197| 154.055
Springfield
LG KDE652 155.835
Starke
LG KAQ937 155.94
Stuart
LG KBG813 154.98 FD KDO232 154.01 FD KIU805 154.01
FD KLL538 154.01

Tallahassee

PD KTA566 155.19 PD KCU41 |58.97 FD KFD550 154.19 FD KFK566 154.19 FD KFK689 154.19 FD KFK690 154.19 FD KIJ521 154.19 LG KIT565 155.76

Tampa
PD KIB459 155.97
PD KIB459 156.21
PD KBL389 453.05
PD KIB459 453.55
PD KIN998 453.60
PD KIB459 453.70
PD KIB459 453.80
PD KlB459 453.85
FD KFG601 154.175
FD KFG602 154.13
FD KFG602 154.175 FD KLO493 154.175
FD KLP737-8 154.175
FD KIA653 154.22
FD KIA653 154.43 FD KII455 154.43
farpon Sorgs. PD KIN847 155.49 LG KDN586 154.04
Tavares
PD K'DV737 39.82
Titusville
PD KDT228 154.725 FD KFT622 154.325 FD KLO469 154.325 FD KLO 470154.325 LG KAZ304 154.10
Treasure 1.
PD KIK968 158.79 LG KCZ535 153.875
Venice
PD KCN369 155.37 PD KBX502 154.04
Vero Beach
PD KIA7I3 155.67
FD KCN654 154.37
PW KCN834 !58.76
Wauchula
LG KIW215 45.64
W. Palm Bch PD KIC274 159.15 FD KBY362 153.95 FD KBY362 154.265 FD KBD558 154.43 FD KGT555 154:43 FD KIC278 154.43 FD KIF722-3 154.43 LG KGV370 45.32 LG Kiv709 45.44 LG KJR257 153.845
Wilton Mars. PD KIK250 I 55.46 PD KIK250 155.58
Winter Gran.
PD KIH456 155.79 PD KJA926 154.025 FD KFG498 154.355
Winter Haven PD KIB776 155.55 FD KDP97I 154.235 LG KIX704 155.895
Winter Park
PD K 1 B693 158.73
FD KDJ599 154.37
FD KCl492 158.88
FD KGT568 158.88
Zephyrhills PD KIN420 45.66

Next Issue
Emergency
Stations in
Lower California

Mathematics of Music

Continued from page 79

Beats. The throbbing or pulsating effects produced when two or more vibrational frequencies interfere with each other are called beats. Figure 10 diagrams how a beat is formed. The two dotted lines represent pure primary sound tones of slightly different frequencies.

Initially, the compressions and rarefactions of air, represented by the "waves," reinforce each other to produce a composite sound (solid line) of greater amplitude than either primary sound. But as the two primary tones drift out of phase, they oppose each other so as to create a short period of minimal amplitude, or even total silence. This is the beat. The phase shift then continues to again produce a period of reinforcement, followed by another beat, and so on.

The number of beats per second is equivalent to the difference in the frequencies of the two primary sounds. For example, frequencies of 256 and 254 Hz sounding together produce two beats per second.

In 1873 Professor H. von Helmholtz published his classic mathematical study of the nature of sound and music. Helmholtz had observed that a beat frequency of up to five or six per second produces a pleasing sound, but as the beat frequency increases above this level, the effect becomes increasingly unpleasant. When the beat frequency becomes so rapid that the individual beats cannot be distinguished (above 20 per second), the music still exhibits a dissonance generally termed "roughness."

As the beat frequency is increased even more, the roughness fades away until it disappears when a beat frequency equivalent to a minor third is obtained. The roughness reappears again only when the beat fre-

CYCLES

quency is close to the octave, and once more disappears when the octave interval is made exact. As any musician knows, octave notes must be played correctly or pronounced dissonance is immediately evident.

The beat effect is the basic cause of musical dissonance. But it should be noted that beats are often used to good effect as well. For example, beats are used to provide the so-called voix celeste of an organ; this is a soft tremulous tone produced by a labial stop of $8-\mathrm{ft}$. pitch. Before the advent of electronic instruments, piano tuners were dependent on beat phenomena when tuning pianos.

Much of the musical "quality" obtained when a number of musical instruments play together can also be attributed to beats. For example, it would be very easy to amplify the sound of one violin to make it as loud as ten violins. And yet it isn't done, even though this would reduce musician salaries considerably. Why? Ten violins can't be tuned to absolute perfection with each other which means that the slightly "incorrect" tunings lead to the production of beats which create a tonal quality not attainable with one violin incapable of beating against itself.

Overtones. Throughout the preceding discussions we have been concerned wholly with pure tones and combinations of pure tones. But musical notes as created by instruments or the human voice are not pure in a vibrational sense; they are in fact complex mixtures of related vibrational frequencies. For example, an instrumental A is not just a frequency of 261.7 Hz ; it is that plus many other frequencies called overtones. As will be apparent from Fig. 11, the various overtones of a fundamental can be calculated by multiplying the fundamental frequency by $2,3,4$, etc.

The components that make up a complex sound structure are called partial tones, or

FRACTION OF
ONE SECOND

Fig. 9. Best way to understand triad ratios is to view them in terms of what's actually going on during a given time period. Here, while note C goes through four cycles, E will go through five cycles, and G through six.

Fig. 10. Artist's representation of how beat is formed. Phase of iwo tones is basic here, since notes will tend to either reinforce or cancel one another.
simply partials. The fundamental is the partial having the lowest frequency; the higher frequencies are upper partials or overtones. When the frequencies of the overtones are exact multiples of the fundamental, the partials are called harmonics. When they are not exact multiples, they are called inharmonic partiuls.

Dissonance. An octave is a musical interval of the highest possible consonance, or to put it another way, an interval having the least dissonance. Why this should be so is made evident by Fig. 11. Compare the fundamental and overtone frequencies of the "low rate" (middle C) with those of the octave note C^{1}. Note that every frequency in the higher octave matches exactly some overtone of the low note. (The fourth octave overtone would match the 9th overtone of the low note.) If you accept the fact that the low note, C, would exhibit no dissonance if sounded alone, you can see that the addition of the octave C^{1} adds nothing that is not already present, and therefore cannot produce dissonance.

What about the beating effect between the overtones themselves? The smallest frequency difference is $262 \mathrm{~Hz}(524-262)$; this beat frequency is too high to produce a sensation of musical roughness or dissonance.

What happens when the higher note is lowered a semitone to produce an interval of a seventh? The situation is now very much different. Note one of the overtones of the seventh matches an overtone of the low note. Moreover, the difference between certain overtones is now much smaller. For example, the beat frequency between the seventh fundamental (494 Hz) and the first overtone of the low note (524) is 30 . This beat frequency is in the range that is most likely to produce dissonance. And facts confirm theory; the seventh is recognized as an extremely dissonant interval.

Now drop down to the fifth. Note that the first and third overtones of the fifth cor-
respond to the second and fifth overtones of the low note. This correlation is conducive to the consonance, or lack of dissonance, associated with muisical fifths.

The Surface Only. The mathematics of music as a whole-or even of a single aspect such as dissonance-is so complex that only the briefest introduction can be given here. But let's consider one more musical curiosity mainly to whet the appetites of those who think they might enioy delving deeper into this fascinating subject.

Study Fig. 12. Note that in the upper half of the chart all of the selected tone intervals have almost identical beat frequencies. Yet the fifth and major third are consonant, while the tone is dissonant and the semitone is even more dissonant. Why? Good question.

In the lower half of the chart a number of identical semitones ($\mathrm{C}=\mathrm{C}$) in different

DISSONANCE AND CONSONANCE FREQUENCY RELATIONSHIPS

	Low note	High note		
Octave	5th	7th		
Fundamental	262	524	392	494
First overtone	524	1047	785	988
Second overtone	785	1570	1178	1482
Third overtone	1047	2094	1570	1976
Fourth overtone	1309	2617	1963	2470
Fifth overtone	1570			
Sixth overtone	1832			
Seventh overtone	2094			

Note: all frequencies have been rounded to the nearest whole numbers.

Fig. 11. Dissonance and consonance frequency relationships between middle C and its various overtones. Underlines indicate frequencies having exact counterparts.

Mathematics of Music

Continued from previous page
octave ranges are compared. Observe that the beat frequency is lowest in the lowest octave range and that this produces the least amount of dissonance.

But it doesn't follow that the greatest amount of dissonance occurs in the octave range having the highest beat frequency. For the $\mathrm{C} \#-\mathrm{C}$ semitone at least, the greatest dissonance is observed in the octave range
producing a beat frequency of about 31 . Why? Another good question.

Intrigued? Then in all fairness, this warning. If you have enough curiosity to dig out the answers to these two questions, you'll almost surely be hooked forever by the mathematics of music-and not because it will help you play the piccolo any better. Perhaps it's because the arbitrariness of music adds a certain spice to the game of musical mathematics. Just when you're sure that two plus two equals four, you find that it actually equals 3.99 or 4.01 -and you want to know why.

CONSONANCE AND DISSONANCE IN RELATION TO BEAT FREQUENCIES				
Tone interval	Tones	Frequencies	Beat frequency	Sound quality
Fifth	$\mathrm{G}_{2}-\mathrm{C}_{2}$	98.0-65.4	32.6	Consonant
Major 3rd	$\mathrm{E}_{3} \mathrm{C}_{3}$	164.8-130.8	34.0	Consonant
Tone	D_{4} - C_{4}	$293.7-261.7$	32.0	Dissonant
Semitone	$\mathrm{C}_{5} \mathrm{~F}^{-\mathrm{C}_{5}}$	554.6-523.4	31.2	Dissonant (more than tone)
Semitone		1109.2-1046.8	62.4	Dissonant
Semitone	$\mathrm{C}_{5} \mathrm{E}_{5} \mathrm{C}_{5}$	554.6 - 523.4	31.2	Most dissonant.
Semitone	C.\#-C.	$277.3-261.7$	15.6	Dissonant
Semitone	$\mathrm{C}_{3} \mathrm{\#}^{-\mathrm{C}_{3}}$	138.6-130.8	7.8	Dissonant
Semitone	$\mathrm{C}_{2}{ }^{+} \cdot \mathrm{C}_{2}$	69.3- 65.4	3.9	Least dissonant

Fig. 12. Consonance and dissonance in relation to beat frequencies. Note that beat frequency itself apparently has little bearing on whether sound is consonant or dissonant.

New Products

Continued from page 18
dering heat with no danger of overheating. It continues at the lower wattage until a higher heat is required, then the relay cuts in again for as long as needed. Initial input is 180 watts and it operates at 40 watts. Heating elements may be changed without tools. Iron-plated or $1 / 8-\mathrm{in}$. plug-in tips are inserted by loosening one set screw, and you can match the tip to your job. Price is $\$ 9.95$ and more dope can be had from Wall Manufacturing Co., Kingston, N. C. 28501.

Neat Lil Radio

Heath Company has brought out a solidstate AM/FM table radio, the GR-48, a bargain at $\$ 39.95$ in kit form. The GR-48 has switchable automatic frequency control
(AFC) and $5-u \mathrm{~V}$ sensitivity. Automatic gain control on AM keeps the volume constant under varying signal strengths. There are built-in AM and FM antennas. The cabinet is avocado green with a color-coordinated grille. The dial is back lighted and all controls are front-panel mounted. There's a $3 \times 5-\mathrm{in}$. oval speaker. The circuit goes together on a single circuit board, and the AM/FM tuner is supplied factory-aligned.

Want to know more about the GR-48? Then drop a line to Heath Co., Benton Harbor, Mich. 49022.

Ask Me Another

Continued from page 17

volt heater which might work. You'll have to replace the five-in tube sockets with a seven-pin miniature type.

it The Skies Above Us

Continued from page 26
the sun, is being devoured by an evil monster. Very early in most civilizations throughout the world, the sun was assigned the position as the giver of all light and life. The Mayan priests in Yucatan recorded many solar eclipses over several centuries, including an annular eclipse on Aug. 17, 342 A.D., whose path crossed this same area where our eclipse of March 7 enters Mexico.

Only a dozen minutes after totality begins on the south coast of this thin part of Mexico, the umbra leaves the land and heads across the Gulf of Mexico toward western Florida. We'll follow it along the way, but here I should hold out some consolation to those who can't get away from home. This eclipse will be visible as partial, outside the path of totality, over all of North and Central America (except Alaska) and in South America down to a line from midPeru to Guyana (formerly British Guinea, if your map is an old one).

* Now, to get back to the umbra, it picks up speed across the Gulf and enters Florida east of Tallahassee at about $1: 16$ EST, at 1800 miles an hour; it is then only 85 miles wide and totality lasts 3 minutes 10 seconds. Into the southeast corner of Georgia it goes at 1:19 and along the coasts of that state and South and North Carolina, then leaping into the Atlantic around Norfolk at 1:36 p.m., with a speed of 2100 miles an hour, a path 80 miles wide and 2 minutes 49 seconds required to pass a given spot. As a last goodbye to the U.S., the umbra next barely touches the island of Nantucket at $1: 47$, but the speed is 2400 miles an hour and totality lasts only 1 minute 37 seconds.

Again the path lies over water, then there's a swift trip along the coast of Nova Scotia and across Newfoundland into the North Atlantic, where the tip of the shadow's finger leaves the earth about 600 miles south of Iceland, some two hours after first touching Mexico and about three and a half after the beginning out in mid-Pacific.
$\star \star$ As for observing this important event, a few words to the wise. First of all, when there is no total eclipse where you are, never look at the sun without protection (regular sun glasses are not protection). Welder's glasses, if you can see nothing else through them but the very brightest of lights, close
up, will be safe. But don't use Binocuitary or a telescope for viewing unless the filter covers the whole front end; at the eye-end, the concentrated heat of the sun will crack the filter. For two or three dollars, you can buy a \# 12 welder's helmet window, which is quite safe for naked-eye viewing (or again over the front of binoculars or a small telescope); these are usually about $2 \times 4 \mathrm{in}$. in size and can be cut into two squares. It's worth the investment.
\star A telescope or binoculars can be used to project an image of the sun, by holding a card several inches behind the eyepiece and focusing the sun's image sharply on it. In this way several eclipse viewers can watch at one time.

* When you are so fortunate as to be in the path of the total eclipse, use one of the techniques described above, both before and after the brief minutes of totality. But when the black lunar disk hides all the bright sun, leaving only the corona visible-that enormous outermost envelope of our startake all filters away and drink in the fantastic sight, for you may never see it again. Perhaps I can best hint at its appearance by quoting from my write-up of the only total eclipse I've ever seen-on July 9, 1945, from the village of Wolseley, Sask., to which I had flown 2000 miles and set up three tons of equipment in the hope of seeing and photographing the corona for only 34 seconds!
"I had read descriptions by scientists and popular writers and had looked at hundreds of photographs of the phenomenon. In other words, there was considerable preparation for what was to be seen. But there is no description and no pictorial representation that begins to express the awe-inspiring beauty of the sight! The sheer delicacy of the stuff of the corona was startling; the decided three-dimensional effect was a complete surprise. . . . The assembled villagers paid their tribute to the beauty of the corona with cheers and a great burst of applause at the reappearance of the sun and, for several minutes afterward, many of them were seen to be peering into the sky with looks of unbelief on their faces..."

If you can at all make it, get close to the center of the total path on March 7 and take a chance on the weather for the sight of a lifetime.

Operation Face-Lift

Continued from page 45
to have, yet not be excessively weighty. It's easy to work, and when sanded smooth and varnished or stained, becomes a very attractive piece of radio shack furniture.

Upright supports also can be $3 / 4-\mathrm{in}$. plywood. But take care to cut the edges square so they'll make neat, strong joints, with no wobbling or teetering when attached to the top of the platform.

Begin planning your platform by arranging your equipment on a table top in the position you'll want to arrange it on the platform. Measure side-to-side and front-to-back dimensions of the entire arrangement to determine the size of the top for the platform. Don't jam the cabincts tightly together when you do this--leave about $1 / 4-\mathrm{in}$. between adjacent units.

Next, decide what equipment you will want to install on the bottom side of the platform. Dimensions of this equipment will determine how high the platform should be above the tabletop. Ordinarily 4 or 5 in . is adequate, but it can be more than this if you have bulky equipment to place under the platform. Allow about $1 / 2$-in. above the highest item you intend to put under the platform-more if ventilation is needed for gear containing tubes.

Block That Sag. If the equipment on top is very heavy, you'll need at least one center support, cut to the same dimensions as the end supports, in the middle of the platform. These supports should be attached to the platform top with long wood screws and preferably also with angle brackets or scrap pieces of wood cut exactly square and attached inside at the corners. These are necessary to ensure that the supporting pieces remain square to the platform top, and to prevent the supports from working loose in future months as equipment is rearranged or removed for service or modification.

Attach the angle brackets with wood screws, and attach wood braces with both wood screws and wood glue.

Wood screws should also be used directly through the platform top into the supports, with glue applied to the joint before the screws are tightened. Use flathead screws, and countersink them slightly below the surface of the top and sides, then fill this space with Plastic Wood or other filler. When the
filler is dry, sand it smooth and finish with varnish or stain for a neat, professional-appearing job.

The end supports should be cut so they extend about 3 in . beyond the rear edge of the platform. This prevents the platform from being pushed tightly against the wall behind your operating bench;; it also allows space between the back of your equipment and the wall for cables and accessory plugs on the back of the equipment. What's more, it leaves room for you to reach back there to check connections and make adjustments without moving the platform and all the equipment on it. About 1 in . of the bottom corner at the rear end of these supports can be mitered off to allow space for line cords and other wiring.

Lagged And Anchored. If you wish to mount small equipment items permanently to the underside of the platform or to the side or center supports, this equipment can be attached with angle brackets or with sheet metal straps attached to the platform with wood screws. Alternatively, shelves can be made of $1 / 4-\mathrm{in}$. plywood or Masonite and mounted to cleats attached front to back on the vertical supports.

As you can see, the entire platform can be built in an evening or two, and it will add significantly to the enjoyment you receive from your radio gear.

When you get finished with your platform designed to your very own needs and taste, take a picture of it and send it off to the Editor. He'd like to see what you can do.

Magnetic Beam Balance

Continued from page 34
lightweight object? It's very simple-just place the object to be weighed on the weighing platform, being careful that it doesn't rub against the meter's face plate. Turn the power switch on and adjust the null control until the pointer, which has been forced down against the lower limit pin by the weight of the object, is just balanced in the middle of its excursion from minimum to maximum between the two limit pins. Take a reading on M2. Since there is a direct correlation between the weight of the object being weighed and the amount of current required to balance the pointer, the M2 readings can be converted directly to weight units.

Radio Astronomy by Mail

Continued from page 48

of numerous small hot spots and at least one large intense source of X-rays on the edge of the solar disc.

Says Meisel: "Hopefully the technique will prove as accurate in pin-pointing the major sources of intense X-rays as high altitude rockets and satellites, but without their high cost." The ultimate goal of the experiments is a better understanding of solar activity and its effects on Earth. Improvements in long distance radio communications would be one result of the identification, location and prediction of the major hot spots.

What will the hundreds of participants get from their efforts? A "thank you" card from Meisel, and the personal satisfaction of knowing that they have participated in a worthwhile research project.

All Was Not Well. A number of participants also learned, much to their chagrin, that the paths of research are not always smooth. For example, one participant was forced to terminate his monitoring abruptly because of a cry of help; turns out that he is a member of a "rescue squad" that was called into action during the height of the

ecplipse. Another participant reported his inability to monitor any station because his family strenuously objected to having the radio turned on at $4 \mathrm{a} . \mathrm{m}$. A Californian wrote cryptically: "Due to an exasperating set of circumstances beyond my control, I was unable to obtain any radio observations."

Perhaps the most revealing plaint came from a participant who did complete his monitoring, but under conditions of extreme hardship. He wrote (good naturedly): "Had I known that I was going to listen to two hours of Beatle records, I never would have started." And yet he might well have expected something like that since he had been asked to monitor a hot spot.

What Did That Bus Say?

Continued from page 63

another bus because this one has been so successful. He looks at the project from the standpoint of a passenger on that bus himself each day. "Traveling so many miles, so many days a week for so many hours, and so much land outside the window with scenery that is monotonous, would bore an adult, much less a child." Says Mr. Raine. "As a result of the program the children now fill in those lonely hours cramped together in a bus, by participating in a program that brings them all together in a common interest. They have an appetite for literature and other subjects now that they seemed not to have had before the installment of the tapes."

Ifyou like electronics-and are trapped in a dull, low-paying jobthe story of Eugene Frost's success can open your eyes to a good way to get ahead.
Back in 1957, Gene Frost was stalled in a low-pay TV repair job. Before that, he'd driven a cab, repaired washers, rebuilt electric motors, and been a furnace salesnan. Hed turned to TV service work in hopes of a better future-but soon found he was stymied there too.
"I'd had lots of TV training," Frost recalls today, "including numerous factory schools and a semester of advanced TV at a coilege in Dayton. But even so, I was stuck at \$1 50 an hour."

Gene Frost's wife recalls those days all too well. "We were living in a rented double," she says, "at \$25 a month. And there wete no modern conveniences."
"We were driving a six-year-old car," adds Mr. Frost, "but we had no choice. No matter what I did, there seemed to be no way to get ahead."

Learns of CIE

Then one day at the shop, Frost got to talhing with two fellow workers who were taking CIE courses... pre-
paring for better jobs by studying electronics at home in their spare time. "They were so well satisfied," Mr. Frost relates, "that I decided to try the course nyyself."

He was not disappointed. "The lessons," he declares, "were wonder-ful-well presented and easy to understand. And 1 liked the relationship with my instructor. He made notes on the work I sent in. giving me a clear explanation of the areas where I had problems. It was even better than taking a course in person because I had plenty of time to read over his comments."

Studies at Night

"While taking the course from CIE," Mir. Frost continues, "I kept right on with my regular job and studied at night. After graduating, I went on with my TV repair work while looking for an opening where I could put my new training to use."

His opportunity wasn't long in coming. With his CIE training, he qualified for his 2nd Class FCC License, and soon afterward passed the entrance examination at North American Aviation. "You can inagine how I felt," says Mr. Frost. "My new job paid \$228 a month more!"

Currently, Mr. Frost reports, he's an inspector of major electronic systems, checking the work of as many as 18 men. "I don"t lift anything heavier than a pencil," he says. "It's pleasant work and work that I fcel is important."

Changes Standard of Living

Gene Frost's wife shares his enthusiasm. "CIE training has changed our standard of living completely," she says.
"Our new house is just one example," chimes in Mr. Frost. "We also have a color TV and two good cars instead of one old one. Now we can get out and enjoy life. Last summer we took a 5,000 mile trip through the West in our new air-conditioned Pontiac."
"No doubt about it," Gene Frost concludes. "My CIE electronics course has really paid off. Every minute and every dollar I spent on it was worth it."

Why Training is Inmportant

Gene Frost has ciscovered what many others never learn until it is too late: that to get ahead in electronics today, you need to know more than soldering connections, testing circuits, and

"CIE training helped pay for my new house," "ame

Gene Frost was "stuck" in low.pay TV repair work. Then two co-workers sug. gested he take a CIE home study course in electronics. Today he's living in a new house, owns two cars and a color TV set, and holds an important technical job at North American Aviation. If you'd like to get ahead the way he did, read his inspiring story here.

replacing components. You need to really know the fundamentals.

Without such knowledge, you're limited to "thinking with your hands"
. learning by taking things apart and putting them back together. You can never hope to be anything more than a serviceman. And in this kind of work, your pay will stay low because you're competing with every home handyman and part-time basement tinkerer.

But for men with training in the fundamentals of electronics, there are no such limitations. They think with their heads, not their hands. They're qualified for assignments that are far beyond the capacity of the "screwdriver and pliers" repairman.

The future for trained technicians is bright indeed. Thousands of men are desperately needed in virtually every ficld of electronics, from 2-way mobile radio to computer testing and troubleshooting. And with demands like this, salaries have skyrocketed. Many technicians earn $\$ 8,000, \$ 10$,$000, \$ 12,000$ or more a year.

How can you get the training you need to cash in on this booming demand? Gene Frost found the answer in CIE. And so can you.

Send for Free Buok

Thousands who are advancing their electronics carecrs started by reading our famous book, "How To Succeed In Electronics." It tells of the many electronics carcers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you'd like to get thead the way Gene Frost did, let us send you this 44 -page book free. With
it we'll include our other helpful book, "How To Get A Commercial FCC License." Just fill out and mail the attached card.

If the card is missing, use the coupon below.

ENROLL UNDER G.I. BILL

All CIE courses are available under the new G.I. Bill. If you served on active duty since January 31, 1955, or are in service now. check box on reply card for G.I. Bill information.

\square En Cleveland Institute of Electranics

HEW

college-level career COURSE FOR MEN WITH PRIOREXPERIENCE IN ELECTRONICS

ELECTRONICS ENGI.

 NEERING . . . covers steady-state and transient network theory, solid state physics and circuitry pulse techniques, computer logic and mathematics through calculus. A collegelevel course for men already working in Electronics.| Cleveland Institute of Electronics
| 1776 East 17 th Street, Cleveland, Ohio 44114
Please send me without cost or obligation:

1. Your 44-page book "How To Succeed In Electronics" describing the job opportunities in Electronics today, and how your courses can prepare me for them.
2. Your book on "How To Get A Commercial FCC License."

L- - - - - - - - - - - - - -

BUILD 20 RADIO and Electronics Circuits

 PROGRESSIVE Cht KK"HOME RADIO GOURSE

Now Includes
$\star 12$ RECEIVERS

- 3 TRANSMITTERS
* SQ. WAVE GENERATOR - SIGNAL TRACER
* AMPLIFIER

SIGNAL INJECTOR

* CODE OSCILLATOR

\star No Knowledge of Radio Necessary \star No Additional Parts or Tools Needed \star ExCellent background for tv \star EGHOOL INCUIILES INVITED \star Sold In 79 Countries

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

The "Edu-kit" Offers you an outstanding PRACTICAL HOME RADIO couRSE at a Use of the most modern metnods of home tralning. You wil learir radio theory construc-
tion tracice and servicing. THis is A complere HADIO course in EvERY OETAIL. in you will learn servicing. THIS is A COMPLEGE HADIO COURSE IN EVERY OETAIL. In a prolessional manner; how to service radios. You will work with the witandard type of punched metal chassis as well as the latest develobment of printed circuit chassis.
rou wintearn the tjasic princibles of radio. You will construct, study and work with
RF and AF amplifiers and oscillators. detectors. rectifiers, test etuipment. You will and practice code, using the Progressive code Occillator. You will loarn and wil dearn troubleshooting, ushme the progresive Signal Tracer, Progressive signal injectoractice gressive Dynamic Radio \& Electronics Tester, Square wave Generator and the accomoanyYou will receive training for the Novice. Technician and General Classes of F.C.C. Radio Amateur Licenses. You will build Receiver. Transmitter, Square Waves Generatior, Code
Osciltator, Signal Tracer and Signal injector circuits, and learn how to operate them. You Absolutely no previous knowledge of radio or science is required. The "Edu-kit", is the product of many years of teaching and engineering experience, The "Edu-Kit" will
provide you with a basic "ducation in Electronics and Radio. worth many times the low

You do not need the stghtest background In radio or science. Whether you are inter: want an interesilimg hobby, a well paying wasiness or ajiols with a future, you will find the Many thousands of individuals of ali
ages and backgrounds nave successfully
used the . Edu Kit": more than 79 coun used the.. Edu-Kit" in more than 79 coun-
tries of the world. The "Edu-kit" has been carefully designed, step by step. so that you cannot make a'mistake. The "Edu-kit" allows you to teach yoursetf at your own
rate. No imstructor is necessary.

RROGRESSIVE TEACHING MEIHOD

The Frogressive Radio "'Edu-Kit" is the foremost educational radio hit in the world, and is universally accepted as the standard in the field of electronics training. The *otad: learn schematics, study theory, practice trouble snooting-all in a closely integrated tro:
gram designed to provide an easily-iearned, thorough and interesting background in radio. You begin by examining the various radio parts of the "Edu-kit." You then learn the function. theory and wiring of these parts. Then you bulid a simple radio. Witt this first set you will enjoy listening to regutar broadcast stations, learn theory, practice testing and rechniques. Gradually, in a progressive manner, and at your own rate, you will find yourself constructiny more advanced muiti-tube radio circuifs, and doins work like at professional Radio Technician.
Tracer, Square wave Generator course are Receiver, Transmitter, Code Oscillator. Signal Tracer, Square wave Generator and Signal Injector circuits. These are not unprofessional wirmg and soldering on metal chassis. plus the new method of radio construetion known

THE "EDU-KIT" IS COMPLETE

fou will receive all parts and instructions necessary to build twenty different radio and electronics circuits, each guaranteed to operate. Our Kits contain tubes, tube sockets, variable, electrolytic, mica, ceramic and paper dielectric condensers, resistors, tie strips; celnnium rectifiers, coils, volume controls and switches, etc.
In addition, you receive Printed Circuit materials. including Printed Circuit chassis, special tube sockets, hardware and instructions. You also receive a useful set of tools, a professional electric soldering iron, and a self-powered Dynamic Radio and Electronics in addition to F.c.C. Radio Amateut License training You will also receive lessons for semicing with the Progressive Signal Tracer and the Progressive Signal Injector, a High
Fidelity Gulde and a Quiz Book. You receive membersmip in Radio-TV Club. Free consultation Service. cerfificate of Merit and discount Privileges. You recetve all parts, tools, hon Service, Cerqificate of Merit and Discount Privileges. You recetve all parts,
instructions, efc. Everythino is vours to keep.

UNCONDITIONAL MONEY-BACK GUARANTEE
Please rush my Progressive Radio "Edu-Kit" to me, as indicated below:
Check one box to indicate choice of mode
Deluxe Model $\$ 3195$
New Expanded Model $\$ 34.95$ (Same as Deluxe Model plus Television Servicing Course)
Check one box to indicate manner of payment
I enciose full payment. Snip "Edu-Kit" post paid.
enclose $\$ 5$ deposit. Ship "Edu-Kit'" C.O.D. for balance plus postage.
Send me FREE additionat information describing "Edu-Kit.
Name
Addiess

PROGRESSIVE "EDU-KITS'" INC.
1189 Broadway, Dept. 558NN, Hewlett, N. Y. 11557

PRINTED CIRCUITRY

At no increase in price. the "Edu-Kit" now includes Printed Circuitry. You build a Printed Circuit Signal Injector, a unique servicing instrument that can detect many Radio and TV trouhles. This revolutionary becominnique of radio construction becoming
TV sets.

A Printed Circuit is a special insulated chassis on which has been deposited a con. ducting material which takes the ulace of wiring. The various parts are merely plugged in and soldered to terminals.
Printed Circuitry is the basis of modern Automation Electronics. A knowledge of this subject is a necessity today for anyone interested in Electronics.

[^0]: ElCO Canada Lid
 Weston, Ontaria

[^1]: SCIENCE AND ELECTRONICS is published B-monthly by Science \& Mechanics Publishing Co., a subsidiary of Davis Publications, inc. Editorial, business, and subseription offices: 229 Park Avenue South, New York, N.Y. 10003 . One-year subseription Isix issuesl - $\$ 4.00$; two-year subscription 112 issuesl- $\$ 7.00$; and three-year subscription (18 issues) - $\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canada. Advertising offices: New York, 229 Park Avenuo South, 212-OR 3-1300; Chicago, 520 N. Michigan Ave., 312-527-0330; Los Angeles: J. E. Publishers Rep. Co., 8380 Melrose Ave., 213.653. 5841; Atlanta: Pirnie \& Brown, 3108 Piedmont Rd., N.E., 404-233.6729; long isfand: Len Osten, 9 Garden Street, Greot Neck,' N.Y., 516.487 . 3305; Southwestern advertising representative: Jim Wright, 4 N. 8th. St., St. Louis, 314-CH-1-1965.
 EDITORIAL CONTRIBUTIONS must be accompanied by return postoge and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or photogrophs. All contributions should be addressed to the Editor, SCIENCE AND EIECTRONICS, 229 Pork Avenue South, New York, N.Y. 10003.

 Second class postoge paid at New York, New York and at additional mailing office. Copyright 1970 by Science and Mechanics Publishing Co.

[^2]: RECOMMENDED RECEIVERS FOR REJUVENATION
 Hallicrafters: S-40, SC-28*, SX71
 Hammarlund: HQ-120, HQ-129*, HQ-140XA*, SP-600* ("Super Pro" line)
 Military: BC-342*, BC-348*, BC-779, BC-794, BC1004, SP-600
 National: HRO-5, HRO-7, HRO-50*, NC-1830*

 * Indicates preferred types

