R-TABUIIEAL

eitetrances

THE RELIABLE

 SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET
ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4
01-622 0291/3

STEREOGRAM CABINET £19 An elogant 8tereogram cabinat in modern Veneered Mahogany and cloth covored Front Panal black leatherette side panels	17in.-£11.10.0 carr. 30/I 9 in. SLIM-LINE FERGUSON 24 gns.
Dimensions: $52^{\prime \prime} \times 17 \frac{1}{2}^{\prime \prime} \times 12^{\prime \prime}$. Speaker positions for Twin $10^{\prime \prime} \times 5^{\prime \prime}$ Speakers	TWO-YEAR GUARANTEE EX-RENTAL TELEYISIONS
	FREE ILLUSTRATED LIST OF TELEVISIONS I7"-19"-21"-23
SPEAKERS 6/6 $2^{\prime \prime}-75 \Omega .2 \frac{11^{\prime \prime}}{2} 35 \Omega$. P. \& P. $2 / 6$. ACOS MICS. 35/- STANDARD	
ACOS MICS. 35 /- STANDARD STICK MIC. 2gns. P. \& P. 3/6. ASSORTED CONDENSERS	Wide range of models SIZES AND PRICES demonstrations dally
ASSORTED CONDENSERS $7 / 6$ DEMONSTRATIONS DALLY	RECORD PLAYER CABINET
ASSORTED RESISTORS 10/- for 50. P. \& P. 4/6.	Cloth covered. Size $16!^{*} \times 141^{*} \times 8^{*}$ Takes any modern autochanger.
ASSORTED CONTROLS 10/- for 25. P. \& P. $7 / 6$.	SINGLE PLAYER CABINETS
TRANSISTORS MULLARD MATCHED OUTPUT KIT	15/6. P. \& P. 7/6.TRANSISTOR CASES 19/6.Cloth sovered, many colours. Size $9 \frac{1}{2} \times \frac{1}{2} \times 3 \frac{1}{2}$. Similar cases in plastic $7 / 6$.
9/- OC8ID-2 OC8I's. P. \& P. FREE.	two-year guaranteed REGUNNED TUBES
FERRITE RODS $3 / 6$ $6^{\prime \prime}, 8^{\prime \prime} \times \frac{3}{8}^{\prime \prime}$ complete with LW/MW COILS. P. \& P. FREE.	
DUKE \& CO. (LONDON) LTD. $621 / 3$ Romford Road, Manor Park, E. 12 Phone $01-4786001-2 \cdot 3^{\circ}$ Stamp for Free List.	

PHOTOELECTRIC KIT
 CONTENTS: 2 P.C. Chassis Boards, Chenicals, Etching Manual, Infra-Red Phototransiator. Itatehing Relay, 2 Transistors, Condensers, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, ete. In fact everything you need to build a modlted for modulated-light operation.
 39/6
 Postage and Pack. 2/6 (UK) Commonwealth:
 SURFACE MAIL 3/6
 AIR MAIL $£ 1.0 .0$ Australia, New Zealand S. Africa, Canada and U.S.A. Also Essential Data Cireuits and Plans for Building

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTEN TG: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Inira-red filter, projector lamp holder, building plans, performance data, etc. Price 19/6. Poatage and Pack.
1/6 (U.K.), Commonwealth: Surface Mail 2/-; Air Mail 8/-.
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit. Larger Lenaes, Filter,
etc. Price $89 / 6$. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail
etc. Price 29/6. P
2/6. Alr Mail $10 /$.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter
CONTENTS: Infra-Red Sensitive Phototransintor, 3 Transistors, Chassis, Plastic Case, Resistors, Screws, etc. Full Size Plans, Instructions, Data Sheet " 10 Advanced Photoelectric Designs'.
Price 19/6, Pottage and Pack. 1/6 (U.K.), Commonwealth 2/•; Air Mail 4/-.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenges, Infra-red Filter, Lampholder, Bracket, Plans, etc. Every thing (except plywood) to hulld 1 miniature invisible beam projector and photocell thing (except plywood) to hulld 1 minlature $\begin{aligned} & \text { recelver for use with Junior Photoelectric Kit. }\end{aligned}$
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Suriace Mail 2/-; Air Mail 4/-

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full details, a brief descriplion and Photographs of all Kits and all 30 Radio, Etectronic and Photoelectric Projects Astembled.

Justublished 1970

The 1970 edition of Lasky's famous Audio-Tronics catalogue is now available - FREE on tequest. The large tabloid size pages - many in full colour - are packed with 1000 's of items from the largest stocks in Great Britain, everything for the Radio and $\mathrm{Hi}-\mathrm{Fi}$ enthusiast. Electronics Hobbyist, Serviceman and Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi -Fi (including Lasky's budget Stereo Systems and Package Deals), Tape recording and Audio accessories plus LASKY'S AMAZING MONEY SAVING VOUCHERS WORTH OVER £25.0.0. All the goods shown in the
"Audio-Tronics" catalogue are available from any of our branches or by Mail Order to any address in the U.K. or Overseas - bringing the benefits of shopping at Lasky's to you in the comfort of your home. Thousands of customers have already received their copy of the "Audio-Tronics" catalogue don't delay -

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts or 15th April.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PE. 2), 34a Hereford Rd., London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

MONOLITHIC
 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The $1 \mathrm{C}-10$ is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

- SPECIFICATIONS

Size
Sensitivity
Input impedance
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold wit` a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR
IC. 10

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkable variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The snags are that one's needs can change and the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer what we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1. The Z-30 high gain power amplifier, an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ.5 and PZ. 6 power supplies. A compiete system comprises two Z-30's, one Stereo-60 and a PZ-5 or PZ-6. The PZ-6 is stabilised whilst the PZ-5 is not. The former should be used where the highest possible continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between PZ-5 or PZ-6 unless loudspeakers of very

Iow efficiency are being used.
In view of the very high performance of a system built with Project 60 modules, the cost may seem surprisingly low. There are two reasons for this: Firstly, we are the largest producers of this type of module in Europe and use highly efficient production methods. Secondly, you are not paying for a cabinet which you may not require anyway. All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet and templates provided enable you to position them. Only holes have to be drilled into the wood of the plinth and they are covered by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.
The system is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules for a comprehensive filter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These will be compatible with those shown here and may be added to your system at any time.

ADVANCED DESIGN MODULES FOR USE AS A TOTAL ASSEMBLY OR INDIVIDUALLY Z-30 TWENTY-FOUR WATT CONTINUOUS SINE WAVE POWER AMPLIFIER

The $Z-30$ is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z-30 is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a $\mathrm{Z}-30$ to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30 are covered in the Project 60 manual.

SPECIFICATIONS

Power output-15 watts continuous sine wave into 8 ohms using a 35 volt supply: 24 watts continuous sine wave into 3 ohms using a 30 volt supply.
Frequency response : 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: $\quad 0.02 \%$ total harmonic distortion at full outpot into 8 ohms and at all lower output levels.
$3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ inches
100 Kohm
Damping Factor:

STEREO SIXTY PReamplufer ano contral unt

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV : Magnetic Pickup-3mV: Ceramic Pickup -up to 3 mV : Auxiliary-up to 3 mV . - Output-1 volt.
- Signal-to-noise ratio-better than 70dB.

- Channel matching-within 1 dB .
- Tone Controls-TREBLE $+1510-15 \mathrm{~dB}$. at 10 KHz : BASS +15 to -15 dB at 100 Hz .
- Power consumption 5 mA

Ready for immediate installation
£9. 19s. 9d.

SINCLAIR POWER SUPPLIES

PZ-5

PZ-6 2-6

30 volts unstabulised-sufficient to drive two Z-30's and a Stereo 60 for the majority of domestic applications.

Price: f4. 19s. 6 d .
35 volts stabilised-ideal for driving two Z-30's and a Stereo 60 when very low efficiency speakers are employed.

AUDIO \& CINÉ FAIRS, STAND 95, OLYMPIA, OCT. 16-22

SINCLAIR Q. 16

new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair Q. 14 have been incorporated in the new Q. 16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, the new Q. 16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The Q. 16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of Q. 16 s in stereo and marvel at the standards of quality and clarity they give.

The Q. 16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$. with exceptional smoothness. A specially designed driver system is used in a sealed and contoured pressure chamber to ensure good transient response at all frequencies. Size: $9 \frac{3}{4}{ }^{\prime \prime}$ square $\times 4 \frac{3}{4}$ " deep from front to back.

£8.19.6

POST FREE

SINCLAIR MICROMATIC
 The world's most successful miniature radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separaticn much easier than with many larger sets. The plug-in magnetic earpiece which matches exactly with the output provides wonderful standards of reproduction. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclair customers.

 2亩kW FAN HEATER
Three position switching to suit changes in the weather. kW), suiteh fown for (a) heat $1: 1 \mathrm{~kW}$), switch central blows cold for summer cooling -adjustable thermostat acts ine auto control and siafety cut. out. Complete kit $\mathbf{E 3}$ 15.0. Post and ins. $7 / 6$

MINIATURE EXTRACTOR FAN

Beatutifully made by famous (iemman Company. PA Pst Aystem.
 merument conling but ideal to incorporate in it ruoker honel ete. $85{ }^{\prime}$ -

SPRING COIL LEADS as fitted to telephones 4 core $2 / 6$ each, 3 core $2 /$ -

QUICK CUPPA

Mimi Immersion Heater, 350 W $200 / 240 \mathrm{~V}$. Boils tuil cup in about two minutes. se any socket or lamp holder. Have at bedside for tea, baby's food, etc. 29/6; post and insurance 1/6. 12v

Be first this year!

 SEED AND PLANT RAISINGNoil heating wire and traus former. sultable for standard gize garden frame.
Post
and ins. $3 / 6.6$

Dynamic microphone 500 obm, operates speaker or microphone, so usefui in interconn or similar cirruits. 8/6 ea., e3.10.0 toz

Acos cryatal microphone. Adjustable atand cont serts this from hand mie. to desk mic. 19/6 ea.

ERGOTROL UNITS

These units made by the Mullard froup are for opprating ind controlling dic. butors and equipment from ale. smains. Thyrintors are used and these supply a variable d.c. resulting in motor speed controi and operating efficiency fir superior to most other methods.
The units are contained in wall mounting cabinete with front control panel on which are fuses-push buttons for 4 modelels are available thytistor firing control
 4 monels are wathahe-all are brand new in makers' cases: Model 2413 for up to 45 armpe 84710.0 Model 2415 for 10 to 10 amps 287.10.0 Note: $\mathbf{2 4 l 5}$ is a fibor mounting unit

16 RPM GEARED MOTORS

Minle by smith's Electrics, these are almonat gilent running, but are very powerful.
They operate from normal 240 V mains and the final shaft speed is $16 \mathrm{r}, \mathrm{p}$, r .
$9 / 6$, post dins. $2 / 9$.

$2 \frac{1}{2}$ in. MOVING COIL METER Meters are always being needed and they are jolly costly when you have to buy them in a offer: 2 fin. (3in,o.d.) fush mounting moving coil meters, $0-300 / 0-500$ or 0.1 amp sealed coil once the internal shunt is removed the f.B.d. is usually about 10 mA so you can make jt into almost anythirg by adding shunts or gerits resistors. These are Ex-W.D. of course but are unused and any nut perfect would be exchanged. Price only $12 / 6$ each plus $2 / 9$ post. 12 or thore Post free.

DON'T BUY ANOTHER BATTERY

Nickel Cadmium cells are rechargeable from the mains so it these replace the normal batteries in your radio and if you fit a battery charger to it be mains operated. Our outtit comprises in fact wave battery charger with high/low switch; (2) 9 V (approx.) 120mA hour battery stack: (3) full instructions for fitting. Price is 29/6 (less (han regular price of batery stack) plus 2,6 post and insurance.

Where postage is not atated then orlers over $£ 3$ are post frec. Below $£ 3$ add $2 / 9$. Semiconductors add $1 /$ - post. Over $£ 1$ post free. S.A.E. with enquiries please.

TRANSISTOR SET CASE
hery modern creanl cabi net, size $51-318 \mathrm{in}$.
with chrome hamdle, tun lug knoh ant scale. Price 8/8 plus $2 /-$ postage. Printed circuit boarit for this case 2/9.

5in. \times 5in. Printed Circuit Board Iteal for dozeny of projects. Heavy copper on $3 / 3 \geq \mathrm{in}$. theet. $1 / 6$ each or $15 /-$ per dozen.

FLEX CABLE BARGAIN

-3,006 triple core PTC coveres, circulatr, normally solil at $1 / 6$ yd. Our price. 100 yd . coil, 23.19.6. Post and insurance 6/6.

indicator Lamp

Panel mounting conaists of neon lamp in
red plastic lens with resistor in leals for mains operation. 2/8 each, 24/- per dozen.

HIGH CAPACITY

ELECTROLYTICS

Brand new, not ex equipinent.
$100 \mathrm{mfl} 25 \mathrm{t}, 1 / 3$ each, $12 /-\mathrm{doz}$
$100 \mathrm{mfl} 25 \mathrm{~V}, 1 / 3$ each, $12 /-\mathrm{doz}$.
200 mfil $25 \mathrm{~V}, 1 / 6$ each, $15 /-\mathrm{doz}$.
$1,000 \mathrm{mtd} 12 \mathrm{~V}, 3 /-$ each. $\$ 1.1 .0$ doz.
$1,000 \mathrm{mld} 12 \mathrm{~V}, 3 /-$ each, $21,10.0$ doz.
10,000 mfd $6 V^{\prime}, 5 / 9$ each, 83.0 .0 doz.
$10,000 \mathrm{mfd} 15 \mathrm{~V}^{\circ}, 8 / 8 \mathrm{each}, \mathbf{~} 4,10.0 \mathrm{doz}$.
$15,000 \mathrm{mfd} 10 \mathrm{~V}, 10 / 6 \mathrm{each}, 25,0.0 \mathrm{doz}$.
tho,000 nid $8 \mathrm{~V}, 82 / \mathrm{e}$ each, 210.0 .0 doz .
$70,000 \mathrm{mid} 13 \mathrm{~V}, 40 \mathrm{~F}$ - each, 220.0 .0 doz.
ELLIOT SEALED
CONTACT REED RELAY
Three circuite closed by 3 Ho or $100 \mathrm{MA}, 9 / 6$ ewh
3-CORE WATERPROOF FLEX
b.A, $33 / 0076$ circular PVC covered ity fitted to electric drills and riobt portable applatmee, ifeal price $79 / 6$ for 100 yard coil. Pout $6 /$ ti.

CRESCENT RADIO LTD.

(electronic component specialists)
For oll regular components try
40 Mayes Road, Wood Green, N. 22
For surplus components and equipment try II Mayes Road, Wood Green, N. 22

BARGAIN COMPUTER BOARDS
Assorted Components mounted on boards all with long tags. Ideal for breaking down and experimenting with. Take advantage of bulk purchase
i Board 2/- each
20 Boards
20/-
PRINTED CIRCUIT BOARD
8 . 6 inch One Sided Board .. 2/-each
TRANSISTOR RADIO PANEL Incomplete Min. Radio Panel; I.F.T.s; Transistors; Resistors: Capacitors: All for 2/-per panel.

COMPONENT BARGAINS
S.P. Flick Toggle Switch, $2 i n$. Dolly . . 3/6 each 250 V 2 amp. Toggle Switch 1/6 each 4 Pin Transistor Holders 6d, each Iin. Spun Aluminium Knobs, $\frac{1}{4}$ in 2/6 each Spindle
OCIS Power Transistor 5/- each Low Impedance Transistor Earpiece.. 1/6 each $2 \frac{1}{8}$ in 80 ohm Loudspeaker Continental Razor Adaptor Kit 100 mF 6 V d.c. Transistor Capacitor 5/6 each 100 mF 6V d.c. Transistor Capacitor.. 9d, each 500 mF 6V d.c. Transistor Capacitor . . 1/-each $6,800 \mathrm{pF}$ Mullard Capacitor 400 V d.c., 6 d . each

We have large stock of
Veroboard; Valves; Transistors: Loud. speakers: Auto-Changers: Recording Tape: Cable; Hi Fi
Send 1/6d for Our Cotalogue Postage with order please

ELECTRONICS (CROYDON) LTD

Dept. PE, 266 London Road, Croydon CRO 2TH
Alio 102/3 Tamworth Road, Croydon

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.
Ioft Mounting Ariass, 7 element, $40,-:$ 62 6. Wail Mounting with (- . 18 element, 6. 6 . Whant, $60-; 11$ element, 67,$6 ; 14$ element, 75 -: 18 element, 826 . Mast Mounting with
2in. clamp. 7 element. A2 $6 ;$ il element, is 14 element, 62 element, 18 element, 70 element, $3 \overline{3},-$; lountin, Chimnes Hountink irrass, Complete, 7 element, 9.- Complete assembly instructions with every unit. Low Loss state clearly channel number required on all orders.

BBC . ITV AERIALS

 External ITV (Band 3). 3 element loft array, $30-.5$ element, $40-$. 7 element, $50-$ Wall mounting, 3 element, so.-i 5 element, Loft ('onblined BBC ITV: Loft $1+3,40 /-1+5,50 /-; 1+$
$60 /-7$ Wall mounting $1+3$
$60,-; 1+5,70-;$ Chimne
 VHF
V.
H.
transistor

COMBINED HBCH-ITV-HBCツ NFIRI. ILS $1+3+9,70-1+5+9,80-1+5+14,90-$.
$1+7+1+100-10$.
 element, j76. External units ayailable. Co-ax. Cable, Md . Yd. Co-ax. plugs, 1 6. Outlet boxes, J^{-}Diplexer Crossoser Boxes, 17 6. C.W.O. or C.O.D.
P. \& P. $6 / 6$. Send til. stamps for illustrated lists. Send tol. stamps for ill
CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade
London Road, Mitcham, Surrey $01-6484884$

SOUND 70 International

CAMDEN TOWN HALL (opposite St. Pancras Station) LONDON

 MARCH 10-12 1970 - 10 am - 6 pm DAILY (Final day 10 am - 5.30 pm)
The only exhibition in Europe exclusively featuring

 Public Address \& Allied EquipmentSponsored by -
THE ASSOCIATION OF PUBLIC ADDRESS ENGINEERS 394 Northolt Road, South Harrow, Middlesex Telephone: 01-422 4825 or 864 3405/6

Let us give you the facts
From cover to cover Goodmans Manual is packed with fascinating articles on Stereo; a beginners guide to High Fidelity: Stage-built Systems: complete details of Goodmans High Fidelity Audio products. 28 pages you can't afford to miss . . . and it's yours FREE !

Please send me a free copy

Name.
Address

Axiom Works, Wembley. Middlesex. Tel: 01-902 1200 P.E. 3

peak sound $\boldsymbol{\Delta}$ englefield

developed out of the highly successful PW $12+12$ and now in complete kit form to save you still more

The Peak Sound Englefield is a system offering great flexibility whilst providing cost-performance ratios which have never been bettered in high fidelity. Here top-flight circuitry is housed in a cabinet of elegantly original styling which is both beautiful and completely practical front and back. Now we carry design standards further by offering a $12+12$ watt version completely in kit form. The resultant specification surpasses that even of the original PW $12-12$ which again was based on Peak Sound design. In this Englefield kit, printed circuit boards are supplied for you to mount the components on. Standards of input sensitivity and overload factor on all channels as well as filter performance are all improved. By giving you the satisfaction of building the Englefield this way, you save considerably and finish with a completely professionally styled instrument. Go to your dealer and start building now, or send direct for delivery by return in case of difficulty.

The specification that tells you every. thing (see guarantee)
Using two Peak Sound PA. 12-15's, driven simultaneously at 1 KHz from 240 V mains supply. Output per channel: 11 watts into 15!2: 14 watts into 8s: (see spec. guarantee). Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into $55 \Omega-0.1$
Input sensitivities: Mag. PU 3.5 mV . R.I.A.A equalized into 68 Ks . Tape, 100 mV linear into 100 Ks 2 : Radio, 100 mV linear into 100 Ks .
Overload factor: 29 dB on all input channels. Signal/noise ratio: 65 dB on all inputs. Vol. control at max.
Controls: Volume, Treble, Bass, Low-pass Filter.
Mono/Stereo: On/off; Balance
Complete kit of parts including cabinet assembly, knobs, transistors, well-prepared instructions and wire to length, colour coded, stripped at ends as well as built-in mains power supply (post free in U.K.)
£32.12.6
Englefield assembly as above, but in easy-to-put-together modules (post free in U.K.)
£38.9.0
Peak Sound ES10-15 BAXANDALL LOUDSPEAKER. Fantastic performance and value. Ideal with your Englefield. Cabinet size: 18 in - 12 in 10 in , natural teak finish. Ready built- $\mathbf{1 8} \frac{1}{2}$ gns. Parts available separately for building yourself with appreciable saving. Leaflet on request.

PEAK SOUND (HARROW) LTD., SAINT JUDE'S ROAD, ENGLEFIELD GREEN, EGHAM, SURREY

Egham 5316

\begin{tabular}{|c|c|c|c|c|}
\hline 1 +1 \begin{tabular}{ll}
1 \& 1 \\
\hline
\end{tabular} \& 1 \& \& \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(\star\) Experimenters module Brand new STC time
delay
elecrronic unics \\
 operated. Supplied com-
plete with uses and circuits STC Module
Price \(35 /-\). or 3 for \(90 /-\)
\end{tabular}} \& \multicolumn{4}{|l|}{15 l 16 PAGE BROCHURE COVERING LOW COST TEST EQUIPMENT ASK FOR PUBLICATION 'T' - REMEMBER IT'S FREE!} \\
\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\star\) SINE/SQURE WAVE AUDIO
GENERTOR}} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline \multirow[t]{3}{*}{} \& \& \& \& \\
\hline \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
\(\star\) LOW COSt Vacuum tube valve voltmeter \\
 \\
 \\
 smicls Complete with probe and hand \\

\end{tabular}}} \& \& \\
\hline \& \& \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
\(\star\) TRANSISTOR CHECKER \\
Complete capacity
for checking all tran \\
sistors npn and pnp
for alpha, bera and
Oeakage Alsodiodes \\
and ins with leads \\
Z@M
\end{tabular}}} \\
\hline \multirow[t]{3}{*}{} \& \& \& \& \\
\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \& \\
\hline \& \& \& \multicolumn{2}{|l|}{\(\star\) SIGNAL INJECTOR AND TRACER} \\
\hline \& \& \& \multicolumn{2}{|l|}{\begin{tabular}{l}
New model for checking all audio and \\
 \\
 \\

\end{tabular}} \\
\hline \& \& \& \multicolumn{2}{|l|}{} \\
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
\(\star\) 50,000 OHMS PER VOLT MULTIMETER \\
Recommended quality inssiru- \\
 \\
 \\
 \(\begin{array}{ll}\text { ance } \& 0 / 10 k \\ \text { Merer movement } \quad 20 \mathrm{~mA}\end{array}\) Complete weversing switch
\(\qquad\) leads and instructions. A
p.p. 2/6. Leather case \(28 / 6\) Price \(88,10.0\).

\end{tabular}} \& \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}}

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \multicolumn{4}{|l|}{}

\hline
\end{tabular}

HENRY's FAMOUS CATALOGUES-SEE BACK COVER FOR DETAILS

HHFI equipment to suit EVIRYPOKKT

ELECTRONIC ORGANS

+ MODERN ALL BRITISH TRANSIS. TORISED DESIGNS AVAILABLE AS Kits or ready bull
大 TEAK VENEERED CABINETS FOR
- 49 NOTE, 61 NOTE SINGLE MANUA DESIGNS ALSO TWO MANUAL 49 NOTE
$\rightarrow \underset{\text { REQUIRED }}{\text { KITS AVAIL }}$
CHP and CREDIT SALE FACILITIES

When in London call in and try for yourself

FREE 16-page organ brochure covering organs in kit form
and ready buitt-write or phone to ORGAN DEPT. Ask and ready built-

Brand New Fully Guaranteed TRANSISTORS \& DEVICES

rom ch A 		

Send for Free Copy of 1970 Transistor List (36) Today!
 HATHS BNOUN:
OVERA QUARTER OFA MILLION COPIES SOLD SINCE 1948
AERIAL HANDBOOK (second
edition)
176 pages, 144 illustrations. PRICE
(semi-stiff cover) $15 /-(16 / 6$ post free).
Cloth bound $22 / 6$ ($24 /$-post free).

CABINET HANDBOOK
112 pages, 90 illustrations. PRICE $7 / 6$ ($8 / 6$ post free). Semi-stiff cover. Cloth bound 15/- (16/6 post free).

AUDIO BIOGRAPHIES
344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound. PRICE 25/- (27/-post free).

MUSICAL INSTRUMENTS AND AUDIO
240 pages, 212 illustrations. Cloth bound PRICE $32 / 6$ ($34 / 6$ post free).

LOUDSPEAKERS

Fifth edition- 336 pages, 230 illustrations
Cloth bound. PRICE 30/- (32/6 post free)

A TOZ IN AUDIO

224 pages, 160 illustrations, Cloth bound PRICE $15 / 6$ ($17 /$-post free).

PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound. PRICE I8/6 (20/- post free).

ABOUT YOUR HEARING

132 pages, 112 illustrations. PRICE
(semi-stiff cover) 15/6 (16/6 post free)
Cloth bound 22/6 (24/- post free)

beAOERS OPINIONS

I have recently been going through eight of your books and they have been a feast of information. I have been like a dog with eight tasty dishes, not knowing which one to tackle first but nipping about and sampling each one. Somerset, Sept. 69

Having read the majority of your "Bibles on Hi Fi", of such a remarkably "hi" standard, I eagerly await a copy of your Cabinet Handbook.

London N22, Nov. 69

RANK WHARFEDALE BOOK DEPT. B.W.S
13 WELLS ROAD ILKLEY YORKS
Telephone: ILKLEY 4246

Published by

RANK WHARFEDALE LIMITED IDLE BRADFORD YORKSHIRE

Complete stere0 system - £29.10.0

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vyhair grille. It is ideal for wall or shelf mounting either upright ós horizontally.
Type 1 SPECIFICATION:
Impedance 10 ohms. It incorporates Goodmans high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker and $21^{\prime \prime}$ iweeter. Teak finish $12^{\prime \prime} \times 6 z^{\prime \prime} \times 5 z^{*}$ " guineas each. $7 / 6 \mathrm{~d} . \mathrm{p} .6 \mathrm{p}$.
 bass unit and $2 \frac{1}{*}^{\prime \prime}$ weeter. 3 ohms impedance $5 \frac{1}{2}$ guineas plus'15/-p. \& p .

Garrard Changers from E7.19.6d. p. Ep. 7/6d.
Cover and Teak finish Plinth $\mathbf{~ 4 . 1 5 . 0 d . 7 / 6 d . ~ p , ~ \& ~ p ~}$

OXets integrated Transistor Stereo Amplifier $£ 9.10 .0$ plus 7/6d. f. if p.

The Dustto is a good quality amplifier, attractively styled ard finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION:
R.M.S. power qutput: 3 watts per channel into 10 ohms speakers

INPUT SENSITIVITY: Suitable for medium or high output crys:al cartridges and tuners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4-position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL: Treble lift and cut. Separate- on/off s-vitch. A preset

rogether for $£ 29.10+£ 1.10$ P.\&P.
balance control.

The Classic

Teak finished case 69

Plus P. \& Pi. 7/6

The Viscount INTEGRATED HIGH FIDELITY TRANSISTOR STEREO AMPLIFER £ 14.5 .0

Plus P. \& P. 7/6

SPECIFICATION Sensitivities for 10 watt output at IKHz into 3 ohms. Tape Head: 3 mV (at 3 it 1.p.s.) Mag. P.U.: 2 mV . Cer.P.U. : 80 mV . Tunor: 100 mV . input is Equalisation for each Tone Control Ronge. Boss 13 dB at 60 Hz . Treble. 14 dB at 15 KHz . Total Dis. $200-250 \mathrm{~V}$. Size $12 \frac{1}{2} i n$ long, $4 \frac{1}{4}$ in deep, $2 \frac{7}{4}$ in high. Built and tested.

THE RELIANT Mk. II SOLIDSTATE GENERALPURPOSEANPLIFIER

£6.16.0 Plus P. \& P. $7 / 6$

 In teak finished caseSPECIFICATION: Output: 10 watts into a ${ }^{3}$ ohms speaker. Inputs: (1) for mike (10 mV). Input (2) for volts. Size: $10 \frac{\text { Transistors: } 4 \text { silicon and three germanium. . Mains input: } 220 / 250}{} \times 2 \frac{4}{4} \times 2 \frac{1}{2} \mathrm{in}$. Mk. $\$ 55.15 .0$ plus $7 / 6 \mathrm{P}$. \& P . Less teak finished case.

THE ELEGANT SEVEN

Mk. III (350 mW Output)
7-transistor fully tunable M.W.-L.W. Super het portable. Set of parts. Complete with al components. including ready etched and drilled printed circuit board-back printed for foolproof construsti
KIT: $9 / 6$ extra.
Price $£ 4.9 .6$ Plus P. \& P. 7/6.
Circuic 2;6. Free with parts.

4 ohms speakers (20 . ($\mathbf{3}$ pos mono and 3 pos. stereo). P.U. Tuner, Tape and Tape Rec, out. Sensitivities: Alt inputs 100 mV into 1.8 M ohm. Frequency Response: $40 \mathrm{~Hz}-20 \mathrm{KHz}$ $\pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls. Treble 13 dB lift and cut [at 15 KHz]. Boss: 15 dB lift and 25 dB cut [at 60 Hz]. Volume Controls. Separate for each channel. A.C. Moins input: $200-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Size: $12 \frac{1}{2} \times 6 \mathrm{in}$ Viscount Mark for use wuitr and tested. P. \& P. $7 / 6$. equalised for magneric of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at Ikc. Input Impedance 47 k . 15 gns . plus $7 / 6$ P. \& P. outputs

SPECIAL OFFER

Complete stereo systems comprising BALFOUR 4 speed auto player with stereo head, 2 DUO speaker systems size $12 \times 6 \frac{2}{2} \times 5$ itin. Plinth (less cover) and the DUETTO stereo amplifier. All above items
£20 Plus P. \& P. 20/-

NEW COMPLETE HI-FI STEREO SYSTEM

 $£ 39$Comprising SP 25 Garrard Mk. Il with diamond stereo cartridge, Viscount amplifier Mk. I. Two type 2 speakers, Plinth and cover. $\$ 39$ plus $£ 2$ P. \& P.

THE DORSET

(600 mW Output)
7-transistor fully tunable M.W.-L.W. Superhet portable with baby alarm facility. Set of parts. The latest modulated and pre-alignment rech-
niques makes this simple to build.
Sizes niques makes this simple to build.
MAINS POWER PACK KIT: 9/6 extra.
Price $\mathbb{1 5 . 5 . 0}$ Plus P. \& P. 7/6.
Circuit $2 / 6$. Free with parts.

QUALITY MAINS TRANSFORMER

Input 250 V OUTPUT (All RMS values) 4 windings of 11.5 V connected in series total 46 V at 4.5 amps (conservatively rated). The following combinations may be used. 1. $23-0-23 \mathrm{~V} ; 2.46 \mathrm{~V}$. Both of these above voltages are commonly used in medium to high powered transistor amplifiers, power supplies, etc.

Price 35/- Plus P. \& P. 7/6

Also see opposite page

Ctwar for Romponents

LINEAR INTEGRATED CIRCUITS FOR ALL YOUR REQUIREMENTS

Sinclair Type ic:10
Plesser SL403A 3 W Audio Auplitier
G.E. Type Pa230 Low Level Amplithe
G.E. Type PA234 $1 W$ tanlio Atuplitier
G.E. Type PA237 2W Andio Abplifier
Q.E. Type PA246 5 W Andio tuph

RCA TYpe CA3000 Type C. 3011 Wile Band Amplitie
 RCA Type $\{430 \cdot 24$. Differential Cabcolle Amy ${ }_{(120 \mathrm{MHz})}$
RCA Type CA30:9 Operatimald Anphliker RCA Type CA3035 (Hera High (iaill Amplitie Texis Type sy 72709 N Operational Anplitier
G.E. Type 2 N 5306 Darlington Pair
G.E. Type

Add 1/-each to $10 / 8$
 tree. Iesued free with NL403A aly IC'10 (1)ata not available separately for 1C-101.

I Watt Amplifier Module type PCM I

 The mput for

VARI-STAT

THERMOSTATIC SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT

Weight
Heating time 50 seconds
Bit Sizes .. $1 / 16^{\prime \prime}, 3 / 32$
Nickel or Iron Plated
Voltage . . 250 to 12 volts
Price
$66 /$

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT

Weight	6 oz.
Heating time	1 min. 45 sec.
Bit Sizes	$3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$
Nickel or Iron	Plated
Voltage	\ldots
Price	250 to 24 volts
	.

OTHER VARI-STAT IRONS:

Miniature Model M 50 watt Push-in Bits 1/32" $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64
Industrial Model I 500 watt Bit Size 5/8"
CARDROSS ENGINEERING CO. LTD.
Woodyard Road, Dumbarton Phone: Dumbarton 2655

NEW! ELECTROSTATIC

SMELL KILLER No moving parts, fans, filters, chemicals. A AIR FRESHENER Sealed set of ELECTRODES produces OZONE. OZONE is the most powerful
SMELL KILLER/AIR CLEANER known to science. Ozone breaks up the airladen molecules of smell-completely dispersing all smells - not disguising them. its EFFICIENCY will amaze you in KITCHENS LIVING ROOMS, TOILETS, OFFICES, SHOPS, ETC. Less than a Id a week to run. No maintenance. Fully guaranteed. Port. able. $220 / 40 \mathrm{~V}$
 y you can take it that it's efficient. Putting
through it's paces, it was found to have chased
way every vestige of that most pungent smell, fried onions; in under hat am hour,
ANDREW STEPHENS (1947) CO. EXPORT 61 DICKSON ROAD, BLACKPOOL. 0253-23755

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

Tunable Wavebands: Mediun Wave 1. Mediun Wave '2, Long Wave, S.W.1, s.W.2, \&.W.3. and Trawler Band. Built in ferrite rod aerial for Medium and Long Waves. 5 aection $22 i \mathrm{i}$ chrome pated telescopic aerial for short Waves can be angled and rotated for maximum performance, Pelectivity awitch. $\$$ witched earplece socket complete with forpiece for privatape record socket, slators plus 3 diodes. Famous make 7×4 in speaker. Air spaced ganged tuning condenser. On/oft switch volume control. Wave change switch and tuning control. Attractive case in rich cheatnut shade with gold blocking. Size $9 \times 7 \times 4$ in approx. Easy to follow hestructions and diagrams make the Hoamer Eight a pleasure to build. Parts price list and easy build plans $5 /-$ (FREE with parts).

$$
\text { Total building costs } 8 \theta_{\square} \text { \& } P \text { P.\&P }
$$

roamer seven

 mk IV7 fULLY TYYABLE WAYE BANDS-M.W.1, M.W.2, L.W Band. Extra Medlum waveband provides easier tuning of Radio Luxembourg. etc. Built in ferrite rod aerial for Medium and Long Waves. 5 Section 22 in chrome plated telescopic ierial for Bhort Wavescan be angled and rotated for peak
S.W. listening. Aocket for Car A erial. Pouertul pubh socket for Car Aerial incloding Micro-Alloy R $⺊^{\prime}$ Tranisitore amp two diodes 7×4 in P.M. speaker. Air spaced ganged tuning me
 ave in P.M. ppeaker. Air gpaced ganged tuning condene

Volume/on/off control, $9 \times 7 \times 4$ in approx. Enay to follow instructions and diagrams make the Roamer 7 pleazure to build. Parte price list and easy huild plans 3/- (FREE with parta).

Total building costs

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
WITH SPEAKER AND EARPIECE
Attractive biack and gold case. 81ze $5!\times 11$
$5 ; i n$. Tunable over both Medium and Long Wave 5 in . Tunable over both Medium and Long Wa ves
with extended M.W. band for easier tuning of Luxembourg, etc. 7 atagee- 5 transistora and 2 diodes, supersengitive ferrite rod arial, fine tone moving coil apeaker, also Personal Earplece with plans and parts price lith $1 / 8$ (HAERE. Easy build

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case with gilt fittinge. Slize in. Tunable on Medium and Long Waver t wo Bhort Waves, Trawler Band plus an extra M.W. band for easier tuning of Lurembourg, etc. Sensitive ferrite rod aerial and telescoplc aerial for Short Waves. 8 stages- 6 transistore and 2 diodes including Micro-Alioy R.F. Transistors, etc. (Carrying strap $1 / 6$ extra). Easy bulld plans and parts price
Het
(FREE with parts).

Total building costs $7 \otimes / 8 \begin{gathered}\text { P. \& } P \text { P } \\ 4 / 6\end{gathered}$

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

Total building costs 4.4./8 P. \& P

NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3 in . SPEAKER
Attractive case in black with red grille and cream knobs and inserts. Size $9 \times 51 \times 21 \mathrm{in}$ approx. Tunable on Mediun and Long
Waves, 3 Short Waves and Trawler Band
8 improved type transial for M.W. and L. W. Telescopic atial for short waves 8 improved type transistors plus 3 diodes. Push-pull output. Ample power to drise a larger speaker. Parts price list and pasy build plans $5 /-$ (FREE with

Total building costs

$$
98 / \& \begin{array}{cl}
\text { P, \& P, } & \text { Earpiece with switched socket for private } \\
5 / 6 & \begin{array}{l}
\text { Jistening } 5 /- \text { extra. }
\end{array}
\end{array}
$$

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. size 6 ${ }^{1} \frac{1}{2}$ in $\times 1 \neq \mathrm{in}$. 7 stages-5 transistors and 2 diodes fine tone moving coil speaker aso Personal Earpiece with switched socket for private listening. Easy Total building costs luild plans and parts price list $1 / 6$ (FREE with parts).

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
l enclose $£$
ROAMER EIGHT
R EIGHT
TRANSEIGHT
TRANSONA FIVE
please send items marked

Parts price list and plans for

Name.

Address

ht flashers flasher employs a condenser employs a principle operating on electro mechanion electro mechani-
cal relay. (As inset.) Housed in strong Housed in strong
plastic case. Flashplastic case. Flash-
ing rate between to-120 per minute. 12 volt DC operaamps. Size 21176 thia. orighat eost. 6/6 eath. P. \& P. $2 / 6$. (3 for 17/6. P. \& 1'. 4/b.)

CLASS D WAVEMETERS

erystal controlletl hetero covering $1 \cdot 7-8$ Mc/s,
Operation on fi al.c.
liteal for inateur use. Nealable in good used eon-
dition. 85.196 . dition. $25,18.6$. Cirr. Tit
or brand new with aces sories. 87,19,6. Carr. 7/6.
CLASS D WAVEMETERS No. 2 Crystal, controllcd. 1-2-19 Mc/s. Mains or 1:2 d.c. operation. Complete rith calibration charts. Excellent comlition.
E12.10.0. (arr. $30 /$.

R209 MK II COMMUNICATION RECEIVER Jl valve high griale comanumication receiver
 ates preqision vernice Iriver, BFO. Aerial
 mal epeaker nuid $\begin{array}{lr}12 \text { V.c. in- } \\ \text { ternal } & \text { power }\end{array}$ supply: suppliet in excellent contition,
fully tested and fully tested
checkel.
\& 15 carr : $0 /$
TYPE 13A DOUBLE BEAM OSCILLOSCOPES
 An excellent general pur-
pose D / B oscilloscope $\begin{array}{cc}\text { pose } \\ \text { T.B. } & \because \\ \text { c/s- } \\ \text { oscilloscope }\end{array}$
 Operating voltatge 0/110/ $200 / 250$ V. acc. supplied in excellent working conlition. f 22.10 .0 or complete with all accessories, plobe leads, lid,
825. Carriage $30 /-$.

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
$1 \mu /$ watt to 6 watts. 820. Carr. 20f-

GEARED MAINS MOTORS

2 rersilh, ace rere $\quad 30 \mathrm{Re}$ 40 lb in. Complete Excellent combition. 99/6. ('arr. Io/-

TO-2 PORTABLE
 OSCILLOSCOPE

TRANSISTORISED L.C.R.A.C. MEASURING BRIDGE
 A new portable bridge offering exeellent range and accuracy at
cost. Ranges:
R. cost. Ranges: R.
$1 \Omega-11 \cdot 1 \quad$ meg Ω 6 Ranges $\pm 1 \%$.
L. $\mu \mathrm{H}-111$

HENRES 6 Ran| ges -2%. $\mathrm{C}, 10 \mathrm{pF}$ |
| :--- |
| $\pm 1110 \mathrm{~m}$ | Range \pm or, TLRNS RAT1O 1:1/10001:11100. 6 Ranges $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{cps}$. Operated from y volts. $100 \mu \mathrm{~A}$.

UNR-30 4-BAND COMMUNICATION
RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet. Operation $240 /$ instructions.

13 gns.
TRIO JR-310 NEW AMATEUR BAND
10-80 METRE RECEIVER. In stock. 877.10.0.

Lafayeite solid state habuo recelver
5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE $150 \mathrm{kc} / \mathrm{s}-400 \mathrm{kc} / \mathrm{s}$ and $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ FET front end 2 mechanical Blters Euge limiter Product detector S meter Bandapread - 230V a.c. $/ 12 \mathrm{~V}$ d.c. ner, earth operation RF gain control. size 15 in 9 in $\quad 8!\mathrm{in}$. Weight 181 b . EXCEPTIONAL VALUE. 245. Carr. 10/-. S.A.E for full details.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

Small portable crystal controlled wavemeter. Size $7^{\prime \prime} \times \mathbf{7 1}^{\prime \prime} \times \mathbf{4}^{*}$. Frequency range $500 \mathrm{Kc} / \mathrm{a}$. $10 \mathrm{Me} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on harmonics). Calibrated dial. Power requirements
1500
15
V.D.C. 15mA and la V.D.C. clition. 89/6. Carr. 7/6.

AVO 48A. Perfect order with set of shunts

TE40
HIGH SENSITIVITY
A.C. VOLTMETER

10 meg. input 10 ranges: | 10103 | -1 | -3 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | R.M.S. $30 / 100 / 300 \mathrm{c}$. Decibels -40 to +50 dB Supplied bramd new complete with leads and instructions. Operation

Carr. $5 /$ 4 bind receiver covering $510 \mathrm{k} / \mathrm{s}$ on $10,15,20$, 40 and 80 metres. 8 valve plus 7 thode circuit. 4/8 ohm output itul phone jack. NSB-CW ANL - Variable BFO Is meter - Nep. banulepreat Andlo output $1.5 W$.
gain controls. $115 / 250 \mathrm{~V}$ Variable 1 F and AH gain controls. ${ }^{115 / 250}$
A.C. Mains. Beatutifully designed. Nize: 710
Join. With instruction manal imd service data. 242 Carriage paid.
TRIO COMMUNICATION TYPE HEADPHONES NORIALly £5.19.6.
OUR PRICE $£ 3.15,0$ if purchased with above receiver.

TRIO JR-500SE 10-80 Meire
AMATEUR RECEIVER $\mathbf{8 6 9 . 1 0 . 0}$
TRIO TS 510 AMATEUR TRANSCEIVER

LAFAYETTE HA. 800 SOLID STATE
AMATEUR COMMUNICATION RECEIVER SIX BANDS 3.5-4, 7-7.3, 14-14.35, 21-45. 28-29. 7, $50-54 \mathrm{Mc} / \mathrm{s}$.
Dual conversion $e n$ abll bands.
 mechanical filters. Iroduct tetector. Variable B.F.O. $100 \mathrm{Kc} / \mathrm{s}$ erystal callbrator, 'S meter.
Huge slite rule dal. Operation 230 a . or $1 \geq$: DC. Size $15^{\prime \prime}: 593^{\prime \prime} \times 81^{\prime \prime}$. Complete with instruction manual. 857.10 .0 . Carr. paikl.

RCA COMMUNICATION
RECEIVER AR88D
Latest release by ministry BRAND NEW in original cases. $110-250 \mathrm{y}$ ince. operation. Frequency in t bands. $535 \mathrm{Fc} / \mathrm{s}-3 \geq \mathrm{Mc} / \mathrm{B}$ continuous Output impedane $3-5-600$ ohms. heorporting

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transistorised receiver eovering $15:-174 \mathrm{Mc} / \mathrm{s}$. Fully tuneable or crystal controlled (not supplied) for fixed frequency operation. Incorporates 4 INTEGRATED (CIRCEITS' Built in speaker and illuminated dial. Squeleh and volinnut. II ealphone jack. Operation 230 v . input. IEatlphone jack. Operation 230V.
l2V. D.C.Neg, earth. $\mathbf{\& 3 7 . 1 0 . 0}$. Carr.

TELETON MODEL CR 10 T AM/FM STEREO TUNER AMPLIFIER A new motlel from Teleton. 31 solid state
 levices. $4-4$ watt output. lnputs for ceranic/crystal cartridge. Frequency range
AM $540-1600 \mathrm{KHzFM} 88-108 \mathrm{MHz}$. AutoAM $540-1600 \mathrm{KHz} \mathrm{FM} 88-108 \mathrm{MHz}$. Auto-
matic FM stereo reception. Stereo indicator, matic FM stereo reception. Stereo indicator, Controls: Tuning, function selector, Tone
 sterer headphone socket. "pprox. Price 834 , Carr. $7 / 6$.

POWER RHEOSTATS

High quality ceranic construction. Windings embedded in vitreous enainel. Heavy tuty brush wiper. Continuous rating. Wide range ex-stock single hole fixing, Jin. dia, ghaits, Bulk quant 108 avaikble. $4 / 6$. P. \& P. $1 / 6$
 100 WATT

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS Frequency $0 \cdot 20 \mathrm{Kc} / \mathrm{s}$ on 2 ranges. Output 500Ω or $5 \mathrm{k} \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C. supplied in perfect order. $£ 12.10 .0$. Carr. 10/-
TE-65 VALVE VOLTMETER

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES

D.c. coupled. Band width $1 \mathrm{kc} / \mathrm{s}$. Perfect | D.c. coupled. Band |
| :--- |
| order. 225. |

AM/FM SIGNAL GENERATORS Now Oscillator Test No.
 urates precision dial, level meter, precision attemator $1 \mu \overrightarrow{-100 m V}$. Operation from
 $1 \geq$ yit Sin. Supplied in brand new fully tested. $\& 45$. Curr. $20 /-$

PLESSEY SL 403A
3 watt Integrate: Amplifier Circuit
98/6 POST PAID
EDDYSTONE VHF 'RECEIVERS MODEL 770R. 19-165 Mc/s. Excellent condition. $\$ 150$.
 TE-16A Trangistorined Signal Generator. 5 rangea $400 \mathrm{kHz-30} \mathrm{mHz}$. An inexpengive instrument
for the hand man. Oper or the hand yant. Oper
ates on 9 v battery. Wide, ates on 9 brattery. Whale,
easy to read scale. $\begin{array}{lll}\text { easy } \\ 800 & \text { to } & \text { read scale. } \\ \text { modulation. }\end{array}$ $51 \times 51 \times 311$. Complete with ingtructions and
leads. $£ 7.19 .6$. P.\&P. 4/-.
FIELD TELEPHONES TYPE L Generator ringing, metal cases. Operates
from tuo 1.5 v . batterics (not supplied). from two 15% batterics (no
Excellent condition. 84.10 .0 per pair Excellent
Carr. $10 /-$

SOLARTRBN CD, T11S.2 OSCILLOSCDPES Double bean. D.C. to $9 \mathrm{Mc} / \mathrm{s}$. Perfect order. \&85. Carr. 50/-

AUTO TRANSFORMERS
$01110 / 230$. Step up or atep slown. Fully shroudel.

150 W .22 .2 .6, P. \& P. $3 / 6$

1,500 W. \&7.19.6, P. \& P. 8/6
7,500 W. 815.10 .0, P. \& P. $20 /$
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF－100 COMBINED AF－RF
SIGNAL GENERATOR

 $\begin{array}{lcc}30,000 & \text { c／日，} & 0 / \mathrm{P} . \\ \text { HIaH } & \text { IMP．} & 21 \mathrm{~V} .\end{array}$
 Mc／日．Virriable R．F． htentaation int／ext．modulation．Incorpor－ ater duarpose meter to monitor AF out－

TE－20RF SIGNAL GENERATOR
ing $120 \mathrm{ke} / \mathrm{g}-260$ Me／s oll 6 bands．
Directly calibrated Directly calibrated
variable R．F．it tenuator，Operation Brand new
Bram new with in－
struction．
e5．15．0．
 for detaile．
TE22 SINE SQUARE WAVE
 RS Sine： $20 \mathrm{e} / \mathrm{s}$ to
$200 \mathrm{ke} / \mathrm{s}$ on
thande hands．scilatre：
$20 \mathrm{c} / \mathrm{s}$ to
$30 \mathrm{kc} / \mathrm{m}$ ． Ontput inmed． ance 5,000 ohins． 200／2501． Supplied bramb
new and puaran new and guaran－
teed with instruc－ fion manual any leals．$£ 16.10 .0$ ．
MARCONI TFI42E DISTORTION FACTOR METERS．Fixcellent condition．Fully tested． 220．（irr． 10
LAFAYETTE TE46 RESISTANCE

ADVANCE TEST EQUIPMENT Brand new and boxed in original sealed certons． J1B．AODIOSIGNALGENERATOR 15 c／s to 50 Kcis．Nitue
ohme or 5 ohms．$\pm 30.0 .0$ ．
VM79．UHF MILLIVOLT METER
 mA．Re日
£125．0．0．
TT1S．TRARSISTOR TESTER，Full range of facilities for testing PNP or N
in or out of circuit． 837.10 .0 ．
in or out of circuit． 237.10 .0 ．
Carriage $10 /$ per item．

balanced T and Bridge T ．Inpedance
 $+10+20+30+4001 \mathrm{~B} . \quad$ Frequcnes： 0.051 m ．+ indication dB 0.01 ．Maxi－ mum input less than 4W（505）．Built in

AVOMETER MOVEMENTS

Spare movements for Model 8 or 9 ．（Fitted with Model 9 scale）or basis for any multi

SEND NOW－ONLY $7 / 6 \dot{P} \& P \|$

\star TRANSISTORISED FM TUNER \star G TRANSISTOR
HIGH QEALITY TUNER，SIZE ONLY 6 ＜ 4×2 in． II．F．stages． Double tuned dis：
criminator．Ample criminator．Ample
output to feed most amplifiers．Oper－ ates on 9 V battery．Coverage $88-108$ Me／s． for money．\＆6．7．6．P．\＆P．2／f． Stereo multiplex adaptors 90／6．

TRANSISTORISED TWO．WAY TELEPHONE INTERCOM Operative over amazingly and press to talk buttong 2 －wire connection， 1000 ＇s of applications．Beautifully fin－ ished in ebony，Supplied complete with batterieq ani wall brackets．
26．19．6．P．\＆P． 3,6

SINCLAIR EQUIPMENT Project 60 range of new models ，

Z30 Anplitier 89／6 tereo 80 Control Unit
PZS Power Supply
84．19．6
P6 $\begin{array}{ll}6 \text { Power Supply } & 24.19 .6 \\ \text { O18 Speakers } & \$ 8.19 .6\end{array}$

SPECIAL PACKAGE OFPER！
Z30 Ampliflers，8tereo 60 and PZ5 Puwer supply 222，0，0，or with 2 －Q16 speakers E39，
$\begin{array}{ll}\text { Micromatic Radio Kit } & \quad 49 / 8 \\ \text { Micromatic Ratlio Built } & 50 / 8\end{array}$
STNGLAIR 1C／10 IN STOCK 50／6
：000 Amplitier $\mathbf{2 7 7 . 1 0 . 0 \text { ．Curr．Pit．}}$
$\frac{\text { PEAK SOUND PRODUCTS }}{\text { Full range of Amplifiers，Kits }}$

ECHO HS－606 STEREO
HEADPHONES

fortable fully com weight aljustable viny！headband． fift．mither and
stereo jitek phag．
 ＂han inap 67．6

RECORDING HEADS COSMOCORD ittrack heads． 14 igh
ilup．recmplplayback 65：－Luw imp．
 High imp．record／playback $65^{\prime}-$ ．Low imp

RACAL MA． 188 TRANSISTORISED DIVER SITY SWITCH．Braml Niw（＇ondition 15.

AMERICAN TAPE

Finst ginale quality fmeritan lapes．Bramb
 31ith．b00ft．T．P．mslitr ．．．．．．．．．．．．．．．．．．．．． 10^{3} jin，600ft，atc，phastic ．．．．．．．．．．．．．．8，8，

 y！in．1，200ft．L．1．mylar ．．．．．．．．．．．．．．．． $16 /$ ． ，in．I，H00ft．1），P．Hylat ．．．．．．．．．．．．22／6 inh．2．400ft．L．IP．mylat ．．．．．．．．．．．． $39 / 6$ in．1，000ft．stel．acetate．． iil．l，Mooft．L．P．acetate in．a，400ft．D．P．mylar
fostage $\because:-$ T．Over \＆ 23 post paid
MAXELL TAPE CASSETTES

MODEL TE－70．30，000 O．1．N．0／3／15．60／300／ $500 / 1,200 \mathrm{~V}$／．c．0／6：
$30 / 120 / 400 / 1.200 \mathrm{v}^{\prime}$ a．c． $0 / 30 \mu \mathrm{~A} / 3 / 30$
300 ms ， $0 / 16 \mathrm{~K} / 60 \mathrm{~K}$ 30．6M1．3．0／60K／160K 25．10．0．1＇，\＆F． $3 /$－．

LAFAYETTE Rance
50.000 O．P． Multimeter． Folts $125 \mathrm{~V}-1.000 \mathrm{~V}$ A．r．Nults 1.5 V － 1，000 Joce（ $25 \mu \mathrm{~A}+10$ Amp． Ohms． $0 \cdot 15$ Meg Ω
dB． 20 to +81413. dB．-20 to +81 dB ，

Overload Protection．312 10．0．（aur 3； 6 ．

2Watt and 3Watt Professional IC Audio Amplifiers now available

These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughout the country.

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incorporates a preamplifier and a class A-B power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite!
These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf together with data/ application brochures (Price 1s. 9d. each) which include PC board layouts for mono and stereo. Obtainable from:

Farnell Electronic Components Ltd
Canal Rd, Leeds LS 12 2TU
Tel : Leeds 636311 Telex : 55147

Characteristic

Output poner r.m.s.
Input impedance
Preamplifier
Main amplifier
Distortion
Preamplifier
Main amplifier
Frequency response
Lower-3dB point
Upper-3dB point
Operating voltage
Min. operating load

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants.
Tel : Portsmouth (0793) 62332 or 62180 Telex : 86114

Cheney Manor Swindon Wiltshire England Telephone: Swindon (0793) 6251. Telex: 44375

INFRRNEEMENT OF PRIVACY

EVERY kind of technology, and every invention, is potentially a power for good or for evil. The issue is resolved by the motivation of the user. Rational people accept certain rules for human behaviour including good taste and respect for the dignity and rights of others. But it seems such ethical standards count for little with some individuals and organisations when it is apparent that capital can be made or advantage gained through the abuse of technical know how.

Modern electronics can be a frightening power in the wrong hands. Aided and abetted by the latest achievements in this field, the Orwellian nightmare with the omniscient Big Brother watching our every move could arrive long before 1984. Technically it is feasible without a doubt. To a minor and less obnoxious degree a drift in this direction is already discernible, as witness the move towards a national computerised record centre with particulars of every citizen stored therein. Also, in the commercial area, computerised data banks are being established by credit protection agencies. The most intimate facts of a client's private life may be compiled and recorded and so be available at any moment.

Electronic technology has, though, given birth to what seems to be potentially an even more frightening and sinister threat to personal privacy than computer data banks-surreptitious listening, watching, and recording. These spying and snooping activities are particularly disturbing because radio bugging devices and various optoelectronic aids can be used by individuals who are unanswerable for their actions to any recognised authority. Progress in electronic technology will further increase the effectiveness of these devices while making their detection all the more difficult.

It is time this whole seamy "bugging" business was brought into the open and ventilated in public debate. If anything is to be done in outlawing such devices, there is no time to lose. The introduction into the House of Commons last January, by a private member, of a Right of Privacy Bill was therefore a significant initial step.

This Bill seeked to protect an individual from intrusion on himself, his home, his family, and business affairs by spying and unauthorised overhearing of words, and the unauthorised recording or copying of documents. The Bill embodied recommendations of lawyers, and the Council of Civil Liberties has welcomed it as "one of the most important reforming measures of this Parliament".

The Bill has come under heavy fire from certain other quarters. Not surprisingly organisations that have a definite vested interest in the use of clandestine spying and snooping equipment, for example, industrial espionage
continued on page 221

THIS MONTH

CONSTRUCTIONAL PROJECTS

50 PLUS 50 HIGH POWER AMPLIFIER 204
P.E. ORGAN-- II 222
ELECTRONIC LOCK 236
P.E. COMMUNICATIONS RECEIVER-6 242
DUAL PURPOSE LOGIC GATE 253
SPECIAL SERIES
BASIC RADAR PRINCIPLES-2 217
DEMONSTRATION SWITCHING CIRCUITS-4 226
GENERAL FEATURES
VOLTAGE TO FREQUENCY CONVERTER 229
THE HUMAN EAR 232
NEWS AND COMMENT
EDITORIAL203
NEWS BRIEFS 221, 239
ELECTRONORAMA 230
POINTS ARISING 239
SPACEWATCH 250
BOAT SHOW '70 257
READOUT 261
Our April issue will be published on
Monday, March 16

[^0]
Get the "Big Sound" by building this 50 plus 50 watt twin channel amplifier.

All purpose facilities ranging from paging and public address to instrumental and forms of music reproduction systems.

Portable and ruggedly constructed, the amplifier features low noise f.e.t. preamplifier stages and output protection circuits which make for utmost dependability.

By R. D. PALMER

THIs article describes the construction of an all silicon twin channel 100W power amplifier. This amplifier is suitable for all general purposes requiring high audio power outputs, but can, if desired, be used at more moderate power levels.

Although primarily intended for public address, the power amplifier stages could be used in conjunction with a stereo high fidelity pre-amplifier to provide a high quality output. The integral pre-amplifiers are not suitable for this purpose since there is no provision for the equalisation and selector circuits necessary. They can, however, be used with a variety of different sources, such as crystal microphones; moving coil and ribbon microphones; ceramic and crystal pick-ups; guitar pick-ups; reverberation units, or tuner outputs.

CIRCUIT BLOCKS

In Fig. 1 is given the block diagram of the amplifier. Here a single stabilised power supply is used to power both channels. The output stages are unconditionally stable and feature fool-proof protection circuits safeguarding the output transistors from "second breakdown" under all adverse conditions. The preamplifiers each have f.e.t. front ends and independent bass and treble controls.
The two channels can be used completely independently, or a mixing facility can be used to provide the following modes of operation: High and/or low level inputs from one channel to both or either power amplifier inputs, with independent control of each. High and/or low inputs to both channels mixed into both or either power amplifier inputs, with independent control of each.

The unit may be built with only one channel, but a modified front end arrangement would then be necessary to provide mixing facilities.

DESIGN PRINCIPLES

The power amplifier is basically a class B transformerless quasi-complementary design. This is derived from the rudimentary circuit shown in Fig. 2. Although the final circuit is more elaborate than this, the basic principles are the same.

SPECIFICATION

Ratings per channel

FREQUENCY RESPONSE NOMINAL POWER OUTPUT (continuous sine wave)
MAXIMUM POWER OUTPUT (continuous square wave)
TOTAL HARMONIC DISTORTION

DISTORTION (power amplifier only)
OUTPUT IMPEDANCE INPUT IMPEDANCES
"Low" input
"High" input
Power amplifier only
INPUT SENSITIVITY
"Low" input
"High" input
Power amplifier only
SIGNAL TO NOISE RATIO
RESIDUAL NOISE (power
amplifier only)
TONE CONTROL-bass
TONE CONTROL-treble

25 Hz to $25 \mathrm{kHz} \pm 3 \mathrm{~dB}$
50 W into 5Ω, 31W into 8Ω, 17W into 15Ω
120W into 5Ω
0.3% at nominal power outputs
0.2% from 100 Hz to 10 kHz at 500 mW into 15Ω
0.2% at 50 W into 5Ω
0.03% at 17W into 15Ω
0.2 ohms

1 Megohm nominal
500 kilohms nominal
1.2 kilohms
1.8 mV

150 mV

1.2V

55dB at maximum sensitivity (50W into 5 Ω)
-80 dB with reference to 50 W into 5Ω
$\pm 14 \mathrm{~dB}$ maximum at 100 Hz
$\pm 18 \mathrm{~dB}$ maximum at 10 kHz

The complementary output transistors, TR2 and TR3, have their bases tied together by the forward biased diodes D1 and D2; their emitters are also connected to form what is often called the "centre rail".

Fig. 2. Basic class B transformerless amplifier

The driver, TR1, is biased by R1 so that the voltage on the centre rail is half that of the supply. The output coupling capacitor C2 blocks this voltage from the load R_{L}; it is of sufficiently large value to have a low impedance compared with R_{L} at the lowest frequencies intended. Thus in this configuration the output transistors act as two emitter follower amplifiers of opposite polarity but with a common input directly coupled to the driver, and a common output capacitively coupled to the load.

When a signal is applied, an amplified version appears at the driver collector. During periods when this goes positive with respect to the half rail voltage, TR3 is cut of and TR2 provides current amplification. When it goes negative with respect to the half rail voltage, TR2 is then cut off and TR3 provides the necessary amplification. Consequently the coupling capacitor C2 is alternately charged and discharged through the load by TR2 and TR3.

PREVENTING DISTORTION

In order to prevent crossover distortion a quiescent bias current is allowed to flow through TR2 and TR3. This enables the output stage to work in class A mode for small signal levels, thereby offsetting the crossover distorting characteristic.

Stable quiescent bias is provided by the voltage drop across the diodes D1 and D2.

In order to prevent the bias diodes introducing even harmonic distortion into the amplifier and to enable the maximum output voltage swing to be attained, the resistor R2 is bootstrapped by Cl . This maintains a constant voltage across R2 so that a constant current is maintained through the diodes thereby preventing non-linear current transfer.
An added advantage of bootstrapping is that the maximum open loop gain of the stage is attained.

COMPOUND TRANSISTORS

In a high power amplifier of this type it is impracticable to use single complementary transistors since the high power types needed do not have high enough values of $h_{f e}$ to allow the amplifier to be made efficient and to have a high gain. It is therefore usual to use various combinations of transistors in circuits which behave as single transistors.

Fig. 3. Compound configuration

These compound configurations have extremely high current gains approximately equal to the product of the $h_{f e}$ values of the transistors used. In the final circuit the emitter follower arrangements (a) and (b) shown in Fig. 3 are used to replace the transistors TR2 and TR 3 respectively of Fig. 2.

These circuits are particularly suitable for this application since each has an input through a single base-to-emitter junction. This means that the forward base-to-emitter bias voltage is independent of the output transistor junction temperature which makes the circuits stable.
An added advantage is the use of npn output transistors, these being cheaper and more readily available than complementary pairs.

SECOND BREAKDOWN

The output transistors are required to dissipate large amounts of power well within their capabilities, but under misuse, such as short circuited output or highly reactive load conditions, could easily be destroyed, even though they may be operating below their maximum power dissipations.

This is due to a phenomenon known as "second breakdown" caused by lateral current instability through the transistor when operating at relatively high voltages and current. It has its greatest effect under d.c. conditions, but falls off with increasing temperature and frequencies; the breakdown caused is usually permanent.

PROTECTION CIRCUITS

The amplifier is protected by two circuits similar to the one shown for the protection of a single transistor in Fig. 4. The function of this circuit is to prevent the power transistor operating point from crossing the protection locus (shown on the graph Fig. 5 by a dotted line), and moving outside the Safe Operating Area (SOAR) curve. This curve represents the limiting conditions within which safety from second breakdown. under specified conditions, is guaranteed.

The action of the protection circuit is as follows. When the voltage on TRI base reaches approximately 0.6 volts, it clamps the base of the power transistor TR 2 . This occurs when the summation of currents through R3 and R4 produce a voltage of approximately 0.73 volts across R1 and R2.
The diode D1 is used as a non-linear resistor to generate the curved portion of the protection locus to correspond with the SOAR curve when the $V_{\text {ce }}$ is high. It also provides temperature compensation for the circuit.
The protection locus is displaced from the SOAR curve for the derating necessary at the maximum junction temperature expected. It is also displaced from the 5 ohm resistive load line to allow for the elliptical paths described by the transistor operating point when driving reactive loads.

THE COMPLETE CIRCUIT

The complete circuit diagram for one channel of the amplifier is shown in Fig. 6. The two channels, A and B , are identical, both being powered by a single regulated supply.

INPUTS

The high and low inputs to the amplifier are made through sockets JK2 and JK1 respectively. JK2 feeds the T network R2, R3, and R4. The resistor R1 is simply to prevent excessive attenuation of the "High"

Fig. 4. Amplifier protection circuit

Fig. 5. Graph showing safe operating area
input by a low source impedance input into JK1 when they are in simultaneous use.
Variable attenuation of both inputs into the front end is provided by the level control VR1.

F.E.T. PRE-AMPLIFIER

The front end of the amplifier consists of a common source f.e.t. pre-amplifier formed by TRI, R $5, \mathrm{R} 6$, and CI. The f.e.t. used is an N -channel junction gate, depletion mode type. It is self-biased by R 5 which is decoupled by Cl .

The gate is protected against breakdown by the silicon diode D1 which effectively behaves as an open circuit at normal input levels but conducts when the voltage on the f.e.t. gate exceeds 0.6 volts.

Further amplification is provided by TR2 in the second stage. Here the gain is limited by negative feedback introduced into the emitter by R 9 .

TONE AND VOLUME CONTROLS

The third stage consists of the bass and treble controls, VR3 and VR2, in combination with a modified Baxandall circuit.

AMPLIFIER (2 REQUIRED)

Resistors

RI	$270 \mathrm{k} \Omega$	R17	$2 \cdot 2 \mathrm{k} \Omega$
R2	$470 \mathrm{k} \Omega$	R18	$22 \mathrm{k} \Omega$ High stab
R3	$2 \cdot 2 \mathrm{M} \Omega$	R19	$22 \mathrm{k} \Omega$ High stab
R4	$22 \mathrm{k} \Omega$	R20	$2 \cdot 2 \mathrm{k} \Omega$
R5	$3.3 \mathrm{k} \Omega$ High stab	R21	$100 \mathrm{k} \Omega$ High stab
R6	$3.3 \mathrm{k} \Omega$ High stab	R22	$2.2 \mathrm{k} \Omega$ High stab
R7	$1 \mathrm{M} \Omega$ High stab	R23	$1 \mathrm{k} \Omega$
R8	$3.3 \mathrm{k} \Omega$ High stab	R24	100k Ω High stab
R9	. 100Ω High stab	R25	$15 \mathrm{k} \Omega$ High stab
R10	$6.8 \mathrm{k} \Omega$	R26	$2 \cdot 2 \mathrm{k} \Omega$
RII	$6.8 \mathrm{k} \Omega$	R27	100 Ω
R12	$6.8 \mathrm{k} \Omega$	R28	$4.7 \mathrm{k} \Omega$
R13	$1.8 \mathrm{k} \Omega$	R29	$4.7 \mathrm{k} \Omega$
R14	$1 \mathrm{M} \Omega$	R30	680Ω
R15	$3.3 \mathrm{k} \Omega$	R31	$4.7 \mathrm{k} \Omega$ High stab
R16	$2 \cdot 2 \mathrm{k} \Omega$	R32	$4.7 \mathrm{k} \Omega 5 \%$ High stab

R33 4.7k Ω 5\% High stab R4I |k 5% High stab
R34 $680 \Omega \quad$ R42 $1 \mathrm{k} \Omega 5 \%$ High stab
R35 lk $\Omega 5 \%$ High stab R43 180Ω
R36 $\mathrm{k} \Omega 5 \%$ High stab R44 0.14Ω see text
R37 $680 \Omega \quad$ R45 0.14Ω see text
R38 39k $\Omega 5 \%$ High stab R46 56Ω
R39 $39 \mathrm{k} \Omega 5 \%$ High stab R47 $100 \Omega 5 \mathrm{~W}$ wirewound
R40 180 Ω
All $10 \%, \frac{1}{4}$ watt carbon except where otherwise stated

Potentiometers

VRI IMS log carbon VR5 500Ω \} miniature
VR2 $50 \mathrm{k} \Omega$ linear carbon VR6 $500 \Omega\}$ horizontal presets
VR3 $50 \mathrm{k} \Omega$ linear carbon
VR4 l0k Ω log carbon

Fig. 6. Circuit diagram of a single channel of the amplifier. Components within dotted area are mounted on amplifier board

Capacitors

CI	$64 \mu \mathrm{~F}$ elect. I5V
C 2	$10 \mu \mathrm{~F}$ elect. I5V
C	$0.00 \mu \mathrm{~F}$ paper
C 4	$10 \mu \mathrm{~F}$ elect. 15 V
C 5	$125 \mu \mathrm{~F}$ elect. 15 V
C 6	$0.1 \mu \mathrm{~F}$ polyester
C	$10 \mu \mathrm{~F}$ elect. 15 V
C 8	100 pF polystyrene
C	$0.05 \mu \mathrm{~F}$ paper
C 10	$10 \mu \mathrm{~F}$ elect. 15 V

Transistors

TR1	2N3819 (Texas)
TR2	2N3704 (Texas)
TR3	2N3704 (Texas)
TR4	2N3704 (Texas)
TR5	2N3704 (Texas)

CII $6 \mu \mathrm{~F}$ elect. 15 V
$\mathrm{Cl} 250 \mu \mathrm{~F}$ elect. 15 V
$\mathrm{C} \mid 332 \mu \mathrm{~F}$ elect. 50 V
CI4 $20 \mu \mathrm{~F}$ elect. 25 V
Cl5 330pF polystyrene
C16 $8 \mu \mathrm{~F}$ elect. 50 V
CI7 $0.1 \mu \mathrm{~F}$ polyester
C18 $0.1 \mu \mathrm{~F}$ polyester
CI9 $2,000 \mu \mathrm{~F}$ elect. 50 V
(maximum ripple current rating at least $3 \cdot 2 \mathrm{~A}$)

TR6	40361 (RCA)
TR7	$2 N 3704$ (Texas)
TR8	2N3703 (Texas)
TR9	40361 (RCA)
TR10	40362 (RCA)

TRII 40362 (RCA)
TRI2 40361 (RCA)
TRI3 2N3055
TR14 2N3055

Diodes

DI-D6 IN914

Sockets

JK1-JK2 Standard jack sockets
JK3-JK4 4mm insulated sockets

Miscellaneous

Perforated s.r.b.p. sheet $0 \cdot 1$ in matrix-Lektrokit chassis plate no. 4-LK141
Wiring pins-Lektrokit LK3011
TO5 heatsinks (2 off)

POWER AMPLIFIER

Fig. 7. Response curves of tone controls

This stage provides any necessary bass and treble cut or lift required, but is unusual as it has a very wide range of control at the extremes, making it useful for special effects. Its response curves are shown in Fig. 7. With the controls set in the central or "flat" position, the stage has a gain of approximately unity.
The output from this stage to the pre-driver stage is attenuated by the volume control VR4. Connecting the two independent channels at this point is the "Mix" switch S1. This switch enables the output from one front end to be fed to both power amplifiers via their respective volume controls, or for the inputs to the separate front ends to be mixed into one or both of the power amplifiers.

PRE-DRIVER STAGE

The pre-driver stage acts as a buffer between the medium output impedance of the volume control and the comparatively low input impedance of the power amplifier. It also provides further gain for the preamplifier. This is achieved with a directly coupled circuit where TR4 functions as a conventional common emitter amplifier and TR5 as an emitter follower.

Stable bias and negative feedback are provided by R21 and the necessary buffering between the pre-driver output and input of the power amplifier by R23 and C14.

The tone control and pre-driver stages are both powered from the 22 volt rail.

POWER AMPLIFIER

The power amplifier section possesses all the features previously described; in addition to these, certain refinements are necessary to complete the design.

In all power amplifiers feedback is used to stabilise the d.c. biasing and to reduce the distortion introduced by the amplifier. Here R24, R25 and C13 form a feedback loop from the centre rail to the base of the driver TR6; thus the bias is stabilised by feedback through both these resistors. The centre rail voltage itself is set by adjustment of VR5.

Capacitor C 13 is primarily a protective component since when the amplifier is switched on, the long time constant of C13 and R25 allows the centre rail voltage to rise very slowly, thereby preventing damage which might be caused to the loudspeaker if the centre rail voltage was suddenly applied to C 19 , the output coupling capacitor.

Topside of a completed amplifier board. It is important that none of the TO5 transistor cases are allowed to contact wiring pins as these are common to the collectors.

the smallest soldering iron available

Antex irons will give you fingertip control for precision soldering of small component and transistors.

> Send for one if your local shop cannot supply, or send for our 16 page colour catalogue by completing the coupon below.

CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}(1 \mathrm{~mm})$ up to $3 / 16^{\prime \prime}$ For $240,220,110,50$ or 24 volts. from 3216
 Plays 12 " 10 or 7 records.
Auto or Manual. A high
quality unit backed by BSR
reliability with 12 months
guarsntee. Size $13!$
llim. Height above (
motor board 3 in, below

 RSR UA 0 O Stereo Mono Transeription Auto Changea. Calibrated Stylus Pressure. £12.19.6.
RSR Minichsnge: UA50 Stereo Mono.
Size $12 \quad 8$!in. AC 200250 v .
£.19.6.
Post 5.
GARRARD PLAYERS with Sonotone Cartridkes. 9TA Stpreo Diamond Mono Sapphire. SP25 Mk Il f14.19.6. AT60 Mk II £14.19.6. Model 3000 £12.19.6. Post 56 each item.
RECORD PLAYER PORTABLE CABINET
$75-$
Post $5-$
RCS 3 WATT AMPLFITR
RCS 3 WATT AMPLIFIER. Ready made and tested. A 2-stare unit using triode pentode valve, giving 3 watts output. Tone and volume controls mounted on panel. Frequency response $50-12.000 \mathrm{cps}$. Sensitivity 200 mV . Frequency response $50-12.000$ cps. Sensitivity 200 mV
59 Post 5 .
aARRARD TEAKWOO1) BASE WB.1. Ready $77 / 6$ cut out lor mounting 1025. 3000. SP25. AT60, et GARRARD PLASTIC COVER SPC. 1 for WB. 1
BASE. Durable tinted stractive appearance.
65%
EMI PICK-UP ARM. Complete with mono cartridge 296 EMI JUNIOR 4 SPEED RECORD PLAYER
Mains operated motor turntable and pick up complete
598 post 56.
GP94 55 -: GP93 45 -: GP91 $30-$: GP67 19 6, Special L.P
anly 10 6. All standard fixing comptete with stylus.
CRYSTAL MIKE INSERTS
$1 \frac{1}{2}$ dia. 6 6. ACOS 12^{2} dia. 126 . BM3. 1^{\prime} dia. 96
PORTABLE ANPLIFIER portable mini p.a.system. Prities. or as a Baby Alarm, Intercom, Teleplone or Record Player Amplifler, etc. Atractive rexine covered cabinet,
size $12 \times 9 \times 4$ in., with size $12 \times 9 \times 4 i n$. with
powerlul 7×4 in. speaker and four transistor one ower amplifer. Uses PP9 batter
Brand new in Makers' carton with lull makers' guarantee orld famous make. Only 75/- $\begin{gathered}\text { Post } \\ 5-\end{gathered}$
WEYRAD P50 - TRANSISTOR COILS RA2W 6 in. Ferrite Aerial
with car aerial coil $\quad 126$ Driver Trans. LFDT4 $\begin{array}{lll}\text { with car aerial coil } & -126 & \text { Driver Trans. LFDT4 } \\ \text { Osc. P50 1AC }\end{array}$ Osc. P50 1 AC 1.F. P50 2CC 470
 3rd I.F. P50 3CC

VOLUMECONTROLS 80 om Coax 80. yd. Long spindles. Midget Size BRITISH AERIALITE

 WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WATT T.V. Type. Knurled Knob. STANDARD SIZE POTS Values 10Ω to $30 \mathrm{~K} ., 46 \quad$ LONG SPINDLE
Carbon 30 K to 2 mer. $\mathbf{1 0 \mathrm { OHMS } \text { to } 1 0 0 \mathrm { K } . 6}$

VEROROARD 0.15 MATRIX
Ein. 38 . 21 3in. 32.81 in 3 in. $38,3!$ 5in. 52.
EDGE CONNECTORS 16 wsy 5 -: 24 way 76.
PINS 36 per packet 34 . FACE CUTTERS 7.
S.R.B.P. Board 015 MATRIX 2!ın. wide 6d. per lin., 3 in. Wide θd, per 1 in .: Sin. Wide 1 - per 1 in . (up to 17 in .) BLANK ALUMINIDM CHASCIS
 ALUMINIUM PANELS 18 s.w.g. 12 12in 6 . 14
 1!inch DIAMETER WAVE-CHANGE SWITCHES.
2 p .2 way, or 2 p. 6-way. or 3 p .4 -way 46 each.
1 p. 12-way, or 4 p. 2-way, or 4 n .3 -way 46 each. 1 inch DIAMETER Wavechange "MAKITS" 1 p. 12-way. 2 p. ${ }^{6}$-way. 3 p. 4 -way. 4 p. 3 -way. 6 p. 2-way. 1
waler $18-.3$ wafer $24-.4$ waler $30-5$ wafer 36 TOGGLE SWITCHES. sp. 2 6; sp. dt. 3 B: dp. 3 6; dp. dt. 46

ALL PURPOSE HEADPHONES
H.R. HEADPHONES 2000 ohms Super Sensitiv
LOW RESISTANCE HEADPHONES 3-5 ohms

DE LUXE PADDED STEREO PHONES 8 ohms
"THE INSTANT
BULK TAPE
ERASER AND
RECORDING
HEAD
DEMAGNETJSER
$200^{\prime} 250$ v. A.C. Leallet S.A.E. $42 / 6$

Q MAX CHASSIS CUTTER

 iin. 1691 i in. 1961 in. 21 '6 2in. 39'- lin. sq. 36;
NEW TUBOLAR ELECTROLYTICS CAN TYPES

SUB-MIN. ELECTROLYTICS. 1, 2, 4, 5. 8, 16, 25, 30, 50.100 $250 \mathrm{mF} 15 \mathrm{~V} 2-: 500.1000 \mathrm{mF} 12 \mathrm{~V} 3$ 8: 2000 mF 25 V CERAMIC. 500V 1 pF to $0.01 \mathrm{mF}, 9 \mathrm{~d}$.
PAPER $350 \mathrm{~V}-0.19 \mathrm{~d} .0 .526: 1 \mathrm{mF} 3-2 \mathrm{mF} 150 \mathrm{~V} 3$
$500 \mathrm{~V}-0.001$ to 0059 d ; $011-02516: 0.53 /-$
$1.000 \mathrm{~V}-0001.00022 .00047,001,002,16 ; 004$, 0 1, 2, 6.
 $2-\mathrm{i} 2.7005 .600 \mathrm{pF} 36: 6.800 \mathrm{pF}-001$, mid 6 .-: each TWIN GANG. " 000 " $208 \mathrm{pF}+1 \% 6 \mathrm{pF}, 106 ; 365 \mathrm{pF}$. miniature 108 , 500 pF standard with trimmers. 12 ' 8 ; 500 pF midget less trimmers. 7 8: 500pF slow motion, standard 9/-: small 3-gang 500pF 19 6. Single " 0 " 365 pF ; '6. TWIN 10'6, SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}$. $50 \mathrm{pF}, ~ 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 200 \mathrm{pF}, 106$ each.
TUNING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF} .500 \mathrm{pF}, \tilde{i}$ - each. TRIMMERS. Compression 30,50 , $70 \mathrm{pF}, 1,-: 100 \mathrm{pF}$ $50 \mathrm{pF}, 1: 3: 250 \mathrm{pF}, 16 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 19 ; 1000 \mathrm{pF} .2^{\prime} 6$. RECTIFIERS CONTACT COOLED ! WEVE 60 mA 76 ; 85 mA 9 6. SILICON BYZ13 8 -: BY100 10 -
YEON PANEL INDICATORS 250 y AC DC Rects. 10 NEON PANEL INDICATORS 250 v . AC DC Red. Amber 46 , RESISTORS. Preferred values, 10 ohms to 10 meg.
 HIGH STABILITY. w. $1 \% 10$ ohms to 10 meg., 2!Ditto 5 "... Preferred values 10 ohms to 22 mea.. 9 d . WIRE-WOUND RESISTORS 5 watt. 10 watt. 15 watt,
10 ohm to 100 K .2 - each; $2!$ watt. 1 ohm to $8 \cdot 2$ ohms. $2 /-$ 10 ohms to 100 K . 2 :-each: 2! watt. 1 ohm to $8 \cdot 2 \mathrm{ohms}$. $2 /-$ BRAND NEW TRANSISTORS 6 - EACH.
MAT $10079 ;$ MAT 1018 8; MAT $120 \div 9 ;$ MAT 1218 日 REPANCO TRANSISTOR TRANSFORMERS. TT45. Push Pull Drive, $9: 1$ CT. 6 -. TT46 Output, CT8:1.6 TT49. Interstage, $45: 1,6-$ - TT52 Output 3 ohms, $20: 1,6$ TT23 4 PAIR 10 watt Amp. Transiormers and circuit 35 '-

TRANSISTOR MAINS POWER PACKS. FULL WAVE 9 volt 500 mA . Size $4!\times 2!\times 2 \mathrm{in}$. Metal case. $49 / 6$ Half Wave 9 volt 50 mA . Size $2!\times 1$ in. Snap terminals 32,6

MAINS TRANSFORMERS

Post
5'- each
250-0-250 50 mA .6 .3 v .2 amps , centre tapped $\quad 19 / 8$ $250-0-25080 \mathrm{~mA}, 6.3$ ч. 3.5 a. 6.3 v. 1 a. or 5 v
$350-0-35080 \mathrm{~mA} .6 .3$ v. 3.5 a. 6.3 v. 1 a. or 5 v. $300-0-300$ v. $120 \mathrm{~mA} ., 6.3$ v. 4 a. C.T. 6.3 v. 2 a.
 MIDGET 220 v. $45 \mathrm{~mA} ., 6.3$ v. $2 \mathrm{a} .2: 2!2 \mathrm{in}$.
HEATER TRANS. 6.3 v. $1:$ A., 10 6: 8.3 v. 4 a. Ditio tapped sec. 1.4 v.. 2, 3. 4, 5, 6.3 v. $1: 4 \mathrm{amp}$ GENERAL PURPOSE LOW VOLTAGE. Outputs 3. 4,5,
 AUTO TRANSFORMERS $0-115-230$, Input Output. AOT. 18 6; 150w. 35; 500 w . 95' 1000 w . $195 /-$.
COWARGER TRANSFORMERS. Input 200 250 v for 6 or 12v.i amp.. $22-: 4$ amp.. 35 -. 6 or 12v. outputs. 11 amp. 8 9: 2 amp . $11 / 3 ; 4 \mathrm{amp} .1 \%, 6$. COAXIAL PLUG 13 . PANEL SOCKETS 1 3. LINE 2 OUTLEY BOXES.
BALANCED TWIN FEEDERS 1 - Fd. 80 ohms or 300 obms . JACK SOCKET Std. open-circuit 2 6. closed circuit 4,6: JACK PLUGS Std. Chrome 3 -: 35 mm Chrome 2 ' 8 DIN SACK PLUGS Std. Carome $3-: 35 m \mathrm{~m}$ Chrome 2 . DIN 3-pin $36 ; 5$-pin 5 -. DIN PLUGS 3 -pin $36 ; 5$-pin 5.
VALVE HOLDERS. Od.: CERAMIC 1% CANS 1

T.S.L. LOUDSPEAKER CROSSOVER HLP2.
2-way crossover for 8 or 15 obm speakers and tweeters. 3 phono ade to sell OUR PR
$\begin{array}{cc}\text { Made to sell } & \text { OURPRICE } 22 / 6 \\ \text { at } 42 \text {-. } & \text { Post } 26 .\end{array}$
PHOTO ELECTRIC RELAY SYSTEM 240v. A.C EXCITER AND RELAY UNIT WITH INFRA RED FILTER. FOR COUNTING. $\quad \mathbf{~} 12$ POST
DOOR SIGNALS. ALARMS. ETC.

MINI-MODULE LOUDSPEAKER KIT

10 watt 65/- carriages.

Triple speaker system combining on resdy cut baffle. in. chipboard 15 in. $x 8$? in. Separate Bass, Middle and Treble loudspeakers and crossover condenser. The cone. The Mid-Range unit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical spectrum. Total response 20-15,000 cps. Fullinstructions for 3 or 8 ohm. TEAK VENEERED BOOKSHELF ENCLOSURE. $16 \times 10 \times 9 \mathrm{in}$. Modern Scandinavian $94 / 6$ Post5/-
fluted Iront desiga Ior Mini-Module.

ALL MODELS "BAKER SPEAKERS" IN STOCK
BAKER MAJOR

30-14,500 c.p.s., $\mathrm{Hi}-\mathrm{Fj}$

 double cone, woofer and weeter cone torether with a BAKER ceramic magnet assembly having a flux density of 14,000 rauss and a total fur of 145,000 Maxwells. Bass resonance 45 c.p.r. Rated 20 watts. Voice coils vailable 3 or 8 or 15 Module lit, 30-17,000 c.p.s. with tweeter, instructions. $\quad \mathbf{1 0 . 1 9 . 6}$ BAKER "GROUP SOUND" SPEAKERS POST FREE Group 25 Group 35 Group 50 TEAK HI-FI SPEAKER CABINET. Fluted wood front. For 10 or 12 in round Loudspeaker 88.10 .0 .
For 138 in or 8 in round Loudspeaker $£ 4.14 .6$.
For 10 Bin or 8 in round Loudspeaker $£ 3.16 .6$.
For 10 bin or 8 !in round Loudspeaker £3.16.6.
LOUDSPEAKER CABINET WADDING 18 in wide, $2 / 6 \mathrm{ft}$
Goodmans Tweeter $3!$ in $3 \mathrm{ohm} 35 / \mathrm{m}$. EMI 2 in $8 \mathrm{ohm} \mathrm{17/6}$. Horn Tweeters 2-18kc/s. 10W 15 ohm 29/6. Crossover $18 / 6$. LOUDSPEAKERS P.M. 3 OHMS. 2in, 3in. 4in. 5in. ${ }^{5}$ 3in, io 6in. $30 /=$ each; 10 in. or 12 in. Double cone 3 or 15 ohm $39 / 6$.
 DITTO twin tweeters and Xiover 3 or 8 or 15 ohm $10 \mathrm{w} .78,6$. SPECIAL OFFER: $8 \mathrm{ohm}, 2 \mathrm{in} ; 6: 4 \mathrm{in} ; 80 \mathrm{ohm} .2 \mathrm{in}, 2 \mathrm{jin}$. $15 / 6 \mathrm{EACH} \quad 25$ ohm, 64 in : $35 \mathrm{ohm}, 3 \mathrm{in}$. 8 in LOUDSPEAKER UNITS 3 ohm $27 / 6$, $15 \mathrm{ohm} 30 /-$ ELAC 8 in. De Luxe Ceramic 3 obm $45{ }^{\prime}-; 15 \mathrm{ohm} 50 /-$ 8 in LOUDSPEAKER. TWIN CONE 3 ohm 35 5 in . WOOFER. 8 watts max. $20-10,000$ cps. 8 or 15 ohm. $38 / 6$. OUTPUT TRANS. ELS4 etc. 4/6: MIKE TRANS. 50:1 3/9.
SPEAKER COVERING MATERIALS. Samples Large S.A.E.

Main power. amplifier and 2 valve pre-amplifier. Silver krey facia panel. Yolume, treble, bass controls. Function
gwitch: Radio. Tase 1. Tape 2, Mic Gram Lp Gration switch: Radio. Tape 1. Tape 2. Mic, Gram LP, Gram 78.
Tape output socket. Valves: 2 EL84, 3 EF88 Tape output
1
ECC83,
socket.
EZ81. transiormer 20 db negative feedhack 10 matts transiormer. 15 db nexative feedhack. 10 watis rms.
mono. 3 and 15 ohm output. Brand new. Guaranteed

ALL EAGLE PRODUCTS

45-PAGE EAGLE CATALOGUE 5 -, Post free.
BARGAIN AM TUNER. Medium
Transistor Superhet.
Ferrite aerial. $\underset{\mathrm{g} \text { volt. }}{\text { Wave. }} \mathbf{7 9 / 6}$ BARGAIN DE LUXE TAPE SPLICER Cuts,
trims, joins for editing and repairs. With 3 blades. $22 / 6$ BARGAIN 4 CHANNEL TRANSISTOR MIXER. Add musical highlights and sound effects to recordings. Will mix Microphone, records, tape and tuner with
separate controls into single output. 9 yolt. BARGAIN FM TUNER 88-108 Mc/s Six Transisior. Ready

20.17.0

BARGAIN 3 WATT AMPLIFIER. 4 Transistor $69 / 6$

```
\star RADIO BOOKS \ (Postage 9d.)
```

Practical Transistor Receivers
Practical Radio Inside Out
Supersensitive Transistor Pocket Radio Radio Valve Guide. Books 1 1 2. 3, or 4 ea. 5,- No. 5 ea. T. V. Fault Finding 405/025 lines Shortwave Transistor Receivers. Transistor Communication Sets Modern Transistor Circuits for Beminners Sub-minature Transistor Receivers
Wireless World Radio Valve Data.. Wireless World Radio Vave Data... Valves, Transistors and Diodes equivalents Manual............................. 3 inch MOVING COIL METERS BRITISH MADE Various calibrations/movements. 500 Microamp; $37 / 6$
1 Milliamp; $50-0-50$ Microamp. etc. S.A.E. Ior list.

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Handsome plastic cabinet. 201t. lead and adaptors. For any radio, intercom, tape aidaptors. For any radio,
recorder, etc. 3 to 15 ohm.
Size: $71^{\prime \prime}{ }^{\prime \prime}$.

あ" 3*. Post 2/8 30/-

RADIO COMPONENT SPECIALISTS 337 WHITEHORSEROAD, WEST CROYDON

Fig. 8. Topside layout and wiring for an amplifier board. Two such boards are required for both channels

Fig. 9. Underside layout and wiring of the board

Underside of a completed amplifler board

Resistor R47 across the output socket is also a protective component since it allows C19 to charge up to centre rail voltage in the event of no load being present when the amplifier is turned on.

QUIESCENT CURRENT

The quiescent current bias is set by VR 6 and stabilised by D2 and D3; R27 and R30 dimit the range of this potentiometer.

The current sensing resistors in the protection circuit, R44 and R45, stabilise the quiescent current since they provide negative feedback into the "emitter" leads of the complementary compound transistors TR9, TR11, TR13 and TR10, TR12, TR14.

Protection against second breakdown is provided by TR7 and TR8. These transistors limit the output transistors TR13 and TR14 to excursions within the graph previously shown in Fig. 5.

When the overload is marginal, TR 7 and TR8 simply clamp the bases of TR9 and TR10 respectively, but under severe overload conditions large excursions occur at the base of the driver caused by the lack of negative feedback when the output swing is being limited.

Overload rectification by the base emitter junction of TR6 produces assymetrical clipping which causes C19 to become discharged by TR14, since TR6 is held in saturation for increasingly longer periods.

This process takes about a second or so depending on conditions and is marked by the fact that the output rapidly degenerates until it is but a severely distorted signal of small amplitude. This condition is maintained until the overload is removed or the input to the amplifier reduced.

To prevent TR9 being destroyed by reverse biasing of its base emitter junction at the onset of an overload, the diode D 4 is connected from its base to the centre rail. TR10 is also protected under these conditions against excessive base current by the insertion of R31.

H.F. STABILITY

In order to make the amplifier stable at high frequencies, the capacitor C 15 is inserted across the base and collector of the driver TR6, and CI 8 and R46 are placed across the output. Without the insertion of

C17 at the 56 volt rail there is a possibility of radio frequency oscillations developing due to the inductance of the wires and the high cut-off frequencies of the transistors.

It will be noted that separate 0 volt lines are used for TRI4 and the rest of the power amplifier and preamplifier; this is to prevent the voltages set up in the output stage interfering with the front end and small signal stages.

CONSTRUCTION OF'AMPLIFIER BOARD

The majority of the components for each channel are mounted on a single perforated s.r.b.p. board, these are shown in the circuit diagram enclosed by the dotted line. They are attached to both sides of the board by wiring pins inserted through the holes. The layout for the upper and lower sides on the board are shown in Figs. 8 and 9 respectively.

First the pins should be inserted into the board at the appropriate positions illustrated in the diagrams. They should then be wired with the various connecting links shown with bare tinned copper wire, which should be sleeved where shown. The fixed resistors and capacitors can now be fitted to the underside, VR 5 and VR6 pre-sets having been previously inserted through the upperside.

When soldering, care should be taken so as not to burn the sleeved links. To prevent this the use of silicone rubber sleeving is recommended.

The remainder of the passive components should be attached to the upper side before mounting the transistors. No special precautions are necessary when mounting the transistors other than their leads should be sleeved and care should be taken in orientation. Once completed the board should be carefully checked with the wiring diagrams.

Finally, clip on the TO5 heatsinks on to TR10 and TR12. Make certain that the cases of the TO5 transistors do not touch the wiring pins or each other as they are connected to their collectors.

Next month: Further constructional details and power supply.

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus, Semitron, Keyswitch, Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us at manufacturers' prices e g. IN9141/3d. \square IN9161/11d. \square 2N697 4/5d. \square 2N706 2/3d. \square 2N706A 2/9d. \square 2N929 5/8d. \square 2N16134/8d. \square 2N3011 9/1d. $\square 2 N 3053$ 6/2d. \square 2N3055 15/9d. \square 3N140 15/3d. BFY50 4/8d. \square BFY51 3/9d. \square BSY27 $18 / \square$ BSY95A 3/3d. \square C407 4/6d. \square CĀ3012 18/3d. \square CA3014 25/6d. \square CA3020 25/9d. \square OA200 1/9d. \square OA202 $1 / 11$ d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS $\mathbf{1 2 A}$ and RCA, these quasi circuits set new standards $\mathbf{2 5 A}$ in quality and performance. Each kit is complete with circuit diagram, all semiconductors, resistors, capacitors and printed circuit board

40A
20A equipment

To. Mainline Electronics Limited, Thames Avenue, Windsor, Berkshire I enclose 4/-. Please send me your price list and guide $\quad \square$ I am interested in Amp Mainline Audio Amplifier Kits. Please send me full data I am interested in receiving data on preamplifier \& power supply kits $\quad \square$

NAME ADDRESS
£7. 0.0 .
£8. 5. 0.
£9. 0 . 0 .
£10.10. 0 .

\qquad

VALUE ALLTHE WAY

QUALITY-TESTED PAKS
A Matched Trans. OC44/45/8]/81D
20 Red Spot AF Trans. PNP.
osilicon Recta. 3 A $100-400 \mathrm{P} 14$
210 A silicon Recte. 100 Pl
2 OCl 140 Trans. NP'S Suitching
12 A SCR 100 H 1 C
3
200 Mcfe Sil. Trans
200 Mc/e Sil. Trans. NPN Bsi26/27
3 Kener Diodes $1 W$ 33V 5° Tol.
4 High Current Trans. $0 C 42$ Eqri
4 High Current Trans. OC42 Equt.
2 Power Traneistora 10 OC 26 I 1 OC 35
8 Silicon Recta, 400 PI' 250 mA ..
OC75 Tranaistors
Power Trans, OC20 100 V
Low Noise Trane SP'N 2N929/30 Sil. Trans NPN VCe 100 zT86 OA81 Dlailes
OC72 Transistory
OC77 7 randiator
4 Sil. Recta. 400 PIV 500 mia
8 GET884 Trane Eqvt. OC44.
5 GET883 Trane Eqvt. OC 45
2 2NT08 sil. Trane. $300 \mathrm{Mc} / \mathrm{s}$ N
3 GT31 LF Lous Noige Gernt
OA95 (Germ. Diodes Subrmin. ING9
NiN Germ. Tratis. NKTit3 Eqvi
$2 \mathrm{OC}_{2} 2$ Power Trangs "ierm.
OC25 Power Trans. (ierm.
AC128 Trans. PNP High Ga
4 AC12z/128 Comp. palr ${ }^{1} \cdot \mathrm{NP} / \mathrm{N}$ 2 N1307 PNP Switching Trans.
CG62H Germ. Dlodes Equt. O: AF116 Type Trans
2 Arlit Typ Trans.
AB8ortcl Germ, Dioles M, silicon Rectr. 100 PIV 750 n .
AF117 Trane
OClil Tran
2 C 292 f sil. Epoxy Trane. ${ }^{2}$ Ocil Type Trans.
 3 BCPO8 sit, NP' High Gain Trame 1000 PIV Sil. Rect. 1.5 A R5331 RH Y95A sil. Trans. NPN $200 \mathrm{Mc} / \mathrm{s}$ Oc200 sil. Trang.
2 GET880 Lou- Noise cierin. Trans.
3 AF139 PNP High Freq. Trans. Madt'e 2 Mati00\& 2 MAT120 Madt's 2 MAT101 \& 1 MAT12
4 OC4t ierm. Trans. AF
12×3406 sil. P PP Trans Motarol 1 sil. Power Trans. XPX $100 \mathrm{Mc} / \mathrm{s}$.

 1 T-mimnction Trans. 2N2646
2 Sil. Trans. $200 \mathrm{Mc} / \mathrm{g}$ 60veb ZT83/84

 SEMICONDUCTORS FOR "P.E." $50+50 A M P$. TJPE EACH TYPE EACH
 2N3:04
2N $3_{7} 04$
2 $3 / 6$
$3 / 8$
3

GIRO No. 338-7006
BI-PAK

KING OF THE PAKS Unequalled Value and Quality

SUPER PAKS

NEW BI-PAK UNTESTED SEMICONDUCTORS

rak N

li 120 Glass sub-min. General Purpose Germatium Diodes
1260 Mixed Gerinanium Transistors AF/RF
$\mathrm{V}_{3} \quad 75$ (iermanium Gohs Bonded Diodes sim OA5, OA4 40 Germanium Trarsistors like $\overline{\mathrm{OC8}} 1, \mathrm{AC} 128$ 60200 mA Sub-min. 811 . Dlodes
 16 silicon Rectiners Top-Mat 750 ma up to 1,000 50 sil. Planar Diodes 250 m a $\mathrm{OA} / 200 / 202$
20 Mixed Volts I watt Zener Dioles
30 PNP silicon Plathar Transistors To-5 sim. 2×1132 30 PNP.APS Sil. Tramaintors OC 200 \& 28104
150 Mixed silicon am! Cemmanum Diodes

$\overline{3} 0$ fiermanimu PNP AF Tramsistors TO-5 like ACY 17.22
U18 86-Amp silicon Rectitiers ByZ13 Type up to 600 PI
$\overline{19} \quad 30$ silicon SPN Tramsistors like BC108
C20 $12 \overline{1.5-a m p}$ silicon Rectifiers Top-Hat up to $1,000 \mathrm{PIV}$
30 A.F. Gernatum alloy Transigtora 26 G300 Series \& OC71
30 Malt's like Mat series I'N1' Transistors
20 Cermanium 1-amp Rectifiers GJM up to 300 PIV

30 Fast Switching silicon Dioles like 1 N 914 Micro-min
C28 Experimenters' Assortment of Integratell Circuits, untested
Gales, Flip Flops, Registers, etc., 8 Assortell Pieces
U29 101 amp sCR's T0-5 can up to 600 PIV CR81/25-600.
Y 3120 sil Plamar NPN trane low noise Amp 2 N 370 T . .
$\begin{array}{ll}\text { C32 } & 25 \text { Zener tiodes } 400 \mathrm{~mW} \text { D07 casc mixed Volts, 3-18. } \\ \text { C33 } & 15 \text { Plastic cabe } 1 \text { amp Silicon rectitiers in } 4000 \text { beries. }\end{array}$
T34 30 Nil. PNP alloy trills. TO-5 BCrent, 2s,302/4
C'35 25 sil. Planar trans. PNI' TO-18 2×2906,
L36 25 sill Plamar Ni'N trans. TO-5 BFY50/51/52
[37 30 sil, wlloy trans. No-2 PNP. OC200 $2 \$ 322$
L38 20 Fast switching sil. trans. Nl'N, $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~F} 30 \mathrm{H}$
c39 30 NF (ierm. PSP trane. $2 \mathrm{~N} 1303 / \mathrm{s}$ TO-5
U40 10 Dual trals. in leal TO-5 $2 \mathbf{N} 20$ tio

NEW LOW PRICE TESTED S.C.R.'s

	$\begin{gathered} \text { 1A. } \\ \text { (TO.5 } \end{gathered}$					30.3
	8e)	case)				
P15	each	each	${ }^{\text {each }}$	${ }_{10}$ each	P15	each
50	4/6	5 --	$8 / 6$	10.6	25	20]-
100	5/-	$6 / 6$	10/6	12/6	50	23 2-
200	7.	$7 / 6$	11/6	15/-	100	28/-
400	8/6	8/6	13/8	$18 / 6$	$\because 00$	32/-
1600	$10 / 6$	11/8	15/8	25/-	400	35/-
800	12/6	14/-	18/-	30/-	600	80/-

2A POTTED BRIDGE RECTIPIERS

TRANSISTOR EQVT. AND SPECIFICATION BOOK. (German Publication.) A complete cross retertice and equivilent sook for tors. Exclusive to $\mathrm{BI}-\mathrm{P} \mathrm{AK}$. $\left.15\right|^{- \text {- eath. }}$

PRINTED CIRCUITS

EX-COMPUTER
Packed with semiconductors and com-
 $10 /-\quad$ Plus $2 / \sim$ P. $\& \mathbf{F}$

PLEASE NOTE. To avoid any further Increased Postal Charges to our Customers and enable us to keep our 'By Return Postal
gervice" which is second to none, we have re-organised and atreaminet our Despateh Order Department and we now reguegt you to send all your orders together with your remittance, direct to our Warehouse and Despatch Department, nostal address: BI-PAK SEMICONDUCTORS, Despatch Dept., P.O. BOX 6, WARE, HERTS. Postare and packing still' $\mathrm{l} /-\mathrm{per}$ order. Minimulu

SIL. RECTS. TESTED PIV 7501 AR 3 A 10.A30A $\begin{array}{lllll}50 & 1 /- & 2 / 9 & 4 / 3 & 9 / 6 \\ 100 & 1 / 3 & 3 / 3 & 4 / 6 & 15 /-\end{array}$ $\begin{array}{lllll}100 & 1 / 3 & 3 / 3 & 4 / 8 & 15 /- \\ \because 00 & 1 / 8 & 4 /- & 4 / 9 & 20 /\end{array}$ | 300 | $1 / 9$ | $4 /-$ | $4 / 9$ |
| :--- | :--- | :--- | :--- |
| $300 /$ | | | |
| 300 | $2 / 3$ | $4 / 6$ | $8 / 6$ | 4002

5003
6003 6003
8003
1000
100
 $1 \because 00$

INTEGRATED

 CIRCUITSBI-PAE MONOLITHIC AMPLIFIERS (TO-5 8 lead) B1; 09 C, Operational armp lifler, $15 /-$ each.
BI' 701 C , Onerational amp Bl'701C, Onerational amp
liffer (with Zener out put), $12 / 6$ etch.
Blo 302 C . Operational amp lifler (with direct out
put), 1R/6 each. fler, 18/- each. BP52 1. Logarithmic wid
hand ample, $14 /=$ each. BP20/C. General purpose amplifier (TO-5 8 lead) (woltage or current amp.)
12/6 each. I.C. Operittio
I.C. Operational Amylifle
with Zener out put. Type 701C. ldeal for I.E Full data.
Our price $12 / 6$ each 5 off Il/-each. Large Qty

AMPLIFIER

 FOR USE IN

\qquad
\qquad capabte of deliverimg up to
$\mathbf{3}$ watts RMS. Fully tested and guaranteed. Supplied complete with circuit details and data. CODED BP 1010.
OUK IOWEST PRICE 30/- eatch. 10 up 25/- eac
OTHER MONOLITHIC
BP424, DEVICES
Br427,
$8 / 6$ each.
This that acts as combline I.C. that acts as combined trigger cirenit for control.
ling is triace. to pulse the gate of thyristor at the point of
zero supply volt:ige, and zero supply voltige, and frequency interference

loals

D13D1 Silicon E゙nilitera
A silieon I latiar, mono. hithic integrated circuit hathag thyristor electrical
characterist ics but with characteristics, but with an
itnole gate atol a mite-in
"Zener" diole hetwee gate mbl cathode. Ful cuits available on request.
FAIRCHILD (U.S.A.) INTEGRATED CIRCUITS Eposy case $7^{\circ 8-5}$ lead UL900, Jiuffer, $8 / \theta$ each. UL914, Dual two-input
gate, $\begin{aligned} & \text { D/9 each. } \\ & \text { UL923 J-K-flip-flop, } 13 /-\end{aligned}$. each.
Complete data aml circuits for the Fairchild J.C.'s avitable in looklet
priced $1 / 8$.
MOLLARD I.C.

MOLLARD I.C AMPLIFIERS

TAA243, Operational amp-
lifier, $70 /-$ each. TAfier, 70/-each
AA263, linear AF ampli
fler, $15 / 9$ each. TAA293, General purpos
mplitier, 21/- each.
CA3020 RCA (U.S.A.)
LINEAR INTEGRATED
Audio Power Amplitier,
$30 /-$ each.

CADMIUM CELLS

ORP60, ORP61 8/- each
PHOTO TRANS.

AD161 xps.
ADI $62_{\text {psp }}$
MATCHED COMPLE. MENTARY PAIR TRANSISTOHS
For mains driven out put atages of Ampit OIR LOWEST PRICE OF 12/6 PER PA/R

HIGH POWER SIL

 CON PLANAR THA FERRANTI ZT148rCB60 le 6A
VCE40 Ptot. 75 W
PRICE 15/- EACH
$2 N 3055$ POWER WPA SIL OUR PISICE 12/6 EACH
FULL RANGE VOLTAGE RANGE 2-16V. 400 HY (DO-7 Hat) $3 / 6$ ea. 10 W (SO-10
Stud) $5 / \rightarrow$ ea stud) $5 /-$ ea. All fully
tested
5%
tol. and marked.

BRAND NEW TEXAS GERM. TRANSISTORS Coded and Guaranteed Trith

$$
\begin{gathered}
\text { T9 } 8 \text { 20399A ?N130 } \\
\text { T10 \& 2 } 6417 \text { AF117 } \\
\text { All } 10 / \text { each pack }
\end{gathered}
$$

2N2060 NPN SIL. DUAL TRANS. CO1OE DI699 each.
120 VCB NIXIE DRIVER TRANSISTOR.
BSXUL \& C407. 2 N 1893 CODED ND $120.1243 / 6$ each. To-5N.P.N. 25 up Sil trans. suitaule for
P'E Orgatr. Metal TO-18 Ef, Orgath Metal TO-18

FREE
One 10/- Fack of your orders valued 54 or over. NPN DIFFUSED SHLICON PHOTO-
DUODODE
TYPE 15701 (2N2175) tor Tape Readout, high switehing
and measurement indiOUTOR PRICE $10 /-E A C H$ 50 OR OVER 86 EACH, FULL DETAILS

FET'S

$\begin{array}{lllll}\text { 2N } & 3819 & \ldots . . & 10 /- \\ \text { 2N } & 3820 & \cdots & 25 /- \\ \text { MPF105 } & \ldots & . & 8 /-\end{array}$
LOW COST F.E.T. 1 Fully Tested, Guaranteed
lerameters equit. to Perameters equit
2 N3819. MPF102,
25-99 6/3 each; 100 up $5 / 6$ ench. Coded FE19.
Full data sent. TO-í2 case.

BI-PAK MONOLITHIC DIGITAL CIRCUITS (10 lead TO-5)
BP305A, 6 -Input gate, $9 / 6$ each.
BP314 $A_{,} 7$-Input NOR BP314A, ${ }^{7}$-Input
gate, $9 / 6$ each.

$$
\begin{aligned}
& \begin{array}{lll}
8 & 26371 A & \text { OC71 } \\
8 & 2 \mathrm{C37} 4 & 0 \mathrm{C} 75 \\
8 & .2 \mathrm{G3} 44 & 0 \mathrm{C} 81 \mathrm{l}
\end{array} \\
& 8 \text { 2G3544A OC81D }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
82 \mathrm{G} 378 & 0 \mathrm{C} 78 \\
8 & 2 \mathrm{G} 399 \mathrm{~A} & 2 \mathrm{~N} \\
\hline
\end{array}
\end{aligned}
$$

PART TWO • DOPPLER RADAR

ByA.FODRD

FOR some specialised applications pulsed radar may not be able to give the results required, and c.w. radar has to be used instead. This involves the transmission of a continuous unmodulated stream of radio waves.

As with pulsed radar a reflected signal will be obtained from any object in the path of the beam. The bearing and elevation of this object can be deternined from the aerial position for a maximum reflected signal, but a straightforward c.w. radar can give no indication of range, and is therefore used to give velocity measurements for a known single target.

DOPPLER EFFECT

The traditional explanation of the Doppler effect involves the observation that the pitch of a train's whistle seems to alter noticeably as the train passes a listener. If the train is stationary the note heard is constant, when the train is moving however, the frequency of the note will sound higher than the actual (stationary) note if the train is approaching, but lower if it is receding.

For an approaching train each successive peak of the sound wave is emitted from a point which is slightly closer to the listener, and the previous peak, than would normally be the case for a stationary train. This effect shortens the wavelength and increases the frequency of the note.

Conversely, for a receding train each successive sound peak is emitted from a point further away from the listener, and so the wavelength is increased and the frequency decreased.

This difference in frequency depends on three things:

1. The relative velocity between the object and the observer;
2. The frequency of the transmission;
3. The propagation velocity of the wave.

This applies for all wavelengths from sound through radio and radar wavelengths to light, provided the correct constants are used.

For an object approaching a c.w. radar set the received signal returns will be higher in frequency than the transmitted signal, and lower for a receding object.

SHIFT FREQUENCY

If the transmitted signal is F_{0} and the received signal F_{r}, then the doppler shift frequency f is the difference between these two frequencies and is given by:
$f=\frac{2 v}{c} F_{0}$
where
$f=$ Doppler shift frequency in Hertz.
$F_{0}=$ transmission frequency in Hertz.
$r=$ relative velocity between object and radar in miles per hour.
$c=$ velocity of radio waves in miles per hour $(186,000 \times 60 \times 60)$

If the transmitter frequency is $10,000 \mathrm{MHz}$ and the velocity of an approaching object is $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., then the Doppler shift frequency is:

$$
f=\left(\frac{2 \times 100}{186,000 \times 60 \times 60}\right) 10,000 \therefore 10^{f} \mathrm{~Hz}
$$

$$
f=3.2 \mathrm{kHz}
$$

Transmitter freq. Target velocity Doppler freq. $10,000 \mathrm{MHz}$ $3 \cdot 2 \mathrm{kHz}$
As an easily remembered approximation this represents a Doppler frequency of 30 Hz per 100 MHz per 100 m.p.h.
Since the object is approaching, the frequency of the reflected signal is:

$$
F_{\mathrm{r}}=F_{o}+f=10,000 \mathrm{MHz}+3 \cdot 2 \mathrm{kHz}
$$

If the object were receding, then the frequency of the reflected signal would be:

$$
F_{\mathrm{r}}=F_{0}-f=10,000 \mathrm{MHz}-3 \cdot 2 \mathrm{kHz}
$$

RADIAL VELOCITY

If the object is not travelling in a straight line towards or away from the radar then the actual change in frequency caused by the Doppler effect depends not on the actual velocity of the object, but on its velocity relative to the aerial.

Fig. 2.1a. Basic principle of Doppler radar, where the object is moving directly towards, or away from, the radar.

Fig. 2.1b. How the actual velocity of the object can be calculated, if it is moving at an angle to the aerial, from radial velocity and θ

In Fig. 2.1a, where the aircraft is travelling towards the radar, the measured radial velocity will be the true velocity of the aircraft.

In Fig. 2.1.b, where the aircraft is travelling at an angle to the aerial, the measured radial velocity towards the aerial is less than the true velocity along the direction of the aircraft flight. Since in this case the aerial will be tracking the aircraft, the actual velocity can be calculated from the radial velocity and the angle θ.

BASIC MIXER

A simple block diagram is shown in Fig. 2.2 where the c.w. energy is transmitted at a frequency F_{0} and after reflection from a target returns to the receiver at a frequency $F_{\mathbf{r}}$. The received signal is amplified and

Fig. 2.2. Block diagram for a simple Doppler radar

Fig. 2.3. Block diagram for a practical superhet Doppler radar
mixed with a sample from the transmitter to obtain the difference frequency f, which is amplified and fed to a frequency counter to determine the object velocity, or to a display unit to show the presence of a moving target.

For a stationary object there will be no doppler output, but even for a moving target this system cannot decide if the target is approaching or receding since the mixed output will be the same for either case.

It is difficult to measure the transmitted and received frequencies directly, to decide if the received signal is higher or lower than that transmitted, because of the very small percentage difference.

The system just described relies on the microwave amplification of the received signal up to a level suitable for mixing and amplification at audio frequency. Low noise microwave amplifiers are expensive and bulky or have a poor dynamic range, so that microwave mixing down to audio, with or without previous microwave amplification, would only be used for short range equipments where the noise figure is not important.

Using the superhet principle, a far better practical system can be employed and is shown in Fig. 2.3.

I.F. AMPLIFICATION

The sample of the transmitted signal is mixed with a local oscillator to produce an i.f. which is amplified and applied to the third mixer. The received signal is

Get your own Multimeter today (complete with plastic case, leads, instruction booklet and a full year's guarantee) from your local supplier, or ask for details direct from Avo.

FERRANTI SENCOMUCHOTIS

are specified by

PRACICLCL EleCtronics

for their

 EIECTRONIC ORGANSupplies are available from these FERRANTI Distributors:

SOUTH
EDMUNDSONS ELECTRONICS LIMITED, 60-74 Market Parade, Rye Lane, Peckham, LONDON S.E. 15 .
Tel: 01-639 9731. Telex: 887212
SEMICOMPS LIMITED,
Station Wharf Works, ALPERTON, Middlesex.
Tel: 01-903 3161. Telex: 935243
WEL COMPONENTS LIMITED,
5 Loverock Road, READING, Berks.
Tel: 0734-40616/9. Telex: 84529.
mIoLands COVENTRY FACTORS LIMITED, Coronet House, Upper Well St., COVENTRY. Tel: 020321051.

SWIFT-HARDMANS ELECTRONIC AND AUTOMATION DISTRIBUTORS,
Swift House, Hanley, StOKE-ON-TRENT
Tel: 0782-24531. Telex: 36297.
NORTH SWIFT-HARDMANS ELECTRONIC AND AUTOMATION DISTRIBUTORS,
P.O. Box 23, Hardale House, Baillie Street, ROCHDALE, Lancs.
Tel: 0706-47411. Telex: 63237.
SCOtLAND SEMICOMPS NORTHERN LIMITED, 44 The Square, KELSO, Roxburghshire. Tel: 2366-7/2369. Telex: 72192.

TEBHNGAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl, pro-fessional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

mixed with the local oscillator, amplified at i.f., and also applied to the third mixer. The output from the third mixer will be the required Doppler signal.

The amplification now takes place at i.f. rather than at microwave frequency and the second mixer is the main source of receiver noise, but this will be lower than in the previous case.

To determine if the object is approaching or receding the two i.f. signals are compared in a frequency discriminator which indicates this. The discriminator has to decide if the received i.f. signal is greater or less than the transmitter i.f. signal; the Doppler information is now a much greater percentage of the signal, 1 kHz in 45 MHz rather than 1 kHz in $10,000 \mathrm{MHz}$, and this does not present any problems.

Next month's article will describe coherent pulsed radar using the Doppler effect.

> To be continued

INFRINGEMENT OF PRIVACY

continucd from page 203
companies and private detective agencies, have raised strong opposition. But more disturbing and of serious concern was the attack made upon this Bill by the Press Council and subsequently echoed by most of the national newspapers. While acknowledging the serious threat to the individual's privacy from electronic spying devices, many newspapers are chiefly concerned that their own investigations are in no way impaired by legislation to ban such devices.

The unearthing and publication of unsavoury facts is often in the public interest, but is there to be no limit to the way such information is obtained? Privacy cannot be violated simply on the basis that something of vital importance may be revealed. Only properly authorised bodies like the police and security services should be permitted the use of surreptitious spying equipment-but subject to statutory safeguards. In combating criminal or treasonable activities, such methods can be justified. If the press is claiming the same right in pursuit of its everyday business, then it is asking too much. This is tantamount to denanding the right of entry into every private dwelling and to open every bureau and search all personal documents, upon whim.

Newspaper men will throw their hands up in horror at this suggestion. But because modern lechnology allows this spying to be carried out often without obvious and brutal physical intrusion, the offence to human rights is no less real. In fact, it is all the more despicable because of its very surreptitious nature. Not a broken pane or forced lock 10 warn the victim that his most intimate affairs have been pried into by strange anonymous eyes or ears. This is perhaps the most frightening aspect of all. Those who feel it their right or duty to employ hidden bugging and snooping devices should pause and consider that they themselves could be subject to this kind of investigation at any time-if these devices are not outlawed.

It would be foolish to imagine that the act of declaring such devices illegal will eliminate the problen. But it would be the first important step, and would make the moral and ethical position quite clear. And it would allow the victim to obtain redress in the courts.

We cannot just sit back and condone this abuse of electronics.
F.E.B.

NEWS BRIEFS

Export Oriers by Computer

The Board of Trade have recently announced the proposed introduction of a new computerised scheme for export intelligence. The scheme, which will use the existing Board of Trade ICL 1905E computer on a night shift, has been designed to provide a fast interchange of information between foreign and British firms.
At present the Board of Trade publish a daily Export Services Bulletin listing export opportunities. The Computerised Export Intelligence system will supersede the bulletin and provide highly specialised information to firms where required. The computer can be programmed to select not only defined products, but the countries to which a British firm wishes to export.

It is hoped that more than 10,000 British firms will join the scheme which will be self-supporting.

Scandinavian Flights

Scandinavian air travel, at present around $4 \frac{1}{2}$ million persons per year, is expected to rise to around 20 million in the next decade, while air cargo will also greatly increase in volume. To prepare for this expected boom Scandinavian Airlines have just installed a SASCO II system at their computer centre in Copenhagen.
Claimed to be the largest real-time installation in Europe, the heart of the system comprises three new UNIVAC 494 computers, each with 131 W core store.

Applications handled by SASCO 11 include passenger reservations and remote load control. The latter, used to control the take-off weight of aircraft, involves the on-line recording of data relating to passengers, baggage, cargo, mail and fuel to be carried on each tlight.
Batch processing applications already in operation or scheduled for the near future include crew control, material supply, an integrated accounting system, passenger sales and revenue statistics, traffic operation and planning statistics, maintenance and overhaul planning and catering planning.

It is expected that the new system will provide a better service at an economic cost during the period of expansion.

Versatile Computer

THE introduction of the Ferranti ARGUS 600 digital computer at $£ 1,700$ is claimed to be the cheapest digital computer available in the U.K. The new computer is aimed at the large but virtually untapped low-cost computer and control system markets for which existing, more powerful digital systems are not economically viable.

The ARGUS 600 is ideally suited for use as a central processor in a variety of small system configurations, such as the control of production machines, traffic lights, warehouse conveyor systems, batch production processes and hospital management services.

Being completely compatible with large digital computers, it can be linked directly or over telephone lines.

-PRACTICAL ELECTRONICS-A PRICE INCREASE

With effect from next month, the price of PRACTICAL ELECTRONICS will be increased from 3 s to 3 s 6 d .

It is greatly regretted that this has become necessary. Unfortunately rising costs of production permit no other course of action.

There will be no change in our editorial policy, of course. We shall continue to present the most up-todate ideas and designs for home constructors, as weli as feature articles highlighting significant developments in electronic technology.

IR OR $\notin A N$ PART 11

By Alan Douglas, Sen. Mem. I.E.E.E.

IN THIs final article of the series, circuits for single note manual sustain and vibrato are included. To realise the capability of the instrument, guidelines for the selection of pitch combinations are provided

USE OF REVERBERATION

It is often said that the building makes the organ, and this is very true; but we are really referring to the majestic sounds of the large pipe organ in saying this, where reverberation rounds off the massive concentration of sound.

In the cinema, there is no reverberation with an audience present. So if we had a room of not less than 3,000 cubic feet, we would have the best conditions for this particular organ. It is more likely that we will have about half that figure, and if this is so, or less, then
a little artificial reverberation will enhance the results.

SPRING REVERBERATOR

Since we are not dealing with any great degree of power, we can apply a spring reverberator quite well. This is really a coiled transmission line, the rate of propagation being determined by the length of the line and to some extent by the density of the line material.

Most spring units use far too heavy a gauge of material, so that if the line is over-driven, the spring takes a long time to settle down and may actually chatter. However, if carefully used, the simple spring lines are quite effective down to about 100 Hz .

One such device is available from Henry's Radio Ltd. or Harmonics Ltd. of Bromley, Kent. The author has not actually tried this unit, but from the published specification it appears to be a close copy of the small Hammond spring unit, and could be directly connected in the mixer output; but since it uses a low impedance magnetic driver in place of the crystal which was common at one time, it would be more effective if coupled to this output by a transformer stepping down from 8 kilohms to 15 ohms.

The output from the unit can go direct to the input of the manual amplifier. Thus there would be reverberation on both manuals. It must be stressed that this should be kept to the minimum acceptable level and a very small amount is much more realistic with this type of organ in a small room.

SPRING LINE MOUNTING

Spring delay lines tend to be microphonic and they should be wrapped in foam plastic or some similar material toprevent the sound waves from the loudspeaker from exciting them. They are also extremely susceptible to mechanical shock, so can be suspended on cords to isolate them physically from the organ frame.

There are many other electromechanical or electro-a.coustic reverberation systems but under the designed conditions of use for this organ, a spring unit of the type described should be quite satisfactory.

ADDITIONAL CIRCUITS

AND PLAYING TECHNIQUE

MANUAL SUSTAIN GATE

Fig. II.I. Circuit of manual sustain gate, one of which is required for each organ note. See Fig. 9.5. for power supply taps

Resistors	
R1	$150 \mathrm{k} \Omega$
R2	$1.5 \mathrm{k} \Omega$
R3	$18 \mathrm{k} \Omega$
R4	$2.2 \mathrm{M} \Omega$
R5	$27 \mathrm{k} \Omega$
R6	$100 \mathrm{k} \Omega$
R7	$10 \mathrm{M} \Omega$
All 10%	$\frac{1}{2}$ watt carbon
Capacitors	
Cl	$0.68 \mu \mathrm{~F}$ polyester

Potentiometers

VRI $50 \mathrm{k} \Omega$ carbon

Transistors

TRI $\quad 2 T \times 300$

Diodes

DI OA210 (Mullard)

MANUAL SUSTAIN

The introduction of pedal sustain in Part Nine naturally leads to the question of manual sustain, but this is more difficult since a sustain circuit is required for each note.

This becomes quite complicated and costly and really a similar effect can be obtained from reverberation. However, as a matter of technical interest we show in Fig. 11.1 a circuit for this purpose.

The advantage of using a transistor for keying is that there is no distortion of the waveform as is encountered with diodes. The cut-off is better defined and there is no leakage, and of course there are no key clicks, so very simple contacts can be used. In this connection it should be noted that the resistance key switches specified for this organ could not be used with transistor (or diode) keying.

OPERATION OF SUSTAIN CIRCUIT

One transistor is required for every note of every pitch, so in some cases it is customary to key the bottom octave by direct contacts (using gold wires) and by transistors for the rest of the compass.

Thus, the signal voltage would be keyed for 13 notes and the forward conductive d.c. voltage would be keyed for the remainder, the signal voltage being permanently connected to the transistors.

Now the signal is fed through R1 to the transistor. The bias supply of about 0.28 to 0.3 volts reaches the base through R5 cutting the transistor off. When a key contact is closed, +28 V is applied to R 3 making Cl
charge more positively. Thus the base becomes more positive and is biased on, so that the signal passes out from the collector.

When the key is released, one of two conditions is established; either the base is biased again for cut-off, discharging. Cl , or, if the diode is connected, +12 V or +20 V is switched to this. Cl will then discharge quickly through R3 and the diode but only until either the 12 or 20 volt level is reached; after this, the diode appears as an open circuit and further discharge of Cl is through R3, R6 and R7 at a much slower rate.

By varying the voltage on the diode, different rates of sustain are possible, equal in fact to what one would obtain from a reverberation device but much more controllable and with no frequency discrimination or possibility of overload. These two latter limitations must in fact apply to some extent to any system common to a large number of notes of varying intensity and pitch simultaneously applied.

PERCUSSION

It would be possible to use percussion circuits with this kind of organ but these must of necessity follow the generators and again must be a common unit.

A good many circuits have been published in various books, but quite frankly the author does not think that this effect can enhance the capabilities of this particular organ and it is only effective on flutes or similar voices of small harmonic content. In any case, percussive sounds do not belong to any family of organ tones.

Fig. 11.2. Circuit of phase shift oscillator which will provide vibrato if connected to the twelve tone generators

VIBRATO UNIT (ONE REQUIRED)
Resistors
RI $10 \mathrm{k} \Omega$
R2 $100 \mathrm{k} \Omega$
R3 560Ω
R4 $2.7 \mathrm{k} \Omega$
R5 $10 \mathrm{k} \Omega$
R6 100Ω
R7-R18 $\quad 470 \mathrm{k} \Omega$ (12 off)
All 10%. $\frac{1}{2}$ watt carbon

Capacitors		
C1-C2	$1 \mu \mathrm{~F}$	polyester (2 off)
C3	$0.22 \mu \mathrm{~F}$	polyester
C4	$0.22 \mu \mathrm{~F}$	polyester
C	$50 \mu \mathrm{~F}$	elect. 25 V
C6	$50 \mu \mathrm{~F}$	elect. 25 V

Transistors
TRI-TR2 ZTX 300 (Ferranti) (2 off)

Potentiometers

VRI 10k linear carbon
VR2 4.7 k horizontal preset

VARIABLE VIBRATO

As we know, the tremulant or vibrato is produced acoustically by the revolving rotor above the manual loudspeaker. Sometimes added effects are possible with an electronic vibrato applied to the oscillators. This has certainly one advantage, that the rate of vibrato can easily be altered by a simple potentiometer.

A suitable circuit is given in Fig. 11.2 where it must be noted that all the 470 kilohm resistors have to be connected before the organ is tuned.

This oscillator gives a very good waveform and it will be realised that this is very important. If the modulation were not sinusoidal, or were lop-sided as it were, or if it contained harmonics, then there would be distortion of the signal which would change as the vibrato voltage swung from positive to negative. In an extreme case clipping could occur giving rise to spurious and discordant signals from the dividers.

One must decouple the vibrato oscillator very thoroughly from the power supply, this being achieved by the L filter C5/R6.

HEADPHONES

One of the advantages of the electronic organ is that we can bring the volume down to a whisper, an impossibility with any physical system. This raises the question of using headphones for practice.

Unfortunately in this organ we split the output into two channels, so that we must feed the signal from one amplifier into one of the earpieces, and the signal from the other into the second earpiece. If we assume these to be moving coil (otherwise we shall not hear much of the pedal section), then the impedance will be similar to that of the loudspeakers; we therefore only require a simple network to reduce the power to the 'phones and properly load the amplifiers at the same time. This is shown in Fig. 11.3.

(a)

(b)

(c)

Fig. II.3. Octal socket (a) and octal plug (b) connections for linking loudspeakers and amplifiers. For private practice with headphone an octal plug should be wired as in (c)

Perhaps the best way to mount the parts is on an octal base, when the loudspeaker connections can be on an octal plug to substitute when required. In the setting of VR1 and VR2 to a satisfactory listening level it must be emphasised that the wiper adjustment proceeds from the high resistance end.

PLAYING THE ORGAN

Now that we have an organ capable of producing many different sounds, what are we going to do with them? Readers who know about organs can answer this at once, but what about those unaccustomed to such instruments? Why are there all these pitches, and do all notes have the same effect, or are there some restrictions? Well of course every instrument has its limitations, and horrible sounds can be produced on any piano, organ, or indeed practically every physical instrument.

It will be recalled that this organ is based on what we call the solo and accompaniment system, which is just what it says. Everyone starts to play (unless being taught by a qualified teacher) by finding tunes on single notes. This is what the top keyboard is for, because even an accomplished player will frequently do the same thing. Therefore, for single notes only, any stop and any part of the top keyboard can be used; 2 ft and 4 ft stops are high pitched; 8 ft and 16 ft are low pitched.

A tremendous variety of melodic sounds can be found for simple tunes-there is no limit, since nearly 8 octaves is available by means of the different stopsequal to a keyboard longer than a grand piano!

ACCOMPANIMENT

The lower keyboard could be used in the same way, but its primary purpose is to provide simple or complex chords or figures for accompaniment. If you cannot play, this function will call for practice; but in any case, the loudness of the primary accompaniment stops8 and 4 ft flutes, 8 and 4 ft strings-is less than that of the solo manual. This causes the melody to stand out, the exact relative loudness being regulated by the two swell pedals.

PEDAL BASS

The pedalboard is most likely to cause difficulty; yet, because only one note at a time is played on it, one can becone quite proficient after reasonable practice. The sole purpose of this clavier is to provide the bass; and here there are a loud and a soft 16 ft tone-an octave below the normal pitch; and an 8 ft tone to reinforce the 16 ft , which can become monotonous in time.

The pleasure derived from an organ depends on ringing the changes tonally.

CONSONANT CHORDS

We cannot give any guide as to any particular way to learn to play, but we can suggest how to avoid discordant sounds due to other causes. It is well known that because of the method of tuning for any instrument having 12 intervals to the octave, some chords are more agreeable than others; this is because some are relatively pure, whilst others produce beats.

When these beats are fast, they have little effect; for instance, 2 ft , 4 ft and 8 ft stops down to about tenor $\mathrm{C}, 130 \mathrm{~Hz}$. Below this, the beat frequency approaches the tone frequency, and the tone becomes more coarse when chords are played.

For this reason, it is not satisfactory to use chords of 16 ft pitch much below mid $\mathrm{C}, 261 \mathrm{~Hz}$. Indeed, when
one goes far enough down the keyboard, it is only octaves which can be tolerated-and this applies to all keyboard instruments of full compass.

So, as regards the top manual, caution is called for in using chords below mid C , but of course, single notes can be played right down to the bottom of the keyboard; indeed, this forms a useful bass for those who cannot use a pedalboard.

VOICE PAIRING AND VIBRATO

The melody is generally required to stand out from the accompaniment, not only by virtue of increased volume, but by contrast in tonal texture. For example, to accompany the solo violes by the violes on the lower keyboard would reduce contrast, but by using the accompaniment flutes, the solo would stand out well. Equally, the horns should be accompanied by the flutes, but the tibias can have either flutes or strings as accompaniment since they are usually used in combinations such as: 4 ft and 8 ft ; 16 ft and $4 \mathrm{ft} ; 2 \mathrm{ft}, 4 \mathrm{ft}$, 8 ft and 16 ft together.

The tibia is rather lifeless without vibrato, but takes on a curious appeal when so modulated. Vibrato should therefore always be used with this kind of voice in chorus, except in the event of a church organ effect, when of course it would not be required.

Most organ voices change their character with vibrato, and this applies especially to the strings.

EXTENDED SOLO

It will soon be found that the playing procedure is reversible, as it were; for example, the 4 ft and 8 ft tibias can be kept down by the solo swell pedal, and the clarinet or trumpet on the lower manual used as solo voices.

In this way, further sound patterns are possible, so by exploration, the constructor will find that there are more possibilities than appear at first sight.

To obtain melodious effects, the organ must be in tune. Once tuned, it will not drift out, since if polystyrene capacitors are used, the silicon planar transistors will be found to be perfectly stable against all changes of temperature likely to be found in a house.

In conclusion, and depending to some extent on reactions from readers, we hope to publish further possible modifications and extensions to the Practical Electronics organ, from time to time.

We saw last month that, when the monostable has been triggered, the coupling capacitor Cl charges on a well-defined time constant and causes the base voltage of TR2 to rise continually from an initial negative value. Eventually, when TR2 base voltage passed through zero to a small positive value, TR2 began to conduct and the circuit switched back to its initial state.

ASTABLE SWITCHING

In the astable multivibrator, a capacitor is included in both coupling networks. Thus, as soon as the circuit switches, the appropriate capacitor begins to charge and eventually causes the switch back to the initial state.

However, the other capacitor will commence to charge following this second switching and, as soon as it drives the base of the off transistor positive, that transistor will turn on, so the circuit switches again. The process obviously continues, the transistors switching on and off alternately.

The circuit (shown in Fig. 4.1) acts as an oscillator, a relaxation oscillator. Typical output waveforms are shown in Fig. 4.2 which also illustrates how by the use of two different time constants, a variable "mark/space" ratio can be obtained, that is, the on times of either of the transistors can be made different from the off times.

DESIGN PROCEDURE

The calculation of component values is straightforward, the procedure for calculating these being given in the "design steps" panel.

DESIGN STEPS

Step I. Decide upon the required output swing V_{0}.
Step 2. $\quad V_{\text {CC }}=V_{0}$.
Step 3. Choose a suitable collector current I_{c}, bearing in mind the load requirements and calculate $R_{\mathrm{C}}=R_{1}=R_{4}=V_{C C} / I_{\mathrm{c}}$.
Step 4. Calculate $R_{\mathrm{b}}=R_{2}=R_{3}=\left(V_{\mathrm{CC}}-V_{\mathrm{be}}\right) h_{\mathrm{FE}} / I_{\mathrm{c}} \simeq$ $h_{F E} R_{c}$ if $V_{C C} \gg V_{\text {be }}$.
Step 5. Calculate C_{1} and C_{2} from $C_{1}=\tau_{1} / 0 \cdot 7 R_{b}, C_{2}=\tau_{2} /$ $0.7 R_{b}$.

LIGHT FLASHER

Let us apply these results to design a demonstration circuit which will cause a pair of $6 \mathrm{~V}, 100 \mathrm{~mA}$ bulbs to turn on and off alternately at a frequency of about one cycle per second.
Step 1. $V_{0}=6 \mathrm{~V}$.
Step 2. $V_{\mathrm{CC}}=6 \mathrm{~V}$.

Fig. 4.I. Basic circuit configuration of an astable multivibrator

Fig. 4.3. Practical circuit for an astable multivibrator light flasher with S-DeC connections

Step 3. $\quad I_{\mathrm{c}}=100 \mathrm{~mA}$, so $R_{\mathrm{c}}=6 / 0 \cdot 1=60$ ohms.
Step 4. Assume a minimum value of 20 for $h_{\text {Fe }}$. Thus

$$
R_{\mathrm{b}}=20 \times 60 \text { ohms }=1 \cdot 2 \mathrm{ks}
$$

Step 5. $\quad \tau_{1}=\tau_{2}=0.5 \mathrm{~s}, \quad$ so $\quad C_{1}=0.5 /(0.7 \times 1,200)$

$$
=420 \mu \mathrm{~F}
$$

Since both halves of the circuit are symmetrical $\mathrm{C} 1=\mathrm{C} 2$ and can be $500 \mu \mathrm{~F}$.

The circuit and suggested S-Dec connections are shown in Fig. 4.3. The transistors must be capable of operating at 100 mA collector current; $p \mu p$ devices are shown, types such as the OC72 or OC83 being suitable.

If $n p \|$ transistors are preferred, the polarities of the electrolytic capacitors and battery supply must be reversed.

AUDIO RELAXATION OSCILLATOR

The circuit shown in Fig. 4.4 consists of an astable multivibrator working at a frequency of about 1 kHz into a simple loudspeaker amplifier. Note that npn transistors are used for the multi, and pnp for the amplifier.

There is a danger of damaging the silicon types due to reverse bias base-emitter breakdown; this was mentioned in connection with the monostable multivibrator last month. To eliminate this possibility,
protection diodes are included in the base leads. Any diode will be suitable for this application, for example, OA71, OA81.

The component values for the multivibrator are calculated in the same way as before, but after the loudspeaker amplifier has been designed as follows.

First assume that a small $80 \Omega 2$ speaker is to be used. When TR4 is on, its collector current will be approximately $6 / 80=75 \mathrm{~mA}$. The base current of TR4 will be about one twentieth, i.e. about 4 mA , assuming a minimum hFe of 20 at 75 mA collector current. This base current is the emitter current of TR3, so the base current of TR3 will be not more than $0 \cdot 2 \mathrm{~mA}$ assuming the same value for $h_{\mathrm{HE}(\mathrm{min})}$.

If TR3 and TR4 are germanium transistors, e.g. $0 C 72$, there will be about 0.6 V drop between the top rail and the base of TR3 when the transistors are on ($2 \times 0.3 \mathrm{~V}$).

Now TR 3 and TR4 will be on when TR2 is off, the collector voltage of TR2 being at near zero, so there will be a path for the base current of TR3 via R5. Thus $R_{5}=(6-0 \cdot 6) / 0 \cdot 2=27 \mathrm{k} \Omega$.

Note that when TR3 is off, its collector voltage will be approximately 6 V , so R 5 will be effectively returned to the positive rail. There will be no path for the base current of TR3 under this condition.

Fig. 4.4. Astable multivibrator with a simple loudspeaker amplifier. Note the use of npn and pnp transistors (see text)

A frequency divider unit built on T-DeC from the circuit shown in Fig. 4.5. The divider is made up from circuit blocks consisting of an astable multivibrator, Schmitt trigger and a monostable multivibrator, all of which have been explained in this series

Fig. 4.5 (right). Progressive building up of circuit blocks to form a frequency divider. Connections are for T-DeC

The multivibrator can be designed assuming an on collector current of 2 mA . Thus when TR2 is on, it will be only little affected by the extra current which it must pass from the base of TR3. This excess is 0.2 mA at the most. Transistors TR1 and TR2 are $n p n$ types, almost any low current device being suitable.

FREQUENCY DIVIDER CIRCUIT

A frequency divider circuit is given as an example of how to interconnect some of the basic circuits considered in this series up to now. A suggested layout for the frequency divider, suitable for a T-Dec, is given in Fig. 4.5. It is a simple matter to make the necessary alterations for a μ-Dec if preferred.

The circuit consists of an astable multivibrator (TR1,2) operating with a period of approximately 0.5 second. The output is coupled to a Schmitt trigger (TR5, 6) so that the corners of the waveform can be sharpened, and thence via a CR differentiating network (C3, R12) which provides sharp voltage spikes to a monostable multivibrator (TR 7,8).

The period of the monostable can be varied by means of potentiometer VR1 to achieve frequency division by 2 or 3. Simple lamp bulb driver circuits (TR3, 4; TR9, 10) are included to provide a visual indication of the operation of the circuit.

If necessary, the timing capacitors can be reduced to increase the operation frequency; the waveforms can be observed on an oscilloscope by connecting the 'scope across the lamp LP2.

To be comtinued

CORRECTION

December 1969, page 923, 14 lines from bottom of page should read:
"The resistance in each base lead of the series transistors must therefore be $(6-0 \cdot 9) / 0 \cdot 252 \simeq 2,000$ ohms.

A VOTTAEE TO FREOUUNOY GONVERTER By K. J. MATTHEWS B.Sc. Grad.Inst.P.

FINDING its main use in electronic music, this device provides a variety of sounds and effects that could otherwise only be obtained with fairly expensive apparatus. The device provides square wave output, the frequency of which is determined by the input voltage and, when used in conjunction with a sine/ square wave signal generator, provides some interesting sounds.

OPERATION

The circuit diagram of the unit is shown in Fig. 1. TR1 and TR2 form an astable multivibrator, the frequency determining components being Cl and C 2 . In place of the usual resistors to the zero voltage rail, two OC200's are used; the current through these is controlled by the input voltage. The time constant of TR2 and TR3, and C1 and C2 can be varied, thus controlling the frequency of operation.

Capacitors Cl and C 2 have been made $0.01 \mu \mathrm{~F}$ to produce a basic frequency, when no input signal is applied, of approximately 4 kHz . The input voltage swing allowable is $\pm 6 \mathrm{~V}$ providing an equivalent frequency range of 1.5 k Hz to 6 kHz .

Components are not critical although silicon transistors are used to provide a good degree of stability.

As the circuit is designed to operate from two 9 V batteries in series, giving a $9-0-9 \mathrm{~V}$ supply, there may be some difficulty if a mains power supply is to be used. In this case, the network shown in Fig. 2 may be used.

APPLICATIONS

The circuit may be tested by connecting the output to an amplifier and applying a variable voltage to the input. It should be possible to hear the note vary from 1.5 kHz to 6 kHz as the voltage input is steadily increased. Various applications now become apparent; by applying a sawtooth or ramp function to the input, the note can be swept over the frequency range equivalent to the peak-to-peak voltage of the input signal.

For a sine wave input up to 20 Hz the change in pitch can be heard distinctly; up to 100 Hz the resulting sound is not unlike birdsong. A 500 Hz input produces

Fig. I. Circuit diagram of the voltage to frequency converter
a " rich dirty note", and peculiar effects are obtained when the input frequency approaches the basic multivibrator frequency $(4 \mathrm{kHz})$.

A square wave input, from a slow running multivibrator (up to 100 Hz) will give particularly interesting results if the circuit of Fig. 3 is used. The output switches alternately from one note to the other in phase with the square wave input. The frequency distance between the notes is controlled by the amplitude of the input pulses and the two notes can be shifted up and down the audio frequency band by the d.c. offset voltage provided by potentiometer VR1.

Interesting room for experiment in the music concrete field can be foreseen, if the low frequency notes from ordinary audio signals are amplified to $\simeq 5 \mathrm{~V}$ peak to peak and fed into the circuit.

The basic multivibrator output. The amplitude of the pulses is 4 volts peak to peak and their duration is 0.015 milliseconds

Frequency modulated output obtained by using a 200 Hz sine wave input to the converter

Fig. 2. Circuit used when the converter is to be supplied from an 18 V d.c. power supply

Fig. 3. Circuit for alternately switching the output from one note to the other

ELECTRONORAMA

More Detector Vans

THE VAN pictured right could recover an estimated $£ 7 \frac{1}{2} \mathrm{~m}$ loss of television licence fees. Vosper Electric, who convert the Commer vans into television detectors, have recently received an order for 18 detector vans from the Government; they have already completed a previous order for ten detector systems.

The sophisticated electronic detection equipment is housed in a console fitted behind the front seats as shown above, and consists of a receiver covering the frequency range 470 to 860 MHz which is fed from a pair of wideband aerials, the spacing between which is automatically adjusted as the receiver is tuned. This aerial system has a known directional characteristic and can be used to receive signals from either side of the vehicle, thus facilitating the scanning of buildings on both sides of the road.
The receiver output is displayed on a cathode ray oscilloscope. As the vehicle moves slowly past a chosen house, the oscilloscope display, on a repeater screen, is photographed by an instantdeveloping Polaroid camera on the left of the console. Special sight-line indicators at the windows of the van enable the operator to pinpoint the boundaries of the property, and by pressing a button he can indicate these on the photograph. In this way the operator is able to determine the approximate position in the house of the television receiver, and the channel in use can be identified from the frequency to which the detector receiver is tuned.

The detector vans already in use have proved very successful. The appearance of a van in any area usually results in a considerable number of television licences being obtained by people who had previously neglected to do so, and the publicity which follows the prosecution of those who persist in using a television set without a licence has the same effect

Advance in IC Technology

AUNIQUE method of producing integrated circuits, which constitutes a significant advance in microelectronic technology, called Planox, has been developed at the SGS International R \& D Laboratories at Agrate, Milan. The process enables the oxide layers on the surface of the wafer to be effectively flat so that device reliability is greatly enhanced and manufacturing yields are improved.

In an MOS device, the oxide layer grown on the gate regions has to be extremely thin in order to achieve low threshold voltage sensitivity; and the oxide layer in the field region has to be thick to avoid spurious MOS effects.

When produced by conventional methods, the thick layer on the field region gives rise to high "steps" of oxide on the chip surface over which the metallisation pattern has to be formed. The resultant sharp bends in the metallisation can lead to weak spots or "microcracks" with consequent less reliable interconnections or even open circuits. Thus yields are lower and device costs are higher.

The Planox process eliminates this problem by the removal of sufficient underlying silicon to accomodate the oxide thickness so that the resultant surface is essentially flat.

The SGS Planox process will be introduced into the production of SGS MOS devices during the second quarter of 1970.

Electronic Map Reading

Two well established data processing equipments, both of them British, have been integrated to provide a novel system of information processing known as Microtrace. It comprises a digitiser, computer and software, the digitiser being the Pencil Follower manufactured by d-mac, while the computer is the Micro-16 developed with NRDC backing by Digico.

The new equipment enables data to be immediately processed, while lines and shapes on drawings, strip charts or films are followed with the "free pencil".

Microtrace will be available in a variety of configurations, with software to suit specific applications. The first of these, MapScan, which is shown in use on the right, allows area and distance measurements to be made in normalised units to meet the needs of civil engineers, surveyors, planners and cartographers, and can assist them in their decision making. A medical version of the system is already available for the processing of auto-analyser charts; and plans are in hand to extend the usage to land registration, metrication, and pipework design.

Comparison microphotographs of part of the gate region of an MOS transistor. Magnification is approximately 3,000 times

A conventional device. A metal stripe, the gate electrode, crosses the boundary between the field (thick oxide) and the gate region (thin oxide). The high step in the oxide is evident

A Planox device. The boundaries between the field, gate and source regions do not have any apparent oxide steps between them. The reduced width of the gate stripe is due to the elimination of the need for design tolerances to align the gate oxide with the source and drain diffusions

Fig. 1. Cross-section view of the human ear showing the functional parts

0NE of the most popular uses of electronics lies in the reproduction of sound in some form or other. Whether it be an audio amplifier or a sound effects device, the human ear is probably the most essential component in the chain of audio intelligence. It is appropriate, therefore, that the working characteristics of the ear should be understood in order to get the best possible mental interpretation of sound

This article is aimed at providing a fairly straightforward account of the relationship between sound waves and neuro-intelligence through the medium of a human transducer. The ear is divided into three main sections, which will be described in the following sequence: external ear, middle ear, and inner ear. See Figs. 1 and 2.

EXTERNAL EAR

Sound waves are produced by the vibrations in air of solid objects, such as a tuning fork, a violin string, the diaphragm of a loudspeaker or telephone earpiece. The vibration of solid objects sets the surrounding molecules of air into motion to form pressure waves, which move away from the sound source, much in the same way as throwing a pebble into still water to form ever increasing numbers and sizes of ripple rings about the impact point.

These air pressure wave changes are picked up by the external visible part of the ear, properly called the auricle, and channelled into a tube approximately $2 \frac{1}{2} \mathrm{~cm}$ long called the external auditory meatus. This is lined with minute stiff hairs and wax producing glands to stop the ingress of dust and dirt into the delicate internal tissues.

The innermost end of the external auditory meatus is completely closed by the tympanic membrane (eardrum), which vibrates in sympathy with the air pressure changes transmitted to it through the external ear.

MIDDLE EAR

The movements of the tympanic membrane are transmitted through the area called the middle ear by the three smallest bones in the human body (the ossicles). These, in order from the tympanic membrane to the fenestra vestibuli (oval window), are the malleus (hammer), incus (anvil) and stapes (stirrup) (see Fig. 2.)

The footplate of the stirrup rests in the oval window, which is the entry to the inner ear-the hearing centre proper. Also attached to the tympanic membrane is a small muscle called the tensor timpani which, by controlling the tautness of the tympanic membrane, enables the human ear to adjust to large differences of sound level (a kind of automatic volume control) (see Fig. I').

The other end of the tensor timpani is anchored to the upper surface of the eustachian tube which leads out of the middle ear into the nasopharynx (the cavity forming the rearmost portion of the nasal passages).

The eustachian tube also acts as an air pressure relief pathway, so that the ambient air pressure on either side of the tympanic membrane can be equalised. (This is the reason why passengers travelling in aircraft are advised to swallow and yawn during the ascent and descent to assist the pressure equalisation process.) This is also the reason why a large yawn under normal atmospheric conditions produces a "popping" sensation in the ears.

The apexes of the hammer and anvil are supported at their junction by small suspensory ligaments attached to the upper surface of the middle ear chamber. A small muscle, called the stapedius is attached to the stirrup to restrict the movement exerted by the tensor tympani. These ligaments and muscles are all part of the ear's a.v.c. system, in fact during extremely loud percussive sounds the malleus and incus actually part company.

Fig. 2. Simplified diagram of the auditory canal showing the cochlea fully extended

Fig. 3. Cross-section through the cochlea with other middle ear components

INNER EAR

The inner ear, or bony labyrinth, consists of the vestibule, into which the footplate of the stirrup is driven via the oval window, and extends into a snail shaped part called the cochlea containing the hearing sensory cells. Also three semicircular canals of unequal length emerge from the vestibule, two in a horizontal plane, the other in the vertical plane, and at an approximate ninety degree angular displacement from each other, forming the balance centres.

The bony labyrinth, except for part of the cochlea, is filled with a fluid called endolymph. Movement of
this fluid induced by very low frequency sound waves, or motion of the head, causes nerve cells (cupula) in the semicircular canals to move. By virtue of the unequal lengths of the canals, the brain discriminates between the different neural signals generated by the nerve cells (cupula).

If it was possible to unwind the cochlea from its spiral form into a straight line, it would resemble a converging tube closed at its narrowest end, and divided by a curtain called the basilar membrane (Fig 3). The base of the latter contains rod like nerve cells called the organs of corti which, when stimulated by sound

Fig. 4. The functions of the ear components may be likened to an electrical circuit with inductors, capacitors and resistors
transmitted via the stirrup footplate causing wave motion in the endolymphatic fluid, produces the neural signals the brain translates as audible sound.

A poor analogy to the organs of corti is the crystal microphone, where sound waves mechanically stress a material to produce electrical impulses. At the narrowest end of the cochlea is a minute hole (heliocotrema) in the basilar membrane, which acts as a large differential fluid pressure relief valve between the endolymph and perilymph, (Fig. 2).

The latter acts as a pressure equalisation device so that, as the stirrup moves inwards, the increase in endolymphatic pressure is transmitted through the basilar membrane and the perilymph to the round window which moves outwards.

The whole of the bony labyrinth is embedded in bone, which forms the lower internal floor of the brain

MEASUREMENTS OF HEARING

In this description, reference will be made to normal or average hearing and ears, but it should be remembered that no two ears are identical even when having a common owner. In fact each ear is as individual as a fingerprint.

A good human ear can usually hear pure sine wave tones in the frequency range 30 Hz to 12 kHz providing there is sufficient amplitude of the waveform at the extremes of this frequency spectrum. However, it is not unusual to find subjects who can hear above 16 kHz , and below 30 Hz .

It is against this amplitude and frequency response characteristic that audiometric tests are made to enable a physician to determine the efficiency and diagnose any possible malfunction of the ear. Fig. 5 shows typical graphs.

A simplified form of audiometric test set comprises a

cavity, except the oval window and the round window which open directly into the middle ear cavity. Thus audible sound may be transmitted directly through the skull to the cochlea as in the case of the dentophonics. This is the well-known bone conduction principle often used with certain types of hearing aid.

PROCESS OF HEARING

Neural signals generated by the balance centres and the organs of corti are transmitted through the vestibular and cochlea nerve trunk by a system of pulse rate modulation to the brain. It is the brain which determines the intensity, pitch and harmonic content of a sound. The ability to select certain sounds (for example, listening to a conversation with a high background noise level) are also mental processes.

In fact the ear may be crudely described in three parts: an acoustic to mechanical transducer (the outer ear), a mechanical to hydraulic transducer (the middle ear) and hydraulic to electro mechanical stress transducer (the inner ear). The neural signals from the latter are fed to the brain for decoding.
pure sine wave tone generat or having a frequency range 125 Hz to 12 kHz , an attenuator calibrated in decibels to determine hearing loss, a linear response amplifier, and headphones of known characteristics to which the calibration of the attenuator is related.
The output of the amplifier is switched to the headset earpiece on the ear under investigation. In more sophisticated equipment a second tone or masking noise is injected at a predetermined level to enable the operator to measure the discerning capabilities of the subject's hearing.

SENSITIVITY

The Fletcher-Munson curves of equal loudness demonstrate the average response of the human ear to sound levels at all frequencies within the above spectrum, taking into account the non-linear function of the middle ear mechanism. These curves were first produced in the Bell Telephone Laboratories by measuring the ear characteristics of a large number of subjects in relation to the preset level of a 1 kHz continuous reference tone (see Fig. 6).

These curves are often used in the design of audio amplifying equipment for obtaining compensatory responses of the equipment at different loudness levels. However, these loudness controls are mainly found on American equipment, while British audio experts generally believe that the need for such devices is based on an ill-conceived notion, which is not related to hearing sensitivities to live sound.

The ear is normally quite sensitive to pitch change as distinct from frequency change. Pitch in this sense is a function of the intensity or loudness and frequency of a pure tone and is a subjective quantity; at least 50 milliseconds are usually required for the change to be aurally assessed by the brain (see Fig. 7).

However, the ear is not sensitive to changes of phase in pure tones, but if the sound has a high harmonic content, which is subjected to relatively large time delays and loudness levels, the ear can detect these
deposits under medical supervision. If care is not exercised in syringeing, damage can be caused to the ear drum.

If the ear drum is perforated as a result of some physical injury, it can be repaired by plastic surgery, otherwise called a tympanoplasty. However, due possibly to old age, layers of spongy bone deposits are laid down in the middle ear restricting the movement of the ossicle bones. This may result in at least partial deafness, but surgical intervention is possible and one or more of the damaged ossicles may be replaced by a prosthesis, a plastic or stainless steel part.

In the case of a congenital deformity of the ear it is sometimes possible to perform gross plastic surgery, such as in the case of a child born without an external auditory meatus. Certain diseases can cause malfunctions of the nervous system appertaining to the ear and, even if the disease is arrested, there is little

Fig.7. Effect of intensity and pure tone frequency on pitch

Fig. 8. The Hacs effect. Increase of defayed tone level to give equal loudness
differences if the phase delay is greater than 90 degrees.
Subjects with normal hearing in both ears can locate the source of sound, this being a mental process, even though the auricles assist in the assessment made by the brain. Again a phenomenon, called the Haas effect, takes place when subjects are asked to locate the source of pure tone sounds. For instance, if the time delay between two identical pure tones is in the order of $5-30$ milliseconds, then the first tone to arrive at the ear will indicate the apparent source of both sounds, even if 8 dB weaker than the second tone (see Fig. 8).

MALFUNCTIONS OF THE EAR

Malfunctions of the ear, usually referred to as deafness, are many and varied and thus only a few specific examples and their related treatments are mentioned. Examples of temporary deafness are eustachian tube blockage caused by a head cold, and excessive cerumen deposits in the external auditory meatus. The first can be treated by medically prescribed drugs, the second by extracting excessive
that can be done to correct the hearing, except the possible use of a prescribed hearing aid.

An important factor, in this day and age, is the damage that can be done to the ear by continued overexposure to extremely high noise levels, but persons subjected to this influence can use ear plugs and ear defenders to protect their hearing. Continued exposure to sound levels in excess of 80 dB may be considered a health hazard.

CONCLUSION

This article has been an attempt to give an understanding of the human ear and the delicate nature of its construction. In the light of such knowledge, the various technical requirements for interpretation of different sounds using electronic equipment, can be readily understood. Readers are recommended to consult reference books for more detailed information.

Abstract

THE electronic lock described in this article is designed to put the burglar in his place. To break in, an electronic signal generator would have to be used, and a lengthy search, at various frequencies, made over the whole area of the door. The lock leaves no indication on the outer surface of the door as to its presence.

THE lock works on the magnetic induction of a signal in a hidden pick up coil which electronically operates a solenoid used as a door bolt. Impregnability is derived from the fact that a tuned circuit, comprising of an inductor and a capacitor, will only respond to one main frequency, and hardly at all to frequencies on either side of the main frequencyexcept harmonics.

CIRCUIT OPERATION

The signal to operate the lock is obtained from a one transistor oscillator (TR1) in the "key", see Fig. 1. By means of Ll a varying magnetic field is set up around the oscillator unit, which may be picked up by any other coil in the vicinity. In this case it is L3 which is tuned by C3 (Fig. 2) to the same frequency as the oscillator. The signal that the coil picks up is rectified by D1 and fed to a smoothing capacitor, C4. Thus the signal is converted to a fairly steady d.c. which is fed to the base of TR2. Transistor TR2 amplifies the signal which is then fed to the Schmitt trigger (TR3 and TR4) via the sensitivity control VR2.

The Schmitt trigger detects the signal at VR2 wiper, causing TR4 to conduct, operating the relay and closing the contacts which operate the solenoid (used as a door bolt) thus allowing the door to be opened.

COMPONENT DETAILS

The coils L1, L2 and L3 are similar, being wound on a lin diameter former from $30 \mathrm{~s} . w . g$. wire, 300 turns going into each coil. Coils L1 and L2 are taped together and can be placed around the "key" circuit board to save space.

As 12 volts are required to operate most relays and solenoids, three 4.5 volt type 1289 batteries were used, connected in series, to give 13.5 volts; this will ensure a long and useful battery life. Total power consumption from these batteries in the prototype was 100 mA , with the relay operating. Drain on the battery, with no signal applied, was approximately 5 mA . The current taken by the oscillator was 40 mA from a PP6 battery.

While OC71 and 72 transistors are specified, almost any a.f. transistors can be used with equal success. Transistors TR1 and TR4 must be of an output type,

Key for the electronic lock before installation in its case

Fig. I. Circuit diagram of the "key" for the Electronic Lock

Fig. 2. Circuit diagram of the Electronic Lock

as each has to pass a higher current than TR2 and TR3 which act only as small signal amplifiers.

Diode DI should be a small general purpose type, such as OA81 or OA91. D2 and D3 should not be smaller than OA81's, as they have to pass the back e.m.f. developed when the relay and solenoid are switched off. Almost any relay with a low current 12 V coil can be used provided it has one pair of normally open contacts.

The solenoid is a 12 V type modified for use as a lock. Fig. 3 shows how it may be arranged to act as a door bolt. The spring holds the bolt in the door frame but must not be too strong or the bolt will not retract when current is passed through the coil. It should be possible to construct the complete solenoid using a coil of about 3,000 turns of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamel covered copper wire-some experimentation with coil, spring and bolt sizes will probably be necessary.

CONSTRUCTION

Both the "key" and the lock were constructed on small pieces of Veroboard (Figs. 4 and 5), the "key" coils being large enough for the associated circuit board to be placed inside them. The complete "key" can be conveniently mounted inside an old torch case or a special tubular case can be manufactured. It should be noted that there should be no metal section between coils L1, L2 and L3, since this will prevent operation of the lock.

It is convenient to mount the lock circuitry inside a small box, which includes the solenoid, and affix this to the back of the door. The batteries or mains power supply can be either included in the box or mounted externally. It is advisable not to mount Tl too near to L3 as this could affect operation of the eircuit.

Fig. 3. Showing a solenoid used as a door bolt

POWER SUPPLY

Much thought has been given to the question of how to power the lock when fixed to a front door. Dry batteries are liable to fail when the lock is in use, while the mains is subject to sudden power cuts.

One answer is to tap the power needed from a bell transformer (Fig. 6), rectify and smooth it to feed a DEAC cell battery via a dropping resistor (R6). Thus the battery is on constant trickle charge, and the power for the lock can be taken from it. Components T1 and R6 must be chosen to suit the size of battery used. Fuse FSI is included to safe-guard the circuit.

The unit will always work, even during power cuts, and no switch is needed as the unit may be left on all the time without fear of battery failure. In the circuit shown in Fig. 2 switch S2 was included as the lock can then be turned on before use and off once the door has been closed, thus increasing battery life.

COMPONENTS

Fig. 4. Veroboard layout and wiring of the "key"

The complete lock wired up ready to be installed on a door

Fig. 5. Veroboard layout and wiring of the lock circuit

It has been brought to our attention that under the Wireless Telegraphy Act 1949, a licence is required to operate the Electronic Lock described in this article.

Under section la (radio frequencies for low power non-speech devices) the band 16 to 150 kHz can be used for induction communication systems operating over a short range.

A licence for 5 years costs 15 s and can be applied for on a special form obtainable from the Ministry of Post and Telecommunications, Waterloo Bridge House, Waterloo Road, London S.E.I.

COMPONENTS . . .

SETTING-UP AND ADJUSTMENTS

When the oscillator has been made, but before it is placed in its case, it should be adjusted as follows: A crystal ear-piece should be connected across L1, and the battery connected up. As VRI is rotated, a note should be heard (providing the frequency of oscillation is within the audio frequency). If this is not the case, the connections to Ll should be reversed.

If the oscillator still does not function, the transistor and wiring should be checked.
-
When a note is heard, the coils of the oscillator should be placed on top of L3 and a high impedax̉nce voltmeter, having a 5 V a.c. range, should be connected across L3, the oscillator started, and VR1 adjusted for maximum reading on the meter. The oscillator should then be switched off, and the meter removed, so that the lock may be adjusted.

With the lock switched on, VR2 is turned until the relay operates; VR2 is then turned back until the relay just switches off. Bringing the oscillator coils near to L3 should then cause the relay to operate. The lock may now be mounted in its final position, L3 being cited at the chosen spot on the back of the door, and the

Fig. 6. Suggested circuit for a mains power supply
wiper of VR2 moved slowly towards the TR2 collector end, until the lock just operates when the key is brought near to it. The solenoid is mounted so that in the off position it engages in the door frame.

MODIFICATIONS

The lock, as described here, works on only one frequency. If the key were comprised of two oscillators, working on different frequencies, it would become almost impossible to find the two correct frequencies.

The lock would then need two receiver coils, and two Schmitt trigger units, feeding an AND gate, the output being used to operate the relay and solenoid. Alternatively, two relays could be used each operating a set of contacts in series with the solenoid.

The frequency of operation is governed by Cl and C3. Both of these capacitors should be of the same value, or the unit will not work properly. The $0 \cdot 1 \mu \mathrm{Fd}$ capacitors used in the original gave a frequency of about 16 kHz . Increasing the value of these capacitors will lower the frequency, and vice versa.

The maximum frequency that may be used is governed by transistor TRI. The OC72 used in the prototype will oscillate up to about 25 kHz ; if it is desired to use a frequency above this value, a BC187 transistor should be used; this will oscillate up to 300 MHz . There is no need to change the value of TR2, TR3, or TR4. The frequency of operation should not be above 150 kHz in order to comply with Ministry of Post and Telecommunications requirements.

The Electronic Lock can be used for a variety of applications and is suited to mounting inside a small box or case containing valuables. When the lock is mounted on a door it may be necessary to include a pushbutton or toggle switch to short out contacts RLAl in order that the door may be opened from inside without the use of a "key". The lock will not work when there is a metal barrier between the "key" and pick up coil.

NEWS BRIEFS

Exibition of Public Address Equipment

The Association of Public Address Engineers is sponsoring what is claimed to be Europe's first exhibition devoted exclusively to public address and allied equipment. The exhibition called Sound 70 International, will be held at Camden Town Hall (opposite St Pancras Station) London, from March 10 to 12, 10 a.m. to 9.30 p.m.

Admission is by ticket only, obtainable on application to: Hon. Secretary, A.P.A.E., 394 Northolt Road, South Harrow, Middlesex.

The Practical Electronics 50 plus 50 Power Amplifier will be on display on this magazine's stand at Sound 70 International.

President of the R.S.G.B.B.

ON January 16, at the Bonnington Hotel, London, Dr J. A. Saxton, D.Sc., Ph.D., C.Eng., F.I.E.E. F.Inst.P. was installed as the thirty-sixth President of the Radio Society of Great Britain.
In 1960 Dr Saxton was appointed Deputy Director of the Radio Research Station. Between 1964 and 1966 he held the post of Director of the U.K. Scientific Mission and scientific counsellor at the British Embassy, Washington D.C., U.S.A.

On his return to the U.K. he was appointed Director of the Radio and Space Research Station, a position he still holds.

Dr Saxton is currently the Chairman of the Electronics Division of the Institution of Electrical Engineers.

Eastern Trade

Since the GEC-Elliolt Automation group was formed S just over 18 months ago, they have more than trebled their business with Eastern Europe.

Orders for industrial plant systems, on-line computers, process instrumentation and scientific instruments totalling more than seven million pounds have been placed by the Soviet Union, Bulgaria, Czechoslovakia, Hungary, Poland, Rumania and Yugoslavia.

Companies within the group are at present negotiating for contracts ranging from steel mill plant and control systems, to marine automation controls, process instruments and scientific apparatus.

It would seem that opportunities for exporting to Eastern European markets has never been better.

THYRISTORS AND THE EXPERIMENTER
(January 1970)
Correction to Fig. 10. The value of R1 should be
47 kilohm not 4.7 kilohm.
Correction to Fig. 11. The collector of TR2 should
be connected to TR1 base (see Fig. 10), and not as shown.

SOUND OPERATED SWITCH (February 1970)
In Fig. '4c a 10 kilohm resistor should be placed across the output terminals for correct switching of TR10.

Pr Pidil Heruivis

miniature Converter

An extremely compact unit that can power any low current a．c．／d．c．equip－ ment．Designed primarily for electric shavers，the circuit uses two inexpensive transistors in a feed back oscillator circuit． This project is cheap，easy to build，and extremely useful for car，caravan，or boat owners．

MAGIC EYE INDICATOR

An electron beam tube driven by a double triode amplifier provides visual indication of audio input signal level． Among the many possible uses for this mains powered unit is that of a bridge balance indicator for measurement purposes．Some suitable bridge circuits are included．

回回回回回回回回回回回回回可回回回回回回回回回回回回回回

THIS WAY TO ELECTRONICS

Number one of an introductory series for the newcomer to electronics，in which circuit theory is presented in a concise and novel form．This series with its fresh approach to the subject will guide the beginner in those all important first steps．

YOUR COOD TURN！！

Bring this series to the attention of your son， brother－or anyone else you know who is likely to be attracted to electronics，especially those who may have been deterred from making a start by thoughts of frightening complexity．

SUPER BARGAIN STOCKTAKING SALE !!!

Use the form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY, If any sale item is "sold-out" when order received we shall substitute items of equal value.

COMPARE THESE PRICES!!

MULLARD POLYES

1.000 pF 3 d ea. 400 V
1.500 pF 3 d ea.
1.800 pF 3 d ea.
2.200 pF 3 dea .160 V
$015 \mu \mathrm{~F}$ 6d ea. 160 V
$022 \mu \mathrm{~F}$ 8d ea. 160 V
$0.27 \mu \mathrm{~F}$ 6dea. 160 V
$1 \mu \mathrm{~F} \quad 1 /$ ea. 125 V
25% discount lozs of 100 per type.
50% discount lots of 1,000 per type.
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER!!! P.N.P. Audio, Uncested, unmarked. MAINLY O.K., $10 /$-per 100 N.P.N. silicon. R.F. types, unmarked. ALL U5ABLE, \quad I0/-per 50. POWER OUTPUT (Similar OC35) ALL TESTED, 4/- ea: 62 doz SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR Gain of 20/50, 6d ea.; 50/100. 9d ea.: 100/200, 1/- ea.

LIGHT SENSITIVE TRANSISTORS, 2/- each.

LIGHT SENSITIVEDIODES, Can be used to control any transistorised device. 1/-each. 75/-per 100. $\mathbf{2 5}$ per 1.000 .

THYRISTORS 400 V BTY79, $7 / 6$ ea. 5CR5I (IOA), 41 ea.
RECTIFIERS Latest type. All marked. 800 V peak, IA mean current type IN4006

$$
\begin{array}{clll}
& 2 / 6 \text { ea., } 24 /- \text { doz, } 67 / 10 /-100 . \\
\text { S.T.C. } 3 / 4(400 \mathrm{~V}), & 2 / 6 \mathrm{ca.}, 24 /-\mathrm{doz}, 67 / 10 /-100 \\
\text { BYZ. } 13 \text { or } 19(6 \mathrm{~A}), & 2 / 6 \text { ea., } 24 /- \text { doz, } 67 / 10 /-100 .
\end{array}
$$

BYI27, $2 / 6$ each. 24/-dozen. $67 / 10 /$ - per 100 . 650 per 1,000

RECORDING TAPE GIVE-AWAY!

ALL BRITISH MADE, BEST QUALITY:
Sin Standard 7/6. 53in Standard 9/-; 5in Long-play 12/-. 7ın Standard 12/-. 7 in Long-play 16/3, 3in "Odd-ends"' Mintmum $150 \mathrm{ft} 2 / 3$.
MAINS DROPPER TYPE RESISTORS. Hundreds of types from 0.7 ohm upwards. IW to 50W. A large percentage of these are Multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted", 10/-per dozen.
GIANT SELENIUM SOLAR CELLS, Lase few to clear at half price! Circular, 67 mm diameter $5 /$-each. $50 \mathrm{~mm}, 37 \mathrm{~mm}, 3$ for $10 /-$.

SKELETON PRESETS. Mixed. 6/-dozen.
VOLUME CONTROLS, $\frac{1}{2} M \Omega, I M \Omega$, with D.P. switch. $5 k$ (no switch) all 2/-.

RECORD PLAYER AMPLIFIERS. All transistor. Complete with screened input lead, volume control and speaker leads. This excellent unit also has builtin rectifier and smoothing components enabling same to be used direct on 6 to $9 V$ a c. supply. Small number only. Cannot be repeated at this price! 30/- each.
TRANSISTOR RADIOS. Fantastic bargain! Tremendous value! Superb quality sound from large speaker! Excellent sensitivity! Complete with earpiece, battery and plastic carrying case, all packed in a colourful presentation box. You would expect to pay 65-but our price due to huge purchase is only 37/6:!
CO-AXIAL CABLE. Semi-air spaced. 8d yd 60 yd rolls $30 /-$, plus $4 / 6$ postage.
CRYSTAI TAPE-RECORDER MIKES. $12 /$-each
CRYSTALEARPIECES WITH PLUG. 5/-each
MAGNETIC EARPIECES. No Plug. $1 / 6$ each
THIN CONNECTING WIRE: 10 yds $1 /-, 100$ yds $7 / 6,1,000$ yds $50 /-$.
RECORD PLAYER CARTRIDGES
ACOS GP67/2, 15/- (Mono)
GP91/3, 20/- (Compatible)
GP93/1, 25/- (Stereo)
GP94/, wi- Stereo, ceramic)
GP94/I with diamond needle, 32/6
TRANSISTORISED FLUORESCENT LIGHTS. I2V.
8 W 12 in tube. Reflector type, $59 / 6$
Complete with tube. Postage 3/-
TRANSISTORISED SIGNAL INJECTOR KIT $10 /-$
TRANSISTORISED SIGNAL TRACER KIT $10 /-$
TRANSISTORISED REV, COUNTER (CAR) $10 /-$
(State Positive or Negative earth)
VERO-BOARD

$2+\times 1 \times 0.15 \mathrm{in}, 1 / 3$	$17 \times 37 \times 0.15 \mathrm{in}, 14 / 8$
$3 \frac{1}{4} \times 2 \frac{1}{2} \times 0.15 \mathrm{in}, 3 / 3$	$3 \frac{2}{} \times 2 \frac{1}{2} \times 0.1 \mathrm{in}, 4 / 2$
$3 \pm \times 3$ a $\times 0.15 \mathrm{in}, 3 / 11$	$3 \mathrm{~F} \times 3 \pm \times 0.1 \mathrm{in}, 4 / 9$
$5 \times 2 \frac{1}{2} \times 0.15 \mathrm{in}, 3 / 11$	$5 \times 2 \frac{1}{2} \times 0.1 \mathrm{in}, 4 / 7$
$5 \times 33 \times 0.15 \mathrm{in}, 5 / 6$	$5 \times 37 \times 0.1 \mathrm{in}, 5 / 6$

$5 \times 33 \times 0.15$ in, $5 / 6$
$17 \times 2 \frac{1}{4} \times 0.15 \mathrm{in}$ 11/-
$3 \times 3 t \times 0 . l i n, 4 / 9$
$5 \times 2 \frac{1}{2} \times 0 \operatorname{lin}, 4 / 7$
$5 \times 34 \times 0 . \operatorname{lin}, 5 / 6$
Spot Face Cutter 7/-
Spot Face Cutter and $52 \frac{1}{2} \times$ lin boards, $9 / 9$.

By R.HIRST s.t.c. tтd. PART SIX

WE completed construction of the various modules last month. Before describing the assembly of the modules the R.F. Attenuator and Power Supply have to be detailed.

R.F. ATTENUATOR

The R.F. Attenuator is situated between the aerial input socket and the input to the R.F. Unit. The object of the attenuator is to allow the operator of the equipment to reduce the sensitivity of the receiver in the presence of large unwanted signals, thus reducing the effect of intermodulation distortion.

CIRCUIT DESCRIPTION

The attenuator is operated from the front panel, without bringing the a.c. signal to the controlling potentiometer, in the following manner. The aerial signal is transformed up by T4 (Fig. 6.1), the secondary of which is shunted by a reasonably symmetrical transistor TR32. When the d.c. voltage on the base of TR32 is increased negatively by rotating VR1, TR32 effectively becomes more of a short circuit to the a.c. signals thus reducing the level of the aerial signal applied to the R.F. Unit.

Resistor R101 has been included to partially isolate the transistor from the following circuitry thereby increasing the effective range of the attenuator. Table 6.1 gives some indication of the attenuation that may be achieved with a given d.c. voltage at the slider of VR1. Capacitor C101 ensures that there will be no high frequency feedback from the negative 12 volt line; this is quite essential as the sensitivity of the receiver at this point is considerable and will be capable of amplifying signals in the order of a microvolt or so.

R.F. ATTENUATOR AND POWER SUPPLY

Table 6.1. ATTENUATION

Voltage at wiper of VRI	Attenuation of input signal in dBs
0 V	0
0.1 V	0.6
0.2 V	2.4
0.4 V	4.2
0.8 V	7.2
1.0 V	8.6
2.0 V	13.5
4.0 V	18.8
8.0 V	24.6
10.0 V	26.6
12.0 V	29.7

CONSTRUCTION

Transformer T4 is wound to the information given in Fig. 6.2 and the unit is wired up on perforated board as shown in Fig. 6.3. This board will later be mounted in the equipment case that houses the modules.

The transformer can be glued to the mounting board and the wires passed through holes to the wiring on the underside.

SETTING UP INSTRUCTIONS

Equipment Required:

(a) Power supply capable of delivering 12 volts at 2 mA .
(b) Signal generator capable of delivering 1 millivolt into 50 ohms at 5 MHz .
(c) Valve voltmeter capable of measuring 1 to 5 millivolts at 5 MHz .

Fig. 6.1. Circuit diagram of the R.F. Attenuator

PRACTICAL!

VISUAL!

Nh Hh

 EXCITING!
a new 4-way method of mastering ELECTRONICS by doing - and - seeing

$1>$ OWN and complete range of presentday ELECTRONIC PARTS and COMPONENTS

2 BUILD

a modern and professional CATHODE RAY OSCILLOSCOPE

3 READ and

U N D ERSTAND CIRCUIT DIAGRAMS

4
 VALVE EXPERIMENTS TRANSISTOR EXPERIMENTS AMPLIFIERS OSCILLATORS SIGNAL TRACER

 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK INCLUDING . . .- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT - BASIC RADIO RECEIVER - ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
A.C. EXPERIMENTS D.C. EXPERIMENTS

SIMPLE COUNTER
TIME DELAY CIRCUIT
SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FRE
 POST NOW for

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representotives NAME BLOCK CAPS ADDRESS

NEW－TEST EQUIPMENT
PEN RECORDERS

speed 1 th per will．and 10 in per hunr，
Adjust：ible zero location．Power supplibes 230 V 50112 ．Full specification arailible

PORTABLE WHEATSTONE BRIDGE to with fivichentane from Price 20．19．6．

 stel．Price \＆22．10．0．P．\＆P．\＆1．0．0
MUTUAL INDUCTANCE COIL

SET OF MEASURING INSTRUMENTS

Recification Type：Moving Coil DC $3-150-450 \mathrm{~N}, 0,3-0.75 \mathrm{~A}, 15-7.5 \mathrm{~A}, 15-30 \mathrm{~A}$

 ${ }_{30}{ }^{\text {List }}$

PULSE GENERATORS
Model 101 Repetition rate $10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$ Delay 30 n－10 m．sees．Output 10y into
50 ohms．ع85．Carringe extra．

MULLARD MATRIX CORE
STORE STACKS

A．W． 510 5 planes 8 ． 16 corem $/$ per phatie A．W． 5115 planes 18 32 cores／ per phane A．W． $534 \because 0$ manes fit ： 64 cores／mer phane A．W． 5978 planes 32 yer plane Single thanc $40 \sim 0$＋ Cartiage extia	$\begin{array}{rr} \text { \&12. } & 10.0 \\ \text { £25. } & 0.0 \\ -89 . & 10.0 \\ \text { 255. } & 0.0 \\ \text { \&8. } & 10.0 \end{array}$
MODEL S7 TYPE G SELF SYNCHRONOUS MOTOR 1 RPM \＆1 kI＇H．Complete spirulle shaft ${ }^{\text {to }}$＂lia．＂long grom．centimetre． $40 /-$ plus	$\begin{aligned} & \text { geatring } \\ & \text { ine } 2500 \end{aligned}$

LOW COST ELECTRONIC \＆SCIENTIFIC EQUIPMENT AND COMPONENTS

MINIATURE MOVING COIL

ELECTRO MAGNETIC

 COUNTERSlow impulae count

6 DIGIT ELECTRICAL IMPULSE COUNTER with electricat and enechanical reset counter irivelt by 110 V DC 4400
ohnas cril．Reget 110 V 1 C s00 ohms coil． ohns coil．Reset 110 V bC B00 ohms coil．
Housel in plastic－alloy case．The mits can Housen in plastic－alloy case．The mints call
be interlockecl with each other to give

SOLENOIDS

High quality solidly constructel solenodds Actuated by $48 \vee 300 \Omega$ coil．Oyerall length
dia．shaft．8／6．P．\＆P．3／－．

Low ohm saffly meter 12 mA 5 ohnus． Suitithle for testing circuits where cuirents
numst be limulted， 212.10 .0 ．P．\＆P． $1 / 1 / 6$ ．

ADVANCE TRANSISTORISED DC POWER UNITS

LEDEX ROTARY SWITCHES（New） N．s．F．water switches driven by 24， to be controlleal by a signal pulse． pole， 12 position jer wafer． $3 \mathrm{E}-1$ ach．P．\＆1． $3 / 6$ ，
 E．ITR．Model $44 ~ e 15 . ~$
W．0

$$
\begin{aligned}
& \text { A.F Micro Voltaleter. Dymar } \\
& 703 \text { as new......................... } \mathbf{0 . 0}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { VH.F } \\
\text { TF886B Meter-Marconi } & & \\
\end{array}
$$

C．WP．Twif mounted 4 water lix Equip．

DC TACHO GENERATOR
11 Misch．size 11.400 eycles， 115 s ．input

SERVO MOTORS

11 M． 10 EZ．Size 11.400 cycles．Ref／Control： 112／40v．Torguc 20 or per inch．Speet 5,600 Size 18． 400 cycles． $115 / 115 \mathrm{v}$ ， 2.35 oz jer SYNCHRO TORQUE TX．
11 TX．4B．Synchro Torque Trambitter．
400 cyeles．Rel／Control： 11590 ： 8.10 .0 ．
SYNCHROCONTROL TX／TRANSFORMER 15 CX／CT 4 SL． 400 eycle日．Rei／Control：
\rightarrow HIGH PRECISION +

> FULLY STABILISED TRANE POWER SUPPL

incorvorating

 with manuala riseet button．
＊R1Prle belter，better than $3000: 1$ －CHOLE OF CAPACITOR transistoriser 1200130V A．C．INHUT． Available in the following types：
$60^{\prime} 12$ anp
12 y
12
1
2
3
3

REPEAT CYCLE TIMERS These timers repeat a art
cyele of switching opera－ tions micro awitch，for as long as the motor is energised．
single Can RB 21 lin 5 min cycles at $45 /-$ ．Twin Cant It 222 in
 Ctht RD 50 －mindes 8 Canu RD 3 min， 4 min cycles at $95 /-8$ Cam RD

D．C．voltage able measuring解ighat D．C．voltage and current， Ranges：D．C．voltage $25011 \mathbb{S}^{*}-10,0004$ D．C．current $100 \mathrm{uA}-25 \mathrm{~A}$ ．A．C voltage $100 \mathrm{mV}-250 \mathrm{Y}$ ．A．C．current $10 \mathrm{u}-\mathrm{A}-25 \mathrm{~A}$ ，Remistance $0-100 \mathrm{~m} \Omega$ voltage 110 络 $200 / 2550 \mathrm{~Hz}$ ．Supply

$$
\begin{aligned}
& \text { Complete with lead and irobe for } \\
& \text { measurement unto } 2503 \mathrm{Mz} £ 25 . \mathrm{I} \text {. AP. \& }
\end{aligned}
$$

MULTI－RANGE TRANSISTORISED VOLTMETER 1063
Employing silionn phathar F．E．T．T．s．Whate fretuency bamb 0.300 MHz using HPV 1063．Voltrge lange 0－30KV．Centre
Zero on 1）．C．ranges for differential circuit application．Juput Resistance 1 Mobm／Volt on all D．C．Ranges．Accuracy $\pm 3^{\circ}$

Carriage £1．10．0．

METERS

Millianmeter A．C．／1，C． 100 Ma an 200MA FSD Cambris（550／4 Electro dynamic 225
 8．92．1－4；£35 Watt Absorption Meter．Marconi 235.0
\qquad

EX．EQUIP．POWER SUPPLIES
$1 / \mathrm{p} 20 \mathrm{~V} 50 \mathrm{~Hz}, 0 / \mathrm{p}-08 \mathrm{y} 3 \mathrm{~A}:-12 \mathrm{~V} 3 \mathrm{~A}:$
$-1 \mathrm{~V} 0.5 \mathrm{~A}:+12 \mathrm{~V} 1 \mathrm{~A}: 12,10,0$ ．Aize

OSCILLOSCOPES

Cobsor 1035
$\begin{array}{ll}\text { Cobsor } 1035 \\ \text { Cossor } 1035 \\ \text { Cossor } \\ 1049 & 111\end{array}$
485． 0.0
435． 0.0
$\begin{array}{ll}\text { Cossor } 1049 \mathrm{kk} \text { III } & \text { E35．} 0.0 \\ \text { \＆40．} 0.0\end{array}$
Solartron CD513．2，CD223S．2
tube．
Solartron AD55：－Pulac and
Madar Field ．．．．．．．．．．．．．．．
Mullard L101／3
Furzehill 0.100
Airmec 249

SOLARTRON l＇ortable J．B．
$1040-5 \mathrm{MHz} .0 .0$
VEEDER ROOT 6 DIGIT COUNTER
Suitable for counting all kinds of pro－
duction mus，business machine operation． duction turs，business machine operation．
Mecharically ylyiven．Reset type KA 1337 ，
 OSCILLATORS

Cotor CONTINUOUS TAPE CASSETTE
suitable for sleeping， learning，teaching pro－
grammes． grammes．
ming mach ming mach
telephone
rogram－ tin．tape thead add etc．
gepatate erage head．tin．tape，twin track
tape． 230 V 50 Hz supply．Price $£ 3.8 . \mathrm{B}$ ．
P．\＆1． 10 i－．
$42 \quad 592 \mathrm{~K}$ hit ferrite core store complete With 840 A 10 load diocles．Ideal for buidi－
ing computer store or holding information ing conimiter store or holdmg information
in binary form．Pric $£ 4.10 .0$ ．P．\＆ $6 / \%$ ．
MINIATURE SQ．COUNTER 6 DIGIT
by Veeder Root．Rotary ratchet type，
adds 1 count for each 36^{2} movement of
shaft $9 / 8+2 / 6 \mathrm{P}$ ．\＆P．

Fig. 6.2. Transformer winding details of T4

Fig. 6.3. Layout and wiring diagram of the R.F. Attenuator

R.F. ATTENUATOR

Resistors
$\left.\begin{array}{ll}\text { R101 } & 180 \Omega \\ \text { R102 } & 15 \mathrm{k} \Omega\end{array}\right\} \frac{1}{8} \mathrm{~W}, 5 \%$ carbon film
Capacitor
Clol $0.1 \mu \mathrm{~F}$ polyester 20%

Inductor

T4 See Fig. 6.2
Transistor
TR32 NKTII
Miscellaneous
VRI $5 k \Omega$ carbon potentiometer lin Veroboard, plain perforated 3 in $\times 1 \frac{3}{6}$ in, 0.1 in grid

PROCEDURE

Apply the power supply in the correct polarity and advance VR1 ensuring that the d.c. voltage at the slider of the potentiometer goes from 0 to 12 volts. Inject an input signal of 1 mV , at a frequency of 5 MHz into the aerial input socket. Check on the valve voltmeter, connected across the point going out to SK1 with a 50 ohm load at this point, that for the indicated voltages at the slider of VR1 the attenuation follows a similar pattern to that shown in Table 6.1.

POWER SUPPLY

The power supply for the receiver is derived fundamentally from a proprietary unit which is capable of delivering 21 volts d.c. at approximately 320 milliamps. However, as the equipment requires a positive and negative 12 volt supply, a separate power supply board has been introduced to provide the two 12 volt supplies.

CIRCUIT MODIFICATIONS

Considering the Newmarket PClO2 which is the fundamental supply, it will be noticed that the unit is supplied wired up to deliver a negative supply, therefore as the receiver and ancillary equipment requires this supply to be positive, a minor modification must be made to the PC102. In the circuit diagram (Fig. 6.4) four points have been marked as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D. In the original supply A and B were linked together and the resistor R111 was wired between points C and D. For our purpose, however, the link A and B has been replaced by R111 and a link has been placed between C and D (see Fig. 6.5). This now produces a positive supply where the negative line can be directly earthed.

If the PCl 02 was used as supplied but with the links rearranged as indicated above, the output voltage would vary depending upon the current taken from the power supply. To avoid excessively high voltages appearing upon the output supply during testing or subsequent arrangement of modules, the output voltage has been simply stabilised by the addition of a Zener diode D115.

The manufacturer's information indicates that the off load voltage of the PC102 would be in the order of 33 volts and this will have reduced to 21 volts when the current consumption has reached 320 mA . As the receiver will take considerably less current than this figure, the voltage at point A when the receiver is operating will be approximately 26 volts and the current flowing in the Zener will be in the order of 50 mA . The positive voltage developed across D115 is used as the main 24 volt supply for the equipment.

Fig. 6.4. Circuit diagram of the modified PCIO2 Power Supply module

Fig. 6.5. Layout and wiring of the modified PClO2 module

POWER SUPPLY BOARD

The power supply board (Fig. 6.6) develops the positive and negative 12 volt supply for the equipment in the following manner. In the first instance the positive 24 volt supply from the PC102 is fed through R112 and R113 to the Zener diode, D116. This Zener diode ensures that the positive 12 volt supply does not exceed 12 volts thus avoiding damaging the transistors within the equipment should some of the load be removed inadvertently. If the positive 12 volt supply is shorted in error R112 and R113 will act as a protection circuit in as much as the full voltage will be dropped across these two resistors which will dissipate approximately 3 watts each.

The negative 12 volt supply uses the extra winding on T5 which is capable of delivering 21 volts at half an amp. This extra winding is fed into a bridge rectifier (D117-120) and partially smoothed by the reservoir capacitor C114. Resistor R114 and C115 form another filtering circuit to reduce the ripple further.

The resultant voltage is divided by the potential divider formed by R115, R116 and R117. The reason for including this potential divider is to take some of the dissipation away from the following Zener diode as the receiver and associated equipment does not require a considerable amount of current from the negative 12 volt supply.

CONSTRUCTION

The power supply board is a piece of plain perforated veroboard measuring 4 in by 3 in . On this board are mounted all the supply components except the PC102 module and C114, both of which are mounted on the chassis of the receiver. All components are wired up on the underside of the board after being positioned as shown in Fig. 6.7. Four 4B.A. fixings are used to mount the board to the chassis and one of these also earths the power supply board to the chassis. The PC102 module has its own earth lead as shown in Fig. 6.5.

Fig. 6.6. Circuit of the power supply board

There's Something for Everyone in the NEW HEATHKIT CATALOGUE!

- guitar practice AMPLIFIER
- ELECTRONIC
METRONOME
- AMBASSADOR SPEAKERS
- AUTO-TUNE-UP METER
- AIRCRAFT MONITOR RECEIVER
- car radio
- TECHNICIANS LOW-COST 'VVM'

- SEVERN

AM/FM RADIO

- fabulous stereo HI-FI COMPACTS

SETTING UP INSTRUCTIONS

Equipment required:

(a) Multimeter capable of measuring up to 30 V d.c.
(b) Resistors, $10 \mathrm{~W} 150 \Omega$ and two $2 \mathrm{~W} 250 \Omega$

PROCEDURE

The Newmarket PC102 can be tested as a separate unit once the modifications have been made as indicated previously. Before switching on the mains supply connect a 10 watt 150 ohm resistor across points 8 and y and also connect a multineter across the same points, in the correct polarity, and check whether the voltage at this point is 24 volts plus or minus 1.5 volts. Check that the voltage at point A is not more than 28 volts.

Once the above test has been carried out the poweir supply board can be connected to the appropriate points on the power supply unit. The 150 ohm test resistor previously connected across points 8 and 9

COMPONENTS . . .

POWER SUPPLY

Resistors

R1li 12Ω (included in PCIO2)
R112 39Ω
R113 39Ω
R114 47Ω
RII5 39Ω
R116 100Ω
R117 25Ω
All 3W wirewound except RIII

Capacitors

CIII $1,000 \mu \mathrm{~F}$ elect. 35 V)
CII2 $1,000 \mu \mathrm{~F}$ elect. 35 V$\}$ included in PCl 02
$\mathrm{Cl} 13 \mathrm{I}, 500 \mu \mathrm{~F}$ elect. 15 V
$\mathrm{Cl} 44 \quad 500 \mu \mathrm{~F}$ elect. 50 V
CII5 $1,500 \mu \mathrm{~F}$ elect. 18 V
Cl16 1,500 μ F elect. 15 V
Semiconductors
DIII-II4 bridge rectifier included in PCIO2
DII5 24V 5W Zener diode
Dll6 12V 5W Zener diode
DII7-120 P64E/IB bridge rectifier (S.T.C.) D121 12V 5W Zener diode

Miscellaneous
PCIO2 d.c. power supply module (Newmarket) Veroboard, plain perforated $4 \frac{1}{2} i n \times 3 \frac{1}{2} i n, 0 \cdot 1 \mathrm{in}$ grid 4B.A. fixings Mains lead

The power supply board
should be removed. A 250 ohm, 2 watt resistor should be connected between points 10 and earth and another $250 \mathrm{ohm}, 2$ watt resistor connected between point 11 and earth. The voltage between point 10 and earth should be 12 volts plus or minus 1 volt with positive to earth and 12 volts plus or minus 1 volt between point 11 and earth, with negative to earth.
The tests are now complete and both 250 ohm resistors should be removed. If R112, R113, R114 and R115 become excessively hot it is reasonable to suppose that there is a short circuit between point 10 and earth or 11 and earth. When the power supply board has been connected to the equipment the voltage should be measured across all these points once again.

The power supply board should not be run without the loading resistors or with the modules disconnected.

Note: a kit of Neosid coil parts is now available from Neosid Ltd., Stonehilis House, Howardsgate, Welwyn Garden City, Herts. The kit, to be called "Wideband Kit" contains the following parts:

Former $722 / 1$ Bakelite	7 off
Base plate $5027 / 6 \mathrm{PLD}$	7 off
Aluminium screening can 7100	7 off
Screw core $4 \times 0.5 \times 10 / 900$	6 off
Screw core $4 \times 0.5 \times 10 / 500$	1 off
Cup core $1070 / 900$	1 off

The "Wideband Kit" is available from Neosid at the above address on receipt of a 30 s . postal order - no cheques.
Next month: Main chassis assembly

Fig. 6.7. Layout and wiring diagram for the power supply board

GALACTIC X-RAYS

Recent rocket flights have registered a diffuse background of X -rays and it would appear that there is a component that arises from our own galaxy. The X-ray astronomy group of Leicester University have been responsible for many of the experiments in this field using rockets which are launched from the Woomera base in Australia.

On flight SL273 the X-ray detector which scanned across the plane of the galaxy showed a peak against the background X-radiation. The instrumentation was sufficiently sensitive to ensure that they were not confusing this peak with the radiation from discrete sources such as the Crab Nebula and other supernova remnants.

It is hoped that further flights will enable the rather embarrassing number of theories to be clarified. It is significant that none of the theories put forward before the discovery suggested the existence of such a peak.

GERMAN-FRENCH SATELLITE

The plans for the launch of the satellite DIAL (Diamant-Allemand) are well under way and, due to be launched later this year, it will be put into an orbit nearly equatorial with a perigee of 350 km and an apogee of $1,800 \mathrm{~km}$. The launch vehicle will be a Diamant-B and the location of the lift-off is Kourou in French Guiana.

The payload consists of two independent units which will separate from each other in orbit. The task of the first part called Minikapsel will be to send back detailed information about the performance of the carrier rocket's performance.

The second part, the scientific capsule WIKA (Wissenschaftiche Kapsel) will measure, among other projects, the spatial and time distribution of the Lyman-Hydrogen-Alpha radiation using an ionisation chamber photometer. The measurement of the concentration of the atomic hydrogen simultaneously with the measurement of the electron density will help towards knowledge of the recombination processes. Spectrometer measurements of the proton and alpha particles will also be made.

An experiment will be made on the equatorial electrojet. This is the ring current, which according to a theory by Prof. Untiedt of Gottingen,
is produced by the interaction of the ionising radiation and the earth's magnetic field. The sensitive magnetometer which will be carried on the satellite should be able to demonstrate the existence of the ring current.

SPACE STATIONS AND SPACE SHUTTLES

The current missions of the Apollo series end in 1972 and by this time the United States expect to have the next stage of space exploration well under way. The recommended plan by the Space Task Group is for Apollo 20 to be followed by a series of extended Apollo missions when astronauts would spend up to three days on the moon's surface.

If the space environment is to be efficient for conserving the earth's resources, scientific exploration, and for experimenting with manufacturing processes and materials by the end of the 1970's, then large space stations will be a necessity. Such stations would accommodate a number of scientists and technicians and the lifetime of the stations would be in excess of ten years.
A new space transport system is needed for the shuttle service to and from such space stations. As at present envisaged the shuttles would be rocket powered with vertical takeoff from a launching pad. The space shuttle would consist of an orbiter vehicle and a booster element. The orbiter vehicle would contain the crew, passenger and cargo accommodation as well as the fuel for the orbital and landing phases of the mission. The booster would carry the fuel needed to achieve the required orbit. It will be necessary for this to be manned and also to have a power system that will enable it to return to base and make a horizontal landing on a conventional airstrip.

The principal reason for the space station or space base in orbit is to provide facilities for scientific research and other technical activities that cannot be conducted on earth. As with laboratories on earth, the space stations would be equipped with advanced instrumentation and staffed with scientific and engineering personnel.

One special laboratory is to be used to carry out fundamental research in physics. As an example, by using cosmic ray particles that are
thousands of times more energetic than any that can be produced on earth in the largest accelerators, fundamental experiments could be carried out on the constitution of elementary nuclear particles.

The laboratory would be able to make studies of processes which on the ground depend on gravity gradients for particle diffusion. Thus the growth and purification of crystals and the materials for solid state electronic devices could be undertaken.

Perhaps one of the most fruitful areas of research is that of biomedicine. It offers the opportunity to study, experiment and observe men, animals, and other biological organisms under space conditions which are fundamentally different from those on earth.

Astronomy and its associated activities are offered unlimited benefits not least of which is to be out of the earth's atmosphere.

MOONQUAKE

When the lunar vehicle Intrepid was crashed onto the moon a new surprise was sprung upon the scientific world. The information that resulted was as unexpected as it was valuable.

Any information that it might yield was regarded as worthwhile when the decision was taken to make the experiment. The normal result should have been for the vibrations to die away rapidly and not to go on reverberating like a bell. Such a scientific bonus has led to the conclusion that this is a major discovery about the moon.

Three possibilities are suggested as explanations for the prolonged vibrations. They are that the moon traps and propogates a siesmic wave over and over again. That the moon is an unstable structure and the crash started a cascade of avalanches and collapses over a wide area of the moon's surface. Finally, that the vibrations were caused by the fallback of debris and dust thrown up to great heights by the impact.

ATMOSPHERIC RESEARCH

So many recent advances have been made in this field that an intensified international effort is now needed. Large amounts of data are needed to assess the air-surface interaction and atmospheric radiation. l: has already been suggested that a full global study should take place in the late 70 's.

A basic system of seven satellites and about a thousand balloons in orbit would enable wind and temperature observations to be made, and provide a monitoring system for cloud conditions and special formations. There is no doubt that satellites offer the main hope not only for the detailed study and evaluation of the lower atmospheric structure but also for accurate forecasting.

DOOR INTERCOM

Kanou who is calling and apeat In thellm without leaving bed.
nir ehair. Ont fit conurisen microphonse with call prush button, comectors aml mater inter-com. Simply plugs tasgether. Originally soded at elo.

5A, 3 PIN SWITCH

 SOCKETS al excelient biparthaity for mak hat leneh tis hoard you have male (Hicraft) bakelite flueh manting shnterea 5.1 nwiteh ockets for only 100 - 1 保 $3 / 5$ pos

TELESCOPIC

AERIAL

 IC

1.M. ${ }^{2 / 8}$.

PHILIPS TRIMMER
 1 - with 10 I - 小uze 24.0 .0 we 10 I

PP3 BATTERY ELIMINATOR Rum youn suat tankistor wadio fro ap reals "u wife intor your set an

8 Bres
TOGGLE SWITCH 3 athp 250 with fiving ting. 1/6

DRILL CONTROLLER

DISTRIBUTION PANELS
Just what you neetl for work bench or lat.
amp sockets and on/off suitch with
and
and
and

See in the dark
INFRA RED MONOCULAR
This equipulat is complete ant portable Basically it consists of an infra red image consenter tuhe with optical lenses for
focussing the image and a Zambini pile 4 focussing the mage and a zambini pile to
provile the neessary E.H.T. The nono-

fin 4 in approx. Made orighatly for the anme fur night ubservations sniping, ete, this enuipment has many seient itic anm pract ieal applications a imited quant ity only is available in origimal sealed carton price eq,18,6. NOTE although umused in fatet st ild in inginal scaled cartons. The equipment is approx. 25 years old and consequently the Zambini pile may neen droing out (ater inea wight be
power unit -there is plent y of room?

STANDARD WAFER SWITCHES
 contact standald din "1
docking washer atml nut.

15, 30 \& 100 WATT HI FI SPEAKERS FULL FI 12 INCH LOUDSPEAKER. This is umbubtedy one of the finest hulspakers that we have ere nifferet, pre, lie-censt metial frame and is strongly recommended for $\mathrm{Hi}-\mathrm{F}^{\circ}$ load and Rhy thm (quitar and public ;ul|ress.
Flux Density 11,000 ginnss-Total Flux 44,000 Mannelle

 ing lugs-- Bathle hule 11 in dlann-- Mometing hules 4. holex - lin liant on witch circle 11 till dian--Overall height
 10on't to
E19.10.0.

MAINS MOTOR Trecixion sumbe :as usen in rccorio ialso for catract finh, blower, heiters suip it 9/6. Portag
 (0) $3 / p$ no $1 /-1$ lor cach one 0.0005 mFd TUNING CONDENSER Provel. clesign, i.ieal for straight

250 V a.c. working condensers for powir finctur is.5 mfil. $8 / 6$ each, \times mifl. $0^{\prime} 6$ eath.
3 amp battery charger kit contprises compuer hacken circuit board, 3 sup maths transformer

GLADIATOR' 2 WAVE BAND TRANSISTOR RADIO 7 transistor, " wave band (medium amilong) plug. These radios use a ferrite slah aterial anal a conventional superhet cireuit with bullt in nowing coil speaker. Completely built up, ready to play. Offered at leas than importers price due to bankrupt purchase. I remark

THERMOSTAT WITH PROBE

 This has a sengor attached to a 15 A owitch by a ranize is ± 0 F to $150^{\prime} \mathrm{F}$ so it is suitable to control kuil heating amb liquill heating especially when in buckets or portable vessels as the sensor can be ritisel ont inll lowerel into the vessel. This thernostat cyumilliso he usent to sound a bell or other hap when critical temp. is reathent stack or linulut is being spontaneous combustion or if controllable by the switch. Male by the fanous Tenangton Co., we offer these at $12 / 6$ cuen

24 HOUR TIME SWITCH

Mains operated. Alljustable Contacts give 2 on/offs per 14 hours. Contacts rated 15 aunps, repeating mechanien" so iteal for shop wintow sontrol, or to switch hallights (, mithurgar precaution) while you are on holiday. Male by the famous suiths ('ompany. This month minly 39/6 with Perspex cover, plus $3 / 6$ postage :ant insurance, il real smip which ghould int be missen.

13 AMP FUSED SWITCH Male by \&.E.C. For connecting
water heiter ete., into 13 ampring water heater ete..into 13 amp ring
main. Flukh type $3 / 8$ each $30 /-$ Murh type 3/8 eath 30-

\section*{MICRO SWITCH} | 5 |
| :--- |
| anch |
| ealis |

ISOLATION SWITCH ?0 amp. 11. P. :250Y :"plianer 102 cn

SUPPRESSOR
CONDENSER TCC mind 2500 a.e. Wrifking mutt

15/20 AMP CONNECTORS

jorlerctl. 12 anm
and

3kW TANGENTIAL HEATER UNIT

This heater mit is the very latest
type, nost effrient, and quiet ruming. Is as fitted in Hoover ank hower heaters costing $x 15$ and more. We have a feu only Comprises motor, finteller, $2 k \pi$ element and thil $3 k$ wind with thermal satfety tum 3k win with thermal satety
cut out. Cinn be fitteal into any metal line case or cabinet. Only need control switch. 79/6. Postinge and inkurance

Where postage is not stated then orters over $\& 3$ are post frer. Below $\$ 3$ adu $\geqslant / 9$, Semiconductore add $1 /-$ post. Over ± 1 post free. S..I.E. with enquiries please.

BLANKET SWITCH

Dondle pole with neon let

into side so luminous in tlark,
itleal for dark roont licht or for plastic case $5 / 6$ eath, 3 hent molel $7 / 8$

COPPER CLAD ELEMENT

H50W-4it long but hent to C bhape, ineal for overheall heater-just mount reflector above $12 / 6$ each, plus $4 / 6$ post. $\& 6$ doz. post paju.

HEAT \& LIGHT LAMP

250 internally mirrored bulb, with b.c. end for plugging into litin holeler'. $19 / 6$ each phus $4 / 6$ post
int insurance.
TUBULAR HEAT \& LIGHT LAMP Philips $500 \mathrm{~W} 20 / 6$ plus $4 / \mathrm{s}$ post ansl jnsurnnce.
ELECTRIC CLOCK
WITH 25 AMP SWITCH Maule by smith's, these units are as fitted to many top quality clook is mains driven and frequency controlled so it is extremely nccurate. The two mmall
thals enable switeh on and off
 times to be accurately set. Ideal
for switching on tape recorters. Offered at only a fraction of the regular price-new and unusel only 39/6, less than the value of the clock alone-post athl ingurnuce $9 / 1$.

THERMOSTATS

Type "A". 13 timp. for controlling room heaters, greenhouses, airing cuptoral. Has syindle for pointer knobs. Quickly aljustable from $30-80$ F
$9 / 6$ plus $1 /$ - post. sultable box for wall mounting. 5/-. P. P'. li-.
Type "B" 15 amp. This is a 17 in . Jong rod type maitle by the fanous sunvic co. Spindle anljusts
 alters the setting
andjustable over 30 this condd be 1000 F . Suitable fot controlling furnace, oven,
kiln, immersion heater or to make flame-stat or fire Type "D". We call this the lee potat as it cuts in and out at wround freezing point. $2 / 3$ ampe. Has many uses one of which would be to kcep the loft pipes rom freezing, if a length of our blamket wire (16 ycl Type "E", This is standaril ufrigenator therum. titat spinalle adjustucte cover mormal refrigerator temperature. 7/6, plus 1/- post.
Tye "F". (ilass encabed for controling the temp. of biquid-particularly those in klass tanks, vats ' ${ }^{\prime}$ sinks-thermostat is held (half summerged) by rubleer sucher or wire clip-illeat for fish tankstevelopers and chemical haths of all types.
Alliustable wer rauge 50 to 150 F . Pije $18 /-$ Allustable ower range 50

RADIO STETHOSCOPE

Easiest way to fault find-traces signal from aerial to sucaker - when signal stopis youte formil the fault. T'se it on Radio, TV, plete kit connprisest tuo specian plete kit comprises two speciad ling probe tube antl erystai -arpjece. 29/6-twin stethu-

BECKASTAT

This is an instant ther-
mostat, simply plug
sour appliance into it your appliance into it
:ind its lead into watl plug. Adiustable setling for normal air temperatures. 13 A loading. Will save it cost im ar reason. 18/6.

MAINS TRANSFORMER SNIP

Making a power pack for amThese or other equipnent? mal mains primaries (230) 240 V) and isolated secondarie
two types (1) $1+500 \mathrm{mu}$ $8 / 6$; (2) 15 Y 500 mA at $8 / 6$.

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRO 2TH Also 102/3 Tamworth Road, Croydon

GATE circuits may be regarded as the electronic analogy of switch or relay circuits. In conventional electrical practice, a number of switches may be wired in parallel, the whole being connected in series with a light bulb and power supply. If any of the switches are operated, the bulb will come on.

However, a number of electronic transducers may have their outputs fed to an electronic gate so that if any of the transducers are operated a common circuit will be brought into ation. One example of the use of a circuit is in carrying out logic functions when certain conditions are satisfied

MANUAL SWITCHING

A simple manually operated electrical switch can be considered as having only two states: either on or off: A number of switches can be arranged in a number of ways, to carry out a number of functions

Fig. Ia shows three switches wired in parallel, and the combination is wired in series with a lamp and a battery. If any one of the switches is closed, the bulb will tight, i.e. if S or S 2 or S 3 is on, the bulb will be on; it is reasonable, therefore, to call this arrangement an or circuit.
Suppose it is required to have the lamp offi only when all switches are open (Fig. la). This condition will
make this circuit into an and gate, since the lamp will only be off when S1 and S2 and S3 are open.
Alternatively, a circuit may be wired up with the switches in series (Fig. Ib). In this case, the lamp witl only light when SI and S2 and S3 are closed. So this kind of circuit can be called an AND gate.

If the conditions are such that the lamp must go out when S 1 or S 2 or S 3 are open (Fig. Ib), then this circuit acts as an or gate.

The first circuit (Fig. 1a) is called a paraliel gate circuit: an or gate for switching on the load: an AND gate for switching off the load.

The second circuit (Fig. 1b) is called a series gate circuit; an and gate for switching on the load; all OR gate for switching off the load.

The most commonly found type of gate in logic systems is the parallel gate and being perthaps the most useful. this article shows how a simple transistor gate circuit can be made.

ELECTRONIC SWITCHING

Each of the first three transistors are the switching elements in parallel with each other. and in the base circuit of an output transistor driving a relay. See Fig. 2.

Referring to Fig. 2, the three transistors TRI. 2, and 3 are connected as grounded emitter d.c. amplifiers and all share a common collector load R7. The collectors are direct coupled to the base of TR4 which drives the relay.

The input resistors limit the current fed to each input transistor. The three base resistors R2, 4 and 6 are taken to a switch selector to bias the bases negative for the AND function: bias for the or function is provided by incoming negative going pulses, the base resistors then being grounded.

"AND" GATE

Taking first the avo function, the input bases are biased switching the first three transistors on. This presents a low resistance path and grounds the base of TR4. causing it to cut off. The relay is also off.

When considering the input signal to a gate, the input is either positive or negative with respect to the common line.

If a positive pulse is fed into TR1 the base bias is reduced and TRI switches off. But the other two

COMPONENTS
...

Resistors				Transistors and Diode	
RI	2-2k Ω	R5	2-2k ${ }^{\text {2 }}$	TRI, 2, 3	OC71 or similar
R2	22k Ω	R6	22k Ω	TR4	OC81 or similar
R3	$2 \cdot 2 \mathrm{k} \Omega$	R7	$3 \cdot 3 \mathrm{k} \Omega$	DI	OA8I or OA5
R4	22k Ω				
All	\%, $\frac{1}{4}$	on			

Relay RLA	185Ω to $250 \Omega 6 \mathrm{~V}$ rating with two sets of changeover contacts
Switch	
	Single pole changeover slide or toggle switch
Miscellaneous S.R.B.P. sheet	
${ }^{\text {"Cir }}$	-kit" stick-on wiring
Batte	ery 9 V and connectors

transistors are still on and holding TR4 and the relay off. It is necessary to provide positive pulses to each of the three inputs to enable TR4 base voltage to rise and switch on TR4 and the relay.

Therefore, an output from the relay will only appear if positive inputs of more than $\frac{1}{4} \mathrm{~V}$ are fed to each base. This can be simulated using a $1 \frac{1}{2} \mathrm{~V}$ battery and the series resistors $R 1, R 3$, and $R 5$, but in practical circuits a low voltage pulse is usually available. These resistors may have to be altered or removed.

"OR" GATE

The circuit can be operated as an OR gate simply by removing the negative bias with switch SI. The three transistors are now off and leave TR4 conducting with the relay energised. It only requires a negative pulse of about 0.2 V to switch on the input transistors and cut off TR4 and the relay.

Only one negative input is needed to do this, so a pulse to either TRI or TR2 or TR3 will produce a negative output from the relay contacts.

RELAY

The switch and relay wiring make one circuit easily adaptable for both functions, although two separate circuits are usually used in permanent installations. Transistors have been used here to achieve some measure of voltage gain to drive the relay, which makes the unit useful for several applications whatever the switched voltage may be. This voltage is then only limited by the ratings of the relay contacts.

The relay coil should operate from a 9 V supply; the 6 V 185 ohm types generally available are ideal. The prototype circuit used a relay with a 250 ohm coil resistance. Changeover contacts are preferable and
the relay should have at least two sets of these. If mains or high current control is required, heavy duty contacts must be fitted. The diode DI is essential and is used to prevent damage to TR4 due to the back e.m.f. produced when the relay releases.

The circuit is not limited to only three inputs. Any number of inputs can be connected if each has one transistor with the necessary resistors connected to TR4 base, the common battery positive line and S1. If the constructor wishes to use $n p n$ transistors the battery supply must be reversed. Transistor TR4 should be adequately rated to handle the relay current without using a heat sink.

CONSTRUCTION

Several methods of construction can be adopted according to individual requirements. The prototype used "Cir-kit" stick-on wiring, the suggested layout being shown in Fig. 3.

Cir-kit is a self-adhesive copper strip with a paper backing. The required lengths are cut and laid on Perspex or plastics laminate sheet. Where two strips cross each other, paper insulation must be inserted between them.

Fig. 4 and the photograph show an extended version to include NAND and NOR functions. Switch SI is a double-pole changeover type.

Fig. 4. Modification to wiring for four-mode gating

Four-mode gate layout. Switch and relay wiring is shown in Fig. 4

COMPLELE STEREO SISTIM

roo ouly 39 Gins

The Premier stereo srstem sonsists of an ath transistor stereo amplitier. (iarmard Model 2025 anto/mannal record plaver unit fitted stereo/mono cartridge
 Controis:lass, Trehle, Volume, Balance, Selector, I'ower onfolf, stereo/mono switeh, Brushed inputs for pick-up, tape and tuner also tape output soeket Size $12^{\prime \prime} \times 52^{\prime \prime} \times 3$ " $^{\prime \prime}$ high (Amplifier available separately if required $£ 14.19 .6$. Carr. "/6)

SPECIAL STEREO CARTRIDGES		
SHORE		
M8D	List 88.10 .6 .	Premier Price 86.18 .6
M44 ${ }^{14}$	Llst E 14.9.1.	Premier Price 810.10.0
M44C	List £12.19.5.	Premier Price 29. 9.0
144E	List ¢17.8.4.	Premier Price E13.19.6
M55E	List $\mathrm{E}_{2} 0.15 .1$.	Premier Price $\mathbf{E l ~}^{\text {15.15.0 }}$
ㅍ75-6	List 117.8 .4	Premier Price 1919.6
M76E	Liet £25.18.10.	Premier Price \&21.0.0
A DDIO-TECHNICA		
AT33-7 Atereo List e		0.14.3 Our Price $\mathrm{E}^{7} .19 .6$
		2.0.0 Our Price 215.0.0
$\begin{aligned} & \text { AT7S } \\ & \text { ATPX } \end{aligned}$	Elliptical List ${ }^{\text {a }}$	5.0.0 Our Price E18.0.0
	Poat and frac	kireg 1/6 each

Separate hase an treble controls, Volume Nwitch. Als, features heillphone socket
athd tape ontult Teak care with atto

FORDERFDL VALUE AT 25 gns .

SANYO M48M CASSETTE TAPE RECORDER
A truly compact lightweikht recorder size $8 \times 4 \frac{1}{2}$ 2inn. Araniatore and Record level intlicator.
Earphone Earphone socket. Col
plete with plete with
carrying strap, remote with pouch aphone with pouch andere cassette. Outpu

SAVENEARLYES! fremier Ntereo System with "Nisva" 10 watt Atereo
Amplifier is anove 45 Gis. (urr

E.M.I. $13 \times 8 \mathrm{in}$

HI-FI SPEAKERS
Fitted two 2kin tweeters intul erobsover net work. Impectatice
$3: 15$ ohms. Handing capacity
fow. Brand new.
99/6
49/6
LQUIPMENT ON DEMONSTRATION
All learing makes availatle including Rogers, Armatrons
VERITAS V-I49 MIXER

separate inputa wize four 3 < 2in. outable for cryetal
microphone. Iow impedatice microphone. Inw impelancer
microphone with microphone with tranpermerner.
radio, tape, etc. Max.
 6dB. itandard jack illug
socket inputs.
phomopluge output. Attractive teikk $\begin{gathered}\text { moon }\end{gathered}$

'VERITAS' Y-313 TAPE HEAD DEFLUXER

"VERITONE" RECORDING TAPE
SPECLALLY MANOFACTURED IN U.S.A. FROM EXTRA STRONO PRE-STRETCHED MATERIAL. THE QUALITY IS UAEQUALLED TENAILISED to ensure the most permanent hase. Highly resistant to breakage, moisture, heat, colld or humidity. High polished splice free finiab output throughout the entire andio range. Double arapied-attractively hoxed $\begin{array}{llllllllll}\text { LP3 } & 3^{*} & 250^{\prime} & \text { P.V.C. } & 5 / 8 & \text { LP6 } & 5^{\prime *} & 1200^{\prime} & \text { P.V.C. } & 12 / 6 \\ \text { TT3 } & 3^{*} & 450^{\prime} & \text { POLYESTER } & 7 / 6 & \text { DT0 } & 5^{*} \\ \text { DTS } & 1800^{\prime} & \text { POLYESTER } & 28 / 6\end{array}$
 $\begin{array}{lllllllll}\text { SP5 } & 5^{*} & 600^{\prime} & \text { P.V.C. } & 8 / 6 & \text { SP7 } & 7^{*} & 1200 & \text { P.V.C. } \\ \text { LP5 } & 5^{*} & 900^{\circ} & \text { P.Y.C. } & 10 /- & \text { DT7 } & 7^{*} & 8400^{\prime} & \text { POLYESTER } \\ \text { DT5 } & 5^{7} & 1200^{\circ} & \text { POLYESTER } & 15 /- & \text { TT7 } & 7^{*} & 3800^{\prime} & \text { POLYESTEE }\end{array}$ TAPE SPOOLS $3^{\circ} 1 /-55^{*}, 51^{*}, 7^{*} 1 / 9$. TAPE CASES $5^{*}, 7^{\prime} 2 / 6$

PICK.UP CARTRIDGES AT MONEY SAVING PRICES (:OLDRIN: (9800 (Nterea) OONOTONE UTAHCD (Ntereo) COS (iP91/5C (Mono compatibie) 4 Cos (iryt (stereo)
IS R $\mathrm{K} \times 3 \mathrm{M}$ (Mono compatible) BS It X 34 (Mono compatible) RONETTE 105 (Stereos)

instructions. Fost anof Packing backetw and

MULTI TESTERS
"TEST 7". A really viratile instrument that makes it hamly nocket mize tool. Meatures AC or 1 ' viltage $12 n$ three Ianges
$0-15-150-1000$ volts. Reqistance $0-100,000$ ohms. Current $0-150 \mathrm{~mA}$ D.C size ouls $33^{3} \quad 1$ din. Complete with hattery, test 59/6

SIZE MOLTI TESTER W
angle, jewelled meter movener
th wide. angle, jewelled meter thovement, cetamic
long. life, low-loso 8 witching, tounh impact
 volt il.c. 10,000 ohma wolt acc. 18 Ranges: $0 \cdot 5 \cdot 25-50-250-500-2.500$ volts $0-50 \mu \mathrm{~A}-2.5 \mathrm{~mA}-250 \mathrm{~mA}$ is $0-6,000$ whtme-
 iend and £4.19.6 \quad \& \&

TWO gTATIOM TRAERCOMS INTERCOMS. and 501 t comateting wire. Compact size, two
way call bybtern. Ideal tor home, olfice, factors et $65 /-r \&$

FOUR STATION INTERCOM. Mater whit and 3 alaven Ideal for ofice and home, Complete with battery al
"PREMIER" TAPE CASSETTES

	C60 ($\mathrm{mon}^{\text {man }}$)
	trree for 36.
	$\mathrm{Cl} 20(120) 17 / 6$
YII	CASSETTE HEAD
	CLEANER
	$\substack{\text { trom } \\ \text { Fito } \\ \text { a }}$
	$11 / 6{ }_{1} /$

C90 (90) $12 / 6$ $\mathrm{Cl} 20\binom{120}{\mathrm{~min}} \quad 17$ - \& P. 1 TTE HEAD

IF YOU MAME
 a home radio catalogue

Ordering components is easier and quicker with our

Credit ${ }^{\circ}$ ccount Service

Our aim in life at Home Radio Components Ltd. is to make your life happier and less complicated! To this end we have recently introduced a Credit Account Service, one advantage of which is that you can order components by telephone any time, any day. If you phone out of shop hours a recording machine will take your message, for us to deal with as soon as we open shop next day.
There are other advantages to the new Service-if you want to order by post we provide Order Forms and Prepaid Envelopes. You settle your account just once per month. We stipulate no minimum order value. Of course, for ordering your components you first need our Catalogue, and after you have been in the Service 12 months we regularly send you an up-todate catalogue-FREE!
For full details of our Credit Account Service just drop us a line or phone 01-648 8422.

『F MOOMAVENTR

(Whether or not you want to

 use the Credit Account Service described, you certainly need the Home Radio Components Catalogue if you construct or repair radio and electronic gadgets. The catalogue has 350 pages, lists 8,000 components and has over 1,500 illustrations. It contains 6 vouchers, each worth 1/when used as indicated. Post the coupon with 12/($8 / 6$ plus $3 / 6$ postage and packing) and we will send a catalogue by return of post. By the way, we supply free a 30 -page Price Supplement and a Bookmark giving electronic abbreviations.

ONCE again summer is brought to the heart of London in coldest January; the International Boat Show must surely instil some of that carefree summer feeling in all who visit Earls Court and perhaps this is one reason why the exhibition is ever increasing in popularity-the abundance of pretty girls may well be another!

It is at this time of the year when anyone with even the slightest of interest in water sports can see and discuss, at Earls Court, the boats and sailors made famous over the last year, the new trends and innovations in boats and equipment, the "sea" fashions and the various displays of underwater swimming, boat building, fishing, rescue and many other activities connected with the water.

The Baron range of instruments described on this page

ELECTRONICS

This year there was even an underwater television system to show recovery operations performed by the British Sub-Aqua Club, who carried out a typical diving expedition to a specially prepared wreck under the pool. This underwater display is the first "electronics" that visitors notice and probably take for granted-as they do their own television and the worldwide broadcast system of today.

Never before has there been such a wide range of electronic equipment available, designed especially to go afloat, from so many firms. It was only a few years ago that one or two firms had the boating scene, as far as electronics go, to themselves.

With increased competition, prices must come down or performance improved, and one cannot help noticing that some established firms have altered neither; perhaps they are relying on reputation and time will tell if that alone is enough. Electronics. like boat design, is moving fast.

NEW PRODUCTS

It is good to see so many new products, many of which have some interesting ideas incorporated and most of which have been well proved at sea. One range of instruments for the small sailing yacht that is particularly outstanding in some respects is that now being marketed by Baron Instruments of Cowes.

This range has a neat and compact control panel with no external leads to foul the chart table, and is manufactured to DEF 5000 specifications (a government specification for armed forces apparatus). The Baron range includes an efficiency instrument, an innovation which should prove extremely useful to racing yachtmen. This instrument is basically an amplified water speed indicator that filters out speed fluctuations caused by wind variations, thus it is far more useful for boat trimming than a simple amplified speed indicator.

EMI are probably the largest electronics company to manufacture a range of aids for the yachtsman and they have increased their excellent range of "Electra" instruments. All the small Electra instruments are housed in a single sealed case with controls and readout on the perspex front panel; another good feature is the absence of internal batteries, all units are designed to be fed from the boat's own supply and where this is not

Electra-Scan, the stylish new radar system from EMI

possible one battery box can be provided to power all the units. Two new instruments from EMI are Electradepth 2, a transistorised echo sounder with neon readout and Electra-Scan, a lightweight radar for small boats.

RADAR

Electra-Scan is a low price radar that will obviously be compared with the Decca 101 and which should come out very well from the comparison. The radar is housed in two units (scanner and display) and is simple to install-four bolts and a cable is EMI's claim. With a range of 30 yards to 16 miles in six steps, and an "auto-alert" to sound a warning when an echo appears anywhere within the selected range, this unit is well worth serious consideration by all yachtsmen.

Decca have not been standing still during the year and, in addition to two new automatic pilots specially designed for users of small craft, Decca Pilots 250 M.C. (mechanical and hand hydraulic steering) and 350 S.O. (hydraulic steering), they have improved the performance of the 101 radar. The 101 now has ranges of 6 and 18 miles and uses a longer pulse to give more "solid" echoes. An anti-rain clutter control is now provided and the Super 101 has been re-styled.

DEVELOPMENTS

Brookes and Gatehouse, one of those firms who appear to be relying on reputation, are worthy of mention this year because of surprisingly little visible design and development activity, in fact as far as we could see they have only introduced a rim fitting indication light for some of their instruments-it will not fit all types-and a battery charger for a rechargeable cell they are now marketing. This firm are

The Adur speedometer and log; the log has a large clear face on which the navigator con make notes at various distance run points. Note the unusual probe with its "clean', underwater line

Bettatac by Pylon Developments is a helmsman's aid for beoting and running. This instrument is unusual in its display as it indicates corrective action required on the tiller. The complete installation is shown; a windspeed indicator is available as an addition
worthy of better things and it would be good to see those internal cells done away with altogether, a battery charger that operates from the ship's supply is only half the solution to power supply problems. Perhaps we will see startling advances next year.

A truly professional direction finder and marine receiver has been lacking from the range available to small boat owners for some time; fortunately this gap has been filled by Derritron with their DF70 receiver. This equipment, which was displayed undergoing vibration and water resistance tests, can receive long, medium and trawler bands and is suitable for r / t, s.s.b. and c.w. transmission reception. A built-in null indicator is provided and the receiver can operate from internal batteries or an external supply.

OTHER EQUIPMENT

There were many other interesting equipments, some new and good, like the Adur course run indicator, on . which can be nade brief nutes of course and comments for reference, and some older but improved like the Ajax electronics radio telephones with increased output power. There were instruments for the small yacht that will do all the thinking-the apparent wind direction indicator by Pylon Developments that indicates corrective action required on the tiller-and equipment to provide comfort aboard the larger vessel, such as the new Muirhead Murmaid stabilisation system.

In all, we can now safely say that the electronic industry is attuned to the needs of both the weekend and professional yachtsman, and perhaps the next year will see an even greater advancement in equipment development. It would be comforting to see more automatic safety devices displayed even if the Coastguard in conjunction with the armed forces and the RNLI do run an efficient "electronic assisted" service. They actually carried out 137 more rescue operations during the 12 months ending September 1969 than the previous year, and rescued some 2,747 persons. Electronics can not only help prevent accidents at sea but can assist the rescue operation when an accident does occur.

ELEOTRO/ALUE

Everything brand new and to specification - Large stocks • Good service

RESISTORS

CODES: $C=$ carbon film, high stability, low noise. $M O=$ metal oxide, Electrosil TR5, ultra low

 E24 denotes series: as $E 12$ plus $1,1,1,3,1,6,2,2,4,3,3,6,4,3,5,6,2,7,5,91$ and their decades. Prices are in pence eash for quantities of one ohrnic volue and power roting. (Ignore fractions of one penny on
total resistor arder.)

CARBON TRACK POTENTIOMETERS Long plastic spindles.	Double wiper ensures minimum noise level.
Single gang linear: $220 \Omega, 470 \Omega, 1 k \Omega$, etc. to $2 \mathrm{M} \Omega$	Dual gang linear: $4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, etc. to IM Ω
Single gang log: $4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, etc. to $2 \cdot 2 \mathrm{M} \Omega$	Dual gang log: $4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, ete, to $2 M 2 \Omega$
Any type with $\frac{1}{2}$ amp double pole mains switch: extra	Log/Antilog: $10 \mathrm{k} \Omega$, $47 \mathrm{k} \Omega$, iM Ω only \ldots $8 / 6$ Dual antilog: 10k Ω only

PEAK SOUND ENGLEFIELD KITS

 $\begin{array}{ll}\text { Build it } & 12+12 \text { or } \\ 25+25\end{array}$ \qquad $25+25$. Brilliant newstyling and available in

BARGAINS IN NEW TRANSISTORS

All power types supplied with free insulating sets

2N696	5/6	2N5192	25
2N697	5/6	2N5195	29/3
2N706	2/9	40361	12/6
2N1132	$9 / 9$	403612	16
2N1302	4/	AC126	$6 / 6$
2N1303	4/-	AC127	6
2N1304	4/6	AC128	6
2N1305	4/6	AC176	11
2N1306	6/9	ACY22	3/9
2N1307	6/9	ACY40	4
2NI308	$8 / 9$	ADI40	19
2NI309	8/9	AD149	$17 / 6$
2N1613	6	AD161)	
2N1711	7/4	AD162 $\}$	16/ pr.
2N2218	10/6	AFII8	16/6
2N2147	18/9	AFI24	7/6
2N2369A	6/9	AF127	7 !
2N2646	10/9	BA102	$9 /$
2N2924	4/3	BC107	$2 / 9$
2N2925	5/3	BC108	2/6
2N2926R	2/6	BC109	$2 / 9$
2N2926O	2/3	BC147	4/3
2N2926Y	2/3	BCI48	3/3
2N2926G	2/3	BC149	4/3
2N3053	5/6	BC153	$10 /$
2N3054	14/3	BC154	$11 /$
2N3055	16/6	BC157	3/9
2N3391A	5/6	BC158	3/6
2N3702	3/6	BC167	$3 / 9$ $2 / 6$
2N3703	3/3	BC168	2/3
2N3704	3/9	BC169	2/6
2N3705	3/5	BC177	6/3
2N3706	3/3	BC178	5/8
2N3703	4	BC179	6
2N3708	3	BDI21	18
2N3709	3	BDI23	24/3
2N3710	3/3	BFi78	10/6
2N3711	3/11	BF×29	10/9
2N3904	7/6	BFX85	8/3
2N39085	7/6	BFX88	7/9
2N3731	23	BFY50	4/6
2N4058	5/3	BFY51	4/3
2N3323	$10 / 6$	BS $\times 20$	3/9
2N3794	3/3	MJ480	21
2N4286	3/3	MJ481	27.
2N4289	3/3	MJ491	30
2N4291	3/3	P346A	5/9
2N4292	3/3	IN400\|	4/2
2N4410	4/9	IN4005	8 -

MAIN LINE AMPLIFIER KITS, as advertised.

Prices net. Authorised dealer.

COMPONENT DISCOUNTS
10% on ordersfor componencs for $£ 5$ or more. 15% on orders for components for $\& 15$ or more (No discount on net items).

POSTAGE ANO PACKING
Free on orders over 62. Please add $1 / 6$ if under
two forms: STEREO 15 WATTS PER CHANNEL. In and power supply. Output per channel inpo R.M.S Price $\not \mathbf{3 8 . 9 . 0}$. net. STEREO 25 WATTS PER CHANNEL. As above but output per channel inco 15Ω Total harmonic distortion 01%. Radio Signal to nolse lnputs: Magnetic, Ceramic. Tape, R
ratios: Better than 60 dB all inputs.
O/Lad factor 28 dB all channels.
ENGLEFIELD CABINET to house either above

ELEGTROVALUE

Dept. PE3 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY Opening Hours: 9-5.30; Sat. 9 a.m. to 1 p.m. Tel.: Egham 5533 (STD 0784-3)

WOM! a fast easy way to learn basic radio and Electronics

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build

. .

 and enjoy every moment of it. B.I.E.T's Simplitic Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

YOU Li and what's more, EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the lee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.

You LEARN-but it's as

 fascinating as a hobby. Among many other interesting experiments, the Radio sct you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a grebt new, sparetime interest.A 14-ycar-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set here's your chance to master basic Radio and Electronics, even if you think you're a non-technical type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 164 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 164 -page book - ENGINEERING OP-PORTUNITIES'- Free and without any obligation.

Dept. 371B, Aldermaston Court, Aldermaston, Berkshire.

for fast, easy, refiable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

42/- Postage $1 /$

HI-FI YEAR BOOK 1970. 20/. Postage $1 / 6$.
TRANSISTOR AUDIO AND RADIO CIRCUITS, by Mullard. 30/-. Poscage 1/-.
THE HI-FI AND TAPE RECORDER HANDBOOK, by Gordon J. King. 40/-. Postage 2/-
TRANSISTOR TRANSMITTERS FOR THE AMATEUR, by Donald L. Sconer. 21/-. Postage $1 /$ -
TRANSISTOR SUBSTITUTION HANDBOOK, No. 9. 18/-. Postage $1 /$-. ELECTRIC WIRING (DOMESTIC), edited by A. J. Coker. 28/.. Postage 2/-.
110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marston. 18/.. Poscage 1/-.
SOLID STATE HOBBY CIRCUITS MANUAL, by R.C.A. $17 / 6$. Postage $1 /$-. ELECTRONIC SYSTEMS PART I, by G. N. Patchect. 15/-. Postage 6d.

TRANSISTOR MANUAL, by General Electric Company. 21/. Postage $1 / 6$.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-2! PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday 1 p.m.
DIMMASWITCH

[^1]Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magarine. Technical queries cannot be dealt with on the telephone.

Denmark calling

Sir-First of all, I wish to congratulate you on your excellent magazines, and I also wish to join the American subscriber who, some time ago, wrote you that he found your magazine so much more "down to earth" than anything comparable over there. The same goes for this country, where we do not have similar monthlies that supply their construction suggestions in a form which make them easy to follow for us, who enjoy the electronics hobby as a hobby and who-unfortunately - do not possess very much background knowledge on the various subjects.

However, one little complaint: don't you ever think about your poorly positioned overseas readers? Very often I find that components, which you specify in your designs, are unavailable and even un-convertible over here. My latest project has been the cymbal simulator described in your May 1968 issueor, rather, it has been the latest project of my poor wife, who finally became so fed up with my soldering activities that she started on her own. It being her first project, I naturally had to assist her and ran into considerable trouble.

Remember, Practical Electronics is the magazine $W E$ resort to for projects-even on the continent.
C. Hagen,
Denmark.

Stop "foiling"!

Sir-The Tape Stop-Foil Device suggested by Mr Price of Pencoed on page 954 of your December issue suffers from a serious shortcoming.

Tape heads are very susceptible to permanent magnetisation, and manufacturers take the precaution of seeing that both erase and replay heads are firmly shorted out during warm-up and after switch-off.

Whether the recorder is valved or transistorised, the coupling capacitors charge up during the warm-up period, and discharge after switch-off, and it is vital to ensure that this current does not flow through the head windings. Neglect of this pre-
caution leads to increased noise, increased distortion and partial erasure of the high-frequency components of the recorded signal.

Turning the whole machine off at the mains is just not on, Mr Price, and if it should happen by accident, immediate demagnetisation of both heads is the least that should be done.
A. S. Henderson,

Enfield,
Middlesex.

On the right lines

Sir-May I commend you on the way and direction your magazine has developed over the past two years; also upon the two articles Hi-fi Stereo Amplifier, by Mr M. J. Gay which I shall construct, since it seems to me to approach hi-fi in a new way, and Demo Switching Circuits, by Mr B. Pounder.

This to me is a marvellous choice for a series, and having read the first two articles 1 trust Mr Pounder will continue for a long time to write such sound educational articles. May I suggest, however, that he departs a little from his written policy in the first article and expands a little to describing suitable power supplies or perhaps referring back to such circuits already published in P.E.

A further suggestion is not to completely exclude the medium priced test gear; the inclusion of such information at least widens the knowledge of your readers even if they are unable to use the gear itself.
Also, could he enlarge his explanations to include values of components which would give a greater output. This last suggestion, should you feel it to be worthwhile, could be applied to Model Railway Logic Systems by Mr P. Goodes, recently published, to give an output of, say, 3A with a power supply of 24 volts. This voltage is not uncommon in the model railway world, and would be interesting to at least some of your readers. This I happen to know, since your articles have been quoted to me by model railway people.
H. A. Nichol,

Upminster,
Essex.

URRIABLE VOLTAGE TRANSFORWERS

LIGHT SENSITIVE SWITCH Kit ol parts，including ORPI2 Cad－ mium Sulphide Photocell，Relay Transistor and Circuit，etc．，6－12 vole D．C．op．price $25 i^{-}$plus $2 / 6$ P \＆P ．ORP 12 including circuit $10 / 6$ each，plus $1 /-P$ \＆P ．
A．C．MAINS MODEL．Incorporaces A．C．MAINS MODEL．Incorporates relay with 25 amp mains c／o contacts． Price ine circuit $47 / 6$ plus $2 / 6$ P．\＆P． CELL MOUNTING Precision engineered
light source with focusible品 lamp housing．to take MBC bulb．Separat photo cell mounting assembly for ORP．I2 fixing．Price per pair $£ 2.15 .0$ ．P．\＆P． $3 / 6$. UNISELECTTOZ SWITTCHES NEW
4 Bank 25 Way 24 V d．c

operation $£ 5.17 .6$, P．\＆P． $2 / 6$.
6 Bank 25 Way 24 V d．c．$£ 6.10 .0$ ，p．p． $2!6$ ． 8 Bank 25 Way 24 V d．c．operation． £7．12．6 plus 4／6 P．\＆P

RELAYS NEW SIEMENS

 ture relays at COMPETITIVE PRICES Coil Working Contacts Price

MINIATURE RELAYS

 ohm coil．Size 1 ：：is in．8／6．Post paid． 230 VOLT AC RELAY LONDEX 4 c＇o SANGA MUTETI
000 New Model U50D Multi tester． proteccion．Mirror scaled with overload $0.5 \mathrm{~V}, 5 \mathrm{~V}, 250 \mathrm{~V}$ ． 1.000 V ；a．c．volts： $2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$ ． $1,000 \mathrm{~V} ;$ d．c． current： $5 \mu \mathrm{~A}, 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$ ， 250MA Complete with battery and test probe． $\mathbf{6 7 . 5 . 0}$ post paid． DEMONSTRATION TRANSFORMER （STENZYL TYPE） （Nolts and $6,12,36$ rolts posite apparacus dely．A com－ class demonstration．Electro magnetic induction．jumping ring，induction lamp． relationship between field intensity and ampere turns，induction melting，are just modified model．$£ 14.10 .0, P$ \＆P ． $10 /-$

LT TRANSFORMERS All primaries 220240 V Type No．

12 V ．Sec．Taps Price Corr． $30,32,34,36 \mathrm{~V}$ at $5 \mathrm{~A} \cdots$ … 1.17 .6 5／6 $30,40,50 \mathrm{~V}$ at 5 A ．
$10,17,18 \mathrm{~V}$ at 10 A 6． 12 V at 20 A $17,18,20 \mathrm{~V}$ at 20 A $6,12,20 \mathrm{~V}$ at 20 A 24 V at 10 A ．
 $4,6,24,32 \mathrm{~V}$ at $12 \mathrm{~A} \ldots \mathrm{E7.3.0}$

INPUT $230 / 240 \mathrm{v}$. A．C．50／60－ OUTPUT VARIABLE 0．260v． BRAND NEW
Keenest prices in the country． All Types（and Spares）from $\frac{1}{2}$ to 50 amp ．from stock． SHROUDED TYPE 1 amp ，65．10． 0.2 .5 amps ， 16．15． 0.15 amps ，19．15． 0. 8 amps． 144.10 .0 .10 amps ． $f 18,10.0 .12 \mathrm{amps}, 121.0 .0$ ． 15 amps， 525 ． 0.0 .20 amps． 637．0． 0.37 .5 amps， 172.0 .0 ． 50 amps，f92． 0.0 ．
 OPEN TYPE（Panel Mounting）

STROBE！STROBE！STROBE！

Build a Strobe Unit，using the latest type Xenon white light flash tube．Solid state timing and trigger． ing circuit． $230 / 250 \mathrm{v}$ ．A．C．operation．
EXPERIMENTERS＇ECONOMY KIT
I to 36 Flash persec．All electronic components includ． ing Veroboard S．C．R．Unijunction Xenon Tube and in－
NEW INDUSTRIAL KIT
Ideally suitable for scheols，laboracories，etc．Roller tin printed circuit．New trigger coil，plastic thyristor
i－80 f．p．s．Price 9 gns． $7 / 6 \mathrm{P} . \& \mathrm{P}$ ． HY－LYGHT STROBE
This scrobe has been designed and produced in response the phosographic field．It has four times the light outpu at 30 f．p．s．and utilizes a silica plug－in tube for longer life expectancy，printed circuit for easy assembly，also special trigger coil and output capacitor
approx 4 joules．Price 410.17 .6 ．P．\＆P． 76 ． approx． 4 joules．Price 410.17 .6 ，P．\＆P． 76
7－inch POLISHED REFLECTOR
Ideally suited for above Strobe kits．Price 10，6．P．\＆P．2／6 or Post Paid with kits

（100 WATT POWER RHELSSTATS（IEW）
 AVAILABLE IN THE FOLLOWING VALUES

1 ohm， $10 \mathrm{a} ; 5 \mathrm{ohm}, 4.7 \mathrm{a}$ ； 10 ohm， 3 a ．；
25 ohm， 2 a．； 50 ohm， 1.4 a； 100 ohm，
280 mA ； 1.5 Kohm， 230 mA ； $2 \cdot 5$ Kohm， 2 a，； 5 Kohm， 140
 each．P．\＆P． $1 / 6$ ．
50 WATT．I／5／10／25／50／100／250／500／1／1－5／2．5／5 Kohm
All at $21 /$ each．P．\＆P． $1 / 6$
25 WATT． $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5$ Kohm．All at $14 / 6$ each．P．\＆P． $1 / 6$.
VEEDER ROOT， 230 V a．c

counter（non－resettable）．i8／6，P．\＆P．P．I／6． MOTORIZED 5WITCHING UNIT（EX．W．D．）

Price 25 ．Plus $4 / 6$ P．\＆P． EX－W．D．MINIATURE BLOWER UNIT $18-24 V$ D．C．operation，overall length $3 \AA^{*}$ blower 2T
20／．Plus 2／6 P．\＆P．
BODINE TYPE N．C．T．GEARED MOTO
（Type I） 71 r．p．m．Torque 101 l ．inch．
Reversible．I／70th h．p．． 50 cycle， 38 amp．（Type 2） 28 r．p．m．Torque 201b．inch，Reversible．I／80th h．p．1
 made U．S．A motors are offered in＇as new＇condition．Input made U．S．A．motors are offered in as new condition．Input
voltage of motor 115 V a．c．Supplied complete with trans－ voltage of motor 115 V a．c．Supplied complete with trans
former for $230 / 240 \mathrm{~V}$ a．c．input．Price，either type $£ 3.3 .0$ former for $\mathbf{2 3 0 / 2 4 0 V}$ a．c．input．Price，either type $£ 3.3 .0$
plus $6 / 6$ P．\＆P．or less transformer $£ 2.2 .6$ plus $4 / 6$ P．\＆P． R．C．A．PLASTIC TRIAC 400 PIV 8 amp．Price $25 / 6$ R．C．A．Diac R．C．A．PLASTIC TRIAC 400 PIV 8 amp．Price $25 / 6$ R．C．A．Diac
for above，price $6 /-$ ．Prices include doto sheet and circuit． G．E．P．U．T．DI3 TI．12／．TEXAS F．E．T． 2 N3819 $7 / 6$.
NEW PLASTIC THYRISTOR 400 PIV 8 amp．
IB／6 incl．data sheet．All above prices plus $1 / 6$ P．\＆P．
INSULATION TESTERS
（NEW） INSULATION TESTERS（NEW） Test to I．E．E．Spec．Rugged metal con－ struction，suitable for bench or field
work，constant speed clutch．Size： L． 8 in ．，W． 4 in ．H．Gin．，weight 61 b ． 500 VOLTS． 500 MS，$£ 28$ carr．paid．
1000 VOLT＇S， 1000 MS E 34 carr paid

SERVICE
 TRADING CO

All Mail Orders－Also Callers－Ample Parking Space Dept．P．E． 57 BRIDGMAN ROAD，LONDON，W． 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal callers only 9 LITTLE NEWPORT ST． LONDON，W．C．2．Tel．GER 0576

4STATION INTIERCOM
 4－8tation Tranaintor Intercom system（ 1 master and 3 Bubs），in de－luze plastic cabinets for desk or wall mounting．Call／talk／listen from Master to Subs and Bubs to Master．Ideally aultable for Business，Sur－ gery，Schoola，Hospital，Office and Home．Operatea
on one 9 V battery．On／off switch．Volume control． Complete with 3 connecting wires each 66 ft ．and other accessories，P．\＆P． $7 / 6$ ．

MAINS INTERCOM
No bstteries－no wires．Just plug in the mains for Inatant two way，loud and clear communtcatlon．
On／uf switch und volume cuntrol． l ＇rice s 10.19 .8 ．上．\＆P ． $8 / 6$ extra．

same as 4．Station Intercom for twoway instant Same as 4．Station Intercom for Lroway instant communication，lreai as Baby Alarm and Dian Battery 2／6．P．\＆P．4／6

ciency with this incredible De Luxe Telophone Ampli－ fler．Take down long telephone messages or converse ofll switch．Volume handsel．Atrery 2,6 extra．P．\＆P 3／6．Full price refunded if not satisfied in 7 days．

WEST LORDON DIRECT SUPPLIES．（PE／3）

BATTERY ELIMINATORS The ideal way of running your TRANSISTOR RADIO，RECORD PLAYER，TAPE RECORDER AMPLIFIER，etc．Types available： $6 v, 9 v, 12 v$
I Bv（single outpur） $39 / 6$ each．P．\＆P． $2 / 9$ ． 18v（single output） 396 each． $4 \frac{1}{2}$（two separate outputs） 42,6 each．P．\＆P． $2 / 9$ ．Please state completely isolated from mains by double wound transformer ensuring $100^{\prime \prime}$ ，safety．

R．C．S．PRODUCTS（RADIO）LTD． （Dept．P．E．）， 31 Oliver Road，London．E，I7

－Dial a new dazzling

 colour scheme for your home！
－Don＇t miss the super free colour planning dial in the March issue of

 PRACTICAL OLT HOUSEHOLDERMONO TRANSISTOR AMPLIFIER

aymetrical complementar
pair. Output transformer coupled to 3 ohm ant 15 ohn apeaker spekets. Stantaril phono input sockets. Full wave bridge rectitier power supply for a.c. maans 200 selector for PV1, Pl'2, tape, radio. The HSL 000 is ector for PU,, PL2. enanuel finish, size $91 \times 5 \cdot 4 \frac{1}{2}$. high.
Sensitivity-PC1-50m/v, 56 K input inpedance. 110.7. 1 meg input impedanc. Radio- $110 \mathrm{~m} / v, 1 \mathrm{meg}$ input imperance Output power measured at $1 \mathrm{Kc}-6.2$ watts KMs into 3 ohms, $5 \cdot 8$ watts RMS into 15 ohm. Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}:$ Continuously variathe tone ontrols: Hass, +8 db ho -12 lb at $100 \mathrm{c} / \mathrm{s}$. Treble +10 clb to -10 db at $10 \mathrm{Kc} / \mathrm{s}$.

The HSL. 700 has been designed for true high fidelity reproduction from radio tuner, grathophone deck and tape recorder preamp. supplied ready buil and teeted, com. escutcheon panel, long spindles fan be cut to suit your housing requirements) full circuit dingranl and operating | instructions. |
| :--- |
| OUR sPECIAL PRICE |
| $\mathbf{2}$ |
| 19.6. |

LOUDSPEAKER BARGAINS

$\sin 3$ ohm 16/-. P. \& P. 3
ohm with high flux emagnet ol P. 6/\%. E.M.I. \& . 5 in 31 , sin 3 ohm with high flux ceranie naguet $42 /-$ 13 ohm $45 /-$), P. \&P. G/-. E.M.I. 13 , \&in, 3 or 15 ohn with two inbuilt tweeters and crosgover network 4 gas P. \& P. $6 /$

BRAND NEW. 12Li 15 w H/D Speakers, 3 or 15 ohtu urrent production by well-known British maker, Now with Hiffux ceramic ferrobar magnet assembly $25,10.0$
P. \& P. $7 / 6$. Guitar models: 25 w 26.0.0. 35 w \&8.0.0 E,M.I. 3iin HEAVY DUTY TWEETERS. Powertu 5 ohm $18 / 6$ each. Available

12in "RA" TWIN COHE LOUDBPEAKER 10 watts peak handling. 3 or $15 \mathrm{ohm}, 87 / 6, \mathrm{P}$. \& P. 6i$34 \mathrm{in} \mathrm{14/-}, \mathrm{P} .\mathrm{\&} \mathrm{P} 2 / 6 ;$.7 OPEAKERS 80 ORM MOVING COIL SPEAKER High Flux Magnet 2 In $^{\circ}$ dia, $12 /$ each. P. \& P. 1/6.

QUALITY PORTABLE TAPE RECORDER CASE Brand new. Beautifully made. Only 48,

HIGH IMPEDANCE CRYSTAL STICK MIKES. OI'R HIGH IMPEDAYCE DYNAMIC STICK MIKES. High IGH IHPEDANCE DYNAmic STICK HIKE8. High

PYE MCROSWITCKES 8/P. C/O. Lever roller action Rating 250 . AC at 5 amps. Size approx
HONEYWELL MICROSWITCEES 8/P. C/O $\%$ Push-button action. Hating 250w. AC at 15 amps. Size approx,

THLESCOPIC AERIALS WITH SWIVEL JOLNT. Can be angled and rotated in any direction. 12 eection Heavy diameter $1^{\prime \prime} .10 / \cdot$ each. P. \& P.1/6. 6 section Lacquered Brass. Extenda from 6^{*} to approx. $2 \sum^{*}{ }^{*}$. Maximum diameter \mathbf{t}^{*}. 5/• each. P. \& P. 1/-.

TRANSFORMER BARGAINS! BRAND KEW MULTI-RATIO MAINS TRANBFORMERS. Giving 13 alternatives. Primary. 0-210-240V. Secondary combinations: $0-5-10-15-20-25-30-35-40-60 \mathrm{~V}$ hals
 full
P. \&
$\mathrm{P} .6 /-$

MAINS TRANSFORMER. For transistor power supplien Pri. 200/240V. Sec. $9-0-9$ at 500 mA . $11 /-$. P. \& P. 2/0 Pri. 200/240V. Sec. 12-0-12 at 1 amp. 14/6. P. \& P. 2/6.
Pri. 200/240V. Sec. 10-0-10 at 2 amp. 27/6. P. \&. P. $3 / 6$. Pri. $200 / 240$ V. Sec. $10-0-10$ at 2 amp. 27/6. P. \& P. $3 / 6$.
Tapped Primary $200-220-240 \vee$. Sec. $21 \cdot 5 \mathrm{~V}$ at 500 mA . 12/6 P P

BRAND NEW! PARMEKO MAIMS TRAMEFORMERS. Primary $110 \mathrm{v}-250 \mathrm{v}$. secondary $330-0-330 \mathrm{v}$. 100 mA and $6 \cdot 3 \mathrm{v}$. at 2 amps. 6.3 v . at 2 ampe and 6.3 v .at 1 amp . Conservatively rated. Fully inupregnated Electrostatic sereen. Suitable for vertical or drop through mount fogg. Overall size $4!\times 3!$. 3 tin. Weight 8 lb . Linited number only at

SPECIAL OFFER!

Your opportunity to acquire affat clase HI-RI LOUDSPEAKER SYSTEM at an extremely moderate price! Eeautifully made teak finiah enclosure with mos
 8* bans unit, two H.F. tweeter units and crossovar Power bsing
OUR PRICE WHILE LIMITED 8 GUS. Qarriage STOCKS LAST

TRANSISTOR STEREO $8+8$ MK II

 Now using Silicon Transistors in firat five atages on each channel resulting in even lowir noike level with inproved sensitivity. A really hrs chass Hi-Fintereo Amplither Kit. chamul (16W mono). Integrated preanp. with Bass, Treble and Volume controls. Suitable for une with Ceramic or (rystal cartridges. Output atage for any speakers from 3 to 15 ohme. Conpact degignt all parts supplied including Irilled metal work. Cir-Kit board, ateractive front panel, knobs, wire, solder, nuta, bolta-any conatructor to build an amplifier to be proud of. Brie! specification: Freq, reaponse $\pm 3 \mathrm{~dB}, 23-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to $+12 d \mathrm{~B}$. Treble cut approx. to-16418 . Negative feedback 1 s,lB over main amp. - I6alB. Negative feedhack $18,1 \mathrm{~B}$

$$
\text { Power requirementa } 25 \text { at } 0.6 \text { anlp. }
$$

PRICES: AMPLIFIER KIT \&10.10.0; POWER PACK KIT £3. O, CABINET 2. O., All Post Free
Also iwailable STEREO $10+10$. As atove but 10 watto per chatmel. PRICES: AMPLIFIER KIT \&12. POW'ER PACK KIT $\pm 3.10 .0$.
Circuit diagram, con
with kit) $1 / 6$ (

OAflial stockiste of all

PEAK SOUND HI-FI EQUIPMENT
P.W. DOUBLE 12 STEREO AMPLIFIER as featured in Practical Wireless April, May and June 1969 issues. Component paek as specilled. Total cost $£ 23.5 .6$ plus athl sockets and fuses.)

SPECLAL PURCHASE:
E.M.I. $4-8 P E E D$ PLAYER Heary 83in. metal turntable, len w thuter performance 200 ,
250 bhaded motor $90 \quad$ tap). Complete with latest type lightweight pick-up arm and mono cartriage with t/o stylii for LP/FR. ONLI
83/-. P. \& P. fi6.

QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplitier employing heavy duty double wound mains trangormer, ECCR3, ELA, Ez80 valves. separate hass, Treble ami olume controls. Complete with output tranbformer matcherf tor 3 ohm
 on board with output transformer and speaker ready to fit into cabinet below. PR1C'E 97/6. IF. \& P. 6 .
DE LUXE QUALITY PORTABLE R/P CABINET MK II Vincut motor hoard size 14t 12in., llearnuce 2 in . below6im. above. Will take above anplifier amplany B.S.R. of GABRARD changer or Single Player (except AT60 arnl SP25). Size $18 \cdot 15$ - 8in. PRHE 70/6, P. \& P.

3-VALVE AUDIO
AMPLIFIER HA34 MK II Designed tor Hi-F'i reprodueoperat inn leauly Luilt on plated heavy gauge metal hassis, size $\frac{1}{1}$ in w. 4 in. d. 4 in . h. Incorporates ECCS3,
biLst, EZso balves. Heary luty, dfmble wound maing trambormer and output transformer matehed for 3 ohm speaker. Separate volume conting bass and treble lift and
wide range tone controls giving cut. Negative feedloack line. Output 41 watte. Front panel can be detached and leads extended for remote wired and tested for only $\mathbf{E 4 . 1 5 . 0} \mathbf{1}$ P. \& $\mathrm{l}^{\mathrm{P}} .6 / \mathrm{F}$

HSL "YOUR" AMPLIFIER KIT. Similar in appearance to Ha34 above but employs entirely different and allyancel circuitry. Complete get of parts, ctc. 79;6. P. \& 1'. 6ij-
BRAND NEW TRAKSI8TOR BARGAINS. GET 15 (Matched Pair) 15/-: V15/10p, 10/-; OC71 $5 /-$; OC76 $1 /=:$ AF117 3/8: 23 (3399 (NPN) 3
Set of Mullard 6 transigtors OC44, $2-O C 45, ~ A C 128 D$. matched pair AC128 25/न; ORPI: ('islmium sulphile

VYRAIR AND REXIDE SPEAKERS AND CABINE PABRICS app. 54in. wide. Lsually 35/- yd., our price 15/ yd. length. P. tr. 2, 6 (min. 1 yd.). S.A, E. for amples.
POWERPUL COMPACT MOTOR for G-4: Battery operation approx. '25nA. Made orgininlly for "Staar", and "(ireencoat" record player decks. Built in eonstant
speed device. Ileal for models, etc. Oy erall size approx

DE LUXE STEREO AMPLIFIER

 are provided for bass antl treble control, giving bass ant treble boost an cut. It tual volume control is used Balance of the left and right ham thamels can he adjusted by means of a separate "balance" control fitten at the rear of the chassis. Input sensitivity is approx mately $300 \mathrm{~m} / \mathrm{y}$ for full peak out put of 4 wat ts per chamne (8 watts mono), into 3 ohm spe ikers. Full negative
feedbuck in a carefully catculated ciacuit, allows high volune levels tos the used with negligible distorion Supplied complete with knobs, chassimsize llin. w fin. x Overall height including valves 5 in . Ready built and tested to a high standard. Price 8 gas , P°. \mathbb{P}^{P}. $\mathrm{N} /-$

S-SPEED RECORD PLAYER EARGAINS

Mains models. All brand new in maker'r packing. All plus Carriage and Packing $6 / 6$. LATEST GARRARD MODELS. All types availsble 1025 2025, SP2s, 3000, AT60 etc. Send S. A. E for Letest Prices
 OUR 1'RIC'E 5 gag. complete. P. $\$ 1.8 / 6$.

SONOTONE 9TAHC compatible Ntereo (artriulg u ith Liamonel stylus 50/E. P. \& P. 2/
LATEST RONETTE T/O Stereo Compatible Cartridge LATEST RONETTE T/O Mono Compatible Cartridge fir EP/LI/78 mono
$30 /-\mathrm{P}$. $1,2 /$.

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gran innplifier using a double houn
 lmpelance 3 ohnas. Output approx. 3.5 uatts vulurue and tone controls. Chassis size ondy 7 im . wide . 3 im . deep in. high overall. Af' nains 200 240 . Supplital absolute Brand New completely uired and tested with vilives and gool çuality output transformet. FEW ONL

OUR ROCK BOTTOM	
BARGAIN PRICE	$5 \mathbf{5} /-$
P.	

10/14 WATT HI-FI AMPLIFIER KIT

A stylighly finished monalural amplifier with ant output of
14 watts from : ELS4s in push-pull. super reproduction of both music and speech, with negli-
gible hum. Separate gible hum. Separate
nuput for mike :nd grant allow recorils and announcements
 Coflow each other
Fully shrouled section wound output tratsfurmer to mateh 3-15 2 speaker and 2 independent volume controls, and separate bass and treble controls are provided giving goodlift and cut. Valveline-up 2 ELB4s, ECCH3, EF8d and EZ80 reetilier. Simple instruction booklet $2 / 8$ (Free with
narte). All paris sold soparately. ON L. $\$ 7.9 .8$. P. \& P. A/t parte). All parts sold separately. ONLI 87.9.6. P. \& P. A/t; input sockets, se.5.0. P. \& P. 8/6.

Open all day Salurday
Early closing Wed. 1 p.m.
$\underset{T}{4}$ ferw minutes from South Himbledon
(Please write clearly) PLEASE MOTE: P. \& P. CRARGES . AR P ON OVERSEAS ORDERS Charged extra.

Bitesulad

SOLDERING

 INSTRUMENTS

- SEVEN SIZES-10 WATTS TO 60 WATTS
- EXCELLENT THERMAL STABILITY (see new Litestat models for thermostatic control)
- STRONG, LIGHTWEIGHT, COMFORTABLY ELEGANT DESIGN
- UNEQUALLED PERFORMANCE
- LONG-LIFE BITS, PHILIPS IRON-COATED OR 'PERMATIP
- INDICATOR LAMPS

OPTIONAL ON ALL MODELS

- ALL VOLTAGES
- MANY ACCESSORIES: Heat Guards, Bench Stands,
Bit-temperature Pyrometers, Thermal Wire Strippers, Solder Pots

Please ask for colour catalogue L/37

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon CR9 2LL Tel. 01-688 8589 \& 4559

and work at the nerve centres of civil aviation

The National Air Traffic Control Service of the Board of Trade needs Radio Technicians to install and maintain the very latest electrontc aids at Civil Alrports, Air Traffic Control Centres, Radar Stations and specialist establishments. Vacancies exist in various parts of the Unuted Kingdom.

This is responsible demanding work (for which you will get famılıarısatıon trairıng) involving communicatıons, computers, radar and data extraction, automatic landing systems, and closed circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.
If you are 19 or over, with at least one vear's practical experience in telecommunications. fill in the coupon now. Preference will be given to those having ONC or qualifications in Telecommunications
Salary. $£ 985$ (at 19) to $£ 1.295$ (at 25 or over). scale maxımum $£ 1.500$ (higher rates at Heathrow) Some posts attract shift-duty payments. The annual leave allowance is good and there is a non-contributory pension scheme for established staff

Complete this coupon for full detals and application form

To: A. J. Edwards, C.Eng., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi,
John Adam Street, London WC2 marking your envelope 'Recruitment'

Name

Address
PE/B3
NATCS
National Air Traffic Control Service

Practical Electronics Classified Advertisements

MISCELLANEOUS

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2 \frac{1}{2} \times$ any length．DEW LTI． Ringwood Road，Ferndown，Dorset．S．A．E． for leallet．Write now－right now．
SCRAP RF．HEATING AND TRAN8 \＃ITTING VALVES wanted．TY5－500，TY6－800，TY＇－600， EEA 1500 ． 3 J 202 E ．May br interested in other types．（rood price paid for valves still mumer vacuum．ELACTRONは HEAT＇O．（01－654 7172 ）．

JOURNAL OF PARAPHY8IC8．I Uussiatt experi－ ments：Telekinesis（＂mind－over－matter＂）： brainwalves actuate electronic relays：transistor （FFO detectors：fluger－vision：hyperspace： time－reversal；tachyons（＂Fastor than light＂）． pte．S．A．E．for list．20s．for back issules．Para－ physical Laboratory，Downton，Wilts．

MORE ROBOTS

Synchetic Animals with＂BRAINS＂of their own．The LATEST range of projects include：an electronic＇animal＇which ＂LEARNS＂，and an Electro Chemical device capable of＂REPRODUCING＂itselfI Other projects SURE TO INTRIGUE YOU Other projects aransmitter／receiver which has quite are a cransmitter／receiver which has quite
a useful range and RADIATES WITHOUT a useful range and TEN new projects，one of which is an electronic dice machine． HOSTS OF EASY－TO－CONSTRUCT projects，for anyone with a basic knowledge of Electronics．DON＇T WAIT．SEND 3／－ for your list－NOW！
To：‘BOFFIN PROJECTS＇ 4 CUNLIFFE ROAD
STONELEIGH，EWELL，SURREY Designed by GERRY BROWN and JOHN SALMON and presented on T．V．

6 OR 12 VOLT
 FLUORESCENT LIGHTS

12 ins． 8 Watt tube ample light for caravan，
tent，etc．Fully transistorised，low battery drain tent，etc．Fully transistorised，low battery dr
Unbeatable at
$£ 2.19 .6$ or in kitform 50／－

4 WATT GRAM AMPS．

Volume and tone controls，mains operation， 3S2 output，new and boxed

SALOP ELECTRONICS

23 Wyle Cop
Shrewsbury，Shropshire $65 /$－Posid

LUMINI ALUMNTUM CHA8818．All standard sizes and ballges a vailable or made to your dimen－ sioms．S．A．for quote，YORFSHILRE ELECTRICAL SERVC＇Lis（ A ）， 76 The Airfipla，Pocklington，York， 1042 Nl ．

IMPORTANT ANNOUNCEMENT to home renstructors in the South．E．M．C＇．（omponents have just opened a eomponents shop where a wide range of organ，amplitication，ete．，parts are arailable at a fraction of normal cost． Example－generators 6 octave at $\mathbf{5 3}$ each plas other womberful barcains for the Home constructor．Callers welcome．734A（＇hrist－ church Road，boscombe，bournemonth． Tel．Bournemomith 37451．
musical miracles．Send S．A．E．for details of Rhythm Modules，Versatile Bass－pedal unit， self－contained with unique effects，kits for waa－waa pedals．Also new $50 \mu \mathrm{~A}$ meters $25 /-$ post paid．HCRRY！D．E．W．LTD． 254 King－ wood luad，Ferndown，Dorset．

ANDOR ELECTRONICS LTD．， 1 is x Higher Hilgate，stockport for 1．c＇s，Mullard tran－ sistors，speaker cabinets，etc．Open Naturdays for retail sales．

RATES ； $1 / 6$ per word（minimum 12 words）．Box No．1／6 extra． Advertisements must be prepaid and addressed to Advertisement Manager， ＂Practical Electronics＂
IPC MAGAZINES LTD．，
Fleetway House，Farringdon Street， London，E．C． 4

MISCELLANEOUS（continued）

A CORNUCOPIA OF COMPONENTS！Ncarec valves，selected TY components，speakers and cabinets．（computer panels－long leads，NOT printed circuits．Transistors，resistors－new and recovered，state your reduirements．S．A． l＇evensey bay，Sussex．

CA8TLE LABORATORIE8．Printed circuit boards for all P．E．projects．Ipcoder，Septem－ ber 1969，6／6．Spend S．A．F．for full list．＇ASTLE LABORATORIES， 32 stapleton Close．High－ worth，Wilts．

1，100 GOLD BONDED GERMANIUM HIGH 8PEED DIODES．（Haranteed new and marked． For momputers fetection and rectification up to 400 mA ．Min． 10 per orter at $1 / 6$ each
 SW．O．
surrey．

TOP TRANSISTORS

High Stability，5\％$\frac{1}{2}$ Watt Resistors． 12／6 for 50 ． 10Ω to $1 M \Omega$ your selection． ACY22 I／9 OC45 I／9 ZTX300 I／9 BC108 I／9 OC7I I／9 2 N2926 I／9 BFY5I I／9 OC202 I／9 2N3708 1／9
All the above types are available at 16 for $£ 1$ ．Brand New．Individually Tested． MONEY BACK GUARANTEE P．\＆P．I／－ J．M．KING（D），I4 Acton St．，London，W．C．I

HI－FI loudspeaker systrins for the home constructor，cabinet kits，the new range of l＇eerless speakers，speaker kit systems aud ross－over networks．B．AF wadding，spraker fabric（samples on reiuest）imd all other necessary components．Send 9d in stamps to
 Harrogate，Yorks．

CLEARING LABORATORY，scopes，V．T．V．M＇s， V．O．M＇s，H．S．recorters，transeription turutables，electronic testmeters，valibration units，P．K．＇T＇s，pulse qenerators，1）．（＇．null－ potentioneters，bridges，spectrum analysers， potentiometers，bridges，spectum anals，relays， components，etc．Lower Beeding 236 ．

NOTES ON U8E OF TV for ClWO betection， $7 / 6$. RADAR \＆ELECTRONIC P「FBLICATION心， ＂Highlands＂，Seedham Market，Suffolk．

WANTED

TO CONTACT PER8ON with experiencs of solid state circuits for lift control．Able to supply practical and tested circuit suitable for simple and multi－floor installations．Reply to JONEN， $2 / 27$ Laguna Estate，（ibraltar．

HI－FI EQUIPMENT

RELIABLE GUIDE to best value in Hi－Pi． Audio supply＇s seventy－five－page illustrated Audio Kupplss seventy－five－page illustrated
catalogue（ $6 / 6$ ），1s Blenheim Road，Lonulon， W．4．

SERVICE SHEETS

RADIO TELEVISION，over 8,000 Models． JOHN GILBERT TELEVISION，ib Shep－ herds Bush Rd．，London，W．6．SHE 8441.

SERVICE SHEET8（1925－69）for televisions， radios，transistors，tape recorders，record players，etc．，by return post，with free fault－ finding guide．Prices fromı $1 /$－．Over 8,000 models available．Please send S．A．E．with all models available．Please send S．A．E，with all
orders／enquirips．HAMILTON RADIO， 54 orders／enquiries．
London Road，Bexhill，Sussex．

SERVICE 8HEETS，Radio，TV， 5,000 models． List 1／6．S．A．E．enquiries．TWLRAY， 11 Maudiand Bank，Preston．

LARGE SUPPLIER OF

SERVICE SHEETS

I．V．，rado，trahsistors，tapes，car radoos
Only $10 /$ each，plus LARGE S．A．E．
（Uncrossed P．O．＇s please，returned
if service sheets not available．） FREE TV FAULT TRACING CHART OR＊TV LIST ON REQUEST
C．CARANNA 7I BEAUFORT PARK，LONDON，N．W．II MAIL ORDER ONLY

FOR SALE

SEEN MY CAT？5，000 items．Mechanical and Electrical（rear，and materials．S．A．E．K．R． WHISTON，Dept．PE，Xew Mills，Stockport．

MORSE MADE ！！

FACL NOT FICTION．If you start IRIGHT you will le reading amateur and commercial Morse within a month（normal progress to be expected）．
Using suientifically prepared 3 －speed records you automatically learn to recognise the code RHYTHM without translating．You can＇t help it，it＇s as easy as learning at tune． 18 W．1．M．in 4 weeks guaranteed． For details and course C．O．D．ring S．T．D．01－060 2896 or semd 8d．stamp for explanator
G3HSC（Box 19）， 45 GREEN LANE，PURLEY，SURREY
P．E．NOVEMBER＇64 to DECEMBER＂69 complete，offers？VAN WELV， 33 Grange Avenue，Little Stoke，Bristol．

MINIATURE DYNAMIC MICROPHONES． High impedance，size $\frac{7}{8}$ 喜 ，应in．Also work as mini speakers，suit transistor circuits， $7 / 6$ each， 3 for 20／m．Tested，guaranteed． Ardente $10 \mathrm{k} \Omega$ edgewise volume controls， 3／6 with， 3 for $10 / \circ$ ．WREW， 7 The Crescent， Southwick，Sussex．

EDUCATIONAL

TEGHNICAL TRAINING in Radio，TV \＆ Electronics thro＇world－fanous IUS．For details of proven home－study courses write： details of proven home－study courses write：
ICs，Hept． 561 ，Intertext House，Stewarts ICS，Hept．561，Jnter
Road，London，S．W．8．

ENGINEER8．A techmical certificate or qualifleation will bring you security and much better pay．Elem．and adv．private postal courses for（＇．ling．A．M．1．E．R．E．，A．M．S．E． （Mech．d Llec．），City if Guilds，A．M．IM．J． A．I．O．B．and G．C．E．exans．Diploma courses in all branches of Engineering－Mech．，Elec．， Auto，Electronics，Radio，Computers， Dranghts．，Building，etc．For full details write for FREE 132 －page guide．BRITISH
 NOLOGY（Dept． 125 K ），AIdermaston Court， Aldermaston，Berks．

RADIO \& TELEVISION SERVICING RADARTHEORY \& MAINTENANCE TELECOMMUNICATIONS This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:-
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel. OI-373 872I

GET INTO ELECTRONIC8 - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.T.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecons., etc. For Free 100page book,' write Dept. 886 K, CHAMBERS COLLEGE, College House, 29-31 Wrights Lane, Kensington, Jondon, w. 8 .

SITUATIONS VACANT

HACKER

Hacker Radio Limited, manufacturers of supreme quality radio and audio equipment, invites applications from ambitious young menfor the following posts

Production Testers
Fault Finders
Bench Service Engineers
Every opportunity, given for advancement and further education with a view to promotion to the Development Group.

Write or telephone
Personnel Manager
HACKER RADIO LIMITED Norreys Drive, Cox Green Maidenhead, Berks. Telephone: Maidenhead 22261

TRAINEE RADIO TECHNICIANS

A PROGRESSIVE CAREER IN THE FIELD OF RADIO AND ELECTRONICS

Applications are now invited for an intensive training course of two years, leading to appointment as a fully qualified RADIO TECHNICIAN, with further prospects of progression to the Telecommunication Technical Officer Class.

Generous Pay and Conditions while under training.

Candidates must be over 16 and under 21 years of age as at 7 September 1970 , on which date training commences.

Minimum educational qualifications required are passes at GCE 'O' Level in English Language, Mathematics and Physics (already held or expected to be obtained in the Summer, 1970). Equivalent passes in Scottish or Northern Ireland Certificates and CSE Grade I passes are also acceptable.

Closing date for receipt of applications 27 February 1970.
Apply for full details and application form to:-

> THE RECRUITMENT OFFICER (TRT/54) GOVERNMENT COMMUNICATIONS HEADQUARTERS
> OAKLEY, PRIORS ROAD CHELTENHAM, GLOS.

> GL52 5A

SITUATIONS VACANT (continued)

A.M.I.E.R.E., A.M.S.L. (Elec.), (ity \& Guilds, rt. ('.E., etc., on 'siatisfaction or Refund of Fee' terms. Wide range of Home Study Courses in lilectronios, Computers, Radio, T.V., etc. lis-page dinde-frlibi. Please state suhjert of interest. BRITLSH

 Aldermaston . Berks.

HENRY'S RADIO LTD.
303 EDGWARE RD., LONDON, W. 2
HAVE THE FOLLOWING VACANCIES IN THEIR ORGANISATION
SALES ASSISTANTS
Young man with good general knowledge of electronic components required for our retail sales Dept. Please Telephone 723-1008/9 Ext. I
SALES ASSISTANTS HI-FI DEPT. Young man with a good general knowledge of HIGH FIDELITY EQUIPMENT required for our retail HI-FI SALES DEPT. Please contact MR. STEVENS Telephone 723-6963

240 ELECTRICITY ANYWHERE
BEST EVER 200/240 VOLT "MAINS" SUPPLYFROM 12 VOLTCARBATTERY Exclusive World Scoop Purchase. The fabulous Mk. 2 D American Havy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant 200/240 volt periort Drills, Power Tools, Mains Lighting, AC Fluorescont Lighting and all $200 / 240$ volt Fluorescent Lighting and all $200 / 240$ volt tremendous cost for U.S.A. Govt. by DelcoRemy. This magnificent machine is unobtainable eisewhere. Brand New and Fully Tested. Only f4.19.6 + $10 / 6$ postage. C.O.D. with pleasure, refund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade BLACKPOOL, Lancashire

REGEIVERS AND COMPONENTS

TO HELP THE HOME CONSTRUGTOR. Heathkit now make available our surplus Resistors, (ipacitors, etc. at Bargain Prices. Send for lists. E. MOYLE, Daystrom Ltd., Grloucester.

BRAND NEW ELECTROLYTIC8, $15 / \| i v$,

 10 ohms to 1 Magohm $1 / 6$ dozem. Wirewound $5 W 50_{0} \mathrm{E} 12$ serips, 15 whas to 15 kilohms 10 d . Mullard RIVE5 photocells 6/6d. Xinimum order $7 / 6$, postage $1 /$-. TIIE C. R. SI Pl'L

TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C Strain YOU for a well-paid post in this expanding field.
 IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, ecc. Expert coaching for:
 * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
 * C. \& G. ELECTRONIC SERVICING.
 * R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
 - RADIO AMATEURS' EXAMINATION
 * P.M.g. CERTIFICATES IN RADIOTELEGRAPHY.
 Examination Students coached until successful.
 NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
 Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve voit meter-all under expert guidance.
 POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of ICS courses in Radio. Television and Electronics will be sent to you by return mail.
 MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

TAPE	HEADS
	$\underset{\text { REATER }}{\text { Re Collaro }} 12 / 6$
michigan rec./play	$\xrightarrow{\text { CoSRACK }}$ Cord erase
MED. MMP. 4-TRACK	

TRANSISTOR LW/MW/FM TUNER CHASSIS The 11 nst compact three-hand Tuber chassis ever
engmeered. Output 50 ml , pueptional sensitivity and selectivity an all banis. Operates from aingle 9 volt battery. Complete with aerials, 3 -band tuning lial, munting bracket eircuit and ≤ 12
instructions.

TUNER DULCI FMT7S STEREO $\mathbf{C 2 2}$

FM MULTIPLEX STEREO ADAPTOR
Printel citcuit bisenit, 4 traths. o $\quad \mathbf{4 4 . 9 . 6}$
diodes 95 with full ingtructions LOUDSPEAKERS
GUITAR, P.A., or HI-FI $12^{\circ} 25$ watt, 15 ,hum, $25-13 \mathrm{k}$, Ceramic $\mathbf{E 5 . 7 . 0}$
 COLUMN CABINET $£ 8$
Jmitation woml $3 \underline{I}^{*}-9^{\prime \prime} \cdot 7^{*}$ Complete with 5 new ${ }^{\prime \prime} \overline{5}^{\prime \prime}$ speakers. 15 whm is watt RMS, 95 wat

SPEAKER CABINET $£ 7$

Takes 12^{*} or 10^{*} speaker atid a 4^{*} or 3^{*} Tweeter.
 vyntir grille, list price £9.5.0.
 or Ampliffer, et

TWEETER $\begin{gathered}3^{*} \text { If ohtur, } 10 \text { watt } 19 / 6 \\ \text { crouserver } 3 k \Omega .\end{gathered}$ CROSSOVER NETWORK

15/-
$3 \mathrm{kc} / \mathrm{s}, 17$ or 3 or R ohm.
CHARGER TRANSFORMER $2 / 6 / 12$ wolt, 1A 13/-
$\substack{2 / 3 \\ 2.16 / 6}$
F.W. 12 volt 4 Amp. $10 / 6 \left\lvert\, \begin{aligned} & 2 / 6 / 12 \text { wo } \\ & 2.1 \\ & 2 / 6 / 6\end{aligned}\right.$

SUPER SILICON RECT. 'I.V.. ete., 1.200 I'IV

MULTIMETERS

trom 32/-
 AlP20 38, AdY21 4/-, AF17K 11/8, AF186 10/:-

SWITCH ROTARY KECIPROCDTINE \&
Hosition, 15 ulup, single mule tiains, with $5 / 6$ instructions. List $14 / 2$
('60 CASNETTE 7/6.
c90126. 3 Post free
Stambed "hwiln, for full aclection and bargain offers in MI'LTMETERS, RADIOS, BABY RECTIFIERK, SINCLASH.

DURHAM SUPPLIES
 367 KENSINGTON STREET

BRADFORD 8, YORKSHIRE
NEW FULL SPECIFICATION DEVICES. lintegrated ('iscuits complete with data: (iEPAD30 Audio Preamplifler 18/6 Pach, (EEPAE34 1 W Audio Amplifler $17 / 6$ each, (iEPA233 2W Audio Amplifier 32/6 each, Plesseyshayd Pre-Amp dew Amp 42/- each, MEL1 1 Photo-Darlington Amp 9/6 each, High quality low cost plastic transistors:
 ME0412 PSP 200 mW Transistor $3 / 9$ each, TI2N4059 PNP 250 mW Transistor 3/6. each. Westinghouse guaranteed plastic rectiffer: $154820 \quad 1 \cdot 5 \mathrm{~A} 400 \mathrm{~V}$ Si Rectifier $2 / 6$ each, GIW005 1A $50 V^{\prime}$ Full Wave Bridge Si Rectifler $7 / 6$ each. ©.W.O. P. \& $\mathrm{P} .1 /$ per order, JEF ELECTRONICS, York Holse, 12 York Drlve, Grappenhall, Warrington, Lancs. Mail Order Only.

TRANSISTOR PANELS

INTEGRATED CCT'S TAKEN FROM PANELS
A - Quad $2 / / P$ Gate \quad 5/- With Pin
B - Dual $4 / P$ Gare $\begin{array}{lll}\text { B - Dual } 41 / P \text { Gate } & 5 /- & \text { Connections } \\ \text { C-Dual } 2 \text { Level Gate } & 5 / . & \end{array}$ F-Single $1 / \mathrm{P}$ Gate $\quad 5 /-\quad$ Post Paid
EX GOVMT, RECEIVER R, 209 covering I- $20 \mathrm{mc} / \mathrm{s}$ 12V D.C. Input fi2.10.0 Post Paid (Tested).

50 VARIOUS TRANSISTORS on Panels 15/- Post Paid. $20-\mathrm{OC} 45$
$20-\mathrm{OC} 76$ 40—TK28c

COMPUTER PANELS with 40 sil. pnp or
npn transistors, Diodes and res., 22/6 Post Paid.
COMPUTER PANELS WITH SEMICONDUCTORS, Postage 6d per pane 8-OC43 or GET875 + 24 -OA81 24-A1678 (V405A) $550 \mathrm{mc} / \mathrm{s}$ PNP +i. $7 / 6$
4-OCI70 + 2 -OC139+2-OC42
4 -OCI $70+2$-OC139 +2 -OC 42
9 -ASZ $20+1$-T2040 +27 Diodes
4-OC42 + 6-GET875 + - Diodes
$2-\mathrm{OC} 170+$ I-2G306 + OC42
$2-O C 170+1-2 G 306+O C 42$
$5-O C 23$

- ASZ20 + 80 Diodes
-AS221
9 -SB2
2 - $2 \mathrm{G} 106+24$ Diodes
$2-2 G 106+24$ Diodes
$8-0 C 72+8$-OA10.
8-OC76 +8-OA10 $10 / 1$
2—A 1678 (V405A) $550 \mathrm{mc} / \mathrm{s}$ PNP" +22 6-0A5
6-GET872 + 8-OA10
2-ASZ20 + 80 Diodes
4-GET872 + 8-OA10
$4-2 \mathrm{G} 106+\mathrm{I}-2 \mathrm{~N} 2410$
$2-\mathrm{OC} 42+8-\mathrm{OA} 47$
2—GET872 + 4-OA10 + RF Ch........ $3 /-$
24 -sil. h.f. Transistors.
$\begin{aligned} & 3-G E T 872 \\ & 3 \text {-OC } 23\end{aligned}+3$-OAEX 541 , ETC
ELECTROLYTICS 25,000 (a) $12 V$. 16,000 (3) $12 \mathrm{~V}, 15,000$ as $10 \mathrm{~V}, 10,000$ (a) $30 \mathrm{~V}, 4,000$ (3)
. 2,000 a SOV, $1,200 \mathrm{~m} 180 \mathrm{~V}, 8,6$ Post Paid
$6 \cdot 8,7 \cdot 5,13,15,16,18,20,27,30,33$ volts, $3 / 6$ each, mostly 1 watt

POLYSTYRENE CAPACITORS. $125 \mathrm{~V}, 18$ $22,120,220,270,330,390,560,820,1,000,1,200$ $1,800,2,200,2,700,3,300,3,900$. $5,600,6,800$,
$8,200,0.01,0.012,0.015,2 / 6$ doz. Post/Packing, 1/.
BRAND NEW BOXED CHASSIS containing 2-OC35, 2-OC29 12 WW resistors 25/Postage 1/6

NEW CROSS RADIO 6 OLDHAM ROAD, MANCHESTER 4
P.C. RECEIVER BOARDS:-PCR 1, 5 transistor type with OC'44, two GC'45s, but less the aulle transigtors, i.e. OC8ID, and two OCs1s. Npin. Sint, ats pre Vionsly mivertisel, transformerless output i watt to W ohm speaker, $\frac{1}{2}$ watt to 20 whm, with combecting PCB 97 t ransistors each
 complementary ontput pair giving watt to 5 ohil
speaker, no oscillator coil but l.F. antp and audio splaker, complete, size 3 inin. $7 \frac{1}{\text { fin. }}$. supplied with circuit liagran fur 9 volt operation, $36 / 6$ each. PCR 3, के transistors, OC44, 2 OC45s, OC811, ㄴ OCR1s, tratisformerless output approx. 400 milli watts, overall size 3 in \times jin. With usc. coll and elkewise volume control on boaril, for 6 volt operation, n lata or circuit, only $22 / 6$ each
NOTE. All boards require ferrite aerial, tubing capacion, wayechange switeh, etc, and are all as new and unused.
Push-pull output transformers to mateh 2 ELS4s approx. R watt risting with negative feedback winding brand, new only $10 /-$ post padd.
$\because 50 \mathrm{pF}$ prostage stiunp type trinmers (new) ceramic insulation, Gd each, $4 / 6$ doz. Ferrite slab derials 5 in . long, M.W. and L.W., requires 250 pF tuning capacitor, $3 / 8$ each diespatched only uith the above boarils).
P.C. Board with 7 transiators, miniature resistors, capacitors, ctc. was used as squelch switch but can be used hs electronic switch or dight sensibes
switch, with circuit of board, no details of mods. brand new only 12/-
Mail Order Only
All Iteme plus $1 / 6$ post

A. J. H. ELECTRONICS 59 waverley road, the kent rugby, warwickshire RUGBY 71066

NEW VHF KIT

Receive Televiaion Sound, Ambulancen, Aircraft, Radio 2, 3 and 4 on VHF, etc.
This novel little get will give you endless hours of pleasure and can be built in one evening. The Kit comes 9_{y} Battery. Complete with built in Jack Plug Socket for use with Earphones or Amplifier.

ONLY 57/-. P. \& P. FREE U.K. ONLY
Postal Orders, Cheques to
Dept. P.E. 5
Galleon Trading Co., 298A Lodge Lane, Romford, Eser

SL 402A and SL 403A

Before you buy these excellent I.C. Audio Amplifiers let us quote you a price for your quantity. If you require one or one thousand We assure you it will be worthwhile sending a S.A.E. to
S.W.A. (Components), 13 Millways, Great Totham, Essex.
Send $2 / 6$ for full details and application Brochure (post free)

WE ARE BREAKNNG UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS $2 i n \times 4 i n$ packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards 10/-. P. \& P. 2/-. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK, 25 boards fort. ${ }^{2}$. 3/6. With a guaranteed P. \& P. $7 / 6$. With a guaranteed minimum of 350 transistors.
GIANT PANELS. $5 \frac{1}{2}$ in $\times 4 \mathrm{in}$, min. 20 transistors, $9 \times 56 \mu \mathrm{H}$ inductors, resistors, diodes, ecc. 3 for \&1. P. \& P. 2/-.
As above, only 21 transistors. 70 diodes, 62 min. itrh.W resistors. 3 for 25/-, P. \& P. 2/-
PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times O$ OC28) 10/.. P. \& P. 2\%
TRIM POTS. On $2 \mathrm{in} \times 4 \mathrm{in}$ boards + Ta caps and other components. Idealfor organ keystate requirements. 5 boards 10%. P. \& P P 2/.
NPN GERMANIUM TOS I WATT POWER TRANSISTORS. On small heat sink
2%-.
POWER TRANSISTORS. Sim. to 2NI74 ex-eqt. On Finned Heat Sink (IOD). 4 for 41 .

DIODES. Exeqpt., Silicon, 150 PIV, 10 amp 4 for $10 /-150$ PIV. 20 amp. 4 for $\& 1$. Post free.
MINIATURE GLASS NEONS, I3/6 doz PAPST FANS. Powerful Extractor/Blower fans. $4 \frac{1}{\frac{1}{n}} \times 4^{\prime \prime} \times 2^{\prime \prime}$. 230/250V. $100 \mathrm{c} . \mathrm{f} . \mathrm{m} .$, SPRAGUE POLYESTER. 0.22μ F 250 V small capacitors. 5/-doz. P. \& P. I/-
SPRAGUE ELECTROLYTICS. 4μ F 150 V . 5/-dor. P. \& P. I/-
TANTALUM CAPS. $2.2 \mu \mathrm{~F} 50 \mathrm{~V} .8 /-\mathrm{doz}$. NEW MIXED COMPONENTS. 150 High stab. Resistors 5% and better. $12 / 6$. P. \& P.1/-

250 mixed resistors. $\frac{1}{} W+\frac{1}{2} W$. 12/6. P. \& P.
$\begin{array}{ll}\text { Large handful of mixed capacitors. } & 12 / 6 \text {. }\end{array}$
LARGE CAPACITY ELECTROLYTICS. 4tin, 2in diam. Screw terminals
$7 / 6$ each post free.
$4,000 \mu \mathrm{~F}$. 72 V d.c. wkg.
$41^{\prime \prime} \times 2^{\prime \prime}$ Plessey 1,500 FF 150 V d.c. wkg.
8/- each. $3^{\prime \prime} \mathrm{I}^{\prime \prime}$ Plessey $2,000 \mu \mathrm{~F} 25 \mathrm{~V}$ d.c. wkg. 6/- each.

KEYTRONICS, 52 Earls Court Road
London, W.8. Mail order only Tel. 01-478 8499

SILICON TRANSISTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the 25300 (TO-5) and 25320 (SO-2) range and similar to the OC200-205 and $B C Y 30-34$ series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools. Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i,e., TO-5 25300 or $\mathrm{SO}-225320$

Approximate count by weight :
100 off-15s. (plus p. \& p. 2s.)
300 off-eil 155 . (plus p. \& p. 3 s .)
500 off-E2 10s. (plus p. \& p. 3s. 6d.)
, 000 off- $\mathbf{~ 4}$ (plus p. \& p. 5 s .)
10,000 off- $£ 35$ (plus p. \& p. ils.)
Large quantities quoted for on request
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders,

DIOTRAN SALES
 P.O. BOX 5

63a High Street, Ware, Herts. Tel.: WARE 3442

R \& R RADIO

51 Burniey Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	$3 /-$	PCCB4	$3 /-$	PY81	$3 / 6$
EBF85	$3 / 6$	PCF80	$3 /-$	PY82	$3 /-$
ECC82	$3 /-$	PCF82	$3 / 6$	U191	$4 / 6$
ECL80	$3 /-$	PCLB2	$4 /-$	$6 F 23$	$5 /-$
EF80	$1 / 6$	PCL83	$4 /-$	$30 F 5$	$2 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 L 15$	$5 /-$
EYB6	$4 /-$	PL8I	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

POST, ONE VALVE 9d. TWO TO SIX 6 d. OVER SIX POST PAID.

EMC HOLDINGS \& PRODUCTS

Buiding Your Own Orgen, Amplifier ete. Stop tabs. rocker tabs (plain) $1 / 6$ each. Pargain pack. 24
rocker or tab type $30 /-$. Nylon T. Piece for retaining rocker or tab type 30/- Nylon T. Piede for retaining
Kimber-Allen contact blocks. I resuired for two contucts, sample $1 /-$ earh. Quantity discounts, e.g., 5/-1or $1, g_{j}-$ for $12,16 /-$ for 24 . Ningle pole wafer 10- doz. Jack plugs, heavy duty, mouldel cover virt uatis unbreakable. Britioh made, 3/- mach, 33/donz, Jack sockets, open type, $2 / 2$ each, $24 /-$ toz.
Reccess plates for above dockets, black Recess plates for above dockets, black nylon.
Inesigned to allow flush mounting on exterior Designed to allow flush mountimg on exterior
cabinet. Also suitable for lan ps, switches, ete., $1 /-$ cabinet, Also suitable for lamps, switches, ete., $1 /-$
each, 10 - roz. Heaty Hnty foot switch, die catst each, 10-roz. Heavy rnty not sumble pele complete with rubler actuator and bats plate, $18 / 6$ earh, Polyst retue capacitors
$10,000 p \mathrm{~F}, 20,010 \mathrm{~F} .1 / 6$ each. i 00 ohm wire wound resistors $4.5 \mathrm{~W}, 1$ each, 10;- loz. Output trans. formmer suitable for Mullard $3 \mathbf{W}$ amplitier, $12 / 6$ each Itheluding circhit for atuplifier.
Superb offer. litin (ioodman speakers, heary dutw TH Hz , hass resonance, 15 whin speech coil. 20 W , K.M... , £7.19.6.

Terms. Chib with order and $2 /$ - in the $£$ for portage and packing. Orders wer $£ 5$ port free
Trade Enquiries Invited:
E.M.C., Dept. P.E.2, 22 Norwich Road Bournemouth BH2 5az
S.A. K. for latest Price Lista of Organ and Electronic
(romponents.

New price lists. Send S.A.E. P. \& P. I/- extra		WEiNTWORTH RADIO 104 SALISBURY ROAD BARNET, HERTS.				By return post service. Telephone 10-449 3087	
ACI27 ${ }_{\text {AC }} 128$	${ }_{3 / 6}^{5 /-}$	GET102	616	NKT128	$5 / 3$	OC35	${ }^{6 / 6}$
${ }^{\text {ACL }} 178$	$3 / 6$ $5 / 6$	GETH13	4/6	NKT135	$5 / 3$ $6 / 6$	$\mathrm{OCl}^{\mathrm{OC}} \mathrm{O}$	${ }_{5}^{7 /-}$
${ }_{\text {AF }}^{\text {AF } 115}$	$33 / 9$	GET116	$0 / 6$	NKT210	59	OC42	$5:-$
${ }^{\text {AFPI }}$ A 16	3/68		4i-	NKT211	$6 / 6$	\bigcirc	${ }_{2}^{2 / 6}$
- AFF124	5 5/-	SPECI	OFFE	-TOP		${ }^{\text {OC74 }}$	3/6
	5		AFII8	7/-		${ }^{2} \mathbf{N} 696$	5/-
AF139	9,-		ACl27	3/-		2 N 697 2N706	${ }_{1 / 6}^{1 / 5}$
${ }_{\text {AF }}^{\text {AFFI7 }}$	14/-		ACl28	3/-		$2 N 706$ A	3/-
AF239	8 8-	MATIOO				2 N 1132	9/6
${ }^{\text {ASY54 }}$ BY	6/-	MATil1	$6 / 6$ $8 / 6$	NKT262	5/6	2N 1302 2 N 1304	5/-
BY126	${ }^{6}$	MATI21	$8{ }_{6}^{6}$	NKT271	4/6	${ }_{2}{ }_{2} \mathrm{~N} 26546$	10,6
	5:-	NKT124	8/9	NKT272	$4 / 16$	2 N 2711	816
ESY29	4/-	NKT125	5/9	NKT275	${ }_{6}^{416}$	2 N 2712	$8 / 6$

RECEIVERS AND COMPONENTS
(continued)
PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller sinned complete SPECIAL OFFER ORDER BY END OF FEBRUARY AND SAVE $13 / 6 d$.
Set of 3 Printed circuit boards for I.C. Hi-F Amp. (Dec. and lan. issue of P.E.). Normally 23/6d. per channel and 22/6d. for the pre-amp Special price for the set $60 /-$
S.A.E. For List. Trade enquiries welcomed P.H. ELECTRONICS, Industrial Estate,
Sandwich, Kent. Tel, 2517 .

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS
Buy with conthience and obtain the right results, Refunds without question if any of our product fail to give 100\% gatisfaction.
OUR LATEST DESIGN BREAKTHROUGH AMATEUR BAND ALL TRANSISTOR SUPERHET RECEIVER KIT, Degignet 10 cover 500 kLI iF strip. Vernier dial slow notion tuning. hing Irive your x what speaker. Kit supplies with coils for range of your chaice. ('ontes complete with ont normal high quatity components, Pe hoard, attrac tive blue crackle finish chassia, black perspex panel atnd easy step by step instl uctions. Additional sets o coild maty pe purchased seprarately it required. I POWER CONTROLLER, Power at your finge fips. Nut merely half wave control but full wave A single sarian controt gives cero bit pull power Coes latest 153 mp 3 kW triac amin necial triggering drille. Als an cables, etc. tjons 86.9.6. Ready huilt 29,4,6 plus $5 / 6 \mathrm{P}$. P. \& Ins REVERBERATION AMPLIFIER. Nelf contained transistorised, battery operated, hy entirel Normalls, sound reproduction from a single source has it that ine dimensional effect. With this unit proper soum lelay through reverberation, tones, an created with a truly third dintinsion for roncer hall originality. 'Twis controls inljust volume and reverberation. kimply plng ftherophone, guitar etc., in, and the butput into your innplifier, Nupplie in ic beatiful walnut cabinet 7 tin 3in 4 tin e10.4. 1'. P. © lıs. 11/-
VOX SWITCA. This sound dperated switeh is ideal rot mobile TX work, tipe recorder surit hite, etc kou speak, it switches. High innd medimn imp.
 Re.ily built, terted athl kurrantect. 62 6, plus

METRONOME UNIT. Variable beat. Listen whil, you play aml heep in tinn, Easily built, packet post patiol. Reatly built in an attractive black ithe white polytheme casp, $37 / 6$ post pail.
MORSE OSCILLATOR. PC' hoard, transistols, high stab. components, battery carrier, ear piece Adjuat
able tune. Just attach vour kes, Drives phones or speaker. In kit form 17/6 post hail. Realy built in similar case nu abuse $25 /-$ poat juad.
STRAIGHT FROM THE PRESS. Latest Mullarl minnaid: Aution Aups, FM tuners, stereo decoler t'ilil. JUST ARRIVED IN STOCK. Texas traneidors out put. The set of three ONLY 68 post paid. free lists with every order. For lisls only send $1 / 6$ (dedect thle from first order)

Be wellequipped

You need not worry about the painful and lingering minor burns that occur from time to time in leisure pursuits if you keep BURNEZE close to hand. This unique new scientific aerosol cools and anaesthetizes. BURNEZE takes the heat out of a burn in just 8 seconds, then controls the blistering and pain that steal skill from nimble fingers. Be well-equipped - buy BURNEZE, from chemists.
(
Potter \& Clarke Ltd Croydon CR9 3LP

PSYCHODELIC LICHTING UNIT

3 Channel Colour - Organ; Operates from output of record player, tape recorder, etc. Drives up to 1.5 KW . at 240 volts a.c. per channel. Suitable for the home or discotheque. Complete printed circuit assembly, built and tested. 14 gns. plus $10 /$ carriage. Higher power units available on request.
Create 'PHASE' on your tape recordings, records, etc. Unique electronic circuitry enables you to create 'phase' effect at the turn of a knob. Complete printed circuit assembly built and tested. 65/- plus $2 / 6$ carriage. Battery operated.
SUPER 'FUZZ' UNIT, suitable for electric guitars, etc. Complete printed circuit assembly built and tested. Battery operated. 65/- plus 2/6 carriage.
S.A.E. with all enquiries. Mail order only.
> d_{b} Electronic Products 98a, Lichfield Street Walsall, Staffs.

A SOLDER'S BEST FRIEND IS HIS GUN

From the Burgess All-electric Workshop : a light, balanced solder gun with a range of screw-in tips. The tips-and only the tips-heat up in 7 short seconds, Antithermal casing keeps the rest of
the gun cool. Note the slim
barrel-it reaches right down into

onfined spaces. There are spike-like extension barrels for real 'in-deep' work. A prefocused lamp pinpoints work detail. Fail-safe soldering even for delicate work! The price of this tough, modern instrument ? Just $£ 412^{\prime} 6$ complete with two tips, a $6^{\prime \prime}$ extension barrel, a double-ended probe and solder. FREE 24-PAGE CATALOGUE! For details of the Burgess instant heat solder gun, plus other equipment in the Burgess All-Electric Workshop, write for a free copy of our informationpacked catalogue.

Burgess Products Company Limited, Electric Tools Division, Sapcote, Leicester LE9 6JW.

FULLY TESTED AND MARKED

F R
PACKS OFYOUR
THE VALUE OF 10 OVER ع

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP typetransistors, equivalents to farge part of the OC range, i.e. $44,45,71,72$,
BI, etc
PRICE 45 PER 1000
POST \& PACKING $4 / 6$ U.K.

XB PAK

Silicon TO*18 CAN type transistors NPN/PNP mixed lots with equivalents to OC200-1, 2N706a BSY27/29, B5Y95A

PRICE E4.5.0 PER 500
PRICE 68 PER 1000
POST \& PACKING $2 / 6$ U.K

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200. OA202, BAY31-39 and DK1O, etc.

PRICE E4.10.0 PER 1000
POST \& PACKING $2 / 6$ U.K

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

LOOK :

PNP SILICOE A
SPEC:-
ICER AT VCE $=20 \mathrm{~V}$
HFE 15-100
THESE ARE OF THE 25300
TYPE WHICH IS A DIRECT
EqUIVALENT TO THE OC200/205 RANGE

TRANSISTORS ONLY

PNP SILICON B
PP SILICON PLASTIC ENCAPSULATION
SPEC:
ICER. AT VCE $=10 \mathrm{~V}$
ImA MAX
HFE 10-200
THESE ARE OF THE 2N3702/3 AND 2N4059/62 RANGE

SPEC

1/- EACH

TYPE C

NPN SILICON
TO-IB CAN

ICER AT VCE-20V
I mA MAX
HFE 50.900
THESE ARE SIMILAR TC THE BCI08/109 TYPES

NEW UNMARKED UNTESTED PAKS

B78	12	Incergrated Circuits, Data and Circuits of types supplied with orders	10/-
880	8	Dual Trans. Matched O_{S} / P pairs NPN. Sil. in TO-5 can	10/=
B82	0	OC45, OCBID and OCBI'Trans. Mullard glass type	10/=
B83	200	Trans. manufacturer'sreject all types NPN, PNP. Sit, and Germ.	$10 /$
B84	100	Silicon Diodes DO.7 glass equiv. to OA200, OA202	10\%
B66	15	High quality Germ Diodes. Min glass type	10\%
B86	50	5il. Diodes sub. min. IN914 and IN916 types	10/-
887	100	Germ. PNP Trans. equiv to OC44, OC45, OC81, etc	$10 /=$
B88	50	$\begin{aligned} & \text { Sil. Trans. NPN, PNP, } \\ & \text { equiv. to OC200/1, } \\ & \text { 2N706A, B5Y95A, cte. } \end{aligned}$	10/-
860	10	7 Wate Zener Diodes Mixed Voltages	10/-
H5	16	I Amp. Plastic Diodes 50.1000 Volts	10/
H6	40	250 mW . Zener Diodes DO. 7 Min. Glass Type	$1 \overline{0} /$

${ }^{82}$	4	Photo Cells, Sun Batreries. $0.31005 \mathrm{~V}, 0.5$ to 2 mA	0/-
877	2	AD161-AD162 NPN/PNP Trans. Comp. Output. Pair	O/-
881	10	Reed Switches, mixed types arge and smali	10/-
星9	2	5SP5 Light Sensitive Cells. Light Res. 400Ω Dark $1 \mathrm{M} \Omega$	10/
$\overline{891}$	8	NKT163/164 PNP Germ. TO-5 equivalent to OC44, OC45	$10 /$
$\overline{892}$	4	NPN. Sil. Trans. AO6 BS $\times 20$. 2 N 2369500 MHz ${ }_{36}$ BS20. 360 mW	10
893	5	$\begin{aligned} & \text { GETIIT Trans, equiv, to } \\ & \text { ACYIT-2\| PNPGerm. } \end{aligned}$	10/.
$\overline{894}$	6	NPN Sil. Planar Epitaxial ,	10
396	5	$\begin{aligned} & \text { 2N3 } 136 \text { PNP Sil. Trans. } \\ & \text { TO } 18 . \text { HEF } 100-300 \text { I.C. } \end{aligned}$ 600 mA .200 MHz	10
${ }^{\text {¢98 }}$	10	XBi12 and XB102 equiv. to AC126, ACI56, OC81/2 OC71/2, NKT271, ctr.	10
899	200	Capacitors, Electrolytics paper, silver mica, etc. Post packing, this Pak $2 / 6$	
H4	250	Mixed Resistors. Postana Packing 2	0
H7	40	Wirewound Resistors. Mixed types and values. Postage $1 / 6$	10

RETURN OF THE UNBEATABLE P.I PAK. nOW GREATER VALUE THAN EVER
full of short lead semiconductors AND ELECTRONIC COMPONENTS. APPROX 170. WE Guarantee at least 30 really high quality factory marked tran SISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA. TION ON THE TRANSISTORS
please ask for pak P.I only $10 /-$
2/- P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev
counter for any ca

$$
10 /-\mathrm{each}
$$

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- posi and packing per order OVERSEAS ADD EXTRA FOR AIRMAIL
P.O. RELAYS

Various Contacts and Coil Resistances. No individual selection. Post \& Packing 5

FOR 20/-

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

R．S．T．VALVE MAIL ORDER CO．
BLACKWOOD HALL，WELLFIELD RD．，S．W． 16
SPEC／AL EXPRESS MAIL ORDER SERVICE

1N21	3／6	－ 3 308	41－	BCy ${ }^{\text {d }}$	73	1：ETH16	6：－	Oc	01
1N21H	$51-$	28501	5］－	BCYibi	191－	（EETII8	1－	OC^{2}	
1 N 23	4／－	28703	12／6	BCY70	6）－	（\％）T119	4 －	$0{ }^{0} \mathrm{C}$	N／6
1N85	170	3N143	14：	BCZ11	$6{ }^{\text {／－}}$	（：ET120	6／6	$00^{2} 4$	9／－
1N253	$101-$	A13i59	1／－	BD121	19／－	© ET587	8，6	OC： 5	7／6
1N256	10 －	． 1.4129	51－	13D1e3	22／6	1：ET87：313	明－	Očer	／－
1N645	$51-$	AAZ1：	316	BDIO4	12\％－	OET873	31－	OCP	12／6
1N：25．	4／－	AAZ13	$31-$	BDY11	$5 / 6$	（：ET873	6）－	OCP9	
1N4004	$4 / 6$	${ }_{\text {AC }}$	4	BF110	5／6	（：ET882	6i－	$00^{\circ} 35$	6／3
${ }_{1}^{18021}$	4／－	AC12－	$5 /-$	${ }_{\text {BFIG }}$	6／6	（GET880	101－	Oc36	8／6
18130	$2 / 6$	AC124	$4 / 6$	BFİ3	7／3	（：EX35	4／6	OC3x	10／3
$1 \mathrm{~S}_{131}$	$2 / 6$	AC129	$7 / 6$	BFlal	6／－	（iEX44	1／6	0 OC 1	4／6
2G220	12／6	AC187	$11 /-$	BF184	7／6	（iEx941	4／－	OC42	51
${ }^{26240}$	3／0	AC188	11／－	BF185	6）－	GJ3	\％／6	0 C 43	$9 /-$
2G301	3／15	ACY17	1	13 F 194	6／3	GJAM	${ }_{7}^{7 / 16}$	OC44	4／－
2G306	\％	${ }^{\text {ACY18 }}$	4／－	RF195	3／6	${ }^{\text {G35 }}$	10\％	OC45	$3 / 3$
2¢37］${ }^{\text {a }}$	4／－	ACY19			5／6	Hiloo	10，	0 C 46	$3 /-$
2G381A	4／6	Acxe0	0	BF197	$5 / 6$	mation	$6 /-$	OC5s	16
2 C 403	10／－	ACy 1	$4 / 6$	BF大I	$5 / 6$	MAT101	$8 / 3$	C59	17／－
2 G 414	6）	Acle	＋1－	BFX13	5／6	Matien	$5 / 9$	Oc＇0	$3 / 6$
－64417	（3）－	ACr27	51－	HFX	12／－	MATI21	6）－	0 C 71	
2 N 214	8,6	Acciom	$4 / \mathrm{T}$	BFX30	$8 / 6$	MJ 420	박	OC7	
2 N 404	1）－	AC539	12	BFX30̈	19／6	M， 421	29－	OC73	T3
2 N 247	$9 / 6$	ACl 40	－	Brx43	$8 / 3$	NKTle？		OC：4	4／6
2N697	1－	ACr41	$3 /$	BPX44	8／3	NKT130	$5 / 3$	OC\％	4／6
2N698	$4 / 6$	ICY4	7／6	BFX	13／－	NKT？ 10	6）－	O	
2 Nom	－	AD140		${ }^{13}$	${ }_{10}^{13 / f 1}$	NKT2l1	6／6	OCT	$8 /-$
2NT06．	$3 / 6$	AD14．	$\stackrel{8}{15}$	BrPr^{85}	10.	NKT212	$5 \cdot 4$	OC7\％	3 －
ontoy	，	AD100	151／8	BFメメ6		NKT213	$6 / 4$	OC781	313
2Ni09	$12 / 6$	AD16：	71．	BFX88	$3{ }^{1}$	－KT217	4 （\％）	OC\％9	5 －
2N711	716	APF10\％	10／6	Bryeo	121－	NKT216	$6 / 4$	$0 \mathrm{C81}$	4）－
－ 2×1090	$6{ }^{\text {a }}$	AF115	5／，	13 Fr 24	91／	NKTE1K	22／9	O	－
2N1131	$8 / 6$	AF116	416	Bryd	$9 / 6$	NKT：19	\％／6		$1-$
2N113：	7／6	AF117	4／f	BFY43	1216	XKT： 21	$5 / 6$		－
$2 \mathrm{~N} 130 \pm$	4	AF118	－		5 －	NKTess	6， 6	$\mathrm{OCP}^{\text {O }}$	4／6
2 N 1303	$4 / 3$	4F124		BFYı1	${ }_{5}^{61}$－	XKTer 4	4／9	OC84	$4 / 9$
2N1304	$4 / 9$	$4 F 124$ + F12	5	${ }_{\text {BFY }}{ }^{\text {BF }}$－	S16	NKT	${ }_{4}^{1 / 9}$	OC114	7／6
2 N 1305	$3 /$	AFl2t	3／－	${ }^{\text {BFY }}$ Bry	$12 / 6$	NKT2929		OC122	12／6
－ 2 N 1306		AFIV号	416	BSN0－	$101-$	NKT237	79	OC123	4／4
2N 1304	（i）－	AF13：	76	BSX 60	18／6	N KT 438	$5 / 4$	OC134	$7 / 6$
2N1309	6 －	AFİr	1196	BSX 61	$\stackrel{127}{3 / 6}$	NKT：40	${ }_{6}^{6 / 6}$	$0 \mathrm{OC14}$	12／3
2N 1420	7／3	AFIG＊	11－1	BSY 26	41 －	NKT241	6／6	OC169	$6 /-$
$2 \mathrm{~N} 150{ }^{-1}$	${ }^{516}$		\cdots	BSY51	10／－	NKT261	4／6	OC170	$5 / 6$
2×1506 2 N 1904	${ }_{4} 716$	AF18f	11－－	BSY：4	9／3	NKT2\％4	4／9	0 Cl 11	6／－
2 N 2	16／6	AFY19	$22 / 6$	BAY79	9／3		51	OC15	－
2N 2148	12／－	AFZ11	b－	BSY8：	10／－	NKT2T7	$4 / 9$	OC200	$0 / 6$
2N 2160	14／－	AFZ12	676	BSY83	$11 /$	NKT403	$9 / 9$	OC201	$8 / 6$
$\underline{2 N 2193}$	2／6	Asce6	36	BEY84	1 $1 /-$	NKT404	12／6	$00^{2} 00 \cdot 2$	$8 / 6$
2N2029	$20 / 6$	${ }^{1}$	16	BSY95A	$3 / 6$	NKT6TA	6）－	Oceor	$6 / 5$
2N2297	6）－	AsY28	$0 / 3$	BY100	4／6	NKT713	716	OC204	${ }^{6 / 6}$
2N 23659	\％／－	48894	$0 / 6$	${ }_{\text {BY }} \mathrm{BY} 13$	5／－	NKTIT3	61－	$0^{\circ} \mathrm{C} 205$	0／－
2 N 2410	10／6	AsY36	5	BYZ1］	976	NKTir	7／6	OCP06	$14 / 6$
2 N 2411	6／6	AsY50	$8 / 6$	${ }_{\text {BYZ }}{ }^{\text {BYZ }}$	6／－		201－	OC207	${ }^{6}$
2 N 241 O	6）／6	AsY5：	＋／9	HYZ14			\cdots	OC450	$6{ }^{1-}$
2N2483	316	Asys．	$4 / 9$		$3 \mathrm{3} / \mathrm{l}$	$\begin{aligned} & 07 \times 13 \\ & 0 \times 5 \end{aligned}$	，$/ 6$	$0 \mathrm{C470}$	6．－
2 NN 2484	$5 / 6$	ASY55	$6 / 7$	BYZ16	17／6	OAIO	$3 /-$	OCP ${ }^{-1}$	0，
2N 2646	$11 / 6$	AsYer	$\stackrel{3}{5 /-}$	${ }^{\text {C111 }}$	$13 /$.	$\begin{aligned} & 0 A 10 \\ & 0.47 \end{aligned}$	－1／	P ${ }^{1414}$	4／－
2N2696	6／3	AsYbg	6／6	cena	12／0	OA70	1／6		
2－28265	$12 / 7$	AsZ1\％	13／6	CRSI 105	$5 /-$	OA］I	2／－	SFT308	6
2 N 2904	＋1－	AsZzo	$7 / 3$	CSH_{4}	3710	OAT3	9／－	SJO52\％	
2×2906	Ni^{N}	${ }^{\text {ASZ }}$	$7 / 6$ $19 / 6$	CH10B	$67 / 6$	OAT4	4／－	－ ST 7224	－
2 N 2907	$7 / 6$	Asty ${ }^{\text {A }}$	197／6	CV101	5／－	OAF4	$1 / 9$ $1 / 6$	ST7031	$12 / 6$
2N0926	$3 / 5$	$\mathrm{BC}^{\text {A } 10}$	3／6	Cvels	$32 / 6$	OAYS	1／6	¢X68	
2N 301	$7 / 6$	BC10s	$3 / 6$	CV2150	3296	0.486	4／－	－	
2N30	11＇－	BC109	3／6	C 2227	$10 / 6$	OA90	1／6	．	10－
$\bigcirc \mathrm{N} 30 \overline{\mathrm{a}}$	146	BC113	173	Cre9e ${ }^{\text {c }}$				$\bigcirc \times 680$	
2 N 3705		${ }_{\text {BCl1 }}$	$1{ }^{1 / 6}$	C－ 4074	$3 / 6$	OA200	$2)_{-}$	SX634WK	K 8／－
2N3700	4	${ }_{\text {BC1 }}{ }^{\text {B }}$	$6 / 6$	（ ${ }^{\text {chen }}$	＊${ }^{1 /-}$	OAS 02	－	9x73	151－
2N3707	＋1－	BCIP1	4 ；	C以 109	7\％－	OA210	$6{ }^{6} 6$	， 233 C	12！－
2N3708	4，	BC12：	4）－	C以7183	30；－	OA211	10.	V15／10P	15／－
2N3709	$\pm 1-$	BC1125	13／6	（以）312	10：－	OAz：20	11／－	V15／30 ${ }^{\text {P }}$	15／－
on 3716	4	BC120	13／－	（ C 7324	107－	Oaza01	10／－	「30／201P＇	－9／6
2 N 3819	－1－	BC＇140	11／－	C以731	01－	OAZ202	$7 / 6$	XAlop	
－ 2 N 3882 c	01－	BC145	151－	C以7347	4）－	oaze03	Ni－	XAl24	
2 N 3824 2 N 3900	171	BC14：	$4 / 9$	CY7361	1：／6	OAZ204	$\mathrm{Hi}_{1}-$	X．N14	－
${ }^{2} \times 3900$	1016	BC148	4／6	D246	7／6	OAZ20\％	10．－	XA143	$5 /-$
2N3900．	11／－	BC149	$\bar{a}_{i}{ }^{-}$	DD006	816	OAZ20H	$6 / 6$	XA15］	
2 N 5027	10／6	HC157	4）－	DD007	81	oazel0	0／6	XA169	$8 / 6$
2 N 5028	11／6	BCJ60	1196	DD00s	It	OAZ22：	$4 / 6$	X X 101	$8 / 6$
2N5307	1	BCY 31	6）－	GD3	${ }^{6 / 6}$	OAZ224	916	XB121	$8 / 6$
${ }^{2} \mathrm{~N} 5308$	$7 / 6$	BCY ${ }^{3}$	76	CD4	7－	OAZ：41	716	XK505	5／－
${ }^{2} \mathrm{~N} 5309$	11／－	BCY 33	5－	G15	816	OAZ24．2	416	XK518	
25005 25013	14／－	BCY34	$5 \cdot$	${ }_{6} 966$	H－	OAZ246	$4 / 6$	Z：M8．2CK	［ $5 /-$
${ }^{25013}$	15／－	BCY3＊ BCY39	5／6			$\begin{aligned} & \text { OAZZ290 } \\ & \text { OC16 } \end{aligned}$	10－	ZRter	$\underline{196}$
${ }_{2}^{2901301}$	16／6	$\begin{aligned} & \text { BCY39 } \\ & \text { BCY40 } \end{aligned}$	$7 / 6$	${ }_{\text {CET10 }}$	$5 /-$	OC16T	${ }^{16 / 6}$	$\mathrm{ZT} 21$	6／－
$2 \mathrm{S304}$	1／－	BCE 4：	31－	（ CET 114	1	OC19	$8 / 6$	ZT43	5／－
TRANSISTORS（POSTAGE，PACKING \＆INSURANCE）I／3 PER ORDER									
SEND S．A．E．FOR LIST OF 3，000 TYPES－									
VALVES，TUBES AND TRANSISTORS									
TERMS OPEN DAILY TO CALLERS C．W．O． Mon．－Sat． 9 a．m．-5.30 p．m．Closed Sat．I． 30 p．m．-2.30 p．m． no C．O．D． Tel． $01-7690199 / 1649$									

NINE IS OUR WINNING NUMBER

Nine seems to be the magic number for this year＇s wonderful PRACTICAL HOUSEHOLDER ANNUAL．It＇s our ninth edition． It＇s got more than ninety informative editorial pages．And expert advice on something like ninety－nine jobs around the home and garden including tiling an old fireplace，building a swimming－pool，fitting an underfloor ventilated fire，installing central heating from a room heater，and a beginners＇guide to bricklaying and working in concrete！Don＇t miss this Annual． Get your copy today．

128 BIG－value pages packed with money－saving Ideas and STEP－BY－STEP INSTRUCTIONS！

01－684 1665

VallabBle new handoook FhEE ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES'" is now available - without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in cvery branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG; Advanced Elecirical Eng. General Electrical Eng. Installations - Draughrsman. ship - Illuminating Cng. Refrigeration - Elem. Elec Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.-Gencral Civil Eng. - Municipal Eng. - Structural Eng -Sanitary Eng.—Road Eng. - Mydramics - Mining -. H'ater Supply-Petrol Tech.

RADIO \& T.V. ENG Advanced Radio - Gemeral Ratio-Radio \& TV Servicing - TV Engincering - Telc. commumications - Soutad Recording - Antomation Practical Radio - Radio Amaterrs' Examination. MECHANICAL ENG Advanced Mechanical Eng. Gen. Mech. Lng. - Mainterance Eng. - Diesel Eng. Press Tool Design - Shect Mctal Work - Welding Fing. Patiern Making -Inspection-Draughtsmanship Inspection- Dianghtsmanshin

- Metallurgy - Production Erg.
AUTOMOBILE ENG Advanced Automobile Eng. Gieneral Aluto. Eug. - Alito. General Auta. Eng. - Alto Alainthance - Repair -
Ahto. Dizsel Mantenance Allo. Electrical EquipmentGarnge Management

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power
A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A. A.I.O.B., A.M.I.Ex., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
D9, ALDERMASTON COURT, ALDERMASTON, BERIKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man ... quickly and easily
* HOW to benefit from our free Advisory and Appointments Depts.
K HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT
Basic Practical and Theore tis Courses for beginners in Electronics, Radio, T.V., Etc. A.M.I.E.R.E. Cily \& Guilds Radio Amatcurs' Exam. R.T.E.B. Cerlificate P.M.G. Certificate Prathical Electronirs Electroncs Engincering Peaclical Radio Automation

INCLUDING TOOLS
The specialist Electronics Division of B.J.E.' ${ }^{2}$

NOW offers ıon a real laboratory training at home with practical equipment. Ask for details.
B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation. o \& Television Servicing

 T \square I .

THE B.I.E.T, IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

TO BUILD YOURSELF

*PW Stereo Decoder (Reprint 45A 1/6) E5.15.0. p.p. 3/6
power supply

PE Spring Line Reverberacion Unit (Reprint 46A I/6)

द/1.5.0. p.p. 6/6
\star Repaco 15 watt Invertor Kit
83.7.6. p.p. 5/-

MOST PARTS IN STOCK FOR PRACTICAL WIRELESS AND ELECTRONICS PUBLISHED CIRCUITS. ALL INTEGRATED CIRCUITS IN STOCK-LEAFLET 36A OR LATEST CATALOGUE FOR COMPLETE LIST.

INTEGRATED CIRCUITS
LA709C Amp
TAA 63 Watt
SL702C Amplif
μ L900 Butfer
μ L914 4in. Gat

$\mu 910$

BPIO1O 3 watt Amp MCl 304 stereo Decoder TAD 100 AM Radio 25/$55 /-$ $47 / 6$ PA 231 watt Amp
ta amplifier
CA 102 AM/FM Radio
CA3036 Dual Dar
CA3020 Amplifier
CA3018 Amprin
CA3014 FM
M

HENRY'S RADIO Fully Illustroted CATALOGUES
 BUILT UNITS

HIGH \& GENERAL AUDIO CATALOGUE

A Over 300 pages fully detailed and illustrated with more than 6,000 stock tems. Everything for amateur and professional use. Complete with 5 vouchers. 10/-value, for use with purchases.
ORDER AS CATALOGUEA PRICE 7/6. p.p. 2/8 New audio and high fidelity catalogue. 120 pages containing ideas and equipment for every application. Special low prices for all leading makes. Plus $12 / 6$ extra discount voucher. Over 40 recomm'd Stereo Systems. ORDER AS CATALOGUE B PRICE 5/-. P. P.I/-

NEW FOR 1970

SILICON POWER AMPLIFIERS

WITH DIRECT COUPLED, SYMMETRICAL OUTPUT

*HENELEC "PA25" POWER AMPLIFIER
This silicon design from Henry's Radio uses complementary transistors in the symmetrical output stage direct coupled to a loudspeaker of 8 ohms mpedance or higher. Power output is 25 watts RMS with an 8 ohm load, or unning is 15 ohms, over a requency range of $15 \mathrm{~Hz}-25 \mathrm{kHz} 3 \mathrm{db}$. Cool heatsinks.

- HENELEC "PA50" POWER AMPLIFIER

Basically similar to the "PA25" the "PA50" will deliver 50 watts RMS to a -4 ohm load. Extra power is handled by complementary triplet circuits using the latest PNP and NPN silicon power transistors. As a result of extra heatsinking, the "PA50" runs as cool as the "PA25". Price $\mathbf{2 9 , 1 0 , 0}$
*HENELEC MU442 POWER SUPPLY
Designed to run one or two "PA25's or one "PA50" the MU442 connects co the amplifiers by means of plug-on harnesses. No soldering is required to connect up the system. Audio input plug and speaker plug go to the panel of the MU442
\& SEND FOR FREE BROCHURES

AMPLIFIERS IN STOCK

Price $£ 6,0.0$
Plinth Cover 95/- p.p. 5)+ Plinth/Cover 66 p.p. 5/$\begin{array}{ll}\text { Deluxe } & \text { £8.10.0. p.p. } 5 /- \\ \text { Deluxe } & \text { E8.10.0. p.p. } 5 /-\end{array}$ prices with choice of cartridge.
BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH.
PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION. MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. parts sold separacely. 8 © 19.6 .

DECODER $\{5.19$

HENELEC 5-5 STEREO AMPLIFIER

 Excellent low priced British designed Stereo 16 transistor mains operated. Output $5+5$ watts for $8-15$ ohm speakers. Black. silver and wood finish, size 13 in . 3 in . 6 in . PRICE 613.10.0. p.p. 7/6. (Leaflet on request). Complece Stereo Plinth/Cover. Two 10 watr speakers with tweeters Size 18 in . Il in. 7 in Usual price $£ 49.10 .0$. Our price $£ 39.10 .0$. p.p. 20HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED-A CATALOGUE IS A MUST!
*PA7 7 watt
*MPA12/3 12 watt
MPA12/15 12 watt
*MA7 7 watt Amp/Preamp $\mathbf{£ 8 . 1 0 . 0 ~ S t e r e o ~} 60$ *MA66 Stereo Amp/Preamp $\$ 16.10 .0 \quad$ PZ5

AUDIO EQUIPMENT

Mono or Stereo Audio equipment developed from Dinsdale Mk, H-each
unit or system will compare favourably with other professional equipment selling at much higher prises, Complete systems and mixers from $\mathbf{f 1 1 , 1 2 , 6 \text { . to }}$ The finest value in low cost high fidelity and save yourself pounds. 7, 12 and 25 watt amplifiers, stereo and mono preamplifiers and modules.
*Send for brochures No. 12/14 and 21

[^0]: © IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by we cannor accepr we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 42 s .
 Editorial and advertisement offices: Fleetway House, Farringdon St., London, E.C.4. Phone 01-236 8080

[^1]: This is an attractive dimmer unit which fits in place of the normal wall light switch. The mounting plate is ivory to match modern fittings and the control knob is in bright chrome. An ON/OFF 5 switch is incorporated to control up to 500 watts at mains voltages from $200-250$ volts, 50 Hz .
 These are normally sold at $£ 419 \mathrm{~s}$. 6 d .our price is $\mathrm{f} 3 \mathrm{5s}$. We also offer at $E 2$ 15s. a complete kit of parts with simple instructions enabling you to build this dimmer yourself.
 The circuit uses the latest miniature RCA triac and new diac triggering device to give complete reliability. Radio interference suppression is included.

 ## DEXTER \& COMPANY
 ULVER HOUSE, 19 KING STREET CHESTER CHI 2AH
 Chester 25883

