PRACTICAL

FEBRUAARY. 1969
游

FROM YOUR LOCAL DEALER OR SEND DIRECT TO:-
ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD, LONDON. S.W.4. TELEPHONE 01.622.0291

Send coupon for latest leaflet

 LASKY'S GREAT 36th YEAR AUDIO•TRONICS PICTORIAL OUT NOW!
This year we celebrate our 36th anniversary by bringing to you this reat new issue of our "AUDIO. TRONICS PICTORIAL" NOW 16 colour pages in large $16^{\prime \prime} \times 11^{\prime \prime}$ format, simply packed with 1,000 's of items simply packed with 1,000 s of from our vast stocks of EVERY THOM Our vast stocks of Eline Radio and Electronics Hobbyist, Hi-Fi Enthusiast, Serviceman and Radio Ham. Plus 100 's of Lasky's exclusive STAR PRICE Bargains.
All items are available by Mail Order or from any of our branches.
FREE NStasisi youn Nem

SPECIAL INTEREST ITEMS!

MIDLAND Model 10-502

VHF AIRCRAFT BAND CONVERTER

An entirely new item for the radio enthusiast bringing instant reception of the ground-tn-air, air-to-ground waveband. For use Fith any standard AM or FM radio cotering 535 to $1,605 \mathrm{kc} / \mathrm{s}$, 88 to 108Mc/s respectively-with no electrical conversion or con (PP3 type) battery) is merely placed close to the recelving set (PP3 type) battery) is merely placed close to the recelving set
and then tuned over 110 to $135 \mathrm{Mc} / \mathrm{s}$ which covers the whole aircraft communications band. Volume and reception effective. neas is adjusted by moving both sets to the nost favourable pooition and batancing the volume controls of each accorlingly
 The Model 10-502 has a smartly designeri black plastic cabinet with brushell metal frout panel and 18 in chrome telescopicantenna, wize only $4 \times 27 \times 2$ inn (inc. knohs). Complete with battery and full instructions.
Lasky's Price 79/6 Post $3 / 6$

SPECIAL TRANSCRIPTION MOTOR

 OFFER - FAMOUS Connoisseur Classic 2 speed transeription deck. One synchronous motor for each speed-45 and 33 r.p.m. List Price 215.15.\%. Lasky's Price E9.19.6. P. \& P. 5/-

ALSO AVAILABLE Connoisseur SCC. 1 pickup arm and cartridge. List Price 88.13 .4. Lasky's Price 5.19 .6 . P. \& P. 3/6
PACKAGE PRICE IF BOUGHT TOGETHER $£ 12.19 .6$. P. \& P. 5/-

GARRARD RECORD PLAYERS

AUTOCHANGERS
1025
2025
SL95
SL95.
3000LM with stero cart.
ATG0 Mk. II
AT60 Mk. II
A70
$\mathbf{A P 7 5}$
AP75
A50

GARRARD BASES
WB1 23/5/8 WB2 24/18/8 WB4 25/6/11 $88 / 19 / 6$
$845 / 0 / 0$ 28/19/6

SINGLE PLAYERS
 $218 / 19 / 6$ GARRARD 401 …… $227 / 19 / 0$
 20010/0

COVERS

SPC1 83/3/10 \$PC2 84/4/4 SPC4 84/4/11
Postage on all above $5 /$ - extra.

Branches
207 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 3271 Open all day Saturday, early closing 1 p.m. Thursday 33 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: 01-636 2605 Open all day, 9 a.m. - 6 p.m. Monday to Saturday 152/3 FLEET STREET, LONDON, E.C. 4 Tel.: FLEet St. 2833 Open all day Thursday, early closing 1 p.m. Saturday

COMMUNICATION RECEIVERS

TRIO

MODEL 9R-59DE Brial apec.: 4 hand receiver covering $550 \mathrm{kc} / \mathrm{k}$ electrical band pread on $10,15,20,40$ and 80 metres. 8 valve plus 7 dlode circuit. $4 / 8$ ohm output and phone Jack. special features: S8B${ }_{\text {BFO ANL }}$ A Mariable BFO s meter Sep.
band spread dial IF
 frequency $455 \mathrm{kc} / \mathrm{s}$. Audio output 1.5 W Variable RF and AF gain controls. For use frequency $455 \mathrm{kc} / \mathrm{g}$ Audio output 1.5 W Variable RF and AF gain controls. For use
on $115 / 250 \mathrm{~V}$ a.c. Mains. Beautifully designed control layout finighed in light grey with dark grey case, size $7 \times 15 \times 10 \mathrm{in}$. Weight 19 hb . Fully guaranteed, complete $\overline{\text { fith }}$ inatruc-

SPECIAL INTEREST ITEM JUST ARRIVED SPECIAL INTEREST ITEM JUST AR
TC MOdEI A.IOO9 AM TUNER ADAPTOR PACK FOR CASSETTE RECORDERS

An amazingly ingenious AM Tuner that hooks
like and is exactly the same size as as standard tape cassette-which converts your tape cassette recorder/player instantly into it
radiol The tuner pack is completely self-
contaimell unit with built-in ferrite rod
Ready type D23) giving cassette anul slip in the ther. Tunable oper $5305-1$, $605 \mathrm{kc} / \mathrm{y}$ (full Medium waveband) suitable for use with all standarll tape cassette recorders anl players. Cimplete with battery.
Lasky's Price 89/6. P. \& P. 2/6.

LASKY'S ENCAPSULATED SOLID STATE MODULES
8 completely new special function circult modules. Mize of erach modute only $2 t \times 1 t \times i \ln$. Ready for
immediate uge-just connect to power source cuavally immealiate use-just connect to power source usually 9V hatt.). input and output. Encapoulated notiules are shock proof and almont indertructible. Comp. with fullins. Post $1 / 8$ each.
E-1311 Phono Pre-amp Rodule-max. out-
put 3V, RMS, input 50 mV input imp.
$100 \mathrm{k} \Omega$, gain 2 Ril, RIAA conpensation. E-1812 Tape Head Preamp Module-max. output $3 V$, RMS, input 50 mV , input $29 / 6$
imp. 100 kn , gain $25 \mathrm{~B}, \mathrm{NARTB}$ compensation, E-1313 Microphone Pre-amp Module-max. output 4V, RMs, input 50 mV , input $29 / 6$ imp. $100 \mathrm{k} \Omega$, gain 28 dB , response $10 \cdot 50 \mathrm{ke} / \mathrm{s}$.
E-1314 Power Amplifier Module-max. output 300 mW , input imp. 1 kn , gairr $29 / 6$
 $\begin{array}{lll}\text { E-1315 Electronic Organ (tone oscillator) Module-frequency } 200-1,000 \mathrm{c} / \mathrm{s}, & 25 /- \\ \text { nutput } 80 \mathrm{~mW} \text {. For use with keyboard, variable resistors and } 8 \mathrm{o} \text { speaker. } & \\ \text { E-1318 Morse Code Practice Oscilitor Module-frequency } 400 \mathrm{c} / \mathrm{s}, \text { output } & 25 /= \\ 80 \mathrm{~mW} \text {. For use with morse key and speaker. }\end{array}$ $\begin{array}{ll}\text { E-1317 Modulated Wireleas Signal Transmitter for use io test bench tault finding } & 25 /= \\ - \text { Ifrequency } 400 \mathrm{c} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}, \text { tone frea. } 400 \mathrm{c} / \mathrm{s} \text {. For use with any AM receiver. }\end{array}$
 with $6 \mathrm{~V}, 100 / 200 \mathrm{~mA}$ bulbe and 6 V power supply.

CLEAR PLASTIC PANEL METERS Preclsion made in Japan by TTC. Each meter boxed and fnlly guaranteed with all f ying nuts and washers, Sized are
of front panel. Add $1 / \mathrm{fi}$. on each. (Quoter for quantities.) Type ER-52 3 , 21 in (illustrated).

1 ma	38/8	$50 \mu \mathrm{~A}$
5 mA	38/6	1 mA S
100 mA	38/6	$100 \mu \mathrm{~A}$
300 V	35/-	$500 \mu \mathrm{~A}$

Type ME-38A 1\&in square Type KR-65 31.3in

1 ma	28/6	1 nla	38/6	1 mA
5 HIA	27/6	5 mA	37/6	5 mA
100 mA	27/6	100 mA	38/6	100 mA
300 V	.27/6	300 V	$88 /=$	300 V
$50 \mu \mathrm{~A}$.37/6	$50 \mu \mathrm{~A}$	59/6	$50 \mu \mathrm{~A}$.
imas meter.	.29/6	1 ma A meter	481-	Inat
$100 \mu \mathrm{~A}$	37/6	$100 \mu \mathrm{~A}$	661-	$100 \mu 4$.
$500 \mu \mathrm{~A}$.29/6	$500 \mu \mathrm{~A}$	46/-	$300 \mu \mathrm{~A}$

High Fidelity Audio Centres

42 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: $01-5802573$

 Open all day Thursday, early closing 1 p.m. Saturday
118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789

Open all day Saturday, eariy closing 1 p.m. Thursday

The professional fouch

A really professional training-that's what you get in the Army. 15 months course in electronics with the Royal Signals (for instance) with the most modern equipment and the best instructors soon makes the whole business second nature to you. And quite apart from setting you up for life, it'd give you a good deal of pleasure. Because Army life's varied enough to make every day full of interest. Look into it. If you're between 17 and 30 it's wide open to you.
 30its wid

VALVES
 SAME DAY SERVICE
 NEW! TESTED! GUARANTEED!

SETS $\begin{aligned} & \text { 1RJ, } 185,1 T 4,384,3 \text { 34, DAF91, DF91, DK91, DL92, DL94 } \\ & \text { Set of } 4 \text { for } 17 / 6, ~ D A F 96, ~ D F 96, ~ D K 96, ~ D L 96, ~\end{aligned}$

READERS RADIO (P.E.) 85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.
 Tel. 01-5507441

Postage on 1 valve 9d. extra. On 2 valves or more, postage 6d. per
valve extra. Any Parcel Insured against Damage in Transit 6d, extra.

Look What's New from HEATHKIT

Low-cost FM Stereo Receiver, AR-17

Cabinet walnut or teak finish $£ 3.10 .0$ extra

28 fransistor, 7 diode circuit, 14 watts music power, 10 watts r.m.s. from $25-35,000 \mathrm{~Hz}$ (ii .. 1 dB . Automatic stereo indicator light. Adjustable phase control. Complete front panel controls. Flywheel tuning. Factory assembled and aligned FM front-end. Circuit board assembly. Compact $10 \frac{3}{8}$ " deep $\times 3^{\prime \prime}$ high $\times 12^{\prime \prime}$ wide. Use free standing with Heathkit cabinet optional extra.

Quality FM Stereo Receiver, AR-14

Kit K/AR-14
£54.0.0
P.P. 13/6

31 transistor, 10 diode circuit can deliver . $1 \mathrm{~dB}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel (20 watts total) 15 watts per channel 1 HF music power (30 watts total). Wide-band FM/FM stereo tuner plus two preamps, two power amplifiers. Compact only $3{ }^{\frac{73}{8}}{ }^{\prime \prime}$ high $\times 154^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep. Install in a wall, free standing or in Heathkit cabinet optional extra.
Cabinet walnut or teak finish $£ 4.10 .0$ extra $210-240 \mathrm{~V} 50 \mathrm{~Hz}$ a.c.

Low-cost FM Mono Receiver, AR-27

Kit K/AR-27
£22.10.0
P.P. 10/6

Cabinet walnut veneered $£ 3.10 .0$

13 transistor, 6 diode circuit. 7 watts music power. $-1 \mathrm{db}, 25$ to $60,000 \mathrm{~Hz}$ at 6 watts. Input connectors for phono and aux. Complete front panel controls. Flywheel tuning, factory prealigned FM tuner. Circuit board assembly. Compact bookshelf size. Install in a wall, free standing or in cabinet optional extra. 210-240V 50 Hz a.c. operation.

Solid-State Volt-ohm-Milliammeter, IM-25

PLEASE USE COUPON ON RIGHT FOR FREE CATALOGUE

Build Your Own HEATHKIT Electronics!

STEREO RECORD PLAYER, SRP-1
Two built-in speakers Suitcase portability
Kit £28.6.0 P.P. $10 / 6$

CAR RADIO, CR-1

High performance at low cost. 12 v pos. or 12 v neg. operation. 4 watts output
Kit (incl. spkr.) £14.12.0 P.P. $4 / 6$

STEREO TAPE RECORDER, STR-1
Built-in speakers. Many features unobtainable elsewhere at this price Kit £58.0.0 P.P. 10/6

```
MANY OTHER
INSTRUMENTS
FOR TEST
AND SERVICE
IN RANGE
```


BERKELEY
Slim-line
SPEAKER
SYSTEM
Kit £21.4.0 P.P. 13/6

> See these and many more in the Latest
> CATALOGUE . . . it's FREE

Take your Wellerchoite

LOW INITIAL COST

Marksman irons to cover all your soldering needs. 25 W , $40 \mathrm{~W}, 80 \mathrm{~W}, 120 \mathrm{~W}, 175 \mathrm{~W}$. Nickel-plated factory pre-tinned tips in stainless steel shanks.

INSTANT HEAT FOR RAPID SOLDERING
THE tool for intermittent work such as servicing. Working heat in a few seconds. The job is done in less time than it takes a normal iron to heat up. Expert dual-heat and Heavy Duty models.

TEMPERATURE CONTROL FOR RELIABILITY

For sophisticated production line soldering or to replace several conventional irons. No dry joints. Control of temperature without inhibiting performance. Mains or low voltage.

Weller Electric Limited

NEW RANGE BBC 2 AERIILS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, $45 /-. \quad 14$ element. 52/6. 18 element. 60/-. Wail Mounting with Cranked Arm, 7 element, 60%. 11 element, $67 /$. 14 element. 75/-. 18 element, 82/6. Mast Mounting with $21 n$. clamp. 7 element, 42/6; 11 element. $55 /-$; 14 element, 62/-i 18 element, 70/-. Chimney Mounting Arrays, Complete, 7 element, 72/6; 11 element, $80 /-; 14$ element, $876 ; 18$ element, 95/-. Complete assembly instructions with every amps from ris/. State clearly channel number required on all orders.

BBC•ITV AERIALS

BBC (Band 1). Telescopic
 10ft, 25/-4 External S/D, 30/-. ITV (Band 3). 3 element loft array, $30 /-0.5$ element, $40 /-$ 7 element, $50 /=$ Wall mounting, 3 element, 47/6. 5 element, 52/6. Combined BBC/ITV. Lort $1+3,40 /-1+5,50 / ; 1+7$, 60/- $;$ Wall mounting $1+3$, 57/6; $1+5,67 / 6 ;$ Chimney $1+3,87 / 6 ;$ $1+5,75 /-$.
VFF transistor pre-amps,
COMBINED BBCL-ITV-BBC2 AERIALS $1+3+9,70 /, \quad 1+5+9,80 /, \quad 1+5+14,90 /-$
 leaftet avallable.
F.M. (Band 2). Loft S/D, 15/-, "H", 32/6, 3 element, 55/-. External units avaltable. Co-ax. cable, 8 d , yd. Co-ax. plugs, $1 / 4$. Outlet boxes, $5 /-$. Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \& P. $5 /-$. Send 6d. stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 27 Central Parade, New Addington Surrey-CRO-OJB LODGE HILL 226

OUR NEW 1968/69 illustrated catalogue NOW AVAILABLE
(send $2 /$-in stamps for your copy)

Catalogue contains prices and details of Amplifiers - Hi-Fi Tuners - Loudspeakers -Pick-ups - Playing Decks Microphones - Test Meters Hand Tools - Valves Soldering Irons - Tape Recording Accessories, etc.

ALPHA RADIO SUPPLY CO
103 Leeds Terrace, Leeds 7. Tel. 25187

Bllp
 RE

FULLY TESTED AND MARKED

ACl07	3/-	OCi70	3/-
ACl26	2/4	OC171	4/-
AC.127	2/4	OC200	3/6
ACl28	2/4	0 C 201	7/-
ACYi7	3/-	2G301	2/6
AFII4	4 /-	2G303	$2 / 6$
AFlis	3/6	2 N 711	$101-$
AFII6	3/6	2N1302-3	4/-
AFl17	$3 / 6$	2NI304-5	5/-
AFII8	3/6	2N1306-7	6/-
AFI19	3/6	2N1308-9	8/-
AFI86	10/-	2N3844A	5/-
AFI 39	10/-	Power	
BFY50	4/-	Transistors	
BSY25	$7 / 6$	OC20	10:-
BSY26	$3 /-$	$\bigcirc{ }_{0} \mathrm{C}_{23}$	$101-$
BSY27	3/-	$\bigcirc{ }^{\circ} \mathrm{C} 25$	8/-
BSY28	3/-	$\bigcirc{ }^{\circ} \mathrm{C} 26$	5/-
BSY29	31-	$\bigcirc{ }^{\circ} 28$	$7 / 6$
BSY95A	3/-	OC35	51-
OC41	$2 / 6$	OC36	7/6
0 OC 44	1/11	ADI49	$10 /-$
OC45	$1 / 9$	AUY10	30/-
OC71	2/6	Diodes	
$\bigcirc \mathrm{OC72}$	2/6	AAY42	2/-
$\bigcirc \mathrm{OC73}$	$3 / 6$	OA95	$2 /-$
OC81	2/6	OATO	$1 / 9$
OC8ID	2/6	OA79	1/9
$\bigcirc \mathrm{OC83}$	4/-	OABI	1/9
OC139	$2 / 6$	OA73	2/-
OCl40	$3 / 6$	IN914	1/6

-

R

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP typetransistors, equivalents to a large part of the $O C$ range, i.e. 44, 45, 71, 72, Bl, etc PRICE 55 PER 1000

XB PAK

Silicon TO-I6 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a BSY27/29, BSY95A

PRICE \&5.5.0 PER 500
PRICE KIO PER 1000

XC PAK
Silicon diodes miniature slass types, finished black with polarity marked, equivalents to OA200 OA202, BAY $31-39$ and DK10, etc PRICE 65 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

P/P 2/6 PER PACK (U.K.)

OVEF 84
PACKS OF YOUR OWN CHOICE UPTO
THE VALUE OF 10/-WITH ORDERS

\section*{TRANSISTORS ONLY 1/- EACH SILICON - PLANAR
 All these types available
 | 2N929 | 2N706 | 2SI31 | 2S103 | 2N696 | 2N1613 | 2S733 | BFY10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2S501 | 2N706A | 2S512 | 2S104 | 2N697 | 2NI711 | 2N726 | 2S731 |
| BCI08 | 2N301I | 2S 102 | 2N2220 | 2N1507 | 2N1893 | 2N2484 | 2S732 |}

All tested and guaranteed for gain and leakage-unmarked.
Manufacturers' fall outs from the new PRE-PAK range.

NEW UNMARKED UNTESTED PAKS	
$25 \begin{gathered}\text { ESYOSA } \\ \text { NPN Silicon }\end{gathered}$	ANSISTOA
10 OC45-OCB1	TRANSISTORS 10/-
$25 \begin{gathered}\text { BSY } 26.27 \\ \text { NPN Silicon }\end{gathered}$	
$10 \begin{aligned} & \text { 10 Watt Silic } \\ & \text { All Votages }\end{aligned}$	2EN
$25 \begin{aligned} & \text { BFY50-1-2 } \\ & \text { NPN Silicon }\end{aligned}$	TRANSISTORS 10/-
$10{ }^{4} \mathrm{amp}$ silicon	RECTIFIER
$25 \begin{gathered}\text { BCLiof-8-9 } \\ \text { NPN Silicon }\end{gathered}$	TRANSISTORS 10/-
$40 \begin{gathered}\text { 1N914.6. OA2001202 } \\ \text { Sub. Min Sillicon }\end{gathered}$	01
$150 \begin{gathered} \text { Min Germ } \\ \text { High Qual ity } \end{gathered}$	DIOD
	ANSIST
PRE.PAK. N. 605 POWER TRANSISTOREQUIVALENT 5/- each TO NKT301-2.3.4	
COMPLIMENTARY SETNPNIPNP GERM, TRANS. $2 / 6$ pair	

SINCLAIR Q. 14

The most challenging hi-fi speaker development in years

It is more than a matter of saving money when you choose the Q.14. This is the loudspeaker that delights experts and critice alike for its fine forward quality, its clarity and exceptional adaptability. Designed on original lines and from unusual materials, the 0.14 will carry up to 14 watts and has very smooth response from 60 to $16,000 \mathrm{~Hz}$. Size- 9 itin square $\times 4$ itin deep, with matt black finish and solid aluminium bar embellishment. Input impedance- 8 ohms. A pair used with 1 C .10 s or $\mathrm{Z.12s}$ and the Stereo 25 will give you superb high fidelity to stand comparis on with far costlier equipment. Try the Q. 14 in your own home. If it does not delight you, send it back and your money including cost of postage will be refunded in full.
£7.19.6

SINCLAIR Z. 12

12 watt hi-fi amplifier/pre-amp

This eight transistor amplifier is the most successful of its kind ever designed and is easily adapted to a wide variety of applications. The $\mathbf{Z .} 12$ is supplied ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $\mathbf{Z . 1 2}$ to your precise requirements. Two may be used for stereo. Size-3in $\times 1 \frac{1}{4} \mathrm{in} \times 1 \mathrm{i} \mathrm{in}$. Class B Ultralinear Output: Frequency response from 15 to $50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Suitable for 3 to 15 ohm loudspeakers. Two 3 ohm speakers may be used in parallel: Input 2 mV into $2 k \Omega$. Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements $6-20 \mathrm{~V}$ d.c. from battery or PZ. 4 Mains Supply Unit.

89/6

SINCLAIR STEREO 25

Pre-amp/Control Unit for Z.12, IC. 10 and other good Stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$), Radio and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Volume/ Balance/Input are solid aluminium. Size- $6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed.
£9.19.6
SINCLAIR PZ4 STABILISED MAINS POWER SUPPLY UNIT
Heavy duty transistorised power supply unit to deliver 18V d.c. at 15A. Designed specially for use with two 2.12 or IC. 10 Amplifiers together with Stereo 25. Built, tested and guaranteed.

99/6

SINCLAIR MICROMATIC

This fantastic little British pocket receiver is available in kit form or ready built, tested and guaranteed. Its range, power and selectivity must be experienced to be believed; its quality everything you could wish for. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

Kit in fitted pack with earpiece, solder and instructions

49/6
Built, tested and guaranteed

59/6
Mallory Mercury Cells RM 675 (2 reqrd)
each 2/9

Telephone OCA-3 52731

Leadership is not the easiest course to take. From being a very small adventurous minded group in 1963, determined to bring fresh thinking to electronics design, the Company has succeeded to the extent that today, it occupies a position of pre-eminence due entirely to the unremitting pursuit of this policy.
But design is only the beginning. Sinclair Radionics maintains a design and research department worthy of an organisation many times larger, and through this, has been able to introduce many original designs. However, even we cannot make everything involved in the manufacture of the products we design and should a totally unforeseen hold-up occur in supplies to us, our most carefully timed schedules can go adrift. Such has been the case with the IC. 10 and we can only thank the many thousands of purchasers for their patience in waiting. From the efforts of our suppliers to meet our carefully stipulated requirements, it should not be long now from the time this announcement appears until the much sought after Sinclair IC. 10 is available. Our advertisements have to be planned months before they appear, which explains how difficult it can become if a hold-up does occur.
Meanwhile there is full availability of all our other products and, despite the totally unforeseen delay in getting the IC. 10 out on time, we promise that 1969 will be the best year yet for Sinclair users.

MICROMATIC POCKET RADIO
Z.12 AMPLIFIER

STEREO 25 PRE-AMP
Q. 14 LOUDSPEAKER

PZ. 4 STABILISED POWER PACK SYSTEM 2000 HI-FI EQUIPMENT NEOTERIC 60 DE LUXE HI-FI AMPLIFIER
and very soon now - the IC-10

THE DORSET (600 mW Output)
7 -transistor fully tunable M.W.-L.W. superhet portablewith baby alarm facility. Set of parte. The latest nodulised and pre-alignment techniques minkes this simple to build. Sizes: $12^{\prime \prime} \times 8^{\circ} \times 3^{\prime \prime}$.
MAINS POWER PACK KIT: 9/6 extra.
Price $\mathbf{£ 5 . 5 . 0}$ plus $7 / 6$ p. $\&$ p. Circuit $2 / 6$ FREE WITH P.ARTs.
THE ELEGANT SEVEN MK. III (350 mW output)
7 -transistor fully tunable M.W.-L.W. portable. set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for foolprool construction.
MAINS POWER PACK KIT: 9/6 extra.
Price $\mathbf{6 4 . 9 . 6}$ plus $7 / 6 \mathrm{p} . \& \mathrm{p}$
Circuit 2/6 FREE WITH PARTB

50 WATT AMPLIFIER A.C. MAINS 200-250V an extrenely reliable general purpose valve amplifier -with aix electronically mixed inputs. Suitable for use with: mice, guitars, gram, tuner, organs, ete. Separate bass and treble controls. Price 27 gns. plus 20j- p. \& p.

POCKET MULTI-METER
Size $3 z \times 2 \mathrm{k} \times 1$ in. Meter size $2 \frac{1}{1} \times 1$ inin. Sensltivity 1000 O.P.V. on both A.C. and D.C. volts. 0-15, 0-150, 0-1000 D.C. current 0-150nA. Resistance $0-100 \mathrm{k} \Omega_{,}$Complete With test prods, battery and iull instructions, 42/6, P. \& P. Soldering Iron value $15 /-$ to every purchaser of the Pocket Multi-Meter.

Mag. P.U.: 2 mV , Cer. P.U.: 80 mV . Radio: 100 m
Aux.; 100 mV , Tape/Rec, ouput: 100 mV . Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone conirol range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz , Total distortion: (for 10 watt output) $<1.5 \%$. Signal noise: $<-60 \mathrm{~dB}$. A.C. maina $200-250 \mathrm{v}$

The RELIANT IOW SOLID-STATE HIGH QUALITY AMPLIFIER Specifletions: Output: 10 watts R.M.s. Sine-wave; 13 watts R.M.S. Music-power. Outpui impedance: 3 to 4 ohms. Inputs: 1 . Xtal mic 10mi; 2 . Gram/radio 250 ml . Tone controls: Treble control range $\pm 12 \mathrm{~dB}$ at 10 KHz ; Bass control range $\pm 13 \mathrm{~dB}$ at 100 Hz . Frequency response (with tone controls central): Minus 3 dB points are 20 Hz and 40 KHz . Signal to noise ratio: better than -60 dB . Tramaistors: 4 silicon Planar type and 3 Germanium type. Mains input: 220-250V a.c, Size of chassis: Instruments, all makes of pick-ups and mikes. Separate base and treble lift control Instruments, all makes of pick-ups and mlkes. Separate base and treble lift control enit: Price $14 / 6$ plus $1 / 6$ p. $\& \mathrm{p}$. Crystal mike to eult: $12 / 6 \mathrm{p} / \mathrm{us} 1 / 6 \mathrm{p}$. \& p . PRICE 85.5 .0 plue $5 /-\mathrm{p} . \& \mathrm{p}$.

THE VISCOUNT

Integrated High Fidelity Transietor 8tereo Amplifer
APECLFICATION8: Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monorat). Input: 6 positlon rotary selector awitch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape. Rec. Sensitivities: All inputs 100 mV into 1.8 M ohm. Frequency reaponse: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tone controls: Tone controls flat (Baxandal type), separate bass and ireble controls. Treble 13ab hit and cut at 15kH. 1 C Ming channel. Built and tested.

PRICE $13 \frac{1}{2}$ gns. Postage \& Packing $7 / 6$ extra

B.F.R. TD2 TAPE DECK

This tape deck takes 的: spools complete with two-track heads. size $13 \frac{1}{*}^{*}$ long by 83^{*} wide.
£8.19.6 plus 7/6p.\& p.

THREE-IN-ONE HI-FI 10 WATT SPEAKER A complete Loud speaker system on one frame, combining three matched ceramic magnet Peakers rith a 10w loss cross-o fer mance 16 ohms. Flux density 11,000 gauss. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size 13!" 8 f" 41". By famous manufacturer. List price $\mathbf{8 7}$. Our price 69/6 plus $5 /-$ p. \& p. 8imilar opeaker to the abore without tweeters in 3 and 15 ohms 30/6 plus 5/-p. \& p.

Goodes not despatched ontaide U.K. Terma C.W.O. All enquiries S.A.E.
RADIO \& TV COMPONENTS (ACTON) LTD. 2ld High Street - Acton • London W. 3 323 Edgware Road • London W. 2 ORDERS BY POST TO OUR ACTON ADDRESS PLEASE

Hi-Fi Solid State Audio Amplifier

10 Watts continuous sign wave output. 15 Watts music power.
Output 3-16 ohms impedance. Frequency response 15 Hz to $18 \mathrm{Khz}-1$ DB. Distortion at full power $<0.15 \%$.
This instrument comes to you complete with preamplifier, main amplifier and power unit (A.C. Mains) in modern styled aluminium stelvetite case.
Factory built and tested for the amazingly low price of 15 GNS. P. \& P.5/6.

SUNDERLAND ELECTRICS LTD. 48 Princess Street, Manchester 1
 Trade enquiries invited. S.A.E. with enquiries please.

STEREOGRAM CABINET $£ 19$

An elegant stereogram Cabinet in modern Veneered Mahogany and cloth covered Front Panal
black leatherette side panels
Dimensions: 52" $17 \frac{1^{\prime \prime}}{2} \cdot 12^{\prime \prime}$. Speaker
positions for Twin $10^{\prime \prime} \quad 5^{\prime \prime}$ Speakers

OTHER MODELS-SENO FOR LIST
SPEAKERS $6 / 6$
2"-75 $\Omega .2 \frac{1}{2}{ }^{\prime \prime}-35 \Omega$. P. \& P. 2/6. ACOS MICS. 35 /- STANDARD
STICK MIC. 2gns. P. \& P. 3/6
ASSORTED CONDENSERS
$10 /=$ for 50 . P. \& P. $7 / 6$. ASSORTED RESISTORS

10/- for 50. P. \& P. $4 / 6$. ASSORTED CONTROLS

10/- for 25. P. \& P. $7 / 6$.
TRANSISTORS
MULLARD MATCHED OUTPUT KIT
9/- OC8ID-2 OC8I's P. \& P. FREE

FERRITE RODS $3 / 6$
$6^{\prime \prime}, 8^{\prime \prime} \times \frac{3^{\prime \prime}}{}$ complete with LW/MW COILS. P. \& P. FREE
$17 \mathrm{in} .-£ 11.10 .0$ carr. 30 . I gin. SLIM-LINE FERGUSON 24 gns. TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS
free illustrated LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRICES demonstrations dally

TRANSISTOR CHASSIS DI

 MW. Brand New Famous British Many facturer (LESS SPEAKERS) Size $7 \frac{1}{2}$ 3in P. \& P.4/6.TRANSISTOR RECORD PLAYER CABINETS $19 / 6$ P. \& P. $7 / 6$.

SINGLE PLAYERCABINETS 15/6. P. \& P. 7/6 TRANSISTOR CASES 19/6. cloth covered, many colours.
 Similar cases in plastic $7 / 6$.

AUTOCHANGERS $\mathbf{E 8 . 1 9 . 6}$ Garrard 3000 with Sonotone $9 T$ HC. D/S Stereo Cartridge.

[^0]
RELIABLE COMPONENTS!-AT THE RIGHT PRICE!!

 SUBMINIATURE TAGBOARDS ($1 \frac{1}{2} \mathrm{in}$. wide).-6-way at $1 / 3$; 18 -way at $3 /$ - ea. CAPACITORS - CERAMIC TUBULAR (Standard values).-4.7pF to $0.01 / 1 \mathrm{~F}$. 8d. ea.RESISTORS - CARBON FILM. - $\frac{1}{2}$ watt $5 \%, 10 \mathrm{ohm}$ to 10 megohm.- $3 \frac{1}{2} \mathrm{~d}$. ea. or $3 / 3$ per doz
POTENTIOMETERS-MINIATURE CARBON-- $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$. $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega$. LOG.; $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, \mathrm{I}^{25 \mathrm{k} \Omega,} 50 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$. LIN, Less Switch.- all at $3 \mathrm{i}_{-}$ea, ($2 / \mathrm{p}$ ea. in quantities of 4 or more of the same value.
DIODES.-OA47. OA70, OA71, OA79, OA81, OA90, OA91, OA200. OA202 TRANSIST
 BC107, 3/II; BC108, 3/3; BC109, 3/II;NKT212, 4/4; NKT218, 3/11; NKT228,
3/1I; NKT271, 3/4; NKT274, 3/4; NKT675, 4/3: NKT676, 4/~; NKT773, 4/8:
 2N3819(FET), 14/3; 2N3820(FET). 20/H: BRY39(SCS), 10/6; 2N2646(UJT), 10/6; 2 N2926 SERIES-all groups at $3 / 3$ ea. (or $2 / 6$ each in multiples of five).

Postage and Packing is charged at $1 /$ - in the \mathbf{f} (Minimum $\mathbf{2 / - p e r - o r d e r) . ~}$
M. R. CLIFFORD \& COMPANY (Components Department) 209a MONUMENT ROAD, EDGBASTON, BIRMINGHAM 16

Terms: C.W.O. (or C.O.D.-over $£ 3$ only). Tel. 021-454 6515

R:S.T. VALVE MAIL ORDER CO. blackwood hall, wellfield rd., s.W. 16 Special 24 Hour

AZ31	
BY100	
CIO	2
CY30	1
DAF91	
DAF96	
DOC90	1

DF96 DH3/91 DH7

		PC88	1
	$5 / 6$	PC88	1
DK92	$8 /-$	PC97	1
DK96	$7 / 9$	PC900	

DH3/91	¢6	N78
DH77	4/6	PC86
DK91	$5 / 6$	PC88
DK92	81-	PC97
DK96	7/9	PC900
DL66	151-	PCC84
82		PCos

DL_{0}
DL_{9}
DL 9

DL DI DI

D
D
D DY
號
教
 \square

0	

TRANSISTORS

2N696 6／－
$2 \mathrm{~N}^{2} 99^{-}$
N06A 8／－AF116
${ }^{20}$ A 4 4－AFII

云
 ส

N914	$4 / 6$	BC107	4
N916	$4 / 6$	BC109	8

สส
2N1711 2N1893 2N2160 2 N 2147
2 N 2369 2N2369
\qquad 2×3705 2 2 102 ํ 28103
28104 でく
풀

30 FLLI 30 L 15

 30 P 19 10／－ECFB8
ECH35
 $\begin{array}{lr}\text { BNY53 } & 8 / 8 \\ \text { BNY } 4 & 9 / 8 \\ \text { BSY55 } & \text { 15／9 }\end{array}$ BSY56 17／3 BGY65
BSY
B BSY78
BSY 79 Blvio $12 / 6$ GET10f $4 / 8$
GET 113
GETB GET113
GET873
GET874
4／6 METE10 $7 / 8$
MAT1018
MA

30 PL1	$14 /-$	ECH42 $11 /-$
$18 /-$	ECH	

 EF
EF
EF
$\mathbf{E F}$ EF42 EF
EF
EF
EF EF9
EFI
EFI
 EM84
EMST
EYS1
EYA
EZ4
EZ4
EZ
EZ MAT101 8／8
MAT120 $7 / \theta$
MAT121 NKT210 NKT211
NKT212
NKT213
NKT214 NKT214
NKT215 NKT2169／ NKT217 $9 / 8$
NKT219 $4 / 9$ NKT223 5／－ NKT225 $3 / 8$
NKT229
NKT NKT240 $4 / 8$
NKT261 $4 / 8$ NKT 405 NKT403

$$
\begin{aligned}
& \mathrm{OCl} 19 \\
& \mathrm{OC} 23
\end{aligned}
$$

$$
\begin{aligned}
& 0 \mathrm{C} 19 \\
& 0 \mathrm{C} 23 \\
& 0 \mathrm{C} 25 \\
& 0 \mathrm{COR}
\end{aligned}
$$

 $\begin{array}{ll}\text { MV14 } & 8 /- \\ \text { PABC80 } & 7 / 6 \\ \text { PCCRA } & 8 / 6 \\ \text { PCC＇8 } & 8 /-\end{array}$

U25 $\begin{array}{ll}\text { PCC85 } & 8 /- \\ \text { PCC88 } & 11 / 6\end{array}$ 5／－ 1281
12301
17801 22／6 VBC4
VBF8园导芶公

\section*{POWER DIODES} | 60 P．I．X． | 6 AMP $5 / 6$ |
| :--- | :--- | 20MA 2 140 AMP $3 / 8$ $165 \mathrm{MA} 1 /-$ $2 \overline{5}$ AMP 10／－ 400 P．1．

8 AMP $7 / 6$
700 P．I． 700 P．I．

100 AM 800 P $85 /-$ 500 MA 2／6 | H00 P．1． |
| :---: |
| 5 AMP |

650MA 6／8
THYRISTORS 8ILICON CONTROL RECTIFIER8

100 P． $1 . V^{2}$	400 P．I．V．
7 AMP 18／6	7 AMP 15／8

ZENER DIODES

OAZ20012／－${ }^{\text {OAZ208 }} 816$ \begin{tabular}{l|lll}
OAZ20110／－ \& OAZ209 8／6

OAZ202 8／6 \& OAZ210

OAZ202 \& 8／6 \& OAZ210

O／8

OAZ203 \& $8 / 8$ \& OAZ211

$8 / 6$

OAZ208 \& $8 / 8$ \& OAZ211 \& $8 / 8$

OAZ204 \& $8 / 6$ \& $0 A Z 212$ \& $8 / 8$
\end{tabular}

 OAZ206 8／6 0 OAZ22716／－ 0.48207 9／6

STC． 1 WATT MERIES 8% ．4／2．7／3／3．9／4．3／13／16／18 Z вeries．All voltages from $3.9-50$ volt． $250 \mathrm{~mW} .2 / 6$ en

PLEASE ADD POSTAGE

SEW＂CLEAR PLASTIC METERS

First grade quality Moving Coil panel meters available ex－stock ．A．E．for jllustrated leafet．Discounts for quantity．A vallable $100-0 \cdot 100 \mu \mathrm{~A}$ ， $82 / 6 \quad 200 \mathrm{~mA}$ ． $25 /-100 \mathrm{~V}$ $100-0 \cdot 100 \mu \mathrm{~A}$
1－0－1m

1 mA
2 ma

8 mA
／8 20mat
$50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$
$200 \mu \mathrm{~A}$
$35 /-\quad 50 \mathrm{~mA}$
$50.0 .50 \mu \mathrm{~A}$ ．．．． $27 / 6$
150 mb ．
TE－20RF SIGNAL GENERATOR
 ing $120 \mathrm{~K} / \mathrm{s}-260$ ing $120 \mathrm{Kc} / \mathrm{s}-260$
Mc / s on F banda． Directly： hratecl．virriable R．F．attenuator． Operation 200 ／ 240 V an．
Brand Brand new with
fantructions fintructions．
S15．0．0．P．\＆P．
7／6．S．A．E．for detaite

50 V d，
ger sizes avalable－send for Met

LAFAYETTE TE46 RESISTANCE

 CAPACITY ANALYSER
$2 \mathrm{pr} \cdot 2,000 \mathrm{mfal}$ ohnese 200 megohme．Alsu checks jmpe dance，turne tion， $200 / 259$

Brand Mew 817．10．0．

AVO CT． 38 ELECTRONIC MULTIMETERS
High quallty 97 range inatrument which meanures a．c．and d．c．Voltage，Current，Realatance sid
Power output．Ranges d．c．volta $250 \mathrm{mV}-10,000 \mathrm{~V}$ ． （10megn－110megn input）．D．c．current $10 \mu \mathrm{~A}$ 25 amps． $0 \mathrm{hms}: 0-1,000 \mathrm{mg} \Omega$ ．A．c．volt $100 \mathrm{mV}-250 \mathrm{~V}$（with RF measuring head up to 260mc／8）．A．c．current $10 \mu \mathrm{~A}-25$ ampa．Power $0 / 110 / 200 / 250 \mathrm{~V}$ ．C．Supplied in perfect condition complete with circuit leal and RF probe 28.

TYPE I3A DOUBLE BEAM OSCILLOSCOPES

 calibrator $1 / \mathrm{F}$ ，ontput，etc．Built－in
speaker，butput for phones．Operation 150／2305 a．t conlit ion， 42810.0 wailable brand New 235．Carr．3ob－．With L．F．version of illove $15 \mathrm{kc} / \mathrm{s}-700 \mathrm{ke} / \mathrm{s}$ ．

class D

WAVEMETERS
crystal controlled heterolyne frequency meter covering
Mc／s．Operation Available ing gond uscal condition e5．10．B． Carr． $7 / 6$ ．Or brand new with necessories

MARCONI TEST EQUIPMENT
MARCONI TEST EQUIPMENT
EX－MILITAIYY RECONDITIONED．
TF $144 G H T A N D A R D$ MIGNAL GENERATOKE， 85ke／s－25 Mc／s，225，carr．30／－．TF．885．VIDE OSCILLATOR． $0.5 \mathrm{Mc/s}$ ，845．Carr． $30 /-$ $0-40 \mathrm{kc} / \mathrm{s}, 200 / 250 \mathrm{~V}$ a．c． 820 ，carr．30／－．TF．142E． Distortion Factor Meter， 280 ，carr，20／－．All teated and checked．TF． 1100 VALVE VOLT

AM／FM SIGNAL GENERATORS

Oscllator Test No 2．A bigh quality precision inatru－
ment made for the ment made for the ministry by Armec
F＇requency cover－ age $20-80 \mathrm{Mc} / \mathrm{s}$ ．AM age 20－8MM．Incor porates jreciaion dial，level meter，prechion attenuator $1 \mu^{\prime}-100 \mathrm{my}$ ．Operation from 12 y A．c．or $0 / 110 / 200 / 250 V^{\text {a }}$ a．c．size $12 \cdot 8 \frac{1}{2} \cdot 9 \mathrm{in}$ supplied in brand new condition complete with all connectors fully tested．845．Carr
$20 /-$ ．
 MARCONI CT44／
TF956 AF ABSORPTION WATTMETER

220．Carr． 20 ．
TE－IGA TRANSISTORIBED SIGNAL GENERATOR
 expensive instrument
for the handyman or the handyman．
Operates on 9 y battery．Wile，easy to
real scale． 800 KHZ
 $5 I^{\sim}$ \＆ $3 \AA^{\circ}$ ．Complete
with Instructions and leals．27．19．6．P．\＆P ．

1 way， 2 c／o 7／B； 1 way， 2 c／o 2b，7／6； 1 way， 4 c／o． $8 /-: 2$ way， 3 m．， $3 \mathrm{ml} .8 / 6 ; 2$ way， 2 c／o．， $2 \mathrm{c} / \mathrm{o} .8 / 6$.
Pobt extria．way． $4 \mathrm{c} / \mathrm{o}, 4 \mathrm{c} / \mathrm{o}-10 / 6$
Quaititlea available．

METER，Brand New，e50．T．F． 1267 T MISSION TENT NET，Brand New．e875．
 MISSION TEST SET，Brami N．275．TF．1371．Wide Band Millibolt Meter， 250 ．

Variable Voltage Thinlifinulib cren

Brand new，gumanteed and carriage pail
High quality construction．Input 230 V b0－60 cycles
Output full variable from 0－260V．Bulk quantities
1 amp．－ $25.10 .0 ; 2.5 \mathrm{anp} .-26.15 .0 ; 5 \mathrm{amp}$ ． $\mathbf{2 9 . 1 5 . 0 \text { ；}}$

ADVANCE TEST EQUIPMENT Brand new and boxed in original realed cartons
76．VALYE VOLTMETER
R．F．measurements in exc
$100 \mathrm{Mc} / \mathrm{s}$ and d．c．measure－
300 mV to 1 kV ．A．c．range
0 mV to 300 V RMS．Resis－
ce $0.02-500 \mathrm{M} \Omega$ ．Price 272.
．A．c．Millivolt met
oris
rice $£ 55$.
79．UHF MILLIVOLT M
nsistorised．A．c．range 10 mV
10 merohms．$£ 125$.
audio signal gemerator
$15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$ ，sine
jib．audio sigmal generator
$5 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$ ．P
B．Audio sigmal gen
per JIB except fitted with
S．TRANSISTOR
7．10．0．
rriage 10／－per i

tez2 sine souare wave AUDIO GENERATORS

RECORDING HEADS

Reuter l－track．As fitted to Collaro Mk． 15 and Studio Decke．H1gh imp．record play back，low lmp．erase．Brand new． $19 / 6$
pais． palr．MIIFLUX $\frac{1}{2}$－track record $12 / 6$.
COSMOCORD \ddagger track heads．HIgh imp． COSMOCORD 1 track heauls．High Imp．
record／playback $65 /-$ ．Low imp．erase $80 /$－． MABRIOTT \pm track heads．High imp． record／playback 65／－．Law inp．erase 20／－ Poat extra．
a CO．（RADIO）LTD．
3－34 Lisle St．，W．C． 2
Also see oppos．page

MULTIMETERS for EVERY purposel/

"UKE 100 Ka/YOLT Ghant 6is. scale. Built- in meter protection. $0 / 5 / 5 \cdot 5 / 10 / 50 /$ $250 / 500 / 1,000 \mathrm{~V}$ /.c.
$0 / 3 / 10 / 50 / 250 / 500$ $\begin{array}{lll}0 / 3 / 10 / 50 / 250 / 500 \\ / 1,000 \mathrm{~V} & \mathrm{a} .0 . & 0 / 10 /\end{array}$ $100 \mu \mathrm{~A} / 10 / 100 / 500$ $\mathrm{MA} / 2 \cdot 5 / 10 \mathrm{~A} .0 / \mathrm{K} /$
$10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M}$ 10Ma. -10 to ${ }_{57}$ RAPAYETKE Range Super 50 Range Multmeter Volts $125 \mathrm{~V}-1000 \mathrm{~V}$ A.c. Volts 1.5 V 1000 V . D.c. Current 25 $\mu \mathrm{A}-10$ Amp. Ohms. $0-15$ Meg Ω.
dB. -20 to $+81 d \mathrm{~B}$.
 O.
 NEW MODEL $500.80,000$ O.P.V. With overloat protection. Mirror acale. $0 / 0 \cdot \bar{a} / 2-5 / 10 / 25 / 100 /$ $0 / 25 / 10 / 25 / 100$; $250 / 500 / 1,000 V . a$
$0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~m}$ $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~m}$
$12 \mathrm{amp} . \mathrm{cc} .0 / 60 / \mathrm{k}$ 12 amp .
$\mathrm{Meg} . / 60 \mathrm{meg}$ Post paiu. $\begin{array}{lrr}\text { MODEL TE-90 } & 50,000 \\ \text { O.P.V. MIRROR } & \text { SCALE }\end{array}$ OVERLOAD PROTECTION /3/12/60/3n0/600/1,200V l.c. $0-03 / 6 / 60 / 600 \mathrm{MA}$ II.c. -20 to +63.1B

MODEL TE-18 -12. $\quad 20,00$ O.P.Y. $0 / 0 \cdot 6 / 30 / 120 / 600 /$ 1/6/30/120/600/1,200v. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$ Megoh/600K/bmeg./60. Megohil MODEL TE 80. 80,000 O.P. 10 . 9) / $10 / 50 / 100 / 500 /$ $250 / 500 / 1$ 000 $25 / 50$ $200 / 500 / 1,0005 . ~ d . e$
$0.50 / 4.5$.
$5 / 50 / 500 \mathrm{~m}$. 0/Gk/60/K/600 K/6 Meg 24.17.6. P. \& F. $3 /$

MODEL PT-34 500 O.P.Y.O/10 $1,000 \mathrm{~V}$. a.c. and i.c. $0 / 1 / 100 / 500$ $\operatorname{man}_{\mathrm{K}}{ }_{38 / 8 . \mathrm{p}}^{\mathrm{d} . \mathrm{c} .}{ }^{0 / 100}$

TE-900 20,000n MOLTMETEB 6in. full view meter colour scale, overload protection. 0/2 $5 / 10 /$ $250 / 1,000 / 5,000 \mathrm{~V}$ a.c. $0 / 25 / 125 / 10 / 50 /$. $250 / 1,000 / 5,000 \mathrm{~V}$ t1.c. $0 / 50 \mu \mathrm{~A} / 110 /$
$100 / 500 \mathrm{~mA}$
10 A $100 / 500 \mathrm{~mA}$
l.c. $20 \mathrm{~K} / 20 \mathrm{~K} / 20 \mathrm{~A}$

IODEL A8-100D 100ER/VOLT 5 mirror scale. Buill: in meter protection. $300 / 600 / 1,200 \mathrm{~V}$.e. 0/6/30/120/300/ $0 / 60 / 300 \mathrm{MA}$ 0/10 $\mu \mathrm{A} /$ $/ 2 \mathrm{~K} / 200 \mathrm{M} / 12 \mathrm{Amp}$. 200 Mn . $200 \mathrm{~K} / 2 \mathrm{M}$ / +17118. 212.10 ti

PROPESSIOHAL 20,000 O.P.V.
 Automatic
overload prooverloat pro-
tection, mir.
male ror
Ranges:
$1 / 10$ $50 / 250 / 500$ / 1,000 volin, il.1. and at, $0-500 \mu \mathrm{~A}$ $10 \mathrm{~mA}, 250 \mathrm{~mA}$. Current: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}$. 2 megohm, Decibels: MODEL TE-70, 30,000 O.P.F. 0/3/15/60/300/ $60 / 1,200$ \%. A.c. $0 / 6$ $30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c. $0 / 30 \mu . \mathrm{L} / 3 / 30$ /
300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K} /$ 1.6 M / 16 megohm

MODEL TE-10A. 200k $\boldsymbol{A} /$ Volt, $5 / 25 / 50 / 250 / 500 / 2,500$ 1.000V. $10 / 50 / 160 / 500 /$ Hila./250 HLA . H.e. $0 / 6 \mathrm{~K} / 6$ megohm. --20 to +22 dB .
 mfti, 69/6, P. \& P. 2/6. MODEL ZQM TRATSISTOR CHECKER It bas the fullest capacity Equally iulaptable for A:0.7-().0967. B:5-2010 Ico: (0-50) microamps " 1 -5mA. Resistance for rode $200 \Omega-1 \mathrm{Ma}$. supplied leals. 45.18.6. P \&

NEW STAR SR-200 SSB AMATEUR RECEIVER
 $160 ; 80 / 40 / 20 / 15 / 10$ metres. Illuminatell slinde rule dial. A meter. Crystal calibrator. Primuct detectur. Autonatic nolse limiter. RF tuning and gain controls. Speaker or phone outputs. 8 walses, 2 tiansistors, 2 diodes. $220 / 240$ y ac. Nupplied
brand new ant guarantecd. $\mathbf{~ 4 0 . 0 . 0}$. (arr. 10%.

TRANSISTORISED L.C.R. A.C.
TO-2 PORTABLE
OSCILLOSCOPE A general purpose low
cost econony oscilloseope for every onscillo Y amp. Baniwinth
2 (${ }^{2} \times \mathrm{M}-1$ MHZ. Input
 mup. 2 theg $\Omega 25 \mathrm{PF}$
Ilnuminated scale. 2 ir tuise.
 $220 / 240 \mathrm{~V}$ a.c. Supplied book 828.10 .0 Garr 10

MEASURING BRIDGE

L. $1 \mu \mathrm{H}-111 \mathrm{H}$,

6 ranges $\frac{+}{+} 2 \%$. ($\because 10 \mathrm{pr}-1.110 \mathrm{Mr}$, it ranges $+2 \%$ Turns ratio $1: 1 / 1,000-1: 11,100$. ranges $+1 \%$. Hridge voltage at, $1,000 \mathrm{c} / \mathrm{s}$. Onerated from 2-tone metal cone. Nize 7: is 2in. 120 P ${ }^{2}$ ens T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges
 R.M.S. fo/s. $-1.2 \mathrm{Mc} / \mathrm{s}$ Decibels -40 to +501 A hupplied brand new complete with leats and instructions. Operation

UNR-30. 4-BAND COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporated variable BFO for CW/BsB reception. Bultit In speaker and $\begin{array}{ll}\text { Supplied branil new guaranteed with } \\ \text { instructions. } & \text { Carr. } 7 / 6 \text { GNS. }\end{array} \quad 13$ GN. instruetions.
TRIO COMMUNICATION RECEIVER MODEL GR-59DE 4 band receiver covering $560 \mathrm{Ke} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{B}$. $10,15,20,40$ and 80 metres. 8 valve plus 7 diode circuit. $4 / 8$ ohm output and phone jack sHB-CW ANL - Yariable BFO O $\$$ meter - Sep. band spread dial - $15445 \mathrm{Kc} / \mathrm{a}$ - Aulio sutput 1.5 W . Variable RF amb AE pain controls $115 / 250 \mathrm{~V}$, itc. Madns. Reautifully designed Nize: $7 \quad 15 \quad 10 \mathrm{in}$. With instruction
 Carr. Paitl.
Carf. Pait.
TRIO Commication Type Healphones. Normally 25.19.6. OUR PRICE 88.15.0 purchased with above receiver

NEW LAFAYETTE SOLID STATE HAG00 REGEIVER 5 BAHD AM/CW/88B ABATEUR ATD GHORT WAVE. 150KC/S TO 400EC/ AND 550ZC/8 TO 30KC/S.
F...T. front end 2 mechanical filters Huge dial Product detector Varlable BFO Noise limiter is Mete: $24 \frac{1}{1} \mathrm{I}$. Bandspread 230 V a.c. 12 L d.c. neg. 15 in . 9 itin 8 tin. Wt.18 lb.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

 completels new trausistoriged recelver coveringis $2-174 \mathrm{Mc} / \mathrm{s}$. Fuly tunahl or ctystal controlled (not supplied) for fixed frequency operation. Incorporates q INTEGRATED CIRCUITA. Built in speaker and illuminated dial. Aquelch and
750
volume
aerial input. Headphone recoriter output.
jack. Operatlon

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 dlodes, 1 HF nussic power,
30 W at 8Ω. Response $30-20,000 \pm \mathbf{d B}$ at 1 W 30 W at 8Ω. Response $30-20,000 \pm$ dB at IW
Distortion 1% or less. Inputs 3 mV and 250 mV Output $3-16 \Omega$. Heparate L. and R. volume controls. Treble and bass control. Stereo phone jack. Brushed aluminium, gold anodised extrude. Nize $10 \frac{1}{2} 3$? 7 it in. Operation case, size $10 \frac{1}{2} 3_{2}^{*} \because{ }^{7}+\frac{1}{2} \mathrm{in}$. Operation

(arriage/insurance $7 / 6$ extra any movel. Full ringe of Gar atat accessorles avallable.

E,M.I. SIMGLE PLAYERS
4 speed with aeparate arm nam cartrige
FIELD TRLEPHOLISE TYPE I (ienerator rlaging, metal casef operaten
from two $1-5 \mathrm{p}$ batterles (not aupplled). Excellent conditlon. 4.10 .0 per palr. Carr. 10/52/6. Carr. 3/6.

230\% п.c. 217.10 .0 CWENTOL
 35

IHE EIEBTRONIE CDMPONENTS CAIALOAUE mur sis til stividid

Used and acclaimed by:SCIENTISTS ENGINEERS TECHNICIANS TEACHERS \& STUDENTS

The latest edition of the famous Home Radio Catalogue is the result of eleven years of most careful selecting, compiling and indexing.

Of course, no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest and best in the world of Radio and Electronics-ready for the next printing.

This edition is without doubt the finest, most comprehensive we have ever produced-it has 300 pages, over 8,000 items listed, over 1,500 illustrations. It really is a must for anyone interested in radio and electronics. With each catalogue we supply a Book Mark giving Electronic Abbreviations, an Order Form and an addressed envelope. All this for only $8 / 6$ plus $3 / 6$ post, packing and insurance. By the way, every catalogue contains 6 vouchers, each worth 1/when used as directed. Send the attached coupon today, with your cheque or P.O. for 12/-. You'll be glad you did!

POST OFFICE PRIVILEGE

When the Post Office Bill, at present before Parliament, becomes law, the present Postmaster General and his department will be replaced by two separate bodies: a new Minister of Posts and Telecommunications and a new public authority, the Post Office. This Minister will assume responsibility of the Postmaster General's wireless telegraphy functions. The Post Office will be sponsored within the Government by the new Ministry of Posts and Telecommunications and will run the Postal, Telecommunication, Giro, Remittance, and National Data Processing services.

Already a fair amount of comment and apprehension has been aroused by certain clauses in this Bill, concerning telecommunications. Clause No. 24 for example states that subject to certain provisions, the Post Office shall have, throughout the British Islands, the exclusive privilege of running systems for the conveyance of all kinds of communications through the agency of electric, magnetic, electro-magnetic, electro-chemical, or electro-mechanical energy.

Pretty daunting at first glance. However, the Post Office authorities have been at great pains to emphasise that the wording of this clause is merely a re-statement in modern terms, of the old Telegraph Act of 1869. At present the Postmaster General has the exclusive privilege of sending telegraphic messages, and this power is to be re-enacted in the current Bill by Clauses 24-27 and vested in the new Post Office.

There are many electronic devices and systems in everyday use which might be considered as coming within the scope of Clause 24. In order to allay fears and misunderstanding in this respect, we set out now what is believed to be the true position concerning the legality of such apparatus.

The Post Office exclusive privilege is not infringed provided the whole system is installed in a single set of premises (which can include outbuildings, i.e. greenhouse or garage), or in a motor car or private boat, and is for the sole use of members of the same household or firm. Thus intercom systems, intruder alarms, and devices for sensing, measuring or indicating physical phenomena, or for controlling equipment or electrical circuits are all permitted.

Almost every other kind of communication does infringe the Postmaster General's exclusive privilege at present, and will infringe the new Post Office exclusive
COUSTRUCTIONAL PROIECTS
BRAKEMETER 96
HARMONAPHONE 107
FENCER UNIT 120
MINIATURE BATTERY CHARGER 137
LAUNDRY PROTECTOR 145
SPECIAL SERIES
BIONICS-4128
GENERAL FEATURES
OPTICAL COMMUNICATION USING LASER DIODES 102
PROBING THE OCEAN 116
AMORPHOUS SEMICONDUCTOR 124
NEWS AND COMMENT
EDITORIAL 95
MAKING MUSIC 115
AUDIO TRENDS 126
NEWS BRIEFS 127, 142
MARKET PLACE 134
REPORT FROM AMERICA 141
READOUT 149
Our March issue will be published on Friday, February 14

[^1]

Fig. I. Circuit diagram of the transistorised brakemeter

MOTOR CAR brake wear occurs so gradually that, until the foot-pedal movement is excessive, or there is some other indication, the driver may well not detect it. The electronic brakemeter is intended to provide a periodical check of braking efficiency. Although the meter shown is a "go/no-go" devicei.e. showing the brakes to be either satisfactory or not-calibration can be carried out so that actual percentage braking efficiency is indicated.

The meter is, in fact, an electronic clock which measures the time during which the vehicle is being retarded (when the brakes are applied). If the initial speed is known, then the average retardation can be calculated; from this, the braking efficiency can be obtained. In practice, a speed of $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. is used and the existing meter scale is not altered; one arbitrarily selected value represents the braking efficiency criterion.

BRAKEMETER THEORY

Braking efficiency is based on the retarding force that the brakes apply to the vehicle. From Newton's second law of motion, $(P=m f)$ it will be seen that if the retarding force (P) is equal to the mass (m), then the retardation (f) is unity $(1 g)$. This retardation is
referred to as 100 per cent braking efficiency and means that the braking force is equal to the weight of the vehicle.

Under normal conditions braking efficiencies as high as this are unlikely, but with ideal conditions 100 per cent, or even higher, can be achieved. The law requires that the braking efficiency is at least 50 per cent $(0.5 g)$ for foot brakes and 25 per cent for hand brakes. From the gravitational equation $v=u-f t$ (where u and v are initial and final speeds respectively), we can calculate the retardation time (t). For a vehicle at $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. ($44 \mathrm{ft} / \mathrm{sec}$) and 65 per cent brake efficiency, we can write:

$$
\begin{aligned}
u & =f t(\text { since } v \text { is zero }) \\
44 & =0.65 \times 32 \cdot 2 t \quad\left(g=32 \cdot 2 \mathrm{ft} / \mathrm{sec}^{2}\right) \\
t & =\frac{44}{20.93}=2 \cdot 1 \mathrm{sec}
\end{aligned}
$$

Our electronic clock has simply to be able to measure this time with acceptable accuracy to indicate an average efficiency of 65 per cent. The electronic brakemeter performs two functions:

(a) it senses the instant the brakes are applied (as the vehicle decelerates) and the instant it stops, and
(b) it measures the time between these instants, i.e. when the retardation is taking place.
Thus the meter will give us the overall efficiency of the brakes during the time in coming to rest. Commercial meters give the maximum efficiency shortly after the brakes are applied and hence are inclined to give slightly better readings than the electronic brakemeter, due to brake fade. This must be remembered when testing and continuous braking applied until the vehicle stops.

CIRCUIT DESCRIPTION

The brakemeter circuit is shown in Fig. 1. S2 is a mercury switch mounted at a slight angle so that when the unit is horizontal, as it must be in the vehicle when being used, the contacts are not made. When the brakemeter is retarded from a constant velocity, the mercury moves up the slight incline and the contacts make. This condition is maintained until the vehicle stops, when the mercury drops back and the contacts open.

The actual timing element consists of the generalpurpose audio transistor TRI with the variable resistor VR2 and the milliammeter in the emitter circuit. VRI forms the bias resistor and Cl is a reservoir capacitor between the base and emitter.

The action of the circuit is as follows: when Sl is closed, the supply voltage is applied to the collector of TR1. Since no bias is applied via VR1, the collector current is very small and there is little or no indication at the meter. This would be the circuit condition just before applying the vehicle brakes.

The mercury switch is connected between the bias resistor and the supply voltage so that as the vehicle decelerates, the mercury closes the contacts and bias current flows through VRI. When this happens, CI, which is of the order of $800 \mu \mathrm{~F}$, starts to charge and the potential across it rises, increasing the bias of TRI. The emitter current I_{e} rises until the vehicle stops. The mercury switch then opens; current rise stops and the bias for TRI is now dependent on the charge stored in C1. This decays, but so gradually that the meter needle falls very slowly-it may well be of the order of several minutes before zero is reached-giving ample time for a meter reading to be taken by the driver. The switch contacts across Cl are part of the on-off switch S1 and ensure that the capacitor can be rapidly and completely discharged between checks.

COMPONENTS AND VALUES

The basic circuit component is the transistor. This is of the general-purpose type, of which there are many to choose from. The OC72 and the XC101 are the obvious of the pnp types, but $n p n$ types can be used if available. In this case, however, the battery and meter polarities must be reversed and the capacitor Cl must be connected with its positive pole to the base. When choosing the transistor, the maximum emitter current (VR2 at a minimum) must be larger than the meter full-scale deflection.

The value of Cl is by no means critical and anything between 500 and $1,000 \mu \mathrm{~F}$ (or even higher) is perfectly suitable. The working voltage of such a capacitor will be low, if the component is to be compact, but there should be no problem here as the supply is only ' volts. The important value in this part of the circuit is the RC product. VRI can be increased for a smaller capacitor, but the disadvantage is that a small capacitor causes the meter needle to drop more rapidly when the mercury switch opens.

Potentiometers VR1 and VR2 are selected by checking in the completed circuit. VRI must control the charging rate of Cl and thus the emitter current rise ($\mathrm{d} I_{\mathrm{e}} / \mathrm{d} t$), so that the meter swing is not unduly fast or slow. If the vehicle is to be stopped from $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. with a braking efficiency of 65 per cent, then the time involved, as we have already seen, is 2.1 sec . If we arbitrarily select a suitable point on the scale (say 3, where the scale is from 0 to 5) to represent this efficiency, VR1 must be selected so that the neecle will approach this point in about 2 seconds; 10 kilohms is a suitable value when the capacitor is $800 \mu \mathrm{~F}$.

VR2 controls the emitter current (I_{e}). If this pctentiometer is too large, the adjustment will be critical and cramped towards one end, while if it is too small, current control may be limited. In practice, 5 kilohms is suitable. The mercury switch is a standard chargeover component and operates as a make and break switch with only two of the three contacts used.

Emitter current is measured with the moving coil milliammeter- 0 to 1 or 0 to 5 mA , as available-it must be remembered though, that the full-scale deflection current must be less than the maximur TR1 emitter current. The meter shown is a miniature type (lin diameter face); this allows the final instrument to be compact, although a larger scale is more accurately and easily read.

The main function of $S 1$ is to switch the 9 V supply, however a changeover switch is used so that in the

Fig. 2. Manufacture of case from a plastics box: (a) Top of lid sawn off leaving frame-shaded section removed. (b) Frame joined and glued to sheet of plastics from original lid-edges trimmed when set. (c) Depth and width of box reduced by removal of shaded areas. (d) Sides joined together and reinforced with plastics strips. Final case size $5 \frac{1}{2} i n \times 2 \frac{1}{4} i h \times 1 \frac{1}{2} i n$.
off position, the capacitor Cl is short-circuited. The switch shown is a slide unit consisting of two threecontact changeover switches.

CONSTRUCTION AND WIRING

The selection of a suitable plastics container for the unit usually presents a problem. Ready-made polystyrene boxes are rarely suitable in shape or size, so it is as well to obtain the nearest and alter it. Fig. 2 shows how this has been carried out for the brakemeter shown, the final size being $2 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in. The original plastics lunch box was found to be suitable in length only, so adjustments were made.

The top of the lid was carefully sawn off, leaving the frame, a section of which was then removed from each short side. The two pieces of frame were then joined up using polystyrene cement to form the required shape. A sheet of plastics from the cut-off top was then stuck to the lid frame and trimmed when the cement had hardened. Before altering the base the components were mounted on the lid, this allows the depth of box required to be accurately determined. The box is cut depth-wise by removing a section.

The width is then reduced by cutting as shown in Fig. 2. The first cut is along the centre line of the box as it will be; the unwanted section is cut out and the edges sandpapered flat and joined with cement. Since the box is now seamed, it is weaker than before and so reinforcement is provided by plastics strips stuck as shown.
The control face can be made neater by fitting a white card under the transparent lid. This is held in position by the potentiometer nuts, etc. and carries the title of the instrument and control indications. The two arrows (red) indicate the vehicle's direction of travel. VR2 is annotated I_{e} (emitter current), while the rate of change of emitter current (VRI) is annotated $\mathrm{d} \mathrm{e}_{\mathrm{e}} / \mathrm{d} t$.
Component layout is very much a matter of choice, the only significance being the position of the mercury switch. This must be arranged so that, when the meter is used, the switch tube is inclined slightly in the vehicle's direction of travel (Fig. 3). A satisfactory layout is shown in Fig. 4. Here, the components are arranged around a symmetrical control face layout.
The on/off switch and most meters carry their own fixing devices, but improvisation is necessary to mount dhe 9 V battery, the mercury switch and the transistor. The battery mount consists of two lengths of 6B.A. threaded rod (or long bolts), held to the control face by means of nuts. The battery is held in position by a short strip of metal (in this case a piece of H -section curtain rail) and two 6B.A. nuts. The battery clip is simply the clip-plate from a discarded PP3 battery.

Mercury switches generally require a special mount as the basic switch is a glass tube, containing the mercury and the contacts. Fig. 3 shows how the switch is mounted on the lid. The glass tube is lashed with cotton to a small brass strip, which is bent to carry the switch at an angle. This angle must not be great enough to prevent the mercury from moving with a small retardation, and yet it must not be so small that vehicle vibration causes the switch to operate. In practice, an elevation of five degrees is found to be satisfactory.

The strip is held in position by two 6B.A. nuts and bolts. One of these is longer than the other and carries (between two 6B.A. nuts) a small strip of Veroboard, to which the transistor is soldered. Of the conducting strips, four are used; three carry the transistor and the fourth is a connection between the mercury switch and VR1.

The meter used had no fixing holes and has been positioned against the lid by means of a plastics strip and two 4B.A. bolts; however, the majority of meters

Fig. 3. Details of mercury switch mounting

COMPONENTS ...

```
Potentiometers
    VRI 10k\Omega
    VR2 5k\Omega
Capacitor
    Cl }800\mu\textrm{F}\mathrm{ elect. 15V
Transistor
    TRI XCl01 or OC7I
Miscellaneous
    51 Double pole change-over slide switch
    52 Mercury switch (Proops Bros. Ltd.,
        S2 Tottenham Court Rd., London. W.I)
    BYI OV battery, PP3
    MI O-5mA moving coil milliammeter
    5mall piece of Veroboard
    Plastics case (see text)
    18 s.w.g. brass strip and 6B.A. fixings
```

have a fixing flange. The capacitor is supported by ite leads, though a small strap could be used if the component requires it. Fig. 4 is intended as a guide, since the actual wiring will depend on the relative positions, of the components, as decided by the reader. Points to observe are the correct polarities of the capacitor and meter.

TESTING THE BRAKEMETER

Having completed the brakemeter, it is first necessary to check that the circuit is working correctly. For this, turn VR1 to a minimum and VR2 to a maximum, tilt the unit to operate the mercury swich and switch on SI, In this condition, there should be little or no meter indication. Adjust VR2 until the meter needle is at full scale deflection and observe that there is more adjustment available to take the emitter current above this value. Now increase the value of VRI to about half its available sweep.

Fig. 4. Layout and wiring diagram of the brakemeter

Switch off S1 to short-circuit any charge on C1 and then switch on. With the unit tilted, observe that the needle climbs steadily to full-scale deflection. Repeat the test with VRI less and greater, checking that the needle climb is faster and slower respectively. If the meter behaviour is not, in principle, as described, then the wiring should be checked. Further failure should suggest that a component (probably transistor or capacitor) is faulty.

The reader will have observed the insistence that the maximum emitter current is greater than the meter full-scale deflection; there is a reason for this: the charge of CI through VR1, and thus the current rise,
is exponential. This means that the needle moves rapidly at first, but slows down until it approaches the current representing full Cl charge very slowly. It will be clear that the time scale is non-linear and some difficulty would be experienced in obtaining accurate readings where the needle climb is very slow. By setting the limiting value of I_{e} above full-scale deflection, we ensure that the needle operates over the initial, and therefore more linear, part of the charging curve.

CALIBRATION-GO/NO-GO

The brakemeter can be calibrated in two ways:
(a) to provide indication of the minimum required efficiency; indication is thus that the brakes are efficient or inefficient;
(b) to provide an indication of the actual brake efficiency, meter readings being converted into percentages from a table.
Calibrating for minimum acceptable efficiency is useful as readings above indicate the brakes to be satisfactory, while those below indicate that some adjustment is necessary.

The minimum acceptable efficiency can be determined by the legal requirement, or it can be higher to provide a better margin of safety. Suppose we accept a figure of 70 per cent (a retardation of 0.7 g). From $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , this would cause the vehicle to stop in 1.95 seconds. The obvious way to calibrate then, is to use a stopwatch; this should be an instrument with a large sweep if accuracy is to be obtained. To calibrate, proceed as follows:

1. Hold the brakemeter in the left hand and the stopwatch in the right hand.
2. Switch on the brakemeter, but do not tilt to operate the mercury switch.
3. Simultaneously tilt the brakemeter forward and start the watch. As the hand approaches 1.95 seconds, tilt the brakemeter back to open the mercury switch. Note the meter reading.
4. Adjust VR1 and repeat the test until this time coincides with some arbitrary reading.

CALIBRATION-ACTUAL EFFICIENCY

The second calibration method involves representing each value on the scale by a percentage of brake efficiency. The first step is to adjust the meter as above, so that the criterion of acceptability is at a
convenient scale value. Having determined this, the time taken for the needle to reach other scale values is measured and the brake efficiencies calculated.

As an example, if the meter needle took 3 seconds to reach a scale value of (say) 4, what percentage brake efficiency would this represent? As far as the vehicle itself is concerned, this would represent stopping from $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in 3 seconds. From the formula $u=f t$, we can write $44=3 f$ or $f=14 \cdot 6 \mathrm{ft} / \mathrm{sec}^{2}$. Now $1 g$ is $32 \cdot 2 \mathrm{ft} / \mathrm{sec}^{2}$ so that the retardation is

$$
P=14 \cdot 6 / 32 \cdot 2=0.45 g
$$

A scale value of 4 then, represents 45 per cent braking efficiency.

Clearly, once VR1 and VR2 have been suitably preset, values of braking efficiency can be calculated for all scale values. It should be remembered that the higher the scale value, the lower will be the braking efficiency. To ensure that VR1 and VR2 are not moved after calibration, control knobs are not fitted and it is useful to seal the shafts with a small splash of paint.

CALIBRATION USING A PENDULUM

While a stopwatch is a quick and easy way of calibrating the brakemeter, it is not essential as there is another way of measuring small time periods-the pendulum. A simple pendulum consists of a small bob-weight suspended by a length of thread; the time (t) for a complete swing (back and forth) is given by $2 \pi \sqrt{ }(l / g)$, where l is the length of the thread (ft) and g is the gravitational constant ($32 \cdot 2 \mathrm{ft} / \mathrm{sec}^{2}$).

This can be re-arranged to the form $l=g t^{2} / 4 \pi^{2}$, which it will be seen, gives us the length of thread required in terms of the time t. Now, we have already established that the retardation time for a braking efficiency of 70 per cent is 1.95 seconds. If we put this in the above expression we get:

$$
l=\frac{32.2 \times(1.95)^{2}}{4 \times(3.14)^{2}}=3.1 \mathrm{ft}
$$

It will be noticed that this is quite a convenient length. The pendulum can be suspended from a pin pushed into the top of a door frame. The bob-weight should be physically small (to reduce air drag) and weigh a couple of ounces approximately. Once the

Brakemeter in use in the car. The meter should be placed in such a way that it will not move forward during braking. It is advisable to turn the unit on just before brake testing to avoid incorrect readings

Table 1: BRAKING EFFICIENCY AGAINST RETARDATION TIME AND PENDULUM LENGTH

For Vehicle Speed 30m.p.h. (44ft/sec)		
Braking Efficiency (Percentage)	Retardation Time (Seconds)	Pendulum Length (Feet)
100	1.367	1.531
90	1.18	1.879
80	1.708	2.380
70	1.952	3.108
60	2.277	4.231
50	2.733	6.092
40	3.416	9.523
30	4.555	16.92
20	6.832	38.09

pendulum has been rigged, it can be checked against the second hand of any watch or clock. With the duration of a complete swing as 1.95 seconds, there should be $30 \cdot 71$ swings per minute. In practice, approximately 31 is sufficiently accurate.
The pendulum should swing through a few inches only as the mathematical relation is accurate only for small displacements. To calibrate the brakemeter with the pendulum, proceed as follows:

1. Set the pendulum swinging.
2. Tilt the brakemeter forward to oparate the mercury switch.
3. View the pendulum so that as it reaches the vertical-i.e. it is travelling at maximum speed-it passes some convenient mark on the wall or floor.
4. As it passes the mark, operate the on-off switch.
5. When it again passes the mark after one complete swing (travelling in the same direction), tilt the meter back to open the mercury switch.
6. Now observe the meter reading; this represents 1.95 seconds or 70 per cent braking efficiency.

A number of readings should be taken to ensure consistency and, where necessary, VR1 can be adjusted to bring the meter reading to some convenient value on the scale. Pendula can, of course, be rigged to represent the retardation times associated with any braking efficiency. Table 1 gives relevant information for a number of braking efficiencies.

BATTERY TEST

The performance of the brake meter is obviously dependent on the battery condition and the question arises of when the battery is considered to be exhausted. A partially exhausted battery will tend to recover when not used, but the current drain from it will gradually fall when it is switched on. This is indicated by a noticeable slowing of the meter response. The battery test then, is as follows:

1. Tilt the meter to close the mercury switch.
2. Switch on S1 and observe the needle rise to full scale deflection (timing it if possible). Leave the meter tilted and switched on for some 5 minutes and then switch off.
3. Now tilt the meter, switch on and observe that the needle response is not noticeably slower. If it is, then replace the battery.
The battery used in the brakemeter is a 9 V transistor radio type PP3, though larger capacity batteries of the same supply voltage will give satisfactory performance for a longer period without replacement.

Quite a clever girl is our Emma. She reacts to light and dodges obstacles. Give her the run of your home - she's a pet with a difference.
Who is Emma? Well, briefly, she's a practical development from our Bionics Series planned to put you a jump ahead in more ways than one. Her anatomy will be revealed in full detail next month. So don't miss meeting her then.

Also
 PHOTOGRAPHIC TIMER

Reliable, accurate and costing little to build, this unit is mainly intended for photographic work, but can be used for many other applications. Timing range is variable from 0.1 second up to two and a half minutes, with an accuracy of better than 5%.

MARCH ISSUE, on sale Friday Feb. 14
ORDER YOUR COPY NOW!

Within the last few years, light emitting diodes have become an important source of coherent light. Gallium arsenide was the first material used for this purpose; gallium phosphide diodes are now in production; laser diodes using silicon carbide are more rêcent. The effect is not new (it was first reported in 1932) but only now has semiconductor technology advanced sufficiently to produce optical diodes with a usable output.

THE GALLIUM ARSENIDE DIODE

The appearance of some commercially available gallium arsenide diode lamps is shown in the photograph. Essentially the structure is of a pn semiconductor diode, surrounded by a sphere of resin which focuses the radiation into a narrow cone. This sphere may be regarded as a matching device which couples the gallium arsenide light source efficiently to air.
Electrically, the gallium arsenide diodes behave like any other semiconductor diodes, having a forward current/voltage characteristic as shown in Fig. 1. At forward currents of more than 2 mA light is emitted and at higher current levels, the graph of light output against diode current is linear (Fig. 2). As with any

Two types of gallium arsenide diodes. (A) and (C) show the high power diode (10 mW at IA) GAL 2, with alternative optical couplers, and (B) shows the lower power diode GAL I
other semiconductor device, the junction may be damaged by excessive current (due to local overheating) and a maximum continuous current is specified by the manufacturer (100 mA in the case of the GAL 1). The diodes may also be used with short pulses, and a maximum pulsed current (3 A for the GAL 1) is also specified.
Optically, the diodes behave as point sources of light with an extremely small time constant (unli) an incandescent filament lamp). These charact ristics make it possible to obtain a beam which dive. ges very little from the parallel ray condition when the diode is placed at the focus of a lens, and to modulate this beam at high frequencies (flat response to modulation frequencies up to 75 MHz is claimed).

COMMUNICATIONS USING THE GALLIUM ARSENIDE DIODE

The range over which an effective beam can be sent is. difficult to calculate; most published reports work on the assumption that the diode is slightly off the focal point of the lens and forms a focused image at some distance from the lens (Fig. 3). In this case, the magnification of the image is given by v / u, and the area of the image by $a(v / u)$ where a is the area of the source.

A better though more difficult approach is to calculate the divergence of beams from the focal point of the lens using a more accurate formula for lens refraction. This method indicates rather less beam divergence and agrees with the results found in practice, where divergencies of less than 1 cm in three metres could be easily obtained using cheap lenses.
In practice, the gallium arsenide diode may be used for communications over a considerable distance, despite the very low power output of 0.5 mW , provided that the transmitting diode is located accurately at the focus of a lens and that the receiver is equally able to focus the received beam on to a suitable receiving device.

The choice of receiving device is important, for the emission from the gallium arsenide diode is in the infra-red region. Although infra-red radiation is invisible to the naked eye, high power pulsed conditions can cause the eye to fluoresce giving the appearance of a red glow. Close viewing of a diode under these conditions may result in damage to the eye, but under the operating conditions described in this article, the diodes are rendered completely safe to use.

COMMUNICATION EXPERIMENTS

Where long-range working is not required, a phototransistor of the OCP71 family may be used as the receiving device; alternatively, the paint may be scraped off any glass encapsulated transistor. The photottansistor should be mounted at the focus of a parabolic mirror as shown in Fig. 4.

The focus is the point at which parallel rays all meet, and it is most easily found by placing a small light bulb near the mirror and adjusting its position until the projected beam is of the same size as the mirror; an old car headlamp reflector is ideal. The position of the focus is shown by the position in which the bulb filament was mounted.

The phototransistor may be mounted with Plasticine and the leads taken to an amplifier such as is shown in Fig. 5. The mirror should be earthed to avoid pick-up of mains hum. The gain should be high enough to give a loud noise output when the equipment is used indoors in darkness.

One difficulty should be mentioned here; if the phototransistor is exposed to sunlight, maximum current flows in the collector circuit of TRI and the transistor "bottoms", hence no signal is available to the amplifier. If the phototransistor is exposed to light from an a.c. mains source, then a strong 50 Hz

Fig. 3. Focusing the beam-for the lens to focus all the radiation from the diode its diameter should be mare than twice its focal length (u)

Fig. 4. Phototransistor mounted in the parabolic mirror

Fig. 5. Circuit diagram Fig. 5. Circuit diag
of optical receiver

Fig. 8. Basic transmitter circuit for use with the GAL \mid gallium arsenide diode
note is heard (this is a good way of checking that the receiver is working). Later, we shall describe methods of avoiding such effects, but they are no hindrance to experimental work if they are borne in mind.

TESTING THE DIODE FOR POSITION

Once the receiver is working, the diode can be tested. A quick test method is to connect the diode across the extension loudspeaker socket of a radio set or tape recorder, using a milliammeter to check the mean current through the diode (Fig. 6). The diode rectifies any a.c. feeding to the milliammeter. The modulated light transmitted by the diode is of only half the audio waveform, so that the sound heard on the receiver is very distorted. This is of no importance when setting up to investigate focusing and range.

Using a lens of about 10 cm focal length in front of the diode, and adjusting for the loudest note on the receiver, the beam width can be determined as shown in Fig. 7.

ACTIVE COMMUNICATION SYSTEMS

To avoid the distortion due to diode rectification, sufficient standing current must be passed to prevent the diode from cutting off during audio peaks. Fig. 8 shows a suitable circuit for modulating a gallium arsenide diode from a dynamic microphone. It is also possible to transmit using a carbon microphone, battery, and diode, but the standing current is variable and the quality poor.

For maximum range, the parabolic mirror on the receiver should be fitted with a filter to exclude light outside the infra-red region. Such filters are obtainable from large photographic dealers; failing this, deep red filters as found on the older type of darkroom safelights may suffice. For maximum sensitivity the photo-

Fig. 7. Set-up for measuring effective beam-width. The boards are moved together until the output meter reading falls by 10 per cent, this is the effective beam width

Fig. 9. Set-up for a reflective communication system using an aluminium foil reflector
transistor should be replaced by a silicon photovoltaic diode, which has maximum sensitivity at the wavelength emitted by gallium arsenide diodes.
The main disadvantage of this type of communication system is that one cannot have both range and portability. For maximum range, the beam must be near parallel and the transmitter must be precisely aimed at the mirror of the receiver. This can be achieved only if both are fixed, having been lined up for maximum signal strength.
The beam can be broadened by removing the lens, or reducing the distance between diode and lens so that the beam spreads out. There is then little difficulty in locating the receiver with the beam but, since only a fraction of the spread beam is intercepted by the receiver, the signal is attenuated. This condition can be acceptable, but only for short range work.

MODULATED REFLECTOR

The use of gallium arsenide diodes in reflective communicating systems is one of the most fascinating fields open to the experimenter. The principle is shown in Fig. 9, the gallium arsenide diode emits a continuous unmodulated beam. The beam is kept narrow by using a lens with the diode at the focus. The aluminium foil reflector reflects this beam back to the receiver, which is of the same form as that detailed earlier. If the aluminium foil is now vibrated its movement causes the reflected beam to be diverged and converged alternately so that the beam at the receiver varies in amplitude in sympathy with this vibration.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the help given by the Alan Clark Research centre and the Components Division of Plessey Ltd. in the preparation of this article.

a new 4-way method of mastering by doing - and - seeing...

How do you measure the extra quality of EmII speakers?

Listen!

EEWIEOTHIT
EMI are famous throughout the world for High Quality sound reproductiot. Now our audio design engineers hare developed loudspeaker systems suitable for home use.
These EMI Loudspeaker Systems, spezially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches $\times 14$ inches bass unt. power output 50 watts R.M.S.

Send for literature and price lists to:
EMI
EMI SOUND PRDDUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 667

MAKE YOUR MONEY GO FURTHER with STUOEET EIECTBOMC SERVICES

RESISTORS: All brand new, Hi-Stab, low noise, 5% rol., carbon film IW E12 series 47-10M, 2d. each or $15 /-$ per 100 of one value; $1 W$ E24 series $4.7-10 \mathrm{M}$, 2d. each or $15 / \mathrm{W}$ per 100 of one value. IW El2 series 10 - $10 \mathrm{M}(10 \%$ rol.), 3 d . each; 3 W wirewound $0.5-12(5 \%$:ol.), $1 / 6 \mathrm{each}$; $5 W$ wirewound 15-8k2 (5% tol.), $1 / 9$ each.
S.E.S. Pre-Pack gives you 5 off each 5% resistors from 4.7 to $1 M_{4} \pm$ or $\frac{1}{2} W$ -
$\mathbf{6 5}$ different values (E12)-ONLY $\mathbf{2} 2.12 .6$. 65 different values (E12)-ONLY $\mathbf{E 2 . 1 2 . 6}$.
PRE-SETS: Min. skeleton carbon track, low noise with good stability; Values-Lin: $1 k, 2 k 5,5 k$, etc., to $5 M$; Log: $5 k, 10 k, 25 k$, etc., to $1 M$, only
10d. each; Sub-Min skeleton Lin. track-lk, $2 k 5$, $5 k$, etc., to $5 M, 9 d$. each; Slider presets wirewound $\frac{1}{2} \mathrm{~W}$ rating Lin. tracks 10 to $5 k, 2 / 3 ; 3 \mathrm{~W}$ wirewound fully insulated Lin. tracks 10 to $30 \mathrm{k} .3 / 9$.
POTENTIOMETERS: Min, enclosed, carbon track and wiper contact only $2 / 6$: Values-Lin: $1 k, 2 k 5$, $5 k$, etc., to 10 M ; Log: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., to 5 M ; Min. with double pole switch, insulared spindies only $5 / 6$; ValuesLin. track 50 to $100 \mathrm{k} ., 7 / 4$ each.
CAPACITORS: New genuine Mullard Electrolytics

(Min.)							(5mall)			
6.4 V	6.4	25	50	100	200	320	640	1,000	1,600	2,500
10 V	4	16	32	64	125	200	400	640	1,000	1,600
16 V	2.5	10	20	40	80	125	250	400	640	1,000
25V	1.6	6.4	12.5	25	50	80	160	250	400	640
40 V	1	4	8	6	32	50	100	160	250	400
64V	0.64	$2 \cdot 5$	5	10	20	32	64	100	160	250
Prices:	each				. ea		1/3	$1 / 6$	1/9	2/6

25 V	800	1250	(Large)	4000	6.400
40 V	500	+800	1,250	2,500	4,000
64 V	320	500	800	1,600	2,500
Prices:	5/-	6/6	8/-	12/6	15/-

Mullard Miniature Meta!lised Polyester 250v.w. $0.01,0.015,0.022,0.033$, Mullard Polyester Film and Foil 400v.w. $0.001,0.0015,0.0022,0.0033,0.0047$, 0.0068 , etc., to $0.033 \mu \mathrm{~F}$ 6d. each. 0.047 to $0.1 \mu \mathrm{~F} 8 \mathrm{~d}$, each. 0.15 d ... $0.22 \mu \mathrm{~F}$ i/h, $0.33 \mu \mathrm{~F} 1 / 6,0.47 \mu \mathrm{~F}, 1 / 9$.
Dise Ceramies (Erie) $500 \vee . w .1,000,4,700 \mathrm{pF}$ only 5d. each; Silver Mica 1% col. 500v.w. 2.2 to $820 \mathrm{pFI} / /$ each; Polystyrene 10% tol. 160 v w. 100 to 1,000pF only 5 d . each.
SEMICONDUCTORS: ALL GENUINE MULLARD NEW AND UNUSED,
0A5 4/6, OA81 3/4, OA202 2/3, OC71 4/-, OC72 4/6, OC44 7/9, OC45 6/-. BCIO7, BCIO9 3/9 each. BCiO8 3/6, BFY5I 4/6. F.E.T.-MPF $1059 / 6$. silicon Recrifiers- (0.5 A) 400piv 2/9, B00piv 3/-, 1,500piv 3/6 (1-2A) 400piv 6/-, 800 pir $7 /-1,500$ piv $7 / 6$. (2.5A) 400 piv $6 / 6$, 800 piv $7 / 6$, 1,500 piv $10 / 6(1 \cdot 2 \mathrm{~A}$ and $2 \cdot 5$ A types are scud mounced).
SWITCHES: Vast range of roggle, push, butcon and rocker switches with or without cencre position S.P.S.T., S.P.D.T., D.P.S.T., D.P.D.T. Very high
quality. Toggles priced as low as $2 / 8$ for S.P.S.T. Push-co-make or Push-toqualty, duty coggle D.P.D.T. With centre position rated 10A $110 \mathrm{~V} 9 / 7$. Miniature "Maka-Switch" also available-shafts 5/-, wafers 5/4.
Stocks also include a wide range of plugs and sockets including jacks and mains; a range of hardware and accessories which is increasing daily to supply you the customer with wire, pilot lights, insulating tape, and almost anything else needed when building a circuit of your choice
stock soldering irons by A.N.T.E.X. and solder by Multicore.
You will find all details of our stocks in our catalogue-a 120 page handbook divided into easy reference sections by the use of different coloured pages. The final section of the catalogue contains complete details of the LEKTROKIT chassis construetion system including hines on assembly. A copy of this catalogue can be yours for just $3 / 6$ and then you will see that Student Electronic Services are YOUR complete supplier. (For general data sheet send a 6d. stamp.)
Please include C.W.O. $1 /-\mathrm{P}$. \& P. on orders of componencs under El Orders of Lektrokit: 2/- handling charge on orders under $\mathbf{6}$.

Send, with name and address to
STUDENT ELECTRONIC SERVICES
196 Regent Road, Salford 5, Lancs.
Visit us at above address or call 061-872 5187

A simple electronic device for augmenting, in an unusual way, the sounds of guitars and many other instruments with magnetic pick-ups or microphones. Gives "fuzz" and "subs".

2 *"It will be found that a rather unpleasant sound is - produced if more than one note is fed into the input at the same time. A foot-switch is therefore included to switch the Harmonaphone "in" and "out". This means that, with a guitar, for example, chords should only be played with the Harmonaphone switched out, and the Harmonaphone switched in for guitar "breaks" by means of the foot-switch.

The Harmonaphone has one input into which is plugged the magnetic or acoustic pick-up fitted to a guitar or similar instrument, or microphone placed in front of an instrument (e.g. oboe, flute, clarinet).

CIRCUIT FUNCTION

The input signal is fed into a pre-amplifier, which is connected to the input of a Schmitt trigger (see Fig. 1). This is turned on by the one edge of the "sine-wave" input, and off by the other edge (Fig. 2).

The two switching voltages are made distinctly different by the different values of the collector resistors in the triggering circuit. The reason for giving the trigger such a large hysteresis is that the input signal often contains harmonics of quite large amplitude, superimposed on the fundamental, and these can cause double triggering if the trigger has a small hysteresis.

(e)

Fig. 2. Waveforms, based on the fundamental tone, appecring at different parts of the circuit
(a) Input signal
(b) Output of Schmitt trigger (TR5 collector)
(c) Output of flrst divider (TR6 collector)
(d) Output of second divider (TR9 collector)
(e) Output after being fed through RC filter in mixer

Fig. 3. Mixer and filter circuit with relay contact, input, and cutput connections

Fig. 4. Independent relay circuit. The relay can be any type with two or more changeover sets. Battery voltage and R32 depend on the relay

A potentiometer (VR1) is included to adjust the amplitude of the signal fed into the Schmitt trigger. This is adjusted so that the device works for the quietest notes, but is not sensitive to backgrourd noise. The output of the trigger, which is a square-wave of the same frequency as the input note, besides being used for the "fuzz" effect, is fed into two bistable frequency dividers in series. The output of each of these is taken from the collectors of one transistor in each divider.

In the mixer (Fig. 3) the square-wave signals from these dividers are passed through RC filters to produce sine wave signals. These two signals, and the square wave for the "fuzz" effect, are each fed to one of three potentiometers, which are used to vary the combination of signals in the output. The total signal generated by the device is then added to the original signal, which is taken from the collector of TR1, and whose volume is controlled by a fourth potentiometer. The final signal is fed via the output lead to a power amplifier.

COMPONENT NOTES

The pre-amplifier has three transistors, each having its emitter grounded, so as to give maximum gain. If the transistors used have low gains, or the input signal from the microphone or pick-up is very weak, it may be necessary to double the first stage of the preamplifier. This is mentioned later.

The gain of the pre-amplifier should be such that the device will oscillate through internal feedback with VR1 turned to the maximum sensitivity position. PNP transistors may be used in place of $n p n$, and vice versa, provided that the battery connections and diodes are reversed. The printed board may also have to be altered.

The battery voltage for the device is given as 9 V , but this is far from critical. A separate battery is used to operate a relay, switching the device "in" and "out". The relay is operated by a footswitch, which can be either on the front panel of the Harmonaphone, or in a remote position. The battery voltage for the relay is chosen according to the relay used and a resistor can be included to reduce the relay current if a convenient battery delivers too high a voltage (see Fig. 4).

The transistors used in the trigger and dividers need not be of particularly good quality, as they are only used for switching. Therefore, if substitutes are used for those suggested, a great deal of expense is not necessary.

The transistors in the pre-amplifier, however, should be of reasonable quality. The diodes can be of almost any type and component values in the dividers are not critical.

Fig. 5a. Full size printed circuit pattern on the back of the board

If the device is not housed in a metal case, it is advisable to use screened wire for some of the longer leads, especially in the input circuit.

CONSTRUCTION AND TESTING

As the circuit is fairly complex, a printed circuit board for the tone generator will greatly reduce the size and complexity of the device. The complete layout for such a board is shown in Fig. 5. All resistors are mounted vertically and transistor connections are planned for $2 \mathrm{~N} 1302,2 \mathrm{~N} 1303$, and 2 N 3705 transistors, as stated in the component list. Equivalent transistors may, of course, be used, but the 2 N 3705 was chosen because it is a small transistor, adequate for use in the divider circuits. In the prototype the printed circuit board was $4 \mathrm{in} \times 2 \frac{1}{2}$ in and is shown full size.

The printed circuit board should be constructed, wired, and checked. When an input signal, say from a signal generator, is connected to the input, a square wave signal should appear on TR 5 output when VR1 is adjusted to a suitable setting. At the same time, square wave signals one and two octaves lower should appear on TR6 collector and TR9 collector respectively.

Fig. 5b. Layout of components with transistor connections and leads to mixer

Care should be taken in connecting the battery, as each side has to be connected at two different points on the board and confusion can easily occur.

Once the tone generator is complete and tested, the construction of a box for the device can be started. A suggested layout for the front panel is shown, as viewed from behind (Fig. 6). The mixer circuit is wired in the box, the tags on the potentiometers providing supports for the components. Both a footswitch and sockets for an external footswitch are shown in the diagram.

If extra contacts are available on the relay, these can be used to switch on the tone generator, in order to reduce battery consumption. This is, however, perhaps an unnecessary precaution and has the disadvantage that the footswitch may accidentally be left in the on position. The use of a separate on/off switch is therefore advisable. This can be combined with a potentiometer, for example, VR2.

If the battery provides a larger than necessary voltage for the relay, a resistor should be included to reduce battery consumption. The value of this must be found by experiment. When a suitable value has been found for a new battery, it should be checked with an old one

Fig. 6. Layout and wiring of the mixer and relay circuits inside the box. Connections to the printed circuit board are also shown
and reduced if necessary. The actual relay type is not important so long as it has at least two sets of changeover contacts.
Two jack sockets can be mounted on the panel for output and input, or one socket for input and a lead (screened pair) with a jack plug for the output. The leads to the printed circuit board need not be screened if the box is metallic and connected to the earth line.
The board should be mounted in a manner that gives easy access to the back of the panel for alterations or repairs and for this the wires to the board should be long enough to enable the board to be withdrawn a few inches out of the box. If the top of the board faces upwards, it should be checked that none of the components touches the clips on the batteries or the components of the mixer unit or, indeed, the case.
The prototype fitted easily into a metal box, about $6 \mathrm{in} \times 6 \mathrm{in} \times 2 \mathrm{in}$. The front panel was the top face of the box and a hinged lid formed the base of the Harmonaphone. The lid was fastened by one screw, so that the batteries could be replaced easily. None of the wiring under the front panel (the mixer unit) filled the box to a greater depth than the potentiometers on to
which the wiring was attached. The potentiometers were mounted so that they formed ready-made battery retainers with the walls of the box (see Fig. 6). The relay was bolted to the side of the box.

The printed circuit board (tone generator) was insulated from the metal base of the box by means of padding, which also protected it against damage. It was found unnecessary to mount the board rigidly in the box. Instead a square piece of foam rubber, about in thick, was layed over the wiring of the front panel; the printed circuit board was sandwiched between this and the felt padding, which was glued to the lid of the box. Hence the board was both insulated from the wiring of the front panel and the metal box, and was cushioned against blows on the box itself. Also, of course, this arrangement makes access to both the board and front panel wiring very easy.

If one wishes to mount the board on rigid supports, the wiring in the box should be carefully planned and insulated, to ensure that .. ${ }^{-n e}$ of it can touch the printed circuit board. Also, provision must be made for bolts or nuts fastening the board to these supports, possibly by making the board slightly larger. The supports

could be fixed to the front panel, but preferably to the lid, so that access to both the board and panel wiring is possible when the lid is lifted. In this case the wires to the board are best made a little longer.

If it is found that the gain of the pre-amplifier is not adequate, either because the transistors used have poor gains, or the pick-up used with the Harmonaphone has a very low output, an additional stage of the pre-amp can easily be added to the wiring on the back of the control panel.

An additional 2N1302 can be supported by soldering its emitter lead to any point connected to earth (negative), either on a potentiometer or the input socket. The original input line is then connected to its collector which is connected through a 4.7 kilohm resistor to the positive supply.

A 22 kilohm resistor is connected between emitter and base, which is connected to the input socket via a $0 \cdot 1 \mu \mathrm{~F}$ capacitor and through a 330 kilohm resistor to the positive supply line. This doubling of the first stage of the pre-amp should, however, be unnecessary if high gain transistors are used. A high gain 2N2926 could be tried.

Finally, rubber feet can be glued on to the base of the Harmonaphone case to prevent it sliding across the floor when the footswitch is used.

SETTING UP

In setting up the device, the pick-up or microphone is plugged into the input, and the output of the device into the amplifier. The amplifier volume is adjusted to the desired level. The on',off switch is then switched on and the foot-switch put in the "on" position.

The "fuzz" volume (VR2) is turned up slightly, then the sensitivity control (VR1) is turned up, while the
instrument is being played, until suitable triggering is obtained. Then the "fuzz" volume is turned off, and the direct signal volume (VR5) adjusted to give the required direct signal volume, this being of the same order as that when the foot-switch is off. Then the three other volumes ("fuzz", first octave, and second octave) are adjusted to give the desired sound.

The best results are obtained with instruments which produce the purest notes. If the harmonics are too strong, the Schmitt trigger may seem unable to "make up its mind" which signal it is responding to. The result is a yodelling sound, as the output changes from one octave to another.

In this case a filter can be put in the input. This will depend on the type of guitar and pick-up and is a matter of experiment. Often a bass-booster or treble-booster, included between the pick-up and Harmonaphone input, will eliminate many unwanted harmonics. If it is intended for use with one instrument only, then the filters found to produce the best input signal can be built into the Harmonaphone.

USE OF THE HARMONAPHONE

In small groups and bands the Harmonaphone provides an excellent means of producing a "full" sound. It may even be used to provide bass when the group is lacking a bass guitar or double bass, but does have an ordinary guitar. Also, it has the advantage that the output sound has only a slight dependence on the input sound. Consequently, even a very simple wind instrument, such as a recorder, may be used to produce a church organ sound if the amplifier, into which the Harmonaphone is plugged, has reasonable echo or reverberation facilities.

plug in the smallest soldering iron available

Complete precision

 soldering kit

This kit-in a rigid plaştic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron. fitted $\frac{3^{\prime \prime}}{16}{ }^{10}$ bit.
- Interchangeable spare bit $\frac{5}{32}$ ".
- Interchangeable spare bit, $\frac{3}{32}{ }^{\prime \prime}$
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.
From Electrical and Radio Shops or Benc ase 49/6 to Antex.
. . . pin-point precision soldering . . . fingertip control... bits that do not stick to shafts . . . bits that slide over elements ... sharp heat at the tip . . . reliable elements . . spares always available . . .
in Europe, Afriça, Asia, America . . . ANTEX soldering irons are used by experts and amateurs alike; they have found out the advantages of Antex...
you can too ... buy one in a shop or direct from us... or ask for our catalogue first.

15 watts - 240 volts

Fitted with nickel plated bit (3/32") and in
handy transparent pack. From Electrical
and Radio Shops or send cash to Antex.

Antex, Mayflower House, Plymouth, Devon
Telephone: Plymouth 67377/8. \qquad

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from . 040 " (1 mm) up to $3 / 16^{\prime \prime}$. For $240,220,110,50$ or 24 volts.

From Electrical and Radio Shops or send cash to Antex.

ACTUAL SIZE

G 18 watts. Ideal for ministure work on production lines. Interchangeable spare bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$. For 240 , 220 or 110 volts. 32/6.

E 20 watts. Fitted with $1 / 4^{*}$ bit. Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{*}$. $3 / 16^{*}$. For $240,220,110$ or 24 volts. $35 /$-.

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit.
Interchangeable bits $3 / 3 \mathbf{2}^{*}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$. Ideal for high speed production lines. For 240, 220, 110, 24 or 12 volts. 35/-.

Build yourself a quality transistor radio

backed by our after sales service!

roamer seven mk iv

SEVEN WAVEBAND PORTABLE
SEVEN TUNABLE WAVEBANDS-
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size \bar{t} 人 11 3 in. Tunable over both Merlium ama Long Waves with extended M.W. band for easler tuning of Luxembourg, etc. All first grade cont-podents-7 stages-5 transiptors and 2 diodes. coil speaker, also Personal Earpiece with switched coil speaker, also Personal Earplece with swinched parts price list, 1/6 (FREE with parts).

Total building costs
4.4/8 P P. \& P.

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
41×1 case with red epeaker grille. Size 6 ferrite rod aerial, tuning condenser, volume control, fine tone moving coil speaker alan Personal Earpiece with awitched socket for private listening. All first grade components. Easy buikd plans and parts price list 1/6 (FREE with parts).

uper seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size $7: \times 5!\times 1 \mathrm{jin}$. with gilt fittings. The ideal radlo for home, or outdoors. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. Stases, and 2 diodes ${ }^{2}$ ferrite rod aerial, transiscors speaker) and all first grade components. Easy build plans and parts. Price list 2/- (FREE with parts). (Personal Earplece with switched socket for private listening $5 /$-extra.)

Total building costs
47/ B $\underset{3 / 9}{\text { P. \& P. }}$

Total building costs
\& $8 / 8$ P. \&. P

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive cabe with gilt fittings, size $7: \times 51$ $1 \ddagger \mathrm{in}$. Tunable on Medium and Long waves, two short waves, Trawler band plus an extra M.W. band for easier tuning of Laxembourg, etc. Sensitive fertite rod aerial and telescopic aerial for Short waves. All top grade components. 8 stages -6 transistors and 2 diodes inctuding Micro-Alloy R.F. Transistors, etc. (Carrying strap 1/6 extra.) Easy bulld plans and parts price list $2 /-$ (FREE With parti). (Personal Earpiece with switch socket
for private listening $5 /-$ extra.)

Total building costs
$70 / 8 \begin{aligned} & \text { P. \& } P \text { P } \\ & 4 / 6\end{aligned}$

Callers side entrance Stylo Shoe Shop.
Open 10-1, 2.30-4.30 Mon.-Fri. 9-12.30 Sat.
Extra M.W. band for
eaaier tuning of Luxembourg, etc
Bullt-in ferrite rod aerial for Medium and Long Waves
5 section 22 in . chrome-plated teiescopic aerial for short Waves-can be angled and rotated for peak S.W. listening. Hocket for Car Aerial. Powerful puahh-pull output. 7 transistors and two diodes including micro-Aloy R.F. Transistors. Famous make Separate oninft switch, volume control, wave change switches and tuning control. Attractive case with carrying handle. Size $9 \times 7 \times 4$ in. approx. Firat-grade componente. Easy to follow instructions and diagrams make the Roaner 7 a pleasure to build.

Total building costs

Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK

8 stages-6 translstora and 2 diodes. Covers Medium and Long Waver. top quality 3in. Loudspeaker for Farpiece with switchel soeket for private listening. Two R.F. Starea private listening. Two R.F. Stages Rod Aerial. Push-pull output. Hand. some pocket size case with gitt fittings. size b: $^{\prime} \because 4 \times 2 \mathrm{in}$. Easy build plans and parts price list 2!- (FREE with parte).

Total building costs
69/6 ${ }^{\circ}{ }^{\circ}$

RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD. Tel.: Bedford 52367
I enclose £.......................... please send items marked

Parts price list and plans for.
Name
Address

making ROUSTC

THE increasing demand for technologists, especially in electronics, is evident when scanning the Situations Vacant pages of the National Press. Headmasters of Secondary Schools and Technical Schools are beginning to introduce electronics in some form or other to boys who have a basic interest.

Some Colleges organise special courses in this subject while most tend to rely on the conventional City and Guilds or National Certificate courses. In the former category, the London College of Furniture runs an extensive two year course covering either Pianoforte and Harpsichord Construction and Tuning, or Electric and Electronic Musical Instrument Technology. The latter is an intensive course covering design and servicing, leading to the College Diploma and possibly the Graduateship of the Institute of Musical Instrument Technology.
The syllabus includes lectures from well-known experts who visit the College, including David Mawn, Ralph West, William Walker, Gerald Van Epps, Derek Underdown, R. Twydell, and L. R. Avery (all well-known in this field) as well as others who are experts in special branches.
Students have visited various firms who manufacture electronic musical instruments, such as the Hammond Organ Co., Selmer, Livingston, Hohners and Hill, Norman \& Beard (pipe organs) as well as seeing educational films. A recent special course for service engineers was attended by forty men from all parts of the country, and ten firms sent their organs for demonstration by their leading designers; this was at the request, and had the full support, of the Association of Musical Instrument Industries.

The Lecturer in charge of the Musical Instrument Technology section, Mr J. W. T. Roope, will be pleased to offer any further information if interested readers would write to him at the London School of Furniture, Pitfield Street, London, N.1.

Roderic (from the Isle of Wight) is constructing a "fuzz box"
Paul (who began his electronic work in Belgium) is working with a digital frequency meter

Students from London, Wales, Cornwall and Cyprus working on their various projects

LsAST month's article outlined the electronic methods used to determine depth, pressure, temperature, and salinity of the ocean. Special studies will now be described, including water flow speed (current), light absorption, topography, chemical analysis, and gravitational influences.

CURRENT MEASUREMENT

Originally current measurement was a simple task, one merely had to take down the sails of the survey boat and observe the drifting of the boat. However, the modern oceanographer is interested not only in surface currents but also those at all depths below the surface.

There are two distinct problems to be tackled here. First, path measurements, the following and charting of entire currents and measurement of current velocity in different places along the current. This may be done by a series of methods, including the use of polythene envelopes and weighted bottles, which rely on the assistance of fishermen, who recover the objects, record their position and time of recovery, and send them back to the research station.

For deeper work, a reject parachute or metal drogue may be moored to a radio buoy and pulled along by the current.

For accurate path measurements a "swallow float" is used. This is made up of two hollow metal tubes, one of which carries the electrical apparatus necessary to
work a "pinger" and the other is weighted carefully in such a way that it maintains the required depth.

The pinger is a simple device (Fig. 12), giving a repetitive audio "ping" through the water. Cl is charged to 360 V via R1. C2 is charged via R2 to the trigger voltage of the discharge tube, causing the tube to conduct, discharging Cl through the transducer, and discharging C2 to restart the cycle. The resultant output causes the transducer to go into severely damped mechanical oscillations of about 10 kHz , giving a sound in the water similar to a muffled bell.

The repetition rate of the ping is controlled by the time constant of $R_{2} C_{2}$ and is of the order of one ping per second. By using two vertical arrays of hydrophones below a ship, the depth and position of the float may be followed from some distance away.

The second set of current measurements required are flow measurements-the variation of current velocity and direction with time at one point in the sea. The main problems involved here are those of mooring a current meter in one position, as mooring wires must be slack enough to allow for tidal and wave motions. However, once these problems are overcome, electronics offers us a variety of means for measuring currents.

CURRENT METER

The typical current meter has a layout similar to that of the salinity, depth and temperature probe described

earlier. Again, three frequency channels are used, for current direction, velocity, and depth. The depth sensor is usually a vibrotron as on the s.t.d. probe.

The current direction indicator consists of a compass needle stuck to a shaped card (Fig: 13). As the meter rotates due to the action of the current on its direction fins, the compass "follows" the North and South poles and the areas of the photocells illuminated by a light above the probe are varied. This alters the ratio of the resistance of one cell to that of the other cell, which in turn controls the frequency of the Wien bridge oscillator network-hence we get the direction of current analogued by the frequency of a signal.

The current is made to turn a savonius rotor (interlocking semi-cylinders, a form of rotor which is more sensitive than an ordinary propeller) which operates a series of switches via a magnetic coupling through the hull of the meter. These switches key a 100 kHz oscillator, the pulses from which operate a 5.5 kHz standard telemetry frequency. Hence in this case the information (current velocity) is given by the frequency of pulsing the carrier signal.

The three frequencies (including one for pressure) are fed up a cable via a swivel transformer. Coils are wound on each half of a split core, each half of which may rotate freely with respect to the other whilst maintaining electrical coupling to allow the meter to swing in the current.

Alternatively the frequencies may be stored on magnetic tape, dispensing with the need for heavy swivel transformers which may create a serious weight problem when many meters are on the same hawser. The discriminated signal may then be fed on to an X1, $\mathrm{X} 2, \mathrm{Y}$ recorder to give a plot of current and direction versus depth, or versus time at a known depth. The depth sensor is necessary due to the drifting of the hawser from the vertical position.

MEASUREMENT OF OTHER PHYSICAL PARAMETERS

Underwater available light, light absorption and turbidity of the water may all be measured using a suitable optical system attached to a conventional photocell or photomultiplier tube. One use of these measurements is underwater photography.

The deep sea camera is a useful tool for studying sea bottom creatures and sediment formations. It is lowered to the bottom and its progress is followed by a

Fig. 14. Relay latching circuit for underwater camera
"pinger" trace as described in the section on depth measurement. When a trigger dangling below the camera touches the sea bed the flash guns fire, the film is wound on and the pinger rate is temporarily increased.

The crew on board ship then raise the camera slightly, following the height above the sea bed carefully on the pinger trace, move it to the next location and then repeat the process of lowering and taking the photograph until the film is finished.

The circuit involves a simple self-latching relay device (Fig. 14). The relay switches on the flash and motor and changes the pinger rate. On completing the film wind-on, the motor switches off the relay (hence resetting the latch) and subsequently switches off itself.

Two more parameters, which are really geological, are the variations in the earth's gravitational and magnetic fields with position on the surface. Ocean floor surveys of these parameters are very rewarding to the oceanographer, and the techniques used are worthy of mention here. The problem now is not to penetrate a hostile environment to take the measurements, but to measure minute but long period changes in the face of large and relatively short period fluctuation of the values to be measured.

For example, whilst the ship has been steaming for 15 minutes the acceleration due to gravity may have changed sufficiently to be measured, but during that time the apparatus on board ship will have been subjected to accelerations due to wave motion of up to 10,000 times

Current recording meter (right)—magnetic tape recorder for in situ data storage. The complete unit is shown in the heading picture (Plessey)

Magnetostrictive transducer (below) as used in "pingers" alongside current direction recording meter

Fig. 15. Gravity meter
greater than the actual gravitational variations, say, once every 10 seconds. This difficulty is overcome by damping.

Fig. 15 shows a simplified gravity meter. The angle of the heavy pivoted boom varies with gravity. If it tries to move too quickly the magnet will induce eddy currents in the aluminium which damp the motion. In this way wave motion can be reduced by a factor of $1 / 250$ for a 6 second period. An electrical filter may then reduce this still excessive "noise" by $1 / 10,000$ or more.
The magnetic field variations across the Earth's surface are measured by variations in the rotational frequency of a proton about the field. This frequency is in the audio range.

Water is a good source of protons (hydrogen atom nuclei), and a plastic bottle full of it is towed behind the ship in a "fish" about 30ft below the surface and far enough behind the ship to be out of range of its magnetic field disturbances. Rotation of the protons is stimulated by applying a very strong polarising field and removing it suddenly.

Direct current is passed along the cable to the "fish" (Fig. 16) where it polarises the coil until the relay switches the coil over to the cable preamplifier. The resultant rotational frequency is then amplified on board ship and passed into a pulse shaper. Dividing by 500 creates spaced pulses which are used to start and stop a counter fed with a 1 MHz stabilised signal.

If the frequency of proton rotation is f, the interval between start and stop of the counter will be $500 / f$ seconds, and so the count will be $10^{6} \times 500 / f$. This may be conveniently recorded on a digtial readout, ready for

Panchromatograph gas-liquid chromatograph. The integrator is shown left, next is the control unit for the oven, then the oven, and for right is the pen recorder (Pye)
computerisation. The initial voltage of each signal is about one microvolt, and this decays very rapidly (decay time of about 2.5 seconds), so the amplifiers must be tuned to the limits of the frequency variations to try to reduce noise.

ELECTRONICS IN CHEMICAL OCEANOGRAPHY

Chemical analysis techniques as applied to oceanography are becoming constantly more refined, and the chemist is relying more and more upon electronics.

The main use of electronics here is in temperature and light control, although there are other important uses. For example in a sensitive technique known as gasliquid chromatography, the sample to be analysed is carried as a vapour in a stream of hot nitrogen through a tube packed with an absorbant powder coated in a suitable liquid solvent, which has the ability to separate the chemical components of the sample.

The tube, or column, must be kept either at an accurately constant temperature or else the temperature must rise at an accurately known rate. This is achieved using an electronic temperature programming unit

Fig. 16. Block diagram of a magnetometer

Correction to Part 1
The right-hand section of Fig. 9a should be as shown below. The letter "y" under "темр"' in Fig., 11c should be under the word "DEPTH"

Part of Fig. 9a
which relies on an aecurate thermostatic device linked with an electronic clock.

Once the components of the sample are separated they must be detected in the issuing nitrogen stream. The stream is passed through a hydrogen/air flame, and when one of the sample components passes through the flame it burns up, ionising the flame and hence lowering the electrical resistance of the flame. This causes the applied voltage across the flame to vary with the amount of sample in the flame at different times. This voltage is recorded against time on a pen recorder, giving a series of peaks, each one representing a component of the sample.

As well as a visual indication of the composition of the sample, a measure of the relative quantities of the components may be obtained by attaching an integrator to the recorder input. When the signal from the recorder passes a certain "cut-off" level above the ambient signal, the integrator switches the signal via a d.c. amplifier to a sawtooth (RC) oscillator, the frequency of which is determined by the signal voltage.

The output is shaped, amplified and fed to an electromechanical counter, which changes the figures on a printing block. Hence the larger the signal the greater the frequency, and the greater will be the count over a given period of time.

When the signal drops below the cut-off level, the counter automatically prints the count on to a tape. This print-out is directly proportioned to the weight of the component in the sample. The figures are then easily converted to a percentage composition which is most useful in this sort of analysis.

CHEMOSTAT

Digital readouts and integrators are very useful additions to many precise chemical analysing machines in which the required parameter is represented by an analogue voltage. However, as mentioned earlier, probably the most important electronic units in analytical chemistry are light measurement and temperature control units.

An interesting device which requires both these units is the "chemostat". One important aspect of chemical oceanography is the chemistry of marine life, in particular the minute plant-like organisms called phytoplankton. The chemostat is a device for growing these organisms in the laboratory.

Sea water in which these organisms are growing is turbid, and the population density of the growing culture may be estimated by measuring the absorption
Atomic absorption spectrometer-a sensitive tool for the analytical chemist, the usefulness of which is enhanced greatly by one of the electronic digital readout

Integrator unit and control unit for Pye panchromatograph gas-liquid chromatograph machine
of a beam of light passing through it. They must be kept thermostated fairly accurately as they are quite delicate creatures.

The chemostat unit consists of three jars, one containing the sterile nutrient solution that the plankton require, connected via a syphon and a magnetic valve to the second vessel which contains the growing culture. This is illuminated by daylight tubes (phytoplankton are photosynthesisers like land plants) and kept at a steady temperature by a thermostating system.

Through the culture vessel a beam of light is passed so that it activates a photocell, the resistance of which forms part of a resistance bridge circuit. The output of this bridge is applied to an amplifier.
When the light intensity drops below a certain level corresponding to the optimum maximum growing density of the organisms, the amplifier causes the magnetic valve to open which causes the nutrient solution to enter the culture flask, replenishing the stock and sweeping the grown organisms into the third vessel, from which they may be periodically harvested. The thermostat bath may contain a number of these units all operated from a central control device.

OTHER TECHNIQUES

The systems described above are, of course, just a representative sample of the direct uses of electronics in oceanography. There are also indirect uses such as radio-navigation, which enables the accurate fixing of survey spots in the ocean without having to resort to the stars as a means of navigation. Satellite telemetry can provide the rapid accumulation of results from a number of survey areas with the use of computers to analyse results.

Detailed examination of these techniques are, however, outside the scope of this article, the purpose of which is to illustrate the close link-up necessary between the two rapidly growing sciences of oceanography and electronics.

THE introduction of the electric fence was a milestone in farming progress. It offers a simple and inexpensive way of controlling livestock on a large scale, and can make the best use of available land. A typical installation will consist of a single run of bare wire, mounted at a height of approximately 3 ft and supported by means of insulators on thin metal or wooden posts spaced about 20 ft apart. The fence can be quickly set up or re-sited.

The fencer unit itself is usually battery powered and feeds a high voltage, low current pulse to the wire, at intervals of one to four seconds. Rechargeable accumulators, dry batteries, and air oxygen batteries give continuous day and night operation from three weeks up to six months depending on battery type and size. A single fencer unit is capable of energising a fence several miles long, if the post insulators are in good condition.

INTIMATE CONTACT

The fence relies for its action on intimate contact between the wire and the skin of the animal, especially in dry weather. The wire is therefore kept in tension, at a height where the animal must push hard against it when trying to pass through. Cattle quickly find that the wire can administer a sharp "sting" and learn to keep away from it, but animals insulated with thick hair or wool, such as sheep and some goats, may require a two strand fence for effective control.

The old type fencer employs a set of make and break relay contacts to establish a low voltage pulse in the primary winding of a step-up high tension transformer, and is characterised by an audible ticking sound when in action. However, the trend is now towards a new generation of all electronic fencers, where switching is performed by semiconductors. Such circuits bring economies in current consumption and increase the long term reliability of a fence.

The fencer described here is solid state and its design is based on the concept of small size convenience at the expense of operating time, to fulfil the need for a lightweight unit for occasional or standby use. Nevertheless, with an output comparable to a full scale fencer, the unit will run for a fortnight on a day and night basis and yet is contained with batteries in a box measuring $4 \mathrm{in} \times 4 \mathrm{in} \times 2 \mathrm{in}$. It is harmless to animals.

SIMPLE PULSE GENERATOR

The silicon controlled rectifier, or thyristor, is a rugged device with a good current handling capability. However, once switched on, it can no longer be controlled by a gate signal and it is necessary to cut off the supply to reset the thyristor to its non-conducting state.
The function of the circuit shown in Fig. 1 is to obtain a train of high voltage pulses from the thyristor SCR1 by causing it to oscillate. When the battery is first connected, SCRI will not be conducting and capacitor Cl will commence to charge relatively slowly through resistors VRI and R2. When the potential across Cl equals the knee voltage of the Zener diode D1 plus a small voltage dropped across the thyristor gate junction the gate will go positive and SCRI will suddenly switch on.

Cl is rapidly discharged into the low impedance winding of Tl , and causes a steep sided, high voltage pulse to be developed in the transformer output winding. With Cl momentarily discharged, the voltage across SCR1 will be low. At the same time, due to the fast switch-on speed, overshoot occurs in the transformer winding, driving the thyristor anode negative and switching it off.

Thereafter the process will repeat, for as long as the battery is connected, and at a rate governed by Cl and the total resistance of VR1 and R2.

ELECTRONIC FENCER UNII

Fig. I. A simple high voltage pulse generator

DISADVANTAGES

Although Fig. 1 is a useful circuit, it does suffer from a number of disadvantages when considered for use as a fencer. As BY1 approaches the end of its useful life, and begins to drop in voltage, so the pulse rate alters.

A point will be reached where DI no longer conducts and the circuit stops functioning. Also, spreads of thyristor sensitivity and Zener leakage resistance may necessitate individual adjustment of R1. In unfavourable circumstances the battery standing current consumption could be high.

T1 in Fig. 1 is a standard $90: 1$ pentode output transformer, of the type found in old attache case portable radios. Note that the windings are here reversed, with the 3 ohm speaker winding acting as the primary.

Although the arrangement gives a good shock to the human hand, the voltage generated is hardly adequate as a deterrent to large animals with thick hides or long hair.

FENCER CIRCUIT

In the circuit of Fig. 2, the Zener diode of Fig. 1 is replaced by a unijunction pulse generator, and the pulse rate is now virtually independent of supply voltage. Notice also that the supply voltage is increased to 18 volts and the transformer ratio is now $1-250$. Gate resistor R3 is only 10 ohms in the new circuit, low enough to ensure consistant operation over a wide range of thyristor sensitivities, and interbase resistances of the unijunction transistor TR1.

When S1 is closed, C2 will charge through R4 to almost the full positive rail potential. Meanwhile, C1 is slowly charging through R1 and VR1. When TR1 triggers, Cl is quickly discharged through the emitter/base 1 junction of TR1 and R3, and a positive going pulse is applied to the gate of SCR1. This then conducts and C2 discharges into the transformer winding; the negative going spike will switch the SCR off, as with Fig. 1 circuit. VR1 and R 1 determine the rate of charge of Cl , and hence the pulse repetition rate. VR1 will allow adjustment of the pulse rate from one pulse a second to one every five seconds.

T1 is a modified output transformer of the type mentioned earlier, or may be specially wound. Full transformer details will be given in the next section.

With this circuit it is possible to generate sparks up to $\frac{1}{4}$ in in length, but for fence purposes a spark of 1 or 2 millimetres is sufficient. If the fence voltage is too high, this could cause tracking across insulators in

Fig. 2. Circuit diagram of the electronic feņ̧er unit
damp weather, and consequent shorting. Output voltage is regulated by a pre-adjusted spark gap.

The fencer circuit will give a useful output down to less than half the specified supply voltage, and will only stop operating when the batteries are virtually exhausted.

Several types of thyristor were tried in the fencer circuit, and all worked reliably. Generally speaking, a thyristor with a peak inverse voltage rating of $50-100$ volts, and a current rating of 0.75-2 amps would be suitable.

There is no point in using a large thyristor with threaded screw mounting as wire ended types are preferred. Equally, a high priced thyristor would be a luxury, and the circuit is designed to tolerate inexpensive, unmarked devices, provided that the one employed is not faulty but only suffers a spread in characteristics.

TRANSFORMER

T1 can be a modified Wharfedale OP3 output transformer, prepared in the following way. Firstly, carefully unsolder the transformer leads and remove the tag panel complete with metal lamination cover. The $30: 1$ and $60: 1$ primary tappings are not used, so these leads may be cut short. To avoid dismantling the lamination stack, carefully slit and remove the bobbin outer insulation layers. The transformer secondary windings will now be exposed, consisting of about 28 turns of enamelled wire.

Remove most of the secondary by repeatedly threading the wire through the gap between the bobbin and the laminations, until ten turns remain. Cut short the loose end of the wire and terminate between a new layer of outer insulation. Lengthen the other transformer leads, if necessary, with extra wire and sleeving, taking care that the inner primary winding outlets are well spaced from each other and the laminations. All four leads may be anchored by tying to the bobbin with thin thread.

The next stage is to improve transformer insulation and damp resistance by dipping in a bath of hot paraffin wax. Candles can be melted in a small tin, which is removed from the source of heat when the resulting liquid is quite hot, taking care that the wax bath does not catch fire.

Totally immerse the transformer in the wax; it will be seen to bubble quite vigorously as the trapped air expands. Remove from the bath when all bubbling has stopped, and leave to cool. Bobbin slots may be sealed later by brushing with hot wax.

Fig. 3. Printed circuit board pattern (full size) with component layout and thyristor and unijunction transistor connection outlines. The thyristor SCRI should be bent to one side to avoid contact with the high voltage terminal on the top of the fencer unit

COMPONENTS . . .

Resistors

RI $82 \mathrm{k} \Omega$
R2 $1 k \Omega$
R3 10Ω
R4 lk Ω
All 10\%, $\frac{1}{2}$ watt carbon
Potentiometer
VRI $250 \mathrm{k} \Omega$ preset vertical skeleton

Capacitors

CI $15 \mu \mathrm{~F}$ elect. 25 V
C2 $500 \mu \mathrm{~F}$ elect. 25 V

Transistor

TRI 2N2646
Thyristor
SCRI Cl06FI (Rastra Electronics Limited, 275 Kingstreet, Hammersmith, London, W6) or similar type (see text)
Transformer
TI Wharfedale OP3 (see text)

Batteries

BYI. BY2 $9 V$ Vidor VT7 or Ever Ready PP7

Switch

SI Single pole, on-off slide switch
Miscellaneous
Metal box 4 in $\times 4$ in $\times 2$ in internal (see text)
Feed-through insulator $1 \frac{1}{2}$ in $\times \frac{1}{2}$ in (Denco)
Copper clad s.r.b.p. board 4 in $\times 2$ in
Two pairs of battery press studs

FENCER CONSTRUCTION

An etched circuit was considered worthwhile for a project of this type, to give extra rigidity where the circuit may be required to operate for several years out of doors in fairly arduous conditions. If the larger OP3 transformer is used it can be fixed to the etched panel by epoxy resin glue, to save the small amount of space normally occupied by the transformer frame.

To do this, remove all wax from the base of the lamination stack with a small wire brush; and similarly clean the area of circuit panel where the transformer is to be positioned. Apply a layer of resin mixed with hardener to the panel and laminations, and hold the transformer temporarily in place with a rubber band. The joint will harden very quickly if the assembly is placed on the top of a warm stove.

Mount the other components as in Fig. 3, taking care to observe the correct connections to TRI and the thyristor leads, also the polarities of C1 and C2. Note that SCRI is bent to one side to avoid contact with the high voltage terminal on the top of the fencer case.

The spark gap consists of two short, bare wires, from trimmed resistor leads, bent as shown in the diagrams. These spark gap wires should not be allowed to touch each other. Two 4B.A. solder tags are soldered to the negative copper lands on the underside of the circuit panel to serve as mounting brackets, as depicted in Fig. 4.

When the circuit panel is complete, but before fitting the high voltage output lead, it can be tested. Set the spark gap to about 2 mm , and VRI to mid-position.

Place the circuit panel on a spare piece of s.r.b.p., to prevent flashovers, and connect the batteries to the panel via a $0-30 \mathrm{~mA}$ or $0-50 \mathrm{~mA}$ meter and a switch.
On switching on, the current should rise to just over 10 mA , then fall to approximately 3 mA , whereupon a flash will occur across the spark gap and the current will again rise quickly to slightly more than 10 mA , and the process repeats itself. The average current demand works out to around 7 mA , depending on the pulse rate setting of VR1.

FAULT FINDING

If the current falls to 3 mA or less and remains steady at that level, SCRI will not have fired. First check that the unijunction transistor oscillator is functioning by connecting a pair of headphones, or a voltmeter, across R3 (Fig. 2). A regular "click" or meter needle "twitch" should be observed. It may be that the thyristor is of very low sensitivity, in which case the circuit should start to operate satisfactorily if R3 is increased in value to not more than 56 ohms.

Assuming, on the other hand, that SCR1 has triggered once, and has produced a single spark, but then refuses to re-set itself, this will almost certainly be caused by a thyristor of abnormally high sensitivity. Incidentally, the unit should continue to work when the transformer output terminal is shorted to earth. In the absence of a spark, a "click" will be heard from the transformer laminations. If it does not work when the output is shorted, this will again point to a thyristor of very high gate sensitivity as a likely cause of malfunction. Another indication of failure to re-set will be a steady standing current consumption of about 18 mA . Although R3 has been selected to cater for a wide range of SCR sensitivities, the only cure for lack of re-set is to reduce R3 to approximately 5 ohms.

It is emphasised that the above faults will only be present where the thyristor characteristics are at extreme limits, and the circuit should work "first time" in the majority of cases.

INSTALLING THE PANEL AND BATTERIES

The fencer panel and batteries will fit into a standard metal conduit box as used in the electrical trade. Details are given in Fig. 4. It is an inexpensive box, and, as such, needs to be waterproofed at the corners, to prevent rain from seeping onto the circuit panel. Any cracks may be filled with putty, or with epoxy resin, and the joint between the feed-through output terminal and the box must be rendered leakproof.

Temporarily position the batteries and circuit panel inside the box and mark circuit panel mounting holes. A layer of thin s.r.b.p. strip is interposed between the underside of the circuit panel and the battery terminals to prevent short circuits.

Drill and file the box to take the high voltage output terminal, the two circuit panel mounting screws, S1, and the earth lead. The box can be sprayed afterwards with cellulose paint from an aerosol, to give a good finish and protection from the weather.

After fitting the short orange output lead to the circuit panel, mount the panel to the back of the box with two 4B.A. screws and nuts. The battery leads should be tucked between panel and box corner. Mount the feed-through terminal and connect to the orange lead. Fit S1 and wire it in series with the positive red lead from the circuit panel.

Fig. 4. Installation of circuit panel and batteries in metal case

Next, cut the battery leads to the right length and solder on the battery connectors. With the batteries in place under the circuit panel, check that the fencer works when SI is closed. Where metal covered batteries are employed, the Sl terminals should be protected by a layer of insulating tape.

It only remains to fit a cork waterproof gasket to the inside of the box lid, and attach the earth lead. A metal meat skewer will serve as an earthing rod.

SETTING UP THE ELECTRIC FENCE

Insulation of the fence wire should be of the highest possible quality, consistent with low cost. Ordinary ceramic aerial egg insulators are excellent for mounting an electric fence wire to posts, as depicted in Fig. S, and are widely used by farmers. Other types of insulator can be obtained from firms marketing electric fence units.

To achieve a high output strength with very long runs of fence, insulators should be cleaned every six months or so. Also, long grass or weeds must be cut back to prevent them touching the fence wire and reducing output strength.

Fig. 5. Insulator details and method of connecting to fencer unit

Fig. 6. Alternative arrangement for mounting fencer unit on post

The traditional method of testing a fence is to touch it with a long blade of grass. As the length of grass between the fingers and the wire is reduced, the shock experienced by the fingers will increase, and this gives a very rough estimate of pulse strength. Beware of doing this test in the rain, if not fairly immune to electric sho̊cks.

The prototype fencer was checked with a proprietary electric fence tester, consisting of a control, calibrated from 0-6, and a neon bulb, contained in a small insulated tube. An output of strength 6 was obtained on a short fence, with the full complement of batteries, in dry conditions. The output fell to strength 1 when the supply voltage was reduced to 9 volts.

Further tests were then made, in wet conditions, on a long run of fence in daily use on a dairy farm. The prototype fencer gave an output corresponding very closely to the output from a standard size fencer, when coupled to the same fence.

The fencer unit can either be coupled to the fence wire with a lead terminated by a crocodile clip, as in Fig. 5, or else a simple aluminium bracket with slots, shown in Fig. 6, will allow the fencer to be suspended from the wire where it is supported by a post insulator.

Normally, the spark gap will give an indication that the fencer is operating correctly since, if there is a short on the fence wire, or if the batteries are low, the "click" from the spark will not be audible. A final tip, in very dry conditions it may be necessary to pour water on the soil around the earth rod, to maintain a good connection.

AMODPPOOSS PEMICOMDOETOM OEdDETS

By Dr R. F. Shaw

(Cavendish Laboratory, Cambridge)

Abstract

A discovery in solid stote physics that could have large scale repercussions in the electronics industry by making possible a relatively simple and inexpensive rival to the conventional semiconductor switch

THE idea of a semiconducting device with an amorphous material, or glass, as the active element of the device is relatively new. The recent announcement by S. R. Ovshinsky of Energy Conversion Devices Inc., Troy, Michigan, of two such devices has aroused considerable interest.

ATOMIC STRUCTURE

Before describing these devices we should first look at a glass and see why it differs from the single crystal with which conventional semiconductor devices are made. Glasses, unlike most other materials, are not crystalline but are more like extremely viscous supercooled liquids. The atoms in a single crystal are bound in a very definite geometrical relation with all other atoms in the crystal, Fig. 1. However in a glass, due to its liquid like nature, there is very little long range order but there does exist considerable short range or nearest neighbour ordering, Fig. 2.

Quantum theory predicts that as a result of regular spacing of the atoms in a crystal an electron when described by a wave will have a definite wavelength and rnay move long distances in the crystal before it is scattered. In glasses, due to their irregular or aperiodic structure, the electron motion is severely restricted and may be only from atom to atom being scattered each time.

A crystalline semiconductor has very well defined energy states which an electron may occupy. If one knows these states or levels and their concentration in the crystal he can accurately calculate and predict the electrical and optical behaviour of the crystal. Some of these states are caused by impurities and defects in the crystal. By starting with a very pure crystal one may control its conductivity and the majority carrier, that is n-or p-type, by controlling the concentration of deliberately added impurities or dopants. The concentration is extremely critical and needs to be controlled to better than one part per million.

CONDUCTIVITY OF GLASSES

Glasses as a consequence of their structure do not have the well defined levels as in crystals. Instead the number of these states is much larger and they are exponentially distributed - in an energy continuum. Because these levels do not extend through the crystals they are termed "localised states". The conductivity of glasses are determined mainly by the constituents of the "glassy" compound and may range from 10^{2} ohmcm to 10^{20} ohm-cm. Because of the localised states the addition of small amounts of impurities (up to a few per cent) has little effect on the conductivity. Radiation damage, which disrupts the lattice of a crystal resulting in large changes in its electrical characteristics, has little effect on amorphous semiconductors due to their inherent disorder.

In a switch of the type announced by Energy Conversion Devices Inc., the fabrication is very simple compared with conventional semiconductors. It consists of a thin film of the glass between two electrodes. The devices can be either of the form of two wires embedded in a glass bead and separated by a few microns, or as an evaporated-or "sputtered"-sandwich configuration consisting of an evaporated metal film, then the glass film, and finally another metal film as the top electrode. The electrodes are generally metal, but may be some other material such as graphite. The glasses can also be of different kinds. For instance, the Ovshinsky device uses a glass containing tellurium, arsenic, silicon and germanium, while in work at the Cavendish Laboratory the author has observed switching in amorphous arsenic triselenide.

BISTABLE OR MEMORY SWITCH

The phenomenon of switching can be described by the current-voltage characteristics of a device, Fig. 3. Take the bistable or memory switch now available from Energy Conversion Devices Inc. As the voltage across the device is increased from zero, the current also increases slowly in an ohmic fashion up to a threshold voltage, V_{T}. Up to this stage the device has a high resistance, of the order of megohms. Once V_{T} is exceeded the resistance drops extremely rapidly to just a few ohms. The former is termed the high resistance or "off" state, and the latter, the low resistance or "on" state-hence the name "switch". This conducting state is believed to be due to conducting filaments formed due to high fields. They are thermally disrupted by the high power "erase" pulse.

Once the bistable switch is in the on stage the voltage may be removed and re-applied without changing the
state, while the device may be switched back to the off state by a high voltage, high current pulse. The device therefore has the ability to function as a memory element for binary notation with the advantage of being capable of interrogation without destroying the existing memory state. This property is not exhibited by any present computer memory element. The ease of fabrication, very small size, low power consumption, fast switching speeds, and unique memory properties promise an interesting future for these bistable switches in computer memories and other applications demanding a memory state.

ASTABLE SWITCH

The other switch, the astable switch-such as the Ovonic threshold switch-has similar high and low impedance states. As the applied voltage is increased up to V_{T} the device is in the off state, Fig. 4. Once V_{T} is exceeded, the device switches to the on state in less than 1.5×10^{-10} seconds. As the current is reduced below a characteristic value, termed the holding current, the device switches back to the off or high impedance state. There is no memory state in the astable switch since it switches back to the high impedance state before the voltage can be reduced to zero. This behaviour is thought to be due to a tunnelling process, holes tunnelling at the anode and electrons tunnelling at the cathode.

The astable switch will find use in computer logic circuitry where fast switching is essential, in trigger circuits, as transient voltage and arc suppressors, and as staircase and other waveform generators. Other applications are being intensively investigated for military uses. One promising potential use is to provide an economic way to switch hundreds or thousands of individual electroluminescent elements in visual displays-such as a flat screen display for television that could conceivably be hung on the wall like a picture.

A.C. OR D.C. OPERATION

One of the important distinctions between these new devices and conventional crystalline devices is that the former are syn1metric. Conventional semiconductor devices must be operated on d.c. and the correct polarity is essential. On the other hand the amorphous devices are symmetrical and exhibit the same properties regardless of the direction of the current flow. As a result, they may be operated from either a.c. or d.c., further enhancing their uniqueness as circuit elements.

By M. A. Colwell

Now that the dates and venue for this year's Audio Festival and Fair have been settled (October 16 to 21, Olympia, London) the first question likely to be put by many hi fi enthusiasts is: "How will the intimate atmosphere of the living room be simulated?' Mr. C. Rex Hassan, the organiser, assures us that forseeable problems are not insurmountable when one considers the success of a similar show in Germany in comparable conditions.

The extended floor area available for display booths will doubtless be welcomed by most exhibitors, but does this mean that each will be fighting for competitive prominence in proportion to stand size, as is frequently seen at electronics trade shows. We are rather inclined to think not in view of the expense involved in special acoustic treatment to demonstration rooms. We can only wait and see!

Whilst we have become accustomed to the Easter holiday day out for this function in the past, it is often a puzzle to wonder "why in the Spring?"--just when people are on the threshold of seasonal outdoor activities.

Now if you turn up the diary of events, you can do the Motor Show and the Audio Fair in one day (bless your feet!) and take in the Photo-Cine Fair as well. Come to think of it, the Motor Show should be best timed for the Spring, but not at Hotel Russell, please!

AUTO-AUDIOPHILE

Hi fi and stereo can be found in some cars these days-so they say. This may be fine for some, with adjustable reverberation (window winders), hum

Truvox integrated circuit f.m. tuner
(engine), built-in cabinets (boot), and background noise (horn) but what about stereo! Speakers port and starboard, balance control indicator (speedo on 50), and three-dimensional sound effects outside as well as inside. The mind fair boggles! Still they could run the Audio Fair with the Motor Show, but this is sacrilege of a very high order.

FIRST I.C. F.M. TUNER

Probably one of the most interesting recent innovations is the first use of two integrated circuit packages in the Truvox f.m. tuner. These provide the basic requirements of the i.f. amplifier and f.m. demodulation stages, but they still require the addition of tuned transformers, capacitors, and supply resistors. Although size is not important in domestic equipment, the use of integrated circuits offers a considerable economy in assembly and testing procedures in the factory when compared with discrete component methods. Reliability is considerably improved as well, because the encapsulation protects a large portion of the circuit from environmental hazards.

Both integrated circuits used here come from R.C.A. The first is a wide-band amplifier type CA3012 with built-in power line regulation. Inside this tiny package (a little more than 8 mm diameter) are the equivalent of 10 transistors, 7 diodes, and 11 resistors, giving 65 dB gain at the 10.7 MHz i.f. The second I.C., type CA3014 incorporates a three-stage d.c. amplifier-limiter, power line regulator, and components suitable for the f.m. ratio detector, with a Darlington pair output.

Goldring Lenco VV7 stereo preamplifler

Enlarged view of RCA integrated circuit such as is used in the Truvox f.m. tuner

Sensitivity of the tuner is $2 \mu \mathrm{~V}$ for 30 dB quieting; 85 dB i.f. rejection; 55 dB image rejection; 50 dB a.m rejection; 30 dB stereo separation at 1 kHz ; frequency response $\pm 1 \mathrm{~dB}$ from 20 Hz to 15 kHz . A stereo decoder and f.e.t. front end is incorporated and the price, matching claimed performance, is $£ 5910$ s.

SUPERSEDED RANGES

Armstrong have also produced a new a.m./f.m. tuner (type $523, £ 5110 \mathrm{~s}$) and f.m. tuner (type 524, $£ 3910 \mathrm{~s}$). These will supersede the established 423 and 424 tuners and incorporate built-in stereo decoders and tuning indicators. The new 521 stereo amplifier (£52) has high and low pass filters for controlling rumble and hiss and a socket for stereo headphones. The use of symbols rather than words for the various controls is part of the current practice of international interpretation to help overseas buyers.

Threa new items that were introduced at the Dusseldorf Hi Fi 68 Exhibition are the Goldring G800 Super E free field stereo magnetic cartridge ($£ 25$ 11s), Lenco stereo pre-amplifier type VV7 for magnetic cartridges ($£ 810$ s), and the GL75/P transcription turntable in teak cabinet and Perspex dust cover ($£ 44$ 2s 8d).

Finaily, a note on purchase tax. Readers will know that the "regulator" increase in purchase tax was imposed by the Chancellor of the Exchequer in November. Allowance should be made for this on the prices quoted in this article where applicable.

Armstrong Stereo Amplifier 52I

NEWS BRIEFS

Computer Planned Cities

Dr. Constantinos A. Doxiadis of Athens, one of the world's foremost city planners and regional developers is using a Univac Computer to help plan new cities.

In a typical city planning project, the computer receives data concerning the population of the area, physical environment, transport facilities, highways, railways, etc., and services such as electricity, gas and water supplies. From this information the computer provides graphs for the visual interpretation of the data. Use is made of mathematical models providing the future characteristics of the population, predicting its movements, composition and accompanying economic phenomena.

Battery Command Post Simulator

ABattery Command Post Static Trainer for the School of Artillery is designed to train and measure the effectiveness of command post personnel in various tracking processes, in target selection and tactical control, and in the use of electronic counter-measures, moving target indication and various other forms of signal processing.

The system has been developed by EMI engineers and is based on an integrated circuit computer.

New Superconductor

ANEW superconducting material-Super-Magloywhich is expected to revolutionise high-power magnet technology has been developed by Plessey. SuperMagloy has the property of losing all electrical resistance when its temperature is within a few degrees of absolute zero. In this state, an electric current set up in a closed ring of the metal will persist indefinitely, without further power supply. This phenomenon makes possible enormously powerful magnets of small physical size.

Most superconductors lose their property when placed in strong magnetic fields, but Super-Magloy retains it in fields nearly twice as strong as those possible with other materials. This makes it possible to build an 8,000 h.p. superconductive motor, two-thirds the price and one-eighth the weight of a conventional motor.

CCTV Monitors Silicon Crystal Growth

Aclosed-circuit TV monitoring and control system helps Motorola engineers keep pace with the evertightening materials specifications for silicon crystal growth.
The photograph shows an operator controlling the ingot diameter of silicon crystals being grown in remotely located furnaces. The operator can watch on the monitor screens all ingots and can shut down any malfunctioning furnace instantly.

N the last article the reader will recall that it was said that this month we would attempt to introduce yet another faculty into our model-that of self-mutual recognition. In real animals this ability can of course be founded on quite complex learning sequences. We however, shall consider its exemplification from a point of view which only borders on this; a sort of reflex in fact.
We shall first consider the basic modifications that must be made to the breadboard model, and then discover the rather narrow range of characteristics it will display. Following upon these experiments we shall examine the possibilities for improving its differential acuity.

REQUIRED CHARACTERISTICS

Before attempting to incorporate this new ability, we must obviously settle on which of its special senses we require the model to recognise with. Also just which characteristics of a stimulus we expect it to respond to. Indeed. it may actually respond to stimuli in ways which we did not expect, so it is important that we realise just how specific we want the model to be.
Unless we expect the model to be very particular about what it "recognises", we can only allow ourselves to be content with the impressions perceived through the already extant sensing apparatus. Put in another way, the "front end" of the model must of necessity have the ability to sense as many separate characteristics as possible, in order that a sensible vocahulary of classifications may be built up. Ta justify anything like the competence exhibited by biological examples, it would without doubt be essential to incorporate whole matrices of artificial neurons involving hundreds of thousands of individual cells. For the purposes of the amateur constructor, to build anything even remotely approaching this would of course be quite out of the question.

There are some compromises which can be accepted however, and these will be examined later. In the meantime though, we shall see to what degree the model (with as few changes to its anatomy as possible), can be apparently encouraged to produce something like the desired effect.

PHOTO-SENSE

To begin with then, let us consider how a type of recognition might be elicited through the agency of our model's photo-sense. It must be appreciated, of course, that at best this sense in its present state is rather raw so far as being specific about quality of stimuli is concerned. However, this need not bother us, for at this stage any reaction on the part of the model in response to its "presence" would be a great enough temptation to adnit of a recogrition process.

In Fig 4.2 the reader will see all the modifications necessary 10 tring about a sort of "recognition" in the existing breadboard model. But first look at Fig. 4.1. This shows in " A " how the schematic looks at present: the port and "tarboard sensors pulling their respective sides of the bistable "down" and producing a negative drive to the opposite "muscle" circuit, and positive pulses for the neutral stimulus part of the "learning" circuit.

This configuration has teen adequate up till now, but in order that the new faculty can be sufficiently demonstrative and yet still preserve the existing functions, a few changes are necessary ("B" in Fig. 4.1). If the model is to recosnise itself, we would expect to obtain some form of reaction to placing a mirror in front of it. This in fact occurs when the new circuitry is added.

RECOGNITION CIRCUIT OPERATION

In essence, the recognition circuit (Fig. 4.1 and Fig. 4.2) comprises a pilot lamp LP1 which can be controlled by the sensors and bistable via a mirror. The pilat lamp (in the emitter eircuit of TR23 and normally on) is mounted in a reflector (a torch type would be ideal) at the forwarc end of the breadboard and is angled down (see Fig. 4.3) so that at a certain distance from a mirror placed in front the lamp beam would bc directed at beth sensors

Once the sensors detect this conditian both sides of the scansion bistable are driven "up" (i.e. collectors of both TR10 and TR11 go positive-a bistable will do that if "forced"); the result is that TR18 and TR 19 are switched off. hence their common collector point goes to almost rail potential turning TR21 of the recognition

Fig. 4.I. Photo-sensing and scansion bistable. (a) existing arrangement. (b) after modification for "recognition" faculty
mirror, do a kind of "tango". The reader by now will be aware that the word "recognition" has been used very much tongue in cheek-however, although crude, what we have just seen is something not so unlike a recognition process at work.

The remainder of the circuit although somewhat changed since its earlier conception, remains basically unaltered functionally during normal individual channel operation. A close scrutiny of the scansion bistable reveals that in order to achieve this we have, logically speaking, merely "double-negated" the command. The photo-response is therefore positively photo-tropic for single channel stimulation, but there is now additionally a negative tropism for simultancous activation of the sensors. This last being extended during the recognition process, as previously indicated.

Fig. 4.2. Circuit diagram of the photo-sensing and scansion bistable with additional "AND" gating for recognition function. The value of CII must be adjusted according to delay required and inherent backlash in drive system
monostableon. TR22, TR23 controlling the lamp are thus turned off and the source of illumination is extinguished. Simultaneously, as the collectors of TR10 and TR1I go positive, a reverse command is given to the muscle circuit and the model retreats. The command is strictly given by the recognition monostable. This is necessary since a short delay is required in order to observe the "recognition" effect.

However, the model will not back-away for long because the lamp has been extinguished by the mere action of reversing; the photo-sensors therefore no longer see the light and, following recovery of the recognition monostable, the muscle control circuits receive the command, "go forward". But then the lamp comes on again, and when the model is within range of the mirror the whole process is repeated-the model will thus, when confronted with itself before a

MUTUAL RECOGNITION

The so-called self recognition process also extends to "mutual" as well, for if we equip two or more models with this type of faculty they will end up interacting with one another, in a way similar to the mirror effect.

Fig. 4.3. Lamp and reflector mounting arrangement

Fig. 4.4. Frequency to voltage conversion device, or property detector

Several beasts. though, reach the dilemma where they can neither approach too close to one another, nor yet completely extricate themselves from their initial introductions!

Hitherto, we have been very unspecific about this recognition process-let us see whether it is possible to conceive of a system which might be more rightly qualified in this way.

When looking for something more specialised in the realm of devices which "recognise", we incidentally come upon the problem that the "means-to-the-end" become smore and more complex. Take for example the problem of attempting to simulate the hearing process as demonstrated in mammals; first the perception of sounds, that is, not what they may eventually imply once they have stimulated the cortical level.

AUDITORY PERCEPTION

Biologically this task of auditory perception is carried out by what might be called an electro-chemicomechanical process. Initially the pinna or external ear (relatively decorative in homo sapiens) picks up and focuses sound into theexternal auditory canal. The sound upon reaching the end of the canal mechanically disturbs the equilibrium of the ear drum and sets it in motion. On the other side of the drum, in the middle ear, three little bones connect it with the organ that is intimately concerned with the perception of sound, a tiny thing looking like a winkle shell called the cochlea. It is within the cochlea that all the basic processing is performed, and this is achieved in each ear by a device called Corti's organ, after its discoverer. This organ, in humans at least, is wedge shaped and measures a little under 35 mm in length when unrolled.

Corti's organ is essentially a kind of super-filter, but in addition it is believed to possess other functions as well such as amplitude level detection. In conjunction with its mate in the other ear, it can perform such tasks as phase discrimination, amplitude differentiation, and pulse arrival-time detection. All this from a device about the size of an ear-wig-no apologies for the simile!

When we described the device as a super-filter, this was by no means an idle overstatement. In normal humans, it has been observed that, on average, the organ of Corti has the ability to detect differences in frequency, as small as 1 Hz . Now the average frequency range of our hearing is about $60-16,000 \mathrm{~Hz}$. This in itself would imply an enormous quantity of filters; but do we fully realise the implication?

In addition to being able to differentiate between tones with only small differences, a healthy ear can
generally perceive any tone within the normal range, not necessarily whole tones either. Thus the job this tiny organ has to perform is truly incredible; certainly it forces us to reconsider our opinions about our "remarkable" achievements in the field of integrated circuitry!

Having established to some extent what we would be up against were we to be presumptuous enough to attempt the construction of something approaching a biological hearing mechanism, we must now cut our coats according to the cloth and decide how poor the compromise will be. Remember, this still only relates to perception. Recognition implies having a memory, so that a current event may be co-related with similar occurrences in the past and acted upon, if necessary, according to the order of importance.
In electronics we mostly think of resonant filters in terms of RC and LC networks; occasionally quartz becomes involved too! We arrange for these networks to be very fussy about what they pass, and that which a filter ends up allowing through amounts to a measure of its selectivity. In general the LC networks can be made to be the most selective, but unfortunately, at the frequencies which interest us such filters become very bulky indeed. To contemplate employing a whole plexus of these would thus be ludicrous in the extreme.

PULSE COUNTING TECHNIQUES

Nevertheless, there are no end of dodges which can be employed to overcome this difficulty; most of them use pulse counting techniques. Some of the methods, although complicated (and not really applicable where only a few discrete frequencies are involved) need only the addition of a couple of gates or so and one can incorporate almost any number of filters at will.

To give the reader some idea of how this might be done, consider the electronic tachometer (rev'counter) with which so many cars are fitted these days. This generally utilises a pulse-to-voltage system. The impulses occurring at the contact breaker in the car distributor are fed to a diode (or transistor) pump integrator and the output voltage indicated by a meter is proportional to the input pulse rate. Some simple arithmetic and an elementary understanding of the internal combustion engine enable us to convert all this to r.p.m.

FREQUENCY TO VOLTAGE CONVERSION

Examine Fig. 4.4. This too uses much the same principle as the previous example. Here, we are interested in designing a device which might take the place of all those bulky LC filters. The notion here is to convert frequency to voltage, then have a number of

Fig. 4.5. Parallel T filter incorporating light dependent resistors so permitting control by means of a light source
amplitude selectors respond accordingly, each operating at a higher threshold than the last. Providing we don't ask the device to separate several frequencies at once, no difficulties should arise.

Notice that two Schmitts are involved per filter-if this were no so, all the outputs would be active at the higher frequencies. This additionally provides a way of controlling the limits (bandwidth) between which each section will function.

Strictly speaking of course the device is not a filter, but a property detector-an output of "go", or "no go", being given dependent upon the input presented at each Schmitt pair. Thus if one particular Schmitt happens to be on and the signal frequency increases by more than some pre-determined amount, the voltage appearing at the property detector concerned will increase proportionally causing the second Schmitt of the pair to fire. The associated and gate will therefore be inhibited and the output will change from " 1 " to " 0 ".

The first Schmitt of the next property detector in-line could be arranged to fire at the same threshold as the second Schmitt in the preceding stage-this would provide a smooth overall response for the range of input frequencies concerned. In this way, a gliding tone fed in at the input would result in the appearance of a series of "ones" rippling along the outputs of the property detectors.

PULSE COUNTER

Another method of filtering that might be employed could be based on the system used in electronic frequency/pulse counters. Assuming one wishes to measure the repetition rate of a train of pulses (and the p.r.f. is constant), it is only necessary basically to run the pulses into a register over some pre-set period of time (for convenience, say 1 second-generally much shorter), then switch off the input and read-out the register to obtain the answer. This scheme though is more complicated than the last, and also suffers from the same disadvantage in that it too can only look at one signal at a time.

PARALLEL T FILTER

Earlier we mentioned the use of RC filters. These certainly consume less space, but generally contribute pretty heavy degrees of attenuation requiring several
stages of amplification to make their use a working proposition. A tentative scheme, suggested by one of the author's colleagues, amounts to the use of just one RC filter (a parallel " T " network) whose resonant frequency might be controlled by voltage. Fig. 4.5 shows the general idea.

If the three resistance arms of the normal "T" network are varied together the filter can be tuned. Now this filter is of the rejection type; that is it passes all the frequencies except the narrow range to which it is tuned. It is therefore necessary to invert its response for our purposes so that a sharp peak is produced at the resonant frequency.
This we arrange to do by utilising an amplifier whose loop gain is severely reduced by negative feedback at all frequencies except that to which the filter is tuned. At the resonant frequency the filter has a very high impedance, and as a consequence the feedback becomes negligible. As a result the amplifier gain "soars", and we can now pick-off the desired signal just prior to its entry at the filter.

LIGHT CONTROL

Equal variation in value of the resistance arms in the filter will enable us to move the resonant point through quite a generous frequency range. If, as Fig. 4.5 suggests, we can effectively substitute the elements in the three arms of the network with light dependent resistors, it should be a relatively simple matter to control them using a light source whose output is proportional to a given current or voltage.

As the resistor in the "down stroke" of the "T" requires to be half the value of the other resistors, it would be necessary either to reduce the efficiency of the two cross bar resistors (by say lightly painting them with laquer), or to control each l.d.r. from a separate light source. Each lamp could then have its relative brilliance separately pre-set by a potentiometer.

An audio frequency, voltage controlled, filter of the type discussed could give rise to a particularly interesting property detector (see Fig. 4.6). Essentially, the device could utilise a time-sharing principle. The sweep generator causes the filter to progressively look through a whole range of input frequencies; simultaneously the Schmitt pairs (threshold detectors) will cause the output AND gates to open and close. If during the sweep when one particular gate is open, a signal happens to appear at the filter output, a corresponding pulse will pass through the gate. This could be fed into a bistable memory controlling another AND gate. Further inputs at this frequency would result in the gate opening to indicate recognition of the signal.

It is true that the discussion has been largely hypothetical, but then the reader will remember that we threatened as much in the first article. If it does nothing else, it may well "fire" some constructors to jump clear of the beaten track.

ANXIETY NEUROSIS

While we are still in this happy (?) inventive frame of mind, let's be really outrageous and chance to ponder upon the likelihood of designing a synthetic device that could display a kind of "anxiety neurosis". Maybe though, we should first examine the expression "anxiety".

Just what is anxiety? We have all experienced it at some time or another, but its description is somewhat difficult to pin down. By way of example let us take an imaginary situation involving the initial training of a dog.

Fig. 4.6. A property detector based on an audio frequency voltage controlled filter

One might suppose that the dog's owner, being a sensible individual, decides that as a prime objective he will attempt to teach the animal some kerb drill. Now the dog is not likely to be very enthusiastic about sitting by the roadside when there are so many other interesting things going on across the other side; much less understand his master's reasons for wishing him to sit still. So, forgetting he is on a short leash, up jumps Rover to be rewarded by a sharp rap across the muzzle and the command of STAY! by his previously amiable companion. Pained and surprised by all this, the animal cowers down and resumes his former position. A little encouragement when the road is clear and the words OFF YOU GO! and the inhibition is removed.

It takes a while before an animal appreciates the kerbside lesson, however, once it is established a dog of reasonable intelligence can often be left for minutes without "moving a whisker".

Suppose, having trained an animal up to this stage, we decide to give the command STAY! but then walk away and not come back. Dutiful beast though he may be, there will come a time when either due to hunger pangs or some other bodily function he will be forced to move. When he does, there will be an instant conflict between his immediate needs and the chances of punishment for disobedience. So Rover sits down again, only to come up against the problem of unsatisfied hunger. Up he gets again to be faced with the prospect of punishment-so he sits down. "Go and tell the poor chap he can move off now", you are probably saying! We are almost beginning to feel anxious for him!

PAVLOV'S EXPERIMENT

Obviously this kind of conflict phenomenon can be observed in any number of situations. The inducement of a similar type of effect, produced by more drastic
means, has been demonstrated by Pavlov and others. Here an animal was conditioned to obtain its food only at certain times following a signal (a flash of light, or a particular sound).

The food was provided to the animal by way of a small trough arrangement with a lid covering the top. If, following the initial conditioning, the animal lifted the lid to the trough at any time other than when it was supposed to, it received no food. Often it might be given a mild electric shock into the bargain. Not surprisingly, the animal's reaction to this form of treatment was sometimes to completely reject offers of food, even following quite lengthy periods of starvation.

This rather peculiar response to a. harmless shock has often been referred to as an "experimental neurosis". But is it neurotic? We know that the shock is harmless enough. However, the animal may well consider it to be a direct threat to its very existence. Its refusal to eat then might be accepted as normal, and so we must use the word "neurotic" with some caution.

A MACHINE WITH FOUR SENSES

Take a look at Fig. 4.7. Here we are examining a hypothetical machine's response to the type of situation discussed earlier involving the dog. Like the dog, the machine too needs to be fed-its source of energy though of course comes from a battery. In the diagram we have just about all the essential features for causing an anxiety syndrome to develop.

We will assume that the machine has four basic senses: (a) Auditory-sensitive to two tones. (b) Tactilein this case able to sense "heavy blows" to its anatomy, or any traumatic affect directly, or indirectly, threatening its existence. For convenience we will call this a "pain'" sensor. (c) Voltage (food)-able to sense when the battery voltage drops below a certain level-and in addition capable of sensing if the voltage falls to a

Fig. 4.7. This diagram indicates responses due to various stimuli produced in a machine as described in the text
"dangerous level", i.e. that which would allow the machine to exist in mobile form for only a very short period of time. (d) Current-the ability to detect motor current above certain levels, indicating to the machine that it is mobile

From Fig. 4.7 we can see that the normal responses to the various stimuli are shown as continuous lines. Dotted lines indicate "conditioning". while chain dotted-lines show "inhibition"

To begin with we will assume that the battery voltage is low and that the machine is pottering about in search of "food". Now during its rambles sound "A" occurs, resulting in the normal response of STOP! (this might be for only a few seconds). If we shortly follow this with a sudden mechanical jarring to the machine"s anatomy ("pain"), and repeat the combination a number of times. a conditioning will result such that "to move FORWARD means sound "A", which means "PAIN" so REVERSE and TURN then STOP!

Like any other conditioned reflex, if it is not reinforced, even though the reinforcement is negative, at least with this sort of tactile stimulus, the result will be extinction of the conditioning. Assuming then that sound " B " appears, followed by this lack of reinforce-ment-sound "B" would ultimately become conditioned to the extinction condition. Hence for future occasions sound " B " would act as an "all clear".

Consider now the situation where the battery voltage is really low, but that TACTILE conditioning has taken place preventing the machine from obtaining a RECHARGE for its battery. In addition let us assume that the benison of sound " B " is absent. The machine would (like the dog) begin to move off in search of nourishment only to be confronted by sound "A" and possibly "pain". It would therefore have no alternative but to make the REVERSE and TURN then STOP procedure in order to overcome the present contingency. However, the battery voltage would still be dwindling, and as a consequence cause FORWARD motion again. It would thus run headlong into the old bogey."pain"

A DILEMMA

We can realise now that the machine has been confronted with some dilemma indeed. A conflict has therefore arisen between "the need to move forward" versus "the need to remain stationary". This state of affairs would persist until either the machine "died" through lack of "food". or the source of hostile stimuli
abated. Now because the machine reacted to the stimuli by oscillating in the way it did, is it in any wise prudent to suggest that the device had become neurotic -1 think not! However, we might be forgiven for coming to the conclusion that the machine had developed an "anxiety state" of some kind.

The reader may be interested to know that this socalled "anxiety state" has actually been experimentally induced in a machine of the kind discussed. With a little ingenuity it would thus not be impossible to manufacture one of these "beasts".

Next month we shall be examining some of the fundamental components of biological neural systems and the properties they display, both separately and collectively. It will also be shown just how similar some of their operations appear to be in terms of logical functions and gating. Finally, some more thought will be given to other kinds of property detectors.

To be continued

POST OFFICE PRIVILEGE

continued from page 95

privilege. This extends to every form of telecom-munication-radio waves, infra-red, visible light, ultra violet, gamma and X rays.

Undoubtedly this will come as a surprise to some readers for, in the past, wireless telegraphy licences have acted as licences to infringe the exclusive privilege so that many people were unaware that they had needed a licence and been granted it. In the future the Minister of Posts and Telecommunications will have the power to grant the same kind of wireless telegraphy licences.

Having. we believe, put the record straight in this matter, we would like to comment upon one particular kind of communication which is becoming of more and more interest in amateur circles.

Communication by infra-red radiation (beyond one‘s own premises) is obviously not permitted without licence. Does this mean that the promising field nou opening up for private experimental work with gallium arsenide diodes and similar devices is in jeopardy, or will the Minister be persuaded to grant experimental licences for such purposes?

There are three further questions on this subject we would like to pose:

Will not the arbitrary split between the frequency range specified in the Wireless Telegraphy Act 1949 and that implied in the Post Office Bill lead to possible legal anomolies; if, for example, two similar infra-red equipments use different frequencies that happen to fall one on either side of the arbitrary dividing line?

In view of the impracticability of detecting all unauthorised infra-red transmissions, is the enforcement of any regulation a viable proposition?

Finally, in view of the non-interference properties of the narrou beam employed in infra-red transmission should not this method of communication be encouraged.'
F. E. Bennett-Editor

market PLate

leems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

FIRST AID

Minor burns and scalds are one of the many hazards that one has to be on guard against in the workshop. The amateur dealing with tools he isn't quite familiar with, the professional, with all his know-how, is sometimes careless, and the youngster is apt to get his fingers burnt prowling around the workshop.

To help solve this problem Potter and Clark Ltd., are producing a first aid spray for treating minor scalds and burns. Called the Burneze it is claimed to give instant relief to minor burns, but does not claim to heal. The spray cools the affected area, relieves the pain and neutralises any swelling. No lint, bandage or other dressing is necessary, but if a dressing is applied it will not stick if Burneze is used first.

Available from most chemists at 7s 3d Burneze would seem to be a most useful asset to have stored in a convenient place in the "lab" or "shack", as well as the home first aid kit. It must be emphasised that Burneze is a poison and should be kept well away from children's reach.

LIGHTING

A new lighting adaptor from AEI Heating Ltd., Redring Works, Peterborough, now makes it possible to control lighting levels for standard or table lamps.

Burneze first aid spray from Potter and Clark Ltd.

The Soft'n Bright Lamp Adaptor can be easily plugged into an existing bulb holder and the bulb simply inserted in the adaptor in the usual way.

The adaptor uses a triac device in the circuit to interrupt the alternating current flow by an adjustable amount each half cycle so that an infinitely variable lighting intensity can be achieved. The light intensity control is mounted on the side of the adaptor. The circuit is fully suppressed against radio interference.

The recommended price of the Soft'n Bright Lamp Adaptor is £3 19s 6d.

DESOLDERING TOOL

Every amateur and professional constructor and designer has probably experienced the exasperating task of trying to desolder a multiple lead component from a printed circuit or wiring board. The problem of trying to remove the solder from each lead and gradually easing the suspect, or wrongly wired component from the board is not new to most of us.

There are many types of desoldering devices available but most devices usually require two hands to operate or require to be spring loaded or foot pumped before they can be used.

The new Weller Electric Ltd. desoldering tool does not require an air line or pump and simply slides over the existing barrel of their irons, once the solder bit is removed.

Designed specifically for the temperature controlled irons, making the desoldering tool also temperature controlled, the operation of desoldering can be easily accomplished one handed and can be successfully used with other irons, although here the use of both hands is needed.

The desoldering accessory costs £3 5s and should be ordered as follows: DS-TCP for the low voltage temperature controlled type and DS-W60D for the mains version. The desoldering accessory will shortly be available for all models of Weller's irons.

LITERATURE

With the impending changeover to the Metric System or SI (Systeme International d'Unites) as the system is known, Electrometer Instruments Ltd and Technical Supplies Ltd., are producing a metric conversion booklet and pocket chart suitable for students, apprentices, engineers and teachers.

The booklet from Electrometer Instruments Ltd., Fairfield Road, Droysden, Manchester, contains sixteen pages of more than 1,000 conversions from units commonly used to their metric equivalents and vice versa. The booklet is available free to any reader who sends a stamped

Weller Electric Ltd. desoldering accessory
addressed envelope to Electrometer Instruments.

The Metricmaster pocket chart covers English and U.S. to metric equivalents for length, area, volume, weight and liquid capacity on one side and metric to English and U.S. measures on the other. It is claimed that the chart covers up to $10,000,000$ to 1 measurements.
The Metricmaster costs 2 s 11 d , is distributed by Technical Supplies Ltd., Hudson House, 63, Goldhawk Road, London, W.12, and is available through Messrs W. H. Smith \& Son.

The uses of the complete range of Kontakt aerosol sprays has just been published in booklet form and copies are available free from Special Products Distributors Ltd., 81, Piccadilly, London, W.1.

The range of aerosol sprays covers cleaning and freezing to antistatic and graphite sprays.

NOTICE

We regret that due to a printer's error in the Advertisement from Messrs Radio Exchange Ltd., on page 9 of the January 1969 issue the size of loudspeaker supplied with the Transona Five kit was wrongly quoted as being 3in.

Soft'n Bright lighting adaptor marketed by AEI Heating Ltd.

DE LUXE PLAYERS

PORTABLE CABLMET AEjllut-
trated. To At atandard $69 / 6$
player or autochanger,
RCS AMPLIFIER 3 WA Eleady made and tefted. rriodo a 2-stage unit using a criode pentode condenser 8 watt ${ }^{2}$ aive, giving into a 3 ohm
loudspealrer.
Tone and volume
chasris with trobs
chasnis with knobs. Supplied Frequency responie $50-12,000 \mathrm{cps}$: $59 / 6$
Sensitivity $200 \mathrm{~m} V$.
BINGLE PLAYERS MONO BSR GU7 0v, Battery model 10 EMI Jonior Mains $£ 2.19 .6$ Garrard AT60 E12.19.6 Garrard SPP29 E6.19.8 Sterea/Mono All fitted LP/78 stylii mono pickup crystal complete. Stereo/mono 20/- extra except DA70.

GARRARD TEAKW00D BASE WB.1. Ready 65/-
cutout for mounting $1000,2000,3000$, Sp25. AT60. GARRARD PERSPEX COVER SPC. 1 for WB. 1 EACH

PICK-UP ARM Complete with ACOS LP-78 GP87
and Stylii 29/6; XTAL GPB7 17/6; Stereo Ceramic 35/CRYSTAL MIKE INSERTS

PDRTABLE TRANSISTOR AMPLIFIER PLUS DYMAMIC MICROPHONE
A self-contained fnlly portable mini p.a. system. Many usesidaal for Partied, or as a Baby or Record Player, Amplifler or Record Pleyer, Amplifler, etc. Attractive rexing covered with powerful $7 \times 4 \mathrm{in}^{2}$. apeake and fonr transistor one watt powar amplifier plus ultra senaltive microphone. Vies PP9 battery. Brand new in Makeri carton with ful
makers gnarantee.

WEYRAD P50 - TRANSISTOR COILS RAZW 6 in. Ferrite Aerial |Spare Cores 6d | with car aterial coil 12/6 | Driver Trans. LFDT4 |
| :---: | :---: |
| Onc. P50/1AC $.5 / 4$ | Printed Cifcnit, PCA1 | I.F. $950 / 2 \mathrm{cc} 470 \mathrm{kc} / \mathrm{a}$.. 5/7 J. B. Taning Gsing Srd I.F. P50/3cc 8/- Wagrad Booklet

VOLUME CONTROLS 800mm Coax 8d. yd. Long spindles. Midget Size SEMI-AIR SPACED 3 K . ohme to 2 Meg . LOG or $40 \mathrm{Jd} .20 /=; \quad 30 \mathrm{yd} .30 /=$
 SE. S.P. Edge type, 5/-. VEROBOARD 0.15 MATRIX
5in. 3/8. $2: \times 81 \mathrm{in} .8 / 2,3!$-37in. 3/8. 37 Sin. $5 / 2$. EDGE CONAECTORS is way $3 /-$ \& 24 war $7 / 6$
S.R.B.P. Board 0-15 matrix 2 in. wide 6d. per lim., 3 inn wide 9 d . per 1 in .: 5 in , wide $1 /=$ per $\operatorname{lin}_{\text {, (up }}$ (up 17 in .).
BLANE ALUMINIUM CEASSIS. 18 g.w.g. 2!in. nides,
 13×0 in., $8 / 6 ; 14 \times 11 \mathrm{in}, 12 / 6 ; 15 \times 14 \mathrm{in}, 15 /-;$
$A L U M I U M$ $\mathrm{S} / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in} .3 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6: 4 \mathrm{in} ., 1 / 6$

Q MAX CHASSIS CUTTER Complete: a die, a punch, an Allen acrew and ley

'SONOCOLOR' CINE RECORDING TAPE

 $5^{\prime \prime}$ reel, 900^{\prime} with LP strobe markings. alno cine light 14/-Eachdefiector-mirror for zynchronieation.
UAIVERAL TAPE CASSETTES C60. OUR PRICE 14/-

Tape 8pools 2/6. Tape Splicer 5/-. Leader Tape 4/6.
Reuter Tape Heada for Collaro models 2 track $21 /-\mathrm{pair}$
"THE IN8TANT",
BULK TAPE
ERA8ER AND
RECORDING
HEAD
DEMAGNETI8ER
200/250 v.A.C.Leallet B.A.E.

BARGAIN STEREO/MONO SYSTEM Attractive slimline PLAYER CABINET with B.8.R. JAg5 Deck, 4 + 4 AMPLIFIRR and TWO matched LOUDSPEAKERS. Carr. $10 / 6 \quad \leq 19.19 .6$ (Only 4 pairs of wires to join).

$2 / 350 \mathrm{~V}$	\cdots	$2 / 3$	$100 / 25 \mathrm{~V}$
$4 / 350 \mathrm{~V}$	\cdots	$2 / 8$	$950 / 85 \mathrm{~V}$

$$
\begin{gathered}
\text { CAXT } \\
8 / 600 \mathrm{~V} \\
1 \mathrm{~g} / \mathrm{AOND}
\end{gathered}
$$ $18 / 450 \mathrm{~V}$

$92 / 450 \mathrm{~V}$ $25 / 25 \mathrm{~V}$

$50 / 50 \mathrm{~V}$ | $1 / 8$ | $8+18 / 450 \mathrm{~V} 3 / 9$ |
| :--- | :--- |
| $16+16 / 450 \mathrm{~V} / 4 / 3$ | | $\begin{array}{lllll}2 / 2 & 32+32 / 350 V & 4 / 6 & 8000 / 30 \mathrm{~V} & 8 / 6\end{array}$ 950 mP . ELECTROLYTICS. $1,2,4,5,8,16,25,30,50,100$, CERAMIC. 500 V 1pP to $0.01 \mathrm{mP}, 8 \mathrm{~d}$. Discs $1 /$

PAPER 350V-0.1 9d, 0.5 2/6; ImP 3/-; 2mP150V 3/$500 \mathrm{~V}-0.001$ to $0.05 \mathrm{gd} ; 0.11 /-0.251 / 6 ; 0.53 /-$
$1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. SILVER MICA. Close tolerance $10,5-500 \mathrm{pF} 1 /=; 580-2,200 \mathrm{pF}$ 2/-; $2,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{p}$. 0.01 , mid $6 /-; 8 \mathrm{ch}$ $2 /-; 8,700-5,600 \mathrm{pF}$
TWIN GANG. 0,0 , $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pr} ;$ mints TWIN GANG. "0-0" $208 \mathrm{pr}+170 \mathrm{pF}$, $10 / 6 ; 305 \mathrm{p}$, 500 pF gtandard with trimmers, $8 / 6 ; 500 \mathrm{pF}$ midget less trimmers, $7 / 8 ; 500 \mathrm{pF}$ slow motion, gtandard $9 / /$;
 $8 H 0 R T$
$160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each. Can be ganged, Couplers 9 dd each. $160 \mathrm{pF}, 200 \mathrm{pP}, 10 / 6$ each. Can be ganged, Couplers 9 d each.
TUNHG. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each. TUNING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each.
TRIMMERS. Comprestion $30,50,70 \mathrm{pF}, 1 /-; 100 \mathrm{pF}$, TRIMMERS. Comprestion $30,50,70 \mathrm{pF}, 1 /-; 100 \mathrm{pP}$
$150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{pF}, 2 / 6$. 250V RECTIFIERS. Seleninm: wave $100 \mathrm{~mA} 5 /-$; BY100 $10 /-$ CONTACT COOLED : wave $60 \mathrm{~mA} 7 / 6$; $85 \mathrm{~mA} 9 / 6$.
Full wave Bridge 75mA $10 /-; 150 \mathrm{~mA} 19 / 6 ;$ TV rects. $10 /-$.
KEON PANEL INDICATORS 550 m . AC/DC $8 / 6$. FEON PANEL INDICATORS 2507. AC/DC 3/6.
RESISTORS. Preferred values, 10 ohms to $10 \mathrm{meg} .10 \%$ bd

10 watt $\} \quad$ WIRE-WOUND RESISTO
$10 K, 15 K, 20 K, 25 K, 68 K, 10 W$. $3 /-$
EDLL WAVE BRIDGE CHARGER RECTIFIERS

 for 6 or 12v., $1:$ amps., 17/6; $2 \mathrm{amps} ., 21 /-; 4 \mathrm{amps} ., 30 /$ | WIRE-WOUAD | $3-$ WATT |
| :--- | :--- |
| WIRE-WOURD 4-WATT | | POTS. T.V. Type. Valnes

10 ohms to $30 \mathrm{~K} .$,
 VALVE HOLDERS, MOULDED 9d.; CERAMIC 1/-EACH.

NEW MULLARD TRANSISTORS 6/- each 0C71, OC72, OC81, OC44, OC45, OC171, OC170, AF117. REPANCO TRANSISTOR TRATSFOREERS. TT45. Pugh Pall Drive, 9:1 CT, 6/-. TT48 Output, CT8:1 6/PAIR 10W. Amp. Transformers and circait 45/-
TRANSISTOR MANS POWER PACES. PULL WAVE 9 volt 500 mA . Size $4 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \mathrm{jn}$, Crackle metal $49 / 6$ asse. Output terminals. 8 witched.
Halt Wave 9 volt 50 mA . Size $2 t \times 11 \mathrm{in}$. Snap torminals $38 / 6$ 0 volt 500 mA . TRANSFORMER ONLY. $2 \frac{1}{2} \times 1 i \times 1 \frac{1}{2} \mathrm{I}$. $10 / 6$

\section*{MAINS TRANSFORMERS | Poatch |
| :---: |
| 5% each |}

$250-0-25050 \mathrm{~mA} .6 .8 \mathrm{v} .2 \mathrm{amps}$, centre tepped $\quad 19 / 6$ 250-0-250 80 mA .6 .3 v. 3.5 a. 8.3 v. 1 a , or 5 v. \& a. 301 m $300-0-300 \mathrm{\nabla} .120 \mathrm{~mA}, 6.3$ I. 4 a . C.T.; 6.3 F .2 a . MINIATURE 200 v. $20 \mathrm{~mA}, 6.3 \mathrm{\nabla} .1 \mathrm{a} .21 \times 2 \times 1 \mathrm{i}$ in.
 HEATER TRANS. 6.3 . $1 / 8,8 / 8,6.3$. 4 a . GENERAL PURPOSE LOW VOLTAGE. Ontputi 3 $6,8,9,10,12,15,18,24$ and 30 F. at 2 s .
1 amp., $6,8,10,12,16,18,80,24,30,36$, 1 amp., $6,8,10,12,16,18$,
3 amp., $0-12$ v. and $0-18$
.
 A OTO TRAMSFORMERS 0-115-230 F. Input/Outpat,
$60 \mathrm{w} .18 / 6 ; 150 \mathrm{w} .30 / * ;$ 500w. $92 / 6 ; 1000 \mathrm{w} .175 /-$. COAXIAL PLUG 1/3, PANEL SOCKETS $1 / 3$. LINE 2 OUTLET BOXES. SURFACE OR FLUSH 4/6. BALANCED TWIN FEEDERS $1 /-5 \mathrm{~d} .80$ ohm or 800 ohms.
JACK SOCKET std. open-circait $2 / 6$, closed circuit $4 / 8$; Chrome Lead Socket 7/B. Phono Plugs $1 /-$. Phono Socket $1 /-$ JACK PLUGS Std. Chrome 3/-; $3-5 \mathrm{~mm}$ Chrome $2 / 6$. DN 8OCKETS Chassis 3 -pin 1/6; $5-$ pin $2 / \%$ DIN SOCKETS Lead 2-pin 3/6; 5-pin 5/-. DIN PLUGS 3-pin 3/6; 5-pin 5/-.
DE LUXE STEREO GRAM CHASSIS V,H,F., MW, BW 18-50m. SW $60-180 \mathrm{~m}$. Magic eye, push buttons. f19.19
 2 p. 2-way, or 2 p .6 -way, or 3 p .4 -way $4 / 6$ each.
1 p. 12-way, or ${ }^{4}$ p. 2 -way, or 4 p. 3 -way, $4 / 6$ each.
Wavechange 'MAKITS'" 1 p. 12 way, 2 p. 6 -way, 3 p. 4 way, 4 p. 3-way, 6 p. 2-way. 1 wafer $12 /-, 2$ waier $17 /-.8$ wafer 2q/ Aditiong waiers 5/-each op to 12 max.
OGGLE SWITCHES, ap. 2/8; ap. dt. 3/6; dp. 8/6; dp. dt. 4/6

MII-MODULE LOUDSPEAKER KIT
 10 WATT $55 /-$
 Carr. 5/-

Triple speaker syatem combining on raady cut bafie. $\frac{1}{3}$ in. chiphoard 15 in. $\therefore 81$ in. Separate Bass, Middle and Treble loudspeakern and crossover condenter. The heavy duty 5 in. Weofer Bass onit has a low hass resonance cone. The Mid-Renge unit is epecially deaigned to add drive to the middle register nad the tweeter recreatea the top end of the masical apectrum.

 MAJOR $\varepsilon 8$
30-14,500 c.p.s., Ei-5I double cone, wooler and weetor oone together with a BAKER carsmic megret exsembly having fine dendity of 14,000 rave and a total fux of 45,000 Maxwell. Ben onance $45 \mathrm{c} . \mathrm{p}$.s. Rated 20 watts. Foict coll vailable 3 or 8 or 15 hms. Price [8, of Codule lidt, 80-17,000 c.p.s. with tweetor, rofsover, bafle and and land OUDSPEAKER CABINET WADDIFG 18in wide, $2 / 6 f^{\prime}$ BAEER "GROUP 80UKD" SPRAKERS-POST FREE Group 25" 'Group 35" 'Group 50'
 ALL MODELS "BALEER SPEAEEE8" IH ETOCK

Buper Cone Twetter 3ing square, 8-17kc/s. 10W $17 / 6$. Quality Horn Tweeters 2-18ke/a, 20W 29/6. Crossover 16/6, LOUDSPEAKERS P. M, 8 OEMA8, $23 \mathrm{in}, 3 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}$ $15 / 6$ each; 8 in 87/6; 6 in 22/6; 10in 37/8; $8 \times 8 i n, 21-$ 12in. Double cone 8 or 15 ohm $35 /-: 10 \times 8 i n, 30 /-$. E.M.I. Donble Cone $13: \times 8$ in, 3 or 15 ohm mod
with twin tweeters, X/over and H / D magnet $79 / 6$.
 $15 / 6$ EACF 85 ohm, $6 \times 4 i n ; 35 \mathrm{ohm}, 8 \mathrm{in}$; 5 in. WOOFER. 8 watts max. $30-10,000 \mathrm{cpa} .8$ or 15 ohm. $89 / 6$. OUTPUT TRARS. RL84 etc. 4/6; MIKE TRAMS. $50: 13 / 9$. SPEAKER PRET VARIOUS TYGAN BAMPLES, Bend BA.E.
ALL PURPOSE HEADPHONES
H.R. HEADPFONEA 2000 ohme General Purpose H.R. HEADPEONES 2000 ohmi gnper gensitive DE LUXE PADDED 8TEREO PHONES 8 ohms

MINETTE AMPLIFIER

 12 month grarantee. Qushity optpat 3 ohm. With engraved fascis, valven, knobe, volume and tone controls,post $5 / 6$
wired and tested.
P9/6

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICES
BARGAIN DE LUXE TAPE SPLICER Cuts,
trima, joing for editing and ropairs. With 8 blades. $17 / 6$ BARGAIM 4 CHANMEL TRAMSISTOR MIXER. Add masical highlights and sonnd effects to recordinga, Wh mix hicrophone, records, tape and toner with $\quad 59 / 6$
segerate controls into single output. 8 volt. BARGAIM FM TUNER 88-108 Mc/s Six Tranaistor. Roady built. Printed circait. Calibrated alite dial $\mathbf{6 6 . 1 9 . 6}$
tunlig. 8 ize $6 \times 4<2$ inin. 0 volt. tunlig. 8ize $6 \times 4<2$ inin. 8 volt. BARGAIM 3 WATT AMPLIFTER. ATranigigor $69 / 6$
Pugh-Pull Ready built, with voleme control. 9\%. $69 / 6$ 40-PAGE EAGLE CATALOGUE 5/- Poit Free \star RADIO B00K8 \star (Postace 9d.)

Practical Transiator Roceivers

Practical Steree Handbook
Supersansitive Transistor Pocket Eadio
High Pidelity Speaker Enclosures and Plans.
Radio Valve Guide, Books 1, 2, 8, or 4 as. 5/-Mo. 5 ea
Practical Radio Inside Dut....
Tranditor Commanicmation Sets
Modern Transistor Circuita for Beginner.
Sub-Miniature Trangietor Beceivera
Wireles! World Radio Valve Dats
At a slance valve equivalente.
Valves, Tranistors, Diodes equiralents manual $10 /$
How to receive Foreign
by simple modificationa
SANGAMO 3 inch SCALE METERS
45/1 Williamp; $50-0-50$ Hicrosmp, ote. S.A.E. for litt
$\underset{0-1,000}{\operatorname{POCE}}$ A.C./D.C. ohma 0 to 100 k , etc. $49 / 6$

BRAND NEW QUALITY
EXTENSION LOUDSPEAKER Black platic cabinet, 20ft. laed and adaptori. For any radio, intercom, tape
recorder

Bargain-Car Radios. Our price 9 gns. Retail, Intercom/Baby Alarm System. value 16 gns. Negative or positive earth|Fully transistorised ideal for home, (switched) fully transistorised (12V) medium and loffice or workshop. Robust conlong waves. Speaker and fitting kit supplied at struction, offered at a fraction of no extra cost. P/p. 5/-.
retail price $47 / 6+2 / 6 p / p$.
TR10 Stereo Moving Magnet CartSonotone 9TA and 9TA/HC. Diamond Cart- TR10 Stereo Moving magnet Care ridge brand new, boxed in manufacturers' LP Stylus. Frequency response $20-$ carton $49 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP $20,000 \mathrm{c} / \mathrm{s}$ output. 7 mV tracking pressure
 sealed manufacturers' cartons $22 / 6 \div 2 / 6 \mathrm{p} / \mathrm{p}$. ${ }_{\text {Price }}^{25 /-\mathrm{p} / \mathrm{p} \text { free. }}$

The greatest HI-FI Budget system th-day-Can't be beaten -price or quality anywhere-look at these great features
Teleten F2000
lex
0 plex. decoder and A.F.C. $-2 \times 5 w$ channels
truly outstanding unit
Garrard SP 25 Mk II Transcription deck
Teleton SA 1003 matching speaker enclosures Sonotone 9 TA Diamond Cartridge Plinth and perspex cover

Exclusively offered by Waldon at the remarkably low price of 63 gns .

HI-FI The Baker Selhurst stalSPEAKERS wart 12 in . round, 15 watt BARGAINS rating, 12,000 lines GAUSS, 3 or 15 OHMS response $45-12,000 \mathrm{c} / \mathrm{s}$ Bass resonance, $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price £4.19.6.

The Baker Selhurst guitar group $25,12 \mathrm{in}$. round, 25 watt rating, 12,000 lines GAUSS, 15 ohms response $30-10,000 \mathrm{c} / \mathrm{s}$ solid aluminium chassis, heavy duty cone. Our Price £4.19.6, p/p 6/6. Brand new.
E.M.I. 8×5 elliptical 5 watt 3 ohm alcomax magnet, sold elsewhere 50/-. Our Price $27 / 6 \mathrm{p} / \mathrm{p}$ free, 13×8 elliptical 13,000 lines GAUSS 3 or 15 Ohm 10 watt alcomax magnet usually £4. Our price $47 / 6 \mathrm{p} / \mathrm{p}$ free. 13×8 elliptical with double-tweeter and cross over unit. IMP 3 or 15 ohm 10 watt Bass res. $40 \cdot 50 \mathrm{hz}$. Magnadure 11 Magnet. Usually $£ 6.10 .0$. Our Price 59/6 p/p free. Please enclose large S.A.E.

WALDON ELECTRONICS Atlas House, Chorley Old Rd., Bolton. Bolton 45628.
 standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"May 1 take this opportunity to thank you for such enlightening works and may I add, in terms, easily undersiood by the novice."
L. W. M., Birmingham.
"I find that the new pictorial method is so easy to understand and I will undoubredly enjoy reading the following five volumes: thank you for a wonderful set of books." C. B., London.
"Please accept my admiration for producing a long felt want in the field of understanding Electronics." S. B. J.. London.
"The easiest set of manuals it has been my pleasure 10 study."
J. P. P.. Taunton

A TECH-PRESS PUBLICATION

TO The SELRAY BOOK CO., 60 HAYĒS HILL, HAYES, BROMLEY, KENT ER2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20 - each. BASIC ELECTRONICS 90/-. Cash Price or Down Payment of $15 /-$ foliowed by 4 fortnightly payments of $20 /$ Price or Down Payment of 15 -- UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)

NAME

BLOCK LETTERS
FULL POSTAL
ADDRESS.
where V_{i} is the applied voltage and Z is the total circuit impedance. In this case $V_{i}=240 \mathrm{~V}$, so

$$
I=240 / Z \text { amperes }
$$

Suppose, now, that a 10 V battery is connected between terminals 1 and 2 , the positive terminal being on 1 , the short circuit being first removed (see Fig. 1b). The voltage across Z is equal to ($240-10$) volts and $I=(240-10) / Z=230 / Z$ amperes.

If Z is 1 kilohm, the short circuit current $=240 \mathrm{~mA}$. Charging a 10 volt battery, it falls to 230 mA and a 20 volt battery would draw 220 mA . The difference in current passed on short circuit, and when charging a battery with a charging voltage of 20 V , is only about 8 per cent.

CURRENT LIMITATION BY CAPACITORS

A lot of power would be dissipated by a pure resistance in trying to drop 220 volts, and passing 220 mA : ($220 \times 220 \times 10^{-3}=48.4$ watts) requiring a very large resistor.

The voltage supplied to the battery can be effectively dropped if subjected to a frequency selective circuit employing a capacitor. The reactance of a capacitor is expressed by $X_{\mathrm{c}}=1 /(2 \pi f C)$.
The current through the load is then given by

$$
I=V_{\mathrm{i}} / X_{\mathrm{c}}=2 \pi f C V_{\mathrm{i}}
$$

For a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ mains input supply the load current

$$
I=2 \pi \cdot 50 \cdot C \cdot 240 \cdot 10^{-3} \mathrm{~mA}
$$

Whence $I=75 \mathrm{C} \mathrm{mA}$ where C is in $\mu \mathrm{F}$

Capacitor $(\mu \mathrm{F})$	Charging current (mA)
1	75
0.5	37.5
0.33	25
0.1	7.5
0.05	3.75

In these calculations $I=V_{\mathrm{i}} / X_{\mathrm{c}}$, where X_{c} is the reactance of the capacitor. In reality, $I=V_{\mathrm{i}} / Z$ where $Z=\sqrt{ }\left(X_{\mathrm{c}}{ }^{2}+R^{2}\right)$ where R is the total circuit resistance, including the diode and series resistance. However, as this is only 100 to 2000 ohms, it is small compared with X_{c}.

The smaller the capacitor the larger X_{c} becomes, and the approximation becomes more accurate.

PRACTICAL CIRCUIT

The component values shown in Fig. 2a have been chosen for charging a 225 mAH battery of up to 12 V .

The Zener diodes D5 and D6 prevent the output from rising above the level necessary for efficient charging. Without them, the output terminal voltage with no battery connected would rise to mains potential; the low voltage diodes used in the bridge rectifier would certainly be damaged as a result.

The maximum charging voltage per Deac cell (see Table 1) is $1 \cdot 5 \mathrm{~V}$, so if a Zener diode is placed across the output terminals with a striking voltage above the charging voltage, the voltage across the diodes will rise only to the Zener voltage. When the battery is reconnected, the battery starts to charge and the Zener diode is cut off.
Zener diodes OAZ247 can pass up to 25 mA . For heavier currents a 7 W or 10 W device nominally $9 \cdot 1 \mathrm{~V}$

COMPONENTS
Resistors
RI $680 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$ carbon R2 $220 \Omega \frac{1}{4} \mathrm{~W}$ carbon
Capacitor
$\mathrm{Cl} \quad 0.33 \mu \mathrm{~F} 400 \mathrm{~V}$
Diodes
DI-4 ISI2I or any silicon diode with p.i.v. greater than 30 V and current capacity greater than 20 mA peak, 10 mA average (4 off).
D5, D6 OAZ247 (2 off) (see text)

Miscellaneous

Veroboard $2 \frac{1}{16}$ in $\times 1 \frac{1}{9}$ in with 0.15 in matrix

Table I

No. of cells	Nominal output volts	Voltage for Maximum charging current	D5	D6	Minimum Zener voltage
1	$1 \cdot 2$	$1 \cdot 5$	OAZ247	Shorted	$8 \cdot 6$
2	$2 \cdot 4$	$3 \cdot 0$	OAZ247	Shorted	$8 \cdot 6$
3	$3 \cdot 6$	4.5	OAZ247	Shorted	$8 \cdot 6$
4	$4 \cdot 8$	6.0	OAZ247	Shorted	8.6
5	6.0	$7 \cdot 5$	OAZ247	Shorted	8.6
6	$7 \cdot 2$	9.0	OAZ247	OAZ247	17.2
7	$8 \cdot 4$	$10 \cdot 5$	OAZ247	OAZ247	17.2
8	9.6	12.0	OAZ247	OAZ247	17.2
9	10.8	13.5	OAZ247	OAZ247	17.2
10	12.0	15.0	OAZ247	OAZ247	17.2

(such as ZS9•1) could be used in lieu of the OAZ247. For higher voltages, the $\mathrm{ZS} 12(11 \cdot 4 \mathrm{~V}$ min $)$ could be used. Two in series will operate at 22.8 V . This will protect a 14 cell battery with a maximum charging voltage of 21 V .

It is not often that voltages higher than these would be used, but if they were, a third Zener could be added in series with the other two. Care must be exercised in selection by observing the minimum Zener voltage above that required for charging the battery.

CHARGING CURRENT

The charging current should not exceed the 10 hour rate, i.e. for a 150 mAH cell, the charge current is $150 / 10=15 \mathrm{~mA}$ and at 225 mAH , the current is $225 / 10=22 \cdot 5 \mathrm{~mA}$.

Fig. 2a. Circuit diagram of a 22 mA charger with Zener diode protection for up to ten cells.
Fig. 2b. Half-wave equivalent circuit of Fig. 2a

CHARGING TIME

The charging rate should be 1.4 times greater than the charge removed.

If current is being replaced at the 10 hour rate the total time required to recharge a fully discharged battery is $10 \times 1.4=14$ hours.

Similarly, at the 20 hour rate the total charge time is $20 \times 1.4=28$ hours.

DESIGNING YOUR OWN CHARGER

1. Check the capacity rating of the battery and decide what charging rate you require, e.g. $10 \mathrm{hr}, 15 \mathrm{hr}, 20 \mathrm{hr}$, etc.
2. Calculate the charging current $I=\frac{\text { Capacity }}{\text { Rate }} \mathrm{mA}$.
3. Calculate $C=\frac{I(\mathrm{~mA})}{75} \mu \mathrm{~F}$
4. Select the nearest available value of C below the calculated value.
5. If the battery is not to be connected permanently, protect the bridge rectifiers with Zener diodes.
6. If 25 mA or less, select either one, two or three OAZ247 and wire in series across the output terminals.
7. If over 25 mA , select one, two, or three ZS9. 1 and wire in series.
The model shown in Figs. 2 and 3 is a 22 mA charger with Zener diode protection for up to 10 cells. This is a compact circuit which could be fitted into equipment using Deac cells.
N.B. The battery should never be charged at a temperature of 32 degrees F or 0 degrees C (freezing point) or lower. Ideally, it should be charged indoors at normal room temperatures.

\section*{FOLLO

\section*{RELNG SIETE

RELNG SIETE
 QUALITY－TESTED PAKS

Drift T 100 Mc

Matched Trans．Oc：4／45／81／811 Red spot AF Trans．PNP
5 silicon Rects．is a $100-400 \mathrm{Pl}$
210 A Silicon Rects． 100 P1S
OCl 40 Trans．NPN＊pritching
12 A NCR 100 PIV sil．Trans． 28303 PN
－Zener Diodes 250mW 3－12V $200 \mathrm{Mc} / \mathrm{s}, \mathrm{Sil}$ ．Trans．N PN Bricied／2 High Current Trans．OC42 Eqvt
Power Transistars 1 OC26 1 OC35
kilicon Rects． $400 \mathrm{PI} \mathrm{V}^{\prime} 250 \mathrm{~mA}$
OC75 Transistors Mullard Typ
Power Trans，OC20 100
2 Low Noise Trans．NPN 2N929／30 Nil．Trans．NPN VCB 100 ZTSG
80.481 Diones

4 OC72 Transistor
40 C 77 Transistor
4 Sil．Rects． 400 PIV 500 mA
5 GET884 Trane．Eqvt．OC44
GET883 Trans．Eqvt．OC45
5 GT41／45（gern．Trans．PNP．．．．
－IN914 Sil．Diodes 75 P1V 76 mA
OA95 Germ．Diodes Sub－min．IN69
NPN Germ．Trans．NKTr73
OC22 Power Trans．Germ．
0 O25 Power Trans．Germ
OC72 Trans．
4 AC128 Trane．PNP High Gain．．．
AC127／128 Comp．pair PNP／NPN
3 2N1307 PNP Switching Trans．

3 AFll6 Trans

Agsorted（ierm．Diodes Marketl

AC126 fierm．PNP Trans．
4 silicon Rects． 100 PIV 750 mi
AF117 Trans．
OC81 Type Trans．
OC171 Trant．
2N2926 sil．Epoxy Trans．
OC71 Type Trans
Trans．Heatsinks it TO18，MOl2，etc
29701 kil Trans．
10A 600 PIV Ril．Reacts． 1345 R
BC108 Sil．NPN High Gain Tran
2N910 NPN Sil．Trank．VCB100
1000 PIV NH．Rect．1．5A R53310 AF
3 BSY95A Sil．Trans．NPN $200 \mathrm{Mc} / \mathrm{B}$ ．．
3 OC200 sil．Trans．
Sil．Power Recta．ByZi3
sil．Power Trans．NPN $100 \mathrm{Mc} / \mathrm{s}$
TK201A
Zener Diokles 3 － 1 すV sub－min．
2N697 Fpitaxial Ptanar Traus，Sil
Germ．Power Trans．Eqvit OCi
1 Tnijunction Trans．2N2646
2 Sil．Trans． $200 \mathrm{Mc} / \mathrm{s}$ ． 60 Veb ZT83／84 ．．
I Sil．Planar Trans．NPN $100 \mathrm{Mc} / \mathrm{s}$ ．
BSY26
1 Unljunction Trans，2N2160 TO－5
2 Sil．Rects．5A 500 PIV Stud Type
Gterm Power Trans，OC28／29
Tunnel Diode AEY11 1050 Mc
2 N 2712 Sil．Epoxy Planar HFE225
\＆BY 100 Type 811．Rects．．．．．．．．．．．．．．．
25 Bil．and Germ．Trans．Mixed，ail
2 GET880 Low Noise Germ．Trans
1 AF139 PNP High Fireq．Trans．
3 NPN Trans． 1 ST141 \＆ 2 ST140
4 Madt＇s 2 MAT100 \＆ 2 MAT120．
3 Madt＇s 2 MAT10I \＆ 1 MAT121
4 Ocat Germ．Tranh．AF
1 2N 3906 Nil．PNP Trans．Motorola CADMIUM CELLS
ORP60 ORP61
ORP60
ORP12
$8 /-$ each
$8 / 6$ cach
MANY NEW PAK ITEMS
FULL RANGE OP ZENER DIODES
VOLTAGE RAMGE 2－16V
400 mW （DO－ 7 Case）
$8 / 6$ each
1．5W（Top－Hat）
10W（So． 10 Stud）
$8 / 6$ each
All fully tested 5% tol ．．．．．．．．．．．．5／－sach
state voltage required．Full range eqvt．to
OAZ Mullard Type Z．Range of STC．I．R．Texas
and IN types．
TRASEISTOR EQVT，BOOK
52 pages of crosa references for trams，and diodes， ypes haclude Britiah，European．Anuerican and Japanese：Specially imported by BI－PAK

THE LEADERS

ANOTHER CROWNING SUCCESS－

this month＇s bargain paks
all fully tested and guaranteed satisfaction
P：1k
$\$ 11$
$\$ 12$
813
814
815
$\$ 16$
817
$\$ 18$
$\$ 19$
$\$ 20$

Power Transisto Description
Pak No． 4 t

12	2
13	3
14	1
15	2
16	5
17	4
18	1
19	10
19	4

Fwer Transiecors $1 \times$ AD140， 1 Al4y． sil．Trans．2s303 Equt．OC201 TO－5 Photo Diode Texas $18701=$ IN2175 and Data il．Trana BClor NPN
ii．Trans．Be 108 NY 128
ii．Rectifery $2 \times$ B 126， $2<$ BY゙127 Silicon Unilateral Switch（SUS）D13D1 silicon Rectifers 3Anp 500 PIV Rtud Type 101－

EACE MONTH FOR ONE MONTR ONLY WE OFFER SPECLAL BARGAD PATS AVATABLE AT THIS SPPCIAL PRICE TAKE FULL ADVAMTAGE PAD SAYE EVEI MORE ON TOUR BI－PAE BARGALIS．

KING OF THE PAKS Unequalled Value and Quality CIDPED DAVC NEW BI－PAK UNTESTED SEMICONDUCTORS
Satiafaction（ivaranteed in Every Pak．or money back． Palc No．
V＇l 120 glass Sub－min．（ieneral Purpose（Germanium Diodes．．．． $10 /-10$ L＇2 B0 Mixed Germanium Transiators AF／RF ．．．．．．．．．．．．．．．．．．．．．．． $10 /$

75 Germanium Gold Bonded Dioden eim．OA5，OA47 $\ldots .$.
40 Germanium Transistors like OC81，ACl28
bio 200ma sub－min．Sil．Diodes
40 shicon Planar Transistore NPN sim．BAY95A， 2 N70
16 silicon Reet ifiers Top．Hat 750 ma up to 1000 V
50 sil ．Planar Dionles 250 mA OA／200／202
30 PNP Silicon Planar Transistors T0－6 sim．2N1132．．．．．．．．10／－
$\overline{\mathrm{C} 12} 12$ silicon Rectifiers EPOXY BY126／127．
11330 PNP．NPN Sil．Tranaiators OC200 \＆ 2 K 104 C14 150 Mixed silicon and Germanium Dioles
T15 30 NPN Silicon Planar Tranaiators TO－5 sini． 2 N 694 11610 3－Amp Silicon Rectiflers Stud Type up to 1000 PIV 1717 30（termanium PNP AF Transiators TO－5 like ACY 17 －22． W18 8 G－Amp Sillicon Rectifers BYZ13 Type up to 600 PIV 19 siticon NPN Transistors like BCl0 C20 12 1．5－amp Kilioon Rectiflers Top－Hat up to 1,000 PIV． TT21 $\quad 30$ A．F．Germaniun alloy Transistora 2G300 Aeries \＆OC7 T＇22 10 I－iump（flass Min．Silicon Rectifters Kigh Volts
［23 30 Madt＇r like MAT Series PNP Transiatora
TV24 20 Germanium 1－ainp Rectiflers GJM up to 300 PIV $\bar{T} 25-\frac{25}{25} 300 \mathrm{Mc} / \mathrm{B}$ NPN Silicon Transistors $2 \mathrm{~N} 70 \mathrm{~N}, \overline{\mathrm{~B}} \mathrm{H} 27$ 25－ 20 Past Switching silicon Dlodes like IN914 Micro－min i．2R Experimenters Assortment of Integrated Circuits，untestell

Aiates，Flip－Flops，Registers，etc．， 8 Absorted Pleces． T2v 101 amp HCR＇s TO．5 can up to 600 PIV CRSI／25－600 1.3015 Plastic silicon Planar trans．NPN 2N2924－2N2926． （＇31 20 Nil Planar NPN trans．low noise Amp 2N 3707. ［32 25 Zener diodes 400 mW D07 cabe mixed Vles．3－18． 13315 Plastic case 1 ampsillcon rectifiers 1 N 4000 series

Code Nos．mentioned above are givell as a guide to the type of

ADI61 nfs AD162 Psp MATCHED COMPLEMENTARY PALRA OF
For mains driven output atages of
Amplifiers and Radio receivers． OUR LOWEST PRICE OF 12／8
PER PAIR

NEW SLLICON RECTIFIERS TESTED

式留

PIV 400 mA		$1 \cdot 5$	34	10A
5010 d	1／－	1／8	2／9	4／3
$1001 /-$	1／3	2／6	3／3	4／6
$2001 / 8$	1／9	8／6	4／－	$1 / 9$
300	2／3	8／9	4／8	816
400 8／－	$2 / 6$	4／－	8／6	$7 / 8$
$500-$	8／－		6／－	$8 / 6$
600 2／9	$3 / 8$	4／3	8／9	$91-$
800	$8 / 6$	4／9	7／8	11／－
1，000	5／－	6／－	9／8	12／6
1，200－	8／6	7／6	11／6	15／－

HIGH POWER SILICON PLANAR TRANSISTORS． VCB100 1c $4 \mathrm{~A} \quad$ fT． $15 \mathrm{M} / \mathrm{CB}$ VCE100 Ptot．40W

VEB8 hFE（min．） Price $15 /$ each | 301 |
| :--- |
| $9 / 8$ |
| $15 /-$ |
| $90 /-$ |
| $22 /-$ |
| $25 /-$ |
| $30 /-$ |
| $87 /-$ |
| $40 /-$ |
| $50 /-$ |

SCR＇s LOWEST PRICE LARGEST RANGE

PLEASE ROTE．To avoid any further Iucreased Postal Charges to our Customers and enable us to keep our＂By Return Postal service＂which is second to none，we have re－organized and streamlined our Despatch Order Department and we now request you to send all your orders together with your remittante，direct to our Warehouse alm Despath Department， WARE，HERTS．Postage and packing still $1 /-$ per order．Minimum order 10／－

> Through this ICS 3 -way Training Method:

MASTER THE THEORETICAL SIDE

From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.
MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer Engineering, Numerical Control Electronics, etc.
EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIO/TV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Build your own radio, transistor portable, and professional-type test instruments with an ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplled. For detalls post coupon below.
Member of the Association of British Correspondence Colleges
for FREE handbook post this coupon today
I.C.S. DEP 1. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W. 11
NAME
ADDRESS

Hi-Fi Audio Transistor Amplifiers Mains Powered 240 V a.c.

ACS4 requires $250 \mathrm{mV} @ 1 \mathrm{k} \Omega$ for $6 \frac{1}{2} \mathrm{~V}$ r.m.s. into 8 or 15Ω load. 65.10.0.

ACS5 requires 250 mV @ $2 k \Omega$ for 12 V r.m.s. into 8 or 15Ω load. \& 10.0.0.
ACS2c Pre-Amplifier complete with treble, bass and volume controls to drive either ACS4 or ACS5: 250 mV 800 kS input (crystal p.u., radio, tape, etc.). E4.10.0.
ACS2m Pre-Amplifier with selector switch for magnetic pick-up (4 mV $47 \mathrm{k} \Omega$ R.I.A.A.), $50 \mathrm{mV} 50 \mathrm{k} \Omega, 100 \mathrm{mV} 100 \mathrm{k} \Omega$ to work into $A C S 2^{c}$. 64.10.0.

Good range of modules and components for high quality audio work. S.A.E. for lists.

AUDIO COMPONENTS \& SERVICES Sound Studios, Bell Hill, Off Crown Hill Croydon, Surrey. 6883706

KONTAKT 60

FOR INACCESSIBLE CONTACTS-More than just a cleaner. KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with today's technology. KONTAKT offers the following ad-vantages:-
I. Dissolves oxides and sulphides the safe way without attacking contact substances.
2. Contains carefully selected solvents which do not attack plastics whereas they do dissolve resinified contact greases and dirt. 3. Contains no silicone.
4. Contains a light lubricant in order to avoid the contact paths being corroded.
5. Prevents further oxidation setting in.
6. Prevents "creep" currents

Because of these outstanding properties KONTAKT 60 is one of the best and most popular contact cleansing agents in the world.
Users include: Rolls Royce Ltd., C.E.G.B., South of Scotiand Electricity Board, Trinity House Workshops, Kolster Brandes, Mullard, Plessey Cos., etc.
OTHER KONTAKT PRODUCTS ARE:
70 Protective Lacquer 80 Special Siliconized Polish
72 Insulating Spray 100 Antistatic Agent For Plastics
75 Cold Spray For Fault Location 101 Dehydration Fluid
Write for full details of above complete range of Kontakt products to:-
SPECIAL PRODUCTS DISTRIBUTORS LIMITED
81 Piccadilly, London, W.I
$01-6299556$

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from ther vols external battery. So much more scope with MINI-DRILL. scope with MINI-DRILL.
Super Kit (extra power, in: Super Kit (extra power, interchangeable chuck) 79/6 p.p. 2/6.

De Luxe Professional Kit with 17 tools $130 /-\mathrm{p} . \mathrm{p}$.
$4 / 6$. 4/6.
Money Ref. Guarantee.

Report from
 BY L.HUGGARD B.Sc.

「n America, father's lair is in the basement, hidden away amongst the washing machines, water heaters, air conditioners and central heating plant; a holy of holies, safe from the mischievous fingers of the rest of the family.

A basement hideaway puts the American hobbyist ahead of his British counterpart. Certainly in Ohio the full basement is a feature of nearly all houses new and old, and gives the owner additional useable floor space at least equal to the living area of the floor above. The basements are adapted by the houseowner to his needs.

In a new house, it is a bare empty space, concrete or brick walls, and concrete floor, a challenge to the do-ityourself enthusiast. Basements finish up as anything from a machine shop or beer parlour to a children's playroom, but always with space set aside where father can pursue his indoor interests. Here a workbench can be set up, and a project worked on and left until completed, without the chore of packing it away each evening to make room for the car, or for supper to appear on the kitchen table.

HOME-MADE INDIVIDUALITY

There is time to work at an indoor hobby all through the year. The whole country is nearer the Equator than Britain. Even with daylight saving time, the summer evenings are comparatively short, and it gets dark quickly, within half an hour of the sun going down between nine and ten local time.

Home-made articles have great attraction in America, where everything possible is mass produced. Although there is a great variety to choose from, there is a certain lack of individuality in products ranging from furniture to coldur television. The only way to get a unique article is to make it, or follow the deplorable and costly way of instant "customising" with stick-on knickknacks.

The average American earns between 130 and 200 dollars a week. Though the cost of living in some instances is higher than in Britain, basics like food, clothes, electricity are almost comparable, and with lower direct taxation, and much lower indirect taxation .he has more to spend on himself or the family, not to consider instant credit and charge accounts. When pipes leak or domestic appliances fail it is much less costly to carry out repairs at home than to pay for expensive servicing, so that a workroom and tools are almost a necessity.

The selection of tools for the do-it-yourselfer is bewildering. He is very well catered for by a large number of manufacturers and, because of the scale of consumption, and the advantages of mass production, prices of both hand and power tools are very reasonable.

Quality is proportional to price, and the range in quality is great, but the price of one particular article
will vary from store to store, so that careful shopping can bring savings. Typical prices are; 10 dollars for a $\frac{1}{4}$ in power drill, 28 dollars for a $6 \frac{1}{2}$ in power handsaw. Soldering irons start at two dollars, a one inch micrometer at 14 dollars. Hand tools made in America are marginally more expensive than British ones. They are very well made and finished.

SIMPLE ESCAPE

The electrical enthusiast has a wide range of multirange test meters of the volt/ohm/milliamp variety, to choose from. A number are imported from Japan and appear to be excellent value. A typical 20,000 ohm per volt meter with five a.c. and d.c. ranges, two resistance ranges and a leather case can be had for around seven and a half dollars. Such a meter will be surprisingly accurate, within one per cent of the readings given by an instrument similar to the Avo Model 8.

After waving the dollar wand and creating a workshop the first thing that appears in it is the neighbour's television set, which he has struggled with unsuccessfully, and the family have been deprived of "commercials" for weeks. There is a simple escape, put all the tubes, (sorry! valves)-or as one ham calls them "firebottles"-into a bag and take them to the nearest drug store which will have a comprehensive tester for free use by the customers. After showing him how it works he can pay for snacks until he is finished.

KITS AND BEDLAM ON C.B.

Building from kits can be a lot of fun and very informative. Kits can be purchased off revolving racks, similar to those selling postcards, for a few dollars. These are simple kits suitable for the beginner and contain everything to build a breadboard circuit like a two transistor a.m. radio, or a one tube radio or a code oscillator.

All sorts of kits are available from the major kit suppliers, of whom Heathkit will need no introduction. They market over three hundred different kits, ranging from decade resistance boxes to colour television sets. Other kit manufacturers have similar ranges of equipment.

If serious work is contemplated in the future, this is a very good way to pick up both knowledge and test equipment. Kits cover 'scopes, starting at 62 dollars for a 3 in model, and such other useful items like widerange oscillators from 54 dollars, and stabilised power supplies. There are, needless to say, kits for quality hi fi equipment and ham radio gear.

In all cases savings of up to 50 per cent can be shown over buying similar equipment in the shops. Pocket transistor radios and small "walkie-talkies" are an exception. These are imported in quantity from the Far

East, and are very cheap. Nearly every child has one at just over three dollars for the radio and 12 dollars for a pair of walkie-talkies. The latter may be operated by anyone without a licence on the citizens' band, and no other, provided the power output does not exceed 100 milliwatts, result-bedlam!

COMPONENTS GALORE

The home experimenter can pick up components either locally, in which case the range may be limited, or from mail order firms. Local radio stores tend to cater for the button-pusher rather than the constructor, but may carry a limited range of components and packages of "goodies". Local component suppliers to industry will also sell to anyone. The mail order suppliers have inventories covering almost every component imaginable. All listed in annual 517-page catalogues sent free on request.
As they also supply industry, it is possible for the amateur to purchase the latest semiconductor and other devices that come on the market. He is not neglected, for they also supply bargain parcels of such things as 300 assorted ceramic capacitors for $2 \frac{1}{2}$ dollars or 100 assorted transistors for 4 dollars, not to mention pots, switches and hardware similarly packaged. All are sold subject to money being refunded if unsatisfied.

The favourite home project is building or improving hi fi equipment, good quality off-the-shelf equipment is expensive, and kits are an immediate answer to reduce the cost.

For anyone engaged on such a project a 'scope and oscillator are a great help, and most hobbyists have built them from kits. Ham radio enthusiasts can assemble stations from a wide range of kits, this is probably a cheaper way to obtain equipment than building it from scratch, as components tend to come cheaper in a packaged deal like a kit than singly.

TUNE IN TO BIG BEN

There are people who still do it the hard way. Experimenters who run out of ideas will always find something in electronics magazines similar to Practical Electronics. Some of the features will describe equipment using integrated circuits or solid state modules available to the amateur here.

For the newcomer one project is a must. Build a short wave receiver and tune into Big Ben and the News, real news covering the big wide world, devoid of commercials, as only the BBC can cover it.

For Future Reference

An index for volume four (January 1968

- to December 1968) is now available price Is $6 d$ inclusive of postage.
Easi-binders are available price 15 s 0d
- inclusive of postage. State whether "Vol. |", "Vol. 2", "Vol. 3", "Vol. 4" or "Vol. 5" is required.
Orders for Binders and Indexes should be addressed to the Binding Department.
Orders for copies of the Index only should be addressed to the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

HARVERSON'S EXCLUSIVE BARGAIN! HI-FI GUITAR AMPLIFIERS

 Refurbished units With a peak 10 peak output pprox. 20 watt rief spec. A EF86, ECC83 ECL82, Bridge Rect. Two inputs via standard jack sockets for 1 or 2 guitars or mikes controlled by uingle volume control. Heparate bass and trehle controls. Tremolo with variable speed control and standard jaek socket inr remote control of tremolo on/off by foot switch. Standard jack socket for speaker outpu portable case finished in gelr contained unitinateractive folding handle. Size approx, 147 . 11 gols in capahle of really H_{1}.Fi reproduction when sin. Als gram deck or radio tuner. Each amplifler is carefully tested and checked by us before despatch, and due to the

$$
\text { ter } \quad \text { nem at the unrepentable price o }
$$

\&12.12. 0.
standard Jack Plugs $2 / 6$ each. if required. FOOT swITCH for tremolo on/off control, complete with lead
and jack plug $27 / 6$.

BRAND NEW 3 OHM LOUDSPEAKERS

Sin.14/-: 61 in . 18/6; $8 \mathrm{in} .24 /-; \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6$ E.M.1. 8 (bin. with high flux magnet 21/-. E.M.1. $13 \frac{1}{4}$ Ein. With high flux ceramic magnet $42 /-(15 \mathrm{ohm} 45 /-)$
 $10 \& 12 \mathrm{in} .3 / 6$ per speaker
BRAND NEW, 12 in. 15 W H/D Speakers, 3 or 15 ohnls. By welf-known Britioh maker. Now with Hi Flux cerami ferrobar magnet assembly. $\mathbf{4} 5.10 .0$, IP. \& P. $5 /$, Guita
 mic magnet, A vailable in 3 or 8 ohms 15 - each: 15 ohms 18/6 each. P. \& P. 2/0.
Lind RA, WIN CONE LOUDSPEAKER. $10 u$ atts peak handling. 3 or 15 ohm, $35 / \mathrm{F}$. P. \& P. $3 / 6$
3!in. 12/6; 7 iin. 21/-. P. \& P. 2/- per upeather
VYAAR AND REXIRE SPEAKERS AND CABINET FABRICS app. 54 in . witle. (-sually $35 /-$ ydl., our price $13 / 6$ d. length. P. ar P, $2 / 6$ (min. I sd., N.A. . . for samples,

LATEST COLLARO MAGRAVOX 368 STEREO TAPE t16.0. O. P. \& P. 10%. QUALITY PORTABLE TAPE RECORDER CASE Dual Purpose Bulk Tape Erater and Tape Head Demagnet-
 High sensitivity, 18/6. P. \& 1'. I/6
ACOS HIGH IMPEDANCE CRYSTAL STICK MIKES. OUR PRICE $21 /-$ P. \& P. $1 / 6$.
SPECIAL OFPER: ACOS STICX MICROPHONE ($21 /-$)

HEW S.T.C. TYPE 25 MINLATURE RELAY812 volt. 4 s/p, c/o contacts. 1 anap rating. Coil resistance 185 ohms. Size approx. $i \times 1 i \times 1 \nmid \mathrm{I}$. high. 10/-each. P. \& P. $1 / 6$
Also some similar to above but coil resistance 5,800 ohms 48 volt operation. $8 /-$ each. P. \& \mathbf{P}. $1 / \mathrm{i}$

SPECIAL ORFER: PLESSEY TYPE 29 TWIA TUNING GAMG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitten with trimmers Anm 5:1 integral slow motion, Nuitable for nominal $480 \mathrm{ke} / \mathrm{s}$
I. F. Nize approx. 2×1. I!in. On!y $8 / 6$. P. $\mathrm{P} .2 / 6$. I.F. ize approx. 2×1. 1 in. On!y $8 / 8$. P. \& P. $2 / 6$.
HAMS TRANSFORMEB. Primary $200-240 \mathrm{~V}$ two separate $\frac{1}{3}$ wave secondaries giving approx. 16 V at 1 amp and $20 \mathrm{Y}^{\circ}$ at 1.2 amp ; secs. con be connected in series
supplies. Drop through mounting. Stack size $2 ?$ Iin. 15/ + P. \& P.
MAINS TRANSFORMER. For transistor power supplies Pri. 200/240V. Nec. 9-0-9 at 500mıA. 11/\&, P. \& P. $2 / 6$
Pri. 200/240V. Nec. 12-0-12 at 1 amp. 14/8, P. \& P. $2 / 6$ Pri. 200/240V. Sec. 10-0-10 at 2 ansp. 27/6. P. \& P. $3 / 6$ MATCHED PAIR OF 2: WATT TRANSISTOR DRIVER AFD OUTPUT TRAN8FORMERS, Stack size $1 \frac{1}{2} 1 \frac{1}{2}$ din. Output trans. tapped for 3 ohni and 15 ohm outpu 10/- pair plus $2 /$ P P P 2. \&
PARMEKO 7-10 watt OUTPUT TRANSPORMERS to match pair of ECL82's in purh-pull. Sec, tapped 3.75 ,
7.5 and 15 ohm. Stack size $2 f \times 1$. 2 in . approx. ON LY 12/. P. \& P. P 3/ECL80 se in push-pull to 3 ohm output. ONLY 11/P. \&P. 2/6.

BRAND REW MAIMS TRANSFORMERS for Bridge Rectifer. Pri. 240 V AC. Sec. 240 V at 50 mA and 6.3 V at
1.5 amp. Stack size $2\{\times 1 \times 24 \mathrm{in}, 10 / 6$. F. \& P. $3 / 6$. (Special quotations for quantities).

HIGH GRADE COPPER LAMINATE BOARDS $\times \frac{1}{1} \mathrm{in}$. FIVE for 10/.. P. \& P. $2 / \mathrm{F}$.

TRANSISTOR STEREO 8 + 8 MK II Now using Silicon Transistors in first five stages on eac channel result ing in even lower noise level with inproved sensitivity. A really firet-class H1-Fi Stereo Amplifier Kit Ches 14 transistors giving 8 watts push pull output pe
channel (IfW mono). Integrated pre-amp. with Bass channel (If Inono). Integrated pre-amp, with Bass Ceramic or Crystal cartridges. Output stage for any Ceramic or Crystal cartridges, Output stage for an supplled including drilled metal work. Cir-Kit board attractive front panel, knobs, wire, soller, nuts, boltsoo extras to buy. simple step by step instruction enable any constructor to buill an nmplifer to be proud of Brief specification: Freq. response $\pm 311 \mathrm{~B}, 20-20,000 \mathrm{c} / \mathrm{s}$ Bass boost approx. to +12 dB . Treble cut approx. to -16dB. Negative feedback 18 dB over main amp Power requirements 255 at 0.6 amp
PRICES: AMPLIFIER KIT $£ 10.10 .0$; POWER PAC'K KIT 23.0.0; CABINET 23.0.0, All Post Free

恠 (fre with kit) 1/6, (S.A.E.)

SPECIAL PURCHA8E.

E.MI. 4-SPEED PLAYER Heavy gin. hetal turntable. Low Antter performance 200 250 Vhalled motor 90 V type light weight pick-up arm mid mono cartritige with t/o
tylii for I.P/s. LIMITED NUMBER OSLY 63/-. P. \& P. $8 / 6$.

4-SPEED RECORD PLAYER BARGAINS
mains models. All brand aew in maker's packing.
E.M.I. MODEL 999 single Player with unit mounted pick-up arm and mono cartridge All plus Garriage and Packing $8 / 6$
ATEST GARRARD MODELS, All typel available 1000 P25, 3000. AT80 etc. Send S.A.E. for Bargain Prices PLINTH UNITS cut out for darrard Models 1000, 1025 P200, 3000, AT60, SP25. With rigid perspex cover. OVR
PRICE 5 gns, complete. P. \& P. 8/6.

SONOTONE 9TAEC compatible Stereo Cartridge with iamonl etylus $50 / \mathrm{L}$. P. \& P. 2/
LATEST RONETTE T/O Stereo Compatible Cartridge for EP/LP/Stereo/78. 32/6. P. \& P. 2/
atest ronette t/o mono Compstible Cartridge EP/LP/78 mono or steren records on mono equipment PEW ONLY: ACOS GP69/1. For EP and LP 10/-, P. \& P. 2/QUALITY RECORD PLAYER AMPLIFIER duty touble wounl mains transforner. ECC83. EL84 eZ80 waiver, Neparate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohn speaker. Hize 7in.w. 3d. 6 h . Ready built amil tested. PRICE 75/-. P. \& P. f $_{3}$
ALSO AVAILABLE mounted on board with vutput ranaformer and apeaker realy to fit into cabinet below.

DE LUXE QUALITY PORTABLE R/P CABINET nout motor baard size $14 \frac{\text { - }}{} 12 \mathrm{in}$., clearance 2 inn , below Stin. above. Will take above anplifier and any B.S.R. on

FM/AM TONER HEAD Beautifully designed and pre
cision engineered by Dormer \& cision engineered by Dormer \&
Wadsworth Ltd. Supplied Wadsworth Lid. Supplied
ready fitted with twin 0005 tuning condenser for AM con dection. Prealigned F
output $10.7 \mathrm{Mc} / \mathrm{s}$. Complete

full circuit dingram of tuner heth. Andither special bulk purchase enables us to offer these at $27 / 6$ each. P. \& P. $3 /-$ GORLER P.M. TUNER HEAD. 88-100 Mc/s. $107 \mathrm{Mc} / \mathrm{s}$. 1.F.15/-plus $2 / 6$ P. \& P. (ECC85 valyes, 8/8 extra)

AMPLIFIER MODEL HA34
AMPLIFIER MODEL HA34 besigned for Hi-Fi reproduc-
tion of records. A.C. Mains operation. Recorus. Ay.C. built on plated beavy gauge metal plated beavy grage inge $7 \frac{1}{2} w . \times 4$ in. d. K 4 in. h. Incorporates ECC83, EL84. Ez80 valves. Heavy duty, double wound maing transformer and output transformer matched for 3 ohm speaker, se parate Bass, Treble and tive feedback line. Output 4y watto. Front panel can be etached ant leads exh knobs, vaives, etc. wired and tested for only 84.5 .0 . P. \& P. B/* HSL "FOUR" AMPLIFIER ENi, Nifferent and advance circuitry. Complete set of parts, etc. 79/6. P. \& P.6/ BRAND NEW TRANSISTOR BARGAINS. GET 15 BRAND NEW TRAN818TOR BARGAIN8. GET6/AF117 7/6.
Set of Mullard 6 transistors OC44, $2-$ OC45. AC128D matched pair AC128 25/-; Mullard LFH3 Audio Trans istor Pack AC128D and matched pair AC128 12/6

SPECIAL OFFER!

A great "ppur.
tunity to pur-
chase ti first clas
chase it first claso
GENEKAL
PURPOSE
HIGHSEN
SITIVITY'
PORTABLE AMPLIFIER Completely self contained and can be used for a variet ot purposes, i.e. Intercon,

Baby Alarm, Booster unit for

transistor radios etc., also ldeal for clabsroon
unit etc. Worke perfectly with nur special offer Acos stick Microphone (21/-). Output 1000 mW . Vees standarit volt hattery. Smart two tone carrying
case size 12 4. 9in. Hitted btandard input jack socket. case size 12
colume controls, $7,4 i n$. speaker. Conpletely huilt and tested, brand new with full maker's guarantee.

STEREO AMPLIFIER

lacorporating 2 ECLS6's and 1 EZ80, heaty duty, double wound mains transiormer. Output 4 watts per channel Output imper volume controls. Absotut

- Generous size Driver and Output Transforniers. Output transformer tapped for 3 ohm and 15 ohm anl matched pair of ACl28 o/p). 9 volt operation - Everything supplied, wire battery clips, solder, etc - Comprehensive eisy to follow instructions and circuit "liagram 2,6 (Free with Kit). - 111 parts sold reparately. BPECIAL PRICE 45/-. P. \& P. 3/-, Also realy built and tested, 52/B. P. \& P. $3 /$

HARVERSON'S SUPER MONO AMPLIFIER

A super quality grime implifier using a double wound mains transformer, EZs0 rect fifer ind ECL82 triode pentorle valve at aurlio implifler aml 1 nwer output stage. and tone controls. Chassis size only Tin. Wide. 3in tleep 6 in. high overall. AC mains $290 / 240 \mathrm{~V}$. Supplied absolutely Brand New completel wired imil tested with valves ani gonil quality output transformer. LIMITED NTMBER. $\begin{aligned} & \text { OUR ROCK BOTTOM } \\ & \text { BARGAIN PRICE }\end{aligned} 49 / 6 \quad$ P.\& 9

10/14 WATT HI-FI AMPLIFIER EIT A stylishly finishen monaural amplifier with an output from EL84s in push-pull. Super reproduction of both music and speech, with negligible hums. Separate inputs for mike and gram allow records and announcement
 to follow each othe
uly shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume cont rols, gootlift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. simple instruction booklet 26 (Free with parts). All parte sold separately. ONLY 27.日.6. P. \& P. $8 / 6$. Also avallable ready buit and testell complete with stal. input sockets, $29.5,0$. P. \& P. 8/6.

Open all day Saturday
Early closing Wed. 1 p.m.
a few minutes from South Wimbledon Tube Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W.I9
Tel. 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ORLY. CHARGED EXTRA.

new VARI-STAT

 thermostatic soldering ironHigh Production Model D PRICE Miniature Iron 50 wats Miniature Iron 50 wat
Voltage 12-250 vol
Weight I $3 / 40 z$
Weight I 3/40
"Screw on" Bit sizes $1 / 16 \mathrm{in}$., 3/32in., $1 / 8 \mathrm{in}$., 3/I6in.. I/4in.
Our range also includes:
Standard Miniature Model 50W
Seandard Inserument Model 70W
High Production Instrument Model 125W Industrial Model 500W

All these irons give excellent bit and element life since the thermostat completely eliminates overheating and controls reserve heating capacity which makes possible continuous soldering without chilling of the bit. The consistent temperature makes these irons ideal for printed circuit work.

CARDROSS ENGINEERING CO. LTD.,
Woodyard Road, Dumbarion.
Phone: Dumbarton 2655

AMPLIFIERS

SSAR3. 10 W push-pull oulput. TW99 output trans. Four valve. Full chassis mounting. Deu and boxed. complete with circut drawings. S\&ART. 100 W nutput. Three valve. TW132 output trans. Selenium rectifiers. $8 \mu \mathrm{~F}$. con denser. Full chassis mounting. New and boxed Complete with circuit dramings. $\$ 2.10 .0$. P. \& P 00/.

JUST RELEASED

R.A.F. Receiver Type R3673. Details on request. Mixer I'nits Type 18. H.F., M.F., L.F. Valve V885. 10/4, P. \& P. $2 / 6$
Micro-Ammeters for Instrument Mounting, etc $0-100 \mathrm{~mA}$. $30 / \mathrm{F}$. P. \& P. $2 / 6$
Micro-Ammeters Type Y. 0 - 100 mA . Heavy duty in case complete with leads. $£ 3 . \mathrm{F} . \& \mathrm{P} .5 / \mathrm{F}$
Flexible Metal Tubing. (Galvaniser, Watertight 35/-100tt. P. \& P. 7/b
ELECTRO-METHODS. Low Inertia Motor 24 V d.c. 2,000 r.p.m. 20/- P. \& P. $2 / 6$

6 F33 (1). 45 Capacitors. $\mathrm{ECC8} 2$ (3), EB9 1 (3), 6 F33 (1). 45 Capacitors. Resistors, etc. Valve bases and cans. 20/-. P. \& P. 2/6
TRANSFORMERS (examples).
225-0-225V (27mA), oil filled. $25 / 5 \mathrm{y}$ (0.5A), 6-3V (2A), SSTR009. Pri. 2301. Sec. $0-50 \mathrm{~V}^{(50 \mathrm{~mA}), 4 \mathrm{~V}^{\prime}(1 \mathrm{~A})}$ 6.3V' (8A). 25/-. P. \& P. 5/.

1,000 Transiormers in stack.
CAPACITORS. 30 assorted 0.01 mF to 1 mF (our selection). 10/-. P. \& P. 2/.
CABLE. Six core (100yd new) with drum assembly. 25/-, P. \& P. 4/6
TEST INSTRUMENTS, ETC. S.A.E. FULL LIST. STATC'S SUPPLIES
STATUS HOUSE, WILKINSON AVE., BLACEPOOL

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: 9y: 7 gv ; 6 v : 4iv (single output) $39 / 6$ each. P. \& P. 2/9. outputs) $42 / 6$ each. Ail outpul required. Al she above unizs are
completely isolated from mains by double compet transsormer ensuring 100° ". salecy.
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.). 31 Oliver hoad, London. E. 17

RADIO COMMUNICATION HANDBOOK
By R.S.G.B
Postage 4/-

TELEVISION ENGINEERS' POCKET BOOK, by J. P. Hawker \& J. A. Reddihough. 21/-. Postage I/-
Mullard COLOUR TELEVISION. 17/6. Postage $1 /$.
BEGINNER'S GUIDE TO TRANSISTORS, by J. A. Reddihough. 15/-. Postage 1/-.
FET CIRCUITS, by R. P. Turner. 25/. Postage $1 /$.
COLOUR TELEVISION PAL SYSTEM, by G. N. Patchett. 40/. Postage $1 /$.
TRANSISTOR TECHNOLOGY, by R. G. Middleton. 30/-. Postage $1 /$.

AMATEUR RADIO TECHNIQUE, by R.S.G.B. 12/6. Postage 1/-

BEGINNER'S GUIDE TO PRACTICAL
ELECTRONICS, by R.H. Warring. 18/6. Postage 1/-.
Inter: GEC TRANSISTOR MANUAL 7th ed. 21/.. Postage $2 /$-.
NEW CATALOGUE. 2/-.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-2I PRAED STREET LONDON, W. 2
Phone: PADdington 4185 Closed Saturday 1 p.m.

MARTIN IS HIGH FIDELITY

ADD-ON-ABILITY THRILLING POWER DEPENDABILITY

GENUINE ECONOMY

Details from:-
MARTIN ELECTRONICS LTD., 155 High Street, Brentford, Middlesex. ISLeworth 1161

To MARTIN ELECTRONICS, 155 High Street Brentford, Middlesex

I have not had your leaflets before. Please send them on AMPLIFIERS \square FM TUNER \square RECORDAKITS \square (Tick as required)

NAME.
ADDRESS

PE 2

HIGR SPEED MAGNETIC COUNTERS (4 l liu). 4 digit. 12/24/48' (stat which) 6/6each. P. \& P.
COPPER LAMTNATE BOARD ($81 \quad \therefore \quad 51$
RE-SETTABLE HIGH SPEED COUNTER (3 1 in in). 3 digit. 12/24/48y (state which) $32 / 6$ eacb.

BULE COMPONENT OFFERS

100 Capacitors 50 pF to $0.5 \mu \mathrm{~F}$.
${ }_{250}^{250}$ Carbon Resistors Reaistors iw (Transiator types).
250 Carbon Reaistors \& 1W.
100 ceramic Capacitors $2-1,000 \mathrm{pF}$
25
Vitreous W/W Resitors (5%).
12 Precision Resistors (0.1% sere
12 Precision Resistors (0.1% several standard values included)
12 silicon Diodes 500 p .i.r. 750 m .a
4 Silicon Rects. 400 p.i.v. 3 amp .
8 Silicon Rects. 100 p.i.v. 3 amp .
50 Silicon Trans. ($2 \mathrm{~N} 706 / 708$, BSY2829. BCY41/42 types.) Vumarked, Trntested ANY ITEM 12/6. ANY 5 ITEMS 22.10 .0 .
S.C.Rs. (Thyristors) CRS1/20 5/6; CRS1/40 7/6; CRS3/10 7/6; CRS3/30 8/6; CRS3/40 10/-; CRS3/50 $12 / 6$ each.
'3000' TTPE RELAYS (ex. new' equip.) 10 for $25 /=$ (our choice) P. \& P. 5/*
VENNER LIGETWEIGET ACCUMULATORS ($1021313<13$ in). $1 \cdot 5$ Ahr 12/6 each. COMPUTER LOGIC BOARDS containing: 14 BCZ11, 2 trimpots, diodes, etc., 20/eack.
LIGHT DIMMER/SPEED CONTROL MODDLES: 200 watt, $35 / \mathrm{*}$; 500 watt. $45 / \mathrm{F}$ 1,000 watt $60 /-$
RECORD LEVEL METERS (By Smiths). $1 \frac{1}{2} \frac{1}{2} \mathrm{in}, 15 /-$ each. P. \& P. $2 / 6$
MIMATURE RBLAYS ($10 \mathrm{oz}, \dot{\prime}$! \because ? in), 24 V I c/o, $7 / 8$ each. $12 \mathrm{~V} .10 / \mathrm{e}$ each. P. C. CONRECTORS (13 way iu-line), $4 / 6$ pair.

LARGE CAPACFTY ELECTR OLFTICS: $100+400 \mu \mathrm{~F}, 275 \mathrm{~V} ; 1,000 \mu \mathrm{~F}, 50 \mathrm{Y} ; 2,500 \mu \mathrm{~F}$ $0 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 15 \mathrm{~V}^{*}, 4 / \mathrm{e}$ each. $4,000 \mu \mathrm{~F}, 90 \mathrm{~V}^{\mathrm{F}} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V}, 7 / 6$ each $5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 63 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 30 \mathrm{~V} ; 16,000 \mu \mathrm{~F}, 15 \mathrm{~V} ; 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /-$ ach
SPEAKER BARGALNS (E.M.I. $13 \therefore 8 \mathrm{in}$.) With two Tweeters and $\therefore / 0$ ver, 15 ohm , 65/-; with Dual Cone, $15 \mathrm{ohm}, 52 / 6$; Single Cone, 3 or $15 \mathrm{ohm}, 45 / \%$ P. \& P. $3 / \%$ FANE, $12 \mathrm{in}, 20 \mathrm{waH}$ (Dual Cone), $95 / \mathrm{P}$ P. \& P. 5/TWEETER (E.M.I. 3 in), $15 \mathrm{ohm}, 12 / 6$.
CAR RADIO ($3 / 5 \mathrm{ohm}$), $7 \therefore 4 \mathrm{in}, 15 / \sim ; 8$: $5 \mathrm{in}, 17 / 6$.
L.T. TRANSFORMERS. Prim 240V". SEC. $10 / 20 / 25 \mathrm{~V}$. and 3.5 amp , 20/e. P. \& P. 5/. 5 amp. model 25/\%. P. \& P. $5 /-$

PATTRICK \& KINNIE
81 PARK LANE, HORNCHURCH, ESSEX ROMford 44473

THIs instrument was designed to warn the busy housewife that rain had started falling, so that she could promptly rescue her laundry before it had become soaking wet. It is simple to operate and reasonably robust.

An audible warning is obviously more satisfactory than a visual one, unless the user is hard of hearing. A busy housewife would not normally be expected to stay in one room. She would be more likely to hear a bell, or buzzer, than to see a light, whilst moving about the house doing her chores; she might even be engrossed in her favourite magazine, or novel!

The finished instrument costs very little to make, especially if maximum use is made of components to hand.

The components used are displayed here on the printed circuit board sensor

TRANSISTOR SWITCH

The circuit in Fig. 1 was hooked up. To test this circuit a wire was connected to " A ", and another to "B". A tiny drop of water was placed on a piece of glass, and the two wires touched on it. The minute current through the water was sufficient to result in the bell ringing. The circuit uses a current amplifier TR1, with TR2 acting as a switch. A current of about 65 mA flows in the collector circuit of TR2 when the bell is ringing. This is well within the capabilities of the transistor used. VR1 is used to set the bias on TR1.

The separation of the printed circuit conductors, and the conductance of the rain will determine the operation of this circuit, which can be set by adjustment of VR1. The diode is inserted across the bell to prevent back e.m.f. through the bell contacts damaging the transistor TR1.

CONSTRUCTION

The instrument is housed in a cigar box or similar small housing to make the finished unit attractive. A small compartment is constructed in one corner of the box to house the small components; these are mounted on two three-way tag strips next to VR1.

The microswitch is fitted to the back of the box, and a small strip of metal attached to the lid is arranged to operate it (see photograph). A toggle switch can be used instead. TR2 is mounted on an aluminium

Fig. I. Circuit diagram of unit housed in a box

Resistors
RI $3 \cdot 3 \mathrm{k} \Omega$ R2 560Ω
Both $10 \%, \frac{1}{2}$ watt carbon
Potentiometer
VRI $10 \mathrm{k} \Omega$ linear carbon
Transistors and Diode
TRI OC71 TR2 OC35
DI OA8I
Miscellaneous
BYI 6V dry battery
Bell (see text)
Miniature microswitch or toggle
switch single-pole, on/off
Tag strips
Battery connectors
Box

bracket which is screwed to the side of the compartment. The battery is maintained in position by a small strip of wood stuck to the side of the box. All this can be seen in the photograph. The remainder of the space in the box is used to store the rain sensor, and the lead when not in use.
The sensor was made using a small piece of printed circuit board. The pattern can be etched by using a solution of four parts ferric chloride with one part hydrochloric acid and six parts water. This solution is poisonous and harmful to the skin. Paint the pattern of the copper to be retained with matt black paint, which is later cleaned off to reveal the copper. Alternatively a photographic negative of the pattern can be used to print direct onto the copper. The size of

Fig. 2. Wiring of components on the compartment panel and connections to TR2 looking ot underside

The assembled component panel is fitted to the corner compartment. The sensor board is shown on the left with its colled connecting lead. The metal strip attached to the lid operates the microswitch on the back panel
the sensor is $3 \frac{1}{4}$ in $\times 2 \frac{1}{4} \mathrm{in}$, and the width of the conductors is approximately 0.05 in , and the spacing of the conductors about 0.025 in.

OPERATION

The simplest method of setting VR1 is to breath heavily onto the sensor to deposit a film of moisture. VR1 is then rotated to increase the base current of TR1 until the bell rings. The moisture is then wiped off with a piece of dry cloth. R1 will limit the base current of TR1 to a safe value if the sensor is short circuited. The microswitch is used to switch the unit off and on, this operation being performed by opening and closing the lid of the box. The bell is fitted inside the lid of the box which acts as a sounding board.

When in use the sensor should, of course, be placed well out in the open, away from walls, fence, or anything that may protect it from the first few drops of rain. The box can be kept indoors or under cover elsewhere, so long as the bell can be heard when set off.
When not in use, the lead to the sensor is coiled up and placed in the box with the sensor.

NOTES ON COMPONENTS

The only components that warrant an extra word or two, are the bell and the OC35. Almost any electromagnetic bell will suit if it will operate from a 6 volt battery. The one used in the prototype (see photograph) is an "under-dome" type drawing 65mA. It was decided to retain the OC35 so that the constructor could use almost any bell, the current of which can be handled adequately by the OC35. But if using the 65 mA bell a lower current transistor such as the OC81 can be used.

DRY JOINT TESTER
The most rellable way of testing for a dry joint is to measure the reaistance between the componen ead and the printed circuit boaris. Our klt for doing this comprises a large scale (3in.) moving coil meter, varlable resiatance for miljuating zero setting, and a wring diagram wh instructions. The only alditlonal Itenis you will need are a postage and Insurance 2/6.
MINIATURE WAFER SWITCHES

4 pole, 2 way- 3 pole, 3 way- 4
pole, 3 way- 2 pole, 4 way- 3 pole 4 way- 2 pole, 6 way-i pole, 12 way. All at $3 / 6$ each. $86 /-$ dozen your assortment

WATERPROOF HEATLEG
 ELEMERT
 26 yards length 70 W . Helf-regulating tempersture control. 10/-post free.

BLANKET SWITCH Double pole with neon let
into side so luminoue in dark.
ideal for dark room ilght or for
use with waterproof element-new
plastlc case. $5 / 6$ each. 3 heat model $7 / 6$.
PHOTO-ELECTRIC KIT
All parta to make light operated switch/burglar alarm/counter, etc. Kit comprises printed clrcuit Larninsted Boards and chemleals. Latching relay. aistors, cond., terminal block. Platic case. Essen sistors, cond., terminal block. Plastic cres. Essen photo-electric devices including auto. car parking ilght, modulated light alarm. Simple lnvisible ray awitch-counter-stray llght alarm-warbling tone electronic alarn-project lamp stabillser,
etc., etc. Only 39/6, plus 2/- post and insurance.

PPS ELIMINATOR. Play your pocket radlo from the majnisl save £n. Com plete component kit comprises
rectifiers-rnalns dropper resiatances smoothing condenser and instructions, only $6 / 8$ plus $1 /$-post.

BECKASTAT

Thle is an instant thernoatat, slmply plug your appliance Into it and its lead lato wall plug. Adjustable aetting for normal air ternpeadlug.
asding. Will save 19/8. Postage and Ins. 2/9.

KETTLE ELEMENT $230 / 240 \mathrm{~V} 1500$ watt Made by Beat for kettles with in in. dia. hole Chalfont, Davidron, Dlmplex, Grafton, Hawkine Jurymald, Morroware, Monogram, Plifo, Revo, 2/6 post

QUUCK CUPPA

Mini Immersion Heater, 350 w $200 / 240 \mathrm{v}$. Boils full cap in abow Wo minutes. Use any socket or lamp holder. Have at bedeide for tea, baby's food, etc. $10 / 6$, post and insurance $1 / 6$. 12 v . car

odel aleo avallable

MAIN8 TRAN8ISTOR POWER PAGK

Designed to operate translitor aets and ampliffers Adjuntable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PP9, and others. Kit comprises: nialns tranaformer rectifier, gmoothing and load resistor, condensers and instructions. Real saip at only

THERMOSTATS

rype "A" 16 amp . for controlling room heaters, reenhouses, airing cupboard. Has spindle for pointer knobs. Quickly adjustable from $30-80^{\circ} \mathrm{F}$ $1 / 6$ plus $1 /$ - post. Suitable box for wall nounting.

Trpe "B" 15 amp . This is a 17 ln , long rod type made by the famous Sunvlc Co. Apindle adjusts thle from $50-550^{\circ} \mathrm{F}$. lniernal sorew adjustable over 30° to $1,000^{\circ} \mathrm{F}$. sultable for controling
furnace, oven iurnace, oven heater or to make flame-start or fir alarm $8 / 6$ plus $2 / 6$ post and insurance Type "D". We call this the Ice-stat as it cuts in aod out at around freezing point, $2 / 3 \mathrm{amps}$. Has many uses one of which would be to keep the 10 ft (16 yds. 20/-) is wound round the plpes. 7/B. P. \& P. $1 /$ /-. This is standard refrigerator thermo atat. spindle adjuatmenta cover normal refrigera Lor temperature. 7/6, plus 1/. pust.
Type "P". Glass encased for controlling the temp of llquid-partlcularly those in glass tanks, vat or sink:-thermostat is held (halt submerged) by rubber sucker or wire clip-jreal for flah tanksdevelopers sad chemical bathi of all types.
Adjuatable over range 50° to $160^{\circ} \mathrm{F}$. Price- $18 /=$.

NFRA-RED HEATERS

Make up one of these latest type heaters. Ideal for bathroom, etc. They are ilmple to make fronn our

INDICATOR LAMP

Panel mounting, conaints or deon lamp in red plastic lens with resistor in leada SPRING COIL LEADS enclosed elementa dealgned for the correct infra-red wavelength (3 microns). I'rice for 750 watte element, all parts, metal casing as illustrated, 10/6, plus 4/6 post and ingurance. Puli switch 3/-extra.

BREAST MICROPHONF

Fine American made dynamic type, adjustable on breast Hate with neck straps. 7/0, post 4/6.

12V BLOWER

Heary duty motor with centrifugal blower coupled to une end. Ideal for car heater. 12/6, plus $4 / 6$ posit.

VARYLITE

Will dim incandeacent lighting up to 600 watte from full brilliance to out. Flited on M.K. flush plate, same size and fixlng as atandard wail awlich oo may be fitted in place o thls, or mount on surface. Prlce complete in heavy plastl box wlth control knob ${ }^{\text {is }}$.19.e.

THIS MONTH'S SNIP

An excellent opportunity to ruske that bench dis board you have needed or to stock up for futare jobs. This month we offer 6 British made (Hicraft) bakellte flush mounting ehattered switch sockets for only 10/- plus 3/6 post and las. $(20$ boxes post (ree).

Electric Clock with 20 amp. Switch
Finde by numbth thesc units are an fitted a mathy the quality cookers to control the requenes controlleal so it is extremely requenty "ontrollen 90 it is extremely
acourate. The twa small diais esable accurate. The fun smath diams entable witeh on and off linres to he accurately
 hours. It the end it the periout a bell will

egular price-new and mumed only $39 / 8$ less than the wame of the clock anome-post and ins. $2 / 9$.

PROTECT VALUABLE DEVICES
FROM THERMAL RUFWAY OR OVERHEATLG Thyrlators, rectifiers, transistors, etc., which use heat-sinks can easily be protected; simply make the contact thermostat part of the heat-sink. Motors and equipment generally, can also be adequately protected by having thermostats in strategic spote on the caslag. Our contact thermosat has a calibrated dial for setting between range betting is between 80 to 800 deg. F.

ATLAS SLIMLINE FLUORESCENTS THE TWENTYLITE

MICRO-SONIC

7 tranaistor Key chain Radio in very pretty case. slze $2 t \times 2 i \times 1 z$ int. complete with antt leathe
zlpped bag. Specificatlon:-Circult: 7 transistor auperheterodyne. Frequency range: 530 to $1600 \mathrm{Kc} / \mathrm{s}$. Sensitivity: $5 \mathrm{mv} / \mathrm{m}$. Intermediate frequency: $465 \mathrm{Kc} / \mathrm{s}$, or 45.
Kc / h. Power output: 40 mW . Antenna Kc/a. Power output: 40 mW . Antenna net tyipe
In transit from the East these seta suffered ellight corroslon as the batteries were left in them but when this corrosion is cleared away they should work perfectly-oftered without guarantee except that they are new, $10 / 6$ plus $2 / 6$ pont and ina.
less batteries. Everlasting batterien $7 /$-pair.

DRILL CONTROLLER

Electronically changes speed from approximately 10 reva. to maxi-
mum. Full power at all opeeds mum, Full power at all speeds
by finger-tip control. Kit fincludea all parts, case, everything and full
instructions. $19 / 6$ plus $2 / 6$ pont and inarance. Or available made up 29/6 plus 2/6 post.

These infra-red binoculars when fed from a high Foltage source will enable objects to be seen in the dark, providing the objects are in the rays of an optical beam. Each eye tube contains a complete These optlas antem as well at the infra-red cell TV cameras syiteme can he used as lenses for The binoculara form part of the Army night driving Tabby) equlpment. They are unused and belleved to be in good working order but sold without a Handbook 2/6.

Be first this yearl SEED AND PLANT RAISING
Soil henting wire and trans former. Sultable for standard size garden frame. $19 / 6$

TELESCOPIC
AERIAL
for portable, car radio
or tranmitter. Carome Pla-
ted- $1 \times$ sections, extends from
ted-sir sections, extends from
$7 \frac{1}{2}$ to 4 inn. Hole in bottorn for 6BA screw. $7 / 6$.

When poatage is not atated then ordera over 83 are post free. Below 83 add $2 / 9$. Semi-conductore add 1/- post. Over $£ 1$ post tree. S.A.E. with enquirles please.

ELECTRONICS (CROYDON) LTD.
 Dept. PE, 266 London Road, Croydon CRO-2TH

 Also 102/3 Temworth Mosd, Croydon
enjoy exciting new scope now in

Air Traffic Control

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 869$ (at 19) to $£ 1,130$ (at 25 or over); scale maximum $£ 1,304$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

Silicon N.P.N. transistors. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at 1/6 each or $£ 5 /$ //- per 100.
12 VOLT TRANSISTORISED FLUORESCENT LIGHT.* 8 WATT I2 in TUBE. Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only! Or in kit form:

*Post and Packing $3 /-$.
TRANSISTORS
OC200. OC203, OC204, all at $2 /$ each.
ASY $22,2 \mathrm{~N} 753, \mathrm{BSY} 28, \mathrm{BSY} 65,2 \mathrm{G} 344 \mathrm{~A}, 2 \mathrm{G} 345 \mathrm{~A}, 2 \mathrm{G} 345 \mathrm{~B}, 2 \mathrm{G} 371 \mathrm{~A}$, 2G378A, all at $1 / 6$ each.
Transistors similar to OC44. OC71 and OC72, all 1/- each.
Unmarked, untested transistors, $7 / 6$ for 50 .
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each. 30 watt transistors (ASZ17), $10 /$ - each.
ORP 12 Cadmium sulphide light-sensitive resistors $9 /$ -
RECTIFIERS
BY 100,800 p.i.v., $2 / 6$ each, $24 /$-per doz., $£ 7 / 10 /$ - per $100, £ 50$ per 1,000 . BYZ13, 6-amp, 400 p.i.v., available on same terms.

MULLARD POLYESTER CAPACITORS
FAR BELOW COST PRICE!
$\begin{array}{lllll}0.001 \mu \mathrm{~F} & 400 \text { volts } & \cdots & 3 \mathrm{~d} & 0.15 \mu \mathrm{~F} \\ 160 \text { volts } \\ 0.0015 \mu \mathrm{~F} & 400 \text { volts } & \cdots & 3 \mathrm{~d} & 0.22 \mu \mathrm{~F} \\ 160 \text { volts } \\ 0.0018 \mu \mathrm{~F} & 400 \text { volts } & \cdots & 3 \mathrm{~d} & 0.27 \mu \mathrm{~F} \\ 160 \text { volts } \\ 0.0022 \mu \mathrm{~F} & 400 \text { volis } & & 3 \mathrm{~d} & 1 \mu \mathrm{~F}\end{array}$
$0.0022 \mu \mathrm{~F} 400$ volts $\quad \therefore \quad 3 \mathrm{~d} \quad 1 \mu \mathrm{~F} \quad 125$ volts
$0.01 \mu \mathrm{~F} \quad 400$ volts
VERY SPECIAL VALUE! Smal! Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. $10 /$ - per 100 . PAPER CONDENSERS. MIXED BAGS. 0.0001 to $0.5 \mu \mathrm{~F}$. $12 / 6$ per 100.
RESISTORS! Give-away offer! Mixed types and values, $\frac{1}{4}$ to $\frac{1}{2}$ watt. $6 / 6$ per $100,55 /$-per 1,000 . Individual resistors 3 d each. Also $\frac{1}{2}$ to 3 watt close tolerance. Mixed values. 7/6 100, 55/- 1,000.
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. I6 for 10/-.
RECORD PLAYER CARTRIDGES
ACOS

GP	67/2	Mono	15/-complete with needles.
GP	91/3	Stereo Compatible	£1/-/-
GP	93/1	Stereo Ceramic	f1/5/-
GP	94/1	Stereo Ceramic	£1/5/-
Small		arms complete	tridge anci needle, 10/-

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F.
TRANSISTORISED SIGNAL TRACER KIT 10/- only TRANSISTORISED REV. COUNTER KIT 10/-

VEROBOARD

$2 \operatorname{tin} \therefore \quad \operatorname{lin} 0.15$ in matrix $1 / 6 \quad 17$ in $\cdot 2 \frac{1}{2}$ in $0 . i 5$ in matrix $11 /=$ 3 3in $2 \frac{1}{2}$ in $0 \cdot 15$ in matrix $3 / 3 \quad 17 \mathrm{in} \quad 3 \frac{4}{4}$ in 0.15 in matrix $14 / 8$ 3 in a 3 in $0 \cdot 15$ in matrix $3 / 11$ $\begin{array}{llll}\sin & 2 \operatorname{tin} & 0.15 \text { in matrix } & 3 / 11 \\ 5 \text { in } & 3 \text { in } & 0.15 \text { in matrix } & 5 / 6\end{array}$

Sin $3 \frac{3}{4}$ in $0 \cdot l$ in matrix $5 / 6$
MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$.
d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50$
d.c. $2,500 \mathrm{~V}$. $500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$.

Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$.
Special price $£ 4 / /$ /- only.
ELECTROLYTIC CONDENSERS

${ }_{0} \mathbf{E L 2 5 \mu \mathrm { F }}$	3 volt	$4 / \mathrm{F}$	4 volt	10/1	25 volt	$64 \mu \mathrm{~F} \quad 9$ volt
$1 / \mu \mathrm{F}$	6 volt	$4 / \mathrm{FF}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F} 99$ volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F} \quad 4$ volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F} \quad 10$ volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 / 2 \mathrm{~F} 6.4$ volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	All at 1/-each.
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 / \mathrm{L}$	2.5 volt	20 assorted (our selection) 10/-.

$200 \mathrm{~K} \Omega, 500 \mathrm{~K} \Omega$.
SLIDERS. 680 K s). 6d each
SMALL TRANSISTOR OUTPUT TRANSFORMERS 2/6 each.
SMALL TRANSISTOR DRIVER TRANSFORMERS $2 / 6$ each,
CRYSTAL LAPEL MICROPHONES $10 /$.
TAPE RECORDER MICROPHONES 12/-
Orders by post to
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

Try if for size

Sir-I was highly amused by a mental picture worked by the criticisms of Edinburgh University Professors W. E. J. Farvis and J. Murray, regarding the empirical approach to circuit design, see December 1968 Editorial.

Do they buy a hat by its volumetric capacity, or-whisper it-try it on?

Horton R. S. Canale, GM3XFC,
Angus,
Scotland.

Licence to move please!

Sir-As you know optical communication has always been a free medium for the experimeter. It is free of all restrictions because it cannot interfere with other systems. However, under the proposed act to make the GPO a corporation this situation will end! Not only will the GPO have absolute power of this free medium, they will also control all types of electric and electronic communications.

This is a disturbing idea as motorists will need a licence to flash their indicators, and telemetry systems will all need licences! Record players would need a licence also, and conceivably the human body would need permission to move a muscle (electro-chemical communication).

I strongly feel that your magazine should petition the government to get this clause removed before it is too late.
J. M. Perry, Wallasey, Cheshire.
See this month's editorial comments-Ed.

When is zero not zero?

Sir-I am in the process of constructing a Frost alarm as described in the November 1968 issue of Practical Electronics. On reading the paragraph entitled Calibration, it strikes me that this method is unnecessarily complicated.

In our school physics lab, we frequently use a mixture of ice and ice-water as a convenient 0° Centigrade standard of temperature. As the circuit is required to be calibrated to 0° Centigrade, it should be possible to immerse the thermistor and connector in a suitable watertight plastic bag, in the ice and icewater mixture. Provided that the mixture is allowed five or ten minutes to attain an equilibrium, the calibration should be possible without the need to alter any refrigerator controls, and with the use of a thermometer simply as a reference instrument.

If it is desired to calibrate the device at 3 or 4° Centigrade, it would be only necessary to allow the ice mixture to warm up in the normal way until the thermometer indicates the required reading. Calibration is then made at this point.

C. Leather,

Haywards Heath,
Sussex.

Swilched on

Sir-It may be of interest to your readers to hear on my experiences with the Vari Windscreen Wiper as described in the October issue of P.E.

When the unit was completed, upon test it failed to operate correctly, the fault being that although delay was apparent at the moment of switch on, the unit failed to switch off the motor at the end of one stroke.

Voltage checks revealed the thyristor, although the correct type, was firing at 1.6 V positive with respect to cathode. It was noticed also that when the parking switch contacts opened a transient voltage pulse sufficient to operate the thyristor appeared at the gate. Suppressing this with a $32 \mu \mathrm{~F}$ capacitor across the parking switch cleared up the trouble completely. Although due to the low firing voltage of the thyristor used, the value of potentiometer VRI used to give a maximum time constant of approximately 30 seconds, was 1 megohm.

> P. J. Hawkins,
> Plymouth, Devon.

I.C. holder

Sir-I have found a plug-in base for the SL701C integrated circuit which forms a very rigid contact and facilitates easy removal and replacement. It is a Grundig Graupner 8 -pin socket available at about 2 s from radio control shops.
J. P. Cogan, Cork.

Fab or fantusy

Sir-Soberly considering the implications of Sound Light and Music series, myself being an old square in the world of fab and fantasy, I am left wondering if in every sense, the end truly justifies the means. Recently, my teenage grand-daughter having begun to learn typing, excitedly showed me some weird and wonderful patterns she had produced on paper by using all the characters and signs on the typewriter keys having caused them to form a geometric display by operating the machine in an extremely unorthodox manner.

Disregarding questions of originality or purpose, can that not be included as an example of "serendipic" graphic art produced without the extravagance or strained ingenuity of a cybernetic device. About seventy-two years ago, I was invited to witness the enchanting colour patterns created through a large beautifully made kaleidoscope. This old fashioned toy calls for no great imagination to modify and extend its random capabilities whereby it could compare more than favourably with results from the artful exploitation of phenomena which is otherwise more purposefully employed.

Including electronic music with the foregoing observations, is it possible we are seeing the emergence of an electronic Carnaby Street. While still possessing a reverent regard for those engaged in the dignified furtherance of the sciences hereby concerned, it is with some intrepidation that I shall return to the controls of my oscilloscope lest its wavering green countenance should communicate some ecstatic abstract to remind me that I am not "with it".

In conclusion I wish to express my warm appreciation of the many clear helpful contributions in your publication which have kept me abreast of the spectacular advances in solid state devices. I have been for many years an active practical constructor, now looking on and learning with added interest.
P. Ashdown,

Lymm,
Cheshire.

continued

With or without it?

Sir-May I first of all say, I am a little puzzled by the heavy construction used in the "animal" described by Mr. G. C. Brown in his series Bionics, but the ideas which streamed through my mind on seeing the introduction, would need a ten ton chassis. This is to mean, I have not for many years felt the same interest in any possible project-it has no limit.

My memories went far back to the 1930's, the scream of my breadboard circuit's hand capacitance which caused young friends to jump back.

In the words of the song: "Those were the days my friend!" If young readers see the same interesting possibilities, this series could go on for years.

As I have no interest in a hundred watts hammering out modern beat, it may be that I am not "with it," but thank you gentlemen for the visions of youthful interest returning. It is a long time since I could feel the same interest.

> C. S. Burton,
> Bulwell,
> Nottingham.

But, sir, this series of projects is "with it" in an educational sense!-Ed.

I'm lost

Sir-I know that this is not normal procedure, but I am desperate. I have recently acquired what promises to be a very useful oscilloscope, but with one minor snag, it is u / s, and I am unable to locate the manufacturers, so therefore I cannot obtain a circuit diagram, and hence repair the unit.

I would be grateful if you could advertise on my behalf for assistance in obtaining a circuit diagram as it is possible that another of your readers may already own one of these units.

The information on the unit is as follows: There is no model number
or make but a pattern No. 53259 and the unit is called a Miniscope. It can be operated on the standard three wire mains as well as $180 \mathrm{~V} / 500 \mathrm{~Hz}$ or 12 V d.c. It has a 2 in cathode ray tube of approximate sensitivity of $Y=4.5$ and $X=4.0 \mathrm{~V} / \mathrm{mm}$. The timebase range is Off, 20-100, $100-300,300-1,000,1,000-5,000$ and $5,000-25,000 \mathrm{~Hz}$. Amplifier maximum gain is $\times 400$ from 50 Hz to 10 kHz .

The unit measures approximately 9 in $\times 6$ in $\times 2$ in and is, as far as I can gather, ex-British services.
S.A.C. Munro I.R. V4285549, c/o 20D Davaar Avenue, Campbeltown, Argyll,
Scotland.

Tolerant stockmarkei

Sir-I was intrigued to read the article on the Electronic Stockmarket in your December 1968 issue, but I should like to point out that due to the wide manufacturing tolerances found in electrolytic capacitors, certain players' positions could gain an unfair advantage during transactions. The smaller a player's cash capacitor, the greater will be his voltage increase in a positive transaction, although of course his loss will also be greater in a negative one, which will tend to reduce this advantage.

However, in order to make the game as fair as possible, I should like to suggest a simple comparative test. Each of the twenty $200 \mu \mathrm{~F}$ capacitors (for a four position game) is charged up to the full 9 volt battery potential, then allowed to discharge through a 180 kilohm resistor and the $50 \mu \mathrm{~A}$ meter in series. The time for the discharge current to fall to half its initial value gives the time constant of the R-C combination (nominally 36 seconds), the initial value being found accurately beforehand by connecting the resistor and meter directly across the battery.

After this has been repeated for all the capacitors, four with similar time constants can be chosen for the "cash" capacitors, and another four for the "bank" capacitors. The remainder can still be used in the "Stock Exchange" as their inequality will merely add a further interest to the game.

If a $100 \mu \mathrm{~A}$ meter is used, the resistor should be 100 kilohms giving a time constant of 20 seconds.
J. D. Archer, Halifax.

From on engineering point of view, capacitor tolerances are of great significance, and I do not dispute the fact that,
under certain unfortunate circumstances, it is possible to find certain bias toward one player's position than another.

During the construction of the prototype game, I gave the matter fair thought and consideration, particularly when I found that the capacitors were given o tolerance of -10 to +50 per cent.

I took 50 of these capacitors at random and checked their capacitance on a proprietary tester; 47 showed capacitances of around $220 \mu F$. The remaining three components measured slightly under 200μ F.

I produced the prototype without selecting matched capacitors and, once built, was found to produce convincingly random winnings over the course of many trial games. It was therefore decided to leave well alone so for as the prototype was concerned, but / did give further thought to the possibilities of capacitance tolerance. This brought to light a number of interesting factors.

The tolerance of a capacitor, expressed as a percentage, will not manifest itself in the same proportion so for as resultant voltage after "transfer to another capacitor" is concerned. In fact, the law of resultant voltage to difference between capacitances is inverse. This is partially compensated by the higher (or lower) voltage applied for the next transfer, but some loss (or gain) will result.

So far as the bank capacitors are concerned, the effect of deviation would seem more important. However, suppose that a player has a sub-normal "bank" capacitance. It will then be easier to charge this capacitor to the "million" threshold than if its value were either normal or above-normal.

However, from the standpoint of this Game, the "millions" monitor circuit is not without its limitations, and a certain drain is to be expected throughout the time of a game. The capacitor itself will have a certain amount of leakage proportional to its actual capacitance value.

Consider the monitor circuit leakage; the lower capacitor, whilst receiving more benefit from charge transfer to it, will suffer slightly higher losses from it during the course of play, due to its lower capacitance-to-leakage ratio. Here lies another levelling factor.

The progress of the game depends in essence on random occurrences. We can never know how random the randomness can be without studying events from the beginning of time to infinity! The "un-randomness" of randomness is so disposed as to veil the small effects these theoretically display. During games with various players, the predisposition to winning and losing was more apparently associated with particular players, rather than the position at which each played.

The above factors weighed heavily against the inclusion of a capacitor selection procedure which might well add undue confusion to the already complicated text, particularly so for as newcomers to the subject are concerned.-
B.H.B.

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE
 Telephone: CAMBRIDGE (0223) 63687

(Visit us-at our new Mail Order, Wholesale \& Retail Premises) MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 /$ -

DISCOUNT 10% over $£ 2$
CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \%$: 100,220 , 330 pF . $-20 \%,+80 \%$ i $470,680,1,000 \mathrm{pF}$. 5 d each. ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.

Subminiature	(all valu	$\mu \mathrm{F})$					
4 V	8	32		64	125	250	400
6.4 V	6.4	25		50	100	200	320
10 V	4	16		32	64	125	200
16V	2.5	10		20	40	80	125
25 V	1.6	$6 \cdot 4$		12.5	25	50	80
40V	1	4		8	16	32	50
64V	0.64	$2 \cdot 5$		5	10	20	32
Price	1/6	1/3		1/2	1/-	1/1	1/2
Small (all values	s in $\mu \mathrm{F}$)						
4 V	800		1,250		2,000		3,200
6.4 V	640		1,000		1,600		2,500
IOV	400		640		1,000		1,600
16 V	250		400		640		1,000
25 V	160		250		400		640
40 V	100		160		250		400
64V	64		100		160		250
Price	1/6		2/-		2/6		3/-

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}$, IId. $\quad 0.22 \mu \mathrm{~F}, \mathrm{I} /-. \quad 0.33 \mu \mathrm{~F}, \mathrm{I} / 3 . \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 6 . \quad 0.68 \mu \mathrm{~F}$, 2/3. $1 \mu \mathrm{~F}, 2 / 8$.
400 V : $1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}$. $6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$, 7d. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $\quad 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, \mathrm{I} / 2.0 .22 \mu \mathrm{~F}$, $1 / 6 . \quad 0.33 \mu \mathrm{~F}, 2 / 3 . \quad 0.47 \mu \mathrm{~F}, 2 / 8$.
Modular, metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}$, IId. $0.22 \mu \mathrm{~F}, \mathrm{I} /-.0 .33 \mu \mathrm{~F}$, $\begin{array}{llll}0.033, & 0.047 \mu \mathrm{~F}, 8 \mathrm{~d} . & 0.068, & 0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \\ 1 / 5 . & 0.47 \mu \mathrm{~F}, \mathrm{I} / 8 . & 0.68 \mu \mathrm{~F}, 2 / 3 & 1 / \mathrm{F}, 2 / 9 .\end{array}$
POLYSTYRENE CAPACITORS: 5%. 160 V (unencapsulated): 10, 12, $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820 \mathrm{pF}, 5 \mathrm{~d} . \quad \mathrm{I}, 000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d}$. $6,800,8,200,10,000 \mathrm{pF}$, 8d. $15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}$.
$1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150,180,220,270,330,390,470,500$, $560,690,820 \mathrm{pF}, 1 /-1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}$,
 $18,000,22,000,27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 .047,5,000,0.056 \mu \mathrm{~F}, 2 /-$ $0.068,0.082,0.1 \mu \mathrm{~F}, 2 / 3 . \quad 0.12 \mu \mathrm{~F}, 2 / 9.0 .15,0.18 \mu \mathrm{~F}, 3 /-.0 .22 \mu \mathrm{~F}, 4 /-.0 .27$, $0.33 \mu \mathrm{~F}, 5 /-.0 .39 \mu \mathrm{~F}, 5 / 9 . \quad 0.47,0.5 \mu \mathrm{~F}, 6 / 3$.
JACK PLUGS (Screened): Heavily chromed, tin Standard: 2/9 each. Side-entry: 3/3 each.
Standard (Unscreened): 2/3 each.
JACK SOCKETS ((in Plug) : With chrome insert, $2 / 9$ each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise, tW at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leq \pm M, \pm 30 \%> \pm M$. Body dia., $\frac{3 i n}{4}$. Spindle, in $\times \pm i n .2 / 3$ each. Linear: $100,250,500$ ohms, etc., per decade to lOM. Logarithmic: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq t \mathrm{M}, \pm 30 \%> \pm \mathrm{M}$. Horizontal ($0.7 \mathrm{in} \times 0.4 \mathrm{in}$ P.C.M.) or Vertical ($0.4 \mathrm{in} \times 0.2 \mathrm{in}$ P.C.M.) mounting, $1 /-$ each.
Submin. 0.1 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Horizontal (0.4 in \times 0.2 in P.C.M.) or Vertical (0.2 in $\times 0.1$ in P.C.M.) mounting, 10 d each.

RESISTORS (Carbon film), very low noise. Range: $5 \%, 4-7 \Omega$ to IM Ω (E24 Series); 10%, 10Ω to $10 M \Omega$ (E12 Series).
tW (10%), izd (over 99, $1 \frac{1}{2} d$), 100 off per value $12 /$-. ${ }^{1} W(5 \%$), 2d (over 99. 13d), 100 off per value 13/9. $\frac{1}{2}$ W (10%), 2d (over $99,1 \frac{1}{4} \mathrm{~d}$), 100 off per value 13/9. $\frac{1}{2} W(5 \%$), 2 td (over $99,2 \mathrm{~d}$), 100 off per value $15 / 6$.
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC8ID, OC82D, $2 /$-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AFl15, AFl16, AFII7, ACY19, ACY21, 3/3. OC140, 4/3. OC200, 5/-. ОС139, $5 / 3$. OC25, 7/-. OC35, 8/-. OC23, OC28, 8/3.
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.I.V., 4/-. (0.75A): 200 P.I.V., $1 / 6$. 400 P.I.V., 2/-. 800 P.i.V., 3/3. (6A): 200 P.I.V., 3/-. 1400 P.I.V., $4 /$.
 P.I.V., $10 /-.400$ P.I.V., $15 /-$

SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125 V .. Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/PRINTED CIRCUIT BOARD (Vero).
0.15 in Matrix: 3 itin $\times 2 \frac{1}{2} \mathrm{in}, 3 / 3$. $5 \frac{1}{2}$ in $\times 2 \frac{1}{2} \mathrm{in}, 3 / 11$. 3 in $\times 3$ in, $3 / 11$. 5 in $\times 3$ in, $5 / 6$.
0.1 Marrix: $3 \frac{1}{4}$ in $\times 2 \frac{1}{2} \mathrm{in}, 4 /=$. 5 in $\times 2 \frac{1}{2} \mathrm{in}, 4 / 6$. 3 in $\times 3 \frac{3}{4} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3 \frac{1}{2} \mathrm{in}$, 5/3.
RECORDING TAPE (Finest quality MYLAR almost unbreakable).
Standard Play: 5in, 600ft, 7/6. 54in, 850 ft, $10 / 6$. 7in, 1,200ft, $12 / 6$. Long Play: 3in, 225ft, 4/=. 5in, 900ft, 10/6. $5 \frac{1}{\mathrm{~h}} \mathrm{in}, 1,200 \mathrm{ft}, 13 /=7 \mathrm{in}$. 1,800ft, 18/-.

Send S.A.E. for January, 1969 Catalogue

PEAK SOUND
Aids to economical high fidelity ES/10-15 BAXANDALL SPEAKER
" A thoroughbred" says RALPH WEST HI-FI NEWS оСТовен, "68
"The immediate impression was of a thoroughbred speaker, smooth and effortless . . voices were uncannily real. Once again we see the possibility of Rolls Royce stanards . . . when you know how."

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P. J. Baxandall in Wirgless World (Aug. and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range60 to $14,000 \mathrm{~Hz}(100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB})$; impedance- 15 ohms; loading up to 10 watts R.M.S.; size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. Here indeed is quality performance of a very high order for a very modest outlay. Equaliser assembly 36/- (P/P 1/6): Speaker Unit 38/- + 8/11 P. Tax (P/P 5/-): Cabinet assembly, teak finished.
£9.17.6 £6.3.6 + 12/8 P. Tax (Carr. 8/6).
$+21 / 7$ P. Tax
X-over for woofer if required 22/6 (P/P 3/6)
(Carr. in U.F. 11/6)

A new

Peak Sound

Power

Amplifier

THE PEAK SOUND PA/12-15 (12 watts R.M.S. out into 15Ω) is for the construc. tor who appreciates
 both sensible design and genuine power and hi-fi performance. Available built or in kit form. Response $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$ Distortion at max. output -0.1% 43 dB neg, feed back. Size $5^{\prime \prime} \times 3 \frac{2^{\prime \prime}}{} \times 1 \frac{3{ }^{\prime \prime}}{}{ }^{\prime \prime}$. With fill instructions. Pre-amp. details available. (P/P for kit or buill 2/6)

From your dealar or direct in case of difficulty.
PEAK SOUND (HARROW) LTD., 32 St. Judes Road,
Englefield Green, Egham, Surrey Telephone: EGHAM 6316
1

CURRENT TITLES FROM PITMAN

PICK-UPS: THE KEY TO HI-FI

Second edition J. Walton 12s 6d net

"It can be highly recommended as a first-class introduction to the subject of high quality record reproduction." HI-FI NEWS

INTRODUCTION TO TELEPHONY AND TELEGRAPHY

E. H. Jolley
75s net

This new book covers the joint paper "Telephony and Telegraphy "A", in the City and Guilds Telecommunications Technician's Course No. 49

SOLUTION OF PROBLEMS IN ELECTRONICS AND TELECOMMUNICATION

Third edition
C. S. Henson
55s net paperback edition 38s net For this third edition the author has made very substantial revisions, introducing much more material in the electronics sections, particularly in relation to the semi-conductor field.

> SIR ISAAC PITMAN AND SONS LTD THE PITMAN PUBLISHING GROUP
Nowhere in the world can you buy
semiconductors cheaper than from us.
We are the largest purchasers of
manufacturers'surplus stocks, and can
fulfil any requirements at com-
petitiveprices. S.A.E.for full lists. Post and Packing costs are continually rising. Please add l/- towards same. CASH WITH ORDER PLEASE

OVERSEAS QUOTATIONS BY RETURN SHIPMENTS TO ANYWHERE IN THE WORLD

Contains 5 cores of non-corrosive flux, instantly
fro ulibk, Rersy frifitile salidering
cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

4	SIZE 5
HANDY SOLDER	
DISPENSER	

Contains 10 ft . coil of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Ersin Multicore Savbit Alloy. 2/6 each.
SIZE 5 SIZE 15
SOLDER
DISPENSER Contains 21 ft . coil of $60 / 40$ Alioy 22 s.w.g. Ideal for small components, transistors, diodes etc. 3/- each. quickly, fitted with unique 8 gauge wire reel. 15/- each. selector. Plastic handles. 9/6 each.

ENGINEERS TEST EQUIPMENT AND ACCESSORIES

MULTIMETERS. Complete range of high precision instruments.
TRANSISTOR CHECKERS. For use with PNP NPN Transistors, IF and RF Resistors, Diodes, Rectifiers.

RESISTOR SUBSTITUTION BOX.

CAPACITANCE SUBSTITUTION BOX.

ADJUSTABLE AC/DC CONVERTER.

TEST LEAD KITS, ETC.

We also stock large range of MICROPHONES, AUDIO UNITS, RECORDING TAPES, INTERCOMS, TELEPHONE AMPLIFIERS, CAR RADIOS, T.V. SPARES, ETC.

Send S.A.E. for illustrated brochures and price list.
D. WEBB, Wholesalers

61-63 Clifton Street, Hull, E. Yorkshire Telephone 36016

PRINTED CIRCUIT KIT

BUILD 40 IHTBRESTMG PROJECTS on a PRLITED CLRCUIT CEASSIS with PARTS and TRANSISTORS from gonr BPARES BOX
CONTENT: : (1) 2 Copper Laninate Boards $41^{n} \times 2!^{\circ}$. (2) 1 Bonrd for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (8) Resist Rolvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Booklet Printed Circuits for Amateurs. (9) 2 miniature Radio Dials SW/MW/LW, Also iree with each Design Data, Circuits, Chasil Plans, etc. for 40 TRANSISTORIBED PROJECTS. constractional ability. Many recently dleveloped very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT 8/6
Postage \& Pack. 1/6 (UK) Commonwealth: SURFACE MALL 2:AJR MAIL 8/Australia, New Zealand, South Africa, Cnnada.

1) Crystal set with biased Detector. (2) Crystal Set with volt age, quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Ampliner (5) Carrior Power Conversion Receiver, (6) Split-Load Neutralised Double Reflex. 6) Matchbox or Photncell Radio. (8) T (9) Solar Battery Loudspeaker Radio adjusting reganeration (Patent Pending), (9) Solar Batcry lowniakt Wherld I Subniniature Radio Receivers based on the "Triflexon' circuit. Let un know if you know of a smaller design published anywhere. (10) Postage Stamp Radio. Size only $1.62^{\prime \prime} \times 0.95^{\circ} \times 0.25^{\circ}$. (11) Wristwatch Radio $1.15^{\prime \prime} \times 0.80^{\circ} \times 0.55^{\prime \prime}$, (12) Ring Radio 0.70* $0.70^{*} \times 0-55^{\prime \prime}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Ainplifier, (16) Intercom. (17) 1-valve Amplifier. (18) Reliable Burglar Alarm. (19) Light-seeking Animal, Guiderl Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Translstor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Dlacriminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required). (27) Constant Yolume Intercom. (28) Remote Control of Modela by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmitter/Wire-Icga Microphone. (32) Wire-less Door Bell. (33) Amplifer. (36) Light-Bean Telephone "Photophone", (37) Light-Beam Tranamitter. (38) Silent TV sound Adaptor. (39) Cltrasonic Transmitter. (40) Thyristor Drill Speed Controller.

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Ret Phototransiator. Latching Relay, 2 Transistors, Condensers, Resistors, Cain Control, Terminal Block, Elegant Case. Screws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Bur
modiffed for modulated-light operation.

PHOTOELECTRIC KIT 39/6
Postage and Pack. 2/6 (UK) Commonwealth: STRFACE MATL 3/6 AIR MALL 11.0 .0 Australia, New Zealand S. Africa, Canada ind U.S.A. Also Essential Data Cirzuita and Plans for Building
12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Stray-Light Alarm. (4) Relay-less Alarm. (8) Electronic Project Modulator. (9) Mains Power Supply. (10) Car Parking Lamp switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm.
INYISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for building: Invisible-Bean Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarma, Counters, Door Openers, etc.
CONTENTS: 2 lises, 2 mirrors, 245 -degree wooden blocks, 1nfra-red filter, projector lamp holder, building plans, performance data, etc. Price 19/6. Pobtage and Pack. Surface Mail 2/-; Air Mafl $8 /-$

JUNIOR PHOTOELECTRIC KIT

Yersatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burgiar Alarn, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensltive Phototranslistor, 3 Transistors, Chaseig, Plast ic Case, Resistors, Screws, etc. Full Size Plans, Instructions, Data Sheet " 10 Advanced
Photoelectric Designs ${ }^{* *}$. Pack. 1/6 (Li.K.). Commonwealth 2/-; Air Mail 4/..
Price 19/6. Postage and Pal JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to bulld 1 miniature invislble beam projector and photocell thing (except plywood) to build 1 miniature in
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/~; Air Mail 4/..
PHOTOELECTRIC PARKING LAMP SWITCH
Automatically turns parking lamp on at dusk, of at dawn. Protects your car. Saves the battery. Miniature construction. Simply insert in parking lamp lead. Price: 27/6. Post and Packing 2/6 (U.K.).

THYRISTOR LIGHT DIMMER

Add a tcuch of luxury to your home. Adjugt the light at partles, while watching TV, etc. Ideal for Children's bedroom. (100 watts max.) Replaces on-ofi switch.
Price: 59/6. Post and Packing 2/R (U.K.).

YORK ELECTRICS

 333 YORK ROAD, LONDON, S.W. 11Send a S.A.E. for full detaila, a brief descriplion and Photographe of all Kits and all 52 Radio, Electronic and Photoelectric Projects Assembled.

Practicul Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /-$), box number $1 / 6$ extra. Semi-displayed setting $£ 4.2$. 6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

FOR SALE

TIME BWITCHES, 14 day clock, once on once off every 24 hours, recomditioned and fully guaranteed. 5 amp Horstmann $32 / 6,15 \mathrm{amp}$
 1BATCHELOR (P.E. Bept.), t Park Road, Bromley, klel : BH^{L}.

Illustrated catalogue No. 17 Mamufacturers' Surplus and Sew Blectronic Compoments including semisonductors. 3/- post
 Street, Brightom.

FOR SALE "Practical Wlectronics"-November 1964 to February 1968 complete. Offers to A. S. IBLAIDES, County Laboratory, Dorchester, Dorset.

26,000 IN VOUCHER8 GIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical, Flectrical, thousands of interesting items. WHISTOS. Dept. PVE, Kew Mills, Sitockport
心K12 4 HI .

coat. Air dries 15 min .
to hard glossy finish.
Heat, liquid and
scratchproof.
Bronze; Silver; Green; Black; Lt. and Dk. Blue. Send for Free list, or $8 /-(+1 / 9$ post $)$ for trial $\frac{1}{2} p t$. TIN, colour samples and instructions. Send NOW.
FINNIGAN.SPECIALITYPAINTS Dept. P.E STOCKSFIELD. Tel. 2280 Northumberland.

PRECISION POTENTIOMETERS

Multi-turn, continuous or ganged from 25/carbon from 2/-. Also resistors, mains rectifiers, synchros, geared motors, chokes, capacitors, meters, microswitches, semiconductors. 6d. stamp catalogue. F, HOLFORD \& CO., 6 Imperial Square, Cheitenham.

MORSE MADE !!

FACT NOT FICTION. If you atart RIGHT you will be reading amateur and commercial Morse Within a month (normal progress to be expected). Using scientifically prepared 3-speed records you without translating You can't help it, it's as eas an Thout transiating You can't help it, its as easy a For details and course C.O.D. ring S.T,D. $01 \cdot 6602896$ or send 8d. stamp for explanatory booklet to:
OSCHIH, 45 GREEN-LANE, PURLEY, 8URBEY
HOLIDAYS
HOLIDAY FOR BOYS $14 / 16$ years August 1969, specialising in engineering, electronics photography. Tuition and practical work ncluding go-karting. 11 days- $\mathbf{~ 1 4 , 1 0 . 0}$ Write for free brochure: INTER-SCHOOL CHRISTIAN FELLOWSHIP, 47 Marylebone Lane, London W.1.

EDUCATIONAL

RADIO OFFIGER8 see the world! sea going and shore appointments. Trainee vacancies during 1960. (Frants available. Hay and Boarding students. stamp for prospectus. WIRLLbSS C'OLLEGB, Colwy Bay, wales.

STUDY RADIO, TELEVISION AND ELECTRONICs with the world's largest home study organisation. (lity \& Guilds; R.T.F.B., etc. Also practical courses with equipment. No books to buy. Write for FIREE Prospectus to ICS (Dept. 575), Intertext House, London, sw11.

ENGINEER8. A technical certiticate or qualitication will bring you security and much better pas: Elem. and ady. private postal courses for ('.ling., A.M.1.1.R.E., A.M.S.E. (Mech. \& Elec.), (ity \& (iuikls, A.M.I.M.I., A.I.O.B. and (t.C.E. exams. Diploma courses in all branches of Engineering-Mech., Mlec., Auto, Electronics, Radio, computers, Draughts, lkuilding, etc. For full details write for FREE 133-page guide. BRITISH INSTLTUTE OF ENGBELERLNG TECHNOLOGY (1)ept. 125K), Aldermaston Court, Aldermaston, Berks.

EDUCATIONAL (continued)

GET INTO ELECTRONIC8 - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Teleconis., etc. For FREE 100page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

TAPE RECORDERS, TAPES, ETC.

TAPES TO DISC-using finest professional equipnient 45 r.p.in. 18/-. S.A.E. leaflet. DJEROY, High Bank, Hawk Street, Carnforth, Lancs.

SITUATIONS VACANT

A.M.I.E.R.E., A.M.S.E. (Elec.), (ity \& Guilds, G.C.E., ete., on "satisfaction or Refund of lee" terms. Wide range of Home study Courses in Electronies, Conputers, Radio, Courses in Electronics, Conpliters, Radio, state subject of interest. BRITISH INSTITUTE OF ENGINEERING 'IECHNOLOGY (Dept. 124K), Aldermaston (court, Aldermaston, Berks.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.b, RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of IC S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

International Correspondence Schools
(Dept. 152), Intertext House, Parkgate Road, London, S.W.II.

NAME
Block Capitals Please
ADDRESS

CITY AND COUNTY OF BRISTOL
 BRISTOL TECHNICAL COLLEGE

Applications invited for following post:-
REF. T686/49/2 SENIOR TECHNICIAN T. 3
Salary Scale: \quad £895-£1,055
Starting salary dependent upon age, qualifications and experience. An additional $£ 50$ or $£ 30$ will be paid to a candidate with appropriate National Certificate or C. \& G. qualifications.
Applicants should be over 21 and hold Intermediate City and Guilds in Electronics or Radio Communications, or other appropriate qualifications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aircraft.
38-hour, 5-day week with usual holiday and sick pay schemes. Permanent superannuable post.
Further particulars and application forms (to be returned within 14 days of this advertisement) from Registrar, Bristol Technical College, Ashley Down, Bristol BS7 9BU.
Please quote reference number $\mathrm{T} 686 / 49 / 2$ in all communications.

TRAINEE RADIO TECHNICIANS

A PROGRESSIVE CAREER IN THE FIELD OF RADIO AND ELECTRONICS

Applications are now invited for an intensive training course of 3 years, leading to appointment as a fully qualified RADIO TECHNICIAN, with further prospects of progression to the Telecommunication Technical Officer Class.

Generous Pay and Conditions while under training.

Candidates must be over 16 and under 21 years of age as at September 8th, 1969, on which date training commences.
Minimum educational qualifications required are passes at G.C.E. 'O' Level in English Language, Mathematics and Physics (already held or expected to be obtained in the Summer 1969). Equivalent passes in Scottish or Northern Ireland Certificates and C.S.E. Grade I passes are also acceptable.

Closing date for applications, 31 st March. 1969. Interviews will be commenced about end of April.

Apply for full details and application form to:-
THE RECRUITMENT OFFICER (TRT/54) government communications headquarters OAKLEY, PRIORS ROAD, CHEITENHAM, GIOS. G152 5AJ

AERIALS

Enthusiasts

THE T.M.P. EXPERIMENTAL

AERIAL KIT

A unique collection of alloy elements, dipoles, booms, clamps, mast reflectors, nuts and bolts, cables, even a compass! etc., to make up various experimental aerials to cover all bands.
This includes TV transmissions, SW for the radio amateur, VHF for BBC FM. Amateurs on 2 and 4 MTrs, Aircraft, Police, etc., UHF for experiments on BBC 2 and Ultra High Frequencies. These Kits can be used indoor or outdoor. Robust construction with simplified detailed plans for easy assembly.
The Wonder T.M.P. Kit costs only 89/6—no extra for carriage.
Despatched to any address in UK within 7 days.
> tUBULAR METAL PRODUCTS 7 LOWESMOOR TERRACE WORCESTER

MAKE YOUR OWN TALKIE8. An introduction to electronic tape/film synchronisation, with an explanation of the "Carol" Cinesound system, molifying equipment, filming in syme., etc. Price $7 / 6$, pont free (refmodatile agiainst purchase of your "'jarol" (inesound equipment). Contronics Ltsh., Deepeut, (Amberley, Sumer.

This useful handbook gives detailed information and circuits for British and American Governequipment, etc., plus suggested modification details and improvements for the equipment Also a Surplus/commercial cross reference valve guide and Government component codings and references. Invaluable to Radio enthusiasts, Universities and Laboratories.
Available onlyfromusat VERITEXT (LEEDS) LTD., 24 Stansfield Chambers, Gt. George St., Leeds I. Yorkshire at 30/-per volume post paid. Extra postage for Foreign Orders.

SURPLUS HANDBOOKS

I9 set Circuit and Notes 6/6 P.P. 6d Il55 set Circuit and Notes 6/6 P.P. 6d H.R.O. Technical Instructions . . 5/6 P.P. 6d 38 set Technical Instrucrions.... 5/6 P.P. 6d 46 set Working Instructions. . . . 5/6 P.P. 6d 88 set Technical Instructions.... 7/-P.P. 6d BC. 221 Circuit and Notes 5/6 P.P. 6d Wavemeter Class D Tech. Instr 5/6 P.P. 6d 18 set Circuic and Nores BC 1000 (31 set) Circuir N No. 5/6 P.P. 6 d CR. 100/B. 28 Circuit and Notes 10/ P.P. 8 d R. 107 Circuit and Notes. 7/- P.P. 6d A.R.88D. Instruction Manual \qquad 18/-P.P. 6d 62 set Circuir and Nores 6/6 P.P 6d 52 set Sender \& Receiver Circuits 7/6. post free Circuit Diagrams 5/- each post free. R.III6/A, R.I224/A, R.1355, R.F. 24, 25, \& 26. A.II34, T.I154, CR.300, BC.342. BC. 312. BC.348.J.E.M.P. BC.624. 22 set. Resistor Colour Code Indicator... 2/6 P.P. 6d S.A.E. with all enquiries please. Postage rates apply to U.K. only. Mail order only to: Instructional Handbook Supplies Dept. P.E., Talbot House, 2B Talbot Gardens Leeds 8	

OUT NOW Tinituct

Try your hand at Radio Construction

Why not start off the new year with a brand new interest and get down to the techniques of radio construction? You'll find all you need to get cracking month by month in our companion magazine, practical wireless. It's packed with know-how on this fascinating practical field. Try it out-get a copy today.

ELECTRIGAL

witcRAFT-
 AIRCR POLICE BAND - BROADCAST REC.

Listen to the thrills of alreraft, pliote and alrports st work. Also police fre/ambulance. Taria and clvil depta. Ideal for recelving 2 metre amateurs. A fully transiatorised receiver covering $97-150 \mathrm{Mc} / \mathrm{s}$ V.H.F. broadcants. Robust steel. black crackle anlah cabinet. size 8 . $\times 4$. Operate from a go battery that fita inalde. Speaker or head-
phone output. Simple to use. Gives hours of plemare. Our prioe 88.10 .0 car. and ins. $10 /-$ C.W.O. or C.O.D.

AlR/SEEATRANS/REC.

Compact F.H.F. Trans./Rec. Fita in the pocket. Conslats of Mike/Speaker, amplifier, aerial, transmitter and receiver. Were made to operate up to 100 miles dependlag on terran. contained. Cost Govt. over $\$ 50$ each. Regula. contained. osist mot be operated in UK so please mention "For Dismantling purposea only" when ordering. Price 88.10 .0 each. p. \& p. 10/\%. Two sets for \$.0.0, post iree. Four sets s8, carriage free. Buik gale of 10 sets E15. carrlage f1. Export enquiries
fivited.

SHIPPING/SO.S/BAND

RECEIVER

Hear shipping from all over the world. Covers the complete maritime, trawler and amatear bands. finish case lite superhet. Attractive black crackle torised. 9 volt battery fit inside. Fully Speaker or headphone output. Brand new direct from makers. Comparable with eete being sold at 30 gns . Our Price only 49. Carr. \& ins. 10/-.

DINATURE TRAMEISTOBIERD B.F.O. UNIT This is a miniature tranalstorised B.F.O. unit (tunable) that will enable your set to recelve C.W. or 8.S.B. reception. Compact. Single hole fixlog. Thls amall unlt will fit snywhere. Ideal for all Ex-Govt. Communlcation Recelvers and most Commercial Types. Complete with fitting Instruc* tions. $49 / 6$, post free.

Bulk purchase enables us to ofter the following transtormer at thene rldiculously low prices. Made by a famous manufacturer and fully tested and guaranteed. Charger Tranuformera. 0-9-15V 2 A . 8/6 each, p. a p.2/6. Two for 17/6, post free. Trangistor Power Pack Tppes, 6.3 V at $2 \mathrm{~A}, 7 / 6$ each. p. \& p. $2 / 6$. 12 V at $2 \mathrm{~A}, 12 / 6$ each, p. \& p. $2 / 6$.

ELECTRICAL (continued,

TWO TRANSISTOR d.c. to a.c. Convertor Kit 12 V d.c. input 240 V a.c. output 40 W suitable for running fluarescent lights, etc. C5.5.0. past TRANSISTOR 60 W suitable for tape recorders. lights, etc. Et 10 complete with case. Circuits available-S.A.E. please.
J. ROBINSON (RADIO TV)
(Dept. P.E.), 4 Highcliffe Road MANCHESTER M93 FX
$060-7401175$

240 ELECTRICITY ANYWHERE

most briliant perrormance ever from DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL ACIDC MAINS EQI'IPMENT. Marvellous for Fluorescent li,hting. Thousands of uses. Tremendous purchase of this model makes fantastically low price possible.
ONLY 55.19 .6 each plus 1016 delivery, C.O.D. with pleasure. MONEY BACK if not DELIGHT-
ED. Please send S. A.E. for full illustrated details.

Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade BLACKPOOL, Lancathire

un all your transistor equipment direct from a.c. mains. The most economical way of running Transistor Radios, Hi-Fi Equipment, RecordPlayers, Amplifiers, etc. No more expensive bat teries to buy. All the units are contained in an attractive case with a full set of accessories. MK I model-replaces all 9 volt batteries, i.e., PP3, PP4 PP5, PP6, PP7, PP9 and all equivalents, or all 6 volt batteries, i.e., PPI and PP8 (please state which voltage). Now only 30/- P. \& P. 7/6. MK 2 modelthis unique model has three outputs 6 volts, $7 \frac{1}{2}$ volts and 9 volts and is ideal for cassette tape-recorders, price only 55/-, P. \& P. 5/- extra. Extra lead with DIN plug for Cassettes $6 / 6$. MKIII-This unit is the same as the MK II version above with the added refinement that all the outputs are STABILISED making the unit most suitable for running $\mathrm{Hi}-\mathrm{Fi}$ and Test Gear direct from the mains. Only 75/-, P. \& P. 5/-.
All units available from Dept. P.E.

\% HLOBE SCIENTIIIC LTD

DEPT. P.E. 22,24 CAWOODS YARD
MILL STREET, LEEDS 9

MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box--simply, cheaply. Realistic sound guaranteed. S.A.E. for details. D.E.W LTD., 254 Ringwood Rd., Ferndown, Dorset.

BUILD IT in a DEWBOX quality cabinet $2 \ln \times 2 \frac{1}{2} \ln \times$ any length. DEW LTD. Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

ARTIFICIAL LIFE
 Well almost, because the. NEW range of projects include: an electronic 'animal' which "LEARNS", an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, and an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics. SEND 2/6 for your list-NOW!
 To: 'BOFFIN PROJECTS' incorporating BIONIC DESIGNS 4 CUNLIFFE RD.
 STONELEIGH, EWELL, SURREY

UFO DETECTOR CIRCUITS, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts

SERVICE SHEETS

SERVICE 8HEET8. RADIO, TELEVISION, TAPE RECORDER8, 1925-1968, by return post, from $1 /-$ with free fault-finding guide. Catalogue 6,000 models, $2 / 6$. Please gend stamped addressed envelope with all orders/ stamped addressed envelope with all orders/
enquiries. HAMILTON RADIO, 54 London enquiries. HAMILTO
Road, Bexhill, Sussex.
> C. \& A. SUPPLIERS SERVICE SHEETS
> T.V., RADIO, TRANSISTORS, TAPES, ETC.

> Only $5 /-$ each, plus S.A.E.
> (Uncrossed P.O.'s please, returned if service sheets not available.)
> 71 BEAUFORT PARK LONDON, N.W. 11 MAIL ORDER ONLY

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.6. SHE 8441.

SERVICE SHEETS, Radio, TV, 5,000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

REGEIVERS AND COMPONENTS

DISCOUNT TRANSISTORS

No "seconds". No "re-marks". Mint, guar anteed to spec. No order too small, but note brackets) for FIVE OR MORE, one cype or brackets) for FIVE OR MORE, one cype or MIXED. U.K. Post paid on orders $10 /-$ or
over. Data/price list with useful circuits 4 d . $\begin{array}{llll}\text { free with ali orders. } \\ \text { AF239 } 10 /-(8 / 6) & \text { 2N4285 } & 2 / 10(2 / 6)\end{array}$ $\begin{array}{llll}\text { AF239 } & 10 /-(8 / 6) & 2 N 4285 & 2 / 10(2 / 6) \\ \text { BC107 } & 3 /-(2 / 8) & 2 N 4289 & 2 / 10(2 / 6)\end{array}$ $\begin{array}{llll}\mathrm{BCl} & 3 /-(2 / 8) & 2 N 4289 & 2 / 10(2 / 6) \\ \mathrm{BCl} & 2 / 3 & 2 / 2 /-3 & 2 N 4292 \\ 2 / 10(2 / 6)\end{array}$ $\begin{array}{lcll}\text { BCI69 } & 2 / 6(2 / 3) & \text { SFII5 } & 2 / 10(2 / 6) \\ \text { BDI2I } & 23 /-(21 /-) & \text { MANY OTH }\end{array}$ BDI2I $23 /-(21 /-) \quad$ MANYOTHER
BFY5I TYPES INSSTOCK R.C.A. HIGH SLOPE MOSFET 40466 . Virtually infinite input resistance. Low noise. even at 100 MHz . Mutual conductance $7.5 \mathrm{~mA} / \mathrm{V}$. Only $8 / 4$ (7/6).
LINEAR INTEGRATED CIRCUITS CA3020, 30/-: CA301I (FM i.f. amp) 20/-: PA234 iW amp for $22 \mathrm{~V}, 22$ ohm load, 24/-: LM703L. Single RF/IF stage (28dB gain at AMPLIFIER.
AMPLIFIER PACKAGES. Component kits for small, efficient, easily constructed transormerless class B audio amplifiers
$9 \mathrm{~V}, 800 \mathrm{~mW}$ in 8 ohms $22 / 6$. Ax. $12 / 6$. $\mathrm{A} \times 3$, UP to 24V UW in 15 ohms, 30/-A PONENTS. MT9 mains trans $0-230-250 \mathrm{~V}$ to $9-0-9 \mathrm{~V} 80 \mathrm{~mA}$, only Ifin. cube, with rectifier. circuit sheet, II/-.
Tiny bridge rect., finger nail size, up to 30 V Cash with order. Mail order only. Quick Cash w

AMATRONIX LTD. (P.E.)
896 selsdon Rd., South Croydon, Surrey, CR2 ODE

ELECTRONIC STOCKMARKET kit of most parts; also "Reactalyser" and Waa-Waa pedal. S.A.E. for list. I.E.W. LTD., Ringwood Rd., Ferndown, Dorset.

BRAND NEW ELECTROLYTIC8, 15 Volt, Long Wires, 2, 6, 8, 10, 15, 20, 30. 40, 50,100 Mfds. 7/6 dozen, postage $1 /$. THE C.R. SUPPLY CO., 127 Chesterfleld Rd., Sheffield, 880 RN .

BARGAIN PARCEL8 of new surplus Electronic Components, $3 /-5 /-, 10 /-$, post free. DOLPHIA ELECTRONICS, 5 pooles Way Brira Close, Burıtwood, nr. Jichfield.

R \& R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

BF80	3/-	PCC84	3/-	PY82	3/-
EBF89	3/6	PCF80	3/-	U191	$4 / 6$
ECC82	3/-	PCF82	3/6	U301	$4 / 6$
ECL80	31-	PCL82	$4 /-$	$6 F 23$	5/-
EF80	1/6	PCL83	4/-	10P14	$3{ }_{1-}$
EF85	3/-	PCL84	5/-	20P5	3/-
EFI83	$3 / 6$	PL36	3/-	30F5	2/6
EF184	$3 / 6$	PL81	4/-	30 LI 15	5/-
EY86	$4 /$ -	PL83	4/-	30 Pl 12	4/6
EL41	5/-	PY33	5/-	30 C 15	5/-
EZ40	4/6	PY8I	3/6	30 PLI 3	3/6
EBC41	4/6	PY800	$3 / 6$	30 PLI 4	5/6
		alve 9 SIX P	TW	$0 \operatorname{six} 6 d .$	

COMPONENTS AT GIVE-AWAY PRICES. Digital Counters, Rev Counters, Thyristors, Transistors, Valves, Tool Bags, Track Heads, Recording Tape, Aerials, Intercoms, Microphones, Micro Switches, Etc. 6d. stamp only, to DIAMOND MAIL ORDER PRODUCTS, Prospect House, Canal Head, Pocklington, York. NO4 2NW

10 TESTED GERMANIUM TRAN8ISTOR8 8/6. Similar NKT223, NKT251, OC72, etc. (new address) J. BLACKER, 32a, Mill Hill, Vicarage Lane, Le, BLa

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS

2 in $\times 4$ in packed with semiconductors and top quality resistors, capacitors, diodes, etc.
Our price. 10 boards $10 /-$. P. \& P. 2/-. With guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for $f 1$. P. \& P. 3/6. With a guaranteed minimum of 85 ransistors.
100 boards 65/-. P. \& P. 6/6. With a guaranteed minimum of 350 transistors.
PANELS with 2 power eransistors sim. to OC28 on each board + components. 2 boards ($4 \times 0 \mathrm{O} 28$) 10/-. P. \& P. 2/-.
NPN GERMANIUM TO5 I WATT POWER TRANSISTORS on small heat sink, on 2 in $\times 4$ in panel. 5 for $10 /=$, P. \& P. 2/\%
POWERTRANSISTORS sim. to 2 NI74 ex-eqpt. 4 for 10/., P. \& P. 2/-.
POWER TRANSISTORS sim. to 2 NI74 ON Finned Heat Sink (IOD) 4 for $\& 1$, P. \& P. 3/-.
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 11/6 doz., DPDT $22 / 6$ doz., DPST $17 /$. doz. P. \& P. all types $2 /$ - doz.

TRANSISTOR COOLERS TO5 7/6 doz., TO3 18/-doz. P. \& P. 2/-
OVERLOAD CUT OUTS. Panel mounting in the 8 amp. P. \& P. $1 / 6$. $5 /=$ each. $1,1 \frac{1}{5}, 2,3,4,5,7$, MINIATURE GLASS NEONS, $12 / 6$ doz. NEW MIXED DISC CERAMICS. 150 for 10%. LARGE CAPACITY ELECTROLYTICS
Ain, 2 in diam. Screw terminals.
All ar $6 /$ each $+1 / 6$ each P. \& P.
All at $6 /-$ each $+1 / 6$ each $P . \&$. P.
$4,000 \mathrm{mF}$

000 mF	72 V d.c. Wke.
5.000 mF	SSV d.c. wkg.
6,300 mF	72 V d.e. wkg.
1.500 mF	150 V d.c. wkg.
$16,000 \mathrm{mF}$	$25 V$ d.c. wikg.
25.000 mF	12 V d.c. wkg.

Send $1 /$ stamps for list.
KEYTRONICS, 52 Earls Court Road London, W.B.

Mail order only

- D E E E E D D	
BSR BRAD. $39 / 6$ pair 2 TRACK	$\begin{array}{ll} \text { HIGER IMP. } \\ \text { 4-TRACK } \end{array} \quad 45 /=$
BSR MALL 4 TRACK	BOGEN ERASE UL218/6 $4-$ TRACK
REUTER - Collaro	COSMOCORD ERASE
ERASE	T.E. $2 / 9$
F.M. WIRELESS MICROPHONE	
$94 \cdot 104 \mathrm{Mc} / \mathrm{s}$. Trabisistorlsed. Operates from 9 V battery. Complete with idditional secret tie clip 	
TRAFSISTORISED FM TUNER	
6 TRANSISTOR HIGH QUALITY TUNER. SIZE, ONLY Gin 4 in 2 fin 3 l. \mathbf{F}, etages. Touble tuned discriminator. Ample output to feed most amplifiers. Operates on 9 V battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Rexdy built ready for $\mathbf{6 6 . 1 2 . 6}$	
FM MULTIPLEX STEREO ADAPTOR	
Printed eircuit hascuit, 4 trans. $6 \quad \leq 5.2 .6$ diodes 9 V with full instructions	
LOUDSPEAKERS	
$12^{*} 20$ watt, 15 ohm. TWIN CONE P5. 7.0	$12^{-} 25$ watt, 15 ohin, guitar SPEAKER £5.7.0
FULL RANGE HIGH COMPLIANCE. $\operatorname{col}_{30-20 \mathrm{~K}}^{\text {ohn, } 15}$ watt E 5.18 .0	$10^{*} 10$ watt, 15 ohm, CERAMIC MAGNET
$\begin{aligned} & 6 \mathrm{t}^{6} 16 \text { ohm, } \\ & 10 \text { watt, } 30 \cdot 18 \mathrm{~K} \end{aligned} \text { £5,0.(}$	CHARGER TRANSFORMER.
$\begin{array}{ll} 4^{*} 16 \text { ohnt, } \\ 5 \text { watt, } 40 \text {-1 } \end{array} \quad \mathbf{Z 3 , 3} 0$	$\begin{aligned} & 4 \text { Amp. } \\ & 2 / t / 12 \text { volt } \end{aligned} \quad 24$
MULTMETERS $32 /-\mid$ LOUDSPEAKERS. $2^{\prime \prime} \mathrm{g} / 6$	
REFLEX CONE TYPE WATERPROOF SPKR.	watt PEAK 15 or $35 /$ -
b watt. 3 ohm. 300-	TWEETER 16 ohin $26 / 0$
$10,000 \mathrm{c} / \mathrm{s}$ PA	10 watt. 18K-cPs $20 / 9$
\& Music Relay $\quad \$ 3.10 .0$	CROSSOVER NET- 14/- WORK 16 ohm
SUPER SILICON RECT, T.S., etc., 1,200 PIV $800 \mathrm{~mA}, 5 /-$ or complete with instr. reaistor, condenser. $6 / 8 ; 400$ PIV HW 6A, $6 /-; 200$ PIV HW 6A, 8/-. No cheap rubbish.	
Stamped envelope for full selection and bargain offers in Multimeters, Radios, Baby Alarms, Intercoms, Whalke-Talkies, Rectifiers, Sinclair, DULCI, aml Bagle Likts. UNDEA $£ 1-\mathrm{P}$. \& \quad. fisl., £2-£3-1/bd, over £3 Post Free. C.O.D. 3/6. MA1L ORDER ONLY.	
DURMAMSESES	
367 F, KENSI BRADFORD	TON STREET YORKSHIRE

RELAYS, RELAYS, RELAYS, RELAYS 9 9. A.c. 60 , ohm, $1 \mathrm{C} / \mathrm{O} 3 \mathrm{am}$, Magnetic Devices 703304), $2 / 6$ each

24 S A.c. 180 ohlı, $2 \mathrm{C} / \mathrm{O} 10$ anm (B. \& R. Rekays Type JO4). 4.8 each
110 s d.c. 5.000 oh
(Londex). $5 / 8$ each
35V゙
 24 V d.c. 400 ohnt. $2 \mathrm{C} / \mathrm{O} 3$ anp Sealed. Octal Base (Allied Controls 828425 B.JHX8), $10 / 8$ each 24 V d. c .300 ohm, 1 Make. I Break. 10 amp (13. \&
R. Relays, Contactor), $5 / 8$ each 6 V d.c. 14 ohm, 2 Make, 15 amp (Magnetic Devices 703495). 7/6 each

110 V a.c. 2 Miake, 3 amp (Londex), $4 / 6$ each
110 V a.c. $4 \mathrm{C} / 0,3 \mathrm{amp}$ (Londex). $7 / 8$ each
Miniature moving cois 2×100 ohmb. $1 \mathrm{C} / \mathrm{O}$. L / D sealed, Ain Fly Leals (Electro Methods 415). 10/B each 6 V r.c. 8 fi ohan, I Make, 3 athl. (Maguetic Devices 100 d.c. 860 ohm, l Make, 1 B
24 V d.c. 860 ohin, 1 Make, 1 Break, 3 atin) (Magnet ic
 24 V d.c. 150 oh $112 \mathrm{C} / \mathrm{O}, 10$ (t!! ($\mathrm{CN} \%$ B27927), $8 / 6$ each
24 V d.c. 400 ohm, $2 \mathrm{C} / 0.3$ amp heaten Octal Bare (Potter \& Bi umfielid 828425). 10/6 eawh
4V d.c. Stepping Solenoid (will take wafer switches), 8;6 each
Cut out Switch. Normal current 5 nump. At 10 amp Relay will operate and diaconnect own supply, for
series workilg (Marconil W9785 F.D.A.). 2/6 each geries working (Marcolii W9,86 Fi.D.A.). $2 / 6$ each
Carpenter Relaya: 1,250 ohm $+1,250$ ohm $(3 \mathrm{E}$ Carpenter Relays: 1,250 ohm $+1,250$ ohm (3E
1ZTR), 136 ohm +136 ohit $(3 S E .38 \mathrm{~s})$, 1,040 ohm +330 ohm (3 E 12T K), 30 ohm +110 ohte (3 H .23), 22/8 each.
All Relays are in new condition. Please add 4/in the $\& 1$ tor Post and Packing. Minimumorder 10 / K. G. SUPPLIES, 10 Mallow Street, Iondon, E.C.

ELECTROVALUE

RAPID MAIL
 ORIDER
 SEIR VICE

I- Unbeatable Value in SENICONIDCTORS
30W BAILEY AMPLIFIER
MJ481 and MJ491 matched pair output. 58/-; 40361 and 40362 matched jair drlver, $30 / 8 \mathrm{~d}$; 40361 12/6;
 HC109 2/8. Main amp. PC board $12 / 6$ each but FREE with each complete transistor set.
Total for one channel $\mathbf{x} 7.8 .0$ list with 10
Total for one channel 47.8 .0 list with 10% discount only $\mathbf{8} 8.13 .3$. Total for two chamels 814.1 ti. 0 list With 15% discount onty f12.11.8. Complete powe G.E. 2N2926 PLASTIC RANGE

Price reductions
Red ajot $=55$ to $1102 / 3$; Orange $8 p o t=90$ to 180 2/3; Yellow spot $=150$ to $3002 / 6$; (ireen suot $=235$ o $4702 / 9$.

TEXAS SILECT RANGE fRICESREDUCED 30 V 800mA npn: $\quad \mathrm{HC108} 20 \mathrm{~V}$ $2 \mathrm{~N} 3704=90$ to $330 \quad 3 / 9$ 25 V 200 mA pnp:
2N 3702 - 0 to 300 3/8 2N3703-30 to $150 \quad 3 / 3$ smatl gighitil npn: 2N3707 Jow noise 2N $3711 \quad 180$ to $6608 / 11$ anall siglial pap: $\begin{array}{lll}\text { 2N } 4058 & \text { low noise } & 4 / 9 \\ 2 N 4062=180 \text { to } 640 & 4 / 3\end{array}$
 $300 \mathrm{MHz} \mathrm{fT}, \mathrm{TO} 18$: 125 to $5002 / 8$ 3 C 10920 V 125 to $900 \mathrm{e} / 6$ 125 to $9002 / 8$ 300 NHz 1T, TO92): BC167 45 $\mathrm{BC1} 57$
$\mathrm{BC168} 20 \mathrm{~V}$ 125 to $5002 / 3$ BC168 20 V C169 20 V 125 to $9002 /$ BC109 anl 240 to 900 2/3 RU167, BCI68 and BCI69 are platic

numbers

FETs-Prices reduce

MPF105 25 V max., gm $=2$ to $6 \mathrm{mN} / \mathrm{V}$, low noise $7 / 6$; $2 N 381925 \mathrm{~V}$ melx., gul $=2$ to finn/V, low noise g/-
MINI TRANSISTORS-Prices Reduced
2N 4285 pap hFE 35 to 150 (a 10 mA fT 7 MHz min. Yeb 35 V Hax. 2 N 4286 upn 30 V hFE over 100 ($10 \mu \mathrm{~A}$ to 1 HA f 280 MHz typ.; 2N4289 pnp 60V hFE over
$100{ }^{n} 100 \mu \mathrm{~A}$ to 1 mA f 170 MHz typ.; $2 N 4291$ 100 (n $100 \mu \mathrm{~A}$ to 1 mA fT 170 MHz typ-: $2 N 4291$
pnp 40 V hFE over 100 in 100 mA , 2N 3744 npn 40 V pnp 40 Y hFE over 100 (an 100 mA , 2 N 3794 npn 40 V
hFE over 100 is 100 mA , complementary itriver/out$h \mathrm{FE}$ over 100 cm 100 mA , complementary itiver/out
put: 2 N 4242 mpm 30 V L'HFN.F. G1B mitx a, 100 MHz
 temp. 35 V , hFE over 100 (a, 0.5 A . l lsulated T066 size mounting burface.
Pricer: 2 N 4285 to 2N4292 and 2 N 3794 2/11; 135041 Prices:
$13 / 6$.
1,000V 1-5A GENERAL PURPOSE RECTIFIER type IN50543/6 onl
$1,0000.75 \mathrm{~A}$ miniature rectifier type TS $11 / 9 ; 400 \mathrm{~V}$ type Thy $2 / 3$
ZENER DIODES $3 V$ to $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all preferrel oltages, 4/8 each

NEW TRANSISTOR BARGAINS
ALL POWER TYPES SUPPLIED WITH FREE ALL POWER TYPE
$\begin{array}{lllllllll}\text { 2N } 6966 & 5 / 6 & 2 N 171 & 7 / 4 & 2 N 4060 & 4 / 3 & \text { BC148 } & 3 / 6\end{array}$ $\begin{array}{llllllll}2 N 697 & 6 /- & 2 N 2147 & 18 / 9 & 40250 & 15 /- & \text { HC149 } & 4 / 3 \\ 2 N 706 & 3 / 5 & 2 N 23694 & 40406 & 18 / 3 & \text { HD } 123 & 24 / 3\end{array}$ $\begin{array}{llllllll}2 N 706 & 3 / 5 & 2 N 2369 \mathrm{~A} & 40406 & 18 / 3 & \text { BD } 123 & 24 / 3 \\ 2 N 1132 & 13 /- & & 6 / 9 & 40408 & 14 / 6 & \text { BF194 } & 7 /-\end{array}$
 $\begin{array}{llllllll}2 N 1303 & 4 /- & 2 N 2924 & 5 /-A C 128 & 8 /- & \text { BFX84 } & 7 / 5\end{array}$ $\begin{array}{lllllll}2 N 1304 & 4 /- & 2 N 2925 & 5 / 8 & \text { AC176 } & 11 /- & 13 F X 85 \\ 2 / 3\end{array}$ $\begin{array}{llllllll}2 N 1305 & 4 /- & 2 N 3053 & 5 / 6 & \text { ACY17 } & 8 /- & \text { BFN88 } & 7 / 8 \\ 2 N 1306 & \text { B/8 } & 2 N 3054 & 15 / 6 & \text { AD181 } & 7 /- & \text { RFY } & 4 /\end{array}$ $\begin{array}{lllllll}2 N 1306 & 6 / 8 & 2 N 3054 & 15 / 6 & \text { AD } 161 & 7 /- & \text { BFY } 51 \\ \text { 2N } 1307 & 6 / 9 & 2 N 3055 & 16 / 6 & \text { AD } 162 & 7 /- & \text { BFY } 20\end{array}$ $\begin{array}{llllllll}2 N 1308 & 8 / 9 & 2 N 3391 A & \text { AF114 } & 7 / & \text { BSX20 } & \text { 4/6 } \\ \text { 2N } 1309 & 8 / 8 & & \text { 5/6 } & \text { AF124 } & 7 / 6 & \text { NKT403 }\end{array}$ $\begin{array}{lllllll}2 \mathrm{~N} 1309 & 8 / 8 & & 5 / 6 & \text { AF } 124 & 7 / 6 & \text { NKT } 403 \\ 2 \mathrm{~N} 1613 & 8 / 6 & 2 \mathrm{~N} 3706 & 3 / 3 & \text { BC } 147 & 4 / 3 & 14 / 10\end{array}$
 RESISTORS

METAL OXIDE type TR5 $0.5 \mathrm{~W} 2 \%$ tolerance. Very A Professtonal resistor. All E24 preferred values 100 to $1 \mathrm{M} \Omega$. Price: 1 to 1110 d ; 12 to 259 d ; 25 up 8 d . CARBON FILM high stab low noise.
W 10% I Ω to $3 \cdot 3 \Omega$ and W \% $3 \cdot 9 \Omega$ to $1 \mathrm{M} \Omega 1 / 10 \mathrm{doz}$ 14/8 100 .
tW $10 \% 47 \Omega$ to $10 \mathrm{M} \Omega, 1 / 9$ doz., $13 / 6100$
W. $5 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 2 / 2$ doz., $17 /-100$.
$1 \mathrm{~W} 10 \% 7.7 \Omega$ to $10 \mathrm{M} \Omega, 3 / 3$ loz., $25 / 10100$.
1/f less per 100 if ordered in complet.e 100 of one ohmic valure.
Please state resistance values reynired
Csrbon Skeleton pre-sets: $100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega$, $2 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \Omega \mathrm{k}, 100 \mathrm{k} \Omega$, $10 \mathrm{~m} \Omega$, Vertical or horizontial hountiug. $250 \mathrm{~m} \Omega, 5 \mathrm{M} \Omega$ Small high quality, $1 /-$ each; sub-min, type $11 d$ each.

PEAK SOUND PROIUCTS

I'eak Sound PA. 12-5 Power Anplitier has a maximum distortion level of ouly 0.1% at 11.5 W , into 15 g . sink and mounting board. Power supply PS. 45 Kit 44.10.0.

Pre-anp kit 27j- plus controls mono: 6/3; stereo 20/Active tone filter kit $19 /$-plus controls: nono $5 /-$ stereo 18/-. No discounts allowable on basic klts only'

ELECTROLYTICS

SUB-MIN
C426 range ($\mu \boldsymbol{F} / \boldsymbol{Y}$): $\quad 0-64 / 64,1 / 40, \quad 1 \cdot 6 / 25,2 \cdot 5 / 16$, $2 \cdot 5 / 64,4 / 10,4 / 40,5 / 64,6 \cdot 4 / 6 \cdot 4,6 \cdot 4 / 25,8 / 4,10 / 2 \cdot 5,10 / 16$. $10 / 84,12 \cdot 5 / 25,16 / 10,16 / 40,20 / 16,20 / 64,25 / 64$, $25 / 25,32 / 4,32 / 10,32 / 40,32 / 64,40 / 2 \cdot 5,40 / 16,50 / 64$, $50 / 25,50 / 40,64 / 4,64 / 10,80 / 2.580 / 16,80 / 25,100 / 64$, $320 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4,500 / 2 \cdot 5$. **'rice reduction $1 / 3$

each

MINLATURE ($\mu \mathrm{F} / \mathrm{V}$):

$5 / 10, \quad 10 / 10, \quad 25 / 10, \quad 50 / 10, \quad 9 \mathrm{~d}$ eitch, $25 / 25$, $50 / 20,100 / 10,200 / 10,1 /$ - each; $50 / 50,100 / 25,1 / 8$; $100 / 50,25 / 25,2$
LARGE ELECTROLYTICS ($\mu \mathrm{F} / \mathrm{V}$)
1000/50 7/-; 2000/50 9/3; 5000/50 17/6; 5000/25 10/3; $2500 / 6415 /-$. Vertical clips for above types 9d each.

CAPACITORS

ALL GDOIDS RBRANID NEW-NO SURPLUS

1969 CATALOGDE now ready, full of most up to date information essential to every gerious user
COMPONENT DISCOUNTS
10% on total order over $£ 3.0 .0 .15 \%$ on total order over $\mathbf{~} 10.0 .0$. Uniess alated olferteise
POSTAGE AND PACKING on orders up to \&1, atd $1 /$: : over, post free in U.K.
OVERSEAS ORDERS WELCOMED Carriage charged at cost

RECEIVERS AND COMPONENTS
(continued)

WANTED

NEW VALVE8 WANTED. Popular TV and Radio types. Best cash price by return DURHAM SI'PPLILS, 367F Kensington Street, Bradford $\chi_{\text {, Yorkshire. }}$

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

Limited number VOX High quality $10^{\prime \prime}$ Speaker Cabinets with provision for amplifier. Finished in Black with gold trim Brand new. 67 each.

TIMER UNIT consisting of standard mains input transformer $200 / 240 \mathrm{~V} 50$ cycle; output 18 V 4 amp (conservative) GEC bridge rectifier: detachable accurate 1 sec timer subchassis with transistor STC type TS2, $2 \times 12 A U 7$, one 500 ohm relay heavy duty contacts 2 make; lamps. fuse switch, etc., etc., in case size 10 - 10 - $5^{\prime \prime}$. Ideal for battery charger, one second timer, transistor power supply, etc.
Tested and guaranteed working 63. 10.0 . P \& P 15, -. Untested, but complete 62. 10. O. P \& P 15/.

TRANSISTOR OSCILLATOR variable frequency $40 \mathrm{c} / \mathrm{s}$ to 5 kc 's 5 volt square wave o/p; for 6 to 12 V D.C. input. Size If \times it $1 \frac{1}{4}$ " Not encapsulated. Brand new. Boxed $11 / 6$ each.
Brand new unmarked transistors. Types OC7I and OC44. Tested and guaranteed 10d each. Min. order $2 / 6$

Callers welcome.
Cash with order
CHILTMEAD LTD.
22 Sun Street, Reading, Berks. Tel. Reading 65916 (9 a.m. to 10 p.m.)

By JOHANSEN. Postage $1 / 6$

TRANSISTOR SUBSTITUTION HANDBOOK, new 8thed. 16/\%. P.\&P. 1/3.
MODERN DICTIONARY OF ELEC. TRONICS by Graf. 70/.. P. \& P. 4/6. RADIO COMMUNICATIONS HANDBOOK by R.S.G.B. 63/.. P. \& P. 4/6.
HI-FI YEAR BOOK 1968/9 ED. 15/-. P. \& P. $1 / 8$.

ELECTRONIC MUSICAL INSTRUMENT MANUAL, new 5 th ed, by Douglas. 55/-. P. \& P. 2/न.
TAPE RECORDING SERVICING MECHANICS by Schroder. 21/7. P. \& P. 1/3.
SILICON
CONTROLLED
RECTIFIERS by Lytel. 21/-. P. \& P. 1/3 COLOUR T.V. PAL SYSTEM by Patchett. 40/-. P. \& P. I/8.
TELEVISION TAPE FUNDA. MENTALS by Ennes. 40/-. P. \& P. 2/-. BEGINNERS GUIDE TO TRANSISTORS by Reddihough. $15 / \mathrm{F}$. P. \& P. $1 / \mathrm{F}$. PRACTICAL OSCILLOSCOPE HANDBOOK by Turner. 25/-. P. \& P. 1/8.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station) Phone 01-437 4560

SEND S.A.E. WENTWORTH RADIO 104 SALISBURY ROAD, HIGH BARNET NEW STOCK LIST

AFI14 4/3

AFI 15

AFI16
BFY50
$3 / 9$
$2 / 3$
OC 44
OC 45
OC45
-C72
OC81
OC8ID
$\begin{array}{lll}\text { BFY } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 371 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY5 } & 4 / 9 & \text { OC810 } \\ \text { BFY52 } & 6 /- & \text { OC170 } \\ \text { BFY53 } & 4 / 9 & \text { OC171 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKT121 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 331 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKT713 }\end{array}$
$\begin{array}{lll}\text { BFY55 } & 6 / 9 & \text { OCI70 } \\ \text { BFY53 } & 4 / 9 & \text { OCII7 } \\ \text { BY127 } & 4 / 6 & \text { OC201 } \\ 2 G 302 & 6 /- & \text { NKTI21 } \\ 2 G 303 & 4 / 7 & \text { NKT122 } \\ 2 G 304 & 7 / 6 & \text { NKT123 } \\ 2 G 308 & 7 / 3 & \text { NKT124 } \\ 2 G 371 & 3 / 6 & \text { NKT211 } \\ \text { 2N404 } & 5 /- & \text { NKT212 } \\ \text { 2N696 } & 5 /- & \text { NKT213 } \\ \text { 2N697 } & 5 /- & \text { NKTT13 }\end{array}$
2/6
BCl

3/-

2N697

2N30
2N2219
$2 N 2219$
$2 N 2905$
2N2905
NKT241
NKT242
01-4493087

Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-focused
lamp lights the job up. Exclusive full-
length trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chiseltip, 6 extension barrel, double ended probe, gun and solder. £4 126.
Full details and nearest stockist from:

Burgess Products Co Ltd, Sapcote, Leicester LE9 6JW

| 2in. DE-LUXE MKII 49

The exceptional quality and performance of the "De-luxe MKII" brings truly breathtakingly rich sound from a single loudspeaker, recreating the musical spectrum virtually flat from 25 to 16,000 c.p.s. The unit consises of the latest double cone, woofer and of the latest double cone, woofer and tweeter cone together with a special Baker
"FERROBA" magnet assembly having a flux density of 14,000 gauss and a total flux of 150,000 Maxwells. Bass resonance 32-38 c.p.s. Rated 15 watts. Voice coils available 3 or 8 or 15 ohms. Suitable for any High Fidelity System. Design capability concept and programmed third generation hardware giving fantastically delightful sound at this
 amazing bargain price. Bek er Beproducers
48 page Enclosure
Manual $5 / 9$ post paid.
Bensham Manor Road Passage, Thornton Heath, Surray. 01-684 1665

AT.K.S. design based on newly developed Mullard 4 watt modules with BC108 pre-amp. Suitable for speakers from 3 to 15 ohms. Bass and treble cut/boost Response - 60 to $14 \mathrm{kHz} \pm 3 \mathrm{~dB}$. This excellently engineered layout reyuires Complete with metal chassts and T R simplex teak-ended cabinet for instant

PLAYING UNITS BY GARRARD AND E.M.I

LM8000 Record Player with 9T.A. Steren Cartridge. 210.16.0. AT, 60 Irk. II De-Luxe Anto-changer, die.
cast turntable. Less cartrldge. $£ 13.17 .8$. SP. 25 De-Luxe singic record player, diecast inrntable. Less cartridge. etie.10.6. Brand new in makers' cartons. Packing and carriage on any one of above $7 / 6$.
GARRARD PLDTH WB.I. In fine Teal GARRARD PLLATH WB.I. In fine Teath
for above units. (Packing and earriag
a/r.) $87 / 8$.
Clesr-view rigid perspex cover (crrolinge CARTRIDGES FOR ABOVE STEREO Sonotone 9TA/HC Ceramic with liamona
 M 2 M 27/6.
EMI 4-sp. single player, 101 in . T/table separate armand T/O cart. 72/6 ($1 / \mathrm{p} \overline{\mathrm{b} / \cdot)}$.

MAKE A BOOKSHELF SPEAKER
With a set of matehed speakers and crossover from TRS. Conipizes moserbstyle high efficiency 5 in . bass unit with special cone assembly, X-over and 23 ln . tweeter for mounting into your onn cabinet or bafite eystem. Smooth reaponse from 80 to $20,000 \mathrm{~Hz}$. Londling up to 6 watts. Male by
a world-famous manufacturer. A genuine bargain for only

RESISTORS-Modern ratings. full range 10 ohms to 10 megohme. 10% t-1 W, 4 d . each; 20% 1W, 6d, each: $2 W, 9 d$. each;
5% Hi-ntab, tW, 50 . each:
$1 W$
 each. 1% Hi-stab, JW, $2 /$ - each.
WIREWOUYD RRSISTORS- 25Ω to 10 kn 5
$2 / 3$ each
COMDEFSERS - Silver Mica. Ali valued 2 pF to $1,000 \mathrm{pF}, 8 \mathrm{~d}$. each. Ditto ceramics. 9 d . Tab, 450 V T.C.C. etc. $0.001-0.01$ mF 10 d.
m ench. $0.1-350 \mathrm{~V}$ 10d. each.
$0.02-0.1 \mathrm{mF} 500 \mathrm{~V}$
$1 / \mathrm{e}$ each. T.c.c. 350 V $0.02-0.1 \mathrm{mF} 500 \mathrm{~V} 1 /-$ each.
$0.25,1 / 9$ each; $0.5,8 /-$ each.
CLOSE TOL. S/MICAS- 10% 5.500 p ज 9d.; $600-5,000 \mathrm{pF}, 1 /-; 102.100 \mathrm{pF}$, 11d; $100-250 \mathrm{pF}, 1 / 2 ; 270.800 \mathrm{pF}, 1 / 4$; $800-$ $5,000 \mathrm{pF}, 2 / \mathrm{F}$
VBROBOARD-All standard sizes inclading $2 \frac{1}{2}$ in. $2,5 i n, 3 / 8 ; 2 t, 33 \mathrm{in} .3 /-$ $31 \mathrm{in} . \times 8 \mathrm{in} .5 / 2 ; 32 \mathrm{in} . \times 33 \mathrm{in} .3 / 8 ; 2{ }_{2} \mathrm{in}$.
$17 \mathrm{in} .22 / 6$. All accessorles and tools in 17in. 12/6. All accessorles and tools in
stock.
PEAK SOUND "CIR-KIT". Adhesive
copper circuit strip tiOin. spmol $1 / 18 \mathrm{in}$ V/-NO. 3 Kit, specinl price $10 /-(\mathrm{p} / \mathrm{p} .1 / \cdot)$.
VOLUE CONTROLS- 1 in VOLUME CONTROLS- 1 inin. viat. Long apindles. Famous make. At values 5,000
ohns-2 Megohms. Guaranteet 12 months. Log or Linear tracks. Less Sw. 3/8; Di' Sw, 5/-. Ditto Centre tappell Megehm Log, 1 Megohm less sw $5 /-$. Twingangell stereo controls $1 \frac{1}{2}$ dia, long spindtes $A 11$ values $\bar{\sigma}, 000$ ohns to 2 Megohms less sw. at. 8/6. Ditto 100 K 1o 2 Megohms with DPS\&. eil. $10 / 6$.
STEREO BALANCE CONTROLSMeg., ea. 9/6

ORDERING-Sent cash with order. Post and pucking whese not stated add
 iflb.; 6/ti, $101 \mathrm{~b} . ; 8 /-141 \mathrm{~b}$: nvet, $10 /-$ S.A.E. teith enquivies plenap. LIsTS- Fight large printed pages, diffeult in findlines. Neml bd, for latost coy: coly

TRS RADIO
 COMPONENT SPECIALISTS EST. 1946

70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY

Telephone: 9 a.m. -6 p.m. daily A few doors from Thornton $\begin{array}{ll}01-6842188 & 1 \mathrm{p} . \mathrm{m} \text {. Weds. }\end{array}$

Heath Stn. (S.R. Victoria Section)

SEMICONDUCTORS

BRAND NEW AND FULLY GUARANTEED

VALUABLE NEW HANDBOOK Fh E EMGINERS
 Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available - without charge to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.
Adranced Electronic Eng Gen. Electronic Eng.- Ap plied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transissors.
ELECTRICAL ENG
Advanced Electrical Eing.General Electrical Eng. Insfallations - Draughrsmanship - Hlluminating Eng. Refrigeration - Elem. Elec Science - Elec. Simply Mining Elec. Eng
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Minticipal Eng. - Structural Eng. -Sanitary Eing - Road Eng. - Hydraulics - X/ining Water Supply- Perol Tieh

THIS BOOK TELLS YOU
\star HOW to get a better paid, more interesting job.
\star HOW to qualify for ropid promotion.
\star HOW to put some letters ofter your name and become a key man . . . quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
\star HOW you can toke odvantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT CAREER - GUIDANCE

PRACTICAL EQUIPMENT
Basie Practieal and Theoretic Courses for beginners in Electronics, Radio, I.V., Etc. A.M.I.E.R.E. Gity \& Gulds Radio Amateurs' Exam.
R.T.E.B. Certificate
R.T.E.B. Certificate

Pratical Eledionics
Elcolronics Engineering
Pratical Radio
Radio \& Television Scrvieing Allomation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E. 7 . Now affers von real laboratory training at home with practical equipment. Ask for details. B.I.E.T. You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES'" - send for your copy nowFREE and without obligation.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG A.I.O.B., A.M.I.EX., A.R.I C.S., M.R.S.H., A.M.I.E.D., A.M
CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

| | INTEGRATED SOLID STATE TR
 Complete with full Bass Tre MA6E 12 WATTS STEREO
 We are pleased to offer two new designs with BRITISH DESIGNED UNIIS favour the user of PICK.UPS TUNERS. DECKS and MICA far greater adsaplability with freedom for battey Whether you require a home or wontable H\|-F| in 66 will FILL THE BILL AT MONO \qquad atlets 12 and pOST PACKING 5 EITHER MODEL atlets 12 and 14 FREE on request Demonstation | SISTOR POWER AMPLIFIERS
 olume and Selector Controls
 hoice of ether mono of stereo systems These any wavs being suttatile for use with all troes NES - with tantastic power and quality with ins operation Output is trom 3.16 OHMS on electronic gutar PA System intercomm OPTIONAL
 6.10.0 MAINS UNit PS2062 50 ppa at our 309 Edgware Rd Branch | |
| :---: | :---: | :---: | :---: |
| DO IT YOURSELF MW/LW PORTABLE
 New printed circuit design with full power ouiput. Fully tunable on both $\mathrm{mw} / \mathrm{lw}$ bands. 7 transistors pius diode, push-pull circuit. Fitted 5 inch soeaker, large ferrite aerial and Mullard transistors, Easy to build with terrific results All local and Continental stations
 total cost
 £6.19.6
 P P $4 / 6$
 TO BUILD Send for Brochure 1 | | A precision engimemed car ratio that's pertett company for long hours of the road has quick dush butron operation for immediate station selection and chomee of Medium or Long wave 'raquancy Output of 3 \| nalis ensutes crisp. Ioo quality sound even at high motoring speeds includes full acces. soribs and instructuons
 POSITIVE/NEGATIVE EARTH PRICE E12 120 pp 4/6 MANUAL as bove E日19.6. bul with singie MW/LW Push Butlon | MULLARD 1 WATT AMPLIFIER PORTABLE TRANSISTQR UNIT Nith volume control Nany uses Intercams Eaby Alants Gurfr Practice. Telephone or Record Plaver Amphilier
 Optional Reaine cavered Wood caluner 12 19.4 126
 7 a 4 in speaker 176
 Uses PPG oatlery
 45/-
 Ask for Lealle1 2 |
| BUILD A QUALITY
 TAPE RECORDER
 To get the best oul of your MAGNavox OECK you need a MAATIN RECORDAKIT thus comgrises of special megh quality 5 valve amplilet and pre ampther which comes to you assembled on its purted cucull boatd-in fact every. Thing needed cown to the last screw FDA Making a SUPERB TAPE RECOROER which when bwill will Eompare favourably wili instruments cosling iwice ds much. yet you need no experience or tecthical skill to bring this about. THE INSTRUCTIONS MANUAL MAKES BUILONNG EASY ANO SLCCESS ASSURED
 2 Track 36 gns
 PP 22 6erther modas
 Fit comprises Deck Amplitier, Cabinet and speaket, with MICROPHONE 7 in 1200 f1 tape sDare spool ALL UNITS AVAILABLE SEPARATELY ASK FOR BROCHURE 6 | VHF FM SUPERHET TUNER MKII 5 Mullaro transistoks \& 4 OlODES • $300 \mathrm{kc} / \mathrm{s}$ gANOWIDTH. PRINTEO CIRCUIT CONSTRUCFION HIGH FIDELITY REPRODUCTION MONO AND STEREO
 A poputar WHFF FM Tuner now used throughoul the country for quality reseption decoder sipreophanic torcad casts There is no doubt aboul II-VHF FM givus the the rat sound Excallent TOTAL COST E6.19.6 DECODEA E5 19.6
 (CABINET 20/-EXTRA) ASKFOR LEAFLET 3
 MANUFACTURERS-DISTRIBUTORS We publish a quantity semiconouctor gULLETIN isting ovet 500 ditieraml devices avalablo GHOM SFOCK in medium to large quantities of KEEN PRICES Counted with PROMPT DELIVERIES.
 TO OBTAIN YOUA COPY, WhITE TO US (on Company Headed Notepapar please) tanusting our SEMI CONDUCTORBULLETIN FOI TELEPHONE QUOTATIONS PHONE (01) 723 100B,9 Exin 4 (01) 7230401 Extn
 We purchase medium to large quantities of Transistors and Devices excess to Manuíacturers and Distrbutors requirements. | TRANSISTORS SEMICONDUCTORS
 COMPLETELY NEW 1969 LIST OF 1000 types Send for your FREE COPY TODAY. (lis: 36)
 S.C.R.s from 5/-
 Field Effect Transistors from 9/6
 Power Transistors from 5/.
 Diodes and Rectifiers from 1/6 | GARRARD RECORD DECKS
 Send for Mustrated brochures 96,17 Complete range of accessories avarlable |

MIFI equipment to suit EMERY PODK?

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD

Fullystrated CATALOCUE

Ti:NivSRAIIDITIU HR
OREN MON.SAT. 9 o.m - 0 O.m. THUNS: 9 o.m. -1 D.m.
303 Edgware Roed, London, W.2. Mail Order Dep: all types of Components. Organ Dept. (M1) 723 -1008 is
309 Edgware Road, London, W.2. High Fidelity
Sales. PA and Test Equipment. Record Decks(01) 7236963

[^0]: DUKE \& CO. (LONDON) LTD. 621/3 Romford Road, Manor Park, E. 12
 Phone 01-4786001-2-3
 Stamp for Free List

[^1]: All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELEC'RRONICS, IPC: Magazines Ltd., 'Power House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELEC'IRONICS, IPC Magazines Itd., 15 I7 Long Acre, London, W.C.2. Phone: 01-836 4363.
 Subscription Rates including postage for one year, to any part of the world, 42s. (c) IPC Magazines Ltd., 1969 . Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

