

LEADERS IN PRECISION SOLDERING!

THE RANGE OF ADCOLA SOLDERING INSTRUMENTS INCLUDE MODELS FROM 19 WATTS WITH A WIDE SELECTION OF BITS, COPPER OR LONG LIFE PENTACOATED. FOR EACH MODEL PRICES START AT 33/6.

COURTESY OF THORN ELECTRONICS LTD.

FOR A QUALITY SOLDERING INSTRUMENT AT THE RIGHT PRICE, CHOOSE ADCOLA. AVAILABLE AT SHOPS AND DEALERS THROUGHOUT THE COUNTRY.

ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE
01-622 0291/3
SEND COUPON FOR LATEST
LEAFLET

SPECIAL INTEREST ITEMS!

OUTSTANDING HI-FI BARGAIN

AFX-3U AM/FM STEREO TUNER

Auperbly engineered by world famous manufacturer, the Model AFX-3U is an ultra sensiIve Ah/FMi stered multlplex tuner ualng 14 valves and 9 diodes. The extra ride bandwIth opt imum sterto separation of over 88 dB . Stereo algnal heacon with special circuitry unaffected by external noise, simplines FM stereo broadcast selection. \$ gang variable condenser provides highly sensitive reception on both bands. The multiplex elrcuit ts completely free from subcarsier leaknge and permits direct tape recording without any beat nolse interference. An MPX roise flter is also fitted. Hris spocifestion: 14 valres, 2 Germanium dioden and a Silicon diodes, Frequency range: FM- $80-108 \mathrm{Mc} / \mathrm{g}, \mathrm{AM}-685-$ $1,605 \mathrm{ke} / \mathrm{s}$. Senaltivity: FM-1. $\beta \mu \mathrm{V} / 98 \mathrm{Mc} / \mathrm{E}$. AM- $2 \mu V / 100 \mathrm{kc} / \mathrm{B}$. Ontput FM/FM Stereo 2V. AM- 3 V. Frequency responte: FM- $20-20,000 \mathrm{e} / \mathrm{s}$. Dintortion less than 2%. Special Circuits: FM Stereo indleator, AFC, Noise Alter. Output for direct tape recording. Hammer namel and brushed alloy huish. Cabinet elze $143 \times 6 \times 8$ in. For 2201240 g.c. Mains
Lasky's Price 26 Gns. Carrise and Packing 7ta

COMMUNICATION RECEIVERS

TRIO
MODEL 9R-590E
Briof spec.: 4 band reeciver covering $850 \mathrm{ke} / \mathrm{s}$ lectrical band sprend on $10,15,20,40$ and 80 metrea. 8 valve plus 7 metrea. 8 rave pios 7 output and phone Jack. dpeodal features: SSBCW ANL Variable BFO 8 meter Sep. band spread dial It

 on $118 / 250 \mathrm{~V}$ a.c. Mains. Beanklifils tleslgned control layout finished in light grey with dark grey cate, aize $7 \times 15 \times 10 i n$. We 7 ght 191 b . Fully gunchnteed, complete with fnstruc-
Lasky's Price £39.15.0 carrize oad Pecchong 18/0

MODEL JR-500SE

Brief spec.: Covers all the amateur bands in $\bar{\gamma}$ separate ranges between $3 \cdot 5$ and $29-7 \mathrm{~m} / \mathrm{c} / \mathrm{s}$. Clrcuit uses is valves, 2 transistora and 5 diodes plus 8 crsstals; ontput 8 ard 500 ohm and 500 ohm phone jack. Special Ieatures: Crystal controlled oncillator Vinciable BFO lial drivie whith direct readlag down to lkHz - Remote control socket for connection to a tranamitter. Avullo output 1 watt. For ase on $115 / 250 \% \mathrm{~s}, \mathrm{c}$, Maint. Superb modert atyling and epotrol layout-finished in dark grey, Cabinet size $7 \times 13 \times 10$. n . Weight 181 b .

Lasky's Price £68.0.0 Carriage und Puaking 12/8

FOSTER HF-204 COMBINED MICROPHONE/HEADSET

High quality moving coll headphones and senaittre For use with thene recorders (provides conatant monitor ing), communleat fons equipment, PA (crowd or tratic control), ofage direction, language labs, etc. Extremely comitortable to wear for long perlods-adjustable foam patded cushons, rinyl, covered headband. Headphone imp. 89, max. fnput
 Weight $8.80 z$. Single cable contains Lasky's Price 59/6 post 2/6 $\begin{aligned} & \text { Both headphone } \\ & \text { Litt pricic } 7 \text { Onus. }\end{aligned}$

GET YOUR LASKY'S CATALOGUE

CONSTRUCTORS BARGAINS

LASKY'S ENCAPSULATED SOLID STATE MODULES
8 completely new special function eircuit modules, Size of each module only $2 \frac{1}{x} \times 12 \times$ zin. Reariy for gv batt.), input and output. En Encaprulated modulce are shockproot and almost indestructible. Comp. with tutt Ins. Post I/8 exch.
Ew1811 Phono Pranmp Modulemax. output 3V. RM8, inpnt 50 mV , input imp. $29 / 6$
100 k , gain 28 dB , RIAA compensation. E-1312 Tape Fread Pre-amp Module-max. output $3 V$, RMS, inpui 50 mV , mput $29 / 6$ E-1318 Wierophone Pre-smp Module-max. output $4 \mathrm{~V}_{\mathrm{i}} \mathrm{RMS}$, isput 50 mV , trpart
 Eh 1314 Power Amplifier Modnlo-max, ontput $\$ 00 \mathrm{mw}$, input jmp. 1kos, gain E-1815 Etectronic Organ (tone oscillator) Modvle-frecuency $200-1,000 \mathrm{e} / \mathrm{B}$, E-1416 Morse Code Practice Oscillator Modale-frequency $400 \mathrm{c} / \mathrm{s}$, ontput 80 mW . For use with morse key and speaker. $25 /-$
 E-1318 Lamp Flabor Module-fabbes two miniature lamps alternntely. For use $25 / \mathrm{m}$
wlth $6 \mathrm{~V}, 100 / 200 \mathrm{~mA}$ bulbs and 6 V power supply.

TEST EQUIPMENT
 NEW LASKY'S.EXCLUSIVE VHF AIRCRAFT BAND CONVERTER
 An entirely new item for the radio enthuslast bringing ingtant

 reception of the ground-to-air, air-to-ground waveland. For meewith any standard AM ot FM radia covering 535 to $1,605 \mathrm{kc} / \mathrm{s}, 88 t o$ $108 \mathrm{Mc} / \mathrm{s}$ respectlyely-with mo electrical conversion or connection required. The Model $10-502$ (self powered by one $9 Y$ (PP3 ifype) battery) is merely placed close to the receiving set and then tuned orer $\$ 10$ to $130 \mathrm{Mc} / \mathrm{s}$ which covers the whole fircraft communications band, Volume ant receptlon eflectiveness is adjusted by moving both gets to the most favourable
position and batancing the volume controls of each accordingly. position and batancing the rolume controls of each accordingly.
 panel and 18 in chrome telescopic antenna, size only $\& \times$ 9I $\times 2$ in (tne. knoke). Complete
Lasky's Price 79/6 Post 3/6

TTC Model C-I05I

 A completely new iesign 20,000 O.P. 7 , pocketmultimeter with mirror ecrla circuit and built-in thermal protection. Exceptionally large easy to read meter fith D'Arsonval movement, Colorr coded acales. Siagle positive chick-in, recessed select ion switch for all ranges. Ohms zero adjustment. Range spec. a.c. rolts:
$0-6-30-300-1,200 \mathrm{~V}$ at $10 \mathrm{~K} / \mathrm{ohms} / \mathrm{V}$. $\mathrm{D} . \mathrm{c}$. $0-6-30-300-1,200 \mathrm{~V}$ at $10 \mathrm{~K} / \mathrm{ohms} / \mathrm{V}$ D.c.
volet: $0-3-16-150-300-1 \cdot 2 \mathrm{KV}$ at 20 K i
 ohmefr. Restatance: 0 -60K-6megs. D.c. current: $0-60 \mu \mathrm{~A}-300 \mathrm{~mA}$. Decibels:-20dB
to +17 dB . Hand calibration glves extremely high otundard of necuracy on all ranget Uses one $1 \frac{1}{V} \mathrm{~V}$ penlight battery. Strong impact reniatant plantle abbinet-izamenty
 LASKY'S PRICE 75/- Poot $2 / 6$
CLEAR PLASTIC PANEL METERS Yrecision made in Japan by TYC, Each matar boxed and
fully gurganteed with all fring nuts Iully guaranteed Fith all fxing nuts end washerr, Sizea are of front panel, Add 1/6 P. on each. (Quotes for quantlties.) Trpe
limA 1 mA
100 mA
100 m

Type MK-38A $15 \ln$ вquarc
1 mAA
100 mA
300 V
5011
$1 \mathrm{~mA} A$ meter
$100 \mu \mathrm{~A}$.
$500 \mu \mathrm{~A}$.
Trje MK-45A 2in 『quare
1 mA
100 mA
300 V
$50 \mu \mathrm{~A}$.
ImA $\$$ meter.
$100 \mu \mathrm{~A}$.
$600 \mu \mathrm{~A}$

High Fidelity Audio Centres
42 TOTTENHAM CT. RI., LONDON, W. 1 Tel.: 01.5802573
Open all. day Thursday, cativy closing 1 p .m. Saturday
118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789 Oper all day Salurdez, early closing it p.m. Thuriday

[^0]ALL MAIL ORDERS AND CORBESPONDENCE T0: 3-15 CAVELL ST., TOWER HAMLETS, LONDON, E. 1 Tel.: 01790 4821

EEWT PANELIME EHERS

Sond S．A．E．for inll lists，Other ranger available．Pleage includa poatage． Special guotations for quantities．

CLEAR PLASTIC METERS

Type mk．62P．2jin square tronts

$50 \mu \mathrm{t} .00 \mu$ ． $100 \mu \mathrm{~A}$
1000.0 c $100.0 .100 \mu$ $500 \mu \mathrm{~A}$
mma STLA
10 HAA
502uA

Type 12R．38P． $121 / 38 \mathrm{in}$ square frostu

 $80 \mu \mathrm{~A}$$80.0 .50 \mu \mathrm{~A}$
80 $100 \mu \mathrm{~A}$
$100-0-1$ $100-0-100 \mu$.

$200 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$ $600-0-500 \mu \mathrm{~A}$ $\operatorname{limA}_{1-0-1}^{10}$ $\stackrel{1}{2 \mathrm{man}}$ 61110 A 10 MiA | 20 man |
| :--- |
| $60 \mathrm{mi} A$ | $100 \mathrm{~min} . \mathrm{A}$

150 mi | 150 mA |
| :--- |
| 200 ma | 200 ma

300 tm
A 500 min

$.37 / 8)^{750 \mathrm{ma}}$
 1 апи 2 амрр 5 апир

Type Mr．45P．Zin anuare fronta

 ${ }_{800-0.50} 0$ ${ }^{100} 10 \mathrm{p}$ ． A 800pA ${ }_{5}^{1 \mathrm{nLA}}$10 man
50 mA 500 ms 1 aml．

49；6 ${ }^{10 \mathrm{~V}}{ }^{20 \mathrm{~V}}$

Type MR．85P

$50.0-80 \mu \mathrm{~L}$

${ }_{100 \mu \mathrm{~A}}^{100} 100$ $200 \mu \mathrm{~A}$ $5000 \cdot 1 .-500 \mu$ 1 mA

Bras

10 mat
$50 \mathrm{nin}, \mathrm{A}$
100 ara

Type Mr， 65 FP ．
${ }_{50 \text { 5．}}^{50.00, \mu i}$
100 HA
$100 \cdot 0.100 \mu \mathrm{~L}$

$500 \mu \mathrm{~A}$
114 A

$50 n 1 \mathrm{~A}$
1000uA
500 LLA
1 au p ．
5 ниıp．
10 anıp．
15 нанр．
20 a
20 amp．
30 amp．
30 amp ．
50 amp ．
10 V d．e．

$37 / 6$ | $37 / 6$ | 300 V a．c． $.87 / 8$
 $37 / 6$ B Meter 1miA $\mathbf{. 8 9 / 8}$ |
| :--- | :--- | :--- | 8 VUU Meter 1 amp．a．c． 5 amp．a．c． 10 amp.

20 amp. 4 inn：： 4 ita fronts 69：8 18 atup．
 $30 \mathrm{as11p}$ ． 20 y d．c．
50 v
$150 \mathrm{c} . \mathrm{c}$ 150 V t．e．
300 V d．e． $300 V$ U．c．
150 H H．c．
yOOV a．c． youva．c．
y Meter VU meter 1 amp，a．c
5 amp，a．c
10 amp， 10 anp.
$20 \mathrm{a} \mathrm{\mu p}$.
$30 \mathrm{\mu}$ м 30 a $33 i$ 85／

3318 Lronts 50 V el．c．
100 V ti．c． $52: 6$ 안

15 V a．c
50 V H．c
$150 \mathrm{Y}^{2}$ 150 V a．c
300 V ack 500 V a．c． $\$$ meter 1 m
V U ineter 60 mA n．c 100 mat a．
200 mA a． 200 mAA a． 500 nla
1 ants．
5
$5 \mathrm{\mu mp}$ a．
10 uнр．а
20 ainp．品
$.58 / 6$
$.37 / 6$ $.37 / 6$
$.87 / 6$ $.87 / 6$
$.87 / 6$

TYPE I3A DOUBLE BEAM OSCILLOSCOPES

ADMIRALTY
B． 40 RECEJVERS
Just reteased by
the Ministry．High
quality 10 valve
receiver
receiver manu－
Coverage in 6 banda
$650 \mathrm{kc} / \mathrm{g}-80 \mathrm{Mc} / \mathrm{s}$,
I／F $500 \mathrm{ke} / \mathrm{s}$ ．In－
corporates 2 R．F．
batul－pass filter，

BAKELITE PANEL METERS

Type MR，65．3kfin squars ironts

25μ A	87／6	500rad	32／6	80 V ．4．s．＊	$8{ }^{2} / 6$
$50 \mu \mathrm{~A}$	451－	1 amp．	．32／6	50V n．c．＊	52／6
	． $42 / 6$	$\delta^{5 \text { anıp．}}$	．32／6	150 V и，с．＊	佋／6
$100 \mu \mathrm{~A}$	42；${ }^{\text {a }}$	15 тapp．	． $32 / 6$	3005 a．c．＂	32／8
100－0－100 μ A	42：6	30 аир．	．32／6	1 amp．n．c．＊	32／6
$500 \mu \mathrm{~A}$	．39；6	50 amp．	32／6	5 нир．н．с．＂	82／6
ImA	32／6	5 V ite．	．32／6	10 нинр．a，c．＊	82／6
1．0．1tesA	82／6	10V it．c．	．88／6	20 amp，a．c．＊	．88／6
5 ma	32，6	20V dic．	32，6	80 amp．A．c．＊	． $32 / 6$
10 mA	32／6	50 V d．e．	．82／6	50.0 mp ．山c．＊	．82／6
00 ma	82／6	150 V d．c．	32／6	V＇meter	． $59 / 6$
100ma	32／8	300 V d．c．	32／6		

others moving coll．

NEW RANGE OF＂SEW＂EDGEWISE METERS ${ }_{2}^{24}$ MODEL deep overall．Avallable as follows：

50 nticroamp ．． $57 / 8$	500 microamp ．．．．49／6
	1 nilltanap ．．．．．．45／－
100 microamp ．．．55］－	300 V n．c．．．．．．．． $451-$
100－0－100 miterornıp 58／8	vU meter ．．．．．．－82；0
200 tnictoamp ．．．58／6	Poot extra

TE－20D RF SIGNAL GENERATOR

Carr．7／6．
TY 75 AUDIO
SIGNAL

T．M．C． 1000 SERIES KEY SWITCHES
Brand New with knobs it tollows．
1 wuyi， 2 cio $778 ; 1$ way， $2 \mathrm{c} / 02 \mathrm{ob}, 7 / 8 ; 1$ भay，
 $2 \mathrm{c} / \mathrm{o} 8 / 8: 2$ way， 2 c／o．， 4 c／o． $10 /$
Fost extri．quantitice avallable．

NOMBREX TRANSISTORISED

 TEST EQUIPMENTAll Post Paid with Battery

Modei 22．Power Supply（0－15V d．c．$£ 14.10 .0$ Model 30．Audio Generator． Model 31．R．F．Signal（ienerator．212，10．0 Mrode 32．C．K．Brjage． Model 93．Inductance Bridge． Model 66．Inductance Bridg
Yodel 61．Power Supply． 10.10 .0
820.0 .0 818．0．0 Weight 114tb，Offered in goot working
cotalition， $288,10,0$ ．Carr． $30 /=$ With circuit diagramm．AlBo asailable B．41 E．F．verstion of above $15 \mathrm{kefo} 700 \mathrm{ke} / \mathrm{s}$ ．

CLASS D
WAVEMETERS
$\begin{array}{ll}\text { A crystal controlled } \\ \text { hetrodyne } & \text { irequency }\end{array}$ hetrodyne irequency 8Mejs．Operation on volts d．c．Ikeal for manteur use．
vailable on good used condthlon e5．19．6． Carr．7／6．Or brand new with suceessoties 7．19．6．Curr．7／6．

MARCONI TEST EQUIPMENT

EX－MILITARY RECONDITLONED
．TF 144G STANDARD SIGNAL GENERATORS， $85 \mathrm{k} / \mathrm{z}-25 \mathrm{Mc/z}, 225$, carr， $80 /-$ TY．88B．VIDEO
 T．F．195M．BEAT FREQCENCY OSCLLLATOR
 thbove offereal in excellent condition fully tegted and checked．TF． 1100 VALVE VOLT． METER，Bratd Ner， 250 ．T．Y． 1267 TRAN＇S－

AM／FM SIGNAL GENERATORS

Oscillator Test No． 2．A high quality precielon instru－ ment maxle for the mintatry by Airmec． age 20－80Mcja．AM
porates precision ellat，lerel meter，preciplon portenustor $1 \mu \mathrm{Y}-100 \mathrm{mV}$ ．Operation from 18V d．e．or $0 / 110 / 200 / 250 \mathrm{~V}$ a，c．$\$ 12 \mathrm{e} 12 \times 81 \times 91 \mathrm{a}$ ． supplted in branil new condition couplete with all connectors fully tested．243．Carr． 20／－

AVOMETERS
Supplied in excel－
tent conelition，fully tested and checked． Couplete with
prods，leuls Hzif prods，leals unif
instructions． Model 47．A 18．19．6．

AUTO TRANSFORMERS
0118，230v．Step up or betep dowis．

300 w， $22.7 . B_{1}, P_{0}$ ．$P \cdot 3 / 6$
500 W． $98.10 .0, \mathrm{P}$ ． $\mathbf{L} \mathrm{P} .6 / 6$
$1,000 \mathrm{~W} . \quad$ 25．10．0，P．\＆P． $7 / 6$
1，000 W．EB，10．0，F＋\＆P．8／6
\＄，000 W．27．10．0，P．\＆P．12／6
7，000 W． 515.10 .0, P．\＆P．20／－

MISSION TES＇T SET，Brand New，\＆25．TF， 1371 ．Whle Bund Millivult Meter， 250 ．

Variable Voltage ThAISFORIIIIS COP

High quallty construction．Input 230 V 50－60 cycies．
Output full varlable froun $0-260 \mathrm{~V}$ ．Bulk quanlitles available．
1 atap．－25．10．0；2． 5 amp － $86.15 .0 ; 5 \mathrm{anap}-29.15 .0$ ；

COSSOR DOUBLE BEAM OSEILLOSCOPES

 couplect．Trpe 1040
e35 each．Carr． $50 /-$ ．

AMERICAN TAPE

First grate quality Aluertcan 3 in， 225 ft ．L．P．acetate 3 3in boolt．T．P．neylate sin．600ft．std．plastic． 5 in． 900 t．L．P．acetate Sin．1，2001t．D．P．mylas
 6ivin．1，2001t．L．P．acetate 58 in．1， 800 it．D．P．myslar sizis，2，400ft．T．P．mylar 7in．1，2001t．std．acetate 7in．1，800ft，L，P，acetate inn．1，800ft．L．P．mylar 7 in． $2,400 \mathrm{ft}$ ．D．P．myina 7in．3，6001t．T．P．mylar

TAPE CASSETTES

C60－60 mina．12／8．C90－00 mina．17／8．
Over $£ 2$ poot paid．
EVERSHED VIGNOLES SERIES II 500 VOLT MEGGERS．Perfect condition 221. P．\＆P． 10
LUCAS 2010f0 AMMETERS．Brand rew boxed．suitable ear／motorcycle．18／B．

N0． 76 TRANSMITTER

2．12 Meff．Cryathl Controlted（tuot supplled）．807PA．Operation 12V．D．C． （Rotary iransformerf）， 2 watts output． WV．obly．New condlition．78／6．Carr．12／6．

LELAND MODEL 27 BEAT
 FREQUENCY OSCILLATORS

$0-20 \mathrm{kc} / \mathrm{s}$ ．Output Bk or 500 ohms． 200／250V a．c．offered in excellent con dition．212．10．0．Carriage 10／－

100MRON

B RELAYS
Brand New and Boxed． 24 volt d．c．coils． 2 Pole changeover， 5 amp con＊
tacts． $7 / 6$ each．$P, \& P$ $1 / 6$ ．

> G．W．SMITH
> \＆Co．（Radio）Ltd． 3－34 Lisle St．，W．C． 2 ALSO SEE OPPOSITE PAGE

MULTIMETERS for GVERY purpose!

UXA 100 Kg/VOLT Giant djlus scale. Bullt-ju Jueter jutotectiob. $0 / .0 / 2 \cdot \mathrm{~s} / 10 / 50 /$ $0 / 3 / 10 / 50 / 250 / 500$ $11,000 \mathrm{~V}$ the. $0 / 10 /$ MA $/ 2 \cdot 6(10 \mathrm{~A}, 0,1 \mathrm{~K} /$
$10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M}$ 10M』. -10 to 49 -4uß 218.18.0. P. \& P. 5\} LAFAYBTES 50,000 O.P. Multmeter.
Volts $125 \mathrm{~V}-10 \mathrm{~B}, \mathrm{C}$. 1000 V D.s 1.5Y. 10, Current Ohมน, $0-15 \mathrm{Me}$. 138, -20 to ${ }^{\circ} 87 \mathrm{Fin}$

Overlond Protection

TE-900 20,000 YOLT GIARP HULTMEERER b3u, full view meter. 2 coliuur scale, overlosi
protectlan. $0 / 2.5 / 10$ protectlon. $0 / 2 \cdot 5 / 10$ /25/12-5/10/50 $250 / 1,000$ / $0,000 \mathrm{~s}$

 CODES A8-100D. 00Kg/VOLT §in. hirror feate, Builtnieter protection. /3/12 j $60 / 120$ l.u. $0 / 6 / 30 / 120 / 300$
 $\begin{array}{ll}6 / 60 / 500 \mathrm{Ka} / 12 \text { A11 } \\ 0 / 2 \mathrm{~K} & 200 \mathrm{~K}, 2 \mathrm{~K}\end{array}$ $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$ +17 tB .

OODEL TS $80.20,000$ O.P.V. $50 / 100 / 500$ $1.000 Y_{0}$ ztec. $0 / 5 / 2$ aे/80 $250 / 300 / 1,000 \mathrm{~V}$, d. -50 MA $5 / 50 / 500 \mathrm{ANA}$ 4.17.6. $/ 600 \mathrm{~K} / 6$ Meg

MODEL PT-84

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operatlve over amazingly loug distances. Separate call and press to talk bnttons, 2-wire connection. 1000's of Lshed in ebonys, Suppliet complete with batteries and wall bracket
88.19.8. P. \& P. 3/6.

INTERCOM/BABY SITTER

 Trabsistorised In home / oflice / work sbop etc. 2 -waybuzzar call sybtern por diesk or wall mounting. Bupplied completa with con necting wire, bat terles, inatructlons staton 59;6, P, P, 2/6, 4 stathon 28.12.B. P. \& P. $5 /$

UNR-30. 4-BAND COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-303 \mathrm{Cc} / \mathrm{s}$. Incorpporates variable BFO Jar $\mathrm{CWF/SSB}$ reception. Bait in speaker and
phone jack. Wetal cubinet. Operation $200 / 240 \mathrm{~K}$. Supplid braml new guaranteed with 13 GNS.

LAFAYETTE MODEL HATOO AM/CWSSB AMATEUR COMMUNICATION RECEIVER

FILTETi samus iocorporatiog 2 MBCHANICAL FILTERS for exceptional selectirity and senai-
 $10-5-30 \mathrm{Mc} / \mathrm{s}$. Circuit incorporates R-F. stage, serial trimmer, noise H lmiter, B.P.O. product detector, eiectrical bandsprenw, \& meter, slite rule dial. Output for phones, low io 2 Kg or Epeaker Sohms. Operation $290 / 240 \mathrm{~V}$, a.c. 8lze

NEW LAFAYETTE SOLID STATE HA600 RECEIVER
5 BAND AMCW/SSB AMATEUR AND AND 550RC:S TO 80 MC ; B .

EXCEPTIOYAL VAZTE 945

4 Uand reeciver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ continuous and electricat bave tyread on $10,1 \overline{0}, 20,40$ and 80 met res. 8 ralke plos T ubode circait. $4: 8$ ohm outpat and phone jack SSB-CW AZL Pariable
BFO S meter Sep. band apread dial BFO S meter Sep. band apread dial rarlable RF and AF gain controls. $110 / 200 \mathrm{~V}$. a.c. Malnb. Beatutifully designed. ilanual truf service lata, 837.10 .0 ,

LAFAYETTE PFV 60 SOLID STATE VHF FM RECEIVER

 A completels new tramalstorised receiver covering not suppilied for fixed frequency operntion ndorporates 4 INTEGRATED CIRCVITA Suilt in speaker and flluminated dial. squelch ISN atual inpuk. Feadphone jack. Operation

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 80 W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W Dutput $3-16$ or less. Jnputs 3 ml and 250 mV coutrols. Treble and buas control. Steren phone juck. Brushed alumsniuns, gold anodiaed extruded front panel with complimentary metal
 GARRARD DECKS Brand mek
1025 mone 1025 mone
2025 TC less eart
2025 TC हtereo
SP25 Mk.TI leas carl
770 35k.IE less cart.
LAB80 MK.II less cnrt., wil h base 527.10 .0
Wooden Plinths for Garrard Series 1,000 24.10.0. P. \& P. $4 / 6$.

GARRARD TAPE

 MOTDRSBrand new stock a manufacturer. 200 , hotor 15%. Fapstan rat 101. Fast For10, ward doic. Fast Re wind 10/6. P \& P.
38/6. P. \& P. 5/-.

RECORDING HEAOS

Reuter -track. As fitted to Callaro Mk. 15 and Studto Decks, High Jmp. recorli play pack. WDNTFLEX i-track record 18/6. par. TR1-500/P/W recordireplay 65/-s TRI $120 / \mathrm{P} / \mathrm{W}$ record/replay $85 /-\mathrm{TEL}_{1}$ 1.6 P/W Erase 20/- MARAIOTT 4-track heads. Record/playback. High imp, B5/-
\star TRANSISTORISED FM TUNER
 most amplificrs. Operates on $9 Y$. builts. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Ready uilu ready for use. Fantast ic malue for ntcrey. multiflex asinptora 5 gns.

HOSIDEN DH04S 2-WAY STEREO HEADSETS Each headphone conand z ifin tweeter. Bufit in indtrifunl level
$25-18,000 \mathrm{c} / \mathrm{s}, ~$
$8 \Omega \mathrm{lmp}$ cont. Wlith cable and stereo plug. e5,19.6. P. \& P.

DUBILIER NITROQEL CONDENSERB. Brand new. 8 mF 80\%, 8/8. P. \& P. $2 /$

CT. 63 GIGYAL GERERATORS. 8-9-15.5 apd $20-300 \mathrm{Me} / \mathrm{s}$. Output $1 \mu \mathrm{Y}-190 \mathrm{mV}$. Maini operated. Curerfo

W8. 88 TRANS/RECEIVER8. A and B aeti waitable, Complete with valves. $30 / 6$ each.

NOW－Knight－Kits quality at new lower prices！

．．．and anyone can build them

Simple，step by step instructions enable you to build these right－ up－to－date Knight－Kits hi－fi units at a much lower price than similar made－up units．Acclaimed by reviewers，the Knight－Kits range offers equipment to everyone＇s standards and speciffications using professional components．Get your free Knight－Kit booklet now showing hi－fi units，＇scopes and test equipment，pius car tuning，photographic and other interesting electronic kits．Here are some typical examples．

KG 96550 Watts Stereo Amplifier 25 watiss IRF par channel．Response \pm
$1 \mathrm{~dB}, 18$ to $30,000 \mathrm{~Hz}$ ．All silicon transistors for stability and cleaner 3 sounds．Wide power band width 20 to

KG 980 Stereo S．M．Receiver Combined Stereo S．M．Recelver and
amplifler with 25 watis $1 . H$ F．channol
 Hz Tuning ranyo 88 to 108 MHz ，Speaker

 Taning Heart $\$ 6$ 6s， 40 ．plus $£ 1128$ ． 8 ．

KG 755 Stereo Tuner all simicon transistor Stereo R．M．Tungr．Frequency
response ± 1 dB． 30 to 15,000 Hz，harmomic distortion less than 1% ， 9 to 18 Mimz
tunine range．Matches k Bes or other

Star
Roamer 5 band shortwave receiver A deluxe A．M．recelver able to cover world usual A．M．profremmes．Covers 200 to 400 KHz aid 50 KH 2 KO 30 MHz H 5 band Swlucied rankes with speciad reatures for
needle sharp separation and maximum needie sharp geparation and maximum to nolsa ratio，Automatio volume control and nulae limiter． 22199 ．Od．

Auto Analyzer Kit This sim
to assembir
makes car
turs－upe and
turiober turoble－
troubling
shool shooting fast
and easy with
profest and easy
professiona
betwer results，to get mora power，beteer
periormance and more mules per gallon． fou can perform actual road perts con． sell powerd with low of special
features．sza 177．80．

Battery Charger Kit Car battery charg
for easy winter starcting and Frolonged battery
 IIfreand easily
portabse． 49 y ，11a Electronit Sciente Lab Kit． 100 in 1 Create over 100 projects witt this components rit．Build
amplifers voltometer，
ary amplifers．voltometer．
crystal sei radiol
code Duzer，solar cent cryde Duzzer，solat cell．
without apecial tools． 156 paze manmax sive
full Inturctions on 10.11 Instructions on

Code Oscillator Kit Code practice oselllator．
hand Key，batiery，for code
practice practice with fasher and
speaker．Ideal for learning interrationai morse code．
ins． 19.6 d ． ．

HIGR SPEIED MAGMEITC COUETERS（ $1 \times 1: 51 \mathrm{in}$ ）． 4 digit．12／24；48v（state which）8i6－each．P．\＆P， 1%

 which） $82 / 6$ eacts．

BULE COMPONENT OFFERS

100 Capacitora 50 pF to $0.0 \mu \mathrm{~F}$ ．

250 Carbon Resiatora si \＆ 2 W．
100 Ceramic Cayacitors $2-1,000 \mathrm{pR}$ ．
25 Vitreous W／W Resigtors（ 5% ）．
12 Precigion Resistors（ 0.1% soveral standard values inchuded） 25 Close Tolerance Caps．（ 2% ）．
12 Silicon DIodea 500 p．i．r． 750 m．a．
4 Siltion Rectes． 400 pi．iv． 3 amp ．
8 gilicon Rects． $100 \mathrm{p} .1 \mathrm{v}, 3 \mathrm{nmp}$ ．
50 Silfoon Trans．（2N706／708，BSY28／29．BCY41／42 types．）Cnmarked，tntested． ANY ITEM 12／6．ANY b ITEMS 22.10 .0 ．

8．C．Ry，（Thuytistory）CRSI／20 5／6；CRSI／40 7／6；CRS3／10 7／6：CRS3／30 8／6； CRS3／40 10j－；CRS8／50 12／6 each
s 3000^{4} TYPE RELLAYS（ex．new equip．）Io for $25 /-$（our choice）P．\＆P． $5 /$－
 COMPUTER LOGIC BOARDS containfag： 14 BCZ11， 2 trimpota，diodeg，etc．，80：－ LIGRTT DOMMRE／BPEED CONTROL MODULES： 200 watt； $86 /-$ ； 500 watt， $45 /-$ ； 2，000 wall， $60 /=$
RECORD LEYEL METERS（By Smiths）． $11 \times$ inio，15／each．P．\＆P． $2 / 6$.
 P．C．CONRECTORS（ 13 was in－line），4／6 palr．
LARGE OAPACITY ELLECTROLYTICS： $100+400 \mu \mathrm{~F}, 275 \mathrm{~V} ; 1,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 2,500 \mu \mathrm{~F}$ ， $70 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 4 /-$ each． $4,000 \mu \mathrm{~F}, 90 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V}, 7 / 8$ each．
$5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 68 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 80 \mathrm{~V} ; 16,000 \mu \mathrm{~F}, 16 \mathrm{~V}: 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 101-$ each．
GPEAKER BARGADIS（E．M．I． 13×8 in．）With two Tweeters and \times／over， 15 ohtm， 85／－；with Dual Cone， 15 obm，52／6；Single Cone， 3 or 15 ohms，45／－，P．\＆P． 3 f － FANE， $121 \mathrm{n}, 20 \mathrm{maH}$（ Dual Cone）， $95 /-$ P．\＆P．5\％．
TWEETER（E．M．T．3iD）， $18 \mathrm{obm}, 12 / 6$.
CAR RADIO（3／5 ohm）， $7 \times 4 \mathrm{in}, 15 /-; 8 \div 5 \mathrm{in}, 17 / 6$.

PATTRICK \＆KINNIE
 81 PARK LANE，HORNCHURCH，ESSEX ROMford 44473

VALVES
 SAME DAY SERVICE NEW！TESTED！GUARANTEED！

SETS

O24	4／6	12AX7 4／9	DK96	7 －	EL42	9%	PE	15／－	CCO85	θ
1A7GT	$7 / 6$	12K8GT 76	UL35	51.	EL84	$4 / 9$	PFL200	12／．	UCF80	$8 / 8$
1H5GT	718	$20 \mathrm{~F} 210 / 6$	DL92	$5 / 8$	EL90	$51 \rightarrow$	PL36	$9 / 6$	LCH48	日／9
1N5GT－	$7 / 8$	20Ll 16／9	DL94	$5 / 9$	EL33	51－	PL81	$2 / 8$	VCHE1	8／6
1R	b： 6	20PS 14i9	DL96	$7{ }^{7}-$	EM80	$5 / 9$	PL82	818	UCL83	$7 / 8$
155	418	$20 \mathrm{P4} \quad 18.6$	DY8	5，8	EM81	619	PLS：	71	tCLA3	978
1 T 4	8%	25t4GT11／8	DY97	5：9	EM84	8：8	PL84	818	［F4］	$0 \% 8$
394	5.9	30 Cl 7／－	EABC80	8：6	EM88	7；6	PL500	$11 / 8$	UF80	7 7－
354	510	$30 \mathrm{Cl} 1513 / 6$		8%	EY51	71－	PL 504	12：6	UF85	1
\＄L40	$4 / 6$	$30 \mathrm{Cl} 17 \begin{array}{ll}18 / 6\end{array}$	EB91	28	EY86	6；3	PL508	13i－	1上818	18
5Y3GT	518	$30 \mathrm{Cl8} 8$ 8／m	EВВС33	$7 / 6$	E240	$7 / 6$	PM84	$7 / 6$	ULA1	0／6
5Z4C，	$7 / 6$	3015 12／－	EBC41	$7 /-$	EZ41	716	PX25	10／6	CL44	201－
6／30L2	12／6	30131 12；6	E8F80	fi）－	EZ80	4／6	PY32	101－	UL84	6／6
6AL5	$2 \cdot 3$	301514 12； 6	ERF89	8.8	EZ31	4 4，	PY83	201－	LM84	$7 / 6$
6amb	816	30L1 6／－	ECCBJ	$3 ; 9$	KT61	8 8	PY80	518	UY41	7／
6AQ5	418	30E15 14！－	ECC82	49	KT81	15\％－	PY81	8.8	UY85	5i9
6AT6	$4 /$	$36 L 17$ 13i－	ECCs3	71 －	N78	14，9	PY82	$51-$	VP48	10／6
BAL6	5／6	30P4 12！－	ECCAA	$5 / 6$	PABC80	$2 / 8$	PY83	5／9	VP132	1
68A6	4／6	30R12 11／－	ECC8s	4 4，9	PC81\％	$9 ; 6$	PY88	8	277	3／6
GBEG	4，${ }^{18}$	$30 P 19$ 12／－	ECC80	126	PC88	9；6	PY800	$0 / 9$	Tran	TS
${ }_{\text {fi BJ6 }}$	$8 / 9$	30 PL1 12／6	ECFBO	7－	PC96	$8 \cdot 6$	PY801	$0 / 9$	AC107	816
6BW6	18／－	30PLI3 14：6	ECF82	$8) 9$	${ }^{1} \mathrm{C} \mathrm{Ca}^{7}$	$8: 6$	R19	8／6	AC127	21
${ }_{6} \mathrm{CL} 4$	$8 \cdot 9$	30PL14 14：6	ECH35	81－	PC900	$8: 3$	R20	18／6	AD140	7／6
6F13	8,6	35LEGT 85－	ECH42	10：6	PCC8 4	8／－	TH21C	818	AF102	18／－
8F14	$81-$	35 W4 4，8	ECH81	$5 \cdot 8$	${ }^{2} \mathrm{Cc} 8 \mathrm{~s}$	6，8	L：25	181－	AF116	$8 \mathrm{f}-$
6 F 23	12／8	3524GT 5／－	ECH84	238	PCC88	9：9	L26	121－	AF116	8 j
6 KTG	216	85A2 718	ECL80	$8: 9$	PCC89	10／8	124	18／8	AF117	8／8
$6 \mathrm{K8G}$	4／8	\＄063 18／6	ECLS 8	818	PCC289	9／9	148	13／6	AF124	$7 / 6$
6 LE 18	$8 /-$	AZ31 8／－	3CL． 83	8：－	PCF＇so	7）－	152	4／6	Al｜125	8／6
6V8G	8／8	目72y 12／6	ECL8G	8／8	PCF82	6）－	U78	$8 / 6$	AF126	$7 /$
6V6c	818	CCH35 10\％	EF39	$8 / 9$	PCF＇80	919	U191	11／－	AF127	3／6
6×4	$8 / 6$	CL83 18；6	5P41	$0 \cdot 6$	PCxbon	13／6	U30］	18／6	OC22	
6X5GT	$8 / 8$	DAC32 73	EFP0	49	PCF801	78	C801	189	OC26	19
786	1018	DAF91 4／8	EF85	$5 / 6$	PCE802	9，6	EABCB0	8／8	OC44	2／8
787	71－	DAF98 6／m	EF88	813	PCF805	91－	U．AF＇42	$9 / 6$	OC45	$2 / 8$
7 C 6	$151-$	DF33 $7 / 9$	EF89	$5 \cdot 3$	PCE＇80	$11 / 6$	EB41	$8 / 6$	0671	2／6
7 CH	$6 / 8$	11991 2／9	EF9］	$3 / 8$	PCP＇08	19／6	UBC41	$7 / 9$	0 CO	9／8
7 Y 4	B／6	1）F96 6／－	EP183	$8 / 9$	PCL82	$7 / 3$	UBC8I	$71-$	0075	g／－
20F1	15／－	DH77 4／－	Eli184	519	PCL83	9 9－	UBFPO	6／0	OC81	$2 / 8$
10P13	$15 / 6$	DH81 12，6	EH04	$\mathrm{B}_{5} 6$	PCLB4	7 78	UB1890	$6 / 9$	OC81］	2／8
12AT7	819	DK32 7／9	EL．33	$8 \cdot 9$	PCL85	8／3	UBL21	91－	OC82	2
12AU6	4／9	DK91 $\quad 5 ; 6$	EL34	9／6	PCL86	$8 / 8$	UCs2	$5 /$	OC821	$2 / 6$
12AU3	$4: 9$	DK92 8i＇	ELAI	$2 / 6$	PESA4	8； 0	C＇COB4	$7 / 0$	OC	$2 ; 6$

READERS RADIO

85 TORQUAY GARDENS，REDERIDGE，ILFORD， ESSEX．

Tel．D1－550 7441
loastage on 1 valve yld extra．On 2 valves or nore，pastage 6d．pee valve extra．Any Purcel Insured agunut Daunge in Tranale fid．extru．

DULCIHI-FI AMP. STEREO $7 \mathrm{w} \times 7 \mathrm{w}$ MODEL 207 Usual price £19.19.0 Our big discount price 151 $\frac{1}{2}$ guineas pius $10 /-\mathrm{p} / \mathrm{p}$.	RECORD PLAYER AMP. As fitted to most popular record players. Our Bargaln Price 59/6 only. Fully bullt and tested. EL84 output. 230-240V mains operated. 2 controls - vol, -tone on flying lead. P/p. 3/6.	Scandinavian style speaker system (reak). Full maker'\$ guarantee. 12 watt outpue. guarantee. 12 watt output. Imp. $8-15$ ohms. Woofer $6 \frac{1}{2} "$ 10,000 gauss. Tweeter 3 3. Frequency response $40 \mathrm{c} / \mathrm{s}-$ $20 \mathrm{Ke} / \mathrm{s}$. LIST PRICE IB Gins. OUR PRICE 11 GNS.

sonotone

B BARGAiN - Spenkern, Hi-Fi - The Baker ines gauss 3 or is ohm round, 15 watt rating, 12,000 $9 T A-H C$ lines ganss, $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium thassis. Our price
resonance 40 diamond 50/-
plus $2 / 6 \mathrm{p} / \mathrm{p}$. 44.19.6.

Brand - BARGAiN - Speakers, Hi-Fi - The Baker Selhurst Guitar Group 25 , 12 in round 25 wate rating, 12,000 gauss, 15 ohms, response $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone. Our price \&4.19.6, Brand new, 12 monthe unconditional guarartes.

BUDGET HI-FI SYSTEM
YOU WON'T FIND A BETTER BARGAIN-ANYWHERE! $\begin{array}{ll}\text { TELETON F2000 STEREO (MULTIPLEX) } \\ \text { AM-FM TUNER AMP. } \\ \text { © } & \text { C OL.8.11 } \\ 0 & \text { OUR PRICE }\end{array}$
$\begin{array}{lll}\text { TELETON S1003 SPEAKER } \\ \text { ENCLOSURES (PAIR) } & \text { £9.13.6 } & \mathrm{P}\end{array}$
ENCLOSURES (PAIR)
GARRARD SP25, SONOTONE 9TA. DIAM.
PI

51
GNS.
PLINTH TO MATCH
£22.1.4
FREE
DELIVERY

EMI HI-FI SPEAKERS

 $13 \times 8 \mathrm{in} .47 / 6, \mathrm{p} / \mathrm{p} .5 / \mathrm{m} .13 \times 8 \mathrm{in}$. plus 2 twr. 57/6, p/p. $7 / 6.8 \times 5 \mathrm{in}_{\text {. }} 7 \times 4 \mathrm{in} .22 / 6$, p/p. 3/6. Catalogue, full spec. on request. Distributors for EMI Sound.Beautiful oiled teak enclosure to suit EMI 13×8 in. speakers. Retail value £8.15.0. Our lowlow price ONLY 99/6 plus 8/-p/p.

FULL EAGLE RANGE TUNER UNITS, AMPLIFIERS, MICROPHONES, SPEAKERS, ACCESSORIES, etc.

All less 15\%.

INTERNATIONAL.MAGNETIC TAPE

	Standard		Long Play		Double Play	
$5^{\prime \prime}$	600 ft.	$10 /-$	900 ft.	$13 / 6$		1200ft.
$17 /-$						
$5 \frac{3}{4}^{\prime \prime}$	900 ft.	$13 / 6$	1200 ft.	$16 / 6$	1800 ft.	$21 /-$
$7^{\prime \prime}$	1200 ft.	$15 /-$	1800 ft.	$17 / 6$	2400 ft.	$26 /-$

BASF TAPE $33 \frac{1}{3}$ OFF

	Standard		Long Play		Double Play	
	600 ft.	$12 / 6$	900 ft.	$17 /-$	1200 ft.	$27 / 6$
$55^{\prime \prime}$	900 ft.	$17 /-$	1200 ft.	$21 / 6$	1800 ft.	$36 /-$
$7^{\prime \prime}$	1200 ft.	$21 / 6$	1800 ft.	$33 /-$	2400 ft.	$52 / 6$

POST \& PACKING 2/-. OVER \&5 FREE
Thank you for reading our advertisement.

S.B.E. Atlas House, Chorley Old Rd., Bolton
 BOLTON 25881

MARTIN

F.M. TUNER

Cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special preamp for low output pick-ups. Escutcheon panels to suit the arrangement you choose. Tuner is styled to match.
fart by sending for leaflets at once

The first and still the most satisfactory unit assembly system

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated moduletype units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

When new units are introduced, they are designed for adding to those produced so far, making it easy and economical to extend and improve your existing Martin Audiokit set-up. Anyone can assemble Martin equipment with ease and the fore-knowledge that when finished, he will be possessed of a true hi-fी assembly of the very best kind which looks and sounds completely professional in every way-and MARTIN AUDIOKITS remain as ever, the units that have true add-on-ability.

AMPLIFIER SYSTEMS - TUNERS - RECORDERS

STEREO CONTROL ASSEMBLY

UNITS INCLUDE:
E 5-stage input selector

- Pre-amp tone controis

管 10 watt amp. (3 ohms)
E 10 watt amp. (15 ohms)
■ Mains power supply
EF.M. Tuner
Trade enquiries invited
154/5 HIGH 8TREET, BRENTFORD MIDDLESEX. ISLeworth H161/2

MARTIN ELECTRONICS

f54 High Street, Brentford, Middlesex

 Please send Recordakil/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)
Name

Address

the world's most advanced high-fidelity amplifier

The Sinclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts, is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.
Monolithic I.C's. were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most
important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) stc.

The photographic masks required for producing monolithic I.C's. are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

CRREUTH AMPIIFIER

Specifications

Power Output
Frequency response
Total harmonic distortion Load impedance
Power gain $110 \mathrm{~dB}(100,000,000,000$ times) total.
Supply voltage
Size
Sensitivity Input impedance

10 Watts peak, 5 Watts R.M.S. continuous. 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Less than 1% at full output. 3 to 15 ohms. 8 to 18 volts. $1 \times 0.4 \times 0.2$ inches. 5 mV .
Adjustable externally up to 2.5 M ohms for above sensitivity.

Circuit Description

The circuit diagram of the $I C-10$ is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class $A B$ with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The finat device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers.
The transistors in the IC-10 have cut off frequencies greater than 500 MHz so the preamp section can be used as an R.F. or I.F. amplifier making it possible to build complete radio receivers without any additional transistors.

SINCLAIR IC-10

 The complete IC10 with the man. ual and 5 year guarantee costs just

The most challenging loudspeaker development in years
 It costs about a quarter of what you would expect

to pay for a good stereo speaker system when you choose Q.14s. This is because of the considerable amount of research and experimentation into the acoustic properties of special materials that went into the design of this excellent speaker. It resulted in an instrument so outstandingly good that experts, reviewers and the public alike were unanimous in their praise for the Q. 14 at this year's Audio Fair. The Q. 14 is very compact, measuring only $9 \frac{3}{4}$ in square on its face by $4 \frac{3}{4}$ in deep. Its unusual contours permit it to be positioned where no ordinary speaker could be used to advantage. The neat black matt finish
with aluminium bar trim keep this speaker pleasantly in conformity with modern design trends. The Q. 14 has acoustically contoured and sealed sound chamber. Smooth response from $60-16,000 \mathrm{~Hz}$. Loading up to 14 watts. 8 ohms impedance. Brilliant transient response. Size $9 \frac{3}{4}$ in square on face. Finished black matt with aluminium bar trim. Detachable pedestal base. Hear the Q. 14 in your own home. If you are not delighted with it, send it back, and your money, including cost of return postage to this office, will be refunded in full.
£7-19-6

SINCLAIR RADIONICS LTD., CAMBRIDGE

Sinclair IC-10 a revolutionary new amplifier-See previous pages-

SINCLIIR MICROMATIC The smallest radio set in the world

The Sinclair Micromatic is available ready built or in kit form. This latter now comes in a convenient new presentation pack complete down to a generous free supply of solder. The moulded polystyrene interior enables you to check the contents in an instant, and helps to make building even easier. and surer. Now, the Micromatic is better than ever-more powerful and better sounding to assure superb listening. Selectivity is better than many larger sets. Whether you build it, or buy your Micromatic ready built, it is the best and the smallest personal radio in the world-and it's British. In elegant aluminium fronted black case with slow motion tuning.

IN THE NEW KIT PACK

This attractive new presentation pack enables you to check the contents of your kit instantly. Everything is there down to the last nut and includes easy to follow instructions and generous supply of free solder.

Ready built and tested

49/6 59/6

- $1 \frac{14}{8} \times 1 \frac{3}{10} \times \frac{1}{2} \mathrm{in}$

Tunes over medium waves

8
Plays anywhere
Magnetic earpiece
In kit form or complete
Complete kit inc. magnetic ear-piece and instructions.

Mallory Mercury Cell RM. 675 (2 needed) each 2/9.

SINCLAIR PZ. 4 STABILISED POWER SUPPLY UNIT
A heavy duty a.c. mains power supply unit delivering 18 V d.c. at 1.5 A . Designed for Sinclair IC-10 or for assemblies using two Z.12s and stereo 25 unit.
Ready built and tested.

99/6

SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.

SINCLAIR RADIONICS LTD
22 NEWMARKET ROAD CAMBRIDGE. OCA3-52731

SINCLAIR Z. 12 12 WATT AMPLIFIER AND PRE-AMP
The Sinclair Z. 12 has fantastic power-to-size ratio, and great adaptability. is will operate fromi batteries or Pzeo reproduction for modest outlay. Thousand are in use throughout the world-in hi-fi, electronic music instruments, P.A., intercom systems, etc. This true 12 watt amplifier is supplied ready built, tested and guaranteed together with the $\mathbf{Z} .12$ manual which details control circuits tandling you to match the Z. 12 to your presise requirements. For complete listening satisfaction use your $Z, 12$ system with $Q .14$ loudspeakers. It assures superb quality with substantial saving in outlay.
\star IDEAL FOR battery Opreation
$3 \times 12 \times 1 \frac{1}{2}$ in Class B Uleralinear output 15 $50,000 \mathrm{~Hz}=$ IdB Suitable for 3, 5, 8 or 15Ω Input- 2 mV into $2 k \Omega$ Ourpur- 12 watts R.M.S.
 conkinuous sine waye
(24 W peak) 15 W music (24W peak) 15W music power Ready buile, peak) and guaranteed.

89/6

To: SINCLAIR RADIONICS LTD.j 22 NEWMARKET ROAD, CAMBRIDGE

Please send POST FREE

For which I enclose cosh/cheque/money order
PE1068

NAME
ADDRESS

orADIONIC

RADIO \& ELECTRONIC INSTRUCTIONAL SYSTEM

LEARN AS YOU BUILD

AT HOME

TIIE EXCITING WAY

Clear, slmple, versathe, this rugged system can build almost any electronic circuit Idal for the expermenter; the teacheriand the complete beginner. Already used by well over 1,509 schools in the U.K.
Sclected by the Council of Industrial Design for all British Desing Centres. Featured in Sound and Television broadeasts.
Beautirully engineered; battery operated; no soldering; no pror lnowledge needed. Results guaranteed by our technical department. People say:

"I can only descrite the results as brillant, absolutely brilliant."

"You have opened up a new world."
Fothing could paint the picture cicarer than buikiting these sers."
Mosit has been used by my son (aged 10) with complete success."
Mose mestie-a stroke of genlus whoever devised it."
UNTQUE: Our "No solderlng" printed circuit board for superhet portable. Simply insert components and tighten nuts.
No. 1 Set E7.10.0, 14 Clrcults (Earphone)
No. 2 Set E9.0.0. 20 Circults (Earphone)
No. 3 Set 813.10 .0 . 22 Circuits ($\boldsymbol{z}^{\prime} \times 4^{*}$ Loudspeaker Output)
 ELECTRONICS KIT: 80 plus efreults e19.7.0.

Full details from:

RADIONIC PRODUCTS LIMITED
STEPHENSON WAY, THREE BRIDGES
CRAWLEY, SUSSEX
Tel.: CRAWLEY 27028

A No. 4 SET and 6-TRANSISTOR SUPERHET

Theoretical Circuit

Practical Layout

E/605 Light Operated Relay.
Our 'E' Series of basic electronic circuits is available separately.
 4-Station Transinter Intercom systenicms with this 3 Subs\}, in de-luxe thatio callucts for tlesk or wall mounting. Callidnlk /listen front Mrater to Sabs and Subs to Master. Ideally sultahle for Buslncess, surgers, Schools, Hobyital, OAice nnd Home. Oicrates Complete with 3 conneutine wircs cach 66ft Compiete with 3 conneuting
other ackessorfes. F. \& P. 7 .

WIRE-LESS INTERCOM
Mo batteries-mo wizes. Just phug ha the munine for iustaut two-may, Joutd ant clear communication

59/6
Same na s.station luecreom fur two way inutant communication. Ileal as Baby Alarm tuili Door Phone. Comnicte with Givit, sunnecting wite، Battery 2/G. P. \& I. 4/6.

Tronsistor TELEPHONE ANPIIFIER 59/6
Why uot boost
business effciency with this iucrediute De-Luxe Telephone Amplifler. Take dounn long telephone messages or converse without holding the handect. A ube ful ofthe aitr. On
off switch. Yolume control. Batcery $2 / 6$ extra. P . P . 2;6. Fult price refunded if not sationed in 7 dask.

IT'S A MUST OUR CATALOGUE JOIN THE THOUSANDS OF SATISFIED CUSTOMERS SEND NOW FOR

OUR NEW 1968/69 illustrated catalogue NOW AVAILABLE

(send 2/- in stamps for your copy)
Catalogue contains prices and details of Amplifiers - Hi-Fi Tuners Loudspeakers - Plck-ups - Playing Decks - Microphones - Test Meters Hand Tools - Valves - Soldering Irons - Tape Recording Accessories, etc.

OFFICIAL SUPPLIERS TO MANY EDUCATION AUTHORITIES AND RESEARCH ESTABLISHMENTS

Usual Educational Discounts
ALPHA RADIO SUPPLY CO
103 Leeds Terrace, Leeds 7. Tel. 25187

CRESCENT RADIO LTD.

(electranic component specialists) For all regular components try 40 Mayes Road, Wood Green, N. 22 For surblus components ond equipment try

THREE TRANSISTOR RADIO KIT For you to make on a ready made printed circuit board. Gives good loudspeaker reception on the medium wave. Price includes postage and full ser of instructions. Complete Kit 39/6 each.

SPECIAL LINES
$45 \mathrm{~m} / \mathrm{h}$ Ferroxcube Choke L.A. 3 Midget Relays 500 ohm at 9 volt
OCBI Driver Transformer (Trans-(ormer-Transistor Tyee) (TransMullard Polystyrene Capacitors 0.47 mF

Srass B.A. Terminals On/Off Racker Switches D/P Mains Rocary Switc $3.5 \mathrm{~m} / \mathrm{m}$ Insulated Jack Socker Twin Transistor Heat Clips (OCA) size)
$4 / 6$ each
$5 / \mathrm{each}$
size) Transistor Earpieces
2/- per doz.
6d each
6d each
1/3 each

Hivac XS4 REED SWITCHES
Mivac XS
Hivac XSB
Hivac UD 56
$4 / 6$ each $\begin{array}{ll} & 4 / 6 \text { each } \\ & 4 / 6 \text { each }\end{array}$

BARGAIN CHASSIS
 All usable componenes

Electrolytic capacitor 100 plus 100 mF Electrolytic capacitor 100 mF uA 150 V Electrolytic capacitor BmF ut 450 V 0.12 mF (i) 600 V

Presec Pots (1) 500k Ω. (i) 2 Ma .
2 mF 350 V
mixed resistors
Transformer
6/6 each

With our new premises in Mayes Road we can now offer an even wider selection of com Donents for the home constructor and

POSTAGE WITH ORDER PLEASE

Short of a lead？

With a 3－pin DIN plug on one end and 3.5 mm jack on the other？With the Goldring Screened Audio Lead Set，you＇ve got it－instantly－at your finger tips．And 37 other different equipment－to－equipment connections as well．With cable lengths of $20^{\circ}, 40^{\prime \prime}$ ，or 60^{*} according to the combinations you use．All tidily and instantly to hand in a small neat storage box．There＇s no longer any need to have an unwieldy collection of dozens of different leads ．．．and still be short of the right one！ This new Goldring set will give you most of the connections you＇re ever likely to want－ without searching for cables and plugs， without soldering，without waiting，without further expense．The Goldring Audio Lead Set， from your Hi －Fi dealer， is a real investment at $\geq 3.6,0$ ＊Goldring are now marketing an extremely useful range of individually packed leads， plugs，sockets and connections for audio enthusiasts．
GOLDRING MANUFACTURING CO．（G．B．）LTD．， 486－488 High Road，Leytonstone，London，E． 11 Tel：Leytonstone 8343.

STEREOGRAM CABINET \＆19
An elegant Stereogram cabinet in modern Yeneered Mahogany and cloth covered Front Panel
bLACK IEATHERETTE SIDE PANELS Dimensions： $52^{n} \times 17 \frac{1}{2}^{* \prime} \times 12^{2}$ ．Speaker positions for T win $10^{*} \times 5^{*}$ Speakers

OTHER MODELS－－SEND FOR LIST
17in．－£11．10．0 Carr．30／－ I9in．SLIM－LINE FERGUSON 24 gns.
TWO－YEAR GUARANTEE EX－RENTAL TELEVISIONS

FREE ILLUSTRATED FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRJCES EMONSTRATIONS DALLY

COCKTAIL／STEREOGRAM CABINET $£ 25$

Polished walnut veneer with elegant glass fronted cocktail compartment，padded． Position for two $10 "$ elliptical speakers．Record storage space．Height $35 t^{\prime \prime}$ ，width 52尔＂，depth $14 \frac{1^{\prime \prime}}{2}$ ．Legs 1 gn ． extra．

TRANSISTOR CHASSIS DI 59／6
6 Transistors．LWMMW．Brand New．Famous Brikish Many－ Size 7⿺𠃊⿳亠丷厂彡
TRANSISTOR RECORD PLAYER CABINETS 19／6 P．\＆P．7／6．
SINGLE PLAYER CABINETS 15／6，P．\＆P．7／6．
TRANSISTOR CASES 19／6． Cloth covered，many colours． Size $91^{* \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\circ}$ ．P．\＆P．P． $3 / 6$ ． Similar cases in plastic 7／6．

AUTOCHANGERS［8．19．6
Garrard 3000 with Sonotone $9 T$ HC．D／S Stereo Cartridge．

Citesulal

SOLDERING INSTRUMENTS

With the introduction of the latest moulded Nylon handle，the change－over to this type throughout the range is now complete．The LITESOLD range includes seven models（10，18，20，25，30， 35 and 60 watts），and many accessories．

The newest handle is fitted to the 30 ， 35 and 60 watt models，the latter being an improved version of the 55 watt model which it supersedes．

Other improvements featured on the 60 watt model are the simplification of the bit mounting and element fixing arrangements，which bring it into line with the other LITESOLD models．There is also an increase in performance．

All LITESOLD models are now available，to special order，with neon indicator lamps．This feature is valuable in reducing the risk of burns，and of fires caused by instruments left on．

The indicators are mounted inside the handles，which are made from translucent Nylon for this application．An orange glow is clearly seen through the handles whenever the supply is switched on．

Please ask for colour catalogue L／37

LIIHT SOLDERMM DeVELIPMENTS LTD．

28 Sydenham Road，Croydon，CR9 2LL． Tel．01－688 8589 \＆ 4559

Look What's New from HEATHKIT

Cabinet walnut or teak finish £3.10.0 extra
Kit K/AR-17 £39.0.0
P.P. 10/6

Low-cost FM Stereo Receiver, AR-17

28 transistor, 7 diode circuit, 14 watts music power, 10 watts r.m.s. from $25-35,000 \mathrm{~Hz}$ @ $\pm 1 \mathrm{~dB}$. Automatic'stereo indicator light. Adjustable phase control. Complete front panel controls: Flywheel tuning.: Factory assembled and aligned FM front-end. Circuit board assembly. Compact $10 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ deep $\times 3^{\prime \prime}$ high $\times 12^{\prime \prime}$ wide. Use free standing with Heathkit cabinet optional extra.

Quality FM Stereo Receiver, AR-14
Kit K/AR-14 £54.0.0
P.P. 13/6

Cabinet walnut or teak finish $£ 4.10 .0$ extra
31 transistor, 10 diode circuit can deliver $\pm 1 \mathrm{~dB}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel (20 watts total) 15 watts per channel 1 HF music power (30 watts total). Wide-band FM/FM stereo tuner plus two preamps, two power amplifiers. Compact only $3 \frac{7{ }^{\prime \prime \prime}}{8}$ high $\times 15^{\frac{1}{4} / 1}$ wide $\times 12^{\prime \prime}$ deep. Install in a wall, free standing or in Heathkit cabinet optional extra. $210-240 \vee 50 \mathrm{~Hz}$ a.c.

Low-cost FM Mono Receiver, AR-27
Kit K/AR-27
£22.10.0
P.P. 10/6

Cabinet walnut veneered $£ \mathbf{£ 3 . 1 0 . 0}$
13 transistor, 6 diode circuit. 7 watts music power. $\pm 1 \mathrm{db}, 25$ to $60,000 \mathrm{~Hz}$ at 6 watts. Input connectors for phono and aux. Complete front panel controls. Flywheel tuning, factory prealigned FM tuner. Circuit board assembly. Compact bookshelf size. Install in a wall, free standing or in cabinet optional extra. 210-240V 50 Hz a.c. operation.

Solid-State Volt-ohm-Milliammeter, IM-25

Kit K/IM-25
£48.10.0
9 a.c. and 9 d.c. ranges 150 mV up to $1,500 \mathrm{~V}$ f.s. 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$ and $\times 1$ Meg.... measures from 1 ohm to $1,000 \mathrm{Mohms}$. 11 current ranges from $15 \mu \mathrm{~A}^{-}$full scale to 1.5 A full scale. 11 Mohm input impedance d.c. 10 Mohm P.P. 10/6 input impedance a.c. $6^{\prime \prime} 200 \mu \mathrm{~A}$ meter. Internal battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz supply. PCB construction.

Solid-State Volt-ohm Meter, IM-16

Kit K/IM-16

P.P. 10/6

Solid-State Low Voltage Power Supply, IP-27

Kit K/IP-27
£46.12.0
P.P. 10/6

8 a.c. and 8 d.c. ranges $0-5 \mathrm{~V}$ to $1,500 \mathrm{~V}$ f.s. 7 ohmmeter ranges with 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 k_{1} \times 10 \mathrm{k}, \times 100 \mathrm{k}$ and $\times 1$ Meg.... 11 Mohm input on d.c., 1 Mohm on a.c. Internal battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz supply.

HEATHKIT for Top Value in Electronics A kit for every interest - Home Workshop - Hi-Fi - Radio - Test - Amateur

 Latest STEREO TAPE RECORDER, STR-1|Latest STEREO AMPLIFIER, TSA-12

Fully portable-own speakers Kit £58. 0. 0 Incl. P.T. P.P. $10 / 6$ Ready-to-use £72, 0.0 incl. P.T. P.P. 10/6

FOR THIS SPECIFICATION
t track stereo or mono record and playback at $7 \frac{1}{3}, 3 \frac{7}{4}$ and $1 \frac{1}{2} \mathrm{ps}$. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumb-wheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/headphone and externai amplifier outputs front panel mounted for easy access. Pushrbutton controls for operational modes. Built-in stereo power amplifier giving 4 W rms per channel. Two high efficiency $8^{\prime \prime} \times 5^{\prime \prime}$ speakers. Operates on 230 V a.c. supply.

Versatile recording facilities. So easy to buifd-so easy to use.
12×12 watts output
Kit e32. 16. 0 less cabinet P.P.10/6
Cabinet £2. 5. 0 extra
Ready-to-use £39. 10.0 (less cab.) P.P. 10/6
FOR THIS SPECIFICATION
17 transistors, 6 diode circuit. $\doteq 1 \mathrm{~dB}, 16$ to $50,000 \mathrm{~Hz}$ at 12 W per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low sithouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.
Full range power ... over extremely wide frequency range. Special transformerless output circuitry. Adequately heatsinked power transistors for cool operation-long life, 6 position source switch.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semiconductors (6 transistors, 2 diodes). For I2V positive or 12 V negative earth systems. Powerful output (4W). Preassembled and aligned tuning unit. Push-button tone and wave change controis. Positive manual tuning. Easy circuit board assembly. Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
KIT (incl, speaker) £14.12.0 incl. P.T.
Ready-to-use £19.12.0 (incl. speaker) P.P. 4/6

Latest Portable Stereo Record Player, SRP-1 Automatic playing of $16,33,45$ and 78 rpm records. All transis-tor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Defachablespeaker enclosure for best stereo effect. Two 8 in $\times 5$ in special loudspeakers. For 220-250V a.c. mains operation. Overall cabinet size 15 ! $\times 37 \times 10$ in.
Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.
KIT £28.6.0 inel. P.T. P.P. 10/6
Ready-to-use £35.4.0
P.P. 10/6

SSU-1

Berkeley

A wide range of

 SPEAKER SYSTEMSHI-FI SPEAKER SYSTEM. Model SSU-1. Ducted-port bass reflex cabinet "in the white". Two speakers. Vertical/horizontal models with legs. Kit £14. 0. 0. P.P. 12/-. Without legs, Kit £13. 4. 0 incl. P.T. P.P. $7^{/ 6}$

The BERKELEY SLIM-LINE SPEAKER SYSTEM, fully finished walnut or teak veneered cabinet for faster construction. Special $12^{\prime \prime}$ bass unit and $4^{\prime \prime}$ mid/high frequency unit. Range $30-$ $17,000 \mathrm{~Hz}$. Size $26^{\circ} \times 17^{*}$ only $7 \frac{1}{2}^{\circ}$ deep. Modern attractive styling. Excelfent value.

Kit £21. 4. 0. P.P. 13/6
Ready-to-use £24. 0. 0. P.P. 13/6
SEE HEATHKIT MODELS at
GLOUCESTER

Factory and Showroom Bristol Road

LONDON

233 Tottenham
Court Road

Transistor Portables

UXR-1, now avaitable in Modern coloured cases or leather.
6 transistor, 1 diode circuit. $7 \times 4 \mathrm{in}$. speaker. LW and MW coverage. Case: brown leather; or colours navy blue, coral pink, lime green. Please state 2nd choice.
Kit £12. 8. 0, incl. P.T. Colour Kit £13, 8. 0. incl. P.T. Leather Ready-to-use £15.10.0. P.P. 4/6
UXR-2, cholce of black or brown real leather cases.
7 transistor, 3 diode circuit. Battery saving circuitry. LW and MW coverage. Pushbutton wave change. Slide rule tuning.
Kit $£ 15.10,0$, incl. P.T. Leather Ready-to-use £17.10.0. P.P. 6/-

UXR-1

UXR-2

BIRMINGHAM

17-18 St. Martins House
Bull Ring

FREE CATALOGUE

Describes these and over 250 other Heath Kits. Save up to 50% by building them yourself. Use coupon and send for your FREE copy, today!

DÁYSTROM LTD. Dept. PE-11
Gloucester Tel. 29451
\square Enclosed is $£$ plus Packing and Post.
\square Please send model(s)
\square Please send FREE Heathkit Catalogue. Details
Name
(Please Primt)
Address
City
Prices and Specifications subject to change without prior notice.

Ever had trouble locating a particular piece for your project? Ever wasted time thumbing through confusing price lists? Ever been foot-weary and frustrated tramping round the shops?
Sigh no more. Just sink into an armchair and enjoy life with a Home Radio Catalogue! Pick your parts. Grab your pen. Make for a letter-box. Your chosen items will be with you almost before you can get back to that armchair!
This Catalogue really is a must if you're interested in Radio and Electronics. It has I 256 pages, over 7,000 items listed, over I 1,300 illustrations. With each catalogue I we supply a Bargain List, a Book Mark | giving Electronic Abbreviations, an Order I Form and an Addressed Envelope. All this for only $7 / 6$ plus $3 /-$ post and packing. I By the way, every catalogue contains I 5 vouchers, each worth $1 /-$ when used I as directed. Send the coupon today with your cheque or P.O. for 10/6.

Please write your Name and Address in block capitals

Name
Address \qquad

Home fladio (Mitcham) Led, Dept. PE, 187 London Rd., Mitcham,

PRACTICAL
 장

EleGTroNS AND MEURONS

Down the ages mathematicians, philosophers, scientists, and other great minds have expended thought and effort in attempts to devise machines with some kind of artificial intelligence. Numerous artifacts, automata, or robots (name them what you will) that imitate, albeit in a crude way, some of the characteristic attributes of man have been built at various times. The techniques employed have been equally varied in character.

Since the advent of electronics, the crude efforts of earlier days have been put in the shade. Much more is possible now. The intelligent machine is now a reality. But it is well to separate fact from fancy.
The affinity between electronic circuit systems and living systems is generally well known. The creation of an electronic system analogous in many ways to the human nerve system can be achieved. But even so, the electronic automata will fall short of its human counterpart in many important respects. Present techniques do not permit the assembling of anything like the electronic equivalent of the 10,000 million cells or neurons contained in the human brain. Despite this limitation, some truly amazing results have already been achieved in simulating certain human faculties. Assuredly great advances will continue to be made.

Scientists have explored electronic circuit techniques for biological and other research purposes. Their technological interests overlap those of industrial engineers who specialise in the field of control systems and automation. Apart from this, however, the philosophical approach of the scientist intent upon building working models that closely resemble a living cell or whole animal will be in contrast with the more materialistic approach of the engineer engaged in designing systems for strictly utilitarian purposes.

Now, can the amateur do anything purposeful and creative in this rather exotic field? We think he can, and for this reason have launched this month a fascinating series entitled "Bionics". In one sense, the experimenter will be on familiar ground, working with the normal electronics stock-in-trade; but he will need to reorientate his thinking to a considerable extent.
Experimenting in this field of "electrons and neurons" will lead to a wider appreciation of other branches of science, particularly biology. It could be a stimulating change from more mundane applications of electronics.

[^1]CONSTRUCTIONAL PROJECTS
SENSITIVE D.C. VOLTMETER 773
HI FI TRANSISTOR MICROPHONE 781
RHYTHM GENERATOR 792
FROST ALARM 802
SPECIAL SERIES
BIONICS—I768
EXPERIMENTS WITH SOUND, LIGHT, AND COLOUR-4 804
GENERAL FEATURES
INGENUITY UNLIMITED 784
INFRA-RED COMMUNICATIONS 788
LSA DEVICE 813
NEWS AND COMMENTEDITORIAL767
MARKET PLACE 787
NEWS BRIEFS 801
MEETINGS 801
RADIO TRADE SHOWS 1968 808
Our December issue will be published on
Friday, November 15

The term "Bionics" will in all likelihood come a little strange to many readers; it is in fact a word coined only some years back to describe a science concerned with the possibilities of constructing automata modelled upon real life biological examples.

In fact Bionics springs from a more all embracing title, that of Cybernetics. The late mathe matician Norbert Wiener suggested the word cybernetics in about 1948 as a name for the science of control and communication in animals and machines. Cybernetics is involved with and finds its origins in as varied disciplines as philosophy, physiology, psychology, electronics, mathematics, and logic.

Bionics, then, relates to just a small fraction of the field of cybernetics, as does say television to the compass of electronics? We already have some examples of bionics in our midst: such devices as Iron lungs, artificial limbs, and kidneys, are typical. However, bionics is lately concentrating its efforts more upon artificial intelligence and machines which have the ability to adapt themselves to their environment.

The concept that it might be possible to construct a machine which demonstrated a degree of intelligence, was developed from the notion that animals (including humans) are essentially
operandi could be established for a biological brain, then it would not be unreasonable to süppose that the same type of principles might be replicated mechanically-better still electronically.

This to a degree is what bionics sets out to accomplish, although in the coming series of articles the term is used in a somewhat modified context. The idea of this series will be to present a number of challenging and often unusual applications of electronics-particular stress being laid on "home brewed" automata. There will be times during the series when we shall consider quite daring possibilities for these. automata and the author makes no excuse for their inclusion, for it is of his opinion that some of the concepts may well stimulate further research on the part of the constructor.

This is an "experimental" series of articles and as such will not include detailed constructional information. The series is, however, a forerunner to a number of constructional projects it is hoped to publish later. Perhaps it need hardly be said that the more venturesome experimenter need not walt for these detailed designs, but can proceed straightaway to apply in a practical monner the-information

The design and construction of electronic "animals" or machines with artificial intelligence

N nearly every one of us there is a latent desire to create. Not only to create, but to create something unique. It is therefore not surprising that since time immemorial man has made numerous (relatively unsuccessful) attempts to devise machines that might imitate himself.

Probably one of the first examples we can find is the lever; not in fact an actual imitation of man, but a device that could aid his physical strength. As time continued, so he produced more and more powerful "muscle amplifiers" (this is, after all what they are), and so if we stop to consider say a huge jib crane capable of lifting some tons, the amplification factor involved may well be in the order of several million. No mean feat, for a man!

AMPLIFICATION OF MENTAL ENERGY

The foregoing examples serve to indicate the "stepping stones" from which man began his attempts to synthesise certain characteristics of himself and other animals. It was not long, however, before it occurred to him that if muscular energy could be amplified, so indeed the same should apply to mental energy, and so we have the abacus or bead board which certain Asiatic countries are still using with great success.

With the advent of electronics it was at once realised that more rapid and yet more powerful machines could be built; and so we see the giant abaci of today: we call them computers. When electronic computers came into existence the popular press of course tended to over glamourise the machines' capabilities using such anthropomorphic terminology as "brains", "thought", etc. What the press lost sight of was that a basic digital computer however powerful or rapid, is still none-the-less a rather more sophisticated version of a mechanical desk calculator.

THOUGHT AND LEARNING PROCESSES

Unfortunately, although thought is a very intimate part of us we remain, ironically enough, unable to specify exactly what it is. However, we can say what it is not, and in no wise does any characteristic of a computer (save perhaps memory) qualify the right to be called a thought process. Before a computer can operate at all on the complex mathematics that it must handle, a programme often taking months to prepare and containing very precise orders, must accompany any calculation. If this were not enough, the computer must have all its instructions written in machine language.

It was not until about two decades ago, that man even began to "scratch the surface" of what appear to be the underlying principles of "thought" and learning processes. Although little is still understood, it is now possible to synthesise certain characteristics of the biological brain, albeit crudely, by applying the wealth of electronic principles we now have at our elbow. It is with this in mind, and with the almost limitless possibilities that it suggests that we shall discuss, and even construct, artefacts which will have "memory" and the ability to "learn".

MOBILE BREADBOARD

However, prior to considering rather more exotic devices, from a practical point of view it is a pre-requisite that we design and build some type of mobile breadboard
upon which we can perform modifications and "surgery". This then will be our first consideration, and at this stage an initial glance at Fig. 1.1 will reveal the main structure and "muscies" of the electronic animal.

Generally speaking, those of us whose interests lie in electronics rarely claim a similar zeal for the field of mechanics. In bionics this state of affairs can be a real handicap, because there are all too often times when a particular item just does not exist and one has no alternative but to fabricate. However, most of the mechanical problems can be largely solved by the use of Meccano, which readily lends itself to adaptation and "grafting". In addition, Meccano produce "readymade" drive gearboxes which can either be used in conjunction with one of their motors, or a motor of the constructor's choice.

As will be seen from Fig. 1.1, the breadboard is basically of rigid box construction, cross members being incorporated to reduce possible twist along the length and increase its strength. The choice of chassis size was very much an arbitrary one; but in fact, providing readers maintain the general format it may be constructed to personal preference.

GEARBOX AND WHEELS

The original model was shod with plastic tracks, but as these are frequently difficult to come by we have chosen separately driven wheels for the device given here. The motor gearbox units are mounted at the rear end of the chassis, and drive power is transmitted via final bevel gears to the road wheels. The forward end of the chassis is supported by a pair of castors; one at each corner. This was found necessary, since a single castor introduced excessive chassis twist.

The "muscles" selected to power our model are a pair of Meccano E15R motor gearbox units, but in fact any reliable equivalent would do just as well provided that the overall gear ratio is kept lower than $160: 1$. Any higher ratio would tend to make the "animal" rather intractable, and apart from anything else accurate observation would become impossible.

There are, of course, two fundamental methods for controlling the motors: relays and power transistors. As variable (analogue) control of the motors was often required, relays were rejected at an early stage in favour of power transistors. The use of transistors involves somewhat more complex circuit arrangements, but in view of their inexpensiveness and ability to provide more sophisticated control, extra time taken in building the equipment is adequately rewarded.

"MUSCLE" CONTROL CIRCUITS

The "muscle control" circuits are shown in Fig. 1.2. At the risk of causing some slight confusion the right and left hand side motors have been referred to respectively as Port and Starboard-the reason becomes obvious upon reflection because the right hand motor will cause the "animal" to move to port, and vice-versa. Motor Mol is therefore Port and Mo2 Starboard: together they drive the animal in forward or reverse directions.

Alternative steering and drive arrangements of course are possible, but owing to various problems that will be apparent as we progress, the present scheme will be retained. In any case there are unlikely to be any actual biological examples which utilise separate steering and motive systems; indeed, steering is usually a function of motivation. In our model steering is achieved as an integral part of the drive functions.

Fig. I.I. Mobile breadboard for experiments in the building of an intelligent machine or electronic "animal"

Fig. I.2. "Muscle control" circuits for a simple electronic animal

TWO CHANNELS

Control over the motors is brought about through two separate channels which can provide facilities for operation in rate of response, scansion, and direction modes. Each channel consists of complementary emitter follower type configurations of pnp-pnp and npn-npn Darlington pairs. It is essential to ensure that the drive transistors have low leakage, otherwise there will be a pronounced tendency for the motors to rotate even when the inputs are grounded.

Prior to connecting the motors into the muscle control circuit, attention must be paid to establish correct polarity. With a negative input at each channel, TR1 and TR5 will conduct causing their associated power transistors TR3 and TR7 to drive up, thereby bringing Mo1 and Mo2 into operation: these inputs should cause forward rotation of the motors. Reverse rotation results from application of positive inputs, when TR2 or TR6 will conduct to drive up TR4 or TR8.

PRACTICAL POINTERS

All circuits can be built on Veroboard. No difficulties should be experienced in drilling the holes to take mounting bolts for the power transistors. The power transistors for each channel are located side by side and take up very little space; no heat sink being required as even maximum current demands are fairly small.

ANIMAL PSYCHOLOGY AND BEHAVIOURAL THEORY

Up till now, and for quite valid reasons, we have considered only the basic muscle control circuits. Having built and installed them, we shall now be able to concentrate our energies upon somewhat more creative lines.

As discussed previously, we shall consider the feasibility of synthesising electronically certain very limited aspects of memory and learning: these will be eventually incorporated within our mobile breadboard. It is simple enough to build an animal that will react to light and this will be discussed, but before attempting
these projects it would at this stage be prudent to re-discover certain basic facts about animal psychology and behavioural theory.

Ostensibly, the problem we are facing appears simple enough: all that seems necessary is to arrange for a design procedure which will fit in with our concept of what a biological animal's psychology is. But then we don't really know completely, even if we examine it. The minute an animal is confronted with the unnatural conditions of a laboratory its responses tend to be artificial. Often, animals are bred in the laboratory, and behavioural tests with these are frequently even more sterile because they have never known a normal environment. On the other hand if an animal is within its normal environment we cannot easily examine it.
It is gratifying to discover that in our quest for information there are some short cuts that may be taken, so we can, as a cliché suggests "stand on the shoulders of giants". One of these "giants", Pavlov in fact, has already done a lot of ground work for us and it is to a large extent from this and other classical data that we shall draw our inspiration.

BLACK BOX ANALYSIS

In experiments designed to assess the reasons behind certain animal behaviours, "black box" principles have been used. This amounts to qualifying the animal and its brain as an unknown quantity and placing this in a hypothetical box with inputs and outputs. The notion being that if we have known inputs and measurable outputs, a relationship might be established between them which will tell us about the contents of the "box".

This method in principle is a good one, and probably the only one we can safely utilise, because any direct attempts to evaluate the brain and its peripheral equipment by way of surgery necessarily interfere with the animal's behaviour.

However, the black box analysis is not without certain pitfalls. One obvious difficulty is that no matter how many different inputs we apply, there may still remain further modes of response that the animal can produce; thus never giving us a complete look inside the "box".

Another problem arises from the fäct that animals often produce responses from what seem to be a whole repertoire of possible actions; it is therefore sometimes impossible to be specific about outputs.
At present then, for our purposes at least, we must be content to base our reasoning along the lines of well tested and easily reproducible features of behaviour. Even then, actual design work must needs be largely based on experiment.

CONDITIONED REFLEX

One aspect of animal behaviour which should show us some rewards upon synthesis, is the conditioned reflex.

Reflexes, or more correctly reflex responses, are due to stimuli exciting certain sensory organs: they may for example be the result of light shone into the eyes, or a touch applied to some area upon the skin. These stimuli having excited a receptor cause nerve impulses to pass along the various neural pathways to the reasoning part of the brain, or cortex. Here they may interact with other types of sensory information either produced simultaneously or stored at some time in the past.
Now the reflex that concerns us is a special condition occurring as a result of the former variety, the conditioned reflex-let us call it R_{c}. To understand what it is and how it may be evoked, we must hearken back to Pavlov's early experiments.

Pavlov, who performed the conditioning experiments with hungry dogs, used food as a basic drive-this we shall call the "specific" stimulus $S_{\mathrm{s} \text {. }}$ The amount of saliva produced upon application of S_{s} was then measured. When the animals became hungry again, a further stimulus was included which would not normally cause salivation; this was a "neutral" stimulus in the form of sound, i.e. a bell. This we shall designate S_{n}.

Pavlov found that if S_{n} was applied shortly before S_{s}, and the combination repeated a few times, S_{n} would eventually produce salivation in the same way that S_{s} did. Hence the animals had learnt that the sound of the bell meant food. The neutral stimulus S_{n} had thus been conditioned to the specific stimulus S_{s} and so the result of applying S_{n} at future times was to elicit a conditioned reflex.

There are two important factors to remember if we require the stimulus combination to be successful in producing a conditioned reflex. Firstly S_{n} should occur before S_{s} not after; the reader will appreciate that there is little point in sounding the dinner gong after the meal has been eaten! The second fact is that assuming S_{n} occurs before S_{s}, it must be just before, or else it will
be of no significance Otherwise it would be rathet like announcing lunch, two hours before it was sefvedt

INHIBITION

So far, so good! But we have only considered the excitation mode of conditioning. What if we continue the application of S_{n} without the reinforcement of S_{s} ? That is, ring the bell without feeding the animal.

The effect of course can be virtually predicted; the bell no longer signifies the coming of food, and so the conditioned reflex is inhibited. The animal therefore no longer responds to S_{n}. This state of affairs is generally referred to as extinction.

However, an interesting fact emerges from inhibition of this kind, in that it too can be inhibited. One easy way to bring R_{c} back is to re-establish the reinforcement $\left(S_{\mathrm{s}}\right)$.

There are more unexpected ways too: assume we take the case of a dog which, say yesterday, had, its conditioned response extinguished. If today we re-apply S_{n}, back comes the conditioned response as strong as before; even more surprising is the fact that no matter how many times R_{c} is extinguished it will always re-appear. This "recovery" or disinhibition as it is called, seems to be the result of the inhibition placed upon R_{c} dissipating with time.

DISTRACTING STIMULI

Disinhibition can occur in an even more striking way, a way which in fact caused Pavlov no end of problems from quite a different point of view. During his experiments there were times when he found it difficult, often impossible, to condition the animals-and it was not long before he realised the cause.

Most of the experiments were conducted in an environment where the ambient noise level was relatively high, resulting in distracting stimuli which either inhibited the conditioning, or caused irrelevant conditioned responses. These strong "external" stimuli whilst inhibiting excitation, will also remove inhibition. Hence, if R_{c} has been extinguished it can be recalled by the simple expedient of introducing a powerful external stimulus.

With the conditioned reflex mentioned earlier, we considered only two kinds of stimuli. Of course, virtually any stimulus combination could be used, and as we proceed with the design of our electronic "animal" so its need to deal with more and more combinations (some of them quite unusual) will increase.
Next month: "Muscle" control and reflex response.

SENEITOUE D.C. VOLTMETER

This is the third project in our five-part series

featuring the integrated circuit linear amplifier Type SL701C

Now that the inexpensive high gain silicon transistors are readily available, very small collector currents in the order of tens of microamps are often encountered in equipment, and a conventional multirange voltmeter may consume sufficient current to make voltage readings inaccurate. This article describes a d.c. amplifier which may be used to increase the sensitivity of a meter by ten or one hundred times.

VALUE OF INTEGRATED CIRCUIT

We could design and build a high gain d.c. amplifier using conventional components, but we might have a problem with drift in d.c. levels with temperature. The best solution would be to use an integrated circuit operational amplifier, where the manufacturer has already done the best he can to minimise offset voltage and drift, and where the very method of construction ensures that components are inherently excellently matched.
Until this point in our series on the use of the operational amplifier, we have only considered a.c. circuits, and have suggested that the d.c. level at the output of the amplifier will be almost zero. While this is true, since we now require a d.c. amplifier, we must investigate in more detail the reasons for this offset.

THE OFFSET VOLTAGE

The d.c. offset at the output of the amplifier is due to the following causes.
(a) Mismatch of the electrical characteristics of the amplifier; mainly the difference between base to emitter voltages and current gains of the two transistors which comprise the differential input pair, and also the mismatch between their associated collector resistors.
(b) The finite input current flowing through the series resistor in each input lead.

Since the magnitude of the offset will depend on the closed loop gain of the compiete amplifier circuit, the parameters of the integrated circuit itself are always referred back to the input of the integrated circuit. If the amplifier were perfect each input would draw the same current and require the same base to emitter voltage, but in practice this is not so. The difference between the input currents is defined as the input offset current, while the input offset voltage is that voltage which has to be applied between the input terminals to obtain zero output voltage.

For a d.c. amplifier it is obviously important to know what output offset we must expect, and how to trim this out if required, but even for an a.c. amplifier the undistorted peak to peak swing of the output may be restricted if the d.c. steady state level of the output is appreciably unbalanced.

For the Plessey SL701C the parameters we require are:

Input base current (either side) $=3 \mu \mathrm{~A}$ maximum
Input offset base current $=1.8 \mu \mathrm{~A}$ maximum
Input offset voltage $\quad=25 \mathrm{mV}$ maximum
These are maximum figures, and typical figures are less. By inserting the appropriate figures in the formulae to be considered next we can obtain typical or maximum values, but we have only used the maximum values for our examples. For completeness we first consider the offset of an a.c. amplifier.

OFFSET VOLTAGE OF AN A.C. AMPLIFIER

For the amplifier it does not matter if we use the inverting or non-inverting configuration, the d.c. conditions are idential. In the example of Fig, 1 we have a 100 kilohm resistor from the non-inverting input to earth and a 10 kilohm resistor from the inverting

Fig. I. The offset voltage at the output of a typical a.c. amplifier, due solely to unequal source resistors. (a) inverting, (b) non-inverting configuration

(b)

Fig. 2. The method of minimising initial offset by making the input source resistances equal. (a) inverting, (b) non-inverting configuration
input to the output. The output is assumed to be a low impedance point so that the effective source resistance for this input is 10 kilohm.

If we assume for the moment that there is no offset voltage and no offset current for the integrated circuit, we can work out the possible offset voltage. Input 1 draws up to $3 \mu \mathrm{~A}$ through 100 kilohms and so can be up to 300 mV below earth potential. If there is no offset voltage between the two inputs (in any case the maximum value of 25 mV we might have is small compared with 300 mV) then input 2 must also be at -300 mV .

Since input 2 also draws $3 \mu \mathrm{~A}$, the 10 kilohm resistor will have 30 mV across it and the d.c. level of the output will have to be at -270 mV to maintain these d.c. conditions. We thus have an output offset voltage of 270 mV solely due to the different source resistors for the two input. If we now take offset voltage and current into account this could increase or decrease this value depending on the relative polarities.

Unless we specifically need the high input impedance of ' 100 kilohms for the non-inverting configuration we can minimise this offset due to unequal source resistors by making the resistors equal, as in Fig. 2.

In the inverting configuration it might be advisable to decouple the non-inverting input to earth, both to prevent capacitive pickup which might cause positive feedback and also to help maintain closed loop h.f. stability. This is especially important if a high value of source resistance is used, as in Fig. 3.

INITIAL OFFSET

If the source resistors are made equal so that the effects of input base currents through the input resistors
are approximately self cancelling, then the initial offset (it depends now on the offset current and offset voltage) may be calculated. The offset due to current is given by the input offset current multiplied by the source resistance, for our example of Fig. 2, this becomes: Offset due to current $=1 \cdot 8 \cdot 10^{-6} \cdot 10 \cdot 10^{3}=18 \mathrm{mV}$

We are better off with low values for the source resistors rather than high ones.

From the d.c. point of view any offset voltage at the input is amplified unity times, so that the possible total offset is:

Total offset $=$ offset due to current + offset due to voltage

$$
=18+25 \mathrm{mV}=43 \mathrm{mV}
$$

We can place these results into a general formula for future reference, and need the Fig. 4. The offset voltage has been shown as an addition to the noninverting input while the current offset has been shown as a current which in effect flows out or into the inverting input and through the feedback resistor. We have equal source resistors for both inputs, and I_{d} is the current offset and E_{d} the voltage offset. Total offset $=$ current offset $\times R+$ voltage offset.

$$
E_{0}=I_{\mathrm{d}} R+E_{\mathrm{d} .} \text { A.C. amplifier }
$$

OFFSET VOLTAGE OF A D.C. AMPLIFIER
For a d.c. amplifier we have a similar situation, but the offset voltage of the integrated circuit is amplified by the overall gain of the complete circuit (Fig. 5).

Fig. 4. The circuit diagram for the calculation of offset of an a.c. coupled amplifier, showing conditions of minimum offset

Fig. 5. Theoretical circuit diagram for offset calculations for a d.c. coupled amplifier, showing conditions for minimum offset

Fig. 6. Circuit diagram for a d.c. coupled amplifier, showing practical values (for offset calculations in text). non-inverting, (b) inverting conflgurations

In this case to maintain the same source resistance for each input, the resistor R has to be made equal to the resistance of R_{s} and R_{f} in parallel.

$$
R=\frac{R_{\mathrm{f}} R_{\mathrm{s}}}{R_{\mathrm{f}}+R_{\mathrm{s}}}
$$

If we consider the practical d.c. amplifier of Fig. 6, we can arrive at our d.c. offset. From the point of view of the feedback both circuits are identical, but from the signal point of view we obtain different gains because of the slight difference in how the signal is applied. For the non-inverting configuration the input adds to the voltage developed across the feedback resistor, while for the inverting configuration this does not happen.

For Fig. 5 or Fig. 6 the total offset voltage is given by:

$$
E_{0}=E_{\mathrm{d}}\left(1+\frac{R_{\mathrm{r}}}{R_{\mathrm{s}}}\right)+I_{\mathrm{d}} R_{\mathrm{r}} \quad \text { D.C. amplifier }
$$

In the case of Fig. 6 this becomes:

$$
\begin{aligned}
E_{0} & =25(1+9)+1 \cdot 8 \cdot 10^{-6} \cdot 9 \cdot 10^{3} \\
& =250+16 \cdot 2 \mathrm{mV}=266 \cdot 2 \mathrm{mV}
\end{aligned}
$$

For a.c. amplifiers where the d.c. offset might reduce the available swing or for d.c. amplifiers where we require 0 V out for 0 V input, we will wish to balance out any offset.

AMPLIFIERS WITH OFFSET BALANCING

The best type of circuit chosen to balance offset depends on the impedance of the signal source. For low impedance sources (say up to 5 kilohm) the circuits of Fig. 7a or b are suitable.

In Fig. 7a since we have a control to balance offset, the low value resistor from the non-inverting input to earth may be omitted. R3 is chosen to be much greater than R1 and the range on the potentiometer is chosen so that the gain from point X (of R_{f} over R 3) to the output is sufficient to balance out the expected offset. For Fig. 7b VRI is chosen to be much greater than R1, while the high value resistor to the h.t. line is chosen to give a suitable range.

For a high impedance source acting as a current generator, it would be better to use the circuit of Fig. 8. To give sufficient range on the potentiometer the values are chosen so that the potentiometer value is 1.5 times R2 while the series resistor is 0.5 of R 2 . This gives (for R2 of 47 kilohms) a potentiometer value of 70 kilohms and a series resistor of 22 kilohms, so that using 100 kilohms with a series resistor of 22 kilohms should give more than enough range.

Now that we have dealt, in general, with d.c. amplifiers and balancing, we can go on to consider our current amplifier.

Fig. 7. Two methods of balancing out offset for low impedance sources

THE CURRENT AMPLIFIER

We would use a circuit like Fig. 8 to give us the gain we require, and a suitable circuit for a $100 \mu \mathrm{~A}$ meter and times ten gain is given in Fig. 9.

An alternative approach is Fig. 10, and this was adopted because it has the advantage that the meter resistance does not enter into the calculations for current gain, and once the circuit is set up we could replace the $100 \mu \mathrm{~A}$ meter by another meter of known sensitivity and still expect its sensitivity to be multiplied by ten times.

The complete finalised amplifer circuit is shown in Fig. 11. R7 is included in series with the meter to limit the maximum current, while R8 is shunted across the meter to complete the d.c. path for the amplifier if the meter is removed. R8 need not be added for a permanently wired in unit. CI rolls off the amplifier response at a low frequency and prevents any possible difficulties due to h.f. instability.

CONSTRUCTION

The form of construction given in this article follows the pattern set by the previous projects in this series. The integrated circuit ICI and most of the discrete components are mounted on a piece of perforated s.r.b.p. This board is secured to the die-cast box, using extra nuts or spacers to provide clearance between the metal and live points on the circuit board. The
box should have already been drilled to accommodate the sockets, feed-through terminals and the potentiometer VRI. All essential details can be obtained from the diagram Fig. 12 and the accompanying photograph.

Individual constructors may wish to use a larger box so that the meter can be built-in with the electronics. The battery could also be accommodated within such a larger box, thus achieving a single, self-contained piece of test gear.

SETTING UP

For this circuit using a $100 \mu \mathrm{~A}$ meter and a times 10 gain (to give 100 kilohms volt sensitivity) the input offset for the amplifier will be up to $1: 8 \mu \mathrm{~A}$. When this is multiplied by our gain of 10 times it becomes $\pm 18 \mu \mathrm{~A}$ as a maximum value, which is still small in comparison with our f.s.d. of $100 \mu \mathrm{~A}$.
In our instrument we used a balance control of 10 kilohm and suitable series resistor to give a control range of $\pm 6 \mu \mathrm{~A}$. While this was adequate, it is quite small, and it would be preferable to use a 25 kilohm potentiometer to give more range. The series resistor R4 can then be chosen so that the potentiometer gives a control centred about zero.
Since the 10 V range is probably the most useful one, the instrument was set up by applying a known voltage

SENSITIVE D.C. VOLTMETER CIRCUIT

Fig. II. The complete circuit for ten times current amplifier for a 100 mA meter with oppropriate resistors to give $1 \mathrm{~V}, 10 \mathrm{~V}$, and 100 V f.s.d.

Build yourself a quality transistor radio guaranteed results backed by our after sales service!

roamer seven mkiv

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE! 7 FULLY TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive black and gold case. Size $6 \frac{1}{2} \times 1 \frac{3}{3} \times$ 3ifa. Fully tumable over both Melium and Long tuning of Iuxembourg, etc. All first frade com ponente-7 stages-is transsotore and 2 diodes, ainperdepsitive ferrite rod nerlal, fne tone moving coil epenker, also Personal Earpjece with switched socket for private listening. Rasy build planit and parte price liet, $1 / 8$ (FREE^{2} with parta).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH 3^{*} SPEAKER AND EARPIECE Attractive case with red speaker grille. Size 61 x $4 \frac{1}{x} \times$ liln. Fnlly tunable. 7 stages- 5 tranalators and 2 diodes, ferrite rod aerlal, tuning condenser, Folume control, fine tone moring coil speaker also Ilsteniag, Ali first grade components. Easy bulld plans and parts price last 1/6 (FREE with parth).

uper seven

THREE WAVEBAND PORTABLE WITH 3 in . SPEAKER
Attractive case slze $7 \% \times$ B $\%$ Illn. With gilt fittingr, The ideal radio for home, car or outdoory. Covers Medium and Long Waves and Trawler Band. Specisl circult incorporating 2 R.P. Stages push pull ontpat, ferrite rod aerial, 7 tranaibtore and 2 diodes, 3 in. speaker (will drive larger bulld plans and parto. Prlee llat 2j- (FREE with parts). (Personal Earplece with awitched socket for private listening $5 f$-extra.)

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractlve case with gitt attinga, bize $7 \frac{3}{x} \times 5 \times$ $1 \frac{1}{1} \mathrm{~m}$. World wide reception. Tunsble of Medlunt and Kong wavea, two ghort waves, Trawler Band Plus an extra M. W, band for easier tanlag of Luxemboarg, etc. Sensittve ferrite rod zersal and telescople aerial for Short waves. All top grade components. 8 afages- 6 trapsistors and 2 dilode lacluding Micro-Alloy R.P. Transigiors, ete (Carrying strap 1/6 extrs.) Easy bulld plans and parta price list 2/- (FREE, with parta). Peanona 8/- extra.)

Total building costs 4.4/6 P. \& ${ }_{3 / 6} \mathrm{P}$.

Total building costs

Total building costs

Total building costs

Extra M.W. band for easier tuming of Luxembourg, efc.
Built-in ferrlte rod aerfal for Medium and Lonk Waves. What Wies-can be angled and S Section 22 in. chrome-plated telescople aerlal for Bhort Wirves-can be angled and
rotated for peal 8. W. lintening. Socket for Car Aerla). Powerful push-pull ontput rotated for peak 8. W. listening. 8ocket for Car Aerlal. Powerful pueh-pull output.
7 transigtora and two dlodea ineluding Micro-Alloy R.F. Tranalators. Fampus make 7 transigtors ath two diodes including Micro-Alloy R.F. Tranalators. Famous make
$7 \times 4 \mathrm{in}$. P.M. opesker for rich-tone volume. Air spaced gavged tuning condenser. $7 \times 4 \mathrm{in}$. P.M. opesker for rich-tone volume. Air spaced gavged tuning condenaer-
Separate onfoff switch, volume control, wave change awitches and tuning control. Attractive case with band and shoulder atraps. Size $9 \times 7 \times 4 \mathrm{in}, \mathrm{approx}$. Firat-grade com-
tiong ponents. Vasy to follow instructions and diagrams make the Romine 7 al plenbure to build with guaranteed reanlts.

Total building costs
B 5 P P. \& P. Personal Earplece with switchell socket 은․ $7 / 6$ for private lieteding $5 /=$ extra.

Parts price list and easy build plans $3 /$ - (Free with parts).

NEW LOOK

melody six

8 etages -8 translatora and 2 atoules. Covers Medium and Long Waves. quality output and also with Per for quaing output and aiso with Ferional Erivate Higtening. Two R.F. Btagea private ligtening, Two R.F. Btagea Rod Aerial. Push-pull output. Fandsome pocket size case with gitt fittings. Size $6!\times 1 \times 2$ fa, Raby bult plani and parta prica list 2/f (FREE with parte).

Total building costs
$69 / 6^{\text {p. }} \stackrel{4 / 3 \text { p. }}{\text { p. }}$

RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD. Tel.: Bedford 52367 1 enclose $£ \ldots . .$. ROAMER SEVEN \square ROAMER SIX TRANSONA FIVE \qquad SUPER SEVEN POCKET FIVE MELODY SIX \square Parts price list and plans for. I Name.
Address.

IUeal for model playerg, recor players, istape 8.3 D.C. Motor. 10,900 r.p.m. at $230 \mathrm{man} . \frac{1}{2 n}$. fin. long $\times 3 / 64 \mathrm{in}$. diaниеter, 9/6, P. \& P. $2 / 6$. Ov. D.C. Gram Deck replacement motor. $2 \ln x$
81 in . diameter.
Shaft Shaft 17n. Fong X $2 /=$. FOR 30/P. \& P. $2 / 6$

have by Crumptua Earkinaon. Soingle phase 1th h.p. Motor 2900200 V, B0 cyeles. 1.3 atups, 1,420 r.p.sth. Contipuous rating. Spindle 8 \therefore Gin. Perfect conifflos, A bargain for the work bench. 80/6. Carr. [2/6.

25 \& 53 TOTTENHAM COURT ROAD, LONDON, W.1. Tel. $01-$-se $1116 / 1177 / 4584 / 7679$
Open 9-6 p.m. Monday to Saturday inclusive.
Open Tḥursday until $7 \mathrm{p} . \mathrm{m}$.

ALL POST ORDERS TO Dept. PE 1168 25 Tottenham Court Road London, W. 1 standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanies and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"May I take this opportunity to thank you for such enlighrening works and may I add, in serms, easily understood by the novice."
L. W. M., Birmingham.
" I find that the new pictorial method is so easy to understand and I will undoubtedly enjoy reading the following five volumes: thank you for a twonderful set of books." C. B., London.
"Please accept my admiration for producing a long felt want in the field of understanding Electronics, ${ }^{\text {² }}$ S. B. J.. London,
"The easiest set of manuals it has been my pieasure to srudy."
J. P. P., Taunton.

A TECH-PRESS PUBLICATION

To The SELRAY BOOK CO., 60 HAYES HILL, BROMLEY BR2 7 HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 72/-. Cash Price or Down Payment of 15/- followed by 4 fortnightly payments of 15/- each. BASIC ELECTRONICS 84/a, Cash Price or Down Payment of 15/- followed by 5 fartnightly payments of $15 /$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

Fig. 12. Layout and wiring of the d.c. voltmeter amplifler

[^2]
COMPONENTS

Resistors

Resistors		
RI	$10 \mathrm{M} \Omega$	5%
R2	$1 \mathrm{M} \Omega$	$50 \% \mathrm{H.S}$.
R3	$100 \mathrm{k} \Omega$	$50 \% \mathrm{H.S}$
R4	$4.7 \mathrm{k} \Omega$	10% carbon
R5	$10 \mathrm{k} \Omega$	$50 \% \mathrm{H.S}$.
R6	$5.6 \mathrm{k} \Omega$	10% carbon
R7	$10 \mathrm{k} \Omega$	100% carbon
R8	$47 \mathrm{k} \Omega$	$10 \% \mathrm{H}.$.
R9	820Ω	$10 \% \mathrm{H.S}$.

Potentiometers

VRJ $25 \mathrm{k} \Omega$ carbon
VR2 500Ω preset (Radiospares)

Capacitors

CI $5 \mu \mathrm{~F}$ elect. 12 V
C2 $1,000 \mathrm{pF}$ ceramic
C3 1,000pF ceramic
Miscellaneous
ICI Linear integrated circuit (d.c. coupled amplifier -SL701C). (Available direct from the makers: The Plessey Co. Ltd., Components Group, Cheney Manor, Swindon, Wiltshire. Price: 18s)
MI Moving coil meter, $100 \mu \mathrm{~A}$ f.s.d.
SKI-6 4 mm sockets, and matching plugs (Radiospares) 6 off
Die-cast box $4 \frac{3}{4}$ in $\times 3 \frac{3}{4}$ in \times lin (Electroniques 46R.043A, but see text)
Perforated s.r.b.p. $3 \mathrm{in} \times 2 \frac{3}{8}$ in
Three insulated feed-through terminals
Control knob
6B.A. screws and nuts
on this range and adjusting VR2 until the meter read correctly. On the 10 V or 100 V ranges the instrument can be zeroed with the input open or short circuited since the input resistance (1 megohm or 10 megohm) is high enough in comparison with the 10 kilohm feedback resistance to not affect balance conditions. On the 1 V range this is not quite so, and there is a shift of 2 per cent of f.s.d. between open and short circuit conditions. For the most accurate results this range should be zeroed with the leads short circuited.

Once the zero is set, drift is negligible, and only very occasional adjustment is required.

SOME POSSIBLE MODIFICATIONS

(a) Range Extensions

Although the amplifier is intended as an addition to increase the sensitivity of a single or multirange meter, it could be constructed as a complete d.c. voltmeter (see also. under "Construction"), and a meter scaled 0-I and $0-3$ could be employed with advantage to give ranges of $1,3,10,30,100 \mathrm{~V}$ f.s.d. (making the 300 kilohm resistor up out of 120 kilohm and 180 kilohm in series, and making the 3 megohm resistor up out of 1.2 megohm and 1.8 megohm in series).

(b) ImA Meter Increased to $100 \mu \mathrm{~A}$ f.s.d.

The meter series resistor should be decreased to ! kilohm and the input resistors chosen at 10 kilohms/ volt.
(c) ImA Meter Increased to $10 \mu \mathrm{~A}$ f.s.d.

Again the series resistor should be decreased to I kilohm, the input resistors need to be chosen at 100 kilohms/volt. To obtain this current gain of 100 times VR2 has to be reduced to 100 ohms and R9 reduced to about 47 ohms. The maximum offset is $180 \mu \mathrm{~A}$ which is $\frac{1}{}$ f.s.d. and the existing balance control values should still be suitable.

(d) $100 \mu \mathrm{~A}$ Meter Increased to $\mathrm{I} \mu \mathrm{A}$ f.s.d.

The meter series resistor should be left at 10 kilohm, while the input resistors have to be chosen at I megohm /volt. VR2 has to be reduced to 100 ohms with R9 at 47 ohms. The maximum offset is now $180 \mu \mathrm{~A}$, which is well over f.s.d., and there will be some difficulty in zero setting. One solution would be to retain the 25 kilohm potentiometer and series resistor but add an extra 1 kilohm potentiometer in series as well, the former becomes the coarse zero with the latter the fine zero. A more elegant solution would be to use a helical potentiometer of 10 kilohms with a suitable series resistor chosen to give a balance about zero.

Once set, the balance is reasonably stable with temperature, and would only need to be adjusted every (say) ten minutes, the difficulty is that a single turn potentiometer does not have sufficient resolution, rather than that the circuit drifts with temperature!
Next month: A fixed frequency sine wave test oscillator, based on the same type IC.

Practical Gift for a practical man!

A full-year series of PRACTICAL ELECTRONICS issues delivered by post each month would be an ideal Christmas present. Why not give a subscription to a friend? He would certainly find the magazine just as interesting as you do and each issue would remind him of your good wishes.
But don't think too long-Christmas is very close. Act now and send you friend's name and address, together with your own and a remittance to cover each subscription to: Subscription Manager, Practical Electronics (Z), Tower Housé, Southampton Street, London, W.C.2. We will despatch first copies to arrive in time for Christmas, and send an attractive Christmas greetings card in your name to announce each gift.
RATES (including postage) for one year (12 issues), United Kingdom and Overseas, $£ 22 \mathrm{~s} 0 \mathrm{~d}$.
To avoid disappointment, make sure of your own copy by placing a regular order NOW with your newsagent.

A Hi Fi Microphone that can be used with looft of cable without electrostatic or magnetic interference

CRYSTAL microphones are generally viewed with scorn in the hi-fi fraternity, an image well deserved by the majority. For while some of the more carefully designed examples are capable of natural, wide range reproduction and, price for price, can be superior to dynamic types, there remains one serious disadvantage: the capacitative nature of the crystal element limits the length of the output lead to a maximum of about 10 ft . More than this will progressively attenuate the signal.

Also, a very high input impedance is required of the associated amplifier to achieve full bass response, and because of this the circuit becomes sensitive to electrostatic hum pick-up and cable-handling noises. To add to our difficulties, the better the acoustic quality of the microphone, the lower will be its output!

F.E.T. PRE-AMPLIFIER

This article describes the construction of a low-noise f.e.t. pre-amplifier designed to do justice to the wide response of a specified crystal microphone insert, and physically small enough to be mounted as an integral unit with the insert and battery in a convenient metal tube.

Used in this way, it completely overcomes hum pickup and permits the use of a long output cable, but it can alternatively be housed in a larger case and equipped with an input socket for use as a general purpose audio booster having a voltage gain of at least 25 (28 dB), suitable for feeding valve or transistor equipment. It will handle inputs of up to 50 mV and the frequency response is flat from 10 Hz to 100 kHz .

CIRCUIT DESCRIPTION

The circuit (Fig. 1) consists of a common-source f.e.t. stage, TR1, having an input impedance of around 5 megohms (recommended value for the insert used), direct coupled to an emitter follower, TR2. This has a voltage "gain" of slightly less than unity but, because of 100 per cent negative feedback, reduces the signal impedance to less than 2 kilohms.

The input series resistor R1, in conjunction with the gate-to-source capacitance of the f.e.t., forms an r.f.
stopper. This was found to be necessary when using the prototype next door to a radio taxi base station, when broadcasts persisted in breaking through despite the excellent linearity of the f.e.t. and the screening properties of the tube.

With this potential source of trouble overcome, the microphone is immune to all forms of interferenceboth electrostatic and magnetic. To prove the point, the prototype has been tested alongside a high-power radio transmitter, sitting on top of a transformer carrying 500 W , and feeding a tape recorder through $100 f t$ of unscreened flex.

BATTERY SUPPLY

Current drain is less than 0.5 mA and the circuit will operate consistently to a supply end-point of 15 V , thus obtaining good service life from the $22 \frac{1}{2} \mathrm{~V}$ battery. Resistor R5 provides a charging path for C2.

Fig. I. Circuit diagram of the transistor-amplified microphone. The source, gate and drain of the f.e.t. (TRI) correspond functionally to the emitter, base and collector, respectively, of conventional bipolar transistors

COMPONENTS

Resistors

RI $3 \cdot 3 \mathrm{k} \Omega$	R4	$22 \mathrm{k} \Omega$
R2 $5.6 \mathrm{M} \Omega$	*R5	$47 \mathrm{k} \Omega$
*R3 27k Ω	R6	$100 \mathrm{k} \Omega$
All 10\%, IW carbon. noise types	*R3 and	R5 shoul

Capacitors
$\mathrm{Cl} 40 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C2 $8 \mu \mathrm{~F} \quad 12 \mathrm{~V}$ elect.
Transistors
2N3819 n-channel field effect transistor
2N3707 npn silicon
Insert
XI Acos 39/I crystal (Henry's Radio)

Miscellaneous

Tube: brass, copper or brass-clad steel, $\frac{7}{8}$ in bore \times approx. $4 \frac{1}{2}$ in long. Steel strip, approx. 8 in long $\times \frac{1}{4}$ in wide. Cartridge-type connector. Polyshrink tube No. 50 if required (black or white, sold in multiples of 1 ft), Home Radio. Piece of Veroboard, I $\frac{1}{4}$ in $\times \frac{3}{4} \mathrm{in}$. 4B, A. solder tag. Thin p.v.c. flex.

From the stability point of view, no capacitor is required across BY1. But as a safeguard against the occasional battery that causes frying noises as it nears the end of its life, a $10 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic could be connected between holes $A 7$ and $E 8$ on the circuit board (see Fig. 2), with the positive end taken to A7. This measure was found to be necessary with only one of the large number of batteries that died prematurely while voltage and current adjustments were being made to the prototype, and was therefore omitted.

AMPLIFIER CONSTRUCTION

The amplifier occupies exactly half the length of the Veroboard presented with last month's issue of Practical Electronics-so there's sufficient material for a (spaced) stereo pair of microphones if desired!

Cut off a portion measuring five strips wide by eight holes long. After making the appropriate breaks in the copper (refer to Fig. 2), the components can be soldered in, starting with R1 and ending with the transistors.

View of the completed transistor microphone prior to insertion in the metal tube. it is important to insulate the amplifier board from the metal sub-assembly.

Fig. 3. Construction of the transistor microphone, with battery and metal cover removed

MECHANICAL CONSTRUCTION

The drawings (Figs. 2 and 3) and photographs give most of the constructional information necessary. The amplifier and battery are mounted on an S-shaped subframe of mild steel, carrying the microphone insert at one end and a circular block of wood plus a made-up on/off "switch" at the other (Fig. 3). The case is a $\frac{7}{8}$ in i.d. thin-walled steel or copper tube (it must of course be metallic) secured by two screws into the wood block. The tube is grounded by contact with the rim of the insert.
The length of the sub-frame, and the quantity of strip needed to make it, is a little unpredictable because the radius of the bends will vary from one constructor to the next. Start with slightly more strip than necessary and cut off the excess after making the final bend. After drilling the appropriate holes and attaching the insert and wood disc, the assembly can be measured and the tubular case trimmed to size.

The wood disc in the prototype was cut with a hacksaw from a piece of whitewood $\frac{3}{8}$ in thick and filed to shape, but constructors who take pride in their carpentry or who own a lathe will no doubt use their own methods.

FITTING THE INSERT

When connecting the amplifier to the insert on no account make a direct soldered connection, because the heat will immediately dissolve the crystal. Use a gramophone cartridge type connector, or trap the lead under a piece of plastic sleeve pushed over the "live" post. Note that the "earth" pole is integral with the case and need not be used, as continuity is achieved via the central fixing screw and 4B.A. tag.

FINAL FINISH

Various finishes are possible. The tube can be given a "satin" finish by twisting it in a wad of wire wool and protecting with a couple of coats of clear lacquer, or it can be painted.

For the sake of trying a new material, the prototype was sheathed in black "Polyshrink" (available from Home Radio), which is a soft plastics tubing that shrinks dramatically when heated. The correct size is No. 50 , suitable for covering objects of 0.8 in to 1.25 in diameter. A particular advantage of the material is its ability to damp handling noises.

View of the completed transistor mierophone

USING THE MICROPHONE

Before setting up the completed unit for trial one most important point must be noted. The amplifier will not function until the contact adhesive used to attach it to the sub-frame is completely dry. The prototype produced a terrifying rumbling noise caused by leakage through the damp glue from the supply line to the high impedance input, and had to be left overnight for the noise to subside.

The specified insert is "pressure operated" and therefore non-directional over most of the frequency range, At higher frequencies however, it has a greater sensitivity to sounds arriving directly on axis, which can be useful in balancing the "presence" of individual voices or instruments.

Average male speech at a distance of 12 in from the microphone produces a peak level of about 70 mV at the amplifier output, and at 3 ft an upright piano (played forté) produces 400 mV , so that normally the microphone will be used in the line, or radio, socket of a recorder or amplifier.

Fig. 4 shows a simple attenuator to prevent overloading the first stage of tape recorders having only a microphone socket. Without the attenuator, the output is sufficient to feed a simple passive mixer.

Although the output impedance of the microphone is effectively 2 kilohms so far as immunity to electrostatic hum pick-up on the line is concerned, it should not be operated into a load of much less than 5 kilohms. Doing so will cause distortion on peaks and bass loss through C2.

Fig. 4. An attenuator to prevent overloading of recorders that have only a low-level microphone socket. With $R b=2.7 \mathrm{k} \Omega, \mathrm{Ra}$ should be around $22 \mathrm{k} \Omega$ for valve recorders and $220 \mathrm{k} \Omega$ for transistor models. Components should be ot the recorder end of the microphone output cable, and can probably be mounted inside the plug

PERFORMANCE DETAILS

Judged subjectively the microphone has a most satisfactory performance, with a noise level far lower than could be achieved with the same insert feeding a typical valve pre-amplifier. The maker's literature for the 39/1 insert quotes a frequency response flat from 40 Hz to $15,000 \mathrm{~Hz}$, with a broad peak of 5 dB at about 8.5 kHz . Played through wide-range equipment, the peak is noticeable as a slightly metallic quality on orchestral instruments, but this is the only clue to the "economy" nature of the device.

The battery should last at least six months, used for an hour every day or for eight hours each weekend. Expressed another way, 3 s worth of energy will allow recording of 1207 in reels of $1 . \mathrm{p}$. tape at $7 \frac{1}{2} \mathrm{in} / \mathrm{sec}$. The complete transistor microphone with battery and flex costs less than $£ 210$ s.

UNLIMITED!

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

PHASE SPEAKER

Afier reading the article in Practical Electronics on Musical Phase, September issue, I thought my method of making phased recordings may be of interest.

The signal to be phased is amplified in the normal way, but the output is fed into an extension speaker with the microphone of a tape recorder mounted as shown in the diagram below.
With the selected programme playing and the tape recorder on record the speaker and microphone are moved towards and away from a sound reflecting surface.

When the speaker and microphone are one foot away from a wall the microphone picks up sound
 from the speaker only. But when the two are moved closer to the wall, sound reflected off the wall, which is out of phase, is also picked up.

The only problem with this system is that the recording level on the tape recorder has to be decreased as the gap between the wall and speaker/microphone diminishes.
G. Stratton,

Dawlish, Devon.

PICK-UF ARM Complete with AcOs LP-78 Ternover ara7 and Biylit 25/4; GP67 15/-; 8tereo 35/-.

CRYSTAL MIKE INSERTS

PORTABLE

TRANSISTOR

AMPLIFIER

Many uses, Iotercoms, Practice. Tolephonts or Record Pla jer Amplifior. ONE WATY OUTPUT Wooden cabinet $12 \times 8 \times$ Sin. Rexine covered two tome gray. Four trantion
 Volume control. Juch. nocket. Usen PP9 battory. PRIGE $79 / 6$ Post $5 / 8$. COLLARO BATTERY RECORD DECKS 4 speed model 8v. operated. Complete with pick-up itted stop and start. Ideal for was with above tansiator smplifers. $\quad 008$ PRICE $69 / 6$ POST THE ABOYE GRANADA AMPLTPLER ARD PLAYER WEYRAD P50 - TRANSISTOR COILS zasw of fn. Ferrith Aeria\} | Spare Cores 6

 Trilescopic P50/300 . 6 J.B. Tuning Gang
elescopic Chromo Aeria
80omm Coax 8d. yd.
tong gindtes. Midzet 8
Long spindles. Midget 8ise SEMI-AIR SPACED LIN. $\mathrm{L} / 8 \mathrm{8} 8 / \mathrm{m}, \mathrm{D} . \mathrm{P}$. $8 /-10$

$24 \times 5 \mathrm{n}$ VBROBOARD 0.15 MATRIX

EDOE CONNEOTORS 16 Way $5 /-$ - 24 Way ${ }^{7 / 6}$.
8.R.B.P. Board 0.15 MATRIX \& fin. wide od. per lio., 33in.

MAX CHASSIS CUTTER

Completo: ${ }^{18}$ biv, a punch, an Allen scrow snd key

'SONOCOLOR' CINE RECORDING TAPE

Tape 8poole $8 / 6$, Tape $8 p$ licer $5 / 0$. Leader Tape $4 / 6$.
UHIVERSAL TAPE CASSBTTES TYe CBO. OUR PRTCE 14/-.
"THE INSTANT

BULK TAPE

ERASER AND
RECORDING
HEAD
DEMAONETISER
200/250 v. A.C. Leaflet S.A.E

RETURN OF POST DESPATCH

BARGAIN STEREO PARCEL E.A.R. STEREO PLAXER OABNEET BJItable for B.S.R.

NEW
$2 / 8501$
BIIA
$2 / 3500$
$8 / 350 \mathrm{~V}$
$16 / 450$
$39 / 400$
$25 / 250$ $8 / 600$ $8 / 600 \mathrm{~V}$
$18 / 800 \mathrm{~V}$ 8

$$
\frac{4}{3}
$$

$$
\begin{aligned}
& 16 / 42 \\
& 39 / 42 \\
& 25124 \\
& 50 / 5
\end{aligned}
$$

OAR ELESO	
218	\%
$2 / 8$	50
81-	8
$3 / 9$	
1/8	16

 950 mP 25V $\%-500,1000 \mathrm{mP} 12 \mathrm{~V}$ 9/6; 2000 mP 25v $7 /$ 50Y PAPER TUBULARS
$500 \mathrm{~V}-0.180,0.52 / 0 ; 10.1$
$1,000 \mathrm{~V}-0.001,0.0090,0.0047,0.01,0.08,1 / 6_{;} 0.047,0.1,8 / 8$ SILVER MCA, Close tolerance 1%. 5 -500p $1 /-580-2.200 \mathrm{p}$ $2 i-\mathrm{F} 2,700-5,600 \mathrm{pF} 818 ; 8,800 \mathrm{pF}-0.01$, mid $8 /-$ each

 SHORT WAVE. Sinkle 10 pF . $25 \mathrm{pF}, 60 \mathrm{pF}$, 75pF, 100 pF $160 \mathrm{pF}, 5 / 6$ each, Cas be ranged. Copplers 9 ga each.

 CORTACT COOLED ¿wava coma rob 80 ma $1 / 6$. Full wave Bridge $75 \mathrm{~mA} 10 / 0 ; 100 \mathrm{~mA} 19 / 6 ; T \mathrm{TV}$ rects, $10 / \mathrm{F}$. RESTSTORS. Preferred ralues, 10 ohms to 10 mes
 Ditto 5%. Prolorred values. 10% ohms to 28 meg., mid. $2 /$ 5 watt 10 wat $\}$ WRRE-WOUKD BESISTORS 15 watt $10 \mathrm{~K}, 16 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 88 \mathrm{~K}, 10 \mathrm{~m}$ FULL WAVE BRIDGE CEARGER RECTIVIERS 6 or 12v, outpati. 11 smp. 8/9; 2a., 11/8; 4A., 17/B, CHARGER TMAFBFORMEES. P. \& P. $8 /=$ Ingai $200 / 250 \%$
 WTRE-WOUND 8-WATT FIRE-WODND 4 WATI
 Carbon 80 K to 8 mbg . $4 / 6$ SO OHMs to $100 \mathrm{~K} ., 7 / 6$ VALVE HOLDER8, MOULDED 9d: OERAMIC 1/-EACE NEW MULLARD TRANSISTORS 6/- each OC71, OC72, OC81, OC44, OCA5, OC171, OC170, AF137 REPAYCO TRAHSISTOR TRAMSPORMER TT45. Push Pull Drive, $0: 1$ CT, 6/o, TT48 Ontpat, CT8:I TT49. Interalage, $20: 1$, , $/-1$ Tr62 Oatput 8 ohms, $4.5: 1$, B/TRAFSIBTOR WAIES POWER PACE, FAKOUS MAXE. FULLY GMOOTREED FULL WAVE CIRCUIT $49 / 6$

MAINS TRANSFORMERS

Pont 50

 $8,8,9,10,12,15,18,24$ and 80 . $8 t 2 \mathrm{a} .4 \cdots \cdots$,

 60w. 18/6; 100w. $30 /-: 500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w}, 175 /$. COAXIAL PLDG 1/3, PANEL SOOKETR 1/8. LINE BOCEETS 2/- OUTLEN BOXRA, SURPACE OR PLUS.
 JACK 8OCEET 8td, open-circutt $2 / 6$, closed ofreult $4 / 6$; Chrome Lead socket 7/8. DIM 8-pht 1/8, 5optm 8/mi Lesd $3 / 6$.
 $3-$ pin $3 / 6$; 8 -pin $5 / 2$
WAVECGIAFGE SWITCHES WITH LONG EPITDLRS. 8 p. 2-way, or 2 p. b-wiy, or $8 y .4$-way $4 / 8$ esch. 1 p .12 -why, or 4 p . 2 wa, or 4 y .3 -way, 4,8 each Wavpehange uมAKITSH $1 p .12-$ way, 2 p. 8-wis 8 p. 4 -way,

 MAJOR
$30-14,500$ e.9.8., Iatent double cone, woofor and double cone, woolor and
tweeter bons together with i rgecial BAKER magrat seacmbly heving a"flax density of 14,000 ganar and a total Ilux of 145000 Maxwelis. Base 20 watts. Voice coils nvaitithe 8 or 8 or 15 obms. Peice 48 or Modple 1H2, 8B-17,000 o.p.t. with tweeter, invisover, banions. 110.19 .6 LOUDSPEAKEB CABLEET WADDIFG 18in wide, 2!61t BAKER " GROUP SOUND" SPEAEBRS-PORT EREE,

E.M.I. Coni Tweeter 812 n square, $8-80 \mathrm{kef} 10 \mathrm{~W} 176$. Cuslity Horn Twbetera 8 -18ire/日, 10 W 2日/6. Croasover 18/8,
 15/6 8ach; $8 \ln 29 / 6 ; 81$ in $18 / 6 ; 10 \ln 80 / \mathrm{m} ; 181 \mathrm{n}$, Double cono
E.J. I. Donble Come $18 \frac{1}{2} \times 8$ in, 8 or 15 ohm models, $45 / m$, GPECIAL OFFER! 8 ohm gian 80 ohm, 2 iln, gifa:
 GPEAKEER FRETT Tygan Firious colour, G2in. Fide, from

ALI PURPOSE HEADPHONES H.R. HEADPHOHES 2000 ohm Gowtrl Yurpose E.R. HEADPFONES 2000 ohma 8 uper Senflive. LOW RESISTAFCE READPRONE8 8-8 Ohms. DE LUXE PADDED $8 T E R E O$ PHONE 8 ohma

MINETTE

 AMPLIFIER
Yos ANL Becord Playets,

 Chssis $7 \times 8+\times$ in high. Vaives ECL82, E280 18 munth guarantes. Quality ontput 8 ohm matching. Bargatin ofter completo with engraved control panel,

ALL EAGLE PRODUCTS

SUPFLIED AT LOWEST FRIGIES
 BARGAME DE LUEE TAPE SPIJCKR Cats.
trims, ioing lor editing and rapairi. WHA 8 blades. $17 / 6$ BARGAIX 4 CEAENEL TRANSIRTOR MTXEER. murical highlights and sound olects to recordiggi. Will mix Mierophone, recordi, tape and tuxer with separate controls into single output.
BARGAL TRAASSISTOR FM-LWW-MW TUNER: 10 semt
 2000 metres. Size $2 \frac{1}{2} \times B \times 63 \mathrm{in}$.
 40-PAGE EAGLE CATALOGUE 5/- Post Free \star RADIO BOOK8 \star (Postage 9d.)
Practical Transistor Receivern

Praticai Btereo handibook..........ail
Eugh Fifelity Spealker Znclosures eñ Pans
Radio Yalva Gotile, Books 1, 2, 8, or 4 et. $3 /-1 \% .6$ en. Practical Radio Insido Out.
Shortwava Transistor Receiveri
Transirior Communication Sets
Modern Transitortor Circuitt for Rogioners

Sub-Ministure Trannigtor Roceves

\#оw to recaive Foreigu T.V. programmon on jour jot
How to receive Yoreign
SANGAMO 3 inch SCALE METERS

POGEET KOVIFG COIK MatMNERERR, $49 / 6$

BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Black plastic cabinet, gott. lead nad

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE

ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easler to learn.

[^3]FOR FREE HANOBOOK POST THIS COUPON TODAY I.C.S. Dapt. 151, JNTERTEXT MOUSE, PARKGATE ROAD, LONDON, S.W. 11

NAME
ADORESS \qquad

S-DeC BREADBOARDING

- Fast, reliable, solderless circuit assembly
Contacts last indefinitely
- Use ordinary components again and again
- Test all the circuits in the magazines

This breadiboard is used professlonally by development engineers throughout the world. Over 80% of current production is exported.
A booklet of projects is tacluded with each kit giving constructlon detalls for a variety of circuits such as amplifiers, oscillators, VHF iransmitter, radio, etc.
\$-DeC Kit: One S-DeC. With Control Panel, Jly and Accessories fot construction detalis for a variety of clrcults. $29 /$ ed retall.
ABeC IIt: Four S-DeCs with two Control Panels, Jtgs and Accessories and the booklet "S-DeC Projects" all contalned in a strong, attractive, plastic case.
Ideal for the professional user, 25.17 .6 retail.

AVAILABLE FROM LEADING SUPPLIERS
or in case of difficulty from

S.D.C. PRODUCTS (Electronics) LTD

THE CORN EXCHANGE, CHELMSFORD, Essex Telephone: Chelmsford (OCH 5) 56215

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $82 / 6$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE19)
54 Dundonald Road, London, S.W. 19

SILICON RADIATION DETECTOR

The NUTRONICS semiconductor radiation detector ND7 is a compact, low cost, versatile radiation detector with a window area of $7 \mathrm{~mm}^{2}$ and Alpha energy resolution of $50-100$ Kev. FWHM, which has been expressly designed for use in educational establishments and by amateur experimenters.

The NUTRONICS semiconductor radiation detector ND7 detects Alphas, Beta, Gamma Radiation, Fission Fragments, X-rays and Protons.
Send for technical data sheet.

Tel. 01-874 8608

NEW HI FI CENTRE

A high quality mains powered integrated transistor stereo amplifier and pre-amplifier has just been introduced by Audio Components and Services, Sound Studios, Bell Hill, off Crown Hill, Croydon, Surrey.

A printed circuit board complete with heatsinks and control mounting together with a circuit diagram is available at 50 s . Components as required, or the whole project in kit form, are available at $£ 12$.

There are six transistors in each channel and an output of $6 \frac{1}{2}$ volts into 8 or 15 ohm loads is achieved from 250 mV input. Input impedance is 800 kilohm and will accept up to 4. volts without overloading. All measurements are r.m.s.

A selector switch provides for gram., radio and tape positions and there is a tape take-off socket. The tone control circuits are similar to that shown in the P.E. data booklet Transistor Circuits (see April issue).

It is claimed that the amplifier can be constructed in six hours using a d.c. voltmeter and the usual constructional tools.

Readers in the Croydon area may also be interested to learn that Audio Components and Services intend to develop the second floor as a large service department specialising in audio service and applications. Also, if there is sufficient interest, space and facilities could be made available for enthusiasts for increasing the scope of their hobby.

NON-WALK FEET!

The term self-adhesive, high friction, and odourless is given by West Hyde Developments Ltd., 30 High Street, Northwood, Middlesex, to their range of small feet for instrument cases. They are made in a nonplasticised, resilient, high hysteresis material, having a high friction co-efficient-their description, not ours.

Suitable for instrument cases, domestic equipment, radios, drawer bumpers, etc., these feet are selfadhesive or screw fixing or both and will not mark or discolour the surface they are placed on. The feet measure $\frac{5}{8}$ in diameter by $\frac{3}{8}$ in high, with a recessed countersunk hole for a 6BA screw in the centre.

It is claimed that if the feet are fixed to a case which is temporarily placed on a sloping surface it will not slip or walk.

EMERGENCY LIGHT

A portable lamp with bright allround illumination has a multitude of uses around the home, is indispensable when camping and is a useful accessory for the "shack" in case of power failure.
The Tildawn hurricane lantern, powered by standard dry batteries, provides just such a light from a sin high virtually unbreakable polypropylene dome. Very stable when standing on its wide base, it will also

Items mentioned in this feature are usualiy available from electronic equipment and component retailers advertising in this magazine. However, where a full address is Eiven, enquiries and orders should then be made direct th the firm concerned.

Belling Lee miniature terminal

Instrument case feet by West Hyde Developments

Hurricane Iantern marketed by
Harris Marketing

hang by the handle, body inverted with the globe downwards, or horizontal with the base flat against a wall. Designed to withstand rough treatment, this robust lamp can be dropped or even thrown across the floor without apparent damage. Takes one or two AD28 or similar batteries, giving up to 50 hours illumination.

The Tildawn Lantern retails at 32s 6d plus batteries and is available from electrical stores. In case of difficulty contact the sole distributors, Harris Markêting, 16 Hillcroome Road, Sutton.

MINIATURE COMPONENT

A series of miniature terminals, no thicker than a pencil, with a current rating of 10 amperes and a breakdown voltage greater than 4 kV d.c., is announced by Belling and Lee Ltd., Great Cambridge Road, Enfield, Middlesex.

Known as type L1726, these new terminals are only a quarter the size of standard terminals but have all the same features. These include a captive head available with a choice of six standard colours, a socket in the top for plugging in connections to extra equipment, and a cross-hole in the clamping gap which will accept wires up to 15 s.w.g.

The moulded panel bush is keyed to prevent rotation. The stem terminates in an integral solder pin for rear panel wiring.

LITERATURE

A new Catalogue No. 137 describes the complete range of products manufactured by Arcoelectric Switches Ltd.

Divided into seven sections, covering transformer signal lamps, switches, neon indicators, and signal lampholders, etc., the catalogue lists numerous new styles and the section on car switches and indicators has been expanded.

Copies of the new 76 page catalogue can be obtained from Arcoelectric Switches Ltd., Central Avenue, West Molesey, Surrey.

NOTICES

LST Components inform us that due to an enormous response to their advertisement all stocks of Texas reject transistors were exhausted with the publication of the September issue.
Unfortunately, due to an error the advertisement in the October issue was not corrected and the same item was repeated.

The manufacturers of Timac automatic timer switches, Kangol Ltd., have appointed Electroniques, Edinburgh Way, Harlow, Essex, as distributors of their timing controls.

Both the 3-pin plug-in types and the permanent wired-in versions are now stocked for immediate dispatch from Electroniques.

A police observer using a hand-portable possive sight Infro-red viewer
think of it as radio waves which pass through physical obstructions, whereas visible light requires line of site communication.

This property is extremely useful, as we shall see later, in that an infra-red beam can be directed to a given point without being seen. High power lamps can be used here with a black opaque screen to cut off visible light rays. Clear glass will pass all visible light but will only pass near infra-red rays up to about 2.5 microns.

If transmission in the intermediate and far infra-red regions is required certain semiconductor materials can be used. Up to recent times germanium and silicon have been used, but now gallium arsenide is proving very valuable.

It is possible to detect infra-red by absorption and conversion of heat. However, this can be a cumbersome process, as was shown by early experiments where a blackened thermometer was used.

By M.A.COLWELL

NFRA-RED radiation occurs in similar form as visible radiation, but occurs in that part of the electromagnetic frequency spectrum below visible light (see Fig. 1). Therefore it has the properties of wavelength and frequency just as visible light has, but because its wavelength is longer, it is not visible to the naked eye.

However, light from tungsten filament lamps contains a very high proportion of infra-red (about 90 per cent) and is useful for experimental and industrial work whereby, with the use of filters, the visible light can be made invisible (Fig. 2).

When the wavelength of any kind of electromagnetic radiation becomes very short, i.e. for frequencies above about 3,000 megahertz, it is more convenient to refer to wavelength in microns, micrometers or Angstroms. The infra-red region lies in the 0.75 to 10^{3} microns range, one micron being equal to one 10^{-6} metre, although the division between infra-red and microwave frequencies is not clearly defined.

This region is further sub-divided into "near" (0.75 to 1.5 microns), "intermediate" (1.5 to 10 microns) and "far" (beyond 10 microns) regions, while above 300 microns it is often referred to as the "submillimetre" region.

PROPERTIES OF INFRA-RED

Electromagnetic radiation in the infra-red region is sometimes able to penetrate objects which would otherwise stop visible light. Here it is important to

Fig. I. Electromagnetic spectrum

More lately, thermocouple detectors or photoconductive cells were made to respond over a wide frequency range, then perhaps filtered as required. This method is disadvantageous because the response to temperature changes in the transmitting object were too slow.

Current developments illustrated in this article show examples of detection of pure infra-red radiation from natural sources ("passive") and reflected radiation dependent on an infra-red beam being bounced off an object ("active").

CARRIER WAVE

There is now a new line of thinking based on the active system whereby the transmitted infra-red can be used as the carrier wave for pulse code frequency

Fig. 2. An active infra-red system consisting of an infrored source, which is a normal lamp with a fiter to remove the visible part of the spectrum, and an optical viewing system incorporating an image converter tube
modulated audio signals. Propagation is by waveguide or line of sight, the waveguide being in the form of 2 micron diameter glass fibre.

This technique (known as "fibre optics") is becoming a commercially viable proposition, although certain difficulties still remain to be ironed out. Much work has been carried at the Ministry of Technology Signals Research and Development Establishment near Christchurch in close collaboration with industry to develop a system of communication in which telephone land lines transmitting at pure audio can be replaced by glass fibre.

GLASS FIBRE OPTICS

The engineering aspect of producing suitable glass fibre is critical, chiefly in the elimination of impurities, particularly traces of iron, which gives ordinary glass the typical green appearance on its cut surface. Glass required for fibre optic communication must be "white" to avoid filtering and unnecessary attenuation, and must be of the correct dimensions.

In this, the single-mode or waveguide fibre, there are only a few possible modes of transmission and maximum bandwidth is obtained, typically $10,000 \mathrm{MHz}$ over 1 km . This type of fibre is most suitable where very wide band, single channel systems are required, such as data or telephone trunk links.

If several fibres are contained in one "cable" no insulation is necessary between each provided the physical conditions of each fibre have been satisfied. This is because the refractive index of the glass ensures that the infra-red or light beam is kept within the bounds of each fibre. Consequently, common experiences such as stray capacitance and 1.f. radiation and crosstalk are virtually non-existent in fibre optic communication. On the other hand, attenuation is at present still a problem which can be overcome by using line repeaters.

To minimise attenuation the beam must not be allowed to touch the walls. Early experiments involved the insertion of expensive servo-operated lenses at intervals along the length of fibre. More recently, it has been found that if the core is sheathed with a suitable glass cladding of lower refractive index the light will be adequately contained within the core.

Strange as it may seem, the glass fibre although only about as thick as human hair, has a high tensile strength

An infra-red optical two-way telephone using YIG (yttrium iron garnet) modulator. Frequencies up to 100 kHz and a range up to $\mathbf{2 k m}$ is obtainable
(M.E.L. LTD.)

The scene through a possive sight looking ot an intruder under overcast, starlight conditions
and is inherently flexible. If suitably protected from crushing and given a protective plastics coating, it can be inserted into cable ducts with the ease of conventional copper wire. So here we now have a 200 -core cable with an overall diameter about the same as the conventional plastics covered single-core bell wire. Consequently more channels can be fed through underground ducts than with the present copper cable.

LASER TRANSMISSION

Having looked at the link between two stations, what about the stations themselves; how does one get the signal into the fibre at one end and out at the other? The answer quite briefly is the laser and a silicon photodiode. The laser must emit a beam which can be injected into such a small diameter, must have high speed and efficiency and operate in the near infra-red region. Gallium arsenide electroluminescent sources are used in the laser which transmits at room temperature, a pulse code modulated signal. The laser beam is injected accurately near the source into the fibre end, which is sheathed in polished Perspex for laboratory convenience, and to reduce scattering on entry. The received signal is picked up by a silicon photodiode, decoded and amplified in the usual way.

By using glass fibre the laser beam is not dependent on straight line-of-sight transmission paths; indeed, there is no reason why the fibre should not be layed haphazardly or even in coil form, provided that bends and kinks are not unnecessarily severe.

TUNING THE LIGHT BEAM

Optical communications systems rely on the usual signal generation as applied to any other form of radio communication. Harmonic generation, frequency mixing and frequency tuning take place at optical frequencies. Tuning is an interesting subject on its own and when applied to laser techology the results can be in the form of pure colour generation.

Experiments at S.R.D.E. have demonstrated the ability to "fire" a pre-tuned colour beam for a fraction of a second on a white screen. Development here is still at the purely experimental stage, but apart frombeing used in signal transmission, there is the possibility of applying the technique to coloured light displays.

A narrow band source of radiation can be tuned over most of the visible and near infra-red regions of the spectrum. The tunable source results from the selective addition of a laser frequency to a frequency
from a continuum of frequencies generated by the laser in a liquid placed immediately in front of a non-linear electro-optical crystal.

NEODYMIUM-GLASS LASER

A high power Q-switched neodymium/glass laser (Fig. 3) is used to generate an intense continuum of frequencies in a 20 cm cell of carbon disulphide. As soon as the laser beam enters the liquid, it causes a non-linear increase in the refractive index of the liquid. The laser beam is forced into propagating in a region of relatively high refractive index, and is refiected in on itself at the interface between these two regions.

After a further non-linear increase in the refractive index, the laser is self-trapped and rapidly collapses into a filament, the smallest so far identified having diameters of about 2 to 5 microns. The power density in the filament is very high-about 10^{9} watts per square centimetre-leading to efficient stimulated scattering.
On leaving the carbon disulphide cell the intense. continuum and unchanged laser radiation are directed

A modified pair of binoculars used as an optical transceiver. The range is about half a mile, but the required power is minimal in comparison to conventional systems
into a lithium niobate crystal where frequency addition takes place. Tuning of the sum frequency is achieved by altering the temperature of the lithium niobate. A tunable difference frequency has also been generated so that tunable narrow band frequencies can be generated in practically the whole 0.3 to 13.0 micron spectral range.

ACTIVE LINE-OF-SIGHT

Other methods of active infra-red communication are generally based on line-of-sight transmission paths, although the modulation process is here applied to the transmitting crystal attached to a modified pair of binoculars. This method is limited in range to about half a mile, but the required power is minimal in comparison to conventional systems.
This makes the system particularly useful in environments where reflections from nearby structures would interfere with conventional systems. Examples would be in the building industry, ship's intercom and ship-toship radio telephone.
The added attraction is that the two stations, once lined up could be used for viewing as well as speech, forming a visual radio-optical telephone. The speech
modulated signal is transmitted by a gallium arsenide lamp through the right-hand lens of the binoculars to the left-hand lens of the receiving binoculars. Inside this the optical picture is passed through to the eye piece in the normal way; while the speech signal is picked up by a silicon photodiode after being deflected by a specially coated prism.

INTERFERENCE FREE

The link uses a pulse frequency modulation system at 20 kHz , eliminating the critical factors of heat haze causing signal fluctuations, hand shake or changes in daylight level. A voice operated switch is incorporated to change from receive to transmit; the system is interference free and is completely secure from eavesdroppers.

The gallium arsenide $p n$ junction in the lamp is forward biased to emit infra-red light at 0.9 micron wavelength. The range of the instrument is dependent on visibility and increases to about half a mile at a visibility of about 10,000 metres, although it is expected that improvements will be made in due course.

The foregoing principles have now been released for commercial exploitation, having been developed originally for military purpose, and are born out of the concept of using separate infra-red light beams to flood a particular scene or object for viewing with infra-red sensitive viewers.

The current state of the art in infra-red detection is expected to be put to use in industrial or civil espionage control and crime detection.

Fig. 3. Block diagram of the neodymium glass tunable laser

A typical example has been cited whereby the Thames river police are finding it increasingly difficult to make an arrest of dockside warehouse prowlers without arousing the attention of the prowler. The "telescopic" infra-red viewer can be used in pitch dark to watch the activities of an intruder. Of course, a lighted match or torch will apparently flood the infra-red scene immediately giving the security patrol an even better picture.

PASSIVE LINE-OF-SIGHT

The passive system relies on the detection of objects by their emission of temperature variance with atmospheric temperature. The photograph of the potential intruder shows up clearly with the building. It is now possible to make devices which can discriminate a 1 degree difference between an object and its background. As a result such a device will detect the presence of an animal, a vehicle or human being.

A more advanced method is the thermal imager, incorporating several detectors and a scanning system. The signal is applied to a cathode ray tube to give a visual picture from heat contrasts rather than colour and brightness contrasts.

IMAGE INTENSIFIER

Although not strictly relevant to infra-red, it is worth looking at recent development of image intensifiers because their applications are similar to those of passive infra-red detectors.

The image intensifier is a passive night vision device which can amplify light directly by 50,000 times. It is a small cylindrical encapsulation with three light intensifying modules each supplied by an e.h.t. of 15 kV (Fig. 4).

Each module is a vacuum envelope with fibre optic input and output windows. A photocathode on the inner surface of the input window emits electrons according to the intensity of incidental light. These electrons are electrostatically focused and accelerated on to a phosphor screen on the output window to give a visible image.

Fig. 4. A three-stage cascade intensifler tube.
A single module is not sensitive enough for poor light conditions; this is why three are usually banked together in a single envelope.

This intensifier needs no special lighting conditions, so true reproduction of natural light can be achieved, even in starlight conditions. The performance is dependent on atmospheric visibility, ambient brightness and contrast.
Applications lay in intensifying x-ray images, night navigation, and mierqscopy.

FUTURE POSSIBILITIES

Infra-red detection has numerous applications in industry and public life. The Ministry of Technology has released details of the work described in this article and it is expected that the following lines will be followed up on the basis of infra-red experiments already, and still being, carried out.
Tremendous possibilities in the study of wild life and nature conservation seem apparent when one is told that Vampire bats have been successfully bred in this country for the first time under close observation by infra-red.

Automatic fire alarm systems become a much more simple and reliable proposition and can double up as intruder alarms at the same time.

Infra-red radio and television links can be coupled with trunk telephone lines in the laser powered fibre optic system.

Closed circuit broadcasting in a room equipped with a centrally placed gallium arsenide transmitter and infra-red detection equipment overcomes problems of multi-image refiection and absorption experienced from conventional radio devices; no wires are needed.

Telephone tapping is avoided by using the infra-red modilated binocular and fibre optic systems.

Development work is still going on at S.R.D.E. and co-operation from manufacturers including Barr and Stroud, English Electric, E.M.I., Elliott Bros., Hilger and Watts, Marconi Instruments, Mullard, Plessey and 20th Century Electronics, has brought to light some advances that could well place infra-red techniques in its rightly deserved place in civil communications.

Acknowledgement is made to the Ministry of Technology, S.R.D.E. Christchurch, for illustrations used in this article.

NEXT MONTH!

EIECTRONIC GAMES TO BUILD FOR CHRISTMAS

Keep the party going with these fascinating games. Can be constructed from full instructions in next month's issue.

ELECTRONIC STOCKMARKET

Easy to build and absorbing to play, bringing four or more people all the thrills and hazards of stock and share investment. Monetary gains and losses are represented by charges stored in "Cash" and "Bank" capacitors, the taxman takes his toll, and the winner is the first to make a million.

FLIP-FLOP

The new electronic version of "heads or tails"; can be made on the P.E. Printed Wiring Board. A pocket size novelty you can carry around to play at any time, wherever you are.

ALSO

DOOR CHIME

Another Printed Wiring Board project, producing a pleasing vibrating tone when the doorbell button is pressed.

The article describes a variable-tempo rhythm generator which can be used to accompany a piano, organ or other musical instrument.

The percussive effects reproduced electronically are high and low bongoes, short and long brushes, and bass drum.

The rhythm selector switches provide instantaneous choice of any one of 12 popular dance rhythms each one being both variable in its tempo and instrumental colour to suit the needs of the music or moods of the instrumentalist.

OPERATION

The principle of operation of the rhythm generator is most easily described by reference to the block schematic diagram shown in Fig. I. The heart of the system is a twisted-ring counter driven by a variable frequency clock-pulse generator. The counter has eight outputs and is so arranged that positive-going pulses appear on the output leads in sequence and in time with the clock pulse generator. A start switch S1, ensures that, on switching on, the first pulse occurs on output 1 , the next pulse on output 2 and so on up to pulse number 8. The ninth pulse appears on output 1 again and the whole sequence is repeated indefinitely.
The positive-going pulses are fed to two sets of eight differentiator circuits which allow short positive pulses to pass via the rhythm selector switch to the various
sound generating circuits. The two sets of differentiators, set 1 and set 2 , are controlled by a bistable circuit (bistable 5) which changes state for every complete cycle of the ring counter. Thus the first eight pulses are derived from differentiators in set 1 whilst the second eight pulses are derived from set 2.

A sequence switch, S 2 , is connected to the bistable and may be used to over-ride the alternating set $1 /$ set 2 sequence to give either set 1 sequence only or set 2 sequence. It will be seen Iater that this facility gives a possible total number of rhythms which is greater than the number of positions on the rhythm selector switch.

For certain rhythms involving $3 / 4$ or $6 / 8$ time the basic counter is required to have only 6 pulses for each complete cycle and this is accomplished, when required, by part of the rhythm selector switch, which modifies the counter interconnections.

The arrangement given is that used by the author but the system is easily modified to suit individual constructor's requirements.

CLOCK GENERATOR AND RING COUNTER

The tempo of the selected rhythm is governed by the frequency of the clock-pulse generator shown in Fig. 2. The circuit is a conventional astable multivibrator and control of frequency is obtained by varying the voltage supplied to the base resistors by means of VR1. To

Fig. 1. Block diagram of rhythm generator

Generator
 By P. R. Allcock

Beguine!

Fig. 2. Circuit diagram of clock pulse generator, twisted ring counter and sequence gating bistable

simplify the design of the counter circuit the pulse amplitude was reduced by R6 and R7.

Coupling to the ring counter (bistables $1-4$) is by way of capacitor C3 which ensures adequate rise time for the clock pulse generator's output when loaded by the cascaded bistables.

Since bistables 1 to 4 are identical in mode of operation the action of bistable 1 will only be considered before examining beat generation in the whole counter.

The circuit has two stable states TR3 on and TR4 off which is the reset state, and TR3 off and TR4 on which is the set state. Before operation of the start switch S1 the circuit is held in its reset condition by diode D2 which clamps the collector of TR3 to earth.

START SWITCH

Operation of the start switch allows clock pulses to pass to the base of TR3 or TR4, the routing being dependent on the voltage existing at the points R and S. These two points are connected in the complete circuit to the collector output O1 and O2 of bistable 4. Reference to Fig. 3 clarifies these bistable interconnections.

Since at any instant one transistor of each bistable will be on and the other off the potentials fed to S and R will be different and it may be seen from the circuit that the two possible potentials are -12 V and -3 V approximately (corresponding to off and on conditions respectively).

STEERING CIRCUITS

If we assume that the potential at S is -3 V and that at R is -12 V , the clock pulses arriving at C 5 and C 6 are differentiated by C6R13 and C5R10 but due to the potential difference between S and R only D4 allows pulses to pass. For D3 or D4 to conduct, the clock pulse amplitude must exceed the potential difference between S and TR3 base, or R and TR4 base, respectively. The first pulse steered via D4 to TR3 base turns TR3 off and TR4 on, that is the bistable is
set. Subsequent pulses have no effect as long as the voltages at S and R are maintained. In normal operation the voltages at S and R will eventually change over due to a change of state of the bistable to which they are connected and the next clock pulse arriving at C5 and C6 will be steered via D3 and reset the bistable to its original state.

The pattern of operation for the first four bistable circuits obviously depends on the instants at which the voltages on S and R are changed over for each bistable element and this in turn depends on the way the elements are interconnected. To cater for a wide variety of rhythms it is necessary to have counter operation corresponding to both $3 / 4$ and $4 / 4$ time at least. Certain rhythms may need other counting sequences and this is considered later.

BASIC 8-BEAT COUNTER

The eight-beat counter can be used to generate a wide variety of rhythms involving $2,4,8$ or 16 beats to the bar and the required form of interconnection is shown in Fig. 3. The sequence of operation for this arrangement, assuming that the start switch has just been opened, is as follows:
With all bistables initially reset.

$$
\begin{array}{cc}
\text { Clock Pulse 1-Set B1 } & \text { 6-Reset B2 } \\
\text { 2-Set B2 } & \text { 7-Reset B3 } \\
\text { 3-Set B3 } & \text { 8-Reset B4 } \\
\text { 4-Set B4 } & \text { 9-Set 1, etc. } \\
\text { 5--Reset B1 } &
\end{array}
$$

The O1 collector outputs of the first four bistables generate positive-going pulses for the first four beats in the sequence and the O2 outputs generate similar pulses for the last four beats of the sequence. The 16 beat cycle is produced by diverting these eight pulses alternately via two sets of pulse differentiators.

For rhythms involving $3 / 4$ or $6 / 8$ time only three bistable circuits are required in the counter and this is easily arranged by switching S and R of bistable 4 to O 1 and O 2 of bistable 2 instead of bistable 3 . This

TABLE!.

Fig. 4. The two sets of eight differentiators which shope and route the output pulses from the ring counter to the rhythm sefector switch wafers S3o to S3p. Pulse sequences are governed by the switch position of $\mathbf{5 2}$
particular change of interconnections is accomplished by two wafers on the main rhythm selector switch. The resulting cycle now generates the first three beats at the O1 outputs of bistables 1,2 and 4 and the last three beats at the O2 outputs of the same three bistables.

It should be noted that bistable 3 still operates simultaneously with bistable 4 due to its connection with bistable 2, but it does not affect the counting sequence and its outputs are not used when operating in this condition. The start switch is necessary to ensure that the counter does not run in an unwanted sequence involving the unused combinations of states of the four bistables and ensures that the first beat of each rhythm pattern appears at O 1 on bistable 1. The counter output pulses are differentiated and only the positivegoing spikes are used to operate the sound generating circuits.

DIFFERENTIATORS

The circuit for differentiating the output pulses is shown in Fig. 4. It will be seen that there are two sets of differentiator networks each receiving eight (or six) consecutive pulses from the main counter. However, only one set is operative at any one time depending on the state of bistable 5. This bistable is fed from the O2 output of bistable 4 and thus changes state for every complete cycle of 8 (or 6) pulses, and by controlling the emitter followers TR13 and TR14 the differentiated pulses are gated in groups (in a similar manner to the bistable steering) via the first or second set of diodes when the sequence switch is in the "alternate" position. The other two positions of the sequence switch override bistable 5 and allow pulses to pass via the first or second set of diodes. The diode outputs are connected to the wipers of S3a to S3p wafers on the rhythm switch which routes the pulses to the various sound generating circuits. Thus for each position of the rhythm switch it is possible to generate two different rhythm patterns of six or eight beats each, or one pattern of 12 or 16 beats using alternate sets of pulses. Fig. 5 gives the sequential routing of pulses for 16 beats at the rhythm switch assembly.

A simple example will make the operation of this section easier to follow. Let us assume that the differentiator circuit's output pulses are routed by way of the rhythm selector switches to the sound producing circuits in the following sequence. S3a and S3b to the bass drum circuit; S3e, S3i and S3m to the short brush; S 3 j and S 3 n to the high bongo. The counter is set for eight beat operation and for each position of the sequence switch S2 the following rhythms result (see Fig. 1). :
"Set 1" position of S 2 produces a repeated rhythm involving drum, and three short brush sounds, whilst

Fig.5. 'Makaswitch' assembly, showing disposition of wafers and functions

TWISTED RING COUNTER BOARD "A"

Resistors							
RI	680Ω	R13	$10 \mathrm{k} \Omega$	R25	15 k ת	R37	10k
R2	$2 \cdot 2 \mathrm{k} \Omega$	R14	$15 \mathrm{k} \Omega$	R26	$10 \mathrm{k} \Omega$	R38	15k
R3	$15 \mathrm{k} \Omega$	R15	$2 \cdot 2 \mathrm{k} \Omega$	R27	$33 \mathrm{k} \Omega$	R39	$2 \cdot$
R4	$15 \mathrm{k} \Omega$	R16	$2 \cdot 2 \mathrm{k} \Omega$	R28	$33 \mathrm{k} \Omega$	R40	2
R5	$2 \cdot 2 \mathrm{k} \Omega$	R17	$15 \mathrm{k} \Omega$	R29	10k Ω	R41	15
R6	$10 \mathrm{k} \Omega$	R18	$10 \mathrm{k} \Omega$	R30	$15 \mathrm{k} \Omega$	R42	$10 \mathrm{k} \Omega$
R7	$10 \mathrm{k} \Omega$	R19	$33 \mathrm{k} \Omega$	R31	$2 \cdot 2 \mathrm{k} \Omega$	R43	33 k ת
R8	$2 \cdot 2 \mathrm{k} \Omega$	R20	$33 \mathrm{k} \Omega$	R32	$2.2 \mathrm{k} \Omega$	R44	$33 \mathrm{k} \Omega$
R9	$15 \mathrm{k} \Omega$	R21	$10 \mathrm{k} \Omega$	R33	$15 \mathrm{k} \Omega$	R45	$10 \mathrm{k} \Omega$
R10	$10 \mathrm{k} \Omega$	R22	$15 \mathrm{k} \Omega$	R34	$10 \mathrm{k} \Omega$	R46	15
R11	$33 \mathrm{k} \Omega$	R23	$2.2 \mathrm{k} \Omega$	R35	$33 \mathrm{k} \Omega$	R47	2-2k
R12	$33 \mathrm{k} \Omega$	R24	$2.2 \mathrm{k} \Omega$	R36	$33 \mathrm{k} \Omega$		
		All 10%, $\frac{1}{2}$ watt carbon					

Potentiometer
VRI $2 \mathrm{k} \Omega$ wire wound
Capacitors
CI $5 \mu \mathrm{~F} 15 \mathrm{~V}$, elect. $\mathrm{C} 40.1 \mu \mathrm{~F}$ ceramic
C2 $5 \mu \mathrm{f} 15 \mathrm{~V}$ \} elect. $\quad \mathrm{C} 5-\mathrm{C} 145.000 \mathrm{pF}$ mica (10 off C3 $3,300 \mathrm{pF}$ polystyrene $\mathrm{CI} 5100 \mu \mathrm{~F} 15 \mathrm{~V}$. elect.

Diodes
DI-D16 OA81 (16 off)
Transistors
TRI-TR12 OC44 (12 off)
Switch
SI Press to make/press to break (IA Castelco)
S2 Single-pole, 3-way

DIFFERENTIATORS BOARD "B"

Resistors

R49-R56	$10 \mathrm{k} \Omega$	R58-R65	$10 \mathrm{k} \Omega$
R57	$1.8 \mathrm{k} \Omega$	R66	$1.8 \mathrm{k} \Omega$

Capacitors
C16-C32 $0.1 \mu \mathrm{~F}$
Diodes
DI7-D33 OA81
Transistors
TR13-TRI4 OC42
BONGOES, MONOSTABLE AND NOISE GENERATOR BOARD " C "
Resistors
R67-R68 $22 \mathrm{k} \Omega$

R69	$82 \mathrm{k} \Omega$
R70	$10 \mathrm{k} \Omega$

R7I $47 \mathrm{k} \Omega$
$\begin{array}{ll}\text { R72 } & 10 \mathrm{k} \Omega \\ \text { R73 } & 47 \mathrm{k} \Omega\end{array}$

R74 $1.8 \mathrm{k} \Omega \quad R 80 \quad 1.8 \mathrm{k} \Omega$
R75 390k R81* 8 R Ω
R76 $15 \mathrm{k} \Omega$ R82 $3.9 \mathrm{k} \Omega$
R77 $33 \mathrm{k} \Omega \quad$ R83 330Ω

Capacitors
C33* $\}$ See text C36 $0.068 \mu \mathrm{~F}$ C38 $25 \mu \mathrm{~F}$ elect. 25 V C34* $\}$ see text C37 $1.0 \mu \mathrm{~F} \quad \mathrm{C} 39250 \mu \mathrm{~F}$ elect. 50 V C35 $0.01 \mu \mathrm{~F}$

Transistors

TRI5 ME4103 TRI6 OC7I TRI7 OC44 TRI8 OC7I Diodes

```
D34-D36 OA8I
```

Inductors
LI-L2 700 turns of 36 s.w.g. enamelled wire wound on Mullard ferrite pot core (Henry's Radio)

LONG BRUSH, SHORT BRUSH, BASS DRUM AND PREAMP BOARD "D"

Resistors
R85 8.2k Ω R91 $39 \mathrm{k} \Omega$ R97 $10 \mathrm{k} \Omega$ R103 $120 \mathrm{k} \Omega$ R86 1.5M Ω R92 $10 \mathrm{k} \Omega$ R98 $18 \mathrm{k} \Omega$ R104 $47 \mathrm{k} \Omega$ R87 33k Ω R93 $10 \mathrm{k} \Omega$ R99 $22 \mathrm{k} \Omega$ R105 $4.7 \mathrm{k} \Omega$ $R 888.2 \mathrm{k} \Omega$ R $9410 \mathrm{k} \Omega$ R $1004.7 \mathrm{k} \Omega$ R $1064.7 \mathrm{k} \Omega$ R89 1.5M Ω R95 $120 \mathrm{k} \Omega$ RIOI $1.8 \mathrm{k} \Omega$ R107 330Ω R90 $10 \mathrm{k} \Omega$ R $96120 \mathrm{k} \Omega$ R $102120 \mathrm{k} \Omega$ R $10847 \mathrm{k} \Omega$ All 10%, $\frac{1}{2}$ watt carbon

Potentiometers

VR2 $50 \mathrm{k} \Omega$
VR3 10k VR4
VR4 100Ω

Capacitors

$\mathrm{C} 400.01 \mu \mathrm{~F}$ C41 $0.002 \mu \mathrm{~F}$ C42 $0.68 \mu \mathrm{~F}$ C43 $0.5 \mu \mathrm{~F}$ C44 5.0 F FI5V elect. C45 $0.1 \mu \mathrm{~F}$.

Diodes

 D37-D38 OA8ITransistors
TR19 OC42 TR20 OC42 TR2I OC42 TR22 OC71
Rhythm Switch Assembly
S3 Single-pole, 12 -way "Break before make" wafers (Radiospares) (21 off)
Standard "Maka-Switch" shafting assembly with 6 in spindle to suit switch wafers

Socket

SKI coaxial socket
İnductor
L3 560 turns of $34 \mathrm{~s} . \mathrm{w} . g$. enamelled wire wound on Mullard LAI ferrite pot core (Henry's Radio)
Chassis Assembly (Lektrokit)
S.r.b.p. chassis plate No. 4 (4 off)

Front panel No. 1 LK-401 (1 off)
Chassis rail LK-201 (2 off) Side plates LK-301 (2 off) Covers LK-501 (3 off) Soldering pins LK-301I 6B.A. $\frac{1}{4}$ in screws and nuts
(Parts for chassis assembly from Home Radio Ltd. Catalogue number shown should be included when ordering)

Fig. 6. Rhythm selector switch (S3) wiring diagram

Fig. 7. Component layout and wiring for clock pulse generator and bistable board " \mathcal{A} ". (a) topside view; (b) underside view

Fig. 8 Component layout and wiring for differentiator board " B ". (a) topside view; (b) underside view

Fig. 9. Chassis assembly showing positioning of boards and panel controls
"Set 2" produces a repeated rhythm involving drum and two high bongo sounds. "Alternate" generates both the previous rhythms alternately.

RHYTHM SWITCH ASSEMBLY

The 12 position rotary switch used in the selection and routing of the various pulse patterns is made up from a "Maka switch" kit. This must be of the long type with 6in spindle.

Twenty-one single pole, 12 -way wafers are individually threaded on to the spindle, each one being firmly butted against the other making sure that all the wiper tags are in common alignment.

Before inter wafer wiring is commenced reference should be made to Fig. 5 which shows the order of the switch wafers relative to the front panel. Using this in conjunction with the wiring diagram of Fig. 6 interconnection should be commenced.

Starting at switch wafer S3a, wiring to tags which are electrically common should first be made and then flying connections to other wafer tags as indicated. The inter wafer wiring should proceed systematically from switch wafer S3a through to S3u with no board flying lead connections being made at this stage. With wiring completed the switch bank should be placed to one side.

BOARD ASSEMBLY

Referring to Fig. 7a showing the topside of board A, solder pins should be located at the positions indicated. The tapered design of these makes for easy push fitting, and also allows the pins to be easily moved to other holes if some congestion is encountered if using larger size capacitors or resistors.

Components should now be mounted, each pin connection being a good mechanical bond by wrapping round a turn of component lead before soldering.

With topside assembly completed, the board should now be reversed and the underside wiring carried out as shown in Fig. 7b.

Board B assembly, Figs. 8a and 8b, should be completed and both boards laid temporarily aside.

CHASSIS ASSEMBLY

The prototype unit was built using a Lektrokit chassis system, see Fig. 9 Both the panel controls and the disposition of the circuits employed are shown on the annotated s.r.b.p. chassis plates. Since this first article is concerned with boards A and \mathbf{B} component assembly on these alone will be dealt with.

It is convenient to commence the Lektrokit assembly shown in Fig. 9 by bolting the two chassis rails to one side plate using standard 6B.A. by 4 in cheesehead screws and nuts. The other side is then attached to the free end of the chassis rails in similar manner. Chassis boards \mathbf{A} and B should then be mounted to the chassis rails by means of 6B.A. $\times \frac{1}{}$ in screws and nuts.

Before attaching the front panel this should be drilled as indicated for the fixing of panel controls. Hole diameters have not been given, but the switch and control retaining nuts can function as templates for this.

Panel controls should then be attached and the front panel connected to the flanges of the side plates by 6B.A. \times in screws, the lower two of which pass also through the chassis rail.

Next month we will present the final part of this article which will deal with the sound forming circuits and final wiring of the unit.

NEWS
 BRIEFS

Big Deal!

Electronic data handling techniques are spreading through the London Stock Exchange. Several leading broking and jobbing firms are using facsimile systems installed by the Muirhead Group to speed communications between their small offices or "boxes" near the Stock Exchange and their main offices in other parts of the City.
One leading firm of stockbrokers find that, by sending facsimile copies of dealing slips via their Mufax communication system from their box to their office, they can provide an even flow of work for their contract department staff.

Colour Series for Trainee Engineers

A
bBC TV COLOUR sERIES, intended to implement the
Engineering Industry Training Board's integrated first year course for engineering craft trainees, started on BBC-2 Thursday, Octóber 3, at 7.10 p.m.

While the series does not itself aim to provide a complete or continuous course, but a number of self-contained groups of programmes on selected topics, the groups are arranged, as far as possible, to fit the order of subjects as treated in most college time-tables, and also to provide a logical progression. All programmes reflect aspects of the trainees' work-theory, works practice and industrial application.

High Speed Gas

INSTRUMENTATION and mass-flow computers supplied by Honeywell's Industrial Products Group have a key automative role in the new East Midlands Gas Board supergrid system, now being changed from manual operation, directed centrally, to remote control from the Board's control room at Leicester.

Essential feature for control purposes is to know the quantity of gas passing into each grid offtake. Grid Control at East Midlands Gas Board requires this information in terms of standard cubic feet. Because of this and the fact that the gas density can vary at different points in the system, it was considered essential to compensate for these variations at the point of measurement and present all flow information to Central Control in standard form. This unifies the read-outs from all the various stations and enables the information to be processed into printed data.

This flow information, together with data such as backbone main and grid pressures, is displayed on digital indicators on an extensive control desk, with mimic diagram, at Central Control.

College Computers

Atotal of 22 analogue/hybrid computer systems from the Solartron range have been purchased this year by educational establishments both at home and overseas.

Latest two orders were signed on the stand during the recent IFIP Exhibition in Edinburgh, and both the systems will be installed in Scotland.

Robert Gordon's Institute of Technology, Aberdeen, followed-up their purchase of an HS7-1 earlier this year with an order for a double HS7-3A system valued at £ 30,000 .

On the same day a $£ 17,000$ HS7-3A was also ordered by Paisley College of Technology.

Orders have also been placed recently by colleges in Ireland, Sweden and Italy.

The Unknown Mass

A
$£ 42,000$ CONTRACT has been awarded to the English Electric Industrial Control and Automation Group at Kidsgrove by Imperial Chemical Industries, Pharmaceuticals Division, for an on-line M2140 computer system, see photograph.

The M2140 will be used to process data from a high resolution mass spectrometer. This mass spectrometer is used by the Pharmaceuticals Division's research department to determine the chemical structures of unknown chemical compounds.

Meetings . . .

SOCIETY OF ELECTRONIC AND RADIO TECHNICIANS

BIRMINGHAM

October 25, 7.30 p.m. Colour Television-The Decoder, by W. J. Anderson, at Room G.11, Bynck Kenrick Suite, University of Gosta Green, Birmingham 4.

GLASGOW

October 18, 7.30 p.m. Airport Telecommunications, by W. A. S. Aitken, at Y.M.C.A., 100 Bothwell Street, Glasgow, C.2.

MANCHESTER
October 31, 8.00 p.m. Colour Television Servicing, by T. M. Robinson, at John Dalton College, Manchester.

MIDDLESBROUGH

October 29, 7.30 p.m. Microelectronics, by T. M. Ball, at Cleveland Scientific Institute, Corporation Road, Middlesbrough, Yorkshire.

INSTITUTION OF ELECTRICAL ENGINEERS

LONDON
October 16, 5.30 p.m. Thin Film Transistors, by Prof. J. C. Anderson, at I.E.E., Savoy Place, London, W.C.2.

October 17, 10.00 a.m. Colloquium System Structures of Modern Computers, at Middlesex Hospital Medical School. Tickets for this meeting must be obtained from the Secretary, I.E.E., Savoy Place, London, W.C. 2 .

October 23, 5.30 p.m. Electro-optics, by Dr J. Bass and Dr K. F., Hulme, at I.E.E., Savoy Place, London, W.C. 2 .

Fild

THIS unit, although primarily designed for the motorist as a road ice indicator, can also be used as an early warning device for the protection of domestic water pipes and greenhouse or outdoor plants when frost is imminent.

In preparing this design the requirements were for long term stability, ease of initial calibration, immunity from small supply variations and operation of the indicator from off to full on over a narrow temperature range.

The circuit employed is essertially a solid state bridge arrangement with a thermistor, or temperature sensing element, included in one of the bridge arms. Indication of bridge unbalance, caused when frost is imminent, can be either visual or audible.

Since ice formation on dimly lit roads at night is much less apparent than in the day, a lamp on the car dashboard which is. illuminated with a cautionary red glow, when externat temperature is at 0 degree Centigrade will prove an excellent indicator of prevailing road conditions.

For the householder, who is usually asleep when frost is abroad, the strident tones of an electric bell will provide the spur for some protective action.

In describing the unit, both systems will be presented.

HOW IT WORKS

2n Eig it will be seen that TR1 and TR2 are complementary $p n p$ and $n p n$ transistors forming two arms of a bridge circuit with the base bias resistors
R1-R4, which span the supply, making up the other arms

When balance is achieved by adjustment of VR1, the potential at the junction of the bias chain resistors R 2 and R 3 will be equal to the potential at the collector junction of TR1 and TR2 which is half the supply voltage. TR3 and TR4, which form part 'of the detector circuit, are non-conducting as the base/emitter potential drops of both transisfors are negligible ensuring that both are cut off.
If the emitter resistance of TR2 increases the bridge circuit will become unbalanced. The resistance of thermistor X1, which exhibits a negative coefficient of resistance, will increase with a reduction of temperature with a subsequent increase of potential drop across the collector load of TR1 comprising TR2, VR1 and the thermistor
Since this collector voltage rise is positive, both TR3 and TR4 will conduct so switching on TR5 which bottoms to illuminate the lamp LP1 or energise a relay, whichever load is employed.

CONSTRUCTION

Construction of the unit is fairly simple. Cut the copper strips according to Fig. 2. Then assemble the components, starting at one end of the board and working through to the other end.

When complete check the wiring and make sure the cases of the ASY26 and ASY28 transistors are not

Fig. 1. Circuit diagram of frost alarm. Connections at A15/EIS can be either lamp or relay depending on application
touching each other or any part of the circuit as the cases are connected to the base. If the lead lengths of the transistors are kept short this will prevent any subsequent movement and possible damage.

CALIBRATION

The most convenient way to calibrate the unit is to connect the 12 -volt supply, . lamp, thermistor, and switch to the Veroboard as shown in Fig. 2, using long lengths of miniature p.v.c. 7/40 wire for the thermistor connection.

The module and supply should then be arranged on top of a refrigerator.

If a Centigrade thermometer is placed at a spot close to the ice-box, it is possible by adjustment of the thermostat controller to set the temperature at freezing point or 0 degree Centigrade. If the indicating unit is intended for domestic use, the refrigerator temperature adjustment should be for a couple of degrees above zero.

With these reference-temperatures established the thermistor should be placed at the position occupied by the thermometer. The thin, fiexible, $7 / 40$ wires will permit closure of the refrigerator doors, whilst calibration is in progress. Since the thermistor is wire ended precautions should be taken to prevent any chance of accidental short circuit, by laying it on a piece of cloth.

The supply should now be switched on and VR1 gradually advanced till the lamp just switches on. Reducing the resistance value of this potentiometer slightly will just turn off the lamp. No more adjustment of the unit is necessary as calibration is now complete and the module is ready for installation.

If a bell indicator is required a lightweight relay with suitable contact rating for a volt bell should be substituted for the lamp. The calibration procedure for this should proceed on the lines as before.

HOUSING THE UNIT

The unit, including batteries, can be housed in a suitably sized wooden box if intended for domestic use.

Fig. 2. Veroboard assembly showing top view arrangement of components and breaks in conductor strips
For motorists, since the supply is taken from the car battery, the box dimensions can be considerably reduced. In the author's prototype a small plastic case was used and then fitted to the dashboard. A convenient form of attachment is sticky tape.

Holes should be cut to the diameter of the lamp shank and the diameter of the calibration pre-set potentiometer VR1. This will make for easy screwdriver access even though calibration will only be rarely necessary, say once every two years.

If the unit is to be used in a car, S1 may be omitted. One of the two supply leads should be connected to some convenient anchorage point on the car chassis and the other connected to the ignition switch, so that power to the unit will be turned off when the ignition key is removed. Before embarking on these wiring instructions, it is important that the car chassis polarity should first be determined, that is whether positive or negative. When this is done, the relevant supply connections can be made without risk of damage.

COMPONENTS . . .

Resistors

R1	330Ω	5%
R2	330Ω	5%
R3	330Ω	5%
R4	330Ω	5%
R5	$3-3 \mathrm{k} \Omega$	5%
R6	$1.8 \mathrm{k} \Omega$	10%
R7	220Ω	10%
All $\frac{1}{2} W$ carbon		

Potentiometer
VRI Ik Ω miniature carbon preset
Transistors
$\left.\begin{array}{ll}\text { TRI } & \text { ASY26 } \\ \text { TR2 } & \text { ASY28 } \\ \text { TR3 } & \text { BC109 } \\ \text { TR4 } & \text { ASY26 } \\ \text { TR5 } & \text { BFY50 }\end{array}\right\}$ (Henry's Radio Ltd.)

Thermistor

XI CZ9A

Switch

SI Single pole onjoff toggle

Battery

BYI Two Ever Ready PPI, 6V batteries (see text)
Lamp
LPI 12V, 0.75W L.E.S. (Radiospares)
Relay (if required) 670Ω lightweight B and R type (Home Radio-Cat. No. Z70B)

Fig. 3. Method of thermistor mounting to front apron of car

THERMISTOR MOUNTING

The thermistor was mounted on a section of nylon terminal block. In domestic applications the junction between thermistor and its unit connecting leads can be made mechanically with the terminal screws of the nylon block. For car use, these leads should be soldered and connected as before to preclude any chance of the retaining screws loosening and producing an open circuit.

Final fixing of the block should be by screw to either wall or shelf.

To detect road ice hazards, the block should be mounted at the front of the car, under the front bumper. To prevent damage to the thermistor by stones and dirt thrown up from the road, a small deffecting shield was formed by bending a length of sheet aluminium or tin to the width of the nylon block, see Fig. 3. If a $\frac{1}{8}$ in hole is drilled in the car's front apron, both shield and block can be affixed with a nut and bolt.

THE cathode ray tube colour pattern display described in the second and third parts of this series lends itself most admirably for sound programming, i.e. for producing preconceived or random patterns and sequences of patterns in synchronisation with music. The system also offers exciting possibilities for filming, using all the various film techniques such as superimposing, zooming and panning. The writer has in fact produced a 15 minute colour film from the display, complete with electronic music sound tracks, but more of this later.

FORMATION OF PATTERNS

It may be realised that patterns can be preconceived by knowing precisely the frequencies and waveform of signals applied to the deflector coils and the frequencies of the grid pulses.

The photograph shown in Fig. 4.1 was taken from the c.r.t. display and although reproduced here in black and white it does show the basic formation of the pattern as circular. On the actual display the pattern appeared in multi-colour and moving, i.e. slowly spinning.

The pattern was formed from an amplitude modulated sine wave fed via the phase shift network to both deflector coils as described in Part 3. This produced the expanding rings effect shown in Fig. 4.2 and which is divided into four segments by grid blanking puises. The one in the photograph (Fig. 4.1) is divided into five segments, but this division can be any number from two up to seven or eight or more.

PART 4 By F.C. JUDD, A. Inst.E

Without the amplitude modulation and grid pulses the display would simply be a circle. With modulation at around 10 Hz the circle will be displayed successively as in Fig. 4.4. With pulses applied to the c.r.t. grid parts of the expanding circle will be blanked out. The relationship between the fundamental frequency of the signal forming the circle and the grid pulses will decide exactly the number of blanked out segments.

The waveforms in Fig. 4.3 may serve to illustrate the pattern frequency to pulse frequency relationship more clearly, and (as Fig. 4.4 shows) would produce a pattern divided by two since each grid pulse occurs twice during one cycle of the pattern frequency. Therefore if the pattern frequency were 250 Hz then the grid pulse frequency would be 500 Hz .

The determination of given patterns is therefore a matter of relating the frequencies of deflector coil signals to those of the grid pulses. The frequency of the grid pulses can of course remain constant and the fundamental patterns or deflection signal frequencies varied accordingly.

Fig. 4.1. A circular segmented pattern derived from the c.r.t. display

SIGNAL SOURCES

In order to produce complex patterns of this nature, at least two audio frequency sine square wave generators and a signal mixer are necessary-although interesting patterns can be produced from music only. The combinations of signal sources and ways in which these can be fed to the deflector coil amplifiers are as follows:

1. Audio generator to input 1 and audio generator to input 2.
2. Audio generator to input 1 and music signals to input 2 or vice versa.
3. Audio generator to both inputs with phase shift network in circuit.
4. Music to both inputs with phase shift network in circuit.
5. Audio generator and music signals mixed to both inputs via phase shift network.
6. Two or more audio generators with signals mixed to input 1 and music to input 2 .

Fig. 4.2. How a circular "expanding rings" pattern similar to that shown in Fig. 4.1 is formed

CO-ORDINATING SOUND WITH PATTERNS

Since patterns can be partly or wholly formed from music signals, they can be made to appear to form and move in synchronisation, i.e. rhythmically with music. Moreover the signals for the patterns, whether derived from music or audio signal generators, can be recorded on magnetic tape with a conventional domestic tape recorder. A programme of patterns and music can therefore be tape recorded and replayed at any time.

ELECTRONIC MUSIC

The choice of music to which the patterns can be made to form and change and move must be left to aesthetic and musical tastes of the experimenter. Electronic music is of course a natural for a display of this kind and it was this type of music that originally prompted the writer to investigate the possibilities of sound, light and colour co-ordination as described in these articles.

Fig. 4.3. Relationship of pattern signal frequency to grid pulse frequencies
There are a number of records of electronic music available and the fact that pure tone is frequently used in this kind of music makes it very suitable for producing patterns. Those who have the necessary audio signal generators and a tape recorder might well be able to produce both music sound tracks and patterns specifically composed one for the other.

CIRCULAR PATTERNS

Programming in its simplest form would be to feed music signals directly to both inputs of the display with the phase shift network in circuit. With this arrangement predominantly circular patterns would be formed and in exact time with the music.

As a variation a small 50 Hz signal could be injected into one amplifier, just sufficient to produce a horizontal line to the maximum width of the screen. This forms a simple time base for music signals injected into the other deflector amplifier. The display will be rather like that of music on a conventional oscilloscope with a slow time base in a multiplicity of colours.

Fig. 4.4. How a pattern would be formed with the signals shown in Fig. 4.3

Fig. 4.5. System and equipment used by the author for programming pattern signals and music on magnetic tope

USING TWO DIFFERENT INPUTS

With the aid of one or more audio generators given patterns can be produced and made to come and go as well as move in time with music, but this requires very rapid manipulation of the generator controls.
A similar arrangement but one not so difficult to manipulate is to feed music to one amplifier and an audio generator to the other. The music signals will provide the rhythmic movement whilst formation or shape is produced with the generator controls, i.e. frequency variation, amplitude variation and switching from sine to square-waves.

TAPE RECORDER

Programming with a tape recorder and an audio generator, as well as music signals, provides the ultimate and most dynamic effects. With this equipment the signals for a programme can be recorded and the tape edited if necessary by the usual technique of cutting and splicing.
For example the pattern signals can be recorded first in chosen sequences by stopping and starting the tape. This allows ample time in which to carry out this part of the programming, i.e. the generator frequencies can be pre-set before actually recording. The ideal tape recorder for this is a half- or quarter-track stereo record/ playback machine preferably with "off tape" outputs or at least through signal outputs. Such a recorder allows for feeding the pattern signals through to the display before and/or during actual recording.
The block diagram in Fig. 4.5 shows the arrangement employed by the writer for recording patterns and music tracks for the c.r.t. display described in the two previous articles.

LISSAJOUS PATTERNS AND MUSIC

Although comparatively simple in shape, the most striking patterns are 2 to 1 and 3 to 1 Lissajous patterns from sine or square waves. Over-complex pattérns produced from music have no definite shape and after a while become uninteresting.

Superimposing music signals upon slowly moving Lissajous patterns is quite effective and gives the illusion of movement in time with the music. Low frequency signals produce the most contrasting colour effects, i.e. frequencies which are equal to, or multiples of the scanner speed and low frequency grid pulses ($10,15,25$ and 30 Hz).

FILMING FROM THE DISPLAY

The brilliance intensity of the c.r.t. patterns is high enough for filming with ordinary 8 mm artificial light colour film such as Kodachrome 25 ASA film, providing the patterns are reproduced within an area of approximately $2 \mathrm{in} \times 2 \mathrm{in}$. This means operating with a closeup lens, but most dynamic sequences can be filmed this way. The writer has made a 15 minute film with electronic music sound tracks. (Readers who are not equipped for filming might well find a local cinefilm enthusiast or cineclub interested in filming such unusual but nevertheless creative material from their own version of this c.r. colour display.)

The photograph, Fig. 4.6, shows the arrangement used by the writer with an 8 mm reflex camera equipped for zooming and with a close-up lens so that patterns could be made to fill the cine screen. Here is a description of the way in which the film was produced.

First it was decided that a coloured background would enhance the overlays of colour patterns filmed directly from the display. The whole film was exposed at 12 frames per second with the aperture at f 2.8 to a white surface illuminated in colour by means of a 60 watt lamp behind coloured cinemoid. Deep blues, green and dark red provided the best colour background.

SUPERIMPOSED PATTERNS

Then the film was run through no less than three more times in order to superimpose patterns one upon the other and employing all the filming techniques the camera would allow: zooming, panning, fading and de-focussing, etc. This, together with electronic

Fig. 4.6. Set-up for filming the c.r.t. colour pattern display. Note close-up lens on cine camera
control over the pattern signals, produced some excellent shots which were then edited for showing with sound tracks of electronic music.

A short sequence of film is shown in Fig. 4.7. Unfortunately this is not reproduced here in colour but in the original the background is deep red with the patterns appearing in yellow and mauve. The film speed was 12 to 16 frames per second at F2.8.

PROGRAMMING THE SIMPLE COLOUR LIGHT DISPLAY

The method of feeding music signals directly to the input of the simple colour light block display was dealt with in Part 1, which also gave constructional details of the display itself.

Audio sine tones from a signal generator and a tape recorder could also be employed to obtain repeating sequences of colour change and movement with this light display. The method of programming is similar to that described in the previous paragraphs, i.e. music is recorded on one track and control signals on the other. By using audio sine wave signals much more defined changes can be obtained since tones can be selected with frequencies midway between those covered by the filter circuits.

In conclusion the writer would like to mention that one Practical Electronics reader suggested the use of thyristor control for larger lamps in a display similar to the one described in our opening article. The method proposed could of course be used. In fact there is virtually no limit to the possible arrangements for controlling light from filtered music, or by means of impulse or tones recorded on magnetic tape themselves in synchronisation with music. The writer has attempted only to outline the subject and provide sufficient basic circuit information and other details to encourage others to experiment with two possible methods. A great field is open for those prepared to explore.

Fig. 4.7. An 8 mm film strip showing patterns from the c.r.t. display. The original film was in brilliant colour (see text)

Rã10

Jottings from jaunts around the London trade shows

Avisit to the Earls Court Radio Show used to be an outing for all the family. Dad went to nod knowledgeably over specifications, Mum to see her idols on the BBC stand-and make the final buying decisions-and the kiddies to collect colourful leaflets.

Declining commercial support finally closed the "public" show in 1964, and the handful of separate trade shows held during the run of the show, particularly by foreign manufacturers excluded from the main event, has grown ever since.

TWENTY-TWO DIFFERENT SHOWS

This year, a record 57 manufacturers and distributors, more than half of whom were traceable to continental origins, displayed their wares in 22 centres in London over a period of five days. The majority occupied hotel bedrooms, the more illustrious took over complete ballrooms, and some used their own premises.

All the exhibitors we spoke to were in favour of this fragmented showing and had no regrets over the exclusion of Mum, Dad and offspring-there were fewer distractions and those who came to view came also to buy. A retailer said he found the staff on the stands better informed than the professional demonstrators of Earls Court days, and the environment more
suitable for viewing and listening. But he was concerned for the less well-known exhibitors, whose success depended on how energetically they advertised before the show. It takes a dealer with stout walking boots and a heart of gold to traverse five miles of London's West End to see the efforts of a newcomer!

This short report will concentrate mainly on new audio equipment-development in other fields will be covered by the companion journals Practical Television and Practical Wireless.

UNITS v. RADIOGRAMS

Although there is undoubtedly a trend to integrated amplifier/tuners with separate record playing decks and loudspeakers, this is not quite so definite as a tour around this caravan of shows might initially suggest.

Most of the unit audio was due to continental exhibitors who, as has been stated, were present in force. A large British manufacturer said that radiograms were still very popular in this country and would never be outstripped by strings of "bits and pieces"cven though he was well aware which approach gave better performance per pound. Another, who earned a comfortable living from "bits and pieces" said the opposite.

Sinclair System 2000 f.m. tuner

Perpetuum-Ebner PE2020 automatic/manual turntable with base and transparent cover

Complete precision

 soldering kit

This kit-in a rigid plastic "tool-box" -- contains everything you need for precision soldering.

E Model CN 15 watts miniature iron, fitted ${ }^{\frac{3}{18}}{ }^{\prime \prime}$ bit.

- Interchangeable spare bit, $\frac{5}{32}{ }^{\prime \prime}$.
- Interchangeable spare bit, $\frac{3^{3}}{32^{\prime \prime}}$.
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.

From Electrical and Radio Shops or
send cash
to Antex.

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from 040° (1 mm) up to $3 / 16^{\circ}$. For $240,220,110,50$ or 24 volits.

From Electrical and Radio Shops or send cash to Antex.
actual size
. . . pin-point precision soldering . . . fingertip control . . . bits that do not stick to shafts . . . bits that slide over elements . . . sharp heat at the tip . . . reliable elements ... spares always available ...
in Europe, Africa, Asia, America . . . ANTEX soldering irons are used by experts and amateurs alike; they have found out the advantages of Antex...
you can too . . . buy one in a shop or direct from us... or ask for our catalogue first.

Model CN240/2

© 18 watta, Ideal for ministure work on production lines. Interchangeable spare bitis, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$, for 240 . 220 or 110 volts. $32 / 6$.

ES 25 watts. Fitted with $1 / 8^{*}$ bit.
Interchangeable bits $3 / 32^{\circ}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$. Ideal for high speed production lines. For $240,220,110,24$ or 12 volts. $35 /$ -

F 40 watts. Fitted $5 / 16^{\prime \prime}$ bit.
Interchangeable bita $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\circ}, 3 / 32^{\circ}$ Very high temperature iron. Available for 240, 220, 110, 24 or 20 volts. 42/6.
Spare bits and elements for all models and voltages immediately available from atock.

Arena stereo tuner amplifler type TI500F with two HT2I speaker units

IMPRESSIVE ADVANCES

Approaching from central London, our first port of call was the Arena display in the Piccadilly Hotel, where we were greeted by news of "the most advanced tuner-amplifier on the market". It uses silicon diodes for tuning both v.h.f. and medium wavebands, uses an improved version of the company's plug-in modular construction, has a sensitivity of 0.5 microvolts on f.m. and has an audio output of 90 W r.m.s. per channel. The exhibits also provided a second opportunity to hear the smaller-scale T1500F tuner-amplifier which was briefly reviewed in the May issue of Practical Electronics.

Second audio exhibit to highlight the advance in electronics was the now well-known Sinclair 10W integrated circuit amplifier, a pair of which had been made up as a stereo amplifier specially for the show and demonstrated through the new Q14 mini speaker. Another exhibit was the System 2000 pulse counting f.m. tuner, which uses varactors to permit continuous tuning by remote control. A new tuner, to complement the Neoteric amplifier, is to appear shortly.

PERCUSSION GENERATOR

The Eagle products stand provided a welcome opportunity for creative knob-twiddling in the shape of the Rhythm Master percussion generator, which gives seven percussion sounds and nine rhythms. (Do-ityourselfers will be interested in the rhythm generator design that appears elsewhere in this issue.) The display included some of the variety of plugs, sockets, microphones, and effects generators handled by the company.

RECORD PLAYING EQUIPMENT

On the Perpetuum-Ebner stand we saw Germany's attempt to overcome the audiophile's inbred mistrust of automatic record changing. The PE2020 has a 7lb turntable, adjustable vertical tracking angle, stylus pressure and antiskating force, a rotating centre spindle and an ingenious stepped turntable for detecting record-size.

Record playing equipment for different needs, but equally ingenious, was shown by Discatron. The RHR 9001 was a combined portable radio and 45 r.p.m. record player, similar in styling to a conventional radio. Other combinations included a record and tape player, and a radio, record and tape player.

RADIO FOR CASSETTE RECORDER

An interesting accessory on the Aiwa stand was a small radio tuner which slips into their 736 Compact cassette recorder. The TPR101, a combined recorder and multi-band radio, gained its first public showing.

A last minute addition to the Alba range was a deluxe radiogram, Model 4007.

With a 30 W amplifier and two tuner units, Crown made their first attack on the British hi-f market.

WELL CONTENTED TRADE VISITORS

As a percentage of the whole, there was little innovation in this collection of displays. Colour TV, f.e.t.s., integrated circuits, micro-speakers have ceased to amaze-but no trade visitor was likely to feel bored. He could enter a competition for $£ 1,000$, a holiday in Hamburg or a night on the town. He could relax and watch cabaret, or politely refuse 57 complimentary Martinis on the trot.

GOODMANS HIGH FIDELITY MANUAL

A Guide to full listening enjoyment
The Manual is much more than a catalogue of Goodmans High Fidelity Loud-speakers-it contains iniormative articies, ners page, and full cabinet drawings. You'ti find it interesting as well as informative.

The Perfect Combination MAXAMP 30

TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts \cdot Silicon solid state Integrated pre-amplifier - Negligible distortion - £54.0.0.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER Transistorised - Outstanding specification - Stereo decoder (optional) $-£ 65.5 .0 \div £ 15.14 .0$ P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1_{2}^{\prime \prime}}{} \times 5 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{4}^{\prime \prime}$ deep) in Teak or Walnut to order. Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

[^4]
STEP UP YOUR EARNINGS

IT TELLS YOU ALL ABOUT-Installing domestic wiring, regulations, equipment, testing, cables and faults, meters and switch. gear, lighting, water heating, space heating, cookers, refrigeration, public address equipment . . in fact everything you need to add to your income, to really advance in

with this complete library of electrical know-how and practice

You can have this handsomely-bound library of facts, figures, vital theory and day-to-day practice sent to your home to examine free of charge. It will help you understand the many branches of the vast electrical industry from installation work of ail kinds, Equipment Instruments, Motors and Machines, Repair work, Maintenance and Operation right through to the Generation and Distribution of electricity. And, to make the 2,350 pages of absorbing text crystal clear there are over 2,000 "action" photos and explanatory drawings. In addition you receive a slip-case of 36 large Blueprint charts and sheets of handy daca. Plus fascinating colour booklet of transparent pages which peel away to reveal how a Nuclear Power Station is operated.

Leading experts explain in detail Written by 87 experts, this PRACTICAL library is planned to give you the knowledge which would normally take a lifetime to which would normally take a Send for your free trial set nowacquire. Send for your ir

PRACTICAL ELECTRICAI EXGIITERHITO

Here is what you receive 4 Volumes strongly bound in Grey Moroquette, $9 \frac{1}{8} \mathrm{in}, \times 6 \frac{1}{4} \mathrm{in}$ containing 2,352 Pages of instructive information on lates practice; 2.100 Photographs. Diagrams, Working Drawings, many showing actual opera tions in works and plants.
24 Data Sheets in colour.
12 Quick-reference Blueprint Charts, each in the large size of 16 $\frac{3}{4}$ in. $\times 1{ }^{\frac{1}{4}} \mathrm{in}$. NUCLEAR POWER STATIONS BOOKLET
Newnes Electrical Pocket Book Nearly 400 pages with 258 illustrations, diagrams, tables, (Value 10/6d.)

Use it FREE for 7 days

To: Buckingham Press Lid., 18-19 Warren 8treet, London, W. 1 Please send PRACTICAL ELECTRICAL ENGINEERING without obligation to buy if you accept my application. I wilt return the books in 8 days or post-
Tick (V) here Full cash price of $£ 16$, or
If you are under 21 your father must fill up the coupon
Full Name
(Block letters)
Address \qquad

Plose tick (A) here The address vo left is Mytarf property \square Seated

Baturnisher [] Funtithod accom Tenporary Itchess \square atone ol me athove
plesse answer kere plesse answet kere

County	
Occupation	
Signature PEE/3835	$\left\{\begin{array}{l} \text { Mr. } \\ \text { Mrs. } \\ \text { Miss } \end{array}\right.$

(Credit price EI6.16s.) For Eire \& N.I. send $£ 16$ with coupon. Elsewhere Overseas add 26/- p. \& p.

IT'S BAREAM TIME AT

MORE TO CHOOSE FROM-LESS TO PAY
IMPORTANTNEW AMPLIFIER T.R.S. STEREO 4-4

5 transistor tranalormerless atereo ansplifler with ntegrated preamp. A T.R S. design bated on newly developed Mullard 4 watt modules with BC108 pre-amp. Sultable also for speakers from 3 to 15 ohman With bass and treble cut/booat. Response- 60 to $14 \mathrm{kHz} \pm 3 \mathrm{~dB}$. This excellently engineered layout requires only wiring between ontrola and modules, Complete with metal chassiv and simptex teak-ended cabinet for instant assembly. tereo/Mono and Eadio/PU switches.
mpiner Kit with Knobs, etc-a Complete ket T.R.S. Power Unit te.5.0 ($\mathrm{p} / \mathrm{p} 2 / 6$) inc. cablaet
(p/p $2 / 6$) (p/p 2j6)
parchased plugs mDd sockets i
€ 12.10
(post iree)
TRS STEREO FH TUNER
Available ahortiy, this comes in prefabricaied modile form ready for instant and simple assembly. arcell tunction appearance with T.R.S. stereo 4-4. \& A.E. bring details.
SIHCLAR 1C-10
This fantastically mipute ampliner includes pre-amp in a 13 trunalator circuit a twentieth 596 of ath inch gquare. Dellvers 5 watts
ALE SIMCHATR PBODECTR DT STOCE Ag ADVERTISED

GAREARD UYIT8 AND PLINTH8
Lan 0000 Record Player with 9T.A. Stereo Cartridge. T. 60 M 17 210.6.0 table. Less cartridge 518. 25, 18.6 .0 table. Jeas cartridge. Brand new in makers' cartons. Packing and carringe Brand new in makers car

6.

GARRARD PLINTH WB, 1 In tane Teak for any Garraril cloar-yiew rigid perspex cover (carfiage 4/6), CARTRIDGE OFFEE TO PURCRASERS OF PLAYER UHITG-5TEREO Somotone 9TA/HC Ceramic with dianond 49;8; Decca Deram with diamond g2; ; MONO Acos GP91-1 $21 /=$; (iolluriag MX2M 28/8.
EMI 4 agead singla plager, 10 in T/Eable wth separate arm and $7 / 0$ curtridge $69 / 8$ (p. d p. ठ/-).

TAPE AND FREE TALLET OFFEE
With each reel of thle flne tape by an internationaily famous marnufucturer we give o beautiful atrongly made wallet in slmulated leather with space for a reel each side. This is profesional quality full frequency tape with metallised leader/atop fosis. These library wallets Bolve once and for all the
5yin. reel, $12001 t, 17 / 6$ in reel, 900 it. $12 / 6$
with wallet. 7in. reel 1800it. $22 / 6$ TAPEREELS-7in, $2 / \operatorname{lin}_{5}$ p. \& p. 1/6 per teel 3 in.- $1 / 8$ (p. \& p. 60 . $)$

IABGR STOCES OF TRANSISTORE AND MIDGET RESTSTORB AND COHDENSERS
"griz-KIT ${ }^{13}$ Adhesive copper strip, sin reel ${ }^{1} \frac{1}{6}$ in $2^{\prime}=$ VEROBOARD in all sizea
MONEX SAVMG LTSTS
Eight large printed pages, packed with bargala latest copy.

WHEA ORDERING
Send eash with order. Post and packing whare nat stated odd $1 /-$ per $11 b ; 1 / 9,11 b ; 3 / 6,2 l b ; 6 /-6 i b ;$ 3/6, 1015: 81- 1415; orer 10/-

TRS RADIO
 COMPONENT SPECIALISTS

70 BRIGSTOCK ROAD, THORNTON HEATH, SURAEY
Telephons: 01-884 8188
9 a.m. -8 p.m, dally 1 p.m. Wedr. A few minutes from Thornton Heath Btn. (B.F. Victoria Section)

new VARI-STAT

 thermostatic soldering ironHigh Production Model D Miniature Iron 50 wate Voltage 12-250 volt Weight $13 / 40 z$.
PRICE 3/16in., $1 / 4 \mathrm{in}$

Our range also includes
Standard Miniature Model 50W
Standard Instrumenz Model 70W
Standard Instrument Model 70 W
High Production Instrumenz Model 125 W Industrial Model 500W
All these irons give excellent bit and element life since the thermostar completely eliminares overheating and controls reserve heating capacity which makes possible continuous soldering withouc chilling of the bic. The consistent remperature makes these irons ideal for printed circuit work.

CARDROSS ENGINEERING CO. LTD.

Woodyard Road, Dumbarton.
Phone: Dumbarton 2655

NEW RANGE BBC 2 AERIALS

All U.H.F. aerlals now fitted with tllting bracket and 4 element grid reflectors.

Loft Mounting, Arrays, 7 element, 37/6. I1 element, $45 / \mathrm{F}$, 14 element, 52/6. 18 element, coj= Wall Mountiag with Cranked Arm. 7 element, $60 /=11$ element, $67 /=$. 14 element, $75 \%-18$ element, g\%/6. Mast Mounting with 21 n. clamp. 7 element, $42 / 6 ;$ il element, $55 /-$ 14 element, $62 / \div 18$ element, 70/-. Chimmey Mounting Arrays, Complete, 7 , element 72/6; 11 etement, $80 /-14$ element, $87 / 6 ; 18$ element 95/- Complete assembly instructions with every unlt. Low Logs Cable, $1 / 6 \mathrm{yd}$, U.H.F. Pre amps irom phos

BBC - ITV AERIALS

BRC (Band 1). Telescopic loft, $25 /=$. External $\$ / \mathrm{D}, 30 /=$ "H", E2.15.0.
TTV (Band 8). 3 element toft artay, $80 / \sigma_{0}$ ejement, $4 / \cdots$ 7 ejement, $50 /-$. Wall mounting, 3 element, $47 / 6$. 5 element, $5 \% / 6$. Comblied BBCIETV. Loft $1+3$, $40 /=1+5,50 /-1+7$. $1+5,67 / 6$; Cnlmang $1+3$, $1+3 / 6$ its, 8
Vrie transistor pre-amps, 75%
COMEINED BBCL-ITV-BRCE AERLALS $1+3+9,20 \% 1+5+9,80 \%, 1+5+14,90 /$ $1+7+14,100 /-$ Loft mounting only. Spectal
leafer avallable.
F.M. (Band 2), Loft SJD, 15/-, "H", 32J, 3 element, $55 /-$ External units avallabie. Co-ax. cable, 8d. yd, Co-ax, plugs, 1/4. Outlet boxes $5 /$ Diplexer Crossover Boxes, 13/5. C.W,O. or C.O.D. P. \&P. 5\%. Send 6d. stamps for illustrated insts. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept P.E.)

27 Central Parade, Now Addington Surrey-CRO-OJB LODGE HILL 2266

NEW BOK

SEPTEMBER

AM-FM-TV ALIGNMENT by R. G. Middleton HANDBOOK OF ELECTRONIC CIRCUITS by R.C.A. Service Co. PRACTICAL POWERSUPPLY CIRCUITS by John Potter Shields SYMFACT (R) GUIDE TO TV SERVICING by the PF Reporter Editorial Staff television tape FUNDAMENTALS by Harold E. Ennes

OCTOBER
ABC'S OF ELECTRICAL SOLDERING
by Louis M. Dezettel BENCH SERVICING MADE EASY 2nd Edition by R. G. Middleton ELECTRICAL AND ELECTRONIC SIGNS AND SYMBOLS by R. G. Middleton ELIMINATING ENGINE INTERFERENCE by John D. Lenk TRANSISTOR SUBSTITUTION HANDBOOK 8th Edition by the Howard W. Sams Engineering Staff NOVEMBER
TRANSISTOR FUNDAMENTALS VOL. I BASIC SEMICONDUCTOR AND CIRCUIT PRINCIPLES by Robert J. Brite VOL. 2 BASIC TRANSISTOR CIRCUITS by Charles A. Pike VOL. 3 ELEGTRONIC EQUIPMENT CIRCUITS by Martin Gersten SPECIAL CIRCUITS by Reginald Peniston and Louis Schweitzer

FOULSHAM-SAMS TECHNICAL BOOKS
 (W. FOULSHAM \& CO.LTD.) YEOVIL RO SLOUGH, BUCYS ENELANO

A major breakthrough in electronics rivalling in

 importance that brought about by the transistor has been achieved by recent research on semiconductors. A whole new family of semiconductor devices is being developed, which will in time do for microwave electronics what the transistor has already done for the present-day application of electronics in the domestic and industrial fields. This important development depends on the ability of a semiconducting material, gallium arsenide, to emit microwaves when a voltage is applied to a slice of the material. This concluding article deals with negative resistance and the L.S.A. device used to overcome the problem of high frequency limitations.LASI month we considered the properties of semiconductor materials and the theory behind the transistor. The high frequency limitation of the latter device was pointed out.

This month we introduce some comparatively new semiconductor devices which overcome these high frequency limitations and thus offer promise of further great advances in semiconductor technology.

A NEGATIVE RESISTANCE DEVICE

The next semiconductor active device of major importance that came on the scene utilised the property of negative resistance.

Ordinary positive resistance is given by the voltage/ current ratio for the current flow due to the voltage applied across a resistance. This would be given by the slope of a current-voltage graph as shown in Fig. 21 a.

The characteristic of negative resistance on the graph shows a negative (downward) slope as in Fig. 21b, i.e. an increase in voltage resulting in a decrease in current.

Current is determined by the rate of flow of electric charge, so it depends both on the numbers and the velocities of the charge carriers as well as their charge. In normal positive resistance, the number n of charge carriers flowing in a circuit usually stays constant while their velocity increases regularly with increasing applied voltage, so that I increases with V.

If we could somehow decrease n with increasing V sharply enough, there will be a decrease in I and thus negative resistance will occur.

THE TUNNEL DIODE

The tunnel diode, a negative resistance device working in this way, was invented in 1958 by a Japanese physicist, L. Esaki. It consists of a single pn junction in which the p - and n-type regions are very heavily doped. Thus the difference in levels on both sides is so great that the bottom of the conduction band in the n-type region is below the top of the valence band in the p-type region. This is illustrated in Fig. 22a.

Practically no electrons and holes can flow across the junction and the current is virtually zero. If the junction is biased forward very slightly, reducing the potential difference, the electrons still cannot run uphill into the p-type region as the potential difference is still very great. However, they are now brought into levels corresponding with those of the holes opposite them in the p-type region. These holes are nothing but absences of electrons.

By the laws of quantum physics, an electron in the n-type region is able to "tunnel" through the junction barrier into an empty electron level at the same height irp the p-type region, i.e. a hole. This surprising effect is allowed a certain small probability by quantum physical laws.

As the number of electrons is so large, some of them do tunnel through and are able to constitute a current across the junction (see Fig. 22b). As the bias is increased, more electron and hole levels are brought opposite one another and the tunnel current increases, see Fig. 23.

As the bias is increased further, the electron and hole levels separate again, and the number of electrons able to tunnel across decreases (Fig. 24). The tunnel current thus decreases with increasing voltage.

The current-voltage graph thus has a negative slope and the junction exhibits negative resistance (Fig. 25). On increasing the bias still further, the junction begins to conduct an appreciable normal forward bias current.

Thus a tunnel diode with an appropriate bias applied to it will behave as a negative resistance. It can be used in an LC circuit to generate electrical oscillations (Fig. 26).

SHORT TRANSIT TIME

The theoretical high frequency response of the tunnel diode should only be limited by the time taken for the electrons to tunnel through the junction. As the tunnelling is an extremely fast phenomenon, this transit time limitation is much less restrictive than that on the transistor, and thus it can work at much higher frequencies. Tunnel diodes can be operated in the lower frequency section of the microwave spectrum. However, the tunnel diode also has its own high frequency limitations.

Like all diodes, it has exposed net charges on either side of the junction. These charges are slightly affected by an external bias, and so the junction has a very small capacitance C_{j}, which must be added to the C in the LC circuit. The frequency of oscillation is now

$$
1 /\left[2 \pi \sqrt{ } L\left(C+C_{j}\right)\right]
$$

Thus no matter how small we make L or C, the junction capacitance will always impose an upper limit on the frequency of oscillation of the resonant circuit.

However, the tunnel diode is a significant advance on the transistor as a high frequency active device. It has two layers and one junction compared with three layers and two junctions of the transistor, which is a reduction in complexity. Gallium arsenide (GaAs) devices do not depend at all on junction effects for their functioning. Their negative resistance is purely a property of their bulk material, and depends only on the behaviour of the charge carriers in the bulk material.

THE NEGATIVE RESISTANCE PROPERTY OF GaAs

The negative resistance of gallium arsenide depends not on a decrease in n with an increase of voltage, but a decrease in velocity, with n remaining constant. When an n-type GaAs slice is biased to a certain voltage, a further increase in voltage will result in a decrease in the velocity of the electrons. Since it is the electric field (voltage per unit length) across the slice that matters rather than the voltage, a graph of the velocity of the electrons against the applied electric field must be plotted and is shown in Fig. 27.

When the field across the GaAs slice is above about 3,000 volts per centimetre, it starts to exhibit negative resistance, as the current across the slice will decrease due to the decreasing velocity with increasing electric field, i.e. voltage across the slice. A decrease in the velocity of the electrons means that less charge will flow across the slice in a given time, i.e. less current will flow.

THE FIRST GaAs OSCILLATOR

The first GaAs active device functioning as a negative resistance oscillator was discovered by J. B. Gunn in 1964 while he was doing research on the high field properties of semiconductors. A rod of GaAs when biased above $3 \mathrm{kV} / \mathrm{cm}$ began oscillating electrically and also emitted microwaves, the oscillations being at microwave frequencies.
H. Kroemer then put forward the explanation that the GaAs rod was acting as an oscillator because of its negative resistance property. Kroemer drew attention
to the fact that three British physicists, B. K. Ridiey, T. B. Watkins and C. Hilsum, had hitherto predicted that GaAs would show the property of negative resistance under these conditions.

FUNDAMENTAL THEORY

To understand why GaAs exhibits negative resistance, it is necessary to refer to fundamental semiconductor physics. Our previous energy level diagrams (see Part 1) only show the energy values of the electrons in a semiconductor, the horizontal axis simply standing for the physical dimensions of the semiconductor bulk.

An energy level diagram can be drawn to show both the energy and momentum of the electrons in the conduction band (Fig. 28a). In this diagram, the horizontal axis stands for the momentum of the electrons. An electron in the conduction band must lie on the curved line, i.e. it can only have the simultaneous values of energy and momentum that the points on the line have. This is because the energy and momentum of a moving object are closely related. This relation involves the mass of the object.

Now, as the electron moves in the semiconductor, its movement is affected by the positive charges of the atomic nuclei in the semiconductor. Thus it does not move in quite the same way as a free electron in space. The effect of these nuclei on the electron can be taken into account by considering the electron as having an effective mass quite different from its actual mass. The

DRY JOINT TESTER

The most reltable way of testing for a dry foint is to neasure che resistance between the compouent doing this comprises a large scale (3 ini) moving coil meter, z yariable resletance for ndijust tace zero setting, and a witho diagram with foetrictions. The only additional ttem yous with need are a battery, some wire, a pair of tesf rola. Price 18/6. Postage and insurance 2/6.

FLUORESCENT CONTROL KITS

Each kit comprises seven 1terns-Choke, 2 tube ends, starter, starter holder and 2 tube clipy with wiring ingtructions. Svitable for normal fisorescent tubes or the new "Grolux tubes for gifent, mostiy resin filled. Kit A.-10-20W. 18/8.

 MF1 is for 6 in., 9 in. and 12 in. mintature tubes
$19 / 6$. Postage on Kits Λ and $\mathbf{B} 4 / 6$ for one or two litt then $1 / 6$ for each two kits ordered. Kits $\mathrm{C}_{\text {, }}$ D and E $4 / 6$ on firat kit then $3 / 6$ for each klt
ordered. Kit MF1 $3 / 6$ on yirst klf then $3 / 6$ on ardered. Kit MF1 3/8
each two kits ordered:

REED-SWITCH

Suitabie for dozens of tifferent applifentionn,
sueh as burglar alavme, converor belt switching These are simply glags in cased switches which can be aperated by a paseing permanent magnet
 are 1- each.
MINIATURE WAFER SWITCHES

4 pole, 2 way- 8 pole, 3 way- 4
pole, 3 was- 2 pole, 4 way- 3 pole,
4 way- 2 pole, 6 way- 1 pole, 12 way. All at $3 ; 8$ each, 38 ; $=$ dozen,

WATERPROOF HEATMG BLEMENT
 25 yards leagth 70W. Self-regulating teroperature control. 10/- post free.

BLANKET SWITCH
Double Pole with
peon let into kide
nminous in daric, it is or dark room light or for use with waterprooi element
-blue plastic case. $5 / 6$ each.

BLANKET SIMMERSTAT

Althorgh looking like, and flited an at ordtorry switching the blanket on for varying there periods, thus giving a complete control from off to full heat. Also, suitable for controlling the temperature of any other appliances using up to
1 amp. Lited at $27 j 6$ ench, we offer these whlle our stock lasta at only 12:8 each.

PHOTO-ELECTRIC KIT

All parts to make light operated switch/burglar alarm/counter, etc. Kit compriaes printed circuir, Iamimated Boardis and chemicals, Latching relay, sistors, cond., Terminnal Biock, Plastie case Regential data, circnits ated P.C. cheself plans of 10 photo-electric device including auto, car parking light, modulated light alarm. Síruple invisible ray switch - caunter-stray light alarrawarbling tone etectronio alarm--projector lamy
PP3 Eliminator. Play your pocket rallo from the maius! Saye \&s. Complete component kit conprises i rectiflersmains dropper resistances, struothing
condenser and instractions,
Onty $8: 6$ condenser ay

THERMOSTATS

Type "A" 15A for controllitig room heaters, speentouse, airing cupboard. Has spindle for
pointer knob, Quiekly adjustable from $30-80^{\circ} \mathrm{F}$, $9 / 6$, plos $1 / \mathrm{F}$ port. Sattabie box for wall mounting, Type "B"
Tgpe "g" I5A. This is a 17 in long rod type
narde by the famous surrio Co. Spindle adiuste

4綪
1the famous Suntio Co. Spindle adjusts alters the setting so this could be adjuatabie over 30° to $1,000^{\circ} \mathrm{F}$. Sustable for con-
trolling furnace oven filn, lmmersion heater or to make
flame-start or fire alarn, $8 / 6$, plus $2 / 6$ post and insorance.
Type "D". We call this the Ice-stat as it cuts in and out at around freezing point, $2 / 3 \mathrm{amps}$. Has many usee oue of whilch would be to keep the 10 ft . pipes from freezing. If a length of our blanket wire

Type "E", This is standard refrigerator thermostat. Spindle adiustuments cover nor
Type "F". Glass encased for controlling the temup or siviks- thermostat is held (halis submergel) by rubber wacker or wire clfp-lideal for fish tunksdevelopers and chemical baths of all types. Adjustable over range 50° to 150° F. Price 18iplus $2 /$-post and ingurance.

HI-FI BARGAIN
PULL FI 12 ECCR LOUDSPEAKER. Thls is undoubtedts ono of the finest loudrpenkers that we have ever ofrered prorluced by one of thls country" most famona nakere. I has a dile-cast metal frame and is strongly recornmended for Flux Density 31,000 gauss - Rnd public addrees. Flux Dengsty 11,000 gause - Toind Flux 44,000 MaxwellePower Handisg 18 watts R.M.S.-Cobe Moutded fibreDlam. $12 \mathrm{in}-12 \mathrm{in}$ over mounting lurg-Ba@fe hole 11 la
 11 in aiam.-Overall heigbt 5 j in . A 2β epeaker octered for
 Don'e mise thls offer.

BARGAIN OF THE YEAR

MICRO-SONIC

7 transistor Koy chan lo loudspeaker Radio in very pretty case, size leather zipped bag. specification: Circult: 7 translstor euperheterodyne. Frequency range: 530 to $1800 \mathrm{ke} / \mathrm{G}$. Sensitivits: smev/m. Intermediate frequency: $468 \mathrm{kc} / \mathrm{f}$, or $450 \mathrm{kc} / \mathrm{sin}$. Power output: 40 mW . Anterna: Serrite rod. touripeake: permanent magnet type. In transit from the East these seth sufiered slight corroslon as the this corroston to cleared away they ohould work perteetly-otrered with

 batcries. A pair of rechargeable everiast tog batteries $7 /$-pair.

YOU NEVER NEED BUY ANOTHER BATTERY

 for your transibtor falio. Stupendour offer this month-a Niekle Cadmium bittery atack together with a manas opersted charger whith jou mount on thehack of rour set. The maing Bex unpluigs oo the set remaine completels portable.

INFRA-RED HEATERS

Make ap one of these intezt type
hentera. Ileal for bathroom, ctc.
The zre simple to make rrom our
nclosed elementa desi fhell fort he cor
 nelosed elententa destgned for the corcasing as flustrated, $\mathbf{1 0 : 6}$, plus $4 / 6$ potce for $\overline{\text { i }} 50$ wat ts element, all parts, metal

BREAKDOWN PARCEL

This unit he realify an arny telephone lesw hanul-set. It conta ins the following useful ftems
Hami operated magoeto geperator which willitght lampa, generate ehocke, rtc.
Magneto bell, which will work with nhove generator or from the malns through a etep down transformer
Marse Tapper.
A very senisltive change-over relay which will opernte from $1!5$ upsards.

PROTECT VALUABLE DEYICES FROM THERMAL RUNAWAY OR OVERHEATING:
Thyzistors, rectifers, trutagators etc., whtch use beat-日inks canin easily be protected; simply nake the contact thermontat part of the heat tuk. Motors and equlpment generally, era also be adecuately protected by having Our contact thermontat has π calibrated dlal or setting betreen $00-190 \%$ or with the dis $800^{\circ} \mathrm{F}$. Price $10 / \mathrm{F}$
 DRILL CONTROLLER
 Electronleally changee speed from

Macle by Smiths Elcetrics, these are almost ulent ruanlag, but are very poweribu. They operate from normal to 240 V malan and the nnai saft speed it $16 \mathrm{~s} . \mathrm{p} . \mathrm{m}$ 15/-. Post and tris. 2/8

extra then orders over ftefinitely stated as an $\ell 3$ auld $2 / 0$. Semi-conductors add 1/- poet. Over \&1 post free. S.A.E. with enquifiea please

ELECTRONICS (CROYDON) LIMITED
(Dept, P.E.) 266 LONDON.ROAD, WEST CROYDON, CRO 2TH also at 102/3 TAMWORTH ROAD, CROYDON, SURREY

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE

(Visit us-at our new Mail Order, Wholesale \& Retail Premises) MINIMUM ORDER VALUE 5/C.W.O. Post and Packing 1/DISCOUNT $\quad \mathbf{1 0 \%}$ over $\mathbf{1 5} \%$
CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \% ; 100,220$, 330 pF. -20%, $+80 \%$: 470,680 , 1,000 pF. 5d each. ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 \mathrm{Id} . \quad 0.22 \mu \mathrm{~F}, 1 /-\quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}$, $2 / 3$. $1 \mu \mathrm{~F}, 2 / 8$.
400 V : $1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}$. $6.800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$. 7d. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}, 1 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 / 2 . \quad 0.22 \mu \mathrm{~F}$, 1/6. $0.33 \mu \mathrm{~F}, 2 / 3$. $0.47 \mu \mathrm{~F}, 2 / 8$.
Modular, metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$, $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 \mathrm{~d} . \quad 0.22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}$, $1 / 5$. $0.47 \mu \mathrm{~F}, \mathrm{i} / \mathrm{B}$. $0.68 \mu \mathrm{~F}, 2 / 3$. $\quad 1 \mu \mathrm{~F}, 2 / 9$.
POLYSTYRENE CAPACITORS: $5 \% 160 \mathrm{~V}$ (unencapsulated): 10,12 , $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820$ FF, 5d. $1,000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}$, 7d. $6,800,8,200,10,000 \mathrm{pF}$, 8d. $15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}$.
$1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150,180,220,270,330,390,470,500$ $560,680,820 \mathrm{pF}, 1 /-.1,000,1,200,1,500,1,600,2,200,2,700,3,300,3,900 \mathrm{pF}$, $1 / 3$. $4,700,5,000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{pF}_{\mathrm{i}} 1 / 6$. $18,000,22,000,27.000 .33 .000,39.000 \mathrm{pF}, 1 / 9.0 .047,5,000,0.056 / 1 \mathrm{~F}, 2$ 27 $0.068,0.082,0.1 \mu \mathrm{~F}, 2 / 3 . \quad 0.12 \mu \mathrm{~F}, 2 / 9.0 .15,0.18 \mu \mathrm{~F}, 3 /-0.22 \mu \mathrm{~F}, 4 /-, 0.27$, $0.33 \mu \mathrm{~F}, 5 /-0.39 \mu \mathrm{~F}, 5 / 9 . \quad 0.47,0.5 \mu \mathrm{~F}, 6 / 3$.
JACK PLUGS (Screened): Heavily chromed, tin Seandard: $2 / 9$ each. Side-entry: $\mathbf{3 / 3}$ each.
Standard (Unscreened): Witt 1 k. grey, white, red, blue, green or yellow covers, $2 / 3$ each.
JACK SOCKETS (tin Plug): With black or white bezel and chrome nut, 2/9 each. Available with: Break/Break, Make/Break, Break/Make, Make/ Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise, $\ddagger \mathrm{W}$ at $70^{\circ} \mathrm{C}$. $+20 \% \leq \pm M,+30 \%>\frac{1}{4} \mathrm{M}$. Body dia., $\mathrm{z}_{\mathrm{i}} \mathrm{in}$. Spindle, in $\times \mathrm{tin}$. $2 /$ each. Linear: $100,250,500$ ohms, etc., per decade to 10 M . Lozarithmic: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100. 250,500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>\mathrm{m}$. Horizontal (0.7 in $\times 0.4$ in P.C.M.) or Vertical ($0.4 \mathrm{in} \times \mathrm{O} .2 \mathrm{in}$ P.C.M.) mounting, $1 /-$ each.
Submin, 0.1 W at $70^{\circ} \mathrm{C} . \quad \pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>$ IM. Horizontal ($0.4 \mathrm{in} \times$ 0.2 in P.C.M.) or Vertical (0.2 in $\times 0.1$ in P.C.M.) mounting, 10 d each.

RESISTORS (Carbon film), very low noise. Range: $5 \%, 47 \Omega$ to $1 \mathrm{M} \Omega$ (E24 Series): 10%, 10Ω to COM Ω (E12 Series).
${ }^{\ddagger} \mathrm{W}(10 \%)$, izd (over $\left.99,1+\mathrm{d}\right)$, 100 off per value $12 /$ - $\ddagger \mathrm{W}(5 \%)$, 2d (over 99 , (17d), 100 off per value $13 / 9$. $\frac{1}{2}$ (10%), 2d (over $99,17 \mathrm{~d}$), 100 off per value 13/9. $\frac{1}{2} \mathrm{~W}(5 \%$), 2dd (over $99,2 \mathrm{~d}$), 100 off per value $15 / 6$.
SEMICONDUCTORS: OA5, OABI, 1/9. OC44, OC45, OC71, OC81, OCBID, OC82D, $2 /$-. OC72, $2 / 3$. ^OC170, OCI71, 2/6. AF1I5, AFII6, AFII7, 3/-. OC73, 3/3. OC140, 4/3.
SILICON RECTIFIERS (0.5 A): 170 P.I.V., 2/9. 400 P.I.V., 3/-, 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. I,500 P.I.V.. 4/-

SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6 A 125 V . Push Buttons: Push-on or Push-off (with white, black, green or red buttons) 5/-. Toggle 5 witches: SP/ST, 3/3. SP/DT, 3/6. SP/DT (with centre position) 3/9. DP/ST, 4/3. DP/DT, 5/-.
PRINTED CIRCUIT BOARD (Vero).
0.15 in Matrix: $3 \frac{7}{2}$ in $\times 2 \frac{1}{2}$ in, $3 / 3$. $5 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in, $3 / 11$. $\quad 3 \frac{1}{2}$ in $\times 3$ inin, $3 / 4$, $5 \sin \times 3$ दinn, $5 / 6$.
 $5 / 3$.
RECORDING TAPE (Finest quality MYLAR-almost unbreakable).
Standard Play: 5in, 600ft, 7/6. 5 zin, 850ft, 10/6. 7in, 1,200ft, i2/6. Long Play: 3in, 225ft, 4/\%: 5 in , $900 \mathrm{ft}, 10 / 6$. 5zin, $1,200 \mathrm{ft}, 13 / \circ, 7 \mathrm{in}$. 1,800ft, 18/-.

Send S.A.E. for May, 1968 Catalogue

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

SIZE 5

HANDY SOLDER DISPENSER

Contains 10 ft . coil of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Ersin Multicore Savbit Alloy. 2/6 each.

SIZE 12
Ideal for home constructors. Contains 90 ft. of 18 s.w.g. Ersin Multicore Savbit Alloy on a plastic reel. 15 - each.

SIZE 15 SOLDER DISPENSER Contains 21 ft . coil of 60/40 Alloy, 22 s.w.g. Ideal for small components, transistors, diodes. etc. 3/- each.

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

NEW PREMISES
INCREASED RANGE OF COMPONENTS

LARGER AND MORE CONCISE HANDBOOK

EITHER WRITE, TELEPHONE or CALL to . . .

STUDENT ELECTRONIC SERVICES

196 Regent Road, Salford 5, Lancs.
Tel. 061-872 5187
difference between the effective mass and the actual mass varies with different semiconductors and also with the energy levels of the electron.

Considering the movement of an electron in a semiconductor, using its effective mass instead of its actual mass, the effect of the atomic nuclei on the electron can be taken into account automatically. The effective mass of an electron at any point on the energymomentum diagram is related to the slope of the curve at that point.
Thus in a semiconductor, whose energy-momentum diagram looks like that in Fig. 28b, the effective masses of the electrons at the bottom of the conduction band is less than those at the bottom of the conduction band of a semiconductor with an energy-momentum diagram of gentler slope like that in Fig. 28c.

ENERGY-MOMENTUM CURVE

Gallium arsenide has an energy-momentum curve with a drastic slope (Fig. 28b). The electrons at the bottom of the conduction band have a small effective mass.

Now, GaAs also has secondary curves of gentler slope higher up in its energy-momentum diagram (Fig. 29a). If we apply a voltage to a GaAs slice, the electrons having a small effective mass are easily moved and the current across the slice increases. As they are accelerated by the voltage, they gain energy and they rise up the curve on the diagram. We show the rise only on one side of the momentum axis as they are accelerated and gain momentum only in one direction-that due to the applied voltage.

As they approach the levels of the secondary curve, they begin to get transferred to the energy levels there. This is because the energy levels there are much more numerous than the energy levels on the main curve at the same height (Fig. 29b).

Once they are on the bottom of the secondary curve, their effective masses are much larger as the slope of the secondary curve is much gentler. As a result, their velocity decreases, since an object with a large mass is harder to move than an object with a small mass. As we further increase the voltage, more and more electrons get transferred to the secondary curve and the overall velocity of the electrons decreases. The velocityelectric field curve thus has a negative slope (Fig. 30).

The electron current will thus decrease with increasing applied voltage, and the GaAs slice exhibits negative resistance.

THE GUNN EFFECT

A slice of gallium arsenide when biased into the negative resistance region should be able to generate electrical oscillations when put into an LC circuit.
When Gunn observed the oscillations in the GaAs rod, what was actually happening was that the rod itself and its mounting made up its own LC circuit and thus oscillated at a frequency determined by its own physical dimensions. As the oscillations were at microwave frequencies, the rod radiated the oscillating electrical energy in the form of electromagnetic waves. This is because a circuit element carrying an oscillation will radiate more and more electromagnetic energy as the wavelength of the oscillation decreases and becomes comparable to the physical dimensions of the element. This is a fundamental of aerial theory.
This microwave emission phenomenon from GaAs was called the Gunn Effect after its discoverer.

ELECTRON BUNCHING

In the Gunn Effect, it was later found that when the GaAs rod is biased into the negative resistance region, and begins to emit microwaves, a bunch of electrons collects at one end of the rod near the contact and travels to the other end. As soon as it reaches the other end, another bunch forms at the first end and the process repeats itself. This occurred in step with the oscillations; in fact, it seemed to determine the frequency of the oscillations.
The electrons in the rod when it is in the negative resistance region do not behave like normal electrons in a normal positive resistance material. In a positive resistance material a bunch of electrons will be dispersed in a short time. In a negative resistance material, as the electrons travel along in the material due to the voltage applied to the material, any slight bunching up leads to a greater accumulation of electrons. This is because the bunching up creates a higher field in the area of the bunch due to the electrons' own charges.
This higher field affects the electrons in and near the bunch, which then slow down because of the negative velocity-field slope. Thus instead of dispersing, a further accumulation of electrons takes place and what is known as a domain forms and travels across the rod.

DOMAIN FORMATION

The actual nature of the domain is an accumulation of electrons preceded by a layer depleted of electrons. The overall number of electrons in the rod remains the same (Fig. 31).

The result of this domain formation and travel is to limit the high frequency response of the device. The frequency of the oscillations is tied to the transit-time of the domain across the rod. The domains will always form since natural inhomogenities in the GaAs will always result in uneveness in the electron distribution in, the rod. This uneveness is most pronounced at the end of the rod where the electrical contacts are made, so that the domains form at the ends. Only one domain is sustained at a time; as the domain consists of electrons, it travels under the influence of the applied field to the other end of the rod. Another domain then forms at the first end and repeats the process.

EFFECTIVE CAPACITANCE

We may look at the high frequency limitation of the Gunn Effect device from another angle. The domain consists of a layer of accumulated electrons having a negative charge relative to the rest of the rod, and a depleted layer having a net positive charge. This is like a charged capacitor because the accumulated charge depends on the external applied field.

Thus like the tunnel diode, the Gunn Effect device is frequency-limited by this effective capacitance. However, it is able to oscillate in the microwave region of the electromagnetic spectrum.

THIN SLICES BY EPITAXIAL GROWTH

Clearly then, the high frequency microwave response is limited by the formation of the domains. In practice, the frequency limit is pushed up by making the domain transit-time as short as possible. This is done by making the distance between the contacts as short as possible, and thin slices of gallium arsenide and not rods are used as microwave oscillators.

These slices are formed by a process known as epitaxial growth, which also gives layers of the very high purity required for this purpose. Thin films of GaAs are deposited onto a heavily doped GaAs substrate which serves as one contact. A further thin film of heavily doped GaAs is deposited on the working layer to serve as the other contact (Fig. 32).

Microwaves of up to about 30 GHz have been emitted from such devices. However, the restriction on the thickness of the slice limits the power capability of the device. As higher frequencies are reached by using thinner layers, the power output drops sharply.

THE LSA MODE

Since the frequency limitation is imposed by the moving domains, could we not get rid of them? If we could, such a GaAs slice would be able to function as a pure negative resistance device in an oscillator circuit.
J. E. Carroll, in early 1966, found that by putting a Gunn Effect device in a suitable circuit, the domain could be extinguished before it reached the other end. In the middle of 1966, M. W. Kernedy discovered that he could make a Gunn Effect device oscillate at a frequency far in excess of its usual one determined by the domain transit-time. J. A. Copeland then demonstrated theoretically and experimentally that in this case, the domains were being prevented from forming at all.

Here at last was the major breakthrough. The GaAs was now being used as a pure negative resistance oscillator, Fig. 33a, and the frequency of oscillations was determined by the external I.C circuit (actually a cavity at microwave frequencies).

How were the domains prevented from forming? They form only when the GaAs is in the negative resistance region of the velocity-field curve. The GaAs slice was put in a resonating circuit and biased into the negative resistance region. A load impedance in the circuit was of such a value that the oscillating voltage across the load was large enough to bring the voltage bias across the GaAs slice at one end of each oscillatory swing into the positive resistance section of the velocityfield diagram (Fig. 33b).

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Erehing Manual, InfraRed Photperansistor, Latehing Relay, 2 Transistors, Condenser, Resistors, Gain Contmol, Terminal Block, Elegant Case, Screws, etc. In Jact everything you need to build a Steady-Light Photo-Switeh/Counter/Burglar Alarm,

12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulated-Light Alarm, (3) Long-Range Seray-light Alarm. (4). Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Proiector Lamp (10) Car Parking Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super: Sensitive Alarm.

INVISIBLE BEAM OPTICAL KIT

Everyching neaded (except plywood) (or building: I, Invisible-Beam Projector and I Photocell Receiver (as illustrated). Alarms, Counters, Door Openers, ese.
projector lamp holder, building plans, 2 performaden blocks, Infra-red filker, projector hamp holder, building plans, periormsnce data, ete. Price $19 / 6$,
Postage and Pack. I/6 (UK). Commonwealth: Surface Mail, $2 /=$. Air Maił $8 /-$

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Switeh, Burglar Alrm, Door Opener, Counter, ere., ror the Experimenter. Plastic Case, Resistors, Serows, etc., Full Size pisnt, ${ }^{3}$ Transistors, Chassis, Sheet "10 Advanced Photoelectric Designs
Price $19 / 6$. Postage and Paek. 1/6 (UK)

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Inra-red Fiiter, Lampholder, Brackec, Plans, ete, and
and photocell resoiver. Price 10/8. Postage and fack. $1 / 6$ (UK). Common wealth:.Surface Mail $2 /-$; Air Mail $4 / 6$.

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS on P PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from Your SPARES BOX box Radio. (3) I Board for Wristwateh Radio, atc. (4) Resist. (5) Resist Solvent, (6) Etchant. (7) Cleanser/Degreaser, (8) 16--age Booklet Prinsed
Circuits for Amoteurs. (9) 2 Miniature Radio Dials SWIMW/LW. Also free Circuits for Amateurs, (9) 2 Miniaturo Radio Dials SWIMWILW. Also free
with tach kit, (10) Essential Design Data, Cireuits, Chassis Plans, etc. for with each kit, (lo) Essential Desig
40 TRANSISTORISED PROJECTS. 40 TRANSISTORISED PROJECTS.
A very comprehensive selection of eircuits to suit everyone's requirements publishad for the firgititye, Mancluding to new circuits.

Postage \& Pack. 1/6 (UK) Commonwealth: SURFACE MAIL $\mathbf{2}$ /AIR MAIL $8 /$ Australia, New Zealand South Africa, Canada
(1) Crystal Set with biased'Detector, (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Sec with Dynamic Loudspeaker. (4) Crystal Tuner with Neutralised Double Reflex. (7) Marchbox or Phorocell Radio. (8) "TR1 FLEXON" Triple Reflex with self-adjusting regeneration (Patent Pending), (9) Solar Battery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor anywhere in theWorld. 3 Subminiacure Radio Receivers based on the "Triflexon" sircuit. Let us know if you know of a smaller design published anywhere.
$70^{\circ} \times .5^{\circ}$ (11) Wristwatch Radio $1 \cdot 15^{\circ} \times 130^{\circ} \times \cdot 55^{\circ}$. (12) Ring Radio $70^{\circ} \times$ $70^{\circ} \times \cdot 5^{\circ}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (I4) Radio
Control Tono Roceiver. (15) Transistor P/P Amplifier. (16) Intercom. (17) Conerol Tonsinoceiver. (is) Transistor Amplifief Lis) incercorn. (in) Guided Missile. (20) Perpetual Motion Machine. (21) Metni Detector. (22) Trantistor Jester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required) (27) Constant Volume Intercom. (28) Remote Control of Models by Induckion (29) InductivenLoop Transmister. (30) Pocker Triple Reflox Radio- (31) WrittWatch Transmitter/Wire-less Microphone. (32) Wiretiess Door Bell. (33) Ultrasonic Switeh/Alarm. (34) Stereo Presmplifter. (35) Quality Stereo Push Pull Ampliffer. (36) Light-Beam Telephone "Phocophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full detoils, a brief description and Photogrophs of all Kits and oll 52 Radio. Electronic and Photoelectric Projects Assembled.
R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

GET THIS SPECIAL PACK NOW AND WITH THE FREE VEROBOARD ENCLOSED IN THE LAST ISSUE COMPLETE THE SERIES OF CIRCUITS IN THE OCT., NOV. and DEC. NUMBERS OF
 "Practical Electronics"

Pack consists of Spot Face Cutter and 5 pieces

Available now at your usual retailer Trade enquiries to NORMAN ROSE (Electrical) 'LTD., 8 St. Chad's Place, Gray's Inn Road,

London, W.C. 1 TECHNICAL ENQUIRIES TO
VERO ELECTRONICS LTD., Industrial Estate, Chandler's Ford, Hants SO5 3ZR

RADIO GONSTRUGTOR

OCTOBER ISSUE

NOW ON SALE
 FEATURES

A BAND SPREAD H.F. BANDS SUPERHET
An outstanding constructional project for the beginner to short wave listening By F. G. Rayer

PLUS 2
 DETACHABLE dATA SHEETS

other constructional articles include:

- CRYSTAL MICROPHONE MATCHING UNIT INFINITE RESISTANCE VOLTMETER - ULTRA-SENSITIVE LIGHT OPERATED SWITCH

From your newsagent price $3 /$-, or $3 / 6$ inclusive of postage, from Data Publications Ltd.

While the GaAs is in this section it has a normal positive resistance; thus the electrons do not accumulate to form a domain but will disperse in the normal way. The formation and existence of the domain can only take place between each swing into the positive resistance region, when the GaAs is back in the negative resistance region.

PURE NEGATIVE RESISTANCE

In the quenched domain mode observed by Carroll, the time between swings was long enough to permit domain formation, but short enough to quench the domain before it reached the other end of the slice. Now, if this time, which is determined by the frequency of the oscillation, were even shorter, the domains which take a finite time to form will not even have any chance to do so. Thus the GaAs slice can operate as a pure negative resistance device. This was achieved by Kennedy and Copeland.

The frequency of oscillation which is now determined by the resonant LC network must be high enough to prevent domain formation. This is a good thing, since it is the higher frequencies that we are interested in anyway.

HIGHER POWER POSSIBLE

Because there is no transit-time limitation on the devices, they do not have to be made very thin. They can be fairly long so that they can handle much greater powers than Gunn Effect devices at higher frequencies. Copeland has recommended that they be made long in the direction parallel to the current flow and thin in a perpendicular direction to the flow, so that heat can be easily removed from the sides of the devices (Fig. 34).
This mode of operation of gallium arsenide as a negative resistance material is known as the Limited Space-charge Accumulation (LSA) mode, since the electrons are prevented (limited) from accumulating to form space-charge (bunched charges).

LSA devices are the first true negative resistance devices which depend only on the properties of a bulk material and not on layers or junctions. It is interesting to note this further step in the decrease of the number of layers necessary in a semiconductor active device, compared to the three layers of the transistor and the two layers of the tunnel diode. Furthermore, each progressive step has pushed the frequency limit of oscillation higher.

THE FUTURE OF LSA DEVICES

LSA devices hold exciting promise for the future wider applications of microwave electronics. In the not too distant future one can envisage the commercial production of small portable radar sets.

Using Gunn Effect devices, prototype portable radar sets have been constructed and demonstrated by the Royal Radar Establishment.
The availability of tiny, simple and efficient microwave generators and oscillators at millimetre wavelengths brings nearer the day when the personal portable sound and colour television transceiver for communication with anybody else in the world is a working reality.
At the time of writing, Copeland has obtained 20 mW output of c.w. microwaves at 88 GHz with GaAs slices operating in the LSA mode. The GaAs slices were thin and originally intended for operation in the Gunn

Effect mode. When proper LSA devices to Copeland's design have been constructed, they will undoubtedly be able to generate much higher powers.
Even then, the powers already obtained are much higher than those ever generated by previous semiconductor active devices at such high frequencies.

INTENSE RESEARCH

Research on LSA devices is now proceeding intensely in many laboratories and gaining momentum with each week. The writer is certain that by the time this article appears, significant progress will have been made in the practical construction, operation and application of these devices.
As a matter of interest, a chart (Fig. 35) showing the progress of the development, and the relationships of active devices is included.

MUSICAL PHASE

In the article Musical Phase (September) the name of the co-author M. G. Lewis B.Sc., was inadvertently omitted. Mr. Lewis was in fact responsible for the invention of the Pradge phase generating equipment described in this article.

IOUN

PRACTICAL!

 VISUAL! EXCITING!
a new 4-way method of mastering

 ELECTRONICS by doing and seeing
3 READ and UNDERSTAND CIRCUIT DIAGRAMS

CARRY OUT OV
CIRCUITS AND
VALVE EXPERIMENTS
TRANSISTOR EXPERIMENTS
AMPLIFIERS
OSCILLATORS
SIGNAL TRACER

- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT
- BASIC RADIO RECEIVER ELECTRONIC SWITCH SIMPLE TRANSMITTER
A.C. EXPERIMENTS
D.C. EXPERIMENTS

SIMPLE COUNTER
TIME DELAY CIRCUIT

- servicing procedures

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^5] To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representotives

NAME.
BLOCK CAPS
ADDRESS
PLEASE PE 11

TRANSISTOR STEREO $8+8$ MK II

Now uelug Silicon Transistors in liret tive stages on each channel resulting in even lower noise level with improve Bensitivity．A really frat－class Hi－Fi Stereo Ampllier Kit Cres 14 transistors giving 9 watte pusin pull output pe chanmel（16W mono）．IDtegrated pre－amp，with Bass Ceramic or Cryatal cartridges．Output for ube with for any speakers from 3 to 15 ohme．Compsct design，all parts bupplied inclading drillerl metai work．Cir－kit board atiractjve front panel，knobs，Wire，solder，מuta，bolto－ no extras to buy． 8 mmple steg by ztep instructions enable any conetructor to bulld an amplifler to be proud of Brief gpecification：Freq．response $\pm 8 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{A}$. Brasa boost approx．to +121 B ．Treble cut approx．to
-16 dB ．Negative feedback 18dB over main amp －16dB．Negative feedback 18 dB over main amp PRICEs：AMPLIPIRR KTT 810.10 .0 ；POWER PACK KIT $280.0 ;$ CABINET 88.0 .0 ．AH Post Free． ＝्रith k（t）1／8．（S．A．R．）

4－SPEED EECORD YLAYBR BARGATWg Maint models．All brand new in meker＇m packing． E．M．I．MODEL 998 Strgis Pleyer with unit mounted piciz－up spza nand mono cartridge All plan Earriage and Paching efr．

LATRST GARRARD MODELS．All typen avalleble 1000 Erices！ 9000 ，ATB0 etc．Send 8．A．E．Ior Iatest Burgain

LATEST B．8．R．EIE MONO COMPATHBLE CARTRTDGE With turnover sapphire styll suitable for playing 79，\＆P， LP and Stereo records with mono equipment．ONLY 22；6． P．\＆P． $2 /$
SONOTONE OTARC compatible Gtereo Cartridge with MONO THO CARTRmas，Complete with LP \＆ 78

QUAKITY RECORD PLAYE：AMPTMTER

 A cop－quality record player amplifier emploging heavyduty double Found mains transformer，ECC83，EL84，
FZ80 valves，Separate Bass，Treble and Volume control． ClZ80 valves，Separate Bass，Treble and Volume controls． Complete Fith output transformer matched for 3 ohm
speaker．Size $7 \mathrm{in}, ~ W . ~$ ． $8 \mathrm{~d} . \times 6 \mathrm{~h}$ ．Ready built and teated． speaker．Size 7in，w．$\times 8 \mathrm{~d}$
PRIGE $75 /=$ P．\＆ $\boldsymbol{P} .6 \mathrm{j}$ ．
AESO AVATLABLE mounted on board with output transformer and epeaker ready to fit into cabinet belor．
 Uncut motor board size $14 \frac{1}{2} \times 12 \mathrm{in}$ ，clearance 2 in ．below Stu．above．WIll take above amplifler and any B．S，R．or GARRARD autochanger or Single Player Unit（except ATOU and SP2б）．Size $18 \times 15 \times 8 \mathrm{Em}$ ．PRICE E8．8．6．

HARVERSON＇S SUPER MONO AMPLIFIER

A auper quality gram amplifer using a double wound maina transformer，RZ80 rectiker and ECL82 trioule pentode valve as aud lo amplifler and power ontput ntage．

 6ing high overall．AC malus 200／240V，Supplled absolutely
Brand New completely wired and tested with valves and grand New completely wired and tested with valves and
gooality outpat transformer．LIMMTED NUMBER good qua
ONLY．
OUR ROCK BOTTOM
BARGAN PRICE
49／6
Patp．

8 WATH AYMLLEIER．Puoh Pull uelng ECCB3，EZ80 and two EL84 valves．Suitable for use whth tuner or gram，
Separate basa，treble anut volume controls，Abgolutely complete with attractive fucin panel Stve $12 \times$ complete with attractive facla panel．Slze $12 \times 3 i \times 5 i n$ ．
high．Brand new and teated 27.17 .6 ．P．\＆P． $8 / 6$ ．

BRAMD NEW 8 OHM LOUDSPEAKEES
 Bin．With hich fux ceramio magnet $42 /=$ ．D．M．M． 18 ． 18 E．M．I． $18 \times 8 \mathrm{ln}$ ．With two inbullt tweoters and crospover network， 3 or 15 ohms 4 gal．P．\＆P． 5 in． $2 /$ ， 61 \＆ 8 tn． $2 / 6$ ， 10 \＆ 121 מ． $8 / 6$ per 日peaker． BRAND NEW，12tn， 15 W H／D Epeakera， 3 or 15 ohms． By well－known Britiah maker．Now with Hi Flox ceraml ferrobar maynet agaembly， $\mathbf{e 5} 10.0$ ．P，\＆P．$\overline{6} /=$ ，Gultar E，M，I， 81 fm ．HEAVY DUTY TWEETERR，Powerful cera－ mic magnet．Avaltable in 8 or 8 ohms 16／＝each；15 ohma $18 / 6$ each．$P, ~ \& ~ P, ~ 2 / 6 . ~$ handllyg． 8 or $350 \mathrm{am}, 85 / \mathrm{m}$ ，P．\＆P． $8 / 6$
845n．12／8； $7 \times 4 \mathrm{~m}$ ．2k／m．P，\＆P． $2 /$－per speaker
VYNATR AND REXIRE SPEAKERS AYD CAMINET FABRIC8 app． $54 \ln$ ．wlde，Ueually $35 / \%$ ydi．，our price $18 / 6$ LATEET COLLARO MAGYAYOX 868 STEREO TAPE DECX， B．S．S．TDS，4－TRACE 8TEREOTAPE DEGE．Send S．A．E， CDALITY POATABLE TAPE RECOKDER CASE Bail Piew．Buahfuly maed．Only 48／6．R．\＆P．8／G． 1：er 35% P．\＆P． $3 \%_{0}$ ． ACOS CRY8TAL MIXER High imp，for deak or hand use． High eenslttrity，18／6．P．\＆P．1f6．
 SPECLAL OFFER！MOVING COIL BTIGE MrEs．Fitted
on／of switch for remoto control．Righ qutity，Ejfh of jow tmpedance，（State imp．required）．BARGAM PRICE $30 /-$ P．\＆P．2／6．

YEW 8，T，0．TYPE 25 MHLATURE BELAFS－ 18 valt． 4 o／g，o／o coutacts． 1 amp rating．Coil resistance 185 ohmb． 810 esch．P ．$\& P, 1 / 6$ ．
Also some similar ta abore but coll reasistance 5,800 olums 48 volt operation． $8 /$－each．P．\＆P． $1 / \theta_{\text {．}}$

SPECLAL OFAERI PLESSEX TYPE 99 TWLW TUAME GARG． $400 \mathrm{pF}+146 \mathrm{pF}$ ．Fitted with irimmers and I．F．Size approx． $2 \times 1 \times 1 \frac{1}{2} \mathrm{~m}$ ．Only $8 ; 6$ ．Y．\＆ $3.2 / 6$ ．
 Rrj． $200 / 240 \mathrm{~V}$ ．Bec，$\theta-0-\mathrm{B}$ at 500 mA ． $11 /$－．P．\＆P． $2 / 6$
 Pri．200240 PALE OF \＆\＆WATA TRANSISTOR DRIVEB ATD ODTPUT TRANBFORMERS．Stack size $11 \times 1 \frac{1}{x}$ ${ }^{1 \mathrm{in}}$ ．Output trans，tapped for 8 ohm and 10 obm output 10／－pair plus $2 /=$ P，\＆ F ．
RAR思 $7-10$ ．
match pair of TRCLI OUTEUT TRANSFORMERS to match pair of ECL82＇a la push－pull．gee，tapped 875.
7.6 and 15 ohm．Stack ulze $21 \times I \times 2 \mathrm{in}$ ．approx． 05 I 5 I
7－10 wht ECL86＇s it purdepall to 3 ohm output，ONLY is P．\＆P．2／6．MAME TRAWSFORMER for Bride BRATD KIEW MANs TRANSFORMERS for Bridge
 （Special）quotations for quant st les）．

NEOF A．C．MALHE HDDCATOR．For panel mounting，cut out dize $1 f \times 3 \times$ in．deep inc．terminal．White case with

HTGE GRADE COPPER LAMDATE BOARDS
$8 \times 6 \times$ 志In．FIVE for 10／－P．\＆P． $2 /$
BRAMD NEW TRAN8ISTOR BARGAIFS．GET 15
 AF117 7／6．
Set of Mullard 6 transistors OC44，2－OC45，AC128D
matched Dalr AC128 $25 /-$ Mullaril LFH3 Andl Trans matched palr AC128 25／－：Mullarit LFF3 Audlo Trans－
fator Pack AC128D and matched pair AC128 12／6； fator Pack AC128D and matched pair AC128
ORP12 Cadmium \＆ulphide Cell 10／6．All post free．

AMPLIFIER MODEL HASA Dealgned for H1－FI reproduc thon of recorde．A．C．Mains
operation．Ready buit on
俍 plated heavy gauge metal
 4in．h．Incorporntes ECC8s，
EL84，EZ80 valves．Hesvy duty，double wound maine
tranoformer and output trang－ translormer and output trans－ peaker，staparute Bass，Treble and volume controle，Negs－ tive feedback line．Output 4 wattis．Front panci can be
detached and lendo extended for remote mounting of controls．Complete with knoba，valves，etc．，wired and HSL＂POTR＂A MPITPIRQ KT
HASt above but employs entlrely difierent and arance to HAst abore but employs entirely diferent and advanced

SPECIAL OFFER I

A great oppor－

GRNEAAL
PUROSE，

 BITIVITY
PORTABLE
AMPLIFIER． Completely self
contalined and can contained and can
be used for m varjet
of purposen，1．e．Intercom，
Baby Alarm，\＃ooster unit for
transitior radios ete．，aino liceal for clasarootr unit etc．Works perfectly with our eppecinl offer Migh Impetance Dynaraic Microphone $180 /$ a）．Outputt 1000 mW ． case stze $12 \times 4 \times 9$ in．fitted standard luput fack mocket case size
volume controle， $7 \times 4 \mathrm{in}$ ，speaker．Completely hnilt and teatell，brand new wlth fill maker＇ı guarantee．

Only 79／6 ${ }^{\text {pata }}$ 8．

STEREO AMPLIFIER

Incorporating 2 ECLs6；and 1 EZ88，heavy duty，double Full tone and rolume controle Abelutely permpete．
Full tone and rolume cantroia，Aheorntete．

HIGH OAIT 4 TRANSIETOR

PRINTED CRRCUIT
ASPLIPIER KIT
Type TAI
Prak out
put in excesa
－All stan
－Buile on
prlnted circuil panel slze 0×3 3in．
－Generous size Driver and Outpat Traturormer －Output transformer tapped for 3 ohm and 15 ohm
 and matchei juir of OCB1 o／p）． 9 volt operation． －Everjthing supplied，wire，battery clips， ©older，etc． diacram $8 / 8$（Free with Ki）．All parta mold separately．
 tested，69／6，P，呂 P．

FM／AM TUHER HEAD Beavtifuliy designed and pre－
ciatou thaglacered by Dormer ciafon englneered by Dormer \＆
Wadoworth Wadsworth Ltd．Supplled
ready flted with twin -0005 ready fitted with twin 0000
tunlng condenser for AM con tuning condenser for AM con－
nection．Preallgued Far sec－ nection．Preallgaed Fai sec
Efon covers $86-102 \mathrm{Mc} / \mathrm{m}$ I．F output $10 \cdot 7 \mathrm{Me} / \mathrm{s}$, Complete

full circult diagram of tuner head．Another bpectal bulk purchnee enablew ua to offer thewe at $27 / 6$ each，P．\＆P． $3 /=$
 I．F．25／－pluta 2je P．\＆P．（ECC85 valves，8／6entra）．

10／14 WA\％HITEI A styliahly finished monaural anomififer with an oratput of 14 Watts from 2 ELB4 in push－pull． Super reproduction of both muale and speech，whth negli－ inputs for mike and inputs allow recordo gram and announcementa
 to follow each ather．
Fully shrouded section wound oxtput translormer to match $3-15 \Omega$ speaker and 2 independent volume controle， and separate biss and treble controls are provided givlng goodilft and cut．Valye line－up 2 E184d，ECC83，ER86 and
EZ80 rectider．Simple instruction bootlet 2／6（Free with

 Also wvallable ready bult and te

Open all day Saturday
Eafly closing Wed． 1 p．m．
4 few mintutes from South Wimbledon Tubs Efation

HARVERSON SURPLUS CO．LTD．
I70 HIGH ST．，MERTON，S．W． 19
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
（Please write clearly） PLEABE DOTE：P \＆\＆CEARGES
 charard extra．

THE DORSET (600 mW Output)

7 -tranelstor fully tunable M.W.-L.W. superhet portablewith baby alarm facility. Set of parta. The latest nooluflacd and pre-aligament techniques makes this simple to bulld. Sizes: $12^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}$.
MAINS POWER PACK KIT: 9/8 extra.
Price $\mathbf{£ 5 . 5 . 0}$ plug $7 / 6 \mathrm{p}$. \& p. Circuit $2 / 6$ FRE\& WhTH PaRTS.
THE ELEGANT SEVEN MK. III (350 mW output)
T-tranalitor fully tunable 3L.W.-L.W. portable. - Set of parta. Complete with all components, inciuding ready etched and drilled printed
prinued for foolproor construction, 9 extra,
Price 64.9 .6 plus $7 / 6$ p. \& p.
Ciccalt 2f6 FREE WITH PARTS.

50 WATT AMPLIFIER A.C. MAINS 200-250V
An extremely reliable general purpose rulve amplificr -with six electronically mixed inputa. Suitable for use with: mies, guitars, gram, tuner, organs, eto. Separate bass and treble controls.
Price 27 gns. plus 20!- p. \& p.
XIOI IOW SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP
Speciflcalions: R.V/S Power Output (into 3 ohns speaker): 10 Watt contlnuous (sine wave), 13 watts mueic power.
Sensitielty (for rated output): 1 mV into 3 K ohma ($0-83$ microSensidity (tor rated output): mmy) into 3 Soth ohmis (0.83 microo $\mathrm{amp})$
output
1.5%.
Frequency Response: Minus
8 dB
points 20 Ez and 40 Khz . Speeker ; $3-4$ ohms ($3-15$ óhms may be used). Supply rollige: 24 V d.c. (3) 800 mA ($6-24 \mathrm{~V}$ may be ueed).
Control assembly: Jncluding resistors and capacitors.

1. Volume: PRICE 5/-

Price 49/6
2. Comprehensive bats and zreble: PRICE 10/-

The above 3 items can be purchased for uge with the X101.
plus 2/6 p. \& p.
The above 3 itema can bo pur
Power Sapplfer Ior the X101:
P101 3in (for mono) $85 /-\mathrm{plus} 4 / 8$ p. \& p. P101 S (for stereo) $42 / 6$ plus $4 / 8 \mathrm{p} . \& \mathrm{p}$.

THE CLASSIC

Controls: Selector swltch. Tape speed
equalisation switch (38 and 7\% i.p.o.).
Valume. Treble. Basa, 2 position
scratch
filter
8pocification: Sensltfyltten for 10 watt output

IVag. P.U.: 2 ZmV Cer. P.U.: 80 mV . Radio: 1100 mV .
is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz each fiput
control ramps: Basg $\pm 13 \mathrm{~dB}$ at 80 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Totat diatortion: (for 10 vatt output) $<1.3 \%$. Slgmat noise: <-60dB, A.C. tuatus 200-250r.
Slze 12$\}^{\circ}$ long, 41" deep, $23^{\circ} \mathrm{high}$. Teak finished case. Price $8 \mathrm{gnS} . \mathrm{g}$. de p. free.
The RELIANT IOW SOLID-STATE HIGH QUALITYAMPLIFIER Speolecations: Oufput: 10 watta R.M.S. Sine-wave; 13 watts R.M.S. Music-power. Oufpul impedance: 8 to 4 ohms. Inputs: 1. Xtal mic 10mV: 2 . Grani/radio 230 mV , Tons controls: Treble coutrol range $\pm 12 \mathrm{~dB}$ at 10 KHz ; Basa conirol range $\pm 13 \mathrm{~dB}$ at 100 Hz . Frequency response (with tone eontrols central): Minus 3dB foints are 20 Hz and 40 KHz . Signal to noise ratio: better than -60 ab . Transtsiors: 4 Bricon Planar type and 3 Germanlum type. Mrains input: 220-250V a.c. Size of chassis:
$10^{\circ} \times$ S nstruments, itl makes of pick-ups and mikes. Sepiarate base and treble 1tit control instruments, alt nakes or pick-ups and mikes. Separate base and treble the control oult: Price $14 / 6$ plus $1 / 6$ p. \& p. Crystal mike to suit: $12 / 6$ plus $1 / 6 \mathrm{p}$. \& p.
PRKCE 25.5 .0 plus $\overline{\text { D }}-\mathrm{p}$. \& p.

RECORD PLAYER SNIP

The "Princess" 4 speed automatic record chunger and player englnoered with the utmost preciston for beauty,
long IIfe and trouble free service. WII take up to ten records which may be mulxed 7 in to 10 in or 12 in . Patent stylus brush cleuns stylus after each playing and at shat off, the plek-up locke itself finto its recess, a mass useful feature with portable equipment-other features incinde pick-up height adjustment and atylus pressure adjuutment. This truly is as Ane instruntent which you can purchase this month at Only es. 19.8 completc

Price
£5.19.6

CYLDON U.H.F.

 TUNER Complete with PC88 and PCA日 Valves. rarlable tunias. and ununed. $812845^{\prime \prime} \%$ $81^{*} \times 11^{\circ}$. Complete *lth clreuit diagram. $35 / \mathrm{mlus} 3 / 6 \mathrm{p} . \& \mathrm{p}$.THREE-IN-ONE H1-FI 10 WATT SPEAKER A complete Loud Speaker systern on one frame, combining three matched eeramic magnet speakers kith a low lose cross-over network. Speak handling power 10 watt.. Impedance 18 . ohums. Fiux denalty 11,000 gauso. Resonance
$40-60 \mathrm{c} / \mathrm{s}$. Frequency $\mathrm{range} 50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{g}$,

 without tweeters in 3 nnd 15 ohms $39 / 8$ plus 5/-p. \& p.

Goode not denpatched outatde I.K. Terms C.W.O. All enquiries S.A.E.

RADIO \& TV COMPONENTS (ACTON) LTD.

> 2Id High Street - Acton - London W. 3 323 Edgware Road - London W. 2
> Orders by post to our Acton address please

ORGAN BUILDERS! SILICON N.R.N. TRANSISTORS, ALL, INDIVIDUALLY TESTED IN PUBLISHED DIVIDER CIRCUIT: GOLD-PLATED LEADS FOR EASY SOLDERING! Unbeatable value at $1 / 6$ each or $55 /-/-$ per 100 .

TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12in TUBE, Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only! Or in kit form:

TRANSISTORS
OC200, OC203, OC204, all at $2 /$ each.
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A. 2G378A, all at $1 / 6$ each.
Transistors similar to OC44, OC71 and OC72, all $1 /$ - each.
Unmarked, untested transistors, 7/6 for 50.
LIGHT SENSITIVE TRANSISTORS (similar OCP 71). 2/- each.
30 watt transistors (ASZ17), 10/- each.
DIODES. Very low leakage. Make excellent detectors. also suitable for keying electronic organs, 1 /- each, 20 for $10 /$ -
RECTIFIERS
BY100, 800 p.i.v. $2 / 6$ each, $24 /$-per doz., £7/10/- per $100, £ 50$ per 1,000 . BYZ13, $6-\mathrm{amp}, 400$ p.i.v., available on same terms.

MULLARD POLYESTER CAPACITORS
FAR BELOW COST PRICE:
$\begin{array}{llll}0.001 \mu \mathrm{~F} & 400 \text { volts } & \ldots & 3 \mathrm{~d} \\ 0.0015 \mu \mathrm{~F} & 400 \text { volts } & 0.02 \mu \mathrm{~F} & 200 \\ & 0.15 \mu \mathrm{~F} & 160 & \text { volts }\end{array}$
$0.0015 \mu \mathrm{~F} 400$ volts
$0.0018 \mu \mathrm{~F} 400$ volts
$0.0022 \mu \mathrm{~F} 400$ volts
$0 \cdot 27 \mu \mathrm{~F} 160$ volts

VERY SPECLAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. $10 /$ - per 100. PAPER CONDENSERS, MIXED BAGS, 0.0001 to $0.5 \% \mathrm{FF}$. $12 / 6$ per 100.
RESISTORS! Give-away offer! Mixed types and values, $\frac{1}{2} 10 \frac{1}{2}$ watt. $6 / 6$ per $100,55 /-$ per 1,000 . Individual resistors 3 d each. Also $\frac{1}{2}$ to 3 watt close tolerance. Mixed values. $7 / 6100,55 /-1,000$.
WHRE-WOUND RESISTORS. I watt to 10 watts. Mixed bags only. 16 for $10 /-$

RECORD PLAYER CARTRIDGES

${ }^{\mathrm{A} P \mathrm{COS}}$

GP
GP
GP
GP
$67 / 2$
$91 / 3$
$93 /$
$94 /$
Mono
Stereo Compatible
Stereo Ceramic
Stereo Ceramic
15/- complete with needles.
£11/-/
£1/5/-
Small piek-up arms complete with cartridge and needie, $10 /$ - only.
TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F/A.F. TRANSISTORISED SIGNAL TRACER KIT $10 /$-only

VEROBOARD

$2 \operatorname{lin} \times 1$ in 0.15 in matrix $\quad 1 / 1$ $\begin{array}{llll}3 \operatorname{in} \text { in } \times 2 \operatorname{lin} & 0.15 i n \text { matrix } & 3 / 3 \\ 3 \sin \times 2 \sin & 0.15 \sin \text { matrix } & 3 / 11\end{array}$ 5 in $\times 2$ 年in 0.15in matrix $3 / 11$ $\sin \times 3$ in $0 \cdot 15$ in matrix $5 / 6$ $\sin x 3^{2}$ in 0.1 in matrix $5 / 6$ Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 3/6-36.

MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$
d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}$
d.c. $2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$.

Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$.
Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6$
Special price $£ 4 / \mathrm{F}$ only.

ELECTROLYTIC CONDENSERS

	OL	CO	ASSER			
$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$25 \mu \mathrm{~F}$	12 voll	$100 \mu \mathrm{~F} \quad 16$ volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$	25 volt	$125 \mu \mathrm{~F}$ 2S volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$30 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F} \quad 4$ volt
$1-25 \mu \mathrm{~F}$	16 volt	$6 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	10 volt	$320 \mu \mathrm{~F} \quad 10$ volt
$2 \mu \mathrm{~F}$	3 volt	$8 \mu \mathrm{~F}$	3 volt	$50 \mu \mathrm{~F}$	6 volt	$400 \mu \mathrm{~F} 6.4$ volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	12 volt	$64 \mu \mathrm{~F}$	2.5 volt	
$2.5 \mu \mathrm{~F}$	16 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	-9 volt	All at 1/- each.
$3 \mu \mathrm{~F}$	25 volt	$10 \mu \mathrm{~F}$	25 volt	$100 \mu \mathrm{~F}$	9 volt	
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$25 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	16 volt	20 assorted (our selection) 10/.

Orders by post to

G. F. MILWARD, DRAYTON BASSETT, NEAR TAMMORTH, STAFES.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

TRANSISTORS PRICE

ACl 107 $A C 107$ $A C$ $A C l$ AC 127 ACl2 ACY17 AFIt 4 AFI 14 AFII AFII5 AFI 16 AFI16 AFli AFII AFI18 AF186 AFI 39 AFY50 BFY 55 BSY25 BSY 26 BSY 26 BSY 27 BSY27 B5Y28 BSY28 BSY29 BSY 29 BSY95A OC41 OC41 OC45 $0 C 45$ $0 C 71$ $0 C 77$ $0 \mathrm{OC72}$ OC72 $0 \mathrm{OC81}$ OC8ID AFIO2 AFI02 OCI 19 OCI 39 OCl 40

EXCITING NEW PAKS
FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS, AND THOSE PEOPLE THAT JUST USE LARGE QUANTITIES OF TRAN. SISTORS.
XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, BI, etc.

PRICE 45 PER 1000

XB PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed fots, with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE C5.5.0 PER 500
PRICE 110 PER 1000
XC PAK
Silicon diodes miniacure glass eypes, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, otc,

PRICE ES PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS, FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

P/P 2/G PER PACK (U.K.)

TRANSISTORS ONLY 1/- EACH SILICON • PLANAR
 All these types avallable
 2N929 2N706 2SI31
 25501 2N706A 25512
 2N2411 2N3011 2S102
 25733 BFYIO
 2N726 2S731
 2N2484 25732

PRE-PAKS

Selection from our lists

BRAND NEW PAK • JUST RELEASED
replaces our very popular b. 39 pak. BRAND NEW SHORT LEAD COMPONENTS ALL FACTORY MARKED AND MOUNTED ON PRINTED CIRCUIT PANELS.
$\$ 0$ TRANSISTORS \& DIODES
50 HIGH TOLERANCE
RESISTORS
20 VARIOUS CAPACITORS FOR $/ \sqrt{-}=$
PLEASE STATE WHEN ORDERING PAK P.I. 2/- P. \& P. WITH THIS PAK.

Make a Rev. Counter for your Car. The 'TACHO BLOCK', This encapsulated block will turn any $0=1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev. counter for any car.
State 4 or 6 cylinder.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /-$), box number $1 / 6$ extra. Semi-displayed setting $£ 4.2$. 6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and croșsed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

MISCELLANEOUS

BUILD IT in a DEWBOX quality cabinet 2in x घ電in x any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

BIG BARGAIN PARCEL

Containing cransistors, diodes, capacitors, fuses, connecting wire, sleeving, valve holders, tag strips, potentiometers, etc.

$$
10 /=\text { POST }
$$

SALOP ELECTRONICS
S.A.E. for

9a Greyfriars Road, Coleham latest fists

ARTIFICIAL LIFE
 Well almost, because the NEW range of projecrs include: an electronic animal" which LEARNS, and a device capable of REPRODUCING itself! Other projects SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which recognizes itself, and an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects. SEND $2 / 6$ for your list-NOW!
 To: 'BOFFIN PROJECTS' incorporating
 BIONIC DESIGNS
 4 CUNLIFFE RD.
 STONELEIGHं, EWELI, SURREY

TO YOUR LISTENING . . .

"NNEW DIMENSIONS" givez fabulour Bjg Fall I-dimension effect to ull inusic. PLUS adjustable echo, sibrato and tone. Speaket $25!$ extra.
gns.
CAR VERSION for 6v. or 12v. + or - earth.
 either model.教
Gend S.A.E. for full detadla direct from manufacturerg-
Now!
P.E. 234 Ringwood Road, Ferndown, Dorset

MISCELLANEOUS (continued)

CALL OR 8END for list from the most interesting shop in Lanoashire. Hlectrical Mechanical and Electronic Goods. ROGERS, 31 Nelson Street, Southport.

TAPE RECORDERS, TAPES, ETC.

TAPE8 TO DIBC-using finest professional equipment- 45 r.p.m: 18/. S.A.F. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

EDUGATIONAL

GET INTO ELEGTRONIC8 - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment, A.M.I.L.12.E., R.T.E.B, City \& Guilds, Radio, T/V, Telecoms, etc. For FREE 100page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

EDUCATIONAL (continued)

sTUDY RADIO, TELEVISION AND ELECTRONICs with the world's Jargest home stady organisation. City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to bly. Write for FREE Prospectus to JCS (Dept. 577), Intertext House, London, SW11.

ENGINEERS. A technical certificate or qualifleation will bring you security and mach better pay. Elem. and adv, private postal courges for C.Eng., A.M.I.E.R.E., A.M.S.E. (Meeh. \& Elec.) City \& Guilds, A.M.I.M.I., A.I.O.B, and G.C.1. exams. Diploma courses A.1.O.B, and branches of Engineering-Mech., Elec., Autl branches.of Engineering- Electronies, Radio, Computers, Auto, Electrontes, Radio Computers, for FREE 132-page guide. BRITISH IJSTITUTE OF ENGINEERLNG TECHNOLOGY (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

CITY AND COUNTY OF BRISTOL BRISTOL TECHNICAL COLLEGE

Principal: E. Poole, B.Sc.(Eng.), C.Eng., M.I.Mech.E., M.I.Prod.E.

CAREERS IN RADIO AND RADAR

Marine Radio Officers

2 year full-time course leading to the Second and First Class P.M.G. Certificates and the B.O.T Radar Maintenance Certificate.
Conversion Course (Second Class to First Class).
R.T. Licences (Fuli or Restricted)

Courses for Qualifled Marine Radio Officers
Single Sideband Techniques (2 weeks) Marine Electronics Course (Phase Iduration 3 months)
Advanced Marine Electronics Course (Phase II-duration 3 months)

Licensed Aircraft Radio Engineers

2 year full-time course covering the Aircraft Radio Engineers Licences categories A and B, issued by the Board of Trade (Civil Aviation) followed by a six-months' course for Radar Rating (A and B) in association with the above.

Training given on the latest types of Marine and Aircraft equipment in modern, approved laborotories at

THE SCHOOL OF RADIO AND RADAR

Senior Lecturer-in-Charge: F. E. Barlirop
 For further information apply to:-

> The Registrar, BRISTOL TECHNICAL COLLEGE ASHLEY DOWN, BRISTOL 7

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes 6/6 P.P. $6 d$ 1155 set Circuit and Notes 6/6 P.P. 6d H.R.O. Technical Instructions ... $5 / 6$ P.P. 6 d 36 set Technical Instructions. 46 set Working Instructions 88 set Technical Instructions. 8C. 221 Circuit and Notes Wavemeter Cfass D Tech. Instr 5/6 P.P. 6 d 18 set Circuit and Nores S/6 P.P. $6 d$ 18 see 0 (31 and Notes \& Notes 5/6 P.P. $6 d$ BC. 1000 (31 set) Circuit \& Notes 5/6 P.P. $6 d$
CR. $100 /$ B. 28 Circuit and Notes $10 / \sim$ P.P. CR.100/B. 28 Circuit and Notes I0/- P.P. 9d R. 107 Circuit and Notes......... 7/-P.P. 6d A.R.88D. Instruction Manual.... 18/- P.P. 6d 62 set Circuit and Notes

6/6 P.P. 6d 52 set Sender \& Receiver Circuits 7/\$. post free Circuit Diagrams 5/- each post free. R.1116/A, R.1224/A, R.1355, R.F. 24, 25, \& 26 A.1134, T.1154, CR.300, BC.342. BC. 312. BC. $348 . J . E . M . P$. BC.624. 22 set.
Resistor Colour Code Indicator... 2/6 P.P. 6d S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

FOR SALE
ILLUSTRATED CATALOQUE No. 17 Manufacturers' Surplus and New Electronic Components including Semiconductors. $3 /-$ post free. ARTHER SALIIS LTD., 28 Gardner 8treet, Brighton.

BRASS, STEEL, LIGHT ALLOY, STAINLES8 8TEEL TUBE. Bar Mraterial, Tools, Mechanical, Electrical, phus Assorted Lots, Send S.A.E. for Intest Cat. of 1,000 itemis. K. IR. WHISTON, Dept, BPE, New Mills, Stockport.

MORSE MADE ! !

FACT NOT FICTION. If you start RIGitT you will be reading amatous and cormmercini Morso within a month (normal progress to be expeoted).
Uning seientitacalls prepared 3 -speed recoris you antomatically learn to recognise the coll RHXTXM Fithout tranalating. You can't help h, th's as eury as learning a tune. 18 W.P.M. In 4 weeks suaranteed.
For details and course C.O.D. ving 8.T.D. 01-660 2896 For detais and course C.O.D. ring 8. .D. 01-680 2896 or send 8.
GSCHS/A, 45 CREES LANE, PURLEY, SURREY

WANTED

VALVE8 WANTED, brand new popular types boxed. DURHAM SUPPLLES (E), 36 iF, Kensington Street, Bradiord 8, Yorkshire.

WANTED. Retail outlets for New/Surplus Radio-Electronic Spares. Excellent profits. Detafls from Box 13 .

SURPLU8 RELAYS, Post Office 3000 type. Any condition. Send particulars to D. SMITH, 330 Bath Road, Kettering, Northants, or rlag 053-6 2681 evenings.

SERVICE SHEETS

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherde Bush 1Rd., Iondon, W.6. Sine 8441.

SERVICE SHEETS

(continued)

QERVICE 8HEETS. RADIO, TELEVI81ON, TAPE RECORDER8, 1925-1968, by return post, from $1 /-$ with free fanlt-finding guide. Catalogue 6,000 models, 2/6. Please send stamped addressed envelope with all orders/ enquiries. JiAMIITON RADIO, 54 Le London enquiries. Jill, Sussex.

SITUATIONS VACANT

A.M.I.E.R.E.E, A.M.S.L. (Elec.), City d Guilds, G.C.E., etc., on "Satisfaction or Refund of Fees terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132 -page Guide-FREE, Please state subject of interest. BRITISH INSTITUTE OF ENGINEERLNG TECIINOLOGY (Dept. 124 K), Aldermaston Court, Aldermaston, Berks.

CAREER EMPLOYMENT OPPORTUNITIES

TELECOMMUNICATIONS

 TECHNICIANSLONDON AND THE HOME COUNTIES A number of vacancies still remain to be filled by experienced men who have obeained the City and Guilds Intermediase Cortificate in Talecommunications Engineering or an equivalent or higher technical qualifications.
Salary: C1, 255 (at age 25) zo \&1,429 per annum in London. ©1, 30 to $£ 1,304$ per annum in Home Counties. Plus additional allowances when shift working.
Candidates and both their parents must have been British subjects at all times since birth. Previous applicanss should not re-apply.
Furcher dotails and Application Forms from;
The Personnol Officer (PE).
Diplomatic Wirsforn Service
Hanelope Park
Wolvarton, Bueks.
Please quote reference:.

SITUATIONS VACANT (continued)

SINCLAIR RADIONICS LIMITED

Require Service Engineers for varied and rewarding work in their service department. Experience of transistor circuitry is necessary. Write, giving full details, age, etc., to Richard Torrens, Sinclair Radionics Limited, 22 Newmarket Road, Cambridge.

ARE YOU PRAGTICAL AND FED UP WITH YOUR PRESENT JOB?

 We require a number of junior and senior engineers with drive and initiative for:-Circuit design-development and prototype construction, etc. : Electro-mechanical drafting printed circuit/chassis layouts, etc. : Production line test and inspection engineers: Production line fault finders.
Excellent prospects and full training given, day release considered. Salary up to $£(x, 400$ depending on experience and qualifications.
Send full details in writing of experience to date and present salary
to :-
Mr. B. C. Johnson,
Solid State Controls Limited,
Brunel Road,
Acton, W.3.
London.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let ICS erain YOU for a well-paid post in this expanding field. I CS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to sutcess. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEUAS' EXAMINATION.
- p.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

1	\& i BAD (
51	Burnley Road, Rawtenstall Rossendale, Lancs				
VALVES BOXED, TESTED \& GUARANTEED					
EBF80	3/-	PCCA4	3/-	PYB2	$3 /-$
EBFB9	3/6	PCF80	3/-	U191	4/6
ECCa2	31-	PCF82	3/6	U301	4/6
ECL80	3/-	PCL82	4/-	6723	51
Ef80	1/6	PCLE3	4/-	10 PI 4	3/
EF85	3/-	PCL84	51-	20P5	3/-
EFI83	3/6	PL36	5/-	30F5	$2 / 6$
EF184	3/6	PL8I	4/-	30 LI 15	$5 /$
EYB6	4/-	PL83	4/-	$30 \mathrm{Pl2}$	4/6
EL4I	5i-	PY33	51-	30 C 15	51-
EZ40	416	PY81	3/6	30 PLI 3	$5 / 6$
EBC4I	4/6	PY800	3/6	$30 \mathrm{PL14}$	5/6
POST, ONE VALVE 9d. TWOTO SIX 6d. OVER SIX POST PAID.					

MICROSWITCHES

all new, wide variety for many jobs from $2 /$-. Waterproof and metalclad from $9 /$-.

SYNCHRONOUS MOTORS

with gear boxes 300 rpm to 1 rev 24 hrs. All new, wide variety 3 to 20 watts mostly 230 v A.C. 2500 rpm for fans, tape decks, etc. from 7/6d.
S.A.E. list.

HOLFORD \& CO.

6 Imperial Square, Cheltenham

FULL SPEC SEMICONDUCTORS DATA SUPPIIED ALL TYPES

TRANSISTORS RECTIFIERS

$2 N 697$	$4 / m$	$1 N 914$	$1 / 3$
$2 N 706$	$1 / 9$	200 mA 200 V	$1 /-$
$2 N 706 \mathrm{~A}$	$2 / 3$	$3 A 600 \mathrm{~V}$	$3 /-$
$2 N 708$	$4 /-$	$3 A 800 \mathrm{~V}$	$3 / 6$
$2 N 914$	$4 / 6$	10 A 600 V	$5 /-$
$2 N 2369$	$3 / 3$	$10 A 800 \mathrm{~V}$	$6 / 6$

2N2369 10A 800V$6 / 6$
BSY26 INTEGRATED CIRCUITSPack of 6 LogicElements 30/-Linear Amps 5/-
MAIL ORDER ONLY P \& P 1/-
ROB-ELEC

ERARD NEW MINIATURE ELEGTROLY－ TIC8， 15 volt． $2,6,8,10,15,20,30,40,50$ ， 100 mfds， $8 / 6$ dozen， 30 for f 1 ．The $\mathrm{C} . \mathrm{R}$ SUPPLX CO．， 127 Chesterfield Rd．，Sheffield， S8 OR：

TRANSISTOR PANELS

New boxed，size 9 in \times 6in $\times 1 \frac{1}{2}$ in with＂Valvo＂ transistors type OC45 or similar，with rull lensth leads，also an equal number of OAB5
diodes，H／S resistors，etc．Built on periorated diodes， H / S resistors，etc．Built on perforated boafd in a metal frame．
Panel of 20 transistors，diodes，etc．20／－
 TRANSISTOR－50／${ }^{50}$ CAPACITORS（ELEC． TROLYTIC）

500 mF iV
 320 mF 10 V 250 mF
 200 mF 10 V

16 mF 25 V
10 mF 25 V

200 m for 50 mF 10 V 6.4 mF
4 mF

64 V | 25 mF | |
| :--- | :--- |
| 20 mF | |
| 25 V | 4 mF |
| 1 mF | 25 V |

Comech 9／Oper doz．Min．order 10／\％ npn transistors，Diodes and res．，2i／6 Post Paid． COMPUTOR PANELS（Flip－Flop）：with G－2G371 with diodes， $7 / 6$ ；with
Panel with $16-O C 84$ ，etc． 10% $6-0 C 84$, etc． $10 /-$
\＆－OC43 or GET
5075 OABI 7／－ 50－0AB1 6／－
Postage 6d per panel
TEST CARDS． 6 transistors 20 for 20
ELECTROLYTICS 25,000 （๗）12V，16，000
 1／6 Post Paid．
ZENER DIODES－2．4，2．7，3．6．4．75，5．25， $5.75,6 \cdot 2,6 \cdot 8,7 \cdot 5,13,15,16,18,20,27,30,33$
volts． $3 / 6$ each．mostyy 1 wart
POLYSTYRENE CAPACITORS 350V： 180 $2,700,3,300,5,600,6,800,6,200$ ． $3,900,4,700,5,600,6,800,8,200,0.015$ ，80pF ceramic 200pF S．M．any selection 2 ／－doz BRAND NEMEW 4／－doz．
BRANDNEW BOXED CHASSIS cantain ing 2－OC35，2－OC29 12 WW resistors 30／－s Postage 1／6．

NEW CROSS RADIO
6 OLDHAM ROAD，MANCHESTER 4

COMPONENTS AT GYE－AWAY－PRICES： Comprising：Transistors；1\％Reslators； Condensers；Diodes；Valve Holders；plus very useful 9 －way plug／soekets．Over 100 components from ex－Brand New Lquipment $10 / \%$ ，or 250 assorted as above $20 /$－post paid． Order now and avoid disappointment DIAMOND MALL ORDER PRODUCTS Prospect House，Canal Head，Pocklington， York．

U．J．T．＇s equiv． $2 N 2646$ ，TIS43 6／0 each Tested．P．\＆P． $6 d$ per order．Data supplled L．F．H．ELEUTRONICS， 65 Flanders Mansions Flanders load，London，W．4．

8EMICONDUCTORS．For sale，300，000 fully tested，but uneoded silicon transistors and diodes．standard types，2Nj06，2N706A， 2N2369，2N708，BSY types，1N914，etc．Send olfers，or for details to Box 15.

RECORDING TAPES	A．MARSHALL \＆SON（LONDON）LTD 28 Cricklewood Broadway，London，N．W． 2 P．E． 20 Tel．01－452 0161／2								COMPONENTS Veroboard $\begin{array}{ll}32^{\circ} & \times 24^{*} \\ 37^{\circ} & x \\ 33^{*} & 4 / 3 ;\end{array}$
Fully Guaranseed	IN914		2N3707	41－	BF		NKT262	$4 / 6$	
$7{ }^{\prime \prime}$ STD 1，200 ${ }^{\prime \prime}$（1／3	1N916	$1 / 6$	2 N 3708		BEx 12	616	NKT264	4／6	$5^{\circ} \times 2{ }^{4 \prime 4}$
$7^{\prime \prime}$ L／P 1．800＇ $12 / 3$	TS120	216	2 N 3709 2 N 3710		8F×13	15／6	NKT271	4／6	$5^{\circ} \times 2 \frac{1}{2}^{\prime \prime} 4 / 3$ ．
$\begin{array}{llll}7^{\circ} \\ 52^{\prime \prime} & \text { D／P } \\ \text { STP } & 2,400^{\circ} & 19 /- \\ 900\end{array}$	15132		2N3711	di－	BFX84		NKT405		
	2 N 696		2 N 3819	10－	BFX85	10／－	NKT603	616	$\frac{1}{\frac{1}{4} \text { wate }}$
5＊D／P 1，${ }^{5000}$	$2 N 697$		ACl07		${ }_{\text {BFX }}{ }^{\text {BF }} 6$	${ }_{10 /}^{8 /}$	NXT613	516	$\frac{1}{2}$ watt ${ }^{\text {c }}$
$5^{\text {5＊}}$	2N706		ACli ${ }^{\text {AC }}$		BFX88	10%	NKT677	5i－	2 wate 1／－：
$\begin{array}{lllll}\text { 5＊} & \text { L／P } \\ 5^{\prime \prime} & \text { D／P } & 1,200^{\prime} & 10 / 9\end{array}$	${ }_{2}$ N929	$6 / 6$	ACYI\％		BFY50	$5 / 6$	NKT13	516	3 wate $1 / 63$ 5 wate 210
$3{ }^{\prime \prime}$ D／P 185＇${ }^{\text {c／3 }}$	2 N 930	$6 / 6$	ACY18		BFY51	416	NKT781		5 Watt 2：0．
	2 N 1302	$4 / 6$	ACY19		BFY52	516	$\mathrm{OCL}^{\mathrm{C} 23}$	876	Electrolytics：
97．D／P 300 ${ }^{\text {3／}}$／－	2NI304	$4 / 6$	ACYYI		85×19	516	${ }^{\text {OC26 }}$	776	$150 \mathrm{MFD} 1 / 6.25 \mathrm{~V}$
7 D／P Concorde	2 N 1305	5／6	ACY22		BSx21		OC35	$7 / 16$	25 MFD or 50 MFD
	2 N 1306	$8 / 6$	ADI40		BSX76	$4 / 6$	OC36	$7 / 6$	1／6．100MFD 2\％，
2／6， $54^{*}{ }^{2 / 3}, 5^{\prime \prime} 2 / 3$ ，	2 N 1307	616	ADI49		BSY26	4	OC44	$3 / 15$	250MFD 3／9，
$4^{-} 2 /-10^{32^{\circ}} 1 / 9,3^{\circ} 9 \mathrm{~d}$ ，	$2 N 130 日$ 2 N1309		ADI61 ADI 62	776	BSY27		OC45	$2 / 6$ $2 / 6$	500MFD 3／9．
	$2 \mathrm{~N} / 613$		AFII4		BSY29	$4 / 6$	OC72	216	Prissetil ${ }^{\text {STO }}$ Horizontal or
CASSETTE TAPES	2 N 1711	$6 / 6$	AF117		BYY38	416	O	$3 / 6$	Vertical 1／6．
C－60 15／6，C－90 $21 / 6$	2N2369A		ASY27	$8 / 6$	BSY40	$4 / 6$	0 Cbl	4／m	Fairchi
	$2 N 2904$		ASY29	$6 / 6$	BSY95A		OC83	5－	
Post and 3 reds 2／9，king etherwise	$\begin{aligned} & 2 \mathrm{~N} 2905 \\ & 2 \mathrm{~N} 2905 \mathrm{~A} \end{aligned}$		ASZ21 BC 107		BY100 BYZ 10		OC170	61	$\underline{L 914} 11$
$4 / 6$.	${ }_{2} \mathrm{~N}^{2} 9006$		BC108	3／6	Brzil	716	OC200	516	
	2N2926	316	BC109	316	日YZ12		OC201	516	up to 820 p 1 $1 / 2$ ．
SPEAKERS（3 chm）	2 N 3053		BCY^{33}	516	BYZ13		－ ClP^{202}	16	
$8^{\circ} \times 5^{\circ} \times 19 / 6$	2N3055	$19 / 6$			MATIOO	6／6	OABI	19	Port Transistors
$7^{\circ} \times{ }^{\circ} \times{ }^{\text {c }}$	2 N 3703	416	BCY 39		MATIOI		OA91	16	and Components
30，${ }^{3} / 6 / 6$	2 N 3704	416	BCY70	616	MATIz		OA95	16	1／－per order．
Post and Poskine／／6d	$2 N 3705$ 2N3706		俥Y72		NKT261		$\begin{aligned} & \text { OA200 } \\ & \text { OAZ } 202 \end{aligned}$	2／－	Send complete list．

RECEIVERS AND GOMPONENTS (continued)

TAPE HEADS

BSR BRAD. $39 / 6$ nair MICHIGAN REC./PLAX 2 TRACK $39 / 6$ nair $\frac{\text { HigH IMP. }}{4-\text { TRACK }} \quad 45 /=$ $\underset{4}{\text { RSR MAALL }} 39 / 6_{\text {rai }}$ bogen erase $\begin{array}{ll}{ }_{4-\text { TRACK }} \mathrm{LAR18:6} & 27 / 6\end{array}$
 F.M. WIRELESS MICROPHONE
94.10.4C//8. Transistorixed. Operates from 9 V
 These cinnot be operated in $\mathrm{U} . \mathrm{K}$.
TRAMSISTORISED FM TUNER
6 TRANSISTOR HIGH QUALITY TUNER, SIZE ONLY 6 in $\times 4$ in $\times 2$ in 3 I.F. atagea, Dorible ampliffers. Operalea on 9 V battery. Coverage 88-108Mc/s. Ready built, ready for 56. 17.6
FA HULTIPYEX STEREO ADAPTOR
 LOUDSPEAKERS 12" $\left\lvert\, \begin{aligned} & 12^{*} 25 \\ & \text { 25att, } 16 \\ & \text { ohm, }\end{aligned}\right.$
 ohm. SUPER HSITV FULL RANGE HIGH
COMPLIANCE.
$8^{\circ} 16$ phm, 15 watt
$80-20 \mathrm{~K}$. 2.6 6" 16 ohm, f5,5,0 10 watt, 30 -18K $55,5,0$ CERAMIC $44 /$ MAGNET

8WITGE ROTAEY RECIPROCATMAG
4 POSITION, 15A,
/
 4 POSITION, 15A, $5 /-$

MOLTMETSRS $32 /=$

REFLEX CONE TYPE
WATERPROOF SPKR.
5 Watt, 8 ohm, 3000
10,000ci PA $£ 4.5 .0$ LOUDSPEAKER
$400 \mathrm{hm}, 21^{*} 80 \mathrm{oh}$
 TWICETGGZ 16 ohm $29 / 6$
10 watt, $18 \mathrm{~K}-\mathrm{CR}$ CROSSOVER NEM- $15 / 6$
WORE 16 ohm GUPER 8
 condens
BA, $8 \mathrm{j}-\mathrm{c}$
Stamped envelope for full selection and bargain ofers in Kultimeters, Rallos, Baby Alarms, Jnter-
corns, Walkje.Talkies, Rectifiers and Eagle Insta, UNDER E1-P. \& P. 6d. OVRR El post Iree, C.O.D. 3/6. MAM ORDER ONLY.

DURHAM SUPPLIES
367F, KENSINGTON STREET BRADFORD 8, YORKSHIRE

RECEIVERS AND COMPONENTS

(continued)
BAREAIN PARCELS of new surplus Jlec tronic components, $3 /-5 /-, 10 / \mathrm{F}$ post free. DOLPHLN JLDECTRONICS, 5 Pooles Way, Brira Close, Burntwoud, nr. Lehatelel.

REPANCO Translstor Colls and Transformer, for the Constructor. Send stamp for lists for the Constructorirend stamp for lists RADIO EXPSIMMENTAL PROM.
LTD. 33 Much l'ark Street, Coventry.

ELECTRICAL

240 ELECTRICITY 7 ANYWHERE

most brilliant parformance ever from 12-volt Car Battery. BRILLIANT HEAVY DUTY 240 vole AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvelious for TELEVISION, ELECTRIC DRILLS, MAINS MAINS EQUIPMENT. MAIVEIIOUS for Fluoreseent lighting. Thousands of uses.
Tremendous purchase of this de luxe model makes fantassically low price possible. ONLY 16 each plus 10 , delivery. C.O.D. with please senq S.A.E. for full illustrated details.

Dept. PE, STANFORD ELECTRONICS
Rear Darby Road, North Promenade BLACKPOOL, Lancauhire

MODERN DIGTIONARY OF ELECTRONICS 70/-

AUTHORITATIVE, COMPREHENSIVE, COMPLETELY UP TO DATE, BY GRAF, 3rd ED. POSTAGE 4/6.

DESIGNERS GUIDE TO BRITISH TRANSISTORS by Kampel. 25/-. P. \& P. 1/6.
ELECTRONIC MUSICAL INSTRU. MENT MANUAL, new 5th ed, by Douglas. 55/-* P. \& P. 3/-
PAL COLOUR T.V. by Mullard. 12/6. P. \& P. I/

SILICON CONTROLLED RECTIFIERS by Lytel. 21/-c P, \& P. 1/3. COMPUTERS FOR THE AMATEUR CONSTRUCTOR by Warring, 20/a, P. \& P.

ABC's OF TRANSISTORS by Mann. 20/-. P. \& P. $1 /$.
ELECTRONIC GAMES AND TOYS YOU CAN BUILD by Buckwalter. 24/. P. \& P. 1/

SOLID STATE POWER SUPPLIES AND CONVERTERS by Lytel. 20/P. \& P. 1
F.E.T. CIRCUITS by Turner. 25/m P. \& P. 1/3.

ELECTRONIC MOTOR CONTROL by Lytel. 30/\%, P. \& P.I/3.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

BATTERY ELIMINATORS

 The ideal why of running your TRANSISTOR ATr (single ourput) $39 / 6$ each. P. \& P. 2/9. ov $+9 v ; 6 y+6 y ;$ or $4 \% \mathrm{iv}+4 / v$ (ewo separate outputs) $42 / 6$ each. P. \& P. 2/9. Please state output required. All the above units are completely isolated from mains by double wound kransformer ensuring $100^{\circ} \mathrm{w}$ salety.

R-C.S. PRODUCTS (RADIO) LTD.
(DepL P.E.), 31 Oliyar Road, London. E. 17

ELECTRICAL

An Electrouic unit capable of controlling electrical equaparent up to 3,000 waits capacity. Fingertip controi of aid a.e.fa.c.e electrleal equipment. Suitible lamps. ypes of lighting arraugetuents. Ineanitescent an be. spot lamps. Are lamps. Floodlighes. Makes types of electric drilit and un to for controling all for all applicationa. Ideal for $2 \mathrm{~h} . \mathrm{p}$. electric motor heatars apications. Ideal for all types of electric the latest electronic switching devices and thyristor circuitry, size $6 \times 5 \times 21 \mathrm{l}$. Jouvred metal case in pleasing hammer finlsh. Attructive front psnel with matching socket and controls Recommended price 25 gns. Huge purchase enables t2 to offer them at 88.19 .6 , earriage and insurance $10 / \%$ C.O.D. if required.

Nomat
 POLICE BAND - BROADCAST REC.

A small transistorised repelver that will receive clvil alreraft and pollce/sirejambulance broadcasts. Operates from a 9 volt battery that ints internally, 6 tranalutors. Robust metal cabinet size approx, $7 \times 4 \times 4$ in. Allractive front panel. Speaker or headphone output. Improved type de luxe modal prlce $\$ 8.10 .0$, carriage 10%. Few only. Brand new and unused.

TRANS/RECEIVERS AIR/SEA/RESCUE Must be distumntled or exported. Complete with mike/apeaker aerial. Work up to 100 miles. Cost 2 seta ${ }_{5} 5$, post free.

This wonderful little set will provide hours of listening pleasure, Listen ta the thrilling sound of an SOS at gea. Super for llatenhg to the Hams at work. A printed circuit layout makes jt simple to build in a short time. Fully comprekensive instructors. Complete fown to the last detail. An ideal project for beginnera. Price 65/-. Poat $5 \mathrm{j}-\mathrm{n}$, Matching opeaker and eabinet $30 /=$ extra

These exceilent receivers were made for the Government by a famons manufacturer. They will cover the complete amatear band, Aircraft, Marine and other Government Stations. It is a 5 valve euperhet and works from standitrd dry hatterles.
Built in a robust metal casa gize $10 \times 6 \times 4 / n$. Hali moon calibration tuniag dial. Phone or speaker ontpat. Not new but in exceltent condition. $\begin{aligned} & 3,10.0, ~ c a r r i a g e ~ 10 \%-. ~ F e w ~ o n l y . ~ A l s o ~\end{aligned}$ pomplete with asaociated tranemitter covering sams band (for export, or licenced use). Price 25.15.0. carriage $15 /$ -

MINLAZURE TRAR8ISTORISED BFO UHITS. Thi small fully tranaistorised tunable BFO unit whll enable any met to receive CW of $88 B$ reception,
Compact kingle hole fixing. Full ftting detalla, Compact ringle hole
Only $40 / 6, ~ P$, A. $3 / 6$.

MOYTRG COIL ERADPHONRS AND MICRO PHOREs, Brand Dem in makers' cartons, $20 / \sim P$. a P. $5 /$

PARKERS SHEET METAL FOLDING MACHINES
HEAVY VICE MODELS

No．1．Capacity 18 gauge mild steet $\times 36 \mathrm{in}$ ，wide
CI2．10．0
No． 2 ．Capacity 18 gauge mild stee $\times 24 i n$ ，wide
27.5 .0

End folding attachments for radio chassis．Tray and Box making for 36 in ． model， $5 / 6$ per f ．Other models $3 / 6$ ．The two smaller models will form flanges．As supplied to Government Departments，Universities，Hospitals． One year＇s guarantee．Money refunded if not satisfied．Send for details，
A．I．PARKER，Folding Machine Works，Upper George St．，Herkmondwike，Yorks，Heckmondwike 3997

HI－FIAUDIO PRINTED CIRCUITS

READY DRILLED WITH CIRCUIT DIAGRAMS
ACC \dagger Pre－Amplifier for magnetic p．u．，etc．plus high impedance AlU．1．circult or high impedance circuit with tone control comple－ ment．Two Boards make complete Hi－Fi Pre－Amplifier．17／－per Beard．
ACP Complete circuit board for 5 watt +5 watt rms transistor AUU．G：amplifier and high impedance Pre－Amplifier．Mains Powered． Heat sinks mounted on circuit board．

50／－per Board．
All components supplied separately or in kit form．ADVICE IS FREE．AFTER SALES SERVICE GUARANTEED．Styling and resultr must more then salisfy．Chassis，Facias，Cabinets made to order． Callers wolcome．S．A．E．for Hists．

AUDIO COMPONENTS AND SERVICES
 SOUND STUDIOS，BELL HILL（OFF CROWN HILL）， CROYDON，SURREY．
 PHONE 6883706

TWO SCOOPS FROM＂KING＇S＂ CONTINUOUS LOOP

（NEVER ENDING－NO REWINDING） TAPECASSETTE BULK PURCHASE RIDICULOUS PRICE

IDEAL BACKGROUND MUSIC－LANGUAGE COURSES，ETC．200ft．HIGH QUALITY AMPEX TAPE．WILL FIT ALL TAPE RECORDERS． CANNOT BE REPEATED

NEARLY ALL GONE 101 EACH HURRY！NOW ONLY $\mathbf{8} / \mathrm{m}_{\text {p\＆pGd．}}$

ALSO

BARGAIN PRICED－PHILIPS TYPE CASSETTES TO FIT ALL CASSETTE RECORDERS
TYPE C． 90 LASTS $1 \frac{1}{2}$ Hrs．18／11d TYPE C． 60 LASTS 1 Hr．12／11d SEND NOW．（post \＆pack 6d each）

> KING＇S TELE－SERVICE CO． 105／107 DAWES ROAD，FULHAM，S．W． 6

> FULHAM 1668－2998

ELEGTROVALUE Rapid Mail Order Service unbeatable value in new semiconductors
 80 walt BAILEZ AMPLIFIER complement
 MJ491 ppp $\}$ matcbed pair output $22.10 .0 \quad$ BC12s 12／－；BC107 2／8；BC109 2／9．；
 40361 npn, matched pair drivers $81,10.8$
 Total for one channel 87.8 .0 list；with 10% discomet only $\mathbf{2 6 . 1 8 . 8}$ ，
 Total for two channela E14．16．0 list：with 15% discomin only 8is．11．8．

G．E．2nteges PLASTIC range：187 200nw

| Red apot $\beta=65$ to $1102 / 3 \quad$ Kellour spot $\beta=150$ to $3002 / 9$ |
| :--- | :--- |
| Orange | Orange epot， $8=90$ to 180 2／8 Green 日pot $\beta=235$ to $4708 /=$ 2N2926，our choice of colour $2 / 2$ each， 10 for 2I／－

H3ga

TREAS 8ILECT range
$2 N 3704 \beta=90$ to $3804 /-$
2N $3705 \beta=45$ to $1658 / 8$

2 2N3703 $\beta=30$ to $1508 / 9$ amall algas npn
2N3707 low noiae 4／6
$2 N 8711 \beta=180$ to $6604 /-$ graakt aignal prop
2N 4058 low nolie 5 ／
$2 N 4058$ low nole $5 /-$
$2 N 4062 \mathrm{~F}=180$ to $6604 / 8$

BC107 8RE158
 $\mathrm{BCl} 10745 \mathrm{~V} \beta=125$ to $8008: 8$
$\mathrm{BCl} 2820 \mathrm{~V} \beta$ BC108 20V $\beta=125$ to $9008 / 8$
BC108 20V $\beta=240$ to $9008 / 8$

BC1 87 SERIE8
180 mW 300 MHz ET TO92
 BC168 $20 \mathrm{~V} \beta=125$ to $9002 /-$ BC169 20V $\beta=240$ to $9002 / \mathrm{z}$ BC109 and BC169 are low nolbe． BC167，BC168 and BC169 תre plastle．

Many ashers in stock Including：

2N1302	4j－1	2N3054	201－	40406	16／3	SC154	10／－	SKT281	$5 / 2$
2N1303	4／－	2N3056	18／8	40408	14／8	BD121	$181-$	NKTT401	$10 / 8$
2N1904	4／－	2N3241A	$7{ }^{2} 8$	AC126	$8: 6$	BD128	84／3	NKT403	
2N1305	1）－	2N3242A	$9 / 8$	AC128	8 \％－	BFX29	$12 / 8$	NKT40	14／10
2N1306	$8 / 8$	2N3390	8i－	AC187K	101－	85X84	2／5	NKT404	14／6
2N1307	$8 / 9$	2N3391A	6／8	AC188K $\}$	pr．	BFX88	719	NKT400	18／－
2N1308	$8 / 0$	2N3398	$7 / 8$	ACY18	4／11	BFY80	$8: 3$	NKT713	5／8
2N1509	$8 / 9$	2N3402	$8 / 1$	ACY19	5111	BFY51	$5 /-$	NKT781	8／8
2N1613	$8 / 8$	2N3403		ACY20	4111	B8X20	4／6	OXTi	110
2\＄1712	714	2N3405	819	ACY21	5；8	BY238	819	O人7	$2 / 0$
2N2160	1416	2N3415	of	ACY22	818	BYX10	418	0．70	8／－
2×2648	1811	2×3416	8／9	ACY40	8.8	C407	4；8	0.181	8
$2 \mathrm{GsO1}$	$3 / 12$	2N3663	$11 / 8$	ADI49	$17 / 6$	D29A4	710	0.490	1／3
20302	$6 / 5$	2N3706	318	AD161	$81-$	EC401	$41 /$	0.491	1，
20303	513	2×3710	818	AD162	$81-$	MJE371	$21 / 8$	OA95	$1 / 8$
20308	$8 \cdot 8$	2N3730	1816	ASY28	$8 / 8$	MJE521	18／8	OAbc	$1 / 8$
29308	619	2X3731	$21 / 8$	BCl22	618	NKT214	418	0.1	$8 /$
20309	719	2N4081	4	BC147	4／9	NKT217	12／＝	0.4202	2／0
20371	$3 / 8$	2N4443	部／8	BC148	319	NKC261	412	OC71	$0 / 8$
2 N 2925	618	40250	15／－	BC149	$4 / 9$	NKT271	$4 / 8$	T1860	5／6
2N30b3	6／6	40319	14／2	BCls3	18i＊	NKT274	$4 / 81$	TJ\＄61	6／8

Zener difodes 3V to 27V $5 \% 400 \mathrm{~mW}$ all prelerred voltages， $4 / 6$ each．
PRAK BODAD CIR－EIT Ko． 8 Pack，12／6；adhesive copper atrip， 516×4 or it Im ，
 2 in $\times 8$ in, $2 / 6 ; 2 \ln \times 81 \mathrm{in}, 1 / 0$ ．
ALL PEAK GOUND PRODUCTS AS ADVERTISED
＊SUPER QUALITY NEW RESISTORS
Carbon film high tabse，fow nolse：
$\frac{d W}{} 6 \% 10$ to $2 \mathrm{Mn} 1 / 10$ doz．， $14 / 6$ per 100 ．
दW 10% \＆ 78 to $10 \mathrm{Mg} 1 / 8 \mathrm{doz}$ ， $18 / 8$ per 100 ．
iW $10 \% 4.70$ to $10 \mathrm{M} 08 / 8$ doz．， $25 / 10$ per 100
I／B leas per 100 If ordered in complete 100 ＇s of one ohmie ralue．
Please atate resistance values requifed．
QUALITY CAREOK SKELETON PRE－SETS：100＠， 250 R， $500 \mathrm{Q}, 1 \mathrm{KA}, 2 \mathrm{KO}$ ． $2 \cdot 5 \mathrm{~K} \mathrm{\Omega}, 5 \mathrm{KD}, 10 \mathrm{~K} \Omega, 20 \mathrm{~K} \Omega, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K} \Omega, 250 \mathrm{~K} \Omega, 60 \mathrm{~K}, 1 \mathrm{M}$, $2 \mathrm{MD}, 2 \mathrm{SMO}, 6 \mathrm{Ma}, 10 \mathrm{Ma}$

ELECTROLYTICS，SUB－MIN．，C426 range（ $\mu \mathrm{F} / \mathrm{V}$ ）： $0 \cdot 64 / 64,1 / 40,1 \cdot 8 / 25,2 \cdot 6 / 16$ ， $2 \cdot 5 / 64,4 / 10,4 / 40,5 / 64,6 \cdot 4 / 6-4,6-4 / 25,8 / 4,8 / 40,10 / 2 \cdot 6,10 / 16,10 / 64,12 \cdot 6 / 25,16 / 60$ ． 16／40，20／40， $64 / 4,64 / 10$ ， $80 / 2.5,80 / 16,90 / 25,100 / 6.4,125 / 4,128 / 10,125 / 18$ ． $160 / 2 \cdot 5,200 / 6 \cdot 4,200 / 10,250 / 4,520 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4,600 / 2 \cdot 5,1 / 4$ each． ELECTROLYTICS，MINIATURR（ $\mu \mathrm{F} / \mathrm{Y}$ ）： $5 / 10,10 / 10,10 / 2 \mathrm{~s}, 20 / 10$, B0／10，git each．
$25 / 25,50 / 28,100 / 10,200 / 10,1 /-$ each， $50 / 692 /-100 / 50,2 / 8$ ． $25 / 25,50 / 25,100 / 10,200 / 10,1 /$－each， $50 / 60$ 21－， $100 / 50,2 / 6$.
 Dual（long opindle）： $10 \mathrm{~K}, 25 \mathrm{~K}$ ，$\ddagger 0 \mathrm{~K}, 100 \mathrm{~K}$ lin or $\log , 10 / 6$ ench．
＊ALL GOODS BRAND NEW＊NO＂SECONDS＂OR SURPLUS COMPONENT DIBCOUNTB： 10% for total order value exceeding 88 ust． Poat and Packing：up to fl －i h free on order over f 1 Pont and Packing：up to $\mathrm{El-I/-} \mathrm{} .\mathrm{Free} \mathrm{on} \mathrm{order} \mathrm{over} \mathrm{E1}$
OVRRSEAS ORDERS WELCOMED－Carrlage at cost．
SEXD 1／－for our catalogue containing data on 200 up－to－date semfconductora available from stock as well as many other components，aliso tranaitotor equivalenta toble．Invaluable to every serious experimenter and designer．Everything at beat poesible prices．

[^6]

Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields. Applicants should be United Kingdom citizens resident in the U.K. aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phoning:raaf careers officer (Dept. p.e.) australia house STRAND, LOHDON W.C. 2

Telephone No: 01-835 2435

EXCLUSIVE OFFER

KITS for Transformeriess Amplifiers, ZENER DIODES, ASSORTMENTS of Capacitors, Potentiometers, Carbon Film Resistors and branded new. ORIGINAL TRANSISTORS
(Excerpt from our SPECIAL OFFER B/1983)
ampliffer
Supply voltage
Working current
Loud-speaker connection
input volitage at max. vol
Input resistance
Frequency range
Printed circuit panel for KIT No
The cirellit diagram
A.F. zransformeriass

ZENER DIODES I W $4 \cdot 3,5 \cdot 6,6 \cdot 2,6 \cdot 9,7 \cdot 5,8.2,9 \cdot 1,10,11,12 \mathrm{~V} 2 / 4$ each ASSORTMENTS O ELECTRONIC COMPONENTS
ORDER NO:
DIO $3 \quad 100$ p. germanium diodes sub-miniature
TRA $\quad 50 \mathrm{p}$. different transistors
ZE101 10 p . zener diodes different values 250 mW -IW ELKO I 30 p . I.f. Electrolyzic capacit, sub-min. good sel.
KER 1 100 p. disk- rubular-ant pearl capac. 20 val. x
EIM I 10 p - adjust. potentiom. ohm values tood seleer.
WID 1-1/8 100 p. carbon film resist., axiall, iV 20 val. $\times 5$

GRAND NEW ORIGINAL TRANSISTORS
$A C 153$ AC 128 i/4 $\quad 1 / 4=27=A C 1271 / 6 \quad A F 144=A F 116 \quad 1 / 9$

 All goods BRAND NE
Subject to prior sale. Our deliyeries are ex stock Zurich/Switz
and packing will be charged ac self-coxts.
and packing will be charged at seff-costs.
Please request our complete free SPECIAL OFFER B/I968.
We shall be very pleased to receive your trial order:

EUGEN QUECK
CH-88I0 HORGEN
Switzerland

Ingenieur-Büro Import-Export Bahnhofstr. 5

PHONE

WENTWORTH RADIO 104 SALISBURY ROAD, HIGH BARNET

BAR 3087
P. © P. $1^{\prime}=$

EAGLE MULTIMETERS

EPSOK, 120/-, p.p. 4/6; EP10KN, 108/-, p.P. 4/6; EP20KN, 90/-, p.p. $3 /-;$ EP30KN, $150 /-$, p.p. $4 / 6$: EPSOLN,' $810 /-$, p.g. 4/G, detaile on request.

High Stabillty Resistors 2%, 1 V , $2 / \mathrm{F}$. Fuil standard High Stabilty Resistors
range plua mapy multmeter values. $5 \% ~ 4 \mathrm{~W} .4 \mathrm{~d}$. range plua many muitim.

0-50 microsmp level meters, 15/-, post 1/-
High Rels. Phones, $2,000 \Omega$, 15/o, p.p. 1\%.
Multimeter 1 TT-2, 20,000 o.p.v. d.c., $0-5,25,50$, $250,2,500 \mathrm{~V}$ d.c., $10,50,100,500,1,00 \mathrm{AV}$ s.c.; capacily and dB rapges, $70 \mathrm{j} \cdot \mathrm{\sigma}$, poit $30 \cdot \mathrm{o}$.

Postage extra, cash with_order.
PLANET INSTRUMENT $C O$. 25(E) DOMINION AVENUE, LEEDS 7

| 2in. DE-LUXE MKII $£ 9$

The exceptional quality and performance of the "De-luxe MKII" brings truly breathcakingly rich sound from a single loudspeaker, racreating the musical spectrum virtually fat from 25 to 16,000 c.p.s. The unit consists of the latest double cone, woofer and sweeter cone cogether with a special Baker "FERROBA" magner assembly having a flux "FERROBA" magner assembly having a flux
densiry of 14,000 gauss and a total flux of density of 14,000 gauss and a total fux of
150,000 Maxwells. Bass resonance $32-38$ 150,000 Maxwells. Bass resonance $32-38$
c.p.s. Rated 15 watts. Voice coils available c.p.s. Rated 15 watts. Voice coils available
3 or 8 or 15 ohms. Suitable for any High Fidelity System. Design capability concept has programmed third generation hardware giving fantastically delightfal sound at this

Bensham Manor Road Passag*, Thornton Heath, Surrey, 01-684 \$665
\qquad

Valuabie new handoook FREETOAMBITIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES' is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES', should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience ortraining.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - PracticaI Electronics - Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmantship - Ilhuminating Eng. Rejrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Ens. - Municipal Eng. - Structural Erg. -Sanitary Eng.-Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG. Advanced Radio - Gencral Radio-Radio \&TV Servicing -TV Enginecring-Telecommunications - Sound Recording - Automation Practical Radio \longrightarrow Radio Amatcurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. fress Tool Design - Shact Metal Work - Welding Eng. Pattern Making Inspection - Draughtsmanship $\xrightarrow{\rightarrow}$ Mesallurgy - Production $\overrightarrow{\text { Eng. }}$
AUTOMOBILE ENG. Advanced Automobile Eng.General Auto. Eng. - Auto. Maintenance - Repair Auto. Diesel Maintenance Auto. Diesel Mainenance -
Auto. Eleclrical EquipmentGarage Management.

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job.
\star HoW to qualify for rapid promotion.
\star HoW to put some letters after your name and become a key man ... quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
\star HOW you can take adyantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in ony branch of Engineering.

> 132 PAGES OF EXPERT CAREER GUIDANCE

CAREER - GUIDANCE

PRACTICAL EQUIPMENT
Basic Practical and Theorebic Courses Ior beginnees in Electionits, Radio, I.V., Ekc., A.M.I.E.R.E. Gity \& Guilds Radio Amateurs' Exam. R.T.E.B. Cerlificate P.M.G. Cetilitrate Pratical Electronics Electroniss Engineering Practizal Radio Radio $\&$ Television Serviting Automation

You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES'' - send for your copy nowFREE and without obligation.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I'C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

POST COUPON NOW:
TO B.I.E.I., 316A ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Nearly 1,700 Circuits \& Diagrams plus full repair data for

800 POPULAR MODELS

EDITION

Big time-saving repair library steps up your earnings
Here is a great new edition of RADIO \& TV SERVICING, to save your time, to boost your earning-power. Packed with CIRCUITS, REPAIR DATA and vital information it covers all the popular 1965-1968 TVs, Radios, 'Grams, Record Players and Tape Recorders-including latest data on COLOUR TV. Thousands of sets of previous editions sold. Now you can examine this big NEW edition free for a week. 3 handsome volumes-over 1,500 pages written by a team of research engineers--there's no other publication like it. Hurry -send no money-simply post this leaflet .. . There can be no reprint once stocks are sold and there's absolutely no obligation to buy under this free trial offer.

FULL DATA \& CIRCUITS FOR REPAIR OF TELEVISIONS INCLUDING

- RADIOS, RADIOGRAMS
- CAR RADIOS
- RECORD PLAYERS
- TAPE RECORDERS

Nearly 60 leading makes covered fromAlba to Decca, fromFergusan to Sanyo-full list shown overleaf.

POPULAR MODELS-1968 RIGHT BACK TO 1965

Circuit diagrams

Printed panel diagrams

Component layout diagrams

Drive-cord diagrams

Block diagrams

SERVICING DATA FOR ALL. THESE MAKES

Aiwa, Alba, Baird (including colour TV), Beogram, Beolit, Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport, Dynatron, Eddystone, Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidelity, G.E.C. (including colour TV). Grundig, H.M.V., Kolster-Brandes, Hitachi, Invicta, McMichael, Marconiphone, Masteradio, Motorola, Murphy, National, Newmatic, Pam, Perdio, Peto-Scott, Philips (including colour TV), Portadyne, Pye, Radiomobile, R.G.D., Regentone, Roberts' Radio, Sanyo, Sharp. Smith's Radiomobile, Sobell (including colour TV), S.T.C., Sony, Standard, Stella, Stereo-sound, Teletron, Thorn, Trans Arena, Ultra, Van Der Molen, World Radio.

LATEST DEVELOPMENTS IN RADIO \& TELEVISION
Including-Integrated Tuners, Stereo Multiplex Broadcasting-The Zenith-G.E. System: Receiver, Decoder and adjustments, Aerial, etc, Colour TV Receivers, Colour TV Test Card F, Servicing Transistor Equipment, Chemical Aids to Servicing, Batteries and Rechargeable Cells, Sound-on-Sync., Double Line Sync., Silicon Transistors, etc.

OVER 1,500 PAGES, 1,644 CIRCUITS, COMPONENT LAYOUT DIAGRAMS. PRINTED PANEL DIAGRAMS, TABLES AND WAVEFORM GRAPHS.

Handsomely bound in rich maroon and gold. SEND FOR YOUR FREE TRIALSET TODAY
ABSOLUTELY NO OBLIGATION TO BUY

Postage will be
paid by Buckingham
Press Lid.

No postage stamp necessary if posted in Gt. Britain or Northern Ireland

Tick colspon above to examine PRACTICAL ELECTRICAL ENGINEERING
4 Handsome Volumes
Plus case of 36 charts and pocket book

SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT Acclaimed by evenyone
 Audio Equipment developed from Dinsdale Mk.11-each unit or system will compare favourably with other professional equipment selling at much higher prices.
 COMPLETE SYSTEMS FROM
 £15.5.0
 THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

 THE MAYFAIR ELECTRONIC
 ORGAN
 A completely trew developmert in portable electronic messical 'MAYFA!nts' and a new fietd for the home constructor. The with a wide range of tone colours suitable for classic or popular

 Supelied a organ is fully polyphoric, ahat is full chords can be played ovar the entira keyboard. and depth of touch parts which includes 165 transistors, printed circuit panels, special fully sprung detailed and illecsirated contsruction masnual is provided with circuits and full parts list Cost can be aprear beles surchasing the components packet by packec. All parts supplied are fully guaranteed. Full
 Alow source
 of construction for the keen efectronics fan either amateur or professional

All units available separately,
SEND FOR 16 PAGE BROCHURE (No. 21) TODAY! DEMONSTRATIONS DAIL.Y AT '303' EDGWARE ROAD

 7-wath amplifter is supplied ready buit, tesuad and gearanieed.
 F8/t0/0 P.P. 4/-

BUILD THESE PRACTICAL DESIGNS

I.C.F.M.TUNER

I.C.F.M. TUNER
Switched F.M. Tuner Fluarescent Camping Flucre
Light £5.2.6. 40 B Lat us have your enquiries for parts for current PW and PE designs. S.A.E.
PLEASE.

ITS SO EASY TO BUILD TO PROFESSIONAL STANDARDS
 compines a somcias high quasity 8 valve amplifier and pro

 when buth wif compan fevourably wilh irstrumenis costing
 BUILOING EASY ANO SUCCESS ASSURED.

TWO TRACK. Dack, Ampllitet, Cesbinet and Soeaker spato spool. Trday's valuo f55. OUR PRICE 36 gni.

 ALL UNITS AVAILABLE SEPABATELY. \quad POSh models.

TRANSISTORS, RECTIFIERS, ZENERS, SCR'S TUMMEL DIODES, FIELO EFFEEY TYPES, VALVES. CRYSIAES New 1968 32-page Bookfot Price $1 /$ - Post Paid

HI-FI equipment to suit EVIKYPOCKन
 \section*{Ask for Hi-Fi- Stock List Leaflet 16.17}

VISIT OUR NEW HI-FI CENTRE at 309 EDGWAR

Circuits with Data, Details and Prices of over 2000 different types. This booklet is a must for every enthusiast. MANUFACTURERS - DISTRIBUTORS. We also publish a QUANTITY, SEMlCONDUCTOR BULLETIN.
Please write to us for your copy.

ORGAN COMPONENTS
We carcy a comprehensive slock TRANSISTOR AND VALVE FREE PHASE designs.

Defened terms available.
COMPLETE KIT
Deposit £23.19.0.
12 monthly poyme
12 manthly payments of $£ 7$.
TOTAL, f113.19.0.

BUILT AND TESTEO Deposit E3B.B.O \& 12 montaly paymenis of £9. Total E144.8.0. EXPORT ENQUIAIES
INVITED INVITED BRITISH MADE CAR RADIOS

 toad. So essyy to install and operale-and the price ls exacily flohth Hest quilek pusth- moloining apeods. Price thactudes $7^{\prime} \times 4^{\prime}$ spalakar, tulf accessories and insinuctions.

POSITIVE OR NEGATIVE EARTH EASI-TUNE £12,12,0. pp. 4/6 AUTOBAHN MANUAL ${ }^{\text {as }}$ The EASI-
TUNE, but wly a singly MWFLW Push Button. £10.10.0. pp. 4/8
CAR AERIALS * 3-Section Single Hole Wing or Bool Mounting 19/6 Brochuse 15 Multi Section futly disappearing type with locking Brochure 15 mounting 35/- Post free with Car Radio or pp. $2 / 6$ separataly,
00 IT YOURSELF MW/LW PDRTABLE New printed circuit design with
full power outpui. fully turable on both mw/lw bonds. 7 transistors plus diode, push-pulf citcuie. Fitted 5 inch speaker, lazge forrite asfial and Mulfard transistors. Easy to huild with tarritic results. All locat and Continental
stations. TOTAL
TO BUILO £6.19.6.
P.P. 4/6

NEW-MALLORY LONG LIFE MERCURY BATTERIES 50\% OFF LIST PRICES

 OUR PArCE 10/-8ach.
Easily splititrto eighs 1.35 v cetlic
 OUOTATIONS WRITS DUANIITY
PHONE EXTN. WRITE OA

TRANSISTORS SEMICONDUCTORS
COMPLETELY NEW 1968 LIST OF 1000 types available from stock. Send for your FREE COPY TODAY. (List No. 36)

S.C.R.'s

Field Effect Transistors
Power Transistors
Diodes and Rectifiers
from 5/-
from $5 /-$

MULLLARD 1 WATT AMPLIFIER WITH VOLUME CONTROL Suitable 7×4 inch 3 ohm speaker $17 / 6$ Ideal for Portable Record Players. Inter Comrns. Baby Alarms etc- $45 /=3 p$.
For 9 Volts operation

GARRARD DECKS

BRAND NEW All balow list price 2025 M Mono/Sterpo
300 LM Winh 9 ALH SP25 MK K 11
LABBO Mk It ${ }_{\text {ATEO }}^{\text {ATEO Mik }}$ 40 Mk 12
$3500 \mathrm{MONa} / \mathrm{Ste}$ 3500 M
401
AP75
SL55 St55
SL65
SL75
SL95
Send for thiuslratad brochuros 16,27

fully Illustrated CATALOGUE

COMPLETELY NEW sth EDITION (1968) The most COMPREHENSIVE-CONCISE-CLEAR - COMPONENTS CATALOGUE

Complete with $10 /$ - worth discount vouchers FAEE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 200 pages of components and equipment
* 65 pages of microphones, decks and Hi-Fi equipment.
6,500 ITEMS

[^0]: 207 EDGWARE ROAD, LONDON, W. 2
 Tef.: 01-723 3271 Open all day Saturday, eariy elosing 1 p.m Thursday
 33 TOTIENHAM CI. R月., LONDON, W. 1 Tel.: 01-636 2605
 Open all day, 9 a.m.- 6 p.m. Monday to Sarurday
 152/3 FLEET STREET, LONDON. E.C. 4 Tel.. FLEat St. 2833
 Open all day Thursday, eaty closing 3 p.m. Soturday

[^1]: F. E. Bennett-Editor

[^2]: 7
 $\stackrel{\rightharpoonup}{\nabla}$
 新

[^3]: Wide range of courses available include:
 Radio/TV Engineering and Servicing, Closed Circuit TV, Electronici, Electronic Maintenance, Servomechanisms, Computer Engineering. Numerical Control Electronics, etc.
 EXPERT COACHING FOR:
 INSTITUYION OF ELECTRONIC AND RADIO ENGINEERS
 CITY AND GUILOS TELECOMMUNICATION TECHNICIANS
 CITY AND GUILDS ELECTRONIC SERVICING
 R.T.E.B. RADIOITV SERVICING CERTIFICATE

 RADIO AMATEURS' EXAMINATION
 P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

 Bulld your own radio, transistor portable, and professlonal-type zest instruments with an ICS Practical Radio and Electronics Course. Everything simply explained ond easy to handle. All components and sools supplied. For detalla post coupon below.
 Member of the Association of British Correspondence Colleges

[^4]: =RE 5 Please send Hiafi Manual together with name and address Please send HiaFi Manual togerher
 of my nearest Gocdmans dealer.
 \qquad
 PEII

 GOODMANS LOUDSPEAKERS LTD AXIOM WORKS • WEMBLEY - MIDDLESEX. Tel : 01-902 1200

[^5]: PCPOSTNOW for
 BROCHURE
 or write if you prefer not to cut page

[^6]: LLECTR（VALUE
 （Dept．P．E．II） 6 MANSFIELD PLACE，ASCOT，BERKS

