TRANSISTORISED

BITE
INDICATOR

Also
THE CHEMOSTAT
FOR ACCURATE THERMOSTATIC
CONTROL OF LIQUIDS
OLRUS ELECTRONICS LTD.
PADDINGTON 1315
9 NORFOLK PLACE (off Praed St.) LONDON, W.2

TRANSISTORS — DIODES — ZENER — VALVES
FULLY GUARANTEED — FACTORY NEW. S.A.E. FOR FULL LIST.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR/THYRISTORS</td>
<td></td>
</tr>
<tr>
<td>CR505 1A 500V 7/6</td>
<td></td>
</tr>
<tr>
<td>CR510 1A 1000V 7/6</td>
<td></td>
</tr>
<tr>
<td>CR512 1A 3000V 12/6</td>
<td></td>
</tr>
<tr>
<td>CR513 1A 3000V 15/6</td>
<td></td>
</tr>
<tr>
<td>CR514 1A 4000V 17/6</td>
<td></td>
</tr>
<tr>
<td>CR515 3A 500V 8/6</td>
<td></td>
</tr>
<tr>
<td>CR516 3A 5000V 10/6</td>
<td></td>
</tr>
<tr>
<td>CR517 3A 5000V 15/6</td>
<td></td>
</tr>
<tr>
<td>CR518 3A 5000V 20/6</td>
<td></td>
</tr>
<tr>
<td>CR519 3A 5000V 25/6</td>
<td></td>
</tr>
</tbody>
</table>

FIELD EFFECT TRANSISTOR
2N3819 18/-
Moulded Reed Switch 14/-
Moulded Magnet 5/-
Miniature Neon Lamp 1/6
Mains Panel Neon, 3 colours 3/6

CONTIL CASES 215SW steel
Smart electric blue finish with site panel outside dimensions:
755 45/6 16127 98/6
967 47/6 16175 139/6 0.P.
975 47/6 19101 133/- inc.
1277 5/- 19101/0187/-

LIGHT SENSITIVE SWITCH
Kit 2 127 Photocell—relay
Transistor-circuit 27/6
Kit 2 As above—Mains over—Transformer
rectifier 47/6
Kit 3 As above, + 2 x Lens & + 2 A.P.
box + Exciter lamp, Folded beam
operation 99/6

DO IT YOURSELF
SECTIONAL CASE AND CHASSIS
S.A.E. FOR LEAFLET

TRANSFORMERS
230v Prim. 6-10-15-18-30v 2A 32/-
230v Prim. 6-10-18v 2A 22/-
230v Prim. 3-5-9-17v 1A 12/-
230v Prim. 3-5-9-17v 4A 16/-
230v Prim. 3-5-9-17v 4A 19/6
230v Prim. 3-5-9-17v 6A 30/-

EXPLORER KIT AM/FM VHF RECEIVER
Punched case and panel 2ADT 140 20574
Transistors 2 P.P. inc.
holders 51 19 6 P.P. inc.

Thyrister speed control kit 82 2 6
Car burglar alarm 11 7 6
Solid state car ignition kit 89 3 6
Model control receiver kit 85 15 0
Model control transmitter kit 84 2 6

ILLUSTRATED:
L64 1/2" BIT INSTRUMENT IN L700 PROTECTIVE SHIELD

APPLY DIRECT TO:
SALES & SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4
TELEPHONE 01-622 0291
R209 MK. II COMMUNICATION RECEIVER

11 valve high grade communication receiver suitable for tropics. 1-20 Mc/s on 4 bands. AM/CW/WM operation. Incorporates precision vernier driver, BFO, aerial trimmer, internal speaker and 12 V. D.C. internal power supply. Supplied in excellent condition, fully tested and checked. £125. Carr. 20.

ADIRALTY B.40 RECEIVERS

RCAF TECHNICAL EQUIPMENT

NEW LAFAYETTE MODEL HA-700 AM/CW/SSB with integrated circuitry. 1500 Kc/s, 10.5-30 Mc/s.

LAFAYETTE KT-340 COMMUNICATION RECEIVER

LAFAYETTE MODEL HA-500 3SB/AM/CW

Covering 550 Kc/s-30 Mc/s. Incorporates 12 valves and 2 V.S.E. stages. Suitable for tropics. 1-20 Mc/s on 4 bands. Frequency coverage on 4 bands 1500 Kc/s, 1.2-10 Mc/s, 10-100 Mc/s, 100-1000 Mc/s. 150-250 volts, 650-1500 watts output. £325/10/0. Carr. 22/6. Also available B41 L.F. version of above. Covers 850 Kc/s-10 Mc/s.

LAFAYETTE KT-340 COMMUNICATION RECEIVER

Supplied in excellent condition, fully tested and checked. £125. Carr. 20.

LAFAYETTE KT-240 COMMUNICATION RECEIVER

80 THROUGH 6 METRE RECEIVER

For the owner of LAFAYETTE KT-340 or KT-240. 6 transistor, 6 valve receiver. AM, CW and 2 V.S.E. stages. Fully transistorized. £155/10/0. Carr. 22/6. Also available B41 L.F. version of above. Covers 80/40/20/15/10/6 metre bands. New outstanding Ham Bands only receiver covering the 80/40/20/15/10/6 metre bands. Incorporates 8 transistors and 2200 valves, 2 mechanical filters, “5” Meter, dual conversion on all bands, crystal calibrator, B.F.O., noise limiter, aerial trimmer, I.F. 2.5 Mc/s and 435 Kc/s. Output 8 watts and 600 ohms. £350/10/0. Supplied brand new and guaranteed with handbook. 42. £5. Carr. 20/6. 100 Kc/s crystal 5.5.

LAFAYETTE KT-240 COMMUNICATION RECEIVER

Incorporates 12 valves and 2 V.S.E. stages. Suitable for tropics. 1-20 Mc/s on 4 bands. Frequency coverage on 4 bands 1500 Kc/s, 1.2-10 Mc/s, 10-100 Mc/s, 100-1000 Mc/s. 150-250 volts, 650-1500 watts output. £325/10/0. Carr. 22/6. Also available B41 L.F. version of above. Covers 850 Kc/s-10 Mc/s.

LAFAYETTE KT-340 COMMUNICATION RECEIVER

Supplied in excellent condition, fully tested and checked. £125. Carr. 20.
SINCLAIR Z.12

COMBINED 12 WATT HI-FI AMP & PRE-AMP

- ULTRALINEAR CLASS B OUTPUT
- 12 WATTS RMS CONTINUOUS SINE WAVE OUTPUT (24 W. Peak)
- 15 WATTS MUSIC POWER OUTPUT (30 W. Peak)
- INPUT—2mV into 2Kohms
- OUTPUT suitable for 15, 7.5 and 3 ohm speakers. Two 3 ohm speakers may be used in parallel.

Eight special H.F. transistors are used in the Z.12 to achieve results to compare favourably in every way with the costliest equipment you can buy. But the Z.12 is smaller, is more versatile and certainly saves you money. It is preferred not only for mono and stereo hi-fi, but it also enjoys enormous popularity fitted in electric guitars, used for P.A. and intercoms and many other instances where power and dependability are imperative. This superb amplifier with integrated preamp is supplied ready-built, tested and guaranteed together with the Z.12 manual which details matching, volume and tone control and selector switching circuits using one Z.12 in mono or two in stereo.

3" x 2½" x 1½"

15-50,000 c/s ±1dB

IDEAL FOR USE WITH BATTERIES

BUILT, TESTED AND GUARANTEED $89.6

SINCLAIR MICRO FM

7 TRANSISTOR COMBINED FM TUNER AND RECEIVER

Less than 1 in. 12in. - 1.5 in. P.M. Superhet using pulse counting discriminator for superb audio quality. Low I.F. makes alignment unnecessary. Tunes 88-108Mc/s. The telescopic aerial suffices for good reception in all but poorest areas. Signal to noise ratio—10dB at 30 microvolts. Takes standard 9V battery. One outlet serves for feeding to amplifier or recorder, the other allows set to be used as a pocket portable. Brushed and polished aluminium front, spun aluminium dial. A fascinating set to build which gives excellent reception by any standards. Complete kit inc. aerial, case, earpiece and instructions.

NEEDS NO ALIGNING
FULL SERVICE FACILITIES AVAILABLE

£5.19.6

SINCLAIR PZ.3. Transistorised mains power supply unit with ample output for two Z.12’s and Stereo 25 together.

SINCLAIR STEREO 25 PRE-AMP AND CONTROL UNIT

For use with two Z.12’s or any good hi-fi stereo system. The front panel is elegantly styled in solid brushed and polished aluminium with well styled solid aluminium knobs. Frequency response 25c/s to 30kc/s 1dB connected to two Z.12’s. Sensitivity Mic. 2mV into 50k; P.L. —3mV into 50k; Radio—20mV into 47k. Equalisation correct to within 1dB on RIAA curve from 50 to 20,000c/s. Size 6½in x 2½in x 2½in plus knobs.

BUILT, TESTED AND GUARANTEED £9.19.6

SINCLAIR RADIONICS LTD., 22 Newmarket Rd., CAMBRIDGE
Telephone OCA3-52996
with the world's smallest radio

To the fantastically small size of the Sinclair Micromatic must be added its brilliant performance. This British-made set assures you at all times of choice of B.B.C. and many other stations in the medium waveband. After dusk, even more stations come in all round the dial with amazing power and excellent quality. Vernier type tuning takes full advantage of the set's selectivity. This remarkable set provides good listening no matter where you are—indoors, in car, bus, train—everywhere. The Sinclair Micromatic brings a refreshingly new approach to personal listening and for its size, appearance, price and performance, there is nothing to equal it anywhere in the world.

TECHNICAL DESCRIPTION OF THE SINCLAIR MICROMATIC

The Sinclair Micromatic is housed in a neat plastic case, size 1 1/2" x 1 1/2" x 1" with attractive aluminium front panel and spun aluminium calibrated tuning dial.

Special Sinclair transistors are used in a six-stage circuit of exceptional power and sensitivity—two R.F. amplification; double diode detector; and a high gain three stage audio amplifier which feeds to a specially matched high quality lightweight earpiece. A.G.C. counteracts fading from distant stations. Bandspread brings in "pop" stations extra easily. The set is powered by two Mallory ZM.312 Cells readily obtainable, for 1/7 each. Micromatic Kit Pack with earpiece, instructions, solder, etc. in "see-for-yourself" fitted pack.

To: SINCLAIR RADIONICS LTD., 12 NEWMARKET ROAD, CAMBRIDGE

Please send items detailed below:

NAME

ADDRESS

For which I enclose cash/cheque/money order

PE.8

Full service facilities available to all Sinclair customers.
NESTLÉS
HAVE VACANCIES FOR
STAFF INSTRUMENT MECHANICS
(ELECTRONIC/PNEUMATIC)
AND
STAFF ELECTRICIANS
Average salary: Weekly £27.13.6
Annual £1,439

To work on the installation and maintenance of highly automated Process plant and machinery.
Applicants should have preferably served a recognised apprenticeship.

INSTRUMENT MECHANICS
Should be fully conversant with electronic instrumentation, and control circuits, and/or pneumatic control systems.

ELECTRICIANS
Should have had installation and maintenance experience of motors, hand and automatic control gear and associated circuits, rated from fractional to 150 H.P.

Successful applicants would be required to work on a 3 Shift System — Average 42¾ hour week.

Holiday arrangement will be honoured.

First-class conditions include: Superannuation Fund, Social Club, Canteen and Medical Facilities.

STAFF VACANCIES EXIST FOR OTHER ENGINEERING TRADES
Please apply to the: PERSONNEL OFFICER
THE NESTLÉ COMPANY LIMITED
HAYES, MIDDLESEX

P.C. RADIO LTD
170 GOLDHAWK ROAD, W.12
Shepherds Bush 4946
Open 9.30 a.m. Thursday 9.1 p.m.

SAMSON'S
ELECTRONICS LTD.
918 CHAPEL STREET
LONDON, N.1.
Tel: PADD 7851
Tel: AMB 5125

SOLARTRANS
POWER SUPPLY SUB-UNIT
TYPE A959/S
A.C. input 100-150v. and 200-400v.
Stabilized D.C. output continuously between 100 and 200v. and 100 mA. Also two 6.3v. A.C. at 2 amps. Supply 40-50c.

SPECIAL OFFER, BRAND NEW
COUNTERS
L.I. ELECTRICAL LTD.
Units
A.C. input tapped 220, 200 and 200, D.C. output 35 v. 8 amps. and 100 mA. A.C. output of 6.37-7.8-6.9-5/10-5.17, 17amps. Totally enclosed in wall mounting metal case size 16 x 10 in. £13.10.0., carr. 1/6.

SURPLUS TRANSFORMERS
BY FAMOUS MAKERS
A. Pri. 200-240V, Sec. 1/0 Tapped 38v. 10A Sec. (2) 6.25v., 9v., 5v., 3.75v., 2.5v., 1.25v. Carr. 1/6.
B. Pri. 200-240v, Sec. Tapped 53.6 v. 55 v. and 9.75-9v. Carr. 2/6.
C. Pri. 200-240v, E.S. Sec. Tapped 38v. 10A, 44v., 44v. and 7v. Carr. 3/6.
D. Pri. 200-240v, Sec. 8v. and 6amps. 19/6.
E. Pri. 200-240v, Sec. Tapped 8-12v. 28-30-33-35 v. 15 amps. 6/6.6.
F. Pri. 200-240v, Sec. 40v. and 4amps. 140-18v. 1amp. 49/6.
G. Pri. 200-240v, Sec. Tapped 15-30v. 14 amps. 19/6, 2/6.

ODEN "ZC" HIGH TENSE TRANSFORMER
Pri. 200-240v, Sec. 0-25v. 110MA 0.971-175v, 25MA 6.3v., C.T. 4amps. 19v. 2amps. 19v. 1amp. 49/6, F.P. 6/6.

PARMEKO JUPITER SERIES CHOKES

MULTI-TAPPED TRANSFORMERS
MOST TYPES, ALL
SHROUDED AND TERMINAL BLOCK CONNECTIONS.
ALL PRIMARIES 220-240 VOLTS

- Denotes Unhooked Types
TYPE A959/S. TAPS AMPS. PRICES & CASES

(Continued over)
EXCLUSIVE LASKY'S BARGAIN—SOLID STATE MULTIPLEX STEREO AM/FM TUNER/AMPLIFIER CHASSIS

Model 100E—made for U.K. use by famous North American manufacturer and originally installed in De Luxe Hi-Fi consoles costing several hundred pounds. The chassis has outstanding appearance and quality and offers many unique features plus an extremely comprehensive specification.

Features:
- Separate transistorised AM and FM tuners
- 3 AM wavebands—L.W., M.W. and Continental F.M.; Band 1 full FM cover with push button presetted stations (eg, tuning controls for AM and FM ranges) built in multiplex decoder with unique FMX feature which provides automatic switching from mono to stereo when stereo signal is received and vice versa
- Unique split amplifier facility for simultaneous play of radio plus any other source
- Channel reverse
- Switched inputs for tape and auxiliary (w/ sockets for tape in & out)
- Switched extension speaker output
- & thermal safety trip
- Pocket for stereo headphones.

Tech. spec.:
- Output 16 watts RMS per channel
- Input imp. 50 ohms
- Sensitivity 8mV
- For SW output 1 K, Input imp. 100K (p.c.)
- 12 unique tumbler type function controls
- 8 push button wavebands
- Station selection controls, vol., bass treble and balance controls
- Push button contour (toupole) control; Illuminated tuning scale
- AM ranges: M.W. 150-1500 KHz; L.W. 160-1700 KHz; Continental F.M. 86-108 MHz
- Switched AFC
- Power supply: 200/220 V.A.C, 50 or 60 c/s.

A range of high quality Hi-Fi Console Cabinets by the same famous manufacturer is also available at almost 1 list price and may be seen at our Hi-Fi Audio Centres.

UHF T.V. TUNERS

Well known British makers' surplus stocks. Now available for the first time to the Home Constructor. Add 2½ Post and Packing on each.

VALVE UHF MODEL

In metal case size 4 X 4 X 1 in. Fully tunable—complete with P.C.B. and P.C.B.6006 valves. LASKY'S PRICE 7.6. Without valves 1/6

TELEVISION IF AMPLIFIERS

30 mV. Contains a large number of components, IF transformers, resistors, capacitors, etc., and the following valves: E.C.104, E.C.105, E.C.106, E.C.107, E.C.108. Overall size 11 in. X 3 in. X 4 deep. Ideal for experiment and small production. This IF amplifier used with the Valve Model UHF Tuner (above) provides a suitable conversion for B.B.C.2 Circuit supplied.

LASKY'S PRICE 29/6 Post & Packing 2/6.

SPECIAL PACKAGE OFFER

Free standing table cabinet, size 17 in X 9 X 3 in., finished in medium Mahogany. Supplied fitted with 21 to 68 (UHF band). Designed to accept the above conversion with space for a Valve UHF Tuner Cabinet only 27/6. Post 3/6.

Special Package Offer 1F Amplifier, UHF Tuner with valves and Table Cabinet.

Expander TCC 4002 FM WIRELESS MICRO.

Highly sensitive—suitable for either static or mobile use. Signal can be picked up by any FM radio or tuner which receives frequencies between 50-104 MHz, over several hundred yards. Size only 3 in. X 2 in. X 1 in. (in leather case). Operates on one P-P type battery. Complete with neck cord, clip-on dynamic expansion microphone

WATER TEMPERATURE THERMOSTATS

LASKY'S PRICE 15/- Post 2/-

CONSTRUCTORS BARGAINS

The SKYOVER Deluxe

7 transistor plus 2 side superhet, 6 waveband portable receiver covering all the Modern waveband and Short Waveband 21-24MHz and 4 separate switched banded to 135, 155, 175 and 200 MHz, with Band Spread Tuning for accurate Station Selection. The coil pack and tuning has been very carefully and attended. Uses 4 x U3 batteries, 6 in. Ceramic Magnetic P.M. Speaker, Teleoptic and Peravia R.F.Aerial, Tine Circuit, wood cabinet, size 24 x 2 x 11 in. covered with washable material, plastic trim and handle. Car aerial socket fitted.

Post H.P. Terms: 5/- deposit and 11 monthly payments of 12/6. Total H.P. 198.6. Data 8/6 extra: refunded if you purchase parcel. All parts avail. sep. Four 22 cath. 4 simple additional circuit provides cover of the 190/1900 MHz Long Waveband. All components with construction data. Only 1/6 extra Post Free.

FULLY ENCAPSULATED MODULES

Special function modules—all one size 1 X 1 X 1 in. Complete with detailed function and installation instructions. Send S.A.E. for data.

TYP XI, 1F Public address amp. for use with carbon, crystal or Dynamic microphones. 3G output Imp. PRICE 30/6

TYP GL1, Graieastos amplifier—provides sufficient power to fill average room. PRICE 30/6

TYP COI, Morse code practice oscillator—for use with Morse key and 3G speaker. PRICE 10/6

TYP NT1, Metronome module—provides audible and visual beat from 30 to 240 beats per minute (for use with 3G speaker or inst. lamp). PRICE 22/6

SINCLAIR SUPER MINIATURE KITS

We stock the complete range. Write for details of package deals. THE MICRO 621; single frequency radio only 1 X 1 X 1. PRICE 19/6

THE MICRO FM, (tuner/receiver) 19/6

THE MICROMATIC mini-radio Kit 02.19.6. Fully built 19/6

STEREO 25 pre-amp control unit fully built 19/6

TYP Z-12 12 watt amplifier and pre-amplifier. Fully built and tested 19/6

PZ-3 power pack for Z-12 19/6

TRANSISTORS

THEM ALL BRAND NEW AND GUARANTEED

GET 81, GET 82, GET 83 2/6; OC 44, OC 045, OC 055, OC 056, OC 42, OC 43, OC 72, OC 81D 7/6; GC 501, GC 502 15/6; OC 205, OC 206 15/6; OC 48 5/6.

TRANSISTORS BY BRUSH CRYSTAL CO. Available from stock.

TO-004 430 k/sec. ± 3 k/sec. Post 6/6 EACH

TO-004 460 k/sec. ± 3 k/sec. Post 6/6

TO-004 470 k/sec. ± 3 k/sec. Post 6/6

TO-004 480 k/sec. ± 3 k/sec. Post 6/6
PRE-PAX SEMICONDUCTORS DISTRIBUTED EXCLUSIVELY BY
DAVIS & WHITWORTH LTD., DEPT. A.
223-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX
PHONE: SOUTHEND (0502) 63434

FANTASTIC! BARGAINS OF THE YEAR!

NEW FACTORY TESTED PRE-PAX. ALL PERFECT BUT UNMARKED

<table>
<thead>
<tr>
<th>DOSES</th>
<th>PRICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1/10</td>
</tr>
<tr>
<td>50</td>
<td>1/10</td>
</tr>
</tbody>
</table>

Genuine Transistors NOT Remarks

<table>
<thead>
<tr>
<th>OC45</th>
<th>BF Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC44</td>
<td>Osc. Transistor</td>
</tr>
<tr>
<td>OC36</td>
<td>Power Transistor</td>
</tr>
</tbody>
</table>

ELECTRO-MAGNETIC RELAYS AVAILABLE FROM STOCK OR SUPPLIED TO SPECIFICATION

WE CAN SUPPLY RELAYS SUITABLE FOR NUMEROUS ELECTRONIC PROJECTS - TIMERS • ELECTRONIC ORGANS • ALARM SYSTEMS, etc., etc.

Also available: Electro Magnetic Counters, Key Switches, High Speed Relays, A.C. Relays, etc.

Send us details of your requirements

JACK DAVIS (RELAYS) LTD.
(Dept. PE), 9/10 Mallow Street, London, E.C.I
Telephone: CLerkenwell 3661/2
Contractors to Govt. Departments, Services, etc.

DISTRIBUTED BY
DAVIS & WHITWORTH LTD., DEPT. A.
223-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX
PHONE: SOUTHEND (0502) 63434

FANTASTIC! BARGAINS OF THE YEAR!

NEW FACTORY TESTED PRE-PAX. ALL PERFECT BUT UNMARKED

<table>
<thead>
<tr>
<th>DOSES</th>
<th>PRICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1/10</td>
</tr>
<tr>
<td>50</td>
<td>1/10</td>
</tr>
</tbody>
</table>

Genuine Transistors NOT Remarks

<table>
<thead>
<tr>
<th>OC45</th>
<th>BF Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC44</td>
<td>Osc. Transistor</td>
</tr>
<tr>
<td>OC36</td>
<td>Power Transistor</td>
</tr>
</tbody>
</table>

ELECTRO-MAGNETIC RELAYS AVAILABLE FROM STOCK OR SUPPLIED TO SPECIFICATION

WE CAN SUPPLY RELAYS SUITABLE FOR NUMEROUS ELECTRONIC PROJECTS - TIMERS • ELECTRONIC ORGANS • ALARM SYSTEMS, etc., etc.

Also available: Electro Magnetic Counters, Key Switches, High Speed Relays, A.C. Relays, etc.

Send us details of your requirements

JACK DAVIS (RELAYS) LTD.
(Dept. PE), 9/10 Mallow Street, London, E.C.I
Telephone: CLerkenwell 3661/2
Contractors to Govt. Departments, Services, etc.

TWO COMPUTERS

Two kinds of computers—analogue and digital. Two different animals. Analogs are a bit like guinea pigs; you can experiment with them without having to test the real thing. Analog circuits simulate the conditions of complex mechanical or electrical systems. Digitalis are like dogs trained to cross a busy road—they need a lot of practice. You have to analyze the situation and produce a step-by-step description of the task to be performed. The digital device will then faithfully follow your instructions.

DIGI-COMP is an operating digital computer. It represents the nerve-centre of a giant electronic brain, and because it is mechanical, you can actually see how computers make decisions. The highly descriptive Instruction Manual is written with 10-year-olds in mind. It offers many different experiments. It is organized around the basic operations of the binary arithmetic, logical problems, and the theory of games such as 'Guess the number' and 'Nim'. The 51-page descriptive Instruction Manual offers many different experiments; it is organized around the basic operations—of binary arithmetic, logical problems, and the theory of games such as 'Guess the number' and 'Nim'. The 51-page descriptive Instruction Manual offers many different experiments; it is intended for those seriously interested in the logic of computer design.

DIGI-COMP costs only £5.99 (free trade £5.99). A detailed instructions book is included.

DIGI-COMP is now available to schools. The computer can be purchased in this form for £9.99, plus VAT.

DIGI-COMP can be purchased in this form for £9.99, plus VAT. It is especially built using the technique of microcircuits, and supplied with a 12-volt battery. A complete kit can be purchased at 4s. (plus VAT). There is a 10-day return guarantee. Write for details.
HEATHKIT WORLD-FAMOUS ELECTRONIC EQUIPMENT
The Hi-Fi, Radio, Amateur Gear, Test Instruments anyone can build

Treat yourself to superb LW, MW entertainment with the

High-Performance Car Radio Kit, CR-I

Complete your motoring pleasure with this small, compact, high-performance car radio. It can be fitted to any make of car having 12 volt positive or negative earth system. Tastefully styled in neutral grey with chrome trim to harmonise with any car colour scheme.

Features include: Six-transistor, 2-diode circuit. Completely pre-assembled and aligned tuning unit. High sensitivity, combined with wide range automatic gain control (AGC), minimising fading under weak reception conditions. Easy-tune dial. Push button Long, Medium and Tone selection.

The car radio is available for your convenience, in two separate units; RF Amplifier Kit CR-IT £11.13.6 incl. P.T., IF/AF Amplifier Kit CR-IA £11.3.6.

TOTAL PRICE KIT (excluding Loudspeaker) £12.17.0 incl. P.T.

8"x5" Loudspeaker Pt. No. 401-505 £1.16.1 incl. P.T.

New! Portable Stereo Record Player, SRP-1

Automatic playing of 16, 33, 45 and 78 rpm records. All transistor—cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8" x 5" special loudspeakers. For 220-250v A.C. mains operation.

Compact, economical stereo and mono record playing for the whole family—plays anything from the Beatles to Bartok. All solid state circuitry gives room filling volume.

Kit £27.15.0 incl. P.T. Assembled price on request.

Low-cost Stereo Amplifier, TS-23

Breaks the price barrier in quality Transistor Amplifier cost. Incorporates all the essential features for good quality reproduction from gramophone records, radio and other sources.

Its many features include: 3 watts rms (15st) each channel. Good frequency response for outstanding fidelity. Compact slim-line styling. Ganged BASS, TREBLE and VOL. controls. 6-position SELECTOR switch for programme sources. Attractive perspex two-tone front panel, 16 transistor, 4 diode circuit. Handsome fully-finished walnut veneered cabinet. Outputs for 8 or 15 ohm loudspeakers. Printed circuit boards. For free-standing or cabinet mounting. Size 3"13" x 8" deep.

Kit £17.15.0. Walnut veneered cabinet £2.0.0 extra.

Hi-Fi performance from a “Mini” Speaker Kit with the “AVON” BOOKSHELF SPEAKER SYSTEM

The challenge to our acoustic engineers was to design a speaker occupying the minimum space consistent with first class reproduction. The results of our efforts was this “AVON” compact unit of exceptional quality. Features: Two special speakers 6½" BASS, 3½" HF unit and crossover network. Good frequency response. Beautiful fully-finished walnut veneered cabinet, size only 7½" x 31½" x 8½" deep.

Supplied in two units. Can be built for a total price.

Kit £13.16.0 incl. P.T.

NEW! Transistorised AM-FM Stereo Tuner

Comprising: Model AFM-2T RF Tuning Unit.

Kit £17.17.6 including P.T. AFM-2A IF Amp. and power supply kit £24.9.6. TOTAL PRICE KIT £32.7.0 incl. P.T. Cabinet £5.0 extra.

Many other models in wide range.

Prices quoted are Mail Order, Retail Prices slightly higher.

Full specification sheets of any model available upon request.

FREE! 32 page Catalogue

SEND COUPON FOR YOUR COPY NOW!

Over 150 models: Hi-Fi, Audio Speaker systems, Intercom, PA Guitar amplifiers, Amateur Radio, Educational, Transistor radios, Test and service instruments. Many shown in full colour.

To:-
DAYSTROM LTD., Dept. P.E.8
GLOUCESTER, ENGLAND. Tel.: Glos. 20217

Please send me FREE British Heathkit Catalogue

further details of model(s).

NAME: ____________________________

ADDRESS: ________________________

MOST MODELS CAN BE SEEN AND DEMONSTRATED AT THE LONDON HEATHKIT CENTRE. 233 Tottenham Court Road, W.1 Tel: 01-636 7349. Retail and Mail Order purchase can be made there.
3 to 4 WATT AMPLIFIER
3-4 watt Amplifier, built and tested. Chassis size 7 x 3 x 1 in. Separate bass, treble and volume control. Double wound mains transformer, metal rectifier and output transformer for 3 ohms speaker. Valves ECC81 and 6x6. £2.50 plus 5/6 P. & P. The above in Kit Form. £1.14.6 plus 5/6 P. & P.

NEW Transistorised SIGNAL GENERATOR
Size 51 x 31 x 11. For 1F and RF alignment and AF output. 700 c/s frequency coverage 460 Kc/s to 2 Mc/s in switched frequencies. Ideal for alignment on our Elegante Seven and Musette. Built and tested. 39/6. P. & P. 3/6.

TRANSISTOR INVERTOR
50V. D.C. Input. Output 240 v. A.C. 40 watts incorporating transformers, choke, condensers and 2 Mullard OC28 in solid 16 gauge Aluminium Case. Size 15 x 6 x 2 1/2" by famous manufacturers. 19/6 plus 7/- P. & P.

40W FLUORESCENT LIGHT KIT

Special offer
ELEGANT SEVEN mk IIa
SPECIAL OFFER. Power supply kit to purchasers of "Elegant Seven" parts, incorporating mains transformer, rectifier and smoothing condenser, A.C. mains 200-250 volts. Output 9v. 100 mA. 7/6 extra.

Buy yourself an easy to build transistor radio and save at least £10.0.0. Now you can build this superb 7 transistor superhet radio for under £4.10.0. No one else can offer such a fantastic radio with so many de luxe star features.

* De luxe grey wooden cabinet size 13 x 8 x 3 1/2".
* Horizontal easy to read tuning scaled printed grey with black letters, size 11 x 3/4".
* High Q ferrite rod aerial.
* I.F. neutralisation on each separate stage.
* D.C. coupled push pull output start with separate A.C. negative feedback.
* Room filling output 350mW.
* Ready etched and drilled printed circuit board back printed for foolproof construction.
* Fully comprehensive instructions and point to point wiring diagrams.
* Car aerial socket.
* Built and tested. Size 17 x 7 x 5 1/2" in deep.

8-VALVE STEREO RADIOGRAM CHASSIS
Superb new 8-valve chassis covering long, medium and short waves on AM, also VHF transmissions on FM. AM circuit's high sensitivity permits internal aerial for most stations. Well-known German tuning heart in separate FM input. Tone and volume controls. Extra large illuminated dial. External AM and FM aerial inputs. Gram pic-up socket. Standard 3 ohm speaker. 200/250 volts A.C.

Size 17 x 7 x 5 1/2 in deep.

Type E MOTOR
Small A.C. mains motor 230/250 volts complete with gearbox, 6 r.p.m. Price 15/- plus 4/- P. & P.

Power Supply Kit
A.C. MAINS 200-250 V
Incorporating "C" core type mains transformer, full wave metal rectification and smoothing condenser. Smooth output 250 volts 250 mA and 63v. 4 amp. for Heaters. 25/- P. & P. 9/6.

GEC DOORBELL
Complete with mains transformer 240v A.C and bell push. Price 12/- P. & P.

GEK KETTLE ELEMENT
3000W WITH AUTOMATIC EJECTION

Also at
323 EDGWARE ROAD, LONDON, W.2
Early closing Thursday
PERSONAL SHOPPERS ONLY
All orders by post must be sent to our Acton Address

POCKET MULTI-METER
Size 31 x 21 x 18in. Meter size 21 x 18in. Sensitivity 1000 ohms per volt both A.C. and D.C. volts. 0-15, 0-120, 0-1000. D.C. current 0-150mA. Resistance 0-100k. Complete with test probes, battery and full instructions, 43/- P. & P. 3/6. FREE GIFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket Multi-Meter

CYLDON U.H.F. TUNER
Complete with PC.88 and PC.86 Valves. Full variable tuning New and Unused. Size 41 x 31 x 11 1/2". Complete with circuit diagram. 35/- plus 3/6 P. & P.

RADIO AND T.V. COMPONENTS (ACTON) LTD.
21D HIGH STREET, ACTON, LONDON, W.3
Shop hours 9 a.m. to 6 p.m. Early closing Wednesday. Goods not despatched outside U.K.

All enquiries stamped addressed envelope. Terms C.W.O.
You'll find it easy to learn with this outstandingly successful new pictorial method—the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate cartoon-type drawing.

The books are based on the latest research into simplified learning techniques. The has proved that the Pictorial Approach to learning is the quickest and soundest way of gaining mastery over these subjects.

TO SELRAG BOOK CO.
60 HAYES HILL, HAYES, BROMLEY, KENT

Please send me Without Obligation to Purchase, one of the above sets on 7 Days Free Trial. I will either return set, carriage paid, in good condition within 7 days or send the following amounts. Basic Electricity 70/- Cash price or Down Payment of 15/- followed by 4 fortnightly payments of 15/- each. Basic Electronics 82/- Cash Price or Down Payment of 15/- followed by 2 fortnightly payments of 15/- each. This offer applies to U.K. only. Overseas customers cash with order.

Tick set required (only ONE set allowed on free trial)

Basic Electricity 70/-
Basic Electronics 82/-
Basic Electronic Circuits 40/-
Basic Industrial Electricity 40/-
Basic Synchros & Servomechanisms 38/-
Basic Television Part 1 22/

Signature

NAME

FULL POSTAL ADDRESS

YUICAN

Get these AIR DRYING GREY or BLACK WRINKLE (CRACKLE) Finishes

Yukan Aerosol spray kits contains 16 ozs. fine quality durable easy instant spray. No stove baking required. Hammers available in grey, blue, gold, bronze. Modern Eggshell Black Wrinkle (Crackle) all at 14/11 at our counter or 15/11 carriage paid, per push-button self-spray can. Also Durable, heat and water resistant Black Matt finish (12 ozs. self-spray cans only) 13/11 carriage paid.

SPECIAL OFFER! Can plus optional transferable snap-on trigger handle (value 5/-) for 18/11 carriage paid. Choice of 13 self-spray plain colours and primer (motor car quality) also available.

Please enclose cheque or P.O. for total amount to:

Zener Diodes
Comprehensive range 3V to 50V in three power ratings 1%, 3Amp, 300mW 1/4 inch 1W ker-
exch. 7W 7/8 each.

S.R.'S (Thyristors)

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4701</td>
<td>1/2</td>
<td>1/4</td>
<td>3/8</td>
</tr>
<tr>
<td>1N4702</td>
<td>1/4</td>
<td>3/8</td>
<td>1-</td>
</tr>
<tr>
<td>1N4703</td>
<td>1-</td>
<td>1-</td>
<td>1-</td>
</tr>
<tr>
<td>1N4704</td>
<td>1-</td>
<td>1-</td>
<td>1-</td>
</tr>
<tr>
<td>1N4705</td>
<td>1-</td>
<td>1-</td>
<td>1-</td>
</tr>
<tr>
<td>1N4706</td>
<td>1-</td>
<td>1-</td>
<td>1-</td>
</tr>
</tbody>
</table>

Semi-conductor Bargains

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1748</td>
<td>10/</td>
<td>15/</td>
<td>20/</td>
</tr>
<tr>
<td>2N1747</td>
<td>15/</td>
<td>20/</td>
<td>25/</td>
</tr>
<tr>
<td>2N1746</td>
<td>20/</td>
<td>25/</td>
<td>30/</td>
</tr>
<tr>
<td>2N1745</td>
<td>25/</td>
<td>30/</td>
<td>35/</td>
</tr>
</tbody>
</table>

Drill Controller
Electronically changes speed from approxi-
ately 10 revs. to max. Full pull at all speeds
by fingertip control. Kit includes all parts,
complete with full instructions. 18½ plus 2/6
post and insurance.

750 mW Transistor Amplifier
A transistorised 4 stage amplifier, making
a 250 mW output. This enables one to
obtain 45? power from 2 batteries, with
7/6 each.

Comprehensive range 9V to 50V in three power
ratings 1%, 3Amp, 250 mW 1/4 inch 1W ker-
exch. 7W 7/8 each.

Ex-WD Bargain
rebuildable to short wave radio

This is the 46 Receiver/Transmitter. It has a
range of appx. 2 miles. Operates from
batteries. Complete with six valves and
in metal case. Size approx. 12½ x
16 x 7½. Complete but less crystal,
not tested nor guaranteed. 19/6 plus 4/6
post and insurance. Should not be operated
as a transmitter in the 1-K.

Supertone G.C.V.

An excellent opportunity to re-equip your house or
workshop, or if you are a contractor to restock for future rig jobs. We offer 15 GEC
switch socket. bakelite flush mounting or Bakelite surface mounting.

It's its normal function.- accessories include:

- Audio Switch
- W.C. Switch and Tuning Condenser.
- Printed circuit board all wired only connection., e.g. to Volume control-
output-A.V.C. and feed back, etc.
- Mains transistor Power Pack

Mains motor
Made by Garrard for their best models. Aluminium
balanced, size 2½ x 2½. Suitable for
150/200 240 V working by re-arrang-
ing lead terminals. 12½-
exch. P. & 6/-

Mains Transistor Power Pack
Designed to operate transistor receivers. Adjustable output 6 V, 9 V, 12 volts for to 500
miles (class B working) makes the picture clean of
the following batteries: P21, P24, P34, P77, P77 and others.
Kit supplies transistor, smoothing and load resistance.

Ganged Pots
Standard in size and with good length of spindle made by
Morganite. List price is 10/- each but if you order more than
25, you can have them at 8/- each (if 2 or less than
25). Following values in stock-all "lin." -

100: 100 100 100
500: 500 500 500

P33 Eliminator—pay your pocket radio from the mains! Save an.
Supertone complete kit comprises 4 receivers—mains drop-in
transistor. Insurance and instructions. Only 6/6 plus 1/- post and insurance.

Panel Lamp Bargain
An assortment of radio panels, all made by the
famous Phillips company. Their cost if bought retail explains why we
are offering this for 15/- post free. Panel comprises 26 x 6 9 V, 0, 0, 10 x 12 V, 0, 1 A, 0, 15 -
6.9 V. All M.E.S. cap.

Snipscope
An infra-red detector for those who are interested in
infra-red image con

SNIPERSCOPE

Audio Switch
Want to open your garage door with a foot? Or close your
curtains with a whistle? Or make anything obey
your command? Then you need an Audio Switch. We offer com-
plete units with 5 transistors and 3 relays.

Automatic Time Switch
By Hurseal
12 hour, 10 A, to control heating, lighting, adding an economical price
4 £ 0. Limited quantity 39/6 p. & p. 3/- adds 2/9. Semi conductors add 1/2-
extra. For making 48/6 set

Electronic Croydon Limited
(Dept. P.E.) 102/3 Tamworth Rd, Croydon, Surrey (Opp. W. Croydon Stn.)
also at 266 London Road, Croydon, Surrey
The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification.

Manufactured in France
British Patents applied for

- Grain size 200, thickness 55/100 mm., both faces diamonded. For quick size identification
- As insulation
- handle
- With contacts is achieved by a cause density is controlled
- The "Diacrom"

DIACROM SPATULA
individually cleaned, because only one face of the spatula is abrasive.

T.V. TURRET
P. & P. 7/6.

PAPER CONDENSERS
0-000uf. .500V. 0.0005uf. .750V. 0.001uf. .500V. 0.005uf. .350V. 0.01uf. .150V. 0.02uf. .250V. 0.05uf. .650V. 0.1uf. .18V. 0.5uf. .2.5V. 1uf. ..4V. 2.5uf. .8V. 10uf. 25V. 25uf. ..12V. 100uf. 75V. 200uf. 150V. 470uf. 350V. 1000uf. 500V.

All at 1/- each; 9/- per dozen. Mixed packet (our selection) 20 for 10/-.

SPECIAL PRODUCTS (DISTRIBUTORS) LTD.
81 Piccadilly, London, W.1. Phone: (01) 629 9556

As supplied to the War Office, U.K.A.E.A., Electricity Generating Boards, British Railways and other public authorities; also to leading electronic and industrial users throughout the United Kingdom.

17 in. TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS £11.10.0

FREE ILLUSTRATED LIST

1 star Guarantee ★ Tube ★ Valves ★ Components Channels for all areas Insured Carriage 30/-

17" - 19" - 21" - 23"

A wide range of sizes, models and prices.

Demonstrations daily

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone: 01-478 6001-2-3.
Stamp for Free List.

ELECTROLYTIC CONDENSERS

0-25uf. .3V. 0.6uf. .5V. 16uf. .150V. 100uf. .3V.
0.1uf. .10V. 0.4uf. .12V. 20uf. .3V. 100uf. .6V.
0.01uf. .15V. 0.4uf. .10V. 25uf. .1V. 100uf. .12V.
0.001uf. .25V. 0.1uf. .25V. 50uf. .6V. 100uf. .12V.
0.7uf. .15V. 10uf. .3V. 100uf. .3V. 1000uf. .12V.

All at 1/- each, 9/- per dozen. Mixed packet (our selection) 20 for 10/-.

0-200uf. 1/200th watt resistors, LI per 1,000.
4- watt to 3 watt mixed values and types, 10/- for 100, 55/- per 1,000.

PAPER CONDENSERS
0-001uf. .500V. 0.0005uf. .750V. 0.001uf. .500V. 0.005uf. .350V. 0.01uf. .150V. 0.02uf. .250V. 0.05uf. .650V. 0.1uf. .18V. 0.5uf. .2.5V. 1uf. ..4V. 2.5uf. .8V. 10uf. 25V. 25uf. ..12V. 100uf. 75V. 200uf. 150V. 470uf. 350V. 1000uf. 500V.

All at 1/- per 100, or mixed packet (our selection) 50 for 10/-.

VERY SPECIAL VALUE! SILVER MICA, POLYSTYRENE, CONICAL CAPACITORS

Very well assorted.

MIXED EDISIPS (Price in each envelope)

PACKAGE 1. 1 uf... 150V. 2 uf... 350V. 3 uf... 1.5V. 5 uf... 3.5V. 10 uf... 7V. 25 uf... 12V. 100 uf... 35V. 250 uf... 100V. 1 muf... 400V. 10 muf... 1KV. 100 muf... 10KV. 1 mfuf... 50KV.

All at 1/- each, 9/- for 50, or 1/- for 100.
PRACTICAL! VISUAL! EXCITING!

a new 4-way method of mastering ELECTRONICS
by doing — and — seeing . . .

1. OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2. BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3. READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4. CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW
for BROCHURE
or write if you prefer not to cut page

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

NAME ..
ADDRESS ...

564
NEW ROLES IN MICROELECTRONIC INDUSTRY

The likely impact of microelectronic techniques upon future product developments has excited much attention. Complex data processing systems and control equipments for industry; desk top calculators for the office; hi-fi equipment and automatic washing machines for the home—these are just some of the diverse applications where, it is said, integrated circuits are bound to have an important influence.

No one will doubt that the improved products made possible by the new techniques will bring about many profound changes in everyday life, in one way or another. What is perhaps less generally appreciated is the "revolution" the electronic industry itself faces due to this large scale movement from discrete components to integrated circuits.

There seem to be two major "domestic" problems created by the microelectronic era: one concerns the function of the manufacturers, and the other the function of their design staff.

Some companies which previously manufactured discrete components only are now producing thin film circuits or semiconductor chips. This means they are in reality assuming the role of circuit designer. Their old customers, the electronic equipment manufacturers, may therefore find themselves relegated in part to the role of assemblers of someone else's circuit blocks. In an attempt to prevent this, some equipment firms are setting up their own integrated circuit production units. It is thus obvious that the once fairly clear-cut distinction between component manufacturer and equipment manufacturer will cease to exist in the future.

The second problem we have referred to concerns the role of the design engineer.

It has been suggested by some authorities that design engineers will be eventually classified as "device" men, or "systems" men. Only one in about ten (it is suggested) will be required in the first category, which involves circuit design; the great majority will find employment as systems designers, and to them the integrated circuit will be merely a "black box". This latter role is of course comparable with that of the computer engineer.

Yes, major changes are on the way. But in this latest technological revolution the repercussions will (in their own way) be no less dramatic and far-reaching for the innovators, than for the users of the finished electronic equipment.
WHY MINIATURISE?

Why is it necessary, or desirable, to aim at smaller and smaller components and circuits? The answer is not quite as simple as might appear at first sight. It is obviously desirable to have small, compact units when building vast complex electronic equipments, but this is not the end of the story.

As modern computers get faster in their speeds of operation, engineers now find that they are not so limited by switching speeds of circuits themselves, but by the distance signals have to travel down wires. (The speed at which an electrical signal passes down a wire is approximately \(3 \times 10^{10}\) cm per second—the speed of light.) If we were to consider the typical case of a wire 100 cm in length, the time for a signal to travel from one end to the other would be approximately 3 nanoseconds.

There are already in existence circuits with switching speeds faster than this; therefore, the actual wiring length of a computer complex could be a serious limiting factor to the computer’s speed of operation. The only way to overcome this problem is to keep interconnection wires as short as possible, therefore the packing density of the components must be high. A second, and more down to earth point, is that by modern techniques of manufacture—which will be described later in this article—the smaller the circuit the cheaper it is to manufacture.

It is inevitable that whatever one gains on one hand one loses on the other, and microelectronics is no exception. Although it is quite possible to reduce the size of components to microscopic dimensions, it is not always possible to reduce such factors as power dissipation. The smaller and more dense circuits become, the more difficult it is to remove heat produced by the mundane effect of current passing through a component. This particular phenomenon has to be overcome by careful circuit design to keep dissipation to a minimum, wherever necessary by using special high thermal conductivity packaging to dissipate unwanted heat into the atmosphere.

Another problem which becomes highly relevant as size comes down is the effect of parasitic capacitance, and mutual inductance between components and this can only be prevented by the skill of the designer. There are many other associated problems, and some of these will be mentioned later.

THREE MAIN LINES

As has already been implied there are three main lines towards miniaturisation; these are modular circuits which are made by high density wiring of conventional (discrete) components into encapsulated units; thin film integrated circuits which are made by depositing thin layers of metal on to glass substrates to form equivalents of resistors and capacitors on a micro scale, to which more or less conventional transistors are added.

The third method, and perhaps that which is most likely to provide devices on the work bench of the amateur (from the cost point of view) is the integrated circuit—sometimes called the semiconductor integrated...
A typical Elliott modular circuit with discrete components

Thin film version of an Elliott logic circuit shown in its manufacturing stages

Semiconductor integrated circuit (112mm square) compared with a silicon planar transistor dice (right) type 2N1613 made by SGS-Fairchild

circuit, or scic—which as the name implies is made from semiconducting material such as silicon. In the early days of development these latter circuits were loosely referred to as “solid circuits”.

MODULAR CIRCUITS

Not a great deal need be said about modular circuits; they are made by wiring conventional miniature components on to printed circuit board—sometimes highly sophisticated wiring systems are used—and when completed with suitable lead out wires, or tags the completed circuits are potted in epoxy resin such as Araldite, or Bondaglass.

It is usually impracticable to contemplate repairing such circuits, and therefore it is essential that basic designs are well within the tolerances and ratings of the individual components.

GLOSSARY

A short Glossary of terms commonly used with reference to Thin Film, and Semiconductor Integrated Circuits.

Active component—A device providing gain to a circuit, e.g. a transistor.

Angstrom (Å)—Unit of length equal to 10⁻¹⁰cm.

Base width—The distance between the emitter and collector regions of a transistor. The narrower the base width the higher the gain of the device, but the more difficult it is to control. Base width is typically 0.5 to 1.5 micron for a planar transistor.

Bipolar—Containing npn or pnp junctions as distinct from field effect devices.

Bonding

Wire bonding—The connection of very fine gold or aluminium wires to the contact areas of circuits, thence to the lead out terminals of the package. It can be carried out by soldering in thin film circuits, but more commonly by thermal compression, or ultrasonic welding techniques.

Dice bonding—Attaching the dice, or chip, which contains the circuit, to the platform of the package which is to hold the circuit. This process is always carried out before wire bonding commences.

Bonding pads—Small areas—typically gold for thin film circuits, but aluminium for semiconductor integrated circuits—to which the fine lead out wires can be connected by wire bonding methods.

Buried layer—A region below an epitaxially deposited growth which is heavily doped, and therefore of very low resistivity. It can be used as a basis for isolation, or more commonly as a shunt to the collector of a transistor to reduce the internal voltage drop, or saturation voltage, of the transistor.

Cermet—A combination of ceramic and metallic powders used in making thin or thick film resistors.

Charge storage—The effect whereby any pn junction can act as a capacitor—the depletion layer acting as a dielectric.

Chip (or dice)—A small piece of silicon, usually no more than 2mm square which contains all the elements of the circuit.

Depletion layer—The crossover region where p material merges into n material (commonly known as a junction). The region is low in holes or electrons due to the cancelling effect, and therefore is high in resistivity. This area causes the capacitance effect of pn junctions.

D.C. injection electroluminescence—The production of light from a junction in a semiconductor by the injection of minority carriers by a steady field.

Diffusion

Base emitter diffusion—The process of introducing an impurity or dopant into silicon by the natural migration of atoms of the dopant under the action of heat. By controlling the time and temperature of a diffusion, the depth of penetration can be very accurately controlled.

Isolation diffusion—The diffusion of channels of say p-type dopant into n-type silicon which if electrically biased in a reverse direction will isolate the silicon on both sides of the channel. This process is usually carried out in conjunction with a buried layer.

Discrete components—Conventional components with individual lead wires as opposed to integrated components.
Dopant—A material which, when added to a semi-conducting material such as silicon, will provide either free electrons or free holes (depending on whether it is an n or a p-type dopant). Common n-type dopants are arsenic, antimony, and phosphorus, while the most used p-type dopant is boron.

Dual in-line package—A very popular form of package for integrated circuits. It gets its name from the fact that there are two rows of outlet leads separated by 0.3 in, and the leads in each row are in line and separated by 0.1 in. (Ideal for use with 0.1 in matrix perforated board.)

Etch

Selective etching—The preferential removal of one material from a sandwich structure without affecting any other material, effected by careful selection of chemicals or acids.

Fan in—The number of inputs a logic gate can handle.

Fan out—The number of stages a logic gate can drive.

Flat pack—A very compact form of encapsulation for integrated circuits. There are various types of flat pack, but a typical example is a square, and approximately 0.1 in square. The lead-outs are in the same plane as the package, and are designed for welding into a circuit.

Flip chip—A piece of silicon containing perhaps a transistor, a diode, or a resistor, or any combination, which may be inverted and then bonded into a circuit (sometimes directly to printed circuit board) without any encapsulation or wire bonds. These chips usually have solder dipped bonding pads, and the chips are fixed to a well fluxed circuit board merely by the flux. Sometimes aluminium contacts are used, and in this case ultrasonic bonding is used.

Header—The part of a metal can to which a dice is bonded. This header usually forms part of the final package, and usually carries the lead-out wires.

Hybrid integrated circuit—A complex circuit made (in microelectronics) by the joint use of semiconductor integrated circuits together with thin film circuits. The integrated circuits may sometimes be in the form of flip chips.

Integrated circuit (IC)—A term often referred to as a small circuit which is made up of components encapsulated in a single package. Strictly speaking, modular or thin film circuits are integrated, but the term is becoming more and more used specifically for semiconductor integrated circuits of the monolithic type.

Isolation

Dielectric isolation—The use of non-conducting materials, typically silicon dioxide, to prevent electrical conduction from one portion, or component of an integrated circuit to another.

Diode isolation—Using the high reverse resistance effect of pn junctions to limit conductivity between neighbouring areas of an integrated circuit.

Epitaxial isolation—This is the same as diode isolation except that the pn junction is formed at the boundary between the epitaxial layer and the substrate.

Resistive isolation—Making use of high resistivity (containing low dopant concentrations) silicon to limit conductivity.

Junction—The region between p- and n-type material which is deficient in current carriers (holes or electrons) and has rectifying properties.

(To Be Continued)

THIN FILM CIRCUITS

Thin film circuits are one step removed from conventional component circuits in that passive circuit components such as resistors, capacitors, interconnections, and sometimes inductors are actually fabricated in the process of making the circuit. The components are made by the process of vacuum evaporation, or sublimation of materials such as gold for conductors, nickel chromium alloy for resistors, and aluminium for the electrodes of capacitors with silicon dioxide, or monoxide as dielectric material.

VACUUM EVAPORATION

Any material has associated with it what is called a vapour pressure. This vapour pressure is caused by atoms of the material leaving the solid or liquid to go into the vapour in much the same way as "steam" can be seen over puddles on a hot day, even though the water in the puddle may not be boiling.

The number of atoms which escape from the material depend on the temperature and the pressure of the atmosphere around it; the lower the pressure the more easily atoms can escape. This effect is well known to climbers who have had the difficult experience of boiling an egg at high altitudes without the help of a pressure cooker. The water molecules in the latter case leave the liquid so easily that it is unnecessary to heat water to such a high temperature to get it boiling, and consequently the egg never cooks.

If an artificially low pressure is produced such as that in a vacuum bell jar (see Fig. 1) it is possible to boil certain metals at comparatively low temperatures. It is this principle which is used to form the thin films of metal from which thin film circuits are fabricated.

When a piece of metal such as gold is heated in a vacuum, the atoms of gold leave the heated source and move off in straight lines in all directions from the source. If the vacuum is as near perfect as possible, and there are no foreign atoms present in the space around the source, the gold atoms will travel on until they reach the cool wall of the vacuum chamber, where they condense and build up a thin layer of solid gold.

Fig. 1. Schematic diagram of an evaporation chamber
If a shaped mask is held between the source and the wall of the chamber, it will act rather like a stencil, and will reproduce its shape as a shadow pattern in the gold.

INTERCONNECTION PATTERNS

If we were to introduce a stencil with patterns cut in it to represent the connection patterns of a printed circuit, the gold would pass through the cut-out areas and faithfully reproduce this pattern either on the wall of the chamber, or better still on a "substrate" of glass or similar material, which would take the place of the insulating backing of a conventional printed circuit board. As gold is a very good conductor of electricity we would, by this method, build up a useful set of interconnection patterns.

![Cross-section of thin film components](image)

Fig. 2. Cross-section of thin film components

(a) Capacitor
(b) Resistor and interconnections
(c) Inductor

These six pictures show stage-by-stage process of making an S.T.C. thin film circuit by stencil mask.
In actual practice this method has to be slightly modified as gold by itself does not adhere particularly well to glass, and therefore most manufacturers carry out an intermediate process of depositing chromium, or nickel chromium, which bonds well to glass, and will accept gold as a secondary deposit (see Fig. 2).

All materials, even gold, have certain specific resistances; these are sometimes called bulk resistivities and are constant for any particular material irrespective of its shape. This resistivity by itself does not determine the actual resistance of a piece of metal unless the dimensions of the metal are taken into account. For a given resistivity, the resistance of a material is directly proportional to its length, and inversely proportional to the area of cross section through which the current flows.

EXTREMELY THIN LAYERS

The process of vacuum deposition is capable of producing extremely thin layers of material quite often as little as 75 Ångstrom units, or \(\frac{75}{10^{-8}} \) cm, of the wavelength of visible light. An Ångstrom is a unit of length used to define extremely short distances; 1 Ångstrom is equal to \(10^{-8} \) cm.

The thinness of these layers limits the effective cross-sectional area, and hence the current flow path, quite considerably. By careful choice of film thickness and materials one can generate either reasonably high conductive areas, e.g. with gold, or high resistance areas with nickel chromium alloys.

Using sequential evaporation of different materials through different stencil masks it is therefore comparatively easy to build up networks of conductors and resistors. Naturally there are some limitations to the values of resistance one can produce by this method, but generally speaking short wide areas of resistive material can produce values as low as 10 ohms, and long narrow paths, which can sometimes meander or zig-zag, will give values up to 1 megohm.

As gold can be soldered very easily it is possible to attach conventional miniature components to these circuits to cover values which are not readily made by thin film methods. Although this is possible most manufacturers prefer not to adopt this practice as it is not an easy operation, and can add considerably to the cost of a circuit.

PHOTOLITHOGRAPHY

An alternative method of producing conductor and resistor patterns is by a process called photolithography. This process is used in the printing world as a method for etching patterns into metal plates from which photographs and drawings could be printed. It is now an extremely common process in the electronics industry both for making printed circuits, and perhaps more so in the production of microcircuits.

There are several plastics materials available which undergo a change called polymerisation when subjected to ultraviolet light. These materials are called photo-resists. Polymerisation causes the plastics to harden, and usually tends to make it less soluble in certain solvents.

A glass substrate coated entirely in a thin layer of gold, is coated with a layer of photo-resist, either by brushing or spraying (see Fig. 3). It can then be exposed through a photographic negative of a conductor pattern, thus hardening the plastics over areas which would ultimately be the actual conductors. By using a suitable solvent—more commonly called a developer—the remaining “soft” material is removed from the rest of the substrate. With an etching solution, such as a mixture of iodine in potassium iodide, the unwanted gold areas are etched away leaving the conductor pattern.

This process is very often used to produce extremely fine patterns both for conductors and resistors and is usually called upon to produce higher values or tighter tolerances in resistors. Naturally, different etchants would be required for different materials. As the actual values and tolerances of the final resistors are directly proportional to the dimensions of the photographic image, it is very important that great care is taken in producing the negatives.

SCALED-UP PATTERN

As the types of microcircuit described here rarely exceed dimensions of 1 in x \(\frac{1}{4} \) in, all original design work is carried out many times life size, and photographic methods are used to reduce the size to the final requirements.

The designer of thin film circuits would need to calculate the dimensions of the resistors he requires knowing the resistivity, and thickness of the nickel chromium film to be used. He would then make a rough sketch (to scale) of the layout of these components and their interconnection patterns in exactly the same way as would a printed circuit designer.

When the dimensioned sketch is finished a special table, called an x-y co-ordinatograph is used to transfer the patterns, sometimes 20 or 30 times life size, on to a material called “cut and peel” film. This film has a tough base of transparent plastics, with a thin film of red plastics on its surface.

By using special cutters on the table it is possible to cut through the thin red film without damaging the underlying plastic base; after cutting round the required areas the unwanted red film can be stripped from the base material. The finished scaled pattern of the final circuit connections is left behind in red on a clear background.

The film is illuminated from the rear, and a special camera is used to reduce the pattern to the required size on to a high-contrast photographic plate. Sometimes the same camera can be used to step and repeat...
The "Investigator" oscilloscope is simple in design and construction, so very little description is necessary. Last month the complete circuit was given with a description of each stage and its function.

Also included were drilling diagrams for the front and back panels. This month the rest of the constructional details are followed by a simple setting up procedure.

MECHANICAL ASSEMBLY

As many constructors do not possess the metal working machinery normally to be found in industrial workshops, the metal work used in this unit is kept simple. Possibly the top cover is the only piece that may prove to offer some difficulty when finally coming to the bending operation.

The main frame consists of six pieces of material: the four side struts are made from ½in square aluminium or steel each 9½in long; the end pieces form the front and rear panels (Figs. 2 and 3 last month) of the oscilloscope which are screwed to the struts. To this structure the rest of the metalwork and component board may be screwed thus forming a very rigid assembly.

The tube mounting plate again has only one simple bend and is screwed to the top struts of the main structure. This has been made adjustable by putting slots in the plate so that the plane of the tube can be orientated.

The tube is held in two places. A piece of 3in bore aluminium tubing is fixed to the front panel and is lined with foam rubber to cushion the tube screen end. The tube mounting plate is fitted with a large capacitor clip to hold the base end which is also adjustable.

The cover consists of two sections, one being the base plate which is just a simple rectangular piece of 20 s.w.g. aluminium to which is screwed a handle. This handle is not only used for carrying but also inclines the instrument on the bench so that viewing is more comfortable.

Another piece of large aluminium tubing was polished and used as a permanent viewing hood although the two pieces can be combined as one which is passed through the large hole in the front panel. This may be glued in position with Araldite. The final frame and panel assembly is shown in Fig. 4.

MAIN CHASSIS WIRING

After the main frame has been assembled with the front and rear panels, the components should be assembled on the panels and wired completely according to Figs. 5 and 6. This is possibly the longest job and great care should be taken in checking this wiring assembly before any further assembly takes place.

Text continued on page 574
Fig. 5. Component layout and wiring of front panel
Fig. 6. Component layout and wiring of back panel
In order to check wiring and voltages at a later stage, it will be an advantage to wire the respective h.t. lines in different colours to save having to trace wiring round the cable harness.

POWER BOARD

The power supply unit is simply mounted on the rear panel, being held off by two pillars and contains the e.h.t. supply components. Great care should be taken when delving around this section after the instrument has been switched on as the voltage present is somewhere in the order of 800 V relative to chassis. Even when the supply is switched off the capacitors C31 and C32 may still be charged to a high voltage.

The physical size of the 50 + 50µF capacitors should be kept as small as possible to clear the c.r.t. fixing bracket.

MAIN AMPLIFIER

This amplifier is fitted to the bottom struts of the oscilloscope; the base plate of the case has been made removable so that it is easy to check the underside wiring during the setting-up procedure (Figs. 7 and 8).

As this board is only held on its extreme edges, care must be taken when inserting the valves so that the board is not fractured by too much pressure in pushing the valves home.

As there are one or two adjustments to be made to potentiometers at a later stage, it may be advisable to drill through the board in the appropriate places so that adjustment may be made from the underside.

FINISHING NOTES

Great care must be taken when checking out the wiring as any error could be detrimental not only to the tube but to the valves and rectifiers, if shorts or incorrect supply voltages appear at various points. Test voltages were given on the circuit diagram (Fig. 1) last month. When clamping the tube base, too much pressure must not be brought to bear on the base itself otherwise fracturing of the tube could ensue.

The front panel was finished in a light coloured cellulose spray paint; it is best to do this and allow to dry before assembling components on it. The whole
of the casing can be sprayed in blue hammer finish paint obtained from Messrs. Yucan or Finnigan Speciality Paints (as advertised).

A graticule can be made to slide down the viewing hood so that instant reference may be made to this grid when measuring voltage levels. The graticule consists of a clear piece of Perspex cut to fit the hood and then scribed at accurate 1cm spacings from the centre X and Y axes.

Once a groove has been cut in the Perspex a black wax crayon is rubbed across the surface on the side that has been scribed; very clear black lines will show up when the surplus wax has been cleaned off. Intermediate millimetre markings can be similarly scribed on the centre X and Y axes.

SETTING-UP PROCEDURE

Y calibration

The oscilloscope should be switched on by advancing the brilliance control in a clockwise direction and the instrument should be given two minutes to warm up. The X gain should be in the fully clockwise condition and the X shift control in the middle of its travel.

The brilliance and focus are now adjusted to give the required trace and the function switch S4 is set into the 1 millisecond position with the Y gain switch set at 1 volt.

After the sync control has been set to INT a 1kHz signal of 355mV r.m.s. or 1V peak-to-peak is applied to the input socket and the "set gain" control VR3 is set so that the deflection on the screen is 1cm.

Now the signal is removed, Y shift (VR1) is set to mid-position, and VR2 is adjusted so that the trace centres in the Y plane.

X calibration

With the controls set in the condition indicated in the previous paragraphs and the input signal at 1kHz re-applied to the input, the fine frequency control (VR9) is set in the fully counter-clockwise condition and the X gain is adjusted so that the time base scans exactly 5cm.

The trigger control (VR5) is advanced from a fully counter clockwise condition until the waveform just locks and then VR8 is adjusted so that five complete cycles are indicated on the screen. This shows that 1kHz covers one centimetre, that is to say that the time base is running at a speed of 1 millisecond.

This accuracy can be checked by switching to the 100 microsecond range and increasing the input signal frequency to 10kHz; once again five complete cycles should be seen.

If the components in the time base stage are kept to a reasonably close tolerance then it is possible to check the frequency of incoming signals quite accurately. It is essential when trying to ascertain the frequency of an incoming signal that the fine frequency control is in the fully counter-clockwise condition.
By A.T.J. CARRINGTON

PART TWO

THE relay, being a two state device, can be used as a memory cell. In fact a complete computer, logic circuits, arithmetic unit, registers, etc. can be built using only relays, although their comparatively slow speed and their considerable power requirements make such a project impracticable. However, the “memory” function can be put to good use in many circuits where it is desired that the relay remains closed after the cessation of the operate pulse.

This property is known as “latching” the relay, i.e. it stays closed when the operating current ceases.

A relay may be latched in several ways. Fig. 16 shows how a pair of make contacts is used to connect the coil to the supply after the operate pulse has ceased. So closing switch S1 energises the relay, when the contacts close, the circuit is completed through S2. When S1 is opened, the relay remains energised, only becoming de-energised when S2 is opened.

LATCHING A RELAY WITHOUT USING CONTACTS

In order to avoid using a special pair of contacts just for latching, the circuit shown in Fig. 17 may be used.

Here advantage is taken of the fact that the “hold-in” current is less than the “pull-in” current.

The value of the resistor R is chosen so that insufficient current flows through R and RLA to close the relay, but sufficient to hold it in when it has been closed by S1. Again opening S2 will release RLB.

Several relays may be latched in this manner and released by a common “unlatching” switch, S4 in Fig. 18.

In this circuit the respective relay will latch by closing S1, S2, or S3, but all can be unlatched simultaneously by opening S4.
INCREASE YOUR KNOWLEDGE

ICS

CHOOSE THE RIGHT COURSE FROM
RADIO AND TELEVISION ENGINEERING,
INDUSTRIAL TELEVISION, RADIO AND
TELEVISION SERVICING, ELECTRONICS,
COMPUTERS AND PROGRAMMING,
ELECTRONIC TECHNICIANS, SERVOMECH-
ANISMS, TELEMETRY, CLOSED CIRCUIT TV,
INSTRUMENTATION, AND PRINCIPLES OF
AUTOMATION.

ALSO EXAMINATION COURSES FOR:
Inst. of Electronic and Radio Engineers
C. & G. Telecommunication Techns', Cert.
C. & G. Supplementary Studies
P.M.G. Certificates.
Radio Amateurs' Exam.

LEARN AS YOU BUILD
Practical Radio Courses: Gain a sound knowledge of Radio
as you build YOUR OWN 5-valve superhet Receiver and
Transistor, Portable Signal Generator and High Quality
Multimeter. At the end of the course you have valuable
practical equipment and a fund of personal knowledge and skill.
ICS Practical Radio Courses open a new world to the keen
amateur.

THERE IS AN ICS COURSE FOR YOU

Whether you need a basic grounding, tuition to complete
your technical qualifications, or further specialized
knowledge, ICS can help you with a course individually
adapted to your requirements.

There is a place for you among the fully-trained men.
They are the highly paid men—the men of the future.
If you want to get to the top, or to succeed in your own
business, put your technical training in our experienced
hands.

ICS Courses are written in clear, simple and direct language,
fully illustrated and specially edited to facilitate individual
home study. You will learn in the comfort of your own
home—at your own speed. The unique ICS teaching
method embodies the teacher in the text; it combines
expert practical experience with clearly explained theoretical
training. Let ICS help you to develop your ambitions
and ensure a successful future. Invest in your own
capabilities.

FILL IN AND POST THIS COUPON TODAY

You will receive the FREE ICS Prospectus listing the examinations
and ICS technical courses in radio, television and electronics.
PLUS details of over 150 specialised subjects.

PLEASE SEND FREE BOOK ON

NAME

ADDRESS

OCCUPATION...........AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 150, INTERTEXT HOUSE, PARKGATE ROAD, London, SW11
8/67
QUALITY RECORD PLAYER AMPLIFIER Mk. II
A top-quality record player amplifier employing heavy duty double wound mains transformer, ECC83, ECC82 valves. Separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker.

DE LUXE PORTABLE R/F CABINET
Unrest motor board size 14in. x 12in. clearance 2in. below, 31in. high with special amplifier and any B.S.R. or GARRARD Autotuner or Single Player Unit (except AT60 and SP25). Size 18in. x 15in. x 8in. PRICE £13.9/6. P. & P. 9/6.

STEREO AMPLIFIER
Incorporating 2 ECL86s and 1 EZ80. Heavy duty double wound mains transformer. Output 4 watts per channel into 3 ohm speakers. Full treble and volume controls. Absolutely complete.

Speciality Purchase! TURRET TUNERS
B.S.R. TU12 £7/9/6. Carr. 5/6. GARRARD 601 500 £10/19/6. Carr. 5/6. B.S.R. GUT with mains mounted output arm. £7 10 0. CARL STUART 601 500 £8 15 0. CARL STUART AT60 Mk. II. £12 0 0. All these units are complete with standard styli and also can be supplied with compatible stereo head for 12/6 extra.

Brand New CARTRIDGE BARGAIN!
ACOS GP6-1 Mono CARTRIDGE. For E.P. and L.P. Complete with stylus. ONLY 12/6. P. & P. 6/.

Brand New. 12" 15w. H/D Speakers, 3 or 15 ohm. Complete with output transformer matched for 3 ohm speaker. Complete with knobs, valves, and separate bass and treble controls are provided giving good lift and cut. Complete with knobs, valves, and separate bass and treble controls are provided giving good lift and cut. Complete with knobs, valves, and separate bass and treble controls are provided giving good lift and cut.

10/4 WATT HI-FI AMPLIFIER
A stylishly finished, monaural amplifier with an output of 11 watts, complete with 2 EL84s in push pull. Suitable for reproduction of both music and speech, with negligible hum. Separate inputs for mike and gramophone, separate inputs for mike and gramophone, separate inputs for mike and gramophone, separate inputs for mike and gramophone.

Repair Kit
Quality record player amplifier employing heavy duty double wound mains transformer, ECC83, ECC82 valves. Separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker.

Repair Kit
Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls. Complete with output transformer matched for 3 ohm speaker and separate Treble and Bass controls.

Good sound and vision F. A. PANEL
PRINTED CIRCUIT AMPLIFIER KIT Type TAI
HIGH GAIN 4 TRANSISTOR
PEAK WATTS
2.1 watts.聞き
Correspondence can be entered into regarding this and dug to the very high value we regret that no offer for only 27/6. OFFERED (less valves) AT THE BARGAIN PRICE £5 10 0. By the world famous maker. Suitable for use in conjunction with all systems, to play LP records and S.M. records. Complete with 4-speeds, Automatic Operated Record Player Units.

HARVENDOR SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W.19 CHERWOOD 3985 Open all day Saturday Early closing Wed., 1 p.m. A few minutes from South Wimbledon Tube Station. (Please write clearly) OVERSEAS P. & P. CHARGED EXTRA. S.A.E. with all enquiries
SIMPLE BURGLAR ALARM

The burglar alarm circuit (Fig. 19) incorporates a "fail-safe" facility, i.e. if a wire is cut or a contact opened the relay will drop out and remain out. RLA is fed via a closed loop consisting of the door and window operated switches S1, S2, and S3, and a make contact on RLA. When the "set" button is pressed, RLA pulls in and holds in through the n.c. contacts of the changeover set. The relay contacts change over and hold via the switches. If the closed loop is broken momentarily the relay drops out, the bell rings, and even if the loop is closed again, the relay will not pull in until the "set" button is pressed again.

THE REMANENT RELAY

Such latching circuits have two drawbacks: they consume power all the time the relay is latched; and in the event of a supply failure, they would all unlatch. Such an event could be catastrophic if the latched relays represented a number in the memory of a computing device.

To overcome these defects the "remanent" relay is used. This has a special core of highly remanent material, that is, when the magnetising current is switched off, the core retains sufficient magnetism to hold the armature in.

To unlatch this relay, a pulse of opposite polarity to the energising pulse is applied to the coil, releasing the armature and opening the "suicide" contact; the armature thus remains released. To simplify the power supply circuits, and to extend the versatility of the remanent relay, it is also available wound with two coils, called the "operate" and "release" coils.

THE TRANSISTORISED RELAY

It frequently happens that a very low power source is required to operate a relay controlling apparatus of high power. For example, a tiny contact on the pointer of a measuring instrument may have to switch in a large a.c. motor.

Normally we would have to use at least one "slave" or intermediate relay, the sensitive contact operating this "slave" relay, which in turn energises the main relay.

By using a relay in conjunction with a transistor, non-inductive loads of up to 5A at 30V d.c. or 250V a.c. can be switched directly by inputs of as low as 75 microwatts. This means that a robust relay can be used with consequent stability under conditions of vibration or mechanical shock.

Transistorised relays are available as integrated units in which the connections are brought out to a 9-pin valve base or multi-way plug and socket.

Fig. 21 shows the block diagram of a typical transistorised relay. The relay operates when the input circuit across pins 6 and 7 is closed, and approximately 4mA is drawn from a 3V supply.

When the input circuit is open, the current consumption is small enough to be ignored for practical purposes, rising to about 40mA when the relay is energised.

Mechanical latching on a P.O. 3000 type relay. The push button cable trigger is attached to the latching mechanism

(Jack Davis Relays)
Fig. 22 shows a circuit using an OC72 transistor. Here the input is energised when the input terminals are connected together, and drops out when they are disconnected. The diode D1 is included to protect the transistor from the high peak voltages which may develop when the on/off action is very fast, giving a build-up of back e.m.f. from the relay coil.

The diode should be able to carry at least the maximum current flowing through the relay, of the order of 60mA with a 100 ohm coil, and its maximum inverse voltage rating must be much greater than the supply voltage.

DELAYING A RELAY

Because a relay depends for its action on the building up and the decaying of a magnetic field, it is possible to prolong the time for which it remains operated after the energising pulse has ceased, or conversely to delay the operation of the relay by various means.

Copper slugs inserted in the core can produce operate delays up to 150ms or release delays up to 500ms, but where larger delays of the order of 300 seconds are required, the connecting of a large capacitor in parallel with the relay coil will considerably delay the release of the armature. See Fig. 23.

When S1 is closed the full supply voltage appears across RLA, which pulls in at once. At the same time capacitor C is charged to the supply voltage. When S1 is opened, the energy stored in C will tend to keep the relay closed as the capacitor discharges through the relay coil.

The larger the capacitance, the more energy is stored and the longer the relay remains closed after S1 is opened. It will also be apparent that a relay of high resistance will take longer to discharge a given capacitor, and in general, longer delays are possible with high resistance relays.

This delayed drop-out is also assisted by the fact that the magnetic field of a relay with high inductance takes a finite time to decay, and in decaying, produces a force which opposes the change to which it is due, in this case the cutting off of the supply voltage. The relay then will tend to remain closed until the magnetic field collapses.

This method of delaying a relay has a drawback if the relay is to be actuated by a short pulse. In this case the pulse may not be long enough to charge the capacitor fully, and a varying delay will be obtained. To overcome this the circuit of Fig. 24 can be used.

In this circuit, C is charged through the break sections of a changeover contact while the relay is open. A brief pulse, as long as it is of sufficient duration just to close the relay, switches the charged capacitor through the make section of the changeover contact. Thus a constant delay with varying input pulses is obtained.

With large values of C up to 5,000μF, and high relay resistances up to 50 kilohms, delays of up to several minutes are possible.

DELAYED PULL-IN

Occasionally it may be required that a relay does not pull in immediately, but after a fixed delay. One way of doing this is shown in Fig. 25.

Unfortunately, however, it is not possible to obtain delays longer than about 1 second or so by this method without using capacitors of a prohibitively large value. Also the drop-out will be delayed more than the pull-in.

Encapsulated plug-in sub-miniature relay with two changeover contact sets.

(Clare-Elliott)
The following circuit using two relays will delay the pull-in for longer periods, up to 3 or 4 minutes (Fig. 26).

In this circuit RLB is the relay whose pull-in is to be delayed. Upon operating S1, C1 previously charged to +V through contact b, will discharge through RLA which pulls in and holds for a brief period depending on the value of C2 and the resistance of RLA. While RLA is energised, C3 charges up to +V through the make contact of RLA2. When RLA eventually drops out, RLB is pulled in by the discharge from C3, and holds in through its latching contact RLB1.

RELAY AS AN OSCILLATOR

If a relay is connected as shown (Fig. 27), it will oscillate rapidly in a similar manner to that of a bell or buzzer. The oscillatory action may be slowed down by connecting a large value capacitor in parallel with the coil. This results, however, in a very unequal mark/space ratio, because while the drop-out is delayed, the pull-in is virtually instantaneous.

HEIGHT MEASURING DEVICE

The next circuit is of an automatic coin operated height measuring device, designed for use in an amusement arcade. The machine exploits the properties of a light dependent resistor, and the principle is shown in Fig. 30. The subject stands on platform P and inserts a penny. The belt carrying the light sensitive device then moves downwards until it reaches the lower contact which is fixed at a height lower than the lowest to be measured.

Upon closing this contact, the belt reverses its direction of travel while the ambient light is prevented from reaching the l.d.r. by the subject's body. At the position corresponding to the top of the head the l.d.r. unlatches the coin relay, stopping the belt, its position now registering the height of the subject.

The basic circuit is shown in Fig. 31. When a coin closes contacts S1, RLB pulls in and latches through its hold-on contact RLB1 via contact RLA1. RLB connects the motor via RLB2 and RLC1 to BY2 negative. RLA and RLC are so far in the non-operated condition. So the motor drives the belt carrying the l.d.r. down.

Upon reaching the lower contact S2, RLC pulls in and latches via its hold-on contact RLC2 and contact RLA1. The motor is now connected to the BY1
Fig. 27. Oscillating or vibrating relay

Fig. 28. Two relays for more even oscillation

Fig. 29. Sequential switching of lamps

Fig. 30. Principle of height measurement using a l.d.r.

Fig. 31. Circuit diagram for height measurement device
In what other catalogue can you find these products?

Having trouble in obtaining the components you need?
Well now you can get them!

In the new 600-page Electroniques Hobbies Manual you will find not only commonly used components but also hard-to-get professional and specialist products unobtainable elsewhere. Featured above are:

1. AERIALS & ROTATORS A comprehensive range of J-Beam Aerials to advanced design for domestic and amateur applications. Our Channel Master rotators have more advanced features than any other on the United Kingdom Market—and at a lower price. From 12 guineas each.

2. NUMERICAL INDICATOR TUBES These cold cathode tubes display numerals 1-9 for use in digital instruments and equipments. Special gas filling ensures reliability and long life. From 35¢ each.

3. RF LOAD RESISTORS These high-quality non-reactive dummy aerial loads use a ceramic substrate with cracked carbon film. They are very suitable up to V.H.F. and for use in applications such as R.F. Wattmeters. From 35¢ each.

4. LOGIC MODULES Series 40 germanium modules use TRL logic and compare favourably in price with relay logic, and with enhanced reliability and life expectancy. From 9¢ each. Silicon integrated circuits are also available in our Series 30 modules. Ideal for the modern constructor using advanced techniques. For the 600-page Electroniques Hobbies Manual or further details of the products displayed on this page write to: Electroniques (Prop. S.T.C. Limited), Edinburgh Way, Harlow, Essex. Telephone: Harlow 26777.
VARIABLE VOLTAGE TRANSFORMERS

PORTABLE TYPE

- **INPUT**: 230/240v. A.C. 50/60-
- **OUTPUT**: VARIABLE 0-200v. 50/60-

BRAND NEW Carriage Paid.
Buy direct from the importer, at the lowest prices in the country. All Types (and Spares) from 50 amp. to 500 amp. from stock.

- **5 AMP**
 - £3.0.0
- **10 AMP**
 - £3.3.0.
- **50 AMP**
 - £5.10.0

SHROUDED TYPE

- **1 AMP**
 - £3.3.0.
- **2.5 AMP**
 - £3.10.0
- **5 AMP**
 - £3.15.0
- **10 AMP**
 - £3.17.0.

50 AMP

- £6.10.0

100 WATT POWER ROTHSETS (NEW)

Available in the following values

- 1 ohm, 10 a.; 5 ohm, 4.7 a.; 10 ohm, 2 a.; 25 ohm, 1 a.; 50 ohm, 0.5 a.; 100 ohm, 0.25 a.
- 200 m.A.: 1,000 m.A.
- 200 m.A.: 1,500 m.A.
- 2,000 m.A.

25 WATT POWER ROTHSETS

10 ohm, 1.5 a.; 25 ohm, 0.5 a.; 50 ohm, 0.25 a.; 100 ohm, 0.1 a.; 1,000 ohm, 0.01 a.; 5,000 ohm, 0.001 a.

NICKEL CADMIUM BATTERY

Sintered Cadmium Type 1/2 v. 7Ah.

- Size: height 3½ in., width 2½ x 1½ in.
- Weight: approx. 13 oz. Ex-R.A.F.
- Precision engineered metal case with Voltmeter, lamp, switch, etc.
- £6.10.0

INSULATED TERMINALS

Available in black, red, white, yellow, blue and green.

50/60 each, plus 1/- P. & P. 2/6.

34V SILICON SOLAR CELL

4 x 3½ units series connected, output up to 2 v. at 20 mA in sunlight. 30 times the efficiency of selenium.

As used in power Earth Satellites. £6/6. P. & P. 1/6.

"SOLAR CELL AND PHOTO-CELL EXPERIMENTERS' GUIDE"

Teaches the principles of light sensitivity and their application. 24/- post paid.

SCOOP !! DIGITAL VOLTMETERS at a fraction of makers price !!!

FOUR DIGIT DISPLAY WITH AUTOMATIC DECIMAL POINT

Manufactured by Dave Instruments Ltd. Type 652A Voltmeter and Type 653A A.C. Input. These two units are new in makers packing.

- Volt D.C. 2 millivolt to 1,000v.
- Volt A.C. 1 millivolt to 500v.

Both units are single hole precision instrument with fuse installed. £7.10.0. P. & P. 3/6.

UNISELECTOR SWITCHES

75 ohm coil 24 v. D.C.

- 1 Bank 11 position, 9 non-bridging
- 2 Bridging Wiper
- £13.10.0

RED WIRE DRY SEED SWITCH

1 amp, contact, size ⅛ x ⅜ in.

For 50/- each. 2/6 P. & P.

THYRISTOR 400 p.v. 3 amp. post paid

230 VOLT A.C. GEARED MOTORS

- 5 r.p.m.
- 1-7 lb. inch £2.9.6.

DOUBLE WOUND VARIABLE LT TRANSFORMERS

Fully isolated low tension secondary winding. Input 230 v. A.C. Output continuously variable 0-36v. A.C.

- 0-36 Volt at 20 Amps. P. & P. 19/10.0. P. & C. 15/-.

SUPER POWER MAGNET

- Fantastic, weighing only 4 lb., will lift well over 100 lb. Swivelled handle and keeper. Size 3½ x 2½ x 1½ in. Packed in two's. Price £20/- per pair plus 7/6 & C. O. P.

MOVING COIL HEADPHONE AND MIKE

Soft rubber ear-pieces with M/C Mike fitted. £3.20/6.

DIGITAL COMPUTER CIRCUIT

A single digital Adder/subtractor using switches and lamps only. A fascinating demonstration of Binary arithmetic. Full circuit, wiring diagram and notes on the Binary system. 2/6.

MOUHTER AND CROSSOVER MACHINE CIRCUIT

Uses standard miniature switches and lamps only. This machine cannot be beaten. Full circuit, wiring diagram and notes on the Binary system. 3/6.

FOOTBALL POOL COMPUTER CIRCUIT

A fascinating and useful machine. Full circuit, wiring diagram and notes on the Binary system. 3/6.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C.2

(Leicester Square Tube Station)

TELECOM Mk. II

portable V.H.F.

110-136 Mc/s

AIRCRAFT-BAND TRANSISTOR RECEIVER

with R.F. stage, telescopic aerial, internal loudspeaker and battery.

£23. 10. 0d.

BRITEC LIMITED

17 Charing Cross Road
LONDON, W.C.2
Tel. 01-930 3070
positive via RLB2, RLC1, and RLA1 so causing it to move the belt upwards. At the same time, the l.d.r. circuit, which cannot yet operate as the light is still blocked by the subject, is connected to BY1 positive via RLC1 and RLA1. The belt moves upwards until light falls on the l.d.r.

RLA then operates, and is held in by the capacitor. RLA1 opens long enough to unlatch RLB and RLC, thus stopping the motor. When the capacitor has discharged through RLA coil, RLA will revert to normal. The position of the l.d.r. now indicates the height of the subject.

Of course this is only the basic circuit; in practice other components would be needed, for example, limit switches to prevent the motor over-running, and some means of adjusting the sensitivity of the l.d.r. to suit different degrees of ambient light.

ROBOT VEHICLE

A more complex circuit is that of an automatically controlled vehicle which will take appropriate avoiding action on meeting an obstacle. Here again the obstacle is detected by means of l.d.r.s (Fig. 32).

The type of obstacle to be avoided takes the form of a vertical wall, and the machine can avoid the following configurations (see Fig. 33):

1. A single wall immediately ahead.
2. A wall ahead and one to the right.
3. A wall ahead and one to the left.
4. A wall ahead and to right and left.

The vehicle is equipped with three l.d.r.s sensitive to ambient light, and their associated relays, normally energised, drop out when their respective l.d.r.s are a certain distance from the obstacle. The contacts are so arranged that various combinations of de-energised relays cause the machine to take the appropriate avoiding action.

If "A" is obscured, the machine turns either to the right or left; if "A" and "C" are obscured, to the left; if "A" and "B" are obscured it turns to the right; if all three, "A", "B" and "C" are obscured, then the machine goes into reverse.

Each situation produces a different combination of de-energised relays, and in order to make the machine take the appropriate action, we require a separate output for each combination.

We can simplify the requirements if, instead of giving the machine a choice of direction when it encounters obstacle 1, we make it turn always to the right, say, whenever this obstacle is encountered.

For three relays then, we have eight possible combinations, as set out in Table 1. For each combination the required functions of the drive motor and steering motor are also tabulated.

Fig. 32. Simple robot vehicle with obstacle sensors

Fig. 33. Configurations of obstacle sensing

Transistorised relay
(Keyswitch Relays)

Multi-reed relay developed by Thermosen in U.S.A.
(Livingstone Components)

Hermetically sealed mercury relay using a plunger in a gas filled tube
(Techna Sales)
To produce a separate output for every possible combination of the three relays ($2^3 = 8$) we can use the "transfer tree" method of connection (see Fig. 34) which, for any combination of relays RLA, RLB, and RLC will give one, and only one, output. It will be seen in Fig. 35 that to achieve this, relay RLA has one changeover contact, RLB has two changeovers, and RLC has four changeovers.

MS is the steering motor fitted with centralising segments, and MD is the main propulsion motor.

With S1 closed, MD runs in a forward direction, deriving its supply from the positive side of the battery BY1 via RLE1.

If all of the relays RLA, RLB, and RLC are energised, which only occurs on meeting an obstacle, the steering motor MS centralises via the contact segments "X" and "Y". The circuit follows the path L, K, E, D, B, and A, and either segment "X" or "Y", the steering motor thus running in the required direction to centralise and then stop.

If RLA now drops out, corresponding to obstacle 1 (see Fig. 33), MD remains in the forward direction, the steering motor is connected via A, C, G, H, Q, R to BY1 positive, which steers the machine to the right. As soon as the machine has turned sufficiently so that RLA energises once more, the steering motor centralises through O, N, F, D, B, and A, because RLB will now be shielded by the obstacle. Similarly if RLA and RLB are de-energised, the steering motor is fed via

A, C, G, J, T, and U to BY1 positive and again the machine turns to the right until RLA re-energises, when MS centralises.

If RLA and RLC are de-energised, MS is fed via A, C, G, J, T, and V to BY2 negative, and so the machine turns to the left, centralising as soon as RLA re-energises. If now RLA, RLB, and RLC de-energise, the circuit to the steering motor is completed via A, C, G, J, T, and V, and relay RLE. The resistance of RLE is made high enough to prevent the steering motor turning, but sufficient current (about 10mA) flows to pull it in. This reverses the polarity of MD, which drives the machine in reverse until again RLA is de-energised.

While RLE is pulled in, C1 charges up to the full supply voltage and, when it drops out, high resistance relay RLD pulls in and holds in for a time dependent on the capacitance of C1 and the resistance of RLD. This has the effect of temporarily energising the steering motor, to prevent the machine from continuously moving into and reversing out of, the obstacle.

CONCLUSION

There are many applications, some of which we have considered, where relays afford a versatile and elegant method of operation, particularly where many circuits are to be switched simultaneously, or where circuits depend on mutual interlocking for their correct operation.
FROM the title of this article one may be under the impression that we are investigating the adhesion properties of false teeth under rigorous eating conditions and it may come as a surprise to find that electronics in a practical form has moved surreptitiously into the noble art of angling!

Many mechanical devices have been tried over the past few years to assist the angler in various types of conditions and the idea of a bite indicator is by no means new. In fact all types of devices indicating that a fish has taken the bait, fall under the title of Bite Indicators but it is now generally accepted that this term refers to some type of unit mechanically fitted to the rod, when the bait is being ledgered, so that any movement of the line is clearly shown somewhere along the length of the rod rather than by means of a float disappearing under the surface of the water.

Sometimes bite indicators take the form of an extension of the actual tip of the rod (and one of the most recent innovations along these lines was developed by Mr J. Clayton of Boston, Lincs, where the top section terminates in a very flexible tip falling at right angles to the rod when the line is slack). For daylight fishing this type of indicator is ideal, however in the late evening or during the night there has always been a problem in finding a satisfactory method of accurately indicating a bite.

The bite indicator described in this article was designed specially to meet this need but, before a full description of the unit is entered into, it would be a good idea to explain briefly the problems that had to be overcome or compromised.

Many expert anglers are of the opinion that to catch the larger fish of any species it is essential that the fish should not feel that the bait is tethered in any way, therefore the indicator in the first instance has to present virtually no resistance to any pull, yet at the same time has to indicate a bite positively. Secondly, any unit must not interfere with casting out or retrieving the line. Thirdly, it must be waterproof or be unaffected by water.

By R. TURNER
MECHANICAL STRUCTURE

The illustrations show the mechanical structure that suited the particular rod to hand. It is not necessary to adhere to this pattern and no doubt many readers will have their own excellent ideas as to the mechanics to be adopted. The bite indicator breaks down into three sections and each section is described separately in the following paragraphs.

ACTUATOR ARM

The actuator arm serves two purposes: (a) to connect the line to the unit and (b) to trigger off the oscillator, see Fig. 1.

For the first requirement a hole is drilled in one end of the plastic strip and a fine slot cut into the side of this to allow for easy loading of the line and yet retain the line during actual operation. The slight bend has been made to make sure that in the arc of operation there is no binding action of the arm upon the line, and as this will differ from rod to rod it will be a matter of trial and error to determine the exact amount of bend needed.

At the other end of the strip a small piece of metal is glued onto the actuator arm—the size being determined by the ball race used—and this latter fixture acts as a shaft for the ball race. The material is twisted through 90 degrees about a quarter way along its length so that the plane of the material lends itself to carrying the line at the one end and taking the bearing shaft at the other. All these dimensions are shown in Fig. 1.

The more critical of the features of the actuator arm concern the positioning of a small magnet at the upper end of the arm so that when moved either up or down the magnet will open circuit a reed switch RLA accurately housed in the main unit. The choice of a reed switch was made to minimise the interference with the actuator arm, consequently reducing the actuating force required. It is not as difficult as it sounds to place the magnet and reed switch in a suitable position but merely a matter of common-sense. However, it must be noted that the body of the mechanical housing is made from aluminium, as steel will quash any operation of the reed switch.

MECHANICAL HOUSING

Again, the mechanical housing is a matter of choice, and the two clips that fix the unit to the butt of the rod will have to be varied to suit the varying cork thicknesses of different rods; or it may be necessary to adopt the configuration used on this unit where the butt section is not quite long enough and one of the clips fits onto the rod itself. The on/off switch S1 has been situated within easy reach of the left hand which is usually the one that is free.

The construction of the housing is clearly indicated in Fig. 2.

OSCILLATOR

The electronics of the bite indicator are very simple and make use of the elementary emitter coupled oscillator, see Fig. 3.

The two transistors TR1, TR2 are directly coupled and a gain figure of a relatively small quantity is required to promote oscillation. TR1 is the amplifier and is directly coupled to TR2 which acts as a matching device with the required low output impedance. The collector load of TR1 is so arranged that TR2 is correctly biased and the high input impedance of TR2 places little load on output of the preceding stage.
COMPONENTS

Resistors
R1 390Ω
R2 390Ω
R3 1kΩ

Capacitors
C1 0.64μF elec.
C2 6.4μF elec. (see text)

Transistors
TR1 NKT261
TR2 NKT261

Battery
BY1 1.5V Vidor type V16

Switches
S1 S.P.C.O. Slide Switch
RLA Miniature Reed Relay with magnet

Miscellaneous
Magnetic earpiece (65Ω)
Perforated board 2½in × ½in
Three spring clips (see text)
Four 4 B.A. nuts, bolts and washers
Two 6 B.A. nuts and bolts
Four 6 B.A. self-tapping screws
Aluminium spacer approx. ½in if required (see text)
Ball race
Plastic actuator arm approx. 9in (see text)
Two pieces of aluminium sheet 4in × 2½in and 4in × 2½in
Wire, sleeving, solder, etc.

Fig. 4 (right). The electronic assembly. Most of the circuit components are mounted on the small piece of perforated board. The board is secured to the housing by the same screw which secures the battery clip; a 4 B.A. nut must be positioned on the screw between the rear of the board and the metal housing, as a spacer.

The earpiece XI and the ball race are secured to the housing with Araldite. The reed switch however must be secured with Evostick, this is to ensure a flexible bond and so prevent damage to the glass tube if the bite indicator is dropped or otherwise receives a blow (see Fig. 6)

Fig. 3. Circuit diagram of the bite indicator
The working point of the transistors is established by R3 which applies the required biasing voltage to the base of TR1 in a very stable configuration. As the temperature increases so the collector voltage of TR1 becomes more positive and due to the emitter follower action of TR2 this fall in voltage is fed back to the base of TR1 via R3 and reduces the base to emitter voltage of TR1 thus returning the circuit to its original condition. Of course the action is reversed should the temperature fall.

On test the unit was found to be satisfactory between -10 degrees C and +55 degrees C which, unless the operator were fishing for seal through a hole in the ice, should prove quite adequate.

The frequency at which the circuit oscillates is governed by C1 and C2, with C2 playing the greater part. It is a little difficult to establish the exact value for C2 as this will vary depending upon the earpiece used and the tone required. The earpiece incorporated in this unit had an impedance of about 65 ohms but widely varying devices in fact performed quite successfully, although the value of C2 had to be adjusted accordingly.

FUNCTION OF REED SWITCH
The reed switch merely shorts out the earpiece X1 in the inoperative condition and when the magnet is taken away from the switch (the actuator arm moved), the switch becomes open-circuited and an audible warning is given.

The quiescent current of the unit is in the order of 2.5mA in both conditions, thus the battery gives many weeks of use.

Some query may be raised as to why the reed switch does not open circuit the supply voltage in the inoperative condition and consequently draw no current from the battery; this in fact was the way in which the first unit was made, but the problem was then to give warning of a bite where the fish had picked up the weight and caused the arm to drop instead of move in an upwards direction. This could have been solved by the inclusion of a second reed switch, but the difficulty in setting up the magnet to cope with both conditions is very awkward and it was felt that the small battery drain was worth the more accurate results thus obtained.

Details of the electronic assembly and wiring are given in Fig. 4.

The battery BY1 is held in position with a spring clip. Some of the paper surrounding the cell is removed so the casing makes contact with the negative rail via the clip.

SETTING UP PROCEDURE
As the electronics are of such a simple nature no setting up is required other than to determine the value...
of C2 in the circuit of Fig. 3, so that the tone generated by the oscillator is satisfactory to the user.

The main adjustment will lie in the setting of the reed switch with regard to the magnet fixed to the actuator arm. It will be much more of a simple operation if this point is attended to before the oscillator or any of the wiring is installed.

The reed switch can be clearly heard to come in and out as a magnet is passed lengthwise over the reed switch, so if the magnet is fixed to the arm in the first instance and the arm correctly located in the ball race, a spot of Evostick or the like can be smeared over the underside of the reed and the reed placed in an approximate position in the housing. The arm should be at about 45 degrees to the horizontal plane of the rod when the reed is in the middle of its held on condition (see Fig. 5) and it is a simple matter to move the reed about until this condition is achieved.

Once the position has been determined the reed switch should be glued into position with a rubbery type of adhesive so that the vibration encountered in casting, etc. will not fracture the glass casing of the reed.

If the wires coming from the end of the reed switch have to be bent to facilitate wiring of the unit, it is essential that no bend should be made within 3in of the glass and a pair of pliers should be used to grip the wire between the glass and the section to be bent. If the glass is fractured, then the reed is useless.

The arm should be at about 45 degrees to the horizontal plane of the rod when the reed is in the middle of its held on condition (see Fig. 5) and it is a simple matter to move the reed about until this condition is achieved.

Once the position has been determined the reed switch should be glued into position with a rubbery type of adhesive so that the vibration encountered in casting, etc. will not fracture the glass casing of the reed.

If the wires coming from the end of the reed switch have to be bent to facilitate wiring of the unit, it is essential that no bend should be made within 3in of the glass and a pair of pliers should be used to grip the wire between the glass and the section to be bent. If the glass is fractured, then the reed is useless.

A more sophisticated dielectric with better properties is silicon dioxide—pure quartz—but this requires a highly specialised deposition process called dielectric sputtering. (This process will not be described here as it is outside the scope of this article.) The second electrode of the capacitor is then deposited by using aluminium through a third mask.

The capacitance of such a device is proportional to the dielectric constant of the insulating material, the area of cross-over of the two electrodes, and is inversely proportional to the thickness of the dielectric. Unfortunately the working voltages of such capacitors are directly proportional to the thickness of the dielectric; therefore a compromise between capacitance value and breakdown voltage has to be determined.

Likewise the maximum values of thin film capacitors are limited to about 5,000pF for these reasons. This is not such a disadvantage as this top value will meet most applications. Whenever higher values are needed, additional discrete components can be used; there are now many physically small, but high value capacitors of the solid tantalum type, with dimensions no more than 3mm x 3mm x 1mm, which can give capacitance values as high as 25pF.

THIN FILM INDUCTORS

Inductors can be made by thin film techniques, but as the circuits can only be made in a single plane, it is impossible to make multiturn, pile wound coils. The nearest approximation to a coil is produced by depositing a spiral of conductive material. Inductance values for these tend to be very low, and also the areas occupied by the spirals tend to be large.

When all the deposition stages are completed, active devices such as transistors and diodes can be wired into the circuit by careful soldering. Naturally the transistors used have to be as small as possible, and there are many special types of encapsulations for transistors designed specifically for thin film circuits. The final stages in the manufacture of a circuit are to solder on the lead out wires, and to encapsulate the whole circuit—usually in an epoxy resin.

Next month: Semiconductor integrated circuits
EMI ELECTRONICS is currently engaged in developing scanning equipment to produce infra-red television pictures. Whereas a normal television system utilises the reflection of light, the infra-red television uses the heat or infra-red radiation emitted by an object. With the EMI system, temperature variations of a few hundredths of a degree centigrade can be detected and, since the method does not require light, pictures of acceptable quality can be obtained in complete darkness.

The infra-red picture (above right) was taken at night with an overcast sky and no visible light, a light level of approximately 10^{-1} Lux. An ordinary photograph of the same subject taken in daylight is shown (top left). In the infra-red photograph, it will be noticed that the hotter the object, the whiter it shows on the television screen. The loss of heat through the windows of the building is clearly shown. Also the turret top (right) is revealed.

A block diagram of infra-red equipment in use at the Royal Radar Establishment, Malvern, is shown left. Here it is being used to simulate ground reconnaissance systems likely to be used in aircraft.

As an aid to efficient manoeuvring within a tight schedule of aircraft and vehicles at London Airport, the Decca ASMI A-band radar has been used for 12 years. But with traffic on the airfield runways and aprons rapidly increasing, a new version (Mark III) is undergoing field trials to overcome vehicle density, visibility and long range aspects of user interpretation. A map-like background picture of the airfield is displayed, even in poor weather conditions. The 6ft aperture aerial (left) rotates at 750 rev/min inside a radome (removed in this picture).
Simulator for Cobalt Treatment

A higher ratio of patients is expected to be treated by cobalt and other high energy teletherapy equipments by setting up a preliminary simulator to the required position and dosage. The time the patient has to remain under the cobalt source will be significantly reduced by ensuring that accurate readings are obtained when the patient is finally placed under the isotopic source—shown in the photograph (right) as the overhead source head. The patients' treatment bed can be raised and lowered, and rotated through 360 degrees to locate the treatment area, by using the control consoles. Shown by Fairey Engineering at the Hospital Equipment and Medical Services Exhibition at Olympia, this simulator is expected to contribute to treatment of cancer.

Lined up for Colour

One of the important tests which have to be carried out on colour television receivers is to make sure that the scanning coils mounted on the neck of the tube are correctly positioned. Our photograph (left) shows the tube neck; the range of colour purity is adjusted on a prototype Plessey scan coil and convergence assembly. Here the technician checks the adjustment.

Mobile Satellite Communication

The day may arrive when we have Field Days for “hams” who may communicate by satellite—if one can afford it. The Signals Research and Development Establishment near Christchurch, Hampshire, have found that successful communication via satellite is not necessarily restricted by the size of dish. Their latest set-up, built for experimental use only, is this 6ft diameter dish with teleprinter equipment in the truck. The only restrictions are the number of channels that it will handle and the time allocated for transmission.

The operating frequency is 8GHz from a 1kW air cooled klystron. The equipment can be set up (below left) almost anywhere on location in less than half an hour by using a compass for direction finding. Below right, we show the 6ft dish on tow compared in size with a large SCAT station radome in which is housed a 40ft Marconi dish with transmitter, parametric amplifiers, and receiver.
THE CHEMOSTAT is a mains power switching device controlled by a remote temperature feeler, which may be connected via any convenient length of three-way screened cable to the main unit. The circuit will switch any type of mains appliance (room heaters, immersion heaters, refrigeration units, water pumps, etc.) up to 2kW rating. The feeler temperature at which the circuit switches is continuously variable between 17 degrees C and 40 degrees C (scale 63 degrees F to 105 degrees F is also fitted) and may be set to any desired value within this range, with the help of a manual control on the front panel.

This temperature range is primarily suited for colour and monochrome photographic processing and for preparing various kinds of solutions for photographic baths. However, the Chemostat is equally suitable for use in conjunction with any chemical process requiring accurate thermostatic control of liquids—for example medical and physiological incubation experiments. The upper limit of the temperature control range covers normal body temperature and moderate fever simulation. It is very easy to extend the range up to still higher temperatures.

The Chemostat may also be used for controlling room air temperature, and for raising flowing cold water to a mean temperature suitable for washing photographic prints.

An electronic remote thermostat for colour photography and other processes demanding accurate temperature control of liquids
Range 17°C to 40°C (63°F to 105°F)
Tolerance ±0.1°C
Time Constant (in liquids) 100 seconds

The Chemostat is a mains power switching device controlled by a remote temperature feeler, which may be connected via any convenient length of three-way screened cable to the main unit. The circuit will switch any type of mains appliance (room heaters, immersion heaters, refrigeration units, water pumps, etc.) up to 2kW rating. The feeler temperature at which the circuit switches is continuously variable between 17 degrees C and 40 degrees C (scale 63 degrees F to 105 degrees F is also fitted) and may be set to any desired value within this range, with the help of a manual control on the front panel.

This temperature range is primarily suited for colour and monochrome photographic processing and for preparing various kinds of solutions for photographic baths. However, the Chemostat is equally suitable for use in conjunction with any chemical process requiring accurate thermostatic control of liquids—for example medical and physiological incubation experiments. The upper limit of the temperature control range covers normal body temperature and moderate fever simulation. It is very easy to extend the range up to still higher temperatures.

The Chemostat may also be used for controlling room air temperature, and for raising flowing cold water to a mean temperature suitable for washing photographic prints.

SWITCHING FUNCTIONS
A switch S1 on the front panel permits choice of "power on" either above or below the selected switching temperature. This provides maximum versatility of types of external appliances which can be controlled. For example, refrigeration units require power to be on above the switching temperature, but heating systems require power to be on below the switching temperature. A second switch S2 on the front panel selects the alternative functions of "trip off" or "repeat". The "repeat" function is for normal thermostatic control, power being switched on and off repeatedly according to the state of the switching amplifier. The "trip off" function is required, for example, when using the Chemostat to warm large volumes of water to a predetermined temperature (usually between 30 degrees C and 40 degrees C) to make up solutions for photographic processing tanks. For this application, an immersion heater powered via the Chemostat, a stirring motor and the Chemostat temperature feeler are mounted such that they all dip into the water vessel. When the desired temperature has been reached, the heater will be switched off automatically and remains off.

The "trip off" function is also required when using the Chemostat feeler inside experimental electronic equipment. The switching temperature is thereby set
Fig. 1. Circuit diagram of the Chemostat and Temperature Feeler
to the maximum safe temperature and the equipment is powered via the Chemostat. If the experimental equipment develops excessive temperature, power to it is automatically switched off and remains off.

BLOCKING LOOP

Electrical installation regulations often demand the provision of a blocking loop in power control equipment. A blocking loop is an override circuit containing a number of low-voltage contacts which must all be closed before power can be switched on, regardless of the other prevailing states and conditions. Such a blocking loop is an important safety device, and it should be incorporated even if regulations do not expressly stipulate it.

For example, if the temperature feeler of the Chemostat is inadvertently left disconnected, or if it develops a faulty plug or cable contact, the power to the immersion heater will not be switched off in the normal manner when the intended temperature has been reached. The blocking loop must therefore contain a simple bimetal strip contact in a glass test tube close to the immersion heater and set to open at a still safe temperature above the highest normally intended temperature. High accuracy is not necessary.

When using water jacket systems for adjusting the temperatures of photographic baths (see next month’s instalment), trouble would again arise if the water flow ceases for any reason, such as inadvertent pinching of a rubber tube in the darkroom, or even forgetting to turn the water tap on. A simple flow contact can be included in the blocking loop for such applications.

Any reasonable number of contacts may be included in the blocking loop as required. All contacts must be connected in series, in any convenient order. If any one contact opens, power is tripped off in an overriding manner and remains off until reset manually by pressing the reset button on the front panel. Pressing the reset button has no effect if the blocking loop is still open circuit at any contact. Power can be restored manually only when the blocking loop is closed. The function of the blocking loop is quite independent of whether the control switching circuit happened to be on or off, or set to trip or repeat. It always blocks power switching until the faulty condition has been rectified and the blocking loop relay re-energised by manual actuation of the reset button.

VISUAL INDICATORS

Three pilot lamps on the front panel of the Chemostat meet all requirements of visual indication. Two green lamps indicate normal running conditions. One of these (LP3) is lit continuously, indicating the presence of mains input power to the Chemostat. The other green lamp (LP2) is on when the output power is switched on, and off when the output power is off. The third lamp (LP1) is a red one and announces abnormal conditions (blocking loop open or still not set) when it comes on.

Continuous visual indication of the actual temperature would involve unnecessary circuit complication and additional expense. Once the system has reached the selected nominal temperature, fluctuations of the feeler temperature do not exceed about ±0.1 degrees C, and fluctuations of the bath solution temperature do not exceed about ±0.5 degrees C. Discrepancies smaller than these are of little interest, at least not for photographic work. The second green lamp thus suffices as a combined temperature and power indicator. In a heating control system, the temperature is on the low side when this green lamp is lit, and vice versa.

TEMPERATURE FEELER

We require a very sensitive temperature feeler, in order to obtain a satisfactory change of its electrical output for 0.2 degree C change of temperature. The collector leakage current of a transistor is a notoriously temperature-dependent parameter. It was therefore decided to aggravate this effect to the maximum obtainable slope in designing a transistor feeler for the Chemostat.

All transistors, including silicon types, manifest collector leakage currents with a very large positive temperature coefficient, but the absolute magnitudes in the temperature range of interest for the Chemostat are satisfactory only with germanium transistors. High current gain is also required. A Mullard AC126 meets these requirements and is very readily obtainable. To maximise temperature-dependent collector current, no base current should be injected apart from that due to internal thermal leakage. To obtain the greatest possible slope, the emitter must be taken straight to the positive supply voltage without interposing any resistor. Furthermore, the operating point must be chosen such that the current gain is rising with collector current. This calls for a constant operating point, which then logically corresponds to the trip-over point of the already mentioned trigger circuit.

The thermal resistance of an AC126 is about 0.3 degree C/mW, so that the operating point must not dissipate more than about 2mW in the transistor, to keep the junction temperature change within the ambient tolerance limit. The constant operating point enables the junction temperature difference correction to be included in the calibration, so that to a first order of approximation it is then effectively zero.

TEMPERATURE SELECTOR

The manual temperature selection control (VR1) takes the form of a variable resistor between the base and emitter of the temperature feeler transistor. It shortens an adjustable fraction of the thermal leakage current injected internally from collector to base. The nominal collector current is then reached at correspondingly higher temperatures, the smaller the base-to-emitter resistance is made. It was found possible to achieve a slope of nearly one volt per degree centigrade with an AC126 at an operating point satisfying all essential conditions. This means that the hysteresis of the trigger stage must be reduced to 0-2V or less, which was found to be readily possible in
the adopted circuit. The slope of the transistor temperature feeler is equivalent to halving its effective impedance for about 5 degree C rise of temperature, which is nearly twice as steep as the steepest standard-range n.t.c. resistor. Thus, the transistor feeler is an improvement on an ordinary n.t.c. resistor.

INPUT AMPLIFIER

C1, C2, C4, and C14 provide a.c. shorts to chassis for all leads of the temperature feeler, so that it is quite insensitive to mains hum or other inductive interference. Screened cable is not absolutely essential, but advisable, for the temperature feeler. The collector current of the temperature feeler transistor TR1 develops 5.2V across VR2 at the nominal operating point. This is the voltage input to the linear current amplifier TR2-TR4 at which trip-over of the trigger stage TR5, TR6 takes place.

Below this threshold level, relay RLA is energised, so that one of its contacts is shorting-out R3 and thus the full 5-2V appear across VR3 and are applied via R4 to the base of the first transistor TR2 in the current amplifier. The trigger stage thus trips-over as soon as C5 has charged to 5.2V via R5. This causes relay RLA to drop off and remove the short across R3, causing the amplifier input voltage to drop to a fraction of that across VR2. Suitable adjustment of VR3 thus makes the trigger stage revert to just above its trip-back level (3.5V) as soon as it has tripped over.

A very small feeler temperature drop then reduces the input voltage sufficiently for trip-back, whereupon RLA
energises and immediately shorts-out R3 again, lifting the trigger stage back to the verge of trip-over. R2 prevents instantaneous charge transfer between C6 and C3, avoiding relay contact spitting.

D3 is a small Zener diode to limit the input voltage to the current amplifier to a safe value if VR1 happens to be set to a temperature much smaller than the actual feeler temperature.

The input amplifier TR2-TR4 is necessary because the hysteresis-cancellation and time-delay circuits at its input lead to a very high impedance from which it is not possible to drive the trigger stage directly. The amplifier is a simple three-stage cascaded emitter follower with a current gain of about fifty thousand. R8 ensures a safe minimum output load for TR4, whilst R9 and C7 develop the low-impedance drive voltage for the trigger stage and hold it constant during switching transients.

SCHMITT TRIGGER STAGE

With no voltage, or only a small voltage, applied to the base of TR5, this transistor remains cut off. Its high collector voltage saturates TR6, whose resulting heavy current also flows through R11 and there produces the voltage drop holding TR5 cut off. Once the input voltage is sufficient to lift TR5 to cut-on, cumulative feedback via C8 causes TR5 to saturate immediately and the resulting low collector voltage reduces the current through TR6 to a very low value.

The Zener diode potential divider D4, D5 ensures that the input voltage to the output amplifier TR7, TR8 is zero in this state and 8V in the former state. This ensures either nominal voltage or zero voltage across the relay RLA at the output.

SWITCH AMPLIFIER

The switch amplifier TR7, TR8 is similar to TR2-TR4 and is required because the output impedance of the trigger stage is too high to supply RLA directly.

R20 ensures a safe minimum load for TR8 and C10 removes inductive transients otherwise produced when current through the relay coil is suddenly interrupted. C10 at the same time delays relay drop-off for a fraction of a second, preventing any possibility of chatter. R19 is very important. Its purpose is to reduce the collector voltage of TR8 in the switched-on state, such that the power dissipation in TR8 definitely remains below 500mW.

STABILISED SUPPLIES

Stabilised supply voltages are essential for the temperature feeler, input amplifier, and trigger stage,
LOWER FRONT PANEL SHOWN INCLINED AT AN ANGLE TO CLARIFY WIRING

POINTS MARKED MC DENOTE EARTHING CONNECTIONS TO CHASSIS

Fig. 5. Under-chassis component layout and wiring

COMPONENTS...

Resistors
R1 1kΩ
R2 100Ω
R3 150kΩ
R4 4.7MΩ
R5 10kΩ
R6 2.7kΩ
R7 470Ω
R8 100Ω
All ±10% 1/2W carbon unless otherwise stated

Potentiometers
VR1 100kΩ carbon, log.
VR2 50kΩ carbon, lin.
VR3 500kΩ carbon, lin. (miniature skeleton)

Capacitors
C1 1µF microfoil
C2 1µF microfoil
C3 1µF microfoil
C4 1.000µF elect. 6V
C5 0.1µF microfoil
C6 1µF microfoil
C7 250µF elect.

Transistors
TR1 AC126 (Mullard)
TR2-TR8 BSYS3 (S.T.C.) (7 off)

Relays
RLA, B 42Ω coil, 6V d.c. Two c/o contacts.
Trls 152a/TBV63040/63d. Siemens) (2 off)
RLC Mains energised contactor. Three 10A contacts and one 6A c/o (B & R Relays type K10)

Diodes
D1 ZX15
D2 ZX15
D3 ZB
D4 Z6
D5 Z8
D6-D9 Silicon I.t. rectifiers 1A, 100V p.i.v. (4 off or Selenium Bridge 18 or 24V a.c. 4A d.c.
(FL5249/6 S.T.C.)

Switches
S1 S.P.D.T. mains, 2A, toggle
S2 1 maker press button
S3 S.P.S.T. mains, 2A, toggle
S4 D.P. mains, 10A, toggle

Plugs and Sockets
PL1 3 pole Continental type plug
SK1 3 pole Continental type socket
SK2 Coaxial socket
SK3 3 pole wall socket, 13A or 15A
TB1 3 way terminal block

Lamps
LP1 Red, 12V 0.1A
LP2 Green, 12V 0.1A
LP3 Green, 12V 0.1A
(NOT 6V, since too bright for darkroom!)

Fuse
FS1 10A panel mounting fuse

Miscellaneous
Material for chassis, front panel, etc. Pair of handles.
Copper clad laminated plastics board. Pointer type control knob.
to avoid temperature calibration errors due to mains voltage fluctuations. D2 stabilises the supply for the input amplifier and trigger stage, whilst D1 stabilises the supply for the temperature feeler. These separate stabilisers are necessary to avoid residual switching transient interactions which would impair the stability of hysteresis cancellation.

A bridge connected rectifier D6-D9 fed from an 18V winding on the mains transformer T1 provides the direct current for the electronic circuits and coils of relays RLA and RLB.

A.C. POWER CIRCUITS

Power is switched on or off on both poles of a single-phase mains supply, using two contacts of a standard three-phase 10 amp circuit breaker with mains-energised solenoid (RLC).

Two make contacts are used to switch the output power circuit to the outlet socket SK3, a third to switch the power indicator pilot lamp LP3 and the fourth contact is used as a self-latching contact for the mains energised solenoid in the "trip-off" function. For the "repeat" function, S2 simply shorts-out this latching contact.

The mains feed to the circuit breaker solenoid is also taken via contacts of RLA and RLB. S1 selects either a maker or a breaker contact of RLA for this purpose, to provide the optional power-on above or below the threshold temperature.

RLB is associated with the blocking loop and completes the circuit for the solenoid of RLC only when RLB is energised, which is possible only when the blocking loop is closed at SK2. RLB is energised via the blocking loop and its own latching contact, so that it drops off and remains off if the blocking loop is temporarily interrupted. C14 prevents RLB unlatching on brief mains kicks. The third contact of RLB switches-on the red fault indicator lamp LP1 whenever RLB is not energised, i.e. when power control is blocked off. It is important to use 12V bulbs in LP1 to LP3, although the running voltage is only about 6V: six volt bulbs would be far too bright for the photographic darkroom.

CONSTRUCTIONAL DETAILS

A front panel and a simple U-shaped chassis bolted together with the aid of two angle brackets form the main structure for the Chemostat. Dimensions and assembly details are given in Fig. 2.

The electronic circuitry enclosed within the dotted line in Fig. 1 is built up on a printed circuit board, see Fig. 6 and Fig. 7. This board is secured to the underside of the chassis. The disposition of all other components and wiring is clearly shown in the diagrams, Figs. 3, 4, and 5.

Make sure that the mains wiring is carried out with substantially insulated wire and that connections are secure—especially all earthing connections. The conductor side of the printed circuit board must be coated with approved insulating varnish to prevent spurious leakage due to dust accumulation.

The main assembly should be enclosed in a suitable sized metal cabinet. To minimise dust entry, use a cabinet with only very small ventilation slits at the rear. The entire circuit develops negligible heat, so that efficient ventilation is not necessary.

Next month's article will include diagrams for the printed circuit board and the temperature feeler; also instructions for calibrating and using the Chemostat.

Make this Electronic Stopclock

Accurately measuring the interval of time elapsing between any two events or stimuli, this high precision Stopclock has four switched ranges: 0-0.012; 0-0.12; 0-1.2; and 0-12 seconds. Capable of a wide variety of applications, with a novel design based on standard, ready made 'Logic Blocks'.

SCREEN WIPER DELAY UNIT

An easy-to-make fitment for the motorist. Provides adjustable delay between each sweep of the wiper blades.

RESERVE YOUR COPY NOW!

PRACTICAL ELECTRONICS

SEPTEMBER ISSUE ON SALE August 11

RESERVE YOUR COPY NOW!
The opening article of this new feature is mainly devoted to the first all-British spacecraft.

FIRST ALL-BRITISH SPACECRAFT

The contributions to space research from the United Kingdom have been considerable, though, perhaps, they have not received the same degree of publicity as those from other countries. With the successful launching of satellite UK3, the first all-British built spacecraft, there is indeed something to shout about.

At the end of its first pass in a correct orbit the space craft, in accordance with custom, changed its designation to ARIEL 3.

There are five experimental packages aboard the vehicle and the integration of these electronic-wise presented some problems which have now been proved to be fully mastered are crammed some 183 transistors and 800 other components, with a total power consumption of 250 milliwatts.

The ground-based stations are at Sheffield University, at Halley Bay, in the Faroes operated by an amateur Martin Haasen, and at Winkfield, Johannesburg, Quito and Santiago.

SURVEY OF THE IONOSPHERE

Birmingham University have designed their experiment to investigate the density of ionisation and the temperature at various points along the satellite's path. The density of the ionisation is being measured by using an r.f. plasma probe developed by the University. The measurement of temperature is made by a new probe which is in the form of a pair of matched spheres which draw current from the environment occupied by the satellite. The data will be telemetered and also stored and then read out every orbit.

NOISE RESEARCH

The Nuffield Radio Astronomy Laboratory, University of Manchester at Jodrell Bank, has an experiment which is designed to map out large scale noise sources in the Galaxy. The emission of noise or sky brightness, if made with sufficient angular resolution, will provide information on the ionospheric refraction and its effect on the distribution radiation across the sky.

A special technique used in this study takes advantage of the focusing effect of the ionosphere. The receiver is made to sweep slowly across a spectrum of 2 to 5 MHz. When the frequency coincides with the cut-off frequency prevailing locally there occurs a focusing effect which gives a finite width of beam of about 20 degrees at 5 MHz and 20 degrees at 2 MHz.

METEOROLOGICAL OFFICE

The amount of molecular oxygen present between the satellite and the Sun in the upper atmosphere is being investigated by a Meteorological Office experiment. A detector which is sensitive only to a specified wavelength in the ultra violet region is used for this work. There are four ion chambers which look sideways from the top of the satellite. The chambers are sensitive to a wavelength of 1,450 Angstroms. The outputs are amplified by means of a very sensitive (d.c.) amplifier developed by the Meteorological Office.

TERRESTRIAL NOISE

An experiment which is being carried on behalf of the Radio and Space Research Station seeks to discover the amount of h.f. noise received and the distribution of the noise sources. These sources include lightning and the aim is to deduce the distribution over the surface of the earth at different times of the day and at different seasons.
IT is worth considering briefly the various “states” given by control systems, in terms of elementary logic. There is first of all the single channel sequence binary state, made more versatile by further mechanical binary division in the escapement itself. For progressive steering three states are required, corresponding to going right, going left, and steering fixed. With two channels, four states are theoretically possible, no tone, tone one, tone two, and both tones.

Although the last mentioned state—simultaneous tones—can be achieved with two separate audio oscillators in the transmitter, and a special relayless switch, this is a considerable complication just for one extra state. As far as model control is concerned, the more states there are the better, so long as this does not involve a build-up of component density in the model. However, even though very small models exclude the use of many channels, circuits can be devised which, by careful blending of internal switching with available states, will accomplish a great deal.

Taking the simple single-tone transmitter with its two states, and a single-channel receiver, if the tone is chopped by a 50:50 mark/space square wave, a new condition will be created which, for want of a better term, may be described as the “half-on state”. Rerangement of the relayless output switch will permit this new state to be usefully employed as a zero datum so that “no tone” corresponds to, say, a negative signal, and “full tone” a positive signal. Furthermore, the mark/space ratio can be continuously varied by a potentiometer at the transmitter to give signals such as “quarter on” or “two-thirds on”; in fact, anything between full on and full off. Therefore, pulsed tone can give the counterpart of “three-state” two-tone working with fewer components and the added advantage of an analogue function.
"ONE STICK" PROGRESSIVE SYSTEM

Relayless output and servo details for a pulsed control system are shown in Fig. 15. The propulsion motor is switched by modified limit contacts on the servo to achieve six "states," so that the model will be fully steered while going forward or in reverse, and the propulsion motor can also be stopped. Control is accomplished by a single potentiometer mounted on the transmitter. In the model, a 1kHz version of Amplifier "B," relayless output, servo, and low consumption propulsion motor are all powered by a single centre-tapped battery of four pen-cells.

Although this system has been tested to the limits of range in a fast model aeroplane, with an engine speed servo in place of the propulsion motor, it is best restricted to slower speed models which work in two dimensions only, unless the operator has an ultra-fast reaction time and very good nerves. The simplicity of the system commends it particularly to electrically powered small model boats and cars. There is ample servo crank power to overcome the heaviest model car steering loads.

In Fig. 15, additional amplification is provided by TR1, to ensure that TR2 and TR3 are switched hard on in the emitter follower mode. With this output circuit, TR2 and TR3 are both off when the mutual base voltage is close to the battery centre-tap voltage.

Of course, since TR2 and TR3 are alternately switching hard on in response to the mark and space of the pulse, they will never both be off at the same time, but the servo motor interprets a 50:50 mark/space ratio as a zero d.c. voltage across its brushes.

Although smoothing could be applied, to convert the mean pulse level to steady d.c., it is an advantage to allow this large ripple voltage to remain as it helps to overcome servo motor inertia and frictional forces, and gives a much smoother response.

Depending on pulse repetition rate, and servo gearbox ratio, a slight jitter of the steering cam will be evident, together with a loud hum from the motor when stationary, but this does not affect the model.

Propulsion motor switching, by means of the cam and changeover contacts depicted in Fig. 16, is as follows. Starting with the cut-away portion of the cam in line with the moving contact, the contacts are biased open, steering is at neutral, and the propulsion motor is stopped. Also, the control stick attached to the transmitter potentiometer will be upright and central.

By advancing the stick slightly to the right the servo will be made to creep slowly, say, counter clockwise,
thus the moving contact will be pushed by the cam to the right and the propulsion motor will start.

Left steering is momentarily applied while the crank moves to the lower neutral position. When the crank reaches lower neutral, the control stick is returned to the upright position, whereupon the model will be going forward in a straight line. If now the model is steered to the left, with the cam going clockwise, the servo contacts will not switch back, so full right and left steering commands may be given without affecting the forward motion of the model.

If the model is required to go in reverse, the transmitter stick is pushed to the left. The speed of servo response is determined by how far the stick is displaced from centre. The stick is held until the cut-away in the cam again comes into line with the moving contact. Servo rotation is continued in a clockwise direction and the moving contact will this time be pushed to the left, reversing the propulsion motor, while allowing steering to be carried out as before.

To stop the model at any time it is only necessary to push the stick hard over until the cut-away lines up with the moving contact, and hold it with the stick central.

Although the procedure may be difficult to grasp when explained, it is fairly simple to master when a model is being controlled. The important point to

COMPONENTS . . .

PULSER CIRCUIT

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>R1 3.3kΩ, R2 4.7kΩ, R3 4.7kΩ, R4 3.3kΩ, Rs 1kΩ, All 10% 1/16 watt carbon</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>VR1 50kΩ linear miniature carbon</td>
</tr>
<tr>
<td>Capacitors</td>
<td>C1 100µF elect. 25V, C2, C3 Miniature paper 60V (see Fig. 17 text)</td>
</tr>
<tr>
<td>Transistors</td>
<td>TR1, TR2, TR3 ACY28 (S.T.C.) or OC81 (3 off)</td>
</tr>
<tr>
<td>Diode</td>
<td>D1 OA81</td>
</tr>
<tr>
<td>Switch</td>
<td>S1 Single pole or double pole, on/off, miniature slide switch</td>
</tr>
<tr>
<td>Batteries</td>
<td>BY1, BY2 9V type PP7 (2 off)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>S.R.B.P. panel 1½in × 2½in, Control stick (made from brass control knob insert and threaded rod) fitted to VRI spindle, Battery connectors</td>
</tr>
</tbody>
</table>

Model car chassis showing the steering motor, gearbox, and track rod mechanism. The receiver aerial wire (coiled on the gearbox) would be connected to a whip aerial.
realise is that the propulsion motor contacts are arranged to switch off or over only when the cut-away in the cam is presented to them. Normal steering motion is confined to the upper 180 degrees of the crank, with the cut-away remote from the contacts.

Fig. 16 shows the essential constructional points of the servo. The moving contact should be of springy material which will retain its shape despite the bending forces of the cam. Crank, cam, and contacts are resin glued.

PULSER CIRCUIT

The pulser circuit is in Fig. 17, and component placement panel details are in Fig. 18. The output from the pulser is taken to the R1/S2 connection in the transmitter modulator (see transmitter circuit), and S2 can be removed from this circuit.

The prototype pulser was fitted into a larger transmitter case, alongside the transmitter panel, with two PP7 batteries. It was decided to retain the tone push button, for use with sequence equipment when required. Pulser panel construction follows closely the method employed with previous units, and is quite straightforward.

If it is found that the control stick action is reversed relative to the steering in the model, track connections to VR1 should be interchanged.

The 18V transmitter rail voltage is in excess of the maximum collector rating of many transistors in common use. If transistors of a different type to those specified—or of uncertain origin—are substituted, check that the maximum ratings are not exceeded. Where a doubt remains, and if the full range capabilities of the transmitter are not required, the supply voltage may be reduced to 9V or 12V.

In Fig. 17, alternative values are given for C2 and C3, so that the pulse frequency can be adjusted; 50Hz–100Hz will suit most progressive steering servos. Simple pulse-proportional has not been mentioned, because its low crank power and steering linkage oscillation renders it unsuitable for use in model cars. However, the 10kHz pulser frequency is included for those who wish to experiment with simple proportional control of model boats. The servo of Fig. 16 can be quickly adapted for pulse-proportional by attaching a rubber band to the crank, to bias the steering in the lower neutral position; that is with cam cut-away 180 degrees.
removed from the contacts. The gearbox should be set to give a 6 : 1 or a'12 : 1 reduction ratio. No other modifications are required.

RECEIVER COILS

Several readers have requested details of the series *Miniature Model Control* on which this current series of articles is based. We regret that neither these back numbers nor reprints from them are available, but details of the individual circuits originally used are reproduced in this current series.

The circuits for the receiver and amplifiers “A” and “C” were reproduced in the June 1967 issue. Details of the receiver coils are as follows:

L1 is a wave-wound r.f. choke on a small carbon resistor and is a purchased item. The winding terminations are secured to the pi winding with small spots of glue. The resistor is then carefully removed, leaving the winding intact. Although the precise inductance of the original was not known, the choke had a self resonance at 2MHz; the estimated inductance was 1mH.

L2 is made by winding 30 turns of 32 s.w.g. enamelled wire close wound on a 1/4 in coil former. The winding is secured in place with a layer of tape or wax. It can be wound on a former taken from a television tuner “biscuit”, obtainable from television repair shops. After winding, the former is cut down to an overall length of 3/4 in.

The capacitor C6, across the collector and emitter of TR1, is made by twisting together a pair of 32 s.w.g. enamelled wires each 11/2 in long. The two wires must not be in electrical contact with each other and must not be untwisted.

The circuits for the transmitter and amplifier “B” were reproduced last month; coil details were included.

INSTRUMENT LANDING SYSTEMS

Much work is being undertaken in instrument landing systems (ILS). A comprehensive study of a hybrid navigation system for future long range transport aircraft is being made. Such a system would be pilot operated, with world wide coverage. It would employ a digital computer, an inertial navigator for controlling the autopilot in azimuth, and an externally based system such as a radar aid for gross error checking.

Study is being made into a new approach guidance system for helicopters. This will be computer controlled, and will use microwave interferometers.

The R.A.E.'s interest in advanced electronic technology is illustrated by current work on semiconductor materials—particularly the development of light emitting junction devices for incorporation in display panels, and in light controlled contactless switches and variable controls for electronic equipment.

The use of a digital computer to aid the circuit designer was demonstrated. This in no way replaces creative talents of the designer, but provides him with a rigorous analysis of the circuit characteristics, allowing a deeper insight in circuit performance; the result is a reduction in development time and cost.

LOAD MEASURING SANDALS

Work undertaken at the R.A.E. is not limited exclusively to aeronautical applications. One department has been helping the medical staff at the Royal Orthopaedic Hospital in connection with the treatment of arthritic patients.

Load measuring sandals have been devised to give the medical authorities a graphic record of the load imposed on the sole and heel of the foot as the patient walks. These sandals embody a capacitive transducer in the sole which modulates the carrier frequency of the tiny transmitter housed inside the hollow heel. Signals are radiated at 100 and 150kHz (right and left foot respectively) and picked up by an inductive loop system. The two outputs from the receiving equipment are voltages proportional to foot load, and these can be displayed on a double trace c.r.t., and also used to operate a pen recorder.
MARKET PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

SHOW REPORT

It follows, that this month's Market Place should devote its pages to the R.E.C.M.F. Components Exhibition. Held once every two years, this exhibition is the Electronic Industries' largest "market place" showing British Manufactured Components and typical British skill to the World.

This year's main theme throughout the exhibition was one of quality coupled with reliability; and this being Quality and Reliability Year was reflected very successfully at practically every "stall" visited.

To those companies not mentioned and all concerned with this year's show, it is sufficient to mention that the attendance figures were up by 10 per cent and at least £25 million of deals were transacted to gauge the success of the exhibition.

One subject that was prominent throughout the show was the vast strides taken by British firms in the field of microminiaturisation. This reflects the courage and resources of British Industry, using their own money and brains, in this highly competitive field, until recently dominated by American firms backed by Government subsidies. This strangle hold seems to be finally broken.

Early applications of microelectronics was confined to the computer, missile and aircraft applications. Now they are edging their way into the consumer field. Typical of these firms is Mullard who are producing microcircuits and modules for domestic radio and audio equipment.

Now down to business and to mention just some of the many varied and some new components unveiled at the show for the first time.

SEMICONDUCTORS AND TUBES

Recently honoured for their technical achievements the Semiconductor Division of Joseph Lucas (Electrical) Ltd. are now producing a new range of "flangeless" high voltage rectifiers, potted rectifier assemblies and voltage regulators.

The 50 watt Voltage Regulators are available in 12, 13, 15, 16, 18 and 20 volt versions, with 5 per cent tolerance, but this range will be extended later in the year.

Of interest to designers is a new service being offered by SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks., whereby variants of their basic range of silicon planar semiconductors can be specified to meet individual requirements.

Emius Microcomponents Ltd., have added a new range of double-heat sink diodes to their Hughes D07 range. The new type HDS is particularly suitable for low current switching applications.

From Electrautom Ltd., there is a large range of silicon rectifier modules. All units are available with controlled avalanche or high transient voltage limits and are ideally suited for general applications.

All the large companies introduced new ranges of silicon planar transistors and all claimed greater versatility and closer operating tolerances, due to better manufacturing techniques.

With less than four months to the start of colour television programmes it was inevitable that firms should introduce components for use in sets suitable for receiving this new service.

Mullard introduced their 19in and 25in "Colourscreen" picture tubes. They are rectangular 90 degree types that do not need any protective shield and include four integral mounting lugs. The tubes need no more scanning power that earlier tubes and a new unipotential electron gun enables the neck diameter to be narrowed to only 36mm.

As no protective shield is required in front of the screen the tube is able to project beyond the front cabinet, saving costs of masks and escutcheons, and enabling new cabinet styles to be tried. Another point worth mentioning is that the 25in tubes are covered by a one year guarantee and at the time of purchasing his receiver the customer has the option of extending the guarantee for a further three years for a recommended premium of £8 0s 0d.

RESISTORS AND CAPACITORS

Electrosil Ltd. announced two new ranges of glass-tin-oxide resistors. The first is an improved TR5 triple rated range offering a lower temperature coefficient of 100 p.p.m. and better colour code legibility. The second is the NC range with 50 p.p.m. temperature coefficient.
MARKET PLACE

Morganite Resistors Ltd. and Welwyn Electric Ltd. were amongst a large number of companies who announced new types of potentiometers.

The new Welwyn potentiometer is called the “Trimultimate” and is rated at 1 watt at 70 degrees centigrade. The ohmic values vary from 10 ohms to 20 kilohms in standard values at ±5 per cent.

Silver-mica capacitors were featured by both the London Electrical Manufacturing Co. Ltd., and Erie Resistor Ltd. The main points being their small size and low voltage types, but with a good range of capacitance and stability.

STC subminiature diaphragm relays

RELAYS AND SWITCHES

This section was probably the largest and the final choice is left to personal taste and the type of delivery and after sales service obtainable. Although this is very difficult as practically all firms recognise this important facility and make every effort to meet any requirements.

The B16 miniature relay from B & R Relays Ltd., Temple Fields, Harlow, Essex, is a new component which can be interchanged with the older B14 type and can also be used in printed circuits. The B16 has nominal power ratings of 0.1 watt, and current rating of lamp at 250 volts a.c.

Oliver Pell Control Ltd., introduce two additions to the Varley miniature plug-in relay range. Supplied to operate from 6V to 250V, the contact arrangement can vary from two, four or six makes and breaks. Contact ratings can be 1 amp, 1 amp twin or 5 amp for most models.

The same firm’s a.c. solenoid switches have improved performance figures and the AT 2 L/S model, which originally had a pull of 6½lb at 6 in, now has a pull of 8½lb at 6 in.

A special feature of the reed relays from Allen Taylor Transformers Ltd., Munster Park Works, Gowan Avenue, S.W.6, is that choice of gold, tungsten, mercury, rhodium or silver contacts are available. The contacts are enclosed in hermetically sealed glass tubes filled with protective gas and situated inside the coil. The relays are available with one to six contacts, either normally open and/or changeover types.

The diaphragm relay is produced in multiple forms and, like the reed relay, the contacts are hermetically sealed in a non-oxidising gas.

The reliability, performance and small size should make the diaphragm relay a strong competitor to the reed relay, particularly in applications where the reed, due to its fragile nature, requires protection.

SOLDERING

Here many interesting developments were evident. Multicore Solders Ltd., have produced a five-core solder in the Ersin range which is so thin it can be threaded through the eye of a needle. This should be ideal for fine printed circuit work where large deposits of solder are not wanted.

Another item from the above firm was the introduction of solder pellets. These pellets are primarily intended for industry, but no doubt many “go-ahead” retailers will be stocking them in the future and readers will soon find various conditions where there use solves the particular problem at hand.

A product that seems to be “tailor” made for the amateur market is the Electrolube Freezer from Electrolube Ltd., in aerosol form. Many applications are recommended besides its primary function of tracing faults in circuits.

There were many other firms exhibiting reed switches similar to those mentioned above.

A new approach in relay design was shown by the Electro-Mechanical Division of Standard Telephones & Cables Ltd. Called “Diaphragm Sub-miniature Relays”, they make use of a flexible metallic diaphragm as the moving contact in a simple “make” action. When the coil is energised, the diaphragm is attracted to the fixed contact and makes firm contact. To ensure reliable contact the surfaces are coated with gold, typical contact resistance being 30 milliohms.

The relays are designed for printed circuit use, connections being made by soldering pins. The maximum current and voltage ratings are 0.5A and 150V d.c. or 250V a.c. Operating time is approximately 1.5ms including point bounce; release time is about 500µs.

There were many other firms exhibiting reed switches similar to these mentioned above.

A new approach in relay design was shown by the Electro-Mechanical Division of Standard Telephones & Cables Ltd. Called “Diaphragm Sub-miniature Relays”, they make use of a flexible metallic diaphragm as the moving contact in a simple “make” action. When the coil is energised, the diaphragm is attracted to the fixed contact and makes firm contact. To ensure reliable contact the surfaces are coated with gold, typical contact resistance being 30 milliohms.

The relays are designed for printed circuit use, connections being made by soldering pins. The maximum current and voltage ratings are 0.5A and 150V d.c. or 250V a.c. Operating time is approximately 1.5ms including point bounce; release time is about 500µs.

Soldering here many interesting developments were evident. Multicore Solders Ltd., have produced a five-core solder in the Ersin range which is so thin it can be threaded through the eye of a needle. This should be ideal for fine printed circuit work where large deposits of solder are not wanted.

Another item from the above firm was the introduction of solder pellets. These pellets are primarily intended for industry, but no doubt many “go-ahead” retailers will be stocking them in the future and readers will soon find various conditions where there use solves the particular problem at hand.

A product that seems to be “tailor” made for the amateur market is the Electrolube Freezer from Electrolube Ltd., in aerosol form. Many applications are recommended besides its primary function of tracing faults in circuits.
HERE COME THE CATALOGUES!

There are so many catalogues these days that at times it seems like an army on the march! Even in the field of radio and electronic components there are quite a number of productions. We are convinced that the Home Radio Catalogue really does lead the way. But judge for yourself! How does one judge the merits of a catalogue? Just ask yourself these questions: 1. Is it really comprehensive? 2. Is it well presented, well illustrated, well printed? 3. Is it backed by an extensive stock of the components listed? 4. Is ordering made clear and simple? 5. Is the service fast and efficient? The Home Radio Catalogue scores tops marks on every point. Moreover, it is wonderful value (7/6 plus 1/6 postage and packing) and every copy contains five vouchers, each worth 1/- if used as directed. Send the coupon with your cheque or P.O. for 9/- ...today!

Please write your Name and Address in block capitals

NAME
ADDRESS

HOME RADIO LTD., Dept. PE, 187 London Road, Mitcham, CR4 2YQ, Surrey

NEW RANGE U.H.F. AERIALS FOR BBC 2 (625) line transmissions

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrays, 2 element, 35/-, 7 element, 55/-, 11 element, 87/-.

Wall Mounting with Cranked Arm, 7 element, 60/-.

Mounting Arrays, Complete, 7 element, 42/-, 11 element, 55/-.

P.O. for 9/-.

TABLE AERIALS

BBC 2 I.T.V. FM

Low Cost

CROSSOVERS

(Dept. P.E.)

K.V.A.

ELECTRONICS

27 Central Parade, New Addington, Surrey

Lodge Hill 2266

LODGE TRADING CO.

SPEAKER UNITS

12" Hi/Fi 25 watt 15 ohm

Heavy Duty (ELAC) £6.6.0

12" Guitar 25 watt 15 ohm

Heavy Duty (ELAC) £6.6.0

12" 15 ohm small magnet

8,000 Lines (R & A) £2.5.0

10" Ceramic 11,000 Lines 15 ohm or

3 ohm (ELAC) £1.19.6

10" 4" Ceremic 11,000 Lines 15 ohm or

3 ohm (ELAC) £1.19.6

8" Ceramic 11,000 Lines 15 ohm or

3 ohm (ELAC) £1.17.6

8" small magnet 8,000 Lines 3 ohm only

(ELAC) £1.5.0

7" 4" small magnet 7,000 3 ohm only

(CELESTION) £1.7.6

3" Square 4 Hole Fixing 25 ohm only

(PLESSY) £1.2.5

AERIALS

CAR AERIAL WING FIXING 3 SECTION £1.5.0

CAR AERIAL LOCKING/DIS-APPEARING 4 SECTION £1.17.6

CAR AERIAL WINDOW FIXING £1.5.0

CAR AERIAL GUTTER FIXING £1.8.3

TABLE TOP T.V. AERIALS

BBC I.T.V. FM £1.5.0

TABLE TOP T.V. AERIALS £2.9.0

BASIC TELEVISION

New Model Illustrated Course of Elementary Technician Training. A Common Core Book

Pr. 1. 21/- Tech. P. Postage 1/-

THE RECORD PLAYER BOOK, by P. J. Guy. 30/- Postage 1/-

SILICON CONTROLLED RECTIFIERS, by A. Lytel. 21/- Postage 1/-

BASIC THEORY & APPLICATION OF TRANSISTORS, U.S. Dept. of Army. 10/- Postage 1/-

TV FAULT FINDING 405, 62/- a Data Publication. 8/6. Postage 6d.

SHORT WAVE LISTENING, by J. Vastenhoud. 12/6. Postage 1/-

MATHEMATICS FOR RADIO AND ELECTRONICS TECHNICIANS, by I. F. Bergtold. 17/- Postage 1/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books

19-21 Praed Street London, W.2

Phone: Paddington 4185

Closed Saturday 1 p.m.
BUILD YOURSELF A QUALITY TRANSISTOR RADIO—GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

THE MAGNIFICENT ROAMER

Seven waveband portable and car Radio with a super specification giving outstanding performance!

- 7 fully tunable wavebands—MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band.
- Extra Medium waveband provides easier tuning of "pop" stations.
- Built in ferrite rod aerial for Medium and Long Waves.
- 5 Section 22 in. chrome plated telescopic aerial for Short Waves—can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial.
- Powerful push-pull output.
- 7 transistors and two diodes including Philco Micro-Alloy R.F. Transistors.

Famous make 7 x 4 in. P.M. speaker, rich-toned volume.
- Air space ganged tuning condenser.
- Separate on/off switch, volume control, wave change switches and tuning control.
- Attractive leather look case with hand and shoulder straps. Size 9 x 7 x 4 in. approx.
- First grade components.
- Easy to follow instructions and diagrams make the Roamer a pleasure to build with guaranteed results.

Total building costs £5.19.6. P. & P.

Parts price list and easy build plans 3/- (FREE with kit).

RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD
Telephone: Bedford 52367
When discontinuity, instability, intermittenence or drift occurs in a circuit, it is often the result of a temperature rise in some thermally sensitive component such as a transistor, capacitor or resistor. By applying the Freezer to suspect components one at a time whilst the circuit is operating, the nature of the fault will change, once the faulty component is sprayed, due to the rapid temperature drop. Similarly if a dry joint or faulty connection is suspected the symptoms will again change. It is obvious that one of the most common mistakes or faults that occurs when building apparatus is the damage caused by excessive heat from the amateur’s soldering iron, caused by conductance of heat through the component leads. Transistors, diodes, pick-up cartridges, etc. are typical devices in this class. But by applying the Freezer before soldering ensures adequate protection for the components.

ROUND-UP

Many firms had new ranges of cabinets on show and West Hyde Developments Ltd., demonstrated their standard printed circuit board and the ease with which they can be installed in their Contil instrument cases. Vero Electronics Ltd. also produce portable cases. Called the “Chilworth” they are designed to house standard 7"in and 10"in boards.

Bulgin had their usual large assortment of control knobs as well as their Security Alarm System on display.

There were many new power supplies and just one of these was the Series 30 units from A.P.T. Electronic Industries Ltd., Chertsey Road, Byfleet, Surrey. The Series 30 models cover any preset output between 0 and 500V at various current ratings up to 10A at low voltages, and 100mA above 350V. They can also be supplied as variable voltage units.

Both Sifam Electrical Instrument Co. Ltd., and Taylor Electrical Instruments showed new meters, as did many other firms.

The “Liliput” series of transformers from Gardeners Transformers Ltd., Somerford, Chelmsford, Hampshire, are designed for use with semiconductor circuits at low voltages (normally below 100V peak). An exception to this is the SCR Trigger Transform Series where higher secondary voltages are required. Typical circuit uses are: converter/inverter circuits; output stages; a.f. and wide band communication a.f. drivers; a.f. smoothing and pulse circuits.

In addition to metal film, high stability carbon and wirewound resistors, Painton & Co. Ltd., Kingsthorpe, Northampton, displayed new moulded subminiature r.f. chokes. Type C30M is rated at 0-17 watt at 90 degrees centigrade up to 120µH and 0-15 watt over 120µH. The inductances available being from 0-15 microhenries to 1,000 microhenries.

Wolsey Electronics gave details of their new v.h.f./u.h.f. set-top aerials, designed to cover all television channels in bands 1, 3, 4 and 5.

Two new miniature d.c. motors, type AB.100 and AB.2000 were shown by A.B. Metal Products Ltd., 119/127, Marylebone Road, London, N.W.1.

The 3-pole ungrounded AB.1000 produces 4 to 10 watts output at 3,500 r.p.m. approximately. The operating voltage range is 13-5V nominal at 250mA.

The AB.2000 is similar to the AB.1000 but the rated speed is 5,000 r.p.m. The operating current is 1-8A.

EMI Sound Products Ltd., Components Division, Blyth Road, Hayes, Middlesex, are another firm who produce a vast variety of small electric motors.

The motors from both firms can be used for such applications as: car screen washers; radio and television tuning motors; film slide projectors and miniature R/C installations.

The “Stumpi” low voltage connectors were featured by Thorn-Bendix Ltd., Great Cambridge Road, Enfield, Middlesex. The connectors are designed for general purpose use and available with pin or socket contacts rated at 5, 20 and 40A.

Mallory Batteries Ltd. demonstrated the versatility of their mercury and alkaline batteries for use in hearing aids and cine camera drives.

The many uses of Sellotape insulating tape was the theme of Sellotape Electronics Ltd., Chelmsford Road, Enfield, Middlesex. The connectors are another firm who produce a vast variety of small electric motors.

The motors from both firms can be used for such applications as: car screen washers; radio and television tuning motors; film slide projectors and miniature R/C installations.

The “Stumpi” low voltage connectors were featured by Thorn-Bendix Ltd., Great Cambridge Road, Enfield, Middlesex. The connectors are designed for general purpose use and available with pin or socket contacts rated at 5, 20 and 40A.

Mallory Batteries Ltd. demonstrated the versatility of their mercury and alkaline batteries for use in hearing aids and cine camera drives.

The many uses of Sellotape insulating tape was the theme of Sellotape Electronics Ltd., Chelmsford Road, Enfield, Middlesex. The connectors are designed for general purpose use and available with pin or socket contacts rated at 5, 20 and 40A.
Field Day Time

Now is the time a young man’s fancy turns to thoughts of lugging radio transmitting equipment to some inaccessible hilltop for the purpose of participating in a contest. For now is the time of the great outdoors for the amateur transmitting enthusiast, interspersed with dices for the dry inside the operating tent as the next rain squall booms overhead.

In other words, whatever the effort of setting up portable transmitting stations out in the open, and whatever the vagaries of the British weather, there’s no deterring the many hundreds who enjoy this sport. For sporting chance indeed governs much of what goes on when field days come round. Station is pitted against station—and the general feeling is “may the best one win”.

May until September is the season of outdoor radio, ushered in by what is officially known as the 144MHz Portable Contest during the first weekend of May, and brought to a grand finale by V.H.F. National Field Day in the first weekend of every September.

This is not to suggest that all field days are v.h.f. ones. Yet it does happen to be the case that the “very high” offers special attractions for portable operation both in respect of aerials, which being small and light can be erected high and in the clear, and in respect of equipment, which may be modest in physical size and ideal for portability for the very good reason that the high gains achieved by directional aerials call for only a nominal output from the associated transmitter.

Perhaps because of the ease with which a v.h.f. station may be set up in a field or operated from vehicles, more portable events are organised for the metre wave bands than for any other. Yet the hardest annual transmitting contest of all is one that utilises what are sometimes facetiously called “the d.c. bands”—

or more accurately the h.f. bands in contradistinction to the v.h.f. ones. This event is National Field Day, initiated by the Radio Society of Great Britain as long ago as 1933, traditionally held during the first weekend of June, and representing the climax of many months of planning and practise by clubs and groups throughout the land.

Six Band Operation

For National Field Day, local radio groups customarily enter two stations sharing operations on the six h.f. amateur bands. “Which stations for what bands?” is a question that calls for an assessment of operating tactics to be adopted on The Day. Certain groups and clubs prefer to allocate the three lower frequency bands of 1.8MHz, 3.5MHz and 7MHz to one station, and the higher frequency bands of 14, 21 and 28MHz to the second station, for the practical reason that an aerial cut for one of the three can be made to “fit” the other two reasonably well.

But it happens to be the case that the lower frequency bands offer at certain times a greater scoring potential than the higher frequency ones—yet you cannot operate one station on two bands at the same time! So the pay-off tactic is to allocate one of the higher scoring bands to the second station so that both will be kept plugging away hard at it most of the time. To do this complicates the aerial situation. You simply can’t win! Yet the object of entering National Field Day is to do precisely that!

Radio Logistics

Well before N.F.D. Weekend the permutations of bands and aerials are sorted out by intending participants as part of the major planning effort which every National Field Day demands. A complicated exercise in logistics is performed in order to provide the aerials already mentioned, along with the transmitting and receiving equipment into which they will work; the power supplies—some of them far from portable for a so-called “portable” event; the tented accommodation (“Stations must be operated from tents” has long been a regulation), and the furnishings for the tents. Further tents for those who will sleep at the site. As for the personnel themselves: the Morse-men of fortitude who will keep two stations active on six bands for 24 hours non-stop; if there is any “most important component” on Field Day, it is they.

A scene repeated a hundredfold during the annual National Field Day transmitting contest: an operator sending swift Morse on an automatic key, a second man logging. And grass growing up through the base of the tent
DE X(UX PLAYERS

4-Speed Mono Speakers 2-dr
Cabinets 17 1/2 x 15 in. High
Quality Amplifiers ready for
Volume and Bass controls.
Special instructions at
30 minutes, only 5 watts.
18 months TO

BUILD YOURSELF

Post: DE X(UX PLAYERS

9 volt Battery

Operated by
Player Deck

On all automatic stop. Plays any size record. Complete
with mono 173/4 x 11 and stylus. $9 6/ & P.

(Width of Box) 6 3/4 x 2 3/4 in.

RETURN OF POST DESPATCH

Baker 12 in. Major

The ideal High Fidelity
Loudspeaker for big output
at home and use abroad.
Built in high efficiency
for power over.
Voice CoD impedance
20 watts. Basso
driven, 1000 watts.
14000 watts.
Response 80-45,000 Hz.
Max. output
At least, overall.
15 in. overall depth
Price $8 Free

CABINET & BASES

BASE, LEAD AND RHYTHM GUITARS

‘Group’ 25 ‘Group’ 35

10in. 5gns.

15in. 18gns.

18 in. 25gns.

20 in. 35gns.

24 in. 52gns.

QUALITY TRANSFORMERS

Baker 18 in. MAJOR

Tape Splicer £11 9 6

3-WATT QUALITY AMPLIFIER

4 Transistor

Built

with 3 watt push

with

いっぱん

FREE BAKING

CABINET & BASES

BASE, LEAD AND RHYTHM GUITARS

‘Group’ 25 ‘Group’ 35

10in. 5gns.

15in. 18gns.

18 in. 25gns.

20 in. 35gns.

24 in. 52gns.

QUALITY TRANSFORMERS

Baker 18 in. MAJOR
AT FARNBOROUGH

Most of us associate Farnborough with flying displays, and the opportunity to see at close quarters the latest products of the British Aircraft Industry. On such occasions the tarmac and the sky are the two focal points for the visitors' eyes, while the great complex of buildings which comprise the Royal Aircraft Establishment is a barely distinguishable backcloth to the main proceedings.

But all this was changed for a few days just recently when the permanent establishment is a barely distinguishable great complex of buildings which points for the visitors' eyes, while the tarmac and the sky are the two focal industries.

The buildings themselves afford an aesthetically and interesting side study for any architect;
turally and historically minded visitor meandering from one department to another.

Even more varied in character than the buildings, are the activities they house. So far as electronics is concerned, the R.A.E. would appear to be a real forcing ground for research and development in all aspects of the technology. There would seem to be hardly any branch of electronics which is not making some contribution to the progress of air and space travel, whether in the testing of structural materials, recording aircraft behaviour during flight, or in navigation and communication aids.

ELEMENTARY, DEAR WATSON

Much of the research at the R.A.E. is, of course, directed towards making aircraft as safe as possible, and able to withstand any hazards encountered in flight. But accidents do unfortunately happen, and special attention is given to the development of techniques for investigating and analysing wreckage from crashed aircraft.

Significant information can be obtained from the examination of simple items such as cockpit indicator lamps and radio valves. This was illustrated by an exhibit where a fibroscope had been inserted into wreckage and a magnified view of a warning lamp obtained on a closed circuit TV monitor. This picture showed that the lamp filament was unbroken, but distorted. From this it can be deduced that the lamp was on at the time of the crash. If it had been off, the cold filament would either have sprung back or broken as a result of the impact.

Similar evidence can be derived from a broken radio valve. A discoloured valve heated filament will suggest that the valve was "on" at the time of accident, for a cold filament never oxidises.

Although rather elaborate flight recording devises are fitted nowadays to many aircraft, it seems there is still scope for intelligent detective work by the technician working amongst the recovered wreckage.

One point does occur to me however. The replacement of valves by semiconductors, and (in the not too distant future) the replacement of filament lamp by luminous semiconductors, will remove this particular source of evidence concerning the state of operation of airborne equipment. Does the semiconductor provide any similar tell-tale information for the investigators?

It seems that the rugged character of these devices precludes their acting as silent witnesses, as do their thermionic counterparts. But this attribute of the semiconductor will of course greatly enhance the reliability of the black boxes—or flight recorders.

SET-TOP BATTLE

Improved sensitivity of modern receivers and the development of efficient ferroxcube rods have made the external aerial almost extinct, so far as normal radio broadcast reception is concerned. Even for television reception the drift is towards simple, inexpensive set-top aerials. No matter that the results are often far from perfect, the general viewing public is well satisfied, it seems.

Now with colour TV on the way the broadcasting authorities and the receivers manufacturers are a little concerned—to put it mildly—about this reticence on the part of the public to invest in good efficient roof top aerial systems.

I reckon what is needed is a publicity drive to re-educate the public on this matter. How more ludicrous a situation can you have than a person paying out £250–£300 for a colour receiver and then trying to get by with a thirty bob toast rack stuck on top of the set?

All praise then to Belling Lee who have announced their intention to cease production of all u.h.f. set-top aerials. And "thumbs down" to their competitors Antiference who have decided to pursue the opposite course.

In support of this policy, Antiference make the following pronouncement: "Furthermore, we do not consider that the Aerial Industry can or should dictate to Trade or Consumer what standard of reception is acceptable, since this is a matter of personal choice and experience and varies from one individual to another."

Some people might consider it part of the aerial industry's responsibility to lead and educate the public in such technical matters.

Leave it to the customer indeed! Why bother to purchase an aerial at all if a screwdriver stuck in the aerial socket gives some kind of picture. After all, so we are told, the customer is the sole arbiter of picture quality!
LOW VOLTAGE NEON INDICATOR

The smallest indicator lamps generally available require currents in the order of 40mA and this can be prohibitive in battery equipment. Small neon lamps are easily obtained, however, with (or without) limiting resistors of 1/8 to 1/2 watt rating and giving reasonable light output for only a few microamps current at 100V plus.

The use of a "ringing choke" converter allows such lamps to light from currents as low as 4mA (at 6V) dependant upon the efficiency of the converter—the one illustrated draws 9mA at 12V and operates down to 5V.

The transformer can be wound on a variety of formers, success having been achieved even with a piece of ferrite 3/16 x 1/2 in. L2 should have an inductance approximately one-fifth of that of L1 and tunes with C1 at frequencies up to 1MHz depending upon the core material.

L3 should be wound to produce at least 150V to ensure reliable striking.

MERCURY SWITCH ALARM

With reference to the Car Burglar Alarm System by M. J. Bruce described in the February issue, it has two disadvantages. First, once the alarm has been set off, maybe accidentally by someone leaning on the car, it can’t be stopped unless the owner of the car is present. Second, with the car in use and the alarm switched off, the mercury switches are still in circuit. If the car goes over a bumpy road the interior light flashes on and off accordingly.

One way of overcoming the first problem is to fit some form of time device which would allow the horn to blow for, say, 30 seconds, switch off and re-set the alarm. A foolproof alarm system is shown here. Once the alarm is set off it will sound the horn for about 30 seconds (depending on values of C and R), switch off and re-set automatically.

When SIa or b is operated, capacitor C charges to the full potential of the supply (12V) causing a negative voltage to be applied to the base of TR1. The collector current energises RLA therefore closing contacts RLA1 sounding the horn. When the switch S1 is opened again C discharges through R and the base-emitter junction of TR1. After a period, C discharges sufficiently to cause a reduced collector current to flow through the relay coil. The relay now de-energises and the time cycle is now complete.

A. Shaw,
Bolton,
Lancashire.
This circuit was primarily designed to pump water automatically out of the car inspection pit in my garage, in which there was a constant water seepage. It may be adapted to control water levels in tanks or small ponds to prevent overflow.

Current drain is quite small and dry batteries will last well over 12 months. With relay RLA energised the current drain is about 10-15mA. Standby current drain is only a few microamps.

Probe No. 1 is set to maximum water level required. Probe No. 3 is set to minimum water level required. Probe No. 2 is set about ½in below probe No. 3.

When the water level increases it reaches probes 2 and 3, but due to the relay contacts being in the open position there is no current flow from the negative line to the base of TR1 and so RLA remains de-energised. The water continues to rise until it reaches probe 1.

This then causes a current flow from the negative line to TR1 base; the relay then energises. Both sets of relay contacts close, one set switches on the water pump and the other set connects the negative line to probe 3.

As the water level starts to fall it leaves probe 1 and continues to fall until it leaves probe 3, the relay then trips out and the water pump stops. The whole process is repeated as soon as the water level reaches probe 1.

Any double-pole relay which will pull in at 10mA or less is suitable.

The coil resistance of the relay is 700 ohms; heavy duty contacts are desirable. The probes are made from 10 s.w.g. tinned copper wire, 12in long each. A suitable water pump is obtainable on the surplus market.

The control unit has been in use for about 16 months without any attention whatsoever and still works perfectly.

F. J. Brown, Wirral, Cheshire.

The following idea may be useful to your readers interested in optical communication. In the transmitter two bulbs are driven in push-pull by the signal to be sent. Each must have a polarising current in it to prevent frequency doubling and this might be obtained from the standing current in a class-A amplifier. A piece of polaroid covers each bulb and these are orthogonally polarised. The combined light output will appear to be steady to an observer. The receiver has two similar polaroid filters in front of two photo-transistors. The output of the transistors is applied in push-pull to the input of an audio amplifier.

It will be seen that a pulse of randomly polarised light will give no audio output as the push-pull input cancels the two photo-transistor outputs. This gives immunity from interference.

The transmitter is apparently a steady light and can only be received by a receiver with a polarised screen. A suggested output configuration for the transmitter is shown below.

D. J. Summer, Horsham, Sussex.
The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3. 5. 0 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed “Lloyds Bank Ltd.” Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

SERVICE SHEETS

SERVICE SHEETS for all makes Radio, TV, Tape Recorders, 1925-1967. Prices from 1/-
Catalogue 6,000 models. 2/6. Free fault-finding guide with all sheets. Please send stamped addressed envelope with all orders/queries. HAMILTON RADIO, Western Rd., St Leonards, Sussex.

RADIO TELEVISION, over 4,000 Models. JOHN GIBB

SERVICE SHEETS
4/- each, plus postage.
We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service. To obtain the Service Sheet you require, please complete the attached coupon:
From: ..
Name: ..
Address: ..

To: S.P. DISTRIBUTORS
35/36 Great Marlborough Street, London, W.1
Please supply Service Sheets for the following:
Make: ..
Model No.: ..
Name: ..
Address: ..

EDUCATIONAL

ALDERMaston COURT POSTAL TRAINING for R.E. (Eng.) Part I. AMME.R.E., A.M.S.E., City & Guilds, G.C.E., etc. prepares you privately for high pay and security as Technician or Technician. Thousands of passes. For details of Exams and Courses in all branches of Engineering, Building, Electronics, etc. (including latest information on C.Eng.), write for 132-page Handbook—FREE. Please, state interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 129K), Aldermaston Court, Aldermaston, Berks.

TELEVISION SERVICING
RADIOTELEGRAPHY
RADAR MAINTENANCE
COMPUTER TECHNIQUES

Full and Part-time Training Courses

Apply:—Director, British School of Telegraphy, 20 Poynders Road, Earls Court, London, S.W.5

HOME STUDY COURSES in Practical Electronics. Free Brochure without obligation from: BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

STUDY RADIO, TELEVISION & ELECTRONICS with the world’s largest home-study organisation. I.E.R.E., City & Guilds, R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE prospectus stating subject to I.E.R.E., Interiext House, Parkgate Road (Dept. 577), London, S.W.11.

FOR SALE

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear—lots of unusual stuff. This Cat. is free for the asking. K. K. R. W. HISTON (Dept. CPB), New Mills, Stockport

STUDY RADIO, TELEVISION & ELECTRONICS for trained men. Free courses. Also practical courses with equipment, Letters to send for prospectus. J. & E. BRmultiply, Box 9, C.P.O., Tunbridge Wells, Kent.

RADIO CARSTAIRS 10 fora 10/- Guaranteed top quality, ex-equipment. Mixed selection of plugs, sockets and fittings. Post free. J. & M. T. TURNER, 167 Stanton Road, Shildon, N.

MISCELLANEOUS

CONVERT ANY TV SET into an Oscilloscope. Diagrams and Instructions, 12/6. REDMOND, 42 Dean Close, Portsad, Sussex.

HEATHKIT

The World’s Largest Manufacturer of ELECTRONIC KITS

We invite you to visit our showroom at: 233 TOTTENHAM COURT RD., LONDON, W.1 Telephone 01-636 7349

Send for free catalogue Dept. TC.6

HARMERITE

HAMMER PATTERN MAKING EQUIPMENT FOR PANELS, METALWORK

TRIAL TIN (COVERS) 3/6 + 9d. E AIR DRYING, E JUST BRUSH ON ETHYLENE OIL, WATER, Etc. 2 oz. tins 3/6. Very Special prices for larger sizes. 4 pint, 7/6; 7 oz, 10/6. Tins, Tins, Tins, Tins. Orders up to 6; 6d.; up to 10; 1/-; over 10; 2/6. Colours: Blue, Silver, Black or Bronze. Return of surplus. Monday to Friday.

FINNIGAN SPECIALITY PAINTS (PE) Mickle Square, Stockfield, Northumberland Tel. Stockfield 2280

FOR SALE

100 PAGE Illustrated catalogue No. 17 of Government and manufacturers’ electronic and mechanical surplus, also a complete new section of the latest semi-conductors and miniature components, includes a credit voucher for 2/6. Send for your copy now. Price 3/- Post Free. ARTHUR SALLIS (RADAR CONTROL LTD), 85 North Road, Brighton.

MORSE MADE EASY!!

FACT NOT FICTION. If you start now you will be reading and sending Morse within a month (normal progress to be expected). Using scientifically prepared 3-speed records you automatically learn to recognise the code RHYTHM without translating. You can’t help it, it’s as easy as learning a tune. 19 W.P.M. in 4 weeks guaranteed.

For details and course C.O.D. ring B.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to:

OSHER, 48 GREEN LANE, PETLEY, DERBY

CLEARANCE.

Unfinished radios, 6 Transistor, MW and LW. Loudspeakers, Battery, 6/-, £2, 10/-.

P. paid, R. N. HINGSTON, 41 Norwood Ave, Belfast, 4.

HEATHKIT

The World’s Largest Manufacturer of ELECTRONIC KITS

We invite you to visit our showroom at: 233 TOTTENHAM COURT RD., LONDON, W.1 Telephone 01-636 7349

Send for free catalogue Dept. TC.6

CALL OR SEND for list from the most interesting shop in Lancashire. Electrical, Mechanical and Electronic Goods. ROGERS, 31 Nelson Street, Southport.
MISCELLANEOUS (continued)

ELECTRONIX LIMITED

ANALOGUE AND DIGITAL COMPUTER KITS

Jobs galore for Computer Trained men at higher than ever salaries! Now is the time to learn FIRST HAND what makes the giant computers tick!

Analogue Computer 1 and Digi-Comp 1, designed to meet the needs of people with little or no knowledge of computers helps you to do that. No scientific background needed—if you can read you can build and master the first fundamentals of computer technology in next to no time.

Desk Top A.C. is battery operated and has a fully transistorised Audio Sinewave Generator. It computes heights of objects, solves mathematical problems, teaches fundamental theory of Analogue computers, measures unknown resistors, capacitors and inductors with an ELECTRONIC MEASUREMENT BRIDGE. It can handle many different problems in arithmetic, geometry, trigonometry, algebra, mechanics, electricity, electronics, heat, light and sound. The further you advance in your knowledge, the more applications you will find for the computer. Supplied complete with all parts, hardware and accessories, including batteries, large pictorial wiring diagrams and clearly written manual. Ingenious patented design requires no soldering. Beautifully engineered and fully guaranteed for one year. Minimum Retail Price £10.14.6. Special Introductory Offer £6.19.6. Incl. p. & p.

Digi-Comp 1. This remarkable teaching aid is the first of its kind. It is a binary computer kit that anyone can assemble and programs and learn first hand about the operations hidden in the circuits of a giant computer. They can see while they carry out a total of 15 experiments how a computer adds, subtracts, shifts, complements, multiplies and divides. An excellent science and maths project for classroom demonstrations or home-study. Digi-Comp 1 is a highly successful and revolu- tionary learning concept in teaching the ABC of computers. Supplied complete with 32-page Instruction Manual and large pictorial diagrams for assembly (about 1-2 hours). For those who want to know more about Boolean Algebra, Programming, computer logical design, use of truth tables and flow charts and the detailed mathematical derivations of the programmes in the Digi-Comp 1 Instruction Manual, an Advanced Text Book has been prepared. Digi-Comp 1, ONLY 59/- incl. p. & p. Advanced Text Book 12/- incl. p. & p.

SITUATIONS VACANT (continued)

RADIO TECHNICIANS

A number of suitably qualified candidates are required for permanent and pensionable employment (mostly in Cheltenham, but from time to time there are some vacancies in other parts of the U.K. including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer “O” Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19-£812, at 25-£1,046 (highest age pay on entry) rising to 1/1/68 to 19-£828, at 25-£1,076.

Prospects of promotion to grades in salary range £1,159-£1,941. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:

Recruitment Officer (RT)

Government Communications Headquarters
Oakley

Prior's Road

CHELTENHAM, Glos.
TAPE RECORDERS, TAPES, ETC.

TAPES TO DISCO—using finest professional equipment—45 r.p.m. 18/-, S.A.E. leaflet, DEROT, High Bank, Hawk Close, Carthorpe, Llanes.

20% CASH DISCOUNT on most famous makes of Tape Recorders, Hi-Fi equipment, Cassettes, etc. Join England’s largest Mail Order Club now and enjoy the advantages of bulk buying.

Send 9d. stamps for complete lists Transistors, Rectifiers, Amplifiers, Switches, etc.

COMPONENT BARGAINS

Silicon Bridge Rectifiers 1A 400 P.I.V. encapsulated in cylinder 1cm by 1cm. 50p each, 20 for 1gns.

Unijunction transistors 2N2464. 12/-, 2N2935 high-gain NPN silicon planar 250 min. 470 max. 2N2738, 2000 P.I.V. 8/9.

2N2713 NPN with low saturation voltage and high gain up to 200, P.I.V. 50, 7/6. 2N1889 for switching at medium power 3/8.

2N3705 B/E. 3/8 each, 20 for 1gns.

SCRs 400 PIV, 1A....9/6. SCR 9/6.

Cirkit No. 3. 14/6.

Postage and packing 6d.

NELSO ELECTRONICS

(Dept. P.4), 53 GROSVENOR PLACE NEWCASTLE UPON TYNE 2

RECEIVERS AND COMPONENTS (continued)

OC71s 2/61 Send for free lists of our components and acromatics. C.W.O., P. A. P. 8d.

Watford, Herts.

R & R ELECTRONICS

51 Burnley Road, Rawtenstall Rossendale, Lancs Tel: Rossendale 3152

Polymeters: Long life, low noise, 1W @ 70°C, 5A 1/2, 5A, 10A 1/3, 300V 1/3, 600V 2/9. Logarithmic: 2W @ 25°C, 100W 1/3, 1,000W 1/2.

Plug: 1/8, 1/4, 1/2, 3/4, 1, 1/2, 2, 3, 4. Jack Plugs (screened): Heavily chromed 1/2.

Transistor Mounting Pads: TOS and TO18 1d. each.

C.W.O. & P. l/11.

MINIMUM ORDER VALUE 5/.

ADROIT ELECTRONICS

Lord Alexander House Waterhouse Street Helmepstead, Herts.

SILICON PRODUCTS

RECEIVERS AND COMPONENTS (continued)

OC71s 2/61 Send for free lists of our components and acromatics. C.W.O., P. A. P. 8d.

Watford, Herts.

R & R ELECTRONICS

51 Burnley Road, Rawtenstall Rossendale, Lancs Tel: Rossendale 3152

Polymeters: Long life, low noise, 1W @ 70°C, 5A 1/2, 5A, 10A 1/3, 300V 1/3, 600V 2/9. Logarithmic: 2W @ 25°C, 100W 1/3, 1,000W 1/2.

Plug: 1/8, 1/4, 1/2, 3/4, 1, 1/2, 2, 3, 4. Jack Plugs (screened): Heavily chromed 1/2.

Transistor Mounting Pads: TOS and TO18 1d. each.

C.W.O. & P. l/11.

MINIMUM ORDER VALUE 5/.

ADROIT ELECTRONICS

Lord Alexander House Waterhouse Street Helmepstead, Herts.

SILICON PRODUCTS

RECEIVERS AND COMPONENTS (continued)

OC71s 2/61 Send for free lists of our components and acromatics. C.W.O., P. A. P. 8d.

Watford, Herts.

R & R ELECTRONICS

51 Burnley Road, Rawtenstall Rossendale, Lancs Tel: Rossendale 3152

Polymeters: Long life, low noise, 1W @ 70°C, 5A 1/2, 5A, 10A 1/3, 300V 1/3, 600V 2/9. Logarithmic: 2W @ 25°C, 100W 1/3, 1,000W 1/2.

Plug: 1/8, 1/4, 1/2, 3/4, 1, 1/2, 2, 3, 4. Jack Plugs (screened): Heavily chromed 1/2.

Transistor Mounting Pads: TOS and TO18 1d. each.

C.W.O. & P. l/11.

MINIMUM ORDER VALUE 5/.

ADROIT ELECTRONICS

Lord Alexander House Waterhouse Street Helmepstead, Herts.

SILICON PRODUCTS

RECEIVERS AND COMPONENTS (continued)

OC71s 2/61 Send for free lists of our components and acromatics. C.W.O., P. A. P. 8d.

Watford, Herts.

R & R ELECTRONICS

51 Burnley Road, Rawtenstall Rossendale, Lancs Tel: Rossendale 3152

Polymeters: Long life, low noise, 1W @ 70°C, 5A 1/2, 5A, 10A 1/3, 300V 1/3, 600V 2/9. Logarithmic: 2W @ 25°C, 100W 1/3, 1,000W 1/2.

Plug: 1/8, 1/4, 1/2, 3/4, 1, 1/2, 2, 3, 4. Jack Plugs (screened): Heavily chromed 1/2.

Transistor Mounting Pads: TOS and TO18 1d. each.

C.W.O. & P. l/11.

MINIMUM ORDER VALUE 5/.

ADROIT ELECTRONICS

Lord Alexander House Waterhouse Street Helmepstead, Herts.

SILICON PRODUCTS

BARGAINS IN SEMICONDUCTORS - ALL TYPES

RESISTORS
- 1 watt carbon film 5%.
- All preferred values in stock from 10 ohm up to 1 MΩ.
- Send S.A.E. for free sample.

CAPACITORS
- Mullard Miniature Metalised Polyvzlar P.C. Mounting all 150 v d.c. working.
- .01µf, .02µf, .03µf, .05µf, .1µf, .25µf, 1µf, 2µf, 3µf, 4.7µf, 10µf, 15µf, 22µf, 33µf, 47µf, 100µf, 220µf, 330µf, 470µf, 1,000µf.
- Please include list of postage and packing on all orders under £1.
- Dept. P.E.3
- BRENSAL ELECTRONICS LTD.
- CHARLES STREET, BRISTOL 1

SPEAKERS
- 8in and 10in, 3 ohm 10/.
- Ex brand new equipment. Many other sizes in stock.
- P. & P. 1/.
- BARRY, HARCH, 175 Newbury Gdns., Stoneleigh, Surrey.

EXCLUSIVE OFFER COMPUTER MODULES
- **4 INPUT NOR GATE** 6-6
- **FLIP FLOP** 15-0
- **LAMP & RELAY DRIVER** 9-0
- **9" x 6" VEROBORO 0-1"** 25-0
- **CIRCUIT BOARD** 7-6

BUILD COMPUTER CIRCUITS, ADDERS, COUNTERS, GAMES 2/5 P.P. C.W.O.
- **MODULES** 88-90 PALL MALL LEIGHTON-ON-SEA, ESSEX

NEW CROSS RADIO 8 OLDHAM ROAD, MANCHESTER 4

RESISTORS
- 1 watt carbon film 5%.
- All preferred values in stock from 10 ohm up to 1 MΩ.
- Send S.A.E. for free sample.

CAPACITORS
- Mullard Miniature Metalised Polyvzlar P.C. Mounting all 150 v d.c. working.
- .01µf, .02µf, .03µf, .05µf, .1µf, .25µf, 1µf, 2µf, 3µf, 4.7µf, 10µf, 15µf, 22µf, 33µf, 47µµf, 1,000µf.
- Please include list of postage and packing on all orders under £1.
- Dept. P.E.3
- BRENSAL ELECTRONICS LTD.
- CHARLES STREET, BRISTOL 1

SPEAKERS
- 8in and 10in, 3 ohm 10/.
- Ex brand new equipment. Many other sizes in stock.
- P. & P. 1/.
- BARRY, HARCH, 175 Newbury Gdns., Stoneleigh, Surrey.

EXCLUSIVE OFFER COMPUTER MODULES
- **4 INPUT NOR GATE** 6-6
- **FLIP FLOP** 15-0
- **LAMP & RELAY DRIVER** 9-0
- **9" x 6" VEROBORO 0-1"** 25-0
- **CIRCUIT BOARD** 7-6

BUILD COMPUTER CIRCUITS, ADDERS, COUNTERS, GAMES 2/5 P.P. C.W.O.
- **MODULES** 88-90 PALL MALL LEIGHTON-ON-SEA, ESSEX

NEW CROSS RADIO 8 OLDHAM ROAD, MANCHESTER 4

NEW CROSS RADIO 8 OLDHAM ROAD, MANCHESTER 4

L.S.T. COMPONENTS
- 23 NEW ROAD BRENTWOOD ESSEX
PHOTOELECTRIC KIT

Build 12 EXCITING PHOTOELECTRIC DEVICES on a Printed Circuit Chassis

PhotoElectric built-up alarm

Also Essential Oats. Circuits and Plans for building ELECTRIC PROJECTS.
(1) Simple PhotoSwitch.
(2) Modulated Light Alarm.
(3) Multi-Channel Alarm.
(4) Relay-Less Alarm.
(5) Warning-Time Alarm
(6) Closed-Loop Photoelectric Alarm.
(7) Projector Lamp Stabilisers.
(8) Electronic Projector Modulator.
(9) Main Power Supply Unit.
(10) Automatic Car Packing Lamp Controller.
(11) Super Sensitive Relay.

DOUBLE REFLEX, 80in., Postage Stamp Radio, 1.6 X 70 X .70 X 55in., Wristwatch Radio, 16 X 8 X 8.5 X 1.5in., Ring Radio, 4 Amplifiers.

Perpetual Motion Machine, 4 Pocket Transistor Missile, Electronic Man/Woman Discriminator (required).

Four full-colour projects and Plans for building 12 PHOTOELECTRIC PROJECTS.

PHOTOELECTRIC,熟化 22

NEW HI-GAIN EXPORT VHFDMS AERIALS FOR MONO STEREO

RECEIVERS AND COMPONENTS (continued)

SILICON TRANSISTORS, ETC

High Power, 5W-115W

Vbf. Ic. Pd. Each

2N3053 40 0.5A 5W 11-40... 15/6

2N3730 250 3A 20W 37/6

Single Phase Silicon Bridges

Full range from 1 Amp to 16 Amp, 25 PIV to 600 PIV, S.A.E. for list.

C.W.O. Add postage

RECTRA COMPONENTS LTD.
25 Victoria Street, London, S.W.1

PHOTOELECTRIC KIT

RECEIVERS AND COMPONENTS (continued)

MICROMINIATURE MICROPHONES

Sensitivity dynamic type. Wool pack-up rustle of newspaper from 30 feet.

Full range from 9 mm. x 9 mm. x 35 mm. Impedance 40 Ohms. Only list 28/6 Post free-C.W.O.

NEW DATA SYSTEMS 20 BAKER ST., LONDON, W.1

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR, REORDER PLAYER, TAPE RECORDER, AMPLIFIER, etc. Limited.

Types available: 9v-7W, 4v (single output) 8/6 each, P. & P. 2/6, 9v + 9v, 6v + 6v, or 4v + 4v (two separate outputs) 4/6 each, P. & P. 2/6. Please state output required. All the above units are completely isolated from mains by double winding transformer ensuring 100% safety.

R.C.S. PRODUCTS (RADIO) LTD. (Dept. F.E.), 11 Oliver Road, London, E.7

Get a PHOTAIN B-A ELECTRONIC BURGALR ALARM UNIT

Price

£8.19.6

Easy to install

Provides complete protection (Money back guarantee)

Send C.W.O. or get details from PHOTAIN CONTROLS LIMITED (R.) Randalls Road, LEATHERHEAD, Surrey

LOW-COST PLANNERS DISCOUNT (5% inc, bracket) when you buy FIVE OR MORE OF SAME TYPE. First grade, no surpluses.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sept</th>
<th>MARCH 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC167</td>
<td>5/6</td>
<td>BC109</td>
</tr>
<tr>
<td>BC199</td>
<td>5/6</td>
<td>BC199</td>
</tr>
<tr>
<td>2N3906</td>
<td>3/6</td>
<td>2N3906</td>
</tr>
<tr>
<td>55317</td>
<td>2/6</td>
<td>55317</td>
</tr>
<tr>
<td>10018</td>
<td>3/6</td>
<td>10018</td>
</tr>
<tr>
<td>150450</td>
<td>2/6</td>
<td>150450</td>
</tr>
<tr>
<td>135-470</td>
<td>3/6</td>
<td>135-470</td>
</tr>
<tr>
<td>2N3700</td>
<td>4/6</td>
<td>2N3700</td>
</tr>
<tr>
<td>2N3707</td>
<td>4/6</td>
<td>2N3707</td>
</tr>
</tbody>
</table>

B-5000 25NW n-p-n silicon audio power 10-1 (9/-)

25187 high-gain germanium 200mW V2 (11/9)

9V BATTERY ELIMINATOR KIT; builds into space of 3PP, etc., mains trans., AC/DC rect., 1000uF smoothing, 80mA out. 17/6.

500 SAFES INSTALLERS will pack your order. £105.

MINIATURE AMPLIFIER KIT AMATONIX. Complete kit for dual triode valve,在市场上销售。State which the pair.

- 315V State voltage when ordering 15/-.
- TRF PACKAGE; Matched set of 3 silicon transistors and c.c.t. for easy, sensitive MW/LW

SUB-MIN TRANS. 11" x 11" x 11" 5-0-9V 80mA. 11/-

C.W.O. Mail order only. Post paid over 5/-.

AMATRONIX LTD.
196 SELSDON ROAD, CRIMDI, S.A.

4-STATION INTERCOM $6.9/6

Solve your communication problems with this new 4-Station Transistor intercom. Master and Sub can call, talk or listen when separate. Incl. de-luxe plastic cabinets for desk or wall mounting. Call Master from Master to Sub and Sub to Master. Ideal for business, surgery, school, hospital, office and home. Operates on one 9V battery. Quality switch. Volume control. Complete with connecting wires each 60ft. and all necessary. P. & P. 6/.

INTERCOM Baby Alarm

 debuts with this new two-way Portable Transistor Intercom. Master and Sub can call, talk or listen when separate. Designed as a two-way instant communication system. Call Master from Master to Sub and Sub to Master. Operates on one 9V battery. Complete with 65 ft., incl. battery. P. & P. 3/.

Why not boost business efficiency with this incredible De-luxe Telephone Amplifier. Take down long telephone messages or converse without holding the handset. Indispensable in offices, boardrooms. Quality switch. Volume Control. Operate on one 9V battery. P. & P. 6/.

Complete with Ma to Muter.

3 tuba), in de-luxe plastic cabinets for desk or wall mounting. Call Master from Master to Sub and Sub to Master. Ideal for business, Surgery, school, hospital, Office and home. Operate on one 9V battery. Quality switch. Volume control. Complete with connecting wires each 60ft. and all necessary. P. & P. 6/.

LOW-COST PLANNERS DISCOUNT (5% inc, bracket) when you buy FIVE OR MORE OF SAME TYPE. First grade, no surpluses.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sept</th>
<th>MARCH 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC167</td>
<td>5/6</td>
<td>BC109</td>
</tr>
<tr>
<td>BC199</td>
<td>5/6</td>
<td>BC199</td>
</tr>
<tr>
<td>2N3906</td>
<td>3/6</td>
<td>2N3906</td>
</tr>
<tr>
<td>55317</td>
<td>2/6</td>
<td>55317</td>
</tr>
<tr>
<td>10018</td>
<td>3/6</td>
<td>10018</td>
</tr>
<tr>
<td>150450</td>
<td>2/6</td>
<td>150450</td>
</tr>
<tr>
<td>135-470</td>
<td>3/6</td>
<td>135-470</td>
</tr>
<tr>
<td>2N3700</td>
<td>4/6</td>
<td>2N3700</td>
</tr>
<tr>
<td>2N3707</td>
<td>4/6</td>
<td>2N3707</td>
</tr>
</tbody>
</table>

B-5000 25NW n-p-n silicon audio power 10-1 (9/-)

25187 high-gain germanium 200mW V2 (11/9)

9V BATTERY ELIMINATOR KIT; builds into space of 3PP, etc., mains trans., AC/DC rect., 1000uF smoothing, 80mA out. 17/6.

500 SAFES INSTALLERS will pack your order. £105.

MINIATURE AMPLIFIER KIT AMATONIX. Complete kit for dual triode valve,在市场上销售。State which the pair.

- 315V State voltage when ordering 15/-.
- TRF PACKAGE; Matched set of 3 silicon transistors and c.c.t. for easy, sensitive MW/LW

SUB-MIN TRANS. 11" x 11" x 11" 5-0-9V 80mA. 11/-

C.W.O. Mail order only. Post paid over 5/-.

AMATRONIX LTD.
196 SELSDON ROAD, CRIMDI, S.A.

4-STATION INTERCOM $6.9/6

Solve your communication problems with this new 4-Station Transistor intercom. Master and Sub can call, talk or listen when separate. Incl. de-luxe plastic cabinets for desk or wall mounting. Call Master from Master to Sub and Sub to Master. Ideal for business, surgery, school, hospital, office and home. Operate on one 9V battery. Quality switch. Volume control. Complete with connecting wires each 60ft. and all necessary. P. & P. 6/.

INTERCOM Baby Alarm

 debuts with this new two-way Portable Transistor Intercom. Master and Sub can call, talk or listen when separate. Designed as a two-way instant communication system. Call Master from Master to Sub and Sub to Master. Operates on one 9V battery. Complete with 65 ft., incl. battery. P. & P. 3/.

Why not boost business efficiency with this incredible De-luxe Telephone Amplifier. Take down long telephone messages or converse without holding the handset. Indispensable in offices, boardrooms. Quality switch. Volume Control. Operate on one 9V battery. P. & P. 6/.

Complete with Ma to Muter.

3 tuba), in de-luxe plastic cabinets for desk or wall mounting. Call Master from Master to Sub and Sub to Master. Ideal for business, Surgery, school, hospital, Office and home. Operate on one 9V battery. Quality switch. Volume control. Complete with connecting wires each 60ft. and all necessary. P. & P. 6/.
the Wyndsor Vanguard... the most versatile recorder at its price*
offering so many outstanding features...

- 4 track/3 speed, 7 in. spools.
- Separate Record and replay amplitudes.
- Double play.
- Sound-on-Sound.
- Detachable lid fitted in lid.
- Tape Monitoring Facility.
Before you buy an ordinary tape recorder, write for full details of the Vanguard and other models.

WYNDSOR, RECORDING CO. LTD. (Dept. P7)
Wyndcor Works, Bellevue Road, Friern Barnet, London, N.11. ENT: 2222

GARRARD DECKS—BRAND NEW, FULLY GUARANTEED
1000 mono £15.19.6 15SP mono £15.19.6
1000 stereo £16.19.6 15SP stereo £15.19.6
2000 stereo £16.19.6 30SP stereo £15.19.6
3000 mono £16.19.6 30SP mono £15.19.6
3055 mono £15.19.6 30SP mono £15.19.6
5SPS mono £15.19.6 5SPS stereo £15.19.6

RADIO CONTROL RECEIVER
"TINY TONE" 27 mc/s band receiver. Printed circuit construction. Sensitivity 4-transistor design. Size only 2 x 2 x 3 in. Complete with front panel, etc. 9 volt operated. For use with amplifier or tape recorder.

TRANSPORTER RADIO TUNER
Fully tunable superhet with excellent sensitivity and selectivity. Output up to 0.5 volt peak. Complete with front panel, etc. 9 volt operated. For use with amplifier or tape recorder.

TOTAL COST £19.6 p/p.

SCC'S (THYRISTORS)
- 1 AMP SERIES WIRE LEADS
 150 PIV 100 PIV 200 PIV 250 PIV 300 PIV 350 PIV 400 PIV
 350 PIV, 3 Amp (280V Rms), 50 PIV
 400 PIV, 300 PIV, 7 Amp (280V Rms)

GARRARD BATTERY 2-SPEED TAPE DECK

TUNNEL DIODES
1mA 22/6; 5mA 15/-; 10mA 25/-; 30mA 5/-; 100mA 15/6; 0.1A 7/6.

CABINET ON ORDER

The safest, quick and handy connector for electrical appliances.

Mains Keynector
Only 5 x 3 x 1 ins. The MAINS KEYNECTOR is made of non-combustible urea-formaldehyde. Designed in modern style and attractive two-tone colour. The unit eliminates the need of terminating the mains input lead of any electrical instrument or appliance with a plug. Also enables more than one appliance to be connected in parallel and used simultaneously.

The ideal Wire-wound unit for any home or office.

TECHNICAL TRADING Co.

All items previously advertised available, also see items advertised in Practical Wireless. Huge Hi-Fi and Components stocks at all branches.

ROBOPHONE ORDERS
Your C.O.D. order exceeding £1 can be telephoned to BRIGHTON 800722 at any time day and night.

TEL.: MUS 2639
350/352 FRATTON RD., PORTSMOUTH. Tel: 220343
73 EAST STREET, SOUTHAMPTON. Tel: 25851
352 TOTTENHAM COURT RD., LONDON, W.1 Tel: MUS 2639

PARK CRESCENT PLACE, BRIGHTON
Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

- **ELECTRONIC ENG.**
 - Advanced Electronic Eng.
 - General Electronic Eng.
 - Frequency Modulation — Transistors.

- **RADIO ENG.**

- **MECHANICAL ENG.**
 - Advanced Mechanical Eng.
 - General Mechanic Eng.
 - Maintenance Eng.
 - Diesel Eng.

- **CIVIL ENG.**
 - Advanced Civil Eng.
 - General Civil Eng.
 - Municipal Eng.
 - Structural Eng.
 - Sanitary Eng.
 - Road Eng.

- **AUTOMOBILE ENG.**
 - Advanced Automobile Eng.
 - General Auto. Eng.
 - Maintenance Eng.

- **PRACTICAL EQUIPMENT**
 - Basic Practical and Theoretical Courses for beginners in Radio, TV, Electronics, Etc.
 - R.T.E.B. Certificate
 - P.M.G. Certificate
 - Practical Radio
 - Radio & Television Servicing — Practical Electronics
 - Electronics Engineering — Automation

Including Tools

The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for details.

B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES"—send for your copy now—FREE and without obligation.

POST NOW!

TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in [state subject, exam., or career].

NAME

ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

The B.I.E.T. is the leading institute of its kind in the world.

NEW SOLID STATE HIGH FIDELITY EQUIPMENT ★★★★★
IMPROVED PERFORMANCE ★★★★★
NEW STYLING — NEW MODELS — MONO & STEREO

MP3. Mono preamplifier. All silicon low noise transistors stabilised circuit. Full range of controls fully equalised inputs for s.a.t.pu, dynalux niche, radio transistors, tape head and preamp. replay. Supplied built and tested on metal chassis complete with greyline front panel, 4x knobs and handbook. Output 500 mV. Supply 12 to 60 volts 5mA. Overall size 24 X 14 in.

MPA12-15 and MPA12/15. 12 watt power amplifiers for use with above preamplifiers. Improved response and performance with even lower distortion levels. MPA12/2 for 3 to 7 ohm speakers, 23/8 volt output. MPA12/15 for 10 to 16 ohm speakers, 44/5 volt output. Supplied built and tested on metal chassis as illustrated. Complete with handbook.

MPA12/3 Price $44.10, P.P. 3/6.

MPA12-12. Twin amplifier for mono/stereo use with above preamplifiers. Consists of two matched MPA12/15 amplifiers (see above) on single chassis. Output for 10 to 16 ohm speakers. 40/40 volt output. Overall size 10 X 2 X 3 in.

XP2 and XS4. New preamplifier modules for use where controls of above preamplifiers may not be necessary. XP2 Mono. XS4 Stereo. Input 47 k 4 mV. Equalisation RIAA for mono/stereo cartridges and also tape head for 78 in/sec to 711 in/sec and also 50 k ohm for mag/dyn. cartridges, also tape head for 11 in/sec to 11 in/sec.

THE FINEST VALUE IN HIGH FIDELITY—FULLY GUARANTEED
CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

NEW SCOOP CAR RADIO OFFER
BRITISH MADE. £7.19.6, P.P. 4/6

MAYFAIR PORTABLE ELECTRONIC ORGAN

NOW AVAILABLE:
* COMPLETE KIT OF PARTS * BUILT AND TESTED PRE-BUILT ASSEMBLIES.
* REVERBERATION UNITS AND RECOMMENDED SPEAKERS AND AMPLIFIERS IN STOCK

STRAIGHT FORWARD TO BUILD AND TUNE—EASY TO PLAY—FULLY DETAILLED. ALL PARTS AVAILABLE SEPARATELY—ASTOUNDING VALUE AND PERFORMANCE. Start to build for as little as £5.

- Plug-in printed circuits
- 170 transistors and devices
- 10 selected tone colours
- Fully sprung keyboard
- Vibrato
- Octaves of generators
- Simple locked-in tuning
- 110/250 volt mains unit
- Cabin size 301 X 151 X 171
- Cabinet with detachable legs, music stand and foot swell pedal
- Fully detailed building manual with photos, drawings and full circuits.

FULLY DETAILLED BUILDING MANUAL—EASY TO BUILD—EVERYTHING YOU NEED IS LISTED AND AVAILABLE FROM STOCK.

H.R.

16-PAGE BROCHURE FREE ON REQUEST