GTB LEMKURT DEMODULATOR
 MARCH/APRIL 1979

Path Profiling with a Programmable Calculator

The time consuming effort of hand calculations and the inherent inaccuracies involved in using slide rules have been virtually eliminated by electronic calculators. The inclusion of a programmable memory increases the useful-

The terrain and physical olsjects separating two antennas aflects the transmission of microwave rneryy betwern them. When a mierowave path is to be established between two points, maps are used to makr a prefiminary selection of a suitable path. Them, a profile of this path is photted to determine what antemna heights are required to overeome the effects of terrain and physical objeets. If the area is particularly rugeded, partial profiling as well as map inspection may be needed for preliminary path selection.

A programmable calculator is a useful tool for reducing the time and ellort required to prepare a path profile. Two programs for path profiling are presented at the end of this article. The programs are for the llewlett lackard type 97 calculator but thry can be casily adapted to other types of programmable caleulators.

Microwave Transmission Characteristics

The enrvature of the earth and the slight bending of the microwaw beam as it is refracted downward by the
'arth's atmosplerer are two factors that must be considered when constructing microwave path profiles. The 'arth's curvature and microwave beam refraction are commonly combined to lorm an equivalent carth radins factor, " k ". This factor " K ", multipli'd by the true earth ratius, is the radius of a lictitions earth curve for a microwave beam traveling in a straight linc. As different atmospherie conditions change the amount of beam refraction, the value for " K " also changes.

Values for " K " during standard atmospheric conditions range from 1.2 in dry elevated areas to 2 or 3 in humid coastal arras, with $4 / 3$ being typieal of inland areas. Umisual propagation conditions, encountered a small percentage of time, can produce values of " K " ranging from $1 / 2$ during substandard propagation to negative values during superstandard propagation. Figure 1 shows graphically how the refraction and earth's radius can be shown for a profile over flat terrain. It is convenient to plot the profile on rectangular graph paper to show both the refraction of the microwaw beam and the carth curvature as a bending of

Figure 1. Beam refraction for true earth radius.

Figure 2. Relative beam curvatures for a flat earth.
the microwave beam, as depicted in Figure 2.

Another factor that must be considered in the construction of microwave path profiles is the influence of terrain and physical objects on the microwave beam. As a microwave beam passes close to an object some energy is redirected by the object, causing a variation in the receive signal level on the microwave path, as shown in Figure 3. The microwave frequency, the distance from the center of the microwave beam and the distance to the ends of the path determine where nulls and peaks in the signal will occur. The type of object and its physical shape determine the magnitude of the variations.

The distance from the microwave bean's center is commonly measured in units of Fresnel zones, to take into accommt both frequency and distance. The lirst Fresnel zone ($1.0 \mathrm{~F}_{1}$) is the surface of points along which the total distance to the ends of the path is exactly one-half a wavelength longer than the direct end-to-end microwave path.

Any object within the first Fresnel zone will diffract the microwave beam. In this diffraction zone, distances from the center of the microwave beam are measured in fractions of the first Fresnel zone.

It is important to note that a clearance of at least six tenths (0.6) of the first Fresnel zone is required to

Figure 3. Iiffractions caused bv objects of different shapes.
maintain free space loss from end-toend on a microwave path. When less than six tenths charaner is present, the microwave beram is considured to be obstructed.

If an objeet is at or outside the first Fresnel zone, the distance from the object to the erenter of the microwave beam is merasured in actual Fresncl zones. Figure 4 presents the formulas used to calculate various Fresucl zonts.

Reflections

For very shallow angles of reflections, a $180^{\circ}(\lambda / 2)$ phase delay occurs at the reflection. The phase delay of the: refleeted signal, plus the $\bar{\alpha} / 2$ dilference in the path length of the first Fresnel zone, will produce an in-phase addition of the direct and reflected beams at the receive antemnas. This addition can give up to 6 dB increase in received signal level, depending on how well the signal is reflected. If the reflection point falls on an even Fresnel zone, a null in the receive signal can occur due to an out of phase addition of tha direct and refleeted signals.

Microwave paths with strong reflections are usually designed to take
advantage of odd Fresmed zone reflections. When even order reflections rannet be avoided, spaec diversily systems are normally used. These systems are designed so that only one of the space diversity antennas ensounters an even Fresnel zone rellection at any single value of K .

Path Clearance Criteria

Earth curvature, microwave beam refraction and Fresnel zone clearance are combined into cloarance criteria for a microwave path. Two basic scte of criteria, heavy route and light route, are in common use for microwave commonication systems. Each set of criteria should be maintained along the colire microwave path. Earth bulge and Fresmel zonc radii vary in a diflerent way along the path and often one criterion is controlling near the eenter of the path and the other is controlling rear ther path ends.

- Heavy Ruute Clearanee:

At least $0.3 \mathrm{~F}_{1}$ at $\mathrm{K}=2 / 3$ and $1.0 \mathrm{~F}_{1}$ at $\mathbf{K}=4 / 3$, whichuver is greater. In cases of rery diflicult propagation, grazing at $\mathrm{K}=1 / 2$ may be added to this criteria to assure adequate

Figure 4. Fresnel zone formulas.
clearance. (For 2 Gliz paths longer than 36 miles substitute 0.6 F at $K=1.0)$.

- Light Route:

At least $0.6 \mathrm{~F}_{1}$ at $\mathrm{K}=1.0$ plus 10 feet.

At points quite near the ends of the paths, the Fresnel zones and earth bulge become vanishingly small. However, it is still neesssary to maintain a minimum of 15 to 20 feet clearance from all obstacles.

Sources of Terrain Information

Maps that accurately show physical objects and terrain contours are required for the path profilts. In the Linited States $7-1 / 2$ or 15 minute maps are used for the detailed information required in path profiling. Indexes and maps are available from the United States Geological Survey, Branch of Distribution. For areas east of the Mississippi River, the address is 1200 South Ends Street, Arlington, Virginia 22202. For areas west of the Mississippi River including Louisiana, the address is Box 25286 Fedcral Center, Denver, Colorado 80225.

The indexes list state, government and private locations where maps are for sale. After maps are obtained, proliminary path selection can be started.

Preliminary Path Selection

It is sometimes diflieult to determine a useful microwave path over rugged terrain by inspection only. In these cases, at least part of the path is usually proliled. Programmable printing calculators can greatly speed up the process of selecting paths, in rugged terrain, by eliminating the necessity for plotting partial path profiles. Ter maintain froper clearance, the calculator program produces a profile of elrvation points which the actual terrain, including obstructions, should not exeeed. To use the "Profile Pro. gram" for path selection:

1) Establish possible antema centerline elevation by adding reasonable tower heights to the ground elevations of the selected end-points.
2) Run the "Clearance Elevation at Inerementel Distances" part of the "Protile" program, for the desired Frosnel zone clearance and earth curvature criteria, incrementing the program at even distance incre-
ments approximately $1 / 20$ of the end-to-end path distance (for example 0.5 mi, 1.0 mi . or 2 mi .).
3) Check map elevations for the required path clearance, as shown in Figure 5. Trees and buildings located along the path will increase the map clevations of the path profile and must be tahen into account. Any time the elevation exceeds the elevation given by the calculator output, additional tower height will be required at one or both ends of the microwave path. Terrain high-points that occur be-
tween calculator increments can be cheched by interpolating between successive increments.
If the comparison of the calculator output and the map elevation look reasonable, a detailed path profile can be made of the microwave path.

Detailed Path Profile

In profiling a microwave path, the terrain contour heights found on the maps are entered on the profile graph paper. Enough points should be plotted so that high, low and relatively that areas of contour are shown. Regular

Figure 5. Checking map terrain against calculator generated output.
rectangular grapli paper is used for this profile so that several values of K can be more easily shown on the final product.

When the profile contour has been completed, the desired Fresnel zone clearance is calculated for the profila. high points, utilizing the "Calculate Fresnel zone Radius" portion of the "I'rofile" calculator program. The" values of Fresnel zone elearances are then entered on the profile as shown in Figure 6.

P'roliles drawn on rectangular graph paper use $K=\infty$ as a relirence. Because of this relerence, the difference between $K=\infty$ and the desired earth clearance K is next calculated for the high points utilizing the "Elevation at a Specific Distance" portion of the calculator program. Zero should be entered for the II_{x} and $\mathrm{II}_{\text {y }}$ end-point elevations. The program will then give
a negative value for the desired clearance. This value should bre added to the desired Fresmel zone clearance on the profile. Figure 7 shows the placement of these points.

The antenna center-line heights can now be established by drawing a straight line $(\mathrm{K}=\infty)$ through or abowe the K clearance dots between the ends ol the path. Once the antenna mounting heights are ostablished, the antenna center-line elevation above mean sea level (AMSL) can be entered into the program for I_{x} and $\|_{y}$. Then the "I'ath I'rofile Filevation at lneremental Distances" section of the program can be run for the locus of point elevations deseribing several K lines, as shown in Figure 8.

Reflection Point Analysis

If areas of water, swamps of that ground exist along the microwave

Figure 7. Addition of elevations at specific distances.

Figure 8. Profile ele vations for different K values.

path. roflections can occur and affect the receive signal level. The Reflection I'rogram can be nsed to calculate reflection points when the reflection point is level. Reflection points cansed by sloping or rolling terrain can be adequately defined only by path tests.

The reflection point program calculates the distance at which rellections will be encountered for a given reflection point elevation. Figure 9 shows a set of rellection point caleulations and the profile of a typical path.

In this example, the momting height of the antemna at point B was specilically chosen to create a reflection path that is obstructed by land at point C. The use of a calculator allows an engineer to try mounting heights until the proper one to produce the desired obstruction is found.

After the profile is completed, it is field checked to accurately establish any map elevations that may be questionable. Tree and structure heights along the path are measured and enter-

Figure 9. Obstructed reflection path.
ed on the profile. Potential reflection points along the path are visited to see if these points are adequately blocked by local obstructions.

The foregoing discussion briefly describes path profiling to provide a background for using the calculator programs presented below. The references listed in the bibliography describe path profiling in more detail and should be reviewed before preparing an actual path profile.

Calculator Programs

Two application programs are presented in the following pages. The first is called "Profile" and the second is called "Reflection". Each program is divided into three parts.

The first part, "Program Description" describes the programs purpose, lists the formulas on which it is based and states the program's operating limits. Warnings about common mis-
takes are also included in the Program Description.

The' second part, "User Instructions" provides step by step instructions for using the calculator to perform the calculations specified in the instructions column of the User Instructions form.

The calculator must have the program listing stored in memory to perform the calculations.

The third part of each program is the "Program Listing". The Program Listing may be considered as a set of instructions to the calculator. It is keyed into the calculator memory before the calculations in the User Instructions are performed.

The IIP 97 uses a magnetic card for permanent storage. The Program Listing may be stored on a magnetic card for future use. Instructions for using magnetic carts are containted in the IIP 97 Instruction Manual.

BIBLIOGRAPIII

1. GTE Lenhurt Demodulator, I'rofile Charts of Radio Link Routes, Volume 2, No. 1, January 1953.
2. GTE Lenhurt Demodulator, Microwave Transmission Lingineering, Parts ()ne and Two, July and August 1972.
3. GTE Lenkurt Publication, Engineering Considerations for Microwave Communication Systems.
4. (STE Lenkurt Demodulator, Anomalous Propagation Parts One and Tu'o, July and August 1975.
5. GTE lenhurt Denodulator, Antenna Decoupling, March 1978.
6. Economic and Ter-hnical Aspects of the Choice of Transmission Systems, - Propagation appendix to Section B.IV.3. Published by the International Telecommunications Union, 1971.
7. Bell Systrm Technical Journal, Radio-Relay Antenna Pointing for Controlled Interference with Geostationary Satellites - Appendix A, Estimation of Antenna Elevation Angles, December 1969.

Moving? When you notify the Demodulator, please include your old as well as your new address. An easy way to do this is to use the address label from your last copy. Send the information to the address on the back cover, attention: B552.

Program IDescription

Program Tille PROFILE						
Name	John E. Hendricks, Jr., Staff Engineer				Date	2/6/79
Address	GTE Lenkurt	1105 County Road				
City	San Carlos		State	CA	Zip Code	94070

Program Description, Equations, Variables, atc.

This program is designed to assist in preparing microwave path protiles. At the option of the user, the program can perform the calculations in imperial units (feet and miles) or metric units (meters and kitometers).

The program contains two subroutines; Fresnel zone radius calculations and beam center line elevation calculations. The subroutines may be used separately or together as desired by the user. Print subroutines are also included at appropriate points to provide hard copy records of the calculations.

Any of the following calculations may be performed:

1. Calculate and print the Fresnel zone radius at a specific distance.
2. Calculate and display the beam center-line elevation at a specific distance.
3. Calculate and print the beam center line elevation at incremental distances.
4. Calculate and print the clearance elevation at incremental distances.

Clearance elevation is the beam center -line elevation minus the desired Fresnel zone radius.

This program is referenced to the GTE Lenkurt publication, "Engineering Considerations for Microwave Communications Systems." The following formulas appear in that reference: Fresnel Zone Radıus; Imperial page 38; Metric page B2; Ear th Curvature; Imperial page 12; Metric page 81.

Path Slope:
$H_{s}=H_{x}-\left(\frac{H_{x}-H_{y}}{D}, d\right)$ where: $H_{x}=$ elevation of point $x_{0} H_{y}=$ elevation of point $y . D=$ total path cistance, $d=$ distance to desired slope location.

Operating Limite and Warning:

There is much confusion regarding Fresnel Zone radius less than 1. This program uses
the following convention:

For Fresnel Zone radius less than 1 the program is always the value times the first Fresnel Zone radius (i.e., 0.6 F,).

For Fresnel Zone radius greater than or equal to 1, the program always uses the square root of the value times the first Fresnel Zone (i.e., $\sqrt{\mathbb{N}} F_{1}$).

User Instructions

Cser Instructions

Lser Insiructions

Progiram Listing

Program Listing

Program IDescription

Program Tute	REFLECTION			
Name Address City	John E. Hendricks, Jr., Staff Engineer GTE Lenkurt, 1105 County Road San Carlos	State	CA	2/6/79

Program Deacription, Equationa, Variables, etc.
This program calculates the parameters normally used in designing microwave paths that contain reflection points. The user has the option of performing the calculations in imperial units (feet and miles) or metric units (meters and kilometers). The program uses a solution to the cubic equation derived from the following relationships:
$\frac{h_{x}{ }^{\prime}}{d r}=\frac{h_{y}{ }^{\prime}}{D-d r}$
$h x^{\prime}=h_{x}-\frac{d r^{2}}{1.5 K}$
$h y^{\prime}=h y-\frac{(0-d r)^{2}}{1.5 K}$

For metric units, substitute 12.75 K for 1.5 K . The solution for these equations is in steps 50 through 106 of the program listing. Additional equations come from the GTE Lenkurt publication, "Engineering Considerations for Microwave Communications Systems,"

The following formulas appear in that publication:
Fresnel Zone radius - Imperial, page 38; metric, page B2.
Earth Curvature - Imperial, page 12; metric, page B1.

The reference for the reflection point angle is: Appendix A of "Radio Relay Antenna Pointing for Controlled Interference with Geostationary satellites", Bell System Technical Journal, December 1963.

Operating Limits and Wernings: There is much confusion regarding Fresnel Z one radius less than 1. This program uses the following convention:
For + resnel Zone radius less than 1 the program is always the value times the first Fresnel Zone radius (i.e., $0.6 \mathrm{~F}_{1}$).
For Fresne! Zone radius greater than or equal to \mathbf{I}, the program always uses the square root of the value times the first Fresnel Zone (i,e., $\sqrt{N} F_{1}$).
This program will not work for negative values of K or when the reflection point elevation exceeds either end point elevations. For $K=\infty$, use $K=9 \times 10^{10}$. Larger values than 9×10^{10} may give erroneous answers. Program is accurate to 0.01 miles $(0.016 \mathrm{Km})$ and reflection point clearance of $0.1 \mathrm{ft}(.003$ meters) for total path distances to 100 miles (160 Km).

Lser Insiruedions

Program Listing

Progiram Listing

GTE LENKURT

1105 COUNTY ROAD
SAN CARLOS, CALIFORNIA 94070
ADDRESS CORRECTION REQUESTED

GTE Lenkurt's Engineer Furnish and Install service provides overall management of planning, engineering, construction, installation, testing and maintenance of GTE Lenkurt communications systems.

GTE Lenkurt personnel will plan a system in detail; conduct cost studies, obtain all
 necessary parts and equipment; arrange for construction of access roads; supervise installation; provide comprehensive project information and conduct on-the-job training for operating and maintenance personnel. Or, if the customer prefers, GTE Lenkurt will perform only specific portions of planning and installation.

010 [ina00

VIDEO, VOICE \& DATA TRANSMISSION SYSTEMS

[^0]
[^0]: The GTE Lenkurt Demodulator is circulated bimonthly to selected technicians, engineers and managers employed by companies or government agencies who use and operate communications systems, and to educational institutions. Permission to reprint granted on request.

