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INFORMATION THEORY 

and CODING 

Part 2 

There is a never-ending need to overcome the various kinds of inter-
ference inherent in today's communications systems, so that information 
can be transmitted faster and with fewer errors. One way of providing 
improvements is to design special coding schemes which better organize 
the messages sent over communications systems. This article discusses 
some af the considerations in coding and decoding messages and the 
methods of detecting and correcting transmission errors. 

COMMUNICATION requires that in-
formation be transported from 

one place to another and, for this pur-
pose, must be converted into a form 
suitable for handling. Electrical com-
munication requires additional conver-
sions to prepare the words or other 
symbols for transmission. Sound waves 
are converted to a variable voltage; elec-
trical pulses, like drum beats or smoke 
signals, provide the means for transmit-
ting letters and numerical data over 
today's modern communications sys-
tems. 

Regardless of the exact means of 
transmission, some form of symbolic 
language or code must always be used 
to carry information from its source to 
its destination, and most of these codes 
and languages are inherently wasteful. 
In language, some words are used more 
than others and letters occur in pre-
dictable patterns. This predictability 
and pattern in sounds, letters, and 
words make it possible to receive the 
meaning of a spoken or written mes-
sage, even when some part of it is 
altered or deleted in transmission. A 
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reader's familiarity with the words and 
syntax of a language allow him to sup-
ply missing or incorrect letters and 
words in the text. The prolonged sounds 
of speech, and their inflection and pat-
tern preserve the intelligibility of speech 
except in the presence of extreme inter-
ference. 
A simple experiment will confirm 

how predictable language actually is. A 
short passage of written prose is se-
lected, and someone is asked to guess 
the characters ( including spaces and 
punctuation) one at a time. The subject 
continues guessing until he names each 
character correctly. As each character is 
guessed, it is written down as an aid in 
predicting the next character. The re-
sults of such an experiment are shown 
in Figure 1. The numerals show the 
number of guesses required for each 
character. Of the 109 symbols in the 
text, the subject guessed correctly on his 
first try 79 times, and was able to identi-
fy all 109 characters in 235 attempts. 
This is an average of only about two 
guesses (or information "bits") per 
character. Further experiments have in-
dicated that long passages of English 
text have an information content of 
only about one bit per letter. This means 
that, theoretically, it should be possible 

Figure 1. Predictabil-
ity of language is indi-

cated by large number 
of characters correctly 

guessed on first try. 
Numerals indicate num-

ber of guesses required 

to identify each charac-
ter. 

to transmit text by pulses no more nu-
merous than the letters themselves, thus 
enabling 24 of the 26 letters to be dis-
carded without loss of communication. 
Although this ideal cannot be achieved, 
it provides a goal to be approached in 
the design of coding techniques. 

Transmission codes can be made 
more efficient by designing them to fit 
the statistics of the language. Thus, 
letters which occur most frequently— 
E, T, and A, for instance—are repre-
sented by the shortest code symbols, 
while the least probable characters have 
longer symbols. Figure 2 shows such a 
code which has an average information 
content of about 4 bits per character. By 
contrast, the standard teletypewriter 
code employs 5 bits per character, not 
counting synchronizing pulses. 

Although the additional redundant 
symbols and pattern in language may 
help overcome errors, unsystematic re-
dundancy is wasteful, and merely lowers 
the rate of communication. It follows 
logically that the more redundancy re-
moved, the more efficient the communi-
cations channel, but the greater the like-
lihood of error due to interference. 
Since interference is always present to 
some degree, a very efficient communi-
cations system would use a code in 
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Figure 2. Efficient binary code for English requires average of only 4 bits per 
character by taking advantage of language statistics. 

which all message redundancy was elim-
inated to obtain maximum information 
rate; then, just enough redundancy 
would be re-inserted to overcome the 
interference present in the transmission 
path. 

Unlike the redundancy in spoken and 
written languages, data-type messages 
have no inherent redundancy. Machine-
generated characters occur without pat-
tern, and errors cannot be detected by 
inspection, as in the case of text To 
complicate matters, data errors cannot 
be tolerated to the same extent as errors 
in text, because control operations or 
machine calculations may be completely 
ruined by a single error. Yet the _high 
speed with which data is generated and 
transmitted makes the occurrence of 
errors more likely. 

One way of overcoming errors in 
handling and transmitting high-speed 
data is to design codes which, by their 
very construction and organization, are 
able to detect or even correct errors 
automatically. Unfortunately, most such 
codes cannot he created without adding 
redundancy. The problem then becomes 
one of finding a coding method that 
provides maximum error- free transmis-
sion with the least possible redundancy. 

Error Probability 

The information capacity of a com-
munications system with a finite band-
width depends primarily upon the ef-
fective signal-to-noise ratio at the de-
tector or receiver. Noise power in the 
system is generally considered to be 
completely random and adds to or sub-
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tracts from the signal power. The addi-
tion of this noise to digital signals 
makes it difficult for a detector to always 
make a correct decision, thus causing 
errors. 

In a typical binary system, for ex-
ample, the digital codes I and O are 
represented by different amplitudes as 
shown in Figure 4. The detector must 
determine whether a signal pulse is a 
I or 0 by its amplitude at the time of 
sampling. ( Signals are usually sampled 
at the center of the pulse.) If the signal 
amplitude at the time of sampling ex-
ceeds a set level, called the decision 
threshold or slicing level, a binary I 
will be indicated. If the signal ampli-
tude is less than the slicing level at the 
time of sampling, a binary O will be in-
dicated. 
The amplitude of the pulse at the 

sampling time is proportional to the 
vector sum of the signal power and the 
noise power. If the signal at the detec-
tor is a binary 0, then the noise power 
would have to be of such amplitude 
and phase that it would raise the ampli-
tude of the pulse above the slicing level 
to produce an error. Conversely, if the 
signal is a binary I, the noise power 
would have to be of such amplitude and 
phase that it would lower the amplitude 
of the pulse below the slicing level to 
produce an error. 

In Figure 4, the slicing level is set 
at half the peak signal amplitude. This 
means that whenever the amplitude of 
a signal pulse at the sampling time is 
distorted by an amount equal to half 
the peak amplitude, an error will occur 
because the detector will indicate the 
wrong binary symbol. If random noise 
is considered to be the only cause of 
signal distortion, then the chance of 
error is related to the probability of the 
noise power becoming greater than half 
the peak amplitude set for the signal 

pulse. This implies, of course, that the 
greater the signal-to-noise ratio, the less 
chance there is for error. Therefore, 
given the signal-to-noise ratio, the prob-
ability of random noise peaks causing 
errors can be estimated by using the 
mathematics of statistics and the so-
called normal or gausian distribution 
values which have been well tabulated. 
The error rates established by this sta-

a 
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Figure 3. Two methods of coding in-
formation. In (a), characters are equal-
ly probable and two bits are required 
for each. In (b), characters known to 
appear more frequently are assigned 
a shorter code thus reducing the total 

number of bits required. 
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tistical method provide an excellent 
measure of performance that is espe-
cially useful in rating digital communi-
cations systems. The error rate perform-
ance of today's communications systems 
ranges from one bit in 100,000 to over 
one bit in 1,000,000. Figure 5 shows 
curves of error probability versus signal-
to-noise ratio ( in decibels) for three 
types of digital systems. 

It is important to note that in com-
paring multilevel codes, such as ternary 
and quaternary, with a binary code, the 
probability of error increases when the 
peak-to-peak signal range is the same. 
As shown in Figure 6, two slicing levels 
are required for a ternary signal and 
three slicing levels are required for a 
quaternary signal. Although these addi-
tional levels increase the information 
capacity of the signal, when compared 
to a binary signal, the margin against 
noise is reduced by a factor of 1/(n-1) 

ERROR 

Figure 4. In a binary 
system, digital codes 
t and o are represented 
by different amplitude 
levels. When a pulse is 
sampled at the detector, 
its amplitude is propor-
tional to the vector sum 
of the signal power and 
the noise power. The ad-
dition of this noise may 
distort the signal to such 
a degree that the detec-
tor will indicate the 
wrong code at the time 

of sampling, 

where n equals the number of levels. 
Thus, for a quaternary signal, where n 
equals 4, the margin against noise is 
reduced by one-third. 

Error Control 

Error control has become an essential 
part of pulse or data transmission sys-
tems since it is not practical to make 
circuits perfectly error free. The meth-
od adopted depends on whether or not 
the circuit provides one-way or two-way 
transmission and its error performance 
—that is, the type and distribution of 
errors. The use of error detecting and 
error correcting techniques can increase 
the overall accuracy of the transmission 
within the capacity of the channel to 
any accuracy required but at the expense 
of equipment complexity. 

Shannon's formula described in Part 
1, arrives at the remarkable conclusion 
that even a noisy channel has a definite 
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errorless capacity. No matter how low 
the error rate must be, it can be achieved 
while still transmitting a signal over the 
channel at the desired rate provided 
that the rate of information does not 
exceed the channel capacity. However, 
as the error requirements become more 
stringent, it becomes more difficult to 
transmit the signal but only because the 

BINARY 
75 BITS/SECOND 

11 13 15 

OPTIMIZED 
QUATERNARY 

150 BITS/ 
SECOND 

DUOBINARY 
150 BITS/SECOND 

17 19 21 23 

SIGNAL TO NOISE RATIO - DB 

Figure 5. Error rates versus signal-to-
noise ratio for three different types of 

digital systems. 

encoding becomes very complex and 
imposes a long transmission delay in 
coding and decoding. Practical consid-
erations necessitate using a simple en-
coding alphabet, thus wasting a good 
fraction of a channel's capacity. Shan-
non showed that the information capac-
ity of a channel expressed in bits per 
second is: 

C = VV loge (1 —s ) 
N 

where 

W = Bandwidth in cycles 
per second 

Average signal power 

rms noise power in a 
one cycle band 

Take for example a typical telephone-
type voice channel: 

W = 3000 cps 

= 20 db (signal S at —15 dbm0 
N and noise N at —35 dbm0) 

C = 20,000 bits per second 

In existing systems only a small fraction 
of this maximum possible channel ca-
pacity is obtained. Indeed the equation 
gives no indication of how such ideal 
encoding of the message may be rea-
lized. In any practical system yet pro-
posed there will be a finite probability 
of error for a finite transmission rate. 
The sophistication needed to reach the 
channel capacity of Shannon's formula 
would result in an extremely complex 
system. 

Error control systems today are either 
error detecting or error correcting. One 
of the simplest methods of reducing 
errors is to repeat the message several 
times. A more elaborate approach is to 
use some form of coding which enables 
a block of characters to be tested for 
errors. If no errors are found, a feed-
back signal is sent which acknowledges 
receipt of the block and asks for the 
next block to be transmitted. If no ac-
knowledgment is received, the original 
block is retransmitted. These systems 
achieve more accuracy at the price of a 
slower rate. The transmission efficiency 
of this type of system can be expressed 
as the number of information bits per 
block divided by the sum of the in-
formation bits plus the redundancy bits, 
plus the number of bits that could have 
been sent in the waiting time for an-

S = 

N = 
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swer-back signals together with the 
average additional time for repeated 
transmission. 

Thus: 

E Bi  _ . 
Bt + Rh + Bw 

where: 

E = Transmission efficiency 

Bi = Information bits per block 

Bh = Redundant bits per block 

Bw = Waiting bits per bloak 

Figure 7 shows how waiting time 
effects the transmission efficiency of the 
system. It also indicates that addir.g re-
dundant bits seriously limits the over-
all rate of transmission. 

It is interesting to note that the cod-
ing system based on the Lenkurt devel-
oped duobinary technique ( described 

in the February 1963 DEMODULATOR) 
gives a degree of error detection with-
out adding redundant digits. This ca-
pability is achieved by increasing the 
amount of information per digit. The 

duobinary code is a more powerful 
error detection system than the simple 
parity check and has the additional ad-
vantage that the data does not have to 
be processed before the error becomes 
apparent. 

Parity Checks 

A widely used error detection scheme 
is the so-called parity check. An extra 
digit is added to the regular binary code 
group so that there will always be an 
even (or odd) number of l's in each 
group. A single error will cause an odd 
number of l's to appear at the receiver, 
indicating an error. A single parity 
check will detect all odd numbers of 
errors, but will not detect double errors 
or other even-count errors, since the 
count of l's will still provide the re-
quired even number. By adding an ad-
ditional parity check for every other 
digit, all odd numbers of errors and 
about half the even number of errors 
can be detected. A third parity check 
added for the remaining digits will 
further reduce the undetectable errors. 

Figure 6. Multilevel codes such as ternary and quaternary increase the informa-
tion capacity of the signal. However, when the peak-to-peak amplitude is the same 

as for a binary signal the margin against noise is reduced. 
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W = WAITING TIME AS PER CENT 
OF ACTIVE BITS 
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Figure 7. Effect of waiting time on transmission efficiency for one type of error-
control system where a block of characters are tested for errors. Curves show that 

adding redundant bits limits the overall rate of transmission. 

Parity checks provide some protec-
tion against errors, but like all redun-
dancy, they slow down the transmission 
of the message. If a single parity check 
is used with each five-digit code group, 
as shown in Figure 8, the message will 
contain about 16% redundancy. This 
can be reduced by increasing the num-
ber of information digits for each check 
digit, but this increases the probability 
of undetectable errors occurring. 
Many types of parity check systems 

exist. Where parallel transmission is 
used (tape-to-tape computer data, for 
instance), parity checks may be used in 
both the horizontal and vertical direc-

tions, in order to reduce the chance of 
data errors going undetected. 
A related approach to error detection 

uses a fixed ratio of marks and spaces 
for all code characters. When designed 
to reduce the likelihood of compensat-
ing errors, this code can be very effec-
tive in detecting most errors. 

Essentially, error detection coding 
and retransmission make an excellent 
system for reliable communication if 
the transmission channel introduces 
only a few scattered errors, and if a 
high quality return channel is available. 
The system deteriorates rapidly as the 
error rate increases. 
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Figure 8. Typical parity checks for 
serial and parallel transmission. Check 
digit is chosen so that sum of marks in 
each block is always even (or odd) — 

wrong count reveals error. 
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The fraction of errors actually de-
tected in transmission will depend on 
the characteristics of channel noise. 
Adding more parity bits will increase 
the protection afforded by the code. If 
a block of bits of arbitrary length in-
cludes parity bits, the number of un-
detected errors will amount to the frac-
tion 1/2p of all possible errors if the 
error detecting code is efficient. 

Thus: 

d = (1 — —) x 100 
2p 

where 

p = Number of parity bits 

d = Percent of errors detected. 

Figure 9 illustrates the dependency 
of detection efficiency on the number of 
parity bits. 
When properly arranged, parity 

checking by block is a very powerful 

2 3 4 5 

NUMBER OF PARITY BITS 

6 7 

Figure 9. Efficiency of parity check error correction system depends on the 
number of parity bits. 
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Figure 10. The efficiency and certain other characteristics of complicated codes 
are analyzed easily by mathematicians through the use of solid geometry. Simple 
3-digit code shown in the example requires three-dimensional figure. Each vertex 

represents a code combination assignable to characters or errors. 

device. Consider, for example, a block 
of 80 6-bit characters used to transmit 
the information contained on a stand-
ard 80-column punched card. A single 
panty check on each character is only 
50 per cent efficient and requires 80 
parity bits to a card. By contrast in a 
block detection system, 9 parity bits 
could be 99.8 per cent efficient and de-
tect any burst of errors up to 8 bits 
long. The redundancy will be less than 
2 per cent. 

Error Correction 

U is not enough merely to identify 
the existence of errors. Some means of 
correcting the message is required in 
order to complete the transmission or 
control function. One basic form of 
error correction is to transmit the mes-
sage several times in the hope that 
errors will not destroy identical por-
tions of each mesage. A similár ap-

proach would be to transmit each digit 
several times and count the bits re-
cei% ecl. A majority count would pre-
sumably reveal the correct digit. Obvi-
ously, this method fails if more than 
half the digits are in errors. 

Error-correcting codes which do not 
require retransmission have been de-
vised, using principles similar to those 
used in the code of Figure 1. Error cor-
rection is obtained by adding additional 
redundant digits so that an erroneous 
code group still most nearly resembles 
the intended group, despite changes 
occurring in one t or more) binary 
digits. Obviously, the redundancy is 
greatly increased. 

Mathematicians specializing in in-
formation theory and advanced coding 
techniques find it useful to describe 
codes in terms of geometry, so that each 
character in the code is located at a 
"corner" or vertex of a geometrical 

• 
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figure. Thus, a code having 2 digits 
could be described by a square with all 
four combinations located at the four 
corners. A code with three digits would 
require a three-dimensional figure for 
the eight possible combinations, and a 
four-digit code requires a solid having 
four dimensions to adequately describe 
its properties. Although it is difficult or 
impossible to diagram multi-dimen-
sional figures accurately on paper, they 
are relatively easy to handle mathemat-
ically. 

Since each code combination, wheth-
er an error or a correct symbol, lies at 
a vertex of the solid figure, a change in 
one digit represents the difference be-
tween one vertex and an adjacent one. 
Two changes move it two places, and 
so forth. The ideal code, then, will use 
the least possible number of code com-
binations, but separates all valid (non-
error) code groups by as many locations 
as possible. The less the "distance" be-
tween correct symbols, the lower the 
redundancy. If additional "distance" is 
placed between valid characters, the 
code can either detect multiple errors 
or correct single errors, depending on 
how the code is set up. Figure 10 dia-
grams how a geometric figure can be 
used to express "distance" between sym-

bols, and shows how efficiency or in-
formation capacity can be traded for 
error correction or detection capability. 

Conclusion 
Information theory has provided the 

designers of communications systems 
with new insight into the intangible 
commodity with which they work. By 
providing engineers with a specific 
measuring stick, information theory en-
ables them to measure the efficiency of 
their communications apparatus and 
make improvements. The theory is im-
portant not only to conventional com-
munications media, but it has important 
implications in computers, control sys-
tems, and data systems where machines 
communicate directly with machines. 

Information theory studies have re-
vealed two basic approaches to improv-
ing communications. One is based on 
improved coding of the signal to be 
transmitted, the other stems from new 
knowledge of the relationship between 
signal power, noise, and bandwidth. 
There are indications that both ap-
proaches lead to a common goal; the 
most efficient coding method will pos-
sibly be the most efficient way of com-
pressing bandwidth and overcoming 
noise in a transmission channel. 
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The Lenkurt 25A is a versatile 
telegraph and data carrier 
transmission system. It can 
handle a variety of multi-chan-
nel telegraph applications with 
speeds up to 100 wpm or data 
applications with speeds up to 
200 bps. The 25A works with 
many types of transmission 
facilities such as open-wire, 
cable, or radio multiplex — or 
2-wire or 4-wire physical cir-
cuits. More information about 
this high-performance system is 
contained in Form 25A- P4, 
available on request. 
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