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INFORMATION THEORY 

and CODING 

Part 1 

Information theory began as an academic mathematical inquiry into 
factors which limit communication. The fantastic growth of man's ability 
to communicate in the past several decades has confirmed the importance 
of the inquiry and added to pressures of many important practical prob-
lems. Billions of dollars have been spent on communications in recent 
years and will be spent again to keep up with public demand. Improving 
the efficiency of communication facilities could channel these funds into 
providing even greater advances. This article is the first of two which 
discuss some of the highlights of information theory and how it is used 
to improve communications. 

Transmitting information by vari-
ous communications techniques is 

an important part of everyday life. 
Certainly everyone has used the phrase 
"a lot of information," but few people 
regard the fact that it is possible to 
measure information quantitatively. 
However, information has been given 
a numerical value that is very useful in 
the study of communications. 
What is the importance of informa-

tion theory to a communications engi-
neer? It seems quite reasonable that 

an engineer who is responsible for 
selecting solid-state radio equipment for 
a communications system should have 
a knowledge of the theory of transis-
tors. It is very unlikely that such an 
engineer will have anything to do with 
the design of transistors, but a knowl-
edge of basic transistor theory is never-
theless required for the engineer to be 
adequately qualified to do his job. In 
other words, a great deal of funda-
mental background knowledge is neces-
sary for the broad understanding re-
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quired by a competent engineer. For 
the communications engineers, informa-
tion theory is becoming an increasingly 
important part of this background 
knowledge. 
The accelerating growth of data 

transmission creates an obvious require-
ment for a broader understanding of 
information theory. In addition to other 
uses, information theory provides the 
fundamental principle for analyzing 
and comparing existing and future data 
transmission systems. 

Unfortunately, many of the improve-
ments in communications systems sug-
gested by information theory are rather 
complicated and expensive, thus pre-
venting them from being readily put 
into use. Nevertheless, as technology 
progresses, cheaper means of perform-
ing the complicated operations sug-
gested by the theory will undoubtedly 
be found and information theory can 
be expected to play a more important 
role in practical communication sys-
tems of the future. 

Meaning of Information 

Information can perhaps be ex-
plained as choice or uncertainty. The 
effect of the information in a message 
is to change the probability concerning 
a situation, as far as the receiver of the 
message is concerned, from its value 
before the message is received to what 
is usually a larger value after the mes-
sage is received. If an event is certain 
to occur, the mathematical probability 
of its occurrence is, by definition, one. 
If the event is certain not to occur, the 
mathematical probability is zero. The 
mathematical probability of the occur-
rence of any event whose occurrence or 
nonoccurrence cannot be predicted with 
certainty lies somewhere between zero 
and one. 
One of the first steps in determining 

the exact nature of information was the 

selection of a unit, or yardstick, by 
which information could be measured. 
This unit had to be such that it could 
easily be determined and did not de-
pend upon the importance of the mes-
sage, since a message's importance is 
difficult to evaluate mathematically. 

It turned out that the simplest and 
most basic unit was the amount of in-
formation necessary for a receiver ( per-
son or machine) to make the correct 
choice between two equally possible 
messages. This choice may be between 
the messages yes-or-no, on-or-off, A-or-
B, 0-or- 1, black-or-white, and so on. 
Since the two possible messages corre-
spond to the two symbols in the binary 
number system, a unit of information 
based on two symbols (messages) came 
to be called a binary digit and was ab-
breviated bit. 
A message consisting of one simple 

electrical pulse has the informational 
value of one bit because the presence or 
absence of the pulse permits the re-
ceiver to choose the correct message 
from a set of two. As shown in Figure 
1, transmitting two pulses permits the 
receiver to select the correct message 
from four equally possible messages. 
Three pulses, or bits, will enable the 
correct selection from a set of eight. 
This selection process gives the average 
amount of information which must be 
transmitted to specify a message from 
a set of equal possibilities. 

For instance, suppose a message is 
to be sent indicating a choice in an 
election among eight candidates. In the 
form of communication, the sender has 
a certain definite limited choice as to 
what message to send. The receiver of 
the message will have some uncertainty 
as to what it will say but he knows that 
there are only eight possible choices. 
In order for the sender to indicate to 
the receiver which candidate he has 
chosen, he must use some sort of signal. 
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Figure 1. Amount of information required to specify a message from a set of equal 
possibilities. 

One form of signa; might be a series of 
pulses or absence of pulses ( for con-
venience, a one can be used to repre-
sent a pulse and a zero to represent the 
absence of a pulse). Since there are 
eight unique series of three pulses or 
no-pulses possible, any one of the mes-
sages can be designated by one series 
of three pulses or no-pulses. For the 
receiver, three elementary decisions de-
cide which message among eight was 
intended. 
The information content of a mes-

sage, expressed in bits, is determined 
by the formula: 

H = log:m 

where 

H .= number of bits of information 
m = number of equally likely choices 

If m is 8, the first bit corresponds 
to a choice of which half of the 8 possi-
bilities is chosen, the second bit to a 

choice between the first and second pair 
of the selected half, and the last bit to 
a choice between the first or second 
member of the chosen pair. Thus 3 
(or log,8) bits of information de-
termine the selection, and this is the 
amount of information acquired by the 
receiver. 

In the example cited, each pulse pro-
vides one bit of information. In binary 
code each code element may be either 
of two distinct kinds of values: for ex-
ample, the presence or absence of a 
pulse. In a ternary or three level code, 
each code element may be any of three 
distinct kinds or values; in an Nary 
code, each code element may be any 
one of N distinct kinds or salues. 

With a simple N'ary code, if all 
values are equally probable and the 
probability of any code element is inde-
pendent of preceding code elements, 
the amount of information (H) is pro-
portional to the number of code ele-
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ments ( n) comprising the message 
multiplied by the logarithm of N. 

H = n logiN 

The average information per symbol 
in any of the commonly used sets of 
symbols or in any language is always 
considerably less than its maximum pos-
sible value. In effect, this means that 
parts of messages usually tell things 
which are already partly known. Thus 
the intersymbol influences ( including 
interword influences) can predict the 
nearby succeeding parts of a message 
to a considerable extent. The actual re-
ception of the message then gives partly 
a verification or correction of the pre-
diction in addition to completely new 
ideas. This partial or complete repeti-
tion of message content which occurs in 
languages is called redundancy. How-
ever, despite the fact that it causes a 
loss in the rate of transmitting informa-
tion, redundancy is a very useful prop-
erty of languages, for it allows indi-
vidual errors in the transmission of 
messages to be recognized easily and 
corrected. 

Message Sources 

In information theory, message 
sources are classified as either discrete 
or non-discrete. A speaker is an example 
of a non-discrete message source since 
the values of a speech wave are drawn 
from a continuum of possibilities. Such 
non-discrete sources are very difficult 
to evaluate mathematically. For this 
reason, the application of information 
theory to communications systems is 
concerned mainly with so-called discrete 
sources. A discrete source produces 
messages which are sequences of sym-
bols, the symbols being drawn from 
some finite list. The most familiar ex-
ample of such messages is printed Eng-
lish text. The sequence of telegrams 
passed to the telegrapher for trans-

mission can be thought of as such a 
source of English text. Other examples 
of discrete information sources are the 
input tape to a large computer or the 
string of symbols printed on a stock 
exchange ticker-tape. 

In analogy with English, the different 
symbols of a message from any discrete 
source can be called letters, and the 
finite list of letters from which mes-
sages are composed are called the source 
alphabet. The number of letters in the 
source alphabet represent the size of 
the alphabet. The occurrence of a letter 
in a message is called a character re-
gardless of what letter it is. For ex-
ample, the word Mississippi contains 
eleven characters but only four different 
letters. 
The first step in describing a given 

information source is to list its alphabet. 
This is far from a complete description 
of the source, however, for the mes-
sages produced by most sources have an 
elaborate statistical structure. The char-
acter being printed now is not inde-
pendent of characters just produced by 
the source, but depends upon them in a 
complicated way. What the next char-
acter produced by a source will be is 
not certain. A good guess as to the next 
character, however, depends strongly 
on how much of the past message has 
already been received. If the source is 
a telegraph and the message "General 
Eisenho" is observed, then it is quite 
certain what letter the next character 
will be. If, however, only the last letter 
of the message, "o", is observed, what 
will follow is not so clear. 
The statistical structure of the mes-

sages produced by a given source can 
be described mathematically by associat-
ing with the source a long list of proba-
bilities. The first probabilities on this 
list are quantities pt— the probability 
that the source will produce the ith 
letter of the source alphabet. These 
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Figure 2. Generalized communications system used in the study of information 
theory. 

quantities reflect the best guess as to 
what letter the source will produce 
when the text already produced has not 
been seen. The next set of characteriz-
ing numbers for the source are quanti-
ties pii—the conditional probability 
that the source will next produce the jth 
letter of the alphabet when it is known 
to have just produced the ith letter. 
Next are the quantities pi Jk—the prob-
ability that the source will next produce 
the kth letter of the alphabet when it 
is known that the source has just pro-
duced the ith letter followed by the jth 
letter. Listing such probabilities in this 
manner can continue indefinitely, each 
set giving more information about the 
long range structure of the messages. 
In the mathematical model of a message 
source used in information theory, this 
list of probabilities, along with the 
source alphabet, characterizes a particu-
lar information source. 

In actual sources the infinitely re-
mote past of a message certainly exerts 
no influence on characters being printed 
now. In fact, in many sources correla-
tion between characters does not extend 

very far into the past at all. Sources 
may be classified then according to the 
number of past characters that exert an 
influence on the character being pro-
duced by the source at the present 
moment. A source in which the past 
characters exert no influence on the 
present character is called a monogram 
source; one in which only the last char-
acter produced influences the choice of 
the present character is called a digram 
source, and so on. 

Information Content of 
English Text 

As previously stated, information can 
be measured in terms of bits or in-
formative yes's or no's, and an element 
of a binary code contains one bit of 
information. For the more complex or 
non-binary codes the information con-
tent of each code element increases. If 
there is an equal possibility of any code 
element appearing in a sequence, the 
information value of each code element 
is equal to the logarithm to the base 
two of the possible number of code 
elements. 



In written English, there is a finite 
set composed of 27 symbols, the 26 
letters of the alphabet and a word space. 
If the next letter in a written message 
appeared at random with a probability 
of 1/27 for each letter, then the in-
formation content of a message ex-
pressed in bits would merely be equal 
to the number of symbols multiplied by 
log.,27, using the formula previously 
given. 

However, when the information in 
a message is in the form of a language, 
occurrence of the various symbols which 
comprise the language's alphabet is 
never completely random. Thus, the 
appearance of a given letter or a given 
word in English is subject to "con-
straints" which act to modify an other-
wise completely random probability of 
occurrence. 

In setting up his dot-dash code, 
Morse made one of the first applica-
tions of statistics to a communication 
problem. On the basis of type counts 
made in a printing shop, Morse as-
signed a short code to the most fre-
quently used letters and longer codes 
to the less frequent. Thus, he could 
transmit E, the most frequent, by simply 
sending a dot, but for V, one of the 
least frequent, he had to send dot dot 
dot dash. 

Thus, Morse would have expected to 
use more time transmitting letters of 
gibberish, which might use V as fre-
quently as E, than sensible English in 
which letters appeared with their fa-
miliar frequency. 
To get the most possible combina-

tions from its alphabet, a language 
should allow its letters to fall with uni-
form probability. Constraints on where 
the letters fall serve to introduce sub-
stantial redundancy in the transmission 
of information. 

As an example, consider the number 
of bits of information that are con-
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Figure 3. The familiar Morse code was 
one of the first applications of statistics 

to a communications problem. 
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tamed in a letter of the English alpha-
bet. If any letter of a 27 letter alphabet 
were equally probable, the information 
in one letter would be the logarithm to 
the base of 2 of 27 or 4.76 bits. Actu-
ally, since all letters are not equally 
probable, when the known probabili-
ties are applied for each letter, it de-
velops that, on the average, each letter 
probably contains less than two bits. 
Putting it another way, an 18 letter 
alphabet of uniform probability could 
do the same job as our less efficient 27 
letter alphabet. However, the redun-
dancy of the English language permits 
great liberties in transmitting written 
messages. For example, the telegraph 
message 

PLLESE SXND MONEZ 

can easily be interpreted as 

PLEASE SEND MONEY 

Transmitting Information 

If there were no noise to degrade 
transmission, there would be no limit 
to information transmission. By trans-
mitting a perfectly measured voltage to 
represent information, for example, any 
desired rate of communication could be 
achieved. In reality, noise masks signals 
transmitted over communication cir-
cuits and introduces uncertainty as to 
their exact value. Signals tend to be 
converted into noise by a process of 
degradation and distortion. In trans-
mitting many channels of information 
over a multiplex system, each channel 
requires a certain bandwidth in order 
to distinguish the signal from random 
noise. Thus, the greater the number of 
channels, the greater the bandwidth re-
quired. However, as the number of 
channels increases, each channel signal 
represents a smaller and smaller portion 
of the total band. As this occurs, it 
becomes increasingly difficult to dis-
tinguish the signals from background 

noise unless transmission power is in-
creased. 

Information theory studies have re-
vealed the exact relationship between 
information capacity, signal power, 
noise, and bandwidth. While these 
studies have generally confirmed knowl-
edge acquired on an experimental basis, 
a number of possibilities were revealed 
that had not been self-evident. It was 
well known that a smaller signal-to-
noise ratio would be acceptable in com-
munications if greater bandwidth were 
employed, as in FM. It was surprising, 
however, to discover that in principle, 
bandwidth could be reduced by increas-
ing signal-to-noise ratio. Heretofore, it 
was firmly believed that channel band-
width could never be less than the 
bandwidth of the original message. 

H. Nyquist, a mathematician at the 
Bell Telephone Laboratories, proved 
mathematically that the required band-
width for a communications channel is 
directly proportional to signaling speed, 
and that the minimum bandwidth re-
quired for transmission of a signal is 
essentially equal to half the number of 
binary pulses per second. 

Nyquist showed that although there 
was a limit to the number of pulses per 
second that could be transmitted over 
a given communications channel, each 
pulse might have several distinguish-
able states or conditions, each of which 
could carry information. Thus, if ampli-
tude were the variable conveying the 
information, and each pulse had four 
possible amplitudes, twice as much in-
formation could be transmitted as in a 
system where pulses had only two pos-
sible values. 

Nyquist showed that the limit to the 
number of information-carrying states 
was related to the noise in the circuit. 
As stated previously, without noise, 
there would be no limit to the rate at 
which information could be transmit-
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ted. In the presence of noise, however, 
the difference in value between two 
levels or states must be at least twice 
the value of peak noise. Otherwise, 
there will be uncertainty as to the value 
of the pulse. 
The same limitation applies to con-

tinuous waveforms as well as pulse sig-
nals. Actually, there is no real difference 
between the two. Although a continu-
ous wave may contain an infinite num-
ber of points which define its shape, it 
does not contain an infinite number of 
information-carrying values. In fact, 
periodic samples of the waveform can 
be used to reconstruct or define the 
waveform perfectly if they are taken 
often enough. The waveform doesn't 
have to be sampled very often to make 
a perfect reconstruction—sampling at 
twice the highest useful frequency in 
the signal will do. Thus, if 3000 cps 
is the highest useful frequency in a 
telephone channel, a series of brief 
samples taken at the rate of 6000 
per second will precisely and exactly 
duplicate the telephone conversation! 
The samples can be as brief as desired, 
in fact, the shorter the better. Thus, a 
series of pulses can serve in lieu of 
a continuous waveform, with no loss 
whatsoever. 
The 3000 cps telephone circuit is a 

universal communications channel, 
available almost anywhere in the world. 
Almost all general purpose communica-
tions facilities are designed to accom-
modate voice signals. Accordingly, this 
bandwidth has been taken into consid-
eration in designing equipment used to 
transmit telegraph and data signals and 
other forms of information. 

According to Nyquist's formula for 
maximum signaling speed, a 3000 cycle 
channel should be capable of carrying 
6000 binary pulses per second. Trans-
lated to words per minute, and using 
the standard Baudot or teletypewriter 

code, this is approximately 8000 words 
per minute. Furthermore, the informa-
tion capacity is considerably higher if 
codes other than binary are used. The 
relationship between bandwidth, signal 
power, and noise is complex and de-
pends upon many factors such as the 
kind of noise present in the channel, 
the nature of the power limitation, the 
type of modulation used, and the 
method of encoding the information. 
In 1948, C. E. Shannon, also of the 
Bell Telephone Laboratories, devised a 
mathematical formula which defined 
the capacity of a communications chan-
nel or the maximum transmission rate. 
This formula, which relates informa-
tion rate to the bandwidth and the 
amount of interfering noise in the sys-
tem, is shown graphically in Figure 4. 

Using Shannon's formula, a channel 
of 3000 cycles bandwidth and a signal-
to-noise ratio ( signal power/noise 
power) of 30 db has a capacity ( C) 
of about 30,000 bits per second: 

C = W (1+-i-) 

=3000 log:1001 

=3000 (9.96) 

=29,880 bits per second 

Of course, this is ideal, non-surpass-
able performance, and achievable only 
by the most elaborate coding. Practical 
communications systems cannot begin 
to approach that rate of transmission. 
To achieve such a rate, three conditions 
would have to be met. First, the trans-
mission medium must be distortionless. 
Second, the noise power in the channel 
must be equal throughout the frequency 
band. Third, the method used to en-
code the signals must be so complex 
that no possible combination of noise 
impulses will ever cause errors to occur 
during transmission. None of these 
conditions can be met or even closely 
achieved with present-day techniques. 

e 

e 
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WHERE: 

C IS CAPACITY IN1 BITS PER SECOND 
W IS BANDWIDTH IN CYCLES PER SECOND 
S IS SIGNAL POWER 

N IS NOISE POWER 

Figure 4. Graph of Shannon's formula which relates information rate to the band-
width and the interfering noise in a communications system. 

Such performance would require whole 
buildings- full of equipment to encode 
and decode the message. In addition, 
the time required for encoding and de-
coding messages would be far too great 
for practical needs. 

Information theory studies have indi-
cated the existence of ideal codes for 
transmission over the noisiest channel 
at rates up to the theoretical limit, and 
permitting as low a probability of trans-
mission error as required. Redundancy 

• 

or repetition reduces error probability. 
By introducing a controlled amount of 
redundancy in proportion to the chan-
nel noise, the desired transmission re-
liability can be maintained under the 
worst conditions, at the cost of reduced 
transmission rate. If reduced trans-
mission rase cannot be tolerated, more 
complicated coding can theoretically be 
employed to keep down the probability 
of error. The subject of coding and 
error control is discussed in Part 2. 
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GLOSSARY 

Some of the terms often encountered in the fields of communications, 
information theory, and computer engineering are listed below with their 
specialized meanings. 

BINARY—Anything that is composed 
of two parts or elements, or which has 
only two states or conditions; for ex-
ample, a switch may be either on or off. 

BINARY CODE—Any code employing 
only two distinguishable code elements 
or states; mark-space and on-off are ex-
amples of binary codes. 

BINARY DIGIT—A unit of informa-
tion content; one element or bit of a 
binary or two-element code; mark and 
space are examples of binary digits used 
in communications codes. 

BIT—Commonly used short form of 
binary digit: see above. 

CHANNEL CAPACITY — The maxi-
mum possible information rate through 
a channel. Channel capacity is often 
stated as the maximum number of bits 
per second that may be transmitted 
through the channel. 
CLOCK—The primary source of syn-
chronizing signals for a computer data 
system or data transmission system. In 
high-speed systems, the clock may be 
an oscillator, the output of which is 
used as a reference or timing frequency 
by the system. 
CODE—A system for representing that 
which is to be transmitted. For example, 
Morse code may be used to represent 
letters in telegraphy. Words and lang-
uage may be considered a way of coding 
ideas. 
CODE CHARACTER—One of the ele-
ments which make up a code and which 
represents a specific symbol or value to 
be encoded. Dot-dot-dot-dash is the 
Morse code character for the letter v. 

CODE ELEMENT—One of a set of parts 
of which code characters may be com-
posed. Mark or space, dash or dot, are 
examples of code elements. 

COMPUTER -A machine for carrying 
out calculations, or for performing 
specified changes or transformations of 
information. Some types of decoders 
operate on computer principles. 

DATA—Information, usually origina-
ting as numbers, values, or digital 
symbols. Data usually excludes speech, 
music, or other continuous-wave in-
formation, even when converted to dig-
ital form for transmission. 

ENTROPY—Disorder; reduction from 
an easily distinguishable condition to a 
less easily distinguishable condition; 
equal and opposite to "amount of in-
formation." An example of entropy is 
the gradual distortion and loss of a 
signal pulse as it travels down a long 
wire or cable. 

ERROR—A false transformation of in-
formation: a mistake in transmission; 
improper alteration of information: an 
incorrect step, process, or result in 
transmitting information. 

INFORMATION -- News, intelligence; 
that which improves or adds to a repre-
sentation. Information is an unpredic-
table event or item. If the transmission 
specifies something already known to 
the receiver, it is not information. 

REDUNDANCY — Added or repeated 
information employed to reduce am-
biguity or error in a transmission of 
information. As signal-to-noise ratio 
decreases, redundancy may be employed 
to prevent an increase in transmission 
error. 

QUANTIZE—To convert a continuous 
variable, such as a waveform, into a 
series of levels or steps. There are no 
.• in between" values in such a quantized 
waveform. All values of signal are rep-
resented by the nearest standard value. 
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A special binder is avail-
able for storing issues of 
The Lenkurt Demodulator. 
These binders are covered 
in durable, embossed Lex-
ide; each binder holds 24 is-
sues. The cost is 60 cents 
for one binder, or 50 
cents each for two or more, 
postpaid. 

Reprint Book 

The 32 most-requested 
articles from the first seven 
years of The Lenkurt De-
modulator have been com-
piled into book form. 
The attractive, cloth-

bound book is titled Carrier 
and Radio Articles Selected 
from The Lenkurt Demodu-
lator, and costs $ 2.50, 
postpaid. 
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Improved Data Set 

Lenkurt s improved 26C Data Set 
offers a highly accurate means of 
transmitting serialized digital data 
over standard 3-kc voice channels 
at speeds of 1200 or 2400 bits per 
second (bps). Transmission at 2400 
bps is achieved through the use of 
lenkurt's unique Duobinary coding 
technique. Automatic error detec-
tion—plus an extremely low error 
rate—are bonus features of the 
Duobinary technique. More infor-
mation about this small-size, flex-
ible data set is contained in Form 
26C-P4, available on request from 
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