CROSLEY SERVICE S UPPLEMENT

This model Crosley radio is an 8-tube AC receiver designed for American and Foreign broadcast reception.

The tuning range is from 540 kilocycles to 22 megacycles and is divided into three bands as follows:

> 540-1850 Kilocycles or $555-162$ Metres (American Broadcast Band)
> 1.9- 6.6 Megacycles or $158-45.5$ Metres (Police \& Amateur Band)
> 6.4- 22 Megacycles or $47-13.5$ Metres (High Frequency or Foreign Band)

Circuit Description.

Eight octal base glass tubes are employed in a superheterodyne circuit which consists of separate oscillator and modulator tubes, two stages of I-F amplificationthe second of which is resistance coupled, a combination AVC and diode detector and lst A-F amplifier tube, push pull output and power supply. The speaker field is located in the negative leg of the power supply. The bias for all tubes except the output is developed across a 40 ohm resistor, item 39. located between the speaker field and ground. Phase inversion is obtained
in the output circuit by the voltage developed across a 3000 ohm resistor, item 42A, located in the screen circuil of one of the output tubes, item 45B.

SOCKET VOLTAGES

The tube socket voltages are measured from the tube socket contacis to the chassis with a 1000 ohm per volt, 500 -volt D. C. voltmeter (except filaments) with receiver in operating condition and no signal input. The filament voltages should be measured with an accurate low range Λ. C. voltmeter (approximately (0.10 volts). Readings may vary plus or minus 10% of values given.

TUBE SOCKET VOLTAGE READINGS								
Tube	Function	H	P	S	G	K	Go	Ga
6A8G	Modulator	6.3	240	85	Neg	0	Neg	85
6K6G	Oscillator	6.3	145	145	Neg	0	兂	--
6U7G	1st I-F Amp	6.3	240	85	Neg	0		--
6U7G	2nd I-F Amp	6.3	210	85	Neg	0	--	--
6Q7G	Det., AVC \&	6.3	120			0	--	--
6K6G	Output	6.3	235	230	Neg	18.5	--	-
6K6G	Output	6.3	235	230	0	18.5	--	-
5Y3G	Rectifier	5.0	-	-	-	240	-	-

Power output approximately 5.5 watts.
Power consumption approximately 70 watts at 117.5 volts
Voltage drop across speaker field 80 volts

50 CYCLE POWER TRANSFORMER ADJUSTMENT

Receivers equipped with a 50 cycle power transformer have a "high" and "low" voltage tap on the under side of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are connected to a terminal strip near the transformer.

The voltage range of the "low" tap of the $95-130$ volt transformer is from 95 to $1121 / 2$ volts and of the "high" tap is from $1121 / 2$ to 130 volts. The range of the "low" tap of the $190-260$ volt transformer is from 190 to 225 volts and of the "high" tap is from 225 to 260 volts.

The accompanying illustration shows the comections

for changing from high to low or low to high line voltage. Note the "jumper" wire which is attached to the
terminal at which one side of the power cord is attached. The other end of this jumper wire should be connected to the ORANGE or BLACK lead of the transformer primary, according to the line voltage the receiver is ©o be used on.

NOTE: Any change made in the power supply circuit of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuis in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits may he properly aligned with the use of a modulated signal generator and an output me:er.

CONNECTING OUTPUT METER

Connect the output meter to the plates of the two oKGO Output tubes. Be certain that the meter is protected from D. C. by connecting a condenser (.l mfd. or larger-not electrolytic) in series with one of the loads.

Tuning I-F Amplifier to $\mathbf{4 5 5}$ Kilocycles.

(a) Connect the output of the signal generator through a. 02 mfd . condenser to the top cap of the 6A8G tube, leaving the tube's grid lead in place. Connect the ground lead from the signal generator to the ground terminal of the receiver. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF THE OTHER SCREEN GRID TIBES.
(1)) Set the station selector so that the tuning condenser plates are completely out of mesh. Turn the volume control knol, to the right (ON) and turn the tone control knob, to the left (TREBLE).
(c) Turn the band selector switch to the High Frequency Band.
(d) Set the signal generator to 4.55 kilocyctes.
(e) Adjust both trimmers located on top of the 2nd I-F assm. for maximum output. (Item 9, Fig. 2)
(f) Adjust both trimmers located on top of the Ist I-F assm. for maximum output. (Item ©, Fig. 2)
(g) Check operations (e) and (f) for more accurate adjustment.

ALWAYS LSE: THE LOWES' SIGNAL (EENERATOR OLTPUT THAT WILL GIVE A REASONABLE OLTPUT METER READING.

Aligning R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal generator is comnected to the "ANT" terminal of the receiver. For the Broadcast and Police Bands a .0002 .5 mfd . condenser should he connected in series with the output lead of the signal generator and for the High Frequency band a 400 ohm carbon resistor should he used in place of the condenser.

Each band should first be shunt aligned and then series aligned where provision is made for series alignment (Broadcast Band). The band selector switch should be set for the band being aligned and the station
selector and signal generator should be set to the frequency indicated for each adjustment, paragraph (c) below.
(a) Adjust the "OSC" and "ANT" shunt trimmers in the order given for maximum output. Readjust the station selector slightly so that the generator signal is tuned-in with maximum output and then check the adjustment of the "A $\triangle T$ " trimmer. DO NOT READJUS'T THE "OSC" TRIMMER.

NOTE: When shunt aligning the Police and High Frequency bands care must be exercised so that the circuits will be aligned on the correct frequency rather than on the image frequency which is approximately 910 kilocycles less than the fundamental. To check on this, increase the output of the signal generator ten times, or more, to try to tune-in the signal both at the generator frequency as indicated on the station selector dial and at approximately 910 kilocycles les than the correct frequency. If the circuits have been properly aligned the signal can be tuned-in at lowh positions but much stronger at the correct frequency.
(1) To align the 13. C. OSC. series trimmer ($\mathrm{Fig}_{\mathrm{g}} 2$). set the signal generator to the frequency indicated below and then tune-in this signal with the station selector for maximum output. To obtain the hest adjustment for the series trimmer, it will be necessary to rotate the station selector back and forth slightly while adjusting the trimmer for maximum output.

(C) SIGNAL INPUT FREQUENCIES

American Broadcast Band Police \& Amateur Band Foreign Band

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximately 4.55 kilocycles. This assembly is located on the underneath side of the chassis and consists of a coil, a fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring Diagram (item 60).

The wave trap should not be adjusted until all other adjustments have been made. To make the adjustment. feed a 4.55 kilocycle signal from the signal generator through a .00025 mfd . condenser into the antenna terminal of the receiver. With the band selector switch turned to the Broadcast Band position, the gang con-

Shunt Alignment

1700 Kilocycles 6000

18 Megacycles
denser open and the volume control full on. adjust the trimmer condenser on the wave trap for minimum output.

Should the interfering station be operating on a frequency of slightly more or less than 4.55 kilocyeles. the exact frequency should be determined with the aid of the signal generator. Then, instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering signal should be used. If it is not possible to determine the exact frequency of the interfering signal the antenna may be attached to the receiver and the receiver tuned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

Fig. 4 Phonograph Pickup

FIG. 1--WIRING DIAGRAM-MODEL 817

Fig. 2 Top View Model 817

Fig. 3 Bottom View Model 817

PARTS LIST—MODEL 817

Pigures in first column refer to parts in Dingrams.					
Item No.	Part No.	Name Function	ltem No.	Part No.	Name Function
1	$\begin{array}{ll} \text { W } & -43567 \\ \text { W } & -4436 . \end{array}$	Bulb, I ial Light, 6-8 V. Bracket, for Dial Light	$\begin{aligned} & 34 \mathrm{AB} \\ & 35 \end{aligned}$	一21455C	Resistor, $300,000 \mathrm{Ohm}$. $1 / 4 \mathrm{~W}$. Resistor, 1 Megohm $1 / \mathrm{W}$.
2	(139-32000)	Ant. Cosil, $535-1850 \mathrm{Kc}$.	36 AB	-26577	Resistor, 3 Megohm 1/4W.
3	G138-32000	Ant. Coil, 1900-6600 Kc.	37	$-36322 \mathrm{C}$	Resistor, $500,000 \mathrm{Ohm}$. $1 / \mathrm{W}$ W.
4	(1140-33000	Ant. Coil, 6.5-22 Mc.	38 AB	-23785	Resistor, $500,000 \mathrm{Ohm}$, 1/W.
5	(139-32002	()sc. Coil, 535-1850 Kc.		W -23012A	Resistor, 40 Ohm. $3 / 4 \mathrm{~W}$. Flex.
6	(1138-32022	(sce. Coil, 1900-6600 Kc.	40	-34883	Resistor, 2 Megohm $1 / 4 \mathrm{~W}$.
7	(1140-32002	Osc. Coil, 6.5-2? Mc.	41	W -21965	Resistor, 375 Ohm .1 W . Flex.
8	(153-32004	1st 1-F Assy.	42 AB	- 14009	Resistor, 3,000 Ohm. 1/4W.
${ }_{9}^{9}$	6151-320) 04	2nd 1-F Assy.		(156-3640)	Socket, Type 6A8
10ZY	G41 -3.30)1	2 Section Gang Cond.	44 AB	G171-36400	Socket, Type 607
	1) - 4080	Glass Dial Face	45 ABC	(172-36400	Socket, Type 6K6
	W -4.408513	1) ial Mask (Paper)		C160-36400	Socket, Type 6Q7
	$\begin{array}{ccc}\text { W } & -1408.4 \\ C & 14082\end{array}$	I Dial Support Ring	47 48	G173-36400	Socket, Type 5 3 Socket, Type Speak
	(il -4356.	Pulley and Hub Asss:		W. -40911	Tube Shield
	w 4158	I) rive Cord (11/2 in. Req.)		W-27981A	Base, Tube Shield
	W $\begin{aligned} & \text { W } \\ & \text { W }\end{aligned}$	Drive Shaft	49	46513 P - $12{ }^{\prime \prime} \mathrm{M}^{\prime \prime}$	Speaker Spec., 1-D-1019 ' M M ${ }^{\text {c }}$
	$\begin{array}{ll} W & -43549 \\ W & -1354213 \end{array}$	Shaft Ret. Ring 13rkt. for Drive Shaft		-4427?	V. C. and Cone Assy. for $455 \mathrm{BP} 12{ }^{\prime} \mathrm{M}$ Splir.
	W -4.3561	Irive Spring		4.1273	Field Coil for $465 \mathrm{BP12}$ "M" Spkr.
	W. -44249	Dial Iland		-44.274	Output Trans. for 465BP12"M' Spkr.
	W -40486	Pointer Mtg. Screw		W-43552	Spk. Plug Clamp
111	-40769	13-C. Osc. Series Trimmer	50	--44049	Band Selector Switch
	G23-34000	Condenser, 1560 Mmf .	51	G27-26719	A1-A2-G. Terminal Assy.
	G20-34000 $\mathrm{G13}-34002$	Condenser, 4910 Mmf .	52	-44057 -44058	Power Trans., 110 V. 60 gy.
15ADC	(2) -34002	Condenser, 100 Mmf .		-44059	Power Trans., 220 V. 50 ¢y.
	W - 35936	Condenser, 05 Mf . 200 V .		-44060	Power Trans., 110 V .25 y .
17	W -35139	Condenser, $004 \mathrm{Mf}, 400 \mathrm{~V}$.		-44061	Power Trans., 220 V. 25 Cy.
18		Condenser, 1 Mif. 400 V .		-4.4081	Volume Control, 1 Meg.
20	W -28621	Condenser, $02 \mathrm{Mf}$.200 V .	541	-44021	Tone Control, 100,000 Onm Line Switch
21	W -30188	Condenser, 02 Mif .400 V .	55	W --35951	3 Sect. Shunt Trimmer Assy.
? 2	W -23615	Condenser, 05 MIf .400 V .	56	O3-34002	Condenser, 500 Mmf .
23	W -30805	Condenser, 01 Mif .400 V .	57	W -31647	Condenser, $005 \mathrm{SIf}$.400 Y .
24	W -44054	Condenser, 30 Mif. 350 V .	58	W -32378	Condenser, $01 \mathrm{Mf}, 400 \mathrm{~V}$
25	W -36057	Condenser, 40 Mf . 300 V .	59	W -23013	Resistor, 2,000 Ohm. 11/4W. Flex.
26	$13-3390601$	Power Cord and Plug		W - 41088	Knob
27 28	- -212374	Resistor, $60,000 \mathrm{Ohm}$. $1 / 1 \mathrm{~W}$.		W -50164A	Knob
29	-44008	Resistor, 10,000 Ohm. 2 W .		W - 44225	Grille Bar (2)
30	- 23616	Resistor, $15,000 \mathrm{Ohm}, 1 \mathrm{~W}$		-44092	Grille Cloth
31	-31093	Resistor, $2,700 \mathrm{Ohm} .1 / 4 \mathrm{~W}$.		-7C	Cabinet
32 3.3	-35600 $-\quad 1875$	Resistor, 100,000 Ohm. $1 / 4 \mathrm{~W}$.		$13-142263$	Escutcheon
33	-21875	Resistor, $100,000 \mathrm{Ohm} .1 / 4 \mathrm{~W}$.	60	G165-32001	Wave Trap

This model Crosley radio is an AC receiver designed for American and Foreign broadcast reception. The
tuning range is from 540 kilocycles to 22 megarycles and is divided inte three bands as follows:
540-1850 Kilocycles or $555-162$ Metres (American Broadcast Band)
1.9- 6.6 Megacycles or $158-45.5$ Metres (Police \& Amateur Band)
6.4- 22 Megacycles or $47-13.5$ Metres (High Frequency or Foreign Band)

Circuit Description

Eleven tubes are employed in a superheterodyne circuit. The 6G5 electron ray tube is used for indicating exact tuning and is designated IRIS TL NING INDICATOR. When a station is tuned-in, the greenish glow on each side of the tube increases in width, forming a narrow shadow at the bottom of the window. Only strong signals. however, will reduce the shadow to a narrow line.

The circuit consists of separate uscillator and modulator tubes, two stages of I-F amplification-the second of which is resistance coupled, separate AVC and detector diodes, two stages of audio amplification and power supply. The speaker field is located in the negative leg of the power supply. The bias for all tubes except the output is developed across a 32 ohm resistor. item 10. lorated between the speaker field and
ground. Phase inversion is obtained in the output circuit by the voltage developed across a 3000 ohm resistor, item 27 A. locaied in the screen circuit of one of the output tubes, item 4213,

SOCKET VOLTAGES

The tube socket voltages are measured from the tube socket contacts to the chassis with 1000 ohm per volt, 500 volt D. C. voltmeter (except filaments) with the receiver in operating condition and no signal input. The volume control should be turned full on. the tone control should be turned to the TREBLE position (counterclockwise) and the tuning condenser should be turned to the minimum capacity position. The filament voltages should be measured with an accurate low range 1. C. voltmeter (approximately 0 -10 volts). Readings may vary plus or minus 10% of values given.

Tube	Function	TU	TUBE SOCKET VOLTAGE READINGS					
6K6G	Oscillator	6.3	147	$1: 7$	-36	0		
5A8G	Modulator	6.3	224	110	-.	0	-36	110
6U7G	1st I-F Amplifier	6.3	174	110	-	0	-	-
6U7G	2nd I-F Amplifier	6.3	270	110	-	0	-	-
6C5G	Diode Detector	6.3	0	-	-	0	-	-
6C5G	AVC Diode	6.3	0	-	-	0		
6K5G	Ist A-F Amplifier	6.3	190			0		-
6 K 6 G	Output	6.3	263	259	,	22		
6 K 6 G	Output	6.3	263	279	0	22		
${ }_{6}^{5 \mathrm{GY} 5} 5$	Rectifier Tuning Indicator	5.0 6.3	Var			270	-	-

Power consumption approximately 90 watts at 117.5 volts.
Power output approximately 10 watts.
Voltage drop across speaker field 60 volts.

50 CYCLE POWER TRANSFORMER ADJUSTMENT

Receivers equipped with a 50 cycle power transformes have a "high" and "low" voltage tap on the under side of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are connected to a terminal strip near the transformer.

The voltage range of the "low" tap of the 95.130 volt transformer is from 95 to $1121 / 2$ volts and of the "high" tap is from $1121 / 2$ to 130 volts. The range of the "low" tap of the $190-260$ volt transformer is from 190 to 225 volts and of the "high" tap is from 225 to 260 volts.

The accompanying illustration shows the connections for changing from high to low or low to high line voltage. Note the "jumper" wire which is attached to the terminal at which one side of the power cord is attached. The other end of this jumper wire should be connected to the ORANCE or BLACK lead of the transformer

primary, according to the line voltage the receiver is to be used on.

NOTE: Any change made in the power supply circuit
of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits may be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Connect the output meter to the plates of the two 6 K 6 G output tubes. Be certain that the meter is protected from D. C. by a condenser (. 1 mfd . or largernot electroyltic) in series with one of the leads.

Tuning The I-F Amplifier To 455 Kilocycles.

(a) Connect the output of the signal generator through a .02 mfd . condenser to the top cap of the 6A8G tubc, leaving the tube's grid clip in place. Connect the ground lead from the signal generator to the ground terminal of the receiver. KEEP TIIE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF THE OTIER SCREEN GRID TUBES.
(b) Set the station selector so that the tuning condenser plates are completely out of mesh. Turn the volume control knob to the right (ON) and turn the tone control knob to the left (TREBLE).
(c) Set the band selector switch on the Broadcast Band.
(d) Set the signal generator to 455 kilocycles.
(e) Adjust both trimmers located on top of the 2nd I-F transformer for maximum output.
(f) Adjust both trimmers located on top of the 1st I-F transformer for maximum output.
(g) Check operations (e) and (f) for more accurate adjustment.
ALWAYS USE THE LOWEST SIGNAL GENERA. TOR OU'TPUT THAT WILL GIVE A REASONABLE OUTPUT METER READING.

Aligning The R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal generator is connected to the "ANT" terminal of the receiver. For the Broadcast Band a
.00025 mfd condenser should be connected in series with the output lead of the signal generator and for the High Frequency and Police Bands a 400 ohm carbon resistor should be used in place of the condenser.

Each band should first be SIILNT ALICNED and then SERIES ALIGNED where provision is made for series alignment (Broadcast Band). The band selector switch should be set for the band being aligned and the signal generator should be set to the frequency indicated for each adjustment, pp (d) below.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh, adjust the "OSC" shunt trimmer until the MINIMUM CAI'ACITY SIGNAL (d) is heard (it is not necessary that the receiver tune through this signal).
(b) Adjust the station selector so that the SHCNT ALIGNMLNT SICNAL (d) is tuned-in with maximum output. Then adjust the "ANT" shunt trimmer for maximum output. Readjust the station selector slightly so that the gencrator signal is tuned-in with maximum output and check the adjustment of the " $A N \bar{\Gamma}$ " trimmer. DO NOT READJLST THE OSCILLATOR TIRIMMER.

NOTE: When shunt aligning the l'olice and High Frequency Bands care must be exercised so that thic circuits will be aligned on the correct frequency rather than on the image frequency which is approximately 910 kilocycles less than the fundamental. To check on this, increase the output of the signal generator ten times, or more, and try to tune-in the signal both at the generator frequency as indicated on the station selector dial and at approximately 910 kilocycles less than the correct frequency. If the circuits have been properly aligned the signal can be tuned-in at both positions but much stronger at the correct frequency.
(c) To align the series trimmer (See Fig. 2), set the signal generator to the frequency indicated below (d) and then tune-in this signal with the station selector for maximum output. To obtain the best adjustment for the series trimmer, it will be necessary to rotate the station selector back and forth slightly while adjusting the trimmer for maximum output. Minor tolerance variations in series aligmment at 2500 kilocycles in the Police Band and at 7000 kilocycles in the High Frequency Band may be compensated for by slight repositioning of the grid lead of the antenna coil in the Band affected.

American Broadcast Band
Police \& Amateur Band
High Frequency Band

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximately 455 kilocycles. This assembly is located on the underneath side of the chassis and consists of a coil, a fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring Diagram. Item 63, Fig. 1A.

The wave trap should not be adjusted until all other adjustments have been made. To make the adjustment, feed a 4.55 kilocycle signal from the signal generator through a . 00025 mfd . condenser into the antenna terminal of the receiver. With the band selector switch tured to the Broadcast Band position, the gang con-

Shunt Align.
 1700 Kilocycles 6000
 18 Megacycles

denser open and the volume control full on, adjust the trimmer condenser on the wave trap for minimum output.

Should the interfering station be operating on a frequency of slightly more or less than 455 kilqcycles, the exact frequency should be determined with the aid of the signal generator. Then, instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering signal should be used. If it is not possible to determine the exact frequency of the interfering signal the antenna may be attached to the receiver and the receiver tuned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

FIG, 1-A-WIRING DIAGRAM-MODEL 1117 SERIES 2

FIG. 1-B—WIRING DIAGRAM—MODEL 1117 SERIES 1

CIRCUIT CHANGES

Fig. 1-A is a revised Wiring Diagram, showing the following circuit changes after serial No. 1343902 :
Item 13B Part No. G2-34002, 100 mmf . cond. deleted.
" 14 Part No. Gl-34002, 250 mmf . cond. deleted.
" 27B Part No. 44009, 3000 ohm $1 / 4$-w resistor deleted.
" 41 Part No. W-21965, 375 ohm 1 W resistor superseded by Part No. 22873.
" 61 Part No. W-28621 added.
" 62 Part No. 35600 added.
In the later series a shielded lead between items 16 and 53 was found to reduce audio degeneration and thus materially improve the tone quality.

Fig. 2 Top View Model 1117

Fig. 3 Botton View Model 1418

Fig. 4 Phonogras: Pickup

PARTS LIST—MODEL 1117

CROSLEY SERVICE SUPPLEMENT

This model Crosley Radio is a five-tube, 2-band superheterodyne receiver. It is primarily designed for operation from a 2 -volt " A " battery. However, it may be used with a 3 -volt "A" battery if a Crosley W-44118 ballast tube is used in the socket provided. or it may be operated from a six-volt storage hattery in conjunction with the Crosley Model 117 power supply unit. No " B " or " C " batteries are required if the six-voll hattery and power supply unit are used.

The frequency ranges covered are from 540 to 1725 kilocevcles in the American Broadcast Band and from $5: \% 0$ to 15000 kilocycles in the High Frequency or Foreign Band.

Circuit Description

Five octal base glass tubes are employed in a superheterodyne circuit which consists of a combination os-cillator-modulator tube, two stages of I-F amplification
the second transformer of which is single tuned, and two stages of audio amplification. The 1F7G tube serves as the 2nd I-F amplifier and detector and supplies delayed AVC voltage to the 1C7G and 1D5G tubes. The two flexible resistors, items 38 and 39A, supply bias voltage to the 1C7G, 1D5G and 1F7G tubes and also serve to reduce the "C" battery drain in proportion to the drop in " B " voltage caused by usage.

Battery Connections

If the receiver is to be operated from individual " A ", "B" and "C" batteries, the "A" battery may be an air cell type, a two-volt storage battery or a three-volt dry "A" battery. Three plug-in type 45 -volt "B" batteries and one plug-in type $41 / 2$-volt " C " battery are required.

CAUTION: Do not connect or disconnect batteries or insert or remove ballast tube with the "ON-OFF" switch in the "ON" position.

Fig. 2 shows the proper method of connecting the battery cable to the batteries. The YELLOW lead should be conncted to the positive $(+)$ terminal and
the BLACK lead to the negative (-) terminal of the "A" battery. The resistor supplied on the YELLOW lead is to be used only if the " A " battcry is an air cell type. The plug having two small pins and one large pin should be inserted in the $41 / 2$-volt " C " battery and the three plugs having three small pins are to he inserted in the "B" batteries.

If a three-volt battery is to he used. a Crosley W.44118 ballast tube should be used in the hallast tube socket on the receiver chassis. It will be necessary to pry the connector out of the ballast tube sorket hefore the tube ran be inserted. THE AIR CELL RESISTOR SHOULD VOT BE USED with three-volt "A" battery and ballast tube. nor with a two-volt storage battery.

Six-Volf Power Supply Unit

The Crosley Model 117 Power Supply Unit, Fig. 4, is designed to permit the Mudel 55^{7} receiver to operate from a six-volt storage battery without the use of " B " and "C" hatteries. It camol he used with any other type 2 -volt receiver without redesigning the receiver.

Dial Light

If it becomes necessary to replace the dial light bulb, use only part No. W-37188 which is rated at $6 / 100 \mathrm{am}$ pere. Dial lights which use more current than this will reduce the life of the " A " battery.

TUBES AND VOLTAGE LIMITS

The following table gives the functions of the tubes used, together with the voltage readings between the tube socket contacts and the negative side of the "A" battery circuit. Voltage readings should be taken with a 1000 ohm per volt, 250 volt voltmeter (except filaments) with receiver in operating condition and the volume control full on and no signal input. The filament voltages should be measured with an accurate low range D-C voltmeter (approximately $0-10$ volts). Voltage limits may vary plus or minus 10% of values given.

TUBE SOCKET VOLTAGE READINGS

Tube	Function	\mathbf{H}	\mathbf{P}	\mathbf{S}	Go	Ga
1C7G	Oscillator-Modulator	2.0	120	54	Neg	84
1D5G	1st I-F Amplifier	2.0	120	54	-	
1F7G	2nd I-F Amplifier,	AVC and Detector	2.0	135	54	-
1H4G	1st A-F Amplifier	2.0	72	-	-	
1F5G	Output	2.0	130	135	-	-

Power output approximately .5 watt.
"A", battery drain approximately .42 ampere-less dial light current.
"B" battery drain approximately 24 mils.
Power Supply Unit drain approximately 1.15 amperes at 4 volts.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits can best be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Comect one terminal of the output meter to the plate and the other terminal to the screen of the 1F5G output tube. Be certain that the meter is protected from D. C. by commecting a condenser 1.1 mfd . or larger-not electrolytic) in series with one of the leads.

Tuning The I-F Amplifier 'To 455 Kilocycles.

(a) Comnert the output of the signal generator through a . 02 mfd ., or larger, condenser to the lop cap of the lCiG oscillator-modulator lube, leaving the tube's grid clip in place. Connert the ground lead from the signal generator to the ground (i) terminal of the receiver. KEEP THE GENERATOR LEADS AS FAR AS POSSHBLE FROM THE CRH) LEADS OF THE OTHER SCREFV GRID TLTBES.
(b) Sot the station selector so that the tuming condenser plates are completely out of mesh. 'Turn the volume control to the right (ON).
(c) 'Turn the hand selector switeh to the Inft (Broadcast Band).
(d) Set the signal generator to 455 kiloryeles.
(e) Adjusi both trimmers located on lop of the 3rd I-F assembly for maximum output. (Sce Fig. 2 item 8).
(f) Adjust the 2nd I-F trimmer condenser, Fig. 2 item 11. for maximum output.
(g) Adjust both trimmers located on top of the Ist 1-F assembly, item 6, for maximum output.
(h) Cherk operations $|e|$, (ft and $|\underline{q}|$ for more accurate adjustments.

ALWAYS USE TIIE LOWEST SIGNAL GENERATOR OMTPIT THAT WHLL GIVE A REASONABLE OUTPITT ME'TER READING.

Aligning The R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal generator is commerted to the antema (A)
terminal of the receiver. For the Broadcast Band a .00025 mfd . condenser should lee comnected in series with the output lead of the signal generator and for the High Frequency Band a 400 ohm carbon resistor should be used in place of the condenser.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh and the band selectur switch set for the band being aligned, adjust the "()SC" shumt trimmer so that the MINIMUM C.APACIT'I SICNAL (c) is heard (it is not necessary that the receiver tume through this signal).
(b) Adjust the station selector so that the SHUNT ALIGNMiNl' signal is lumed-in with maximum output. Then adjust the "ANT" shunt trimmer for maxinum output. Rearljust the stalion selector slightly so that the generator sirnal is tuned-in with maximum output and check the adjustment of the "ANT" trimmer. DO NOT" READJEST THE OSCILLATOR TRIMMER.

NOTE: When shunt aligning the High|Frequeney Band care should be exercised so that the circuits will be aligned on the corred frequency rather than on the image frequeney which is approximately 910 kilocyeles less than the fundamental. To check on this, increase the outpui of the signal generator 10 times, or more, and try to tume-in the signal both at the generator frequeney as indicated on the station selector dial and at approximately 910 kilucycles less than the correct frequency. If the circuits have been properly aligned the signal wan be: inned-in at both positions but much stronger at the comeri frequenty.
(C) SIGNAL INPUT FREQUENCIES

Minimum Capacity Signal
1725 Kilocycles
15500 Kilocycles

Shunt Alignment Signal
1400 Kilocycles
15000 Kilocycles

Fig. 2 Top View Model 557

Fig. 3 Bottom View Model 557

Fig. 4 Model 117 Six Volt Power Supply

Fig. 5 Wiring Diagram—Model 117

PARTS LIST—MODEL 557

FIG. 1-WIRING DIAGRAM-MODEL 557

CROSLEY SERVICE SUPPLEMENT

This model Crosley radio is an AC receiver designed for American and Foreign broadcast reception. The

CIRCUIT DESCRIPTION

Five octal base glass tubes are employed in a superheterodyne circuit which consists of a combination os-cillator-modulator tube, I-F amplifier, detector, audio amplifier and power supply. The 6Q7G tube serves as detector and 1 st audio amplifier and supplies AVC voltage to the grids of the 6 A 8 G and 6 L 7 C tubes. The AVC voltage is taken from the A-F diode plate. The speaker field is located in the negative leg of the power supply. The starting bias for the 6A8G and 6U7G tubes is developed across a 75 ohm resistor, item 25. The bias voltage for the 607 C tube is developed across
tuning range is divided into two bands as follows:
(American Broadcast Band) (High Frequency or Foreign Band)
a 40 ohm resistor, item 24 , and the bias voltage for the 6K6G output tube is developed across a 275 ohm resistor, item 23 . Items 23,24 and 25 are located between the speaker field and ground.

SOCKET VOLTAGES

The tube socket voltages are measured from the tube socket contacts to the chassis with a 1000 ohm per volt 500 volt d. c. voltmeter (except filaments) with the receiver in operating condition and no signal input. The filament voltages should be measured with an accurate low range a. c. voltmeter (approxinately $0-10$ volts). Readings may vary plus or minus $10^{\prime} /$ of values given.

TUBE SOCKET VOLTAGE READINGS

Tube	Function	H	P	S	K	G	Ga
6A8G	Oscillator-Modulator	6.3	160	115	0	-1.2	160
6U7G	I-F Amplifier	6.3	160	115	0	-1.2	-
6Q7G	Diode Detector \& A-F				2.5	-2.5	-
6K6G	Amplifier	Output	6.3	80	-3	-5.0	-
5Y3G	Rectifier	5.0	160	-	-	225	-

Power output approximately 2 watts.
Power consumption approximately 40 watts at 117.5 volts.
Voltage drop across speaker field 35 volts.

50 CYCLE POWER TRANSFORMER ADJUSTMENT

Receivers equipped with a 50 cycle power transformer have a "high" and "low" voltage tap on the under side

of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are connected to a terminal strip near the transformer.

The voltage range of the "low" tap of the 95-130 volt transformer is from 95 to $112 \frac{1}{2}$ volts and of the "high" tap is from $112 \frac{1}{2}$ to 130 volts. The range of the "low" tap of the 190-260 volt transformer is from 190 to 225 volts and of the "high" tap is from 225 to 260 volts.

The accompanying illustration shows the connections
for changing from high to low or low to high line voltage. Note the "jumper" wire which is attached to the terminal at which one side of the power cord is attached. The other end of this jumper wire should be connected to the ORANCE or BLACK lead of the transformer primary, according to the line voltage the receiver is to be used on.

NOTE: Any rhange made in the power supply circuit of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits can best be property aligned with the use of a modulated signal generator and output meter.

CONNECTING OUTPUT METER

Connect the output meter to I^{\prime} and S of the 6 K 6 G output tulee. Be certain that the meter is protected from d. c. by comecting a condenser (. 1 mid . or larger-not electrolytic) in series with one of the leads.

Tuning I-F Amplifier To 455 Kilocycles.

(a) Connect the output of the signal generator through a .02 mfd . condenser to the top cap of the 6A8G tube, leaving the tube's grid clip in place. Connect the ground lead from the signal generator to the
"GND" terminal of the rereiver. KEEI' THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE (GRID LEADS OF TIIE OTHER SCREEN GRID TUBES.
(b) Set the station selector so that the tuning condenser plates are completely out of mesh and turn the volume control knob to the right (ON).
(r) Turn the band selector switch to the left IBroad(ast Band!.
(d) Sof the signal generator to 155 kilocyeles.
(c) Adjus both trimmers located on top of the 2nd 1.F transformur for maximum output. See Fig. 2.
(f) Adjust both trimmers located on the top of the Ist l-F tramsformer for maximum output.

ALWAYS ISE THE LOWEST SIGNAL (ENERATOR OUTPLT THAT WILL (iIVE A REASONABLIF, READIN(; O) THE OITPIT METER.

Aligning The R-F Amplifier.

When aligning the R.F amplifier the output lead from the signal gemerator is romected to the antema (1) terminal of the reseiver. For the Broadeast Band a .0nor2.5 mfd. condenser should be comerted in series with the output lead of the signal generator and for the High Frequency Band a too ohm carbon resistor should be used in place of the rondenser.
(a) With the station selector adjusted so that the tuning combenser plates are completely out of mesh and the band selector switch set for the band being aligned, adjust the "OSC" shum trimmer so that the MINIMUM CAPACITY SI(;)AL, IC). is heard. It is mol mocessary that the remper tune throngh this signal.
(b) Adjust the station selector so that the SHLN' ${ }^{-}$ AIICNMENT signal is tuned-in with maximum output. Then adjust the "ANT" shomt trimmer for maximum output. Readjust the station selector slightly so that the generaor signal is tmed-in with maximum output and rheck the adjustment of the "AVT" trimmer. D) NOT READ)JUST THF. "OSC." TRIMMER.

NOTE 1: When shunt aligning the High Frequency Band care should be exercised so that the eircuits will be aligned on the correct frequency rather than on the image frequenc! which is approximately 910 kiloeyeles less than the fundamental. To check in this. increase the output of the signal generator 10 times. or more, and try to tune in the signal both at the generator frequeney as indicated on the station selector dial and at approximately 910 kilocyeles less than the correct frequency. If the circuits have been properly aligned the signal ran be tuned-in at both positions but much stronger at the corred frequency.

VOTE 2: If at any time the H.F coils are replaced, it may be necessary to vary the inductance of the "OSC" coil by moving the cossoner turn of wire at the gap to make the set track at the 6 megacyele end. Moving the turn toward the short end of the coil will decrease the inductance and moving it loward the long end will increase the inductance. If the signal is weak at 6 meg . acyeles. a similar slight change in the inductance of the "ANT" coil should bring up the signal strength. THIS IS A CRITICAL OPERATION AND SHOLLD NOT BE BONE ON ANY SET [TVIESS CHANGING (OILS MAKES IT NECESSARY.

(C) SIGNAL INPUT FREQUENCIES

American Broadcast Band High Frequency Band

Minimum Capacity
1725 Kilocycles
15400 Kilocycles

Shunt Alignment

1400 Kilocycles
15000 Kilocycles

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximatly 1.55 kilocyeles. This assembly is located on the underneath side of the chassis and consists of a coil, a fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring diagram.

The wave drap should not be adjusted until all other adjustments have been made. To make the adjustment, feed a 455 kilocycle signal from the signal generator through a . 00025 mfd . condenser into the antenna terminal of the receiver. With the band selector switch turned to the Broadrast Band position. the gang con-
denser open and the wolume control full on, adjust the trimmer condenser on the wave trap for minimum output.

Should the interfering station be operating on a frequency of slightly more or less than 455 kilocycles, the exact frequency should be determined with the aid of the signal generator. Then, instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering signal should be used. If it is not possible to determine the exact frequency of the interfering signal the antenna may be attached to the receiver and the receiver tuned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

FIG. 1-WIRING DIAGRAM—MODEL 567

Fig. 2 Top View Model 567

Fig. 3 Bottom View Model 567

PARTS LIST—MODEL 567

Item No.	Part No.	Figures in first Description		ts in Diagrams. Part No.	Description
1	W - -43567	Dial Light, 6-8 V.	27	G171-36400	Socket, Type 6U7
	G2 - -44252	Socket Assy. Dial Light	28	G160-36400	Socket, Type 607
2	G132-32000	Ant. Coil, B. C.	29	G172-36400	Socket, Type 6K6
3	G133-32000	Ant. Coil, H-F.	30	G173-36400	Socket, Type 5Y3
4	G132-32002	Osc. Coil, B. C.	31	G103-28807	Socket Speaker
6	G138-32004	1st I-F Assy.	32	257BP11" ${ }^{\text {U }}$ "	Tube Shield
7	G139-32004	2nd I-F Assy.		- ${ }^{\text {25 }}$	V. C. and Cone Assy.-257BP11"U"
	W -36139 A	Dual I-F Trimmer		-44538	Output Trans.-257BP11"U"
8	$\underset{\mathrm{B}}{\mathrm{G} 37-33001}$	2 Section Gang Cond.		257BP11"B"	Speaker, Spec. 51-A-5
	B - 44286 C	Dial Face (Glass)		-42927	V. C. and Cone Assy.-257BP11"B"
	W - -44285	Dial Mask (Paper)		-41473 -4461	Output Trans.-257BP11 "B"
	B -43544 D	Support-Dial Glass	33	W -43448A	Band Switch
	W $\quad-43550 \mathrm{~A}$	Pointer	34	-35600	Resistor, 100,000 Ohm 1/4W.
	W - ${ }_{\text {W }}$-44406	Screw-Pointer Mtg.	35	G1 -26719	Ant. and Gnd. Terminal Assy.
	$\begin{array}{ll}\text { G1 } 1 & -44403 \\ -43564\end{array}$	Ring-Dial Glass Support	36	-43479	Power Trans.. 110 V. 60 Cy.
	W - -43542 B	Bracket-Drive Shaft		$\begin{aligned} & -43569 \mathrm{~A} \\ & -43570 \mathrm{~A} \end{aligned}$	Power Trans., 110 V Pow Trans., 220 V .50 Cy .
	W -44134	Drive Shaft		-43480A	Power Trans., 110 V. 25 Gy.
	W - 43549	Retaining Spring (Shaft)		-43481A	Power Trans., 220 V. 25 Cy.
	-41582	Drive Cord	37	$-43449 \mathrm{~A}$	Vol. Cont. (1 Meg.) and Switch
	${ }_{\text {W }}^{\text {W }} 12-435002$	Spring-Cord Tension	38 39	W -41247 A	4 Section Shunt Trimmer Assy.
10	W -36541	Condenser, . 02 Mf. 160 V .	40	W - 30805	Resistor, ${ }^{\text {Conder, }} .01 \mathrm{Mf}$.400 V .
11A	W. -28621	Condenser, $02 \mathrm{Mf}$.200 V .	41	- -30137	Resistor, $3,500 \mathrm{Ohm} \mathrm{1/4W}$.
1113	W - 28621	Condenser, 02 Mf. 200 V .		-7B3	Cabinet (Black Body)
${ }_{11 \mathrm{C}}^{11 \mathrm{C}}$	W - 28621	Condenser, 02 Mf .200 V .		-7BC	Cabinet (Brown Body)
12	W - 34647	Condenser, $02 \mathrm{Mr}$. . 200 V .		-7BD	Cabinet (Wood Grain Body)
13A	G1-34002	Condenser, 250 Mmf . Molded		W-44044A-FS1	Cover (sed on 7BC and 7BD) Black Foot-Black
1313	G1-34002	Condenser, 250 Mmf . Molded		-44045C	Cover (Used on 713B) Red
14	W - 44012	Condenser, 16 Mf .250 V .		W-44044A-FS46	Foot-Red
15	W -44013	Condenser, 16 Mf .200 V .		-44552	Knob (Black)
17	B -44004	Cord and Plug		-44268A	Escutcheon
18	- 343990	Resistor, 30,000 Ohm 1/4W.		W - 44436	Felt Pad (Escutcheon) (4 Req.)
19A	-26577	Resistor, 3 Megohm $1 / 4 \mathrm{~W}$.		W -44015A	Chassis Support Brkt. (Upper)
193	-26577	Resistor, 3 Megohm 1/4W.		W - 44041A	Chassis Support Brkt. (Lower)
20	-21455	Resistor, $300,000 \mathrm{Ohm}^{1 / 4} \mathrm{~W}$.		MG44-44026	Gound Bame Cloth Assv.-7BB
21	-35601	Resistor, $300,000 \mathrm{Ohm} \mathrm{1/4W}$.		MG43-44026	Baffle Assy.-713B
22	W -23785	Resistor, 500,000 Ohm $1 / 4 \mathrm{~W}$.		MG42-44026	Grille Cloth Assy.-7BC and 7BD
23	W -25937	Resistor, 275 Ohm 1/2W.		MG41-44026	Baffle Assy.-7BC and 7BD
24 25	W -23012A	Resistor, $40 \mathrm{Ohm} 1 / 2 \mathrm{~W}$.	42	G164-32004	Wave Trap
26	W $\mathrm{W} 156-35400$	Resistor, $750 \mathrm{Omm} 3 / 4 \mathrm{~W}$.			
	G156-36400	Socket, Type 6A8			

SPECIFICATIUNS

'This mudel Crosley radio is a 6 -tube AC receiver de-535-1725 Kilocycles or 550-173 Metres 5.8-18.3 Megacycles or 52-16.3 Metres

Circuit Description.

Six octal base glass tubes are employed in a superheterodyne circuit which consists of a combination us-cillator-modulator tube, 455 kilocycle 1-F amplifier, push pull pentode uutput and power supply. The 6Q70; tube serves as the detector and lst A-F amplifier and supplies AVC voltage to the grids of the 6A8G and 607G tubes. The speaker field is lucated in the negative leg of the power supply. The hias voltage for the 6 A 8 G and 6 C 7 G tubes is obtained across a 40 ohm resistor, item 30, the bias for the 607 C ; tube is obtained across a 32 ohm resistor, item 31 , and the bias for the output tubes is obtained across a 375 ohm resistor, item
signed for American and Foreign Lroadcast reception. The tuning range is divided into two bands as follows:
(American Broadcast Band)
(High Frequency or Foreign Band)
29. Items 30 and 31 are located between the speaher field and ground. Phase inversion is ublained in the output circuit by the voltage developed across a 3000 whin resistor, itein 27 .

SOCKET VOLTAGES

The tube socket voltages are measured from the tube socket contacts lo the chassis with a 1000 ohm per volt, 500 -volt D. C. voltmeter (except filaments) with receiver in operating condition and no signal input. The tilament voltages should be measured with ant accurate low range A. C. voltmeter (approximately 0.10 volts). Readings may vary plus or minus 10% of values given.

TUBE SOCKET VOLTAGE READINGS

Tube	Function
6A8G	Oscillator-Modulator
6U7G	I-F Amplifier
6Q7G	Det, AVC \& A-F Amp.
6K6G	(2) Output
5Y3G	Rectifier

Power output approximately 4.5 watts.
Power consumption approximately 60 watts at 11.5 volts.
Voltage drop across speaker field 60 volts.

50 CYCLE POWER TRANSFORMER ADJUSTMENT

Receivers equipped with a 50 cycle power transformer have a "high" and "low" voltage tap on the under side of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are connected to a terminal strip near the transformer.

The voltage range of the "low" lap of the 95-130 volt, transformer is from 95 to $1121 / 2$ volts and of the "high" tap is from $1121 / 2$ to 130 volts. The range of the "low"

tap of the $190-260$ volt transformer is from 190 to 225 volts and of the "high" tap is from 225 to 260 volts.

The accompanying illustration shows the connections for changing from high to low or lon to high line voltage. Note the "jumper" wire which is attached to the terminal at which one side of the power cord is attached. The other end of this jumper wire should be connected to the ORANGE or BLACK lead of the transformer primary, according to the line voltage the receiver is to be used on.

NOTE: Any change made in the power supply circuit of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits may be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Connect the output meter to the plates of the two 6 K 6 G Output tubes. Be certain that the meter is prolected from D. C. by connecting a condenser (. 1 mfd . or larger-not electrolytic) in series with one of the leads.

Tuning I-F Amplifier to 455 Kilocycles.

(a) Connect the output of the signal generator
through a .02 mfd . condenser to the top cap of the 6A8C tube, leaving the tube's grid lead in place. Connect the ground lead from the signal generator to the ground terminal of the receiver. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF TIIE: OTHER SCREEN GRID TUBES.
(b) Set the station selector so that the tuning condenser plates are completely out of mesh. Turn the volume control knob to the right ($O N$) and turn the tone control knol, tu the left (TREBLL).
(c) Turn the band selector switch to the Broadcast Band.
(d) Set the signal generator to 455 kilocycles.
(e) Adjust both trimmers located on top of the 2nd 1-F transformer for maximum output. (Item 6, Fig. 2).
(f) Adjust both trimmers located on top of the 1st 1-F transformer for maximum output. (Item 5, Fig. 2).
(g) Check operations (e) and (f) for more accurate adjustment.
alWays lise the lowest signal gevera. TOR OUTPLT THAT WILL GIVE A REAsovable READING ON THE OUTPIT METER.

Aligning The R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal generator is connected to the antenna (A) terminal of the receiver. For the Broadcast Band a 100 mmf. condenser should be comerted in series with
the output lead of the signal generator and for the High Frequency Band a 400 ohm carbon resistor should be used in place of the condenser.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh and the band selector switch set for the band being aligned, adjust the "OSC" shunt trimmer so that the MINIMUM CAPACITY SIGNAL ${ }^{\circ} \mathbb{C}$) is heard (it is not necessary that the receiver tune through this signal).
(b) Adjust the station selector so that the SHONT ALIGNMENT signal is tuned-in with maximum output. Then adjust the "ANT" shunt trimmer for maximum vutput. Readjust the station selector slightly so that the generator signal is tuned-in with maximum output and check the adjustment of the "ANT" trimmer. DO NOT READJIST THE OSCILLATOR TRIMMER

NOTE: When shunt aligning the High Frequency Band care should be exercised so that the circuits will be aligned on the correct frequency rather than on the image frequency which is approximately 910 kilocycles less than the fundamental. To check on this, increase the output of the signal generator 10 times, or more and try to tune-in the signal both at the generator frequency as indicated on the station selector dial and at approximately 910 hilucycles less than the correct frequency. If the cirwits have been properly aligned the signal can be tuned-in at both positions but much stronger at the corred frequency.

(C) SIGNAL INPUT FREQUENCIES

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximately 455 kilocycles. This assembly is located on the underneath side of the chassis and consists of a coil, a fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring Diagram (item 47).

The wave trap should not be adjusted until all outher adjustments have been made. To make the adjustment. feed a 455 kilocycle signal from the signal generator through a 100 mmf . condenser into the antenna terminal of the receiver. With the band selector switch turned to the Broadrast Band position, the gang con-
denser open and the volume control full on, adjust the trimmer condenser on the wave trap for MINIML M output.
Should the interfering station be operating on a frequency of slightly more or less than 4.55 kilocycles, the exact frequency should be delermined with the aid of the signal generator. Then, instead of feeding a 45.5 hilocycle signal into the receiver the exact frequency of the interfering signal should be used. If it is not possible to determinc the exact frequency of the interfering signal the antema may be attached to the receiver and the receiver tuned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

Fig. 4 Phonograph Pickup

FIG. 1-WIRING DIAGRAM-MODEL 637

Fig. 2 Top View-Model 637

Fig. 3 Bottom View-Model 637

PARTS LIST—MODEL 637

Figures in tirst column refer to parts in Diagrams.					
Item No.	Part No.	Description	Item No.	Part No.	Description
1	G143-32000	Ant. Coil, B-C.	25	-30137	Resistor, 3,500 Ohm 1/3W. Carbon
2	G145-3200'	()sc. Coil, B-C.	26A	-33344	Resistor, $400,000 \mathrm{Ohm} \mathrm{1/4} \mathrm{~W}$. Carbon
3	G142-32000	Ant. Coil, H-F.	26B	-33344	Resistor, $400,000 \mathrm{Ohm} 1 / 4 \mathrm{~W}$. Carbon
4	G144-3200'	Osc. Coil, H-F.	27	-44009	Resistor, 3,000 Ohm 1/4 W. Ins.
5	G156-32004	1st I-F. Assy.	28	-34883	Resistor, 2 Megohm 1/3W. Carbon
6	G157-32004	2nd I-F. Assy.	29	W - 43462	Resistor, 375 Ohm 21/2W. Flex.
7	W $\quad-36057 \mathrm{~B}$	Condenser, 40 MIF .300 V .	30	W - 23012 A	Resistor, 40 Ohm $3 / 4 \mathrm{~W}$. Flex.
8	W - 41081	Condenser, 16 Mf .250 V .	31	W -37631	Resistor, 32 Ohm $1 / 2 \mathrm{~W}$. Flex.
9	G16-34000	Condenser, 3,800 Mmif. (H-F. Osc. Series)	32	G103-28807	Socket-Speaker
10A		Series) Condenser, 00025 Mf. Molded	33 34	G156-36400	Socket, Type 6A8
10 B	G1 -34002	Condenser, . 00025 Mi . Molded	34	G171-36400	Socket, Type 6U7
11	G14-34002	Condenser, 00025 Mr (B-C Os.	35 B	G160-36400	Socket, Type 6Q7
12A	W -28621	Condenser, . $02 \mathrm{Mf}$.200 V .	37	G173-36400	Socket, Type 6K6
12 B	W -28621	Condenser, . 02 Mf .200 V .		W - 40911	Tube Shield
12 C	W - 28621	Condenser, 02 Mf . 200 V .		W -43552	Spk. Plug Clamp
12D	W -28621	Condenser, . 02 Mf . 200 V .	38	365BP12"M"	Speaker-Spec. 1-D-1089
13	W -36541	Condenser, 02 Mf .160 V .		-44542	V. C. and Cone Assy.) Used
14	W - 23615	Condenser, . 05 Mf .400 V .		-44273	Field Coil , on
15	W - 30805	Condenser, . $01 \mathrm{Mf}$.400 V .		-44274	Output Trans. $\quad 36513 \mathrm{P} 12 \times \mathrm{M}$ "
16	W --28619	Condenser, . 006 Mf .200 V.		-43672	Cardboard Ring Spk.
17	W -41247A	4 Sect. Shunt Trimmer Assy.	39	W - 43448 A	Band Switch
18	G42 - 33001	2 Sect. Gang. Cond.	40	C:27-26719	Ant. and Gnd. Terminal
	\% -44343D	Dial Face (Glass)	41	--44356	Pwr. Trans., 60 Cy . -110 Y.
	W - $-44085 B$	Dial Mask		-44359	Pwr. Trans., 50 Cy. - 110 Y.
	C - 44379 A	Support Brkt. (Dial Glass)		-44360	Pwr. Trans., 50 Cy - 220 Y .
	W	Support Ring (Dial Glass)		-44357	Pwr. Trans., 25 Cy. -110 V.
	W - 435423	Drive Shaft Bracket		-44358	Pwr. Trans., 25 Cy .-220 V.
	W -44134	Drive Shaft	42	-43449A	Vol. Cont. ($1 / 2$ Meg.) and Switch
	W -43549	Retaining Ring (Shaft)	43	G13-34002	Cond., . 000035 Mf. Molded
	G1 -4.3564	Pulley and Hub Assy.	44	G37-26719	Phono-Terminal Board
	W -44299	Pointer	45	-21875	Res., 100,000 Ohm $1 / 3$ W. Used only on
	$\begin{array}{ll}\text { W } & -40486 \\ \mathrm{~W} & -43561\end{array}$	Screw FS 20 (Pointer Mtg.)	46	G5 - 34002	Sets with Phono-Terminals
	-41582	Drive Cord (181/4")	47	G165-32004	Wave Trap Assy. (460 Kc .)
19	B - 44004	Pwr. Cord and Plug		7 E	Cabinet
20	W -43567	Dial Light, 6-8 V.		B $\quad-44226 \mathrm{~B}$	Escutcheon
	G5 - 44363	Light Socket Assy.		W - 44381 B	Knob (3 Req.)
21	21455	Resistor, 300,000 Ohm 1/4W. Carbun		W -43553	Rubber Mtg. Foot
22	-26577	Resistor, 3 Megohm 1/4W. Carbon			
23	-37485	Resistor, 15,000 Ohm $1 / 2 \mathrm{~W}$. Carbon			
24	-35928	Resistor, 60,000 Ohm $1 / 4 \mathrm{~W}$. Ins.			

SPECIFICATIONS

The Crosley Model A-267 auto radio is a single unit, six-tube superheterodyne receiver. The power supply unit is built into a completely shielded compartment and is an integral part of the receiver chassis. The tuning range is from 540 to 1530 Kc .

TUBES AND VOLTAGE LIMITS

The following table gives the functions of the tubes
used, together with the voltage readings between the tube socket contacts and the receiver chassis. Voltage readings taken with a 1000 ohm per volt, 500 volt voltmeter (except filaments) with receiver in operating condition and no signal input. The filament voltages should be measured with an accurate low range D.C. voltmeter (approximately 0 to 10 volts). Voltage limits may vary plus or minus 10% of values given.

NOTE: The negative bias applied to the first three tubes is -3.5 volts, measured across a 75 ohm resistor (Item 31). The 6Q7G tube has a negative bias of -1.9 volts measured across a 40 ohm resistor (Item 30). The 6 K 6 G output tube has a negative bias of -20 volts applied to the grid and is measured from the high side of the " B " filter choke (Item 8) to chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits can best be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Connect the output meter to P and S of the 6K6C; Output tube. Be sure the meter is protected from D. C. by connecting a condenser $(.1 \mathrm{mfd}$. or larger-not elertrolytic) in series with one of the leads.

NOTE: The receiver chassis should be in its case and a speaker similar to one used with the receiver must be ronnected to the chassis before making adjustments. It is advisable to use a spare control unit for making adjustments of the volume control and tuning condenser. A standard control unit with short cables ($6^{\prime \prime}$ to $8^{\prime \prime}$) makes a very convenient and useful tool. If it is desired to shorten a pair of long cables it will be absolutely necessary to heavily tin the cables before cutting them.

1. Tuning I-F Amplifier to 262 Kilocycles.

(a) Connect the output of the signal generator through a .02 mfd ., or larger, condenser to the top cap of the 6A8G Osc-Mod. tube, leaving the tube's grid clip in place. Connect the ground lead from the signal generator to the receiver chassis frame. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF THE OTHER SCREEN GRID TUBES.
(b) Adjust the station selector so that the rotor
plates of the tuning condenser are conmpletely in mesh, and turn the volume control full (ON).
(c) Set the signal generator to 262 kilocyoles.
(d) Adjust both trimmers located on the 2nd I-F transformer for maximum output. (Fig. 2).
(e) Adjust both trimmers located on the 1st I-F transformer for maximum output.
(f) Repeat operations (d) and (e) for more accurate adjustments.

ALWAYS LSE THE LOWEST SIGNAL GENERATOR OUTPUT THAT WILL GIVE A REASONABLE OUTPUT METER READING.

2. Aligning R-F Amplifier.

(a) Connect the output lead from the signal gener: ator through a .00025 mfd . condenser to the "ANT" connection of the receiver.
(b) Set the signal generator to 1530 kilocycles.
(c) With the condenser gang all the way open, adjust the "OSC" trimmer condenser so that the 1530 kilocycle signal is heard. It is not necessary that the receiver tune through this signal.
(d) Set the signal generator to 1400 kilocycles.
(e) Tune-in the 1400 kilocycle signal with the station selector (approximately 140 on the dial) for maximum reading on the output meter.
(f) Adjust the "R-F" trimmer condenser for maximum output.
(g) Adjust the "ANT" trimmer condenser for maximum output.

DO NOT READJUST THE "OSC" TRIMMER CONDENSER.
(h) Repeat operations (e), (f) and (g) for more accurate adjustments.
3. Adjusting Antenna Compensating Condenser.
(a) Set the signal generator to 600 kilocycles.
(b) Tune-in the 600 kilocycle signal with the station selector for maximum output.
(c) Adjust the antenna compensating condenser,

Item Vo. 11, Fig. 3, for maximum output.
(d) Repeat operations (b) and (c) alternately until no further improvement can be oblained.
(e) Set the signal generator to 1400 kilocycles again.
(f) Tume-in the 1400 kilocycle signal with the station selerfor for maximum output.
(g) Rea.ljust the trimmer on the "ANT" section of
the tuning condenser for maximum output.
It will be necessary to adjust the antenna compensating condenser to the car antenna after the receiver has been installed in the car.
(a) After the installation is complete, tune-in a WEAK station letween 55 and 65 on the dial.
(b) Adjust the anterna compensating condenser for maximum volume in the speaker.

Fig. 3 Bottom View A-267

PARTS LIST－MODEL A－267

Item No．	Part No．	Figures in first colum Description	fer to pa Item No．	s in Diagrams． Part No．	Description
1	G13．1－32000	Ant．Coil		W－50023	Tube Shield（6K6－G）（2）
2	C93－32001	R－F．Coil		W -31210	Tube Shield Ring
	M（323－50000	Shield and Brkt．Assy．		$W^{W} \quad-50174$	Tube Shield Base
	W－32912	Wood－Coil Spacer	33	（1105－38807	Socket－Vibrator
3	（ $1143-3200{ }^{2}$	Osc．Coil		W－50123	Vib．Ground Clip
$\frac{1}{5}$	C． $10-33005$	1st I－F Assy．	3.1	（778－21628	Output Transformer
5	（941－32005	2nd 1－F Asse．		W＊－389911	Speaker Socket，Part of（1－43619
$\frac{6}{6}$		＂Aotor Voise Choke		（117－39769	Assy．
8	（179－24628	＂A，Filter Ch	36	（117－32769	Power Transformer
9\％パメ	（5．5 $-3300{ }^{2}$	3 Sect．Var．Tuning Condenser		－44548	Speaker，Spec．No．1－1）－1075
10	W－5003913	Condenser．． $003 \mathrm{Mlf.160)} \mathrm{~V}$ ．		－44549	Field Coil
11	W $\quad-50054 \mathrm{~A}$	Condenser，Ant．Compensating		－43676	Cone Mtg．Ring
12λ	W－${ }^{\text {W2 }} 380$	Condenser，． 05 MIf .200 V ．	37	-50056	Volume Control（2 Meg，I＇ap 1 Meg．）
1213	W $\quad-32380$	Condenser，． 05 Mif .200 V ．		W－ 38455 A	Case Mitg．Spacer
12 C	W－32380	Condenser， $05 \mathrm{MIf}$.200 V ．		－6213	Mtg．Nut（2）
13 A	IV－24049C	Condenser，． $1 \mathrm{Mif}$.200 V ．		W－－32957	Mtg．Washer（2）
1313	IV－24049C	Condenser．． 1 M1f． 200 V ．		－32783A	2.4 ＂Ant．Lead
14	W－50084	Condenser， 0003 Mi .160 V ．		UV－38038I）	Distributor Suppressor
15	IV－ 00043	Condenser， $006 \mathrm{Mlf}$.600 V ．		W－-29751 C	Generator Condenser
16 A	IV－50161	Condenser，． 2 Mif． 120% ．		W－-32956 A	Mitg．Studs
1613	IV－-20161	Condenser，． 5 Mif． 120 V		$13-389850$	Remote Cont．Head and Cables
17 A	W -50185	Condenser，． 01 Mf .500 V ．		－ 138849	Vol．Cont．Head and Cable Assy．
1713	W－ 0185	Condenser，． 01 Mf． 500 V ．		－50103	Vol．Cont．Head and Switch
1897	W1 50194	Condenser，Dual 6．Mf，330 V．		W－－43567	Dial Light
19.1	（1）－34002	Condenser，．00025 Mf．Mica		－50100	Light Socket and Lead
1913	（11－34002	Condenser，． 00025 MIf．Mica		－50099	＂A＂Lead to Set
20）	（i3－34002	Condenser，．0005 Mif．Mica		-50097	＂A＂Lead－I Iead to Fuse
21	（i）-3.3400^{2}	Condenser，．0001 M1．Mica		－50098	＂A＂Lead－Fuse to Ammeter／
	－35601	Resistor，300，000（）hm 1／411．Ins．		－50095	Vol．Cont．Flex．Drive Cable
23	－32601	Resistor，300，000 Ohm ${ }^{1 / 11}$ I Ins．		－50101	Drive Control Head
24 A	－37377	Resistor， 20,000 Ohm 11 V ．Ins．		-50206	Celluloid Crear Assy．
2413	－35602	Resistor，1．Megohm 1 ¢ 1 ．Ins．		－50096	Cond．Flex．Drive Cable
25	－359\％	Resistor，1．Megolm 11 ll ．Ins．		－50357	Fuse， 15 Amp．
26 A	－35600	Resistor，60，000 Ohm l／W．Ins．		（110－38000	Vibrator
2613	－35600	Resistor，100，000 Ohm ${ }^{4} 4$		M $42-50267$	Top Cover Assy．（Spki．，ete．）
274	－38976	Resistor， 250,000 （）hm $1 / \mathrm{W}$ ．Ins．		\＃1－－50180A	（iround Strip（Short）
2713	－38976	Resistor， $250,0000 \mathrm{hm} 1 / 16$ ．Ins．		B－－50187	Speaker Escutcheon
28	－40757	Resistor， $50,0000 \mathrm{hm} 1 / 4 \mathrm{~W}$. Ins．		$13-50188$	Speaker Screen
39	-38977	Resistor， 2000 Om ！ $\mathrm{ll}^{\prime} \mathrm{l}$ ．Ins．		$13-50189 \mathrm{~A}$	Speaker Grille Cloth
30	IV－23012A	Resistor， 40 Ohm 3／4 W．Flex．		11.	Speaker Cable Clamp
31	11.	Resistor， 75 （ hrm 3 W．Flex．		IV -31393 A	＂A＂Connector on Chassis
32	（1778－36400	Socket－8－Prong		W－ 31303 A	Bushing and Ferrule Used in＂ A ＂and
	$\begin{array}{lr}W & -50021 \\ W & -50022\end{array}$	Tube Shield（Grid L．ead（ut）（1） Tube Shield（Plain）（1）		W－－31301	Ant．Connections Spring－Used in Ant．Socket

FIG. 1—WIRING DIAGRAM—MODEL A-267

SPECIFICATIONS

This model Crosley radio is an AC-DC receiver de-
signed for 100 to 125 volt operation. The tuning range is divided into two bands as follows:
535-1725 Kilocycles or 550-173 Metres (American Broadcast Band)
5.8-18.3 Megacycles or 52-16.3 Metres (High Frequency or Foreign Band).

CIRCUIT DESCRIPTION

Six octal base glass tubes are employed in a superheterodyne circuit which consists of a combination os-cillator-modulator tube, 455 kilocycle I-F amplifier, detector, pentode output and power supply. The 6Q7G tube serves as a detector and lst audio amplifier and supplies AVC voltage to the grids of the 6A8G and 6U7G tubes. A ballast tube, part No. W-44338, is used in the power supply circuit. The bias voltage for the 6A8G and 6 U 7 G tubes is developed across a 20 ohm resistor, item 33, and the bias voltage for the 6Q7G and 25A6G tubes is developed across a 375 ohm resistor, item 34. The two resistors, items 30 and 31 , serve as a voltage divider for the 6 Q 7 G tube. The speaker field is connected across the " B " power supply. A .01 mfd . rondenser, item 17 , is connected across the power supply leads to reduce electrical interference from that source.

AC-DC SWITCH

A switch is located on the rear of the chassis for the
purpose of adapting the receiver to either an AC or IC power supply. To change the position on the switch, remove the screw in the locking bracket and move the end of the bracket to the other position as marked on the chassis. Lock the switch in position by replacing the screw. DO NOT OPERATE THE RECEIVER ON A DC POWER SUPPLY WITH THE SWITCH IN THE "AC" POSITION NOR ON AN AC POWER SUPPLY WITH THE SIVITCH IN THE "DC" POSITION AS IT WILL C.AL'SE DAMACE TO THE RECEIVER PARTS.

SOCKET VOLTAGES

The following table gives the functions of the tubes used, together with the voltage readings between the tube socket contacts and the frame of the condenser gang. Voltage readings should be taken with a 1000 ohm per volt. 250 volt voltmeter (except filaments) with the volume control full "ON" and no signal input. The filament voltages should be measured with an accurate low range voltmeter. Voltage limits may vary plus or minus 10% of the values given.

TUBE SOCKET VOLTAGE READINGS

Power output approximately 2.5 watts.
Power consumption approximately 55 watts at 117.5 volts AC or 45 watts at 117.5 volts DC.
Voltage drop across speaker field 50 volts.
All voltage readings given above except filaments will be approximately 40% less if set is measured on 117.5 volt DC power supply.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits can best be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Connect one terminal of the output meter to the plate and the other terminal to the screen of the 25 A 6 G output tube. Be certain that the meter is protected from IC by connecting a condenser $(.1 \mathrm{mfd}$. or larger-not electrolytic) in series with one of the leads.

Tuning I-F Amplifier to $\mathbf{4 5 5}$ Kilocycles.

(a) Connect the output of the signal generator through a .02 mfd . condenser to the antenna terminal "Al" on the rear of the chassis. Connect the ground lead from the signal generator to the GROUND TER-

MINAL "G" on the receiver chassis. DO NOT CON. NECT THE GROUND LEAD FROM THE SIGNAL GENERATOR DIRECTLY TO THE RECEIVER CHASSIS. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF THE OTHER SCREEN GRID TUBES.
(b) Set the station selector so that the plates of the condenser gang are completely out of mesh, turn the band selector switch to the left (American Broadcast Band) and turn the volume control to the right "ON."
(c) Set the signal generator to 455 kilocycles.
(d) Adjust both trimmer condensers located on top of the 2nd I-F transformer (Fig. 2) for maximum reading on the output meter.
(e) Adjust both trimmer condensers located on top of the lst I-F transformer for maximum output.
(f) Check operations (d) and (e) for more accurate adjustments.

AlWAYS ISE THE LOWEST SICNAL GENERA.

TOR OUTPC THAT WIIL, GIVE A REASONABLE READIN(ON THE OUTI'T METER.

Aligning R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal gencrator is connected to the antenna (A) terminal of the receiver. For the Broadeast Band a 100 mmf . condenser should be connected in series with the output lead of the signal generator and for the High Frequency Band a 400 ohm carhon resistor should be used in place of the condenser.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh and the hand selcetor switeh is set for the band being aligned, adjust the "OSC" shunt trimumer so that the MINIMCM CAIACITY SICNAI. (C), is heard. It is not necessary that the receiver tume through this signal.
(b) Adjust the station selector so that the SHUNT AlIICNMENT signal is tuned-in with maximum output. Then adjust the " $A \backslash T$ " shunt trimmer for maximum output. Readjust the station selector slightly so that the grnerator signal is tuned-in with maximum output and check the adjustment of the "ANT" trimmer. DO NOT READJUST TIIE "OSC" TRIMMER.

NOTE 1: When shumt aligning the High Frequency Band care should he exercised so that the circuits will be aligned on the correct frequency rather than on the image frequency which is approximately 910 kilocycles less than the fundamental. To check on this, increase the output of the signal generator 10 times, or more, and try to tune-in the signal both at the generator frequency as indicated on the station selector dial and at approximately 9l0 kilocycles less than the correct frequency. If the circuits have been properly aligned the signal can he tunedin at both positions but much stronger at the correct frequency.

NOTE 2: If at any time the H-F coils are replaced. it may he neressary tio vary the inductance of the "OSC" coil hy moring the cross-over turn of wire at the gap to make the set track at the 0 megacyele end. Moving the turn toward the short end of the coil will decrease the inductance and moving it toward the long end will increase the inductance. If the signal is weak at 6 meqacycles. a similar slight change in the inductance of the "ANT" coil should bring up the signal strength. TH1S IS A CRITICAI, OPERATION ANI) SHOULD NOT BE IOOVE ON ANY SET UNLESS CHANGING COILS MAKES IT NECESSARY.

(C) SIGNAL INPUT FREQUENCIES

American Broadcast Band High Frequency Band

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximately 45.5 kilocycles. This assembly is located on the underneath side of the chassis and consists of a coil, a fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring diagram.

The wave trap should not he adjusted until all other adjustments have bern made. To make the adjustment. feed a 45.5 kilocycle signal from the signal generator through a 100 mmf. condenser into the antenna terminal of the receiver. With the hand selector switch turned to the Broadcast Band position, the gang con-

Shunt Alignment
1,400 Kilocycles 18,000 Kilocycles

denser open and the volume control full on, adjust the trimmer condenser on the wave trap for MINIMI M output.

Should the interfering station be operating on a frequency of slighty more or less than 455 kilocycles, the exact frequency should be deternined with the aid of the signal generator. Then, instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering signal should he used. If it is not possible to determine the exact frequency of the interfering signal the antenna may be attached to the receiver and the receiver tuned to the position where the finterfering signal is most noticeable. Then adjust the wave trap for minimum interference.

FIG. 1-WIRING DIAGRAM—MODEL 647

Fig. 2 Top View Model 647

Fig. 3 Bottom View Model 647

PARTS LIST - MODEL 647

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Figures in tirst column refer to parts in Diagrams.}

\hline Item \& \& art No. \& Description \& Item \& Part No. \& Description

\hline 1 \& G14 \& 3-32000 \& Ant. Coil B. C. \& 29 \& -33344 \& Resistor 400,000 Ohm

\hline 2 \& G14 \& 5-32002 \& Osc. Coil B. C. \& \& \& 1/3 W. Carb.

\hline 3 \& G14 \& 2-32000 \& Ant. Coil H. B. \& 30 \& -37590 \& Resistor 750,000 Ohm

\hline 5 \& G14 \& 4-32002 \& Osc. Coil H. F. \& 31 \& -37584 \& $1 / 3 \mathrm{~W} . \mathrm{Carb}$.

\hline 6 \& G15 \& 7-32004 \& 2nd I-F Assy. \& 31 \& -37584 \& Resistor
$1 / 3 \mathrm{~W}$.

Canb.

\hline 7A \& W \& -40325 \& Condenser 50 Mf .150 V . \& 32 \& -31093 \& Resistor 2700 Ohm

\hline 7B \& W \& -40325 \& Condenser $50 \mathrm{Mf}$.150 V . \& \& \& 1/3 W. Carb.

\hline 8 \& \& -36057B \& Condenser 40 Mf .300 V . \& 33 \& W -37267 \& Resistor 20 Ohm 1/2 W. Flex.

\hline 9 \& W \& -41081 \& Condenser $16 \mathrm{Mf}$. . 250 V . \& 34 \& W -43462 \& Resistor 375 Ohm

\hline 10 \& G16 \& -34000 \& Condenser 3800 Mmf . \& \& \& 21/2 W. Flex.

\hline 11 \& G14 \& -34002 \& Condenser . 0004 Mff . \& 35 \& G103-28807 \& Socket Speaker

\hline 12 \& \& -34002 \& Condenser .00025 Mf . \& 36 \& G156-36400 \& Socket Type 6A8

\hline 13A \& G2 \& -34002 \& Condenser . 0001 Mf . \& 37 \& G171-36400 \& Socket Type 6U7

\hline 13B \& G2 \& -34002 \& Condenser .0001 Mf . \& 38 \& G160-36400 \& Socket Type 6Q7

\hline 14A \& \& -28621 \& Condenser . $02 \mathrm{Mf}$.200 V . \& 39 \& G161-36400 \& Socket Type 25A6

\hline 14B \& \& -28621 \& Condenser . $02 \mathrm{Mf}$.200 V . \& 40 \& G162-36400 \& Socket Type 25Z6

\hline 15 \& \& -35936 \& Condenser . 05 Mf . 200 V . \& 41 \& G180-36400 \& Socket W-44338 Ballast

\hline 16 \& W \& -30323 \& Condenser . 01 Mf . 200 V . \& \& W -40911 \& Tube Shield

\hline 17 \& \& -23191A \& Condenser $.01 \mathrm{Mf}$.400 V . \& 42 \& 346BP12"M" \& Speaker Spec. No. 1-D-1088

\hline 18 \& \& -24049C \& Condenser . $1 \mathrm{Mf}$.200 V . \& \& -44543 \& V. C. \&

\hline 19 \& W \& -36541 \& Condenser . 02 Mf . 160 V . \& \& \&

\hline 20 \& G3 \& -34002 \& Condenser . 0005 Mf . \& \& -44544 \& Field Coil Used

\hline 21 \& \& -41247A \& 4 Sect. Shunt Trim. Assy \& \& -44545 \& Output on

\hline \multirow[t]{12}{*}{22} \& G42 \& -33001 \& 2 Sect. Var. Tuning Cond. \& \& \& Trans. ${ }^{\text {T }}$ / $346 \mathrm{BP12}{ }^{\prime \prime} \mathrm{M}^{\prime \prime}$

\hline \& \& \[
$$
\begin{aligned}
& -44679 \mathrm{~A} \\
& -44293
\end{aligned}
$$

\] \& | Dial Face (Glass) |
| :--- |
| Support Brkt. (Dial Glass) | \& \& -43672 \& Cone Mtg. Spk.

\hline \& \& -44084A \& Support Ring (Dial) \& \& W -43552 \& Spk. Plug Clamp

\hline \& W \& -43542B \& Bracket-Drive Shaft \& 43 \& W -43468 \& A.C.-D.C. Switch

\hline \& \& -43549 \& Retaining Ring (Dr. Shaft) \& \& W -42709 \& Lock Brkt (AC-DC Switch)

\hline \& \& -44134A \& Drive Shaft \& 44 \& W -43448A \& Band Switch

\hline \& \& -43564 \& Pulley \& Hub. Assy. \& 45 \& G27-26719 \& Ant. \& Gnd. Term. Assy.

\hline \& \& -44299

-40486 \& | Pointer |
| :--- |
| Screw FS20 (Pointer Mitg.) | \& ${ }_{46 \mathrm{Y}}^{45}$ \} \& -43449A \& \{Volume Cont. 500,000 Ohm

\hline \& W \& -43561 \& Tension Spring \& 47 \& G13-34002 \& Condenser . 000035 Mf .

\hline \& \& -44085B \& Dial Mask \& 48 \& G37-26719 \& Phono. Terminal Assy.

\hline \& \& -41582 \& Drive Cord \& 49 \& -21875 \& Resistor 100,000 Ohm 1/3 W.

\hline \& \& -42666 \& Insulating Bushing (Shaft) \& \& B $\quad-44226 \mathrm{~B}$ \& Escutcheon

\hline 23 \& \& -44004 \& Cord \& Plug \& \& W -44381B \& Knob-(3 Req.)

\hline 24 \& W \& -44337 \& Dial Light 6-8 V. \& \& W -43553 \& Rubber Mtg. Foot

\hline \& \& -27134 \& Dial Light Socket \& \& 7EA \& Cabinet

\hline \multirow[t]{2}{*}{25} \& \& -34018 \& Resistor 200,000 Ohm \& \& B $\quad-44375 B$ \& Back-Cabinet

\hline \& \& \& 1/3 W. Carb. \& 50 \& G165-32004 \& Wave Trap

\hline 26 \& \& -35928 \& $$
\begin{aligned}
& \text { Resistor } 60,000 \text { Ohm } \\
& 1 / 4 \mathrm{~W} \text {. Ins. }
\end{aligned}
$$ \& 51 \& -23785 \& Resistor 500,000 Ohm 1/3 W. Carb.

\hline 27 \& \& -26577 \& Resistor 3 Megohm \& \& \&

\hline \& \& \& 1/3 W. Carb. \& \& \&

\hline 28 \& \& -22831 \& Resistor 15,000 Ohm \& \& \&

\hline
\end{tabular}

CROSLEY SERVICE SUPPLEMENT

AUGUST, 1937
CHASSIS NO. 577
NO. 176

SPECIFICATIONS

This model Crosley radio is designed for operation on 100 to 125 volt electric circuits, either $A C$ or DC. The tuning range is from 535 to 1225 kilorycles (550 to 1,3 metres).

CIRCUIT DESCRIPTION

Five octal base glass tubes are employed in a superheterodyne eircuit which consists of a combination os. rillator-modulator tube. 455 kilocycle I-F amplifier, pentode output and power supply. The 6Q7G tube serves as the detector and lst A.F amplifier and supplies AVC voltage to the grid of the 6A8G tube. The hias voltage for the 6A3G and 6U7C tubes is obtained across a 165 ohm resistor. item 28. The bias for the $6 \mathrm{G} G$, and $25 \mathrm{~A} G \mathrm{G}$ tubes is obtained across the " B " filter choke. item 2. before serial No. 14179.51 and across
the speaker field after this number. A resistance type power supply cord is used to provide the proper heater voltage to the tubes. The filaments of the tubes are wired in series. A 05 mfd. condenser, item 12, is connected across the power supply leads to reduce electrical interference from that source.

TUBES AND VOLTAGE LIMITS

The following table gives the functions of the tules used, together with the voltage readings between the tube socket contacts and chassis. Voltage readings should be taken with a 100 ohm per volt, 250 volt voltmeter (except filaments) with the volume control full "OV" and no signal imput. The filanent voltages should be measured with an accurate low range voltmeter. When measured on a 117.5 volt AC line voltage limits may vary plus or minus 10% of the values given.

TUBE SOCKET VOLTAGE READINGS

Tube	Function	H	P	S	Su	K	Go	Ga
6A8G	Oscillator-Modulator	6.3	105	60	-	3	-12	105
6U7G	I-F Amplifier	6.3	105	105	3	3	-	-
6Q7G	Det, AVC, A-F Amplifier	6.3	105		-	0	-	-
25A6G	Output	25.0	100	105	-	0	-	-
25Z6G	Rectifier	25.0	117.5		-	110	-	-

Power output approximately 1 watt.
Power consumption approximately 60 watts
Voltage drop across speaker field 110 volts.
All voltages except flaments will be approximately 10% lower if measured on 117.5 volts DC power supply.

ALIGNMENT PROCEDURE

The chassis of this receiver is connected to one side of the power supply and for this reason all test equipment should be thoroughly insulated in order that the power supply will not become short circuited while aligning the receiver.

CONNECTING OUTPUT METER

Comect one terminal of the output meter to the plate and the other terminal to the screen of the 25 A 6 G output tube. Be certain that the meter is protected from DC by connecting a condenser .1 mfd . or larger-mot elpctrolytic) in series with one of the leads.

Tuning the I-F Amplifier to 455 Kilocycles.

(a) Discomect the antenna roll from the receiver and conned the output of the signal generator through a 50 mmf. condenser to the antemna connection on the receiver. Do not use a ground return from the signal generator unless it is found to be absolutely necessary. If it is found to be necessary. a small condenser (approximately .001 mifd.) should be connected in series with the ground terminal of the signal generator and the receiver chassis. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF THE OTHER SCREEN GRID TUBES.
(b) Set the station selector so that the plates of the condenser gang are completely out of mesh and turn the volume control to the right (ON).
(c) Set the signal generator to 455 kilocycles.
(d) Adjust the 2nd I.F trimmer condenser, Item 17,
located at the rear of the chassis, for maximum reading on the output meter.
(e) Adjust the trimmer condensers located on the lst I-F transformer for maximum output.
(f) Repeat operations (d) and (e) for more accurate adjusiments.

ALWAYS USE THE LOWEST SIGNAL GENERA. TOR OLTPLT THAT WILL GIVE A REASONABLE READING ON THE OUTPUT METER.

Aligning the R-F Amplifier.

(a) Set the signal generator to 1725 kilocycles.
(b) With the condenser gang turned to the minimum capacity position, adjust the trimmer condenser on the "OSC" section of the gang so that the 1725 kilocycle signal is heard. It is not necessary that the receiver tune through this signal.
(c) Set the signal generator to 1400 kilocyeles.
(d) Tune-in the 1400 kilocycle signal in the region of 140 on the dial for maximum output.
(e) Adjust the trimmer condenser located on the "A $\ T$ " section of the gang for maximum output.

Note: Do not readjust the "OSC" trimmer.
(f) Repeat operations (d) and (e) for more are curate adjustments.

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximately 455 kilocycles. This assembly is located on the underneath side of the chassis and consists of a coil, a
fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring diagram.

The wave trap should not be adjusted until all other adjustments have been made. To make the adjustment, feed a 1.55 kilocycle signal from the signal generator throngh a $\overline{5} 0$ minf. condenser into the antema terminal of the receiver. With the band selector switch turned to the Broadcast Band position, the gang condenser open and the volume control full on, adjust the trimmer condenser on the wave trap for IINIMEM outpul.

Should the interfering station be operating on a frequency of slightly more or less than 4.55 kilocycles, the exact frequency should be detemmed with the aid of the signal generator. Then. instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering simnal should be used. If it is not possible to determine the exact frequency of the interfering signal the antema may be atharhed to the receiver and the receiver tuned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

Fig. 2-Top View Model 577

Fig. 3 Bottom View Model 577

PARTS LIST-MODEL 577

Figures in first column refer to parts in lingrams.

Item	Part No.	Description	Item	Part No.	Description
1	W -31765B	Antenna Roll		-35928	Resistor 60
2	G 16-29535	"B" Filter Choke (Before Serial No. 1417951)	$\begin{aligned} & 22 \\ & 23 \mathrm{~A} \end{aligned}$	$\begin{array}{r} \mathbf{2 1 4 5 3} \\ -21455 \end{array}$	Resistor $40,000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$. Resistor $300,000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$.
3	G144-32000	Ant. Coil	23B	-21455	Resistor $300,000 \mathrm{Ohm} \mathrm{1/3} \mathrm{~W}$.
4	G147-32002	Osc. Coil	24	--34883	Resistor 2 Megohm $1 / 3 \mathrm{~W}$.
5	G158-32004	1st I-F Assy.	25	-21454	Resistor 1. Megohm 1/3 W.
6	G159-32004	2nd I-F Coil Assy,	26	- 33490	Resistor 10. Megohm 1/3 W.
7 T	W - 43280	Condenser 25 Mf . 150 V .	27 A	-23785	Resistor 500,000 Ohm $1 / 3 \mathrm{~W}$.
7 B	W -43280	Condenser $25 \mathrm{Mf}$.150 V .	27B	-23785	Resistor 500,000 Ohm 1/3 W.
${ }_{8 B}^{8 \mathrm{~B}}$	$\begin{array}{ll}\text { G } & 1-34002 \\ \text { G } & 1-34002\end{array}$	Condenser . 00025 Mf . Molded			(After Serial No. 1417950)
8 B	G 1-34002	Condenser . 00025 Mf . Molded	28	W -21964	Resistor 165 Ohm 1/2 W. Flex.
9	G 3-34002	Condenser .0005 Mf . Molded	29	W - 44396	Resistor 40 Ohm $31 / 2$ W. Flex.
10A	W -28621	Condenser . 02 Mf. 200 V .	30	G156-36400	Socket Type 6A8
10B	W -28621	Condenser . 02 Mf. 200 V .	31	G171-36400	Socket Type 6U7
10 C	W - 28621	Condenser . 02 Mf. 200 V .	32	G160-36400	Socket Type 6Q7
11	W - 32380	Condenser . 05 Mf .200 V .	33	G161-36400	Socket Type 25A6
12	W -23615	Condenser 05 Mf. 400 V .	34	G162-36400	Socket Type 25Z6
13	W - ${ }_{\text {W }}$ W0323	Condenser .01 Mf . 200 V .		W -40911	Tube Shield
14	W -34712	Condenser . $25 \mathrm{Mf}$.160 V .	35	-255BL6"Q"	Speaker Spe. No. 23393 (2000
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	W -35936	Condenser . 05 Mf . 160 V .			Ohm Field) Used Before Serial No. 1417951.
17	W -44142	2nd I-F Trimmer			
	W -28129	Spacer (Mtg. W-44142)		43464	V. C. \& Cone Assy. On
18	G 43-33001	2 Sect. Var. Tuning Cond.		43465	Output Transformer 255BL6
	B -44400 C	Dial Face (Glass)		-43466	Cone Mtg. Ring \|273BL6
	B $\quad-44307 \mathrm{~A}$	Dial Glass Brkt.			' Q ' Only
	W - 44285	Dial Mask (Paper)		$\mathrm{B}=44374 \mathrm{~A}$	Baffle Board
	W - 44001 A	Dial Support Ring			Speaker Spec. No. 26253 (525
	W - 44306	Drive Shaft Brack			rial No. 1417950
	W -44918	Drive Shaft	36	43449	Ool. Control $1 / 2 \mathrm{Meg}$.
	W $\quad 3-435494$	Ret. Ring (Shaft)	37		On-Off Switch
	G \quad - 41582	Pulley \& Hub Assy. Drive Cord	$\begin{aligned} & 37 \\ & 38 \end{aligned}$	$\begin{aligned} & \mathrm{G} 169-32004 \\ & \mathrm{G} \quad 5-34002 \end{aligned}$	Wave Trap Assy. Condenser 00005 Mf Molded
	W -43561	Drive Cord		7 DC	Cabinet
	W -43550.A	Pointer		-44330	Grille Cloth
	W - 40486	Screw FS20 Pointer Mtg.		-44268A	Escutcheon
19	B -44192	Power Cord \& Plug		W -44381B	Knob
	B -30772 B	Power Cord \& Plug for adapting set to 220 V . Power Sup.		B -44373 A	Cabinet Back
20	$\begin{aligned} & \mathrm{W} \\ & \mathrm{G} \end{aligned} \underset{6-274337}{ }$	Dial Light 6-8 V.			

FIG. 1A-WIRING DIAGRAM—MODEL 577

CROSLEY SERVICE SUPPLEMENT

This model Crosley radio is an AC receiver designed for American and Foreign broadeast reception. Electric tuning is accomplished in this model by means of the Dynatrol motor which is a vibrating type. Other fea-
tures include electron ray tuning indicator, automatic volume control, Local-Distance switch and parallel pentode output. The tuning range is from 540 kilocycles to 22 megacycles and is divided into three bands as follows:

```
540-1850 Kilocycles or 555 162 Metres (American Broadcast Band)
    1.9- 6.6 Megacycles or 158-45.5 Metres (Police and Amateur Band)
    6.4-22 Megacycles or 47-13.5 Metres (High Frequency or Short Wave Band).
```


Circuit Description

Eleven tubes are employed in a superhemedyne circuit. The $6 T 5$ electron ray tulse is used for indicating exact tuning and is designated "IRIS TLNING INDICATOR." When a station is tuned-in the greenish glow in the tube increases in width. forming a small circular shadow around the center disc. Only strong signals, however, will reduce the shadow to a very small circle.

The circuit consists of separate oscillator and modulator tubes, two stages of I-F amplification-the second of which is resistance coupled, separate AVC and detector diodes, two stages of audio amplification and power supply. The lst I-F transformer is a triple.tuned unit, which in conjunction with the Local-Distance switch, controls the selectivity of the receiver. The speaker field is located in the negative leg of the power
supply. The bias for all tubes except the output and AVC diode is developed across a 32 ohm resistor. item 10. located between the speaker field and gromend.

SOCKET VOLTAGES

The tube socket coltages are measured from the tube socket contacts to the chassis with 1000 ohm per volt. 500 volt 1). C. voltmeter (except filaments) with the receiver in operating condition and no signal input. The volume control should be turned full on, the tone control should be turned to the TREBLE position (counterclockwise) and the luning condenser should be turned to the minimum caparity position. The filament voltages should be measured with an accurate low range A. C. voltmeter (approximately $0 \cdot 10$ volts). Readings may vary plus or minus 10% of values given.

Tube	Function
6K6G	Oscillator
6A8G	Modulator
6U7G	1st I-F Amplifier
6U7G	2nd I-F Amplifier
6C5G	Diode Detector
6C5G	AVC Diode
6K5G	1st A-F Amplifier
6K6G	Output
6K6G	Output
5Y3G	Rectifier
6T5	Tuning Indicator

Power consumption approximate
Power output approximately 10 watts
Voltage drop across speaker field 60 volts.

TUBE SOCKET VOLTAGE READINGS

\mathbf{H}	\mathbf{P}	\mathbf{S}	\mathbf{G}	\mathbf{K}	$\mathbf{G o}$	$\mathbf{G a}$
6.3	147	147	-36	0	-	-
6.3	224	110	-	0	-36	110
6.3	174	110	-	0	-	-
6.3	270	110	-	0	-	-
6.3	0	-	-	0	-	-
6.3	0	-	-	0	-	-
6.3	190	263	250	0	22	-
6.3	263	250	-	22	-	
6.3	-	-	-	-		
5.0	Variable					-
6.3						

SPECIAL POWER TRANSFORMER ADJUSTMENT

In localities where the voltage variation on 50 or 60 cycle power supply lines is greater than customary commercial limits, special 50.60 cycle power transformers are available. These transformers have a "high" and "low" voltage tap on the underside of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are connected to a terminal strip near the transformer.

The voltage range of the "low" tap of the 95.130 volt transformer is from 95 to $1121 / 2$ volts and the "high" tap is from $1121 / 2$ to 130 volts. The range of the "low" tap of the $190-260$ volt transformer is from 190 to 225 volts and of the "high" tap is from 225 to 260 volts.
The accompanying illustration shows the connections for changing from high to low or low to high line voltage. Note the "jumper" wire which is attached to the

terminal at which one side of the power cord is attached. The other end of this jumper wire should be connected to the ORANGE or BLACK lead of the transformer
primary, according to the lime voltage the receiver is to be used on.

NOTE: Any change made in the power supply circuit of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustmont. However, if it is definitely known that an adjustment is necessary the circuits may be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Connect the output meter to the plates of the two 6K60, output tulses. Be certain that the meter is protected from D. C. by a condenser $(.1 \mathrm{mfd}$. or largernot electrolytic) in series with one of the leads.

Tuning The I-F Amplifier To 455 Kilocycles.

(a) Connect the output of the signal generator through a .02 mfd . condenser to the top cap of the 607(; lst I-F Amp. tube, leaving the luhe's grid clip in place. Connect the ground lead from the signal generator to the ground terminal of the receiver. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID) LEADS OF THE OTHER SCREEN GRID TUBES.
(b) Set the station selector so that the tuming condenser plates are completely out of mesh. Turn the volume control knob to the right (ON) and furn the tone control knob to the left (TREBLE).
(e) Set the band selector switch on the Broadeast Band.
(d) Turn the Local-Distance switch to the "Distance" position.
(e) Set the signal generator to 455 kilocyeles.
(f) Adjust both trimmer condensers located on top of the 2nd I-F transformer for maximum output. DO NOT ADJUST THE TRIMMER CONIDENSERS LO. CA'TEI ON TIIE 2ND H. ${ }^{\text {C }}$ TRANSFORMER WITH THE SICNAL GENERATOR LEAD CONNECTED TO TIIE 6A8G TUBE.
(g) Transfer the signal generator lead to the top cap of the 6ABC, tube, leaving the lube's grid clip in place.
(h) Close the middle trimmer of the lst J.F transformer. (Do not force adjustment screw).
(i) Adjust the top and then the botiom trimmers of the lst I-F transformer for maximum output.
(j) Adjust the middle trimmer of the Ist I-F trans. former for maximum output.

ALWAYS ITSE THE LOWEST SICNAL OENERA-

TOR OUTPUT THAT WILL GIVE A REASONABLE OLTPUT METER READING.

Aligning The R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal generator is connected to the "ANT" terminal of the receiver. For the Broadcast Band a 200 mmf. condenser should be connected in series with the output lead of the signal generator and for the High Frequency and Police l3ands a 400 ohm carbon resistor should be used in place of the condenser.

Each hand should first be SHUN'T ALIGNED and then SERIES ALICNEI) where provision is made for series alignment (Broadcast Band). The band selector switch should he set for the hand being aligned and the signal generator should be set to the frequency indicated for each adjustment, "i (I)) below.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh, adjust the "OSC" shunt trimmer until the MINIMUM CAPACITY SICNAL (I)) is heard (it is not necessary that the receiver tune through this signal).
(b) Adjust the station selector so that the SHUNT ALIGNDENT SIGNAL (I)) is tuned-in with maximum output. Then adjust the "ANT" shumt trimmer for maximum output. Readjust the station selector slightly so that the generator signal is tuned-in with maximum output and check the adjustment of the "Ant" trinmer. DO \oT READJIST THE OSCILLATOR TRIMMER.

SOTE: When shunt aligning the Police and High F'requency Bands, care must loe exercised so that the circuits will be aligned on the corred frequency rather than on the image frequency which is approximately 910 kilocyeles less than the fundamental. To check on this, increase the output of the signal generator ten times or more, and try to tune-in the signal both at the generator frequeney as indicated on the station selector dial and at approximately 910 kilocyeles less than the correa frequency. If the circuits have been properly aligned the signal can be tuned-in at both positions but much stronger at the correct frequency.
(e) To align the series trimmer isere Fig. 2), set the signal generator to the frequency indicated below (1)) and then tmerein this signal with the station selector for maximum output. To oblain the best adjustment for the series trimmer, it will be neressary to rotate the station selector back and forth slightly while adjusting the trimmer for maximum output. Minop tolerance variations in series alignment at 2500 kilocycles in the Police Band and at 7,000 kilocyeles in the High Frequency Band may be compensated for by slight repositioning of the grid lead of the antemna coil in the Band affected.

(D) SIGNAL INPUT FREQUENCIES

American Broadcast Band
Police \& Amateur Band
High Frequency Band

Min. Cap. Signal
1850 Kilocycles
6600 Kilocycles
22 Megacycles

Shunt Align.
1700 Kilocycles
6000 Kilocycles
18 Megacycles
Series Align.
600 Kilocyeles
minal of the receiver. With the band selector switch turned to the Broadcast Band position. the gang condenser open and the volume control full on, adjust the trimmer condenser on the wave trap for minimum output.

Should the interfering station he operating on a frequency of slightly more or less than 4.55 kilocycles. the exact frequency should be determined with the aid of the signal generator. Then, instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering signal should be used. If it is not possible to determine the exact frequency of the interfering

PARTS IIST-MODEL 1127

FIG. 1-WIRING DIAGRAM-MODEL 1127
signal the antemna may be attached to the receiver and the receiver tuned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

DYNATROL MOTOR

Should either vibrator unit of the Dynatrol motor need readjustment. the following procedure should be followed:
(a) Lows?n adjusting nut until the gap between the armature and " E " laminations is approximately $3 / 16$ ".

The belt shond be just loose enough that the drive shaft ean be rotated frecly between the thumb and forefinger.
(b) With the motor rmming. tighten the adjusting nut montil chatler slops. Care should be taken, however, not to tighten this adjustment ton tight as an unstable condition will be rearhed wherein a slight change may result in a forked motor.
(c) Check the time required for the dial pointer to travel from sach and of the dial to the other. The adjusting serews should be set so that approximately eight seconds are required in each direction.

Fig. 2-Top View Model 1127

Fig. 3-Bottom View Model 1127

Fig 4-Phonograph Pickup

Fig. 5-Dynatrol Motor

CROSLEY SERVICE SUPPLEMENT

This model Crosley radio is an 11 -tube AC receiver designed for American and Foreign broadcast reception. It incorporates such features as push-button electric tuning, automatic volume control, Local-Distance switch
and parallel pentode output. The tuning range is from 540 kilocycles to 22 megacycles and is divided into three bands as follows:

> 540-1850 Kilocycles or $555-162$ Metres (American Broadcast Band)
> 1.9- 6.6 Megacycles or $158-45.5$ Metres (Police \& Amateur Band)
> 6.4- 22 Megacycles or $47-13.5$ Metres (High Frequency or Foreign Band)

CIRCUIT DESCRIPTION

Eleven tubes are employed in a superheterodyne circuit which consists of separate oscillator and modulator tubes, 455 kilocycle I-F amplifier-one stage of which is resistance coupled, separate AVC and detector diodes, two stages of audio amplification and powe: supply. The lst I-F transformer is a triple-tuned unit, which in conjunction with the Local-Distance switch, controls the selectivity of the receiver. Inter-station noise suppression is accomplished while tuning by means of the push buttons due to the action of the 6C5-G "squelch" tube. When a push button is depressed, this tube supplies sufficient voltage to the cathodes of the output tubes to bias them beyond "cut-off." It also supplies voltage to the AVC circuil through a 250.000 ohm resistor, item 38. The speaker field is located in the negative leg of the power supply. The bias for all tubes except the thres type 6C5.G and the two oulput tules is de-
veloped arross a 32 ohm resistor, item 46, located between the speaker field and ground. The bias for the output tubes is developed across a 220 ohm resistor, item 47.

SOCKET VOLTAGES

The tube socket voltages are measured from the tube socket contacts to the chassis with a 1000 ohm per volt, 500 volt D. C. voltmeter (except filaments) with the receiver in operating condition and no signal input. The volume control should be turned full "ON", the tone control should be turned to the "TREBLE" position (counter-clockwise), the Local-Distance switch should be turned to the "Distance" position and the condenser gang should be rotated to the minimum capacity position. The filament voltages should be measured with an accurate low range A. C. voltmeter (approximately $0-10$ volts). Readings may vary plus or minus 10\%: of values given.

Power consumption approximately 90 watts at 117.5 volts.
Power output approximately 10 watts.
Voltage drop across speaker field 60 volts.

SPECIAL POWER TRANSFORMER ADJUSTMENT

In localities where the voliage variation on 50 or 60 cycle power supply lines is greater than customary commercial limits, special 50.60 eycle power transformers are available. These transformers have a "high" and "low" voltage tap on the under side of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are counected to a terminal strip near the transformer.

The voltage range of the "low" tap of the 95-130 volt transformer is from 95 to $1121 / 2$ volts and of the "high" tap is from $1121 / 2$ to 130 volts. The range of the "low" tap of the $190-260$ volt transformer is from 190 to $\mathbf{~} 25$ volts and of the "high" tap is from 225 to 260 volts.

The accompanying illustration shows the connections for changing from high to low or low to high line vol-

tage. Note the "jumper" wire which is attached to the terminal at which one side of the power cord is attached.

The other end of this jumper wire should be connected to the ORANGE or BLACK lead of the transformer primary, according to the line voltage the receiver is to be used on.

NOTE: Any change made in the power supply circuit of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits may be properly aligned with the use of a modulated signal generator and an output meter.

Connecting Output Meter

Connect the output meter to the plates of the two 6K6G output tubes. Be certain that the meter is protected from D). C. by a condenser (. 1 mfd . or largernot electrolytic) in series with one of the leads.

Tuning The I-F Amplifier To 455 Kilocycles.

(a) Connect the output of the signal generator through a .02 mfd . condenser to the top cap of the 6L7G Ist I-F Amp. tube, leaving the tube's grid clip in place. Connect the ground lead from the signal generator to the ground terminal of the receiver. KEEP THE GENERATOR LEADS AS FAR AS POSSIBLE FROM THE GRID LEADS OF THE OTHER SCREEN GRII) TUBES.
(b) Set the station selector so that the tuning condenser plates are completely out of mesh. Turn the volume control knob to the right (ON) and turn the tone control knob to the left (TREBLE).
(c) Set the band selector switch on the Broadcast Band.
(d) Turn the Local-Distance Switch to the "Distance" position.
(e) Set the signal generator to 455 kilocycles.
(f) Adjust both trimmer condensers located on top of the 2nd I-F transformer for maximum output. DO NOT ADJUST THE TRIMMER CONDENSERS LOCATED ON THE 2ND I-F TRANSFORMER WITH THE SIGNAL GENERATOR LEAD CONNECTED TO THE 6A8G TUBE.
(g) Transfer the signal generator lead to the top cap of the 6A8C; tube, leaving the tube's grid clip in place.
(h) Close the middle trimmer of the lst I-F transformer. (Do not force adjustment screw).
(i) Adjust the top and then the bottom trimmers of the 1st I-F transformer for maximum output.
(j) Adjust the middle trimmer of the lst I-F transformer for maximum output.

ALWAYS USE THE LOWEST SIGNAL GENERA-

TOR OUTPUT THAT WILL GIVE A REASONABLE OUTPLT METER READING.

Aligning The R-F Amplifier.

When aligning the R-F amplifier the output lead from the signal generator is connected to the "ANT" terminal of the receiver. For the Broadcast Band a 200 mmf . condenser should be connected in series with the output lead of the signal generator and for the High Frequency and Police Bands a 100 ohm carbon resistor should be used in place of the condenser.

Each band should first be SHUNT ALIGNEI) and then SERIES ALIGNEI where provision is made for series alignment (Broadcast Band). The band selector switch should be set for the band being aligned and the signal generator should be set to the frequency indicated for each adjustment, II (D) below.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh, adjust the "OSC" shunt trimmer until the MINIMUM CAPACITY SIGNAL (D) is heard (it is not necessary that the receiver tune through this signal).
(b) Adjust the station selector so that the SHUNT ALIGNMENT SIGNAL (D) is tuned-in with maximum output. Then adjust the "R-F" and "ANT" shunt trim. mers for maximum ouput. Readjust the station selector slightly so that the generator signal is tuned-in with maximum output and check the adjustment of the "R-F" and "ADT" trimmers. DO NOT READJUST THE OSCILLATOR TRIMMER.

NOTE: When shunt aligning the Police and High Frequency Bands care must be exercised so that the circuits will be aligned on the correct frequency rather than on the image frequency which is approximately 910 kilocycles less than the fundamental. To check on this, increase the output of the signal generator ten times, or more, and try to tune-in the signal both at the generator frequency as indicated on the station selector dial and at approximately 910 kilocycles less than the correct frequpency. If the circuits have been properly aligned the signal can be tuned-in at both positions but much stronger at the correct frequency.
(c) To align the series trimmer (See Fig. 2), set the signal generator to the frequency indicated below (D) and then tune-in this signal with the station selector for maximum output. To obtain the best adjustment for the series trimmer, it will be necessary to notate the station solector back and forth slightly while adjusting the trimmer for maximum output. Minor tolerance variations in series aligmment at 2500 kilocycles in the Police Band and at 7000 kilocycles in the High Frequency Band may be compensated for by slight repositioning of the grid lead of the antenna coil in the Band affecied.

(D) SIGNAL INPUT FREQUENCIES

American Broadicast Band Police \& Amateur Band High Frequency Band

Min. Cap. Signal
1850 Kilocycles
6600 Kilocycles
22 Megacycles

PUSH BUTTON TUNING SYSTEM

The push button electric tuning system employed in this receiver incorporates eight push buttons, a selector switch and a dynatrol motor. The discriminator switch, item 59 - also Figs. 6 and 7, incorporates eight metallic discs, each of which operates in conjunction with a different push button to tune-in some favorite station. That is, the lst push button on the left as you face the front of the cabinet works with No. 1 disc. and the 2nd push button works with No. 2 disc, etc.

Shunt Align.
1700 Kilocycles
6000 Kilocycles
18 Megacycles

Series Align.
600 Kilocycles

SETTING PUSH BUTTONS

To set the electric tuning system, turn the receiver "ON" and hold No. l push button in the depressed position until the dial pointer stops. The key slot in No. 1 disc on the selector switch will now be in the "ITP" position. Remove the key from its mounting and place it (knob up) through No. 1 hole in the disc identification bracket. If it does not drop into the slot in the dise, push it in with the fingers.

Turn the Local-Distance switch to the "Distance" position. By means of the station selector knob, tune-in

AS ACCURATELY AS POSSIBLE, the station whose call letters have been placed in No. 1 push button. Then remove the key.

The electric tuning system is now correctly set for the Ist station. Follow through with this same procedure until the proper adjustments have been made for all eight of the favorite stations. When tuning the receiver by means of the push buttons, the Local-Distance switch should be turned to the "Local" position.

Dynatrol Motor

Should either vibrator unit of the Dynatrol motor need readjustment the following procedure should he carefully followed:
(a) Loosen the adjustment nut until the belt is loose on the pulley. The gap between the armature and "E" laminations should be approximately $3 / 16$ ".
(b) With the motor running, tighten the adjustment nut until chatter stops. Care should be taken, however, not to tighten this adjustment too tight as an un-
stable condition will be reached wherein a slight change may result in a locked motor. On the other hand, the adjustment should not be so loose that the armature actually hits the rebound pad.
(c) Check the time required for the dial pointer to travel between two points on the dial. The adjustment nuts should be set so that approximately eight or nine seconds are required for the pointer to travel from one end of the dial to the other in either direction. If it is only convenient to check the speed of the pointer over a portion of the dial, the time required will be in direct proportion to the length of the dial scale traversed. That is, approximately 6 seconds will be required to travel two thirds of the scale, etc.

Selector Switch

Should the selector switch lecome inoperative in the field, it should not be dissembled for repair, but should be returned to the factory via an authorized Crosley Distributor.

Fig. 2 Top View Model 1137

Fig. 3 Bottom View Model 1137

Fig. 4 Phonograph Pickup

Fig. 5

Fig. 6

Fig. 7

Figures in first column refer to parts in Diagrams

Item	Part No.
1	G97-32001
2	G138-32000
3	G151-32000
4	G150-32000
5	G139-32002
6	G154-32002
7	G153-32002
8	G161-32004
9	G154-32004
10	W - 44054
11	W -36057B
12	G1 -44886
13A	G2 -34002
13 B	G2 -34002
13C	G2 -34002
14	W -35936
15A	W -28621
15B	W -28621
15C	W -28621
15D	W -28621
16	W -41461
17	W -28619
18A	W -22688
18B	W -22688
18 C	W -22688
19	W -23615
20	W -30805
21 A	W - 35139
21 B	W - 35139
22	-40769
23	G23-34000
24	G20 - 34000
25	W - 35951A
26	$\begin{gathered} \mathrm{G} 60-33002 \\ -44891 \mathrm{~B} \end{gathered}$
	W -44146A
	C -44110 C
	W - 44262
	W - $\mathrm{W}-44263$
	W - 40486
	G5 -43564
	--41582
	W -44813
	W -44907A
	W - 44908
27	W - 41598
28	--44516
29	G4 --44416
	W - 45218
	W - 44317A
	W -43622
	W - 44382
	W -44319
	- 7593
	W - $\mathrm{W}^{44701 \mathrm{C}}$
	$\underset{W}{W} \quad-2407484$
	W -44745
30	- 42401 A
31	-22196
3233	
	-21237A
34A	-21875
34B	-21875
:34C	-21875
135	-35600

Description	Item	Part No.
Pre-Selector Coil B-C.	36	-36320
Ant. Coil B-C.		
Ant. Coil Pol.	37	-34018
Ant. Coil H-F.		
Osc. Coil B-C.	38	-34020
Osc. Coil Pol.		
Osc. Coil H-F.	39A	-23785
1st I-F 455 Kc .		
3rd I-F 455 Kc .	39B	-23785
Condenser 30 Mf .350 V .		
Condenser 40 Mf .300 V .	40	-37590
Condenser Bimetal Temp. Control	41	-21454
Condenser . 0001 Mf. Molded		
Condenser . 0001 Mf. Molded	42	-26577
Condenser .0001 Mf . Molded		
Condenser . 05 Mf. 200 V.	43	-44165
Condenser .02 Mf .200 V .		
Condenser . $02 \mathrm{Mf} 200 V.$.	44	- 4921C
Condenser . 02 Mf .200 V .		
Condenser . 02 Mf . 200 V. Condenser 0014 Mf 200 V	45	-44008
Condenser $.006 \mathrm{Mf}$.200 V .	46	W -37631
Condenser .1 Mf. 400 V .	47	W -22873
Condenser . 1 Mf . 400 V .	48	W -23013
Condenser . 1 Mf. 400 V .		
Condenser $.05 \mathrm{Mf}$.400 V .	49	G172-36400
Condenser . $01 \mathrm{Mf}$.400 V .	50	G156-36400
Condenser . 004 Mf .400 V .	51	G171-36400
Condenser . 004 Mf .400 V .	52	G152-36400
Condenser B. C. Osc. Series	53	G9 - 43900
Trimmer	54	G173-36400
Condenser . 001560 Mf , Pol.	55	G103-28807
Osc. Fixed Trimmer	56	G16 -28807
Condenser . 004910 Mf. H-F.		W - 41007
Osc. Fixed Trimmer	57	-671BP18"M"
3 Sec. Shunt Trimmer Assy.		-45184
3 Sec . Var. Tuning Cond.		-45185
Dial Face (Glass)		-44678
Mask (Polished Metal)		-43680
Support Brkt. (Dial Glass)	58	-44049
Ring (Glass Support)	59	G1 - 44628
Arc (Glass Support)		
Pointer		G2 -44628
Screw-Pointer Mtg.	60	-44024B
Pulley \& Hub Assy.		
Drive Cord	61	-44665A
Drive Belt	12	G27 -26719
Idler Pulley	63	-44910
Idler Mtg. Stud		-44915
Condenser 50 Mf . 25 V .		-44913
Condenser Pre-Select. Shunt		-44916
Vibrator Motor Assy.		-44914
(50-60 Cy.)	64	-44702
Vibrator Drive Unit (Left or	65 A	W -44877A
Pulley (Vib. Motor)	65B	W -44877A
Felt Washer (Shaft)		
Friction Spring (Shaft)	66	G37 -26719
Toggle Hook (Belt)	67	
Tubing 7/8" (For Hook)	68	B $\quad-33906 \mathrm{~A}$
Grommet (Tension)	69	
Nut-Adjusting	70	
Rubber Pad (Rebound)	71	W -43567
Clamp Plate (Belt)		G12-44363
Resistor 99 Ohm $1 / 4 \mathrm{~W}$. Ins.		7 P
Resistor 20.000 Ohm 1/3 W.		W -43552
Carb.		W -43553
		W -44380B
Resistor 60,000 Ohm 1/3 W.		W -44426A
Carb. 00000 W		C -44883 B
Resistor 100,000 Ohm 1/3 W		G1 -45228
Carb.		W - 44871A
Resistor 100,000 Ohm 1/3 W.		B -44876 A
Carb. 100000 (W -44875
Resistor Carb. 100,000 Ohm $1 / 3 \mathrm{~W}$.		B $\quad \begin{aligned} & 44902 \\ & -4873 B\end{aligned}$
Resistor 100.000 Ohm $1 / 4 \mathrm{~W}$.		W -40911
Ins.		

Description

Resistor 120,000 Ohm 1/4 W. Ins.
Resistor 200,000 Ohm $1 / 3 \mathrm{~W}$. Carb.
Resistor 250,000 Ohm $1 / 3 \mathrm{~W}$. Carb.
Resistor 500,000 Ohm 1/3 W. Carb.
Resistor $500,000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$. Carb.
Resistor 750,000 Ohm $1 / 3 \mathrm{~W}$. Carb.
Resistor 1 Megohm 1/3 W. Carb.
Resistor 3 Megohm 1/3 W. Carb.
Resistor 5,000 Ohm 1/2 W. Carb.
Resistor 10.000 Ohm 1 W Carb.
Resistor 10,000 Ohm 2 W . Carb.
Resistor 32 Ohm $1 / 2 \mathrm{~W}$. Flex.
Resistor 220 Ohm $21 / 2 \mathrm{~W}$. Flex.
Resistor 2,000 Ohn $11 / 4 \mathrm{~W}$. Flex.
Socket Type 6K6
Socket Type 6A8
Socket Type 6U7
Socket Type 6C5
Socket Type 6K5
Socket Type 5Y3
Socket Speaker
Socket Push Button Cáble
Cable Clamp, P. B. Cable
Speaker Spec. No. 1-D-1180
V. C. \& Cone Assem.

Field Coil
Output Transformer
Cone Mtg. Ring
Band Selector Switch
Switch Discriminator Assy. Complete
Flex. Coupling
Tone Control (300.000 Ohm) \& Line Switch
Switch Local-Distance
Ant. \& Gnd. Terminal Assy.
Power Trans 110 V. 60 Cy.
Power Trans. 110 V. 50 Cy.
Power Trans. 110 V. 25 Cy .
Power Trans. 220 V. 50 Cy .
Power Trans. 220 V. 25 Cy.
Volume Cont. 1 Meg. Tapped
Push Button-Cable \& Plug Assy.
Push Button-Cable \& Plug Assy.
Phono. Terminal Assy.
Line Cord \& Plug

Dial Light Bulb 6-8 V.
Dial L. Socket Assy.
Cabinet
Clamp-Spk. Plug
Rubber Mtg. Foot
Knob (2)
Knob (3
Escutcheon (Dial)
Push Button \& Cable Assy.
Push Button (Bakelite)
Switch (Push Button) Only
Celluloid Cover (Button)
Call Letter Sheet
Escutcheon. Push Button
Tube Shield

FIG. 1—WIRING DIAGRAM—MODEL 1137

CROSLEY SERVICE SUPPLEMENT

SPECIFICATIONS

This model Crosley radio is a 6 -tube AC receiver designed for American and Foreign broadcast reception. Electric tuning is accomplished in this model by means
of the Dynatrol motor which is a vibrating type. Other features include automatic volume control, Local-Distance switch and push pull pentode output. The tuning range is divided into two bands as follows:

```
535-1725 Kilocycles or 550-173 Metres (American Broadcast Band) 5.8-18.3 Megacycles or 52-16.3 Metres (High Frequency or Foreign Band)
```


CIRCUIT DESCRIPTION

Six octal base glass tubes are employed in a superheterodyne circuit which consists of a combination os-cillator-modulator tube, 1.55 kilocycle I-F amplifier, push pull pentode output and power supply. The 6Q7G tube serves as the detector and 1 st $A-F$ amplifier and supplies AVC voltage to the grids of the 6A8G and 6U7G tubes. The speaker field is located in the negative leg of the power supply. Phase inversion is ob-
tained in the output circuit by the voltage developed across a 3000 ohm resistor, item 32 .

SOCKET VOLTAGES

The tube socket voltages are measured from the tube socket contacts to the chassis with a 1000 ohm per volt, 500 -volt D. C. voltmeter (except filaments) with receiver in operating condition and no signal input. The filament voltages should be measured with an accurate low range A . C. voltmeter (approximately $0-10$ volts). Readings may vary plus or minus 10°; of values given.

TUBE SOCKET VOLTAGE READINGS

Tube	Function	H	P	S	K	Go	Ga
6A8G	Oscillator-Modulator	6.3	220	100	3.5	-15	156
6U7G	I-F Amplifier	6.3	206	100	2.5	-	-
6Q7G	Det, AVC \& AF Amp.	6.3	68	-	1.5	-	-
6K6G	(2) Output	6.3	216	214	18.	-	
5Y3G	Rectifier	5.0	-	-	280	-	-

Power output approximately 4.5 watts.
Power consumption approximately 55 watts at 117.5 volts.
Voltage drop across speaker field 60 volts.

SPECIAL POWER TRANSFORMER ADJUSTMENT

In localities where the voltage variation on 50 or 60 "ycle power supply lines is greater than customary commercial limits, special $50-60$ cycle power transformers are available. These transformers have a "high" and "low" voltage tap on the under side of the chassis. The "high" voltage lead (BLACK) and the "low" voltage lead (ORANGE) are connected to a terminal strip near the transformer.

The voltage range of the "low" tap of the $95-130$ volt transformer is from 95 to $1121 / 2$ volts and of the "high" tap is from $1121 / 2$ to 130 volts. The range of the "low" tap of the $190-260$ volt transformer is from 190 to 225 volts and of the "high" tap is from 225 to 260 volts.

The accompanying illustration shows the eonnections

for changing from high to low or low to high line voltage. Note the "jumper" wire which is attached to the terminal at which one side of the power cord is attached. The other end of this jumper wire should be connected to the ORANGE or BLACK lead of the transformer primary, according to the line voltage the receiver is to be used on.

NOTE: Any change made in the power supply circuit of the receiver should be plainly stamped or otherwise permanently recorded on the rear of the chassis.

ALIGNMENT PROCEDURE

All the circuits in this receiver are very accurately adjusted at the factory and normally should need no further adjustment. However, if it is definitely known that an adjustment is necessary the circuits may be properly aligned with the use of a modulated signal generator and an output meter.

CONNECTING OUTPUT METER

Connect the output meter to the plates of the two 6K6G output tubes. Be certain that the meter is protected from I). C. by connecting a condenser (. 1 mfd . or larger-not electrolytic) in series with one of the leads.

Tuning The I-F Amplifier To 455 Kilocycles.

(a) Connect the outpul of the signal generator through a .02 mfd . condenser to the top cap of the 6L7G tube, leaving the tube's grid lead in place. Connect the ground lead from the signal generator to the ground terminal of the receiver. KEEP THE GENER-

ATOR LEAIS AS FAR AS POSSIBLE FROM THE GRII) LEADS OF THE OTHER SCREEN GRII) TUBES.

(b) Set the station selector so that the tuning condenser plates are completely out of mesh. Turn the volume control knob to the right (ON) and turn the tone control knoh) to the left (TREBLE).
(c) Turn the band selector switch to the Broadcast Band.
(d) Turn the Local-I)istance switch to the "Distance" position.
(e) Set the signal generator to 155 kilocycles.
(f) Adjust both trimmer condensers located on top of the 2nd I-F transformer for maximum output. DO NOT ADJLST THE TRIMMER CONDENSERS LOCATEI) ON TIE 2ND I-F TRANSFORMER WITH THE SIGNAL (;ENERATOR IFEAD CONXECTED TO THE GA8G TUBE.
(g) Transfer the sigual generator lead to the top rap of the GABC, tube, leaving the tube's grid chip in place.
(h) Close the middle trimmer of the lat I-F transformer. Do not force adjustment srew.
(i) Adjust the top and then the bottom trimmers of the lst I-F transformer for maximum output.
(j) Adjust the middle trimmer of the Ist I-F transformer for maximum output.
ALWAYS ISE THE LOWEST SIGNAL (EENERA-
TOR OUTPI T THAT WILL GIVE A REASONABLE
READING OX THE OUTYYT METER.

Aligning The R-F Anmplifier.

When aligning the R-F amplifier the output lead from the signal generator is connected to the antenna (A) terminal of the receiver. For the Broadcast Band a 200 mmf . condenser should be connected in series with the output lead of the signal generator and for the High Frequency Band a 250 ohm carbon resistor should be used in place of the condenser.
(a) With the station selector adjusted so that the tuning condenser plates are completely out of mesh and the band selector switch set for the band being aligned. adjust the "OSC" shunt trimmer so that the MINIMUM CAPACITY SIGNAL (C) is heard (it is not necessary that the receiver tune through this signal).
(b) Adjust the station selector so that the SHUNT ALIGNME WT signal is tuned-in with maximum output. Then adjust the "ANT" shunt trimmer for maximun output. Readjust the station selcetor slighty so that the Eenerator signal is luned-in with maximum output and check the adjustment of the "ANT" trimmer. IDO NOT READJUST THE OSCHLLATOR TRIMMER.

NOTE: When shmm aligning the lligh Frequency Band care should be exercised so that the circuits will be aligned on the correct frequency rather than on the image frequency which is approximaitl! 910 kilocycles less than the fundamental. To chech in this, increase the output of the signal generator 10 times, or more. and try to tune-in the signal both at the generator frequency as indicated on the station selector dial and at approximately 9l0 kilocycles less than the correct frequency. If the circuits have been properly aligned the signal can be tuned-in at both positions but much stronger at the correct frequence.

(C) SIGNAL INPUT FREQUENCIES

American Broadcast Band
High Frequency Band

WAVE TRAP

Some chassis of this model are equipped with a wave trap for the purpose of eliminating interference from code stations which operate on a frequency of approximately 4.55 kilocycles. This assembly is located on the underneath side of the chassis and consists of a coil, a fixed condenser and a trimmer condenser as illustrated by dotted lines in the Wiring Diagram (item 53).

The wave trap should not be adjusted until all other adjustments have been made. To make the adjustment. feed a 1.55 kilocycle signal from the signal generator through a 200 mmf. condenser into the antemna terminal of the receiver. With the band selector switch turned to the Broadcast Band position. the gang condenser open and the volume control full on, adjust the trimmer condsnser on the wave trap for MINIMLM outpul.

Should the interfering station be operating on a frequency of slighty more or less than 455 kilocycles. the exact frequency should be determined with the aid of the signal generator. Then, instead of feeding a 455 kilocycle signal into the receiver the exact frequency of the interfering signal should he used. If it is not pos.

Shunt Alignment Signal
1,400 Kilocycles
18,000 Kilocycles
sible to determine the exact frequency of the interfering signal the antema may be attached to the receiver and the receiver turned to the position where the interfering signal is most noticeable. Then adjust the wave trap for minimum interference.

DYNATROL MOTOR

should either vibrator unit of the Dynathol motor need readjustment, the following procedure should be followed:
(a) ioosen the adjusting nut until the drive shaft can be rotated freely between the thumb, and forefinger. The gap between the armature and "l:" laminations should be approximately $3 / 16^{\prime \prime}$.
(b) With the motor running, tighten the adjusting nut until chatter stops. Care should be taken, however, not to tighten this adjustment too tight as an unstable condition will be reached wherein a slight change may result in a locked motor.
(c) Check the time required for the dial pointer to travel from each end of the dial to the other. The adjusting screws should he set so that approximately eight seconds are required in each direction.

PARTS LIST—MUDEL 617

Pigures in first column refer to parts in lhagrams.					
1	$\begin{array}{ll} \mathrm{W} & -43567 \\ \mathrm{G} 6 & -44363 \end{array}$	Dial Light Bulb D. L. Socket Assy.	29B	-33474	Resistor 120,000 Ohm $1 / 3 \mathrm{~W}$. Carb.
2	G148 - 32000	Ant. Coil B-C.	30	—42401B	Resistor 99 Ohm 1/4 W. Ins.
3	G142-32000	Ant. Coil H-F.	31	-21237A	Resistor 60,000 Ohm 1/3 W.
\pm	G145-32002	Osc. Coil B-C.			Carb.
5	G144 - 32002	Osc. Coil H-F.	32	-44009	Resistor 3,000 Ohm 1/4 W. Ins.
6	G161 -32004	1st I-F Trans. 455 Kc.	33A	W -25937	Resistor 275 Ohm 1/2 W. Flex.
7	G166-32004	2nd I-F Trans. 455 Kc .	33B	W -25937	Resistor 275 Ohm 1/2 W. Flex.
8	$\mathrm{W} \quad-44438 \mathrm{~A}$	Condenser 40 Mf .300 V .	34	W -23013	Resistor 2,000 Ohm 1 $1 / 4 \mathrm{~W}$ W.
9	W - 44012	Condenser $16 \mathrm{Mf}$.250 V .			Flex.
10	G16 - 34000	Condenser 3800 Mmf . H-F. Osc. Series	$\begin{array}{\|l\|} 35 \\ 36 \end{array}$	$\begin{aligned} & \text { W } \\ & \text { G103 } \end{aligned}$	Resistor 375 Ohm 1 W. Flex. Socket Speaker
11	G14-34002	Condenser 400 Mmf , B-C.	37	G156 - 36400	Socket Type 6A8
		Osc. Series	38	G171 - 36400	Socket Type 6U7
12A	G2 -34002	Condenser . 0001 Mf. Molded	39	G $160-36400$	Socket Type 6Q7
12B	G2 - 34002	Condenser . 0001 Mf. Molded	40A	G172-36400	Socket Type 6K6
13A	G13 - 34002	Condenser .000035 Mf . Molded	40B	G172-36400	Socket Type 6K6
13B	G13-34002	Condenser . 000035 Mf , Molded		W -40911	Tube Shield
14A	$\mathrm{W} \quad-23142$	Condenser . 02 Mf. 400 V .	41	-465BP15"M"	Speaker M'f'g. Spec. 1-D-1197
14B	W - 23142	Condenser . $02 \mathrm{Mf}$.400 V .		-45186	V. C. \& Cone Assy.
15A	W -28621	Condenser . 02 Mf . 200 V .		-45187	Field Coil (750 Ohm)
15B	W -28621	Condenser . $02 \mathrm{Mf}$.200 V .		-45188	Output Transformer
15C	W -28621	Condenser . $02 \mathrm{Mf}$.200 V .		-44681	Spk. Plug
16A	W -36541	Condenser . $02 \mathrm{Mf}$.160 V .	42	-44955	Band Selector Switch
16B	W -36541	Condenser . 02 Mf .160 V .	43	G2 -44476	Dynatrol Switch
16C	W -36541	Condenser . $02 \mathrm{Mf}$.160 V .		G5 -44470	Toggle Arm (Dynatrol Sw.)
16D	W -36541	Condenser . $02 \mathrm{mif}$.160 V .	44	-44796	Local-Distance Switch
17	W -30805	Condenser . $01 \mathrm{Mf}$.400 V .		G4 -44470	Toggle Arm \& Clamp Assen.
18	$\mathrm{W}-30323$	Condenser . $01 \mathrm{Mf}$.200 V .	45	-44024B	Tone Control \& Line Switch
19	W -23615	Condenser . $05 \mathrm{Mf}$.400 V .	46	-44467	Volume Control (1 Meg.)
20	W -34712	Condenser . $25 \mathrm{Mf}$.160 V .	47	-44695	Power Trans. 110 V. 60 Cy .
21	G42 - 33001	2 Section Var. Tuning Cond.		44697	Power Trans. 110 V. 50 Cy .
	44790	Dial Face (Glass)		-44696	Power Trans. 110 V. 25 Cy .
	W -44085B	Dial Mask		-44698	Power Trans. 220 V. 50 Cy .
	W - 44299	Dial Hand (Pointer)		-44694	Power Trans. 220 V. 25 Cy.
	W -40486	Pointer Mtg. Screw	48	W - 41247 A	4 Sect. Shunt Trimmer Assy.
	$\begin{array}{ll}\mathrm{C} & -44687 \mathrm{~A} \\ \mathrm{~W} & -44084 \mathrm{~A}\end{array}$	Support--Dial Glass	49		Ant.-Gnd. Terminal Assy.
	W -441582	$\begin{aligned} & \text { Ring-Glass Suppor } \\ & \text { Drive Cord } \end{aligned}$	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	G173 - 36400	Socket Type 5Y3
	W -43561	Tension Spring	52	G39 - 26719	Phono. Terminal Assy.
	G1 - 43564	Pulley \& Huib Assy.	53	G170 - 32004	Wave Trap Assy.
	MG19-44575	Shaft \& Coupling Assy.	54	G3 -44416	Dynatrol Motor
	$\underset{\mathrm{W}}{\mathrm{W}} \quad-44479 \mathrm{~A}$	Bracket-Drive Shaft Sleeve Drive Shaft		W - 45218	Vibrator Drive Unit (Left or
	B - 44004	Line Cord \& Plug		W - 44317A	Pulley (Dyn. Motor)
23A	-23785	Resistor 500,000 Ohm $1 / 3 \mathrm{~W}$.		$\mathrm{W} \quad-43622$	Felt Washer
		Carb.		W -44382	Friction Spring (Shaft)
23B	-23785	Resistor $500.000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$.		W -44319	Toggle Hook (Belt)
		Carb.		- 7593	Tubing $7 / 8{ }^{\prime \prime}$ (For Hook)
24A	-33344C	Resistor 400,000 Ohm 1/3 W.		W - $\mathrm{W}^{\text {W }}$	Grommet (Tension)
24B	--3334	Carb. Resistor 400,000 Ohm $1 / 3 \mathrm{~W}$		$\begin{array}{ll}\mathrm{W} & -24074 \\ \mathrm{~W} & -44384 \mathrm{~A}\end{array}$	Adjusting Nut Rubber Pad (Rebound)
	- 33344	Carb.		W -44745	Clamp Plate (Belt)
24C	-33344C	Resistor $400,000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$.		W -43552	Clamp Spk. Plug
		Carb.		- 7N	Cabinet
25	-24990	Resistor 25,000 Ohm 1/3 W.		W -44685A	Call Letter Clip
		Carb. 7000 0hm		W -44866	Call Letter Magn. Lens
26A	-24814	Resistor 7,000 Ohm $1 / 3 \mathrm{~W}$.		W - $\mathrm{C}^{4526431}$	Call Letter List Knob Local-Distance
26B	-24814	Resistor $7,000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$.		44387B	Knob Dynatrol Motor
		Carib. 10.000 (${ }^{\text {d }}$		-44386	Knob Sta. Select.-Vol, Cont.
27	-21876	Resistor $10.000 \mathrm{Ohm} 1 / 3 \mathrm{~W}$.		W -44432	
28A	-26577	Resistor 3 Megohm 1/3 W.		B $\quad-44869 \mathrm{~A}$	Escutcheon
		Carb. ${ }^{\text {d }}$ W		C $\quad-44972 \mathrm{~A}$	Cabinet Back
28 B	-26577	Resistor 3 Megohm 1/3 W. Carb.		-44819	Grille Cloth
29A	-33474	Resistor 120.000 Ohm $1 / 3 \mathrm{~W}$. $\begin{aligned} & \text { Carb. }\end{aligned}$			

FIG. 1-WIRING DIAGRAM-MODEL 617

Fig. 4 Phonograph Pickup

Fig. 2 Top View Model 617

Fig. 3 Bottom View Model 617

Fig. 5

