THE MICROFLASH—A LIGHT SOURCE FOR ULTRA-HIGH-SPEED PHOTOGRAPHY

Alsa

IN THIS ISSUE

Page

Impedange Bridges
Assembeed from Laboratory Parts - I'ant III

Bringing the Catalog Upto Date . . 5

THE PHOTOGRAPHY OF MOVING OBJECTS by means of extremely short light flashes is rapidly becoming a familiar technique. Although associated in the popular mind mainly with the striking pictures of athletes, dancers, and others appearing in the press, this type of photography was first used for scientific and industrial purposes. A previous article* discussed the use of the General Radio Strobolux for single-flash photographs in industry. Like the available commercial equipment, however, the Strobolux is limited to those applications where a flash duration of 30 microseconds ($\frac{10.1000}{30.00}$ second) will not blur the image.

There are many scientific and industrial problems where flashes of much shorter duration are required. An example occurring in the field of ballistics is the photography of projectiles in flight. A rifle bullet traveling at a speed of 2400 feet per second would travel nearly an inch in 30 microseconds. To record the bullet on photographic film without appreciable

[^0]Figure 1. Panel view of the Microflash. The lamp is mounted in the rear of the case.

Figure 2. This photograph of a bullet entering an electric lamp bulb is an excellent example of the motion-arresting properties of the Microflash.
blur would require a flash duration no greater than about one microsecond.
'To meet the specialized requirements of this and similar problems, the Type P-509 Microflash, shown in Figure 1,
has been developed. \dagger 'The functional diagram of Figure 4 shows the principle of operation. A high-voltage transformer and rectifier, operating from the a-c line, charge a conclenser to a potential of about 7000 volts. Across the condenser is connected the flash lamp, filled with rare gases. When a pulse is impressed on the flashing electrode by the trigger circuit the gas in the lamp ionizes, producing a conducting path through which the condenser discharges. The discharge produces a brilliant flash of light lasting for about one microsecond.

The flashing circuit consists essentially of a gas-discharge tube working into an induction coil. A vacuum-tube amplifier is included to provide sufficient gain to permit operation from a conventional crystal microphone.

A microphone provides the most convenient method of triggering when the phenomenon to be photographed is accompanied by sound. For photographing a rifle bullet, for instance, the microphone is placed in such a position that
fOnly a few of these inetruments have been built, and they are not available for general sale.

Figure 3. A Microflash photograph of the explosion of a shotgun shell as it leaves the muzzle of the gun, which is out of the picture at the left. Note that the wads can be seen as well as the cluster of shot.

Figure 4. Schematic circuit diagram of the Microflash.
the sound of the report reaches the microphone at the same instant that the bullet passes the camera. Other methods of tripping the flash can, of course, be used, such as mechanical contactors and photo-electric cells. Conditions peculiar to each problem will usually de-
termine the best method to use.
Figures 2 and 3 are actual photographs taken with the Microflash.

The Microflash is an example of the work being done by General Radio for National Defense. It will eventually lead to better stroboscopes for industry.

IMPEDANCE BRIDGES ASSEMBLED FROM LABORATORY PARTS PART III-EXAMPLES OF MEASUREMENTS

- THE DETERMINATION OF

THE MAGNITUDES of stray capacitance errors and the method of calculating the results of measurements with the series-resistance and Schering bridges may be made somewhat clearer through numerical examples.

Examples of actual measurements with both types of bridges are given below.

Series-Resistance Bridge

(a) Determination of $C_{S G}$ and $C_{P O}$ (see Figure 2, July Experimenter):

$$
\begin{align*}
& B=10,000 \text { ohms } \quad C_{N}=0.01 \mu \mathrm{f} \\
& P=\text { Open-circuit } \tag{1}\\
& A=13.6 \text { ohms }
\end{align*}
$$

$$
C_{P O}=\frac{13.6}{10,000}(0.01) \times 10^{-6}=13.6 \mu \mu \mathrm{f}
$$

Reverse leads from transformer, at the bridge.

$$
\begin{align*}
& B, C_{N}, P, \text { as above } \\
& \boldsymbol{A}=104.3 \text { ohms } \tag{2}\\
& C_{S G}=\frac{104.3}{10,000}(0.01) \times 10^{-\beta}=104.3 \mu \mu \mathrm{f} .
\end{align*}
$$

Change leads back to original connection, placing $C_{S G}$ across C_{N}. In addition, $60 \mu \mu$ from the Type 602 is across C_{N}. The total value of the N arm capacitance is now $0.01016 \mu \mathrm{f}$ (assuming the value of C_{N} to be exactly $0.01 \mu \mathrm{f}$).
(b) A measurement on a $500 \mu \mu \mathrm{f}$ air condenser with 10,000 ohms in series gave the following data:

$$
\begin{array}{ll}
B=10,000 \text { ohms } & C_{N}=0.01016 \mu \mathrm{f} \\
A=510.1 \text { ohms } & R_{N}=530 \text { ohms }
\end{array}
$$

GENERALRADIO

$$
\begin{align*}
C_{P} & =\left(\frac{510.1}{10,000}\right)(0.01016)=519 \mu \mu \mathrm{f} \tag{3}\\
C_{X} & =519-13.6=505 \mu \mu \mathrm{f} \\
D_{P} & =(530)(0.01016)(6280) \times 10^{-0} \\
& =3.38 \%
\end{align*}
$$

For more accurate results a zero reading was made:

$$
\left.\begin{array}{rlrl}
B & =10,000 \text { ohins } \quad \begin{array}{rl}
A & =13.6 \text { ohms } \\
R_{N} & =747 \text { ohms }
\end{array} \\
& =\begin{array}{rl}
(747)(6280) \\
(0.0106)
\end{array} \\
& =4.68 \%
\end{array}\right] \begin{aligned}
I_{X} & =\frac{(3.38)(519)-(4.68)(13.6)}{505} \\
& =\frac{1755-63}{505}=3.33 \%
\end{aligned}
$$

The true values were known to be

$$
C_{X}=503.7 \mu \mu \mathrm{f} \quad D_{X}=3.15 \%
$$

Schering Circuil
(a) Determination of C_{o}
$A=B=1000$ ohms
(approximately) $1000 \mu \mu$ in P arm
$C_{N 1}=1092.3 \mu \mu \mathrm{f}$
$A=10,000$ ohms $\quad B=1000$ ohms
$C_{N 2}=102.1 \mu \mu \mathrm{f}$
From Equation (1),

$$
\begin{equation*}
C_{0}=\frac{1092.3-(10)(102.1)}{10-1}=7.9 \mu \mu \mathrm{f} \tag{3}
\end{equation*}
$$

(b) Determination of $C_{S G}$

$$
A=100 \text { ohms } \quad B=1000 \text { ohms }
$$

Parm open

$$
\begin{equation*}
C_{N}=1004.1 \mu \mu \mathrm{f} \tag{4}
\end{equation*}
$$

From Equation (2),

$$
\begin{equation*}
C_{S G}=\frac{1}{10}(1004.1+7.9)=101.2 \mu \mu \mathrm{f} \tag{5}
\end{equation*}
$$

(c) Calibration of C_{A}

A calibration curve for capacitance increments of a Type 539-A Condenser is obtained by the sulsstitution method described above.
(d) Measurement of dissipation factor of the \%ero capacitance in the P arm:
$A=10,000$ ohms $\quad B=10,000$ ohms I ' arm open, 539-A across A arm

$$
\begin{align*}
C_{N} & =93.6 \mu \mu \mathrm{f} \\
C_{A} & =498 \mu \mu \mathrm{f} \tag{6}\\
C_{S G} & =93.6+7.9 \\
& =101.5 \mu \mu \mathrm{f}
\end{align*}
$$

From Equation (3),

$$
\begin{align*}
D_{S G} & =\frac{\Delta Q_{A}}{\frac{C_{S G}}{C_{P_{2}}}} \\
& =\frac{.00754}{1-\frac{101.5}{1099.9}} \tag{9}\\
& =0.0083=0.83 \%
\end{align*}
$$

(e) Establishing an initial dissipation factor balance:

$$
A=B=1000 \text { ohms }
$$

$1000 \mu \mu \mathrm{f}$ air condenser connected in P arm. The D of the P arm is then

$$
\begin{align*}
D_{P} & =\frac{D_{S G} C_{S G}+D_{1} C_{1}}{C_{P}} \tag{10}\\
& =\frac{(0.83)(102.1)+(.004)(1000)}{1102.1} \\
& =0.081 \%
\end{align*}
$$

The condenser \boldsymbol{C}_{A} is now set to a value corresponding to

$$
\frac{D_{P}}{R_{A \omega}}=C_{A}=\frac{.00081}{1000 \times 6280}=(129) \mu \mu \mathrm{f}
$$

and balance established by means of a small air condenser across the B arm. The bridge is now ready for use.

As a check on over-all accuracy a measurement on a $0.001 \mu \mathrm{fmica}$ condenser in series with 1000 ohms yielded the following data:

$$
\begin{aligned}
A & =B=10,000 \text { ohms } \\
C_{A} & =102 \mu \mu \mathrm{f} \\
C_{N} & =1094.4 \mu \mu \mathrm{f} \\
C_{X} & =(1094.4+7.9)-101.2=1001.1 \mu \mu \mathrm{f} \\
D_{P} & =(10,000)(6280)(102)=0.64 \% \\
I_{X} & =\frac{(0.64)(1102.3)-(0.83)(101.2)}{1001.1} \\
& =0.62 \%
\end{aligned}
$$

These results compare very well with the (known) true values of 1002.3 and 0.65% for capacitance and dissipation factor, respectively.

As another example, the following data represent a measurement of a Type $505,0.001 \mu \mathrm{f}$ condenser, by a substitution method:

$$
\begin{array}{rlrl}
C_{A} & =153 \mu \mu \mathrm{f} & C_{N} & =1102.5 \mu \mu \mathrm{f} \\
C_{A}^{\prime} & =102 \mu \mu \mathrm{f} & C_{N}^{\prime} & =104.2 \mu \mu \mathrm{f} \\
\Delta C_{A} & =51 & \Delta C_{N} & =998.3 \mu \mu \mathrm{f} \\
D_{X} & =(1000)(6280)(51)\left(\times 10^{-12}\right) \frac{1022.3}{998.3} \\
& =0.035 \% \\
C_{X} & =\Delta C_{N}=998.3
\end{array}
$$

Accurate measurements on this condenser by our Standardizing Laboratory yielded:

$$
C=998.6 \mu \mu \mathrm{f} \quad D=0.037 \%
$$

- Ivan G. Easton

BRINGING THE CATALOG UP TO DATE

THERE HAVE BEEN A NUM BER OF ADDITIONS TO and deletions from our line of instruments since the publication of Catalog K . In addition, several instruments have been tem-
porarily discontinued in order that our facilities may be more efficiently used for the production of items needed for Na tional Defense.

NEW INSTRUMENTS ADDED TO LINE

*Descriptive folder available on reguest.
\dagger Reprint available.

INSTRUMENTS REPLACED BY NEW MODELS

*Descriptive folder available on request.

INSTRUMENTS DISCONTINUED

'Type 70-A, -B Variac Transformers
Type 80-A, - B Variac Transformers
Туре 90-B Variac
Type 138-A Binding Post
Type 138-D Switch Contact
'Type 154-A, - 13 Voltage Dividers
'Type 246-L, -M, -P Variable Air Condensers
'Type 247-G, -F Variable Air Condensers
Type 274-K Binding Post Assembly
Type 274-L Binding Post Assembly
Type 293-A Universal Bridge
'Type 293-Pl Bridge Transformer
Type 293-P2 Bridge Transformer
'Туре 293-P3 Slide Wire
Type 329-J Attenuation Box
Type 410-A Rheostat Potentiometer
'Type 480-A, -B Relay Racks
*' 'ype 516-C Radio-Frequency Bridge
Type $525-\mathrm{C},-\mathrm{D},-\mathrm{F},-\mathrm{H},-\mathrm{L}$ Resistors
Type 544-P2 90-Volt Power Supply
Type 574 Wavemeter
*To be replaced by Trpe 916-A.
'Type 578-AR, BR, CR, A'T, BT, С'T 'Transformers
Type 586-DM, -DR, -EN, -ER, -P5, -P6, -Q1 Power-Level Indicators
Type 613-B Beat-Frequency Oscillator
Type 625-A Bridge
Type 641-A, - ${ }^{\text {Th, -C, -D, -E, -F, -G, -H, }}$ -J, -K, -L Transformers
'Type 664-A Thermocouple
Type 666-A Variable Transformer
'Type 671-A Schering Bridge
Type 677-U, -Y Inductor Forms
'Type 677-Pl Spacer
'Type 678-Р Plug Base
'Type 678-J Jack Base
'I'ype 682-13 Frequency-Deviation Meter
'Type 684-A Modulated Oscillator
Type 716-P2 Guard Circuit
'Type 721-A Coil Comparator
'I'ype 722-FU Precision Condenser (Unmounted)
Type 733-A Oscillator
'Type 741-(:, -J, -P 'Transformers

INSTRUMENTS TEMPORARILY DISCONTINUED

'Type 202-A, -B Switches
Type 202-Y, -Z Knobs
Type 219-L, -N Decade Condensers
Type 334-F, -K, -R, -'T, -Z Variable Air Condensers
Type 335-Z Variable Air Condenser
Type $505-\mathrm{R},-\mathrm{T},-\mathrm{U},-\mathrm{X}$ Condensers
Type 526-A, - B, -C, -D Mounted Rheo-stat-Potentiometers
'Type 539-X Variable Air Condenser
Type 611-C Syncro Clock
Type 642-D Volume Control
Type 646-A Logarithmic Resistor
Type 669-R Slide-Wire Resistor
Type 670-13W, -FW Compensated Decade Resistors
'Type 739-A, -I Logarithmic Air Condensers

NEW RESISTANCE VALUES FOR RHEOSTAT-POTENTIOMETERS

- ALTHOUGH THERE ARE NO ACCEPTED STANDARDS or pre. ferred values for variable resistors, it is desirathe, in order that a given resistance range be covered by as few models as possible, to standardize on a logarithmic distribution of resistance values. The values listed in our current Catalog K for General Radio rheostat-potentioneters are the outgrowth of customer demands, over a period of several years, for resistors to be used in particular applications. Most of the resistance values so determined no longer have any
significance, as, for instance, the lowresistance models which originally met the NEMA standards for filament rheostats in vacuum-tube circuits.

In order to cover the available resistance range for a given type of unit more effectively, the resistance values have been revised to give an approximately logarithmic distribution for each model. A 1-2-5-10 system has been adopted for all morlels except 'Types 333 and 533, which already use a 1-3-10 system.

The new listings are as follows:

Type	Maximum Resistance	Maximum	Current	Code Word	Price
301-A	5	0.9	a	PALSY	\$1.00
301-A	10	0.65	a	REMIT	1.00
301 -A	20	450	ma	RENEW	1.00
301 -A	50	280	ma	RIFLE	1.00
301 -A	100	200	ma	RIGID	1.00
301-A	200	140	ma	Rebus	1.00
301-A	500	90	ma	RIVAL	1.00
301 -A	1000	6.5	ma	RAVEL	1.00
301-A	2000	45	ma	READY	1.00
301-A	5000	28	ma	ROMAN	1.00
*301-A	10,000	17	ma	CURRY	1.50
*301-A	20,000	12	ma	CRUMB	1.50
214-A	10	$1.1)$	a	RURAI,	2.00
214-A	20	0.7	a	RAZOR	2.00
214-A	50	450	ma	RAPID	2.00
214-A	100	320	ma	RIVET	2.00
214-A	200	220	ma	EMPTY	2.00
214-A	500	140	ma	ROSIN	2.00
214-A	1000	100	ma	ENACT	2.00
214-A	2000	70	ma	SYRUP	2.00
214-A	50000	45	ma	ROWEL	2.00
214-A	10,000	32	ma	RUMOR	2.00
371 -A	1000	120	ma	REDAN	4.00
371-A	2000	90	ma	REFIT	4.00
$371-A$	5000	55	ma	ROTOR	4.00
371 -	10,000	38	ma	ROWDY	4.00
-371-A	20,000	28	ma	RULER	4.00
*371-A	50,000	16	ma	SATYR	4.00
*371-A	100,000	11	ma	SEPOY	4.00
371-7	10,000	28	ma	sully	4.00
*314-A	1000	90	ma	DIVAN	4.00
*314-A	2000	65	ma	ENEMY	4.00
*314-A	5000	10	ma	ENJOY	4.00
*314-A	10,000)	28	ma	DIVER	4.00
*314-A	20,000)	20	ma	ENROL	4.00
*314-A	50,000	13	ma	DONAX	4.00
*314-A	100,000	9	ma	DONGA	4.00

(Continued on page 8)

*Supplied with linen-bakelite protecting strips.

Power ratings have been revised to give consistent values based on a temperature rise of approximately 50° to $60^{\circ} \mathrm{C}$. above the ambient, except those for Type 333 and Type 533, which are based on a temperature rise of approximately 250° C.

Type	Power Rating	Type	Power Rating
301-A	4 watts	371-A with protecting strip	12 watts
301-A with protecting strip	3 watts	371-T	
214-A	10 watts	471-A	12
314-A	8 watts	333-A	100
371-A	15 watts	533-A	250

TIHE General Radio EXPERIMENTER is mailed without charge each month to engineers, scientists, technicians, and others interested in communication-frequency measurement and control problems. When sending requests for subscriptions and address-change notices, please supply the following information: name, company name, company address, type of business company is engaged in, and title or position of individual.

GENERAL RADIO COMPANY

[^0]: *J. M. Clayton. "Single-Flash Photography with the Strobotac and Stroholux." Experimenter, November, 1940.

