TG-1A SYNCHRONIZING GENERATOR

RADIO CORPORATION OF AMERICA engineering products department camden, n. J.

TG-1A
 SYNCHRONIZING GENERATOR MI-26915

INSTRUCTIONS

Copyright 1949
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION

ENGINEERING PRODUCTS DEPARTMENT RADIO CORPORATION OF AMERICA
 Camden, N. J., U. S. A.

WARNING

THE VOLTAGES EMPLOYED IN THIS EQUIPMENT ARE SUFFICIENTLY HIGH TO ENDANGER HUMAN LIFE AND EVERY REASONABLE PRECAUTION HAS BEEN OBSERVED IN DESIGN TO SAFEGUARD THE OPERATING PERSONNEL. THE POWER SHOULD BE REMOVED COMPLETELY BEFORE CHANGING TUBES OR MAKING INTERNAL ADJUSTMENTS.

FIRST AID IN CASE OF ELECTRIC SHOCK

1. PROTECT YOURSELF with dry insulating material.
2. BREAK THE CIRCUIT by opening the power switch or by pulling the victim free of the live conductor.

DON'T TOUCH VICTIM WITH YOUR BARE HANDS until the circuit is broken.

(A)

(B)

(C)
3. LAY PATIENT ON STOMACH, one arm extended, the other arm bent at elbow. Turn face outward resting on hand or forearm.
4. REMOVE FALSE TEETH, TOBACCO OR GUM from patient's mouth.
5. KNEEL STRADDLING PATIENT'S THIGHS. See (A).
6. PLACE PALMS OF YOUR HANDS ON PATIENT'S BACK with little fingers just touching the lowest ribs.
7. WITH ARMS STRAIGHT, SWING FORWARD gradually bringing the weight of your body to bear upon the patient. See (B).
8. SWING BACKWARD IMMEDIATELY to relieve the pressure. See (C).
9. AFTER TWO SECONDS, SWING FORWARD AGAIN. Repeat twelve to fifteen times per minute.
10. WHILE ARTIFICIAL RESPIRATION IS CONTINUED, HAVE SOMEONE ELSE:
(a) Loosen patient's clothing.
(b) Send for doctor.
(c) Keep patient warm.
11. IF PATIENT STOPS BREATHING, CONTINUE ARTIFICIAL RESPIRATION. Four hours or more may be required.
12. DO NOT GIVE LIQUIDS UNTIL PATIENT IS CONSCIOUS.

TABLE OF CONTENTS

Section Title Page
I TECHNICAL SUMMARY 1
Electrical Characteristics 1
Tube Complement 1
Mechanical Specifications 1
II EQUIPMENT 2
III DESCRIPTION 2
Purpose 2
Construction 2
Circuits 2
Pulse Former 2
Pulse Shaper 3
Theory of Operation 5
Generating the RMA Synchronizing Signal 5
Counter Circuits 6
60-Cycle Lock-in Circuit 6
IV INSTALLATION 7
Counter Circuit Adjustments 8
Pulse Circuit Adjustments 8
V OPERATION 11
VI MAINTENANCE 11
Trouble Shooting Chart 12
APPENDIX I 15
REPLACEMENT PARTS LIST 16
LIST OF ILLUSTRATIONS
Figure Title Page
1 Type TG-1A Synchronizing Generator, Front View ii
2 Development of Synchronizing Signal 5
3 Lock-in Bridge Circuit 7
4 Standard Synchronizing Generator Waveforms 9
5 Controls 10
6 Pulse Former, D-C Voltage Chart 13
7 Pulse Shaper, D-C Voltage Chart 14
8 Pulse Former, Front View 22
9 Pulse Former, Rear View 23
10 Pulse Former, Resistor Boards 24
II Pulse Shaper, Front View 25
12 Pulse Shaper, Rear View 26
13 Pulse Shaper, Resistor Boards 27
14 Blozk Diagram and Waveforms 29
15 Pulse Former, Schematic Diagram 31
16 Pulse Shaper, Schematic Diagram 33

Figure 1-Type TG-1A Synchronizing Generator (Front View)

SECTION I

TECHNICAL SUMMARY

ELECTRICAL CHARACTERISTICS

Output Signals:
Signal
Horizontal Driving
Vertical Driving
Blanking
Synchronizing
CRO synchronizing

Power Supply Requirements:

Line Rating
.

Allowable line frequency variations
Power Consumption
Frequency in Cycles
15,750
.60
60 and 15,750
60 and 15,750
30 and 7875
frequ
mption

TUBE COMPLEMENT

Pulse Former:

Item	Type	Quan.	Symbol Designation		
1	6 H 6	8	$\mathrm{~V} 1, \mathrm{~V} 2, \mathrm{~V} 9, \mathrm{~V} 12, \mathrm{~V} 16, \mathrm{~V} 19$,	\quad	Class of Tube
:---:					
Receiving					

Pulse Shaper:

Item	Type	Quan.
1	6SL7GT	13
2	$6 \mathrm{AC7}$	6
3	6 SN 7 GT	2
4	6 L 7	4
5	6 AG 7	5

MECHANICAL SPECIFICATIONS
Cabinet Rack . 84"

Length	Width	Depth	Weight	
$84^{\prime \prime}$	$22^{\prime \prime}$	$18^{\prime \prime}$	$218 \quad$ lbs.	
$29^{\prime 2} 3 / 32^{\prime \prime}$	$19^{\prime \prime}$	$10^{\prime \prime}$	$393 / 4$	lbs.
$2923 / 32^{\prime \prime}$	$19^{\prime \prime}$	$9^{\prime \prime}$	$511 / 2 \mathrm{lbs}$.	
$10^{\prime \prime} / 32^{\prime \prime}$	$19^{\prime \prime}$	$121 / 2^{\prime \prime}$	58	lbs.
$123 / 32^{\prime \prime}$	$19^{\prime \prime}$	$6^{\prime \prime}$	$31 / 2$	lbs.
$57 / 32^{\prime \prime}$	$19^{\prime \prime}$	$51 / 4^{\prime \prime}$	$31 / 2 \mathrm{lbs}$.	

SECTION II
 EQUIPMENT

The complete Type TG-1A Synchronizing Generator includes the following components:

Quantity	Description	RCA Reference
1	Synchronizing Generator Rack (includes next four items)	MI-26815
	Pulse Former	MI-26100
	Pulse Shaper	MI-26110
	Regulated Power Supply	MI-21523-C
	Filter Unit	MI-26270
* 2	Side Panel	MI-30541-G84
*1	Front Door (ventilated)	MI-30536-G84
* 1	Monogram	MI-30596
1	Rear Door (ventilated)	MI-305 36-G84
1	Tube, Cathode Ray (RCA-3KPI)	MI-26650
**	Set of Replacement Tubes	MI-26677
1	Instruction Book .	IB-36008

Description

Pulse Former
Pulse Shaper
Regulated Power Supply
MI-21523-C
MI-26270
$\begin{array}{ll}* 2 & \text { Side Panel } \\ * 1 & \text { Front Door (ventilated) }\end{array}$
MI-30541-G84
*1 Monogram . MI-30596
Rear Door (ventilated)
MI-30536-G84

* Tube, Cathode Ray (RCA-3KPI)

MI-26677
Instruction Book
IB-36008

* Optional.
** Specify number of parts.

SECTION III
 DESCRIPTION

PURPOSE

The primary purpose of Type TG-1A Synchronizing Generator is to furnish a television pickup system with signals of suitable amplitude, waveshape and frequency so that an RMA Standard picture signal will result. The generator produces four signals properly synchronized to produce a 525 -line, 30 -frame interlaced picture signal. These four signals are (1) Horizontal Driving, (2) Vertical Driving, (3) Blanking and (4) RMA Synchronizing.

The generator also produces a signal composed of pulses at half horizontal scanning frequency and half vertical scanning frequency. This signal may be used to synchronize the sweep frequencies of associated monitoring oscilloscopes so that two complete cycles of the signal may be observed.

All output circuits are designed to be terminated in 75 ohms.

CONSTRUCTION

The generator can be divided both electrically and mechanically into three separate units, the pulse former, the pulse shaper and the regulated power supply. ${ }^{*}$ Each unit is built on a recessed type chassis. The three units are mounted in a standard broadcast cabinet rack from top to bottom in the order named. The units are connected electrically by means of cables and connectors J 1 in the pulse former, J1 and J2 in the pulse shaper and J2 in the power supply. All tubes and controls are accessible from the front of the cabinet by opening a hinged door. A hinged door in the rear affords access to the circuit components.

Whenever convenient, resistors and capacitors which have one side grounded are located on the tube sockets or the chassis. All other components are located on terminal boards near the associated tubes, except capacitors larger than 0.1 mfd ., which are mounted on the chassis.

Filament power for all tubes in the pulse former and the pulse shaper except for the Indicator, V30, and the high-voltage rectifier, V4, is obtained from transformers T1 and T2, located at the bottom of the shaper chassis.

Plate voltage is supplied to both pulse former and pulse shaper from the regulated power supply through connectors J1 and J2 on the shaper chassis. High voltage and filament voltage for the cathode-ray tube indicator V30 are obtained from transformers T11 and the rectifier tube V4.

The 117 -volt a-c power for all units in the rack is controlled by circuit breaker S1, located between the filament transformers at the bottom of the shaper chassis.

On the bottom panel-rear a terminal block is mounted. The terminals on this block are assigned to the following:

$$
\begin{array}{cc}
\text { \#1 and \#2 } & \begin{array}{l}
\text { 105-125 V., } 60 \text { cycle power } \\
\text { supply }
\end{array} \\
\text { \#3 and \#4 } & \begin{array}{l}
\text { External phase shift control } \\
\text { (To be jumpered when } \\
\text { the external control is not } \\
\text { used) }
\end{array} \\
\text { \#5 } \begin{array}{l}
\text { External synchronizing volt- } \\
\text { age } \\
\text { Ground—to be connected } \\
\text { to ground bus of the sys- } \\
\text { tem }
\end{array}
\end{array}
$$

CIRCUITS

Pulse Former

The Pulse Former contains circuits necessary to generate 31,500 -cycle pulses, 15,750 -cycle pulses and 60 -cycle pulses. There are also circuits to produce a signal composed of 30 -cycle and 7875 -cycle pulses timed so that the 30 -cycle pulse occurs midway between the 60 -cycle pulses and the 7875 -cycle pulse occurs midway between 15,750 -cycle pulses. The timing of the

[^0]pulses is accomplished by deriving all pulses from the 31,500 -cycle pulses.

The 31,500 -cycle pulses are formed by driving a two-stage clipper, V8, with the sine-wave output of the master oscillator, VII. The output of the clipper is fed through connector J 1 to the Pulse Shaper.

The output of the 31,500 -cycle clipper is also fed through a buffer stage, V14, to a counter circuit, V19 and V18, which reduces the frequency 2 to 1 . The resulting 15,750-cycle pulse is then amplified by the second triode of V18 and fed to the Pulse Shaper.

In order to reduce the frequency from 31,500cycles to 60 -cycles, four counter circuits are used. The pulse from the 31,500 -cycle clipper is fed through a buffer, V6, to a 7 to 1 counter, V9 and V10. The second triode of V10 amplifies the resulting 4500 -cycle pulse and feeds it to a 5 to 1 counter, V12 and V13. The second triode of V13 amplifies the 900 -cycle pulse and feeds it to a 5 to 1 counter, V16 and V17. The second triode of V17 amplifies the 180 -cycle pulse and feeds to a 3 to 1 counter, V20 and V24. The resulting 60 -cycle pulse is amplified in the second triode of V24 and forwarded to the Pulse Shaper.

A cathode-ray tube indicator, V30, is provided for a quick and accurate check of the frequency division in each counter. Signal is fed to the vertical amplifier, V5, from a single-pole, sixposition switch, S2. Each of the six positions on the switch receives a portion of the stair-step wave of voltage that appears on the cathode of the corresponding counter diode. The number of steps indicates the ratio of frequency division in the counter circuit. Since the horizontal deflection plates in V30 are grounded, the vertical deflection created by the stair-step voltage on the vertical deflection plates creates a series of dots on the screen which corresponds to the number of steps.

Four methods of frequency control for the master oscillator are available by use of the twopole, four-position switch S1.

The first position of the switch grounds the control grids of the oscillator and reactance tubes, V11 and V15. This establishes a free-running condition in the oscillator circuit.

The second switch position locks the oscillator to the 60 -cycle power supply. The lock-in is maintained by comparing the 60 -cycle pulse from the counters with a signal from the 60 -cycle power source in a phase detector circuit consisting of transformer T2 and the discriminator circuit composed of tubes V1 and V2. The d-c voltage developed by the discriminator as a result of any phase differences between the 60 -cycle pulse and the 60 -cycle power source varies the bias on the control grid of the reactance tube V15, thereby correcting frequency variations. A choice of four time constants is available with the use of the single-pole, four-position switch S3. The time constant used depends on the frequency stability of the power source.

The third switch position permits frequency control from an external source. It is necessary
that the external signal be a d-c voltage similar to that obtained from the discriminator when 60 cycle lock-in control is used, since the signal is applied to the control grid of the reactance tube V15.

The fourth switch position couples the output of a crystal controlled oscillator, V3, to the control grid of the master oscillator. The frequency of the crystal oscillator is 94,500 cycles, the third harmonic of the master oscillator frequency. The control grid of the reactance tube is grounded in this position.

The 7875 -cycle component of the CRO synchronizing voltage is developed by feeding the output of the 31,500-cycle clipper, V8, through a special type buffer, V22, to a 4 to 1 counter, V23 and V27. Since this buffer does not reverse the polarity of the pulse, a delay equal to the width of a 31,500 -cycle pulse is introduced with respect to the 15,750 -cycle pulse from V18. The second triode of V27 amplifies the pulse and feeds it to one grid of the mixer tube V26.

The 30 -cycle component of the CRO synchronizing voltage is derived from the 60 -cycle pulse output of V24, which is fed through a cathode follower buffer, V21, to a 60 -cycle multivibrator, V25. The output of the multivibrator is differentiated and fed through a buffer, V21. The trailing edge of this pulse appears in the output of the buffer as a positive pulse which synchronizes the multivibrator V29 at 30 -cycle intervals occurring midway between the 60 -cycle pulses used to trigger V25. The output pulse is applied to the second grid of the mixer tube V26. The 7875 -cycle pulse and the 30 -cycle pulse are mixed in the common plate resistor R-52 of V26 and the resulting combined signal is fed to the Pulse Shaper.

Pulse Shaper

The 15,750 -cycle and 31,500 -cycle signals from the Pulse Former are each fed to a separate delay line in the Pulse Shaper. Of the ten multivibrators in the pulse shaper three are synchronized by the 60 -cycle pulse from the Pulse Former through connector J1, four are synchronized by pulses from the 15,750 -cycle delay line and two are synchronized by pulses from the 31,500-cycle delay line.

Horizontal Driving pulses are generated by using pulses from the 15,750 -cycle delay line to synchronize the Horizontal Driving Multivibrator V54. The positive pulse from the multivibrator is fed to the grid of the Horizontal Driving Output tube V60. The amplitude of the pulse is sufficient to bias the tube beyond cut-off thereby clipping off all of the negative portion. A positive pulse is taken from the cathode of V60 and fed to the coaxial connector J 5 , while a negative pulse is supplied to connector J6 through coupling capacitor C149.

Two tubes are required to generate the Vertical Driving signals. The Vertical Driving Multivibrator $V 49$ is synchronized by the 60 -cycle pulse from the Pulse Former. A positive pulse from the multivibrator drives the Vertical Driv-
ing Output tube, V55. The driving pulse is of sufficient amplitude to cause the tube to be biased beyond cutoff, thereby removing the negative portion of the pulse. A positive pulse is obtained from the cathode circuit at connector J12 and a negative pulse from the plate through blocking capacitor Cl 60 and connector J11.

The blanking signal is a composite signal consisting of 60 -cycle and 15,750 -cycle pulses. The 15,750-cycle pulses are generated by the Horizontal Blanking Multivibrator V48, which is synchronized by a negative pulse from the delay line. The 60 -cycle pulses are generated by the Vertical Blanking Multivibrator V37, which is synchronized by the negative 60 -cycle pulse from the pulse former. Positive pulses from each multivibrator are applied to the two grids of the Blanking Clipper and Mixer V44. The two signals are mixed on the common load resistor R79, and the mixed signal is fed to the Final Blanking Clipper V50. The sides of the Horizontal pulses are steepened by peaking coil L67 in the plate circuit of V 50 and the combined signal is applied to the Blanking Output tube V56. The positive blanking output signal is taken from the cathode circuit of V56 through connector J10. The negative blanking signal is taken from the plate circuit through blocking capacitor C156 and connector J9.

The RMA Synchronizing signal is developed by mixing ten signals at various stages. The main mixing occurs when four signals, three of which are composite signals, are applied across the common plate load resistor, R114 of Sync. Mixers V46, V47 and V52. At this point the leading edge of the equalizing pulse becomes the leading edge of both the horizontal synchronizing pulse and the vertical synchronizing pulse.

The first of the four signals on R114 is produced in the Equalizing Pulse Multivibrator V33 and V39, which is synchronized by a pulse from the 31,500 -cycle delay line through the buffer V31. The positive pulse from the multivibrator is clipped twice in the clipper V46 and fed to the common load resistor R114.

The second of the signals consists of 15,750 cycle horizontal synchronizing pulses keyed by 60 -cycle pulses. The horizontal synchronizing pulses are obtained from the Horizontal Pulse Multivibrator V41 and V42, which is synchronized by a pulse from the 15,750 -cycle delay line through the buffer V35. A positive pulse from the multivibrator output is applied to the first grid of the mixer V40, while a 60 -cycle negative pulse is applied to the third grid. The output of the mixer consists of 15,750 -cycle pulses except during the intervals of the 60 -cycle pulses. The signal is applied to a clipper, V52, which feeds common load resistor R114.

The 60 -cycle negative keying pulse referred to above is generated in the Number of Equalizing Pulses Multivibrator V28, which is located on the Pulse Former chassis for mechanical symmetry and convenience. This multivibrator is synchronized by the 60 -cycle pulse from the Pulse Former and its output is fed through connector

J1 to the clipper V35 in the Pulse Shaper. The negative keying pulse is obtained from the plate of the clipper.

The third signal is also composed of $15,750-$ cycle pulses keyed by the 60 -cycle signal from the Number of Equalizing Pulses Multivibrator. The 15,750 -cycle pulse is produced by the Notching Pulse Multivibrator V36, which is synchronized by a pulse from the delay line. The two signals are mixed in V34, the output of which is applied to a clipper, V47. The second stage of the clipper feeds the common load resistor R114. This signal has the notching pulse present except during the 60 -cycle keying interval.

The fourth signal is a complex one that consists of groups of six 31,500 -cycle pulses recurring at a 60 -cycle rate. The 31,500 -cycle pulses are generated in the Vertical Pulse Multivibrator V32 and V38, synchronized by a pulse from the 31,500 -cycle delay line through a buffer, V31. It is necessary that the groups contain six complete vertical pulses, consequently the leading edge of the 60 -cycle pulse must fall between adjacent 31,500 -cycle pulses, and not during these pulses. This requirement makes necessary a somewhat complex circuit.

A negative pulse is obtained from the Vertical Pulse Delay Multivibrator V43, which is synchronized by the 60 -cycle negative pulse from the Pulse Former. This pulse is differentiated and applied to the number two control grid of the mixer V45, where the trailing edge of the pulse becomes a positive keying pulse. A narrow, 31,500 -cycle pulse is applied to number one control grid of the mixer from the Vertical Pulse Multivibrator V38 and V32 and appears on the plate as a group of negative 31,500 -cycle pulses which occur during the interval of the 60 -cycle keying pulse. The first of these pulses synchronizes the number of Vertical Pulses Multivibrator V51. The positive output of this multivibrator is applied to the number one grid of the mixer V58, while a wide positive 31,500 -cycle pulse from the Vertical Pulse Multivibrator is applied to the number two control grid. This latter pulse is obtained from the inverted form of the wave which was used to trigger the Number of Vertical Pulses Multivibrator V51. The multivibrator V51 will be triggered only sometime during the narrow interval between vertical pulses and a whole vertical pulse will always appear at the beginning of the group of six.

The negative output of the mixer V58 is applied to the Sync. Mixer and Clipper V52 from which it is fed to the common load resistor R114.

The complex signal resulting from the four signals being mixed is applied to the Final Sync. Clipper V53. In the second stage of the clipper, peaking coil L66 is used to steepen the edges of the pulses. This signal is fed from the clipper to the Sync. Output tube V59. The positive RMA Synchronizing signal is available from the cathode through coaxial connector J7, and the negative signal is available from the plate through coaxial connector J8.

Figure 2-Development of Synchronizing Signal

A graphical description of the development of the RMA Synchronizing signal is included under THEORY OF OPERATION.

THEORY OF OPERATION

Generating the RMA Synchronizing Signal

The RMA Synchronizing Signal is a combination of 15,750 -cycle pulses and 31,500-cycle pulses that recur at a 60 -cycle rate. The timing and the width of all pulses must be very stable and accurately controlled.

Figure 2 traces the development of the signal from the final resultant o back through the various mixing operations to the originating multivibrator. The diagram shows that wave o is obtained by clipping wave n along the two dotted lines. Wave \mathbf{n} is formed by adding together four signals, waves d, j, h and m. All except wave d are formed by combinations of other waveforms.

Pulses of waveform d which remain unaltered and become the equalizing pulses, are generated and shaped in tubes V33, V39 and V46. The waveform h is the result of adding together waves f and e. The pulses in wave e are generated in the Notching Pulse Multivibrator V36 and are finally used to remove alternate equalizing pulses except during the vertical synchronizing interval. Since the notching pulses are unwanted when the equalizing and vertical synchronizing pulses are present they are removed by wave f. The notching pulses are applied to the second control grid of the mixer V34 while the 60 -cycle pulse, wave f, is applied to the first control grid. The tube is cut off during the pulse of wave f but allows wave e to pass between pulses. The output of V34 has the waveform h.

The pulses in wave \mathbf{j} are used to form the horizontal synchronizing pulses by combining with the pulses of wave d. The front edge of the equalizing pulse, wave d, becomes the front edge of the horizontal synchronizing pulse in wave n. The horizontal pulses are not used during the vertical synchronizing interval and therefore must be removed during that period. The pulses of wave i are generated in tubes V41 and V42 and are applied to the first control grid of the mixer V40. The negative 60 -cycle pulse, wave f, is used to cut off V40 during the vertical synchronizing interval. The output waveform of V40 after inversion in V5 2 becomes wave j.

As was the case with the horizontal synchronizing pulse, the front edge of the equalizing pulse becomes the front edge of the vertical synchronizing pulse in waveform n. Wave m is derived by mixing waves k and l in the mixer $V 58$. Wave k is the output waveform of the Vertical Pulse Multivibrator V32 and V38. Wave 1, however, is generated in a more complex process designed to insure that the series of six vertical pulses shall start with a whole pulse.

Wave g is generated in the Vertical Pulse Delay Multivibrator V43 and is differentiated in the RC combination R139-C1 36 to produce wave \mathbf{g}^{\prime} which is applied to one grid of the Mixer V45. Wave q, which is simply wave k inverted, is applied to another grid of V45. The output is composed of a few narrow pulses from wave q keyed in by the differentiated trailing edge of wave g^{\prime}. This output is represented in wave r, with phase inversion in V45 ignored. The first narrow negative pulse, whether it is whole or partial, will trigger the Number of Vertical Pulses Multivibrator V51. Therefore V51 may be triggered only
during the interval of the narrow pulse, which means during the interval between adjacent wide pulses of wave k.

The 60 -cycle positive pulse l, generated by V51, controls the mixer V58 so that the tube conducts only during the pulse. Pulses of wave k are applied to another mixer grid. The multivibrator V5I is adjusted so that six whole pulses of wave \mathbf{k} will appear in the output of V58 to produce wave m across the resistor R114.

Waves d, j, h and m are mixed on a common load resistor, R114, across which waveform n appears. The wave n is first clipped along the lower dotted line then across the upper dotted line in the two-stage Final Sync. Clipper V53. The output of the clipper, waveform o, is applied to the Sync. Output tube V59, from which both positive and negative signals are obtained.

Counter Circuits

Since all six counter circuits in the Pulse Former perform in a similar manner, it is necessary to describe the operation of only one. The 4500 -cycle counter V $9-\mathrm{V} 10$ which divides the master oscillator frequency by seven, will be used as the example. In the following discussion, the diode in V9 consisting of the plate at terminal three and the cathode at terminal four will be called the first diode, and the diode consisting of the plate at terminal five and the cathode at terminal eight will be called the second diode.
The 31,500 -cycle pulses applied to the grid of V6 are of sufficient amplitude to drive the tube throughout its range from cutoff to saturation. The tube may therefore be considered as a variable resistance ranging from a low value when the positive pulse is on the grid to a very high value when the negative pulse is applied.

Assume that the capacitors C43 and C42 are completely discharged and that the grid of V6 is at maximum positive. The " B " supply voltage is now divided between the low resistance of the tube and plate load resistor R59 causing a minimum voltage $\mathrm{E}_{\mathrm{p} 1}$ to exist at the plate and across C44.

When the grid is driven beyond cutoff the low plate resistance is removed and the plate voltage goes to a maximum $\mathrm{E}_{\mathrm{p}_{2}}$, causing the second diode to conduct and the capacitors C44, C43 and C42 to charge to the new valve $\mathrm{E}_{\mathrm{p}_{2}}$. Since C44 already has a charge $E_{p 1}$ only the increment $E_{p z^{-}}$ $\mathrm{E}_{\mathrm{p},}$ will be added to the three capacitor combination. Since the increment will be divided in inverse proportion to capacity only about $1 / 40$ of it will appear across C43 and C42 at the cathode of the second diode.

When the grid voltage goes positive again, shunting R59 with the low tube resistance, the plate voltage will return to $E_{p 1}$ and the first diode will conduct, discharging C44 back to the value $\mathrm{E}_{\mathrm{p}_{1}}$. Since the second diode will not conduct on the negative swing of the plate voltage, the charge on C43 and C42 will remain constant until the plate voltage goes to $\mathrm{E}_{\mathrm{p} 2}$ again when it will receive a fresh charge only slightly smaller than the first. On an oscilloscope with a time sweep,
the voltage on the cathode of the second diode would appear as a series of stair-steps, with each step representing one cycle of the applied voltage. The large capacitor C42, in series with C43, receives a small portion of the total charge across the combination C43-C42, and provides a monitoring signal for the indicator tube V30.

The cathode of the second diode is connected to the grid of the blocking oscillator V10 through the low-impedance winding of transformer T7. Cathode bias for V10 is developed across the bleeder combination consisting of R61, R62 and R63. This bias voltage is set so that the front edge of the seventh step of the counter voltage applied to the grid is sufficient to trigger the blocking oscillator. During the ensuing positive swing of the grid voltage, the grid draws current and discharges capacitor C43, and forces the grid beyond cutoff, where it remains until the tube is triggered by the next series of seven steps.

The grid of the blocking oscillator is directly coupled to the grid of the amplifier, the second triode of V 10 . This tube is so connected that only the blocking oscillator pulse is amplified. This 4500 -cycle pulse is amplified to approximately 230 volts and applied to the next counter diode, V12.

60-Cycle Lock-in Circuit

The frequency of the master oscillator V11 is determined by the tank circuit formed by coil assembly T3, capacitor C12 and an automatically adjustable impedance due to the plate current of the reactance tube V15.

The control grid of the reactance tube V15 is excited by the voltage developed across the capacitor C85, which is charged by the current resulting from the oscillator tank voltage applied to the capacity-resistance network C8, R138 and C85. This current is substantially in phase with the tank voltage. Since the voltage developed across the capacity C85 lags the current flowing in it by 90°, the grid voltage and hence the plate current of the reactance tube lags the voltage of the tank circuit. Thus, the output impedance may be considered to have the natuse of a virtual inductance, which may be varied over a limited range by changes in the transconductance of the tube, controlled by variation of the effective grid bias of the tube V15.

Bias for the reactance tube is obtained from the 60 -cycle lock-in circuit, which compares the 60 -cycle output pulse from the counters with the 60 -cycle supply voltage, and converts any phase difference into a d-c voltage.

The 60 -cycle supply voltage is applied through a 2 to 1 step-down transformer, TI, and a phase shift network, C86 and R1, to the grid of the clipper V3. The 60 -cycle square wave output of the clipper is applied to a bridge circuit consisting of four diodes (V1 and V2) and transformer T2. (See Figure 3.) One corner of the bridge is connected to the center arm of the AFC Time Constant switch S3. The

Figure 3-Lock-in Bridge Circuit
opposite corner of the bridge is connected to the 60 -cycle position of the Frequency Control Switch S 1 . Since the center arm of SI is connected to the control grid of the reactance tube V15 through resistor R8, it is possible to insert in the grid return circuit several different resistancecapacitance combinations by use of the four positions of the AFC Time Constant switch S3.

The 60 -cycle pulse from the counter circuits is applied to the two remaining corners of the bridge. The pulse is taken from the input of the 60 -cycle pulse multivibrator V28 and applied to transformer T2 through the buffer V7. The secondary of T2 is connected in series with the parallel combination R3-C3, across the two corners.

When the 60 -cycle pulse occurs all of the diodes are caused to conduct, thus making possible a transfer of current in either direction between the input and output corners of the bridge. The 60 -cycle pulse also creates a charge across the combination R3-C3 which is negative toward the double-plate corner of the bridge. This
charge keeps the diodes non-conducting during the interval between pulses.

The master oscillator frequency is adjusted to 31,500 cycles when the voltage on the reactance tube is zero. If the frequency is exactly 31,500 cycles, the square wave voltage applied to the bridge will be passing through zero when the pulse from the counters causes the diodes to conduct. No current will pass through the bridge circuit under these conditions.

When the frequency is slightly higher than 31,500 cycles, the resultant 60 -cycle pulse will occur sooner, while the square wave voltage is negative. Current will be passed through the bridge, placing a negative charge on capacitor C5 and therefore on the grid of the reactance tube, thereby reducing the mutual conductance which in turn increases the virtual inductance shunted across the tank circuit with a resulting decrease in the frequency of the master oscillator.

A similar action takes place when the frequency falls below 31,500 cycles. The pulses occur after the square wave has passed through zero and is in the positive half of the cycle. Current will pass through the bridge in such a direction as to place a positive charge on the capacitor C5 causing the mutual conductance of the reactance tube to increase and thereby decreasing the virtual inductance shunting the tank circuit thus raising the oscillator frequency.

The speed at which the charge on the reactance tube follows changes in the relation between supply voltage and master oscillator frequencies depends on the size of the R-C combination in the grid return circuit of the reactance tube. Switch S 3 provides time constant adjustments which may be used where necessary to match similar time constants in associated equipment.

SECTION IV

 INSTALLATIONThe component chassis of the Synchronizing Generator are mounted securely in the cabinet rack at the factory and are shipped in a single crate. When the front door (MI-305 36-G84) and the side panels (MI-30541-G84) are required they are shipped in two separate crates.

Remove the cabinet rack, front door and side panels from the crates. Attach the side panels to the cabinet rack with bolts and nuts along the front and rear of the rack just inside the door. Bolt the front door hinges to the rack and slide the door on to the hinges. Holes are provided in the rack so that the door may be hung to open from either side of the rack.

Loosen the two Dzus fasteners on the 3 KP 1 tube shield located on the rear of the pulse former chassis and remove the shield. Place the 3 KPl tube in the shield and tighten the two thumbscrews enough to prevent the tube from dropping out of the shield. Fasten the tube and
shield to the chassis by means of the Dzus fasteners and place the socket on the tube. When used, the crystal should also be placed in its socket.

Inspect all cable connections to insure continuity of circuits between the various chassis. Connect the 117 -volt supply to terminals 1 and 2 of the terminal block located at the bottom of the rack. Measure the voltage at terminals 1 and 2. If there is an appreciable variation in either direction from 117 volts, change the primary connection on each filament transformer to the proper tap to give 6.3 volts across each secondary winding.

Turn the power switch in the regulated power supply to the ON position. Turn the load switch to the position marked $80-400 \mathrm{MA}$.

Turn on the synchronizing generator by closing the circuit breaker Sl in the pulse shaper. Adjust the plate supply voltage to 250 volts.

Counter Circuit Adjustments

1. Set the FREQUENCY CONTROL switch to the OFF position.
2. Rotate the COUNTER INDICATOR switch to the $15,750-2$ position and adjust the FREQUENCY CONTROL-15,750 PULSES until two dots appear on the indicator tube. Adjust FOCUS control so that dots are large and easy to see. The CRO tube should be biased off with the BRIGHTNESS control when not in use.

Note: If the dots are not in a vertical line, loosen the thumbscrews on the 3 KPI tube shield at the rear of the chassis, rotate the tube to the proper position and retighten the screws.
3. Rotate the COUNTER INDICATOR switch to the $4500-7$ position and adjust the FREQUENCY CONTROL -4500 PULSES until seven dots appear on the indicator tube.
4. Rotate the COUNTER INDICATOR switch to the $900-5$ position and adjust the FREQUENCY CONTROL -900 PULSES until five dots appear on the indicator tube.
5. Rotate the COUNTER INDICATOR switch to the $180-5$ position and adjust the FREQUENCY CONTROL -180 PULSES until five dots appear on the indicator tube.
6. Rotate the COUNTER INDICATOR switch to the $60-3$ position and adjust the FREQUENCY CONTROL -60 PULSES until three dots appear on the indicator tube.
7. Rotate the COUNTER INDICATOR switch to the $7875-4$ position and adjust the FREQUENCY CONTROL -7875 PULSES until four dots appear on the indicator tube.

At this point it is necessary to use a portable oscilloscope for adjusting the 31,500 -cycle oscillator to its "on frequency" condition as follows:

1. Connect a 60 -cycle sine wave source of suitable amplitude to the horizontal deflection terminals of the oscilloscope.
2. Connect the 60 -cycle pulse output of the synchronizing generator to the vertical deflection terminals then proceed as follows:
a. Adjust the plug in the oscillator transformer (T3) to the extreme clockwise position.
b. Set the AFC TIME CONSTANT switch to position 4 and the FREQUENCY CONTROL switch to the 60 -cycle position.
c. Connect a vacuum tube voltmeter across C5, and observe the voltage. Adjust R140 until the voltage is zero.
d. Operate the FREQUENCY CONTROL switch to the OFF position.
3. Adjust the plug in the oscillator transformer T3 until the 60 -cycle pulse from the synchronizing generator remains approximately sta-
tionary. The 31,500-cycle oscillator is now on frequency.
4. Set the FREQUENCY CONTROL switch (top of cabinet) to the 60 -cycle position.

Check the frequency of the 30 -cycle multivibrator by observing the output pulse on an oscilloscope with a 60 -cycle sine wave sweep, or by using an external oscillator of known frequency for comparison.
5. Set the CRO-SYNC switch to the OFF position.

Pulse Circuit Adjustments

Six adjustments are necessary to obtain the desired synchropizing signal. Observe the signal at pin of V53 and adjust the CLIPPING LEVEL CONTROL (R114) to the position at which the amplitude is 22.5 volts peak-to-peak. The following adjustments should be made while observing the signal.

1. Adjust the NUMBER OF EQUALIZING PULSES control until the total of equalizing and vertical synchronizing pulses equals eighteen.
2. Adjust the VERTICAL PULSE DELAY control until six equalizing pulses occur before the first vertical synchronizing pulse.
3. Adjust the NUMBER OF VERTICAL PULSES control until six vertical synchronizing pulses appear in the vertical synchronizing pulse interval.

The remaining three adjustments should be made while observing the synchronizing signal across the 75 -ohm termination. Adjust the width of the equalizing pulse, the vertical pulse and the horizontal pulse by means of the respective designated controls located at the top of the pulse shaper. See Figure 4 and Appendix I for RMA standard pulse width measurements.

Check the amplitude of all output pulses. All pulses should read 4 volts peak-to-peak. (See ELECTRICAL CHARACTERISTICS.)

Adjust the vertical driving, horizontal driving. vertical and horizontal blanking pulses to the required width by rotating the corresponding width controls located at the top of the pulse shaper. (For most uses it is recommended that the vertical and horizontal driving widths be 0.04 V and 0.10 H respectively.) These adjustments should be made while observing the signals which appear across the 75 -ohm output terminations.

No pulse width adjustments are necessary for the CRO Synchronizing signal, but an amplitude check should be made.

Several methods of measuring the width of pulses are explained in Appendix I.

Phase Shift Control

When motion picture films are used as program material in conjunction with an intermittent

RECOMMENDED SYNCHRONIZING GENERATOR WAVEFORMS
I-SYNCHPONIZING SKGNAL 2-BLANKING SKGNAL
3-VERTICAL DRIVING SIGNAL
4-HORIZONTAL DRIVING SIGNAL

Figure 5-Controls
type film projector and iconoscope film camera it is necessary that the film projector be synchronous and phased with the iconoscope-deflection system within approximately 4 degrees, so that the period during which the projector shutter exposes the iconoscope to light falls within the interval of the vertical blanking pulse. If this requirement is not fulfilled spurious light streaks will appear in the transmitted picture because of the abrupt light change on the mosaic during the time it is being scanned. The above condition is established by driving the projector with a synchronous motor operating on the same 60 -cycle power system as the synchronizing generator.

As explained elsewhere in this manual (under DESCRIPTION) the 60 -cycle output of the syn-
chronizing generator is compared and automatically adjusted to the frequency of the 60 cycle power supply system. It is therefore necessary only to adjust the phase of the synchronizing pulses of the synchronizing generator relative to that of the 60 -cycle supply so that the projector shutter opening occurs at the proper time as pointed out above. The Phase Shift control R-1 at the top of the synchronizing generator provides the means for this adjustment.

Provision is made for connecting in a remote phase shift control at terminals \#3 and \#4 of the terminal board at the rear of the bottom panel of the synchronizing generator. The jumper must be removed from these terminals when using such remote control.

SECTION V

 OPERATION
TO START THE EQUIPMENT

1. Place the circuit breaker on the Pulse Shaper panel in the ON position.
2. Place the power switch on the Regulated Power Supply panel in the ON position.

The generator should be in normal operation within one and one-half minutes.

TO CHECK THE COUNTER CIRCUITS

1. Rotate the FREQUENCY CONTROL switch (top of cabinet) to the OFF position.
2. Rotate the COUNTER INDICATOR switch to each of its six positions, noting the number of dots on the indicator for each posi-
tion. The number of dots in each case should correspond to the lower (single digit) number stencilled at each switch position.

TO STOP THE EQUIPMENT

1. Place the circuit breaker in the OFF position.

TERMINATING POSITIVE OUTPUT CONNECTORS

When using the NEGATIVE output from any of the dual output terminals, terminate the corresponding POSITIVE output terminal with a special 75 -ohm connector plug. The plugs are furnished with the equipment.

SECTION VI
 MAINTENANCE

All circuits have been designed so that the associated tubes and components are operating with a conservative safety factor, thus insuring a long life for tubes and components and a minimum of circuit failure.

When it is necessary to service the generator, it is usually possible to make repairs with the chassis mounted in the cabinet.
WARNING: VOLTAGES USED IN SOME CIRCUITS OF THE SYNCHRONIZING GENERATOR ARE DANGEROUS TO LIFE. EXTREME CARE SHOULD BE EXERCISED WHEN MAKING VOLTAGE MEASUREMENTS. SHOULD IT BECOME NECESSARY TO REPLACE A COMPONENT, THE CIRCUIT BREAKER SHOULD BE OPENED BEFORE

ANY WORK IS BEGUN. HIGH VOLTAGE FOR THE CRO IS INTERLOCKED ON THE REAR DOOR.

The amplitude and pulse widths of the output signals should be checked periodically as aging of tubes may cause some small variation. Also aging of tubes may cause unwanted pulses to appear in the positive region of the output signal. This may be overcome by adjusting the clipping level control.

In most cases failure of the equipment will be traceable to tube failure. The following table lists typical symptoms of failure and suggested remedies. If a failure is traced to a definite circuit and the tube is not found defective, check the associated circuit components.

TROUBLE SHOOTING CHART

Symptom	Check
No signal at any output terminal. All horizontal (15,750-cycle) signals absent. All vertical (60 -cycle) signals absent.	Plate supply. V11 and V8. V14, V19 and V18. V6, V9, V10, V12, V13, V16, V17. V20, V24. Note: The defective counter circuit may be isolated by turning the FREQUENCY CONTROL switch to the OFF position and checking each counter on the Indicator tube. One dot on the screen indicates defective counter.
No spot on Indicator with BRIGHTNESS control at full clockwise.	Continuity of V30 heater. V30 heater voltage. (Caution: HEATER is 1000 volts negative to ground.) Measure negative high voltage. Continuity of V4 heater.
No vertical deflection in Indicator.	V5.
No vertical driving signal.	V49 and V55.
No horizontal driving signal.	V54 and V60.
No blanking signal.	V56, V50, V44, V48 and V37.
No horizontal blanking signal.	V48.
No vertical blanking signal.	V37.
No synchronizing signal.	V53 and V59.
No equalizing pulses.	V31, V33, V39 and V46.
Horizontal sync. pulse half normal width; HORIZONTAL PULSE WIDTH control ineffective.	V35, V41, V42, V40 and V52.
Horizontal pulses appear where equalizing pulses should appear.	V28 and V35.
Equalizing pulses appear between horizontal pulses.	V36, V34 and V47.
Unwanted pulses in positive region in sync. output.	Adjust Clipping Level Control.
No CRO signal.	V26 and V57.
No 7875-cycle signal in CRO.	V22, V23 and V27.
No 30-cycle signal in CRO.	V21, V25 and V29.

D-C SUPPLY 250 VOLTS VOLTAGE CHART FOR STUDIO PULSE FORMER																	
TUBE			LINE VOLTAGE, 117 VOLTS, A-CPLATE									SCREEN			TUBE		
$\begin{array}{\|l\|} \hline \text { SYM } \\ \mathrm{BOL} \\ \hline \end{array}$	TYPE	FUNCTION	OPERATING CONDITIONS PIN NORMAL NO SIGNAL			OPERATING CONDITIONS			CATHODE						TYPE	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$VI	
							/NORMAL	INO SIGNAL	PIN NORMAL NO SIGNAL			$\begin{aligned} & \text { OPERATING CONDITIONS } \\ & \hline \text { PINNORMAL } \\ & \hline \end{aligned}$					
VI	$6 \mathrm{H6}$	DISCRIMINATOR	3	-6.6	1.4				4	0	2.0	-	-				
			5	0	2.0				8	28.5	2.5	-					
V2	6H6	DISCRIMINATOR	3	-6.6	0.7				4	0	0				6H6	2	
			5.	0	0	-			8	28.5	2.5	-			6SL7-GT		
V3	6SL7-GT	CRYSTAL OSCILLATOR \& CLIPPER	2	238	211	1	-88	-0.56	3	0	0.03	-	-	-		V3	
			5	242		4	-13.2		6	0		-					
V4	$\begin{array}{\|c} \hline 1 \mathrm{B3}-\mathrm{GT} / \\ 8016 \end{array}$	HIGH VOLTAGE RECTIFIER	\dagger	-980			-	-	-	180	-	-	-	-	$\begin{array}{\|c\|} \hline 183-G T / \\ 8016 \end{array}$		
V5	6SL7-GT	AMPLIFIER	2	155	180	1	0	0	3	1.43	1.47	-		-	$\begin{array}{\|c} 8016 \\ 6 S L 7-G T \end{array}$	V5	
			5	150	185	4	0	0	6	1.43	1.47	-					
V6	6AC7	BUFFER	8	211	226	4	-0.5		5	3.5	2.42	6	100	165	6 AC7	V6	
V7	$\begin{aligned} & 6 A C 7 \\ & 6 S N 7-G T \end{aligned}$	BUFFER	8	250	250	4	-0.6	-0.72	5	0.1	0.1	6	72	62.3	6 AC7	V7	
V8			2	133	144	1	-58	0	3	3.58	3.15				6SN7-GT	V8	
			5	170	100	4	-52	-0.38	6	0.05	0.1						
V9	$6 \mathrm{H6}$	COUNTER	3	0	0				4	2.9	1.23	-	-	-	6H6	V9	
			5	2.9	1.23	-			8	7.6	1.32	-		-			
VIO	6SN7-GT	BLOCKING OSCILLATOR QAMPLIFIER	2	78	210	1	7.6	0	3	17.5	14.2	-	-	--	6SN7-GT	VIO	
				200	238	4	7.6	0	6	17.5	14.2						
VII	6SN7-GT	31.5KC OSCILLATOR	2	190		1	-15		3	15		-	-	-	6SN7-GT	VII	
			5	220	-	4	0	-	6	15	-	-	-	-			
V12	6H6	COUNTER	3	0	0	-			4	3.5	1.25	-	-		6H6	VI2	
				3.5	1.25	-			8	12	1.82						
VI3	6SN7-GT	BLOCKING OSCILL: ATOR \& AMPLIFIER	2	169	216	1	12	0	3	34	32	-	-		6SNTGT	VI3	
			5	248	248	4	12	0	6	34	32		-				
V14		BUFFER ${ }_{\text {REACTANCE TUBE }}$	8	215	224	4	-0.2	0	5	3.8	2.45	6	88	157	6 6AC7	V14	
V15	6AC7		8	215	225	4	0.4	0.18	5	3.14	3.28	6	130	128	$\begin{aligned} & 6 A C 7 \\ & 6 H 6 \end{aligned}$	V15 $\mathrm{VI6}$	
		REACTANCE TUBE COUNTER	3	0	0				4	3.9	1.10						
			5	3.9	1.1	-			8	13.2	1.11	-	-	-			
VI7	6SN7-GT	BLOCKING OSCILLATOR QAMPLIFIER	2	204	216	1	15	0	3	35.6	34.6	-	-		6SN7-GT	V17	
			5	250	247	4	15	0	6	35.6	34.6	-					
V18	6SN7-GT	BLOCKING OSCILLATOR\&LIFIER	2	31.2	125	1	1.87	-5.1	3	6.38	57	-	-		6SN7-GT	$V 18$	
				131	108	4	-3.48	0	6	6.38	57		-				
V19	6 H 6	COUNTER	3	0	0	-		0	4	1.0	0.51	-	-		6H6	V19	
			5	1.0	0.51	-		-	8	1.85	1.28	-	-	-			
v20	6H6	COUNTER	3	0	0	-	-	-	4	1.43	1.33	-	-	-	6 H 6	V20	
			5	1.43	1.33				8	7.5	1.75	-	-	-			
V21	6SL7-GT	BUFFER	2	250	250	1	9.5	9.15	3	17	14.9	-	-		6SL7-G	V21	
			5	233	234	4.	-0.75	-0.02	6	0.03	0.03	-	-	-			
V22	6SN7-GT	BUFFER	$\frac{2}{5}$	132	112	1	5.7	7.92	3	8.35	8.3	-	-	-	6SN7-GT	V22	
			5	250	250	4	0.1	0	6	8.35	8.3	-	-				
V23	6H6	COUNTER	3	0	0			-	4	3.0	0.65	-	-		6 H 6	V23	
			5	3.0	0.65				8	5.0	3.2						
V24	6SN7-GT	BLOCKING OSCILLATORQAMPLIFIER	2	178	218	4	7.7	0	3	25.2	24.2	-	-	-	6SN7-GT	V24	
			5	242	250	4	7.7	0	6	25.2	24.2	-	-	-			
V25	6SL7-GT	MULTIVIBRATOR	2	200	223	1	-30.5	-25.2	3	0	0		-	-	6SL7-GT	V25	
			5	192	175	4	-15.3	-8.3	6	0	0			-	6St		
	6SL7-GT	MIXER	2	185	200	1	0	0	3	1.48	1.19	-	-	-	6SLT-GT	$\checkmark 26$	
			5	185	200	4	-0.2	0	6	1.9	1.37	-	-	-			
V27	6SN7-GT	BLOCKING OSCILLATOR 8 AMPLIFIER	2	114	119	1	0.1	0	3	12.5	7.1		-	-	6SN7-GT	V27	
			5	52	190	4	5.0	-19.2	6	11.5	8.85	-	二	三-			
V28	6SL7-GT	MULTIVIBRATOR	2	188	190	1	-13.7	-6.0	3	0	0	-	-	-	6SL7-GT	V28	
			5	172	172	4	-0.8	-0.15	6	0	0.02	-	-	-			
V296SL7-GT		MULTIVIBRATOR	2	155	154	1	-4.2	-3.1	3	0	0.01	-	-	-	6SL7-GT	V29	
		5	238	240	4	-26.8	-26.0	6	0	0	-						
V30	3KPI		INDICATOR	*	0			-930		-	-900			-575		3 KPI	V30
all d-C Voltage + voltage at tube * SECOND ANODE ** FIRST ANODE																	

Figure 6-Pulse Former, D-C Voltage Chart

D-C VOLTAGE CHART FOR STUDIO PULSE SHAPER
D-C SUPPLY 250 VOLTS LINE VOLTAGE, 117 VOLTS
FILAMENT VOLTAGE,6.3VOLTS,A-C

TUBE			PLATE			GRID			CATHODE			SCREEN				
$\begin{aligned} & \text { SYM } \\ & \text { BOL } \end{aligned}$	TYPE	FUNCTION	OPERATING CONDITIONSC PIN NORMALNO SIGNAL P			OPERATING CONDITIONS PININORMALNO SIGNAL			OPERATING CONDITIONS PIN NORMAUINO SIGNAL			OPERATING CONDITIONS PININORMAL NO SIGNAI			TYPE 6SN7-GT	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$
V31	6SN7-GT	BUFFER	2	250												
												-				
				250	250	4	0	0	6	8.7	8.8					
V32	6 AC7	PART OF VERTICAL PULSE MULTIVIBRATOR	8	190	179	4	-10.5	-0.6	5	. 03	0.11	6	46.3	56.7	$6 \triangle C 7$	V32
V33	6AC7	PART OF EQUALIZING PULSE MULTIVIBRATOR	8	185	157	4	-5.1	-0.2	5	0	0.08	6	38.5	64.8	6 AC7	$\vee 33$
V34	6 L 7	MIXER	3	185	177	5*	-4.5	-0.2	8	0.1	0.07	4	85	85	6L7	V34
	6SL7-G T	CLIPPER AND BUFFER	$\frac{2}{5}$	$\begin{aligned} & 250 \\ & 248 \\ & \hline \end{aligned}$	$\frac{250}{233}$	$\frac{1}{4}$	$\begin{array}{r} 15.8 \\ -11.4 \\ \hline \end{array}$	$\begin{array}{r} 12.5 \\ -0.4 \\ \hline \end{array}$	$\frac{3}{6}$	$\frac{17.3}{0}$	$\begin{aligned} & 14.4 \\ & 0.05 \end{aligned}$	-	-	\square	6SL7-GT	V35
	6SL7-GT	NOTCHING PULSE MULTIVIBRATOR	$\frac{2}{5}$	$\frac{155}{158}$	$\frac{161}{165}$	$\frac{1}{4}$	$\frac{-2.88}{-4.7}$	$\begin{array}{r} 27 \\ -3.35 \end{array}$	3	0	0.03	二	-	U-	6SL7-GT	V36
V37	6SL7-GT	VERTICAL BLANKING MULTIVIBRATOR	2	145	165	1	-0.7	2	3	0.05	0.02	-	--		6SL7-GT	V37
			5	165	183	4	-18.3	-8.0	6	0	0	-				
	6 AC7	PART OF VERTICAL PULSE MULTIVIBRATOR	8	118	105	4	-0.7	0	5	0.1	0.12	6	46.3	56.8	6 AC7	V38
V39	6AC7	PART OF EQUALIZING PULSE MULTIVIBRATOR	8	175	177	4	-0.5	-0.1	5	0.1	0.1	6	39	47	6 AC7	V39
V40	6L?	MIXER	3	245	242	5*	-1.0	-0.35	8	0	0.01	4	83	23.3	6L7	V40
$\begin{aligned} & \mathrm{V} 41 \\ & \mathrm{~V} 42 \end{aligned}$	6AC7	PART OF HORIZONTAL PUISE MULTIVIBRATOR	8	198	188	4	-6,25	-0.35	5	0.02	0.11	6	49	56	6 AC7	V41
	6AC7	PART OF HORIZONTAL PULSE MULTIVIBRATOR	8	155	137	4	-0.45	-0.1	5	0.1	0.11	6	49	61	6 AC7	V42
$V 43$	6SL7-GT	VERTICAL PULSE DELAY MULTIVIBRATOR	2	155	163	1	0.5	0.1	3	0	0.03	-	-		6SL7-GT	V43
			5	175	181	4	-13.8	-3.3	6	0	0	-	-	-		
V44	6SL7-G T	BLANKING MIXER AND CLIPPER	2	247	233	1	-4.03	-0.38	3	0	0.04	-	-		6SL7-GT	V44
			5	247	233	4	-8,25	-0,38	6	0	0.05	-	-	-		
V45	6 L 7	MIXER	3	249	249	5*	0	0	8	14.2	11.9	4	58.5	85.9	6上7	$V 45$
V46	6SL7-G T	SYNC MIXER AND CLIPPER	2	222	221	1	-1.15	-0.33	3	0.05	0.04	-	-	-	6SL7-GT	V46
			5	249	236	4	-13.7	-0.38	6	0	0.04	-				
V47	6SL7-GT	SYNC MIXER AND CLIPPER	2	247	243	1	-9.8	-0.34	3	0	0.04	-	-	\square	6SL7-GT	$V 47$
			5	222	220	4	-3.95	-0.53	6	0	0.03	-				
V48	6SL7-GT	HORIZONTAL BLANKING MULTIVIBRATOR	2	162	161	1	-0.98	-0.78	3	0.05	0.02	-	-	-	6SL7-GT	V48
			5	164	164	4	-2.7	-2.57	6	0	0.02	-	-	-		
V49	6SL7-GT	VERTICAL DRIVE MULTIVIBRATOR	2	133	112	1	-0.3	0.48	3	0.03	0.05	-	-	-	6SL7.GT	49
			5	182	146	4	-16	-3.2	6	0	0.02	-	-			
V50	6SL7-GT	BLANKING CLIPPER	2	205	205	1	-3.7	-0.7	3	0.02	0.02	-	-	-	6SLTGT	$V 50$
			5	205	205	4	-3.7	-0.7	6	0.02	0.02	-	-	--		
V51	6SL7-GT	NUMBER OF VERTICAL PULSES MULTIVIBRATOR	2	162	162	1	0.13	0.25	3	0.04	0.03	-	-	-	6SL7-GT	51
			5	180	180	4	-9.6	-3.58	6	0	0	-				
V52	6SL7-GT	SYNC MIXER AND CLIPPER	2	222	218	1	-1.03	-0.35	3	0.02	0.03	-	-	-	6SL7-GT	752
			5	222	218	4	-0.55	-0.4	6	0.02	0.03	-				
V53	6SN7-GT	SYNC CLIPPER	2	235	125	1	-16.8	-0.4	3	0.01	0.15	-	-	-	6SN7.GT	V53
			5	138	140	4	-3.15	-1.5	6	0.11	0.1					
V54	6SL7-GT	HORIZONTAL DRIVE MULTIVIBRATOR	2	111	113	1	-0.25	-0.47	3	0.06	0.04	-	\square	-	6SL7GT	V54
			5	130	147	4	-4.1	-3.25	6	0.02	0.01	-	-			
V55	6AG7	VERTICAL DRIVE OUTPUT	8	208	94	4	-23	0	5	0.67	2.35	6	208	208	6AG7	V55
			8	210	204	4	-25.8	0	5	6.15	735	6	236	235		
		$\begin{aligned} & \hline \text { BLANKING OUTPUT } \\ & \hline \text { CRO SYNC OUTPUT } \end{aligned}$	8	220	182	4	-9.5	0.05	5	16	4.68	6	220	182	6AG7	$\checkmark 56$
		MIXER	3	248	250	5*	0	0	8	6.85	5.67	4	70	47	6L7	$\checkmark 58$
V59 6AG7		SYNC OUTPUT	8	229	202	4	-91	0.4	5	3.25	7.9	6	250	250	6AG7	V59
V60 6AG7		HORIZONTAL DRIVE	8	222	199	4	-18.5	0	5	4.3	7.93	6	250	250	6AG7	V60

ALL D-C VOLTAGE MEASUREMENTS MADE WITH RCA VOLTOHMYST, JR

* GRid cap voltage

TUBE - NORMAL - NO SIGNAL

V34	-1.4	-0.56
V40	-1.0	0
V45	0	0
V58	-6.0	0

Figure 7-Pulse Shaper, D-C Voltage Chart

APPENDIX I

Methods of Measuring High Frequency Pulse Width

Microsecond Markers

A convenient method of measuring 31,500and 15,750 -cycle pulse involves the use of an RCA Type 715-A Oscilloscope or an equivalent which has a horizontal sweep on which it is possible to place one microsecond markers.

External synchronizing should be used on the oscilloscope to insure a wide phase shift of the pulse to be measured with respect to the marker pulses. The signal for synchronizing can be obtained from the delay line in the pulse shaper. The pulse to be measured should be applied to the vertical amplifier, and the synchronizing gain control adjusted until the start of the pulse coincides with one of the one microsecond markers. The pulse width can then be determined by counting the number of markers that occur during the pulse.

There is some chance for error in this method because it is necessary to estimate the time between adjacent markers when the end of the pulse is not coincident with a marker.

Sine Wave Sweep

A 15,750 -cycle sine wave which is synchronous with the pulses to be measured may be used for horizontal deflection of the oscilloscope. The pulse to be measured is applied to the vertical amplifier and phased so that the pulse occurs during the most linear portion of the sine wave.

The picture on the screen of the oscilloscope is an end view of a circle with an arc dropped from it due to the occurrence of the pulse. Since the pulse occurs during the most linear portion of the sine wave sweep, the length of the chord subtended by the arc appears in true length on the screen. The circumference of the circle can be determined by multiplying the length of the sweep (the diameter of the circle) by Pi.

The width of the pulse in per cent is determined by the following equation:

$$
\% \text { width }=\frac{\text { length of arc }}{\text { circumference }} \times 100
$$

Let $c=$ the length of the chord
$\mathrm{d}=$ the diameter of the circle
$\theta=$ the angle subtended at the center of the circle by the arc expressed in radians
From the geometry of a circle:

$$
\text { length of arc }=\frac{\mathrm{d}^{\ominus}}{2}
$$

and $\theta=2 \operatorname{arcsine}-$

For very small angles the sine is equal to the angle expressed in radians. The difference between the sine of the angle and the angle is very small for angles encountered in synchronizing generator pulse measurements. This difference may be neglected and the equation for $\%$ width becomes
$\%$ width $=\frac{\mathrm{c}}{\pi \mathrm{d}} \times 100$

Duration of Pulses in Microseconds

$$
(\mathrm{H}=63.5 \text { microseconds })
$$

Time in Pulse Microseconds
Horizontal Sync. 5.08 ± 0.6
Vertical Sync. 27.5 ± 0.6
Vertical Serration 4.45 ± 0.6
Horizontal Blanking 10.5 to 11.4
Horizontal Drive 5.25 to 11.4
Equalizing 2.5
Front Porch (Blanking) 1.59
Warning: For accurate measurements it is absolutely necessary that the pulses occur during the most linear portion of the sine wave sweep (i.e., center of horizontal sweep).

Methods of Measuring Low
 Frequency Pulse Width

Sine Wave Sweep

The method of using the sine wave sweep for the horizontal deflection of the oscilloscope when measuring the 60 cycle pulses is especially convenient when the synchronizing generator is locked in to the power line.

The same procedure of measuring is used for 60 -cycle pulses as was explained for 15,750 cycle pulses, and the same precautions must be taken to insure accurate results.

REPLACEMENT PARTS LIST

When ordering replacement parts, please give Symbol, Description, and Stock Number of each item ordered. The part which will be supplied against an order for a replacement item may not be an exact duplicate of the original part, however, it will be a satisfactory replacement, differing only in minor mechanical or electrical characteristics. Such differences will in no way impair the operation of the equipment. When ordering replacement electrolytic capacitors, be sure to order the correct mounting plates.

PULSE SHAPER

Symbol No.	Description	Stock No.
C1	Capacitor, fixed, mica, 100 mmf $\pm 10 \%, 500$ volts	39628
C2 to C32	Capacitor, fixed, mica, 200 mmf $\pm 5 \%, 500$ volts	51914
C33, C34	Capacitor, same as C1	
C35 to C65	Capacitor, same as C2	
C66	Capacitor, same as Cl	
C67	Capacitor, fixed, oil-treated, $0.01 \mathrm{mfd} \pm 10 \%, 600$ volts	51628
C68	Capacitor, fixed, oil-treated, $0.10 \mathrm{mfd} \pm 10 \%, 400$ volts	67910
C69	Capacitor, fixed, mica, 470 mmf $\pm 10 \%, 500$ volts	39644
C70	Capacitor, same as C67	
C71	Capacitor, fixed, oil-filled, 1.0 mfd $\pm 10 \%, 600$ volts	56124
C72	Capacitor, same as C67	
C73	Capacitor, same as C71	
C74A, C74B*	Capacitor, dry, electrolytic, 20$20 \mathrm{mfd}-10 \%+50 \%, 450$ volts	34889
C76	Capacitor, same as C71	
C77, C78	Capacitor, same as C67	
C79	Capacitor, same as C71	
C80	Capacitor, same as C67	
C81, C82	Capacitor, same as C68	
C83	Capacitor. fixed, mica, 56 mmf $\pm 5 \%, 500$ volts	39622
C84	Capacitor, same as C67	
C85	Capacitor, same as C71	
C86, C87	Capacitor, same as C67	
C88, C89	Capacitor, same as C68	
C90	Capacitor, fixed, mica, 68 mmf $\pm 10 \%, 500$ volts	51338
C91	Capacitor, same as C67	
C92A, C92B*	Capacitor, same as C74A, C74B	
C93	Capacitor, same as C71	
C95, C96, C97	Capacitor, same as C67	
	Capacitor, same as C71	
C99A, C99B	$\begin{aligned} & \text { Capacitor, fixed, oil-filled, } 0.5- \\ & 0.5 \mathrm{mfd}+20 \%-10 \%, 600 \\ & \text { volts } \end{aligned}$	51916
C101	Capacitor, fixed, mica, 56 mmf $\pm 10 \%, 500$ volts	50399
$C 102$ $C 103$	Capacitor, fixed, oil-treated, $0.05 \mathrm{mfd} \pm 10 \%, 400$ volts	69565
C103 ${ }_{\text {Cl04 }}$ C104B*	Capacitor, same as C71	
C104A, C104B*	Capacitor, same as C74A, C74B	
C105	Capacitor, same as C68	
C106	Capacitor, fixed, oil-treated, $0.005 \mathrm{mfd} \pm 10 \%, 500$ volts	51917
$C 107$ $C 108$	Capacitor, fixed, mica, 560 mmf $\pm 10 \%, 500$ volts	51918
C108 C109	Capacitor, same as C68	
C109	Capacitor, fixed, oil-filled, 0.25 mfd $\pm 20 \%, 600$ volts	51608
C110	Capacitor, same as C67	
C111	Capacitor, fixed. mica, 220 mmf $\pm 10 \%, 500$ volts	67562
C112	Capacitor, same as C68	
C113 C114, C115	Capacitor, same as C67	
C114, C115, C116, C117, C118	Capacitor, same as C71	

Symbol No.	Description	Stock No.
C119A, C119B*	Capacitor, same as C74A, C74B	
C120	Capacitor, same as C71	
C122	Capacitor, same as C67	
C123	Capacitor, same as C71	
C124A, C124B*	Capacitor, same as C74A, C74B	
C125A, C125B*	Capacitor, same as C74A, C74B	
C127A, C127B*	Capacitor, same as C74A, C74B	
C128	Capacitor, same as C68	
C129	Capacitor, fixed, mica, 680 mmf $\pm 10 \%$, 500 volts	51919
C130	Capacitor, same as C109	
C131	Capacitor, same as C68	
C132A, C132B*	Capacitor, same as C74A, C74B	
C133	Capacitor, same as C67	
C134	Capacitor, same as C107	
C135	Capacitor, same as C71	
C136	Capacitor, fixed, mica, 1000 mmf $\pm 10 \%, 500$ volts	68954
C138	Capacitor, same as C68	
C139	Capacitor, same as C129	
C140	Capacitor, same as C109	
C141	Capacitor, same as C68	
C142	Capacitor, same as C67	
C143	Capacitor, same as C68	
C144	Capacitor, fixed, mica, 150 mmf $\pm 10 \%, 500$ volts	39632
C145	Capacitor, same as C67	
C146	Capacitor, same as C71	
C147	Capacitor, same as C67	
C148	Capacitor, same as C71	
C149	Capacitor, same as C109	
C150	Capacitor, same as C71	
C152, C153	Capacitor, same as C71	
C154 \ddagger	```Capacitor, dry, electrolytic, \(1000 \mathrm{mfd}+40 \%-10 \%, 25\) volts```	59891
C155, C156 \ddagger	$\begin{gathered} \text { Capacitor. dry, electrolytic, } \\ 125 \mathrm{mfd}+40 \% \\ \text { volts } \end{gathered}$	93406
C157 \ddagger	Capacitor, same as C154	
C158	Capacitor, same as C71	
C159	Capacitor, fixed, oil-treated, $0.02 \mathrm{mfd} \pm 10 \%, 400$ volts	69564
C160**	Capacitor, same as C74A, C74B	
C162	Capacitor, same as C71	
C164	Capacitor, same as C68	
C165	Capacitor, fixed, mica, 2200 mmf $\pm 10 \%, 500$ volts	39660
C166	Capacitor, same as C107	
C167	Capacitor, same as C109	
C168	Capacitor, same as C68	
C169	Capacitor, same as C71	
C170**	Capacitor, same as C74A, C74B	
J1	Connector, female, 15 contacts	51927
J2	Connector, male, 10 contacts.	51928
J3 to J12	Connector, coaxial, chassis mounting	51800
J20 to J24	Coaxial termination	54256

[^1]Dwg. No. 85559-2
Dwg. No. 85558-3

[^2]REPLACEMENT PARTS LIST—Continued

REPLACEMENT PARTS LIST-Continued

Symbol No.	Description	Stock No.	Symbol No.	Description	Stock No.
R114	Resistor, variable, composition, 2000 ohms $\pm 10 \%, 2$ watts	51925	R171 R172	Resistor, fixed, composition, 2200 ohms $\pm 10 \%, 1$ watt Resistor, same as R9	71991
R115	Resistor, same as R12		R173	Resistor, same as R7	
R116	Resistor, same as R18		R174	Resistor, fixed, composition,	
R117	Resistor, fixed, composition, 560,000 ohms $\pm 10 \%$, 1 watt	32726	R175	10,000 ohms $\pm 10 \%$, 2 watts Resistor, same as R9	44294
R118	Resistor, fixed, composition, 15,000 ohms $\pm 10 \%, 0.5$ watt	36714	R176	Resistor, fixed, composition, 100 ohms $\pm 10 \%$, $1 / 2$ watt	34765
R119	Resistor, same as R28		R177	Resistor, same as R165	34765
R120 ${ }_{\text {R121, }} \mathbf{R 1 2 2}$	Resistor, same as R9 Resistor, same as R12		R178	Resistor, same as R166	
R121, R122	Resistor, same as R3		R179	Resistor, same as R167	
R124, R126	Resistor, same as R25 Resistor, same as R53		R180	Resistor, fixed, composition, 220 ohms $\pm 10 \%$, 0.5 watt	5201
R126	Resistor, same same as R7		R181	Resistor, same as R167	
R128	Resistor, same as R76		R182	Resistor, same as R165	
R129	Resistor, same as R88		R183	Resistor, same as R53	
R130	Resistor, fixed, composition, 100,000 ohms $+5 \%, 0.5$ watt	3252	R184	Resistor, same as R164	
R131	Resistor, same as R7	3252	R185	Resistor, fixed, composition, 8200 ohms $\pm 10 \%, 1$ watt	38888
R132	Resistor, same as R92		R186	Resistor, fixed, composition,	
R133	Resistor, same as R12 Resistor, same as R25			10 megohms $\pm 10 \%, 0.5$ watt	30992
R135	Resistor, fixed, same as R52		R187, R188 R189	Resistor, same as R7 Resistor, same as R17	
R136	Resistor, same as R55		R190	Resistor, same as R174	
R137	Resistor, fixed, composition, 33,000 ohms $\pm 10 \%, 0.5$ watt	30685	R191	Resistor, same as R164	
R138	Resistor, fixed, composition, 470,000 ohms $\pm 10 \%, 1$ watt	72521	R192	Resistor, fixed, composition, 2.2 megohms $\pm 10 \%, 1$ watt	38898
R139	Resistor, same as R39		R193	Resistor, same as R164	
R140	Resistor, same as R3		R194	Resistor, same as R3	
R141, R142	Resistor, same as R25		R195, R196	Resistor, same as R25	
R143	Resistor, same as R53		R197	Resistor, same as R33	
R144	Resistor, same as R7		R198	Resistor, same as R88	
R145	Resistor, fixed, composition, 220,000 ohms $\pm 10 \%, 1$ watt	54449	R199	Resistor, fixed, composition, 10,000 ohms $\pm 5 \%, 0.5$ watt	3078
R146	Resistor, same as R88		R200	Resistor, same as R53	
R147	Resistor, fixed, composition, 82,000 ohms $\pm 10 \%, 0.5$ watt	8064	R201, R202 R203	Resistor, same as R7 Resistor, same as R92	
R148	Resistor, same as R7		R204	Resistor, same as R3	
R149	Resistor, same as R92		R205	Resistor, same as R92	
R150	Resistor, same as R3		R206	Resistor, same as R164	
R151	Resistor, fixed composition, 15,000 ohms $\pm 10 \%$, 1 watt	70723	R207	Resistor, fixed, composition, 47,000 ohms $\pm 10 \%, 0.5$ watt	30787
R152	Resistor, same as R52		R208	Resistor, same as R167	
R153	Resistor, fixed, composition, 180,000 ohms $\pm 5 \%$. 1 watt	12356	$\begin{aligned} & \text { R209, } \mathbf{R 2 1 0} \\ & \text { R211 } \end{aligned}$	Resistor, same as R38 Resistor, same as R82	
R154	Resistor, same as R88		$\mathbf{R} 212, \mathbf{R} 213$	Resistor, same as R166 Resistor, same as R180	
R156, R157	Resistor, same as R7		R214	Resistor, same as R180	
R158	Resistor, fixed, composition, 27,000 ohms, $\pm 10 \%$. $1 / 2$ watt	30409	R215	Resistor, fixed, composition, 180 ohms $\pm 10 \%, 1$ watt	2736
R159, R160	Resistor, same as R47		R216	Resistor, same as R12	
R161	Resistor, same as R3		R217	Resistor, same as R1	
R162	Resistor, same as R25		S1	Circuit breaker, 115 volt a-c;	
R163	Resistor, same as R53			nominal load, 10 amperes; minimum trip point, 12.5	
R164	Resistor, fixed, composition. 100 ohms $\pm 10 \%, 1$ watt	31215		minimum trip point, 12.5 amperes $\pm 10 \%$	51926
R165	Resistor. fixed, composition, 270 ohms $\pm 10 \%$, 0.5 watt	30929	T1, T2	Transformer, primary tapped, 109, 117, 125 volts, $50 / 60$	
R166	Resistor, fixed, composition. 56 ohms $\pm 10 \%, 0.5$ watt	34762		cycle a-c; two secondary windings each $6.5 / 7.5$ volts,	
R167	Resistor fixed, composition, 2700 ohms $\pm 10 \%$. 2 watts	33855	X 31 to X60	6 amperes Socket, tube, standard octal,	58660
R168	Resistor, same as R 9			saddle mounted	54414
R169	Resistor, same as R7			Grommet, lead	33139
R170	Resistor. fixed, composition, 8200 ohms $\pm 10 \%, 2$ watts	43493		Knob control Jack, tip	30075 18348

PULSE FORMER

C1	Capacitor, fixed, oil-filled. 1.0 mfd $\pm 10 \%, 600$ volts	56124
C3. C4	Capacitor, same as C 1	
C5	Capacitor, fixed, oil-filled, 4 mfd $-10 \%+20 \% .600$ volts	52983
C6	Capacitor, same as C_{1}	
C7	Capacitor, fixed, mica. 68 mmf $\pm 10 \%, 500$ volts	51338

C8	Capacitor, fixed, mica, 470 mmf $\pm 10 \%, 500$ volts	39644
C9, C10, C11	Capacitor, fixed, oil-treated, $0.1 \mathrm{mfd} \pm 10 \%, 400$ volts	67910
C12	Capacitor, fixed, mica, 120 mmf $\pm 5 \%$. 500 volts	39630
C13, C14, C15	Capacitor. fixed. oil-treated, $0.01 \mathrm{mfd} \pm 10 \%$, 600 volts	51628

REPLACEMENT PARTS LIST-_Continued

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Description	Stock No.	$\underset{\substack{\text { Sol }}}{\text { Symbol }}$ No.	Description	Stock No.
C16	$\begin{aligned} & \text { Capacitor, fixed, oil-filled, } 0.25 \\ & \mathrm{mfd} \pm 20 \%, 600 \text { volts } \end{aligned}$	51608	C78	Capacitor, fixed, mica, 4700 mmf $\pm 10 \%, 500$ volts	66645
C17	Capacitor, same as C13		C79	Capacitor, fixed, mica, 3900	
C18	Capacitor, same as Cl			mmf $\pm 10 \%, 500$ volts	39646
C19	Capacitor, fixed, mica, 10 mmf $\pm 10 \%, 500$ volts	72615	C80 C81, C8	Capacitor, same as C67 Capacitor, same as C13	
C20	Capacitor, same as C13		C83	Capacitor, fixed, mica, 560	
C21A, C21B	Capacitor, fixed, oil-filled, 0.5$0.5 \mathrm{mfd}+20 \%-10 \%, 600$ volts	51916	C84	mmf $\pm 10 \%, 500$ volts Capacitor, same as C23	51918
C22 C 23	Capacitor, same as C13 Capacitor, fixed, mica, 1000		C85	Capacitor, fixed, mica, 1800 mmf $\pm 5 \%, 500$ volts	52784
C23	mmf $\pm 10 \%$, 500 volts \ldots	68954	C86	Capacitor, same as C9	
C24	Capacitor, fixed, mica, 27 mmf $\pm 10 \%$, 500 volts	68757	C87 C88, C89	Capacitor, same as C83 Capacitor, same as C13	
C25	Capacitor, fixed, oil-treated, $0.05 \mathrm{mfd} \pm 10 \%, 400$ volts	69565	C91	Capacitor, fixed, mica, 150 mmf $\pm 10 \%, 500$ volts	39632
C26	Capacitor, fixed, mica, 390 mmf $\pm 10 \%, 500$ volts	68542	J1 R1	Connector, male ${ }^{\text {Resistor, }}$ variable, carbon,	51942
C27, C28	Capacitor, same as C13			100,000 ohms, 2 watts ...	51934
C29A, C29B	Capacitor, same as C21A, $\mathrm{C} 21 \mathrm{~B}$		R2	Resistor, fixed, composition, 10,000 ohms $\pm 10 \%, 1$ watt	71914
C30 C31	Capacitor, same as C 13 Capacitor, same as C 23		R3	Resistor, fixed, composition,	
C32	Capacitor, same as C24		R4	4.7 megohms $\pm 10 \%, 1$ watt	0
C33	Capacitor, same as C25		R4	Resistor, fixed, composition, 68,000 ohms $\pm 10 \%, 1$ watt	38897
C34	Capacitor, same as C13 Capacitor, same as C25		R5	Resistor, fixed, composition,	
C36*	Capacitor, dry, electrolytic, $20-20 \mathrm{mfd}-10 \%+50 \%, 450$ volts	34889	R6	82,000 ohms $\pm 10 \%, 1$ watt Resistor, fixed, composition, 1 megohm $\pm 10 \%, 0.5$ watt	52609 30652
C37	Capacitor, same as C 13		R7	Resistor, fixed, composition,	34761
C38	Capacitor, fixed, mica, 820 mmf, 500 volts	51932	R8	10 ohms $\pm 10 \%$, 0.5 watt Resistor, same as R2	34761
C39	Capacitor, same as C9		R9	Resistor, fixed, composition,	
C40	Capacitor, same as C13			820 ohms $\pm 5 \%, 0.5$ watt	30158
C41A, C41B	Capacitor, same as C21A, C21B		R10	Resistor, fixed, composition, 47,000 ohms $\pm 5 \%, 1$ watt	71988
C42	Capacitor. fixed, oil-treated, $0.015 \mathrm{mfd} \pm 10 \%, 400$ volts	51930	R11	Resistor, fixed, composition, 56,000 ohms $\pm 5 \%, 1$ watt	17440
C43	Capacitor, same as C23		R12	Resistor, fixed, composition,	
C44	Capacitor, same as C24			15,000 ohms $\pm 10 \%, 1$ watt	70723
C45 C 46	Capacitor, same as C25		R13	Resistor, fixed, composition, 470,000 ohms $\pm 10 \%, 1 / 2$ watt	30648
C47	Capacitor, fixed, oil-treated, $0.02 \mathrm{mfd} \pm 10 \%, 400$ volts	69564	R14	Resistor, fixed, composition, 6800 ohms $\pm 10 \%, 0.5$ watt	14659
C48	Capacitor, same as C23		R15	Resistor, fixed, composition,	
C49	Capacitor, same as C24			470,000 ohms $\pm 10 \%, 1$ watt	72521
C50 C 51	Capacitor, same as $\mathbf{C 2 5}$ Capacitor, same as $\mathbf{C 1}$		R16	Resistor, fixed, composition, 39,000 ohms $\pm 10 \%$, 1 watt	71.084
C52	Capacitor, same as C47		R17	Resistor, same as R6	
C53	Capacitor, same as C23		R18	Resistor, same as R7	
C54	Capacitor, same as C24		R19	Resistor, fixed, composition,	
C55	Capacitor, same as C25			15,000 ohms $\pm 10 \%, 2$ watts	68935
C56	Capacitor, same as Cl_{1}		R20	Resistor, fixed, composition, 1 megohm $\pm 10 \%$, 1 watt	71993
C57 C 58	Capacitor, same as C47		R21	Resistor, same as R19	71993
C58	Capacitor, same as Capacitor, same as C 24		R22	Resistor, fixed, composition,	
C60	Capacitor, same as C25			10,000 ohms $\pm 10 \%$, 1 watt	71914
C61	Capacitor, same as Cl_{1}		R23	Resistor, fixed, composition, 2200 ohms $\pm 10 \%$, 1 watt	71991
C62	Capacitor, same as C13		R24	Resistor, same as R7	71991
C63	Capacitor, same as C9		R25	Resistor, fixed, composition,	
C64*	Capacitor, same as C36 Capacitor, same as C16			2.2 megohms $\pm 10 \%$, 0.5	
C66	Capacitor, same as C9			watt	30649
C67 C68	Capacitor, fixed. mica, 680 mmf $\pm 10 \%, 500$ volts	51919	$\begin{aligned} & \text { R26 } \\ & \text { R27 } \end{aligned}$	Resistor, same as R20 Resistor, fixed, composition, 100 ohms $\pm 10 \%, 1$ watt	
C68 C69	Capacitor, same as C16		$\mathbf{R 2 8}$	100 ohms $\pm 10 \%, 1$ watt Resistor, fixed, composition,	31215
C69, C70	Capacitor, fixed, oil-filled, 0.5 $\mathrm{mfd} \pm 10 \%, 1000$ volts	56122	R28	Resistor, fixed, composition, 470 ohms $\pm 10 \%, 0.5$ watt	30499
$\mathrm{ClO}^{\text {C72 }}$	Capacitor, same as C13		R29	Resistor, fixed, composition, 100,000 ohms $\pm 10 \%$, 1 watt	72635
C72, C73	Capacitor, same as C25		R30	Resistor fixed composition	
$\begin{aligned} & \mathrm{C} 74, \mathrm{C} 75 \\ & \mathrm{C} 76 \end{aligned}$	Capacitor, same as C9 Capacitor, same as C13		R30	Resistor, fixed, composition, 6800 ohms $\pm 10 \%$, 1 watt	38887
C77	Capacitor, fixed, mica, 2700 mmf $\pm 10 \%, 500$ volts	65400	R31	Resistor, fixed, composition, 1.5 megohms $\pm 10 \%, 1$ watt	47967

REPLACEMENT PARTS LIST-Continued

Symbol No.	Description	Stock No.	Symbol No.	Description	Stock No.
R32	Resistor, fixed, composition, 2700 ohms $\pm 5 \%, 0.5$ watt	30730	R87	Resistor, variable, carbon, 100,000 ohms, 2 watts	51924
R33	Resistor, variable, carbon, 5000 ohms, 2 watts	51923	R88	Resistor, fixed, composition, 680,000 ohms $\pm 5 \%$,	51924 52012
R34	Resistor, fixed, composition,		R89	Resistor, same as R51	201
	390,000 ohms $\pm 5 \%$, 1 watt	32725	R90	Resistor, same as R81	
R35	Resistor, fixed, composition,		R91	Resistor, same as R29	
	47,000 ohms $\pm 10 \%$, 1 watt	71988	R92	Resistor, same as R41	
R36	Resistor, same as R20		R93	Resistor, variable, carbon,	
R37	Resistor, same as R29			50,000 ohms, 2 watts	51944
R38	Resistor, fixed, composition, 560 ohms $\pm 10 \%$, 0.5 watt	5164	R94	Resistor, same as R87 Resistor, same as R29	51944
R39	Resistor, same as R6		R96, R97	Resistor, fixed, compositio	
R40	Resistor, same as R19			5.6 megohms $\pm 10 \%$, 1 watt	71026
R41	Resistor, fixed, composition, 270,000 ohms $\pm 10 \%$, 1 watt	19232	R98 R99	Resistor, same as R35,	71026
R42	Resistor, fixed, composition, 2200 ohms $\pm 5 \%, 0.5$ watt	34767	R100	1500 ohms $\pm 10 \%$, 1 watt	72762
R43	Resistor, same as R33		R101	Resistor, same as R25	
R44	Resistor, fixed, composition, 150,000 ohms $\pm 5 \%$, 1 watt	31895	R102	Resistor, same as R28 Resistor, same as R25	
R45	Resistor, same as R25		R104	Resistor, same as R6	
R46	Resistor, same as R29		R105	Resistor, fixed, composition,	
R47	Resistor, fixed, composition, 4700 ohms $\pm 10 \%, 1$ watt	71987	R106	4700 ohms $\pm 10 \%, 0.5$ watt Resistor, same as R35	30494
R48	Resistor, same as R29		R107	Resistor, same as R7	
R49	Resistor, fixed, composition, 100,000 ohms $\pm 10 \%, 0.5$ watt	3252	R108 R109	Resistor, same as R25 Resistor, fixed, composition, 680,000 ohms $\pm 10 \%, 0.5$	
R50	Resistor, same as R38			watt	30562
R51	Resistor, fixed, composition, 5600 ohms $\pm 10 \%$, 1 watt		R110	Resistor, same as R7	
R52	Resistor, same as R30	38886	R111 R112	Resistor, same as R99	
R53	Resistor, same as R6		R113	Resistor, same as R6	
R54	Resistor, fixed, composition, 680 ohms $\pm 10 \%, 0.5$ watt	12262	R114 R115	Resistor, same as R7	
R55	Resistor, same as R20		R116	Resistor, same as R47 Resistor, same as R81	
R56	Resistor, same as R27		R117	Resistor, same as R35	
R57	Resistor, same as R28		R118	Resistor, same as R7	
R58 R59	Resistor, same as R29 Resistor, same as R30		R119	Resistor, fixed, composition,	
R60	Resistor, same as R31			watt megohms $\pm 10 \%$, 0.5	11769
R61	Resistor, fixed, composition, 5600 ohms $\pm 5 \%, 0.5$ watt	30734	R120	Resistor, fixed, composition, 1.2 megohms $\pm 10 \%$, 0.5	
R62 R63	Resistor, same as R33			watt	30162
R63	Resistor, fixed, composition, 180,000 ohms $\pm 5 \%$. 1 watt	12356	R121	Resistor, same as R7	
R64 R65	Resistor, same as R35	12356	R123	Resistor, same as R3me as R30	
R65	Resistor, same as R31		R124	Resistor, same as R51	
R66	Resistor, fixed, composition, 4700 ohms $\pm 5 \%, 0.5$ watt	30494	R125	Resistor, same as R41 Resistor, same as R16	
R67	Resistor, same as R33		R127	Resistor, same as R7	
R68	Resistor, fixed, composition, 56,000 ohms $\pm 5 \%, 2$ watts	28741	R128 R129	Resistor, same as R28	
R69	Resistor, same as R35 watts	28741	R139	Resistor, same as R47 Resistor, same as R20	
R70	Resistor, same as R31		R131	Resistor, fixed, composition,	
R71	Resistor, fixed, composition, 8200 ohms $\pm 5 \%, 0.5$ watt	14250	R132	3.9 megohms $\pm 10 \%$, 1 watt Resistor, same as R7	44046
R72	Resistor, same as R33		R133	Resistor, same as R47	
R73	Resistor, fixed, composition,		R134	Resistor, same as R15	
R74	Resistor, same as R35	38897	R135	Resistor, fixed, composition, 27,000 ohms $\pm 10 \%$, 1 watt	71990
R75	Resistor, same as R31		R136	Resistor, same as R14	
R76	Resistor, fixed, composition, 3900 ohms $\pm 5 \%$. 0.5 watt	30694	R137	Resistor, fixed, composition, 56,000 ohms $\pm 10 \%, 0.5$ watt	
R77 R78	Resistor, same as R33		R138	56,000 ohms $\pm 10 \%, 0.5$ watt Resistor. fixed, composition,	30650
R78 R79	Resistor, same as R11 Resistor, same as R22		R138	560,000 ohms $\pm 5 \%, 1$ watt	32726
R80	Resistor, fixed, composition, 1000 ohms $\pm 10 \%$. 1 watt	71916	R139	Resistor, fixed, composition, 10 megohms $\pm 10 \%, 0.5$ watt	30992
R81	Resistor, fixed, composition, 22.000 ohms $\pm 10 \%, 1$ watt	71989	R140 R141 to R146	Resistor, variable, carbon, 10,000 ohms $\pm 10 \%$	93175
R82	Resistor, same as R51		R141 to R146	Resistor, same as R139	
R83	Resistor, same as R25		R147	Resistor, same as R25	
R84	Resistor, same as R7		S1	Switch, frequency control	51941
R85	Resistor, fixed, composition, 56,000 ohms $\pm 5 \%$, 0.5 watt	30650	S2	Switch, counter indicator Switch, AFC time constant	18720
R86	Resistor, fixed, composition, 2.2 megohms $\pm 10 \%$, 1 watt	38898	S4 T 1	Switch, DPDT Transformer, phase	93263 58835

REPLACEMENT PARTS LIST-Continued

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Description	Stock No.	Symbol No.	Description	Stock No.
T2	Transformer, vertical	51936	T11	Transformer, power	58834
T3	Coil Assembly, 31.5 kc ., oscillator	51937	X1 to X29 $\times 10$	Socket, tube tube	54414 54272 17340
T4	Coil Assembly, 94.5 kc ., oscil-	51938	X 0	Socket, crystal	17340 30075
	lator	51938		Mirror, CRO reflector	51945
T5 to T10	Transformer, horizontal oscillator	51939		Ring, rubber, for mirror assembly	51946

REGULATED POWER SUPPLY

(See IB-36078 for Parts List)

FILTER UNIT					
\ddagger	```Capacitor, dry, electrolytic, 125 mfd -10% +40%, 350 volts Connector, male, 4 contact```	$\begin{aligned} & 18434 \\ & 52107 \end{aligned}$		Resistor, fixed, wire wound, 50 ohms, 25 watts Resistor, fixed, composition, 100,000 ohms $\pm 10 \%$, 1 watt	$\begin{aligned} & 53838 \\ & 72635 \end{aligned}$

SYNCHRONIZING GENERATOR RACK

	Connector, male, 15 contact, connecting cable Connector, female, 15 contact, connecting cable	$\begin{aligned} & 53412 \\ & 51943 \end{aligned}$	J2 J5 J13	Connector, female, 6 contact Connector, female, 2 contact Connector, female, 10 contact Connector, female, 4 contact	$\begin{array}{r} 51595 \\ 4573 \\ 51929 \\ 52108 \end{array}$

[^3]

Figure 9-Pulse Former, Rear View

Figure 11-Pulse Shaper, Front View

Figure 12-Pulse Shaper, Rear View

\qquad
\qquad
\qquad

RADIO CORPORATION OF AMERICA engineering products department camden, n. J.

[^0]: * The Type 580-D Regulated Power Supply is described in IB-36078.

[^1]: * Mounting Plate only, steel
 ** Mounting Plate only, phenolic
 \ddagger Mounting Plate only, phenolic

[^2]: Stock No. 18469

[^3]: * Mounting Plate only, phenolic
 ** Mounting Plate only, steel
 Dwg. No. 85558-3
 \ddagger Mounting Plate only, steel
 Dwg. No. 85559-2
 Dwg. No. 85559-3

