ロBM

Broadcast Equipment

BTF-20E1
FM Transmitter
ES-560602A

KRM

Broadcast Equipment

BTF-20E1
FM Transmitter
ES-560602A

Broadcast Equipment

Instructions

BTF-20E1
 FM Transmitter

ES-560602A

WARRANTY ITEMS

Particular parts and/or equipment covered by warranty are specifically stated as such in the warranty or contract given to the customer at the time of sale. The warranty or contract also stipulates the conditions under which the warranty may be exercised.

To obtain a new replacement for such warranty items, contact your local RCA sales office and please supply Product Identification (including the Original Invoice Number, MI Number, Type Number, Model Number, and Serial Number) and Replacement Part Identification (including Stock Number and Description). Requests for warranty replacements may be unduly delayed if all this information is not supplied.

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have (a) inspected the containers for visible signs of damage and (b) counted the containers and compared with the amount shown on the shipping papers. If a shortage or if evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.

Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Report all shortages and damages to RCA, Communication Systems Division - Camden, New Jersey 08102.

RCA will file all claims for loss and damage on this equipment so long as the inspection report is obtained. Disposition of the damaged item will be furnished by RCA.

FIELD ENGINEERING SERVICE

RCA Field Engineering Service is available at current rates. Requests for field engineering service may be addressed to your RCA Broadcast Field Representative or the RCA Service Company, Incorporated - Broadcast Service Division - Camden, New Jersey 08102. Telephone 609-963-8000.
Page
TECHNICAL SUMMARY 6
Electrical Specifications 6
Power Line Requirements 6
Physical Specifications 6
LIST OF EQUIPMENT. 7
OPTIONAL ACCESSORY EQUIPMENT 8
TUBE COMPLEMENT. 8
INSTALLATION MATERIAL 8
RECOMMENDED TEST EQUIPMENT 8
DESCRIPTION 10
Gencral. 10
Construction. 10
Circuits 10
FM Exciter 10
Driver Stage 10
Power Amplifier 11
Power Circuits 11
Optical Meter-Relay Protection Circuits 11
Remote Control. 14
INSTALLATION 14
General 14
Unpacking 16
Assembly. 16
General. 16
Assembly of 127 Connector Cap 16
Harmonic Filter Installation 17
Power Determining Parts Installation. 17
Blower Installation 19
High Altitude Blower Installation 20
High Voltage Rectifier Installation. 20
Elapsed Time Indicator (Optional) Installation 20
Manometer (Optional) Installation 20
Equipment Wiring 20
General. 20
Equipment Grounding 21
Equipment Connections 21
Remote Control Connections 21
Transformer Primary Taps. 22
Overload Relay Adjustment 22
Blower Contactor 1K15 Overload Relay Adjustment. 23
Low Voltage Circuit Breaker 1S6 Adjustment 23
Driver and PA Tube Installation 23
Control Circuit Check. 23
TUNING. 27
General 27
Exciter Tuning 27
Driver Grid Tuning 27
Driver Tuning. 28
PA Neutralization 29
PA Tuning-Direct Method of Power Measurement. 30
PA Tuning-Indirect Method of Power Measurement 32
Reflectometer Caribration 35
Protection Circuitry Checkout 36
'Carrier-off" Circuitry 36
VSWR Protection Circuitry 36
Overload Resetting 36
OPERATION 37
Starting and Stopping the Transmitter 37
Panel Meter Readings 37
Page
Emergency Operation-AFC Failure 37
MAINTENANCE. 38
General 38
Cleaning. 38
Circuit Breakers and Relays. 38
Tubes 38
Air Filters 39
Silicon Rectifier Testing 39
Control Module. 40
Blower Lubrication 40
Muffin Fan Lubrication. 41
PARTS ORDERING INFORMATION 64
Replacement Parts 64
Emergency Service 64
Return of Electron Tubes. 64
PARTS IDENTIFICATION INFORMATION 65
General 65
Electrical Parts. 65
Mechanical Parts 65
REPLACEMENT PARTS 66
SUGGESTED STATION SPARES (BTF-20E1). 76
TUBE TYPE 7203/4CX250B SPECIFICATIONS 96
TUBE TYPE 8281/4CX15, 000A SPECIFICATIONS. 104
RCA Technical Bulletin TB-334-3 110
Manufacturer's Technical Bulletins. 112
LIST OF ILLUSTRATIONS
Figure Title Page
1 BTF-20E1 20kW FM Transmitter 9
BTF-20E1 Simplified Block Diagram 12
BTF-20E1 Typical Floor Plan 15
$1 Z 7$ Connector Cap Assembly. 16
Blower Motor Installation. 19
BTF-20E1 Controls and Indicators 25
Typical Settings, PA Tuning Controls 31
Efficiency Curve. 33
VSWR Nomograph. 34
PA Screen Voltage/Power Output Curve 35
Rectifier Test Circuit 39
Transmitter, Electrical Parts, Front View. 42
Transmitter, Mechanical Parts, Front View. 43
Transmitter, Rear View 44
Transmitter, Left Rear Oblique View 45
Transmitter, Right Rear Oblique View 46
Control Panel, Rear View 47
RF Unit, Front View 48
RF Box Showing 1C113 Mounting Assembly 49
Driver Shelf and 1XV102 Shelf, Front View 50
Driver Shelf, Left Side 51
Driver Shelf, Right Side 51
1 XV102 Socket Assembly, Top View 52
1 XV102 Socket Assembly, Bottom View 53 54
Figure Title Page
1L113 Semi-Fixed and Sliding Contacts. 55
1V102 Plate Contacts and Plate Blocking Capacitors 55
1L105 and 1L106 Counter Assemblies 56
Low Voltage Rectifier Assembly. 56
1 Z6 Control Module, Schematic Diagram 57
Control Module, Waveforms 58
Control Module 58
Control Module, Electrical Parts 59
1M5 and 1M7 Panel Meters 60
High Voltage Power Supply, Front View 61
High Voltage Power Supply, Top View. 62
High Voltage Power Supply, Rectifier Stack. 63
BTF-20E1, Schematic Diagram 77
BTF-20E1, Wiring Diagram 79
Power Supply, Wiring Diagram. 81
Control Panel, Wiring Diagram 83
RF Box, Wiring Diagram 85
1XV 102 A seembly Diagram 87
High Voltage Rectifier Assembly 89
High Voltage Plate Transformer Terminal s. 90
Power Determining Components, Installation 91
Pushbutton Switch Assembly 93
Blower Vane Setting. 94
48
Insulator Data 95
LIST OF TABLESTableTitlePage
1 Transmitter/Power Supply Interconnections 21
Remote Control Connections 22
3 Transformer Primary Taps. 22
22
4 Overload Relay Seťings
BTF-20E1 Frequency Determining Parts 28
Typical Meter Readings For Power Output-20KW. 37
Recommended Maintenance Schedule 38
7
Control Module 1 Z6 Servicing Chart 40
9 Component Prefix Numbers 65
10 Component Symbol Designations 65

TECHNICAL SUMMARY

ELECTRICAL SPECIFICATIONS
Type of Emission .
Frequency Range . 87.5 to 108 MHz
Power Output . 7.5 to 20 kW
Output Impedance (3-1/8 in. dia. ElA unflanged line)
Frequency Deviation for 100\% Modulation . $\pm 75 \mathrm{kHz}$
Modulation Capability
Carrier Frequency Stability . $\pm 1000 \mathrm{~Hz}$ max.
Audio Input Impedance . $600 / 150$ ohms ${ }^{1}$
Audio Input Level (100\% modulation) . $+10 \pm 2 \mathrm{dBm}{ }^{2}$
Audio Frequency Response ($50-15,000 \mathrm{~Hz}$)
Pre-Emphasis Network Time Constant . 75 or 50 usec, as desired
Harmonic Distortion (50-15,000 Hz) . $0.0 .5 \%$ or less ${ }^{4}$
FM Noise Level (referred to 100\% FM modulation) . 65 dB max.
Main-to-Subchannel Crosstalk
Sub-to-Main Channel Crosstalk . - 60 dB ${ }^{6}$
POWER LINE REQUIREMENTS
Transmitter:
Line . 240/208 volt, 3 phase, 50/60 Hz Combined Line Voltage Variation and Regulation
Power Factor (approx.) . 90%
FM Exciter:
Line . 117V/208V/240V $\pm 5 \%$ 50/60 Hz
Power Consumption including BTS-1B Stereo Generator an BTX-1B SCA Generator .
PHYSICAL SPECIFICATIONS
Maximum Altitude
Standard Blower. 7500
Optional Blower. 11,000 feet
Transmitter:
Width, inches (cm)
Height, inches (cm)
Depth, inches (cm)

[^0]
TECHNICAL SUMMARY (Continued)

Power Supply:	
Width, inches (cm)	. 32 (81.3)
Height, inches (cm)	49 (124.5)
Depth, inches (cm)	. 23 (58.4)
Weight:	
Transmitter (approx.), pounds (Kg).	1425 (646.4)
Power Supply (approx.), pounds (Kg)	1025 (464.9)

LIST OF EQUIPMENT

BTF-20E1 20kW FM TRANSMITTER ES-560602A

[^1]OPTIONAL ACCESSORY EQUIPMENT

Description	Reference
Set of Spare Semiconductors for BTE-15A FM Exciter Module	MI-560718
Spare Crystal and Crystal Oven for BTE-15A Exciter *(specify carrier frequency)	MI-560717.*
Spare Crystal Oven only, for BTE-15A Exciter	M1-560717A
BTE-15A FM Exciter Module	M1-560712
BTS-1B Stereo Generator	MI-560713
BTX-1B Subcarrier Generator (Specify SCA Frequency)	MI-560714
5-kHz Filter (required when transmitiing stereo and SCA; one filter normally supplied, installed, in each SCA generator	M1-560721
Type BTR-15B Remote Control	MI-561187/
Type BTR-30A Remote Control	MI-561441/
System	561442
Digital Automatic Data Printer (Logging Equipment)	ES-561154
Type BW-75A FM Monitor	MI-560735
Type BW-85A FM Stereo Monitor	MI-560740
Type BW-95A SCA and	MI-560745
BW-100 RF Amplifier Modulation Monitor	MI-560738
AM Noise Reduction Kit (for low power operation)	MI-560307-31
Manometer Kit	MI-560307-36
Elapsed Time Indicator	
60 Hz Line Frequency	MI-561018-2
50 Hz Line Frequency	MI-561018-4
Adaptor Flange, adapts	MI-27988-4C
MI-27791K transmission line to MI-19089 transmission line	
Tower Lighting Monitoring and	MI-27519
Control Unit (for remote control)	
Tower Lighting Monitoring Unit	MI-27544
AC Voltage Pickup (for remote control)	MI-27516

TUBE COMPLEMENT

Symbol	Type	Function
1V101	$7203 / 4 \mathrm{C} \times 250 \mathrm{~B}$	Driver
1V103	$7203 / 4 \mathrm{C} \times 250 \mathrm{~B}$	Driver
1V102	$4 \mathrm{CX15,000A}$	Power Amplifier

NOTE: Refer to BTE-15A FM Exciter Instruction Book, IB-8027524-1 for the exciter semi-conductor complement.

INSTALLATION MATERIAL

MI-560515

Item	Oty	Description	Drawing No.
1	2	Arm Assembly (Tuning)	887449-501
2	2	Trimmer Adjusting Tool	86183-502
3	1	Lamp Changing Tool	8535851-1
4	1 set	Wire \#14 AWG Black 500 ft .	990820-99
5	1 set	Wire 2/0 Black 15 ft .	2010751-9
6	1 set	Wire \#14 AWG 15 kV White 50 ft .	2010853-141
7	1 set	Strap, Copper 1-1/2 in. Wide, 30 ft . Long	8812985-6
8	1	Connector Coaxial	1510020-103

RECOMMENDED TEST EQUIPMENT

Figure 1. BTF-20E1 FM Transmitter

DESCRIPTION

GENERAL.

The RCA Type BTF-20E1 20 KW FM Broadcast Transmitter is designed for high-power operation in the standard FM band, 87.5 to 108 MHz , and is specifically engineered for multiplex service transmission. Except for the high-voltage power supply, the transmitter is housed in a single, modern-styled cabinet.

The BTF-20E1 transmitter employs a compact, self-contained exciter in a circuit that uses capacitive diodes as modulators of an oscillator to produce direct FM. An automatic frequency control (AFC) circuit maintains oscillator frequency to close tolerance. The exciter is well suited for multiplex and stereo as specified by the FCC by virtue of its wide frequency response and extreme stability.

A manometer, which indicates air filter efficiency and warns of reduced cooling-air supply to the power tubes, is available as an optional item.

CONSTRUCTION

The BTF-20E1 transmitter is housed in a single, double-door cabinet, in a two-tone blue textured vinyl finish, set off with aluminum epoxy trim. Maximum accessibility is afforded by swing-doors on the front and rear of the cabinet. All operating controls and meters used for rapid check of transmitter functions are located on a panel above the front doors. A separate unitized high-voltage power supply may be located anywhere in the FM station.

The BTE-15A FM Exciter (refer to IB-8027524-1) is mounted on a single chassis and includes a modular stereo generator (when specified) and either one or two SCA generators (when specified). The exciter is all solid-state and includes two multimeters for convenience in operating and servicing. The stereo generator module, the SCA generator modules and RF exciter module are easily removable for servicing or adjustment.

The pushbutton controls located on the panel just above the front doors of the transmitter include: TRANSMITTER ON/OFF, PLATE ON/OFF, OVERLOAD RESET, and POWER RAISE/LOWER. A low voltage circuit breaker, filament circuit breaker, and control circuit breaker are located behind the left-hand door. The main and low-power circuit breakers are located on the front of the separate high-voltage power supply cabinet. Personnel are protected by fully interlocked rear doors, in addition to an interlocked door at the front of the rf unit (which contains the driver and PA stages).

Six front panel meters are provided. Two of the meters indicate PA plate voltage and plate current. A
third meter reads ac line voltage and supplies a logging indication of driver and PA filament voltages. The multimeter, 1M2, reads grid current, screen current, and screen voltage for both the driver and the PA stage, and cathode current for the driver stage. Reflectometer meter 1M5 reads transmitter power output in percent. 1M5 is actually a meter-relay which activates the "carrier-off" protection circuits incorporated in this transmitter. Reflected power meter 1M7 incorporates a dual scale so that any reflected energy in the output transmission line may be evaluated in terms of VSWR or in terms of percent of incident power. 1M7 is also an optic meter relay.

Cooling air is supplied to the driver and PA stages by means of a blower mounted below the rf unit. Heavy acoustic insulation reduces blower noise to a minimum. A manometer (available as an optional item) indicates the efficiency of the filter at the inlet to the blower. This device senses the relative air pressure at the fan side of the filter in inches of water. Properly monitored, the manometer indicates when filter clogging has reduced the volume of cooling air supplied to the power tubes.

CIRCUITS

FM Exciter

The BTE-15A FM Exciter system consists of a main frame (chassis), an rf exciter module, a stereo generator module (when used), and one or two SCA generator modules (when used). All circuitry is solidstate.

The frequency modulated oscillator operates at carrier frequency. A buffer stage and a three stage rf power amplifier raises the power level to 15 watts.

The carrier center frequency is precisely controlled through the use of a phase locked AFC circuit which employs integrated circuit frequency dividers. No tuned circuits or adjustments are required with the circuitry used.

An "off-frequency" detector circuit operates a relay which removes transmitter high voltage if the AFC circuit should lose lock. In this event, DOOR INTERLOCKS tally-light 1DS5 will also be extinguished.

Refer to BTE-15A FM Exciter Instruction Book, IB-8027524-1 for detailed information.

Driver Stage

A block diagram of the BTF-20E1 is shown in figure 2. Two simplified, single-ended amplifiers (operating class " C ") follow the exciter. The driver stage
consists of two ceramic $7203 / 4 C \times 250 B$ tetrodes operated in parallel, while the final power amplifier is a type $4 \mathrm{CX} 15,000 \mathrm{~A}$ tube, which supplies up to 20 kW of power to the antenna feed line. The driver stage is tuned by pi-network input and output circuits. Variable vacuum capacitors are used to tune the rf tank circuits.

Power Amplifier

The power amplifier also uses pi-network circuitry. However, the tuning of this stage is accomplished by variable inductors operating at ground potential. The output tube is designed for very high power gain with little drive. The power output is controlled by means of a motor-driven variable transformer connected in the primary of the low-voltage plate power supply for the driver amplifier. The same variable transformer controls the driver and PA screen voltages. A separate grid bias supply, which uses semiconductor rectifiers, provides fixed bias for both the PA and driver stage. An air pressure interlock (1S21) automatically removes power from filament and high voltage circuits when cooling air pressure drops below a preset value (normally set at factory). The pressure at which power is removed may be varied by means of an adjusting screw provided on the air interlock switch.

Power Circuits

Power circuits are protected by magneticallytripped circuit breakers in addition to overload relays. An interlocked system prevents turn-on of plate power until all filaments have heated and the exciter has reached a proper operating condition. In addition, a latching relay automatically re-applies power to the transmitter once before locking-out in the event of brief overloads or power interruptions. The overload relays are reset by illuminated pushbutton switches on the front panel. Separate tally-light indicators are provided for overloads in the driver, power amplifier, low-voltage rectifier, carrier-off, and transmission line VSWR monitoring/protective circuits.

DOOR INTERLOCKS tally-light 1DS5 will light when all interlocks are closed and the transmitter center frequency is within limits.

Rheostat 1R38 makes possible adjustment of driver screen voltage from the front of the transmitter separately (that is, without simultaneous adjustment of other amplifier tube electrode voltages).

Resistors 1R106 and 1R107, together with associated lengths of tubing, form broadly tuned dipoles which dampen VHF resonances in the PA tank circuit.

DC overload relays $1 \mathrm{~K} 1,1 \mathrm{~K} 2$ and 1 K 4 act to remove transmitter high voltage and screen voltage in the event of an over-current condition in the high voltage supply, the low voltage supply, or the rf driver stage.

Relays $1 \mathrm{~K} 5,1 \mathrm{~K} 6,1 \mathrm{~K} 7,1 \mathrm{~K} 18$ and 1 K 19 act as holding relays and maintain tally-lights illuminated after the cause of an overload is removed so that remedial action may be taken, if required. Taily-lights are extinguished upon operation of the OVERLOAD RESET pushbutton 1 S 17.

Circuit breakers 2S1, 2S2, 1S5, 1S6 and 1S18 provide protection against ac overload conditions.

Overcurrent protection of the blower motor is supplied by an overcurrent relay which is supplied as part of blower contactor 1 K 15 . The trip current value is adjustable. In addition, a thermal overload relay (1K22) is used which will de-energize the transmitter low voltage supply in event of medium impedance, but sustained, overloads. Circuit breaker 1S6 affords fast acting protection against short circuit conditions in low voltage supply circuitry.

Protective circuitry is also provided which will remove transmitter plate and screen voltages in the event that:

1. Transmission line VSWR exceeds a preset value, which can be varied by the operator, or
2. Power output drops below a preset percentage of nominal, the trip point also selected by the operator.

This affords positive protection against transmitter damage which would be caused by arcing in the transmitter rf circuits or output transmission line, or by a defective antenna. The protection circuit must be disabled temporarily in order to calibrate the REFLECTOMETER and reflected power meters.

CAUTION

After calibration or tune-up is carried out, it is mandatory that the reflectometer switch 1S3 be set to the NORMAL position and left at this setting permanently. In any other position of 1S3 the protection circuit is disabled and the transmitter may be subjected to serious damage.

A directional coupler, designated 128 , is used in the coaxial line between the exciter unit and the driver stage grid circuit. This directional coupler, used with exciter multimeter M1, makes possible monitoring of reflected power from the driver stage grid circuit. The driver grid circuit may then be adjusted for lowest possible VSWR in the interstage coaxial line.

Optical Meter-Relay Protection Circuits

The "carrier-off" and output transmission line VSWR protection circuitry utilizes two optical meter-

relays (1M5 and 1M7) in conjunction with a special dual control module (1Z6). The meter relays do not employ contacts. A major advantage of the optical relay is its increased reliability due to the elimination of meter (relay) contacts and the use of solid state electronics in the control module. The optical meter-relay permits positive control of transmitter overload circuitry with very small input energy levels to the meter movement, while providing visual indication of the magnitude of the input signal and easy adjustment of the set point value. Each instrument consists of a precision D'Arsonval meter mechanism with a vane or shutter mounted on the moving element. At set point, the vane shuts off the light (from an internal lamp) to a photo-conductive cell. The resulting change in cell resistance is utilized in external control circuits (partly situated in control module 1Z6, partly in the transmitter control circuits proper) to achieve the desired control action.

The circuitry is fail-safe, i.e., failure of the internal lamp will also shut off the light to the photo-conductive cell and ultimately remove transmitter power. However, lamp failure should not be a problem since the lamps used have a conservatively rated life exceeding 10,000 hours.

The operation of the meter-relay protection circuitry may be explained as follows (refer to figure 38, BTF-20E 1 Schematic Diagram and figure 30, 126 Control Module Schematic Diagram). If transmitter power output falls below the set point value, or if output transmission line VSWR rises above the set point value, the optical meter-relay involved activates and operates a relay in control module 1Z6. Two relays are incorporated in the control module - one is controlled by the REFLECTOMETER 1M5, the other by reflected power meter 1M7. Each control module relay has two sets of contacts - one set operates the transmitter overload circuitry, removing transmitter plate and screen voltages - while the other energizes a status light so that the cause of the overload is made apparent. A holding relay (1 K 18 or 1 K 19) keeps the overload status light energized until overload reset pushbutton switch 1S17 is depressed.

The module is actuated by a resistance change in the "photo-resistor" arm of an ac bridge within the meter-relay circuitry. Each meter-relay contains a photocell. When light is cut off from the photocell (by a vane attached to the meter movement) at "set-point", the photocell resistance increases sharply. The bridge output phase then reverses, causing the anode and gate voltages of SCR 1 (or SCR2) to rise and fall in phase. This "turns on'" the SCR and energizes the control relay in series with the SCR. The control relay contacts are connected to turn off the transmitter high voltage.

Two such circuits are employed in each control module. The module also supplies regulated power for the optical meter-relay lamps.

If SINGLE-MULTIPLE switch 1 S 13 is set to the

MULTIPLE position, the transmitter control circuitry will automatically restore transmitter plate and screen voltages. If the overload condition persists, plate and screen voltages will again be removed. No further recycling will occur until manual reset is carried out by operation of PLATE ON switch 1S9 (or until remotely reset in remotely controlled stations). In the SINGLE position, no recycling will occur. In this case, overload circuits may be reset using either PLATE ON switch 1S9 or OVERLOAD RESET switch 1 S17.

Time delay relay 1 K 20 , used in conjunction with auxiliary relay 1 K 21 , disables the added protective circuitry for approximately seven seconds following application of transmitter high voltage. This allows transmitter power output to stabilize at the operating value and prevents spurious operation of the protective circuitry as a result of starting transients.

It will be noted that control voltage (115 volts ac) is fed to control module terminal $126-6$ through a normally closed contact of the control module (terminals 126-16 and 126-15). This configuration is used to prevent spurious tripping of the "carrier off" protective circuitry each time the transmitter high voltage is switched off.

CAUTION

It is recommended that the protection circuitry (optical meter-relays) be checked weekly to be certain the protection is operative. Vary the set point adjustment on each optical meter-relay to induce an overload; then reset to normal setting.

Operation of the optical meter-relay protective circuitry is controlled by REFLECTOMETER switch 1S3. This switch functions as follows:

1 S3 set to the NORMAL position:
REFLECTOMETER: meter 1M5 indicates transmitter power output in percent. Reflected power meter 1M7 indicates reflected transmission line power in percent of nominal (forward) transmitter power output. A direct-reading VSWR scale is also included. The transmitter "carrier-off" and VSWR protective circuits are effective in this position.

This is the normal operating position.

1S3 set to the DISABLE position:
Conditions are the same as described for the NORMAL position, except that the "carrier-off" and VSWR protective circuitry is disabled in this position. This position is used for transmitter tuning and adjustment.

1S3 set to the VSWR CAL position:
REFLECTOMETER meter 1M5 is switched out of the circuit and reads zero. Reflected power meter 1M7 is connected through VSWR calibration control 1R10 to the directional coupler which responds to incident power. "Carrier-off" and VSWR protective circuitry is disabled in this position. This position is used for calibration of the reflected power meter.

CAUTION

REFLECTOMETER switch 1 S3 must be set to the NORMAL position at all times except during transmitter tuning and adjustments. If this precaution is not observed, damage to the transmitter may occur.

Remote metering connections are provided at terminal board 1TB1, with remote power output connection to be made at 1TB1-11 and 1TB1-12. Directional coupler $1 Z 7$ samples output transmission line incident energy and supplies a dc output for remote power monitoring purposes.

The BTF-20E1 is normally supplied with a "stubtype" harmonic filter, MI-561509. This filter consists of a section of 3-1/8 inch diameter coaxial transmission line with four coaxial transmission line stubs which act as tuned traps at harmonic frequencies. This filter is
supplied as standard equipment to keep spurious emissions to a minimum. This unit is pre-tuned for operation at one specified carrier frequency.

Alternatively, the BTF-20E 1 can be supplied with a 6-1/8 inch diameter harmonic filter. This filter consists of a series of transmission line elements with a uniform outer diameter conductor, a stepped inner conductor, and a shunt stub. The conductors are fabricated of a high-grade copper alloy. Attenuation of all harmonic radiation above channel limits is accomplished in an "M-derived" section, and a series of "constant-K" T -sections. This design provides a broad passband with a sharp high-frequency cut-off and excellent attenuation of frequencies above the passband. Two versions of the alternate filter are available. One, designated as MI-561506, is not pressurized. The other, MI-561507, is pressurized to allow mounting beyond the gas stop.

Remote Control

Remote control provisions are included in the transmitter and terminals are provided for use with remote control units such as the type BTR-15B (or BTR-30A) and ES-561154 Automatic Logging Equipment. Additional terminals are provided for remote control of TRANSMITTER ON, TRANSMITTER OFF, PLATE ON, PLATE OFF, POWER RAISE, POWER LOWER, and OVERLOAD RESET functions. Remote metering connections for final amplifier plate current, plate voltage, and power output are also provided.

INSTALLATION

GENERAL

Basic steps in the installation of the BTF-20E 1 transmitter consist of planning the equipment layout and making provisions for transmitter room power and light, transmission line runs and connections to the equipment. The units can then be unpacked, assembled and wired as specified in these instructions. Space for. items not supplied, such as auxiliary input equipment, or line dehydrating units, should not be overlooked in the planning. Before locating the transmitter, reference should be made to the instruction books supplied with these equipments.

NOTE: The instructions contained in this book are not intended to supersede applicable local codes. On points where conflict is evident, the local code should be followed.

A harmonic filter is supplied with the BTF-20E 1 transmitter, and is designed to effectively attenuate harmonic radiations from FM transmitters. Normally an unpressurized filter is supplied; however a pressurized filter is available. The filter is constructed of coaxial
transmission lines and is the reflective type, i.e., the rejected energy is not absorbed. The filter is inserted in the transmission line at the top of the transmitter.

In selecting a location for the transmitter, care should be taken to allow sufficient space for the filter. Space requirements for each type of harmonic filter are shown in figure 3, BTF-20E1 Typical Floor Plan.

The room in which the transmitter is installed should be well ventilated and provided with an abundant supply of clean, dry air. The maximum ambient temperature for proper operation is given in the Technical Summary. If an air-exhaust hood and duct arrangement is to be used with the transmitter, it should be designed and assembled so that minimum back pressure is developed. An exhaust fan with a minimum capacity of 5000 CFM should be used in the exhaust system. A transmitter room lay-out can be prepared by reference to the floor plan diagram, figure 3 , which gives the overall dimensions of the equipment. A minimum clearance of 24 inches for the opening of doors is required at the front of the transmitter, and a similar space should be provided at the rear for access to

transmitter components and circuits. Floor ducts can be installed for power wiring and remote control interconnection (if desired), or conduit may be run overhead to the transmitter wire duct at the top of the cabinet. If wiring is to be placed in floor ducts, they should be laid out so that cables can leave the duct and enter notches provided in the side panels. Notches are provided at both the top and bottom of the side panels for flexibility.

UNPACKING

An understanding of the shipping system will be of assistance in unpacking the equipment and locating items. Each RCA shipment is accompanied by a shipping invoice which lists the complete contents of the shipment by "Master Item" or "MI" numbers. This shipping invoice is usually attached to one of the cartons, appropriately marked. Each master item (MI) containing two or more items normally contains a packing list (MI sheet).

The complete equipment for the BTF-20E1 FM Transmitter is listed on ES-560602A which references the major items of the shipment and their MI number.

The equipment should be carefully unpacked and inspected to make certain that no damage has been incurred during shipment. Any damage or shortages should be reported immediately to RCA and to the transportation company so that lost or damaged materia! can be recovered. Tubes should not be unpacked until required.

ASSEMBLY

General

The assembly procedure which follows is intended for use when the transmitter is assembled in the field.

On transmitters which have been factory-tuned, some of the procedures described will have been previously carried out. In either case, it is recommended that the assembly procedure listed be followed, as it affords a convenient assembly check list.

Reference should be made to the illustrations which will aid in the assembly of the transmitter and in the installation of the items removed for shipping: 1L3, high-voltage filter reactor; 127, directional coupler for remote power monitoring; one coupling, MI-27791 K-4A (used to mount 127 in output transmission line); one transmission line elbow with monitor assembly and two adjustable clamps attached; and a length of shielded jacketed wire, used to connect the dc output of 127 to transmitter circuitry.

Note that directional coupler 127 is not provided with pressurized fittings. If a pressurized harmonic filter is used, 127 must be installed in the line between the transmitter and harmonic filter. During installation of 127, it will be necessary to assemble the connector cap assembly (see figure 4) and install the dc output lead, supplied as part of Power Determining Components, MI-560510A. The dc output lead is then connected at terminal 1TB1-11 (located at the top of the basic transmitter rack, MI-560507A), with the braid grounded.

Assembly of 127 Connector Cap

The cap assembly supplied with the coupler consists of a connector, bushing, resistor and two lengths of tu'bing. These parts must be attached to the shielded dc indicator lead as illustrated in figure 4. The following procedure is recommended when assembling the connector cap.

1. Strip the shielded dc indicator lead as shown in figure 4.

Figure 4. 127 Connector Cap Assembly
2. Trim the resistor leads to the dimensions given.
3. Slide the longer section of tubing and bushing onto the shielded dc indicator lead.
4. Loop, crimp and solder the resistor to the center conductor of the shielded cable.
5. Position the shorter section of tubing over the resistor and solder the connection.
6. Solder the remaining resistor lead to the connector assembly terminal.
7. Seat the bushing in the connector body and tighten the set screw.
8. Solder the shielding (outer conductor) of the indicator lead to the bushing through the holes in the bushing.
9. Position the rubber tubing over the end of the bushing.

The high-voltage power supply can be located in any convenient place in the station, preferably reasonably close to the incoming power line. This will reduce the amount of high current wiring that will be needed. After a location for the power supply has been chosen, place the high-voltage plate transformer 3T1 in this position and fasten it to the floor. The power supply cabinet is then moved into position over the transformer. This is easily done by removing the lower front access panel and sliding the cabinet into place over the transformer. Ensure that the cabinet is centered over the transformer and then fasten the cabinet securely to the floor. Adequate clearance mist be provided between the plate transformer and power supply cabinet (a safe distance is $21 / 2$ inches at the closest point).

HARMONIC FILTER INSTALLATION

Install the harmonic filter, as determined by the building layout (a horizontal mounting position is recommended). The filter should be located in a position which permits a reasonable amount of ventilation. Under no circumstances should an unpressurized filter be located out of doors where "breathing" of the unit, due to temperature changes, may lead to condensation.

The pressurized alternate harmonic filter, MI561507, makes possible filter mounting outdoors or indoors beyond the gas stop.

When installing the harmonic filter, keep in mind the clearances necessary for the various size transmission line inner and outer conductors. A clearance of $1 / 8$ inch must be allowed for each joint in all outer conductors. Inner conductors of 3-1/8 inch lines require a clearance of $3 / 16$ inch at each joint, while inner conductors of 1-5/8 inch lines require a clearance of $1 / 8$ inch at each joint. Ascertain that the harmonic filter is adequately
supported from the ceiling to avoid excessive strain on the output line. Once installed, the harmonic filter is ready for operation since it requires no tuning or adjustment.

CAUTION

Use only 50 ohm components. If the use of 51.5 ohm components is unavoidable, use inner conductor adapter for 3-1/8 inch 50 ohm to 51.5 ohm as follows:

MI-27988-4A couples inner conductor of 50 ohm 3-1/8" MI27791 K to inner conductor of 51.5 ohm 3-1/8" MI-19113C steatite transmission line.

MI-27988-4B couples inner conductor of 50 ohm 3-1/8" MI27791 K to inner conductor of 51.5 ohm 3-1/8" MI-19313 tefIon transmission line.

Inner Conductor	50 Ohm MI-27791K	51.5 Ohm MI-19113C Steatite	51.5 Ohm MI-19313 Teflon
OD	$1.315^{\prime \prime}$	$1.200^{\prime \prime}$	$1.282^{\prime \prime}$
10	$1.231^{\prime \prime}$	$1.136^{\prime \prime}$	$1.231^{\prime \prime}$

POWER DETERMINING PARTS INSTALLATION

Power determining parts for the BTF-20E 1 transmitter are supplied as MI-560510A. These items are normally installed during factory test procedures. The following items would then be packed separately for shipment:

MI-560510A Item	Quantity	Description
3	1	HV Reactor 1L3
17	1	Miter Elbow
18	2	Transmission Line Coupling 19
20	1	Monitor Assembly
22	2	Hose Clamps
	1	Directional
Coupler 1Z7		

On factory-tested transmitters, the installation is therefore completed by re-installing the items listed, and installing the interconnecting cable (MI-560510A item 23) to directional coupler 127 as previously described. Since MI-560510A items 17, 18, 19, 20, and 22 are normally shipped assembled together, the complete assembly is easily mounted to the transmitter output line, at the top of the transmitter rack.

On transmitters which are being installed in the field, the following installation procedure should be followed. For added information, refer to Power Determining Components Installation Drawing, figure 46, and the power determining parts packing list (supplied as part of MI-560510A). Unless noted otherwise, the item
numbers listed in the following power determining parts installation procedure refer to items listed on MI-560510A.

1. Install high-voltage filter capacitors 1C7 and 1 C 8 at location shown. These capacitors are supplied as item 1. Use .375-16 hardware supplied, part of item 16. Refer also to figure 15.
2. Install meter bypass capacitor 1 C 10 (item 2) at the terminals of plate ammeter 1 M 4 (item 4). Mount 1M4 in meter bezel (item 21) and install this assembly in the meter panel, near top of transmitter rack. Connect meter wiring at rear of 1 M 4 . Refer to figure 39 for wiring information.
3. Install high voltage reactor $1 \mathrm{L3}$ (item 3) at location shown in figure 46. Position as shown in figure 15. Connect high voltage leads to 1 L 3 , following wiring diagram, figure 39. Do not interchange high voltage wires 233 and 234.
4. Install relay shunt resistor 1R24 (item 5) on transmitter side panel as shown in figure 15 and figure 46. Use hardware provided (items 28G, 28H, 28I, 28J). Solder leads to 1R24, referring to figure 39 for 1R24 connection information.
5. Mount PA filament transformer 1T2, using hardware supplied (items 28B, 28C, 28K), at the location designated. See figure 14. Make connections from the secondary of 1 T 2 to feed-through capacitors 1C115 and 1C116, using filament connector cables provided (items 9 and 10). Make primary connections to 1T2, utilizing wires from existing transmitter wire harness. Refer to figure 39 for 1T2 connection information.
6. Mount PA plate blocking capacitor 1C113 (item 7) at the location designated. See figure 18. Use $10-32 \times .25$ inch long brass screws supplied (item 28L) and 10-32 lockwashers (item 281). Orient 1C113 as required to connect to rf choke 1 L 107 . Use the .25 inch long brass screws to secure 1 C 113 to the plastic mounting ring below it. Do not use metal screws to mount the plastic ring to the plastic mounting shelf. Refer to figure 19. Before tightening any of the 1C113 mounting hardware, install the 4CX15000A PA tube, seating securely (see page 23). Tighten all 1C113 mounting hardware. Remove PA tube.
7. Install the reflectometer (directional coupler) 125 (item 8) in the output transmission line above the transmitter rf unit. Use transmission line coupling supplied with the transmitter rack. Each transmission line coupling consists of:

> 1 outer sleeve
> 1 inner conductor connector 2 hose clamps

Install the two dc output connectors (125-P1 and $125-\mathrm{P} 2$) at the mating jacks on 125 . These connectors
are connected to wires 241 and 245 (see figure 39). Check that a diode is present in each jack on 125.

Secure 125 in place, using a hose clamp (item 20) at the top of 125 .
8. Install plate contactor 2 K 1 (item 26) on contactor mounting plate provided in power supply, MI-560342-6. This mounting plate is situated behind the power supply front panel and has mounting holes for either an Allen-Bradley or Westinghouse contactor. Use mounting hardware supplied (items 28G, 28H, 28I, 28J). Mounting holes for the Allen-Bradley contactor are identified by the stencilled letters A-B on the contactor mounting plate while mounting holes for the Westinghouse contactor are keyed by the letter W.
9. Install circuit breaker 2S1 (item 27) adjacent to 2K1 in the power supply, MI-560342-6. Use two . 250 (1/4)-20 $\times 5.0$ inch long screws (items 28A), two flat washers (item 28B), two lock washers (item 28C), and two hex nuts (item 28D) at the lower two 2S 1 mounting holes. At the upper two mounting holes for 2 S 1 , install spacer plate (item 29) between 2S 1 and the power supply cabinet. Use two $.250(1 / 4)-20 \times 4.0$ inch long screws (items 28E) and special nuts (item 28F) at the upper two 2 S 1 mounting holes. Avoid over-tightening 2S 1 mounting hardware to prevent damage to the plastic breaker housing. Install pressure type terminals supplied (item 30) at the three top terminals of 2 S 1 . These are used to connect to the three-phase power source.
10. Using the large power cable provided (size 2/0 black; item 11), install jumper wires from the bottom terminals of 2S1 to the top terminals of 2 K 1 . Refer to the Power Supply Wiring Diagram, figure 40 for wiring destinations. Strip the insulation from each end of the three jumpers, to fit the pressure type connectors on 2 S 1 and 2 K 1.
11. Install grounds at high voltage filter capacitor terminals 1C7-2 and 1C8-1, using 0.128 diameter bare (tinned) copper wire (item 12) and terminals (items 13 and 14) as required. Also, connect a jumper between $1 \mathrm{C}-1$ and 1C8-2, using wire (item 12) and terminals (item 13) required. Refer to figure 39.
12. Remove the filler plate supplied mounted to the driver shelf immediately below driver socket 1XV101. Retain plate mounting hardware. Install the 1XV103 socket assembly (item 15), situated as shown in figure 21 and figure 42 . Use the $4-40 \times .38$ long screws and 4-40 lockwashers formerly used to secure the filler plate in place. Install suppressor network 12102 (item 24) between the center terminals (the control grid) of 1XV103 and the bottom terminal (insulator side) of capacitor 1C102.

Connections between 1 XV101 and 1 XV103 are made by means of three jumper wires which are supplied connected to the 1 XV103 socket assembly. Connect
these three wires (wires no. 57, 58, and 59) at socket 1XV101, referring to wiring diagram figure 42.

Note that the socket assembly (item 15) includes a clamp assembly used for connection to the anode of driver tube 1V103. Refer to figure 22. Mount 1 V103 in socket 1 XV103 and mount the clamp assembly loosely on the anode of 1 V 103 . Now install plate strap (item 25) from the clamp assembly to the junction between 1C111 and 1L103.
13. The special miter elbow (item 17) has a hole, provided for use with monitor assembly (item 19). Position the monitor assembly over the hole in the side of the elbow so that the rf pickup coil enters the hole without touching the sides. Secure in place, using two hose clamps (item 20).

NOTE: The rf pickup coil may be positioned for best signal pickup by removing the four screws which hold the coaxial connector in place, then rotating it in either direction for maximum pickup (consistent with alignment of mounting holes). If necessary, the pickup coil may be altered by removing or adding turns to obtain the required signal.

Mount the elbow, with the rf monitor assembly attached, at the transmitter output, using a transmission line coupling (item 18). The elbow is normally mounted with the long leg vertical.

If remote operation is to be used, install directional coupler 127 (item 22) in accordance with figure 3, using a transmission line coupling (item 18) at each end of 127 . One transmission line coupling is used for connection to the harmonic filter.

If remote control is not planned, directional coupler 127 may be omitted.
14. Using the shielded wire provided (item 23), install the dc output lead from 127 to 1TB1-11, as previously described.

BLOWER INSTALLATION

The main blower, M1-560347-A1, includes an adjustable vane as shown in figure 48. The blower vane setting should be checked, and adjusted if necessary. The vane setting should be as shown in figure 48. After making this adjustment, lock the vane control in place with the Allen locking screw, using $1 / 8$ inch hex wrench.

Install the main blower, using the following procedure. Use components supplied as Blower Mounting Kit MI-560517 to install the blower. Item numbers given in this installation procedure are item numbers of MI-560517. Refer to figure 5 for clarification.

1. Install the four blower shock-mounts (items 5 and 6), using 16.138 (6) $-32 \times .38$ long screws (item 8C) and lockwashers (item 8G), on the top of blower mounting bracket (item 4). Assemble the two (2) 20 pound shockmounts (item 6) to the mounting holes in the bracket that are on 4-7/8 inch mounting centers and $1-3 / 4$ inches from the right angle bend in the bracket. After assembly, these shockmounts should be at the side of the mounting bracket nearest the front of the transmitter cabinet.
2. Temporarily remove air filters and front access panel to gain access to the blower enclosure.

Figure 5. Blower Motor Installation
3. Install blower air exhaust cover assembly (item 1), to the underside of blower enclosure top cover, using the $10.164(8)-32$ tapped holes provided in the top cover. Use 10.164 (8)-32 screws (item 8A) and 10 lockwashers (item 8F) to secure the cover assembly in place.
4. Mount blower air boot (item 2) on air exhaust cover assembly (item 1), using two clamps (items 3) and 2.164 (8)-32 $\times .50$ inch long screws (item 8B), 2 \#8 lockwashers (item 8F), and 2 \#8 nuts (item 8N).
5. Mount the blower to the shock-mounts, using $.250(1 / 4)-20$ hardware as shown in figure 5. Orient blower so that the outlet scroll will be adjacent to the two (2) 20 pound shock mounts (item 6) assembled in step 1 above.
6. Move the assembled blower and mounting bracket into position in the blower enclosure, positioning the blower outlet inside the air boot. Secure the blower mounting bracket to the transmitter base, using 4 $.312(5 / 16)-18 \times .63$ long bolts (item 8E) and 4.312 (5/16) lockwashers (item 8 J).
7. Secure air boot to blower outlet using remaining clamps (item 3) and \#8 hardware (items 8 B 8 F , and $8 \mathrm{~N})$.
8. Replace front blower access panel and air filters.

HIGH ALTITUDE BLOWER INSTALLATION

If a BTF-20E 1 transmitter is to be operated at altitudes above 7500 feet (with 60 Hz power line), a larger blower (MI-560347-3) is required. With 50 Hz power lines the larger blower is required above 3000 feet. Blower mounting components for such high altitude installations are supplied as MI-560705. Installation instructions for this option are included in MI-560705.

HIGH VOLTAGE RECTIFIER INSTALLATION

Mount the high voltage rectifier assembly, MI-560340-4, in the power supply cabinet, MI-560342-6. Place in position on the ceramic insulators supplied as part of the power supply. If necessary, move two of the insulators to the position identified by the marking "MI-560340-4" on the power supply chassis. Secure the rectifier assembly in place, using the . 190 (10)-32 hardware supplied in place at the tops of the insulators.

Check high-voltage grounding switch $2 S 4$ for free operation. With power supply cover raised, use an ohmmeter to assure that 2 S 4 grounds the high voltage positive terminal.

ELAPSED TIME INDICATOR
 (Optional) INSTALLATION

To install the elapsed time indicator, 1M6, perform the following steps:

1. Remove and discard the cover plate (see figure 12).
2. Install 1M6, using the cover plate mounting hardware.
3. Connect the two leads from 1M6 to the two terminals on terminal board 1TB3, mounted directly above 1 M 6 . Refer to figure 39. This completes installation of the optional elapsed time indicator 1 M 6.

MANOMETER (Optional) INSTALLATION

To install the optional manometer, perform the following steps:

1. Remove the blower access panel below the transmitter rf unit (see figure 13).
2. Remove the plug button supplied and install the manometer in place, using existing hardware, on the panel.
3. Install one of the connector fittings, provided with the manometer, in the mounting hole provided in the panel. Slit the double column flexible plastic tubing, supplied with the manometer, to make a single hose. Cut to required length. Interconnect the manometer and panel-mounted connector fitting, using the cut length of hose.
4. Install the gauge oil (supplied with the manometer) and zero set the manometer, using zero set screw at bottom of manometer.

5. Remount panel below rf unit.

EQUIPMENT WIRING

General

The equipment wiring consists of first providing an adequate ground system, then making the necessary transmitter cabinet and power supply cabinet connections, and finally, connections to any remote control equipment that may be used and installation and connection of accessory equipment.

NOTE: Prior to application of power, all connections should be checked for tightness. The high voltage and current present can damage transmitter components by arcing or heating at loose connections. A properly
installed transmitter will be easier to set-up and maintain. The process of checking for tight connections provides the opportunity to familiarize the operator with the transmitter and also to double-check that the transmitter is properly assembled and wired.

Equipment Grounding

Great care should be taken to provide an adequate ground system for the BTF-20E1. Before power is applied to the equipment the following ground connections must be completed.

Connect the power supply cabinet to the main transmitter cabinet using 1-1/2 inch wide copper strap (item 7 of Installation Material, MI-560515). This connection should be made from a cabinet ground in the power supply cabinet (copper-flashed angle brackets are welded to both sides of the power supply cabinet, with clearance holes for ground connections), below the rectifier mounting shelf, to a hole in one of the copper-flashed side channels in the main transmitter rack.

Connect the main transmitter cabinet to the station ground using $1-1 / 2$ inch wide copper strap (MI-560515 item 7). It is also advisable to connect the power supply cabinet to the station ground using 1-1/2 inch wide copper strap or equivalent.

After the above connections have been completed, check each ground connection for mechanical strength and continuity. If any soldered joints are involved, each should be tested for mechanical strength as well as continuity.

Equipment Connections

Make the necessary connections between the transmitter cabinet and the power supply cabinet, referring to figures $36,38,39,40,44,45$ and table 1. Use item 4 of Installation Material, MI-560515, for all connections.

Connect the power supply high voltage dc output (at high voltage rectifier assembly connector designated $H V+$) in the power supply cabinet to 1TB1-101, the high-voltage terminal in the upper right hand corner of the transmitter cabinet (viewed from the rear), using high voltage wire, item 6 of MI-560515.

In the power supply cabinet connect contactor 2 K 1 to the primary of transformer 3 T 1 using highcurrent wire, item 5 of MI-560515. See figures 38 and 40.

Also in the power supply cabinet, connect the secondary of transtormer 311 to the high voltage rectifier assembly at the $A C 1, A C 2$, and $A C 3$ terminals, using high voltage wire supplied, item 6 of MI-560515.

TABLE 1. TRANSMITTER/POWER SUPPLY INTERCONNECTIONS

Fram Power Supply Terminal	To Transmitter Terminal
2TB1-1	1TB1-1
2TB1-2	1TB1-2
2TB1-3	1TB1-3
2TB1-4	1TB1-4
2TB1-5	1TB1-5
2TB1-6	1TB1-6
2TB1-7	1TB1-7
2TB1-8	1 TB1.8
2TB1-9	1TB1.9

Connect 208/240 volt 3 -phase input to terminals 1,2 , and 3 of circuit breaker $2 S 1$ in the power supply cabinet and 117 volt single-phase BTE-15A ac power input to terminals 1 TB1-13 and 1 TB1-14 in the transmitter cabinet. The BTE-15A FM Exciter System may be connected for 117 volts, 208 volts, or 240 volts, single-phase, operation; however, the exciters are normally supplied connected for 117 volts. Refer to the exciter instruction book, IB-8027524-1, for detailed information oll changing connections for various line voltages. Wire for these connections is not supplied. Check that all connections are mechanically tight. The protective safety shield, which normally prevents contact with the circuit breaker terminals, is removed during this step. The shield must be replaced after completion of this step.

Remote Control Connections

The BTF-20E1 Transmitter may be remotely controlled by means of a BTR-15B or BTR-30A accessory Remote Control System. This system consists of an MI-561187 Transmitter Control Unit and an MI561188 Studio Control Unit for the BTR-15B System and the MI-561441 Transmitter Control Unit and the MI-561442 Studio Control Unit for the BTR-30A system. The BTR-15B or the BTR-30A may be connected directly to terminals in the BTF-20E 1 to provide the remote control and remote meter reading functions shown in table 2. Designated terminals will be found on the $1 \mathrm{~TB} i$ terminal board located at the top of the transmitter cabinet and on the 1TB2 terminal board located on the sidewall of the cabinet, and are indicated on the overall schematic diagram. All metering positions are designed to deliver approximately 1 volt into 5000 ohms.

NOTE: REFLECTOMETER ṡwitch 153
should be left in the NORMAL position when the transmitter is remotely controlled.

Remote control of tower lights can be accomplished by utilizing a Tower Lighting Unit (MI-27519). Remote reading of the frequency and modulation monitor is accomplished by placing the monitor in the studio, and feeding it an off-air signal through an antenna and rf preamplifier, which are also available as accessories.

TABLE 2. REMOTE CONTROL CONNECTIONS

Remote Control Function	Terminals
Transmitter ON	1TB2-22, 1TB2-23
Transmitter OFF	1TB2-21, 1TB2-23
Plate OFF	1TB2-24, 1TB2-25
Plate ON	1TB2-30, 1 TB2-26
Overload Reset	1TB2-24, 1TB2-27
Power Output-Raise	1TB2-24, 1TB1-15
Power Output-Lower	1TB2-24, 1TB1-16
Modulation Mode	
Left Remote	1TB6-15
Right Remote	1 TB6-16
Stereo Remote	1 TB6-17
Ground; Common	1TB6-18
SCA Mute	
SCA Mute	1 TB6-5
Muting Ground	1TB6-6
Remote Meter Reading Function	Terminals
PA Plate Voltage	1TB1-10(+), 1TB1-6 (-)
PA Plate Current	1TB1-6 (+), 1TB1-9 (-)
Power Output	1TB1-12 (+), 1TB1-11 (-) (remove jumper)
Exciter Final Current	1TB6-3 $(+)$. 1 TB6-4 (-)

After completion of wiring, check all connections for accuracy, continuity and mechanical strength.

Transformer Primary Taps

The primaries of the filament and plate transformers are provided with taps which permit operation of the equipment over a wide range of ac line voltages (refer to table 3). Measure the source line voltage and, if necessary change the transformer primary connections to those designated for operation at the voltage closest to that measured. The primary taps are identified on the schematic diagram and figure 45.

WARNING

Before making power circuit connections, all switches and circuit breakers should be in the OFF position. Possible injury to personnel or equipment damage may result due to accidental application of power during installation.

TABLE 3. TRANSFORMER PRIMARY TAPS

Transformer	Range of Line Voltage					
Symbol	197-202.5	202.5-213.5	213.5-224	224-234.5	234.5-245.5	245.5-251
1 T 1	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
$1 \mathrm{~T}^{2}$	-11 and 208	0 and 208	+11 and 208	. 11 and 240	0 and 240	+11 and 240
1 T3	Factory Wired, No Tap Changes Required Factory Wired, No Tap Changes Required Factory Wired, No Tap Changes Required					
1 T4						
1 T5						
1T6*	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
1 T 7	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
178	H3 and H4	H 2 and H 4	H 1 and H 4	H 3 and H5	H2 and H5	H 1 and H 5
	Make Secondary Connections for 1 T8 to $\times 1$ and $\times 3$					
3T1*	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240

*Leave primaries disconnected until initial steps of tuning procedure have been completed.

OVERLOAD RELAY ADJUSTMENT

Adjustment of trip setting of overload relays 1 K 1 , 1 K 2 and 1 K 4 , located on the control panel behind the left-hand door, is normally carried out at the factory. However, the following adjustment procedure is given for use in the event that it may be necessary to adjust the sensitivity of these relays, so that they will pulli-in at the current specified for each relay as shown in table 4. This procedure is required when the transmitter is not factory tested.

This can be accomplished by the use of an ammeter of the proper range and a dc supply which is adjustable from 0.5 to 1.5 volts and capable of delivering 6.0 amperes. An " A " battery, such as an RCA Type VS006C used with a series rheostat of between 5 and 10 ohms maximum resistance is a convenient supply for
making this adjustment. When adjusting 1 K 2 , change to a series rheostat of approximately 1 ohm , if available. Remove the relay covers and, with the rheostat set for maximum resistance, connect the supply across the coil of the relay to be adjusted, with the ammeter connected in series. Slowly decrease the resistance to obtain the current reading given in table 4. Adjust the spring tension on the relay so that it just pulls in at the specified current. After adjustment, decrease and increase the current several times to check for proper operation. Replace the relay covers after adjustments have been completed.

TABLE 4. OVERLOAD RELAY SETTINGS

Relay	Circuit	Pulf-In Current
1 K1	LV Rectifier	1.5 amp.
1 K2	PA Plate Current	5.0 amp.
1 K4	Driver Cathode Current	0.6 amp.

BLOWER CONTACTOR 1K15 OVERLOAD RELAY ADJUSTMENT

The overload relay portion of 1 K 15 is normally tested and shipped set for manual reset operation only. This is done to avoid accidents which could possibly occur if the relay should operate (shutting down the transmitter), and then automatically recycle, energizing transmitter circuitry while operating personnel are investigating the cause of interruption.

However, the relay can be adjusted for automatic reset by turning the small screw, located next to the manual reset button, to the extreme clockwise position. The automatic reset option may be desired in remotely controlled stations.

If it should be necessary to change the trip setting of 1 K 15 the following procedure may be followed:

1. Remove the snap-on cover which covers the overload relay portion of the 1 K 15 assembly.
2. Adjust the variable trip setting dial to the desired value. A setting of 6.5 amperes is recommended in BTF-20E1 transmitters using the MI-560347-A1 blower. When the high-altitude blower, MI-560347-3, is used, a different overload relay is used. This overload relay, part of MI-560705, should be set to 8.5 amperes.
3. Replace the snap-on cover.

LOW VOLTAGE CIRCUIT BREAKER 1S6 ADJUSTMENT

Circuit breaker 1 S 6 gives fast acting protection against short circuit conditions in low voltage power supply circuitry. 156 is normally factory set at its highest trip setting, however, if spurious tripping of $1 S 6$ is encountered, it will be necessary to dismount the unit and adjust the trip setting on each pole to its highest setting. Remount breaker.

DRIVER AND PA TUBE INSTALLATION

Insert the $7203 / 4 \mathrm{C} \times 250 \mathrm{~B}$ tubes and the PA tube in their respective sockets.

NOTE: Care should be exercised to ensure
that the PA tube and socket are properly
aligned before tube insertion is carried out.
The fit of the PA tube in its socket is tight and special attention should be given to its installation to ascertain that it is properly seated. Proper seating can be determined by observation; the screen grid ring will be hidden by the screen collet when the tube is properly seated (refer to figures 18,20 and 23).

After insertion of the driver tubes, the plate rings are slipped over the tubes and tightened with the screw provided (refer to figures 20 and 22).

CAUTION

Do not operate the transmitter without tightening the plate rings. Failure to do so
may cause the screen current to become excessive with possible damage to the driver tubes.

CONTROL CIRCUIT CHECK

WARNING

All circuit breakers should be initially set to the OFF position.

To ensure that all connections have been made correctly the following control circuit checks should be made before applying plate and screen voltages to the transmitter. (See figures 6 and 12 which show the transmitter controls and indicators utilized in the following procedures).

1. Disconnect the primary connections to transformers 3 T1 (the high voltage plate transformer) and 1T6 (the low voltage rectifier transformer). Tape the exposed connectors at the ends of the disconnected wires to prevent short circuits.
2. Disconnect the primary connections to transformers 1T1 and 1T2, taping leads as before.

CAUTION

When disconnecting the primary leads to transformers 1 T1 and 1T2, note that in cases where two leads are removed from a transformer terminal, the leads involved should be temporarily connected using a bolt, nut and lockwasher. In this way, "through" connections to other circuitry are preserved.
3. Operate the following circuit breakers to the ON position: MAIN breaker 2 S 1 and LOW POWER breaker 2S2 on the power supply cabinet, and LV RECTIFIER switch 1S6, FILAMENT breaker 1S5, and CONTROL breaker 1S18 on the transmitter cabinet.
4. Rotate AC VOLTAGE switch $1 S 1$ to PHASE 1, PHASE 2 and PHASE 3 positions and read the voltages on AC VOLTAGE meter 1M1. The three indications should be well balanced.
5. Set the REFLECTOMETER switch $1 S 3$ to the DISABLE position.
6. Depress TRANSMITTER ON pushbutton 1S7 and PLATE OFF pushbutton 1S10. Relays 1 K 16 (transmitter on-off). 1 K 15 (blower), and 1 K 12 (filament) should energize, blower 1B2 (and cooling fan 2B1) should operate, and TRANSMITTER ON indicators 1DS6 and 2DS2 should light. In addition, air interlock switch 1 S21 should close. Check the direction of rotation of blower 1 B 2 . If the direction of rotation is incorrect, depress TRANSMITTER OFF pushbutton 1S8. Reverse the direction of rotation of the blower by reversing the connections to terminals 1TB4-1 and 1TB4-2. Depress TRANSMIT TER ON pushbutton 1 S7. Blower 1B2 should now rotate in the proper direction, closing air interlock 1S21.

WARNING

With FILAMENT circuit breaker 1 S5 closed and the TRANSMITTER ON pushbutton operated, power is applied to the PA bias supply. Since this supply is not interlocked, caution should be exercised when making adjustments in the area of the bias supply.
7. Relay 1 K 13 should start timing and after approximately 3 minutes its contacts should close.
8. Depress and hold POWER RAISE pushbutton 1S11 and note that variable transformer 1T5 rotates in the clockwise direction (looking down). Depress and hold POWER LOWER pushbutton 1S12 and note that transformer $1 T 5$ rotates in the counterclockwise direction. Leave 1T5 in the extreme counterclockwise position.
9. Depress TRANSMITTER OFF pushbutton 1S8 and note that blower $1 B 2$ continues to operate for approximately two minutes and then shuts off.
10. Depress TRANSMITTER ON pushbutton 1S7 and after a period of time check the ELAPSED TIME meter 1 M6 (an optional item) for normal operation.
11. With control circuit terminals 1TB2-11 and 1TB2-12 temporarily jumpered (remove power while installing jumper), close the transmitter rear doors, rf unit door, meter panel and power supply cover and note that DOOR INTERLOCKS indicator 1DS5 lights. Open the interlock switches one at a time and note that indicator 1DS5 goes out as each is opened. Remove the temporary jumper. If the exciter AFC circuit is locked, the 1DS5 indicator should stay lighted.
12. Set the exciter AFC switch $S 1$ to the OPERATE position. Vary the AFC ADJUST control C14 either clockwise or counterclockwise until exciter AFC UNLOCK relay K102 operates. Note that DOOR INTERLOCKS indicator 1DS5 goes out. Reset C14 to approximately its initial position. 1DS5 should light again.
13. Check the operation of grounding switches 1S19, 1S20, 1S102 and 2S4. There should be no evidence of erratic operation.
14. Place TRIP switch 1 S 13 in the SINGLE position and depress PLATE ON Pushbutton 1S9. Plate On-Off relay 1 K 11 should operate to the ON position, energizing high voltage plate contactor 2 K 1 and low voltage contactor 1K9. PLATE ON indicators 2DS1 and 2DS4 should light.
15. Checkout of VSWR and Carrier-Off protection circuits is carried out after completion of transmitter tuning.
16. Remove the covers from overload relays 1 K 1 , 1 K 2 and 1 K 4 . Operate 1 K 1 manually by depressing the armature with an insulated rod and note that contactors 1 K 9 and 2 K 1 drop out and L.V. RECT. OVERLOAD indicator 1DS1 lights. Depress O.L. RESET pushbutton 1S17; indicator 1DS1 should go out and 1 K 9 and 2 K 1 should pull in again. Repeat this procedure by operating 1 K 2 and 1 K 4 and note that POWER AMP. OVERLOAD indicator 1DS2 and DRIVER OVERLOAD indicator 1DS3, respectively, should light.
17. Place TRIP switch 1 S 13 in the MULTIPLE position and again operate 1 K 1 manually. Contactors 1 K 9 and 2 K 1 should drop out and after approximately one-half second they should pull in again. L.V. RECT. OVERLOAD indicator 1DS1 should light and stay lighted. Operate 1 K 1 a second time. This time 1 Kg and 2K 1 should drop out and stay out and indicator 1DS1 should stay lighted. Depress PLATE ON pushbutton 1S9; 1K9 and 2K1 should pull in again and indicator 1DS1 should go out.
18. Depress PLATE OFF pushbutton 1 S 10 and TRANSMITTER OFF pushbutton 1S8.
19. Reconnect the primary connections to transformers 1T1 and 1T2. This restores filament power to the driver and PA when the transmitter is turned on. Set the exciter RF OUTPUT switch to the off position while setting (and measuring) amplifier filament voltages in the steps which follow. This prevents rf energy from the exciter unit from affecting the ac voltmeter indication.
20. Operate FILAMENT circuit breaker $1 \mathrm{S5}$ to ON, then depress TRANSMITTER ON pushbutton. Open the door of the rf unit and with an accurate ac voltmeter measure the filament voltage of the PA tube at its socket. If air interlock 1 S21 operates (opens its contacts), temporarily connect a jumper across its contact terminals. Remove the jumper after completion of adjustment of driver stage filament voltage.
21. Rotate $A C$ VOLTAGE switch $1 S 1$ to the PA FIL. position, and adjust FILAMENT control 1 T4 for a filament voltage of 6.3 volts for the 4CX15000A. Note, however, that for extended tube life, the filament voltage should be adjusted to the lowest value that does not limit the power output and should be carefully maintained at that point. For further information see Technical Bulletin TB-334-3 on page 101. After establishing the optimum filament voltage, note the reading of AC VOLTAGE meter 1 M 1 . For optimum tube life the PA FILAMENT reading of meter 1 M 1 should be maintained at this point.
22. In a similar manner, measure the filament voltage of each one of the $7203 / 4 C \times 250 B$ tubes at the socket. Rotate AC VOLTAGE switch 1 S 1 to the DRIVER FIL. position, and adjust DRIVER FILA. MENT control 1R19 for a filament voltage of 6.0 volts

Figure 6. BTF-20E1 Controls and Indicators
for the 7203/4CX250B tetrode, on the external ac voltmeter. Note the reading of AC VOLTAGE meter 1 M 1 . The DRIVER FILAMENT indication of meter 1M1 should be maintained at this value.
23. Measure PA grid bias at feed-thru capacitor 1C114 located at the rear of the rf unit. With fixed bias
only (no grid current), the indication should be approximately 240 volts, with negative polarity.
24. Check driver grid bias at feed-thru capacitor 1C106 located at the side of the rf unit. This measurement should indicate a (fixed) bias of approximately - 28 volts.

TUNING

general

The BTE-15A FM exciter, the BTS-1B stereo generator, and the BTX-1B SCA generator(s) are factory tuned and aligned. Instructions for tuning the exciter and multiplex units are contained in the instruction book supplied with these units for use in those cases where readjustment should become necessary.

NOTE: The BTF-20E1 transmitter is normally tuned at the factory before shipment. The following is included for information only, or use when the transmitter is tuned in the field.

The initial luning procedure consists of checks to be made on the FM exciter and multiplex generator(s), adjustment of the driver stage, adjustment of the PA circuit and reflectometer calibration.

For specific items of test equipment required for tuning, refer to the RECOMMENDED TEST EQUIP. MENT list contained in the front of this book.

WARNING

Prior to performing the tuning procedures, ensure that the primary connections of transformers 1T6 and 3T1 are disconnected and taped.

EXCITER TUNING

1. Check that exciter power plug 1 P 11 is connected to the exciter ac input connector (twist-lock type). Connect exciter line power (normally 117 volts) to transmitter terminals 1TB1-13 and 1TB1-14.
2. Terminate the exciter with a small 50 ohm dummy load and wattmeter (see recommended test equipment list).
3. The BTE-15A includes an ac power line circuit breaker/switch. This circuit breaker is located near the top of the exciter, inside the exciter main frame. Open the exciter power supply access door and set the breaker/switch to the ON position.
4. Set the RF OUTPUT switch on the BTE-15A to the ON position. Depress TRANSMITTER ON pushbutton 1S7 and PLATE OFF pushbutton 1S10. Note that due to the use of exciter relay K101, there will be no exciter power output unless the TRANS. MITTER ON pushbutton is depressed.
5. With the exciter RF POWER ADJUST control - set fully clockwise, the exciter power output should be

15 watts or more, If exciter operation is not normal, retune or service the exciter in accordance with the FM exciter instruction book.
6. Remove exciter power temporarily and connect the exciter output cable to directional coupler 128 (connector marked "load"). Connect 128 (connector marked "transmitter") to driver input jack 1J101, using short jumper cable supplied.

DRIVER GRID TUNING

1. Check to ascertain that the driver input (grid) circuit components are the proper ones for operation of the driver stage as a straight-through amplifier. Inductor 1 L101 should be a 5-1/4 turn coil on a slug tuned form, with taps. There should not be any fixed capacitance in parallel with 1C101. Before starting the subsequent tuning procedure, connect the straps to inductor 1L101 such that 3 turns are in use initially. If necessary, this adjustment may be changed during the tuning procedure.
2. Restore exciter power output. Rotate driver input loading capacitor 1 C 101 to its midposition. Adjust driver input tuning variable inductor 1L101 for a maximum reading on MULTIMETER 1M2 with MULTIMETER switch 1 S 2 in the DRIVER IG position. If no indication of resonance is obtained, the position of the tap on 1L101 should be changed.
3. Set the EXCITER MULTIMETER switch to the EXTERNAL METERING position. With this setting, the indication on exciter meter M101 is a measure of reflected energy in the coaxial line between exciter output and transmitter input jack 1J101. Note the reading on M101. The VSWR in this line should now be minimized by using the following procedure:
a. Make a small change in the setting of 1 C 101 in the direction of less capacitance.
b. Reset 1L101 for maximum driver grid current. If the reflected energy indication is less than the initial value, and there is no significant change in grid current, this procedure should be repeated until the VSWR is optimized.
c. If the reflected energy indication is higher than the initial value, adjust 1C101 in the direction of more capacitance and proceed as described above. If necessary, use a different number of turns on inductor 1L101. The driver grid current should be approximately 5 mA with the RF POWER ADJUST control tully clockwise.
d. Depress the TRANSMITTER OFF pushbutton.

DRIVER TUNING

1. It is recommended that a grid dip meter be used for initial tune-up of all rf circuits in the transmitter. This assures that the circuits are reasonably close to proper adjustment before any power is applied, thus
minimizing the chance of overloading of tubes or components.
2. With coil 1L109 disconnected, couple a grid dip meter to driver plate inductor 1L110. Adjust variable capacitor 1C112 for resonance at the assigned carrier frequency.

TABLE 5. BTF-20E 1 FREQUENCY DETERMINING PARTS

Equipment Schedule \qquad No.	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{gathered} \text { IC124 } \\ \text { PA Loading } \end{gathered}$	$\begin{gathered} \text { IC125 } \\ \text { PA Loading } \end{gathered}$	$\begin{aligned} & \text { IC126 } \\ & \text { PA Loading } \end{aligned}$	IL111 Front PA Grid Tuning	IL112 Rear PA Grid Tuning	1L111, 1L112 Shorting Blocks
$\begin{aligned} & \text { ES-560272C } \\ & -1 \end{aligned}$	87.5-89.9	25pF MI-560355-1 Stock \#235990	25pF MI-560355-1 Stock \#235990	40pF MI-560355-2 Stock \#227938	$\begin{array}{\|l\|} \hline \text { MI-560356.5 } \\ \text { Stock } \# 243893 \\ \hline \end{array}$	MI-560356-6 Stock \#423694	$\begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272C } \\ & -2 \end{aligned}$	90.1-91.9	$\begin{aligned} & \quad 25 \mathrm{pF} \\ & \text { MI-560355-1 } \\ & \text { Stock \#235990 } \end{aligned}$	$\begin{aligned} & 25 \mathrm{pF} \\ & \text { MI-560355-1 } \\ & \text { Stock \#235990 } \end{aligned}$	40pF MI-560355-2 Stock \#227938	MI-560356-1 Stock \#243894	MI-560356-2 Stock \#243895	$\begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272C } \\ & -3 \end{aligned}$	92.1-93.9	$\quad 25 \mathrm{pF}$ MI-560355-1 Stock \#235990	25 pF MI-560355-1 Stock \#235990	40pF MI-560355-2 Stock \#227938	$\begin{array}{\|l\|} \hline \text { MI-560356-1 } \\ \text { Stock \#243894 } \end{array}$	$\begin{aligned} & \text { MI-560356-2 } \\ & \text { Stock \#243895 } \end{aligned}$	$\begin{aligned} & 3457763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272C } \\ & -4 \end{aligned}$	94.1-95.9	$\begin{aligned} & \quad 40 \mathrm{pF} \\ & \text { MI-560355-2 } \\ & \text { Stock \#227938 } \end{aligned}$	Not Used	$\begin{array}{\|c} \text { 40pF } \\ \text { MI-560355-2 } \\ \text { Stock \#227938 } \end{array}$	MI-560356-1 Stock \#243894	MI-560356-2 Stock \#243895	$\begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272C } \\ & -5 \end{aligned}$	96.1-97.9	40 pF MI-560355-2 Stock \#227938	Nof Used	$$	MI-560356-1 Stock \#243894	MI-560356-2 Stock \#243895	$\begin{array}{\|l} \text { 3455763-1 } \\ \text { Stock \#243892 } \end{array}$
$\begin{aligned} & \text { ES-560272C } \\ & -6 \end{aligned}$	98.1-99.9	40 pF MI-560355-2 Stock \#227938	Not Used	$\quad 40 \mathrm{pF}$ MI-560355-2 Stock \#227938	MI-560356-1 Stock \#243894	MI-560356-2 Stock \#243895	$\begin{array}{\|l\|} \hline 3455763-1 \\ \text { Stock \#243892 } \\ \hline \end{array}$
$\begin{gathered} \text { ES-560272C } \\ -7 \end{gathered}$	100.1-101.9	40pF MI-560355-2 Stock \#227938	Not Used	$\quad 40 \mathrm{pF}$ MI-560355-2 Stock \#227938	MI-560356-1 Stock \#243894	M1-560356-2 Stock \#243895	$\begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272C } \\ & .8 \end{aligned}$	102.1-103.9	$25 p F$ MI-560355-1 Stock \#235990	Not Used	40 pF MI-560355-2 Stock \#227938	$\begin{array}{\|l\|} \hline \text { MI-560356-3 } \\ \text { Stock \#243896 } \\ \hline \end{array}$	MI-560356-3 Stock \#243896	$\begin{aligned} & 3455763-2 \\ & \text { Stock \#243891 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { ES-560272C } \\ & -9 \end{aligned}$	104.1-105.9	$$	Not Used	40pF MI-560355-2 Stock \#227938	MI-560356-3 Stock \#243896	$\begin{aligned} & \text { MI-560356-3 } \\ & \text { Stock \#243896 } \end{aligned}$	$\begin{array}{\|l\|} \hline 3455763-2 \\ \text { Stock \#243891 } \end{array}$
$\begin{aligned} & \text { ES-560272C } \\ & -10 \end{aligned}$	106.1-107.9	25 pF MI-560355:1 Stock \#235990	Not Used	40 pF MI-560355-2 Stock \#227938	$\begin{aligned} & \text { MI-560356-3 } \\ & \text { Stock } \# 243896 \end{aligned}$	$\begin{aligned} & \text { MI-560356-3 } \\ & \text { Stock \#243896 } \end{aligned}$	$\begin{aligned} & 3455763-2 \\ & \text { Stock \#243891 } \end{aligned}$

3. With coil 1L109 disconnected, set 1L111 and 1L112 adjustments (metal blocks mounted between chassis and metal plates connected to blocking capacitors (1C140 through 1C143) to equal distances from the respective grid terminals of PA tube socket 1 XV 102. As an initial adjustment, move the sliding blocks along their "guide" slots until they touch the PA tube socket mounting plate, and then move each away from the PA socket about $1 / 2$ inch. Tighten all hardware securely. Parts which vary with frequency are tabulated in table 5.

NOTE: In some transmitters, one of the variable inductors (1L111 or 1L112) may not be in use. In such cases, one of the
variable inductors has been removed during factory tuning procedures. This situation is normal and represents optimum tuning conditions for a given transmitter and frequency.

Adjust PA GRID TUNING capacitor 1C 123 so that its setting is approximately 3 turns from the fully meshed position. Couple a grid-dip meter to the PA grid circuit.

NOTE: Care should be taken to avoid coupling to the driver plate tank circuit. For this reason, it is advisable to remove the driver tubes until this step is completed.

Reset 1 L 111 and 1 L 112 as required, so that the PA grid circuit resonates at approximately the assigned carrier frequency.
4. Replace the driver tubes in their sockets. Reconnect the driver plate. rings securely. Reconnect 1L109. Readjust DRIVER PLATE TUNING control 1C112 for resonance, using a grid dip meter, leaving the initial setting of 1C123 unchanged.

Abstract

5. Set the PA PLATE TUNING and PA PLATE LOADING controls to the approximate positions shown in figure 7. The figures given are the distance from the shorting bars (1L105 or 1L106) to the plastic mounting shelf. If desired, these settings may be checked, using a grid dip meter.

6. Reconnect the primary terminals of low-voltage rectifier 1T6. DO NOT reconnect the primary terminals of high-voltage transformer 3 T 1 ; this prevents application of PA plate voltage. Set DRIVER SCREEN control 1R38 to the center of its range.
7. Remove resistor 1 R9 from its clips and temporarily ground the upper clip (grid end). Remove resistors 1R15 and 1R16 to prevent application of PA screen voltage.

NOTE: During the following tuning procedure, it is advisable to remove power after each step by depressing the PLATE OFF pushbutton, and then (if desired) the TRANSMITTER OFF pushbutton. Latching relays (1 K 11 and 1 K 16) are used in the BTF-20E1 control circuit. If the PLATE OFF pushbutton is not operated each time high voltage will automatically be applied approximately 3 minutes after the TRANSMITTER ON pushbutton is depressed. This is not desirable, in general, during tune-up.
8. Close LV RECTIFIER circuit breaker 1S6, depress the TRANSMITTER ON pushbutton and then depress and hold POWER LOWER pushbutton 1S12 until variable transformer 1 T 5 is -in its extreme counterclockwise position. REFLECTOMETER switch 1S3 should be set to the DISABLE position.
9. Rotate MULTIMETER switch $1 S 2$ to the DRIVER Eg2 position. Depress the PLATE ON pushbutton. The indication on MULTIMETER 1 M 2 should be zero. Rotate MULTIMETER switch $1 S 2$ to the DRIVER I_{k} position. Depress and hold the POWER RAISE pushbutton until MULTIMETER 1M2 reads approximately 100 milliamperes.
10. Using the tuning arm assembly provided (MI560515, item 1), adjust DRIVER PLATE TUNING capacitor 1C112 for a dip in driver cathode current on MULTIMETER 1M2.
11. Rotate MULTIMETER switch $1 S 2$ to the PA Ig position. Adjust PA GRID TUNING control 1C123 for maximum PA grid current. Set PA grid current to approximately 300 milliamperes, using either the POWER LOWER or POWER RAISE pushbutton.
12. The preceding procedure has established that the driver stage grid and plate tuned circuits are resonated at carrier frequency and that the driver stage is operative.
13. The driver cathode current should not be allowed to exceed 500 mA , as indicated on MULTIMETER 1 M 2 with 1 S 2 set to the DRIVER I_{k} position. DRIVER lg2 should not exceed 30 mA . Depress the PLATE OFF and TRANSMITTER OFF pushbuttons.
14. Connect a dummy load and wattmeter (0 to 15 watt, 50 ohm) to the PA output line, using a $3-1 / 8^{\prime \prime}$ reducer cone (MI-27791K-5A) and a short length (6 feet) of RG-8/U cable.

PA NEUTRALIZATION

1. Remove and lay aside screen circuit voltage divider resistors 1R13 and 1R14 so that the PA screen dc circuit to ground is broken. For best results, the MULTIMETER switch 1 S2 must not be set to the PA Eg2 position during the PA neutralization procedure.
2. Remove the ground connection from the upper mounting clip of resistor 1R9. Complete the PA grid circuit by replacing (temporarily) 1 R9 with a 6300 ohm 200 watt resistor. 1 R13 or 1R14, previously removed, will serve the purpose. DRIVER SCREEN control 1R38 should be set to the center of its range.
3. Depress the TRANSMITTER ON and PLATE ON pushbuttons. After the plate time delay relay cycles, applying plate voltage, readjust DRIVER PLATE TUNING control 1C112 for minimum driver cathode current.

Set MULTIMETER switch $1 S 2$ to the PA lg position. If a grid current indication is noted, adjust both 1C112 and 1C123 for maximum indication. If no grid current is apparent initially, operate the POWER RAISE pushbutton as required to initiate grid current). Using the POWER RAISE/POWER LOWER pushbuttons, establish a reference value of PA grid current. A reading of 75 milliamperes is a convenient value. This reference value should be held constant during the neutralizing procedure.
4. The small wattmeter connected at the PA output now indicates feed-through power (power coupled from PA grid circuit to PA output circuit through the "feed-through" capacitance of the PA tube).
5. Adjust PA PLATE TUNING control 1L 105 and PA OUTPUT LOADING control 1L106 for a peak in the wattmeter indication.
6. Remove power from the transmitter. Adjust the front neutralizing slide (part of PA tube socket assembly) $3 / 8$ inch to the right. Reapply power, adjust 1 L 105 and 1 L 106 , and note the change in the wattmeter reading. If the meter reading has decreased, repeat this procedure until a minimum wattmeter reading is obtained. If the meter reading increased, move the neutralizing slide to the left and repeat. If an appreciable movement is required at the front neutralizing slide, all four slides should be adjusted so that they are approximately balanced. If necessary, one of the semi-fixed slides may be removed.

Normally, with 75 milliamperes of PA grid current (to establish a reference driving voltage) it should be possible to obtain a feed-through power indication of less than one watt. However, the important consideration in neutralization is to secure a minimum feed-through indication.
7. Depress and hold the POWER LOWER pushbutton until the DRIVER $E_{G} 2$ indication is zero, then remove all power.
8. After completion of neutralization of the PA stage, replace resistors 1R9, 1R15, 1R16, 1R13 and 1R14 in their normal mounting positions.
9. Reconnect the primary leads of high-voltage plate transformer 3T 1 (refer to Table 3).
10. Disconnect the small dummy load and wattmeter from the output line of the PA and connect in its place a suitable dummy load and wattmeter.
11. The transmitter should be unmodulated during the following procedure for determination of operating power.
12. Check to confirm that REFLECTOMETER switch 1S3 is set to the DISABLE position.

PA TUNING - DIRECT METHOD OF POWER MEASUREMENT*

1. Depress TRANSMITTER ON pushbutton. Set DRIVER SCREEN control 1R38 completely counterclockwise (for minimum rf drive to PA). Apply plate voltage. Note that PLATE VOLTAGE meter 1M3 indicates somewhat higher than the nominal value. Rotate MULTIMETER switch 1 S2 to the PA EG2 position and then depress and hold the POWER RAISE pushbutton until MULTIMETER 1M2 indicates 600 volts. Adjust DRIVER SCREEN control 1R38 for an indication of one-half ampere on PLATE CURRENT meter 1 M 4 .
2. Using tuning arm assembly, readjust 1 C 123 until the PLATE CURRENT indication is maximum. DO NOT PERMIT THE PA PLATE CURRENT TO EXCEED 0.75 AMPERES AT THIS TIME.
*Requires the use of a calibrated rf wattmeter and dummy load.
3. With REFLECTOMETER switch $1 S 3$ set to the DISABLE position, rotate POWER CALIBRATE control 1R11 to its maximum clockwise position. As transmitter power is increased during tuning procedures, the setting of 1 R11 must be adjusted as required.
4. Note the reading on REFLECTOMETER meter 1M5 and adjust PA PLATE TUNING control 1L105 for a maximum reading.
5. Adjust the DRIVER SCREEN control 1 R38 clockwise (increasing PA grid drive) until the required power output is reached as determined by feed-through wattmeter or calibrated dummy load, if available. If necessary, operate the POWER RAISE/POWER LOWER pushbuttons as required to set the power output.

Check all meters for acceptable readings. Typical meter readings for a power output of 20 kilowatts are given in Table 6.

In the case of transmitters which have been factory tuned at the required output power, no further PA tuning adjustments should be required - provided that the load in use at the transmitter output presents a 50 ohm resistive impedance to the transmitter.

In the event the transmitter has not been factory tuned at the required power output or if the efficiency or load impedance is not as desired, it will be necessary to retune the PA output circuit. PA loading is determined by the value of capacitance across the PA output line (vacuum capacitors $1 \mathrm{C} 124,1 \mathrm{C} 125,1 \mathrm{C} 126$) and the setting of PA OUTPUT LOADING control 1L106.

In tuning the PA (or other tetrodes) it should be noted that the screen current is a sensitive loading indicator. In general, the screen current will rise as the loading is decreased (higher load impedance) and drop as the loading is increased.

To increase loading, reset 1L106 to a position nearer the PA tube mounting shelf. Conversely, to reduce loading, reset 1L106 to a higher position (further from the PA tube mounting shelf).

In order to obtain best efficiency it is important that the PA stage be operated with its output tank circuit adjusted for optimum loading. The following procedure is recommended to attain this condition.
a. With power OFF, set 1L105 and 1L106 to the positions shown in Figure 7, for the assigned frequency. The positions plotted are in inches above the PA tube plastic mounting shelf. This setting will establish a preliminary loading condition which should serve as a good starting point.
b. Depress the TRANSMITTER ON and PLATE OFF pushbuttons. Depress and hold the POWER LOWER pushbutton until variable transformer 1T5

PLOT BASED ON LOADING CAPACITOR VALUES AS FOLLOWS:

FREQUENCY (MHz)	$87.5-94$	$94-102$	$102-108$
ICI24	25 pF	40 pF	25 pF
ICI25	25 pF	NOT USED	NOT USED
ICI26	40 pF	40 pF	40 pF

Figure 7. Typical Settings, PA Tuning Controls
rotates to the minimum (extreme clockwise) position. Set driver screen control 1R38 to the extreme counterclockwise (minimum PA drive) position.
c. Depress the PLATE ON pushbutton. Rotate MULTIMETER switch 1 S 2 to the $P A E_{G} 2$ position and then depress and hold the POWER RAISE pushbutton until MULTIMETER 1M2 indicates 600 volts. Adjust driver screen control 1 R38 for an indication of one-half ampere on PLATE CURRENT meter 1M4.
d. Note the reading on REFLECTOMETER 1M5 and adjust PA PLATE TUNING control 1L105 for a maximum indication.
e. Adjust the driver screen control 1 R38 clockwise (increasing PA grid drive) until the desired power output is obtained or the PA plate current reaches 4.0 amperes. If necessary, operate the POWER RAISE/ POWER LOWER pushbuttons as required to set power output.

The PA efficiency should now be calculated from the following formula (refer to figure 8).

> Efficiency = Power Output (watts)
> Factor Plate Volts \times Plate Current (amperes)

The "Plate Volts" in this formula refers to the meter voltage as read from voltmeter 1 M 3 (this value differs slightly from actual PA plate-to-cathode voltage).
6. If PA efficiency is low and screen current comparatively low, the loading is too heavy and the load impedance must be increased as previously described. Reset 1L106 first, then 1L105. If PA efficiency is low and screen current comparatively high, the loading is too light and must be increased as previously described. Reset 1L106 first, then 1L105. In either case, after each loading adjustment, readjust PA PLATE TUNING control 1L105 for maximum power output (refer to figure 10).

Once the PA tank load impedance is determined, the recommended procedure is to adjust the PA grid drive (using driver screen control 1R38) to obtain the required PA plate current at the specified grid bias, plate voltage, and, as nearly as possible, the screen voltage specified. It may be necessary to increase PA screen voltage, however, in order to obtain rated power output.

If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct
voltage in the presence of the variation in current. No maximum tube ratings should be exceeded.

NOTE: Power output of the transmitter is proportional to the screen voltage, but at a certain point the output will not increase further in spite of a further increase in screen voltage. Care should be taken not to operate beyond this point since PA efficiency will decrease rapidly if screen voltage is raised further. With sufficient drive, the tapering-off should occur at a power output in excess of 20 kilowatts at a screen voltage of about 800 volts. However, insufficient drive may cause this point to shift to power levels less than rated power output. See figure 10.

It should be noted that operation of POWER RAISE pushbutton 1S11 and POWER LOWER pushbutton 1S12 will vary PA screen voltage as well as driver plate and screen voltages, while control 1R38 varies only driver screen voltage and therefore acts as a PA excitation control.
7. Set MULTIMETER switch $1 S 2$ to the DRIVER $\mathrm{E}_{\mathrm{G}} 2$ position. The indication should be 300 volts or less. If this reading is high, adjust driver screen control 1R38 as required. If necessary, readjust screen (slider type) resistor 1R18. Set MULTIMETER switch 1S2 to the DRIVER ${ }^{\mathrm{G}} 2$ position. The indication should be between 5 and 25 mA . If screen current is high, indicating a high driver plate load impedance, remove power and move the sliding blocks, which are part of 1L111 and 1L112, closer to tube socket $1 \times V 102$. This should result in a lower value of screen current when the power is restored and tuning adjustments repeaked. Conversely, to increase screen current, the blocks would be moved away from the tube socket. Adjustments should be in small increments of about $1 / 4$ inch.

After driver screen voltage and screen current are adjusted as described, repeak the PA PLATE TUNING control and check power output. If necessary, set power output for the desired value, using the POWER RAISE/ POWER LOWER pushbuttons.

8. Repeat step 7 if necessary.

PA TUNING - INDIRECT METHOD OF POWER MEASUREMENT

1. Perform steps 1 through 4 of the procedure described above.
2. Adjust the DRIVER SCREEN control 1 R38 clockwise (increasing PA grid drive) until the PA PLATE CURRENT indication rises to 3.5 amperes. Using power calibration control 1R11, set the reading on REFLEC: TOMETER 1 M 5 to an easily read value. 80% is a suitable value.
3. Using the REFLECTOMETER 1M5 as a power otuput indicator, vary PA output circuit tuning controls 1L105 and 1L106 for maximum output indication on 1M5, for a given value of PA plate current. After each tuning adjustment, readjust PA plate current to the reference value (using the POWER RAISE and POWER LOWER pushbuttons) so that the relative efficiency may be evaluated. As previously described, the PA screen current may be used, within limits, as a PA tank circuit loading indicator.
4. Repeat step 3 at higher value of plate current until the value of plate current corresponding to 20 kW power output is reached. See figure 8.
5. Using the indirect method of power determination, the operating power is the product of the plate voltage and the plate current of the final stage and the efficiency factor, F. The efticiency factor is plotted as a function of power output in figure 8.
6. To set operating power, refer to figure 8 and determine efficiency factor F for the licensed operating power. The operating plate current is

$$
\text { Plate Current }=\frac{\text { Licensed Power Output }}{\text { Plate Voltage } \times F}
$$

The plate voltage in this formula refers to the

Figure 8. Efficiency Curve

Figure 9. VSWR Nomograph
reading of PLATE VOLTAGE meter 1M3 (this value differs slightly from actual PA plate-to-cathode voltage).

Without making tuning adjustments, operate the POWER LOWER/POWER RAISE pushbuttons for the calculated value of operating plate current.

REFLECTOMETER CALIBRATION

Tune and adjust the transmitter for the required power output and then perform the following calibration procedures.

1. Power Indication - With the transmitter adjusted for the required output, and REFLECTOMETER switch 1S3 set to the DISABLE position, adjust POWER

CALIBRATION control 1R11 so that REFLECTOMETER meter 1M5 reads 100%.

CAUTION

Do not adjust the POWER CALIBRATION control except when calibrating the REFLECTOMETER.
2. Initial setting of "carrier-off" protection feature - With REFLECTOMETER switch 1S3 set to the DISABLE position, the adjustment of the "set-point" or tripping point of REFLECTOMETER meter-relay 1M5 is made by varying the position of the red "set-point" needle as desired. The adjusting screw which varies the position of the "set-point" is normally located at the

Figure 10. PA Screen Voltage/Power Output Curve
rear of 1 M 5 . The transmitter high voltage must therefore be removed in order to adjust the 1M5 set-point.

The set-point used should be between 50 and 70\% of the licensed transmitter power output. 60% is recommended. High set-point values make the transmitter subject to spurious tripping which might be caused by power line transients, while low set-point values do not afford adequate protection.
3. Calibration of Reflected power meter 1M7 Set 1S3 to the VSWR CAL position. With the transmitter operating at licensed power output, adjust VSWR CALIBRATION control 1R10 for an indication of 100\% on reflected power meter 1M7. 1M7 will now indicate output transmission line VSWR on its VSWR scale, and reflected power in the output transmission line lin percent of incident power) on its percent power scale, when 1S3 is set to the NORMAL position or the DISABLE position.
4. Initial setting of VSWR protection feature The adjusting screw which varies the position of the "set-point" on reflected power meter 1M7 is located at the front of 1 M 7 immediately above the zero-set adjustment. The recommended setting is for a VSWR of 1.5:1.
5. Calibration of Remote Power Indication Adjust transmitter for licensed power output. With a 5000 ohm remote power metering circuit connected between terminals 1TB1-11 and 1TB1-12, adjust REMOTE CALIBRATION control 1R12 for an indication of 100% (or other desired logging indication) on the remote power meter.

PROTECTION CIRCUITRY CHECKOUT

One section of REFLECTOMETER switch 1 S 3 is connected in series with the operating coil of time delay relay 1 K 20 . The following description is for checks made with 1 S3 set to the NORMAL position, allowing 1 K 20 to be energized.

Approximately 7 seconds after application of power to the operating coil of low voltage contactor 1 K 9 , relay 1 K 20 should close its contact, energizing auxiliary relay 1 K 21 . Relay 1 K 21 then closes two normally open contacts. One contact (3-5) makes the "carrier-off"/VSWR protection circuit operative. The other (6-7) makes the "carrier-off" and VSWR overload indicator lights operative. There will be an audible click when 1 K 20 and 1 K 21 operate. However, operation of 1 K 20 (and 1 K 21) will not (of itself) initiate a control circuit overload sequence.

If a more positive check is desired, connect an ac voltmeter (0 to 150 volt or higher) between module terminal 1Z6-16 and ground (1TB2-20). 117 volts will appear between these terminals when 1 K 20 and 1 K 21 are energized. If the delay between application of power to low voltage contactor 1 K 9 (by depressing the PLATE ON pushbutton) and the operation of time delay relay 1 K 20 (and auxiliary relay 1 K 21) is not approximately 7 seconds, the timing adjustment on relay 1 K 20 should be set as required. To set 1 K 20 , loosen the screw which secures the actuating arms to the rotating shaft, move the actuating arm which establishes the time delay (as required), and retighten the screw.

The following procedure will provide a positive check for proper operation of the "carrier-off/VSWR" circuitry.

1. "Carrier-off" Circuitry

With transmitter operating normally, at licensed power output, set REFELCTOMETER switch $1 S 3$ to the NORMAL position. The transmitter power output should now be lowered slowly. When the power output indication on meter 1M5 drops to the set-point value (red needle value), the normal transmitter overload
sequence should be initiated (see the subsequent paragraph "OVERLOAD RESETTING"). Power may be restored by depressing the O.L. RESET pushbutton. However, tripping will reoccur after each reset operation until the power output is readjusted to a value higher than the "set-point" indicated on meter-relay 1M5.

2. VSWR Protection Circuitry

With the transmitter operating normally, at licensed power output, set REFLECTOMETER switch 1S3 to the NORMAL position. If the indication on reflected power meter 1M7 is appreciable (VSWR indication of 1.3 or higher), the circuitry may be checked by simply moving the set-point to progressively lower scale positions. When the set-point pointer reaches the same position as the VSWR pointer, the normal transmitter overload sequence should be initiated. Again, tripping will reoccur after each (manual) resetting, until the set-point is readjusted to a value higher than the VSWR indication.

If the normal VSWR indication is less than 1.3, the procedure described may still be used by varying the zero set adjustment on 1M7 for a higher reading. After completion of the test, 1M7 should be re-zeroed (with transmitter power OFF), and the set-point pointer reset to the desired value.

CAUTION

It is recommended that the protection circuitry (optical meter-relays) be checked periodically (weekly) to be certain the protection is operative. Vary the set point adjustment on each optical meter-relay to induce an overload; then reset to normal setting.

OVERLOAD RESETTING

When TRIP switch 1 S 13 is in the SINGLE position, an overload will cause the plate power to be removed instantly. After the cause of the overload has been corrected, depress O.L. RESET pushbutton 1S17 on the front panel to place the transmitter back on the air, and extinguish the overload tally light involved.

When TRIP switch 1 S13 is in the MULTIPLE position, an overload will remove the plate power momentarily. After a short time delay (determined by time-delay 1 K 17) the plate power will be reapplied. If the cause of the overload has been corrected the power will remain on and the appropriate overload indicator will light and stay lighted until reset manually by depressing the O.L. RESET pushbutton. If the overload persists, the plate power will be removed again and will remain off until reset manually by means of the PLATE ON pushbutton or remotely by shorting terminals 1TB2-26 and 1TB2-30. When the circuit is reset remotely, the overload indicator will remain lighted until reset manually.

OPERATION

STARTING AND STOPPING THE TRANSMITTER

In normal transmitter operation all circuit breakers should be left in the ON position and the crystal heaters left running continuously, unless the transmitter is to be shut down for an extended period of time. This way it is possible to start and stop the transmitter by operating only the TRANSMITTER ON (1S7) and TRANS. MITTER OFF (1S8) pushbuttons and the PLATE ON (1S9) and PLATE OFF (1S10) pushbuttons.

To interrupt transmission for a short interval the PLATE OFF pushbutton should be depressed. This will remove plate voltage from the transmitter circuits but the filament power will remain on the tubes. The transmitter can then be returned to immediate operation when the PLATE ON pushbutton is depressed.

NOTE: Two pushbutton control of the transmitter may be achieved by not operating the PLATE OFF/PLATE ON pushbutton, and operating the TRANSMITTER ON/TRANSMITTER OFF pushbuttons. Operated in this manner the transmitter will automatically go through the necessary starting steps including time delay relay operation.

Normally the time delay relay provides sufficient warm-up time (approximately 3 minutes) after which plate voltage can be applied. The crystal heater unit (in the exciter), from a cold start, requires several minutes of warm-up time before complete stability of the carrier frequency is attained.

PANEL METER READINGS

Panel meter readings are provided for guidance, and must not be interpreted as specification values which must be duplicated. PA plate current and plate voltage, for example, vary with power output. PA plate current is also a function of PA plate efficiency (see PA tuning procedure). Therefore, even at the 20 kW power output level for which typical meter readings are supplied, some deviation from listed values is to be expected and should hot cause concern. In addition, the driver cathode and screen currents, driver screen voltage, and PA grid and screen currents and screen voltage will be lower at reduced power output levels.

The typical meter readings shown were recorded during transmitter factory tests, with a power output of 20 kilowatts. With regard to PA meter readings, it is assumed that the PA rf grid drive is adjusted to obtain the required PA plate current at the specified grid bias, plate voltage, and, as nearly as possible, the screen voltage shown. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct, voltage in the presence of the variation in current.

At start-up, and at regular intervals during operation, note and record the panel meter readings in a suitable log. This will aid in maintaining the proper values of voltage and current and will disclose gradual changes in transmitter operation.

TABLE 6. TYPICAL METER READINGS FOR POWER OUTPUT - 20 kW

Position of Multimeter Switch	Meter Range	Reading
DRIVER IG	$0-30 \mathrm{~mA}$	5 mA
DRIVER IK	$0-600 \mathrm{~mA}$	300 mA
DRIVER IG2	$0-30 \mathrm{~mA}$	15 mA
DRIVER EG2	$0-600 \mathrm{~V}$	200 V
PA IG	$0-600 \mathrm{~mA}$	85 mA
PA IG2	$0-600 \mathrm{~mA}$	400 mA
PA EG2	$0-1200 \mathrm{~V}$	700 V
PA PLATE VOLTAGE	$0-10000 \mathrm{~V}$	7500 V
PA PLATE CURRENT	$0-5 \mathrm{~A}$	4.1 A

EMERGENCY OPERATION - AFC FAILURE

In the event of an AFC failure in the FM exciter, the output carrier frequency can be controlled manually (if the master oscillator is functioning) until such time as repairs can be made. To control the carrier frequency manually, operate AFC switch S1 to the OFF position and adjust AFC ADJUST control of the master oscillator for correct center frequency reading on the frequency monitor. The stability of the master oscillator is such that center frequency can be maintained within close limits for extended periods of time without AFC provided that changes in ambient temperature or line voltage is not excessive.

MAINTENANCE

GENERAL

With ordinary care a minimum of service will be required to keep the BTF-20E 1 in operation. However, a regular schedule of inspection and service as outlined in the Recommended Maintenance Schedule, table 7, will help to avoid interruptions to broadcasts, greatly extend the life of components, and contribute in large measure to overall peak efficiency in operation.

WARNING

Always open the line circuit breaker, and discharge circuits with a grounding stick before touching any component inside the transmitter.

CLEANING

Ceramic insulators and bushings should be kept clean at all times. Insulators subject to stress in high-voltage dc fields may rupture if sufficient dust accumulates to cause a corona discharge. Clean in-
sulators with a soft cloth and Clorothene.
NOTE: Because of the toxic effects of carbon tetrachloride, the use of Chlorothene is recommended. Chlorothene is a Dow Chemical Co. product and is available through that company's outlets.

CIRCUIT BREAKERS AND RELAYS

Circuit breakers and relays should be inspected periodically, and at such time contacts should be cleaned and adjusted if necessary. Relay contacts should be cleaned with Chlorothene applied with a soft brush, after which they should be burnished with a tool, such as the RCA Stock No. 22963 Contact Cleaning Tool. Finally, contacts should be wiped with a clean piece of bond paper.

TUBES

Tube failure can be anticipated by keeping a log of tube life, and replacing tubes as indicated by the log or when reduced output is apparent.

TABLE 7. RECOMMENDED MAINTENANCE SCHEDULE

DAILY

- Check and compare all meter readings at start-up. Correct any conditions revealed by abnormal readings.
- If overloads have occurred, examine components involved at shut-down. Repair or replace any components as necessary.

WEEKLY

- Operate optical-meter relay protection circuits to make certain they are operative.
- Make a general visual inspection and clean internal parts of transmitter. Use a clean, soft cloth on the insulators. Use a vacuum cleaner or hand blower for removing dust or dirt.
- Test all door interlocks and grounding switches.
- Check PA and output if circuits for evidence of heating at connector or junction points. In particular, examine finger contact assemblies which are part of variable inductances 1L105 and 1L106.
- Check manometer reading. When manometer reading indicates filter clogging, clean or replace the filters as necessary.
- Make an overall check of distortion and noise level.

MONTHLY

- Check spare crystal in operating socket.
- Check voltages in exciter. Cómpare with previous readings.
- Inspect electrodes of spark gap 1E1 for pitting. Replace if necessary.

QUARTERLY

- Tighten all connections in the transmitter.

SEMI-ANNUALLY

- Lubricate moving bearing surfaces on tuning drive mechanisms, using molybdenum disulphide powder, Molykote Type Z, or equivalent. Do nót lubricate plastic lead screws.
- Inspect relay contacts and replace where required.
- Test spare tubes.

AIR FILTERS

During normal operation, with clean air filters, the manometer reading should be approximately 0.1 inch (at sea level). As the filters become clogged over a period of time, the manometer reading will change (reading will increase). When the manometer reading exceeds 0.5 inch the filters must be cleaned or replaced. (The manometer is an optional item).

SILICON RECTIFIER TESTING

A short-circuited silicon rectifier cell may be detected by simple resistance checks using a voltohmmeter such as a RCA Model WV-38A. With the diode removed from the circuit (if the diode is part of a series "stack" of diodes, the connections to the "stacks" should be removed), measure the diode resistance. Reverse the ohmmeter leads and measure the diode resistance. If both readings are low, the diode is short circuited.

The condition of individual cells in an RCA CR307 rectifier stack, RCA stock No. 426162, may be checked by applying an external voltage to the individual cells and measuring the resultant current flow through the cell. A simple test circuit as shown in figure 11 can be used to perform the individual cell checks. It should be noted that some other value of voltage can be used in the test circuit; however, 50 volts was selected because it is low enough to be safe for testing, but is also sufficient to present a good indication of cell degradation. A lower voltage, such as that available in a vacuum-tube voltmeter, will not isolate defective cells unless they are almost complete shorts. Also note that the 100 kilohm resistor and the "press-to-test" switch have been included in the test circuit to protect the meter from shorted and incorrectly connected (reversed) diodes. This test is based on the use of 500 K equalizing resistors across individual cells. Connect the test circuit across the cell to be tested, observing the polarity as shown in the diagram. It should be noted that an area on each of the fins of a CR307 series stack has been left unpainted to facilitate this connection.

Figure 11. Rectifier Test Circuit

If the cell under test is shorted (or connected with reversed polarity) the meter will indicate approximately $500 \mu \mathrm{~A}$. If this indication is observed, do not depress the "press-to-test" switch.

When the "press-to-test" switch is operated, a good cell will provide an indication of approximately 100 microamperes, while a cell that has degraded will indicate several hundred microamperes.

Reverse the connections to the cell. A good cell should indicate approximately 500 microamperes. A low reading indicates poor forward conduction, or an open cell.

This circuit is not satisfactory for checking diodes using a voltage equalizing resistor below 500 K . In such cases, the equalizing resistor must be disconnected during tests.

The test circuit described may also be used to test other silicon rectifiers if the different values of voltage equalizing resistors are accounted for.

The RCA Type CR104 silicon rectifiers used in the low voltage supply consist of seven series connected diodes encapsulated to make up one rectifier module (Type CR104, or RCA stock no. 230913). Each of the seven series diodes is shunted by a 2.2 megohm voltage equalizing resistor. This gives a resistance of about 15
megohms across the CR104 module if all diodes are good.

To test CR104 rectifiers using the test circuit described, proceed as follows.

Connect the test circuit across the CR104 unit to be tested, observing the polarity shown in the diagram.

If the CR104 rectifier is shorted (or connected with reversed polarity) the meter will indicate approximately 500 microamperes. If this indication is observed, do not depress the "press-to-test" switch.

When the "press-to-test" switch is operated, a good rectifier will provide an indication of about 4 microamperes. Higher readings indicate degradation of one or more individual diodes.

Reverse the connections to the diode. A good unit should indicate approximately 500 microamperes. A low reading indicates poor forward conduction, or an open diode.

CONTROL MODULE

The control module works in conjunction with 1M5 and 1M7 to remove the transmitter plate power when the transmitter power output indication drops below the set point value on 1M5 or the VSWR indication exceeds the set point value on 1M7. Normal position of these relays is as follows:

1. The control relay in the Power Trip (carrieroff) circuit is de-energized as long as the indication of 1M5 is above the set point.
2. The control relay in the VSWR Trip circuit is de-energized as long as the indication of 1 M 7 is below the set point.
3. Set table 8 for a summary of relay contact status vs various circuit conditions.

Some helpful voltage readings are as follows:

	Normal	Tripped
Q1 (or Q2) collector	+2.6	-3.4
Q1 (or Q2) emitter	-0.2	+0.1
SCR1 (or SCR2) anode	-0.2	-10.5

$A C$ voltages from $T 1$ are shown on Figure 30.

DC voltages, measured with respect to red (center tap) or wht/grn transformer lead, using RCA WV-98C VoltOhmyst VTVM.

The waveforms shown in figure 31 show the reversal of phase which occurs in the base circuit of buffer transistor Q1 (or Q2) when a transition is made from above set-point to below set-point (REFLECTOMETER meter-relay 1M5: Power Trip) or vice-versa (REFLECTED POWER meter-relay 1M7).

TABLE 8. CONTROL MODULE 126 SERVICING CHART

Condition	High Set Point (VSWR) N. O. Relay Contacts $16-17$ 19-20	High Set Point (VSWR) N. C. Relay Contacts 15-16 18-19	Low Set Point (Power) N. O. Relay Contacts 6-7 9.10	Low Set Point (Power) N. O. Relay Contacts 5-6 8-9
AC Power OFF	Open	Closed	Open	Closed
AC Power ON, Indication Below Set Point	Open	- Closed	Closed	Open
AC Power ON, Indication Above Set Point	Closed	Open	Open	Closed
AC Power ON, Meter Lamp Failure	Closed	Open	Closed	Open
Notes: 1. Contact status (closed or open) versus circuit condition. 2. See Figure 30 for Control Module schematic diagram and terminal identification				

BLOWER LUBRICATION

MI-560347-A1 Blower motors are lubricated with a special moisture resistant grease by the motor manufacturer. The motor bearings should be lubricated at least every two years with an equivalent type ball bearing grease. Use only a high grade ball bearing grease that is clean, and do not use "silicone" grease without special instructions. Avoid greases with solid additives such as graphite, talc, etc. High grade, neutral ball
bearing grease such as Lubriko M21 or Alemite No. 38 or Keystone No. 44 are suitable. Lubriko M21 is available in one (1) and five (5) pound cans from local ball bearing distributors.

The blower without pressure type fittings must be removed from the cabinet and the motor disassembled to properly lubricate the bearings. Carefully clean bearings and housing before adding grease. Do not fill housing more than half full.

Motors with pressure type fittings may be lubricated in place. Remove the bottom plug before adding lubricant and remove any hardened grease that may have accumulated. Add grease to flush out old grease. Run motor a few minutes to permit excess grease to drain out the bottom hole, then replace bottom plug.

MUFFIN FAN LUBRICATION

The muffin fan used to ventilate the high-voltage power supply cabinet will provide reliable performance from 2 to 5 years under favorable conditions of temperature and vibration without the necessity of oiling.

If the cabinet should be installed in areas of great heat or severe vibration, and uses a Rotron muffin fan, the fan's life may be extended by periodic oilings (a small amount once per year) which is absorbed by the bearing. For this oiling procedure, an Oil Injector is required, which may be ordered from RCA Parts and Accessories, stock No. 227686. To lubricate the fan proceed as follows:

1. Remove cap from end of Oil Injector.
2. Place needle at the center of circle marked on the Gold label.
3. Position the needle at an angle of approximately 45° to the surface of the label and tangent to the perimeter of the circle.
4. Pierce the label and the concealed self-sealing rubber cap located under the label.
5. Insert the needle approximately $1 / 4$ inch.
6. Depress the plunger of the Oil Injector slowly to the next calibration mark which will allow $1 / 16$-inch of oil to escape.

NOTE: It is better to give a little more oil than not enough, however, do not overflow the well. If the ambient temperatures are extremely high, it may be advisable to oil more frequently to insure the optimum performance characteristics of the fan.

Fans manufactured by Pamotor, Inc., incorporate sealed bearings which do not require added lubrication.

Figure 12. Transmitter, Electrical Parts, Front View

Figure 13. Transmitter, Mechanical Parts, Front View

Figure 14. Transmitter, Rear View

Figure 15. Transmitter, Left Rear Oblique View

Figure 16. Transmitter, Right Rear Oblique View

Figure 17. Control Panel, Rear View

Figure 18. RF Shelf, Front View

Figure 21. Driver Shelf, Left Side

Figure 22. Driver Shelf, Right Side

Figure 23. 1XV102 Socket Assembly, Top View

Figure 24. 1XV102 Socket Assembly, Bottom View

Figure 25. 1XV102 Insulators and Capacitors

ILII3
SEMI-FIXED ADJUSTMENT

1LII3
SLIDING ADJUSTMENT

$1 \mathrm{KO9O}$

Figure 26. 1L113 Semi-Fixed and Sliding Contacts

Figure 27. 1V102 Plate Contacts and Plate Blocking Capacitors

Figure 28. 1L105 and 1L106 Counter Assemblies

Figure 29. Low Voltage Rectifier Assembly

Figure 30. 126 Control Module, Schematic Diagram

NOTES:

1. WAVEFORM A IN BASE CIRCUIT OF Q1 (POWER TRIP) AT "WAVEFORM A" POINT ON FIGURE 30.
2. WAVEFORM B IN BASE CIRCUIT OF Q2 (VSWR TRIP) AT 'WAVEFORM B" POINT ON FIGURE 30.
3. SCOPE NEGATIVE (GROUND) LEAD CONNECTED TO RED (CENTER-TAP) LEAD OF T1.
4. SCOPE VERTICAL SENSITIVITY 5V/CM.
5. SCOPE SWEEP RATE 5 MILLISEC/CM.

Figure 31. Control Module, Waveforms

Figure 32. Control Module

Figure 33. Control Module، Electrical Parts

Figure 34. 1M5 and 1M7 Panel Meters

Figure 35. High Voltage Power Supply, Front View

Figure 36. High Voltage Power Supply, Top View

PARTS ORDERING INFORMATION

REPLACEMENT PARTS

When ordering replacement parts, please give Stock or Master Item (MI) Number, Description, and Symbol of each item ordered.

The part which will be supplied against an order for a replacement item may not be an exact duplicate of the original part. However, it will be a satisfactory
replacement differing only in minor mechanical or electrical characteristics. Such differences will in no way impair the operation of the equipment.

EMERGENCY SERVICE

For emergency service after working hours, contact RCA Parts and Accessories, Telephone 609-963-8000 or 609-848-5900.

LOCATION	ORDERING INSTRUCTIONS
Continental United States, including Alaska and Hawaii	Replacement Parts bearing a STOCK NUMBER should be ordered from RCA Parts and Accessories - 2000 Clements Bridge Road - Deptford, New Jersey 08096. Replacement Parts bearing a MASTER ITEM (MI) NUMBER should be ordered from RCA, Commercial Electronics Systems Division - Attention Commercial Service - Camden, New Jersey 08102 or your nearest RCA Regional Office.
Replacement Parts with NO STOCK or MASTER ITEM (MI) NUMBER are standard components. They are notstocked by RCA and should be obtained from your local electronics distributor.	
Outside of Continental United States, Alaska Hawaii, and the Do- minion of CanadaOrder from your local RCA Sales Representative or his office or from: RCA Victor Company Limited, 1001 Lenoir Street, Montreal, Quebec.	

RETURN OF ELECTRON TUBES

If for any reason it is desired to return tubes, please return them through your local RCA tube distributor, RCA Victor Company Limited, or RCA International Divison, depending on your location.

Please do not return tubes directly to RCA
withcut authorization and shipping instructions.
It is important that complete information regarding each tube lincluding type, serial number, hours of service and reason for its return) be given. When tubes are returned, they should be shipped to the address specified on the Return Authorization form. A copy of the Return Authorization and also a Service Report for each tube should be packed with the tubes.

LOCATION	ORDERING INSTRUCTIONS
Continental United States, including Alaska and Hawaii	Local RCA Tube Distributor.
Dominion of Canada	Order from your local RCA Sales Representative or his office or from: RCA Victor Company Limited, 1001 Lenoir Street, Montreal, Quebec.
Outside of Continental United States, Alaska, Hawaii, and the Dominion of Canada	Local RCA Tube Distributor or from: RCA International Division, Clark, New Jersey, U.S.A., Wire: RADIOINTER Emergency: Cable RADIOPARTS, DEPTFORD, N.J.

PARTS IDENTIFICATION INFORMATION

GENERAL

The components listed in the parts list are iden tified by one of two methods depending on whether the component is a mechanical or electrical part. Mechanical parts are assigned a numerical symbol (12, 34, 233, etc.) that corresponds to the item number on the mechanical assembly drawing where that particular part is located. Electrical parts are assigned a standard electrical symbol and are listed in an alphanumerical sequence by major electrical assemblies (RF Assembly, Driver Assembly, Modulator Assembly, etc.). The illustrations in this book are keyed so that electrical and mechanical parts that are "called out" in the illustrations should always be consulted so that positive identification of the part can be made before referring to the parts list.

ELECTRICAL PARTS

In order to locate an electrical part in the parts list the following procedure is recommended:
a. Determine in which major electrical assembly the part is physically located.
b. With the use of the illustrations, positively identify the part and note its symbol designation.
c. In the parts list, find the heading for the major electrical assembly.
d. Under the heading in " c " above, find the symbol designation in the Symbol column of the parts list. Ali pertinent ordering information and a brief description of the item will be found to the right of the symbol designation.

MECHANICAL PARTS

In order to locate a mechanical part in the parts list the following procedure is recommended:
a. Determine in which major mechanical assembly the part is physically located (RF Box, Basic Transmitter, Tube Socket Assembly, etc.).
b. With the use of the illustrations, identify the part and note its numerical symbol designation.
c. In the parts list, find the heading for the major mechanical assembly.
d. Under the heading in " c " above, find the numerical symbol designation in the Symbol column of the parts list. All pertinent ordering information and a brief description of the item will be found to the right of the symbol designation.

TABLE 9. COMPONENT PREFIX NUMBERS

Item	Symbol Prefix	Example	Item	Symbol Prefix	Example
Basic Transmitter (MI-560507A)	1	1 K8	HV Plate Transformer	3	3 T1
Powe Supply (MI-560342-6)	2	$2 S 1$			

TABLE 10. COMPONENT SYMBOL DESIGNATIONS

Symbol Designation	Item	Symbol Designation	Item
AT	Attenuators	R	Resistors
B	Blowers, motors, phase shifters	RV	Thyrite assembly
C	Capacitors	S	Switches or interlocks
CR	Crystal or metallic rectifiers	SCR	Silicon controtled rectifier
D	Diode	T	Transformers
DS	Indicator Lamps	TB	Terminal boards
F	Fuses	U	Nonrepairable assembly
FL	RF interference filter	V	Tubes
HY	Circulator	VR	Voltage regulators
J	Connector jacks	XC	Sockets for capacitors
K	Relays or contactors	XDS	Sockets for indicating lamps
L	Inductors	XF	Sockets for fuses
M	Meters	XV	Sockets for tubes
P	Connector plugs	Crystals (oscillating)	
PCB	Printed circuit board	Y	Impedance networks and cavities
O	Transistors		

" 5.25 54STY- oib. Rolay
Justin-ehnark Bel-4205A609-Aux contacts

Symbol	Stock No.	Drawing No.	Description
1 K 18	219799	627511 ก38	relay - hverload, indicatinr
1K19	219799	627511 ก38	relay = OVERLOAD, indicator
1K20	243452	3730704002	pelay - time delay
1K21	243453	3464157 (03	pelay - auxiliary
1K22	243454	3456490 n01	relay - overload, auxiliary
141	044559	901125001	peactor - Low voltage filter
1L?	095794	949476701	REACTOR - LOW VOLTAGE FILTER
163			REACTOR - High voltage filiter, Part of mi-560510a
1L4	093658	949251001	REACTOR - RIAS
$1 \mathrm{M1}$	420835	993058116	METER - $0-300$ VOLTS AC
1M2	?29742	993064001	METER - MULTIMETER
$1 \mathrm{M3}$	235725	993053177	METER - VDLT METER 3-10 KV DC
1144	243455	3467962001	METER - PART DF POWER DETERM (NING KIT MI-560510A
1446		346796201	INDICATOR - ELAPSED TDME (OPTIONAL)
	241749	8766828005	INDICATOR - 60 HZ f 485
	235342	8489369004	INDICATOR - 50 HZ
147	$\begin{array}{r} 241749 \\ 231545 \end{array}$	8766828005 8766828 ก21	METER - RFLAY, REFLECTED POWER (SEE $1 Z 6$ CONTROL MOD REPLACEMENT LAMP FOR 9 MS OR im7
$1 P 1$	921359	1510013101	connector - comaxal piug
1 P 2	921359	1510013.101	CONINECTOR - Coaxial plug
1 P5	055808	727969 n08	CONNECTOR - R TERM, FFMALE
$1 P 6$	054254	727969 ก18	CONNECTOR - 12 TERM, FEMAI.E
1 P 7	211509	481799001	CONNECTOR - AUDIO INPUT, LEFT
1 P 8	211509	481799 n01	CONNECTOR - AUTIO INPUT, RIGHT
$1 P 9$	211.509	481799 n01	CONAECTOR - SCA IN, 1
1P10	211509	481799 n01	CONNECTOR - SCA In, 2
1 P 11	032661	878243101	CONNECTOR - EXCITFR POWER
			RESISTORS - FIXED COMPOSITION, UNLESS VOTED
121	229786	8986541 ก10	WIRE WOUNT, 34.5 OHMS 2 W
12 P	043783	99027024	WIRE WOUND, 20n OHMS 5\% 25 W
1 R 3	229787	8986541	WIRE WOUNT, 1.94 OHMS 2 W
184	229776	8986541 ก10	WIPE WOUNT. 34.5 OHMS 2 W
1 R5	229788	8986541 113	WIPE WOUND, 1.67 DHMS ? W
$1 \mathrm{R6}$	229789	8541901 001	WIPE WOUNT, KOn.OnO OHMS $1 / 2 \mathrm{~W}$
187	229789	8541901001	WIRE WOUNT, ROD, 0 NO OHMS $1 / 2 \mathrm{~W}$
1 RA	229798	8986541 (13	WIRE WOUNT. 1.57 OHMS ? W
129	044394	99037 ก29	WIRE WOUNT. A3n OHMS 5\% 200 W
$1 \mathrm{R10}$	205064	433196006	VARIABLE, 10.0000 OHMS
1R11	417698	433196014	VARIABLE, 10,000 OHMS
$1 \mathrm{R12}$	215733	433196051	VARIABLE, 1.000 OHMS
1813	054618	99037 ก39	WIPE WOUND, E3D0 OHMS 5\% 200 W
1 R14	054608	99037 ^39	WIRE WOUND. A3nO OHMS 5\% 200 W
$1 \mathrm{R15}$	044394	99037 ก29	WIRE WOUNT, A3n OHMS 5\% 200 W
1R10	$n 44394$	99037 n29	WIRE WOUNT, 630 OHMS 5\% 200 W
$1 \mathrm{R17}$	019688	99027 ก39	HIRE WOUND. 6300 OHMS 5\% 25 W
$1{ }^{1218}$	2.15540	890014019	WIRE WOUND, 16,00n OHMS 150 W
$1 \mathrm{R19}$	229790	415457 ก20	VARIABLE, 75 T DHMS 25 W
1R?0	? 19047	993007021	WIRE WOUND, 1.0 OHMS 5 W
1R21	220319	8702674512	WIRE WOUNT, 10 MEGOHM
1 R 22	217614	8871557 n53	WIRE WOUND, 1250 THMS 1 W
1823	522415	99126088	1500000 OHMS ${ }^{20 \%} 2 \mathrm{~W}$ W ${ }^{\text {2 }}$
1824			RELAY SHUNT PART OF POWER DET. KIT MI-560510A
1R25	206006	99037 POB	WIRE WOUND, 5 OHMS 10% ?nO W
$1 \mathrm{R}^{26}$	208006	99037 O68	WIRE WOUND, 5 OHMS $10 \% 200 \mathrm{~W}$ WIRE WOUND, 5 HMMS WIA
$1 \mathrm{R27}$	206076	99037 nob	WIRE WOUND, 5 OHMS 108 2nO W
1 1R28	044394	99037 ก29	WIRE WOUND, 630 OHMS 200 W
1 R 29	094885	$993007 \bigcirc 92$	WIRE WOUND, 3500 OHMS 5 W
1 P 30			
T0			
1837	059941	993007 186	WIRE WOUNP, 1800 OHMS 5 \%
1238	243456	204777024	VARIABLE, 9000 OHMS 50 W
1 R 39	243457	99027 ก20	WIRE WOUNT, 80 OHMS 25 W
$1 \mathrm{R}^{1} 0$	24.3457	99027 ก20	WIRE WOUNT, 90 OHMS 25 W
151	229792 220793	$\begin{aligned} & 8494316 \text { n01 } \\ & 8494316 \text { n02 } \end{aligned}$	SWITCH - METER SWITCH - MFTER

Symbol	Stock No.	Drawing No.	Description
1 XV: ${ }^{\text {a }}$	236438	3471557-02	SOCKET ASSEMRLY - TIIBF, 4CX15noda
1x+102-46	225002	$8465194=01$	CONTACT \triangle SCFMRLY - SCRFFN, GRID COLI 三T, 2 PEJUIFES PER SNCKET
1×v102-03	220953	644332 nu4	CONTACT - COntrol grid
$1 \times 6902-04$	2? 1959	6443H7 005	covtact - nuter filament
1 \times v102-05	227960	6443\%? Mok	covtact - Iminer filament
$1 \times 1102-15$	225091	R440964 not	Capacitco - Cilver mica. C197a
$1 \times v 102-15$ $1 \times v 102-15$	225091	8446964 O?	Capacitho - Cilvar mica. Cil7b Cil7-designed
$1 \times v 102-15$ $1 \times v 102-15$	235091 225021	$84469 n 4$ no? $84469 n 4$ no?	
		844696 ho?	
1 $\times 1$ 10?-15	225091	8446964 n 02	Capacitmb - ciluer wicai, C145a)
$1 \times \mathrm{v} 102-15$	2250.91	8446964 no	CADACIT - CILIFP mica, C1458 C145-DESIGNED
$1 \times \mathrm{V} 1 \mathrm{c}^{\text {2-15 }}$	225091	8446964 no?	CAPACIT - SILVFR MICA. CIA5C IN 4 SEGMEIVTS
1xv90?-15	2.250, 1	8446904 10\%	CAPACIT - SILVFR *ICA. C145D)
1xv102-49	232298	3462635501	Coytact ascemelv - part of ilil3 SLIDI : ADJUSTMFNT
1xv102-45	236512	3467564501	BASE ASSEMBLY, SCREEN GRID COLLET
$1 \mathrm{x} \times 102-48$	-323n1	3462533401	
$1 \times \vee 102-47$	'323n?	$3462534{ }^{\text {a }}$ ¢ 12	SPACER PT MF 1L193 SEMI-FIXFD ADJUSTAENT
1x,10?-09	225106	8515078 - 01	Ping - pasillator
1xv102-10	225037	9843044 0.07	WASHER - TEFLON PHSHING
1xv10?-11	23,4n5	8519977×14	
$1 \mathrm{x} \times 1 \mathrm{n} 2-16$	097457	426763 CO	InSULATIN - vS5k4nnq, anttom of Socket
1xv102-39	P17714	426703 P 0	TNSULATAO - NS5:4003. InP OF SOCKET
$\begin{aligned} & 1 \times v 102-41 \\ & 9 \times v 17 S \end{aligned}$	208195	$426705-00$	
			- N.EF METFRM. KIT
12101	419265	3456497501	SUPPRESSOR NETWORK
17102	419265	3456497501	SUPPRESSOR NETWORK - PART OF MI-560510A
			P/L 8541907-505 REV 24
MECHANICAL	PARTS		
173	249529	3721194009	SCREW - PAN HEAD . 090 (10)-32 x. 75 LONG, PLASTIC, SECURES RING (ITEM 157) TO SHELF (ITEM 11)
11	2374.9		Shalf - MEDEO, for cil3
8	243450	8486379	SUPPIRT - DLASTIC. MOUNTS SHELF, STOCK NO. 230429, RIGHT SIDE
10	2434:9	8486379 0.3	SUPPART, FLASTIC. MOUNT'S SHELF, STOCK NO. 230429, REAR
9	24.3473	8494379 rus	SUPPORT: - PLASTIC, MOUMTS SHELF, STOCK NO. 230429, IEFPT SIDE
32	999983	464586 nol	
161	2434×0	3467932 n01	SHORTING - 3A1L. PART DF ILI05
29	230433	8766808 nup	PLATE - DaCKIWG, PART NF 1 L105
28 156	23043?	8760808001	dLate - patking, part df qlida
156 155	243471	$34642019=7.3$	LEAD SCRF ASSY - PART OF 1L1n5 OR 1LIT0,
155	243462 243461	3456357-01	GUIIE - STEIP. PART OF 1-105 nR 1L106
157 158	243461 743463	3730738 3456428 0.01	PING - SPACEE, USED UNDER 1C113 RLDCK - SPACEF, USED AT ROTTOY OF OUTPIJT
39	330424	8468301501	LTME ASSEMFLY COVTACT AGCEMELY. FOR 11105 AND 11906
167	243472	69273 9 83	BQASS GTU - 4/4-7n $\times 2.75$ LG, PABT OF
42	230425	8766820501	nUTPUT LINF ASSEMRLY
150	P11081	$426767 \mathrm{rl}^{18}$	insillatin - ? RFGD. 3/4 dia x 3.00 iv lg PART OF 1 I10A HARMONIC GUPRESSOR
160	231040	426767 r15	insulatof - Stait., $3 / 4$ in dia x 2.50 -G PART OF :RgO7 HADMONIC SUPRESSJR
54	233672	48036A 9, 7	STUJ - FASTENER, HODR UPPFR
55	233869	$8886047{ }^{4803}$	WASHER - betaiving, dMor stud
57	23.3871	480368 tof	STHD - FACTFNER HODR MI'JNLE
[5.4	333876	480302 810	STUD - FACTENER, NOOR BOTTOM
$\bigcirc 0$		$87810744^{0} 09$ 8761074 50,	CONTACT ACSEMBLY - DNOR, 95.75 LONG
53	, 3388.34	43342250 K	BIAL - ACSFYQLY
A8	233835	748594 「12	TRIVE - SiAnt amgie

Symbol	Stock No．	Drawing No．	Description
		8494371501	COUNTER ASSEMBLY
4	220304	8986503 n 02	COUNTER
7	ก974K1	8 827138 ก0？	GEAR－MTPR
A	212531	8914895501	GEAR ASCFMALY－INCLIJDES MITER GEAR IND RRASS PUSHINR
10	922202	8513284001	JUINT－HATVERSAL
117	235298	74858ヶ 113	DRIVE－FITHT AAGIE，DRIYES 11105，1L110
70		$8494371-02$	COUNTER ASEEMGLY
11	220303	8986503 n01	COUNTEQ
7	0974 K1	8827138 －02	GEAR－TTFR
B	212531	$8914895{ }^{51}$	GEAR ASCEMDLY－INCLUDCS MITER GFAR AND BRASS EIEATNG
10	92つ2n\％	8513284 nu1	JOINT－HNTVERSAL
72	211297	8910643002	JOINT－HYYVRSAL．ATTACHES TO RIGHT AJGLE
75	235436	1510920 117	KNOE－PA DLATE TIINING OR PA OUTPUT LOADING
76	209711	8898610 －01	COIJPLING－INSULATFD，FLFXIBLF
79	211370	$42677 ?$ ？ 03	
80	？11423	426765 C0，	INSULATOR－STEAT．3／A IH DIA X ．5n In LG
Ro	230475	8491388503	CABLE ASSEMBLY－PA TUBE SOCKET CHTMNEY（CONNECTS 1XV102 TO 1C115 AND 1C116－ 2 REQUIRED）
97	2304？8	854445801	RETAINEH
107	22．6714	345078 ？ 03	CONTACT－FINGFRS．DOOR
108	215854	8413444 EU1	CONTACT－ISEEMBLY，DOnR 4．88 INCHES I JNG
	243454	8544435502	JUMPER CAUIE ASSY－JUMPEQS DNOR HINGḞ
38	243890	8489378501	
33	243903	840437500	RLOCK－SEACER，FOR TOP OF 1 L 905
32	24.39 ก4	8494375 A01	PLOCK－SOACFR，FOR TOP OF 1L100
52	？ 43889	8543110 へ01	DOJR－HI TEE COR RF ROX
1 L111			INTUCTOR－VARIARIE，FRONT
109	243892	345576301	SHORTIMG JLOCK． $87.5 \mathrm{MH7}$ TO 101.9 Mm ？
109	213801	3455763 ro？	SHORTIAG HLOCK，102．1 H47．T！ 107.9 Mdy
10？	243803	3455135 －01	PLATE－SRPD TUAING INJUCTIR，87．5 MHZ TO 89.9
$10 ?$	$? 43894$	3455764 r01	PLATE－TRIO TUNING INDUCTOR． 90.1 MHZ TO 101.9
102 1L11？	24.3895	3462804 PG1	$\begin{aligned} & \text { PLATE - F2ID TUNING INMICTOR, } 102.1 \mathrm{MHZ} \mathrm{TO} 107.9 \\ & \text { MHZ, MI-560356-3 } \end{aligned}$
101	243892	3455763 n01	SHORTINF GLOFK，87．5 MH7 TO 101.9 MH ？
101	24．3891	3455763 rol	SHORTIVİS LLOCK， 102.1 MHZ TO 107.9 Mil
103	423094	3724280001	PLATE－GRID TUNENG INDUCTOR，87．5 MHZ TO 89.9 MHZ，MI－560356－6
103	243805	3455764 ro2	plate－Gylo tuming innıictor， 90.1 MHZ TO 101.9 MHZ，MI－560356－2
103	243896	3462864 n01	$\begin{aligned} & \text { PLATE - GRID TUNING INIUCTOR, } 102.1 \mathrm{MHZ} \text { TO } 107.9 \\ & \text { HARAONIC MHZ, MI-560356-3 } \end{aligned}$
134	24.3897	3455147001	TURIVG－2 RFOUPRFD， $11 / 8 \mathrm{nla} \times$（ 318 LG
133	243808	345515K n01	CLAMP－a REJUIRED RESISTA．－1R10A，SEE EIECTRICAL PARTS HAKMONIC SUPPESSOR，INCLUDES YRIOT
134	？ 43807	3455147001	
133	743808	3455156 ค09	CLAMP－PEDUIREN
160	231640	426767 「15	InSULATIR－？REDT， $3 / 4$ DIA $\times 2.50$ IHLG RESISTA．－1R1ח7，SFE FIECTRICAL PARTS
			POWER DETERMINING COMPONENTS MI－560510A
1． C 7	230070	990194 r61	PAPER，HV FILTER， $1.5 \mathrm{MF} 10 \% 10,000 \mathrm{~V}$
1 C 8	230070	$990194+61$	PAPER，HV CILTER，1．5 MF $90 \% 10.00 \mathrm{O}$
1 Clif	205656	3724573501	MICA，METKP RYDASS ． 110 MFD 2 Ox， 250 V
10113	$\begin{aligned} & 423771 \\ & 230076 \end{aligned}$	$\begin{aligned} & 8642607507 \\ & 8761062501 \end{aligned}$	P．A．HLOCKING CONTACT ASSEMBLY（2 REQUIRED）PART OF 1C113

SUGGESTED STATION SPARES (BTF-2OE1)

Description	Symbol	Quantity	Stock No.
Capacitor, ceramic, 500 uFF, 5000 V	1C140 thru 1C143	1	232610
Capacitor, ceramic, $1500 \mathrm{UuF}, 3500 \mathrm{~V}$	1C144	1	209906
Capacitor, feed-thru, 1000 uuF, 2000 V	1C114, 1C118, 1C147	1	236759
Capacitor, feed-thru, . $001 \mathrm{uF}, 5000 \mathrm{~V}$	1 C 110	1	211148
Capacitor, feed-thru, $1500 \mathrm{uuF}, 15,000 \mathrm{~V}$	1C119	1	230419
Capacitor, paper, . $001 \mathrm{uf}$,	1C106 thru 1C109 1 C 121 , and 1 C 122	2	211196
Capacitur, paper, $6 \mathrm{uF}, 2500 \mathrm{~V}$	1 C 5	1	229778
Capacitor, paper, 1.5 UF, 10,000 V	1C7, 1C8	1	230070
Capacitor, silvered mica	1C117A thru D, 1C145A thru D (Part of 1XV102)	4	225081
Capacitor, stand-off, 1000 uuF, 500 V	$\begin{aligned} & 1 \mathrm{C} 103,1 \mathrm{C} 104,1 \mathrm{C} 127,1 \mathrm{C} 128 \text {, } \\ & 1 \mathrm{C} 129,1 \mathrm{C} 131,1 \mathrm{C} 132,1 \mathrm{C} 133 \\ & 1 \mathrm{C} 134,1 \mathrm{C} 136 \text { thru } 1 \mathrm{C} 139 \end{aligned}$	6	214638
Capacitor, vacuum, 40 uuF, 7500 V	1C124*, 1C126*	1	227938
Capacitor, vacuum, 25 uuF, 7500 V	1C125, 1C126*	1	235990
Lamp (for use in optic meter relay)	Part of 1M5 or 1M7	3	231545
Capacitor, PA plate blocking	1 C 113	1	423771
Contact Assembly, PA plate blocking	Part of 1C113	2	230076
Contact, control grid	Part of 1XV102	1	220958
Contact, inner filament	Part of 1XV102	1	220960
Contact, outer fildament	Part of 1XV102	1	220959
Contact, PA neutralizing slider	Part of 1L113	3	232298
Spacer (used with Stock No. 232298)	Part of 1L113	3	232301
Filter	Air filter for 1B2	3	225125
Lamp, indicator	1DS1A thru 1DS6B and	3	300449
Lamp, indicator	2DS1	3	42607-1
Rectifier Stack $\langle 9.6 \mathrm{kV}$ PIV CR 307	Part of Rectifier 2Z1	1	426162
Individual diode module for $2 \mathrm{Z1}$ (right hand)	Part of Rectifier $2 \mathrm{Z1}$	6	418002
Individual diode module for 2 Z 1 (left hand)	Part of Rectifier $2 \mathrm{Z1}$	6	418003
Rectifier, low voltage (Diode Module only)	1Z2, 1Z3, and 1Z4	3	230913
Rectifier, bias	121	1	229803
Contact Assembly (contacts mounted on metal strip for 1L105, 1L106)	Part of 1L105, 1L106	4	230424

[^2]

WIRE TABLE		3724456-501		
Wire nos.	DESCRPTITIN		$\begin{aligned} & \text { LIST OF PARTS } \\ & \text { ITEM NUMEEF } \end{aligned}$	wo
Cince	COLOR \& CONDUCTOR			
17015	${ }_{191.013}^{\text {whl }}$	372040-1/	46	7,10,12
217026	Wमite 12 AWG 191.020 1000 V	3724900/13	47	
317033	$\begin{aligned} & \text { size 2/0 ams } \\ & \text { sincolk } \end{aligned}$		\%ener	Sst nates
41		2010853-14.	48	
31 10.53	$\begin{aligned} & 71.0772=7 \text { fiVG } \\ & \text { BLACK } \\ & \hline 000 \mathrm{~V} \end{aligned}$		2nersom	seemen
$3_{170}{ }^{3} 3$			\#ursumben	
5	$\operatorname{mim}_{\% / 027}^{* / 2}=\operatorname{lime}$	37244001/2	so	

4- USE THE FOLLOWING TERMINALS TO SUIT REQUIREMENTS
$\left.\begin{array}{l}\substack{898998-26 \\ 89882998-52} \\ 9989\end{array}\right\}$ SOLDERLESS
845462.2 है।
 Natent

DIMENSIONS IN INCHES

RCA TYPE NO.	DESCRIPTION	STOCK NO.
QR2900	INDIVIDUAL RIGHT HAND MODULE FOR CR3O7 INCLUDES DIODE, HEAT SINK, R-C NETWORK AND ASSOCIATED HAREWARE.	418002
QR2901	INDIVIDUAL LEFT HAND MODULE FOR CR3O7 INCLUDES DIODE, HEAT SINK, R-C NETWORK AND ASSOCIATED HARDWARE.	418003

RCA TYPE NO.	WORKING P.R.V.	TRANSIENT P.R.V.	MAXIMUM FORWARD CURRENT	
CR307	9.6 KV	11.5 KV	$50^{\circ} \mathrm{C}$	

DETAILS OF CR307 RECTIFIER STACKS USED IN HIGH VOLTAGE RECTIFIER ASSEMBLY MI-560340-4.

Figure 44. High Voltage Rectifier Assembly

Figure 45. High Voltage Plate Transformer Terminals

Figure 48. Blower Vane Setting

Drawing No.	Stock No.	Style	Dimensions In Inches					Tap
			A	B	C	D	E	Size
426762-12	55081	3	3.0	3/4	1-1/2	3/8	-	10-32
426763-3	97459	4	0.425	3/4	1/2	15/32	0.173	-
426765-3	211423	1	3/8	1/2	0.16	-	-	6-32
426765-9	208115	1	3/8	3/4	1/4	-	-	6-32
426766-6	211371	1	1/2	3/4	1/4	-	-	8-32
426767-121	208325	1	3/4	4.0	3/8	-	-	10-32
426767-12	209091	1	3/4	2.0	3/8	-	-	10-32
426767-118	211081	1	3/4	3.0	3/8	-	-	10-32
426763-9	217719	4	0.438	3/4	1/2	15/32	0.200	-
426765-112	208116	2	3/8	1/0	3/8	-	-	6-32
426772-3	211370	2	1/2	3/4	1/4	-	-	8-32
426767-106	97458	2	3/4	1-1/4	3/8	-	_	10.32
426767-115	231640	2	3/4	2-1/2	3/8	-	-	10.32
8519977-4	233495	1	1/2	0.656	0.22	-	-	8-32
426767-15	231640	1	3/4	2-1/2	3/8	-	-	10-32

Figure 49. Insulator Data

This bulletin also applles to RCA-

Ceramic-Metal Seals Coaxial-Electrode Structure Compact Design

7203/4CX250B BEAM POWER TUBE
 RCA
 \longrightarrow

 $7204 / 4 \mathrm{C} \times 250 \mathrm{~F}$ which is identical with RCA-7203/4CX250B except for its heater rating of $26.5 \pm 10 \%$ volts, 0.58 ampere. The 7204 is unilaterally interchangeable with the $4 \times 250 \mathrm{~F}$ and bilaterally interchangeable with the 4 CX 250 F .For Use at Frequencies up to 500 Mc Forced-Air Cooled
400 Watts CW Output to 175 Mc
250 Watts CW Output at 500 Mc 2.464" Max. Length

1.640" Max. Diameter
Integral Radiator

RCA-7203/4C×250B is a very small and compact forced-air-cooled beam power tube constructed with ceramic-metal seals throughout and having a maximum plate dissipa-
 tion of 250 watts. It is intended for service as an af power amplifier and modulator, a wideband amplifier in video applications, a linear rf power amplifier in single-sideband sup-pressed-carrier equipment, and a class C amplifier and oscillator. The 7203 can be used with full ratings at frequencies up to

500 megacycles per second.
The ceramic-metal-seal construction employed in the 7203 permits operation at higher temperatures than a glass-seal construction and thus provides improved reliability. The specially designed, high-efficiency radiator which is brazed directly to the plate for better heat transfer, makes possible the maximum plate-dissipation rating of 250 watts with no sacrifice in tube reliability.

The terminal arrangement of the 7203 facilitates use of the tube with tank circuits of the coaxial type. Effective isolation of the output circuit from the input circuit is provided at the higher frequencies by the ring terminal for grid No.2. A base-pin termination forgrid No. 2 is also available for operation of the 7203 at the lower frequencies.

The 7203 is unilaterally interchangeable with the $4 X_{250} B$ and bilaterally interchangeable with the ${ }_{4} C X 250 B$.
GENERAL DATA
Electrical:
Heater. for Unlpotentlal Cathode:
Voltage (AC or DC) §.
Current at 6.0 volts.

[^3] Avallable from E. F. Johnson Co.. Waseca, Minn.

AF POWER AMPLIFIER \& MODULATOR-Class $A B_{\mid}$

Typical CCS Operation:

DC Plate voltage	1000	1500	2000	volis
DC Grid-No. 2 voltage	350	350	350	volts
$\begin{gathered} \text { DC Grid-No. } \\ \text { vollage. } \end{gathered}$	-55	-55	-55	volis
Peak AF Grid-No.1-to-Grid-No. 1 Voltage.	94	94	94	volls
Zero-Signal DC plate Current	166	166	166	ma
Max.-Signal DC plate Current.	500	500	500	ma
Zero-Signal DC Erid-No. 2 Current	0	0	0	ma
Max.-Signal DC Grid-No. 2 Current (Apdrox.).	10	8	8	ma
Effective Load Resistance (Plate to plate)	3300	6000	8700	ohms
Max.-Signal Driving Power (Approx.).	0	0	0	watts
Max.-Signal Power output (Approx.).	220	400	590	watts

Maximum Circuit Values:
Grid-No.1-Circuit Resistance (Per tube). 0.1 max. megonm
RF POWER AMPLIFIER-Class B Television Service
Synchronizing-level conditions per tube unless otherwise specified
Maximum CCS Ratings, Absolute-Maximum Values: \#
54 to 216 Mc volts
2000 max. vol
OC PLATE VOLTAGE
2000 max.
OC GRID-NO. 2
400 max.
-250 max.
OC GRID-NO. 1
DC PLATE CURRENT (Average) ${ }^{\circ}$. 250 max.
PLATE DISSIPATION. 250 max.
GRID-NO. 2 DISSIPATION. 12 max.
GRID-NO. 1 DISSIPATIDN. . .
Heater negative with respect
lo cathode
150 max.
150 max. volis
Heater positlve with respect to cathode
ypical CCS Operation with Bandwidth of 5 Mc:

Power Output (Approx.) :			
Synchronizing level. 160	300	44	watts
Pedestal level 90	170	250	watts
LINEAR RF POWER AMPLIFIER Single-Sideband Suppressed-Carrier Service			
Maximum CCS ${ }^{\text {® }}$ Ratings, Absolute-Naximum Values: ${ }^{\text {\# }}$			
oc plate voltage	2000	ax	volts
OC GRID-NO. 2 VOLTAGE	400	ma	volis
max.-SIGNaL dC Plate current	250	max.	ma
plate dissipation.	250	max.	watts
GRID-NO. 2 DISSIPATIDN. ${ }^{\text {PEAK HEATER-CATHODE VDLTAGE: }}$. ${ }^{\text {a }}$. 12 max. watls			
Heater negative with respect to cathode		x.	volts
Heater positive with respect to cathode	150		vol

Typical CCS Class $A B_{1}$ "Single-Tone" Operation \quad up to 175 MC:d

DC Plate vol	1000	1500	2000	volts
DC Grid-No. 2 Voltagef.	350	50	350	vol is
DC Grid-No. 1 Voltage	-55	-55	-55	volis
Zero-Signal DC Plate Current	83	83	83	ma
zero-Signal DC Grid-No. 2 Current	0	0	0	ma
Effective RF Load Resistance	1650	3000	4350	onms
Max.-Signal DC Plate Current	250	250	250	
Max.-Signal DC Grior-No. 2 Current	5	4	4	
Max.-Signal Peak RF GridNo. 1 voltage	47	47	47	vol
Max.-SIgnal Driving Power (Approx.).	0	0	0	wat ts
Max.-Signal Power Dutput (Approx.).	110	200	295	

Typical CCS Operation with "Two-Tone Modulation"
at $30 \mathrm{Mc}:{ }^{\infty}$

PLATE-MODULATED RF POWER AMP.-Class C Telephony
Carrier conditions per tube for use with a max. modulation factor of 1.0
Maximum CCS ${ }^{\bullet}$ Ratings, Absolute-Maximum Values: ${ }^{*}$
op to 500 Mc
$\begin{array}{ll}\text { DC PLATE VOLTAGE } & 1500 \text { max. volls } \\ \text { DC GRID-NO. } 2 \text { VOLTAGE } & 300 \text { max. volts } \\ \text { DC GRID-NO. } 1 \text { VOLTAGE } & -250 \text { max. volts }\end{array}$
$\begin{array}{ll}\text { DC GRID-NO. } 1 \text { VOLTAGE } & -250 \text { max. volts } \\ \text { DC PLATE CURRENT } & 200 \max \end{array}$

ate dissipation.		165 max.		
GRID-NO. 2 DISSIPATION.		8 max.		ts
GRID-NO. 1 DISSIPATION.				
peak heater-cathode voltage:				
Heater negative with respectto cathode.d				
Heater positive with respect				
Typical CCS Operation at Frequencies up to 175 Mc				
DC Plate voltage	500	1000	1500	volts
DC Grid-No. 2 V8ltage (Modulated	250	250	250	volts
DC Grid No. 1 Voltage*.	-100	-100	-100	volts
Peak RF Grid-No. 1 Voltage.	113	113	113	volts
DC Plate Current	200	200	200	ma
DC Grid-No. 2 Current	32	31	31	a
DC Grid-No. 1 Current (Approx.)	6		6	ma
Driving Power (Approx.)	0.7	0.7	0.7	att
Power Output (Approx.)	50	140	235	watt

Maximum Circuit Values:
 Grid-No. 1-Clrcult Resistance Under Any Condition. 25000 max. ohms

RF POWER AMPLIFIER \& OSC.-Class C Telegraphy \dagger and
 RF POWER AMPLIFIER—Class C FM Telephony

Maximum CCS Ratings, Absolute-Maximum Values:*
Ob to 500 Mc

Typical CCS Operation at Frequency of 500 Mc with Coaxial Cavity:

Maximum Circuit Values:

Grla-no. 1-Circuit Resistance Under Any Condition

25000 max. ohms

	Note	Min.	Max.	
Direct Interelectrode Capacī̄ tances (Types 7203\& 7204):				
Grid No. 1 to plate	-	-	0.06	$\mu \mu{ }^{\prime}$
Grid No. 1 to cathode. grid No.2. and heater.	-	14.2	17.2	$\mu \mu \mathrm{f}$
Plate to cathode. grid No.2, and heater.	-	4.0	4.8	$\mu \mu *$
Grid-No. 1 Vol tage:				
Type 7203.	1,3.7.8			
Type 7204.	2,3.7.8	-32	-46	volts
Grid-No. 2 Current:				
Type 7203.	1.3.7.8			
Type 7204.	2.3.7.8	-7	+3	ma
Useful Power output:				
Type 7203.	5.7 .8			
Type 7204.	6.7 .8	225	-	watts

Note 1: With 6.0 volts on heater.
Note 2: With 26.5. volts on heater.
Note 3: With deplate voltage of 1000 volts. dc grid-No. 2 voltage of 300 volts, and grid-No. 1 voltage adjusted to give plate current of 150 ma .
Note 4: With platefloating, de grid-No. 2 voltage of 300 volts, and grid-No. 1 voltage adjusted to give grld-No. 2 current of 50 ma.
Note 5: With heater voltage of 5.5 volts, de plate voltage of 2000 volts, de grid-No. 2 voltage of 300 volts, dc gridNo. 1 blas of -90 volts, de grid-No. 1 current of 25 ma maximum, grid-No. 1 signal voltage adjusted to produce de plate current of 250 ma , and coaxial-cavity amplifier circuit operating at a frequency of 475 Mc .
Note 6: Same as Note 5 except heater voltage is 24.3 volts.
Note 7: With Forced-Air Cooling as specified under GENERAL DATA-Air-System Socket.
Note 8: Heater voltage must be applied for at least 30 seconds before application of other voltages.

SPECIAL PERFORMANCE DATA

Interelectrode Leakage:

This test is destructive and is performed on a sample lot of tubes irom each production run under the following conditions: ac heater volts $=6.6$ for type 7203 or 29.1 for type 7204, no voltage on other elements, and specified forced-air cooling for Air-System Socket. At the end of 500 hours, with tube at $25^{\circ} \mathrm{C}$, and with no voltage applied to heater, the minimum resistance between indicated electrodes as measured with a 500 -volt Megger-type ohmmeter having an internal impedance of 2.5 megonms, will be:

Grid No.1 and Grid No.2. 10 min . megohms
Grid No. 1 and Cathode. $10 \mathrm{~m} / \mathrm{n}$. megohms
Grid No. 2 and Cathode. 10 min . megonms
§ Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant bombardment as the frequency is increased with resultant increase temperature, the heater voltage should frequency to prevent overneating the cathode and resultant short life.

- With cylindrical shteld JEDEC NO. 320 surrounding radiator: and with a cylindrical shield JEDEC NO. 321 surrounding the grid-No. 2 ring terminal. Both shields are connected to ground.
* The maximum ratings in the tabulated data are established in accordance with the following definltion of the 1 bso-lute-Maximum Rating Systemfor rating electron devices. Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specifled type as defined by its published data, and should not be exceeded under the worst probable conditions.
The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility for equipment variatlons, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughoutlife no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and varlations in device characteristics.
\bullet
Subscript 1 indicates that grid-No. 1 current does not flow during any part of the input cycle.

- Continuous commercial service.
* Averaged over any audio-frequency cycle of sinewave form.
\oplus
\downarrow
The driver stage is required to supply tube losses and rf circuit losses. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components. in initial tube characteristics. and in tube characteristics during life.

16

"Single-Tone" operation refers to that class of amplifier service in which the grid-No. 1 input consists of a monofrequency $r f$ signal having constant amplitude. This signal is produced in a single-sideband suppressedcarrier system when a single audio frequency of constant amplitude is applied to the input of the system.
\ddagger
T preferably obtained from a fixed supply.

- "Two-Tone Modulation" operation refers to that class of amplifier service in which the input consists of two equal monofrequency r f signals having constant amplitude. These signals are produced in a singlesideband suppressed-carrier system when two equal-and-constant-amplitude audio frequencies are applled to the input of the system.
** Wh thout the use of feedback to enhance linearity. Measured at load of output circuit having indicated efficiency.
4 The dc grid-No. 2 voltage must be modulated approximately 55\% in phase with the plate modulation in order to obtain 100 modulation of the 7203 . The use of a series grid-no. 2 resistor or reactor may not give satlsfactory performance and is therefore not recommended.
* Obtained from grid-No. 1 resistor or from a combination of grid-No. 1 resistor with either fixed supply or cathode resistor.
\dagger Key-down conditions per tube without amplitude modulation. Amplitude modulation essentlally negative may be used if the positive peak of the audio-frequency envelope does not exceed 115\% of the carrier conditions.

OPERATING CONSIDERATIONS

The maximum temperatures in the tabulated data for the base seals, grid-No. 2 seal, plate seal, and plate are tube ratings and are to be observed in the same manner as other tube ratings. The temperature of the respective seals and of the plate may conveniently be measured with temper-ature-sensitive paint, such as Tempilaq. The latter is made by the Tempil Corporation, 132 W. 22nd Street, New York II, N.Y. in the form of liquid and stick.

The socket for the 7203 should be of a type (such as is indicated in the tabulated data) which permits adequate air-cooling of the tube. Although the base will fit a conventional lock-in socket, the latter does not permit adequate cooling and its use is therefore not recommended.

The plate connection is made by means of a metal band or spring contacts to the cylindrical surface of the radiator. $1 t$ is essential that the contact areas be kept clean to minimize rf losses especially at the higher frequencies.

The ratedplate andgrid-No. 2 voltages of this tube are extremely dangerous to the user. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all partswhich may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of this primary circuit until the door is again locked.

Fig. 1 - Typical Plate Characteristics of Type 7203.

Fig. 2 - Typical Characteristics of Type 7203.

Fig. 3-Typical Constant-Current Characteristics of Type 7203.

Fig. 4 - Typical Constant-Current Characteristics of Type 7203.

DIMENSIONAL OUTLINE

GRID-NO. 1 PLUG DIMENSIONS ARE MEASURED BY THE USE OF THE SERIES OF GaUges shown in sketches G_{1} and G_{2}. in the FOLLOWING INSTRUCTIONS FOR THE USE OF THESE GAUGES. "GO" indicates that the entire grid-No. 1 plug key will enter the gauge: and "no-go" indicates that the gridono. 1 PLUG KEY WILL NOT ENTER THE GAUGE MORE THAN 1/16". INSTRUCtions for the use of the gauges follow:
\triangle GAUGES $G_{1}-1, G_{1}-2, G_{1}-3$, AND $G_{1}-4$:
USING ONLY SLOT C. TRY THESE GAUGES IN NUMERICAL ORDER UNTIL ONE IS FOUND THAT WILL ACCEPT THE ENTIRE

GRID-No. 1 PLUG. USING THE FIRST GAUGE THUS FOUND, IT WILL NOT BE POSSIBLE TO INSERT THE GRID-NO. 1 PLUG IN SLOT 8.

- gauges $G_{2}-1, G_{2}-2$. AND $G_{2}-3$:

THE GRID-NO. 1 PLUG WILL BE REJECTED BY GAUGES G2-1 AND $G_{2}-2$, BUT WILL BE ACCEPTED BY GAUGE G_{2}^{-3}.

* base-pin positions are held to tolerances such that the entire lengih of the pins will, without undue force, pass into and disengage from the flat-plate gauge shown IN SKETCH G3.

Gauge Sketch $G_{\text {I }}$

Gauge	Dimension A
	. $2575{ }^{\prime \prime}{ }^{+} .0000^{\prime \prime}$
1	. $2575^{\prime \prime}$ - . $0005^{\prime \prime}$
	+.0000"
$\mathrm{G}_{1}-2$. $2600{ }^{*}$ - . $0005^{\prime \prime}$
G_{1}	. $2625^{\prime \prime}$ + .0000"
1	. $2625^{\prime \prime}$ - . $0005^{\prime \prime}$
$G_{1}-4$. $2650{ }^{\prime \prime}$ + .0003"
1	. 2650 - . $0005^{\prime \prime}$

Gauge Sketch G_{2}

Gauge	Dimension	
	A	B
$G_{2}-1$	$.2550^{\prime \prime}+.0000^{\prime \prime}-.0005^{\prime \prime}$	$.125^{\prime \prime}$
$G_{2}-2$	$.2980^{\prime \prime}+.0000^{\prime \prime}$	none
$G_{2}-3$	$.0005^{\prime \prime}$	no80" $+.0000^{\prime \prime}$

Suggested Design for Extractor to Remove Tube from Cavity

NOTE I: BURR MUST NOT EXCEED $0.002^{\prime \prime}$
IN DIRECTION PERPENDICULAR TO FLAT SURFACES. THE COARESPONDING
FLAT SURFACES OF THE TWO LEGS
SHOULD BE IN THE SAME PLANE
SHOULD BE

Gauge Sketch G_{3}

> Information furnished by RCA is believed to be accurate and rellabie. However, no responsibility is assumed by RCA for its use; nor for any Infringements of patents or other rights of third parties which may result from its use. No ilcense is granted by impllcation or otherwise under any patent or patent rights of RCA.

The EIMAC $8281 / 4 \mathrm{CX} 15,000 \mathrm{~A}$ is a ceramic-metal power tetrode intended for use as a Class-C amplifier in radio-frequency applications. It features a new type of internal mechanical structure which results in higher rf operating efficiency. Low rf losses in this mechanical structure permit operation of the $8281 / 4 \mathrm{CX} 15,000 \mathrm{~A}$ at full ratings up to 110 megahertz.

The $8281 / 4 \mathrm{CX} 15,000 \mathrm{~A}$ is also recommended for Class-AB audiofrequency and radio-frequency linear power amplifier service.

general CHARACTERISTICS

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down conditions)

MAXIMUM RATINGS						
DC PLATE VOLTAGE	-	-	-	-	-	10,000
VOLTS						
DC SCREEN VOITAGE	-	-	-	-	-	2,000
VOLTS						
DC PLATE CURRENT	-	-	-	-	-	5.0
AMPS						
PLATE DISSIPATION	-	-	-	-	-	15,000 WATTS
SCREEN DISSIPATION	-	-	-	-	-	450 WATTS
GRID DISSIPATION	-	-	-	-	-	200 WATTS

TYPICAL OPERATION

DC Plate Voltage -	-	-	7,500	10,000 volts	
DC Screen Voltage	-	-	-	750	750 volts
DC Grid Voltage -	-	-	-	-510	-550 volts
DC Plate Current -	-	-	-	4.65	4.55 amps
DC Screen Current	-	-	-	.595	.545 amp
DC Grid Current -	-	-	-	.300	.275 amp
Peak RF Grid Voltage	-	-	-	730	790 volts
Driving Power -	-	-	-	220	220 watts
Plate Dissipation -	-	-	-	8,100	9,000 watts
Plate Output Power	-	-	26,700	36,500 watts	

PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER

Class-C Telephony (Carrier Conditions unless noted)

DC PLATE VOLTAGE			-		8,000		Volts
DC SCREEN VOLTAGE	-	-	-	-	1,500		VOLTS
DC PLATE CURRENT		-	-	-	4.0		AMPS
PLATE DISSIPATION		-	-	-	0,000		WATTS
SCREEN DISSIPATION					450		WATTS
GRID DISSIPATION					200		WATTS

*Corresponds to 15,000 watts at 100% sinewave modulation.

TYPICAL OPERATION

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB ${ }_{1}$					
MAXIMUM RATINGS (Per Tube)					
DC PLATE VOLTAGE		- -		10,000	VOLTS
DC SCREEN VOLTAGF	-	-		2,000	VOLTS
DC PLATE CURRENT	-	- -		6.0	AMPS
PLATE DISSIPATION	-	- -	-	15,000	WATTS
SCREEN DISSIPATION		- -		450	WATTS
GRID DISSIPATION	-	- -		200	WATTS
*Per Tube **Approximate Values					

TYPICAL OPERATION (Two Tubes)

DC Plate Voltage	7,500	10,000
DC Screen Voltage	1,500	1,500 volts
DC Grid Voltage	-350	-370 volts
Max-Signal Plate Current	8.8	8.5 amps
Zero-Signal Plate Current*	1.0	1.0 amp
Max-Signal Screen Current**	. 340	. 300 amp
Zero-Signal Screen Current	0	0 amps
Peak AF Driving Voltage*	330	340 volts
Driving Power	0	0 watts
Load Resistance, Plate-to-Plate	1,730	2,520 ohms
Max-Signal Plate Dissipation*	12,200	14,000 watts
Max-Signal Plate Output Power	41,600	57,000

RADIO-FREQUENCY LINEAR AMPLIFIER

Class-AB
MAXIMUM RATINGS

DC PLATE VOLTAGE	-	-	-	-
DC SCREEN VOLTAGE	-	-	-	-
DC PLATE CURRENT	-	-	-	-
2,000	VOLTS			
VOLTS				
PLATE DISSIPATION	-	-	-	-
SCREEN DISSIPATION	-	-	-	-0
AMPS				
GRID DISSIPATION	-	-	-	-
WATTS				
-	-	-	-	200
WATTS				
WATTS				

GRID DISSIPATION
200 WATTS
*Approximate Values

TYPICAL OPERATION, Peak-Envelope or Modulation-Crest Conditions

[^4]
APPIICATION

MECHANICAL

Mounting-The 4CX15,000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

Socket - A new, more efficient EIMAC AirSystem Socket Type SK-300A has been designed especially for the concentric base terminals of the $4 \mathrm{CX} 15,000 \mathrm{~A}$. The use of recommended airflow rates through this socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-316, into the anode cooling fins.

Cooling - The maximum temperature rating for the external surfaces of the $4 \mathrm{CX} 15,000 \mathrm{~A}$ is $250^{\circ} \mathrm{C}$. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic-metal seals below $250^{\circ} \mathrm{C}$. Air-flow requirements to maintain seal temperatures at $225^{\circ} \mathrm{C}$ in $50^{\circ} \mathrm{C}$ ambient air are tabulated below (for operation below 30 megacycles).

$\begin{gathered} \text { Plate } \\ \text { Dissipation. } \\ \text { (Watts) } \end{gathered}$	SEA LEVEL		10,000 FEET	
	${ }_{\text {cter }}^{\substack{\text { air flow } \\ \text { (cFM) }}}$	$\begin{aligned} & \text { Pressure } \\ & \text { Drop (unches } \\ & \text { of Water) } \end{aligned}$	$\underset{\substack{\text { Ait flow } \\ \text { (CFMM) }}}{\text { fiw }}$	$\begin{aligned} & \text { Pressure } \\ & \text { Drop sinches } \\ & \text { of Water) } \\ & \hline \end{aligned}$
7,500	179	0.8	283	1.27
12,000	358	2.4	566	3.8
15,000	513	4.2	812	6.64

- Since the power dissipated by the filament represents about 1000
watts and since grid-plus-screen dissipation can, under some conditions, represent another 600 watts, allowance has been made in preparing this tabulation for an additional 1600 watts dissipation.
The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

ELECTRICAL

Filament Operation - The rated filament voltage for the $4 \mathrm{CX} 15,000 \mathrm{~A}$ is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum
tube life. In no case should it be allowed to deviate by more than plus or minus five percent from the rated value.

Electrode Dissipation Ratings - The maximum dissipation ratings for the $4 C X 15,000 \mathrm{~A}$ must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods, such as may occur during tuning.

Control-Grid Operation - The 4CX15,000A control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

Screen-Grid Operation-The power dissipated by the screen of the $4 \mathrm{CX} 15,000 \mathrm{~A}$ must not exceed 450 watts.

Screen dissipation, in cases where there is no AC applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 450 watts in the event of circuit failure.

Plate Dissipation - The plate-dissipation rating for the $4 \mathrm{CX} 15,000 \mathrm{~A}$ is 15,000 watts.

When the $4 \mathrm{CX} 15,000 \mathrm{~A}$ is operated as a platemodulated r-f power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 10,000 watt maximum plate dissipation rating will be exceeded.

Special Applications - If it is desired to operate this tube under conditions widely different from those given here, write to the Power Grid Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.

4 CX 15,000 A

R®ת Technical Bulletin

Maintenance and modification notes on equipment supplied by RCA Commercial Electronic Systems Division

BTF-20E1
February 4, 1972
TB-334-3
IB-8027531

EXTENDING TUBE LIFE IN FM TRANSMITTERS

Proper attention to the filament voltage of the 4CX5000A/8170, 4CX10,000D/8171 and 4CX15,000A/8281 tubes used in RCA FM broadcast transmitters can result in greatly increased tube life.

Excessive filament voltage causes rapid deterioration of the filament resulting in limited tube life. An Eimac Engineering Newsletter states "Theoretically it is estimated that a 3% increase in filament voltage will result in a $20^{\circ} \mathrm{K}$ increase in temperature, a 20% increase in peak emission, and a 50% decrease in life due to carbon loss".

Note that at the normal 7.5 volts for the 4CX5000A and 4CXIO,000D, this 3% is an increase of only 0.225 volts. The normal 4CXI5,000A filament voltage is 6.3 volts.

The newsletter suggests that for "extended life in broadcast and communication service" the filament voltage be 7.2 volts for the 4CX5000A and $4 \mathrm{CXIO}, 000 \mathrm{D}$ tubes. The list suggests 6.0 volts for the 4CX15,000A. Naturally it is assumed that a voltmeter of sufficient accuracy will be used.

However, many stations have reported to us that when the filament voltage is adjusted to the lowest value that does not limit the power, when the new tube is first installed and is very carefully maintained at that point by regular and careful adjustment of the filament voltage, several extra thousands of hours are obtained.

A further increase in tube life may be realized by using a constant voltage transformer to regulate the filament voltage. This is particularly true where there are line voltage fluctuations such as may be experienced at the top of tall buildings or at the end of long rural lines. The line voltage variations may prevent maintaining the filament voltage at the optimum value. There are a number of satisfactory units available to control these fluctuations of filament voltage. One such satisfactory unit where the line frequency is maintained closely is the "Sola" constant-voltage transformer.

Further, the Sola types listed have sufficient capacity to also handle the bias supply in the present RCA transmitter. The following chart lists the various types for 50 and 60 Hertz.

$\frac{\text { Tube Type }}{}$	$\frac{60 \mathrm{~Hz} \text { Type }}{}$		50 Hz Type
$4 C \times 5000 \mathrm{~A}$ or $4 \mathrm{CXIO}, 000 \mathrm{D}$	$23-25-210$	$23-25-710$	
$4 \mathrm{CX15}, 000 \mathrm{~A}$	$23-25-215$		$23-25-720$

Connection instructions are available for using the Sola type constant voltage transformers indicated. Please write to:

RCA FM Merchandising
RCA Corporation
Building 2-7
Camden, New Jersey 08102
U.S.A.

A.B	AC Contactors Series K Construction	Bulletin 702	\bullet Size 3

MAINTENANCE - These contactors are constructed to be virtually trouble-free. Periodic inspection of the movable and stationary contacts is the only maintenance required.
REPAIRS - Contactors can be disassembled as depicted in the illustrations on Page 2 of this Parts List. Additional consideration should be given to the techniques below.

REMOVING MAGNET ARMATURE Bulletins 702-702L - To remove the magnet armature from the movable contact support, insert screwdriver into slot as illustrated and lift screwdriver in the direction
 shown. At the same time push the magnet armature out. It may be necessary to wiggle the armature before it can be removed because of the pressure applied by the retainer spring.

REPLACING OPERATING

COIL - To replace the operating coil, first insert the magnet yoke into the operating coil as shown. After this has been done, insert both the operating coil and the magnet yoke as a unit into the coil
 cover. When replacing the coil cover into the switch unit, be sure the operating lever of the interlock contact rests on top of the movable contact support.

AC Contactors

AC Contactors

ELECTRICALLY HELD CONTACTORS - OPERATING COILS

Volts	Hz	2-3 POLES				
		Coil Number	Coil Current		*Volt-Amperes	
			Inrush	Sealed	Inrush	Sealed
120	60	73 A 6	4.82	356	580	43
110	50		5.10	400	550	44

electrically held contactors - renewal parts

Description of Part	Bulletin 702
	3 Pole
	Part No.
Stationary Contact Block Assembly (includes contacts, spacer and cover)	X-355655
Stationary Contact Block Assembly (less contacts)	X-355659
*Contact Block Spacer (only)	F-20424
\star Contact Block Cover (only)	X-232807
Movable Contact Support Assembly (includes contacts and springs)	X-232705
Movable Contact Support Assembly (less contacts and springs)	F-20527
Movable Contact Spring	B-29071
Yoke and Armature Assembly $60-50 \mathrm{~Hz}$ (includes retainers and spring)	Z-31850
Yoke and Armature Assembly 25 Hz (includes retainers and spring)	Z-31854
*Yoke (only) 60.50 Hz	X-22/198
\star Yoke (only) 25 Hz	X-264859
*Armature (only) $60-50-25 \mathrm{~Hz}$	X-227197
Coil Cover - Without Interlock Contact	2-21139
Coil Cover - With Normally Closed Interlock Contact	2-21136
Coil Cover - With Normally Open Interlock Contact	2-21137
Coil Cover - With Normally Open-Normally Closed Interlock Contact	2-21138
Set of Front and Rear Stationary Contacts	2-23375
Set of Movable Contacts and Springs	2-21117
Set of Front and Rear Stationary Contacts, Movable Contacts and Springs	X-247290
\star Single Pole Contact Set ($\mathbf{\Delta}$)	2-34040

troen $-\cdots$

Worid Radio History

THESE TERMINALS ARE LOCATED ON THE INTERFACE RELAY PANEL LOCATED IN THE COMBINING EQUIPMENT CABINET OF THE BTF－40 TRANSMITTER．

TBR－1 TERMINALS ARE FOR THE REMOTE CONTROLS AND RUN TO＂A＂BOOTH．THESE
 TBR－2 TERMINALS ARE FOR THE TRANSMITTERS．ORANGE WIRE FOR PA \＃1 AND BLUES WIRE FOR PA \＃2．

CONTROL SIDE CONNECTIONS ．．．．TBR－1

TBR－1 FUNCTION

1
2
3
4
5
6
7

8

9

10
11
12
13
14
15
16
17

COMMON
FIL ON（1\＆2）
FIL OFF（1\＆2）
plate on \＃1
PLATE OFF \＃1
PLATE ON \＃2
PLATE OFF \＃2

RAISE•POWER（1\＆2）
LOWER POWER（1\＆2）
RESET \＃1（OL）
RESET \＃2（O．L．）
PLATE OFF LIGHT \＃1
PLATE ON LIGHT \＃1
PLATE OFF LIGHT \＃2
PLATE ON LIGHT ⿰⿰三丨⿰丨三一2
OVERLOAD \＃1 LIGHT
overload \＃2 LIGht

WIRE NUMBER
1

2

3

4

5
6
7

8

9

10

11
12
13
14

15

16
17

FUNCTION
COMMON
FIL ON (1\&2)
FIL OFF (1\&2)
PLATE ON \#I
PLATE OFF \#1

PLATE ON \#2
PLATE OFF \#2
RAISE POWER (BOTH)
LOWER POWER (BOTH)
OVERLOAD RESET \#1

OVERLOAD RESET \#2
PLATE OFF LIGHT PA \#1
PLATE ON LIGHT PA \#I
PLATE OFF LIGHT PA \#2
PLATE ON LIGHT PA \#2.
OVERLOAD LIGHT PA \#1
OVERLOAD LIGHT PA \#2

TERMINAL
(SEE BELOW*)
2TB-16

2TB-15
2TB-12

2TB-11

2TB-8
2TB-7
1TB-8

1TB-4
2TB-4

2TB-4

4TB-7 \& 8
4TB-11 \& 12
$3 T B-19 \& 20$
$4 T B-3 \& 4$

3TB-16
3TB-15
*COMMON...WIRE \#1 CONNECTED TO THE FOLLOWING:
$1 \mathrm{~TB}-1 \& 5, \quad 2 \mathrm{~TB}-1,5,6,9,10,13,14, \quad 3 \mathrm{~TB}-2,6,14,18,4 \mathrm{~TB}-2,6,10,14,18$
(WIRING FOR CONTROL OF THE 5KW AM MAIN TRANSMITTER NOT SHOWN HERE.)

WIRE SIZE IS \#18 AWG. BLUE WIRING TRANSMITTER \#2 WIRING. GREEN WIRING REMOTE CONTROLS TO BOOTH "A" ORANGE WIRING TRANSMITTER \#1

WHITE WIRING POWER SUPPLY B- RETURN AND CATHODE RETURN PA \#2 BLACK (\#8451) METERING PA \#2
(18) Ep PA \#2 1TB1-10 (RED) (BLACK N. C.) (19) Po PA \#2 1TB1-11 (BLACK), 1TB1-12 (RED)
(20) Tpo

```
&, & %:= ?
```

 (F) 析
 !
- $\begin{aligned}-12=1 & =1 \\ \cdots & \vdots \\ \cdots & \vdots 1\end{aligned}$
タードいま

○品

WHILE THE REMAINDER (TB2-46 HERE) INDICATES THAT THE FAR END OF THIS WIRE IS C ONNECTED TO TERMINAL BOARD TB2, TERMINAL 46. IN EACH CASE USE THE $\# 16$ AWG HOOKUP WIRE PROVIDED, EXCEPT WHERE OTHERWISE SPECIFIED.

BIAS SUPPLY WIRING MODIFICATION
DISCONNECT AND REMOVE WIRE NO. 134 (WHICH NORMALLY CONNECTS TERMINAL 2 OF REACTOR IL4 TO TERMINAL 1 OF RESISTOR IR28).. DISC ONNECT AND REMOVE WIRE NO. 135 (WHICH NORMALLY CONNECTS TERMINAL 2 OF REACTOR IL4 TO $1 C 14$ TERMINAL 1). CONNECT A WIRE FROM 1 L4 TERMINAL 2 TO THE UPPER TERMINAL OF THE ADDED 10 UF CAPACITOR, MOUNTED ON THE TRANSMITTER SIDE PANEL. FOLLOW THE TRANSMITTER EXISTING WIRING CABLE ROUTING WHEN INSTALLING THIS AND SUBSEQUENT WIRING. GROUND THE LOWER TERMINAL OF THE 10 UF CAPACITOR TO ONE OF ITS MOUNTING BOLTS. CONNECT THE UPPER TERMINAL OF THIS CAPACITOR TO THE REACTOR MOUNTED IMMEDIATELY ABOVE IT. CONNECT THE OTHER TERMINAL OF THE 10 HENRY REACTOR TO TERMINAL I OF RESISTOR IR28. CONNECT A WIRE FROM TERMINAL 1 OF 1 Cl 14 TO TERMINAL 1 OF RESISTOR 1 R28.

WIRE NO. 133 NORMALLY IS CONNECTED FROM TERMINAL 2 OF RESISTOR IR9 TO RESISTOR 1 R28 TERMINAL 1. DISC ONNECT THE END CONNECTED AT IR28 TERMINAL 1 AND RECONNECT TO THE MID-TAP OF THE TAPPED RESISTOR SUBSTITUTED FOR IR28.

Added-PA\#2 $11 / 2 / 88$ 7.81.
CONNECT THE THREE 20 UF CAPACITORS MOUNTED NEAR THE TOP OF THE TRANSMITTER SIDE PANEL IN PARALLEL. GROUND THE LOWER TERMINALS TO THE MOU NTING HARDWARE. CONNECT THE UPPER TERMINALS TO FEED THROUGH CAPACITOR $1 C 114$ WHERE CONNECTION IS MADE TO WIRE NO. 8.

SCREEN SUPPLY CHANGES
CONNECT THE THREE 20 UF CAPACITORS MOUNTED BELOW TRANSFORMER 1 T3 IN PARALLEL. GR OUND THE COMMON LOWER TERMINAL. CONNECT THE OTHER SIDE OF THE PARALLEL COMBINATION TO THE CENTER TERMINAL OF DRIVER SCREEN CONTROL IR38.

DRIVER PLATE SUPPLY CHANGES

AN ADDED FILTER SECTION IS ADDED TO THE DRIVER PLATE SUPPLY.
WIRE NO. 235 NORMALLY CONNECTS CAPACITOR IC5 TERMINAL 1 TO RESISTOR IR39. DISCONNECT WIRE NO. 235 AND CONNECT A LENGTH OF HIGH VOLTAGE WIRE FROM IC5

THESE drawings and Specifications are the property of radio corporation
OF america, and shall noi be reproduced, or copied, or used as the bais for the manufacture or sale of apparatus or devices without permission ab
(CONTINUED ON SHEET 3)

INSTALLATION INSTRUCTIONS MI-560307-31		
DESIGNED BY Checked ay		
	3721204	

 OPERATION OF BTF-20E1 FM TRANSMITTERS.

THE PRIMARY PURPOSE OF THIS KIT IS TO MAKE IT POSSIBLE TO OPERATE A BTF-2OEl FM TRANSMITTER AT 7.5 KW POWER OUTPUT (OR MORE) AND MEET THE FCC SPECIFICATION PERTAINING TO AMPLITUDE MODULATION NOISE (-50 db , REFERRED TO CARRIER AMPLITUDE). THIS IS ACHIEVED BY IMPROVED POWER SUPPLY FILTERING.

OPERATION AT ABNORMALLY LOW POWER OUTPUT ALSO INTRODUCES HIGH MONOPHONIC DISTORTION AND POOR STEREO CROSSTALK PERFORMANCE (L+R INTO L-R). A SIMPLE MODIFICATION INCLUDED WITH THIS KIT SOLVES THIS PROBLEM BY PROVIDING HEAVIER LOADING ON THE TRANSMITTER DRIVER STAGE-ACC OMPLISHED BY LOWERING THE PA GRID BIAS.
:NSTALL KIT COMPONENTS AS DESCRIBED ON THE INSTALLATION DRAWING PROVIDED. GREAT CARE MUST BE TAKEN TO REMOVE ALL DRILL SHAVINGS AND CHIPS FROM THE TRANSMITTER AFTER ALL MOUNTING HOLES ARE DRILLED AND TAPPED. THIS IS PARTICULARLY TRUE FOR ANY SHAVINGS WHICH MAY ACCUMULATE IN THE RF UNIT.

IN ORDER TO PROVIDE MOUNTING SPACE FOR ADDED CAPACITORS, TRANSFORMER $1 T 3$ IS MOVED UPWARD SLIGHTLY FROM ITS ORIGINAL POSITION. IN ITS NEW MOUNTING POSITION the rear mounting hole used is one of of the side panel mountrng holes (see. DRILLING PLAN FOR DETAILS).

IN MOUNTING THE KIT COMPONENTS, IT IS PREFERABLE TO MOUNT BY INSERTING SCREWS THROUGH THE MOUNTING PANEL FROM THE FAR SIDE (OPPOSITE THE KIT COMPONENT) AND USING THE SCREWS AS MOUNTING STUDS.

AFTER MOUNTING THE OTHER KIT ITEMS, REMOVE PA GRID BIAS SUPPLY BLEEDER RESISTOR IR28 (630 HOMS) AND SET ASIDE. REPLACE WITH REPLACEMENT RESISTOR SUPPLIED (ITEM 12).

IN ORDER TO CARRY OUT THE WIRING CHANGES WHICH FOLLOW, IT WILL BE FOUND NECESSARY TO CONSULT WIRING DIA GRAMS AND SCHEMATICS SHOWING CIRCUITRY BEFORE THE SUBJECT CHANGES. THESE DRAWINGS ARE IDENTIFIED AS FOLLOWS:

DRAWINGS SHOWING $\{$ SCHEMATIC DIAGRAM 3476712 , INSTRUCTION BOOK, FIG. 36 CIRCUITRY BEFORE KIT INSTALLATION $\{$ TRANSMITTER WIRING DIAGRAM 3476713, INSTRUCTION BOOK FIG. 37 CONTROL PANEL WIRING DIAGRAM 3476835, INSTRUCTION BOOK FIG. 33

IN USING THE WIRING DIAGRAMS, EACH WIRE IS IDENTIFIED BY A THREE PART NOTATION, SUCH AS 322-TB2-46. IN THIS NOTATION THE FIRST NUMBER IS THE WIRE NUMBER (322 HERE),

INSTALLATION INSTRUCTIONS (CONTINUED)

TERMINAL 1 TO THE LEFT-HAND TERMINAL OF THE ADDED 4 HENRY REACTOR. CONNECT THE RIGHT-HAND TERMINAL OF THE REACTOR TO RESISTOR IR39, ALSO USING HIGH VOLTAGE WIRE. ALSO CONNECT THE ADDED 15 UP CAPACITOR FROM THE RIGHT-HAND REACTOR TERMINAL TO GROUND.

LLAMENT RHEOSTAT-PA Tubs

$$
\text { DONE] PA\#2 } 11 / 2 / 88 \text { MR }
$$

DISCONNECT THE BUSS WIRE LEAD (WIRE NO.310) NORMALLY CONNECTED FROM 1 TV TERMINAL 7 TO GROUND. CONNECT THE TWO 1 TV SECONDARY TERMINALS (NUMBERED 6 AND 8) TO THE TWO OUTSIDE TERMINALS OF THE ADDED RHEOSTAT, SOLDERING AT THE RHEOSTAT TERMINALS. CONNECT A BUSS WIRE JUMPER FROM THE RHEOSTAT CENTER TERMINAL (SOLDER) TO GROUND. SET RHEOSTAT TO CENTER POSITION AS AN INITIAL ADJUSTMENT.

IT WILL BE NECESSARY TO SET THE TAP POSITION ON THE ADDED GRID CIRCUIT RESISTOR (NEW 1R28) FOR APPROXIMATELY 175 VOLTS PA GRID BIAS DURING NORMAL OPERATION.
UTE HUM-BUCKING RHEOSTAT SHOULD BE ADJUSTED FOR MINIMUM AM NOISE.
these drawings and specifications are the property of radio corporation of america, and shall not be reproduced, or copied, or used as the basis for the manufacture or sale of apparatus or devices without permission lab

.

[^0]: ' Audio pre-emphasis 75 microseconds (50 microseconds if desired)
 ${ }^{2}$ Level measured at input jack J 109 with 400 Hz tone applied.
 ${ }^{3}$ Audio frequency response referred to 50 or 75 microsecond pre-emphasis curve.
 ${ }^{4}$ Distortion includes all harmonics up to 30 kHz and is measured following a standard 50 or 75 microsecond de-emphasis network.
 ${ }^{5}$ Relative to $\pm 6.0 \mathrm{kHz}$ deviation of the subcarrier by a 400 Hz tone, main channel modulated 70% by 50 to $15,000 \mathrm{~Hz}$ tones and 30% by subcarrier, using a narrowband detector.
 ${ }^{6}$ Relative to $\pm 75 \mathrm{kHz}$ deviation of the main carrier by a 400 Hz tone, subcarrier modulated $\pm 4.0 \mathrm{kHz}$ by 30 to 5000 Hz tones main carrier modulated 30% by subcarrier, using a narrowband detector.

[^1]: *Supplied if and as specified on sales order.
 **Supply one ES as specified on sales order.

[^2]: *Values of $1 \mathrm{C} 124,1 \mathrm{C} 125,1 \mathrm{C} 126$ vary with frequency.

[^3]: - Availablefromeltel-mcCullough, tnc.. San Bruno. Callf.

[^4]: NOTE: "TYPICAL OPERATION" data are obtainable by calculation from published characteristic curves and confirmed by direct tests. Adjustment of the ff grid drive to obtain the specified plate current at the specified grid bias, screen voltage, and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the wircut mantains the correct voltage in the presence of the variation in curlent. If grid bias is obtained principally by means of a grid resistor, the resistor must be adiustable to obtain the required bias voltage when the correct if driving voltage is applied.

