BROADCAST AUDIO EQUIPMENT

INSTRUCTIONS

Type BC-3B
 Standard Consolette
 MI-11641

Figure 1-Type BC-38 Standard Consolette

TECHNICAL DATA

DESCRIPTION

The BC-3B Standard Consolette is designed to handle the programming schedules of a station equipped with one or two studios, an announce booth, a control room, two turntables, one tape recorder and one auxiliary such as a film projector. The thirteen inputs include six microphones, two turntables, one tape, one network, two remote and one auxiliary.
The network and remote lines may be monitored by using the headset jacks. Eight inputs may be simultaneously mixed. Separate audition and program channels are provided and the monitoring amplifier may be switched from the turntable cue position, program line or audition line.
The BC-3B is completely self-contained, including the amplifiers and power supply. The unit is styled for convenience in operation, with the logical arrangement of controls using colored knobs and for convenience in servicing, with the hinged
front panel and removable louvred top cover. All RCA Audio Consolettes are similar in design so that the auxiliary units or combinations of two units present a uniform appearance. The BMC-1A Mixer may be used to give additional microphone inputs. Another convenient feature is the script holder which keeps the program where the operator may check it.

Associated Equipment

The necessary auxiliary units such as microphones, loudspeakers, turntables, tape recorders and warning lights, may be selected from the RCA catalogs. A separate sheet of instructions is packed with each unit.
In regard to loudspeakers, however, a few points should be emphasized. A maximum of two speakers may be connected to each BC-3B consolette. The loudspeaker should have a voice coil im-

Figure 2-Block Diagram
pedance of 15 ohms, or an impedance matching transformer MI-11731 must be provided.

As to warning lights, the MI-11706 Series are recommended for the Studio and Control Room. The lights which are available with inscription, are listed as follows:

ON AIR	MI-11706-1
REHEARSAL	MI-11706-2
AUDITION	MI-11706-3
STANDBY	MI-11706-4
SILENCE	MI-11706-5

An MI-11702-A Warning Light Relay is recommended for each warning light.

Circuit Description

The BC-3B Consolette amplifiers are constructed on individual etched circuit boards. External connections are made through turret type terminals on each board. The boards are secured with standard hardware to a metal chassis and are easily loosened or removed to gain access to the etched wiring.

Preamplifiers 5AR1-5AR3

Seven preamplifiers are used in the BC-3B Consolette; four units, however, are used as booster amplifiers. Two of the boosters, 5AR4 and 5AR5, are used as mixing boosters.

The preamplifier is a two-stage RC coupled amplifier using a selected 12AY7 MI-11299 twin

Figure 3—Preamplifier (5AR1—5AR3) Printed Circuit Board
triode. The input signal for the microphone preamplifier is derived from an unloaded transformer which is mounted under the preamplifier mounting

Figure 4-Schematic Diagram for Preamplifier (5ARI-5AR3)
shelf. Negative feedback is applied from the plate of the second stage to the cathode of the input stage. The output of the second stage is fed to the potentiometer type gain control (mixer, master or monitor gain control). The output signal from the gain control is applied to the grid of the third stage and then to the cathode follower output stage. A 12AY7 tube is used for the third and fourth stages. To reduce the static charge on the output coupling capacitor 1C5, which could cause switching clicks, the cathode resistance 1 R10 is returned to a negative supply and grid bias is obtained through a voltage divider 1R12 and 1R13 such that the cathode of the output stage is approximately at ground potential.

The preamplifiers, less input transformers, have a voltage gain of 46 db . An input signal of -50 dbm to the input transformer will produce an output voltage of approximately 1 volt.

Preamplifiers 5AR4, 5AR5, 5AR6, 5AR7 Used as Booster Amplifiers

When the preamplifiers are used as booster amplifiers, they vary from the preamplifiers SAR1 through 5AR3 as shown in figures 5 and 6. The Mixing Booster amplifiers are 5AR4 and 5AR5; the booster amplifiers are Program Booster 5AR6 and Audition Booster 5AR7. In the mixing boosters, the first stage is not used as the full gain of the amplifiers is not required for the network and remote line nor for the TT1, TT2, TAPE and AUX

Figure 5—Preamplifier (5AR4-5AR7) Printed Circuit Board
inputs. The input tube lV1 is omitted and input connection is made to the grid of the third stage. However, all the components are available for spe-

Figure 6-Schematic Diagram for Preamplifier (5AR4—5AR7)
cial applications requiring more gain. The full gain of SAR4 and SAR5 may be restored if desired. Refer to the procedure To Restore Full Gain to Mixing Boosters SAR4 and SARS in Installation.

In all four of the booster amplifiers, the cathode resistors 1R14 and 1R15 are connected to ground. Self bias is obtained through the voltage drop across 1R15. Since no switching is performed following the amplifier, the build-up of a charge on the output coupling capacitor $1 C 5$ is permissible.

Program Amplifier 5AR8

The program amplifier etched circuit board contains all the electrical components except the output transformer 5T7 which is mounted on the chassis directly in front of the amplifier. A 12AX7 twin triode is used for the input and phase in. verter stage, driving two 12AU7 twin triodes which are connected in push-pull parallel. Negative feedback is derived from a tertiary winding on the output transformer. An input voltage of approximately 1.35 volts is required to obtain an output of 30 dbm .

Monitor Amplifier 5AR9

The circuit and construction of the monitor amplifier are similar to the program amplifier. The output transformer 5T8 is mounted directly in front of the monitor amplifier printed circuit boards. To obtain a rated output level of 6 watts,

Figure 7-Program Amplifier 5AR8 Printed Circuit Board

Figure 8-Schematic Program Amplfier 5AR8

Figure 9-Monitor Amplifier 5AR9 Printed Circuit Board
a pair of 6V6GT tubes are used in a push-pull output stage. Approximately 1.32 volts input are required to obtain 1 watt output. The transformer secondary has taps for $600 / 150 / 16 / 8 / 4$ ohm loading.

Power Supply 5PSI

The power supply is designed for operation from $100-130$ volt $50 / 60$ cycle power line. Transformer primary taps are available for nominal line voltages of 105,115 and 125 volts. The plate supply voltages are obtained from a 5 R4GY full-wave
rectifier tube and filtered by several stages of RC networks which provide both isolation and sufficiently low ripple for the various amplifier stages. A negative supply voltage is obtained from a 6X4 tube connected as a half-wave rectifier. The 6.3 v heater winding connects through a hum adjustment potentiometer to a positive bias voltage to minimize hum due to heater to cathode leakage. A full wave bridge type selenium rectifier supplies d.c. power to the speaker relays. A tap is provided on the transformer winding to compensate for aging of the rectifier.

Figure 10-Schematic Monitor Amplifier 5AR9

Figure 11-Power Supply 5PSI

Fixed Pads

Etched wiring techniques are employed in the construction of certain fixed attenuators, the same basic board accommodates various circuit configurations and resistance values. The line input pad 5AT11 is a balanced, center tapped H-type having a loss of 30 db . The line output pad 5AT12 is a balanced H-type having a loss of 6 db . The external monitor pad 5AT13 is of the balanced L-type having a loss of 30 db .

Mixing and Switching Circuits

The outputs of the microphone preamplifier 5AR1, 5AR2 and 5AR3 are connected through the program-audition switches 5S5, 5S6 and 5S7 respectiyely to the main program or audition bus.

The attenuators of the high level input channels 5AT4 to 5AT8 connect through the program. audition switches $5 S 8$ to $5 S 12$ respectively to an auxiliary program or audition bus if these auxiliary busses feed a program and audition mixing booster amplifier. The outputs of these amplifiers in turn feed respectively the main program and audition bus. The purpose of the mixing booster amplifiers is to raise the level of the high level inputs after passing through the mixing attenuators and mixing networks and to match the impedance and signal level to that of the main program and audition bus.

Speaker Muting and Warning Light Relays 5 K 1 and 5 K 2

Relay 5K1 controls the control room speaker and control room ON AIR light. Relay 5K2 controls the Studio speaker and Studio ON AIR light. In the de-energized position, the speakers are on and the warning light circuit is open. In the energized position, the speakers are off, a load resistance being connected in their place and the warning light circuit is completed. The relays are controlled by the operation of the microphone selector switches 5S1, 5S2, and 5S3 and the respective Program-Audition switches 5S5, 5S6 and 5S7. The relays are deenergized with the switches in the center (off) position and energized in the other positions. To energize $5 \mathrm{~K} 1,5 \mathrm{~S} 1$ must be in the CR MIC position. Refer to the chart, page 13 .

Script Holder

As shown in figure 1, an aluminum bracket is mounted on the right hand side of the control panel. This bracket is designed to hold the clip board which is used in broadcast stations to hold the standard $81 / 2 \times 11^{\prime \prime}$ script sheets.

Overall System

As shown in the block diagram, figure 2, the BC.3B Consolette provides eight high level mixing

Figure 12-Schematic Diagram of Power Supply 5PSI

Figure 13-Connection Diagram of Power Supply 5PSI
channels. Three microphone mixing channels are provided with input selector switches to connect to one of a pair of low impedance microphones. There are six microphone inputs, one line input mixer channel with selector switches for one network or two remote line inputs and two high level turntable mixer channels with cuing switches on the mixer attenuators. The two remaining mixing channels may be used for high level tape and auxiliary inputs.

The outputs of each mixing channel may be switched to either a program or audition mixing bus. The program bus feeds into the program booster amplifier and master gain control to the line amplifier and through a 6 db isolation pad to the program line. The VU meter and an external monitor output are bridged across the output of the
program amplifier.
The audition bus is connected through the monitor input selector switch to the audition booster amplifier, the monitor gain control to the monitor amplifier. The monitor input selector switch connected also to the program amplifier output and turntable cue. The output of the monitor amplifier is supplied through separate relays to the control room and studio loudspeakers. These relays are controlled by the microphone input and mixer output switches to mute the speakers when a microphone is turned on in the same location. These relays also control optional ON AIR lights. The monitor amplifier also feeds cue signal to the remote lines through the remote line selector switches. The built-in power supply furnishes power to all amplifiers and relays.

INSTALLATION

Location of Consoletfe

The BC-3B Consolette may be installed on any flat top desk or table of suitable size. A minimum of $1 / 2$ inch clearance should be allowed between the rear of the consolette and the wall. Refer to the typical installation and dimensional drawings figures 15 and 16.

Type of Installation

A typical broadcast installation for a one studio system using the BC-3B Consolette is shown in figure 17.

WARNING

Do not remove top cover or open frontpanel with power turned on unless thoroughly familiar with this equipment. High voltages appear on the etched wiring boards and terminal blocks. Caution must be exercised when replacing tubes or servicing this equipment with the power turned on.

Tube Installation

Tubes are not supplied with the consolette and must be ordered as MI-11486. Insert the tubes in

Figure 14-Type BC.3B Consolette with Panel Open

Figure 15-Typical Cable Installation
the sockets as called for on figure 22. Install the selected 12AY7 (MI-11299) tubes in the socket nearest the front of the preamplifier and booster amplifier printed wiring boards. (Except omit tube in 5AR4 and 5AR5.) Slip the shields over the tubes where tube shield ground straps are provided on the sockets, making certain that the ground strap is wedged between the tube envelope and the shield.

Power Supply 5PSI Connections

The consolette is shipped with the power transformer connected for power line voltage of 110 to

120 volts. If the line voltage is outside this range, remove the four screws in each corner of the power supply chassis. Turn the power supply upside down. Remove the wire leading to terminal \#3 of the power transformer 4 4 T . If the line voltage is between 100 and 110 volts, connect this wire to terminal \#2; if it is between 120 and 130 volts, connect the wire to terminal \#4. Replace the power supply. Connect the ac power line to the barrier type terminal block 4TB1 directly behind the power transformer. For convenience a power switch may be provided externally to turn the consolette on and off.

Figure 16-Installation Diagram

External Connections

Audio wiring should be segregated into low level (microphone and turntable inputs) and high level (line input and output) cables or conduits. Low level audio lines should be shielded twisted pairs with shields preferably insulated and grounded at one end only. Low level audio wiring should be kept away from AC power and signal light circuits. Connect a ground to the heavy bus wire adjacent to the audio terminal block.

Microphone and Turntable

Connect microphone and turntable according to the table of connections on 5TB1. All microphones installed in the same studio should be phased alike. The input transformers ($5 \mathrm{~T} 1,5 \mathrm{~T} 2,5 \mathrm{~T} 3$) are connected for a balanced 150 -ohm input. If a 600 ohm input is desired, reconnect by removing jumper between terminals 1 and 3 and 4 and 6 ; jumper terminals 3 and 4. Remove ground connection from terminal \#5 and connect to terminal \#4.

If a 37.5 ohm input is desired, remove the jumpers between terminals 1 and 3 , and 4 and 6 and jumper 1 and 5 , and 2 and 6. A center tap is not available for this impedance.

Remote Line and Network Inputs

A $600 / 600$ ohm pad 5AT11 having a loss of 30 db is inserted ahead of the input transformer 5 T 4 . This pad may be modified or removed if so desired. The input transformer 5T4 is connected for $600-\mathrm{ohm}$ input. If desired it may be reconnected for 150 ohms by removing wire connected to terminal \#1 and connecting it to terminal \#2, and removing wire connected to terminal $\# 6$ and connecting it to terminal \#5.

Line Equalizer

An Equalizer, such as the RCA BE-2A, MI-11752, for compensating the frequency response of the Remote and Network Lines may be connected to terminals 25 and 26.

Program Line

The program output line is connected to terminals 53 and 54. A 6 db isolation pad 5 AT12 having the impedance of 600 ohms is provided within the consolette.

External Monitor Output

An external monitor may be connected to a built-in bridging pad 5AT13 having an output impedance of 600 ohms by making connections to terminals 55 and 56 .

Figure 17-Typical Installation for One Studio

CONNECTIONS AT TERMINAL BLOCK	
STB1	
Control Room Microphone	$1-2$
Studio Microphone 1	$3-4$
Announce Booth Microphone	$5-6$
Studio Microphone 2	$7-8$
Studio Microphone 3	$9-10$
Studio Microphone 4	$11-12$
Turntable 1	$13-14$
Turntable 2	$15-16$
Tape	$17-18$
Auxiliary	$19-20$
Remote Line 1	$21-22$
Remote Line 2	$23-24$
Line Equalizer IN	$25-26$
Network	$27-28$
Line Equalizer OUT	$29-30$
No connection	$31-32$
Program Mixing Bus	$33-34$
Program Booster Amplifier Output	$35-36$
Program Booster Amplifier Input	$37-38$
Program Amplifier Input	$39-40$
Audition Mixing Bus	$42-44$
Turntable Cue Output	$43-44$
Program Monitor Input	$45-48$
Audition Monitor Input	$46-48$
Cue Monitor Input	$47-48$
Not used	$49-50$
Not used	$51-52$
Program Line	$53-54$
External Monitor	$55-56$
Monitor Output 8 ohm	$57-58$
Monitor Output 600 ohm	$59-60$
Not used	$61-62$
Remote Line Cue Feed	$63-64$
Control Room Speaker	$67-66$
Studio Speaker	$69-70$
Control Circuit	$71-72$
Control Circuit	$73-74$
Relay Supply 24 V	$75-76$
Not used	$79-88$
Control Room Warning Light	
Studio Warning Light	

Loudspeaker Connections

The control room speaker is connected to terminals 65 and 66 and the studio speaker to terminals 67 and 68. The loudspeaker should have a voice coil impedance of $\mathbf{1 5 - 1 6}$ ohms. For other voice coil impedances, a matching transformer is suggested. It is also possible to use speakers having a voice coil impedance of $6-8$ ohms by replacing the $15-\mathrm{ohm}$ load resistors 5R40 and 5R41 with $6-8$ ohms, 5 w resistors. Reconnect the wire leading to terminal 10 of the monitor output transformer 5T8 to terminal 9 .

Warning Lights

Studio warning lights MI-11706 Series may be operated from the speaker muting relays. It is advisable to use a MI-11702-A Warning Light Relay with each warning light. The Control Room signal light circuit connects to terminals 77 and 78 , the studio circuit to 79 and 80 .

Hum Adjustment

Before placing the consolette in operation, make the following adjustment:

1. Set the input selector switches 5 S 1 to 5 S 3 to the center OFF position. Make sure that the other inputs are terminated in a resistance.
2. Set the mixer output switches $5 S 5$ to $5 S 7$ to program position \mathbf{P}.
3. Set mixers 5AT1 and 5AT3 and master attenuator 5AT9 to maximum clockwise position. Set mixers 5AT4 to 5AT8 to maximum counterclockwise position.

RELAY, SPEAKER AND WARNING LIGHT OPERATION

INPUT	MIXER SWITCHES			LOUDSPEAKERS		LIGHTS		RELAYS	
SELECTORS	SS5	556	SS7	CR	STD	CR	STD	SK1	SK2
5S1 OFF 5S1 CR MIC 5S1 MIC 1	$\begin{aligned} & \mathbf{O} \\ & \mathbf{P} \\ & \mathbf{P} \end{aligned}$			ON OFF ON	$\begin{aligned} & \text { ON } \\ & \text { ON } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { ON } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \\ & \text { ON } \end{aligned}$	OPEN CLOSED OPEN	OPEN OPEN CLOSED
5S2 AN. B $5 S 2$ MIC 2		$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$		$\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OPEN OPEN	$\begin{aligned} & \text { OPEN } \\ & \text { CLOSED } \end{aligned}$
$\begin{aligned} & 5 S 3 \text { MIC } 3 \\ & 5 S 3 \text { MIC } 4 \end{aligned}$			$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$	OPEN OPEN	$\begin{aligned} & \text { CLOSED } \\ & \text { CLOSED } \end{aligned}$
$\begin{aligned} & \text { 5S1 CR MIC } \\ & \text { 5S1 MIC } 1 \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$			$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	CLOSED OPEN	OPEN CLOSED
$\begin{aligned} & 5 S 2 \text { AN. B } \\ & 5 \mathrm{~S} 2 \mathrm{MIC} 2 \end{aligned}$		$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$		$\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$	ON OFF	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OPEN OPEN	OPEN CLOSED
$\begin{aligned} & 5 S 3 \text { MIC } 3 \\ & 5 S 3 \text { MIC } 4 \end{aligned}$			\mathbf{A}	$\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { ON } \end{aligned}$	OPEN OPEN	$\begin{aligned} & \text { CLOSED } \\ & \text { CLOSED } \end{aligned}$

4. Adjust the hum control 4 R 9 on the powei: supply chassis for minimum hum in the output to the program line.

VU Meter Attenuator

The VU meter attenuator is designed to give a meter reading of 0 on the VU scale with an output of 8 dbm delivered to a 600 -ohm load connected to the program output terminals. If it is desired to have the meter read 0 at another output level, replace resistors 5R31, 5R32, and 5R33 with the values contained in the table shown below:

Output Level (DBM)	SR31 ohms	SR32 ohms	SR33 ohms
-2	3600	0	omit
0	4047	447	16790
2	4482	883	8180
4	4896	1296	5220
6	5279	1679	3690
8	5626	2026	2741
10	5934	2334	2091
12	6203	2603	1621
14	6433	2833	1268

Control Circuit Modification

If the Announce Booth microphone input is to be used as a studio microphone, jumper terminals 70, 71 and 72 on terminal block 5TB1.

To Restore Full Gain to Mixing Boosters 5AR4 and 5AR5

The full gain of the preamplifiers 5AR4 and 5AR5 may be restored by the following charges:

1. Remove wire \#296 from terminal 2 of 5AR4 and connect it to terminal 3 of SAR4.
2. At 5AR4, connect terminal 1 to 2 . Connect a 100 K ohm $1 / 2 \mathrm{w}$ resistor between terminals 2 and 4.
3. Remove wire \#297 from terminal 2 of 5AR5 and connect it to terminal 3 of SAR5.
4. At 5AR5, connect terminal 1 to 2. Connect a 100 K ohm $1 / 2 \mathrm{w}$ resistor between terminals 2 and 4.
5. Insert MI-11299 selected 12AY7 tubes in the socket nearest the front of the preamplifiers 5AR4 and 5AR5.

Figure 18-Control Panel

OPERATION

The front panel, figure 18, and the chart Control Functions supply complete identification and function of all controls and switches on the control
panel. It is advisable to be familiar with this information for thorough understanding of the flexibility of the equipment.

CONTROL FUNCTIONS

Panel Designation	Symbol	Knob Color	Function	Coordinated with
INPUT SELECTOR SWITCHES				
CR MIC MIC 1	SS1	Black	Selects control room or studio microphone 1	SAT1, SS5
AN B MIC 2	5 S2	Black	Selects announce booth or studio microphone 2	SAT2, 5S6
MIC 3 MIC 4	$5 S 3$	Black	Selects MIC 3 or MIC 4 in studio	SAT3, 5S7
$\begin{aligned} & \text { REM } \\ & \text { NET } \end{aligned}$	554	Red	Selects remote program thru REM 1, REM 2 Selects network program	$\begin{aligned} & \text { SAT4, } 5 \text { S8 } \\ & \text { SS13, } 5 \text { S14 } \end{aligned}$
MIXER ATTENUATORS				
			Controls gain of:	
MIX 1	SAT1	Black	CR MIC or MIC 1	5S1, 5S5
MIX 2	SAT2	Black	MIC 2 or AN B MIC	5S2, 5S6
MIX 3	SAT3	Black	MIC 3 or MIC 4	5S3, 5S7
MIX 4	SAT4	Red	REM or NET lines] maximum counterclock.	5S4, 5S8
TT 1	SAT5	Blue	TT 1 wise position output of	$5 \mathrm{S9}$
TT 2	5AT6	Blue	TT 2 mixers is connected to CUE	5 S 10
TAPE	5AT7	Black	TAPE position of monitor input	5S11
AUX	SAT8	Green	Auxiliary Input j selector switch SS15	5 S 12
MIXER SWITCHES				
A-P	555	Black	When in position P, connects the mixer control to the	5S1, 5ATI
A-P	5S6	Black	program channel	5S2, 5AT2
A-P	557	Black		5S3, 5AT3
A-P	558	Red		5S4, 5AT4
A-P	559	Blue		5AT5
A-P	SS10	Blue	When in position A, connects the mixer control to	SAT6
A-P	5S11	Black	the audition channel	SAT7
A-P	5 S 12	Green		SAT8
REMOTE LINE SELECTOR SWITCHES				
	5S13		Selects remote line \#l for headphone, cue and program	$\begin{aligned} & \text { 5S4, 5S8 } \\ & \text { 5AT4 } \end{aligned}$
REM 2	5S14	Black	Selects remote line \#2 for headphone, cue and program	5 J 2
MASTER GAIN CONTROL				
MASTER	5AT9	Black	Controls gain of program channel	
MONITOR INPUT SELECTOR SWITCH				
MON INPUT	5S15	Black	Selects input of monitor amplifier, position OFF-CUE-PGM-AUD	5AT10
			ONITOR GAIN CONTROL	
MON GAIN	SAT10	Black	Adjusts level required for speakers, positions $\mathbf{0 - 2 0}$	5S15

Routine Procedure

1. Select the input desired.
2. Move corresponding A-P mixer switch to the desired function, Audition or Program.
3. Turn corresponding mixer attenuator up.
4. Turn MASTER control to level desired. (Adjust MASTER and MIXER controls to approximately the same setting.)
5. Check level on the VU meter; the meter pointer should not swing over the red line on the VU scale.
6. Monitor the selected input by turning MON INPUT to selected function. The NET or REM inputs may be monitored through headphones plugged into the jacks 5 J 1 and 5 J 2 respectively.

To put a local program on the air

1. Select the microphone inputs desired on $5 S 1$, 5S2, 5S3.
2. Move corresponding Mixer Switches as required to P position.
3. Turn MON INPUT switch $5 S 15$ to PGM.
4. Turn up MIX 1, MIX 2, MIX 3, as required, and adjust to obtain desired balance of output from the microphones.
5. Adjust MASTER gain control 5AT9 to the desired level on the VU meter.
6. The program may be monitored over both loudspeakers except that the Control Room speaker is muted when the CR microphone is in use and the Studio Speaker is muted when a studio microphone is in use. Adjust the level of the speakers as required by MON GAIN 5AT10.

To audition a program

1. Select the inputs desired $5 S 1,5 S 2,5 S 3$ or all three.
2. Move corresponding mixer switches to A.
3. Turn up corresponding MIX $1,2,3$.
4. Set the Monitor Input Selector with 5 S 15 to AUD.
5. The audition may be heard as when monitoring a program.

To put network program on the air

1. Move the key switch $5 S 4$ to NET.
2. Move Mixer Switch $5 S 8$ to P.
3. Turn MON INPUT switch $5 S 15$ to PGM.
4. Turn up MIX 4.
5. Adjust MASTER gain control to desired level.
6. Network program may be heard over both loudspeakers. Adjust the level of the speakers as required by MON GAIN control.

To audition a network program

1. Move key switch 5 S 4 to NET.
2. Move mixer switch $5 \mathbf{S 8}$ to \mathbf{A}.
3. Turn MON INPUT switch $5 S 15$ to AUD.
4. Turn up MIX 4.
5. Network audition may be heard over both loudspeakers. Adjust the level of the speakers as required by MON GAIN control.

To monitor a network program

Plug the headphones into NET jack to Monitor program as received from the network.

To put a remote program on the air

1. Switch REM 1, 5 S13 (or REM 2, 5S14) is normally at CUE position before remote operation. Then turn switch corresponding to the desired line to PGM to put program on the air.
2. Move the key switch 5 S4 to REM position.
3. Move the corresponding mixer switch 5 S8 to P.
4. Turn MIX 4 up and adjust MASTER gain control to desired level.
5. Turn MON INPUT switch $5 S 15$ to PGM.
6. Adjust speaker levels by MON GAIN control.

To audition a remote program

1. Select a remote program according to the above procedure except the mixer switch $5 S 8$ is moved to A or the audition position.
2. Turn the MON INPUT switch 5 S 15 to AUD.
3. Adjust the loudspeaker levels by the MON GAIN control.

Turntable, Tape and Auxiliary Inputs

These inputs are used for programming and auditioning in exactly the same manner as the microphone and network-remote inputs except that no input selector switch is used. To cue set the

MON INPUT selector switch SS15 to the CUE position and turn the mixer control, associated with the input to be cued to the maximum counterclockwise position past the detented off position.

Talkback to Studio

1. Set the input selector switch SS1 to CR MIC.
2. Set the mixer switch $5 S 5$ to A position.
3. Set the MONITOR INPUT selector switch $5 S 15$ to AUD.
4. Turn up the mixer gain control 5AT1 and adjust the monitor gain control 5AT10 to desired level.

For the talkback to be heard in the studio, the studio microphone input selector switches or the associated mixer output switches must not be in an ON position.

Remote Talkback (REM 1 or REM 2)

1. Set the MIX 1 key switch $5 S 1$ to CR MIC.
2. Move corresponding mixer switch ($5 S 5$) to A and turn up MIX 1.
3. Turn MON INPUT switch $5 S 15$ to AUD position.
4. Turn REM 1 switch SS9 (or REM 2, 5S14) to CUE position. The operator in the control room can now talk to the "remote" operator.
5. Plug headphones in REM jack and turn REM 1 (or REM 2) to PH position. The control room operator can now listen to the "remote" operator. By switching the remote line switch (REM $1,5 S 13$ or REM 2,5S14) between the CUE and PH positions, the console operator has a two way communication system with the remote operator. This remote talkback may be operated when a program is on the air.

To Feed Cue to Remote Line (REM 1, RIM 2)

Turn switch REM 1 (5S13) or REM 2 (5S14) to the CUE position. Cue will be automatically fed over the remote line from the monitor output.

To Cue Mixer 5AT4 to 5AT8 Inputs

The turntable, network-remote, tape and auxilliary mixer attenuators, 5AT4 to 5AT8, are-equipped with "cue" switches which in the maximum counterclockwise position connect the output of the turntables to the CUE position on the monitor input selector switch $5 S 15$. It is also possible to connect to an external cue amplifier (see Installation).

Remote Line Selector Switches 5513 and 5514
Switch 5S13 controls remote line 1; switch 5S14 controls remote line 2.

The function of these four-position switches is to-

1. Disconnect the remote line (OFF).
2. Connect the remote line to the remote phone jack 5J2 (PH).
3. Connect the remote line to the output of the monitor amplifier (through a post for sending cue (CUE).
4. To connect the remote line to the networkremote line input channel (through 5Sf, 5ATf and 5S8) (PGM).

MAINTENANCE

The BC-3B Standard Consolette may be easily serviced without disturbing the installation. The top cover which can be easily removed is fastened to the consolette by four Camloc fasteners. The front panel is hinged at the bottom and secured at the top by two Camloc fasteners. The front panel is held in the open position by two fall supports.

Tubes

The tubes of the amplifiers and power supply should be checked periodically either in a tube tester or by measuring the socket voltages. Refer to the Tube Socket Voltage chart. The values shown are measured with a voltmeter having a
resistance of 20,000 ohms-per-volt. Slight variations may be due to component tolerances.

Fuse

A power fuse is located at the right front of the preamplifier mounting shelf. This fuse should be replaced only with a type $3 A G, 3 \mathrm{amp}$ time lag fuse.

Care of Variable Aftenuators

To remove the attenuator cover, press the latch under the cover and remove it by twisting the cover counterclockwise. Apply Davenoil to the contacts and rotate the knob several times. Wipe

Figure 19-Control Circuits

TUBE SOCKET VOLTAGES

Tube Socket	1	2	3	4	5	6	7	8	9
PRE-AMPLIFIER (5AR1-5AR3)									
$\begin{aligned} & 1 \mathrm{XV} 1 \\ & 1 \mathrm{XV} 2 \end{aligned}$	$\begin{aligned} & 175-205 \\ & 115.140 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.4 \end{aligned}$	*	*	$\begin{gathered} 140.170 \\ 285 \end{gathered}$	0	$\begin{gathered} 1.7 \cdot 2.0 \\ -0.2+0.2 \end{gathered}$	***
BOOSTER-PREAMPLIFIERS (5AR4-5AR7)									
$\begin{aligned} & \text { 1XV1 } \\ & \text { 1XV2 } \end{aligned}$	$\begin{aligned} & 175-205 \\ & 115.140 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 4.5 \\ 3.4 \end{gathered}$	*	*	$\begin{gathered} 140.170 \\ 285 \end{gathered}$	0	$\begin{gathered} 1.7 \cdot 2.0 \\ 110-130 \end{gathered}$	***
PROGRAM AMPLIFIER (5AR8)									
$\begin{aligned} & 2 \mathrm{XV} 1 \\ & 2 \mathrm{XV} 2 \\ & 2 \mathrm{XV} 3 \end{aligned}$	130-150 280 280	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1.15-1.40 \\ 10.12 \\ 10-12 \end{gathered}$	*	\%	$\begin{gathered} 180-210 \\ 280 \\ 280 \end{gathered}$	- 0 0	$\begin{aligned} & 55-65 \\ & 10-12 \\ & 10-12 \end{aligned}$	\% \% \% \%
MONITOR AMPLIFIER (5AR9)									
$\begin{aligned} & 3 X V 1 \\ & 3 X V 2 \\ & 3 X V 3 \end{aligned}$	125.145 - -	*	$\begin{aligned} & 1.10-1.30 \\ & 285-290 \\ & 285-290 \end{aligned}$	$\begin{gathered} * \\ 290 \\ 290 \end{gathered}$	*	225.250 - -	-	$\begin{aligned} & 38.48 \\ & 15.18 \\ & 15.18 \end{aligned}$	**
POWER SUPPLY (5PS1)									
$\begin{aligned} & \text { 4XV1 } \\ & \text { 4XV2 } \end{aligned}$	$\overline{-380}$	380 *** -	$365 \overline{\mathrm{AC}}^{*}$	$\begin{aligned} & 365 \mathrm{AC} \\ & 365 \mathrm{AC}^{*} \end{aligned}$	-	$\begin{gathered} 365 \mathrm{AC} \\ -380 \end{gathered}$	365 AC	380***	-

5 VAC between points marked ***.
6.3 VAC between terminals marked $*$ and $* *$.
the contacts clean using a soft cloth and apply a thin film of Davenoil. Replace attenuator cover. A bottle of Davenoil is packed with the consolette.

Care of Switches, Relays and Sockets

The switches and relay contacts do not require periodic maintenance and should not be tampered with. Contacts of the tube sockets are cleaned best by pulling tubes in and out of the socket several times.

Replacement of Input and Line Transformers 5T1 to 5T6

To gain access to the input and line transformers, the preamplifier mounting shelf must be loosened.

Remove the top cover and open the front panel if desirable. Remove the four screws and hardware located at either end of the mounting shelf. Refer to figure 22. Lift the shelf up from the front and tilt it backwards to expose the transformers.

Replacement of Output Transformers 5T7 and $5 T 8$ and Attenuators 5AT12 and 5AT13

To gain access to the terminals and mounting hardware of the output transformers and pads $5 A T 12$ and 5AT13, the mounting shelf of the program and monitor circuit boards must be tilted up. Remove the four screws from each corner. No leads need to be removed from the circuit boards to service these assemblies.

Power Supply 5PS 1

Each power supply chassis is secured to the consolette cabinet by the four screws, one in each corner. To gain access to the components and wir. ing underneath the chassis, remove the screws and carefully turn the power supply upside down. The interconnecting leads are long enough to permit this change in position without disconnecting them. Make sure that the power is turned off when attempting to service the power supplies.

Servicing of the Etched Wiring Board Assemblies

The etched wiring boards are made of .062 inch thick paper base phenolic laminate to one side of which is bonded a thin sheet of copper. The conductor pattern is formed by an etching process. Component leads are threaded through holes which are punched into the board. The ends of the leads extending through the board are bent over against the copper conductors. The complete assembly is subsequently dip-soldered.

Components may be replaced easily by following these simple instructions. Care should be observed not to break or crack the board by undue stress or to damage the bonding adhesive by applying too much heat during soldering.

1. Tools Required

1. A small (35 watt or less) pencil type soldering iron.
2. A pair of small diagonal cutters.
3. A pair of small long nose pliers.
4. A scribe or pick.
5. A small knife.

2. Emergency Repairs

If it is known which component is defective, it may be replaced without removing the board from its mounting.
a. In the case of a small component, such as a $1 / 2$ or 1 watt resistor, cut the component in half using diagonal pliers. Crush the body by means of the long nose pliers. This is done to obtain extra lead length. In the case of larger components, clip the leads as close as possible to the component body.
b. Using long nose pliers, form a loop of the lead ends as shown in figure 20.
c. Thread the leads of the new components through these loops. Cut off the excess lead, crimp and solder the connection.

3. Permanent Repairs

a. Remove the hardware fastening the board to the chassis and tilt the board up.
b. Isolate the defective component. If it is nec. essary to disconnect a component from the circuit for test, heat the junction of the component lead and the etched wiring with the soldering iron. The heat should be concentrated on the component lead rather than the etched wiring pattern. Pry up and straighten the bent-over portion of the component lead with a knife blade, then pull lead through the hole with pliers.
c. To remove the defective component, snip the leads off at the component side of the board, see figure 20.

Figure 20-Replacement of Components in Printed Circuits
d. Using a small soldering iron (35 watts or less) heat the leads and remove them from the printed wiring side of the board. Be careful not to apply too much heat or force to avoid damage to the thin copper conductors.
e. Clean and preform the leads of the new com. ponent and insert through the holes until the component body is tight against the board.
f. On the circuit side, grasp the component lead and bend it over in the direction of the circuit pattern.
g. Crimp the wire tightly against the board (see figure 20), and cut off the excess component lead. Leave about $1 / 1 ;$ inch of wire protruding from the edge of the hole.
h. Heat the lead and apply rosin core solder. DO NOT USE PASTE OR ACID FLUX. Remove excess rosin from the joints with alcohol.
i. Replace the circuit board, using the original hardware.

4. Replacement of Tube Socket

Heat each socket terminal and pry up and straighten with knife blade. Pull socket out applying heat to terminal leads, if necessary. Clean holes free of solder. Prepare new socket for installation as follows: If a tube shield ground strap (stock \#210773) is required, insert strap from top of socket in slot provided until firmly seated. Small ridges on strap must point outward. Bend lead terminal of strap radially outward.

Using the old socket as a guidé, bend terminal leads at right angles to fit mounting holes provided in board. Insert socket terminals through holes making sure that socket terminal numbers correspond to the numbers etched on the board near the tube socket mounting holes. Bend socket terminals radially inward. If necessary, clip off excess length to prevent short circuit with adjacent conductors. Solder terminals to the etched wiring.

LIST OF PARTS

Symbol No.	Description	Stock No.
SAR1, SAR2, SAR3	Pre-Amplifier: circuit board assembly complete with 5 capacitors, 13 resistors, 2 tube sockets and 2 ground straps. Components listed under Preamplifiers	210998
SAR4 to SAR7	Pre-Amplifier: circuit board assembly complete with 5 capacitors, 12 resistors, 2 tube sockets and 2 ground straps. Components listed under Preamplifiers	210999
SAR8	Program Amplifier: circuit board assembly complete with 6 capacitors, 12 resistors and 3 tube sockets. Components listed under Program Amplifier	211000
5AR9	Monitor Amplifier: circuit board assembly complete with 7 capacitors, 13 resistors and 3 tube sockets. Components listed under Monitor Amplifier	211001
$\begin{gathered} \text { 5AT1 to } \\ \text { SAT3 } \end{gathered}$	Resistor: variable, attenuator, 100,000 ohm, pot., 20 steps, 2 db per step, last step tapered to infinity	211002
$\begin{array}{\|c} \text { SAT4 to } \\ \text { SAT8 } \end{array}$	Resistor: variable, attenuator, 150/ 300 ohm, ladder pad, 20 steps, 2 db per step, last step tapered to infinity, with cue switch	94136
SAT9	Resistor: variable, attenuator, 100,000 ohm, pot., 20 steps, 2 db per step, last step tapered to infinity. Same as 5AT1	211002

Symbol No.	Description	Stock No.
SAT10	Resistor: variable, composition, 100,000 ohm $\pm 10 \%, 2 \mathrm{w}$	209286
SAT11	Fixed Pad: Parts listed under Fixed Pads	
SAT12	Fixed Pad: Parts listed under Fixed Pads	
SAT13	Fixed Pad: Parts listed under Fixed Pads	
5C1, 5C2	Capacitor: fixed, paper, 0.47 mf $\pm 20 \%, 200 \mathrm{v}$	73787
5C4	Capacitor: fixed, mica, 330 mmf $\pm 10 \%, 500 \mathrm{v}$	39640
SF1	Fuse: 3 amp, 125 v , slow-blow type	99164
5J1, 5J2	Jack: open circuit	53401
SK1, 5K2	Relay: D.P.D.T.	205255
5M1	Meter: VU	205249
SPS 1	Power Supply: Parts listed under Power Supply	
$\begin{gathered} \text { SR1 to } \\ \text { SR } 3 \end{gathered}$	```Resistor: fixed, composition, 150 ohm }\pm10%,1/2 ```	502115
5R4	Resistor: fixed, composition, 560 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502156
SRS	```Resistor: fixed, composition, 4700 ohm }\pm10%,1/2 w```	502247
SR6	```Resistor: fixed, composition, }56 ohm }\pm10%,1/2 w. Same a SR4```	502156
$\begin{array}{r} \text { SR7 to } \\ \text { SR11 } \end{array}$	Resistor: fixed, composition, 180 ohm $\pm 5 \%, 1 / 2 \quad \mathbf{w}$	502118
$\begin{gathered} \text { 5R12 to } \\ \text { SR17 } \end{gathered}$	Resistor: fixed, composition, $\mathbf{2 2 , 0 0 0}$ $\text { ohm } \pm 5 \%, 1 / 2 \mathrm{w}$	502322

Symbol No.	Description	Stock No.
$\begin{gathered} \text { SR18 to } \\ \text { SR27 } \end{gathered}$	Resistor: fixed, composition, 470 ohm $\pm 5 \%, 1 / 2 \quad \mathbf{w}$	502147
SR28	Resistor: fixed, composition, 5600 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502256
SR29	Resistor: fixed, composition, 18,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502318
SR30	Resistor: fixed, composition, 6200 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502262
SR31	Resistor: fixed, composition, 5600 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$. Same as 5R28	502256
5R32	Resistor: fixed, composition, 2000 ohm $\pm 5 \%, 1 / 2 \quad \mathbf{w}$	502220
SR33	Resistor: fixed, composition, 2700 ohm $\pm 5 \%, 1 / 2 \quad \mathrm{w}$	502227
5R34	Resistor: fixed, composition, 27,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502327
5R35	Resistor: fixed, composition, 560 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$. Same as 5R4	502156
5R36	Resistor: fixed, composition, 5600 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$. Same as 5R28	502256
SR37	Resistor: fixed, composition, 150 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$. Same as SR1	502115
SR38	Resistor: fixed, composition, 100,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502410
SR39	Resistor: fixed, composition, 27,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502327
$\begin{aligned} & \text { 5R40, } \\ & \text { SR41 } \end{aligned}$	Resistor: fixed, wire wound, 15 ohm $\pm 10 \%, 5 \mathrm{w}$	97441
$\begin{aligned} & \text { SR42, } \\ & \text { SR43 } \end{aligned}$	Resistor: fixed, composition, 56 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502056
5R44, 5R45	Resistor: fixed composition, 39,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502339
SR46, 5R47	Resistor: fixed, composition, 1500 olim $\pm 5 \%, 1 \mathrm{w}$	512215
5R48	Resistor: fixed, composition, 820 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502182
5R49	Resistor: fixed, composition, 4700 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$. Same as 5 R 5	502247
SR50	Resistor: fixed, composition, 560 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$. Same as 5R4	502156
SR51	$\begin{array}{r} \text { Resistor: fixed, composition, } 22,000 \\ \text { ohm } \pm 5 \%, 1 / 2 \mathrm{w} \text {. Same as } 5 R 12 \end{array}$	502322
5R52, 5R53, 5R54	$\begin{aligned} & \text { Resistor: fixed, composition, } 47,000 \\ & \text { ohm } \pm 5 \%, 1 / 2 \text { watt } \end{aligned}$	502347
5R55	Resistor: fixed, composition, 2700 ohm $\pm 10 \%, 2 \mathrm{w}$	52222
5R56	Resistor: fixed, composition, 3300 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502233
SS1 to 5S4	Switch: key lever, 2 " A " and 4 " D " type contacts, 2 way locking	211019
5S5 to 5S8	Switch: key lever, 2 " A " and 2 " D " type contacts, 2 way locking	211020
$\begin{array}{r} 5 S 9 \text { to } \\ 5 S 12 \end{array}$	Switch: key lever, 2 " D " type contacts 2 way locking	94142
$\begin{array}{r} 5 S 13 \text { to } \\ 5 S 15 \end{array}$	Switch: rotary, wafer type, 2 circuit 1 section, 4 position, non-shorting contacts	211021
$\begin{gathered} 5 \mathrm{~T} 1 \text { to } \\ 5 \mathrm{~T} 3 \end{gathered}$	Transformer: audio, input	205326
5T4	Transformer: audio, line	

Symbol No.	Description	Stock No.
$\begin{aligned} & \text { ST5, 5T6 } \\ & \text { 5T7 } \\ & \text { ST8 } \\ & \text { 5XF1 } \end{aligned}$	Transformer: audio, input. Same as 5 T 1 Transformer: audio, output Transformer: audio, output Holder: fuse	$\begin{aligned} & 205326 \\ & 209281 \\ & 207434 \\ & 205914 \end{aligned}$
MISCELLANEOUS		
	Board: terminal, 80 terminals Clamp: cable, white nylon, 3/8" I.D. Clamp: cable, white nylon, $y_{11 i}$ " I.D. Clamp: cable, white, nylon, $1 / /^{\prime \prime}$ I.D. Clamp: cable, white, nylon, $1 / 4 / 1$ I.D. Clamp: cable, white, nylon, $1 / 2^{\prime \prime}$ I.D. Clamp: cable, white, nylon, $3 / 8^{\prime \prime}$ I.D. Fastener: stud, steel, with retaining ring Fastener: receptacle, silicon bronze Knob: control, black with white filled pointer, $2^{\prime \prime}$ dia. Knob: control, black with white filled pointer, $1 \overline{10} 1_{1}^{\prime \prime}$ dia. Knob: control, blue with white filled pointer, 2" dia. Knob: control, green with white filled pointer, $2^{\prime \prime}$ dia. Knob: control, red with white filled pointer, 2" dia. Knob: key lever switch, red Knob: key lever switch, blue Knob: key lever switch, green Mounting: shock, isolator Oil: attenuator Ring: retaining, fastener Shield: tube, "Mis" I.D. $\times 13 / 8{ }^{\prime \prime}$ ht., aluminum Support: fall, single link, $61 / 4^{\prime \prime} \mathrm{lg}$., with $51 / 2^{\prime \prime}$ slot	211032 210391 209652 209653 211034 213250 213251 96145 94641 17269 17268 94444 96928 94446 94441 94442 96929 211029 20752 98480 211035 94647
PREAMPLIFIERS (5AR1 to 5AR7)		
1 Cl	Capacitor: fized, paper, 0.047 mf $\pm 10 \%, 400 \mathrm{v}$	73553
1 C 2	Capacitor: fixed, paper, 0.1 mf $\pm 10 \%, 400 \mathrm{v}$	73551
1C3, 1C4	Capacitor: fixed, paper, 0.047 mf $\pm 10 \%, 400$ v. Same as 1 Cl	73553
1C5	Capacitor: fixed, paper, 1.0 mf , $\pm 10 \%, 200 \mathrm{v}$	208077
1R1	Resistor: fixed, composition, 8200 ohm $\pm 5 \%, 1 \mathrm{w}$	512282
1 R2	Resistor: fixed, composition, 100,000 ohm $\pm 10 \%$, $1 / 2 \mathrm{w}$	502410
1R3	Resistor: fixed, composition, 1 meg $\pm 10 \%, 1 / 2 \mathrm{w}$	502510
1R4	Resistor: fixed, composition, 560 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502156
1R5	Resistor: fixed, composition, 160,.000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502416
1R6	Resistor: fixed, composition, 39,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502339

Symbol No.	Description	Stock No.
1R7	Resistor: fixed, composition, 5600 ohm $\pm 5 \%, 1 \mathrm{w}$	512256
1 R8	Resistor: fixed, composition, 200, 000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502420
1R9	Resistor: fixed, composition, 1 meg $\pm 10 \% / 1 / 2 \mathrm{w}$	502510
1R10	Resistor: fixed, composition, 91,000 ohm $\pm 5 \%, 1 \mathrm{w}$	512391
1R11	Resistor: fixed, composition, 100 , 000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$. Same as 1R2	502410
1R12	Resistor: fixed, composition, 9100 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	30671
1R13	Resistor: fixed, composition, 300,$000 \mathrm{ohm} \pm 5 \%, 1 / 2 \mathrm{w}$	502430
1R14	$\begin{aligned} & \text { Resistor: fixed, composition, } 56,000 \\ & \text { ohm } \pm 10 \%, 1 / 2 \mathrm{w} \end{aligned}$	502356
1R15	Resistor: fixed, composition, 1200 ohm $\pm 10 \%, 1 / 2 \mathbf{w}$	502212
	Socket: tube, 9 contact, miniature	209284
	Strap: ground, for miniature tube socket	210773
PROGRAM AMPLIFIER (5AR8)		
2 Cl	Capacitor: fixed, paper, 0.047 mf , $\pm 10 \%, 400 \mathrm{v}$	73553
2 C 2	Capacitor: fixed, mica, 39 mmf , $\pm 10 \%, 500 \mathrm{v}$	39618
$\begin{gathered} 2 \mathrm{C} 3, \\ 2 \mathrm{C} 4 \end{gathered}$	Capacitor: fixed, paper, 0.047 mf, $\pm 10 \%, 400$ v. Same as 2 Cl	73553
2C5	$\begin{aligned} & \text { Capacitor: electrolytic, } 20 \mathrm{mf}-10 \\ & +50 \%, 450 \mathrm{v} \end{aligned}$	99149
2C6	Capacitor: fixed, paper, 0.047 mf , $\pm 10 \%, 400$ v. Same as 2 Cl	73553
2R1	Resistor: fixed, composition, 100,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502410
2R2	Resistor: fixed, composition, 1800 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502218
2R3	Resistor: fixed, composition, 150,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502415
2R4	Resistor: fixed, composition, 680,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502468
2R5	Resistor: fixed, composition, 2700 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502227
$\begin{aligned} & \text { 2RG, } \\ & \text { 2R7 } \end{aligned}$	Resistor: fixed, composition, 120,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502412
2R8, 2R9	Resistor, fixed, composition, 470,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502447
2R10	Resistor: fixed, composition, 390 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	30498
2R11	Resistor: fixed, composition, 10,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502310
2R12	Resistor: fixed, composition, 18,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502318
$\begin{gathered} \text { 2XV1 to } \\ \text { 2XV3 } \end{gathered}$	Socket: tube, 9 contact miniature	209284

Symbol No.	Description	Stock No.
MONITOR AMPLIFIER (5AR9)		
3 Cl	Capacitor: fixed, paper, 0.047 mf $\pm 10 \%, 400$ v	73553
3 C 2	$\begin{aligned} & \text { Capacitor: fixed: mica, } 82 \mathrm{mmf} \\ & \pm 10 \%, 500 \mathrm{v} \end{aligned}$	39626
3C3, 3C4	Capacitor: fixed, paper, 0.047 mf $\pm 10 \%, 400$ v. Same as 3 Cl	73553
3C5	Capacitor: fixed, mica, 82 mmf $\pm 10 \%, 500$ v. Same as 3C2	39626
3C6	$\begin{aligned} & \text { Capacitor: electrolytic, } 25 \mathrm{mf}-10 \\ & +250 \%, 25 \mathrm{v} \end{aligned}$	52518
3C7	$\begin{aligned} & \text { Capacitor: electrolytic, } 20 \mathrm{mf}-10 \\ & +50 \% \text {, } 450 \mathrm{v} \end{aligned}$	99149
3R1	Resistor: fixed, composition, 100,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502410
3R2	Resistor: fixed, composition, 2200 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502222
3R3	Resistor: fixed, composition, 220,000 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502422
3R4	Resistor: fixed, composition, 1 meg $\pm 10 \%, 1 / 2 \mathrm{w}$	502510
3R5	Resistor: fixed, composition, 1500 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502215
3R6, 3R7	Resistor: fixed, composition, 39,000 $\text { ohm } \pm 5 \%, 1 / 2 \quad \mathrm{w}$	502339
3R8, 3R9	Resistor: fixed, composition, 470,000 ohm $\pm 10 \%$, $1 / 2 \mathrm{w}$	502447
$\begin{aligned} & 3 R 10 \\ & \text { 3R11 } \end{aligned}$	Resistor: fixed, composition, 430 ohm $\pm 5 \%, 2$ watt	522143
3 R12	Resistor: fixed, composition, 6800 ohm $\pm 10 \%, 1 / 2 \mathrm{w}$	502268
3R13	Resistor: fixed, composition, 22,000 ohm $\pm 5 \%, 1 / 2 \mathrm{w}$	502322
3XV1	Socket: tube, 9 contact miniature	209284
	Socket: tube, octal	207707
POWER SUPPLY (5PSI)		
$\begin{aligned} & 4 \mathrm{C} 1 \mathrm{~A} / \mathrm{C} \\ & 4 \mathrm{C} 2 \mathrm{~A} / \mathrm{C} \\ & 4 \mathrm{C} 3 \end{aligned}$	$\begin{aligned} & \text { Capacitor: electrolytic, } 40 / 40 / 40 \\ & \mathrm{mf}-10+50 \%, 450 \mathrm{v} \\ & \text { Capacitor: fixed, paper, } 0.47 \mathrm{mf} \\ & \pm 10 \%, 200 \mathrm{v} \end{aligned}$	211022 73787
$\begin{aligned} & \text { 4C4A/C } \\ & \text { to } \\ & \text { 4C6A/C } \end{aligned}$	```Capacitor: electrolytic, 40/40/40 \(\mathrm{mf}-10+50 \%, 450 \mathrm{v}\). Same as 4 Cl```	211022
4C7	$\begin{aligned} & \text { Capacitor: electrolytic, } 10 \mathrm{mf},-10 \\ & +50 \%, 450 \mathrm{v} \end{aligned}$	91391
4C8	$\begin{aligned} & \text { Capacitor: electrolytic, } 80 \mathrm{mf}-10 \\ & +50 \%, 450 \mathrm{v} \end{aligned}$	206108
4C9	$\begin{aligned} & \text { Capacitor: electrolytic, } 500 \mathrm{mf}-10 \\ & +250 \%, 50 \mathrm{v} \end{aligned}$	99656
4 Cl 10	Capacitor: electrolytic, $10 \mathrm{mf}-10$ $+50 \%, 450$ v. Same as 4C7	91391
4CR1	Rectificr: selenium	211023
4R1A/B	Resistor: tapped, wire wound, $100 /$ 3000 ohm $\pm 10 \%, 7.6 / 5.4 \mathrm{w}$	211024
4R2	Resistor: fixed, wire wound, 750 ohm $\pm 10 \%, 10 \mathrm{w}$	211025

Symbol No.	Description	Stock No.
4R3	Resistor: fixed, composition, 120,000 ohm $\pm 10 \%, 1 \mathrm{w}$	512412
4R4	Resistor: fixed, composition, 18,000 ohms $\pm 10 \%, 1 \mathrm{w}$	512318
4R5A/D	Resistor: tapped wire wound, $1000 / 600 / 600 / 600$ ohm $\pm 10 \%$, $1.0 / 1.5 / 1.5 / 1.5 \mathrm{w}$	211026
4R6	Resistor: fixed, composition, 3900 ohm $\pm 10 \%, 1 \mathrm{w}$	512239
4R7A/B	Resistor: tapped, wire wound, 10 ,$000 / 1500$ ohm $\pm 10 \%, 6 / 4 \mathrm{w}$	211027
4R8	Resistor: fixed, composition, 120,000 ohm $\pm 10 \%, 1 \mathrm{w}$. Same as 4R3	512412
4R9	Resistor: variable, composition, 500 ohm $\pm 20 \%, 1 / 4 \mathrm{w}$	206037
4R10	Resistor: fixed, composition, 10 ohm $\pm 10 \%, 1 \mathrm{w}$	512010
4R11	Resistor: fixed, composition, 2200 ohm $\pm 10 \%, 1 \mathrm{w}$	512222
4R12	Resistor: fixed, composition, 5600 ohm $\pm 10 \%, 1 \mathrm{w}$	512256
4R13	```Resistor: fixed, composition, 12,000 ohm }\pm10%,1\textrm{w```	512312
4R14	Resistor: fixed, composition, 5600 ohm $\pm 10 \%, 1 \mathrm{w}$. Same as 4R12	512256
4R15	Resistor: fixed, composition, 12,000 ohm $\pm 10 \%, 1 \mathrm{w}$. Same as 4R13	512312
4T1	Transformer: power	211028

Symbol No.	Description	Stoct No.
$\begin{aligned} & \text { 4XV1 } \\ & \text { 4XV2 } \end{aligned}$	Socket: tube, octal Socket: tube, 7 contact miniature Plate: mounting, electrolytic capacitor	$\begin{aligned} & 68590 \\ & 94925 \\ & \\ & 18469 \end{aligned}$
FIXED PADS (5AT11)		
$\begin{aligned} & \text { R1, R2, } \\ & \text { R3, R4 } \\ & \text { R5, R6 } \end{aligned}$	Resistor: fixed, composition, 270 ohm $\pm 5 \%, 1 \mathrm{w}$ Resistor: fixed, composition, 18 ohm $\pm 5 \%, 1 \mathrm{w}$ Board: circuit, etched, with 6 terminals	$\begin{array}{r} 512127 \\ 59486 \\ 211018 \end{array}$
FIXED PADS (5AT12)		
$\begin{aligned} & \text { R1, R2, } \\ & \text { R3, R4 } \\ & \text { R5 } \end{aligned}$	Resistor: fixed, composition, 100 ohm $\pm 5 \%, 1 \mathrm{w}$ Resistor: fixed, composition, 820 ohm $\pm 5 \%, 1 \mathrm{w}$ Board: circuit, etched, with 6 terminals	$\begin{aligned} & 512110 \\ & 512182 \\ & 211018 \end{aligned}$
FIXED PADS (5AT13)		
$\mathbf{R} \mathbf{1}, \mathbf{R} \mathbf{2}$ R3	Resistor: fixed, composition, 4700 ohm $\pm 5 \%, 1 \mathrm{w}$ Resistor: fixed, composition, . 620 ohm $\pm 5 \%, 1 \mathrm{w}$ Board: circuit, etched, with 6 terminals	$\begin{array}{r} 512247 \\ 59488 \\ 211018 \end{array}$

Figure 21-Fixed Pads 5AR11, 5AR13, 5AR12

Figure 22-Internal View of Consolette
27.28

