

OTHER BYTE PUBLICATIONS

Abstract

All PAPERBYTE ${ }^{\circledR}$ Books contain programs in machine readable object code in the PAPERBYTE ${ }^{\circledR}$ bar code format:

Other BYTE BOOKS, ${ }^{\text {TM }}$ collections of favorite articles from past issues of BYTE magazine, plus new material and addenda:
Programming Techniques: Program Design Blaise W. Liffick (ed)
Programming Techniques: Simulation ... Steve Ciarcia

The BYTE Book of COMPUTER MUSIC

EDITED BY
 CHRISTOPHER P. MORGAN

"BOOKS OF INTEREST TO COMPUTER PEOPLE
A DIVISION OF BYTE PUBLICATIONS, INC.
70 Main St., • Peterborough, N.H. 03458 • (603) 924-7217

The authors of the programs provided with this book have carefully reviewed them to ensure their performance in accordance with the specifications described in the book. The authors, however, make no warranties whatever concerning the programs, and assume no responsibility or liability of any kind for errors in the programs or for the consequences of any such errors. The programs are the sole property of the authors and have been registered with the United States Copyright Office.

Copyright © 1979 BYTE Publications Inc. All Rights Reserved. BYTE and PAPERBYTE are Trademarks of BYTE Publications Inc. No part of this book may be translated or reproduced in any form without the prior written consent of BYTE Publications, Inc.

Library of Congress Cataloging in Publication Data

The BYTE Book of Computer Music

1. Computer composition. 2. Music-Data Processing. I. Morgan, Christopher P.
MT41.B98 $789.9 \quad 78-27681$
ISBN 0-931718-11-2

Printed in the United States of America

TABLE OF CONTENTS

INTRODUCTION v
SCORTOS: Implementation of a Music Language
Hal Taylor (September 1977 BYTE) 1
A Two Computer Music System Jeffrey H Lederer, Tom Dwyer, and Margot Critchfield (March 1978 BYTE) 9
The Microcomputer and the Pipe Organ Jef Raskin (March 1978 BYTE) 19
Tune In With Some Chips
Ted Sierad (September 1977 BYTE) 27
A \$19 Music Interface
Bill Struve (December 1977 BYTE) 33
A Sampling of Techniques For Computer Performance of Music Hal Chamberlin (September 1977 BYTE) 47
Walsh Functions
Benjamin Jacoby Phd (September 1977 BYTE) 65
Simple Approaches to Computer Music Synthesis
Thomas G Schneider (October 1977 BYTE) 75
Notes on Anatomy: The Piano's Reproductive System
Chris Morgan (September 1977 BYTE) 81
Interfacing Pneumatic Player Pianos
Carl Helmers (September 1977 BYTE) 85
Electronic Organ Chips For Use in Computer Music Synthesis Robert Grappel 91
Fast Fourier Transforms On Your Home Computer
William D Stanley and Steven J Peterson 97
Fast Fourier Transforms For the $\mathbf{6 8 0 0}$
Richard Lord 105
Polyphony Made Easy
Steven K Roberts (January 1979 BYTE) 117
Music From The Altair $\mathbf{8 8 0 0}$ Computer Loring C White 121
Teach KIM To Sing
Peter H Myers 125
A Terrain Reader
Richard Gold 129
APPENDIX 143

Introduction

Computer music means many things to many people, but to the personal computer experimenter it means creating music with the aid of a small computer system. The first experiments with computer music were conducted in the 1950's at Bell Labs and RCA. The expense of using the huge computers of the day meant that only a handful of people could benefit from the experiments, though.

The microcomputer revolution has changed all that. Armed with inexpensive personal computers, a new generation of music enthusiasts, would-be musicologists and fugue fanciers are sampling the delights of digital music synthesis.

The BYTE Book of Computer Music is designed to help you get the most out of your computer music experiments. The best articles from past issues of BYTE have been combined with new material, all geared to the computer experimenter.

Beginners to the field (as well as veterans) will enjoy Hal Chamberlin's "A Sampling of Techniques for Computer Performance of Music", which discusses the basics of polyphonic synthesis and gives you directions for playing four-part melodies on a KIM computer. Or perhaps you're interested in random composition-if so, read Rich Gold's new "Terrain Reader", a remarkable program that composes music based on land terrain maps.

Other articles range from flights of fancy about the reproductive systems of pianos to a practical $\$ 19$ music interface circuit. For the more adventuresome reader we offer two new fast Fourier transform programs written in BASIC and 6800 machine language. The fast Fourier transform is a useful tool for analyzing the harmonic content of music.

Also included is Steve Robert's "Polyphony Made Easy"; a handy circuit allows you to enter more than one note at a time into your computer from a musical keyboard.

The list goes on, but we'll let the material speak for itself. We hope this information, collected in one place for the first time, will be a useful addition to your music and computer libraries.

Christopher Morgan
Editor

SCORTOS: Implementation of a Music Language

Hal Taylor

Perhaps nowhere can technology better serve the creative end of the music arts than through the computer. The computer has a natural affinity for the application to music since it is capable of carrying out processes which create and perform music. It can be programmed to learn any language the composer wishes to use to describe his musical ideas. It can manipulate the symbols of that language to produce transformations of the composer's original ideas. It can enlarge and improve the quality of the composer's creative output by allowing him to work in an interactive mode where he can hear his musical works performed within minutes of their conception.

The computer owes this affinity to its unerring accuracy and high bandwidth, qualities which its human inventors do not possess. The human mind is slow and noisy and requires years of exercise to achieve the coordination necessary to perform complex musical passages. Although the computer may never be able to match the expressive subtleties of a concert soloist, it is in some cases more suitable for the performance of music than a human being.

If a program can be devised to convert musical symbols to the sounds they repre-
sent, then the computer can be of value to the composer as a means of developing composition prototypes, that is, preliminary designs of musical works that he could hear performed before he copied the parts and gave them to the orchestra. An editing capability would also be available to him to alter the music until it produced the desired results. When the computer performed the work to his satisfaction, the original score and the instrumental parts could be published on a computer controlled plotter. With such a system the composer could avoid the drudgery of hand copying parts, and would be encouraged to experiment with new forms that he might otherwise hesitate to give to an orchestra.

The computer can also be useful to the composer as an originator of musical ideas since it can simulate the process by which the human mind creates music. A music composition consists of a series of musical events chosen from a minimum of about 200 different possibilities (consider, just 12 tones and 18 types of notes). Only certain of these combinations are pleasing to the human ear. The composer's job is to discover those combinations which produce aesthetic results. The manner in which he or she

Photo 1: The modified ADM-III video terminal. The keytops on the ASCII keyboard have been modified to enable the user to easily encode musical compositions. See figure 1.
does this is personal, intuitive, and cannot by itself form the basis for a workable algorithm. It is possible, however, to infer some of the underlying rules of music by analyzing it. Whether we are composing with our minds or with a computer, we follow a set of rules that determine which pitches will be chosen, in what order they will be arranged, and how long each will last in time.

The set of rules describes the style and structure of the music and can be represented in a computer by a statistical model. A process can be programmed into the computer that uses the model to decide which musical events are suitable for use in the composition. The process is one in which random choices are discarded according to a stochastic model. /According to Webster's, stochastic processes are processes based on the behavior of random variables. Random variables, in turn, are functions which are the result of statistical experiments in which each outcome has a fixed probability. For example, the number of spots showing if two dice are thrown is a random variable . . . CM/ In order to produce a musical event, the program generates a random number which it associates with a variable such as pitch or time. The number is then subjected to the constraints of the model. The model is constructed by feeding specimens to an analysis program which are representative of the desired compositional style. The specimens are analyzed according to pitch, time and chord structure, and a probability matrix of n dimensions is generated, where n is the degree of order desired and represents the extent to which the analysis was carried out. As n increases, progressively more order is imposed upon the process, since more information is available to describe the
desired composition and less is left up to chance.

Zeroth order stochastic control is no control at all. Random choices are used to build the composition without testing them against the model producing unlistenable music in most cases. In first order control, the transitions between pitches and rhythms are governed by the probability distribution of those transitions as they occurred in all the analyzed samples. Music produced in this manner still sounds amorphous, but will have fewer pitches that sound alien.

It is not until we impose higher order control that a melody as we know it will take shape with its symmetrical phrases and regular intervals. In second order control, the selection of an event depends upon the event that preceded it; in third order control the previous two notes, and so on. For example, if the previous note chosen was a B-flat and the random number generator has just produced a C, the program refers to that location in the probability matrix which gives the probability of a C following a B-flat. If there is no probability of this happening, the C is rejected. If the probability is 1.00 then a C always follows a B-flat in this style of music, and the program will reject random numbers that are not Cs.

Of course the source of the information within the model need not be music specimens, as in this example, but may originate from mathematical functions, poetry or any one of a hundred other sources. It is this capability which makes the computer so intriguing as a composer's tool.

The Score to Sound System

The Score to Sound System (SCORTOS) was developed to provide the composer with

Figure 1: A standard alphanumeric keyboard modified for the SCORTOS language. SCORTOS is a language dedicated solely to the processing of musical information. The keyboard is a standard ASCII unit which has been relabeled with music symbols. The user enters a musical composition by striking the keys which correspond to the symbols in the music score of the composition (see also photo 1).

an inexpensive means of conducting computer implemented music research and composition prototype development. The system has the capability to perform conventional music scores by allowing music symbols to be entered through a terminal keyboard by an operator. Music of computer generated specifications can be performed through user program calls to a set of subroutines that interface the user program to the SCORTOS system software.

Music is produced by the computer driving relays that are wired in parallel to the keyboard switches of electronic music instruments - organs, synthesizers, etc. This allows a simple and inexpensive interface between the composer's studio instruments and the computer. The limitation of this approach is in its inability to provide the computer with access to the timbre controls of the synthesizer, an encumbrance which may be tolerable to experimenters primarily interested in the musical variables of tonality and syntax. Also, there is a rich assortment of preset timbres available in commercial keyboard instruments, among them, the Orchestron which generates actual orchestral and choral sounds from a prerecorded optical disk.

The system consists of an Altair 8800 computer with 32 K bytes of memory, an ADM-III video terminal, a mass storage device (either cassette or floppy disk), one or more International Data Systems 88-RCB relay control boards and any electronic keyboard instruments the user wishes to connect to the $88-\mathrm{RCBs}$.

The ADM-III has a standard ASCII keyboard whose keytops have been relabeled with music symbols (see figure 1 and photo 1). The composer enters the composition into the computer by striking the key corresponding to each musical symbol as it appears in the score. This creates a music text file. The source text is passed to a language processor which maps each musical event represented in the source text into a physical 10 address plus a timing value, and writes this to a binary output file. The result is a list of records each of which defines which key of which instrument will be turned on and for how long. The binary output of the language processor is read by a driver program which uses the 10 addresses and timing values in each record to determine what data is to be loaded into the data registers of the 88 -RCBs, and at what time it is to be loaded. The keyboard instrument responds by playing the piece just as if someone were playing on its keyboard. In fact, the system can be thought of as an organist with 16 very flexible fingers, because it is capable of performing 16 separate parts simultaneously.

Keyboard Instrument to Computer Interface

The 88 -RCB is the interface between the computer and the electronic keyboard instruments. It was designed expressly for the SCORTOS system project, but is also useful for other low current switching applications. The board has two 8 bit data registers which are "write only" accessible to the central processing unit (CPU) through

Photo 2: A close-up view of the component side of the 88-RCB 16 channel relay interface board which can drive a musical keyboard with signals from the computer.

Figure 2: A medium scale SCORTOS configuration. The $88-R C B$ units are relay boards which can be driven by the computer to operate organs, synthesizers or other similar instruments. Each board consists of two 8 bit data registers which can be loaded from the central processing unit. Each of these bits in turn drives a transistor which energizes a relay. One 88-RCB board can control 16 keys, or $11 / 4$ octaves of a musical keyboard. The system can address (and therefore control) up to 256 keys.
two output ports which are individually strappable to any address in the 808010 channel. The data register latches the contents of the CPU's A register when an OUT instruction has been executed to that register's output port address. The outputs of each bit of the data registers drive a transistor which in turn drives a board mounted DIP relay.

The complement outputs of the data register latches are used to drive light emitting diodes (LEDs) which can be mounted on the board or on a front panel to monitor the status of each relay. The relays are wired in parallel to the keyboard switches of the electronic music instruments which electrically isolate the peripherals from the computer and ensure plug-to-plug compatibility among most keyboard instruments.

Each 88-RCB controls 16 keys, or $11 / 4$ octaves of keyboard. To ensure an adequate tonal range, two 88 -RCBs may be configured on any instrument (see figure 2).

The maximum number of keys the system can address is 256 . In arriving at a figure of maximum connectivity, it was necessary to balance programming considerations against what was thought to be an adequate number of system-controllable sound producing peripherals. 256 keys are equal to about 20 octaves of keyboard (three full piano keyboards) which may be distributed among ten sound-producing peripherals, giving each instrument a 2 octave range. This maximum configuration seems adequate to provide for the largest studio application.

A simple method of representing keyboard address was chosen to minimize the execution time of the DRIVER program. One byte is used to represent the keyboard address (pitch), and one byte contains the length of time the event will last (rhythm). Since a music piece consists of so many events, the size of the data record is critical. It affects the total performance of the system by limiting the length of any performance to the number of event records that will fit in available memory. For this reason, it is not practical to increase the size of the event data record to accommodate a connectivity greater than 256.

The Alphanumeric Representation of Music

The conventional music score format is not the most perfect method for entering music into computers. The music symbols must be somehow transformed into a code the computer understands. In the conventional method, the operator enters data from a music score into an alphanumeric keyboard. This method has two disadvantages: it often requires multiple alphanumeric symbols to define one musical event (one character for pitch, one character for rhythm, one character for dynamics). The second disadvantage is that the choice of alphanumeric symbols must relate in some way to the quality of the musical symbols they represent, which in the past has meant that the symbols were scattered about the keyboard with no regard to their qualitative value. As a result, the data entry process was a hunt and peck procedure which may have been too discouraging for all but the most enthusiastic.

The human to computer interface should provide maximum ease in data entry and data editing. There are four ways to accomplish this:

- Choose a set of alphanumeric symbols to represent the set of musical symbols that will enable music passages to be

Music Symbol	Description	SCORTOS Code	Music Symbol	Description $\begin{gathered}\text { SCORTOS } \\ \text { Code }\end{gathered}$
-	whole note	X1	1	quarter rest 4
	half note	$\times 2$	9	eighth rest 8
	quarter note	$\times 4$	7	sixteenth rest 16
δ	eighth note	X8	9	thirty-second rest 32
$\hat{}$	sixteenth note	$\times 16$:	left hand repeat [
d	thirty-second note	$\times 32$	4	right hand repeat]
$=$	whole rest	1	邫	bar 1
-	half rest	2	$\int_{3}{ }_{3}$	triplets $\quad 3\left(X_{n} \times n \times n\right)$
Music Symbol	Description	SCOR	S Code	
C	Pitch representations			
D				Table 1: The alphanumeric
E				music coding convention used by the SCORTOS
F				system. The X symbol
G				preceding each numeric SCORTOS code symbol
A				indicates that the numeric
B				symbol must be preceded by a pitch representation
\$	sharp			before it can be recognized
Q	natural			as a note. For example, C2
d	flat			would be a half note with pitch C.
	slur			
	dot			

best recognized in alphanumeric form.

- Eliminate all redundancies in the music score.
- Position the alphanumeric symbols on the keyboard logically in the order of their musical value and group them by type.
- Generate bar markings and bar numbers automatically during data entry.

Table 1 shows the alphanumeric symbols used to represent conventional music notation in the Score to Sound System. Note that each alphanumeric symbol alludes to the quality of the music symbol it represents. A musical event can be defined by one or two symbols, depending upon whether the event is a rest or a note. A numeric symbol which is not preceded by a letter character is recognized as a rest. Notes always occur as a pair of symbols, that is, a letter character followed by a numeric symbol. Figure 3 illustrates a portion of an actual orchestral score along with its corresponding SCORTOS code.

Since the characters generated by the SCORTOS keyboard hardware do not correspond to those desired to represent the music symbols, the data entry software echoes back the desired character with the terminal in full duplex mode.

System Software

The SCORTOS System Software consists of a group of programs written in 8080 assembler language which carry out the four major functions of the system:

- entry and manipulation of the symbolic music text.
- conversion of the text to binary data.
- conversion of events initiated by user programs to binary data.
- conversion of the binary data to music.

The interaction of these programs with each other is shown in figure 4.

The monitor allows the user to control the system's major functions. It recognizes

Figure 3: A fragment of an orchestral score annotated in SCORTOS code (see listing 1).
three command verbs with one or more arguments per verb. Each verb calls a system module, and its arguments specify the data file which is to be operated upon by that module. Table 3 is a list of command verbs recognized by the monitor.

The editor allows the user to enter music text through the terminal keyboard and provides a means by which it may be easily manipulated.

As text is entered through the keyboard, the editor's data entry processor keeps a running count of the bar number and automatically informs the user when he has come to the end of a bar by displaying a slash and the next bar number on the terminal. This provides a checksum for each bar and a milestone to keep the operator informed of his position in the score. Listing 1 shows a sample of the dialog between the operator and the editor as the operator enters the score fragment in figure 3. The italicized type is supplied by the editor, the bold type by the operator.

Conventional string oriented text editors are inconvenient for use with music text since music is prone to have too many occurrences of any given string. Allowing the user to access the text by part number and bar number is more suitable since he refers to a written score in the same way. Various commands are available within the editor
which allow a user to list selected bars and make insertions and deletions in the music text at selected bar boundaries.

The converter is the system's music language processor. It scans the text of the music text file and translates the logical entities of rhythm and pitch to the physical values of time and keyboard address. For each event described in the file the converter outputs a 2 byte record which contains the duration of that event in standard system timing units, and the location of the event on the system controlled music keyboards.

Table 2 is a list of control characters recognized by the converter. In keeping with the design goal of eliminating redundancies in the music score, an equate (=) statement was developed. Using equate, repeated groups of notes need only be typed in once and equated to a symbol. Thereafter they may be brought into the music source text by typing the symbol to which they have been equated.

The driver interface subroutines allow the user to communicate with the DRIVER by providing him access to the binary output file. Through their use, a sequence of musical events may be generated from within the computer by a user written program. For example, the researcher may have made an analysis of a particular composer's style (following the procedure de-

Figure 4: The flow of information through the SCORTOS software. The monitor controls the system's major functions. The editor allows the user to enter music through the computer's keyboard (see figure 1) and to modify it as desired. Listing 1 describes this in more detail. The converter scans the text of the music text file and converts the values for rhythm and pitch into physical values of time and keyboard address. The driver interface subroutines allow the computer to play music that it has composed based on stochastic or random elements contained in the user's programs.
scribed earlier in this article) and may wish to write a program in BASIC which creates a composition based upon the properties of that style. The sequence of events that constitute the composition would be produced by calls to the driver interface subroutines.

The EVENT subroutine is the principal interface subroutine. Its calling sequence is:

CALL EVENT
DS ARG1
DS ARG2
DS ARG3
DS ARG4
where:
ARG1 = part number.
ARG2 = duration of event.
ARG3 = address of keyboard switch.
ARG4 = slur code ($0=$ no slur, $1=$ slur this
event to next event).
The DRIVER is a software representation of the inner workings of a player piano where the binary output file, subroutine CLOCK, and the DRIVER's main code are the respective analogs of the piano roll, sprocket drive and mechanical read head. All of the control features of its mechanical counterpart are available within the program, including start performance, pause, and stop performance, and some which are unique to a software simulation, such as discrete tempo control and part selection.

The DRIVER causes music to be performed by initiating and terminating musical events according to the information contained in the binary output file. The program keeps a timer for each part that is participating in the performance. When an event is initiated, the address data in the event's data record is output to the appro-
priate $88-$ RCB data register. This causes sound to emanate from the instrument to which the $88-$ RCB is connected. The timer is set to zero, then incremented 20 times per second and compared at each incrementation to the event duration field of the event's data record. When these two quantities are equal, the event is terminated by a logical exclusive OR of that event's keyboard address data with the $88-$ RCB data register. The DRIVER then proceeds to the next event record and repeats the process.

Timing is provided internally by subroutine CLOCK which contains a timing loop and which also interprets control commands from the terminal. When a call is made to CLOCK, the caller will not receive control back until a specified interval of time has passed. In this way it can be used as a time source. The time interval provided by CLOCK is used as the basic unit of time in the system. An interval of $1 / 20$ of a second is sufficient to provide the resolution necessary to perform the most complex musical passages.

The internal generation of timing is less expensive and permits the tempo of the performance to be easily varied on line. By

Table 2: Control characters used by the SCORTOS language processor.

Control Character	Meaning
Pnn	musical part number declaration, where $n n=a \operatorname{number}$ from 00 to 16
Knc	key signature declaration, where n is a number and c is $\mathrm{a}^{\text {" }}+$ " or a "一"
Tn/n	time signature declaration; ie: "T4/4" means 4/4 time
Onn	positions the CDEFGAB scale on the terminal keyboard to octave $n n$ of the external instrument's keyboard
$(\mathrm{lnn}$	repeat text within parens nn times
$<>=C$	equate all text within brackets to symbol C
Q+n	transpose all subsequent text up n steps
Q-n	transpose all subsequent text down n steps
". ${ }^{\text {a }}$	all text within quotes is treated as commentary
CTRLA	marks the end of the MUSIC TEXT FILE

```
Command Meaning
*E ab Call the EDITOR and load the source text file identified by the
    characters ab
*C ab,cd
*Pcd
```

Call the EDITOR and load the source text file identified by the characters $a b$
Load the file identified by the two character code ab and use it as input to the CONVERTER. Write the output of the CONVERTER to file cd Load the file identified by the characters cd. Call the DRIVER and perform the music described by the data in file cod

Table 3: A list of command verbs recognized by the system monitor. Each verb calls a system module, and its arguments specify the data file which is to be operated on by that module.

EDITOR

COMMAND?
FILE CODE?
ENTER PART NO. P01
0001 "SYMPHONY NO 5 (PROKOFIEV)"****OBOE" K2. T3/4 (2.)03
0005 P02
0001 " 1st FLUTE" K2-T3/4 O3 F4 G4 A8. F16 /
$0002 \quad 04$ C8. O3 B16 O4 F4 B4 I
0003 D8. E16 F4. G8 $/$
0004 F8 E8 D8 C8 O3 B8 O2 C8 I
$0005 \quad$ P03
0001 " 2ND FLUTE " K2-T3/4 etc.
Listing 1: A sample of the dialog between the operator and the system editor as the operator enters the score fragment in figure 3. The italicized type is supplied by the editor.
striking the keys labeled "rit" or "accel" on the terminal keyboard, the operator can retard or accelerate the tempo of the performance by 2.5% for each stroke of the key.

The use of processor cycles to generate timing puts a great strain on the DRIVER. It must complete its work so quickly that the listener is not aware of any delay between music parts that are supposed to be occurring simultaneously. Musicians can time a musical event to within 10 ms of its desired occurrence. This imposes on the DRIVER the specification that, for worst case conditions, it must initiate an event for all 16 parts within the same period of time. For this reason great care was taken in the design of the program to ensure that its execution time is held to the minimum.

Conclusion

The functional possibilities addressed by the SCORTOS system are, of course rudimentary. In its present state it provides a foundation on which additional application programs can be built, notably a music language which treats the performer of the music as a computer and not a human. Other possibilities include a set-complex processor to analyze music and statistically model its characteristics, and a plotter interface that will draw musical scores on a plotter. Some of these programs already exist and need only be converted from FORTRAN to BASIC.

I am presently developing a macro capability that allows the user to equate a
rhythm sequence to a symbol, and then associate different pitches with each note in the rhythm sequence by means of an argument list in a macro declaration.

The implications of this macro capability go further than just providing a way to eliminate redundancy. The composer often deals in "primitives" which are at a higher level than those allowed by his conventional music language. That is, the composer often thinks in terms of whole musical phrases and note groupings rather than individual notes of which he is compelled to construct those phrases and groupings. In using this higher level language, the composer is able to construct his compositions of larger building blocks and may easily vary the tonal parameters within those building blocks to achieve various aesthetic effects.

The purpose of the SCORTOS system project is to foster computer implemented composition among individuals and institutions whose financial and talent resources have prevented them from undertaking such projects in the past. Over the years various projects of this nature have been conducted at the larger educational centers of the country. The adoption of these projects by individuals and poorer institutions has not been widespread due to the large hardware costs involved, or lack of programming experience within the music departments. I hope that more modestly endowed music institutions will respond to a turnkey installation costing less than $\$ 10,000$, and that we may shortly see the computer joining the synthesizer and tape recorder as standard equipment in every electronic music studio.■

A Two Computer Music System

Jeffrey H Lederer
Tom Dwyer
Margot Critchfield

The music system described here started out a few years ago as a project in the Soloworks Lab. The idea was to put toge ther a "manipulable" system that allowed students to work with the powerful mathematical idea of synthesis. We felt that mathematics and science students should be able to experience firsthand what could be done by superimposing components that worked together to synthesize some bigger concept.

Real, full-blown professional music seemed like an ideal metaphor for working with this "superimposition" principle. It's easy for a student to see that a musical performance is really a multitude of small, discrete events working in perfect synchronism. But it's even easier to sense that the resultant whole is greater than the sum of its parts. In fact, the "whole" can be a human experience of quite thrilling proportions.

The system that evolved has met this goal very well. Students of varied backgrounds are able (and motivated) to work patiently with complex scores, making the final performance a proof of the power of the principle of superimposition.

But a funny thing happened on the way to this goal. The total system began to look more and more like a "micro" computer science curriculum. The documentation that evolved began to contain much of the jargon that permeates computing, but this seemed to be easier to take when interpreted in terms of the friendlier worlds of music and art.

In writing this condensed description of the system, we therefore decided to leave the jargon in. Our purpose is to not only describe the music system but to suggest that interesting new approaches to teaching computer science might be developed along similar lines. There is equally good promise for teaching computer science subject matter in terms of visual art. Abstract games are another fruitful area. It's probably no coincidence that all these examples illustrate the kind of computing most people would call "fun." There's undoubtedly a deep educational lesson lurking here, but that's another subject.

Photo 1: The authors' overall system with graphics terminal on the left and the disk drive and two computers on top of the organ console. The wooden pipes at top right are the flute rank; the metal pipes are a viola rank. The stop tablets for selecting ranks and harmonics can be seen just above the top keyboard.

Figure 1: Hardware components of the authors' computerized organ music system. This design requires one TTL output line for each pipe to be controlled.
tional organs have stops labeled " 8 foot," "4 foot," " $22 / 3$ foot," " 2 foot," etc. However, the stop settings in the computer system described here are software generated, so any harmonic can be specified (of course there are only a finite number of pipes available for playing these harmonics).

Overview of the System

The Music System uses two microcomputers (an Altair 8800 b system and an Intellec 8/MOD 80), a small pipe organ, and a Magnavox plasma display graphics terminal. Figure 1 shows how these components are interconnected.

In addition to the hardware, there are three software packages. The first is a graphics music editor that allows a composer to "draw" his score on a graphics display terminal. The editor converts the graphic representation of the score into a MUSIC language program. The program may also be created and edited using a standard text editor, in which case an alphanumeric terminal can be used. Either type of editor is run on the master system. The MUSIC language programs can be saved on a diskette as files.

Before a MUSIC language program can be played, it must be "compiled." Our compiler is a program that accepts MUSIC language programs as input, and outputs an annotated listing of the MUSIC language program along with error messages and an "object" program. The object program consists of instructions which are easily interpreted by the slave computer. The compiler runs on the master computer.

The object program is "played" using both computers. First, the object program is transferred from the master to the slave computer. The slave computer executes the object program in order to drive the pipe organ. A pair of programs (one on each computer) controls the transfer of the object program and its execution. Figure 2 shows the relationship between software components.

System Hardware

The slave microcomputer is an Intellec 8/MOD 80 with 8 K bytes of programmable memory, 2 K bytes of read only memory containing a system monitor program, 256 bytes of programmable read only memory that contains the second performance program, 16 latching output ports, and a serial bidirectional 10 port. Each latching port is eight bits wide, with each bit dedicated to controlling a pipe valve of the organ. Thus, $16 \times 8=128$ pipes can be controlled. The interface between

Photo 2: A set of solenoids used to automatically play the keys. Since this setup plays the keys directly, it could be easily adapted to any standard keyboard instrument including harpsichord and piano.
each pipe and its controlling port is a Darlington switching transistor connected as shown in figure 3.

The master computer is an Altair 8800b with 60 K bytes of memory, two diskette drives and two serial ports. One serial port is used as the console line and is connected to a Magnavox plasma graphics terminal. This terminal has a plasma display with 512 by 512 dots. A character generator is used to display 32 lines of 64 characters; the characters can be either a set of standard ASCII characters or a user loaded set (musical symbols in our case). The terminal has a vector generator and dot addressability. Sections of the screen can be selectively erased and written. The graphics terminal is optional, and there is no reason why other lower cost graphics displays couldn't be used if appropriate changes in software were made. The Intecolor 8001 might be particularly appropriate since different colors could be used to distinguish voices in polyphonic music.

The second serial line connects the Altair to the Intellec over a 2400 bps current loop. A special interface had to be built to isolate the two active current loops. The schematic is shown in figure 4.

MUSIC Language

MUSIC is a high level music notation language that uses the standard 64 character ASCII character set. A MUSIC language program consists of one or more statements; each statement is a single line in length (see figure 5 and listing 1).

There are three types of statements in this language: command, data, and comment statements. Comment statements, which begin with two asterisks, may be placed anywhere in the program; they are ignored by the compiler.

Figure 3: Interface between an organ pipe solenoid and a computer output bit. One such circuit is needed for each pipe to be controlled in this design. The solenoid in each pipe opens a valve that admits air to the pipe.

Figure 4: Interface used to isolate the two 2400 bps active current loops which send information back and forth between the master and slave computers.

The notes for a MUSIC language program are placed in the data statements. Each data statement consists of one or more events; each event is separated from the previous event by a semicolon. An event is a note, chord, glissando, tremolo or rest. The notes can be played with different articulations (staccato, legato, or normal). /See the glossary at the end of this article.] Each data statement contains the events to be performed by one voice during a single measure or fraction of a measure.

A normal measure of music consists of a starting BAR command followed by zero or more context commands and one data statement for each active voice. When a context change occurs inside a measure, the form of that measure is slightly different. In this case the measure starts with a BAR command, zero or more context commands and one data statement for each voice. These data statements contain those events that occur before the context change. Following the data statements is a CHANGE command, one or more context commands and one data statement for each voice. These latter data statements contain the events that occur after the context change. Repeat commands may be intermixed with the context commands of a measure.

The voices in each measure are performed concurrently. Each voice is assigned a group of stop settings. Each stop setting takes a note, displaces it a set amount of tones, and assigns that new pitch to a given rank of pipes. Multiple stop settings for a voice will generate multiple pitches for each note in an event. These pitches are played simultaneously. The number of voices and their stop settings are controlled by the STOPS command.

This all sounds pretty complicated, but new users quickly get proficient with the language. Having all the features of musical notation available has proven to be well worth the extra complexity.

The Music Editor

An editor is a program that allows a user to easily create and modify files (which of course may be programs). The Music Editor is a program that allows composers to graphically create and modify MUSIC language programs. The Music Editor is written in Altair Extended BASIC 4.0 and runs on the Altair 8800b system using a Magnavox plasma display terminal.

At the simplest level, the editor allows the user to type in and alter statements like any text editor. It also permits the user to copy or move blocks of statements. The editor verifies the syntax of each statement entered.

Listing 1: The musical example of figure 5 written in the MUSIC language. "Normal" means that there is to be a slight pause between notes. "Legato" indicates a smooth transition with no gaps.

At a higher level, the editor can be used to graphically display and edit data statements. When entering this level, the editor draws the staves. If an existing data statement is to be altered, the notes of this data statement are drawn; otherwise the staves will be empty, awaiting the input of a new data statement. The user edits a data statement by moving a cursor about the staves and entering commands. Special macro-like commands permit the user to create and copy chords, delete events and insert new ones. Upon leaving this higher level, a data statement in MUSIC is derived from the graphic display of the staves and inserted into a scratch file. Photo 3 shows what a graphics editing session looks like to the user.

Object Language

The MUSIC language is compiled into code for a "make-believe" machine, one with a simple set of instructions. Thus we can say that the object language is in pseudomachine code. Each object language instruction is two 8 bit bytes in length. The first byte in each instruction is interpreted as an operation code (op code); the second byte is used as a data parameter. There are three classes of object language instructions: set port, wait, and repeat.

Op codes with values of 0 to 253 are interpreted as set port instructions. For example, 27-3 means turn on the right-most two bits in port 27 (since $3=00000011$ in binary). These instructions cause the data byte to be deposited in the port number given by the op code itself (each latching port has a unique address). The bit pattern of the data byte specifies which pipe valves attached to that port are to be opened and which ones are to be closed. The pipe

Figure 5: An example of how musical notation is represented in the MUSIC language.
valves will remain in that state until they are reset by another set port instruction.

Repeat instructions (op code value of 254) are trapped by the master system. The master processor handles repeats by retransmitting parts of the object program to the slave processor as specified by the data byte of the repeat instruction.

The wait instruction has an op code value of 255 . The second byte of the instruction is interpreted as a nonnegative integer. This byte's value fixes a delay period computed in 10 ms units. For example, 255-60 means wait 600 ms .

An object program consists of a series of "frames." Each frame contains zero or

Listing 2a: An example of how the program in listing 1 is compiled in MUSIC. The first step is error checking, followed by the production of intermediate code for each voice.

Voice 1	
48	The note 4 C is 48 half tones up from C_{0}
-3000	A legato half note gets a timing of 3000 units
48	This is the second C
-2400	Timing for a normal half note
-600	Pause after a normal half note
Voice 2	
45	This is 3A
41	This is 3 F
-1200	Timing for a normal quarter note
-300	Pause
43	This is 3G
40	This is 3E
-1200	Timing for a normal quarter note
-300	Pause
41	This is 3 F
38	This is 3D
-2400	Timing for a normal half note
-600	Pause

Photo 3: The authors' Magnavox plasma display terminal during an editing session. Notes and chords can be created or modified by moving a cursor to the desired position. Entire musical phrases can be copied if desired. Chords or whole measures that repeat need be entered only once.
more set port instructions and is terminated by a wait instruction. A frame is executed by the slave computer by first executing all set port instructions in a frame almost simultaneously. The set port instructions cause some pipes to be turned on and others to be turned off. If a particular port is not addressed by any set port instruction during a frame, this port's pipes remain in their current state. This new pipe state lasts for the duration given by the frame's wait instruction. At the end of this duration, the next frame's execution begins. Thus each frame causes a combination of pipes to be played for a set length of time. An example of an object program is given in listings 2a and 2 b .

The execution of the object program is controlled by two performance programs that couple the master and the slave computers together. There are two reasons why we decided to use a pair of computers to handle the performance of the music: one, the correct latching output ports were already available on the Intellec, and, two, the slave could handle all the real time demands while the master handled the retrieval and loading of "pages" of the score from the diskette. (A page is defined as 256 bytes of object code.)

The slave microcomputer's memory acts as a circular buffer. The master initiates an object program execution by sending a header message to the slave. The master then waits for a Block Request ($B R$) message. At the receipt of each $B R$ message, another page (256 bytes) of the object program is sent to the slave.

After receiving the header message, the slave sends enough $B R$ messages to fill its memory with object code. After receiving enough pages or an end of program instruction, the slave starts executing the object program. After finishing one page of object
code, the slave sends out a $B R$ message. The next page sent is placed in the space released by the previous page that was executed. The execution of the object program and the refilling of the buffer proceed concurrently.

After sending the entire object program, the master processor ignores all further Block Request messages. When the slave executes the end of program instruction (which is a WAIT instruction with duration zero), it sends a completion message back to the master processor. The master processor can then inform the user that the slave is ready to accept another program.

This performance system software consists of two programs. The "slave" program is written in Intel 8080 assembly language. Its machine code representation is stored on read only memory in the slave microcomputer. The "master" performance program is written in Extended BASIC 4.0 for the Altair 8800 b computer.

The Compiler

The compiler accepts a MUSIC language program and outputs an annotated listing file. If no errors are detected, an object program is then generated and saved on a diskette as a file. Thus the compiler's work can be divided into two phases: error checking and code generation.

The error checking consists of two types of operations: syntax verifying and context checking. A syntax verifier examines each statement to insure that it conforms to the rules of the language. For context commands it checks for correct number and types of arguments and correct placement of this statement in the measure. The repeat command's arguments and placement are checked and the nesting of these statements is verified. Data statement arguments are checked for syntax correctness.

In addition to syntax, the context correctness of data statements is checked. The number of data statements in a measure must equal the number of voices currently active as declared by the last STOPS command encountered in the program. The duration of each data statement must equal the measure duration as declared in the currently active time signature. This checking is a real help to the composer since it handles all the petty details.

The code generation phase of the compiler is divided into four operations: generating repeat instructions, handling context commands, processing data statements, and coordinating measures.

Each repeat command causes one object code repeat instruction to be generated. Repeat instructions cause all the data
between HEAD and TAIL commands to be used twice.

The context commands serve a function similar to declaration statements in conventional computer languages. Their main function is to alter the values of the global arrays and variables that determine the note address and note timing calculations. A note address is a number that relates a note to a pipe, while a timing determines how many milliseconds the associated notes are to be held.

The data statement handler processes the data statements to determine the notes to be played for a particular measure. Each voice has its own First-In-First-Out (FIFO) queue for storing information about the events of the current measure. As each event in a voice's data statement is processed, its FIFO queue is filled from the top down. First the notes of the event, then the duration of the event, and finally the duration of the pause between this event and the next one are placed on the queue. At this stage, note values are stored as integer numbers representing a number of semitones above a base pitch, without regard to stop settings. The durations are computed in basic time units regardless of the current tempo setting. The durations are stored as negative numbers in order to distinguish them from note values. Figure 6 shows the general format of a queue for one voice. It represents a sequence of four chords with a rest between the last two.

In this example there is no pause duration between events 2 and 3 , indicating that event 2 is played legato with event 3 . Event 4 has no note values, therefore it is a rest. Glissandos and tremolos are treated like event macros. They are translated into a series of events by the data statement parser before they are processed onto the queue.

After each voice in a measure has been parsed, the voice coordination routine generates the object code using the following algorithm:

1. The duration counter for each active voice is set to 0 .
2. The duration counter for each voice is examined. Those voices with a zeroed duration counter have their top sequence removed from their queue for processing. (A sequence is all the information from the top of the queue down to and including the first duration of pause found.) The sequence's duration is stored in the voice's duration counter.
3. The voice's bit map is cleared. (The bit map is an array of bits where one bit is used to represent the state of one organ pipe.) As each note value of a voice's sequence is processed, it is expanded into as many note addresses as the number of stop settings

chord	$\left\{\begin{array}{l}\text { note } \\ \text { note } \\ \text { note } \\ \text { duration } \\ \text { pause }\end{array}\right\}$	event 1
chord	$\underset{\text { ande }}{\text { note }}$ note $\left.\begin{array}{l}\text { note } \\ \text { duration }\end{array}\right\}$	event 2
chord	$\left.\begin{array}{c} \left\{\begin{array}{l} \text { note } \\ \text { note } \\ \text { duration } \end{array}\right\} \\ \text { pause } \end{array}\right\}$	event 3
rest	\{duration \}	event 4
chord	$\left\{\begin{array}{l}\text { note } \\ \text { note } \\ \text { note } \\ \text { duration } \\ \text { pause }\end{array}\right\}$	event 5

Figure 6: The general format of a queue for one voice used in the MUSIC language.
defined for that voice. Each note address generated causes a particular bit in the voice's bit map to be set to 1 .
4. All the voice bit maps are ORed into a master bit map.
5. The master bit map is compared to the previous master bit map.
6. Those output ports whose bit pattern has changed generate set port instructions with the port's new bit pattern as the data byte of that instruction.
7. To generate the wait instruction, the duration counter for each voice is examined and the minimum duration is found. This minimum duration is subtracted from each voice's duration counter.
8. The minimum duration is multiplied by the tempo variable to yield the actual timing of the object code frame produced. If a frame is within an accelerando or ritard passage, the timing is altered to reflect the gradual change in tempo, the tempo variable is updated, and the duration remaining in the tempo changing passage is decremented. The final actual timing is used to produce a WAIT object code instruction.
9. The current master bit map is labeled as the previous master bit map.
10. The routine now goes back to step 2 if all the queues are not empty; otherwise the next measure in the MUSIC language program is processed.

The queues should empty simultaneously since each voice's data statement should have a duration equal to the one set by the time signature. (This is checked during
phase 1 of the compiler.)
The above algorithm was designed to compile multivoice music efficiently. An important feature of this algorithm is that it allows more than one voice to share the same rank of pipes. In addition, it permits the user to generate from each note specified many pitches through the stop setting mechanism. Since the stop settings are performed through software, a user can transpose each note of a voice any number of tones and into any rank of pipes. Listings 2 a and $2 b$ show how the above algorithm works for the simple two voice example given in figure 5.

Future Plans

While the system described here is not meant to compete with large dedicated music research systems, it nevertheless has several advantages over a number of other computer controlled music systems. Currently, we have two ranks of pipes with 64 pipes in each rank. However, additional ranks of pipes could easily be added to the system. Each 64 pipe rank requires only eight more latching output ports. The theoretical limit for an Intel 8080 based system is over 2000 pipes. Mircocomputers that use memory mapped 10 could conceivably control hundreds of thousands of pipes.

The system can be extended to other musical instruments. By using solenoids, any keyboard instrument can be controlled through the output ports. Alternatively, the solenoids might be placed inside the instrument, driving something like the jacks in a harpsichord directly. To play the harpsichord along with the organ would just require the addition of a harpsichord stop to the MUSIC language.

Electronic synthesizer music is not incorporated in our system because of the high cost of the special hardware needed, but at least three low cost analog output boards designed for Altair (S-100) bus microcomputers have recently been announced. It seems reasonable to expect that the MUSIC language could be applied to these new pieces of hardware.

The voice concept has some application to "synthetic" music composition because it allows the user to create new timbres by specifying nonstandard overtone ranks (eg: a 3.1416 foot flute). By assigning dummy stop settings to certain voices, the composer can also isolate the effect of these harmonics during a test performance.

We are planning to eliminate the need to compile and save object programs. An assembly language version of the compiler is being written that will interpret MUSIC language programs in real time. This will be done by
sending the bit pattern computed in step 6 of the measure coordinating routine to the designated output port and use the time value generated in step 8 to set an interval timer. This new software system will allow a user to interact with a performance. We also hope to build a subsystem to capture keyboard performance and translate it into a MUSIC language program.

Aside from musical application, the programs written for this system can be used as a realistic basis for explaining many important concepts of computer science in a context that removes much of the mystery surrounding computing. In many ways, this could be the most useful contribution of the music system, suggesting as it does that the teaching of complex ideas has much to gain from a liaison with the creative arts.

A Glossary of Some Musical Terms

Accelerando: A direction telling the musician to make the music gradually faster (increase tempo).

Bar: Vertical line on the musical staff separating the measures of music. Sometimes used as a synonym for a measure.

Glissando: A rapid sliding up or down the musical scale.

Key Signature: The sharps or flats placed after a musical clef to indicate the key.

Legato: A direction telling the musician to play in a smooth and connected manner.

Ritard: A direction telling the musician to make the music gradually slower (decrease tempo).

Semitone: The interval between two tones in the chromatic (well tempered) scale (ie: the distance between $A b$ and A is a semitone).

Staccato: In a broken or clipped manner.
Tremolo: Effect produced by the rapid repetition of a note.

Jef Raskin

and the

Pipe Organ

One night I got a call from a man who had been wandering through the personal computer stores in the area. He was looking for a computer to operate his huge pipe organ. Inevitably, he was given my phone number, since I had been going around to the same stores telling everyone that I was working on a controller for my pipe organ.

There are several gimmicky reasons for wanting to attach a computer to an organ. My reason is that the combination can provide the performer with a more flexible, easier to play instrument. And then there are all those gimmicks. As it turns out, using a microcomputer can be less expensive than conventional console wiring. Before we get into the subject too deeply, the "organization" of the king of instruments should be made clear.

The performer sits at the console. The performer's hands rest on one or more keyboards called manuals. There are usually from two to four manuals. The feet play on a set of keys placed beneath the bench called the peduls. On most organs since the late 1800s, the console is separate from the rest of the instrument and is connected to it by means of electrical cables. As with the computer, the console is the "command center" of the instrument. In addition to the keyboards there are a number of other controls on the console that will be discussed later.

Blockflotes and Zimbels

The sounding portion of the organ consists of many pipes. Each pipe sounds one

note. There are typically many different pipes for a given note, each of which has a different sound quality or timbre. A set of pipes, all of similar timbre, one for each key on a manual, is called a rank. Each rank has a name, many of which are hallowed by centuries of use. Some, like diapason (dia pay zen) or bourdon describe sounds that are characteristic of organs and nothing else. Others, such as trompette or blockflote are reminiscent of trumpets and wooden flutes, respectively. Obviously one rank is a minimum for an organ. (Renaissance portative organs had one rank.) A small organ usually has three or four ranks, controlled from two manuals. The one being installed in my house has 26 ranks. A large organ will have 70 or more. The organ owned by my friend mentioned above has 140 ranks. That is very large, and only a few cathedrals have more.

Each rank has 61 pipes, as there are 61 notes on a manual. Thus for a pipe organ of a 100 ranks there are 6,100 pipes. Each rank is turned off or on by a knob or switch labelled with the rank's name. These knobs are called stops. (The terms stop and rank are sometimes used interchangeably, but in this discussion rank will refer to a set of pipes, and stop to the controlling knob.)

A large organ often has four manuals (named great, swell, choir and echo or positiv) each having 61 keys, a 32 note pedalboard, 100 or so stop knobs, and a few dozen assorted controls. Thus there are about 500 controls that the organist must manipulate: a complicated instrument, indeed.

Photo l: Pipe organ console shown in the home of the author's colleague, Jim Brennun, who did the custom installation work. The console was obtuined from a church in Pasadena CA.

Photo 2: A view of three ranks of organ pipes in the living room, including a Rauschepfeife, left, Holtzregal, center, and Zimbel buss on the right. Each rank has its own particular tonal color.

Key Decisions

And now we come to the microcomputer. It must keep constant watch on 500 switches and control some 6,000 relays, one for each pipe. It must never miss a switch closure or release, and must operate the correct pipes (sometimes dozens simultaneously) within $1 / 20$ of a second. Is this within the capabilities of an 8080? As it happens, it is. But not without a bit of tricky IO design and some swift algorithms.

For completeness, it should be mentioned that some ranks are not exactly 61 notes. "Unified" ranks often have 75 pipes, and some special ranks have fewer than 61. But fortunately these exceptions are easily handled. The problem is simplified in some organs (a little) by sets of ranks grouped into "straight" chests. Instead of each pipe having its own electrically operated valve (a "unit" chest), each rank in the chest has a valve. Then all notes of the same name (such as all Cs or all F\#s) have one valve. This loses some generality, but requires fewer valves and electrical connections. For M ranks of N notes each, a "straight" chest requires $\mathrm{M}+\mathrm{N}$ valves. A "unit" chest has MxN valves.

Organs also traditionally have couplers, which operate either within a keyboard or between keyboards. An intermanual coupler has the effect of operating a note on one manual when you press the corresponding note on another. (On some old organs both keys actually move when you press one of them. This may have given rise to "phantom of the opera" stories.) A coupler that works
within a keyboard plays a note typically one octave higher or lower than the key you are playing, but on the same keyboard. Intervals other than an octave are also available on some organs.

An organ is also separated into divisions. These have the same names as the manuals: typically, great, swell, choir, echo and positiv. The pipes played by the pedals form another division: the pedal division. Each rank belongs to exactly one division. In the traditional organ, a manual can play pipes only in its division. You can couple manuals together, but it is impossible to play a rank in the swell division from the great manual without playing all stops that are pulled in the swell division from the great manual. This separation into divisions has no musical benefits, but is done merely to simplify the construction of the switching in the console. By means of a microcomputer, divisions can be eliminated. The organist can then independently assign any rank to any keyboard. This is the first of a number of nongimmick improvements that can be appreciated by any organist.

The switching in the traditional organ is done by the most incredible collection of electrical, mechanical and pneumatic switches imaginable. That it works at all, being made mostly of slats of wood and strips of leather with silver wires for contacts, seems miraculous. It is not surprising, then, that freedom in interconnection has been restricted in the past.

The wiring from the console to the pipes over distances from ten to over 100 feet
reminds one of a cross between the innards of a computer before the mother board was invented and a telephone company switching office. A major advantage of the computerized organ is the elimination of most of this wiring. In a very large organ, the cost of the computer system may be less than the cost of the cabling alone.

When an organist plays a piece, it has a characteristic sound quality produced by a judiciously selected set of stops being activated. A particular collection of stops is called a registration. It is usually desirable to be able to store such combinations. There are a number of buttons called pistons which recall combinations of stops. Logically enough these collections of stops are called combinations or presets. There are often a few fixed presets, and a number of pistons are provided whose registration the organist can change at will. Another advantage of the computer controlled organ is that many more presets are available. 4 K bytes of memory can store hundreds of different presets, more than on any conventional organ. This amount of memory costs less than one preset done mechanically! And it's a lot easier to install.

Consider what happens when a single key is pressed. First, any keys that are coupled to it are also activated on its keyboard as well as on other keyboards. For each of those resultant keys, as well as the original key, the applicable stops must be looked up. If there are two couplers and four stops activated for each of the three keyboards involved, no less than 12 pipes must sound. When playing a full chord with many couplers and stops engaged, it is not uncommon for 500 pipes to be operated simultaneously.

Getting Organized

A number of schemes were concocted for driving the pipes and reading the keys. One scheme, which has been used on smaller organs for computer control, was to have each key send out a unique code. Each pipe recognizes its own address. The computer would receive key codes as well as stop and coupler codes, and compute the appropriate pipe addresses. A decoder at each pipe, as well as a diode matrix or other encoder for the console, would be required. Since on a large organ there are over 2^{12} pipes, even a 12 bit code would not be long enough. This would mean assembling two 8 bit words for each pipe. Putting out over 500 of these in $1 / 30$ of a second (considering the number of steps required in the program) would have been impossible. Further, the cost for decoders at each pipe is prohibitive. This ruled out going to a 16 bit computer, since it wouldn't help the decoder
problem, and a larger word size seemed to hold few advantages in any other way.

Cost alone ruled out the brute force approach of using a very fast computer. Another way to get high data rates from a microcomputer would be to use direct memory access (DMA) circuitry. With this scheme one DMA device scans the keyboard continuously and enters key depression and release information into memory. The main processor (at its own rate) scans the keyboard image in memory and constructs a list of pipes to be played or quieted. Another DMA scans the list of pipes and controls the pipes accordingly. In essence, three computers would share the same memory and would run asynchronously, each going as fast as conditions allowed. This seemed feasible, and is necessary for larger organs. But for smaller organs the DMA is not needed, as will be seen.

Part of the solution lay in hardware. At one extreme of decoding (as explained above), each pipe has its own decoder. It would be more efficient for each group of, say, eight pipes to have a decoder which detects its code and then accepts the next byte as controlling eight pipes in parallel. The 8 bit control byte 10001001 would mean that the notes C, E and G are to be played, while leaving C\#, D, D\#, F and F\# silent. This would reduce the number of decoders by a factor of 8 , and then operates eight pipes at a time. This was fast enough in the 10 department, but the time required to assemble the control bytes by masking or rotation was too great. A microcomputer handles bytes with great efficiency, but manipulating individual bits takes significantly more time. A number of algorithms were considered, but it was apparent that they were not suitable.

At the other extreme from a decoder for each pipe is the idea of having no decoders whatever. This idea was put forward early in the design effort, but was discarded as ridiculous. In the end it became clear that the idea was not only feasible, but fast and cheap to implement in hardware. It also made the software much easier to design. It works like this: A very long serial-in/parallelout shift register is made. It will have at least one output for each pipe. Using available 8 bit shift registers, the 140 rank organ's 2000 electrically operated valves require about 250 shift registers. (The 7000 pipes require only 2000 controlling lines since most of them are on straight chests.) In effect we build a $2000+$ bit shift register, a long "tube" through which 1 s and 0 s flow in single file. When all the 1 s and 0 s (standing for pipes sounding or silent) reach their correct positions, a command (strobe) is sent operating all the pipes at once. If the
process is to take $1 / 60$ of a second, the shift register has to move 2000 bits in that time. But this is a rate of 120,000 bits per second $(120 \mathrm{kHz})$ which is within the capabilities of the shift register and the computer but a bit beyond an unaided 8080. Remember that these calculations are for a mammoth size organ. Most organs are significantly smaller and the problems are correspondingly easier.

A similar approach is used for the keyboards. There exists a 33 input parallel to serial converter made for electronic organs. Just two of these integrated circuits would suffice to encode an entire manual. The 500 controls could be transmitted serially to the computer in $1 / 200$ of a second at 100 kHz . The interface would require fewer than 20 "critters." Again, this is for a huge organ.

Photo 3: Another view of the organ showing the swell chest and echo chest.

My own home organ would require only ten integrated circuit chips for its console.

The hardware for a large organ can now be summarized. A 500 bit parallel to serial converter for input, a 2000 bit serial to parallel converter for output, one input port and one output port are required. Each pipe also needs a power transistor to handle the 0.5 A at 14 V required by the valves (this is a typical figure). Some of the larger pipes might require two stages or a Darlington power transistor, but there is no real difficulty in the design. Another side benefit accrues at this point: Many pipe organs use electro-pneumatic valves for each large pipe. This is because an all electric valve opens too suddenly. To solve the problem, the traditional builders designed the electrical valve to let air into a small bellows which, in turn, operates the valve that lets air into the pipe. A pair of resistor-capacitor (RC) networks and a diode in the base circuit of the power amplifier for each pipe can give the desired slow attack and release usually obtained by the much more expensive and problematical pneumatic system. This can amount to savings of over $\$ 1000$ in a large organ. It should be mentioned that some organ manufacturers have been successful in making satisfactory all electric valves with appropriate attack and decay curves. They would not require the RC networks.

Software design was as gradual as the hardware design. There were two breakthroughs necessary before it was clear that the 8080 could work quickly enough. (When this design was being done, by the way, the Z-80 and other faster processors were not yet in production.) But the constraints of the 8080 and the very large organ forced a much tighter and more clever design than would have been developed if we had had more powerful computers and a smaller organ. Given the newer computers, of course, larger and more complex pieces of equipment can be controlled. Many industrial plants have fewer than 200 sensors and 2000 elements that need to be operated in real time. A microcomputer using the techniques outlined here could handle them.

The program begins by sweeping in the console settings. To save time only one bit per word is used. This wastes $7 / 8$ ths of 500 words, but memory is cheap. The same trick can be used in output, eliminating the necessity to pack bits into bytes. Thus over one byte per key and one byte per pipe will be sacrificed to gain speed. That amounts to $\$ 40$ at most in memory costs. It buys us speed and simplicity, and it is worth it. While it now seems obvious that this is a useful way to proceed, it somehow took four months to find the solution. This is probably because we are so reluctant to

waste memory. A pipe organ costs from $\$ 20,000$ to whatever you care to spend (a million dollars is not unusual). The computer costs are lost in the small change.

For a small organ, the DMA is not even needed, and the input and output loops are very simple:

1. Point to a memory location.
2. Do an input (or output).
3. Move the contents of the accumulator to that location.
4. Increment the location.
5. Check for done. If not done, do an input (or output), etc.

The loop can be done on an 8080A at 66 kHz . Thus, an entire 20 rank organ can be updated in less than 0.02 second. The DMA would do the same algorithm, but at 1 MHz , and would overlap processing. The 8080 with a 2 MHz clock is just fast enough. An 8085 or Z .80 processor would be more than fast enough. Again, remember that for a typical home or small church organ, the plain old 8080 would have the necessary speed and that we are discussing a worst case design.

Even with 10 solved, there still remains the problem of deciding which pipes are to go on and which to go off. At first this was a stumbling block in terms of the time it would take to do the computations. On each console scan, it seemed, a table of couplers would have to be made up, as well as a table of stops. A key depression, through the
couplers, results in a number of "virtual" key depressions. Since some virtual keys, being higher or lower on the keyboard than the original key, will go off the end of a keyboard, they must be deleted from the virtual key list. The remaining keys then have to be processed through the stop list to determine which pipes are to be played. Since the 10 routines take a total of about 0.04 seconds already, the processing itself must take no more than 0.013 seconds. Just the checking for out of range virtual keys would take more time than we can spare.

The easiest solution to the coupler spillover problem is to include a few extra places in the shift register on both ends of each rank. This allows all the ranks to have the same shift register length whatever the actual number of pipes. The first advantage is that out of range virtual key depressions need not be checked for, since they fall into unused sections of the shift register. As with the wasted memory, the cost of the unused shift registers is small. The second advantage is that the electronics for every rank, of whatever kind, can be mass-produced. This makes it less expensive to build, as well as making the software easier to write (aside from merely being faster).

Except to satisfy traditional organists, there is no reason to have intermanual couplers on a computer controlled pipe organ. The original reason for including intermanual couplers was to minimize the

Photo 4: The main organ chumber with portions of un organ taken from a Sacramento church.

Photo 5: A rank of chimes pipes.
limitations imposed by the separation of the pipes into divisions. The computer, by being able to assign any rank to any manual (or to the pedals), eliminates the need for these couplers. They might well be eliminated in my own organ.

Another choice to be made is whether to recalculate all the pipes to be played, or just to modify the previous state on each cycle. It was decided to recalculate from scratch each time to eliminate the possibility of cumulative error. It also means that key bounce is automatically taken care of. In the slight time between updates, an organ pipe cannot even begin to sound. A spurious signal for one cycle is effectively ignored. Continuous pipe-on instructions emitted over a period of approximately 0.1 second or more are required before the slow mech-
anical valves can react. The higher pitched pipes respond quickly, incidentally, and the low pipes sometimes take nearly a second to begin playing. Organists learn to compensate by playing low notes somewhat early. Without introducing a constant across-the-board delay, it does not seem possible to have the computer compensate for the effect, but it is a place where some experimentation might be interesting. Experienced organists, of course, might look askance at such an innovation, but they needn't be told about all of our ideas.

To summarize: A cycle of the computer organ system starts by pulling in the state of the console. The second part of the cycle (yet to be described) calculates the pipes that should be playing, given the state of the console. The third portion of the cycle sends the pipe commands along the shift register. This process is repeated at least once every $1 / 30$ of a second.

A coupler (of whatever kind) is merely a displacement. It is easily calculated because all keyboards and ranks are the same nominal length. Likewise, engaging a stop is also a displacement of a distance equal to the difference between the bottom of the manual's image in memory and the bottom of the rank's image in memory. Thus, these displacements or offsets can be simply added to yield the offset for a combined couplerstop setting.

An example, with a simplified organ, will demonstrate how the algorithm operates. Say there is one manual with ten keys numbered one through ten. They are read into memory locations (all numbers will be in base 10 for this discussion) 1001 through 1010. The ranks each have ten pipes, and there are two of them. The first rank is stored in locations 2001 through 2030. The second rank is stored in locations 3001 through 3030. Remember that the area set aside for each rank is larger than the actual space necessary (here three times as large). There are two stop switches, stored in locations 4001 and 4002. There are two couplers. They are stored in 4003 and 4004. The first couples up five pipes high, the second down three pipes low.

When the low order bit in 4001 is on (or high), the program adds 2010 to the key address to get the pipe address. When the other stop is on, 3010 is added. If the first coupler is on, an additional 5 is added, and the second coupler subtracts 3 (or adds a negative 3 ; it is all the same thing). The addition is done only once. Say the first stop and the second coupler were operated; then, given a key on at location 1005, to get the proper location to turn the pipe on, one merely adds (2010-3) or 2007 to the key location $(1005+2007)=3012$. This is
indeed the correct pipe.
The microcomputer gives the user another option. When a stop and a coupler are operated, one gets both the note given by the stop and the extra note given by the coupler. With a computer it would be possible to give just the note given by the coupler acting on that stop. Since each stop can have a whole panoply of couplers attached to it, the number of buttons would soon become unworkable. For complete flexibility, the organist would have to be provided with a keyboard and display. One would play the organ by setting up many required presets with whatever degree of flexibility required, and then the easily hit tabs would not activate stops, but would bring in the organist's choice of registrations.

In the example above, choosing both stops and couplers would necessitate the addition of six numbers to each key location to obtain the pipe location. In the actual implementation, the program would, for each manual, do the following:

1. Scan the list of stops, and make a table of addends.
2. Scan the couplers, and add them to each stop, extending the list of addends.
3. Add the addends to the locations of the manual that contain a 1 (meaning a key depression).
4. Turn on the low order bit in the indicated word in the pipe image.

Intermanual couplings look just like any other kind of coupling. Say that one manual is stored in 1001 through 1010, and another manual at 1201 through 1210. Coupling the first manual to the second merely means adding 200 to the locations of the first manual. Just which intermanual couplers will be allowed must be carefully specified. If anything is allowed, we may get the following cat chasing its tail effect: Manual 1 is coupled to manual 2 at the same pitch. Manual 2 is coupled to manual 1, but one key higher (a semitone or half step higher in musical terminology). Press C on manual 1. C gets played on manual 2. This forces C\# on manual 1. But this makes C\# play on manual 2. Every key is thus being played. As implied above, though, intermanual couplings are necessary only on organs where the pipes are separated into divisions. In the computer controlled pipe organ they can and should be eliminated. Everything they can do, and more, can be done by freely assigning ranks to keyboards
as desired. I am not sure that all organists will be convinced by this.

Future Fugues

The organ console of the future, as it appears in the light of the computer mediated organ, looks like this: The manuals and pedals are built to the usual AGO (American Guild of Organists) standards. These standards are excellent, and permit an organist to travel from one instrument to another with a minimum of relearning. Instead of the usual arrangement of stops, there are as many rows of stops as there are keyboards. When a stop is to be assigned to a given keyboard, the button in the row representing that keyboard, and in the column representing that stop, is pressed. Any particular registration may be captured by pressing the "capture" button and, while holding it, operating the chosen preset button. The stop buttons should, as on conventional organs, move (or light up) to show what choices have been made. This is not far from conventional practice.

The possibilities in a console screen, with alphanumeric readout, are endless, and would require another article to explore. Similarly, the gimmicks, from very useful ones that record (on a disk or cassette) the performance in terms of keystrokes, to silly ones (for example, connecting the doorbell to the computer, so that the organ plays "Jesu, Joy of Man's Desiring" when a visitor presses the door button) would again take up too much space here.

Summary

The reasons for using a computer in a pipe organ are these:

1. Simplification of the wiring of the organ.
2. Greater reliability than conventional switching.
3. Lowered expense in medium and large instruments.
4. Much greater control of the instrument by the performer.
5. New freedoms in choosing registrations.

Nothing, it would seem, is lost by going to a microcomputer, and one could keep advantages 1,2 and 3 above while keeping the appearance and operation of the pipe organ unchanged, in case any organists choose not to use advantages 4 and 5.

Acknowledgements

Certainly at least half of the ideas expressed in this paper are due to my friend and colleague, Doug Wyatt. All of the ideas were developed in collaboration with him. Thanks are also due to Jim Brennan, who owns the incredibly large organ so often mentioned in and photographed with this article, and whose cooperation and inspiration have been essential to the project.

Tune In With Some Chips

Ted Sierad

Are you fascinated with the idea of computerized music, but find the mechanics of producing such effects too complex? I've come up with a simple technique which is the subject of this article, and which is well within the capabilities of the novice computer experimenter. With less than a dozen inexpensive integrated circuits, a few resistors, capacitors and a small prototyping board you can be well on the way to creating interesting music with your Altair, IMSAI or similar computer. My design creates a programmable music tone generator peripheral which has outputs that sound somewhat reminiscent of a clarinet when it is programmed by simple or complex software used to sequence notes in time. The first attempts 1 made at music generation required complicated programs and many integrated circuits. But as I gained more familiarity with the problem, the project reduced into a relatively simple solution as illustrated here.

The Hardware

The diagram of the melody box hardware is illustrated in figure 1. This hardware is the key to generation of tones from the computer. Software to be described later is responsible for sequencing the notes in time, thus creating a melody. The basic principle of operation of this melody box peripheral is
use of a latched binary code in eight bits to select one of several adjustable resistors which will be switched into an oscillator circuit as the timing resistor. In the particular circuit shown in figure 1 , 1 used a pair of 7475 latch circuits to hold the code sent from an 8080's 10 instruction; then 1 decoded the 8 bit pattern with a pair of 7441 circuits which I happened to have on hand in my workshop. The 7441s separately decode two 4 bit codes into selection of one of ten open collector output lines. These output lines are low if the line is selected, and effectively disconnected if not selected. The software used to drive the 10 port should be set up to select only one active line by giving out a "null code" such as binary 1111 in one half of the 8 bit word, while selecting a given tone in the other half of the 8 bit word. This guarantees that only one line is in the low state out of a possible 20 lines. The line which is in the low logical state will then affect the frequency of the oscillator implemented by the 555 timer integrated circuit, IC7 of figure 1. The pitch of the note selected is determined by the tuning of the potentiometer associated with a given binary code by the decoders.

The low logic level output of the decoder is similar to a ground or zero voltage. Since all the other lines are effectively floating as open collector outputs, a definite low state on the one line inserts the resistor selected

Figure 1: Schematic of the melody box. This circuit works by changing the timing elements of a 555 oscillator integrated circuit to set the pitch. One resistor sets the pitch of each note of the scale. To turn off the oscillator, the circuit detects a special case which turns off the power to the oscillator by raising its ground pin to the high logic level.

Integrated Circuit Power Wiring

Number	Type	+5 V	GND
IC1	7475	5	12
IC2	7475	5	12
IC3	7441	5	12
IC4	7441	5	12
IC5	7404	14	7
IC6	7402	14	7
IC7	555	8	5

Resistor Number	Potentiometer Value	Approximate Setting
$R 3$	$100 k$	$40 k$
$R 4$	$100 k$	$48 k$
$R 5$	$100 k$	$56 k$
$R 6$	$100 k$	$64 k$
$R 7$	$100 k$	$68 k$
$R 8$	$100 k$	$76 k$
$R 9$	$100 k$	$80 k$
$R 10$	$100 k$	$86 k$
$R 11$	$200 k$	$90 k$
$R 12$	$100 k$	$43 k$
$R 13$	$100 k$	$56 k$
$R 14$	$100 k$	$67 k$
$R 15$	$100 k$	$76 k$
$R 16$	$100 k$	$86 k$
$R 17$	$200 k$	$95 k$
$R 18$	$200 k$	$108 k$
$R 19$	$200 k$	$135 k$
$R 20$	$200 k$	$152 k$

into the 555's timing circuit. The circuit is tuned by running a scale and adjusting the pitches by ear, or even by using a frequency meter.

But what about having no sound at all? Rests are important to music, and there must be some way to turn off the sound. Simply selecting none of the resistors is the first thought which comes to mind, but this does not work very well at all, as you'll find out if you try it. What I did was to put in the NOR gate logic of IC6d to detect when both halves of the 8 bit output word are 0 , as indicated by selection of the 0 output line of each decoder. When this happens, the output of the NOR gate is high. Since I use this NOR gate as the power and signal ground of the 555 oscillator, I have effectively removed power from the 555 and turned it off when the double 0 state is output to the port. This may not be optimal engineering, but it certainly works.

My hardware stopped at the point of generating the tones, but for a full range of musical effects, you would certainly want to add some digital controlled filters and amplifiers to this basic pitch generation facility. Some filtration can be accomplished, of course, by manipulation of the tone controls of your high fidelity amplifier.

Further Simplifications of Hardware

The circuit of figure 1 is how I built the melody box; but after building it, it occurred to me that several further simplifica-
tions could be made. For example, the latches and 10 port decoding logic outlined by the dotted lines could easily be replaced by an existing $I O$ port on a computer, such as those provided by the peripheral interface adapters (PIA) of typical 10 port boards. The 7441 is not the only open collector decoder chip available, and if you want to make 32 or 64 notes, use of two or four 74159 circuits with a 5 or 6 bit binary code would be possible. The only major disadvantage I find with this circuit is that it has to be tuned individual note by individual note.

Construction

The melody box was built on a Radio Shack IC experimental breadboard, \#276-154 (Archer), which plugs into their \#276-1551 card connector socket. This type of board has a foil pattern on one side. The integrated circuits or sockets are inserted from the nonfoil side and pins are then soldered to pads designed to take the DIP package pins as well as several connecting wires or components. See photo 1 for a look at my version. I used Molex pins to fabricate sockets for the integrated circuits, although solder tail sockets or no sockets at all could be used depending on your preferences and sources of supply. Wiring is done from the nonfoil side, with stripped ends of the wires going through the board to the appropriate pads. I used multiple colors for the wires in order to make tracing of the circuit easy. The space between the solder

Photo 1: The melody box as constructed, using a Radio Shack prototyping board.

Figure 2: Programming model for the melody box. The note pitch and length codes listed are interpreted by the program shown as a flowchart here. Each note is completely specified by a pitch code and a length code contained in two bytes of memory as shown by the example.

Figure 3: The melody box notes are tuned by running this chromatic scale text through the program of figure 2. While listening to the scale, adjust each note's potentiometer until the sound is a correct musical interval.

Relative	Octal Note and Length Code	Relative Address
000	001002	00
002	002002	02
004	003002	04
006	004002	06
010	005002	08
012	006002	0 A
014	007002	0 E
016	010002	10
020	011002	12
022	020002	14
024	040002	16
026	060002	1 A
030	100002	1 C
032	120002	1 E
034	140002	20
036	160002	22
040	200002	26
042	220002	
044	000	040
046	$377 \times x \times$	

Hexadecimal

Note and Length Code

0102
0202
0302
0402
0502
0602
0702
0802
0902
1002
2002
3002
4002
5002
6002
7002
8002
9002
0040
FF $\times x$
repeat code

TABLE LOCATIONS \rightarrow

Figure 4: A test string, shown in machine code form and in traditional musical representation, sans time signature, using note lengths as defined in figure 2.

A Familiar Tune

Octal	Hexadecimal		
Relative			
Address	Note and Length Code	Relative Address	Note and Length Code
000	002004	00	0204
002	002004	02	0204
004	006004	04	0604
006	011004	06	0904
010	120014	08	500 C
012	040024	$0 A$	2014
014	040004	0 C	2004
016	007004	0 E	0704
020	011004	10	0904
022	040004	12	2004
024	011040	14	0920
026	002004	16	0204
030	002004	18	0204
032	006004	1 C	0604
034	011004	1 E	0904
036	011014	20	$090 C$
040	004024	22	0414
042	006004	24	0604
044	007004	26	0704
046	006004	28	0604
050	004004	$2 A$	0404
052	002030	2 C	0218
054	000001	2 E	0001
056	$377 \times \times x$		FF xx

Photo 2: Installation of the melody box inside an Altair 8800 is accomplished by wiring various wires from the backplane of the computer. The power switch and volume control were mounted on the back panel of the computer, so that the melody box could be turned off.

pads and bus lines of the card is relatively small, so care must be used to prevent solder bridges from forming. I recommend a low wattage iron with a pencil tip. 25 to 30 W will work well.

The 20 variable resistors used can typically be found at prices from $\$.20$ to $\$.49$ depending on how good you are at shopping around. I mounted the actual melody box inside my Altair 8800, as shown in photo 2. The circuit connections to the Altair bus were made as shown in figure 1. When mounting the circuit inside the computer cabinet, care should be taken to prevent damage to existing boards of the computer. I found that covering the boards with a layer of paper was a good precautionary measure to prevent any splatter of solder. In order to make the Altair connections, you must remove the mainframe backplane board (the one with all the edge connectors) so that you can solder to the underside.

Software for the Melody Box

The melody box requires instructions to tell it what to do. In an organ, piano or other instrument, a special purpose keyboard gives instructions about what note to play and for how long. Making the melody box play a tune consists of writing a program to generate a time sequence of instructions.

A programming model for the melody box is summarized in figure 2. The data required for each note is the pitch of the note, and the length of the note. In the program I wrote for my Altair, I used one 8
bit byte to represent the pitch, followed by a second 8 bit byte with an integer count giving the length. A table of the pitch codes, referenced to a music stave, and a table of length codes with equivalent note symbols are shown as part of figure 2. The flowchart in figure 2 shows an algorithm which is easy to implement on any small computer. In my own system, I enter these codes with the front panel toggle switches and the "deposit" function.

Once you have coded up the details of a program which will execute the flowchart of figure 2, the first step is to tune the melody box. In figure 3 l've shown the musical representation of an ascending chromatic scale, as well as the corresponding table of byte values (in octal and hexadecimal) for the 2 byte note pitch and length codes required to play this scale. An arbitrarily long rest follows the end of data before the repeat. Tuning is accomplished by ear (assuming you know what a scale sounds like) while playing this chromatic scale with the program. The potentiometers of the circuit in figure 1 should be adjusted until the scale sounds "right."

As a second example, figure 4 shows a familiar tune, both in music notation and as a table of values for the music program to utilize. In the music notation, the table locations are written below in hexadecimal and octal to show how the two representations correspond. The limits on what tunes you can play are only dependent upon how much imagination you have and how big your Altair's memory is.■

A \$19 Music Interface

(And Some Music Theory for Computer Nuts)

Abstract

"It's all Relative." So it is in physics as it was in music. About 600 BC Pythagoras discovered that strings under equal tension sounded harmonious if their lengths were in ratios of small whole numbers like $2 / 1$, $3 / 2,4 / 3,5 / 3$, etc. Many experiments throughout the world since that time have told us that in music, it is the ratios of the frequencies of the notes that count, not the absolute frequencies. It has only been in recent times that there has been international agreement that A above middle C is 440 Hz . Musicians call the "distance" between two notes an interval. Musical intervals are actually the ratios of the frequencies of two notes, and are so important in music that many of the ratios, or intervals, have names. For example, $2 / 1$ is called the octave, $3 / 2$ is called a perfect fifth, $4 / 3$ is called a perfect fourth, $5 / 3$ is called the major sixth, etc. These names make sense to musicians because they represent the distance between two notes on the musical scale like do re mi fa sol la ti do, which might be numbered 1 through 8, respectively. An octave is do to do, a perfect fifth is do to sol, a perfect fourth is do to $f a$, a major sixth is do to $l a$, etc. The pure diatonic scale was constructed to maximize harmony between notes. This scale has been called the natural scale, and is one of the two most widely used scales in Western music. Many unaccompanied singing groups sing on this scale because it sounds right to them, even though they may not be able to tell you the difference between pure diatonic and tempered diatonic scales. Later you'll see how easy it is for a computer to generate notes on this scale.

Pianos, electronic organs, and synthesizers are all tuned to a slightly different scale, the equally tempered diatonic scale. J S Bach (1685-1750) played keyboard instruments and composed music which required changing key signatures (which we'll define by example later in this discussion), during the performance. But changing key signatures on an instrument tuned to the pure diatonic scale usually required retuning the instrument as you'll see in a moment. Bach found his way out of this dilemma by slightly mistuning his instruments, a technique which had recently been developed in Europe. This tempering was done so that all key signatures were equally out of tune, or equally tempered. When this is done, the ratio of frequencies of any two adjacent notes turns out to be the twelfth root of two (the value 1.0594631 noted mathematically as $\sqrt[12]{2 \text { or calculated }}$ in FORTRAN-like languages as $2^{* *}(1.0 / 12)$). He chose this ratio because there are twelve half steps per octave and the octave is a ratio of $2 / 1$. Only the octave is kept purely harmonic in this scale: The perfect fifth is 0.11 percent low, the perfect fourth is 0.11 percent high, the major sixth is 0.91 percent high, etc. Since the most discriminating ear can only perceive differences in frequency when they are more than 0.2 percent, the most harmonious intervals (the octave, the fifth and fourth) are indistinguishable between the two scales. But what Bach and the world gained by giving up a little harmonic perfection was a quantum jump in the versatility of fixed tuned instruments (and an added quantum jump in the time and skill required to
properly tune one).

Harmonious Computers

Microcomputers can give us both perfection and versatility. Since division by small whole numbers is trivial with digital electronics, it is at first sight more practical to use the pure diatonic scale when digitally generating music, just as it has been more practical to use the equally tempered diatonic scale for music performed on classical keyboard instruments. Changing key signatures in computer generated music is no problem, since the entire instrument may be "retuned" in a few microseconds.

The greatest advantage of the microcomputer is the ease with which anyone can produce music. Years of time consuming practice are not required. Application of computers to music may change music from an activity primarily dominated by motor skills to one dominated by the intellect. Composers no longer have to be skilled at playing an instrument in order to work out their compositions.

Do, re, mi, fa, sol, la, ti, do! North American, English, and Italian children all learn how to sing the scale. Most of them also learn other representations of the same musical scale like: C D E F G A B C, and:

Rarely if ever are any of these youngsters exposed to: $264 \mathrm{~Hz}, 297 \mathrm{~Hz}, 330 \mathrm{~Hz}, 352$ $\mathrm{Hz}, 396 \mathrm{~Hz}, 440 \mathrm{~Hz}, 495 \mathrm{~Hz}, 528 \mathrm{~Hz}$, or to: $1 / 1,9 / 8,5 / 4,4 / 3,3 / 2,5 / 3,15 / 8,2 / 1$. These two sets of numbers are also representations of do, re, mi, fa, sol, la, ti, do in the pure diatonic scale. Equally valid (especially for the piano) representations of this simple do to do musical scale are; $261.6 \mathrm{~Hz}, 293.7 \mathrm{~Hz}, 329.6 \mathrm{~Hz}, 349.2 \mathrm{~Hz}$, $392.0 \mathrm{~Hz}, 440 \mathrm{~Hz}, 493.9 \mathrm{~Hz}, 523.3 \mathrm{~Hz}$, which are related to each other by powers of the twelfth root of $2: 20 / 12(=1.000)$, $22 / 12(=1.1225), \quad 24 / 12,25 / 12,27 / 12$, $29 / 12,211 / 12,212 / 12(=2.000)$. As you may have guessed by now, these last two sets of numbers are the frequencies and frequency ratios of the equally tempered scale of do to do played on a piano.

So far, so good, but if you are as fast as I am at absorbing this material, by now it should be as clear as mud! Organization of facts into a pattern often does wonders for the intellect, so let us organize all this information into one table (table 1) and call
it the "Key of C Major" so that musicians will think we are talking about music instead of computers.

You should notice a couple of things about table 1. First, at the bottom line you'll see that l've added a new concept: the musician's idea of step size. The steps come in two sizes, whole and half. Remembering that everything is relative, we can talk about step size in terms of the ratio of the frequencies of the pitches, or notes. In the pure scale, a half step up in pitch is an increase of $16 / 15$ in frequency and a whole step up is an increase of $9 / 8$ or 10/9. In the tempered scale all half steps up are an increase in frequency by the twelfth root of two (21/2), and all whole steps up in pitch increase the frequency by the sixth root of two $(21 / 6)$ which is two half steps:

$$
2^{1 / 12} \times 2^{1 / 12}=2^{2 / 12}=2^{1 / 6}
$$

Secondly, you should note that the difference between the pure and tempered notes is imperceptible for four of the eight notes. You may be wondering why 440/440 $=+.91$ percent instead of 0 percent and why $261.6 / 264=0$ percent instead of -.91 percent. To answer this, look at the "Frequency Ratio to C " lines and recall that everything is relative so: C (tempered)/ C (pure) $=1 / 1$, or 0 percent and $A($ tempered) $/ A$ (pure) $=23 / 4 /(5 / 3)=1.6818 /$ 1.6667 , or +.91 percent.

To make this last point clear let's make a do to do scale from $A=220 \mathrm{~Hz}$ to $A=440$ Hz , table 2. I could have made C (tempered) $=\mathrm{C}$ (pure), but that would violate an international agreement about $A=440 \mathrm{~Hz}$! Besides, this way I can tell you about a scale in the minor mode. We'll impress the musicians looking over our shoulders by calling table 2 "Key of A Minor."

The two major differences between these two keys are the beginning note and the sequence of whole (W) and half (H) steps up the scale. Both the starting place and the sequence are specified in the name of the key. The key of C major begins with C and proceeds in the major mode sequence of steps, WWHWWWH. The key of A minor starts with A and proceeds in the minor mode sequence, WHWWHWW.

Look at the frequencies of the notes called D and G in these two keys. For tempered tuning, each of these notes keeps the same frequency although the key changes from C major to A minor. For pure tuning, however, each of these notes must be lowered by 1.25 percent when changing from C major to A minor. A singer or violinist does this during a performance, but can you imagine a pianist or organist stopping in the middle of a performance to retune two notes in each octave? Bach's

Key of C Major

Table 1: The key of C major. There is a direct equivalence between a musician's terminology for musical concepts and the physicist's or mathematician's precise measures of the idea. One of the attractions of music is this low level precision involved in the creation of high level emotional sensations.

Key of A Minor

Table 2: The key of A minor. As in table 1, we note the same information, but start the scale on A instead of C. This changes the order of half and whole steps (bottom line) from a major mode sequence to a minor mode sequence; an extra line has been added to show the frequency ratios of the minor key with respect to the major key. Note: Since this example is a minor scale, the terms me, le, and te are used to refer to the minor third, minor sixth, and minor seventh respectively. Another way to label this scale is to assign the name la to the low A. The scale then becomes la, ti, do, re, me, fa, sol, la.
equally tempered tuning survives all such key shifts quite well. The most sensitive intervals (octave, fourth, fifth) are still imperceptibly different from the pure scale, and the other intervals get no worse. You should notice one more thing when you are comparing these two tables. There are two kinds of thirds, sixths, and sevenths. As you may have guessed, there are also two kinds of seconds, major and minor. There is also an interval called the tritone, so there can be twelve equal half steps per octave.

So if we list all of the intervals, we find 13 to get 12 half steps per octave. Since these thirteen intervals form what is known as the chromatic scale, we'll call this list "Intervals of the Chromatic Scale" and write it down in table 3.

You can learn at least five things by inspecting table 3.

First, the b sign is used to denote a half step down from a note and is called a flat. The sign for a half step up is \# and is called a sharp.

Second, you should now be able to write the notes used in the scales of all major and minor keys. For example, the key of C minor begins with C and proceeds WHWWHWW, so it would be: C, D, E^{b}, F, G, A^{b}, B^{p}, C. The key signature is the shorthand used by musicians to specify the key at the beginning of each line of music:

This tells the person playing the music that all of the Es, As, and Bs should be played one half step flat.

Third, the major and minor modes sound different because different intervals are used for the third, sixth, and seventh.

Fourth, the two most dissonant intervals, the minor second and the tritone, are not used in any major or minor key, but are needed for some key changes.

Fifth, and perhaps most important for implementation on a "dinky" computer and for experimentation, is that the only prime numbers used in the pure pitch ratios are 2,3 , and 5 . Also, 5 only appears to the first power and 3 only to the first and second powers. You will see later how easy it is to implement the pure diatonic scale with inexpensive integrated circuits external to the computer, so the computer is not tied up by generating the pitches itself. In contrast, the powers of the twelfth root of two may be obtained from the moderately ex-
pensive "top octave" integrated circuit, or calculated (but not accurately) in real time by the dinky itself. In the latter case there will be little computer power left for calculating the melody or harmony.

From Music to Mathematics and Back Again

Webster defines inversion of a musical interval as: "A simple interval with its upper tone transposed an octave downwards... Inverted primes become octaves; seconds become sevenths; thirds, sixths, etc."

A mathematical inversion Webster defines as: "A change in the order of terms of a proportion. . " So what if a fifth is just an inverted fourth? Simplification, that's what! If we divide the chromatic scale right in the middle at the tritone, the bottom half is just the inverse of the upper half. This means that you only need to learn and think about half as much. This is not only true musically and mathematically, but your own ears will also easily recognize the similarities between an interval and its inverse.

Try the following experiment on any piano or organ that's in tune. Pick out any black or white key and call it 1 for reference. This home note is called the tonic and should be located near the center of the keyboard for reasons I'll explain in a moment. Now find note 6 by counting up six keys including 1 and all black and white keys. Now play both 1 and 6 together; that's how a perfect fourth sounds. Try it again with 1 and 8 this time; that's how a perfect fifth sounds. Now go back and forth between 1 and 8 and then 1 and 6 to get a

	Interval	C Major	A Minor	Pure Ratio	Tempered Ratio
1	Unison	C-C	A-A	1/1	$2^{0 / 12}$
2	Minor Second	$C-D^{6}$	$A-B^{\text {b }}$	16/15	$2^{1 / 12}$
3	Major Second	C-D	A-B	9/8	$2^{2 / 12}$
4	Minor Third	$C-E^{\prime}$	A-C	6/5	$2^{3 / 12}$
5	Major Third	C-E	$A-D^{b}$	5/4	$2^{4 / 12}$
6	Perfect Fourth	C-F	A-D	4/3	$2^{5 / 12}$
7	Tritone	$C-G^{\text {b }}$	A-E ${ }^{\text {b }}$	(64/45 or 45/32)	$2^{6 / 12}$
8	Perfect Fifth	C-G	A-E	3/2	$2^{7 / 12}$
9	Minor Sixth	$C-A^{\text {b }}$	A-F	8/5	$2^{8 / 12}$
10	Major Sixth	C-A	A-G ${ }^{\text {b }}$	5/3	$2^{9 / 12}$
11	Minor Seventh	$C-B^{b}$	A-G	16/9	$2^{10 / 12}$
12	Major Seventh	$\mathrm{C}-\mathrm{B}$	$A-A^{\text {b }}$	15/8	$2^{11 / 12}$
13	Octave	C-C	A-A	2/1	$2^{12 / 12}$

Table 3: Intervals of the chromatic scale.
feel for the fifth and its inverse. Next try the same thing with 2 and 7 then 2 and 9. These two intervals are also the fourth and its inverse, the fifth, but you have transposed them up by half a step. Now try a minor third and its inverse, the major sixth. First play 1 and 4 together and then 1 and 10 together.

You should notice that the minor third and major sixth don't sound quite as sweet or harmonious as the fourth and fifth did. Now try transposing up a half step to 2 and 5 then another half step to 3 and 6 , and so on up the keyboard. Do the same with the fourth, first 2 and 7 , then 3 and 8 and so on up the scale. Notice how the fourth and minor third sound similar regardless of the tonic or home key chosen, and how they are clearly different from each other even if played in different octaves; in music as in physics everything is relative to the observer.

You may even want to make a list for yourself of the intervals which sound alike. You can also note which intervals are most harmonious and which are most dissonant, or rough. I'll even bet your list looks like mine! If you think l've biased you, have your friends or family make lists. I'll bet they all are in agreement. Table 4 contains my list, which l've called "Music to Mathematics to Music" for reasons you'll see in a moment.

Now isn't that a remarkable historical achievement: what musicians have been calling an inverse is also an inverse of the frequencies of pitches according to the mathematical definition of inverse. Although I'm neither mathematician nor musician, I have read a number of books on both subjects, including some on the psychophysics of music, and I have never seen this simple and simplifying correspondence of musical and mathematical inverses mentioned. Perhaps it was information lost with the burning of Pythagoras and his temple 2500 years
ago. A close look at my list of most harmonious to most dissonant reveals that as the top and bottom of the fractions get larger, the harmony decreases and the dissonance increases, (with the exception of the minor second; but let's forget about this exception for the moment).

The order in this list is no accident; neither is it a learned cultural bias! It is as if we had a brain with a center which continually seeks for simplicity, harmony and order. The harmonic series: $1,2,3,4,5$, $6, \ldots$, is found extensively in man's theories about nature. Is this because it is a property of nature, or is it because man's brain can understand things better if they are in such a series? Such a question is interesting, but can only be raised and not answered in an article about music for computer nuts. Music, like speech, is unique to man and is totally abstract. By abstract, I mean that for the most part, no attempt to copy nature is made.

Music is solely a product of man's brain, or ear-brain combination. Here is where we find harmonic series galore. A musical chord such as the major triad is three notes played together, the frequencies of the notes being related to each other as elements of a harmonic series are related. In the key of C major, the major triad is C, E, and G which have pitch ratios of 4,5 , and 6 (ie: $4 / 4$, $5 / 4$ and $6 / 4)$. Often to make the chord sound fuller, a musician will add the C an octave lower, and the C an octave higher. This also fills out the harmonic series some more: 2, , 4, 5, 6, , and 8. How about the missing 1, 3, 7, 9, etc? You can try 1 and 3 for yourself; they are simply the C an octave lower still, and the fifth up from the next C, and they fit in beautifully.

Unfortunately, you won't be able to try 7 on a piano; it would be $7 / 4$, which is 1.8 percent lower than B^{b}, a minor seventh from the C of the triad. Fortunately, if you

Interval	Ratio	Inverse	Octave Shift	Musical Inverse
Unison				
Fourth	$1 / 1$	$1 / 1$	$2 / 1$	Octave
Major Third	$4 / 3$	$3 / 4$	$3 / 2$	Fifth
Minor Third	$5 / 4$	$4 / 5$	$8 / 5$	Minor Sixth
Major Second	$6 / 5$	$5 / 6$	$5 / 3$	Major Sixth
Minor Second	$9 / 8$	$8 / 9$	$16 / 9$	Minor Seventh
Tritone	$16 / 15$	$15 / 16$	$15 / 8$	Major Seventh

*The minor second is more dissonant to me than the tritone, but the tritone seems more dissonant to me than the major seventh, so the minor second doesn't fit in this list very well.

Table 4: Music to mathematics to music. The intervals useful in music are listed in order from the most harmonious to the most dissonant. Most people are in good agreement about the order of evaluation of the relative degrees of harmoniousness in the first five intervals listed.
build the pure diatonic scale interface described below, you will be able to hear for yourself how well 7 fits into the series. Also you will be able to hear 11, and 13, and to hear how, and under what conditions they fit.

The ear-brain wants so much to hear harmonic series that it will even fill in missing pitches. The "missing fundamental," or the lowest note of a harmonic series, has been studied by many doing acoustics research. If your ear is presented with a series of tones whose frequencies are in the ratios of whole numbers such as $2,3,4,5,6$, or $3,5,7,9$, your brain tells you that you actually hear the pitch corresponding to 1 (the fundamental) also!

Now let's get back to the dissonance of the minor second and why you needed to stay in the middle of the piano keyboard to do the experiments with intervals. If two pitches are very close together, the ear cannot tell them apart, and they are heard as a single smooth pitch. If the pitches are far enough apart, two smooth and distinct notes are heard. If the distance between the pitches is in the critical band, the two notes are heard as two more or less rough notes. This roughness is maximum at $1 / 4$ of the critical band. It turns out that the minor second is $1 / 4$ of the critical band over the middle of the piano range, and this is why it
sounds so dissonant. The width of the critical band is roughly equal to:

$100 \mathrm{~Hz}+50 \mathrm{~Hz}$ x f

where f is the frequency of the note in kHz . You can calculate that, as you go to lower notes on the piano, roughness, or dissonance, will be heard in the minor and then major thirds, and still lower will be heard even in the fourth and fifth, until at the lowest octave the only consonant interval will be the octave itself. Thus, if you want the music you compose to sound harmonious, you should have the pitches related to each other in the harmonic series, and pitches played at the same time should be more than $1 / 2$ of the critical band apart. Analysis of music composed by Bach and Dvorak shows that their chords obey these two simple rules.

To compose interesting music, you'll need a few more rules. Most music has two features, constancy and variety. It is as if the brain center which looked for order, simplicity, and harmony was easily bored, so once it found a pattern, it would soon be looking for another. Our musical needs vary. Sometimes we want very simple tunes so we can unwind, and at other times we need complex melodies to keep our interest. Once you have made a tune with a computer, it will be possible, in principle,

Figure 1: Block diagram of the musical tone generator interface. All logic (see figures 3 and 4) of the tone generator itself is 12 V CMOS, with level conversion from the TTL 5 V levels at the computer output.
for you to have the computer make all sorts of variations of your tune to keep it interesting.

Now let's switch gears from music to computer oriented electronics and find out how to build a diatonic computer music interface. The interface costs less than $\$ 19$ to build, including 24 integrated circuits, LEDs, resistors, four diodes, and a universal type printed circuit board. It will put out four notes simultaneously, and will play in almost nine octaves $(17.36 \mathrm{~Hz}$ to 7812.5 $\mathrm{Hz})$. The highest and lowest octaves have 12 and 13 different notes, and the middle seven octaves have 33 notes each, giving a total of 256 unique notes. It uses three bytes of memory space.

The interface can be functionally divided (see figure 1) into four parts:

- A set of programmable frequency dividers.
- A three byte latch.
- An address decoder.
- A level shifter to change the 5 V signals from the computer to 12 V signals for the CMOS circuits so they can operate fast enough to follow the 500 ns write pulse put out by the computer.

The block diagram shows that l've chosen hexadecimal addresses 1400 to 1402 to drive the interface. This is a convenient memory location for me because I have a KIM-1 with 12 K of memory and these locations are not used for anything else. You'll notice that l've also decoded write pulses for hexadecimal addresses 1403 to 1407 and page selects of addresses 20 XX to 22 XX for future expansion of the interface. Also, eight address lines, eight data lines, a clock line, and the write pulses for addresses $20 X X$ to $22 X X$, all at 12 V , are brought out to the edge connector for use with other CMOS interfaces.

Figure 2: Detail block diagram of the tone generator, which uses the 1 MHz clock of the KIM-1 as its frequency standard. The outputs at right are square wave signals which can be sent to further filtering and signal processing before mixing down to one or two stereo channels.

Figure 3: Schematic of the tone generator's key, octave and note selection logic. A default mixing circuit is shown to allow connection of all four outputs directly to one audio amplifier for testing.

Figure 4: Schematic of the tone generator's KIM-1 address space decoding (top), a diagram of the edge connector (far right), and power wiring table for figures 3 and 4 (right).

The six programmable dividers are the heart of the interface (see the detail block diagram of figure 2 and circuit diagram of figure 3). Five of these are 4029 presettable, bidirectional, binary or decade counters set up to count down in binary mode. In this mode the carry out (CO) line goes low whenever the counter counts down to 0 . The CO signal is inverted and returned to the preset enable (PE) input which sets the counter to the value of the binary number on input pins J_{4} to J_{1}. Each positive transition of the clock (C) input causes the counter to count down by one as long as the clock inhibit (CI) is low. Because I_{4} (pin 3 on IC9, IC15, IC19, IC21, and IC24) is always high, the counters may be set to divide by $8,9,10$, $11,12,13,14$, or 15 , depending on the binary number on inputs J_{3} to J_{1}. This number is stored in 4042 latches by writing the data into D_{3} to D_{1} of the latch as if it were a memory location. For example, if a binary three (011) were on J_{3} to $J_{1}, 8+3$, or 11 would be loaded into the counter when PE went high, and the C input would have 11 positive transitions before CO would go low, forcing PE high momentarily, and again
loading the counter with 11 . Thus the frequency of PE pulses would be $1 / 11$ of the frequency of positive transitions at C. A flip flop at the output of the note dividers converts the PE impulses into square waves with a 50 percent duty cycle. Each of the Q_{4} latch outputs turns off a divider and thus turns off the sound of one or more note outputs. Bits 4 and 8 of hexadecimal location 1400 turn off all the sound, whereas bits 4 and 8 of address 1401 and 1402 turn off notes 1 thru 4, respectively. The reason for all this turn off is that music has a lot more silence in it than is generally recognized. To make notes sound distinct, rather than all run together, the sound must be shut off for periods of 10 to 50 ms (for example).

The key selector divides the computer's 1 MHz clock by a number from 15 to 8 to produce frequency f_{K} of 66.7 kHz to 125 kHz as shown in the second block diagram. A binary divider, IC13, produces seven more octaves (factors of two in frequency) from f_{K}, and the 1 of 8 selector, $\mathrm{IC12}$, selects one of the octaves, f_{KO} (520.8 Hz to 125 kHz), based on bits 6 to 4 stored at

Power Wiring Table

Number	Type	+5 V	GND	+12 V
IC1	7406	14	7	-
IC2	7406	14	7	-
IC3	7406	14	7	-
IC4	7406	14	7	-
IC5	4028	-	8	16
IC6	4023	-	7	14
IC7	4028	-	8	16
IC8	4042	-	8	16
IC9	4029	-	8	16
IC10	4001	-	7	14
IC11	4042	-	8	16
IC12	4051	-	8	16
IC13	4024	-	7	14
IC14	4042	-	8	16
IC15	4029	-	8	16
IC16	4013	-	7	14
IC17	4001	-	7	14
IC18	4042	-	8	16
IC19	4029	-	8	16
IC20	4042	-	8	16
IC21	4029	-	8	16
IC22	4013	-	7	14
IC23	4042	-	8	16
IC24	4029	-	8	16

Edge Connector Wiring Diagram

address 1400, to send to the dividers, IC15 and IC19, for notes 1 and 2. Notes 2 and 3 are only in the low octaves 5 and 6 so up to three octaves may be played at once. I chose these to be in the lower octaves because I use them for rhythm and accompaniment. You may want to add other octave selectors for more control, or add manual switches to have notes 4 and 3 in any octave.

The data from the computer is strobed into the latches by write pulses generated by the address decoder, IC5 to IC7 (figure 4). \bar{K}_{5} from KIM-1 is low whenever the sixth 1024 block of memory is addressed. K_{5} is combined in IC5 with \bar{A}_{9}, \bar{A}_{8}, and R/W to produce pulses when addresses $20 X X$ to
$22 X X$ are written into. The pulse indicating addresses 20XX (2000 to 20FF) are being written into is combined with \bar{A}_{7} to $\overline{\mathrm{A}}_{3}$ and ϕ_{2} to produce a negative pulse during phase two of the computer clock when locations 1400 to 1407 are being written into. This short pulse is combined with $\overline{\mathrm{A}}_{2}$ to $\overline{\mathrm{A}}_{0}$ in IC7 to produce strobe pulses for the latches during the 500 ns when the data is stable on the data bus. Generating a tune is done by storing (with a timed sequence) the appropriate data into locations 1400 to 1402 as you would any other memory location. The 5 to 12 V level shifter is simply a high voltage, open collector hex inverter, 7406. In retrospect, diodes D_{1} to D_{4} are pro-

Nearby Musical Note	Effective Integer N	Key	Note		R Actual Ratio 256/N	Pitch Assuming 1 MHz/(16 N)	W Nearest Well Tempered Ratio	(R-W)/R
B -	$\begin{aligned} & 256 \\ & 252 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{array}{r} 8 \\ 14 \end{array}$		$\begin{aligned} & 1.0000 \\ & 1.0159 \end{aligned}$	$\begin{aligned} & 244.14 \\ & 248.02 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0156 \end{aligned}$
C	$\begin{aligned} & 242 \\ & 240 \end{aligned}$	$\begin{array}{r} 11 \\ 8 \end{array}$	$\begin{aligned} & 11 \\ & 15 \end{aligned}$	$(10,12)$	$\begin{aligned} & 1.0579 \\ & 1.0667 \end{aligned}$	$\begin{aligned} & 258.26 \\ & 260.42 \end{aligned}$	$\begin{aligned} & 1.0595 \\ & 1.0595 \end{aligned}$	$\begin{aligned} & 0.0015 \\ & 0.0068 \end{aligned}$
C\# *	$\begin{aligned} & 234 \\ & 225 \\ & 224 \end{aligned}$	$\begin{array}{r} 9 \\ 15 \\ 8 \end{array}$	$\begin{aligned} & 13 \\ & 15 \\ & 14 \end{aligned}$		$\begin{aligned} & 1.0940 \\ & 1.1378 \\ & 1.1429 \end{aligned}$		$\begin{aligned} & 1.1225 \\ & 1.1225 \\ & 1.1225 \end{aligned}$	0.0260 0.0135 0.0178
D -*	$\begin{aligned} & 220 \\ & 216 \\ & 210 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 9 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.1636 \\ & 1.1852 \\ & 1.2190 \\ & \hline \end{aligned}$	284.09 289.35 297.62		
D\# *	$\begin{array}{\|l\|} \hline 208 \\ 200 \\ 198 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 10 \\ 9 \end{array}$	$\begin{aligned} & 13 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.2308 \\ & 1.2800 \\ & 1.2929 \\ & \hline \end{aligned}$			0.0237 0.0157 0.0255
E **	$\begin{aligned} & 196 \\ & 195 \\ & 192 \end{aligned}$	$\begin{array}{r} 14 \\ 13 \\ 8 \end{array}$	$\begin{aligned} & 14 \\ & 15 \\ & 12 \end{aligned}$		$\begin{aligned} & 1.3061 \\ & 1.3128 \\ & 1.3333 \end{aligned}$	$\begin{aligned} & 318.88 \\ & 320.51 \\ & 325.52 \end{aligned}$	$\begin{aligned} & 1.3348 \\ & 1.3348 \\ & 1.3348 \end{aligned}$	$\begin{aligned} & 0.0220 \\ & 0.0170 \\ & 0.0011 \end{aligned}$
F	$\begin{array}{\|l\|} \hline 182 \\ 180 \\ 176 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ 9 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	$(12,15)$	$\begin{aligned} & 1.4066 \\ & 1.4222 \\ & 1.4545 \\ & \hline \end{aligned}$	$\begin{aligned} & 343.41 \\ & 347.22 \\ & 355.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4142 \\ & 1.4142 \\ & 1.4142 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0054 \\ & 0.0056 \\ & 0.0277 \\ & \hline \end{aligned}$
F\#	$\begin{array}{\|l} 169 \\ 168 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5148 \\ & 1.5238 \\ & \hline \end{aligned}$	$\begin{aligned} & 369.82 \\ & 372.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4983 \\ & 1.4983 \end{aligned}$	$\begin{aligned} & 0.0110 \\ & 0.0167 \end{aligned}$
G	$\begin{array}{\|l\|} \hline 165 \\ 162 \\ 160 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ 9 \\ 8 \end{array}$	$\begin{array}{r} 15 \\ 9 \\ 10 \\ \hline \end{array}$		$\begin{aligned} & 1.5515 \\ & 1.5802 \\ & 1.6000 \end{aligned}$	378.79 385.80 390.63	$\begin{aligned} & 1.5874 \\ & 1.5874 \\ & 1.5874 \end{aligned}$	$\begin{aligned} & 0.0231 \\ & 0.0045 \\ & 0.0079 \\ & \hline \end{aligned}$
G\#	$\begin{array}{\|l\|} \hline 156 \\ 154 \\ 150 \end{array}$	$\begin{aligned} & 12 \\ & 11 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$		$\begin{aligned} & 1.6410 \\ & 1.6623 \\ & 1.7067 \end{aligned}$	$\begin{aligned} & 400.64 \\ & 405.84 \\ & 416.67 \end{aligned}$	$\begin{aligned} & 1.6818 \\ & 1.6818 \\ & 1.6818 \end{aligned}$	$\begin{aligned} & \hline 0.0248 \\ & 0.0117 \\ & 0.0146 \end{aligned}$
A -	$\begin{aligned} & 144 \\ & 143 \\ & 140 \\ & \hline \end{aligned}$	$\begin{array}{r} 8 \\ 11 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 13 \\ 14 \\ \hline \end{array}$	$(12,15)$	$\begin{aligned} & 1.7778 \\ & 1.7902 \\ & 1.8286 \\ & \hline \end{aligned}$	434.03 437.06 446.43		
A\# - *	$\begin{aligned} & 135 \\ & 132 \end{aligned}$	$\begin{array}{r} 9 \\ 11 \end{array}$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$		$\begin{aligned} & 1.8963 \\ & 1.9394 \end{aligned}$	$\begin{aligned} & 462.96 \\ & 473.48 \end{aligned}$	$\begin{aligned} & 1.8876 \\ & 1.8876 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0266 \end{aligned}$
B	$\begin{aligned} & 130 \\ & 128 \end{aligned}$	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{array}{r} 13 \\ 8 \end{array}$	(next octave)	$\begin{aligned} & 1.9692 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 480.77 \\ & 488.28 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 2.0000 \end{aligned}$	0.0156 0.0000

[^0]Table 5: Table of possible intervals. The circuit of figures 1 to 4 produces the following set of possible frequencies assuming a 1 MHz central processor clock. in this table, outputs have been grouped near the equivalent well tempered scale ratio and frequencies. The asterisk (*) indicates best fit for a logarithmic well tempered scale series starting at a ratio of 1.0000 , calculated using a program on a pocket calculator. Notations in parentheses show effective integers derived by shifting to the next octave. Note that with this calculation, use of "best" fit finds the note A in this octave at $434 \mathrm{~Hz}, 0.7 \%$ flat with respect to the standard A of 440 Hz . Table 6 picks a set from this table which is closest to the standard pitches but not optimal with respect to equal temperment.
bably not needed since IC6 probably can't supply enough current to damage IC3, even though the input voltage maximum to IC3 is specified as 5.5 V . The four extra outputs on the quad latches are used with 24 LEDs to give you a bonus light show, and are useful in figuring out what data is being sent to the interface from the computer. The LEDs are lit with 0 s instead of 1 s at the J inputs, so that the more lights, the lower the divisor and the higher the note. If you want the lights to read the same as the J inputs, reverse them and tie the anodes to +12 V .

The middle seven octaves of the interface each have 33 unique combinations of the key and note dividers. I've made a list of frequencies in one such octave. You'll notice right away that there is no way to get a perfect fifth if you use 244.14 Hz as the home or "tonic" note. This is because to go up in frequency by $3 / 2 s$, you need to already be dividing by a number that has 3 in it such as 9,12 , or 15 . So if you want to change to a note that is a fifth from the tonic, 248.02 $\mathrm{Hz}, 260.42 \mathrm{~Hz}, 267.09 \mathrm{~Hz}$ etc can be used as the tonic, but $244.14 \mathrm{~Hz}, 258.26 \mathrm{~Hz}$, 279.02 Hz can't be. Although this may seem restricting, remember that the octave here has almost three times as many notes as an octave on a piano. For the tritone interval(s), you will find that $10 / 7$ and $7 / 5$ are indistinguishable from $64 / 45$ and $45 / 32$, and are easier to use.

Now to get started using the interface, let's write a program to play the do to do scale in both major and minor modes. To keep it simple, we'll let note 1 play and keep the others silent. To silence notes 2 to 4 , we need to store a 1 in bit 7 of location 1401 and in bits 4 and 7 of location 1402. To hear anything, we also need a 0 in bits 4 and 7 of location 1400 and to hear note 1 , a 0 in bit 4 of 1401 . One set of data to accomplish this is:

Address	Data
1400	xy
1401	Fz
1402	FF

where x, y, and z are numbers less than 8 and the Fs are any number more than 7 (eg: hexadecimal E).

If you look at the major and minor mode sequences in table 1, "Key of C Major," or in table 2, "Key of A Minor," you'll find that the major scale tonic must contain two 3 s and a 5 in the divisor so you can multiply by 9 and 15 , and the minor scale tonic must contain two 3 s .

The so called "rate multipliers" also do their multiplication by dividing by a smaller number. To make this idea clear to you l've
written out the ratios, divisors, output frequencies, and the data to be written into locations 1400 and 1401 (don't forget to write FF into 1402). For example, if hexadecimal 34 and hexadecimal F7 are written into 1400 and 1401 , the 1.00 MHz clock will be divided by $(8 \times 12 \times 15 \times 2)$ to give an output frequency of 347.222 Hz .

To play the major scale, your memory should look like this:

Address	Data
SCALE +0	34
SCALE +1	F7
SCALE +2	40
SCALE+3	F2
etc	

The major and minor diatonic scales and the twelve note chromatic scale are not the only scales that are pleasing to the human ear. With this interface you should be able to create new and pleasing musical scales, and compose music which has never been heard before. You can explore the sounds of intervals with frequency ratios of $7 / 4,9 / 5,9 / 7$, and $7 / 6$ which are not found in Western music. You should also be able to invent some new and interesting chords since you will have more of the harmonic series available to you. Just watch out for the critical band by keeping your notes more than 50 Hz apart plus 25 Hz for each kHz .■

Figure 5: Flowchart of a simple program to cycle through a series of note codes found in a table indexed by register X, with 16 entries.

		Ratio	Octave	Divisor Key	Note	1400	1401	${ }^{\text {fKON1 }}$
	(Tonic	1/1	8	12	15	34	F7	347.2
	Second	9/8	16	8	10	40	F2	390.6
	Third	5/4	8	12	12	34	F4	434.0
	Fourth	4/3	8	9	15	31	F7	463.0
	Fifth	3/2	8	12	10	34	F2	520.8
	Sixth	5/3	8	12	9	34	F1	578.7
	(Seventh	15/8	8	12	8	34	F0	651.0
	Octave	2/1	4	12	15	24	F7	694.4
		1/1	8	12	12	34	F4	434.0
	Second	9/8	16	8	8	40	F0	488.3
	Third	6/5	8	12	10	34	F2	520.8
	Fourth	4/3	8	12	9	34	F1	578.7
	Fifth	3/2	8	12	8	34	F0	651.0
	Sixth	8/5	4	12	15	24	F7	694.4
	Seventh	16/9	8	9	9	31	F1	771.6
	Octave	2/1	4	12	12	24	F4	868.1

Table 6: A selection of codes taken from the integers of table 5 and applied to the hardware of figures 1 to 4, to create a major scale (tonic F relative to $A=440$) and minor scale (tonic A, relative to $A=440$).

A Sampling of Techniques For

Computer Performance of Music

Hal Chamberlin

Computer music is probably one of the most talked about serious applications for home computers. By serious I mean an application that has a degree of complexity and open-endedness which can totally preoccupy experimenters and funded institutions for years. Computer performance of music is a discipline so vast that the final, "best" technique for its implementation or even a good definition of such a technique may never be discovered.

At the same time, computer music is an easy field to break into. With only minimal effort and expenditure a very impressive (to the uninitiated) music performance demonstration may be put together. With a little more work a system may be assembled which is of great value to other family members, particularly children just starting to learn music theory. Such a system could, for example, eliminate manual dexterity as a factor in a child's musical development. Finally, on the highest level, it is no longer very difficult to break into truly original research in serious performance of music by computer. The advances in digital and linear integrated circuits have made putting together the hardware system for supporting such research largely a matter of clever system design rather than brute financial strength. Programming, tempered with musical knowledge, is the real key to obtaining significant results. Thus, in the future, hobbyists working with their own systems will be making important contributions toward advancement of the computer music art.

While the scope of one article cannot
fully cover such an extensive topic, it should serve to acquaint the reader with the more popular techniques, their implementation, strengths, weaknesses, and ultimate potential.

Generally, all computer music performance techniques can be classified into two generic groups. The first includes schemes in which the computer generates the sound directly. The second covers systems where the computer acts as a controller for external sound generation apparatus such as an electronic organ or sound synthesizer.

Early Techniques

Just as soon as standard commercial computers such as the IBM 709 and, later, the 1401 made their appearance, programmers started to do frivolous things with them after hours, such as playing games and music. Since elementary monotonic (one note at a time) music is just a series of tones with different frequencies and durations, and since a computer can be a very precise timing device, it did not take long for these early tinkerers to figure out how to get the machine to play such music. The fundamental concept used was that of a timed loop.

A timed loop is a series of machine language instructions which are carefully chosen for their execution time as well as function, and which are organized into a loop. Some of the instructions implement a counter that controls the number of passes through the loop before exiting.

Let's examine some fundamental
timed loop relationships. If the sum total execution time of the instructions in the loop is M microseconds then we have a loop frequency of

$$
\left(\frac{10^{6}}{M}\right) \text { Hertz (cycles per second). }
$$

If the initial value of the decrementing counter that controls the number of loop passes is N, then the total execution time before exit from the loop is ($\mathrm{M} \times \mathrm{N}$) micro-
 seconds. Thus what we really have is a "tone" with a frequency of

$$
\left(\frac{10^{6}}{M}\right) \text { Hertz }
$$

and a duration of

$$
\frac{\mathrm{M} \times \mathrm{N}}{10^{6}} \text { seconds. }
$$

Using different loops with more or fewer instructions will give us different Ms and thus different notes. Using different Ns when entering these loops gives different durations for the notes, and so we have satisfied the definition of elementary monotonic music.

Of course at this point the computer is merely humming to itself. Several techniques, some of them quite strange, have evolved to make the humming audible to mortals.

One such method that doesn't even require a connection to the computer is to use an AM portable radio tuned to a quiet spot on the broadcast band and held close to the computer. Viola! [Sic] The humming rings forth in loud, relatively clear notes. As a matter of fact, music programs using this form of output were very popular in the "early days" when most small system computers had only 256 bytes of memory and no 10 peripherals except the front panel.

What is actually happening is that the internal logic circuitry with its fast rise time pulses is spewing harmonics that extend up into the broadcast band region of the radio spectrum. Since some logic gates will undoubtedly switch only once per loop iteration, the harmonics of the switching will be separated in frequency by the switching or loop frequency. Those high frequency harmonics that fall within the

Figure 1: A basic tone generation subroutine. There are two nested loops in this routine: the first, or inner loop controls the frequency (or pitch) of the note to be generated, while the second, outer loop controls the duration of the note. A train of square waves is generated at the output port bit which is used to drive the circuit in figure 2 to produce an audible tone.
passband of the radio are treated as a "carrier" and a bunch of equally spaced nearly equal amplitude sidebands. The radio's detector generates an output frequency equal to the common differences of all these sidebands, which is the loop frequency and its harmonics. The timbre of the resulting tones is altered somewhat by the choice of instructions in the loop, but basically has a flat audio spectrum like that of a narrow pulse waveform. Noise and distortion arise from other logic circuitry in the computer which switches erratically with respect to the timed loops. One practical difficulty with this method is there is no clearly identifiable way to get the computer to "shut up" for rests or space between identical notes.

The Hammer-Klavier

Other early methods used some kind of output peripheral to make sound. In a demonstration of an IBM 1401 over a decade ago this was literally true: the computer played a line printer! It seems that the hookup between a 1401 central processing unit and the 1403 printer was such that software had control of the printer hammer timing. Each time a hammer was fired a pulse of sound was emitted upon impact with the paper. Using a timed loop program with a print hammer fire instruction imbedded in the loop gave a raspy but accurately pitched buzz. [It also tended to cause IBM customer engineers great trepidation . . .CH/ This same scheme should also be possible on some of the small, completely software controlled dot matrix printers that are now coming on the market.

A sane approach, however, is to connect a speaker to an output port bit through an amplifier. Instructions would then be placed inside the timed loops to toggle the bit and thus produce a clean, noise-free rectangular wave.

Timed Loop Example

Let's look at an example of a timed loop music playing program, not so much for its musical value (which is negligible), but for some insight into what is involved, and also to introduce some terms. The MOS Technology 6502 microprocessor will be used for these examples. These programs are designed to run on a KIM-1 system, and should run on most other 6502-based systems with very minor modifications. Motorola 6800 users should be able to easily convert the programs into 6800 machine language. 8080 users will benefit most because successful conversion indicates a thorough understanding of the concepts involved.

The heart of the program is the tone generation subroutine which will be named TONE. Ideally, such a routine would accept as input two arguments: one related to the pitch of the note and the other controlling the duration. With such a subroutine available, playing a piece of music amounts to simply fetching the arguments from a "song" table in memory and calling the routine for each note to be played.

As mentioned previously, we could have a separate, carefully timed loop for each different tone frequency needed. TONE would then call the proper one based on the pitch parameter. Indeed this approach is very accurate (to within 1μ s on the 6502) but a great deal of memory is consumed for the 30 or so notes typically required. It also lacks flexibility. (This will be discussed later.) A better approach is to embed a second, waiting loop to control the execution time of one pass through the outer loop, and thus the tone's frequency. Figure 1 is a flowchart illustrating this. When using this scheme, the frequency argument directly determines the number of times through the inner, waiting loop and the duration parameter directly determines the number of times through the outer, tone generation loop.

Now, how are the argument values determined to get the frequencies and durations desired? First the execution time of the nested loops must be determined. In the KIM-1 with a 1 MHz clock and a 6502 the tightest inner waiting loop that can be written is $5 \mu \mathrm{~s}$, assuming that the inner loop count (frequency argument) is 256 or less and that it is held in a register. The total time spent in the loop is $[(5 x M)-1]$ microseconds, where M is the frequency argument and the -1 is due to the shorter execution time of an unsuccessful branch. (The observant reader will note that the execution time of some 6502 instructions is altered if they cross a memory "page boundary"; thus, an assumption of no page crossing is made.) But there is still the time required for a pass through the outer loop to output a pulse and decrement the duration counter. This is termed "loop overhead." For an example, let's say that the loop overhead is $25 \mu \mathrm{~s}$. As a result, the total outer loop time is
$[(5 x M)-1+25]$, or $[(5 x M)+24]$ microseconds which is the period of the audio waveform output. In order to determine the M required for a particular note, a table of note frequencies (see table 1) is consulted. Then the equation,

$$
M=\frac{\left(\frac{10^{6}}{F}-24\right)}{5}
$$

where F is the desired frequency, is solved for the nearest integer value of M. Lower frequency notes are preferred so that the percentage error incurred due to rounding M is minimized. The duration argument is actually a count of the number of audio tone cycles which are to be generated for the note, and thus its value is dependent on the tone frequency as well as the duration. Its value can be determined from the relation $N=D \times F$, where N is the duration argument, D is the duration in seconds, and F is the note frequency in Hertz.

As a complete example, let's assume that an eighth note G\# an octave above middle C is to be played, and that the piece is in $4 / 4$ time with a metronome marking of 80 beats per minute. Since an eighth note in this case is one half of a beat, the duration will be

$$
\frac{0.5 \times 60}{80}
$$

or 0.375 seconds. The note table shows that

Figure 2: A speaker driver circuit designed to accept square or rectangular waves and produce audible tones through a loudspeaker. In this particular application the circuit is driven from an output port bit of a KIM-1 microcomputer, although the circuit can accept any TTL compatible output port bit. When the input to the circuit is a logical 0 level, the transistor turns on and drives the speaker. When the input is a logical 1, the transistor turns off and current to the speaker is interrupted.

Wave Duty Cycle	Fund	2	3	4	5	6	7	8	9	10
$1 / 2$	1.00	0	0.333	0	0.200	0	0.143	0	0.111	0
$1 / 3$	1.00	0.500	0	0.250	0.200	0	0.143	0.125	0	0.100
$1 / 4$	1.00	0.707	0.333	0	0.162	0.236	0.143	0	0.111	0.141
$1 / 5$	1.00	0.841	0.561	0.259	0	0.173	0.240	0.210	0.116	0
$1 / 6$	1.00	0.867	0.667	0.433	0.200	0	0.143	0.217	0.222	0.173

Table 2: Harmonic amplitudes of rectangular waves. Note that, unlike square waves, asymmetrical rectangular waves contain even numbered harmonics. This simple technique of varying the duty cycle of such waves can have an appreciable effect on the timbre of the resulting sound.
the frequency of G\# an octave above middle C is 830.6 Hz , which yields a frequency argument of 236. The duration argument is 311. So if TONE is called with these parameters, a nice G\# eighth note will be produced.

Now let's go a step further and look at a practical "music peripheral" and TONE subroutine. Figure 2 shows a circuit for driving a speaker from any kind of TTL compatible output port bit, including those found in the 6530 "combo chips" used in the KIM-1. When the output port bit is a logic 0 level, the transistor turns on and drives a current

Listing. 1: An assembled listing of a practical timed loop tone generation subroutine for the 6502 microprocessor. This routine is an elaboration of the flowchart shown in figure 1 which allows the user to generate nonsymmetrical rectangular waves. Experimenting with the wave's duty cycle affects the harmonic content of the resulting tone and creates many interesting aural effects.
determined by the volume control setting through the speaker. When the bit is a logic 1 , the current is interrupted. Larger speakers or even a high fidelity speaker system will give a richer timbre to the lower pitched tones. The AUX input to a sound system may also be used instead of the transistor circuit. Using a patch cord, connect the shield to the common terminal of the power supply and the center conductor to the output port bit through a 10 K to 100 K isolation resistor.

Listing 1 shows an assembled listing of a practical timed loop tone generation subroutine for the 6502 microprocessor. Several refinements beyond the flowcharted example have been made to improve tone quality and flexibility. The inner waiting loop has been split into two loops. The first loop determines the length of time that the output rectangular waveform is to be a logic 1 and the second loop determines the 0 time. If both loops receive the same frequency argument (which they do as written) and the loop time of both loops is the same, then a symmetrical square wave output is produced. However, if one or more "do nothing" instructions is inserted into one of the two loops, the output waveform will become nonsymmetrical. The significance of this is that the rectangular waveform's duty cycle affects its harmonic spectrum, and thus its timbre. In particular, there is a large audible difference between a $50 \%-50 \%$ duty cycle (square wave) and a $25 \%-75 \%$ duty cycle. Table 2 lists the harmonic structure of some possible rectangular waves. As a result, some control over the timbre can be exercised if a separate TONE subroutine is written for each "voice" desired. Unfortunately, if this is done the frequency arguments will have to be recomputed since the outer loop time will then be altered.

Real music also possesses dynamics,
which are the changes in overall volume during a performance. Furthermore, the amplitude envelope of a tone is an important contributor to its overall subjective timbre. The latter term refers to rapid changes in volume during a single note. This is the case with a piano note, which builds up rapidly at the beginning and slowly trails off thereafter. Of course the setup described thus far has no control over either of these parameters: the volume level is constant, and the envelope of each note is rectangular with sudden onset and termination.

By graduating to a more sophisticated music peripheral, control of dynamics and amplitude envelopes can be achieved with a timed loop music program. The secret is to use a digital to analog converter connected to all eight bits of the output port. A digital to analog converter (DAC) does just what its name implies: it accepts a binary number from the output port as input and generates a corresponding DC voltage as its output. The circuit in figure 3, which can be used with any TTL compatible output port, gives an output voltage

$$
V=\left(\frac{1}{255}\right) \times 5
$$

where I is the binary number input between 0 and 255. When working with this kind of DAC, it is convenient to regard the binary number, I, as a fraction between 0 and 1 rather than an integer. The benefit of this will become apparent later when calculations will be performed to arrive at the value of I. The output of the DAC must be used with a sound system or the amplifier circuit in figure 8, not the simple transistor speaker driver circuit in figure 2.

As written, the TONE subroutine (see listing 1) alternately sends 0 and 255 to the output port with the music peripheral. With a DAC connected to that port, voltages of 0 and 5 V will be produced for the low and high portions of the rectangular wave. If instead 0 and 127 were output, the DAC would produce only 0 and 2.5 V giving a rectangular wave with about half the amplitude. This in turn produces a less loud tone, and so control over dynamics is possible by altering the byte stored at hexadecimal 101.

Arbitrary amplitude envelopes are also made possible by continuously exercising control over the amplitude during a note. Simple envelope shapes such as a linear attack and decay can be computed in line while the note is being sounded. A more general method is to build a table in memory describing the shape. Such a table can be quickly referenced during note playing. Great care must be taken, however,
to insure that loop timing is kept stable when the additional instructions necessary to implement amplitude envelopes are added.

More Complex Techniques

Even if all of the improvements mentioned above were fully implemented, the elementary timed loop approach falls far

Figure 3: An 8 bit digital to analog converter (DAC). This circuit accepts an 8 bit binary number from the output port and generates a corresponding DC voltage as its output. The output voltage from this circuit is equal to ((1/255) (5)) V, where 1 is the decimal equivalent of the 8 bit input which can take on any value from 0 to 225.

Figure 4: A sine wave as it would appear at the output from the digital to analog converter shown in figure 3. Each step in the approximation of this wave is called a sample. This particular illustration shows a 1.2 kHz sine wave sampled at a rate of 25,000 samples per second. The resulting waveform is only a very rough approximation of the original, but low pass filtering can improve accuracy (see figure 5 and text).
short of significant musical potential. The primary limitations are a narrow range of tone colors and restriction to monotonic performance. The latter difficulty may be alleviated through the use of a multitrack tape recorder to combine separate parts, but this requires an investment in noncomputer hardware and is certainly not automatic. Also, unpitched percussive sounds such as drum beats are generally not possible. Musicians, too, will probably notice a host of other limitations such as lack of vibrato and other subtle variations. All of these shortcomings may be overcome by allowing the computer to compute the entire sound waveform in detail at its own speed.

The one fundamental concept that makes direct waveform computation possible is the sampling theorem. Any waveform, no matter how simple or complex, can be reconstructed from a rapid series of discrete voltage values by means of a digital to analog converter such as the one used earlier. As an example, let's try to generate an accurate sine wave using a DAC. If this can be done, it follows from the Fourier (harmonic) theorem that any other waveform may also be synthesized.

Figure 4 shows a sine wave as it would appear at the DAC output. Each step on the approximation to the sine wave is termed a sample, and the frequency with which these samples emerge from the DAC is the sample rate. An attempt is being made in the
example to generate a 1.2 kHz sine wave at a sample rate of 25 kHz , or one sample every $40 \mu \mathrm{~s}$. Obviously this is a very poor sine wave, a fact that can be easily demonstrated with a distortion analyzer.

Before giving up, let's look at the frequency spectrum of this staircase-like wave on a spectrum analyzer. The spectral plot in figure 5 shows a strong frequency component at 1.2 kHz which is the sine wave we are trying to synthesize. Also present are the distortion component frequencies due to the sampling process. Since all of the distortion components are much higher in frequency than the desired signal, they may be easily removed with a sharp low pass filter. After filtering, the distortion analyzer will confirm that a smooth, pure sine wave is all that remains.

What will happen if the sine wave frequency is increased but the sampling frequency remains constant? With even fewer samples on each sine wave cycle the waveform from the DAC will appear even more distorted. The lowest frequency distortion product is the one of concern since it is the most difficult to filter out. Its frequency is $\mathrm{FD}=(\mathrm{FS}-\mathrm{f})$ Hertz, where FD is the lowest distortion component frequency, FS is the sampling frequency, and f is the sine wave signal frequency. Thus as f increases, FD decreases until they merge at $\mathrm{f}=\mathrm{FS} / 2$. This frequency is termed the Nyquist frequency and is the highest theoretical frequency that

Figure 5: The spectral plot of the staircase-like sine wave approximation shown in figure 4. This frequency versus amplitude graph indicates a strong frequency component at 1.2 kHz , the frequency of the sine wave. Normally, this would be the only frequency component to appear on a plot like this, but the presence of steeply rising steps in this waveform approximation introduces distortion components at higher frequencies, as shown.
may be synthesized. Any attempt to synthesize a higher frequency will result in the desired signal being filtered out and the distortion frequency emerging instead. This situation is termed aliasing because the desired signal frequency has been replaced by a distortion component alias frequency. Operating close to the Nyquist frequency requires a very sharp filter to separate the signal from the distortion. With practical filters, signal frequencies up to $1 / 4$ to $1 / 3$ of the sampling frequency are realizable. Since any sound, whether it is a pitched tone or unpitched sound, is actually a combination of sine waves, it follows that any possible sound may be produced by a DAC. The only limitation is the upper frequency response, which may be made as high as desired by increasing the sample rate. The low frequency response has no limit, and extends down to DC.

There is another form of distortion in DAC generated sounds which cannot be filtered out, since it is spread throughout the frequency spectrum. Quantization noise is due to the fact that a DAC cannot generate voltages that are exact samples on the desired waveform. An 8 bit converter, for example, has only 256 possible output voltage values. When a particular voltage is needed, the nearest available value will have to be used. The theoretical signal to noise ratio when using a perfect DAC is related to the number of bits by the equation $\mathrm{S} / \mathrm{N}=$ $(6 \times M)+4$ decibels where M is the number of bits. A practical DAC may be as much as 6 db worse, but a cheap 8 bit unit can yield nearly 50 db , which is as good as many tape recorders. When using 12 bits or more, the DAC will outperform even the best profes-
sional recorders. Thus it is apparent that computed waveforms can, in theory, be used to generate very high quality music; so high, in fact, that conventional audio equipment is hard pressed to reproduce it.

Now that we have the tools, let's see how the limitations of computer music mentioned earlier can be overcome. For tones of definite pitch, the timbre is determined by the waveshape and the amplitude envelope. Concentrating on the waveshape, it should be apparent that a waveform table in memory repeatedly dumped into the DAC will produce an equivalent sound waveform. Each table entry becomes a sample, and the entire table represents one cycle of the waveform. The frequency of the resulting tone will be FS/N where FS is the sampling frequency (rate at which table entries are sent to the DAC) and N is the number of entries in the table. To get other frequencies, either the sample rate or the number of table entries must be changed.

There are a number of reasons why the sample rate should remain constant, so the answer is to change the effective table length. If the table dump routine were modified to skip every other entry, the result would be an effective halving of table size and thus doubling of the tone frequency. If the table is fairly long, such as 256 entries, a number of frequencies are possible by skipping an integer number of entries.

To get musically accurate frequencies, it is necessary to be able to skip a fractional number of table entries. At this point the concept of a table increment is helpful in dealing with programming such an operation. First, the table is visualized as a

Figure 6: Diagrammatic representation of the circular table used for storing the waveform "template." The technique illustrated here is that of storing a large number of samples of one cycle of a musical waveform in memory as a table which wraps around itself in circular fashion. A pointer is used to point to the next sample to be extracted. In order to create a waveform with a given frequency, the program is designed to skip a fractional number of table entries to get the next sample value. This fractional number is called the table increment value. The process is continued around the table for one revolution to create a complete waveform. The cycle around the table is repeated untll the duration counter decrements to zero.
circle with the first entry conceptually following the last as in figure 6. A pointer locates a point along the circular table which represents the sample last sent to the DAC. To find what should be sent to the DAC next, the table pointer is moved clockwise a distance equal to the table increment. The frequency of the resulting tone is now

$$
\frac{\mathrm{FS} \times \mathrm{I}}{\mathrm{~N}}
$$

where FS and N are as before and I is the increment.

With integer increments, the pointer always points squarely to an entry. With mixed number increments, the pointer also will take on a fractional part. The sensible thing to do is to interpolate between the table entries on either side of the pointer
to arrive at an accurate value to give to the DAC. This is indeed necessary to assure high quality; but simply choosing the nearest entry may be acceptable in some cases, particularly if the table is very large.

There is one elusive pitfall in this technique. The table may contain the tabulation of any waveform desired, subject to one limitation: a nonzero harmonic component of the waveform must not exceed the Nyquist frequency, FS/2. This can easily happen with the larger table increments (higher frequency tones), the result being aliasing of the upper harmonics. Theoretically this is a severe limitation. Often a small amount of aliasing is not objectionable, but a large amount sounds like gross intermodulation distortion. High sample rates reduce the possibility or magnitude of aliasing, but of course require more computation. For the moment, we will ignore this problem and restrict ourselves to relatively smooth waveforms without a lot of high frequency harmonics.

Now that the DAC is used for generating the actual waveshape, how is amplitude control accomplished? If an amplitude parameter is defined that ranges between 0 and 1.0 (corresponding to amplitudes between zero and maximum), the desired result is obtained by simply multiplying each sample from the table by this amplitude parameter and sending the product to the DAC. Things are nice and consistent if the table entries are also considered as fractions between-1 and +1 because then the product has a range between -1 and +1 which is directly compatible with the DAC. (Note that the DAC in figure 3 is unipolar. It can be considered bipolar if +2.5 V output is the zero reference and the sign bit is inverted.)

The last major hurdle is the generation of simultaneous tones. Obviously, two simultaneous tones may be generated by going through two tables, outputting to two separate DACs, and mixing the results with an audio mixer. This is relatively simple to do if the sample rates of the two tones are the same. Actually, all the audio mixer does is to add the two input voltages together to produce its output, but a very important realization is that the addition can also be done in the computer before the output conversion by the DAC! The two samples are simply added together with an ADD instruction, the sum is divided by two (to constrain it to the range of -1 to +1), and the result sent to a single DAC. This holds true for any number of simultaneous tones! The only requirement is that the composite samples not overflow the -1 to +1 range that the DAC can accept. Rather than dividing the sum, it is best to adjust the amplitude
factors of the individual "voices" to prevent overflow. So now we have the tools necesary to generate an ensemble of tones, each one possibly having its own waveform, amplitude envelope, and loudness relative to the others. Indeed, this is all that is necessary to simulate a typical organ.

Up to this point the timbre (waveform) of a tone has been determined by the contents of a fixed waveform table. Truly interesting musical notes change their timbre during the duration of the note. A reasonable alternative to switching between similar tables for implementing this is to build the tone from harmonic components. Each harmonic component of the tone is simply a sine wave with an amplitude dependent on the waveform of the resulting tone. Giving a different amplitude envelope to each harmonic is equivalent to smoothly changing the timbre during the note. The aliasing problem mentioned earlier can also be solved by simply omitting any harmonics that become too high in frequency.

Dynamic timbre variation can also be accomplished by a digital filter which does the same thing to a sampled waveform that a real inductance-capacitance filter does to a normal waveform. A digital filter is simply a subroutine which accepts a sample value as an argument and gives back a sample value which represents the filtered output. The equations used in the subroutine determine the filter type, and other arguments determine the cutoff frequency, Q , etc. This is a fascinating subject which deserves its own article.

What about other, unpitched sounds? They too can be handled with a few simple techniques. Most sounds in this category are based in part on random noise. In sampled form, random white noise with a uniform frequency spectrum is simply a stream of random numbers. For example, a fairly realistic snare drum sound may be generated by simply giving the proper amplitude envelope to pure white noise. Other types of drum sounds may be generated by using a digital filter to shape the frequency spectrum of the noise. A resonant type of digital filter would be used for tomtoms and similar semipitched drums, for example. A high pass filter is useful for simulating brush and cymbal sounds. An infinite number of variations are possible. This is one area where direct computation of sound waveforms really shines.

The sampling theorem works both ways also. Any waveform may be converted into digital samples with an analog to digital converter (ADC) with no loss of information. The only requirement is that the signal being sampled have no frequency com-

Listing 2: A program which, in conjunction with tables 3, 4 and 5, generates four simultaneous musical voices, each with a different waveform and volume level. The program is designed for use with the 6502 processor coupled to an 8 bit unsigned digital to analog converter (DAC) like the one shown in figure 3.

		THIS PROGRAM PLAYS MUSIC IN 4-PART HARMONY ON THE KIM-1 OR OTHER 6502 BASED SYSTEM USING AN 8 -BIT UNSIGNED DIGITAL-TO-ANALOG CONVERTER CONNECTED TO AN OUTPUT PORT. TUNED FOR SYSTEMS WITH A 1 MHZ CRYSTAL CLOCK. DOES NOT USE THE ROR INSTRUCTION. SONG TABLE IS AT "SONG" ENTRY POINT IS AT "MUSIC"		
0000		. $=$	0	; ORG at page o location 0
1700	DAC	=	X 1700	; OUTPUT PORT ADDRESS WITH DAC
1701	DACDIR	=	X'1701	; DATA DRIECTION REGISTER FOR DAC PORT
1780	AUXRAM	=	X 1780	; ADDRESS OF EXTRA 128 bytes Of RAM IN 6530
$1 \mathrm{C22}$	KIMMON	$=$	X'1C22	; ENTRY POINT TO KIM Keyboard monitor
000000	V1PT:	. BYTE	0	; VOICE 1 Wave pointer, fractional part
00010000		. WORD	WAV 1 TB	; Integer part and wave table base
000300	V2PT:	. BYTE	0	; VOICE 2
00040000		.WORD	WAV2TB	
000600	V3PT:	. BYTE	0	; VOICE 3
00070000		.WORD	WAV3TB	
000900	V4PT:	. BYTE	0	; VOICE 4
0001 0000		.WORD	WAV4TB	
000C 0000	VIIN:	.WORD	0	; VOICE 1 INCREMENT (frequency parameter)
OOOE 0000	V2IN:	.WORD	0	; VOICE 2
00100000	V3IN:	.WORD	0	; VOICE 3
00120000	V4IN:	.WORD	0	; VOICE 4
001400	DUR:	. BYTE	0	; DURATION COUNTER
00150000	NOTES :	.WORD	0	; NOTES POINTER
00170002	SONGA :	.WORD	SONG	; ADDRESS OF SONG
00190000	INCPT:	.WORD	0	; POINTER FOR LOADING UP VINT - V4NT
001 B 0 COO	INCA :	. WORD	VIIN	; Initial value of IncPT
001 5 200	TEMPO:	.WORD	82	; TEMPO CONTROL VALUE, TYPICAL VALUE FOR 3:4 TIME, 100 BEATS PER MINUTE, DUR=64 DESIGNATES A QUARTER NOTE
0100		. $=$	X'100	START PROGram Code at location 0100

		;	MAIN	USIC PLAYING	Program
0100	A9FF	MUSIC:	LDA	-X'fF	; SET PERIPHERAL A dATA DIRECTION
0102	8DO117		STA	DACDIR	; REGISTER TO OUTPUT
0105	D8		CLD		; INSURE BINARY ARITHMETIC
0106	A517		LDA	SONGA	; INITIALIZE NOTES POINTER
0108	8515		STA	NOTES	; TO BEGINNING OF SONG
0104	1518		LDA	SONGA +1	
010C	8516		STA	NOTES +1	
O10E	A000	MUSIC1:	LDY	10	; SET up to translate 4 NOTE Id NUMBERS
0110	A51B		LDA	INCA	; INTO FREQUENCY DETERMINING WAVEFORM TABLE
0112	8519		STA	INCPT	; INCREMENTS AND STORE IN VIIN - V4IN
0114	B115		LDA	(NOTES), Y	; GET DURATION FIRST
0116	F03C		BEQ	ENDSNG	; BRANCH IF END OF SONG
0118	C90 1		CMP	11	; TEST If END Of SONG Table Segment
011 A	F029		BEQ	NXTSEG	; BRANCH IF SO
011 C	8514		STA	DUR	; OTHERWOSE SAVE DURATION IN DUR
011 E	E615	MUSIC2:	INC	NOTES	; DOUBLE INCREMENT NOTES TO POINT TO THE
0120	D002		BNE	MUSIC3	; NOTE ID OF THE FIRST VOICE
0122	E6 16		INC	NOTES+1	
0124	B1 15	MUSIC3:	LDA	(NOTES), Y	; GET A NOTE ID NUMBER
0126	AA		TAX		; INTO INDEX X
0127	B520		LDA	FRQTAB $+1, X$; GET LOW BYTE Of CORRESPONDING FREQUENCY
0129	9119		STA	(INCPT), Y	; STORE INTO LOW BYTE OF VOICE INCREMENT
012B	E6 19		INC	INCPT	; INDEX TO HIGH BYTE
012D	B51F		LDA	FRQTAB, X	; GET HIGH BYTE OF FREQUENCY
012 F	9119		STA	(INCPT), Y	; STORE INTO HIGH BYTE OF VOICE INCREMENT
0131	E6 15		INC	NOTES	; DOUBLE INCREMENT NOTES TO POINT TO THE
0133	D002		BNE	MUSIC4	; NOTE ID OF THE NEXT VOICE
0135	E6 16		INC	NOTES+1	
0137	E6 19	MUSIC4:	INC	INCPT	; INDEX TO NEXT VOICE INCREMENT
0139	A519		LDA	INCPT	; TEST IF 4 VOICE INCREMENTS DONE
013 B	C914		CMP	- $\mathrm{V}^{\text {IN }}+2$	
013 D	D0E5		BNE	MUSIC3	; LOOP IF NOT
$013 F$	205701		JSR	PLAY	; PLAY THIS GROUP OF NOTES
0142	4 COEO 1		JMP	MUSIC 1	; GO LOAD UP NEXT SET OF NOTES
0145	C8	NXTSEG:	INY		; END OF SEGMENT, NEXT TWO BYTES POINT TO
0146	B1 15		LDA	(NOTES), Y	; BEGINNING Of THE NEXT SEGMENT
0148	48		PHA		
0149	C8		INY		; GET BOTH SEGMENT ADDRESS BYTES
014 A	B1 15		LDA	(NOTES), Y	
014 C	8516		STA	NOTES +1	; THEN STORE IN NOTES POINTER
014 E	68		PLA		
014 F	8515		STA	NOTES	
0151	4 COEO 1		JMP	MUSIC1	; GO START INTERPRETING NEW SEGMENT
0154	4C221C	ENDSNG:	JMP	KIMMON	; END OF SONG, RETURN TO MONITOR

Listing 2, continued:

0157	A000	PLAY:	LDY	0	; SET Y TO ZERO FOR STRAIGHT INDIRECT
0159	A6 1D		LDX	TEMPO	; SET X TO TEMPO COUNT ; COMPUTE AND OUTPUT A COMPOSITE SAMPLE
0158	18	PLAY1:	CLC		; Clear carry
015 C	B101		LDA	(V1PT+1), Y	; ADD UP 4 VOICE SAMPLES
O15E	7104		ADC	(V2PT+1), Y	; USING INDIRECT ADDRESSING THROUGH VOICE
0160	7107		ADC	(V3PT+1), Y	; POINTERS INTO WAVEfORM TABLES
0162	710A		ADC	(V4PT+1), Y	; STRAIGHT INDIRECT WHEN Y INDEX $=0$
0164	8D00 17		STA	X'1700	; SEND SUM TO DIGITAL-TO-ANALOG CONVERTER
0167	A500		LDA	$V 1$ PT	; ADD INCREMENTS TO POINTERS FOR
0169	650C		ADC	$V 1 \mathrm{IN}$; THE 4 VOICES
016B	8500		STA	$V 1$ PT	; FIRST fractional part
016D	A501		LDA	V1PT+1	
016F	650D		ADC	$\mathrm{V} 1 \mathrm{IN}+1$	
0171	8501		STA	$\mathrm{V} 1 \mathrm{PT}+1$; THEN INTEGER PART
0173	A503		LDA	V2PT	; VOICE 2
0175	650E		ADC	V2IN	
0177	8503		STA	V2PT	
0179	A504		LDA	V2PT+1	
017B	650F		ADC	$\mathrm{V} 2 \mathrm{IN}+1$	
017D	8504		STA	$\mathrm{V} 2 \mathrm{PT}+1$	
017 F	A506		LDA	V3PT	; VOICE 3
0181	6510		ADC	V3IN	
0183	8506		STA	V3PT	
0185	A507		LDA	$v 3 P T+1$	
0187	6511		ADC	$\mathrm{V} 3 \mathrm{IN}+1$	
0189	8507		STA	V $3 P T+1$	
0188	A509		LDA	V4PT	; VOICE 4
018D	6512		ADC	V4 IN	
018 F	8509		STA	V4PT	
0191	A50A		LDA	V4PT+1	
0193	6513		ADC	V4 IN+1	
0195	850A		STA	V4PT+1	
0197	CA		DEX		; DECREMENT \& CHECK TEMPO COUNT
0198	D008		BNE	TIMWAS	; BRANCH TO TIME WASTE IF NOT RUN OUT
019A	C614		DEC	DUR	; DECREMENT \& CHECK DURATION COUNTER
019 C	F00C		BEQ	ENDNOT	; JUMP OUT IF END OF NOTE
019 E	A6 1D		LDX	TEMPO	; RESTORE TEMPO COUNT
01 AO	D0B9		BNE	PLAY1	; CONTINUE PLAYING
01 A2	D000	TIMWAS:	BNE	. +2	; 3 WASTE 12 STATES
0144	D000		BNE	. +2	; 3
0146	D000		BNE	. +2	3
0148	DOB1		BNE	PLAY1	; 3 CONTINUE PLAYING
$014 A$	60	ENDNOT:	RTS		$\begin{aligned} & \text {; RETURN } \\ & ; \text { TOTAL LOOP TIME }=114 \text { STATES }=8770 \mathrm{HZ} \end{aligned}$
01 AB		PIEND	$=$; define beginning address for third part ; Of SONG TABLE

ponents higher than half of the sampling frequency. This may be accomplished by passing the signal to be digitized through a sharp low pass filter prior to presenting it to the ADC. Once sound is in digitized form, literally anything may be done to it. A simple (in concept) application is intricate editing of the sound with a graphic display, light pen and large capacity disk. The sound may be analyzed into harmonic components and the result or a transformation of it applied to a synthesized sound. Again, this is an area that deserves its own article.

Sampled Waveform Example

It should be obvious by now that while these sampled waveform techniques are completely general and capable of high quality, there can be a great deal of computation required. Even the most powerful computers in existence would be hard pressed to compute samples for a significant piece of music with many voices and all subtleties implemented at a rate fast enough
for direct output to a DAC and speaker. Typically the samples are computed at whatever rate the program runs and are saved on a mass storage device. After the piece has been "computed," a playback program retrieves the samples and sends them to the DAC at a uniform high rate.

Most microprocessors are fast enough to do a limited amount of sampled waveform computation in real time. The 6502 is one of the best 8 bit machines in this capacity due to its indexed and indirect addressing modes and its overall high speed. The example program shown in listing 2 has the inherent capability to generate four simultaneous voices, each with a different waveform and volume level. In order to make the whole thing fit in a basic KIM-1, however, only one waveform table is actually used.

This program could probably be considered as a variation of the timed loop technique, since the sample rate is determined by the execution time of a particular loop. The major differences are that all of the instructions in the loop perform an essential function and that the loop time is constant regardless of the notes being played. Using the program as shown on a full speed (1.0 $\mathrm{MHz}) 6502$ gives a sample rate of 8.77 kHz , which results in a useful upper frequency limit of 3 kHz . The low pass filter in figure 7 coupled with the DAC in figure 3 and audio system or amplifier in figure 8 are all the specialized hardware necessary to run the program with full 4 part harmony.

The program consists of two major routines: MUSIC and PLAY. MUSIC steps through the list of notes in the song table and sets up DUR and V1IN thru V4IN for the PLAY routine. PLAY simultaneously plays the four notes specified by V1IN thru V4IN for the time period specified by DUR. Another variable, TEMPO, in page zero controls the overall tempo of the music independently of the durations specified in the song table. The waveform tables for the four voices are located at WAV1TB thru WAV4TB and require 256 bytes (one memory page) each. The actual waveform samples stored in the table have already been scaled so that when four of them are added up there is no possibility of overflow.

The song table has an entry for each musical "event" in the piece. An entry requires five bytes, the first of which is a duration parameter. By suitable choice of the TEMPO parameter in page 0 , "round" (in the binary sense) numbers may be used for duration parameters of common note durations. A duration parameter of 0 signals the end of the song, in which case the program returns to the monitor. A duration parameter of 1 is used to specify a break in

Figure 7: A sharp low pass filter with 3 kHz cutoff. This circuit is used to filter out the high frequency distortion illustrated in figure 5.

the sequential flow of the song table. In this case the next two bytes point to the continuation of the table elsewhere in memory. This feature was necessary to deal with the fragmented memory of the KIM-1, but has other uses as well. All other possible duration values are taken literally and are followed by four bytes which identify the notes to be played by each voice. Each note ID points to a location in the note frequency table which in turn contains a 2 byte frequency parameter for that note which is placed in V1IN thru V4IN.

The PLAY routine is optimized for speed, because its loop time determines the sample rate. Essentially, the routine maintains four pointers (V1PT thru V4PT) to the four waveform tables. Each pointer consists of three bytes in order of increasing significance. The first byte is the "fractional part" of the pointer, and the second byte is the integer part which is also the lower half of an address in the waveform table. The third byte is the upper address which normally remains constant. Waveform table lookup is considerably simplified by using the indirect addressing mode of the 6502 with these pointers. Note that the fractional part of the pointer is ignored when the table lookup takes place, since interpolation is much too slow for a real time routine.

During each sample, waveform table entries for each voice are fetched, added up, and sent to the digital to analog converter output port. Then the increment (VxIN) is added (double precision) to each pointer ($V \times P T$). Wraparound from the end of a waveform table to the beginning is automatically taken care of due to the fact that

Table 3: Note frequency table used in conjunction with listing 2. This table is for a sample rate of 8.772 kHz . The range of the notes used is from 65.41 Hz (for C2) to 1046.5 Hz (for C6).

Figure 8. An inexpensive, wide band low power audio amplifier. This circuit, when coupled with the circuits in figures 3 and 7 , is all the experimenter needs to create music with his or her microprocessor.

		SONG T EACH H THE FI THE VA THE NE 4. 0	ABLE USICAL EVENT CONS RST IS THE DURATI LUE OP "TENPO", 2 XT 4 BYTES CONTAI INDICATES SILBNCE	ISTS OF 5 BY ON OP THE EV ERRO DENOTES THE NOTE ID POR THE VOI	$\begin{aligned} & \text { T IN UN } \\ & \text { IE END } \\ & \text { OP THE } \end{aligned}$	ITS OF TH 4 VO		C TO	
0200		. $=$	X'200 ; S	START SONG AT	200				
		SONG TABLE FOR THE STAR SPANGLED BANNER BY FRANCIS SCOTT KEY AND J. STAFFORD SMITH DURATION COUNT $=64$ FOR QUARTER NOTE							
02006044000032	SONG:	. BYTE	96,74, 0, 0, 50	; 3/8	C5			C4	1
0205104400002 C		. BYTE	$16,68,0,0,44$; 1/16	14			13	
020A 4040000024		. BYTE	64,64, 0, 0, 36	; 1/4	G4			F3	2
O20F 4044000024		. BYTE	$64,68,0,0,36$; 1/4	14			F3	
0214 404A000022		.BYTE	64,74, 0, 0, 34	; $1 / 4$	C5			E3	
$0219805448441 E$. BYTE	128,84,78,68,30	; 1/2	F5	D5	14	D3	3
021 E 305C52441C		. BYTE	48,92,82,68,28	; 3/16	15	E5	14	C13	
0223 105800401C		. BYTE	16,88, 0,64,28	; 1/16	G5		G4	C3	
02284054003 ClE		. BYTE	$64,84,0,60,30$; 1/4	F5		F4	D3	4
O22D 4044003C1E		.BYTE	64, 68, 0, 60,30	; $1 / 4$	14		F4	D3	
$02324048403 C 28$.BYTE	64,72,64,60,40	; 1/4	B4	64	F4	G3	
0237 804A403A32		. BYTE	128,74, 64, 58,50	; 1/2	C5	64	E4	C4	5
$023 C$ 204A000032		. BYTE	32,74, 0, 0, 50	; 1/8	C5			C4	
0241 204A000032		. BYTE	32,74, 0, 0, 50	; 1/8	C5			C4	
0246 605C544424		. BYTE	96,92,84, 68,36	; 318	AS	F5	14	F3	6
024 B 2058004028		. BYTE	$32,88,0,64,40$; 1/8	G5		G4	63	
$02504054003 C 2 C$.BYTE	64, $84,0,60,44$; 1/4	F5		F4	13	
025580524 A4032		.BYTE	128,82,74,64,50	; 1/2	E5	C5	G4	C4	7
025A 304E46002E		. BYTE	48,78,70,0,46	; 3/16	D5	Be4		Be3	
025F 10524A402E		. BYTE	16,82,74,64,46	; 1/16	E5	C5	G4	Be3	
026440544 A442C		.BYTE	64,84,74,68,44	; 1/4	F5	C5	A4	A3	8
0269405400003 C		.BYTE	$64,84,0,0,60$; 1/4	F5			F4	
026E 404A000032		. BYTE	$64,74,0,0,50$; 1/4	C5			C4	
0273 404400002C		. BYTE	64, 68, $0,0,44$; 1/4	14			A3	9
0278 403C000024		. BYTE	64,60, 0, 0, 36	; 1/4	F4			F3	
027 D 3041000032		. BYTE	48,74, 0, 0, 50	; 3/16	C5			C4	
0282104400002 C		. BYTE	$16,68,0,0,44$; 1/16	14			13	
0287 403C000024		. BYTE	64,60,0,0,36	; 1/4	F4			F3	10
028C 4044000024		.BYTE	64,68,0,0,36	; $1 / 4$	14			F3	
02914041000022		. BYTE	64,74, 0, 0, 34	; 1/4	C5			E3	
$029680544 E 441 E$. BYTE	128,84, 78,68,30	; 1/2	F5	D5	A4	D3	11
029B 305C52441C		. BYTE	48,92,82,68,28	; 3/16	A5	E5	A4	C3	

Table 4: This song table is an encoding of "The Star Spangled Banner" in 4 part harmony which is used by the program in listing 2. Each musical event in the table consists of five bytes. The first byte represents the duration of the event in units, according to the value of the "tempo" (0 denotes the end of the song). The next four bytes contain the note identifications of the four voices (0 indicates silence for the voice).
the table occupies a full memory page. Finally, the tempo counter is decremented and checked. If the tempo counter is zero, it is restored and the duration counter is decremented and checked. If it is also zero the note is finished and PLAY returns. The net result is that TxD samples are computed and sent out for the event, where T is the tempo parameter and D is the duration parameter. Note that, unlike the earlier timed loop example, there is no interaction between the duration parameter and the note frequencies being played.

How does it sound? With the waveform table shown and a reasonably good speaker system, the result sounds very much like an electronic organ, such as a Hammond. There is a noticeable background noise level due to compromises such as prescaled waveforms and lack of interpolation in the tables, but it is not objectionable. The pitches are very accurate, but there is some beating on chords due to compromises inherent in the standard equally tempered musical scale. Also there are noticeable clicks between notes due to the time taken by the MUSIC routine to set up the next set of notes. All in all the program makes a good and certainly inexpensive basis for the "family music application" mentioned earlier.

Synthesizer Control Techniques

So far we have discussed techniques in which the computer itself generates the
sound. It is also possible to interface a computer to specialized sound generation hardware and have it act as a control element.

The most obvious kind of equipment to control is the standard, modular, voltage controlled sound synthesizer. Since the interface characteristics of nearly all synthesizers and modules are standardized, a computer interface to such equipment could be used with nearly any synthesizer in common use.

Generally speaking, the function of a voltage controlled module is influenced by one or more DC control voltages. These are usually assumed to be in the range of 0 to +10 volts, although some modules will have a predictable response to negative voltages as well. In a voltage controlled oscillator, for example, the output frequency is determined by a control voltage. For typical tuning, 0 V would correspond to 16 Hz (a very low C), and the frequency would increase one volt per octave for higher voltages. Thus, +4 V would produce middle C , and the maximum input of +10 V would produce a nearly inaudible 16.4 kHz . A typical oscillator module has two or three control inputs and a number of outputs. The voltages at the inputs are internally summed to form the effective control value (useful for injecting vibrato), and the outputs provide several different waveforms simultaneously.

A voltage controlled amplifier has as a minimum a signal input, a control input, and a signal output. The voltage at the control input determines the gain from the signal input to the signal output. In a typical setting, +8 V would correspond to unity (0 db) gain, with lower voltages decreasing the gain by 10 db per volt.

Many other voltage controlled devices have been developed during the approximately 12 year history of this field. In order to play music, the modules are first "patched" together with patch cords (like old style telephone switchboards) according to the desired sound characteristics. Manually operated control voltage sources such as potentiometers, joysticks and specialized organ-like keyboards are then manipulated by the player. The music is generally monotonic due to difficulties in the control elements (now being largely overcome). Multitrack tape recorders are universally utilized to produce the results heard on recordings such as Walter Carlos's Switched on Bach.

A useful computer interface to a synthesizer can be accomplished with nothing more than a handful of digital to analog and optionally analog to digital converters. The DACs would be used to generate control
voltages under program control and the ADCs would allow operator input from the keyboard, for example, to be stored. Since control voltages vary slowly compared to the actual sound waveforms, real time control of a number of synthesizer modules is possible with the average microprocessor.

Table 4, continued:

02AO	10580040 1C	. BYTE	$16,88,0,64,28$	1/16	G5		G4	C3	
02A5	4054003 ClE	.BYTE	64, 84, 0,60,30	1/4	F5		F4	D3	12
02Aa	4044003C1E	. BYTE	64, 68, $0,60,30$	1/4	A 4		F4	D3	
02 AF	4048403C28	. BYTE	64,72,64,60,40	1/4	B4	G4	F4	G3	
02B4	804A403A32	. BYTE	128,74,64,58,50	1/2	C5	G4	E4	C4	13
02B9	204A000032	. BYTE	$32,74,0,0,50$	1/8	C5			C4	
02BE	204 A000032	. BYTE	32,74, 0,0,50	; 1/8	C5			C4	
02C3	$605 C 544424$. BYTE	96,92,84,68,36	3/8	A5	F5	A4	F3	14
02C8	2058004028	. BYTE	32,88, 0,64,40	; 1/8	G5		G4	G3	
02CD	2054003C2C	. BYTE	32,84, 0,60,44	1/8	F5		F4	A3	
02D2	80524 A 4032	. BYTE	128,82,74,64,50	1/2	E5	C5	G4	C4	15
02D7	304E46002E	. BYTE	48,78,70,0,46	3/16	D5	Be4		Be3	
02DC	10524A402E	. BYTE	16,82,74,64,46	1/16	E5	C5	G4	Be3	
02E1	40544 A 442 C	. BYTE	64,84,74,68,44	1/4	F5	C5	A 4	A3	10́
02E6	405400003C	. BYTE	$64,84,0,0,60$	1/4	F5			F4	
02EB	404 A000032	. BYTE	64,74, 0, 0, 50	; 1/4	C5			C4	
02F0	404400002 C	. BYTE	64, $68,0,0,44$	1/4	A4			A3	17
02F5	4036000024	. BYTE	64, $60,0,0,36$; 1/4	F4			F3	
02FA	01	. BYTE	1	define end of this Segment					
02FB	8300	. WORD	POEND	; ADDRESS ; SEGMENT	Of BEC	INNI	OF	XT	
0083		. $=$	POEND	; ORG at	END OF	PAGE	O CODE		
0083	$305 C 544428$. BYTE	48,92,84,68,40	3/16	A5	F5	A4	G3	
0088	$105 C 544428$. BYTE	16, 92, $84,68,40$; 1/16	A5	F5	A 4	G3	
008D	405C544424	. BYTE	64,92,84,68,36	1/4	A5	F5	A4	F3	18
0092	405 E544628	. BYTE	64,94,84, 70,40	; 1/4	B85	F5	B24	C3	
0097	4062544A2C	. BYTE	64,98,84,74,44	; 1/4	C6	F5	C5	A3	
009C	8062544A2C	. BYTE	128,98,84,74,44	1/2	C6	F5	C5	A3	19
OOA 1	205E544628	. BYTE	32,94,84,70,40	; 1/8	B25	F5	B24	G3	
00A6	205C54442C	. BYTE	32,92,84,68,44	; 1/8	A5	F5	A4	A3	
00 AB	4058524032	. BYTE	64,88,82,64,50	; 1/4	G5	E5	G4	C4	20
OOBO	405C54443C	. BYTE	64,92,84,68,60	1/4	A5	F5	A4	F4	
00B5	405E524640	. BYTE	64,94,82,70,64	; 1/4	B85	E5	Be4	G4	
OOBA	805E58461A	. BYTE	128,94,88,70,26	; 1/2	Be5	G5	Be4	C3	21
00BF	405E52461A	. BYTE	64,94,82,70,26	; 1/4	Be5	E5	Be4	C3	
$00 \mathrm{C4}$	$605 \mathrm{C4A} 4424$. BYTE	96,92,74,68,36	; 3/8	A5	C5	A4	F3	22
00C9	20584 A 4028	. BYTE	32,88,74, 64, 40	; 1/8	G5	C5	G4	G3	
OOCE	40544A3C2C	. BYTE	64,84,74,60,44	; 1/4	F5	C5	F4	A3	
00D3	80524 A 4032	. BYTE	128,82,74,64,50	; 1/2	E5	C5	G4	C4	23
00D8	204E00362E	. BYTE	32,78,0,54,46	; 1/8	D5		D4	Be3	
OODD	20524A3A2E	. BYTE	32,82,74,58,46	; 1/8	E5	C5	E4	Be 3	
OOE2	40544A3C2C	. BYTE	64,84,74,60,44	; $1 / 4$	F5	C5	F4	A3	24
OOE7	$40443 C 0036$. BYTE	64, $68,60,0,54$; 1/4	A4	F4		D4	
OOEC	01	. BYTE	1	DEFINE END OF THIS SEGMENT					
OOED	ABO 1	.WORD	P1END	$\begin{aligned} & \text {; ADDRESS } \\ & \text {; SEGMENT } \end{aligned}$	Of BEG	INNI	OF		
01 AB		- $=$	PIEND	ORG AT END OF Page 1 CODE					
01 AB	$4048403 C 28$. BYTE	64,72,64,60,40	1/4	B4	G4	F4	G3	
0180	804A403a1A	. BYTE	128,74,64,58,26	; 1/2	C5	G4	$E 4$	C3	25
0185	404 A 000032	. BYTE	64, 74, 0, 0, 50	; 1/4	C5			C4	
01 BA	4054414424	. BYTE	64,84, 74, 68,36	; $1 / 4$	F5	C5	A4	F3	26
01 BF	4054464028	. BYTE	64, 84, 70,64,40	; 1/4	F5	Be4	G4	G3	
$01 C 4$	20544A442C	. BYTE	32,84, 74, 68,44	; 1/8	F5	C5	A4	A3	
0169	20524A442C	. BYTE	32,82,74,68,44	; 1/8	E5	"	"	"	
01 CE	404E463C2E	. BYTE	64,78,70,60,46	; 1/4	D5	Be4	54	Be3	27
01 D 3	404E463C2E	. BYTE	64,78,70,60,46	; 1/4	D5	Be4	F4	Be3	
0108	404E4A3E2C	. BYTE	64,78,74,62,44	; $1 / 4$	D5	C5	F34	A3	
01 DD	4058464028	. BYTE	64,88,70,64,40	; 1/4	G5	Be4	G4	G3	28
01 E 2	205 E 460028	. BYTE	32,94,70, 0,40	; 1/8	Be5	Be4		G3	
0157	205C44002C	. BYTE	32,92,68,0,44	; 1/8	A5	A4		A3	
OIEC	205840002E	. BYTE	32,88,64, 0,46	; 1/8	G5	G4		Be3	
0171	01	. BYTE	1	DEFINE END OF THIS SEGMENT					
$01 F 2$	8017	.WORD	aUXRAM	; ADDRESS ; SEGMENT	OF BE (IN 65	SEGMENT (IN 6530 RAM)			
1780		. $=$	AUXRAM	; ORG AT	BEGINN				
1780	$20543 C 0030$. BYTE	32,84,60,0,48	; 1/8	F5	F4		B3	
1785	40544 A 4332	. BYTE	64,84,74,68,50	; 1/4	F5	C5	A4	C4	29
178A	40524a401A	. BYTE	64,82,74,64,26	; 1/4	E5	C5	G4	C3	
178F	204:A000032	. BYTE	32,74, 0, 0, 50	; 1/8	C5			C4	
1794	204A00002E	. BYTE	$32,74,0,0,46$; 1/8	C5			Be3	
1799	60544A442C	. BYTE	96,84,74,68,44	; 3/8	F5	C5	A4	A3	30
179E	2058004032	. BYTE	32,88, 0, 64, 50	; 1/8	G5		G4	C4	
17 A3	205C004440	. BYTE	32,92, 0,68,64	; 1/8	A5		A4	G4	
17A8	205E004640	: BYTE	32,94, 0, 70, 64	; 1/8	Be5		Be4	G4	
17 AD	80625C5444	. BYTE	128,98,92,84,68	; 1/2	C6	A5	F5	04	31
17B2	$20544 E 4436$. BYTE	32,84,78,68,54	; 1/8	$F 5$	D5	A4	D4	
1787	2058484034	. BYTE	32,88,72,64,52	; 1/8	G5	B4	64	De4	
17 BC	605C544A32	. BYTE	96,92,84,74,50	; 3/8	A5	F5	C5	C4	32
17 C 1	205E544E32	. BYTE	32,94,84,78,50	; 1/8	885	F5	D5	C4	
$17 \mathrm{C6}$	4058524632	. BYTE	64,88,82,70,50	; 1/4	G5	E5	Be4	C4	
17 CB	80544 A 43 C	. BYTE	128,84, 74, 68,60	; 1/2	F5	C5	A4	F4	33
17D0	00	BYTE	0	END OF	PIECE				

Due to the large number of DACs required and the relatively slow speeds necessary, a multiplexing scheme using one DAC and a

03003334353636
0305373839
0308 393A3A3B3B
030 D 3B3C3D
0310 3C3C3C3C3C
0315 3C3C3C
0318 3СЗСЗСЗвзв
031D 3B3B3B
0320 3A3A3A3A3A
0325 3A3939
03283939393939
032D 393939
0330 3A3A3A3A3A
0335 3в3в3в
0338 3B3C3C3C3D
033D 3D3D3D
0340 3E3E3E3E3F
0345 3F3F3F
0348 3F3F3F3F3F
034 D 3F3F3F
0350 3E3E3E3D3D
0355 3СЗС3B
0358 383A393838
035D 373635
03603433323130
0365 2F2E2D
0368 2C2B2A2928
036D 272625
0370242322212
0375 201F1F
0378 1E1E1DIDID
037D 1D1C1C
0380 1CICIDIDID
0385 1D1DIE
0388 1EIFIF2020
038D 212122
03902323242425
0395262627
03982828292929
039D 2A2A2B
$03 A 0$ 2B2B2B2B2B
$03 A 5$ 2B2B2A
$03 A 8$ 2A2A292928
03AD 272726
03BO 2524232221
03B5 201F1D
03B8 1C1B191817
03BD 151413
O3CO 11100FODOC 03 C 5 OBO908 03 C 80706050403 03CD 030201 03D0 0100000000 03D5 000000 03D8 000001010 O3DD 020304 $03 E 00506070809$ O3E5 OBOCOD $03 E 8$ OF10121315 O3ED 16181A 03F0 1B1D1F2022 $03 F 5232527$ $03 F 8$ 282A2B2C2E 03FD 2F3031

WAVEFORM TABLE

EXACTLY ONE PACE LONO ON A PACE BOUNDARY
CO

FUNDAMENTAL AMPLITUDE 1.0 (REFERENCE)
SECOND HARMONIC .5, IN PHASE WITH FUNDAMENTAL
THIRD HARMONIC .5, 90 DEGREES LEADING PHASE
.BYTE X'33,X'34,X'35,X'36,X'36,X'37,X'38,X'39
BYTE X'39, X'3A, X'3A, X'3B,X'3B,X'3B,X'3C,X'3C
BYTE $X \cdot 3 C, x \cdot 3 C$
BYTE X'3C,X'3C,X'3C,X'3B,X'3B,X'3B,X'3B,X'3B
BYTE X'3A, X'3A, X'3A, X'3A, X'3A, X'3A, X'39, X'39
.BYTE X'39,X'39,X'39,X'39,X'39,X'39,X'39,X'39
BYTE X'3A, X'3A, X'3A, X'3A, X'3A, X'3B, X'3B,X'3B
.BYTE X'3B,X'3C,X'3C,X'3C,X'3D,X'3D,X'3D,X'3D
.BYTE X'3E,X'3E,X'3E,X'3E,X'3F,X'3F,X'3F,X'3F
.BYTE X'3F,X'3F,X'3F,X'3F,X'3F,X'3F,X'3F,X'3F
BYTE X'3E,X'3E,X'3E,X'3D,X'3D,X'3C,X'3C,X'3B
.BYTE $\quad X \cdot 3 B, X \cdot 3 A, X \cdot 39, X \cdot 38, X \cdot 38, X \cdot 37, X \cdot 36, X \cdot 35$
.BYTE X'34,X'33,X'32,X'31,X'30,X'2F,X'2E,X'2D
.BYTE X'2C,X'2B,X'2A,X'29,X'28,X'27,X'26,X'25
.BYTE X'24, X'23, X'22, X'21, X'21, X'20, X'1F, X'1F
.BYTE X'1E,X'1E,X'1D,X'1D,X'1D,X'1D,X'1C,X'1C
.BYTE X'1C, X'1C, X'1D, X'1D, X'1D, X'1D, X'1D, X'1E
BYTE X'1E, X'1F, X'1F, X'20, X' $20, \mathrm{X} \cdot 21, \mathrm{X} \cdot 21, \mathrm{X} \cdot 22$
BYTE X'23, X'23, X'24, X'24, X'25, X' $26, X \cdot 26, X \cdot 27$
.BYTE X'28,X'28,X'29,X'29,X'29,X'2A,X'2A, X'2B
.BYTE $\quad X^{\prime} 2 B, X \cdot 2 A$
.BYTE X'2A, X'2A, X' $29, X \cdot 29, X \cdot 28, X \cdot 27, X \cdot 27, X \cdot 26$
.BYTE X'25,X'24,X'23,X'22,X'21,X'20,X'1F,X'1D
BYTE X'1C,X'1B,X'19,X'18,X'17,X'15,X'14,X'13
.BYTE $\quad X \cdot 11, X \cdot 10, X \cdot O F, X \cdot 0 D, X \cdot 0 C, X \cdot O B, X \cdot 09, X \cdot 08$
.BYTE X'07,X'06,X'05,X'04,X'03,X'03,X'02,X'01
.BYTE $X^{\prime} 01, X^{\prime} 00, X^{\prime} 00, X^{\prime} 00, X^{\prime} 00, X^{\prime} 00, X^{\prime} 00, X^{\prime} 00$
.BYTE $\quad X^{\prime} 00, X \cdot 00, X \cdot 01, X \cdot 01, X \cdot 01, X \cdot 02, X \cdot 03, X \cdot 04$
BYTE X'05, X'06, X'07, X'08, X'09, X'0B, X'OC, X'OD
.BYTE X'OF, X'10, X'12, X'13, X'15, X'16, X'18, X'1A
.BYTE X'1B, X'1D, X'1F, X'20, X'22, X'23, X'25, X'27
.BYTE X'28, X'2A, X'2B, X'2C, X'2E, X'2F, X'30, X'31
.END
Table 5: This table is an encoding of the samples of the waveform used by the program in listing 2. The table is exactly one memory page long on a page boundary. The maximum value of any entry is decimal 63 or hexadecimal $3 F$ to avoid overflow when all four voices are summed.
number of sample and hold amplifiers is appropriate. The home builder should be able to achieve costs as low as $\$ 2$ per channel for a 32 channel, 12 bit unit capable of controlling a fairly large synthesizer.

The routing of patch cords can also be computerized. A matrix of reed relays or possibly CMOS bilateral switches interfaced to the computer might be used for this task. The patches used for some contemporary synthesizer sounds resemble the program patch boards of early computers and thus are difficult and time consuming to set up and verify. With computer controlled patching, a particular setup may be recalled and set up in milliseconds, thus enhancing real time performance as well as reducing the need for a large number of different modules.

Other musical instruments may be interfaced as well. One well-published feat is an interface between a PDP-8 computer and a fair sized pipe organ. There are doubtless several interfaces to electronic organs in existence also. Even piano mechanisms can be activated, as noted elsewhere in this issue.

Recently, specialized music peripherals have appeared, usually oriented toward the S-100 (Altair) bus. In some cases these are digital equivalents of analog modules of similar function. For example, a variable frequency oscillator may be implemented using a divide-by-N counter driven by a crystal clock. The output frequency is determined by the value of N loaded into a register in the device, much as a control voltage affects a voltage controlled oscillator. Such an approach bypasses the frequency drift problems and interfacing expense of analog modules. The biggest advantage, however, is availability of advanced functions not feasible with analog modules.

One of these is a programmable waveform. A small memory in the peripheral holds the waveform (either as individual sample values or Fourier coefficients), which can be changed by writing in a new waveform under program control. Another advantage is that time multiplexing of the logic is usually possible. This means that one set of logic may simulate the function of several digital oscillators simultaneously, thus reducing the per oscillator cost substantially. Actually, such a digital oscillator may be nothing more than a hardware implementation of the PLAY routine mentioned earlier.

Digital/analog hybrids are also possible. The speech synthesizer module produced by Computalker Consultants, for example, combines a programmable oscillator, several programmable amplifiers and filters, white
noise generator, and programmable switching on one board. Although designed for producing speech, its completely programmable nature gives it significant musical potential, particularly in vocals.

How do these various control techniques compare with the direct waveform computation techniques discussed earlier? A definite advantage of course is real time playing of the music. Another advantage is simpler programming, since sound generation has already been taken care of. However, the number of voices and complexity of subtle variations is directly related to the quantity of synthesizer modules available. For example, if more voices are needed, either more modules must be purchased or a multitrack tape recording must be made, which then takes us out of the strict real time domain. On the other hand, a new voice in a direct synthesis system is nothing more than a few bytes added to some tables and a slightly lengthened execution time. Additionally, there may be effects that are simply not possible with currently available analog modules. With a direct synthesis system, one merely codes a new subroutine, assuming that an algorithm to produce the effect is known.

A separate problem for the experimenter is that a "critical mass" exists for serious work with a direct synthesis system. To achieve complexity significantly beyond the 4 voice example program described earlier, a high speed, large capacity mass storage system is needed. This means an IBM type digital tape drive or large hard surface disk drive; usually at least $\$ 3000$ for a new drive less interface. Used 7 track tapes and 2311 type disks (7.5 megabytes) are often available for $\$ 500$ and certainly provide a good start if the user can design his own interface. Synthesizer modules or peripheral boards, on the other hand, can be purchased one at a time as needed.

Music Languages

Ultimately, software for controlling the sound generation process, whether it be direct or real time control, is the real frontier. The very generality of computer music synthesis means that many parameters and other information must be specified in order to produce meaningful music. One function of the software package is to convert "musical units of measure" into physical sound parameters such as conversion of tempo into time durations. Another part is a language for describing music in sufficient detail to realize the control power available from music synthesis without burdening the user with too much irrelevant or
repetitious detail. With a good language, a good editor for the language, and real time (or nearly so) execution of the language, the music system becomes a powerful composition tool much as a text editing system aids writers in preparing manuscripts.

Music languages can take on two forms. One is a descriptive form. Music written in a descriptive language is analogous to a conventional score except that it has been coded in machine readable form. All information in the score necessary for proper performance of the piece is transcribed onto the computer score in a form that is meaningful to the user yet acceptable to the computer. Additional information is interspersed for control of tone color, tempo, subtle varia-

```
* tOCCATA AND FUGUE in d-minOR bACH
VOICE1 40,0,0,0,0,30,0,0,0,0,0,0,0,60,0 10 30,30
VOICE2 37,0,0,0,0,0,0,0,50,0,0,0,0,50,0 10 60,60
VOICE3 0,0,9,0,38,0,0,0,38,19,0,0,0,28,0 15 100,250
TEMPO 1/4=1200
                /-/
002 1A3,1/64; 2A2,1/64
    1A@3,1/64; 2A@2,1/64
    1A3,1/8; 2A2,1/8
    R,1/32
    1G3,1/647; 2G2,1/64.
    1F3,1/64; 2F2,1/64
    1E3,1/64; 2E2,1/64
    1D3,1/64; 2D3,1/64
    1C{3,1/32; 2C:2,1/32
    1D3,1/16; 2D2,1/16
    R,1/4
    3D2,1/1; R,1/4
    2C&3,1F2; R,1/16
    1E3,7/16; R,1/16
    1G3,7/16; R,1/16
    1B@3,5/16; R,1/16
    1C&4,4/16; R,1/16
    1E4,3/16
            /-/
140 1BE4,1/8; 1G4,1/8; 1E4,1/8; 2E3,1/8; 3C#3,1/8
    1E3,1/32
    1G3,1/32
    1Be3,1/32
    1C4,1/32
    1Be4,1/8
    1BR4;1/8; 1G4,1/8; 1E4,1/8; 1C&4,1/8; 2E3,1/8; 3C#3,1/8
    1A4,1/8; 1F#4,1/8; 1D4,1/8; 2F#3,1/8; 3C3,1/8
TEMPO 1/4=950
    1D3,1/32
TEMPO 1/4=1050
    1A3,1/32
TEMPO 1/4=1150
    1D4,1/32
TEMPO 1/4=1200
    1F/4,1/32
    1A4,1/8
    1A4,3/8; 1F#4,1/8; 1D4,1/8; 2F#3,1/8; 3C3,1/8
141 1D4,1/2; 1BR3,1/2; 2G3,1/2; 3G2,1/4
    1G4,1/2; 3в@2,1/4
    1E4,1/4; 1C#4,1/4; 2BE3,1/4; 3E2,1/4
    1F4,1/4; 1D4,2/4; 2A3,1/4; 3F2,1/4
142 1E4,1/2; 2A3,1/2; 3A2,1/2; R,1/4
    1C4,2/4; R,1/4
    1D4,4/2; 2F3,1/4; 3BE2,1/4
    2BP3,1/4; 2G3,1/4; 3G2,1/4
143 2A3,3/2; 2F3,3/2; 3D3,3/2; 3D2,3/2
END
```

Listing 3: Bach's "Toccata and Fugue in D Minor" as encoded in NOTRAN, a music language developed by the author (NOTRAN stands for NOte TRANslation). The main function of the language is to transcribe organ music, but it will work equally well with other types of music. Program statements are used to encode duration, pitch, attack and decay rates, and loudness of each note.
tions, and other parameters available to the computer synthesist.

A simple example of such a language is NOTRAN (NOte TRANslation) which was developed by the author several years ago for transcribing organ music. Listing 3 shows a portion of Bach's "Toccata and Fugue in D Minor" coded in NOTRAN. The basic thrust of the language was simplicity of instruction (to both the user and the interpreter program), rather than minimization of typing effort.

Briefly, the language consists of statements of one line each which are executed in straight line sequence as the music plays. If the statement starts with a keyword, it is a specification statement; otherwise, it is a note statement. Specification statements simply set up parameters that influence the execution of succeeding note statements and take no time themselves.

A VOICE statement assigns the timbre described by its parameters to a voice number which is used in the note statements. In the example score, the first group of parameters describe the waveform in terms that are implementation dependent, such as harmonic amplitudes. The next, isolated parameter specifies the overall loudness of the voice in reâation to other voices. The last pair of parameters specifies the attack and decay times respectively for notes using this voice. Depending on the particular implementation, other parameters may be added without limit. For example, vibrato might be described by a set of three additional parameters such as vibrato frequency, amplitude, and a delay from the beginning of a note to the start of vibrato.

A TEMPO statement relates note durations in standard fractional terms to real time in milliseconds. The effect of a tempo statement lasts until another is encountered. Although the implementation for which the example was written required a sequence of tempo statements to obtain a retard, there is no reason why an acceleration or a retard set of parameters could not be added.

Note statements consist of one or more note specifications and are indented four spaces (the measure numbers are treated as comments). Each note specification begins with a voice number followed by a note name consisting of a letter, optional sharp (\#) or flat (@) sign, and an octave number. Thus $\mathrm{C} \# 4$ is one half step above middle C . Following the comma separator is a duration fraction. Any fraction is acceptable, but conventional musical fractions are normally used. Following the duration are two optional modifiers. A period (.) indicates a "dotted" note which by convention extends the note's duration by 50%. An " S " specifies
a staccato note which is played as just an attack and decay (as specified by the corresponding voice statement) without any steady state. The presence of a semicolon (;) after a note indicates that additional notes which are intended to be part of the same statement are present, possibly extending to succeeding lines.

The execution sequence of note statements can become a little tricky due to the fact that note durations in the statement may not all be equal. The rule is that all notes in the statement start simultaneously. When the shortest one has ended, the notes in the next statement are initiated, even though some in the previous statement may be still sounding. This could continue to any depth such as the case of a whole note in the bass against a series of sixteenth notes in the melody. The actual implementation, of course, limits the maximum number of simultaneous tones that may be built up.

Also available is a rest specification which can be used like a note specification. Its primary function is to provide silent space between note statements, but it may also be used to alter the "shortest note" decision when a note statement is scanned. If the rest is the shortest then the notes in the next statement are started when the rest elapses even though none of the current notes have ended. A use of this property may be seen in the last part of measure 2 where an arpeggio is simulated.

As can be seen, NOTRAN is best suited for describing conventional organ music, although it could be extended to cover a wider area as well. One such extension which has been experimented with but not fully implemented is percussion instruments. First a set of implementation dependent parameters was chosen to define a percussive sound, and then a PRCUS statement similar to the VOICE statement was added to the language. To initiate percussive sounds, specifications such as "P3,1/4" would be interspersed with the note specifications in note statements. The " 3 " would refer to percussive sound number 3 and the $1 / 4$ would be a "duration" which would be optional. All percussive sounds in the same statement would start simultaneously with the regular notes.

A much more general music language is the well-known MUSIC V. It was designed to make maximum use of the flexibility afforded by direct waveform computation without overburdening the user. It is a massive program written in FORTRAN and clearly oriented toward large computers. Much significant computer music work has been done with MUSIC V, and it is indeed powerful. An excellent book is available
which describes the language in detail and includes some background material on digital sound generation (see entry 1 in the list of references at the end of this article).

A different approach to music languages is a "generative" language which describes the structure of the music rather than the note by note details. In use, the structure is described by "loops," "subroutines," and "conditional branches" much as an algorithm is described by a computer language. The structure is "executed" to produce detailed statements in a conventional music language which is then played to produce sound. The intermediate step need not necessarily be visible to the user. One well thought out system is described in reference 2. It was actually developed as a musicological analysis tool and so has no provisions for dynamics, timbre, etc. It could, however, be extended to include these factors. One easy way to implement such a language is to write a set of macros using a good minicomputer macroassembler.

Conclusion

By now it should be apparent that computer generated music is a broad, multidisciplinary field. People with a variety of talents can make significant contributions, even on a personal basis. In particular, clever system designers and language designers or implementers have wide open opportunities in this field. Finally, imaginative musicians are
needed to realize the potential of the technique.

A Short Cut to a Singing KIM. . .

Hal Chamberlin has completed the design of a board which accomplishes the digital to analog conversion and filtering functions described in this article. The board contains printed circuitry for an 8 bit digital to analog converter, low pass filter, and power amplifier. The board may be ordered either without components or completely assembled and tested from Micro Technology Unlimited, 29 Mead St, Manchester NH 03104. In addition, a software package on cassette tape for the KIM-1 computer and a 7 inch 16 ohm speaker are available, completing the required parts of a KIM's music system.

REFERENCES

1. Mathews, Max, The Technology of Computer Music, MIT Press, Cambridge MA, 1969. Contains a detailed description of MUSIC V, the high level music language.
2. Oppenheim, A and Schafer, R, Digital Signal Processing, Prentice-Hall, NJ, 1975.
3. Smoliar, Stephen, "A Parallel Processing Model of Musical Structures," PhD dissertation, Massachusetts Institute of Technology. September 1971.

Walsh Functions:

A Digital Fourier Series

Benjamin Jacoby PhD

Using a mathematical technique called Fourier analysis, it is possible to build arbitrary wave forms by adding together various "components."

While a full appreciation of the inner workings of the Fourier series requires a knowledge of advanced mathematics far beyond the capacity of many persons interested in electronics, that in no way deters them from using the concepts or even simplified portions of the math in practical applications. Even beginners are aware that wave forms can be broken into a set of harmonics and that a set of sinewaves of integer multiple frequencies can be summed to build up a complex wave form. In a like manner, Walsh function concepts can be put to work once a few fundamental ideas are mastered. A key to generating complicated sounds in computerized music and voice outputs is the ability to generate arbitrary wave forms from digital codes.

In these days of digital computers, a person familiar with Fourier concepts might ask the question: Is it possible to build up any wave form out of a sum of square waves of some type? Such a system would be ideal for use with digital logic. This question has been answered in the affirmative by the German mathematician H Rademacher, not in 1972 or 1962, but in 1922. His set of square waves, called "Rademacher functions," consists of a fundamental square wave of 50% duty cycle at some frequency plus harmonics of square waves of $2,4,8,16,32$ and higher powers of two times the fundamental frequency. A deficiency of this system, however, is that it is not possible to generate any arbitrary wave shape from only a simple sum of these square wave harmonics.

Figure 1: The Walsh Functions WAL(0) through $W A L(15)$. The fact that Walsh functions lend themselves to digital generation is evident in the nature of the basic wave forms. The notations SAL and CAL emphasize the resemblance of Walsh functions to the Fourier series trigonometric functions SIN and COS.

Figure 2: The logic of a digital circuit which generates a set of Walsh functions using a string of flip flops and some external gating. The flip flops are connected as toggles (division by 2 at each stage). The exclusive OR gates combine terms to produce the more complicated Walsh wave forms indicated.

Fourier series are used to create wave forms as the sum of pure sine and cosine waves at selected frequencies; this leads to the obvious question: Is it possible to use a similar mechanism which builds a complex wave form out of digital wave forms with sharp edges?

Walsh functions are the digital answer to sines and cosines used in Fourier analysis.

In translating a mathematical summation into a physical circuit, the operational amplifier provides the summing element and the resistors from inputs to the summing node form the coefficients of the component signals.

Also in 1922, JL Walsh presented his independently developed system to the American Mathematical Society. His system was later shown by the Polish mathematician Kaczmarz in 1929 to include the Rademacher system as a subset of the Walsh complete set of orthonormal functions, which, in plain English, says that some of the Walsh functions are square waves and that if all Walsh functions are allowed (you may not need to use them all, however) then any arbitrary periodic wave form can be built up by adding them together in a manner totally analagous to sinewave summation in Fourier series.

Interest in the engineering applications of Walsh functions was sparked by an article in the IEEE Spectrum by Dr H F Harmuth of the University of Maryland in 1968 and is continuing because of the suitability of Walsh functions to generation by digital systems.

The fastest way to understand what Walsh functions are is simply to look at a picture of some wave forms. Figure 1 shows the Walsh functions WAL(0) through WAL(15). It is seen that WAL(0) is merely a DC level which we will usually ignore in practical applications since offsets are easily handled by other means and that WAL(1), WAL(3), WAL(7), and WAL(15) are really the square wave Rademacher functions. You will note that in addition to the WAL(n)
designation, the functions are also labeled with CAL or SAL. These labels are also commonly used and are acronyms for the terms Cosine wALsh and Sine wALsh by analogy to Fourier analysis. In short all WAL (even n) are called CAL and all WAL (odd n) are called SAL. CAL and SAL are also numbered but the numbers do not correspond to the WAL designation though they are easy to figure out. Also by analogy to Fourier analysis, a Walsh spectrum is called a sequency spectrum as opposed to a Fourier frequency spectrum.

Enter Mr Gray and His Code

However, knowing what Walsh functions look like and knowing how to generate them digitally are two different things. It is clear that the generation of WAL(1), WAL(3), WAL(7), WAL(15), etc, is a snap since they are simple square waves. A string of flip flops does the job, as shown in figure 2. The generation of the remaining functions, while a little more difficult, is not impossibly complex once the mathematics is shaken down into a few simple rules:

1. To generate $\mathrm{WAL}(\mathrm{n})$, first write the number n in Gray code. Gray code is a modified binary code having only one bit changing at a time when going to the next higher or next lower number. A table of Gray code numbers is

Table 1: Gray Code Bit Patterns for the Walsh Functions WAL(0) Through WAL(31). The corresponding SAL and CAL notation of each WAL function is shown down the right hand column of the table.
shown in table 1; and with a little study, the pattern can easily be extended to any value.
2. Starting with the least significant bit, assign a square wave Rademacher function to each bit. Assign WAL(1) to the LSB, WAL(3) to the next, WAL(7) to the next, etc.
3. Any Rademacher function whose bit is 0 is not used. Those whose bits are 1 are combined by modulo 2 addition, which is to say by exclusive OR gates to give the Walsh output of that order.
4. All Walsh functions must begin positive so that the composite Walsh output may need to be inverted depending upon how many exclusive OR gates were used to produce it.

A couple of examples are shown in figure 2 and a complete generator producing all Walsh functions from WAL(1) through WAL(15) is shown in figure 3.

It should be noted that although a Walsh function is mathematically defined as going from +1 to -1 , and it is possible to obtain positive and negative swings with CMOS logic with positive and negative supplies, in practice little is gained by going this route since all that is involved is a DC offset which is easily handled by the summing amplifier. Thus, $0-5$ volt TTL logic outputs are fine.

Now that a set of Walsh functions has been generated, it only remains to add them in a summing amplifier with appropriate magnitudes and signs to simulate any wave form with a stair step approximation. The general expression of a Walsh function representation is a summation analogous to that found in Fourier analysis:

$$
\begin{aligned}
& \text { Arbitrary wave form } \equiv X(t)=A_{0}+ \\
& \sum_{i=1}^{\infty}\left(A_{i} S A L(i)+B_{i} C A L(i)\right)
\end{aligned}
$$

where A_{i} and B_{i} are weighting constants which correspond to the resistors used in the summing amplifier inputs. The size of the steps and the number present will be determined by how many harmonics are combined. The more you use, the smaller and more numerous the steps, hence the better will be your approximation to your original wave form. The determination of these combining coefficients from the wave form desired requires a bit more detailed consideration.

Wave Form Synthesis

Before proceeding any further into the theoretical aspects of Walsh applications, a review of what we are attempting to do and how we intend to do it will help get our feet on solid ground. The device we wish to build using Walsh functions could be called "a square wave to arbitrary wave form converter." It will be a circuit into which you put a square wave of some frequency and out of which comes a periodic analog signal with a frequency related to that of the input wave (perhaps some submultiple) and a wave form that can be made to take any shape desired by adjusting a set of controls, switches or internal resistors. With such a device, digital logic could be used to synthesize a frequency and the converter could then be set to produce a sinewave for use in standard applications, or given sufficient accuracy of conversion, a computer could be made to talk or even sing. Both have been done by engineers working in this area.

The converter consists of two parts: The

So you want to produce a sine wave? Calculate the values at 16 evenly spaced locations in the period, then use these values to calculate the Walsh coefficients using a tabulator method. Then wire in resistors of values derived from the Walsh coefficients and the output of the circuit will be a step function approximation of the desired sine wave.

Figure 3: Extending the logic of figure 2, this circuit generates all the Walsh functions WAL(1) through WAL(15) as illustrated in figure 1. This circuit uses an alternate kind of flip flop, the JK master slave flip flop connected as a toggle. This circuit could be built with two 7473 ICs, three 7486 ICs and one 7404 circuit. (One of the 12 exclusive OR sections is used as an inverter.)

When Walsh function analysis is applied to a linear ramp, what's the result? A set of resistor values which form an ordinary DA converter operating upon the binary value in the counter used for the Walsh function generator.

first is the digital expander which expands the input square wave into a variety of digital wave forms, and the second is the analog combiner which adds up these wave forms to produce the periodic analog output. The expander is, of course, the Walsh generator shown earlier and the combiner will be dicussed below.

All of the Walsh outputs will be fed into the summing junction of an operational amplifier, but they will not have the same strength or sign. It is the strength and sign of each component which will determine the net analog output so that once we have chosen the analog output we desire, the relative strength and sign of each Walsh harmonic must be calculated from that desired wave form. Once these values are known, a negative sign can be handled with a digital inverter and the magnitude by the choice of the resistor value into the summing junction. The net output will then be a stair step approximation to the desired output which can then be made more perfect by low pass filtering to smooth the wave shape.

Theoretically, the calculation of the coefficients from the analog wave form desired
involves complex operations with the integral calculus; but it turns out that it is possible to shortcut the high powered math by starting, not with the analog signal, but rather with the stair step approximating function itself. This function can be easily determined by eyeball or by just taking the height of each step to be the value of the analog output at the center of each time interval. Figure 4 shows two examples: a linear ramp and a sinewave with 16 step approximations. The height of each step is shown.

Before proceeding to an actual calculation we will give some time and work saving rules, which are illustrated in figure 5.

1. The waveform to be synthesized must be repetitive (as in Fourier synthesis), although it is easy to start and stop at any point by control of the digital input.
2. It is especially advantageous to use 2^{n} steps in one period as this gives an automatic cutoff to the number of Walsh harmonics required.
Thus: With a 4 step output no functions
beyond $\mathrm{WAL}(3)$ are required, with an 8 step output no functions beyond WAL(7) are required, with a 16 step output no functions beyond WAL(15) are required . . .etc.
3. If the coefficients for a higher order approximation are calculated (say 16 steps), and a less accurate approximation can be used (say 8 steps) then one only need disconnect WAL(8) through WAL(15) since the lower order coefficients will have the same value in either case (or nearly so). This effect is demonstrated in the sine generator circuit.
If your wave form to be synthesized possesses certain symmetries or can be made to do so by a DC baseline shift, many Walsh component coefficients will be zero which will not only simplify the calculations, but the circuitry as well.
4. If the wave form to be synthesized is even, which is to say that any value that the function takes to the left of center is the same as the value an equal distance to the right of center, then only CAL functions will be used and all SAL coefficients will be zero.
5. If the wave form is odd, or can be made so by a baseline shift, then only SAL functions will be used and all CAL coefficients will be zero. Here any value to the left of center equals minus the value to the right of center.
6 A. If the wave form is even as in point 4 above and in addition it is even about the $1 / 4$ point, then only $\operatorname{CAL}(k)$ where k is an even number will be present and all CAL(k) where k is an odd number will be zero.
6B. If the wave form is even as in point 4 above and in addition is odd about the $1 / 4$ point, then only $\operatorname{CAL}(k)$ where k is an odd number will be present and all CAL(k) with k an even number will be zero.
7A. If the wave form is odd as in point 5 above and in addition is even about the $1 / 4$ point, then only $\operatorname{SAL}(k)$ where k is an odd number will be present and all $\operatorname{SAL}(k)$ where k is an even number will be zero.
7B. If the wave form is odd as in point 5 , and in addition is odd about the $1 / 4$ point, then only $\operatorname{SAL}(k)$ with k an even number will be present and all SAL(k) where k is an odd number will be zero.
In the calculations that follow it will also be observed that if a wave form is even or odd, the signed sums of the step values need only be calculated for the first half of the

wave form since that value will be exactly half the sum of all steps. This is probably best understood by examining some practical examples.

Two Examples

The first example will be the linear ramp. This function can be made odd by adjusting the baseline, so by rule 5 it is seen that only SAL coefficients need be calculated and no CAL functions need be generated.

The best way to get your mind right in calculating coefficients is to make a table as shown in table 2. The value desired for each

Figure 4: By picking a series of weighting constants for each Walsh function term, the outputs of figure 3 can be summed by an operational amplifier to produce arbitrary wave forms. Here are examples of the ramp and sine wave approximations generated by the Walsh function method. The smooth curve is the desired one in each case, obtained by filtering the output of the summing amplifier.

Figure 5: The properties of even and odd functions give constraints on the weighting constants needed for a given wave form. Here are illustrations of six different special cases of symmetry which give zero terms in the Walsh function sum.

Table 2: A computational table used to help determine the Walsh function coefficients for the linear ramp. The relative strength of the SAL or CAL term in question is obtained by summing horizontally the $+1(P)$ or $-1(\mathrm{~N})$ Walsh function value multiplied by the actual waveform value desired for that element of time. After figuring out the value of the signed sum for each term, the values should be normalized so that the largest magnitude is 1 (regardless of sign). Thus the normalized ratios shown below this picture were computed assuming -128 corresponded to-1.

SIGN OF WALSH FUNCTIONS

$$
\mathbf{P}=\text { positive } \quad N=\text { negative }
$$

Normalized Ratio

SAL(1) $=-1=-1$
SAL(2) $=-0.5=-1 / 2$
SAL(4) $=-0.25=-1 / 4$
SAL $(8)=-0.125=-1 / 8$
step comprising the output function is written in order along the top of the table. Since we are attempting to produce a linear ramp, our output will be a rising staircase with a fixed increase with each step (we used two units per step). This staircase will eventually be filtered to remove the jogs and give a linear ramp.

The body of the table shows the sign (positive or negative) each particular Walsh function takes in each of the 16 time intervals into which one period of the output wave form has been divided. As indicated earlier, we need not go past WAL(15) in this case. The Walsh sign values can be taken from the wave forms of figure 1 or from table 3 which is good for up to 32 segment approximations.

The numbers to the far right are the sums
of the upper values when all signs are taken into account. Thus, for WAL(1) we see that it is positive in the first half period, but the step values are negative, so we get:
$(-15)+(-13)+(-11)+(-9)+(-7)+$ $(-5)+(-3)+(-1)=-64$ and in the second half period where $W A L(1)$ is negative and the values positive we get:
$-(+1)-(+3)-(+5)-(+7)-(+9)-$ $(+11)-(+13)-(+15)=-64$ or a total of -128 . This number gives the relative strength of WAL(1) in the output summation. We repeat the process for each Walsh function.

If we divide all nonzero values by the largest (WAL(1)), it is observed that the weighting is binary and further it is seen that only the square wave Rademacher functions are nonzero. Thus, it is seen that the way to generate a ramp is with a counter feeding a standard digital to analog converter. (So here we have a long, complicated way of arriving at an "obvious" result, but it also should be noted that D to A binary weighting is only "matched" to a ramp output.)

If another wave form such as a sinewave is desired, a D to A converter could be used, but a more accurate method would be to switch between 16 voltages of appropriate values. The Walsh system is just as accurate and is simpler for the more general case.

If we divide a sinewave into 16 portions, the value at the center of the first interval will be $\operatorname{Sin}\left(11.25^{\circ}\right)=0.19509$ and the next will be $\operatorname{Sin}\left(33.75^{\circ}\right)=0.55557$ and the next $\operatorname{Sin}\left(56.25^{\circ}\right)=0.83147$, etc. This produces the top row of our table. Since $\operatorname{Sin}(x)$ is an odd function, even about the $1 / 4$ point, only SAL(1), SAL(3), SAL(5) and SAL(7) are calculated over the first half period. Our chart with the calculated coefficient values is shown in table 4 . Since in a standard operational amplifier summing circuit (we won't go into details here as they can be found in any book on operational amplifiers), the relative summing ratios are related to the inverse of the summing resistor values, we divide each normalized value into 1 and multiply by the feedback resistor value to obtain

$\frac{1}{A_{i}} \times 10 k$	1%	5% EIA
$10.00 k$	$10.0 k$	$10 k$
$24.14 k$	$24.3 k$	$24 k$
$121.4 k$	$121 k$	$120 k$
$50.27 k$	$49.9 k$	$51 k$

Table 5: The EIA resistor equivalents for the calculated values of table 4. The 5\% tolerance resistance values shown at the right were used in the circuit of figure 6.

The Sign of CAL and SAL in Each 1/32 Interval of Their Period

WAL(0)	PPPP							
SAL(1)	PPPP	PPPP	PPPP	PPPP	NNNN	NNNN	NNNN	NNNN
CAL(1)	PPPP	PPPP	NNNN	NNNN	NNNN	NNNN	PPPP	PPPP
SAL(2)	PPPP	PPPP	NNNN	NNNN	PPPP	PPPP	NNNN	NNNN
CAL (2)	PPPP	NNNN	NNNN	PPPP	PPPP	NNNN	NNNN	PPPP
SAL (3)	PPPP	NNNN	NNNN	PPPP	NNNN	PPPP	PPPP	NNNN
CAL (3)	PPPP	NNNN	PPPP	NNNN	NNNN	PPPP	NNNN	PPPP
SAL(4)	PPPP	NNNN	PPPP	NNNN	PPPP	NNNN	PPPP	NNNN
CAL (4)	PPNN	NNPP	PPNN	NNPP	PPNN	NNPP	PPNN	NNPP
SAL(5)	PPNN	NNPP	PPNN	NNPP	NNPP	PPNN	NNPP	PPNN
CAL (5)	PPNN	NNPP	NNPP	PPNN	NNPP	PPNN	PPNN	NNPP
SAL(6)	PPNN	NNPP	NNPP	PPNN	PPNN	NNPP	NNPP	PPNN
CAL (6)	PPNN	PPNN	NNPP	NNPP	PPNN	PPNN	NNPP	NNPP
SAL(7)	PPNN	PPNN	NNPP	NNPP	NNPP	NNPP	PPNN	PPNN
CAL(7)	PPNN	PPNN	PPNN	PPNN	NNPP	NNPP	NNPP	NNPP
SAL (8)	PPNN							
CAL (8)	PNNP							
SAL (9)	PNNP	PNNP	PNNP	PNNP	NPPN	NPPN	NPPN	NPPN
CAL (9)	PNNP	PNNP	NPPN	NPPN	NPPN	NPPN	PNNP	PNNP
SAL(10)	PNNP	PNNP	NPPN	NPPN	PNNP	PNNP	NPPN	NPPN
CAL(10)	PNNP	NPPN	NPPN	PNNP	PNNP	NPPN	NPPN	PNNP
SAL(11)	PNNP	NPPN	NPPN	PNNP	NPPN	PNNP	PNNP	NPPN
CAL(11)	PNNP	NPPN	PNNP	NPPN	NPPN	PNNP	NPPN	PNNP
SAL(12)	PNNP	NPPN	PNNP	NPPN	PNNP	NPPN	PNNP	NPPN
CAL(12)	PNPN	NPNP	PNPN	NPNP	PNPN	NPNP	PNPN	NPNP
SAL(13)	PNPN	NPNP	PNPN	NPNP	NPNP	PNPN	NPNP	PNPN
CAL(13)	PNPN	NPNP	NPNP	PNPN	NPNP	PNPN	PNPN	NPNP
SAL(14)	PNPN	NPNP	NPNP	PNPN	PNPN	NPNP	NPNP	PNPN
CAL(14)	PNPN	PNPN	NPNP	NPNP	PNPN	PNPN	NPNP	NPNP
SAL(15)	PNPN	PNPN	NPNP	NPNP	NPNP	NPNP	PNPN	PNPN
CAL(15)	PNPN	PNPN	PNPN	PNPN	NPNP	NPNP	NPNP	NPNP
SAL(16)	PNPN							

Table 3: A larger computational table giving 32 Walsh function components and their signs during a 32 interval period.

Figure 6: Applying Walsh Functions. Here is the circuit of a sine wave generator which produces a Walsh function approximation of the sine function. The frequency of the sine wave is set by the input to pin 14 of the 7493 . Filtering components of the operational amplifier help smooth out the staircase wave form generated by summing the Walsh function components as weighted by resistors.
each summing resistor value in ohms. Table 5 shows the calculated values compared to 1% and 5\% EIA resistor standard values.

The total sinewave converter circuit is shown in figure 6. While three of the coefficients were negative, a single inverter was used on the lone positive Walsh output since the op amp inverts the wave form. In addition, a gate has been added by which the phase of the entire output wave form can be inverted by simultaneously inverting all Walsh components. It is interesting to also note that if the components below the dotted line are removed, an 8 step sinewave approximation results. The feedback capacitor and output low pass filter can be added to smooth up the wave form to give a nearly perfect sinewave.

The Walsh methods presented here would seem to have wide application for experimentation and engineering. Although these concepts are based on advanced mathematics, nevertheless, as the philosopher Seneca observed so many years ago, "The language of truth is simple."

Walsh Functions for Music Synthesis?

Some background information on the use of orthogonal functions in music wave form
synthesis has been generated by Hal Chamberlin, and published in Electronotes News/etter, Volume 4, Number 25, July 20 1973. Hal also sent along a copy of a portion of a report by B A Hutchins, 60 Sheraton Dr, Ithaca NY 14850, on the use of Walsh functions in wave form generation. According to Hal , there was considerable analysis of Walsh functions in electronic music circles during a period of time approximately centered on 1973, but complexities of controlling the Walsh harmonic amplitudes digitally led to the demise of that interest. Hal's current approach is to employ a real time Fourier series evaluation module which digitally sums terms of the first 32 components of a Fourier series, specified to 8 bit accuracy both in amplitude and phase.

GLOSSARY

The following terms may be unfamiliar to some readers and are highlighted with further explanations.

Baseline: It is possible to add a fixed DC level to an analog signal, which will not affect its wave form. Using the 0 V and +5 V levels obtained with TTL circuits (using pull up resistors) as "Walsh functions" corresponds to a baseline adjustment of +2.5 volts to the ideal case of a symmetric positive
or negative voltage value.
CAL: An acronym derived from Cosine wALsh. The CAL functions are the "even" Walsh functions, analogous to the Fourier cosine functions.

Duty cycle: For a digital wave form, the duty cycle is the percentage of time spent in the high state relative to the full period of the wave form.

Even function: An even function (or wave form) is one which is symmetric about the center point of its period. This means that its value a certain distance to the left of center is the same as its value the same distance to the right of center.

Fundamental: The lowest frequency in a Fourier or Walsh function summation.

Gray code: A binary code modified so that only one bit changes when going to the next higher or lower number. It is often used to deglitch position encoders.

Harmonic: A frequency which is a multiple of the fundamental frequency.

Integral calculus: The mathematical formalism used to calculate the area under a curve. The integral calculus is used together with the theory of orthogonal functions to evaluate analytically the coefficients of Fourier and Walsh function expansions. The example of Walsh function coefficient calculation in this article uses properties of Walsh functions to simplify the process of calculating integrals required for the coefficients. There is no such simplification for the Fourier coefficients of a wave form, thus making the application of Fourier analysis a more complicated problem.

Odd function: An odd function (or wave form) is one which is antisymmetric with respect to the center point of its period. This means that if at a fixed interval before the center point its value is X. then at the same interval past the centerpoint the value will be $-X$.

Orthonormal functions: The mathematical theory of orthonormal functions is one of the most powerful tools used by physicists, theoretical chemists and engineers. Among other applications, it provides the tools needed to analyze complex wave forms and synthesize such wave forms using the principle of superposition: That the whole is a linear sum of its parts. Fourier series and Walsh function analysis mentioned here are two particular choices of a set of orthonormal functions which have useful practical applications. (See also spectrum below.)

Periodic wave form: A periodic wave form is one which has a fixed shape which is constantly re-
peated. A simple example would be the clock oscillator signal of a typical home brew central processor. A more complicated example (subject to imperfections) would be a long steady tone played on a musical instrument.

Rademacher functions: The subset of Walsh components consisting of only the unmodified square waves.

SAL: An acronym derived from Sine wALsh. The SAL functions are the "odd" Walsh functions, analogous to the Fourier sine functions.

Sequency: Walsh function terminology referring to the Walsh components of a wave form in exactly the same way that frequency is used to refer to the Fourier components. Example: Sequency spectrum.

Spectrum: When orthonormal functions are used to analyze a wave form, the result frequently is a set of coefficients which weigh each of the basic functions found in a (theoretically) infinite sum which represents the wave form. Each coefficient corresponds to some parameter of the orthonormal functions, which might be, for example, a number " n." Whatever the parameter is, a spectrum for the analysis is obtained by plotting the coefficient values versus the parameter value for a large number of coefficients. For a Fourier analysis, the result is a plot of coefficient versus frequency (which at the low end corresponds to a small integer value). A Walsh spectrum would plot the coefficient of WAL (n) versus n.

Wave form: For the purposes of this article, a signal's wave form is a value of (for example) voltage as a function of time.■

REFERENCES

1. Corrington, M S, ''Solution of Differential and Integral Equations with Walsh Functions," IEEE Transactions on Circuit Theory, volume CT-20, number 5, September 1973.
2. Harmuth, H F, "Applications of Walsh Functions in Communications," IEEE Spectrum, November 1969.
3. Rademacher, H, "Einige-Saltze von allegemeinen Orthogonalfunktionen," Math Annalen, volume 87, 1922, pages 112 to 138
4. Walmsley, W M, "Walsh functions, transforms and their applications," Electronic Engineering, June 1974.
5. Walsh, J L, "A Closed Set of Orthonormal Functions," American Journal of Math, volume 45, 1923, pages 5 to 24.

Simple Approaches

to Computer Music Synthesis

Thomas G Sneider

In order to produce a musical output, we must at least create a pitch output under control. This is but a starting point, since more complicated waveform and envelope generation is also useful in music.

The block diagram of a basic note and octave synthesis system is shown in figure 1. The top octave generator produces a square wave whose frequency (pitch) is determined by data sent out on the computer's data bus. Since the output of the top octave generator is a square wave, it can easily be divided by digital circuitry. Each time we divide the frequency by two, we end up with a note whose pitch is one octave lower than the input frequency. By using an ordinary TTL data selector as an octave selector, we can generate a musical scale covering many octaves, and we can also produce more than one pitch at a time, although these extra outputs will always be octave related to one another. The octave selector can also be controlled by data sent out on the computer's data bus, giving us more flexibility.

The octave selector can be easily implemented using an n-stage divider and several NAND gates. However, there are several methods of generating the top octave. We need 12 notes to produce a 1 octave chromatic scale. These notes must be accurate in frequency and drift free in order to produce a true chromatic or "equally tempered" scale useful in music.

One way of synthesizing the top octave is to use a digital to analog (D / A) converter controlling an oscillator. An 8 bit converter limits both resolution and range so that we
cannot produce an acceptably accurate chromatic scale. If we use a converter of 10 bits or more, resolution and range are suitable, but such units are expensive and require stable voltage controlled oscillators for this type of application. This method of pitch generation is shown in figure 1. The one nice feature of the digital to analog converter method is that we have a continuously variable output frequency. This permits nifty frequency sweeping effects (known as "portamento" or "glide" effects to the musician).

To save money we can construct a rather crude digital to analog converter which, in conjunction with the voltage controlled

Figure 1: Block diagram of a pitch synthesis subsystem for use in electronic music experiments under computer control. The top octave generator produces a repetitive digital waveform selected under computer control from one of 12 well tempered pitches. This in turn drives octave generation logic consisting of a chain of toggles dividing frequency by two at each stage, and a selector to pick which of the octave related frequencies appear in the output.

Figure 2: An Altair bus interface and frequency selection logic for the tunable digital to analog conversion method of generation of pitches. This circuit can be constructed on a general purpose prototyping card for the Altair (S-100) bus.
oscillator, will produce the 12 notes required for the full top octave. This method is shown in detail in figure 2. By using surplus 10 turn trimpots and the voltage controlled oscillator, we can construct an inexpensive top octave generator. However, this method has its disadvantages: tuning the trimpots is a critical operation, and once the pots are tuned, they can easily detune themselves because of vibration or temperature variations. My present synthesizer uses this method and needs to be retuned about every two months or so.

A good alternate method of generating the top octave is to use an integrated circuit top octave generator such as the MOSTEK MK50240P. This chip can be had for under $\$ 10$ and is second-sourced by General Instrument Corporation as the AY-3-0215.

There are several advantages to be had by using this chip. The chip nominally requires a 2.000240 MHz reference frequency which is approximated by the central processor clock's circuitry of most Altair (S-100) bus systems. (The frequency is not exactly 2.000240 MHz , but will be close enough for this application.) This chip eliminates both the voltage controlled oscillator and digital to analog converter, and therefore puts an end to stability and tuning complications. The MK50240P generates the top 13 notes of the well-tempered music scale with an accuracy better than can be determined by the best musician.

Hardware Considerations for Two Working Circuits

The circuit used for the pitch generator, using the tunable digital to analog converter with an Altair bus is shown in figure 2. Bus timing and address decoding are performed by IC1, IC2, and IC3. IC4 and IC5 latch and hold data sent to the board on the data out bus. IC8 is a 4 to 16 decoder with active low outputs. These outputs select which 10 turn trimpot is selected as the bottom leg of the voltage divider whose top leg is resistor R. These trimpots should all have a value about $5 R$. The voltage produced by this divider is connected to the input of the voltage controlled oscillator. The output of the voltage controlled oscillator is divided by IC7. The outputs of counter IC7 are gated onto the output bus by IC6, the quad open collector NAND gates. IC8 and the voltage controlled oscillator comprise the top octave generator and IC6 and IC7 comprise the octave selector.

The circuit using the MK50240P for top octave generation is shown in figure 3. The board address, bus timing and latch circuitry are identical to the circuit of figure 2. The

Note	Octal Code	Hexadecimal Code
C	000	00
C\#	001	01
D	002	02
D\#	003	03
E	004	04
F	005	05
F\#	006	06
G	007	07
G\#	010	08
A	011	09
A\#	012	$0 A$
B	013	

octave selector is also identical to the one in figure 2. The MK50240P, IC6, is a 12 V device and requires input signal conditioning and output buffering. The 2N2222 transistor and associated resistors bring the TTL level clock signal from the bus up to the 12 V level required by the MK50240P. The outputs of this chip are buffered by IC7 and IC8 before going to IC9 which is the data selector and multiplexer. The MK50240P generates all the notes in the top octave simultaneously and IC9 selects any one of these outputs depending on what data is present at the outputs of IC4. The output of IC9 is then connected to the two chips (IC10 and IC11) comprising the octave selector. An additional voltage regulator, a 7812 , has been provided to supply the 12 V needed for the MK50240P. Note that for additional music channels, additional copies of the note selector IC9 and octave selector can be driven off the buffered outputs of the MK50240P.

A word of caution: the audio output of the circuits in figures 2 and 3 swings about 2 V peak to peak and should be attenuated with a potentiometer before you plug it into your stereo system or amplifier.

Software Considerations

From a software point of view, the circuits of figures 2 and 3 are identical. Both circuits have an 10 device address of 300 octal. Outputting the proper data to 8080 port 300 octal will cause the synthesizer to audibly produce the note and octave(s) represented by that data.

The synthesizer can be considered as having two input nybbles, each nybble containing four bits. The least significant nybble determines what note is to be selected and the most significant nybble determines what one of four possible octave(s) is to be selected. One byte contains all the information necessary to set up any note and octave(s).

Bear in mind that the synthesizer will continue to produce the note and octave(s)

Table 1: Octal and hexadecimal representations of note selections, in the low order bits, for these pitch generation circuits.

Figure 3: The complete circuit for an equivalent of figure 2, which uses the top octave generator chip with an Altair bus interface. This method uses the top octave generator and a note selector to drive the octave selection logic, while the digital to analog converter method uses a voltage controlled oscillator with a diode resistance selection of pitch.

Octave	Octal Code	Hexadocimal Code	Table 2: Octal and hexadecimal notation for octave enabling bits sent to the interface in the high order nybble of the 8 bit
4 (highest)	020	10	word. Note that one or more of the
3	040	20	octaves may be enabled simultaneously
2 (lowest)	100	40 80	simply by adding the codes together (or
1 (lowest)	200	80	using the logical OR).

you have selected until you send it new data. To clear the synthesizer (no audible output) all you need do is output a 0 on data lines D4 thru D7, the most significant nybble.

Table 1 shows what the octal representations are for each note in the top octave. Table 2 shows the octal representations for each octave. To pack these two codes into one byte, they can either be added or ORed. Table 3 shows a series of codes that, when moved to port 300 octal in sequence, will produce a 12 note musical scale in the synthesizer's highest octave. However, if you wish to hear this scale, you must insert a software time delay in between each note. Otherwise all you will hear is a very short "click" because of the processor's high speed of program execution. If you wish to hear this scale in four octaves simultaneously, all you need to do is keep all four bits in the octave enabling nybble in the high state.

Armed with this information and some simple software routines, you and your trusty computer are now capable of synthesizing all of J S Bach's "B Minor Mass," to

say nothing of the many new types of musical expression you now have at your fingertips. I myself have synthesized Haydn's "Minuet in G," parts of Bach's "Toccata and Fugue in D Minor," Henry Mancini's "Pink Panther Theme," and "Hot Rod Lincoln!"

Notes on Anatomy:

Photo 1: The Duo-Art reproducing player piano as it is currently displayed in my home. Notice the electric motor at bottom center. It is original equipment. The vacuum pump is at the right; it is connected to the motor by a 1968 V8 Buick fan belt, which just happens to be a perfect fit. The piano was built in 1925 and required extensive renovations. The binary $d y$ namics control system is located at bottom left (see photos $3 a$ and 3b).

The Piano's Reproductive System

When was the binary number system first used for control purposes in a mass produced machine? The early nineteenth century Jacquard punch card controlled loom comes immediately to mind; but, surprisingly enough, a more widespread application occurred in the first quarter of this century: the reproducing player piano!

The reproducer was so-called because it went one step beyond the player piano in its ability to "reproduce" the dynamics and subtle shadings of the pianist who recorded the roll.

I have owned a Duo-Art upright reproducing piano for five years now (see photo 1), during which time I have restored it so that it can now play the specially encoded Duo-Art rolls which were made for it. The Duo-Art roll catalog was remarkably extensive, featuring such items as Chopin etudes and Beethoven sonatas
in addition to a large selection of popular titles. (The piece de resistance was a complete set of themes from Wagner's Ring cycle comprising some 30 odd rolls!)

Reproducers were a luxury item during the 1920s, and for good reason: they were built like fine watches and contained some fairly sophisticated features (for the time) to control dynamics, operate the pedals, and so on.

Photo 1 shows the Duo-Art with the bottom cover removed for clarity. The spool box (photos 2a and 2b) is located at the top and is the place where the piano roll is inserted. Immediately below the keyboard are the levers which are used to control the speed of the roll as it plays, as well as volume and roll rewind. At the bottom center is the original electric motor (built in 1925) which drives the vacuum pump at the right. No pedalling is required on this

Photo 2a: The spool box, showing the brass tracker bar. There are 88 holes across the bar, corresponding to the notes of the piano. There are additional holes at each end to input two 4 bit "nybbles" of information to the dynamics (volume) control system from the paper roll.

Photo 2b: A view of the spool box with a Duo-Art roll installed. Note the dense groups of holes at each side of the roll; these contain binary encoded information about the volume of the notes which are being played. All four dynamics holes are about to be uncovered on the left side as the roll paper moves downward across the tracker bar. (Thus maximum volume is about to be set up.) The dynamics holes appear as groups of holes rather than long slots so that the paper will not fall apart. The tracker bar holes underneath are long enough so that the small paper bridges left for mechanical strength do not close up the holes as they pass over them.
model, a boon for the lazy experimenter. Like most player pianos, the Duo-Art works on a vacuum actuated system which opens and closes cloth covered "pneumatics," or bellows. These in turn do all the mechanical work inside the piano, such as playing keys and operating pedals.

But what makes the Duo-Art so interesting is its binary-based volume control system located in the lower left section of the piano (see photos 3 a and 3 b for a closeup). There are two independent volume control systems built into the Duo-Art. They are controlled by two sets of four holes per set, located above the main row of holes near each end of the tracker bar. Photo 4 shows the right-hand set of holes in enlargement. Notice that they are vertically in line with the four highest note sensing holes on the tracker bar. When a Duo-Art roll is played, therefore, a special pneumatic 8 pole double throw switch must be thrown to disable the lower two sets of four holes and allow the upper two sets of four holes to control piano dynamics (the volume of sound heard).

Each set of holes is connected to a set of "accordion" pneumatics, so-called because they open and close like vertical accordion bellows. A rod at the top of each pneumatic is connected to an air governor. As the pneumatics close, the governor admits more and more air to the system and the volume of the notes played on the controlled side of the keyboard goes up.

The spacings of the four sections of the pneumatics are $1 / 2,1 / 4,1 / 8$ and $1 / 16$ inch, so that 16 different volume levels can be achieved. This bellows is in fact a form of mechanical digital to analog converter. So we have two nybbles (or one byte) of information to control volume in a Duo-Art reproducer piano. Photo 36 shows a level corresponding to $1 / 2+1 / 8$, or $10 / 16$ ths of maximum volume, and photo 3a shows a zero level for comparison. Photo 5 shows the roll positioned to produce the level of photo 3 b ; the most significant bit is to the left. Since an opening (hole) corresponds to a binary 1 level, the binary number here is 1010.

Counting from the right in photo 4 , the first 3 holes are mute pedal control, automatic reroll and the "theme" hole. The theme hole is an ingenious feature. There are often cases when the piano must suddenly change volume levels for isolated notes or chords and then return to the previous level. It takes a finite time for this sort of change, so the rolls are designed to allow the left-hand accompaniment dynamics control system to control the entire keyboard range,

Photo 3a: One of the two Duo-Art accordion pneumatics used to control the volume of one half of the piano keyboard. Each of the four chambers can be individually exhausted under control of the piano roll. The pneumatic is connected by a rod on top to an air governor. The four chambers close by $1 / 2,1 / 4,1 / 8$ and 1/16 inches, so that the air governor can be set to any of 16 different vacuum levels to power the keyboard pneumatics. The roll's 4 bit binary "word" is thus translated into a vacuum level: in effect, this is a digital (vacuum lines from tracker bar) to analog (mechanical position of governor) converter.

Photo 3b: The accordion pneumatic shown converting the integer value 10 into one of 16 possible mechanical positions. This corresponds to the binary number 1010 on the roll. See photo 5.

Photo 4: A closeup illustrating the four right hand dynamics control holes, located slightly above the center line of the rest of the holes.

Photo 5: The roll in this case is outputting level ten to the accordion pneumatics. Photo $3 b$ indicates the resulting mechanical position output of the pneumatics.

Photo 6: A Duo-Art roll of Chopin's "Polonaise, Opus 40, Number 1," as played by Paderewski, in position over the tracker bar. Note the extensive ornamentation, both visually and verbally, in the form of the performer's authorization of the work. This roll is approximately 55 years old. Paderewski was a link in a liszt of salon pianists which began in America with Louis Moreau Gottschalk, and which continues to this day with certain candelabra wielding virtuosos.
while the right-hand theme system "charges" itself with vacuum for the upcoming volume change. When the roll triggers either or both of these holes, control of the respective sides of the keyboard is transferred for that instant to the theme control. Details of this theme control system are essential to the design of software drivers for Duo-Art players converted to computer control.

Numerous other fascinating features abound on this instrument. Take for example the automatic roll-centering negative feedback system. The curved vertical "finger" shown in photo 5 is one of two which are positioned to just touch the edges of the roll. If the roll wanders off to the right or left, the fingers tilt back, uncovering air tubes which are under vacuum. This sends a signal to a set of opposing bellows with a high damping ratio, which push the roll spool back until the air tube is covered again. The design is simple, yet effective. Long before Norbert Wiener made it explicit, servomechanisms as control systems were in practical daily use.

Just how good does the Duo-Art sound? Well, it has some obvious limitations (limited dynamic range, for one), but on the whole
it sounds remarkably good. The sound quality is several orders of magnitude better than the "new fangled" phonograph which eventually supplanted it commercially.

In its heyday, the Duo-Art Company could afford to hire some of the most famous pianists of the age to record for them: Paderewski (see photo 6), Wanda Landowska, Vladimir Horowitz (when he was in his twenties), Igor Stravinsky (!), George Gershwin (playing his own four-hand arrangement of "Rhapsody in Blue" by overdubbing), and on and on. The rolls were beautifully decorated, too (see photo 6).

Readers wishing to find out more about the fascinating hobby of reproducing pianos should write to the Vestal Press, POB 97, Vestal NY 13850, and ask for their catalog. The Vestal Press specializes in books about player pianos and other musical automata. The Player Piano Company in Wichita KS is an excellent source of supplies for the do-ityourself restorer. The current bible in the field is Rebuilding the Player Piano, by Larry Givens, published by Vestal. In it you'll find valuable material about the DuoArt and about the other brands of competing reproducers like the Ampico and Wurlitzer models. But that's another story.■

Photo 1: The object of the design exercise documented in this article is an interface between the computer in the basement and the Steinway baby grand player piano shown at the left in this picture. Using the interface of figure 1, and the solenold valves of photo 2, electronic control of the restored piano will be completed by adding a motor driven bellows unit of later vintage than this 1910 piano. In the picture, various subassemblies have been placed at skewed angles atop the keyboard (spool box and 3 phase wind motor) and underneath (foot operated bellows and pedals). In the restoration of this piano, all the original mechanisms will be preserved, with the electronics interface consisting of an addition to the basic design.

Notes on

Interfacing Pneumatic Player Pianos

Everyone is familiar with the concept of the player piano, a complex mechanical monstrosity which had its heyday in the early part of this century as the prime home entertainment device before the invention of electronic media which now dominate the home entertainment scene. But player pianos are far from dead. Just as there is an active subculture of computer aficionados, there is a whole cult of player piano and mechanical music freaks. Thanks largely to these people a working player piano is not an uncommon sight in the parlors, dens and
living rooms of contemporary suburbia. Many of the owners of player pianos may not recognize that these instruments can be a most interesting output device for a personal computer, an output device whose interface can be achieved with very little woodworking and mechanical skill as well as the usual hardware and software skills of the experienced computer hacker.

I have long had an interest in electronic music as generated and controlled by computers. It is this interest which started me on the road to learning electronics hard-

Figure 1: The normal arrangement of a player piano's vacuum control system is illustrated here. A player piano roll moving past a "tracker bar," analogous to a magnetic tape recorder's read head, turns on and turns off a flow of air into the evacuated control line which goes to one of the pneumatic controls of the piano. For the key mechanisms, the leading edge of loss of vacuum cues the striking of a key, which is held down until vacuum is restored. This occurs when the roll passes to a point which closes off the particular line. For control of a full 88 notes, there are 88 separate "channels" in the tracker bars of the more sophisticated players, not counting additional channels to control dynamics, pedals and other special effects.
ware skills needed to build computers for music control.

I also knew that player pianos existed, and would eventually make an interesting experiment for use with electronic music in programmed performances of concerto style works with orchestral background for the solo instrument provided by electronics. But I had never turned my attention to the details of the piano interface problem until one day in October of 1976 when I went to an estate auction in nearby Milford NH at which a 1910 SteinwayDuoArt baby grand player piano (in unplayable condition) was put on the block. After outbidding a mechanical music box museum owner from Maine, I had the potential for the ultimate piano. When the piano is eventually restored, it will provide my personal and computer music systems with a piano output device which, incidentally, can be used for normal piano rolls, normal practice under direct manual control of the keys, and under computer control using an interface to be described in this article.

The piano, which is shown in photo 1 , gave me the impetus needed to examine in more detail the problem of controlling a
pneumatic vacuum line with the output of a computer. Figure 1 shows a schematic illustration of the essence of the typical player piano's control mechanism. The player piano roll passes over what is called the "tracker bar" in the jargon of that technology. This tracker bar has one hole for each active key of the piano as well as auxiliary holes for various other types of information which may be encoded on the rolls. When a hole in the roll passes the hole in the tracker bar, the vacuum line associated with the hole is opened to outside air. This release of the vacuum in the line triggers one of the "pneumatics" in a bank under the piano, which is basically a vacuum operated buffer amplifier with enough output power to toggle a key or actuate some other mechanism. The operation of the "pneumatic" is of no great concern at this point, since all we need to know is that if the vacuum line is opened, the key will be struck, and that if the vacuum line is closed, the key will be released and the device will charge up with vacuum, waiting for the next time that key is to be actuated. The conversion to electronic control is simplest if we just adapt the existing mechanism by plugging up the tracker bar holes (temporarily during electronic performance) and adding a "T" junction to each control line so that an electronic control valve can simulate the opening of the vacuum line. Figure 2 shows this adaptation of the usual vacuum line arrangement for electronic control.

Figure 2 also shows schematically the physical arrangement of a flap valve. As I began looking into the problem of controlling air flow, I quickly learned about the existence of electrically controlled pneumatic devices used in pipe organ and piano technology. It turns out that there is a company called Reisner Inc, which among other items makes a specialty of manufacturing and selling control valves for player pianos and pipe organs. Photo 2 shows the model for the schematic rendition in figure 2, a Reisner No 601-90 magnet with $5 / 8$ inch valve mounted for the purpose of testing on a scrap of pine board, with a metal standoff used as the junction fitting to connect to the vacuum line. The Reisner subassembly consists of everything you see attached to the metal frame which is screwed to the top of the wood block: the magnet, the upper valve seal with cushions for sound dampening, and the return spring. In adapting this unit to a player piano's purposes, a bank of these valves is required, with a number depending upon the details of the particular piano. (For more complete information on these valves, contact Reisner Inc, 240 N Prospect St, POB 71,

Hagerstown MD 21740.) The physical mounting of the valve magnets, tubing, etc, depends upon the particular piano being converted. In the case of my baby grand player, an equipment chest will probably be attached under the sounding board in back of the presently installed pneumatics chest. Some woodworking ability and some mechanical handiwork are required in the fabrication of a bank of valves and in making the interconnections to the vacuum lines.

Electrical Drive and Interface
The era of integrated circuits simplifies the basic problem of controlling the sole-

Photo 2: A test jig used to try out the magnetic control valve concept. The Reisner No. 601-90 magnet with 5/8 inch valve is mounted on a wood block using wood screws. In a final installation as part of a multiple valve attachment to a player piano's penumatics, one such valve would be assigned to each control tube of the piano.

Figure 2: Adapting the player piano mechanisms for computer control is accomplished using Reisner magnets and flapper valves. Each tube from the tracker bar is modified with a " T " junction which allows an alternate control point on the vacuum line. When the piano is run in computer control mode, all the holes in the tracker bar are sealed and the solenoid controlled valves simulate the effects of the roll's passage over the bar. The sealing of the bar can be accomplished by pasting a run of masking tape over the bar or by disabling the spools box's drive motor and positioning a roll's leader over the tracker bar to close all the holes. For details of the valve, see photo 2. A basic interface drive circuit for the solenoid is shown in figure 3.

PIN NUMBERS $X(Y)$
$X=$ ONE SECTION OF DUAL PACKAGE
Y = OTHER SECTION'S PINOUTS
Figure 3: The basic magnet drive circuit used for the pneumatic player piano interface. The driver circuit shown here is a Texas Instruments SN75452, a dual peripheral driver which comes in a miniature 8 pin dual inline package. Each driver has a maximum capability of sinking 300 mA in the low level output state (logical 1 input which "turns on" the magnet). With the nominal 90 ohm coil and a low level output of 0.25 V the coil will have 11.75 V across it. The current through the coil is thus 130 mA , more than enough to actuate the valve based on experiments with the unit shown in photo 1 which was tested against a vacuum applied to valve through the rubber hose.
noids of the Reisner magnet valves. The solenoid coil has a resistance of nominally 90 ohms, and from the specification sheet (confirmed by tests in my laboratory) the valves can be actuated under load with a current higher than about 100 mA (about 9 V across the magnet). Using the Texas Instruments Linear and Interface Circuits Data Book as the source of information, it soon became apparent that the 75452 peripheral driver circuit (or its cousin, the 75451) would prove quite adequate for the job since it can sink 300 mA and has a maximum voltage rating well above the voltage required for the actuation of the magnets. The basic circuit for driving a solenoid with the 75452 integrated circuit is shown in figure 3. In this illustration, I have shown one of the two gate inputs as an inhibit signal (normally at logic level 1) and the other input pin as the control signal defined so that if it is low (logic 0) the magnet is off (valve closed) and if it is high (logic 1) the magnet is on (valve open). The diode mounted on the solenoid coil is an absolute requirement. These magnets have a considerable inductance, and as a result when the current is removed will generate a substantial back EMF which can damage the 75452 output transistor if it is not shorted out by the diode. (The inductance is suffi-
cient to cause an impulse which can be felt by the observer if fingers are held across the coil while the voltage is removed. This suggests a minimum of 50 to 100 V of inductive "kick.")

Logic of a Practical Interface

The brute force technique of interfacing the piano would be to simply put one wire from a latched output bit to each driver of the piano magnets, resulting in roughly 80 to 100 twisted pair interface data paths in a monstrously thick cable. This is an unwieldy mess. The problem is shared by pipe organ aficionados, as I found out from Jeff Raskin's lecture at the First West Coast Computer Faire's session on computers and music(see page 20). At that time he suggested the use of a serial technique to define the state of a bank of control valves. Basically, the technique consists of using serial synchronous transmission from the computer to cut down on the immense number of lines which would otherwise be required. Figure 4 shows a detailed sketch of the logic I designed which will enable this method of interfacing to be employed with three signal lines from a parallel output port of the control computer. In this scheme, each group of four valves is assigned one 4 bit shift register segment and a latch which can be loaded

Figure 4: Solving the problem of heavy interconnection cables. This diagram shows a synchronous serial transmission scheme which requires four twisted pair wires to connect a parallel output port with the piano for programmed serial transfers. One twisted pair cable is dedicated to the system reset line so that the local electronics in the piano will turn off all drivers when the system is reset. The other three lines are connected to three output bits. One bit is programmed with the successive bits of data for the various valves when an output transfer is done. After each data bit is defined, the shift clock line is toggled to push its value down the $88-100$ or so shift register stages assigned to control the 88 to 100 valves used in the piano. Then, when all the bits have been defined in successive operations, the transfer clock line is toggled to parallel load all the control latches and define the state of the solenoids. With a programmed transfer loop on a typical microprocessor, no more than 50μ s per bit should be required, or an update time of 5 ms per 100 solenoid data transfer under program control. This gives the processor a limiting resolution of $1 / 200$ th of a second, well within the timing accuracy needed for music. Using specialized transmission hardware to automatically serialize the data from 8 bit bytes would speed up the typical data rates if needed.
from the shift register. This module of four bits works out very well with the widely available TTL MSI technology shown. The entire bank of $n / 4$ such modules defines an n bit shift register with an n bit latch in parallel. Transfers of new information are accomplished (see timing diagram) under program control by shifting out n bit values with the data line and shift clock line, after which the now valid outputs of the n bit shift register can be transferred into the n bit
latch to set the state of the valves.
As conceived here, the unit can be directly plugged into an existing parallel output port which has 3 available lines. The timing diagram shown in figure 4 is implemented in software by programming the states of the bits when transferring the current data for the piano, which might be derived from a music interpreter program, or from a real time keyboard source. When programming the low level transfer routine,
each bit in turn is shifted and is used to control how the "serial data" line will be set at the output port. After the bit is defined, the "shift clock" bit is turned off, then turned back on, to clock the data into the shift register. After all the control bits have been transferred by " n " operations, the output bit which controls the "transfer clock" line is toggled off, then on, accomplishing the transfer of the shift register's contents to the latches and thus defining the state of the various solenoids.

System Reset and Inhibit

The state of the solenoid drivers must be set in software in the control computer; however, if the system is first turned on, or if garbage is left over from previous use, the result could be a crashing dissonance on the piano output device. To account for bad initial values, the circuit incorporates IC3, which drives the inhibit lines as a set-reset flip flop. When system reset occurs (low
level on that line) all the solenoid drivers are disabled by a low level on the "inhibit" input (see figure 3). When the first transfer of data under program control defines a valid solenoid drive state, the inhibit condition is removed by the transfer clock pulse, and does not recur until another system reset.

Summary

In these notes, I have outlined the essentials of the low level details needed to interface a pneumatic player piano with a typical computer system's parallel output lines. This can lead to some very interesting personal use applications of computers, as new piano music is programmed and played using the mass storage facilities of a personal computer instead of the traditional piano roll. These notes are by no means complete, and I leave the software of control of the piano system to the tastes and judgement of the individual user.
 tempered scale.

Electronic Organ Chips For Use in Computer Music Synthesis

Robert Grappel

Generation of music by the use of computers has intrigued many people over the years, and a number of schemes have been published. It appears to me, however, that those involved in computer music may be missing a potentially rich source of special components for their systems: the electronic organ. There are a substantial number of large scale integrated circuits made specially for electronic organ applications, many of which can be readily adapted to computer music use. This article describes some of these special components and shows how one might apply them in a computer context. The chips described are made by the SGS-ATES Semiconductor Corp, 79 Massasoit St , Waltham MA 02154 . They are modestly priced and are available in single units or small quantities to experimenters. Much of the data in this article comes from the SGS-ATES data sheets associated with their chips. The article has three subsections: pitch generation, rhythm and accompaniment generation.

Pitch Generation

Programmed computer music generators typically generate pitches using carefully
timed delay loops. Unfortunately, the typical processor must work nearly full time to generate a typical musical note. Tuning such loops can be a tedious and time consuming process. The use of organ chips allows a relatively simple pitch generator to be built that can produce 96 different pitches (a piano has only 88) in perfect tune. The computer need only output a byte that selects the appropriate note. Many different notes can be generated in parallel using several output ports. This frees the computer from the time consuming generation of pitch in order to control timing, waveshaping, etc.

The heart of the pitch generator is the M-087 upper octave chip. This $\$ 9$ LSI package accepts a clock and divides it by 12 different divisors. These divisors are chosen to produce 12 even-tempered musical notes. Thus, one tuned clock frequency produces an entire octave of perfectly tuned notes. A circuit to use the M-087 is shown in figure 1. The M-087 is a CMOS device, so it is used with CMOS logic. The logic runs from +5 to -5 V supplies to obtain a symmetrical waveform about ground potential. The M-087 also requires a -12 V supply. The input clock is generated by an astable multi-

Figure 2: Schematic of the note board. Two multiplexers (IC5 and IC6) form a 1 of 16 selector. The low order four bits of the input from the computer select either no note or one of the twelve notes from the tone board (figure 1). The note is then transformed to the correct octave by IC8, a 7 stage binary counter. IC9 selects either the fundamental note or one of the seven other octaves based on the B4-B6 lines from the computer. The output of the board is a square wave ranging from +5 to -5 V .

Table 1: Power wiring table for figures 1,2 and 5.
vibrator composed of two gates. A crystal oscillator could also be used. The output of the clock should be a square wave of frequency 2.0024 MHz for perfect tune. The 12 outputs of the M-087 are square waves swinging between +5 and -5 V . The frequency divisions are shown in the figure. CMOS buffers are shown on the outputs for extra drive capacity. The idea is that only one tone generator board can drive many note boards; each note board produces an output pitch.

Figure 2 shows a note board schematic. The two 74C151 multiplexers on the left form a 1 of 16 selector. The low order four bits of the input from the computer select either no note or one of the 12 notes from
the tone board. Once the note is selected, it must be transformed to the desired octave. The CD4024 7 stage binary counter performs this task. Since each octave is simply one half the frequency of the higher octave, this divides the input note at seven different octaves. The 74 C 151 on the right selects either the fundamental note or one of the seven other octaves, based on the B4 thru B6 bits from the computer. Thus, the note board can select silence or one of 12 notes in one of eight octaves. The output is a square wave between +5 and -5 V . This signal may be shaped, filtered, etc, and mixed with sig. nals from other note boards. With the appropriate bit pattern at the computer port, the note board will generate the note with no further computer aid.

One point remains, however. This circuit produces a transient during changes in pitch
because the dividers in the octave generator are not cleared. To fix this, a reset line is brought from the divider to the port. A brief positive pulse on the reset line generated whenever the port is accessed will clear the dividers and eliminate the transient.

Rhythm Generation

After generating pitch, the next important step in music is timing, or rhythm. Music has been defined as "time ordered sound." This section describes a circuit to ease this part of music making. Musicians often use timing aids such as metronomes to produce periodic signals as cues to the musician. The M-252 circuit provides cues to the computer music synthesizer.

The M-252 chip is one of a family of rhythm generators made by SGS-ATES. It provides a set of 15 rhythms for $\$ 13.50$ (a block diagram of this chip is shown in figure 3). The M-252 takes a clock input that forms the basis of the rhythm. This clock is divided down to provide the musical subdivisions of the rhythm. A measure can have up to 32 subdivisions. The rhythms themselves are produced by a read only memory in the chip containing 3840 bits. This memory has 32 rows, corresponding to the 32 elementary times. It has 120 columns (15 groups of 8). The 15 groups correspond to the 15 input states of the four rhythm select lines (the sixteenth state turns the generator off). The eight outputs are driven by the bits thus selected in the memory. Rhythms having fewer than 32 elementary units reset the input clock divider at the appropriate time for their meter. This reset signal is output as a "downbeat" signal to indicate the beginning of a new musical measure.

Figure 4 shows the rhythms preprogrammed into the M-252. These are the standard programs available, but, if you buy a lot of them, the chip can be custom programmed. Contact the manufacturer for programming details. M- 252 chips may be used in combination to increase the number of rhythms, the number of outputs, or the number of elementary times (see the data sheets for these circuits). Figure 5 shows a simple circuit for using the M-252. An external reset signal is provided, as well as an LED driven by the downbeat output. The eight outputs are shown driving instrument circuits. These circuits are triggered by the memory outputs in the proper order for the desired rhythm. Figure 6 shows the timing of this chip.

The M-252 requires two power sources, +5 V and -12 V . The clock is TTL compatible, as are the rhythm selects and reset. The outputs provide a roughly symmetrical swing

Figure 3: Block diagram of the M-252 rhythm generator. Supplied courtesy of SGS-ATES.

Figure 4: Rhythm selection logic chart for the M-252 rhythm generator. Supplied courtesy of SGS-A TES.
from +5 to -5 V . In a computer application, these, in addition to the downbeat signal, would provide interrupt or input signals to the computer. They give the computer musician cues, like an electronic conductor. The computer can control the input clock rate, the rhythm selected, and the reset. These provide the range of control necessary for musicality. The inherent flexibility of this system makes it a strong competitor to the timing loop approach often used in computer music applications.

Accompaniment Generation

Generating accompaniments is a complicated process. SGS-ATES sells a sophisticated chip, the M-251, which can generate

Figure 5: A simple application of the $M-252$ rhythm generator. The circuit is shown here driving eight "instrument" circuits.

Figure 6a: M-252 timing diagram. Supplied courtesy of SGS-ATES. In these timing waveforms it has been assumed, for example, that in the truth table bits $n+1$ and 2 have not been programmed, ie: the musical instrument has not been introduced. All the other bits have been programmed for the introduction of the instruments.
many types of musical accompaniment. The chip sells for $\$ 36$. There are more than 20 data sheets of diagrams and charts. This section briefly outlines the capabilities of this chip and how it might be used in a computer context.

Referring to the block diagram in figure 7, we see that the M-251 generates three types of accompaniment: chords, arpeggios, and bass. Chords are simultaneous combinations of several notes chosen to form a particular harmony. Arpeggios are like chords except that the notes are played sequentially instead of simultaneously. Bass accompaniments use sequences of low notes chosen to form harmonious relationships with higher melody notes. The M-251 is capable of forming chords, arpeggios, etc, with these proper relationships.

The M-251 takes 12 frequency inputs. These come from the tone generator board or another octave generator. It also takes 24 note inputs. These cover two octaves of the frequency range of the instrument. The computer switches these to ground when that note is to be played (similar to the keys of an organ). The M-251 uses these signals to decide how to form an accompaniment. The M-251 also requires eight rhythm inputs to control bass lines, chords, and arpeggios. These are derived from a rhythm generator, such as the $\mathrm{M}-252$. These inputs are labelled

O 1 thru $08 . \mathrm{O} 1$ is not shown in figure 7. It is used to trigger the envelope formation circuitry for chords (external to the M-251). Bass and arpeggio have their own trigger outputs. There are also three command inputs that control the formation of chords, etc. Some of the variables allow choice of major or minor chords, sixth or seventh chords, diminished or augmented chords, etc. The notes of the bass accompaniment are also chosen by these signals. Thus, the M-251 examines the note inputs to see what is being played, then builds chords and bass and arpeggios based upon the input notes, but subject to the control of the command inputs. The rhythm inputs control the time sequence of the outputs, and the $\mathrm{M}-251$ then forms the outputs and provides trigger signals. Not bad for a single chip! For further information on the many modes of operation of the M-251, please refer to the data sheet. The M-251 makes quite a good musician once you give it the necessary inputs.

Figure 6b: M-252 beat
chart. Supplied courtesy of SGS-ATES.

Figure 7: Block diagram of the M-251 accompaniment generator. This circuit can generate three types of accompaniment: chords, arpeggios and bass. This complex circuit requires 12 frequency inputs, 24 note inputs, 8 rhythm inputs, and 3 command inputs.

Figure 8: Block diagram of the M-147 pedal sustain generator circuit. It can play up to 13 different bass notes in any combination to serve as an accompaniment.

SGS-ATES makes one other accompanist: the M-147 pedal-sustain chip. This circuit is much simpler, and sells for $\$ 9.75$. It is intended to form a sustained or percussive bass accompaniment using the pedals of an organ. Figure 8 shows the block diagram of the M-147.

The M-147 takes a clock input of about 2 MHz (this clock should be the same one that drives the tone generator, or the bass notes will not be in tune with the melody). There are also 13 note inputs to be switched by the computer or musician to select the bass note. The lowest pitch selected will gain priority and will lock out higher notes until released. Two trigger outputs are formed, one which detects changes in note selected, and the other which fires on each note de-
pression. The M-147 provides five outputs. These are five octaves of the bass note selected.

Summary

I hope this quick discussion of a family of electronic organ chips and their application will prove useful to those attempting to make their computers into playable instruments. The built-in musicality of these chips can go a long way toward this goal. With the problems of pitch generation, rhythm, and accompaniment eased by automation, the computer programmer can work on the more interesting problem of teaching a computer music instead of laboring with timing loops and huge tables of numbers.

Fast Fourier Transforms

on Your Home Computer

The advent of the home computer makes possible many new and varied applications both of a general nature and of a scientific or mathematical nature. One of the latter applications we have successfully implemented on a personal computer is the fast Fourier transform, which we will subsequently refer to as the FFT, according to standard usage. Some of the most important properties of the FFT are described in this article, and an FFT program written for the Digital Group Z-80 System using BASIC is provided.

Continuous Fourier Transform

Before discussing the FFT in particular, it is desirable to briefly survey some of the general concepts of the classical continuous Fourier (pronounced "foor-yay") transform. The terminology used refers to time and frequency since they are among the most common variables of interest in many applications, although the theory involved applies to a variety of different types of physical phenomena.

Consider the waveform $x(t)$ shown in figure 1a which is displayed as a function of time (denoted by t). The waveform can also be described by the frequencies present in the signal. This description is called the spectrum of the time signal and, mathematically, it is the Fourier transform of the time function. The process of Fourier transformation is represented by the mathematical function

$$
X(f)=\int_{\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

where $X(f)$ is the Fourier transform of $x(t)$.
[The constant j is used in electrical engineering to denote $\sqrt{-1}$, also called i. The number e, 2.71828, is the base of the natural algorithms. . . .CM/ For all but fairly simple functions, this mathematical process represented a formidable operation for many years. Prior to the development of the digital computer, many analytical and experimental methods were investigated for determining the approximate spectra of functions that arose in physical systems.

The magnitude of a typical spectrum is shown in figure 1 b and is denoted by $\mid \mathrm{X}(\mathrm{f})$, where f represents the frequency in Hertz (Hz). For example, if $x(\mathrm{t})$ were a music signal, strong peaks of the spectrum at low frequencies would be characteristic of a sig. nificant amount of bass content such as

William D Stanley
Steven J Peterson

Figure 1: An arbitrary continuous signal $x(t)$ expressed as a function of time (a) may also be described by its spectrum or
Fourier transform $X(f)$, which is expressed as a function of frequency (b). The relative strength of the spectrum at different frequencies is a measure of the frequency content that comprises the given signal. The concept of spectrum finds numerous applications in many varied disciplines including music waveform analysis, communications signal analysis, mechanical vibrations, oceanography, statistics, and others. In signal analysis, the function $x(t)$ is said to be a time domain representation, and $X(f)$ is said to be a frequency domain representation.
drums or tubas. Conversely, many string instruments such as the violin display stronger peaks at higher frequencies in the audio spectrum. The frequency spectrum (or Fourier transform) thus provides a plot of the relative weight of different frequencies that comprise or represent the given signal.

If the Fourier transform or spectrum of a signal is known, the time function may be determined from the inverse transformation which is given by

$$
x(t)=\int_{-\infty}^{\infty} x(f) e^{i 2 \pi f t} d f
$$

Figure 2: A sampled function of time (a) and its discrete Fourier transform spectrum (b). The discrete Fourier transform (DFT) functions are used to approximate the continuous transform functions whenever digital implementation is to be used. The time function is sampled at N points separated by an increment T over an interval $t_{p}=N T$ to create a discrete function $x(n)$. The resulting spectrum $X(m)$ is periodic with a period $f_{s}=1 / T$ and contains N components within one period with spacing between components $F=1 / t_{p}$. If $x(n)$ is a real function, only half or $N / 2$ of the spectral components are unique. The integers n and m represent the time and frequency integers which identify the location in the sequence of the time sample $(t=n T)$ and the frequency component or harmonic number ($f=m F$).

Observe that the inverse transform has essentially the same general form as the direct transform except for the sign of the exponential argument.

The concept of the frequency spectrum has long played a most important role in numerous scientific applications and has been of interest to mathematicians, engineers and scientists of many different disciplines. Among the areas where spectral analysis has been employed are sound and music analysis, communications systems design, analysis of mechanical vibrations, ocean wave analysis, statistics and many others.

Discrete Fourier Transform

The heart of the FFT is a mathematical operation known as the discrete Fourier transform (DFT). In the DFT, a set of integers n and m are defined to represent the equivalent in a sense of the time and frequency variables, respectively, of the continuous Fourier transform. This correspondence is best seen by observing the sampled signal $x(n)$ shown in figure 2a. There are assumed to be N samples of the signal spaced T seconds apart. Thus, as n varies from 0 to $N-1$, the N samples of the time signal are generated. The duration of the time signal is $t_{p}=N T$.

The DFT of $x(n)$ is defined by the finite summation

$$
X(m)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) W^{m n}
$$

where

$$
W=e \frac{-j 2 \pi}{N}
$$

The function $X(m)$ represents a discrete spectrum with m serving the same purpose in frequency as n did in time. The frequency increment between successive components is $F=1 / t_{p}$ so that the spectral component at a frequency $m F$ is $X(m)$. For $x(n)$ real and for N time points, a unique spectrum can be computed only at $\mathrm{N} / 2$ frequency points. Actually, $X(m)$ is periodic in m with N points in each period, but only $\mathrm{N} / 2$ are unique. $X(m)$ is, in general, a complex function consisting of a real and an imaginary part at each frequency. For many applications, the magnitude spectrum $|X(m)|$ is the quantity of most significance. Some of the preceding points are illustrated in figure 2 b .

As in the case of continuous signals, an inverse discrete Fourier transform (IDFT) can be defined. In this case, the inverse transformation is

$$
x(n)=\sum_{m=0}^{N-1} x(m) W^{-m n}
$$

The resulting function is periodic in the variable n and has N points in one period. Thus, even if the original time signal were not periodic, the operation of the IDFT produces a function capable of providing the desired results in one cycle, but the pattern continues to repeat itself if the interval is extended outside of the basic range.

Observation of the definition of the DFT reveals that there are approximately N complex multiplications and about the same number of complex additions required to compute the spectrum at one particular value of m . Since there are $N / 2$ unique spectral components, the total number of computations required to generate a complete spectrum is of the order of N^{2}. The Cooley-Tukey algorithm, published in 1965, demonstrates one way to perform this transformation with a number of computations of the order of $\mathrm{N} \log _{2}(\mathrm{~N})$, which turns out to be an enormous savings in computational time for long signal records. The Cooley-Tukey algorithm, along with subsequent variations, is referred to as the fast Fourier transform (FFT). Thus, the FFT is a high speed algorithm for computing the discrete Fourier transform.

While the DFT is a finite summation and the classical Fourier transform is an integral transform, the DFT may be used to closely approximate the continuous function under many circumstances. Some of the concepts involved with such an approximation are considered later in this article.

The various FFT algorithms work best when the number of points in the sample record is an integer power of 2 , ie: $N=2 k$, where k is an integer. The form of one of the basic algorithms is shown in figure 3 for the case of $N=8$. Obviously, $N=8$ is far too small for most applications, but the flow graph is of interest in understanding the form of the general computational algorithm. This particular algorithm is referred to as an in place algorithm since at each stage of the computation, the data may be stored in the same memory locations from which they were obtained.

Implementation of In Place Algorithm

The in place algorithm previously discussed was implemented on the Digital Group Z-80 System using BASIC. The program is given in listing 1. The particular system used had 18 K bytes of memory, of which about 12 K bytes were required for the BASIC software. It was determined

Figure 3: Flow diagram indicating the computations involved in an 8 point fast Fourier transform (FFT) implementation of the discrete Fourier transform (DFT) function. Significant reductions in computation time are achieved with FFT realizations of large arrays. For example, the computation time for a 1024 (2^{10}) sequence of samples using an FFT is approximately 1 percent of the time required by direct application of the DFT. In the chart, two paths merging together in a given column represent a combination of two quantities in the preceding column. For example, the first quantity in the second column is obtained by forming $x(0)+$ $W^{0} \times(4)$. The first term is indicated by the dashed line and the second is indicated by the solid line. The integer in the circle is the power of W. (See text for definition of W.) The pattern continues until the spectrum appears in the last column. This particular algorithm for the FFT results in a scrambled order for the spectral coefficients as can be seen from the chart. Some variations result in a natural order but require more internal memory.
that a 256 point transform could be computed with this system and the program listed uses this capacity. It could be readily expanded or contracted as the available memory size dictates. However, the size selected should be chosen as an integer power of 2 as previously noted. Thus, the next smaller size should be 128 and the next larger size should be 512 .

In order to reduce the memory requirements, the trigonometric functions are generated as they are required in the program. This approach is not nearly as efficient from the standpoint of computation time as would be the process of initially generating and storing the functions in

Listing 1：Fast Fourier transform routine described in text．Lines 10 to 499 are available for the user to describe the time function that is to be studied．

```
2 DIM X1(256), X2(256)
4N=256 : L=8 : P1=3.141%%
6 REM -- GENEKGTE TIME FUNCTIUN ...-
10 REM
20 REM LINE NUMEERS 10-499 AKE USK:HI TO
30 REM GENERATE OR INPUT THE TIME FUNCTION
4 0 \text { REM}
500 PRINT *DO YOU WFNT A LISTING OF THE GENEFATE| TIME FIUNCTION * *
510 INPUT AS
520 IF AS = 'NO* THEN 64O
530 IF AS<゙``YES* THEN }50
540 B=X1(0)
550 FOR Z=0 TO N-1
5 6 0 ~ I F ~ A B S ( X 1 ( Z ) ) > B ~ T H I : N ~ E = G B S ( X 1 ( Z ) ) ,
5 8 0 ~ N E X T ~ Z ~
600 FOR Z=0 TO N-1
610 FRINT X1(Z):TAB(41+20*X1(Z;,E);"**
6 2 0 ~ N E X T ~ Z ~
630 REM - SCALE INPUT IIME FUNCTION -
640 FOR Z=0 TO N-1
650 X1 (Z) = X1(Z)/N
660 NEXT Z
6 7 0 \text { REM - - FFT IN-PLACE ALGORITHM - -}
6 7 5 \text { PRINT* - FFT CALCULATION IN PROGRESS -*}
680 II=N/2 & I2*1 & U=2*F1/N
690 FOR I=1 TO L
700 I3=0: I4=I1
710 FOR K=1 TO 12
720 X=INT(I3/I1)
730 GOSUB 1300
740 15=Y
750 21=COS(U&I5)
760 22=-SIN(U&IS)
770 FOR M=I3 TO 14-1
780 A1=X1(M) : A2=\2(M)
790 B1=21%X1(M+I1)-22% K2(M+I1)
800 B2=22事准(M+I1)+Z1*X2(M+I1)
810 X1(M)=A1+B1 & X2(M)=A2+B2
820 X1 (M+II)=A1-B1: : X2(M+II)=A2-B2
830 NEXT M
840 I3=13+2事I1 & I4xI442車I1
850 NEXT K
860 I1=11/2 : 12=2*I2
8 7 0 ~ N E X T ~ I ~ I
880 REM - OUTPUT RESULTS -
890 PRINT 'IN WHAT FORM DO YOU WANT THE OUTFUT ?*
900 PRINT* MAGNITUDE SPECTKUM PLOT (1).
910 PRINT* TABLE OF VALUES (2).
9 2 0 ~ I N P U T ~ A ~
930 IF A=1 THEN }97
940 IF A=2 THEN 1130
950 PRINT'INCORRECT INPUT (1 OR 2): & GOTO 890
960 REM - OUTPUT MAGNITUDE SPECTRUM PLOT -
970 B=0
975 FRINT* - CALCULNIIIONS IN F゙RUÜLE:GS •
980 FOR Z=0 TO N'2
985 X-Z
990 GOSUB 1390
1000 IF X3>B THEN B=X3
1010 NEXT Z
1020 FOF }Z=0\mathrm{ TO N/2
1025 X=Z
1030 GUSUH }139
1040 X4=1NT(5S**3/B)
1050 C=0
1060 F'RINT Z;TAB(5);'!";
1070 C=C+1
1080 IF CXX4 THEN IFINT***; : SUTU 1070
1090 PRINT ..
1100 NEXT Z
1110 GOTO 1240
1120 REM - OUTPUT TA&LE OF VALUES
1130 U=0
1140 Z=0
1150 PRINT'HARMONIC*;TAB(14);'REAL`;\AB(30);
1160 PRINT ' IMAGINAFY`;TAE(50); 'MAGNITUDE*
1165 X=U
1170 GOSUB 1390
1180 PRINT U:TAB(10):X1(Y);TAE(30);X2(Y);TAB(50):\times3
1190 U=U+1 & Z=Z+1
1200 IF Z>9 THEN 1140
1210 IF U\N/2 THEN 1240
1220 GOTO 1165
1230 REM - TERMINATE ? -
1230 REM --`.'ERMINATE ? -
1250 INPUT AS
1260 IF Asz"YES" THEN 890
1270 IF AS<> 'NO' THEN 1240
1270 IF
1280 END
1290 REM - SCRAMBLER SUBROUTINE -
1300 Y=0 & N1=N
1310 FOR W=1 TO L
```

1320 N1 $=N_{1} / 2$
1330 IF X＜N1 THEN 1360
$1340 \quad Y=Y+2^{\sim}(W-1)$
1350
1360 MEXT
1360 NEXT
1370 RETURN
1380 REM－MAGNITUUE（X3）SUBROUTINE
1390 GOSUB 1300
$1400 \times 3=\operatorname{SaRT}(X 1(Y)-2+X 2(Y) \sim 2)$
1410 RETURN
1420 END
memory so that they can simply be called as required．However，where speed is not a major priority，this approach minimizes the total memory required．

Statements 10 through 499 in the pro－ gram represent the particular input signal for which the transform is being computed． The time function may be generated by appropriate equations or an algorithm as will be demonstrated for several cases later． For experimental data，the values could be listed point by point if the function cannot be readily described by an equation．

Applying the Program

In order to effectively utilize an FFT program for spectral analysis，it is neces－ sary to understand some of the peculiarities of the DFT and its relationship to the con－ tinuous Fourier transform．Although the time signal may or may not be periodic in nature，the mathematical form of the DFT treats the signal as if it were periodic．The total duration of the time signal is the period t_{p} ，and for the program being considered， this period contains 256 points．If T is the time increment between samples，then $t_{\mathrm{p}}=256 \mathrm{~T}$ ．The spectrum obtained from the DFT is also periodic and contains N （or 256）spectral components．However，for a time function that is real（which incidentally is the case for all signals considered in this article），it can be shown that half of the components are ambiguous；ie：they are similar to the other half and do not repre－ sent any actual spectral information．Thus， there are $N / 2$（or 128）meaningful complex spectral components that are obtained with the FFT．These components are spaced apart in frequency by $F=1 / t_{p}$ ．The value for $\mathrm{m}=0$ corresponds to the DC component， $m=1$ is the fundamental，$m=2$ is the sec－ ond harmonic，etc．According to sampling theory，a time signal must be sampled at a rate at least equal to（practically speaking， greater than）twice the highest frequency contained in the spectrum．Thus，if the highest frequency contained in a spectrum is known to be no greater than f_{h} ，the maxi－ mum time between samples（ T ）should be chosen to satisfy $T<\frac{1}{2 f_{h}}$ ．If this condition is not met，there will be a spectral overlap
or aliasing effect which will distort the spectrum.

For a fixed number of points (such as 256 for the program under discussion), there is a trade-off between the high frequency capability and the spectral resolution. In order to analyze higher frequencies, a shorter sampling time is required, but this necessitates a shorter overall period and a larger increment between successive frequencies. Specifically for 256 points, $\mathrm{N} / 2=$ 128; and since $N=0$ corresponds to $D C$, the highest frequency that can be measured is 127 times the spectral resolution. It is very important that the sampling rate be chosen to be greater than twice the highest frequency in the spectrum even if the higher frequencies are not of interest. If the minimum sampling rate requirement is not met, erroneous spectral components may appear at various places in the spectrum.

There are various other properties of the DFT that may be important in applying an FFT program in various situations. The reader is encouraged to consult one of the references listed at the end of this article or the many other available sources for more extensive details, since this article provides only a brief overview of the theory along with the details of a workable program for a home computer.

Examples

Several examples that illustrate some of the properties of the FFT are now considered. The various function programs for these waveforms are shown in listing 2. The first example is that of a single rectangular pulse whose duration is 25 percent of the total period corresponding to $256 / 4$, or 64 points as illustrated in figure 4. (Due to the large number of points, the function is shown as a continuous curve.) The video display of the first 14 spectral components in tabular form is shown in photo 1 , and the first 15 components of the magnitude spectrum are displayed in photo 2. Henceforth,

Figure 5: Rectangular pulse for which the FFT is partially displayed in photo 3. The pulse is unity for 32 of the 256 points in the time record and zero for the remainder. Since this pulse is shorter than the one of figure 4, the spectrum is broader. In general, there is an inverse relationship between the width of a pulse-like time function and the width of the frequency spectrum. This property is an important concept in signal transmission and results in the requirement of larger bandwidths for transmitting shorter pulse signals.
10 REM - GENERATE 25X FULSE
20 FOR $Z=0$ TO N/4
$30 \times 1(Z)=1$
40 NEXT Z
50 FOR $Z=N / 4$ TO N
60 X1 $(Z)=0$
70 NEXT 2
10 REM -- GENERATE 12.5% FULSE
20 FOR $Z=0$ TO N/B
$30 \times 1(Z)=1$
40 NEXT 2
50 FOR $Z=N / 8$ TO N
$60 \times 1(Z)=0$
70 NEXT Z
10 REM - BENERATE 1000HZ 8INE WAVE
$20 T=0$
30 FOR $Z=0$ TO $N-1$
$40 \times 1(Z)=8 I N(2$ \& 3.14159 \& 1000 (T)
$50 \mathrm{~T}=\mathrm{T}+1.953125 E-4$
SO NEXT Z
10 REM - GENERATE 1010 HZ SINE WAVE
$20 \mathrm{~T}=0$
30 FOR $Z=0$ TO N-1

$50 T=T+1.953125 E-4$
60 NEXT Z

Listing 2: Three different generating routines that can be used with listing 1 as the time functions. The first routine generates a pulse function that lasts 25 percent of the time that is being analyzed. The second routine also generates a pulse but half as long as the first routine. The third and fourth routines generate sine waves which are only slightly different.

Figure 4: Rectangular pulse for which the FFT is partially displayed in photos 1 and 2. The pulse is unity for 64 of the 256 points in the time record and zero for the remainder.

only the magnitude spectra will be shown.
When the pulse duration is changed to 12.5 percent of the period or 32 points as indicated in figure 5, the magnitude spectrum changes to the form shown in photo 3.

It should be pointed out that the bandwidth of a rectangular pulse is theoretically infinite in extent and so there is some aliasing error in each of these cases. However, the effects of aliasing are not pronounced in these two examples over the frequency range shown in the photos. At larger harmonic
values for the given signals and at shorter pulse widths for the given frequency range, the aliasing errors would be more significant.

A sine wave representing an assumed frequency of 1000 Hz and an assumed sampling time of $T=0.1953 \mathrm{~ms}$ was generated and analyzed. The resulting spectrum is shown in photo 4 . Note that the frequency resolution is $F=1 /\left(0.1953 \times 10^{-3} \times 256\right)=20 \mathrm{~Hz}$ so that 1000 Hz corresponds to harmonic number 50 . Observe that an ideal single line appears as one might hope. On the other

Photo 1: The first 14 components (DC and harmonics up through the 13th) of the FFT spectrum corresponding to the pulse shown in figure 4. The program lists the real part of $X(m)$, the imaginary part of $X(m)$ and the magnitude $|X(m)|$.

Photo 2: Video graphics display of the magnitude spectrum corresponding to the pulse shown in figure 4. The display is of course rotated 90° from the basic mathematical form illustrated in figure 2.

Photo 3: Video graphics display of the magnitude spectrum corresponding to the pulse shown in figure 5.
hand, when the frequency is changed to 1010 Hz while maintaining the same value of T , the spectrum changes to the form shown in photo 5. The reasons for the striking difference are as follows: In the first case, the frequency corresponds exactly to one of the harmonic numbers (50th harmonic), and a property of the DFT is that no other line components appear in this case. However, in the second case, the component would theoretically appear halfway between the 50th and 51st harmonics so that the imperfections of the finite time duration of the observed sinusoid are now apparent. The phenomenon observed is called leakage. It can also be readily verified that the first sinusoid was observed over an exact integer number of cycles, while in the second case, the sinusoid was truncated during a cycle.

This example illustrates the necessity of understanding some of the limitations of the truncation and sampling processes in order to properly evaluate results. The phenomena just noted can be reduced by smoothing the data to be transformed with certain window functions before computing the FFT. Window functions smooth the beginning and
end of a record length and reduce the effects of leakage on the spectrum.

More Examples

Other applications include the use of an analog to digital converter to sample speech and music waveforms or the waveforms encountered in electronic systems. The sample points could be stored for later spectral analysis using the FFT program. We hope readers will be encouraged to experiment with the program on their own computers. ${ }^{\text {■ }}$

REFERENCES

1. Bergland, G D, "A Guided Tour of the Fast Fourier Transform," IEEE Spectrum, July 1969, pages 41 thru 52.
2. Brigham, E O. The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs NJ, 1975.
3. Cooley, J W, and Tukey, J W, "An Algorithm for the Machine Calculation of Complex Fourier Series," Math of Computation, volume 19. April 1965, pages 297 thru 301.
4. Stanley, W D, Digital Signal Processing, Reston Publishing Co (a division of Prentice-Hall), Englewood Cliffs NJ, 1975.

Photo 4: Video graphics display of the magnitude spectrum corresponding to a sine wave whose assumed frequency is 1000 Hz with a sampling interval $T=0.1953 \mathrm{~ms}$. This assumption results in an integer number of cycles (50) in the record duration t_{p}, which corresponds to 50 ms . The frequency then corresponds exactly to the 50th harmonic and the spectrum appears as a single line.

Photo 5: Video graphics display of the magnitude spectrum corresponding to a sine wave whose assumed frequency is 1010 Hz with a sampling interval $T=0.1953 \mathrm{~ms}$. This frequency corresponds to the midpoint between the 50th and 51st harmonics, and the imperfections of the DFT in representing a continuous time signal now can be seen.

Fast Fourier Transforms

for the $\mathbf{6 8 0 0}$

Richard Lord

If you're involved with music or speech processing applications with your computer, you've probably wished you could look at the frequency spectrum of your sampled signals. This may not be as difficult as you might guess, because here is a simple, straightforward fast Fourier transform (FFT) subroutine that can do the trick in just a few seconds.

A Microhistory of the
 Fast Fourier Transform

The analysis of waveforms for harmonic content has a long and fascinating history. Bernoulli and Euler developed the mathematics of the transform while experimenting with musical strings in 1728, nearly a hundred years before Jean Baptiste Fourier gave his name to the equations. Interest in prediction of the tides led Lord Kelvin to build a mechanical harmonic synthesizer that inspired the construction of increasingly complex mechanical harmonic analyzing machines. This trend culminated in the MaderOtt machine of 1931, which is on display at the Smithsonian Institute in Washington DC.

With the growth of the telephone and the communication industry came sampling theory and the discrete Fourier transform. At first, discrete Fourier transforms were hand calculated and tabular forms called "schedules" were soon employed to speed the process. With the development of digital computers in the 1940s this task became somewhat easier to perform. The number of calculations required still made the concept of real time discrete Fourier transforms unlikely even on the ever faster new computers.

Then in the 1960's a number of matrix theory mathematicians, including $J W$ Cooley and J W Tukey, went back to the "schedules" and discovered that a great many of the terms were redundant and
could be factored out. The procedure they evolved became known as the fast Fourier transform, which reduces the number of calculations to the point that special hardware can be built to perform the transform in real time and display the frequency spectrum continuously on a video display.

The Basic Concepts

A number of books have been published describing the mathematics of the fast Fourier transform in some detail. A few of these contain sample programs in FORTRAN, ALGOL, or BASIC. However, the use of a high level language to perform this computation not only costs a great deal in speed and efficiency, but also obscures the simple binary processes that characterize the algorithm. Since high level languages do not usually support bit manipulation, these processes can become almost as time consuming as the arithmetic.

Clearly, assembly language programming of the fast Fourier transform offers many advantages, but the literature seldom provides any examples of assembly level code to illustrate how the equations are imple mented. Thus the program described in this article may well be the reinvention of someone else's "wheel."

The details of the inner workings of the fast Fourier transforms are left to the technical references, but the basic concepts are not difficult to grasp. The transform involves complex products which behave in the manner of the coordinates of a rotating vector. When this vector is at angles which are multiples of 90 degrees, the sine and cosine terms of the equations become $+1,0$, or -1 . Since terms containing these values do not require computed multiplication, the arithmetic becomes very simple. Other terms cancel each other out in order to simplify the equations at other angles. By factoring

Figure 1: Fast Fourier transform of a square wave using the author's technique. The real (or sine) part of the transform is shown in (a). The imaginary (or cosine) part of the transform is shown in (b). The resulting transform is at (c). The resulting transform values are normally found by taking the square root of the sum of the squares of the cosine and sine elements. In order to save computational time, however, the author takes the sum of the absolute values of the terms, which introduces slight errors into the relative magnitudes of the components.
realized as the number of points increases.
Each of the simplified transforms operates on the data in pairs of complex points. The real and imaginary parts of a pair are transformed and the new values placed back in the array so that the transform is performed "in place." The algorithm then moves on to the next pair until all pairs have been transformed. The process is repeated for each of the eight stages of our 256 point transform, but on each pass the distance between pairs is changed.

On the first pass, adjacent points are paired. After completing a pair the algorithm skips down to the next. In a sense, the data has been split into 128 adjacent 2 point transforms. These 128 groups are known as cells. On each subsequent pass the distance between elements of the pair is doubled. In the second pass there are 64 cells, each four elements wide. On the final pass there is only one cell containing all 256 elements.

This process of forming pairs and cells causes the elements of the array to become scrambled. On the final pass the data is completely mixed up and must be sorted out before it can be used. The way it is scrambled is very interesting, though. If each element is assigned a binary number that represents its location in the array, the scrambled data makes it appear that the computer has read this binary address backwards. It is as if the binary word were swapped end for end so that the most significant bit (MSB) appears where the least significant bit (LSB) should be.

This rearrangement of the data may be corrected by swapping each data point with its bit reverse addressed mate. The procedure is called "bit swapping" and may be performed either at the end of the fast Fourier transform or before it is begun. The pretransform swap is more convenient because less points need be swapped and because the vector rotation within each cell is simpler. In the posttransform version the vector angles would also have to be bit swapped.

Implementation

Now that we have looked at the concept, let us look at how it can be implemented. The algorithm has been written as a subroutine (see listing 1) to be called by a signal gathering and display program. It assumes that this program has stored some time dependent data in 2's complement form and that a 256 byte sample of this is to be transformed to the frequency domain.

The fast Fourier transform subroutine begins with an address lookup table for the data areas. This table makes the reassignment of these areas very simple. The INPUT data area may be anywhere in memory, but
the SINE, REAL, and IMAG arrays must be at address page boundaries (ie: at hexadecimal XX00), and REAL and IMAG must be in adjacent pages forming a continuous 512 byte block. These restrictions greatly simplify address calculation within the program. SINE is the address of a 256 byte sine and cosine lookup table which must be loaded in with the transform subroutine (see listing 2).

The first instruction of the subroutine clears the variable SCLFCT which keeps track of the number of times the data has to be scaled to prevent overflow. The IMAG array is then cleared and at MOVE the INPUT data is copied into REAL, where the transform will take place. The data is then prescrambled to put it in bit reverse order for the transform process. The bit reversed address is calculated by rotating the least significant bit of the address into the carry and rotating the reversed address out in the opposite direction. The new address is compared with the first address to prevent swapping the data back to the original order, and the two array elements are then exchanged.

Once the swapping is complete, the data is ready to be transformed. The fast Fourier transform is performed in eight separate passes; before each pass begins, the data is tested by SCALE to prevent any overflow. For the first pass there are 128 cells formed by adjacent pairs of data. In this pass the vector angle steps in multiples of 180 degrees. This means that all the sine terms are 0 and the cosine terms are either +1 or -1 . Also there is no data yet in the IMAG array. The general equations thus become greatly simplified and the pass is reduced to addition and subtraction among elements of the REAL array. Considerable time is saved by making this pass separate and bypassing the unneeded table lookup and multiply routines.

Once this pass is completed, the arithmetic gets much more complex. The remaining seven passes are performed by a general fast Fourier transform algorithm. It begins at FPASS by setting up 64 cells of four elements with the pairs separated by two units. The vector angle is set to increment by 90 degrees by setting DELTA to 64. At NPASS the pointers are set up for the first cell and the pass then begins with a sine and cosine table lookup. The complex data pair is then processed using the standard fast Fourier transform equations:

$$
\begin{aligned}
& \mathrm{TR}=\mathrm{RN} \operatorname{COS}(w)+\mathrm{IN} \operatorname{SIN}(w) \\
& \mathrm{TI}=\mathrm{IN} \operatorname{COS}(w)-\mathrm{RN} \operatorname{SIN}(w) \\
& \\
& R M^{\prime}=\mathrm{RM}+\mathrm{TR} \quad \mathrm{RN} \\
& \\
& \mathrm{M}^{\prime}=\mathrm{RM}-\mathrm{TR} \\
& \mathrm{IM}+\mathrm{TI} \quad I N^{\prime}=I M-T I
\end{aligned}
$$

After each pair has been transformed the angle is incremented by DELTA and the next pair processed. When all pairs in a cell have been transformed the routine moves down to the next cell and returns to NCELL to continue the process. When the last cell has been done, CELCT becomes 0 and the pass is complete.

At the end of each pass the number of cells and the angle increment are divided in half and the pair separation and number of pairs per cell are doubled. The whole process is then repeated by branching to NPASS until the end of the last pass when the number of cells becomes 0 . The routine then branches to DONE and returns to the calling program.

The SCALE subroutine is used to anticipate and prevent overflow of the 8 bit data. It is called before each pass and begins by testing the value of each data point. If any point exceeds the range of -64 to +64 the subroutine branches to SCL4 where the entire array is scaled down by a factor of 2. The variable SCLFCT is incremented to indicate the total number of times the data has been scaled.

The multiply routine has been placed at the end of the program to make substitution of other versions easy. The original program was written for a hardware multiplier similar to the device described in an article by Bryant and Swasdee (see references).). To eliminate the need for such exotic hardware, a software multiply routine has been substituted with some increase in transform time. After the multiplication is completed the data must be scaled up by a factor of two. This is because the sine and cosine terms represent fractional binary values. The least significant bit is shifted in from the lower byte to preserve accuracy.

Analyzing the Results

After working with all this mathematics and software, what do you end up with? We started with a 256 point time domain sample in REAL. The fast Fourier transform converts this to a frequency domain sample corresponding to the spectrum of the input. The first element of each array represents the DC component of the input. The next element represents the sine wave with period equal to the duration of the input sample. Each remaining element depicts a multiple of this frequency until the middle of the array is reached, representing 128 cycles per period. The remainder of the array is symmetrical to the first 128 points.

Each element in the REAL and IMAG arrays represents information about one frequency component of the input sample. But why do we end up with two arrays, and
what do the cosine terms of REAL and the sine terms of IMAG really mean to us? Usually this information is described in terms of amplitude and phase of the component, and often the phase information is of little interest. The cosine and sine terms represent the X and Y components of a vector with length and angle equal to the amplitude and phase terms that we are after. All we have to do is find the length of the vector from the square root of the sum of squares of the cosine and sine terms.

The only problem is that this calculation requires almost as much time as the transform, due to the square root. If we bypass the root and display the sum of squares (the power spectrum) we miss most of the detail of the lesser components. I have found that the highly unmathematical solution of displaying the sum of the absolute values is fairly satisfactory, although it introduces some error in the relative amplitude of peaks. This value is then sent to a digital to analog converter for display on an oscilloscope.

Putting the Fast Fourier Transform to Work

This program has a number of interesting applications for speech recognition, image processing, and the synthesis of musical instruments. A recent issue of The Computer Music Journal even describes a program for transcribing recordings back into sheet music (see references).

To get meaningful information from the transform, the input data must be sampled judiciously. While this program in theory is capable of analyzing 128 harmonics of a given sample, this is only true when the input represents exactly one complete cycle of the waveform being analyzed. Most data just doesn't come packaged that way.

To accurately measure the pitch of a sound you must sample many cycles. To analyze harmonics you want to sample few. The best result for real data will always be a compromise between range (bandwidth) and resolution. Both can be increased only by analyzing more points, which takes more time.

After experimenting with one sample at a time you will probably want to try continuous analysis. The input data pointer at hexadecimal address 0202 can be moved through
an input buffer by the program that calls the transform. At roughly three seconds per transform, the data cannot suitably be analyzed in real time. A sample of a few seconds of data can be continuously analyzed and the changes slowly displayed. This is probably most easily accomplished by transferring the "sum of absolute value" data to a display buffer which is then scanned by an interrupt driven display program.

Bigger, Better, and Faster

Like most software, this program exists to be rewritten. No attempt was made to optimize execution speed. Preliminary experiments with an MMI-67558 hardware multiplier took slightly under one second. This relatively minor improvement was probably due to the time wasted in moving the data in and out of the multiplier. Perhaps it can be streamlined to the extent that a continuous display can be created. I plan to try a version for the 6502 microprocessor with hope of adding still more speed.

The algorithm is simple enough so that conversion should be easy. Enterprising 8080 and Z-80 enthusiasts shouldn't have too much trouble adapting the principles to their computers, either. Conversion to double precision or 512 to 1024 points should also be possible, although the present addressing scheme would have to be abandoned.

I hope this program will provide you with a tool that will be a lot of fun to play with. Please write and tell me what uses you find for it and any improvements you would like to suggest.

REFERENCES

1. Brigham, E Oran, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs NJ, 1974.
2. Bryant, J and Swasdee, M, "How to Multiply in a Wet Climate," BYTE, volume 3, number 4, April 1978, page 28.
3. Cooper, James W, The Minicomputer in the Laboratory, John Wiley and Sons Inc, New York, 1977.
4. Moorer, J, "On the Transcription of Musical Sound by Computer," Computer Music Journal, volume 1, number 4, November 1977, page 32.
5. Stearns, Samuel D. Digital Signal Analysis, Hayden Book Co Inc, Rochelle Park NJ, 1975.

Listing 1: Routine in 6800 assembly language to perform a 256 point fast Fourier transform.

00072		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00073		＊＊ST	ART OF	TRANSFORM	＊＊					
00074		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00075	0200		ORG	\＄0200						
00076	02802088		BRA	START	Jump around parameters					
00077		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00078		＊＊RDDRESS LOOK－UP TABLE＊＊								
08079		＊＊FOR DATA AREAS＊＊								
00080		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00081	02028800	INPD	FDB	INPUT	SET UP DATA RRERS					
00082	02040500	RERL	FDB	REALT						
00083	02060600	IMAG	FDB	IMAGT						
00084	02080400	SINE	FDB	SINET						
00085		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00086		＊＊								
00087	020A 7F 002F	Start	CLR	SCLFCT	nothing scaled yet					
00088		＊＊								
00089		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00090		＊＊INPUT DATA SET－UP＊＊								
00091		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00092	020D FE 0206	CLERR	LDX	IMAG	CLEAR OUT IMAG．					
08893	0210 5F		CLR B		SET UP COUNTER					
00094	0211 6F 00	CLR1	CLR	0,1	CLEAR MEMORY					
00095	021388		INX							
00096	0214 5R		DEC B							
00097	021526 FA		BNE	CLR1						
00098	0217 FE 0202	MOVE	LDX	INPD	SET UP POINTERS					
00099	021A DF 28		STX	RLPT1						
00180	021C FE 0284		LDX	RERL						
00101	021F DF 22		STX	RLPT2						
00102	0221 DE 20	MOV1	LDX	RLPT1	MOVE INPUT DATR					
00103	0223 A6 00		LDA A	$0, x$	TO＂RERL＂ARRAY					
00104	022508		INX							
00185	0226 DF 20		STX	RLPT1						
00106	0228 DE 22		LDX	RLPT2						
00107	022A A7 00		STA A	0.1						
00108	022C 7C 0023		INC	RLPT2＋1						
00109	022F 26 F0		BNE	MOV1	TEST PAGE OVERFLOW					
00110		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00111		＊＊PRE－TRANSFORM BIT SWAP＊＊								
00112		水水水水水水水水水水水水水水水水水								
00113	0231 FE 0284		LDX	RERL	SET UP DATA POINTERS					
00114	0234 DF 28		STX	RLPT1						
00115	0236 DF 22		STX	RLPT2						
00116	0238 C6 08	BItRev	LDA B	\＃ 8	SET BIT COUNTER					
00117	023A 9621		LDA A	RLPT1＋1	GET POINTER 1					
00118	023C 46	BRV1	ROR A		REVERSE BIT ORDER					
00119	0230790023		ROL	RLPT2＋1	FOR SECOND POINTER					
00120	0240 5R		DEC B		COUNT BITS					
00121	024126 F9		BNE	BRV1						
00122	02439623		LDA A	RLPT2＋1	GET REVERSED byte					
00123	02459121		CMP A	RLPT1＋1	COMPARE WITH \＃1					
00124	024725 0E		BCS	SWP1	BRANCH IF RLRERDY SWAPPED					
00125	0249 DE 20	SWAP	LDX	RLPT1	GET POINTER 1					
00126	024B A6 00		LDA A	$0, x$	GET VAL 1					
00127	024D DE 22		LDX	RLPT2	GET POINTER 2					
00128	024F E6 00		LDA B	0， x	GET VAL 2					
00129	0251 A7 08		STA A	0,1	REPLACE WITH VAL 1					
00130	0253 DE 20		LDX	RLPT1	GET FIRST POINTER					
00131	0255 ET 00		STA B	0,1	COMPLETE SUAP					
00132	0257 7C 0021	SWP1	INC	RLPT1＋1	do next point pair					
00133	025A 26 DC		BNE	BITREV	UNLESS ALL RRE DONE					
00134		＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00135		$\underset{* *}{* *}$ FFT FIRST PASS $\underset{*}{* *}$								
00136										
00137		＊＊SINCE IN PASS 1 ALL ANGLES＊＊								
00138			RRE MULTIPLES OF 188 DEG．＊＊							
00139		＊＊								
00140			＊＊AND NO IMRGINARY TERTMS YET＊＊							
00141		＊＊HENCE A FAST VERSION OF PASS 1 ＊＊ ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊								
00142										
00143	025C BD 0333	PASS1	JSR	SCALE	SCALE IF RNY OVER－RANGE DATA					
00144	025F FE 0204		LDX	RERL	SET UP POINTERS					
00145	0262 DF 20		STX	RLPT1						
00146	0264 DE 20	PA1	LDX	RLPT1	GET POINTER					

00147	0266	A6 00		LDA A	$0, x$	GET RM
00148	0268	E6 01		LDA B	$1, x$	AND RN
00149	026A	36		PSH A		SAVE RM
00150	026B	18		ABA		RM' $=$ RM + RN
00151	026C	A7 00		STA A	$0, x$	STORE NEW RM ${ }^{\prime}$
00152	026E	32		PUL A		GET OLD RM
00153	026F	10		SBA		RN $=$ RM-RN
00154	0270	A7 01		STA A	1, X	STORE RN'
00155	0272	7C 0021		INC	RLPT1+1	MOVE TO NEXT PAIR
00156	0275	7C 0021		INC	RLPT1+1	
00157	0278	26 Ef		BNE	PA1	KEEP GOING TILL DONE
00158			******	*******	*******	*********
00159			** CO	COMPUTATI	ON OF FFT	**
00160			**	PASS	2 THRU N	**
00161			******	********	********	*********
00162	027A	8640	FPASS	LDA A	* 64	SET UP PARRMETERS
00163	027C	9728		STA A	CELNUM	FOR CELL COUNT
00164	027E	972 E		STA A	delta	AND ANGLE
00165	0280	8682		LDA A	\#2	AND FOR
00166	0282	9720		STA A	PAIRNM	PAIRS/CELL
00167	0284	9720		STA A	CELDIS	distance between Pairs
00168	0286	BD 0333	NPASS	JSR	SCALE	KEEP DATA IN RANGE
00169	0289	9628		LDA A	CELNUM	GET NuMBER OF CELLS
00170	028B	97 2B		STA A	CELCT	PUT IN COUNTER
00171	028D	FE 0204		LDX	RERL	SET UP POINTERS
00172	0290	DF 20		STX	RLPT1	
00173	0292	DF 22		STX	RLPT2	
00174	0294	FE 0206		LDX	IMAG	
00175	0297	DF 24		STX	IMPT1	
00176	0299	DF 26		STX	IMPT2	
08177	0298	FE 0208	NCELL	LDX	SINE	
00178	029E	DF 28		STX	SINPT	
00179	02R0	D6 2C		LDA B	PAIRNM	GET PAIRS/CELL CTR.
00188	02A2	9621	NC1	LDA A	RLPT1+1	GET POINTER 1 LSBY
00181	02A4	9820		ADD A	CELDIS	ADD PaIR OFFSET
00182	02R6	9723		STA A	RLPT2+1	SET BOTH POINTER 2'S
00183	02R8	9727		STA A	IMPT2+1	
00184	02RA	37		PSH B		SAVE PAIR CTR
00185	02AB	DE 28		LDX	SINPT	SET UP SINE LOOKUP
00186	02AD	A6 00		LDA A	$0, X$	GET COSINE OF RANGLE
00187	02AF	9730		STA A	COSA	SRVE ON BASE PRGE
00188	0281	A6 40		LDA A	64, X	GET SINE
00189	0283	9731		STA A	SINA	RND SRVE IT
00190	0285	DE 22		LDX	RLPT2	GET "REAL" POINTER 2
00191	02B7	A6 00		LDA A	$0 . \mathrm{x}$	GET RN
00192	$02 \mathrm{B9}$	36		PSH A		SRVE IT
00193	02BA	D6 30		LDA B	COSA	GET COSINE
00194	02BC	BD 036R		JSR	MPY	MAKE RN*COS(A)
00195	02BF	9732		STA A	TREAL	SAVE IT
00196	02 Cl	32		PUL A		RESTORE RN
00197	02C2	D6 31		LDA B	SINA	GET SINE
00198	$02 C 4$	BD 036A		JSR	MPY	RN*SIN(A)
00199	$02 C 7$	9733		STA A	TIMAG	
00200	$02 C 9$	DE 26		LDX	IMPT2	GET IMRG. POINTER 2
00201	02CB	A6 00		LDA A	$0, \mathrm{x}$	GET IN
00202	02CD	36		PSH A		SAVE IT
00283	O2CE	D6 31		LDA B	SINA	GET SINE
00204	0200	BD 036R		JSR	MPY	IN*SIN(A)
00205	0203	9832		ADD A	TRERL	TR $=$ RN*COS + IN $*$ SIN
00206	0205	9732		STA A	TRERL	
00207	0207	32		PUL A		RESTORE IN
00208	0208	D6 30		LDA B	COSA	GET COSINE
00209	02DA	BD 036A		JSR	MPY	$\mathrm{IN} * \operatorname{Cos}(\mathrm{~A})$
00210	0200	9833		SUB A	timag	$\mathrm{TI}=\mathrm{IN} * \operatorname{COS}-\mathrm{RN} *$ SIN
08211	02DF	9733		STA A	TIMAG	
00212	02E1	DE 28		LDX	RLPT1	
00213	02E3	R6 00		LDA A	$0, X$	GET RM
00214	02E5	16		TAB		SRVE IT
00215	02 E 6	9832		ADD A	TREAL	$R M^{\prime}=R M+T R$
00216	02E8	A7 08		STA A	0, X	
00217	02EA	DE 22		LDX	RLPT2	
00218	02EC	D0 32		SUB B	TREAL	$R N^{\prime}=R M-T R$
08219	02EE	E7 00		STA B	0, X	
00220	02F0	DE 24		LDX	IMPT1	
00221	02F2	A6 00		LDA A	$0, x$	GET IM

00222	$02 F 416$		TAB		SPVE IT
80223	02F5 9B 33		RDD A	TIMAG	$I M^{\prime}=I M+T I$
00224	02F7 A7 00		STA A	B, X	
00225	02F9 DE 26		LDX	IMPT2	
00226	02FB D0 33		SUB B	TIMAG	$I N^{\prime}=I M-T I$
00227	02FD E7 00		STA B	$0, \mathrm{x}$	
00228	02FF 9629		LDA A	SINPT+1	INCREMENT ANGLE
02229	0301 98 2E		ADD A	DELTA	
00230	03039729		STA A	SINPT+1	
08231	0305 7C 0021		INC	RLPT1+1	InCREMENT POINTERS
00232	0308 7C 0025		INC	IMPT1+1	
00233	0308 33		PUL B		GET PAIR COUNTER
00234	038C 5A		DEC B		DECREMENT
00235	038D 2693		BNE	NC1	DO NEXT PAIR
08236	038F 9621		LDA A	RLPT1+1	GET POINTERS
00237	0311 98 2 D		RDD A	CELDIS	ADD CELL OFFSET
00238	03139721		STA A	RLPT1+1	
00239	03159725		STA A	IMPT1+1	
00240	0317 7A 002B		DEC	CELCT	DECR. CELL COUNTER
00241	031A 2703		BEQ	NP1	NEXT PRSS?
08242	031C 7E 029B		JMP	NCELL	NO, DO NEXT CELL
00243		**			
00244		** CHANGE PARAMETERS for next pass **			
00245		**			
00246	031F 74 002R	NP1	LSR	CELNUM	half as many cells
00247	032227 OC		BEQ	DONE	NO MORE CELLS
00248	032478 002C		ASL	PAIRNM	TWICE AS MANY PaIRS
00249	032778002 D		ASL	CELDIS	TWICE AS FAR APART
00250	0322 74 002E		LSR	DELTA	half the angle
00251	032D 7E 0286		JMP	NPASS	DO NEXT PASS
00252		********************************			
00253		** END OF FFT ROUTINE **			
00254		********************************			
00255		**			
00256	033039	DONE	RTS		EXIT FFT SUBROUTINE
80257	03310002		RMB	2	ROOM FOR JUMP EXIT
08258		****************************			
00259					
00260		** OVER-RANGE DRTR SCALE **			
00261		*****************************			
00262	0333 FE 0204	SCaLE	LDX	RERL	SET UP DATA POINTER
00263	0336 5F		CLR B		SET UP PAIR CTR
00264	033737	SCL1	PSH B		SAVE PAIR CTR.
00265	0338 C6 02		LDA B	4	SET UP PAIR
00266	0338 1600	SCL2	LDA A	$0, \mathrm{x}$	GET DRTH
00267	033C 88		INX		BUMP POINTER
00268	033D 81 C0		CMP A	\#sco	TEST LOWER LIMIT
00269	033F 2204		BHI	SCL3	SKIP TO NEXT POINT
00270	03418140		CMP A	\#\$40	TEST UPPER LIMIT
00271	03432488		BCC	SCL4	Scale if OUt of range
00272	0345 5R	SCL3	DEC B		test next point
00273	034626 F2		BNE	SCL2	
00274	034833		PUL B		
00275	0349 5R		DEC B		
00276	034R 26 EB		BNE	SCL1	
02277	034C 39		RTS		done testing
08278	034033	SCL4	PUL B		RESTORE STACK
00279	034E 7C 002F		INC	SCLFCT	BUMP SCRLE FACTOR COUNT
08288	0351 FE 8284		LDX	RERL	SET UP TRBLE PTR.
00281	0354 5F		CLR B		SET UP PAIR CTR
08282	035537	SCL5	PSH B		SRVE IT
00283	0356 C6 02		LDA B	*2	SET UP PAIR
00284	0358 A6 00	SCL6	LDA A	$0, x$	GET DATA
00285	035A 88 80		ADD A	\#580	Make It mbsolute
00286	035C 44		LSR A		DIVIDE IT BY 2
00287	035D 8040		SUB A	\# $\$ 40$	MAKE IT 2's COMP.
00288	035F A7 08		STA A	$0, x$	
00289	036108		INX		BUMP POINTER
00290	0362 5R		DEC B		NEXT POINT
80291	036326 F3		BNE	SCL6	
00292	036533		Pul B		
00293	0366 5R		DEC B		NEXT PAIR
00294	036726 EC		BNE	SCL5	
00295	036939		RTS		RETURN

TOTAL ERRORS 00000

Listing 2: The object code listing in hexadecimal format of the assembly language program given is listing 1. This listing can be used to manually enter the program or as a confirmation copy for the PAPERBYTEtm bar code representation given in figure 2. The format used for this listing is a 2 byte address field, followed by up to 16 bytes of data, with a 1 byte check digit at the end of each line. Note that the data in hexadecimal locations 0400 to 04FF constitute the sine and cosine lookup table which must be loaded with the transform subroutine.

```
0200 20 08 08 00 05 00 06 00 04 00 7F 00 2F FE 02 06
0210 5F 6F 00 08 5A 26 FA FE 02 02 DF 20 FE 02 04 DF
0220 22 DE 20 A6 00 08 DF 20 DE 22 A7 00 7C 00 23 26
0230 F0 FE 02 04 DF 20 DF 22 C6 08 96 21 46 79 00 23
0240 5A 26 F9 96 23 91 21 25 0E DE 20 A6 00 DE 22 E6
0250 00 A7 00 DE 20 E7 00 7C 00 21 26 DC BD 03 33 FE
0260 02 04 DF 20 DE 20 A6 00 E6 01 36 1B A7 00 32 10
0270 A7 01 7C 00 21 7C 00 21 26 EA 86 40 97 2A 97 2E
0280 86 02 97 2C 97 2D BD 03 33 96 2A 97 2B FE 02 04
0290 DF 20 DF 22 FE 02 06 DF 24 DF 26 FE 02 08 DF 28
02A0 D6 2C 96 21 9B 2D 97 23 97 27 37 DE 28 A6 00 97
02B0 30 A6 40 97 31 DE 22 A6 00 36 D6 30 BD 03 6A 97
02C0 32 32 D6 31 BD 03 6A 97 33 DE 26 A6 00 36 D6 31
02D0 BD 03 6A 9B 32 97 32 32 D6 30 BD 03 6A 90 33 97
02E0 33 DE 20 A6 00 16 9B 32 A7 00 DE 22 D0 32 E7 00
02F0 DE 24 A6 00 16 9B 33 A7 00 DE 26 D0 33 E7 00 96
0300 29 9B 2E 97 29 7C 00 21 7C 00 25 33 5A 26 93 96
0310 21 9B 2D 97 21 97 25 7A 00 2B 27 03 7E 02 9B 74
0320 00 2A 27 0C 78 00 2C 78 00 2D 74 00 2E 7E 02 86
0330 39 00 00 FE 02 04 5F 37 C6 02 A6 00 08 81 C0 22
0340 04 81 40 24 08 5A 26 F2 33 5A 26 EB 39 33 7C 00
0350 2F FE 02 04 5F 37 C6 02 A6 00 8B 80 44 80 40 A7
0360 00 08 5A 26 F3 33 5A 26 EC 39 97 37 D7 39 4F 97
0370 36 97 38 97 34 97 35 5D 2C 03 73 00 38 7D 00 37
0380 2C 03 73 00 36 C6 0F 77 00 36 76 00 37 24 0C 96
0390 39 9B 35 97 35 96 38 99 34 97 34 78 00 39 79 00
03A0 38 5A 26 E3 96 34 79 00 35 49 39 0210 5F 6F 0008 5A 26 FA FE 0202 DF 20 FE 0204 DF 022022 DE 20 A6 0008 DF 20 DE 22 A7 00 7C 002326 0230 F0 FE 0204 DF 20 DF 22 C6 08962146790023395B

\section*{SINE TABLE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 7 F & 7 F & 7 F & 7 F & 7 F & 7 F & 7 E & 7 E & 7D & 7D & 7C & 7 B & 7A & 79 & 78 & 7 & C9 \\
\hline 0 & 76 & 75 & 73 & 72 & 71 & 6 & 6D & 6C & 6A & 68 & 6 & 6 & 63 & 6 & 5E & 5C & A4 \\
\hline 0420 & 5A & 58 & 56 & 53 & 5 & 4E & 4C & 49 & 47 & 44 & 41 & 3 F & 3C & 39 & 36 & 33 & 8 \\
\hline 0430 & 31 & 2 & 2 B & 2 & 25 & 22 & 1 F & 1 C & 19 & & 12 & 0F & 0C & 09 & 06 & 3 & A2 \\
\hline 04 & 00 & F & F & F & F4 & F1 & EE & EA & E7 & E4 & E1 & DE & DB & D8 & DS & 2 & 8 F \\
\hline 0 & C & C & C & C7 & C4 & C & BF & BC & B9 & B & B & B2 & AF & AD & AA & A8 & \\
\hline 0 & A & A4 & A2 & 9 F & 9D & 9B & 9A & 9 & 96 & 94 & 93 & 91 & 8 F & 8 E & 8D & 8B & 78 \\
\hline 0470 & 8A & 89 & 8 & 87 & 86 & 85 & 84 & 83 & 83 & 8 & 8 & 8 & 81 & 81 & 81 & 81 & \\
\hline 0480 & 8 & 81 & 81 & 81 & 81 & 81 & 82 & 8 & 83 & 83 & 84 & 85 & 86 & 87 & 8 & 8 & 37 \\
\hline 0490 & 8 & 8 B & 8D & 8 E & 8 F & 91 & 9 & 9 & 96 & 98 & 9A & 9B & 9D & 9F & A2 & A4 & C \\
\hline 04 AO & A6 & A8 & A & AD & A & B2 & B4 & B7 & B9 & B & B & C & C4 & C7 & CA & CD & 8 \\
\hline 04B0 & CF & D2 & D5 & D8 & D & DE & E1 & E4 & E7 & EA & E & F & F & F7 & F & FD & 5 E \\
\hline \(04 \mathrm{C0}\) & 00 & 03 & 06 & 09 & 0C & 0F & 12 & 16 & 1 & 1C & 1 F & 22 & 2 & 2 & 2 B & 2E & 71 \\
\hline 0 & 31 & 33 & 36 & 39 & 3C & 3 F & 41 & 44 & 47 & 49 & 4C & 4E & 51 & 53 & 56 & 58 & 4F \\
\hline 04 EO & 5A & 5 C & 5 E & 61 & 63 & 65 & 66 & 68 & 6A & 6C & 6D & 6 F & 71 & 72 & 73 & 75 & 88 \\
\hline 04F0 & 76 & 77 & 78 & 79 & 7A & 7B & 7 C & 7D & 7D & 7E & 7 E & 7 F & 7 F & 7 F & 7 F & 7 F & C0 \\
\hline
\end{tabular}




























Photo 1: The author's polyphonic music keyboard system, which allows more than one note to be played simultaneously. The scanning keyboard interface is just behind the 61 note manual in the foreground. The stand alone ASCII keyboard in front is dedicated to music related tasks, and allows two easily distinguished levels of system control.


\title{
Polyphony Made Easy
}

\author{
Steven K Roberts
}

It was not long after the successful implementation of a hardware chromatic tone and envelope generator for my system that I began to wish for a method of playing music that would be somewhat less cumbersome than tune encoding with the ASCII keyboard. The ability to store a melody by defining all the notes and then allowing the computer to perform it was worthwhile, but without some technique for spontaneous interaction the system could hardly be called an instrument. A music keyboard was clearly called for.

I obtained a 61 note (5 octave) organ manual from the Kimball Organ Company for about \(\$ 75\), and considered the interface task in depth. Among the primary performance specifications for the design were:
- Polyphonic capability (not limited to single notes)
- Undiscernible response delay
- Very low processor overhead

The last of these requirements precluded the
use of a software scan, which would have reduced hardware to its simplest form, and the need for polyphony called for either a bit map interface or a multiplexer with its own memory. To simplify the software as much as possible, the latter approach was selected.

A note should be inserted here about the touchy subject of software simplification. An argument frequently heard in the world of the microprocessor is that everything should be done with the program. If the processor in question is a dedicated controller, then by all means all the work thrat can be reasonably handled by the program should be so assigned. However if the processor is at a higher level of system abstraction, it may be more efficient to delegate certain repetitive tasks either to hardware or to another microcomputer. There is no convenient generalization defining the tradeoff, but in cases where software complexity gets out of hand due to the presence of a fairly mundane but demanding task, some parallelism is usually called for. In the specific

case of the music system, keyboard scanning and envelope generation can impose such a burden that the ability to simultaneously do complex real time data manipulation is lost.

Thus, optimization of the keyboard interface design was undertaken with the system considerations given uppermost priority, and the result is shown in figure 1 . The 61 key switches of the manual are scanned completely every 5 ms , and with each step of the scan the position of the presently addressed key is compared with its last known position, which is stored in a 256 by 1 memory segment. If there is no difference, the scan proceeds, but if the key has changed state, the processor is interrupted with the binary value of the key in question along with a direction bit, and the corresponding memory location is changed to reflect the new status of the keyboard. The scan is suspended until the information is accepted by the computer. In this fashion, any combination of simultaneous key depressions and releases, at any practical speed, will result in a series of asynchronous "change of state" notices to the processor, which remains ignorant of interface function at all other times. The software maintains a list of keys currently depressed, and deals with them appropriately.

Action of the scanning interface is synchronized with the host computer by means of a simple handshaking scheme: when a change of state is detected, the data available signal appears (this may be treated as an interrupt or polled periodically, depending upon available time). It is then the processor's job to read the input port upon which the 6 bit key code and the direction bit appear, whereupon the acknowledge signal is created by the port strobe, allowing the scan to continue. It is important to note that the scan stops whenever a change is encountered (awaiting processor intervention) because ultimate keyboard servicing time is then largely a function of the support software. In the unlikely event that a user of this system chooses to implement such real time functions in BASIC, it will be found that a forearm laid in jest upon the keyboard results in a sweep up the musical scale lasting on the order of a second. In a more realistic situation (assembler level coding) the delay is unnoticeable.

Construction, of course, should follow the usual procedures required of random logic interfacing. Cables between the board and the processor should be kept short, with intervening grounds between the handshake lines. The keyboard shown in photo 1 consists of simple normally-open contacts; their noise is filtered by the resistor-capacitor (RC) networks shown in the schematic. Any remaining bounce may be trimmed out by


Photo 2: Keyboard interface hardware. The circuit fits perfectly onto a Rob-inson-Nugent 30 socket wirewrap panel. It could just as easily be implemented on an S-100 card if there is no objection to the wire bundle. Any combination of simultaneous key depressions and releases on the musical keyboards, at any practical speed, will result in a series of asynchronous "change of state" notices to the processor, which remains ignorant of interface function at all other times. The software maintains a list of keys currently depressed and deals with them appropriately. A simple handshaking scheme makes the interface synchronous with the host computer.


Photo 3: Underside of organ manual. The resistor-capacitor networks shown are used with each key for noise reduction. The wire bundle exiting at the bottom terminates in the interface's edge connector.
adjusting the clock rate, which is nominally 12.5 kHz . There is one light emitting diode (LED) on the board to provide a visual check of operation: "Key In Progress" is lit between the data available signal and the acknowledgment signal.

The circuit concept is directly expandable to accommodate many more inputs, with the memory and counter capable of addressing up to 256 points. This interface concept would be quite at home in many industrial control environments, as well as anywhere a large number of contact closures must be observed.

In the music system shown in photo 1, the keyboard interface has provided the much needed flexibility in the interactive utilization of the instrument. The "feel" is not unlike that of a standard electronic organ, and with the available processing horsepower taken into consideration, the unit is a composer's delight. From teaching applications (where the human must correctly repeat "by ear" a computer generated phrase) to the support of creative effort, an efficiently integrated polyphonic keyboard is an essential link between artist and computer.

\title{
Music from the Altair
}

\section*{8800 Computer}

\author{
Loring C White
}

Those of you who would like to make music with computers can easily do so with an Altair 8800 (or other S-100 based system). The MITS \(88-A C R\) audio cassette interface board may be used to send musical signals to an audio amplifier or speaker. The method described here employs a flip flop which is normally intended for use by the interrupt function of the \(88-\mathrm{SIO} \mathrm{B}\) board.

The output of this device varies from +5 V to 0 V , providing a square wave which is under the control of software. The number of times per second this occurs determines the fundamental pitch of the output tone. The duration of the event determines the sustain time. Thus, by connecting an amplifier and speaker (or just a speaker) between the output and ground, the Altair 8800 becomes a musical instrument of sorts.

\section*{Hardware}

These instructions assume that we are using the 88 -SIO B board which has been set up for ports 5 and 6 as recommended by MITS. The device which is central to our plan is the input-output (IO) interrupt flip flop. This logical entity is actually composed of two sections of a 74L00 integrated circuit (a quad NAND gate) which is referred to as integrated circuit B. The output of each section is fed back to the other section as an input, forming a simple set-clear flip flop. These two sections (of the four on the device) are taken together and called side a.

The flip flop is adapted for our purposes by the following procedure (see figure 1):
- Connect a jumper wire between one output of the flip flop and pin 4 of integrated circuit \(U\) (an 8T97 device
which is used to buffer the serial data line). Output may come from pin 2 or pin 6 of the 74 LOO , as these pins are connected together.
- Connect one side of the speaker or amplifier input to pin 5 of integrated circuit \(U\). The other amplifier connection should be made to the +5 V bus through a 0.1 to \(0.5 \mu \mathrm{~F}\) capacitor (16 V or better).

The other half (side b) of integrated circuit B could be used for another control function in the same manner. Integrated circuit \(U\) has three other spare drivers that could be used for additional buffering. We ran the output connections to a pair of the unused pins on the \(I O\) connector at the back of the computer.

We decided to mount the capacitor inside the computer, so that if the +5 V supply was accidently shorted from outside, the capacitor would prevent the power supply from burning out. The capacitor thus blocks DC, but passes the audio frequencies quite readily because of its low reactance at these frequencies. The capacitor also has the effect of causing the plateau of the square wave to slope down somewhat.

It is at this point in the circuit that the square wave may be processed if you wish to change the tonal character of the music coming from the computer. For the sake of simplicity and elegance we elected not to do this.

\section*{Software}

The software for producing music by this method is written in MITS (Microsoft) 8 K BASIC, version 3.2. About 2.5 K bytes of memory are required beyond the space used for the BASIC interpreter. The program uses

Figure 1: Detail of the schematic for the MITS 88-SIO B circuit board, showing the modifications necessary for producing music by the method described in the article text. Both sides of the output taken from the interrupt flip flop should float above electrical ground. The user should, however, be careful to avoid shock hazard.

a machine language routine stored above BASIC at decimal address 11601 (hexadecimal 2D51). The routine takes only about 30 bytes of memory, which are set aside during the initializing of BASIC.

During the procedure of loading BASIC, you should answer the question "Memory Size" with the number 11600. That is all that has to be done if you have BASIC version 3.2, that has the address of "userloc" (user defined function pointer location) at decimal addresses 73 and 74 (hexadecimal 49 and 4A).

If you have another version of MITS BASIC that has the user location pointer stored at an address other than that given, you should enter the new location in the first step of the BASIC program, in line 10.

The program writes the machine language routine into upper memory. This is called from the BASIC program by executing the user defined function in the statement \(\mathrm{X}=\operatorname{USR}(\mathrm{Y})\). The program also writes zeroes into all unused locations so that changes in the program may be made easily, without fear of gathering unwanted bugs.

The 8080 processor instructions which are loaded by the BASIC program lines 100 and 180 perform the actual setting and clearing of the interrupt flip flop. The machine code is used for greatest possible speed of
execution. When I first developed the program, I attempted to do this in BASIC using the usual INP and OUT statements, but found that the audio frequencies obtained were much too low.

You will note that the delay loop timing between the ON (set) and OFF (clear) functions is controlled by "poking" the desired number ( P ) into the 8080 code routine at BASIC lines 610 and 620. This parameter controls the pitch of each note. The duration of time that the ON and OFF function is on \((Y)\) is also controlled by a delay loop which is executed between the OFF and return (to BASIC) instructions.

\section*{Running The Music Program}

When starting the program, you make a choice between a pseudo-random "tune" and a stored composition derived from the data given in the DATA statements, lines 650 on.

The random tune derives tone frequencies (pitch) and durations from the instructions at lines 570 and 580 which use the RND function to select numbers for poking pitch and duration into the instructions at lines 590 thru 620. If you allow the program to run in this mode long enough, I suppose that you will eventually hear Beethoven's Fifth Symphony. This is a musical application of the British Museum Algorithm (monkeys pounding typewriters randomly to eventually produce all the books in the museum). We assume that the computer will last that long.

In the stored composition mode, which is started by typing an " S " in response to the input question, the pitch, duration and also rests are derived from the BASIC DATA statements, lines 650 on. Each number and letter combination represents one note of the song. The number is the relative note duration, and the letter is the note pitch in the same sense that it is in regular music. A sharp is also the same symbol, \#, as used in standard music notation. No flats were programmed because they were considered redundant.

So, the symbols " 2 C " and " 4 C " represent two notes, identical in pitch, but with the second note having twice the duration of the first. " \(2 R\) " and " \(4 R\) " would be two rests of different durations. An exclamation mark is placed at the end of the note specification symbol to transpose up one octave.

Although no effort was made to tune the frequency of \(A\) to \(440 \mathrm{~Hz}, 1\) am sure this could be done with some simple numerial manipulation. There was originally some interaction of the note timing and pitch. This was compensated for in the BASIC instructions at lines 559 through 561.

A musical composition may be entered into the program by simply reading the notes from any piece of sheet music, determining the proper symbols, and writing these into the DATA statements. I have
provided a familiar melody in the DATA statements in listing 1, but you will have to run the program to find out what it is. I was thinking of renaming it the Altair POKEr (Polka).

Listing 1: Program to produce computer music from the MITS 88-ACR audio cassette interface board, written in MITS (Microsoft) 8 K BASIC. The POKE statements from line 10 to line 320 set up the machine language subroutine which toggles the interrupt flip flop on the 88-SIO B board. The POKE statements at lines 590 thru 620, and at lines 690 thru 720, pass parameters to this subroutine.
```

10 POKE 73.81:POKE 74,45
20 FORN=11601TO12128
3O POKE N,O
4O NEXT
50 POKE 11605,17
60 DOKE 11610,62
70 POKE 11611.1
80 POKE 11612.211
90 POKE 11613.6
100 POKE 11618,1
110 POKE 11621.13
120 POKE 11622.121
130 POKE 11623,167
140 POKE 11624,194
150 POKE 11625,101
160 POKE 11626,45
170 POKE 11700,62
180 POKE 11701,0
190 POKE 11702.211
200 POKE 11703.6
210 POKE 11704,27
220 POKE 11705.123
230 POKE 11706.167
24O POKE 11707.194
250 POKE 11708,89
260 POKE 11709,45
270 POKE 11710.122
280 POKE 11711.167
290 POKE 11712,194
300 POKE 11713.89
310 POKE 11714,45
320 POKE 11715.201
330 INPUT"TYPE 'R'FOR RANDOM MISSIC\& 'S'FOR SONG*\&JS
340 IFJS=00R**THENS70
350 RESTORE
360 FORN=OT0200
370 READ DS
380 1F DSE"SS"THEN330
390 YS=LEFTS(DS,1)
395 RS=MIDS(DS,2,3)
400 PS=חIGHTS(DS,1)
401 QS=MIDS(DS,2,2)
402 1FOS ="CO"THENP=36
403 IFOS ="D'00THENP=31
404 IFQS="EO"THENP=27
405 IFOS ="G|"THENP=20
406 IFOS ="A0"THENP=16
407 1FES ="BC"THENP=13
408 IFOS="FO"THENP=24
410 IFPS ="C'CTHENP=39
420 1FPS="0}\mp@subsup{D}{}{\prime\prime}THENP=3
430 1FPS="E"THENP=29
440 IFPS="F"THENP=27
450 1FPS = "0'G"THENP =22
460 IFPS =" A" THENF = 18
470 1FPS =" B"THENP=14
475 IFY\$="1"THENY=1
480 1FYS="2"THENY=2
490 1FYS =" 3"0THENY=3
500 IFYS = "04"THENY=4
501 1FRS ="D|!'THENP=INT(12/45*30)
502 IFRS ="E||"THENP=1NT(12/45*27)
503 1FRS ="G|!"THENP=INT(12/45*20)
504 IFRS="AOI"THENP=INT(12/45*16)
505 1F RS="S\I"THENP=INT(12/45*13)
510 1FYS=00 5"THENY=5
520 1FYS=006"THHENY=6
530 1FYS=" 7"0
540 1FYS =" 8"THENY=8
S5O 1FQS="C'Cl"THENP=INT(12/39*39)
551 1FOS="D|"THENP=1NT(12/42*33)

```
```

552 IFOS="E|"THENP=INT(12/43*28)
553 IFOS="F|"THENP=INT(12/45*26)
554 1FOS="GI"THENP=INT(12/45*22)
S55 1FOS="A!"THENP=INT(12/45*18)
556 IFOS="旦!"THENP=INT(12/45\#14)
557 IFRS ="C|!"THENP=INT(12/45*36)
558 IFRS="FOI"THENP=INT(12/45*24)
559 1FPS="B'THENY=2*Y
560 1FPS=* ! "THENY=2*Y
561 1FPS ="A A"THENY=INT(1.5*Y)
562 IFPS = "R"THENY=Y\&FORE=1TOY\#50 \& NEXT \& GOTO 370
569 GOT*690
570 Y=1NT((8-2) \&RND(1) +2)
580 P=1NT((39-12)*RND(1)+12)
590 POKE 11606,Y
600 POKE 11607,Y
610 POKE 11619,P
620 POKE 11620,P
630 X=USR(Y)
6 4 0 ~ G 8 T O 5 7 0 ~
650 DATA 3D,2CO.1E,3D
651 DATA 3B,3A,2GO,1A,4E,2R
6 5 2 ~ D A T A ~ 3 F M , 2 F , 1 F \% , 3 B ~
6 5 3 ~ D A T A ~ 3 A , 1 F O , 3 E , 3 D \# , 5 D , I R ~
6 5 4 ~ D A T A ~ 3 D , 2 C \% , 1 E , 3 D ~
655 DATA 3B,3A,2G\&,1A,4E, 2R
656 DATA 3G,2FO,1G,3D!
657 DATA 3B,3A,IE,1FA,5G
670 DATA SS
680 END
690 POKE 11606,Y
700 POKE 11607,Y
710 POKE 11619,P
720 POKE 1:620,P
730 X=USR(Y)
74O NEXT
750 G0TO330

```

Listing 2: The subroutine which toggles the interrupt flip flop, in assembler format. The entry point is stored in decimal locations 73 and 74, (hexadecimal 49 and 4A). Much room is left in the form of NOPs for modification by the user. The values which appear in the BASIC listing in decimal are here translated into hexadecimal.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2051 & 00 & \multirow[t]{4}{*}{USR} & NOP & & ROUTINE TO TURN FLIP FLOP \\
\hline 2052 & 00 & & NOP & & ON AND OFF \\
\hline 2D53 & 00 & & NOP & & CALLED BY USR(X) \\
\hline 2D54 & 00 & & NOP & & FROM BASIC PROGRAM \\
\hline 2055 & 11 & & LXI & D & \\
\hline 2 D56 & 00 & \multirow[t]{3}{*}{\(Y\)} & :00 & & BASIC PROGRAM POKES VALUE \\
\hline 2D57 & 00 & & :00 & & OF Y HERE \\
\hline 2058 & 00 & & NOP & & \\
\hline 2059 & 00 & \multirow[t]{3}{*}{LOOP} & NOP & & \\
\hline 205A & \(3 E\) & & MVI & A, :01 & TURN FLIP FLOP ON \\
\hline 205B & 01 & & & & \\
\hline 2D5C & D3 & & OUT & :06 & \\
\hline 2050 & 06 & & & & \\
\hline 2D5E & 00 & & NOP & & SPACE IS LEFT HERE FOR \\
\hline 205F & 00 & & NOP & & USER MODIFICATION \\
\hline 2060 & 00 & & NOP & & \\
\hline 2061 & 00 & & NOP & & \\
\hline 2062 & 01 & & LXI & B & \\
\hline 2063 & 00 & \multirow[t]{2}{*}{\(p\)} & :00 & & BASIC PROGRAM POKES \\
\hline 2064 & 00 & & :00 & & VALUE OF P HERE \\
\hline 2065 & DD & \multirow[t]{8}{*}{SOUND} & DCR & C & \\
\hline 2066 & 79 & & MOV & A, C & \\
\hline 2067 & A7 & & ANA & A & TEST FLAG 2 \\
\hline 2068 & C2 & & JNZ & SOUND & BRANCH IF \(A=0\) \\
\hline 2069 & 65 & & & & \\
\hline 206A & 2D & & & & \\
\hline 206B & 00 & & NOP & & LOTS OF ROOM LEFT \\
\hline \multirow[t]{2}{*}{206C} & \multirow[t]{2}{*}{00} & & NOP & & HERE ALSO \\
\hline & & & ORG & :2084 & \\
\hline 2084 & 3E & & MVI & A,:D0 & TURN FLIP FLOP OFF \\
\hline 2085 & 00 & & & & \\
\hline 2086 & 03 & & OUT & :06 & \\
\hline 2087 & 06 & & & & \\
\hline 2088 & 18 & & DCX & D & (AND E) \\
\hline 2089 & 7B & & MOY & A, E & \\
\hline 2DBA & A7 & & ANA & A & TEST FLAG 2 \\
\hline 2D8B & C2 & & JNZ & LOOP & \\
\hline 2DBC & 59 & & & & \\
\hline 2D8D & 20 & & & & \\
\hline 208E & 7A & & MOV & A, D & \\
\hline 208F & A7 & & ANA & A & TEST \\
\hline 2DCO & C2 & & JNZ & LOOP & \\
\hline 20Cl & 59 & & & & \\
\hline \(20 C 2\) & 20 & & & & \\
\hline 2 CC 3 & C9 & & \[
\begin{aligned}
& \text { RET } \\
& \text { END }
\end{aligned}
\] & & GO BACK TO BASIC PROGRAM IF ZERO \\
\hline
\end{tabular}

\title{
Teach KIM to Sing
}

\author{
Peter H Myers
}

Consider playing musical compositions on a KIM-1 MOS Technology microcomputer module. Although music is one of the most highly developed languages of man, it is possible within a few hours for your KIM-1 system to be educated to speak this language and to create computerized musical sounds. Furthermore, the total cost for enhancing your system to express music is minimal. It is likely that you have everything you need already.

Music essentially consists of a waveform expressed repetitively at some frequency and persisting for a particular time duration. The acoustical characteristics of an instrument greatly affect the ear's perception of the musical composition being played upon it. The basic waveform is modified by the instrument by means of phase shifting, and the production of various simple and complex harmonics which may vary greatly in amplitude.

Now consider a square wave form, an expression of only two amplitudes. The 18th century French mathematician, Joseph Fourier, discovered that the square wave is actually comprised of odd numbered harmonics of the fundamental frequency plus the fundamental frequency itself (all expressed as sine waves)

This is the same thing as saying that a square wave form is harmonically rich. This is fortunate from the point of view of this application, because it allows us to use a very simple program to have a microprocessor system generate just such a harmonically rich fundamental wave form to express any musical note. All that must be known is the note's pitch (or frequency) and duration.

\section*{Program Description}

A program using this technique, written for the KIM- 1 system (which uses the 6502 processor), is shown in listing 1 . The duration of a note and its pitch are stored alternately in memory. This is all the main program needs to play a given piece of music. The duration, when read by the main program from memory, is always stored in the X register. The pitch is stored in the Y register.

When the program begins, the location of the first note's duration is in hexadecimal memory byte 0300 . The next note's duration value is always the next even-numbered memory location (in the latter example, the next note's duration would be at 0302). The values for pitch are stored in the odd-numbered memory locations, beginning at hexadecimal byte 0301 (the next note's pitch value at 0303 , and so on).

The main program starts by initializing the nonmaskable interrupt (NMI) and interrupt request (IRQ) vectors and the input and output ports, clearing the interrupt mask bit, and starting the interval timer. The note duration interrupt system is initialized (more about this later). After this preparation, the program proceeds into the note loop.

The note loop starts by reading the pitch value from memory and loading it into the Y register. The procedure then subtracts 1 from the \(Y\) register. After comparing for detection of a zero in the Y register, the loop jumps back on itself to subtract a 1 again. Thus, every seven machine cycles a 1 is subtracted from the Y register until it becomes equal to zero.

When the Y register is zero, the test
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0200 & A9 & 00 & & LDA & ; SAVE MACHINE & 023 C & 4 C & 23 & 02 & JMP & ; RESTART NOTE. \\
\hline 0202 & 8D & FA & 17 & STA & ; ROUTINE LOC & 023 F & EE & 20 & 02 & INC & ; INCREMENT \\
\hline 0205 & A9 & 1 C & & LDA & ; STORED IN NMI & 0242 & EE & 20 & 02 & INC & ; NEXT NOTE \\
\hline 0207 & 8D & FB & 17 & STA & ; VECTOR. & 0245 & EE & 29 & 02 & INC & ; PITCH, DURATION \\
\hline 020A & A9 & FF & & LDA & ; PADD BITS & 0248 & EE & 29 & 02 & INC & ; POINTERS. \\
\hline 020C & 8D & 01 & 17 & STA & ; INST TO "WRITE". & 024B & EA & & & NOP & ; SPACER. \\
\hline 020F & A9 & 7F & & LDA & ; PBDD BIT 7 & 024 C & \(\lambda 9\) & 65 & & LDA & ; CHANGE \\
\hline 0211 & 8D & 03 & 17 & STA & ; INST INP IRQ. & 024E & 8D & FE & 17 & STA & ; IRQ VECTOR \\
\hline 0214 & A9 & 5F & & LDA & ; INTERRUPT & 0251 & A9 & 02 & & LDA & ; TO NEW \\
\hline 0216 & 8D & FE & 17 & STA & ; VECTOR, IRQ, & 0253 & 8D & FF & 17 & STA & ; SERVICE ROUTINE. \\
\hline 0219 & A9 & 02 & & LDA & ; SERVICE ROUTINE & 0256 & A9 & FF & & LDA & ; START TIMER \\
\hline 021B & 8D & FF & 17 & STA & ; LOC. & 0258 & 8D & OE & 17 & STA & ; 7 / \(64 / 256\). \\
\hline 021 E & 58 & & & CLI & ; ALLOW IRQ. & 025B & 58 & & & CLI & ; ALLOW IRQ. \\
\hline \(021 F\) & AD & 00 & 03 & LDA & ; LOAD DURATION & 025C & 4C & 5B & 02 & JMP & ; DO NOTHING LOOP. \\
\hline 0222 & AA & & & TAX & ; IN X REGISTER. & 025F & 8D & 07 & 17 & STA & ; SHUT OFF IRQ. \\
\hline 0223 & A9 & FF & & LDA & ; START TIMER & 0262 & 4 C & 38 & 02 & JMP & ; SERVICE ROUTINE LOC. \\
\hline 0225 & 8D & OE & 17 & STA & ; \(\mathrm{T}^{\text {/ } 64 / 256 .}\) & 0265 & 8D & 07 & 17 & STA & ; SHUT OFF IRQ. \\
\hline 0228 & AD & 01 & 03 & LDA & ; LOAD PITCH & 0268 & 4 C & 14 & 02 & JMP & ; RESTART PROG. \\
\hline 022B & A8 & & & TAY & ; IN Y REGISTER. & 026B & A9 & 00 & & LDA & ; START PROGRAM \\
\hline 022C & 88 & & & DEY & ; NOTE TIMER & 026D & 8D & 20 & 02 & STA & ; RUN HERE \\
\hline 022D & F0 & 03 & & BEQ & ; LOOP 7 & 0270 & A9 & 03 & & LDA & ;TO RESET \\
\hline 022F & 4 C & 2C & 02 & JMP & ; MACHINE CYCLES. & 0272 & 8D & 21 & 02 & STA & ; MEMORY READ \\
\hline 0232 & EE & 00 & 17 & INC & ; TOGGLE OUTPUT. & 0275 & A9 & 01 & & LDA & ; LOCATIONS \\
\hline 0235 & 4C & 28 & 02 & JMP & ; RESTORE LOOP. & 0277 & 8D & 29 & 02 & STA & ; BACK TO \\
\hline 0238 & CA & & & DEX & ; COUNTDOWN & 027A & A9 & 03 & & LDA & ; 0300-0301 \\
\hline 0239 & F0 & 04 & & BEQ & ; DURATION. & 027C & 8D & 2A & 02 & STA & ; AND BEGIN \\
\hline 023B & 58 & & & CLI & ; ALLOW IRQ. & 027F & 4 C & 00 & 02 & JMP & ; MUSIC. \\
\hline
\end{tabular}

Listing 1. Music playing program for the MOS Technology KIM-1 system, which uses the 6502 processor. The program assumes that data for a particular musical composition has been stored in memory beginning at hexadecimal location 0300.
causes the program to jump out of the loop. Output port pin PA 0 is toggled to change the square wave amplitude of the tone. The program then jumps back to the beginning of the note loop, reloads the pitch value, and the process is repeated. This uninterrupted process produces a square waveform tone which emerges at PA 0 . The pitch value can be calculated for a given frequency by the formula in table 1.

The initialization of the note duration interrupt system proceeded as follows. The duration value is read from memory and loaded into the X register. Also, the interval timer is started and asked to interrupt the main program after 16,384 machine cycles.

While the note loop is generating notes, the interval timer is counting down. When the counter reaches 0 , the timer has timed out. This interrupts the main program by loading
the program counter with the IRQ vector. The IRQ vector is initialized to direct the processor to the interrupt service routine.

The interrupt service routine shuts off the interrupt request flag (IRQ) and subtracts 1 from the duration value in the \(X\) register. The \(X\) register is compared for detection of a zero. If \(X\) is not equal to 0 , the program resets the interrupt mask bit so that interrupts can occur again. Then the routine returns to main program execution, starting the interval timer and falling into the note loop.

Each interrupt is serviced in the same way until the \(X\) register becomes equal to 0 . When this occurs, that interrupt will be recognized as the end of the note. Instead of jumping back to the main program after resetting the mask bit, the interrupt service routine program continues.

The routine proceeds to increment both the \(X\) register loading pointer and the Y register loading pointer by 2 . This automatically gets the next pitch and duration value pair when the main program is run again.

A pause must be inserted at the end of each note to distinguish the duration. This is accomplished by changing the IRQ vector to a different location after an interrupt request.

After this change, the interval timer is started and the program falls into a "do nothing" loop. It will stay in this wait state until an interrupt directs it to a new program location. A special routine beginning at this location will service the interrupt by turning off the \(I R Q\) request and jumping back to the beginning of the main program. The main program will play the next note for the duration requested.

The main program can play a musical composition which is 128 notes in length or less, with the pitch and duration values stored in one relative memory page. Each note will be played in the same manner previously described. The program can be revised to read note specifications to the end of memory, thus giving the capability of playing compositions longer than 128 notes. This was not done in the original program because I wanted the program to loop back and play the composition over and over.

Preparing the Music
A musical score is converted for playing by the computer in a note-by-note process. It is begun by reading each note in a melody, observing the octave it is to be played in, and then finding the corresponding frequency in a table, as may be found in the appendix. The frequency is converted into a one byte pitch value by using the formula in table 1 and then calculating the hexadecimal equivalent.

The duration of the note is calculated as a function of time in seconds by the formula in table 2. Construct a table containing this information for each note in the melodic line. Using monitor commands, store the hexadecimal values for the duration and pitch in sequential memory locations, starting at hexadecimal location 0300. The specifications for the second note will start at 0302 , the third at 0304, and so on.

Whenever an interval of silence is desired, whether at the end of the piece, or embedded within, store a pitch value of 01 hexadecimal. The duration value becomes the desired length of the silent period. The pitch value of 01 produces a note at a frequency of slightly over 24 kHz , which is perceived by the human ear as silence.
\[
\begin{aligned}
P_{n} & =\frac{1}{0.000014\left(f_{n}\right)}-2 \\
f_{n} & =\text { frequency in } \mathrm{Hz} \text { of note } \\
P_{n} & =\text { pitch value of note }
\end{aligned}
\]

Table 1. Formula for calculating the pitch value for a desired note. The result should be rounded to the nearest whole number, and then must be converted from decimal notation to hexadecimal for entry into the computer. The pitch value is the first byte of the note specification pair.
\[
\begin{aligned}
& D_{n}=\frac{t_{n}}{0.016384} \\
& t_{n}=\text { time in seconds of note } \\
& D_{n}=\text { duration value of note }
\end{aligned}
\]

Table 2. Formula for calculating the time duration value of a note. The result must be rounded and converted to hexadecimal. The duration value is the second of the note specification byte pair.
\begin{tabular}{lccc} 
Note & \begin{tabular}{c} 
Frequency \\
\((\mathrm{Hz})\)
\end{tabular} & \multicolumn{2}{c}{ Pitch Value } \\
Decimal
\end{tabular} \begin{tabular}{c} 
Hexadecimal
\end{tabular}

Table 3. One octave table of prepared pitch values, which begin at \(G\) above middle C. The frequencies given for each note are not quite standard, but are close enough for noncritical applications. Also, the frequencies will vary within the clock tolerances for different processors. The user may transpose these pitches down one octave by changing the output port used from PA 0 to PA 1.


A short hexadecimal conversion table for one octave beginning at \(G\) above middle \(C\) appears in table 3. Table 4 contains a suggested set of duration values. The duration values given are appropriate for a tempo of about 120 quarter notes per minute, which usually works out to a moderately fast march tempo.
\begin{tabular}{lllllllll}
0300 & 10 & 87 & 10 & 87 & 20 & 87 & 20 & \(B 4\) \\
0308 & 10 & \(6 A\) & 10 & \(6 A\) & 20 & \(6 A\) & 20 & 87 \\
0310 & 10 & 87 & 10 & \(6 A\) & 20 & 59 & 20 & 59 \\
0318 & 10 & 64 & 10 & \(6 A\) & 43 & 78 & 10 & 78 \\
0320 & 10 & \(6 A\) & 20 & 64 & 20 & 64 & 10 & \(6 A\) \\
0328 & 10 & 78 & 20 & \(6 A\) & 20 & 87 & 10 & 87 \\
0330 & 10 & \(6 A\) & 20 & 78 & 20 & 84 & 10 & \(8 F\) \\
0338 & 10 & 78 & 43 & 87 & 10 & 87 & 10 & 87 \\
0340 & 20 & 87 & 20 & 84 & 10 & \(6 A\) & 10 & \(6 A\) \\
0348 & 20 & \(6 A\) & 20 & 87 & 10 & 87 & 10 & \(6 A\) \\
0350 & 20 & 59 & 20 & 59 & 10 & 64 & 10 & \(6 A\) \\
0358 & 43 & 78 & 10 & 78 & 10 & \(6 A\) & 20 & 64 \\
0360 & 20 & 64 & 10 & \(6 A\) & 10 & 78 & 20 & \(6 A\) \\
0368 & 20 & 87 & 10 & 87 & 10 & \(6 A\) & 20 & 78 \\
0370 & 20 & \(B 4\) & 10 & \(8 F\) & 10 & 78 & 43 & 87 \\
0378 & \(F F\) & 01 & \(F F\) & 01 & 01 & 01 & 01 & 01
\end{tabular}

Listing 2. Melodic data for use by the music playing program. This was prepared from a musical score by the procedure given in the text. The tune is the American traditional song, My Darling Clementine. The pairs of digits represent the contents of one byte of memory. The user should place this data in programmable memory by monitor commands. The first byte specifies the time duration of the first note; the second byte specifies the pitch of the first note. The third byte gives the duration of the second note; the fourth byte, the second pitch, and so on.

The lowest pitch which may be obtained using the output port configuration described is the \(C\) sharp just above middle \(C\). To obtain lower pitches, change the output port used from PA 0 to PA 1. This causes all notes to be transposed down one octave.

To prepare the hardware for music making, you should connect a jumper wire from the interval timer interrupt output to the interrupt request (IRQ) pin. Normal output is taken from PA 0 and referenced to ground. The interval timer is found at connector \(A\) pin 15 , and IRQ at connector \(E\) pin 4. The output PA 0 comes from connector A pin 14. PA 1 may be found at connector A pin 4.

The audio signal present at the output port may be monitored using a number of methods. You can listen to it directly with high impedance earphones. One of the best ways is to connect the output into the auxiliary input jack of a tape recorder and use the tape monitor audio amplifier for output.

Also, since the output voltage is 1.4 V peak-to-peak, it is quite easy to use a stereo amplifier's high level input jack and play it through a stereo system.

Editor's note: When playing the output of the KIM-1 system through a high fidelity music system, the user should take care not to overtax the speaker systems by playing at high volume. The complex waveforms generated by the computer contain much more energy at high frequencies (above 10,000 Hz ) than is contained by conventional music. As a consequence, the tweeter sections of speaker systems may burn out if they are made to reproduce these waveforms at high volumes . . . . RSS

It is interesting to note that the harmonics of the tones are so rich that an FM radio, when held close by the KIM-1 board, will play the tones as audio because it receives them as radio frequencies. This is, however, not the ideal system for monitoring the tones, mainly because non-musical harmonics often become louder than the desired musical notes.

For a demonstration piece I have selected an old time favorite tune. The note specifications of the melody are given as listing 2, and should be programmed into memory as listed.

Provided you have made the hardware changes needed, have a working audio monitor, and have entered listings 1 and 2 into memory properly, you are ready for the KIM to play its first musical piece. Start the execution of the program at hexadecimal memory location 026B. Reset the system by depressing the RS key, and then depressing GO.

The program will repeat the tune indefinitely, but may be stopped by depressing the ST key. Always start the program at location 026B. This will initialize the \(X\) and \(Y\) register pointers for starting at the beginning of the composition. After this subroutine has finished, control is transferred to the main program.

So it can be done. Music is being played on your KIM-1 system with a minimum of hardware. This system is now expressing a high level language that can be interpreted by all.

May you enjoy many hours of music lessons with KIM.

\title{
A Terrain Reader
}

\author{
Richard Gold
}

\section*{Introduction}

The program described here was written for use in a piece of musical theater called "Fictional Travels in a Mythical Land", which was performed at the Center for Contemporary Music of Mills College, at Oak land CA in December 1977. While the sounds that the program generated did not sound like traditional music, they worked well within the production for two reasons: they provided an interesting sonic backdrop during a long scene where a mime performed, and secondly, the method by which the program generated the sounds was conceptually related to what was transpiring on stage. Before I talk about the program itself, which was written for the KIM-1 (a 6502 microprocessor based computer), I am going to discuss "new" or avante-garde music itself and talk about some of the issues that are involved in this art form.

\section*{A Brief History of New Music}

In the early part of the 20th century, composers such as Shönberg, Webern and Berg began working with serial or twelvetone music. Their compositions used the principle that no note could be played a second time before the other eleven notes of the scale were sounded. Once the original sequential order of the notes was given, that order would be maintained throughout the piece. This sequence came to be known as the tone row. The twelve-tone row is not a theme, per se, but rather a musical "idea" that permeates the composition. The music produced in this way sounded rather dry. However, the aspect relevant here was the introduction of a new way of thinking about music, a way that leads directly to much of the computer music produced today.

Twelve-tone composers began to think of sound in terms of numeric parameters. The serial techniques relied on reducing pitches to a series of numbers. It was not a great leap to the representation of durations, timbres and dynamics in the same manner.

Sound, which had been thought of as a unified harmonic structure, was broken down into a collection of component parts. Composers began to study textbooks on calculation and derivation instead of harmony and counterpoint.

It was this fascination with mathematical processes for composing pieces of music, instead of using themes, melodies and motives, that formed the seed of a second powerful idea: music could be a realization of a concept or idea, and that concept could be as important as the sounds produced. The interplay between the concept and the sonic reality provides the excitement and fun of such compositions.

Composer John Cage brought conceptual or new music to wide attention. He performed or realized pieces based on random throws of dice, choices from the / Ching, overlays of transparent sheets, and the sounds produced by phono cartridges scraping over everything but records. John Cage said that he "liberated sound", by which he meant that any sound could be used in a piece of music, not just sounds that came from traditional instruments and not just pretty sounds. The artistic criterion is that the sounds must be true to the composer's conception of the piece.

The parameterization of sound, "concept" music, and the liberation of sound were all involved in the development and use of the analog modular voltage-controlled synthesizer, a remarkable device in which these three ideas were combined. The synthesizer parameterized sound; the pitch was gener-

ated by the oscillator, the dynamic volume was produced by the amplifier, and the timbre was formed by ring modulators and filters. Furthermore, each of these functions was controlled by an array of devices such as sequencers, random voltage generators, pulse generators, envelope generators, and touch pads. These control devices took the place of the mathematical charts of the serial composers.

Concept music was a natural application for the synthesizer, particularly for concepts involving the expanding subject of cybernetics. Positive and negative feedback, open and closed loops, control lines, propagation delay, stability, and response time became common words in the early electronic studios. With the synthesizer not only was it possible to produce music, but (since the synthesizer is an analog computer) it was now possible to model all sorts of things from the real world, from population booms to planetary motion, and to have the synthesizer directly respond to the environment, and vice versa.

The analog synthesizer created a new palette of aural colors to work with. While the early promises of being able to generate any sound turned out to be fallacious, users
of the synthesizer are still concocting sonic surprises, sounds and patterns that were never even dreamt of.

These new musical ideas and new instruments resulted in a music that is, in some ways, more estranged from mainstream Western music than Tibetan music is from bluegrass. Not only were the sounds liberated, but the entire structure was radically altered. A given composition might divide an octave into three steps or a thousand; it might be highly rhythmic or the notes might fall randomly; some of the sounds might be simpler than those produced by a flute, while others might be so complex that one would be hard pressed to say it had a pitch at all.

The analog synthesizer has been used for all varieties of music from rock and roll to Bach. Microprocessors, however, were not designed with any kind of musical usage in mind. That they can be used to produce music is, of course, much more than simply fortuitous.

Microprocessors are some of the most general purpose devices ever designed. It is quite conceivable that they can produce sounds never before heard or imagined. Certainly they will be able to realize concepts that even the synthesizer cannot touch.

Most of the literature available dealing with this subject shows the processors used in conservative ways. The computer is used to emulate such things as pianos, organs and even analog synthesizers. Very few authors deal with the ways that processors can be used to realize concepts. Even fewer deal with unusual sounds and structures. In an attempt to do both, I present the following program.

\section*{The Terrain Reader Conceptual Scheme}

I began with one large conception and a number of smaller ones. My overall plan was to try to incorporate as many of the small conceptions as I could, while realizing the large one. I shall first explain the main idea and then go through the smaller ones before I proceed to explain the program itself.

The idea for the Terrain Reader came from a concept developed by my fellow composer Randy Cohen a number of years ago. The concept contains a three dimensional surface, or terrain, with coordinates given in an \(\mathbf{X}, \mathrm{Y}, \mathbf{Z}\) axis system. For this application, the depth axis \(Z\) is treated as a function of \(X\) and \(Y\). The value of \(Z\) varies in a topographical fashion as an observer travels across the terrain. Refer to figure 1 for a two dimensional representation or map of the terrain.

For the purposes of the program, we as-
sume that a "traveler" is moving across the surface of the terrain. We describe its position on the map in terms of \(X\) and \(Y\) coordinates. As the traveler moves across the surface, the value of the \(\mathbf{Z}\) or depth coordinate varies continuously according to the "lay of the land."

We employ a digital to analog converter to transform this change in \(\mathbf{Z}\) to a change in an electrical voltage \(\mathbf{V}\). If the traveler is moving over the terrain at a sufficient rate, we can use the voltage to produce sound by having it drive a speaker. That is the basic idea of the Terrain Reader.

It should be clear that for audible sound to be produced in this manner, the traveler has to climb up a hill and move back down into a valley between a minimum of 20 times per second and a maximum of 20,000 times per second (refer to figure 2). Further, if the traveler is just taking a random walk, nothing is produced but white noise. The traveler's path must be fairly periodic. Given periodicity, certain interesting consequences result. The time it takes to make one circuit of the path determines the base frequency of the sound, while the hills and valleys of the land determine the timbre.

The secondary criteria for the program were as follows: first, I wanted to implement the program in the 1 K memory of my KIM-1, with nothing more than a digital to analog converter between the computer and the amplifier. Secondly, I wanted the sound output to be fairly rhythmic and to sound like music from a "fictional" culture, music that a group of people could have come up with, but didn't.

Also, the music had to be repetitious enough so I could play another instrument along with it, and yet varying enough to maintain interest. I wanted the changes to sound intelligent, and yet I wanted the process to be automatic enough so I wouldn't have to type in new numbers for every change.

Lastly, I wanted a wide range of timbres. No attempt was made to produce every possible timbre or every pitch from 20 to 20,000 Hertz. I was looking not for the perfect, general music program, but for the realization of the Terrain Traveler.

\section*{Program Description}

The assembler format code of the program is shown in listing 1. Page three of computer memory contains the surface or land represented as a 16 by 16 matrix; the main program and variables are contained in page 0 . The subroutines are in pages 0,1 and 2. The GETKY subroutine is used to access the KIM-1 keyboard. That subroutine is contained in the KIM monitor at hexadecimal location 1F6A. The GETKY routine scans the keyboard and returns the value found there to the accumulator. If nothing is found, GETKY returns a hexadecimal value of 15 .

The method used to move the traveler about the surface is conceptually similar to the method by which Lissajous figures are produced on oscilloscopes. Lissajous figures are seemingly three dimensional images created by interaction between two different input signals on an oscilloscope, one on the \(x\)-axis and one on the \(y\)-axis (see figure 3).

Figure 2: (a) Experimental section of the terrain showing a circular traveler path. (b) A graph of the traveler's altitude as it moves across the surface. Continuous motion in this circular path gives a regular waveform (c) whose frequency depends on the speed of the traveler. The frequency may be doubled (d) by making the traveler move faster. In this application, the traveler should move fast enough that the frequency generated is in the audio region.

(a) \(=\)




Figure 3: Circular Lissajou patterns are formed on the screen of an oscilloscope when two sine waves of equal frequency and amplitude, but 90 degrees out of phase, control the X and Y axes. Different patterns may be formed by varying amplitude, frequency, and relative phase of the input signals.


Figure 4: Diagram showing the region in which two up/down counters may control the movement of the traveler. The up/down counter counts from a minimum value to a maximum value in increments of 1 . When it reaches this maximum value, it reverses and decrements by 1 until the lowest value is reached once more. In this way, the two up/down counters approximate Lissajou figure type paths for the traveler by acting as software oscillators.

In the program, there are two up/down counters, one for the \(x\)-axis and one for the \(y\)-axis, which act essentially as triangle wave oscillators, these are used as indices for addressing the matrix (observe figure 4). The maximum and minimum points of both counters are alterable. It is by changing these end points that different sounds are generated.

As seen in figure 5, if the range of both counters is the same (for instance counting up and down between 4 and 9), then a straight diagonal path across the terrain will be generated. If, however, the values counted are not in such a simple relationship, the resulting path is much more complicated. Several such patterns are shown in figure 6. It should be noted that it is the relationship in magnitude between the end points, and not the specific end points that determines the patterns.

The majority of the execution time of the program is spent in the first part of the program. The second part of the program executes in the interval between notes. The first part of the program generates the sound, and the second part alters the variables to produce different paths over the surface. It is during the second part of the program that the keyboard is scanned and new information entered into the program.

The output of the program is sent to a latched output port at hexadecimal address 1700 (direction register 1701 is set to hexadecimal FF), which is attached to a digital to analog converter as shown in figure 7. The digital to analog converter from Hal Chamberlain's \(A\) Sampling of Techniques for Computer Performance of Music, page 47, is inexpensive and works quite well for this application. I have not included a filter circuit. Users who wish greater filtering versatility than that provided by amplifier tone controls may wish to add appropriate circuitry.

\section*{Program Flow}

The program begins by updating both up/ down counters, checking to see if they have hit the top or the bottom of their count, and reversing their directions if they have. Using the values of the two counters, the program next loads the proper value from the terrain matrix. This is done by simply shifting the \(Y\) counter left four times, adding it to the \(X\) counter, and storing the result in the \(Y\) index register. An absolute Y indexed fetch is executed and the retrieved value is sent to the output port.

After returning from the OUTPUT subroutine, the program jumps to the CLOCK subroutine. There it updates a counter and compares the new value with the value of


Figure 5: Straight line path produced by the two up/down counters operating over the same magnitude between minimum and maximum values (or limits).


Figure 6: Various patterns obtained by varying the limits and phase of the up/down counters.


DONE. If the counter does not equal DONE, the flow loops to the top of the program. If, however, the counter value does equal the value of DONE, flow drops through to the second part of the program. Here new values for the variables are computed and new information from the keyboard taken in.

Figure 8 shows the four up counters that determine the values for the end points of the two up/down counters. One of the up counters determines the value for each of the four end points. The MUSIC subroutine updates the four up counters and assigns their values to the four end points, which are labeled BOTX, TOPX, BOTY and TOPY.

The end points of BOTX's up counter are labeled X1 and X2, while TOPX's points are \(X 3\) and \(X 4\). The end points of BOTY and TOPY are labeled Y1, Y2, Y3 and Y4. When new values are typed in via the keyboard, or when the program is in its automatic mode, it is these eight values, X 1 thru Y 4 that are altered.

The program next checks to see which mode it is in, automatic or manual. If in manual mode, program execution proceeds to the next process. if the status check reveals the automatic mode, the program jumps into subroutine AUTO.

If the program changes one of the end point values every time AUTO is called, the music changes too rapidly and tends to sound random. So the AUTO subroutine first checks to see that a sufficient amount of time has elapsed. If it has not, COUNT is decremented and control is returned to the main routine. If, however, COUNT equals 0 , the subroutine AUTO alters an end point of one of the up counters. The pointer INDX (which is subsequently incremented) determines which end point to alter. The value inserted into the list of endpoints is derived from the value being output at the time. Finally, AUTO resets COUNT and returns control to the main section of the program.

The program next checks to see if the


Figure 8: Changing the path of the traveler. The instantaneous values of the two up/down counters determine a single point a. The altitude value stored in the matrix determines the output voltage. The limits of the up/down counters are determined by four up counters. The counting limits of the up counters are determined either by keyboard input or by the AUTO subroutine.


Figure 9: Contour map of the hypothetical land used in the program (for which the numeric values appear in listing 2). Each contour line represents a difference of hexadecimal 20. Both smooth plains and mountainous regions are found in this terrain.

TMCHK flag is set. The setting of this flag, which is done by pressing the PC key, indicates that the next numeric key pressed on the keyboard should be used to set the general tempo of the music. If the flag has not been set, program execution proceeds to subroutine KEYBOARD. If the flag is set, the program branches to the subroutine TEMPO.

TEMPO checks to see if any keys are being pressed on the keyboard. If so, the corresponding value is inserted into the location called RATE. RATE determines the general tempo at which the program progresses from note to note. Control is then returned to the main program, which jumps to the subroutine KEYBOARD.

Subroutine KEYBOARD begins by checking to see if a key is being depressed on the keyboard. If so, it inserts the corresponding value into the proper location. Thereafter it proceeds to set the proper flags, including the BOUNCE flag, which insures that a key is looked at only once and scanning for additional user input occurs.

The keyboard may be used to enter new values into the end points of the up counters. This is accomplished by a procedure similar to that used by the subroutine AUTO, except that the values inserted come from the keyboard and not the terrain matrix. The first number entered via the keyboard is inserted into the first end point (X1), the second into X 2 , and so on through Y 4 , then back to X 1 with INDX keeping track.

\section*{Keyboard Operation}

In addition to accepting values of the end points for the up counters, the keyboard serves a few other functions. One is the selection between two available voices, which are represented by separate lists of values. One voice is selected by pressing the AD key, the other by the DA key. In this way two different patterns can be stored and selected at the touch of a switch. These voices can have different tempi, and can be either automatic mode or manual.

To set a voice to automatic, the plus ( + ) key is pressed; the voice that is presently operative is thus set to automatic. To take that voice out of automatic, the corresponding voice key is hit. This procedure allows human controlled repetition of a pleasing pattern discovered by the computer operating in the automatic mode. The pattern will then repeat until the operator intervenes.

Observe that operating the PC key causes the TMCHK flag to be set, which in turn causes the next value depressed on the keyboard to be placed in the RATE variable. In this way, the general tempo of the program may be speeded up or slowed down.

\section*{Housekeeping and Details}

Because of the time constraints of real time music, it is impossible for the program to be constantly scanning the keyboard. In fact, the keyboard may be scanned only between the notes. This makes it difficult to take care of such housecleaning activities as debouncing the keys, ie: checking to see that a single depressed key isn't looked at twice.

To handle these problems, the program uses the BOUNCE flag. This flag is set when the program first accepts input from the keyboard. The program will not accept another key input until BOUNCE is turned off once again. BOUNCE is reset whenever the subroutine KEYBOARD checks the keyboard and finds no key depressed. This method entails a few inconveniences: for a key input to be accepted, the key must be depressed while a note is changing to another note. Secondly, at least one note change must go by with no key depressed
before another key input can be entered.
The last subroutine the program executes before returning to the top of the program is SETTIME. This section of code sets the duration of the next note. As in the AUTO subroutine, this value is derived from the value it finds at the output port. Since there are 256 different durations possible, the resultant music is slightly less rhythmic than may be desired, though I personally like the slight shimmering quality this gives the music.

The program is almost entirely written in subroutines. This modularity makes it easy to alter and add new ideas and concepts. It is of course very easy to change the "land" and explore the sounds of other surfaces. One interesting program alteration 1 have been working with is a way to change the values of the surface as the program progresses. I have included the coding for one such method at the end. Interested readers can develop other methods.

Listing 1: Machine code listing in hexadecimal of the Terrain Readerprogram, accompanied by a pseudo-assembly language mnemonic code. It is designed to run in a KIM-1 micro-computer in 1 K bytes of memory. It can be adapted to other 6502-based computers. To use this program on a different system, the KEYBOARD and TEMPO input subroutines have to be altered and the OUTPUT subroutine changed.

\begin{tabular}{lll} 
00C9 & 08 & X2 \\
00CA & \(0 A\) & \(\times 3\) \\
00CB & \(0 F\) & X4 \\
00CC & 01 & Y1 \\
00CD & \(0 A\) & Y2 \\
00CE & \(0 B\) & Y3 \\
00CF & \(0 F\) & Y4 \\
00D2 & 02 & DIM \\
00D3 & 01 & SLPD \\
00D4 & 02 & BOTD \\
00D5 & \(0 A\) & TOPD \\
00D6 & 01 & DIM \\
00D7 & 01 & SLPD \\
00D8 & 01 & BOTD \\
00D9 & \(0 B\) & TOPD \\
00DA & 00 & AUTOCH \\
00DB & 00 & TMCHK \\
00DC & 06 & RATE
\end{tabular}
;PROGRAM VARIABLES
OOE2 AF AORB
\begin{tabular}{lll} 
O0E3 & FF & CLK1 \\
O0E4 & FF & CLK2 \\
O0E5 & 80 & DONE \\
00E6 & 00 & BOUNCE \\
00E7 & 00 & TEMP \\
00E8 & 00 & INDX \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ;MAIN & OGRAM & & & & - \\
\hline 0000 & A90A & MAIN & LDA & \#\$0A & ;SET FOR X OSC \\
\hline 0002 & 18 & & CLC & & \\
\hline 0003 & 65 E 2 & & ADC & AORB & SET PROPER VOICE \\
\hline 0005 & AA & & TAX & & SET X INDEX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0006 & 202300 & & JSR & OSC & \multirow[t]{2}{*}{;UPDATE X AXIS ;SET FOR Y OSC} \\
\hline 0009 & A90E & & LDA & \#\$0E & \\
\hline 000B & 18 & & CLC & & \\
\hline 000C & 65E2 & & ADC & AORB & ;SET PROPER VOICE \\
\hline 000E & AA & & TAX & & ;SET X INDEX \\
\hline 000F & 202300 & & JSR & OSC & ;UPDATE Y AXIS \\
\hline 0012 & A6E2 & & LDX & AORB & SET X INDEX \\
\hline 0014 & 205500 & & JSR & OUTPUT & ;OUTPUT VALUE TO D/A \\
\hline 0017 & 206C00 & & JSR & CLOCK & ;UPDATE CLOCK AND \\
\hline 001A & 4C0000 & & JMP & \#0000 & \[
\begin{aligned}
& \text { NEW VALUES } \\
& \text { :LOOP TO TOP OF } \\
& \text { PROGRAM }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{;UPDATES THE UP DOWN COUNTERS} \\
\hline 0023 & B500 & OSC & LDA & DIM, X & ;GET VALUE OF COUNTER \\
\hline 0025 & 18 & & CLC & & \\
\hline 0026 & 7501 & & ADC & SLPD, X & ;UPDATE COUNTER \\
\hline 0028 & 9500 & & STA & DIM, X & STORE NEW VALUE OF COUNTER \\
\hline 002A & D502 & & CMP & BOTD,X & ;VALUE HIT BOTTOM? \\
\hline 002C & FOOD & & BEQ & UPD & ;YES. CHANGE TO COUNT UP \\
\hline 002 E & D503 & & CMP & TOPD, X & ;VALUE HIT TOP? \\
\hline 0030 & FOOE & & BEQ & & ;YES. CHANGE TO COUNT DOWN \\
\hline 0032 & C910 & & CMP & \#\$10 & ;VALUE GONE OFF \\
\hline 0034 & FOOF & & BEQ & ZERO & ;WRAP-AROUND \\
\hline 0036 & C9FF & & CMP & \#\$FF & BOTTOM IF YES
;VALUE GONE OFF \\
\hline & & & & & BOTTOM OF LAND? \\
\hline 0038 & F010 & & BEQ & ARND & ;YES. WRAP-AROUND TOP OF LAND. \\
\hline 003A & 60 & & RTS & & ;EVERYTHING OK. RETURN \\
\hline 003B & A901 & UPD & LDA & \#\$01 & ;01 COUNTS UP \\
\hline 003D & 9501 & & STA & SLPD, X & ;PUT IT IN SLPD \\
\hline 003F & 60 & & RTS & & ;RETURN \\
\hline 0040 & A9FF & DWND & LDA & \#\$FF & ;FF COUNTS DOWN \\
\hline 0042 & 9501 & & STA & SLPD, X & ;PUT IN SLPD \\
\hline 0044 & 60 & RTS & & & ;RETURN \\
\hline 0045 & A9FF & ZERO & LDA & \#\$FF & ;FF IS BOTTOM OR LEFT OF LAND \\
\hline 0047 & 9500 & & STA & DIM, X & ;PUT IN COUNTER \\
\hline 0049 & & & RTS & & ;RETURN \\
\hline 004A & A910 & ARND & LDA & \#\$10 & ;10 IS TOP OR RIGHT OF LAND \\
\hline 004C & 9500 & & STA & DIM, X & ;PUT IN COUNTER \\
\hline 004E & 60 & & RTS & & ;RETURN \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
;SUBROUTINE OUTPUT \\
-OUTPUTS VALUE TO OUTPUT PORT
\end{tabular}}} \\
\hline ;OUT & & & & & \\
\hline 0055 & B50E & OUTPUT & LDA & DIM, \({ }^{\text {P }}\) & ;GET Y AXIS COUNTER \\
\hline 0057 & OA & & ASL & & ;SHIFT OVER 4 TIMES \\
\hline 0058 & OA & & ASL & & ;THAT IS, MULTIPLY BY 16 \\
\hline 0059 & OA & & ASL & & \\
\hline 005A & OA & & ASL & & \\
\hline 005B & 18 & & CLC & & \\
\hline 005C & 750A & & ADC & DIM.X & ;ADD X AXIS COUNTER \\
\hline 005E & A8 & & TAY & & ;PUT SUM IN Y INDEX \\
\hline 005F & B90003 & & LDA & LAND, Y & ;GET VALUE FROM LAND (PAGE 3 OF MEMORY \\
\hline 0062 & 8D0017 & & STA & \$1700 & SEND VALUE TO OUTPUT PORT \\
\hline 0065 & 60 & & RTS & & ;RETURN \\
\hline
\end{tabular}
;SUBROUTINE CLOCK
;CHECKS TO SEE IF CLOCK HAS RUN DOWN AND IF IT HAS,

\begin{tabular}{|c|c|c|c|c|c|}
\hline 007B & C5E5 & & CMP & DONE & ;DOES CLOCK TWO EQUAL DONE? \\
\hline 007D & F001 & & BEQ & MSC & ;YES, SET NEW VARIABLES \\
\hline 007F & 60 & & RTS & & ;NO. RETURN TO SOUND MAKING \\
\hline 0080 & 200002 & MSC & JSR & music & ;CHANGE UP/DOWN END POINTS \\
\hline 0083 & A900 & & LDA & \#00 & ;CLEAR ACCUM. \\
\hline 0085 & D512 & & CMP & AUTOCHK,X & :AUTO MODE? \\
\hline \[
\begin{aligned}
& 0087 \\
& 0089
\end{aligned}
\] & \[
\begin{aligned}
& \text { F003 } \\
& 200001
\end{aligned}
\] & & \[
\begin{aligned}
& \text { BEO } \\
& \text { JSR }
\end{aligned}
\] & TME AUTO & ;NO. SKP AUTO SUB. ;YES. AUTO UPDATE \\
\hline 008C & A900 & TME & LDA & \#00 & UP END POINTS ;CLEAR ACCUMULATOR. \\
\hline 008E & D513 & & CMP & TMCHK,X & ;WAITING FOR TEMPO CHANGE? \\
\hline \[
\begin{aligned}
& 0090 \\
& 0092
\end{aligned}
\] & \[
\begin{aligned}
& \text { F003 } \\
& 20 \mathrm{D} 702
\end{aligned}
\] & & \[
\begin{aligned}
& \text { BEQ } \\
& \text { JSR }
\end{aligned}
\] & KEYB TEMPO & ;NO. SKIP TEMPO ;YES. CHECK KEY. BOARD FOR NEW VALUE \\
\hline 0095 & 204702 & KEYB & JSR & KEYBOAR & ;CHECK KEYBOARD FOR NEW VALUES \\
\hline 0098 & \(20 \mathrm{C102}\) & & JSR & SETtime & ;SET TIME FOR NEXT \\
\hline 009B & 60 & & RTS & & ;BACK TO MAIN FLOW \\
\hline
\end{tabular}
;SUBROUTINE MUSIC. CHANGES UP/DOWN COUNTER'S END POINTS


\begin{tabular}{|c|c|c|c|c|c|}
\hline 02AF & F003 & & BEQ & CORRR & ;YES. GO TO CORRR TO RESET \\
\hline 0281
0283 & E6E6 & & INC & BOUNCE & ;SET BOUNCE \\
\hline 0283 & \({ }^{60} 900\) & CORRR & RTS & & ;RETURN \\
\hline 0286 & A900 & CORRR & LDA & \#\$00 & CLEAR ACCUM \\
\hline 0288 & 85 E8 & & STA & INDX & ;RESET INDX \\
\hline \[
\begin{aligned}
& \text { 02B8 } \\
& 02 B A
\end{aligned}
\] & \[
\begin{aligned}
& \text { E6E6 } \\
& 60
\end{aligned}
\] & & INC & BOUNCE & ;SET BOUNCE ;RETURN \\
\hline
\end{tabular}
;SUBROUTINE SETTIME. SETS DURATION OF NEXT NOTE AND RESETS CLOCKS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 02 Cl & AD0017 & settime & LDA & \$1700 & ;GET WHATEVER IS IN OUTPUT PORT \\
\hline \(02 \mathrm{C4}\) & 2A & & ROL & & ;MIX IT UP . . \\
\hline \(02 \mathrm{C5}\) & 2A & & ROL & & \\
\hline \(02 \mathrm{C6}\) & 2A & & ROL & & \\
\hline \(02 \mathrm{C7}\) & 2A & & ROL & & \\
\hline 02C8 & 85E5 & & STA & DONE & ;PUT VALUE IN DONE \\
\hline 02CA & A900 & & LDA & \#\$00 & ;CLEAR ACCUM \\
\hline 02CC & 85 E 3 & & STA & CLK1 & ;RESET CLK1 \\
\hline O2CE & 85 E4 & & STA & CLK2 & ;RESET CLK2 \\
\hline 02DO & 60 & & RTS & & ;RETURN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text {;SUBR } \\
& 02 D 7
\end{aligned}
\] & TINE T & PO. GETS TEMPO & \[
\begin{aligned}
& \text { V VALI } \\
& \text { LDA }
\end{aligned}
\] & ROM KEYB & ARD AND SETS TEMPO CLEAR ACCUM \\
\hline 02D9 & C5E6 & & CMP & BOUNCE & ;is BOUNCE SET? \\
\hline 02DB & F001 & & BEO & CONT & ; NO . GO TO CONT. \\
\hline 02DD & 60 & & RTS & & ;YES. RETURN \\
\hline 02DE & 206A1F & CONT & JSR & GETKY & ;GO SEE WHAT'S ON \\
\hline & & & & & THE KEYBOARD \\
\hline \(02 \mathrm{E1}\) & A6E2 & & LDX & AORB & ;PUT VOICE INFO \\
\hline 02E3 & C915 & & & & INTO X REG \\
\hline 02E3 & & & CMP & \#\$15 & ;WAS THERE NOTHING \\
\hline 02E5 & F008 & & BEQ & RETURN & ;YES. RETURN \\
\hline \(02 \mathrm{E7}\) & 9514 & & STA & RATE, X & ; NO . PUT VALUE INTO \\
\hline & & & & & RATE \\
\hline 02E9 & E6E6 & & INC & BOUNCE & ;SET BOUNCE \\
\hline 02EB & A900 & & LDA & \#\$00 & ;CLEAR ACCUM \\
\hline 02ED & 9513 & & STA & TMCHK, X & ;RESET TMCHK \\
\hline 02EF & 60 & & RTS & & ;RETURN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & POINTS & TOMATIC & \\
\hline 0100 & A5E9 & AUTO & LDA & COUNT & ;GET TIMER \\
\hline 0102 & F003 & & BEQ & ATUO & ;IF EQUAL ZERO GO ATUA \\
\hline 0104 & C6E9 & & DEC & COUNT & ;OTHERWISE, SUB- \\
\hline 0106 & 60 & & RTS & & ;AND RETURN \\
\hline 0107 & 8A & AUTO & TXA & & ;PUT VOICE INFO IN \\
\hline & & & & & ACCUM \\
\hline 0108 & 18 & & CLC & & CCLEAR CARRY \\
\hline 0109 & \(65 E 8\) & & ADC & INDX & ;ADD INDX TO GET PROPER VARIABLE \\
\hline 010B & A8 & & TAY & & ;PUT IN Y REG \\
\hline 010C & AD0017 & & LDA & \$1700 & ;GET WHATEVER IS IN OUTPUT PORT \\
\hline 010F & 290F & & AND & \#\$OF & :MASK IT \\
\hline 0111 & 990000 & & STA & X1, Y & ;AND STORE REMAIN DER IN VARIABLE \\
\hline 0114 & E6E8 & & INC & INDX & ;INCREMENT INDX \\
\hline 0116 & A908 & & LDA & & ;SET ACCUM TO 08 \\
\hline 0118 & C5E8 & & CMP & INDX & ;DOES INDX EQUAL \\
\hline 011A & F005 & & BEQ & CORRRR & ;YES. GO TO CORRRR \\
\hline 011C & E6E6 & & INC & BOUNCE & ;NO. INC BOUNCE \\
\hline 011 E & 4C2701 & & JMP & CONNT & ;AND GO TO CONNT \\
\hline 0121 & A900 & CORRRR & LDA & \#\$00 & ;CLEAR ACCUM. \\
\hline 0123 & 85E8 & & STA & INDX & ;CLEAR INDX \\
\hline 0125 & E6E6 & & INC B & CE & SET BOUNCE \\
\hline 0127 & AD0017 & CONNT & LDA & \$1700 & ;GET WHATEVER IS IN \\
\hline 012A & 29FF & & AND & \$FO & ;MASK \\
\hline 012 C & EA & & NOP & & ;IF A FASTER CHANG ING PROGRAM \\
\hline 012D & EA & & NOP & & ;DESIRED, CHANGE \\
\hline 012 E & EA & & NOP & & \\
\hline 012 F & EA & & NOP & & \\
\hline 0130 & 85E9 & & STA & COUNT & ;PUT IN COUNT \\
\hline 0132 & 60 & & RTS & & ;RETURN \\
\hline
\end{tabular}

\section*{;ONE WAY TO CHANGE LAND DURING PROGRAM IS THE FOLLOWING:}
\begin{tabular}{|c|c|c|c|c|}
\hline 0062 & 8 D 0017 & STA & \$1700 & ;OUTPUT NUMBER \\
\hline 0065 & 65BA & ADC & SLPD & ;ADD 01 OR FF \\
\hline 0067 & 990003 & STA & LAND, Y & ;PUT NEW VALUE IN \\
\hline 006A
;ALL & 60 HER COD & RTS HE SA & & ;RETURN \\
\hline
\end{tabular}

Listing 2: Hexadecimal representation for a typical terrain. This data is stored in page three of programmable memory. The leftmost item in a row is the starting address for the loading of the values in that row.
\begin{tabular}{lllllllllllllllll}
\begin{tabular}{l} 
Hexadecimal \\
Address
\end{tabular} \\
0300 & 47 & 62 & 78 & 81 & 86 & 80 & 95 & 94 & 83 & 79 & 70 & \(6 B\) & \(6 A\) & \(4 F\) & \(2 D\) & \(3 E\) \\
0310 & 40 & 52 & 75 & 86 & 91 & 90 & \(9 F\) & A1 & A5 & 96 & 89 & \(8 A\) & \(7 F\) & 70 & 51 & 11 \\
0320 & 41 & 54 & 67 & 73 & 82 & \(9 F\) & AE & AO & B4 & B7 & A8 & 99 & \(8 E\) & \(7 B\) & 52 & 26 \\
0330 & 33 & 58 & \(6 C\) & 57 & 78 & 99 & BD & B2 & C3 & D8 & C7 & A8 & 94 & \(5 C\) & 43 & 35 \\
0340 & 39 & \(5 B\) & 69 & 76 & 80 & 98 & \(9 C\) & B9 & BA & E9 & E4 & C6 & 95 & \(5 D\) & 47 & 44 \\
0350 & \(3 A\) & \(4 E\) & 54 & 75 & 84 & 98 & \(8 B\) & \(9 A\) & B2 & E2 & F5 & E7 & A2 & 91 & \(7 E\) & 78 \\
0360 & 30 & \(4 F\) & 55 & 62 & 73 & 87 & \(6 C\) & \(8 D\) & A1 & DO & E6 & C4 & A3 & AO & \(9 C\) & \(9 D\) \\
0370 & 20 & 37 & 46 & 61 & 66 & 65 & 66 & \(7 D\) & AE & CE & C3 & A2 & 99 & 88 & \(9 F\) & 55 \\
0380 & 19 & 38 & 54 & 43 & 52 & 67 & \(3 D\) & \(6 E\) & \(9 F\) & A9 & A1 & \(9 A\) & 87 & 78 & \(6 A\) & 59 \\
0390 & \(0 A\) & \(3 C\) & \(5 C\) & \(4 B\) & 51 & 58 & \(4 B\) & 91 & 90 & \(7 F\) & \(8 C\) & \(8 D\) & 45 & 66 & \(5 B\) & \(3 C\) \\
\(03 A 0\) & 39 & \(5 E\) & \(3 D\) & \(3 E\) & \(4 F\) & 54 & 83 & 80 & \(7 A\) & \(4 E\) & 78 & 84 & 40 & \(3 F\) & \(3 E\) & \(3 D\) \\
\(03 B 0\) & \(3 E\) & \(3 C\) & \(2 B\) & 29 & 30 & 45 & 79 & \(7 C\) & \(4 B\) & 49 & 68 & 63 & 41 & 42 & 27 & \(2 E\) \\
\(03 C 0\) & \(0 F\) & \(3 D\) & \(3 A\) & 26 & 36 & 47 & \(7 A\) & \(5 B\) & 47 & 38 & 45 & 35 & 64 & 58 & 49 & 30 \\
\(03 D 0\) & 10 & 22 & 31 & 36 & 49 & 58 & 55 & \(5 C\) & 45 & 47 & \(3 C\) & \(3 D\) & 46 & 67 & 45 & 31 \\
\(03 E 0\) & 02 & 11 & 20 & \(3 F\) & \(3 E\) & \(4 D\) & 59 & \(3 C\) & \(3 B\) & 36 & \(2 F\) & \(3 E\) & 33 & \(4 C\) & \(4 B\) & \(3 A\) \\
\(03 F 0\) & 04 & 13 & 27 & 26 & 35 & 43 & 54 & \(3 A\) & 04 & \(0 A\) & \(1 C\) & 11 & 32 & \(2 D\) & \(2 E\) & 23
\end{tabular}

\section*{APPENDIX}

Frequencies in Hertz for an Evenly Tempered Scale
This table gives frequencies for the 12 note scale for nine octaves. It is based on the standard pitch of \(\mathrm{A} 4=440 \mathrm{~Hz}\). Middle C is the note at 261.626 Hz . These are valid for any electronic or computer music application. Normally tuned pianos, however, may use a slightly different tempering.
\begin{tabular}{lccccccccccc} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
C & 16.3516 & 32.7032 & 65.4064 & 130.813 & 261.626 & 523.251 & 1046.50 & 2093.00 & 4186.01 & 8372.02 \\
C\# & 17.3239 & 34.6478 & 69.2957 & 138.591 & 277.183 & 554.365 & 1108.73 & 2217.46 & 4434.92 & \\
D & 18.3540 & 36.7081 & 73.4162 & 146.832 & 293.665 & 587.330 & 1174.66 & 2349.32 & 4698.64 & \\
D\# & 19.4454 & 38.8909 & 77.7817 & 155.563 & 311.127 & 622.254 & 1244.51 & 2489.02 & 4978.03 \\
E & 20.6017 & 41.2034 & 82.4069 & 164.814 & 329.628 & 659.255 & 1318.51 & 2637.02 & 5274.04 \\
F & 21.8268 & 43.6536 & 87.3071 & 174.614 & 349.228 & 698.456 & 1396.91 & 2793.83 & 5587.65 \\
F\# & 23.1247 & 46.2493 & 92.4986 & 184.997 & 369.994 & 739.989 & 1479.98 & 2959.96 & 5919.91 \\
G & 24.4997 & 48.9994 & 97.9989 & 195.998 & 391.995 & 783.991 & 1567.98 & 3135.96 & 6271.93 \\
G\# & 25.9565 & 51.9131 & 103.826 & 207.652 & 415.305 & 830.609 & 1661.22 & 3322.44 & 6644.88 \\
A & 27.5000 & 55.0000 & 110.000 & 220.000 & 440.000 & 880.000 & 1760.00 & 3520.00 & 7040.00 \\
A\# & 29.1352 & 58.2705 & 116.541 & 233.082 & 466.164 & 932.328 & 1864.66 & 3729.31 & 7458.62 \\
B & 30.8671 & 61.7354 & 123.471 & 246.942 & 493.883 & 987.767 & 1975.53 & 3951.07 & 7902.13
\end{tabular}

\section*{AUTHORS}

Hal Chamberlin
29 Mead St
Manchester NH 03104
Richard Gold
6024 College Av
Oakland CA 94618
Robert Grappel
148 Wood St
Lexington MA 02173
Carl Helmers
BYTE Publications Inc
70 Main St
Peterborough NH 03458
Benjamin Jacoby PhD Information Conversion Devices Co
88 W Frankfort St
Columbus OH 43206
Jeffrey H Lederer
Tom Dwyer
Margot Critchfield
Project Solo
University of Pittsburgh
Pittsburgh PA 15260
Richard Lord
Bennett Rd
Durham NH 03824
Chris Morgan
BYTE Publications Inc
70 Main St
Peterborough NH 03458

Peter H Myers
1612 Tiffany Way
San Jose CA 95125
Jef Raskin
Apple Computer Co 10260 Bandley Dr
Cupertino CA 95014
Steven K Roberts
129 North Galt Av
Louisville KY 40206
Thomas G Schneider
706 Amherst SE
Albuquerque NM 87106
Ted B Sierad
146 Sunset Rd
Mamaroneck NY 10543
William D Stanley
Steven J Peterson
Electrical Engineering Dept
Old Dominion University
Norfolk VA 23508
Bill Struve
800 Madison Av
Memphis TN 38163
Hal Taylor
3480 Sawtelle Blvd \# 2
Los Angeles CA. 90066
Loring C White
26 Boswell Rd
Reading MA 01867

BYTE Publications, Inc.
Production Credits
Christopher P. Morgan - Technical Editor
Blaise W. Liffick - Assistant Technical Editor
Richard Shuford - Assistant Technical Editor
Edmond Kelly, Jr. - Publisher
Patricia Curran - Production Editor
William Hurlin - Production Editor
Risa Swanson - Production Artist
E.S. Associates - Production Art

George Banta Company - Printing
Robert Tinney - Cover Art
Dawson Advertising Company - Cover Design

\section*{The BYTE Book of COMPUTER MUSIC}

\section*{Would-be musicologists and fugue fanciers take note!}

The BYTE Book of Computer Music combines the best computer music articles from past issue: of \(B\) ":E Magazine with exciting new material-all written for the computer experimenter interested in this fascinating field.
You will enjoy Hal Chamberlin's " A Sampling of Techniques for Computer Performance of Music." which shows how you can create four-part me :odies on your computer. For the bu minded, "A \$19 Music Interface" ce rains practical tutcrial information-a ) , organ fans will enjoy reading "E'ec tronic Organ Chips for Use in Comp.uter Music Synthesis."
New material includes "Polyptiony Made Easy" and "A Terrain Reader." The first describes a handy circuit that allows you to enter more than one note at a time into yout computer from a musical key'bsard. The "Terrain Reader" is a remarkable program that creates random music based on land terrain maps. Other articles range from flights of fancy about the reproduct : systems of pianos to FastFourier transt, \%m progranıs written in BASIC and © 900 machine language.multi-coms ier music systens. Walsh Functions, and inuch more.
For the first time, material difficult to obtain has been collected into one convenient, easy to read book. An ardent do-it-yourselfer or armchair musicologist will find this book to be a useful addition to the library.```


[^0]:    - Diatonic major scale notes "best fit" to $A=440$ standard.
    *Best fit of diatonic major scale to equally tempered scale based on $B=244.14$.

