
j ¡BlTOu*1“0 zÆiEŒŒNSLïïk

OTHER BYTE PUBLICATIONS

All PAPERBYTE® Books contain programs in machine
readable object code in the PAPERBYTE® bar code format:

RA6800ML: An M6800 Relocatable Macro Assembler Jack E. Hemenway
LINK68: An M6800 Linking Loader..... Robert D. Grappel & Jack E. Hemenway
TRACER: A 6800 Debugging Program Robert D. Grappel & Jack E. Hemenway
MONDEB: An Advanced M6800 Monitor-Debugger Don Peters
SUPERWUMPUS .. Jack Emmerichs
Tiny Assembler 6800, Version 3.1 .. Jack Emmerichs
BASEX: A Simple Language and Compiler for 8080 Systems............. Paul Warme

Other BYTE BOOKS,™ collections of favorite articles from past
issues of BYTE magazine, plus new material and addenda:

Programming Techniques: Program Design Blaise W. Liffick (ed)
Programming Techniques: Simulation.......................................Blaise W. Liffick (ed)
Ciarcia's Circuit Cellar... Steve Ciarcia

The BYTE Book of

COMPUTER
MUSIC

EDITED BY
CHRISTOPHER E MORGAN

LU Bii^s LAXk
"BOOKS OF INTEREST TO COMPUTER PEOPLE

A DIVISION OF BYTE PUBLICATIONS, INC.

70 Main St., • Peterborough, N.H. 03458 • (603) 924-7217

The authors of the programs provided with this book have carefully re
viewed them to ensure their performance in accordance with the specifi
cations described in the book. The authors, however, make no warranties
whatever concerning the programs, and assume no responsibility or liability
of any kind for errors in the programs or for the consequences of any such
errors. The programs are the sole property of the authors and have been
registered with the United States Copyright Office.

Copyright © 1979 BYTE Publications Inc. All Rights Reserved. BYTE and
PAPERBYTE are Trademarks of BYTE Publications Inc. No part of this book
may be translated or reproduced in any form without the prior written con
sent of BYTE Publications, Inc.

Library of Congress Cataloging in Publication Data

The BYTE Book of Computer Music
1. Computer composition. 2. Music—Data Processing. I. Morgan,
Christopher P.
MT41.B98 789.9 78-27681
ISBN 0-931718-11-2

Printed in the United States of America

ii

TABLE OF CONTENTS

INTRODUCTION... v
SCORTOS: Implementation of a Music Language

Hal Taylor (September 1977 BYTE)... 1
A Two Computer Music System

Jeffrey H Lederer, Tom Dwyer, and Margot Critchfield
(March 1978 BYTE)... 9

The Microcomputer and the Pipe Organ
Jef Raskin (March 1978 BYTE)... 19

Tune In With Some Chips
Ted Sierad (September 1977 BYTE)... 27

A $19 Music Interface
Bill Struve (December 1977 BYTE)... 33

A Sampling of Techniques For Computer Performance of Music
Hal Chamberlin (September 1977 BYTE).. 47

Walsh Functions
Benjamin Jacoby Phd (September 1977 BYTE)... 65

Simple Approaches to Computer Music Synthesis
Thomas G Schneider (October 1977 BYTE).. 75

Notes on Anatomy: The Piano’s Reproductive System
Chris Morgan (September 1977 BYTE).. 81

Interfacing Pneumatic Player Pianos
Carl Helmers (September 1977 BYTE)... 85

Electronic Organ Chips For Use in Computer Music Synthesis
Robert Grappe!.. 91

Fast Fourier Transforms On Your Home Computer
William D Stanley and Steven J Peterson... 97

Fast Fourier Transforms For the 6800
Richard Lord.. 105

Polyphony Made Easy
Steven K Roberts (January 1979 BYTE)...117

Music From The Altair 8800 Computer
Loring C White... 121

Teach KIM To Sing
Peter H Myers....................................... 125

A Terrain Reader
Richard Gold.. 129

APPENDIX............................ 143

iii

Introduction

Computer music means many things to many people, but to the personal computer experi
menter it means creating music with the aid of a small computer system. The first experiments
with computer music were conducted in the 1950’s at Bell Labs and RCA. The expense of using
the huge computers of the day meant that only a handful of people could benefit from the
experiments, though.

The microcomputer revolution has changed all that. Armed with inexpensive personal com
puters, a new generation of music enthusiasts, would-be musicologists and fugue fanciers are
sampling the delights of digital music synthesis.

The BYTE Book of Computer Music is designed to help you get the most out of your com
puter music experiments. The best articles from past issues of BYTE have been combined with
new material, all geared to the computer experimenter.

Beginners to the field (as well as veterans) will enjoy Hal Chamberlin’s “A Sampling of Tech
niques for Computer Performance of Music”, which discusses the basics of polyphonic synthesis
and gives you directions for playing four-part melodies on a KIM computer. Or perhaps you’re
interested in random composition—if so, read Rich Gold’s new “Terrain Reader”, a remarkable
program that composes music based on land terrain maps.

Other articles range from flights of fancy about the reproductive systems of pianos to a prac
tical $19 music interface circuit. For the more adventuresome reader we offer two new fast
Fourier transform programs written in BASIC and 6800 machine language. The fast Fourier
transform is a useful tool for analyzing the harmonic content of music.

Also included is Steve Robert’s “Polyphony Made Easy”; a handy circuit allows you to enter
more than one note at a time into your computer from a musical keyboard.

The list goes on, but we’ll let the material speak for itself. We hope this information, col
lected in one place for the first time, will be a useful addition to your music and computer
libraries.

Christopher Morgan
Editor

v

SCORTOS:
Implementation of a Music Language

Perhaps nowhere can technology better
serve the creative end of the music arts than
through the computer. The computer has a
natural affinity for the application to music
since it is capable of carrying out processes
which create and perform music. It can be
programmed to learn any language the com
poser wishes to use to describe his musical
ideas. It can manipulate the symbols of that
language to produce transformations of the
composer’s original ideas. It can enlarge and
improve the quality of the composer’s crea
tive output by allowing him to work in an
interactive mode where he can hear his
musical works performed within minutes of
their conception.

The computer owes this affinity to its
unerring accuracy and high bandwidth, qual
ities which its human inventors do not
possess. The human mind is slow and noisy
and requires years of exercise to achieve the
coordination necessary to perform complex
musical passages. Although the computer
may never be able to match the expressive
subtleties of a concert soloist, it is in some
cases more suitable for the performance of
music than a human being.

If a program can be devised to convert
musical symbols to the sounds they repre-

Hal Taylor

sent, then the computer can be of value to
the composer as a means of developing
composition prototypes, that is, preliminary
designs of musical works that he could hear
performed before he copied the parts and
gave them to the orchestra. An editing
capability would also be available to him to
alter the music until it produced the desired
results. When the computer performed the
work to his satisfaction, the original score
and the instrumental parts could be pub
lished on a computer controlled plotter.
With such a system the composer could
avoid the drudgery of hand copying parts,
and would be encouraged to experiment
with new forms that he might otherwise
hesitate to give to an orchestra.

The computer can also be useful to the
composer as an originator of musical ideas
since it can simulate the process by which
the human mind creates music. A music
composition consists of a series of musical
events chosen from a minimum of about 200
different possibilities (consider, just 12 tones
and 18 types of notes). Only certain of these
combinations are pleasing to the human ear.
The composer’s job is to discover those
combinations which produce aesthetic

results. The manner in which he or she

Photo 1: The modified
ADM-H! video terminal.
The keytops on the ASCH
keyboard have been modi
fied to enable the user to
easily encode musical
compositions. See figure 1.

1

does this is personal, intuitive, and cannot
by itself form the basis for a workable
algorithm. It is possible, however, to infer
some of the underlying rules of music
by analyzing it. Whether we are composing
with our minds or with a computer, we
follow a set of rules that determine which
pitches will be chosen, in what order
they will be arranged, and how long each
will last in time.

The set of rules describes the style and
structure of the music and can be repre
sented in a computer by a statistical model.
A process can be programmed into the
computer that uses the model to decide
which musical events are suitable for use in
the composition. The process is one in which
random choices are discarded according to
a stochastic model. [According to Webster's,
stochastic processes are processes based on
the behavior of random variables. Random
variables, In turn, are functions which are
the result of statistical experiments in which
each outcome has a fixed probability. For
example, the number of spots showing if
two dice are thrown is a random variable . . .
CM/ In order to produce a musical event,
the program generates a random number
which it associates with a variable such as
pitch or time. The number is then subjected
to the constraints of the model. The model
is constructed by feeding specimens to an
analysis program which are representative of
the desired compositional style. The speci
mens are analyzed according to pitch, time
and chord structure, and a probability
matrix of n dimensions is generated, where n
is the degree of order desired and represents
the extent to which the analysis was carried
out. As n increases, progressively more order
is imposed upon the process, since more
information is available to describe the

desired composition and less is left up to
chance.

Zeroth order stochastic control is no
control at all. Random choices are used to
build the composition without testing them
against the model producing unlistenable
music in most cases. In first order control,
the transitions between pitches and rhythms
are governed by the probability distribution
of those transitions as they occurred in all
the analyzed samples. Music produced in this
manner still sounds amorphous, but will
have fewer pitches that sound alien.

It is not until we impose higher order
control that a melody as we know it will
take shape with its symmetrical phrases and
regular intervals. In second order control,
the selection of an event depends upon the
event that preceded it; in third order
control the previous two notes, and so on.
For example, if the previous note chosen
was a B-flat and the random number gener
ator has just produced a C, the program
refers to that location in the probability
matrix which gives the probability of a C
following a B-flat. If there is no probability
of this happening, the C is rejected. If the
probability is 1.00 then a C always follows a
B-flat in this style of music, and the program
will reject random numbers that are not Cs.

Of course the source of the information
within the model need not be music speci
mens, as in this example, but may originate
from mathematical functions, poetry or any
one of a hundred other sources. It is this
capability which makes the computer so
intriguing as a composer’s tool.

The Score to Sound System

The Score to Sound System (SCORTOS)
was developed to provide the composer with

Figure 1: A standard alphanumeric keyboard modified for the SCORTOS language. SCORTOS
is a language dedicated solely to the processing of musical information. The keyboard is a
standard ASCH unit which has been relabeled with music symbols. The user enters a musical
composition by striking the keys which correspond to the symbols in the music score of the
composition (see also photo 1).

2

an inexpensive means of conducting com
puter implemented music research and
composition prototype development. The
system has the capability to perform conven
tional music scores by allowing music
symbols to be entered through a terminal
keyboard by an operator. Music of computer
generated specifications can be performed
through user program calls to a set of
subroutines that interface the user program
to the SCORTOS system software.

Music is produced by the computer driv
ing relays that are wired in parallel to the
keyboard switches of electronic music
instruments - organs, synthesizers, etc. This
allows a simple and inexpensive interface
between the composer’s studio instruments
and the computer. The limitation of this
approach is in its inability to provide the
computer with access to the timbre controls
of the synthesizer, an encumbrance which
may be tolerable to experimenters primarily
interested in the musical variables of tonality
and syntax. Also, there is a rich assortment
of preset timbres available in commercial
keyboard instruments, among them, the
Orchestron which generates actual orchestral
and choral sounds from a prerecorded opti
cal disk.

The system consists of an Altair 8800
computer with 32 K bytes of memory, an
ADM-III video terminal, a mass storage
device (either cassette or floppy disk), one
or more International Data Systems 88-RCB
relay control boards and any electronic key
board instruments the user wishes to con
nect to the 88-RCBs.

The ADM-III has a standard ASCII key
board whose keytops have been relabeled
with music symbols (see figure 1 and photo
1). The composer enters the composition
into the computer by striking the key
corresponding to each musical symbol as it
appears in the score. This creates a music
text file. The source text is passed to a
language processor which maps each musical
event represented in the source text into a
physical IO address plus a timing value, and
writes this to a binary output file. The result
is a list of records each of which defines
which key of which instrument will be
turned on and for how long. The binary
output of the language processor is read by a
driver program which uses the IO addresses
and timing values in each record to deter
mine what data is to be loaded into the data
registers of the 88-RCBs, and at what time it
is to be loaded. The keyboard instrument
responds by playing the piece just as if
someone were playing on its keyboard. In
fact, the system can be thought of as an
organist with 16 very flexible fingers, be
cause it is capable of performing 16 separate
parts simultaneously.

Keyboard Instrument to Computer Interface

The 88-RCB is the interface between the
computer and the electronic keyboard
instruments. It was designed expressly for
the SCORTOS system project, but is also
useful for other low current switching appli
cations. The board has two 8 bit data
registers which are “write only” accessible to
the central processing unit (CPU) through

Photo 2: A close-up view
of the component side of
the 88-RCB 16 channel
relay Interface board
which can drive a musical
keyboard with signals
from the computer.

3

Figure 2: A medium scale SCORTOS configuration. The 88-RCB units are
relay boards which can be driven by the computer to operate organs, synthe
sizers or other similar instruments. Each board consists of two 8 bit data
registers which can be loaded from the central processing unit. Each of these
bits in turn drives a transistor which energizes a relay. One 88-RCB board can
control 16 keys, or 1 1/4 octaves of a musical keyboard. The system can ad
dress (and therefore control) up to 256 keys.

two output ports which are individually
strappable to any address in the 8080 IO
channel. The data register latches the con
tents of the CPU’s A register when an OUT
instruction has been executed to that regis
ter’s output port address. The outputs of
each bit of the data registers drive a transis
tor which in turn drives a board mounted
DIP relay.

The complement outputs of the data
register latches are used to drive light emit
ting diodes (LEDs) which can be mounted
on the board or on a front panel to monitor
the status of each relay. The relays are wired
in parallel to the keyboard switches of the
electronic music instruments which elec
trically isolate the peripherals from the
computer and ensure plug-to-plug compati
bility among most keyboard instruments.

Each 88-RCB controls 16 keys, or 1 1/4
octaves of keyboard. To ensure an adequate
tonal range, two 88-RCBs may be configured
on any instrument (see figure 2).

The maximum number of keys the sys
tem can address is 256. In arriving at a figure
of maximum connectivity, it was necessary
to balance programming considerations
against what was thought to be an adequate
number of system-controllable sound pro
ducing peripherals. 256 keys are equal to
about 20 octaves of keyboard (three full
piano keyboards) which may be distributed
among ten sound-producing peripherals, giv
ing each instrument a 2 octave range. This
maximum configuration seems adequate to
provide for the largest studio application.

A simple method of representing key
board address was chosen to minimize the
execution time of the DRIVER program.
One byte is used to represent the keyboard
address (pitch), and one byte contains the
length of time the event will last (rhythm).
Since a music piece consists of so many
events, the size of the data record is critical.
It affects the total performance of the
system by limiting the length of any per
formance to the number of event records
that will fit in available memory. For this
reason, it is not practical to increase the size
of the event data record to accommodate a
connectivity greater than 256.

The Alphanumeric Representation of Music

The conventional music score format is
not the most perfect method for entering
music into computers. The music symbols
must be somehow transformed into a code
the computer understands. In the conven
tional method, the operator enters data from
a music score into an alphanumeric key
board. This method has two disadvantages:
it often requires multiple alphanumeric
symbols to define one musical event (one
character for pitch, one character for
rhythm, one character for dynamics). The
second disadvantage is that the choice of
alphanumeric symbols must relate in some
way to the quality of the musical symbols
they represent, which in the past has meant
that the symbols were scattered about the
keyboard with no regard to their qualitative
value. As a result, the data entry process was
a hunt and peck procedure which may have
been too discouraging for all but the most
enthusiastic.

The human to computer interface should
provide maximum ease in data entry and
data editing. There are four ways to accom
plish this:

• Choose a set of alphanumeric symbols
to represent the set of musical symbols
that will enable music passages to be

4

SCORTOS SCORTOS
Music Symbol Description Code Music Symbol Description Code

o whole note X1 1 quarter rest 4
J half note X2 7 eighth rest 8
J quarter note X4 f sixteenth rest 16
? eighth note X8 f thirty-second rest 32

) sixteenth note X16 1 left hand repeat [
J thirty-second note X32 i right hand repeat]

whole rest 1 bar /

— half rest 2
^3^

triplets 3(XnXnXn)

Music Symbol

C

D

E

F

G

A

B

n

b
Jj

Description

Pitch representations

sharp

natural

flat

slur

dot

SCORTOS Code

C

D

E

F

G

A

B

+

N

A

Table 1: The alphanumeric
music coding convention
used by the SCORTOS
system. The X symbol
preceding each numeric
SCORTOS code symbol
indicates that the numeric
symbol must be preceded
by a pitch representation
before it can be recognized
as a note. For example, C2
would be a half note
with pitch C.

best recognized in alphanumeric form.
• Eliminate all redundancies in the

music score.
• Position the alphanumeric symbols on

the keyboard logically in the order of
their musical value and group them by
type.

• Generate bar markings and bar num
bers automatically during data entry.

Table 1 shows the alphanumeric symbols
used to represent conventional music nota
tion in the Score to Sound System. Note
that each alphanumeric symbol alludes to
the quality of the music symbol it repre
sents. A musical event can be defined by one
or two symbols, depending upon whether
the event is a rest or a note. A numeric
symbol which is not preceded by a letter
character is recognized as a rest. Notes
always occur as a pair of symbols, that is, a
letter character followed by a numeric
symbol. Figure 3 illustrates a portion of an
actual orchestral score along with its corre
sponding SCORTOS code.

Since the characters generated by the
SCORTOS keyboard hardware do not corre
spond to those desired to represent the
music symbols, the data entry software
echoes back the desired character with the
terminal in full duplex mode.

System Software

The SCORTOS System Software consists
of a group of programs written in 8080
assembler language which carry out the four
major functions of the system:

• entry and manipulation of the sym
bolic music text.

• conversion of the text to binary data.
• conversion of events initiated by user

programs to binary data.
• conversion of the binary data to

music.

The interaction of these programs with each
other is shown in figure 4.

The monitor allows the user to control
the system’s major functions. It recognizes

5

Figure 3: A fragment of an orchestral score annotated in SCORTOS code (see listing 1).

three command verbs with one or more
arguments per verb. Each verb calls a system
module, and its arguments specify the data
file which is to be operated upon by that
module. Table 3 is a list of command verbs
recognized by the monitor.

The editor allows the user to enter music
text through the terminal keyboard and
provides a means by which it may be easily
manipulated.

As text is entered through the keyboard,
the editor’s data entry processor keeps a
running count of the bar number and auto
matically informs the user when he has come
to the end of a bar by displaying a slash and
the next bar number on the terminal. This
provides a checksum for each bar and a
milestone to keep the operator informed of
his position in the score. Listing 1 shows a
sample of the dialog between the operator
and the editor as the operator enters the
score fragment in figure 3. The italicized
type is supplied by the editor, the bold type
by the operator.

Conventional string oriented text editors
are inconvenient for use with music text
since music is prone to have too many
occurrences of any given string. Allowing the
user to access the text by part number and
bar number is more suitable since he refers
to a written score in the same way. Various
commands are available within the editor

which allow a user to list selected bars and
make insertions and deletions in the music
text at selected bar boundaries.

The converter is the system’s music lan
guage processor. It scans the text of the
music text file and translates the logical
entities of rhythm and pitch to the physical
values of time and keyboard address. For
each event described in the file the converter
outputs a 2 byte record which contains the
duration of that event in standard system
timing units, and the location of the event
on the system controlled music keyboards.

Table 2 is a list of control characters
recognized by the converter. In keeping with
the design goal of eliminating redundancies
in the music score, an equate (=) statement
was developed. Using equate, repeated
groups of notes need only be typed in once
and equated to a symbol. Thereafter they
may be brought into the music source text
by typing the symbol to which they have
been equated.

The driver interface subroutines allow the
user to communicate with the DRIVER by
providing him access to the binary output
file. Through their use, a sequence of
musical events may be generated from
within the computer by a user written
program. For example, the researcher may
have made an analysis of a particular com
poser’s style (following the procedure de-

6

Figure 4: The flow of Infor
mation through the SCORTOS
software. The monitor controls
the system’s major functions.
The editor allows the user to
enter music through the com
puter’s keyboard (see figure 1)
and to modify it as desired.
Listing 1 describes this in more
detail. The converter scans the
text of the music text file and
converts the values for rhythm
and pitch into physical values
of time and keyboard address.
The driver interface subroutines
allow the computer to play
music that it has composed
based on stochastic or random
elements contained in the user’s
programs.

scribed earlier in this article) and may wish
to write a program in BASIC which creates a
composition based upon the properties of
that style. The sequence of events that
constitute the composition would be pro
duced by calls to the driver interface sub
routines.

The EVENT subroutine is the principal
interface subroutine. Its calling sequence is:

CALL EVENT
DS ARG1
DS ARG2
DS ARG3
DS ARG4

where:

ARG1 = part number.
ARG2 = duration of event.
ARG3 = address of keyboard switch.
ARG4 = slur code (0= no slur, 1= slur this
event to next event).

The DRIVER is a software representation
of the inner workings of a player piano
where the binary output file, subroutine
CLOCK, and the DRIVER’S main code are
the respective analogs of the piano roll,
sprocket drive and mechanical read head. All
of the control features of its mechanical
counterpart are available within the pro
gram, including start performance, pause,
and stop performance, and some which are
unique to a software simulation, such as
discrete tempo control and part selection.

The DRIVER causes music to be per
formed by initiating and terminating musical
events according to the information con
tained in the binary output file. The pro
gram keeps a timer for each part that is
participating in the performance. When an
event is initiated, the address data in the
event’s data record is output to the appro

priate 88-RCB data register. This causes
sound to emanate from the instrument to
which the 88-RCB is connected. The timer is
set to zero, then incremented 20 times per
second and compared at each incrementa
tion to the event duration field of the
event’s data record. When these two quan
tities are equal, the event is terminated by a
logical exclusive OR of that event’s key
board address data with the 88-RCB data
register. The DRIVER then proceeds to the
next event record and repeats the process.

Timing is provided internally by sub
routine CLOCK which contains a timing
loop and which also interprets control com
mands from the terminal. When a call is
made to CLOCK, the caller will not receive
control back until a specified interval of
time has passed. In this way it can be used as
a time source. The time interval provided by
CLOCK is used as the basic unit of time in
the system. An interval of 1/20 of a second
is sufficient to provide the resolution neces
sary to perform the most complex musical
passages.

The internal generation of timing is less
expensive and permits the tempo of the
performance to be easily varied on line. By

Table 2: Control char
acters used by the
SCORTOS language proc
essor.

Control Character

Pnn

Knc

Tn/n
Onn

(Inn
< > = C
Q+n
Q—n

CTRL A

Meaning

musical part number declaration, where nn=a number from 00 to
16

key signature declaration, where n is a number and c is a "+" or
a "

time signature declaration; ie: "T4/4" means 4/4 time
positions the CDEFGAB scale on the terminal keyboard to octave

nn of the external instrument's keyboard
repeat text within parens nn times
equate all text within brackets to symbol C
transpose all subsequent text up n steps
transpose all subsequent text down n steps
all text within quotes is treated as commentary
marks the end of the MUSIC TEXT FILE

7

Command Meaning

* E ab Call the EDITOR and load the source text file identified by the
characters ab

* C ab,cd Load the file identified by the two character code ab and use it as input
to the CONVERTER. Write the output of the CONVERTER to file cd

* P cd Load the file identified by the characters cd. Call the DRIVER and
perform the music described by the data in file cd

Table 3: A list of command
verbs recognized by the system
monitor. Each verb calls a sys
tem module, and its arguments
specify the data file which is to
be operated on by that module.

EDITOR
COMMAND?
FILE CODE?

N
S5

ENTER PART NO. P01
0007
0005
0001
0002
0003
0004
0005
0001

"SYMPHONY NO 5 (PROKOFIEVI***##OBOE" K2- T3/4 (2.I03
P02
" 1st FLUTE " K2-T3/4 03 F4 G4 A8. F16/_
04 C8. 03 B16 04 F4 B4/
D8. E16 F4. G8 /
F8 E8 D8 C8 03 B8 02 C8 /
P03
" 2ND FLUTE " K2- T3/4............ etc.

Listing 1: A sample of the dialog between the operator and the system editor
as the operator enters the score fragment in figure 3. The italicized type is
supplied by the editor.

striking the keys labeled “rit” or “accel” on
the terminal keyboard, the operator can
retard or accelerate the tempo of the per
formance by 2.5% for each stroke of the
key.

The use of processor cycles to generate
timing puts a great strain on the DRIVER. It
must complete its work so quickly that the
listener is not aware of any delay between
music parts that are supposed to be occur
ring simultaneously. Musicians can time a
musical event to within 10 ms of its desired
occurrence. This imposes on the DRIVER
the specification that, for worst case condi
tions, it must initiate an event for all 16
parts within the same period of time. For
this reason great care was taken in the design
of the program to ensure that its execution
time is held to the minimum.

Conclusion

The functional possibilities addressed by
the SCORTOS system are, of course rudi
mentary. In its present state it provides a
foundation on which additional application
programs can be built, notably a music
language which treats the performer of the
music as a computer and not a human. Other
possibilities include a set-complex processor
to analyze music and statistically model its
characteristics, and a plotter interface that
will draw musical scores on a plotter. Some
of these programs already exist and need
only be converted from FORTRAN to
BASIC.

I am presently developing a macro capa
bility that allows the user to equate a

rhythm sequence to a symbol, and then
associate different pitches with each note in
the rhythm sequence by means of an argu
ment list in a macro declaration.

The implications of this macro capability
go further than just providing a way to
eliminate redundancy. The composer often
deals in “primitives” which are at a higher
level than those allowed by his conventional
music language. That is, the composer often
thinks in terms of whole musical phrases and
note groupings rather than individual notes
of which he is compelled to construct those
phrases and groupings. In using this higher
level language, the composer is able to
construct his compositions of larger building
blocks and may easily vary the tonal param
eters within those building blocks to achieve
various aesthetic effects.

The purpose of the SCORTOS system
project is to foster computer implemented
composition among individuals and institu
tions whose financial and talent resources
have prevented them from undertaking such
projects in the past. Over the years various
projects of this nature have been conducted
at the larger educational centers of the
country. The adoption of these projects by
individuals and poorer institutions has not
been widespread due to the large hardware
costs involved, or lack of programming
experience within the music departments. I
hope that more modestly endowed music
institutions will respond to a turnkey instal
lation costing less than $10,000, and that we
may shortly see the computer joining the
synthesizer and tape recorder as standard
equipment in every electronic music studio."

8

A Two Computer Music System
Jeffrey H Lederer

Tom Dwyer
Margot Critchfield

The music system described here started
out a few years ago as a project in the
Soloworks Lab. The idea was to put together
a “manipulable” system that allowed stu
dents to work with the powerful mathemati
cal idea of synthesis. We felt that mathematics
and science students should be able to
experience firsthand what could be done by
superimposing components that worked
together to synthesize some bigger concept.

Real, full-blown professional music
seemed like an ideal metaphor for working
with this “superimposition” principle. It’s
easy for a student to see that a musical
performance is really a multitude of small,
discrete events working in perfect synchro
nism. But it’s even easier to sense that the
resultant whole is greater than the sum of
its parts. In fact, the “whole” can be a
human experience of quite thrilling pro
portions.

The system that evolved has met this goal
very well. Students of varied backgrounds
are able (and motivated) to work patiently
with complex scores, making the final per
formance a proof of the power of the princi
ple of superimposition.

But a funny thing happened on the way
to this goal. The total system began to look
more and more like a “micro” computer
science curriculum. The documentation that
evolved began to contain much of the jargon
that permeates computing, but this seemed
to be easier to take when interpreted in terms
of the friendlier worlds of music and art.

In writing this condensed description of
the system, we therefore decided to leave
the jargon in. Our purpose is to not only
describe the music system but to suggest
that interesting new approaches to teaching
computer science might be developed along
similar lines. There is equally good promise
for teaching computer science subject matter
in terms of visual art. Abstract games are
another fruitful area. It’s probably no coinci
dence that all these examples illustrate the
kind of computing most people would call
“fun.” There’s undoubtedly a deep educa
tional lesson lurking here, but that’s another
subject.

Photo 1: The authors’ overall system with graphics terminal on the left and
the disk drive and two computers on top of the organ console. The wooden
pipes at top right are the flute rank; the meta! pipes are a viola rank. The stop
tablets for selecting ranks and harmonics can be seen just above the top
keyboard.

9

Figure 1: Hardware components of the authors’ computerized organ music
system. This design requires one TTL output Une for each pipe to be
controlled.

Why a Pipe Organ?

The system described here is general
enough to apply to a variety of musical
instruments. It was implemented with a
small pipe organ because this illustrates
the general kind of performance ensemble
used by composers who write orchestral
works. A pipe organ has several sets of pipes
called ranks, each set having a distinctive
tonal characteristic called timbre. The ranks
are selected by pressing switches called stop
tablets, so that an organist is able to control
an entire “orchestra” of sounds by using
different stop settings. Further, since most
pipe organs have several keyboards (often
including one for the feet), the ranks can be
played independently. Thus both chorded
(several notes played simultaneously) and
contrapuntal (independent melody lines
played simultaneously) music can be played
on one or more keyboards.

The organ is also the original “synthetic
music” instrument. This is because a per
former can add harmonics to fundamental
tones by pressing suitable stop tablets. When
the stop tablet marked “8 foot flute” is
pressed, one gets flutelike sounds, in the
normal register (where A=440 Hz). (The
phrase “8 foot” comes from the fact that
the largest pipe in the rank is eight feet high.)
But when the stop marked “4 foot flute” is
pressed, everything sounds an octave higher.
If both stops are activated, we then have
a sound rich in second harmonics. Tradi

tional organs have stops labeled “8 foot,”
“4 foot,” “2 2/3 foot,” “2 foot,” etc.
However, the stop settings in the computer
system described here are software generated,
so any harmonic can be specified (of course
there are only a finite number of pipes
available for playing these harmonics).

Overview of the System

The Music System uses two microcompu
ters (an Altair 8800b system and an Intellec
8/MOD 80), a small pipe organ, and a
Magnavox plasma display graphics terminal.
Figure 1 shows how these components are
interconnected.

In addition to the hardware, there are
three software packages. The first is a
graphics music editor that allows a com
poser to “draw” his score on a graphics
display terminal. The editor converts the
graphic representation of the score into
a MUSIC language program. The program
may also be created and edited using a stan
dard text editor, in which case an alphanu
meric terminal can be used. Either type of
editor is run on the master system. The
MUSIC language programs can be saved on a
diskette as files.

Before a MUSIC language program can be
played, it must be “compiled.” Our compiler
is a program that accepts MUSIC language
programs as input, and outputs an annotated
listing of the MUSIC language program along
with error messages and an "object” pro
gram. The object program consists of instruc
tions which are easily interpreted by the
slave computer. The compiler runs on the
master computer.

The object program is “played” using
both computers. First, the object program
is transferred from the master to the slave
computer. The slave computer executes
the object program in order to drive the
pipe organ. A pair of programs (one on
each computer) controls the transfer of
the object program and its execution.
Figure 2 shows the relationship between
software components.

System Hardware

The slave microcomputer is an Intellec
8/MOD 80 with 8 K bytes of programmable
memory, 2 K bytes of read only memory
containing a system monitor program,
256 bytes of programmable read only
memory that contains the second perfor
mance program, 16 latching output ports,
and a serial bidirectional IO port. Each
latching port is eight bits wide, with each
bit dedicated to controlling a pipe valve
of the organ. Thus, 16 X 8 = 128 pipes
can be controlled. The interface between

10

Photo 2: A set of solenoids used to automatically play the
keys. Since this setup plays the keys directly, it could be
easily adapted to any standard keyboard Instrument includ
ing harpsichord and piano.

each pipe and its controlling port is a Darling
ton switching transistor connected as shown
in figure 3.

The master computer is an Altair 8800b
with 60 K bytes of memory, two diskette
drives and two serial ports. One serial port
is used as the console line and is connected
to a Magnavox plasma graphics terminal.
This terminal has a plasma display with 512
by 512 dots. A character generator is used to
display 32 lines of 64 characters; the charac
ters can be either a set of standard ASCII
characters or a user loaded set (musical
symbols in our case). The terminal has a
vector generator and dot addressability.
Sections of the screen can be selectively
erased and written. The graphics terminal
is optional, and there is no reason why
other lower cost graphics displays couldn’t
be used if appropriate changes in software
were made. The Intecolor 8001 might be
particularly appropriate since different colors
could be used to distinguish voices in poly
phonic music.

The second serial line connects the Altair
to the Intellec over a 2400 bps current loop.
A special interface had to be built to isolate
the two active current loops. The schematic
is shown in figure 4.

MUSIC Language

MUSIC is a high level music notation
language that uses the standard 64 charac
ter ASCII character set. A MUSIC language
program consists of one or more statements;
each statement is a single line in length (see
figure 5 and listing 1).

There are three types of statements in
this language: command, data, and comment
statements. Comment statements, which
begin with two asterisks, may be placed
anywhere in the program; they are ignored
by the compiler.

MASTER
PERFORMANCE
PROGRAM

SLAVE
PERFORMANCE
PROGRAM

2400 BPS LINE

SOURCE
LISTING
WITH ERROR
MESSAGES

Figure 2: Software block
diagram of the computer
organ music system.

PIPE
ORGAN

11

+ 12VDC

A?

MANUAL
KEY

3.3KAW
FROM
INTELLEC
TTL
OUTPUT
PORT

Figure 3: Interface between an organ pipe solenoid and a computer output
bit. One such circuit is needed for each pipe to be controlled in this design.
The solenoid in each pipe opens a valve that admits air to the pipe.

Figure 4: Interface used to isolate the two 2400 bps active current loops
which send information back and forth between the master and slave
computers.

The command statements consist of a
single asterisk followed by the command
mnemonic and the command’s parameters.
The commands in this language are divided
into three categories: delimiter commands,
repeat commands, and context commands.

The delimiter commands separate mea
sures (BAR), parts of measures (CHANGE),
and mark the end of the last measure of the
program (END). The parameters of the first
two commands, when used, set a temporary
time signature for a measure.

The repeat commands control the repeti
tion of sections of the score. The limits of
a repeated section are bracketed by HEAD
and TAIL commands. When necessary, each
separate ending of a repeated section starts
with an ENDING command, and sections of
a score between SIGN commands can be
skipped the second time through a repeated
section. Repeated sections can be nested
within each other.

The context commands are used to
change the condition under which the notes
of the program are compiled. These com
mands set the key signature (KEY), time
signature (TIME) and metronome setting
with or without accelerandos and ritards
(TEMPO). A special context command
(STOPS) controls the number of voices
allowed in each measure and the stop
(timbre) settings for each voice.

The notes for a MUSIC language program
are placed in the data statements. Each data
statement consists of one or more events;
each event is separated from the previous
event by a semicolon. An event is a note,
chord, glissando, tremolo or rest. The notes
can be played with different articulations
(staccato, legato, or normal). [See the
glossary at the end of this article.] Each data
statement contains the events to be per
formed by one voice during a single measure
or fraction of a measure.

A normal measure of music consists of
a starting BAR command followed by zero
or more context commands and one data
statement for each active voice. When a
context change occurs inside a measure,
the form of that measure is slightly different.
In this case the measure starts with a BAR
command, zero or more context commands
and one data statement for each voice. These
data statements contain those events that
occur before the context change. Following
the data statements is a CHANGE command,
one or more context commands and one
data statement for each voice. These latter
data statements contain the events that
occur after the context change. Repeat
commands may be intermixed with the
context commands of a measure.

The voices in each measure are performed
concurrently. Each voice is assigned a group
of stop settings. Each stop setting takes a
note, displaces it a set amount of tones,
and assigns that new pitch to a given rank
of pipes. Multiple stop settings for a voice
will generate multiple pitches for each note
in an event. These pitches are played simul
taneously. The number of voices and their
stop settings are controlled by the STOPS
command.

This all sounds pretty complicated, but
new users quickly get proficient with the
language. Having all the features of musical
notation available has proven to be well worth
the extra complexity.

The Music Editor

An editor is a program that allows a user
to easily create and modify files (which of
course may be programs). The Music Editor
is a program that allows composers to graph
ically create and modify MUSIC language
programs. The Music Editor is written in
Altair Extended BASIC 4.0 and runs on the
Altair 8800b system using a Magnavox
plasma display terminal.

At the simplest level, the editor allows
the user to type in and alter statements
like any text editor. It also permits the user
to copy or move blocks of statements. The
editor verifies the syntax of each statement
entered.

12

Listing 1: The musical example of figure 5 written in the MUSIC language. "Normal” means
that there is to be a slight pause between notes. "Legato ” indicates a smooth transition with no
gaps.

At a higher level, the editor can be used
to graphically display and edit data state
ments. When entering this level, the editor
draws the staves. If an existing data state
ment is to be altered, the notes of this data
statement are drawn; otherwise the staves
will be empty, awaiting the input of a new
data statement. The user edits a data state
ment by moving a cursor about the staves
and entering commands. Special macro-like
commands permit the user to create and
copy chords, delete events and insert new
ones. Upon leaving this higher level, a data
statement in MUSIC is derived from the
graphic display of the staves and inserted
into a scratch file. Photo 3 shows what a
graphics editing session looks like to the
user.

Object Language

The MUSIC language is compiled into
code for a “make-believe” machine, one
with a simple set of instructions. Thus we
can say that the object language is in pseudo
machine code. Each object language instruc
tion is two 8 bit bytes in length. The first
byte in each instruction is interpreted as an
operation code (op code); the second byte is
used as a data parameter. There are three
classes of object language instructions: set
port, wait, and repeat.

Op codes with values of 0 to 253 are
interpreted as set port instructions. For
example, 27-3 means turn on the right-most
two bits in port 27 (since 3=00000011 in
binary). These instructions cause the data
byte to be deposited in the port number
given by the op code itself (each latching
port has a unique address). The bit pattern
of the data byte specifies which pipe valves
attached to that port are to be opened and
which ones are to be closed. The pipe

Figure 5: An example of how musical notation is represented in the MUSIC
language.

valves will remain in that state until they
are reset by another set port instruction.

Repeat instructions (op code value of 254)
are trapped by the master system. The master
processor handles repeats by retransmitting
parts of the object program to the slave
processor as specified by the data byte of
the repeat instruction.

The wait instruction has an op code value
of 255. The second byte of the instruction
is interpreted as a nonnegative integer. This
byte’s value fixes a delay period computed
in 10 ms units. For example, 255-60 means
wait 600 ms.

An object program consists of a series
of “frames.” Each frame contains zero or

13

Listing 2a: An example
of how the program in
listing 1 is compiled in
MUSIC. The first step
is error checking, fol
lowed by the pro
duction of interme
diate code for each
voice.

Voice 1
43 The note 4C is 48 half tones up from Cp

—3000 A legato half note gets a timing of 3000 units
48 This is the second C

-2400 Timing for a normal half note
—600 Pause after a normal half note

Voice 2
45 This is 3A
41 This is 3F

-1200 Timing for a normal quarter note
—300 Pause

43 This is 3G
40 This is 3E

— 1200 Timing for a normal quarter note
—300 Pause

41 This is 3F
38 This is 3D

-2400 Timing for a normal half note
—600 Pause

This means turn on the bit pattern for 4
in Port 12:

*

02"
14
27
28
255
27
28
255

(27
255
27
255
27
255
12
14
27
255

PORT 12 100000100]

This bit goes to 4C in the viola rank.)

The F-A chord in Voice 2 on 8 ft flute

C from Voice 1 on 8 ft viola
C from Voice 1 on 4 ft violai

48
° I
0 I
12
144)
48
0
12
36
96
0
0
0
24

Wait for 480 ms

Listing 2b: Here the com-

Clear the chord in Voice 2

Pause 120 ms (space between chords)
The E-G chord in Voice 2 on 8 ft flute

etc.

This bit goes
to 3G in the
flute rank.

This bit goes
to 3E in the
flute rank.

This says turn on the bit pattern for
144=128+16 in Port 27:

PORT 27 110010000!

piler combines the voices
in listing 2a to produce
the final object code.

Photo 3: The authors’ Magnavox plasma
display terminal during an editing session.
Notes and chords can be created or modified
by moving a cursor to the desired position.
Entire musical phrases can be copied if
desired. Chords or whole measures that
repeat need be entered only once.

more set port instructions and is terminated
by a wait instruction. A frame is executed
by the slave computer by first executing all
set port instructions in a frame almost
simultaneously. The set port instructions
cause some pipes to be turned on and
others to be turned off. If a particular port
is not addressed by any set port instruction
during a frame, this port’s pipes remain in
their current state. This new pipe state
lasts for the duration given by the frame’s
wait instruction. At the end of this duration,
the next frame’s execution begins. Thus
each frame causes a combination of pipes
to be played for a set length of time. An
example of an object program is given in
listings 2a and 2b.

The execution of the object program is
controlled by two performance programs
that couple the master and the slave compu
ters together. There are two reasons why we
decided to use a pair of computers to handle
the performance of the music: one, the
correct latching output ports were already
available on the Intellec, and, two, the
slave could handle all the real time demands
while the master handled the retrieval and
loading of “pages” of the score from the
diskette. (A page is defined as 256 bytes
of object code.)

The slave microcomputer’s memory acts
as a circular buffer. The master initiates an
object program execution by sending a
header message to the slave. The master
then waits for a Block Request (BR) message.
At the receipt of each BR message, another
page (256 bytes) of the object program is
sent to the slave.

After receiving the header message, the
slave sends enough BR messages to fill its
memory with object code. After receiving
enough pages or an end of program instruc
tion, the slave starts executing the object
program. After finishing one page of object

14

code, the slave sends out a BR message.
The next page sent is placed in the space
released by the previous page that was
executed. The execution of the object pro
gram and the refilling of the buffer pro
ceed concurrently.

After sending the entire object program,
the master processor ignores all further
Block Request messages. When the slave
executes the end of program instruction
(which is a WAIT instruction with duration
zero), it sends a completion message back
to the master processor. The master proc
essor can then inform the user that the slave
is ready to accept another program.

This performance system software consists
of two programs. The “slave” program is
written in Intel 8080 assembly language.
Its machine code representation is stored
on read only memory in the slave micro
computer. The “master” performance pro
gram is written in Extended BASIC 4.0 for
the Altair 8800b computer.

The Compiler

The compiler accepts a MUSIC language
program and outputs an annotated listing
file. If no errors are detected, an object
program is then generated and saved on a
diskette as a file. Thus the compiler’s work
can be divided into two phases: error check
ing and code generation.

The error checking consists of two types
of operations: syntax verifying and context
checking. A syntax verifier examines each
statement to insure that it conforms to the
rules of the language. For context commands
it checks for correct number and types of
arguments and correct placement of this
statement in the measure. The repeat com
mand’s arguments and placement are checked
and the nesting of these statements is veri
fied. Data statement arguments are checked
for syntax correctness.

In addition to syntax, the context correct
ness of data statements is checked. The
number of data statements in a measure
must equal the number of voices currently
active as declared by the last STOPS com
mand encountered in the program. The
duration of each data statement must equal
the measure duration as declared in the
currently active time signature. This checking
is a real help to the composer since it handles
all the petty details.

The code generation phase of the compiler
is divided into four operations: generating
repeat instructions, handling context com
mands, processing data statements, and
coordinating measures.

Each repeat command causes one object
code repeat instruction to be generated.
Repeat instructions cause all the data

between HEAD and TAIL commands to be
used twice.

The context commands serve a function
similar to declaration statements in con
ventional computer languages. Their main
function is to alter the values of the global
arrays and variables that determine the note
address and note timing calculations. A note
address is a number that relates a note to a
pipe, while a timing determines how many
milliseconds the associated notes are to be
held.

The data statement handler processes
the data statements to determine the notes
to be played for a particular measure. Each
voice has its own First-In-First-Out (FIFO)
queue for storing information about the
events of the current measure. As each
event in a voice’s data statement is proc
essed, its FIFO queue is filled from the top
down. First the notes of the event, then the
duration of the event, and finally the dura
tion of the pause between this event and
the next one are placed on the queue. At
this stage, note values are stored as integer
numbers representing a number of semitones
above a base pitch, without regard to stop
settings. The durations are computed in
basic time units regardless of the current
tempo setting. The durations are stored as
negative numbers in order to distinguish
them from note values. Figure 6 shows
the general format of a queue for one voice.
It represents a sequence of four chords with
a rest between the last two.

In this example there is no pause duration
between events 2 and 3, indicating that event
2 is played legato with event 3. Event 4 has
no note values, therefore it is a rest.Glissandos
and tremolos are treated like event macros.
They are translated into a series of events
by the data statement parser before they are
processed onto the queue.

After each voice in a measure has been
parsed, the voice coordination routine gene
rates the object code using the following
algorithm:

1. The duration counter for each active
voice is set to 0.

2. The duration counter for each voice is
examined. Those voices with a zeroed dura
tion counter have their top sequence removed
from their queue for processing. (A sequence
is all the information from the top of the
queue down to and including the first dura
tion of pause found.) The sequence's duration
is stored in the voice’s duration counter.

3. The voice’s bit map is cleared. (The bit
map is an array of bits where one bit is used
to represent the state of one organ pipe.) As
each note value of a voice’s sequence is proc
essed, it is expanded into as many note
addresses as the number of stop settings

15

chord
(note \
/note /
/note \
duration I
pause /

event 1

chord
\ note j
¿note \
(note i
duration ’

event 2

chord
{ note A
I note 1
duration /
pause J

event 3

rest {duration {
event 4

chord
(note \
< note 1
/note)

duration 1
pause /

event 5

Figure 6: The general format of a queue for
one voice used in the MUSIC language.

defined for that voice. Each note address
generated causes a particular bit in the
voice’s bit map to be set to 1.

4. All the voice bit maps are ORed into a
master bit map.

5. The master bit map is compared to the
previous master bit map.

6. Those output ports whose bit pattern
has changed generate set port instructions
with the port’s new bit pattern as the data
byte of that instruction.

7. To generate the wait instruction, the
duration counter for each voice is examined
and the minimum duration is found. This
minimum duration is subtracted from each
voice's duration counter.

8. The minimum duration is multiplied
by the tempo variable to yield the actual
timing of the object code frame produced. If
a frame is within an accelerando or ritard
passage, the timing is altered to reflect the
gradual change in tempo, the tempo variable
is updated, and the duration remaining in
the tempo changing passage is decremented.
The final actual timing is used to produce a
WAIT object code instruction.

9. The current master bit map is labeled
as the previous master bit map.
10. The routine now goes back to step 2
if all the queues are not empty; otherwise
the next measure in the MUSIC language
program is processed.

The queues should empty simultaneously
since each voice’s data statement should
have a duration equal to the one set by the
time signature. (This is checked during

phase 1 of the compiler.)
The above algorithm was designed to com

pile multivoice music efficiently. An impor
tant feature of this algorithm is that it
allows more than one voice to share the
same rank of pipes. In addition, it permits
the user to generate from each note speci
fied many pitches through the stop setting
mechanism. Since the stop settings are per
formed through software, a user can trans
pose each note of a voice any number of
tones and into any rank of pipes. Listings 2a
and 2b show how the above algorithm works
for the simple two voice example given in
figure 5.

Future Plans

While the system described here is not
meant to compete with large dedicated music
research systems, it nevertheless has several
advantages over a number of other computer
controlled music systems. Currently, we
have two ranks of pipes with 64 pipes in
each rank. However, additional ranks of
pipes could easily be added to the system.
Each 64 pipe rank requires only eight more
latching output ports. The theoretical limit
for an Intel 8080 based system is over 2000
pipes. Mircocomputers that use memory
mapped IO could conceivably control
hundreds of thousands of pipes.

The system can be extended to other
musical instruments. By using solenoids,
any keyboard instrument can be controlled
through the output ports. Alternatively,
the solenoids might be placed inside the
instrument, driving something like the jacks
in a harpsichord directly. To play the harpsi
chord along with the organ would just require
the addition of a harpsichord stop to the
MUSIC language.

Electronic synthesizer music is not incor
porated in our system because of the high
cost of the special hardware needed, but at
least three low cost analog output boards
designed for Altair (S-100) bus microcompu
ters have recently been announced. It seems
reasonable to expect that the MUSIC lang
uage could be applied to these new pieces of
hardware.

The voice concept has some application
to “synthetic” music composition because
it allows the user to create new timbres by
specifying nonstandard overtone ranks (eg:
a 3.1416 foot flute). By assigning dummy
stop settings to certain voices, the composer
can also isolate the effect of these harmonics
during a test performance.

We are planning to eliminate the need to
compile and save object programs. An assem
bly language version of the compiler is being
written that will interpret MUSIC language
programs in real time. This will be done by

16

sending the bit pattern computed in step 6
of the measure coordinating routine to the
designated output port and use the time
value generated in step 8 to set an interval
timer. This new software system will allow
a user to interact with a performance. We
also hope to build a subsystem to capture
keyboard performance and translate it into
a MUSIC language program.

Aside from musical application, the pro
grams written for this system can be used
as a realistic basis for explaining many
important concepts of computer science
in a context that removes much of the
mystery surrounding computing. In many
ways, this could be the most useful contribu
tion of the music system, suggesting as it
does that the teaching of complex ideas
has much to gain from a liaison with the
creative arts. ■

A Glossary of Some Musical Terms

Accelerando: A direction telling the musician
to make the music gradually faster (increase
tempo).

Bar: Vertical line on the musical staff separ
ating the measures of music. Sometimes used
as a synonym for a measure.

Glissando: A rapid sliding up or down the musi
cal scale.

Key Signature: The sharps or flats placed after
a musical clef to indicate the key.

Legato: A direction telling the musician to play
in a smooth and connected manner.

Ritard: A direction telling the musician to
make the music gradually slower (decrease
tempo).

Semitone: The interval between two tones in
the chromatic (well tempered) scale (ie: the
distance between Ab and A is a semitone).

Staccato: In a broken or clipped manner.

Tremolo: Effect produced by the rapid repeti
tion of a note.

17

Jef Raskin

The

Microcomputer

and the

Pipe Organ
One night I got a call from a man who

had been wandering through the personal
computer stores in the area. He was looking
for a computer to operate his huge pipe
organ. Inevitably, he was given my phone
number, since I had been going around to
the same stores telling everyone that I was
working on a controller for my pipe organ.

There are several gimmicky reasons for
wanting to attach a computer to an organ.
My reason is that the combination can pro
vide the performer with a more flexible,
easier to play instrument. And then there are
all those gimmicks. As it turns out, using a
microcomputer can be less expensive than
conventional console wiring. Before we get
into the subject too deeply, the "organiza
tion” of the king of instruments should be
made clear.

The performer sits at the console. The
performer’s hands rest on one or more key
boards called manuals. There are usually
from two to four manuals. The feet play on
a set of keys placed beneath the bench called
the pedals. On most organs since the late
1800s, the console is separate from the rest
of the instrument and is connected to it by
means of electrical cables. As with the com
puter, the console is the “command center’’
of the instrument. In addition to the key
boards there are a number of other controls
on the console that will be discussed later.

Blockflotes and Zimbels
The sounding portion of the organ con

sists of many pipes. Each pipe sounds one

note. There are typically many different
pipes for a given note, each of which has a
different sound quality or timbre. A set of
pipes, all of similar timbre, one for each key
on a manual, is called a rank. Each rank has
a name, many of which are hallowed by
centuries of use. Some, like diapason (dia
pay zen) or bourdon describe sounds that
are characteristic of organs and nothing else.
Others, such as trompette or blockflote are
reminiscent of trumpets and wooden flutes,
respectively. Obviously one rank is a min
imum for an organ. (Renaissance portative
organs had one rank.) A small organ usually
has three or four ranks, controlled from two
manuals. The one being installed in my
house has 26 ranks. A large organ will have
70 or more. The organ owned by my friend
mentioned above has 140 ranks. That is very
large, and only a few cathedrals have more.

Each rank has 61 pipes, as there are 61
notes on a manual. Thus for a pipe organ of
a 100 ranks there are 6,100 pipes. Each rank
is turned off or on by a knob or switch
labelled with the rank’s name. These knobs
are called stops. (The terms stop and rank
are sometimes used interchangeably, but in
this discussion rank will refer to a set of
pipes, and stop to the controlling knob.)

A large organ often has four manuals
(named great, swell, choir and echo or posi-
tiv) each having 61 keys, a 32 note pedal
board, 100 or so stop knobs, and a few
dozen assorted controls. Thus there are
about 500 controls that the organist must
manipulate: a complicated instrument,
indeed.

Photo 1: Pipe organ con
sole shown in the home of
the author’s colleague, Jim
Brennan, who did the cus
tom installation work. The
console was obtained from
a church in Pasadena CA.

19

Photo 2: A view of three
ranks of organ pipes in the
living room, including a
Rauschepfeife, left, Holtz-
regal, center, and Zimbel
bass on the right. Each
rank has its own particular
tonal color.

Key Decisions

And now we come to the microcomputer.
It must keep constant watch on 500
switches and control some 6,000 relays, one
for each pipe. It must never miss a switch
closure or release, and must operate the
correct pipes (sometimes dozens simul
taneously) within 1/20 of a second. Is this
within the capabilities of an 8080? As it
happens, it is. But not without a bit of
tricky IO design and some swift algorithms.

For completeness, it should be mentioned
that some ranks are not exactly 61 notes.
“Unified” ranks often have 75 pipes, and
some special ranks have fewer than 61. But
fortunately these exceptions are easily
handled. The problem is simplified in some
organs (a little) by sets of ranks grouped into
“straight" chests. Instead of each pipe
having its own electrically operated valve
(a “unit" chest), each rank in the chest has
a valve. Then all notes of the same name
(such as all Cs or all F#s) have one valve.
This loses some generality, but requires
fewer valves and electrical connections. For
M ranks of N notes each, a “straight” chest
requires M+N valves. A “unit” chest has
MxN valves.

Organs also traditionally have couplers,
which operate either within a keyboard or
between keyboards. An intermanual coupler
has the effect of operating a note on one
manual when you press the corresponding
note on another. (On some old organs both
keys actually move when you press one of
them. This may have given rise to “phantom
of the opera” stories.) A coupler that works

within a keyboard plays a note typically one
octave higher or lower than the key you are
playing, but on the same keyboard. Intervals
other than an octave are also available on
some organs.

An organ is also separated into divisions.
These have the same names as the manuals:
typically, great, swell, choir, echo and
positiv. The pipes played by the pedals form
another division: the pedal division. Each
rank belongs to exactly one division. In the
traditional organ, a manual can play pipes
only in its division. You can couple manuals
together, but it is impossible to play a rank
in the swell division from the great manual
without playing all stops that are pulled in
the swell division from the great manual.
This separation into divisions has no musical
benefits, but is done merely to simplify the
construction of the switching in the console.
By means of a microcomputer, divisions can
be eliminated. The organist can then inde
pendently assign any rank to any keyboard.
This is the first of a number of nongimmick
improvements that can be appreciated by
any organist.

The switching in the traditional organ is
done by the most incredible collection of
electrical, mechanical and pneumatic
switches imaginable. That it works at all,
being made mostly of slats of wood and
strips of leather with silver wires for con
tacts, seems miraculous. It is not surprising,
then, that freedom in interconnection has
been restricted in the past.

The wiring from the console to the pipes
over distances from ten to over 100 feet

20

reminds one of a cross between the innards
of a computer before the mother board was
invented and a telephone company switching
office. A major advantage of the computer
ized organ is the elimination of most of this
wiring. In a very large organ, the cost of the
computer system may be less than the cost
of the cabling alone.

When an organist plays a piece, it has a
characteristic sound quality produced by a
judiciously selected set of stops being acti
vated. A particular collection of stops is
called a registration. It is usually desirable to
be able to store such combinations. There
are a number of buttons called pistons which
recall combinations of stops. Logically
enough these collections of stops are called
combinations or presets. There are often a
few fixed presets, and a number of pistons
are provided whose registration the organist
can change at will. Another advantage of
the computer controlled organ is that many
more presets are available. 4 K bytes of
memory can store hundreds of different
presets, more than on any conventional
organ. This amount of memory costs less
than one preset done mechanically! And
it’s a lot easier to install.

Consider what happens when a single key
is pressed. First, any keys that are coupled
to it are also activated on its keyboard as
well as on other keyboards. For each of
those resultant keys, as well as the original
key, the applicable stops must be looked up.
If there are two couplers and four stops
activated for each of the three keyboards
involved, no less than 12 pipes must sound.
When playing a full chord with many
couplers and stops engaged, it is not un
common for 500 pipes to be operated
simultaneously.

Getting Organized

A number of schemes were concocted for
driving the pipes and reading the keys. One
scheme, which has been used on smaller
organs for computer control, was to have
each key send out a unique code. Each pipe
recognizes its own address. The computer
would receive key codes as well as stop and
coupler codes, and compute the appropriate
pipe addresses. A decoder at each pipe, as
well as a diode matrix or other encoder for
the console, would be required. Since on a
large organ there are over 2^2 pipes, even a
12 bit code would not be long enough.
This would mean assembling two 8 bit
words for each pipe. Putting out over 500
of these in 1/30 of a second (considering
the number of steps required in the pro
gram) would have been impossible. Further,
the cost for decoders at each pipe is
prohibitive. This ruled out going to a 16 bit
computer, since it wouldn't help the decoder

problem, and a larger word size seemed to
hold few advantages in any other way.

Cost alone ruled out the brute force
approach of using a very fast computer.
Another way to get high data rates from a
microcomputer would be to use direct
memory access (DMA) circuitry. With this
scheme one DMA device scans the keyboard
continuously and enters key depression and
release information into memory. The main
processor (at its own rate) scans the key
board image in memory and constructs a list
of pipes to be played or quieted. Another
DMA scans the list of pipes and controls the
pipes accordingly. In essence, three com
puters would share the same memory and
would run asynchronously, each going as
fast as conditions allowed. This seemed
feasible, and is necessary for larger organs.
But for smaller organs the DMA is not
needed, as will be seen.

Part of the solution lay in hardware. At
one extreme of decoding (as explained
above), each pipe has its own decoder. It
would be more efficient for each group of,
say, eight pipes to have a decoder which de
tects its code and then accepts the next byte
as controlling eight pipes in parallel. The 8
bit control byte 10001001 would mean that
the notes C, E and G are to be played, while
leaving C#, D, D#, F and F# silent. This
would reduce the number of decoders by a
factor of 8, and then operates eight pipes
at a time. This was fast enough in the IO
department, but the time required to as
semble the control bytes by masking or
rotation was too great. A microcomputer
handles bytes with great efficiency, but
manipulating individual bits takes signi
ficantly more time. A number of algorithms
were considered, but it was apparent that
they were not suitable.

At the other extreme from a decoder for
each pipe is the idea of having no decoders
whatever. This idea was put forward early in
the design effort, but was discarded as ridic
ulous. In the end it became clear that the
idea was not only feasible, but fast and
cheap to implement in hardware. It also
made the software much easier to design. It
works like this: A very long serial-in/parallel-
out shift register is made. It will have at least
one output for each pipe. Using available
8 bit shift registers, the 140 rank organ’s
2000 electrically operated valves require
about 250 shift registers. (The 7000 pipes
require only 2000 controlling lines since
most of them are on straight chests.) In
effect we build a 2000+ bit shift register,
a long “tube” through which 1s and
0s flow in single file. When all the 1s and 0s
(standing for pipes sounding or silent) reach
their correct positions, a command (strobe)
is sent operating all the pipes at once. If the

21

process is to take 1/60 of a second, the shift
register has to move 2000 bits in that time.
But this is a rate of 120,000 bits per second
(120 kHz) which is within the capabilities
of the shift register and the computer but
a bit beyond an unaided 8080. Remember
that these calculations are for a mammoth
size organ. Most organs are significantly
smaller and the problems are correspond
ingly easier.

A similar approach is used for the key
boards. There exists a 33 input parallel to
serial converter made for electronic organs.
Just two of these integrated circuits would
suffice to encode an entire manual. The 500
controls could be transmitted serially to the
computer in 1/200 of a second at 100 kHz.
The interface would require fewer than 20
“critters.” Again, this is for a huge organ.

Photo 3: Another view of the organ showing the swell chest and echo chest.

My own home organ would require only ten
integrated circuit chips for its console.

The hardware for a large organ can now
be summarized. A 500 bit parallel to serial
converter for input, a 2000 bit serial to
parallel converter for output, one input port
and one output port are required. Each pipe
also needs a power transistor to handle the
0.5 A at 14 V required by the valves (this
is a typical figure). Some of the larger pipes
might require two stages or a Darlington
power transistor, but there is no real diffi
culty in the design. Another side benefit
accrues at this point: Many pipe organs use
electro-pneumatic valves for each large pipe.
This is because an all electric valve opens
too suddenly. To solve the problem, the
traditional builders designed the electrical
valve to let air into a small bellows which,
in turn, operates the valve that lets air into
the pipe. A pair of resistor-capacitor (RC)
networks and a diode in the base circuit of
the power amplifier for each pipe can give
the desired slow attack and release usually
obtained by the much more expensive and
problematical pneumatic system. This can
amount to savings of over $1000 in a large
organ. It should be mentioned that some
organ manufacturers have been successful
in making satisfactory all electric valves
with appropriate attack and decay curves.
They would not require the RC networks.

Software design was as gradual as the
hardware design. There were two break
throughs necessary before it was clear that
the 8080 could work quickly enough. (When
this design was being done, by the way,
the Z-80 and other faster processors
were not yet in production.) But the con
straints of the 8080 and the very large organ
forced a much tighter and more clever design
than would have been developed if we had
had more powerful computers and a smaller
organ. Given the newer computers, of
course, larger and more complex pieces of
equipment can be controlled. Many indus
trial plants have fewer than 200 sensors and
2000 elements that need to be operated in
real time. A microcomputer using the tech
niques outlined here could handle them.

The program begins by sweeping in the
console settings. To save time only one bit
per word is used. This wastes 7/8ths of ^00
words, but memory is cheap. The same trick
can be used in output, eliminating the neces
sity to pack bits into bytes. Thus over one
byte per key and one byte per pipe will be
sacrificed to gain speed. That amounts to
$40 at most in memory costs. It buys us
speed and simplicity, and it is worth it.
While it now seems obvious that this is a
useful way to proceed, it somehow took
four months to find the solution. This is
probably because we are so reluctant to

22

Photo 4: The main organ
chamber with portions of
an organ taken from a
Sacramento church.

waste memory. A pipe organ costs from
$20,000 to whatever you care to spend
(a million dollars is not unusual). The
computer costs are lost in the small change.

For a small organ, the DMA is not even
needed, and the input and output loops are
very simple:

1. Point to a memory location.
2. Do an input (or output).
3. Move the contents of the accumulator

to that location.
4. Increment the location.
5. Check for done. If not done, do an

input (or output), etc.

The loop can be done on an 8080A at
66 kHz. Thus, an entire 20 rank organ can
be updated in less than 0.02 second. The
DMA would do the same algorithm, but
at 1 MHz, and would overlap processing.
The 8080 with a 2 MHz clock is just fast
enough. An 8085 or Z-80 processor would
be more than fast enough. Again, remember
that for a typical home or small church
organ, the plain old 8080 would have the
necessary speed and that we are discussing
a worst case design.

Even with IO solved, there still remains
the problem of deciding which pipes are to
go on and which to go off. At first this was
a stumbling block in terms of the time it
would take to do the computations. On each
console scan, it seemed, a table of couplers
would have to be made up, as well as a
table of stops. A key depression, through the

couplers, results in a number of “virtual”
key depressions. Since some virtual keys,
being higher or lower on the keyboard than
the original key, will go off the end of a
keyboard, they must be deleted from the
virtual key list. The remaining keys then
have to be processed through the stop list
to determine which pipes are to be played.
Since the IO routines take a total of about
0.04 seconds already, the processing itself
must take no more than 0.013 seconds. Just
the checking for out of range virtual keys
would take more time than we can spare.

The easiest solution to the coupler spill
over problem is to include a few extra places
in the shift register on both ends of each
rank. This allows all the ranks to have the
same shift register length whatever the
actual number of pipes. The first advan
tage is that out of range virtual key de
pressions need not be checked for, since
they fall into unused sections of the shift
register. As with the wasted memory, the
cost of the unused shift registers is small.
The second advantage is that the electronics
for every rank, of whatever kind, can be
mass-produced. This makes it less expensive
to build, as well as making the software
easier to write (aside from merely being
faster).

Except to satisfy traditional organists,
there is no reason to have intermanual
couplers on a computer controlled pipe
organ. The original reason for including
intermanual couplers was to minimize the

23

Photo 5: A rank of chimes
pipes.

limitations imposed by the separation of
the pipes into divisions. The computer, by
being able to assign any rank to any manual
(or to the pedals), eliminates the need for
these couplers. They might well be elimi
nated in my own organ.

Another choice to be made is whether to
recalculate all the pipes to be played, or just
to modify the previous state on each cycle.
It was decided to recalculate from scratch
each time to eliminate the possibility of
cumulative error. It also means that key
bounce is automatically taken care of. In
the slight time between updates, an organ
pipe cannot even begin to sound. A spurious
signal for one cycle is effectively ignored.
Continuous pipe-on instructions emitted
over a period of approximately 0.1 second
or more are required before the slow mech

anical valves can react. The higher pitched
pipes respond quickly, incidentally, and the
low pipes sometimes take nearly a second
to begin playing. Organists learn to com
pensate by playing low notes somewhat
early. Without introducing a constant
across-the-board delay, it does not seem
possible to have the computer compensate
for the effect, but it is a place where some
experimentation might be interesting. Ex
perienced organists, of course, might look
askance at such an innovation, but they
needn’t be told about all of our ideas.

To summarize: A cycle of the com
puter organ system starts by pulling in the
state of the console. The second part of the
cycle (yet to be described) calculates the
pipes that should be playing, given the state
of the console. The third portion of the
cycle sends the pipe commands along the
shift register. This process is repeated at
least once every 1 /30 of a second.

A coupler (of whatever kind) is merely
a displacement. It is easily calculated be
cause all keyboards and ranks are the same
nominal length. Likewise, engaging a stop is
also a displacement of a distance equal to
the difference between the bottom of the
manual’s image in memory and the bottom
of the rank’s image in memory. Thus, these
displacements or offsets can be simply added
to yield the offset for a combined coupler
stop setting.

An example, with a simplified organ,
will demonstrate how the algorithm op
erates. Say there is one manual with ten keys
numbered one through ten. They are read
into memory locations (all numbers will be
in base 10 for this discussion) 1001 through
1010. The ranks each have ten pipes, and
there are two of them. The first rank is
stored in locations 2001 through 2030.
The second rank is stored in locations 3001
through 3030. Remember that the area set
aside for each rank is larger than the actual
space necessary (here three times as large).
There are two stop switches, stored in loca
tions 4001 and 4002. There are two
couplers. They are stored in 4003 and 4004.
The first couples up five pipes high, the
second down three pipes low.

When the low order bit in 4001 is on (or
high), the program adds 2010 to the key
address to get the pipe address. When the
other stop is on, 3010 is added. If the first
coupler is on, an additional 5 is added, and
the second coupler subtracts 3 (or adds a
negative 3; it is all the same thing). The
addition is done only once. Say the first stop
and the second coupler were operated;
then, given a key on at location 1005, to
get the proper location to turn the pipe on,
one merely adds (2010-3) or 2007 to the
key location (1005+2007)=3012. This is

24

indeed the correct pipe.
The microcomputer gives the user

another option. When a stop and a coupler
are operated, one gets both the note given
by the stop and the extra note given by the
coupler. With a computer it would be
possible to give just the note given by the
coupler acting on that stop. Since each stop
can have a whole panoply of couplers
attached to it, the number of buttons would
soon become unworkable. For complete
flexibility, the organist would have to be
provided with a keyboard and display. One
would play the organ by setting up many
required presets with whatever degree of
flexibility required, and then the easily hit
tabs would not activate stops, but would
bring in the organist’s choice of registrations.

In the example above, choosing both
stops and couplers would necessitate the
addition of six numbers to each key location
to obtain the pipe location. In the actual im
plementation, the program would, for each
manual, do the following:

1. Scan the list of stops, and make a
table of addends.

2. Scan the couplers, and add them to
each stop, extending the list of
addends.

3. Add the addends to the locations of
the manual that contain a 1 (meaning
a key depression).

4. Turn on the low order bit in the
indicated word in the pipe image.

Intermanual couplings look just like any
other kind of coupling. Say that one manual
is stored in 1001 through 1010, and another
manual at 1201 through 1210. Coupling
the first manual to the second merely
means adding 200 to the locations of the
first manual. Just which intermanual coup
lers will be allowed must be carefully speci
fied. If anything is allowed, we may get the
following cat chasing its tail effect: Manual
1 is coupled to manual 2 at the same pitch.
Manual 2 is coupled to manual 1, but one
key higher (a semitone or half step higher
in musical terminology). Press C on manual
1. C gets played on manual 2. This forces
C# on manual 1. But this makes C# play
on manual 2. Every key is thus being
played. As implied above, though, inter
manual couplings are necessary only on
organs where the pipes are separated into
divisions. In the computer controlled pipe
organ they can and should be eliminated.
Everything they can do, and more, can be
done by freely assigning ranks to keyboards

as desired. I am not sure that all organists
will be convinced by this.

Future Fugues

The organ console of the future, as it
appears in the light of the computer
mediated organ, looks like this: The manuals
and pedals are built to the usual AGO
(American Guild of Organists) standards.
These standards are excellent, and permit
an organist to travel from one instrument
to another with a minimum of relearning.
Instead of the usual arrangement of stops,
there are as many rows of stops as there are
keyboards. When a stop is to be assigned
to a given keyboard, the button in the row
representing that keyboard, and in the
column representing that stop, is pressed.
Any particular registration may be cap
tured by pressing the “capture” button
and, while holding it, operating the chosen
preset button. The stop buttons should,
as on conventional organs, move (or light
up) to show what choices have been made.
This is not far from conventional practice.

The possibilities in a console screen,
with alphanumeric readout, are endless,
and would require another article to explore.
Similarly, the gimmicks, from very useful
ones that record (on a disk or cassette)
the performance in terms of keystrokes,
to silly ones (for example, connecting the
doorbell to the computer, so that the organ
plays “Jesu, Joy of Man’s Desiring” when
a visitor presses the door button) would
again take up too much space here.

Summary

The reasons for using a computer in a
pipe organ are these:

1. Simplification of the wiring of the
organ.

2. Greater reliability than conventional
switching.

3. Lowered expense in medium and
large instruments.

4. Much greater control of the instru
ment by the performer.

5. New freedoms in choosing regis
trations.

Nothing, it would seem, is lost by going to
a microcomputer, and one could keep ad
vantages 1, 2 and 3 above while keeping
the appearance and operation of the pipe
organ unchanged, in case any organists
choose not to use advantages 4 and 5."

Acknowledgements

Certainly at least
half of the ideas ex
pressed in this paper
are due to my friend
and colleague, Doug
Wyatt. AH of the ideas
were developed in colla
boration with him.
Thanks are also due to
Jim Brennan, who owns
the incredibly large or
gan so often mentioned
in and photographed
with this article, and
whose cooperation and
inspiration have been
essentia! to the project.

25

Tune In With Some Chips
Ted Sierad

Are you fascinated with the idea of
computerized music, but find the mechanics
of producing such effects too complex? I’ve
come up with a simple technique which is
the subject of this article, and which is well
within the capabilities of the novice com
puter experimenter. With less than a dozen
inexpensive integrated circuits, a few resis
tors, capacitors and a small prototyping
board you can be well on the way to
creating interesting music with your Altair,
IMSAI or similar computer. My design
creates a programmable music tone gener
ator peripheral which has outputs that sound
somewhat reminiscent of a clarinet when it
is programmed by simple or complex soft
ware used to sequence notes in time. The
first attempts I made at music generation
required complicated programs and many
integrated circuits. But as I gained more
familiarity with the problem, the project
reduced into a relatively simple solution as
illustrated here.

The Hardware

The diagram of the melody box hardware
is illustrated in figure 1. This hardware is the
key to generation of tones from the compu
ter. Software to be described later is respon
sible for sequencing the notes in time, thus
creating a melody. The basic principle of
operation of this melody box peripheral is

use of a latched binary code in eight bits to
select one of several adjustable resistors
which will be switched into an oscillator
circuit as the timing resistor. In the parti
cular circuit shown in figure 1, I used a pair
of 7475 latch circuits to hold the code sent
from an 8080's IO instruction; then I de
coded the 8 bit pattern with a pair of 7441
circuits which I happened to have on hand in
my workshop. The 7441s separately decode
two 4 bit codes into selection of one of ten
open collector output lines. These output
lines are low if the line is selected, and
effectively disconnected if not selected. The
software used to drive the IO port should be
set up to select only one active line by giving
out a “null code’’ such as binary 1111 in one
half of the 8 bit word, while selecting a given
tone in the other half of the 8 bit word. This
guarantees that only one line is in the low
state out of a possible 20 lines. The line
which is in the low logical state will then
affect the frequency of the oscillator imple
mented by the 555 timer integrated circuit,
IC7 of figure 1. The pitch of the note
selected is determined by the tuning of the
potentiometer associated with a given binary
code by the decoders.

The low logic level output of the decoder
is similar to a ground or zero voltage. Since
all the other lines are effectively floating as
open collector outputs, a definite low state
on the one line inserts the resistor selected

27

Figure 1: Schematic of the melody box. This circuit works
by changing the timing elements of a 555 oscillator inte
grated circuit to set the pitch. One resistor sets the pitch of
each note of the scale. To turn off the oscillator, the circuit
detects a special case which turns off the power to the
oscillator by raising its ground pin to the high logic level.

Integrateci Circuit Power Wiring

Number Type +5 V G ND
IC1 7475 5 12
IC2 7475 5 12
IC3 7441 5 12
IC4 7441 5 12
IC5 7404 14 7
IC6 7402 14 7
IC7 555 8 5

Resistor
Number

Potentiometer
Value

Approximate
Setting

R3 100 k 40 k
R4 100 k 48 k
R5 100 k 56 k
R6 100 k 64 k
R7 100 k 68 k
R8 100 k 76 k
R9 100 k 80 k
R10 100 k 86 k
R11 200 k 90 k
R12 100 k 43 k
R13 100 k 56 k
R14 100 k 67 k
R15 100 k 76 k
R16 100 k 86 k
R17 200 k 95 k
R18 200 k 108 k
R19 200 k 135 k
R20 200 k 152 k

28

Photo 7: The melody box
as constructed, using a Ra
dio Shack prototyping
board.

into the 555’s timing circuit. The circuit is
tuned by running a scale and adjusting the
pitches by ear, or even by using a frequency
meter.

But what about having no sound at all?
Rests are important to music, and there
must be some way to turn off the sound.
Simply selecting none of the resistors is the
first thought which comes to mind, but this
does not work very well at all, as you’ll find
out if you try it. What 1 did was to put in
the NOR gate logic of IC6d to detect when
both halves of the 8 bit output word are 0,
as indicated by selection of the 0 output line
of each decoder. When this happens, the
output of the NOR gate is high. Since I use
this NOR gate as the power and signal
ground of the 555 oscillator, I have effec
tively removed power from the 555 and
turned it off when the double 0 state is
output to the port. This may not be optimal
engineering, but it certainly works.

My hardware stopped at the point of
generating the tones, but for a full range of
musical effects, you would certainly want to
add some digital controlled filters and ampli
fiers to this basic pitch generation facility.
Some filtration can be accomplished, of
course, by manipulation of the tone controls
of your high fidelity amplifier.

Further Simplifications of Hardware

The circuit of figure 1 is how I built the
melody box; but after building it, it oc
curred to me that several further simplifica

tions could be made. For example, the
latches and IO port decoding logic outlined
by the dotted lines could easily be replaced
by an existing IO port on a computer, such
as those provided by the peripheral interface
adapters (PIA) of typical IO port boards.
The 7441 is not the only open collector
decoder chip available, and if you want to
make 32 or 64 notes, use of two or four
74159 circuits with a 5 or 6 bit binary code
would be possible. The only major disadvan
tage I find with this circuit is that it has to
be tuned individual note by individual note.

Construction

The melody box was built on a Radio
Shack IC experimental breadboard,
#276-154 (Archer), which plugs into their
#276-1551 card connector socket. This type
of board has a foil pattern on one side. The
integrated circuits or sockets are inserted
from the nonfoil side and pins are then
soldered to pads designed to take the DIP
package pins as well as several connecting
wires or components. See photo 1 for a
look at my version. I used Molex pins to
fabricate sockets for the integrated circuits,
although solder tail sockets or no sockets at
all could be used depending on your prefer
ences and sources of supply. Wiring is done
from the nonfoil side, with stripped ends of
the wires going through the board to the
appropriate pads. I used multiple colors for
the wires in order to make tracing of the
circuit easy. The space between the solder

29

7 6 5 4 0 7 6543210

Note Length

MIDDLE"C" Dotted QUARTER

PITCH (Even Bytes)

Hexadecimal Octal
Note Note

Code Code

00 000

01 001

02 002

03 003

04 004

05 005

06 006

07 007

08 010

09 011

10 020

20 040

30 060

40 100

50 120

60 140

70 160

80 200

90 220

FF 377

Figure 2: Programming model for the melody box. The note pitch and length codes listed are interpreted by the program shown
as a flowchart here. Each note is completely specified by a pitch code and a length code contained in two bytes of memory as
shown by the example.

30

Figure 3: The melody box A Set of Chromatic Scale Data for Tuning the Melody Box
notes are tuned by running

Octal
this chromatic scale text Hexadecimal

through the program of Relative
Address

Note and
Length Code

Relative
Address

Note and
Length Code

figure 2. White listening to 000 001 002 00 01 02
the scale, adjust each 002 002 002 02 02 02
note’s potentiometer until 004 003 002 04 03 02
the sound is a correct 006

010
004 002
005 002

06
08

04 02
05 02

musical interval. 012 006 002 0A 06 02
014 007 002 OC 07 02
016 010 002 0E 08 02
020 011 002 10 09 02
022 020 002 12 10 02
024 040 002 14 20 02
026 060 002 16 30 02
030 100 002 18 40 02
032 120 002 1A 50 02
034 140 002 1C 60 02
036 160 002 1E 70 02
040 200 002 20 80 02
042 220 002 22 90 02
044 000 040 24 00 40
046 377 xxx 26 FF xx repeat code

Figure 4: A test string, A Familiar Tune
shown in machine code
form and in traditional

Octal Hexadecimal

musical representation, Relative
Address

Note and
Length Code

Relative
Address

Note and
Length Code

sans time signature, using 000 002 004 00 02 04
note lengths as defined in 002 002 004 02 02 04
figure 2. 004 006 004 04 06 04

006 011 004 06 09 04
010 120 014 08 50 0C
012 040 024 0A 20 14
014 040 004 0C 20 04
016 007 004 0E 07 04
020 011 004 10 09 04
022 040 004 12 20 04
024 011 040 14 09 20
026 002 004 16 02 04
030 002 004 18 02 04
032 006 004 1A 06 04
034 011 004 1C 09 04
036 011 014 1E 09 0C
040 004 024 20 04 14
042 006 004 22 06 04
044 007 004 24 07 04
046 006 004 26 06 04
050 004 004 28 04 04
052 002 03.0 2A 02 18
054 000 001 2C 00 01
056 377 xxx 2E FF xx stop

31

Photo 2: Installation of
the melody box inside an
Altair 8800 is accom
plished by wiring various
wires from the backplane
of the computer. The
power switch and volume
control were mounted on
the back panel of the com
puter, so that the melody
box could be turned off. pads and bus lines of the card is relatively

small, so care must be used to prevent solder
bridges from forming. I recommend a low
wattage iron with a pencil tip. 25 to 30 W
will work well.

The 20 variable resistors used can typical
ly be found at prices from $.20 to $.49
depending on how good you are at shopping
around. I mounted the actual melody box
inside my Altair 8800, as shown in photo 2.
The circuit connections to the Altair bus
were made as shown in figure 1. When
mounting the circuit inside the computer
cabinet, care should be taken to prevent
damage to existing boards of the computer. I
found that covering the boards with a layer
of paper was a good precautionary measure
to prevent any splatter of solder. In order to
make the Altair connections, you must
remove the mainframe backplane board (the
one with all the edge connectors) so that
you can solder to the underside.

Software for the Melody Box

The melody box requires instructions to
tell it what to do. In an organ, piano or
other instrument, a special purpose key
board gives instructions about what note to
play and for how long. Making the melody
box play a tune consists of writing a
program to generate a time sequence of
instructions.

A programming model for the melody
box is summarized in figure 2. The data
required for each note is the pitch of the
note, and the length of the note. In the
program I wrote for my Altair, I used one 8

bit byte to represent the pitch, followed by
a second 8 bit byte with an integer count
giving the length. A table of the pitch codes,
referenced to a music stave, and a table of
length codes with equivalent note symbols
are shown as part of figure 2. The flowchart
in figure 2 shows an algorithm which is easy
to implement on any small computer. In my
own system, I enter these codes with the
front panel toggle switches and the “depo
sit” function.

Once you have coded up the details of a
program which will execute the flowchart of
figure 2, the first step is to tune the melody
box. In figure 3 I’ve shown the musical
representation of an ascending chromatic
scale, as well as the corresponding table of
byte values (in octal and hexadecimal) for
the 2 byte note pitch and length codes
required to play this scale. An arbitrarily
long rest follows the end of data before the
repeat. Tuning is accomplished by ear (as
suming you know what a scale sounds like)
while playing this chromatic scale with the
program. The potentiometers of the circuit
in figure 1 should be adjusted until the scale
sounds “right.”

As a second example, figure 4 shows a
familiar tune, both in music notation and as
a table of values for the music program to
utilize. In the music notation, the table
locations are written below in hexadecimal
and octal to show how the two representa
tions correspond. The limits on what tunes
you can play are only dependent upon how
much imagination you have and how big
your Altair’s memory is."

32

A $19 Music Interface
(And Some Music Theory for Computer Nuts)

Bill Struve

“It’s all Relative.” So it is in physics as
it was in music. About 600 BC Pythagoras
discovered that strings under equal tension
sounded harmonious if their lengths were
in ratios of small whole numbers like 2/1,
3/2, 4/3, 5/3, etc. Many experiments
throughout the world since that time have
told us that in music, it is the ratios of the
frequencies of the notes that count, not the
absolute frequencies. It has only been in
recent times that there has been inter
national agreement that A above middle
C is 440 Hz. Musicians call the “distance”
between two notes an interval. Musical inter
vals are actually the ratios of the frequencies
of two notes, and are so important in music
that many of the ratios, or intervals, have
names. For example, 2/1 is called the octave,
3/2 is called a perfect fifth, 4/3 is called a
perfect fourth, 5/3 is called the major sixth,
etc. These names make sense to musicians
because they represent the distance between
two notes on the musical scale like do re mi
fa sol la ti do, which might be numbered 1
through 8, respectively. An octave is do to
do, a perfect fifth is do to sol, a perfect
fourth is do to fa, a major sixth is do to
la, etc. The pure diatonic scale was con
structed to maximize harmony between
notes. This scale has been called the natural
scale, and is one of the two most widely
used scales in Western music. Many unac
companied singing groups sing on this scale
because it sounds right to them, even though
they may not be able to tell you the dif
ference between pure diatonic and tempered
diatonic scales. Later you’ll see how easy
it is for a computer to generate notes on this
scale.

Pianos, electronic organs, and synthe
sizers are all tuned to a slightly different
scale, the equally tempered diatonic scale.
JS Bach (1685-1750) played keyboard in
struments and composed music which
required changing key signatures (which
we’ll define by example later in this discus
sion), during the performance. But changing
key signatures on an instrument tuned to
the pure diatonic scale usually required
retuning the instrument as you’ll see in a
moment. Bach found his way out of this
dilemma by slightly mistuning his instru
ments, a technique which had recently been
developed in Europe. This tempering was
done so that all key signatures were equally
out of tune, or equally tempered. When
this is done, the ratio of frequencies of any
two adjacent notes turns out to be the
twelfth root of two (the value 1.0594631
noted mathematically as *^/2 or calculated
in FORTRAN-like languages as 2**(1.0/12)).
He chose this ratio because there are twelve
half steps per octave and the octave is a
ratio of 2/1. Only the octave is kept purely
harmonic in this scale: The perfect fifth is
0.11 percent low, the perfect fourth is
0.11 percent high, the major sixth is 0.91
percent high, etc. Since the most discrim
inating ear can only perceive differences
in frequency when they are more than
0.2 percent, the most harmonious inter
vals (the octave, the fifth and fourth) are
indistinguishable between the two scales.
But what Bach and the world gained by
giving up a little harmonic perfection was a
quantum jump in the versatility of fixed
tuned instruments (and an added quantum
jump in the time and skill required to

33

properly tune one).

Harmonious Computers

Microcomputers can give us both per
fection and versatility. Since division by
small whole numbers is trivial with digital
electronics, it is at first sight more practical
to use the pure diatonic scale when digitally
generating music, just as it has been more
practical to use the equally tempered dia
tonic scale for music performed on classical
keyboard instruments. Changing key signa
tures in computer generated music is no
problem, since the entire instrument may be
“retuned” in a few microseconds.

The greatest advantage of the micro
computer is the ease with which anyone
can produce music. Years of time con
suming practice are not required. Applica
tion of computers to music may change
music from an activity primarily dominated
by motor skills to one dominated by the
intellect. Composers no longer have to be
skilled at playing an instrument in order
to work out their compositions.

Do, re, mi, fa, sol, la, ti, do! North
American, English, and Italian children all
learn how to sing the scale. Most of them
also learn other representations of the same
musical scale like: CDEFGABC, and:

Rarely if ever are any of these youngsters
exposed to: 264 Hz, 297 Hz, 330 Hz, 352
Hz, 396 Hz, 440 Hz, 495 Hz, 528 Hz, or
to: 1/1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8, 2/1.
These two sets of numbers are also repre
sentations of do, re, mi, fa, sol, la, ti, do in
the pure diatonic scale. Equally valid (es
pecially for the piano) representations of
this simple do to do musical scale are;
261.6 Hz, 293.7 Hz, 329.6 Hz, 349.2 Hz,
392.0 Hz, 440 Hz, 493.9 Hz, 523.3 Hz,
which are related to each other by powers
of the twelfth root of 2: 20/12(=i.000),
22/12(=i.i225), 24/12, 25/12, 27/l2
29/12, 211/12j 212/12 (=2.000). As you
may have guessed by now, these last two
sets of numbers are the frequencies and
frequency ratios of the equally tempered
scale of do to do played on a piano.

So far, so good, but if you are as fast as
I am at absorbing this material, by now it
should be as clear as mud! Organization of
facts into a pattern often does wonders for
the intellect, so let us organize all this in
formation into one table (table 1) and call

it the “Key of C Major” so that musicians
will think we are talking about music instead
of computers.

You should notice a couple of things
about table 1. First, at the bottom line
you’ll see that I’ve added a new concept:
the musician’s idea of step size. The steps
come in two sizes, whole and half. Remem
bering that everything is relative, we can talk
about step size in terms of the ratio of the
frequencies of the pitches, or notes. In the
pure scale, a half step up in pitch is an in
crease of 16/15 in frequency and a whole
step up is an increase of 9/8 or 10/9. In the
tempered scale all half steps up are an in
crease in frequency by the twelfth root of
two (21/2), and all whole steps up in pitch
increase the frequency by the sixth root of
two (21/6) which is two half steps:

21/12x21/12 = 22/12 = 21/6
Secondly, you should note that the dif

ference between the pure and tempered
notes is imperceptible for four of the eight
notes. You may be wondering why 440/440
= +.91 percent instead of 0 percent and why
261.6/264 = 0 percent instead of -.91
percent. To answer this, look at the “Fre
quency Ratio to C” lines and recall that
everything is relative so: C(tempered)/
C(pure) = 1/1, or 0 percent and A(tem-
pered)/A(pure) = 23/4/(5/3) = 1.6818/
1.6667, or+.91 percent.

To make this last point clear let’s make a
do to do scale from A = 220 Hz to A = 440
Hz, table 2. I could have made C(tempered)
= C(pure), but that would violate an inter
national agreement about A = 440 Hz!
Besides, this way I can tell you about a
scale in the minor mode. We’ll impress
the musicians looking over our shoulders
by calling table 2 “Key of A Minor.”

The two major differences between these
two keys are the beginning note and the se
quence of whole (W) and half (H) steps up
the scale. Both the starting place and the
sequence are specified in the name of the
key. The key of C major begins with C and
proceeds in the major mode sequence of
steps, WWHWWWH. The key of A minor
starts with A and proceeds in the minor
mode sequence, WHWWHWW.

Look at the frequencies of the notes
called D and G in these two keys. For tem
pered tuning, each of these notes keeps the
same frequency although the key changes
from C major to A minor. For pure tuning,
however, each of these notes must be
lowered by 1.25 percent when changing
from C major to A minor. A singer or
violinist does this during a performance,
but can you imagine a pianist or organist
stopping in the middle of a performance to
retune two notes in each octave? Bach’s

34

Key of C Major

1 nterval
From C: Unison

Major
Second

Major
Third

Perfect
Fourth

Perfect
Fifth

Major
Sixth

Major
Seventh Octave

Sung: do re mi fa sol la ti do
Called: C D E F G A B C

k

S
)

s 1 /
I1

l -^0-

Frequency

Pure: 264 297 330 352 396 440 495 528
Tempered: 261.6 293.7 329.6 349.2 392.0 440 493.9 523.3

Frequency
Ratio to
Cfor,

Pure: 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1

Tempered: 1 21/6 21/3 25/12 27/12 23/4 211/12 2

Tempered/
Pure ° / \ -0.23 /\ +0.79 / \+0.11 /\ -0.11 /\ +0.91 /\ +0.68 / \°

Step Size: /Whole\ /wti ol^\ / Half \ y/Whole^ /Wf olX /whol^ /Half \

Units

Hz

Hz

Hz/Hz

Hz/Hz

%

Table 1: The key of C major. There is a direct equivalence between a musician’s terminology for musical concepts and the
physicist ’s or mathematician ’s precise measures of the idea. One of the attractions of music is this low level precision involved
in the creation of high level emotional sensations.

35

o E

3 £2 i

Key of A Minor

Interval
From A Unison

Major
Second

Minor
Third

Perfect
Fourth

Perfect
Fifth

Minor
Sixth

Minor
Seventh Octave

Sung* do re mi fa sol la ti do
Called A B c D E F G A

j

s
s /
/

Pure
Frequency 220 247.5 264 293.3 330 352 391.1 440
Tempered
Frequency 220 246.9 261.6 293.7 329.6 349.2 392.0 440
Pure
Ratio
To A 1/1 9/8 6/5 4/3 3/2 8/5 16/9 2/1
Tempered
Ratio
To A 1 21/$ 21/4 25/12 27/12 22/3 25/6 2
Tempered/
Pure 0 -0.23 -0.90 +0.11 -0.11 -0.79 +0.23 0

Pure A Minor/
Pure C Major

} 0
0 0 -1.25 0 0 -1.24 0

Step
Size /Whole \ / Half \/Whole\ /Whole\ / Half \ /Whole\ /Whole\

Units

Hz

Hz

Hz/Hz

Hz/Hz

%

%

North American and English children learn a movable do scale, so do can be any note. The French and Italians have a fixed do
system so do is C.

Table 2: The key of A minor. As in table 1, we note the same Information, but start the scale on A instead ofC. This changes
the order of half and whole steps (bottom Une) from a major mode sequence to a minor mode sequence; an extra Une has been
added to show the frequency ratios of the minor key with respect to the major key. Note: Since this example is a minor scale,
the terms me, Ie, and te are used to refer to the minor third, minor sixth, and minor seventh respectively. Another way to label
this scale is to assign the name la to the low A. The scale then becomes la, ti, do, re, me, fa, sot, la.

36

equally tempered tuning survives all such
key shifts quite well. The most sensitive
intervals (octave, fourth, fifth) are still
imperceptibly different from the pure
scale, and the other intervals get no worse.
You should notice one more thing when you
are comparing these two tables. There are
two kinds of thirds, sixths, and sevenths.
As you may have guessed, there are also two
kinds of seconds, major and minor. There
is also an interval called the trltone, so there
can be twelve equal half steps per octave.

So if we list all of the intervals, we find
13 to get 12 half steps per octave. Since
these thirteen intervals form what is known
as the chromatic scale, we’ll call this list
“Intervals of the Chromatic Scale” and
write it down in table 3.

You can learn at least five things by
inspecting table 3.

First, the t sign is used to denote a half
step down from a note and is called a flat.
The sign for a half step up is # and is called
a sharp.

Second, you should now be able to write
the notes used in the scales of all major and
minor keys. For example, the key of C
minor begins with C and proceeds
WHWWHWW, so it would be: C, D, E\ F,
G, Ak, B’, C. The key signature is the short
hand used by musicians to specify the key at
the beginning of each line of music:

• key of c MINOR

pensive “top octave” integrated circuit, or
calculated (but not accurately) in real time
by the dinky itself. In the latter case there
will be little computer power left for calcu
lating the melody or harmony.

From Music to Mathematics and Back Again
Webster defines Inversion of a musical

interval as: “A simple interval with its upper
tone transposed an octave downwards. ..
Inverted primes become octaves; seconds
become sevenths; thirds, sixths, etc.”

A mathematical inversion Webster defines
as: “A change in the order of terms of a
proportion. ..” So what if a fifth is just an
inverted fourth? Simplification, that's what!
If we divide the chromatic scale right in the
middle at the tritone, the bottom half is
just the inverse of the upper half. This means
that you only need to learn and think about
half as much. This is not only true musically
and mathematically, but your own ears
will also easily recognize the similarities
between an interval and its inverse.

Try the following experiment on any
piano or organ that’s in tune. Pick out any
black or white key and call it 1 for ref
erence. This home note is called the tonic
and should be located near the center of the
keyboard for reasons I’ll explain in a
moment. Now find note 6 by counting up
six keys including 1 and all black and white
keys. Now play both 1 and 6 together;
that’s how a perfect fourth sounds. Try it
again with 1 and 8 this time; that’s how a
perfect fifth sounds. Now go back and forth
between 1 and 8 and then 1 and 6 to get a

This tells the person playing the music that
all of the Es, As, and Bs should be played
one half step flat.

Third, the major and minor modes
sound different because different intervals
are used for the third, sixth, and seventh.

Fourth, the two most dissonant intervals,
the minor second and the tritone, are not
used in any major or minor key, but are
needed for some key changes.

Fifth, and perhaps most important for
implementation on a “dinky” computer
and for experimentation, is that the only
prime numbers used in the pure pitch ratios
are 2, 3, and 5. Also, 5 only appears to the
first power and 3 only to the first and
second powers. You will see later how easy
it is to implement the pure diatonic scale
with inexpensive integrated circuits external
to the computer, so the computer is not tied
up by generating the pitches itself. In con
trast, the powers of the twelfth root of two
may be obtained from the moderately ex- Table 3: Intervals of the chromatic scale.

Interval C Major A Minor Pure Ratio Tempered Ratio

1 Unison |c-c| | A-A | 1/1 20/12

2 Minor Second C—Dk A—Bk 16/15 21/12

3 Major Second Q
U
I

I
I

o
o

|A—B | 9/8 22/12

23/124 Minor Third |A—C | 6/5

5 Major Third |C—E | A-Dk 5/4 24/12

6 Perfect Fourth |C-F | |a-d | 4/3 2 5/12

7 Tritone C-Gk A-E k (64/45 or 45/32) 26/12

8 Perfect Fifth | C—G |
C-Ak

|A-E | 3/2 27/12

9 Minor Sixth [A-^J 8/5 28/12

10 Major Sixth

? ? A—G k 5/3 29/12

11 Minor Seventh |A-G | 16/9 210/12

12 Major Seventh I C-B | A—Ak 15/8 211/12

212/1213 Octave |C-C| [A-AJ 2/1

31

feel for the fifth and its inverse. Next try
the same thing with 2 and 7 then 2 and 9.
These two intervals are also the fourth and
its inverse, the fifth, but you have trans
posed them up by half a step. Now try a
minor third and its inverse, the major sixth.
First play 1 and 4 together and then 1 and
10 together.

You should notice that the minor third
and major sixth don’t sound quite as sweet
or harmonious as the fourth and fifth did.
Now try transposing up a half step to 2 and
5 then another half step to 3 and 6, and so
on up the keyboard. Do the same with the
fourth, first 2 and 7, then 3 and 8 and so on
up the scale. Notice how the fourth and
minor third sound similar regardless of the
tonic or home key chosen, and how they
are clearly different from each other even if
played in different octaves; in music as in
physics everything is relative to the observer.

You may even want to make a fist for
yourself of the intervals which sound alike.
You can also note which intervals are most
harmonious and which are most dissonant,
or rough. I’ll even bet your list looks like
mine! If you think I’ve biased you, have
your friends or family make lists. I’ll bet
they all are in agreement. Table 4 contains
my list, which I’ve called “Music to Mathe
matics to Music” for reasons you’ll see in
a moment.

Now isn’t that a remarkable historical
achievement: what musicians have been
calling an inverse is also an inverse of the fre
quencies of pitches according to the mathe
matical definition of inverse. Although I’m
neither mathematician nor musician, I have
read a number of books on both subjects,
including some on the psychophysics of
music, and I have never seen this simple
and simplifying correspondence of musical
and mathematical inverses mentioned. Per
haps it was information lost with the burn
ing of Pythagoras and his temple 2500 years

ago. A close look at my list of most har
monious to most dissonant reveals that as
the top and bottom of the fractions get
larger, the harmony decreases and the
dissonance increases, (with the exception
of the minor second; but let’s forget about
this exception for the moment).

The order in this list is no accident;
neither is it a learned cultural bias! It is as
if we had a brain with a center which con
tinually seeks for simplicity, harmony and
order. The harmonic series: 1, 2, 3, 4, 5,
6,..., is found extensively in man’s
theories about nature. Is this because it is a
property of nature, or is it because man’s
brain can understand things better if they
are in such a series? Such a question is
interesting, but can only be raised and not
answered in an article about music for
computer nuts. Music, like speech, is unique
to man and is totally abstract. By abstract,
I mean that for the most part, no attempt
to copy nature is made.

Music is solely a product of man’s brain,
or ear-brain combination. Here is where we
find harmonic series galore. A musical chord
such as the major triad is three notes played
together, the frequencies of the notes being
related to each other as elements of a har
monic series are related. In the key of C
major, the major triad is C, E, and G which
have pitch ratios of 4, 5, and 6 (ie: 4/4,
5/4 and 6/4). Often to make the chord
sound fuller, a musician will add the C an
octave lower, and the C an octave higher.
This also fills out the harmonic series some
more: 2, , 4, 5, 6, , and 8. How about the
missing 1,3,7, 9, etc? You can try 1 and 3
for yourself; they are simply the C an octave
lower still, and the fifth up from the next
C, and they fit in beautifully.

Unfortunately, you won’t be able to try
7 on a piano; it would be 7/4, which is
1.8 percent lower than Bk, a minor seventh
from the C of the triad. Fortunately, if you

*The minor second is more dissonant to me than the tritone, but the tritone seems
more dissonant to me than the major seventh, so the minor second doesn't fit in
this list very well.

Interval Ratio Inverse Octave Shift Musical Inverse

Unison 1/1 1/1 2/1 Octave
Fourth 4/3 3/4 3/2 Fifth
Major Third 5/4 4/5 8/5 Minor Sixth
Minor Third 6/5 5/6 5/3 Major Sixth
Major Second 9/8 8/9 16/9 Minor Seventh
Minor Second* 16/15 15/16 15/8 Major Seventh
Tritone 64/45 45/64 45/32 Tritone

Table 4: Music to mathematics to music. The intervals useful In music are
listed in order from the most harmonious to the most dissonant. Most people
are in good agreement about the order of evaluation of the relative degrees of
harmoniousness in the first five intervals listed.

38

build the pure diatonic scale interface de
scribed below, you will be able to hear for
yourself how well 7 fits into the series. Also
you will be able to hear 11, and 13, and to
hear how, and under what conditions they
fit.

The ear-brain wants so much to hear
harmonic series that it will even fill in
missing pitches. The “missing fundamental,”
or the lowest note of a harmonic series, has
been studied by many doing acoustics re
search. If your ear is presented with a series
of tones whose frequencies are in the ratios
of whole numbers such as 2, 3, 4, 5, 6, or
3, 5, 7, 9, your brain tells you that you
actually hear the pitch corresponding to 1
(the fundamental) also!

Now let’s get back to the dissonance of
the minor second and why you needed to
stay in the middle of the piano keyboard
to do the experiments with intervals. If two
pitches are very close together, the ear can
not tell them apart, and they are heard as
a single smooth pitch. If the pitches are far
enough apart, two smooth and distinct notes
are heard. If the distance between the
pitches is in the critical band, the two notes
are heard as two more or less rough notes.
This roughness is maximum at 1/4 of the
critical band. It turns out that the minor
second is 1/4 of the critical band over the
middle of the piano range, and this is why it

sounds so dissonant. The width of the criti
cal band is roughly equal to:

100 Hz + 50 Hz x f

where f is the frequency of the note in kHz.
You can calculate that, as you go to lower
notes on the piano, roughness, or dis
sonance, will be heard in the minor and then
major thirds, and still lower will be heard
even in the fourth and fifth, until at the
lowest octave the only consonant interval
will be the octave itself. Thus, if you want
the music you compose to sound har
monious, you should have the pitches re
lated to each other in the harmonic series,
and pitches played at the same time should
be more than 1/2 of the critical band apart.
Analysis of music composed by Bach and
Dvorak shows that their chords obey these
two simple rules.

To compose interesting music, you’ll
need a few more rules. Most music has
two features, constancy and variety.
It is as if the brain center which looked for
order, simplicity, and harmony was easily
bored, so once it found a pattern, it would
soon be looking for another. Our musical
needs vary. Sometimes we want very simple
tunes so we can unwind, and at other times
we need complex melodies to keep our
interest. Once you have made a tune with a
computer, it will be possible, in principle,

Figure 1: Block diagram of the musical tone generator interface. AH logic (see figures 3 and 4) of the tone generator Itself is
12 V CMOS, with level conversion from the TTL 5 V levels at the computer output.

39

for you to have the computer make all
sorts of variations of your tune to keep it
interesting.

Now let’s switch gears from music to
computer oriented electronics and find out
how to build a diatonic computer music
interface. The interface costs less than $19
to build, including 24 integrated circuits,
LEDs, resistors, four diodes, and a universal
type printed circuit board. It will put out
four notes simultaneously, and will play in
almost nine octaves (17.36 Hz to 7812.5
Hz). The highest and lowest octaves have
12 and 13 different notes, and the middle
seven octaves have 33 notes each, giving
a total of 256 unique notes. It uses three
bytes of memory space.

The interface can be functionally divided
(see figure 1) into four parts:

• A set of programmable frequency
dividers.

• A three byte latch.

• An address decoder.
• A level shifter to change the 5 V sig

nals from the computer to 12 V sig
nals for the CMOS circuits so they
can operate fast enough to follow the
500 ns write pulse put out by the
computer.

The block diagram shows that I’ve chosen
hexadecimal addresses 1400 to 1402 to drive
the interface. This is a convenient memory
location for me because I have a KIM-1
with 12 K of memory and these locations
are not used for anything else. You’ll notice
that I've also decoded write pulses for
hexadecimal addresses 1403 to 1407 and
page selects of addresses 20XX to 22XX for
future expansion of the interface. Also,
eight address lines, eight data lines, a clock
line, and the write pulses for addresses
20XX to 22XX, all at 12 V, are brought
out to the edge connector for use with
other CMOS interfaces.

Figure 2: Detail block dia
gram of the tone genera
tor, which uses the 1 MHz
dock of the KIM-1 as its
frequency standard. The
outputs at right are square
wave signals which can be
sent to further filtering
and signa! processing be
fore mixing down to one
or two stereo channels.

*2

40

ICI
740« ♦i2 rh

* CURRENT THRU LED INDICATORS
IS LIMITED BY THE OUTPUTS OF
THE 4042'S

DEFAULT MIXING CIRCUIT

NOTE
IOK

NOTE
IOK

NOTE
IOK

TO AUDIO AMP (-2.SVPPI

470
NOTE

IOK
USE THIS AS A QUICK
KLUGE IN LIEU OF

—। MORE ELABORATE
SYNTHESIZER MODULES

Figure 3: Schematic of the tone generator’s key, octave and note selection
logic. A default mixing circuit is shown to allow connection of all four out
puts directly to one audio amplifier for testing.

41

Figure 4: Schematic of the tone generator’s KIM-1 address space decoding (top), a diagram of
the edge connector (far right), and power wiring table for figures 3 and 4 (right).

42

The six programmable dividers are the
heart of the interface (see the detail block
diagram of figure 2 and circuit diagram of
figure 3). Five of these are 4029 presettable,
bidirectional, binary or decade counters set
up to count down in binary mode. In this
mode the carry out (CO) line goes low when
ever the counter counts down to 0. The CO
signal is inverted and returned to the preset
enable (PE) input which sets the counter to
the value of the binary number on input pins
J4 to J], Each positive transition of the
clock (C) input causes the counter to count
down by one as long as the clock inhibit
(Cl) is low. Because J4 (pin 3 on IC9, IC15,
1C19, IC21, and IC24) is always high, the
counters may be set to divide by 8, 9, 10,
11, 12, 13, 14, or 15, depending on the
binary number on inputs J3 to Jj. This
number is stored in 4042 latches by writing
the data into D3 to D] of the latch as if it
were a memory location. For example, if a
binary three (011) were on J3 to J], 8+3, or
11 would be loaded into the counter when
PE went high, and the C input would have
11 positive transitions before CO would go
low, forcing PE high momentarily, and again

loading the counter with 11. Thus the fre
quency of PE pulses would be 1/11 of the
frequency of positive transitions at C. A
flip flop at the output of the note dividers
converts the PE impulses into square waves
with a 50 percent duty cycle. Each of the
Q4 latch outputs turns off a divider and
thus turns off the sound of one or more
note outputs. Bits 4 and 8 of hexadeci
mal location 1400 turn off all the sound,
whereas bits 4 and 8 of address 1401 and
1402 turn off notes 1 thru 4, respectively.
The reason for all this turn off is that music
has a lot more silence in it than is generally
recognized. To make notes sound distinct,
rather than all run together, the sound must
be shut off for periods of 10 to 50 ms (for
example).

The key selector divides the computer’s
1 MHz clock by a number from 15 to 8 to
produce frequency fK of 66.7 kHz to 125
kHz as shown in the second block diagram.
A binary divider, IC13, produces seven
more octaves (factors of two in frequency)
from f|<;, and the 1 of 8 selector, IC12,
selects one of the octaves, f|^o (520.8 Hz to
125 kHz), based on bits 6 to 4 stored at

Power Wiring Table

Number Type +5 V GND +12 V

IC1 7406 14 7 —
IC2 7406 14 7 —

IC3 7406 14 7 —
IC4 7406 14 7 —
IC5 4028 — 8 16
IC6 4023 — 7 14
IC7 4028 — 8 16
IC8 4042 — 8 16
IC9 4029 — 8 16
IC10 4001 — 7 14
IC11 4042 — 8 16
IC12 4051 — 8 16
IC13 4024 — 7 14
IC14 4042 — 8 16
IC15 4029 — 8 16
IC16 4013 7 14
IC17 4001 — 7 14
IC18 4042 — 8 16
IC19 4029 — 8 16
IC20 4042 — 8 16
IC21 4029 — 8 16
IC22 4013 — 7 14
IC23 4042 — 8 16
IC24 4029 - 8 16

Edge Connector Wiring Diagram

+5 V 1 A ground
12 V output <t>2 2 B write page 20

* 02 3 C write page 21
R/W 4 D write page 22

in
I* 5 E 0IQ

I

Do 6 F Di
D1 7 H U

I
w

d2 8 J d3
d3 9 K d4
D4 10 L

I C
l

C
D

D5 11 M <0
IO

► 12 V outputs
D6 12 N D7

5 V inputs < d7 13 P >l

0 ■

A0 14 R A1
A1 15 S a2
a2 16 T a3
a3 17 U a4
A4 18 V A5
a5 19 w A6
A6 20 X a7
a7 21 Y Ag 5 V input

I A8 22 z +12 V

43

A two-sided printed circuit
board and a kit of parts are
now commercially available as
the board alone, the complete
kit, or the assembled, tested
and warranteed unit from
Meade Electronics, 95 N
Willett, Memphis TN 38104.

address 1400, to send to the dividers, IC15
and IC19, for notes 1 and 2. Notes 2 and 3
are only in the low octaves 5 and 6 so up to
three octaves may be played at once. I chose
these to be in the lower octaves because I
use them for rhythm and accompaniment.
You may want to add other octave selectors
for more control, or add manual switches to
have notes 4 and 3 in any octave.

The data from the computer is strobed
into the latches by write pulses generated by
the address decoder, IC5 to IC7 (figure 4).
K5 from KIM-1 is low whenever the sixth
1024 block of memory is addressed. K5
is combined in IC5 with S9, Ag, and R/W
to produce pulses when addresses 20XX to

22XX are written into. The pulse indicating
addresses 20XX (2000 to 20FF) are being
written into is combined with A7 to A3 and
02 t° produce a negative pulse during phase
two of the computer clock when locations
1400 to 1407 are being written into. This
short pulse is combined with A2 to Aq in
IC7 to produce strobe pulses for the latches
during the 500 ns when the data is stable on
the data bus. Generating a tune is done by
storing (with a timed sequence) the appro
priate data into locations 1400 to 1402 as
you would any other memory location. The
5 to 12 V level shifter is simply a high volt
age, open collector hex inverter, 7406.
In retrospect, diodes D] to D4 are pro-

R W

Nearby
Musical Note

Effective
Integer

N Key Note

Actual
Ratio

256/N

Pitch
Assuming

1 MHz/(16 N)

Nearest
Well Tempered

Ratio (R-W1/R

■ Diatonic major scale notes "best fit" to A = 440 standard.
* Best fit of diatonic major scale to equally tempered scale based on B = 244.14.

B • 256
252

8
9

8
14

1.0000
1.0159

244.14
248.02

1.0000
1.0000

0.0000
0.0156

C » 242 11 11 1.0579 258.26 1.0595 0.0015
■ 240 8 15 (10,12) 1.0667 260.42 1.0595 0.0068

234 9 13 1.0940 267.09 1.1225 0.0260
C# » 225 15 15 1.1378 277.78 1.1225 0.0135

224 8 14 1.1429 279.02 1.1225 0.0178
220 10 11 1.1636 284.09 1.1892 0.0220

D ■ 216 9 12 1.1852 289.35 1.1892 0.0034
210 14 15 1.2190 297.62 1.1892 0.0245
208 8 13 1.2308 300.48 1.2599 0.0237

D# « 200 10 10 1.2800 312.50 1.2599 0.0157
198 9 11 1.2929 315.66 1.2599 0.0255
196 14 14 1.3061 318.88 1.3348 0.0220
195 13 15 1.3128 320.51 1.3348 0.0170

E 192 8 12 1.3333 325.52 1.3348 0.0011
F « 182 13 14 1.4066 343.41 1.4142 0.0054

■ 180 9 10 (12,15) 1.4222 347.22 1.4142 0.0056
176 8 11 1.4545 355.11 1.4142 0.0277

F# • 169 13 13 1.5148 369.82 1.4983 0.0110
168 12 14 1.5238 372.02 1.4983 0.0167
165 11 15 1.5515 378.79 1.5874 0.0231

G » 162 9 9 1.5802 385.80 1.5874 0.0045
■ 160 8 10 1.6000 390.63 1.5874 0.0079 '

156 12 13 1.6410 400.64 1.6818 0.0248
G# • 154 11 14 1.6623 405.84 1.6818 0.0117

150 10 15 1.7067 416.67 1.6818 0.0146
A ■ • 144 8 9 (12,15) 1.7778 434.03 1.7818 0.0026

143 11 13 1.7902 437.06 1.7818 0.0047
140 10 14 1.8286 446.43 1.7818 0.0256

A# ■ * 135 9 15 1.8963 462.96 1.8876 0.0045
132 11 12 1.9394 473.48 1.8876 0.0266
130 10 13 1.9692 480.77 2.0000 0.0156

B « 128 8 8 (next octave) 2.0000 488.28 2.0000 0.0000

Table 5: Table of possible intervals. The circuit of figures 1 to 4 produces the following set of possible frequencies assuming a
1 MHz centra! processor dock, in this table, outputs have been grouped near the equivalent well tempered scale ratio and fre
quencies. The asterisk (*) indicates best fit for a logarithmic well tempered scale series starting at a ratio of 1.0000, calculated
using a program on a pocket calculator. Notations in parentheses show effective integers derived by shifting to the next octave.
Note that with this calculation, use of "best" fit finds the note A in this octave at 434 Hz, 0.1% flat with respect to the standard
A of 440 Hz. Table 6 picks a set from this table which is closest to the standard pitches but not optima! with respect to equal
temperment.

44

bably not needed since IC6 probably can’t
supply enough current to damage 1C3,
even though the input voltage maximum to
IC3 is specified as 5.5 V. The four extra out
puts on the quad latches are used with 24
LEDs to give you a bonus light show, and
are useful in figuring out what data is being
sent to the interface from the computer. The
LEDs are lit with Os instead of 1s at the J
inputs, so that the more lights, the lower
the divisor and the higher the note. If you
want the lights to read the same as the J
inputs, reverse them and tie the anodes to
+12 V.

The middle seven octaves of the interface
each have 33 unique combinations of the
key and note dividers. I’ve made a list of fre
quencies in one such octave. You’ll notice
right away that there is no way to get a per
fect fifth if you use 244.14 Hz as the home
or "tonic” note. This is because to go up in
frequency by 3/2s, you need to already be
dividing by a number that has 3 in it such as
9, 12, or 15. So if you want to change to a
note that is a fifth from the tonic, 248.02
Hz, 260.42 Hz, 267.09 Hz etc can be used
as the tonic, but 244.14 Hz, 258.26 Hz,
279.02 Hz can’t be. Although this may seem
restricting, remember that the octave here
has almost three times as many notes as an
octave on a piano. For the tritone inter-
val(s), you will find that 10/7 and 7/5 are
indistinguishable from 64/45 and 45/32,
and are easier to use.

Now to get started using the interface,
let’s write a program to play the do to do
scale in both major and minor modes. To
keep it simple, we’ll let note 1 play and
keep the others silent. To silence notes
2 to 4, we need to store a 1 in bit 7 of
location 1401 and in bits 4 and 7 of loca
tion 1402. To hear anything, we also need
a 0 in bits 4 and 7 of location 1400 and
to hear note 1, a 0 in bit 4 of 1401. One
set of data to accomplish this is:

Address Data
1400 xy
1401 Fz
1402 FF

where x, y, and z are numbers less than 8
and the Fs are any number more than 7
(eg: hexadecimal E).

If you look at the major and minor
mode sequences in table 1, “Key of C
Major,” or in table 2, “Key of A Minor,”
you’ll find that the major scale tonic must
contain two 3s and a 5 in the divisor so
you can multiply by 9 and 15, and the
minor scale tonic must contain two 3s.

The so called “rate multipliers” also do
their multiplication by dividing by a smaller
number. To make this idea clear to you I’ve

written out the ratios, divisors, output fre
quencies, and the data to be written into
locations 1400 and 1401 (don’t forget to
write FF into 1402). For example, if hexa
decimal 34 and hexadecimal F7 are written
into 1400 and 1401, the 1.00 MHz clock
will be divided by (8x12x15x2) to give
an output frequency of 347.222 Hz.

To play the major scale, your memory
should look like this:

Address Data

SCALE+0 34
SCALE+1 F7
SCALE+2 40
SCALE+3 F2

etc

The major and minor diatonic scales and
the twelve note chromatic scale are not the
only scales that are pleasing to the human
ear. With this interface you should be able to
create new and pleasing musical scales, and
compose music which has never been heard
before. You can explore the sounds of inter
vals with frequency ratios of 7/4, 9/5, 9/7,
and 7/6 which are not found in Western
music. You should also be able to invent
some new and interesting chords since
you will have more of the harmonic series
available to you. Just watch out for the
critical band by keeping your notes more
than 50 Hz apart plus 25 Hz for each kHz.»

•change octave and
REPEAT OR RETURN

Figure 5: Flowchart of a simple program to cycle through a series of note
codes found in a table indexed by register X, with 16 entries.

Table 6: A selection of codes taken from the integers of table 5 arid applied
to the hardware of figures 1 to 4, to create a major scale (tonic F relative to
A = 440) and minor scale (tonic A, relative to A = 440).

Ratio Octave
Divisor

Key Note
Data

fKON11400 1401

/ Tonic 1/1 8 12 15 34 F7 347.2
® I Second 9/8 16 8 10 40 F2 390.6
3 I Third 5/4 8 12 12 34 F4 434.0
*2 / Fourth 4/3 8 9 15 31 F7 463.0
.2. \ Fifth 3/2 8 12 10 34 F2 520.8
£ I Sixth 5/3 8 12 9 34 F1 578.7

1 Seventh 15/8 8 12 8 34 F0 651.0
' Octave 2/1 4 12 15 24 F7 694.4

Tonic 1/1 8 12 12 34 F4 434.0
„ 1 Second 9/8 16 8 8 40 FO 488.3
15 1 Third 6/5 8 12 10 34 F2 520.8
M / Fourth 4/3 8 12 9 34 F1 578.7
3 \ Fifth 3/2 8 12 8 34 F0 651.0
.E I Sixth 8/5 4 12 15 24 F7 694.4
2 1 Seventh 16/9 8 9 9 31 F1 771.6

\ Octave 2/1 4 12 12 24 F4 868.1

45

A Sampling of Techniques For

Computer Performance of Music

Hal Chamberlin

Computer music is probably one of the
most talked about serious applications for
home computers. By serious I mean an appli
cation that has a degree of complexity and
open-endedness which can totally preoccupy
experimenters and funded institutions for
years. Computer performance of music is a
discipline so vast that the final, “best” tech
nique for its implementation or even a good
definition of such a technique may never be
discovered.

At the same time, computer music is an
easy field to break into. With only minimal
effort and expenditure a very impressive
(to the uninitiated) music performance
demonstration may be put together. With a
little more work a system may be assembled
which is of great value to other family mem
bers, particularly children just starting to
learn music theory. Such a system could, for
example, eliminate manual dexterity as a
factor in a child’s musical development.
Finally, on the highest level, it is no longer
very difficult to break into truly original
research in serious performance of music by
computer. The advances in digital and linear
integrated circuits have made putting to
gether the hardware system for supporting
such research largely a matter of clever sys
tem design rather than brute financial
strength. Programming, tempered with
musical knowledge, is the real key to ob
taining significant results. Thus, in the
future, hobbyists working with their own
systems will be making important contribu
tions toward advancement of the computer
music art.

While the scope of one article cannot

fully cover such an extensive topic, it
should serve to acquaint the reader with the
more popular techniques, their implemen
tation, strengths, weaknesses, and ultimate
potential.

Generally, all computer music perfor
mance techniques can be classified into two
generic groups. The first includes schemes
in which the computer generates the sound
directly. The second covers systems where
the computer acts as a controller for exter
nal sound generation apparatus such as an
electronic organ or sound synthesizer.

Early Techniques

Just as soon as standard commercial com
puters such as the IBM 709 and, later, the
1401 made their appearance, programmers
started to do frivolous things with them
after hours, such as playing games and
music. Since elementary monotonic (one
note at a time) music is just a series of tones
with different frequencies and durations,
and since a computer can be a very precise
timing device, it did not take long for
these early tinkerers to figure out how to
get the machine to play such music. The
fundamental concept used was that of a
timed loop.

A timed loop is a series of machine
language instructions which are carefully
chosen for their execution time as well
as function, and which are organized into a
loop. Some of the instructions implement a
counter that controls the number of passes
through the loop before exiting.

Let’s examine some fundamental

47

timed loop relationships. If the sum total
execution time of the instructions in the
loop is M microseconds then we have a
loop frequency of

106\
M / Hertz (cycles per second).

If the initial value of the decrementing
counter that controls the number of loop
passes is N, then the total execution time
before exit from the loop is (MxN) micro
seconds. Thus what we really have is a
“tone” with a frequency of

'1O6\
¿M/Hertz

and a duration of

MxN
1 q6 seconds.

Using different loops with more or fewer in
structions will give us different Ms and thus
different notes. Using different Ns when
entering these loops gives different durations
for the notes, and so we have satisfied the
definition of elementary monotonic music.

Of course at this point the computer is
merely humming to itself. Several techni
ques, some of them quite strange, have
evolved to make the humming audible to
mortals.

One such method that doesn’t even re
quire a connection to the computer is to
use an AM portable radio tuned to a quiet
spot on the broadcast band and held close
to the computer. Viola! [Sic] The humming
rings forth in loud, relatively clear notes.
As a matter of fact, music programs using
this form of output were very popular in
the “early days” when most small system
computers had only 256 bytes of memory
and no IO peripherals except the front
panel.

What is actually happening is that the
internal logic circuitry with its fast rise
time pulses is spewing harmonics that
extend up into the broadcast band region of
the radio spectrum. Since some logic gates
will undoubtedly switch only once per
loop iteration, the harmonics of the swit
ching will be separated in frequency by the
switching or loop frequency. Those high
frequency harmonics that fall within the

Figure 1: A basic tone generation subroutine. There are two nested loops in
this routine: the first, or inner loop controls the frequency (or pitch) of the
note to be generated, while the second, outer loop controls the duration of
the note. A train of square waves is generated at the output port bit which is
used to drive the circuit in figure 2 to produce an audible tone.

passband of the radio are treated as a
“carrier” and a bunch of equally spaced
nearly equal amplitude sidebands. The
radio’s detector generates an output fre
quency equal to the common differences of
all these sidebands, which is the loop fre
quency and its harmonics. The timbre of the
resulting tones is altered somewhat by the
choice of instructions in the loop, but basic
ally has a flat audio spectrum like that of
a narrow pulse waveform. Noise and distor
tion arise from other logic circuitry in the
computer which switches erratically with
respect to the timed loops. One practical
difficulty with this method is there is no
clearly identifiable way to get the com
puter to “shut up” for rests or space be
tween identical notes.

The Hammer-Klavier

Other early methods used some kind of
output peripheral to make sound. In a
demonstration of an IBM 1401 over a de
cade ago this was literally true: the com
puter played a line printer! It seems that the
hookup between a 1401 central processing
unit and the 1403 printer was such that
software had control of the printer hammer
timing. Each time a hammer was fired a
pulse of sound was emitted upon impact
with the paper. Using a timed loop program
with a print hammer fire instruction im
bedded in the loop gave a raspy but accur
ately pitched buzz. [It also tended to cause
IBM customer engineers great trepid
ation . . .CH/ This same scheme should also
be possible on some of the small, completely
software controlled dot matrix printers that
are now coming on the market.

A sane approach, however, is to connect
a speaker to an output port bit through an
amplifier. Instructions would then be placed
inside the timed loops to toggle the bit and
thus produce a clean, noise-free rectangular
wave.

Timed Loop Example

Let’s look at an example of a timed loop
music playing program, not so much for its
musical value (which is negligible), but for
some insight into what is involved, and also
to introduce some terms. The MOS Techno
logy 6502 microprocessor will be used for
these examples. These programs are designed
to run on a KIM-1 system, and should run
on most other 6502-based systems with very
minor modifications. Motorola 6800 users
should be able to easily convert the pro
grams into 6800 machine language. 8080
users will benefit most because successful
conversion indicates a thorough under
standing of the concepts involved.

48

The heart of the program is the tone gen
eration subroutine which will be named
TONE. Ideally, such a routine would accept
as input two arguments: one related to the
pitch of the note and the other controlling
the duration. With such a subroutine avail
able, playing a piece of music amounts to
simply fetching the arguments from a
“song” table in memory and calling the
routine for each note to be played.

As mentioned previously, we could have
a separate, carefully timed loop for each
different tone frequency needed. TONE
would then call the proper one based on the
pitch parameter. Indeed this approach is
very accurate (to within 1 ps on the 6502)
but a great deal of memory is consumed for
the 30 or so notes typically required. It also
lacks flexibility. (This will be discussed
later.) A better approach is to embed a
second, waiting loop to control the execu
tion time of one pass through the outer
loop, and thus the tone’s frequency. Figure
1 is a flowchart illustrating this. When
using this scheme, the frequency argument
directly determines the number of times
through the inner, waiting loop and the
duration parameter directly determines
the number of times through the outer,
tone generation loop.

Now, how are the argument values
determined to get the frequencies and
durations desired? First the execution
time of the nested loops must be
determined. In the KIM-1 with a 1 MHz
clock and a 6502 the tightest inner waiting
loop that can be written is 5 gs, assuming
that the inner loop count (frequency argu
ment) is 256 or less and that it is held in a
register. The total time spent in the loop
is [(5xM)-1] microseconds, where M is
the frequency argument and the -1 is due
to the shorter execution time of an un
successful branch. (The observant reader
will note that the execution time of some
6502 instructions is altered if they cross
a memory “page boundary”; thus, an
assumption of no page crossing is made.)
But there is still the time required for a pass
through the outer loop to output a pulse and
decrement the duration counter. This is
termed “loop overhead.” For an example,
let’s say that the loop overhead is 25 ps.
As a result, the total outer loop time is

[(5xM)-1+25|, or [(5xM)+24] microseconds
which is the period of the audio waveform
output. In order to determine the M re
quired for a particular note, a table of note
frequencies (see table 1) is consulted. Then
the equation,

M= (125 -24)

5

where F is the desired frequency, is solved
for the nearest integer value of M. Lower
frequency notes are preferred so that the
percentage error incurred due to rounding M
is minimized. The duration argument is
actually a count of the number of audio
tone cycles which are to be generated for
the note, and thus its value is dependent on
the tone frequency as well as the duration.
Its value can be determined from the rela
tion N=DxF, where N is the duration argu
ment, D is the duration in seconds, and F is
the note frequency in Hertz.

As a complete example, let’s assume that
an eighth note G# an octave above middle
C is to be played, and that the piece is in
4/4 time with a metronome marking of 80
beats per minute. Since an eighth note in
this case is one half of a beat, the duration
will be

Note Frequency (Hz)

Middle C
C#
D
D#
E
F
F#
G
G#
A
A#
B

261.62
277.18
293.66
311.13
329.63
349.23
369.99
391.99
415.30
440.00
466.16
493.88

Table 1: Equally tempered
scale note frequencies in
Hertz. In order to deter
mine frequencies of notes
in the higher octaves,
multiply by 2 for each
octave above this one. For
lower octaves, divide by 2
for each lower octave.

0.5x60
80 '

or 0.375 seconds. The note table shows that

OUTPUT PORT BIT

Figure 2: A speaker driver circuit designed to accept square or rectangular waves and produce
audible tones through a loudspeaker. In this particular application the circuit is driven from an
output port bit of a KIM-1 microcomputer, although the circuit can accept any TTL com
patible output port bit. When the input to the circuit is a logical 0 level, the transistor turns on
and drives the speaker. When the input is a logical 1, the transistor turns off and current to the
speaker is Interrupted.

49

Table 2: Harmonic amplitudes of rectangular waves. Note that, unlike square waves, asymme
trical rectangular waves contain even numbered harmonics. This simple technique of varying
the duty cycle of such waves can have an appreciable effect on the timbre of the resulting
sound.

Wave
Duty
Cycle

Harmonics

10Fund 2 3 4 5 6 7 8 9

1/2 1.00 0 0.333 0 0.200 0 0.143 0 0.111 0

1/3 1.00 0.500 0 0.250 0.200 0 0.143 0.125 0 0.100

1/4 1.00 0.707 0.333 0 0.162 0.236 0.143 0 0.111 0.141

1/5 1.00 0.841 0.561 0.259 0 0.173 0.240 0.210 0.116 0

1/6 1.00 0.867 0.667 0.433 0.200 0 0.143 0.217 0.222 0.173

the frequency of G#an octave above middle
C is 830.6 Hz, which yields a frequency
argument of 236. The duration argument is
311. So if TONE is called with these para
meters, a nice G# eighth note will be pro
duced.

Now let’s go a step further and look at a
practical “music peripheral” and TONE sub
routine. Figure 2 shows a circuit for driving
a speaker from any kind of TTL compatible
output port bit, including those found in the
6530 “combo chips” used in the KIM-1.
When the output port bit is a logic 0 level,
the transistor turns on and drives a current

; TONE SUBROUTINE FOR 6502
; ENTER WITH FREQUENCY PARAMETER IN ACCUMULATOR
; DURATION PARAMETER STORED AT LOCATION DUR (LOW PART) AND
; DUR*1 (HIGH PART) WHICH IS ASSUMED TO BE IN PAGE ZERO
; ROUTINE USES A, X, AND DESTROYS DUR
; LOOP TIME - 10»(FREQ PARAMETER)-,!))) MICROSECONDS

1700
00E0

MPORT
DUR

= X’1700
X’EO

; ADDRESS OF OUTPUT PORT WITH SPEAKER
; ARBITRARY PAGE 0 ADDRESS OF DURATION PARM

0100 A2FF TONE: LDX #X’FF ; SEND ALL 1’S TO THE OUTPUT PORT
0102 8E0017 STX MPORT
0105 AA TAX ; TRANSFER FREQ PARAMETER TO INDEX X
0106 CA WHIGH: DEX ; WAIT LOOP FOR WAVEFORM HIGH TIME
0107 DOFD BNE WHIGH ; TIME IN THIS LOOP = 5*FREQ PARAMETER
0109 F000 BEQ .♦2 ; WAIT 15 STATES TO MATCH TIME USED TO
010B F000 BEQ .♦2 ; DECREMENT AND CHECK DURATION COUNT AFTER
01 OD F000 BEQ .♦2 ; WAVEFORM LOW TIME
01 OF F000 BEQ .♦2
0111 F000 BEQ .+2
0113 A200 LDX »0 ; SEND ALL O’S TO THE OUTPUT PORT
0115 ÔE0017 STX MPORT
0116 AA TAX ; TRANSFER FREQ PARAMETER TO INDEX X
0119 CA WLOW: DEX ; WAIT LOOP FOR WAVEFORM LOW TIME
011A DOFD BNE WLOW ; TIME IN THIS LOOP = 5*FREQ PARAMETER
011C C6E0 DEC DUR ; DECREMENT LOW PART OF DURATION COUNT
011E D005 BNE TIMWAS ; BRANCH IF NOT RUN OUT
0120 C6E1 DEC DUR+1 ; DECREMENT HIGH PART OF DURATION COUNT
0122 DODC BNE TONE ; GO DO ANOTHER CYCLE OF THE TONE IF NOT 0
0124 60 RTS ; RETURN WHEN DURATION COUNT RUNS OUT
0125 F000 TIMWAS: BEQ .+2 ; WASTE 7 CYCLES TO EQUAL TIME THAT WOULD
0127 F000 BEQ .+2 ; HAVE BEEN SPENT IF HIGH PART OF DUR WAS
0129 D0D5 BNE TONE ; DECREMENTED AND GO DO ANOTHER CYCLE

Listing 1: An assembled listing of a practical timed loop tone generation sub
routine for the 6502 microprocessor. This routine is an elaboration of the
flowchart shown in figure 1 which allows the user to generate nonsymmetri-
cal rectangular waves. Experimenting with the wave's duty cycle affects the
harmonic content of the resulting tone and creates many interesting aural
effects.

determined by the volume control setting
through the speaker. When the bit is a logic
1, the current is interrupted. Larger speakers
or even a high fidelity speaker system will
give a richer timbre to the lower pitched
tones. The AUX input to a sound system
may also be used instead of the transistor
circuit. Using a patch cord, connect the
shield to the common terminal of the power
supply and the center conductor to the
output port bit through a 10 K to 100 K
isolation resistor.

Listing 1 shows an assembled listing of a
practical timed loop tone generation sub
routine for the 6502 microprocessor. Several
refinements beyond the flowcharted
example have been made to improve tone
quality and flexibility. The inner waiting
loop has been split into two loops. The first
loop determines the length of time that the
output rectangular waveform is to be a
logic 1 and the second loop determines the
0 time. If both loops receive the same
frequency argument (which they do as
written) and the loop time of both loops is
the same, then a symmetrical square wave
output is produced. However, if one or more
“do nothing” instructions is inserted into
one of the two loops, the output waveform
will become nonsymmetrical. The signifi
cance of this is that the rectangular wave
form’s duty cycle affects its harmonic
spectrum, and thus its timbre. In particular,
there is a large audible difference between
a 50%-50% duty cycle (square wave) and a
25%-75% duty cycle. Table 2 lists the
harmonic structure of some possible rec
tangular waves. As a result, some control
over the timbre can be exercised if a separate
TONE subroutine is written for each “voice”
desired. Unfortunately, if this is done the
frequency arguments will have to be recom
puted since the outer loop time will then be
altered.

Real music also possesses dynamics,

50

which are the changes in overall volume dur
ing a performance. Furthermore, the ampli
tude envelope of a tone is an important con
tributor to its overall subjective timbre. The
latter term refers to rapid changes in volume
during a single note. This is the case with a
piano note, which builds up rapidly at the
beginning and slowly trails off thereafter.
Of course the setup described thus far has
no control over either of these parameters:
the volume level is constant, and the enve
lope of each note is rectangular with sudden
onset and termination.

By graduating to a more sophisticated
music peripheral, control of dynamics and
amplitude envelopes can be achieved with a
timed loop music program. The secret is to
use a digital to analog converter connected
to all eight bits of the output port. A digital
to analog converter (DAC) does just what
its name implies: it accepts a binary number
from the output port as input and generates
a corresponding DC voltage as its output.
The circuit in figure 3, which can be used
with any TTL compatible output port,
gives an output voltage

V'(-2PX5
where I is the binary number input between
0 and 255. When working with this kind of
DAC, it is convenient to regard the binary
number, I, as a fraction between 0 and 1
rather than an integer. The benefit of this
will become apparent later when calculations
will be performed to arrive at the value of I.
The output of the DAC must be used with a
sound system or the amplifier circuit in
figure 8, not the simple transistor speaker
driver circuit in figure 2.

As written, the TONE subroutine (see
listing 1) alternately sends 0 and 255 to
the output port with the music peripheral.
With a DAC connected to that port, voltages
of 0 and 5 V will be produced for the low
and high portions of the rectangular wave.
If instead 0 and 127 were output, the DAC
would produce only 0 and 2.5 V giving a
rectangular wave with about half the amplit
ude. This in turn produces a less loud
tone, and so control over dynamics is
possible by altering the byte stored at
hexadecimal 101.

Arbitrary amplitude envelopes are also
made possible by continuously exercising
control over the amplitude during a note.
Simple envelope shapes such as a linear
attack and decay can be computed in line
while the note is being sounded. A more
general method is to build a table in
memory describing the shape. Such a table
can be quickly referenced during note
playing. Great care must be taken, however,

to insure that loop timing is kept stable
when the additional instructions necessary
to implement amplitude envelopes are
added.

More Complex Techniques

Even if all of the improvements men
tioned above were fully implemented, the
elementary timed loop approach falls far

Figure 3: An 8 bit digital to analog converter (DAC). This circuit accepts an
8 bit binary number from the output port and generates a corresponding
DC voltage as its output. The output voltage from this circuit is equal to
((1/255) (5)) V, where 1 is the decimal equivalent of the 8 bit input which
can take on any value from 0 to 225.

51

Figure 4: A sine wave as it would appear at the output from the digital to analog converter
shown in figure 3. Each step in the approximation of this wave is called a sample. This parti
cular illustration shows a 1.2 kHz sine wave sampled at a rate of 25,000 samples per second.
The resulting waveform is only a very rough approximation of the original, but low pass filter
ing can improve accuracy (see figure 5 and text).

short of significant musical potential. The
primary limitations are a narrow range of
tone colors and restriction to monotonic
performance. The latter difficulty may be
alleviated through the use of a multitrack
tape recorder to combine separate parts, but
this requires an investment in noncomputer
hardware and is certainly not automatic.
Also, unpitched percussive sounds such as
drum beats are generally not possible. Musi
cians, too, will probably notice a host of
other limitations such as lack of vibrato and
other subtle variations. All of these short
comings may be overcome by allowing the
computer to compute the entire sound
waveform in detail at its own speed.

The one fundamental concept that makes
direct waveform computation possible is the
sampling theorem. Any waveform, no matter
how simple or complex, can be recon
structed from a rapid series of discrete vol
tage values by means of a digital to analog
converter such as the one used earlier. As an
example, let’s try to generate an accurate
sine wave using a DAC. If this can be done,
it follows from the Fourier (harmonic)
theorem that any other waveform may also
be synthesized.

Figure 4 shows a sine wave as it would
appear at the DAC output. Each step on the
approximation to the sine wave is termed a
sample, and the frequency with which these
samples emerge from the DAC is the sample
rate. An attempt is being made in the

example to generate a 1.2 kHz sine wave at
a sample rate of 25 kHz, or one sample every
40 ms. Obviously this is a very poor sine
wave, a fact that can be easily demonstrated
with a distortion analyzer.

Before giving up, let’s look at the fre
quency spectrum of this staircase-like wave
on a spectrum analyzer. The spectral plot in
figure 5 shows a strong frequency com
ponent at 1.2 kHz which is the sine wave
we are trying to synthesize. Also present are
the distortion component frequencies due
to the sampling process. Since all of the
distortion components are much higher in
frequency than the desired signal, they may
be easily removed with a sharp low pass
filter. After filtering, the distortion analyzer
will confirm that a smooth, pure sine wave
is all that remains.

What will happen if the sine wave fre
quency is increased but the sampling fre
quency remains constant? With even fewer
samples on each sine wave cycle the wave
form from the DAC will appear even more
distorted. The lowest frequency distortion
product is the one of concern since it is the
most difficult to filter out. Its frequency
is FD=(FS-f) Hertz, where FD is the lowest
distortion component frequency, FS is the
sampling frequency, and f is the sine wave
signal frequency. Thus as f increases, FD
decreases until they merge at f=FS/2. This
frequency is termed the Nyquist frequency
and is the highest theoretical frequency that

52

FREQUENCY (KHl)

Figure 5: The spectra! plot of the staircase-Hke sine wave approximation shown in figure 4. This
frequency versus amplitude graph indicates a strong frequency component at 1.2 kHz, the fre
quency of the sine wave. Normally, this would be the only frequency component to appear on
a plot like this, but the presence of steeply rising steps in this waveform approximation intro
duces distortion components at higher frequencies, as shown.

may be synthesized. Any attempt to syn
thesize a higher frequency will result in the
desired signal being filtered out and the
distortion frequency emerging instead. This
situation is termed aliasing because the
desired signal frequency has been replaced
by a distortion component alias frequency.
Operating close to the Nyquist frequency
requires a very sharp filter to separate the
signal from the distortion. With practical
filters, signal frequencies up to 1/4 to 1/3
of the sampling frequency are realizable.
Since any sound, whether it is a pitched
tone or unpitched sound, is actually a
combination of sine waves, it follows that
any possible sound may be produced by a
DAC. The only limitation is the upper fre
quency response, which may be made as
high as desired by increasing the sample rate.
The low frequency response has no limit,
and extends down to DC.

There is another form of distortion in
DAC generated sounds which cannot be
filtered out, since it is spread throughout the
frequency spectrum. Quantization noise is
due to the fact that a DAC cannot generate
voltages that are exact samples on the de
sired waveform. An 8 bit converter, for
example, has only 256 possible output vol
tage values. When a particular voltage is
needed, the nearest available value will have
to be used. The theoretical signal to noise
ratio when using a perfect DAC is related to
the number of bits by the equation S/N=
(6xM)+4 decibels where M is the number of
bits. A practical DAC may be as much as 6
db worse, but a cheap 8 bit unit can yield
nearly 50 db, which is as good as many tape
recorders. When using 12 bits or more, the
DAC will outperform even the best profes

sional recorders. Thus it is apparent that
computed waveforms can, in theory, be used
to generate very high quality music; so high,
in fact, that conventional audio equipment
is hard pressed to reproduce it.

Now that we have the tools, let’s see how
the limitations of computer music men
tioned earlier can be overcome. For tones
of definite pitch, the timbre is determined
by the waveshape and the amplitude enve
lope. Concentrating on the waveshape, it
should be apparent that a waveform table
in memory repeatedly dumped into the DAC
will produce an equivalent sound waveform.
Each table entry becomes a sample, and the
entire table represents one cycle of the wave
form. The frequency of the resulting tone
will be FS/N where FS is the sampling fre
quency (rate at which table entries are sent
to the DAC) and N is the number of entries
in the table. To get other frequencies, either
the sample rate or the number of table
entries must be changed.

There are a number of reasons why the
sample rate should remain constant, so
the answer is to change the effective table
length. If the table dump routine were
modified to skip every other entry, the
result would be an effective halving of
table size and thus doubling of the tone
frequency. If the table is fairly long, such
as 256 entries, a number of frequencies are
possible by skipping an integer number of
entries.

To get musically accurate frequencies, it
is necessary to be able to skip a fractional
number of table entries. At this point the
concept of a table increment is helpful in
dealing with programming such an oper
ation. First, the table is visualized as a

53

TABLE
POINTER

Figure 6: Diagrammatic representation
of the circular table used for storing
the waveform "template." The tech
nique illustrated here Is that of storing
a large number of samples of one cycle
of a musical waveform In memory as a
table which wraps around itself in
circular fashion. A pointer is used to
point to the next sample to be ex
tracted. In order to create a waveform
with a given frequency, the program
is designed to skip a fractional number
of table entries to get the next sample
value. This fractional number is called
the table increment value. The process
is continued around the table for one
revolution to create a complete
waveform. The cycle around the table
is repeated until the duration counter
decrements to zero.

circle with the first entry conceptually
following the last as in figure 6. A pointer
locates a point along the circular table
which represents the sample last sent to
the DAC. To find what should be sent to
the DAC next, the table pointer is moved
clockwise a distance equal to the table
increment. The frequency of the resulting
tone is now

FSxl
N

where FS and N are as before and I is the
increment.

With integer increments, the pointer
always points squarely to an entry. With
mixed number increments, the pointer also
will take on a fractional part. The sensible
thing to do is to interpolate between the
table entries on either side of the pointer

to arrive at an accurate value to give to the
DAC. This is indeed necessary to assure
high quality; but simply choosing the nearest
entry may be acceptable in some cases, parti
cularly if the table is very large.

There is one elusive pitfail in this tech
nique. The table may contain the tabulation
of any waveform desired, subject to one
limitation: a nonzero harmonic component
of the waveform must not exceed the
Nyquist frequency, FS/2. This can easily
happen with the larger table increments
(higher frequency tones), the result being
aliasing of the upper harmonics. Theoreti
cally this is a severe limitation. Often a small
amount of aliasing is not objectionable, but
a large amount sounds like gross intermodu
lation distortion. High sample rates reduce
the possibility or magnitude of aliasing, but
of course require more computation. For the
moment, we will ignore this problem and
restrict ourselves to relatively smooth wave
forms without a lot of high frequency har
monics.

Now that the DAC is used for generating
the actual waveshape, how is amplitude con
trol accomplished? If an amplitude para
meter is defined that ranges between 0 and
1.0 (corresponding to amplitudes between
zero and maximum), the desired result is
obtained by simply multiplying each sample
from the table by this amplitude parameter
and sending the product to the DAC. Things
are nice and consistent if the table entries
are also considered as fractions between -1
and +1 because then the product has a range
between -1 and +1 which is directly com
patible with the DAC. (Note that the DAC
in figure 3 is unipolar. It can be considered
bipolar if+2.5 V output is the zero reference
and the sign bit is inverted.)

The last major hurdle is the generation of
simultaneous tones. Obviously, two simul
taneous tones may be generated by going
through two tables, outputting to two
separate DACs, and mixing the results with
an audio mixer. This is relatively simple to
do if the sample rates of the two tones are
the same. Actually, all the audio mixer does
is to add the two input voltages together to
produce its output, but a very important
realization is that the addition can also be
done in the computer before the output
conversion by the DAC! The two samples
are simply added together with an ADD
instruction, the sum is divided by two (to
constrain it to the range of -1 to +1), and
the result sent to a single DAC. This holds
true for any number of simultaneous tones!
The only requirement is that the composite
samples not overflow the -1 to +1 range that
the DAC can accept. Rather than dividing
the sum, it is best to adjust the amplitude

54

factors of the individual “voices” to prevent
overflow. So now we have the tools nece-
sary to generate an ensemble of tones, each
one possibly having its own waveform,
amplitude envelope, and loudness relative
to the others. Indeed, this is all that is
necessary to simulate a typical organ.

Up to this point the timbre (waveform)
of a tone has been determined by the con
tents of a fixed waveform table. Truly inter
esting musical notes change their timbre
during the duration of the note. A reason
able alternative to switching between similar
tables for implementing this is to build the
tone from harmonic components. Each
harmonic component of the tone is simply
a sine wave with an amplitude dependent
on the waveform of the resulting tone.
Giving a different amplitude envelope
to each harmonic is equivalent to smoothly
changing the timbre during the note. The
aliasing problem mentioned earlier can also
be solved by simply omitting any harmonics
that become too high in frequency.

Dynamic timbre variation can also be
accomplished by a digital filter which does
the same thing to a sampled waveform that
a real inductance-capacitance filter does to
a normal waveform. A digital filter is simply
a subroutine which accepts a sample value
as an argument and gives back a sample value
which represents the filtered output. The
equations used in the subroutine determine
the filter type, and other arguments deter
mine the cutoff frequency, Q, etc. This is a
fascinating subject which deserves its own
article.

What about other, unpitched sounds?
They too can be handled with a few simple
techniques. Most sounds in this category
are based in part on random noise. In
sampled form, random white noise with a
uniform frequency spectrum is simply a
stream of random numbers. For example,
a fairly realistic snare drum sound may be
generated by simply giving the proper ampli
tude envelope to pure white noise. Other
types of drum sounds may be generated
by using a digital filter to shape the fre
quency spectrum of the noise. A resonant
type of digital filter would be used for tom
toms and similar semipitched drums, for
example. A high pass filter is useful for simu
lating brush and cymbal sounds. An infinite
number of variations are possible. This is
one area where direct computation of sound
waveforms really shines.

The sampling theorem works both ways
also. Any waveform may be converted into
digital samples with an analog to digital
converter (ADC) with no loss of informa
tion. The only requirement is that the signal
being sampled have no frequency com-

Listing 2: A program which, in conjunction with tables 3, 4 and 5, generates
four simultaneous musical voices, each with a different waveform and volume
level. The program is designed for use with the 6502 processor coupled to
an 8 bit unsigned digital to analog converter (DAC) like the one shown in
figure 3.

THIS PROGRAM PLAYS MUSIC IN 4-PART HARMONY ON THE KIM-1 OR
OTHER 6502 BASED SYSTEM USING AN 8-BIT UNSIGNED
DIGITAL-TO-ANALOG CONVERTER CONNECTED TO AN OUTPUT PORT. TUNED
FOR SYSTEMS WITH A 1 MHZ CRYSTAL CLOCK. DOES NOT USE THE ROR
INSTRUCTION.
SONG TABLE IS AT "SONG"
ENTRY POINT IS AT "MUSIC"

4 VOICE PLAY SUBROUTINE

0000 0 ORG AT PAGE 0 LOCATION 0

1700 DAC - X' 1700 OUTPUT PORT ADDRESS WITH DAC
1701 DACDIR - X' 1701 DATA DRIECTION REGISTER FOR DAC PORT
1780 AUXRAM = X’ 1780 ADDRESS OF EXTRA 128 BYTES OF RAM IN 6530
1C22 KIMMON = X'1C22 ENTRY POINT TO KIM KEYBOARD MONITOR

0000 00 V1PT: .BYTE 0 VOICE 1 WAVE POINTER, FRACTIONAL PART
0001 0000 .WORD WAV 1TB INTEGER PART AND WAVE TABLE BASE
0003 00 V2PT: .BYTE 0 VOICE 2
0004 0000 .WORD WAV2TB
0006 00 V3PT: .BYTE 0 VOICE 3
0007 0000 .WORD WAV3TB
0009 00 V4PT: .BYTE 0 VOICE 4
000A 0000 .WORD WAV4TB

OOOC 0000 V1 IN : .WORD 0 VOICE 1 INCREMENT (FREQUENCY PARAMETER)
000E 0000 V2IN: .WORD 0 VOICE 2
0010 0000 V3IN: .WORD 0 VOICE 3
0012 0000 V4IN: .WORD 0 VOICE 4

0014 00 DUR: .BYTE 0 DURATION COUNTER
0015 0000 NOTES : .WORD 0 NOTES POINTER
0017 0002 SONGA : .WORD SONG ADDRESS OF SONG
0019 0000 INCPT: .WORD 0 POINTER FOR LOADING UP V1NT - V4NT
001B 0C00 INCA : .WORD V1 IN INITIAL VALUE OF INCPT
001D 5200 TEMPO: .WORD 82 TEMPO CONTROL VALUE, TYPICAL VALUE FOR

3:4 TIME, 100 BEATS PER MINUTE, DUR=64
DESIGNATES A QUARTER NOTE

0100 X’ 100 START PROGRAM CODE AT LOCATION 0100

; MAIN MUSIC PLAYING PROGRAM

0100 A9FF MUSIC: LDA #X'FF SET PERIPHERAL A DATA DIRECTION
0102 8D0117 STA DACDIR REGISTER TO OUTPUT
0105 D8 CLD INSURE BINARY ARITHMETIC
0106 A517 LDA SONGA INITIALIZE NOTES POINTER
01z08 8515 STA NOTES TO BEGINNING OF SONG
010A A518 LDA SONGA*1
010C 8516 STA NOTES*1
010E A000 MUSICI : LDY #0 SET UP TO TRANSLATE 4 NOTE ID NUMBERS
0110 A51B LDA INCA INTO FREQUENCY DETERMINING WAVEFORM TABLE
0112 8519 STA INCPT INCREMENTS AND STORE IN V1IN - V4IN
0114 B115 LDA (NOTES),Y GET DURATION FIRST
0116 F03C BEQ ENDSNG BRANCH IF END OF SONG
0118 C901 CMP #1 TEST IF END OF SONG TABLE SEGMENT
011A FO29 BEQ NXTSEG BRANCH IF SO
011C 8514 STA DUR OTHERWOSE SAVE DURATION IN DUR
011E E615 MUSIC2: INC NOTES DOUBLE INCREMENT NOTES TO POINT TO THE
0120 D002 BNE MUSIC3 NOTE ID OF THE FIRST VOICE
0122 E6 16 INC NOTES*1
0124 B115 MUSIC3: LDA (NOTES),Y GET A NOTE ID NUMBER
0126 AA TAX INTO INDEX X
0127 B520 LDA FRQTAB+1,X GET LOW BYTE OF CORRESPONDING FREQUENCY
0129 9119 STA (INCPT), Y STORE INTO LOW BYTE OF VOICE INCREMENT
012B E619 INC INCPT INDEX TO HIGH BYTE
012D B51F LDA FRQTAB.X GET HIGH BYTE OF FREQUENCY
012F 9119 STA (INCPT),Y STORE INTO HIGH BYTE OF VOICE INCREMENT
0131 E615 INC NOTES DOUBLE INCREMENT NOTES TO POINT TO THE
0133 D002 BNE MUSIC4 NOTE ID OF THE NEXT VOICE
0135 E616 INC NOTES*1
0137 E619 MUSIC4: INC INCPT INDEX TO NEXT VOICE INCREMENT
0139 A519 LDA INCPT TEST IF 4 VOICE INCREMENTS DONE
013B C914 CMP #V4IN*2
013D D0E5 BNE MUSIC3 LOOP IF NOT
013F 205701 JSR PLAY PLAY THIS GROUP OF NOTES
0142 4C0E01 JMP MUSICI GO LOAD UP NEXT SET OF NOTES

0145 C8 NXTSEG: I NY END OF SEGMENT, NEXT TWO BYTES POINT TO
0146 B115 LDA (NOTES),Y BEGINNING OF THE NEXT SEGMENT
0148 48 PHA
0149 C8 INY GET BOTH SEGMENT ADDRESS BYTES
014A B115 LDA (NOTES),Y
014C 8516 STA NOTES*1 THEN STORE IN NOTES POINTER
014E 68 PLA
014F 8515 STA NOTES
0151 4C0E01 JMP MUSICI GO START INTERPRETING NEW SEGMENT

0154 4C221C ENDSNG: JMP KIMMON END OF SONG, RETURN TO MONITOR

55

Listing 2, continued:

0157 A000 PLAY: LDY
LDX

#0
TEMPO

; SET Y TO ZERO FOR STRAIGHT INDIRECT
; SET X TO TEMPO COUNT
; COMPUTE AND OUTPUT A COMPOSITE SAMPLE

0159 A61D

015B 18 PLAY1: CLC ; CLEAR CARRY
015C B101 LDA (V1PT+1),Y ; ADD UP 4 VOICE SAMPLES
015E 7104 ADC (V2PT+1),Y ; USING INDIRECT ADDRESSING THROUGH VOICE
0160 7107 ADC (V3PT+D.Y ; POINTERS INTO WAVEFORM TABLES
0162 710A ADC (V4PT+1) ,Y ; STRAIGHT INDIRECT WHEN Y INDEX = 0
0164 8D0017 STA X’ 1700 ; SEND SUM TO DIGITAL-TO-ANALOG CONVERTER
0167 A500 LDA V1PT ; ADD INCREMENTS TO POINTERS FOR
0169 650C ADC V11N ; THE 4 VOICES
016B 8500 STA V1PT ; FIRST FRACTIONAL PART
016D A501 LDA V1PT+1
016F 650D ADC V1IN+1
0171 8501 STA V1PT+1 ; THEN INTEGER PART
0173 A5O3 LDA V2PT ; VOICE 2
0175 650E ADC V2IN
0177 8503 STA V2PT
0179 A504 LDA V2PT+1
017B 65OF ADC V2IN+1
017D 8504 STA V2PT+1
017F A506 LDA V3PT ; VOICE 3
0181 6510 ADC V3 IN
0183 8506 STA V3PT
0185 A507 LDA V3PT+1
0187 6511 ADC V3IN+1
0189 8507 STA V3PT+1
01&B A509 LDA V4PT ; VOICE 4
018D 6512 ADC V4IN
018F 8509 STA V4PT
0191 A50A LDA V4PT+1
0193 6513 ADC V4IN+1
0195 85OA STA V4PT+1
0197 CA DEX ; DECREMENT & CHECK TEMPO COUNT
0198 D008 BNE TIMWAS ; BRANCH TO TIME WASTE IF NOT RUN OUT
019A C614 DEC DUR ; DECREMENT & CHECK DURATION COUNTER
019C FOOC BEQ ENDNOT ; JUMP OUT IF END OF NOTE
019E A61D LDX TEMPO ; RESTORE TEMPO COUNT
01A0 D0B9 BNE PLAY1 ; CONTINUE PLAYING
01A2 D000 TIMWAS: BNE .+2 ; 3 WASTE 12 STATES
01A4 D000 BNE .♦2 ; 3
01A6 D000 BNE .+2 ; 3
01A8 D0B1 BNE PLAY1 ; 3 CONTINUE PLAYING
01AA 60 ENDNOT: RTS ; RETURN

; TOTAL LOOP TIME = 114 STATES = 8770 HZ

01AB P1END = ; DEFINE BEGINNING ADDRESS FOR THIRD PART
; OF SONG TABLE

ponents higher than half of the sampling
frequency. This may be accomplished by
passing the signal to be digitized through a
sharp low pass filter prior to presenting
it to the ADC. Once sound is in digitized
form, literally anything may be done to it.
A simple (in concept) application is intri
cate editing of the sound with a graphic
display, light pen and large capacity disk.
The sound may be analyzed into harmonic
components and the result or a transfor
mation of it applied to a synthesized sound.
Again, this is an area that deserves its own
article.

Sampled Waveform Example

It should be obvious by now that while
these sampled waveform techniques are
completely general and capable of high
quality, there can be a great deal of com
putation required. Even the most powerful
computers in existence would be hard
pressed to compute samples for a significant
piece of music with many voices and all
subtleties implemented at a rate fast enough

for direct output to a DAC and speaker.
Typically the samples are computed at
whatever rate the program runs and are
saved on a mass storage device. After the
piece has been “computed,” a playback pro
gram retrieves the samples and sends them to
the DAC at a uniform high rate.

Most microprocessors are fast enough to
do a limited amount of sampled waveform
computation in real time. The 6502 is one
of the best 8 bit machines in this capacity
due to its indexed and indirect addressing
modes and its overall high speed. The
example program shown in listing 2 has the
inherent capability to generate four simul
taneous voices, each with a different wave
form and volume level. In order to make the
whole thing fit in a basic KIM-1, however,
only one waveform table is actually used.

This program could probably be con
sidered as a variation of the timed loop tech
nique, since the sample rate is determined by
the execution time of a particular loop. The
major differences are that all of the instruc
tions in the loop perform an essential func
tion and that the loop time is constant
regardless of the notes being played. Using
the program as shown on a full speed (1.0
MHz) 6502 gives a sample rate of 8.77 kHz,
which results in a useful upper frequency
limit of 3 kHz. The low pass filter in figure 7
coupled with the DAC in figure 3 and audio
system or amplifier in figure 8 are all the
specialized hardware necessary to run the
program with full 4 part harmony.

The program consists of two major
routines: MUSIC and PLAY. MUSIC steps
through the list of notes in the song table
and sets up DUR and V1 IN thru V4IN for
the PLAY routine. PLAY simultaneously
plays the four notes specified by V1IN thru
V4IN for the time period specified by DUR.
Another variable, TEMPO, in page zero con
trols the overall tempo of the music inde
pendently of the durations specified in the
song table. The waveform tables for the
four voices are located at WAV1TB thru
WAV4TB and require 256 bytes (one
memory page) each. The actual waveform
samples stored in the table have already
been scaled so that when four of them are
added up there is no possibility of overflow.

The song table has an entry for each
musical “event” in the piece. An entry
requires five bytes, the first of which is a
duration parameter. By suitable choice
of the TEMPO parameter in page 0, “round”
(in the binary sense) numbers may be used
for duration parameters of common note
durations. A duration parameter of 0 signals
the end of the song, in which case the pro
gram returns to the monitor. A duration
parameter of 1 is used to specify a break in

56

Figure 1: A sharp low pass filter with 3 kHz cutoff. This circuit is used to filter out the high frequency distortion illustrated in

the sequential flow of the song table. In this
case the next two bytes point to the con
tinuation of the table elsewhere in memory.
This feature was necessary to deal with the
fragmented memory of the KIM-1, but has
other uses as well. All other possible dura
tion values are taken literally and are fol
lowed by four bytes which identify the
notes to be played by each voice. Each note
ID points to a location in the note frequency
table which in turn contains a 2 byte fre
quency parameter for that note which is
placed in V1 IN thru V4IN.

The PLAY routine is optimized for speed,
because its loop time determines the sample
rate. Essentially, the routine maintains four
pointers (V1PT thru V4PT) to the four
waveform tables. Each pointer consists
of three bytes in order of increasing signi
ficance. The first byte is the “fractional
part” of the pointer, and the second byte
is the integer part which is also the lower
half of an address in the waveform table.
The third byte is the upper address which
normally remains constant. Waveform table
lookup is considerably simplified by using
the indirect addressing mode of the 6502
with these pointers. Note that the fractional
part of the pointer is ignored when the table
lookup takes place, since interpolation is
much too slow for a real time routine.

During each sample, waveform table
entries for each voice are fetched, added up,
and sent to the digital to analog converter
output port. Then the increment (VxIN) is
added (double precision) to each pointer
(VxPT). Wraparound from the end of a
waveform table to the beginning is auto
matically taken care of due to the fact that

OF SONG TABLE

; NOTE FREQUENCY TABLE FOR 8.772 KHZ SAMPLE RATE
; RANGE FROM C2 (65.41 HZ) TO C6

ID NOTET
(1046.5 HZ)
FREQ. INCR.

001F 0000 FRQTAB: .BYTE 0,0 0 SILENCE
0021 01E9 .BYTE 1,233 2 C2 65.405 1.9089
0023 0206 .BYTE 2,6 4 C2# 69.295 2.0224
0025 0225 .BYTE 2,37 6 D2 73.415 2.1427
0027 0245 .BYTE 2,69 8 D2# 77.783 2.2701
0029 0268 .BYTE 2,104 10 E2 82.408 2.4051
002B 028c .BYTE 2,140 12 F2 87.308 2.5481
002D 02B3 .BYTE 2,179 14 F2# 92.498 2.6996
002F 02DC .BYTE 2,220 16 G2 97.998 2.8601
0031 0308 .BYTE 3,8 18 G2# 103.83 3.O3O2
0033 0336 .BYTE 3,54 20 A2 110.00 3.2104
0035 0367 .BYTE 3,103 22 A2# 116.54 3-4013
0037 O39A .BYTE 3,154 24 B2 123.47 3.6035
0039 03D1 .BYTE 3,209 26 C3 130.81 3.8178
003B 040B .BYTE 4,11 28 C3# 138.59 4.0448
0030 0449 .BYTE 4,73 30 D3 146.83 4.2854
003F 048A .BYTE 4,138 32 D3# 155.57 4.5402
0041 04CF .BYTE 4,207 34 E3 164.82 4.8102
0043 0519 .BYTE 5,25 36 F3 174.62 5.0962
0045 0566 .BYTE 5,102 38 F3# 185.00 5.3992
0047 05B8 .BYTE 5,184 40 G3 196.00 5.7203
0049 060F .BYTE 6,15 42 G3# 207.65 6.0604
004B 066C .BYTE 6,108 44 A3 220.00 6.4208
004D 06CD .BYTE 6,205 46 A3# 233.O8 6.8026
004F 0735 .BYTE 7,53 48 B3 246.94 7.2071
0051 O7A3 .BYTE 7,163 50 C4 261.62 7.6356
0053 0817 .BYTE 8,23 52 C4# 277.18 8.0897
0055 0892 .BYTE 8,146 54 D4 293-66 8.5707
0057 0915 .BYTE 9,21 56 D4# 311.13 9.0804
0059 099F .BYTE 9,159 58 E4 329.63 9.6203
005B 0A31 .BYTE 10,49 60 F4 349.23 10.1924
005D 0ACC .BYTE 10,204 62 F4# 369.99 10.7984
005F 0B71 .BYTE 11,113 64 G4 391.99 11.4405
0061 0C1F .BYTE 12,31 66 G4# 415.30 12.1208
0063 0CD7 .BYTE 12,215 68 A4 440.00 12.8416
0065 0D9B .BYTE 13,155 70 A4# 466.16 13.6052
0067 0E6A .BYTE 14,106 72 B4 493.88 14.4142
0069 0F45 .BYTE 15,69 74 C5 523.24 15.2713
006B 102E .BYTE 16,46 76 C5# 554.36 16.1794
006D 1124 .BYTE 17,36 78 D5 587.32 17.1414
006F 1229 .BYTE 18,41 80 D5# 622.26 18.1607
0071 133E .BYTE 19,62

.BYTE 20,98
82 E5 659.26 19.2406

0073 1462 84 F5 698.46 20.3847
0075 1599 .BYTE 21,153 86 F5# 739.98 21.5969
0077 16E2 .BYTE 22,226 88 G5 783.98 22.8811
0079 183E .BYTE 24,62 90 G5# 830.60 24.2417
007B 19AF .BYTE 25,175 92 A5 880.00 25.6831
007D 1B36 .BYTE 27,54 94 A5# 932.32 27.2103
007F 1CD4 .BYTE 28,212 96 B5 987.76 28.8283
0081 TESE .BYTE 30,139 98 C6 1046.5 30.5426
0083 P0END DEFINE BEGINNING ADDRESS FOR SECOND PART

Table 3: Note frequency table used In conjunction with listing 2. This table is
for a sample rate of 8.772 kHz. The range of the notes used is from 65.41
Hz (for C2) to 1046.5 Hz (for C6).

57

Figure 8. An inexpensive,
wide band tow power
audio amplifier. This cir
cuit, when coupled with
the circuits in figures 3
and 7, is all the experi
menter needs to create
music with his or her
microprocessor.

! SONG TABLE
; EACH MUSICAL EVENT CONSISTS OF 5 BYTES
; THE FIRST IS THE DURATION OF THE EVENT IN UNITS ACCORDING TO
; THE VALUE OF "TEMPO*, ZERO DENOTES THE END OF THE SONG.
; THE NEXT 4 BYTES CONTAIN THE NOTE ID OF THE 4 VOICES, 1 THROUGH
; 4.0 INDICATES SILENCE FOR THE VOICE.

0200 . = X'200 ; START SONG AT 0200

; SONG TABLE FOR THE STAR SPANGLED BANNER BY FRANCIS SCOTT KEY
; AND J. STAFFORD SMITH
; DURATION COUNT - 64 FOR QUARTER NOTE

Table 4: This song table is an encoding of "The Star Spangled Banner" in
4 part harmony which is used by the program in listing 2. Each musical
event in the table consists of five bytes. The first byte represents the dur
ation of the event in units, according to the value of the "tempo” (0 denotes
the end of the song). The next four bytes contain the note Identifications of
the four voices (0 indicates silence for the voice).

0200 604A000032 SONG:
0205 104400002C
020A 4040000024

.BYTE

.BYTE

.BYTE

96,76, 0,0,50
16,68,0,0,66
66,66,0,0,36

3/8
1/16
1/4

C5
A4
G4

C4
A3
F3

1

2
020F 4044000024 .BYTE 66,68,0,0,36 1/4 A4 F3
0214 404A000022 .BYTE 66,76,0,0,36 1/4 C5 E30219 80544E441E .BYTE 128,86,78,68,30 1/2 F5 D5 A4 D3 3
021E 305C52441C .BYTE 68,92,82,68,28 3/16 A5 E5 A4 C#3
0223 1058004010 • BYTE 16,88,0,66,28 1/16 G5 G4 CI3
0228 4054003C1E .BYTE 66,86,0,60,30 1/4 F5 F4 D3 4
022D 4O44OO3C1E .BYTE 66,68,0,60,30 1/4 A4 F4 D3
0232 4048403C28 .BYTE 66,72,66,60,60 1/4 B4 G4 F4 G3
0237 804A403A32 .BYTE 128,76,66,58,50 1/2 C5 G4 E4 C4 5
023c 204A000032 .BYTE 32,76,0,0,50 1/8 C5 C4
0241 204A000032 .BYTE 32,76,0,0,50 1/8 C5 C4
0246 6050544424 .BYTE 96,92,86,68,36 3/8 A5 F5 A4 F3 6
024B 2058004028 .BYTE 32,88,0,66,60 1/8 G5 G4 G3
0250 4054003C2C .BYTE 66,86,0,60,66 1/4 F5 F4 A3
0255 80524A4032 .BYTE 128,82,76,66,50 1/2 E5 C5 G4 C4 7
025A 3O4E46OO2E .BYTE 68,78,70,0,66 3/16 D5 M4 M3
025F 10524A402E .BYTE 16,82,76,66,66 1/16 E5 C5 G4 M3
0264 40544A442C .BYTE 66,86,76,68,66 1/4 F5 C5 A4 A3 8
0269 4O54OOOO3C .BYTE 66,86,0,0,60 1/4 P5 F4
026E 404A000032 .BYTE 66,76,0,0,50 1/4 C5 C4
0273 4044000020 .BYTE 66,68,0,0,66 1/4 A4 A3 90278 4O3COOOO24 .BYTE 66,60,0,0,36 1/4 F4 F3027D 304A000032 .BYTE 68,76,0,0,50 3/16 C5 C4
0282 1044000020 .BYTE 16,68,0,0,66 1/16 A4 A30287 4030000024 .BYTE 66,60,0,0,36 1/4 F4 F3 10028c 4044000024 .BYTE 66,68,0,0,36 1/4 A4 F3
0291 404A000022 .BYTE 66,76,0,0,36 1/4 C5 E30296 8O544E441E .BYTE 128,86,78,68,30 1/2 F5 D5 A4 D3 11
029B 305C52441C .BYTE 68,92,82,68,28 3/16 A5 E5 A4 C#3

the table occupies a full memory page.
Finally, the tempo counter is decremented
and checked. If the tempo counter is zero,
it is restored and the duration counter is
decremented and checked. If it is also zero
the note is finished and PLAY returns. The
net result is that TxD samples are computed
and sent out for the event, where T is the
tempo parameter and D is the duration para
meter. Note that, unlike the earlier timed
loop example, there is no interaction be
tween the duration parameter and the note
frequencies being played.

How does it sound? With the waveform
table shown and a reasonably good speaker
system, the result sounds very much like an
electronic organ, such as a Hammond. There
is a noticeable background noise level due to
compromises such as prescaled waveforms
and lack of interpolation in the tables, but it
is not objectionable. The pitches are very
accurate, but there is some beating on
chords due to compromises inherent in the
standard equally tempered musical scale.
Also there are noticeable clicks between
notes due to the time taken by the MUSIC
routine to set up the next set of notes. All in
all the program makes a good and certainly
inexpensive basis for the “family music
application” mentioned earlier.

Synthesizer Control Techniques

So far we have discussed techniques in
which the computer itself generates the

58

sound. It is also possible to interface a com
puter to specialized sound generation hard
ware and have it act as a control element.

The most obvious kind of equipment to
control is the standard, modular, voltage
controlled sound synthesizer. Since the
interface characteristics of nearly all synthe
sizers and modules are standardized, a com
puter interface to such equipment could
be used with nearly any synthesizer in
common use.

Generally speaking, the function of a
voltage controlled module is influenced
by one or more DC control voltages. These
are usually assumed to be in the range of 0
to +10 volts, although some modules will
have a predictable response to negative
voltages as well. In a voltage controlled
oscillator, for example, the output fre
quency is determined by a control voltage.
For typical tuning, 0 V would correspond
to 16 Hz (a very low C), and the frequency
would increase one volt per octave for
higher voltages. Thus, +4 V would produce
middle C, and the maximum input of +10 V
would produce a nearly inaudible 16.4 kHz.
A typical oscillator module has two or three
control inputs and a number of outputs. The
voltages at the inputs are internally summed
to form the effective control value (useful
for injecting vibrato), and the outputs pro
vide several different waveforms simultane
ously.

A voltage controlled amplifier has as a
minimum a signal input, a control input, and
a signal output. The voltage at the control
input determines the gain from the signal
input to the signal output. In a typical
setting, +8 V would correspond to unity
(0 db) gain, with lower voltages decreasing
the gain by 10 db per volt.

Many other voltage controlled devices
have been developed during the approxi
mately 12 year history of this field. In order
to play music, the modules are first “pat
ched” together with patch cords (like old
style telephone switchboards) according to
the desired sound characteristics. Manually
operated control voltage sources such as
potentiometers, joysticks and specialized
organ-like keyboards are then manipulated
by the player. The music is generally
monotonic due to difficulties in the control
elements (now being largely overcome).
Multitrack tape recorders are universally
utilized to produce the results heard on
recordings such as Walter Carlos’s Switched
on Bach.

A useful computer interface to a synthe
sizer can be accomplished with nothing more
than a handful of digital to analog and
optionally analog to digital converters. The
DACs would be used to generate control

voltages under program control and the
ADCs would allow operator input from the
keyboard, for example, to be stored. Since
control voltages vary slowly compared to the
actual sound waveforms, real time control
of a number of synthesizer modules is
possible with the average microprocessor.

Table 4, continued:

02A0 1058004010 .BYTE 16,88,0,64,28 1/16 G5 G4 C#3
02A5 4054003C1E .BYTE 64,84,0,60,30 1/4 F5 F4 D3 12
02AA 4044003C1E .BYTE 64,68,0,60,30 1/4 A4 F4 D3
02AF 4048403028 .BYTE. 64,72,64,60,40 1/4 B4 G4 F4 G3
02B4 804A403A32 .BYTE 128,74,64,58,50 1/2 C5 G4 E4 C4 13
02B9 204A000032 .BYTE 32,74,0,0,50 1/8 C5 C4
02BE 204A000032 .BYTE 32,74,0,0,50 1/8 05 04
02C3 6050544424 .BYTE 96,92,84,68,36 3/8 A5 F5 A4 F3 14
02C8 2058004028 .BYTE 32,88,0,64,40 1/8 G5 G4 G3
02CD 2054003C2C .BYTE 32,84,0,60,44 1/8 F5 F4 A3
02D2 80524A4032 .BYTE 128 ,.82,74,64,50 1/2 E5 C5 G4 C4 15
02D7 304E46002E .BYTE 48,78,70,0,46 3/16 D5 Be 4 se3
02DC 10524A402E • BYTE 16,82,74,64,46 1/16 E5 C5 G4 Be 3
02E1 40544A442C .BYTE 64,84,74,68,44 1/4 F5 C5 A4 A3 1Ó
02E6 4O54OOOO3C .BYTE 64,84,0,0,60 1/4 F5 F4
02EB 404A000032 .BYTE 64,74,0,0,50 1/4 05 C4
02F0 404400002C .BYTE 64,68,0,0,44 1/4 A4 A3 17
02F5 4030000024 • BYTE 64,60,0,0,36 1/4 F4 F3
02FA 01 .BYTE 1 DEFINE END OF THIS SEGMENT
02FB 8300 .WORD POEND ADDRESS OF BEGINNING OF NEXT

SEGMENT
0083 - POEND ORG AT END OF PAGE 0 CODE
0083 3050544428 .BYTE 48,92,84,68,40 3/16 A5 F5 A4 G3
0088 1050544428 .BYTE 16,92,84,68,40 1/16 A5 F5 A4 G3
008D 4050544424 .BYTE 64,92,84,68,36 1/4 A5 F5 A4 F3 18
0092 405E544628 .BYTE 64,94,84,70,40 1/4 Bê5 F5 Be4 G3
0097 4062544A2C .BYTE 64,98,84,74,44 1/4 C6 F5 05 A3
0090 8062544A2C .BYTE 128,98,84,74,44 1/2 C6 F5 05 A3 19
00A1 205E544628 .BYTE 32,94,84,70,40 1/8 Bê5 F5 Be 4 G3
00A6 205C54442C .BYTE 32,92,84,68,44 1/8 A5 F5 A4 A3
00AB 4058524032 .BYTE 64,88,82,64,50 1/4 G5 E5 G4 C4 20
00B0 405C54443C .BYTE 64,92,84,68,60 1/4 A5 F5 A4 F4
00B5 405E524640 .BYTE 64,94,82,70,64 1/4 Be5 E5 Be 4 G4
00BA 805E58461A .BYTE 128,94,88,70,26 1/2 Bê5 G5 Be 4 C3 21
00BF 405E52461A .BYTE 64,94,82,70,26 1/4 Bê5 E5 Be 4 C3
00C4 605C4A4424 .BYTE 96,92,74,68,36 3/8 A5 05 A4 F3 22
00C9 20584A4028 .BYTE 32,88,74,64,40 1/8 G5 C5 G4 G3
00CE 40544A3C2C .BYTE 64,84,74,60,44 1/4 F5 05 F4 A3
00D3 80524A4032 .BYTE 128,82,74,64,50 1/2 E5 05 G4 C4 23
00D8 204E00362E .BYTE 32,78,0,54,46 1/8 D5 D4 Be 3
00DD 20524A3A2E .BYTE 32,82,74,58,46 1/8 E5 05 E4 Be 3
00E2 40544A3C2C .BYTE 64,84,74,60,44 1/4 F5 05 F4 A3 24
00E7 4O443COO36 .BYTE 64,68,60,0,54 1/4 A4 F4 D4
00EC 01 .BYTE 1 DEFINE END OF THIS SEGMENT
00ED AB01 .WORD P1END ADDRESS OF BEGINNING OF NEXT

SEGMENT
01 AB - P1END ORG AT END OF PAGE 1 CODE
01AB 4048403028 .BYTE 64,72,64,60,40 1/4 B4 G4 F4 G3
01B0 804A403A1A .BYTE 128,74,64,58,26 1/2 05 G4 E4 C3 25
01B5 404A000032 .BYTE 64,74,0,0,50 1/4 05 04
01BA 40544A4424 .BYTE 64,84,74,68,36 1/4 F5 05 A4 F3 26
01BF 4054464028 .BYTE 64,84,70,64,40 1/4 F5 Bê 4 G4 G3
01C4 2Q544A442C .BYTE 32,84,74,68,44 1/8 F5 05 A4 A3
01C9 20524A442C .BYTE 32,82,74,68,44 1/8 E5 ’’ •t
01CE 404E463C2E .BYTE 64,78,70,60,46 1/4 D5 Be 4 F4 Be3 27
01D3 404E463C2E .BYTE 64,78,70,60,46 1/4 D5 BÉ 4 F4 Be3
01D8 404E4A3E2C .BYTE 64,78,74,62,44 1/4 D5 05 F#4 A3
01DD 4058464028 .BYTE 64,88,70,64,40 1/4 G5 Be 4 G4 G3 28
01E2 205E460028 .BYTE 32,94,70,0,40 1/8 Be5 Be4 G3
01E7 205C44002C .BYTE 32,92,68,0,44 1/8 A5 A4 A3
01EC 205840002E .BYTE 32,88,64,0,46 1/8 G5 G4 BÉ3
01F1 01 .BYTE 1 DEFINE END OF THIS SEGMENT
01F2 8017 .WORD AUXRAM ADDRESS OF BEGINNING OF NEXT

SEGMENT (IN 6530 RAM)
1780 . - AUXRAM ORG AT BEGINNING OF 6530 RAM
1780 2054300030 .BYTE 32,84,60,0,48 1/8 F5 F4 B3
1785 40544A4432 .BYTE 64,84,74,68,50 1/4 F5 05 A4 04 29
178A 40524A401A .BYTE 64,82,74,64,26 1/4 E5 05 G4 03
178F 204A000032 .BYTE 32,74,0,0,50 1/8 05 04
1794 204A00002E .BYTE 32,74,0,0,46 1/8 05 Be 3
1799 60544A442C .BYTE 96,84,74,68,44 3/8 F5 05 A4 A3 30
179E 2058004032 .BYTE 32,88,0,64,50 1/8 G5 G4 04
17A3 2050004440 .BYTE 32,92,0,68,64 1/8 A5 A4 G4
17A8 205E004640 :byte 32,94,0,70,64 1/8 Be5 Be 4 G4
17AD -8062505444 .BYTE 128,98,92,84,68 1/2 C6 A5 F5 A4 31
17B2 20544E4436 .BYTE 32,84,78,68,54 1/8 F5 D5 A4 D4
17B7 2058484034 .BYTE 32,88,72,64,52 1/8 G5 B4 G4 De4
17BC 605C544A32 .BYTE 96,92,84,74,50 3/8 A5 F5 05 04 32
1701 205E544E32 .BYTE 32,94,84,78,50 1/8 Be5 F5 D5 C4
1706 4058524632 .BYTE 64,88,82,70,50 1/4 G5 E5 Be4 04
17CB 80544A443C .BYTE 128,84,74,68,60 1/2 F5 05 A4 F4 33
17D0 00 .BYTE 0 END OF PIECE

59

Due to the large number of DACs required
and the relatively slow speeds necessary, a
multiplexing scheme using one DAC and a

WAVEFORM TABLE
EXACTLY ONE PACE LONG ON A PAGE BOUNDARY
MAXIMUM VALUE OF AN ENTRY IS 63 DECIMAL OR 3F HEX TO AVOID
OVERFLOW WHEN V VOICES ARE ADDED UP

0300 .s X’300 ; START WAVEFORM TABLE AT 0300
0300 WAV 1TB = ; VOICE 1 WAVEFORM TABLE
0300 WAV2TB = . ; VOICE 2 WAVEFORM TABLE
0300 WAV3TB = ; VOICE 3 WAVEFORM TABLE
0300 WAV4TB = ; VOICE 4 WAVEFORM TABLE

; NOTE THAT ALL 4 VOICES USE THIS TABLE DUE
; TO LACK OF RAM IN BASIC KIM-1

FUNDAMENTAL AMPLITUDE 1.0 (REFERENCE)
SECOND HARMONIC .5, IN PHASE WITH FUNDAMENTAL
THIRD HARMONIC .5, 90 DEGREES LEADING PHASE

.END

0300 3334353636 -BYTE X’33,X 34.X 35,X 36,X 36,X 37,X 38,X 39
0305
0308

373839
393A3A3B3B .BYTE X’39,X 3A,X 3A,X 3B,X 3B,X 3B,X 3C,X 3C

030D
0310

3B3C3D
3C3C3C3C3C .BYTE X’3C,X 3C,X 3C,X 3C,X 3C,X 3C,X 3C,X 3C

0315
0318

3C3C3C
3C3C3C3B3B .BYTE X'3C,X 3C,X 3C,X 3B,X 3B,X 3B.X 3B,X 3B

031D
0320

3B3B3B
3A3A3A3A3A .BYTE X»3A,X 3A,X 3A,X 3A,X 3A,X 3A,X 39,X 39

0325
0328

3*3939
3939393939 .BYTE X'39,X 39,X 39,X 39,X 39, X 39,X 39,X 39

O32D
0330

393939
3A3A3A3A3A .BYTE X'3A,X 3A,X 3A,X 3A,X 3A,X 3B,X 3B,X 3B

0335
0338

3B3B3B
3B3C3C3C3D .BYTE X'3B,X 3C,X 3C,X 3C,X 3D,X 3D,X 3D,X 3D

O33D
0340

3D3D3D
3E3E3E3E3F .BYTE X'3E,X 3E,X 3E,X 3E,X 3F,X 3F,X 3F,X 3F

0345
0348

3F3F3F
3F3F3F3F3F .BYTE X’3F,X 3F,X 3F.X 3F,X 3F,X 3F,X 3F,X 3F

O34D
0350

3F3F3F
3E3E3E3D3D .BYTE X*3E,X 3E,X 3E,X 3D,X 3D,X 3C,X 3C,X 3B

0355
0358

3C3C3B
3B3A393838 .BYTE X'3B,X 3A,X 39,X 38,X 38,X 37,X 36,X 35

O35D
0360

373635
3433323130 .BYTE X'34,X 33,X 32,X 31,X 30,X 2F,X 2E,X 2D

0365
0368

2F2E2D
2C2B2A2928 .BYTE X’2C,X 2B,X 2A,X 29,X 28,X 27,X 26,X 25

O36D
0370

272625
2423222121 .BYTE X’24,X 23,X 22,X 21,X 21,X 20,X 1F,X 1F

0375
0378

201F1F
1E1E1D1DID .BYTE X'1E,X 1E,X 1D,X 1D,X 1D,X 1D,X 1C,X 1C

O37D
0380

1D1C 1C
1C 1C 1D1D1D .BYTE X'1C,X 1C,X 1D,X 1D,X 1D,X 1D,X 1D,X 1E

0385
0388

1D1D1E
1E1F1F2020 .BYTE X*1E,X 1F,X 1F,X 20,X 20,X 21 ,X 21,X 22

038D
0390

212122
2323242425 .BYTE X»23,X 23.X 24,X 24,X 25,X 26,X 26,X 27

0395
0398

262627
2828292929 .BYTE X’28,X 28, X 29,X 29,X 29,X 2A,X 2A,X 2B

039D
03A0

2A2A2B
2B2B2B2B2B .BYTE X’2B,X 2B,X 2B,X 2B,X 2B,X 2B,X 2B,X 2A

03A5
03A8

2B2B2A
2A2A292928 .BYTE X’2A,X 2A,X 29,X 29,X 28,X 27.X 27,X 26

03AD
03B0

272726
2524232221 .BYTE X’25,X 24,X 23,X 22, X 21,X 20,X 1F,X 1D

03B5
O3B8

201F1D
1C IBI 91817 .BYTE X'1C,X 1B,X 19,X 18,X 17,X 15,X 14,X 13

03BD
03C0

151413
11100F0D0C .BYTE X’11,X 10,X 0F,X 0D,X 0C,X 0B,X 09,X 08

03C5
03C8

OBO9O8
0706050403 .BYTE X’07,X 06, X 05, X 04, X 03,X 03,X 02,X 01

03CD
03D0

030201
0100000000 .BYTE X*01,X 00,X 00, X 00,X 00,X 00,X 00,X 00

03D5
03D8

000000
0000010101 .BYTE X*00,X 00,X 01,X 01,X 01,X 02,X 03,X 04

03DD
03E0

020304
0506070809 .BYTE X'05,X 06,X 07, X 08,X 09,X 0B,X oc,x 0D

03E5
03E8

0 B0 COD
0F10121315 .BYTE X'0F,X 10,X 12,X 13,X 15,X 16,X 18,X 1A

03ED
03F0

16181A
1B1D1F2022 .BYTE X'1B,X 1D,X 1F,X 20,X 22,X 23.X 25,X 27

O3F5
03F8

232527
282A2B2C2E .BYTE X'28,X 2A,X 2B,X 2C,X 2E,X 2F,X 30,X’ 31

03FD 2F3O31

Table 5: This table is an encoding of the samples of the waveform used by the
program in listing 2. The table is exactly one memory page long on a page
boundary. The maximum value of any entry is decimal 63 or hexadecimal 3F
to avoid overflow when all four voices are summed.

number of sample and hold amplifiers is
appropriate. The home builder should be
able to achieve costs as low as $2 per
channel for a 32 channel, 12 bit unit capable
of controlling a fairly large synthesizer.

The routing of patch cords can also be
computerized. A matrix of reed relays or
possibly CMOS bilateral switches interfaced
to the computer might be used for this task.
The patches used for some contemporary
synthesizer sounds resemble the program
patch boards of early computers and thus
are difficult and time consuming to set up
and verify. With computer controlled
patching, a particular setup may be recalled
and set up in milliseconds, thus enhancing
real time performance as well as reducing the
need for a large number of different mod
ules.

Other musical instruments may be inter
faced as well. One well-published feat is an
interface between a PDP-8 computer and a
fair sized pipe organ. There are doubtless
several interfaces to electronic organs in
existence also. Even piano mechanisms
can be activated, as noted elsewhere in this
issue.

Recently, specialized music peripherals
have appeared, usually oriented toward the
S-100 (Altair) bus. In some cases these are
digital equivalents of analog modules of
similar function. For example, a variable
frequency oscillator may be implemented
using a divide-by-N counter driven by a
crystal clock. The output frequency is
determined by the value of N loaded into a
register in the device, much as a control
voltage affects a voltage controlled oscil
lator. Such an approach bypasses the fre
quency drift problems and interfacing ex
pense of analog modules. The biggest advan
tage, however, is availability of advanced
functions not feasible with analog modules.

One of these is a programmable wave
form. A small memory in the peripheral
holds the waveform (either as individual
sample values or Fourier coefficients), which
can be changed by writing in a new wave
form under program control. Another advan
tage is that time multiplexing of the logic
is usually possible. This means that one set
of logic may simulate the function of several
digital oscillators simultaneously, thus re
ducing the per oscillator cost substantially.
Actually, such a digital oscillator may be
nothing more than a hardware implemen
tation of the PLAY routine mentioned
earlier.

Digital/analog hybrids are also possible.
The speech synthesizer module produced
by Computalker Consultants, for example,
combines a programmable oscillator, several
programmable amplifiers and filters, white

60

noise generator, and programmable switch
ing on one board. Although designed for
producing speech, its completely program
mable nature gives it significant musical
potential, particularly in vocals.

How do these various control techniques
compare with the direct waveform compu
tation techniques discussed earlier? A de
finite advantage of course is real time play
ing of the music. Another advantage is
simpler programming, since sound genera
tion has already been taken care of. How
ever, the number of voices and complexity
of subtle variations is directly related to the
quantity of synthesizer modules available.
For example, if more voices are needed,
either more modules must be purchased or a
multitrack tape recording must be made,
which then takes us out of the strict real
time domain. On the other hand, a new
voice in a direct synthesis system is nothing
more than a few bytes added to some tables
and a slightly lengthened execution time.
Additionally, there may be effects that are
simply not possible with currently available
analog modules. With a direct synthesis
system, one merely codes a new subroutine,
assuming that an algorithm to produce the
effect is known.

A separate problem for the experimenter
is that a “critical mass” exists for serious
work with a direct synthesis system. To
achieve complexity significantly beyond the
4 voice example program described earlier,
a high speed, large capacity mass storage sys
tem is needed. This means an IBM type digi
tal tape drive or large hard surface disk
drive; usually at least $3000 for a new
drive less interface. Used 7 track tapes and
2311 type disks (7.5 megabytes) are often
available for $500 and certainly provide
a good start if the user can design his own
interface. Synthesizer modules or peripheral
boards, on the other hand, can be purchased
one at a time as needed.

Music Languages

Ultimately, software for controlling the
sound generation process, whether it be
direct or real time control, is the real fron
tier. The very generality of computer music
synthesis means that many parameters and
other information must be specified in
order to produce meaningful music. One
function of the software package is to con
vert “musical units of measure” into phy
sical sound parameters such as conversion
of tempo into time durations. Another part
is a language for describing music in suffi
cient detail to realize the control power
available from music synthesis without bur
dening the user with too much irrelevant or

repetitious detail. With a good language, a
good editor for the language, and real time
(or nearly so) execution of the language, the
music system becomes a powerful composi
tion tool much as a text editing system aids
writers in preparing manuscripts.

Music languages can take on two forms.
One is a descriptive form. Music written in
a descriptive language is analogous to a con
ventional score except that it has been coded
in machine readable form. All information in
the score necessary for proper performance
of the piece is transcribed onto the com
puter score in a form that is meaningful to
the user yet acceptable to the computer.
Additional information is interspersed for
control of tone color, tempo, subtle varia-

* TOCCATA AND FUGUE IN D-MINOR BACH

V0ICE1 40,0,0,0,0,30,0,0,0,0,0,0,0,60,0 10 30,30
VOICE2 37,0(0,0,0,0,0,0,50,0,0,0,0,50,0 10 60,60
VOICE3 0,0,9,0,38,0,0,0,38,19,0,0,0,28,0 15 100,250
TEMPO 1/4=1200

/-/

002 1A3.1/64; 2A2.1/64
lA@3,l/64; 2A@2,l/64
1A3.1/8; 2A2,l/8
R,l/32
1G3,1/647; 2G2.1/64.
lF3,l/64; 2F2,l/64
lE3,l/64; 2E2,l/64
lD3,l/64; 2D3,l/64
lC#3,l/32; 2C#2,l/32
1D3,1/16; 202,1/16
R,l/4
302,1/1; R,l/4
2C#3,1F2; R,l/16
1E3,7/16; R,l/16
1G3,7/16; R,l/16
1B83,5/16; R,l/16
1C#4,4/16; R,l/16
1E4,3/16

/-/

140 lB@4,l/8; lG4,l/8; 1E4.1/8; 2E3.1/8; 3C#3,l/8
1E3,1/32
1G3,1/32
1B33,1/32
1C#4,1/32
1BS4,1/8
lB84,l/8; lG4,l/8; lE4,l/8; lC»4,l/8; 2E3,l/8; 3C*3,l/8
lA4,l/8; lF#4,l/8; 104,1/8; 2F#3,l/8; 3C3,l/8

TEMPO 1/4=950
103,1/32

TEMPO 1/4=1050
1A3,1/32

TEMPO 1/4=1150
104,1/32

TEMPO 1/4=1200
1F#4,1/32
1A4,1/8
lA4,3/8; lF#4,l/8; 104,1/8; 2F#3,l/8; 3C3,l/8

141 104,1/2; lBg3,l/2; 2G3,l/2; 3G2,l/4
1G4.1/2; 3B@2,l/4
lE4,l/4; lC#4,l/4; 2B®3,l/4; 3E2,l/4
1F4.1/4; 104,2/4; 2A3,l/4; 3F2.1/4

142 1E4.1/2; 2A3,l/2; 3A2,l/2; R,l/4
1C4.2/4; R,l/4
104,4/2; 2F3,l/4; 3Bg2,l/4
2B@3,l/4; 2G3.1/4; 3G2.1/4

143 2A3,3/2; 2F3.3/2; 303,3/2; 302,3/2
END

Listing 3: Bach’s "Toccata and Fugue in D Minor"as encoded in NOTRAN, a
music language developed by the author (NOTRAN stands for NOte TRAN-
slation). The main function of the language is to transcribe organ music,
but it will work equally well with other types of music. Program state
ments are used to encode duration, pitch, attack and decay rates, and loud
ness of each note.

61

tions, and other parameters available to the
computer synthesist.

A simple example of such a language is
NOTRAN (NOte TRANslation) which was
developed by the author several years ago
for transcribing organ music. Listing 3 shows
a portion of Bach’s “Toccata and Fugue in
D Minor” coded in NOTRAN. The basic
thrust of the language was simplicity of
instruction (to both the user and the inter
preter program), rather than minimization of
typing effort.

Briefly, the language consists of state
ments of one line each which are executed
in straight line sequence as the music plays.
If the statement starts with a keyword, it is
a specification statement; otherwise, it is a
note statement. Specification statements
simply set up parameters that influence the
execution of succeeding note statements and
take no time themselves.

A VOICE statement assigns the timbre
described by its parameters to a voice num
ber which is used in the note statements. In
the example score, the first group of para
meters describe the waveform in terms that
are implementation dependent, such as
harmonic amplitudes. The next, isolated
parameter specifies the overall loudness of
the voice in relation to other voices. The last
pair of parameters specifies the attack and
decay times respectively for notes using this
voice. Depending on the particular imple
mentation, other parameters may be added
without limit. For example, vibrato might be
described by a set of three additional para
meters such as vibrato frequency, amplitude,
and a delay from the beginning of a note to
the start of vibrato.

A TEMPO statement relates note dura
tions in standard fractional terms to real
time in milliseconds. The effect of a tempo
statement lasts until another is encountered.
Although the implementation for which the
example was written required a sequence of
tempo statements to obtain a retard, there is
no reason why an acceleration or a
retard set of parameters could not be added.

Note statements consist of one or more
note specifications and are indented four
spaces (the measure numbers are treated as
comments). Each note specification begins
with a voice number followed by a note
name consisting of a letter, optional sharp
(#) or flat (@) sign, and an octave number.
Thus C#4 is one half step above middle C.
Following the comma separator is a duration
fraction. Any fraction is acceptable, but
conventional musical fractions are normally
used. Following the duration are two op
tional modifiers. A period (.) indicates a
“dotted” note which by convention extends
the note’s duration by 50%. An “S” specifies

a staccato note which is played as just an
attack and decay (as specified by the corres
ponding voice statement) without any
steady state. The presence of a semicolon (;)
after a note indicates that additional notes
which are intended to be part of the same
statement are present, possibly extending to
succeeding lines.

The execution sequence of note state
ments can become a little tricky due to the
fact that note durations in the statement
may not all be equal. The rule is that all
notes in the statement start simultaneously.
When the shortest one has ended, the notes
in the next statement are initiated, even
though some in the previous statement may
be still sounding. This could continue to
any depth such as the case of a whole note
in the bass against a series of sixteenth notes
in the melody. The actual implementation,
of course, limits the maximum number of
simultaneous tones that may be built up.

Also available is a rest specification which
can be used like a note specification. Its
primary function is to provide silent space
between note statements, but it may also
be used to alter the “shortest note” decision
when a note statement is scanned. If the rest
is the shortest then the notes in the next
statement are started when the rest elapses
even though none of the current notes have
ended. A use of this property may be seen
in the last part of measure 2 where an
arpeggio is simulated.

As can be seen, NOTRAN is best suited
for describing conventional organ music,
although it could be extended to cover a
wider area as well. One such extension which
has been experimented with but not fully
implemented is percussion instruments. First
a set of implementation dependent para
meters was chosen to define a percussive
sound, and then a PRCUS statement similar
to the VOICE statement was added to the
language. To initiate percussive sounds,
specifications such as "P3,1/4” would be
interspersed with the note specifications in
note statements. The “3” would refer to
percussive sound number 3 and the 1/4
would be a “duration” which would be
optional. All percussive sounds in the same
statement would start simultaneously with
the regular notes.

A much more general music language is
the well-known MUSIC V. It was designed to
make maximum use of the flexibility
afforded by direct waveform computation
without overburdening the user. It is a
massive program written in FORTRAN and
clearly oriented toward large computers.
Much significant computer music work has
been done with MUSIC V, and it is indeed
powerful. An excellent book is available

62

which describes the language in detail and
includes some background material on
digital sound generation (see entry 1 in the
list of references at the end of this article).

A different approach to music languages
is a “generative” language which describes
the structure of the music rather than the
note by note details. In use, the structure is
described by “loops,” “subroutines,” and
“conditional branches” much as an algo
rithm is described by a computer language.
The structure is “executed” to produce
detailed statements in a conventional music
language which is then played to produce
sound. The intermediate step need not
necessarily be visible to the user. One well
thought out system is described in reference
2. It was actually developed as a musico-
logical analysis tool and so has no provisions
for dynamics, timbre, etc. It could, however,
be extended to include these factors. One
easy way to implement such a language is to
write a set of macros using a good mini
computer macroassembler.

Conclusion

By now it should be apparent that com
puter generated music is a broad, multidisci
plinary field. People with a variety of talents
can make significant contributions, even on
a personal basis. In particular, clever system
designers and language designers or imple-
menters have wide open opportunities in this
field. Finally, imaginative musicians are

needed to realize the potential of the tech
nique. ■

A Short Cut to a Singing KIM...

Ha! Chamberlin has completed the design
of a board which accomplishes the digital
to analog conversion and filtering functions
described in this article. The board contains
printed circuitry for an 8 bit digital to ana
log converter, low pass filter, and power
amplifier. The board may be ordered either
without components or completely as
sembled and tested from Micro Technology
Unlimited, 29 Mead St, Manchester NH
03104. In addition, a software package on
cassette tape for the KIM-1 computer and a
7 inch 16 ohm speaker are available, com
pleting the required parts of a KIM's music
system.

REFERENCES

1. Mathews, Max, The Technology of Computer
Music, MIT Press, Cambridge MA, 1969. Con
tains a detailed description of MUSIC V, the
high level music language.

2. Oppenheim, A and Schafer, R, Digital Signal
Processing, Prentice-Hall, NJ, 1975.

3. Smoliar, Stephen, "A Parallel Processing Model
of Musical Structures," PhD dissertation,
Massachusetts Institute of Technology, Sep
tember 1971.

63

Walsh Functions:
A Digital Fourier Series

Benjamin Jacoby PhD

Using a mathematical technique called
Fourier analysis, it is possible to build
arbitrary wave forms by adding together
various “components.”

While a full appreciation of the inner
workings of the Fourier series requires a
knowledge of advanced mathematics far
beyond the capacity of many persons inter
ested in electronics, that in no way deters
them from using the concepts or even
simplified portions of the math in practical
applications. Even beginners are aware that
wave forms can be broken into a set of
harmonics and that a set of sinewaves of
integer multiple frequencies can be summed
to build up a complex wave form. In a like
manner, Walsh function concepts can be put
to work once a few fundamental ideas are
mastered. A key to generating complicated
sounds in computerized music and voice
outputs is the ability to generate arbitrary
wave forms from digital codes.

In these days of digital computers, a
person familiar with Fourier concepts might
ask the question: Is it possible to build up
any wave form out of a sum of square waves
of some type? Such a system would be ideal
for use with digital logic. This question has
been answered in the affirmative by the
German mathematician H Rademacher, not
in 1972 or 1962, but in 1922. His set of
square waves, called “Rademacher func
tions,” consists of a fundamental square
wave of 50% duty cycle at some frequency
plus harmonics of square waves of
2,4,8,16,32 and higher powers of two times
the fundamental frequency. A deficiency of
this system, however, is that it is not
possible to generate any arbitrary wave
shape from only a simple sum of these
square wave harmonics.

Figure 1: The Walsh Functions WAL(O)
through WAL(15). The fact that Walsh
functions lend themselves to digital genera
tion is evident in the nature of the basic
wave forms. The notations SAL and CAL
emphasize the resemblance of Walsh func
tions to the Fourier series trigonometric
functions SIN and COS.

65

CLOCK
INPUT

GRAY CODE

D TYPE MASTER SLAVE FLIP FLOPS

(IOOOO) WALI 31)
SAL(IB)

Figure 2: The logic of a digital circuit which generates a set of Walsh
functions using a string of flip flops and some external gating. The flip flops
are connected as toggles (division by 2 at each stage). The exclusive OR gates
combine terms to produce the more complicated Walsh wave forms indicated.

Fourier series are used to
create wave forms as the
sum of pure sine and
cosine waves at selected
frequencies; this leads to
the obvious question: Is it
possible to use a similar
mechanism which builds a
complex wave form out of
digital wave forms with
sharp edges?

Walsh functions are the
digital answer to sines and
cosines used in Fourier
analysis.

In translating a mathe
matical summation into a
physical circuit, the opera
tional amplifier provides
the summing element and
the resistors from inputs
to the summing node form
the coefficients of the
component signals.

Also in 1922, J L Walsh presented his
independently developed system to the
American Mathematical Society. His system
was later shown by the Polish mathematician
Kaczmarz in 1929 to include the Rade
macher system as a subset of the Walsh
complete set of orthonormal functions,
which, in plain English, says that some of
the Walsh functions are square waves and
that if all Walsh functions are allowed (you
may not need to use them all, however) then
any arbitrary periodic wave form can be
built up by adding them together in a
manner totally analagous to sinewave sum
mation in Fourier series.

Interest in the engineering applications of
Walsh functions was sparked by an article in
the IEEE Spectrum by Dr H F Harmuth of
the University of Maryland in 1968 and is
continuing because of the suitability of
Walsh functions to generation by digital
systems.

The fastest way to understand what
Walsh functions are is simply to look at a
picture of some wave forms. Figure 1 shows
the Walsh functions WAL(O) through
WAL(15). It is seen that WAL(O) is merely a
DC level which we will usually ignore in
practical applications since offsets are easily
handled by other means and that WAL(1),
WAL(3), WAL(7), and WAL(15) are really
the square wave Rademacher functions. You
will note that in addition to the WAL(n)

designation, the functions are also labeled
with CAL or SAL. These labels are also
commonly used and are acronyms for the
terms Cosine wALsh and Sine wALsh by
analogy to Fourier analysis. In short all WAL
(even n) are called CAL and all WAL (odd n)
are called SAL. CAL and SAL are also
numbered but the numbers do not corres
pond to the WAL designation though they
are easy to figure out. Also by analogy to
Fourier analysis, a Walsh spectrum is called a
sequency spectrum as opposed to a Fourier
frequency spectrum.

Enter Mr Gray and His Code

However, knowing what Walsh functions
look like and knowing how to generate them
digitally are two different things. It is clear
that the generation of WAL(1), WAL(3),
WAL(7), WAL(15), etc, is a snap since they
are simple square waves. A string of flip
flops does the job, as shown in figure 2. The
generation of the remaining functions, while
a little more difficult, is not impossibly
complex once the mathematics is shaken
down into a few simple rules:

1. To generate WAL(n), first write the
number n in Gray code. Gray code is a
modified binary code having only one
bit changing at a time when going to
the next higher or next lower number.
A table of Gray code numbers is

66

Table 1: Gray Code Bit Patterns for the
Walsh Functions WAL(O) Through
WAL(31). The corresponding SAL and CAL
notation of each WAL function is shown
down the right hand column of the table.

shown in table 1; and with a little
study, the pattern can easily be
extended to any value.

2. Starting with the least significant bit,
assign a square wave Rademacher
function to each bit. Assign WAL(1)
to the LSB, WAL(3) to the next,
WAL(7) to the next, etc.

3. Any Rademacher function whose bit
is 0 is not used. Those whose bits
are 1 are combined by modulo 2 ad
dition, which is to say by exclusive
OR gates to give the Walsh output of
that order.

4. All Walsh functions must begin
positive so that the composite Walsh
output may need to be inverted de
pending upon how many exclusive OR
gates were used to produce it.

A couple of examples are shown in figure 2
and a complete generator producing all
Walsh functions from WAL(1) through
WAL(15) is shown in figure 3.

It should be noted that although a Walsh
function is mathematically defined as going
from +1 to -1, and it is possible to obtain
positive and negative swings with CMOS
logic with positive and negative supplies, in
practice little is gained by going this route
since all that is involved is a DC offset which
is easily handled by the summing amplifier.
Thus, 0—5 volt TTL logic outputs are fine.

Now that a set of Walsh functions has
been generated, it only remains to add them
in a summing amplifier with appropriate
magnitudes and signs to simulate any wave
form with a stair step approximation. The
general expression of a Walsh function repre
sentation is a summation analogous to that
found in Fourier analysis:

Arbitrary wave form = X(t) = Ao +
oo
S (Ai SAL(i) + Bi CAL(i))
i=1

where Aj and Bj are weighting constants
which correspond to the resistors used in the
summing amplifier inputs. The size of the
steps and the number present will be deter
mined by how many harmonics are com
bined. The more you use, the smaller and
more numerous the steps, hence the better
will be your approximation to your original
wave form. The determination of these
combining coefficients from the wave form
desired requires a bit more detailed
consideration.

z zo o
u oz z□ □u. — —
X w

r- in —B ~ .
w T X wJ MB _i _i -J -i j

4 □ 4 4 4 4 4 4
3 5 3 3 3 3 3 3

WAL(O) 0 0 0 0 0 0
WALID i 0 0 0 0 1 SALd)
WALI2) 2 0 0 0 1 1 CALI1)
WAL(3) 3 0 0 0 10 SAL(2)
WAL(4) 4 0 0 110 CAL(2)
WALI5) 5 0 0 111 SAL(3)
WAL(6) 6 0 0 10 1 CAL(3)
WALI7) 7 0 0 10 0 SAL(4)
WAL(8) 8 0 110 0 CAL(4)
WALO) 9 0 110 1 SAL(5)
WALI10) 10 0 1111 CAL(5)
WALI1 D 11 0 1110 SAL(6)
WALI12) 12 0 10 10 CAL(6)
WAL(13) 13 0 10 11 SAL(7)
WALI14) 14 0 10 0 1 CAL(7)
WALI15) 15 0 10 0 0 SAL(8)
WALI16) 16 110 0 0 CAL(8)
WALI17) 17 110 0 1 SALO)
WALI18) 18 110 11 CALO)
WALI19) 19 110 10 SALI10)
WALI20) 20 11110 CALI10)
WALI2D 21 11111 SAL(11)
WALI22) 22 1110 1 CALI11)
WALI23) 23 1110 0 SAL(12)
WALI24) 24 10 10 0 CAL(12)
WALI25) 25 10 10 1 SAL(13)
WALI26) 26 10 111 CALI13)
WALI27) 27 10 110 SAL(14)
WAL (28) 28 10 0 10 CAL(14)
WALI29) 29 10 0 11 SAL(15)
WAL(30) 30 1 0 0 0 1 CALO 5)
WALI31) 31 1 0 0 0 0 SAL(16)

gray"
CODE

Wave Form Synthesis
Before proceeding any further into the

theoretical aspects of Walsh applications, a
review of what we are attempting to do and
how we intend to do it will help get our feet
on solid ground. The device we wish to build
using Walsh functions could be called “a
square wave to arbitrary wave form con
verter.” It will be a circuit into which you
put a square wave of some frequency and
out of which comes a periodic analog signal
with a frequency related to that of the input
wave (perhaps some submultiple) and a wave
form that can be made to take any shape
desired by adjusting a set of controls,
switches or internal resistors. With such a
device, digital logic could be used to
synthesize a frequency and the converter
could then be set to produce a sinewave for
use in standard applications, or given suffi
cient accuracy of conversion, a computer
could be made to talk or even sing. Both
have been done by engineers working in this
area.

The converter consists of two parts: The

So you want to produce a
sine wave? Calculate the
values at 16 evenly spaced
locations in the period,
then use these values to
calculate the Walsh coeffi
cients using a tabulator
method. Then wire in re
sistors of values derived
from the Walsh coeffi
cients and the output of
the circuit will be a step
function approximation of
the desired sine wave.

67

Figure 3: Extending the
logic of figure 2, this cir
cuit generates all the Walsh
functions WAL(i) through
WAL(15) as illustrated in
figure 1. This circuit uses
an alternate kind of flip
flop, the JK master stave
flip flop connected as a
toggle. This circuit could
be built with two 7473
ICs, three 7486 ICs and
one 7404 circuit. (One of
the 12 exclusive OR sec
tions is used as an
inverter.)

CLOCK

When Walsh function
analysis is applied to a
linear ramp, what's the re
sult? A set of resistor
values which form an ordi
nary DA converter opera
ting upon the binary value
in the counter used for the
Walsh function generator.

first is the digital expander which expands
the input square wave into a variety of
digital wave forms, and the second is the
analog combiner which adds up these wave
forms to produce the periodic analog
output. The expander is, of course, the
Walsh generator shown earlier and the com
biner will be dicussed below.

All of the Walsh outputs will be fed into
the summing junction of an operational
amplifier, but they will not have the same
strength or sign. It is the strength and sign of
each component which will determine the
net analog output so that once we have
chosen the analog output we desire, the
relative strength and sign of each Walsh
harmonic must be calculated from that
desired wave form. Once these values are
known, a negative sign can be handled with a
digital inverter and the magnitude by the
choice of the resistor value into the summing
junction. The net output will then be a stair
step approximation to the desired output
which can then be made more perfect by
low pass filtering to smooth the wave shape.

Theoretically, the calculation of the coef
ficients from the analog wave form desired

involves complex operations with the inte
gral calculus; but it turns out that it is
possible to shortcut the high powered math
by starting, not with the analog signal, but
rather with the stair step approximating
function itself. This function can be easily
determined by eyeball or by just taking the
height of each step to be the value of the
analog output at the center of each time
interval. Figure 4 shows two examples: a
linear ramp and a sinewave with 16 step
approximations. The height of each step is
shown.

Before proceeding to an actual calcula
tion we will give some time and work saving
rules, which are illustrated in figure 5.

1. The waveform to be synthesized must
be repetitive (as in Fourier synthesis),
although it is easy to start and stop at
any point by control of the digital
input.

2. It is especially advantageous to use 2n
steps in one period as this gives an
automatic cutoff to the number of
Walsh harmonics required.

Thus: With a 4 step output no functions

68

beyond WAL(3) are required, with
an 8 step output no functions beyond
WAL(7) are required, with a 16 step
output no functions beyond WAL(15)
are required .. .etc.

3. If the coefficients for a higher order
approximation are calculated (say 16
steps), and a less accurate approxi
mation can be used (say 8 steps) then
one only need disconnect WAL(8)
through WAL(15) since the lower
order coefficients will have the same
value in either case (or nearly so). This
effect is demonstrated in the sine
generator circuit.
If your wave form to be synthesized
possesses certain symmetries or can
be made to do so by a DC baseline
shift, many Walsh component coef
ficients will be zero which will not
only simplify the calculations, but the
circuitry as well.

4. If the wave form to be synthesized is
even, which is to say that any value
that the function takes to the left of
center is the same as the value an equal
distance to the right of center, then
only CAL functions will be used and
all SAL coefficients will be zero.

5. If the wave form is odd, or can be
made so by a baseline shift, then only
SAL functions will be used and all
CAL coefficients will be zero. Here
any value to the left of center equals
minus the value to the right of center.

6A. If the wave form is even as in point 4
above and in addition it is even about
the 1/4 point, then only CAL(k)
where k is an even number will be
present and all CAL(k) where k is an
odd number will be zero.

6B. If the wave form is even as in point 4
above and in addition is odd about the
1/4 point, then only CAL(k) where k
is an odd number will be present and
all CAL(k) with k an even number will
be zero.

7A. If the wave form is odd as in point 5
above and in addition is even about
the 1/4 point, then only SAL(k) where
k is an odd number will be present and
all SAL(k) where k is an even number
will be zero.

7B. If the wave form is odd as in point 5,
and in addition is odd about the
1/4 point, then only SAL(k) with k an
even number will be present and all
SAL(k) where k is an odd number
will be zero.

In the calculations that follow it will also
be observed that if a wave form is even or
odd, the signed sums of the step values need
only be calculated for the first half of the

OUTPUT
VOLTAGE

OUTPUT
VOLTAGE

wave form since that value will be exactly
half the sum of all steps. This is probably
best understood by examining some practi
cal examples.

Two Examples
The first example will be the linear ramp.

This function can be made odd by adjusting
the baseline, so by rule 5 it is seen that only
SAL coefficients need be calculated and no
CAL functions need be generated.

The best way to get your mind right in
calculating coefficients is to make a table as
shown in table 2. The value desired for each

Figure 4: By picking a
series of weighting con
stants for each Walsh func
tion term, the outputs of
figure 3 can be summed by
an operational amplifier
to produce arbitrary wave
forms. Here are examples
of the ramp and sine wave
approximations generated
by the Walsh function
method. The smooth curve
is the desired one in each
case, obtained by filtering
the output of the summing
amplifier.

69

A. EVEN FUNCTION,SYMMETRIC
ABOUT CENTER OF ONE PERIOD

<—ONE PERIOD----- •

OONLY CAL (K) TERMS
ARE NON ZERO

ODD FUNCTION , ANTISYMMETRIC
ABOUT CENTER OF HALF PERIOD
r—EVEN FUNCTION, SYMMETRIC
\ ABOUT CENTER OF ONE PERIOD

ONLY SAL (K) TERMS
ARE NON ZERO

EVEN FUNCTION,SYMMETRIC
ABOUT CENTER OF HALF PERIOD

VEVEN FUNCTION, SYMMETRIC
ABOUT CENTER OF ONE PERIOD

ONLY CAL(K) TERMS FOR
EVEN K ARE NON ZERO

ONLY CAL(K)TERMS
FOR ODD K ARE NON ZERO

EVEN FUNCTION,SYMMETRIC
ABOUT CENTER OF HALF PERIOD

ODD FUNCTION, ANTISYMMETRIC
ABOUT CENTER OF ONE PERIOD

ONE PERIOD

ONLY SAL (KJ TERMS
FOR K ODD ARE NON ZERO

ODD FUNCTION. ANTISYMMETRIC
ABOUT CENTER OF HALF PERIOD

VODD FUNCTION ANTISYMMETRIC
ABOUT CENTER OF ONE PERIOD

•---- ONE PERIOD------- *

SIGN OF WALSH FUNCTIONS

P = positive N = negative

Normalized Ratio

SALCI) = -1 =-1
SAL12I = -0.5 = -1/2
SAL(4) = -0.25 = -1/4
SAL(8) = -0.125 = -1/8

Figure 5: The properties of even and odd functions give constraints on the
weighting constants needed for a given wave form. Here are illustrations of
six different special cases of symmetry which give zero terms in the Walsh
function sum.

function coefficients for the linear ramp. The relative strength of the
SA L or CAL term in question is obtained by summing horizontally the
Fl (P) or -1 (N) Walsh function value multiplied by the actual waveform
value desired for that element of time. After figuring out the value of
the signed sum for each term, the values should be normalized so that
the largest magnitude is 1 (regardless of sign). Thus the normalized
ratios shown below this picture were computed assuming -128 corres
ponded to -1.

step comprising the output function is writ
ten in order along the top of the table. Since
we are attempting to produce a linear ramp,
our output will be a rising staircase with a
fixed increase with each step (we used two
units per step). This staircase will eventually
be filtered to remove the jogs and give a
linear ramp.

The body of the table shows the sign
(positive or negative) each particular Walsh
function takes in each of the 16 time
intervals into which one period of the
output wave form has been divided. As
indicated earlier, we need not go past
WAL(15) in this case. The Walsh sign values
can be taken from the wave forms of figure
1 or from table 3 which is good for up to 32
segment approximations.

The numbers to the far right are the sums

70

of the upper values when all signs are taken
into account. Thus, for WAL(1) we see that
it is positive in the first half period, but the
step values are negative, so we get:

(-15) + (-13) + (-11) + (-9) + (-7) +
(-5) + (-3) + (-1) = -64 and in the second
half period where WAL(1) is negative and
the values positive we get:

-(+1) - (+3) - (+5) - (+7) - (+9) -
(+11) - (+13) - (+15) = -64 or a total of
-128. This number gives the relative
strength of WAL(1) in the output summa
tion. We repeat the process for each Walsh
function.

If we divide all nonzero values by the
largest (WAL(1)), it is observed that the
weighting is binary and further it is seen that
only the square wave Rademacher functions
are nonzero. Thus, it is seen that the way to
generate a ramp is with a counter feeding a
standard digital to analog converter. (So here
we have a long, complicated way of arriving
at an "obvious” result, but it also should be
noted that D to A binary weighting is only
"matched” to a ramp output.)

If another wave form such as a sinewave
is desired, a D to A converter could be used,
but a more accurate method would be to
switch between 16 voltages of appropriate
values. The Walsh system is just as accurate
and is simpler for the more general case.

If we divide a sinewave into 16 portions,
the value at the center of the first interval
will be Sin (11.25°) = 0.19509 and the next
will be Sin (33.75°) = 0.55557 and the next
Sin (56.25°) = 0.83147, etc. This produces
the top row of our table. Since Sin(x) is an
odd function, even about the 1/4 point,
only SAL(1), SAL(3), SAL(5) and SAL(7)
are calculated over the first half period. Our
chart with the calculated coefficient values is
shown in table 4. Since in a standard opera
tional amplifier summing circuit (we won't
go into details here as they can be found in
any book on operational amplifiers), the
relative summing ratios are related to the in
verse of the summing resistor values, we
divide each normalized value into 1 and mul
tiply by the feedback resistor value to obtain

The Sign of CAL and SAL in Each 1/32 Interval
of Their Period

WAL(0) PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP
SAL(1) PPPP PPPP PPPP PPPP NNNN NNNN NNNN NNNN
CAL(1) PPPP PPPP NNNN NNNN NNNN NNNN PPPP PPPP
SAL(2) PPPP PPPP NNNN NNNN PPPP PPPP NNNN NNNN
CAL(2) PPPP NNNN NNNN PPPP PPPP NNNN NNNN PPPP
SALO) PPPP NNNN NNNN PPPP NNNN PPPP PPPP NNNN
CALO) PPPP NNNN PPPP NNNN NNNN PPPP NNNN PPPP
SAL(4) PPPP NNNN PPPP NNNN PPPP NNNN PPPP NNNN
CALI4) PPNN NNPP PPNN NNPP PPNN NNPP PPNN NNPP
SALO) PPNN NNPP PPNN NNPP NNPP PPNN NNPP PPNN
CALO) PPNN NNPP NNPP PPNN NNPP PPNN PPNN NNPP
SALO) PPNN NNPP NNPP PPNN PPNN NNPP NNPP PPNN
CALO) PPNN PPNN NNPP NNPP PPNN PPNN NNPP NNPP
SALO) PPNN PPNN NNPP NNPP NNPP NNPP PPNN PPNN
CAL(7) PPNN PPNN PPNN PPNN NNPP NNPP NNPP NNPP
SALO) PPNN PPNN PPNN PPNN PPNN PPNN PPNN PPNN
CALO) PNNP PNNP PNNP PNNP PNNP PNNP PNNP PNNP
SALO) PNNP PNNP PNNP PNNP NPPN NPPN NPPN NPPN
CALO) PNNP PNNP NPPN NPPN NPPN NPPN PNNP PNNP
SALI10) PNNP PNNP NPPN NPPN PNNP PNNP NPPN NPPN
CALDO) PNNP NPPN NPPN PNNP PNNP NPPN NPPN PNNP
SAL(11) PNNP NPPN NPPN PNNP NPPN PNNP PNNP NPPN
CAL(11) PNNP NPPN PNNP NPPN NPPN PNNP NPPN PNNP
SAL(12) PNNP NPPN PNNP NPPN PNNP NPPN PNNP NPPN
CAL(12) PNPN NPNP PNPN NPNP PNPN NPNP PNPN NPNP
SAL(13) PNPN NPNP PNPN NPNP NPNP PNPN NPNP PNPN
CAL(13) PNPN NPNP NPNP PNPN NPNP PNPN PNPN NPNP
SAL(14) PNPN NPNP NPNP PNPN PNPN NPNP NPNP PNPN
CALI14) PNPN PNPN NPNP NPNP PNPN PNPN NPNP NPNP
SAL(15) PNPN PNPN NPNP NPNP NPNP NPNP PNPN PNPN
CAL(15) PNPN PNPN PNPN PNPN NPNP NPNP NPNP NPNP
SAL(16) PNPN PNPN PNPN PNPN PNPN PNPN PNPN PNPN

------------------ 1 Period-------------------

P = Positive N = Negative
(Columns only for ease of reading.)

Table 3: A larger computational table giving 32 Walsh function components
and their signs during a 32 interval period.

Table 4: Using the computational table to calculate the resistor values
for a 16 step sine wave approximation. The specialized sine wave gen
erator of figure 6 uses these results, subject to a further approximation
shown in table 5. Note that the signs of the coefficients take into
account the inverting op amp configuration and thus appear reversed.

Table 5: The El A resistor equivalents for
the calculated values of table 4. The 5%
tolerance resistance values shown at the right
were used in the circuit of figure 6.

— x 10k
Ai 1% 5% EIA

10.00k 10.0k 10k
24.14k 24.3k 24 k

121.4 k 121 k 120k
50.27k 49.9k 51k

71

INPUT AT 16 TIMES
OUTPUT FREQUENCY

PHASE REVERSING
CONTROL INPUT

14 2
"resets

*EXACT VALUES OF CAPACITORS DEPEND UPON THE DESIGN
FREQUENCY. REMOVE CAPACITORS ENTIRELY TO SEE UN
FILTERED STAIR STEP FUNCTION.12

IK

SALÍI) .01

SALO)
IC4 (MINI-DIP)

IOK

24K
AW-

IOK

-I2V

3E>

0A IC3
7493

Bin
OB OC OD

12V

-I2V

SAL(7)
POWER CONNECTIONS -

GND
C2B

IO SALO)

Figure 6: Applying Walsh

7486
7486
7493

SINE
WAVE
OUT

+ 5V
14
14
5

ICI
IC2
IC3

COMPONENTS BELOW THIS LINE CAN
OMITTED FOR 8 STEP SINEWAVE 50K OFFSET ADJUSTMENT

(OPTIONAL)

Functions. Here is the cir
cuit of a sine wave genera
tor which produces a
Walsh function approxima
tion of the sine function.
The frequency of the sine
wave is set by the input to
pin 14 of the 1493. Filter
ing components of the op
erational amplifier help
smooth out the staircase
wave form generated by
summing the Walsh func
tion components as
weighted by resistors.

each summing resistor value in ohms. Table
5 shows the calculated values compared to
1% and 5% EIA resistor standard values.

The total sinewave converter circuit is
shown in figure 6. While three of the co
efficients were negative, a single inverter was
used on the lone positive Walsh output since
the op amp inverts the wave form. In addi
tion, a gate has been added by which the
phase of the entire output wave form can be
inverted by simultaneously inverting all
Walsh components. It is interesting to also
note that if the components below the
dotted line are removed, an 8 step sinewave
approximation results. The feedback capaci
tor and output low pass filter can be added
to smooth up the wave form to give a nearly
perfect sinewave.

The Walsh methods presented here would
seem to have wide application for experi
mentation and engineering. Although these
concepts are based on advanced mathe
matics, nevertheless, as the philosopher
Seneca observed so many years ago, “The
language of truth is simple.”

Walsh Functions for Music Synthesis?

Some background information on the use
of orthogonal functions in music wave form

synthesis has been generated by Hal
Chamberlin, and published in Electronotes
Newsletter, Volume 4, Number 25, July 20
1973. Hal also sent along a copy of a portion
of a report by B A Hutchins, 60 Sheraton
Dr, Ithaca NY 14850, on the use of Walsh
functions in wave form generation. Accord
ing to Hal, there was considerable analysis of
Walsh functions in electronic music circles
during a period of time approximately cen
tered on 1973, but complexities of con
trolling the Walsh harmonic amplitudes
digitally led to the demise of that interest.
Hal’s current approach is to employ a real
time Fourier series evaluation module which
digitally sums terms of the first 32 com
ponents of a Fourier series, specified to 8 bit
accuracy both in amplitude and phase.

GLOSSARY

The following terms may be unfamiliar to some
readers and are highlighted with further
explanations.

Baseline: It is possible to add a fixed DC level to an
analog signal, which will not affect its wave form.
Using the 0 V and +5 V levels obtained with TTL
circuits (using pull up resistors) as "Walsh func
tions" corresponds to a baseline adjustment of
+2.5 volts to the ideal case of a symmetric positive

72

or negative voltage value.

CAL: An acronym derived from Cosine wALsh.
The CAL functions are the "even" Walsh func
tions, analogous to the Fourier cosine functions.

Duty cycle: For a digital wave form, the duty cycle
is the percentage of time spent in the high state
relative to the full period of the wave form.

Even function: An even function (or wave form) is
one which is symmetric about the center point of
its period. This means that its value a certain dis
tance to the left of center is the same as its value
the same distance to the right of center.

Fundamental: The lowest frequency in a Fourier
or Walsh function summation.

Gray code: A binary code modified so that only
one bit changes when going to the next higher or
lower number. It is often used to deglitch position
encoders.

Harmonic: A frequency which is a multiple of the
fundamental frequency.

Integral calculus: The mathematical formalism
used to calculate the area under a curve. The inte
gral calculus is used together with the theory of
orthogonal functions to evaluate analytically the
coefficients of Fourier and Walsh function expan
sions. The example of Walsh function coefficient
calculation in this article uses properties of Walsh
functions to simplify the process of calculating
integrals required for the coefficients. There is no
such simplification for the Fourier coefficients of a
wave form, thus making the application of Fourier
analysis a more complicated problem.

Odd function: An odd function (or wave form) is
one which is antisymmetric with respect to the
center point of its period. This means that if at a
fixed interval before the center point its value is X,
then at the same interval past the centerpoint the
value will be —X.

Orthonormal functions: The mathematical theory
of orthonormal functions is one of the most
powerful tools used by physicists, theoretical
chemists and engineers. Among other applications,
it provides the tools needed to analyze complex
wave forms and synthesize such wave forms using
the principle of superposition: That the whole is
a linear sum of its parts. Fourier series and Walsh

function analysis mentioned here are two particu
lar choices of a set of orthonormal functions which
have useful practical applications. (See also spec
trum below.)

Periodic wave form: A periodic wave form is one
which has a fixed shape which is constantly re

peated. A simple example would be the clock
oscillator signal of a typical home brew central
processor. A more complicated example (subject to
imperfections) would be a long steady tone played
on a musical instrument.

Rademacher functions: The subset of Walsh com
ponents consisting of only the unmodified square
waves.

SAL: An acronym derived from Sine wALsh. The
SAL functions are the "odd" Walsh functions,
analogous to the Fourier sine functions.

Sequencyi Walsh function terminology referring
to the Walsh components of a wave form in exactly
the same way that frequency is used to refer to
the Fourier components. Example: Sequency
spectrum.

Spectrum: When orthonormal functions are used
to analyze a wave form, the result frequently is a
set of coefficients which weigh each of the basic
functions found in a (theoretically) infinite sum
which represents the wave form. Each coefficient
corresponds to some parameter of the orthonormal
functions, which might be, for example, a number
"n." Whatever the parameter is, a spectrum for the
analysis is obtained by plotting the coefficient
values versus the parameter value for a large num
ber of coefficients. For a Fourier analysis, the
result is a plot of coefficient versus frequency
(which at the low end corresponds to a small
integer value). A Walsh spectrum would plot the
coefficient of WAL (n) versus n.

Wave form: For the purposes of this article, a
signal's wave form is a value of (for example)
voltage as a function of time."

REFERENCES

1. Corrington, M S, "Solution of Differential and
Integral Equations with Walsh Functions,"
IEEE Transactions on Circuit Theory, volume
CT-20, number 5, September 1973.

2. Harmuth, H F, "Applications of Walsh Func
tions in Communications," IEEE Spectrum,
November 1969.

3. Rademacher, H, "Einige-Saltze von allege-
meinen Orthogonalfunktionen," Math Annalen,
volume 87, 1922, pages 112 to 138.

4. Walmsley, W M, "Walsh functions, transforms
and their applications," Electronic Engineering,
June 1974.

5. Walsh, J L, "A Closed Set of Orthonormal
Functions," American Journal of Math, volume
45, 1923, pages 5 to 24.

73

Simple Approaches

to Computer Music Synthesis

Thomas G Sneider

In order to produce a musical output, we
must at least create a pitch output under
control. This is but a starting point, since
more complicated waveform and envelope
generation is also useful in music.

The block diagram of a basic note and
octave synthesis system is shown in figure 1.
The top octave generator produces a square
wave whose frequency (pitch) is determined
by data sent out on the computer’s data bus.
Since the output of the top octave generator
is a square wave, it can easily be divided by
digital circuitry. Each time we divide the
frequency by two, we end up with a note
whose pitch is one octave lower than the
ihput frequency. By using an ordinary TTL
data selector as an octave selector, we can
generate a musical scale covering many
octaves, and we can also produce more than
one pitch at a time, although these extra
outputs will always be octave related to one
another. The octave selector can also be
controlled by data sent out on the com
puter’s data bus, giving us more flexibility.

The octave selector can be easily imple
mented using an n-stage divider and several
NAND gates. However, there are several
methods of generating the top octave. We
need 12 notes to produce a 1 octave
chromatic scale. These notes must be ac
curate in frequency and drift free in order to
produce a true chromatic or “equally
tempered” scale useful in music.

One way of synthesizing the top octave is
to use a digital to analog (D/A) converter
controlling an oscillator. An 8 bit converter
limits both resolution and range so that we

cannot produce an acceptably accurate
chromatic scale. If we use a converter of 10
bits or more, resolution and range are
suitable, but such units are expensive and
require stable voltage controlled oscillators
for this type of application. This method of
pitch generation is shown in figure 1. The
one nice feature of the digital to analog con
verter method is that we have a continuously
variable output frequency. This permits
nifty frequency sweeping effects (known as
“portamento” or “glide” effects to the
musician).

To save money we can construct a rather
crude digital to analog converter which, in
conjunction with the voltage controlled

Figure 1: Block diagram of a pitch synthesis subsystem for use in elec
tronic music experiments under computer control. The top octave gen
erator produces a repetitive digital waveform selected under computer
control from one of 12 well tempered pitches. This in turn drives
octave generation logic consisting of a chain of toggles dividing fre
quency by two at each stage, and a selector to pick which of the octave
related frequencies appear in the output.

75

Figure 2: An Altair bus interface and frequency selection logic for the tunable digital to analog conversion method of generation
of pitches. This circuit can be constructed on a genera! purpose prototyping card for the Altair (S-100) bus.

76

oscillator, will produce the 12 notes required
for the full top octave. This method is shown
in detail in figure 2. By using surplus 10 turn
trimpots and the voltage controlled oscilla
tor, we can construct an inexpensive top
octave generator. However, this method has
its disadvantages: tuning the trimpots is a
critical operation, and once the pots are
tuned, they can easily detune themselves
because of vibration or temperature vari
ations. My present synthesizer uses this
method and needs to be retuned about every
two months or so.

A good alternate method of generating
the top octave is to use an integrated circuit
top octave generator such as the MOSTEK
MK50240P. This chip can be had for under
$10 and is second-sourced by General In
strument Corporation as the AY-3-0215.

There are several advantages to be had by
using this chip. The chip nominally requires
a 2.000240 MHz reference frequency which
is approximated by the central processor
clock’s circuitry of most Altair (S-100) bus
systems. (The frequency is not exactly
2.000240 MHz, but will be close enough
for this application.) This chip eliminates
both the voltage controlled oscillator and
digital to analog converter, and therefore
puts an end to stability and tuning complica
tions. The MK50240P generates the top 13
notes of the well-tempered music scale with
an accuracy better than can be determined
by the best musician.

Hardware Considerations for
Two Working Circuits

The circuit used for the pitch generator,
using the tunable digital to analog converter
with an Altair bus is shown in figure 2. Bus
timing and address decoding are performed
by IC1, IC2, and IC3. IC4 and IC5 latch and
hold data sent to the board on the data out
bus. IC8 is a 4 to 16 decoder with active low
outputs. These outputs select which 10 turn
trimpot is selected as the bottom leg of the
voltage divider whose top leg is resistor R.
These trimpots should all have a value about
5 R. The voltage produced by this divider is
connected to the input of the voltage con
trolled oscillator. The output of the voltage
controlled oscillator is divided by IC7. The
outputs of counter IC7 are gated onto the
output bus by IC6, the quad open collector
NAND gates. IC8 and the voltage controlled
oscillator comprise the top octave generator
and IC6 and IC7 comprise the octave
selector.

The circuit using the MK50240P for top
octave generation is shown in figure 3. The
board address, bus timing and latch circuitry
are identical to the circuit of figure 2. The

Note
Octal
Code

Hexadecimal
Code

C 000 00
C# 001 01
D 002 02
D# 003 03
E 004 04
F 005 05
F# 006 06
G 007 07
G# 010 08
A 011 09
A# 012 0A
B 013 0B

octave selector is also identical to the one in
figure 2. The MK50240P, IC6, is a 12 V
device and requires input signal conditioning
and output buffering. The 2N2222 transistor
and associated resistors bring the TTL level
clock signal from the bus up to the 12V
level required by the MK50240P. The out
puts of this chip are buffered by IC7 and
IC8 before going to IC9 which is the data
selector and multiplexer. The MK50240P
generates all the notes in the top octave
simultaneously and IC9 selects any one of
these outputs depending on what data is
present at the outputs of IC4. The output of
IC9 is then connected to the two chips
(IC10 and IC11) comprising the octave
selector. An additional voltage regulator, a
7812, has been provided to supply the 12 V
needed for the MK50240P. Note that for
additional music channels, additional copies
of the note selector IC9 and octave selector
can be driven off the buffered outputs of the
MK50240P.

A word of caution: the audio output of
the circuits in figures 2 and 3 swings about
2 V peak to peak and should be attenuated
with a potentiometer before you plug it into
your stereo system or amplifier.

Software Considerations

From a software point of view, the
circuits of figures 2 and 3 are identical. Both
circuits have an IO device address of 300
octal. Outputting the proper data to 8080
port 300 octal will cause the synthesizer to
audibly produce the note and octave(s)
represented by that data.

The synthesizer can be considered as
having two input nybbles, each nybble con
taining four bits. The least significant nybble
determines what note is to be selected and
the most significant nybble determines what
one of four possible octave(s) is to be
selected. One byte contains all the in
formation necessary to set up any note and
octave (s).

Bear in mind that the synthesizer will
continue to produce the note and octave(s)

Table 1: Octal and hexa
decimal representations of
note selections, in the low
order bits, for these pitch
generation circuits.

77

(38)
(39)
(40)
(90)

Power Connection»

IC
Number Type ♦6 V G NO -12 V ♦12 V

ICI
IC2
IC3
IC4
ICS
ICS
IC7
IC8
IC9
IC10
ICI 1

74L02
74L04
74L30
74L75
74L78
MK50240P
C04010
C04010
74150
74197
7401

14

14
5
5

1
1

24
14
14

7
7
7

12
12
3
8
8

12
7
7

1
16
16

Figure 3: The complete circuit for an equivalent of figure 2, which uses the top octave generator chip with an Altair bus
interface. This method uses the top octave generator and a note selector to drive the octave selection logic, while the digital to
analog converter method uses a voltage controlled oscillator with a diode resistance selection of pitch.

78

Table 2: Octal and hexadecimal notation
for octave enabling bits sent to the inter
face in the high order nybble of the 8 bit
word. Note that one or more of the
octaves may be enabled simultaneously
simply by adding the codes together (or
using the logical OR).

Octave
Octal
Code

Hexadecimal
Code

4 (highest) 020 10
3 040 20
2 100 40
1 (lowest) 200 80

you have selected until you send it new data.
To clear the synthesizer (no audible output)
all you need do is output a 0 on data lines
D4 thru D7, the most significant nybble.

Table 1 shows what the octal representa
tions are for each note in the top octave.
Table 2 shows the octal representations for
each octave. To pack these two codes into
one byte, they can either be added or ORed.
Table 3 shows a series of codes that, when
moved to port 300 octal in sequence, will
produce a 12 note musical scale in the
synthesizer’s highest octave. However, if
you wish to hear this scale, you must insert a
software time delay in between each note.
Otherwise all you will hear is a very short
“click” because of the processor’s high speed
of program execution. If you wish to hear
this scale in four octaves simultaneously, all
you need to do is keep all four bits in the
octave enabling nybble in the high state.

Armed with this information and some
simple software routines, you and your
trusty computer are now capable of synthe
sizing all of J S Bach’s “B Minor Mass,” to

Octal Hexadecimal

Table 3: Octal and hexadecimal represen 020 10
tations of the notes of a chromatic scale 021 11
in the highest octave of this interface. 022 12
The codes for any given pitch can be 023 13
generated by adding the note code of 024 14
table 1 to one or more of the octave 025 15
codes of table 2, providing a multiple 026 16
frequency output In the summing resistor 027 17
network of these circuits, in these 030 18
examples, only one octave selection is 031 19
enabled, the high octave. 032 1A

033 1B

say nothing of the many new types of
musical expression you now have at your
fingertips. I myself have synthesized Haydn’s
“Minuet in G,” parts of Bach’s “Toccata and
Fugue in D Minor,” Henry Mancini’s
"Pink Panther Theme," and “Hot Rod
Lincoln!”»

79

Notes on Anatomy:

Photo 1: The Duo-Art re
producing player piano as
it is currently displayed in
my home. Notice the
electric motor at bottom
center, it is original equip
ment. The vacuum pump
is at the right; it is con
nected to the motor by
a 1968 V8 Buick fan
belt, which just happens
to be a perfect fit. The
piano was built in 1925
and required extensive ren
ovations. The binary dy
namics control system is
located at bottom left
(see photos 3a and 3b).

The Piano's Reproductive System
Chris Morgan

When was the binary number system
first used for control purposes in a mass
produced machine? The early nineteenth
century Jacquard punch card controlled
loom comes immediately to mind; but,
surprisingly enough, a more widespread
application occurred in the first quarter of
this century: the reproducing player piano!

The reproducer was so-called because it
went one step beyond the player piano in
its ability to “reproduce” the dynamics and
subtle shadings of the pianist who recorded
the roll.

I have owned a Duo-Art upright re
producing piano for five years now (see
photo 1), during which time I have re
stored it so that it can now play the specially
encoded Duo-Art rolls which were made for
it. The Duo-Art roll catalog was re
markably extensive, featuring such items
as Chopin etudes and Beethoven sonatas

in addition to a large selection of popular
titles. (The piece de resistance was a com
plete set of themes from Wagner’s Ring cycle
comprising some 30 odd rolls!)

Reproducers were a luxury item during
the 1920s, and for good reason: they were
built like fine watches and contained some
fairly sophisticated features (for the time)
to control dynamics, operate the pedals, and
so on.

Photo 1 shows the Duo-Art with the
bottom cover removed for clarity. The spool
box (photos 2a and 2b) is located at the top
and is the place where the piano roll is in
serted. Immediately below the keyboard
are the levers which are used to control the
speed of the roll as it plays, as well as
volume and roll rewind. At the bottom
center is the original electric motor (built
in 1925) which drives the vacuum pump at
the right. No pedalling is required on this

81

Photo 2a: The spool box, showing the brass tracker bar. There are 88 holes
across the bar, corresponding to the notes of the piano. There are additional
holes at each end to input two 4 bit "nybbles" of information to the dy
namics (volume) control system from the paper roll.

Photo 2b: A view of the spool box with a Duo-Art roll installed. Note the
dense groups of holes at each side of the roll; these contain binary encoded
information about the volume of the notes which are being played. AH four
dynamics holes are about to be uncovered on the left side as the roll paper
moves downward across the tracker bar. (Thus maximum volume is about to
be set up.) The dynamics holes appear as groups of holes rather than long
slots so that the paper will not fall apart. The tracker bar holes underneath
are long enough so that the small paper bridges left for mechanical strength
do not close up the holes as they pass over them.

model, a boon for the lazy experimenter.
Like most player pianos, the Duo-Art works
on a vacuum actuated system which opens
and closes cloth covered "pneumatics," or
bellows. These in turn do all the mechanical
work inside the piano, such as playing keys
and operating pedals.

But what makes the Duo-Art so in
teresting is its binary-based volume control
system located in the lower left section of
the piano (see photos 3a and 3b for a close
up). There are two independent volume con
trol systems built into the Duo-Art. They are
controlled by two sets of four holes per set,
located above the main row of holes near
each end of the tracker bar. Photo 4 shows
the right-hand set of holes in enlargement.
Notice that they are vertically in line with
the four highest note sensing holes on the
tracker bar. When a Duo-Art roll is played,
therefore, a special pneumatic 8 pole double
throw switch must be thrown to disable the
lower two sets of four holes and allow the
upper two sets of four holes to control
piano dynamics (the volume of sound
heard).

Each set of holes is connected to a set
of "accordion” pneumatics, so-called be
cause they open and close like vertical
accordion bellows. A rod at the top of
each pneumatic is connected to an air
governor. As the pneumatics close, the
governor admits more and more air to the
system and the volume of the notes played
on the controlled side of the keyboard goes
up.

The spacings of the four sections of the
pneumatics are 1/2, 1/4, 1/8 and 1/16 inch,
so that 16 different volume levels can be
achieved. This bellows is in fact a form of
mechanical digital to analog converter. So
we have two nybbles (or one byte) of in
formation to control volume in a Duo-Art
reproducer piano. Photo 3b shows a level
corresponding to 1/2 + 1/8, or 1O/16ths
of maximum volume, and photo 3a shows a
zero level for comparison. Photo 5 shows the
roll positioned to produce the level of
photo 3b; the most significant bit is to the
left. Since an opening (hole) corresponds to
a binary 1 level, the binary number here is
1010.

Counting from the right in photo 4, the
first 3 holes are mute pedal control, auto
matic reroll and the "theme’’ hole. The
theme hole is an ingenious feature. There are
often cases when the piano must suddenly
change volume levels for isolated notes or
chords and then return to the previous
level. It takes a finite time for this sort of
change, so the rolls are designed to allow the
left-hand accompaniment dynamics control
system to control the entire keyboard range,

82

Photo 4: A closeup illustrating the four right hand dynamics con
trol holes, located slightly above the center Une of the rest of the
holes.

Photo 3a: One of the two Duo-Art accordion pneu
matics used to control the volume of one half of the
piano keyboard. Each of the four chambers can be indi
vidually exhausted under control of the piano roll. The
pneumatic is connected by a rod on top to an air gover
nor. The four chambers close by 1/2, 1/4, 1/8 and 1/16
inches, so that the air governor can be set to any of 16
different vacuum levels to power the keyboard pneu
matics. The roll's 4 bit binary "word” is thus translated
into a vacuum level: in effect, this is a digital (vacuum
lines from tracker bar) to analog (mechanical position
of governor) converter.

Photo 3b: The accordion
pneumatic shown convert
ing the integer value 10
into one of 16 possible
mechanical positions. This
corresponds to the binary
number 1010 on the roll.
See photo 5.

Photo 5: The roll in this case is outputting level ten to the accor
dion pneumatics. Photo 3b indicates the resulting mechanical
position output of the pneumatics.

83

Photo 6: A Duo-Art roll
of Chopin's "Polonaise,
Opus 40, Number 1," as
played by Paderewski, in
position over the tracker
bar. Note the extensive
ornamentation, both visu
ally and verbally, in the
form of the performer’s
authorization of the work.
This roll is approximately
55 years old. Paderewski
was a link in a Hszt of
salon pianists which began
in America with Louis
Moreau Gottschalk, and
which continues to this
day with certain candela
bra wielding virtuosos.

while the right-hand theme system
“charges” itself with vacuum for the up
coming volume change. When the roll
triggers either or both of these holes, control
of the respective sides of the keyboard is
transferred for that instant to the theme
control. Details of this theme control
system are essential to the design of soft
ware drivers for Duo-Art players converted
to computer control.

Numerous other fascinating features
abound on this instrument. Take for ex
ample the automatic roll-centering negative
feedback system. The curved vertical
“finger” shown in photo 5 is one of two
which are positioned to just touch the edges
of the roll. If the roll wanders off to the
right or left, the fingers tilt back, uncovering
air tubes which are under vacuum. This
sends a signal to a set of opposing bellows
with a high damping ratio, which push the
roll spool back until the air tube is covered
again. The design is simple, yet effective.
Long before Norbert Wiener made it ex
plicit, servomechanisms as control systems
were in practical daily use.

Just how good does the Duo-Art sound?
Well, it has some obvious limitations (limited
dynamic range, for one), but on the whole

it sounds remarkably good. The sound
quality is several orders of magnitude better
than the "new fangled” phonograph which
eventually supplanted it commercially.

In its heyday, the Duo-Art Company
could afford to hire some of the most
famous pianists of the age to record
for them: Paderewski (see photo 6), Wanda
Landowska, Vladimir Horowitz (when he
was in his twenties), Igor Stravinsky (!),
George Gershwin (playing his own four-hand
arrangement of “Rhapsody in Blue” by
overdubbing), and on and on. The rolls were
beautifully decorated, too (see photo 6).

Readers wishing to find out more about
the fascinating hobby of reproducing pianos
should write to the Vestal Press, POB 97,
Vestal NY 13850, and ask for their catalog.
The Vestal Press specializes in books about
player pianos and other musical automata.
The Player Piano Company in Wichita KS is
an excellent source of supplies for the do-it-
yourself restorer. The current bible in the
field is Rebuilding the Player Piano, by
Larry Givens, published by Vestal. In it
you’ll find valuable material about the Duo
Art and about the other brands of com
peting reproducers like the Ampico and
Wurlitzer models. But that’s another story."

84

Photo 1: The object of the design exercise documented in this article is an interface between the computer in the basement and
the Steinway baby grand player piano shown at the left in this picture. Using the interface of figure 1, and the solenoid valves of
photo 2, electronic control of the restored piano will be completed by adding a motor driven bellows unit of later vintage than
this 1910 piano, in the picture, various subassemblies have been placed at skewed angles atop the keyboard (spool box and 3
phase wind motor) and underneath (foot operated bellows and pedals). In the restoration of this piano, all the original mech
anisms will be preserved, with the electronics interface consisting of an addition to the basic design.

Notes on

Interfacing Pneumatic
Player Pianos Carl Helmers

Everyone is familiar with the concept
of the player piano, a complex mechanical
monstrosity which had its heyday in the
early part of this century as the prime home
entertainment device before the invention of
electronic media which now dominate the
home entertainment scene. But player pianos
are far from dead. Just as there is an active
subculture of computer aficionados, there
is a whole cult of player piano and mechani
cal music freaks. Thanks largely to these
people a working player piano is not an
uncommon sight in the parlors, dens and

living rooms of contemporary suburbia.
Many of the owners of player pianos

may not recognize that these instruments
can be a most interesting output device for
a personal computer, an output device
whose interface can be achieved with very
little woodworking and mechanical skill
as well as the usual hardware and software
skills of the experienced computer hacker.

I have long had an interest in electronic
music as generated and controlled by com
puters. It is this interest which started me
on the road to learning electronics hard-

85

"spool box" mechanism

Figure 1: The normal arrangement of a player piano’s vacuum control system
is illustrated here. A player piano roll moving past a "tracker bar, ” analogous
to a magnetic tape recorder's read head, turns on and turns off a flow of air
into the evacuated control Une which goes to one of the pneumatic controls
of the piano. For the key mechanisms, the leading edge of loss of vacuum
cues the striking of a key, which is held down until vacuum is restored.
This occurs when the roll passes to a point which closes off the particular
Une. For control of a full 88 notes, there are 88 separate "channels" in the
tracker bars of the more sophisticated players, not counting additional chan
nels to control dynamics, pedals and other special effects.

ware skills needed to build computers for
music control.

I also knew that player pianos existed,
and would eventually make an interesting
experiment for use with electronic music
in programmed performances of concerto
style works with orchestral background
for the solo instrument provided by elec
tronics. But I had never turned my atten
tion to the details of the piano interface
problem until one day in October of 1976
when I went to an estate auction in nearby
Milford NH at which a 1910 Steinway-
DuoArt baby grand player piano (in un
playable condition) was put on the block.
After outbidding a mechanical music box
museum owner from Maine, I had the poten
tial for the ultimate piano. When the piano
is eventually restored, it will provide my
personal and computer music systems with
a piano output device which, incidentally,
can be used for normal piano rolls, normal
practice under direct manual control of
the keys, and under computer control using
an interface to be described in this article.

The piano, which is shown in photo 1,
gave me the impetus needed to examine in
more detail the problem of controlling a

pneumatic vacuum line with the output of
a computer. Figure 1 shows a schematic
illustration of the essence of the typical
player piano’s control mechanism. The
player piano roll passes over what is called
the “tracker bar” in the jargon of that
technology. This tracker bar has one hole
for each active key of the piano as well as
auxiliary holes for various other types of
information which may be encoded on the
rolls. When a hole in the roll passes the hole
in the tracker bar, the vacuum line associ
ated with the hole is opened to outside air.
This release of the vacuum in the line
triggers one of the “pneumatics” in a bank
under the piano, which is basically a vacuum
operated buffer amplifier with enough output
power to toggle a key or actuate some other
mechanism. The operation of the “pneu
matic” is of no great concern at this point,
since all we need to know is that if the
vacuum line is opened, the key will be
struck, and that if the vacuum line is closed,
the key will be released and the device will
charge up with vacuum, waiting for the
next time that key is to be actuated. The
conversion to electronic control is simplest
if we just adapt the existing mechanism by
plugging up the tracker bar holes (tem
porarily during electronic performance)
and adding a “T” junction to each control
line so that an electronic control valve can
simulate the opening of the vacuum line.
Figure 2 shows this adaptation of the
usual vacuum line arrangement for electronic
control.

Figure 2 also shows schematically the
physical arrangement of a flap valve. As I
began looking into the problem of control
ling air flow, I quickly learned about the
existence of electrically controlled pneu
matic devices used in pipe organ and piano
technology. It turns out that there is a
company called Reisner Inc, which among
other items makes a specialty of manufactur
ing and selling control valves for player
pianos and pipe organs. Photo 2 shows the
model for the schematic rendition in figure
2, a Reisner No 601-90 magnet with 5/8
inch valve mounted for the purpose of
testing on a scrap of pine board, with a
metal standoff used as the junction fitting to
connect to the vacuum line. The Reisner
subassembly consists of everything you see
attached to the metal frame which is
screwed to the top of the wood block: the
magnet, the upper valve seal with cushions
for sound dampening, and the return spring.
In adapting this unit to a player piano’s
purposes, a bank of these valves is required,
with a number depending upon the details of
the particular piano. (For more complete
information on these valves, contact
Reisner Inc, 240 N Prospect St, POB 71,

86

Hagerstown MD 21740.) The physical
mounting of the valve magnets, tubing, etc,
depends upon the particular piano being
converted. In the case of my baby grand
player, an equipment chest will probably be
attached under the sounding board in back
of the presently installed pneumatics chest.
Some woodworking ability and some
mechanical handiwork are required in the
fabrication of a bank of valves and in making
the interconnections to the vacuum lines.

Electrical Drive and Interface

RETURN SPRING

PAPER MOTION
SUPPRESSED

The era of integrated circuits simplifies
the basic problem of controlling the sole-

ARBITRARY
ROLL POSITIONED
TO BLOCK
ALL OPENINGS
(OR MASKING
TAPE)

FLAPPER ARM

FELT CUSHIONS

CHAMOIS VALVE SEALS

WOOD BLOCK MOUNT

TO "PNEUMATICS"

JUNCTION FITTING
(SEALS WOOO,
PROVIDES MOUNT
FOR VACUUM LINE)

Figure 2: Adapting the player piano mechanisms for computer control is accomplished using Reisner magnets and flapper
valves. Each tube from the tracker bar is modified with a "T" junction which allows an alternate control point on the vacuum
Une. When the piano is run in computer control mode, all the holes in the tracker bar are sealed and the solenoid controlled
valves simulate the effects of the roll’s passage over the bar. The sealing of the bar can be accomplished by pasting a run of
masking tape over the bar or by disabling the spools box’s drive motor and positioning a roll’s leader over the tracker bar to dose
all the holes. For details of the valve, see photo 2. A basic interface drive circuit for the solenoid is shown in figure 3.

Photo 2: A test jig used to
try out the magnetic con
trol valve concept. The
Reisner No. 601-90 mag
net with 5/8 inch valve is
mounted on a wood block
using wood screws, in a
final installation as part of
a multiple valve attach
ment to a player piano's
penumatics, one such valve
would be assigned to each
control tube of the piano.

87

+ I2V

INHIBIT LINE (NORMALLY I)
SHARED

BACK emF
PROTECTION T
DIODE
(EG : IN914)

REISNER 601-90
MAGNET WITH
5/8in VALVE
90ÌÌ COIL

SN75452
8 PIN DIP

PIN NUMBERS X(Y)
X = ONE SECTION OF DUAL PACKAGE
Y= OTHER SECTION'S PINOUTS

Figure 3: The basic magnet drive circuit used for the pneumatic player piano interface. The driver circuit shown here is a Texas
Instruments SN75452, a dual peripheral driver which comes in a miniature 8 pin dual Inline package. Each driver has a maximum
capability of sinking 300 mA in the low level output state (logical 1 input which "turns on" the magnet). With the nominal
90 ohm coil and a low level output of 0.25 V the coll will have 11.75 V across it. The current through the coil is thus 130 mA,
more than enough to actuate the valve based on experiments with the unit shown in photo 1 which was tested against a vacuum
applied to valve through the rubber hose.

noids of the Reisner magnet valves. The
solenoid coil has a resistance of nominally
90 ohms, and from the specification sheet
(confirmed by tests in my laboratory) the
valves can be actuated under load with a
current higher than about 100 mA (about
9 V across the magnet). Using the Texas
Instruments Linear and Interface Circuits
Data Book as the source of information, it
soon became apparent that the 75452 pe
ripheral driver circuit (or its cousin, the
75451) would prove quite adequate for the
job since it can sink 300 mA and has a
maximum voltage rating well above the
voltage required for the actuation of the
magnets. The basic circuit for driving a
solenoid with the 75452 integrated circuit is
shown in figure 3. In this illustration, 1 have
shown one of the two gate inputs as an
inhibit signal (normally at logic level 1) and
the other input pin as the control signal
defined so that if it is low (logic 0) the
magnet is off (valve closed) and if it is high
(logic 1) the magnet is on (valve open). The
diode mounted on the solenoid coil is an
absolute requirement. These magnets have a
considerable inductance, and as a result
when the current is removed will generate a
substantial back EMF which can damage the
75452 output transistor if it is not shorted
out by the diode. (The inductance is suffi

cient to cause an impulse which can be felt
by the observer if fingers are held across the
coil while the voltage is removed. This
suggests a minimum of 50 to 100 V of
inductive “kick.”)

Logic of a Practical Interface
The brute force technique of interfacing

the piano would be to simply put one wire
from a latched output bit to each driver of
the piano magnets, resulting in roughly 80 to
100 twisted pair interface data paths in a
monstrously thick cable. This is an unwieldy
mess. The problem is shared by pipe organ
aficionados, as I found out from Jeff
Raskin’s lecture at the First West Coast
Computer Faire’s session on computers and
music(see page 20). At that time he sug
gested the use of a serial technique to define
the state of a bank of control valves. Basi
cally, the technique consists of using serial
synchronous transmission from the com
puter to cut down on the immense number
of lines which would otherwise be required.
Figure 4 shows a detailed sketch of the logic
I designed which will enable this method of
interfacing to be employed with three signal
lines from a parallel output port of the con
trol computer. In this scheme, each group of
four valves is assigned one 4 bit shift register
segment and a latch which can be loaded

88

NEXT STAGE
SERIAL DATA TO - ----------------

TO ADDITIONAL stages

POWER WIRING TABLE ;

CONTROL LOGIC (WIRED ONCE)

IC

ICI
1C2
IC3

TYPE

74LSI4
74LS04
74LS00

♦ 5V

14
>4

GND

7
7
7

RELAY ORIVE LOGIC
(FOR X » 1 TO n/4)

IC

IC4 X
IC5 X
IC6 X
IC7 X

TYPE

74LS95
74LS75
754528
75452B

♦ 5V

14
5
8
8

GND

7
12
4

IC4 X
74LS95
OR 74L95

RIGHT
SHIFT
CLOCK QC
SHIFT
REGISTER

QB

L-SHIFT
QA

MODE
SER IN

VALVE 4

ONE OF FOUR
(TYPICAL)
MAGNETS

VALVE 3

VALVE 2

VALVE I

(MOUNT
DIODE ON
MAGNET)

♦ 12V
BUS

TYPICAL
STAGE
REPEATED

► FOR EACH
GROUP OF
4 CONTROL
VALVES

DRIVERS AS IN FIGURE I

Figure 4: Solving the problem of heavy interconnection cables. This diagram shows a synchronous serial transmission scheme
which requires four twisted pair wires to connect a parallel output port with the piano for programmed serial transfers. One
twisted pair cable is dedicated to the system reset Une so that the local electronics in the piano will turn off all drivers when the
system is reset. The other three Unes are connected to three output bits. One bit is programmed with the successive bits of data
for the various valves when an output transfer is done. After each data bit is defined, the shift dock Une is toggled to push its
value down the 88-100 or so shift register stages assigned to control the 88 to 100 valves used in the piano. Then, when all the
bits have been defined in successive operations, the transfer dock Une is toggled to parallel load all the control latches and define
the state of the solenoids. With a programmed transfer loop on a typical microprocessor, no more than 50 ps per bit should be
required, or an update time of 5 ms per 100 solenoid data transfer under program control. This gives the processor a limiting
resolution of 1/200th of a second, well within the timing accuracy needed for music. Using specialized transmission hardware
to automatically serialize the data from 8 bit bytes would speed up the typical data rates ¡f needed.

from the shift register. This module of four
bits works out very well with the widely
available TTL MSI technology shown. The
entire bank of n/4 such modules defines an
n bit shift register with an n bit latch in
parallel. Transfers of new information are
accomplished (see timing diagram) under
program control by shifting out n bit values
with the data line and shift clock line, after
which the now valid outputs of the n bit
shift register can be transferred into the n bit

latch to set the state of the valves.
As conceived here, the unit can be

directly plugged into an existing parallel
output port which has 3 available lines. The
timing diagram shown in figure 4 is imple
mented in software by programming the
states of the bits when transferring the
current data for the piano, which might be
derived from a music interpreter program, or
from a real time keyboard source. When
programming the low level transfer routine,

89

each bit in turn is shifted and is used to
control how the “serial data” line will be set
at the output port. After the bit is defined,
the “shift clock” bit is turned off, then
turned back on, to clock the data into the
shift register. After all the control bits have
been transferred by “n” operations, the
output bit which controls the “transfer
clock” line is toggled off, then on, accom
plishing the transfer of the shift register’s
contents to the latches and thus defining the
state of the various solenoids.

System Reset and Inhibit

The state of the solenoid drivers must be
set in software in the control computer;
however, if the system is first turned on, or
if garbage is left over from previous use, the
result could be a crashing dissonance on the
piano output device. To account for bad
initial values, the circuit incorporates IC3,
which drives the inhibit lines as a set-reset
flip flop. When system reset occurs (low

level on that line) all the solenoid drivers are
disabled by a low level on the “inhibit”
input (see figure 3). When the first transfer
of data under program control defines a
valid solenoid drive state, the inhibit condi
tion is removed by the transfer clock pulse,
and does not recur until another system
reset.

Summary

In these notes, I have outlined the essen
tials of the low level details needed to
interface a pneumatic player piano with a
typical computer system’s parallel output
lines. This can lead to some very interesting
personal use applications of computers, as
new piano music is programmed and played
using the mass storage facilities of a personal
computer instead of the traditional piano
roll. These notes are by no means complete,
and I leave the software of control of the
piano system to the tastes and judgement of
the individual user.»

90

ICI
CD400I

Fl

F2
CLOCK „
INPUT

F4

F5

F6

IC2
M-087

F7

F8

F9

FIO

Fil

FI2

8 3 IC 3
CD4009

BUFFERS

2 ■

7 5 —O fo/2535 rO = ZMMZ
1___ . _ rTTTX~4 Ä CLOCK 2 II 7

■IOK L -
X5K

“ !2pF

12 9
"""'4 f o / 2 6 8

12-0 ’o'?84

—O to/301

12-0 fo/319

6 II

5 14

Figure 1: Schematic of the
M-08 7 tone generator
board, which divides the
frequency of an incoming
square wave by a factor of
from 237 to 451. The
ratios used are a 9 bit
approximation to the well-
tempered scale.

13 3
IC4
CD4OO9

BUFFERS

—O fo/338
414 5

4 7
- | fo/358

—O fo/379

12-0 fo/40215 9

16 II

3 14
**—i T0/4Z6
12-0 <0/451

Electronic Organ Chips For
Use in Computer Music Synthesis

Robert Grappel

Generation of music by the use of com
puters has intrigued many people over the
years, and a number of schemes have been
published. It appears to me, however, that
those involved in computer music may be
missing a potentially rich source of special
components for their systems: the elec
tronic organ. There are a substantial number
of large scale integrated circuits made spe
cially for electronic organ applications, many
of which can be readily adapted to computer
music use. This article describes some of
these special components and shows how
one might apply them in a computer con
text. The chips described are made by the
SGS-ATES Semiconductor Corp, 79 Massa-
soit St, Waltham MA 02154. They are
modestly priced and are available in single
units or small quantities to experimenters.
Much of the data in this article comes from
the SGS-ATES data sheets associated with
their chips. The article has three subsections:
pitch generation, rhythm and accompani
ment generation.

Pitch Generation

Programmed computer music generators
typically generate pitches using carefully

timed delay loops. Unfortunately, the typi
cal processor must work nearly full time to
generate a typical musical note. Tuning such
loops can be a tedious and time consuming
process. The use of organ chips allows a
relatively simple pitch generator to be built
that can produce 96 different pitches (a
piano has only 88) in perfect tune. The com
puter need only output a byte that selects
the appropriate note. Many different notes
can be generated in parallel using several
output ports. This frees the computer from
the time consuming generation of pitch in
order to control timing, waveshaping, etc.

The heart of the pitch generator is the
M-087 upper octave chip. This $9 LSI pack
age accepts a clock and divides it by 12
different divisors. These divisors are chosen
to produce 12 even-tempered musical notes.
Thus, one tuned clock frequency produces
an entire octave of perfectly tuned notes. A
circuit to use the M-087 is shown in figure 1.
The M-087 is a CMOS device, so it is used
with CMOS logic. The logic runs from +5
to —5 V supplies to obtain a symmetrical
waveform about ground potential. The
M-087 also requires a -12 V supply. The
input clock is generated by an astable multi

91

F2

-5V

14

15

2

3

4

12

6

5

IC7
74C00
TTV6

IC5
74CI5I

9

IO

FROM
TONE
GENERATOR

-5V 12

6

15
9

2

3

IC6
74CI5I

IO

5V

IC8
CD4024 RESET

2

IC9
74CI5IS

-5V 6 II IO 9

IC
Numbei Type

+5
Pin

-5
Pin

-12
Pin

IC1 CD4001 14 7 _
IC2 M-087 1 10 9
IC3 CD4009 1, 16 8 _
IC4 CD4009 1, 16 8 _
IC5 74C151 16 8 _
IC6 74C151 16 8 —
IC7 74C00 14 7 _
IC8 CD4024 14 7 _
IC9 74C151 16 8 _
IC10 M-252AD 9 — 10

Table 1: Power wiring table for figures
1, 2 and 5.

BO

IC7
74C00

OUTPUT

-5V

Bl B2 B3 B4 B5 B6 B?

FROM COMPUTER PORT

Figure 2: Schematic of the note board. Two multiplexers (ICS and IC6) form
a 1 of 16 selector. The low order four bits of the input from the computer
select either no note or one of the twelve notes from the tone board (figure
1). The note is then transformed to the correct octave by IC8, a 7 stage
binary counter. IC9 selects either the fundamental note or one of the seven
other octaves based on the B4-B6 Unes from the computer. The output of the
board is a square wave ranging from +5 to —5 V.

the tone board. Once the note is selected, it
must be transformed to the desired octave.

vibrator composed of two gates. A crystal
oscillator could also be used. The output of
the clock should be a square wave of fre
quency 2.0024 MHz for perfect tune. The
12 outputs of the M-087 are square waves
swinging between +5 and -5 V. The fre
quency divisions are shown in the figure.
CMOS buffers are shown on the outputs for
extra drive capacity. The idea is that only
one tone generator board can drive many
note boards; each note board produces an
output pitch.

Figure 2 shows a note board schematic.
The two 74C151 multiplexers on the left
form a 1 of 16 selector. The low order four
bits of the input from the computer select
either no note or one of the 12 notes from

The CD4024 7 stage binary counter per
forms this task. Since each octave is simply
one half the frequency of the higher octave,
this divides the input note at seven different
octaves. The 74C151 on the right selects
either the fundamental note or one of the
seven other octaves, based on the B4 thru
B6 bits from the computer. Thus, the note
board can select silence or one of 12 notes in
one of eight octaves. The output is a square
wave between +5 and —5 V. This signal may
be shaped, filtered, etc, and mixed with sig
nals from other note boards. With the appro
priate bit pattern at the computer port, the
note board will generate the note with no
further computer aid.

One point remains, however. This circuit
produces a transient during changes in pitch

92

because the dividers in the octave generator
are not cleared. To fix this, a reset line is
brought from the divider to the port. A brief
positive pulse on the reset line generated
whenever the port is accessed will clear the
dividers and eliminate the transient.

Rhythm Generation

After generating pitch, the next impor
tant step in music is timing, or rhythm.
Music has been defined as “time ordered
sound.” This section describes a circuit to
ease this part of music making. Musicians
often use timing aids such as metronomes to
produce periodic signals as cues to the musi
cian. The M-252 circuit provides cues to the
computer music synthesizer.

The M-252 chip is one of a family of
rhythm generators made by SGS-ATES. It
provides a set of 15 rhythms for $13.50 (a
block diagram of this chip is shown in figure
3). The M-252 takes a clock input that forms
the basis of the rhythm. This clock is divided
down to provide the musical subdivisions of
the rhythm. A measure can have up to 32
subdivisions. The rhythms themselves are
produced by a read only memory in the chip
containing 3840 bits. This memory has 32
rows, corresponding to the 32 elementary
times. It has 120 columns (15 groups of 8).
The 15 groups correspond to the 15 input
states of the four rhythm select lines (the
sixteenth state turns the generator off). The
eight outputs are driven by the bits thus
selected in the memory. Rhythms having
fewer than 32 elementary units reset the
input clock divider at the appropriate time
for their meter. This reset signal is output as
a “downbeat” signal to indicate the begin
ning of a new musical measure.

Figure 4 shows the rhythms prepro
grammed into the M-252. These are the
standard programs available, but, if you buy
a lot of them, the chip can be custom pro
grammed. Contact the manufacturer for pro
gramming details. M-252 chips may be used
in combination to increase the number of
rhythms, the number of outputs, or the
number of elementary times (see the data
sheets for these circuits). Figure 5 shows a
simple circuit for using the M-252. An ex
ternal reset signal is provided, as well as an
LED driven by the downbeat output. The
eight outputs are shown driving instrument
circuits. These circuits are triggered by the
memory outputs in the proper order for the
desired rhythm. Figure 6 shows the timing
of this chip.

The M-252 requires two power sources,
+5 V and —12 V. The clock is TTL compati
ble, as are the rhythm selects and reset. The
outputs provide a roughly symmetrical swing

Figure 3: Block diagram of the M-252 rhythm generator. Supplied courtesy
of SGS-ATES.

RHYTHM
CODE STANDARD

CONTENT-AA
STANDARD

CONTENT-ADINPUT 8 INPUT 4 INPUT 2 INPUT 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

No selected
rhythm

1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1

1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1

1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Waltz 3/4
Jazz Waltz 3/4
Tango 2/4
March 2/4
Swing 4/4
Foxtrot 4/4
Siow Rock 6/8
Pop Rock 4/4
Shuffle 2/4
Mambo 4/4
Beguine 4/4
Cha Cha 4/4
Bajon 4/4
Samba 4/4
Bossa Nova 4/4

Waltz 3/4
Tango 2/4
March 2/4
Swing 4/4
Mambo 4/4
Siow Rock 6/8
Beat 4/4
Samba 4/4
Bossa Nova 4/4
Cha Cha 4/4
Rhumba 4/4
Beguine 4/4
Bajon 4/4
Foxtrot 4/4
Shuffle 2/4

Figure 4: Rhythm selection logic chart for the M-252 rhythm generator. Sup
plied courtesy of SGS-A TES.

from +5 to -5 V. In a computer application,
these, in addition to the downbeat signal,
would provide interrupt or input signals to
the computer. They give the computer musi
cian cues, like an electronic conductor. The
computer can control the input clock rate,
the rhythm selected, and the reset. These
provide the range of control necessary for
musicality. The inherent flexibility of this
system makes it a strong competitor to the
timing loop approach often used in com
puter music applications.

Accompaniment Generation

Generating accompaniments is a compli
cated process. SGS-ATES sells a sophisti
cated chip, the M-251, which can generate

93

Figure 5: A simple application of the M-252 rhythm generator. The circuit is
shown here driving eight "Instrument"circuits.

OUTPUT
SIGNAL

EXTERNAL
INSTRUMENT >--- >
DOWN-MAT | |

Figure 6a: M-252 timing diagram. Supplied
courtesy of SGS-A TES. In these timing
waveforms it has been assumed, for example,
that in the truth table bits n + 1 and 2 have
not been programmed, ie: the musical
instrument has not been introduced. AH the
other bits have been programmed for the
introduction of the instruments.

many types of musical accompaniment. The
chip sells for $36. There are more than 20
data sheets of diagrams and charts. This
section briefly outlines the capabilities of
this chip and how it might be used in a com
puter context.

Referring to the block diagram in figure
7, we see that the M-251 generates three
types of accompaniment: chords, arpeggios,
and bass. Chords are simultaneous combina
tions of several notes chosen to form a par
ticular harmony. Arpeggios are like chords
except that the notes are played sequentially
instead of simultaneously. Bass accompani
ments use sequences of low notes chosen to
form harmonious relationships with higher
melody notes. The M-251 is capable of form
ing chords, arpeggios, etc, with these proper
relationships.

The M-251 takes 12 frequency inputs.
These come from the tone generator board
or another octave generator. It also takes 24
note inputs. These cover two octaves of the
frequency range of the instrument. The com
puter switches these to ground when that
note is to be played (similar to the keys of
an organ). The M-251 uses these signals to
decide how to form an accompaniment. The
M-251 also requires eight rhythm inputs to
control bass lines, chords, and arpeggios.
These are derived from a rhythm generator,
such as the M-252. These inputs are labelled

94

01 thru 08. 01 is not shown in figure 7. It
is used to trigger the envelope formation
circuitry for chords (external to the M-251).
Bass and arpeggio have their own trigger out
puts. There are also three command inputs
that control the formation of chords, etc.
Some of the variables allow choice of major
or minor chords, sixth or seventh chords,
diminished or augmented chords, etc. The
notes of the bass accompaniment are also
chosen by these signals. Thus, the M-251
examines the note inputs to see what is
being played, then builds chords and bass
and arpeggios based upon the input notes,
but subject to the control of the command
inputs. The rhythm inputs control the time
sequence of the outputs, and the M-251 then
forms the outputs and provides trigger sig
nals. Not bad for a single chip! For further
information on the many modes of opera
tion of the M-251, please refer to the data
sheet. The M-251 makes quite a good musi
cian once you give it the necessary inputs.

* The lowering of the music signets depends on the intrinsic decay time of the sound generator end not
on the length of the enoble pulses. Eoch beet con therefore lest for more then one elementary time

Figure 6b: M-252 beat
chart. Supplied courtesy
ofSGS-ATES. 02 03 04 05

07 0806

ARPEGGIO
TRIGGER

CHORD
OUTPUT

ARPEGGIO
OUTPUTS

COMMAND
INPUTS

BASS
OUTPUT

BASS
TRIGGER

Figure 7: Block diagram of the M-251 accompaniment generator. This circuit can generate three
types of accompaniment: chords, arpeggios and bass. This complex circuit requires 12 fre
quency inputs, 24 note inputs, 8 rhythm inputs, and 3 command inputs.

95

Figure 8: Block diagram of
the M-147 pedal sustain
generator circuit, it can
play up to 13 different
bass notes in any combina
tion to serve as an ac
companiment.

CLOCK f IN

SUSTAIN
TRIGGER

PERCUSSION
TRIGGER

f/2 f/4 f/8 f/16 f/32

SGS-ATES makes one other accompanist:
the M-147 pedal-sustain chip. This circuit
is much simpler, and sells for $9.75. It
is intended to form a sustained or percussive
bass accompaniment using the pedals of an
organ. Figure 8 shows the block diagram of
the M-147.

The M-147 takes a clock input of about
2 MHz (this clock should be the same one
that drives the tone generator, or the bass
notes will not be in tune with the melody).
There are also 13 note inputs to be switched
by the computer or musician to select the
bass note. The lowest pitch selected will gain
priority and will lock out higher notes until
released. Two trigger outputs are formed,
one which detects changes in note selected,
and the other which fires on each note de

pression. The M-147 provides five outputs.
These are five octaves of the bass note
selected.

Summary

I hope this quick discussion of a family of
electronic organ chips and their application
will prove useful to those attempting to
make their computers into playable instru
ments. The built-in musicality of these chips
can go a long way toward this goal. With the
problems of pitch generation, rhythm, and
accompaniment eased by automation, the
computer programmer can work on the
more interesting problem of teaching a com
puter music instead of laboring with timing
loops and huge tables of numbers."

96

Fast Fourier Transforms
on Your Home Computer

William D Stanley
Steven J Peterson

The advent of the home computer makes
possible many new and varied applications
both of a general nature and of a scientific
or mathematical nature. One of the latter
applications we have successfully imple
mented on a personal computer is the fast
Fourier transform, which we will subse
quently refer to as the FFT, according to
standard usage. Some of the most important
properties of the FFT are described in this
article, and an FFT program written for the
Digital Group Z-80 System using BASIC
is provided.

Continuous Fourier Transform

Before discussing the FFT in particular,
it is desirable to briefly survey some of the
general concepts of the classical continuous
Fourier (pronounced “foor-yay”) trans
form. The terminology used refers to time
and frequency since they are among the
most common variables of interest in many
applications, although the theory involved
applies to a variety of different types of
physical phenomena.

Consider the waveform x(t) shown in
figure la which is displayed as a function of
time (denoted by t). The waveform can also
be described by the frequencies present in
the signal. This description is called the
spectrum of the time signal and, mathe
matically, it is the Fourier transform of the
time function. The process of Fourier trans
formation is represented by the mathemati
cal function

Z°° —j2irft
x(t)e dt

_vO

where X(f) is the Fourier transform of x(t).

[The constant j is used in electrical engineer
ing to denote ^—1, also called i. The num
ber e, 2.71828, is the base of the natural
algorithms. . . .CM/ For all but fairly simple
functions, this mathematical process repre
sented a formidable operation for many
years. Prior to the development of the digital
computer, many analytical and experimental
methods were investigated for determining
the approximate spectra of functions that
arose in physical systems.

The magnitude of a typical spectrum is
shown in figure 1b and is denoted by IX(f)l,
where f represents the frequency in Hertz
(Hz). For example, if x(t) were a music sig
nal, strong peaks of the spectrum at low
frequencies would be characteristic of a sig
nificant amount of bass content such as

Figure 1: An arbitrary continuous signal x(t) expressed as a function of time (a) may also be described by its spectrum or
Fourier transform X(f), which is expressed as a function of frequency (b). The relative strength of the spectrum at different fre
quencies is a measure of the frequency content that comprises the given signal. The concept of spectrum finds numerous appli
cations in many varied disciplines including music waveform analysis, communications signa! analysis, mechanical vibrations,
oceanography, statistics, and others. In signa! analysis, the function x(t) is said to be a time domain representation, and X(f) is
said to be a frequency domain representation.

97

drums or tubas. Conversely, many string
instruments such as the violin display
stronger peaks at higher frequencies in the
audio spectrum. The frequency spectrum (or
Fourier transform) thus provides a plot of
the relative weight of different frequencies
that comprise or represent the given signal.

If the Fourier transform or spectrum of a
signal is known, the time function may be
determined from the inverse transformation
which is given by

/• °° j27rft
x(t)=J X(f)e df

—oo

Observe that the inverse transform has essen
tially the same general form as the direct
transform except for the sign of the expo
nential argument.

The concept of the frequency spectrum
has long played a most important role in
numerous scientific applications and has
been of interest to mathematicians, engi
neers and scientists of many different dis
ciplines. Among the areas where spectral
analysis has been employed are sound and
music analysis, communications systems
design, analysis of mechanical vibrations,
ocean wave analysis, statistics and many
others.

(a) h»--tp-- I

Discrete Fourier Transform

Figure 2: A sampled function of time (a) and its discrete Fourier transform
spectrum (b). The discrete Fourier transform (DFT) functions are used to
approximate the continuous transform functions whenever digital implemen
tation is to be used. The time function is sampled at N points separated by an
increment T over an interval tp = NT to create a discrete function x(n). The
resulting spectrum X(m) is periodic with a period fs = 1 /T and contains N
components within one period with spacing between components F = 1 ¡tp. if
x(n) is a real function, only half or N/2 of the spectra! components are
unique. The integers n and m represent the time and frequency integers which
identify the location in the sequence of the time sample (t - nT) and the
frequency component or harmonic number (f= mF).

The heart of the FFT is a mathematical
operation known as the discrete Fourier
transform (DFT). In the DFT, a set of inte
gers n and m are defined to represent the
equivalent in a sense of the time and fre
quency variables, respectively, of the con
tinuous Fourier transform. This correspond
ence is best seen by observing the sampled
signal x(n) shown in figure 2a. There are
assumed to be N samples of the signal
spaced T seconds apart. Thus, as n varies
from 0 to N-1, the N samples of the time
signal are generated. The duration of the
time signal is tp = NT.

The DFT of x(n) is defined by the finite
summation

N-1
X(m)=^ E x(n)Wmn

n=0

where

The function X(m) represents a discrete
spectrum with m serving the same purpose
in frequency as n did in time. The frequency
increment between successive components is
F = 1/tp so that the spectral component at a
frequency mF is X(m). For x(n) real and for
N time points, a unique spectrum can be
computed only at N/2 frequency points.
Actually, X(m) is periodic in m with N
points in each period, but only N/2 are
unique. X(m) is, in general, a complex func
tion consisting of a real and an imaginary
part at each frequency. For many applica
tions, the magnitude spectrum IX(m) I is the
quantity of most significance. Some of the
preceding points are illustrated in figure 2b.

As in the case of continuous signals, an
inverse discrete Fourier transform (IDFT)
can be defined. In this case, the inverse
transformation is

98

N—1
x(n) = £ X(m)W-mn

m=0

The resulting function is periodic in the vari
able n and has N points in one period. Thus,
even if the original time signal were not
periodic, the operation of the IDFT pro
duces a function capable of providing the
desired results in one cycle, but the pattern
continues to repeat itself if the interval is
extended outside of the basic range.

Observation of the definition of the DFT
reveals that there are approximately N com
plex multiplications and about the same
number of complex additions required to
compute the spectrum at one particular
value of m. Since there are N/2 unique
spectral components, the total number of
computations required to generate a com
plete spectrum is of the order of N2. The
Cooley-Tukey algorithm, published in 1965,
demonstrates one way to perform this
transformation with a number of computa
tions of the order of N log2(N), which turns
out to be an enormous savings in computa
tional time for long signal records. The
Cooley-Tukey algorithm, along with subse
quent variations, is referred to as the fast
Fourier transform (FFT). Thus, the FFT is
a high speed algorithm for computing the
discrete Fourier transform.

While the DFT is a finite summation and
the classical Fourier transform is an inte
gral transform, the DFT may be used to
closely approximate the continuous function
under many circumstances. Some of the con
cepts involved with such an approximation
are considered later in this article.

The various FFT algorithms work best
when the number of points in the sample
record is an integer power of 2, ie: N = 2k,
where k is an integer. The form of one of
the basic algorithms is shown in figure 3
for the case of N = 8. Obviously, N = 8 is
far too small for most applications, but the
flow graph is of interest in understanding
the form of the general computational
algorithm. This particular algorithm is
referred to as an in place algorithm since
at each stage of the computation, the data
may be stored in the same memory loca
tions from which they were obtained.

Implementation of In Place Algorithm

The in place algorithm previously dis
cussed was implemented on the Digital
Group Z-80 System using BASIC. The pro
gram is given in listing 1. The particular
system used had 18 K bytes of memory,
of which about 12 K bytes were required
for the BASIC software. It was determined

Figure 3: Flow diagram indicating the computations Involved in an 8 point
fast Fourier transform (FFT) implementation of the discrete Fourier trans
form (DFT) function. Significant reductions in computation time are
achieved with FFT realizations of large arrays. For example, the computa
tion time for a 1024 (2}0) sequence of samples using an FFT is approxi
mately 1 percent of the time required by direct application of the DFT.
in the chart, two paths merging together in a given column represent a
combination of two quantities in the preceding column. For example,
the first quantity in the second column is obtained by forming x(0) +
W°x(4). The first term is indicated by the dashed Une and the second is
indicated by the solid Une. The integer in the circle is the power of W. (See
text for definition of W.) The pattern continues until the spectrum appears
In the last column. This particular algorithm for the FFT results in a scram
bled order for the spectral coefficients as can be seen from the chart. Some
variations result In a natural order but require more internal memory.

that a 256 point transform could be com
puted with this system and the program
listed uses this capacity. It could be readily
expanded or contracted as the available
memory size dictates. However, the size
selected should be chosen as an integer
power of 2 as previously noted. Thus, the
next smaller size should be 128 and the
next larger size should be 512.

In order to reduce the memory require
ments, the trigonometric functions are
generated as they are required in the pro
gram. This approach is not nearly as effi
cient from the standpoint of computation
time as would be the process of initially
generating and storing the functions in

99

Listing 1: Fast Fourier transform routine described in text Lines 10 to 499
are available for the user to describe the time function that is to be studied.

2 DIM XK25Ó) |X2(256)
4 N=25ó J L=8 J Pl*3«14159
6 REM — GENERATE TIME FUNC I ION
10 REM
20 REM LINE NUMBERS 10-499 ARE USED TO
30 REM GENERATE OR INPUT THE TIME FUNCTION
40 REM
500 PRINT "DO YOU WANT A LISTING OF THE GENERATED TIME FUNCTION ' i
510 INPUT At
520 IF A*=-N0' THEN 640
530 IF At<>“YES’ THEN 500
540 B*X1(O)
550 FOR Z-^0 TO N-1
560 IF ABS(X1<Z))>B THEN B*ABS(X1<Z))
580 NEXT Z
600 FOR Z=0 TO N-l
610 PRINT XI<Z)2 TAB(41+204X1<Z)/B)»*♦*
620 NEXT Z
630 REM - SCALE INPUT 1IME FUNCTION -
640 FOR Z*0 TO N-l
650 X1(Z)*X1(Z)/N
660 NEXT Z
670 REM - - FFT IN-PLACE ALGORITHM - -
675 PRINT' - FFT CALCULATION IN PROGRESS -•
680 Il«N/2 t 12*1 2 V=24P1/N
690 FOR 1-1 TO L
700 13-0 2 14*11
710 FOR K-l TO 12
720 X»INT<I3/I1)
730 GOSUB 1300
740 I5-Y
750 Zl«C0S<V*I5)
760 Z2“-SIN(V*I5)
770 FOR M-I3 TO 14-1
780 Al-XKM) 2 A2*X2(M)
790 B1*Z1*X1(M+Il)-Z2*X2<M+Il)
BOO B2*Z2*X1 (M+Il >+Zl»X2<M+U)
810 X1(M)*A1+B1 2 X2(M)*A2+B2
820 XI(M+I1)“Al-Bl 2 X2(M+I1)«A2-B2
830 NEXT M
840 13*13+2*11 2 14*14+2*11
850 NEXT K
860 11*11/2 2 12*2*12
870 NEXT I
880 REM - OUTPUT RESULTS -
890 PRINT-IN WHAT FORM DO YOU WANT THE OUTPUT ?•
900 PRINT* MAGNITUDE SPECTRUM PLOT (1)'
910 PRINT- TABLE OF VALUES (2)’
920 INPUT A
930 IF A*1 THEN 970
940 IF A*2 THEN 1130
950 PRINT-INCORRECT INPUT (1 OR 2)' 2 GOTO 890
960 REM - OUTPUT MAGNITUDE SPECTRUM PLOT -
970 B-0
975 PRINT- - CALCULATIONS IN PROGRESS '
980 FOR 2=0 TO N,z2
985 X-Z
990 GOSUB 1390
1000 IF X3>B THEN B=X3
1010 NEXT Z
1020 FOR Z=0 TO N/2
1025 X-Z
1030 GOSUB 1390
1040 X4-INT(564X3/B)
1050 C*0
1060 PRINT ZHAB(5) I 1 ! “ i
1070 OCH
1080 IF C<X4 THEN I RINT--“» : GUTU 1070
1090 PRINT •’
1100 NEXT Z
1110 GOTO 1240
1120 REM ~ OUTPUT TABLE OF VALUES
1130 U^O
1140 Z*0
1150 PRINT-HARMONIC’2 TAB<14)2'REAL•J IAB<30)i
1160 PRINT-IMAGINARY'2TAB<50)2-MAGNITUDE*
1165 X*U
1170 GOSUB 1390
1180 PRINT U2TAB<10)2X1<Y)2TAB<30)2X2<Y)2TAB<50)2X3
1190 U*U+1 2 Z-Z+l
1200 IF Z>9 THEN 1140
1210 IF U>N/2 THEN 1240
1220 GOTO 1165
1230 REM - TERMINATE ? -
1240 PRINT.-DO YOU WANT ANOTHER OUTPUT (YES* NO) "2
1250 INPUT At
1260 IF At*-YESa THEN 890
1270 IF AtO-NOa THEN 1240
1280 END
1290 REM - SCRAMBLER SUBROUTINE -
1300 Y-0 2 N1*N
1310 FOR W-l TO L

1320 Nl*Nl/2
1330 IF X<N1 THEN 1360
1340 Y*Y+2~<W-1)
1350 X-X-Nl
1360 NEXT W
1370 RETURN
1380 REM - MAGNI1 UDE <X3) SUBROUTINE
1390 GOSUB 1300
1400 X3«SQRT<X1<Y)~2 + X2(Y)~2)
1410 RETURN
1420 END

memory so that they can simply be called
as required. However, where speed is not a
major priority, this approach minimizes
the total memory required.

Statements 10 through 499 in the pro
gram represent the particular input signal
for which the transform is being computed.
The time function may be generated by
appropriate equations or an algorithm as
will be demonstrated for several cases later.
For experimental data, the values could
be listed point by point if the function
cannot be readily described by an equation.

Applying the Program

In order to effectively utilize an FFT
program for spectral analysis, it is neces
sary to understand some of the peculiarities
of the DFT and its relationship to the con
tinuous Fourier transform. Although the
time signal may or may not be periodic in
nature, the mathematical form of the DFT
treats the signal as if it were periodic. The
total duration of the time signal is the period
tp, and for the program being considered,
this period contains 256 points. If T is the
time increment between samples, then
tp = 256 T. The spectrum obtained from the
DFT is also periodic and contains N (or
256) spectral components. However, for a
time function that is real (which incidentally
is the case for all signals considered in this
article), it can be shown that half of the
components are ambiguous; ie: they are
similar to the other half and do not repre
sent any actual spectral information. Thus,
there are N/2 (or 128) meaningful complex
spectral components that are obtained with
the FFT. These components are spaced apart
in frequency by F = 1/tp. The value for
m = 0 corresponds to the DC component,
m = 1 is the fundamental, m = 2 is the sec
ond harmonic, etc. According to sampling
theory, a time signal must be sampled at a
rate at least equal to (practically speaking,
greater than) twice the highest frequency ‘
contained in the spectrum. Thus, if the
highest frequency contained in a spectrum
is known to be no greater than fh, the maxi
mum time between samples (T) should be

chosen to satisfy T < If this condition

is not met, there will be a spectral overlap

100

or aliasing effect which will distort the
spectrum.

For a fixed number of points (such as
256 for the program under discussion), there
is a trade-off between the high frequency
capability and the spectral resolution. In
order to analyze higher frequencies, a
shorter sampling time is required, but this
necessitates a shorter overall period and a
larger increment between successive fre
quencies. Specifically for 256 points, N/2 =
128; and since N = 0 corresponds to DC, the
highest frequency that can be measured is
127 times the spectral resolution. It is very
important that the sampling rate be chosen
to be greater than twice the highest fre
quency in the spectrum even if the higher
frequencies are not of interest. If the mini
mum sampling rate requirement is not met,
erroneous spectral components may appear
at various places in the spectrum.

There are various other properties of the
DFT that may be important in applying an
FFT program in various situations. The
reader is encouraged to consult one of the
references listed at the end of this article or
the many other available sources for more
extensive details, since this article provides
only a brief overview of the theory along
with the details of a workable program for
a home computer.

Examples

Several examples that illustrate some of
the properties of the FFT are now con
sidered. The various function programs for
these waveforms are shown in listing 2. The
first example is that of a single rectangular
pulse whose duration is 25 percent of the
total period corresponding to 256/4, or 64
points as illustrated in figure 4. (Due to the
large number of points, the function is
shown as a continuous curve.) The video
display of the first 14 spectral components
in tabular form is shown in photo 1, and the
first 15 components of the magnitude spec
trum are displayed in photo 2. Henceforth,

Figure 5: Rectangular pulse for which the
FFT is partially displayed in photo 3. The
pulse is unity for 32 of the 256 points in
the time record and zero for the remainder.
Since this pulse is shorter than the one of
figure 4, the spectrum is broader, in gen
eral, there is an inverse relationship between
the width of a pulse-like time function and
the width of the frequency spectrum.
This property is an important concept in
signal transmission and results in the re
quirement of larger bandwidths for trans
mitting shorter pulse signals.

10 REM - GENERATE 25X PULSE
20 FOR Z=0 TO N/4
30 X1(Z>=1
40 NEXT Z
50 FOR Z-N/4 TO N
60 Xl<Z)»0
70 NEXT Z

10 REM - GENERATE 12.5X PULSE
20 FOR Z-0 TO N/0
30 X1(Z>-1
40 NEXT Z
50 FOR Z-N/8 TO N
60 Xl<Z>-0
70 NEXT Z

10 REM - GENERATE 1000HZ SINE WAVE
20 T-0
30 FOR Z-0 TO N-l
40 XI<Z>-SIN<2«3.14159»1000*T>
50 T-T+1.953125E-4
60 NEXT Z

10 REM - GENERATE 1010HZ SINE WAVE
20 T-0
30 FOR Z-0 TO N-l
40 XI<Z>-SIN<2»3.14159»1010«r>
50 T-T+l.953125E-4
60 NEXT Z

Listing 2: Three different generating routines that can be used with listing 1
as the time functions. The first routine generates a pulse function that lasts
25 percent of the time that is being analyzed. The second routine also gen
erates a pulse but half as long as the first routine. The third and fourth
routines generate sine waves which are only slightly different.

h------------------------------- tp--------------------------------- h
256 POINTS

Figure 4: Rectangular pulse for which the FFT is partially displayed in
photos 1 and 2. The pulse is unity for 64 of the 256 points in the time
record and zero for the remainder.

H-- tp--h
256 POINTS

101

only the magnitude spectra will be shown.
When the pulse duration is changed to

12.5 percent of the period or 32 points as
indicated in figure 5, the magnitude spec
trum changes to the form shown in photo 3.

It should be pointed out that the band
width of a rectangular pulse is theoretically
infinite in extent and so there is some alias
ing error in each of these cases. However, the
effects of aliasing are not pronounced in
these two examples over the frequency range
shown in the photos. At larger harmonic

values for the given signals and at shorter
pulse widths for the given frequency range,
the aliasing errors would be more significant.

A sine wave representing an assumed fre
quency of 1000 Hz and an assumed sampling
time of T = 0.1953 ms was generated and
analyzed. The resulting spectrum is shown
in photo 4. Note that the frequency resolu
tion is F = 1/(0.1953 x 10-3 x 256) = 20 Hz
so that 1000 Hz corresponds to harmonic
number 50. Observe that an ideal single line
appears as one might hope. On the other

Photo 1: The first 14 com
ponents (DC and har
monics up through the
13th) of the FFT spec
trum corresponding to the
pulse shown in figure 4.
The program lists the real
part of X(m), the imagi
nary part of X(m) and the
magnitude \X(m)\.

Photo 2: Video graphics display of the magnitude spectrum
corresponding to the pulse shown in figure 4. The display is
of course rotated 90° from the basic mathematical form
illustrated in figure 2.

Photo 3: Video graphics display of the magnitude spectrum
corresponding to the pulse shown in figure 5.

102

hand, when the frequency is changed to
1010 Hz while maintaining the same value of
T, the spectrum changes to the form shown
in photo 5. The reasons for the striking
difference are as follows: In the first case,
the frequency corresponds exactly to one of
the harmonic numbers (50th harmonic), and
a property of the DFT is that no other line
components appear in this case. However, in
the second case, the component would
theoretically appear halfway between the
50th and 51st harmonics so that the imper
fections of the finite time duration of the
observed sinusoid are now apparent. The
phenomenon observed is called leakage. It
can also be readily verified that the first si
nusoid was observed over an exact integer
number of cycles, while in the second case,
the sinusoid was truncated during a cycle.

This example illustrates the necessity of
understanding some of the limitations of the
truncation and sampling processes in order
to properly evaluate results. The phenomena
just noted can be reduced by smoothing the
data to be transformed with certain window
functions before computing the FFT. Win
dow functions smooth the beginning and

end of a record length and reduce the effects
of leakage on the spectrum.

More Examples

Other applications include the use of an
analog to digital converter to sample speech
and music waveforms or the waveforms en
countered in electronic systems. The sample
points could be stored for later spectral
analysis using the FFT program. We hope
readers will be encouraged to experiment
with the program on their own computers.»

REFERENCES

1. Bergland, G D, "A Guided Tour of the Fast
Fourier Transform," IEEE Spectrum, July
1969, pages 41 thru 52.

2. Brigham, E O, The Fast Fourier Transform,
Prentice-Hall, Englewood Cliffs NJ, 1975.

3. Cooley, J W, and Tukey, J W, "An Algorithm
for the Machine Calculation of Complex
Fourier Series," Math of Computation, volume
19, April 1965, pages 297 thru 301.

4. Stanley, W D, Digital Signal Processing, Reston
Publishing Co (a division of Prentice-Hall),
Englewood Cliffs NJ, 1975.

Photo 4: Video graphics display of the magnitude spectrum
corresponding to a sine wave whose assumed frequency is
1000 Hz with a sampling interval T = 0.1953 ms. This
assumption results in an integer number of cycles (50) in the
record duration tp, which corresponds to 50 ms. The fre
quency then corresponds exactly to the 50th harmonic and
the spectrum appears as a single Une.

Photo 5: Video graphics display of the magnitude spectrum
corresponding to a sine wave whose assumed frequency is
1010 Hz with a sampling interval T = 0.1953 ms. This fre
quency corresponds to the midpoint between the 50th and
51st harmonics, and the imperfections of the DFT in repre
senting a continuous time signal now can be seen.

103

Fast Fourier Transforms

for the 6800
Richard Lord

If you’re involved with music or speech
processing applications with your computer,
you’ve probably wished you could look at
the frequency spectrum of your sampled
signals. This may not be as difficult as you
might guess, because here is a simple,
straightforward fast Fourier transform
(FFT) subroutine that can do the trick in
just a few seconds.

A Microhistory of the
Fast Fourier Transform

The analysis of waveforms for harmonic
content has a long and fascinating history.
Bernoulli and Euler developed the mathema
tics of the transform while experimenting
with musical strings in 1728, nearly a hun
dred years before Jean Baptiste Fourier gave
his name to the equations. Interest in predic
tion of the tides led Lord Kelvin to build a
mechanical harmonic synthesizer that in
spired the construction of increasingly com
plex mechanical harmonic analyzing ma
chines. This trend culminated in the Mader-
Ott machine of 1931, which is on display at
the Smithsonian Institute in Washington
DC.

With the growth of the telephone and the
communication industry came sampling
theory and the discrete Fourier transform.
At first, discrete Fourier transforms were
hand calculated and tabular forms called
“schedules” were soon employed to speed
the process. With the development of digital
computers in the 1940s this task became
somewhat easier to perform. The number of
calculations required still made the concept
of real time discrete Fourier transforms un
likely even on the ever faster new computers.

Then in the 1960’s a number of matrix
theory mathematicians, including J W
Cooley and J W Tukey, went back to the
“schedules” and discovered that a great
many of the terms were redundant and

could be factored out. The procedure they
evolved became known as the fast Fourier
transform, which reduces the number of cal
culations to the point that special hardware
can be built to perform the transform in real
time and display the frequency spectrum
continuously on a video display.

The Basic Concepts

A number of books have been published
describing the mathematics of the fast
Fourier transform in some detail. A few of
these contain sample programs in FOR
TRAN, ALGOL, or BASIC. However, the
use of a high level language to perform this
computation not only costs a great deal in
speed and efficiency, but also obscures the
simple binary processes that characterize the
algorithm. Since high level languages do not
usually support bit manipulation, these pro
cesses can become almost as time consuming
as the arithmetic.

Clearly, assembly language programming
of the fast Fourier transform offers many
advantages, but the literature seldom pro
vides any examples of assembly level code to
illustrate how the equations are imple
mented. Thus the program described in this
article may well be the reinvention of some
one else’s “wheel.”

The details of the inner workings of the
fast Fourier transforms are left to the techni
cal references, but the basic concepts are not
difficult to grasp. The transform involves
complex products which behave in the
manner of the coordinates of a rotating
vector. When this vector is at angles which
are multiples of 90 degrees, the sine and co
sine terms of the equations become +1,0, or
-1. Since terms containing these values do
not require computed multiplication, the
arithmetic becomes very simple. Other terms
cancel each other out in order to simplify
the equations at other angles. By factoring

105

FREQUENCY

Figure 1: Fast Fourier transform of a square wave using the author's tech
nique. The real (or sine) part of the transform is shown in (a). The imaginary
(or cosine) part of the transform is shown in (b). The resulting transform is at
(c). The resulting transform values are normally found by taking the square
root of the sum of the squares of the cosine and sine elements. In order to
save computational time, however, the author takes the sum of the absolute
values of the terms, which introduces slight errors into the relative magni
tudes of the components.

these terms out of the transform, many un
necessary calculations may be eliminated.

The input data may be thought of as ele
ments of an input matrix which will be mul
tiplied by a transform matrix. The product is
a matrix containing the transformed data.
The redundant elements may be factored
out of the transform matrix, converting it to
the product of a number of simpler trans
forms. For an input array of 256 points, a
discrete Fourier transform would require
256 by 256 complex products or 262,144
binary multiplications. The fast Fourier
transform reduces this to eight simpler trans
forms and ultimately requires 8 by 2 by 256
complex products, or 16,384 binary multi
plications (1/16 the number of previous
multiplications). Even greater savings are

realized as the number of points increases.
Each of the simplified transforms oper

ates on the data in pairs of complex points.
The real and imaginary parts of a pair are
transformed and the new values placed back
in the array so that the transform is per
formed “in place.” The algorithm then
moves on to the next pair until all pairs
have been transformed. The process is re
peated for each of the eight stages of our
256 point transform, but on each pass the
distance between pairs is changed.

On the first pass, adjacent points are
paired. After completing a pair the algorithm
skips down to the next. In a sense, the data
has been split into 128 adjacent 2 point
transforms. These 128 groups are known as
cells. On each subsequent pass the distance
between elements of the pair is doubled. In
the second pass there are 64 cells, each four
elements wide. On the final pass there is
only one cell containing all 256 elements.

This process of forming pairs and cells
causes the elements of the array to become
scrambled. On the final pass the data is com
pletely mixed up and must be sorted out be
fore it can be used. The way it is scrambled
is very interesting, though. If each element is
assigned a binary number that represents its
location in the array, the scrambled data
makes it appear that the computer has read
this binary address backwards. It is as if the
binary word were swapped end for end so
that the most significant bit (MSB) appears
where the least significant bit (LSB) should
be.

This rearrangement of the data may be
corrected by swapping each data point with
its bit reverse addressed mate. The procedure
is called “bit swapping” and may be per
formed either at the end of the fast Fourier
transform or before it is begun. The pre
transform swap is more convenient because
less points need be swapped and because the
vector rotation within each cell is simpler. In
the posttransform version the vector angles
would also have to be bit swapped.

Implementation

Now that we have looked at the concept,
let us look at how it can be implemented.
The algorithm has been written as a subrou
tine (see listing 1) to be called by a signal
gathering and display program. It assumes
that this program has stored some time de
pendent data in 2’s complement form and
that a 256 byte sample of this is to be trans
formed to the frequency domain.

The fast Fourier transform subroutine be
gins with an address lookup table for the
data areas. This table makes the reassign
ment of these areas very simple. The INPUT
data area may be anywhere in memory, but

106

the SINE, REAL, and IMAG arrays must be
at address page boundaries (ie: at hexadeci
mal XXOO), and REAL and IMAG must be
in adjacent pages forming a continuous 512
byte block. These restrictions greatly simpli
fy address calculation within the program.
SINE is the address of a 256 byte sine and
cosine lookup table which must be loaded in
with the transform subroutine (see listing 2).

The first instruction of the subroutine
clears the variable SCLFCT which keeps
track of the number of times the data has to
be scaled to prevent overflow. The IMAG
array is then cleared and at MOVE the IN
PUT data is copied into REAL, where the
transform will take place. The data is then
prescrambled to put it in bit reverse order
for the transform process. The bit reversed
address is calculated by rotating the least sig
nificant bit of the address into the carry and
rotating the reversed address out in the op
posite direction. The new address is com
pared with the first address to prevent
swapping the data back to the original order,
and the two array elements are then ex
changed.

Once the swapping is complete, the data
is ready to be transformed. The fast Fourier
transform is performed in eight separate
passes; before each pass begins, the data is
tested by SCALE to prevent any overflow.
For the first pass there are 128 cells formed
by adjacent pairs of data. In this pass the
vector angle steps in multiples of 180 de
grees. This means that all the sine terms are
0 and the cosine terms are either +1 or -1.
Also there is no data yet in the IMAG array.
The general equations thus become greatly
simplified and the pass is reduced to addi
tion and subtraction among elements of the
REAL array. Considerable time is saved by
making this pass separate and bypassing the
unneeded table lookup and multiply rou
tines.

Once this pass is completed, the arithme
tic gets much more complex. The remaining
seven passes are performed by a general fast
Fourier transform algorithm. It begins at
FPASS by setting up 64 cells of four ele
ments with the pairs separated by two units.
The vector angle is set to increment by 90
degrees by setting DELTA to 64. At NPASS
the pointers are set up for the first cell and
the pass then begins with a sine and cosine
table lookup. The complex data pair is then
processed using the standard fast Fourier
transform equations:

TR = RN COS(w) + IN SIN(w)
TI = INCOS(w)- RNSIN(w)

RM'= RM+TR RN'= RM-TR
IM' = IM+TI IN'= IM-TI

After each pair has been transformed the
angle is incremented by DELTA and the
next pair processed. When all pairs in a cell
have been transformed the routine moves
down to the next cell and returns to NCELL
to continue the process. When the last cell
has been done, CELCT becomes 0 and the
pass is complete.

At the end of each pass the number of
cells and the angle increment are divided in
half and the pair separation and number of
pairs per cell are doubled. The whole process
is then repeated by branching to NPASS
until the end of the last pass when the num
ber of cells becomes 0. The routine then
branches to DONE and returns to the calling
program.

The SCALE subroutine is used to antici
pate and prevent overflow of the 8 bit data.
It is called before each pass and begins by
testing the value of each data point. If any
point exceeds the range of -64 to +64 the
subroutine branches to SCL4 where the en
tire array is scaled down by a factor of 2.
The variable SCLFCT is incremented to indi
cate the total number of times the data has
been scaled.

The multiply routine has been placed at
the end of the program to make substitution
of other versions easy. The original program
was written for a hardware multiplier similar
to the device described in an article by
Bryant and Swasdee (see references).). To
eliminate the need for such exotic hard
ware, a software multiply routine has been
substituted with some increase in transform
time. After the multiplication is completed
the data must be scaled up by a factor of
two. This is because the sine and cosine
terms represent fractional binary values. The
least significant bit is shifted in from the
lower byte to preserve accuracy.

Analyzing the Results

After working with all this mathematics
and software, what do you end up with? We
started with a 256 point time domain sample
in REAL. The fast Fourier transform con
verts this to a frequency domain sample cor
responding to the spectrum of the input.
The first element of each array represents
the DC component of the input. The next
element represents the sine wave with period
equal to the duration of the input sample.
Each remaining element depicts a multiple
of this frequency until the middle of the
array is reached, representing 128 cycles per
period. The remainder of the array is sym
metrical to the first 128 points.

Each element in the REAL and IMAG
arrays represents information about one fre
quency component of the input sample. But
why do we end up with two arrays, and

107

what do the cosine terms of REAL and the
sine terms of IMAG really mean to us? Usu
ally this information is described in terms of
amplitude and phase of the component, and
often the phase information is of little inter
est. The cosine and sine terms represent the
X and Y components of a vector with length
and angle equal to the amplitude and phase
terms that we are after. All we have to do is
find the length of the vector from the square
root of the sum of squares of the cosine and
sine terms.

The only problem is that this calculation
requires almost as much time as the trans
form, due to the square root. If we bypass
the root and display the sum of squares (the
power spectrum) we miss most of the detail
of the lesser components. I have found that
the highly unmathematical solution of dis
playing the sum of the absolute values is fair
ly satisfactory, although it introduces some
error in the relative amplitude of peaks. This
value is then sent to a digital to analog con
verter for display on an oscilloscope.

Putting the Fast Fourier Transform to Work

This program has a number of interesting
applications for speech recognition, image
processing, and the synthesis of musical in
struments. A recent issue of The Computer
Music Journal even describes a program for
transcribing recordings back into sheet music
(see references).

To get meaningful information from the
transform, the input data must be sampled
judiciously. While this program in theory is
capable of analyzing 128 harmonics of a
given sample, this is only true when the
input represents exactly one complete cycle
of the waveform being analyzed. Most data
just doesn’t come packaged that way.

To accurately measure the pitch of a
sound you must sample many cycles. To
analyze harmonics you want to sample few.
The best result for real data will always be a
compromise between range (bandwidth) and
resolution. Both can be increased only by
analyzing more points, which takes more
time.

After experimenting with one sample at a
time you will probably want to try continu
ous analysis. The input data pointer at hexa
decimal address 0202 can be moved through

an input buffer by the program that calls the
transform. At roughly three seconds per
transform, the data cannot suitably be ana
lyzed in real time. A sample of a few seconds
of data can be continuously analyzed and
the changes slowly displayed. This is proba
bly most easily accomplished by transferring
the “sum of absolute value” data to a dis
play buffer which is then scanned by an
interrupt driven display program.

Bigger, Better, and Faster

Like most software, this program exists
to be rewritten. No attempt was made to op
timize execution speed. Preliminary experi
ments with an MM I-67558 hardware multi
plier took slightly under one second. This
relatively minor improvement was probably
due to the time wasted in moving the data in
and out of the multiplier. Perhaps it can be
streamlined to the extent that a continuous
display can be created. I plan to try a version
for the 6502 microprocessor with hope of
adding still more speed.

The algorithm is simple enough so that
conversion should be easy. Enterprising
8080 and Z-80 enthusiasts shouldn’t have
too much trouble adapting the principles to
their computers, either. Conversion to
double precision or 512 to 1024 points
should also be possible, although the present
addressing scheme would have to be aban
doned.

I hope this program will provide you with
a tool that will be a lot of fun to play with.
Please write and tell me what uses you find
for it and any improvements you would like
to suggest. ■

REFERENCES

1. Brigham, E Oran, The Fest Fourier Transform,
Prentice-Hall, Englewood Cliffs NJ, 1974.

2. Bryant, J and Swasdee, M, "How to Multiply in
a Wet Climate," BYTE, volume 3, number 4,
April 1978, page 28.

3. Cooper, James W, The Minicomputer in the
Laboratory, John Wiley and Sons Inc, New
York, 1977.

4. Moorer, J, "On the Transcription of Musical
Sound by Computer," Computer Music
Journal, volume 1, number 4, November 1977,
page 32.

5. Stearns, Samuel D, Digitai Signa! Analysis,
Hayden Book Co Inc, Rochelle Park NJ, 1975.

108

Listing 1: Routine in 6800 assembly language to perform a 256 point fast
Fourier transform.

00001 NAM FFT#2
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00050
00051
00052
00053

0020

0800
0500
0600
0400

OPT 0, S, NOGEN
Hc**#******##*)^^*##*^
** FAST FOURIER **
** TRANSFORM **
** SUBROUTINE ♦♦

** BY R. H. LORD **
** 21 APRIL, 1978 **

**
*♦ THIS SUBROUTINE PERFORMS A 256 POINT FFT
** ON THE DATA IN THE INPUT DATA TABLE.
** INPUT DATA IS ASSUMED TO BE TWO'S COMPLEMENT.
** THE SUBROUTINE GENERATES A COSINE (REAL) AND SINE
** (IMAGINARY) DATA TABLE AT “REAL" AND "IMAG"
** THE RESULTANT TRANSFORM DATA IS 128 POINTS
*♦ SYMMETRICALLY REFLECTED ABOUT THE CENTER OF
** THE 256 POINT TABLE.
**
** THE SUBROUTINE ASSUMES THAT THE INPUT DATA
♦* IS ALL REAL AND THEREFORE DOES NOT MANIPULATE
** THE IMAGINARY PORTION UNTIL AFTER THE FIRST
** PASS.
**
** ALL DATA AREAS MUST BE ON PAGE BOUNDARIES (XX00)
** SINCE THE ROUTINE MANIPULATES ONLY THE LSB'S.
**
** THE TWO'S COMPLEMENT MULTIPLICATION IS KEPT AS A
** SEPARATE SUBROUTINE. IT MAY BE PERFORMED WITH
** A CONVENTIONAL SOFTWARE MULTIPLY SUBROUTINE
** OR WITH A HARDWARE MULTIPLIER FOR HIGHER SPEED.
**
*♦ THE SUBROUTINE SCALES THE DATA WHENEVER
** IT ANTICIPATES OVERFLOW. THE SCALE FACTOR
** COUNT IS AVAILABLE IN "SCLFCT".
**
**
**
*♦

♦* DRTR RRERS *♦

INPUT EQU «0800 INPUT DATA TABLE
REALT EQU «0500 “REAL" DATA TABLE
IMAGT EQU «0600 "IMAG" DATA TABLE
SINET EQU «0400 SINE LOOKUP TABLE
ft**************# ̂

ORG «0020

** BASE PAGE PTRS **

00054
00055

0020
0022

0002
0002

RLPT1 RMB 2
RLPT2 RMB 2

"REAL” DATA POINTERS

00056
00057

0024
0026

0002
0002

IMPT1 RMB 2
IMPT2 RMB 2

"IMAG. " DATA POINTERS

00058 0028 0002 SINPT RMB 2 SINE TABLE POINTER
00059 0020 0001 CELNUM RMB 1 CELLS FOR THIS PASS
00060 0028 0001 CELCT RMB 1 CELL COUNTER FOR PASS
00061 002C 0001 PAIRNM RMB 1 PAIRS/CELL
00062 0020 0001 CELDIS RMB 1 CELL OFFSET(DISTANCE)
00063 002E 0001 DELTA RMB 1 ANGLE INCREMENT
00064 002F 0001 SCLFCT RMB 1 SCALE FACTOR CTR.
00065 0030 0001 COSA RMB 1 TEMPORARY COSINE
00066 0031 0001 SINA RMB 1 TEMPORARY SINE
00067 0032 0001 TREAL RMB 1 TEMP. REAL DATA
00068 0033 0001 TIMAG RMB 1 TEMP. IMAG DATA
00069 0034 0001 MSBV RMB 1 MULTIPLY MSB
00070 0035 0001 LSBY RMB 1 MULTIPLY LSB
00071 0036 0004 MPA RMB 4 SOFTWARE MPY ACCUM.

109

00072 HcaMc**********************^^
00073
00074
00075
00076

0200
0200 20 08

** START OF TRANSFORM **

ORG $0200
BRA START JUMP RROUND PRR8METERS

00077
00078
00079
00080
00081 0202 0800

** 8DDRESS LOOK-UP T8BLE **
** FOR DATA AREAS **

INPD FDB INPUT SET UP D8T8 RRERS
00082 0204 0500 REAL FDB RERLT
00083 0206 0600 IM8G FDB IMAGT
00084 0208 0400 SINE FDB SINET
00085
00086
00087 020A 7F 002F

3|e*9|c>)ci|c3|»|c>|c>|cj|c9|c>|c>icHcHc9)C9|C9|cj(c)|c9fc9fc:tc$4c>(c9|c9|H|c
**
ST8RT CLR SCLFCT NOTHING SC8LED VET

00088
00089
00090
00091
00092 020D FE 0206

*♦

** INPUT DATA SET-UP **

CLEAR LDX IM8G CLEAR OUT IMAG.
00093
00094

0210
0211

5F
6F 00

CLR B SET UP COUNTER
CLR1 CLR 0, X CLEAR MEMORY

00095
00096
00097

0213
0214
0215

08
58
26 FA

I NX
DEC B
BNE CLR1

00098 0217 FE 0202 MOVE LDX INPD SET UP POINTERS
00099 0218 DF 20 STX RLPT1
00100 021C FE 0204 LDX REAL
00101 021F DF 22 STX RLPT2
00102 0221 DE 20 M0V1 LDX RLPT1 MOVE INPUT DATA
00103 0223 86 00 LDA A 0,X TO "REAL" ARRAV
00104
00105

0225
0226

08
DF 20

INX
STX RLPT1

00106 0228 DE 22 LDX RLPT2
00107 0228 87 00 STA A 0,X
00108 022C 7C 0023 INC RLPT2+1
00109 022F 26 F0 BNE M0V1 TEST PAGE OVERFLOW
00110
00111
00112
00113 0231 FE 0204

** PRE-TRRNSFORM BIT SWRP **
ifc************************ ̂

LDX REAL SET UP DATA POINTERS
00114 0234 DF 20 STX RLPT1
00115 0236 DF 22 STX RLPT2
00116 0238 C6 08 BITREV LDA B #8 SET BIT COUNTER
00117 0238 96 21 LDA A RLPT1+1 GET POINTER 1
00118
00119

023C
023D

46
79 0023

BRV1 ROR A REVERSE BIT ORDER
ROL RLPT2+1 FOR SECOND POINTER

00120
00121

0240
0241

58
26 F9

DEC B COUNT BITS
BNE BRV1

00122 0243 96 23 LDA A RLPT2+1 GET REVERSED BYTE
00123 0245 91 21 CMP A RLPT1+1 COMPARE WITH #1
00124 0247 25 0E BCS SWP1 BRANCH IF ALREADY SWAPPED
00125 0249 DE 20 SWAP LDX RLPT1 GET POINTER 1
00126 024B 86 00 LDA A 0, X GET VAL 1
00127 024D DE 22 LDX RLPT2 GET POINTER 2
00128 024F E6 00 LDA B 0,X GET VAL 2
00129 0251 87 00 STA A 0,X REPLACE WITH VAL 1
00130 0253 DE 20 LDX RLPT1 GET FIRST POINTER
00131 0255 E7 00 STR B 0, X COMPLETE SWAP
00132 0257 7C 0021 SWP1 INC RLPTi+1 DO NEXT POINT PAIR
00133 0258 26 DC BNE BITREV UNLESS ALL ARE DONE
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143 025C BD 0333

** FFT FIRST PASS ♦*

** SINCE IN PASS 1 ALL ANGLES **
** ARE MULTIPLES OF 180 DEG. **
** THERE ARE NO PRODUCT TERMS. **
♦* AND NO IMAGINARY TERMS YET **
** HENCE A FAST VERSION OF PASS 1 **

PASS1 JSR SCALE SCALE IF ANY OVER-RANGE DATA
00144 025F FE 0204 LDX REAL SET UP POINTERS
00145 0262 DF 20 STX RLPT1
00146 0264 DE 20 PAI LDX RLPT1 GET POINTER

110

00147 0266 A6 00 LDR R 0,X GET RM
00148 0268 E6 01 LDA B 1,X AND RN
00149 026A 36 PSH R SAVE RM
00150 026B IB RBR RM'=RM+RN
00151 026C A7 00 STR R 0,X STORE NEW RM'
00152 026E 32 PUL R GET OLD RM
00153 026F 10 SBR RN'=RM-RN
00154 0270 A7 01 STR R 1,X STORE RN'
00155 0272 7C 0021 INC RLPT1+1 MOVE TO NEXT PAIR
00156 0275 7C 0021 INC RLPT1+1
00157 0278 26 ER BNE Pfil KEEP GOING TILL DONE
00158
00159 ** COMPUTATION OF FFT **
00160 ** PASS 2 THRU N **
00161
00162 027A 86 40 FPASS LDA A #64 SET UP PARAMETERS
00163 827C 97 2R STA A CELNUM FOR CELL COUNT
00164 027E 97 2E STA A DELTA AND ANGLE
00165 0280 86 02 LDA A «2 AND FOR
00166 0282 97 2C STR fi PAIRNM PAIRS/CELL
00167 0284 97 2D STR R CELDIS DISTANCE BETWEEN PAIRS
00168 0286 BD 0333 NPRSS JSR SCALE KEEP DATA IN RANGE
00169 0289 96 2R LDR R CELNUM GET NUMBER OF CELLS
00170 028B 97 2B STR R CELCT PUT IN COUNTER
00171 028D FE 0204 LDX REAL SET UP POINTERS
00172 0290 DF 20 STX RLPTi
00173 0292 DF 22 STX RLPT2
80174 0294 FE 0206 LDX IMAG
00175 0297 DF 24 STX IMPT1
00176 0299 DF 26 STX IMPT2
08177 029B FE 0208 NCELL LDX SINE
00178 029E DF 28 STX SINPT
00179 02R0 D6 2C LDR B PAIRNM GET PAIRS/CELL CTR.
00180 02R2 96 21 NCI LDR fi RLPT1+1 GET POINTER 1 LSBV
00181 02R4 98 2D ADD A CELDIS ADD PAIR OFFSET
00182 02R6 97 23 STA A RLPT2+1 SET BOTH POINTER 2'S
00183 02R8 97 27 STA A IMPT2+1
00184 02RR 37 PSH B SfiVE PAIR CTR
00185 02RB DE 28 LDX SINPT SET UP SINE LOOKUP
00186 02RD R6 00 LDA A 0,X GET COSINE OF ANGLE
00187 02RF 97 30 STA A COSA SAVE ON BASE PAGE
00188 02B1 R6 40 LDA A 64, X GET SINE
00189 02B3 97 31 STA A SINA AND SAVE IT
00190 02B5 DE 22 LDX RLPT2 GET “REAL" POINTER 2
00191 02B7 R6 00 LDA A 0,X GET RN
00192 02B9 36 PSH A SAVE IT
00193 02BR D6 30 LDA B COSA GET COSINE
00194 02BC BD 036R JSR MPV MAKE RN*COS(A>
00195 02BF 97 32 STA A TREAL SAVE IT
00196 02C1 32 PUL A RESTORE RN
00197 02C2 D6 31 LDA B SINA GET SINE
00198 02C4 BD 036R JSR MPV RN*SIN<A>
00199 02C7 97 33 STA A TIMAG
00200 02C9 DE 26 LDX IMPT2 GET IMRG. POINTER 2
00201 02CB R6 00 LDA A 0,X GET IN
00202 02CD 36 PSH A SAVE IT
00203 02CE D6 31 LDA B SINA GET SINE
00204 02D0 BD 036R JSR MPV IN*SIN(A)
00205 02D3 9B 32 ADD A TREAL TR=RN*COS+IN*SIN
00206 02D5 97 32 STA A TREAL
00207 02D7 32 PUL A RESTORE IN
00208 02D8 D6 30 LDA B COSA GET COSINE
00209 02DR BD 036R JSR MPV IN*COS<A>
00210 02DD 90 33 SUB A TIMAG TI=IN*COS-RN*SIN
00211 02DF 97 33 STA fi TIMAG
00212 02E1 DE 20 LDX RLPTI
00213 02E3 R6 00 LDA fi 0,X GET RM
00214 02E5 16 TAB SAVE IT
00215 02E6 9B 32 ODD fi TREAL RM'=RM+TR
00216 02E8 R7 00 STR fi 0, X
00217 02ER DE 22 LDX RLPT2
00218 02EC D0 32 SUB B TREAL RN'=RM-TR
80219 02EE E7 00 STA B 0,X
00220 02F0 DE 24 LDX IMPT1
00221 02F2 R6 00 LDR R 0, X GET IM

111

00222 82F4 16 TAB SAVE IT
88223 82F5 9B 33 RDD R TIMAG IM'=IM+TI
00224 02F7 fi? 00 STR R 8,X
00225 02F9 DE 26 LDX IMPT2
00226 02FB D0 33 SUB B TIMRG IN'=IM-TI
00227 02FD E7 00 STR B 8,X
00228 02FF 96 29 LDR R SINPT+1 INCREMENT ANGLE
00229 0301 9B 2E RDD R DELTA
00230 0303 97 29 STA A SINPT+1
00231 0305 7C 0021 INC RLPT1+1 INCREMENT POINTERS
00232 0308 7C 0025 INC IMPT1+1
00233 030B 33 PUL B GET PAIR COUNTER
00234 030C 5A DEC B DECREMENT
00235 030D 26 93 BNE NCI DO NEXT PAIR
00236 030F 96 21 LDA A RLPT1+1 GET POINTERS
00237 0311 9B 2D ADD A CELDIS ADD CELL OFFSET
00238 0313 97 21 STA A RLPT1+1
00239 0315 97 25 STA A IMPTi+i
00240 0317 7R 002B DEC CELCT DECR. CELL COUNTER
00241 03ifi 27 03 BEQ NPI NEXT PASS?
00242 031C 7E 029B JMP NCELL NO, DO NEXT CELL
00243 **
00244 ** CHANGE PARAMETERS FOR NEXT PfiSS **
00245 ♦♦
00246 031F 74 002R NPI LSR CELNUM HALF AS MANY CELLS
00247 0322 27 0C BEQ DONE NO MORE CELLS
00248 0324 78 002C ASL PAIRNM TWICE AS MRNV PAIRS
00249 0327 78 002D ASL CELDIS TWICE AS FAR APART
00250 032R 74 002E LSR DELTA HALF THE ANGLE
00251 032D 7E 0286 JMP NPASS DO NEXT PASS
00252 ********************************
00253 ** END OF FFT ROUTINE **
00254 ********************************
00255 **
00256 0330 39 DONE RTS EXIT FFT SUBROUTINE
00257 8331 0002 RMB 2 ROOM FOR JUMP EXIT
00258 **
00259 *****************************
00260 *♦ OVER-RRNGE DATR SCALE *♦
00261 *****************************
80262 0333 FE 0204 SCALE LDX REAL SET UP DATA POINTER
00263 0336 5F CLR B SET UP PAIR CTR
00264 0337 37 SCL1 PSH B SAVE PAIR CTR.
00265 0338 C6 02 LDA B «2 SET UP PAIR
00266 033R R6 00 SCL2 LDA R 0, X GET DATH
00267 033C 08 INX BUMP POINTER
00268 033D 81 C0 CMP R #$C8 TEST LOWER LIMIT
00269 033F 22 04 BHI SCL3 SKIP TO NEXT POINT
00278 0341 81 40 CMP R #$48 TEST UPPER LIMIT
00271 0343 24 08 BCC SCL4 SCALE IF OUT OF RANGE
00272 0345 5R SCL3 DEC B TEST NEXT POINT
00273 0346 26 F2 BNE SCL2
00274 0348 33 PUL B
00275 8349 5R DEC B
00276 034R 26 EB BNE SCL1
00277 034C 39 RTS DONE TESTING
00278 034D 33 SCL4 PUL B RESTORE STACK
00279 034E 7C 002F INC SCLFCT BUMP SCALE FACTOR COUNT
00288 0351 FE 0284 LDX REfiL SET UP TABLE PTR.
80281 0354 5F CLR B SET UP PAIR CTR
00282 0355 37 SCL5 PSH B SAVE IT
00283 0356 C6 02 LDR B «2 SET UP PAIR
00284 0358 R6 08 SCL6 LDR R 8, X GET DATA
88285 835R 8B 88 ADD A #$88 MAKE IT ABSOLUTE
88286 835C 44 LSR A DIVIDE IT BV 2
88287 835D 88 48 SUB A #$40 MAKE IT 2'S COMP.
88288 835F R7 88 STA A 8,X
88289 8361 88 INX BUMP POINTER
88298 8362 5R DEC B NEXT POINT
86291 8363 26 F3 BNE SCL6
88292 6365 33 PUL B
68293 8366 5R DEC B NEXT PAIR
88294 8367 26 EC BNE SCL5
88295 8369 39 RTS RETURN

112

00296 4t9|cH'9MC9|C>(C>|C>|C9|C9|CHC)|C>|C>(C9|t*>|cHc4'9ftj|t4tj)C9|CjMc>|C9|C)|Cj|Ci|C
00297 ** 2'S5 COMP. MULTIPLY SUBR. ♦*
00298
00299 036A 97 37 MPY STA A MPA+1 STORE MULTIPLIER
00300 036C D7 39 STA B MPA+3 AND MULTIPLICAND
00301 036E 4F CLR A
00302 036F 97 36 STA A MPA CLEAR MSB' S
00303 0371 97 38 STA A MPA+2
00304 0373 97 34 STA A MSBY CLEAR PRODUCT
00305 0375 97 35 STA A LSBY
00306 0377 5D TST B
00307 0378 2C 03 BGE MPY1 NEGATIVE MULTIPLICAND ?
00308 0378 73 0038 COM MPA+2 EXTEND NEGi TO MSB
00309 037D 7D 0037 MPY1 TST MPA+1
00310 0380 2C 03 BGE MPY2 NEG MULTIPLIER ?
00311 0382 73 0036 COM MPA EXTEND NEGi TO MSB
00312 0385 C6 0F MPY2 LDA B #15 SET UP COUNTER
00313 0387 77 0036 MPY3 ASR MPA SHIFT X RIGHT
00314 038A 76 0037 ROR MPA+1
00315 038D 24 0C BCC MPY4 BIT WAS ZERO
00316 038F 96 39 LDA A MPA+3 ADD Y TO PRODUCT
00317 0391 9B 35 ADD A LSBY
00318 0393 97 35 STA A LSBY
00319 0395 96 38 LDA A MPA+2 MSB'S
00320 0397 99 34 ADC A MSBY
00321 0399 97 34 STA A MSBY
00322 039B 78 0039 MPY4 ASL MPA+3 SHIFT Y LEFT
00323 039E 79 0038 ROL MPA+2
00324 03R1 5R DEC B
00325 03R2
00326

26 E3
**

BNE MPY3

00327 ** SCALE IT UP **
00328
00329 03R4 96 34

**
LDA A MSBY

00330 03R6 79 0035 ROL LSBY
00331 03R9
00332

49
**

ROL A

00333 ** RETURN WITH PRODUCT IN A
00334
00335 03AA 39

**
RTS

00336
00337 ** END OF FFT PROGRAM **
00338
00339 END

INPUT 0800 REALT 0500 IMAGT 0600 SI NET 0400
RLPT1 0020 RLPT2 0022 IMPT1 0024 IMPT2 0026
SINPT 0028 CELNUM 002A CELCT 002B PAIRNM 002C
CELDIS 002D DELTA 002E SCLFCT 002F COSA 0030
SINA 0031 TREAL 0032 TIMAG 0033 MSBY 0034
LSBY 0035 MPA 0036 INPD 0202 REAL 0204
I MAG 0206 SINE 0208 START 020A CLEAR 020D
CLR1 0211 MOVE 0217 MOV1 0221 BITREV 0238
BRV1 023C SWAP 0249 SWP1 0257 PASSI 025C
PR1 0264 FPASS 027A NPASS 0286 NCELL 029B
NCI 02R2 NP1 031F DONE 0330 SCALE 0333
SCL1 0337 SCL2 033A SCL3 0345 SCL4 034D
SCL5 0355 SCL6 0358 MPY 036A MPY1 037D
MPY2 0385 MPV3 0387 MPY4 039B

TOTAL ERRORS 00000

113

Listing 2: The object code listing in hexadecimal format of the assembly
language program given is listing 1. This listing can be used to manually
enter the program or as a confirmation copy for the PAPERBYTEtm bar
code representation given in figure 2. The format used for this listing is
a 2 byte address field, followed by up to 16 bytes of data, with a 1 byte
check digit at the end of each Une. Note that the data in hexadecimal
locations 0400 to 04FF constitute the sine and cosine lookup table which
must be loaded with the transform subroutine.

0200 20 08 08 00 05 00 06 00 04 00 7F 00 2F FE 02 06 F3
0210 5F 6F 00 08 5A 26 FA FE 02 02 DF 20 FE 02 04 DF 34
0220 22 DE 20 A6 00 08 DF 20 DE 22 A7 00 7C 00 23 26 39
0230 F0 FE 02 04 DF 20 DF 22 C6 08 96 21 46 79 00 23 5B
0240 5A 26 F9 96 23 91 21 25 OE DE 20 A6 00 DE 22 E6 Al
0250 00 A7 00 DE 20 E7 00 7C 00 21 26 DC BD 03 33 FE 1C
0260 02 04 DF 20 DE 20 A6 00 E6 01 36 IB A7 00 32 10 CA
0270 A7 01 7C 00 21 7C 00 21 26 EA 86 40 97 2A 97 2E 3E
0280 86 02 97 2C 97 2D BD 03 33 96 2A 97 2B FE 02 04 88
0290 DF 20 DF 22 FE 02 06 DF 24 DF 26 FE 02 08 DF 28 ID
02A0 D6 2C 96 21 9B 2D 97 23 97 27 37 DE 28 A6 00 97 73
02B0 30 A6 40 97 31 DE 22 A6 00 36 D6 30 BD 03 6A 97 81
02C0 32 32 D6 31 BD 03 6A 97 33 DE 26 A6 00 36 D6 31 46
02D0 BD 03 6A 9B 32 97 32 32 D6 30 BD 03 6A 90 33 97 7C
02E0 33 DE 20 A6 00 16 9B 32 A7 00 DE 22 DO 32 E7 00 4A
02F0 DE 24 A6 00 16 9B 33 A7 00 DE 26 DO 33 E7 00 96 B7
0300 29 9B 2E 97 29 7C 00 21 7C 00 25 33 5A 26 93 96 CC
0310 21 9B 2D 97 21 97 25 7A 00 2B 27 03 7E 02 9B 74 BB
0320 00 2A 27 OC 78 00 2C 78 00 2D 74 00 2E 7E 02 86 4E
0330 39 00 00 FE 02 04 5F 37 C6 02 A6 00 08 81 CO 22 AC
0340 04 81 40 24 08 5A 26 F2 33 5A 26 EB 39 33 7C 00 E9
0350 2F FE 02 04 5F 37 C6 02 A6 00 8B 80 44 80 40 A7 ED
03 60 00 08 5A 26 F3 33 5A 26 EC 39 97 37 D7 39 4F 97 17
0370 36 97 38 97 34 97 35 5D 2C 03 73 00 38 7D 00 37 87
0380 2C 03 73 00 36 C6 OF 'll 00 36 76 00 37 24 OC 96 CD
0390 39 9B 35 97 35 96 38 99 34 97 34 78 00 39 79 00 65
03A0 38 5A 26 E3 96 34 79 00 35 49 39 95

SINE TABLE

0400 7F 7F 7F 7F 7F 7F 7E 7E 7D 7D 7C 7B 7A 79 78 77 C9
0410 76 75 73 72 71 6F 6D 6C 6A 68 66 65 63 61 5E 5C A4
0420 5A 58 56 53 51 4E 4C 49 47 44 41 3F 3C 39 36 33 78
0430 31 2E 2B 28 25 22 IF 1C 19 16 12 OF OC 09 06 03 A2
0440 00 FD FA F7 F4 Fl EE EA E7 E4 El DE DB D8 D5 D2 8F
0450 CF CD CA C7 C4 Cl BF BC B9 B7 B4 B2 AF AD AA A8 Bl
0460 A6 A4 A2 9F 9D 9B 9A 98 96 94 93 91 8F 8E 8D 8B 78
0470 8A 89 88 87 86 85 84 83 83 82 82 81 81 81 81 81 40
0480 8 1 8 1 81 81 81 81 82 82 83 83 84 85 86 87 88 89 37
0490 8A 8B 8D 8E 8F 91 93 94 96 98 9A 9B 9D 9F A2 A4 5C
04A0 A6 A8 AA AD AF B2 B4 B7 B9 BC BF Cl C4 C7 CA CD 88
04B0 CF D2 D5 D8 DB DE El E4 E7 EA EE Fl F4 F7 FA FD 5E
04C0 00 03 06 09 OC OF 12 16 19 1C IF 22 25 28 2B 2E 71
04D0 3 1 33 36 39 3C 3F 41 44 47 49 4C 4E 51 53 56 58 4F
04E0 5A 5C 5E 61 63 65 66 68 6A 6C 6D 6F 71 72 73 75 88
04F0 76 77 78 79 7A 7B 7C 7D 7D 7E 7E 7F 7F 7F 7F 7F CO

114

00
00000000001 1 1 1 1 1 1 1 1 122222222223333333333
0123456789012345678901234567890123456789

000000000000000
222222222223333
0 134679ACDF0235
0A2B3C4B3B3B3C4

000000000000000
333444444444444
6890124578ABDEF
C4C06E6C3C4A2AF

Figure 2: Paperbyte™ bar
code version ofiisting 2.

000000000000000000000000000000000
0000000000 1 1 1 1 1 1 1 1 1 12222222222333
012345678901234567890123456789012

0 0 0 0 0 0 0
3 3 3 3 3 3 3
3 4 5 6 7 8 9

115

Photo 1: The author’s
polyphonic music key
board system, which allows
more than one note to be
played simultaneously. The
scanning keyboard inter
face is just behind the 61
note manual In the fore
ground. The stand alone
ASCH keyboard in front
is dedicated to music re
lated tasks, and allows two
easily distinguished levels
of system control.

Polyphony Made Easy
Steven K Roberts

It was not long after the successful im
plementation of a hardware chromatic tone
and envelope generator for my system that
I began to wish for a method of playing
music that would be somewhat less cumber
some than tune encoding with the ASCII
keyboard. The ability to store a melody by
defining all the notes and then allowing the
computer to perform it was worthwhile, but
without some technique for spontaneous
interaction the system could hardly be called
an instrument. A music keyboard was clearly
called for.

I obtained a 61 note (5 octave) organ
manual from the Kimball Organ Company
for about $75, and considered the interface
task in depth. Among the primary perfor
mance specifications for the design were:

• Polyphonic capability (not limited
to single notes)

• Undiscernible response delay
• Very low processor overhead

The last of these requirements precluded the

use of a software scan, which would have
reduced hardware to its simplest form, and
the need for polyphony called for either a
bit map interface or a multiplexer with its
own memory. To simplify the software as
much as possible, the latter approach was
selected.

A note should be inserted here about the
touchy subject of software simplification.
An argument frequently heard in the world
of the microprocessor is that everything
should be done with the program. If the
processor in question is a dedicated con
troller, then by all means all the work that
can be reasonably handled by the program
should be so assigned. However if the proces
sor is at a higher level of system abstraction,
it may be more efficient to delegate certain
repetitive tasks either to hardware or to
another microcomputer. There is no con
venient generalization defining the tradeoff,
but in cases where software complexity gets
out of hand due to the presence of a fairly
mundane but demanding task, some paral
lelism is usually called for. In the specific

117

Fi
gu

re
 1:

 P
ol

yp
ho

ni
c k

ey
bo

ar
d

in
te

rfa
ce

 de
si

gn
. M

ul
tip

le
xe

r a
rra

y a
t t

op
 is

 sc
an

ne
d

by
 co

un
te

rs
 u

nt
il a

 d
iff

er
en

ce
 is

 d
et

ec
te

d
be

tw
ee

n
th

e
Ta

bl
e

1:
 P

ow
er

 w
iri

ng
 ta

bl
e address

ed
 k

ey
 a

nd
 th

e
co

rre
sp

on
di

ng
 b

it
in

 m
em

or
y.

 Th
e

sc
an

 is
 s

to
pp

ed
 a

nd
 th

e
ke

y
ad

dr
es

s
an

d
di

re
ct

io
n

ar
e

re
ad

 b
y

th
e

pr
oc

es
so

r,
ai

io
w

-
fo

r f
ig

ur
e

1.

in
g

th
e

sc
an

 to
 c

on
tin

ue
.

118

case of the music system, keyboard scanning
and envelope generation can impose such a
burden that the ability to simultaneously do
complex real time data manipulation is lost.

Thus, optimization of the keyboard inter
face design was undertaken with the system
considerations given uppermost priority, and
the result is shown in figure 1. The 61 key
switches of the manual are scanned com
pletely every 5 ms, and with each step of the
scan the position of the presently addressed
key is compared with its last known posi
tion, which is stored in a 256 by 1 memory
segment. If there is no difference, the scan
proceeds, but if the key has changed state,
the processor is interrupted with the binary
value of the key in question along with a
direction bit, and the corresponding memory
location is changed to reflect the new status
of the keyboard. The scan is suspended until
the information is accepted by the computer.
In this fashion, any combination of simul
taneous key depressions and releases, at any
practical speed, will result in a series of
asynchronous “change of state” notices to
the processor, which remains ignorant of
interface function at all other times. The
software maintains a list of keys currently
depressed, and deals with them appro
priately.

Action of the scanning interface is syn
chronized with the host computer by means
of a simple handshaking scheme: when a
change of state is detected, the data available
signal appears (this may be treated as an
interrupt or polled periodically, depending
upon available time). It is then the proces
sor’s job to read the input port upon which
the 6 bit key code and the direction bit
appear, whereupon the acknowledge signal
is created by the port strobe, allowing the
scan to continue. It is important to note that
the scan stops whenever a change is en
countered (awaiting processor intervention)
because ultimate keyboard servicing time is
then largely a function of the support soft
ware. In the unlikely event that a user of
this system chooses to implement such real
time functions in BASIC, it will be found
that a forearm laid in jest upon the key
board results in a sweep up the musical
scale lasting on the order of a second. In a
more realistic situation (assembler level
coding) the delay is unnoticeable.

Construction, of course, should follow
the usual procedures required of random
logic interfacing. Cables between the board
and the processor should be kept short, with
intervening grounds between the handshake
lines. The keyboard shown in photo 1 con
sists of simple normally-open contacts; their
noise is filtered by the resistor-capacitor (RC)
networks shown in the schematic. Any re
maining bounce may be trimmed out by

Photo 2: Keyboard interface hardware. The circuit fits perfectly onto a Rob
inson-Nugent 30 socket wirewrap panel. It could just as easily be Imple
mented on an S-100 card if there is no objection to the wire bundle. Any
combination of simultaneous key depressions and releases on the musical
keyboards, at any practical speed, will result in a series of asynchronous
"change of state" notices to the processor, which remains ignorant of inter
face function at all other times. The software maintains a list of keys current
ly depressed and deals with them appropriately. A simple handshaking
scheme makes the interface synchronous with the host computer.

Photo 3: Underside of organ manual. The resistor-capacitor networks shown
are used with each key for noise reduction. The wire bundle exiting at the
bottom terminates in the interface’s edge connector.

119

adjusting the clock rate, which is nominally
12.5 kHz. There is one light emitting diode
(LED) on the board to provide a visual
check of operation: “Key In Progress” is
lit between the data available signal and the
acknowledgment signal.

The circuit concept is directly expandable
to accommodate many more inputs, with
the memory and counter capable of address
ing up to 256 points. This interface concept
would be quite at home in many industrial
control environments, as well as anywhere
a large number of contact closures must be
observed.

In the music system shown in photo 1,
the keyboard interface has provided the
much needed flexibility in the interactive
utilization of the instrument. The “feel”
is not unlike that of a standard electronic
organ, and with the available processing
horsepower taken into consideration, the
unit is a composer’s delight. From teaching
applications (where the human must cor
rectly repeat “by ear” a computer generated
phrase) to the support of creative effort, an
efficiently integrated polyphonic keyboard
is an essential link between artist and com
puter. ■

120

Music from the Altair
8800 Computer

Loring C White

Those of you who would like to make
music with computers can easily do so with
an Altair 8800 (or other S-100 based sys
tem). The MITS 88-ACR audio cassette
interface board may be used to send musical
signals to an audio amplifier or speaker.
The method described here employs a flip
flop which is normally intended for use by
the interrupt function of the 88-SIO B board.

The output of this device varies from
+5 V to 0 V, providing a square wave which
is under the control of software. The num
ber of times per second this occurs deter
mines the fundamental pitch of the output
tone. The duration of the event determines
the sustain time. Thus, by connecting an
amplifier and speaker (or just a speaker)
between the output and ground, the Altair
8800 becomes a musical instrument of
sorts.

Hardware

These instructions assume that we are
using the 88-SIO B board which has been
set up for ports 5 and 6 as recommended
by MITS. The device which is central to
our plan is the input-output (IO) inter
rupt flip flop. This logical entity is actually
composed of two sections of a 74L00
integrated circuit (a quad NAND gate)
which is referred to as integrated circuit B.
The output of each section is fed back to
the other section as an input, forming a
simple set-clear flip flop. These two sections
(of the four on the device) are taken to
gether and called side a.

The flip flop is adapted for our purposes
by the following procedure (see figure 1):

• Connect a jumper wire between one
output of the flip flop and pin 4 of
integrated circuit U (an 8T97 device

which is used to buffer the serial
data line). Output may come from
pin 2 or pin 6 of the 74L00, as
these pins are connected together.

• Connect one side of the speaker or
amplifier input to pin 5 of integrated
circuit U. The other amplifier con
nection should be made to the +5 V
bus through a 0.1 to 0.5 pF capaci
tor (16 V or better).

The other half (side b) of integrated cir
cuit B could be used for another control
function in the same manner. Integrated
circuit U has three other spare drivers that
could be used for additional buffering. We
ran the output connections to a pair of the
unused pins on the IO connector at the back
of the computer.

We decided to mount the capacitor inside
the computer, so that if the +5 V supply was
accidently shorted from outside, the capaci
tor would prevent the power supply from
burning out. The capacitor thus blocks DC,
but passes the audio frequencies quite read
ily because of its low reactance at these fre
quencies. The capacitor also has the effect
of causing the plateau of the square wave to
slope down somewhat.

It is at this point in the circuit that the
square wave may be processed if you wish
to change the tonal character of the music
coming from the computer. For the sake of
simplicity and elegance we elected not to do
this.

Software

The software for producing music by this
method is written in MITS (Microsoft) 8K
BASIC, version 3.2. About 2.5 K bytes of
memory are required beyond the space used
for the BASIC interpreter. The program uses

121

Figure 1: Detail of the
schematic for the MiTS
88-SiO B circuit board,
showing the modifications
necessary for producing
music by the method
described in the article
text. Both sides of the
output taken from the
interrupt flip flop should
float above electrical
ground. The user should,
however, be careful to
avoid shock hazard.

Is |4
u

8T97

ADDITIONAL
CONNECTION

„__ ADDITIONAL
CONNECTION

SPEAKER
(OR AMPLIFIER INPUT)

+ 5VDC

a machine language routine stored above
BASIC at decimal address 11601 (hexadeci
mal 2D51). The routine takes only about
30 bytes of memory, which are set aside
during the initializing of BASIC.

During the procedure of loading BASIC,
you should answer the question “Memory
Size” with the number 11600. That is all
that has to be done if you have BASIC ver
sion 3.2, that has the address of “userloc”
(user defined function pointer location) at
decimal addresses 73 and 74 (hexadecimal
49 and 4A).

If you have another version of MITS
BASIC that has the user location pointer
stored at an address other than that given,
you should enter the new location in the
first step of the BASIC program, in line 10.

The program writes the machine language
routine into upper memory. This is called
from the BASIC program by executing the
user defined function in the statement
X = USR(Y). The program also writes zeroes
into all unused locations so that changes in
the program may be made easily, without
fear of gathering unwanted bugs.

The 8080 processor instructions which
are loaded by the BASIC program lines 100
and 180 perform the actual setting and clear
ing of the interrupt flip flop. The machine
code is used for greatest possible speed of

execution. When I first developed the pro
gram, I attempted to do this in BASIC using
the usual INP and OUT statements, but
found that the audio frequencies obtained
were much too low.

You will note that the delay loop timing
between the ON (set) and OFF (clear) func
tions is controlled by “poking” the desired
number (P) into the 8080 code routine at
BASIC lines 610 and 620. This parameter
controls the pitch of each note. The dura
tion of time that the ON and OFF function
is on (Y) is also controlled by a delay loop
which is executed between the OFF and
return (to BASIC) instructions.

Running The Music Program

When starting the program, you make a
choice between a pseudo-random “tune”
and a stored composition derived from the
data given in the DATA statements, lines
650 on.

The random tune derives tone frequencies
(pitch) and durations from the instructions
at lines 570 and 580 which use the RND
function to select numbers for poking pitch
and duration into the instructions at lines
590 thru 620. If you allow the program to
run in this mode long enough, I suppose that
you will eventually hear Beethoven’s Fifth
Symphony. This is a musical application of
the British Museum Algorithm (monkeys
pounding typewriters randomly to eventu
ally produce all the books in the museum).
We assume that the computer will last that
long.

In the stored composition mode, which is
started by typing an “S” in response to the
input question, the pitch, duration and also
rests are derived from the BASIC DATA
statements, lines 650 on. Each number and
letter combination represents one note of
the song. The number is the relative note
duration, and the letter is the note pitch in
the same sense that it is in regular music. A
sharp is also the same symbol, #, as used in
standard music notation. No flats were pro
grammed because they were considered
redundant.

So, the symbols “2C” and “4C” represent
two notes, identical in pitch, but with the
second note having twice the duration of the
first. “2R” and “4R" would be two rests of
different durations. An exclamation mark is
placed at the end of the note specification
symbol to transpose up one octave.

Although no effort was made to tune the
frequency of A to 440 Hz, I am sure this
could be done with some simple numerial
manipulation. There was originally some
interaction of the note timing and pitch.
This was compensated for in the BASIC
instructions at lines 559 through 561.

122

A musical composition may be entered
into the program by simply reading the
notes from any piece of sheet music, deter
mining the proper symbols, and writing
these into the DATA statements. I have

provided a familiar melody in the DATA
statements in listing 1, but you will have to
run the program to find out what it is. I
was thinking of renaming it the Altair
POKEr (Polka). ■

Listing 1: Program to produce computer music from the MiTS 88-ACR audio
cassette interface board, written in MiTS (Microsoft) 8 K BASIC. The POKE
statements from Une 10 to Une 320 set up the machine language subroutine
which toggles the interrupt flip flop on the 88-SIO B board. The POKE state
ments at Unes 590 thru 620, and at Unes 690 thru 720, pass parameters to
this subroutine.

10 POKE 73,81:P0KE 74,45
20 F0RN=l1601T012128
30 POKE N,0
40 NEXT
50 POKE 1(605/17
60 »OKE 11610/62
70 POKE 11611/1
80 POKE 11612/211
90 POKE 1 1613/6
100 POKE 11618/1
110 POKE 1 1621/ 13
120 POKE 1 1622/ 121
130 POKE 1 1623/ 167
140 POKE 11624/194
150 POKE 11625/101
160 POKE 1 1626/45
170 POKE 1 1700/62
180 POKE 11701/0
190 POKE 11702/211
200 POKE 11703/6
210 POKE 11704/27
220 POKE 11705/123
230 POKE 11706/167
240 POKE 11707/194
250 POKE 1 1708/89
260 POKE 11709/45
270 POKE 11710/122
280 POKE 1 1711/167
290 POKE 11712/194
300 POKE 11713/89
310 POKE 11714/45
320 POKE 11715/201
330 INPUT"TYPE *R* FOR RANDOM MUSICJ ’S* FOR SONGM;JS
340 IFJS«"RMTHEN570
350 RESTORE
360 F0RN-0T0200
370 READ DS
380 XF D$ •”SS’,THEN330
390 YS«LEFTSCDS/1)
395 RS«MIDS(DS/2/3>
400 PS«RXGHTS(DS/1)
401 QS-MIDSCDS/2/2)
402 IF0S«"C#"THENP»36
403 IF0S«”D#"THENP«31
404 IFQS»"E*"THENP»27
405 IF0S«"Gf"THENP«20
406 XFQS«MA#”THENP«I 6
407 IFQS«"B*"THENP-13
408 IFQS-"Ff"THENP«24
410 IFPS«”C”THENP»39
420 XFPS-MD"THENP«34
430 IFPS-"E”THENP«29
440 IFPS«”F”THENP»27
450 IFPS«”G’*THENP«22
460 IFPS-"A"THENP-18
470 XFPS«"B"THENP«14
475 IFYS»”1"THENY«1
460 IFYS»"2"THENY»2
490 IFYS»”3*‘THENY»3
500 XFYS«"4"THENY«4
501 IFRS*”D#1”THEWP»INT(12/45*30)
502 IFRS«MEf!MTHENP-1NTC12/45*27)
503 IFRS»"G/!MTHENP«INT(12/45*20)
504 IFRS»”A/lMTHENP«INT<12/45*16)
505 IF RS>”B*l”THENP»XNTC12/45*13)
510 IFYS-"5”THENY«5
520 IFYS»°6”THENY»6
530 XFYS«"7”THENY*7
540 IFYS«”8”THENY«8
550 IFQS«MCI”THENP-INT<12/39*39)
551 XFQS-"D!"THENP»1NTC12/42*33)

123

552 IFO»-"E!"THENP-INT<12/43*28)
553 IFOS*"FI"THENP-INT<12/45*26)
554 IFQS*”GI"THENP*INT<12/45*22)
555 IFQ»*”AI"THENP-INT<12/45*18)
556 IF01*"B!"THENP-INT<12/45*14)
557 IFRS-"C4!”THENP*INT<12/45*36)
558 IFR»*"F#l"THENP*INT<12/45*24)
559 IFPS-"B"THENY-2*Y
560 IFP»-"l"THENY-2*Y
561 1FP»*”A"THENY*IMT<1.5*Y)
562 IFPS-"R”THENY>YlF0RE*lT8Y«50lNEXTtG8T8370
569 G0T9690
570 Y*INT<<8-2>*RND<1)+2>
580 P*INT((39-12)*RND(1)+12)
590 P8KE I1606.Y
600 P8KE 1 1607»Y
610 P8KE 11619,P
620 P8KE 11620,P
630 X*USR(Y)
640 G0T9570
650 DATA 3D,2Cf,lE,3D
651 DATA 3B,3A,2G4,1A,4E,2R
652 DATA 3F4»2F,1F4,3B
653 DATA 3A,1FF,3E,3DF,5D,1R
654 DATA 3D,2CF,1E,3D
655 DATA 3B,3A,2GF,1A,4E,2R
656 DATA 3G,2FF,1G,3DI
657 DATA 3B,3A,1 E,1Ff,5G
670 DATA S*
680 END
690 POKE 11606/Y
700 POKE 11607/Y
710 POKE I1619»P
720 POKE 11620»P
730 X-USR(Y)
740 NEXT
750 G0T0330

Listing 2: The subroutine which toggles the interrupt flip flop, in assembler
format. The entry point is stored in decimal locations 73 and 74, (hexa
decimal 49 and 4A). Much room is left in the form of NOPs for modification
by the user. The values which appear in the BASIC listing in decimal are here
translated Into hexadecimal.

2051 00 USR NOP ROUTINE TO TURN FLIP FLOP
2052 00 NOP ON AND OFF
2053 00 NOP CALLED BY USR(X)
2054 00 NOP FROM BASIC PROGRAM
2055 11 LXI D
2056 00 Y :00 BASIC PROGRAM POKES VALUE
2057 00 :00 OF Y HERE
2058 00 NOP
2059 00 LOOP NOP
2D5A 3E MVI A,:01 TURN FLIP FLOP ON
2D5B 01
2D5C 03 OUT :06
2050 06
2D5E 00 NOP SPACE IS LEFT HERE FOR
2D5F 00 NOP USER MODIFICATION
2060 00 NOP
2061 00 NOP
2062 01 LXI B
2063 00 P :00 BASIC PROGRAM POKES
2D64 00 :00 VALUE OF P HERE
2065 00 SOUND OCR C
2066 79 MOV A,C
2067 A7 ANA A TEST FLAG Z
2068 C2 JNZ SOUND BRANCH IF A=0
2069 65
206A 20
2068 00 NOP LOTS OF ROOM LEFT
2D6C 00 NOP HERE ALSO

ORG :2DB4
2084 3E MVI A,:00 TURN FLIP FLOP OFF
2085 00
2086 03 OUT :06
2087 06
2088 IB DCX D (AND E)
2089 7B MOV A,E
2 DBA A7 ANA A TEST FLAG Z
2DBB C2 JNZ LOOP
2DBC 59
2080 20
2 OBE 7A MOV A,D
2 DBF A7 ANA A TEST
2000 C2 JNZ LOOP
2001 59
2DC2 20
2003 C9 RET GO BACK TO BASIC PROGRAM

END IF ZERO

124

Teach KIM to Sing
Peter H Myers

Consider playing musical compositions on
a KIM-1 MOS Technology microcomputer
module. Although music is one of the most
highly developed languages of man, it is
possible within a few hours for your KIM-1
system to be educated to speak this language
and to create computerized musical sounds.
Furthermore, the total cost for enhancing
your system to express music is minimal. It
is likely that you have everything you need
already.

Music essentially consists of a waveform
expressed repetitively at some frequency and
persisting for a particular time duration. The
acoustical characteristics of an instrument
greatly affect the ear’s perception of the mu
sical composition being played upon it. The
basic waveform is modified by the instru
ment by means of phase shifting, and the
production of various simple and complex
harmonics which may vary greatly in ampli
tude.

Now consider a square wave form, an ex
pression of only two amplitudes. The 18th
century French mathematician, Joseph
Fourier, discovered that the square wave is
actually comprised of odd numbered har
monics of the fundamental frequency plus
the fundamental frequency itself (all ex
pressed as sine waves)

This is the same thing as saying that a
square wave form is harmonically rich. This
is fortunate from the point of view of this
application, because it allows us to use a
very simple program to have a microproces
sor system generate just such a harmonically
rich fundamental wave form to express any
musical note. All that must be known is the
note’s pitch (or frequency) and duration.

Program Description

A program using this technique, written
for the KIM-1 system (which uses the 6502
processor), is shown in listing 1. The duration
of a note and its pitch are stored alternately
in memory. This is all the main program
needs to play a given piece of music. The
duration, when read by the main program
from memory, is always stored in the X
register. The pitch is stored in the Y register.

When the program begins, the location of
the first note’s duration is in hexadecimal
memory byte 0300. The next note’s dura
tion value is always the next even-numbered
memory location (in the latter example, the
next note’s duration would be at 0302). The
values for pitch are stored in the odd-num
bered memory locations, beginning at hexa
decimal byte 0301 (the next note’s pitch
value at 0303, and so on).

The main program starts by initializing
the nonmaskable interrupt (NMI) and inter
rupt request (IRQ) vectors and the input and
output ports, clearing the interrupt mask bit,
and starting the interval timer. The note
duration interrupt system is initialized (more
about this later). After this preparation, the
program proceeds into the note loop.

The note loop starts by reading the pitch
value from memory and loading it into the
Y register. The procedure then subtracts 1
from the Y register. After comparing for de
tection of a zero in the Y register, the loop
jumps back on itself to subtract a 1 again.
Thus, every seven machine cycles a 1 is sub
tracted from the Y register until it becomes
equal to zero.

When the Y register is zero, the test

125

0200 A9 00 LDA ;SAVE MACHINE 023C 4C 23 02 JMP ; RESTART NOTE.

0202 8D FA 17 STA ;ROUTINE LOC 02 3F EE 20 02 INC ; INCREMENT

' 0205 A9 1C LDA ;STORED IN NMI 0242 EE 20 02 INC ;NEXT NOTE

0207 8D FB 17 STA ;VECTOR. 0245 EE 29 02 INC ; PITCH, DURATION

02 0A A9 FF LDA ;PADD BITS 0248 EE 29 02 INC ; POINTERS.

02 0C 8D 01 17 STA ;INST TO "WRITE". 024B EA NOP ; SPACER.

020F A9 7F LDA ;PBDD BIT 7 024C A9 65 LDA ;CHANGE

0211 8D 03 17 STA ;INST INP IRQ. 024E 8D FE 17 STA ;IRQ VECTOR

0214 A9 5F LDA ;INTERRUPT 0251 A9 02 LDA ;TO NEW

0216 8D FE 17 STA ;VECTOR, IRQ, 0253 8D FF 17 STA ; SERVICE ROUTINE.

0219 A9 02 LDA ;SERVICE ROUTINE 0256 A9 FF LDA ; START TIMER

021B 8D FF 17 STA ;LOC. 0258 8D 0E 17 STA ;T / 64 / 256.

021E 58 CLI ;ALLOW IRQ. 025B 58 CLI ;ALLOW IRQ.

02 IF AD 00 03 LDA ;LOAD DURATION 025C 4C 5B 02 JMP ;DO NOTHING LOOP.

0222 AA TAX ;IN X REGISTER. 02 5F 8D 07 17 STA ;SHUT OFF IRQ.

0223 A9 FF LDA ;START TIMER 0262 4C 38 02 JMP ; SERVICE ROUTINE LÒC

0225 8D 0E 17 STA ;T / 64 / 256. 0265 8D 07 17 STA ;SHUT OFF IRQ.

0228 AD 01 03 LDA ;LOAD PITCH 0268 4C 14 02 JMP ; RESTART PROG.

022B A8 TAY ;IN Y REGISTER. 026B A9 00 LDA ; START PROGRAM

022C 88 DEY ;N0TE TIMER 026D 8D 20 02 STA ;RUN HERE

022D F0 03 BEQ ;LOOP 7 0270 A9 03 LDA ;TO RESET

022F 4C 2C 02 JMP ;MACHINE CYCLES. 0272 8D 21 02 STA ;MEMORY READ

0232 EE 00 17 INC ;TOGGLE OUTPUT. 0275 A9 01 LDA ; LOCATIONS

0235 4C 28 02 JMP ;RESTORE LOOP. 0277 8D 29 02 STA ;BACK TO

0238 CA DEX ;COUNTDOWN 027A A9 03 LDA ,-0300-0301

0239 F0 04 BEQ ;DURATION. 027C 8D 2A 02 STA ;AND BEGIN

023B 58 CLI ;ALLOW IRQ. 027F 4C 00 02 JMP ;MUSIC.

Listing 1. Music playing program for the MOS Technology KiM-1 system,
which uses the 6502 processor. The program assumes that data for a particu
lar musical composition has been stored in memory beginning at hexadecimal
location 0300.

causes the program to jump out of the loop.
Output port pin PA 0 is toggled to change
the square wave amplitude of the tone. The
program then jumps back to the beginning
of the note loop, reloads the pitch value, and
the process is repeated. This uninterrupted
process produces a square waveform tone
which emerges at PA 0. The pitch value can
be calculated for a given frequency by the
formula in table 1.

The initialization of the note duration
interrupt system proceeded as follows. The
duration value is read from memory and
loaded into the X register. Also, the interval
timer is started and asked to interrupt the
main program after 16,384 machine cycles.

While the note loop is generating notes,
the interval timer is counting down. When the
counter reaches 0, the timer has timed out.
This interrupts the main program by loading

the program counter with the IRQ vector.
The IRQ vector is initialized to direct the
processor to the interrupt service routine.

The interrupt service routine shuts off the
interrupt request flag (IRQ) and subtracts 1
from the duration value in the X register.
The X register is compared for detection of a
zero. If X is not equal to 0, the program
resets the interrupt mask bit so that inter
rupts can occur again. Then the routine re
turns to main program execution, starting
the interval timer and falling into the note
loop.

Each interrupt is serviced in the same way
until the X register becomes equal to 0.
When this occurs, that interrupt will be re
cognized as the end of the note. Instead of
jumping back to the main program after re
setting the mask bit, the interrupt service
routine program continues.

126

The routine proceeds to increment both
the X register loading pointer and the Y re
gister loading pointer by 2. This automatical
ly gets the next pitch and duration value
pair when the main program is run again.

A pause must be inserted at the end of
each note to distinguish the duration. This is
accomplished by changing the IRQ vector to
a different location after an interrupt re
quest.

After this change, the interval timer is
started and the program falls into a “do
nothing” loop. It will stay in this wait state
until an interrupt directs it to a new program
location. A special routine beginning at this
location will service the interrupt by turning
off the IRQ request and jumping back to the
beginning of the main program. The main
program will play the next note for the dura
tion requested.

The main program can play a musical
composition which is 128 notes in length or
less, with the pitch and duration values
stored in one relative memory page. Each
note will be played in the same manner pre
viously described. The program can be re
vised to read note specifications to the end
of memory, thus giving the capability of
playing compositions longer than 128 notes.
This was not done in the original program
because I wanted the program to loop back
and play the composition over and over.

Preparing the Music

A musical score is converted for playing
by the computer in a note-by-note process.
It is begun by reading each note in a melody,
observing the octave it is to be played in,
and then finding the corresponding fre
quency in a table, as may be found in the ap
pendix. The frequency is converted into a
one byte pitch value by using the formula in
table 1 and then calculating the hexadecimal
equivalent.

The duration of the note is calculated as a
function of time in seconds by the formula
in table 2. Construct a table containing this
information for each note in the melodic
line. Using monitor commands, store the
hexadecimal values for the duration and
pitch in sequential memory locations, start
ing at hexadecimal location 0300. The spec
ifications for the second note will start at
0302, the third at 0304, and so on.

Whenever an interval of silence is desired,
whether at the end of the piece, or em
bedded within, store a pitch value of 01
hexadecimal. The duration value becomes
the desired length of the silent period. The
pitch value of 01 produces a note at a fre
quency of slightly over 24 kHz, which is per
ceived by the human ear as silence.

1
P =-----------------------2
n 0.000014 (fn)

fn = frequency in Hz of note
Pn = pitch value of note

Table 1. Formula for calculating the pitch value for a desired note. The
result should be rounded to the nearest whole number, and then must
be converted from decimal notation to hexadecimal for entry into the
computer. The pitch value is the first byte of the note specification
pair.

n 0.016384

tn = time in seconds of note
Dn = duration value of note

Table 2. Formula for calculating the time duration value of a note. The
result must be rounded and converted to hexadecimal. The duration
value is the second of the note specification byte pair.

Table 3. One octave table of prepared pitch values, which begin at G
above middle C. The frequencies given for each note are not quite
standard, but are dose enough for noncriticai applications. Also, the
frequencies will vary within the dock tolerances for different pro
cessors. The user may transpose these pitches down one octave by
changing the output port used from PA 0 to PA 1.

Note Frequency
(Hz)

Pitch Value
Decimal Hexadecimal

G 392.7 180 B4
Gtì, Ah 415.7 170 AA
A , 441.4 160 A0
Aft, Bh 467.4 151 97
b" 490.0 144 90
c 522.1 135 87
cn, oh 554.5 127 7F
D 586.3 120 78
DÜ, Eh 622.1 113 71
E '' 662.3 106 6A
F„ 701.4 100 64
F if, Gh 737.7 95 5F
G 786.3 89 59

Time
(seconds)

Duration value
(hexadecimal)

Table 4. Set of suggested
time duration values for

° Whole note 2.18 85 preparing melodic data
J Half note 1.09 43 from standard musical no
* Quarter note 0.545 20 tation. These yield a tempo

Eighth note 0.2725 10 with about 120 quarter
• Sixteenth note 0.1362 07 notes per minute.

A short hexadecimal conversion table for
one octave beginning at G above middle C
appears in table 3. Table 4 contains a sug
gested set of duration values. The duration
values given are appropriate for a tempo of
about 120 quarter notes per minute, which
usually works out to a moderately fast
march tempo.

127

0300 10 87 10 87 20 87 20 B4

0308 10 6A 10 6A 20 6A 20 87

0310 10 87 10 6A 20 59 20 59

0318 10 64 10 6A 43 78 10 78

0320 10 6A 20 64 20 64 10 6A

0328 10 78 20 6A 20 87 10 87

0330 10 6A 20 78 20 B4 10 8F

0338 10 78 43 87 10 87 10 87

0340 20 87 20 B4 10 6A 10 6A

0348 20 6A 20 87 10 87 10 6A

0350 20 59 20 59 10 64 10 6A

0358 43 78 10 78 10 6A 20 64

0360 20 64 10 6A 10 78 20 6A

0368 20 87 10 87 10 6A 20 78

0370 20 B4 10 8F 10 78 43 87

0378 FF 01 FF 01 01 01 01 01

Listing 2. Melodic data for use by the music playing program. This was pre
pared from a musical score by the procedure given in the text. The tune is the
American traditional song, My Darling Clementine. The pairs of digits repre
sent the contents of one byte of memory. The user should place this data In
programmable memory by monitor commands. The first byte specifies the
time duration of the first note; the second byte specifies the pitch of the first
note. The third byte gives the duration of the second note; the fourth byte,
the second pitch, and so on.

The lowest pitch which may be obtained
using the output port configuration de
scribed is the C sharp just above middle C.
To obtain lower pitches, change the output
port used from PA 0 to PA 1. This causes all
notes to be transposed down one octave.

To prepare the hardware for music mak
ing, you should connect a jumper wire from
the interval timer interrupt output to the
interrupt request (IRQ) pin. Normal output
is taken from PA 0 and referenced to ground.
The interval timer is found at connector A
pin 15, and IRQ at connector E pin 4. The
output PA 0 comes from connector A pin 14.
PA 1 may be found at connector A pin 4.

The audio signal present at the output
port may be monitored using a number of
methods. You can listen to it directly with
high impedance earphones. One of the best
ways is to connect the output into the auxili
ary input jack of a tape recorder and use the
tape monitor audio amplifier for output.

Also, since the output voltage is 1.4 V peak-
to-peak, it is quite easy to use a stereo am
plifier’s high level input jack and play it
through a stereo system.

Editor's note: When playing the output
of the KiM-1 system through a high fidelity
music system, the user should take care not
to overtax the speaker systems by playing at
high volume. The complex waveforms gen
erated by the computer contain much more
energy at high frequencies (above 10,000
Hz) than is contained by conventional music.
As a consequence, the tweeter sections of
speaker systems may bum out if they are
made to reproduce these waveforms at high
volumes.... RSS

It is interesting to note that the har
monics of the tones are so rich that an FM
radio, when held close by the KIM-1 board,
will play the tones as audio because it re
ceives them as radio frequencies. This is,
however, not the ideal system for monitor
ing the tones, mainly because non-musical
harmonics often become louder than the
desired musical notes.

For a demonstration piece I have selected
an old time favorite tune. The note specifica
tions of the melody are given as listing 2,
and should be programmed into memory as
listed.

Provided you have made the hardware
changes needed, have a working audio moni
tor, and have entered listings 1 and 2 into
memory properly, you are ready for the
KIM to play its first musical piece. Start the
execution of the program at hexadecimal
memory location 026B. Reset the system by
depressing the RS key, and then depressing
GO.

The program will repeat the tune indefi
nitely, but may be stopped by depressing the
ST key. Always start the program at location
026B. This will initialize the X and Y register
pointers for starting at the beginning of the
composition. After this subroutine has fin
ished, control is transferred to the main pro
gram.

So it can be done. Music is being played
on your KIM-1 system with a minimum of
hardware. This system is now expressing a
high level language that can be interpreted
by all.

May you enjoy many hours of music
lessons with KIM. ■

128

A Terrain Reader

Richard Gold

Introduction

The program described here was written
for use in a piece of musical theater called
“Fictional Travels in a Mythical Land”,
which was performed at the Center for Con
temporary Music of Mills College, at Oak
land CA in December 1977. While the
sounds that the program generated did not
sound like traditional music, they worked
well within the production for two reasons:
they provided an interesting sonic backdrop
during a long scene where a mime performed,
and secondly, the method by which the pro
gram generated the sounds was conceptually
related to what was transpiring on stage. Be
fore I talk about the program itself, which
was written for the KIM-1 (a 6502 micro
processor based computer), I am going to
discuss “new” or avante-garde music itself
and talk about some of the issues that are
involved in this art form.

A Brief History of New Music

In the early part of the 20th century,
composers such as Shonberg, Webern and
Berg began working with serial or twelve
tone music. Their compositions used the
principle that no note could be played a
second time before the other eleven notes
of the scale were sounded. Once the original
sequential order of the notes was given, that
order would be maintained throughout the
piece. This sequence came to be known as
the tone row. The twelve-tone row is not a
theme, per se, but rather a musical “idea”
that permeates the composition. The music
produced in this way sounded rather dry.
However, the aspect relevant here was the
introduction of a new way of thinking about
music, a way that leads directly to much of
the computer music produced today.

Twelve-tone composers began to think of
sound in terms of numeric parameters. The
serial techniques relied on reducing pitches
to a series of numbers. It was not a great
leap to the representation of durations,
timbres and dynamics in the same manner.

Sound, which had been thought of as a
unified harmonic structure, was broken
down into a collection of component parts.
Composers began to study textbooks on cal
culation and derivation instead of harmony
and counterpoint.

It was this fascination with mathematical
processes for composing pieces of music, in
stead of using themes, melodies and motives,
that formed the seed of a second powerful
idea: music could be a realization of a con
cept or idea, and that concept could be as
important as the sounds produced. The inter
play between the concept and the sonic
reality provides the excitement and fun of
such compositions.

Composer John Cage brought conceptual
or new music to wide attention. He per
formed or realized pieces based on random
throws of dice, choices from the / Ching,
overlays of transparent sheets, and the
sounds produced by phono cartridges
scraping over everything but records. John
Cage said that he “liberated sound”, by
which he meant that any sound could be
used in a piece of music, not just sounds that
came from traditional instruments and not
just pretty sounds. The artistic criterion is
that the sounds must be true to the compo
ser’s conception of the piece.

The parameterization of sound, “concept”
music, and the liberation of sound were all
involved in the development and use of the
analog modular voltage-controlled synthe
sizer, a remarkable device in which these
three ideas were combined. The synthesizer
parameterized sound; the pitch was gener-

129

Figure 1: Diagram showing map of a possible terrain and the path of a
traveler across it. The topography of the terrain is indicated in the map
by contour Unes. Below the map is a graph showing the changes in the
altitude of the traveler as it moves in two dimensions across the surface.

ated by the oscillator, the dynamic volume
was produced by the amplifier, and the
timbre was formed by ring modulators
and filters. Furthermore, each of these func
tions was controlled by an array of devices
such as sequencers, random voltage gener
ators, pulse generators, envelope generators,
and touch pads. These control devices took
the place of the mathematical charts of the
serial composers.

Concept music was a natural application
for the synthesizer, particularly for concepts
involving the expanding subject of cyberne
tics. Positive and negative feedback, open
and closed loops, control lines, propagation
delay, stability, and response time became
common words in the early electronic
studios. With the synthesizer not only was it
possible to produce music, but (since the
synthesizer is an analog computer) it was
now possible to model all sorts of things
from the real world, from population booms
to planetary motion, and to have the synthe
sizer directly respond to the environment,
and vice versa.

The analog synthesizer created a new
palette of aural colors to work with. While
the early promises of being able to generate
any sound turned out to be fallacious, users

of the synthesizer are still concocting sonic
surprises, sounds and patterns that were
never even dreamt of.

These new musical ideas and new instru
ments resulted in a music that is, in some
ways, more estranged from mainstream
Western music than Tibetan music is from
bluegrass. Not only were the sounds liber
ated, but the entire structure was radically
altered. A given composition might divide an
octave into three steps or a thousand; it
might be highly rhythmic or the notes might
fall randomly; some of the sounds might be
simpler than those produced by a flute,
while others might be so complex that one
would be hard pressed to say it had a pitch
at all.

The analog synthesizer has been used
for all varieties of music from rock and roll
to Bach. Microprocessors, however, were not
designed with any kind of musical usage in
mind. That they can be used to produce
music is, of course, much more than simply
fortuitous.

Microprocessors are some of the most
general purpose devices ever designed. It is
quite conceivable that they can produce
sounds never before heard or imagined. Cer
tainly they will be able to realize concepts
that even the synthesizer cannot touch.

Most of the literature available dealing
with this subject shows the processors used
in conservative ways. The computer is used
to emulate such things as pianos, organs and
even analog synthesizers. Very few authors
deal with the ways that processors can be
used to realize concepts. Even fewer deal
with unusual sounds and structures. In an at
tempt to do both, I present the following
program.

The Terrain Reader Conceptual Scheme

I began with one large conception and a
number of smaller ones. My overall plan was
to try to incorporate as many of the small
conceptions as I could, while realizing the
large one. I shall first explain the main idea
and then go through the smaller ones before
I proceed to explain the program itself.

The idea for the Terrain Reader came
from a concept developed by my fellow
composer Randy Cohen a number of years
ago. The concept contains a three dimen
sional surface, or terrain, with coordinates
given in an X, Y, Z axis system. For this ap
plication, the depth axis Z is treated as a
function of X and Y. The value of Z varies in
a topographical fashion as an observer travels
across the terrain. Refer to figure 1 for a two
dimensional representation or map of the
terrain.

For the purposes of the program, we as

130

sume that a “traveler” is moving across the
surface of the terrain. We describe its posi
tion on the map in terms of X and Y co
ordinates. As the traveler moves across the
surface, the value of the Z or depth coordin
ate varies continuously according to the “lay
of the land.”

We employ a digital to analog converter
to transform this change in Z to a change in
an electrical voltage V. If the traveler is
moving over the terrain at a sufficient rate,
we can use the voltage to produce sound by
having it drive a speaker. That is the basic
idea of the Terrain Reader.

It should be clear that for audible sound
to be produced in this manner, the traveler
has to climb up a hill and move back down
into a valley between a minimum of 20
times per second and a maximum of 20,000
times per second (refer to figure 2). Further,
if the traveler is just taking a random walk,
nothing is produced but white noise. The
traveler’s path must be fairly periodic. Given
periodicity, certain interesting consequences
result. The time it takes to make one circuit
of the path determines the base frequency of
the sound, while the hills and valleys of the
land determine the timbre.

The secondary criteria for the program
were as follows: first, 1 wanted to implement
the program in the 1 K memory of my
KIM-1, with nothing more than a digital to
analog converter between the computer and
the amplifier. Secondly, I wanted the sound
output to be fairly rhythmic and to sound
like music from a “fictional” culture, music
that a group of people could have come up
with, but didn’t.

Also, the music had to be repetitious
enough so I could play another instrument
along with it, and yet varying enough to
maintain interest. I wanted the changes to
sound intelligent, and yet I wanted the pro
cess to be automatic enough so I wouldn’t
have to type in new numbers for every
change.

Lastly, I wanted a wide range of timbres.
No attempt was made to produce every
possible timbre or every pitch from 20 to
20,000 Hertz. I was looking not for the
perfect, general music program, but for the
realization of the Terrain Traveler.

Program Description

The assembler format code of the pro
gram is shown in listing 1. Page three of
computer memory contains the surface or
land represented as a 16 by 16 matrix; the
main program and variables are contained in
page 0. The subroutines are in pages 0,1 and
2. The GETKY subroutine is used to access
the KIM-1 keyboard. That subroutine is con
tained in the KIM monitor at hexadecimal
location 1F6A. The GETKY routine scans
the keyboard and returns the value found
there to the accumulator. If nothing is found,
GETKY returns a hexadecimal value of 15.

The method used to move the traveler
about the surface is conceptually similar to
the method by which Lissajous figures are
produced on oscilloscopes. Lissajous figures
are seemingly three dimensional images
created by interaction between two different
input signals on an oscilloscope, one on the
x-axis and one on the y-axis (see figure 3).

Figure 2: (a) Experimental
section of the terrain
showing a circular traveler
path, (b) A graph of the
traveler's altitude as it
moves across the surface.
Continuous motion in this
circular path gives a regu
lar waveform (c) whose
frequency depends on the
speed of the traveler. The
frequency may be doubled
(d) by making the traveler
move faster. In this appli
cation, the traveler should
move fast enough that the
frequency generated is in
the audio region.

131

Figure 3: Circular Lissajou patterns are formed on the screen of an oscillo
scope when two sine waves of equal frequency and amplitude, but 90 degrees
out of phase, control the X and Y axes. Different patterns may be formed by
varying amplitude, frequency, and relative phase of the input signals.

Figure 4: Diagram showing the region in which two up/down counters may
control the movement of the traveler. The up/down counter counts from a
minimum value to a maximum value in increments of 1. When it reaches this
maximum value, it reverses and decrements by 1 until the lowest value is
reached once more. In this way, the two up/down counters approximate
Lissajou figure type paths for the traveler by acting as software oscillators.

In the program, there are two up/down
counters, one for the x-axis and one for the
y-axis, which act essentially as triangle wave
oscillators, these are used as indices for ad
dressing the matrix (observe figure 4). The
maximum and minimum points of both
counters are alterable. It is by changing these
end points that different sounds are gener
ated.

As seen in figure 5, if the range of both
counters is the same (for instance counting
up and down between 4 and 9), then a
straight diagonal path across the terrain will
be generated. If, however, the values
counted are not in such a simple relation
ship, the resulting path is much more com
plicated. Several such patterns are shown in
figure 6. It should be noted that it is the
relationship in magnitude between the end
points, and not the specific end points that
determines the patterns.

The majority of the execution time of the
program is spent in the first part of the pro
gram. The second part of the program exe
cutes in the interval between notes. The first
part of the program generates the sound, and
the second part alters the variables to pro
duce different paths over the surface. It is
during the second part of the program that
the keyboard is scanned and new informa
tion entered into the program.

The output of the program is sent to a
latched output port at hexadecimal address
1700 (direction register 1701 is set to hexa
decimal FF), which is attached to a digital to
analog converter as shown in figure 7. The
digital to analog converter from Hal Cham
berlain's A Sampling of Techniques for Com
puter Performance of Music, page 47, is in
expensive and works quite well for this
application. I have not included a filter cir
cuit. Users who wish greater filtering versatil
ity than that provided by amplifier tone
controls may wish to add appropriate cir
cuitry.

Program Flow

The program begins by updating both up/
down counters, checking to see if they have
hit the top or the bottom of their count, and
reversing their directions if they have. Using
the values of the two counters, the program
next loads the proper value from the terrain
matrix. This is done by simply shifting the Y
counter left four times, adding it to the X
counter, and storing the result in the Y
index register. An absolute Y indexed fetch
is executed and the retrieved value is sent to
the output port.

After returning from the OUTPUT sub
routine, the program jumps to the CLOCK
subroutine. There it updates a counter and
compares the new value with the value of

132

Figure 5: Straight Une path produced by the two up/down
counters operating over the same magnitude between
minimum and maximum values (or limits).

Figure 6: Various patterns obtained by varying the limits
and phase of the up/down counters.

PREAMP AMP -o
SPEAKER

Figure 7: Connecting the
KiM-1 output port and the
digital to analog converter,
if this scheme is applied to
another system having no
latched port, a digital to
analog converter with a
latched buffer must be
used. The audio sections
of the connections are
straigh tforward.

DONE. If the counter does not equal DONE,
the flow loops to the top of the program. If,
however, the counter value does equal the
value of DONE, flow drops through to the
second part of the program. Here new values
for the variables are computed and new in
formation from the keyboard taken in.

Figure 8 shows the four up counters that
determine the values for the end points of
the two up/down counters. One of the up
counters determines the value for each of
the four end points. The MUSIC subroutine
updates the four up counters and assigns
their values to the four end points, which are
labeled BOTX, TOPX, BOTY and TORY.

The end points of BOTX’s up counter are
labeled X1 and X2, while TOPX’s points are
X3 and X4. The end points of BOTY and
TOPY are labeled Y1, Y2, Y3 and Y4. When
new values are typed in via the keyboard, or
when the program is in its automatic mode,
it is these eight values, X1 thru Y4 that are
altered.

The program next checks to see which
mode it is in, automatic or manual. If in
manual mode, program execution proceeds
to the next process. If the status check re
veals the automatic mode, the program
jumps into subroutine AUTO.

If the program changes one of the end
point values every time AUTO is called, the
music changes too rapidly and tends to
sound random. So the AUTO subroutine
first checks to see that a sufficient amount
of time has elapsed. If it has not, COUNT is
decremented and control is returned to the
main routine. If, however, COUNT equals 0,
the subroutine AUTO alters an end point of
one of the up counters. The pointer INDX
(which is subsequently incremented) deter
mines which end point to alter. The value in
serted into the list of endpoints is derived
from the value being output at the time.
Finally, AUTO resets COUNT and returns
control to the main section of the program.

The program next checks to see if the

133

Figure 8: Changing the path of the traveler. The instantaneous values of
the two up/down counters determine a single point a. The altitude
value stored in the matrix determines the output voltage. The limits of
the up/down counters are determined by four up counters. The count
ing limits of the up counters are determined either by keyboard input
or by the A UTO subroutine.

Figure 9: Contour map of the hypothetical land used in the program
(for which the numeric values appear in listing 2). Each contour Une
represents a difference of hexadecimal 20. Both smooth plains and
mountainous regions are found in this terrain.

TMCHK flag is set. The setting of this flag,
which is done by pressing the PC key, indi
cates that the next numeric key pressed on
the keyboard should be used to set the gen
eral tempo of the music. If the flag has not
been set, program execution proceeds to
subroutine KEYBOARD. If the flag is set,
the program branches to the subroutine
TEMPO.

TEMPO checks to see if any keys are
being pressed on the keyboard. If so, the
corresponding value is inserted into the loca
tion called RATE. RATE determines the
general tempo at which the program pro
gresses from note to note. Control is then re
turned to the main program, which jumps to
the subroutine KEYBOARD.

Subroutine KEYBOARD begins by check
ing to see if a key is being depressed on the
keyboard. If so, it inserts the corresponding
value into the proper location. Thereafter
it proceeds to set the proper flags, including
the BOUNCE flag, which insures that a key
is looked at only once and scanning for
additional user input occurs.

The keyboard may be used to enter new
values into the end points of the up counters.
This is accomplished by a procedure similar
to that used by the subroutine AUTO, ex
cept that the values inserted come from the
keyboard and not the terrain matrix. The
first number entered via the keyboard is in
serted into the first end point (X1), the
second into X2, and so on through Y4, then
back to X1 with INDX keeping track.

Keyboard Operation

In addition to accepting values of the end
points for the up counters, the keyboard
serves a few other functions. One is the
selection between two available voices,
which are represented by separate lists of
values. One voice is selected by pressing the
AD key, the other by the DA key. In this
way two different patterns can be stored and
selected at the touch of a switch. These
voices can have different tempi, and can be
either automatic mode or manual.

To set a voice to automatic, the plus (+)
key is pressed; the voice that is presently op
erative is thus set to automatic. To take that
voice out of automatic, the corresponding
voice key is hit. This procedure allows
human controlled repetition of a pleasing
pattern discovered by the computer operat
ing in the automatic mode. The pattern will
then repeat until the operator intervenes.

Observe that operating the PC key causes
the TMCHK flag to be set, which in turn
causes the next value depressed on the key
board to be placed in the RATE variable. In
this way, the general tempo of the program
may be speeded up or slowed down.

134

Housekeeping and Details

Because of the time constraints of real
time music, it is impossible for the program
to be constantly scanning the keyboard. In
fact, the keyboard may be scanned only be
tween the notes. This makes it difficult to
take care of such housecleaning activities as
debouncing the keys, ie: checking to see that
a single depressed key isn’t looked at twice.

To handle these problems, the program
uses the BOUNCE flag. This flag is set when
the program first accepts input from the
keyboard. The program will not accept
another key input until BOUNCE is turned
off once again. BOUNCE is reset whenever
the subroutine KEYBOARD checks the key
board and finds no key depressed. This
method entails a few inconveniences: for a
key input to be accepted, the key must be
depressed while a note is changing to
another note. Secondly, at least one note
change must go by with no key depressed

before another key input can be entered.
The last subroutine the program executes

before returning to the top of the program is
SETTIME. This section of code sets the
duration of the next note. As in the AUTO
subroutine, this value is derived from the
value it finds at the output port. Since there
are 256 different durations possible, the re
sultant music is slightly less rhythmic than
may be desired, though I personally like the
slight shimmering quality this gives the
music.

The program is almost entirely written in
subroutines. This modularity makes it easy
to alter and add new ideas and concepts. It is
of course very easy to change the “land” and
explore the sounds of other surfaces. One in
teresting program alteration I have been
working with is a way to change the values
of the surface as the program progresses. I
have included the coding for one such
method at the end. Interested readers can
develop other methods. ■

135

Listing 1: Machine code listing in hexadecimal of the Terrain Reader program,
accompanied by a pseudo-assembly language mnemonic code, it Is designed
to run in a KiM-1 micro-computer in 1 K bytes of memory, it can be adapted
to other 6502-based computers. To use this program on a different system,
the KEYBOARD and TEMPO input subroutines have to be altered and the
OUTPUT subroutine changed.

Address Hex Code Label Op Code Operand Comments
1700 00 OUT
1701 FF OUTD

1F6A GETKY

0000 MAIN
0300 LAND

¡LIST OF VARIABLES
¡VOICE "DA"
OOAF 01 X1

00B0 06 X2
00B1 07 X3
00B2 OB X4
00B3 02 Y1
00B4 05 Y2
00B5 09 Y3
00B6 OE Y4
00B9 01 DIM
OOBA 01 SLPD

OOBB 01 BOTD
OOBC 07 TOPD
OOBD 02 DIM
OOBE 01 SLPD

OOBF 02 BOTD
00C0 09 TOPD
00C1 00 AUTOCHK

00C2 00 TMCHK

00C3 OC RATE

¡VOICE "AD"
00C8 02 X1

00C9 08 X2
OOCA OA X3
OOCB OF X4
OOCC 01 Y1
OOCD OA Y2
OOCE OB Y3
OOCF OF Y4
00D2 02 DIM
00D3 01 SLPD
00D4 02 BOTD
00D5 OA TOPD
00D6 01 DIM
00D7 01 SLPD
00D8 01 BOTD
00D9 OB TOPD
00DA 00 AUTOCHK
OODB 00 TMCHK
OODC 06 RATE

¡PROGRAM VARIABLES
00E2 AF AORB

00E3 FF CLK1
00E4 FF CLK2
00E5 80 DONE

00E6 00 BOUNCE
00E7 00 TEMP

00E8 00 INDX

00E9 00 COUNT

¡MAIN PROGRAM
0000 A90A MAIN LDA #$0A

¡OUTPUT REG
¡OUTPUT DIRECTION

REG
¡KIM KEYBOARD

SCANNER ENTRY
¡PROGRAM START
¡THIRD PAGE IS

SURFACE

¡END POINTS FOR UP-
COUNTERS

¡X OSC POSITION
¡X OSC DIRECTION

(01 OR FF)
;X OSC BOTTOM
¡X OSC TOP
;Y OSC POSITION
;Y OSC DIRECTION

(01 OR FF)
;Y OSC BOTTOM
¡Y OSC TOP
¡AUTO FLAG (00 OFF,

01 ON)
¡TEMPO JUMP FLAG

(00 OFF, 01 ON)
¡SETS GENERAL

TEMPO

¡END POINTS FOR UP-
COUNTERS

¡X OSC POSITION
¡X OSC DIRECTION
¡X OSC BOTTOM
;X OSC TOP
;Y OSC POSITION
;Y OSC DIRECTION
,Y OSC BOTTOM
¡Y OSC TOP
¡AUTOMODE FLAG
¡TEMPO JUMP FLAG
¡SETS GENERAL

TEMPO

¡VOICE FLAG (AF OR
C8)

¡CLOCK ONE
,-CLOCK TWO
¡SETS LENGTH OF

NOTE
¡DEBOUNCER FLAG
¡TEMPORARY

STORAGE
¡POINTS TO PROPER

VARIABLE
¡SLOWS DOWN MUSIC

CHANGES

¡SET FOR X OSC
0002
0003
0005

18
65E2
AA

CLC
ADC
TAX

AORB SET PROPER VOICE
SET X INDEX

136

PROGRAM

0006 202300 JSR ose
#$0E

¡UPDATE X AXIS
0009 A90E LDA SET FOR Y OSC
000B
OOOC

18
65E2

CLC
ADC AORB SET PROPER VOICE

000E AA TAX SET X INDEX
000F 202300 JSR ose ¡UPDATE Y AXIS
0012 A6E2 LDX AORB SET X INDEX
0014 205500 JSR OUTPUT ¡OUTPUT VALUE TO

0017 206C00 JSR CLOCK
D/A

¡UPDATE CLOCK AND

001A 4C0000 JMP #0000
NEW VALUES

¡LOOP TO TOP OF

SUBROUTINE OSC
¡UPDATES THE UP DOWN COUNTERS
0023 B500 OSC LDA DIM,X ¡GET VALUE OF

COUNTER
0025
0026

18
7501

CLC
ADC SLPD,X ¡UPDATE COUNTER

0028 9500 STA DIM,X STORE NEW VALUE

002A D502 CMP BOTD,X
OF COUNTER

¡VALUE HIT BOTTOM?
002C FOOD BEQ UPD ¡YES. CHANGE TO

002E D503 CMP TOPD.X
COUNT UP

¡VALUE HIT TOP?
0030 FOOE BEQ DWND ¡YES. CHANGE TO

0032 C910 CMP #$10
COUNT DOWN

¡VALUE GONE OFF

0034 FOOF BEQ ZERO
TOP OF LAND?

.•WRAP-AROUND

0036 C9FF CMP #$FF
BOTTOM IF YES

¡VALUE GONE OFF

0038 F010 BEQ ARND
BOTTOM OF LAND?

¡YES. WRAP-AROUND

003A

003B

60

A901 UPD

RTS

LDA #$01

TOP OF LAND.
¡EVERYTHING OK.

RETURN
¡01 COUNTS UP

003D 9501 STA SLPD,X ¡PUT IT IN SLPD
003F
0040

60
A9FF DWND

RTS
LDA #$FF

¡RETURN
;FF COUNTS DOWN

0042 9501 STA SLPD,X ¡PUT IN SLPD
0044
0045

60
A9FF

RTS
ZERO LDA #$FF

¡RETURN
;FF IS BOTTOM OR

0047 9500 STA DIM,X
LEFT OF LAND

¡PUT IN COUNTER

0049
004A

60
A910 ARND

RTS
LDA #$10

POSITION
¡RETURN
¡10 IS TOP OR RIGHT

004C 9500 STA DIM,X
OF LAND

¡PUT IN COUNTER

004E 60 RTS
POSITION

¡RETURN

SUBROUTINE OUTPUT
¡OUTPUTS VALUE TO OUTPUT PORT
0055 B50E OUTPUT LDA DIM,X ¡GET Y AXIS COUNTER
0057 OA ASL SHIFT OVER 4 TIMES
0058 OA ASL ¡THAT IS, MULTIPLY

BY 16
0059 OA ASL
005A OA ASL
005B 18 CLC
005C 750A ADC DIM,X ¡ADDX AXIS COUNTER
005E A8 TAY ¡PUT SUM IN Y INDEX
005F B90003 LDA LAND, Y ¡GET VALUE FROM

LAND (PAGE 3 OF
MEMORY)

0062 8D0017 STA $1700 SEND VALUE TO
OUTPUT PORT

0065 60 RTS ¡RETURN

SUBROUTINE CLOCK
¡CHECKS TO SEE IF CLOCK HAS RUN DOWN AND IF IT HAS,
¡CLOCK SENDS PROGRAM FLOW TO SUBROUTINES TO UPDATE VARIABLES
006C B514 CLOCK LDA RATE,X ¡GET RATE
006E OA ASL ¡MULTIPLY IT BY TWO
006F 18 CLC ¡CLEAR CARRY
0070 EA NOP
0071 65E3 ADC CLK1 ¡ADD TO CLOCK ONE
0073 85 E3 STA CLK1 ¡AND RESTORE TO

CLOCK ONE
0075 A900 LDA #00 ¡CLEAR ACCUM.
0077 65E4 ADC CLK2 ¡ADD CARRY BIT TO

CLOCK TWO
0079 85E4 STA CLK2 ¡AND RESTORE TO

CLOCK TWO

137

¡SUBROUTINE MUSIC. CHANGES UP/DOWN COUNTER'S END POINTS

007B C5E5 CMP DONE ¡DOES CLOCK TWO
EQUAL DONE?

007D F001 BEQ MSC . ¡YES, SET NEW VARI
ABLES

007 F 60 RTS ¡NO. RETURN TO
SOUND MAKING

0080 200002 MSC JSR MUSIC ¡CHANGE UP/DOWN
END POINTS

0083 A900 LDA #00 ,-CLEAR ACCUM.
0085 D512 CMP AUTO- :AUTO MODE?

CHK,X
0087 F003 BEQ TME ¡NO. SKP AUTO SUB.
0089 200001 JSR AUTO ¡YES. AUTO UPDATE

UP END POINTS
008C A900 TME LDA #00 ¡CLEAR ACCUMU

LATOR.
008E D513 CMP TMCHK,X ¡WAITING FOR TEMPO

CHANGE?
0090 F 003 BEQ KEYB ¡NO. SKIP TEMPO
0092 20D702 JSR TEMPO ¡YES. CHECK KEY

BOARD FOR NEW
VALUE

0095 204702 KEYB JSR KEYBOARD ¡CHECK KEYBOARD
FOR NEW VALUES

0098 20C102 JSR SETTIME ¡SET TIME FOR NEXT
NOTE

009B 60 RTS ¡BACK TO MAIN FLOW

COUNTER

0200 B50C MUSIC LDA BOTX,X ¡GET BOTTOM OF U/D
COUNTER(X)

0202
0203

18
6901

CLC
ADC #$01

.CLEAR CARRY
¡ADD ONE

0205 D501 CMP X2,X ¡EQUAL TOP OF

0207 1005 BPL COR1

BOTTOM UP
COUNTER?

¡YES. RESETUP

0209 950C STA BOTX.X
COUNTER

¡NO. STORE ANSWER

020B 4C1202 JMP B
IN BOTX

JMP TO BAND CHECK

020 E B500 COR1 LDA X1,X

TOP OF U/D
COUNTER

¡GET BOTTOM OF UP

0210 950C STA BOTX.X
COUNTER

¡PUT VALUE IN BOTX
0212 B50D B LDA TOPX,X ¡GET TOP OF U/D

0214
0215

18
6901

CLC
ADC #$01

COUNTER (X)
¡CLEAR CARRY
¡ADD ONE

0217 D503 CMP X4,X ¡EQUAL TOP OF TOP

0219 1005 BPL COR2
UP-COUNTER?

¡YES. RESET UP

021B 950D STA TOPX,X
COUNTER

¡NO. STORE NEW

021D 4C2402 JMP C
VALUE IN TOPX

¡GO TO C AND CHECK

0220 B502 COR2 LDA X3,X

BOT OF Y U/D
COUNT.

¡GET BOTTOM OF UP

0222 950D STA TOPX.X
COUNTER

¡PUT IN TOPX
0224 B501 C LDA BOTY,X ¡GET BOTTOM OF U/D

0226
0227

18
6901

CLC
ADC #$01

COUNTER(Y)
CLEAR CARRY
¡ADD ONE

0229 D505 CMP Y2,X ¡HIT TOP OF BOTTOM

022B 1005 BPL COR3
UP COUNTER?

¡YES. RESET

022D 9510 STA BOTY,X
COUNTER

¡NO. STORE ANSWER

022F 4C3602 JMP D
IN BOTY

;JMP D AND CHECK

0232 B504 COR3 LDA Y1,X

TOP OF Y U/D
COUNTER

¡GET BOTTOM OF UP

0234 9510 STA BOTY.X
COUNTER

¡STORE IN BOTY
0236 B511 D LDA TOPY.X ¡GET TOP OF U/D

0238
0239

18
6901

CLC
ADC #$01

COUNTER(Y)
CLEAR CARRY
¡ADD ONE

023B D5O7 CMP Y4,X ¡HIT TOP OF TOP UP

023D 1003 BPL COR4
COUNTER?

¡YES. RESET UP

138

023F 9511 STA TOPY,X ¡NO. STORE NEW
VALUE

0241 60 RTS ¡RETURN
0242 B506 COR4 LDA Y3,X ¡GET BOTTOM OF TOP

UP-COUNTER
0244 9511 STA TOPY,X ¡PUT IN TOPY
0246 60 RTS ¡RETURN

¡SUBROUTINE KEYBOARD.
¡TAKES IN VALUES FROM THE KEYBOARD AND SETS SPECIAL FLAGS
0247 A5E6 KEYBOARD LDA BOUNC ¡GET THE BOUNCE

FLAG
0249 D023 BNE FG ¡SET? YES-GO TO FG.

NO-DROP THRU
024B 206A1F JSR GETKY ,WHAT'S UP ON KEY

BOARD?
024E A6E2 LDX AORB ¡RELOAD X INDEX

WITH VOICE
SETTING

0250 C913 CMP #$13 ¡GOON KEY
PRESSED.

0252 F019 BEQ RETURN ¡YES- GO HOME.
NO-DROP THRU

0254 C915 CMP #$15 ¡NOTHING ON KEY
BOARD?

0256 F015 BEQ RETURN ¡YES. GO RETURN
0258 C912 CMP #$12 ¡"PC" ON KEYBOARD?
025A F01D BEQ AUTOO ¡YES. GO AUTOO
025C C914 CMP #$14 ¡"+" ON KEYBOARD?
025E F01E BEQ TIME ¡YES. GO TIME
0260 C910 CMP #$10 ;"AD" ON KEYBOARD?
0262 F01F BEQ AVOICE ¡YES. GO AVOICE
0264 C911 CMP #$11 ;"DA" ON KEYBOARD?
0266 F026 BEQ BVOICE ¡YES. GO BVOICE
0268 85E7 STA TEMP ¡MUST BE NUMBER.

STORE IN TEMP
026A 209F02 JSR STORE ¡THEN GO STORE IT

PROPER
026D 60 RTS ¡RETURN
026E 206A1F FG JSR GETKY ¡BOUNCE IS SET.

CHECK KEYBOARD
0271 C915 CMP #$15 ¡IS NOTHING THERE?
0273 F001 BEQ CORR ¡YES. GO DEBOUNCE
0275 60 RTS ¡RETURN
0276 C6E6 CORR DEC BOUNCE ¡DEBOUNCE BOUNCE

(SET TO ZERO)
0278 60 RTS ¡RETURN
0279 F612 AUTOO INC AUTO ¡RAISE THE AUTOCHK

CHK,X FLAG
027B E6E6 INC BOUNCE ¡SET BOUNCE
027D 60 RTS ¡RETURN
027 E F613 TIME INC TMCHK.X ¡RAISE THE TMCHK

FLAG
0280 E6E6 INC BOUNCE ¡SET BOUNCE
0282 60 RTS ¡RETURN
0283 A9AF AVOICE LDA #$AF ¡BASE NUMBER FOR A

VOICE
0285 85E2 STA AORB ¡PUT IN AORB
0287 E6E6 INC BOUNCE ¡SET BOUNCE
0289 A900 LDA #$00 ,-CLEAR ACCUM
028B 9512 STA AUTO- ¡BRING DOWN AUTO

CHK.X CHK FLAG
028D 60 RTS ¡RETURN
028E A9C8 BVOICE LDA #$C8 ¡BASE NUMBER FOR B

VOICE
0290 85E2 STA AORB ¡PUT IN AORB
0292 E6E6 INC BOUNCE ¡SET BOUNCE
0294 A900 LDA #$00 ,-CLEAR ACCUM
0296 9512 STA AUTO ¡BRING DOWN AUTO

CHK,X CHK FLAG
0298 60 RTS ¡RETURN

¡SUBROUTINE STORE. PUTS NEW VALUES INTO PROPER LOCATIONS
029F 8A STORE TXA ¡PUT VOICE INFO

INTO ACCUM
02A0 18 CLC ¡CLEAR CARRY
02A1 65E8 ADC INDX ¡ADD INDX TO FIND

EXACT LOCATION
02A3 A8 TAY ¡PUT IN Y INDEX REG.
02A4 A5E7 LDA TEMP ¡GET KEYBOARD

VALUE FROM TEMP
02A6 990000 STA ENDS,Y ¡PUT VALUE INTO

CORRECT VARIABLE
02A9 E6E8 INC INDX ¡UPDATE INDX
02AB A9O8 LDA #$08 ¡EIGHT INTO ACCUM
02AD C5E8 CMP INDX ¡DOES INDX EQUAL

EIGHT?

139

02AF F003 BEQ CORRR ;YES. GOTO CORRR TO
RESET

02B1 E6E6 INC BOUNCE ¡SET BOUNCE
02B3 60 RTS ¡RETURN
02B4 A900 CORRR LDA #$00 ¡CLEAR ACCUM
02B6 85E8 STA INDX ¡RESET INDX
O2B8 E6E6 INC BOUNCE ¡SET BOUNCE
02BA 60 RTS ¡RETURN

.SUBROUTINE SETTIME. SETS DURATION OF NEXT NOTE AND RESETS
CLOCKS
02C1 AD0017 SETTIME LDA $1700 ¡GET WHATEVER IS

IN OUTPUT PORT
02C4 2A ROL ¡MIX IT UP .. .
02C5 2A ROL
02C6 2A ROL
02C7 2A ROL
02C8 85E5 STA DONE ¡PUT VALUE IN DONE
02CA A900 LDA #$00 ¡CLEAR ACCUM
02CC 85E3 STA CLK1 ¡RESET CLK1
02CE 85E4 STA CLK2 ¡RESET CLK2
02D0 60 RTS ¡RETURN

.SUBROUTINE TEMPO. GETS NEW VALUE FROM KEYBOARD AND SETS TEMPO
02D7 A900 TEMPO LDA #$00 .■CLEAR ACCUM
02D9 C5E6 CMP BOUNCE ¡IS BOUNCE SET?
02DB
02DD

F001
60

BEQ
RTS

CONT ¡NO. GO TO CONT.
¡YES. RETURN

02DE 206A1F CONT JSR GETKY ¡GO SEE WHAT'S ON
THE KEYBOARD

02E1 A6E2 LDX AORB ¡PUT VOICE INFO
INTO X REG

02 E3 C915 CMP #$15 .WAS THERE NOTHING
ON KEYBOARD?

02E5 F008 BEQ RETURN ¡YES. RETURN
02 E7 9514 STA RATE.X ¡NO. PUT VALUE INTO

RATE
02E9 E6E6 INC BOUNCE ¡SET BOUNCE
02EB A900 LDA #$00 ¡CLEAR ACCUM
02ED
02EF

9513
60

STA
RTS

TMCHK,X ¡RESET TMCHK
¡RETURN

.SUBROUTINE AUTO. SETS END POINTS AUTOMATICALLY
0100 A5E9 AUTO LDA COUNT ¡GET TIMER
0102 F003 BEQ ATUO ¡IF EQUAL ZERO GO

ATUA
0104 C6E9 DEC COUNT ¡OTHERWISE, SUB

TRACT ONE
0106 60 RTS ¡AND RETURN
0107 8A AUTO TXA ¡PUT VOICE INFO IN

ACCUM
0108 18 CLC ¡CLEAR CARRY
0109 65E8 ADC INDX ¡ADD INDX TO GET

PROPER VARIABLE
01 OB A8 TAY ¡PUT IN Y REG
01 OC AD0017 LDA $1700 ¡GET WHATEVER IS IN

OUTPUT PORT
010F 290F AND #$OF ¡MASK IT
0111 990000 STA X1,Y ¡AND STORE REMAIN

DER INVARIABLE
0114 E6E8 INC INDX ¡INCREMENT INDX
0116 A908 LDA 08 ¡SET ACCUM TO 08
0118 C5E8 CMP INDX ¡DOES INDX EQUAL

EIGHT?
011A F005 BEQ CORRRR ¡YES. GO TO CORRRR
011C E6E6 INC BOUNCE ¡NO. INC BOUNCE
011E 4C2701 JMP CONNT ¡AND GO TO CONNT
0121 A900 CORRRR LDA #$00 .■CLEAR ACCUM.
0123 85E8 STA INDX .■CLEAR INDX
0125 E6E6 INC BOUNCE ¡SET BOUNCE
0127 AD0017 CONNT LDA $1700 .GET WHATEVER IS IN

OUTPUT PORT
012A 29FF AND $FO ¡MASK IT
012C EA NOP ¡IF A FASTER CHANG

ING PROGRAM IS
012D EA NOP ¡DESIRED, CHANGE

NOP TO LSR
012E EA NOP
012F EA NOP
0130 85E9 STA COUNT ¡PUT IN COUNT
0132 60 RTS ¡RETURN

140

,-ONE WAY TO CHANGE LAND DURING PROGRAM IS THE FOLLOWING:

0062 8D0017 STA $1700 ¡OUTPUT NUMBER
0065 65BA ADC SLPD ¡ADD 01 OR FF

DEPENDING
0067 990003 STA LAND,Y ¡PUT NEW VALUE IN

LAND
006A 60 RTS ¡RETURN
¡ALL OTHER CODING REMAINS THE SAME

Listing 2: Hexadecimal representation for a typical terrain. This data is stored
in page three of programmable memory. The leftmost Item In a row is the
starting address for the loading of the values in that row.

Hexadecimal
Address
0300 47 62 78 81 86 80 95 94 83 79 70 6B 6A 4F 2D 3E
0310 40 52 75 86 91 90 9F A1 A5 96 89 8A 7F 70 51 11
0320 41 54 67 73 82 9F AE AO B4 B7 A8 99 8E 7B 52 26
0330 33 58 6C 57 78 99 BD B2 C3 D8 C7 A8 94 5C 43 35
0340 39 5B 69 76 80 98 9C B9 BA E9 E4 C6 95 5D 47 44
0350 3A 4E 54 75 84 98 8B 9A B2 E2 F5 E7 A2 91 7E 78
0360 30 4F 55 62 73 87 6C 8D A1 DO E6 C4 A3 AO 9C 9D
0370 20 37 46 61 66 65 66 7D AE CE C3 A2 99 88 9F 55
0380 19 38 54 43 52 67 3D 6E 9F A9 A1 9A 87 78 6A 59
0390 OA 3C 5C 4B 51 58 4B 91 90 7F 8C 8D 45 66 5B 3C
03A0 39 5E 3D 3E 4F 54 83 80 7A 4E 78 84 40 3F 3E 3D
03 B0 3E 3C 2B 29 30 45 79 7C 4B 49 68 63 41 42 27 2E
03C0 OF 3D 3A 26 36 47 7A 5B 47 38 45 35 64 58 49 30
03D0 10 22 31 36 49 58 55 5C 45 47 3C 3D 46 67 45 31
03 E0 02 11 20 3F 3E 4D 59 3C 3B 36 2F 3E 33 4C 4B 3A
03 F0 04 13 27 26 35 43 54 3A 04 OA 10 11 32 2D 2E 23

141

APPENDIX

Frequencies in Hertz for an Evenly Tempered Scale

This table gives frequencies for the 12 note scale for nine octaves, it is based on the standard pitch of A4=440 Hz. Middle C
is the note at 261.626 Hz. These are valid for any electronic or computer music application. Normally tuned pianos, however,
may use a slightly different tempering.

0 1 2 3 4 5 6 7 8

c 16.3516 32.7032 65.4064 130.813 261.626 523.251 1046.50 2093.00 4186.01 8372.02

c# 17.3239 34.6478 69.2957 138.591 277.183 554.365 1108.73 2217.46 4434.92

D 18.3540 36.7081 73.4162 146.832 293.665 587.330 1174.66 2349.32 4698.64

D# 19.4454 38.8909 77.7817 155.563 311.127 622.254 1244.51 2489.02 4978.03

E 20.6017 41.2034 82.4069 164.814 329.628 659.255 1318.51 2637.02 5274.04

F 21.8268 43.6536 87.3071 174.614 349.228 698.456 1396.91 2793.83 5587.65

F# 23.1247 46.2493 92.4986 184.997 369.994 739.989 1479.98 2959.96 5919.91

G 24.4997 48.9994 97.9989 195.998 391.995 783.991 1567.98 3135.96 6271.93

G# 25.9565 51.9131 103.826 207.652 415.305 830.609 1661.22 3322.44 6644.88

A 27.5000 55.0000 110.000 220.000 440.000 880.000 1760.00 3520.00 7040.00

A# 29.1352 58.2705 116.541 233.082 466.164 932.328 1864.66 3729.31 7458.62

B 30.8671 61.7354 123.471 246.942 493.883 987.767 1975.53 3951.07 7902.13

143

AUTHORS

Hal Chamberlin
29 Mead St
Manchester NH 03104

Richard Gold
6024 College Av
Oakland CA 94618

Robert Grappel
148 Wood St
Lexington MA 02173

Carl Helmers
BYTE Publications Inc
70 Main St
Peterborough NH 03458

Benjamin Jacoby PhD
Information Conversion Devices Co
88 W Frankfort St
Columbus OH 43206

Jeffrey H Lederer
Tom Dwyer
Margot Critchfiel d
Project Solo
University of Pittsburgh
Pittsburgh PA 15260

Richard Lord
Bennett Rd
Durham NH 03824

Chris Morgan
BYTE Publications Inc
70 Main St
Peterborough NH 03458

Peter H Myers
1612 Tiffany Way
San Jose CA95125

Jef Raskin
Apple Computer Co
10260 Bandley Dr
Cupertino CA 95014

Steven K Roberts
129 North Galt Av
Louisville KY 40206

Thomas G Schneider
706 Amherst SE
Albuquerque NM 87106

Ted B Sierad
146 Sunset Rd
Mamaroneck NY 10543

William D Stanley
Steven J Peterson
Electrical Engineering Dept
Old Dominion University
Norfolk VA 23508

Bill Struve
800 Madison Av
Memphis TN 38163

Hal Taylor
3480 Sawtelle Blvd #2
Los Angeles C^. 90066

Loring C White
26 Boswell Rd
Reading MA 01867

BYTE Publications, Inc.
Production Credits

Christopher P. Morgan - Technical Editor
Blaise W. Liffick - Assistant Technical Editor
Richard Shuford - Assistant Technical Editor
Edmond Kelly, Jr. - Publisher
Patricia Curran - Production Editor
William Hurlin - Production Editor
Risa Swanson - Production Artist
E.S. Associates - Production Art
George Banta Company - Printing
Robert Tinney - Cover Art
Dawson Advertising Company - Cover Design

144

The BYTE Book of
COMPUTER
MUSIC
Would-be musicologists and
fugue fanciers take note!
The BYTE Book of Computer Music
combines the best computer music arti
cles from past issue; of BYTE Magazine
with exciting new material—all written
for the computer experimenter interested
in this fascinating field.
You will enjoy Hal Chamberlin's “A
Sampling of Techniques for Computer
Performance of M usic,” which shows how
you can create four-part m Indies on
your computer. For the bu t minded,
“A $19 Music Interface” co rains practi
cal tutorial information—a i . organ fans
will enjoy reading “Flee tronk Organ Chips
for Use in Computer (Music Synthesis.”
New material includes “Polyphony Made
Easy” and “A ’1 errain Reader.” The first
describes a handy circuit that al low's
you to enter more than one note at a time
into your computer from a musical
keyboard. The “Terrain Reader” is a
remarkable program that creates random
music based on land terrain maps.
Other articles range from flights of
fancy about the reproducti •* systems of
pianos to Fast FouriertransHrm programs
written in BASIC and cSOO machine
language, multi-comp' ,ier music systems.
Walsh Functions, and much more.
For the first time, material difficult to
obtain has been collected into one con
venient, easy to read book. An ardent
do-it-yourselfer or armchair musicologist
will find this book to be a useful addition
to the library.

	COMPUTER MUSIC

	From Music to Mathematics and Back Again

	More Complex Techniques

	Synthesizer Control Techniques

	Walsh Functions:

	Wave Form Synthesis

	Two Examples

	Thomas G Sneider

	System Reset and Inhibit

	Summary

	William D Stanley Steven J Peterson

	Implementation

	-o

	BYTE Publications, Inc.

