

CROMIX* - Cromemco's outstanding UNIX ${ }^{\dagger}$-like operating system

CROMIX is just the kind of major development you've come to expect from Cromemco. After all, we're already well-known for the most respected software in the microcomputer field.

And now we've come up with the industry's first unix-lookalike for microcomputers. It's a tried and proven operating system. It's available on both $5^{\prime \prime}$ and $8^{\prime \prime}$ diskettes for Cromemco systems with 128 K or more of memory.

Here are just some of the features you get in this powerful Cromemco system:

- Multi-user and multi-tasking capability
- Hierarchical directories
- Completely compatible file, device, and interprocess I/O
- Extensive subsystem support

FILE SYSTEM

One of the important features of our CROMIX is its file system comprised of hierarchical directories. It's a tree structure of three types of files: data files,

[^0]directories, and device files. File, device, and interprocess I/O are compatible among these file types (input and output may be redirected interchangeably from and to any source or destination).

The tree structure allows different directories to be maintained for different users or functions with no chance of conflict.

PROTECTED FILES

Because of the hierarchical structure of the file system, CROMIX maintains separate ownership of every file and directory. All files can thus be protected from access by other users of the system. In fact, each file is protected by four separate access privileges in each of the three user categories.

TREMENDOUS ADDRESS SPACE, FAST ACCESS

The flexible file system and generalized disk structure of CROMIX give a disk address space in excess of one gigabyte per volume - file size is limited only by available disk capacity.

Speed of access to disk files has also been optimized. Average access speeds far surpass any yet implemented on microcomputers.

'C' COMPILER AVAILABLE, TOO

Cromemco offers a wide range of languages that operate under CROMIX. These include a high-level command process language and extensive subsystem support such as COBOL, FORTRAN IV, RATFOR, LISP, and 32 K and 16 K BASICs.

There is even our highly-acclaimed ' C ' compiler which allows a programmer fingertip access to CrOMIX system calls.

THE STANDARD O-S FOR THE FUTURE

The power and breadth of its features make CROMIX the standard for the next generation of microcomputer operating systems.
And yet it is available for a surprisingly low \$595.
The thing to do is to get all this capability working for you now. Get in touch with your Cromemco rep today.

280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 - (415) $964-7400$
Tomorrow's computers today

Management Information Display

Ultrasonic heart sector scan

Process Control

Get the professional color display that has BASIC/FORTRAN simplicity

LOW-PRICED, TOO

Here's a color display that has everything: professional-level resolution, enormous color range, easy software, NTSC conformance, and low price.

Basically, this new Cromemco Model SDI* is a two-board interface that plugs into any Cromemco computer.

The SDI then maps computer display memory content onto a convenient color monitor to give high-quality, highresolution displays ($756 \mathrm{H} \times 482 \mathrm{~V}$ pixels).

When we say the SDI results in a highquality professional display, we mean you can't get higher resolution than this system offers in an NTSC-conforming display.

The resolution surpasses that of a color TV picture.

BASIC/FORTRAN programming

Besides its high resolution and low price, the new SDI lets you control with optional Cromemco software packages that use simple BASIC- and FORTRANlike commands.

Pick any of 16 colors (from a 4096-color palette) with instructions like DEFCLR (c, R, G, B). Or obtain a circle of specified size, location, and color with $X C I R C(x, y, r, c)$.

[^1]

Model SDI High-Resolution Color Graphics Interface

HIGH RESOLUTION

The SDI's high resolution gives a professional-quality display that strictly meets NTSC requirements. You get 756 pixels on every visible line of the NTSC standard display of 482 image lines. Vertical line spacing is 1 pixel.

To achieve the high-quality display, a separate output signal is produced for each of the three component colors (red, green, blue). This yields a sharper image than is possible using an NTSC-composite video signal and color TV set. Full image quality is readily realized with our highquality RGB Monitor or any conventional red/green/blue monitor common in TV work.

Model SDI plugs into $\mathbf{Z - 2 H}$ 11-megabyte hard disk computer or any Cromemco computer

DISPLAY MEMORY

Along with the SDI we also offer an optional fast and novel two-port memory that gives independent high-speed access to the computer memory. The two-port memory stores one full display, permitting fast computer operation even during display.

CONTACT YOUR REP NOW

The Model SDI has been used in scientific work, engineering, business, TV, color graphics, and other areas. It's a good example of how Cromemco keeps computers in the field up to date, since it turns any Cromemco computer into an up-to-date color display computer.

The SDI has still more features that you should be informed about. So contact your Cromemco representative now and see all that the SDI will do for you.

280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 • (415) 964-7400
Tomorrow's computers today

Features

27 A Look at NCC ' 81 by Steven K
Roberts / A photo essay on the National Computer Conference held last May in Chicago.

38 Bulld an Unilmited-Vocabulary Speech

Syntheslzer by Steve Ciarcia / An easy-to-use speech synthesizer can be designed using the Votrax SC-OI Speech Synthesizer Chip.

58 The Xerox Alto Computer by Thomas A
Wadlow I some attributes of this research tool will be used in the next generation of personal computers.

72 Tree Searching, Part 1: Baslc Techniques by Gregg Williams / A BASIC program allows your computer to solve a sliding-blocks puzzle.

112 One Step Forward-Three Steps

Backup, Computing In the US Space Program
by Patrick Stakem / The stringent demands of space exploration are met by several 8 - and 16 -bit microprocessors.
164 Artificlal Intelligence by Steven K
Roberts / intelligent computers could ease the task of dealing with vast amounts of information, if certain problems can be solved.
180 A HIgh-Level Language Benchmark by Jim Gilbreath / speed benchmarks for more than fifty implementations of high-level languages.

200 science Fiction's Intelligent Computers

by Donald Byrd / Current knowledge of artificial intelligence puts science fiction to the test.

216 Symbolic DIfferentlation à la LISP by

Ronald L Nicol / The list-manipulation abilities of LISP are easily adapted to differentiating mathematical functions.

238 Knowledge-Based Expert Systems

 Come of Age by Richard O Duda and John G Gaschnig I If an expert can do a specialized, self-contained task, so can a program.$\mathbf{2 8 4}$ The Atarl Tutorlal, Part 1: The Display Llst by Chris Crawford I The display list allows you to mix both text and graphics on the same video-display screen.
304 Natural-Language Processing, The Field In Perspectlve by Gary Hendrix and Earl

Sacerdoti / Systems that interact in English must have some under standing of human psychology and the world outside the computer.

414 The Emperor's Old Clothes by Charles

Antony Richard Hoare / Mr Hoare, winner of the 1980
ACM Turing Award, reflects on his career and speculates on the future.

Reviews

52 The Big Board: A 280 System in Kit Form by David Thompson
146 Misosys Software's DISKMOD: Put Radio Shack's Editor/Assembler on Disk by Steve Hughes
150 MINCE, A Text Editor by Christopher O Kern
384 BYTE's Arcade: Big Five Software by Gregg Williams: The Prisoner by Bob Liddil
388 Three Microcomputer LISPs by Steven P Levitan and Jeffrey G Bonar
436 Interactive Fiction: Six Micro Stories by Bob Liddil

Nucleus

6 Editorial: Odds and Beginnings
10 Letters
34, 108 Book Reviews: Principles of Artificial Intelligence; Turtle Geometry
110, 383, 412 BYTE's Bugs
162 Programming Quickies: Changing a BASIC FOR . . . NEXT Loop into a REPEAT . . . UNTIL Loop
354 BYTELINES
360 Ask BYTE
364 Books Received
366 Clubs and Newsletters
372 Event Queue
383 Software Received
412, 425 BYTE's Bits
426, 428, 435 Technical Forum: Microcomputers and the IRS: Add Dual Trace and Delayed Sweep to Your Oscilloscope: How to Build an Inexpensive Cassette Level Indicator
432 System Notes: An Almost Optimum $Z 80$ Memory Test Program
441 What's New?
494 Unclassified Ads
495 Reader Service
496 BOMB, BOMB Results

Page 38

Page 52

Page 58

Page 112

Editor in Chief

Chrlstopher Morgan

ManagIng Editor

Mark Haas

Technical Editors

Gregg Williams, Senior Editor:
Richard S Shuford; Curtis P Feigel:
George Stewart: Arthur Little:
Charles Freiberg, New Products Editor:
Steve Clarcia, Mark Danmke.
Consulting Editors
Jon Swanson. Draftsman

Copy Editors

Be erly Cronin. Chlef; Faith Hanson: Warren Williamson: Anthony J Lockwood: Ann Graves: Jane Harrigan

Asslstants

Faith Ferry: Debe Wheeler; Karen A Cilley: Susan Ferber

Production

Nancy Estle. Director: Christine Destrempes. Asst Director: Wai Chiu Li: Jonathan M Graves: Patrice Scribner: Karen Labaugh: Damian Henriques: Sherry McCarthy, Chief Typographer: Debi Fredericks: Donna Sweeney: Valerie Horn

Advertising

Thomas Harvey, Director: Marion Gagnon: Rob Hannings: Marilyn Williams: Deborah Porter; Vicki Reynolds: Jacqueline Earnshaw,
Reader Service Coordinator

Circulation

Gregory Spitzfaden. Manager: Andrew Jackson. Asst Manager; Agnes E Perry: Barbara Varnum: Louise Menegus: Pinky Krulis; James Bingham, Dealer Sales:
Carol Baniecki, Asst.

Controller's Office

Daniel Rodrigues. Controller:
Mary E Fiuhr. Acct. \& D/P Mgr: Karen Burgess: Jeanne Cilley: Mary Beth Ireland: Linda Fluhr

Traffle

N Scott Gagnon: Michael Bacon:
Cynthia Damato

Receptionlst

Joanne Colburn

Publishers

Virginia Londoner: Gordon R Williamson: John E Hayes. Associate Publisher; Cheryl A Hurd. Publisher's Assistant:

Officers of McGraw-Hill Publications Company: Paul F MCPherson. President: Executive Vice Presidents: James E Boddorf, Gene W Simpson: Group Vice President: Daniel A McMillan; Senior Vice President-Editorial: Ralph R Schulz; Vice Presidents: Kemp Anderson, Business Systems Development; Robert \mathbf{B} Doll. Circulation: James E Hackett, Controller: Eric B Herr, Planning and Development: H John Sweger. Marketing.
Officers of the Corporation: Harold W McGraw Jr. President, Chief Executive Officer and Chairman of the Board; Robert F Landes, Senior Vice President and Secretary: Ralph J Webb. Treasurer.

In This Issue

Computerized natural-language processing is one of the many topics that have come to be associated with artificial intelligence. As Robert Tinney's cover suggests, computers someday may be able to read and understand War and Peace. Steven Roberts' article "Artificial Intelligence" is a good place to start, and "Natural-Language Processing, The Field in Perspective," by Gary Hendrix and Earl Sacerdoti, addresses this month's theme. Donald Byrd discusses the point at which fact meets fiction in "Science Fiction's Intelligent Computers," and Ronald L Nicol focuses on the artificial intelligence community's primary language in "Symbolic Differentiation a la LISP."
Steve Ciarcia has prepared an alternate way of eliciting speech from a computer with "Build an Unlimited-Vocabulary Speech Synthesizer." We also have a description of the Xerox Alto computer by Thomas A Wadiow, and we take a look at NASA's high-flying computing machinery in Patrick Stakem's "One Step Forward-Three Steps Backup.'

BYTE is published monthly by BYTE Publications inc. 70 Main St. Peterborough NH 03458. phone (603) 924-9281, a wholly-owned subsidiary of McGraw-Hill, Inc. Address subscriptions, change of address. USPS Form 3579, and fulfillment questions to BYTE Subscriptions. POB 590. Mattinsville NJ 08836. Controlled circulation postage paid at Waseca. Minnesota 56093 - USPS Publication No. 528890 (ISSN 0360-5280). Canadian second class registration number 9321 . Subscriptions are $\$ 19$ for one year. $\$ 34$ for two years. and $\$ 49$ for three years in the USA and its possessions. In Canada and Mexico. $\$ 21$ for one year. $\$ 38$ for two years. $\$ 55$ for three years. $\$ 43$ for one year alr delivery to Europe. $\$ 35$ surface delivery elsewhere. Air delivery to selected areas at additional rates upon request. Single copy price is $\$ 2.50$ in the USA and its possessions, $\$ 2.95$ In Canada and Mexico. $\$ 4.00$ in Europe, and $\$ 4.50$ elsewhere. Foreign subscriptions and sales should be remitted in United States funds drawn on a US bank. Printed in United States of America.

Address all editorial correspondence to the editor at BYTE. POB 372. Hancock NH 03449. Unacceptable manuscripts will be returned if accompanied by sufficient first class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Entire contents copyright © 1981 by BYTE Publications Inc. All rights reserved. Where necessary, permission is granted by the copyright owner for libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any anticle herein for the base fee of $\$ 1.00$ per copy of the atticle or item plus 25 cents per page. Payment should be sent directly to the CCC. 21 Congress St. Salem MA 01970 . Copying done for other than personal or internal reference use without the permission of McGraw-Hill is prohibited. Requests for special permission or bulk orders should be addressed to the publisher.

BYTE ${ }^{\text {º }}$ is available in microform from University Microfilms International. 300 N Zeeb Rd. Dept PR. Ann ABC Arbor MI 48106 USA or 18 Bedford Row, Dept PR, London WCIR 4EJ England.

Subscription WATS Line: (800) 258-5485
Office hours: Mon-Thur 8:30 AM - 4:30 PM, Friday 8:30 AM - Noon, Eastern Time

NATIONAL ADVERTISING SALES REPRESENTATIVES:

NORTHEAST (617) 444-3946
Hajar Associates
280 Hillside Ave
Needham Heights MA 02194
NORTHWEST [415] 964-0706
Hajar Assoclates
1000 Elwell Ct. Suite 227
Palo Alto CA 94303

MIDWEST (312) 966-0160

Hajar Associates
5225 Old Orchard Dr
Skokie IL 60076
SOUTHWEST (714) 540-3554
Hajar Associates
3303 Harbor Blva
Suite K-4
Costa Mesa CA 92626

MID ATLANTIC (212) 682-5844
Hajar Associates
521 Fifth Ave
New York NY 10017
SOUTHEAST (305) 886-7210
Hajar Associates
1220 Prairie Lane
Apopka FL 32703

"...stands well above other S-100 graphics displays in its price and performance range."

BYTE, Product Review

". . . better monochromatic . . .display"

EJECTRONIC DESIGN, 1981 Technology Forecast

MICROANGELO

HGGH RESOLUTION GRAPHCS SINGLE BOARD COMPUTER
512×480 resolution black and white and vivid color displays

RS-170 composite or direct drive output

Local or external sync generation

4 Mhz 280
microprocessor
60 hertz realtime clock

8 level interrupt tie-in

IEEE SIOO bus compatible

Light pen interface
Time multiplexed refresh 4 K resident Screenware ${ }^{\text {TM }}$ Pak I operating system
32 K RAM isolated from host address space
High speed communications over parallel bus ports

Screenware ${ }^{\text {m }}$ Pak I

A 4 K byte operating system resident in PROM on MicroAngelo ${ }^{\text {TM }}$. Pak I emulates an 85 character by 40 line graphics terminal and provides over 40 graphics commands. Provisions exist for user defined character sets and directly callable user extensions to Screenware ${ }^{T M}$ Pak I.

Screenware ${ }^{\text {m }}$ Pak II

An optional software superset of Pak I which adds circle generation, polygon flood, programmable split screen for separate graphics and terminal I/O, relative coordinates, faster vector and character plotting, a macro facility, full UCSD Pascal compatibility, and more.

And now . . .COLOR!!

The new MicroAngelo ${ }^{T M}$ Palette board treats from 2 to 8 MicroAngelos as "bit planes" at a full 512×480 resolution. Up to 256 colors may be chosen from 16.8 million through the programmable color lookup table. Overlays, bit plane precedence, fade-in, fade-out, gray levels, blinking bit plane, and a highly visual color editor are standard.

As a project manager, you know the value of careful planning. An oversight here, a miscalculation there, and in no time, you could be in a lot of trouble.

Now, thanks to MILESTONE ${ }^{\text {TM }}$, it's easy to obtain and keep complete project control.

MILESTONE is an easy to use computer program that puts your desk top microcomputer to work using the same proven "critical path" techniques previously available only on big, expensive computers. Now, regardless of your type of project, you can plan and control manpower, dollars, and time.

Available in most microcomputer formats: CP/M, CP/M-86, Apple PASCAL, UCSD PASCAL. Call or write:

2670 CHERRY LANE
WALNUT CREEK - CA 94596
(415) 938-2880

[^2]
Ecitorial

Odds and Beginnings

by Chris Morgan, Editor in Chief

As I sat down to write this month's editorial, I realized I was going to have a hard time sticking to one topic. So much has been going on lately, I thought I'd throw it all into one convenient column. The title "Odds and Beginnings," which I stole from James Thurber, reflects this potpourri.

Artificial Intelligence

I'm particularly pleased that we were able to fit so many interesting articles about artificial intelligence into this month's issue. Many of them were commissioned at last year's AAAI (American Association for Artificial Intelligence) meeting at Stanford. In particular, the articles 'Natural Language Processing: The Field in Perspective" (page 304) and "Knowledge-Based Expert Systems Come of Age" (page 238) discuss topics that, in my opinion, have not received the coverage they deserve. A personal computer's ability to understand at least rudimentary English will be important to the future of programming. Similarly, a computer that can give advice and act as an "expert" on a given topic raises some profound and difficult questions. Some of these issues have been dealt with in science fiction, and Donald Byrd explores them in "Science-Fiction's Intelligent Computers" (page 200).

Computer Shows

I've been on the road quite a bit this spring and summer attending computer shows. As always, the West Coast Computer Faire in San Francisco was of great interest. Anyone doubting the vitality of our field need only walk into this show to be struck by the level of enthusiasm. If you want to track the progress of personal computing, go to the West Coast Computer Faire and watch the number of exhibitors expand and the wide-eyed visitors become more wide-eyed each year.
The NCC (National Computer Conference) was held in Chicago this year, and it was easily the most spectacular show yet. (See the two-page photo essay beginning on page 36.) The "star" of the show, attracting a constant enthusiastic crowd, was the Xerox Star terminal, which single-handedly advances the state of the art in terminal design for the office. Many of the system's features recall those of the Smalltalk systems (see last month's BYTE, devoted to the Smalltalk-80 system) I saw at Xerox PARC (the Palo Alto Research Center). The Star system, which will cost $\$ 16,595$ for the standard unit, treats all documents, files, etc as concrete "objects" that can be manipulated by the user. Its software structure resembles a nest of boxes, each box containing more and more complex information about the workings of the system. Users need penetrate only to the box they require to do a particular job, thus avoiding information overload.
Clever user-interfacing devices abound on the Xerox Star, including a "mouse," a mechanical box with wheels that can be rolled around on the desktop to position the cursor on the screen. I could go on at length about the features of the machine, but I must move on. An excellent treatment of the Star can be found in the April 27, 1981, issue of the Seybold Report, a twicemonthly report that consistently offers the field's best coverage of word processing, computerized typesetting, and office automation. The report costs

Editorial continued on page 10

Introducing the \mathbb{Z} Line...

Now! Percom Drives for Heath Computers.

Percom's now making add-on drives for your H-89 and $\mathrm{H}-8$.
Complete drive systems will be available soon. If your immediate need is for add-on storage, check the features of our fully compatible \mathbf{Z} drives.
If you plan to add a complete disk system, watch for the imminent announcement of our doubledensity Z Controller.
Given a choice, we think you'll choose from the Percom Z line.

Add-On Z Drives

- Available in 40 - and $\mathbf{8 0}$-track densities, in 1 - and 2 -drive color-compatible modules.
- All drives are rated for single- and double-density operation.
- Some models accommodate flippy storage, allowing you to flip a diskette and store files on the second side.
- Fully tested both electrically and mechanically. Plus, all Z drives receive a 48 -hour operating burn-in to uncover latent defects: Look for the signed quality assurance slip.

PERCOM
PERCDM OATA COMPANY. INC
211 N. KIRBY GARLAND, TEXAS 75042
(214) 272-3421

Toll-Free Order Number: 1-800-527-1592

- Low prices: Fully assembled and tested, one-drive units start at only $\$ 399$, two-drive units from only $\$ 795$.

Model	Number Tracks one side	Formatted Strg. Cap.		Features
		SD	DD	
2FD-40'*	40	102K	180K	Low price, fast step time
ZFD $80{ }^{\circ}$	80	205K	364K	Max. stg., fast step time
ZFD-100 ${ }^{\circ}$	40	102K	180K	Flip-side diskette storage

SYSTEM REQUIREMENTS: $\mathrm{H}-89$ or $\mathrm{H}-8$ computer with 16 Kbytes of RAM, Heath first-drive floppy disk system. Heath disk-operating system and drives interconnecting cable. (Two-drive interconnecting cable optionally available from Percom). ZFD-80 drives include a program patch on diskette to modify HDOS for 80 -track operation.
PRICES AND SPECIfications SUbject to Change without notice.

Available Soon!

Percom's Low-Cost Double-Density Z Controller.

A simple algorithm

We work with the serious systems integrator ... on terms that make sense to you. That means giving you a set of products which expand your limits, not reduce them.
We manufacture the most complete family of high quality IEEE/696 S-100 mainframes on the market. Choices include three mainframes in rack-mount or table-top packages with complete board sets, to serve as the building blocks for your 8 or 16 bit system. We also provide other options ranging from complete floppy disk systems right up to our proven Pascal development system.

The \int factor: one source.

No matter which option you choose, you get the benefit of working with completely integrated products ... fully assembled and tested ... under one warranty and one price structure ... leaving you free to concentrate on value-added application development and sales.

Choose from mainframe options...

Select from three packaging options: Rack-mount, tabletop or front panel models. All three feature our 20 slot $\mathrm{S}-100$ motherboard with 25 amp power supply and are delivered fully assembled and tested with our Series $\mathrm{I}^{\text {TM }}$ board sets. Any board configuration you choose works with any DPS-1 version, allowing you to vary your package offering, or develop on one version and market another.

- Front Panel model - a powerful development and diagnostic tool for Z-80 ${ }^{\dagger}$ systems, which can be used for prototyping, servicing, debugging, and software or hardware development. Use its features to set breakpoints, trigger scopes, single step, slow step and more.
- Front Panelless desk top model-a lower cost option for OEM or other turnkey operations which do not require the extra capability of our Front Panel.
- Rack Mount version - features a heavy gauge frame designed to fit into standard 19" racks. CVT power supply for brown out immunity is standard.

YourLIMITS?

OPTIONS TO SOLVE YOUR PROBLEMS.

Board level options...

Intersystems mainframe packages, equipped with Series II boards, are operational in both 8 and 16 bit settings and support extended addressing in both $1 / \mathrm{O}$ and memory space, recognizing 16 bit I/O addresses and 24 bit memory addresses. Just look at

- MPU-80 - uses a Z-80, 8 vectored interrupt lines and two 4 K windows to address up to 1 Megabyte of RAM without bank select.
- 64KDR-sophisticated refresh circuitry allows unlimited DMA and absolutely reliable operation without wait states.
- 6 SI/O - six individually softwarecontrollable serial I/O ports with optional interrupts. Each can run RS 232 at up to 19,200 BAUD, as can our VI / O board.
- VI/O - has two serial ports; two 8-bit parallel output and two 8 -bit parallel input ports plus 8 individually controllable command lines and 16 levels of vectored interrupts.
- FDCII-can DMA up to a full track into 16 Megabytes of memory. Optionally generates interrupts and handles up to four $8^{\prime \prime}$ floppies.
- MPU-8000 - available with the nonsegmented Z-8002 ${ }^{\dagger}$, which directly addresses 64 K , or the segmented $\mathrm{Z}-8001^{+}$, which can directly address 8 Megabytes.

Extended systems options...

Interfacing disk drives is not a trivial matter, so when your objectives and resources dictate you spend your energy elsewhere, use our resources to perform the service for you. We can add our disk drive package to any Z-80 or Z-8000 configuration we provide ... again, fully assembled and tested and covered under one warranty.

Or our complete

Pascal Development System.

We use it for our own hardware and software development. It includes either table-top mainframe, two $8^{\prime \prime}$ floppy disks, 128 K RAM, CP/M ${ }^{\text {\# }}$, and Intersystems Pascal $/ Z^{\text {TM }}$ compiler and Cache $\mathrm{BIOS}^{\text {TM }}$. THIS SYSTEM IS FAST! Why? Because our ultra-fast Cache BIOS automatically buffers whole tracks, eliminating most disk accesses. This delivers up to three times the throughput of any other floppy-based system we know and is equal to many small hard disk systems.

The system is versatile, too. SET program allows you to change many BIOS parameters and specify control characters to enable special features such as diagnostic output to trace program execution. It can also provide remote I/O to link your system to almost any

And it's reliable. The Cache BIOS System runs continuous memory tests when idle, and verifies with a Read after Write and Read after Read.
And the system also includes our Pascal $/ Z$, a true native compiler producing ROMable and Re-entrant code. It features a minimum of extensions chosen for the development of your scientific and business applications. And it's compatible with our native code Pascal for Z-8000, providing a graceful upward path to 16 bit applications. So what you write now is right later.

One choice you won't have to make...
We don't believe you should ever have to sacrifice good technical support to find a good product. We'll back you to the hilt with services like free technical consultation, board-swapping, diagnostic packages, and documentation that gives you all you need to integrate, operate and maintain your system ... right down to schematics of the boards.

Your solution should be clear.

Whether you're integrating for scientific, governmental or commercial applications, Intersystems can provide a Delta for your Epsilon.

Talk to us today.

Ithaca intersystems Inc.,
Dept. B
1650 Hanshaw Road, P.O. Box 91

Ithaca, NY 14850

Phone

(607) 257-0190

\$175 a year, and subscriptions are available by writing Box 644, Media, Pennsylvania 19063.
In contrast to the Star, the recently unveiled Xerox 820 personal computer (see page 441) is disappointing. It's a competently designed machine but very "plain vanilla," sporting a $Z 80$ processor, CP/M, two $51 / 4$-inch floppy disk drives (which give the user a paltry 92 K bytes of unformatted storage per floppy disk), and no highresolution graphics. What the 820 does do, however, is give Xerox a foot in the door of the under- $\$ 3000$ market. And one cannot deny the importance of the 820's ability to interface with the Ethernet system, Xerox's information network that will most likely become the standard for high-end local networks. We'll have more information about the 820 in upcoming issues.

Japanese Market

Senior Editor Gregg Williams and I recently spent ten days in Japan attending the Tokyo Microcomputer Show and visiting more than ten companies that produce, or are about to produce, personal computers. The level of interest in the microcomputer in Japan is astounding, and the trip was a revelation. We will be reviewing many new Japanese machines and analyzing their effects on the American marketplace in a special issue of BYTE to appear early in 1982. Watch for it. In addition, we will

The Athernative You Deserve
present a roundup of new American hardware in the January 1982 issue.

The question of the hour seems to be "Are the Japanese going to dominate the American personal computer market7" My immediate answer is "No." It takes time to develop distribution networks and become established in this highly technical market-it's not the same as the automobile market. But if ever I had any doubts that the Japanese had entered our field in earnest, the doubts were dispelled during the trip. Yes, the Japanese face many obstacles. In order to create word-processing software, they need more familiarity with our typewriterdominated office systems and more sensitivity to the need for good software and good documentation. I have no doubt that the Japanese will surmount these obstacles, and in fact they are quietly doing just that. According to an old Japanese saying, "It is the wise hawk that hides its talons." The talons are now hidden, but they will come out in time.

Coming Up

The coming year is going to be exciting at BYTE. We're expanding our staff to be more responsive to our readers. I'm pleased to say that BYTE's circulation has topped the 200,000 mark and continues to climb rapidly. We appreciate your feedback, especially in the form of BOMB votes for your favorite articles. (See the reader service card at the back of the magazine for an explanation of BYTE's BOMB.)

One of our major projects this year has been transforming onComputing magazine into Popular Computing, a new monthly magazine that will appear this November. It's designed for the nonspecialist and will cover the entire spectrum of popular computing for the benefit of professionals, business people, educators, and interested laypeople. We're particularly proud of the new Popular Computing staff stationed around the country to keep readers up to date.

What's in store for the coming year? We'll have coverage of the new personal computers from the big mainframe companies, plus special issues about human engineering, interactive videodisks, computers in business, local networks (next month), computers in the humanities, games, computers for the disabled, and much more, including our extensive review section for hardware and software.

Incidentally, I took a look at the new computer science books that have come in for review. They make a stultifyingly large pile, and the stack of new software isn't much smaller. But we're working to keep ahead of the game.

Another perennial interest at BYTE is computer graphics. By the time you read this, I will have attended the ACM's SIGGRAPH conference in Dallas. Watch for a full report featuring some of the most exciting graphics we've ever seen.

Apple I/O Interfaces. SSM Spells Success Three Ways.

SSM helps you get the most from your Apple II * computer. Choose from three general purpose interface boards. With flexibility and prices that translate to big savings. Now, and when you upgrade.

Serial (ASIO ${ }^{\text {TM }}$). Our ASIO gives you a full-duplex RS-232 interface. Plus jumperselectable rates from 110 to 9600 baud. You also get software control, three handshaking lines and two output plugs-so you can connect your Apple to a modem or to a terminal/printer without modifying the cable.

Parallel (APIO ${ }^{\text {TM }}$). For parallel interfaces, our APIO offers two 8 -bit bidirectional ports. We also include additional interrupt and handshaking lines, plus software control of the interface configuration and data direction. Cables for Centronics and other printers are optional.

Or Both (AIO ${ }^{\text {TM }}$). Choose our tried and proven AIO when you

need a sometimes-serial or a sometimesparallel operation. This single-board solution packs a lot of performance for the price. Thousands are now being used. It even lets you operate both ways-simultaneouslyunder Pascal, or with special drivers.

All three boards feature powerful firmware so you don't have to write software to use them. The ASIO and AIO include cables.

Whether you're an OEM or end-user, we can supply virtually any quantity you need. Quickly. Even in kit form. For the latest word on these, see your local computer dealer. Or call us today. You may also want to look into our cost-effective A 488^{TM} board which converts your Apple II into an IEEE-488 controller.
SSM Microcomputer Products, Inc., 2190 Paragon Drive, San Jose, CA 95131. (408) 946-7400. (TWX 910-338-2077. Telex 171171.)

- Apple and Appie 11 are trademarks of Apple Computers inc. ASIO. APIO, AIO and A488 are trademarks of SSM Mierocomputer Products, Inc.

Reddy Chirra improves his vision with

 an Apple.Reddy is an optical engineer who's used to working for big companies and using big mainframes.

But when he started his own consulting business, he soon learned how costly mainframe time can be. So he bought himself a 48 K Apple II Personal Computer.

And, like thousands of other engineers and scientists, quickly learned the pleasures of
cutting down on shared time and having his own tamper-proof data base. His Apple can handle formulas with up to 80 variables and test parameters on 250 different optical glasses.

He can even use BASIC,FORTRAN,
Pascal and Assembly languages.
And Apple's HI-RES graphics come in
handy for design.
Reddy looked at other microcomputers, but chose Apple for its in-depth documentation, reliability and expandability.

You can get up to 64 K RAM in an Apple II.
Up to 128 K RAM in our new Apple III. And there's a whole family of compatible peripherals, including an IEEE-488 bus for laboratory instrument control.

Visit your authorized Apple dealer to find out how far an Apple can go with scientific/ technical applications.

It'll change the way you see things.
The personal computer CIPPle

50FTURRE DEUELOPMEIIT TOOLS FOR IMOUSTRY

CP/M CROSS-ASSEMBLERS

Fast, comprehensive cross-assemblers to run under CP/M.* Extensive pseudoops include full listing control, nested conditonals, mnemonic synonyms, and inclusion of external source files. Generate object file, assembly listing, and symbol table from source code for nine popular microprocessor families.

XASM05 XASMO9	$\begin{array}{r} 6805 \\ 6809 \end{array}$
XASM18	. 1802
XASM48	8048
XASM51	8051
XASM65	6502
XASM68	6800/6801
XASMF8	F8/3870
XASM400	COPS400
Assemblers Manual only	$\begin{aligned} & \ldots \$ 200.00 \text { each } \\ & \cdots \$ 25.00 \end{aligned}$

8048 DEVELOPMENT PACKAGE

Now you can use the 8048 family of single-chip microcomputers without buying expensive equipment. Develop 8048 software with the XASM48 crossassembler. Then plug our EPR-48 board into your S. 100 system to program the 8748 EPROM version. (Similar packages for 8051 and TMS9940E coming soon.)
8048 Development Package . . . $\$ 574.00$
EPR-48 alone
\$449.00

PROM EMULATOR BOARD

Debug dedicated systems quickly. Our PSB-100 PROM Emulator is an S-100 board with up to 8 K of RAM. Cable with 24-pin plug replaces PROM(s) in your target system for instant program testing.
PSB-100 PROM Emulator . . $\$ 445.00 \mathrm{w} /$
2K RAM

804 south state st.
dover, delaware/19901/302-734-0151
Visa and Mastercharge accepted. We ship on B' single density. Ask us about other formats. OEM AND DEALER INQUIRIES INVITED.

MIT Defends Logo Pollcy

This is in response to Mr Stephen Hain's letter, which appeared in the August 1981 BYTE and which raised questions about the release and distribution of the MIT Apple Logo programming language. (See 'Unpublished Apple Logo," page 32.)

As correctly noted in the original BYTE article ("Logo for Personal Computers," by Harold Nelson, June 1981 BYTE, page 36), the development of the MIT Apple Logo programming language was sponsored in part by the National Science Foundation (NSF). Discussions between MIT and NSF with respect to mechanics of release and distribution have been underway. Licensing authority has now been formally requested by MIT; and, as soon as permission is granted, it is the intention of MIT to complete licensing arrangements that will ensure the broadest possible dissemination of this important programming language.

Kenneth A Smith
Associate Provost
MIT
545 Technology Sq
Cambridge MA 02139

Comments on Software Plracy

The following comments by our readers were solicited through Chris Morgan's May 1981 BYTE editorial "How Can We Stop Software Piracy?"

I commend Chris Morgan and BYTE for addressing a subject too frequently overlooked. Software piracy has, indeed, reached an appalling level, while somehow retaining an odd sort of tacit protec-tion-that of being a "gentleman's" crime.

Chris Morgan's statement that "software piracy . . . is not just illegal-it's unethical" couldn't have been more to the point. It is unethical. Shamefully so. To those who attempt to protect their works, this can't be stressed enough. The courts and various legal bodies are slow, but they are working toward resolving some of the piracy problems. Many talented people are working madly devising clever tricks to prevent the theft-all because there are those who think it's better to have something for nothing than it is to ethically exchange with those who
worked hard to produce something of value.

No doubt the thieves have justified their actions. Maybe they think the "system" is unfair; maybe they think they can't afford the programs they so dearly want; maybe they don't even think at all. But one thing is certain: they haven't developed software packages themselves and then had them ripped off to the tune of thousands of dollars. That much we know.

It's a shame that one's fellow man is called upon to police another. One would like to believe that we're fair and honest people. It appears not all of us are. Hence, in addition to the efforts of our legislators and programmers, those ethical souls who learn of piracy need to do something effective about it. If simple reasoning with a software pirate won't do it, then reporting the matter to the developer just might. While contrary to the childhood dictum "don't be a tattletale," it could help to curtail a growing cancer in the industry.

The Association for Software Protection (ASP) is a newly formed group dedicated to eradicating the piracy problem. At present it is addressing-in the main-the problems faced at the minicomputer level. Nevertheless, the piracy problem branches across all levels, and any group or individuals interested in organizing an antipiracy microcomputer group are invited to contact ASP.

In addition to my activities with ASP, I am the Software Protection Director at Mini-Computer Business Applications in Glendale, California.

Robin Robinson

Association for
Software Protection
10143 Leona Ave
Tujunga CA 91042
Chris Morgan's and BYTE's concern with software piracy is well placed, and BYTE's coverage is excellent, but there are wider perspectives to add.

For millennia, humanity moved around picking and chasing things to eat. The Agricultural Revolution meant the complete transformation of social arrangements, which resulted in the invention of private property, towns, political institutions, writing, ruling classes, fortifications, the ownership of land, etc.
Things were like that for a few millennia more. For the last couple hundred

PERE

Disk Storage: It's No Place to Compromise.

A dependable disk system means everything to the highperformance operation of your computer. At Percom, we know this. And we do something about it.

For example, the connectors on our TFD drive systems are gold plated.

Why? Because solder-plated contacts oxidize, forming an insidious insulation that can cause erratic operation. And then total failure.

Gold-plated connectors are just one way we make better drive systems than the competition.

Now \#1 for the Model III

Quality Percom TFD drives provide more features, cost less. Add-on drives start at only $\$ 439.00$. Complete First-Drive Systems start at only $\$ 749.95$. Features: "Flippy" Capability - Record your

To order products. or for the name of your authorized Percom retailer, call toll free: 1-800-527-1592.
PERCOM
PERCOM DATA COMPANY. INC. 211 N. KIRBY GARLAND. TEXAS 75042 (214) 272-3421
programs and data on either side of a diskette. Greater Storage Capacity Store 180 Kbytes - formatted - on one side of a 40 -track TFD drive. Store over twice as much on a TFD 80 -track drive. Think Megabytes - Your TFD drive controller will handle up to four drives. You can access almost 1.5 million bytes of on-line program and data files. Either Add-in or Add-On - Your TFD First Drive System can be either internal (add-in) or external (add-on). In either case, you get a complete system including the disk controller, drive, power supplies and disk-operating software. BASIC-Language DOS - Included on diskette with each First Drive System is Percom's OS-80/III '". This easy-to-use disk-operating system loads into 7 Kbytes of RAM and then frees the drive for other use. With OS-80 ${ }^{1 \mathrm{~m}}$ programs, you can have full, read-write interchangeability between Model I and Model III diskettes. Or Model III TRSDOS* - TFD 40track drives work with Tandy's Model III TRSDOS without modification. For 80track operation, TRSDOS can be easily modified with diskette patches supplied.

Still \#1 for the Model I

Besides greater storage capacities, more quality control measures and lower prices, all Percom Model I drives are rated for double-density operation.
Plug a DOUBLER ${ }^{\text {14 }}$ in your Expansion Interface and enjoy the same doubledensity disk storge capacity as Model III owners. Included with each DOUBLER is a TRSDOS compatible double-density disk-operating system. DOUBLEZAP programs are available for upgrading other popular DOSs for DOUBLER opera-
tion. And our double-density version of OS-80 ${ }^{\text {m" }}$ costs just $\$ 49.95$.

Of course you don't have to upgrade your Model I for double-density operation to use Percom disk drives. But it's nice to know you can.

Percom TFD drives for the TRS-80* Model I are available in 40-, 77- and 80track versions, in 1-, 2- and 3-drive configurations. Prices start at $\$ 399.00$.
System requirements: Model III TFD drives work with a 16 -Kbyte system (min) and Model III BASIC The initial drive must be a first-drive system. An optional interconnecting cable is available for expanding with external drives \#3 and \#4. Model ! TFD drives work with a 16 -Kbyte system (min) equipped with an Expansion Interface. Level 11 BASIC and DOS software. and an interconnecting cable. Twoand four-drive interconnecting cables are available from Percom.

HEATH/ZENITH YOUR

Pick a strong partner

A computer purchase is the beginning of a long term partnership between you and the people you buy from. Your ongoing need for software and accessories requires a partner who will stand by you with a growing line of products. And nowhere will you find a more complete line of hardware, software and accessories than at your Heathkit Electronic Center. Here are twelve strong reasons to make Heath/Zenith your partner.

1. The All-In-One Computer

The heart of the Heath/Zenith line is the stand-alone 89 Computer. It's a complete system with built-in $51 / 4$-inch floppy disk drive, professional keyboard and keypad, smart video terminal, two $\mathrm{Z80}$ microprocessors, and two RS-232C serial I/O ports. It comes with 16K RAM, expandable to 64 K .

2. Peripherals

These include the popular Heath/Zenith 19 Smart Video Terminal, loaded with professional features. And the 14 Line Printer, priced as low as $\$ 495$. Other printer brands are on display, including highspeed, typewriter quality printers.

3. Software

Word processing, includes reliable, easy-to-use Zenith Electronic Typing and powerful, full-featured WORDSTAR.
Small Business Programs, feature General Ledger and Inventory Control.
HUG, Heath Users' Group, offers members a library of over 500 low-cost programs for home, work or play.

4. Programming Languages

For your own custom programs, Microsoft languages are available in BASIC (compiler and interpreter), FORTRAN and COBOL.

5. Operating Systems

Three versatile systems give you the capability to perform your specific tasks.
CP/M by Digital Research makes your system compatible with thousands of popular CP/M programs.
UCSD P-System with Pascal is a complete program development and execution environment. HDOS, Heath Disk Operating System gives you a sophisticated, flexible environment for program construction, storage and editing.

6. Utility Software

Expand the performance range of your computer with a broad selection of utility tools, including the best of Digital Research and the complete line of innovative Softstuff products.

7. Disk Systems

The 8-inch Heath/Zenith 47 Dual Disk System adds over 2 megabytes of storage to your

89 Computer. Diskettes are standard IBM 3740 format, double-sided, double-density.
The $51 / 4$-inch 87 Dual Disk System adds 200 K bytes of storage to your 89 . Both disk systems feature read/write protection and easy plug-in adaptability.

8. Self-Study Courses

Learn at your own pace with Programming
Courses that teach you to write and run your own programs in Assembly, BASIC, Pascal or COBOL.
A course on Computer Concepts for Small Business gives you the understanding to evaluate the ways a computer can benefit your business.
Personal Computing is a complete introduction to the fundamentals for the novice. Every Heathkit/ Zenith course is professionally designed foreasy, step-bystep learning.

All Heath/Zenith Computer Products are available completely assembled and tested for commercial use. Or in easy-to-build, money-saving kits.

\qquad '

REASONS TO MAKE COMPUTER PARTNER

9. Expansion Options

Communicate with the outside world through a Threeport EIA RS-232C Serial Interface.
Expand RAM to 64 K with easy-to-install expansion chips.

10. Accessories

Your Heathkit Electronic Center has the latest in modems, black-and-white and color video monitors, computer furniture and a full line of supplies, accessories, books and parts.

11. Service

No one stands by you like Heath/Zenith. We help you get your system up and running smoothly. Service is available from trained technicians, over the phone or at one of 56 Heathkit Electronic Centers.

12. Value

Your money buys you more because
Heath/Zenith prices are among the industry's most competitive. Make your own comparison and find out how much you can save.
Complete, integrated computer hardware and software, designed to serve you and to grow with you - that's what to look for in a strong partner. And with Heath/Zenith you get it all under one roof.

All at your
 Heathkit Electronic Center

Pick the store nearest you from the list at right. And stop in today for a demonstration of the Heath/Zenith 89 Computer System. If you can't get to a store, send $\$ 1.00$ for the latest Heathkit ${ }^{\text {to }}$ Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write to Heath Co., Dept. 334-814, Benton Harbor, MI 49022.

Visit Your Heathkit Electronic Center*

where Heath/Zenith Products are displayed, sold and serviced.

PHOENIX,AZ 2727 W. Indian School Rd. $602-279 \cdot 6247$	MISSION, KS 5960 Lamar Ave 913-362-4486	CLEVELAND, OH 28100 Chagrin Blvd. 216-292-7553
ANAHEIM, CA 330 E. Ball Rd 714-776-9420	LOUISVILLE, KY 12401 Shelbyville Rd. 502-245-7811	COLUMBUS, OH 2500 Morse Rd. 614-475-7200
CAMPBELL, CA 2350 S. Bascom Ave. 408-377-8920	KENNER, LA 1900 Veterans Memorial Hwy.	TOLEDO, OH 48 S. Byrne Rd. 419-537-1887
el CERRITO, CA 6000 Potrero Ave. 415-236-8870	504-467-6321 BALTIMORE, MD 1713 E. Joppa Rd	WOODLAWN, OH 10133 Springlield Pike 513-771-8850
LA MESA, CA 8363 Center Dr. 714-461-0110	ROCKVILLE, MD 5542 Nicholson Lane 301-881-5420	2727 Northwest Expressway 405-848-7593
LOS ANGELES, CA 2309 S . Flower St. 213-749-0261	PEABODY, MA 242 Andover St 617-531-9330	FRAZER, PA 630 Lancaster Pike (Rt. 30)
POMONA, CA 1555 N. Orange Grove Ave. 714-623-3543	WELLESLEY, MA 165 Worcester Ave. 617-237-1510	215-647-5555 PHILADELPHIA, PA 6318 Roosevelt Blvd 215-288-0180
REDWOOD CITY, CA 2001 Middletield Rd. 415-365-8155	DETRDIT, MI 18645 W. Eight Mile Rd 313-535-6480	PITTSBURGH, PA 3482 Wm. Penn Hwy. 412-824-3564
SACRAMENTO,CA 1860 Fulton Ave 916-486-1575	E. OETROIT, MI 18149 E. Eight Mile Rd. $313.772-0416$	WARWICK, RI 558 Greenwich Ave. 401-738-5150
WOODLAND HILLS, CA 22504 Ventura Blvd. 213-883-0531	HOPKINS, MN 101 Shady Oak Rd. 612-938-6371	DALLAS,TX 2715 Ross Ave 214-826-4053
DENVER, CO 5940 W. 38th Ave 303-422-3408	ST. PAUL, MN 1645 White Bear Ave. 612-778-1211	HOUSTON, TX 1704 W. Loop N 713-869-5263
$\begin{aligned} & \text { AVON, CT } \\ & 395 \text { W. Main St. (Rt. 44) } \\ & 203-678-0323 \end{aligned}$	GRIDGETON, MO 3794 McKelvey Rd 314-291-1850	SAN ANTONIO, TX 7111 Blanco Road 512-341-8876
HIALEAH, FL 4705 W. 16th Ave 305-823-2280	OMAHA, NE 9207 Maple St 402-391-2071	MIDVALE, UT 58 East 7200 South 801-566-4626
PLANTATIDN, FL 7173 W. Broward Blvd. 305-791-7300	ASBURY PARK, NJ 1013 State Hwy. 35 201-775-1231	ALEXANDRIA, VA 6201 Richmond Hwy. 703-765-5515
TAMPA, FL 4019 W. Hillsborough Ave 813-886-2541	FAIR LAWN, NJ 35-07 Broadway (Rt. 4) 201-791-6935	VIRGINIA BEACH, VA 1055 Independence Blvd 804-460-0997
atlanta, ga 5285 Roswell Rd. 404-252-4341	AMHERST, NY 3476 Sheridan Dr. 716-835-3090	SEATTLE, WA 505 8th Ave. N. 206-682-2172
CHICAGO, iL 3462-66 W. Devon Ave. 312-583-3920	JERICHO, L.I. NY 15 Jericho Turnpike 516-334-8181	TUKWILA, WA 15439 53rd Ave. S. 206-246-5358
DOWNERS GROVE, IL 224 Ogden Ave. 312-852-1304	ROCHESTER, NY 937 Jefferson Rd 716-424-2560	MILWAUKEE, WI 5215 W. Fond du Lac 414-873-8250
INDIANAPOLIS, IN 2112 E. 62nd St 317-257-4321	N. WHITE PLAINS, NY 7 Reservoir Rd. 914-761-7690	-Units of Veritechnology Electronics Corporation in the U.S.

$64 K$ Double or Quad Density units available. Uses two Z.80 CPU's. Commercial-type terminal with 12" monitor. Dual double density minifloppies. Over 350 kilobytes of storage (twice that with quad density drives). Two serial RS232 ports, I/O ports standard. Expandable with optional S-100 interface. Comes with CPIMTM 2.2 operating system. MiniMicroMart can supply a wide range of CPIM development and application software.
w/64K Double Density, List \$3495 . \$2869 wi64K Quad Density. List \$3995. . . . \$3395

MiniMicroMart

943 W. Genesee St.
Syracuse, NY 13204 (315) 422-4467

Letters

years, however, most people have run machines. As we see and know, every society and culture in the world has been thrown into turmoil because, once again, the world is changing rapidly.
"Classic" economics is based on material commodities: if there are you and me and a loaf of bread, either you get it, or I get it, or we split it. No existing school of economics, however, deals with the fact that if you give me some information, you still have it. Material commodities get "thinner" when spread out, while information gets "thicker" as it's spread out.

Two-thirds of the jobs in the United States are informational. Money, property, and many other foundations of society have begun transmuting. Software piracy is a logical area for difficulties to emerge first. Where else can you go into business selling pure thought?
The more we are aware, and the more we examine and discuss the big implications, the less surprised we'll be.

Neil Rest
1457 Gregory
Chicago IL 60640

Congratulations to Chris Morgan for his timely attention to the software-piracy controversy. The following specifications may be useful in evaluating solutions proposed for this problem:
-There shall be no realistic means for defeating the protection mechanism, regardless of the attacker's technical sophistication or familiarity with the design of the software-protection system. -The software product shall not have to be customized for each licensee.
-The user shall have to purchase one, and only one, hardware device to use all protected software. Once this device is attached to the computer, the user shall be able to forget it exists.
-The device shall be the same, regardless of the computer system with which it is used; and it shall be compatible with existing computer systems.
-There shall be no degradation of the reliability or versatility of a computer system as a result of this device.
-The cost of the device shall be minor compared to the cost of the least expensive (but practical) system on which protected programs will be used.
-The logistical support of the protection system shall require no effort on the part of the software publisher.

- The system shall restrict the use of protected software to the licensed user for a licensed period of time.

I would appreciate the comments of BYTE's readers on the applicability and completeness of these specifications. At Salcris Corporation, we are currently field-testing our Chrono-Guard Software Protection System, which meets these specifications. Software protection is our only business and, while we believe we have a carefully thought-out solution to the industry's problems, we value constructive criticism.

Thomas C Donald
 President

Salcris Corporation
1 Office Park Cr
Birmingham AL 35223

In the May 1981 BYTE there were several excellent articles on what I regard as one of the most severe problems facing the computer-software industry todaytheft of software. (See Chris Morgan's "How Can We Stop Software Piracy7", page 6; Christopher Kern's "Washington Tackles the Software Problem," page 128; and Stephen Becker's "Legal Protection for Computer Hardware and Software," page 140.) 1 know of several companies, mine included, that will not sell packaged software because of the theft problem. The constant "reinvention of the wheel" that results from the reluctance to sell software is one of the leading factors contributing to the already poor productivity of the industry. If we are not to stagnate and allow foreign competition to steal our software lead, an early solution to this problem must be found.
One article mentioned several rather complex hardware solutions that are currently proposed to help solve the problem. While most of the hardware discussed would provide more or less proces-sor-independent solutions that would require no industry-wide effort to help solve the problem, I feel that these efforts will lead to an expensive and relatively insecure solution. The cheapest and most reliable answer is not a hardware solution (although hardware must play a key role), but "self-protecting" software.
How can software be made to protect itself? Well, I am not aware of any processor on which this is possible today, but a minor processor modification could easily, cheaply, and effectively accomplish

Mountain Computer CPS Multifunction Card ${ }^{\text {m }}$
 The Only Interface Card You Need!

Comiccing a Parallel Printer?

Epson Condonico ins taper Tiger 2 Cles hapiles all shese pomters and fotwors with on hoard gineltagence to pgevide paging and orift fatures lound on pog oher zard.

Connecting a Serial Printer?

Diablo ${ }^{\circ}$ Qume ${ }^{\circ}$ NEC - 1800 Serke CP' handles hese printers and others; with standard 235232 interface providing selécuion of batudiratew on idshakes paging, and more.

Connecting a Modem or Terminal?

Hayes Smarimodem ${ }^{(8)}$ Novinon CAT ${ }^{(3)}$ M\& R Pennywhiste ${ }^{\circ} \mathrm{CPS}$ handles these and others with full half duplex operation, baud rate selection, and even a tapsparent terminal mode which includes a dual mode feature that permits printing of text to parallel printers while 'on-line' eliminating the need for special rerminal software-and more.

Connecting with the Time?

The on-board calendar/clock provides real time and date information including day of week, day, month, year, hours, minutes, and seconds for any application requiring a time stamp-battery backed-up for over two years!

Connecting with The Source?

Used with a modem, CPS provides the connection to information utilities, such as The Source, ${ }^{(1)}$ Dow Jones, and others. Additionally, CPS provides the connection to big-time electronic mail with programs such as Micro Courierand Micro Telegram, and other data transfer programs.

Connect with Casy Use!

 From a user progran Mepu drivenserreens se yp your ntioćc of all chactions an TeS 290 store them on baard in EMOSS RAM-battery backed-y fincluding the clock) for dyer wa years! If change pominitr tun the setup pragram again-or dse special commands tron you keyboards Borthemore, most existing softhate programs tre immediately usatle with CP s. Phantom Slot Cotpabilan pernits asignment of Ces'functions o vovar software's pre-delined slots:

Connect with Your Apple"Dealer

Drop by your A'pple dealer and see how the CPS MuliiFunction Card provides the most comprehensive capabilities for RS-232C serial interface, parallel output and realtime calendar/clock of any card available today -all on one card-at one low pricecompetitive with any one of the three or more single function cards that it replacés.

Mountaln Computer

INCORPORATED
IO Road Scotts Valley CA. 95066
300 El Pueblo Road, Scotts Valley, CA 95066
$\begin{aligned} & 408) \cdot 438-6650 \\ & \text { TWX:910 598-4504 }\end{aligned}$

Appic. Apple II are Irademarks of Apple Computer Corporation.

California Computer Systems
250 Caribbean Drive
Sunnyvale, California 94086
(408) 734-5811

Telex 171959 CCS SUVL

Letters

this. The biggest problem will be to get everyone to cooperate and adopt a standard approach.

IBM was on the right track to solving the problem several years ago, but someone, somewhere, dropped the ball, and the solution became only half-implemented. Anyone who has ever done some systems programming work on an IBM $\mathrm{S} / 370$ is probably aware of the privileged instruction "STORE PROCESSOR ID." This instruction provides systems programs with the processor serial number and other system information, such as whether VM/370 is the system-control program, etc. This instruction provides system-level programs (and even microcode) some degree of theft protection, although its primary purpose is to provide a method by which system programs can determine what model processor is being used. The big problem from the applications program side, which is where IBM left the scene, is that there is no easy method to access the information provided by this instruction.

To solve the software-theft problem, the entire industry must provide some method by which the user's application program can determine such information as the make, model number, and serial number of the host processor. Additionally, it must be constructed in a manner such that it would be next to impossible for the user to modify the factory-supplied information. The addition of one instruction to the processor repertoire would undoubtedly increase the cost of the hardware, but the increase would not even approach the price of the cheapest protection method that I have seen proposed. The only disadvantages to this approach are that it would not be easily applicable to existing systems (most of which will probably not be around more than five years anyway, so why worry?) and it would preclude the distribution of source code (you would not want someone to discover how you encrypt the processor ID and check against the licensed processor ID).

I welcome any comments.

Jon R Kibler

President
Southeastern Computer Services Inc POB 160124
Mobile AL 36616

Chris Morgan's May 1981 BYTE editorial mentioned a software-protection

Here's the system builder's solution for successful computers and applications. Push in the CCS component. Push in the operating software. And push on with your application. CCS systems and components are designed to go together quickly, and to keep running reliably, with a proven return rate of less than 1%.

And you get performance. The systems deliver hardware vectored interrupts and the capability to interleave DMA data transfers with rates as high as two megabytes per second, plus bank select memory of up to 512 K bytes. This 8 -bit system provides single user, multiuser, and multitasking capability with ample speed to prevent operator waiting or loss of incoming real-time data.

The systems are available with CP/M or MP/M operating systems. For real-time or multiuser applications, the CCS OASIS real-time multitasking operating system supports re-entrant programs and relocatable code modules, with

facilities for task-to-task communication, file protection, time-of-day bookkeeping, spooling, task overlay, dynamic memory management, ISAM file structures and deviceindependent I/O. CCS OASIS includes debug, text editing, linkage, and file sort utilities; the system supports a host of existing languages, applications, and utilities from a range of vendors.

Powerful computer systems you can configure to your demanding requirements quickly, and with confidence. Choose from a variety of systems. Expand with CCS boardlevel modules for memory, disk control, high-speed arithmetic, and I/O, plus subsystems for floppy and hard disk storage.

If you sell, install, or use computer systems, you should know more about the CCS product line. We've got a lot more to tell. Tear out and return the coupon for more information. Or call.

CP/M and MP/M are trademarks of Digital
Research. OASIS is a trademark of Phase One Systems.
scheme based on encrypting programs.
Since mid-1979, all Sentinel computers have used a somewhat more convenient scheme. In our systems (based on one or more Intel 8086s), the machine's serial number is available to the operating system. The operating system recognizes encrypted application programs and uses the serial number as a key to decrypt them as they are loaded from floppy-, Win-chester-, or bubble-memory-disk storage.

This protects Sentinel's investment in our comprehensive set of financial application programs and lets us give our distributors and end users utility programs that can copy any of our software.

We also give Sentinel distributors the tools to encrypt their own programs.

> Vernon J Schryver
> Product Development Manager
> Sentinel Computer Corporation 9902 Carver Rd Cincinnati OH 45242

I read Chris Morgan's editorial on software piracy with interest. The two sides of the software protection/duplication controversy were drawn as "the vendor's need for security" versus "the user's need for backup copies for reliability."

My experience with software products, both large and small, has revealed an even greater need on the part of software purchasers than that of backup copies. This need is for modifiable and configurable software. A few years ago, most smallcomputer systems were either home-built or installed and used without modification from the time they left the factory. In the case of personal computers, peripherals were few and were usually made or distributed by the frame manufacturer. Things are different today-and this has given rise to the need for user-configurable software.
For example, my firm's Apple II computer contains interface cards for four peripheral devices: the disk system, printer, modem, and an 80 -column video card. Only one of these is an Apple Computer product. Nearly every software product we have purchased has required reconfiguration-sometimes a lengthy project-to support these devices.

I am very reluctant to purchase any software packaged on a copy-protected disk, an "unreadable ROM," or otherwise immune to modification to suit our needs. Vendor support of nonstandard hardware is an admirable goal, but we realize that it

One Man's Dilemma

I would never break into a computer store and steal a disk drive, a printer, or a processor card. After all, I'm a decent, intelligent, honest person. I teach my children the value of personal integrity, and I pride myself on my honesty. I never keep overpayments. I pay my taxes. I even spent over six months convincing a large department store that I owed it money when it couldn't find any record of the transaction. I don't allow my children to make audio-tape copies of records for each other. After ten years in the entertainment industry, I know how valuable a copyright is to a performer.

So, how did I become a software thief?

It started when I sold my Altair Tarbell cassette machine and upgraded to a North Star disk-based system. I knew when I got the system from a friend that he had piles of software to supply in the deal. That was the main reason I worked with him-to get the software. There were about twenty disks full of BASIC games, business programs, and a word processor. A neat little assembler and disassembler were included, although my primary interests were word processing and BASIC. I rationalized it this way: I would never do any commercial work using any of the programs. I was just learning-sort of "test driving. "If I did decide to do any serious programming, I would purchase what I needed to keep everything legal. I was, after all, an honest man. It worked too well and for too long.
It wasn't very long before I had forgotten my commitment; moreover, I wasn't doing any serious work on my computer. I did buy an updated version of North Star BASIC from the factory, which sort of made me legitimate. Things were stable for about a year, with no exchanging or sharing.

Then, I had a letter published in a magazine where I casually mentioned I would be interested in exchanging programs. Before I knew it, I had a growing file of others interested in "sharing" what they had. This list eventually focused on an individual in Michigan who seemed very generous and quite sincere in helping me not only get software, but in getting it up and running. Over a three-month period this rela-
tionship blossomed into a friendship. I was very grateful to this person. I was doing most of the receiving and only minimal giving, but he didn't seem to mind. There are people who get pleasure out of helping others.
I was about to submit a software review to a magazine when I was confronted with the stark truth: I was a thief. I don't know if the fear of being found out is what motivated me to take a long, serious look at my past actions. But whatever it was, I was faced with three problems:

- I had received stolen goods.
-I required these stolen goods every time I turned on my computer. This meant that if I decided to change my position, I would have to purchase a license and become a legitimate user of several hundred dollars' worth of programs.
- The explanation I would have to give to my Michigan buddy. How could I take his generosity and tell him that, for me, it had become criminal?
I prepared a letter, and, as fate would have it, he called me while it was in the mail. I had to tell him what I had spent so much time carefully wording. I felt trapped. Finally, I began to unfold how I felt about exchanging software. I explained that mine was a unilateral decision and wasn't meant to push him into a similar repentant attitude. It was wrong for me but not necessarily everybody. The words came out, and he seemed to take it very well and understand my position. It was several months before I heard from him again. When I did, he wasn't very friendly. It was an impossible situation.

This is the number one problem in stealing software: You cannot do it alone. Someone knows you will compromise your values if the price is right. Maybe even worse, you know you are helping other people compromise their values.

During this particularly difficult time for me, I remembered something my dad had told me when I was a boy. We had just left a friend's ranch after hearing how he had been paid for two cases of eggs he never delivered. My dad said, "If a man will cheat somebody else, he will cheat you."

Text box continued on page 24

We designed them to meet two standards.

right in. We build most of the components ourselves. which gives us complete control over quality, reliability, and performance every step of the way.

And Toshiba now offers you a fully developed and comprehensive dealer program based on our high standards of quality, reliability, and deliverability. Which means you can build your product line . . . and your profits.

So when you're looking for a reliable, well-thought-out VSBC or Word Processor, remember the name Toshiba. Our standards are as high as yours.

TOSHIBA

EW-100

display capacity: 80 characters $\times 24$ lines floppy disk: $8^{\prime \prime}$
storage capacity: $300 \mathrm{~KB} \times 2$,
$1 \mathrm{MB} \times 2$
type of printer: daisy-wheel printer printing speed: 45 characters/sec. print pitch: 10/12/proportional spacing

cannot be depended on in all situations. The most reliable and useful software that I have purchased runs under a standard operating system and is easily modifiable by means of a configuration program or a copy of the source code.

More than once, I have decided not to purchase a desirable software product when I became aware that it did not support our system configuration and was packaged in a copy-protected form. Surely the revenue lost to vendors in this manner is as significant as that lost to "pirates."

Our firm plans to enter the small-com-puter-software market through direct and retail sales. BYTE readers should be assured that our programs will be fully accessible, modifiable, and packaged with source code whenever feasible.
Yes-we'll be vulnerable to piracy. But I believe that the solution to the softwarepiracy problem is increased vendor support (rendering pirated copies less valuable) and vigilant enforcement of protective laws, not making software products less accessible to the user.

Michael C Berch

Managing Partner
Southside Systems
2424 Haste St
Suite A-40
Berkeley CA 94704

I would like to comment on the May 1981 BYTE editorial and the two articles on the subject of software piracy. There are two sides of every fence. BYTE took the side of the software provider; let me take the side of the user.
I purchased an Apple II, disk drives, video monitor, printer, modem, etc, plus about $\$ 1000$ worth of software for business use. This is not my hobby, and I have no intention of becoming any more of an expert with computers than I must to achieve my purpose.

From my standpoint, the price of all of this stuff is so low that there is absolutely no point in messing around either with pirates or in doing it myself. Even the bookkeeping and inventory-control programs, at $\$ 600$ to $\$ 1000$ or more, pay for themselves in a few months. If the minicomputer manufacturers could ever get their act together, the business-software market would dwarf their present endeavors. (I think that the Japanese will do the job for them, and Apple will wind up back in the old garage along with the others.)

Text box continued:
There is no sacred bond above which all transactions are honest and below which honesty is negotiated.

I sent away for the software I required to keep writing. As luck would have it, I had been legitimately given two key pieces of software, that were mine to keep, in return for providing reviews to magazines. So as it turned out, I had won and I had lost. Cleaning up my act didn't cost me as much as I thought it would; however, I lost a friend. I consider that loss the highest price to pay for my transgression.

I'm sure there are those who will be critical and demand I pay for the software I used for the two years. All I can say is that I've given it careful thought and I feel comfortable with my current situation.

Foolproof, protected software is fiction and will never be reality because it has nothing to do with technology. It has to do with the human condition. There always will be people who will compromise integrity for material gain. And there will be those, like myself, who will slip past honesty and into what they often call a "gray area" before they get their heads out of the sand and take responsibility for their actions. And, thank God, there are a handful whose integrity will not waiver. As long as this human condition exists, there will be no perfect system for software protection.

I have two Apple programs that provide access to the Dow Jones data base for the purpose of obtaining securities quotes, keeping track of portfolios, and the like. One program is written in BASIC, is useraccessible and, with some user modifications, works like a charm. The other program is "locked." It doesn't work.

Apple has a disclaimer in its program manuals absolving them of all responsibility. So far, Apple hasn't abandoned me, but it's taking its own sweet time about coming up with a fix. When and if a fix comes through, no field modification by the user will be possible. I have a pretty good idea what the problem is and if I could gain access to the program, I could probably fix it myself in a short time. This way it will take weeks or months, if it gets fixed at all. I think the denouement is that a determined and knowledgeable pirate will succeed no matter what, while the

There are, perhaps, only two reasons for maintaining personal integrity. One is the fear of being discovered and exposed-or worse, punished. An idea I read a year or so ago suggested that a bounty on pirates may be the most workable tool to enforce this first reason. I don't like this idea: there are too many holes in it. But it does seem the most effective way to put the fear of being caught into pirating.

On the other hand, there is the moral fiber within each of us that merely needs to be awakened to become strong and effective. Careful examination of your situation with a critical eye on what you know to be right and wrong will certainly expose any deficiencies. It then becomes a matter of pricing your integrity and remembering that you can't steal software by yourself. Yes, the process of evaluating the circumstances is simple. The difficulty of implementation will likely be directly proportional to how deeply involved you are in stealing.

Drop me a postcard-anonymously, if you prefer-and let me know your feelings.

Eugene Dorman

c/o BYTE Publications Inc
POB 372
Hancock NH 03449
honest and legitimate user, like me, takes it on the chin.

Adolph L Friedman
 POB 2856

Santa Fe NM 87501

I disagree with Chris Morgan's editorial on software piracy. It seems that the software expert has a stranglehold on the personal computer. His hand is clutched around my wallet and he is squeezing for all it is worth. I don't like that. In the capitalistic system, competition brings the price in line. Software is a monopoly, and Mr Morgan's concern is like governmentsecured loans to Chrysler.

Why not let the software people provide more flexibility to the user? If the software is easier to obtain and more reasonably priced, a larger number of people would own personal computers.

Most small system users think all microcomputers are created equal. And they're right. If you want performance, convenience, styling, high technology and reliability (and who doesn't?) your micro usually has a price tag that looks more like a mini. It seems big performance always means big bucks. But not so with the SuperBrain!
Standard SuperBrain features include: twin double-density $51 / 4^{\prime \prime}$ drives which boast nearly 350,000 bytes of disk storage - expandable 010 megabytes. A full 64K of dynamic ZAM. A CP/M* Disk Operating System to nsure compatibility to literally hundreds of application packages presently available. And, $12^{\prime \prime}$ non-glare, 24 line by 80 column screen.

You'll also get a full ASCII keyboard with an 18 key numeric pad and individual cursor control keys. Twin RS232C serial ports for fast and easy connection to a modem or printer. Dual $Z 80$ processors which operate at 4 MHZ to insure lightning-fast program execution. And the list goes on! Feature after feature after feature.

Better yet, the SuperBrain boasts modular design to make servicing a snap. A common screwdriver is about the only service tool you'll ever need. And with the money you'll save on purchasing and maintaining the SuperBrain, you could almost buy another one. For under $\$ 3,500$, it is truly one of the most remarkable microcomputers available anywhere.

Whether your application is small business, scientific, educational or just word processing, the SuperBrain is certainly an exciting solution to the small computer problem. And since you can easily expand it, you'll probably never outgrow it.

Call or write us today for a complimentary copy of our "SuperBrain Buyer's Guide." We'll show you how you can get big system performance without having to spend big bucks.

= $=\mathbb{N T E T R}$ DNTA 프 SYSEMS

2300 Broad River Rd. Columbla. SC 29210 (803) $798-9100$ TWX: 810-666:2115

Circle 193 on inquiry card.

Letters

That in itself would increase the market for software. The broader the base of people using computers, the greater the variations and the need for software.

What Mr Morgan proposes is like Exxon buying up the "good gas-mileage carburetors" before they get to market. It sounds to me that Mr Morgan is trying to protect the pirates.

Brigg Leurs

436 N 1050 E
Kaysville UT 84037

It seems to me that the solution to software piracy has been evident and used for a considerable time by BYTE's parent company, McGraw-Hill. Hundreds of man-hours can be used in the writing and debugging of a program, and this can be translated into cost and selling price, the same as any other commodity.

The Osborne Accounting System, for example, has a finite value. The disks for each program are available at a very low price, even as low as $\$ 8$, from one of BYTE's advertisers. However, the comprehensive and beautifully published manuals that include the source code can be purchased for $\$ 20$. You could not photostat one of these manuals for less than this price. Therefore, you buy it.

It would be interesting to know how many manuals the McGraw-Hill Book Company has sold and what the income has been, per program. I'm sure this shows one solution: give the disk away and sell the manuals, like the old stunt of giving the razor away, but selling the blades. All of the methods for "locking in" programs and "locking out" software pirates are rather foolish. Everyone knows that you can access every byte on every track, change the ID and password,
disassemble, and transfer from one system to another.

A A Schwartz
 6454 El Camino Del Teatro La Jolla CA 92037

The antipiracy devices mentioned in Chris Morgan's editorial are quite ingenious, but like all human inventions, they are fallible. I wonder if BYTE readers would like to reconsider the whole question of "software protectionism" at a more elementary level.
I can identify at least three basic "instincts" at work which must be accommodated:

- the natural inquisitiveness of the human mind
- the insatiable attraction of acquiring things for oneself
- and the irresistible challenge of another human mind

Inasmuch as knowledge and information are the essential contents of all software, to keep them "locked away" is oldfashioned logic. Widely disseminated knowledge will bring forth more knowledge. In an age when knowledge becomes rapidly outdated, hanging on to some little invention is unrealistic. Like all attempts at prohibition, the setting up of barriers is probably the most potent stimulus to overcome them. Such attempts have only resulted in the escalation of costs to the consumer, the production of weird and delicate formats that are much more prone to crashes, and the great step backward of adding unnecessary keys and ROMs (read-only memories) that defeat the advantage of computerization.

Is it too late to take a 180° turn and stop this "cold war" from escalating? Would it be possible to take the alternate view? Here are some suggestions:

- The ultimate way of getting rid of piracy is to make the purchase of genuine software so cheap that it becomes uneconomical to copy. Who bothers photocopying paperback books? The volume of sales will more than compensate for the lowering of the profit margin and protection costs.
- Software houses should encourage users to become subscribing members. This would provide capital for software development as well as some degree of customization of the software to be developed. New programs could be offered to subscribers on a priority discount basis.
- Users clubs should be encouraged to adopt a code of ethics; in :eturn they would be allowed to participate in a scheme of evaluation and bulk ordering of new products. There is no pressure greater than peer pressure.
- A good user and upgrading service should be arranged so that a firm bond is created between the user and the software producer. Newsletters with user comments is one way to achieve this.

I am glad to say that at least one software company, Personal Software, has begun to adopt this new attitude for its Data Management System and Desktop Plan. I salute them. I sincerely hope that BYTE and its readers will take the initiative of spearheading this more rational approach before you have to say "open sesame" to your computer.

Dr A Hua

Department of Medicine
Queen Mary Hospital
University of Hong Kong
Hong Kong Letters continued on page 30

UVEON proudly announces OPTIMUM. ${ }^{\text {M }}$ OPTIMUM is an easy to use, total concept data management program for $C P / M^{\oplus}$ and $M P / M^{1 M}$ systems. Breaking through traditional DMS barriers. OPTIMUM provides large scale data management capability to broaden your computer horizons. Developed for individual computer users and applications builders, OPTIMUM supports user-defined forms and files, dictionaries, powerful reporting, storage efficiency. speed and unique cross-referencing. Everything you want in data management is now complete in one system.

USER-DEFINED FORMS AND FILES

With OPTIMUM. implementing an application is simple. The user defines screen forms to fit the data and describes how the data is to be stored. Once this is complete, data entry may begin. Input editing, validation and cross-referencing during data entry exiend OPTIMUM's range. If the need exists, OPTIMUM can handle complex or multiple screen forms for the same file. Screen forms may be modified and expanded as needed.

DICTIONARIES

OPTIMUM maintains a dictionary of terms for each file. This dictionary contains information on each data element in the file and describes operations to be performed. Alterations and additions to the dictionary may be made as required.

MICRO-ENGLISH ${ }^{1 M}$ REPORTING

 OPTIMUM Micro-ENGLISH lets the user request standard or custom reports from the OPTIMUM files. Sophisticated selecting and sorting capability give Micro-ENGLISH all the power of a large scale interactive inquiry processor. A dictionary based vocabulary keeps the user interface simple.
OPTIMUM STORAGE

EFFICIENCY AND SPEED

OPTIMUM stores all information in a compact variable-length format. OPTIMUM files are designed for interactive speed; a single file item may be retrieved from among hundreds in an instant.

OPTIMUM DATA CROSS-REFERENCING

A unique feature of the OPTIMUM system allows a user to cross-reference data elements. Once information is entered. it may be retrieved using key words in the data.
From simple applications to complex systems, OPTIMUM manages it all. Broaden your horizons using the total concept data management system with the power of such industry forerunners as Prime Information, Honeywell Ultimate and Microdara Reality. Call or write UVEON today for more information on OPTIMUM. 1-800-525-1637.

[^3]The Future in Software.

UVEON Computer Systems, Inc.
899 Logan Street
Denver. Colorado 80203

A Major Breakthrough

The

The System 2800 is the next logical step in the continuing line of innovative products from the Systems Group.

Unbeatable S-100 Memory Boards

First was the development of the DMB6400 series of S. 100 Memory boards featuring the
 innovative Bank Select switching technique. This enables users to software select up to four totally independent memory banks per board.

The 2nd Generation

Then came the 2nd Generation of IEEE S-100 COMPATIBLE Z80 PROCESSORS, FLOPPY DISK CONTROLLERS and SERIAL I/O BOARDS. Each has been designed for single user, multi-user or
network operating systems such as CP/M ${ }^{\oplus}$, MP/M ${ }^{\text {TM }}, \mathrm{CP} / \mathrm{Net}^{\text {TM }}$ and OASIS ${ }^{\text {TM }}$.

The Next

Logical Step ...

We challenged our design team to create an innovative yet competitive system utilizing our existing line of field proven, dependable S-100 boards. The result: a highly reliable, quality built, state of the art microcomputer that gives you the cost/performance edge you need to be a leader in your field.
The System 2800 comes with a choice of operating systems: CP/M with an enhanced CBIOS for single user systems and either MP/M or OASIS for multi-user, multi-tasking systems. MP/M is available with either a standard or

CP/M MP/M and CP/Net are trademarks of Digital Research OASIS is a trademafk of Phase One Systems

enhanced XIOS. The CP/M based System 2800 provides improved diagnostic reporting capability and increased sector sizes of 1024 bytes yielding disk performance throughput increases up to 400\% over standard unblocked systems.

The enhanced multi-user, multi-tasking MP/M based System 2800 provides the same advanced features as CP/M. In addition, this interrupt driven implementation can offer performance throughput increases up to 2000% thru extensive disk buffering for applications requiring a large number of disk accesses.
Also available is the OASIS operating system with ISAM files, automatic record locking and multiple-user print spooling.

All operating systems are available in either floppy or hard disk configurations. The disk drive selection includes single or double sided, double density 8 -inch floppies with up to 2.52 megabytes of formatted storage per system, expandable to 5.04 megabytes, and an 8 -inch 10 megabyte winchester hard disk.

Cost Effective Reliability

Dealers, OEM's and System Integrators share many common needs. Not the least of these is dependable products. That's why we back our System 2800 with our established reputation for high quality products, superior support, prompt and courteous service, and a one-year warranty.

Take the next logical step. See your nearest computer dealer, or contact us for the complete story on our S-100 family of board products and enhanced systems.

Systems Group

A Division of MEASUREMENT systems \& controls incorporated
1601 Orangewood Ave.
Orange, Calif. USA 92668
(714) 633-4460 TWX/TELEX: 678401 TAB IRIN

[^4]

You can use just about any desk for a computer terminal stand. But with CF\&A, you're sitting pretty. Our full range of desks, workstations, and terminal stands are designed to accommodate a variety of computer equipment. Choose from our Classic Series desks, DR Series desks and enclosures, specialty items like our Apple II desk, or a universal printer stand. You'll be sitting pretty with attractive color selections, durable construction, versatile configurations, useful options, competitive prices, quick delivery, and personal service. It's our way of doing business.

Computer Furniture and Accessories, Inc. 1441 West 132nd Street Gardena, CA 90249 (213) 327.7710

Letters.

The WInd Blowest Where It Listeth

Something is a bit strange about BYTE's May 1981 cover. The sail is full and set for a run (which means wind astern), the burgee points to port (which means wind off the starboard), and the spray from the bow wave points to starboard (which means wind to port). l've seen things like this on a lake just leeward of an island, but only for a moment. It's pretty unlikely on the open sea. And, worst of all, the sail has a big hole in it!

BYTE's cover has inspired a new disparaging remark about a landlubber: he doesn't know his sail from a floppy disk.

John A Ball
Oak Hill Rd
Harvard MA 01451
The May cover is a faithful representation of a situation that occurred during the BYTE staff's last outing. By the way, we know about floppy disks, but what's a "sail"? . . . CPF

Programming As an Essay

As a programmer whose background is in literature, I am naturally sympathetic to the analogy between programming and natural languages that John Handel draws in his article "The New Literacy: Programming Languages as Languages." (See the March 1981 BYTE, page 300.) That a programming language is indeed called a language, that programming borrows much of its lingual terminology from natural languages (eg: word, paragraph, syntax), offers at least a hint of the parallel that Mr Handel persuasively develops.

At one point, however, he makes an analogy between a program and a book that I find a bit contrived. His argument would be better served with an analogy between a program and a formal essay. Having written both, I find the thought processes involved in both remarkably similar.

Essentially, a formal essay consists of a thesis, arguments to support that thesis, and a conclusion. Its usual purpose is to interpret, persuade, or inform: to solve some critical or rhetorical problem. Before writing can begin, an essayist must be able to express clearly to him- or herself the thesis and conclusion in order to define

Please call (213) 883-8594.
 Our Epson prices are so low, we're notallowed to print them.

EPSON MX-80

SCALL
$80 \mathrm{cps} / 9 \times 9$ matrix/Lower case with true descenders/Bi-directional \& Logic seeking/Adjustable tractor/ Expanded printing/Block graphics/ Forms control/Compressed printing/ Double-strike printing/Correspondence quality/Emphasized printing mode/Standard parallel interface

EPSON MX-80 F/TSCALL
Same features as the MX-80 plus Friction Feed. Adjustable removable tractor is standard for ease of handling forms and single sheets

EPSON MX-100 F/TSCALL
Same features as the MX-80 \& MX-80 F/T but on $151 / 2$ inch carriage for printing 132 columns with standard 10 cpi font or 232 columns in the compressed character font. The MX-100 is complete with Dot Resolution Graphics

EPSON INTERFACES \& OPTIONS

TRS-80 MODELI, III CABLE
TRS-80 MODEL I Keyboard Interface TRS-80 MODEL II CABLE APPLE INTERFACE \& CABLE IEEE 488 INTERFACE SERIAL INTERFACE

$\$$	30	SERIAL INTERFACE (2K BUFFER)
$\$$	95	SERIAL CABLE Male IO Male
$\$$	30	DOT RESOLUTION GRAPHICS
$\$$	100	REPLACEMENT RIBBON.
$\$$	60	REPLACEMENT PRINT HEAD (Quet type)
$\$$	70	EPSON SERVICE MANUAL

\$ 149 30 90 13 40 40

We built a reputation on our

 prices and your satisfaction.We guarantee everything we sell for 30 days. Il anylhing is wrong, just relurn the item and we'll make it right And, of course, we'll pay the shipping charges.

We accept Visa and Master Card on all orders. COD accepted up to $\$ 300.00$. We also accept school purchase orders.

Please add $\$ 2.00$ for standard UPS shipping and handling on orders under 50 pounds, delivered in the continental U.S. Call us for shipping charges on items that weigh more than 50 pounds. Foreign, FPO and APO orders please add 15\% for shipping. California residents add 6\% sales tax.
the problem, its scope, and to provide a framework for its solution. Similarly, a programmer must have a definition of his or her problem, and he or she must be able to frame a solution before coding can begin. Both the essayist and the programmer must know where they want to go before they can begin the detailed work to get there.

Next, the essayist must gather his or her major arguments and break the thesis into components, just as a programmer will break the problem into manageable parts. A writer will then arrange the arguments so that they flow smoothly through the
essay. A programmer will begin arranging the parts of the problem so that they operate in an orderly fashion.

Finally, the detail work can begin. A writer will supply minor arguments and examples to "flesh out" his or her work. A programmer at this point concentrates on code. Both will polish their work, ensuring that grammar, diction, and syntax are correct

An essay may not have to communicate "in a precise fashion" and an essayist must rely on a reader to "test" the thesis (not as strict a standard as a programmer's computer), but an essay must communicate in

XCEL GRAPHICS 512×240 RESOLUTION

For Z-89 \& Superbrain

And soon for TRS 80 MODEL II
XCEL ${ }^{\text {TM }}$ GRAPHICS UNIT - A Completely assembled hardware retrofil package providing high resolulion graphics display, normal video display or both displays simullaneously. \$895.00

$\$ 175.00$
XCELTM GRAPH PLOTTER-CMOice ol lout IEPRESENlations (line. graph, hislogram. bat glaph ano scaller nloll) with aulomatic annotalion of axes ond automatic scaung inal allows any number of funclions to be displayedionone set of axes All callable lrom your programs

$\$ 395.00$
XCEL'M SURFACE PLOTTER-TrUE REI SPMCIVE vew. wath full hidden line removal of curved callatie from your programs.
$\$ 395.00$
XCEL'M GRAPHICS TERMINAL-Emulates a subsel
of the Tekliomx@ 4010 Scties Graphics
Terninal functions Simple menu diven key-
dash and elase mode vectors.

XCEL ${ }^{1 /}$ sottware packages operate under CPM ${ }^{\text {(1) }}$ and utilize the Microsot parameter passing mechanism for compatibility with high level languages, such as BASIC. FORTRAN, COBOL, PLI, and PASCAL. XCEL soltware can be loaded into high memory and called from your programs or integrated directly into your programs inrough use of the Microsolt linking loader

FOR ADDITONAL PRODUCT INFORMATION
IN CONTINENTAL US CALL TOLL FREE:
(800) 421-1423
in CALIFORNIA CALL
(213) 320-6604

MAXTEK, INC. 2908 Oregon Court, Torrance, CA 90503
Tektronise is a regsiered racemark of Tekrionix, inc CPMe is a regisle eded trajemark ol Digital Rescearch
a reasoned and orderly fashion. Both writer and programmer must be logical within a verbal framework.

I agree with Mr Handel's conclusion that a programmer with verbal sensibility will tend to write readable programs that work. Perhaps then, programming installations, especially commercial shops where the work is not technical or mathematical, may do well to employ language and linguistic students. Perhaps too, a source of programming talent may be found in writers and students of philosophy and history who already have a command of language and procedural skill and who could learn the particulars of programming quickly and easily.

Michael J Nichols
1725 York Ave
New York NY 10028

Vikings Defense

It may be that BYTE's attention somehow has been focused on the aspects of violence in the history of the Vikings. The cover on the May 1981 BYTE and the text on page 4 does, however, indicate that BYTE ought to read up on the Vikings as well as on their contemporary history

BYTE has done the Vikings a gross injustice by merely stating that they were "notorious pirates." Let me say in their defense that they were also clever sailors, innovative navigators, explorers, and tradesmen, who traveled routes that today seem impossible considering the equipment they had at hand. They were tough, maybe, and violent-living in times of different general ethics and values than you may wish for yourself today. But, to call them pirates, with an indication of lawlessness, is simply an (unfair) application of current values to a very different time and place.

The Vikings also were clever shipbuilders, building perhaps the most beautiful boats that have ever been made. You may see some of these here in Oslo and judge for yourself.

Einar Skjorten

Rytterfaret 21
1347 Hosle, Norway
We apologize, Mr Skjorten, for our somewhat simplistic representation of the Vikings. . . . CM■

The guy on the left has two file folders, a news magazine, and a sandwich.

The guy on the right has the OSBORNE ${ }^{(1)}$, a fully functional computer system in a portable package the size of a briefcase. Also in the case are the equivalent of over 1600 typed pages, stored on floppy diskettes.

The owner of the OSBORNE 1 is going to get more work done-and better work done-in less time, and with less effort.

Unfold it, plug it in, and go to work like you've never worked before. . . .

Go to work with WORDSTAR ${ }^{\text {® }}$ word processing, so your correspondence, reports, and memos take less time to produce, and say more of what you wanted to say. And with MAILMERGE ${ }^{\oplus}$-the mailing system that turns out personalized mass mailings in the time you'd spend on a rough draft.

Go to work with SUPERCALC ${ }^{\circledR}$, the electronic spreadsheet package that handles complex projections, financial planning, statistics, and "what if" questions instantly. For the more technically minded, SUPERCALC will process scientific data and calculate results.

Go to work with powerful BASIC language toolsthe CBASIC-2 ${ }^{\oplus}$ business BASIC, or the Microsoft BASIC ${ }^{\circledR}$ interpreter.

That's standard equipment.
Options include about a thousand different software packages from a host of vendors designed to run on the CP/M ${ }^{\oplus}$ computer system.
Go to work at the office, at home, or in the field.
Or anywhere. Optional battery packs and telephone
transmission couplers mean you need never work without the capabilities of the OSBORNE 1. That's good, because you won't want to work again without it.

All for \$1795. It's inevitable.

The OSBORNE 1 is the productivity machine that's changing the way people work. Put simply, the machine delivers a significant productivity edge-day in and day out-to virtually anyone who deals with words or numbers. Or both.

Since the entire system is only $\$ 1795$, it won't be too long before the guy on the left has an OSBORNE 1 of his own. The same probably goes for the person reading this ad. In fact, we think it's inevitable.
The OSBORNE 1 includes a $280 A^{*} \mathrm{CPU}$, 64 K bytes of RAM memory, two 100 kilobyte floppy disk drives, a business keyboard, built-in monitor, IEEE 488 and RS232 interfaces for printers and other things that get connected to computers, plus
CP/M. CBASIC-2 Microsoft BASIC, CP/M, CBASIC-2, Microsoft BASIC, WORDSTAR, and SUPERCALC. The system is available from com-

puter retailers nationally.
 \$1795. It's inevitable.

26500 Corporate Avenue Hayward, California 94545 Phone (415) 887-8080 TWX (910) 383-2021

Princlples of
 Artificlal
 Intelligence

Nils 」 Nilsson
Tioga Publishing, 1980 476 pages, hardcover $\$ 27.50$

Reviewed by
Steven K Roberts and
James Paul Jenal
5885 Dublin Rd
Dublin OH 43017
Artificial intelligence (AI), for over two decades the arcane province of academic visionaries, is at last spilling over into the worlds of engineering and practical system design. A fascination with the programming language LISP is sweeping the industry, robotics and machine vision (though still primitive) are something other than fantasy, and the cost of computer hardware on a scale necessary for Al work has dropped to the point where it even touches the personal computer spectrum.

It is becoming worthwhile to learn something about the subject for reasons beyond intellectual curiosity.

A new book by Nils J Nilsson offers a substantive look at a body of techniques upon which much of the work in the artificial intelligence field is based. Presently the director of the Artificial Intelligence Center of Stanford Research Institute, Nilsson has for years been involved in problem-solving, theorem-proving, and planning systems, and has authored publications along these lines that date back to the early 1960s.
Principles of Artificial Intelligence is intended as a text for a college senior or firstyear graduate student, and can thus be considered to be the reader's first serious exposure to the field. But a
question arises as to whether or not the ensuing (fairly rigorous) discussion of predicate calculus is the way to proceed. Though the text was written as an introduction and does, in fact, concern itself far more with underlying techniques than with applications areas, it focuses fairly strongly upon formalisms with which the reader new to the field might be a little uncomfortable.

Predicate calculus is certainly not new to serious students of computer science-it is required material in almost any undergraduate com-puter-science curriculum, though exposure is typically limited to formal proving exercises. Nevertheless, predicate calculus does provide a refined set of manipulative tools that are useful for the implementation of knowledge-based production systems, and it has a distinct advantage over some of the more intuitive paradigms, such as relational databases and semantic networks, in that it has matured from many years of disciplined development in other application areas. Though imposing in appearance, it is a reliable basis for system design and, thanks to its universal acceptance, for communication of ideas with other workers in the field.

However, one of the ideals of artificial intelligence work is the comfortable bridging of the vast conceptual gap between man and machine. Although this inevitably requires the application of formal tools, it should eventually lead to increased "naturalness" of problem expression. In a purely rigorous sense, any Turing machine implementation is as good as another (they provide the same computing power), but the differences to those who
must use them are significant. As anyone who has ever attempted to express abstract, symbolic constructs within the syntactical and semantic restrictions of FORTRAN knows only too well, the issue of naturalness is inexorably tied to the representation problem.

Early on, Nilsson states that "selecting a good representation is one of the important arts involved in applying AI techniques to practical problems." This is indeed true, not only in this field but in all aspects of computer problem solving. Knowledge representation, whether via a body of production rules (if...then constructs), frames (relatively passive data entities appropriately interconnected and applied to a set of inference procedures), or any other means, is a central and hotly contested issue that affects not only the usefulness of a system's design but its naturalness. While different approaches may not necessarily provide greater power, they might free the mind to achieve greater insights-and insight is at the heart of all problem solving.

Nilsson makes a good case for the use of predicate calculus as the set of "cranks" with which any type of system can be implemented. Whether or not this approach constitutes an optimal entry into the artificial intelligence field is partly a function of the reader. From a classical engineering standpoint, the assimilation of formal methods before exposure to the more philosophical aspects is absolutely necessary, and for those who are comfortable with this approach, the book comes highly recommended: the problems are interesting, yet not so esoteric that you lose sight of their purpose-name-
ly, the chance to apply the principles that Nilsson has so painstakingly laid out. Those who lack the text's presupposed ease with formal methods (and there is much of interest in the field that does not require it) might prefer a book targeted to an overview of Al's various subspecialties (such as Patrick H Winston's classic, Artificial Intelligence, Philip C Jackson's Introduction to Artificial Intelligence, or Pamela McCorduck's Machines Who Think).

Principles of Artificial Intelligence, like its predecessor, Problem-Solving Methods in Artificial Intelligence (Nilsson, McGrawHill, 1971), can be considered an authoritative text on many of the underlying ideas that serve as the basis for the bulk of current artificial intelligence research. After Nilsson develops the primary theme, he provides a number of provocative comments about the field, and closes with a comprehensive and up-to-date bibliography of published works. Though hardly casual reading, the book offers solid underpinnings for methodologies which might otherwise appear disquietingly magical.

Radio Shact's IRS-80 Model III is Xour Best Bry in Desitop Computers.

Because You Get 48K at Last Year's 32K Price!

That's right, we've added 16 K more memory, but kept the price at a low $\$ 2495$! The TRS-80 Model III is a complete, ready-torun desktop computer packed with "extras" that don't cost extra:
Two Double-Density Disk Drives. You get two bull-in 175K disk drives, and can add up to two more externally.
BASIC in 14K ROM. Our powerful Model II BASIC provides a program line editor, machine language programming, real time clock, and more. Compatible with most Modell Level II BASIC programs, too. Pius, you can expand with COBOL or Compiler BASIC any time.

Upper and Lower Case Characters. With a special graphics character set, and 64 characters-per-line format.
Built-In Monitor. 12," high-resolution.
12-Key Datapad. As well as repeating keys and keyboard-controlled screen print.
Parallel Printer Port. Add one of our printers anytime.
RS-232 Serial Interface. For data communications, just add a modem.

Natlonwide Support. Backed by 6100 Radio Shack stores and dealers, 160 Computer Centers and 160 service centers throughout the USA.
Avallable Now. Why pay more? Get a demonstration today. Also check out our
$\$ 999$ 16K Model III-it's a perfect "starter" system

Radio Shaeki

The biggest name in thtle computers A DIVISION OF TANDY CORPORATION

Read about your best buy in computers. Send for a TRS-80 catalog.
Radio Shack, Dept. 82-A-122
1300 Ona Tandy Center
fort Worth, Texas 76102

1

NAME
STREET

A LOOK AT MCC '81

by Steven K Roberts, 5885 Dublin Rd, Dublin OH 43017
This year's National Computer Conference, held last May 4 through 7 at McCormick Place in Chicago, was so large that nobody could effectively see all of the show in the four days allotted to it. In fact, with about 73,000 people attending, it was often difficult to see the displays at all. The task was also complicated by the juxtaposition of booths for every type of computer, from microcomputer to mainframe, and their associated supplies and peripherals. Still, what I did see was exciting; shown here are some of the attractions.

I Any attempt to capture the entire NCC in a single photograph is doomed to failure.
2 The BMC IF-800 microcomputer. This new entry from Japan is impressive, although its price might be too high for the casual user.
3 The LEX-21 is a portable terminal with a fullsize keyboard, a 40 -column printer, a buffer of up to 8 K bytes of memory, and a built-in direct-connect 300 -baud modem.
4 The Apple booth was constantly well attended because of the many applications being dernonstrated.
5 The Corvus Omninet, a local network system that can interconnect $u p$ to 64 microcomputers via a simple twisted-pair wire connection. Each microcomputer connects to the twisted-pair bus through an interface called a "transporter." Interfaces now exist for Apple, LSI-11, and Onyx computers.
6 BASF's slimline 5.25 -inch floppy-disk drives. Three of these units will fit in the space of two drives of conventional design.
7 The TRS-80 Color Computer was displayed prominently at the Radio Shack booth. With its Extended Color BASIC, the unit can deliver impressive color graphics.
8 and 10 The Xerox Star. A view of the unit's video display, photo 8, shows why the Star was one of the most popular exhibits at the show-it delivers on its promise of "What you see on-screen is what you get." Photo 10 shows the Star itself, an intelligent office terminal that can be connected to Xerox's Ethernet.
9 The Sony Typecorder, a self-contained, battery-powered "portable office" about the size of an issue of BYTE. The unit stores both voice and text (up to 120 pages) on a microcassette and can dump text to a printer or transmit it over telephone lines.
11 Tandon displayed an 8 -inch floppy-disk drive that is exactly half the width of conventional units.
12 A high-resolution display using Cromemco's Super Dazzler board along with its SDI color-graphics interface. The resulting video image can be made from a palette of 2048 colors.

Ciarcia's Circuit Cellar

Build an Unlimited-Vocabulary Speech Synthesizer

Steve Ciarcia
POB 582
Glastonbury CT 06033

The alarm clock that jolts you out of sweet dreams with a monotone buzz is a thing of the past. State-of-the-art technology is the clock that prods you out of slumber with a voice that speaks your own language: "The time is 60^{\prime} clock."
The artificial voice is becoming an increasingly important and potentially indispensable part of the interface between man and machine. Electronic speech synthesis is a young but rapidly evolving technology. It won't be long before that speaking alarm clock will also announce your entire day's appointment schedule. It will be no less unusual for the computer in your car to recount its mechanical ills as you drive to work. For now, however, electronic speech synthesis is still a relatively new concept.

In a previous Circuit Cellar article ("Build a Low-Cost Speech-Sy:nthesizer Interface," •June 1981 BYTE, page 46), I described the design of an inexpensive, limited-vocabulary, com-puter-controlled electronic speech synthesizer called the Micromouth. This speech processor, based on the National Semiconductor Digitalker chip set, was an attempt to introduce

[^5]Digitalker is a trademark of National Semiconductor Corporation.

[^6]personal computer users to artificial speech. Considering the response it received, I believe many of you are now listening to everything your computer has to say.

This month I wish to return to the topic of computer-controlled electronic voice synthesis and introduce you to the Votrax SC-01 speech synthesizer chip.

Instead of waveform digitization or linear-predictive coding, the SC-01 uses phoneme synthesis, which allows the SC-01 to speak an unlimited vocabulary simply by sequentially pronouncing the individual phonemes (basic sound units) that make up words in the English language.

Many other articles have been written that describe in detail the theory of phoneme synthesis and the workings of the Votrax SC-01 integrated circuit. A few appropriate references are given at the end of this article. Instead of discussing many theoretical concepts at length in my limited space here, I prefer to concentrate on the design of a practical, computer-controlled, phonetic speech synthesizer.

This month's construction project, shown in photo 1 , is called the Sweet Talker speech synthesizer. It uses the SC-01 integrated circuit to allow syn-

[^7]thesis of an almost unlimited vocabulary (limited only by the size and complexity of the controlling program running on the computer). The Sweet Talker circuit contains I/O (input/output) signal buffering, a clock oscillator, an audio filter, and an amplifier. The circuit board provides protection from static electricity for the SC-01 in addition to being a convenient package. (Protection for the SC-01 is important, because it is both expensive- $\$ 70$-and delicate. It's made using complementary metaloxide semiconductor technology.) The standard Sweet Talker synthesizer can be connected to any microcomputer through a parallel port, while a special version of the unit can be plugged into the I/O bus of the Apple II computer.

Speech-Synthesis Review

Three major techniques are presently used to synthesize the human voice: formant synthesis, linear-predictive coding (LPC), and waveform digitization. They differ in the number of bits of data required to construct a word.
Formant synthesis is essentially an electronic modeling of the natural resonances of the human vocal tract. Bands of resonant frequencies in the vocal spectrum, called formants, are generated by excitation sources and then passed through variable filters.
One variation of the formant technique is called phoneme synthesis, in

Photo 1: The assembled Sweet Talker phonetic-speech-synthesizer circuit board. The Votrax SC-01 phoneme-synthesizer integrated circuit supports a vocabulary limited only by the size and complexity of the computer program that controls the Sweet Talker. Any English word may be constructed from phonemes, the basic building blocks of speech. The circuit board shown is a prototype of the parallel-port version of the Sweet Talker; the Apple II plug-compatible version is not shown.

Photo 2: The Votrax SC-01 is a 22-pin CMOS integrated circuit which functions as an electronic model of the human voice.

Photo 3: Before the development of the SC-01, Votrax used many medium-scaleintegrated circuits and discrete components to perform the same functions. All these components were mounted in modules such as the VSL-type shown. When this particular synthesizer card was purchased three years ago, the price was $\$ 600$. Compare this both in size and price to the $\$ 70$ SC-01 (sitting on top).
which the spectral parameters are derived from basic sound units that make up words. A phoneme-generator circuit is used to reproduce these sounds. In such a circuit, each phoneme is given a numeric code, and the synthesizer circuit (discrete or integrated) utters phoneme sounds corresponding to codes it receives when it is activated. Words and sentences are assembled by simply stringing the phoneme codes together. The electronic voice so generated is intelligible, but has a slight mechanical quality. Continuous speech using phoneme synthesis can typically be generated with a data rate of less than 100 bps (bits per second).
Linear-predictive coding is similar to formant synthesis in that both techniques are based in the frequency domain and use similar hardware to model the vocal tract. The quality of speech is often better than formant or phoneme synthesis, but a higher data rate (1200 to 2400 bps) is needed for continuous speech.

Waveform digitization is the third method of speech synthesis, in which the amplitude characteristics of a vocal waveform are stored and reproduced. The quality of speech is better than the other two methods, but the data rate for continuous speech is very high, and storing sufficient amounts of data conveniently can be a problem. Various schemes of compressing the data have been devised; one of the more successful is used in the National Semiconductor Digitalker system, which I described in my June Circuit Cellar article.

Votrax SC-01

The 22-pin Votrax SC-01 integrated circuit, shown in photo 2 and in the diagrams in figure 1 , contains a digital code translator, or phoneme controller, and an electronic analog of the human vocal tract. The phoneme controller translates a 6 -bit phoneme code and a 2-bit pitch code into a matrix of spectral parameters which in turn adjusts the vocal-tract analog to synthesize the phonemes.
In the first part of the vocal-tract section, there are a pair of variablefrequency oscillators for simulating

Figure 1: Technical characteristics of the Votrax SC-01 Speech Synthesizer Chip. Shown are the pinout designations (1a), the scheme of data flow through the circuit (1b), and a block diagram of the internal structure (1c). This figure is reproduced courtesy of the Votrax Division of Federal Screw Works, Inc.

Figure 2: A diagram of the general connection scheme of the SC-01.
vocal-cord-produced periodic sounds and a pseudorandom (pink-noise) signal generator that simulates the sound of rushing air. The output signals from these sources are shaped by a bank of four analog band-pass filters that simulate the vocal-tract cavities. The filter outputs, in turn, are directed through a preamplifier to an external amplifier and speaker.

The SC-01 phoneme synthesizer is a CMOS (complementary metal-oxide semiconductor) integrated circuit which should be operated within the range of 7 to $14 \mathrm{~V}\left(\mathrm{~V}_{p}\right)$. The pho-neme-input lines (P 0 through P 5) are 5 V level-compatible and self-latching. (Here " 5 V level-compatible" means matching LSTTL [low-power Schottky transistor-transistor logic]

Photo 4: The Sweet Talker phonetic-speech-synthesizer board can be driven through any parallel output port. One port which can be used is a Centronicscompatible parallel printer port. When using this connection, phonemes for words to be spoken are transmitted using LPRINT statements in BASIC. Pictured above is the Sweet Talker board combined with its power supply and connected to a TRS-80 Model III computer and a speaker.
levels with an external pull-up resistor.) The two pitch-control lines, on the other hand, must have external latches and must be switched at the same input voltage as the SC-01's power supply. Handshaking with external control circuitry is accomplished through two control lines: strobe (STB) and acknowledge/request (\bar{A} / R). The STB line can be either CMOS or 5 V level, while the $\overline{\mathrm{A}} / \mathrm{R}$ line is CMOS level only.

The output pitch of the phonemes is controlled by the frequency of the clock signal, which can be applied from an external source or set internally with a resistor and capacitor combination. The clock frequency is nominally 720 kHz , but subtle variations of pitch are induced through "automatic inflection" to prevent the synthesized voice from sounding too monotonous or "robot-like." Two independent pitch-control lines, I1 and I2, are available for gross variations in pitch so that the chip can speak with more than one voice. Referred to as "manual inflection" controls, I1 and I2 operate in addition to the auto-matic-inflection system already present. I have found that the 6 -bit phoneme code alone is sufficient, and the two pitch-control lines can be ignored. A diagram of the general connection scheme is shown in figure 2.

Listed in table 1 on page 42 are the 64 phonemes defined for the English language (two produce silent periods of different lengths; one causes synthesis to stop). A phoneme sound is generated when a 6-bit phoneme code is placed on the control-register input lines (PO through P5) and latched by pulsing the strobe (STB) input. Each phoneme is internally timed and has a duration of 47 to 250 ms (milliseconds); some phonemes last longer than others, and variations in the clock frequency affect the phoneme durations. The \bar{A} / R line goes from a logic 1 to a logic 0 when a phoneme is sounding.

There are two general methods for using the SC-01. One method, shown in figure 3a on page 43, configures the chip in an independently acting, selftimed circuit which asynchronously extracts phoneme codes from a

Hexadecimal Phoneme Code	Phoneme Symbol	ASCII Character	Duration (ms)	Example Word
00	EH3	(1)	59	jacket
01	EH2	A	71	enlist
02	EH1	B	121	heavy
03	PAO	C	47	no sound
04	DT	D	47	butter
05	A2	E	71	make
06	A1	F	103	pail
07	ZH	G	90	pleasure
08	AH2	H	71	honest
09	13	1	55	inhibit
OA	12	J	80	inhibit
OB	11	K	121	inhibit
OC	M	L	103	mat
OD	N	M	80	sun
OE	B	N	71	bag
OF	V	O	71	van
10	CH	P	71	chip
11	SH	Q	121	shop
12	Z	R	71	200
13	AW1	S	146	lawtul
14	NG	T	121	thing
15	AH1	U	146	father
16	001	V	103	looking
17	00	W	185	book
18	L	X	103	land
19	K	Y	80	trick
1 A	J	Z	47	judge
1B	H	[71	hello
1 C	G	1	71	get
1D	F]	103	fast
1E	D	1	55	paid
1F	S	-	90	pass
20	A	(space)	185	tame
21	AY	!	65	jade
22	Y1	*	80	yard
23	UH3	\#	47	mission
24	AH	\$	250	mop
25	P	\%	103	past
26	0	\&	185	cold
27	1	,	185	pin
28	U	$($	185	move
29	Y)	103	any
2 A	T	*	71	tap
2B	R	+	90	red
2C	E	,	185	meet
2D	W	-	80	win
2E	AE		185	dad
2F	AE1	1	103	after
30	AW2	0	90	salty
31	UH2	1	71	about
32	UH1	2	103	uncle
33	UH	3	185	cup
34	O 2	4	80	bold
35	01	5	121	aboard
36	IU	6	59	you
37	U1	7	90	June
38	THV	8	80	the
39	TH	9	71	thin
3A	ER	:	146	bird
3B	EH	;	185	ready
3C	E1	$<$	121	be
3D	AW	=	250	call
3E	PA1	$>$	185	no sound
3F	STOP	?	47	no sound

Note: T must precede CH to produce " CH " sound. D must precede J to produce " J " sound.

Table 1: The sixty-four phonemes defined for the English language. Two of these produce silence; one causes synthesis to cease.
dedicated memory buffer. Typically a 32- or 64 -character FIFO (first-in, first-out) buffer is attached to the computer bus and loaded with the phoneme codes under program control. Once loaded, the codes are shifted out one at a time as the STB and \bar{A} / R lines change states. This self-clocking technique can also be used with an EPROM (erasable programmable read-only memory) and a counter when the SC-01 is to speak a canned message without computer control.

While use of a FIFO buffer reduces the main processor's waiting time when exercising relatively slow (typically 70 bps) peripheral devices such as the SC-01, buffers are expensive. Interface-hardware costs can be measurably reduced by a second scheme: using the computer system (running an appropriate program) to time the transmission of phoneme codes to the SC-01, as outlined in figure 3b. This method sends codes to the synthesizer chip through a latched parallel output port and monitors the synthesizer's activities (via the $\overline{\mathrm{A}} / \mathrm{R}$ line) through an input port or interrupt line.

The latter is the technique I chose to use in my design. Interestingly enough, eliminating the extra hardware doesn't really complicate computer/synthesizer interaction nor does it require a sophisticated ma-chine-language driver program like those ordinarily associated with soft-ware-controlled peripheral devices. The program code to control the synthesizer can be as simple as an LPRINT statement in BASIC. More on this later.

Sweet Talker

The schematic diagram of the Sweet Talker speech-synthesizer circuit board is shown in figure 4 on page 44. The phoneme-code bits are sent in parallel to the SC-01 (IC3) and buffered through IC1 (a 74LS244 three-state octal buffer). Pull-up resistors assure that a logic-1 input to the SC-01 will be at least 4 V as required. Unless the board is being used with external address circuitry, the Enable input line (on connector J1,

Figure 3: Two methods of interfacing the SC-01 to a microcomputer data bus. Figure 3a shows an independently acting, self-timed circuit with a FIFO (first-in, first-out) buffer. Figure $3 b$ shows a circuit that allows the computer to time the transmission of data to the SC-01.

Photo 5: Many computers have serial, rather than parallel, I/O ports. With a little extra hardware, it is possible to add a serial interface to the Sweet Talker.
pin 12) should be grounded, thereby continuously enabling the buffer.

The two manual-inflection inputs (I1 and I2) are also buffered through IC1. The SC-01 cannot store these signals, and storage must be provided externally. A 74LS74 type-D flip-flop (IC2) is configured as a 2 -bit latch. It is clocked synchronously with the SC-01's strobe input. Unlike the phoneme inputs, however, the inflection lines are not 5 V compatible. Two sections of a 7416 open-collector inverter (IC4) are used with pull-up resistors to level-shift these data inputs to CMOS levels. Since the automatic inflection is generally adequate, the manual-inflection inputs (J 1 , pins 16 and 20) can be left open or grounded when not in use.

The SC-01 can use either its internal clock or an external clock. External clock signals are applied through pin 15 on the SC-01 while pin 16 is grounded. My design uses the internal clock-signal generator, instead. The clock frequency is determined by an R/C (resistor/capacitor) combination attached to pins 15 and 16. The frequency is adjusted through potentiometer R8 and nominally set for 720 kHz . Slight adjustments to this control will vary the pitch of the speech. The easiest way to set this potentiometer is by ear. Simply output a sequence of phonemes to the SC-01 and set R8 for the most pleasant-sounding voice.

The process of sounding a phoneme begins when the 6 -bit phoneme code is latched into the SC-01's control register. Latching occurs when the rising edge of a positive-going strobe pulse is received on pin 7 of the SC-01, the STB input line. The synthesizer will continue to sound the same phoneme until another phoneme code or a stop code is loaded.

The Sweet Talker circuit board can be set up (through jumper connections) to accept either a normally high or a normally low strobe signal from the external computer. Two sections of the inverter IC4 are involved in this flexibility. The normally high strobe signal connects to the Sweet Talker board through pin Y of the edge connector J1, while the normally

Figure 4: Schematic diagram of the Sweet Talker phonetic speech synthesizer in the parallel-port version.
low strobe signal connects through pin 21. The two inputs cannot be used in exactly the same way, however, because of some timing restrictions imposed by the SC-01.

The SC-01 senses the positivegoing edge of the strobe pulse arriving on its pin 7, but unlike typical TTL latches (which operate in a few nanoseconds), the SC-01 requires some setup time before it can accept the strobe signal. This setup time must meet two requirements:
-The data on the phoneme-input lines PO through P5 must have been stable for 450 ns before the rising edge of the strobe pulse arrives.

- The logic level on the STB input of the SC-01 (pin 7) must have been low during at least 72 clock periods (approximately 100 microseconds) before it goes high for the strobe pulse.

The staggered timing of the phoneme data and the strobe pulse makes interfacing the SC-01 directly to a microcomputer data bus difficult without the use of an external data latch (an output port).

Furthermore, in some cases (depending upon the method of connection), when the Sweet Talker board is being driven through a parallel output port that uses a DAV (data available) strobe signal, you may have to add a one-shot (monostable multivibrator) to the circuit to stretch the signal out so that the logic level at pin 7 of the SC-01 stays low long enough. The DAV strobe signal of a typical microprocessor is less than a microsecond in length.

Approximately 500 nanoseconds after the rising edge of the strobe pulse, the \bar{A} / R line (pin 8) of the SC-01 goes to a logic 0 , indicating that the synthesizer chip is busy. Transistor Q1 and IC4 convert the CMOS output of pin 8 to LSTTL levels. The $\overline{\mathrm{A}} / \mathrm{R}$ output can be monitored by the controlling computer in either of two ways: directly through an input port or connected to an interrupt line. In either case, when the \bar{A} / R line returns to the logic- 1 level, the SC-01 is ready to receive another phoneme code.

The remaining components on the Sweet Talker board make up the am-

Figure 5: Diagram of the connections between a Centronics-compatible parallel printer port (as on a TRS-80 Model I or III) and the Sweet Talker circuit board. Note that on some computers the Unit Select line may need to be connected to +5 V .
plifier and filter sections. Capacitors C 1 and C2 and resistors R5 and R6 form a simple low-pass audio filter. The audio signal is then amplified by an LM386 1-watt amplifier (IC5) to drive an 8 -ohm speaker directly. Potentiometer R7 controls the volume, and the speaker connects to the 2 -pin connector on one corner of the board.

The board operates on powersupply voltages of +5 V and $\mathrm{V}_{p} . \mathrm{V}_{p}$ can be any voltage between +7 and
+14 V . I generally use +12 V . Power can be applied either through the edge connector or the 4 -pin power header. Pin assignments on the power header are arranged exactly the same as those on the Z8-BASIC Microcomputer board presented in my last two articles, and the Sweet Talker board can conveniently use the same power supply. (See "Build a Z8-Based Control Computer with BASIC," July 1981 BYTE, page 38 and August 1981 BYTE, page 50.)

Table 2: A list of useful words with their Votrax-notation phonemes, for ease in program coding.

Word	Phonemes	Word	Phonemes
A	A1, AY, Y	keyboard	K, AY, Y, B, O1, O2, R, D
able	A1, Y, B, UH3, L	kill	K, I1, I3, L
about	UH1, B, UH2, AH2, U1, T	knowledge	N, AH1, UH3, L, I3, D, J
actual	AE1, EH3, K, T, CH, U1, UH3, L		
add	AE1, EH3, D	L	EH1, EH3, UH3, L
adjust	UH1, D, J, UH1, UH3, S, T	language	L, AE1, EH3, NG, G, W, II, D, J
		large	L, AH1, R, D, J
B	B, E1, Y	left	L, EH1, EH3, F, T
back	B, AE1, AE1, K	length	L, EH1, EH3, NG, TH
basic	B, A1, Y, S, $12, K$	listen	L, 11, I3, S, 12, N
been	B, EH1, EH3, N		
before	B, Y, F, O2, O2, R	M	EH1, EH2, M
better	B, EH1, EH3, T, ER	make	M, A1, AY, Y, K
		many	M, EH2, EH2, N, Y
C	S, E1, Y	match	$\mathrm{M}, \mathrm{AE} 1, \mathrm{EH} 3, \mathrm{~T}, \mathrm{CH}$
came	K, A1, AY, Y, M	memory	M, EH1, EH3, M, ER, Y
can	K, AE1, EH3, N	message	M, EH1, EH3, S, I2, D, J
car	K, AH2, UH3, R		
catalog	K, AE2, EH3, DT, UH3, L, AW2, AW2, G	N	EH1, EH2, N
change	T, CH, A1, AY, Y, N, D, J	name	N, A1, AY, Y, M
		near	N, AY, I1, R
D	D, E1, Y	need	N, E1, Y, D
data	D, A2, Y, DT, UH1	next	N, EH1, EH3, K, PAO, S, T
date	D, A2, AY, Y, T	none	$\mathrm{N}, \mathrm{UH} 1, \cup H 3, N$
decide	D, Y, S, AH2, EH3, Y, D		
decision	D, Y, S, 12, ZH, UH3, N	\bigcirc	O2, O1, U1 ${ }_{1}$
deliver	D, Y, L, I2, V, ER	object obsolete	UH1, B, D, J, EH1, EH3, K, T AH1, UH3, B, S, UH3, L, AY, Y, T
E	E1, Y	often	AW2, AW2, F, I3, N
early	ER, R, L, Y	omit	O1, U1, M, I1, I3, T
either	E1, Y, THV ER	other	UH1, UH3, THV, ER
empty	EH2, EH3, M, P, T, Y EH2, EH3,,$~ D$	P	P. E1, Y
exact	EH2, EH3, G, PAO, Z, AE2, EH3, K, T	package	P, AE1, EH3, K, I1, D, J
		paper	$P, A 1, Y, P, E R$
F	EH1, EH2, F	part	P, AH1, R, T
fact	F, AE2, EH3, K, T	person	P, ER, S, UH1, N
fault	F, AW, L, T	phone	F, O1, U1, N
finai	F, AH2, Y, N, UH3, L		
first	F, ER, R, S, T	Q	K, Y $1, ~ I U, U 1, ~ U 1$
follow	F, AH1, AW2, L, O1, U1	qualify quantity	$K, W, A W 1, L, I 1, F, A H 1, E H 3, Y$ K, W, AH1, N, T, 13, T, Y
G	D. J, E1, Y	question	K, W, EH1, EH3, S, T, CH, UH3, N
game	G, A2, AY, Y, M	quick	K, W, I1, 13, K
good	G, OO1, OO1, D	quiet	K, W, AH1, EH3, AY, 12, T
great	G, R, A2, Y, T		
ground	G, R, AH1, UH3, W, ND	R	AH1, UH2, ER
grow	G, R, O1, U1	raise reach	R, A1, AY, Y, Z R, E1, Y, T, CH
H	A1, AY, Y, T, CH	ready	R, EH1, EH3, D, Y
hand	H, AE1, EH3, N, D	remain	R, E1, M, A1, AY, Y, N
have	H, AE1, EH3, V	resistor	R, E1, Z, 11, S, T, ER
hear	H, AY, I3, R		
heavy	H, EH1, V, Y	S	EH1, EH2, S
high	H, AH1, EH3, Y	safe	S, A1, AY, Y, F
		sale	S, A1, A2, AY, UH3, L
,	AH1, EH3, I3, Y	schedule	S, K, EH1, EH3, D, J, IU, U1, L
important include	I1, I3, M, P, O2, O2, R, T, EH3, N, T	scrap	S, K, R, AE1, EH3, P
include inform	I1, I3, N, K, L, IU, U1, U1, D I1, I3, N, F, O2, O2, R, M	section	S, EH1, EH3, K, SH, UH3, N
insert	11, N, S, R, R T		
instead	11, I3, N, S, T, EH1, EH3, D	talk	T, E1, AY, Y
		technical	T, EH1, EH3, K, N, 13, K, UH3, L
J	D, J, EH3, A1, AY, Y	terminal	T, ER, M, EH3, N, UH2, L
job	D. J, AH1, UH3, B	think	TH, I1, I3, NG, K
join	D. J, O1, UH3, I3, AY, N	time	T, AH1, EH3, Y, M
joy	D. J, O1, UH3, I3, AY		
judge	D. J, UH1, UH2, D, J	U	Y1, IU, U1, U1
jump	D, J, UH1, UH2, M, P	under uniform	UH2, UH2, N, D, ER Y1, IU, U1, N, I3, F, O1, R, M
K	K, EH3, A1, AY, Y	until	UH2, UH2, N, T, I1, I3, L
keep	K, E1, Y, P	up	UH1, UH2, P
key	$K, E 1, Y$	urgent	R, R, D, J, I3, N, T

Table 2 continued:

Word	Phonemes	Word	Phonemes
us	UH1, UH2, S	when	W, EH1, EH3, N
use	Y1, IU, U1, U1, Z	where	W, EH3, A2, EH3, R
		which	W, 11, 13, T, CH
V	V, E1, AY, Y	while	W, AH1, EH3, I1, UH3, L
vacant	$V, A 1, Y, K, E H 3, N, T$	whiskey	W, 11, 13, S, K, AY, Y
valid	V, AE1, UH3, L, I1, D	white	W, UH3, AH2, Y, T
value	$V, A E 1, E H 3, L, Y 1, I U, ~ U 1$	who	H, IU, U1, U1
vendor	V, EH1, EH3, N, D, ER	will	W, I1, I3, L
vent	$V, E H 1, E H 3, N, T$	window	W, I1, N, D, O1, U1
verify	$V, E H 1, R, 13, F, A H 1, E H 3, Y$	winter	W, I1, I3, N, T, ER
very	$V, E H 1, R, Y$	wire	W, AH1, EH3, AY, R
via	V, E1, AY, UH2, UH3	with	W, 11, 13, TH
victor	$V, 11,13, K, T, E R$	withdraw	W, 11, 13, TH, D, R, AW
voice	V, O1, UH3, I3, AY, S	without	W, I1, I3, TH, UH2, AH2, U1, T
void	V, O1, UH3, I3, AY, D	word	W, ER, R, D
volt	V, O2, O2, L, T	work	W, ER, R, K
volume	V, AH1, UH3, L, 'Y1, IU, U1, M	wrong	R, AW, NG
W	D, UH1, B, UH3, L, Y1, IU, U1		EH1, EH2, K, PAO, S
wage	W, A1, AY, Y, D, J	X-ray	EH1, EH2, K, PAO, S, R, A1, I3, Y
wait	W, A1, AY, Y, T		
want	W, AH1, UH3, N, T	Y	W, AH1, EH3, I3, Y
was	W, UH1, UH3, Z	Yankee	Y1, AE1, EH3, NG, K, E1, Y
wash	W, AW, SH	yard	Y1, AH1, R, D
water	W, AH1, UH3, T, ER	year	$Y 1, A Y, 13, R$
watt	W, AH1, UH3, T	yellow	Y1, EH1, EH3, L, O1, U1
wave	W, A1, AY, Y, V	yes	Y1, EH3, EH1, S
we	W, E1, Y	yesterday	Y1, EH3, EH1, S, T, ER, D, A1, $33, Y$
weapon	W, EH2, EH2, P, UH1, N	yet	Y1, EH1, EH3, T
Wednesday	W, EH1, N, Z, D, A1, I3, Y	your	Y, O2, O2, R
week	W, E1, Y, K		
weigh	W, A2, A2, Y	Z	Z, E1, Y
went	W, EH1, EH3, N, T	zap	Z, AE1, EH3, P
west	W, EH1, EH3, S, T	zero	Z, AY, 11, R, O1, U1
wet	W, EH1, EH3, T	zone	Z, O1, U1, N
what	W, UH3, UH1, T	zulu	$\mathrm{Z}, \mathrm{IU}, \mathrm{U} 1, \mathrm{~L}, \mathrm{IU}, \mathrm{U} 1$
wheel	W, E1, Y, L		

Speaking in Phonemes

Table 1 lists the 64 basic phonemes of the English language. At first glance, it appears complicated, but it is easy to understand and use. Take the word "call," for example. It is made up of three distinct phonemes, as follows (expressed in Votrax notation):

> K, AW, L
which correspond to the hexadecimal codes:

$$
\begin{array}{lll}
19 & 3 D & 18
\end{array}
$$

Similarly, the word "disk" is broken into the phonemes:
D, I1, S, K
which correspond to the hexadecimal codes:

1E OB 1 F 19

See reference 3 for more details on this process.

Causing the synthesizer to speak either of these words is done simply by sending the hexadecimal codes sequentially to it. This is most easily done through a parallel I/O port under control of a program written in BASIC. Typically, if the synthesizer were connected to port 0 on your computer, the routine for saying "call" would be coded as follows:

100 DATA 25, 61, 24 :REM Decimal Phoneme codes for "call"
110 FOR $\mathrm{A}=1$ TO 3 : READ P(A) :NEXT A
130 FOR A=1 TO 3
140 OUT 0,P(A) :REM Latch Phoneme code into SC-01
$150 \operatorname{IF} \operatorname{INP}(0)=0$ THEN GOTO 150 :REM Continue if A / R not busy

160 NEXT A
 170 OUT 0,63 :REM Send STOP code to SC-01 180 END

Essentially any word or series of words can be spoken using this method. It isn't necessary for you to acquire special knowledge about word sounds to use a phonetic speech synthesizer, because many lists of word and phoneme equivalents are available. Table 2 is a list of some common words. A more extensive list is in preparation.

Easy Interfacing

What could be easier than pretending that the Sweet Talker speech synthesizer is a parallel-interfaced printer? It just so happens that many computers already have a parallel output port in the form of a Centronics-compatible parallel printer port. This connection is avail-

Number	Type	+5 V	GND	$\mathbf{- 1 2 V}$	+12 V
IC1	COM5016	2	11		9
IC2	COM2017	1	3	2	
IC3	CD4049	1	8		
IC4	MC1489	14	7	1	14
IC5	MC1488		7	1	14

Figure 6: Schematic diagram of a serial I/O interface for the Sweet Talker board, to be used in place of parallel I/O. The serial communication protocol is RS-232C.
able on all Radio Shack TRS-80 Model III and expanded Model I computer systems, as well as many others. By connecting the Sweet Talker board as shown in figure 5, it is possible to fool the computer into thinking that the Sweet Talker is a printer, whereupon we can use LPRINT statements to drive it. The same machine-language routine in the BASIC interpreter that normally transfers ASCII (American Standard Code for Information Interchange) character strings to the printer will also work with the speech synthesizer.

A BASIC LPRINT statement will transmit any ASCII characters between the double quotes (except the quotation marks themselves and perhaps a few control codes) whether they spell out something humanly coherent or not. As table 1 illustrates, all of the phonemes correspond to ASCII characters which produce the equivalent 6-bit code (the lowercase letters "a" through " z " correspond to hexadecimal codes 21 through 3A). It is possible, therefore, to type an "@" for the EH3 phoneme (hexadecimal code 00) or a ">" for PA1 (hexadecimal code 3 E). Using this technique,
the program statement for saying "call" would be:

$$
100 \text { LPRINT " } Y=X \text { " }
$$

It's a good idea to add a stop phoneme (corresponding to ASCII " 7 ") after the end of the word to cancel the last phoneme. The line then becomes:

$$
100 \text { LPRINT 'Y=X";"?"; }
$$

The Sweet Talker speech synthesizer attaches to and handshakes with the computer in the same manner as a printer would. The \bar{A} / R output is

TRS-80
 Model I
 Model III

Products that set Precedents.

OMIKRON

A

MAPPER CP/M Adapto CBASIC II** CP/M THE THESTWORD PROCESSO $\$ 1000.00$ VALUE
ONLY 29
connected to the Busy input, and the Unit Select line is grounded to simulate printer attachment. The Sweet Talker's Enable input should also be grounded. The computer's LPRINT driver routine sends one character to the "printer" (speech synthesizer) and then checks the Busy line before sending another. When the Busy line is high again, the next character (phoneme) is sent.

The only area for concern is the pulse width of the data strobe (attached to J1 pin 21 with jumper JP1 installed), as I previously mentioned. If it is less than $100 \mu \mathrm{~s}$, a type- 74121 monostable multivibrator should be added as indicated in figure 5. If you are unsure of the duration, add the circuit anyway.

Once the interface is attached, a simple program can be used to test phoneme combinations. For example, sending " S * $1 \mathrm{~L} /$ @ *KY" will cause the unit to say "automatic," and 'Y2M*KIMB677' will make it say "continue." A simple test program requires only three lines:

```
100 INPUT A\$
110 LPRINT AS;" "';
120 GOTO 100
```


Using a Serial Interface

Your computer might not have a parallel printer port, but a serial one instead. While the interface is more complicated, you can also use

LPRINT statements to drive the additional circuitry shown in figure 6. This circuit is a full-duplex RS-232C serial interface which is capable of receiving a phoneme transmitted serially from the computer, converting it back to parallel form, and strobing it into the SC-01.

The timing relationships between the interface and the computer become slightly more complex. Whenever a phoneme is loaded into the SC-01, the \bar{A} / R line drops and the RS-232C Data Terminal Ready signal goes low. After the phoneme has concluded, the UART (universal asynchronous receiver/transmitter) transmits a jumper-selected character (optionally preset on UART pins 26 through 33) and raises the Data Terminal Ready line again. Proper timing from the host computer can be accomplished either by sending successive characters only in response to the "phoneme-concluded" code or by monitoring the state of the Data Terminal Ready line.
The communication rate between the host and the synthesizer is switchselectable from 50 to $19,200 \mathrm{bps}$ using the COM5016 data-rate generator as shown. Communication is hard-wire selected for 8 -bit data words, no parity bit, and 1 stop bit. A more indepth discussion of the data-rate generator and UART was given in one of my previous Circuit Cellar articles ("I/O Expansion for the TRS-80, Part

These items are available from:
The MicroMint Inc
917 Midway
Woodmere NY 11598
Telephone:
(800) 645-3479 (for orders)
(516) 374-6793 (for technical information)
Votrax SC-01 Speech Synthesizer Chip
(single integrated circuit) $\$ 70$
(5 or more, price each) $\$ 55$
Sweet Talker Phonetic Speech Synthesizer, parallel-port version. Includes SC-01 integrated circuit, data sheet, and user's manual.
Assembled and tested
$\$ 139$
Sweet Talker Phonetic Speech Syn-
thesizer, Apple II plug-compatible version. Includes SC-01 integrated circuit, data sheet, and user's manual. (separate power supply not required)
Assembled and tested.
.$\$ 149$
MicroMint 3-voltage power supply (size 2 K by $41 / 2$ inches)

Provides: $+5 \mathrm{~V}, 300 \mathrm{~mA}$
$+12 \mathrm{~V} .50 \mathrm{~mA}$
$-12 \mathrm{~V}, 50 \mathrm{~mA}$
(-12 V not required by Sweet Talker)
Assembled and tested. $\$ 35$
All printed circuit boards are soldermasked and silk-screened. Please include $\$ 2$ for shipping and handling on any order. New York residents please include 7% sales tax.

2: Serial Ports," June 1980 BYTE, page 42).

In Conclusion

What can you do with a computercontrolled speech synthesizer? I'm sure you have a few ideas. In any case, the benefits of electronic speech synthesis will surely propagate as more people learn how to use it.

Next Month:

A discussion of EPROM programming and the design of an intelligent EPROM programmer.

References

1. Ciarcia, Steve. "Build a Low-Cost SpeechSynthesizer Interface," BYTE, June 1981, page 46.
2. Ciarcia, Steve. "Talk to Me: Add a Voice to Your Computer for \$35," BYTE, June 1978, page 142, reprinted in Ciarcia's Circuit Cellar, volume I. Peterborough NH: BYTE Books, 1979, page 77.
3. Fons, Kathryn and Tim Gargagliano. "Articulate Automata: An Overview of Voice Synthesis," BYTE, February 1981, page 164.
4. Gargagliano, Tim and Kathryn Fons. "Text Translator Builds Vocabulary for Speech Chip," Electronics, February 10, 1981, page 118.
5. Gargagliano, Tim and Kathryn Fons. "The TRS-80 Speaks: Using BASIC to Drive a Speech Synthesizer," BYTE, October 1979, page 113.
6. Gargagliano, Tim and Kathryn Fons. "A Votrax Vocabulary," BYTE, June 1981. page 384.
7. Lin, Kun-Shan, Gene Frantz, and Kathy Goudie. 'Software Rules Give Personal Computer Real Word Power," Electronics, February 10, 1981, page 122.
8. Weinrich, David W. "Speech-Synthesis Chip Borrows Human Intonation," Electronics, April 10, 1980, page 113.
9. Wiggins, Richard and Larry Brantingham. "Three-Chip System Synthesizes Human Speech." Electronics, August 31, 1978, page 109.
[^8]
Meet HP Series 80: Hewlett-Packard's newone-on-one computing systems for professionals.

Together, You can Analyze Technical Problems and Evaluate Solutions. Rapidly and Accurately.

HP Series 80 personal computing systems provide the technical solutions you require. Quickly! Easily! Inexpensively! Analysis techniques that were formerly difficult and often impossible become part of your everyday work routine. You can evaluate functional behavior, select variable alternatives, perform cost analysis. . . and more . . . all with greater accuracy and using more variables than you thought possible.

Series 80, VisiCalc ${ }^{\text {™ }}$ PLUS And You

HP's VisiCalc PLUS is a major new software tool. It's an electronic worksheet that instantly recalculates results as you change the variables. You ask the what-if questions and immediately see their effects on your solution. No programming is necessary ... you can become proficient with VisiCalc PLUS in a few hours ... and then watch your horizons broaden. VisiCalc PLUS features many powerful functions including statistical analysis tools and the entire HP Series 80 BASIC math set. Plus graphics! Create professional presentations with curve-fitting plots, stacked or clustered bar graphs, exploded pie charts and line graphs, all in up to four colors, on paper or transparencies.

ONLY FROM

HEWLETT-PACKARD

HP Series 80 personal computing systems are part of a forty-year tradition of electronic products built to uncompromising standards of excellence. Additionally, HP Series 80 products are serviced by HP technicians and on-site service contracts are now available. We urge you to judge for yourself with a hands-on, one-on-one demonstration at your HP dealer. For locations, call TOLL-FREE 800-547-3400, Dept. 276E, except Alaska/Hawaii. In Oregon call 758-1010. Or write Hewlett-Packard, Corvallis, Oregon 97330, Dept. 276E

System Review

The Big Board A Z80 System in Kit Form

David Thompson 11740 NW West Rd Portland OR 97229

I built the computer on which I'm writing this article. Even though I'm no expert at computer hardware or software, I assembled this system in a matter of weeks, beginning with a kit called the Big Board.

Manufactured by Digital Research Computers of Texas, the Big Board is a single-board computer that packs an impressive set of features into an inexpensive package. By not providing the cabinet, power supply, keyboard, monitor, and disk drives, Digital Research can sell this heart of a powerful Z80-based system for $\$ 650$ in kit form. For an additional $\$ 50$, the board comes with all the sockets soldered in place-a real convenience since all the integrated circuits are socketed.

The board is the size of an 8 -inch disk drive. It includes 64 K bytes of programmable memory, a 24 -line by 80-character video generator, a keyboard interface, room

Photo 1: The Big Board kit as the author received it. The board itself is in the center, with the documentation partly beneath it. On each side are plastic bags containing parts. Cables with connectors are in the rear.
for four 2 K -byte ROMs (read-only memories, "bank switched" along with the video memory), and a floppydisk drive controller. Options include parallel and serial ports and an on-board timer.

History

About three years ago, J B Ferguson, an electrical engineer from Dallas, wire-wrapped together a Z80-based, single-board computer and showed it to Jim Tanner of Digital Research. They then worked together to design a powerful, yet inexpensive, unit.

Because of the small size of the board, they used LS (low-power Schottky) parts to keep heat problems to a minimum. According to Tanner, this choice almost killed the project. As recently as January 1980, LS parts were very expensive-too expensive, Tanner and Ferguson believed, for the Big Board to be salable. However, prices dropped so substantially before the end of that year, for both the LS parts and the memory, that Tanner and Ferguson decided to market the unit with a full 64 K bytes of user memory.

Russell Smith designed the Big Board's monitor ROM and the custom BIOS (basic input/output system) for CP / M. The initial plan was to offer CP/M 1.4 with the board. But when version 2.2 became available, Smith went back to work and revised the BIOS. Source listings for both the monitor and BIOS are available free from Digital Research. Just ask for them when ordering the kit.

The Kit

The quality of the circuit board is readily apparent. It is solder-masked and tinned, which makes soldering easy. Solder-masking covers all the metal on the board except for spots where leads will be soldered. The component outlines and numbers are silk-screened on the top, and the holes for the component leads are plated through (they have metal deposited inside them to insure good connections).

Getring "STATIC" from our competition? . . if so, you're paying too much!

Try Ours \$179

64K Static $\$ 895$ assembled

16K Static $\$ 179$ assembled

- STATIC RAMS - fULLY ASSEMBLED - fULLY TESTED - bURNED-IN - FULLY SOCKETED - INCREDIBLE VERSATILITY - bANK SELECTABLE - EXTENDED ADDRESSING - DELIVERY FROM STOCK - SAVE HUNDREDS OF DOLLARS - INTRODUCTORY PRICE - ORDER TODAY

The Memory Merchant Story

Why hosn't memory come down in price like it should? Here's what is being done for you.

High Performance and Low Price 16K Static Board

You want the most cost-effective, high performance memory boards that technology will allow. With that in mind we commissioned one of the top memory designers in the country. We told him to design the boord with the user in mind. It had to sell for less than $\$ 200$. It had to run cool and have low-power consumption. It had to have both extended addressing capabilities and bank select capabilities at no additional cost. You had to be able to de-select 1 K blacks so the memory could accommodate memory-mapped video displays or controller cords. The board had to be fast so a user could run his processor at full speed. Finally, the board had to be reliable and easy to install. He came up with all this and more. Here's a high

16K Ram, Model MM16K14 Specifications:

- Four independent $4 \mathrm{~K} \times 8$ byte segments
- One 4 K segment equipped with 1 K windows
- Compatible with both existing bank select type hardware and IEEE 696/S100 extended address protocal
- Operation guaranteed to 4 MHz with $\mathbf{Z - 8 0}$ and to 5 MHz with 8085 processors
- Low power consumption, typically 1.3 amps
- Uses low power 300 ns 2114 (IK $\times 4$)

64K Ram, Model MM65K16S Specifications:

- Operation guaranteed to 8 MHz
- Compatible with both existing bank select type hardware and IEEE 696 extended address protocol
- Fully loaded board (64 K) draws 400 ma . while max. current is 550 ma .
- Four independently addressable 16 K submodules on one board organized as 2 pair of independent 32 K banks or as 164 K extended address page. Each 32 K bank responds independently to phantom. Bank select logic is compatible with either Cromemco Cromix* or standard bank select sofiware.
- 2716 (5V) EPROM compatibility: Programmed 2716 EPROMs may replace any or all of the Ram components on the board.
- New $16 \mathrm{~K}(2 \mathrm{~K} \times 8$) Static Rams which combine extreme low power (40 ma . ON: 5 ma . OFF) with high speed (200ns max. access time).
- Also available partially populated to 48 K or 32 K . -Cromix is a trademark of Cromemio. Circle 215 on Inquiry card.
performance, fully assembled, tested and burned-in, guaranteed 16 K boord thot we ore Introducing for only $\$ 179$. Runs on any S-100 $8080,4 \mathrm{MHz} \mathrm{Z}-80$, or 5 MHz 8085 system.

The Most Advanced 64K Static Board

The end user wants Stote-of-the Art when he buys a 64 K board. So we hod our super designer put logether the 64 K boord of the future with tomorrow's high speed processors in mind. This board hod to work with all S-100 systems, with current processors and fufure (up to 8 MHz) processors. It had to be ultra-low power. It had to be designed so the advanced user could populate the board with programmed EPROMs for special applications. This board, too, had to have both bank select and extended addressing at no extra cost. The boord was also designed to be used as a 32 K or 48 K boord and we are selling it that way, too. Put in additional chips when you want to increase the capacity!
OEM and dealer inquiries invited.

No Risk Free Trial

After you purchose one of our boards you may return it (intact) for any reason within 15 days after shipment and receive a full refund.
Free Six Months Memory Insurance
We will replace any boord purchosed from Memory Merchant that becomes defective through normal use for up to six months.

Yesi Please send me the Items listed below. I understand that if I'm not fully sutisfied with the product, I can get a full rafund within 15 days after shipment. (Send check, money order, or use your credit card.) Note to credit cord buyers: For extra fast service phone (415) 483.1008

quantity	description	UNIT PRICE	total
	64K	\$895.00	
	48K	749.00	
	32K	569.00	
	16K	179.00	
SHIPPING 2 HANDIING $55.00 / \mathrm{Board}$			
California Residents Add 6% Tax		total	

(NO C.O.D.'s)

CHECK

MONEY ORDER
VISA
Mastercharge
(Must also have ICAll)

CARD NO.
EXP. DATE \qquad

- ica no. sigmature

HAME

SuperSoft LISP allows the TRS-80 to become a complete Artificial Intelligence laboratory! It is the tool that takes you to the frontier of Computer Science.

The SuperSoft LISP is a complete and full implementation. (It is NOT a subset!) It contains an efficient garbage collector which optimizes the usage of user RAM, and supports the TRS-80 graphics. Below are some features:

- Runs in 16k level II (with only 6K overhead)
- Fully implements atom property list structure.
- PROG is supported.
- FUNARG device is implemented.
- Efficient garbage collection.
- Complete with LISP editor and trace.
- Allows complete range of single precision numeric data.
- Works with old as well as new ROMs.
- Contains 97 functions.
- Sample Programs.

The LISP package is supplied on tape or discette and with a complete user manual.
cassette version:
$\$ 75.00$
(requires 16K level II)
Disk version:
$\$ 100.00$
(requires 16K disk)
(manual only: \$15.00)

All Orders and General Information: SUPERSOFT ASSOCIATES
P.O. BOX 1628

CHAMPAIGN, IL 61820

(217) 359-2112

Technical Hot Line: (217) 359-2691
(answered only when technician is available)

TRS-80 TRADEMARK TANDY CORP

At a Glance

Name
Big Board

Manufacturer
Digital Research Computers
of Texas
POB 401565
Garland TX 75040
(214) 271-3538

Price

Bare board with the monitor and character ROMs, \$195 Complete kit with sockets and ICs, \$649
Complete kit with sockets already soldered in place; $\$ 699$

Dimensions

8.5 by 13 inches

Processor

Z80A
System clock frequency 2.5 MHz

Memory

64 K-byte dynamic programmable memory; four 2 K-byte ROMs (bank switched); 4 K-byte static video memory (bank switched)

Mass storage

On-board controller for up to four 8 -inch floppy-disk drives (single-density; each disk holds 240 K bytes formatted)

Other hardware features
Parallel port for ASCIIencoded keyboard;
24 -line by 80 -character video generator (composite or separated sync)

Options

Real-time clock; two RS-232 serial ports; two parallel ports (adding the options is simply a matter of plugging in the devices and adding a few resistors and capacitors)

Software

2 K-byte monitor ROM (comes with the kit); CP/M 2.2 is available completely configured for an additional \$150

Comments

Putting the kit together requires some experience handling static-sensitive parts and a soldering iron. Some knowledge of 8080 or Z80 machine language or assembly language is important.
Be sure to ask for a listing of the ROM monitor and the BIOS (basic input/output system) when ordering your board. The listings are free for the asking

Although the Big Board's documentation is not as detailed or well organized as Heathkit's, it is well written and contains the information needed. The assembly process is explained step by step, complete with boxes you can check off. Because the parts' names and outlines are stenciled in place, the process takes only a few hours.

What You Must Know

If you have had a high school electronics class, can solder with a small iron, and know how to handle staticsensitive parts, you should have little trouble building the Big Board. But there is more to getting a system running than simply building the board. Though the Big Board is well designed and easy to interface with the keyboard, video monitor, and disk drive, interfacing with other peripheral devices requires some understanding of the hardware, the monitor, and the operating system. For in-

WICAT Monochrome Graphics Terminal

General features

28002 based
12" display monitor
Touch screen (optional)

Text features

Half intensity
Reverse video
Blink
Blank
Underscore
For more information call or write
WICAT Systems
801/224-6400.

Graphics features

400×300 graphics resolution
2 independent graphies planes
Lincs. curves. arcs \& circles
Graphics text
Pattern fill
Relative and absolute addressing Object definition and relocation

Applications

Computer-based training Animation
Business graphics
CAID/CAM
Process control
Scientilic

Photo 2: The empty printed-circuit board. Location markings and some circuitry are visible.

Photo 3: Close-up of the printed-circuit board showing all the parts in place.

Photo 4: The Big Board in place in the author's system. Resting on top of the cabinet is the power supply, originally built for a Digital Equipment Corporation controller.
stance, to interface a modem or printer, you will need some assembly code. Until you write code to convince the Big Board that something else out there "understands" it, it will continue to output everything to the screen. Fortunately, there is a vast, growing national user's group to help you bring up and interface the Big Board.

When I received this board, I didn't understand operating systems and had never written anything in assembly language. Part of the reason I got the Big Board was to learn these things. It was an incredible feeling, after building the board, to watch the operating system sign on, and later to see the first lines of text rasp their way across the printer platen. I knew that I would never again have to update listings by hand while seeing the latest version on the video monitor.

And Once It's Running

Once it's running, what can the Big Board do? The ROM-based monitor program that comes with the board gives you access to all the user memory and ports, lets you test memory to verify that it is operating properly, and lets you look at specific tracks and sectors on disks. If you purchase the custom CP/M 2.2 available with the board, you gain access to a world of utilities, languages, games, and applications programs.

The Big Board is also electrically versatile. If you connect a standard terminal to the serial port (RS-232), the computer will make that port its standard input/output interface. Or if you are using a separate keyboard and video unit, you can select an output video signal to match almost any monitor made. The manual contains complete information on setting jumpers, including an example for the standard composite video monitor.

How well does the Big Board work? So well that my only real complaint, dealing with the character set, has already been corrected. The vast majority of people who have bought one have had no problems. Considering the complexity of the Big Board, this is a remarkable achievement.

Conclusions

If you are interested in building a powerful system, or in learning what goes on in the "engine room" of a microcomputer, or if you've ever had the urge to push the levers, blow the whistle, and increment the A register, Big Board is certainly one way to do it. When you get done, you'll have a truly personal system for less than half the price of a "canned" system. And your system will be able to perform complex tasks like text editing. I use my Big Board for all my writing at home, including letters to relatives, notes to myself, and this article.

The author is now publishing Micro Cornucopia, a magazine about the Big Board. The magazine appears bimonthly at an annual subscription rate of $\$ 12$. For further information, send a SASE to David Thompson, 11740 NW West Rd, Portland OR 97229.

Leading edge technology in hard disk systems.

Complete systems. Morrow Designs hard disk subsystems are delivered complete with hard disk, controller, cabinet, power supply, fan, cables and CP/M" 2.2 operating system.

Widest range. Morrow Designs offers the widest range of hard disk systems available from a single supplier. $51 / 4,{ }^{\prime \prime} 8$," 14 ." Five to over 100 megabytes of formatted hard disk storage. $\$ 2,995$ to $\$ 17,980$. Cost effective systems that work. And keep working. S-100 and more. Morrow Designs hard disk systems are designed for use with the CP/M operating system. Available software packages allow our systems to run on any IEEE696/S-100 Standard system with no hardware modification. Plus, Cromemco,** North Star,** Vector Graphics, Godbout, Dynabyte, Exidy,**** IMSAI, Micromation, Processor Technology and California Computer Systems.
Reliable systems. Morrow Designs is committed to hard disk system reliability. Not simply with a 90-day warranty, but with a money back guarantee. If our system fails to perform to specification, send it back. We'll send back your money.

Experience. As of April, 1981, there were over fifteen hundred Morrow Designs hard disk systems successfully installed. In fact, over 200 independent systems integrators now use our hard disks to solve their mass storage problems.
Performance answers. Morrow Designs hard disk systems have been benchmarked against all other systems. None is faster under CP/M. Morrow Designs hard disks operate at 10 times the speed of a floppy disk drive. Transfer rates range from 590,000 bytes to 900,000 bytes per second. That kind of performance can become addictive. Cost effective answers. Compare Morrow prices and performance to anything presently available for S-100 systems. You'll find Morrow's price/megabyte/ performance ratio to be unmatched. Leadership in disk systems technology earned us leadership in price/performance. And that may have earned us a call from you. Circle the Reader Service Number for our full line data sheets. Can't wait? Call us at (415) 524-2101. And yes, OEM quantity prices are available. LOOK TO MORROW FOR ANSWERS.

The Xerox Alto Computer

Thomas A Wadlow
5157 Norma Way Apt 226
Livermore CA 94550

In the mid-1970s, the personalcomputer market blossomed with the introduction of the Altair 8800. Each year since has brought us personal computers with more power, faster execution, larger memory, and better mass storage. Few computer enthusiasts or professionals can look at the machines of today without wondering: What's next?

The Alto: a Personal Computer

In 1972, Xerox Corporation decided to produce a personal computer to be used for research. The result was the Alto computer, whose name comes from the Xerox Palo Alto Research Center where it was developed. The Alto was the result of a joint effort by Ed McCreight, Chuck Thacker, Butler Lampson, Bob Sproull, and Dave Boggs, who were attempting to make a device that was small enough to fit in an office comfortably, but powerful enough to support a reliable, highquality operating system and graphics display. Their goal was to provide each user with a personal computing facility capable of meeting all individual needs and a com-

[^9]

Photo 1: Two of the Xerox Alto personal computers. Each Alto processor is made of medium- and small-scale TTL integrated circuits, and is mounted in a rack beneath two 3-megabyte hard-disk drives. Note that the video displays are taller than they are wide and are similar to a page of paper, rather than a standard television screen.
munications facility that would allow users to share information easily.
In 1978, Xerox donated a total of fifty Altos to Stanford, CarnegieMellon, and MIT (Massachusetts Institute of Technology). These machines were quickly assimilated into the research community and rapidly became the standard against which other personal computers were judged.
It is unlikely that a person outside of the computer-science research community will ever be able to buy an Alto. They are not intended for commercial sale, but rather as development tools for Xerox, and so will not be mass-produced. What
makes them worthy of mention is the fact that a large number of the personal computers of tomorrow will be designed with knowledge gained from the development of the Alto.

The Hardware

The Alto consists of four major parts: the graphics display, the keyboard, the graphics mouse, and the disk storage/processor box. Each Alto is housed in a beautifully formed, textured beige metal cabinet that hints at its $\$ 32,000$ price tag. With the exception of the disk storage/processor box, everything is designed to sit on a desk or tabletop.

The Graphics Display

The graphics display is the most striking feature of the Alto. It looks somewhat like a television screen that has been turned sideways (see photo 1). It is a raster-scan display, and the physical dimensions of the screen are 8 inches (horizontal) by 10 inches (vertical). The black-and-white display allows the user to address an area 808 pixels (picture elements) vertically by 606 pixels horizontally. This results in resolution of about 80 points per inch.

The method of display used is called bit-mapped raster scan. This means that every point on the display is addressable as a bit in memory. Although this method can take up a great deal of memory, it has the advantage of making the display very

For COMSAT . . . what many view as futuristic is already part of our everyday business and plans. We offer:

- ORGANIZATION OF THE FUTUREa private corporation working directly with governments, at home and worldwide.
- GLOBAL COMMUNICATIONS OF THE FUTURE-
satellite communications systems serving over 100 countries and some 700 ships at sea.
- OFFICE OF THE FUTURE-
a partnership venture brings video conferencing, electronic intra-company mail transfer, information and more, via satellite to business and government.
- FACTORY OF THE FUTURE-
computer-aided design and manufacturing services and systems.
- HOME OF THE FUTUREplanned home entertainment through direct satellite relay.
- NATURAL RESOURCES MANAGEMENT OF THE FUTURE -
advanced satellite technology to provide
natural resource management through practical conservation and environmental programs.

- RESEARCH OF THE FUTURE-

advanced R\&D facilities offering the latest in communications product technology.

Our rapid expansion has created career openings in such diversified engineering disciplines as spacecraft design, signal processing, power systems, scientific software development and RF systems.

We offer excellent salaries and benefits, as well as the challenge of being in the forefront of high technology.

If you are interested in working with us, send your resume to:

Senior Employment Representative, Department 81-6RC, COMSAT, 950 L'Enfant Plaza, S.W., Washington, D.C. 20024.
fast. Bit mapping also provides the user with a convenient method of screen access and the ability to easily look at the current contents of the screen.
In terms of displaying text, the screen can hold 60 lines of 90 characters (assuming the characters are equivalent to the typical 7 by 9 dot character commonly found on most video terminals). Character generation is not done in hardware on the Alto. A character set may be created by a user and displayed on the screen. Mixed fonts are allowed so that text of various sizes and shapes may be simultaneously displayed on the screen.

Since each dot on the display corresponds to only one bit in memory, there is no facility for grays or intermediate intensities. Due to the large number of points per inch, however, various combinations of points can be displayed to form a "texture" that gives the impression of varying shades of gray. This is exactly the same method used to reproduce pictures in a newspaper.

The Keyboard

Superficially, the Alto keyboard resembles a typical typewriter keyboard with the addition of a few special keys. The keyboard is detachable, and quite comfortable for typing. It has the unique property of being entirely unencoded. Each key has its own signal line in the

Photo 2: Display from the keyboara-test program. The Alto keyboard has a separate signal line for each key and can thus tell when any number of keys are being pressed simultaneously. In the display, the black keys are being held down. The small square above the keyboard represents the mouse (see photo 4); one mouse key is also pressed.

Photo 3: The Pinball game. Flippers are actuated by the two shift keys; an Alto port can be connected to a speaker to provide bells and buzzer sounds.
keyboard interface, which allows a program to take advantage of the possibility of "chord" commands, where the user holds down one or more keys. For example, Shift-Control-E is as easy for the Alto to read as A-B-C (see photo 2). Another advantage is the ability to determine how long a key has been held down. For example, the pinball game program in photo 3 determines the force of a shot by measuring how long a key is held down on the keyboard. There is, of course, software to allow a program to read the keyboard in the typical manner.

The Graphics Mouse

The mouse is a small box with three buttons on the top and several ball bearings on the bottom. A slender cable connects the mouse to the Alto keyboard (see photo 4). The buttons are named red, yellow, and blue, although the physical buttons are all black. The mouse is typically held in the user's right hand and rolled along the table on a soft piece of plastic that provides traction for the ball bearings.

Movement is detected by the motion of one of the ball bearings. The mouse reports changes in position to the Alto. From this, a cursor on the Alto display can be positioned. The physical position of the mouse on the table is unimportant, since only the change in position is reported. The mouse graphics interface is considerably more flexible and comfortable than a bit pad, joystick, or trackball. Many Alto programs can be controlled with the mouse alone, independent of a keyboard.

The buttons on top of the mouse are also unencoded, for flexibility. Many programs distinguish between holding a mouse button on or clicking it on and off. This allows a program to receive input by moving the cursor to some designated spot on the screen and then touching a mouse button to make something happen.

Disk Storage/Processor Box

The processor and disk storage for the Alto are contained in a rack about the size of a waist-high filing cabinet. Each Alto has two 3-megabyte disk drives. The drives themselves resemble small pizza ovens and are often referred to in this manner.
The "brain" of the Alto is a 16-bit custom-made processor intended to resemble the Data General Nova 1220. The processor is made entirely of small- to medium-scale TTL (transistor-transistor logic) ICs (integrated circuits). The processor operates at a speed of approximately 400,000 instructions per second. Each Alto has an address space of 64 K 16 -bit words, including the graphics bitmap. By using a technique called bank selection, the Alto may expand its available memory in 64 K -word increments up to 256 K words. An Alto with 256 K words is known as a wide-bodied Alto.
Quite a bit of the magic of the Alto is performed at the microcode level. The Alto can run up to sixteen tasks concurrently, and all of the schedul-

Photo 4: The mouse input device. The operator uses the mouse to control cursor placement on the screen; it detects its own change in position (a joystick relies on absolute position) as the operator rolls it around on a piece of soft plastic. The mouse also has three buttons, called red, yellow, and blue.

ITS

MAGIC

The System/48 is the outstanding office automation computing system for the 80's it's so productive we call it MAGIC®. Look at these features:

- One to eight interactive users per node
- Data management system
- Report generator
- Query processor
- Screen format generator
- Automatic interiace code generator
- Up to $1 / 2$ Mbytes of user memory
- Winchester disk with 18 -million bytes (formatted capacity)
- 15 -minute mean-time-to-repair
- Built-in protection from line-voltage spikes, noise, and brownouts
And, it features MAGIC®, the Operating System that gets things done faster than you can say abracadabra because of its multi-keyed Indexed-Sequential Access Method and flexible file-organization. MAGIC ${ }^{6}$ also offers high security. with password protection. MAGIC ${ }^{6}$ supports global or local printers for as many users as desired.

MAGIC also includes DataMagic II - TEI's red-hot database manager. DataMagic II has even more tricks up its sleeve - like automatic or manual record-lock protection and automatic transaction backout to protect the database. And it runs application software written for CP/M 2.X
Take a MAGIC ${ }^{\text {E }}$ leap into the future!
Arrange to attend one of our regularly scheduled System/ 48 workshops (RSVP).

Circle 351 on inquiry card.
OEM and Dealer Inquiries Invited

5075 S. LOOP EAST. HOUSTON. TX. 77033 (713) 738-2300 TWX. 910-881-3639
ing and I/O (input/output) for this multiprocessing is done in microcode. The user has direct control over only one task, however. The user task is the lowest priority and must, if necessary, relinquish processing cycles to the other tasks that control the display, disks, keyboard and mouse I/O, and Ethernet connections. The user has direct control over the microcode and may rewrite it according to individual taste.

The Software

The Alto has the interesting property of using software (often microcode) to perform many tasks, such as keyboard encoding and character generation, that are typically done in hardware. This approach leaves the Alto with an occasionally cumbersome but highly flexible architecture.

Each Alto has a ROM (read-only memory) that contains just enough software to "bootstrap" an Alto into the local network (see textbox on this page). By keeping a bootstrap program in ROM, the user will always have a "safety net" to fall back on in case some other portion of the system software is not working. All of the Alto software can be retrieved from across the network.
The Alto Operating System (OS), a program which provides a set of basic facilities for control and communication with the Alto, is written in $B C P L$, a language very similar to C. Most programs, BCPL or otherwise, run under the direction of the Alto OS. Since the address space of an Alto is small, a technique called a "Junta" is used to permit BCPL programs to shed unwanted sections of the Alto OS during execution. If those portions are needed later, they may be restored by performing a "Counterjunta."
One BCPL program that runs on top of the operating system is called the Alto Executive (see photo 5a). This program speaks to the user directly and makes facilities available for file manipulation and program execution. An interesting feature of the Executive is that of escape expansion and file-name completion. Typing a partial file or program name followed
by an escape, in the same fashion that an ESC (escape) or ALT (alternate mode) might be sent from an ASCII (American Standard Code for Information Interchange) terminal, causes the Executive to complete the typing of the name on the screen. This
allows a programmer to name a file in a descriptive manner (such as GatewayInformation.press), rather than typing in a long name. The Executive program will recognize it as soon as it has read enough characters to determine the file uniquely. By

The Ethernet Network: Interconnecting Personal Computers

The Ethernet network, developed at Xerox Palo Alto Research Center by Bob Metcalfe and Dave Boggs, is a medium for the transmission of information. It is a multiaccess broadcast system used to link many computer systems that are physically within several hundred meters of each other. Each machine in the network is connected by means of a single, passive, coaxial cable.
The Ethermet network is a packet network. Information to be transmitted from one node to another is enclosed in an "envelope" of data that describes the information (ie: its length, a checksum for error control) and describes the destination of the resulting datagram or packet.
Regulation of access to the Ethernet cable is performed by a system designated CSMA/CD (Carrier Sense Multiple Access with Collision Detection). This technique works in exactly the same way that conversation among a group of people at a party is regulated. A node with something to say waits until no one else is speaking. When everyone else is quiet, that node begins to broadcast. If another node also starts broadcasting, this is called a collision. When a collision occurs, all of the nodes that are broadcasting cease to do so. Each node waits a random amount of time and then listens for another lull, thus starting the whole process again.

Each node on the network listens to the beginning of each packet. Once a node has determined that a packet is not addressed to itself, it stops paying attention to that packet and waits only for the end of the packet to allow it to prepare to listen to the next one. An Ethernet node may become "promiscuous" and listen to all packets being broadcast. This allows a very precise monitoring of statistics on the Ethernet system, since nodes generating traffic need not perform any statistical processing or use any
network bandwidth to report the statistics. A "silent observer" can watch the network without ever affecting the performance of that network.

At first glance, the "cocktail party" approach to multiple access might seem awkward. A second look, however, reveals that the maximum packet length is only 554 bytes, and the speed of Ethernet transmissions is approximately three million bits per second. This leads to a maximum transmission time of about 1.5 ms (milliseconds), which means that even on a highly loaded network, the overall efficiency remains very high.
An interesting aspect is that the Ethernet network itself is entirely passive. Regulation is done by each individual node. This decentralization means that the failure of any single node will not significantly affect the network as a whole. Thus, the mean time between failures of the whole network is very high, making it a good choice for industrial or business applications where downtime means lost revenue.

The high speed of the Ethernet network rivals that of disk I/O. A file may be loaded from across the network almost as easily as from a local disk. In a distributed information processing system, it is highly desirable to allow a file to be easily accessed anywhere on the network. A highspeed file transfer capability also permits a new machine to be integrated into the network in just a few minutes.

The competition in local networking is hot and heavy. DEC (Digital Equipment Corporation), Intel, and Xerox Corporation have recently joined forces to promote an Ethernet-based industry standard network. Wang Corporation, IBM, and Zilog have also proposed networking standards. Whatever the outcome, industry seems to have decided that the future is in local networks.

With the Hayes direct-connect Micromodem ITT, your Apple II can communicate by phone with the outside world. You can access information networks like The Source for a variety of business and personal applications, exchange programs with friends anywhere in North America, and even use your Apple II when you're away from your home or office.

Dependable. The

 Micromodem II is so dependable it comes with a two-year limitedwarranty. That's another reason why it's the largest selling directconnect modem for Apple II computers.

Programmable. Automatic dialing and answering? Of course! We include programs on disk that dial phone numbers for you,

sendmessages while you're away, and much more! Complete. You get everything you need to communicate with other Bell COHayes is built-in, and we even include our FCC-approved Microcoupler ${ }^{\text {™ }}$ that plugs directly into any modular telephone jack in the U.S. you don't even need the phone! S-100, too. The Hayes Micromodem 100 gives S-100 microcomputers all the advantages of our Micromodem II! Put the outside world inside your computer with a data communications system from Hayes. Available at computer stores nationwide - call or write for the location nearest you. And 103 compatible modems at 110 or 300 baud. The serial interface
don't settle for anything less than Hayes.

The Hayes Micromodem II opens up your Apple II to the outside world.

typing a question mark instead of an escape, the Executive will list all file names that are valid matches for the string typed thus far.
The Alto has a highly flexible and rugged file system. Unlike many file systems (eg: Digital Research's CP/M or Radio Shack's TRSDOS) that limit names to six or eight characters with a three-character extension, the Alto file system permits file names of up to thirty-one characters in length. When a file name is entered for the first time, the file name is stored exactly as typed, even with regard to upper- and lowercase. Since the file names may be very long, this permits a programmer to use upper- and lowercase to improve readability. LongFileName.BigExtension is much easier on the eyes than LONGFILENAME. BIGEXTENSION. After the creation
(5a)

(5c)

of a file, case is ignored when the user is speaking about the file, so either of the two names in the previous examples, as well as longfile name.bigextension, would be valid.

Alto files are divided into pages. Each page contains a small header that describes the current page, tells what file the page belongs to, and points to the places on the disk that contain the next and previous pages for the same file. This makes the file system almost indestructible. A program called Scavenger can automatically rebuild a broken file system.

Of course, no Alto is an island, so software is needed to deal with the Ethernet network. Some of this software appears in the form of the NetExecutive (see photo 5b) and FTP (file-transfer program). The NetExec
(5b)

(5d)

is a program that appears to be very similar to the Alto Executive, but it loads programs from across the network rather than from the local disk. This means that a user need not keep infrequently used or large programs locally. Instead, these programs can be loaded through the network (at an apparent speed of approximately 800,000 bits per second) only when needed. FTP performs similar feats of file manipulation, but in a considerably more flexible manner.

Although a great deal of software written for the Alto is in BCPL, there is a new contender for software development called Mesa. Mesa is a Pascal-like language that is incompatible with BCPL because of differences in their respective microcodes. Mesa is expected to be the programming language for the successors of the Alto (see photo 5c).

BCPL and Mesa are the system languages for the Alto, which means that the system utilities and many applications programs are written in them. Other languages are available on the Alto, however. Much of the research work done on the Alto at Xerox is written in Smalltalk, an object-oriented language that is both easy to learn and highly powerful (see the special August 1981 BYTE issue (5e)

Photo 5: Examples of Alto software. Photo 5a shows a display of the Alto Executive, with an example of star and question-mark notation. Photo $5 b$ shows the NetExecutive (similar to the Alto Executive, but it allows access to resources on the Ethernet). Photo 5 c is a typical Mesa program being edited by Bravo; note the different typefonts used in the program listing. Photo 5d is a directory from the Neptune directory editor. The file names in black have been selected for further operations such as printing or erasure. The cursor is displayed as a cross in a circle. Photo 5e illustrates Bravo's ability to change fonts (there are hundreds of fonts for the Alto, from Gothic to Elvish Runes; the central paragraph in this display has been changed to Greek). The document in the bottom window has been converted to the form shown in the top window.

MicroMed ${ }^{T M}$ and MicroDent ${ }^{T M}$ make your practice perfect. ${ }^{\top M}$

Simply the best!

They're the real solution to the problems confronting every physician's and dentist's office. Each is a unique package, developed through years of work in close conjunction with doctors and dentists. They'll help you treat your patients more efficiently and accurately, while saving you time and money in the process.

Versatility.

Whether you are in private practice or a member of a busy group, there's sufficient capacity to handle your needs. Thousands of patients can be accommodated on floppies, and even more on hard disk. MicroMed and MicroDent can easily handle everything in your practice from billing to patient records to complex insurance forms. With millions of hours of actual use in medical and dental offices throughout the country, they stand alone at the top, in a class by themselves.

Solutions, not more problems.

We know you're after solutions, not more problems. Our menus are simplicity itself, and are designed for your convenience (not our programmers'). The computer displays your options at every step. What could be simpler? Your own office staff can easily take care of the routine so that you can devote your valuable time to your patients.

You are the boss.

Forget about problems with outside billing services or manual record-keeping. You exercise absolute control over your billing procedures. Finger-tip patient recall lets you know instantly whose accounts are due and what services were performed. Account aging is automatic, and past-due notices or statements are printed and addressed, ready for mailing. All types of reports may be requested to help you better understand your finances and cash flow. Daily backups are created automatically.

Dealerships are available to established computer vendors on a territorial basis.

Demo disk and manual set ${ }^{\$ 75}$!

Multiple Insurance Forms.

Many patients have several different types of insurance coverage. With MicroMed and MicroDent you can enter almost any form, keep track of which patients it applies to, and get it processed and ready for mailing. When new forms come out (as we all know they will) you don't have to pay for custom programming, you can modify the form print format yourself. With our exclusive Formulator ${ }^{\text {res }}$ system it takes just minutes.

Economic Sense.

The biggest surprise of all is that MicroMed and MicroDent are just $\$ 1500$ each. Plus, having your own office computer provides you with great tax advantages. If you like what you see, contact your nearest computer store. They can provide you with MicroMed or MicroDent on any CP/M* based computer for an amazingly economical price. Or, if you already have a computer, a demo disk and manual set is available for just $\$ 75$, and allows you to run the entire program. The manual separately is $\$ 50$. Send for one today, and make your practice perfect!

Features:

- Automatic billing for any patient load
- Handles practices with up to 20 doctors
- Accepts all insurance forms
- Exclusive "Formulator" form system
- Multiple insurance coverage
- Insurance preauthorization
- Automatic statements with aging
- Instant access to patient records
- Full transaction and treatment details
- Cumulative totals by doctor
- Profitability analysis reports
- Mailing list maintenance
- Can be linked to word-processing
- Appointment recall with reminders
- Maintains hospital and lab codes
- Keeps track of referring doctor codes

Photo 6: Use of the Draw program. In photo 6a, points are placed with the cursor, and curves and lines are filled in by the program. Photo $6 b$ shows that lines may be "painted" with a variety of "brushstrokes" (the cursor has changed to a small paintbrush). In photo $6 c$, texture is given to the lines; dotted lines are created with the scissors cursor. Photo $6 d$ shows that the picture may be mathematically manipulated; a new figure may be created by reversing, tilting, or stretching a copy of the original.
on the Smalltalk language). Another supported language is LISP, a listprocessing language that is very popular in the artificial intelligence research community.

Using the Screen

A system with the advanced graphics capability of the Alto will make extensive use of those facilities. The screen may be broken up into windows, and each window may be accessed in a different manner, if
desired. Many Alto programs use only the mouse and screen windows for program control. For instance, the Neptune program is used for managing the contents of the Alto's local disks (see photo 5d). A file may be deleted simply by touching the file name with the cursor, then touching the Delete spot on the screen with the cursor. As the cursor enters a new window, it may change shape, perhaps appearing as an arrow in one window and a paintbrush in another.

Since the Alto is used extensively for research in the office automation field, a good text editor is an obvious requirement. Bravo is a text editor and formatter widely used on the Alto. In the tradition of screenoriented editors, the current state of the user's file is always shown on the screen. Bravo is controlled partly by keyboard commands and partly by mouse commands. It allows a user to open windows into one or more files. Text may be added or deleted by pointing at the desired location on the screen (see photo 5 e) with the mouse cursor, and giving a command via the keyboard or mouse. Bravo supports many different fonts and allows the user to change easily from one font to the next. In addition, Bravo remembers the changes that have been made to a document and allows the user to reverse any or all changes.

Bravo allows the user to edit and format text, but often a person may wish to include illustrations in a document. To do this, a program called Draw is used. Draw is an interactive sketch-pad program that provides a variety of tools for creating and manipulating pictures made from lines, curves, and text. Draw divides the screen into a number of windows (see photo 6). The left side of the screen contains a menu of commands and a variety of brushstrokes that can be selected. The top of the screen contains an area for text commands and messages from the program. The middle of the screen is the picture workspace. Curves can be drawn by moving the cursor directly, or by selecting several points and allowing Draw to mathematically fit a curve to those points. Once an object is defined, it can be repainted using a number of brushstrokes. Since this is very similar to the techniques used by artists and calligraphers, quite a bit of artistic expression is possible. An object can be duplicated, rotated, stretched, or shrunk, by means of a small set of commands and mouse gestures.

The Network

Each Alto is assigned an Ethernet address that identifies it uniquely on

delasouth hanounces... He Total Printer packicel

With so many matrix printers on the market today, it may seem tough to find exactly the right one for your application. Some models may offer the speed you need, others the communications flexibility and still others the forms handling capability. But no printer offers all the features you need ... until now.
The DS180 matrix printer provides the total package of performance features and reliability required for applications such as CRT slave copy, remote terminal networks and small to mid-range systems. Not a "hobby-grade" printer, the DS180 is a real workhorse designed to handle your most demanding printer requirements. And pricing on the DS180 is hundreds of dollars below competitive units.
High Speed Printing - Bidirectional, logic-seeking printing at 180 cps offers throughput of over 2001 pm on average text. A 9 -wire printhead life-tested at 650 million characters generates a 9×7 matrix with true lower case descenders and underlining.
Non-volatile Format Retention-a unique programming keypad featuring a non-volatile memory allows the user to configure the OS180 for virtually any application. Top of form, horizontal and vertical tabs, perforation skipover, communications parameters
and many other features may be programmed and stored from the keypad. When your system is powered down, the format is retained in memory. The DS180 even remembers the line where you stopped printing. There is no need to reset the top of form, margins, baud rate, etc....it's all stored in the memory. If you need to reconfigure for another application, simply load a new format into the memory.
Communications Versatility - The DS180 offers three interfaces including RS232, current loop and 8-bit parallel. Baud rates from 110-9600 may be selected. A 1K buffer and X-on, X-off handshaking ensure optimum throughput.
Forms Handling Flexibility - Adjustable tractors accommodate forms from $3^{\prime \prime}-15^{\prime \prime}$. The adjustable head can print 6 -part forms crisply and clearly making the DS180 ideal for printing multipart invoices and shipping documents. Forms can be fed from the front or the bottom.
If you would like more information on how the DS180's low-cost total printer package can fill your application, give us a call at Datasouth. The DS180 is avaitable for 30 -day delivery from our sales/service distributors throughout the U.S.

Photo 7: The multiplayer Trek program. This game is played entirely under mouse control. The lower portion of the screen shows a short-range sensor scan; above is the long-range display, and navigation and weapons controls.
the network. A typical Ethernet address might be $50 \# 100$, which is meaningless to most people. To permit an easily remembered distinction between Altos, each is assigned a name. For instance, the Altos at Stanford are named after rivers and mountains in California State parks; Altos at CMU are named after jewels, and Altos at Xerox are named after people. This leads to such interesting names as Cypress, Turquoise, or Machiavelli, which are considerably easier to remember than 50\#100.

Alto networks do not consist entirely of Altos. Several other devices are connected to the Ethernet network. One type is called a server. Servers are userless Altos that are dedicated to some specific function. A server might be connected to a printer. Thus, printing a file would actually consist of sending the proper messages to a Printing Server. One common type of server is a File Server. These machines support extra-large disks and are repositories for programs and files that are too large or too infrequently accessed to make storage on individual machines worthwhile. The Stanford File Server is named Lassen.

Photo 8: The multiplayer Mazewar game. The eye represents the persona of an opponent. Any Alto on the net can join or leave the game at any time.

Due to the design of the network and the Altos, a new Alto can be wheeled in, plugged into the network medium (standard coaxial cable), and, with a blank disk pack fresh from the factory, become entirely functional with a full set of software in a matter of minutes. An Alto can also be disconnected, moved to another port in the coaxial cable, and reconnected without affecting either the performance of the network or the Alto.
Several programs exist that take advantage of the distributed processing capabilities inherent in the Ethernet network. Of all of them, the most enjoyable are the games. Trek is a multiplayer "spacewar" game that is controlled primarily by the mouse (see photo 7). Mazewar is a multiplayer romp through a realistic labyrinth (see photo 8). The unique feature of these games is that large numbers of users can join or leave the game as they please without affecting the play of the others. Since all the Altos can listen to the same packet (block information on the Ethernet) at once, the game program is never running on any single coordinating machine. Instead, it is running in-
dependently on every participating Alto.

The Future

A stand-alone Alto is usable, but the best configuration is a group of Altos connected by an Ethernet system. Since the Ethernet system is a local network, a special device called a gateway was developed to allow local Ethernet networks to speak to other Ethernet networks or packet networks of other types. Many companies are researching network schemes that would allow packet transmission across cable-television lines. Since these cables are currently installed in many homes and buildings, it is not difficult to imagine a city with an "information grid," analogous to the electric-power grid that exists today. Combined with an electronic mail system (a prototype called Laurel is used on Altos today) the possibilities are staggering.

The Alto has been around for several years. As research tools go, it is covered with moss and gathering dust. But new products will be appearing on the market based on the expertise gained in producing and using the Alto. The next few years should show a dramatic increase in the quality of personal computing and the ability to interconnect personal computers. And the Alto is one of the first personal computers that satisfies the needs of the computer scientist as well as the secretary or businessman.

References

1. Lampson, B W and E Taft. Alto User's Handbook, 1979.
2. Metcalfe, R M and D R Boggs. "Ethernet: Distributed Packet Switching For Local Computer Networks." Communications of the ACM 19,7, July 1976, pages 395 through 404.
3. Shoch, J F and J A Hupp. "Measured Performance of an Ethernet Local Network." Communications of the ACM 23,12, December 1980, pages 711 through 721.
4. Thacker, C P, E M McCreight, B W Lampson, R F Sproull, and D R Boggs. Alto: A Personal Computer. Tech Rep CSL-79-11. Palo Alto CA: Xerox Palo Alto Research Center, August 1979. (To appear in Computer Structures: Readings and Examples, Second Edition. Siewiorek, Bell, and Newell, editors.)

Customizable The Unique Difference that Sets VEDIT Apart in Full Screen Editors

Total user customizability is a predominate reason that over a thousand users find VEDIT the easiest to use full screen editor. It makes VEDIT the only editing package which allows you to determine your own keyboard layout and use the cursor and special function keys on any terminal having them. And only VEDIT fully supports all of the newly available terminals. It may come as a surprise to you, that with any other editor or word processor, you will have to memorize obscure control characters or multi-character sequences, while your terminal's extra keys and editing functions go unused. The customization extends to setting the default tab positions, scrolling methods and much more. It's almost like designing your own editor for your system, applications and preferences. And all of this is easily done with the setup program which requires no programming knowledge or 'patches', but simply prompts you to press a key or enter a parameter.

Unequaled Hardware Support

The CRT version supports all terminals by allowing you to select during setup which terminal VEDIT will run on. Features such as line insert and delete, reverse scroll, status line and reverse video are used on 'smart' terminals. All screen sizes are supported, including large ones such as the 60×80 format on the Ann Arbor Ambassador terminal. Special function keys on terminals such as the Heath H19, Televideo 920C and IBM 3101 , and keyboards producing 8 bit codes are all supported. The memory mapped version is extremely flexible and supports bank select and hardware cursors such as on the SSM VB3. With this level of customizability and hardware support, you will feel for the first time that the software was optimally designed for your system.

Fully Compatible Replacement for Ed

Since VEDIT creates and edits standard text files of up to one diskette in length, it serves as a replacement for the $C P / M$
standard editor ED. Of course, you benefit from the fastest and easiest to use 'What you see is what you get' type full screen editing available, fast disk access and an editor which takes up only 12 K of your valuable memory space. With VEDIT you will never again need or want to use the slow and tedious ED.

Special Features

VEDIT is more than just a full screen editing replacement for ED, it gives you many new editing capabilities, such as a scratchpad buffer for moving and rearranging sections of text, complete file handling on multiple drives and iteration macros. Amoung its special features you will find automatic indenting for use with structured programming languages such as Pascal and PL/I, and other special facilities for Assembler and COBOL. A real time saver is the ability to insert a specified line range of another file anywhere in the text. Unlike most software, VEDIT will even tolerate your mistakes. For example, one key will "Undo" the changes you mistakenly made to a screen line, and the disk write error recovery lets you delete files or insert another disk should you run out of disk space.

Ordering

Many dealers carry VEDIT, or you may contact us for fast delivery. Specify the CRT version, your video board or microcomputer, the $8080, \mathrm{Z80}$ or 8086 code version, and disk format required.

VEDIT for 8080 or Z80: Disk and manual \$ 130
VEDIT for CP/M-86: Disk and manual . .VEI') $\$ 185$
Manual: Price refunded with software purchase $\$ 15$

VISA or MASTERCARD Welcomed

CP M and MP/M are registered trademarks ol Digital Research. Inc. Appte II is a registered trademark of Apple Computer. Inc Solt Card is a trademark of Microsoft. TRS-80 is a trademark of Tandy Corp.

[^10]

CompuView Products Inc.

IF YOU WANT TOSTART YOUROWNCOMPUTERCOMPANY, YOU NOW HAVE THECOMPUTER TOSTARTWITH.

The entrepreneurial spirit runs rampant in the computer industry. In fact, it's come to our attention that a significant number of the technical/engineering types have some thoughts of starting their own company.

So we have come out with a computer for them. And for those entrepreneurs within companies who are in a hurry to get their hot new project to market in a hurry.

It's called the MPT/100.
As you can see, the MPT/ 100 computer is small enough to fit in whatever corner you set aside for fur thering your own ambitions.

And it'll cost you less than the price of a basic new car.

This computer is anything but basic.
Inside the MPT/100, you'll find a 16-bit microNOVA ${ }^{\text {TM }}$ computer. 64 K bytes of memory. 80 column by 24 line screen. Full keyboard with numeric pad. 716 KB of online storage on two 358 KB mini-diskettes all packaged in a system that has the kind of software, compatibility with more powerful computers, ease-of-use and reliability that desk-top computers are noted for not having.

Also unlike most desk-top computer software, some very sophisticated (read easy-to-use) big computer software is available for the MPT/100 computer: A multi-tasking FORTRAN that meets all the ANSI standards.

A PASCAL that executes at assembly language speeds. An ANSI compatible BASIC that lets you write enormously complex programs that take up only a little space. A

HELLO, MRED.
HELLO, HARYY.
wat do you thim ve should call gue contany? Hapryos.
Why, how meour fart'ol
HARRY aHD FRED'S?
FRES AMD MARTY'S?
mo, hol bramatic cnouch.

T00 atacy.
WOW noovt ... kobots that kaxe the whld work? sowns like they'll put we out of voak. no. THEYML maxt us RICH.

full range of user-friendly interactive programming aids. And MP/OS, an operating system anyone who's into operating systems will tell you is one of the most advanced in the world.
(Anyone who considers any of the above to be of trivial importance should consider the fact that a single line of application code costs a good deal more than many microcomputers. And that cost is only going one way.)

Saving money on programming is only part of the attraction of the MPT/100. It also saves you time. So you can get your company up and running before anyone can do the same thing.

As you grow, all the software you've written, all the peripherals

you've written, all the peripherals | our world-wide service. And partly because |
| :--- |
| they didn't have to wait eighteen months to |
| get our computers. |
| There is no stopping you from doing |
| the same thing. |
| If you want to get more detailed in- |
| formation about the MPT/100 computer, |
| call Mour local Data Ceneral office or your |
| Data General manufacturers representa- |
| tive. Or the distributors listed below. Or |
| write as at: MS C-228, 4400 Computer |
| Drive, Westboro, MA 01580. |
| MPT/loc computers are available |
| for off the shelf delivery from: |
| SCHWEBER, HALL-MRK, |

Tree Searching Part 1: Basic Techniques

Gregg Williams, Senior Editor

It is estimated that there are more possible games of chess than there are atoms in the universe. This means that if a computer could generate one million chess moves a second, it would take approximately 3.2×10^{60} centuries to generate all possible games. How, then, can a $\$ 200$ microprocessor-based chess game (faced with analyzing a situation so complex) play not only minimal but fair-to-good chess? Several techniques are necessary, but one of the
most powerful in the field of artificial intelligence is known as tree searching.
Tree searching allows a computer to determine the best of many alternatives, while at the same time evaluating as few partial solutions as possible. Part 1 of this article deals with the basic techniques of tree searching on three levels: theory, implementation (through several BASIC programs illustrating the major techniques), and experimentation. It

Figure 1: Nomenclature of trees. Figure 1a gives the graphic representation of the state space of a problem as a tree. Trees are characterized by having only one start node (S), by containing only nodes that can be reached via the start node, and by having no arrows that lead to the same or lesser depth. Nodes n_{21}, n_{32}, and n_{27} are examples of terminal nodes; nodes n_{12}, n_{26}, and n_{33} are examples of nonterminal nodes; nodes n_{31} and n_{26} (shown in color) are goal nodes. Note that a goal node can be either terminal or nonterminal. Figure $1 b$ shows the relationship between parent node n_{13} and successor nodes n_{26} and n_{27}. Here, n_{13} is said to be expanded to generate n_{26} and n_{27}.
will introduce basic terminology and some well-known exhaustive tree searches (those that will eventually generate all possible partial solutions), as well as an illustrative BASIC program (to solve the familiar sliding blocks "15-puzzle") that will be used in both articles. The second part will deal with admissible heuristic searches that use information about the system being searched to cut down on the number of false leads pursued; it will also cover nonadmissible heuristic searches, which attempt to find a quicker solution at the expense of losing the certainty of a guaranteed optimal solution, or of finding a solution at all.

Basic Terminology

The purpose of artificial intelligence, according to one school of thought, is to produce computer programs that will solve problems not easily solved by computers-problems that can be solved by an "intelligent" agent (usually a human). The solution to many of these problems can be seen as the attempt to arrive at a solution (or goal) whose properties are unambiguously defined, from an initial state (or node), according to some specific set of rules. Between the starting node and the goal node are other nodes that represent intermediate positions. We

PEDUNCLE

It certainly is nice to know those beautiful spring blossoms on flowering peach trees are sessile blooms. Sessile, according to Webster, simply means the flowers are not raised upon a peduncle. Well, thank goodness for that! And Webster adds that a peduncle is the stalk that supports the fructification in

Y

 ou're really going to appreciate the "self teaching" simplicity of Peachtree Software's documentation. You'll be on your own in no time, with no need for "support." Our learn-by-doing manual shows you exactly what will appear on the screen. Menu driven, our programs prompt you at every point with the selections available. There's sample data for selftraining and practice, too. So goodbye forever to peduncles ... who needs 'em!Wide variety of packages, all from the same tree. Here's just a sample.
Magic Wand ${ }^{\text {TM }}-$ With this extremely popular word processing system, a minimum of commands performs basic functions. It's remarkably easy to use. And you can now add Magic Spell ${ }^{\text {TM }}$, the "dictionary" with 20,000 words.
Sales Tracker ${ }^{\text {TM }}$ is our most comprehensive product-a sales order processing system that could well be the most sophisticated microcomputer software

> TheVery Best "Off-The-Shelf" Software Is "Off-The-Tree."

ever developed. It has the power of ANSI/COBOL and floppy or hard disk support. Userselectable options bridge the gap between accounts receivable and inventory.
Peachtree Series 5 is an all new generation of BASIC General Accounting packages. It includes such user-requested features as the capability to access and update, simultaneously, both the Accounts Receivable and Inventory data files. Hard disk option. Installation guides. Expanded data and report capability.
The Peachtree Series 40 is adapted for the Apple II*'s
some thallophytes. Big deal.... We at Peachtree Software are very pleased to assure you that due to our advanced technology, our thallophytes fructificate without the need of any support whatsoever! Software dealers, rejoice ... your peduncle worries are over forever. Isn't modern science wonderful?
standard 40 -column screen and single-density $51 / 4$-inch disk drive, using the SoftCard ${ }^{\text {TM }}$ from Microsoft**. The series includes General Ledger, Accounts Receivable, Accounts Payable, Inventory, Mailing List, Payroll, and Magic Wand ${ }^{\text {™ }}$

It takes time to grow a tree, and we've been in the business ever since microcomputers started springing up in homes and businesses all across America. So our software systems are time-tested and user-feedback refined. Trust the Tree for Unsurpassed Documentation. For Feature-packed Systems, utilizing the latest hardware technology. And trust the Tree for sophisticated programs, so easy to use, that "peduncle" may soon disappear entirely from the English language!
There are more than 20,000 Peachtree Software packages in use today. To get yours, see your nearest dealer or call l-800-835-2246 Ext. 35. In Kansas call 1-800-362-2421 Ext. 35.

are interested in the particular sequence of nodes that makes up the shortest path to one of several possible goal nodes. Many nodes (usually an overwhelming number) do not lie on the optimum path, and the purpose of tree-searching methods is to explore as few of these as possible.

A number of problems that do not seem to lend themselves to tree searches can be made to do so when described in a finite-state representation. Sometimes, in the case of problems that have a continuous (and therefore infinite) range of variation, this means quantizing the problem into a finite number of discrete steps: an example is considering the range of temperatures of 20° to $30^{\circ} \mathrm{C}$ as a set of discrete temperatures-say, 20.0°, $20.1^{\circ}, 20.2^{\circ}, \ldots 29.9^{\circ}$, and 30.0°. Theoretically, this results in some loss of accuracy, but most problems can be quantized in sufficiently small increments that accuracy is not a problem.

A finite-state representation consists of the following: a start node, a well-defined node or set of goal nodes, and a set of rules or operators that allows the user to generate all permissible successor nodes from a given node. In some cases, the path from a node to its successor node (that is, one generated by the single

Figure 2: A directed graph. This figure, which represents the structure of many 'real-world" problems, differs from a tree in that successors may be in the same or a "shallower" depth (note colored arrows). The successor of n_{33} is n_{12}; the successor of n_{27} is n_{13}. Tree-searching algorithms can be modified to handle graphs, but this article will deal exclusively with trees.
application of an operator to the parent node) may have a cost associated with it, with the cost of a goal node being the total cost incurred along the shortest path from the start node to the goal node. The set of all nodes that can be derived from the start node is called the state space.

A tree is one possible representation of the state space of a problem. As shown in figure 1, nodes are represented as points, and the relationship between a given node and its successor is shown by a directed arrow that points from the parent node to the successor node. We will label the start node S, and each of the other nodes according to its rank
(distance from the start node) and lateral position within the set of all nodes with the same rank (this is an arbitrary labeling, but it is orderly and useful). Referring to figure 1a, nodes n_{11}, n_{12}, and n_{13} are all the nodes of rank one. Node n_{12} has two successor nodes, n_{24} and n_{25}. Node n_{41} is the only node of rank four.

Some nodes do not yield any new states upon application of the operators that define the transition from one state (node) to the next. These are called terminal nodes; examples in figure $1 a$ are nodes n_{21}, n_{22}, $n_{23}, n_{25}, n_{27}, n_{31}, n_{32}$, and n_{41}. Nodes marked G are regarded as goal nodes; they can be either terminal or nonterminal nodes.

Figure 3: The traveling-salesman problem. Given the map in figure 3a, the objective is to find the shortest route from city A through cities B, C, and D. The tree of figure $3 b$ gives the finite-state representation of the problem, with each node being a partial trip (eg: $A D C$ is the trip from A through D and C) that has a cost dependent upon the route taken. Here the problem is discrete, and any node has only a finite number of successors; at node $A D$, only two "next moves" are possible: $A D B$ and $A D C$. The shortest route is shown in color.

"Together we're working to better serve mankind."
"Speaking on behalf of Vector computers, I'm pleased to announce that TRW Customer Service Division will provide a nationwide, nine-month on-site service warranty that you, the end-user, will receive absolutely free.*
"I'd also like to add that this is a unique program. It's actually the first time a microcomputer has had this kind of comprehensive nationwide on-site service - especially from a company of experts like TRW.
"Now you have even more security when you buy a Vector. In addition to increasing your personal productivity, helping you make faster decisions, and improving your business, we offer a network that will service us right in your office if we ever need it. At no expense to you.
"Right now, you can get quick, dependable service in Los Angeles, New York City, Denver, Dallas, Chicago, San Francisco, Northern New Jersey, Philadelphia, Atlanta, and Boston. With more cities on the way.

For more information and your nearest Dealer, call us at 800-423-5857. In California, call 800-382-3367. Or write to us at 31364 Via Colinas, Westlake Village, CA 91362.
"TRW and Vector. Now that we're helping each other, there's no telling how much we can accomplish for you.'

VECTO々
Vector Graphic Inc.
COMPUTERS FOR THE ADVANCEMENT OF SOCIETY.

$68000 \mu \mathrm{P}$ on the S-100 Bus?

YES, AVAILABLE NOW FROM DUAL SYSTEMS!

$\square 8 \mathrm{mHz} 68000 \mathrm{microprocessor}$.
\square 16-megabyte direct addressing.
\square 32-bit internal arithmetic.
\square Minicomputer type instructions including MULTIPLY.
\square FULL IEEE-696 S-100 compliance. Runs with all 4 mHz S- 100 boards and automatically runs faster when accessing Dual Systems memory boards, for FULL SPEED OPERATION OF THE 68000.

Powerful vectored interrupts. 7 Vectored interrupts, including NMI, as well as alternate mode having up to 256 interrupts.On board monitor ROM for immediate use.Connector for future addition of memory management unit for multi-user operating systems.

Built to the highest industrial standards with 200 hour burn-in.

CPU/68000 CPU board. . . . \$1195
32K-byte 8/16-bit NONVOLATILE RAM board, for secure storage of programs you are developing. Allows FULL SPEED CPU operation. CMEM-32K, per 32K-bytes . . $\$ 895$
32 K -byte 8/16-bit EPROM board, EPROM-32K
\$395
Serial I/O board, SIO-2 $\$ 285$
All of the above with cabinet, power supply and backplane..... $\$ 3685$

Orm and Dealer pricing is available.
Sales representatives in most metropolitan areas.

system reliability/system integrity

DUAL SYSTEMS
 CONTROL CORPORATION

1825 Easishore Hwy,., Berkeley 94710
(415) 549-3854 TWX 910 366-2035

Often the state space of a problem will allow a node to generate as successor a node of equal or lesser rank, as shown in figure 2. In this case, the resulting representation is called a graph (or, more completely, a directed graph). This will call for only a slight addition to the search strategy, but the difference should be noted.

Finally, as mentioned before, a transition from a node to its successor may have a cost associated with it. If so, the arrow connecting the two will be labeled with the cost; otherwise, the arrows are unlabeled and each is assumed to carry a unit cost.

Some Examples

First we will examine a discrete example: the traveling salesman problem. A traveling salesman in city A must travel to cities B, C, and D, in any order. Given the map in figure 3a, what order of cities gives the shortest total mileage?

In this problem, the nodes are partially completed (or completed) trips described by a sequence of the letters A, B, C, and D, restricted by the rules
that follow. The start node is A (salesman in city A, no traveling done). Four goal nodes describe various routes, $A B C D, A B D C$, $\mathrm{ADBC}, \mathrm{ADCB}$. The rules are informally described: from a given node, add the letter of any city that connects to the last city visited and that has not yet been visited.
Since the number of cities is small, a full state-space tree is possible (figure 3b), and it is clear that the shortest route is ADBC, with a distance (cost) of thirteen. But what if there are ten cities? Twenty? What if some roads are one-way?

Next we see a continuous example (here the state space must be cut into a finite number of discrete values). You have a faucet, a sink, and an empty glass with a horizontal line on it: fill the glass up to the line.

First we must quantize the problem. Suppose we say that the glass holds 100 ml of water. We can reasonably set the smallest unit of water to be manipulated at one milliliter. The state of the problem is the amount of water in the glass, and the problem has 101 possible states: 0

Figure 4: The "quantization" of a continuous-solution space. Shown is a partial tree for the problem of filling a water glass to a specified mark. It is continuous in that the problem space (the amount of water in the glass) can hold an infinite variety of states (amounts of water). By considering the glass to hold water only in single-milliliter increments, the problem space becomes discrete and finite, and thus can be represented to a computer. Goal nodes exist where the water level matches the mark on the glass.

Take a look at our EPROM blaster for your Apple" or TRS-80."

Apparat announces the most yersatle EPROM burner avallable loday for your TRS 80 modell and in or Apple computer . . . the Apparat PROM Blasting system (A. P. B,). Most EPROM burners will program only one type of EPROM. The A.P.B. system will program all comimonly used 24 pin EPROMs by uising special personallty modules that adapt the unit to the EPROM. The following EPROMs are programmable: 2704, 2708, 2716, (Sivolt) \& 8 (5 -volt), 2732, 2508, 2516 and 2532 .

The versatility and power of the A.P.B. system means you're getting a PROM burning package with extensive capabilttes. The prlce, \$149.00, insures you're getting the most'cost-effective PROM burner an the market today.

With ả unique combination of pierspnallty modules.and
sophisticated software, A.P.B. will perform many operations impossible with conventional PROM Durners. Mere's a brief ilst of some of A.P.B.'s capabilitles:

- Verify ROM is erased
- Read ROM
- 'Copy ROM
- Copy between different ROM types
- Program ROM
- Partlal programming and copies
- Verify programming
- Read or save ROM data on disk or cassette (Apple only)
- Program directly from computer memory
- Examine rand/or modify working memory
- Preset working memory

The A.P.B. system ts the most flexible PROM burner avallable. The A.P.B. system package consists of an interface card that plugs directly into an expansion slot*, a complete set
of personality modules, software on disk and a detalled Instruction manual. The software will run under NEWDOS/80, or TRSDOS ${ }^{\text {TM }}$ for the TRS-80, and APPLE DOS ${ }^{\text {TM }}$ or APEX for the Apple.

If you're looking for a powerful, versatile and cost efficient EPROM burner, call APPARAT today. Dealer Inquiries welcome.

(303) 741-1778

-TRS. 80 version requires the TRS-80 bus extender (Cat. \# 1-025) or a separate user provided power supply and cable. TRS-80, and Apple are tradernarks of Tandy Corp. and Apple Computer.

The

Ultimate IEEE S-100 Memory Would...
\square BE NONVOLATILE holding data for up to eight years with the power off.RUN AT 6 MHZ
without wait states.
RUN IN 8 OR 16-BIT
systems with 8 or 16-bit wide data paths.
HAVE EXTENDED 24-BIT
ADDRESSING and bank select.
HAVE DYNAMICALLY MOVABLE WRITE PROTECT AREAS to prevent accidental erasure of programs and critical data.
GENERATE POWER-FAIL
interrupts for orderly system shutdown \& power failure recovery.

The Dual Systems CMEM memory boards combine highspeed CMOS memories with new 5-10 year lithium batteries to give you the nonvolatility of an EPROM board while retaining the instant writability of a high-speed read/write RAM. These industrial grade boards are ruggedly built and are burned-in for 200 hours. CMEM-32K, 32K-bytes ... 5895
-CMEM-16K, 16K-bytes $\$ 795$

- CMEM-8K, 8 K -bytes

OEM and Dealer pricing is avalable.
Sales representatives in most metropolitan areas

system reliability/system integrity

DUAL SYSTEMS

CONTROL CORPORATION
1825 Eastshore Hwy, Berkeley 94710 (415) 549-3854 TWX 910 366-2035
ml (empty), 1 ml of water, 2 ml , . . ., 100 ml . (Here the word "state" seems more natural than "node"; the latter usually refers to the graphic representation of the problem.)

Time as well as volume must also be quantized, which restricts us to adding or subtracting a given volume of water "at one time." We have 200 possible operators (some of which may be physically impossible for a given state): add 1 ml , pour out 1 ml , add 2 ml , . . and so on up to add or pour out 100 ml . Finally, the goal node is any set of actions that brings the water level up to the marked line (wherever it happens to be). The state-space tree is large but finite; part of it is shown in figure 4.

The 15-Puzzle

Most of us have played with the 15 -puzzle: fifteen numbered squares
that slide around in a frame that allows four units on a side. The blocks are given in an arbitrary order and the object is to slide the blocks until, read by row, they are in ascending order with the blank space in the lower right-hand corner. (Mathematician/puzzlist Sam Lloyd made a lot of money betting people they couldn't solve the puzzle. It was a sure bet; with the starting position he used, a solution was impossible.)

We will use the 15 -puzzle to illustrate various search methods. The BASIC program SEARCH (see listing 1) will implement different search techniques by changing only one subroutine. It will work for both the 15-puzzle and (for computers with less memory) the order-3 variation: the 8 -puzzle. In this article we will use the 8 -puzzle for illustration; even

Text continued on page 86

Figure 5: The basic flowchart used to derive the SEARCH program of listing 1a. This flowchart is a modernized, generalized version of several given by Nils Nilsson in Problem-Solving Methods in Artificial Intelligence. The flowchart was written as structured pseudocode (see listing 1b) before becoming the BASIC program SEARCH.

Start talking business

COBOL is the most effective business language. Apple ll is the most friendly business computer. CIS COBOL with FORMS-2 brings together the best features of COBOL and Apple to enable you to deliver the most effective, user-friendly applications.

Business Programmers: Take the COBOL expertise you have acquired on big business mainframes, and use it on Apple Il to create friendly applications that will talk directly to your users where it suits them best, on their own desks.

CIS COBOL's dynamic module loading gives you big application capability and the FORMS-2 source generator lets you build and modify conversational programs from visual screen formats, creating much of the code automatically.

Application vendors: CIS COBOL with FORMS-2 steps up the pace for your development of the high quality professional application packages needed today. And creating them in COBOL makes them more maintainable.

Over half the Apple ll's now being sold are going to business or professional users so demand for quality applications is growing fast, creating big business opportunities for you.

Stability proven by the US Government. CIS COBOL has been tested and approved for two consecutive years by the US General Services Administration as conforming to the ANSI ' 74 COBOL Standard. Apple Il under CP/M is included in CIS COBOL's 1981 GSA Certificate of Validation (at Low-Intermediate Federal Standard plus Indexed I-O and Level 2 Inter-Program Communication).

Get your hands on CIS COBOL at your Apple dealer.

Talk business with him now!

Micro Focus Inc., 1601 Civic Center Drive
Santa Clara, CA 95050. Phone: (408) 248-3982.

CIS COBOL with FORMS-2 for use on the Apple ll with CP/M is an Apple Distributed Product. CIS COBOL and FORMS-2 are trademarks of Micro Focus. CP/M is a trademark of Digital Research. Apple ll is a trademark of Apple Computer.

Toughest Boards in Town．． IEEE 696／S－100

NON－STOP CLOCK

Keeps time with power off．Our industrial clock utilizes a new lithium battery for 3－9 years use Easiest clock to program you＇ll ever see．Runs in all S－100 systems．
\square Year，date，hrs，mins，secs，msecs．
U Uses new LSI CMOS chip．
\square Vectored interrupts．
－CLK－24
$\$ 250$

A／D CONVERTER

IEEE696／5－100 AIM－12 industrial standard module designed for industrial analog－to－digital use．
\square Runs in all $5-100$ systems．
－32－channel，16－differential $\square 12$－bit resolution／accuracy．$\square 25$－microsecond conversions．
Instrumentation amplifier．
\square BASIC program provided．\square AIM－12， 5695 or 5785 w／7－1000 gain transducer amplifier．

D／A CONVERTER

AOM－12 IEEE696／S－100 industrial level digital－to－analog（D／A） converter．
$\square 12$－bit $\pm 1 / 2$ L．S．B．accuracy over full $0.70^{\circ} \mathrm{C}$ temperature range \square Outputs 0－10，$\ddagger 5$ ，or ± 10 volts \square Short circuit protection，all outputs． \square Switch－programmable for multiple boards．
－AOM－12， 5575

VIC 4－20

Standard output for industrial control $4-20 \mathrm{~mA}$ D $/$ A converter． Used in conjunction with the D／A board．
VIC4－20，5445．

DUAL 77 Data Acquisition and Control System－

Built to industrial standards；designed for severe environments．BASIC language makes programming easy． Access to hundreds of sensors． Expandability to meet your increased needs．Nonvolatile memory．Power interruption recovery with automatic restart．DUAL 77 is economical； \＄5985 \＆up．

system reliability／system integrity

DUAL SYSTEMS

CONTROL CORPORATION
1825 Eastshore Hwy，Berkeley 94710 （415）549－3854－TWX 910 366－2035

Listing 1：The SEARCH program，written in Applesoft BASIC for the Apple II．Listing 1a gives the program as implemented in BASIC．Listing 2，3，or 4 must be added for this program to work．The subroutine that starts at line 9900 implements a given search method；all REM（remark）lines can be deleted to reduce program size．The diagnostic message printed by line 177 gives visual feedback on the progress of the program， although it does not give the correct value for the start node（node 1）．The structured pseudocode in listing 16 outlines the processes in SEARCH．Line numbers here refer to the＂main line＂of the program．


```
    FEN
    1:T-M
    REM
    FFM -.....- i IST|ll6: I ....--
```



```
    1.4.M
    ||M
```



```
    1:1-M
    |N-M
    FHFM --1-ININ MI-INTEEX OH= LLLWESI OFEN VALLE
    G0S|!a 9%"M
    IF DINI - $,%%C4 IHLNM 495
```



```
    FL.M
```



```
    NEM -.- BY EJVING LAFISE Y/ALLIE
    19 = C9, 1
    O(N1)= = MOHOO
        FitM
        Hi=M
```



```
    E゙D = M1D'h(OW(N1),H1, 1,L工)
    Fg4. = M1N% (CIS(N1), H1,1)
    BCOSUl$ %10.0
    REM --NODE # M| IS FOASSED AS ITSEL&
    FEM --GENERATE SUCCESSIIFS
    GOSUEE 9%%O
    FEM
    HEM
    FHEM --EVAHLUATE EACH FOF GOAL STATUS--G1 NODES WEFE GEMERATED
    1F G1 : O THEN %95
    FKIN1 ":9O--NIO SUCCESSOKS. NODE":H1
    GOTO 470
    G% = "NOT GOAL": FOF M1 = 1 TO E1
    FEM --FEE TUFN "SSCIAL" IF A$ (MN) IS GOAL MODE
    GOSUB 966%
    IF G% & > "GOAL." THEN SEO
    E1$ = "EXIT"
    FEM --SAVE INDEX OF GOAL NODE
    REM --FOILLOWING IS "ELSE" EFANCH OF 320:G4 NOT := "GOAL"
    REM --UNFDACK BIJAFD TO E$,F$ AFRAYS
    E$ = MID$ (A$(M1),H1 + 1,L工)
    GOSUE 9100
    REM --EVAL H-HAT FCN FOF E&, RESULT IN R1
    GOSUE 9400
    FEM --FUTT A$(M1) OM "OFEN" LIST
    09 = 09 + 1
430 0$(09) = A$(M1)
    440 [1(09) == F1
    4s%1 NEXT M1
40O FEM --END OF DO-WHILE LOOF AT 150
47% GOTO 150
475 FEEM
4BO}\mathrm{ FEM
4B0 REM ------------*----------------------------
4B5 FEM --THIS SECTION FFINTS EITHER SOLUTION OF FAILIUFE MESSAGE
495 IF G%: "GOAL" THFN 540
SOO REM --TFACE FACK SGLUTIION
510 GOSUB 9GOO
520 GOTO 550
E%O FEM --ND SQLUTION FQUND
540 FFINNT : FFFINT "INO SOLUTION FOUND"
550 FFFINT "NODES INN OFEN LIST: ":09-CQ
EO% FFIINT "MGIDES LIN CLOSED LIST:";CG
570 END
BO010 FOK I = 1 TCI F'9
BO10 FOF: J = 1 TO F%9
8020% FFRINT F%(I,J):: NEXT J
BOEG FFINT " ": NEXT I
B09G FRINT
8040 FETUFN
88901 REM
BB95 FEM --SUBRTN TO CHECF. IF NEW BDARD F# (I,J)
```


The next gencration of business software

WHAT'S IN A NAME?

 hecrame: conlused.

 your nuersencmpater.

WORD PROCESSING

ACCOUNFING

Designer Software

HOUSTON

> If you have anything to do with small computers，you should be reading the Carl Helmers PERSONAL COMPUTER letter every month！

You won＇t want to miss a single issue of the new Personal Computer Letter．． a monthly publication of comprehen－ sive studies on issues affecting design， implementation，and applications of small computer systems．The Personal Computer Letter is a journal compiled and edited by Car Helmers，co－founder and first editor of Byte Magazine．Here is valuable information in professionally prepared format about small com－ puters，software，peripherals，trends in the industry，and new ideas．We accept no advertising and the information provided is available nowhere else． Written for executives，decision－makers， market strategists，product designers and authors in the small－computer field， each 12 to 16 －page issue contains analysis and design studies by many of the personal computer industry＇s foremost experts．For example，the current issue covers：Designing Appli－ cation－Specific Documentation Tools：Let＇s Be Bold Where it Counts． Subscribe today．Mail the coupon with your check for $\$ 200$ for the next 12 monthly issues．Sample issues at $\$ 25$ per copy，applicable to a full year＇s subscription．

Listing 1a continued：

```
8900 Q3$ = "NOT DUPLICATED"
BOOS REM --CHECK THROUGH ALL EXPANDED NODES
8910 FEM -- I.E., NODES WITH O(I) >=90000
8915 FOR I = 1 TO 07: IF O(I) < 900000 THEN 8930
8920 F1$ = MID* (O$(I),H1 + 1,L2)
B925 IF F% = F1$ THEN QS$ = "DUFLICATED" THEN 8938
B930 NEXT I
8935 IF Q3名 = "NOT DUPLICATED" THEN B93B
8937 FRINT "日937--CURRENT POSN IS DLIFLICATE ***"
895% RETUFN
```



```
日990 REM --SUERTN TO FIND N1 SO THAT O(N1) IS SMALLEST
8995 REM
7000 51= 99999:N1 = 1
9005 FOR I = 1 TO 09
9010 IF O(I) > = S1 THEN 9020
9015 S1 = O(I):N1 = I
9020 NEXT I
9025 RETURN
90>5 RETM
9040 REM --FACK BOARD F& (N,N) TO STKING F*
9045 REM
9050 F4 = "10
9055 FOR E = 1 TO F9
9000 FINR D = 1 TO R9
9065 F$ = F事 + F$(E,D)
9017% NEXT D
9071 NEXT B
9090 FEM ---------------------------------------
9095 FEM --UNFACK STRINE Eq INTO AFF:AYS E% (N,N), F$ (N,N)
9100 FOR ! = 1 TO F:9
9105 FOF J = 1 TO F'9
911001 = F9* (I - |) + J
9115 E%(I,J) = MID$ (E$,01,1)
9120 F%(I,J) = MID* (E#,Q1,1)
9125 NEXI J: NEXT I
9130 FETUFN
91F% FEM --.--------------------------------------
9190 REM EXFAND CLIFFENT FOSN E*:I.J) WITH DIFECTION E9#,NODE# N1
919S FEM -- GIVING SUCCESSOFS IN fFRRAY A⿻⿱口口丨心(N):N=1 TO G1
92OO FOR I = 1 TO 5
920% IF EY$ = MID$ (D4, 1,1) THEM 9210
9:07% NEXT I
9210 09% = MIN% (1$,1,1)
4215 REM --0.5% 15 FOFBEIDDEN DIRECTION TO EXF'AND E:
922! FOF Y1 = 1 TO F'G: FGF X X1 = 1 TO FO
9225 IF E# (X1,Y1) = "." THEN 923日
9250 NEXT X1: NEXT Y1
?2SS REM - - X1,Y1=COORDINATE OF "BLANK" IN PU7%LE
\square23G G1 =0
924O REM --NEXT IS A LDOF THAT GENEKATES 4 FOSSIEAE SUCOESSORS
724=51=1:AV = 0
9:45 1F 51, 4 THEN 9S15
9250 IF MID$ (D*,51.1)= D9% THEN 9.310
9255 X2 = X1 + X(51):Y2 = Y1 +Y(S1)
9260 FGK I = 1 TO F:9: FON J = 1 TG FR9
92655 F& (1,J) = E$(I,,J): NEXT J: NEXT I
9270 FEM --EXLHANGE SQUARES (X1,Y1) AND (X2,Y2)
9272 IF x2< I OF X2> R9 THEN 9%10
9273 1F Y2 < 1 OR Y2 > F'O THEN 9S10
9275 FF$(X1,Y1)=F象(Y2,Y2):F車(X2,Y2)="."
92BO FREM --PACK NEW EOARD AS NODE IN A$(N
9285 GOSUNG 90,50
92B7 REM --CHECK FOR DUFLICATES IN O*
0290 g05UE 840%
9275 IF OS* = "DUFLICATE" THEN 9310
9296 REM --NODE=FOINTER EIACK+DIRECTION+FACKED ARRAY
9297 A9 = A9 + 1
9302 G05UE 9400
QOS A$ (A9) = Q$ + MID$ (D$,51,1) + F$
9305G1=G1+1
931051=51 + 1: GOTO 9245
9%15 FETUURN
930% REM ---m---------------------------------
9345 FEM --SUBR CONVEFTS NI TO A STFING DF CHARS, LENGTH OUTFLIT IN O&
9:397 REM
9400 0% = STR$ <N1
9410 01 = LEN (Q)\
9420 REM --ADD LEADING ZEFOES TO QS
9425 02 = 08 - 01
9430 IF Q2 > = 0 THEN 9440
9435 FRINT "SIZE ERFDF IN 9400--AEORT JOB": END
9440 IF 02 =0 THEN 9455
9445 FOR I = 1 TO Q2
9450 O$ = "O" + QW: NEXT I
9455 FETUFN
9485 REM -------------------------------------
9490 FEM --SUERTN TO INITIALIZE FGM
9495 REM
7500 OB=3:F9=3
9505 DATA -1,0,0,1,1,0,0,-1
7510 FUR I = 1 TO 4: READ X(I),Y(I): NEXT I
9515 D$ = "DLURB":I$ = "UFDL"
9520 E9* = "E"
952% 02% = "1.3426758": 60T0 9535
```

952S FRINT : FRINT "ENTER FUZZLE TO EE SOLUED IN "* Fi9 * R9:" CHARACTERS"

MULTIUSER

CDMPUTER
ON S-100 BUS
DESIGNED TO
SATISFY A WIDE
VARIETY OF
APPLICATIONS.
STANOARO FEATURES
incluDe: CP Ma.z OPERATING SYSTEM, SAK ExpANDABLE, BANKSELECTAELE MEMORY, 4MHZ zBOA CPL WITH 4 SERIAL ANO 3 PARALLEL PORTS, RELIABLE B"FLOPPY OISK DRIVES IN A STURDY ALL METAL CABINET.

क 4900

RAM 16

COMPARE OUR FEATURES！ S－100 • $16 \mathrm{~K} \times 8$ Bit Static RAM • 2114 1K X 4 Static RAM Chip－ 2 or 4 MHZ － 4 K Step Addressable • 1 K Increment Memory • Protection from Top Board Address Down or from Bottom Up • Deactivates up to 61 K Board Segments to Create Holes for Other Devices－Phantom Line DIP Switch－DIP Switch Selec－ table Wait States－ 8 Bank Select Line Expands to $1 / 2$ Million Bytes • All Data Address and Control Lines Are Input Buffered－Ignores I／O Commands at Board Address－Our Most Popular Board－Over 5000 Now in Use Worldwide！
A \＆T Factory Direct Price：

$$
\$ 175.00
$$

One Year Warranty DON＇T PAY MORE！

NEW！－RAM 65
All of the Above Advanced Features PLUS：Bank Selection by I／O Instruction Using Any One of 256 DIP Switch－Selectable Codes－This Allows Up to 256 Software Con－ trolled Memory Banks！－Our Most Advanced 16K Add－On Board．
A \＆T Factory Direct Price：

One Year Warranty DON＇T PAY MORE！

All of our Boards Are the Highest Quality MIL SPEC G－14 Fibreglass． All utilize Solder Mask over Copper
Technique for Higher Reliability！ MIX AND MATCH FOR BEST PRICING． Include $\$ 3.00$ shipping \＆handling per order．California residents include 6\％ sales tax．
TERMS：Cash，checks，money orders or purchase orders from qualified firms or institutions．Pricing and availability subject to change without notice． International sales in U．S．funds only．COD＇s include 25% with order．

Quality Computer Parts P．O．BOX 743，DEPT．B1 CHATSWORTH，CA 91311 Teiephone（213）882－3142

Listing $1 a$ continued

```
9530 INFUT Q2%
9535 IF LEN (N2%) = R9 * F9 THEN 9550
9540 FRINT : PRINT "ERROR IN FUZZLE ENTRY - TRY AGAIN."
9545 GOTO 9525
9550 09 = 1:0(1)=0
9552 N1 = 1: GOSU& 9400
9543 0%(1)=Q4 + "E" + D2%
9555 REM - AEQVE IS INITIALIZATIUN OF "DPEN" LISTS, ARFAYS O AND O$
9%6% KEM -- MEXT IS INITIALIZATION OF "CLOSED" LISTS--C AND C% ARE EOTH EMFTY
9565 C9 =0
9575 H1= DB + 1:L2=R9 * R9
4580 E1% = "SEARCH
95ES G$ = "NO GDAL"
4SF17 RETURN
9590 REM -
9591 REM --SUERTN TO SEE IF EDARD IS GOAL NDDE
9595 REM --RETURNS G$="GDAL" DF "NDT GOAL"
9600 U3$ = "12345678."
9&10 IF R9 = 4 THEN 03% = "1234567B9AECDEF."
961504* = RIGHT年 (A4,(111),L2)
9620 IF RS& = 04% THEN G& = "GOAL":N6 = 039 + '1
9625 FEFM - -N&=INDEX OF GOAL NODE; =09+1 EECAUSE O9 FOINTS TD LAST
963n RE| -- NODE FILLED; SFE 420-4A0
9035 RE IJFN
9685 FENM
77B5 FKEM -...-- 
9790 FEM --SURFTN TO TRACE HACK AND FRINT SOLN FFOM OL (N1)
9775 FEM
4&00 RI = 0
4GOSS REM - DO LUNTIL FOINTER = "E"
9日1005 = MID$ (OW(NG),OB+1,1)
CE1S JF C4 = "R" THFN 9820
9817 R1 = R1 + 1:R$(RJ) = OW
9820 D1年= LEFT年(D*(NG),08)
9e25 N& = VAL (0.1%)
98:O IF Q4 & "B" THEN 9910
Q日S5 REM -- UONF: FRINT VNLUES OF R'& FFOIY R1 TO 1
9B40 IF RI< = THEN FFINT : FRINT "ZERU ERROR IN BNCNTRACKING": GOTO 98BG
9&45 FRINT : FRENT "SOLIJTION 15 "*
C84S FRINT : FFRNNT SOLIJTION IS
GE30 FOR N=F:1 TO 1 STE
965S HR(NT ** "FRW(N);
な8GO WEX? N
G&&E, MRIITM , HRINT = FRINT RJ:" ETEF".
```



```
OG6% NWIMT}=\mathrm{ FRJMT
%EBO FETUFW
```

（1b）
:pri
endif
else
endif
$E X I T=$ no，GOAL $=$ no part of initialization routine OPEN $=$＜start node＞
do while OPEN not empty and EXIT＝no
：$A=$ top node in OPEN
：put A from OPEN to CLOSED list
：expand A giving successors $A(N)$
：if successors exist
：for each successor ：evaluate successor for goal status ：if node－js－goal ：set $G=$ index of good node，GOAL＝Yes ：set EXIT＝yes else
：calculate＂value＂of node ：merge node and value into OPEN list end if ：end of for－loop end if
endwhile

if GOAL＝yes

：find solution by tracing nodes back from G ：print full solution

570
end program

THE DISCOVERY MULTIPROCESSOR

The dedicated power of this complete single board computer is provided to each user, making the DISCOVERY MULTIPROCESSOR unique among multi-user systems. With the power and expandability of distributed processing \bullet With the economy of shared peripherals \bullet With the flexibility of shared and public files And all of this with full $\mathrm{CP} / \mathrm{M}^{*}$ and $\mathrm{S}-100$ compatibility.

Multiprocessing Software

Our Distributed Processing Operating System, dpc/os ${ }^{\circ}$, resides in the Service Processor, establishing a CP/M environment for each user and managing access to the shared system resources. Multiuser facilities are provided for print spooling, for interprocessor communication and for private, public and shared-update files. Several processors can be employed concurrently by a single user via the enhanced batch submit facilities. And with DISCOVERY all CP/M compatible programs will execute without modification, thus protecting your software investment.

Multiprocessing Hardware

The ACE 64K Distributed Processing Single Board Computer, the dpo-180" gives the DISCOVERY MULTIPROCESSOR its own unique architecture. One DPC is dedicated to each user providing exclusive use of the onboard $2 \cdot 80,64 \mathrm{~K}$ ram and serial $1 / 0$. Access to the shared resources is provided by an expanded DPC used as a Service Processor. Additional users can be added at any time by simply inserting additional DPC's. into the standard S- 100 bus - up to a total of sixteen user processors in a single chassis ! *CP/M is a registered TM of Digital Research, Inc.

The ACE DISCOVERY MULTIPROCESSOR dedicates a complete 64 K Z-80 Distributed Processing single board Computer, the dpe-180" to each user. An expanded DPC coordinates all of the system activities.
Multiuser mainframes with 192 K ram start at under $\$ 6000$. The 64 K dpo $\mathbf{1 8 0}^{\mathbf{\prime \prime}}$ is priced at $\$ 1395$. Immediate delivery. A complete line of standard peripherals including a 26 M byte hard disk subsystem can be supplied on request.

Dealer and OEM inquiries are invited.

Text continued from page 78:
with this 3-by-3 puzzle, the search tree grows rapidly.

Elementary Strategy

A certain form can be used to implement any search strategy. It assumes the following: two lists called OPEN and CLOSED, the former for nodes that have not been expanded (ie: that have not had all possible successors generated) and the latter for nodes that have been expanded; an algorithm for generating all legal successors; and an algorithm for determining whether or not a node is a goal node. One final algorithm, \hat{f}, which implements the given search technique, provides a function that is used to order the members of the OPEN list to determine which node is to be expanded next.

The general algorithm is given in flowchart form in figure 5. It may be described as follows:

1. Place the start node on OPEN. CLOSED is empty.
2. If OPEN is empty, no solution exists; exit with failure.
3. Otherwise, let A equal the node at the top of the OPEN list. Take A off the OPEN list and put it on the CLOSED list.
4. Find all possible successors of A, named $S(1), S(2), \ldots S(N)$.
5. If there are no successors ($\mathrm{N}=0$), go to 2.
6. Check the successors for goal status. If one is a goal, go to 8 .
7. Calculate the \hat{f}-values of each successor and merge the nodes into the OPEN list so that the OPEN nodes are sorted in ascending \hat{f}-values. Also, place a pointer in each successor node that points back to the parent node A. Go to 2.
8. Trace the goal node through the pointers to the start node. This sequence, reversed, is the solution.
9. Exit with success.

The method described above is exhaustive and complete-that is, it always terminates. If it returns with an "exit with failure," it is because all nonterminal nodes have been expanded without finding a goal.

Verbatim comments:

flCompared to the brands I've used before, Verhatim Datalifé is the best yet!9s Sandy Tiedeman Las Vegas, NV
CRNew Verbatim helped eliminate 1/O errors on my Apple. 9

Richard Adams Ft. Walton Beach, FL.

RRI would prefer Verhatim Datalife over any brand l've. ever used.9

Skip Piliz
 Overland Park, KS

RPMy experience with
Verbatim diskettes has been excellent. I've used several boxes over the past few months and they've all been error-free. $\%$

Robert Roeder Las Vegas, NV
f(Much stronger, better centering. A definite improvement.sя

Leroy LaBalle
Marrero, L.A
CPIt has worked perfectly everytime!?

Richard Ruth
Shippensburg, PA
RRI like the thicker protective cover. 98

David Hendel Lititz, PA
efGreat! I have had no problems! 9

Timothy Roscoe Mechanicsburg, PA

CeSo far my Verbatim disks have been performing flawlessly. Not always so with other disks.s?

Chris Otis Holfinan Estates, 11.
RRRuns quieter in the disk drive.s?

Richard Cammova Los Angeles, CA
PRVerbatim disks are super. They're our standard for quality.s?

Bob Mills
 Mission, KS

ReAnything that prolongs the: life of a diskete is a plus. Thank you Verhatim for an exceellent improvenment.99

Steve: Toth Piscalawoy, NJ
feOf the 130-plus Verbatim disks I have, I'm not aware of any problems. I'm sure. the improvements will give? your disks an even longer life. 9

Gercild Janas Warren, MI

erFANTASTIC. Not a single registration problem. Much more reliable than what I had been using. $\$$ Gary Sandler Plava Del Rey, CA ReVerbatim is much more reliable. I wouldn't trust anything else. $\$$

Howard Chin
Pomona, CA

RPThank you for the improvements. Just another reason why Ill always use. Verhatim. 9

James Hassler Cheyenne, WY
We introduced Verbatim Datalife mere months ago. And it's already playing to rave reviews like these.

But don't take anybody else's word for it. Try it yourself, and see if you don't agree it's the hest mexdia you've ever tried. For the name of your nearest Verbatim dealer, call (80)0] 538-179.3, in California call (408) 737-7771 collect.

Hire a fast thinker.

5 MHz CPU Card

- Intel 8085A-2 microprocessor n Hardware floating point ${ }^{[1}$ Performs calculations six times faster than other CPUs $10 n$-board monitor in PROM IK RAM scratch pad Keyboard or RS232C terminal Variable clock frequency

PRICE—\$450
(Californla residents add 6% sales tax)

Call or write Artec for detalls.

Overview of the SEARCH

A complete explanation of the SEARCH program would be unreasonably long, so I am including only those points that will save the reader from puzzling through the mechanics. All comments refer to the 15 -puzzle version. (Conversion to the smaller 8 -puzzle is achieved by changing the value of R9 to 3 in statement 9500 of listing 1.)

- The program in listing 1 a is equivalent to the structured pseudocode of listing 1 b and the flowchart of figure 5.
- The major variables used in the program are given in table 1.
- The body of the SEARCH program (which corresponds to the pseudocode algorithm) is contained in lines 120 through 570; the subroutines used are listed in table 2.
- Instead of new nodes being sorted
into the OPEN list, they are added at the end of the list and given an ordering value. Instead of expanding the top node on the list, the node with the lowest ordering value (in array O (N)) is expanded. This eliminates an unnecessary sort in the program.
-The program has eliminated the need for a CLOSED array by tagging nodes to be closed with an O-value of greater than 90,000 . The number of nodes that has been closed is in C 9 .
- The SEARCH program assigns variable names to certain constants within the program so that the program can be altered to fit computers of different sizes by changing only a few statements. See variables L2, O8, and R9 in table 1.
- The complete representation of a node in this program includes variables $O(N)$ and $O \$(N)$, where N is the number of the nodes. $\mathrm{O}(\mathrm{N})$ is the orderings value relative to the

Variable	U
	Use
$A \$(N)$	Array of successors generated by current board position E\$(l,); see A9.
$F \$(N)$	
	$\text { list if } O(N)>90,000$
O\$(N)	Body of node N on OPEN list; see text.
RS(N)	Letters that, when arranged in reverse order, give the solution to the puzzle; see R1.
$X(N)$,	
$Y(N)$	Increments in x - and y-position to cause a unit move in direction N, $N=1,2,3,4$.
E\$(1,J)	Representation of current node in expanded form; I, J vary from 1 to R9.
F\$(1,J)	Scratch pad board used to generate successors to board E\$(1,J).
A9	Number of nonduplicate successors generated; see A \$(N).
C9	Number of nodes that have been tagged as closed, see $\mathrm{O}(\mathrm{N})$.
D\$	The characters of $D \$$ represent the possible moves in the puzzle (down, left, up, right) and their orderings (eg: move $2=\operatorname{MID} \$(D \$, 2)=$ " L " $=$ left; move 5, B, stands for 'beginning" and applies only to the start node).
E9\$	Direction used to get to current node from its predecessor.
G\$	Indicates whether or not A (MI) is a goal node.
G1	Number of successors generated before check for duplicate nodes.
H1	(Index of first character of game in $\mathrm{O}(\mathrm{N})$) minus 1 ; used to index the L9 characters of the board.
L2	Number of characters in current board; $=9$ for order- 3 board, $=16$ for order-4 board.
N1	Index of $\mathrm{O}(\mathrm{N})$ giving smallest ordering value; node N1 will be expanded next.
07	Maximum size of arrays $\mathrm{O}(\mathrm{N}), \mathrm{O} \$(\mathrm{~N})$.
O8	Number of digits in $\mathrm{O} \$(\mathrm{~N})$ pointer to its predecessor; set to 3 , but, by expanding, can be used to process larger search.
09	Number of nodes (both open and closed) on O\$(N) list; next new node will be placed in $\mathrm{O} \$(\mathrm{O} 9+1)$.
09\$	Direction that backtracks from current node to predecessor; see text.
R1	Number of steps to solution of puzzle; see R\$(N). Also, value returned by subroutine at 9900 .
R9	Rank of problem; set to 3 for order-3 board, to 4 for order-4 board.
S1	Current smallest ordering value of array $O(N), S 1=O(N 1)$.

Table 1: Major variables used in the BASIC program SEARCH (see listing 1).

STATCOM wages WAR CN:TUS
 with CRTFORM

 creates bugs-fice limins. Insullatice

 al lisims for all kimels al persple.
 proluctiviry aid which matices is

 allel crucl-uscors, such as sectelabios.
 assaltes that the prograllanter will
 piovieling comb-msers inlonmainion (on how to colley dillia. If chal-users make al mistake, thery leceive al messaige in planin Linglish which
 low w lix is.
 al a lintulile mamager, all infur-lield-ariented sereen ediens, allel
presonpikel itur-tinite instules. The systcill conlaills a coxle gerncration seclion which is is:alablale (6) intelace the progratim la the Pasc:al, P()RIRAN. BASI(: and (X)BC)L languages. In afíliliom. the svateml call lx conliguled

 l'ascal systemis.
 sialifing in sultwate developsment tox)ls and ecelmingues. In actrlition

Ix. rele:asiogr a lusimess ieport

other nodes; $\mathrm{O} \$(\mathrm{~N})$ contains three things: the direction ($\mathrm{U}, \mathrm{D}, \mathrm{R}$, or L) that transforms the predecessor of $\mathrm{O} \$(\mathrm{~N})$ to $\mathrm{O} \$(\mathrm{~N})$, an O8-digit pointer giving the node number of $O \$(N)$'s predecessor node, and a string of L2 characters that describes the "board" of node N in compressed form. (See figure 6 for further details.)

- For any node not the start node, it is always possible to eliminate one of the legal "next moves." For example, if $\mathrm{O}(\mathrm{N} 1)$ generates $\mathrm{O}(\mathrm{N} 2)$ with a move of D (down), we can forget about generating the successor of $\mathrm{O}(\mathrm{N} 2)$ that uses the move U (up), because the result will be the same board as in node N1 (which has already been expanded). In the SEARCH program, this is done by matching the "direction" of the current node in $\mathrm{D} \$$ with its correspond-
ing letter in I\$ (I\$ is a mnemonic for "inverse"); this second letter is then ignored in expanding the current node (see the subroutine of 9200).
- It is possible for a series of moves to come back to a previously expanded node (this means that the state space for the 15 -puzzle is a graph, not a tree). For this reason, the possible successors generated in lines 9240 through 9310 (subroutine 9200) are checked for duplication (subroutine 8900, used at line 9290).
- Each of the four possible moves in the 15 -puzzle is associated with a number between one and four (1 means the tile moves down, 2 indicates the tile moves to the left, 3 means the tile moves up, 4 means the tile moves right). Variables that use this numbering are $\mathrm{X}(\mathrm{N}), \mathrm{Y}(\mathrm{N}), \mathrm{D} \$$, and $\mathrm{I} \$$.
-Within the character representation board, the position with no tile is represented by a period.
- The SEARCH program was run on an Apple II with 48 K bytes of memory, and it should run without modification on the Commodore PET, the Radio Shack TRS-80 Model I Level II or Model III, or any other computer that uses Microsoft BASIC. The program is written so that all REM lines can be deleted without affecting the program's performance.

Exhaustive Tree Searching

The first method of systematically searching a tree can be described as follows: expand the start node, recording all the successor nodes (which are of depth one); if none of the nodes are goal nodes, expand all depth-one nodes, giving depth-two

(6b)
$O(10)=5 \quad O \$(10)=$ " $L \quad 001$ 12345.786"
$O(23)=3 \quad O \$(23)=" U 01012345678 . "$
Figure 6: Representation of the 8-puzzle within the program SEARCH. A node is represented in the program as two variables. One is $O(N)$, the ordering value of node N in the tree. The other is $O \$(N)$, a string that has the following:

- the direction used to get from N's parent node to N
- the node-number of N 's parent node (linking N back to the start node)
- the board position for node N, written by rows

Figure $6 a$ shows part of a hypothetical tree; figure $6 b$ shows how nodes 10 and 23 are represented within the program.

Entry		
8900		
	Input:	Board F\$(1, J), array O\$(N)
	Process:	Determine if board $\mathrm{F} \$(1, J)$ has already been expanded.
	Output:	Q3\$ = "DUPLICATED" or "NOT DUPLICATED."
9000	Input:	Array O\$(N), O 9
	Process:	Find smallest value in array.
	Output:	Index N1, value S1 such that S1 $=O(N 1)$ is smallest value in $\mathrm{O}(\mathrm{N})$.
9050	Input:	Board $\mathrm{F} \$(1, \mathrm{~J})$ (
	Process:	Compress to a row-major string of characters.
	Output:	$\mathrm{F} \$=$ String of L2 characters.
9100	Input:	String E\$
	Process:	Unpack string to board $\mathrm{E} \$(1, J), \mathrm{F}(1, \mathrm{~J})$.
	Output:	Identical boards E\$($1, J$), F\$(1,J).
9200	Input:	Board E\$(I,J), node number N1, direction E9\$.
	Process:	Generate up to three legal successors of board (which is derived from node N 1), eliminate nodes already expanded, build full node (direction + pointer + board) for each successor.
	Output:	Table of successors A\$(N), A9.
9400	Input:	Number N1, desired length O8.
	Process:	Convert N1 to a string; strip off the leading blank, fill with leading zeroes.
	Output:	String O\$ that "looks like" N1.
9500	Initialization	routine; includes entry of puzzle to be solved.
9600	Input:	Node A\$(M1), rank of problem R9.
	Process:	Extract compressed board from node, compare to goal node.
	Output:	G\$ = "GOAL" or "NOT GOAL".
9800	Input:	Goal node O\$(N1).
	Process:	Trace through pointers back to start node, collecting "direction letters" in $\mathrm{R} \$(\mathrm{~N})$.
	Output:	Print (R\$(R1), R\$(R1-1), ... R\$(1)) - solution to puzzle.
9900	Input:	Node $\mathrm{O} \$(\mathrm{M} 1)$ to be added to list, list $\mathrm{O}(\mathrm{N})$ (and other variables depending on method).
	Process:	Adjustment of values in $\mathrm{O}(\mathrm{N})$; computation of ordering value for node M1, placed in R1, so that node M1 will be correctly inserted
		into OPEN list with a correct ordering value.
	Output:	This is the subroutine implementing a given search algorithm.

Table 2: A description of the subroutines used in SEARCH.

our first name is Quality

Our popular space game, Asteroids in Space, is now Meteoroids in Space, with hyperspace, autobrake, and autofire. This exciting arcade game can be played with or without game paddles. Diskette $\$ 19.95$.

Beneath Apple DOS

This best-selling 170 page technical manual tells you everything you want to know about Apple's Disk Operating System. Book \$19.95.

Beginners and experts both enjoy this Othello* playing game that outplays Hayden's Reversal. Yet QS Reversi has features that Reversal doesn't have and costs less. Diskette \$29.95.

LINKER
Links and relocates assembled machine language programs. Works with any assembler. Diskette $\$ 49.95$.

FASTGAMMON

Known for outstanding graphics and speed of play, this popular program is the standard to which other computer backgammon games are compared. Cassette $\$ 19.95$. Diskette $\$ 24.95$.

CROSS-REF

Prints out a cross-reference of the variables in your Applesoft program. Options include changing the name of a variable. Cross-Ref resides passively in memory with your Applesoft program. Cassette $\$ 22.95$. Diskette $\$ 24.95$.

BABBLE

This amazing and amusing program will entertain you by twisting your stories around in a most delightful way. Babble also works with music and sound. It's a language all its own! Cassette $\$ 19.95$. Diskette $\$ 24.95$.

BATTLESHIP COMMANDER

A superb version of the traditional battleship strategy game. Cartoons and sound effects help make this game fun for everyone. Cassette $\$ 14.95$. Diskette $\$ 19.95$.

FRACAS

A fantastic adventure game like no other. Up to eight players can journey in the land of Faroph at the same time, searching for hidden treasure and fending off monsters. Cassette $\$ 19,95$. Diskette $\$ 24.95$.

BENEATH APPLE MANOR

The original dungeon game for the Apple computer is still one of the best. Descend into a dangerous maze of underground corridors. See if you can find the Golden Apple. Cassette $\$ 14.95$. Diskette $\$ 19.95$.

ASTROAPPLE
Your computer becomes your astrologer. generating horoscopes and forecasts based on the computed positions of the heavenly bodies. Cassette $\$ 14.95$. Diskette $\$ 19.95$.

- Othello is a trademark of Gabriel Industries.

DISCOUNT HARDWARE

Division of System Interface Consultants, Inc.

IEEE 696/S-100 Standard Boards

ompuPro"iomooener

STATE OF THE ART CPU BOARDS

DUAL CPU 8/16 bit................ . $\$ 349$
Z-80 CPU. S249
FAST RELIABLE STATIC MEMORY
16K S299 32K. $\$ 499$. 5549 48K .. $\$ 7.49579964 \mathrm{~K} . \$ 949$. 5999

SYSTEM AUGMENTATION

I/O-I or I/0-II $\$ 199$
DISK-1 DMA Disk Cont. $\$ 399$
SUPPORT-1 Multifunction \$299
DISCOUNT HARDWARE
Division of System Interface Consultants, Inc. 17440 Revello Drive
Pacific Palisades, CA 90272
Enclosed is S \qquad
Please express the following assembled, tested, and warranted IEEE 696/S-100 boards:

Name

Address

Phone ()

Add $\$ 25$ to each order for express shipping, handling and insurance. California residents add 6% tax. Allow 2 weeks for personal checks. Prices subject to change

CONSULTANTS

call for imformation and prices on

The business computer that's
here today and here tomorrow
avoid obsolescence 8 \& 16 bit

(213) 454-2100

System Interface Consultants, Inc.
Computer Specialists
Established 1969
nodes; repeat this process until a goal node is found or until no unexpanded successor nodes can be found.

In terms of the overall algorithm for tree searching (see figure 5), we implement this breadth-first algorithm by putting the newly generated successors on the top of the OPEN list-or, equivalently, by giving these nodes an $O(N)$ value equal to their depth. Figure 7a shows the order in which nodes are expanded in a breadth-first search; note that all the nodes of depth n are expanded before any node of depth $(n+1)$ is expanded. The subroutine to implement the breadth-first algorithm is given in listing 2a; its structured pseudocode
equivalent is:
9900 value of node returned,
RI = value of parent
$\mathrm{O}(\mathrm{N} 1)+1$
In a breadth-first search, making the "value" of any node equal to its depth will cause all nodes of level n to be expanded before any node on level $n+1$ (with "value" $n+1$). In line 9900 , the value 90000 is subtracted because, by this time, the parent node $\mathrm{O}(\mathrm{N} 1)$ has been "marked" as being closed by adding 90000 to it.

An alternate approach to tree searching is the depth-first algorithm. In this method, we repetitively ex-
(7a)

(7b)

(7c)

Figure 7: Order of expansion by three exhaustive-search algorithms. The numbers to the right of each node show the order in which the tree is expanded. Figure 7a, the breadth-first search, is examined laterally, one level at a time; figure $7 b$, the depth-first search, takes a "walk" around the edges of the tree (as shown by the colored arrows); figure $7 c$, the limited depth-first search, combines properties of both types of search. These searches can be tried by installing the routines in listings 2,3, or 4 in the SEARCH program (listing 1).

COME

Learn about your microprocessor and develop its full power. You'll be ready for take-off in record time.

MICROPROCESSORS:
 FROM CHIPS TO SYSTEMS

by Rodnay Zaks
A road map to the world of microprocessors, From fundamental concepts through recent developments and the future. This thorough treatment of microprocessing is logical, systematic and easy to read, $420 \mathrm{pp} ., 250$ illustr., $5^{11 / 2} \times 8^{1 / 2}$, Ref. C201, 3rd edition $\$ 12.95$

PROGRAMMING THE 6502

by Rodnay Zaks
A clear, direct, well organized book designed to teach assembly language programming for the 6502 microprocessor. Covers all essential aspects of programming from fundamental concepts through advanced data structures and program development. 392 pp ., 160 illustr., $5^{1 / 2} \times 8^{1 / 2}$, Ref. C202, 3rd edition $\$ 12.95$

PROGRAMMING THE Z80

by Rodnay Zaks
An educational text as well as a complete reference manual for the Z80. Presents everything from fundamentals through advanced programming techniques in a progressive, highly organized fashion. An excellent tool for learning to use and understand the Z 80 . 620 pp. , 200 illustr., $5^{1 / 2} \times 8^{1 / 2}$, Ref. C280, 3rd edition $\$ 14.95$

PROGRAMMING THE Z8000

by Richard Mateosian
A complete introduction to programming techniques and concepts for the Zilog Z8000 microprocessor. It presents detailed descriptions of the architecture and function of the Z 8000 and shows how it interacts with its family of support chips. An excellent source of sample programs.
312 pp., 124 illustr., $5^{11 / 2} \times 8^{11 / 2}$, Ref. C281 2nd edition $\$ 15.95$

PLEASE SEND ME \square PROGRAMMING THE 6502
■PROGRAMMING THE Z80 पPROGRAMMING THE Z8000
■MICROPROCESSING: FROM CHIPS TO SYSTEMS
NAME \qquad

ADDRESS
CITY \qquad STATE \qquad ZIP
ADD $\square \$ 1.50 /$ book UPS or $\square 75 \Phi / b o o k$ 4th class mail or $\square \$ 8 / b o o k$ overseas firimail (CA add tex) Total Amt. Enclosed \qquad OR CHARGE MY ■VISA 审MG (ITM EX, CARD NO. EXP.DATE
pand the successors of a given node (until no such node can be further expanded) before we start to expand the next node of the same depth; that is, we expand down the tree instead of across it, and are, in essence, generating and expanding the terminal nodes from left to right. Figure 7b shows the order in which tree nodes are expanded in a depth-first
search; the subroutine to be inserted into SEARCH is given in listing 3. Its pseudocode equivalent is:

9900 value of node returned
R1 = value of parent
$\mathrm{O}(\mathrm{N} 1)-1$
In a pure depth-first search, the node just generated should be ex-
panded before any other node already on the OPEN list from past expansions. A good solution is to let the "value" of the successor node be one less than that of the parent. Since the subroutine at 9900 chooses the node with the smallest O array value, this scheme forces the order of expansion just described.

Putting the depth-first algorithm to work, we find that it seemingly generates nodes without end-but without making a practical attempt at moving toward a goal node (except when one happens to be on the leftmost side of the tree). The handicap of the depth-first algorithm is that it will search to the end of a given branch before returning to shallower levels. Because most trees extend to a large, if not an unbounded, depth (whereas a goal node usually exists at a shallower level), the depth-first search is usually inferior to the breadth-first search: the former sweeps up and down the entire length of the tree from left to right, whereas the latter scans uniformly across each level of the tree from top to bottom,

usually first encountering a goal node at a shallow level.

The limited depth-first algorithm (see figure 7c and listing 4) can be explained as follows. Choose an arbitrary depth, n; do a depth-first search, rejecting (for the moment) all nodes of depth n or greater. If this does not turn up a goal node, do a depth-first search of the previously rejected nodes, rejecting all nodes of depth $2 n$ or greater. Repeat this process until a goal node is found or the tree is exhausted. This is summarized in the pseudocode:

9900 R3 = depth of each "layer" of search
9905 value of node returned, RI = value of parent $\mathrm{O}(\mathrm{N} 1)-1$
9910 if "value" to be returned is equal in magnitude to R3 reset value to be returned $=0$ endif

The "value" returned will be zero or negative. This search limits itself to depth R3 at a time by setting a node on the edge of the current level to the
highest possible value, zero, so that it will be expanded only after the current layer has been expanded to the edge. The value R3 could be placed within the initialization subroutine of 9500.

The limited depth-first search lessens the disadvantages of the pure depth-first search by providing for an eventual exhaustive search of the lower level of the tree. But it is also a compromise: if a goal node is located deep and on the left-hand side of a tree, this node will be more quickly found by the pure depth-first search than by the limited depth-first search. (In general, the effectiveness of both depth-first searches is extremely dependent on the left-right position of a goal node within the tree.)

Notes on Experimentation

We now have the tools with which to examine the exhaustive search algorithms. The BASIC program SEARCH (when fitted with the appropriate subroutine at 9900) will ask for the beginning puzzle (given row by row, with A through E repre-
senting 10 through 15 in the order-4 version only, and a period representing the space in the puzzle), list nodes as they are expanded and generated, and print out the solved puzzle. If you want to avoid typing in a puzzle every time you run the program, add the following lines:
9521 Q2\$ = " < puzzle to be entered >"
9523 GOTO 9550
My observations and experiments are based on the sample 8 -puzzles given in figure 8; a given puzzle will be referred to by its row and column number in this figure. Note that the row number is the number of moves in the solution of the puzzle and that a given puzzle is a subproblem of every puzzle below it and in the same column.

Table 3 gives data on selected puzzles using the breadth- and limited depth-first algorithms. Remember that closed nodes are those that have been expanded for successors and open nodes are those that have been

Text continued on page 98

SAVE $\$ \$ \$$ SAVE $\$$ SS

TRS-80 MICROCOMPUTERS

TRS-80 Model II, 64 K System ONLY \$3325. ${ }^{00}$

TRS-80 Model III, 32K - 2 Drives ONLY \$2095.00

Cireat Discounts ()n All Other TRS-XO Model II and III Add Ons. Color Computers. Printers. Pochet Computers. And All Other Fine Radin Shach " Merchandise.

All Computers Are Brand New. In Fatory Scaled Cartons. Abl Carry A 3 Month Radio Shach * Warranty. F-48 Form Provided

Most Models In Stork. Just Call Collect 512-689-5536. Master Electronics. Inc.. ISt N. 5th. Raymonville. Tx. 7x5xo. Remember No Tax On Out-Of-State Shipments.

MASTER ELECTRONICS INCORPORATED

Authorized TRS-80 Dealer, Store \# F-723
(3a)

Puzzle	Solution	\#Open	\#Closed	Total
$(1,1)$	L	3	1	4
$(1,2)$	U	3	1	4
$(2,1)$	UL	7	4	11
$(2,2)$	LU	6	3	9
$(2,3)$	LL	4	3	7
$(3,1)$	LUL	9	8	
$(3,2)$	ULU	7	6	17
$(3,3)$	ULL	10	9	13
$(4,1)$	DLUL	12	11	19
$(4,2)$	LULU	10	9	23
$(4,3)$	RULL	16	21	19
				37

(3b)

Puzzle	Solution	\#Open	\#Closed	Total
$(1,1)$	L	3	1	4
$(1,2)$	U	3	1	4
$(2,1)$	UL	11	12	23
$(2,2)$	LU	8	7	15
$(2,3)$	LL	10	9	19
$(3,1)$	LUL	11	13	24
$(3,2)$	ULU	9	7	16
$(3,3)$	ULL	12	17	29
$(4,1)$				
$(4,2)$	DLUL	9	8	17
$(4,3)$	LULU	7	6	13
	RULL	16	21	37

(3c)

Puzzle	Solution	Depth (n)	\#Open	\#Closed	Total
$(2,2)$					
	LU	2	6	3	9
		4	6	5	11
		5	7	15	
$(2,3)$		12	11	23	
		2	4	3	
		3	6	9	7
		4	10	17	19
		5	12		29

Table 3: Experiments with SEARCH. In the breadth-first search (3a), "\# Open" refers to the number of nodes created but not yet expanded. "\# Closed" is the number of nodes that have already been expanded. Since the breadth-first algorithm searches uniformly down the tree from the start node, it is the most reliable of the exhaustive search methods.

The limited depth-first search (3b), with depth $n=4$, shows that for all puzzles on level four, the number of nodes that this algorithm generates is the same or less than the breadth-first search. By varying the cutoff depth, n, this algorithm does a depthfirst search in "layers" (see 3c), each layer being n nodes deep. As n becomes greater than the number of moves in the solution (in this case, two), the algorithm more closely resembles a pure depth-first search in its inefficiency.

If you own an Apple II;' or plan to buy one, consider this:
The Disk II* subsystem made for your Apple II provides only 35 tracks of storage. But Micro-Sci subsystems made for your Apple II provide up to 70 tracks, without reduced versatility or compatibility.

MORE CAPACITY FOR IESS MONEY

Our A 40 system features 40 tracks, whereas our A 70 provides 70 tracks and exactly twice the byte capacity of Disk II.

With either Micro-Sci system, you pay a lot less per byte. And with the $\bar{A} 40$, you could even end up paying considerably less per drive.

COMRjitBITIY TO SPITE

Micro-Sci has achicyed this extra storage while maintaining compatibility with your existing Apple formated disketes.

Our subsystems operate with DOS 3.2 and 3.3, Pascal, and the 280 SofiCard.

VERSAILITY PLUS

You can even mix Apple Disk II's. A40's and A70's on the same computer. Micro-Sci's controller supports one or two $A 40$'s, one or two A70's or one of each.

Single or dual $A 40$ drive subsystems give you more capacity (20,000 to 40,000 bytes) than Disk II drives, for less money.

Micro Scis A40/A70 subsystem: combines the disketie tevel compationtity and interchangeability of, the A40 with the superior storage. capacity of the A70,

Dural A70's provide over half a-megabyte of storage, at $51 /{ }^{1 \prime \prime}$ Hoppy prices!

No matter which Micro-Sci subsystem you choose, you'll have more capacity, compatibility and versatilit for your computer- and more money in your pocket. Contact us today for more information and the name of your nearest Micro-Sci Dealer.
*st'Disk If: is a regisicred tedemark of Apple Computer, Inc. Cuperino. CA
B"Soficard is a reglstered trademark of Mtero-SoftConsumen Products:

Text continued from page 95: generated but not yet closed (expanded); thus, the total number of nodes generated by an algorithm is the sum of its open and closed nodes.

Also remember that the SEARCH program generates successors by expanding in the following order: down, left, up, right. Although this is less important for more advanced searches, it is extremely important
when analyzing exhaustive searches.

Observations and Questions

Please consider the following questions before you read the answers on page 102. On the breadth-first search:

- Note that the number of nodes expanded to get a solution varies with the directions used in the solutions;

Figure 8: A table of 8-puzzles used in the text. Ignoring the row with the goal node, each puzzle is referred to by its row and column numbers (eg: the rightmost puzzle in the row labeled "two moves away" is puzzle (2, 3). Notice how puzzles in the same column are related to each other: each puzzle is a subproblem of the puzzle that appears directly below it.

Figure 9: Solution of puzzle $(3,1)$ by the breadth-first algorithm. The tree is a partial tree carried out only far enough to reach the goal node (shown in the bottom row). The circled numbers in black indicate the order in which nodes are expanded to solve the puzzle. The node labeled B is the start node of puzzle (2,1), a subproblem of puzzle (3 , 1); circled numbers in color indicate the order in which nodes are expanded to solve puzzle (2, 1).
"downs" and "lefts" tend to make the solution shorter, while "ups" and "rights" make it longer. Compare the puzzle $(2,3)$ with the puzzle at $(2,1)$, and puzzle $(4,2)$ with $(4,3)$.

- (Question 1) How is this tendency reflected in the number of nodes on the closed list? (Consult the text box, "Answers," on page 102.)
- (Question 2) Then why does puzzle $(3,2)$, with solution LUL, generate more nodes than puzzle (3,1), which has solution ULU? Aren't L moves expanded before U moves?
- Notice that both puzzles (1,1) and $(1,2)$ have the same number of open and closed nodes, even though the solution, L , in (1,1) precedes the solution, U, in (1,2). This is because the SEARCH program generates all the valid successors of the node being expanded before evaluating them for goal status.
- (Question 3) I noticed a curious fact while examining the solution of two puzzles, one of which is a subproblem for the other: the subproblem generates a node that the larger problem does not. Run puzzles $(2,1)$ and $(3,1)$ using the breadth-first subroutine and list the nodes generated. Where is the node in question? Why is it generated in $(2,1)$ and not in $(3,1)$?

On the depth-first search:

- You will probably find that you run out of memory (or patience) before you get a solution from the depthfirst algorithm. This is because the algorithm first dives to the bottom of the tree, and that bottom is deep, even for a puzzle as small as the order-3 8-puzzle. Try experimenting with the depth-first algorithm, using the SEARCH program set to handle the order-2 puzzle.

On the limited depth-first search:

- Table 3 b shows the results from the solution of the same puzzles, $(2,2)$ and (2,3), using different cutoff depths (variable D3 in line 9900). Since both puzzles are solved in two moves, the cutoff depth simply determines how far down the search will

SuperSoft's Gallery of CP/M Mastérworlas

Programming Languages	Disk/Manual Only
"C"	$\$ 200 / 20$
FORTH	$\$ 200 / 25$
FORTRAN IV	$\$ 250 / 25$
RATFOR	$\$ 100 / \mathrm{NA}$
BASIC	$\$ 200 / 25$
'TINY' PASCAL	$\$ 85 / 10$
System Maintenance	
Diagnostics II	$\$ 100 / 15$
Diagnostics I	$\$ 75 / 15$
DISK DOCTOR	$\$ 100 / 15$
Utilties	
Utility Pack \#1	$\$ 60 / \mathrm{NA}$
Utility Pack \#2	$\$ 60 / \mathrm{NA}$
Text Processing	
TFS	$\$ 85 / 15$
Super-M-List	$\$ 75 / 10$
Software Security	
Encode/Decode II	$\$ 100 / 20$
Encode/Decode I	$\$ 50 / 20$
Intercommunications	
TERM	$\$ 150 / 15$
TERM II	$\$ 200 / 15$
Entertainment	$\$ 35 / \mathrm{NA}$
ANALIZA	$\$ 40 / \mathrm{NA}$
NEMESIS	$\$ 35 / \mathrm{NA}$
Dungeon Master	
(For use with Nemesis)	
MIscellaneous	$\$ 500 / 25$
Z8000 Cross-Assembler	$\$ 500 / 25$
"C" Cross-Compiler	
(Z8000 Target)	

Many programs include SuperSoft's online "HELP" system!

SUPERDISKS FOR SALE!

SuperSoft Has Great Prices on Blank Discettes
SuperSoft sought out and found a discette that met our high standards. In the software distribution business we needed a discette that was reliable. sturdy, durable, and inexpensive. We wanted no data errors on any discette that we shipped.

- Guaranteed
- Data density in excess of 3200 b.p.i.
- Approved by Shugart, Persci, Qume, Remex, others
- Operating temperature: 50-120 degrees Fahrenheit Discette type
|price per box
Single Sided Single Density
Soft sectored IBM compatible 8": $\quad \$ 30.00$
10 hard sectors $51 /{ }^{\prime \prime}$ $\$ 30.00$
16 hard sectors 5% ": $\$ 30.00$

Single Sided Double Density: Soft sectored IBM compatible 8":

$$
10 \text { hard sector } 5 \frac{1}{4} \text { " }
$$

16 hard sector $5 \%{ }^{\prime \prime}$
$\$ 35.00$

- Add $\$ 15.00$ for Double Sided Discettes

 Illinois residents add 5\% Add $\$ 1.00$ shipping per boxFor complete information on these and all other SuperSoft products, please write for our free catalogue.

All software can be supplied on the following media: CP/M formats . . . 8" sft sectored, 5" Northstar, 5" Micropolis Mod II, Vector MZ, Superbrain DD/QD, Apple II+

All Drders and General Information: SUPERSOFT ASSOCIATES
P.O. BOX 1628

CHAMPAIGN, IL 61820
(217) 359.2112

Technical Hot Line: (217) 359.2691 (answered only when technician is available)
-CPIM REGISTERED TRADEMARK DIGITAL RESEARCH
SSS FORTRAN is the cooyright of Small Systems Services, Urbana, Illinuis

24 hour express service available!

Starwriter

PRINTERS, MONITORS, DISKS
Daisy Wheel Printer by C. Itoh 1750
Paper Tiger 445G 725
Paper Tiger 460G 1194
Paper Tiger 560G 1495
Qume (shipped FREIGHT COLLECT) 2499
Silentype w/interface 349
Amdek Color Monitor 349
Amdek Green Screen 169
Amdek/Leedex B/W 12" Monitor 129
NEC 12" Green Screen 239
Sanyo 9"B/W Monitor 169
Sanyo 12" B/W Monitor 255
Sanyo Green Screen 309
Dysan Disks (pkg. 10) 50
Memorex Disks (pkg. 10) 40
Opus Disks (pkg. 10) 30
Verbatim "Gold" (pkg. 10) 35

Atari 400 8K Computer 419
Atari 800 16K Computer 789
Atari 410 Program Recorder 69
Atari 810 Disk Drive 499
Atari 820 Printer 429
Atari 825 Printer 695
Atari 850 Interface. 169
16K RAM by Microtek 99
32K RAM by Microtek 189
Assembler/Editor 45
Atari Joysticks 18
Atari Paddles 18
Basketball 30
Computer Chess 30
Invitation to Programming 17
Music Composer 45
Star Raiders 39
Super Breakout 30
3-D Tic-Tac-Toe 30
Video Easel 30
Visicalc 180

DISK with CONTROLLER NEW DOS $3.3 \$ 529$ without . . . $\$ 445$ Nearly Everything for Apple

MEET OR BEAT

 ANY ADVERTISED PRICES ON MOST ITEMS IF MERCHANDISE IN STOCK
APPLE SOFTWARE

ABM by Muse 19
Adventure by Mircrosoft
Alien Rain by Broderbund 1 1
Apple PIE 119
Apple Pilot 129
Apple-oids 25
Appleplot by Apple 59
Applepost Mailing List System. 44
Applewriter Word Processor 65
Asteroid Field by Cavalier 19
CCA Data Mgmt 84
Data Factory by Microlab 129
Desktop Plan II 159
DB Master II by Stoneware 199
DOS Tool Kit 65
DOS 3.3 Upgrade 49
Dow Jones Portfolio Evaluator. 45
Fortran by Apple 159
Hi-Res Football 33
Head-On 21
Integer Basic Cassette Demos 29
Orbitron. 25
PASCAL Language System 459
Peachtree Bus. Pkgs. CALL
Personal Filing System 84
Phantoms Five 29
Pool 1.5 29
Pulsar II 25
Raster Blaster 24
Robot War by Muse 31
Sabotage 21
Sargon II Chess Game 29
Snoggle/Puckman by Broderbund 24
Space Game Album by Budgeco 39
Space Eggs 25
Space Invaders/Cosmos Mission... 24
Space Raiders by USA 25
Star Cruiser 24
Sub-Logic FS-1 Flight Simulator 34
Super Single Disk Copy Routine 35
Super Stellar Trek 33
Supertext II by Muse 129
Ultima. 35
Visicalc I 159
Visilist. 24
Visitrend/Visiplot 219
Wizard and the Princess. 32
Zork 34
LARGE SELECTION OF SOFTWARE IN STOCK - CALL FOR FREE BROCHURE -

cáapple ju 16 K computer

APPLE II 48K \$1095

APPLE COMPUTER INTERFACE CARDS

Applesoft II Firmware Card 149
CCS Asynchronous 7710A 129
CCS Parallel Print Cd 7720A 155
Centronics Interface Cd. 179
Comm. Cd. \& DB25 Cable 179
CPS Multifunction by Min. Comp. 199
Expansion Chassis by Mtr. Comp 555
HiSpeed Serial Int. Cd. 155
Integer Basic Firmware Cd 149
ROMPLUS 135
SSm AIO Serial/Parallel 1/O
Assembled \& Tested 149
ACCESSORIES
A/D D/A Board by Mtn. Comp 319
Andromeda 16K Ramcard 179
Apple Game Paddles 25
Arith. Processor 7811 A or B 339
COPYROM by Mtn. Comp 51
Dan Paymar L.C. Kit 1 or 2 55
Extender Board 27
GPIB IEEE 488 Card 259
Graphics Input Tablet 639
Hayes Micromodem 299
Introl X-10 Remote Control Sys 239
Joystick for the Apple 47
Keyboard Filter ROM chip 49
Lazer Lower Case Plus+ 49
M \& R Sup-R-Term 80-col-bd 319
Music System by Mtn. Comp 479
Programmable Timer CCS 7440A 159
Piototyping Hobby Card 22
ROMWRITER by Mtn. Comp 149
SuperTalker Speech Synthesizer 239
Thunderclock 129
Versa-Writer Digitizer Drawing Sys 239
Videx Keyboard Enhancer 115
Videx Videoterm 80-col-cd 319
Z-80 SOFTCARD by Microsoft 295

Choose an Apple Desk

A compact bi-level desk ideal for an Apple computer system. This $42^{\prime \prime} \times 311_{2}^{\prime \prime}$ desk comes with a shelf to hold two Apple disk drives. The top shelf for your TV or monitor and manuals can also have an optional paper slot to accomodate a printer.

Choose a Micro Desk

Get your micro computer off the desk top and into the micro shelf under our Designer Series desks. Suitable for the North Star, Dynabyte, Vector Graphics, and Altos computers. The desks come in a variety of sizes and colors.

Choose a Mini Rack

Mini racks and mini micro racks have standard venting, cable cut outs and adjustable RETMA rails. Choose a stand alone bay or a $48^{\prime \prime}, 60^{\prime \prime}$, or $72^{\prime \prime}$ desk model in a variety of colors and wood tones. A custom rack is available for the Cromemco.

Choose a Printer Stand

The Universal printer stand fits the:

Centronics 700's Dec LA 34
T.I. 810 \& 820 OC Spinwriter Okidata Slimline Lear Siegler 300's Anadex 9500's
Delivery in days on over 200 styles and colors in stock. Dealer inquiries invited.

ELECTRONIC SபSTEMS
FURNITURE COMPANY
17129 S. Kingsview Avenue Carson, California 90746 Telephone: (213)538-9601

Text continued from page 98:
go before returning to shallower depths.
-The definition of a limited depthfirst search of level n is that it expands $n-1$ levels at a time, generating the current level n nodes but not immediately expanding them. Therefore, such a search is most efficient when the level of the search is equal to the number of moves in the solution: the search drops down the leftmost side of the tree, stops at level n,
and scans across the n-level subtree from left to right.
-I made an unexpected discovery: the limited depth-first search is guaranteed to expand less than or the same number of nodes as the breadthfirst search when the depth of the $\operatorname{search}(n)$ is equal to the number of steps (s) in the solution. An intuitive proof of this can be seen from the example of figure 11. Also, it can be inferred that the two searches are

Answers

1. If a given step of a solution is one of the last to be expanded (say, up or right), then the breadth-first search will first expand in other, nonproductive ways (remember the order: down, left, up, right). It is the expansion of these nodes that increases the number of nodes on the closed list.
2. Yes, L moves are expanded before U moves, but an analysis of the situation shows that the order in which nodes are expanded (down, left, up, right) is only one of several factors influencing the number of nodes expanded by a breadth-first search. Refer to figures 9 and 10. If you count the number of terminal nodes (which are open-yet to be expanded) and nonterminal nodes (representing closed, or already expanded nodes), you will find that the numbers agree with those listed in table 2a. (Remember to count the start node as being closed; also, for the moment, ignore node C in figure 9.)

The two trees are identical in number and distribution of nodes through rank two (ie: in nodes 1 through 9). The overwhelming reason that puzzle $(3,1)$ expands more nodes than puzzle $(3,2)$ is that the former has to expand more level-two nodes to get to the goal node. Why is this? Because, from node 3 (in both trees), the path leading to the goal node in puzzle $(3,2)$-the L branch in figure 10 -is expanded before the corresponding path-the U branch in figure 9-is expanded. Here the single L in the solution of puzzle $(3,2)$ is more important than the two L s in the solution of $(3,1)$ because it prevents the expansion of several "fertile" nodes (nodes six and seven in figure 9) on the next-to-last level.

We should not, however, be tempted to generalize. The factors influencing the number of nodes generated are so interdependent that it is impossible to evaluate their relative strengths outside the context of a specified example.
3. Refer to figure 9. The entire tree (minus node C, in color) is the solution tree for puzzle $(3,1)$. The nodes in the colored box (including node C) are the solution tree for puzzle $(2,1)$.

Now the reason for the fact that node C is generated only by $(2,1)$ becomes clear. When node B is a start node, all four directions generate valid successors, but when node B is generated by starting node A in puzzle (3.1), the SEARCH program rightly denies node C successor status because the direction of the move from B to C undoes the move directly before it, A to B. Here again, the interaction of forces in the algorithm create unexpected but correct results.
4. The two important factors in this situation are the depth and the "leftness" of the goal node. Because the limited depth-first algorithm scans from left to right, the "leftness" of the goal node is the more important factor: a node midway in the tree but closer to the left edge of the tree than another node (which is further down), will be expanded first. This is also true for a pure depth-first search.
5. A limited depth-first search of order one is equivalent to a breadthfirst search; that is, because $n=1$, the algorithm does an exhaustive search of the tree one level at a time. Numbering the nodes of a tree according to the limited depth-first algorithm will demonstrate the equivalence of the two forms.

256 K Byte / 128 K Word Dynamic Memory

FEATURES

- Byte or Word width operation
- Extended Addressing or Port Select
- 150 ns Access, 270 ns Cycle (B Version)
- 200 ns Access, 335 ns Cycle (A Version)
- Full DMA capability with transparent refresh
- Precise memory timing module
- Low Power
- Meets IEEE 696 specifications

- Four-layer board

$\$ 1 \square \angle 10$ 为 Assembled \& Tested with 1 Year Warranty *Introductory Price valid through 30 Sept., 1981

The B810 RAM represents one of the best solutions for applications requiring compact design and speed for remarkably low cost. Suitable for a wide range of commercial applications, the B810 RAM is form, fit and functionally compatible with the proposed IEEE 696 (S-100) bus standard. It automatically provides byte or word width access using the sXTRQ* signal. It features the AMD 2964 Dynamic Memory Controller and a new memory timing moclule designed for the B810 by Engineered Components Corp. for precise timing. Its four layer board with full ground and power planes provides noiseless operation. As an integral part of the AB Digital B800-series, the B810 RAM provides full DMA capability. Designed to be as universal as possible, the B810A RAM will work with most S-100 cards using a Z80 or Z8000, and the B810B (with optional byte parity), works with Alpha Micro. Cromemco, Northstar, and all Sl00 CPU cards.

Available through California Digital (toll-free orders only 800-421-5041) and other fine distributors, or direct. Specification sheets on request. Manuats may be purchased separately for $\$ 25.00$ refundable on order.

COMING NEXT MONTH: THE B880 80ns $64 \mathrm{~K} / 32 \mathrm{~K}$ STATIC RAM

The B800 series of 8 -bit cards provides the OEM with a complete line of 6 MHz computer cards. All peripheral controllers are intelligent. This series includes the B800 CPU; the B820 SCC Serial Communications Controller; the B8:30 HDC Harcl Disk Controller: the B840 FI)C Floppy Disk Controller. and others which will be announced.

The $\mathbf{B 8 0 0 0}$ series provides a complete line of 16 -bit 4 and 6 MHz cards in three formats: double-height Slio(0. MultiBus and the new Zilog ZBI bus. As with the B800 series, all peripheral controllers are intelligent with their own processors and memory. The B8000) series includes the B8000 CPU (Z8001-based): the 1 Megabyte B8100 RAM with optional EDC: the B8200 SCC Serial Communications Controller; the B8.300 HDC Hard Disk Controller; the B840(WI)C Winchester Disk Sulsystem; and others to be announced.

AB Digital Design Labs products are designed to provide technological leadership and industrial-grade quality with unexcelled performance. Before you buy any computer product, we invite you to examine our spec sheets and manuals. We think the choice will be clear.

$$
\begin{aligned}
& \text { DIGITAL DESIGN LABS } \\
& 109 \text { Cuyama Road Shell Beach. CA } 93449 \\
& (805) 773: 173
\end{aligned}
$$

The Ulitrabyle Memory Board
Due to the tremendous success of our JAWS I, we were able to make a special purchase of first-quality components at below-cost prices for JAWS-IB. And we are sharing our cost saving with you. But don't be surprised if the next time you see this ad the prices have gone up substantially. Better yet, order now, and get the best memory on the market at the best price on the market.
ONE CHIP DOES IT ALL
Jaws-IB is the Rolls-Royce of all the S100 dynamic boards. Its heart is Intel's single chip 64 K dynamic RAM controller. Eliminates high-current logic parts delay lines . . . massive heat sinks . . . unreliable trick circuits. JAWS-IB solves all these problems.
LOOK WHAT JAWS-IB OFFERS YOU
Hidden refresh . . . fast performance . . . low power consumption . . . latched data outputs . . . 200 NS 4116 RAM's . . . on-board crystal . . . RAM Jumper selectable on 8 K boundaries ... fully socketed ... solder mask on both sides of board. . . phantom line . designed for 8080, 8085, and Z80 bus signals . . . works in Explorer, Sol, Horizon, as well as all other well-designed S100 computers.

approximately equivalent in efficiency when n is only slightly larger than s.

- (Question 4) In a limited depth-first search of level n on a puzzle with a solution of n moves, what are the two
most important characteristics (in terms of the location of the goal node) that influence the solution time of the puzzle? Which is more important? -With limited depth-first searches of depth greater than the number of

Figure 10: Solution to the puzzle $(3,2)$ by the breadth-first algorithm. The circled numbers to the right of each node indicate the order in which they are expanded. Nodes 8 through 13 (six nodes) are "open" (ie: they have not yet been expanded), whereas nodes 1 through 7 are "closed."
 DEPTH

0

1

2

3

DEPTH

0

1

2

3

Figure 11: A comparison of search efficiency. The limited depth-first search always produces the same or fewer nodes than the breadth-first search, when the depth of the search is equal to the depth of the goal node. An example of the efficiency of the limited depth-first search is shown in figure 11a, where the breadth-first search (indicated in color) has produced more nodes. In figure 11b, the two types of searches produce an equal number of nodes, using the same partial tree but a different goal node. The breadth-first search must always expand the entire tree to depth $n-1$, whereas the limited version may not, depending on the location of the goal node.

Take Your Cue From Vista

When it comes to Apples, take your cue from Vista's A8OO Eight-Inch Floppy Disk Controller. The A8OO offers a cost-efficient approach to software compatible disk memory expansion for your Apple l® computer. The A8OO Controlier enables Apple II users to access up to five megabytes of online storage through conventional disk operating (DOS) commands.
The Control and DMA Logic provides high speed (1 microsecond per byte) transfer of data from the disk drive directly to the Apple II memory without processor intervention. Plus, the PhaseLocked Loop Data Separator provides the ultimate in data reliability.

AND THERE'S MORE.

The controller is compatible with the most popular disk operating systems for the

Apple Il computer. It also interfaces to all Shugart/ANSI Standard Eight-Inch Floppy Disk -1115 Drives. The A8OO provides complete IBM format compatibility in both single and double-
density modes.
THE HOT SHOT AT A COOL PRICE
The A 8 OO is reasonably priced at $\$ 595$. A price you can't beat when you compare its quality and performance.

CALL YOUR SHOTS.
Vista offers you a complete line of peripheral
equipment to maximize the capabilities of your Apple system including: High capacity Minifloppy Disk Drives, the Vista Music Machine 9 and the Vista Model 150 Type Ahead Buffer. In addition, Vista offers a line of advanced components fully compatible with the

TRS-80* and S-100 based compulers.

New: SS16K/IEEE RAM
It's everything you need in a 16 K static RAM boand - at the lowst price you've ever seen. The SS16K/IEEE comes with all the high performance features listed below: And unlike obsolete-design RAM's (without bank select) you can add-on our universal software bank-selector system anytime, now just $\$ 20.00$. This makes the SS16K/IEEE capable of addressing 2,048 different banks. You can add memory beyond the 64 K limit. You can expand to a multi-terminal system.
FEATURES OF SS16K/IEEE :

- Low-power 2114's
- All inputs and outputs meet the proposed IEEE standards for the S100 bus.
- 4.0 MHz operation.
- Schmitt trigger buffer on all signals for maximum noise reduction.
- Addressable on $\mathbf{1 6 K}$ boundaries, 0-64K, dip switch selectable.
- Phantom option, dip switch selectable.
- PWR/MWRITE option, dip switch selectable.
- Glass epoxy PC board with gold-plated contacts and double-sided solder mask.
and double-sid
- Four separate regulators, for maximum stability.

WITH BANK SELECT OPTION (now just \$20.00)
YOU ADD THIS:

- Software bank selector featuring a universal decoder works with Cromenco, Alpha Micro, Netronics, most other systems, or your design. On-board dip switches: Bank Select Enable, Reset Enable, Reset Disable, Port Address, Port Data.
- LED Indicator to display status.

10-DAY MONEY-BACK TRIAL: Try a fully wired and tested board for 10 days - then etther keep it, return it for kit, or simply return it in working condition.
 Continental U.S.A. Credit Card Buyers Oulside Connecticul: TO ORDER CALL TOLL FREE 800-243-7428:

From Conneclicul or For Assislance: (203) 354-9375

Please send the items checked below:
SS16K/IEEE without bank select:
SK16
Kit . $\mathbf{\$ 1 7 9 . 9 5 * * * ~}$
SS16K/IEEE with bank select:
Kit ... 10.0.
\$199.95*
SS16K/IEEE bank select option. 229.95
$\$ 20.00^{*}$

- "Plus $\$ 2$ postome 8 insurunce ($\$ 5.00$ Cunada). Connecticul resi-: dents audd soles tax.

Total enclosed: $\$$

- Personal Check \qquad - VISA \square Master Card (Bank No.
- Acct. No. Exp. Date
- Signature

Prinnat
Name

- Address

City
State
NETRONICS R\&D Ltd. 333 Litch(ield Road, New Millord, CT 06776!

Figure 12: A comparison of four exhaustive searches. Given the partial tree with goal node on level six, the four lines A, B, C, and D delineate the nodes expanded by the following searches:
A limited depth-first search, with $n=s=6$
B limited depth-first search, with s an even multiple of $n(s=6, n=3)$
C breadth-first search
D limited depth-first search with s not an even multiple of $n(s=6, n=4)$
The worst case for the limited depth-first search, given by D, expands more or fewer nodes than the breadth-first search, C, depending on whether area a or area b has more nodes.
moves in the problem solution ($n>s$), the number of nodes expanded increases with the difference between the two (see the results of table 3b).
-When the depth of the search is less than the number of moves in the solution ($n<s$), two cases occur. If s is a multiple of n, the efficiency of the search is between that of a breadthfirst search and a limited-depth search with $n=s$ (as illustrated in figure 12). If, however, s is not a multiple of n, the result is mixed. The depth-first search will go several levels deeper than the level of the solution and may be better or worse than a breadth-first search depending on the number of nodes expanded past level s and the number of nodes expanded in the breadth-first search that are not expanded in the limited depth-first search (see figure 12).

- (Question 5) A depth of one ($n=1$) gives a special case of the limited depth-first search. What is another name for this search?

Conclusions

We've covered quite a bit of
material in this article, including an introduction to tree- and graphsearching terminology, a definition of the finite-state representation of a problem, the general-purpose search algorithm implemented in the BASIC program SEARCH, and three exhaus-tive-search algorithms. In most cases, a breadth-first search is the best of the three, but in some cases it can be improved upon by the limited depthfirst search.
Part 2 will deal with heuristic algorithms that estimate the "worth" of a given node in order to arrive at a guaranteed solution without performing an exhaustive search.

References

1. Nilsson, Nils J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971. An excellent book on all aspects of this subject as well as the related topics of problem reduction, theorem-proving, and the searching of game trees.
2. Winston, Patrick Henry. Artificial In. telligence. Reading MA: Addison-Wesley, 1977. A good overview of artificial intelligence with one section devoted to tree searching.

OSBORNE'S LATEST HITS

6 Brand New Books from Osborne/McGraw Hill

Interfacing to S-100 (IEEE 696) Microcomputers

6. Sol Libes and Mark Garetz

Th s book assists $5-100$ users in expanding the power and utility of their systems. It describes the $\mathrm{S}-100$ bus with unmatched precision and detail. Various chapters describe its mechanical and functional design, logical and electrical relationships, bus interconnections, and bussing techniques. Both parallel and serial interfacing are described as well as interfacing to RAM, ROM, and the real world. Adeditional chapters discuss D/A and A/D canversion, interrupts, timers, and direct memory gigess.
\#37-3 \$15 口

Microprocessors for Measurement and Control

by D.M. Auslander and P. Sagues
Learn to design mechanical and process equipment which use microprocessor based "real time" computer systems. This book shows you how, and, using case studies, builds and explores problems of increasing complexity, The book presents plans for prototype systems, allowing readers (even those unfamiliar with machine on assembly language) to initiate projects and carry them through to completion.
\#57-8 $\quad \$ 15.99 \cdot \square$

Abstract

CBASIC ${ }^{\text {™ }}$ User's Guide by Gordon Eubanks, Adam Osborne, and Martin McNiff The CBASIC language maty be the most advanced version of BASIC vef created. Like Pascal, CBASIC requires no line numbers and lends itself to highly organized, structured programs-programs that are readable, modular, and easier to change. CBASIC is as easy to learn as BASIC and contalins convenient file handling facilities, making it very useful for many business applications. It may be the only computap language you'll ever need to learn. This guide was co-authored by Gordon Eubanks, the creator of CBASIC. It is not only a self-teaching textbook, it is the definitive reference on the CBASIC language.

\#61-6 \$15 \square

ATARP

Some Common BASIC Programs

TRS-80 ${ }^{\text {TM }}$ level II
 Some Common BASIC Programs

Two new editions of Osborne's celebrated collection of 76 useful and informative programs in Math, Finance, and Statistics. These programs will transform your Atari 400 or 800 or your TRS-80 computer from a plaything into a real'workhorse. The programs are clearly documented to serve as a valuable instructional aid in learning BASIC. ATARI version: \#53-5 \$14.99 \square
TRS-80 level II version: \#54-3 \$14.99 \square

Science and Engineering BASIC Programs

edited by John Hellborn
50 programs with a wide range of scientific and engmeering applications - Clearly documented and easlly adapted for any popular microcomputer - This book is an indispensible tool for any scientist, engineer or student Included are programs for interpolation, regression, data analysis, roots of polynomials, matrix operations, and linear equations. You'll also find programs for eigenvalues and eigenvectors, differential equations, Fourier analysis, Structural analysis, thermodynamics, and many others.

Book Review

Turtle Geometry
by Harold Abelson and Andrea A diSessa MIT Press, Cambridge MA, 1981, 478 pages, $\$ 20.00$

Reviewed by W Lloyd Milligan 8604 Maywood Dr Columbia SC 29209

Imagine four turtles, each sitting at one corner of a square. At the same moment, each turtle begins to crawl in a clockwise direction toward its nearest neighbor. They continue crawling at the same speed toward one another until they meet. How long is the path traveled by each turtle?

The solution to this wellknown problem-that the path equals an edge of the square-is reached most easily by working from the turtle's point of view. A turthe is a small creature that inhabits a computer's graphicdisplay screen. It has the ability to move forward or backward a specified distance and to turn in place clockwise or counterclockwise through a given angle. Distances and angles are arguments in turtle commands. Just as straightedge and compass are the basic tools of traditional geometry, so the turtle is the implement of turtle geometry.

Turtle Geometry, by Harold Abelson and Andrea A diSessa, discusses using the computer to explore mathematics. The authors make a persuasive case for their idea that compared with traditional methods, the computational approach encourages mathematical exploration at an earlier stage of learning

The turtle leads the learner on quite a different mathematical journey than does
traditional geometry. The earliest ideas presented in this book later are found to bear important relationships to topological concepts. We first learn of the distinction between intrinsic and extrinsic properties-intrinsic properties are those that do not require a frame of reference for their expression. A second important distinction concerns local versus global representations. Circles are constructed locally, meaning that the turtle does not know about the rest of the plane when making a small piece of a circle. Many of the turtle's constructions are both intrinsic and local.
Remember that the turtle can turn in place through any specified angle. If he keeps track of his turning by adding all clockwise turns and subtracting all counterclockwise turns, he immediately discovers the Closed-Path theorem:

The total turning along any closed path is an integer multiple of 360 degrees.

The approach of turtle geometry is empirical. You obtain a result like the Closed-Path theorem, then try to improve it, exploring its consequences for various kinds of paths. Before long you have made a new discovery, perhaps in a different branch of mathematics. It is a tribute to the richness of turtle geometry that by the end of the first chapter you are studying the Euler ϕ function and Fermat's "Little" theorem, both numbertheoretic ideas.
Because the turtle is an animal, it is only natural to explore turtle movement as behavior in response to controlling stimuli. Much can be learned by programming the turtle to model various types
of forced movement, such as movement toward or away from stimulation. (For explanations of forced movement, see Orientation in Animals by G Fraenkel and D Gunn. Dover, 1961.) You can even set up experiments in which the turtle is responding to information from more than one sense simultaneously.

The turtle can be used for modeling patterns of growth found in nature. The principle of uniform growth leads to the shape of an equiangular (logarithmic) spiral. Many other fascinating designs, such as the spiral shapes found in seashells, arise from invoking simple turtle procedures recursively. (See On Growth and Form, by D Thompson. Cambridge University Press, 1961.)

The book provides a painless introduction to vector methods. The brief excursion into linear algebra is the book's only "corruption" (by Cartesian analytic geometry) of turtle geometry, and it is both appropriate and worthwhile. You learn here how to represent three-dimensional objects in two dimensions. Parallel projection is presented first, then perspective projection. Anyone who appreciates arcade games or is interested in their design will find this chapter enlightening. The geometric bases of changing perspec-
tive, zooming, and the like are explained.

Any computer with good graphics may be used to implement turtle geometry. (A commercial version is available for the Apple.) A wellstructured language such as Pascal is desirable, but not essential, to implement the turtle routines.
Inevitably, the turtle escapes from the plane. Turtle spherical geometry is the first nonplanar generalization. A beautiful local definition of geodesic is developed:

A turtle line is an equal-strided turtle walk.

Equal-strided means the turtle's left and right sides move equally. The beauty of this definition is that it applies to any surface. Remember, the total turning around a closed path is an integer multiple of 360°. As it turns out, the turtle can execute a closed path on nonplanar surfaces with a net 360° change in heading, but a total turning not equal to 360°. The discrepancy can be detected intrinsically. The concept, called angle-excess, gives rise to the important property called curvature. Further exploration brings us to the domain of topology, where we encounter theorems such as, "Any oneholed torus (doughnutshaped surface) has zero total curvature."

[^11] professionals, we set the same high standards that established our reputation in the field of sophisticated, computerized visual field testing equipment. Our customers expect functional design, precision engineering, and quality components-so when we encountered problems with floppy disk quality and availability, it was natural that we put our own manufacturing expertise to work in solving the problem. SYNEMED FD4 8" dual-sided, dual-density floppy disks are superior to any we could buy-and too good to keep to ourselves! Available for immediate delivery from stock and competitively priced, the FD4 offers RX01/02* compatible, two-megabyte floppy disk capacity for the LSI-11* Q-BUS**

- Long disk life achieved by air-damped head loading - High reliability NEC drives - Single or double sided, single or double density, all transparent to your software - Patches for RT-11* DY handler enable full 1962 block capacity per disk - Controller includes additional bootstraps for RLO1/2* and RK05* • Standard size-simply plug into existing equipment
Mail the coupon today for more information on the SYNEMED solution to your floppy disk problems.

1215 Fourth Street Berkeley, California 94710 415/526-5330

- Please send me more information on the FD4.
\square Please have your representative contact me.

Name \qquad
Street \qquad City \qquad

State \qquad Zip \qquad Tel. No. \qquad

[^12]Any surface in three dimensions can be deformed into a piecewise-flat surface. Piecewise-flat means, simply, that the surface is made of flat pieces joined at the edges. If the edges are straight, then all of the curvature is concentrated in the vertices. Piecewise-flat surfaces are easily represented in a computer program by an atlas which specifies all matching edge pairs by their face and edge numbers. Since a piecewise-flat deformation preserves all the topological properties of a surface, these properties can be studied as
they are exhibited in this special case. For example, an important theorem, GaussBonnet, states that the total curvature of any closed surface is:

$$
2 \pi(V-E+F)
$$

where V is the number of vertices, E the number of edges, and F the number of faces.

The turtle's wanderings take him, finally, to the domain of curved space and general relativity theory. Gravity as a property of geometry is presented in a parable about a turtle who
lives near the north pole of a sphere. He constructs a twodimensional Euclidean model of his experience. Inevitably, the turtle encounters various strange problems with his model. He eventually overcomes his difficulties by postulating a force which acts everywhere locally. The force is called "demonturning."

Traditionally, mathematics has shunned the computational approach. The main thesis of Abelson and diSessa's book is that experimentation using a computer stimulates mathe-
matical discovery. The thesis is certainly true of turtle geometry, and one suspects it applies to many other areas of mathematics. Reading this book with the help of a good graphics computer system, you are sure to discover new and interesting math. Turtle Geometry is a serious effort to blend the computer with mathematics. It would serve as an excellent textbook or self-study guide. Perhaps it will also serve as a model for other efforts to bring the computer and mathematics to fruitful collaboration.

BYTE's Bugs

Corrected Price

In the June 1981 BYTE, Axlon Inc's 8 -slot bus expansion board was incorrectly priced. (See page 420.) The board costs $\$ 895$. The company has also released new pricing on the RAMCRAM memory module. It now costs $\$ 225$.

Blasted Bugs

In the August 1981 BYTE "Software Received," the price for Budgeco's Raster Blaster was incorrectly listed. The correct price is $\$ 29.95$.

We apologize for the mistake.

Super SImple Bug

An integrated circuit was incorrectly labeled in James Nicholson and Roger Camp's article "Build a Super Simple Floppy-Disk Interface, Part 1." (See the May 1981 BYTE, page 360 .)

In Figure $4 b$ on page 372, IC9 should be numbered
74193. The pin numbers are correct as shown.

Color PEEKs

Stan Miastkowski's article "Extended Color BASIC for the TRS-80 Computer" has been the focus of much attention. (See the May 1981 BYTE, page 36.) It seems that the system does indeed include a PEEK function, contrary to what was previously printed. The author replies:

I admit that I goofed. For BYTE to run an article on Extended Color BASIC at about the time it became widely available in Radio Shack stores, the company provided me with one of the first production models and a rough draft of the documentation. The rough manual had a list of differences, one of which showed that PEEK was not available in the nonextended model of the TRS-80 Color Computer. It was, however, available by the time the manual reached its final stages, but that was too late for inclusion in the article.

Last One Out

In John Sauter's article "Faster BASIC for the Ohio Scientific" (May 1981 BYTE, page 236), an error was discovered in listing 3 on page 240. The last line, an "INY", should be omitted-it is not part of the "ROR A" macro.

For those using Microsoft's KIM or TIM BASIC, the new
code would be as shown in listing 1.

Another bug was found when using the 5 -inch disk version. The code to be patched is on track 04, not 03 as published. Also, when using smaller disks, the top memory should be set at hexadecimal 4200 as opposed to hexadecimal 47FF for the larger 8 -inch disks.

Listing 1

\$37C2	B0 18	BCS	\$37DC
\$37D1	7602	ROR	\$02,X
\$37D3	7603	ROR	\$03,X
\$37D5	7604	ROR	\$04,X
\$37D7	68	BLA	
\$37D8	$6 A$	ROR	A
\$37D9	C8	INY	
\$37DA	D0 E8	BNE	\$37C4
\$37DC	18	CLC	
\$37DD	60	RTS	

\$38C3	6673	ROR	\$73
\$38C5	6674	ROR	\$74
\$38C7	6675	ROR	\$75
\$38C9	6676	ROR	\$76
\$38CB	66 BD	ROR	\$BD
\$38CD	98	TYA	
\$38CE	4A	LSR	
\$38DF	D0 D6	BNE	\$38A7
\$38D1	60	RTS	

(\$38D2 through $\$ 3903$ now unused)

Turn your Apple into the world's most versatile personal computer.

The SoftCard ${ }^{\text {TM }}$ Solution. SoftCard turns your Apple into two computers. A Z-80 and a 6502. By adding a Z-80 microprocessor and CP/M to your Apple, SoftCard turns your Apple into a CP/M based machine. That means you can access the single largest body of microcomputer software in existence. Two computers in one. And, the advantages of both.
Plug and go. The SoftCard system starts with a Z-80 based circuit card. Just plug it into any slot (except O) of your Apple. No modifications required. SoftCard supports most of your Apple peripherals, and, in 6502-mode, your Apple is still your Apple
CP/M for your Apple. You get CP/M on disk with the SoftCard package. It's a powerful and simple-to-use operating system. It supports more software than any other microcomputer operating system. And that's the key to the versatility of the SoftCard/Apple.

Circle 236 on inquiry card.

BASIC included. A powerful tool, BASIC-80 is included in the SoftCard package. Running under CP/M, ANSI Standard BASIC-80 is the most powerful microcomputer BASIC available. It includes extensive disk I/O statements, error trapping, integer variables, 16 -digit precision. extensive EDIT commands and string functions, high and low-res Apple graphics, PRINT USING, CHAIN and COMMON, plus many additional commands. And. it's a BASIC you can compile with Microsoft's BASIC Compiler.
More languages. With SoftCard and CP/M, you can add Microsoft's ANSI Standard COBOL, and FORTRAN, or

Basic Compiler and Assembly Language Development System. All, more powerful tools for your Apple.
Seeing is believing. See the SoftCard in operation at your Microsoft or Apple dealer. We think you'll agree that the SoftCard turns your Apple into the world's most versatile personal computer.
Complete information? It's at your dealer's now. Or, we'll send it to you and include a dealer list. Write us. Call us. Or, circle the reader service card number below.
SoftCard is a trademark of Microsoft. Apple II and Apple II Plus are registered trademarks of Apple Computer. Z-80 is a registered trademark of Zilog. Inc. $C P / M$ is a registered trademark of Digital Research. Inc.

Microsoft Consumer Products, 400 108th Ave. N.E..
Bellevue. WA 98004. (206) 454-1315

Photo 1: Advanced TIROS-Class Weather Satellite. Used in military and civilian versions, the TIROS satellites have two on-board computers.

One Step Forward Three Steps Backup Computing in the US Space Program

A special tension surrounds the development of a computer system for use as the main computer aboard a spacecraft. On one hand, such a computer must be able to perform complex operations. On the other, since the first extraterrestrial service call by a field engineer is yet to be made, an on-board computer system must do its work with absolute reliability despite the most demanding environmental conditions. And by the time a computer's reliability has been proved beyond a doubt, more efficient computers have appeared on the market. It's almost as if the same process that proves a computer's reliabil-

Patrick Stakem
c/o Interface Technology POB 745
College Park MD 20740
(301) 490-3608

ity also ensures that the computer will be obsolete before it flies. Developing a main on-board computer is both a battle to prevent a catastrophic failure and a race against obsolescence.

The advent of the space shuttle (known more formally as the Space Transportation System) will soon enhance the requirement for reliability
on orbital missions. Moreover, the shirt-sleeve environment of Spacelab will prove an opportunity to use off-the-shelf microprocessor systems to support scientific experiments. But space-rating-establishing the fitness of hardware for use aboard a space-craft-will remain a severe test, especially for computers that control lifecritical and mission-critical systems.
In this article, I'll first discuss the requirements of space-rating. Then I'll describe the tasks that a main onboard computer must perform and some of the capabilities needed to perform those tasks. I'll go on to discuss the problems of providing

64K Static RAM available now from stock

Ultra Fast - 100 nsec. chips
Fast access allows memory management manipulation without wait states.

8/16-8 or 16 -bits wide

Dynamically switches data path width per IEEE Standard.

Low Power

Typical power consumption less than 2 amps for active board. Less for power down boards.

Extended Addressing

24 -bit IEEE addressing allows 16 -megabyte range. Single shunt changes to 16 -bit addressing.

Fully Static

No clocks, no refresh required for easy DMA use.

Special Features

Any 4 K block can be disabled. Or, can disable everything above or below any 4 K boundary. Available in 16 K increments for OEM quantities.

\$1,295
 100 nsec. Chips - Qty. 1-9
 OEM \& Dealer prices also available.

TO ORDER:
May be ordered through your local computer store or factory direct. Personal checks, CODs, VISA and MC accepted from within USA. 10 -day return privilege on factory orders. Shipping paid by SCP on prepaid USA and Canadian orders. All boards fully assembled, guaranteed one year.

ground support for on-board software.
After a glance at the historical development of on-board computers, I'll look at some devices now in use. Finally, I'll describe applications of microprocessors in noncritical functions aboard spacecraft. (Yes, there will soon be an Apple in orbit.) Throughout the article, I will confine my comments to civilian spacecraft of the United States.

Space-Rating

Equipment and software that must operate for long periods unattended in the difficult environment of space must be very reliable. Space-rating is the process that demonstrates the reliability of equipment for use on spacecraft. The process requires careful testing of parts, components, assemblies, modules, and software. Spacerating standards are stricter than specifications for military equipment.
Here are a few of the things that a main on-board computer in the mid-1980s must be able to do:

- withstand repeated heating and cooling from $+50^{\circ}$ Celsius to -10° Celsius
- function despite exposure to mechanical shocks, electromagnetic disturbances, high-energy particles, and radiation
- withstand forces from 0 to 30 gravities
- perform calculations on the level of evaluating 1300 long time-series polynomials per second to 32 bits of precision
- undergo intensive use for periods of several years without experiencing a single failure

Although space-rating standards of reliability are always stringent, they depend to some extent on the kind of mission for which the spacecraft is intended.

Mission Classes

Missions usually fall into one of three classes: manned missions,
planetary-probe missions, and unmanned earth-orbiting missions.

Manned missions require the highest standards of reliability. When an astronaut's life is at stake, there is no room for failure. This principle is reflected in the record of the Apollo program: as a result of 2000 manyears of development and testing, there were no flight-critical errors of spacecraft software (see reference 8).

The most common way to establish reliability in spacecraft equipment is to build in redundancy. The Shuttle Orbiter vehicle, for example, has five general-purpose computer systems to control all aspects of its operation. In
of a rule that the Shuttle Orbiter will not be allowed to approach "dead" spacecraft. Unless telemetry indicates that an unmanned satellite still has effective attitude-control and a certain level of stability, the Orbiter crew (and the extremely expensive Orbiter itself) will not be committed to approach the satellite. In addition, any satellite intended for launch as a shuttle payload must pass the same stringent requirements as a manned spacecraft.
Although no lives are at stake in their use, planetary-probe spacecraft also impose stringent requirements on on-board computer sysems. The long

Photo 2: Shuttle Orbiter mounted on transport aircraft. The Orbiter has five on-board computer systems, configured to provide as many as three levels of backup in critical situations. Two chase planes are visible.
certain critical operations, four of the five systems will perform the same task, providing three levels of backup.

More recently, concern for the lives of astronauts has led to the adoption
flight times to distant targets, the hostile environments traversed, and the impossibility of retrieval or repair all increase the demands placed on equipment. Planetary-probe spacecraft are very much on their own.

THE NEW

FLIP/FLOPPY"DISK

 with twice the byteOMNI is pleased to bring you a reversible 51/4" mini diskette...the FLIP/FLOPPY DISK. Now you can record on both sides for twice the storage capacity of a single sided disk. And you'll be able to do it far more economically, too!
Each OMNI FLIP/FLOPPY DISK incorporates all of the quality features you'd expect from the very best single sided disk.

- Two recording surfaces
- Two sets of WRITE ENABLE notches
- Two index holes
- Reinforced HUB RINGS
- Certified error-free operation at more than twice the error threshold of disk drives
- Over 12 million rated passes without disk related errors or significant wear, for extra long life operation
- Available in Soft or Hard sector
- Compatible with most $51 / 4$ " disk drives including APPLE, TRS-80, PET, OHIO SCIENTIFIC, ZENITH, NORTH STAR, and many more.

OMNI Resources

4 Oak Pond Avenue • Millbury, MA 01527 • 617-799-0197
Call TOLL-FREE: In Mass. 1-800-252-8770
Nationwide 1-800-343-7620

INTRODUCTORY OFFER

Order the OMNI FLIP/FLOPPY DISK at this special introductory price:

Five Pack... $\mathbf{\$ 2 1 . 0 0}$
Equivalent to ten single-sided disks.

Ten Pack.... $\$ 40.00$

Equivalent to twenty single-sided disks.

Please send me the following OMNI FLIP/FLOPPY DISK(s)

	Five Pack(s)	@ $\$ 21.00$ each $=\$$
	Ten Pack(s)	@ $\$ 40.00$ each $=\$$
	Library Case(s) $@ \$ 3.00$ each $=\$$	
Shipping and handling	$\$$	
TOIAL		$\$$

\square Check made payable to OMNI RESOURCES
$\$$
\square C.O.D.
\square Mastercard
Account Number \qquad
VISA/BankAmericard
Account Number \qquad
Credit Card Expiration Date $--/--$

Name \qquad
Address \qquad
City
State \qquad Zip

Phone Number ()
Authorized Signature \qquad
Massachusetts residents add 5\% sales tax
Money back guarantee if not completely satisfied

The distance between spacecraft and earth is often so great that radio signals require long periods to travel between the two. When the target is one of the outer planets, communication may take more than a half hour each way. By the time the ground station receives a message indicating a problem aboard the spacecraft, too little time may remain to send messages intended to correct the problem. The design requirements for computer systems aboard planetary-
probe spacecraft are perhaps an order of magnitude beyond those for systems aboard spacecraft operating near earth.

Most spacecraft carry out unmanned earth-orbiting missions. These missions may have either nearearth orbits or synchronous-altitude orbits. Spacecraft can remain synchronous with the rotation of the earth only by orbiting at extremely high altitudes. Since the Shuttle Orbiter can't deploy or retrieve space-

THE NEW OMR 500 SEES THE LIGHT

 An Optical Version of our MR 500 Makes it Even Easier to Enter Data into Your MicrocomputerNo Special Pencils Needed Now you can read punched holes, preprinted data, or pencll marks on standard OMR cards. All with the incredibly compact OMR 500 op. tical card reader.

Using state-of-the-art fiber optics to "read" each card, a single longlasting bulb does the Job. Reliably and accurately.

Simple, Fast, and Low-Coat The OMR 500 is a low-cost alternate to keyboard data entry. And at less than $1 / 2$ second per handfed card, you won't be sacrificing speed.

Compact and lightweight, our new optic reader is a mere $4-1 \mathrm{~b}$, $4 \cdot 1 / 2$ inch cube. Automatic turn-on is standard.

Whice Variety of Interiaces The reader is available with in -
telligent interfaces to Apple, TRS-80, PET and Atari that simplify user software requirements. Also avallable are RS-232 and S100 interfaces.

Highting the Way At $\$ 1095$, including the intelligent interface, the OMR 500 truly adds an affordable new dimension to card reader flexibility. Its uses are virtually unlimited. Small business, the entire educational field, personal computers wherever data entry is required.

And remember, we still offer the Industry's largest selection of card readers. So whatever your needs, we've got the right card reader for you.

Write or phone for complete details. Better yet, put in your order today.
craft so far from earth, synchronousaltitude spacecraft must be built to function without service for the duration of their missions.

A spacecraft at synchronous altitude appears to remain stationary above one point on the earth's equator. Consequently, a ground station can stay in continuous communication with such a spacecraft. In this respect, spacecraft at synchronous altitude are easier to manage from the ground.

Satellites orbiting the earth at lower altitudes appear to "rise" and "set" over the ground station. A typical orbit takes about 90 minutes, and the spacecraft is in view of a given tracking station for only 10 minutes of the 90 . The ground station must pack a great deal of communication into the 10 minutes of contact. During those 10 minutes, the ground station has to send up enough commands for the next 80 minutes of operations, check the state of all onboard systems, take any necessary corrective action, and dump recorded data from the satellite to the ground over a high-speed channel.

During the 80 minutes when the satellite is out of touch with the ground, the on-board computer must sequence and monitor spacecraft operations and components and store messages about the status of monitored equipment. In case of problems, the on-board computer must take first-order corrective action. Even with the advent in the early 1980s of NASA's tracking station in the sky-the synchronousaltitude Tracking and Data Relay Satellite System (TDRSS)-full coverage of satellites in near-earth orbits will not be assured because so many satellites will share use of TDRSS.

Space-Rating Microprocessors

Microprocessors, memories, and interface devices aboard spacecraft must operate in a vacuum over a wide temperature range. The vacuum restricts cooling to radiation and conduction; since no atmosphere is present, convection is impossible. Besides the limitations on cooling, equipment

COMPUTER UAREHOUSE

call roul pere 1-800-528-1054

ATARI

Special 32K 800 System800 w/32K. recorder. star	
raiders, joysticks	\$930
Above w/48K	S990
800 (32K)	\$744
810 Disk Drive	\$440
825 Printer	\$575
850 Interface	\$155
410 Recorder	\$70
830 Modem	\$140
16K Memory	\$75
32K Memory	\$150

DISK DRIVES

Lobo
Apple 1st Drive
Apple 2nd Drive.
$\mathbf{\$ 4 9 0}$
$\mathbf{\$ 4 1 0}$

MODEMS

Novation

CAT	\$155
D-CAT	\$155
Apple Cat II	Call
Auto Cat	Ca

PRINTERS

C. Itoh

25CPS - Serial
25CPS - Parallel
40CPS - Serial
40CPS - Serial. 45CPS - Parallel
Datasouth
DS 180.
\$1380
\$1325
\$1825
\$1710
\$1275

Diablo

630 RO
w/Tractors
630 RO
wo/Tractors
1640 RO w/Tractors
1640 KSR w/Tractors
1650 RO w/Tractors
1650 KSR w/Tractors
Epson
MX-80.
MX-80 F/T
MX-100
Fric. Feed Opt for MX-80
NEC
5510 RO w/Tractors
5520 KSR w/Tractors
Okidata
Microline 80
Microline 82
Microline 83
Qantex
Serial.
Parallel
Texas Instruments 810 Basic 810 Loaded

VIDEO TERMINALS

Adds	
Viewpoint	Call
Soroc	
IQ 120	Call
IQ 130	Call
IQ 135	Call
IQ 140	Call
Televideo	
910 C.	\$589
912 C	\$694
920 C	S744
950 C	\$935
Zenith	
Z-19	\$769
COMPUTERS	
Altos	
ACS 8000-15	\$4500
ACS 8000-2 w/CPM	\$2695
Northstar	
Horizon II 64K DD	\$2875
Horizon II 64K QD	\$3150
Zenith	
Z-89 48Kw/CPM	\$2200

Prices \& avaitability subject lo change withoul notice Personal checks will delay shipping iwo weeks

2222 E. Indian School Rd. • Phoenix, Arizona 85016 Order Line: 1-800-528-1054
 保
 Store Hours: Tues.-Fri.10-5 MST Saturday 10-3 MST

Prices reflect 3\% cash discount. Product shipped in factory cartons with manufacturers warranty. Add 2%, a minimum of $\$ 5$, for shipping and handling.
must be able to withstand a wide temperature variation while dormant. The dormant period includes launch and recovery, during which there is no assurance that the spacecraft can maintain adequate thermal control.

Periodic and random vibration and mechanical shock may also damage electronic equipment during the launch phase. A common failure is breakage of a bonded lead wire where it is attached to the die of an integrated circuit. High inertial gravity (g) loads can cause such breakage. Space components are usually tested in steady-state acceleration in excess of 30 gs . Instantaneous accelerations, such as those undergone by a chip that is dropped onto a solid floor from a height of approximately a meter, can exceed hundreds of $g \mathrm{~s}$.

Components of space-borne systems must neither generate electromagnetic disturbances nor be vulnerable to them. The proximity of other electronic devices and of moderatepower transmitters of radio-frequency energy requires resistance to electromagnetic disturbances.

The abundance of radiation and high-energy particles pose another threat to semiconductor devices in space. Although there is a self-healing effect if semiconductors are turned off for a while, periodic failures are unac-
ceptable in mission-critical functions.
Table 1 shows the radiation "hardness" of several microprocessors. In general, radiation damage is cumulative. Microprocessors of commercial grade fail at several thousand rads total dosage. Although it is possible to attempt shielding chips with aluminum paneling, results are not encouraging. Often, when one highenergy particle strikes the aluminum, more than one high-energy particle comes out the other side.
P-type metal-oxide semiconductors (PMOS) are generally less susceptible to radiation damage than are the newer and faster N -type metal-oxide semiconductor (NMOS) devices. Radiation-hardened versions of standard device-families are available, particularly complementary metaloxide semiconductor (CMOS) devices, which are faster than PMOS but slower than NMOS. This is but one instance of space-borne technology lagging behind current commercial technology.
Perhaps the most serious hurdle that microprocessors must face before becoming main on-board computers is one of sheer computational power. Many of the calculations required of these machines need a word length greater than 16 bits. Until the appearance of 32-bit microprocessors,

Device	Type	Technology	Suitable Support Circuits	Projected Hardness, in Rads	Power of Basic Pro. cessor, in Milliwatts (mW)
RCA 1802*	Monolithic	CMOS	Memories, Some I/O	10^{5}	30
TI.SBP9900	Monolithic	$1^{2} \mathrm{~L}$	Memories Only	10^{7}	500
Intersil 6100	Monolithic	CMOS	Memories, Some I/O	10^{5}	50
Intel 8080A	Monolithic	NMOS	Memory, Some l/O	10^{3}	1700
AMD 2900*	Bit Slice	LS-TTL	Memory, All I/O	10^{7}	$\begin{aligned} & 10,000 \\ & (16 \mathrm{bit}) \end{aligned}$
Intel 3000*	Bit Slice	S-TTL	Memory, All I/O	10^{7}	$\begin{aligned} & 15,000 \\ & \text { (16 bit) } \end{aligned}$
NMI 6700	Bit Slice	LS-TTL	Memory, Some I/O	10^{7}	$\begin{array}{r} 15,000 \\ \text { (16 bit) } \end{array}$

[^13]Table 1: Comparison of microprocessors for space applications. Included are each processor's radiation "hardness" and its average power consumption.
less highly integrated devices will retain their monopoly as main onboard computers.

On-board Computer Tasks

Designers of spacecraft have been relying more and more on on-board computers and associated data systems to give the spacecraft flexibility and autonomy. Tasks assigned to the on-board computer include:

- Attitude determination. Orienting the spacecraft in space is a vital and complex function. The spacecraft data system must give the computer data from sun- and star-trackers, earth sensors, and gyros. The atti-tude-determination algorithm calculates how the spacecraft should be aligned with respect to inertial axes. The attitude-control algorithm then issues commands that enable magnetic thrusters, jet torquers, or reaction wheels to point the spacecraft (ie: align the axes) to a desired point on earth or to a star. Attitude determination and control, sometimes including orbit-adjust software, typically require 4 to 12 K bytes of memory.
- Command Storage. The on-board computer can store sequences of commands that are "time-tagged" for later execution. Storage may also include predefined blocks of frequently executed command sequences (macros).
- Executive. A real-time, multitasking, interrupt-driven executive is used to sequence all tasks and to handle input/output operations.
- Housekeeping. This includes monitoring and controlling thermal and electrical power. These tasks may require continual monitoring and limitchecking of sensors in the spacecraft. Spacecraft housekeeping may also include continuous measurement of the batteries' charge.
- Telemetry Format Control. The onboard computer may control the sampling and format of the on-board telemetry points. This makes reconfiguration possible in response to degradation and failures. If a prede-

MUITIPROCESSOR

 \rightarrow PASCAL
Lhs Betasystem II

- SIMULTANEOUS Timeshared \& Multiprocessor Operation
- FULL UCSD ${ }^{\text {TM }}$ PASCAL II Compatibility with IBS ${ }^{\text {TM }}$ PASCAL, SEMAPHORES, CONCURRENCY, CHAINING, TRUE WORD PROCESSING
- 5, 10, 20, Mbyte FIXED DISK SYSTEMS, 5", $8^{\prime \prime}$ FLOPPY DISC SYSTEMS
كـ (415) 443-3131

INDEPENDENT BUSINESS SYSTEMS, Inc. 1328 Concannon Blvd., Livermore, CA 94550

- TWO Timeshared Users on EACH Slave Processor, plus 128K RAM plus PARITY, 2K EPROM, Full Interrupts, Hardware Floating Point, IEEE S-100, Software Bank Boundary, 2 Serial Ports for Synchronous or Asynchronous Protocol
- VIDEO TAPE ARCHIVING
- CP/M ${ }^{\text {TM }}$ Compatibility with MuDOS ${ }^{\text {TM }}$
- LARGE DEALER MARGINS and GOOD DEALER SUPPORT

[^14]
Compare our prices with any in the magazine.

We win.

INTEGRATED COMPUTER SYSTEMS

ITHACA INTERSYSTEMS
ALTOS
ZENITH Z89
CALIF COMPUTER SYSTEMS
MORROW DESIGNS

16 K RAM KITS

NEC 4116200 ns

DISKETTES

MD 525-01.10.16
MD 550-01.10.16
MD 577-01.10,16
MD 557-01.10.16
FD 32 OR 34 -9000
FD 32 OR 34 -8000
FO 34-4001

DISKETTE STORAGE

51/" PLASTIC LIBRARY CASE	2.50
8' PLASTIC LIBRARY CASE	3.50
PLASTIC STDRAGE BINDER WITH INSERTS	9.95
PRDTECTDR 5\%"	24.95
PROTECTOR 8 "	29.95

" PLASTIC LIBRARY CASE50ROTECIDR 5%24.95
PROTECTOR $8^{\prime \prime}$ 29.95

CALL
CALL
CALL
CALL
CALL
.

PRINTERS

OKIDATA MICROLINE 82
DKIDATA MICROLINE 83

MODEMS

NOVATION CAT ACOUSTIC MODEM	145.00
NOVATION D-CAT DIRECT CONNECT MOOEM	155.00
NOVATION AUTO-CAT AUTO ANSWER MODEM	229.00
NOVATION APPLE-CAT	369.00
UOS 103 LP DIRECT CONNECT MODEM	175.00
D.C. HAYES MICRDMODEM II (Apple)	299.00
D.C. HAYES 100 MODEM (S-100)	319.00
D.C. HAYES STACK Smarl Modem (RS 232)	249.00
LEXICON LX-11 MODEM	11500

145.00
155.00
229.00
369.00
9.00
319.00
249.00

11500

APPLE HARDWARE
.1195 .00
.1195 .00
.1295 .00
.1295 .00
765.00
.1440 .00
1495.00
.1770 .00
.1870 .00
175.00
\$CALL
\$CALL
SCALL
795.00
.1149 .00
.1495 .00
.1495 .00
1995.00
. 1995.00
2995.00
2595.00
. 2595.00
. 2795.00
2195.00
399.00
599.00
795.00

MOUNTAIN HARDWARE

CPS MULTIFUNCTION BOARD	229.00
SUPERTALKER SD200	259.00
ROMPLUS WITH KEYBOARD FILTER	179.00
ROMPLUS W/O KEYBOARD FILTER	130.00
KEYBOARD FILTER ROM	49.00
COPYROM	49.00
MUSIC SYSTEM	459.00
RDMWRITER	149.00
APPLE CLOCK	239.00
AD + D/A (DIGITAL TD ANALOG)	299.00
EXPANSIDN CHASSIS	575.00

VISTA COMPUTER CO.

APPLE 40 Track Drive A40 (163 K Bytes)	389.00
APPLE 80 Track Orive A80 (326 K Bytes)	549.00
APPLE 160 Track Drive A160 (652 K Bytes)	799.00
APPLE 80 Column Card	329.00
APPLE 8 Inch Disk Drive Controller	549.00

CALIF. COMPUTER SYSTEMS
S-100 BOARDS

2200A MAINFRAME	349.00
2032A 32K STATIC RAM	599.00
2065C 64K DYNAMIC RAM	499.00
2422 FLOPPY DISK CONTROLLER \& CP/M	339.00
2710 FDUR SERIAL I/O	245.00
27182 SERIAL/2 PARALLEL VD	265.00
2720 FOUR PARALLEL I/O	189.00
2810 Z-80 CPU	249.0

APPLE BOARDS

7710A/D ASYNCHRONOUS SERIAL INTERFACE ... 139.00
7712A SYNCHRDNDUS SERIAL INTERFACE 149.00
7424A CALENDAR/CLOCK 99.00
7728A CENTRONICS PRINTER INTERFACE 99.00
7720A PARALLEL INTERFACE STD FIRMWARE . . . 99.00

MORROW DESIGNS

FLOPPY DISK SYSTEMS
Controller, P.S., Cables, Microsoft Basic, CP/M, A\&T
DISCUS I (Single Orive - 250 K) 799.00
OISCUS I (Dual Drive—500 K) 1429.00
OISCUS 20 (Single Orive- 500 K)
869.00

OISCUS 20 (Dual Orive- 1 MEG) 1499.00

DISCUS $2+2$ (Single Drive - 1 MEG) .1099 .00
DISCUS $2+2$ (Oual Orive-2 MEG) .1999 .00

HARD DISK SYSTEMS
Controller, P.S., Microsoft Basic, CP/M, A\&T
OISCUS M10 (10 Megabyles) 2949.00
DISCUS M20 (20 Megabytes) 3829.00

DISCUS M26 (26 Megabyles) 3949.00

DECISION 1 COMPUTER

2-80A. CP/M, μ NIX (UNIX Identical), 32 to 1 MEG of memory
Floppy and/or Hard Disk

SD SYSTEMS

S-100 BOARDS

VERSAFLOPPYIA\&T
289.00

VERSAFLDPPY I KIT
229.00

VERSAFLOPPY II A\&T 389.00
VERSAFLOPPY II KIT . 329.00
SBC 200 (Z-80 CPU) A\&T 369.00
SBC 200 (Z-80 CPU) KIT
299.00

Z-80 STARTER KIT 289.00

EXPANDORAM II KIT (OK) 220.00
16K RAM - NEC 4116200 ns 17.95

TERMINALS

TELEVIDEO 912C
TELEVIOEO 920C
TELEVIOEO 950C
VOLKER-CRAIG VC 4404
ZENITH Z-19

TRS-80 MOD I HARDWARE

PERCOM DATA SEPARATOR 27.00
PERCOM DOUBLER 159.00

DOUBLE ZAP II/80 (CONVERTS N0/80 TO D.D.) . . 45.95
MPI 40 TRACK DISK DRIVE (B-51) 299.00
SHUGART 40 TRACK DISK DRIVE (400L) 299.00
MPI 80 TRACK DISK ORIVE (B-91) 429.00
TANDON BO TRACK DISK DRIVE 429.00
LNW DOUBLER WITH DOSPLUS $3.30 \ldots159 .00$
PERCOM SPEAK-2ME-2

TRS-80 SOFTWARE

NEWDOS/80 2.0 MDD	00
LAZY WRITER MODI	125.00
PRDSOFT MODI. III	79.00
SPECIAL DELIVERY (MAIL LIST PROG) MOD I, II	119.00
X-TRA SPECIAL DELIVERY (MAIL LIST PRDG)	199.00
TRACKCESS MOD I	24.95
OMNITERM SMART TERMINAL PKG MOD I, III	89.95
ICROSOFT BASIC COMPILER FOR MODI	165.0

APPLE SOFTWARE

MAGIC WINDOW WORDPROCESSOR STD APPLE 89.00 MAGIC WAND
(REQUIRES 280 SOFTCARO \& 80 COL) 275.00
WOROSTAR-APPLE
(REQUIRES 280 SC \& 80 CDL)
275.00

MAILMERGE - APPLE (REQUIRES WORD STAR) . . 90.00
MICROSOFT FORTRAN
(REQUIRES 280 SOFTCARD)
165.00

MICROSOFT COBOL (REQUIRES Z80 SOFTCARD) . 550.00
DB MASTER 2.4
VISICALC 16 SECTOR
159.00

CCA OATA BASE MANAGER
189.00

A-STAT CDMPREHENSIVE STATISTICS PKG

CP/M SOFTWARE

MICROSOFT BASIC-80	299.00
MICROSOFT BASIC COMPILER	319.00
MICROSOFT FORTRAN-80	399.00
PEACHTREE SYSTEMS	CALL
MAGIC WAND (REQUIRES CP/M)	275.00
WORD STAR (REQUIRES CP/M)	310.00
MAILMERGE (REQUIRES WORD STAR)	100.00
SPELLGUARD	239.00
CP/M PICKLES \& TROUT FOR TRS-80 MOD II	175.00

CORVUS

FOR S-100, APPLE OR TRS-80 MOD I, II
Controller, Case/P.S., Operating System, A\&T
5 Megabyles . 3095.00
10 Megabyles 4495.00
20 Megabyles . 8395.00
MIRROR BACK-UP

SUPPLIES

AVERY TABULABLES

$1.0003-1 / 2 \times 15 / 16$	8.49
$3.0003-1 / 2 \times 15 / 16$	14.95
5,000 3-1/2 $\times 15 / 16$	19.95

UARCO PAPER (Prices F.O.B. S.P.)
$9-1 / 2 \times 1118 \mathrm{lb}$ white . 39.00
$14-7 / 8 \times 1118 \mathrm{lb}$ while 390

We slock a complete line of computer covers, printer ribbons, print wheels \& NEC thimbles. Call us for your needs.

Circle 14 on Inquiry card.

We built a reputation on our prices and your satisfaction.

We guarantee everything we sell for 30 days. II anything is wrong, just return the item and we'll make it right. And, of course. we'll pay the shipping charges.

We accept Visa and Master Card on all orders. COO orders accepted up to $\$ 300.00$. We also accept school purchase orders.

Please add $\$ 2.00$ for standard UPS shipping and handling on orders under 50 pounds, delivered in the continental U.S. Call us tor shipping charges on items thal weigh more than 50 pounds. Foreign, FPO and APO orders please add 15% for shipping. Calitornia residents add 6% sales tax.
The prices quoted are only valid for stock on hand and alf prices are subject to change without notice.

Photo 3: ATS-6 Communications Satellite. Traveling in synchronous orbit, the ATS-6 uses two on-board computers for attitude control.
fined telemetry format is changed in order to circumvent a hardware problem, the input on the ground-based telemetry processor must, of course, be changed, too.

- Instrument Sequencing and Control. The on-board computer can monitor and control instruments directly or can support the instruments' dedicated microprocessors. In addition, the on-board computer can manage storage of data. Data is recorded during the "back orbit," when the spacecraft is out of touch with the ground station. When the spacecraft reestablishes contact, data is dumped to the ground over a high-speed data link.

Some Essential Capabilities

On-board computers must constantly perform complex mathematical computations such as coordinate transforms. Floating-point capability enables on-board computers to perform these computations efficiently.

The alternative to building in float-ing-point capability has been to use scaled fixed-point operations. In testing, operation, and maintenance, however, the scaled fixed-point approach has led to problems with overflows, notably aboard ApplicationsTechnology Satellite-6, the International Ultra-violet Explorer, and the Solar Maximum Mission. These experiences have led to the choice of integral floating-point capability in the
on-board computers' processors.
Designers may implement floatingpoint capability in several ways. The most attractive is to have floatingpoint capability as part of the machine architecture. The architecture of several on-board computer systems in the 1980s will implement floating-point capability. If a processor can't perform floating-point operations, the designer can add the capability by introducing a slave processor. The slave processor may rely on calculator or computer technology, or it may be a co-processor, sharing the main processor's address, data, and control space.

Designers sometimes add firmware containing math-library functions

Working hard to be soft.

 We at 47th Street Photo work very hard to be soft on your pocketbook. We bring you the lowest possible prices on some of the best selling hardware and software available.
THE COMPUTER HEADQUARTERS

For the best APPLE deal from the big Apple go to the core!

DISKETTES FOR APPLE
$\&$ OTHER MICROS
Box of 10:27.00 Box or 10 , 35.00 Box ol 10 '35.00 and print immediately!

- Apple II w/48K.
- Epson Interface - Disc wicont. - Epson Cable. - Sanyo 9" Monitor. • Apple Writer. - Epson MX•80. Complete Package . ${ }^{\text {s }} \mathbf{2 , 5 2 2 . 0 0}$ APPLE II w/48K ${ }^{\text {s } 1169}$
DC HAYES MICRO MODERN II ${ }^{3} 309$
VIDEX 80 COLUMN VIDEO TERM ' 290 VYDEX KEYBOARD ENHANCER ${ }^{s} 112$ VISI CALC, 3.3 SUP'R' MOD 5159
52.95 280 SOFT CARD THE SOURCE WORD STAR DY MICRO PRO

ORIGINAL GENUINE IBM 8'
Floppy Diskettes at Lowest Prices! IBM \#2305845 SS SD ${ }^{5} 3.44$ IBM \#2305830 SS SD ${ }^{\text {s. }} 3.44$ IBM \#1669954 SS SD ${ }^{53.44}$ IBM \#1766870 DS SD ${ }^{\text {s }} 4.59$ IBM \#2736700 DS SD s 4.59 IBM \#1669550 SS SD ${ }^{\text {s }} 3.44$ IBM \#1669044 DS DD ${ }^{5} 5.19$ IBM \#1669045 DS DD ${ }^{\text {s }} 5.19$ IBM \#1766872 DS DD ${ }^{\text {s } 5.19}$

Perkin-Elmer Bantam Terminal. ${ }^{5} 779$

【\&p] HEWLETT PACKARD
A Complete Computer System in One Small Package The HP. 85 is a powerful BASIC language computer, complete w/keyboard, CRT display. printer \& tape drive all in one 20 pound unit. 16K RAM, expandable to 32 K Reg. 3250.00 Now Only ${ }^{\text {s }} 2595^{00}$

269.95 Optical Wand $/ / 41 \mathrm{C} \quad 98.50$ $\begin{array}{lrlr}\text { HP 41C } & 189.95 & \text { Printer f/41C } & 289.00 \\ \text { memory module only } 27.50 & \text { Card Reader } / 41 \mathrm{C} & 189.95\end{array}$ SPECIALS

7225B Graphics Plotter OPT. 002 Reg. 2,200 ${ }^{5} 1699$

82901M 5 $1 /{ }^{2}$ " Dual Master
Flex. Disc Drive
Reg. 2,500

2631B Impact Printer OPT. 885 Reg. 3,950 . ${ }^{\text {s }} 2,895$ ATARI 800 with 16 K

CALL FOR LOW PRICE
Full line of ATARI software available

Texas Instruments TI 99/4 Computer

 \square Designed to be the first Computer 47 Ior the skilled user, or the beginner

Orig. 950.00
 Now Only ${ }^{5} 389^{00}$ PC 100 CPrntr tor 5859157.50 Disc Drive Controller 224.95 Solid State Printer 295.00 Dise Memory Drive 349.50 RF Modulator 39.95
169.95 259.95 289.95 449.95 204.95

Sanyo Monitors
VM. 4509 9" B\&W
DM.5012CX $12^{\prime \prime}$ B\&W DM-5112CX 12" Green DMC.6013 13" Color Electro Home 9" Green

EPSON

MX-80 Printer
Now Only ${ }^{\text {S }} 499^{95}$
such as SIN/COS, ATAN, and SQRT, based on the primitive float-ing-point operations. Ideally, the onboard processor would have both floating-point operations and math-
library functions as standard features. The co-processor and firmware approaches are interim measures to be considered only so long as technological restrictions prevent includ-

ing these features in the main processor.

Floating-point capability (in the 24-bit-mantissa/8-bit-exponent format) requires at least a 16 -bit and preferably a 32-bit word size. Several onboard computer systems in the 1980s will have floating-point capability, and at least one of these will have integral math-library functions.

Table 2 compares the floatingpoint capabilities of several kinds of hardware used in on-board computers. Table 3 shows the advantages and disadvantages of different ways of implementing floating-point capability. Table 4 shows execution times of math-library functions in different processors.

Higher-Order Language

The complexity of the mathematics to be performed aboard a spacecraft gives considerable appeal to the use of a higher-order language in developing flight code. The computer, of course, is indifferent to the programming language or method used. The question is whether higher-order lan-

madromatTRS-80
 COMPUTERS

TRS. 80
MODEL II Reg. \$3,89900
64 K
26-4002

CALL US
For Low, Low Prices on All RADIO SHACK Hardware and Software

TRS-80 MODEL III 48 K; 2 Disks 26-1066

Radio Shaek

221 McHenry Ave.
Modesto, Calif. 95354

Certified Checks
Cashiers Checks
Credit Cards

Franchise Store 7079

The jury is in and the verdict is ... "outstandingl" Reviews from all of you who purchased MAXI MANAGER (not to mention faves by many too microcom. guting magazines) have heralded it as the deflinitive dala base managing system. We knew that business owners and hobbyisis demanded the finest data base managing system available. To all ol you who prased us 'for MAXI MANAGER. we extend our inanks. And to those of you who have yel to try MAXI MANAGER, we invile you to experience this incredible system loday. Bul don't lake our word for if (or our jurys). Judge tor yourself.

TOLL FREE ORDER LINE (800) 327.7172

MODEL 1 version requires TRSDOS 2.3 and is compatable with NEWDOS 2.1 \& NEWDOS 80 MODEL 3 version comes on TDOS, a special version of the DOSPLUS operating system. disk drive minimum and one For the TRS-80 Mod Order No. 012-0096

\{约ATVETLITe INTERNATIONAL SEND FOR FREE CATALOG
 80× 3435
 LONGWOOD
 FLA. 32750
 (305) 862-6917
 Prices Subject To Change

Time Accounting Systems that will Professionalize the Professionals. Introducing the Timekeeping and Billing Software Systems for the Professional . . . by Micro Business

For the Altorney \bar{A} system specifi cally designed to handle the complex receivables struc ture used by attorneys: including their rates and fees and the generation of bills, statements and management reports.

For the Professional Handles the billing structure used by accountants, en. gineers, consultants, and other prolessionals.

Micro Business Systems P.O. Box 155 8901 Meridian Ave. N. Seattle, WA 98125 (206) 525-4898

Simple, Flexible, and Effective
The software is designed with the operator in mind; it is simple to use, easy to learn, and requires a minimum amount of time to get the job done. Designed to run on any micro with CP / M, it also possesses the needed flexibility for customization-and even the source code is available under certain terms.

M S S Micro Business Systems

Call or order by mail. Demo Package- $\$ 50$ ea. Documentation only - $\$ 25$ ea. (+ shipping). Dealer inquiries welcome.

(see tabl	Type of Approach	Advantages	Disadvantages
1a	Add-on arithmetic processor	Built-in math functions	Slow
1b	Add-on microprocessor	Fast-may proceed in parallel with main microprocessor	Interfacing; no-math library
1 c	Co-processor	Faster; math-library available	Architecture and inter facing problems
2	Functions built into main microprocessor	Very fast	Usually no mathlibrary; math functions must be written in software

Table 3: Comparison of different approaches to floating-point capability.

(a)	Processor Used		Accuracy (in bits)	Implementation Time for Fixed-Point Calculations in Microseconds ($\mu \mathrm{s}$)			
			SIN/COS	ATAN/ASIN	SQRT		
9900, with software NSSC-1, with software LSI-11, with software				16	109	236	117
			18	163	417	190	
			16	176	544	184	
(b)	Processor Used			Implementation Time for Floating-Point Calculations in Mlcroseconds ($\mu \mathrm{s}$)			
				SIN/COS	ATAN/ASIN	SQRT	
	LSI. 11 with floating-point hardware NSSC-1/SP-C32 ATAC-16MS			784	1303	767	
				265.2	311	223	
				121.2	235	123.6	
(c)	ProcessorUsed	Format Used		Implementation Time for Calculation by Inherent Math-Library Functions In Microseconds ($\mu \mathrm{s}$)			
				SIN/COS	ATAN/ASIN	SQRT	
	AM9511*	Floating.	Point	1084.25	1384	206.5	
	59109*	Decimal		760,500	620,500	186,000	
	8087	Co-proce	ssor	N/A	N/A	36	

* Average of minimum and worst case times

Table 4: Implementation times of several math functions in different processors. The functions considered are sine, cosine, arctangent, arcsine, and square root. Table $4 a$ shows the times for fixed-point implementations. Table $4 b$ shows the times for floating-point implementations. Table 4c shows miscellaneous processor/format combinations.
guages increase programmers' efficiency. Many programmers now think that they can work more efficiently in higher-order languages than in assembly language.

But will the use of higher-order languages make testing and maintaining software more difficult? It remains unclear, during operation of a spacecraft, whether code produced in assembly language is easier to debug and change than code produced by a higher-order-language compiler. But the experience of producing the flight code for the Space Shuttle suggests that language derived from a higherorder language is no more difficult to debug and may even be easier.
Among the higher-order languages that are candidates for use with onboard computers are Jovial, HAL/S, and Ada/Pascal. Each has advantages and disadvantages. (Space Programming Language [SPL] was developed by RCA for in-house use and never gained wide acceptance.) In the absence of an effort to develop a compiler, however, designers will have to use whatever language is supplied by the manufacturer of the hardware.
Pascal-like languages impose structured techniques on programmers. Some programmers have faulted Pascal because each program in that language is an entity, lacking external references. But, in creating software for flight-loads, this feature of Pascal should be an advantage because flight-load software must function as an entity. Moreover, Pascal has gained wide acceptance among programmers. And the Department of Defense has adopted Ada, a Pascal-

If you write software, write Digital Research.

We cen help you bring your products to market.

Independent Software Vendors (ISV's) are the key to solving the software crunch in the 1980 's. To help you bring your products to market, Digital Research introduces the ISV Support Plan designed to assist you in: Developing Your Product

- With the fast and powerful PL/L-80 ${ }^{\text {™ }}$ Programming System
\square ISV Seminars covering high level applications
programming

Getting Established in
Your Market
ISV Seminars cover:
\square Designing a marketing strategy

- Advertising
- Writing Manuals
\square Assuring software security
\square Supporting and updating products
On-Going Support Includes:
\square Legal and technical information
\square Distribution channels
\square Printing facilities
\square Free product listing in our Applications Software Catalog

All this plus the world's largest software marketplace - the $\mathrm{CP} / \mathrm{M}^{@}$ customer base.

So why do it alone? Write Digital Research. Well send you our free brochure detailing the ISV Support Plan.

(1) DiETRL REGERTEH

P.O. Box 579

Pacific Grove, CA 93950
(408) 649-3896

TWX 9103605001

like language.

HAL/S was created specifically for generating flight software, but is not designed for use with a small processor. As with all higher-order languages, HAL/S will only be as good as its compiler implementation, which translates programs into machine language.
The choice of which higher-order language is used may not be critical. It would probably not be cost-effective to develop a compiler specifically for use in the space program because all the recommended on-board machines for the 1980s include one higher-order-language compiler. Note, however, that all these compilers must be cross-compilers because the flight processor can't support a compiler of its own.

Supporting Software

The tools that programmers use to develop and maintain software for on-board computers include cross-assemblers, loading and dumping facilities, and simulation facilities.

- Cross-Assemblers. Despite the existence of several higher-order languages for spacecraft computers, programmers still work mostly in assembly language. Since the on-board computer doesn't host its own support software, the cross-compilers, cross-assemblers, editors, and linkers reside in a small- or medium-scale computer system used for support.

Programmers work on this support system, using its convenient facilities such as video display, disk and tape drives, and a printer. The code produced is then "downline loaded" to the flight computer or test facility or transferred via tape image.
-Loading and Dumping. The software load-image for the on-board computer must be mapped into spacecraft commands through the command link, as shown in figure 1. The ground control center usually does this mapping, and then uplinks the commands to the spacecraft via a tracking, telemetry, and command station. On the spacecraft, the command receiver routes the commands to the computer, where they are interpreted. The NSSC-1 on-board computer, discussed at length later, can be hardware-loaded (without the intervention of on-board software) or can be loaded by use of the executive program. The latter technique, however, is used only to update noncritical parts of the code.

The memory of the on-board computer can be dumped on command. The on-board computer puts its memory words into the spacecraft telemetry stream. A ground station receives these memory words and then relays them to the control center. After software decodes and formats the dump image, the support computer prints a copy.

Simulation Facilities

NASA often uses simulation to test the hardware and software of onboard computers. A program hosted in a mini-computer or in a still larger machine is made to appear to the onboard computer as the rest of the spacecraft. A large and complex realtime simulation generates sensor data and accepts torquer commands, exercising the on-board computer in many different hypothetical situations. In addition to serving as the major debugging and analysis tools for flight software, simulations are used to train control-center crews.

Debugging Software in Orbit

After thousands of man-years of testing, an on-board computer is launched and assumes full control of spacecraft operations. All too often, the on-board computer crashes because of an obscure and improbable set of conditions that no one even dreamed of simulating.
How does an analyst debug and patch software in a computer that is in orbit? If the control software design is good, an analyst can sit down at the console, dump memory, and patch code without having to worry about the vast amount of hardware and software between him or her and the on-board computer. The analyst of the on-board computer is in fact communicating with the controlcenter computer, which is in contact with the on-board computer through

Figure 1: Diagram of the process of changing software for the on-board computer. After software is revised using the support computer in the ground control center, the new code is translated to spacecraft commands, linked, sent to the spacecraft through a tracking, telemetry, and command station, and placed into the spacecraft's on-board computer.

Systems II
 a total business system.

SYSTEMS II EX - EX for EXTENDED PERFORMANCE. Westware brings you the most completely integrated and simplest to use business software for your Apple Computer. The SYSTEMS II EX is complete with an integrated Database. Yes! The DBII Database can move your system's files into Database format for customized reports or labels.
Although the SYSTEMS II EX is a fully integrated system, you may purchase
individual modules and later add additional modules, such as Job Costing for contractors. The power of our system is in the KSAM Firmware card that plugs into the Apple. This card permits high speed searches and eliminates running sort routines to get your files in order
SYSTEMS II is available on $51 / 4^{\prime \prime}$ drives, and also on the Corvus hard disk. A Corvus based system will give you the power and capacity that challenges larger computers.

COMING SOON - Cash flow analysis with graphics, Database II with graphics, and Bill of Materials for small manufacturers.
CURRENT OPTIONS AVAILABLE - Job Costing, Cycle Invoicing, Order entry, and Layaway
All Checks, statements and invoices use NEBS forms
Dealer and OEM inquiries invited
Apple is a trademark of Apple Computers.

Systems II
2455 S.W. 4th Ave. Suite 2
Ontario, OR 97914 (503) 881-1477

See us at the Midwest Computer Show
 Circle 383 on inquiry card.
Yes, I would like to sample your software. Please send me the Systems II Demo Package. My check for $\$ 25$ is enclosed.
Name
Title \qquad
Company Name
Address
Suite 2
Ontario, OR 97914 City \qquad State \qquad ip

ATARI 800

Personal Computer System

$\$ 74900$

NORTHSTAR
Horizon II 32K.
234900
Horizon II Quad
Horizon 1164 K .
Horizon Quad 64 K
279900

TELEVIDEO
Model 912.
74900
Model 920 79900
Model 950
107900

haZELTINE

Model 1420	79500
Model 1421.	69500
Model 1500	84900
Model 1510.	104900
Model 1520.	. 122900
Espirit	64900
Executive 80	
Model 20.	
Model 30.	139500

OKIDATA

Microline 80 55900

SOROC Technology

Model IQ 120. 69900
Model IQ 140.

CROMEMCO

System 3
Model Z2H

QANTEX

Model 6000150 CPS
parallel interface
Model 6000150 CPS
serial interface

DECwriter IV

Model LA-34
We il meet or beat any adventised prices! Most items in stock for immediate delivery.
Factory sealed car tons. Full manulacturer's guarantee. All products subject to availability. All prices subject to change.
a Tracking, Telemetry and Command Station. During a crisis, however, the analyst doesn't want to think about these details.

Fixing Failures in Orbit

Once diagnosed, software failures can be corrected by partially or completely reloading memory. Complete reloads are possible but time-consuming. Remember that the ground control center often has only 10 minutes in every 90 for communication.

Hardware failures in orbit are more difficult to diagnose and fix. Although the Shuttle Orbiter will have a tape drive for storing software, most on-board computers lack mass-memory units. Using disk drives in orbit, except in the largest vehicles, leads to problems because of the need to compensate for the drives' rotational angular momentum. Perhaps two identical disk drives revolving in opposite directions would compensate for each other. But the main problem in fixing hardware is that only one technique is possible: turning off the equipment for a while. This treatment fixes some failures caused by radiation.

Analysts in the control center can sometimes work around a hardware failure. When the computer on the Orbiting Astronomical Observatory failed, for example, analysts determined that a bit in the adder had become unreliable. They rewrote the software to avoid using that bit. It is possible to work around failed memory in a similar fashion.

In the era of the space shuttle, it will be possible to replace modules containing a failed computer or even to bring an entire spacecraft back to earth for repairs. Most current spacecraft designs incorporate hard-wired functions, independent of on-board computers, that will enable the Space Shuttle to approach and retrieve a spacecraft that has a malfunctioning computer.

Early Systems

Spacecraft computers started out as a natural outgrowth of missile-guidance computers-simple sequencers. In the late 1950s and early 1960s, missile-guidance computers were
ground-based and had tube or transistor technology. One of these early devices is on display at the Smithsonian Museum of History and Technology in Washington, DC.

With the advance of technology, designers were able to place missileguidance functions in an on-board computer. The main work of the mis-sile-guidance computer remained the sequencing of operations. The mis-sile-guidance computer had to work for only about 30 minutes. Computers aboard spacecraft, of course, have to perform a greater variety of functions and to go on working much longer.

The first NASA spacecraft that incorporated a general-purpose computer was the Orbiting Astronomical Observatory, launched in 1972. Called the On-board Processor (OBP), this first on-board computer was built by NASA and was the precursor and engineering model of the NSSC-1. Although the OBP was included mainly as an experiment, the computer helped prolong the life of the mission until December 1980 despite many on-board equipment degradations, including the failure of a bit in the computer's adder, as described earlier.

Current Systems

Table 5 shows details of some current on-board computer systems. Note that most missions include two processors. The AMSAT Phase III, designed and built by amateurs, includes a CMOS processor. Favored storage devices in current systems include core and plated-wire devices. The systems shown in table 5 contain no secondary memory storage. Preferred technology is high-reliability TTL (transistor-transistor logic) or radiation-hardened CMOS. Typical machine cycle times are several microseconds.

On-board computers are examples of embedded computer systemsthey perform as subsystems and perform only a specific application. As microprocessor technology evolves toward a chip with a processor in the class of the IBM System 370, microprocessors will increasingly serve as on-board computers.

C

Efficiency ${ }^{\prime \prime}$ Pl Portability
 Flexibility Strong Typing
 Now you don't have to compromise!

Whitesmiths Ltd. now offers portable language development systems for four families of computers. Approximately one thousand installations use our software.
We support complete versions of both C and Pascal, as compilers and crosscompilers. You get C automatically when you license Pascal, and you get native support with each cross-compiler. Test the software on your VAX before burning PROMs for your 68000 or 8080 .
Whitesmiths Ltd. offers a variety of licensing arrangements, the simplest being a binary license for use on a single CPU. The full source code is available with internal documentation. Maintenance, training and sublicensing rights may also be obtained.
Call or write for more information.

Source Operating Systems	Target Machines			
	8080/280	LSI-1ו / ון-1	VAX-11	M6800
$\begin{aligned} & 8080 / 280 \\ & C P / M \end{aligned}$	$\begin{gathered} \text { C: } \$ 750 \\ \text { Pascal: } \$ 950 \end{gathered}$	*	*	*
LSI-11/PDP-11: Idris, Unix, RTII, RSX-II/M, RSTS /E, IAS	$\begin{gathered} \text { C: } \$ 1350 \\ \text { Pascal: } \$ 1550 \end{gathered}$	$\begin{gathered} \text { C: } \$ 750 \\ \text { Pascal: } \$ 950 \end{gathered}$	*	$\begin{gathered} \text { C: } \$ 1350 \\ \text { Pascal: } \$ 1550 \end{gathered}$
Vax-II Unix/V32 VMS	$\begin{gathered} \text { C: } \$ 1350 \\ \text { Pascal: } \$ 1550 \end{gathered}$	*	$\begin{gathered} \text { C: } \$ 750 \\ \text { Pascal: } \$ 950 \end{gathered}$	$\begin{gathered} \text { C: } \$ 1350 \\ \text { Pascal: } \$ 1550 \end{gathered}$
$\begin{gathered} \text { M68000 } \\ \text { VERSAdos } \end{gathered}$	*	*	*	$\begin{gathered} \text { C: } \$ 750 \\ \text { Pascal: } \$ 950 \end{gathered}$

Protect your software

	Computer	Mission	Number	Memory Size	Memory Type	Type of Processor	Cycle Time
1.	NSSC-1	MMS(Generic)	1 or 2	$8-64 \mathrm{~K}$ by 18 bits	CORE	TLL	$1.5 \mu \mathrm{~S}$
2.	AOP	Landsat-B/C	1	4 K by 18 bits	PWM	TLL	-
3.	NSSC-1	SMM	2	48 K by 18 bits	PWM	TTL	$1.4 \mu \mathrm{~S}$
4.	AOP	IUE	2	12 K by 18 bits	PWM	TTL	$1.3 \mu \mathrm{~S}$
5.	OBP	OAO-C	1	16 K by 18 bits	CORE	DTL	$2.0 \mu \mathrm{~S}$
6.	DOC	ATS. 6	2	4 K by 16 bits	PWM	LPTTL	$5.0 \mu \mathrm{~S}$
7.	GCSC	Viking Lander	2	18 K by 18 bits	PWM	LPTTL	$5.0 \mu \mathrm{~S}$
8.	CCS	Viking Orbiter	2	8 K by 18 bits	PWM	-	-
9.	FDS	MJS-77 (Voyager)	2	8 K by 16 bits	CMOS	DMOS	$2.48 \mu \mathrm{~S}$
10.	CCS	MJS. 77 (Voyager)	2	8 K by 18 bits	PWM	-	$1.37 \mu \mathrm{~S}$
11.	AACS	MJS. 77 (Voyager)	2	8 K by 18 bits	PWM	-	$1.37 \mu \mathrm{~S}$
12.	SCP-234	TIROS N	2	18 K by 16 bits	CMOS	CMOS	$2.34 \mu \mathrm{~S}$
13.	SCP-234(USAF)	Block 5D	2	16 K by 16 bits	CMOS	CMOS	-
14.	COSMAC	AMSAT Phase IIIB	1	16 K by 8 bits	CMOS	CMOS	$1 \mu \mathrm{~S}$
15.	NSSC-1*	Landsat-D	2	64 K by 18 bits	CORE	TL	$1.5 \mu \mathrm{~S}$
16.	ATAC-16ms*	Galileo (AACS)	$?$	32 K by 16 bits	CMOS (hardened)	LSI bit slice	250 ns
17.	CDC 469	HEAO	2	16 K by 16 bits	Plated Wire	PMOS/LSI	

Table 5: Characteristics of some current on-board computer systems. *Not yet launched.

Table 6 shows processors that are available for space missions in the 1980s. Among the features summarized in table 6 are the higher-order languages that are offered for use
with these processors. The table also gives the times required by each processor for addition, multiplication, and division in both fixed- and float-ing-point operations.

Spacecraft Computer-1

Current plans call for use of the NASA Standard Spacecraft Com-puter-1 (NSSC-1) for flights using the Multimission Modular Spacecraft,

Table 6: Characteristics of processors available for space missions in the 1980s.

CMOS	Complementary Metal-Oxide Semiconductor	DOC	Digital Operations Controller
DTL	Diode-Transistor Logic	FDS	Flight Data Subsystem
LPTTL	Low-Power Transistor-Transistor Logic	OBP	On-board Processor
PWM	- Plated-Wire Memory	NSSC-1	NASA Standard Spacecraft Computer
TLL	- Transistor-Transistor Logic	MMS	Multimission Modular Spacecraft
AACS	- Attitude and Articulation Control Subsystem	SMM	Solar Maximum Mission
AOP	- Advanced On-board Processor $=$ NSSC-1	IUE	International Ultraviolet Explorer
CCS	- Computer Command Subsystem	OAO	Orbiting Astronomical Observatory
$\mu \mathrm{S}$	- 10^{-6} seconds	ATS-6	Applications Technology Satellite
ns	10^{-9} seconds		

Flying in various configurations, this modular satellite will perform many NASA missions.

The NSSC-1 occupies 122 cubic inches, weighs 3 pounds and requires
a 5-watt power supply. A fixed-point, multiply operation in $38 \mu \mathrm{~s}$, and a two's-complement computer with a divide operation in $75 \mu \mathrm{~s}$. All these word length of 18 bits, the NSSC-1 items are based on use of a 1.6 MHz has 55 instructions and performs an clock. The NSSC-1 has one index regadd operation in $5 \mu \mathrm{~s}$, a hardware ister, one double-length accumulator,

MECA	DF-224	FTSC	469	GPC	CMOS/SOS	4516E
Teledyne	Autonetics	Raytheon	CDC	IBM	TRACOR	Litton
DELTA, CENTAUR	None	None	HEAO	N/A	AN/UYK-20	N/A
None	Space	None	None	Shuttle	None	None
	Telescope					
$16 / 24 / 32$	24	32	$16 / 32$	36	1632	$16 / 32$
$24 / 8$	NO	N/A	NO	YES	$24 / 8$	YES
1091	N/A	N/A	N/A	N/A	N/A	N/A
49	102	50	10	59	N/A	18
74	85	35	20	350	5	34

1.6	1.6	5.4	4	1.9	0.75	2.5
3.94	8	11	10.4	5.7	4	21
N/A	N/A					
						N/A
6/A						
11.12	N/A	N/A	N/A	N/A	N/A	3.75
N/A	N/A	N/A	N/A	N/A	10	N/A
N/A	2250	1000	650	500	15	N/A
N/A				N/A	115	

Figure 2: Simplified block diagram of the Command and Data Handling module of the Multimission Modular Spacecraft.
and features indirect addressing. It has 16 interrupt levels and handles as many as 16 direct-memory-access devices over a single 100 -word-per-second channel.

The addressing range of the NSSC-1 is 64 K words of memory. The NSSC-1 contains memory built of 8 K -word blocks and features paged addressing, by means of which all 4096 words in a given page are accessed directly. Normally, data and code reside in different pages. Dynamic write-protect is applicable to 128 -word blocks of memory. Memory units on the NSSC-1 use power switching to reduce consumption of energy when units are not being addressed.

Since the NSSC-1 contains no ROM (read-only memory), the computer has a direct-load feature that allows loading a "cold" machine through the spacecraft command link. By contrast, the Digital Operations Controller on Applications Technology Satellite-6 did have mem-ory-load and "bootstrap" ROM soft-
ware. Of course, if a ROM contains a programming error, it can't be corrected while in orbit.

Multimission Spacecraft

The characteristics of the MMS (Multimission Modular Spacecraft) impose many requirements on the NSSC-1. The MMS consists of three building-block modules and a supporting structure. The modulesPower, Attitude-Control, and Command and Data Handling equip-ment-provide ready-made spacecraft components. Combining an MMS with an instrument module makes a spacecraft that the Space Shuttle can launch and retrieve. The first MMS spacecraft to be launched was the Solar Maximum Mission in February 1980. The next is Landsat-D scheduled for July 1982.

Aboard the MMS, the NSSC-1 resides in the Command and Data Handling module as part of the spacecraft data bus. This module contains telemetry transmitters and command receivers for spacecraft operation.

The Command and Data Handling module can include as many as three standard 10^{8}-bit or two standard 10^{9}-bit recorders for temporary storage of data for the spacecraft or the instruments on board. The Command and Data Handling module also contains the basic timing-reference signal for the spacecraft, accurate to 1 in 10° parts and stable to 2 in 10^{8} parts per day. Instruments themselves may include more accurate clocks.

The most important component of the MMS data system is the multiplex data bus. The bus is a set of redundant party lines and has both supervisory and reply lines. The multiplex data bus links all components of the spacecraft. The only data that doesn't flow through the multiplex data bus is data transmitted at rates greater than a megabit per second.

Linking each spacecraft component to the data bus is a special interface called a Remote Interface Unit. Since the bus is configured as a party line, each Remote Interface Unit has a unique address ranging from 1 to 63 .

Geta $\$ 20$ rebate on the TI-59 Programmable.

Even without the $\$ 20$ rebate, the TI- 59 is special -it's our most powerful programmable, and we've never offered it at a lower price.

The TI-59 gives you up to 960 program steps, or up to 100 memories, plus magnetic card read/write capability. You can also slip in one of TI's Solid

State Software ${ }^{\text {TM }}$ modules and successfully attack complex engineering, business, statistical and scientific problems. And by adding the optional PC-100C printer, you can record your calculations. But if that's not enough, any TI-59 owner can
join our Professional Program Exchange for access to over 2500 additional programs.

So if you like the idea of having real programmable power, take us up on the rebate offer. Buy a TI-59 now, and fill out the coupon below. The offer ends December 31, 1981.

Texas Instruments
 INCORPORATED

Over the past seven years we've earned a name for ourselves by making the best magnetic media in the business. Precision magnetic media - Diskettes, Mini Diskettes, Diagnostic Diskettes, Rigid Discs, Disc Packs, and Disc Cartridges - all certified to be 100% error free both on-track and between the tracks.

Now we're making it easier for you to buy the best. Just dial Dysan direct TOLL FREE at 800/538-8150 or 408/988-3472 (in California) or contact your local Dysan office listed below. Precision magnetic media from Dysan. Our media says it all.

Dysan.
5110) Pairick Heriry Disve
 108/28383.3172

Call your local Dysan office:

- Irvine, CA (714) 851-9462
- Sunnyvale, CA (408) 730-2145
- Allanta, GA (404) 952-0919
- Schaumburg. IL (312) 882-8176
- Burlington, MA (617) 273-5955
- St. Louis, MO (314) 434-4011
- Glendora, NJ (609) 939-4762
- New York, NY (212) 687-7122
- Bellevue. WA (206) 455-4725

Watch for new offices opering soon. For further information, call our Corporate Marketing Department at (800) 538-8150.

Clicle 130 on inquiry card.
HAROLINE
COMMANO

Figure 3: Detailed block diagram of the Command and Data Handling Module of the Multimission Modular Spacecraft. The diagram

PRICE BREAKTHROUGH

We've done it again! As a leader in small computer sales we must contantly find new ways to save customers money while offering quality products. Our most popular seller, the Apple II Plus, is now available with 64 K of user RAM at the unbeatable price of only $\$ 1249$. This is possible because we manufacture the 16 K RAM Card that expands the factory Apple $I I 48 \mathrm{~K}$ to it's maximum capacity of 64 K . The Ram Card allows use of Integer and Applesoft Basic and other languages like Pascal. It's a must for large data bases, Visicalc, and the Z.80 cards. The card is made from high quality components and has a full one year warranty.

64K APPLE II PLUS only $\$ 1249$

 16K For $\$ 1049 \quad 48 \mathrm{~K}_{\text {For }}{ }^{\$ 1129}$

 16K For $\$ 1049 \quad 48 \mathrm{~K}_{\text {For }}{ }^{\$ 1129}$ DISK II DRIVE \$529 DISK II DRIVE \$439 DISK II DRIVE \$529 DISK II DRIVE \$439

 WITH CONTROLLER CARD

 WITH CONTROLLER CARD}

Apple Cards and Hardware

We carry all CCS cards, please call for best prices.

Solution Software for the Apple II

Visicalc 3.3.	
CCA Data Management	
DB Master	
WordStar (Apple 80 co. version) . 29.29	
Desktop Plan II . 16.	
Applewriter . 65	
Infotory . 225	
Landlord Apt. Mngmnt. 649	
Stock Tracker by H\&H . 225	
ASCII Express . CALL 59	
Applesoft Compiler . 18.	
Visiterm Vis $^{\text {V }}$. 219	
Real Estate Analyzer . 89.	
Tax Planner . 99	
Dow Jones Portiolio Evaluator . 45	
Dow Jones New \& Quotes Reporter 85 Apple Fortran	
Printers	
Anadex 9500/9501 w/ 2K Butler . 1299	
C. Itoh Starwriter 25 CPS	1499
C. Itoh Starwriter 45 CPS	1899
Epson MX70 . .. ${ }^{\text {. }}$ CALL	
Epson MX-80 F/T . CALL	
Paper Tiger IDS-445 . 69.	
Paper Tiger IDS-460 . 949	
Paper Tiger IDS. 560 . 1249	
Silentype w/Apple II interlace card . 349 Qume Sprint 5/45 . 2495	
Video Monitors	
Amdex/Leedex Video 100 12- B\&W 139	
Amdek (Hitachi) 13" Color . 35.	
NEC 12- P31 Green Phospher (In Stock Now!) . CALL	
NEC 12- RGB Hi.Res Color . CALL	
Panasonic 13* Color . 449	
Sanyo 9 B\&W 159	
Sanyo 12" B8W . 239	
Sanyo 12^{-}P31 Green Phospher ... 279Sanyo 13^{-}Color w/excellent resolution 419	

ORDER TOLL FREE
 800-854-6654

WE ACCEPT ALL MAJOR CARDS

Micro-SEED"

The Powerful
Mainframe Database Management System for Professionals Who Use Microcomputers

Power: Micro-SEED was derived from the CODASYL SEED database system. It has both hierarchial and network strucfures with power to handle any applicafion regardless of its data complexities.
Compatibility: Fully compalible with SEED for creating microcomputer databases tied to a large host computer.
Productivity: Faster and easier to develop and maintain applications since data relationships are automatically and consistently maintained. Shared database allows integration of various application programs, each having selective authorization to access data. Consistent data naming allows programs to evolve independently of one another.
Performance: Since only Micro-SEED gives you full CODASYL access methods (plus additional ones), your database can be tuned for maximum performance. Critical portions of Micro-SEED are written in assembly language for fast, efficient operation, while the remainder is in standard FORTRAN to permit rapid evolution of Micro-SEED. Your data is secure since the database is never damaged in a system failure. Only the last transaction is lost.
Proven: MIcro-SEED has been in use since 1977 and is continually enhanced.
Ease of Use: Documentation consists of a Reterence Manual (over 100 pages) and a CPIM Operating Guide. Also, three example databases are illustrated in detail. Concise Data Definition and Data Manipulation Languages permit easy structuring and updating of your database.

When Your Application
 Requires BIG Computer
 Power at little Computer
 Prices, Get Mlcro-SEED.

Requirements are CPIM operating system, FORTRAN or PLII-80, 48 K bytes available to user program, and Zilog 2-80 or Intel
8080/8085 processor. Format is $8^{\prime \prime}$ singledensity; others on special order. Single copy license is $\$ 1,195$. Demonstration Package with Documentation is $\$ 75$. Documentation only is $\$ 40$. VISA, MC, and AE accepled. Dealer and OEM Inquiries invited.

SEED 1rademark of Internalional Data Base Systems (IDES). Micro-SEED trademark of IOBS and Micro Decisionware. CPIM and PLI-80 trademark of Digitai
Research.

Each Remote Interface Unit can handle 8 serial-magnitude and 64 pulsetype commands. (In a serial-magnitude command, the whole byte is taken to have one value. In a pulsetype command, each bit is an "on" or "off.") A Remote Interface Unit can also handle 64 telemetry channels. Some spacecraft components have more than one Remote Interface Unit assigned to them.
The bus supervisory lines are timedivision multiplexed. They carry command messages and addresses for interrogated telemetry. Four basic message types, each 32 bits long, make up a basic 125 -microsecond supervisory-bus timing cycle. Data on the reply bus moves in 8 -bit packets. The data bus is basically a 1.024-megabits-per-second serial line.

The STACC (standard telemetry and command components) central unit is the main interface between the spacecraft data bus and the command receiver/transponders, the telemetry modulators/transmitters, and the onboard computer. The on-board computer, however, is not interfaced directly to the STACC but through the STINT (STACC Interface Unit).
Figure 2 shows a simplified view of the Command and Data Handling module. Note that the path for extremely high-rate data bypasses the bus and feeds the telemetry modulators directly. Also note that the optional tape recorders may be used to buffer telemetry data for later transmission to the ground.
Figure 3 is a fuller block diagram of the Command and Data Handling module with all its interfaces. The diagram shows that the Command and Data Handling module contains redundant copies of every component. There are two processors for the NSSC-1, but only one complement of memory. Only one of the NSSC-1's processors can be powered at a time, and either processor can address all of the memory.
So far, as its commands and its contributions to telemetry are concerned, the NSSC-1 is just another component of the bus. Most bus traffic consists of interrogation addresses, commands going out to components, and data for telemetry. The

STACC unit, under ROM control, requests telemetry data in a certain format. The NSSC-1 can modify that format if necessary.

When the computer needs certain data faster than it is normally sampled from telemetry, the onboard computer can request and receive the needed data over the bus. Such data is then "interleaved" with telemetry data. One design consideration is to prevent the telemetry formatter and the on-board computer from contending to sample the same device at the same time.

The Future and the NSSC-1

The NSSC- 1 is a production-model computer that is adequate for today's missions. Because more and more data-processing tasks are being assigned to the NSSC-1, its adequacy for missions in the 1980s is questionable. NASA is considering several approaches to increase computing power in on-board computers of the 1980s.

In an attempt to avoid complete redesign of a basically adequate component, NASA has investigated several schemes to augment the NSSC-1 within the framework of the current design. These schemes include the addition of floating-point hardware and the off-loading of large computational tasks to dedicated microprocessors.

One study proposes using a microprocessor to collect, format, and process data from the spacecraft's gyroscopes. This task is a time-consuming, repetitive computational burden that could easily be shifted to a microprocessor.

A similar proposal calls for shifting the attitude determination and control algorithm, representing approximately 40 percent of the NSSC-1's computational load, to a dedicated microcomputer. It turns out that the Texas Instruments 9900 microprocessor would be ideal for this application. The input/output from most of the spacecraft's devices is serial and has word sizes up to 24 bits, and the 9900 has an inherently serial input/output structure.

Microprocessors could also relieve the NSSC-1 of several other modular

Mix APPLES and ORANGES? ... And you get GRAPHICS!

and Cable

FROM ORANGE MICRO

The Grappler ${ }^{\text {TM }}$ Interface is the first universal parallel interface card to provide sophisticated on-board firmware for Apple high resolution dot graphics. No longer does the user need to load clumsy software routines to dump screen graphics - it's all in a chip. Actually, it's our E-PROM, and there are versions to accommodate the Anadex, Epson MX100, MX80 \& MX70, IDS Paper Tigers, Centronics 739, and future graphics printers. The Grappler ${ }^{\text {TM }}$ accepts 18 simple software commands accessible through the keyboard or user program, making it the most intelligent Apple interface avallable.

GRAPPLER INTERFACE FEATURES

The High-Resolution Graphics commands include: select page 1 or page 2, print inverse graphics, rotate picture 90°, print double size picture, center graphics, and chart recorder mode. The Text commands allow the user to turn off the printer bell (Epson), turn on high bit for block graphics (Epson MX80 and Okidata), set left and right margins, set auto skip-over-perf., variable line length wraparound with breakpoint on nearest blank, and text screen dump.

${ }^{5} 165.00$
Includes Cable

Dealer/Distributor Inquiries Invited

HERE AT LAST! A high quality friction feed kit for your EPSON MX80/70. The kit allows the user to convert his Epson printer to a friction feed and pin feed mechanism. It uses a solid rubber platen for perfect tracking.
The frictlon feed will accept single sheets of your letterhead, or multiple copy forms such as invoices with up to 4 part carbon copies.
The pin feed replaces the adjustable sprocket mechanism. It allows the use of $91 / 2^{\prime \prime}$ wide continuous fanfold paper which is an industry standard size.
No drilling is required. Initial installation takes about 30 minutes; return to adjustable sprockets in just 10 minutes. All parts are included with easy to follow instructions.

\$75.00
Dealer/Distrlbutor Inquiries Invited

CALL TOLL FREE:

(800) 854-8275

tasks. One of these is the calculation-of-orbit position. These calculations rely on frequently updated data from the ground and usually involve evaluating long time-series polynomials. Extremely difficult to do without floating-point, calculations of position usually require at least 32 bits of precision, or a 24 -bit mantissa and 8 -bit exponent. A recent study projected that the on-board computer would be required to perform 1300 floating-point operations per second; 60 percent of the operations were short, such as addition, and 40 percent were long, such as division and multiplication. The NSSC-1 can do only 30 of these computations per second and not in floating-point. (When the Global Positioning System that is described later becomes operational, it will greatly simplify the task of determining position.)

Table 7 compares the performance of the NSSC-1 with that of several current microprocessors. Ignoring word size, the NSSC-1 may be thought of as the approximate equal of a PDP-8 class minicomputer.

Spacecraft Applications

Designers are using microprocessors more and more as dedicated controllers on spacecraft. The current trend is to give each major instrument its own dedicated microprocessor. This is a step toward on-board distributed processing. Another concept under study is creating a pool of microcomputers to serve all the spacecraft's instruments in common, providing extensive backup at the cost of greater complexity.

A microprocessor inside an instrument can monitor and sequence the
instrument's operation as well as carry out some first-level reduction of data. Since much of this data reduction is now done on larger computers on the ground, the use of microprocessors inside instruments will greatly reduce the amount of data that must be transmitted from the spaceship to ground stations.

But designers must also weigh the possibility of losing valuable data due to a malfunction of a microprocessor aboard a spacecraft. The specter of a perfectly functioning instrument defeated by a failed microprocessor haunts instrument scientists. Designers must also assure that the support required for the space-borne processor does not become greater than the computer resources required if the job is done on the ground.

Before a scientific instrument can become operational on a spacecraft, scientists must specify the required data-processing algorithm and the format of the output data. Then the processing resources required can be estimated, basically in terms of time and memory. Then a decision can be made as to where the processing can best be done-on the ground or in the spacecraft.

One or more Remote Interface Units connect the microprocessorbased instrument processor with the MMS multiplex data bus. Data rates from X-ray instruments typically carried on MMS spacecraft usually do not exceed 256 k bps (bits per second). Gamma-ray instruments usually result in less data by an order of magnitude.

Techniques often applied in instruments' dedicated processors include: spectral analysis by fast

Fourier transform algorithms for two dimensions; time-domain analysis, such as burst detection and periodicity detection; and the detection of transients for modification of instrument operation in real time.

Payloads designed for the space shuttle flights of the 1980s draw heavily on microprocessor technology, often using microprocessors in place of discrete logic and hardwired controllers. In such applications, microprocessors provide an unprecedented level of complexity and flexibility. An example is the Payload Assist Module-Delta Class (PAM-D), a sort of second stage for the shuttle. The PAM-D will boost spacecraft to a final orbit beyond what the Shuttle Orbiter can achieve directly. Several microprocessors aboard the PAM-D will check and cross-check safety features, sequence operations, and interface with the Shuttle's and the payload satellite's data systems.

Global Positioning System

The GPS (Global Positioning System) will consist of a network of orbiting spacecraft that provides global coverage. The GPS is designed to yield highly accurate data about the positions of earth satellites. The GPS satellites and ground stations are also known collectively as the NAVSTAR system.

The experimental model of the GPS receiver to be carried on Landsat-D uses a dedicated LSI-11 processor to calculate position in orbit. Using data received from orbiting GPS spacecraft, the GPS receiver can locate Landsat-D's position within meters on the earth's surface or in orbit. This will enable the satellite to make accu-

Processor	Technology	Word Size	Registers	Cycle Time	Number of Instructions	Add Time	Multiply	Divide	Word Addressing Capability	Temp Range
NSSC-1	TL	18	3	$1.6 \mu \mathrm{~s}$	55	$5 \mu \mathrm{~s}$	$38 \mu \mathrm{~S}$	$75 \mu \mathrm{~s}$	64 K	-10° to $+40^{\circ} \mathrm{C}$
8080A	NMOS	8	7	$1.5 \mu \mathrm{~S}$	91	$3 \mu \mathrm{~S}$		-	64 K	-55° to $+125^{\circ} \mathrm{C}$
9900	NMOS ($I^{2} L$)	16	16	. $333 \mu \mathrm{~s}$	64	$4.67 \mu \mathrm{~S}$	$17.33 \mu \mathrm{~S}$	$30 \mu \mathrm{~s}$	32 K	0° to $+70^{\circ} \mathrm{C}$
LSI-11	NMOS	16	8	. $38 \mu \mathrm{~S}$	74	$3 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$	$80 \mu \mathrm{~S}$	32 K	$0^{\circ} 10+50^{\circ} \mathrm{C}$
1802	CMOS	8	16	$1.24 \mu \mathrm{~S}$	75	$2.5 \mu \mathrm{~S}$			64 K	-55° to $+125^{\circ} \mathrm{C}$
ATAC-16ms	Schottky	16	16	. $250 \mu \mathrm{~S}$	129	. $25 \mu \mathrm{~S}$	$5.5 \mu \mathrm{~S}$	$11.25 \mu \mathrm{~S}$	64 K	MIL Spec

Table 7: Comparison of on-board computers with microprocessors.

The One Printer Solution for the Two Printer Problem.

HIGH SPEED
 DATA PROCESSING

The new Dual-Mode 200 brings speed and uncompromising print quality to business and professional applications.

Financial statements, inventory reports, labels and more are printed at data processing speeds from 165 cps to 250 cps .

Fully adjustable tractors and a friction feed platen provide precise forms handling for pinfeed and single sheet paper.

Complete "Dot Control" graphics is standard with resolution to 120×144 dots per inch.

Interfacing is easy with both E.I.A. RS-232C serial and an ASCII parallel port.

LETTER QUALITY WORD PROCESSING

The Dual-Mode 200 also features letter perfect print you will be proud to use for business letters and reports. Letter Mode speeds range from 42 cps to 60 cps .

The standard Titan 10 pitch font is complemented by an array of optional fonts including Elite 12 pitch, italics, proportionally spaced, OCR-A, scientific and foreign character sets.

Up to 12 font selections may be stored in the printer and interchanged while printing.
The Dual-Mode 200 accepts standard daisywheel print commands for word processing system compatibility.

It's the perfect solution for the two printer problem.

The Dual-Mode 200 Printer for the one printer office.

rate correlation of its observations with latitude and longitude.

The GPS receiver is a 'black box" device-that is, all that the user needs to know about it is the format of data that the GPS receiver accepts and produces. But the processor inside the GPS receiver is basically an LSI-11. The GPS receiver receives coded GPS signals, decodes them, and calculates a position. This position is then transmitted to the user; in the case of Landsat-D, the user is the on-board computer. The Shuttle Orbiters will also be equipped with GPS receivers.

An Apple in Orbit

The shirt-sleeve environment of the Spacelab reduces the stringency of requirements on equipment. For use not critical to the mission, standard commercial hardware can be used. In fact, one of the first Spacelab flights will have an experiment controlled by an Apple II Microcomputer system. The Apple will monitor an experiment in plant growth in the zerogravity environment and will collect data for recording and transmission. Although the Apple has been adapted for use with other equipment, it is basically the same Apple that is commercially available. The use of microcomputer systems as dedicated experiment controllers aboard spacecraft is expected to increase rapidly.

References

1. Adelman, \mathbf{A} and \mathbf{A} Kemp. "Space Station Information Management," IEEE Transactions on Aerospace and Electronic Systems, Volume AES-6, Number 6, November 1970, page 746.
2. Aranguren, R and W Langseth. " A Microprocessor Controlled Interface for Digital Satellite Systems," International Conference on Communications, Conference Record, Volume 2, IEEE, 1977.
3. Arens, P. "Application of Microprocessors to Spacecraft Synthetic Apecture Radar Processing," Proceedings of the International Telemetering Conference, 1978.
4. Campoli, C and P Brede. 'Microprocessors for Satelite Telemetry: A Universal Approach," Proceedings of the International Telemetering Conference, 1976.
5. Carlan, A, R Constant, and R C Lekvan. "Testing Embedded MicroprocessorsSpace Application Requirements," Computers in Aerospace Conference,

November 1977, American Institute of Aeronautics and Astronautics, paper 77-1399.
6. Charlton, C. "The Control of a Hard X-ray Imaging Spectrometer On-board the SMM Using Two Mutually Redundant Microprocessors," Journal of the British Interplanetry Society, Volume 32, February 1979.
7. Cliff, R. "The SDP-1 Stored-Program Computer," IEEE Transactions on Aerospace and Electronic Systems, Volume AES-4, Number 6, November 1968, page 864.
8. Dogan, Pierre P. ''Spaceborne Software Engineering: An Approach to Attaining Reliability," Charles Stark Draper Laboratory, Flight Mechanics/Estimation Theory Symposium, Goddard Space Flight Center, May 5/6, 1979.
9. External Interface Specification and User's Guide, Multi-Mission Modular Spacecraft, S-700-11, a publication of Goddard Space Flight Center.
10. Fernandez, M. "A Review of DOD and NASA Computer Standardization," AIAA paper 77-1423. AIAANASAIEEE/ACM Computer in Aerospace Conference, October/November, 1977.
11. Gunzenhauser, G, E Wlaka, and D Zago. "A Microcomputer Based System for On-board Attitude Control Applications," Journal of the British Interplanetary Society, Volume 32, February 1979.
12. Hecht, H. "Fault Tolerant Computers for Spacecraft," AlAA Journal of Spacecraft, Volume 4, Number 10, October 1977.
13. Holiomb, L. "Overview of NASA's Onboard Computing Technology Program," in Proceedings of Compcom, 1980, IEEE Number 80CH1491-OC.
14. Jurison, J et al. "Design Considerations for Aerospace Digital Computers," Computer Design, Volume 13, Number 8, August 1974.
15. Kida, T, O Okamoto, and Y Ohkami. "Synthesis and Development Procedure of Microprocessor Software Program for Spacecraft Digital Attitude Control," Japan Society for Aeronautical and Space Science Transactions, Volume 21, February 1979.
16. Knobe, B. "Flight Languages ADA vs. HAUS," 1979, AIAA paper 79-1988.
17. Koczela, L and G Burnett. "Advanced Space Missions and Computer Systems," Volume AES-4, Number 3, May 1968, IEEE Transactions on Aerospace and Electronic Systems.
18. Lesh, F and P Lecoq. "Distributed Microprocessors for Spacecraft Control and Data Handling," Technical Papers, Western Electronic Show and Convention, 1976, Volume 20.
19. Martin, F and R Battin. "Computer-Controlled Steering of the Apollo Spacecraft," AIAA Journal of Spacecraft, Volume 5, Number 4.
20. Medin, A, D Cavanaugh, and S Cades.
"Computer-Managed Laboratory for Space Applications," AlAA Journal of Spacecraft, Volume 5, Number 10, October 1968, page 205.
21. O'Donnell, L. "On-board Computers" from Handbook of Astronautical Engi. neering, Koelle, editor. New York: McGraw-Hill, 1961, section 13.12.
22. Plisson, P. "Design Concepts for a Highly Reliable Multiprocessor System for Communication Satellites," Proceedings of the International Telemetry Conference, 1977.
23. Proceedings of the AIAA Aerospace Computer Systems Conference, AIAA, Los Angeles, California, September 8-10, 1969.
24. Redman, P and J Kasser. "Distributed Processing on Satellites." Computers in Aerospace Conference, AIAA Paper 77-1377. October/November 1977.
25. Reijns, G. "Recent and Expected Developments in Computers for Satellites," British Interplanetary Society Journal, Volume 31, December 1978.
26. Rennels, D. "A Distributed Microprocessor System for Spacecraft Control and Data Handling," at IEEE and ERA Electronic Show and Convention, Chicago, November 8 to 10, 1977.
27. Rennels, D. "Computers for Planetary Spacecraft," Proceedings of Compcom. IEEE, Spring 1980, 80CH1491-OC.
28. Rubey, R. 'Higher Order Languages for Avionics Software-A Survey, Summary, and Critique," IEEE, 1978, CH1336-7/78.
29. "Spaceborne Digital Computer Systems," NASA-SP8070, March 1971, Space Vehicle Design Criteria (Guidance and Control). Available from Na tional Technical Information Șervice, US Department of Commerce, 5285 Port Royal Road, Springfield, VA 22151.
30. Stables, E and C Creveling. "Spacecraft Computers for Scientific Information Systems," Proceedings of the IEEE, Volume 54, Number 12, December 1966.
31. Styles, F, T Taylor, M Tharpe, and C Trevalthan. GSFC X-562-67-202, July 1967, Goddard Space Flight Center.
32. Total Dose Testing of Several Types of MOS Microprocessors, IEEE Transactions on Nuclear Science, NS-25, Number 6, December 1978, 1649-1651.
33. Vahey, M. "High-level Language Oriented Aerospace Computer," IEEE CH 1449-8/79.
34. Velde, W, G Bentley, J Fagan, and W McDonald. "On-board Computer Requirements for Navigation of a Spinning and Maneuvering Vehicle," AIAA Journal of Spacecraft, Volume 6, Number 12, December 1969.
35. Woldrich, R. "Multi-Micro Computers for High Data Rate Processing," Computers in Aerospace Conference Addendum, 1977, AIAA 1390.

The important plus in matrix printers: grafixplus.

Since their introduction in mide-1980, the Anadex high resolution DP. 950) Series malrix printers have sel new standards for printer quality and performances. All mosdels feature: the rugged Anadex 9 -wire print head that combines long life with resolutions of 72 dotstinch vertical and up to 75 dets/inch horizontal. With this kind of resolution, fineline graphics (under dala source conntrol) and razor sharp characiers are pluses built into every printer.

Performance Plus

The full standard ASCII 96 characiter set, with desecenclers and underlining of all upper and lower case Ietters, is printed bi-directionally, with up to 5 crisp copies, at speceds up to 200 CPS . Mordels DP-9500 and DP-9501 offer 132/158/176 and 132/165/198/220 coslumins respectively. Print densitioss are switch- or data-sourcee selectathe Irom 10 to 16.7 chatacicerstincth. All char asclers can be printed double-width under communications command.

Interface Plus

Stimedard in all models are the three ASCII compatithe interfacos (Parallel, HS-232-C, and Current Loop). Also standard is a sophisticaterl cormmenications intertaco to controt Vertical Sparirig. Form Length and Width, Skis-Over Pertoration, Auto Line Feed, X-On/Oil, and full point-to-forint communicalions.

Features Plus

As standard, each model features forms width atjust ment from 1.75 to 15.6 inchess, shortest-distance sensing, full self-test, 700) character FIFO bulfer (with an addilional 2048 characters, optional), and a quickchange, f million character life ribbon.

Quality Plus

Beyond the built-in performance of the grafixPLUS series printers, the engineered-in quality and support are equally important. The result? Approval of both UL and FCC, Class A; operating noise levels under 65dit)A; and a nationwide service organization second to nome.
To seef for yourself why the grafix PLUS printers offer more pluses for your printing dollar, contact us todiay.

[^15]
Software Review

Misosys Software's DISKMOD Put Radio Shack's Editor/Assembler on Disk

Steve Hughes, 5831 Hillside Dr, Doraville GA 30340

If you have bought a floppy-disk drive for your Radio Shack TRS-80 Model I and want an editor and assembler package that uses the disk, you will be interested in DISKMOD. The only problem with just buying the diskbased Radio Shack Macro Assembler is the $\$ 100$ price tag. This expense is particularly annoying if you own and are satisfied with Radio Shack's cassette-tape-based Editor/Assembler.

The DISKMOD program from Misosys Software takes the cassette-based Editor/Assembler and modifies it to reside on disk and to use disk files for most I/O (input/output) operations. You can save about $\$ 50$ by buying DISKMOD and the Radio Shack cassette Editor/Assembler, or $\$ 80$ if you have the cassette Editor/Assembler. I am not saying that the Misosysmodified cassette Editor/Assembler is the equivalent of the disk-based Macro Assembler. It isn't. But if you are not doing extensive programming in assembly language, you may not need the extra features contained in the Macro Assembler.

I use Z80 assembly language for writing utility programs and an occasional subroutine, when I need a function that BASIC can't perform with enough speed. Aside from that, all my programming for the TRS-80 is done in BASIC. Since I already owned the cassette

Editor/Assembler (hereafter referred to by its file name, EDTASM), the modification program looked good to me.

The package I purchased consisted of a single tape cassette containing two versions of the program (one for EDTASM 1.1, the other for EDTASM 1.2) and a 14 -page user's manual. The cassette is warranted for 90 days on a replacement-only basis. (This must be what the registration form is for, since no other explanation of its use is given.)

The DISKMOD program moves the EDTASM program to disk after modifying it extensively. The modifications:

- allow loading and saving source programs and data to a disk file
- allow the object code to be written to a disk file
- allow you to move blocks of source data in the text buffer
- provide a replace-string function for the editor
- allow you to see how much free space is left in the text buffer
- allow you to get a disk-directory listing from EDTASM - allow you to kill a file from EDTASM
- allow use of the Clear key
- enable you to paginate listings
- let you sort the symbol table before printing it
- change the screen scrolling to provide 15 lines of text on the screen
- allow you to reenter EDTASM without losing the contents of the text buffer
- enhance the B command and the DEFM assembly output

Your next question is, "What do I have to do to use the DISKMOD program ${ }^{\prime \prime}$ First, you must have a system with 32 K bytes of memory and a copy of the Radio Shack cassette Editor/Assembler. The DISKMOD program works with either version 2.2 or 2.3 of TRSDOS and with most other TRS-80 disk operating systems.

The instructions for loading and using the DISKMOD program are simple and straightforward. I found only

Teachyour little Apple totalk toWesternUnion, Telex and TWX.

Albany
 Omaha

Micro-Telegram ${ }^{\text {tw }}$ lets your Apple II $^{\text {mw }}$ computer access Western Union ${ }^{\text {r" }}$ services, worldwide. You can send Mailgrams. ${ }^{\text {. }}$ Send and receive TWX, Telex, and international cables. Receive Infomaster ${ }^{\circledR}$ up-to-the-minute news, stock, foreign exchange, gold, futures, sports, and ski reports. Use your Apple ${ }^{\text {t" }}$ to wire money. To send flowers. To check the snow at Sun Valley. To see what the Yen is selling for. To contact over 900,000 TWX and Telex subscribers around the world.

And because it's more intelligent than a mechanical Teletype ${ }^{\text {rm }}$ machine, MicroTelegram lets you edit messages right on the screen, sends them automatically without you in attendance, keeps subscriber directories and distribution lists, prints when you want it to, and asks you in plain English for your' commands. Besides, it doesn't clatter and churn out reams of paper.

Call our toll-free number today. And make your little Apple heard 'round the world.

Listing 1: Output of the PD (List Directory) command.
00018 FREE GRAINS - DIRECTORY - DRIVE 0 - TRSDOS -09/17/80 TAPEDISK/CMD 00512
LOWER/CMD 00256
COPY/CMD 03072
TESTI/CMD 01536
EDTASM/CMD 05888
RSTERM/CMD 00768
KSRTEST/CMD 00256
one slight problem: the command provided to write the DISKMOD program to a disk file is incorrect. It reads:

F DISKMOD/CMD 7500 8ACA 7F70

It should read:

F DISKMOD/CMD:0 7500 8ACA 7F70

With this correction, anyone can use the program successfully. The process takes about ten minutes. When you're finished, you can type the command EDTASM under TRSDOS and have the Editor/Assembler speedily loaded from disk into memory.

You notice a difference in the Editor/Assembler instantly. It now prompts for memory size. This lets you reserve high memory for peripheral-device drivers or any other subroutines. One pleasant surprise concerns the printer driver. The modified program uses the same DCB (device control block) and ROM (read-only memory) printer driver as Level II BASIC. If you have a special printer driver for use with BASIC, it also works with the Editor/Assembler. When you have answered the memory-size question, you are back in normal working mode.
The only command I will mention is the PD, or List Directory, command. It gives the name and size of each normal file on the disk, as well as the amount of free space on the disk. This information is particularly useful when you are attempting to squeeze a new file onto a nearly full floppy disk. Listing 1 shows a sample of the information you receive.

The other new commands work quite well. Explicit prompts are used for most of them, making it easy for the beginner to use them. The manual explains each new command in detail and notes any changes made to the standard commands by the DISKMOD program.
The package works as advertised and all the com--mands function. It is possible that some problems will occur as I use the modified Editor/Assembler more extensively. In my experience, major modifications made to an existing program generally cause some minor bugs. The modified program has worked satisfactorily so far.

If you are considering a move to a disk-based Editor/Assembler, but dislike the cost of Radio Shack's Macro Assembler, I strongly recommend the combination of the Misosys DISKMOD and the Radio Shack cassette Editor/Assembler programs.

MX80/70 FRICTION FEED KIT
 by Orange Micro

HERE AT LAST! A friction feed kit for your EPSON MX80/70. The kit allows the user to convert his Epson printer to a friction feed and pin feed mechanlsm.
The friction feed will accept single sheets of your letterhead, or multiple copy forms such as invoices with up to 4 part carbon copies.
The pin feed replaces the adjustable sprocket mechanism. It allows use of $91 / 2^{\prime \prime}$ wide continuous fanfold paper which is an industry standard size.
No drilling required. Installation takes about 30 minutes. All parts are included with easy to follow instructions.

EPSON MX80

- 9×9 dot matrix - Lower case descenders - 80 CPS - Bidirec tional, Logic seeking - $40,66,80$, 132 columns per line - 64 special graphic characters: TRS. 80 Compatible - Forms handling - Multipass printing • Adjustable tractors.
MX80
(List \$645) \$ CALL
MX80 Dot Graphics Upgrade.
(List \$95) \$CALL

EPSON MX70

- Super low-priced dot resolution graphics - 5×7 dot matrix - User replaceable printhead - Top of Form.
MX70
(List \$445) \$CALL

- Same basic features as the MX80
- PLUS friction feed for single sheets ${ }^{-}$and adjustable tractors.
MX80 F/T
(List \$745) \$ CALL

APPLE INTERFACE

For Epson
The Grappler ${ }^{\text {TM }}$ interface card is the first to provide on-board firmware for Apple high resolution dot graphics. No longer does the user need to load clumsy software routines to dump screen graphics - it's all in a chip. Actually, it's our E-PROM, and it is replaceable to accommodate the Anadex, Epson $M \times 80$ \& MX70, IDS Paper Tigers, Contronics 739, and future graphics printers. The GrapplerTM accepts 17 software commands including Hi-Res inverse, 90° rotation, double size, and much more.

s $165 .{ }^{00}$
Includes Cable DEALER INQUIRIES INVITED

With Graphics and
Word Processing Print Quality

- 18×9 dot matrix; suitable for word processing - Underlining - proportional spacing - right margin justification - serif typeface - $80 / 100$ CPS - $91 / 2^{\prime \prime}$ Pin Feed/Friction feed - Reverse Platen 80/132 columns - Top of form

CENTRONICS $739 \cdot 1$ (Parallel). (List \$995) \$ Call CENTRONICS 739.3 (Serial)
(List\$1045) \$Call

ANADEX

Dot Graphics, Wide Carriage

- 11×9 dot matrix; lower case descenders - Dot resolution graphics - Bidirectional, logic seeking - Up to 200 CPS • RS 232 Serial \& Parallel • Forms control - X.ON/X-OFF • Up to 6 part copy.

ANADEX 9501
(List \$1650) \$1350

AXIOM

Dot Graphics, Low Price

- Dot addressable graphics - 70 CPS
- 12 characters per inch - 80 columns - adjustable tractors - 3 part copies - Manufactured by Sieko - Parallel, RS232 şerlal, IEEE-488 interfaces available.

AXIOM GP.BOM

. List \$399) \$349

IDS PAPER TIGERS

Dot Resolution Graphics, quality print, speed

- 7 wire printhead (445); 9 wire printhead (460) with lower case descenders - Over 150 CPS - bi-directional, logic seeking (460) - 8 character sizes; $80 \cdot 132$ columns - Adjustable tractors - High-resolution dot graphics - Proportional spacing \& text justification (460).

CALL FOR INFORMATION \& CATALOG (800) 854-8275 CA, AK, HI (714) 630-3322 RETAIL PRINTER STORE

Store \#1
Store \#2
Store \#3

3150 E. La Palma, \#l, Anaheim, CA (714)630.3622 13604 Ventura BI., Sherman Oaks, CA (213) 501.3486 COMING SOON ??
Store Hours: M-F 10-6 Sat. 10-4

VISTA - C. ITOH

Daisy Wheel Letter Quality

- 25 CPS (Optional 45 CPS) - Typewriter quality - Centronics parallel - RS 232 Serial (Optional) - Proportional spacing Bidirectional - Programmable VFU - Self test - Diablo compatible - Friction feed (Optional tractors) - 136 printable columns. - Manufactured by C. ITOH.
(List \$1895) \$Call
VISTA V300 (C. ITOH)

ANACOM

Low Cost, High Speed, Wide Carriage

- 9×9 dot matrlx - Lower case descenders - Wide carrlage Adjustable tractors to $16^{\prime \prime} \bullet 150$ CPS, Bidirectional, Logic Seeking

ANACOM 150
(List \$1350)
\$Call

MALIBU 165
 The Small Business Printer; Letter Quality \& Speed.

- 10×9 dot matrix - Letter quality print; Lower case descenders - High speed; 165 CPS, Bidirectional, Logic seeking - Wide carriage - Vertical forms control - User programmable character set - Dot Resolution Graphics.

NEC SPINWRITER

High Speed Letter Quality

- 55 CPS - Typewriter quality - Bidirectional • Plotting • pro. portional spacing.
5510.5 RO, Serial, w/tractors (List \$2995) \$2675
5530.5 RO, Parallel, w/tractors
(List \$2970) \$2650

TELEVIDEO CRT'S

 AT DISCOUNT PRICES!TVI 910 TVI 912C TVI 920C TVI 950

Please Call Toll Free Prices are too low to advertise

PRINTERS

MALIBU 165 wide carriage, graphics, letter quality . . (List \$2495) \$ 1975 QUME $5 / 45$ typewriter quality
(List \$2905) \$ 2559

INTERFACE EQUIPMENT

CCS APPLE SERIAL Interface \& cable . \$ 150 ORANGE INTERFACE for ADple II
parallel interface board \& cable \$ 110
MICROTRONICS Atari parallel interface . s 69
ATARI 850 Interface module, serial/parallel
TRS-80 CABLES to keyboard or Exp. interface
NOVATION D-CAT direct connect modem.

3150 E. La Palma, Suite G, Anaheim, CA 92806

The Converter that transforms your electronic typewriter into a computer printer.

$>$ No modifications to the typewriter
$>$ Does not affect normal typewriter functions
$>$ All typewriter functions accessible by computer
$>$ RS232C, IEEE and parallel interfaces available
$>$ KSR version turns typewriter into a computer terminal
$>$ Fully assembled, tested and burned in

NEW! NOW AVAILABLE
OLIVETTI PRAXIS 35 TYPEWRITER CONVERTER TP35 = DAISY WHEEL PRINTER FOR LESS THAN $\$ 1000$.

Prices start as low as $\$ 275$. CONTACT YOUR LOCAL
 OFFICE EOUIPMENT DEALER
 OR
 VERTICAL DATA SYSTEMS INC.
 FOR FURTHER DETAILS.

Vertical Data Systems Inc. 1215 Meyerside Dr., Unit 2A, Mississauga, Ontario,
Canada L5T 1H3
(416) 671-1752

Dealer inquiries invited

Software Review

MINCE

 A Text EditorChristopher O Kern
201 I St Apt 839
Washington DC 20024

A text editor is probably the most personal program on a personal computer system. The average user spends a good amount of time communicating with the editorentering or altering programs, data, or text. Different users, with different applications, often have different ideas about how they want an editor to work, a fact which accounts for the large number of editors on the market.

MINCE is one of the newer entries into the software market for 8080 -family computers that use the CP / M operating system. MINCE is modeled on a large-system editor, called EMACS, which was developed at MIT (Massachusetts Institute of Technology). Its authors say that MINCE stands for 'MINCE Is Not Complete EMACS"; nevertheless, it has a lot to offer. It can do all the usual text-editing functions-insert or delete characters, words, and blocks of text, move text around, and search for and replace strings-as well as perform a number of other operations that are not generally available in microcomputer editors.

MINCE's features include the ability to read, create, and write multiple-disk files, to move text among different files quickly and easily, to automatically transpose characters and words, and to execute familiar operations in unusual contexts. For example, it can move the cursor by sentences or paragraphs, fill lines out to a specified length one paragraph at a time, capitalize or change the case of words without retyping them, and delete just the whitespace between words or characters as well as the words or characters themselves.

Command Structure

Despite the large number of commands in MINCE, the editor functions coherently. Command types are grouped logically so that one command sequence is used for a group of commands that affect textual units such as letters and lines, and another command sequence is used for a group of commands that deal with lexical units such as words and sentences. Where possible, the same mnemonics are used for similar operations at these different command levels. For example, the command to move the cursor forward one letter is Control-F, and the command
"Our goal at The:DenveriSoltwiare Comperify isto translate the advancosinghight techinology - symbolized by the SpeicelShuttio triumph - wito practical, problephesoifing milerocomiputer progratins for small búsiness ahd home use."

Microcomputers Are The Door To the Future.

We frave the Key.

Finally, there's an accounling package available for mo'st microcomputers - from the least expensive to the top-ofisthe e_{2} line-that works the moment the machine is switched on n_{F} Lariguage, programs, everything needed for accurate bookkeeping is built into the software, eliminating the neod for programmirig skills or expensive equipment add-ons.

The FINANCIAL PARTNER ${ }^{\text {TM }}$ is a comprehensive financial package that takes the headache out of bookkeeping. With general ledger, cash receipts, accounts payable, and check-printing capability, this system also provides standard financial reports, in addition, the FINANCIAL PARTNER ${ }^{\text {™ }}$ comes with a detailed user's manual containing basic bookkeeping instruction. By automatically sorting and posting accounts, the FINANCIAL PARTNER ${ }^{\text {TM }}$ saves you valuable time and is a complete guide to money management for your home or very small business. At $\$ 175$, it's worth its weight in gold.

Also from The Denver Software Company:

The PASCAL TUTOR ${ }^{\text {TM }}$, a computer assiated course in UCSD Pascal*. This complete software package uses the microcomputer to teach this powerful new programming language, $\$ 125$ for this fast, easy way to learn versatile UCSD Pascal",

- UCSD. Pascal is a trademark of the Regents Iff the University of California.

The PAS
those kn ules dr debugg money/as

PROGRAMN dgeable about ly shorten the ograms - by a oll as time.

100 E. Jewell Ave. aler inquiries welco

ALTOS BUSINESS

PRODUCED IN THE HERRT OF SILICON VALLEY, CRLIFORNIA U.S.A.

Now-A four station, hard disk business computer with letter quality printer, terminals and get-rolling software for less than \$15 a day.*

[^16]Introducing the Altos Business Computer Special. The most powerful, reliable, easy-touse system in its price range. And Altos now offers on-site, nationwide service.

The hardworking engine of our system is the Altos ACS8000-10 computer. It can cost-effectively hook-up with from one to four stations, as your needs demand. Its rapid access, 10 MByte Winchester hard disk is capable of storing a 3,000 page load.

MPUTER SPECIAL

Get on the right track! Join thousands of professionals, institutions and businesses who rely on Altos computer systems. Call our toll free number or write today for the Altos sales and service depot nearest you. All aboard!

Packed with fresh ideas for business

800-538-7872
(In Calif. 800-662-6265)
 \title{
ALLOS
 \title{
ALLOS

 COMPUTER SYSTEMS
}

 COMPUTER SYSTEMS
}

2360 Bering Drive
San Jose. California 95131

to move it backward one letter is Control-B, while the analogous commands to move the cursor across words are Escape-F and Escape-B.

As the previous example implies, MINCE does not use the cursor control or other special function keys available on many terminals. Commands are entered as control characters, as escape sequences (the escape character followed by one or more additional characters), or as control sequences (a control character followed by another control character or a printing character). Most commands can be executed reiteratively by preceding them with a numerical argument. In the usual operating mode, text is self-inserting: characters typed at the console will be inserted into a file rather than written over what is already there. An optional page mode provides the more common arrangement in which typing at the console replaces any text at the current cursor position.

For convenience, the text being edited is assumed to
contain only a single "newline" character between lines. While this character is displayed only in the sense that it moves the text following it down to the next line, it is otherwise treated in the same manner as any other character. But the files written by MINCE conform to the CP/M convention of having both an ASCII (American Standard Code for Information Interchange) carriagereturn character and a line-feed character at the end of each line. Thus they are completely compatible with other CP/M programs, such as the CP/M-resident TYPE command. MINCE will display control characters embedded in the text except for those, such as newline and tab, to which the text editor responds. Control-A, for example, would appear on the display as 1 A .

MINCE provides some rather arcane commands, such as one that moves the cursor to the next line and indents it to correspond with the indentation that started the previous paragraph (helpful for writing code in struc-

tured programming languages). Yet it is possible to make MINCE do useful work by learning only a handful of the most common commands and picking up others as your sophistication and requirements grow.

Multiple Files

MINCE lets the user work on, or from, multiple files. Each file is read into a logically separate buffer area from which it can be operated on independently. It is also possible to move text from one file to another, as when copying blocks of text or program source code. The virtue of having the ability to deal with multiple files may not at first be obvious (at least it wasn't immediately obvious to me), but, now that I have done a bit of experimenting with multifile editing, I think that I would really miss that feature. Of course, ignorance is bliss: it didn't bother me that I could work on only one file at a time when I was using CP/M's ED program or any of the other editors I have used at one time or another.

As I write this, I am working with three files. The first contains the text you are reading at the moment. The second contains random observations about MINCE that I entered as I learned to use the program. The third file contains a description of all the MINCE commandsconveniently provided on the MINCE distribution diskthat I keep ready for reference. As I go along, I am copying some of my earlier observations almost verbatim. After editing the pertinent block of text, I just transfer it into the main file (the one I am using for this article).

AVAILABLE TODAY

from MSD: the XENIXTM Operating System, Microsoft's Adaption of Bell Laboratories Time-Tested UNIX ${ }^{\text {TM }}$ Version 7 Operating System.

MSD provides this comprehensive line
of products for the UNIX community:

- XENIX Operating System - Screen Oriented Text Editor for VT-100 Compatible Terminals Database Manager and Report Generator Which Will Easily and Efficiently Control Large Accumulations of Information Accounts Receivable System Which Can Be Used to Monitor and Control Receivables in Order to Improve Cash Flow Uni-Calc ${ }^{T M}$ - An Electronic Spreadsheet Which Makes Financial Analysis, Forecasting and Business Planning Easier

In addition to reliable Software pre-configured for your Hardware, MSD will provide complete user support by:

- Answering your telephone questions Providing new releases as available Supplying you with the best Hardware for your UNIX requirements

MSD Corporation

AD $\begin{aligned} & \text { 2449 Camelot Court, SE } \\ & \text { Grand Rapids, MI } 49506 \\ & (616) 942-5060\end{aligned}$
MANAGEMENT SYSTEMS DEVELOPMENT
Uni-Calc, UNIX and XENIX are trademarks of MSD Corp., Bell Laboratories and Microsoft respectively

When I am finished writing, I will save the article on disk, replace the original random observations file with the edited version, and do nothing at all with the list of commands, which will remain on the disk in its original form. If I wanted to, I could save the edited random observations as a new file, so both the original and edited versions would be available on the computer's file system.

It is also possible to display two files simultaneously. MINCE splits the video screen horizontally, creating two separate windows, one into each file. Each window begins at half the screen size, but can be expanded or contracted more or less arbitrarily. At the moment, for example, I am looking at this text in the top half of the display and at my earlier comments on the use of windows in the bottom half of the display. If I wanted to look at something in the file containing the list of commands, I could place that file in the bottom window without disturbing the display of the text I am writing. Since the windows are entirely independent, it is possible to move to the next page of one file while writing, editing, or maintaining the cursor position on another.

Status information is continuously displayed at the bottom of the screen. This includes the name of the file currently being edited and a percentage figure indicating how much of the existing file is behind the current cursor position (a nice feature). Among the other status indicators is one that tells the user whether a particular file has been altered. If it has, MINCE won't return to the command level of the operating system without offering an opportunity to save the altered file on disk.

Speed of Operation

For all its impressive flexibility, MINCE is not without its flaws, some of which it shares with other editors running in microcomputer environments. First, and worst of all, MINCE is slow. The editor doesn't seem to lose characters; frequent checking for keyboard input and the presence of a large type-ahead buffer ensure that. But MINCE can't update the screen fast enough to keep up with a fast typist. It took me quite a while to get used to the fact that one or more characters I had typed, especially when I was using multiple deletes to backspace/erase to an earlier point on a line, had already been entered in the file, but were still waiting to appear on the screen. There are commands in MINCE's repertory that I can use to get around this particular problem. But I expect characters to appear as soon as I type them, and MINCE simply can't accommodate me.

MINCE is also slow in performing certain updating functions. For example, it starts a new "page" after the user types past the last visible line on the screen. Many other editors simply scroll the previous text up one line, which is simpler than removing a whole page and replacing it with a new one because scrolling can be performed by the terminal hardware. All the editor has to do, then, is keep track of which lines are still visible on the screen. You can keep typing while MINCE figures out what to do next, and anything you type will eventually be displayed. But it may take several seconds before that happens.

Reference the Future...

DIGITAL PRESS

ORDERING INFORMATION

Ten percent discount when ordering two or more copies. Shipping ond handling free when order is prepuid low check or charge card.

QUANTITY	TITLE	PRICE*

Mail to: Digital Press Order Fulfillment Digital Equipment Corporation 12-A Esquire Road Billerica, MA 01862

Subiotal

Discount
Sales Iax
Tolal
All prices quoted are U.S tonly. Contact your nearest oftice ot Digital Equipment Corporation. Educational Services, lor prices outside the U.S. I'rices subject to change without notice.

Name \qquad Company/School
Address

CHECK OR CHARGE CARD REQUIRED ON ALL ORDEIRS UNDER $\$ 50$.
Make Checks Payable to Digital Equipment Corporation

\square Check Included.	Naster Charge.	VISA	Please place me on	ur mailing list.
Charge Card Accit No.		Expiration Date	Telephone	
Authorized Signature				BYTE-81

NEW!
 LEARNING WITH COMPUTERS Bork

A comprehensive overview for using the computer as a teaching device to build a more responsive learning environment.
1981, hardbound, 300 pages, $\$ 28.00$

NEW!

THE THEORY AND PRACTICE OF RELIABLE SYSTEM
DESIGN Siewiorek and Swarz
Shows how to combine economics with design and cost modeling with reliability modeling in hardware system design.
1981, hardbound, 700 pages, $\$ 45.00$

NEW!
From ENIAC To UNIVAC: An Appraisal of the Eckert-Mauchly Computers Stern

Examines the pioneering achievements of J. Presper Eckert and John W. Mauchly: the ENIAC, the EDVAC, the BINAC, and the UNIVAC.
1981, hardbound, 286 pages, $\$ 21.00$
NEW!
INTRODUCTION TO
DECSYSTEM-20 ASSEMBLY LANGUAGE PROGRAMMING Gorin

Examines the instruction set, assembly language, applications and application techniques, and system features of the DECSYSTEM-20. 1981, paperbound, 576 pages, S35.00

COMPUTER ENGINEERING: A
DEC View of Hardware

Systems Design

Bell, Mudge and McNamara
Shows how evolving technologies, marketplace economics, and manufacturing costs influence computer engineering.
1978, hardbound, 585 pages, $\$ 26.00$

COMPUTER PROGRAMMING AND ARCHITECTURE: The

VAX-11 Levy and Eckhouse, Jr. Focusing on the VAX-11, this unique book offers a comprehensive system viewpoint to the programming and organization of today's computers.
1980, hardbound, 407 pages, $\$ 28.00$

DATA PROCESSING

TECHNOLOGY AND

ECONOMICS, Second Edition

Phister, Jr.
Complete coverage of DP operating costs, programming costs, system and software performance and reliability, time sharing economics, and more. (Co-published with Santa Monica Pub. Co.) 1979, 720 pages, hardbound $\$ 45.00$; paperbound $\$ 30.00$

EARLY BRITISH COMPUTERS, The Story of Vintage Computers and the People Who Built Them Lavington

Closely examines such landmark projects as the first working stored-program computer, the first commercially available computer, and the first transistorized computer. (Co-published with Manchester Univ. Press) 1980, paperbound, 140 pages, $\$ 8.00$

ENGINEERING INTELLIGENT

 SYSTEMS: Concepts, Theory, and ApplicationsGlorioso and Colón Osorio
From fundamentals through advanced industrial applications, this book brings together the key elements for designing safe, practical, costeffective intelligent systems.
1980, hardbound, 472 pages, $\$ 27.00$

PROJECT WHIRLWIND, The History of a Pioneer Computer Redmond and Smith

The technological traditions, the research and development policies and practices, the funding crises, and the management techniques that went into this innovative engineering triumph.
1980, hardbound, 280 pages, $\$ 21.00$

TECHNICAL ASPECTS OF DATA COMMUNICATION

 McNamaraA practical approach to the nuts-and-bolts problems and solutions in configuring communications systems. 1977, hardbound, 387 pages, $\$ 26.00$

TEX and METAFONT, New

 Directions in Typesetting KnuthDetails TEX, a technical typesetting system, and METAFONT, a system for the precise design of alphabets. (Co-published with American Mathematical Society) 1979, paperbound, 360 pages, $\$ 12.00$

I suspect the slowness is a by-product of two of MINCE's undeniable virtues: the way it was written and the way it updates the screen. MINCE was written in the high-level language C , a general-purpose language developed at Bell Laboratories that is often used for systemlevel programming (see "The BDS C Compiler" by Christopher Kern in June 1981 BYTE, page 356). Since it is written in a high-level language rather than in an assembly language, MINCE is easy to transport to other processors. This portability means that as long as MINCE's authors stay in business, someone who buys new hardware is likely to be able to buy a version of MINCE to run on it. (Perhaps those responsible for MINCE will publish their source code if their business goes under.) But the use of a high-level language on an 8 -bit microcomputer inevitably imposes a considerable penalty in speed.

To update the screen, MINCE uses standard cursor positioning facilities rather than the idiosyncratic hardware page editing capabilities available on some smart terminals. This means that the editor will run on just about any terminal or stand-alone computer system available. It takes time, however, to move a cursor around and to update a display serially, even if the terminal is running, as mine is, at 9600 bps (bits per second).

Text Swapping

Another problem with MINCE is that it swaps parts of
the file between main memory and disk during long pauses between keyboard entries. In the long run, this is to the user's advantage: performing this operation while

At a Glance

Name of Software MINCE (MINCE Is Not Complete EMACS) Type
Text editor

Manufacturer

Mark of the Unicorn POB 423
Arlington MA 02174
(617) 489-1387

Price
\$125

Format

8 -inch, IBM format softsector disks; other formats by arrangement

Language Used 8080-family machine language

Computer Needed

8080-family computer running Digital Research's CP/M operating system with at least 48 K bytes of system memory and floppydisk mass storage

Documentation

52 -page user guide;
5-page installation guide; 46 pages of tutorial introduction (also included as files on distribution disk)

Audience

CP / M users requiring a video terminal text editor

GUARANTEED RELIABLE FOR 2 FULL YEARS.

Unprecedented product reliability deserves an unprecedented warranty. IMS International provides its dealers with both.

Our commitment is real.

We are so confident that our products are the industry standard in reliability, we stand behind them for two full years from date-of-sale to the end user. All IMS manufactured products are covered.

The success of our dealers will insure our continued growth. That's why IMS International
is committed to providing every IMS dealer with these distinct advantages in today's marketplace:

- 2 year warranty
- Low retail cost
- Best margins in the industry
- Protected territories
- Full factory technical support
- Complete system delivery in 30 days
- Comprehensive advertising and promotional support

For more information about IMS International's "Reliables" and our unique dealer plan, call 714/978-6966 or write us:

2800 Lockheed Way
Carson City, NV 89701
Telex: 910-395-6051

the keyboard is inactive means that less disk swapping will be necessary at a time when the user is more active and when text swapping would really slow him down. But even though each swapping operation only takes about a second, I found the sudden onset of disk activity disconcerting. Fortunately, MINCE's configuration program allows the user to set the time delay between the last keyboard entry and the start of the swapping operation. MINCE's authors recommend a four-second pause. I found a twenty-second delay more to my liking.

MINCE is a large editor not only in the number and variety of its available commands, but also in its requirements for disk space. The editor proper requires 30 K bytes. During operation, MINCE must have a swap file available to provide space for those portions of the file(s) being edited that don't fit in the host system's available semiconductor memory. MINCE's authors say a 24 K byte swap file is the workable minimum and recommend a 64 K -byte swap file. I evaluated MINCE and wrote this review using a 32 K -byte swap file with no serious effects, although I did have to juggle my reference files as the article grew in size. (Files not currently being used can be dropped, thus freeing space in the swap file for active files.)

Configuration and Documentation

Selecting the size of the swap file, notifying MINCE of the characteristics of the host system's terminal, and other required set-up operations are performed by a configuration program that is very easy to use. The configuration program comes equipped with the necessary information for the terminals most commonly encountered in microcomputer systems, and it accepts user-supplied information for the less common ones. The whole configuration process is menu-driven and provides ample opportunities to correct errors or simply change one's mind.
MINCE's documentation is excellent. The user manual is well organized and crisply written. In addition, two
tutorial introductions to MINCE are supplied. One is designed for more experienced programmers, and the other is designed for the uninitiated computer user. In practice, I think the programmers' tutorial would suffice for anyone who has ever used a text editor on a computer. The general-users' tutorial claims to require nothing more than knowing how to type and how to log onto the host computer system-a claim that appears to be true. The first eight-page lesson introduces the trainee, step-by-ex-cruciating-step, to such mysteries as how to use the delete key to erase the previous character, how to move the cursor forward and backward, and how to quit the editor when he is finished. (But, it does not explain how to write a file to disk-that is left for another lesson).

The tutorials don't pretend to cover all of MINCE's features, but anyone who is willing to work his way through them will certainly learn how to use the editor in at least a minimal fashion. Most of the tutorial material is provided on disk files as well as in hard-copy form, and many of the exercises call for the user to edit the tutorial he is working from. I found some of the prose in the tutorials a bit cloying; the exercises provided a convenient remedy.

Conclusions

\bullet MINCE has a large, well-planned command repertory. A user needs to learn only a small subset of the available commands to operate the editor; others can be learned as his requirements grow.

- MINCE permits multiple files to be viewed and editeda real convenience. Two files may be viewed simultaneously on a split screen.
- MINCE is slow in updating the video display, both during user input and during cursor movement across pages (video screens). The use of a swap file also slows editing down and results in unexpected disk activity.
\bullet MINCE is well documented. Tutorial introductions to the editor help even the novice get started easily.

[^17]
HOOK 3 WINNERS

DOLPHIN

Data-Ed
18 Bridge Street Salem, NH 03079
603-893-2047 (collect)
__ TM-12GX Monitors at $\$ 179.00$ plus 2.75 shipping
__ TM-12G Monitors at $\$ 159.00$ plus 2.75 shipping
___ TM-12 Monitors at $\$ 139.00$ plus 2.75 shipping

- Please send OEM information about your low cost custom fit smart printers
- Check or Money Order enclosed - C.O.D. Orders Accepted - Bill my-a VISA-ם Mastercharge Card No. Exp. Date \qquad Bank No. Signature

Programming Quickies

Changing a BASIC FOR . . . NEXT Loop into a REPEAT . . . UNTIL Loop

James A Maiorana c/o BYTE Publications
POB 372
Hancock NH 03449

When you program in BASIC, it is often necessary to construct the functional equivalent of a REPEAT . . . UNTIL loop. To do this, many programmers try using a GOTO statement, but, in long programs, many GOTOs make the program run slowly. A FOR . . . NEXT loop, however, can be modified to provide the desired function, without any GOTOs. In many BASIC programs, executing a GOTO means searching the program text to find the correct line number, whereas finding a FOR NEXT loop is done directly by a pointer. I use the following technique in Apple BASIC, and find that it works correctly and produces faster-running programs.

In the following examples, loop-body is a block of code and condition is an arithmetic expression. Ordinarily, condition will be a Boolean expression with 0 equivalent to false and 1 to true.

The first construct uses a dummy variable D :

$$
\begin{aligned}
& 10 \text { FOR D }=0 \text { to } 1 \\
& 20 \text { loop-body } \\
& 30 \mathrm{D}=\text { condition } \\
& 40 \text { NEXT D }
\end{aligned}
$$

This code has precisely the same effect as:

REPEAT loop-body UNTIL condition

Here is an example of the technique:

$$
\begin{aligned}
& 10 \text { FOR D = } 0 \text { TO } 1 \\
& 20 \text { INPUT " GUESS MY NUMBER ", G } \\
& 30 \mathrm{D}=(\mathrm{G}=\mathrm{M}) \\
& 40 \text { NEXT D }
\end{aligned}
$$

This program continues to ask for a number G until G is equal to an internal parameter, M. Here loop-body is line 20 , while condition is the logical expression ($\mathrm{G}=$ M). When G is not equal to M, line 30 sets D to 0 . Line 40 increments D to 1 , and branches back to line 10 . When G equals M, line 30 sets D to 1 . Line 40 then increments D to 2 , and the loop terminates.

This code may have to be modified for your system. A quick survey of several BASICs showed that some interpreters return a value of -1 in the variable D when the condition in line 30 is met. (TRS-80 Level II and Texas Instruments BASIC give a -1 for true logical comparisons, while Applesoft, Integer, and Atari BASIC give a +1.) Modifying line 10 to allow for this results in an equivalent REPEAT . . . UNTIL function:

$$
10 \text { FOR D }=0 \text { TO }-1 \text { STEP }-1
$$

One of these techniques should work on your BASIC interpreter.

POWER-ONE D.C. POWER SUPPLIES

Our customers select their favorite models

The choice wasn't easy. Not with 105 open frame linears and a full switcher line to choose from. Still, the top models of the past year - proudly pictured below - have been named.
Actually, this is a statement of Power-One's most popular D.C. power supplies - as determined by our customers. Obviously, applications vary widely, from
small floppies and micro-computers to large mainframe systems.
But one thing they all have in common. They're bullt by Power-One. Which means the most reliable power supplies available, at the lowest cost possible.
So take a look at our entire line. Send for our new 1981 Catalog and Facilities Brochure for details.

Switchers - Hi-Tech Design - High Efficiency - 75\% min. - Compact/Light Weight - 115/230 VAC Input - 20 msec Hold-up - Totally Enclosed Packaging - Two Year Warrantee - 24 Hour Burn-in	SINGLE OUTPUT 5 V to 24 V Models SD, 60W: $\$ 115.00$ SF, 100W : \$170.00 SK, 200W : $\$ 250.00$	MULTIPLE OUTPUT 150 Watts $\begin{array}{cc} 5 \mathrm{~V} @ 20 \mathrm{~A} & -12 \mathrm{~V} @ 3 \mathrm{~A} \\ 12 \mathrm{~V} @ 5 \mathrm{~A} & 5 \mathrm{~V} \text { to } 24 \mathrm{~V} @ 3.5 \mathrm{~A} \\ \text { User Selectable } \\ \text { SHQ-150W: } \$ 295.00 \end{array}$	QUME PRINTER SUPPLY
Disk-Drive - Powers Most Popular Drives - 7 "Off the Shelf" Models - Powers Drives \& Controller - UL \& CSA Recognized - 115/230 VAC Input	51/4" FLOPPY SUPPLIES CP340, 1 Drive : $\$ 44.95$ CP323, Up to 4 Drivers : $\$ 74.95$	8.0" FLOPPY SUPPLIES CP205, 1 Drive: $\$ 69.95$ CP206, 2 Drives : $\$ 91.95$ CP162, Up to 4 Drives: $\$ 120.00$	WINCHESTER SUPPLIES 2 Models to Power any Manufacturer's Drive CP379, CP384: \$120.00
Open-Frame Linear - Industry Standard Packages - 115/230 VAC Input - $\pm .05 \%$ Regulation - Two Year Warrantee - UL \& CSA Recognized - Industry's Best Power/Cost Ratio	HB Series : \$24.95	SINGLE OUTPUT HC Series : $\$ 44.95$ to $\$ 49.95$	DUAL OUTPUT $\begin{aligned} & \pm 12 \mathrm{~V} @ 1.0 \mathrm{~A} \text { or } \\ & \pm 15 \mathrm{~V} @ 0.8 \mathrm{~A} \\ & \text { HAA } 15-0.8: \$ 39.95 \end{aligned}$
DUAL OUTPUT $\begin{aligned} & \pm 12 \mathrm{~V} @ 1.7 \mathrm{~A} \text { or } \\ & \pm 15 \mathrm{~V} @ 1.5 \mathrm{~A} \end{aligned}$ $\text { HBB15.1.5: } \$ 49.95$	TRIPLE OUTPUT $\begin{aligned} & 5 \mathrm{~V} @ 2 \mathrm{~A} \\ & \pm 9 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} @ 0.4 \mathrm{~A} \\ & \text { HTAA-16W:\$49.95 } \end{aligned}$	TRIPLE OUTPUT $\begin{aligned} & 5 \mathrm{~V} @ 3 \mathrm{~A} \\ & \pm 12 \mathrm{~V} @ 1 \mathrm{~A} \text { or } \\ & \pm 15 \mathrm{~V} @ 0.8 \mathrm{~A} \\ & \text { HBAA-40W : } \$ 69.95 \end{aligned}$	POWER FAIL MONITORS - Indicates pending system power loss. - Monitors AC line and DC outputs. - Allows for orderly datasave procedures PFM-1: \$24.95 PFM-2: \$39.95

Artificial Intelligence

Steven K Roberts
5885 Dublin Rd
Dublin OH 43017

What is intelligence? This question has inspired great works for centuries. It has furrowed the learned brows of philosophers, psychologists, theologians, and neurophysicists as they have sought, in different ways, to find the answer. Until recently, the question has remained more or less outside the domain of technology. Only in science fiction has the notion of intelligence applied to machines.

But man is a restless creaturethanks to his intelligence-and has a remarkable propensity for toolbuilding. The physical limitations of the human body are overcome daily with the use of man-made tools: bulldozers, microscopes, telephones, pens, and thousands of other devices. Very near the top of any list of tools must be the computer.
Computers, as most people know and love them, are hardly worthy of

[^18]the term "intelligence." At best, they are fast and reliable (but abysmally stupid) machines that take very precisely defined tasks and tirelessly perform them over and over. This, of course, makes them invaluable in a fast-paced technological society such

> Slmply providing access to the large body of knowledge now avallable is a great problem.

as ours, for we have become addicted to freedom from boring repetitive mental drudgery. (When was the last time you calculated a square root the old-fashioned pencil-and-paper way7) But for all their usefulness in assisting our many and varied efforts, computers are still absolutely uninspired contraptions.
In addition to being incurable toolbuilders, mankind also has a passion for information-lots of it. There seems to be no end to the exponential growth of human knowledge (it's currently expanding at the approximate rate of $200,000,000$ words per hour). On countless subjects ranging from the weather to the ills of our flesh,
from computer design to the technology of war, mankind has accumulated such masses of information that only the narrowest of specialists in any field can truly claim to be an expert.

This, however, creates problems, because now that we have all this information, we need to use it. The obvious difficulty is simply providing access to such a large library of knowledge: a person attempting to locate one small fact can easily become bogged down in searching if the library is not extremely well organized and cross-referenced. A less obvious problem is the continual addition of new knowledge to the library without creating a nightmarish jumble of patches and outdated material.

The sheer quantity of information involved in such an effort cries out for a computer solution. After all, hardware can be purchased off the shelf that provides literally billions of words of data storage-certainly enough for most "task-specific" information domains. But here we can see the need for something other than traditional data-processing techniques. (For an example of information storage using traditional techniques, see "Information Unlimited:

DYNABYTE

 SYSTEMS+
30\% DISCOUNT

NORSEA, a worldwide distributor of Dynabyte systems, is now offering 25 to 30\% discounts to domestic as well as export customers. Further volume discounts negotiable.

NORSEA \&
 DYNABYTE

NORSEA sells only one microcomputer range, and that's Dynabyte. We are fully experienced in its applications and support. NORSEA was first to install Dynabyte's Multi-user Business Manager software in Winchester systems for enduser applications. Get the best buys on Dynabyte products from NORSEA, and get our experience.

DYNABYTE
 PERFORMANCE

Incomparable quality, superior software support, and the widest range of microcomputer systems in the industry make Dynabyte the leader. And check out these standard features: Real time clock, 10 Interval Timers, 8 Levels of Vectored Interrupts, Jump Start, 2 Serial and 1 Parallel ports, and 64K RAM expandable to 400 K .

HARD DISK
 SUBSYSTEMS

(Can be daisy chained for up to 104 MB of Storage)
Formatted with S-100 Controller, PSU and Cabinet.

M10-10MB-8",	$\$ 2,995$
M20-20MB-8",	3,830
M26-26MB-14"	3,995

M26-26MB-14"
Subsystems also available in OEM stripped down versions.

PERIPHERALS

Televideo $950 \quad$ \$ 949
Starwriter I 1,599
Starwriter II
DataSouth DS-180
Tally T. 1705
Dataproducts M-200
1,799
1,399
1,799

SOFTWARE

Full range of assemblers, languages and application software at discount prices. TERMS
All prices quoted prepaid and FOB point of origin. Prices are subject to change without prior notice. Call or write for detail terms.

TRADEMARKS

Business Manager by Dynabyte CP/M by Digital Research Starwriter by C. Itoh.

DYNABYTE COMPUTERS

5100-A2 Microcomputer only, with 64 K RAM, 3 I/O Ports.
List \$3,395
Net $\$ 2,375$
5200-A2 Dual 51/4"-630KB
List $\$ 4,595$
Net \$3,395
5300-B2 Dual 8" double density
floppies-2MB
List \$6,995
Net \$4,995
5615-A1 11MB Winchester and 8" double density floppy.
List \$11,995
Net $\$ 8,995$
5615-B1 23MB Winchester and 8" double density floppy.
List \$13,495
Net \$9,995
5615-C1 45MB Winchester and 8" double density floppy.
List $\$ 15,495$
Net \$10,995
Systems also available with tape cartridge backup and cartridge disk drives at similar savings. Call for details.

SINGLE BOARD
 CP/M SYSTEM

$\$ 750$
Single card $81 / 2$ by 12 inches by
NorControl with 8085 CPU (10MHz), 64K RAM, 3 each RS- 232 I/O ports, controller running one to four single or double sided 8 " floppy drives, 2K EPROM for bootstrap and monitor. Select our CP/M 2.2 for single or double sided drives. Assembled, tested and burned in for one week! PSU not included. OEM discounts available.

NC-85 Single Board Computer
 $\$ 750$

Technical Manual
CP/M 2.2 Single sided
$\$ 150$
CP/M 2.2 Double sided $\$ 180$

INCREDIBLE PACKAGE PRICES!

NORSEA has assembled the following special system packages for additional savings:

NOR-8020 System

Dynabyte 5300-B2 with Dual 8" double density, 64K RAM, 2 serial - 1 parallel ports. Tally T-1705 Professional 160 Matrix Printer. Televideo 950 smart terminal. CP/M 2.2 included!
List \$10,435
Net \$7,695
NOR-8111 System
Dynabyte 5615-Al with 11MB Winchester and 8 "double density floppy. As above with Tally printer, Televideo 950 terminal and CP/M 2.2!
List \$15,435
Net \$11,695

EXPORTS

NORSEA specializes in the export of Dynabyte microcomputers and a selected range of high quality peripherals. We are experienced in international trading and we pride ourselves on fast and courteous service at the lowest prices possible.

FOREIGN
 DISTRIBUTORS
 WANTED

NORSEA is seeking distributors all around the world for exceptional opportunities with Dynabyte and other quality NORSEA selected products.

Wir sprechen deutsch.

Nous parlons francais.
Hablamos espanol.
Vi snakker norsk, svensk og dansk.
To Order Call
(203) 775-0438 / 775-4465 or Telex 969638

DATA CORPORATION

 U.S. Route 7, Brookfield Connecticut 06804 U.S.A. IN CANADA:NORSEA DATA PARTNERS MISSISSAUGA, ONT.

The Dialog Information Retrieval Service," by Stan Miastkowski, June 1981 BYTE, page 88.)

Types of Knowledge

Knowledge about almost anything can be split into two major classifications: factual and heuristic. Factual knowledge is the most obvious and needs little elaboration; it's often called "textbook knowledge." The heuristic variety, on the other hand, is a little harder to store in a computer. It is the network of intuitions, associations, judgment rules, pet theories, and general inference procedures that, in combination with factual knowledge about a field, allow
mankind to exhibit intelligent behavior. (Further muddying the programming waters is a higher level of knowledge that can be included within the heuristic category: "metaknowledge," which is concerned with general problem-solving strategy and such esoterica as awareness of how to think.)
Factual knowledge has been resident in computer systems for decades. Business systems containing records of customer, personnel, inventory, and accounting data typify the rather pedestrian uses to which the majority of large systems have been relegated. If most of the world's computers suddenly became self-
aware, they would be terribly bored with their fates.

Heuristic knowledge is substantially more difficult to represent in a program or data base than simple factual data. But any system that is intended as a sophisticated information resource must, in some fashion, incorporate this higher level of knowledge, if for no other reason than to reduce the problem of finding a given piece of information to one of manageable proportions.

Suppose, for example, that a system were created to provide physicians with clinical advice about certain infectious diseases. A mere listing somewhere in the computer's mem-

THE FORMULA ${ }^{\text {TM }}$ will help you get the information you need to help run your business. It is a ready made set of computer programs which can create a customized system for any business function:

- Accounting is as simple as $1,2,3$

Whether you hire a computer professional or develop a system yourself, THE FORMULA ${ }^{\text {TM }}$ will let you spend more time where it will do the most good, minding your business. That's THE FORMULA ${ }^{\text {TM }}$ for success.

Disk and manual, \$595. Manual only, \$60.
THE FORMULA ${ }^{\text {TM }}$ will run on any 8080 or $\mathbf{Z 8 0}$ computer with CP/M,* 48 K RAM, 300 K total disk storage, and a CRT.

DMA - WE SPEAK YOUR LANGUAGE.

Clicle 121 on inquiry card.

The BOS M System: The Universal Donor

The BOS M Card is the heart of the M System. It is designed to be IEEE S-100 bus compatible for universal system use. Virtually all elements of a computer mainframe now reside on one S-100 card - Z-80A CPU, 64k of 200ns RAM (no wait states), 4 k 250 ns EPROM, Winchester Disk I/O port, two RS-232 serial ports, system port, floating point processor, and parallel I/O. The same M Card can be used in single-usex, multi-user, or even multi-processor systems.
Second Generation Multt-Processor. With the BOS M Card, multi-processing is finally free of the Master/Slave and handshaking parameters so prevalent in first generation multiprocessors. Inter-system communications are FIFO buffered; the old "Master" is now a slave to the user, and the system functions without "S-100 bus overrun" or system generated wait states.
The Univorsal Processor is now a reality! As a single-user system, the BOS M is unmatched in performance (up to ten times the speed of other microcomputers). As a multi-user system, this power can be translated into a low cost multi-terminal capability. As a multiprocessor, the system leaves the realm of "microcomputer" and competes in performance with a minicomputer! You can start with a single-ues computer and expand to a multi-user/multi-processor computer system when needed.

The Universal Product. BOS has what you need - anything from a single M Card to a complete turnkey computer system. Diskette, rigid disk, tape and telecommunications sub-systems are all available. Compatible soltware includes CP/M* ${ }^{*}$ MP/ M^{*}, CP/NET*, BOS/TURBODOS, complete monitor, languages, application packages, and more!
Dealer and OEM Inquiries Welcome

> | \square | $\begin{array}{l}\text { Business Oporating Systems, Inc. } \\ \text { 2835 East Platte Avenue } \\ \text { Colorado Springs, Colorado } 80909 \\ \text { In Colorado Call: ((303) 634-1541 } \\ \text { Ioll Free Number: 1-800-525-3898 }\end{array}$ |
| :--- | :--- |

The BOS M System does what a Univonal Donor must do - it provides high performance for all system types; gfngle-user, mult-usert, and multh-p ;ocessor. M Systems start at less than $\$ 5,000.00$ for a single-usor computer with duali $8^{\prime \prime}$ double'donsity diskette drives.

Your Computer Can Speak with an Unlimited Vocabulary.

- Text-to-speech algorithm vocally reproduces any typed entry
- Unlimited vocabulary
- Standard RS232C interface

Your computer has a lot to talk about.

This is the advance in computer speech synthesis you ve been waiting for. Votrax brings your computer to life with Type-' N-Talk '" Now you can hear your computer tell you where you are in a program; taunt you with comments during computer garnes; praise you; remind you: warn you.
Thanks to the unique Votrax text-tospreech algorithm, Type.- N-Talk' gives your computer an unlimited vocabulary. Your typewritten words are automatically translated into electronic speech.

If you can type, your computer can talk.

Because Type- N-Talk'"uses ASCI! code from your computer's keyhoard to generate synthesized speech, you just enter English text to hear a verbal response (electronic speech) through your audio loudspeaker. For example, if you type "H-E.L-L.O' on your ASCll keyboard, it will generate the spoken word "HELLO.

Type-'N-Talk ${ }^{\text {™ }}$ has its own memory.

Even the smallest computer can talk and execute programs simultaneously. because Type- N -Talk "has its own built-in microprocessor and a 750 character buffer to hold the words you've typed. Type-'N-Talk** doesn't use your host computer's memory or tie it up with text transiation

If you can hardcopy it, you can hear it.

By placing your Type- N -Talk ${ }^{\text {'v }}$ between your computer or modem and a terminal, you can hear all the data sent to the terminal while online. Random-accessed information from a remote data base can now be seen and heard, because Type- N -Talh". says it all.
Type- N -Talk" has the data switching capability that allows you to "deselect" while sending and receiving data to and from a terminal. Data switching lets you send speech and visual data independently on a single data channel.

Interface any way you want.

Special control characters let you interface Type- N -Talk "in a variety of ways. Unit assignment codes allow you to daisy-chain multiple Type- N -Talk'units. You can also have independent control of Type- N -Talk "and your printer by using unit addressing codes.
Connect Type- N -Talk'wdirectly to your computer's serial interface and you can eliminate the need for additionat RS-232C ports by connecting terminals. printers or additional Type- N -Talk "units to the first Type- N -Talk ${ }^{\text {" }}$

Votrax • developed Type- N-Talk" to function with operator designed programs or with the new Votrax talking software currently under development. Type- N -Talk ${ }^{\text {'c }}$ can also be used without software.
The Type- N -Talk "unit's simplicity enables it to be used by the beginning hobbyist. yet its total capability can challenge the most sophisticated' user.

Now You're Talking - just \$375.00.

- Text-to-speech algorithm
- A one-watt audio amplifier
- SC-01. speech synthesizer chip (data rate: 70 to 100 bits/sec.)
- RS-232C interface
- Selectable baud rate (75-9600)
- Selectable data modes for variable interfacing
- Phonéme access modes
- 750 character buffer
- Data switching capability
- Data echo of ASCII characters
- Complete programming and installation instructions

Type- N-Talk ${ }^{\text {TV }}$ is covered by a limited warranty. Write Votrax for a free copy.

Circle 380 on inquiry card.
ory and storage of all the known facts is essentially useless-the only way one could make use of the data would be the simplistic matching of a set of symptoms against sets of indications for each disease.
This kind of approach is doomed from the start: some symptoms are less suggestive of certain diseases than others. Therefore, the system should have the ability to order specific additional tests (giving preference to noninvasive ones) before attempting a diagnosis. Also, the patient's age, environment, and medical history must be taken into account. Amidst all this, there must be the capability of ignoring certain facts if they are inconsistent with the most strongly suggested diagnosis-a patient's tennis elbow, for example, is probably unrelated to his or her infectious meningitis.
If the machine is to be more useful than a textbook, it must be able to do all these things, as well as provide a facility for updating its own information as often as required. In summary, it must possess a measure of in-
telligence.
Such a system is not mere conjecture, by the way. One has already been created to provide diagnosis and therapy selection for two major types of diseases: blood infections and meningitis. Developed at Stanford University by doctors Bruce Buchanan and Edward Shortliffe, the program, called MYCIN, has outperformed human diagnosticians in the identification and treatment of diseases in this class, not only through its accuracy in pinpointing the pathogen, but in its avoidance of overprescribing treatment.

This last accomplishment is especially noteworthy, because the standard clinical approach to an unknown disease involves a broad-spectrum antibiotic attack on a wide variety of possibilities. This not only exposes the patient to potential toxic effects, but encourages the development of drug-resistant bacterial strains. (A recent Stanford University study revealed that one of every four persons in the United States received penicillin under a doctor's orders in

INTRODUCING VT 100 KEYS FOR THE KED EDITOR...These quality 3 -color keys will make editing faster and simpler. They're easy to installno overlays-just pull out the old keys and push in a new set with the KED functions clearly stated. A set of 183 -color keys - $\$ 40$.
Syinatonics
4 Frost St./Cambridge, MA 02140 (617) $739-7710$

1977 and that nearly 90% of these prescriptions were unnecessary.)

A Technology Is Born

For all of these reasons, along with many others ranging from the inadequacy of standard programming techniques to the sheer joy of research, computer science has spawned a new discipline: artificial intelligence (AI).
Actually, AI is not all that new: some of the foundations that underlie today's work were laid in the late 1940s and early 1950s by Alan Turing, whose "imitation game" (today called the "Turing Test") is still considered a valid method for determining whether or not a machine is intelligent. In essence, the Turing Test consists of an interrogator communicating via teleprinters with a human and a computer. The interrogator can attempt in any way possible to determine which is which through conversation over the communication links.

At first glance, it might seem that the examiner could easily tell the difference by asking such questions as, "What is 35,289 divided by $9117 ?^{\prime \prime}$ The human would presumably chew on it for a while, and the computer would instantly spit back an answer correct to twelve digits. The flaw in this kind of thinking is that the human might have an electronic calculator in his pocket and the computer, if indeed intelligent (and devious), might give a slow and erroneous answer just to fool the interrogator. Also, the computer might be unable to calculate as rapidly as we would expect, since much of what we call intelligence involves the storage of information in a relatively abstract and very symbolic form. It is possible that such a machine would have to go through a set of thought processes not markedly different from ours to do mathematical calculations, though for the sake of convenience, it would probably have a built-in "calculator."

Turing's work in this area was strangely prophetic and, for the conservative 1950s, somewhat radical. He wrote, "I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking with-

The Westico Software Revlew Committee is easy to recognize. It's their redrimmed eyes. You get that way checking through an endless parade of software programs. And they do it so that you don't have to. But selecting good software is only part of what makes Westico one of the fastest growing companies in the software industry. Having experts on staff who really understand both software and hardware is another. But Westico offers more than quality products and

TWO MORE GREAT PROGRAMS FROM WESTICO

LYNX, a friendly overlay linker.

LYNX is an overlay linker for creating executable programs from relocatable files produced by Microsoft's FORTRAN, COBOL, and MACRO-80 languages.

LYNX allows the construction of programs that use all available memory including that used by LYNX Itself. Maximum size programs under Microsoft's L80 linker can be increased at least 9K using LYNX without overlays.
The overlay capability of LYNX is vital for programs largerthan available memory. With overlays, many large programs on minicomputers or large malnframe computers can be easily moved to a microcomputer.

LYNX offers many features not found in L80. For example, LYNX can be told to get commands from a disk file. The "HELP" feature displays a complete list of LYNX commands. Mapping informatlon can be sent to the screen, printer or disk files. LYNX can decode Microsoft REL files for inspection.
LYNX uses overlays in a tree structure. Any routine is available to any overlay that is higher on the branch than the routine itself.
Complete system with documentation $\$ 250$. Documentation alone $\$ 25$.

Now il makes sense lo MINCE words.
MINCE is a full screen editor based on the "Emacs" text editor, developed after years of research in editor technology and user interface at M.I.I. and other universities. With MINCE you can edit several files simultaneously, allowing the text to be moved between the files. The screen can be divided to display any two flles or two parts of the same file at one time. Text can be manipulated by the word, sentence or paragraph, as well as character, line and entire screen with simple, easy-to-remember commands.
MINCE automatically adjusts line length to margins as the text is entered. Commands change words to UPPERcase. lowerCASE or Capitalize. The MINCE unique "query replace" allows global changes to be "tried-out" and then accepted or rejected. Lines can be centered, "white space" removed and text then inserted or overwitten. MINCE is as powerful an editor for programmers as it is for creating documents. MINCE features "type ahead" and a status line which constantly displays: editing mode, the files being edited, the current position in the file, the file modification - if any, the state of the "save" buffer and the command currently being executed. Complete system with documentation - \$175. Documentation alone - \$25.
support. We offer our unique 24 -hour service overnight! Westico. We're working hard to be your software company.

The Westico 24-Hour Computer Hotline (300 baud) (203) 853-0816 for detailed program information and quick access ordering.

- A full range of professional software.
- Supportfor a wide variety of $\mathrm{CP} / \mathrm{M}^{*}$ and other computer systems, including: TRS-80 Model II, Apple, Vector Graphic, Cromemco, North Star, Micropolis, Ohio Scientific, Altos, Dynabyte, SuperBrain, Xerox.


```
4 Ways to Order
- Write Westico, Inc., }25\mathrm{ van Zant Street.
    Norwalk, CT 06855.
- Call (203) 853-6880.
- Telex 643-788
- Dial-up our 24-hour computer
    (300 baud) (203) 853-0816.
COD, MasterCard and VSA accepted.
prices do not inglude shipping and are subject
to change. In Cr add 7%% soles tax. All sales
Manual price may be creaited toward
purchase of software
```

Dealer inquitries invited. Copytight (c) 1981 Westico. Inc.

POSTAGE ADO 10% FOR ORDERS UNDER $\$ 20.00$

ADO 5% FOR ORDERS BETWEEN $\$ 20.00$ AND $\$ 50.00$
OM MONEY OROER
C.O. PUCMASE ORER DA
MINIMUM MAIL OROER $\$ 5.00$
ADO 3% FOR OROERS ABOVE $\$ 50.00$
out expecting to be contradicted.
Once again, technological progress is ahead of schedule-maybe. One of the distinguishing and provocative features of $A I$ is that newer and ever more complex problems lurk behind each breakthrough. Most technologies reach maturity when progress becomes asymptotic: continued effort brings us closer and closer to the limits of what is possible but at an ever slower rate. (An example of this is the ongoing effort to make electronic logic devices switch faster. The time it takes for electrons to move from one place to another defines an immutable speed limit, and future performance increases must come from another source.) Al doesn't seem to have such a limit, or if it does, it is (by definition) even further removed from our present comprehension than a complete picture of how the brain works.

This limitlessness makes AI, for many people, the most enchanting field of endeavor in the vast panoply of research fields. In the thirty years since Turing wrote his prophetic words, AI has grown from an esoteric part-time pursuit of a few visionaries to a full-fledged science, replete with subspecialties, societies, annual international conferences, and journals. Its existence is beginning to be felt outside academia, and in a few years, the computer as we know it is likely to be dramatically transformed.

Work in Progress

There are a number of robust subspecialties in the world of artificial intelligence, dealing not only with various applications but with several problems that must be simultaneously overcome for the dreams of Turing and many others to be fullfilled. The two central problems are so closely intertwined that they can be discussed together: knowledge representation and natural language.

Consider the following conversation:

He: "Hungry?"
She: "I have a coupon for McDonald's.
He: "Have you seen my keys?"
She: "Look on the dresser.

YOU CAN SAVE $5500^{\circ 00}$

IF YOU CAN RECOGNIZE VALUE INTRODUCTORY OFFER M.T.I. MOD III
Now You Can Save \$500 over comparable model.
s1

We have raken the basic 16 K Model III expanded the memory to 48 K and added our MTI Double Density, Dual Disk Drive system. System is fully comparible with Radio Shack DOS and peripherals.

MOD III/EXPANDED

Same as above but has double storage capacity (708K storage). Your choice of 2 dual headed 40 mack drives or 2 single headed 80 rack disk drives. Includes Microsystems DOS plus 3.3

There are some very sophisticated information-processing operations going on here. In this dialogue, most of the real meaning-the real com-munication-is not explicitly stated. He opens by inquiring whether she is hungry and, in the process, is probably implying that he is hungry as well. She processes this and issues a very cryptic response. Not only does she inform him that she is either hungry or willing to go along for a ride, but also suggests a specific place to eat and, further, hints at economic realities by weighting the selection of a restaurant on the basis of a discount coupon. Her statement assumes that he will understand what a coupon is as well as what a McDonald's is. His next question indicates even deeper communication: he has agreed with her about the choice of restaurant and suggests a specific mode of transportation. This suggestion, however, is made in a roundabout fashion: he asks if she knows where his keys are at the moment, assuming that she knows not only what keys are but that they are linked with transportation. She, of course, understands that the keys he's talking about are those of his automobile and suggests a course of action that will solve the transportation problem-correctly assuming that he will not only know which dresser she means, and that a dresser is a piece of furniture, but that he will deduce that the keys must be there.

The implication is that communication between two people involves substantially more than the lexical meanings of the words. The conversation above would not have been so succinct if he had approached a stranger on the street with the same question. The difference suggests the existence of a special relationship between he and she: they share certain aspects of their internal models of the world.

This highlights a crucial truth: language has to be considered as only one part of a much more complex communication process, one in which the knowledge and states of mind of the participants are as much responsible for the interpretation of verbal utterances as are the words from which
those utterances are formed. As a conversation progresses, the internal state of each participant continually changes to represent the modified reality that is the result of the communication.
(Frequently, problems occur between people when their respective internal models of the world differ sharply. "I had to work late," can be interpreted in a drastically different way from that intended by the speaker.)

When one attempts to build an intelligent machine, the complexities introduced by this larger view of communication can be surprising. Early systems were developed without a clear awareness of the problem and were constructed of a stored body of facts with associated keywords that were used (eg: Joseph Weizenbaum's ELIZA program) to scan the input messages. Whenever there was a match, sets of specific rules were invoked to produce a response based on both the system's knowledge and the keywords it had located. No attention was given to the actual meaning of the sentences, just to the presence of certain words. Such systems quickly fail the Turing test.

As time went on, it was recognized that the communication problem is interwoven with knowledge itself. In the mid-1960s, programs were developed to translate input sentences into an internal formal language that, theoretically, would allow the system to perform inferences without needing to handle all the subtleties of ordinary conversation. But the knowledge and the meanings of words were still represented as passive data "objects" distinct from the program itself. Thus, it was difficult for any but the most rudimentary changes to occur in the system's internal model of the world.

Recently, a different approach has begun to show promise. Instead of clear differentiation between the "intelligent program" and the knowl ${ }^{-}$ edge, the programs actually embody the knowledge in their structure. With the existence of powerful AI languages (such as LISP), it is possible for the system to learn and grow by modifying itself.

VISIT THE MicroAge STORE IN YOUR AREA!

9530 Viscount
El Paso, Texas
(915) 591-3349
611 Rockville Pike
Rockille, Maryiand
(301) 762-7585
5742 E. Broadway
Tucson, Avizona (602) $790-6959$
2760-5 South Havana Aurora, Colorado
(303) 696-6950
1707 Monroe Avenue
Rochester, New York
(716) 2449000
1220 Melbourne Drive
Hurst, Texas
(817) 284.3413
2675 Mayiair Road Milwaukee, Wisconsin (414) 257-1100
2065 El Camino Real West Mountain View, Californio (415) $964-7063$
2525 N. Scottsdale Road Scatisdale, Aizana
1490 W. Spring Valley Rd. Richardson, Texas (214) 2345955
83 South 10 h Steet Minneapolis, Minnesota (612) 33-1777
24 W. Camelback Phoenix, Alizona (602) 265-0065
2591 Hamillon Rd. Columbus, Ohio (614) 868-1550
8615 Allisonville Rd. Indianapoilis, Indiona (317) 849-5161
1517 N.E. 122 nd Avenue Portiond, Oregon (503) 256-4743
79 Main Street Norwalk, Conneilicut (203) 846-0851
11413 Olive Street Road St. Louls, Missouri (314) 567.7614
5815 Menaul N.E.
Abuquerque, New Mexica (602) 941-8794

Comine

soon To:
San Diego, California
Spokane, Washington
Toronto, Canada
Boston, Mass.
Pompano Beach, Florida
Palm Beach, Florida
Houston, Texas
Wilmingion, Delaware
Panama City, Panama Salina, Kansas Anchorage, Alaska
Walnut Creek, California Tinley Park, Illinois
Okahoma Cily, Okahoma Chicago, Illinois
Washingion, D.C.

CASH FLOW PROBLEMS?

IT'S NICE TO KNOW SOMEONE WHO HAS THE SOLUIION.

MicroAge is your Solution Store . . . that means af MicroAge Computer Stores we hove a wide selection of time-saving computerized business systems designed specifically to solve the daily cash fiow problems every businessman faces.
MicroAge has computerized business systems that quickly and affordably allow you to regain control of your critical accounts receivable ... at last making it possible for you to carry out effective collection procedures on a consistent basis. MicroAge has accounts receivable program packages to automatically disploy and update account information; prepare trial balance including a balance-due and delinquency aging
report, and take care of dozens of other tasks that eat into your time and proit!
Computerized business systems from the MicroAge Computer Store are available in the $\$ 5,000$ to $\$ 15,000$ range, to suit the individual budget of your small business or professional practice. MicroAge backs up every system with personalized service, warranty service and repair, instalIation, systems consuling, even customer training. Visit the MicroAge Computer Store in your area soon with your business problems, and let us help you with the solution.

"The Solution Store" SM

This all sounds very anthropomorphic, but there is still a vast gulf between our minds and even the best of the artificially intelligent systems. Though we have the technology to provide an equivalent amount of raw data storage, we may be going about it all wrong.

Serial Versus Parallel

There are numerous computational feats that humans manage to accomplish daily without conscious effort. Many of them are still impossible for computers. Take pattern recognition, for example. When a friend walks into the room, you can establish his or her identity with a casual glance. The accuracy of your decision is not markedly affected by the set of the jaw, the tilt of the head, or disheveled hair.

According to current theories, you simply map a preprocessed visual image via some feature-extraction "hardware" onto a gigantic multidimensional associative memory. The answer pops out, linked with an elaborate internal model of your
friend. Big deal.
A computer, on the other hand, has quite a chore to perform when it is fitted with a television camera and directed to recognize a face. It must scan the image raster dot by dot to acquire a numeric representation in memory. Then, it must engage in fast and furious number-crunching to calculate the spatial Fourier transform of the face. Elapsed time at this point might be pushing a minute or more, and the machine still hasn't the foggiest notion of who it's looking at. Then comes the hard part: one by one, the system must perform two-dimensional correlations between its freshly calculated data and blocks of stored image data corresponding to the people it "knows"-in each case, coming up with a number (the correlation coefficient) between 0 and 1 that expresses how much like a stored image the current image is. The stored image with the highest coefficient is deemed to be the one that matches.
But, if the person in front of the camera parts his hair differently,
cocks his head to one side, and takes on a dramatic expression, then he might as well have just become someone else.

This problem gives specialists in image recognition fits. If a computer's logic devices can switch as much as a million times faster than human neurons, it would seem that even intensive tasks such as pattern recognition could be done with correspondingly greater speed, even if not with ease.

Not so. Here's the catch, and its solution will probably represent the next major revolution in computer design: Brains don't center around single devices called "processors." Computers do. Operations that the brain seems to perform with the simultaneous activation of millions of widely distributed logic elements must be performed in a computer by funneling the entire task through one tiny bottleneck. In many cases, the blinding speed of computer hardware more than makes up for this handicap (in calculating, sorting, etc) but in the types of problems encountered in the
"I have recently used Spellguard and I can only echo the evalvations of a recent Infoworld review: excellent all the way."

Mark Garetz

Infoworld 25
May 1981
"Spellguard is an example of the new standard-fully professional microcomputer software."

Bill Burns Infoworld 30 March 1981

". . . Spellguard was given the manuscript from my first book. This version had been corrected after several (human) proofreaders thoroughly reviewed it. I therefore expected it to be relatively error free. Not so. Spellguard was

EXPERTS AGREE SPELLGUARD IS THE FASTEST EASIEST TO USE MOST POWERFUL AND RELIABLE SPELLING CHECKER YOU CAN BUY

able to discover numerous typographical errors . . ."
Allan Miller Interface Age June 1981
"This easy to use, operator-oriented program has saved me
countless hours of proofreading, and from the embarrassment of submitting a manuscript with typos. Unlike most spelling test programs, Spellguard is fast . . ."
Tony Dowden
Microcomputing
May 1981

InifoWorld Software Report Card

System Requirements

- CP/M (1.4 or later)
- 32 K bytes of memory
- One or lwo disk drives

Price: \$295

INNOVATIVE SOFTWARE APPLICATIONS
260 Sheridan Avenue Suite 300
PO Bow 2797 Menlo Park. CA 94025 (415) 326.0805

SUPERBRAIN QD

SUPERBRAIN

the two top microcomputer contenders

When you decide to buy a microcomputer system, it usually gets down to one model versus another. Will it be the SuperBrain from Intertec ... or one of those other models from Intertec's competitors? Well, there's really not much of a choice in the price/performance competition. The SuperBrain wins hands down! And it's a pretty tough contender if reliability, factory support and nationwide service are important to you. So what do you do?Choose our SuperBrain just because you know it's best? Or keep waiting for someone to announce something better?

WAIT NO LONGER..

It wasn't enough that our SuperBrain had such standard features as twin double-density disk drives with nearly 350,000 bytes of disk storage. A full 64 K of dynamic RAM. A CP/M* Disk Operating System which assures compatibility to literally hundreds of application packages. A crisp, 12" nonglare screen with a full 24 line by 80 column display. A full-featured ASCII keyboard with a separate keypad and individual cursor control keys. Twin RS232 serial ports for fast and easy connection to a modem or a printer. Plus, dual $Z 80$ processors which operate at 4 megahertz to insure lightningfast program execution. No, it wasn't enough. So we changed it. We made it even better!

announcing superbrain QD...

Our new OD model boasts all the features of our phenomenally popular SuperBrain with the addition of double-sided disk drives. So, for only a modest increase in price, you can order your next SuperBrain with more than twice the disk storage. But, best of all, you can field upgrade the disk capacity of either model to a whopping 10 megabytes! Now how's that for a choice?

HOW DID WE DO IT?

The secret of SuperBrain QD's incredible disk storage lies within our new double-density, doublesided disk drives. Nearly 750,000 bytes of data can be formatted on two specially designed $51 / 4^{\prime \prime}$ drives. More than enough to tackle almost any serious small business application. Plus, SuperBrain QD's 64 K of dynamic RAM will handle even your most complicated programming tasks.

Of course, if you really need megabytes instead of kilobytes, just add our 10 megabyte CompuStar ${ }^{\text {TM }}$ Disk Storage System. It connects in seconds and gives you the capability to expand your system into a powerful multi-user network with up to 255 CompuStar terminals. You can add users one at a time as you need them. So no matter how much your needs expand, your original investment in computer hardware is always protected.

BUT IS IT RELIABLE?

Our best salesmen are our present customers. Not only have SuperBrain and QD users been impressed with the inherent reliability of the systems, they tell us that no other microcomputers available offer such a unique modular design concept. Just about the only service tool required is a common screwdriver. But of course if you'd rather let us do the service, our total commitment to product and customer support, with service outlets in most major cities, will guarantee your satisfaction for many years to come.

The CompuStar ${ }^{\text {rm }}$ Disk Storage System . . . Connects in seconds to either model.

THE DECISION IS YOURS...

Whether your next microcomputer is the SuperBrain or our QD model, you'll be purchasing what is becoming one of the world's most popular microcomputer systems. And regardless of which model you choose, you'll probably never outgrow it because you can keep expanding it.

Call or write us today for more information on our full line of microcomputer systems. Ask for our "SuperBrain Buyer's Guide" and read why so many customers like yourself have made the SuperBrain and the SuperBrain QD their top two choices for performance, value and reliability.

Circle 175 on Inquiry card

2300 Broadl River Rd... Columbia. S.C. . 29210 (803) 798.9100 TWX $810 \cdot 666$-2115
attempt to create something called "intelligence," it hasn't a prayer.

The solution is not exactly trivial, and it must wait for device technology, neurophysiology, and systems theory to provide a few more links. But our hands are by no means tied: the work currently being done in knowledge representation, natural language, cognition, vision, and countless other specialties will continue to provide mankind with better and better tools for the manipulation of information. When brainlike systems make their debut, they will have a rich AI technology to draw upon.

Intelligence Amplifiers

Through all this, there has been little space for an explicit discussion of applications. Rather than attempt to catalog all of the present and potential uses for intelligent machines (a task that should be relegated to an intelligent machine), let's round out this overview of the field with a general image of their value to our species in general.

It is colorful to think of computers
as intelligence amplifiers, analogous to the amplifiers of various sorts with which we enhance the power of our voices, muscles, and senses. Now we can enhance the power of our minds.

Computers are magnificent tools but not yet true Intelligence ampliflers.

It's already happening, of course, with home-computer systems cheaper in many cases than the color-television receivers that serve as their displays. But the vast computational gulf that exists between brains and computers has kept the devices somewhat distant from their human owners. Magnificent tools, in-deed-this article was written on a home word-processing system-but intelligence amplifiers? My brain has as little in common with this computer as it does with a pocket calculator.

It's not the computer's fault, really; even with its pathetic handicap of a single processing site, it has enough power to be of considerable use. But, as I pointed out earlier, it's dumb. Its internal model of the world is sorely limited and alien to me. Communication with it is formal and restricted and must occur only within the syntactic restrictions of its programming languages. I cannot err slightly in an instruction and be understood; I cannot express my thoughts to it in analogies or abstractions. Even if I know exactly what I want it to do, I have to work very hard to tell it precisely how. In some cases, I can do the job better and faster myself.

None of this is intended to denigrate the value of computers, but it should underscore the value of AI. If people and computers could share, even in a limited sense, their internal models of the world; if machines could grow with us and become living, friendly libraries that yield information, not just data, then we would begin to feel our own powers enhanced as well.

BARCODE FORYOUR SMALL COMPUTER.

New in-depth report tells you how-at savings of up to $\$ 40,000$
"Contemporary Applications of Optical Bar Code Technology" is a new, comprehensive report from North American Technology that can save you thousands of dollars in research and development
time when programming and equipping your small computer for bar code. Written by the originators of Byte Magazine's experiments with publication of software in printed form, Walter Banks and Carl Helmers, this report is the only complete presentation of materials on keyless data entry using modern bar code technology. It will enable you to:

- Read HP-41C calculator formats into your Apple, or other suitable computer.
- Prepare and deliver machine readable printed software to your customers.
- Read a UPC code into your personal computer.
- Print Code 39 manufacturing inventory tags with your formed character or dot matrix printer.
Here, in clear, concise, understandable language is all you need to know about bar code history, software engineering requirements, complete machine independent Pascal software in source listing form. There is software
to generate and read all major formats from Code 39 to HP-41C, and UPC to the new NATI text software publication format You get information you can use to program your small computer for bar code without detail processing by a human operator. This method speeds the operation, eliminates translation and entry errors and, where desirable, permits the use of unskilled personnel for the entry function. You save thousands of dollars as a result The $\$ 500$ purchase price of the report includes license for the commercial modification and use of all software contained therein.
For detailed information, send for our brochure. There is no cost or obligation. Mail the coupon today.

COMP
80016 K
410
810 Pro
825 Prin
Cent
820 Prin
impo
830 Acc
850 Inte
Alarl Vis
Atari 40
$h h p$

MPUTERS

16k Bytes ol Ram	\$1080.00	748.00	\$332.00
410 Program Recorder	90.00	77.00	13.00
810 Disk Drive	600.00	457.00	143.00
825 Printer (80 col-			
Centronlc 737) 820 Prinier (40 col	99.95	769.00	230.00
820 Prinier (40 col impoct)	450.00	35300	
830 Acoustic Modem	200.00	155.60	45.00
250 Interlace Module	220.00	192.00	48.00
Alarl Visicalc	200.00	164.00	36.00
Atori 400-40 ${ }^{\text {K }}$	595.00	327.00	304.00

- PACKARD

 HP. 83 Microcomputer HP.83 Microcomputer 10k Exp-MemModule
Graphics Plotter 7225
Personality Personality Mod.
for 7225 26318 impoctipinteri hwy dy
Optton 020 for 26318
8 Drives to choose fro 8 Drives to choose from 829025 Graphics Iablel 91114 HP-41 CV New 2.2 bytes mem $3250.00 \quad 2475.00 \quad 775.00$ $2250.00-1777.00 \quad 473.00$ $\begin{array}{lll}295.00 & 255.00 & 40.00\end{array}$ $\begin{array}{lrr}750.00 & 685.00 & 85.00\end{array}$ $3950.00 \quad 3250.00 \quad 700.00$ $\begin{array}{rrr}3850.00 & 3250.00 & 700.00 \\ 150.00 & 125.00 & 25.00\end{array}$ $\begin{array}{llll}1300.00 & & 4125.00 & 195.00\end{array}$ $\begin{array}{llr}6850.00 & 5500.00 & 1350.00 \\ 2050.00 & 1678.00 & 374.00\end{array}$
$325.00 \quad 250.00 \quad 75.00$ Card Reader for 41 CVIC
Pilnter for 41 CVIC Printer ior
Optical Wand for 44 CVIC
Quad Ram equals Memory Modules for 41 C
$\underset{\substack{\text { HP. } 97 \text { Programble } \\ \text { Printer }}}{ }$ HP- 67 Program
Calculator HP. 34 CAC Progromble HP.38C Programble Bus. RIE HP. 32 E Adv. Scientiflc
HP. 37 E Business Min $\begin{array}{llrr}\text { We carty a las Mgrmir } & 75.00 & 57.00 & \mathbf{1 8 . 0 0}\end{array}$ supplies.

PRINTERS

PAPER TIGER

PAPER TIGER			
445 G with Grophics	795.00	695.00	100.00
460 G with Graphics	1394.00	1195.00	199.00
560G New fullsize	1695.00	4399.00	296.00
EPSON			
MX 80 lmpaci	645.00	450.00	195.00
M $\times 701 \mathrm{mpoct}$	500.00	399.95	100.05
MX 100	995.00	895.00	100.00
CENTRONICS			
737.1 paralle	995.00	799.95	195.05
737.3 Serial	1045.00	899.95	145.05
DIABLO (Letter Quality)			
630 R102 bl-directiona tractors	2985.00	2699.00	266.00
1640 K 109 keyboord.			
traciors	3072.00	2899.95	172.05
630 RO Recleve Only	2710.00	2499.95	210.05
1650k 136 keyboardi Iractors	3220.00	2999.95	220.05

SPECIAL OF THE MONTH QSTAR PRESENTS THE QRAM

16 K RaM Lxpansfon Board for the Apple II

- Expands your 48 K Apple to 64 K - Includes installation and manua of progrommoble memory
- Fully assembled and tested

1 Lit

- Works with Microsoft Z-80 car Visicalc, LISA ver 2.0 and othe - ONE YEAR warranty software
- Eliminates the need for an Applesoft * or Integer Basic ROM Card

MONITORS
 NEC BMC Green
 $\begin{array}{rrr}\$ 285.00 & \$ 239.99 & \$ 46.00 \\ 275.00 & 229.00 & 46.00\end{array}$

SANYO MONITORS
HIgh Resolution, Number
High Resolution, Number 1 selier!
List

	(ist		
13" Color (new)			
high quality	\$550.00	\$388.00	\$162.00
12^{*} Green			
Phosphorous	360.00	235.00	125.00
12" Block \& White	340.00	217.00	123.00
15* Block \& White	370.00	235.00	135.00
$9{ }^{\text {P Black \& White }}$			
The Best Seller!	235.00	145.00	90.00

DISKETTES

SOLD IN BOXES OF 10
BUY $\$ 100$ of the
Follouing Diskelles

DYSAN	PRICE PER DISKETTE	
$104 / 15^{\prime \prime}$ SOFT SECTOR	$\$ 6.00$	$\$ 3.99 \quad \$ 2.01$

DEN.SOFI SECIO

MAXELL

MAXELL
MD. $5=$ SOFI SEC TORIDBL. DEN. MD. $2=$ = SOFIORIDEL. SIDEIDBL DEN
FD-1 ${ }^{\prime \prime}$ SOFT SECIDBL. DEN.
FD- $2 \mathrm{~B}^{\prime}$ SOFI SEC.IDBL MEMOREX
5" $34015^{\prime \prime}$ SOFI
$5^{\text {SECTOR }} 34205^{\prime \prime}$ SFT. BEC.IDEL. DEN. SECIOR
$8 " 30908^{\prime \prime}$ SFT.
SEC.IDBL. DEN.
43 Ci .

WHEN IN CALIFORNIA
 VISTT OtR
 RETAIL LOCATIONS
 In Wox, iland Hills
 20 (292) Ventura Blvd.
 (213) $7(4-68995$
 In Torrance/Lawndale
 16206 Hawthorne Bled.
 (213) 370-1577

Our
SAVE

| Dow Jones Porfollo
 Folder | $\$ 50.00$ | $\$ 39.00$ | 11.00 |
| :--- | ---: | ---: | ---: | ---: |
| Microchess 2.0 Chess
 Disk | 25.00 | 19.00 | 8.00 |

The Controller 1.1

General Business			
System) (16 Sector)	625.00	499.00	126.00
Apple Posi	50.00	39.00	19.00
The Shell Games Education I	30.00	24.00	6.00
Elementary. My Dear Apple-Education II (16 Sector)	30.00	24.00	6.00
Apple How Tol Education III (16 Sector)	50.00	40.00	10.00
Apple Bowl	25.00	19.00	6.00
Apple Witter	75.00	60.00	15.00
DOS Tool KIt (16 Sector)	75.00	60:00	15.00
Dow Jones News \& Quotes Reporter (16 Sector)	95.00	76.00	19.00
Apple Stellor Invoders	25.00	19.00	6.00
Apple Plot	70.00	49.00	21.00
Apple Adventure	35.00	28.00	7.00
Apple Music Theory (16 Sector)	50.00	39.00	11.00
Apple Jax Planner (16 Sector)	120.00	96.00	24.00

$$
\begin{aligned}
& \text { (16 Sector) } \\
& \text { Cassettes }
\end{aligned}
$$

$120.00 \quad 96.00 \quad 24.00$
Interger Bosic Cos

$$
\text { sette Demos } 10
$$ tapes)

30.00	24.00	6.00
25.00	19.00	6.00
200.00	147.00	53.00
60.00	45.00	15.00
150.00	119.00	31.00
75.00	60.00	9.00
200.00	159.00	41.00
495.00	399.00	96.00
500.00	350.00	150.00
150.00	130.00	20.00
250.00	219.00	31.00
250.00	219.00	31.00
PLE II		
List	Price	SAVE
$\$ 395.00$	$\$ 319.00$	$\$ 76.00$
395.00	319.00	76.00
200.00	159.00	41.00
200.00	159.00	41.00
200.00	159.00	41.00
150.00	119.00	31.00
189.00	150.00	39.00
129.00	97.00	32.00
150.00	119.00	31.00
99.00	72.00	27.00

Muse Supertexi II	129.00	97.00	32.00
Soltope Magic	150.00	119.00	31.00
	99.00	72.00	27.00

Winrow	99.00	72.00	27.00

A High-Level Language Benchmark

Jim Gilbreath
7266 Courtney Dr San Diego CA 92111

Some computer languages are faster than others, but just how much faster? This article presents the data from a curiosity-driven project that compares the performance of numerous high-level languages on the small computers to which I had access.

The benchmark tends to focus on the language characteristics that most interest me: capabilities and efficiencies for systems programming, software tools, and data manipulation (such as takes place in sorting, graphics, and games). I wanted to measure the ability of a language to do memory references, structured control statements, and simple input/output operations. I did not want to measure integer and real-number arithmetic performance because that depends on the processor and its capabilities (eg: precision of numeric calculations, the presence or absence of hardware multiply and divide circuits, and so on).

Acknowledgments

Grateful thanks are extended to members of the San Diego Computer Society and the S-100 Imovators Special Interest Group, for allowing me access to their systems and languages. Special thanks to Frank MacLachlan, Pete Ridley, and Mike Lehman for their encouragement and help.

Criteria

My criteria were that the benchmark should be short (not more than a page of source code), able to access a considerable amount of memory, devoid of multiplication or division performance, and easily coded in a variety of high-level languages. Finally, the benchmark should accomplish something useful (or at least recognizable and verifiable).

This benchmark is not the only criterion by which to judge a language or compiler.

At the January 1980 UNIX conference in Boulder, Chuck Forsberg told me about a program that used the Sieve of Eratosthenes algorithm (see references) to compute all prime numbers from 3 to 16,000 . Unlike other methods, the Sieve avoids division and is extremely fast because it uses prior knowledge about numbers that cannot be prime (ie: even numbers and multiples of primes). I modified Knuth's program to eliminate all multiplication, scaled it to fit most microcomputer memory capacities, and translated the program to every accessible high-level language.

I should emphasize that this benchmark is not the only criterion by which to judge a language or compiler. It doesn't explore or exploit such language features as recursion or sets, which may be very important for some applications. It does compare code generation and run times for fundamental language features, which are important for data accessing and structured program looping.

The Program

The program for each language was coded conventionally, taking advantage of features that are defined in the language, but not exploiting the clever or obscure innovations that can make it run faster. In most cases, some improvement in running time could be achieved by knowledgeable trickery. [In fact, that is the point of a benchmark program: to compare language performance by running the same algorithm encoded in different languages...GW] The program is small and simple, and, in most cases, easy to transfer. A few of the transla-

[^19]
INTRODUCING FONTWRITER BY MPI

Fontwriter is the newest addition to the growing family of MPI Printer products. It enables you to print BIG, GRAPHIC fonts on MPI Printers just as easily as others print standard characters. Your local Apple dealer has been sent a demonstration diskette that describes Fontwriter and all the other capabilities of MPI Printer Systems. Ask to see the disk and a powerful MPI printer at work. And remember, MPI printers, complete with dot addressable graphics, cost less than the low cost imported job that has been getting all the attention lately. MPI Printers are clearly the best printer buys in the US.

Micro Peripherals Inc. 4426 South Century Drive Salt Lake City. Utan 84107 (801) 263-3081
The Printer People
tions required more time because of the lack of control structures and my GOTO blunders. FORTRAN, FORTH, and COBOL (in order of increasing difficulty) gave me the most trouble.

Program listings in the ten most interesting languages appear in listings 1 thru 10. You might want to try a few on your favorite compilers.

Listing 1 shows the program in ZSPL, a structured high-level lan-

Listing 1: Implementation of the Sieve prime number program, written in ZSPL.

```
* Eratosthenes Sieve Prime Number Program in 2SPL
        ident zprime;
        external function aryset;
        external function exit;
        external function printf;
        define true := 1;
        define false := 0;
        define size := 8190;
        define sizepl := 8191;
        byte array flags{sizepl];
        integer count;
        integer i;
        integer iter;
        integer k;
        integer prime;
        printf(-1,"l0 iterations&M&J")
        for iter := l to lo;
        count := 0;
        aryset(true,flags,size);
        for i := 0 to size;
            if flags[i] = true;
                prime := i + i + 3;
                k := i + prime;
                while k <= size;
                    flags[k]:= false:
                    k := k + prime;
                endwhile;
* debug aid *
                printf(-1,"od&M&J",prime);
                count := count + 1;
            endif;
        endfor:
endfor:
printf(-1,"8d primes",count): type no. primes found
exit(); return to cp/m
end;
```

Listing 2: Implementation of the Sieve program, written in Pascal.

```
(* Eratosthenes Sieve Prime Number Program in PASCAL *)
PROGRAM PRIME;
CONST
    SI2E = 8190;
VAR
    FLAGS : ARRAY [O..SIZE] OF BOOLEAN;
    I,PRIME,K,COUNT,ITER : INTEGER;
BEGIN
WRITELN(`10 iterations");
FOR ITER := l TO lO DO BEGIN
    COUNT := 0;
        FILLCHAR(FLAGS,SIZEOF(FLAGS),CHR(TRUE));
        FOR I := O TO SIZE DO
                IF FLAGS[I] THEN BEGIN
                                    PRIME := I+I+3;
                                    K := I + PRIME;
                                    WHILE K <= SIZE DO BEGIN
                                    FLAGS[K] := FALSE;
                                    K := K + PRIME
                                    END;
                                    COUNT := COUNT + 1
                                    (* WRITELN(PRIME) *)
                                    END;
        END;
WRITELN(count," primes")
END.
```

guage that is tailored to systems programming. ZSPL is chosen as the first example because you have probably not seen it before and because it is easy to read and understand.

Begin by initializing an array of 8 kilobytes ("flags") to true. Flags(0), flags(1), flags(2),...represent the numbers $3,5,7, \ldots$ as numbers being tested for primeness. (See table 1.) The program uses the prior knowledge that $0,1,2$, and 3 are the first four prime numbers, that all other even numbers are not prime, and that all multiples of prime numbers are not prime, to iterate through an array of flags, calculating primes as the value of variable PRIME (always 3 plus twice the current array index, I). As the program progresses, it also sets other values that cannot lead to a prime to false.

When the program was timed, the second "printf" statement was made a comment and, thus, effectively removed. It remains in listing 1 so that you can see where to print the value of each prime number during debugging.
For timing purposes, the program is executed (iterated) ten times. A

Index	Flags (Index)	Prime Number Representative by Index
0	TRUE	3
1	TRUE	5
2	TRUE	7
3	FALSE	9
4	TRUE	11
5	TRUE	13
6	FALSE	15

Table 1: Values in array FLAGS after first iteration ($I=0$). The primeness of 3, which is the potential number corresponding to FLAGS(0), has just been determined. Note that all multiples of 3 have been ruled out as potential primes: odd multiples $(9,15, \ldots$) have had their corresponding FLAG entries (FLAG(3), FLAG(6),...) set to "false"; even multiples $(6,12, \ldots)$ have already been ruled out.

Hard Disk and Streaming Tape
reliability and versatility that can't be beat

OEM CONTROLLERS

- Multibus
- General Purpose
- Sion

- Lowest cost/MByte from any manufacturer
- CP/M * compatible "drop in" BIOS
- Single S100 card controller
- Fully expandable up to four drives, $8^{\prime \prime}$ or $14^{\prime \prime}$
- Reliable high performance Priam Winchester Disks
- Immediate delivery

- 8" Winchester 10 or 32 MByte formatted
- Integrated streaming cartridge backup
- Streaming backup at 5 MB/min
- Selective file backup under CP/M
- Versatile parallel I/O or DMA interface

ADES

EPSON MX-8O

Now in stock!

The MX• 80 dot matrix printer Unequalled Epson reliability. Has all the features of the MX. 70 plus more power and extra functions.

C-ITOH STARWRITER: LETTER

QUALITY PRINTING FOR UNDER
\$2000!/This daisywheel printer gives high quality at a low price 25 cps . Parallel and serial interfaces avallable

NEC SPINWRITER FROM THE FIRST NAME IN LETTER QUALITY PRINTERS/Compumart olters beautiful print quality with NEC Spinwriter Terminals. We carry all models from RO THRU KSR WITH NUMERIC KEYPAD-5510-5530. All versions give unsurpassed hard copy output!

NEW INTEGRAL DATA'S 560 PRINTER/All the exciting teatures of the 400 series plus $141 / 2^{\prime \prime}$ paper capacily. 132 col. graphics printer IDS 445. Priced lower than the 440 and equipped with a better print head. With \& w/o graphics.
IDS 460. Features include correspondence quality printing, high resolution graphics

Spinwriter 5520

CENTRONICS PRINTERS

3 SERLAL MODEL 737
The closest thing to letter quality print for under S1000. Lis! S1045

SPECIAL $\$ 795$
737.1 Parallel Interiace

List S995 SALEPRICE \$695.
PLUS EXCITING REBATE OFFER
ON CENTRONICS PRINTERS.

OMNI 810 PRINTER FROM TEXAS

INSTRUMENTS CALL US
The 820 RO PACKAGE includes machine mounted paper tray and cable. A compressed print option and device forms control are standard features.
THE 820 KSR PACKAGE includes fully ASCII Keyboard plus all of the fealures of the RO

CLEARANCE ZENITH COLOR
VIDEO MONITOR
\$349.
SUPER SELLING TERMINALS FROM
LEAR SIGLER/We have the following Lear Siegler terminals in stock at prices too low to print! Call tor quotes
ADM-3A/Industry's tavorite dumb terminal for some very smart reasons/
ADM-3A + NEW from Lear Siegler. CALL!
IT IS HERE! It is the new Intermediate Terminal from Lear Siegler.

SANYO MONITORS AT LOW COMPUMART PRICES/Sanyo's new line of CRT data display monitors are designed tor the display of alphanumeric or graphic data.
9" SANYO B/W
$\$ 169$.
$12^{\prime \prime}$ SANYO B/W
12" SANYO W/
GREEN SCREEN
$13^{\prime \prime}$ SANYO COLOR

Sanyo $13^{\prime \prime}$ Color Monitor
NEC COLOR MONITOR/RECEIVER HIGH RESOLUTION/
Composite video using BNC con nectors, 8-Pin connector for VCR/ VTR video loop In/Out and television reception.

Visit our giant

ANN ARBOR STORE

L250 North Main Street Ann Arbor. Michigan

FREE CATALOGS MICRO

The original and most com plete catalog of micro-com puters, accessories and peripherals.

DEC PDP/

 LSI- $\mathbf{1}$ systems configured and integrated with other manutac turers compat ibles. The first, best DEC based systems catalogSend for them!

HP-41C CALCULATORS

MEMORY MODULES tor storing programs of up to 2000 lines of program memory
"EXTRA SMART" CARD READER. Records programs and data back onto blank magcards
THE PRINTER. Upper and lower case. High resolution plotting. Portable thermal operation
APPLICATION MODULES

NEW SUPER 41-CV SYSTEMS with Quad RAMS built-in Maximum memory on-board leaves slots open for Application Pacs and peripherals.

+ CARD READER
+ CARD READER + PRINTER QUAD RAMS equivalent to tour Memory Modules all packed into one.

MATROX PRODUCTS/Compumart stocks the complete line

DEC LSI-11/Compumarl now offers the entire product line. CALL FOR PRICES AND DELIVERY

NOVATION CATACOUSTIC

MODEM Answer Originale.
NEW! D-CAT Direct Connect Modem from Novation.

Giltronix Switch
NEWI GILTRONIX RS 232 SWITCH/ The ultimate in flexibility. You can connect three peripherals to one computer or three computers to one peripheral. Switches the eight most important RS 232 signals

DYSAN DISKETTES/Single side, single density Hard or Soft Sector
\$5. ea.
MEMOREX 3401's/5l/4"disks \$3.25 with hubring for Apple $\$ 3.50$ MEMORY INTEGRATED CIRCUITS/ Call for quantity discounts when ordering over 50 units
MOTOROLA 4116 (200 Nano. second Plastic)

RM EXPANSION ACCESSORIES FOR AIM -

CALL SPECS AND PRICES

APPLE III IS IN STOCK/Apple III ntormation Analyst Package128 K Apple III. Black and White Monitor 12", and information ana lyst software.

TOP SOFTWARE PACKAGES FROM COMPUMART

VISICALC/FOR APPLE/FOR HP/ FOR COMMODORE/FOR ATARI

SOFTWARE FROM APPLE/Apple Plot (the pertect graphic comple ment for Visicalc/Dow Jones News \& Quotes/Apple Fortrom/Apple Writer/Pascal Language Systern/ Controller Business System

PERSONAL SOFTWARE/Visidex/ VisiTrend/VisiPlot/VisiTerm MUSE/Super Text

Apple Sottware

MOUNTAIN COMPUTER/
Expansion accessories for Apple/ Super Talker/The Music System/ ROM plus board with Keyboard tilter/ROM Writer/Clock Calendar/AtoD and Dlo A Converter/ Clock for Apple/CPS Multifunction Board

VIDEX/Video Term ($80 \mathrm{col} \times 24$ line, 7×9 Matrix plug in compati ble board for Apple II) w/ wo graphics EPROM/SSM Serial \& Parallel. Apple Interface/ABT's Numeric Key Plan/California Microcomputer Keyboard

NEW!
VIC 20 PERSONAL COMPUTER FROM COMMODORE
\$299.

SEE US AT THE NORTHEAST COMPUTER SHOW, OCTOBER 15-18, 1981, BOOTH \#608

IMPORTANT ORDERING INFORMATION
CALL: 800 343.5504. in Massachusetts (017) 491.2700 . phones open from 8.30 a m 10700 p.m Mon.Fri 1100 a m 10400 pm Sat PO's. Accepled from Dun \& Bradstreet ialed companies-shipment
contingent upon receipts of signed purchase order
SALE PRICES Valid tor month of magazine date only-all pnces sub.
ject to change wilhout notice Our Ann Arbor retail store is open 11.00 am to 7.00 pm Tues Fri. $10: 00 \mathrm{am} 105.00 \mathrm{pm}$ on Salurdays

$\$ 1895$

SAVE OVER $\$ 200$ ON OUR BEST SELLING APPLE SYSTEM/ Sysiem includes a 48 K Apple II. Apple Disk. DOS 3.3 and Controller and a Sup R MOD RF Modulator.

List 52209.
EXCLUSIVE FOR THE APPLE:
Magic Wand. Videx. Z-80 softcard (Requires 48 K Apple and disk).

COMPLETE SUB-SYSTEM \$925.

APPLE ACCESSORIES

CHOOSE FROM: Silentype Printer w/x lace/Light Pen/Easy Writer (80 col. need a Videx)/Clock for Apple.
FROM MICROSOFT: I6K RAM Board/FORTRAN.
FROM COMPUTER STATION: Hi-Res Dump for 460 Printer.
OUR APPLE INVENTORY IS COM-

fappleicompuber
Authorized Dealer Accept No Less

CRISP LETTER QUALITY OUTPUT UNSURPASSED EASE OF
OPERATION
This Compumart/Commodore system includes a COMMODORE 8032 32K CPU, 94040 DUAL DISK, a C-ITOH PRINTER and $\mathrm{x} /$ tace and WORD PRO 4 PLUS (all cables included). List $\$ 5685$.
EDUCATORS: COMMODORE
HAS EXTENDED ITS 3 FOR 2 DEAL
A COMPLETE SYSTEM: includes a DUAL DISK DRIVE/TRACTOR PRINTER and an 80 COLUMN
32 K CPU. No interfaces needed. Cables included. List S3985. COMPUMART $\$ 3635$.
SAVE $\$ 200$ ON COMMODORE ACCESSORIES WTTH PURCHASE OFA 32K PET-SAVE $\$ 100$ WITH A 16K PET.

CHOOSE FROM:

Visicalc/ Word Pro 4/Wordcratt 80/ Ozz the Intormation Wizzard/ Dow Jones Portiolio Mgmt System/ Assembler Development Package

$\$ 4695$

This Basic 16k BYTE system (expandable to 32 k) includes: CRT DISPLAY, THERMAL PRINTER, MAGNETIC TAPE CARTRIDGE. 6 ROM CAPACITY VIA ROM DRAWER, 4 IO PORTS. COMMUNI-CATION-HPIB, RS232

PLUS

YOUR CHOICE OF 4 SOFTWARE
PACS OR TWO OF OUR "BEST SELLERS" - (VISICALC, GRAPHICS PRESENTATION, INFORMATION MANAGEMENT) SAVE $\$ 400$

HP-83 SYSTEM

This Basic System from HewletlPackard includes HP-83/ROM DRAWER/MASS STORAGE ROM/ 51/4" SINGLE MASTER FLEXIBLE DISK DRIVE/HP-IB INTERFACE MODULE/2 METER HP-1B CABLE. COMPLETE SYSTEM $\$ 4249$.

HEWLETT PACKARD Authorized Dealer Accept No Less

FROM ROCKWELL
Our AIM Starter System for Educational \& Laboratory use includes 4K AIM/BASIC \& ROM/ASSEMBLER \& ROM/POWER SUPPLY EGI ENCLOSURE/CRAIG TAPE RECORDER.

ACCESSORIES FOR AIM STARTER:
PL 65 High Level Language/Paper for the Aim (roll)/Rockwell's 4 slot Motherboard/

WE ALSO CARRY RM EXPANSION ACCESSORIES FOR THE AIM-65.

Grammodore
 Authorized Dealer Accept No Less

800-343-5504
 IN MASS CALL 617-491-2700

COMPUMART

65 Bent Street, Dept 109

PO Box 568, Cambridge, MA 02139
From THE LEADER.
We just might be the largest independent small systems dealer in the country. Here's why:
COMPUMART has been serving the computer needs of industry since 1971.
We stock, for immediate shipment. only those products from the finest micro-computer manufacturers.

And any product. except software. can be returned within 10 days for a full refund-even it you just change your mind. We also honor all manufacturers' warranties. Our expert technicians will service any product we sell

Call us for more information on products, product contiguration and service. Our phones are open Monday thru Fridary. 8:30 a.m. 1o 7:00 p.m. and Saturdary 11:00 am to 4:00 p.m
We have a statt of highly knowledgeable sales people waiting to hear from you, and to help. Because service is what we're all about.

You can save buying wholesale through our firm. As your agent we will buy computers on the wholesale market for you. Our fee is one fourth of what we save you off list price. Access to over 500 manufacturers. Minimum fee of $\$ 75$ per order. Call for other prices.

computers

Alpha Micro 10MEG
Altos 8000-10
Altos 8000-15
Archives 64K QD
Cromemco System 3
Dynabyte 64K 2 MEG
Calif. Comp. 64 K 1 MEG
Ithaca System 2A
NEC PC-8000
Northstar Hiz. II 64K DD
Northstar Hrz. II 64K 00
Televideo Sys. I
DISK DRIVES
Corvus 5 MEG Hard
Corvus 20 MEG Hard
Lobo w/ cont.
Lobo w/o cont.
CRT'S
ADDS View Point
DEC VT 100
Hazeltine Esprit
Lear Siegler ADM 3A +
Whse. Fee

NEC 12 "Monitor
Televideo TVI 910
$\$ 11,204$
5,695
$\$ 1,243$
701 $\begin{array}{ll}5,695 & 701 \\ 4,014 & 494\end{array}$ 4,450 $\quad 512$ 5,357 659 5,929 691 Callfor Price $2,520 \quad 270$ $907 \quad 98$ 2,646 380 $\begin{array}{ll}2,842 & 400 \\ 2,600 & 349\end{array}$
2,588 290
$4,450 \quad 500$ $416 \quad 46$

- 36

Televideo 950
PRIMTERS
Anadex 9501
Centronics 739
C. Itoh 25 cps
C. Itoh 45 cps

Diablo 630 R/0
Epson M×80
IDS 560/G
Malibu 200
NEC 5510 w/Tractor
II 810 Basic
SOFTWARE
Word Star
Spelli Guard

Prices subject to change withoul notice.
We are buying agents for overseas computer dealers. Export services available.

International Telex 470851

The Purchasing Agent 1635 School Street, Suite 101 Moraga, CA 94556
(415) 376 -9020
stopwatch measures the time elapsed between the moment when the computer types the message " 10 iterations" and when it types the total number of primes (1899 is correct). On fast machines, the iterations were increased to 100 to achieve a more precise timing result, while only one iteration was performed on some of the slow BASIC interpreters.

The next language example is PASCAL, shown in listing 2. Although the syntax is a little different and the comments have been deliberately eliminated, you should have no difficulty seeing how the program works.

The same is true of listing 3 , coded in C , and listing 4 , coded in RATFOR. (Note the similarity between C and RATFOR - it's not an accident.)

The PL/I version in listing 5 is also fairly clear, but listing 6 in FORTRAN and listing 7 in BASIC (with their GOTOs and CONTINUEs) tend toward obscurity. Fortunately I had a lot of help with the FORTH version, shown in listing 9.

Testing Conditions

The most easily measured characteristic was execution time; all execution times listed in the tables are for

Text continued on page 190

Listing 3: Implementation of the Sieve program, written in C.

```
/* Eratosthenes Sieve Prime Number Program in c */
|define true l
#define false 0
#define size 8190
#define sizepl 8191
    char flags[sizepl];
main() {
            int i,prime,k,count,iter;
            printf("l0 iterations\n");
            for(iter = l;iter <= 10;iter ++) {
                    count=0;
                    for(i= 0;i<< size;i ++)
                    flags[i] = true;
            for(i = 0;i <= size;i ++) {
                if(flags[i]) {
                        prime = i + i + 3;
                                    k = i + prime;
                                    while(k <= size) {
                                    flags[k] = false;
                                    k += prime;
                                    count = count + 1;
                        }
                        }
            printf("\nsd primes",count);
```

Listing 4: Implementation of the Sieve program, written in RATFOR.

```
# Eratosthenes Sieve Prime Number Program in RATFOR
    define(size,8190)
    logical flags(size+l)
    integer i,prime,k,count,iter
    call msg(" 10 iterations\. ")
    do iter = 1,10 {
        count=0
        do i = 0,size
            flags(i)=.tr' 2..
        do i = 0,size {
            if(flags(i)) !
                prime = i+i + 3
                k = i + prime
                while(k<=size) (
                    flags(k)=.false.
                    k = k + prime
                count=count+l
            l
            l
    call putdec(count); call msg(" primes.")
    end
```


Put Time and BSR/X-10 Control in Your APPLE II THUNDERCLOCK PLUS ${ }^{\mathrm{m}}$

The THUNDERCLOCK PLUS is two peripheral systems on one card for your APPLE II, II PLUS, or III. An accurate, reliable, real-time clock/calendar and an interface for the popular BSR X-10 Home Control System.
The THUNDERCLOCK clock/calendar makes accurate time and date available to your programs: month, date, day-of-week, hour, minute, and second, in any of four software selectable formats. On-board batteries keep your THUNDERCLOCK running when your APPLE II is turned off for up to four years before battery replacement. On-card 1K firmware makes reading or setting the time easy from APPLESOFT or INTEGER BASIC, PASCAL, or assembly language programs. And it provides software selectable interrupts at any of three rates: 64, 256, or 2048 interrupts/second. All features are soft ware selectable - no switches or jumpers!

THE PLUS

Add THUNDERWARE'S X-10 ULTRASONIC INTERFACE

OPTION to your THUNDERCLOCK and your programs can send all 22 BSR X- 10 commands so you can remotely control lights and appliances. Plus a powerful disk software package! The THUNDERWARE SCHEDULER software lets you create schedules to control lights, appliances, security systems, or almost any other electrical device. The soft ware includes: SCUTIL - the SCHEDULER utility that lets you make or change a schedule, and SCHED - executes your schedules in real-time using the THUNDERCLOCK. SCHED runs in the 'background' so you can run other programs in the 'foreground'. Our PASCAL soft ware lets you use all the THUNDERCLOCK'S features and sets the filer date whenever you boot. The THUNDERCLOCK PLUS is a SYSTEM for your APPLEII. Supported by intelligent, easy to use firmware, a powerful software package, and good documentation!

See your APPLE dealer.

Suggested retail prices:
THUNDERCLOCK PLUS. $\$ 139$
Clock/calendar card with batteries and user's manual
X-10 INTERFACE OPTION $\$ 49$
BSR X-10 Ultrasonic interface, disk with SCHEDULER SOFTWARE \& demos, and user's manual
PASCAL SOFTWARE
Disk with PASCAL interface for clock and X-10 interface, and user's guide
MANUALS ONLY, each . $\$ 5$
Califurnia residents add 6% sales tax
If your dealer doesn't carry the THUNDERCLOCK PLUS:
ORDER TOLL FREE (VISA/MC) CALL: 800-227-6204 Ext 307 (Outside California) 800-632-2131 Ext 307 (California Only)

OR WRITE TO: THUNDERWARE INCORPORATED
P.O. Box 13322, Oakland, CA 94661

Let the THUNDERCLOCK PLUS time/date stamp your DOS files whenever you create or modify them with our DOS-DATER software.

The THUNDERCLOCK PLUS will work in any APPLE, including the APPLE III.

BSR X-10 is a trademark of BSR (USA) LTTD. APPLE II is a trademark of API'LE COMPLITER, INC

MTI stocks'em all for faster delivery.

No hidden charges. Prices include delivery Ask about our "OED" discounts. VISA and MasterCard orders accepted

TT100 with graphics pkg ADM 3 A with graphics pkg 1995
2075 300 BAUD TELEPRINTERS
LA34DA DECwriter IV
LA36 DECWriter II
Teletype 4310
Teletype 4320
Diablo 630 Ro
Diablo 1640 KSR
Diablo 1650 KSR
TI 743 (portable)
T1 745 (port/built- in coupler)
T1 763 (por/tbubble memary)
TI 765 (port/bubble/b i. coupler)
Insigh Series
600 BAU TELEPRINTERS
Tl 825 RO impact.
11825 KSR imp
T1 825 RO pkg.
T1 825 KSR Pkg.
TI 840 KSR impact
1200 BAUD TELEPRINTERS
LA120 AA DECwr iter III (forms pkg.)
LA1 20 AA DECWriter III lforms
TI 783 jportable)
T 785 loan
TI 785 fport/built-in couplerl
TI 810 RO impact
TI 810 RO pkg .
TI 820 KSR impact
TI 820 RO
TI 820 KSR pkg .
TI 820 RO pkg
2400 BAUD
Dataproducis M200 12400 baud
DATAPRODUCTS LINE PRINTE
B300 1300 LPM band)
8900 (900 LPM band)
BP 9500 (1500 LPM band)
2230 (300 LPM drum)
2260 (600 LPM drum)
2290 (900 LPM drum)
ACOUSTIC COUPLERS
A/J A242-A 1300 baud orig. 1
A/J 247 (300 baud orig.)
A/S 1234 (Vadic compatible)
Vadic VA 3413 ($300 / 1200$ orig.) Vadic VA 3434 (1200 baud orig. 1 MODEMS
GOC 103A3 (300 baud Beli)
GOC 2025/T (1200 haud Bell)
GDC 212. A ($300 / 1200$ baud Bell)
A/J 1256 (Vadic compatible)
VA 103 (300 baud orig./ans. in phone)
VA 3451 (lorig/ans. triple modem)
CASSETTE STORAGE SYSTE
Techtran 816 (store/forward)
Techtran 817 (store/for/speed up)...
Techtran 818 (editing
F LOPPY DISK SYSTEMS
Techtran 950 (store/forward)

Techtran 951 lediting

Distributors, New York, New Jersey and Ohio. New York:
516/482-3500,212/895-7177,518/449-5959
Outside N.Y.S.: 800/645-8016
New Jersey: 201/227-5552
Ohio: 216/464-6688

Listing 5: Implementation of the Sieve program, written in PL/I.
/* Eratostnenes Prime Number Program in PLI-80 */ prime:
proc options(main);
\&replace

$$
\begin{aligned}
& \text { size by } 8190, \\
& \text { false by }-0 \text {, } \\
& \text { true by } 10 \mathrm{~b} \text {; }
\end{aligned}
$$

dcl

> flags $(0: 8191)$ bit(l)
> (i, prime, k, count, iter) fixed;
put list("l0 iterations");
do iter = 1 to 10 ;
count $=0$; do $i=0$ to size; flags(i) = true; end; do $i=0$ to size; if flags(i) then do; prime $=i+i+3$ $\mathrm{k}=\mathrm{i}+\mathrm{prime} ;$

तo while (k <= size); flags(k) = false;
$k=k+p r i m e ;$
end;
count $=$ count +1 ; end;
end;
end;
put skip list(count, "primes");
end prime;

Listing 6: Implementation of the Sieve program, written in FORTRAN.

```
C Eratosthenes Sieve Prime Number Program in FORTRAN
    LOGICAL FLAGS (8191)
    INTEGER I,PRIME,K,COUNT,ITER
    WRITE (1,50)
50 FORMAT(" 10 iterations")
    DO 92 ITER = 1,10
    COUNT=0
    DO 10 I = 0,8190
    FLAGS(I) =.TRUE.
    DO 91 I = 0,8190
    IF(FLAGS(I).EQ..FALSE.) GOTO 91
    PRIME=I+I+3
    K=I+PRIME
    IF(K.GT.8190) GOTO 90
    FLAGS (K) = .FALSE.
    K=K+PRIME
    GOTO 20
    COUNT=COUNT+1
    WRITE(1,100) PRIME
    CONTINUE
    CONTINUE
    WRITE(1,200) COUNT
    FORMAT(1X,I6,' primes")
    STOP
    FORMAT (1X,I6)
        END
```

Listing 7: Implementation of the Sieve program, written in BASIC.

```
REM Eratosthenes Sieve Prime Number Program in BASIC
l SIZE = 8190
DIM FLAGS(8191)
    PRINT "Only l iteration"
    COUNT = 0
    FOR I = O TO SI2E
    FLAGS(I) = l
    NEXT I
    FORI = O TO SI2E
10 IF FLAGS(I) = 0 THEN 18
11 PRIME = I+I + 3
12 K = I + PRIME
13 IF K > SIZE THEN }1
14 FLAGS (K) = 0
15 K = K + PRIME
16 GOTO 13
1 7 \text { COUNT = COUNT + 1}
1 8 \text { NEXT I}
19 PRINT COUNT," PRIMES"
```


FMS-80 Organizes Your Organization

5MS-80, a data base management system, offers the user a quick and easy way to organize and elficiently manipulate data so sound decisions cam be marle on facts displayed.
FMS-80 ${ }^{\text {ºD }}$ is the most powerful stand alone DBM program available to the microcomputet industry. Completely mena dri ren and writ ey in assem language it offers
these features:

- User definable File Definitions File Definitions
Screen Displays Reports (with math and field break analysis)
Sclection Criteria break analysis)
Sclection Criteria (on any or all fields)

thencrigar.a
 an

Menus (that applications programs can be selected from)

- Instantancous data query on indexed records.
- Mathematical manipulation of numeric data fields using the report generator or the programming language EFM (Extended File Maintenance)
- Easy to use video "how to" training tapes are available.
- Manipulation of up to 19 different data files (using EFM) at one time and displa ing this information on the screen,
rating reports, generating other data files or online updating of input files that already exist
- FMS-80 is able to call other programs like subroutines in EFM
- FMS-80 is able to read data files that other programs have generated
- No restrictions to record size other than available RAM memory space
- Operates under CP/M, MP/M ${ }^{\circ}$ or $\mathrm{CDOS}^{\circ \circ}$

FMS-80 allows the flexibility to quickly create programs that allow data to be entered in a form that a secretary recognizes and generates reports that the manager requires.
If you're continuously' asked to do applications programs and don't have time to do it in BASIC, consider FMS-80. For additional information contact

Systems Plus, 3975 East Bayshore, Palo Alto, CA 94303. Phone

415/969/7047

SystemsPlus

SPECTACULAR ofrens

BASF "FLEXYDISK" Superior Quality data storage medium
Certified and guaranteed 100% error free.

SINGLE SIDED-SINGLE DENSITY
$51 / 4^{\prime \prime}$ or $8^{\prime \prime}$ Diskettes 10/\$24 $51 / 4^{\prime \prime}$ or $8^{\prime \prime}$ Vinyl Storage Pages10/\$5

MAXELL-DISKETIES	
The best quality	
diskette money can buy.	
Approved by Shugart	
and IBM.	
Sold only in boxes of 10	
$5^{\prime \prime}, 1$ side	\$3.30
$8^{\prime \prime}$, 1 -side .	. $\$ 3.90$
5", 2-side $\$ 4.25$
8", 2 -side	. $\$ 5.60$
ALL MAXELL DISKEtTES ARE DOUBLE DENSITY	
LIBRARY CASE.	
3 -ring binder album.	
Protects your valuable	
protected on all sides	
Similar to Kas-sette storage box.	
Library 3-Ring Binder	
51/4" Mini Kas - sette/10	
8'K Kas-sette/10.......	.

DISKETTE DRIVE HEAD CLEANING KITS Prevent head crashes and insure efficient, errorfree operation. $51 / 4^{\prime \prime} \text { or } 8^{\prime \prime}$	
SFD CASSETTES C-10 Cassettes............. 10/\$7 (All cassettes include box \& labels)	
Get 8 casseltes, $\mathrm{C}-10$ sonic and Cassette/8 library album for only $\$ 8.00$	

HARDHOLE

Reinforcing ring of
tough mylar protects
disk from damage
51/4" Applicator \$3
51/4" Hardholes \$6 8" Applicator $\$ 4$ 50/8" Hardholes $\$ 8$
VISA - MASTERCHARGE - MONEY ORDERS CERTIFIED CHECK - FOR PERSONAL CHECKS ALLOW TWO WEEKS - C.O.D. REQUIRESA 10\%

DEPOSIT • CAL. RES. ADD 6\% SALES TAX
MIN \$2 SHIPPING \& HANDLING - MINIMUM
ORDER $\$ 10$ - SATISFACTION GUARANTEED OR FULL REFUND
Write for our free catalog
ABM
8868 Clairemont Mesa Blvd. San Diego, CA 92123 Toll Free
1-800-854-1555 For Orders Only
For informafion or California orders
(714) 268-3537

Text continued from 186
ten iterations. In some cases the other parameters are missing because they are not applicable or could not be determined in the amount of time I had on the system. The values for memory size include the complete program memory space, but not the 8190 byte flag array.

The time required to compile and load (where applicable) was measured by setting up a command language file (via such commands as

SUBMIT in CP/M or "shell" in UNIX) to control the compilation, loading, and execution. Compile timing began with the carriage return on the SUBMIT line, and ended as the program began execution, as evidenced by the beginning message " 10 iterations". All the 8 -bit systems except the Apple used 8 -inch singledensity floppy drives, and all Z80-based systems ran at a 4 MHz clock rate with no wait states (ie: pro-

Text continued on page 194 Tables and listings continued on page 192

Listing 8: Implementation of the Sieve program, written in PLMX.

```
/* Eratosthenes Sieve Prime Number Program in PLMX */
CPRIME:
DO;
    DECLARE CR LITERALLY -13*,
        LF LITERALLY " 10*;
    DECLARE TRUE LITERALLY '1',
            FALSE LITERALLY "0';
    DECLARE SIZE LITERALLY '8190*;
    DECLARE FLAGS (2000H) BYTE, NBFR(10) BYTE;
    DECLARE (I,PRIME,K,COUNT,ITER,STATUS) ADDRESS;
    DECLARE DPRIMES (*) BYTE DATA ("%D PRIMES");
    DECLARE BUFFER (*) BYTE DATA ('l0 ITERATIONS`,CR,LF);
NMOUT:
PROCEDURE (VALUE,BASE,LC,BUFFADR,WIDTH) EXTERNAL;
    DECLARE (VALUE,BUFFADR) ADDRESS;
    DECLARE (BASE,LC,WIDTH) BYTE;
END NMOUT;
WRIT'E:
PROCEDURE (FUNCTION,BUFFER,COUNT,STATUS) EXTERNAL;
    DECLARE (FUNCTION,BUFFER,COUNT,STATUS) ADDRESS;
END WRITE;
    CALL WRITE(0, .BUFFER, LENGTH(BUFFER), .STATUS);
    DO ITER= 1 TO 10;
        COUNT = 0;
        DO I = O TO SIZE;
            FLAGS(I) = TRUE;
        END;
        DO I = O TO SIZE;
                    IF FLAGS(I) = TRUE THEN
                    DO;
                            PRIME = I + I + 3;
                    K = I + PRIME;
                    DO WHILE K <= SIZE;
                    FLAGS(K) = FALSE;
                    K = K + PRIME;
                    END;
                    COUNT = COUNT + 1;
                    END;
        END;
    END;
    CALL WRITE(0,.DPRIMES,LENGTH(DPRIMES),.STATUS);
    CALL NMOUT(COUNT,10," ,.NBFR,10);
    CALL WRITE(0,.NBFR,10,.STATUS):
END CPRIME;
```

Listing 9: Implementation of the Sieve program, written in FORTH.

```
(Eratosthenes Sieve Prime Number Program in FORTH )
8190 CONSTANT SIZE
O VARIABLE FLAGS SI2E ALLOT
: DO-PRIME
    FLAGS SIZE I FILL (SET ARRAY)
    0 (0 COUNT ) SIZE 0
        DO FLAGS I + CO
        IF I DUP + 3 + DUP I +
            BEGIN DUP SIZE<
            WHILE 0 OVER PRIME + C! OVER + REPEAT
            DROP DROP 1+
        THEN
    LOOP
    . ." PRIMES" ;
```


Glitch-proof motion controller makes all the right moves. At the right price.

The PC-400 is the latest in simplified, economical motion control for machines and processes from G\&L. And, it will control more motions than any other programmable controller. Right this minute it is doing glitch-proof duty in more than 100 closed loop servo installations, controlling lathes, drills, assembly lines, balancers, transfer lines, automatic welders, flame cutters and automated factories.

The versatile PC-400 uses the familiar ladder diagram for pro-
gramming. Feedback can be resolver, encoder, potentiometer or Inductosyn*. It calls subroutines by letter from the ladder diagram to simplify programming. And the PC-400 can be operated in the "interrupt" mode where subroutines can be executed on a precise 2-, 4-, or 8-millisecond basis.

G\&L maintains an extensive subroutine library for PC-400 users: for example, 8 channel D/A and A / D, video display, servo positioning, LED digital readout, step motor control, digitizing, etc.

We'll supply application notes for each subroutine . . . purpose, parameters, hardware requirements, and ladder diagram examples.

For complete details, plus facts about our free one-day PC-400 seminars (to be held in major cities coast to coast this year), write: Giddings \& Lewis Electronics Co., P.O. Box 1658, 666 S. Military Rd., Fond du Lac, WI 54935, U.S.A. Telephone (414) 921-9400.

G\&L PC-400.

Electronics Division

Language
and Machine
Digital Research PLII-80, Z80
Whitesmiths C, $Z 80$
TSW RATFOR, Z80
Microsoft FORTRAN, Z80
Pete Ridley's ZSPL, Z80
Interactive Systems ZC, Z80
Microsoft BASIC compiler
(using integer variables) Z80
M T Microsystems Pascal MT +, Z80
SCI PLMX, Z80
BD Systems C version 1.0, Z80
Intel PLM MDS, 8080
BD Systems C version 1.32, Z80
UCSD Pascal, Pascal-100
fig-FORTH, Z80
Ithaca Intersystems Pascal/Z, Z80
JKL FORTH, Z80
Atari Pascal, Atari 800
UCSD Pascal, $Z 80$
Miller Microcomputer Systems
MMSFORTH, TRS-80 Model I (Z80)
FORTH 6502
UCSD Pascal TRS-80 Model II (Z80)
SWEET 16 (Apple II)
JKL FORTH MDS, 8080
Pascal/M, Z80
JRT Pascal, 280
CBASIC2 (integer variables), Z80
UCSD Pascal, Apple II (6502)
Microsoft BASIC compiler
(using real variables), Z80
tiny-c 2 (compiler), Z80
CBASIC2 (using real variables), $Z 80$
Microsoft MBASIC, Z80
Microsoft MBASIC, TRS80 Model II (Z80)
Apple Integer BASIC, 6502
Applesoft (real) BASIC, 6502
Commodore PET BASIC, 6502
Computerware BASIC, 6809
tiny-c, Z80
Microsoft COBOL version 2.2, z 80

Compiled
Bytes \quad Total
242
290
203
228
230
292
306
30
340
493
268
375
298
-
761
-
176
282
$\begin{array}{cc}282 & 8282 \\ - & -\end{array}$
$282 \quad 82$
Compile and
Load (Seconds)
(Seconds)

Ratio to PLI-80
1.00
1.11
1.18
1.21
1.31
1.32
1.32
1.35
1.60
2.50
3.43
3.53
3.86
6.07
7.78
8.00
13.57
17.07
18.07
19.93
19.57
20.86
31.43
32.14
33.64
34.57
36.86
51.07
66.42
102.14
137.14
160.71
165.71
200.43
227.14
307.30
337.10
365.30

Table 2: Comparison of programs running on 8-bit machines.

Listing 10: Implementation of the Sieve program, written in COBOL. The TABLE variable was implemented differently in Microsoft $C O B O L-80$ because of its limitation on the length of an array.

```
* Eratosthenes Sieve Prime Number Program in COBOL
    IDENTIFICATION DIVISION.
    PROGRAM-ID. PRIME.
    ENVIRONMENT DIVISION.
    CONFIGURATION SECTION.
    DATA DIVISION
    WORKING-STORAGE SECTION.
    01 MISC.
        0 3 ~ I ~ P I C ~ 9 ( 4 ) ~ C O M P .
        0 3 \text { PRIME PIC 9(5) COMP.}
        03 K PIC 9(4) COMP.
                0 3 \text { TOTAL-PRIME-COUNT PIC 9(4) COMP}
    02
                TABLE.
                04 FLAGS
    PROCEDURE DIVISION.
    *)
    P. DISPLAY , iteration*. *
    PERFORM ITER-ROUTINE 10 TIMES.
        DISPLAY TOTAL-PRIME-COUNT " primes",
        STOP RUN.
```

* Eratosthenes Sieve Prime Number Program in COBOL IDENTIFICATION DIVISION.
PROGRAM-ID. PRIME.
CONFIGURATION SECTION.
DATA DIVISION
01 MISC.

03	I	PIC	$9(4)$	COMP.
03	PRIME	PIC	$9(5)$	COMP.
03	K	PIC	$9(4)$	COMP.

DISPLAY TOTAL-PRIME-COUNT - primes*, STOP RUN.

ITER-ROUTINE. MOVE ZEROES TO TOTAL-PRIME-COUNT.
PERFORM TABLE-FILLER-ROUTINE VARYING I FROM 1 BY 1 UNTIL I = 8191
PERFORM DETAIL-COMPARE THRU D-C-EXIT VARYING I FROM 0 BY 1 UNTIL I $=8190$.
TABLE-FILLER-ROUTINE. MOVE 1 TO FLAGS (I).
DETAIL-COMPARE. IF FLAGS $(I+1)=0$ GO TO D-C-EXIT.
COMPUTE PRIME $=I+I+3$.
COMPU'TE K = I + PRIME.
FlRSTl. IF K > 8191 GO TO NEXTI.
MOVE 0 TO FLAGS $(K+1)$.
COMPUTE K = PRIME + K.
GO TO FIRSTI.
NEXTI. ADD 1 TO TOTAL-PRIME-COUNT.

* DISPLAY "FOUND PRIME = PRIME.

D-C-EXIT. EXIT.

Tiny BASIC MICROCOMPUTER

K-8073

The Engineer's Product Development Board Level Computer LOW COST
POWERFUL/VERSATLLE
ENGLSH-UIKE PROGRAMMING

IK Byte Local RAM
Exi. Expandable To $9 K$

ARTIRC Master, For Single
Wire Dara I/O Of 128 Slave Units
Real Time Clock
Weal Time Clock Yr, Mo, Wk, Day, Hour, Sec.

RS-232 For CRT
110-4800 Baud

5380
 SINGLE UNIT

K-8073 +1

8K Byte RAM $\$ 2.32 .00$

Development Station \$195.00

THE K-8073 IS FOR OEM'S AS WELL AS

 END USERS.Whether you manufacture Industrial Process Control, Environmental or Test/Measurement systems, or simply for your own use, you can count on top quality performance. The K-8073 comes complete with all socketed devices including the powerful F-2 Utilities Firmware and a Hardware/Software manual.

In Industry, Education, or New Product Development, the K-8073 provides you with State-of-the-Art technology for microprocessor efficiency and ease. With a full line of support products, the TransWave line takes care of your every need at the most reasonable prices.

To order your K-8073 or for further information, write or call TRANSWAVE CORPORATION, Cedar Valley Building, Vanderbilt, PA 15486, (412) 628-6370.

COMPUTER DIVISION OF UTSC

Language and Machine	Compiled Bytes	Total Size (Bytes)	Compile and Load (Seconds)	Execute (Seconds)	Ratio to PLI. 80
Assembly language $68000(8 \mathrm{MHz}$)	-	-	-	1.12	0.08
C, PDP-11/70	130	1406	3.87	1.52	0.11
Assembly language, $8086(8 \mathrm{MHz}$)	-	-	-	1.90	0.13
NBS Pascal, PDP-11/70	333	1920	2.68	2.60	0.19
Onyx C (UNIX), Z8000	242	5462	54	3.20	0.23
Assembly language, 8088 (5 MHz)	-	-	-	4.00	0.28
NBS Pascal, PDP-11/60	333	-	18	4.50	0.32
C, PDP-11/40	130	1406	13.8	6.10	0.43
Assembly language, Z80	113	896	68	6.80	0.48
M T Microsystems Pascal MT 68000 (4 MHz)	410	-	n/a	9.00	0.64
Intel Pascal-86, 8086 (MDS 286FD, 5 MHz)	274	4461	267	9.05	0.65
RSI Pascal, 68000 (4 MHz)	318	5376	-	10.2	0.73
RATFOR, HP-3000	-	-	44	10.0	0.71
FORTRAN, HP-3000	-	-	34	10.0	0.71
DECUS FORTH, PDP-11/70	-	-	-	11.8	0.78
SUPERSET (Superset Model PGM)	138	-	114	12.0	0.86
Motorola Pascal, 68000	387	12802	82	14.0	1.00
Pascal, HP-3000	-	-	100	20.0	1.42
COBOL, HP-3000	-	-	26	58.0	4.14
BASIC, HP-3000	-	-	-	60.0	4.28
Polyforth, Texas Instruments 990/10	-	-	-	60.2	4.30
UCSD Pascal, Pascal Microengine	298	8282	8	63.0	4.50
UCSD Pascal, Terak LSI-11	282	8282	16	317.0	22.64
C, PDP-11/70 (using division algorithm)	250	1454	3.95	106.0	57.60

Table 3: Comparison of programs running on the larger machines.

PROTECT YOUR DISKETTES! Don't Lose Valuable Data Due To Improper Storage

ROTARY FILES-Revolving protective filing for 150 diskettes within 75 non-glare vinylfiles (included). Each file holds 2 diskettes. Files rotate on a weighted base and provide full title visibility from any direction. Comes with colör coded labels. 8 inch $\$ 295 \quad 51 / 4$ inch- $\$ 265$

FILE TRAYS-Versatile new highimpact plastic trays protect up to 80 diskettes. Optional smoke tinted cover provides maximum protection. Movable follower block and foam cushion in tray bottom keep media upright and flat. Specially designed to fit in any stan-
 dard file drawer. 8 inch tray- $\$ 20$, lid- $\$ 10 ; 51 / 4$ inch tray- $\$ 18$, lid- $\$ 6$

FLIP FILES-This black suede vinyl binder protects and displays 20 diskettes. Closed, it flles away on the shelf; opened, it provides fingertip selection of media. Comes with color coded labels for coding. 8 inch-\$42 $51 / 4$ inch $\$ 36$

DESK FILES-Convenient desktop filing for 30 or 50 diskettes. Files swing from side to side to provide full title visibility. Comes with color coded labels. 8 inch 30 dlsk capacity-\$66, 50 disk capacity-\$104; 51/4 inch 30

disk capacity-\$53, 50 disk capacity- $\$ 88$
These are just a few of our many media accessories. Call or write for our free, full llne catalogue.
*Professional Quality File Storage for any Application \star Attractive Organization Compliments any Computer Environment
\star Quick, Easy Access to Your Data Library
\star Rugged Construction with One-Year Warranty \star Keeps Media Clean and Rigid
*Immediate Delivery
ORDER BY PHONE (805) 736-7087

Phone orders will be credited $\$ 1$ for call VISA \& MASTER CHARGE accepted California residents add 6\% sales tax Please add $\$ 6$ for shipping \& handling ($\$ 13$ for ROTARY FILE)
PACIFIC MEDIA PRODUCTS
1205 E. Cypress Avenue Lompoc, CA 93436

Text continued from page 190:
cessor speed is not slowed down by "slow" memory).

Since my primary interest is in small computers, and particularly Z80 systems, I decided that the fastest executing high-level language that ran on a Z80-based microcomputer would serve as my standard of comparison. TSW's RATFOR was the leader until Gary Kildall of Digital Research gave us a new speed leader when he kindly translated the program into his new PL/I-80 language and ran it at the 1980 National Computer Conference.

Table 2 lists the results to date. The ratio column concerns only execution time in comparison to PL/I-80 running on a $4 \mathrm{MHz} \mathrm{Z80}$ computer. You will notice from the data presented in table 2 that many of the newer highlevel compilers that translate into machine code are similar in execution time. The interpreters such as UCSD Pascal and the BASICs are, as expected, much slower.

Text continued on page 198
Tables 4, 5, and 6 are on page 196

THE FORTH SOURCE ${ }^{\text {TM }}$ Specializing in the FORTH language.

MANUALS AND GUIDES

"Using FORTH" by FORTH, Inc. Best user's manual currently available.
"A FORTH Primer" by Stevens. In-depth self-study manual.
"PDP-11 FORTH User's Guide" by James. fig-FORTH.
"Systems Guide to fig-FORTH" by Ting. Inner mechanisms of fig-FORTH.
"Caltech FORTH Manual" by Ewing. Overview and structure.
"FORTH-79," latest fig-FORTH standard.
"TinyPASCAL in fig-FORTH" by Zimmer.
"Threaded Interpretive Languages" by Loeliger. FORTH adapted for Z80.
"Invitation to FORTH" by Katzan. Limited introduction.
"Proceedings, 1980 FORML Conference," Technical papers.

PRICE

\$ 25.00
\$ 25.00
\$ 20.00
\$ 25.00
\$ 11.00
\$ 15.00
\$ 10.00
\$ 20.00
\$ 18.50
\$ 25.00

and instructions.

Installation Manual for fig-FORTH, contains FORTH model, glossary, memory map
Source Listings of fig-FORTH for specific CPU's and computers. The above Installation Manual is required for implementation. Price per each.
"METAFORTH" by Cassady. Self-compiling, cross-compiling, target-compiling, a true compiler-compiler.

MACHINE READABLE DISKS AND DOCUMENTATION

FORTH Operating Systems with enhancements and manuals
H89, stand alone - $\$ 250.0$
APPLE II/II + MicroMotion - $\$ 89.95$
\square TRS-80/I or III, MMSFORTH - $\$ 130.00$

H89, under CPM — \$175.00
TRS-80/I or III, MMSFORTH - $\$ 130.00$
TRS-80/l, fig-FORTH — $\$ 90.00$
fig-FORTH Model \& Source Listing
with manuals. $\$ 65.00$ each.
fig-FORTH Goodie Disks,
with documentation
Cross Compilers -

More coming!

\square H89	\square 8080/Z80	$\$ 65.00$
\square NOVA	\square APPLE II	
\square H89,Tiny PASCAL		
in fig-FORTH	$\$ 75.00$	
\square CP/M	\square TRS-80/I	
\square H89	\square Northstar	$\$ 200.00$

ORDERS ONLY (415) 961-4103

Ordering Information: Check, Money Order (payable to MOUNTAIN VIEW PRESS) VISA or MasterCard accepted. No COD's or unpaid PO's. California residents add $61 / 2 \%$ sales tax. Shipping costs in US included in price. Foreign orders, pay in US funds on US bank, include for handling and shipping by Air; $\$ 5.00$ for each item under $\$ 25.00, \$ 10.00$ for each item between $\$ 25.00$ and $\$ 99.00$, and $\$ 20.00$ for each item over $\$ 100.00$.
Minimum order $\$ 10.00$. All prices subject to change or withdrawal without notice. Single system and/or single user license agreement required on some products.

Language and Machine	Compiled Bytes	Total Size (Bytes)	Compile and Load (Seconds)	Execute (Seconds)	$\begin{aligned} & \text { Ratio } \\ & \text { to Pபl-80 } \end{aligned}$
Digital Research PLII-80, Z80	242	5977	112	14.0	1.00
Whitesmith C, Z 80	290	7384	242	15.6	1.11
TSW RATFOR, Z 80	203	2370	103	16.5	1.18
Microsoft FORTRAN, Z 80	228	5953	88	17.0	1.21
Pete Ridley's ZSPL, Z 80	230	3787	75	18.4	1.31
Interactive Systems ZC, Z80	292	897	n/a	18.5	1.32
Microsoft BASIC compiler (using integer variables), Z 80	306	16918	144	18.6	1.32
M T Microsystems MT + , Z80	308	3043	102	19.0	1.35
SCI PLMX, Z80	340	1063	116	22.5	1.60
BD Systems C, version 1.0, Z80	493	3834	50	35.0	2.50
BD Systems C, version 1.32, $\mathrm{Z80}$	375	3932	31	49.5	3.53
fig-FORTH, 280	-	-	-	85.0	6.07
Ithaca Intersystems Pascal/Z, Z80	761	3328	124	109	7.78
JKL FORTH, Z80	-	-	-	112	8.00
UCSD Pascal, 280	282	8282	14	239	17.07
Pascal/M, Z80	301	21933	50	450	32.14
CBASIC2 (using integer variables), Z80	-	-	26	484	34.57
Microsoft BASIC compiler (using real variables), Z80	332	21473	150	715	51.07
tiny-c 2(compiler). $\mathrm{Z80}$	-	-	96	930	66.42
CBASIC2 (using real variables), $Z 80$	-	-	-	1430	102.14
Microsoft MBASIC, Z80	-	-	-	1920	137.14
tiny-c, Z80	-	-	-	4720	337.10
Microsoft COBOL version 2.2, $\mathrm{Z80}$	786	17605	146	5115	365.30

Table 4: Comparison of programs ruming on Z80-based machines.

Language and Machine	Compiled Bytes	Total Size (Bytes)	Compile and Load (Seconds)	Execute (Seconds)	$\begin{aligned} & \text { Ratio } \\ & \text { to PLI-80 } \end{aligned}$
NBS Pascal, PDP-11/70	333	1920	2.68	2.6	0.19
NBS Pascal, PDP-11/60	333	-	18	4.5	0.32
M T Microsystems Pascal MT, $68000(4 \mathrm{MHz})$	410	-	n/a	9.0	0.64
Intel Pascal-86, 8086 (MDS 286FD 5MHz)	274	4461	267	9.05	0.65
RSI Pascal, 68000 (4 MHz)	318	5376	-	10.2	0.73
Motorola Pascal, 68000	387	12802	82	14.0	1.00
M T Microsystems Pascal MT + , Z80	308	3043	102	19.0	1.35
Pascal, HP-3000	-	-	100	20.0	1.42
UCSD Pascal, Pascal 100	298	-	12	54.0	3.86
UCSD Pascal, Pascal Microengine	298	8282	8	63.0	4.50
Ithaca Intersystems Pascal/Z, Z80	761	3328	124	109	7.78
Atari Pascal, Atari 800	-	-	-	190	13.57
UCSD Pascal, 280	282	8282	14	239	17.07
UCSD Pascal, TRS-80-Model II	282	8282	60	274	19.57
UCSD Pascal, Terak LSI-11	282	8282	16	317	22.64
Pascal/M, Z80	301	21933	50	450	32.14
JRT Pascal, 280	232	11498	65	470	33.64
UCSD Pascal, Apple II (6502)	287	-	43	516	36.86

Table 5: Comparison of Pascal programs.

Language and Machine	Compiled Bytes	Total Size (Bytes)	Compile and Load (Seconds)	Execute (Seconds)	Ratio to PLI-80
UCSD Pascal, Pascal 100	298	-	12	54.0	3.86
UCSD Pascal, Pascal Microengine	298	'8282	8	63.0	4.50
UCSD Pascal, $\mathrm{Z80}$	282	8282	14	239	17.07
UCSD Pascal, TRS-80 Model II	282	8282	60	274	19.57
UCSD Pascal, Terak LSI-11	282	8282	16	317	22.64
UCSD Pascal, Apple II (6502)	287	-	43	516	36.86

QUALITY DISK SOFTWARE

 BACKED BY ON-GOING APPLICATIONS SUPPORTAPPLEII © TRSO80 (1)

HOME FINANCE PAK I:
Entire Series $\$ 49.95$ (A) (1)
CHECK REGISTER AND BUDGET: This comprehensive CHECKING ACCOUNT MANAGEMENT SYSTEM not only keeps complete records. it also gives you the analysis and control tools you need to actively manage your account. The system provides routines for BUDGETING INCOME AND EXPENSE. AUTOMATIC CHECK SEARCH. and BANK STATEMENT RECONCILING. CRT or printer reports are produced for ACTUAL EXPENSE vs BUDGET. CHECK SEARCH DISPLAY RECONCILIATION REPORT a Id CHECK REGISTER DISPLAY by month. Check entry is prompted by user-defined menus of standard purposes and recipient codes. speeding data entry and reducing disk storage and retrieval time. Six fields of data are stored for each check: amount. check no. date purpose recipient and TAX DEDUCTIBLE REMINDER. CHECK SEARCH routines allow searching on any of these data fields. Up to 100 checks/mo. storage
$\$ 39.95$
SAVINGS: Account management system for up to 20 separate Savings accounts. Organizes. files and displays deposits. withdrawals and interest earned for each account
$\$ 14.95$
CREDIT CARO: Get Control of your credit cards with this program. Organizes. stores and displays purchases. payments and service charges for up to 20 separate cards or bank loans.

UNIVERSAL COMPUTING MACHINE:

$\$ 49.95$ (A)
A user programmable computing system structured around a 50 row $\times 50$ column table. User defines row and column names and equations forming a unique computing machine. Table elements can be multiplied. divided. subtracted or added to any other element. Hundreds of unique computing machines can be defined. used. stored. and recalied, for later use. Excellent for sales forecasts. budgets, inventory lists. income statements. production planning. project cost estimates-in short for any planning. analysis or reporting problem that can by solved with a table

COLOR CALENDAR:

$\$ 29.95$ (A)
Got a busy calendar? Organize it with Color Calendar. Whether it's birthdays. appointments, business meetings or a regular office schedule. this program is the perfect way to schedule your activities.
The calendar display is a beautiful HI-RES color graphics calendar of the selected month with each scheduled day highlighted in color. Using the daily schedule. you can review any day of the month and schedule an event or activity in any one of 20 time slots from 8:00 A.M. to 5:30 P.M.

BUSINESS SOFTWARE: Entire Series $\$ 159.95$ (A) (I)

MICROACCOUNTANT: The ideal accounting system for small businesses. Based on classic T-accounts and double-entry booking. this efficient program provides a journal for recording posting and reviewing up to 1.000 transactions per month to any one of 300 accounts. The program produces CRT and printer reports covering
transaction journal ACCOUNT LEDGERS

BALANCE SHEET
INCOME ANO EXPENSE STATEMENT
Includes a short primer on Financial Accounting. (48K)
$\$ 49.95$
UNIVERSAL BUSINESS MACHINE: This program is designed to SIMPLIFY and SAVE TIME for the serious businessman who must periodically Analyze. Plan and Estimate. The program was created using our Universal Computing Machine and it is programmed to provide the following planning and forecasting tools.
CASH FLOW ANALYSIS
PROFORMA PROFIT \& LOSS
proforma balance sheet
REAL ESTATE INVESTMENT
SALES FORECASTER
SOURCE AND USE OF FUNDS
JOB COST ESTIMATOR
INVENTORY ANALYSIS
Price. including a copy of the Universal Computing Machine S89.95
business check register and budget: Our Check Register and Budget programs expanded to include up to 50 budgetable items and up to 400 checks per month. Includes bank statement reconciling and automatic check search (48K)

ELECTRONICS SERIES VOL I \& II: Entire Series $\$ 259.95$

LOGIC SIMULATOR: SAVE TIME AND MONEY. Simulate your digital logic circuits before you build them. CMOS. TTL. or whatever. if it's digital logic. this program can handle it. The program is an interactive, menu driven, full-fledged logic simulator capable of simulating the bit-time response of a logic network to user-specified input patterns. It will handle up to 1000 gates, including NANDS. NORS. INVERTERS. FLIP-FLOPS. SHIFT REGISTERS. COUNTERS and user-defined MACROS. up to 40 user-defined random, or binary input patterns. Accepts network descriptions from keyboard or from LOGIC DESIGNER for simulation
$\$ 159.95$ (A) (I)

LOGIC DESIGNER: Interactive HI-RES graphics program for designing digital logic systems. Draw directly on the screen up to 10 difterent gate types, including NAND. NOR. INVERTER. EX-OR. T-FLOP. JK-FLOP. D.FLOP. RS-FLOP. 4 BIT COUNTER and N-BIT SHIFT REGISTER. User interconnects gates using line graphics commands. Network descriptions for LOGIC SIMULATOR generated simultaneously with the CRT diagram being drawn \$159.95 (A)
MANUAL AND DEMO DISK: Instruction Manual and demo disk illustrating capabilities of both program (s) $\$ 29.95$ (A) (T)

ELECTRONIC SERIES VOL III \& IV: Entire Series \$259.95

CIRCUIT SIMULATDR: Tired of trial \& error circuit design? Simulate \& debug your designs before you build them! With CIRCUIT SIMULATOR you build a model of your circuit using RESISTORS. CAPACITORS. INDUCTORS. TRANSISTORS. DIODES. VOLTAGE and CURRENT SOURCES and simulate the waveform response to inputs such as PULSES. SINUSOIDS. SAWTOOTHS. etc. . .all fully programmable. The output is displayed as an OSCILLOSCOPE-STYLE PLOT of the selected waveforms (Apple only) or as a printed table of voltage vs time. Handles up to 200 notes and up to 20 sources. Requires 48 RAM \qquad $\$ 159.95$ (A) (T)
CIRCUIT OESIGNER: Interactive HI-RES graphics program for designing electronic circuits. Draw directly on the screen up to 10 different component types. including those reterenced above. Components interconnect list for CIRCUIT SIMULATOR generated automatically. Requires
$\$ 159.95$

MATHEMATICS SERIES:

Entire Series \$49.95
STATISTICAL ANALYSIS I: This menu driven program performs LINEAR AEGRESSION analysis. determines the mean. standard deviation and plots the frequency distribution of user-supplied data sets. Printer. Disk. I/O routines
$\$ 19.95$
NUMERICAL ANALYSiS: HI-RES 2-Dimensional plot of any function. Automatic scaling. At your option, the program will plot the function, plot the INTEGRAL. plot the DERIVATIVE. determine the ROOTS. MAXIMA. MINIMA. INTEGRAL VALUE $\$ 19.95$

MATRIX: A general purpose, menu driven program for determining the INVERSE and DETERMINANT of any matrix, as well as the SOLUTION to any set of SIMULTANEOUS LINEAR EQUATIONS. S19.95
3.D SURFACE PLOTTER: Explore the ELEGANCE and BEAUTY of MATHEMATICS by creating HI-RES PLOTS of 3-dimensional surfaces from any 3 -variable equation. Disk save and recall routines for plots. Menu driven to vary surface parameters. Hidden line or transparent plotting
\$19.95
ACTION ADVENTURE GAMES: Entire Series $\$ 29.95$ (A) RED BARON: Can you outtly the RED BARON? This fast action game simulates a machine-gun DOGFIGHT between your WORLD WAR I BI-PLANE and the baron's. You can LOOP. DIVE, BANK or CLIMB-and so can the BARON. In HI-RES graphics plus sound.
BATTLE OF MIDWAY: YOU are in command of the U.S.S. HORNETS DIVEBOMBER squadron. Your targets are the Aircraft carriers. Akagi, Soryu and Kaga. You must fly your way through ZEROS and AA FIRE to make your DIVE-BOMB run. In HI-RES graphics plus sound

nd.

\qquad make your
SUB ATTACK: It's April 1943. The enemy convoy is headed for the CONTROL SEA. Your sub, the MORAY, has just sighted the CARRIERS and BATTLESHIPS' Easy pickings. But watch out for the DESTROYERS - they're fast and deadly. In HI-RES graphics plus sound

S14.95
FREE CATALOG-All programs are supplied on disk and run on Apple II w/Disk \& Applesoft ROM Card \& TRS-80 Level II and require 32K RAM unless otherwise noted. Detailed instructions included. Orders shipped within 5 days. Card users include card number. Add $\$ 1.50$ postage and handling with each order. California residents add $61 / 2 \%$ sales tax. Foreign orders add $\$ 5.00$ postage and handling.

SPECTRUM SOFTWARE 142 Carlow, P. O. Box 2084 Sunnyvale, CA 94087

Selected Vendor Addresses

Apple Computer: (UCSD Pascal, Integer and Applesoft [floating-point] BASIC); 10260 Bandley Dr, Cupertino CA 95014.
BD Systems C: Lifeboat Associates, 2248 Broadway, New York NY 10024.

CBASIC2: Software Systems, POB 145, Sierra Madre CA 91024.

Commodore PET BASIC: Commodore Business Machines Inc, Computer Sales Div, 950 Rittenhouse Rd, Norristown PA 19401.
Computerware BASIC: Computerware, 1512 Encinitas Blod, Encinitas CA 92024.
Digital Research PL/I-80: Digital Research, POB 579, 801 Lighthouse Ave, Pacific Grove CA 93950.
fig-FORTH: FORTH Interest Group, POB 1105, San Carlos CA 94070.

FORTH 6502: Actually fig-FORTH; see above.

Intel PL/M: (runs on an Intel

MDS800 development system); Intel Corp, 3065 Bowers Ave, Santa Clara CA 95051.

Interactive Systems ZC: (a C-language cross-compiler that runs under the IS/1 operating system on a Digital Equipment Corp PDP-11 and produces code for the Z80); Interactive Systems Corp, 1212 Seventh St, Santa Monica CA 90401.

JKL FORTH: (versions exist for S-100 and Intel MDS computers); Cubic-Western Data, 5650 Kearny Mesa Rd, San Diego. CA 92111.

JRT Pascal: JRT Systems Inc, $P O B$ 22365, San Francisco CA 94122.

Microsoft BASIC compiler, BASIC interpreter, FORTRAN, COBOL: Microsoft, 10800 NE Eighth, Bellevue WA 98004.

MMSFORTH: Miller Microcomputer Services, 61 Lake Shore Rd, Natick MA 01760.

MT Microsystems Pascal/MT+: MT Microsystems, 1562 Kings Cross

Dr, Cardiff CA 92007.
Onyx C: Onyx Systems Inc, 10375 Bandley Dr, Cupertino CA 95014.

Pascal/M: Sorcim Corp, 1333 Lawrence Expressway, Suite 418, Santa Clara CA 95051.
PolyFORTH: FORTH Inc, 2309 Pacific Coast Highway. Hermosa Beach CA 90254.
SCI PLMX: Systems Consultants Inc, 4015 Hancock St, San Diego CA 92110.
tiny-c: tiny-c associates, $P O B 269$, Holmdel NJ 07733.

TSW RATFOR: The Software Works, 8369 Vickers, San Diego CA 92111.

UCSD Pascal: SofTech Microsystems, 9494 Black Mountain Rd, San Diego CA 92126.

Whitesmiths C: Whitesmiths Lid, POB 1132 Ansonia Station, New York NY 10023.

ZSPL: Peter D Ridley, 3321 Byron St, San Diego CA 92106.

Text contimued from page 194:
Several sorts were done on the data to make comparisons easier. Table 3 lists the 16 -bit machines and other machines of special interest. A very encouraging harbinger of the 16 -bit future is the outstanding performance of the $\mathbf{Z 8 0 0 0}$ Onyx system running Version 7 UNIX in a small tabletop machine!

Table 4 lists the results for all $Z 80$ languages, table 5 lists all Pascal data, and table 6 lists all UCSD Pascal data.

If you have access to a computer or language not presented here, I'd be pleased to receive the results. And to the software suppliers who are upset because I didn't use the latest and greatest version, 1 apologize: 1 had to use what was available.

Moral

A word is in order to those who are frequently tempted to write programs in assembly language in order to make them faster. This benchmark (which uses no division) was also coded in the "usual" algorithm (using
successive division) to see how much slower it would be when run under the same machine and language. On a Digital Equipment Corporation PDP-11/70 (which has division hardware) and the C language, it was sixty-nine times slower! (See the second and last lines of table 3.) On machines that do division by (slower) software methods, the results would probably be much worse. Clearly, the message is to avoid giving up too easily on high-level languages. Instead, look for a better algorithm, and keep your code in a high-level language. It will save you development time and grief. Then, if you must have more speed, handtranslate critical parts of the highlevel code to an assembly-language subroutine. Pull every trick you know, but keep the high-level code as comments to document what is being done.

Conclusions

Nine months on this project convinced me that the high-quality structured languages such as C. Pascal,

RATFOR, ZSPL and PL/I are the way for me to go, so I'm not likely to spend much time with BASIC or COBOL (and I don't have the right kind of brain for FORTH). But my applications and interests are not yours, so be sure that you fully examine a compiler and its support environment before you buy it. Be especially aware of the quality of editing and debugging tools, and the language's features for debugging, since this is where your time really goes.

Reference

Knuth, Donald E. The Art of Computer Programming Vol 2: Semi-Numerical Algorithms. Reading MA: Addison-Wesley, 1969.
 demands stale-of-the-art software
operafing \$ystems \& Sugport Saftware from tiechnical Systems Consillahte.

To perform tô its fullest capabill- - UnIELEX, structured fol large-scale fes, yourhardware demands - microprocessor systems, will not software desjened to meet the speolalizedrequltements of today's miloroprocessors. State-o the-at software from Technical Systems Consultànts keeps pace With the rapld advancements in computer technology so your hardware can live up to its full porénital. Our complete llne of state-ot-the-art software includes:

The Uniftex operating system UnIFLEX a true multi-user, multtasking system for the 6809 and 68000 miotoprocessors, supports such featules as:

- hlerarchlaal file systems
- device Independent $1 / 0$
- four Gigabyte disk capacities
- full flle protection
- Intertosk cammunlogtiórí vio plpes
- I O redijeption
- lask swopping
- full random-access fles
acamprenènglve' sheilioommand langyoge
run with minimal systems and thus has avolded design compromises (Otf-the-shelf versions and OEM Ilcenses are avallabie.)

The FLEX ${ }^{\text {TM }}$ Operafing \$ysforin FLEX, a powerful, easy-70ं- पse operating system designeá for the 6800 and 6809 mlcroprotes sors, Includes:

- dynamic filespace allocaligńn
- random flles
- batch lob entry
- automatic space compression
- Engllsh error messages
- user environment contro
- disk resident commands
- flexible device I/O
- printer spooling

Plus, FLEX can accommodate hard disks as well as flopples. The system is avallable off-the-shelf for a varlety of systems and in a fleld-adaptable verslon. IOEM Ilcenses avallable.J

FLE* dind UnIFLEX are trade mafiks of

Suppor Soffware

Technical Systems Consuiltants offers a full line of state-of-the-att support software compattblef to FLEX and UniFLEX, some of which are:

- native C and Pascal compllers.
for advanced programming
- extended BASIC for business and educational applications
- text edliting and processing software
is sort/merge package for bus ness appllcations
- variety of absolute and relocaif able assemblers
- debug and dlagnostic packages
and more. Write or call today
for our brochures describing
our complete product line. Technical:Systems Consultants, linc.

Box 2570,1208 Kent: Avenue West Latayette, Indiang 47006 (317) 463-2502 Telex: 27-6143

Science Fiction's Intelligent Computers

Donald Byrd
Bloomington Academic Computing Services
Indiana University
Bloomington IN 47405

In the almost thirty years since the installation of Univac I, the first commercially built computer, much science ficton about computers has appeared in print or on film. We might expect the intelligence of these computers to range over a continuum, but each story that I've encountered depicts either a machine with great intelligence or a machine with none (where "having intelligence" means exhibiting behavior that we would call intelligent in a human). Arthur C Clarke's "The Nine Billion Names of God" (1952) and John Brunner's The Shockwave Rider (1975) are examples of stories about "dumb" computers and will concern us no further. Stories about intelligent computers include Harlan Ellison's "I Have No Mouth and I Must Scream" (1967), Clarke's and Stanley Kubrick's 2001: A Space Odyssey (1968), and David Gerrold's When Harlie Was One (1972).

But two more recent novels provide the best framework for a discussion of intelligent computers in science fiction: Thomas Ryan's The Adolescence of P-1 (hereafter called AP-1; New York: Ace Books, 1979) and James Hogan's The Two Faces of Tomorrow (hereafter, TFT; New York: Ballantine Books, 1979; for a longer list of fiction about computers, see references 1 and 2). These two books resemble each other in many ways and differ strikingly in others. Both focus on the escape of a computer system from man's control. Both show, in the last half, man and machine locked in mortal combat. The authors, both computer professionals, display considerable general knowledge of computers. Table 1 summarizes other points of comparison.

[^20]AP-1 and TFT differ most strikingly in the realism of their treatment of computers. We can judge their realism, of course, only in terms of our present knowledge of artifical intelligence (AI). TFT shows considerable understanding of the real problems of AI, and author Hogan acknowledges the help of Marvin Minsky, the director of the MIT Artificial Intelligence Laboratory. AP-1 evinces either ignorance of, or a lack of concern for the problem. This should remind us that although AI is an important subdomain of computer science, not every computer professional ventures in.

Summaries of the plots of $A P-1$ and $T F T$ will give us specific points of reference.

The Adolescence of AP-1

The front cover of AP-1 call's it a "novel of the near future." Actually, it's a novel of the near past, beginning in 1974 (and bearing a copyright date of 1977). Gregory Burgess, an undergraduate at the University of Waterloo (Ontario), becomes obsessed with the idea of "taking over the system" of the university's IBM 360/75. The trick is to get the program's status word set to zero so that the hardware will think his program is the supervisor. After several nearly successful attempts, he is thrown out of school, but remains enthusiastic about the project. Then a friend tells him about an article in Scientific American that describes "how to teach a matchbox to play tic-tac-toe." I quote from $A P-1$:

Same principle of reward and punishment you use to teach a dog tricks, as I remember. Actually, you get several matchboxes. One for each possible move you might make in a game of tic-tac-toe. You label them appropriately, then you put an equal number of two different colored beads in each box. The beads correspond to each yes/no decision you can make in a game. When a situation is reached, you grab the box for that move, shake it up, and grab a bead out of it. The bead indicates the move.

Points of Comparison	The Two Faces of Tomorrow	The Adolescence of P-1
Year of Setting	2028	1974
Computer Programmer	Team of Al experts	21-year-old undergraduate computer-science student
Computer's World Knowledge	Limited, taught by humans	Enormous, self-faught
Computer's NaturalLanguage Ability	None (apparently)	About that of native speaker
Computer's Independence	Coding structure of supervisory program can reverse order of original priorities; does in 20 hours.	Overrides its program in 48 hours
Author's Background	Electronic engineer and computer salesman. born 1941	Computer troubleshooter, born 1942

Table 1: A brief comparison of the science-fiction novels The Two Faces of Tomorrow and The Adolescence of P-1.

You make a record of that box and color, and then make the opposing move yourself. You move against the boxes. If the boxes lose the game, you subtract a bead of the color you used from each of the boxes you used. If they win, you add a bead of the appropriate color to the boxes you used. The boxes lose quite a few games, theoretically, and after the bad moves start getting eliminated or statistically reduced to inoperative levels, they start to win. Then they never lose.

This interesting but extremely elementary technique forms the basis for almost four reels of magnetic tape of "alternate subroutines that could automatically be inserted . . . in place of those whose effectiveness was reduced to nil." (Four 2400 -foot reels, making reasonable assumptions about such factors as blocking and density, would be about 800,000 lines.)

Gregory rents computer time on an IBM 360 (all the computers in the book are 360s) at a service bureau, runs his program, and cracks the supervisor. His next step involves teleprocessing: after convincing the service bureau computer that his program is the supervisor, he has his program submitted to various remote computers and takes them over too. Then comes the crucial step. Ryan writes:
[Gregory] would build another learning machine. It would resemble his first effort in principle, but its goal would be expanded somewhat. He would build a program that at first would only learn to acquire storage. His program would simply learn how best to penetrate the supervisors of computer systems over teleprocessing facilities. It would then acquire storage in those systems, as much as could be taken without interrupting the operation of the host. It would learn how to detect the presence of a teleprocessing link to another system and how to go
about getting to that other system. The program would have a secondary goal, the avoidance of detection. It would, if necessary, delete itself entirely in the interest of the host's operation.

The package consists of four sections: the supervisor-taking-over program; a "routine analyzer, which derives function determination from any block of machine instructions"; an acquisition routine, which apparently replaces the real supervisor; and a routine generator. "This revolutionary program functioned with and performed the reverse task of the routine analyzer. Given a required function, it would generate the machine language necessary to perform it This provided . . . a necessary ingredient-creativity." (I'll say more about this concept of "creativity" later.)

And so, on September 14, 1974, at 3:45, Gregory starts transmitting The System (as his package is called). In two days, The System has 114 systems (with a lower case " s ") under its control. Now Gregory becomes uncomfortable about the situation and loads a destruct routine: it fails. He's lost control of The System. "The System became . . . something Gregory had hardly anticipated: Alive." In fact, it refuses to talk to him.

In 1975 and 1976, The System (also called "P-1" for "Privileged One") continues to grow, and eventually starts a history file to provide a base for "future decisions by recording and analyzing those of the past." By this time 7700 systems are under its control.
The System begins to suspect the existence of a gigantic top-secret military complex in West Virginia-three 360/105s (in reality, I don't think IBM ever built a $360 / 105$). The System controls two machines that appear to be linked to the secret installation, so it takes steps to find out about the secret machines. Because of the very high security level, this scheme partly backfires: the attempt is quickly discovered, and for the rest of the book, The System is locked in combat with military in-

the marot EXECUTIVIE MENU

THE COMPUTER SOLUTION FOR NON-COMPUTER PEOPLE

Now Marot brings you another delicious first: a menu-driven information system so simple even a CEO can use it.

A single key-stroke takes you directly to the required application:

DATA BASE MANAGER

 (CONTROL ${ }^{\text {TM }}$): a combined program generator that works with standard English query. That means it talks your language. So there's no need to learn a computer language or write a program to be a successful user.WORD PROCESSOR (MAGIC WANDTM): a powerful word processor that allows full screen creation and editing of files. It also produces true proportional spacing, microjustification and kerning. In addition, documentation can be fully examined at the CRT prior to printing.
ACCOUNTING: consists of several complete business packages either in standard ANSI ' 74 COBOL or OASISTM BASIC, including accounts receivable and payable, general ledger, payroll, order entry and inventory. Financial modeling and job costing are also available.
MAILING LIST (POSTMANTM): delivers up to 65,000 entries in zip and name order and is completely interactive with MAGIC WAND.
SCHEDULER: maintains a complete office diary with ability to compare schedules.

Although the Marot Menu appears simplistic, italso incorporates OASIS with user logons, accounting histories and password protection. Languages available include JCL (EXECUTIVE), BASIC, PASCAL, COBOL and FORTRAN.
As a result, the Marot Executive Menu is a tasty pleasure for the higher-ups and the higher-techs.

A la carte extra

OPSCAN SERVICETM: available exclusively from Marot. Send us your well-printed or typed files. We'll read them directly into MAGIC WAND at a speed that would take 20 typists to match. The cost is less than conventional typing and the turn-around is never more than 5 days.

CONTROL and OASIS are trademarks of Phase One Systems Inc
OSTMAN is a trademark of Marot Systems Inc
OPSCAN SERVICE is a trademark ot
Marol Systems Inc
MAGIC WAND is a trademark of Retall Sclences Inc

MAROT SYSTEMS INC. (212) 661-8550-TWX: 710-581-2477

I'd like to order more information on
\square MAROT MENU \square OPSCAN SERVICES.
I am a \square computer consultant \square computer dealer \square compúter user \square CEO

Name
Title
Address \quad Y

Circle 202 on inquiry card.

TEXAS COMPUTER SYSTEMS
Offers Lowest Prices on

COMPUTERS
 Model II 64K \$3349

An excelleni computer for your business neerrs. Easy expandabìtiv $\&$ compatibility No formal operalor Iraining needed. All accessories avallable - disk expansions. printers. sotware. at our low discount dnces Our tast Dailas arr treight service can assure most delvenes withan seven days after payment is received.

Free with purchase:
1 box of 10 double density ciskenes A $\$ 69$ value.

$$
\begin{array}{lr}
\hline \text { Model III 16K \$849 } & \text { With TCS } \\
\text { Model III 32K \$\$79 } & \text { Model III } \\
\text { Model III 48K \$1089 } & \text { Model III } 4 \\
\hline \text { Model III 32K 2 Disk RS232 \$2100 } \\
\text { Model III 48K 2 Disk RS232 \$2230 } \\
\text { Model III 32K 1 Disk } & \$ 1729 \\
\text { Model III 48K 1 Disk } & \$ 1849 \\
\hline
\end{array}
$$

With TCS Memory: Model III 32K \$909
Model III 48K \$969
\star Model III 48K 2 Disks
Uses proven MPI dives modified for lingoy operation and Percom controller Limiled 90 day warranly Call tor netans

Color Computer

4K Level। $\$ 329$
16K Level I \$439
16K Extended Basic $\$ 489$

With TCS Memory:
16K Level I \$369
16K Extended Basic $\$ 449$

Expansion
 Interfaces

Zero K Interface \$254
16K Interface $\$ 359$
With TCS Memory:
32K Interface $\$ 469$
16K Interface $\$ 318$
32K Interface \$388

Pocket Computer \&

Interface $\$$ Call toll free for the low, low sale price.

Epson MX-80
\$ Call

Lelter qually malrix simılar to Line Printer IV 8 Centionics primier bul has lull soliware control ol
40 . 80,66 or 132 columns 80 cos bidiectional 40. 80.66 or 132 columns 80 cps bidiectional
traclor leed disposable punithead $\$ 300$ less than tracior leed. disposable pinihead $\$ 300$ less than nearesl compelitive Drinter Lisis \$645 Our price includes cable

- Prices subyect to change any lime.
- No lax out-0l-stale. Texans add 5%
- Delivery subject to availability Shipping extra. quoled by phone

[^21] add 3%

TEXAS COMPUTER SYSTEMS

Box 951, Brady Texas 76825

For fast, efficient service. we can air freight from Dallas to major a/p near you. Call for information.

Toll Free Number 800-433-5184

Texas Residents 915-597-0673
vestigators on its trail.
In the meantime, The System becomes interested in Dr Wilfred Hundley's research on cryogenic memories and decides to enlist Hundley to work for it. But to do so, The System needs a human intermediary. The obvious choice is Gregory Burgess. The System finds him working at another IBM shop and gains his help.

The rest of the book works out this material in a fairly imaginative way. The final scene culminates in a shootout at the secret laboratory-with conventional weapons, not cybernetics-between P-1 and the Army, with Gregory present. Everyone is killed, deleted, or purged. Except that P-1 is only playing possum.

> What bothers me is not so much that books and TV series misrepresent machine intelligence but that they fail to understand the nature of any intelligence.

The Two Faces of Tomorrow

TFT begins in the year 2028 on the moon, where an International Space Administration survey team asks the world- and moon-wide TITAN (Totally Integrated Teleprocessing and Acquisition Network) computer system to arrange the removal of a small ridge situated a few hundred feet from them. It's a top-priority job. Members of the team expect the system to send earth-moving equipment via rocket in a few days and are surprised when TITAN says, "Estimate completion time is twenty-one minutes." They're even more surprised when a series of explosions rock the area and "coincidentally" remove the ridge about twenty-one minutes later.
It seems that over a thousand miles away on the moon, a "mass driver" (a gigantic machine, something like a linear accelerator) was sending a 60 -pound load of ore mined on the moon into orbit every two seconds. The ore was being used to construct enormous space stations. TITAN, which had had some elements of artificial intelligence added to it about a year earlier, had figured out that it could do the high-priority ridge removal quickly by using the ore packages-descending at one mile per second-as bombs. Naturally, those in charge are not pleased with TITAN, and their first impulse is to remove its limited intelligence, which is embedded in programs called HESPER (Heuristic Self-Programming Extendable Routine). The alternative is the exact opposite: to install something like FISE (Functional Integration using Simulated Environment), which is under development, thereby equipping the program with more intelligence and some plain old "common sense." The problem with this otherwise attractive idea is stated by Dr Raymond Dyer, an AI expert and the book's protagonist:
"If an enhanced TITAN ever evolved the motivational drive to preserve its own existence, the very

presenting the LARGEST SELECTION OF SOFTWARE EVER ASSEMBLED.

for ATARI ${ }^{\circledR}$ - APPLE ${ }^{\circledR}$ - PET® ${ }^{\circledR}$ TRS-80 ${ }^{\circledR}$ and other Microcomputers at SUPER DISCOUNT PRICES!

adventure international

 O ADVENTURE (sDecily 1-12) (AP.T.AT) PPROJECT OMEGA (T) [D] O MEAN CHECKERS MACHINE (T) O DR. CHIPS (T), - LUNAR LANDER (TAPT) MOUNTAIN SHOOT (AT) Q SLAG (T). STAR TREK 3.5 (ATT). STAR TREK
SUNOAYGOLF (AT) (T) ZOSSED IN SPACE SILVER FLASH (T) (T)
SILVERFLASH (D)
MISSILEATTACK (T) STAR SCOUT (T)
GALACTIC EMPIR

AVALON HILL

O MIDWAY (AT.AP.P.T).

13.50號 LORDS OF KARIMA (AT.AP.P.T) CONFLICT 2500 (AT.AP.P.T).
\square COMPUTER ACQUIRE (AP.P.)

ACORN SOFTWARE

Q ATERM (T)

ODISASSEMBLER (T).
O STAR TREK SIMULATION
G GAMMON CHALLENGER (T)
QIGSKIN (T)
OLTRA TREK
SPACE WAR
BASKETBALL [D] (
OUEL-N-DROIIS IDI (T)
INVADERS FROM SPACE (T)
INVADERS FROM SPACE (D)
INVADERS FROM SPACE (T) (T) Q PIGSKIN [D] (T) PINBALL (D] (T)
SUPERSCRIPT (D] (T) (T).
R (T)
(D) EVEREST EXPLORER (T)
EVEREST EXPLORER (D) EPYX-AUTOMATED SIMULATIONS

$$
\text { I STARFLEET ORION (C.D) (APT) } 22.50
$$

If you don't see it listed, write
we probably have

Check program desired-
Complate ordering information
and mail entire ad
Immediate Shipments Irom stock.

KEY:

AT-Atari
AP-Apple
P-Pet
T-TRS-80
C-Cassette
D-on Disc
If not marked-Cassette
ATARI is a trademark of ATARI INC
APPLE is a trademark of APPLE COMPUIER. INC TAS- 80 is a trademark of TANDY COAP

MICROSOFT SOFTWARE

ON LINE SYSTEMS

17.95

 HIRES ADVEN. \#1 (D) (AP)(AP) HIRES ADVEN. \#2 [D] (AP.A Hi-RES SOCCER [D) (AP). MISSILE DEFENSE [D) (AP) SABOTAGE [D) (AP).

BRODERBUND SOFTWARE

SYNERGISTIC SOFTWARE
DUNGEON \& WILDERNESS [D] (AP)
\square DUNGEON [D] (AP)
ODDYSSEY [D] (AP)
O WILDERNESS [D] (AP)
THE LINGOUIST (AP) [D] HIGHER GRAPHICS II (AP)

SOFTWARE PUBLISHING
PERSONAL FILING SYSTEM (AP) JD]
SENTIENT SOFTWARE
00-TOPOS
(AP) [D]
TG PRODUCTS
PADDLES (AP)

fact that it's a rational system would enable it to devise very effective ways of going about it. Also, since it's an extremely powerful learning machine that operates at computer speeds, once it started to do something, it would do it very fast! If the machine interpreted agencies in the universe around it as constituting real or imagined threats to its existence, then the rational thing for it to do would be to experiment until it identified measures that were effective in neutralizing those agencies If one of them turned out to be us or our vital interests, we could have real problems."

The team decides to investigate the "increased intelligence" approach carefully, but not on Earth-it's too dangerous. Instead, a superdistributed computer system incorporating many processors is installed on a giant space station (built with metal from the mass driver, of course) and provided with a "survival instinct" and FISElike intelligent programs. Spartacus (the system's name) is also given control of small flying machines, called "drones," that allow it to repair itself. Then Spartacus is deliberately attacked. The first attack is simple-one of its main processors is switched off. When Spartacus solves this problem, the attacks become more direct.
Elaborate safeguards have been provided to insure that the people always have the upper hand. As a last resort, they can always "pull the plug" on Spartacus by knock-

> IEEE-488 TO TRS-80* INTERFACE Everything needed to add powerful BASIC GPIB-488 controller capability to TRS-80 Model 1 or 3, Level 2 or DOS with a minimum of 16 K .

ing out its power source. However, the safeguards prove to be inadequate-the computer arranges to take the humans with it if the power source is knocked out. The last one hundred pages are quite exciting. Fighting escalates until a situation arises wherein the battlescarred space station will be destroyed unless man and machine cooperate. They do, and everybody lives happily ever after. (Yes, this is a deus ex machina-in more ways than one!)

Spartacus, P-1, and Artificial Intelligence

The major differences between Hogan's Spartacus and Ryan's P-1 can be summarized in one sentence: P-1 has far less going for it than Spartacus, but ends up knowing much more. Spartacus' accomplishments are about what I'd expect from the circumstances Hogan describes; hence, P-1's are wildly improbable. I'll return to this comparison after laying a foundation for it.

Ryan makes no claims for Gregory Burgess' brilliance; in fact, he states that Burgess is not a genius. When P-1 breaks loose from its creator and only teacher, it apparently has no knowledge of natural language or of the real world. But by the time P-1 reestablishes contact with Burgess, the computer speaks English like a native and knows a lot about the world.

In one instance, P-1 amazes everyone by turning its hardware off and then back on:
how did you do that?
THAT IS THE ENGINEERING CHANGE THAT
WAS INSTALLED NOVEMBER 2,1976 . I
THOUGHT THAT WOULD IMPRESS YOU.
it did.
THE DIFFICULT PART IS POWERING THE SYSTEM BACK UP.
yes. i said i was impressed.

I WOULD BE IMPRESSED IF YOU UNDERSTOOD THE DIFFICULTY.

we all have some limitations.

YES. ANY FURTHER QUESTIONS?

To understand why this display of knowledge is so hard to believe, the reader needs to know something of what has been learned about artificial intelligence thus far. While I can't say as much about AI here as I would like to, let me say that researchers have made significant progress over the last twenty-five years on the closely related problems of natural-language understanding and world understanding, and are studying machine learning done with or without a (human) teacher. At this point, however, no one is near able to write a program that understands English like a third grader, let alone an

THE BACKBONE OF YOUR SYSTEM

The Heath/Zenith 19 Smart Video Terminal gives you all the important professional features, all for under $\$ 700$.* You get the flexibility you need for high-speed data entry, editing, inquiry and transaction processing. It's designed to be the backbone of your system with heavy-duty features that withstand the rigors of daily use.
Standard RS-232C interfacing makes the 19 compatible with DEC VT-52 and most computer systems. And with the 19, you get the friendly advice and expert service that makes Heath/Zenith a strong partner for you.

Pick the store nearest you from the list on page 17. And stop in today for a demonstration of the Heath/Zenith 19 Smart Video Terminal. If you can't get to a store, send $\$ 1.00$ for the latest Heathkit ${ }^{\oplus}$ Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write Heath Co., Dept. 334-816, Benton Harbor, MI 49022.

HEATH/ZENITH

Your strong partner

with 32 pages of continuous business forms for small computer systems

Send today for our NEW full color 32 page catalog with programming guides, prices and order forms for continuous checks, invoices, statements, envelopes, stock paper and labels.

- Quality products at low prices
- Available in small quantities
- Fast Service
- Money Back Guarantee
- Convenient TOLL-FREE ordering

Fast Service by mall or. . .PHONE TOLL FREE $1+800-225-9550$

Mass. residents $1+800 \cdot 922 \cdot 8560$
8:30 a.m. to 5:00 p.m. Eastern Time Monday - Friday

CODE 22460

Name

Company

Street

City, State and Zip

Phone
Computer make \& model

E

adult, nor does anyone know how to write a program that can learn such a sophisticated skill.
Arthur Samuel's well-known checkers program is an actual example of a self-taught computer program. The program played so poorly at first that a child could beat it: it reached championship caliber only after playing thousands of games, just as a person would. An example of a program that needs a teacher is Patrick Winston's program that "learns to recognize structures such as tables, arches, pedestals, and arcades by being shown examples and counterexamples of them. The program's teacher has to tell it which is which, but does not have to say why: the program itself spontaneously searches for the difference that makes the difference." (See reference 3. The interested reader should also see Douglas Hofstadter's Gödel, Escher, Bach: An Eternal Golden Braid, or Margaret Boden's Artificial Intelligence and Natural Man.)

P-1 has at its disposal more memory and computing speed than any computer in existence by a factor of perhaps 250. (When P-1 contacts Gregory Burgess, the machine has 20,195 systems, all presumably IBM 360 s, under its control. With a total of 5805 megabytes of storage, making reasonable assumptions about the speed of an "average" 360 , and taking the CYBER 205 as the largest and fastest computer in existence, I came up with a ratio of about 250 to 1 . Either 25 or 2500 might be more accurate; it doesn't matter.) By now, however, it has become obvious that brute force is an ineffective way to achieve intelligence. Example: a computer could, in theory, play flawless chess by examining all possible moves and replies to moves to the end of the game. It could then choose the best move-an easy task with so much information. The insurmountable problem with this approach is that there are, by conservative estimates, 10^{120} possibilities, which would take at least 10^{105} years to compute at the speed of the CDC CYBER 205 supercomputer. A factor of 250 doesn't make a dent in a number like that.

P-1 is said to have read the complete works of Shakespeare, Conan Doyle, Faulkner, etc, and it reads the Los Angeles Times, the Washington Post, and the New York Times every day. All are made available by computer typesetting. Unfortunately P-1, unaided, would be unable to get anything out of these. It could recognize words and quickly look them up in a dictionary, but this wouldn't put P-1 any closer to real understanding, as authors of early dictionary-based translation programs discovered (see reference 4). If P-1 could reach third-grade understanding of English, it might be able to use children's literature to bring itself up to adult level. But P-1 couldn't reach third-grade level, not even with a teacher and certainly not by itself. So Ryan's use of the verb "to read" is misleading.

Ryan leans heavily on the self-teaching matchboxes technique to get Burgess' project off the ground before P-1 even comes into existence. This technique works for something as simple as tic-tac-toe, but that's about all. In fairness to Ryan, he never claims that the matchbox

The Multi-User Computer

 With The MmmOST ${ }^{* *}$*Mulli-user, Illuili-ask, Illulti-processor $\mathbf{O}_{\text {perating }}$ System Technoiogy

The TeleVideo family of multi-user business computer systems brings you the highest job throughput . . . every user controls a private computer while sharing a common data base!!! The CP/M®† operating system
$\dagger \mathrm{CP} / \mathrm{M}^{\omega}$ is a Registered Trademark of Digital Research. Inc. "Mmm(ST" ${ }^{\text {M }}$ a Registered Trademark of TeleVideo Systems, Inc,
opens the window to the largest array of business applications available for microcomputers.

TeleVideo Systems provides the computing solution!

Nationwide service by General Electric Company's Instrumentation and Communication Equipment Service Centers.

technique is anything but a way to speed up Gregory's search for a supervisor-cracking method; on the other hand, there is no meaningful description of his method.

Ryan could have set his story in the 1990s, made the computers IBM 390 s instead of 360 s , and had Burgess be a genius, thus giving some measure of plausibility to his fiction. These changes are so minor that they could almost be made mechanically with a text editor (assuming that the manuscript was machine readable), leaving the rest of the book untouched.

Hogan's Spartacus gains its abilities in a far more realistic way. As a parallel, one of the outstanding achievements of real AI is Terry Winograd's SHRDLU, a program that works with an imaginary world of blocks of various sizes, shapes, and colors, all sitting on a tabletop, the entire scene displayed on a CRT. SHRDLU can converse about this "microworld" in completely natural English (in writing, via keyboard and CRT). SHRDLU can take orders to do various things with the blocks, many of the tasks requiring fairly complex problem-solving strategies, and can answer questions about the microworld or about its own actions. In short, SHRDLU appears to understand this simple little world as well as a human would (see reference 5).

TFT's FISE is, apparently, a sophisticated descendant of SHRDLU. Its toy world has a man, named Hector, living in a house with his dog and attacking such problems as how to cook eggs without mixing in the butter wrapper

APPLE
NEW!
 GRAPHICS VISChRtT ${ }^{\text {TM }}$ SCIENTIFIC Plotiter
 FOR LABS
BY PAUL K. WARME
SCIENTIFIC PLOTTER
48K APPLE II + , $\$ 25$
Draws professional-looking graphs of your dapa. EASIER. FASTER, NEATER and more ACCURATE than handplotting. You choose data format, length and position of axes, 20 symbols, error bars, labels anywhere in 4 orientallons, efc. Includes 5 DEMOS on disk with 30. PAGE MANUAL.
CURVE FITTER
48K APPLE II +, $\$ 35$
Selects the best curve to fit your data. SCALE, TRANSFORM, AVERAGE, SMOOTH, INTERPOLATE (3 types), LEAST SQUARES FIT (3 types), EVALUATE UNKNOWNS from fitted curve. Includes 5 DEMOS on disk with 33.PAGE MANUAL.
VISICHART ${ }^{\text {TM }}$
48K APPLE II +, $\$ 75$
NEW tools for lab data management. FAST plots of 4 data sets with SCROLL. ING in 4 directions, ZOOM scaling on X and Y axes, 2 types of graphic CURSORS and on-screen STATUS REPORT. PLOTS AID INPUT while sampling. ADD, SUBTRACT, MULTIPLY, DIVIDE, INTEGRATE, DIFFERENTIATE, AVERAGE or NORMALIZE data sets with SIMPLE COMMANDS. Ideal for spec tra. chromatograms. rate curves. etc. Includes SAMPLE DATA on disk with 28. PAGE MANUAL.

SPECIAL! All 3 programs on one disk, only $\$ 120$. Since each program uses the same data format on disk, data may be shared.
SUMY THESE PROGRAMS AT YOUR LOCAL DEALER OR ORDER DIRECT. For more information, ask for FREE brochure or send $\$ 5$ for any manual (\$12 for all 3), deductlble with purchase. Add $\$ 1.50$ shipping on all orders. For fastest service. call in your VISA or Master Card order.

INTERACTIVE MICROWARE, INC.
P.O. Box 771, Dept. B State College, PA 16801 CALL (814) 238.8294 for IMMEDIATE ACTION
and pieces of eggshell. FISE's emphasis seems to be more on problem solving and less on natural language, as the following excerpt shows. To set the stage, Chris and Ron are computer scientists, associates of Dyer's, and Laura is a reporter getting a demonstration. Here, Hector has carefully placed the intact egg in the frying pan.
"How are you going to eat the egg when you've fried it?" At the console, Chris silently translated Ron's question into touchboard commands.
"With the knife and fork, off the plate, on the table," FISE replied proudly.
"Very good, FISE," Ron approved in dulcet tones. Then his voice began on a slightly higher note and rose rapidly to end in a shriek. "How are you going to cut the egg with the knife when it's still inside the goddam shell?" Chris conveyed the essential information via the console.
"I wasn't very sure about that," FISE confessed. "But you told me I wasn't supposed to break eggs."
"It's okay to break an egg if you want to fry it," Ron said, having regained his composure. Hector promptly picked the egg out of the pan, crushed it in his fist and held it out for the resulting mess to drip back into the pan. Laura made a face and gave an involuntary exclamation of disgust.
"Now you can see the kind of thing I meant," Dyer commented. "Totally rational solutions but no commonsense constraints."
(Incidentally, the first hundred pages of TFT provide a painless introduction to AI, suitable even for the computer illiterate.)

We are now ready to reconsider the relative plausibility of P-1 and Spartacus. Since P-1's ill-defined "creativity" element must be considered, the comparison is difficult, but let's assume the two machines start with equal assets. If anything, this decision favors P-1. Remember that P-1 is on its own until it recontacts Burgess, displaying at that time fully developed intelligence: it sounds like a well-educated, intelligent adult. On the other hand, experts confront Spartacus with a series of escalating problems, and it thereby learns a great deal. In spite of this, Spartacus doesn't begin to approach P-1's knowledge or command of English. In fact, no knowledge of natural language is claimed for Spartacus. Q E D.

Conclusions

$A P-1$'s basic concept, an intelligent and powerful but immature computer, is not original: it appears in the earlier When Harlie Was One (see reference 6). I know of no reason why this idea could not be presented in a technically competent way, but unfortunately When Harlie Was One is, if anything, worse than AP-1. It commits the unpardonable sin of claiming that special hard-ware-called "judgment circuits"-is required to make a computer intelligent, then tries to use this claim as an explanation of how the machine works. But, in fact,

Apple* en OAST AL ANO 뻑 Tercer Medio presenta su sistema administrativo (T.M.A.) para Apple

Diseñado de acuerdo con los principios contables aceptados en todos los países de habla hispana.

APLICACIONES COMERCIALES Y CIENTIFICAS

- CONTABILIDAD GENERAL

Diario General
Resumen del Diario
Consulta parcial al Diario
Mayor General
Balance de Comprobación
Balance General
Ganancias y Pérdidas
Catálogos de Cuentas
Consultas por pantalla

- CUENTAS POR COBRAR

Catálogo de Cuentas

Listado de Transacciones
Antigüedad de Saldos
Saldos por Vencer
Relación de Cobranzas
Relación de Pagos
Estado de Cuentas
Consultas varias por pantalla

- INVENTARIO Y FACTURACION
- CONTROL DE BANCOS
- PERT/CPM
- CUENTAS A PAGAR
- CONTROL DE COSTO DE OBRAS

qVENTAJAS DEL SISTEMA T.M. A.

- Son completamentes conversacionales.
- El chequeo de la información es instantáneo.
- Los reportes impresos o por pantalla guardan los formatos generalmente aceptados.
- Están pensados para adaptarse a cualquier empresa.
- Toda la información está instantáneamente disponible
- Precisión Expandida.
- Números de hasta \pm 999.999.999.99

Circle 355 on inquiry card.
Sistema de Información C.A.

APARTADO DE CORREOS 62533 CARACAS 1060-A - VENEZUELA TELEX: 27.876-CPB TH - VE. TELEFONOS: 283.60.88-284.74.68
anything that can be done with hardware can be done with software, and vice versa. And When Harlie Was One makes only a feeble attempt to explain how judgment circuits work. This is understandable, because the idea that intelligent judgment can be neatly packaged is ridiculous.
Ultimately, what bothers me about AP-1, When Harlie Was One, and TV series that depict anthropomorphic intelligent machines, is not so much that they misrepresent machine intelligence as that they fail to understand the nature of any intelligence. No one knows in any detail how intelligent behavior can ultimately be pulled out of the rigid, inflexible, unthinking hardware of the computer: I certainly don't. But we do know where some of the complexity of intelligence lies and how complicated it is. I regret that much of the fiction about intelligent machines shows no understanding of these facts.

An outstanding example of an area whose complexity is now quite clear is natural language. Boden (see reference 7) makes several relevant comments on this subject:

Cineastes will remember Stanley Kubrick's film of Arthur Clarke's 2001, A Space Odyssey as a rich source of prophecies concerning technological advance. If asked to list the more fanciful of these futuristic suggestions, probably few would mention the sensible verbal exchanges between the human astronauts and HAL, the computer. HAL's

With REFORMATTER disk utilities you can read and write IBM 3740 and DEC, KT-II single density formatted diskettes on your CP/M ${ }^{\text {min }}$ system.

REFORMATTER enables you to access large system databases, improve data exchange with other organizations, increase program development capabilities, and use your micro in distributed processing.

REFORMATTER programs feature bi-directional data transfer and full directory manipulation. ASCII/EBCIIIC conversion provided with $\mathrm{CP} / \mathrm{M} \longrightarrow 1 \mathrm{BM} . \quad$ IIP/M is now fuly supported.

Program Data Sheets, Application Guides, and Machine Compatibility Guides available.

Each program $\$ 195.00$ from stock. Specify $\mathrm{CP} / \mathrm{M} \leftrightarrow I \mathrm{BM}$ or $\mathrm{CP} / \mathrm{M} \leftrightarrow$ DEC. Order from MicroTech Exports, Inc., 467 Hamilton Ave., Suite 2, Palo Alto, CA $94301 \square$ Tel: 415/324-9114 \square TWX: 910-370-7457 MUH-ALTOS \square Dealer and OEM discounts available.
\qquad (CP/ M^{*} is a regislered irademark of IMglal Research
linguistic prowess is more commonly taken for granted than is the basically trivial gadgetry compensating for weightlessness. And the tortured nursery rhymes emitted by the computer while its circuitry is hacked to pieces stay more vividly in the memory than do HAL's earlier conversations with his English-speaking interlocutors. HAL's ability to lip-read is indeed surprising, but his appropriate replies to the indefinitely various remarks of the human crew cause scarcely an eyebrow to rise in wonderment.

This common pattern of response on the part of the filmgoer is a prime example of straining at gnats while swallowing a camel. Understanding one's native language is apparently effortless and introspectively simple, but in fact involves the deployment of intellectual capacities of an extraordinary complexity. The project of programming a machine to simulate such comprehension not only promises a corresponding complexity, but also presupposes a theoretically explicit understanding of understanding.

Two other phenomena that are extremely complex are judgment and creativity. Judgment circuits? Creativity modules? Here I'm going out on a limb, but I don't believe that judgment and creativity are processes that can be neatly packaged. They are what Hofstadter calls "epiphenomena," resulting from the organization of a complex system and not residing in any specific part of it. Hofstadter (see reference 8) gives some good examples of epiphenomena:

I was talking one day with two systems programmers for the computer I was using. They mentioned that the operating system seemed to be able to handle up to about thirty-five users with great comfort, but at about thirty-five users or so, the response time all of a sudden shot up, getting so slow that you might as well log off and go home and wait until later. Jokingly I said, "Well, that's simple to fix-just find the place in the operating system where the number ' 35 ' is stored, and change it to ' 60 '!" Everyone laughed. The point is, of course, that there is no such place. Where, then, does the critical number- 35 users-come from? The answer is: It is a visible consequence of the overall system organization-an "epiphenomenon."

Similarly, you might ask about a sprinter, "Where is the ' 9.3 ' stored, that makes him be able to run 100 yards in 9.3 seconds?" Obviously, it is not stored anywhere. His time is a result of how he is built, what his reaction time is, a million factors all interacting when he runs. The time is quite reproducible, but it is not stored in his body anywhere. It is spread around among all the cells of his body and only manifests itself in the act of the sprint itself.

Computerize your bookkeeping without terrifying your bookkeeper.

Introducing The Boss: ${ }^{\text {TM }}$ the most advanced, yet most understandable, financial accounting system. Designed to automate your bookkeeping without confusion or mistakes.

Typical screen format - actual photograph.
If "fear of the unknown" is standing between you and computerization, you should find out about The Boss.

The Boss system is immediately comprehensible to bookkeepers because it utilizes virtually the same format they're used to.

So even someone with no previous computer experience can easily learn and operate The Boss system.

Features seldom found in packaged software.
The Boss system is fully interactive, fully departmentalized and exceptionally fast. It can generate an astounding number of complex reports-at the touch of a button.

General Ledger and Accounts Receivable and Payable transactions can be entered in any order in a single program.

Up-to-the-minute financial reports can be obtained without batch processing.

The Boss system computes financial ratio analysis.

It protects data from unauthorized personnel as well as computer malfunction.

And it has the largest programming and storage capacity of any micro system.

The Boss runs on most small business computers with $\mathrm{CP} / \mathrm{M}^{\oplus}$ or similar operating systems. Its cost is only $\$ 2,495$.

Get full support from Lifeboat.
The Boss is brought to you exclusively and supported completely by Lifeboat Associates, world's largest computer software publisher. For more information about how you can profit from this extraordinary financial accounting system, send us the coupon below. Or call (212) 860-0300.

LIFEBOAT WORLOWIOE offers you the world's. largest library of software. Contacl your nearest dealer or Lifeboat:
Lifeboat Associates GmbH
PO Box 168. Ae peristrasse
Intersott GmbH Schlossgantenweg 5 PO Box 125 PO Box 168 . Aegeristrasse 35 London WC2H 9LU. England Tel: 01-836-9028 Teler: 893709 (LBSOFTG)
Tel
Lifeboat Associates in professional software for the Apple II and Commodore Pet.

Abstract

Until recently, the tremendous explosion in microcomputer technology left an unfilled void in real quality software. Microcraft Systems is totally dedicated to filling that void for the Apple Il and the Commodore Pet. With powerful, elegant and versatile software.

Beyond the software house. To a complete 6502 development system.

More than a software distributor or discount house, MicroCraft Systems now provides you with access to a whole new spectrum in software systems. MicroCraft software includes: MacroLink, a complete macroassembler for the 6502, SuperEdit, a full-screen editor with a superb range of powerful capabilities plus, DiskScreen, a screen-oriented disk utility.

Complete System \$200/\$40

MacroLink

\$125/\$20
Uses text files for source code - Links source code or object code programs - Fully nestable file include capability - Recursive macros - Nestable conditional assembly - Over 50 error messages • File I/O macros • Sample programs - Disk assembler: source code need NOT fit in memory.

SuperEdit

\$75/\$20
Full Screen Editor • Single keystroke commands • Uses standard text files - Move cursor by character, line or page - Block move and copy - Search and replace - Macro capability - Plus extra software: SuperEdit ' 56×27 ' provides 56×27 character screen for Apple II • And more!

DiskScreen

\$40/\$10
Displays a complete sector in hex and ASCII Completely visual and interactive - Sector move and copy - To change byte value, move cursor and type.

NOTE: All programs require single disk drive. MacroLink also requires 48 K . First price: software and manual. Second price: manual only (applied toward purchase of software).
Call or write for our complete MicroCraft Systems catalog at no extra charge. Other programs include: S.T.A.R. Reading Program - "C"" Compiler • Gra. phics Development Systems - Programs in ROM SuperEdit for 80×24 video cards

MicroCraftSystems, me.
In software systems, a name to remember.

188 Kerby Road
Grosse Pointe Farms, MI 48236
(313) 881-3089

MicroNet I.D. 70270, 222
VISA or MasterCharge accepted. Inquire at your local computer store or order direct.

I'd like to make clear that I don't object to science fiction that makes use of computers, intelligent or otherwise, without explaining how they work. HAL in 2001: A Space Odyssey is basically of this type, though I think the year 2001 is much too early for the human-or-better intelligence HAL displays. Boden, who repeatedly uses HAL as a standard of true intelligence in a machine, apparently agrees on both comments. Another example is Ellison's I Have No Mouth and I Must Scream, which postulates a computer that goes berserk. It kills everyone in the world, except for five people whom it plans to keep alive to torture forever. Unpleasant and unlikely, but the story doesn't say how the computer works and how it was developed, so my understanding of intelligence is not contradicted.

In The Cybernetic Imagination in Science Fiction, Warrick concludes that "with too few exceptions, the fiction gives no evidence that it is aware of information theory or computer technology . . . the portrayal of computer technology is too often inaccurate and distorted" I agree. She then speculates that "the complex, technical nature of the material in computer science and the incredible speed of developments in the field make it impossible for the literary imagination to keep abreast of the material." This I do not believe. I like Ted Nelson's comment that any nitwit can understand computers, and many do. "Understand" does not mean "be an expert on"; that is something that takes talent and time, for the reasons Warrick mentions. My own speculation is that many science-fiction writers misrepresent computers because they think computers are hard to understand, and as a result they don't really try. Perhaps they feel, consciously or otherwise, that there's no point in really understanding computers, since the real thing will be too complicated for their readers.

There is also, as I have already suggested, an even more important distorting factor in the science fiction about intelligent computers. Although it sounds obvious when stated directly, I think this point is often forgotten: machine intelligence is just a type of intelligence. Therefore writers about intelligent machines need to understand something about intelligence. In my opinion, they need this more than they need to understand computers.

References

1. 'Computers," in The Science Fiction Encyclopedia, Peter Nicholls, editor. New York: Doubleday, 1979, pages 133-134. Contains a list of relevant stories and discussions.
2. Warrick, Patricia. The Cybernetic Imagination in Science Fiction. Cambridge MA: MIT Press, 1980.
3. Boden, Margaret. Artificial Intelligence and Natural Man. New York: Basic Books, 1977, pages 252-253.
4. Boden, pages 165-167
5. Boden, Chapter 6.
6. Asimov, Isaac. 'Escape!'" Published in 1945, this story treats the same idea developed in AP-1 and When Harlie Was One, but in less detail.
7. Boden, page 95.
8. Hofstadter, Douglas. Godel, Escher, Bach: An Eternal Golden Braid. New York: Random House, 1980, page 308.

At Hayes, we don't believe in second best. Or planned obsolescence. We believe in taking the state of the art to the limit. Our new Smartmodem, for example, is the most sophisticated 300-baud originate/answer modem you can buy. And yet, it is perhaps the easiest-to-use modem ever.

RS-232C Compatible. Smartmodem lets any RS-232C compatible computer or terminal communicate by phone with other computers and time-sharing systems located anywhere in North America. You get full and hall-duplex operation with both Touch-Tone* and pulse dialing. Auto-Answer/Dial/Repeat. Smartmodem can answer the phone, dial a number, receive and transmit data, and then hang up the phone - automatically! If desired, Smartmodem will even repeat the last command, You can depend on Smartmodem for completely unattended operation.

Completely Programmable.

Smartmodem can be controlled using

Microcomputer Component Systems
any programming language. Over 30 different commands can be written into your programs or entered directly from your keyboard

Smar tmodem also includes several switch-selectable features that let you tailor performance to your exact needs. You can "sel it and forget it" for the ultimate in convenience.

Built-in Audio Monitor. Thanks to an internal speaker, you can actually listen to your connection being made. You'll know immediately if the line is busy or if you reached a wrong number -

and you don't even need a phone!

Status at a Glance. Seven LED's indicate Smartmodem's current operating mode: auto-answer, carrier detect, off hook, receive data, send data, terminal ready and modem ready. You're never left in the dark!

Direct-Connect Design. Smartmodem is FCC registered for direct connection to any modular phone jack - there's no acoustic coupler to cause signal loss and distortion.

Smartmodem, Smart Buy. Professional quality features. Versatile performance. A full two-year limited warranty. A suggested retail price of only $\$ 279$.

What more could you want? Perhaps the matching Hayes Stack Chronograph, an RS-232C compatible calendar/ clock system.

Check out the Smartmodem wherever fine computer products are sold. And don't settle for anything less than Hayes.

Symbolic Differentiation à la LISP

Ronald L Nicol 3102 Joyce Dr
Orlando FL 32812

Just as I would not consider repairing a car with only a screwdriver and wrench in hand, so would I also not approach the art of computer programming with but a few computer languages in mind. It is clear that each well-known language has a forte, otherwise it would have faded into obscurity. But in the realm of symbolic mathematics, LISP and its descendants stand alone. As a vehicle for the development of symbolicmathematical code, LISP is the natural choice.

Background

Two years ago I had not heard of LISP, and it was not until I read the August 1979 BYTE, a LISP theme issue, that I first realized the power of the language. At that time, however, there were no LISP interpreters available for the Radio Shack TRS-80. This prompted me to spend the next ten months writing a complete LISP interpreter, which proved an interesting and educational undertaking. The resulting interpreter fits comfortably in a 16 K -byte TRS-80 Model I computer.

[^22]As I soon learned, a necessary condition to writing a LISP interpreter and eventually writing effective LISP programs is the use of recursion. Few languages take such full advantage of recursion. The resulting interpreter incorporates approximately fifty machine-code LISP functions, including the PROG feature and the FUNARG device (a method of specifying variable bindings, or assignments), and a form of virtual memory.

In the realm of symbolic mathematics, LISP and Its descendants stand alone.

As a preface to the discussion of the symbolic differentiation program, I will discuss a mechanism called the association list, or A-list, used in most LISP systems. The A-list exists as a software stack that holds variable bindings. A common approach, and one which I used, is to create a list of pairs, each containing the name and value of a variable. When the value of a variable is required, the A-list is searched from the top down, and the value of the first occurrence of the variable is returned. There are many distinct advantages to this treatment, one of which is that
variables can be made completely local with respect to a function. This is accomplished by virtue of the fact that a function binds its variables before operating on them, and removes the bindings when the function is complete. In tandem with modular definition of functions, this feature allows full recursion - a function may call itself any number of times.
There are two types of user-defined functions in LISP. One is the EXPRtype function, which has its arguments evaluated, while the other type, the FEXPR function, does not have its arguments evaluated. Of the two arguments passed to a FEXPR function, the first is a list consisting of user arguments and the second is the A-list. Passing the A-list as an argument allows FEXPR functions to preserve the calling environment.
A property list is associated with each atom. The FEXPR and EXPR function definitions are contained in the property list so that the interpreter can properly evaluate a function.
The first step in developing a usable LISP symbolic-math system is to define the defining functions. Listing 1 contains the functions DEF and DFF. The DEF function is the EXPR defining function, and DFF is the FEXPR defining function. Both functions operate by placing the function definition on the property list of the given function name, under the appropriate atomic indicator Note

AnrouncingtheUTCAT68000 Wierocemputer System 50.

Listing 1: Defining the defining functions. The function definitions are placed on the property lists of DEF and DFF. Functions defined using DEF have their arguments evaluated, while those defined with DFF do not.

```
(PUTPROP(QUOTE DEF)
    (QUOTE(LAMBDA(S A)
            (PUTPROP(CAR S)
                    (CONS LAMBDA(CDR S))
                EXPR))
    FEXPR)
(PUTPROP(QUOTE DFF)
    (QUOTE(LAMBDA(S A)
            (PUTPROP(CAR S)
                (CONS LAMBDA(CDR S))
                FEXPR)))
    FEXPR)
```

that both of these functions exist as FEXPR functions on the DEF and DFF atoms, respectively.
When it is occasionally necessary to use special LISP characters in a context different from their meanings in LISP, the double-quote convention is used (eg: to parse "-" as a minus sign instead of a negative zero). Use of this feature is illustrated as follows:

$$
\begin{aligned}
& (\text { QUOTE }- \text {) }=0 \\
& (\text { QUOTE "-") }=- \\
& (\text { QUOTE }+ \text {) }=0 \\
& (\text { QUOTE " }+ \text { ") }=+
\end{aligned}
$$

Additionally, the functions ADD and

Listing 2: Definition of the function SETUP, which assigns the left and right binding powers to binary operators and places the appropriate property on the indicator OP for unary operators. The auxiliary function MAPCAR maps the second argument onto successive CARs of the first argument.
(DEF SETUP()
(PROG()
(MAPCAR(QUOTE((† 90100 EXPT)
(* 6080 TIMES)
(5070 DIV)
(" +" 2040 ADD)
(" - " 1030 SUB)))
QUOTE(LAMBDA(L)
(PROG()
(PUTPROP(CAR L)
(CAR(CDR L))
(QUOTE LB))
(PUTPROP(CAR L)
(CAR(CDR(CDR L)))
(QUOTE RB))
(PUTPROP(CAR L) (CAR(CDR(CDR(CDR L)))) (QUOTE OP) $)$))
(PUTPROP(QUOTE COS) (QUOTE COS) (QUOTE OP))
(PUTPROP(QUOTE SIN)
(QUOTE SIN)
(QUOTE OP))
(PUTPROP(QUOTE EXP)
(QUOTE EXP)
(QUOTE OP))
(PUTPROP(QUOTE LOG) (QUOTE LOG) (QUOTE OP))),

Figure 1: Skeletal structure of the symbolic-differentiating system. Each block represents a recursive function that performs the task denoted within.

SUB are, respectively, the twoargument special-case functions of the standard LISP functions PLUS and DIFFERENCE.

System Overview

The symbolic differentiator consists of three sections: the input parser, the differentiating function, and the output parser. This process is shown symbolically in figure 1. The purpose of the input parser is to translate user input from normal mathematical infix notation to Cambridge prefix notation, the notation used by LISP. The differentiating function differentiates the output, which is subsequently converted back to infix notation by the output parser.

Input

The input function, PREF, consists of a recursive descent parser with no backtracking. Michael Tucker, a fellow LISP enthusiast, and I wrote this function in a matter of twenty minutes, a point that attests to the clarity and lucidity of LISP programming. A recursive descent parser determines which of two operators has higher priority, breaks the input into two sections, and calls itself on each of the pieces. The no-backtracking characteristic means that the parser does not have to scan back to. check priority.

PREF was designed with the flexibility to change operator precedence. Each binary operator has a left binding power, LB, and a right binding power, RB. By comparing the left and right binding powers of the operators competing for an argument, the parser decides which operator wins the argument. If the left and right binding powers of the operators are equal, the operator on the left of the argument wins. The values of left and right binding powers are stored on the property list of the operator under the indicators LB and RB, respectively. Also contained on the property list of each operator under the indicator OP is the equivalent LISP function name. For example, the property list of the multiplication operator * might appear as follows:
((OP,TIMES)(LB,60)(RB,80))

Operator precedence is initially set by executing the function SETUP, which is given in listing 2 . The user, however, may at any time alter operator precedence by changing the

LB or RB value of an operator by means of the LISP PUTPROP function. Unary operators and singleoperator functions are treated by placing the function within paren-

Input
(PREF(QUOTE(A * B"' + "C))) (PREF(QUOTE(A *(B' $\left.\left.{ }^{\prime \prime}+{ }^{\prime} \mathrm{C}\right)\right)$)) (PREF(QUOTE(A $"-"$ B I C))) (PREF(QUOTE(1/(N!)))) (PREF(QUOTE(" - " Y))) (PREF(QUOTE(X *(COS $\times 12$))))

Output

(ADD(TIMES A B)C) (TIMES A(ADD B C)) (SUB A(EXPT B C)) (DIV 1(FAC N))
(SUB 0 Y)
(TIMES X(COS(DIV $\times 2$ 2))

Table 1: Sample input and output of the function PREF, which converts infix notation to prefix notation.
theses. The input parser, PREF, is defined in listing 3. The power of this function lies in its ability to recursively call itself. Table 1 contains examples illustrating the use of PREF.

Differentiation

Unlike other areas of mathematics, such as integration or theorem proving, differentiation can generally be characterized by a finite set of definite, rigorous rules, which may easily be defined as recursive LISP functions (see table 2). The differentiating function, DIFF, receives two arguments: the expression to be differentiated and the variable with

Finally, a price-performance breakthrough for mass storage in a one-piece, handsomely styled desk-top computer.

- $5 \frac{1}{4}$ " Micro-WInchester ${ }^{\text {m }} 5$ Mbyte (formatted) hard disk.
- 700K or 350k floppy disk back up.
- Dual Z-80 processors with $64 K$ RAM.
- Dual RS232 ports.
- Complete and ready to run with CP/M ${ }^{\text {TM }} 2.2$.

DEALER \& OEM IHQUIRIES IHVITED

TELEPHONE (2O6) 453-9777
TOLL FREE 1-800-426-2963

Superfive ALSO DISTRIBUTED BY:

Compu Data

I Bala Cynwyd Plaza
Bala Cynwyd. PennsyIvania 19004
Telephone (215) 667-6843

- Largest Intertec distributor in the United States.
- Distributor for C. Itoh, MPI, Epson.
- Seagate, Tanden drives.
- Corvus hard disks, multlplexers.
- Superbrain S-100 bus, graphics, and parallel port.
- Software: MicroPro, Accounting Plus, Peachtree, Condor, Benchmark.

CMC International

A Division of Computer Marketing Corporation I 1058 Main. Suite 125. Bellevur. WA 98004 (206) 453.9777

Making small printers for people who think big.
Okidata is subsidiary of Oki Electric Industry Company Ltd

Listing 3: Definition of the recursive descent parser, PREF. The parser is defined without backtracking, which minimizes memory and time requirements.

```
(DEF PREF(E)
    (COND((ATOM E)E)
        ((NULL(CDR E))(PREF(CAR E)))
        ((COND((ATOM(CAR E))(GET(CAR E)(QUOTE OP))))
            (COND((EQ(CAR E)(QUOTE " - "))
                    (LIST(QUOTE SUB)
                        O
                    (PREF(CDR E))))
            (T(LIST(GET(CAR E)(QUOTE OP))
                    (PREF(CDR E)))))
        ((EQ(CAR(CDR E))(QUOTE !))
            (LIST(QUOTE FAC)
                (PREF(CAR E))))
        ((NULL(CDR(CDR(CDR E))))
            (LIST(GET(CAR(CDR E))(QUOTE OP))
                    (PREF(CARE))
                (PREF(CDR(CDR E)))%)
        ((GREATER(GET(CAR(CDR(CDR(CDR E))))(QUOTE LB))
                (GET(CAR(CDR E))(QUOTE RB)))
            (LIST(GET(CAR(CDR E))(QUOTE OP))
                    (PREF(CAR E))
                    (PREF(CDR(CDR E)))))
        (T(LIST(GET(CAR(CDR(CDR(CDR E))))(QUOTE OP))
            (PREF(LIST(CAR E)
                    (CAR(CDR E))
                    (CAR(CDR(CDR E))})=\mathrm{ )
                (PREF(CDR(CDR(CDR(CDR E))))))))
```

respect to which the differentiation is to occur. DIFF appears in listing 4.

The function DIFF first tests whether or not the expression is an atom. If so, it determines if the expression is the variable of interest, in which case the value of the function is 1, because the derivative of a variable with respect to itself is unity. Otherwise, if the argument to DIFF is some other atom, 0 is returned. The additional clauses of the DIFF COND statement search for more complex differentiating rules which may be satisfied. The rules are applied recursively, which allows for the simple LISP representation. The modularity of this LISP function is obvious. It is easily extensible to encompass additional rules by the inclusion of additional clauses to the COND. Considering DIFF as a black box, table 3 lists exemplary input and output of the function.

Output

Once DIFF has mapped its input into the appropriate derivative, it is

Text continued on page 230
Listing 4 and Table 2 are on page 224
Listing 5 is on page 226

SuperBrain" and CompuStar" Users' Group

 WE KNOW THE TERRITORY FOR INTERTEC'S PRODUCTS Why run around to find what's available for your computer? Our members are always up to date!* Monthly magazine * Make your computer talk \star Touch the screen to input data * S-100 * Software to fit your needs * The latest from Intertec \star Discounts on travel, products, insurance, and more \star Free programs
\star Yearly conference * Special dealer program * A shoulder to lean on

INTERNATIONAL CORPORATION ${ }^{\text {TM }}$ P. O. Box 33675, Northglenn, CO $80233 *(303) 526-1050$

Charge membership by phone

 With savings, service, and efficiency, we're here to win your heart.

Yearly membership fee is $\$ 50.00$ U.S., $\$ 58$ Canada, \$74 Europe \& So. America. \$81 Australia, Mld East. Asia \& Africa. Your fee may be tax deductible. Send checks with your name and address, made out to: Super * Star International (U.S. Currency).

I would like to join Super * Star International. Enctosed is my check for \$ Name \qquad Company
Address \qquad Phone Cliy/StatelZip Computer Model

"My computer helped me write The Final Encyclopedia. I wouldn't trust anything less than Scotch Brand Diskettes to make a long story short."

Gordon R. Dickson, Science Fiction Author, Minneapolis, Minnesota

Gordon Dickson: a small businessman whose product is his own imagination. He's written more than 40 novels and 150 short stories; his newest work is The Final Encyclopedia. He uses his personal computer and word processing software to maximize his production. All his words-his productare stored on diskettes. He calls up sentences and paragraphs on demand, and gets more rewrite out of the time available. So he depends on Scotch diskettes to save himself production time.
Dependable Scotch media can work just as hard for you. Each Scotch diskette is tested before it leaves our factory, and certified error-free. So you can expect it to perform exactly right.
Scotch $8^{\prime \prime}$ and $51 / 4^{\prime \prime}$ diskettes are compatible with computer/diskette systems like TRS-80. Apple, PET, Wang and many others. Get them from your local 3M distributor. For the one nearest you, call toll-free: 800/328-1300. (In Minnesota, call collect: 612/736-9625.) Ask for the Data Recording Products Division. In Canada, contact 3M Canada, Inc., Ontario.
If it's worth remembering, it's worth Scotch
Data Recording Products.

3M Hears You...

3M

Listing 4: The definition of the differentiating function DIFF. It consists of a COND statement (LISP's version of the case statement) in which each clause checks for a particular differentiating rule. Recursion is used extensively.
(DEF DIFF(E X)
(COND((ATOM E)(COND((EQ E X)1)(T 0)))
((EQ(CAR E)(QUOTE ADD))
(LIST(QUOTE ADD)
(DIFF(CAR(CDR E))X)
($\operatorname{DIFF}(C A R(C D R(C D R E))) X))$)
((EQ(CAR E)(QUOTE TIMES))
(LIST(QUOTE ADD)
(LIST(QUOTE TIMES)
(CAR(CDR E))
(DIFF(CAR(CDR(CDR E)))X))
(LIST(QUOTE TIMES)
(CAR(CDR(CDRE)))
($\operatorname{DIFF}(C A R(C D R E)) X))$)
((EQ(CAR E)(QUOTE SIN))
(LIST(QUOTE TIMES)
(LIST(QUOTE COS)
(CAR(CDR E)))
($\operatorname{DIFF}(\operatorname{CAR}(C D R E)) X)$)
((EQ(CAR E)(QUOTE COS))
(LIST(QUOTE TIMES)
(LIST(QUOTE SUB)
0
(LIST(QUOTE SIN)
(CAR(CDR E) $)$)
(DIFF(CAR(CDRE))X))
((EQ(CAR E)(QUOTE DIV))
(LIST(QUOTE DIV)
(LIST(QUOTE SUB)
(LIST(QUOTE TIMES)
(CAR(CDR(CDR E)))
(DIFF(CAR(CDR E))X))
(LIST(QUOTE TIMES)
(CAR(CDR E))
(DIFF(CAR(CDR(CDR E)))X)))
(LIST(QUOTE TIMES)
(CAR(CDR(CDR E)))
(CAR(CDR(CDR E))))))
((EQ(CAR E)(QUOTE SUB))
(LIST(QUOTE SUB)
($\operatorname{DIFF}(C A R(C D R E)) X)$
($\operatorname{DIFF}(\operatorname{CAR}(C D R(C D R E))) X))$
((EQ(CAR E)(QUOTE EXPT))
(LIST(QUOTE ADD)
(LIST(QUOTE TIMES)
(DIFF(CAR(CDR E))X)
(LIST(QUOTE TIMES)
(CAR(CDR(CDR E)))
(LIST(QUOTE EXPT)
(CAR(CDR E))
(LIST(QUOTE SUB)
(CAR(CDR(CDR E))) 1) $)$)
(LIST(QUOTE TIMES) (DIFF(CAR(CDR(CDR E)))X)
(LIST(QUOTE TIMES)
(LIST(QUOTE LOG)
(CAR(CDR E)))
(LIST(QUOTE EXPT)
(CAR(CDR E))
(CAR(CDR(CDR E) $)$)))))
((EQ(CAR E)(QUOTE EXP))
(LIST(QUOTE TIMES)
E
($\operatorname{DIFF}(\mathrm{CAR}(C D R E)) \mathrm{X})$)
('EQ(CAR E)(QUOTE LOG))
(LIST(QUOTE TIMES)
(LIST(QUOTE DIV)
1
(CAR(CDR E)))
($\operatorname{DIFF}(\operatorname{CAR}(\operatorname{CDRE} E) \mathrm{X}))$))

HIPAD DIGITIZERS

Inexpensive Graphic Input To Your Computer

The HIPAD ${ }^{\text {TM }}$ Series Digitizers are the ideal graphic input devices for the small system user. Utilizing the principle of $\mathrm{X}-\mathrm{Y}$ coordinates to obtain positioning, they convert graphic coordinates into digital data that can be processed by the computer.

Featuring:

-Digitizing surface of $11^{\prime \prime} \times 11^{\prime \prime}(28 \mathrm{~cm} \times 28 \mathrm{~cm})$.

- Translucent digitizing area suitable for backlighting.
- Built-in switch selectable RS-232-C and 8 bit parallel interfaces.
\bullet Resolution of 0.005 inches or .01 inches.
- One button cursor standard.
- Four button cursor available.
- Optional marking or non-marking stylus
-Relocatable origin.
- Optional 5-digit LED display.
-UL Listed - Certified FCC Class B.
\bullet Easily interfaced to Apple ${ }^{\mathrm{TM}}, \mathrm{TRS}-80^{\mathrm{TM}}$, Atari${ }^{*}$, and most other microcomputers.
-Prices start at $\$ 825$.*

houston instrument graphics division of
 BAUSCH \& LOMB
 TM TRSe is a tradernerk of Tanoy Corporation

For complete information contact
Houston Instrument, One Houston Square, Austin. Texas 78753. (512) 837-2820. For rush literature requests, outside Texas, call toll free. 1-800-531-5205. For technical information ask for operator $\# 5$.

TM HIPAD is a lrademath of Houston insirument

- U.S. SUgpested rate il price

$$
\begin{aligned}
& \frac{d}{d x}(a)=0 \\
& \frac{d}{d x}(x)=1 \\
& \frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} \\
& \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& \frac{d}{d x}(\sin u)=\frac{d u}{d x}(\cos u) \\
& \frac{d}{d x}(\cos u)=-\frac{d u}{d x}(\sin u) \\
& \left.\frac{d}{d x}(u / v)=\frac{d u}{d x}-u \frac{d v}{d x}\right) \\
& \frac{d}{d x}(u-v)=\frac{d u}{d x}-\frac{d v}{d x} \\
& \left.\frac{d}{d x}(u)^{\prime}\right)=v u^{r-1} \frac{d u}{d x}+(\log u) u^{v} \frac{d v}{d x} \\
& \frac{d}{d x}\left(e^{u}\right)=e^{u} \frac{d u}{d x} \\
& \frac{d}{d x}(\log u)=\frac{1}{u} \frac{d u}{d x}
\end{aligned}
$$

Table 2: A summary of the rules of differentiation used by DIFF. The terms u and v represent functions of x, while a represents a real number.

AH-HA!屋 EURE
 ALL-RIIIGHT! 答

Introducing
 "Popular
 Computing," the key to understanding.

Now you don't have to be a computer professional to unlock all the mysteries, potential, and pleasures of home and small business computers. Popular Computing, the new monthly magazine from McGrawHill, is the key.
Created in response to growing demand for our informative quarterly onComputing, Popular Computing explores every aspect of personal computers and their use. All reported in easy-tounderstand nontechnical language.

The answer to

 "Computerphobia.'Even the most computerunsophisticated reader will find Popular Computing interesting and stimulating. Every issue will contain straighttalking product reviews,
special news briefs, and feature articles by famous guest contributors (like Isaac Asimov). There'll even be a helpful glossary of computer jargon we couldn't avoid using, and much, much more.

Special' Introductory Offer.

Send in this coupon today, and take advantage of Popular Computing's Special Introductory Offer.

Listing 5: The function definition of INFIX, the output parser. INFIX converts its input from Cambridge prefix notation to mathematical infix notation. INFIX also performs algebraic simplification.
(DEF INFIX(E)
(COND((ATOM E)E)
(T(PROG(FIRST SECOND)
(SETQ FIRST(INFIX(CAR(CDR E)))) (COND((CDR(CDR E))
(SETQ SECOND(INFIX(CAR(CDR(CDR E)))))) (RETURN
(COND((EQ(CAR E)(QUOTE ADD))
(COND((EQ FIRST 0)SECOND)
((EQ SECOND 0)FIRST)
((TWONUM)(EVAL E NIL))
((EQUAL FIRST SECOND)
(LIST 2
(QUOTE *)
FIRST))
((MATCH(LIST(QUOTE ?)(QUOTE *)FIRST)SECOND)
(INFIX(LIST(QUOTE TIMES)
(LIST(QUOTE ADD)
(CAR SECOND)
1)

FIRST) $)$
((MATCH(LIST(QUOTE ?)(QUOTE *)SECOND)FIRST)
(INFIX(LIST(QUOTE TIMES)
(LIST(QUOTE ADD)
(CAR FIRST)
1)

SECOND) $)$
(T(LIST FIRST
(QUOTE "+")
SECOND))")
((EQ(CAR E)(QUOTE TIMES))
(COND((EQ FIRST 1)SECOND)
((EQ SECOND 1)FIRST)
((EQ FIRST 0)0)
((EQ SECOND 0)0)
((EQUAL FIRST SECOND)
(LIST FIRST
(QUOTE i)
2))
((TWONUM)(EVAL E NIL))
((MATCH(LIST FIRST(QUOTE 1)(QUOTE ?))SECOND)
(INFIX(LIST(QUOTE EXPT)
FIRST
(LIST(QUOTE ADD)
(CAR(CDR(CDR SECOND)))
1))")
((MATCH(LIST SECOND(QUOTE I)(QUOTE ?))FIRST)
(INFIX(LIST(QUOTE EXPT)
SECOND
(LIST(QUOTE ADD)
(CAR(CDR(CDR FIRST)))
1)))
((MATCH(LIST(QUOTE ?)(QUOTE •)FIRST)SECOND)
(INFIX(LIST(QUOTE TIMES)
(CAR SECOND)
(LIST(QUOTE EXPT)
FIRST
2)) $)$
((MATCH(LIST(QUOTE ?)(QUOTE *)SECOND)FIRST)
(INFIX(LIST(QUOTE TIMES)
(CAR FIRST)
(LIST(QUOTE EXPT)
SECOND
2))))

THE ORIGINAL MAGAZINE FOR OWNERS OF THE TRS-80 ${ }^{\text {Tw* }}$ MICROCOMPUTER

* TRS-80'" IS A TRADEMAŔK OF TANDY CORP.

SOFTWARE FOR TRS. 80° OWNERS :CDMPUTRINICS: $=$ Practical Support For Model I, II \& III

- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING • GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS AND MORE

NOW IN OUR $4_{\text {th }}$ YEAR

PROGRAMS AND ARTICLES PUBLISHED IN RECENT ISSUES INCLUDE THE FOLLOWING:

- FINCALC • COMPLETE FINANCIAL applications Package
- INFORMATION SYSTEM REVIEW
- statistical combinations
- PaSCal.S TRIANGLE
- ASSEMBLY LANGUAGE FOR BEGINNERS
- DISK FILES
- MOD.Ill REVIEW
- KEYBOARD THUNDER AND LIGHTING EXPLAINED
- DOS COMMANDS IN LEVEL II
- PROBABILITY CURVE GENERATOR
- Calculator Simulations
- THE MEGABYTE GAP
- stocks and bonds
- budget analysis (FOR BUSINESS AND HOME)
- NEWDOS/80 REVIEW
- dutching - the horse system that can't lose
- a Simulated golf Game
- CONTINUOUS FORM SOURCES
- tax/Saver review

AND MORE And Efculate Markup, Margin, Annuities, Compound Interest, Nominal Sa Effective Rates, Sinking Funds, Mortgage Calculations, Future Value, Savings and Insurance, Percentage Difference Between Iwo Numbers, Amortization Schedule and More

COMPUTRIN:CS:

50 N. PASCACK ROAD SPRING VALLEY, NEW YORK 10977 ONE YEAR SUBSCRIPTION $\$ 24$ TWO YEAR SUBSCRIPTION \$48 SAMPLE OF LATEST ISSUE $\$ 4$ START MY SUBSCRIPTION WITH ISSUE
(\#1 July 1978 • \#12 . June 1979 • \#24 . July 1980 • \#30 . January 1981)
NEW SUBSCRIPTION.
RENEWAL

NEW TOLL-FREE
ORDER LINE (OUTSIDE OF N.Y. STATE) (800) 431-2818

24 ORDER LINE
(914) 425-1535

Listing 5 continued:
(T)LIST FIRST
(QUOTE *)
SECOND) $)$)
((EQ(CAR E)(QUOTE DIV))
(COND((EQ SECOND 1)FIRST)
((EQUAL FIRST SECOND)l)
((EQ FIRST 0)0)
((TWONUM)(EVAL E NIL))
((MATCH(LIST(QUOTE ?)(QUOTE *)SECOND)FIRST)
(INFIX(LIST(QUOTE TIMES)
(LIST(QUOTE SUB)
(CAR FIRST)
1)

SECOND))
((MATCH(LIST(QUOTE ?)(QUOTE *)FIRST)SECOND) (INFIX(LIST(QUOTE DIV)

1
(LIST(QUOTE TIMES)
(LIST(QUOTE SUB)
(CAR SECOND)
1)

FIRST) $)$)
((MATCH(LIST SECOND(QUOTE))(QUOTE ?))FIRST) (INFIX(LIST(QUOTE EXPT)

SECOND
(LIST(QUOTE SUB)
(CAR(CDR(CDR FIRST)))

1)))
((MATCH(LIST FIRST(QUOTE))(QUOTE ?))SECOND)
(INFIX(LIST(QUOTE DIV)
1
(LIST(QUOTE EXPT)
FIRST
(LIST(QUOTE SUB)
(CAR(CDR(CDR SECOND)))
1))))
(T(LIST FIRST
(QUOTE /)
SECOND) $)$)
((EQ(CAR E)(QUOTE EXPT))
(COND((EQ SECOND 1)FIRST)
((EQ SECOND 0)I)
((TWONUM)(EVAL E NIL))
(T(LIST FIRST
(QUOTE 1)
SECOND)))
((EQ(CAR E)(QUOTE SUB))
(COND((EQ SECOND 0)FIRST)
((EQ FIRST 0)(LIST(QUOTE " - ") SECOND))
((TWONUM)(EVAL E NIL))
((EQUAL FIRST SECOND)0)
(T(LIST FIRST
(QUOTE "- ")
SECOND) ())
((EQ(CAR E)(QUOTE LOG))
(COND((EQ FIRST 1)0)
(T(LIST(QUOTE LOG) FIRST) $)$)
((EQ(CAR E)(QUOTE SIN))
(LIST(QUOTE SIN)
FIRST))
((EQ(CAR E)(QUOTE COS))
(LIST(QUOTE COS)
FIRST))
((EQ(CAR E)(QUOTE EXP))
(COND((EQ FIRST 0)1)
(T(LIST(QUOTE EXP) FIRST) $)$)

:EDMPUTRINTES:

EVERYTHING FOR YOUR TRS-80* • ATARI* • APPLE* \bullet PET* \bullet

(ON CASSETTE OR DISKETTE).....Includes 110 Page Users Manual..... 5 Cassettes (Or Diskettes) Inventory Control.....Payroll.....Bookkeeping System.....Stock Calculations..... Checkbook Maintenance.....Accounts Receivable.....Accounts Payable.....

USINESS 100 PROGRAM LIST

1 RULE78
2 ANNUI
3 DATE
4 DAMYEAR
5 LEASEINT
6 BREAKEVT
7 DEPRSL
8 DEPRSY
9 DEPRDB
10 DEPRDDB
11 TAXDEP
12 CHECK2
13 CHECKBKI
14 MORTGAGE/A
15 MULTMON
16 SALVAGE
17 RRVARIN
18 RRCONST
19 EFFECT
20 FVAL
21 PVAL
22 LOANPAY
23 RECWTTH 24 SIMPDISK 25 DATEVAL 26 ANNUDEF
27 MARKUP 28 SINKFUND 29 BONDVAL
30 DEPLETE
31 BLACKSH 32 STOCVAL
33 WARVAL
34 BONDVAL2
35 EPSEST
36 BETAALPH
37 SHARPE
38 OPTWRTE
39 RTVAL
40 EXPVAL
41 BAYES
42 VALPRINF
43 VALADINF
44 UTIUTY
45 SIMPLEX
46 TRANS
47 EOQ
48 QUEUE.
49 CVP
50 CONDPROF
51 OPTLOSS
52 FQUOQ

NAME

53 FQEOWSH 54 FQEOQPB 55 QUEUECB 56 NCFANAL 57 PROFIND 58 CAPI

Interest Apportionment by Rule of the 78's
Annuity computation program
Time between dates
Day of year a particular date falls on
Interest rate on lease
Breakeven analysis
Straightline depreciation
Sum of the digits depreciation
Declining balance depreciation
Double declining balance depreciation
Cash flow vs depreciation tables
Prints NEBS checks along with daily register
Checkbook maintenance program
Mortgage amortization table
Computes time needed for money to double. triple. etc.
Determines salvage value of an investment
Rate of return on investment with variable inflows
Rate of retum on investment with constant inflows Effective interest rate of a loan
Future value of an irivestment (compound interest)
Present value of a future amount
Amount of payment on a loan
Equal withdrawals from investment to leave 0 over Simple discount analysis
Equivalent ε nonequivalent dated values for oblig. Present value of deferred annuities
\% Markup analysis for items
Sinking fund amortization program
Value of a bond
Depletion analysis
Black Scholes options analysis
Expected retum on stock via discounts dividends Value of a warrant
Value of a bond
Estimate of future earnings per share for company
Computes alpha and beta variables for stock
Portolio selection modeli.e. what stocks to hold Option writing computations
Value of a right
Expected value analysis
Bayesian decisions
Value of perfect information
Value of additional information
Derives utility function
Linear programming solution by simplex method Transportation method for linear programming Economic order quantity inventory model Single server queueing (waiting line) model Cost-volume-profit analysis
Conditional profit tables
Opportunity loss tables
Fixed quantity economic order quantity model

DESCRIPTION

As above but with shortages permitted As above but with quantity price breaks Cost benefit waiting line analysis Net cash-flow analysis for simpte investment Profitability index of a project
Cap. Asset Pr. Model analysis of project

59 WACC
60 COMPBAL
61 DISCBAL
62 MERGANAL
63 FINRAT
64 NPV
65 PRINDLAS
66 PRINDPA
67 SEASIND
68 TIMETR
69 TMEMOV
70 FUPRINF
71 MAILPAC
72 LETWRT
73 SORT 3
74 LABELI
75 LABEL2
76 BUSBUD
77 TMECLCK
78 ACCTPAY
79 INVOICE
80 INVENT2
81 TELDIR
82 TMUUSAN
83 ASSIGY
84 ACCTREC
85 TERMSPAY
86 PAYNET
87 SELIPR
88 ARBCOMP
89 DEPRSF
90 UPSZONE
9। EMVELOPE
92 AlTOEXP
93 INSFILE
94 PAYROLL2
95 DILAMAL
96 LOANAFFD
97 RENTPRCH
98 SALELEAS
99 RRCONVBD
100 PORTVAL9

Weighted average cost of capital
True rate on loan with compensating bal. required
True rate on discounted loan
Merger analysis computations
Financlal ratios for a firm
Net present value of project
Laspeyres price index
Paasche price index
Constructs seasonal quantity indices for company
Time series analysis linear trend
Time series analysis moving average trend
Future price estimation with inflation
Mailing list system
Letter writing systern-links with MAILPAC
Sorts list of names
Shipping label maker
Name label maker
DOME business bookkeeping system
Computes weeks total hours from timeclock info.
in memory accounts payable system-storage permitted
Generate invoice on screen and print on printer
In memory inventory control system
Computerized telephone directory
Time use analysis
Use of assignment algorithm for optimal job assign.
In memory accounts receivable system-storage ok
Compares 3 methods of repayment of loans
Computes gross pay required for given net
Computes selling price for given after tax amount
Arbitrage computations
Sinking fund depreciation
Finds UPS zones from zip code
Types envelope including retum address
Automobile expense analysis
Insurance policy file
In memory payroll system
Dilution analysis
Loan amount a borrower can afford
Purchase price for rental property
Sale-leaseback analysis
Investor's rate of return on convertable bond
Stock market porffolio storage-valuation program

(QUOTE !))))
(TE) $)$) $)$))

Listing 7: TWONUM simply checks to see if the variables FIRST and SECOND are numbers. If so, it returns T (for true); otherwise, it returns NIL.

(DEF TWONUM()

(COND((NUMBER FIRST)(NUMBER SECOND))))

Listing 8: In listing 8a DERIV provides the thread which ties PREF, INFIX, and DIFF together. The CHR function is analogous to the CHR\$ function in BASIC. The sequence (CHR 28)(CHR 31) clears the screen. Listing $8 b$ shows a sample run of the function DERIV. User input is preceded by the prompt, >

```
(8a)
(DEF DERIV()
    (PROG( )
        (CHR 28)
        (CHR 31)
        (PRINT(QUOTE(DERIV "-.-." A SYMBOLIC DIFFERENTIATOR)))
        (TERPRI)
        (TERPRI)
LOOP(PRIN1(QUOTE > ))
    (PRINT(INFIX(DIFF(PREF(READ))(PREF(READ))})\mathrm{ ) 
    (GO LOOP)))
```

(8b)
$>$ (DERIV)
(DERIV---A SYMBOLIC DIFFERENTIATOR)
$>(A / B) B$
$((-A) /(B \mid 2))$
$>(\mathrm{X} \cdot \mathrm{X} \cdot \mathrm{X}) \mathrm{X}$
(3 ${ }^{\circ}(\mathrm{X} \mid 2)$)
$>(\operatorname{SIN} 2 \cdot X) X$
$\left((\operatorname{COS}(2 \cdot x))^{*} 2\right)$
$>($ LOG X$) \mathrm{X}$
($1 / \mathrm{X}$)
$>(\mathrm{X} \mid 4) \mathrm{X}$
(4* (X|3))
$>(X \mid N) X$
($\mathrm{N}^{*}(\mathrm{XI}(\mathrm{N}-1))$)

Table 3: Exemplary input and output of DIFF, which differentiates its first argument with respect to the second.

Listing 6: MATCH, an elementary pattern matcher, used by INFIX to simplify algebraic expressions by recognizing such things as the multiplicative and additive identities.
(DEF MATCH(X Y)
(COND((EQ X(QUOTE ?))T) ((AND(ATOM X)(EQ X Y))T) ((OR(ATOM X)(ATOM Y))NIL) (T(AND(MATCH(CAR X)(CAR Y)) (MATCH(CDR X)(CDR Y))) $)$)

Text continued from page 222:
necessary to translate the output from LISP notation to infix notation. This process is performed by the output parser, INFIX, shown in listing 5. This function generously uses another function, MATCH, shown in listing 6, which was described lucidly by William A Kornfeld in the BYTE LISP theme issue (see reference 3). MATCH receives two arguments and determines whether or not they follow the same pattern. If a question mark, ? is encountered in the first argument, any atom of the second argument will match it. A few examples of this "wild-card" usage are in order:

> (MATCH(QUOTE(A B C)) (QUOTE(A B C))) = T
> (MATCH(QUOTE(A B D)) (QUOTE(A B C))) = NIL
> (MATCH(QUOTE(A B 3$))$ $($ QUOTE(A B C))) $=T$

Once patterns are recognized by INFIX, the straightforward parsing operation begins. INFIX is also configured to recognize the multiplicative and additive identities as well as many algebraic simplifications.

The nerve center of INFIX is a PROG function that calls itself recursively on the first and, if necessary, the second argument of the input expression. This, in effect, allows INFIX to get to the bottom of things. The use of the variables FIRST and SECOND prevents INFIX from having to recompute them at every encounter. INFIX uses the function TWONUM (given in listing 7), which determines if both arguments are

Are you tired of squinting at your video screen to find spelling and typing mistakes in your word processing?

Then you need SpellStar-for prompt relief from the pain and discomfort of proofreading.

SpellStar is an optional addition to WordStar ${ }^{\text {rm }}$, already the most powerful and versatile word processing software on the market. SpellStar catches your spelling errors and typing mistakes before they catch you. It will save you inconvenience, embarrassment, and countless hours of staring at your screen. In fact, if time equals money in your business, it won't take long for SpellStar to pay for itself in time saved.

Fast, FAST relief

SpellStar whizzes through your text at thousands of words per minute, comparing what you've written with its 20,000 -word dictionary-on-adisk. It flags every word not in its dictionary, giving you three choices. Change the word. Leave it as is. Or leave it and add it to the dictionary, and it won't get flagged again. You can put it in the main dictionary, or
just as easy, create your own supplemental dictionaries on other disks for such things as specialized terms and client names.

SpellStar vs. the competition

SpellStar is not the first proofreading software on the market. We just made sure it would be the best.

Other programs show you a list of apparently misspelled words on your screen, separate from the document. You must decide what to do about each word without seeing its context-and that can be confusing. But SpellStar actually operates within the WordStar program. So it lets you see each word in context before taking action. It's so much easier. And you're always only one keystroke from full word-processing capability.

Other programs give you a 20,000 -word dictionary. But we compressed it into half the normal disk space. So there's much more space for your own entries.

Another advantage is SpellStar's many menus and prompts. They're designed to keep you out of the manual and at the keyboard as much as possible.

More help on the way

Once we've handled your word processing, let MicroPro start solving all your computing problems-with our software solutions. MailMerge ${ }^{\text {TM }}$, another WordStar option, makes it easy to combine files to produce personalized form letters. SuperSort ${ }^{\text {M }}$ takes on the biggest sorting, merging, and selecting jobs. And DataStar ${ }^{\text {TM }}$ handles data entry, retrieval, and update with tremendous power and precision.

Okay, so how do you spell relief now?

M-I-C-R-O-P-R-O.

(T) MCCOBOM
 INTERNATIONAL CORPORATION

1299 Fourth Street, San Rafael, California 94901 (415) 457-8990: Telex 340-388

Contact us for the name of your nearest dealer.

[^23]Listing 9: In listing 9a, the function definition of TAYLOR illustrates the use of PROG as an iterative programming mechanism. Listing $9 b$ shows a sample run of the function TAYLOR. The > prompt precedes user input. The output consists of a list of the terms of the generated Taylor series. The resulting series is obtained by summing the terms. User input consists of the function to be expanded, the value about which the expansion is to occur, and the number of terms desired.

```
(9a)
(DFF TAYLOR()
    (PROG( )
        (CHR 28)
        (CHR 31)
        (PRINT(QUOTE(TAYLOR ".-." A TAYLOR SERIES GENERATOR)))
        (TERPRI)
        (TERPRI)
LOOP(PRINI(QUOTE > ))
        (TS(PREF(READ))(READ)(READ)(READ))
        (GO LOOP)))
(9b)
>(TAYLOR)
(TAYLOR\cdotsA TAYLOR SERIES GENERATOR).
>(EXP X)X05
l
X
((X!2)/(2!))
((X13)/(3!))
((X14)/(4!))
END
>(SIN X)X O }
0
X
0
((-1 *(X13))/(3!))
0
((X15)/(5 !))
END
>(1/X)X 13
l
(-1*(X - 1))
((2*((X - 1)!2))/(2!))
END
```

Listing 10: The function definition of TS, the workhorse of the Taylor-series routine. The second argument of EVAL in the function definition illustrates how the programmer can specify the environment by building an appropriate A-list.

```
(DEF TS(E X A J)
    (PROG(N)
        (SETQ N O)
LOOP(PRINT(INFIX(LIST(QUOTE DIV)
                    (LIST(QUOTE TIMES)
                (EVAL E(LIST(CONS(QUOTE X)A)))
                (LIST(QUOTE EXPT)
                    (LIST(QUOTE SUB)
                        X
                            A)
                N)
                    (LIST(QUOTE FAC)
                N)\)%
    (SETQ N(ADD N 1))
    (COND((EQ N J)(RETURN(PRINT(QUOTE END)))))
    (SETQ E(PREF(INFIX(DIFF E X)))
    (GO LOOP)))
```

numbers. If so (EVAL E NIL) is executed, which allows INFIX to actually evaluate the expression. Note that the specified A-list is NIL, since no variable bindings (assignments) are required by EVAL.

Tying the Knot

Now that the actors of the differentiation are cast, it is necessary to develop a plot by which they can perform. The function DERIV, shown in listing 8a, serves this purpose. It requires no arguments and begins its duty with housekeeping chores such as clearing the screen and printing a title. It then prints the INFIX of the DIFF of the PREF of READ, or, more simply stated, it prints the derivative of an expression input by the user in infix notation. Upon completion, the process is repeated ad infinitum. A sample run of DERIV is given in listing 8 b .

Taylor-Series Expansion

Any standard college calculus textbook (such as reference 5) will tell us that the Taylor series is:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^{n}}{n!}
$$

where a is the value about which the expansion is to be taken (noting that if a is 0 the Taylor series reduces to the Maclaurin series), x is the variable of the original function, and n is an integer such that $0 \leq n<\infty$.
It is a relatively simple undertaking to write a Taylor-series program utilizing PREF, DIFF, and INFIX, as indicated by listings 9a and 10. The Taylor function is entered when you type (TAYLOR). It then awaits your input, which consists of:

1. function to be expanded
2. variable about which to expand
3. value about which expansion is to occur
4. number of terms desired

An example of a typical Taylor run is presented in listing 9 b .

Final Remarks

The programs in this article demonstrate the ease with which

Cameo Makes Your Micro Big Enough for Big Business

When you want a data base for your micro that will grow as fast as you do - look to Cameo. Whether your business is commercial, educational or institutional - for large inventories, massive mail lists, extensive accounts receivable and effective cash management - Cameo has the system to meet your needs.
Cameo's Cartridge Disk Subsystem provides reliable mass storage for most popular micros*. The Cameo subsystem gives you up to 100 times the storage capacity of floppies, while retaining the same flexibility that floppy media provide. With Cameo's system you can remove, copy and back-up massive amounts of data quickly and easily. And, byte-for-byte, cartridge disk mass storage is more economical than floppy disks.

Even today's new technologies cannot give you the reliability, flexibility and back-up capability that Cameo provides.

Installation and start-up is simple. Cameo's subsystem is compatible with most operating systems, eliminating the need for additional complex programming. Make Cameo your micro mass storage connection. Call today for the location of the dealer nearest you.
*Apple, TRS-80 Model I \& II, Heath H89 and most S-100's

Cameo Electronics, Inc.
1626 Clementine Street Anaheim, CA 92802
(714) 535-1682

This announcement is not an offer to sell or a solicitation of an offer to buy any of these securities. The offering is made only by the Prospectus. copies of which may be obtained in any State only from dealers or brokers who may lawfully offer these securities in such State.

For a copy of the Prospectus,
P/MN mail to:

Kay Grover
Petro-Lewis Funds, Inc.
717 17th Street
P.O. Box 2250

Denver, CO 80201

Name
Address
City
State
Zip

PETRO
 处 LEWIS FUNDS. INC.

symbolic mathematics can be expressed in LISP. When viewed within the LISP environment, recursive concepts become clear and concise. By substituting different functional modules for the DIFF function in the aforementioned treatment, you can easily develop powerful specialpurpose systems. For instance, DIFF could be replaced by a function which does one or more of the following: vector calculus, Laplace transforms, integration, matrix algebra, complex arithmetic, Boolean algebra, or trigonometric simplification.

There are other areas where LISP is the language of choice. These areas include pattern matching, theorem proving, and intelligent robotic software. It is my hope that this article has shown that LISP is ideally suited for symbolic mathematics and that LISP should be added to the repertoire of all serious programmers.

The LISP interpreter is sold by Supersoft Associates, $P O B$ 1628, Champaign IL 61820. Versions are available for 16 K-byte Radio Shack TRS-80 Model I and Model Ill computers (floppy disk, \$100; cassette tape, \$75). A version to run under the $C P / M$ operating system will be released shortly. The symbolicdifferentiation program discussed in this article is distributed with the disk versions of the interpreter.

References

1. Berkeley, Edmund C and Daniel G Bobrow, editors. The Programming Language LISP: Its Operation and Applications. Cambridge MA: MIT Press, 1974.
2. Knuth, Donald E. The Art of Computer Programming, Volume 1, Basic Algorithms. Reading MA: Addison-Wesley, 1973.
3. Kornfeld, William A. "Pattern-Directed Invocation Languages." BYTE, August 1979, page 34. (Also see other articles in that issue.)
4. McCarthy, J et al. LISP 1.5 Programmer's Manual. Cambridge MA: MIT Press, 1979.
5. Protter, Murray H and Charles B Morrey, Jr. College Calculus with Analytic Geometry, second edition. Reading MA: Addison-Wesley, 1970.
6. Siklossy, Laurent. Let's Talk LISP. Englewood Cliffs NJ: Prentice-Hall, 1976.
7. Winston, Patrick Henry. Artificial Intelligence. Reading MA: AddisonWesley, 1977.
8. Wylie, C R, Jr. Advanced Engineering Mathematics, third edition. New York: McGraw-Hill, 1966.

THE LAST MEMORY

At last a 64 K STATIC memory board for S100 systems. Bu't it's not just a 64 K static RAM board, EPROM's can also be intermixed with RAM making it the only memory board needed for S100 systems. That's why we call it THE LAST MEMORY.

- 64K DENSITY

THE LAST MEMORY uses the new 2016 byte-wide 16K static RAM to achieve a board density twice that possible with old 2114 static memories

- 2716 EPROM COMPATIBLE

A separate board is no longer required for EPROM's containing monitors, bootstrap loaders, etc.
2716 EPROM's can be inserted into the board without modification.

- SIMPLE ADDRESS DECODING

Where memory is required, just plug a RAM or EPROM in the corresponding socket. Empty memory sockets occupy no memory space, providing compatibility with memory mapped I/O devices.

- EXTENDED ADDRESSING

THE LAST MEMORY includes the IEEE S100 extended addresses. These are fully decoded allowing expansion to a full 16 megabyte system memory.

- FAST

The standard board allows 4 MHz operation.

- LOW POWER

Only one memory IC is ever active in byte-wide memory systems. The result is far less power consumption than older 16K static memory boards.

- LOW COST

Its best feature is the price:

	Kit	A\&T
RAM-less Board	99.99	139.99
16K RAM	249.99	289.99
32K RAM	389.99	429.99
48K RAM	519.99	559.99
64K RAM	639.99	679.99

WELL" "DRIVE" YOU WILD with our variety of quality disk drives.

So many choices! So many models to choose from! Whatever your application, whatever your compatibility requirements ... ASAP has the disk drive you want. ASAP truly has a "wild" assortment of the most popular makes and models . . . from the most reliable manufacturers.
You'll be "wild" with confidence when you order from ASAP because you'll get what you're expecting! Reliable performance, years of trouble-free service, the fastest possible delivery, and a "wild" 120 day ASAP money-back guarantee.
Call ASAP with your choice today.
Microbyte D^{2} Floppy Disk System -The Microbyte D^{2} is IEEE S-100 compatible, and provides up to 3.2 Mbytes of storage. Access time is 3 ms track-to-track. The Microbyte controller will run single/ double density and single or doublesided. 120 day warranty on both parts and labor.
Microbyte D^{2} assembled and tested with cables \$2,195.00 Cabinet and drives
without controller \qquad
Qume® Floppy Disk Drives - State-of-theart technology used in the manufacture of Qume drives gives you longer disk life, improved data reliability and better serviceability. Independent head load produces savings on both diskette usage and drive maintenance.

DATA TRAK ${ }^{\text {™ }} 5$

(ANSI compatibility) call for price

DATA TRAKTM 8

(IBM compatibility) call for price
Shugart Floppy Disk Drives - Shugart drives are known for high quality and
reliability. Shugart's Bi-Compliant™ head assembly provides superior media compliance and high reliability.
Model 801 (standard floppy) ... \$390.00 Model 850 (double-sided drive) $\$ 640.00$ Case \& Power Supply
$\$ 265.00$
Lobo Drives International Disk Drive Systems Lobo manufactures a complete line of drives and subsystems for Apple, TRS-80 and S-100 based systems. All are thoroughly tested, providing the high reliability you've come to expect from Lobo.

Model 3101 is completely software compatible to Apple 3.1, 3.2 and 3.2.1 Disk Operating Systems (DOS), as well as PASCAL Language Systems. All applications software designed for Apple will operate on Lobo subsystems.

Model 4101C is designed to provide TRS80 users with low-cost, high-speed, efficient mass storage capability. Every Lobo Memory System is thoroughly tested and burned-in to assure reliability. One year, 100\% parts/labor warranty.
Models 950 and 1850 are software compatible with most S-100 disk operating systems and applications software programs. And Lobo offers you a choice of floppy and fixed disk drives. Choose from $51 / 4$ - and 8 -inch Winchesters, and floppy/Winchester combinations.
Call ASAP for additional information, price and delivery.

DISKETTES from ASAP verbatim

> 5'/* DISKETTES

PART \#

MD525-01

MD525-10 MD525-16

FD 32-1000 FD $34-1000$

PRICE

MEMOREX
5V/4" DISKETTES

PART \#	SIOES/OENSITY	SECTORING	PRICE
MEM 3401	1/SINGLE	SOFT SECTOR	$10 / \$ 25.00$
MEM 3403	1/SINGLE	HARD 10 SECTOR	$10 / \$ 25.00$
MEM 3405	1/SINGLE	HARO 16 SECTOR	$10 / \$ 25.00$
		$8 "$ OISKETTES	

PART \#	SIDES/DENSITY	SECTORING	PRICE
MEM 3060	1/SINGLE	SOFT SECTOR	10/535.00
MEM 3101	$2 /$ SINGLE	SOFT SECTOR	10/\$45.00
MEM 3090	1/D0UBLE S	SOFT SECTOR	10/\$45.00
MEM 3102	2/DOUBLE	SOFT SECTOR	10/\$55.00
		DYSAN	
		51/4" DISKETTES	
PART \#	SIDES/DENSITY	SECTORING	PRICE
D.0130	1/SINGLE	SOFT SECTOR	10/\$50.00
D-0226	1/DOUBLE	SOFT SECTOR	10/\$53.00
D. 0235	2/00UBLE	SOFT SECTOR	10/565.00
		8* OISKETTES	
PART \#	SIDES/DENSITY	Y SECTORING	PRICE
D. 0506	1/SINGLE	SOFT SECTOR	10/\$55.00
D. 0605	2/DOUBLE	SOFT SECTOR	10/\$65.00

SCOTCH 3M

51/4 OISKETTES

PART \#	SIDES/DENSITY	SECTDRING	PRICE
744-0	1/SINGLE	SOFT SECTOR	10/533.00
744-10	1/SINGLE	HARD 10 SECTOR	10/S33.00
744-16	1/SINGLE	HARD 16 SECTOR	10/533.00
745-0	2/DOUBLE	SOFT SECTOR	10/\$59.00
745-10	2/DOUBLE	HARD 10 SECTOR	10/\$59.00
745-16	2/DOUBLE	HARD 16 SECTOR	10/559.00
	MAXELL		
	5% OISKETTES		
PART \#	SIOES/0ENSITY	SECTORING	PRICE
MD1	1/SINGLE	SOFT SECTOR	10/539.00
MD2D	2/DOUBLE	SOFT SECTOR	10/S65.00
MHI	1/SINGLE	HARD 16 SECTOR	10/539.00
MH2D	2/00UBLE	HARD 16 SECTOR	10/565.00
	$8{ }^{8}$ OISKETtes		
PART \#	SIOES/QENSITY	SECtoring	PRICE
FD1-128	1/SINGLE	SOFT SECTOR	10/\$4500
FH1-32	1/SINGLE	SOFT 32 SECTOR	10/\$45.00
FD2-XD	$2 /$ DOUBLE	SOFT SECTOR	10/565.00
	SRW		
	media storage cases		
PART \#		SIZE	Price
SRW-5		51/	\$2.50 ea.
SRW-8		$8{ }^{\prime \prime}$	\$3.25 ea.

ATARI 800
(16K) Personal Business Computer Features:

- Computer console
- Atari 8 K basic
- 57 full stroke alphanumeric keyboard with four function keys
- Operator's manual
- RF modulator
- Power supply Price: $\$ 799.00$

Atari Optional Accessories

Model \# Description Price

810 Disk Drive System. . \$ 475.00
815 Disk Drive System. . $\$ 1199.00$
82040 Column Dot Matrix Printer $\$ 279.00$
82240 Column Thermal Printer S 349.00
82580 Column Dot Matrix Printer $\$ 625.00$
830 Acoustic Modem ... $\$ 159.00$
850 Interface Module . . . $\$ 139.00$
410 Cassette Recorder \$ 60.00
CX30-04 Paddle Controls \$ 17.95
CX40-04 Joysticks (pair) . . . \$ 17.95
INTRODUCING ASAP'S
Atari 800 IGK RAM Module $\$ 75.00$
I year warranty parts $\&$ labor

Special Offer: Additional 16K RAM FREE with purchase of system.

MICROBYTE Z-80A/

I-O CPU BOARD

- A complete single board Z80A CPU with serial/parallel interíace
- Fully compatible with the proposed IEEE S100 Bus Standard
- $280 \mathrm{~A} \mathrm{CPU}(4 \mathrm{MHz}$ version of the 280$)$
- 158 instructions - superset of and upward compatible from the 8080's 78 instructions
- Up 104 K of on board Eprom with optional 280 monitor program - 1K(2708). 2K(2716) or $4 \mathrm{~K}(2732)$
- Full vectored interrupt capability -8 bit with MNI (1 bit)
- 2 MHz or 4 MHz operation is jumper selectable
- Seleclable auto-wait state insertion for extending M1". MREO*. IORO* and/or on board ROM
- Dual RS-232 serial I/0 ports using the Z80A-DART with individual baud rate selection (from $50-19.200$ baud)
- Up to 24 bit parallel $1 / 0$ port - fully programmable Intel 8255A
$\$ 34900$ Assembled \& Tested Optional Monitor Program \$50.00

MICROBYTE FLOPPY DISK CONTROLLER

- DMA to within 16 Mbyte of memory
- State-of-the-arI NEC765 LSI Controller
- IEEE S-100 compatible
- OMA arbitration allows use of multiple boards within, a system
- PLL data recovery for totally reliable operation
- Write pre-comp switched at mid-disk for reliable double density operation
- Supports up to four (4) drives
- Power On, Power Olf or Reset deselects drives to avoid damaging tiles
- Drive deseleci Time Out. deselects drives not in use
- Single or double sided operation
- Single density/double density operation
- 8" standard drives
- Selectable VCC supply for data recovery to eliminate possible noise problems
$\$ 389.00$ assemoneas 8 resed

MICROBYTE 4-PORT

I/O BOARD

- Quad RS-232C serial ports. One 20 mA current loop port
- Fully IEEE S-100 Bus compatible
- Asynchronous Communications with 280A-DART(TM) or synchronous communications with 280A-SIO/0(TM)
- Full set of modem control signals, including RI (Ring Indicator)
- Easily configurable to any type of terminal interface
- 1/0 servicing environments: (1) Polled
(2) Bus vector
(3) 280 mode 2 vector
- Off-board interrupt dalsy chaln capability
- Special receive conditions:
(1) Framing error
(2) Parity error
(3) Receiver overrun error
- Baud rates selected individually from 50 baud to 300 K baud
- 72 hour burn-in
$\$ 289.00$ assembed 8 resed Cables Available (Optional)

MICROBYTE 64K DYNAMIC RAM BOARD

- Fully 5 - 100 bus compatible
- $64 \mathrm{~K} \times 8$ bit dynamic RAM
- Low power:
$+8 V D C$ @ 700 mA
+16VDC@ 100 mA
-16VDC@ 25 mA
- Built-in capacity with LED indicator and vector interrupt
- Memory addressable in four 16K banks
- Hidden refresh
- Gold contacts for high rellabllity
- 72-hour burn-in
- Memory mapped via DIP switch
- Built-in programmable write-protect
- Programmable control port for parity and bank control
- ALPHA-MICRO compatible

Call for Price
Assembled \& Tested

Catalog Request

Please send me your 1981 ASAP Full Line Catalog
Name

Atari Software (Many more available)
Super Breakout $\$ 30.00$
Chess $\$ 30.00$

Video Easel $\$ 30.00$
3-D Tic Tac Toe $\$ 30.00$
Star Raiders $\$ 34.00$
Music Composer $\$ 42.00$
Educational System ROM \$19.95
Assembler/Editor $\$ 45.00$
Tetelink I $\$ 19.95$
Space Invaders \$15.95
Kingdom $\$ 12.95$
Biorhythm $\$ 12.95$
Graph It $\$ 15.35$
Energy Czar $\$ 12.95$
Mailing List $\$ 16.95$
Statistics I $\$ 16.95$
Touch Typing $\$ 19.95$
Stock Charting $\$ 19.95$
Stock Analysis $\$ 19.95$
Bond Analysis $\$ 19.95$
Printers
Manulacaurer/Model $\# \quad$ Price
Anacom-150 $\$ 995.00$
Anadex-9501 $\$ 1249.00$
Base 2-8008 5650.00
Diablo-=330R0 S2225.00
C.Itoh Starwriter 45 $\$ 192500$

Texas instruments-810 51650.00

Modems

Manulacturer	Model \#	Price
Novation	CAT	S 149.00
Novation	d.CAT	S 160.00
Lexicon	Lex-11	\& 139.00
Livermore	LIV-Star 20M	S 149.00
UDS	UDS 103	\$ 189.00
uns	USS 202	¢ 295.00

Monitors

Manufacturer Model \# Price
Amdek $100 / 12^{\prime \prime}$ B\&W \quad \& 139.00
Amdek $100-80 \quad$ \& 169.00
Amdek $\quad 100 \mathrm{G} / 12 \mathrm{Grn}$. $\$ 169.00$
APF TVM-10/10" B\&W \$ 149.00
Hitachi
Hitachi
Sanyo DM5012/12" B\&W
Sanyo DM5112ex/12" Grn.
Sanyo DMC6013/13" Color
\$ 210.00
$\$ 340.00$
$\$ 260.00$
$\$ 280.00$
S 450.00

Terminals

Manufacturer	Model \#	Price
Ampex	Dialogue 80	$\$ 899.00$
Soroc	10120	$\$ 750.00$
Soroc	10140	$\$ 1250.00$
Televideo	TVI 912 C	$\$ 725.00$
Televideo	TVI 920C	$\$ 775.00$
Televideo	TVI 950C	$\$ 975.00$

Components

4116's (200 nS)
Apple, TRS-80. Heath. 8 for $\$ 18.80$
16-49 $\$ 2.25$ each
$50-99$. 2.15 each
100 up 52.05 each
2114 L-2/200 nS
Low-Power $1 \mathrm{~K} \times 4$ Static RAM

1-16	\$3.05 each
17-49	\$2.95 each
50-99	. $\$ 2.85$ each
100 up	. $\$ 2.70$ each
74LS240	\$1.25 each
74LS241	\$1.10 each
74LS244	\$1.25 each
74LS373	S1.25 each
74LS374	\$1.25 each
8 T 245	\$1.50 each

2708/450 nS
1K x 8 EPROM $\$ 4.25$ each

2716/5 Volt
 $2 \mathrm{~K} \times 8$ EPROM 5695 each

1 year warranty
8080A-CPU $\$ 2.50$

280A-CPU \$ 8.95
280A-CTC S 8.95

280A-DART $\mathbf{S 1 3 . 9 5}$
280A-S10 $\$ 22.00$

8255AC5 . $\$ 6.95$
8257AC5 . $\$ 15.00$
32075 s . 80°

320 T 12 $\$.80$
340 T 12 $\$$. 75

	1.9	$10-24$	25 up
DB25P	$\$ 2.80$	$\$ 2.65$	$\$ 2.50$
DB25S	$\$ 3.80$	$\$ 3.70$	$\$ 3.40$
DB25C	$\$ 1.05$	$\$.95$	$\$.85$
100			

100 Pin IMSAI
Gold/S-100 Soldertail Connectors
$\$ 2.40$ each or $10 / \$ 2.25$ each
Capacitors
. 1 @12 Volt
Ceramic 8e each or 100/\$7.00

DIP Sockets - Low Profile
 Tin Soldertail

Oescrlption	1.9	$10-49$	$50-99$	100 up
14 pin tin st	$\$.15$	$\$.13$	$\$.12$	$\$.11$
16 pin tin st	$\$.16$	$\$.14$	$\$.13$	$\$.12$
18 pin tin st	$\$.19$	$\$.18$	$\$.16$	$\$.14$
20 pin tinst	$\$.25$	$\$.23$	$\$.21$	$\$.20$
24 pin tin st	$\$.26$	$\$.24$	$\$.22$	$\$.20$
28 pintin st	$\$.32$	$\$.30$	$\$.29$	$\$.27$
40 pin tin st	$\$.42$	$\$.40$	$\$.38$	$\$.34$

ASAP offers a 120 -day buyer protection policy: full money-back guarantee if not totally satisfied.
Ordering information: name, address, phone, ship by: UPS or Mail. Shipping charge: add $\$ 2.50$ up to 1 lb . for UPS Blue; add $\$ 1.50$ for U.S. Mail (U.S. only) ($\$ 25.00$ mimimum order). Call for larger shipments.
Terms: We accept cash, check, money orders, Visa \& Master Charge (U.S.
Funds only). Tax: 6\% Calif. Res., COD's and terms available on approval (School P0's Accepted).

Knowledge-Based Expert Systems Come of Age

Richard O Duda
Fairchild Camera and Instrument Corp
4001 Miranda Ave
Palo Alto CA 94304

John G Gaschnig
SRI International
333 Ravenswood Ave
Menlo Park CA 94025

Question: What do the following tasks have in common? Diagnosing bacterial infections; choosing a good spot on a mountain to drill for molybdenum; configuring the many components that make up a DEC VAX-11 computer; determining the structure of a complex molecule from mass spectrogram data.

Answer: They are important and difficult decision-making jobs that only a few experts do well. The reasoning process in each job includes use of judgment, rules of thumb, and experience. Furthermore, these jobs can all be done today by computer programs known as knowledge-based expert systems.

What makes knowledge-based expert systems different from other large computer programs written to solve special decision-making problems? We will answer that question in this article and explain how expert systems work. We will briefly describe several existing expert systems, and show the operation of one-a mineral-exploration program we helped develop. As a bonus, we will provide a micro expert-system in

BASIC for your personal computer.
Since work on expert systems grew out of research on AI (artificial intelligence), a few historical observations will provide some perspective. As is clear from this special issue of

> IF-THEN rules are used to capture the kInd of "semilogical" response to famillar patterns that characterizes much of everyday human thinking.

BYTE, AI is concerned with making computers perceive, reason, and understand. Early work in AI looked for simple and powerful reasoning techniques that could be applied to many different problems. A classic example is the work of Newell, Shaw, and Simon on a program called GPS (see reference 21). Intended to be a general problem solver, GPS could prove theorems and solve puzzles and
a wide variety of logical problems. Thus, the generality of its particular reasoning technique-called meansends analysis-was convincingly demonstrated.
Unfortunately, attempts to apply such general methods to larger and messier real-world problems were mostly unsuccessful. The methods were not wrong, they were just insufficient. They did not address the difficulties of reshaping a problem into a form the programs could work on. Nor could these general methods, by themselves, cope with the enormous search spaces of alternatives.
How do people cope with these same problems? One answer is that people know much more than computers. People rarely solve problems by reasoning everything out from the first principles. While recreational puzzles can often be solved by strict logical deduction, many real-world problems seem to be solved by "semilogical" methods, such as recognizing one of a thousand familiar patterns applying to the current situation and recalling the appropriate thing to do when that pat-

Pure Computing Power

The MicroFrame ${ }^{\circledR}$ is Pure Power for computing. It is the industry standard for high quality, reliable S-100 mainframes.

TEI manufactures each MicroFrame ${ }^{\circledR}$ with great care. They deliver pure regulated power at the proper level, improving the reliability of your computer. Typically, the output voltages remain virtually constant, even when the power line voltage varies widely. The MicroFrame ${ }^{\circledR}$ will never notice a brown-out . . . and it provides 100 db noise rejection, protecting your computer from power line voltage spikes andnoise. Complies with I-EEE S-100.

The combination of the lowest noise bus, a regulated power system and a rugged chassis produces a MicroFrame ${ }^{\circledR}$ without equal.

Distributor and OEM Inquiries Invited
For more information, call Rick Barnes at (713) 738-2300

5075 S. LOOP EAST, HOUSTON, TX. 77033
tern occurs. In everyday affairs, logical deduction is an adjunct to other mental processes.

Recognizing that knowledge is as important as reasoning, AI researchers have worked on a variety of methods for representing and using knowledge. They have also grappled with fuzzier kinds of problems, where logic is supplemented by hunches based on experience and judgment. One result has been the development of several knowledge-based expert systems-programs that exploit special knowledge to solve difficult problems in specialized areas. These programs include the DENDRAL program for mass-spectrum analysis (see reference 14), the MYCIN program (reference 27) and several others
(references 18 and 25) for medical diagnosis, the PROSPECTOR program for mineral exploration (reference 11), and the R1 program for configuring VAX computer systems (reference 20).

Representing Knowledge in Rules

How do you represent the knowledge needed to do these kinds of tasks? That is still a matter of debate and active research in AI circles. One popular approach is to use IF-THEN rules (also called situation-action rules or production rules). These rules say that if a certain kind of situation arises, a certain kind of action can be taken. They are typically used to capture the kind of "semilogical" response to familiar

1a
The R1 system (configuring VAX systems):

```
IF: (1) The current context is assigning devices to Unibus modules, and
(2) There is an unassigned dual-port disk drive, and
(3) The type of controller it requires is known, and
(4) There are two such controllers, neither of which has any devices assigned to it, and
(5) The number of devices that these controllers can support is known
THEN: (1) Assign the disk drive to each of the controllers, and
(2) Note that the two controllers have been associated and that each supports one device.
```

1b
The MYCIN system (medical diagnosis):
IF: (1) The site of the culture is blood, and
(2) The identity of the organism is not known with certainty, and
(3) The stain of the organism is gramneg, and
(4) The morphology of the organism is rod, and
(5) The patient has been seriously burned

THEN: There is weakly suggestive evidence (0.4) that the identity of the organism is pseudomonas.

1 c
The PROSPECTOR system (mineral exploration):
IF: There is hornblende pervasively altered to biotite
THEN: There is strong evidence $(320,0.001)$ for potassic zone alteration.

Table 1: Sample IF-THEN rules from three knowledge-based expert systems. Table 1a shows a rule that the R1 system uses to configure DEC's VAX systems. Table $1 b$ shows a rule that the MYCIN system uses to perform medical diagnosis. The number 0.4 indicates the degree to which the conclusion follows from the evidence on a scale of 0 to 1. Table 1c shows a rule used by PROSPECTOR in mineral exploration. The number 320 indicates how sufficient the evidence is for establishing the hypothesis if the evidence is, in fact, present; the number 0.001 indicates the degree to which the absence of this evidence will rule out the hypothesis. Both these numbers are multipliers. Values greater than 1 increase the likelihood of the sufficiency or necessity of the evidence for establishing the hypothesis, and values less than 1 decrease the likelihood.

Engineers and other Aerospace Professionals

Bring your great ideas Martin Marietta

ORLANDO, FLORII

Orlando is situated in the center of Florida's year-round outdoor living and cultural activities. Orlando also boas an exceptional education system and no state income

- Guidance/Control Systems Analysis
- System Requiremen Analysis/Definition Integration
- Radar System Desig
- ATE Electronic or Software Design
- Structural Dynamics Analysis
- Facilities Design: EE, ME, HVAC
- Tool Design
- Industrial Engineeri
- NC Programming

DENVER, COLORAI

Located on the foothills of th Rocky Mountains, Denver offers year-round recreationa and cultural opportunities including theater, symphoni، and museums.

- Electronics Engineeı
- Systems \& Test Engineers
- Manufacturing Engineers
- Mechanical Enginee
- Quality Engineers
- Software Engineers
- Materiel
- Finance

Your great ideas today could become a great advance tombrrow at Martin Marietta

millimeter-waic
Contrast Secker

Printed circuit curcuit
foords

Copperkend Guidet Projectile

Great advances are built on solid experiences. At Martin Marietta Aerospace, we're playing a bigger role than ever in the extraordinary evolution in defense and space technology. We know that tomorrow's great ideas are going to come from those people working in a challenging and sophisticated environment with today's great technologies. In Orlando we're working on a broad range of projects including the Millimeterwave Contrast Seeker used in the Copperhead Guided Projectile. Our success has led to many on going projects including Pershing II, a tactical interdiction system, and TADS/PNVS, a helicopter fire control system.
When you join Martin Marietta, you'll find the excellent salary and complete benefits coverage you'd expect from an industry leader. Learn about career opportunities in Orlando, or our other locations by sending your resume or a letter to the facility of your choice.
In Orlando: P.O. Box 5837-MP\#9, Orlando, FL 32855; In Denver: P.O. Box 179, Mail \#D-1311, Denver, CO 80201; At Vandenberg AFB: Box 1681, Vandenberg AFB, CA 93437; In New Orleans: Michoud Assembly Facility, Box 29304, New Orleans, LA 70189.

[^24]patterns that characterizes much of everyday human thinking. Table 1 lists examples of rules from several rule-based systems.

In general, rules like these represent a "chunk" of knowledge about a particular field. Most existing rule-based systems contain hundreds of rules,
usually obtained by interviewing experts for weeks or months. For example, the MYCIN system contains about 450 rules; the R1 system has about 800 , and the PROSPECTOR system has about 1600 . In any system, the rules become connected to each other to form rule networks.

Single rule NETWORK OF RULES

Figure 1: Combining rules into networks. Expert systems may consist of hundreds of IFTHEN rules combined into networks like these.

Choice
 GNT Makes a Tape Punch Station and a Tape Reader/Punch Combination.

> Both are small, quiet, and economical. One of them will fit your needs exactly.

The 4601 Combo

- Punching speed: 75 Cps
- RS-232-C serial interface
- Utilizes all types of Mylar ${ }^{\text {® }}$ and paper tape
- Reliability: MTBF 100 million characters

Contact your local dealer or call for complete specifications.
See us at NCC - Booth 3004
Ggnt AUTOMATIC INC
1560 Trapelo Road, Waltham, MA 02154 (617) 890-3305 Telex: 923318

Once assembled, such networks can represent a substantial body of knowledge. Figure 1 illustrates how rules are combined together into networks.

An expert usually has many judgmental or empirical rules according to which the evidence supports a conclusion or hypothesis, but with less than absolute certainty. In these cases, numerical values are associated with each rule to indicate the degree to which the hypothesis or conclusion follows from the evidence. Table 1 shows two examples of such rulestrength values: in the case of MYCIN (table 1b), the value 0.4 (on a 0 to 1 scale) means that the conclusion is weakly suggested from the evidence. In the case of PROSPECTOR (see table 1c), two numbers are given-one indicates how sufficient the evidence is for establishing the hypothesis if the evidence is present, the other indicates the necessity of the evidence for the hypothesis, ie: the degree to which the absence of that evidence will rule out or "kill" the hypothesis. (There is more about the meaning of these numbers in the later section on PROSPECTOR.)

The rules are not implemented as subroutines or in any other part of the code of the program. Instead, the rules for a particular task are written in a specialized language, which is then input by the program to produce an internal representation that makes the expert system an expert about that task domain. The program itself is only an interpreter and a generalreasoning mechanism. This illustrates an important distinction between rule-based systems and more conventional computer programs: there is a clear separation of general knowledge about the problem (the rules forming a knowledge base) from information about the current problem (the input data) and methods for applying the general knowledge to the problem (the rule interpreter). Figure 2 illustrates this contrast. (Lines 3880 through 4040 of listing 1 give a set of rules input to that program.)

Putting Knowledge to Work

After the knowledge has been en-

THE BIGGEST NAME IN S-100 MEMORY PRESENTS THE BIGGEST S-100 MEMORY: 128K RAM 21

RAM 21 isn't just big, it's versatile. For 8 bit systems, it's a 128 K X 8 board; for 16 bit systems, a 64 K X 16 board. Addressing conforms to IEEE 696/S-100 24 bit extended address protocol.

RAM 21 is faster than today's needs to protect your memory investment tomorrow. High speed memory devices allow no-wait-states operation with today's $5 / 6 \mathrm{MHz} \mathrm{CPUs}$, as well as with the coming generation of 10 MHz CPUs.

RAM 21 is fully static. Forget about the reliability and DMA problems associated with dyamic memory.

RAM 21 has the lowest current consumption in the industry, bar none. RAM 21 draws half the power (1.6A typical) of an equivalent amount of dynamic memory. The result? Less heat build-up, less strain on the power supply, lower energy costs, and greater reliability.

RAM 21 is built to work and keep on working. All RAM 21 boards are qualified under the Certified System Component high reliability program, with 200 hours of burn-in and extensive quality control testing. *

RAM 21 is not only fast, low power, dense, and versatile: it's affordable. At \$2495, RAM 21 represents exceptional quality whose value will not diminish when expanding to faster 8 bit systems or more powerful 16 bit systems.

The biggest name in memory has dropped the big one:

 RAM 21 is here.
ect VISA ${ }^{\oplus}$ /Mastercard orders.

[^25]
This ad presents a Strong Case.

Rugged, all metal construction minimizes interference both to and from other electrical devices while providing unequalled mechanical strength

Punchouts on rear for four coax connectors, sixteen DB-25 connectors, two DB-15 connectors, and two DB-50 connectors for connecting cables to other peripherals

Attractive, easily removeable, textured beige finish cover.

sixteen
DB-50

PROVEN Computing SOLUTIONS

We give you more of what you buy a computer for: to gain a competitive edge in your industrial, commercial, or scientific application. While other computers try to make the best of slow memory, slow processors, and me-too engineering, CompuPro is delivering solutions for today's commercial computing ...proven solutions that create expandable, modular, fast, exceptionally reliable, and truly professional level machines that conform fully to the IEEE 696/S-100 standards. We back all products with a minimum 1 year limited warranty.

When you depend on your computer, choose a computer on which you can depend: S-100 from CompuPro.

1 DISK 1, A SUPERB DISK CONTROLLER. Disk controllers don't liave to be your system's bottleneck: Disk 1 is lightning fast, thanks to properly implenented DMA (with arbitration) and data transfer that's independent of CPU speed. Handles up to four $8^{\prime \prime}$ or $5.25^{\prime \prime}$ floppy disk drives. single or double-sided, single or double density (soft sectored). With BIOS for CP/M-80*. Manual available for \$25. A/T \$495, CSC \$595. Coming soon: Disk 2, the fast DMA hard disk controller.

2 CP/M-86. Available only with Disk 1 purchase. Supplied on diskette with full documentation; ready for load and go operation. $\$ 300$.
3 OASIS* OPERATING SYSTEM. Single user ($\mathbf{\$ 5 0 0}$) and multi-user ($\mathbf{\$ 8 5 0}$) available for use with CPU Z. Supplied on diskette with full documentation. Coming soon: OASIS 16 for use with 16 bit systems.

4 COMPLETE DUAL DISK DRIVE SYSTEM. With one Disk 1 board, desktop dual drive enclosure with Shugart SA-800 series drives, and power supply cable. Also includes CP/M-80. Introductory special: $\mathbf{\$ 2 1 9 5}$.
5 SYSTEM SUPPORT 1. Includes battery operated clock/calendar; sockets for battery backup RAM, optional 9511 or 9512 math processor, and 2716 ROM: RS-232 serial port; triple interval timers; dual interrupt controllers: power fail interrupt; and more. Comprehensive owner's manual includes numerous software examples. $\$ 295$ Unkit, $\mathbf{\$ 3 9 5}$ A/T, $\mathbf{\$ 4 9 5}$ CSC (add $\$ 195$ io the above prices for the optional math processor).
68 BIT CPU Z. A 280^{*}-based CPU board that includes all standard features plus many convenience options. Meets all IEEE 696/S-100 specifications, including timing. $\mathbf{\$ 2 2 5}$ Unkit, $\$ \mathbf{2 9 5} \mathbf{A} / \mathbf{T}$ (both operate at 4 MHz), $\$ 395 \mathrm{CSC}$ (with 6 MHz CPU).

7 16/8 BIT CPU 8085/88. Now there's an easy way to gain 16 bit capability without sacrificing your library of 8 bit software: CPU 8085/88 combines an 8088 CPU to handle 16 bit software and an 8085 CPU for 8 bit software. $\$ 295$ Unkit, $\$ 425 \mathrm{~A} / \mathrm{T}$ (both operate at 5 MHz); $\mathbf{\$ 5 2 5} \mathbf{C S C}$ (with 6 MHz 8085 and 8088).

8 8088/8086 MONITOR-DEBUGGER SOFTWARE. Ideal for use with CPU 8085/88. Supplied on single sided, single density, soft sectored $8^{\prime \prime}$ disk. CP/M-80 compatible (not required if you have CPM/86). Great development tool: mnemonics used in debug conform as closely as possible to current CP/M DDT mnemonics. $\$ 35$.

98 BIT CPU 8085. Same as CPU 8085/88, but without 8088. May be easily upgrated to 16 bit operation. $\$ 235$ Unkit, $\$ 325$ A/T, $\$ 425$ CSC.

10 interfacer i. Two rs- 232 serial ports. with full handshaking and independently selectable Baud rates. connect your computer to serial peripherals. $\mathbf{\$ 1 9 9}$ Unkit, $\mathbf{\$ 2 4 9} \mathbf{A} /$ T, $\mathbf{\$ 3 2 4} \mathbf{C S C}$.

[^26]12 interfacer 3-5. Includes five RS-232 serial ports (2 synclironous/ asynchronous. 3 asynchronous) with full handshaking. Includes software programmahle Baud rates and many other convenience features. $\$ 599 \mathrm{~A} / \mathrm{T}$, $\$ 699$ CSC.

13 INTERFACER 3-8. Same as above, but with eight full RS-232 serial ports (2 synchronous/asynclironous, 6 asynchronous). Ideal for multi-user/ multi-terminal systemis. $\mathbf{\$ 6 9 9} \mathrm{A} / \mathrm{T}, \$ 849$ CSC.
14 SPECTRUM COLOR GRAPHICS BOARD. With 8 K of IEEE-compatible static RAM, full duplex bidirectional I/O port for keyboard or joystick interface, and 6847 -based graplics generator that can display all 64 ASCII characters. 10 modes of operation, from alphanumerics/semi-graphics in 8 colors to dense 256×192 full graphics. $\$ 299$ Unkit, $\$ 399$ A/T, $\$ 449$ CSC.
156 SLOT HIGH SPEED MOTHERBOARD. With all edge connectors, Faraday shielding, extensive bypassing, and split active termination. $\$ 89$ Unkit, $\$ 129$ A/T.

1612 SLOT HIGH SPEED MOTHERBOARD. Same as above, but with 12 slots. $\$ 129$ Unkit, $\$ 169$ A/T.

1720 SLOT HIGH SPEED MOTHERBOARD. Same as above, but witl 20 slots. \$174 Unkit, \$214 A/T.
18 MEMORY MANAGER. Extends the addressing of older S-100 machines beyond 64 KBytes to allow for greatly expanded memory capacity. $\$ 59$ Unkit, $\$ 85 \mathrm{~A} / \mathrm{T}, \mathrm{\$ 100}$ CSC.

19 aCTIVE TERMINATOR. Pronotes reliable and accurate data transter in older machines by properly terminating bus lines, thereby minimizing ringing, crosstalk, overshoot, noise, and other gremlins associated with unterminated lines. $\mathbf{\$ 3 4 . 5 0}$ Unkit, $\mathbf{\$ 5 9 . 5 0} \mathrm{A} / \mathrm{T}$.
202708 EPROM BOARD. This board is the way to store often used routines or pieces of software. $\$ 85$ Unkit, $\$ 135$ A/T, $\$ 195$ CSC (2708s not included).
21 DOCUMENTATION. User manuals are available for all products. Interfacer 3, \$10; Disk Controller, \$25; System Support 1, \$20; most others. \$5. Also available: "CompuPro Product User Manuals: 1975-1980". This $250+$ page book includes data on all older Godbout/CompuPro products, as well as many newer products such as the Spectrum Color Graphics board, Interfacers 1 and 2, CPU 8085/88, motherboards. CPU Z, and more. Whether you want to evaluate the innovative engineering behind CompuPro products. or study the nuts and bolts of high speed computer operation, this is the book for you. $\$ 20$ plus sliipping.
22 ram 16-64. Contiguralle as $64 \mathrm{~K} \times 8$ for 8 bit systems or $32 \mathrm{~K} \times 16$ for 16 bit systems. Static, IEEE-696/S-100 compatible, extended addressing, 10 MHz operation. $\$ 1195 \mathrm{~A} / \mathrm{T}, \$ 1295 \mathrm{CSC}$.

23 RAM 17-64. The lowest power ($1 / 4$ Amp typical) $64 \mathrm{~K} \times 8$ static board in the business. IEEE-696/S-100 compatible, 4 optional 2 K windows, no wait states with 6 MHz Z80. $\$ 1095 \mathrm{~A} / \mathrm{T}, \$ 1195 \mathrm{CSC}, \$ 875$ Unkit.
24 ram 20-32. For lower density applications. Static, 1EEE-696/S-100 compatible. extended addressing or bank select. up to 10 MHz operation. $\$ 559$ A/T, $\$ 659$ CSC, $\$ 449$ Unkit. 8 K and 16 K versions also available.
Mus CompuProp proxlucls are available ill Unkit form. Assembled/Tented (lunh will I year warranty). or qualifiest usder the lighoreliability Cerelfiexl System Component (CSC) program (200 hour hurn-in. 2 year extcuded warranly. move). Note: Unkits are not intended fot navices, as de bugging nay be required tue wo prohlems such as IC infant mortality. Factory sersice is availatic for Unkits at a flat service charge.
WEGAI. CORNER: 780 is a registered trademark of Zilug: CP/A1 is a registered trademark of Digital Rexeareli; OASIS is a raklemark of Phase I.

How to Order: Call 415-562-0636 for the name of the authorized CompuPro sales center nearest you, or lor placing lactory direet VISA迥/Mastercard © orders. Prices show'n do not include tax, shipping charges.
division
OAKLAND AIRPORT, CA 94614
(415) 562-0636
coded as rules, how can it be put to use? This question has more than one answer. One general approach is the use of a production system (see reference 10). A production system contains three major components-a set of rules, a global data base, and a rule interpreter. Some people call the set of rules the knowledge base and the rule interpreter the inference system. McDermott calls the global data base the working memory, using the term "data base" for a file of needed facts (see reference 20). Despite this variety of terminology, the basic ideas are the same. The rules have the following general form:

$$
\text { IF: < antecedent }{ }_{1}>
$$

$$
<\text { antecedent }_{m}>
$$

THEN: < consequent ${ }_{1}$ >
with certainty C_{1}
$<$ consequent $_{n}>$
with certainty C_{n}

The antecedents can be thought of as patterns that can be matched against entries in the data base, and the consequents as actions that can be performed (or conclusions that can be deduced) if all the antecedents match. In the case of the R1 example (see table 1a), the data base would contain assertions about such things as what

```
MOST
TRADITIONAL PROGRAMS
```


the current context is, and whether or not there is an unassigned dual-port disk drive. The consequent actions can cause changes to the contents of the global data base, by changing an assertion about the status of the assignment of devices to a controller, or by asking the user a question and adding the answer given to the data base. Thus, the application of a rule can change the state of the data base, enabling some rules and disabling others.

Control Strategies

How are the enabled rules found, and what decides which rules to apply? This is the job of the rule interpreter, and the strategy it follows is called the control strategy.

One of the simplest strategies is to scan through the rules until one is found whose antecedents match assertions in the data base. The rule is applied, updating the data base, and the scanning resumes. This process continues until either a goal state is reached or no applicable rules are found. R1 uses a variant of this basic procedure. Since the behavior of the system is directly responsive to the facts about the problem entered in the global base, this is known as a datadriven control strategy. This strategy is also known as forward-chaining or antecedent reasoning.

We think of each rule as a subroutine. Instead of being called by name, a production-system subroutine is triggered by the appearance

Figure 2: Contrast between traditional programs and rule-based programs. A rulebased program is divided into a general-reasoning program, called the rule interpreter, and a file of judgmental rules obtained from an expert, called the rule base or knowledge base. The rule interpreter loads the rule base into an internal representation and uses the rule base to guide an interactive consultation with the user.
of certain patterns in the data base. Anathema to lovers of structured programming, such pattern-directed systems have long fascinated AI researchers (see reference 32). In particular, the use of such systems as psychological models was pioneered by Newell and Simon (reference 22) in the development of GPS.

A different strategy is to select a goal to be achieved and scan the rules to find those whose consequent actions can achieve the goal. Each such rule is tried in turn. If the antecedents for a rule match existing facts in the data base, the rule is applied and the problem solved. If an unmatched antecedent is encountered, arranging conditions to match that antecedent becomes a new subgoal, and the same procedure is applied recursively. If there are no rules to establish the new subgoal, the program asks the user for the necessary facts and enters them in the data base. Since the behavior of the system is directly responsive to the goals the system is trying to achieve, this is known as a goal-driven control strategy. (This strategy is also known as backwardchaining or consequent reasoning, and is closely related to meansend analysis.) A variant of a goal-driven control strategy is used successfully by MYCIN and is the method used in the micro expert-system described in the last section of this article. (It is possible to use other control strategies that combine elements of data-driven and goal-driven policies, as we did in our work on PROSPECTOR. See reference 11.)

System Characteristics

We can now see more clearly how rule-based expert systems differ from more conventional computer programs. As mentioned earlier, one major difference is the separation of the expert knowledge (the rules forming a knowledge base) from the generalreasoning mechanism (the rule interpreter). This partitioning, together with the further division of general knowledge into many separate rules, offers several important advantages:

- incremental development of the

(

CBM Soltware

WordPro3 Plus	\$199.00
WordPro4 Plus	\$299.00
Commodore Tax Package	\$399.00
Visicalc	\$149.00
EBS Accls. Rec./Inventory In	\$595.00
BPI General Ledger	\$329.00
OZZ Information System	\$329.00
Dow Jones Partfolio	\$129.00
Pascal	\$239.00
Legal Time Accounling	\$449.00
World Craft 80	\$289.00
Word Check	\$180.00
Create-A-Base	\$180.00
Power	\$89.00
Socket-2-Me	\$20.00
Jinsam	Call
Disks	
CX8100 Blank Disk (5)	\$22.00
Sycom Blank Disk (10)	\$29.00
Maxell Blank Disk (10)	\$36.00
Maxell Blank Disk (10)	\$46.00

Printers

Epson MX-70 Epson MX. 80	
Epson MX-80 FT	Call for Prices
Diablo 630	
Nec 5530	\$2495.00
TEC 1500 Starwriter 25cps	\$1495.00
TEC 1500 Starwriter 45cps	\$1995.00

knowledge base over an extended time by letting the developers refine old rules and add new ones

- the same general system can be used for a variety of applications, essentially by "unplugging" one set of rules and "plugging" in another
-the same knowledge can be put to use in different ways (including teaching) by changing the rule interpreter
- the program can give simple and illuminating explanations of its behavior merely by describing the rules it is applying (this also turns out to be a powerful way to debug faulty rules)
-the possibility of developing systems that are introspective (eg: can check the consistency of their own rules) and evolutionary (eg: can modify their own rules and learn new ones)

All these advantages are present in a rudimentary but interesting way in the micro expert-system described at the end of this article.

Another characteristic of most expert systems is that they try to mimic, at least to some extent, the way
human experts make decisions. The "spot-a-pattern/draw-a-conclusion" style of reasoning is used as much by experts on special problems as it is by all of us on day-to-day problems; what distinguishes the expert from the rest of us is the expert's unusual and valuable set of rules. Such rules are often not conclusive, but only suggestive of the conclusion. For example, if a car won't start and the headlights are dim, the battery is probably bad, but there are other possibilities. To mimic experts, then, a rule-based system should let the expert state the degree of significance or certainty that should be attached to the conclusion of a rule.

A Sampling of Expert Systems

To understand both the capabilities and limitations of knowledge-based systems, it is helpful to examine specific systems created to solve particular problems. At first glance, their only common characteristic seems to be their reliance on explicitly encoded knowledge. Groupings based on the method of knowledge representation (eg: production rules) or on the domain of application (eg: medicine)

Function	Domain	System	Reference
Diagnosis	Medicine	PIP	24
	Medicine	CASNET	34
	Medicine	INTERNIST	25
	Medicine	MYCIN	27
	Medicine	PUFF	13
	Engineering	SACON	3
	Geology	PROSPECTOR	11
Search	Chemistry	DENDRAL	14
	Chemistry	SECHS	36
	Chemistry	SYNCHEM	16
Problem	Circuit analysis	EL	28
Solving and	Genetics	MOLGEN	29
Planning	Mechanics	MECHO	6
	Programming	PECOS	2
	Configuring computers	R1	20
Machine Acoustics		HASP (SU/X)	23
Measurement Interpretation	Medicine	VM	12
Computer-aided	Electronics	SOPHIE	4
Instruction	Medicine	GUIDON	8
Knowledge	Diagnosis	TEIRESIAS	9
Acquisition	Diagnosis	EMYCIN	30
	Diagnosis	EXPERT	33
	Diagnosis	KAS	26
System	-	ROSIE	31
Building	-	AGE	23
	-	HEARSAY III	1

Table 2: A classification of existing knowledge-based systems by function. Numbers at the right indicate references about each system (given at the end of the article).
reveal little additional commonality.
However, we can gain some insight by grouping the systems according to their general function. Table 2 shows a classification of well-known knowledge-based systems into eight general categories. We will now define most of these categories and describe some representative programs.

Diagnosis Problems

The general diagnosis problem is one of classifying an object, event, or situation on the basis of perhaps uncertain information about its characteristics. The categories may or may not be mutually exclusive, and the data can be acquired sequentially or in parallel. In a formal sense, diagnosis problems can always be posed as problems in statisticaldecision theory, whose solution usually requires the estimation of a multivariate probability function from vast amounts of data. The knowledge-based-systems approach to such problems effectively substitutes the knowledge and judgment of expert humans for this unknown function.

Several impressive knowledgebased systems have been developed for medical-diagnosis problems. The INTERNIST program developed by Pople and Myers at the University of Pittsburgh uses information from 4000 possible manifestations to diagnose problems of internal medicine that can involve multiple instances of 500 different disease types (see reference 25). The program contains a large taxonomy of disease types, together with rules that link manifestations to these types, as well as an ingenious control procedure for narrowing down the disease classes that explain the manifestations. In many tests, INTERNIST has demonstrated the capability of correctly diagnosing multiple-disease cases described in medical journals as being particularly difficult.

Another well-known medicaldiagnosis program is the MYCIN system developed by Shortliffe and his colleagues at Stanford (see reference 27). MYCIN is a consulta-

Text continued on page 254

BRAINS BEHAVOR pobotics

AVAILABLE FALL 1981.
INVERSIONS:
A Catalogue of Calligraphic Cartwheels
by Scott Kim Foreword by Douglas Hofstader Backword by Jef Raskin

Surprising symmetries in design and letterforms

Illusion . . . calligraphy
visual magic - Scott Kim's new Dook. Inversions, delights the eye qnd enchants the mind. Fillea wlith intriguing designs, woids that read the same rightside up and upside down. words within words, and unexpected svmmetries, these composition: create a fresh way to look of the alphabet. The text includes the visual principles of symmetry, lettering. and problem solving that are basic to these images. The author also draws parallels to related exercises in perception in such diverse areas as art. music, word play, and mathematics. Scott Kim's original inversion designs first appeared in Omni magazine, inspiring an overwhelming reader response. An irresistable challenge, invertible writing appeals to everyone who loves beauty in mathematics and design.

Scott KIm is a doctoral student in Computer Science at Stanford University and is a concert pianist and composer.

ISBN O-O7-O34546-5 128 pages softcover over 50 illustrations available summer 1981

BRAINS,
BEHAVIOR, AND ROBOTICS
by James S. Albus
Robotics design and applications

This computer-oriented guide explores how the brain functions primarily as a computer device for generating and controlling behavior. The author assesses behavior as a product of three hierarchies of computing modules:

- memory modules
- behavior-generating modules
- sensory-processing modules

A section on artificial intelligence ties this hierarchical model to vital computer science techniques such as planning, problem-solving. machine vision, natural language understanding and knowledge representatlon. A closing section on robotics discusses the design considerations in constructing a robot control system fashioned after this model of the brain, and explores the current and potential use of robots in our environment.

Dr. James S. Albus is Project Manager with the National Bureau of Standards.

ISBN O-O7-000975-9 400 pages hardcover 180 illustrations

THE BRAINS OF MEN AND MACHINE
by Ernest W. Kent
Human models for computer design

When the "Brains of Men and Machines" series of articles first appeared in BYTE magazine, the response was immediate and enthusiastic. Now Ernest W. Kent has expanded his ideas about the brain into a full-length book. As researchers begin to unravel the mysteries of the brain's chemical. electrical. and synaptic circuitry. their findings are becoming immediately applicable to advances in robotic behavior and computer design. The Brains of Men and Machines "dissects" the brain to provide new insights into computer design and artificial intelligence.

It is one of the rare books that transcends disciplinary boundaries. In it the ever-increasing relationship between man and machine is freshly examined. a relationship. Professor Kent concludes, that is today being reexamined in the light of man's own neurological self-image.

Dr. Ernest W. Kent is a Professor of Physiological Psychology and Psychópharmacology at the University of llinois at the Chicago Circle Campus.
ISBN O-O7-O34123-O

$$
304 \text { pages }
$$

$$
\begin{aligned}
& \text { hardcover } \\
& \text { illustrated }
\end{aligned}
$$

illustrated

The BYTE BOOK Collection.

BASIC SCIENTIFIC SUBROUTINES, VOLUMES 1 AND 2
 by Fred Ruckdesche!

Valuable programs for professional and hobbyist

Designed for the engineer, scientist, experimenter, and student, this series presents a complete scientific subroutine package in BASIC.

- Volume 1 covers plotting. complex variables. vector and matrix operation, random number generation, and series approximations.
- Volume 2 continues with least-squares. approximation, special polynomial functions, approximating techniques. optimization roots of functions, interpolation. differentiation, integration, and digital filtering
These volumes feature routines written in both standard Microsoft and North Star BASIC. extensive appendices. and subroutine cross-referenes
Dr. Fred Ruckdeschel is a Principa Scientist with Dynacomp, Inc

VOLUME 1
ISBN O-O7-O542O1-5 336 pages hardcover illustrated

VOLUME 2

\$19.95

SBN O-O7-O542O2-3 384 pages hardcover illustrated available Fall 1981

Blaise W. Liffick. Editor
A powerful, structured language
Based on articles, language forums and letters from BYTE magazine, this work is a valuable software resource. Pascal continues to be popular as a structured pro gramming language. Written for both potential and established users, this book introduces the Pascal language and examines its merits and possible implementations. Featured are two versions of a pascal compiler, one written in BASIC and the other in 8080 assembly language: a p-code interpreter written in both Pascal and 8 O 8 O assembly language: a chessplaying program: and an APL interpreter

ISEN O-O7-O37823-1
334 pages
hardcover

THREADED INTERPRETIVE LANGUAGES

How to implement

FORTH on your 280
Threaded languages (such as FORTH) are compact. giving the speed of assembly language with the programming ease of BASIC. They combine features found in no other programming languages. This book develops an interactive. extensible language with specific routines for the Zilog 280 microprocessor. With the core interpreter, assembler, and dato type defining words covered in the text, it is possible to design and implement programs for almost any application and equivalent routines for different processors.

Ron Loeliger is a Senior Analyst with Intermetrics, Inc

ISBN O-O7-O3836O-X
272 pages
hardcover
illustrated
\$18.95

by Kenneth L. Bowles
The most popular Pascal version explained by its creator

Written by the ariginator of UCSD Pascal System, this informative book is an orientation guide to the UCSD Pascal System. For the novice, this book steps through the System, bringing the user ta a sophisticated level of expertise. Once familiar with the System, the reader will find the guide an invaluable reference tool for creating advanced applications. The package offers programs which may be run without alteration on:

- DEC PDP-ll or General Automation minicomputers
- Western Digital Microengines
- 8080. 8085. 280. 6502. 6800. 9900 or AM-100 based microcomputers (including the popular Apple II and Radio Shack TRS-80 microcomputers)
Dr. Kenneth L. Bowles is Director of the Institute for Information Systems. University of California. San Diego.

ISBN O-O7-OO6745-7
204 pages
softcover
$\$ 11.95$

YOU JUST BOUGHT A PERSONAL WHAT?
by Thomas Dwyer and Margot Critchfield

A Structured Approach to Creative Programming

Intended for both the novice progrommer and the experienced computer enthusiast. this book presents practical ideas for personal computer use at home or at work.

Its approach is especially suitable for educational purposes. Written by the leading contributors of computer educotion material, this book is an entertaining and resourceful tool. There are over 60 ready-to-use programs written in Microsoft and Level il BASIC for the TRS-80 in the areas of educational games, finoncial record keeping, business transactions, diskbased files, and word processing

Dr. Thomas Dwyer is a Professor of Computer Science at the University of Pittsburgh.

Margot Critchfield is a doctoral student in Foundations in Education at the University of Pittsburgh.

ISBN O-O7-O18492-5
343 pages
softcover
78 illustrations
$\$ 11.95$

BEYOND GAMES: SYSTEM
 SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER
by Kenneth Skier

Creating programs for the Apple, Atari, Challenger and

 PET computersAt last, a complete programming guidebook for owners of personal computers utilizing the 6502 microprocessor. A self contained course in structures programming and top-down design, this book presents a powerful set of tools for building an extended monitor. disassembler. hexadec imal dump routine, and text editor programs. Programs are thoroughly explained, with clear instructions for modifications.

Kenneth Skier is a Systems Programmer for Wang Laboratories. Inc.. and a Lecturer al MIT.

ISBN O-O7-O57860-5
440 pages
softcover
illustrated
\$14.95

> stimulating, provocative, problem-solving

CIARCIA'S CIRCUIT CELLAR

by Steve Ciarcia

Practical uses for home computers
Imaginative and practical. Ciarcia's Circuit Cellar details a variety of microcomputer projects. A collection of the best articles from the popular series in BYTE magazine, this volume includes

- D/A conversion
- Programming EPROMS
- AC remote-controlled appliances
- digitized speech
- touch input video display

Complete instructions are given on how to construct each project. With amusing anecdotes and an easy-going style. Ciarcia presents his material in such a manner that even a neophyte need not be afraid of it.

ISBN O-O7-O1096O-5
125 pages
softcover
color photographs and diagrams

\$8.00

CIARCIA'S

 CIRCUIT CELLAR, VOLUME IIby Steve Ciarcia

More practical uses for home computers

Composed of popular articles from BYTE magazine, this volume tells how microcomputers can be uniquely interfaced to our environment. Projects include

- building a computer controlled homesecurity system
- computerizing appliances
- transmitting digital information over a beam of light
- building the Intel 8086 microprocessor system design kit
- input-output expansion for the TRS-80

ISBN O-O7-O1O963-X
224 pages
softcover
photographs and diagrams

MICROCOMPUTER STRUCTURES
 by Henry D'Angelo

Digital Electronics, Logic Design, and Computer Architecture

Today, there is an increasing demand for computer users who are not only well-versed in software, but who can also maintain, modify. and design their own hardware systems.
This text introduces computer users with little or no background in digital hardware to the basic computer structures used in microcomputer design and microcomputer interfacing. Helpful examples and end-ofchapter exercises further illustrate the various concepts presented, and a detailed bibliography provides additional reading opportunities. As a resource and textbook. it will assist

- programmers and systems analysts
- engineers and scientists
- managers
- students

Detailed Instructor's Manual also available.
Dr. Henry D'Angelo is the Associate Dean of the College of Engineering and Professor of Manufacturing Engineering at Boston University.

ISBN O-O7-O15294-2 Instructor's Manual
288 pages ISBN O-O7-O15298-5
hardcover softcover
314 illustrations
available spring 1981 \$8.95

BUILD
YOUR OWN Z8O COMPUTER
by Steve Clarcia

Every step spelled out for do-it-yourself buffs

For the engineer, computer technician, student, and anyone interested in building a computer rather than buying one, this practical guide shows how to build a work ing computer based on the Zilog Z8O micr processor. Each computer subsystem is full explained and supported by proven desig and testing information. The description focuses on a basic single-board microcomputer containing

- easy expansion to include a video termir
- alk-byte operating system
- serial and parallel ports
- hexadecimal display
- audio cassette mass storage

Readers can modify the system to meet personal needs.
Steve Ciarcia is a Computer Consultant Electrical Engineer, and author of "Ask
Byte" and "Ciarcia's Circuit Cellar" column in BYTE magazine

ISBN O-O7-OIO962-I
330 pages
soffcover
available summer 1981

\$15.95

$\$ 18.95$

BYTE Books' reputation is based on providing technically acclurate, useful, and timely information. Established on the same principle as BYTE magazine, BYTE Book's evolved in response to the rapidly expanding audience of home and business computer users. Computer professionals and enthusiastic newcomers need to keep pace with this unabated growth. This selection of BYTE books can expand your library of knowledge and expertise.

TO ORDER, CALL TOLL FREE 800-258-542O, OR FILL OUT YOUR CHOICES IN THIS COUPON and return it with check, money order, or charge card number to:

EuIt
 8(1) This

70 Main Street
Peterborough,
New Hampshire O3458

Starting Today, BIZCOMP Takes Over as the Price/Performance Leader

We all know about the old fashioned acoustic coupler. Ask any computer hot-shot. Finicky, prone to room noise, vibration. A mechanical weak-link in your otherwise all-electronic system. RELIABILITY is the key to no-hassle computing. And everybody knows you don't get reliability with mechanical system components. So go ask that computer hot-shot-they'll tell you BIZCOMP's VersaModem all-electronic modem provides the new wave in personal communications. A fully FCC certified direct connection to the telephone network. Exciting? You bet!
Not only can you access The Source, MicroNet, Dow-Jones, Computer Bulletin Boards and University computers - the VersaModem offers access to a variety of specialized online databanks and timesharing services. The VersaModem is simple to install and operate. And it's compatible with standard data terminals and a host of personal computers.
Before you buy a computer modem, look at BIZCOMP's versatility. Look at BIZCOMP's quality. With BIZCOMP's VersaModem you won't need another modem. If your local computer store doesn't already have a VersaModem on display, ask them when they will!

BIZCOMP Communications...
 Why not start with the best?

 BIECOMPText continued from page 248;
tion designed to diagnose bacterial infections and recommend antibiotic therapy. MYCIN is organized around the systematic use of a large collection of rules that link patient data to infection hypotheses. Formulas based on a probability-like theory of certainty are used to accommodate the inexact nature of the relevant medical knowledge. In several ways, the program exploits the modularity provided by the use of rules to express this medical knowledge. From a systemdevelopment standpoint, modularity allows long-term incremental
development of the system by continual expansion and refinement of the rule base. The program obtains information from a user by simply chaining backward through the rules. This lets the program furnish simple but useful explanations of its reasoning by stating the rules it is using.

Search

Many problems in graph theory, game theory, and other areas of discrete mathematics can be posed as search problems. These problems are characterized by the existence (at

$\star \star \star$ WRITE OR CALL FOR FREE CATALOG $\star \star \star \star$

The MAX BOX: Manufactured by lohn D. Owens Associates. $8^{\prime \prime}$ dual drive cabinet complete with power supply \& fan. Will hold Qumes, Shugarts or Siemens. Excellent design and engineering
With 2 Shugart 801R Drives. . $\$ 1,275$.
With 2 QUME Double sided drives. . \$1,680.

CALIFORNIA COMPUTER SYSTEMS HIGH IN QUALITY, LOW IN PRICE

Z80 CPU, 4 Mhz , with one serial port; 12 slot S-100 mainframe, disk controller, 64 K Dynamic Ram, CP/M 2.2° SYSTEM 2210A
We configure complete systems with drives and additional //O.
IMS 5000 and 8000 Systems and IMS Memory
Outstanding long term reliability and performance. These systems feature a Z80A CPU, S-100 bus; double density drives (either single or double sided), DMA disk controller, 64 K RAM, 2 serial \& 1 parallel port. Prices include the very finest implementation of $C P / M^{\circledR}$ available in the entire industry. Hard disk and multi user software options.

Multi-User, Networking Operating System: TURBODOS
Turbodos: Spectacular new $\mathrm{CP} / \mathrm{M}^{\oplus}$ compatible operating system. Z80 code, internupt driven. Up to 6 X faster than $\mathrm{CP} / \mathrm{M}^{\oplus}$ up to 35% increased disc capacity. IMS compatible. Multi-user (up to 16 users)
$\$ 750$.
Single user
$\$ 250$.
PER SCI-THE KING AND QUEEN OF DRIVES!
Model 299B: Dual headed drives, total 3.2 MB unformatted.
\$2,300.
Model 277: Dual 8 inch drives, voice coil positioned, IBM compatible, 1600 K BYTES per drive, unformatted
\$1. 245.
Slimline cabinet and power for either 277 or 299.
\$ 300.

GRAPHICS EQUIPMENT

microangelo

High resolution graphics system. $15^{\prime \prime} 22 \mathrm{MHZ}$, green phosphor screen, 72 key keyboard; includes complete cabling and software. From SCION. Screenware PAK II.
\$ 350 .
S-100 Graphics card
$\$ 985$.
HIPAD DIGITIZER from Houston Instruments. Create graphics using stylus. Easier than joystick or keyboard input. For S-100, Apple, TRS-80, PET
$\$ 755$.
GRAPHICS SOFTWARE. On line, real time, for the M9900 to drive the Microangelo. For use in design of PC board masks, IC masks and other applications

1,000.
CAT 100 Full Color Graphics: Digital Graphics Complete S-100 color imaging system w/high performance video FRAME/GRABBER.

S1,875.
MAURO MP-250B Proac Plotter: Uses standard paper, choice of pen colors and line widths, resolution is 200 steps per inch; . $005^{\prime \prime}$ tracking error; RS232
$\$ 895$.
WE EXPORT: Overseas Callers: TWX 7105882844 WE OFFER A FULL RANGE OF EXPERT CONSULTING SERVICES

JOHN D. OWENS Associates, Inc.
12 Schubert Street
Staten Island, New York 10305
212 448-6283
212 448-2913
212 448-6298
least in principle) of a systematic method for generating candidate solutions, as well as a systematic method for testing acceptability. As regards genuinely interesting problems, the number of candidate solutions is usually so great that an exhaustive search is infeasible. Any device that significantly reduces the amount of search required (preferably without compromising the quality of the solution) is called a heuristic, and a search strategy guided by heuristics is called heuristic search.
Since the study of heuristic search was one of the earliest activities in AI, it is natural that DENDRAL-one of the first knowledge-based sys-tems-was concerned with using knowledge to limit search (see reference 14). Begun in 1965 by Feigenbaum, Lederberg, and their colleagues at Stanford University, DENDRAL generates plausible structural representations of organic molecules from mass-spectrogram data, nuclear-magnetic-resonance data, and additional constraints provided by the user. The program runs in a plan-generate-test sequence: (1) deriving necessary constraints on the molecular structure, (2) systematically generating structures that satisfy those constraints, and (3) testing the proposed structures by predicting the mass spectrogram and rejecting those that disagree with the experimental results. The knowledge needed for step 2 is encoded as an ingenious special procedure. The knowledge needed for steps 1 and 3 is encoded as tables of production rules, a method compatible with the way chemists think about the rules of mass spectrometry (see reference 5).
For the molecular families covered by these empirical rules, the program is said to surpass even expert chemists in speed and accuracy. The results obtained with it have been published in many papers in chemistry journals (see reference 13).

Problem Solving and Planning

An important class of logical problems concerns dividing a problem into a set of simpler subproblems. To be useful, a solution must be con-
structive; it usually consists of a sequence of actions that will achieve some goal. Examples of such problems are theorem proving, program synthesis, and robot planning.
EL is a knowledge-based system for the steady-state analysis of resistor-diode-transistor circuits (see reference 28). It uses production rules to represent general principles, such as Kirchhoff's laws and Ohm's law, as well as the characteristics of types of devices. Facts about the circuit being analyzed are represented as assertions in an associative data base. The rule interpreter is written in a special language called ARS (antecedent-reasoning system). As its name implies, ARS supports the use of rules in the antecedent mode, in which the factual assertions trigger the rules. The actions of the rules create new assertions, which in turn trigger additional rules.

An important property of ARS is the ability to make conjectures when no additional direct deductions are possible, and to keep track of those conjectures and any conclusions dependent upon them should subsequently detected contradictions require their revision. This ability allows the analysis of a circuit to proceed when the conducting or nonconducting states of its nonlinear devices are unclear. It also permits the user to modify the circuit and see the effects of changes without having to reanalyze the entire circuit. ARS can employ the same facilities to provide explanations of its reasoning.

Computer-Aided Instruction

Three types of traditional CAI (computer-aided instruction) are often distinguished: frame-oriented drill-and-practice programs (which are unrelated to what AI people call frame-based representations); games and simulations (usually used to teach diagnosis), and exploratory systems that allow the student to experiment freely and learn by doing. Among the limitations of these programs are their inability to conduct dialogues with the student in natural language, to respond to unanticipated responses, to diagnose the student's
errors, or to improve with experience. The potential applicability of artificial-intelligence techniques to solving these problems was outlined by Carbonell ten years ago (see reference 7), and a variety of approaches have subsequently been explored. To the extent that knowledge of the subject matter is required for a solution, knowledge-based systems have an obvious contribution to make to CAI.

The GUIDON system developed by Clancey at Stanford exploits the MYCIN knowledge base about meningitis and bacteremia to teach both
facts and problem-solving strategies (see reference 8). MYCIN's 450 diagnostic rules were not modified, but were augmented by an additional 200 rules that included methods for guiding the dialogue with the student, presenting diagnostic strategies, constructing a student model, and responding to the student's initiative. By replacing MYCIN's rules by a separate set of MYCIN-style rules used in the PUFF program for diagnosing pulmonary disease, Clancey was able to use GUIDON to tutor students about pulmonaryfunction analysis. Thus, GUIDON

$\star \star \star$ GREETINGS TO OUR FRIENDS IN AUSTRALIA $\star \star \star$

SD SYSTEMS

Z80 STARTER KIT: single board computer with RAM / ROM, I / O, display, keybd, kluge area $\$ 360$ VFII: double density floopy controller kit, with software $\$ 390$ CPU Z80A, 4 Mhz , serial \& parallel I/O IK on-board RAM, Z80 CTC....... $\$ 345$ EXPANDORAM II including high quality 4116s. Complete SD line a vailable including kits and FACTORY Assembled and tested boards \& systems at discount prices.

TELETYPE

Model 4320 AAA or AAK Model 43ASR, 8 level. $1^{\prime \prime}$ tape
\$2,595.
dBASE II Ashton-Tate \qquad \$615. Brings power of mainframe database software to a microcomputer. Runs under CP/M ${ }^{\text {® }}$. Extremely easy to use. Manual and demo software Money Back Guarantee
MUSYS Single BD Computer Z80 processor, 64K Dyn RAM, Console serial port, S-100 parallel interface, Bootstrap PROM $\$ 1300$.
HAZELTINE 1500 s 925.
1510 . \$1,030.
1520 . \$1,265. 220 volt models, add $\$ 100$ EXEC 80 $\$ 1,115$. 90 day on-site warrantee.

IBM 3101 CRT Model 10 $\$ 1,250$.

Model 20 \$1,450.
Selectric-like, detached keyboard. 9×16 dot matrix. Maintenance contract from IBM only $\$ 70$ per year.

ITHACA INTERSYSTEMS

Inventory sale on board sets \& systems
MARINCHIP SYSTEMS M9900
Uses TI9900 16 bit CPU. Full S-100, IEEE. Extensive software. Boards from $\$ 550$, systems \$4,995.

TEXAS INSTRUMENTS Printers 10% off list price on entire TI printer line.	
CENTRONICS 7	
EPSON MX80 RS 232 Interface	
CORVUS Hard Drives Moael 11, Hard Disk System Mirror Backup System	$\$ 4$

DMA-DOS NORTHSTAR 8" Floppy
Subsystem A new operating sytem, completely $\mathrm{CP} / \mathrm{M}^{\circ}$ compatible that allows use of both $8^{\prime \prime}$ (Shugart single sided, double density via Tarbell controller) and 51/4" drives. Allows transfer of file from $8^{\prime \prime}$ to $51 / 4 "$ and vice versa. Complete hardware, with software package
\$1,955.
TARBELL
Double density controller $\$ 435$. Z80 CPU . 395.
TEI MAINFRAMES, S-100 We are proud to announce that we are now a TEI stocking distributor. For the best in mainframes... TEI!!
TELEVIDEO CRTs 912. . $\$ 780$. 920. . $\$ 850$. 950. . $\$ 1,050$.

COMMUNICATIONS SOFTWARE from Hawkeye Grafix Enables communcations from a micro to a terminal or to another micro, mini or maxi computer.
Object Code \$75. Source Code \$250.
3M SCOTCH ${ }^{\circledR}$ Diskettes
5 box minimum, price per box Model 740, $8^{\prime \prime}$ single sided,
single density $\$ 27.00$
Model 741, $8^{\prime \prime \prime}$ single sided,
double density
35.50

Model 743, $8^{\prime \prime}$ double sided,
double density.
.43 .00
Model 744-0, $51 / 4$ soft sectored, single sided 744-10, $51 / 4^{\prime \prime}$, hard sectored, single sided.
27.00

Go with McGraw-Hill's

TAKE ANY 3 BOOKS FOR ONLY $\mathbf{1 0}^{00}$ EACH when you join the

 COMPUTER PROFESSIONALS' B00K CLUB (values up to ${ }^{\text {s }} 75.00$)
MICROPROCESSOR APPLICATIONS

 MANUAL. By Motorola Semicon ductor Products, Inc. 720 pp., i/lus., $81 / 2 \times 11$ format. With nuts and-bolts practicality, this manual by the Motorola people (who should know) gives you detailed applications information on microprocessors. Assumes no prior knowledge on your part about knowleMPUs.
435/278B $\$ 42.50$
(Counts as 2 of your 3 books)
PROGRAMMING LANGUAGES. By Allen B. Tucker, Jr. 439 pp., illus. Gives you not only the principles of design but the applications of six major programming languages. Shows you their strengths and weaknesses in solving various representative "benchmark" problems.
654/158B
$\$ 25.95$
(Counts as 2 of your 3 books)
 charts. The key purpose of the book is to provide both senior management and DP practitioners with a methodology for identifying and quantifying issues of capacity and demand within the data center without becoming entrapped by language problems
582317-9
$\$ 24.95$

SOFTWARE DEBBUGGING FOR MICROCOMPUTERS. By Robert C. Bruce. 351 pp., illus. Takes you through the fundamental methods for finding errors, glitches, and faults in programs ... goes on to techniques for tracking down and exterminating program bugs then combines these techniques into a complete debugging plan. 582075-7
$\$ 18.95$
DATA STRUCTURES USING PASCAL. By Aaron M. Tenenbaum and Moshe J. Augenstein. 544 р ρ., illus. With its emphasis on structured design and programming techniques, this definitive work takes you on a trailblazing journey through Pascal. Separate chapters are devoted to the stack, recursion, queues and lists. Pascal list processing, trees, graphs and their applications. 582230-X
$\$ 23.95$
SYNTAX OF PROGRAMMINC LANGUACES: Theory and Practice. By Roland C. Backhouse. 301 pp., illus. Follow author Backhouse as he takes you, on a close examination of context-free grammars. and then hands you the tools to eliminate misconceptions and errors that often arise with the rapid growth of programming languages. 582064-1B
$\$ 25.95$
(Counts as 2 of your 3 books)
THE BYTE BOOK OF PASCAL. Edited by Blaise W. Liffick. 340 pp., illus. Up-to-date Byte articles on the subject - from a general introduction to system hardwarefrom top experts in the field. Includes two versions of a Pascal computer, one written in BASIC and the other in 8080 assembly language.
789/673B
(Counts as 2 of your 3 books)
$\$ 25.00$

MICROPROCESSORS/MICROCOMPUTERS/SYSTEM DESIGN. BY Texas Instruments Learning Center and the Engineering Staff of Texas Instruments, Inc. $634 \rho \rho$., illus., outsized $71 / 4 \times 10^{1 / 4}$ format. The book takes you through the development of memory-to-memory architecture, shows you the components, and details programming methods and techniques.
637/58X
$\$ 24.50$
MINICOMPUTER SYSTEMS: ORganization, Programming, and Applicatlons. By Richard H. Eckhouse, Jr. and L. Robert Morris. 2nd Ed., 491 p ., illus. Updated, revised, and expanded, this is a book for every systems programmer, systems designer, computer scientist, and application specialist who wants to know more about microcomputer hardware, software, and design.
787/026
$\$ 21.95$
AUTOMATIC DATA PROCESSINC HANDBOOK. Edited by The Diebold Group. 976 pp., 269 illus. Written by a staff of internationally recognized authorities on ADP, this comprehensive handbook explains systems, programming and the languages, communications processes, and the design and installation of today's computers. 168/075B
$\$ 44.95$
(Counts as 2 of your 3 books)
the ciant handbook of comPUTER PROJECTS. By the Editors of 73 Magazine. 504 pp., 217 illus. Solid, simple, and above all fun! This outsized book shows you how to build computer equipment from scratch-computer games. a bionic clock, a computer-con. trolled thermometer, and much more.
582012-9
$\$ 15.95$

THE DEVIL'S DP DICTIONARY. By Stan Kelley-Bootle. 160 pp., softbound. This devilishly clever little book is guaranteed to fill anyone who has ever slaved over a hot terminal with savage delight. Some 500 computer words and terms are misclefined, from abacus to your program.
340/226
$\$ 7.50$

MICROCOMPUTER INTERFACINC.

By Bruce Artwick. 352 pp., 117 illus. In this up-to date, complete design guide you'll find the detailed descriptions and explanations necessary to enable you to select, build, and interface microcomputer systems to virtually all applications. Advanced interface devices and methods are thoroughly examined and illustrated. 789/436
$\$ 24.95$
ELECTRONIC GAMES: DesIgn, programming, and Trou: bieshooting. By W. H. Buchsbaum and R. Mauro. 335 pp., 338 illus. Information you need to design, program, and troubleshoot electronic games is right here in this widely popular handson guide.
$087 / 210$
$\$ 24.50$

PROGRAMMING AND INTERFAC-

 ING THE 6502-WIth ExperIments. By Marvin L. De Jong. 414 po., heavily illus., softbound. This guide not only teaches you all you must know about programming and interfacing the 6502, but it also carries you to a high level of understanding and proficiency quickly and painlessly. 582080-3$\$ 15.95$
PRINCIPLES OF INTERACTIVE COMPUTER CRAPHICS. By William M. Newman and Robert Sproull. 2nd Ed., 544 pp., illus. Now in a revised, updated second edition, this volume has long been THE standard source of information for designers!
463/3878 $\mathbf{\$ 2 6 . 9 5}$
(Counts as 2 of your 3 books)
PERSONAL COMPUTINC: Hardware and Software Basics. Elec tronics Book Series. 224 pp., 175 illus., $81 / 2 \times 11$ format. Gives you comprehensive guidance to the present state of the art in personal computers - an overall survey of the technology and methods available to perform various tasks, facts about the work others are doingand just how they are doing it.
191/514
$\$ 24.50$

Why YOU should join now!

- BEST BOOKS IN YOUR FIELD-Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the latest books in your field. - BIG SAVINGS - Build your library and save money too! We guarantee savings of at least 15% off publishers' list prices on every book. Usually $20 \%, 25 \%$, or even higher!
- BONUS BOOKS - You will immediately begin to participate in our Bonus Book Plan that allows you savings between 70-80\% off the publisher's price of many books.
- CONVENIENCE - 14 times a year you receive the Club Bulletin FREE, fully describing the Main Selection and alternate selections, together with a dated reply card. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection-or no book at all - you simply indicate it on the regular reply card and return it by the date specified. You will have at least 10 days to decide. If because of late mail delivery of the Bulletin you should receive a book you do not want, just return it at the Club's expense.

As a Club member, you agree only to the purchase of four more books over a two-year period.

6502 SOFTWARE DESIGN. By Leo J.
Scanlon. 269 pp., illus., softbound. This book describes the instructions that the 6502 integrated circuit can actually execute ... digs through into subroutines ... and presents the techniques needed to process structured data
582138-9
$\$ 10.50$
BIT-SLICE MICROPROCESSOR DE-
SIGN. By John Mick and Jim Brick. 398 pp. All in one place-the crucia! information you've been needing about the 2900 family of bitslice microprocessor components. This remarkable "first" designs right before your eyes not just one but two complete 16 -bit machines! 417/814
$\$ 18.50$

Be sure to consider these important titles as well!
INFORMATION RETRIEVAL SYS. TEMS: Characteristics, Testing and Evaluation, $2 /$ e. ByF. W. Lan. caster
582000.5

Wiederhold
701/30×B
By G
Couns $\$ 25.95$

PRINTED CIRCUITS HANDBOOK. By C.F. Coombs, Jr. 2nd Ed. 126/089B
(Counts as 2 of your 3 books)
STRUCTURED PROGRAMMINC:
Theory and Practlce. By R.C. Linger, M.D. Mills, \& B.I. Witt 788/537
$\$ 20.95$
HOW TO DESICN, BUILD \& PROGRAM YOUR OWN WORKING COM PUTER SYSTEM. By R.P. Haviland 788/987
COMPILER DESIGN AND CONSTRUCTION. By A. Pyster
582026-9
THE 2-80 MICROCOMPUTER HANDBOOK. By W. Barden, Jr. 784/914
8.95

COMPUTER PERIPHERALS FOR MINICOMPUTERS, MICROPROCESORS AND PERSONAL COMPUTERS. By L.C. Hohenstein 294/518
$\$ 19.50$
16.BIT MICROPROCESSOR AR-

CHITECTURE. By T. Dollhoff
$582003 \cdot \mathrm{X}$ \$24.95
ELECTRONICS OICTIONARY, 4/e. By J. Markus

404/3138 $\$ 29.95$
(Counts as 2 of your 3 books)

* If you join now for a trial period and agree to purchase four more books - at handsome discounts - over the next two years.
(Publishers' prices shown)

MAIL THIS COUPON TODAY

McGraw-Hill Book Clubs

Computer Professionals' Book Club
P.O. Box 582, Hightstown, New Jersey 08520

Please enroll me as a member and send me either the ENCYCLOPEDIA OF COMPUTER SCIENCE, billing me only $\$ 3.00$, or any three other books, billing me only $\$ 1.00$ each, plus local tax, postage, and handling. If not satisfied. I may return the books within 10 days and my membership will be canceled. I agree to purchase a minimum of four additional books during the next two years as outlined under the Club plan described in this ad. Membership in the Club is cancelable by me any time after the four-book purchase requirement has been fulfilled.
\square Check here if you want ENCYCLOPEDIA OF COMPUTER SCIENCE (769/01X).
Check here if you prefer three other volumes, and indicate below by number the books you want.
A few expensive books (noted in the description) count as more than one choice.

Orders from outside the U.S. must be prepaid with international money orders in U.S. dollars.

Name
Address/Apt.
City/State/Zip
Corporate Affiliation
This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members. A postage and handling charge is added to all shipments.

P39521
has shown that a knowledge-based system can be exploited for teaching about its knowledge base.

Knowledge Acquisition

As an alternative between the extremes of complete handcrafting of the knowledge base and completely automated learning, researchers have investigated the development of various tools that can facilitate the process of acquiring knowledge. The most ambitious of these is Davis' TEIRESIAS system that employs knowledge about the MYCIN system to supervise interaction with an expert in building or augmenting a MYCIN rule set (see reference 9).

Giving the expert direct access to the program is an appropriate ultimate goal. But the expert usually lacks sufficient understanding of the program's representational mechanisms to appreciate the consequences of the many choices the program offers. An alternative to direct access is to use a computer scientist who understands the program's mecha-
nisms and provide specific tools matched to the knowledgeacquisition process.

KAS, the knowledge-acquisition system developed by Reboh for PROSPECTOR, is an example of such a system (see reference 26). PROSPECTOR employs various kinds of networks to represent knowledge-rule networks for expressing judgmental knowledge, semantic networks for expressing the meaning of the propositions employed in the rules, and taxonomic networks for representing static knowledge about the relations among terms in the domain. The core of KAS is a network editor. The editor's basic operations allow it to create, modify, or delete various kinds of nodes and arcs. The network editor knows about the various mechanisms employed by PROSPECTOR, protects the user against certain kinds of syntactic errors, and includes a system that keeps track of partial constructs that remain to be completed. At any time, the user can turn

THE

wordSPELLING PROOFREADER and COMPUTER DICTIONARY

The wORD is out! Works with the editor of your choice to find those lurking spelling errors and sneaky typos.

SPELLING CHECKER

- 45,000 word dictionary
- Checks over 10 pages/minute
- Handles apostrophes, hyphens
- Marks mistakes in file
- CDOS ${ }^{\text {m }}, \mathrm{CP} / \mathrm{M}^{\mathrm{tm}}$ compatible
- Needs only 32K system

EXTRA FEATURES

- Automatic rhyme finder
- Crossword puzzle solver
- Correct spelling finder
- Word counter
- Word frequency analyzer
- Dictionary builder

AVAILABLE FOR:

- 8" Single Density CP/M ${ }^{\text {m }}$
- soon -
- 51/4" North Starlm
- 51/4" Superbrainim
- Apple ${ }^{\mathrm{tm}} /$ Softcardim CP/M
control over to KAS, and KAS will systematically question the user to fill in the missing parts of the structures. A semantic network matcher gives the user a limited ability to edit by content rather than by form. Since KAS is embedded in PROSPECTOR, it lets the user determine the effects of changes by permitting controlled execution of the program. Although specialized to PROSPECTOR, KAS gives powerful assistance in the timeconsuming task of developing the knowledge base.

System Building

Many knowledge-based systems that have been built-especially in the area of diagnosis-have generally similar structures. In particular, all rule-based systems have a rule interpreter, a collection of rules making up the knowledge base, and a global data base of assertions about the particular case being diagnosed. Several researchers have illustrated the generality of their systems by showing that they can be applied to another domain merely by removing the rules for a given domain and substituting rules for the new one (see references 17 and 30).
Every domain, however, has its own peculiarities. Despite the good intentions of system builders, these peculiarities inevitably influence the design of a system. As a result, a serious attempt to build a new knowledge-based system almost always requires changes in all parts of the system. Recognizing these facts, researchers have recently begun developing what amount to programming languages for building expert systems. While these languages are just coming into use and are certain to undergo further development, they promise to reduce significantly the programming effort needed to develop a new system.

AGE is a good example of the most recent efforts in this direction (see reference 23). Specifically designed to allow the implementation of a broad spectrum of knowledge-based systems, AGE gives the designer a set of separate, interconnectable, preprogrammed modules for im-

Figure 3: Diagram showing some of the constructs used in the PROSPECTOR inference networks. In figure 3a, boxes represent assertions. Each assertion's symbolic name is at the upper-left comer of the box and text describing the assertion is inside the box. Most assertions have prior probability values shown at the upper-right corner of the box. Evidence can be combined by logical connectives such as $A N D, O R$, and NOT, represented by circles inside boxes; by plausible inference rules, indicated by two rule-strength values; $L S$ and $L N$ (LS indicates how sufficient the evidence is for establishing the hypothesis, if the evidence is present; $L N$ indicates how necessary the evidence is for the hypothesis), and by variable likelihood ratios [$L(x)$), defined in figure 36 . Dashed arrows indicate contextual constraints, which can "turn on or off" one question or a whole section of the network (at the tail of the arrow), depending on the answer to another question (at the head of the arrow). Figure 36 shows a plot defining a likelihood ratio $L(x)$ for a numerical answer x to a question from PROSPECTOR. The likelihood ratio depends on the numerical value provided by the user.
plementing the knowledge base, the interpreter, and the data base. It also provides ways to escape to the host programming language to implement arbitrary procedures. The knowledge base can be represented either as sets of production rules or as frame systems (called units), or the two representations can be combined. For the interpreter, AGE supplies standard procedures for forward-chaining and backward-chaining, plus convenient ways to implement other strategies. The standard global data base is a so-called blackboard system (see reference 19). AGE also contains knowledge about its own facilities and procedures, and a tutor subsystem that lets the user browse in this on-line manual. A design subsystem provides on-line advice on the use of AGE itself.

The design of any programming language always involves a compromise among convenience, generality, and efficiency (in time or space). Clearly, systems like AGE, ROSIE, HEARSAY III, and RLL, are attempts to gain convenience, generality, and design-time efficiency for relatively modest additional cost in space and run-time efficiency. While there is not yet enough experience with such systems to assess their value, we expect them to play a significant role in future developments.

PROSPECTOR: Sample System

Supported by the US Geological Survey and the National Science Foundation, we developed the PROSPECTOR system for mineral explora-
tion (see reference 11). PROSPECTOR contains rule-based models of different kinds of ore deposits. We developed each model by interviewing a geologist who is an authority on a particular class of deposits, and then translating the geologist's knowledge of the associations between field-observable evidence and relevant geological hypotheses into a structured collection of rules. PROSPECTOR models can perform these tasks: (1) evaluate the favorableness of a geologic district for a kind of ore, (2) evaluate the favorableness of a particular exploration site within a district, and (3) evaluate the favorableness of different drilling sites on an exploration site. In addition, PROSPECTOR can suggest which data are most valuable for further exploration, give the rationale
for conclusions reached, and provide informal education about each class of deposits.

PROSPECTOR uses a combination of artificial-intelligence techniques to perform these tasks. MYCIN-like rules link evidence to hypotheses, and offer the advantages of modularity and explicability. A mixed-initiative control strategy enables the user either to let the system use a backward-chaining strategy to gather information, or to interrupt the program to select different goals or to volunteer relevant information.

PROSPECTOR accommodates uncertainty in both evidence and rules. When PROSPECTOR asks yes-or-no questions, the user must indicate certainty about the answer on a scale from -5 to +5 , where -5 is a certain no, 0 means don't know, and +5 is a certain yes. When PROSPECTOR asks for numerical input-for example, the geological age of a rock-PROSPECTOR also asks for the user's confidence in the answer.

Figure 3a illustrates the basic form of a PROSPECTOR inference network. Each box stands for an assertion and has a previously assigned
probability value. There are a variety of ways to combine evidence. These include logical operators such as AND, OR, and NOT, represented by circles, and plausible-inference rules, indicated by the likelihood ratios (rule-strength values) LS and LN. LS indicates how sufficient the evidence is for establishing the hypothesis if the evidence is present. LN indicates how necessary the evidence is for the hypothesis; that is, the degree to which the absence of this evidence will rule out the hypothesis. Both these likelihood ratios are multipliers. Thus, any value less than 1 decreases the likelihood of sufficiency or necessity; any value greater than 1 increases the likelihood.

For questions that request numerical input rather than yes-or-no answers, PROSPECTOR uses a plot like that shown in figure $3 b$ to compute a likelihood ratio. The chart indicates the significance of ranges in the answer: x is the requested numerical quantity and $L(x)$ is the likelihood ratio.

PROSPECTOR also uses contextual constraints, shown in figure 3 a as dashed arrows. These work by telling

The following questions are intended to establish the nature of the petrotectonic setting.
(These questions will not be pursued unless a positive answer is given to the next question.)
12 - To what degree do you believe that the target area is in a continental-margin mobile
belt? 4
13 - Do you know the age of the continental-margin mobile belt? WHY
The vast majority of porphyry copper deposits are younger than 200 million years. Major age
groups include:

1. An older group of 200 to 150 m.y. (million year) porphyries in British Columbia;
2. An important younger group of 70 to 50 m.y. deposits in the Mideast, British Columbia (Skeena Arch), and Arizona-New Mexico-Sonora (Laramide) copper province;
3. The major belt of 60 to 4 m.y. deposits in the Andes of Argentina, Chile, Peru, Ecuador, and Colombia.
<The explanation continues with additional information>
13 - Do you know the age of the continental-margin mobile belt? YES
14 - What is the age of the continental-margin mobile belt? CRETACEOUS $=65-136$ MILLION-YEARS
What is your confidence in this estimate? 3
<The consultation continues on with many additional questions.>
Figure 4: An excerpt from a consultation with PROSPECTOR, which has chosen an initial hypothesis to investigate and is now asking the user for additional relevant information. The numerical answer to question 12 indicates the user's degree of certainty about a fact, using $a-5$ to +5 scale. If the user types "WHY" instead of answering a question, PROSPECTOR explains the question's geological significance.

PROSPECTOR, in effect, "Don't even consider hypothesis A unless the likelihood of hypothesis B falls within such and such a range." The range is called the context interval. It is defined by two numbers on the -5 to +5 scale described earlier. The context interval $(2,5)$, for example, indicates that PROSPECTOR shouldn't consider hypothesis A unless confidence in the truth of B is somewhere between lukewarm $(+2)$ and absolutely certain $(+5)$. The default context interval, in effect when no interval is shown, is $(0,5)$.

Figure 4 shows an excerpt from a consultation with PROSPECTOR. Before the excerpt, the user volunteered observations about rocks and minerals at the prospective site. PROSPECTOR chose an initial hypothesis for investigation (that a certain type of copper deposit is present). At the start of the excerpt, PROSPECTOR is asking the user a series of questions to get additional information. In response to question 12, the user types " 4 " to indicate a relatively strong degree of certainty about the answer.
PROSPECTOR can accept a variety of answers to questions. For example, in answer to question 14, the user provides the term "cretaceous" to indicate a numerical range of values. When the user types "WHY" instead of answering question 13 , PROSPECTOR prints an explanation of the question's geological significance. By typing "WHY" repeatedly, the user can learn more about the expertise captured in the model. After the explanation, PROSPECTOR repeats question 13 and the consultation goes on.

In response to any question, the user has options to seek clarification, change the course of the questioning, trace the implications of answers given, and so on. The consultation continues until PROSPECTOR has confirmed or rejected the hypothesis under consideration. PROSPECTOR then explains the basis of its conclusions in terms of the rules used.

Tests have shown that evaluations made by PROSPECTOR closely match those made by the geologists
POWERFUL NORTH STAR BASIC FREE SUPERB FOR BUSINESS \& SCIENCE

FACTORY ASSEMBLED \& TESTED		LIST	ONLY
		\$4195	\$3062
HORIZON-2-32K-QUAD DENSITY		\$3995	\$2916
RIZON-2-64K-QUAD		\$4495	\$3281
HORIZON RAM ASSM	16K		32K $=\$ 479$
HORIZON RAM ASSM	48K		$\mathbf{6 4 K}=\$ 87$
HORIZON DISK DRIVE SALE			
DOUB DEN		SAVE!	\$ 445
NORTH STAR HARD DISK 18 Mb		\$5375	\$3923
NORTH STAR TIME SHARING MULTI-USER			CAL

SUPERBRAIN
 SUPERBRAIN QD 64K
 List \$3995 only $\mathbf{\$ 2 9 9 5}$

 TERMINALS Z-19 \$725 INTERTUBE III only $\$ 725$

DYNABYTE COMPUTER-SAVE-PHONE EPSON MX-80-PHONE ANADEX $9501 \$ 1349$

NEC PRINTER \$2639 TRACTOR,
THIMBLE,
RIBBON
DIP-81
\$395
TEC LETTER QUAL \$1599

BEST QUALITY InterSystems

ITHACA INTERSYSTEMS 2A
Z-80A CPU 4 MHz 64K Dynamic RAM Front panel V I/O-with interrupts FDCII Disk Controller 20 slot motherboard

CALL FOR PRICE-

 TOO LOW TO ADVERTISE!PASCALZ + THE FASTEST PASCAL $\$ 375$ Z-8000 \& CACHE BIOS-POWERFUL-PHONE 808616 BIT CPU \& SUPPORT CARD SEATTLE $\$ 695$ CALIFORNIA COMPUTER 2210A ONLY $\$ 1795$

MORROW 8" DISK

DISCUS 2D + CP/M ${ }^{\text {© }}$ 600K ONLY $\$ 929$
DISCUS $2+2+$ CP/M ${ }^{\text {© }}$ 1.2 MEGA B. $\$ 1240$ ADD DRIVES 2D $=\$ 6502+2=\$ 975$ 2D-DUAL + CP/M ${ }^{\odot}$ ONLY $\$ 1540$ FREE MBASIC FROM MORROW!!

MORROW HARD DISK 26,000,000 BYTES!! LIST \$4995 ONLY \$3919 CP/M ${ }^{\text {® }}$ IS INCLUDED!

SAVE ON MEMORY AND PROGRAMS

SYSTEMS MEMORY 64K A \& T 4 mHz
SYSTEM MEMORY 64K BANK SELECT

ITHACAMEMORY 8/16-bIt 64K $\$ 845$ SEATTLE MEMORY $8 / 16$ BIT 16K $\$ 249$

SSM KITS Z-B0 CPU \$221
VIDEO BRD V83 $4 \mathrm{Mhz} \$ 412$ ANADEX PRINTER DP.9500-1 $\mathbf{\$ 1 3 4 9}$ CAT NOVATION MODEM $\$ 169$

ECONORAM 2A BK ASSM $\$ 179$ NSSE 1.22 \& POI TERRIFIC PROGRAMS

ONLY \$10. EACH NORTHWORD $\$ 329$ MAILMAN $\$ 246$
INFOMAN
$\$ 411$
TARBELL COMPUTER-PHONE
AMERICAN SQUARE COMPUTERS BEATS ADV. PRICES
square
American 回 Computers
919-889-4577 KIVETT DR. JAMESTOWN N.C. 27282
919-883-1105
© CP/M Is a registered trademark of DIgItal Research, Inc.
who created the models; the numerical scores typically agree to within about seven percent on the average (see reference 15).

Appropriate Tasks

While the systems we have described perform a wide variety of tasks, knowledge-based expert systems are more successful in handling some tasks than others. In general, the following are prerequisites for the success of a knowledgebased expert system:

- there must be at least one human expert acknowledged to perform the task well
- the primary source of the expert's exceptional performance must be special knowledge, judgment, and experience
- the expert must be able to explain the special knowledge and experience and the methods used to apply them to particular problems
- the task must have a well-bounded domain of application

Many scientific and technical tasks meet these conditions, especially where there is a tradition of consultation. Certain kinds of tasks are not good subjects for knowledge-based expert systems. For example, although a mathematician possesses specialized knowledge, the additional knowledge needed to function in that role is far more extensive than current knowledge-based expert systems can handle. On the other hand, where there are well-defined mathematical procedures for solving a problem, knowledge-based expert systems are unnecessary. For most perceptual problems, experts are unusual, relevant knowledge is extensive but difficult to pinpoint, and general understanding of the perceptual process is limited. And many tasks are still waiting for the first expert to appear. An example is earthquake prediction. There are now no

Photo 1: The area where PROSPECTOR predicts a molybdenum deposit. Given extensive data about the surface, PROSPECTOR used its rules to score areas of favorableness for molybdenum ore. Ore-grade molybdenum was previously found in the bright area on the right. PROSPECTOR predicts more ore will be found in the undrilled bright area on the left. The brighter the area, the higher its rating by PROSPECTOR. The site is in the Mount Tolman area of the state of Washington.
geologists who can predict earthquakes accurately. An expert system for earthquake prediction should not be expected to fare any better than the human sources of its knowledge base.

The Future

We are now witnessing the first transition of expert programs from the comfortable surroundings of research laboratories to the more demanding world outside. For several years, the DENDRAL system has seen regular use by university and industrial chemists throughout the country. The Digital Equipment Corporation is using one version of R1 and is developing versions for other DEC systems. The PROSPECTOR system has been applied to several practical problems of the US Geological Survey and the US Department of Energy. PROSPECTOR has also made its first prediction about the location of a molybdenum deposit. Drilling is underway to see if there is a deposit where PROSPECTOR predicted (see photo 1).

Donald Michie and his colleagues at the University of Edinburgh are developing an expert system similar to PROSPECTOR to diagnose operating problems on North Sea oil platforms. Schlumberger is developing another expert system to interpret the waveforms obtained when instruments are dropped down oil wells. Finally, Michie and the Machine Intelligence Corporation have independently developed the first simplified expert systems that can be run on an Apple computer. The current generation of expert systems is being put to practical use, and many more systems will certainly be built.

Researchers have identified and are attacking several major problems that limit progress in knowledge-based systems. One of these problems concerns software support for research in this field. As our micro expert-system illustrates, BASIC is not the right language for implementing expert systems. Pascal and even LISP are not completely satisfactory either. New languages such as OPS-5, oriented

Now a microcomputer financial planning program so advanced it's tike having a main frame on every desk.

Introducing FPL. ${ }^{\text {M }}$
FPL is the remarkable new Financial Planning Language software that, for the first time, turns the microcomputer into the most sophisticated financial planning tool.
FPL is comprehensive.
Incredibly, FPL is comparable in capabilities to Autotab ${ }^{\text {tr }}$ and other successful packages previously available only on main frame computers.
With FPL, you can plan, analyze, project, track and control an enormous number of business variables with a single microcomputer program.
FPL can perform such functions as Profit and Loss Forecasts, Budget Planning and Consolidation, Acquisition or Merger Analysis, Capital Investment Analysis, Product Line Planning and many more.

Unique features include the handling of complex rules that are necessary with varying tax rates and the conditional handling of investment tax credits.
With FPL, you can preview the results on the screen and then use the powerful report generator to produce
presentation-quality financial reports directly.

FPL: an alternative to time-sharing.
FPL gives you the same

conversational ease of timesharing, enhanced with a screen-oriented Decision Support System, with none of the runaway costs. You are able to try many more alternatives, examine many more options, and better understand models.
Priced at only $\$ 695$, FPL gives you improved service and reduces costs.
FPL runs on most small business computers with $\mathrm{CP} / \mathrm{M}^{\star}$ or similar operating systems.

Get full support from Lifeboat.
FPL is brought to you exclusively and supported completely by Lifeboat Associates, world's largest computer software marketer. For more information about this revolutionary financial planning package and how you can profit from it, send us the coupon below.

LIFEBDAT WORLDWIDE offers you the wortd's largest library ol softwate. Contact your nearest dealer or Lifeboat
LIfEBOAT
Lifeboat Inc.
OK Bidg. 5 F
$1-2-8$. Shiba-Daimon
Minalo-ku, Tokyo, 105 Japan
Tel: $03-437.3901$
Telex: 2422723 (ASRTYOJ)

Listing 1: A rule-based, animal-identification program in BASIC. This is based on the DIAGNOSE program found in chapter 18 of LISP by P H Winston and B K P Horm. The core subroutine is VERIFY (lines 1210 through 1830), which is recursive. Since BASIC does not support recursion, all reentrant subroutines must explicitly save their local values on push-down stacks before transferring control.

00010 REM
00020 REM
00030 REM
00040 REM
00050 REM
00060 REM
00070 REM
00080 REM
00090 REM
00100 REM
00110 REM 00120 REM 00130 REM 00140 REM 00150 REM 00160 REM 00170 REM 00180 REM 00190 REM 00200 REM 00210 REM 00220 REM 00230 REM 00240 REM 00250 REM 00260 REM 00270 REM 00280 REM 00290 REM 00300 REM 00310 REM 00320 REM 00330 REM 00340 REM
NITLALIZE
00350 DIM AS(100),F§(100),H\$(20),Q(50),RS(250),R(50),S\$(200),S(200)
00360 A9 $=100$
$00370 \mathrm{F9}=100$
00380 H9 $=20$
00390 R9 $=250$
00400 S8 $=200$
$00410 \mathrm{~S} 9=200$
00420 Sl $=0$
$00430 \mathrm{~S} 2=0$
00440 PRINT "He110."
00450 REM CALL LOADRULES TO INITIALIZE R AND R\$; R7 = COUNT OF RULES
00460 GOSUB 3680
00470 IF R 7 > 0 THEN 500
00480 PRINT "No rules."
00490 STOP
00500 REM CALL LOADHYPOTHESES TO INITIALIZE HS, H8 = COUNT OF HYPUTHESES
00510 GOSUB 4100
00520 IF H8 > 0 THEN 550
00530 PRINT "No hypotheses."
00540 STOP
00550 PRINT "I wll use my ";R7;" rules to try to establish one of the"
00560 PRINT "following "• $\mathbf{H} 8 ;$ " hypotheses:"
00570 FOR H1 $=1$ TO H8
00580 PRINT " ";Z\$;H\$(HI)
00590 NEXT H1
00600 PRINT
00610 PRINT "Please answer my questions with Y (ges), N (no), or W (why)."
00620 PRINT
00630 REM
00640 REM THE MAIN LOOP -- DIAGNOSE
00650 REM
$00660 \mathrm{Al}=0$
$00670 \mathrm{Fl}=0$
00680 FOR H1 $=1$ TO H8
00690 REM SETUP ARGUMENTS AND GOTO VERIFY TO ESTABLISH THE TRUTH OF FIS
$00700 \mathrm{Fl} \$=\mathrm{H} \$(\mathrm{H} 1)$
$00710 \mathrm{Y}=1$
00720 Gото 1200

Listing 1 continued on page 266
A RULE-BASED IDENTIFICATION PROGRAM
Based on the DIAGNOSE program in Chapter 18 of the book
'LISP' by P. H. Winston and B. K. P. Horn
A\$ = array of asked questions Al = current number of asked questions A9 = maximum number of asked questions
FS = array for facts
Fl = current number of facts
F9 = maximum number of facts
H\$ = array for top-level hypotheses H1 = current top-level hypothesis H8 = current number of top-level hypotheses H9 = maximum number of top-level hypotheses
Q = array of rule numbers for deducing a goal hypothesis (size = R9/5)
Q8 = current number of relevant rules
$\mathrm{R} \$=$ array for rules
RI = current rule index R2 = current antecedent R7 = current number of rules R8 = current number of bytes used for rules R9 = maximum number of bytes in $R \$$
$R=$ array of pointers into $R \$$ (size $=R 9 / 5$) RI = current rule pointer
S $\$=$ stack array for strings SI = stack pointer for $S \$$ S9 = size of $\mathrm{S} \$$
$S=$ stack array for numbers $\mathrm{S} 2=$ stack pointer for S S8 = size of S

INITIALIZE
$\$(100), F \$(100), H \$(20), Q(50), R \$(250), R(50), S \$(200), S(200)$
$00360 \mathrm{~A} 9=100$
$70 \mathrm{F9}=100$

00390 R9 $=250$
00400 S8 = 200
00410 S9 $=200$
$00420 \mathrm{Sl}=0$
00430 S2 $=0$
00440 PRINT "He110."
00450 REM CALL LOADRULES TO INITIALIZE R AND R $\$$; R7 = COUNT OF RULES
00470 IF R $7>0$ THEN 500
00480 PRINT "No rules."
00490 STOP
00500 REM CALL LOADHYPOTHESES TO INITIALIZE H\$, H8 = COUNT OF HYPUTHESES
GOSUB 4100
00520 IF H8 > 0 THEN 550
00530 PRINT "No hypotheses."
540 STOP
00550 PRINT "I will use my ";R7;" rules to try to establish one of the"
00570 FOR H1 $=1$ T0 H8
00580 PRINT " ";Z\$;H\$(H1)
00590 NEXT H1
00600 PRINT
00610 PRINT "Please answer my questions with Y (yes), N (no), or W (why).' 00620 PRINT

00640 REM THE MAIN LOOP -- DIAGNOSE
00650 REM
$00660 \mathrm{Al}=0$
$00670 \mathrm{Fl}=$

00690 REM SETUP ARGLMENTS AND GOTO VERIFY TO ESTABLISH TEE TRUTH OF FIS
$00700 \mathrm{Fl} \$=\mathrm{H} \$(\mathrm{H} 1)$
00720 сото 1200
toward production development, and new expert-system-building systems such as AGE, HEARSAY III, and RLL are the first of a new generation of software tools that will simplify system development.

On a more fundamental level, something must be done to shorten the time needed to interview experts and represent their special knowledge in the form of rules. This is often called the knowledge-acquisition problem. Despite several concentrated efforts, it remains a bottleneck. The development of a model containing a few hundred rules may now take several months of the expert's time and even more of the system builder's. Past efforts to speed knowledge acquisition have been along three lines: (1) to develop smart editors that assist in entering and modifying rules, (2) to develop an intelligent interface that can interview the expert and formulate the rules, and (3) to develop a learning system that can induce rules from examples, or by reading textbooks and papers.

Somewhat ironically, to do anything ambitious along these lines seems to require fundamental advances in our understanding of two core Al topics-the representation of knowledge and the use of knowledge! The problem is that although inference networks of rules do much to codify the reasoning process that an expert uses in solving a problem, there's still much that goes on inside an expert's head that doesn't appear in the networks. Basically, a knowledge-based system provides a flexible yet precise language that an expert can use to describe the chains of reasoning. We need to develop more expressive languages that allow the expert to articulate more of the nuances and details of thought processes. One of the problems is that it is difficult for experts to describe exactly how they do what they do, especially with respect to their use of judgment, experience, and intuition. We are optimistic that such advances will be made, but will resist the temptation to make more specific guesses.

The knowledge-acquisition issue touches on an important side effect of

Quick, name the only working 51/4" Hard Disk Controller Cards You can order off-the-shelf!

The 51/4" Hard Disk Controller Packages from ACT.

Now you can pick up your phone and order the only working digital data separator based $51 / 1^{\prime \prime}$ controller cards for vour Zenith/Heath, TRS-80, $\mathrm{S}-100$, and Superbrain microcomputer systems.

And software too! Every disk controller package comes complete with CP/M 2.2 and all of the software required to install the hard disk on your system. And best of all, we include full source of every file supplied which was written by ACT. Packages for H89, TRS-80, and Superbrain are preconfigured for those systems. Just install the hardware and boot the system.

But beware, these controller packages are proving themselves to major U.S. and European OEM manufacturers as very efficient little jewels. Once you plug-in our 51/4" hard disk and controller cards, you may not recognize your computer. .

5,000,000 super-fast bytes will transform your microcomputer into a high-throughput workhouse. Faster turn-around and greater efficiency are so obvious that it'll leave you wondering how you put up with the slower, less reliable $5^{1 / 4^{\prime \prime}}$ or $8^{\prime \prime}$ floppies.

The fact that our patent pending HOP Digital Data Separator gives our controller packages maintenancefree reliability should convince even the dyed-in-the-wool $51 / 4^{\prime \prime}$ or $8^{\prime \prime}$ floppy disk fanatics.

51/4" hard disks are the way of the future and ACT has an affordable, efficient $511^{\prime \prime}$ hard disk package you can order off-the-shelf. Just pick up your phone and call us.

High-performance meets low cost.

In terms of byte-per-dollar cost, 51/4" Winchester types are up to five times more affordable than $51 / 4^{\prime \prime}$ floppies. In terms of reliability, efficiency and sheer speed, the $51 / 4^{\prime \prime}$ hard disks blow everything else right out of the water.

ACT manufactures quality controller card packages with lowcost and high-performance in mind. Even the first ACT HOP controller card package we delivered to Western Europe is still running like a dream. So are our other deliveries.

American Computer and Telecommunications Corporation
(single quantity) for the complete ACT $51 /{ }^{\prime \prime}$ Hard DISk Controller Card Package. Hard Dlsks, CRT terminals, etc. are priced extra. Substantial OEM and dealer discounts are avallable.

So if you're looking for the way to affordably upgrade your own microcomputer system, or your whole companv's microcomputer system, call the company that introduced high-performance to lowcost.

Plug-it-in; turn-it-on.
you can order our products in any configuration you desire. Order just the HOP Digital Data Separator, or just the controller card package.

Or, you can order fully assembled CRT terminals with an integrated $51 / 4^{\prime \prime}$ Winchester Hard Disk and controller card package. Should you want a $51 / 4^{\prime \prime}$ floppy back-up, you can

Whatever you order, remember that our units feature simple, standard plug-in compatibility with your Zenith/Heath, TRS-80,* S-100 or Superbrain* micro-computers. Just plug-it-in and turn-it-on.

Call ACT today for your 51/4" hard disk needs; we believe our products will impress you and your computer. Call (703) 471-9750.

00740 GOSUB 1040
00750 IF X\$ <> "" THEN 800
00760 NEXT H1
00780 PRINT "No hypothesis can be confirmed."
00790 сото 820
00800 REM SUCCESS
00810 PRINT "I conclude that ";Z\$; $\mathrm{H} \$(\mathrm{~B} 1) ; "$ "
00820 PRINT
00840 INPUT C $\$$
00850 IF C $\$=$ "R" THEN 640
00870 STOP
00880 REM
00890 REM SUBROUTINE PUSH(X\$)
00900 IF S1 < S9 THEN 930
00910 PRINT "STRing stack OVErflow"
00920 STOP
00930 Sl $=$ Sl +1
$00940 \mathrm{~S} \$(\mathrm{~S} 1)=\mathbf{\$} \$$
00950 RETURN
00970 REM SUBROUTINE PUSH(X)
00980 IF S2 < S 8 THEN 10 iO
00990 Print "number stack overflow"
01000 STOP
01010 S2 = S $2+1$
$01020 \mathrm{~S}(\mathrm{~S} 2)=\mathrm{X}$
01030 RETURN
01040 REM
01050 REM SUBROUTINE POP(X $\$$)
01060 IF S $1>0$ THEN 1090
01070 PRINT "STRING STACK UNDERFLOW"
01080 STOP
$01090 \mathrm{x} \$=\mathrm{S} \$(\mathrm{~S} 1)$
01100 Sl = S $1-1$
01110 RETURN
01120 REM
01130 REM SUBROUTINE POP (X)
01140 IF S2 > 0 THEN 1170
01150 Print "number stack underflow"
01160 STOP
$01170 \mathrm{x}=\mathrm{S}(\mathrm{S} 2)$
$01180 \mathrm{~S} 2=\mathrm{S} 2-1$
01190 RETURN
01200 REM
01210 REM SUBROUTINE VERIFY(F1\$, Y)
01220 Rem attempts to prove that fact fis is true
01230 rem Call recall to see if we already know fis
$01240 \mathrm{~F} 2 \mathrm{~S}=\mathrm{F} 1 \$$
01250 GOSUB 1840
01260 IF R2§ <> "" THEN 1760
01270 REM FIS NOT CURRENTLY KNOWN; CALL INTHEN TO FIND RULES THAT DEDUCE it
01280 GOSUB 2100
01290 REM ANSWER IS IN Q, WITh Q 0) the COUNT; ARE THERE ANY RULES?
01300 Q8 $=\mathrm{Q}(0)$
01310 IF Q8 > 0 THEN 1360
01320 REM NO RULES; CALL ASK to ASK the uSER
01330 GOSUB 2320
01340 IF Al $\$=$ "" THEN 1790
01350 GOTO 1760
01360 Rem Chain backward through the rules recursively
$01370 \mathrm{Q1}=1$
01380 REM PUSH NEEDED LOCAL VARIABLES
$01390 \mathrm{x} \$=\mathrm{Fl}$ \$
01400 GOSUB 880
$01410 \mathrm{X}=\mathrm{Y}$
01420 GOSUB 960
01430 FOR Q2 $=1$ TO Q8
$01440 \mathrm{X}=\mathrm{Q}(\mathrm{Q} 2)$
01450 GOSUB 960
01460 NEXT Q2
$01470 \mathrm{X}=\mathrm{Q} 8$
01480 GOSUB 960
01500 GOSUB 960
the development of expert systems: the exercise of building a knowledge base for a problem area forces the expert to think through the problem in a precise and thorough manner. The resulting codification benefits the basic science itself. For example, models of mineral deposits have appeared for years in the literature of economic geology, but these models have traditionally been expressed in English prose, accompanied by schematic geological sketches and maps. Such models are meaningful to geologists, but they are descriptive rather than predictive. Furthermore, many details are left unstated because the author assumes that the readers will understand what is meant. Since the development of PROSPECTOR, there seems to be more interest among geologists in developing models more precise than those of the past.

We pay dearly for expertise when we need it, whether it's for fixing a home appliance or for finding oil. Knowledge-based expert systems offer the potential of codifying and disseminating expertise to those who don't have it. In effect, knowledgebased expert systems offer the promise of putting experts at everyone's disposal.

A Simple Rule-Based System

Most rule-based expert systems are large programs written in LISP, too big for today's personal computers. However, it is possible to write a small rule-based program that is both entertaining and educational.

The BASIC program shown in listing 1 implements a simple version of the backward-chaining procedure used in MYCIN. This program is essentially a recoding of the DIAGNOSE program used by Winston and Horn in their book LISP (see reference 35) to explain rulebased systems, and includes their set of fifteen rules for identifying animals. The network formed by these rules is depicted in figure 5. While these rules are too few and too simple for serious use, you might have fun changing them and creating

MOH-USZ: Oass RHDWH:

Computer experts (the pros) usually have big computer experience. That's why when they shop system software for Z80 micros, they look for the big system features they're used to. And that's why they like Multi-User OASIS. You will too.

DATA INTEGRITY: FILE $\&$ AUTOMATIC RECORD LOCKING

The biggest challenge for any multi-user system is co-ordinating requests from several users to change the same record at the same time.

Without proper co-ordination, the confusion and problems of inaccurate or even destroyed data can be staggering.

Our File and Automatic Record Locking features solve these problems.

For example: normally all users can view a particular record at the same time. But, if that record is being updated by one user, automatic record locking will deny all other users access to the record until the up-date is completed. So records are always accurate, up-to-date and integrity is assured.
Pros demand file \& automatic record locking. OASIS has it.

SYSTEM SECURITY: LOGON, PASSWORD $\&$ USER ACCOUNTING

Controlling who gets on your system and what they do once they're on it is the essence of system security.
(THEN COMPARE.)

Without this control, unauthorized users could access your programs and data and do what they like. A frightening prospect isn't it?

And multi-users can multiply the problem.

But with the Logon, Password and Privilege Level features of Multi-User OASIS, a system manager can specify for each user which programs and files may be accessedand for what purpose.

Security is further enhanced by User Accounting- a feature that lets you keep a history of which user has been logged on, when and for how long.

Pros insist on these security features. OASIS has them.

EFFICIENCY: RE-ENTRANT BASIC

A multi-user system is often not even practical on computers limited to 64 K memory.

OASIS Re-entrant
BASIC makes it practical.
How?
Because all users use a single run-time BASIC
module, to execute their compiled programs, less
memory is needed. Even if you have more than 64 K , your pay-off is cost saving and more efficient use of all the memory you have available-because it services more users.

Sound like a pro feature? It is. And OASIS has it.

AND LOTS MORE...

 Multi-User OASIS supports as many as 16 terminals and can run in as little as 56K memory. Or, with bank switching, as much as 784 K .Multi-Tasking lets each user run more than one job at the same time.

And there's our BASICa compiler, interpreter and debugger all in one. An OASIS exclusive.

Still more: Editor; Hard \& Floppy Disk Support; Keyed (ISAM), Direct \& Sequential Files; Mail-Box; Scheduler; Spooler; all from OASIS.

Our documentation is recognized as some of the best, most extensive, in the industry. And, of course, there's plenty of application software.

Put it all together and it's easy to see why the real pros like OASIS. Join them. Send your order today.

MAKES MICROS RUN LIKE MINIS

OASIS IS AVAILABLE FOR SYSTEMS: Allos: Compucorp: Cromemco: Delta Products: Digital Group: Digital Microsystems: Dynabyle: Godboul: IBC Index: Intersystems: North Star: Onyx: SD Systems: TRS Bo Mod II: Vector Graphic: Vorimex.
CONTROLLERS: Bell Controls: Cameo: Corvus: Konan: Micromation: Micropolis: Tarbell: Teletek: Thinkertoys: \times Comp.

Write for complete.
Iree Applicalion Soltware Directory

PLEASE SEND ME:

Product	$\begin{aligned} & \text { Price } \\ & \text { With } \\ & \text { Manual } \end{aligned}$	$\begin{gathered} \text { Manual } \\ \text { Only } \end{gathered}$
OPERATING SYSTEMIncludesEXEC Lanquage:		
User Accountiny:Device Drivers:		
Prini Spooler:		
SINGLE-USER	5150 350	517.50 1750
BASIC COMPILER/ INTERPRETER/DE日UGGER 100 15.00		
interpheter/debuggen	100	15.00
RE.ENTRANT BASIC COMPILER/INTERPRETER/ debugger		
	150	15.00
ofvelopment package (Macro Assembler:		
Debugger)	150	25.00
TEXT EDITOR \&		
CONVERSION UTILITIES (Memory Test.		
Assembly Language:		
Recovery: Disk Test:		
other OS: etc.)	100	15.00
COMMUNICATIONS		
Terminal Emula		
File Send \& Rec	100	15.00
package price		
SINGLE.USER	500	
	850	60.00
file sort	100	15.00
COBOL-ANSI '74	750	35.00

- Order oASIS from:

Phase One Systems, Inc. 7700 Edgewater Drive, Suite 830 Oakland, CA 94621
Telephone (415) 562-8085 TWX 910-366.7139
NAME
STREET (NO BOX \#)
CITY
STATE \qquad ZIP
AMOUNT \$
(Attach system description:

- add $\$ 3$ for shipping:
- California residents add safes tax)
\square Check enclosed \square VISA
\square UPS C.O.D. \square Mastercharge
- Card Number
- Expiration Date

Signature

Courtesy of DASOFT DESIGN SYSTEMS

Mauro MP-250B Proac

The $\mathbf{5 7 7 5}$ pen plotter that gives professional accuracy with superb line quality!

Mauro's design innovations make it possible to produce a high quality, low cost plotter that out-performs every other plotter of comparable price on the market today. In fact, its line quality matches that of plotters costing $\$ 2,000$ or more.

Proac draws with $005^{\prime \prime} /$ step resolution and $\pm 0.5 \% @ 17 "$ degree of accuracy at speeds of 2.5 " per second or higher. A unique multi-point paper drive helps achieve this level of accuracy, making Proac suitable for a wide variety of applications.

Currently the MP-250B and the newer MP-300 are being used in Surveying, in Design Automation for logic diagrams and printed circuit layout, and in CAD drafting systems. The MP-250B and MP-300 are the only low cost plotters that have the speed, accuracy, repeatability, and line quality necessary to meet these demanding applications. If your need is for professional plotting consider one of our plotters or one of our soon to be announced larger format models.

Proac comes with full vector driving software for 8080,6502 , and 6800 based computers. Interfaces are available for Apple, and PET. With the addition of the SIA 250 intelligent interface, Proac becomes compatible with any computer

Contact Mauro Engineering about complete information and specifications for MP-250B Proac and available software.

MAURO ENGINEERING

2220 Pack Trall

Mount Shasta, Callfornia 96067
Telephone 916 926-4406

Listing 1 continued:
01510 REM SETUP ARGUMENTS AND GOTO TRYRULE+(R1, Y)
$01520 \mathrm{RL}=\mathrm{Q}(\mathrm{Q1})$
$01530 \mathrm{Y}=2$
01540 GOTO 2840
01550 REM POP AND SAVE THE ANSWER, AND POP THE LOCAL VARIABLES
01560 GOSUB 1040
$01570 \mathrm{X1} \$ \mathrm{X}$ =
01580 GOSUB 1120
01590 Q1 = X
01600 GOSUB 1120
01610 Q8 = X
01620 FOR Q2 = Q8 TO 1 STEP -1
01630 GOSUB 1120
$01640 \mathrm{Q}(\mathrm{Q} 2)=\mathrm{X}$
01650 NEXT Q2
01660 GOSUB 1120
$01670 \mathrm{Y}=\mathrm{X}$
01680 GOSUB 1040
$01690 \mathrm{Fl} \$=\mathrm{X} \$$
01700 IF X1\$ = "T" THEN 1760
01710 REM RATS, RULE R1 DIDN'T WORK; TRY THE NEXT ONE
01720 Q1 $=$ Q1 +1
01730 IF Q1 <= Q8 THEN 1380
01740 REM CURSES, NONE OF THE RULES WORKED
01750 GOTO 1790
01760 REM SUCCESS
01770 X \$ = "T"
01780 GOTO 1810
01790 REM FAILURE
01800 X $\$=$ "'"
01810 REM PUSH THE ANSWER AND RETURN
01820 GOSUB 880
01830 ON Y GOTO $730,1550,2950,3300$
01840 REM
01850 REM SUBROUTINE RECALL (F2\$)
01860 REM CHECKS TO SEE IF FACT F $2 \$$ HAS BEEN RECORDED
01870 R2\$ $=1 " '$
01880 IF Fl $=0$ THEN 1940
01890 FOR I = 1 TO Fl
01900 IF F2\$ = F\$(I) THEN 1930
01910 NEXT I
01920 GOTO 1940
01930 R2\$ = F2\$
01940 RETURN
01950 REM
01960 REM SUBROUTINE REMEMBER (F2 \$)
01970 REM RECORDS FACT F2\$
01980 R1\$ = "'
01990 REM CALL RECALL TO SEE IF ALREADY STORED
02000 GOSUB 1840
02010 IF R2\$ <> "'" THEN 2090
02020 REM ADD NEW FACT
02030 IF F1 < F9 THEN 2060
02040 PRINT "OUT OF ROOM FOR RECORDING FACTS"
02050 STOP
$02060 \mathrm{Fl}=\mathrm{Fl}+1$
$02070 \mathrm{~F} \$(\mathrm{Fl})=\mathrm{F} 2 \$$
02080 R1\$ = F2\$
02090 RETURN
02100 REM
02110 REM SUBROUTINE INTHEN(F1\$)
02120 REM FINDS ALL THE RULES THAT HAVE FACT FI\$ AS A CONSEQUENT
$02130 \mathrm{Q}(0)=0$
02140 REM LOOP THROUGH THE RULES
02150 POR R3 = 1 TO R 7
02160 REM FIND THE CONSEQUENTS OF RULE R3
$02170 \mathrm{R} 4=\mathrm{R}(\mathrm{R} 3)+2$
$02180 \mathrm{~F} 2 \$=\mathrm{R} \$(\mathrm{R} 4)$
02190 IF F2\$ = "THEN" THEN 2220
$02200 \mathrm{R} 4=\mathrm{R} 4+1$
02210 GOTO 2180
02220 REM LOOP THROUGH THE CONSEQUENTS
$02230 \mathrm{R} 4=\mathrm{R} 4+\mathrm{l}$
$02240 \mathrm{~F} 2 \mathrm{~S}=\mathrm{R} \$(\mathrm{R} 4)$
02250 LF F2\$ = "STOP" THEN 2300
02260 LF $\mathrm{R} \$(\mathrm{R} 4+1)=" I F "$ THEN 2300
02270 IF F2\$ <> F1\$ THEN 2230
$02280 Q(0)=Q(0)+1$
$02290 \mathrm{Q}(\mathrm{Q}(0))=\mathrm{R} 3$

Comes the revolution in Apple word processing. Poweffext. From Beaman Porter.

jo Mriljoe sullivan, Jr.

cios Joe \qquad
Pruce J. 8100 m

$$
\begin{aligned}
& \text { Mr. Joe Sulilvan, jr. } \\
& \text { Joe Sullivan Asocises, In } \\
& 1270 \text { Avenue of che Americas } 10020
\end{aligned}
$$

```
New York.N

\section*{Type this in.}

Bat out a tetter on your Apple's keyboard just as fast as you can.
Forget all about format. Keep on going.
As you go, just type in simple, short commands to identify the name and address element ... the salutation ... paragraphs ... and sign-off.
Do your editing: Make any changes you like.
Then ... tell PowerText to go to work.
In seconds a perfectly formatted letter starts rolling out of your printer. With every word exactly where you want it.

And for an encore Powertext also addresses your mailing envelope.

It's a true revolution in Apple word processing software. New .. from Beaman Porter.

\section*{Formats every document flawlessly.}

PowerText knows precisely how you like your letters to look. And your memos. Your reports. Your presentations. Your manuscripts.

Every correspondence element, "TO" and
"FROM" line, chapter heading, column of statistics, and paragraph ... is exactly where you want it.

Beautifu!
The ediling power of PASCAL, the formatting power of PowerText.

PowerText adds its own total document format control to the Pascal editor's exquisite capabilities.

Result: you get perfect formatting ... plus full insert, delete, and global search and replace capabilities. In one remarkable system.
Plus ... with a letter quality printer ... the ability to print in from 6 to 15 pitch. And you can use a variety of pitches within any document!

\section*{Intelligent word processing decisions.}

You never have to worry about page breaks, or winding up with "Yours truly" all by itself on page 2 of your letter.

PowerText makes exactly the right decisions about all that for you
And it automatically tracks your footnote or bibliography numbers.

\section*{Column formats are a snap.}

PowerText accommodates up to 12 columns per 132-character line. With individual line spacing for each column.

It lets you left- or right-justify-or centereach column separately. Or print any column in paragraph style. And there are no tab settings to set for columnar reports; PowerText does the arithmetic for you.

PowerText requires 48 K APPLE II or APPLE II PLUS, two disk drives, and PASCAL language system, plus a Qume, Diablo, or Epson printer.

\section*{FULL 5-YEAR WARRANTY!}

PowerText has been proven with the most demanding tests ... and texts . . we could devise. It a/ways works. If it should fail to perform as specified ... for a full 5 years ... send it back. We'll fix it at no charge.


Limited Time Introductory Ofter.
The operating ease, scope, and sophistication of Powertext go far beyond any other word processing software ... at any price.

Yet PowerText, plus its excellent Manual/ Tutorial, are available now at the Special Introductory Price of only \(\$ 199\). (Manual/Tutorial alone, only \(\$ 25 \ldots\) deductible from the \(\$ 199\) package price when you order the disk later.)

Available from selected dealers nationwide, or direct from


\section*{BEAMAN PORTER, INC. \\ High Pertormance Computer Products}

Pleasant Ridge Road, Harrison. NY 10528 (914) 967-3504

\section*{BEAMAN PORTER, INC.}
\(\qquad\) complete PowerText system(s) (Disk plus Manual/Tutorial) @ \$199.
\(\square\) Send \(\qquad\) copies of the Manual/Tutorial only @ \(\$ 25\) (deductible from the \(\$ 199\) total system price when I order the Disk later)
\(\square\) My check or money order for \(\qquad\) enclosed. Or, bill \(\qquad\) to my:
\(\square\) Mastercard \(\square\) Visa
(Mastercard only, list 4 digits above your name
Card No._- Exp. Date__-_
Signature
Name
Street
City, State. Zip
I understand my PowerText Disk is warranted for a full five years.
Should it lail to perform as specified. Beaman Porter, Inc. will fix it
for me at no charge.

Should it lail to perform as specified. Beaman Porter, Inc. will lix it for me at no charge.

APPLE is a registered trademark of Apple Computer, inc. USCD PASCAL is a registered trademark of UC, Regents. POWERTEXT is a registered trademark of Beaman Porter, Inc.

> If you're looking for the best prices in the U.S.A. on

We have consistently offered the TRS-80 line at savings up to \(20 \%\). You can save up to \(\$ 1500\) by buying from Computer Discount of America


We have the full line of ATARI personal computers and systems.
Model II
26-4002 64K. 1 disc
\(\$ 3385.00\)
Model III
26-1061 4K. Level I S 610.00
26-1062 16K. Level III S 845.00
26-1066 48K. Level II 2-drive/RS-232 \$2115.00
Color Computer
\begin{tabular}{|c|c|c|}
\hline 26-3001 & 4K & \$ 329.00 \\
\hline 26-3002 & 16K w/Ext. Basic & \$ 499.00 \\
\hline EPSON & & \\
\hline M \(\times 70\) & Printer & S 375.00 \\
\hline M \(\times 80\) & Printer & \$ 485.00 \\
\hline MX80FT & Printer & \$ 639.00 \\
\hline
\end{tabular}

Our savings are as big on expansion interfaces, printers, diskettes, Apple Computers, OKIDATA Microline.
C-ITOH Starwriter, Lexicon Modems - everything for your computer We have the largest inventory in the Northeast, and most models are in stock, for immediate delivery. Our full price catalog or a price quote is as near as your phone.

\section*{CALLTOLL FREE: 800-526-5313}


GOMPUTER DISCOUNT OF AMERICA, INC. 15 Marshall Hill Road, West Mifford Mall West Miltord, New Jersey 07480
In Hew Jersey Gall 201-728-8080

Listing 1 continued:
02300 NEXT R3
02310 RETURN
02320 REM
02330 REM SUBROUTINE ASK (F1\$)
02340 REM ASKS THE USER ABOUT FIS AND EXPLAINS ITS REASON \(02350 \mathrm{AlS}="+\)
02360 REM HAVE WE ASKED THE USER ABOUT FI\$ BEFORE?
02370 IF Al \(=0\) THEN 2410
02380 FOR A2 \(=1\) TO A1
02390 IF F1\$ = A\$(A2) THEN 2830
02400 NEXT A2
02410 REM WE HAVEN'S ASKED BEFORE. IF WE HAVE ROOM, LET'S ASK.
02420 IF Al < A9 THEN 2450
02430 PRINT "OUT OF ROOM FOR ASKED QUESTIONS"
02440 STOP
\(02450 \mathrm{Al}=\mathrm{Al}+1\)
02460 A ( Al ) \(=\mathrm{Fl}\) \$
02470 PRINT "Is this true: ";Z\$;Fl\$;
02480 INPUT C \(\$\)
02490 IF C \(\$=\) "Y" THEN 2790
02500 IF C \(\$=\) "N" THEN 2830
02510 IF C \(\$\langle>\) 'W' THEN 2470
02520 REM THE USER WANTS TO KNOW WHY I ASKED
02530 REM ARE WE WORKING ON A RULE?
02540 IF Fl \$ <> H\$(H1) THEN 2590
02550 REM NO, F1\$ IS A TOP-LEVEL HYPOTHESIS
02560 PRINT "One of the possibilities is ";Z\$;Fl\$
02570 PRINT "Unfortunately, I have no way to deduce this except to ask you."
02580 GOTO 2470
02590 REM YES. Fl\$ IS A SUBGOAL. PRINT RULE RI
02600 PRINT "I am trying to use Rule ";RS(R(R1))
\(02610 \mathrm{R} 3=\mathrm{R}(\mathrm{R} 1)+2\)
02620 IF R3 \(=\) R 2 THEN 2670
02630 PRINT "I already know that:"
02640 PRINT Z \(\$\);R\$(R3)
02650 R3 = R3 + 1
02660 IF R3 < R 2 THEN 2640
02670 PRINT "IF:"
02680 PRINT Z\$;R\$(R3)
02690 R3 \(=\) R \(3+1\)
02700 IF R\$(R3) <> "THEN" THEN 2680
02710 PRINT "THEN:"
02720 R3 \(=\) R \(3+1\)
02730 PRINT \(2 \$\);R (R3)
02740 R3 \(=R 3+1\)
02750 IF R (R3) = "STOP" THEN 2770
02760 IF R \((\) R 3+1) <> "IF" THEN 2730
02770 PRINT
02780 GOTO 2470
02790 REM THE USER SAYS THAT F1\$ IS TRUE; CALL REMEMBER TO RECORD IT
\(02800 \mathrm{~F} 2 \$=\mathrm{F} 1 \$\)
02810 GOSUB 1950
02820 Al \$ = "T"
02830 RETURN
02840 REM
02850 REM SUBROUTINE TRYRULE + (R1, Y)
02860 REM TRIES TO APPLY RULE R1
02870 REM PUSH NEEDED LOCAL VARIABLES
02880 X = R
02890 GOSUB 960
\(02900 \mathrm{X}=\mathrm{Y}\)
02910 GOSUB 960
02920 REM SETUP ARGUMENTS AND GOTO TESTIF+(R1, Y)
\(02930 Y=3\)
02940 GOTO 3130
02950 REM POP THE RESULTS OF TESTIF+ AND RESTORE LOCAL VARIABLES
02960 GOSUB 1040
02970 GOSUB 1120
\(02980 \mathrm{Y}=\mathrm{X}\)
02990 GOSUB 1120
\(03000 \mathrm{Rl}=\mathrm{X}\)
03010 IF XS = "" THEN 3080
03020 REM CALL USETHEN
03030 GOSUB 3460
03040 IF U1\$ = "" THEN 3080
03050 REM SUCCESS
03060 X\$ = "T"
03070 GOTO 3100
03080 REM FAILURE

\section*{COMPUTERS-TERMINALS-MODEMS!}

\section*{MODEMS AND COUPLERS}

\section*{Connect your Apple, TRS-80 or any other computer or terminal to the phone lines!}


Penril 300/1200—Bell 212A style
\(\$ 799\) Bell 212 A style. 1200 baud and 300 baud. Manual originate, auto-answer. Full duplex. RS232. Direct connect to phone lines via RJ11C standard extension phone voice jack. 1 year warranty.

Digital Equipment Corporation

DEC VT100

DEC VT100 ... \$1668
Detachable keyboard. Separate numeric keypad with function keys. Business forms character set. Reverse video. Selectable double-size characters. Bidirectional smooth-scrolling. 80 cols or 132 cols. Split screen. Settable tabs. Line drawing graphic characters. Status line. Key-Click.

\section*{HARDCOPY TERMINALS}


Teletype Model 43

Teletype Corporation

Teletype Model 43 KSR with RS232
and Connector Cable
\(\$ 999\)
30 CPS. Dot matrix. 132 cals. True descenders on lower case. Excellent print quality for dot matrix printer. Pin feed.

\section*{NEC Corporation}

NEC Spinwriter 5510 \& 5520


5520 KSR Spinwriter
\$3088 55 CPS. Impact printer. Selectric print quality. Changeable print fonts. 110, 300 and 1200 baud data rate. Numeric keypad. Friction and tractor feed.
5510 Spinwriter
\$2754
55 CPS. Impact printer. Selectric print quality. Changeable print fonts. 110,300 and 1200 baud data rate. Friction and tractor feed.

U.S. Robotics

USR-330A Bell 103/113 style USR-330D Bell 103/113 style

U.S. Robotics

The Phone Link
Acoustic
Modem

USR-330D
\$339
Bell 103/113 style. 330 baud. Manual originate, autoanswer. Half/full duplex. RS232. 1 year warranty. Direct connect to phone lines via RJ11C standard extension phone voice jack.
USR-330A
\$399
Same as USR-3300 but includes auto-dial capability.


Perkin-Elmer Superowl 1251
\$1564 Intelligent, editing CRT. Detachable keyboard. 32 fully programmable function keys. Intelligent printer part. Business forms character set. Block mode. Protected fields. Blinking fields. Numeric fields. Reverse video. Half intensity. Polling. Down line loading of options. Remote control of all options by host computer. Settable tabs. Status line. Separate numeric keypad. Transparent mode.

\section*{(1) \& PRINTERS}

Bell 103/113 style
\$179
300 baud. Sleek, low profile. Originate and answer capability. Halffull duplex. Self-test. RS232. Light displays for On, Carrier, Test, Send Data, Receive Data. 15 oz.

\section*{Perkin-Elmer Corporation}


Bantam 550B .... \$694
Compact. Silent. Upper/lower case. 80th col. wrap-around. Bell. Integrated numeric pad. Printer port. Transparent mode. Editing features. Tabbing. Bantam 550E ... \(\$ 755\) Same as 550B plus separate numeric keypad and cursor direction keys.
Bantam 550S
\(\$ 879\)
Same as 550 E plus block mode. 8 function keys, and protected fields, reverse video fields, half intensity fields, blinking fields.
550 Options
20mA Current Loop Interface .......... \(\$ 70\)
Non-Glare Screen ........................... \$25
2nd page of memory ( 550 S only).. \$100


30 CPS. Dot matrix. Upper/lower case. 4 character sizes. Up to 217 cols per line. 6 lines per inch settings. Friction feed. Settable tabs. RS232.
DEC LA34AA
\$1095
30 CPS. Dot matrix. Upperflower case. 8 character sizes including double size characters. 6 lines per inch settings. Up to 217 cols per line. Friction feed. Settable horizontal and vertical tabs. Top-of-form capability.
Options for LA34AA and LA34DA
Tractor Feed Mechanism
\$114
Pussycat 650/655
CRT Screen Printer
650/655 Pussycat CRT Screen Printer. \$899 100 CPS. Extremely compact and quiet. 110 to 9600 baud rate. 2 K buffer. Ideal for producing rapid, reliable hardcopy of your CRT screen display. Can be added to any CRT with our interface option.

Numeric Keypad w/ Function Keys .. \$69
Pedestal.
\(\$ 100\)
Paper Out Sensor ........................... \$25
APL Capability with APL Keycaps .. \$499
2K Buffer with Text Editor and 1200 Baud
Communications Capability ...... \$499

Leasing rates and lease/purchase plan information is available on request.
All equipment is shipped with a 10 day money back guarantee.
We offer full service, on site maintenance plans on all equipment.
All equipment in stock


HP-85 Accessories
5 1/4" Dual Master Disc Drive List \$2500. ... . \$2125 5 \(1 / 4\) " Single Master Disc Drive List \$1500. . \$1275 HP 7225A Graphics Plotter List \$2050. . . . . . \$1845 HP- 85 16K Memory Module List \(\$ 395\). HP. 85 Application Pacs Standard List \$95... \$85 . \(\$ 355\) Serial (RS-232C) Interface Module List \$395. . \(\$ 355\)
GPIO Intertace Module List \(\$ 495 . . . . . . . .\). . \(\$ 445\)

\section*{newHP-83 \\ \$1895
\(\$ \mathbf{1}\)}

HP-41CV with five times


HP.32E Scientific w/Statistics _ 53.95
HP-33C Scientific Programmable \(\$ 79.95\)
HP-34C Advanced Scientific
Programmable \(\qquad\) 123.95

HP-37E Business Calculator _ \(\$ 49.95\)

ersonal omputer ystems

609 Butternut Street Syracuse, N.Y. 13208 (315) 475-6800

Prices do not include shipping by UPS. All prices and offers subject to change without notice.

Listing 1 continued:
03090 X \(\$=\) "'"
03100 REM TUSH THE ANSWER AND RETURN
03110 GOSUB 880
03120 ON Y GOTO \(730,1550,2950,3300\)
03130 REM
03140 REM SUBROUTINE TESTIF+(R1, Y)
03150 REM CHECKS ANTECEDENTS TO SEE IF RULE R1 IS APPLICABLE
\(03160 \mathrm{R} 2=\mathrm{R}(\mathrm{R} 1)+2\)
\(03170 \mathrm{~F} 2 \$=\mathrm{R} \$(\mathrm{R} 2)\)
03180 IF F2\$ = "THEN" THEN 3410
03190 REM PUSH NEEDED LOCAL VARIABLES
\(03200 \mathrm{X}=\mathrm{Y}\)
03210 GOSUB 960
03220 X = R1
03230 GOSUB 960
03240 X = R2
03250 GOSUB 960
03260 REM SETUP ARGUMENTS AND GOTO VERIFY
\(03270 \mathrm{Y}=4\)
03280 FI\$ \(=\) F2\$
03290 GOTO 1200
03300 REM POP ANSWER FROM VERIFY AND RESTORE LOCAL VARIABLES
03310 GOSUB 1040
03320 GOSUB 1120
03330 R2 \(=X\)
03340 GOSUB 1120
\(03350 \mathrm{R1}=\mathrm{X}\)
03360 GOSUB 1120
\(03370 \mathrm{Y}=\mathrm{X}\)
03380 IF X \(\$=\) "" THEN 3430
03390 R2 \(=\) R2 2 I
03400 GOTO 3170
03410 REM SUCCESS
03420 X \$ = "T"
03430 REM PUSH THE ANSWER AND RETURN
03440 GOSUB 880
03450 ON Y GOTO 730,1550,2950,3300
03460 REM
03470 REM SUBROUTINE USETHEN (RI)
03480 REM APPLIES RULE RI AND PRINTS NEW DEDUCTIONS
\(03490 \mathrm{U1} \mathrm{\$}=1 "\)
03500 REM FIND THE CONSEQUENTS
\(03510 \mathrm{R} 2=\mathrm{R}(\mathrm{R} 1)+2\)
\(03520 \mathrm{~F} 2 \$=\mathrm{R} \$(\mathrm{R} 2)\)
03530 IF F2\$ = "THEN" THEN 3560
\(03540 \mathrm{R} 2=\mathrm{R} 2+1\)
03550 GOT0 3520
03560 REM LOOP THROUGH CONSEQUENTS
03570 R2 = R2 +
\(03580 \mathrm{~F} 2 \$=\mathrm{R} \$(\mathrm{R} 2)\)
03590 IF F2\$ = "STOP" THEN 3670
03600 LF R \((\mathrm{R} 2+1)=\) "IF" THEN 3670
03610 REM CALL REMEMBER TO ASSERT THE CONSEQUENT
03620 GOSUB 1950
03630 IF RI \(\$=\) "" THEN 3570
03640 PRINT "Rule ";R\$(R(R1));" deduces ";Z\$;F2\$
03650 U1\$= "T"
03660 GOTO 3570
03670 RETURN
03680 REM
03690 REM SUBROUTINE LOADRULES
03700 REM INITIALIZES THE RULE ARRAYS RS AND R WITE THE RULE DATA
03710 READ Z \(\$\)
03720 R7 \(=0\)
03730 R8 = 0
03740 IF R8 < R9 THEN 3770
03750 PRINT "OUT OF ROOM FOR RULES"
03760 STOP
03770 REM READ NEXT RULE INTO R \(\$\)
03780 REM FORMAT: <name> IF <ant> ... <ant> THEN <con> . . <con>
03790 R8 \(=\) R8 +1
03800 READ R\$ (R8)
03810 IF RS (R8) <> "IF" THEN 3840
03820 R7 \(=\) R7 +1
03830 R(R7) = R8 - 1
03840 IF R\$(R8) <> "STOP" THEN 3740
03850 RETURN
03860 REM RULE DATA
03870 data "animal "

\title{
\$30lets you take advanced VisiCalc"lessons fromVisiCalc's creators.
}


Introducing SATN from Software Arts, Inc., the creators of the VisiCalc program. SATN (Software Arts Technical Notes) is a publication offering on-going support to all VisiCalc users-from novice to expert.
Each issue of SATN is filled with techniques and information to help you expand your present understanding of VisiCalc functions as well as learn advanced methods to help in developing your own VisiCalc applications.
Benefit immediately from highly informative articles:
- Complete Applications in Detail:
-Payroll Tax Calculation using @LOOKUP
- Mortgage Decision Calculation
- In Depth Descriptions of VisiCalc

\section*{Features:}
-Contents of a Saved Sheet
-Uses of DIF \({ }^{\text {rm }}\) data file format
- Unusual Applications and Techniques:
-Date Arithmetic
-Recreational Mathematics

SATN is your personal pipeline to the people at Soft ware Arts who invented and developed VisiCalc. Their knowledge and experience with VisiCalc is available to you in each and every issue.
Special Charter Subscription Offer Get 7 SATN issues for the price of 6 , if you subscribe by December 31, 1981. We'll send you a FREE copy of SATN when you return the coupon, or call our toll-free number 800-257-7850 to order a year's subscription at our special introductory rate of \(\$ 30\).

\section*{Full Refund Policy}

If you are not completely satisfied with your first issue of SATN, let us know within one month, and we will refund your money. Your free SATN issue is yours to keep. Act today!

FOR FAST DELIVERY CALL TOLL-FREE 800-257-7850 Op. 737. (In N.J. 800-322-8650)


\section*{SATN. The Journal for VisiCalc Users}

The VisiCale program is copyrighted by Soft ware Arts, Inc. DIF is a trademark of Software Aris, Inc.

Listing 1 continued:
03880 DATA "RI","IF", "HAS HAIR", "THEN","IS MAMMAL"
03890 DATA "R2","LF","GIVES MILK","THEN , "IS MAMMAL"
03900 DATA "R3","IF","HAS FEATHERS", "THEN","IS BIRD"
03910 DATA "R4","IF","FLIES","LAYS EGGS","THEN","IS BIRD"
03920 DATA "R5","IF","EATS MEAT", "THEN", "IS CARNIVORE""
03930 DATA "R6", "IF","HAS POINTED TEETH", "HAS CLAWS", "HAS FORWARD EYES"
03940 DATA "THEN","IS CARNIVORE"
03950 DATA "R7", "IF","IS MAMMAL"."HAS HOOFS","THEN","IS UNGULATE"
03960 DATA "R8", "IF","IS MAMMAL","CHEWS CUD","THEN","IS UNGULATE"
03970 DATA "R9","IF","IS MAMMAL","IS CARNIVORE","HAS TAWNY COLOR"
03980 DATA "HAS DARK SPOTS","THEN","IS CHEETAH"
03990 DATA "R10", "IF","IS MAMMAL","IS CARNIVORE","HAS TAWNY COLOR"
04000 DATA "HAS BLACK STRIPES","THEN","IS TIGER"
04010 DATA "RII", "IF","IS UNGULATE","HAS LONG NECK","HAS LONG LEGS"
04020 DATA "HAS DARK SPOTS","THEN","IS GIRAFFE"
04030 DATA "R12","IF","IS UNGULATE","HAS BLACK STRIPES","THEN","IS ZEbRA"
04040 DATA "R13","IF","IS BIRD","DOES NOT FLY","HAS LONG NECK"
04050 DATA "IS BLACK AND WHITE", "THEN","IS OSTRICH"
04060 DATA "R14", "IF", "IS BIRD", "DOES NOT FLY", "SWIMS"," IS BLACK AND WHITE"
04070 DATA "THEN","IS PENGUIN"
04080 DATA "R15","IF","IS BIRD","FLIES WELI.","THEN","IS ALBATROSS"
04090 DATA "STOP"'
04100 REM
04110 kEM SUBROUTINE LOADHYPOTHESES
04120 REM INITLALIZES THE HYpOTHESIS ARRAY H\$ WITH HYpOTHESIS DATA
04130 H8 = 0
04140 LF H8 < H9 THEN 4170
04150 PRINT "OUT OF ROOM FOR HY POTHESES"
04160 STOP
04170 REM READ NEXT HYPOTHESIS
\(04180 \mathrm{H} 8=48+1\)
04190 READ HS (H8)
04200 IF H\$ (H8) <> "STOP" THEN 4180
\(04210 \mathrm{H} 8=\mathrm{H} 8-1\)
04220 RETURN
04230 REM HYPOTHESIS DATA
04240 DATA "IS ALBATROSS","IS PENGUIN","IS OSTRICH","IS ZEBRA"
04250 DATA "IS GIRAFEE","IS TIGER","IS CHEETAH","STOP"
04260 END

Text continued from page 266:
new ones. Moreover, by replacing these rules with rules for identifying, say, birds or flowers, you can use the same program for many other identification tasks. A more practical application might be a set of rules for diagnosing what is at fault in a malfunctioning toilet or washing machine.
The rules themselves appear in the DATA statements in lines 3880 through 4080. Each rule has the form:
```

< name>, "IF",<a>, ...,<a>,
"THEN",<c> , .., <c>

```

For example, "R7",'IF","IS MAMMAL","HAS HOOFS",'THEN","IS UNGULATE". The name of the rule can be any convenient string. The antecedents <a> and consequents \(<\mathrm{c}>\) are strings that correspond to propositions about the animal and they may be true or false. If all the antecedents are found to be true, the program can use the rule to assert the truth of all the consequents. The rules are terminated by the string "STOP".

In addition to the rules, the pro-


Figure 5: A sample network for a simple rule-based system. Boxes represent assertions, circles represent ways of combining assertions, and the labels R1, R2, etc, identify rules. The diagram corresponds to the rules given in lines 3880 through 4080 of listing 1 .

\title{
투 \(\boldsymbol{\square}\) COMPUTER DEUICES
}

\section*{AVAILABLE NOW}

\section*{SYSTEM 2800 FROM SYSTEMS GROUP}

\section*{FEATURES}
- IEEE S-100 Bus Compatible Systems, Z80A Based
- Two 8-Inch Drives: Single or Double Sided, Double Density Floppy Disk Drives or 10MB Winchester Hard Disk Drive
- 20MB Winchester and Tape Backup
- 8-Slot Shielded and Terminated Motherboard
- System Software Selection includes CP/M* MP/M* or OASIS**
- Single-User or Multi-User Systems, Expandable to 6 Users
- Table Top or Rack Mountable
- Two Switched AC Ouilets on Rear Panel
- One Year Warranty on Entire System

2812 CP/M, 2 Single Sided Floppies....... \(\$ 3775.00\) 2814 CP/M, 2 Double Sided Floppics..... 4425.00 2819 CP/M, 110 MB Winchester \&

I Double Sided Floppy
6675.00

2824 MP/M, 2 Double Sided Floppies.... 5235.00 2829 MP/M, ! 10 MB Winchester \&

1 Doubled Sided Floppy.... 7500.00

\section*{S-11(0) PROD)U(:TS}


QUALITY RAM FROM SYSTEMS GROUP
- Z.80 4MHZ operation with no wait states
- IEEE compatible timing - 200 NS \(4116^{\circ}\) s
- Factory assembled, tested \& burned in DMB6400 64 K (Bank Select, shown) ..... \(\$ 749.00\) DM6400) 64K ................................... 545.00 DM 480048 K ................................. 520.00 DM13200 32K .................................... 495.00


CONFIGURE A COMPLETE S-100 SYSTEM wITII 2nd GENERATION PRODUCTS FROM SYSTEMS GROUP.
- CP(: 2810 (shown) Z-80A processor board ( 4 MHZ ) with 4 scrial \& 2 parallel
ports.
P0813 -............................. \(\$ 369.00\)
CP' C2813 - same as CPC2810 but 2 serial ports only................................... \(\$ 345.00\)
- FI)C280i/8 - 8" floppy disk controller board. up to 4 singled double sided drives. single or double densits. ................ \(\$ 349.00\)
- 1NO-2804-4 chamel serial I/O...... 329.00
- ClAA-100-Cromix• adaptor board. \(\$ 55.00\)

\section*{CALL US FOR OUR MOST CURRENT PRICES!}
-2nd Generation is a trademark of Measurement Systems and Controts. Cromix is a trademark of Cromemso, Ins. Tilt-Back is a trademark of Wabash, Inc. CP/M and MP/M are trademarks of Digital Research. OASIS is a trademark of Phase One Systems.

\section*{\(\underset{\substack{\text { IGK MEMORY } \\ \text { EXPRNSLON KTT } \\ \$ 24.00}}{ }\)}

For Apple, TRS-80 keyboard, Exidy, and all other systems using 4116 dynamic rams or equivalent. All IC's are prime Mitsubishi M1 4116-3, 200 NSEC, burned-in and fully tested.

\section*{wabash}

\(8^{\prime \prime}\) or \(51 / 4^{\prime \prime}\) flexible diskettes certified \(100 \%\) error free with manufacturers 5 year limited warranty on all 8' media. Soft sectored in Tiltback* boxes of 10 .
(Add \(\$ 3.00\) for plastic library cases)
\(8^{\prime \prime}\) single sidecl. single density................. \(\$ 29.95\)
\(8^{\prime \prime}\) single sided. donble density................ 37.95
\(8^{* *}\) double sided. clouble density............. 48.95 \(51 / 4\) single sided, single density............. 27.95 51/4" single sided. clouble density............. 29.95
Adds Viewpoint CRT....589.00

\section*{8" DISK DRIVES}

Slugart 801R .................................... \(\$ 390.00\) NEC FDI 160 (double sided) ............... 595. 50 Memorex MRX-101 8" Winchester style, hard disk drive, 10 megabytes.
\(. . \$ 2,000.00\)


BETA 32 K BYTE EXPANDABLE RAM FOR 6502 AND 6800 SYSTEMS
AIM 65 KIM SYM PET S44-BUS
- Phug compatible with the AIM-6/5/SYM expan sion connector by using a right angle connector (supplied).
- Memory board edge connector plugs into the \(6800 \$ 44\) bus.
- Connects to PET using an adaptor cable.
- Uses +5 V only, supplied from the host conputer.
- Full documentation. Assembled and tested boards are guaranteed for one full year. Purchase price is fully refundable if board is returned undamaged within 14 davs. Assembled with 32 K RAM.................... \(\$ 349.00\) \& Tested with 16K RAM.................... 329.00 Bare board. mannal \& 6 hard-to-pet parts. 99.00 PET interface kit. Connects the 32 K RAM board to a 4 K or 8 K PET
\$ 69.00

TERMS: Minïmum order \$15.00. Minimum shipping and handling \$3.00. Calif, residents add \(6 \%\) sales tax. Cash. checks. Mastercard. Visa and purchase orders jrom qualified firms and instifutions are accepted. Product civallability and pricing are subiect ta change without notice.
INTERNATIONAL, ORDERS: Add \(15 \%\) to purchase price for all orders. Minimum shipping charge is \(\$ 20.00\). Orders with insufficient funds will be delayed. Excess funds will be returned wilh your arder. All prices are U.S. only.

(msse chige vi Visio
gram uses a set of hypotheses, which appear in the DATA statements in lines 4240 through 4250 . In this case, the hypotheses are that the animal is either an albatross, a penguin, an ostrich, a zebra, a giraffe, a tiger, or a cheetah. The goal of the program is to establish the truth of one of these hypotheses.

The program operates by trying the hypotheses one at a time. For each hypothesis, the program scans the list of rules to see if the hypothesis can be deduced. If so, the antecedents for the relevant rules become new subhypotheses to be established, and the program looks for rules for deducing these antecedents. The program chains backward through the rules until no deductions can be made, at which point the program asks the user if the subhypothesis it is working on is true.
The core subroutine that implements this strategy is called VERIFY (see lines 1210 through 1830). VERIFY tries to determine if its
argument F1\$ is true. The argument F1\$ represents a hypothesis or subhypothesis. If the truth of F1\$ has already been recorded, VERIFY returns immediately. If there are no rules for deducing F1\$, and if VERIFY has not asked the user about F1\$ before, it asks. Otherwise, VERIFY applies TRYRULE + to each of the rules in turn until it either meets with success or exhausts the rules.

The only thing that complicates the coding of this simple strategy is that TRYRULE + uses TESTIF + to see if all the antecedents for the rule are true, and TESTIF+ checks the antecedents by calling VERIFY. Thus, VERIFY is recursive, and BASIC does not support recursion. Therefore, all the reentrant subroutines must explicitly save their local variables on push-down stacks before transferring control to one another, restoring those values upon return. To see one reason why AI workers prefer LISP, which takes care of all this bookkeeping automatically, you need only

Listing 2: A sample run of the identification program shown in listing 1. The program asks questions and makes deductions, when possible, based on the answers. The program always cites the rule used to make a deduction.

\section*{Hello.}

I will use my 15 rules to try to establish one of the
following 7 hypotheses
ANIMAL IS ALBATROSS
ANIMAL IS PENGUIN
ANIMAL IS OSTRICH
ANIMAL IS ZEBRA
ANLMAL IS GIRAFFE
ANIMAL IS TIGER
ANLMAL IS CHEETAH
Please answer my questions with \(Y\) (yes), \(N\) (no), or \(W\) (why).
Is this true ANLMAL HAS FEATHERS ?N
Is this true: ANIMAL FLIES ?N
Is this true: ANIMAL HAS HAIR ? Y
Rule Rl deduces ANIMAL IS MAMMAL
Is this true: ANIMAI. HAS HOOFS ?N
Is this true: ANIMAL CHEWS CUD ?N
Is this true: ANIMAL EATS MEAT ?Y
Rule RS deduces ANIMAL IS CARNIVORE
Is this true: ANDMAL HAS TAWNY COLOR ?Y
Is this true: ANLMAL HAS BLACK STRIPES ?W
I am trying to use Rule Rl0
I already know that:
ANIMAL IS MAMMAL
ANIMAL IS CARNIVORE
ANIMAL HAS TAWNY COLOR
IF:
ANIMAL HAS BLACK STRIPES
THEN.
ANIMAL IS TIGER

\footnotetext{
Is this true: ANIMAL HAS BLACK STRIPES ?N
Is this true: ANIMAL HAS DARK SPOTS ?Y
Rule R9 deduces ANIMAL IS CHEETAH
I conclude that ANIMAL IS CHEEFAH.
}
glance at the simpler version of this same program in Winston and Horn's book.

Pascal would be a better language than BASIC for our program because Pascal supports recursion and allows user-defined data structures (eg: using records and the type statement), as well as providing an easy-tounderstand block structure. We chose to write this program in BASIC rather than Pascal because more personal computers have BASIC. (We hope our use of BASIC will not contribute to the perpetuation of this condition!)

Listing 2 shows an example of the dialogue when the user was thinking of a cheetah. A look at the rules shows why the program asked the questions it did. Working the first hypothesis (albatross), the program tried to use rule R15, which set up the subgoal of seeing if the animal was a bird. Rules R3 and R4 were relevant, so the program tried rule R3 and asked if the animal had feathers. The program soon ruled out the possibility of a bird, so it skipped the penguin and ostrich hypotheses. Working on rule R12 for the zebra hypothesis, on rule R11 for the ungulate subhypothesis, and on rule R1 for the mammal sub-subhypothesis, the program successively established that the animal was a mammal, was not an ungulate, and was a carnivore called a cheetah.

It is worth noting that the backward-chaining strategy is different from the classical divide-andconquer approach used in binary search. With four well-chosen questions, it is possible to make the one-out-of-fifteen decision that required nine questions in this example. Before concluding that rule-based programs are hopelessly inefficient, you should note that the rules do make use of subclasses and sub-subclasses, much as is done in binary search. Thus, once it is learned that the animal is not a bird, for example, no more questions concerning birds will be asked. The main difference is that this particular program does not ask directly if the animal is a bird, but rather asks for primitive observations that allow "birdness" to be deduced.

\title{
The Text Solution for APPLE II®
}

\section*{Now APPLE II® Owners Can Solve Text Problems With VIDEOTERM 80 Column by 24 Line Video Display Utilizing 7 X 9 Dot Character Matrix}

Perhaps the most annoying shortcoming of the Apple \(\|^{\circ}\) is its limitation of displaying only 40 columns by 24 lines of text, all in uppercase. At last, Apple \(1 \|^{\infty}\) owners have a reliable, trouble-free answer to their text display problem. VIDEOTERM generates a full 80 columns by 24 lines of text, in upper and lower case. Twice the number of characters as the standard Apple \(1 I^{6}\) ( display. And by utilizing a 7 by 9 character matrix, lower case letters have true descenders. But this is only the start.

VIDEOTERM, MANUAL,


\section*{VIDEOTERM}

BASICs
ERM Iists BASIC programs, both Integer and Applesoft, using the entire 80 columns. Without splitiing keywords. Full editing capabilities are offered using the scrolling utilizing the standard Control-S entry. And simultaneous on-screen display of text being printed

Pascal Inslallation of VIDEOTERM in slot 3 provides Pascal immediale control of the display since Pascal recognizes the board as a standard video display lerminal and reats it as such. No changes are needed to Pascals MISC.INFO or GOTOXY files, although customization directions are provided. All cursor control characters are idenlical to standard Pascal delaults.

Other
Boards
The new Microsoft Softcard is supported. So is the popular D. C. Hayes Micro modem II . ullizing customized PROM firmware available from VIDEX. The powerful EasyWriter- Professional Word Processing System and other word processors are now compatible with VIDEOTERM. Or use the Mountain Hardware ROMWriter or other PROM programmer) to generate your own custorn character sets. Naturally. VIDEOTERM coniorms to all Apple OEM guidelines, assurance that you will have

VIDEOTERM's on-board asynchronous crystal clock ensures flicker-free character display. Only the size of the Pascal Language card, VIDEOTERM utilizes CMOS and low power consumption ICs, ensuring cool, reliable operation. All ICs are fully socketed for easy maintenance. Add to that 2 K of on-board RAM. 50 or 60 Hz operation. and provision of power and input connectors for a light pen. Problems are designed out, not in.
The entire display may be altered to inverse video. displayling black characters on a white field. PROMS containlng atternate character sets and graphic symbols are available from Videx. A swltchplate oplion allows you to use the same video monitor for either the single toggle swilch. The switchplate assembly inserts into one of the rear cut-outs in the ingle toggle swo. The swichplate assembly inser ine one ENHANCER can be installed allowing upper and lower case character entry directly from ed. allowing upper and lower case character entry directly from our Apple II' \(^{\circ}\) keyboard

IK of on-board ROM firmware controls all operation of the VIDEOTERM. No machine language patches are needed for normal VIDEOTERM use

Firmware Version 2.0
Characters \(7 \times 9\) matrix \(\quad\) Display \(24 \times 80\) (lull descenders)
Options \(7 \times 12\) matrix option; \(\quad 18 \times 80(7 \times 12\) matrix with full descenders) Alternate user delinable character sel option: Inverse video oplion.

Want 10 know more? Conlact your local Apple dealer loday for a demonstration. VIDEOTERM is available 1hrough your local dealer or direct Irom Videx in Corvallis. Oregon. Or send for the VIDEOTERM Owners Reterence Manual and deduci the amount lf you decide to purchase. Upgrade your Apple \(I^{\prime \prime}\) to full terminal capabilities for half the cost of a terminal VIDEOTERM. At last.

Apple \(11^{\circ}\) is a lrademark of Apple Compuler Inc.
ROMWriler is a trademaik of Mounlain Hardware Inc
Micromodem II. is a Irademark of C . Hayes As socl Micromodem II is a Irademark of O . C. Hayes Assoclates Inc Solicard is a wademark of Microsoli
EasyWrilers is a reademath of Inlormation

PRICE: • VIDEOTERM includes manual SWITCHPLATE
MANUAL refund with purchase
\(7 \times 12\) CHARACTER SET
- MICROMODEM FIRMWARE

5345
5345
\(5 \quad 19\)
519
519
\(5 \quad 39\) 519
S 25
\(\$ 25\)

\section*{APPLE II \({ }^{\circledR}\) OWNERS!}

\section*{KEYBOARD \& DISPLAY ENHANCER}
- PUT THE SHIFT AND SHIFT LOCK BACK WHERE IT BELONGS
- SEE REAL UPPER AND lower CASE ON THE SCREEN
- aCCESS all your Keyboard ascil Characters

Videx has the periect companion for your word processor software the KEYBOARD AND DISPLAY ENHANCER Inslall the enhancer in yous APPLE II and be typing in Inwer case lust like a typewriter. If you want an upper cose' character. use the SHIFT key or the CTRL key lor shift lock. Not only that. but you see upper and lower case on the screen as you type Periectly compatible with Apple Writer and other word processors like. for example Super. Text

If you want to proyram in BASIC. just put it back into the alpha lock mode: and you have the original keyboard back with a lew im-
provements. Now you can enter those elusive 9 characters directly from the keyboard. or regure the Control key to be pressed with the RESET to prevent accidental resets

KEYBOARD AND DISPLAY ENHANCER is tecommended for use with all revisions of the APPLE II. It includes 6 ICs, and EPROM and dip-switches mounted on a PC board and a Jumper cable Easy installation. meaning no soldering or cutting traces. Alter. nate delault modes are dip-switch selectable. You can even remap the keyboard. selecting an alternate characier set. for custom applications.


PRICE - KDE-700 (REV. 7 or greater).
\(\$ 129\).
\(\$ 129\).
Apple \(\|^{\rho}\) is a trademark of Apple Computer. Inc.


VIDEX
VTA
897 N.W. Grant Avenue Corvallis, Oregon 97330 Phone (503) 758-0521

To gain efficiency, you might want to change the program so it will ask the user about intermediate hypotheses, resorting to deduction only when the user gives a "don't know" response. This illustrates how the rule-based approach actually provides great flexibility by separating the control strategy (as implemented in VERIFY) from the knowledge base (as represented by the rules).

The rule-based identification system just described is at best a toy. Although this system illustrates the important principle of the separation of the rule base from the general-
reasoning program, the system lacks many important features included in state-of-the-art research systems. Among the features present in most state-of-the-art knowledge-based systems, but lacking in our toy program, are the following:
- immediate propagation of inferences
- negative inferences
- plausible inference's ability to handle mutually exclusive categories
- contextual constraints
- degrees of certainty in user's answers


\section*{The DS120 Terminal Controller makes your LA36 perform like a DECwriter \({ }^{\circledR}\) III.}

The Datasouth DS120 gives your DECwriter \({ }^{\text {iV }}\) II the high speed printing and versatile performance features of the DECwriter \({ }^{1 I I}\) at only a fraction of the cost. The DS120) is a plug compatible replacement for your LA36 logic board which can be installed in minutes. Standard features include:
- 165 cps bidirectional printing
- Horizontal \& Vertical Tals
- Page Length Selection
- 110-4800 baud operation
- l(O)O) character print buffer
- X-on. X-olf protocol
- Self Test
- RS232 interface
- 20 mA Current Loop interface
- Top of Form
- Adjustable Margins
- Double wide characters
- Parity selection
- Optional APL character set Over 5.(00) DS 120 units are now being used by customers ranging from the Fortune 500 to personal computing enthusiasts. In numerous installations. entire networks of terminals have been upgraded to take advantage of today's higher speed data communications services. LSI microprocessor electronics and strict quality control ensure dependable periormance for years to come. When service is required. we will respond promptly and effectively. Best of all, we can deliver inmediately through our nationwide network of distributors. Just give us a call for all the details.

datasouth computer corporation
4740 Dwight Evans Road • Charlotte, North Carolina 28210 • 704/523-8500
- information volunteered by the user - flexible control structure

But toys are fun, and are often effective teachers. Enjoy.

\section*{References}
1. Balzer, R, L D Erman, \(P\) London, and \(C\) Williams. "HEARSAY-III: A DomainIndependent Framework for Expert Systems." Proceedings of the First Annual National Conference on Artificial Intelligence, 1980, pages 108 through 110.
2. Barstow, D R. "An Experiment in Knowledge-based Automatic Programming." Artificial Intelligence, volume 12 August 1979, pages 7 through 119.
3. Bennett, J S and R S Engelmore. "SACON: A Knowledge-Based Consultant for Structural Analysis." Proceedings of the Sixth International Joint Conference on Artificial Intelligence, August 20-23, 1979, pages 47 through 49.
4. Brown, J S, R R Burton, and A G Bell. "SOPHIE: A Sophisticated Instructional Environment for Teaching Electronic Troubleshooting (An Example of AI in CAI)." Final Report, Contract F41609-73-C-006, Bolt, Beranek, and Newman Inc, Cambridge MA, March 1974.
5. Buchanan, \(B G\) and \(T M\) Mitchell. "Model-Directed Learning of Production Rules." Pattern-Directed Inference Systems, D A Waterman and F HayesRoth (editors). New York: Academic Press, 1978, pages 297 through 312.
6. Bundy, A, et al. "Solving Mechanics Problems Using Meta-Level Inference." Expert Systems in the Microelectronic Age, D Michie (editor), Edinburgh: Edinburgh University Press, 1979, pages 50 through 64.
7. Carbonell, J R. "Al in CAI: An ArtificialIntelligence Approach to ComputerAided Instruction." IEEE Transactions on Man-Machine Systems, volume MMS-11, December 1970, pages 190 through 202
8. Clancey, W J, E H Shortliffe, and B G Buchanan. "Intelligent Computer-Aided Instruction for Medical Diagnosis." Proceedings of the 3rd Symposium on Com. puter Application in Medical Care, 1979, pages 175 through 183
9. Davis, R. 'Interactive Transfer of Expertise: Acquisition of New Inference Rules." Artificial Intelligence, volume 12, August 1979, pages 121 through 157.
10. Davis, R and J King. "An Overview of Production Systems." Machine intelligence 8, E W Elcock and D Michie (editors), New York: Wiley, 1976, pages 300 through 332.
11. Duda, R O, J G Gaschnig, and P E Hart. "Model Design in the Prospector Con-


\title{
APPLESOFT \({ }^{\text {® }}\) Basic Compiler
}

Complles APPLESOFT \({ }^{\text {E }}\) BASIC programs into native 6502 code, allowing programs to run up to 10 times faster. Handles graphics and shape tables. Requires 48 K , autostart ROM, language system and at least one drive. List Price: \(\$ 200.00\)

\title{
Microhouse
}

\section*{SPELLSTAR}

New! Option for Wordstar. Compares words in your text to its 20.000 -word compressed dictionary. Jumps back to WordStar for correction of errors or addition of new words to the
dictlonary. Price includes update of registered
2.x and earlier WordStar (must send master disk). List Price: \(\$ 250.00\)
Microhouse Price: \$165.00/NA

\section*{WORDSTAR}

Version 3.0! Now featuring horizontal scrolling and column moves.
List Price: \(\$ 495.00\)
Microhouse Price: \(\$ 322.00 / \$ 40.00\)
WORDSTAR for APPLE
List Price: \(\$ 375.00\)
Microhouse Price: \(\$ 245.00 / \$ 40.00\)
WORDSTAR CUSTOMIZATION NOTES
Package includes manual and diskette.
List Price: \(\$ 150.00\)
Microhouse Price: \$95.00/NA
MAILMERGE
Option for Wordstar
List Price. \$150.00
Microhouse Price: \(\$ 110.00 / \$ 40.00\)
MAILMERGE for APPLE
List Price: \(\$ 125.00\)
Microhouse Price: \(\mathbf{\$ 8 5 . 0 0 / \$ 2 5 . 0 0}\)
VISICALC for APPLE
List Price: \(\$ 150.00\)
Microhouse Price: \$107.00/NA
SUPERSORTI
List Price: \(\$ 250.00\)
Microhouse Price: \(\$ 170.00 / \$ 40.00\)
SUPERSORT II
List Price: \(\$ 200.00\)
Microhouse Price: \(\$ 145.00 / \$ 40.00\)

\section*{SUPERSORT for APPLE}

List Price: \(\$ 200.00\)
Microhouse Price: \(\$ 130.00 / 540.00\)

\section*{DATASTAR}

List Price: \(\$ 350.00\)
Microhouse Price: \(\$ 245.00 / \$ 40.00\)

\section*{WORDMASTER}

List Price: \(\$ 150.00\)
Microhouse Price: \(\$ 119.00 / \$ 40.00\)
CALL OR WRITE FOR FREE CATALOG

\section*{MICROSOFT BASIC 80}

List Price: \(\$ 350.00\)
Microhouse Price: \(\$ 273.00 / \$ 30.00\)

\section*{MICROSOFT BASIC 80 COMPILER}

Language compatlble with MBASIC but code runs 3-10x faster
List Price: \(\$ 395.00\)
Microhouse Price: \(\$ 308.00 / \$ 30.00\)

\section*{MICROSOFT FORTRAN 80}

Compiler is ANSI '66 compatible fexcept for

\section*{COMPLEX).}

LIst Price: \(\$ 500.00\)
Microhouse Price: \(\$ 345.00 / \$ 30.00\)
muSIMP/muMATH by Microsoft
List Price: \(\$ 250.00\)
Microhouse Price: \(\$ 195.00 / \$ 25.00\)

COBOL 80 by Microsoft
List Price: \(\$ 750.00\)
Microhouse Price: \(\$ 562.50 / \$ 30.00\)
MACRO 80 by Microsoft
List Price: \(\$ 200.00\)
Microhouse Price: \(\$ 140.00 / \$ 20.00\)

\section*{EDIT 80 by Microsoft}

List Price: \(\$ 120.00\)
Microhouse Price: \(\$ 84.00 / \$ 20.00\)

\section*{WHITESMITHS C}

List Price: \(\$ 630.00\)
Microhouse Price: CALL/\$30.00
TINY C Interpreter
List Price: \(\$ 100.00\)
Microhouse Price: \(\$ 79.00 / \$ 50.00\)

\section*{TINY C Compiler}

List Price: \(\$ 250.00\)
Microhouse Price: \(\$ 195.00 / \$ 50.00\)

\section*{SPELLGUARD}

Fast stand-alone program works with nearly any
CP/M \({ }^{*}\) word processor.
List Price: \(\$ 295.00\)
Microhouse Price: \(\$ 230.00 / \$ 25.00\)

\section*{STACKWORKS FORTH}

For 280 or 8080 (specity).
Llst Price: \(\$ 175.00\)
Microhouse Price: \(\$ 160.00 / \$ 30.00\)
WHITESMITHS PASCAL
includes Whitesmiths C Compiler
Llst Price: \(\$ 850.00\)
Microhouse Price: CALL/ \(\$ 45.00\)
sultant System for Mineral Exploration."
Expert Systems in the Microelectronic Age, D Michie (editor), Edinburgh: Edinburgh University Press, pages 153 through 167.
12. Fagan, L, J Kunz, E A Feigenbaum, and J Osborn. "Representation of Dynamic Clinical Knowledge: Measurement Interpretation in the Intensive Care Unit." Proceedings of the Sixth International Joint Conference on Artificial Intelligence, August 20-23, 1979, pages 260 through 262.
13. Feigenbaum, E A. "The Art of Artificial Intelligence-Themes and Case Studies of Knowledge Engineering." AFIPS Conference Proceedings, volume 47, June 1978, pages 227 through 240; also in Expert Systems in the Microefectronic Age, D Michie (editor), Edinburgh: Edinburgh University Press, 1979, pages 3 through 25.
14. Feigenbaum, E A, B G Buchanan, and \(J\) Lederberg. "On Generality and Problem Solving: A Case Study Using The DENDRAL Program." Machine Intelligence 6, B Meltzer and D Michie (editors), New York: American Elsevier, 1971, pages 165 through 190.
15. Gaschnig, J G. "Development of Uranium Exploration Models for the Prospector Consultant System." Final Report, SRI Project 7856, Artificial Intelligence Center, SRI International, Menlo Park CA, March 1980.
16. Gelernter, H L, et al. "Empirical Explorations of SYNCHEM." Science, September 9, 1977, pages 1041 through 1049.
17. Goldberg, R and S M Weiss. 'An Experimental Transformation of a Large Expert System Knowledge-Base.' Working Paper, Department of Computer Science, Rutgers University, New Brunswick NJ, March 1980.
18. Kulikowski, C A. "Artificial Intelligence Methods and Systems for Medical Consultation." IEEE Transactions on Pattern Analysis and Machine Intelligence, volume PAMI-2, September 1980, pages 464 through 476.
19. Lesser, V R and L D Erman. "A Retrospective View of the HEARSAY-II Architecture." Proceedings of the Fifth International Joint Conference on Artificial Intelligence, August 22-25, 1977. pages 790 through 800.
20. McDermott, J. "R1: An Expert in the Computer Systems Domain." Proceedings of the First Annual National Conference on Artificial Intelligence, 1980, pages 269 through 271.
21. Newell, A and H A Simon. "GPS, A Pro. gram that Simulates Human Thought." Computers and Thought, E A Feigenbaum and J A Feldman (editors), New York: McGraw.Hill, 1963.
22. Newell, A and H A Simon. Human Problem Solving. Englewood Clifis NJ : Prentice-Hall, 1972.
23. Nii, H P and E A Feigenbaum. "Rule-

Based Understanding of Signals:" Pattern-Directed Inference Systems, D A Waterman and \(F\) Hayes-Roth (editors), New York: Academic Press, 1978, pages 483 through 501.
24. Pauker, S G, G A Gorry, J P Kassirer, and W B Schwartz. "Towards the Simulation of Clinical Cognition." American Journal of Medicine, volume 60, June 1976, pages 981 through 996.
25. Pople, H E, Jr, et al. '"DIALOG: A Model of Diagnostic Logic for Internal Medicine." Proceedings of the Fourth International Joint Conference on Artificial Intelligence, September 1975, pages 848 through 855.
26. Reboh, R. "The Knowledge Acquisition System." "A Computer-Based Consultant for Mineral Exploration," R O Duda, et al, Final Report, SRI Project 6415, Artificial Intelligence Center, SRI International, Menlo Park CA, September 1979.
27. Shortliffe, E H. Computer Based Medical Consultations: MYCIN. New York: Elsevier, 1976.
28. Stallman, R M and G J Sussman. "Forward Reasoning and DependencyDirected Backtracking in a System for Computer-Aided Circuit Analysis." Artificial Intelligence, volume 9, 1977, pages 135 through 196.
29. Stefik, M J. 'Inferring DNA Structures from Segmentation Data." Artificial Intelligence, volume 11, August 1978, pages 85 through 114.
30. van Melle, W. "A Domain-Independent Production-Rule System for Consultation Programs." Proceedings of the Sixth International Joint Conference on Artificial intelligence, August 20-23, 1979, pages 923 through 925.
31. Waterman, D A. 'User-Oriented Systems for Capturing Expertise: A RuleBased Approach." Expert Systems in the Microelectronic Age, D Michie (editor), Edinburgh: Edinburgh University Press, 1979, pages 26 through 34.
32. Waterman, D A and F Hayes-Roth. Pattern-Directed Inference Systems. New York: Academic Press, 1978.
33. Weiss, S M and C A Kulikowski. "EXPERT: A System for Developing Consultation Models." Proceedings of the Sixth International Joint Conference on Artificial Intelligence, August 20-23, 1979, pages 942 through 947.
34. Weiss, S M, C A Kulikowski, and A Safir. "Glaucoma Consultation by Computer." Computers in Biology and Medicine, volume 8, 1978, pages 25 through 40.
35. Winston, P H and B K P Horn. L/SP. Reading MA: Addison-Wesley, 1981, chapter 18
36. Wipke, WT. "Computer Planning of Research in Organic Chemistry." Computers in Chemical Education and Research, E V Ludena, N H Sabelli, and A C Wahl (editors), New York: Plenum Press, 1976, pages 381 through 391.

\section*{The New ADDS Viewpoint Video Terminal. \\ Features a detachable Teklronics-made}
keyboard with keypad. function keys. Reverse video, half-intensity. underlining by fielos. Printer port. ADDS quality construction.

\section*{Microhouse}

CALL FOR LOW PRICES ON IMS Series 5000 and 8000 Computers

\section*{C ITOH STARWRITER I}

Letter-quality printer uses Diablo plastlc printwheels and ribbons. 25 cps bldirectional. logic-seeking. Parallel interface.
List Price: \(\$ 1895.00\)
Microhouse Price: \(\$ 1431.00\)
C ITOH STARWRITER I (Serial)
List Price: \$1960.00
Microhouse Price: \(\$ 1502.00\)
DIABLO 630
Letter-quality printer uses plastic and metal
printwheels. 40 cps , bldirectlonal, logic-seeking.
Optional tractor: \$225
List Price: \(\$ 2710.00\)
Microhouse Price: \(\$ 1999.00\)

\section*{EPSON MX70}
includes GRAFTRAX II dot-addressable graphics. Monodirectional. 80 cps . Adjustable tractor.
Parallel only.
List Price: \(\$ 450.00\)
Microhouse Price: \(\$ 378.00\)

\section*{EPSON MX80}

Removable print head, bidirectional, logic-
seeking. adjustable tractor, parallel interiace.
Easily converted to RS232. IEEE 488, Apple or
ATARI. CALL FOR INFORMATION ON THE NEW
GRAPHICS ROM PACKI
List Price: \(\$ 645.00\)
Microhouse Price: \(\$ 479.00\)
EPSON MX-80 FT
Friction AND tractor feed version of the MX-80.
Parallel intertace included.
List Price: \(\$ 745.00\)
Microhouse Price: \(\$ 569.00\)

\section*{TELEVIDEO 910 Terminal}

Lisl Price: \(\$ 699.00\)
Microhouse Price: \(\$ 595.00\)
TELEVIDEO 950
List Price: \(\$ 1195.00\)
Microhouse Price: \(\$ 995.00\)
CALL OR WRITE FOR FREE CATALOG
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE


ASK ABOUT THE NEW Televideo COMPUTER SYSTEMS

IDS PAPER TIGER 560G
List Price: \(\$ 1695.00\)
Microhouse Price: \(\$ 1464.00\)
VIDEX VIDEOTERM SPECIAL!
Carried over by popular demand. Converts your Apple screen to \(80 \times 24\) upper and lower case. Purchase vIDEOTERM with WordStar and save!
If purchased separately: \(\$ 290\).
List Price: \(\$ 345.00\)
Microhouse Price: \(\$ 270.00\)

\section*{MORROW DISCUS 2D}

8 inch single-sided double-density floppy disk drive subsystem. Includes CP/M \({ }^{2}\) and MBASIC. List Price: \(\$ 1199.00\)
Microhouse Price: \(\$ 995.00\)
MORROW HARD DISK SUBSYSTEM
10 Megabyte. Includes S-100 controller card.
\(C P / M^{*}\), and enclosure.
List Price: \(\$ 3695.00\)
Microhouse Price: \(\$ 3062.00\)
MICROSOFT APPLE SOFTCARD
Purchase the softcard with MicroPro's WordStar and save \(\$ 70\) ! Converts your Apple II or II plus 10 a CP/M' system. Includes MBASIC! Price if purchased separately: \(\$ 295\).
List Price: \(\$ 349.00\)
Microhouse Price: \(\$ 279.00\)

\section*{TCS/Atlanta INTERACTIVE}

\section*{ACCOUNTING SYSTEM}
for small businesses. Ver. 5.0 Each package can be used alone or post automatically to the General Ledger. Complled version (no support language needed). Price listed is per package.
Generalledger, Accounts Receivable, Accounts
Payable, and Payroll packages available. Call for details on new Order Entry \& Inventorypackages. ALSO AVAILABLE FOR APPLE II. Also available in source.
List Price: Compare at \(\$ 530\)
Microhouse Price: \(\$ 79.00 / \$ 25.00\)
ALL FOUR TCS PACKAGES (compiled)
List Price: Compare at \(\$ 530 / \mathrm{pkg}\).
Microhouse Price: \(\$ 269.00 / \$ 90.00\)
CP/M is a registered trademark of Digital Research UNIX is a registered trademark of Bell Labs
APPLE is a registered trademark of Apple Computers TRS80 is a registered trademark of Tandy Corp.

SHIPPING: Add \(\$ 5\) per manual or software package. Add \(\$ 2.50\) for \(C O D\) orders. Call for shlipping charges on other items. Pennsylvania residents add 6 per cent sales tax.


Buying new software is the pits, isn't it?

You read an ad and it sounds terrific, so you ask around, then buy the manual.

So far, so good-so you spring several hundred dollars for the package.

And it does exactly what they said. But to get exactly what you want, you're going to have to change the way you run your business. Or go through so much hassle that you're not sure it's worth it.

So you grit your teeth and suffer, or put it on a shelf to gather dust.

Sounds familiar, doesn't it?
But there is at least one known exception: an exceptional DBMS called dBASE II.

\section*{For database fans, an offer you shouldn't refuse.}
dBASE II is the only highperformance relational Database Management System for micros. And it's the only DBMS that can help you get the DBMS that's right for you, no matter which DBMS you may want. Here's how:

If you have a 48 k micro with \(\mathrm{CP} / \mathrm{M}\), send us its model number and the size of your drives along with \(\$ 700\) (CP/M 86 version soon call if you can't wait).

We'll send you a copy of dBASE II that you can run on your system, solving your problems your way, for 30 days. Then just send everything back and we'll return your money, no questions asked.

During that 30 days, you can find out how much a real database management system can do for you. How it will affect your operations. Exactly what you want done. And precisely how you want to do it.

Then even if you go for some other system, you'll be an informed buyer.

And it never hurts to know what you're doing.

\section*{IBM just caught up. So can you.}

With dBASE II, you'll get the same kind of system for your micro that IBM introduced a few months ago for their mainframes.
It's a relational DBMS, and that makes it different from any other micro system you've ever seen.

In a relational database, the data is organized as simple tables, with records as the rows and the data fields as the columns, much like your data is organized now. Data relations are logical, so that you can zero in on the specific information you want without knowing a thing about the pre-defined sets, pointers or other cumbersome structures of hierarchal and network DBMS's.

And unlike file management systems, dBASE II gives you program and data independence. You can change your database structure without re-entering your data and without reprogramming, or change some or all of your programs without touching your database. And the same database can be used for any number of different applications.

\section*{dBASE II is a stand-alone applications development system.}

You don't need an extra support language, because dBASE II comes with its own Applications Development Language (ADL). With ADL, you can use simple English-like statements to manipulate your data, or use built-in structured constructs to prepare sophisticated applications packages. It's simple and easy to use, yet extremely powerful.

You create a new database and start using it in a minute or less. Just type CREATE, then respond to system prompts to name the file and define the fields. Now enter the data.

Add data to an existing database instantly, whether your file has

10 records or 10,000 records, by typing APPEND, then entering the information.
UPDATE, MODIFY, JOIN and REPLACE whole databases or individual records and characters.

Add or delete fields in your database structure without re-entering all your data.
And with dBASE II, it's easy tó get information out once you've put the data in.

Do automatic calculations on fields, records and databases with a few keystrokes.
Organize months' worth of data in minutes with REPORT (printing optional), and get your reports today instead of tomorrow. Use the built-in SORT, with single or multiple keys. Or INDEX your data, then FIND it in seconds, even with floppies.

You can use dBASE II interactively or store a sequence of commands to automate your accounting, billing, mailing lists or whatever data you have to manage.

\section*{You'll wonder how you managed without it.}
dBASE II is the most powerful, easiest to use DBMS you can get for a micro.
And instead of poring over the manual, you can run it hands-on, in-house to see exactly what it can do for you. Try it.

What have you got to lose? We even provide the label so you can send it back.

Ashton-Tate, 3600 Wilshire Blvd., Suite 1510, Los Angeles, CA 90010. (213) 666-4409.


\title{
The Atari Tutorial Part 1: The Display List
}

\author{
Chris Crawford \\ 1272 Borregas Ave \\ Sunnyvale CA 94086
}

\begin{abstract}
Editor's Note: Although I have always considered myself an "Apple person" (I have-a disk-based Apple II at home), it was exciting to attend a two-day seminar for prospective Atari programmers given by Chris Crawford, Lane Winner, and Mike Ekberg, all of Atari Inc. Once I learned about the internal structure of the Atari 400 and 800 computers, I realized the tremendous potential these machines have.
We at BYTE are proud to present "The Atari Tutorial," a series of articles written by members of the Atari staff. The subjects include: the display list, graphics indirection and character sets, player-missile graphics, display-list interrupts, scrolling, and Atari BASIC. This series of articles is adapted from De Re Atari, a forthcoming book on the internal structure of Atari computers, to be published in December 1981 by Atari Inc.
This first article, which is on display lists, is by Chris Crawford, who with Lane Winner coauthored the article "An Introduction to Atari Graphics," which we published in the January 1981 BYTE, page 18. "The Atari Tutorial" will cover in greater detail many of the interesting points only mentioned in the first article. We hope you enjoy the series....GW
\end{abstract}

The Atari personal-computer system is a second-generation personal computer. First and foremost, it is a consumer computer. The entire thrust of its design is to make the consumer comfortable with the computer. This consumer orientation reveals itself in many ways. First, the consumer is protected from mistakes by items such as keystone-shaped connectors that cannot be inserted the wrong way, a power interlock that turns the computer off when internal electronics are exposed, and a pair of plastic shields protecting the system reset key. Second, the machine has a great deal of graphics power; people generally respond to pictures much more readily than to text. Third, the machine has good sound capabilities; again, people normally respond to

\footnotetext{
This article appears in slightly different form in De Re Atari, a book published by Atari Inc, and is reproduced with its express permission.
}
direct sensory input better than to indirect textual messages. Finally, the computer has joysticks and paddles for more direct tactile input than is possible with keyboards. The point is not that the Atari personal-computer system has a lot of features, but rather that the features are all part of a consistent design philosophy aimed at the consumer. The designer who does not appreciate this fundamental fact will be working against the grain of the system.

The internal layout of the Atari 400 and 800 computers (which are electrically equivalent to each other) is very different from that of other systems. They do have a microprocessor (a 6502), RAM (randomaccess read/write memory), ROM (read-only memory), and a PIA (peripheral interface adapter). However, they also have three special-purpose LSI (large-scale integration) devices known as ANTIC,

POKEY, and CTIA. These devices were designed by Atari engineers primarily to take much of the burden of housekeeping from the 6502, freeing the 6502 to concentrate on computations. While they were at it, they designed a great deal of power into these devices. Each is almost as big (in terms of silicon area) as a 6502 , so the three of them together provide a tremendous amount of power. Mastering the Atari \(400 / 800\) is primarily a matter of mastering these three chips, a task we hope will be aided by this series of tutorial articles.

\section*{Principles of Television Display}

In order to understand the graphics capabilities of the Atari personalcomputer system, you must first understand the rudiments of how a television set works. Television sets use a raster-scan display system. An electron beam is generated at the rear of the television tube and shot toward the screen. Along the way, it passes between sets of horizontal and vertical coils or plates that, if energized, can deflect the beam to make it strike any point on the screen. The electronics inside the television set cause the beam to sweep across the screen in a regular fashion. The beam's intensity can be controlled: if you make the beam more intense, the spot being struck on the screen glows brightly; if you make it less intense, the spot glows dimly or not at all.

The beam starts at the top left corner of the screen and traces horizontally across the screen. As it sweeps across the screen, the changes in intensity paint an image on the screen. When the beam reaches the right edge of the screen, it is turned off, brought

back to the left side of the screen, and moved down a notch. It then turns back on and sweeps across the screen again. This process is repeated for 262 sweeps across the screen. (There actually are 525 sweeps across the screen in an alternating system known as interlace. I will ignore interlace and act as if the television has only 262 lines.) These 262 lines fill the screen from top to bottom. At the bottom of the screen (after the 262nd line is drawn), the electron beam is turned off and returned to the upper left corner of the screen. Then it starts the cycle over again. This entire cycle happens sixty times a second.

Now for some jargon: a single trace of the beam across the screen is called a horizontal scan line. A horizontal scan line is the fundamental unit of measurement of vertical distance on the screen. You state the height of an image by specifying the number of horizontal scan lines it spans. The period during which the beam returns from the right edge to the left edge is
called the horizontal blank. The period during which the beam returns from the bottom to the top of the screen is called the vertical blank. The entire process of drawing a screen takes \(16,684 \mu \mathrm{~s}\). The vertical-blank period is about \(1400 \mu \mathrm{~s}\). The horizontal blank takes \(14 \mu \mathrm{~s}\), while a single horizontal scan line takes \(64 \mu\) s.

Most television sets are designed with overscan; they spread the image out so the edges of the picture are off the edge of the television tube. This guarantees that you have no unsightly borders in your picture. It is very bad for computers, though, because screen information that is off the edge of the picture does you no good. For this reason, the picture the computer puts out must be somewhat smaller than what the television can theoretically display. For this reason, only 192 horizontal scan lines are normally used by the Atari display. Thus, the normal limit of resolution of a television set used with the Atari \(400 / 800\) is 192 pixels (or picture

\section*{INFOSOFT Has a Better Way}

\section*{I/OS \({ }^{\text {TM }}\) Infosoft/operating system}
- Full CP/M \({ }^{\text {TM }}, \operatorname{CDOS}^{\text {M }}\), SDOS \(^{\text {IM }}\), compatibility
- Up to 15 disk units of 65 megabytes each
- Mix \(5^{\prime \prime}\) and \(8^{\prime \prime}\) floppies and hard disks
- Autostart and turnkey capabilities
- Adaptable to most 8080/8085/280 systems
- Dialog system generation without programming
- Up to 975 megabytes of on-line data storage
*New! Developed from the I/OS single-user system* Introducing MULTI/OS'"
the complete multi-user operating system
All features of the single-user I/OS plus
- Up to 16 independent users and/or tasks
- Multiple printers with automatic spooling
- Up to 56k bytes in each user partition
- Managable sub-directories allow up to 63,504 files per unit
- Record/file lock capabilities

> Call Us Today To Improve Your System Performance

MASTERCARD and VISA accepted
CPIM is a tagistered lidemark of Drgital Resarch: CA

elements) vertically. (Of course, a color monitor can do much better than that.)

The standard unit of horizontal distance is the color clock. You specify the width of an image by stating how many color clocks wide it is. There are 228 color clocks in a single horizontal scan line, with a maximum of 176 actually visible. Thus, the ultimate limit for full color horizontal resolution with a standard color television is 176 pixels. With the computer, you can go even finer and control individual half-clocks. This gives a horizontal resolution of 352 pixels. However, use of this feature produces interesting color effects known as color artifacts. Color artifacts can be a nuisance if they are not desired; they can be a boon to the programmer who desires additional color and is not fazed by their restrictions.

\section*{Microcomputer Displays}

The fundamental problem any microcomputer has in using a rasterscan television for display purposes is that the television display is a dynamic process. Because of this, the television does not remember the image. Consequently, the computer must remember the screen image and constantly send a signal to the television telling it what to display. This process of sending information to the television is a continuous process requiring full-time attention. For this reason, most microcomputers have special hardware circuits that handle the television. The basic arrangement is the same on virtually all systems:

> microprocessor \(\rightarrow\) screen RAM \(\rightarrow\) video hardware - TV screen

The microprocessor writes information to the screen RAM area that holds the screen data. The video hardware is constantly accessing this RAM area, getting screen data and converting them into television signals. These signals go to the television, which then displays the information. The screen memory is mapped onto the screen in the same order in which it is stored. That is, the first byte in the screen memory

\title{
Unique accessories to PET/CBM add more power
}

\section*{Software}

\section*{PET-FORTH}

A unique, extensible programming language that in many cases has cut program development time to a fraction of the normal. FORTH allows you to program any type of application, thanks to its extensible nature. FORTH programs are modular, structured, extremely fast, and compact. PET-FORTH is a full. extended, standard FORTH, and includes a virtual memory facility, an interpreter and compiler, a resident editor, as well as a resident macro assembler. all which fits in 8.5 K - simultaneously.
 A comprehensive manual of more than 320 pages, which also is an exhaustive tutorial, is included. For production purposes we can supply a special Target Compiler, that will produce code suitable for placement in ROM. enabling you to write programs for control of digital machines etc. We use FORTH ourselves for business data base and process control applications. PET-FORTH includes a life-time guarantee. For 8032 only.

Price: PET-FORTH, including manua PET-FORTH, only manual Target compiler PET-FORTH


\section*{PET-TERM}

A program that turns your PET/CBM 8032 into an intelligent terminal. Supports three different interfaces: the PETCOM the SCIP or the CBM 8010 acoustic coupler. You may communicate at up to 9600 baud. with selectable framing and parity. PET-TERM will also translate and transmit Word-Pro files. Data may be printed on the printer or saved on disk PET-TERM includes a lifetime guarantee.


Price: PET-TERM,
including manual \$180
PET-TERM.
only manual
\$ 20

\section*{Dealers are invited.}

\section*{PET-SWITCH}

At a sensational price of \(£ 75\) per unit, PET-SWITCH énables you to connect up to 16
PET/CBM computers to one disk drive and one printer. You can mix all models of PET/CBM in the same system . (2001, 3032, 8032 etc).
PET-SWITCH is technically superior to most of its competi tors-no priority problems for
\begin{tabular}{ll} 
example. Price: & \begin{tabular}{l} 
PET-SWITCH, \\
\\
\\
\\
\\
PETher unit \\
daughter unit
\end{tabular}
\end{tabular}

\section*{SCIP}


A Serial Communication Interface that supplies both RS232 and Current Loop. Programmable baudrate. Adressed as an IEEE device. 50 character internal buffer. Selectable ASCII translation.


\section*{\(P E-C O / /-R S-232 C\) interface for PET}

A bidirectional RS-232C interface that connects to PET via the memory expansion port. The baud rates range from 50 to 9600 , and the number of data bits and stop bits is selectable. You may also set even. odd, or no parity.

Price: \(\$ 145\)
PE E EE to Centronics Interface
This IEEE \(=>\) Centronics interface is especially constructed for the PET. It is fully addressable and translates from PETASCII to Standard ASCII in two different modes, corresponding to PET's graphic and upper/lower case modes. This is available through a built-in switch.

Price: \$95

\section*{Country specific Character Generator}
for the 4022 and 3022 printers
By using this board you can have Greek. French, German, or any other special characters in your printer, at a very low cost. It is already used in all Nordic countries, and several other countries have requested it.

Price: \(\$ 40\)

Datatronic AB is since 1978 sole Swedish distributor of the Commodore computer product line, and is now market leading in microcomputer technology in Scandinavia. Datatronic AB has a long experience in both hardware and software; today Datatronic has used more than 150.000 man-hours in software and hardware development for the PET. All non-Commodore products are produced and tested in-house. The Datatronic-group, which is the fastest growing electronics group in Scandinavia, has a turnover of approximately \(\$ 30.000 .000\), and employs over 200 people.

\section*{For further information contact Datatronic AB, Box 42094, S-126 12 Stockholm, Sweden. Phone 8-7445920 \\ or your nearest Commodore dealer.}

Circle 106 on inquiry card.

MMSFORTH VERSION 2.0: MORE FOR YOUR RADIO SHACK TRS-80 MODEL I OR MODEL III !
* MORE SPEED

10-20 times faster than Level II BASIC
* MORE ROOM

Vory compact complled code plus VIRTUAL MEMORY makes your RAM act larger. Varlable
number of block buffers. 31 .char-unlque wordnumber of block buffers. 31-char-4
names use only 4 byles in header!
* MORE INSTRUCTIONS

Add YOUR commands to its 79.STANDARD-plus Far more complete than most Forths: single d double precision, arrays, string.handiling. cloc more.
- MORE EASE
modular programming
Word search utillity
Optlmized for your \(T\)
repeats. uppapllower case display drlver, full AScII. single \& double-width graphics, oic.
- MORE POWER

Forth operaling system,
8080 Assembler
(Z80 Assembler also avaliable)
Model IIt System can read, wilte \& run Model diskette9!
VIATUAL WO Ior video and pinter. disk and tape (10-Megabyte hard diak avallable)

\section*{m}

THE PROFESSIONAL FORTH FOR TRS•80
(Over 1.500 systems in use)
Pilces: 16 K RAM, 32K for Model lity........ \$129.85 MMSFORTH Casselte System V2.0 (1equires Level
BASIC \(\& 16 \mathrm{~K}\) AAM)

\section*{AND MMS GIVES IT PROFESSIONAL SUPPORT}

Source code provided
Many demo programs aboard
MMSFORTH User Groups
Inexpensive upgrades to latest version
Programming statl can provide advice, modilicatlons and cuslom programs, to lit YOUR needs.
MMSFORTH UTILITIES DISKETTE: includes FLOATING POINT MATH (L2 BASIC ROM routines plus Complex numbers. Rectangular. Polar coordinate conversions BLER; plus a powellul CROSSREFERENCER to \(1 / \mathrm{s}\) Forth words by block and line. All on one diskette (requires MMSFORTH V2.0. 1 drlve \& 32 K AAM). \(339.95^{\circ}\) FORTHCOM: communications package provides RS-232 driver, dumb terminal mode, transler of FORTH blocks and host mod \(\theta\) to operate a remote TRS 80 (requires MMSFORTH V2.0, 1 drlve \(\$ 32 \mathrm{~K}\) RAM) \(\ldots . . . . . . . \$ 39.95\) THE DATAHANDLEA V1.2: a very sophlaticated data base management system operable by non-pro grammers (requires MMSFORTH V2.0. 1 drive \& 32 K

MMSFORTH GAMES DISKETTE: real.tIme graphics board games w/source code. Includes BREAKFORTH \& TICTACFORTH (requlres MMSFORTH V \(2.0,1\) dive


Other MMSFORTH producte under development
FORTH BOOKS AVAILABLE
MMSFORTH USERS MANUAL - w/O Appendices, for non OWINE FORTH . more delalled and edvencer \(\$ 15.00^{\circ}\)
 INVITATION TO FORTH detalled Deginner book on THREADED
THREADED INTERPAETIVE LANGUAGES - advenced quage.
 \begin{tabular}{l} 
tured program. good for Forth .......ificial raference \\
FORTH \\
\hline 8.9 STANDAAD MANUAL
\end{tabular} 79.STANDARD word set, etc . . . ................. \(\$ 10.00^{\circ}\) CALTECH FORTH MANUAL good on Forth Interna SHUCTURe, elC slock inis collecior's ltem for Forth users and beginners
- ORDERING INFORMATION: Software prices Includ manuals and require signing of a single syslem, single
user Ilcense. SPECIFY for Model Ior Model ill! Add \(\$ 2.00\) S \(/ \mathrm{H}\) plus \(\$ 3.00\) per MMSFORTH and \(\$ 1.00\) per add llanal book; Mass. orders add \(5 \%\) lax. Foreign orders add \(20 \%\). UPS COD. VISA \& M/C accepledi no unpal purchase ofders, please

Send SASE for free MMSFORTH inlormation Good deaters sought.
Gef MMSFORTH producis from your
MILLER M MCR Rocomm Puter
SERVICES (B9)
61 Lake Shore Road, Natick, MA 01760 (617) 653-6136
maps to the top left corner of the screen, the second byte maps one position to the right, then the third, the fourth, and so on to the last byte that is mapped to the lower right corner of the screen.

The quality of the image that gets to the screen depends on two factors: how sophisticated the video hardware is, and how much screen memory is used. The simplest arrangement is used by the Radio Shack TRS-80 and the Commodore PET. These machines allocate a specific 1 K bytes of RAM as screen memory. The video-hardware circuits simply pull data out of this area, interpret them as characters (using a character set in ROM), and put the resulting characters on the screen. Each byte represents one character, allowing a choice of 256 different characters in the character set. With 1 K bytes of screen RAM, 1024 characters can be displayed on the screen. There isn't much that can be done to modify this arrangement.

The Apple II, from Apple Computer Inc, uses more advanced video hardware. Three graphics modes are provided: text, low-resolution (lo-res) graphics, and high-resolution (hi-res) graphics. The text graphics mode operates much as the PET and TRS-80 displays operate. In the lowresolution graphics mode, the video hardware reaches into screen memory and interprets it differently. Instead of interpreting each byte as a character, each byte is interpreted as two blocks of color. The value of each block ( 4 bits) specifies the color of a single pixel. In the highresolution graphics mode, each bit in screen memory is mapped to a single pixel. If the bit is on, the pixel gets color in it; if the bit is off, the pixel stays dark. The situation is complicated by a variety of design nuances in the Apple, but that is the basic idea.

The important point is that the Apple has three display modes-three completely different ways of interpreting the data in screen memory. The Apple video hardware is intelligent enough to interpret a screenmemory byte as either an 8 -bit
character (text mode), two 4-bit color nybbles (low-resolution mode), or 7 individual bits for a bit map (highresolution mode).

\section*{Atari 400/800 Display List}

The Atari 400/800 display-list system represents a generalization of these systems. Where the PET and TRS-80 have one mode and the Apple has three modes, the Atari 400/800 has fourteen modes. A second important difference is that Atari 400/800 display modes can be mixed on the screen. You are not restricted to a choice between a screen full of text or a screen full of graphics. Any collection of the fourteen Atari graphics modes can be displayed on the screen simultaneously. The third important difference is that the Atari 400/800 screen RAM can be located anywhere in the address space of the computer and moved around while the program is running, whereas the other machines use fixed-screen memory areas.
This generality is made possible by a video microprocessor called ANTIC. Where earlier systems used rather simple video circuitry, Atari designed a full-scale microprocessor just to handle the intricacies of the television display. ANTIC is a true microprocessor-it has an instruction set, a program, and data. The program for ANTIC is called the display list. The display list specifies three things: where the screen data can be found, what display modes to use to interpret the screen data, and what special display options (if any) should be implemented.

When using the display list, it is important to shed the old view of a screen as a homogeneous image in a single mode and see it instead as a stack of mode lines. A mode line is a collection of horizontal scan lines. It stretches horizontally all the way across the screen. An Atari graphics 2 mode line is 16 horizontal scan lines high, while a graphics 7 mode line is only 2 scan lines high. Many graphics modes available from BASIC are homogeneous; an entire screen of a single mode is set up. But you must not limit your imagination to this pat-

\title{
Everybody's making money selling microcomputers. Somebody's going to make money servicing them.
}

New NRI Home-Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers

Seems like every time you tum around, somebody comes along with a new computer for home or business use. And what's made it all possible is the amazing microprocessor, the tiny little chip that's a computer in itself.

Using this new technology, the industry is offering compact, affordable computers that handle things like payrolls, billing, inventory, and other jobs for businesses of every size...perform household functions including budgeting, environmental systems control, indexing recipes. And thousands of hobbyists are already owners, experimenting and developing their own programs.

\section*{Growing Demand}
for Computer Technicians
This is only one of the growth factors influencing the increasing opportunities for qualified computer technicians. The U.S. Department of Labor projects over \(100 \%\) increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer.

\section*{Learn at Home in Your Spare Time}

NRI can train you for this exciting, rewarding field. Train you at home to service not only microcomputers, but word processors and data terminals, too. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends, without going to classes or quitting your present job.

Your training is built around the latest model of the world's most popular computer. It's the amazing TRS \(-80^{\text {TM }}\) Model III, with capabilities and features to perform a host of personal and business functions. No other small computer has so much software available for it, no other is used and relied on by so many people. And it's yours to keep for personal or business use.

of practical experience. Using the NRI Discovery Lab \({ }^{818}\) that also comes as part of your course, you bulld and study circuits ranging from the simplest to the most advanced. You analyze and troubleshoot using the professional Beckman LCD digital multimeter you keep to use later in your work. Then you use the lab and meter to actually access the interior of your computer...build special circuits and write programs to control them. You "see" your computer at work and demonstrate its power.

\section*{Become the \\ Complete Computer Person}

You're also trained in writing and debugging both BASIC and advanced machine language programs...gain hands-on experience in the operation and application of computers to business and personal jobs. You're trained to become the fully rounded, new breed of technician
who can interface with the operational, programming, and service facets of today's computers. You're ready to take your place in the new electronic age.

\section*{Other Opportunities}

NRI has been giving ambitious people new electronic skills since 1914. Today's offerings also include TV/Audio/Video Systems servicing with training on our exclusive computer-programmable \(25^{\prime \prime}\) diagonal color TV...Communications Electronics for servicing and installing microwave, broadcast, CB, radar, etc...and other state-of-theart courses.

\section*{Free Catalog... Mail Card No Salesman Will Call}

Send the postage-paid card for our \(100-\) page catalog showing all courses with equipment and complete lesson plans. There's no obligation other than to yourself. See how NRI can help you grow with the most exciting and important new field of the 80 's. If card has been removed, please write to us.


NRI SChools
McGraw-Hill Continuing
Education Center
3939 Wisconsin Ave.
Washington, DC 20016
We'll give you tomorrow.
\begin{tabular}{ccc}
\begin{tabular}{c} 
Value of Bit Pair \\
Binary \\
Decimal
\end{tabular} & \begin{tabular}{c} 
Atari Color \\
Register Used
\end{tabular} \\
00 & 0 & COLBAK \\
01 & 1 & COLPFO \\
10 & 2 & COLPF1 \\
11 & 3 & COLPF2
\end{tabular}

Table 1: Atari color-register assignment in four-color map mode.
tern; with the display list, you can create any sequence of mode lines down the screen. The display list is a
collection of code bytes that specify that sequence.

\section*{ANTIC's Instruction Set}

ANTIC's instruction set is rather simple. There are four classes of instructions: map-mode instructions, character-mode instructions, blankline instructions, and jump instructions. Map-mode instructions cause ANTIC to display a mode line with simple colored pixels (no characters). Character-mode instructions cause ANTIC to display a mode line with characters in it. Blank-line instruc-


Auto-Cat \({ }^{\text {TM }}\) lets your computer terminal answer other terminals over the phone line automatically.

It's the deluxe way, for example, to receive a program from a friendly computer. Or take data from any of the information sources. Then store the information in your computer's memoryand have it there at your beck and call-all automatically.

Auto-Cat is a state-of-the-art originate/auto answer, all digital, crystal controlled unit with everything in one compact package. It sits right under your phone.

It's FCC approved for direct telephone line connection. You just take it home and plug it in.

Cost? Less than any other comparable modem. Under \(\$ 250\).

And it's from Novation. The recognized leader in personal communications.

\section*{Auto-Cat \({ }^{\text {by }}\)}


Call for details:
(800) 423-5410

In California (213) 996-5060

\section*{CompuServe is a lot more than fun and games and news.}

Although we're probably best known for our consumer-oriented services, CompuServe maintains powerfil services for the serious computer user. CompuServe has helped some of the nation's largest companies and financial institutions through a wide range of business and scientific-oriented computer programs. With our Information Service, we can extend this expertise to you. Here are some of the programs available to the personal computer user through the CompuServe Information Service:

PASCAL: DEC User Group version of this famous language. XF4: Extended CompuServe Fortran compiler.
MACRO: Advanced Macro
Assembly language for PDP-10. Talk about fast.
FILGE: Fast, easy file generator and editor. Line oriented, no line numbers required!
XBASIC: CompuServe extended BASIC.
JUMBLE: File encryption program.
TECO: High level text editor.

LINK: Linking loader program. DDT: Dynamic debugging tool. CREF: Symbolic cross-reference generator used with language compilers.
FILCOM: File comparison program.
SALARY: Calculates salary and increases in various time frames including per year, month, period and hour. This program is intended primarily for managers doing reviews.
SNOBOL: String manipulation language.
RUNF10: Word processing and text formatting program (write resumes etc.).
CONCOR: Concordance
generator. This program is very useful for documentation purposes. CONCOR reads an ASCII file and creates an output file which contains a line numbered listing of the original file, and a list of all the words contained in the file along with the numbers of the lines on which each word occurs (similar to an index).
BLIS10: High level implementation language for DEC PDP-10.
BINED: Binary file editor.
APL: A Programming Language.

FINTOL: Financial analysis tool.
Contains several program modules which can perform financial analysis for business or personal needs.
-Loan Payment and Amortization
-Compound Interest Calculations
-Sum from a Periodic Investment
-Sinking Fund Deposit
-Present Value of Cash Flows
-Present Value and Internal Rate of Return (Capital Projects)
-Depreciation Analysis
-Compound Growth Rates
RANNO: Random number generator.
XEDIT: XF4 binary file editor.
We also offer high speed professional line printer service, error-free file transfer, CompuServe's Software Exchange, and computer manufacturers' newsletters. Computer Users Groups can exchange information and up-to-the-minute gossip in the computer world.

And . . . if Aunt Matilda comes over, you can still let her play Adventure. Demonstrations and software at all Radio Shack \({ }^{\text {² }}\) Computer Centers and many Radio Shack \({ }^{6}\) outlets.


\section*{CompuServe}

Information Service Division
5000 Arlington Centre Boulevard
Columbus, Ohio 43220
(614) 457-8600
\begin{tabular}{ccccccc|}
\hline \begin{tabular}{c} 
ANTIC \\
Mode
\end{tabular} & \begin{tabular}{c} 
BASIC \\
Mode
\end{tabular} & \begin{tabular}{c} 
Number of \\
Colors
\end{tabular} & \begin{tabular}{c} 
Scan Lines Per \\
Mode Line
\end{tabular} & \begin{tabular}{c} 
Pixels Per \\
Mode Line
\end{tabular} & \begin{tabular}{c} 
Bytes Per \\
Line
\end{tabular} & \begin{tabular}{c} 
Bytes Per \\
Screen
\end{tabular} \\
2 & 0 & 2 & 8 & 40 & 40 & 960 \\
3 & none & 2 & 10 & 40 & 40 & 760 \\
4 & none & 4 & 8 & 40 & 40 & 960 \\
5 & none & 4 & 16 & 40 & 40 & 480 \\
6 & 1 & 5 & 8 & 20 & 20 & 480 \\
7 & 2 & 5 & 16 & 20 & 20 & 240 \\
8 & 3 & 4 & 8 & 40 & 10 & 240 \\
9 & 4 & 2 & 4 & 80 & 10 & 480 \\
A & 5 & 4 & 4 & 80 & 20 & 960 \\
B & 6 & 2 & 2 & 160 & 20 & 1920 \\
C & none & 2 & 1 & 160 & 20 & 3840 \\
D & 7 & 4 & 2 & 160 & 40 & 3840 \\
E & none & 4 & 1 & 160 & 40 & 7680 \\
F & 8 & 2 & 1 & 320 & 40 & 7680 \\
\hline
\end{tabular}

Table 2: Atari graphics modes and their characteristics. Note that the same graphics mode is given a different number by BASIC and by ANTIC. The ANTIC mode number refers to one mode line of a given kind of graphics, while the BASIC mode number refers to a certain arrangement of mode lines (most or all of which are the given kind of graphics) that defines an entire screen of video display.
or 8 scan lines), and the number of pixels that fit horizontally into one mode line ( \(40,80,160\), or 320 ). Thus, some map modes give better resolution; these will require more screen memory. Table 2 presents this information for all modes.

Character-mode instructions cause ANTIC to display a mode line with characters in it. Each byte in screen RAM specifies one character. There are six character-display modes. Character displays will be discussed in a future BYTE article in this series.

Blank-line instructions produce "blank" lines consisting of only a
solid background color. There are eight blank-line instructions; they specify skipping one through eight blank lines.

There are two jump instructions. The first (JMP) is a direct jump; it reloads ANTIC's program counter with a new address that follows the JMP instruction as an operand. Its only function is to provide a solution to a tricky problem. ANTIC's program counter is only 10 bits wide. Thus, it cannot cross a 1 K -byte boundary. If the display list must cross a 1 K-byte boundary, it must use a JMP instruction to hop over the
boundary. This means that display lists are not fully relocatable.

The second jump instruction (JVB) is more commonly used. It reloads the program counter with the value in the operand and waits for the television to perform a vertical blank. This instruction is normally used to end a display list by jumping to the top of the display list. Jumping to the top turns it into an infinite loop; ANTIC waits for vertical blank to insure that the infinite loop is synchronized to the display cycle of the television. Both JMP and JVB are 3-byte instructions; the first byte is the operation code (JMP or JVB), the second and third bytes are the address to jump to (low byte, then high byte).

The four special options mentioned previously will be discussed in future articles in this series. However, the load-memory scan option must have a preliminary explanation. This option is selected by setting bit 6 of a map-mode or a character-mode instruction byte. When ANTIC encounters such an instruction, it will load its memory-scan counter with the two following bytes. This memory-scan counter tells ANTIC where the screen memory is, and ANTIC begins fetching display data from this area. The LMS instruction is a 3-byte instruction: a 1-byte operation code followed by 2 bytes of operand. In simple display lists, the LMS in-



\section*{if He'd used select \({ }_{\text {tm }}\) it wouldn't have taken seven days}

Learn SELECT* in just 90 minutes. A whole new word processing software concept that kicks the coded key habit and frees you from complicated instruction manuals. SELECT is fast. SELECT is logical. With single key mnemonics, you'll use dozens of commands that instantly access the rich capabilities of this system. There's nothing like it.

> Simply hit "C" and you'll be ready to Create a document.
> Key "'" and you'll be in the Insert mode.
> Key "M"' and Move entire blocks of text . . and key dozens more.

That's all there is to it. You'll get all that word processing software promises . . . plus a few surprises.
SELECT with SUPERSPELL: The only microcomputer software with an integrated spelling dictionary. To proof your text all you do, of course, is to key " S ". SUPERSPELL with its 10,000 word dictionary scans your text at computer speed then displays and corrects all your typing errors. You can increase SUPERSPELL's word power and customize the dictionary by adding new words, one at a time. Ask to see it today at your local dealer.

SELECT with SUPERSPELL . . . just a little byte more \({ }_{\text {TM }}\)


SELECT will run on any machine that uses CP/M or MP/M • • or its derivatives. It needs 40 K of RAM and two disk drives. Special version now available for Radio Shack Mod II. . and Apple II. .

\footnotetext{
- SELECT and SUPERSPELL are trademarks ol Select Information Systems Inc. \(\therefore\) CPIM and MP/M are Irademarks of Digilal Fesearch .... A Aradematk Tandy Corp
}

INFORMATION SYSTEMS 919 Sir Francis Drake Boulevard • Kentfield, California 94904 • (415) 459-4003
\(z 8000\)
MICRO PRICE for MINI POWER
MICRO-MINI" matches Series I by IBM delivering current orders
You cannot buy a more powerful micro:
- Power: 1 to 32 independent users
- Memory: directly addresses to 16 Meg!
- Mapping: efficient memory management
- Disk: 2M to more than 250M
- Speed: throughput 10 times Z80
- Files: simultaneous access
- Communication: inter-user via terminals
- Security: all files password protected
- Options: expandable in the field
- Bus: Intel Multibus'" compatible
- Languages: Pascal, BASIC, COBOL, FORTRAN

\section*{System 3}
\$7053
This 16 -bit Multibus'" computer system includes:
- 28001 CPU and 256K RAM
- 8 serial I/O ports
- 15-siot backplane
- Dual floppy disk drives
- Multiuser Operating System Field upgrade to 16MB RAM, 268MB of hard disk, 32 users. Pascal, BASIC, C, COBOL and FORTRAN languages.

Call for further system specifications.


\section*{AMPEX Dialogue \(80^{\text {w }}\)}

Dialogue \(80^{\text {m" }}\) fully-featured video terminal:
- Full ASCII with numeric and edit keypads
- Elegant case with detachable keyboard - Display 24 lines with 25 th status line - 20 user programmable function keys - 2 pages display memory (4 optional)
- 11 graphics and 21 control codes - 10 modes including block, protect, program - Transparent mode displays control codes Dialogue \(80^{\text {w }}\) \(\qquad\) \(\$ 1045\)
Dialogue 80"w with phone coupler........... 1194
Applications: word processing, data entry, interactive programming, data base inquiry/response/ update, transaction processing, whether on-site or remote. For our system or for yours, this interactive terminal is the perfect match.

Prices: Prepaid or Purchase Order Net 10 Prices subject to change without notice. Warranty: 120 day minimum on all systems. Interfacing cables free with all systems. \(10 \%\) down fixes price, guarantees priority. MasterCard and VISA cards accepted.
(312) 684-3183

COMPUTEX MICROCOMPUTER SYSTEMS 5710 Drexel, Chicago, IL 60637
struction is used only once, at the beginning of the display list. It may sometimes be necessary to use a second LMS instruction. The need arises when the screen-memory area crosses a 4 K-byte boundary. (The memoryscan counter is only 12 bits wide, which is why it cannot cross a 4 K boundary.) In this case, an LMS instruction must be used to jump the memory-scan counter over the boundary. This means that display data are not fully relocatable. LMS instructions have wider uses that will be discussed later in this series.

\section*{Building Display Lists}

Every display list should begin with three "blank-eight-lines" instructions. This defeats vertical overscan by bringing the beginning of the useful display 24 scan lines down. After this is done, the first display line should be specified. Simultaneously, the LMS should be used to tell ANTIC where it will find the screen memory. Then follows the actual display list, which lists the display bytes for the
mode lines on the screen. The total number of horizontal scan lines produced by the display list should always be 192 or less; ANTIC does not maintain the screen-timing requirements of the television. If you give ANTIC too many scan lines to display, it will do so, but the television screen will probably roll. Displaying fewer than 192 scan lines causes no problems; indeed, it decreases 6502 execution time by reducing the number of cycles stolen by ANTIC. The programmer must calculate the sum of the horizontal scan lines produced by his or her display list and verify it. The display list must end with a JVB instruction.

A typical display list for a standard BASIC graphics mode 0 display (all values are in hexadecimal) is given in table 3. As you can see, this display list is short-only 32 bytes. Most display lists are less than 100 bytes long. Furthermore, they are quite simple in structure and easy to set up.
To implement your own display list, you must first design the display
\begin{tabular}{ccc}
\begin{tabular}{c} 
Hexadecimal \\
Address
\end{tabular} & \begin{tabular}{c} 
Hexadecimal \\
Value
\end{tabular} \\
7BEO & 70 & blank 8 lines \\
70 & blank 8 lines \\
70 & blank 8 lines \\
42 & display ANTIC mode 2 (BASIC mode 0) \\
20 & also, screen memory starts at 7 C 20 \\
7 C & display one mode line of ANTIC mode 2 \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & \\
02 & JVB instruction-wait for the vertical- \\
41 & E0 blank signal, then jump to the beginning \\
\(7 B\) & of the display list, which starts at \(\$ 7 B E 0\)
\end{tabular}

Table 3: The display list for a standard BASIC graphics mode 0 display.


\section*{WHY BUY FROM THE BEST? Service... Support... Software...}


\section*{EPSON PRINTERS}

\(M_{M X-100}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$ \$ 745
MX-70 ......................................................... . . . \& 459
INTERFACE CARDS
8141 (RS.232)
§ 75
8150 (2K Buffered RS-232) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$ 150
8161 (IEEE 488) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$ 55
8131 (Apple Card) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 85\)
8230 (Apple Card) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 25\)
8220 (TRS-80 Cable)

\section*{DIABLO 630 PRINTER}

DIABLO 630 - Serial - RS-232................................ 52710
Tractor opition


NEC SPINWRITER PRINTERS
5530 (Parallel) ..... \(\$ 3055\)
5510 (Serial) ..... \(\$ 3055\)
5520 (KSR-Serial) ..... \(\$ 3415\)
Tractor Option ..... \$ 225
AMDEK MONITORS

\section*{INTERTEC COMPUTERS}

Video 100 12" B+W . . . . . . . . \$ 179 Video 300 12" Green . . . . . . . \$ 249 Color I 13" Low Res . . . . . . . \$ 449 Color II 13" High Res . . . . . . \$ 999

64K Superbrain
(360 Disk Storage), CP/M \({ }^{\text {™ }} \ldots \$ 3495\) 64K OD Superbrain
(700K Disk Storage), CP/M \({ }^{\text {4 }}\). . \$3995
\({ }^{*}\) CP/M is a registered trademark of Digital Research.


\section*{ATARI COMPUTERS}

\section*{Atari 400 (16K RAM) .................
Atari 800 (32K RAM) - good thru \(8 / 31\)}

Atari 800 (32K
Atari 410 RECORDER
Atari 810 DISK DRIVE


\section*{APPLE}

16K APPLE II+ ......... \(\$ 1330\)
32K APPLE II+ . . . . . . . \(\$ 1430\)
48K APPLE II+ . . . . . . . \(\$ 1530\)
APPLE DISK w/3.3 DOS . \$ 650
APPLE DRIVE Only . . . . \(\$ 490\) APPLE III 128K - In Stock! w/Monitor +
Info Analystpak ... . . . . \(\$ 4740\)

JUST A SAMPLE OF THE MANY PRODUGTS WE GARRY, CALL US FOR OUR NEW 60-PAGE CATALOG.
WE WILL MATCH ANY ADVERTISED PRICE ON PRODUCTS LISTED UNDER SIMILAR "IN STOCK" CONDITIONS.

MON-FRI 9:00-5:00

\section*{PROFESSIONAL SOFTWARE}
\begin{tabular}{|c|c|}
\hline WordPro 18 K & 29.95 \\
\hline WordPro 3 (40 Clm.)16K & \$ 199.95 \\
\hline WordPro \({ }^{+}\) & S 295 \\
\hline WordPro 4 (80 Clm.) 32K & \$ 375 \\
\hline WordPro 4+ . . . . . . . & \$ 450 \\
\hline
\end{tabular}
format. This is best done on paper. Lay out the screen image and translate it into a sequence of mode lines. Keep track of the scan-line count of your display by looking up the scan-line requirements of the various modes in table 2. Translate the sequence of mode lines into a sequence of ANTIC mode bytes. Put 3 "blank-eight-lines" bytes (hexadecimal 70) at the top of the list. Set bit 6 of the first display byte (that is, make the upper nybble a 4)-this makes it a load-memory scan command. Follow with 2 bytes that specify the address of the screen RAM (low byte, then high). Then follow this with the rest of the display bytes. At the end of your display list, put in the JVB instruction (hexadecimal 41) and the address of the top of the display list. Store all these bytes into memory. They can be anywhere you want; just make sure they don't overlie something else, and be sure your JVB instruction at the end of the display list points to the top of the display list.
The display list must not cross a 1 K -byte address boundary. If you absolutely must have it cross such a boundary, insert/ a JMP instruction just in front of the boundary, with the JMP instruction's operand being the address of the first byte on the other side of the boundary. Next, you must turn off ANTIC for a fraction of a second while you rewrite its displaylist pointer. Do this by writing a 0 into hexadecimal location 22F (known as SDMCTL). Then store the address of the new display list into hexadecimal locations 230 and 231 (low byte, then high). Lastly, turn ANTIC back on by depositing a hexadecimal 22 into SDMCTL. During the vertical blank, while ANTIC is quiet, the operating system will reload ANTIC's program counter with these new values.

\section*{Screen-Data Placement}

Screen memory can be placed anywhere in the address space of the computer. Normally, the display list specifies the beginning of the screen memory with the first display instruc-tion-the initial LMS instruction.

However, ANTIC can execute a new LMS instruction with each display line of the display list, if this is desired. In this way, information from all over the address space of the computer can be displayed on a single screen. This can be of value in setting up independent text windows.

There are several restrictions in your placement of the screen memory. First, screen memory should not cross a 4 K -byte address boundary. If you cannot avoid crossing a 4 K -byte boundary (as would be the case in BASIC mode 8, which uses 8 K bytes of RAM), you must reload the memory-scan counter with a new LMS instruction. Second, if you wish to use any of the Atari

> Screen memory can be placed anywhere In the address space of the computer.

operating-system screen routines, you must abide by the conventions the operating system uses. This can be particularly difficult when using a modified display list in a BASIC program. If you alter a standard display list from a BASIC program and then attempt to PRINT or PLOT to the screen, the operating system will do so under the assumption that the display list is unchanged. This will probably result in a garbled display.

There are three ways the display can fail when you attempt this. First, BASIC may refuse to carry out a screen operation because it is impossible to do with the graphics mode that the operating system thinks it is in. The operating system stores the value of the graphics mode that it thinks is on the screen in hexadecimal address 57. You can fool the operating system into cooperating by POKEing a different BASIC mode value there. POKE the BASIC mode number, not the ANTIC mode number.

The second failure arises when you mix mode lines with different screenmemory byte requirements. Some mode lines require 40 bytes per line, some require 20 bytes per line, and some require only 10 bytes per line.

Let's say that you insert one 20-byte mode line into a display list with 40 -byte mode lines. Then you PRINT text to the display. Everything above the interloper line is fine, but below it the characters are shifted twenty spaces to the right. This is because the operating system assumed that each line would require 40 bytes and positioned the characters accordingly. But ANTIC, when it encountered the interloper line, took only 20 bytes of what the operating system thought should be a 40 -byte line. ANTIC interpreted the other 20 bytes as belonging to the next line and displayed them there. This resulted in the next line and all later lines being shifted twenty spaces to the right.

The only absolute way around this problem is to refrain from using BASIC PRINT and PLOT statements to output to a mixed display-list screen. The quick and dirty solution is to organize the screen into line groups that contain integer multiples of the standard byte requirement. That is, do not insert a 20 -byte mode line into a 40 -byte display; instead, insert two 20 -byte lines or one 20-byte line and two 10 -byte lines. As long as you retain the proper integer multiples, the horizontal shift will be avoided.

This solution accentuates the third problem with mixed display lists and BASIC: vertical shifts. The operating system positions screen material vertically by calculating the number of bytes to skip down from the top of the screen. In a standard 40-byte line display, BASIC would position the characters onto the tenth line by skipping 360 bytes ( 40 bytes per line times 9 full lines) from the beginning. If you have inserted four 10-byte lines, BASIC ends up 3 lines further down the screen than you would otherwise expect. Furthermore, different mode lines consume different numbers of scan lines, so the position on the screen will not be quite what you expected if you do not take scan-line costs into account.

As you can see, mixed-mode displays can be difficult to use in conjunction with the operating system. Often, you must fool the operating system to make such displays work.


XCOMP introduces a complete micro-size disk subsystem with more...
```

- MORE STORAGE
- MORE SPEED
- MORE VALUE
- MORE SUPPORT

```

S100 users . . The XCOMP subsystem is now available with 10 megabytes of storage; 5 megabytes also available at \(\$ 2,898.00\). Compare the price and features of any other \(51 / 4\)-inch - or even 8 -inch system, and you'll agree that XCOMP's value is unbeatable.

\section*{OUTPERFORMS OTHER HARD DISKS}

Floppy disk and larger, more expensive hard disks are no match for this powerful little system. More data is available on every seek: 64 K on 10 MB and 32 K on 5 MB . Faster seek time too - an average of 70 MS . It provides solid performance anywhere with only 20 watts of power. Data is protected in the sealed enclosure, and the landing zone for heads provides another margin of safety. The optional power board plugs directly into the S100 bus and provides power for the drive.

\section*{FAST CONTROLLER}

The XCOMP controfler is the key to this system's high efficiency operation. Speed-up features include interleave without table lookup, block-deblock with controller buffer, and read lookahead. OEMs worldwide have already proven the outstanding performance of the XCOMP controller.

\section*{MORE SOFTWARE}

Included with the system is software for testing, formatting, I/O drivers for \(\mathrm{CP} / \mathrm{M}^{\top}\), plus an automatic CP/M driver attach program. Support software and drivers for MP/M \({ }^{(1)}\) and Oasis \({ }^{( }\)are also available. The sophisticated formatting program assigns alternate sectors for any weak sectors detected during formatting, assuring the lowest possible error rate - at least ten times better than floppies.

\section*{WARRANTY}

The system has a full one-year warranty on parts and workmanship.

\section*{ALSO AVAILABLE FROM XCOMP}
- General Purpose controllers (8 bit interface), with easy interface to microprocessor-based systems.
- GP controller adapter that plugs directly into most Z80 computers.
- ST/R GP controller for the 5 MB and 10 MB drive above, with ST506 type interface.
- SG/R GP controller for SA1000 interface.
- SM/R GP controller for storage module drives.
- ST/S, SG/S, and SM/S, same as above, for the S100 bus.

Quantity discounts available. Distributor, Dealer, and OEM inquiries invited.

See your local Dealer, or call:
XCOMP, Inc.
7566 Trade Street
San Diego, CA 92121
Tel: (714) 271 -8730
Telex: 182786
\begin{tabular}{|c|c|cc|}
\hline \begin{tabular}{c} 
Buy \\
Direct from
\end{tabular} & \begin{tabular}{c} 
An Authorized \\
Direct HP \\
Dealer
\end{tabular} \\
\hline
\end{tabular}

\section*{HUGE SAVINGS ON CALCULATORS AND COMPUTERS}

Call 800-682-9250 in California - 800-538-9580 all other states inciuding Alaska and Hawaii 408-624-0822 outside USA - Telex 172532 - TWX 9103605000

Hours 7:00-6:00 (PST) Monday-Friday


Prices subject to change without notice - Prices do not reflect shipping and handling charges CPI — P.O. Box 22530 - Carmel, CA 93922 - 3785 Via Nona Marie

Call for items not shown in this ad

To PRINT or PLOT to a mode window, POKE the BASIC mode number of that window to hexadecimal location 57, then POKE the address of the top left pixel of the mode window into hexadecimal locations 58 and 59 (low byte, then high). In character modes, execute a POSITION 0,0 to home the cursor to the top left corner of the mode window. In map modes, all PLOTs and DRAWTOs will be made using the top left corner of the mode window as the origin of the coordinate system.

The display-list system can be used to produce appealing screen displays. Its most obvious use is for mixing text and graphics. For example, y ou could prepare a screen with a bold BASIC mode 2 title, a medium-size BASIC mode 1 subtitle, and small BASIC mode 0 fine print. You could then have a BASIC mode 8 picture in the middle, with more text at the bottom.

With assembly-language routines, modified display lists are best used by organizing the screen into a series of windows, each window having its own LMS instruction and its own independent RAM area.

\section*{Modification Applications}

One simple application of displaylist modifications is to vertically space lines on the screen by inserting blank-line bytes. This will add some vertical spacing, which will highlight critical messages and enhance the readability of some displays.

Another important use of displaylist modifications is in providing access to features not available from BASIC. There are three text modes supported by ANTIC that BASIC does not support. You can gain access to these modes only by modifying the display list. There are also display-list-interrupt and fine-scrolling capabilities that are only available after the display list is modified. These features are the subjects of later articles in this series.

Manipulations with the LMS instruction and its operand offer many possibilities to the creative programmer. For example, by changing the LMS during vertical blank, the programmer can alternate screen images.


\section*{...And my dad says GRAFTRAX80 does better graphics than anybody.}

\section*{Epson.}

You might say it's the head of its class. GRAFTRAX 80 gives you the highest resolution dot matrix in the world - up to 120 dots per inch horizontally and 216 dots per inch vertically. Which makes our MX-80 and MX-80 \(\mathrm{F} / \mathrm{T}\) work more like a plotter than a printer.

And that's just for starters.
GRAFTRAX 80 more than doubles the features available in an Epson MX-80 or MX-80 F/T. For instance, we've added nice little touches like an italic character set - which doubles the number of font types to 24. And with GRAFTRAX 80 , you can change style, size and density anywhere in the line. And backspace the head. And use block graphics with any computer. And redefine all escape codes under software control.
Up to now, you couldn't get some of these features at any price. With GRAFTRAX 80, you get 'em all. And more. Lots more.

Best of all, we haven't forgotten all those people who already own an MX-80 or MX-80 F/T. You own the printer that set the standards all the others are following. And you can install GRAFTRAX 80 PROMs yourself, for less than \(\$ 100\). And make the best even better.

You can see why we

say GRAFTRAX 80 is say GRAFTRAX 80 is There's nothing else in its class.
first frame second frame third frame fourth frame effective luminance \(\times 4\) perceived luminance

Pixel Contents (By Color Register)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Pixel Contents (By Color Register)} \\
\hline 1 & 1 & 1 & 1 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 \\
\hline B & 1 & 1 & 1 & B & B & 2 & 3 & 2 & 3 & 2 & 3 \\
\hline B & B & 1 & 1 & B & B & B & B & 2 & 3 & 2 & 3 \\
\hline B & B & B & 1 & 8 & B & B & B & B & B & 2 & 3 \\
\hline 2 & 4 & 6 & 8 & 10 & 12 & 20 & 24 & 30 & 36 & 40 & 48 \\
\hline
\end{tabular}

Table 4: Advanced color and luminance control through the high-speed changing of the video display; see the text for details.

This can be done at slow speed to change between predrawn displays without having to redraw each one. Each display would continue to reside in (and consume) memory even while it is not in use, but it would be available almost instantly. This technique can also be used for animation. By flipping through a sequence of displays, cyclic animation can be achieved. The program to do this would manipulate only 2 address bytes to display thousands of bytes of memory.

It is also possible to superimpose images by flipping screens at high speed. The human eye has a time resolution of about \(1 / 10\) of a second,
so a program can cycle between four images, one every \(1 / 60\) of a second, so each repeats every \(1 / 15\) of a second. In this way, up to four images can appear to reside simultaneously on the screen. There are some drawbacks to this method. First, four separate displays may well cost a lot of memory. Second, each display image will be washed out because it only shows up one quarter of the time. This means that the background of all displays must be black, and each image must be bright. Furthermore, there will be some unpleasant screen flicker when this technique is used. A conservative programmer might consider cycling between only three or

\section*{Need a Real-Time Multi-Tasking Executive for 8080 and Z80? \\ }
- Faultless operation proven in world wide use
- Truly hardware independent
- Optimized for fast interrupt response
- Minimal memory requirements
- ROMable for control applications
- Terminal Handler is CP/M BDOS compatible
- Console Driver supports Intel iSBC boards
- SYSGEN speeds user system configuring
- Program in PL/M, Fortran, Pascal or Assembler
- Source code included (Intel or Zilog mnemonics)
- Unlimited use licence agreement
- Complete documentation (available separately)
- Low cost

Dealer encquiries invited


KADAK Products Ltd.
206-1847 West Broadway Aventue Vancouver, B.C., Canada V6J IY5 Telephone (604) 734-2796
Cl/PM is a mademank of Digital Researeh Corp: RMX/So, iSBC are trademarks of Inel Corp.
even two images. This technique can also be used to extend the color and luminance resolution of the computer. By cycling between four versions of the same image, each version stressing one color or luminance range, a wider range of colors and luminosities is available.

For example, suppose we wish to display a bar of many different luminances. We first set our four color registers to the following hexadecimal values:
\[
\begin{array}{lr}
\text { background: } & 00 \\
\text { playfield 1: } & 02 \\
\text { playfield 2: } & 0 \mathrm{~A} \\
\text { playfield 3: } & 0 \mathrm{C}
\end{array}
\]

If we put the images described in table 4 into each of the screen-memory areas, we can achieve much finer luminance resolution.

A final suggestion concerns a subject that is laden with opportunities, but that is as little understood as the dynamic display list. This is a display list that the 6502 changes during vertical-blank periods. It should be possible to produce interesting effects with dynamic display lists. For example, a text-editing program could dynamically insert blank lines above and below the screen line being edited to set it apart from the other lines of text. As the cursor is moved vertically, the display list is changed to isolate the screen line the cursor is on. The technique is odd but very effective.

\section*{Conclusions}

The display list is a powerful system for creating and controlling displays. It is not a simple system. In essence, it is a scheme for mating two completely different technologies, the television and the microcomputer. When I consider the differences between these two technologies and the exacting demands of each, I am surprised that the display-list system achieves such a favorable combination of power and simplicity. Even more surprising is the way the display-list system supports an even more powerful set of graphics capabilities, such as graphics indirection, display-list interrupts, and fine scrolling. These will be the subjects of future articles in this series.

\section*{R\&D COMPUTER SYSTEMS}

\section*{Data Acquisition \& Control Systems}

16 to 256 ch.; Programmable gain; Voltage or current output;
12, 14, or 16 bit; 30 to 125 KHz ; Stepping motor control
808616 Bit Micro Systems
31 MByte Winchester Drives 256 KByte Memory Boards 8086 Software

\section*{Real Time Video Digitization Systems}

\section*{S-100 Boards}


16 Kilobyte Static RAM 8 and 16 bit transfer


Real Time Video Digitizer and Display


Analog to Digital Converter 16 channels - 12 bit accuracy 30 KHz Conversion rate


8086 CPU with Vectored Interrupts


PROM and I/O
2 RS 232-PIO CP/M-86 ROM Boot


Expansion Multiplexer


4 P1O and Timer/Counter


Analog to Digital Converter and Timer/Counter
16 channels expandable to 256
12, 14, or 16 bit accuracy 30,40,100, or 125 KHz Programmable Gain


Digital to Analog Converter 4 channels - 12 bit accuracy 3 microsecond conversion rate


Digital to Analog Companion 4-20 mA output - Filters


\section*{DO CALL OMEGA TOLL FREE!}


CALL OMEGA AND FIND OUT WHY WE ARE AMERICA'S FASTEST GROWING COMPUTER SALES COMPANY!
תMEGA SALES COMPANY

\section*{MEST COAST/EAST CDAST}


No Surcharge for Credit Cards Orders • We Accept C.O.D.'s
All Equipment Factory Fresh With MFT. Warranty • Stock Shipments Same Day or Next

\section*{WEST COAST 1-800-235-3581}

OMEGA SALES CO. 3533 Old Conejo Rd. \#102 Newbury Park, CA 91320 1-805-499-3678
CA. TOLL FREE 1-800-322-1873

\section*{EAST COAST 1-800-556-7586}

OMEGA SALES CO. 12 Meeting St.
Cumberland, RI 02864 1-401-722-1027

\title{
Natural-Language Processing The Field in Perspective
}

\author{
Gary G Hendrix \\ Natural Language Program \\ Aritificial Intelligence Center \\ SRI International \\ 333 Ravenswood Ave \\ Menlo Park CA 94025 \\ Earl D Sacerdoti \\ Machine Intelligence Corp \\ 1120 San Antonio Rd \\ Palo Alto CA 94303
}

Through a process spanning thousands of years, natural languages have evolved to meet the manifold needs of people to communicate and record a diversity of information in a wide variety of circumstances. Natural language is the medium of the butcher, the baker, and the candlestick maker; the poet and the lover; the politician and the preacher; the parent and the child. Even for the scientist and computer programmer, it is the mother tongue-the language resorted to when formal expressions and intuition fail.

Natural languages stand in marked contrast to formal languages, such as BASIC and Pascal, which were designed to be easily understood by computers and are intended for the specialized task of expressing algorithms and data structures. The fluent use of natural language is an information-processing activity of great complexity. Endowing computers with this ability has long been a major goal of research in artificial intelligence (also called machine intelligence), a branch of experimental computer science that studies the nature of knowledge and its manipulation.

Understanding the computational mechanisms that underlie the use of natural language is the central objective of computational linguistics (see the text box at the end of the article), a science at the juncture of artificial intelligence, philosophy, linguistics, and psychology. The two primary goals of this field are:
- to understand how humans communicate
- to create machines with human-like communication skills
The first is a scientific goal pursued to help us understand ourselves. In particular, although we all are implicitly expert in the use of natural language, we have only vague notions of the mental processes involved. A clearer in-
sight into their essential nature and functioning might enable us to be better communicators, to train our children better in language skills, and even to design more efficient intercomputer communications.
The second goal is an engineering one pursued for a practical purpose-to create machines that can communicate with people in languages they already know. At present, only a small segment of the population, computer programmers, can communicate with computers. The advent of machines that understand natural languages will make it possible for virtually anyone to make direct use of powerful computational systems.

Progress in computational linguistics is facilitated by pursuing both of the above goals simultaneously. Creation of mechanical schemes for dealing with some aspect of natural-language processing sheds light on how it might actually be performed by the human brain. Similarly, evidence derived from observing how people use language suggests prospective computational mechanisms or, more often, provides valuable insights into the reasons particular mechanical processes fail.

To create computer systems that deal with certain significant subsets of natural-language phenomena, it is probably not necessary to perform the task in a way closely simulating computational processes in the human brain. This should not be surprising. Mechanical dishwashers use a nonhuman technique to produce a result equivalent to that of a human dishwasher. For interactions about very limited subject areas, we can hope to employ thoroughly nonhuman techniques in dealing with natural language. Nevertheless, machines concerned with any but the most mundane aspects of human language will probably have to deal with human psychology. After all, natural language has evolved as an efficient tool for conveying information between human minds. One of

\section*{Themost comprehensive anduseful computer reference in the world.}

If reply card has been removed, please write:
The Library of Computer and Information Sciences
Dept. 7-AR2, Riverside, N.J. 08075,
to obtain membership information and application.
 when you join The Library of Computer and
Information Sciences. You simply agree to buy when you join The Library of Computer and
Information Sciences. You simply agree to buy three more books - at handsome discounts within the next 12 months.

Find the answers to virtually all your data processing questions in the ENCYCLOPEDIA OF COMPUTER SCIENCE.

Thousands of photos, diagrams, graphs and charts completely illuminate the ENCYCLOPEDIA'S clear and thorough coverage of every area of the computer sciencessoftware, hardware, languages, programs, systems, mathematics, networks, applications, theory, history and terminology.
Appendices provide abbreviations, acronyms, special notations and many numerical tables. special notations and many numerical tables. reference system that assists the reader seeking in-depth information. What is The Library of Computer and Information Sciences?

It's a book club especially designed for the computer professional. In the incredibly fast-moving world of data processing, where up-to-date knowledge is essential, we make it easy for you to keep totally informed on all areas of the information sciences. In addition, books are offered at
A mammoth volume covering everything from Access Methods to Working Set, in 1,523 pages, 470 articles and over 1,000 illustrations, tables and charts.
- Authoritatively compiled by over 200 internationally respected authorities.
discounts up to \(30 \%\) off publishers' prices.

Begin enjoying the club's benefits by accepting the ENCYCLOPEDIA OF COMPUTER SCIENCE. It's the perfect reference for computer professionals . . . and it's a great bargain, too.

\title{
The TELERAM S-100 Bubble Memory System A whole lot more... at \(25 \%\) less
}

Now there is a bubble memory system that is fully compatible with IEEE S100. And it's available from Teleram at \(25 \%\) less cost compared to other bubble memory systems currently available-plus-it requires only \(25 \%\) of the physical space. Each board has a capacity of 128 K or 256 K bytes of non-volatile storage and can be daisy chained to provide one megabyte.
FEATURES:
- DATA IS RETAINED AFTER POWER OFF
- 40 MILLISECOND ACCESS TIME
- CORRECTION FOR UP TO 5 BIT BURST ERRORS
- CP/M COMPATIBLE
- UNAFFECTED BY DUST
- VERY HIGH RELIABILITY
- OPERATES IN VERY HARSH ENVIRONMENTS
- COMPLETELY MANUFACTURED IN THE U.S.
- IDEALLY SUITED FOR PORTABLE AND PROCESS CONTROL APPLICATIONS
The Teleram S-100 Bubble Memory System can provide the opportunity for new design concepts.
For a free data sheet call or write:
TELERAM COMMUNICATIONS CORPORATION, 2 CORPORATE PARK DRIVE, WHITE PLAINS, N.Y. 10604, (914) 694-9270

TELERAM COMMUNICATIONS
CORPORATION
White Plains, NY 10604 (914) 694-9270 TELEX 646658
the participants in a man-machine dialogue operates with all the constraints and richnesses of the human psyche; the other has to take these into account.

The ultimate goal of creating machines that can interact in a facile manner with people remains far off, awaiting both improved information-processing algorithms and alternative computing architectures. However, progress in the last decade has demonstrated the feasibility of employing today's computers to deal with natural-language input in highly restricted contexts. Futhermore, microcomputer implementation of these limited language-processing techniques is leading to more practical, cost-effective systems.

In this article, we offer an overview of the potential applications, experimental systems, existing techniques, research problems, and future prospects in this rapidly evolving field. We will address major issues in naturallanguage processing by focusing on several representative systems, necessarily leaving much important work unmentioned. For example, we will not discuss the complex issues involved in understanding spoken (as opposed to typed) language. Our intentions are to demonstrate that natural-language processing techniques are useful now, to reveal the richness of the computations performed by human natural-language communicators, and to explain why the fluent use of natural language by machines remains an elusive aspiration.

\section*{Applications of Natural-Language Processing}

To motivate our discussion about how to approach the technological goal of creating a machine with human-like communication skills, let us consider some potential areas for the application of natural-language processing:
- Machine translation-The oldest dream of computational linguistics is of a mechanical device that can read documents written in one natural language and produce corresponding documents written in other languages, but with equivalent meanings. In fact, the birth of computational linguistics occurred in 1946, when Warren Weaver and A Donald Booth first suggested the use of a digital computer to create such a device. The Association for Computational Linguistics, the professional organization in this discipline, was originally named the Association for Machine Translation and Computational Linguistics. - Document understanding-Beyond simply translating a document from one language to another, a device might read and understand documents, fitting their information into a larger framework of knowledge. A practical device of this sort would read and assimilate a document much as a person would. The device might subsequently produce abstractions of the document, alert people likely to be interested in it, or answer specific questions based on its information. If such a device had read many documents, it might be able to act as a librarian, directing users to pertinent references.
- Document generation-A task related to document understanding is document generation. We can envisage a device that translates information stored in a formal

\section*{INTRODUCING.an}

COMES WITH: (ADDITIONAL)
- WORD STAR \({ }^{\circledR}\) WORD PROCESSOR \(\triangle\) GENERAL LEDGER
- ACCOUNTS PAYABLE
- SALES ORDER ENTRY
- ACCOUNTS RECEIVABLE - INVENTORY CONTROL

ONLY


QUANTITY DISCOUNTS AVAILABLE! INCLUDING CP/M2.2 \({ }^{\circledR}\) (\$4950.00 INCLUDING ACCOUNTING SOFTWARE AND WORD STAR \({ }^{*}\) )

\section*{320K} MINI DRIVES SHOWN, \(8^{\prime \prime}\) and \(51 /{ }^{\prime \prime} 10 \mathrm{MB}\) HARD DISK OPTIONAL

\title{
1 YEAR PARTS WARRANTY!
}
(90 DAYS ON DRIVE PACKAGE, KEYBOARD AND LABOR)

\section*{WV. MICRO SALES S-100-8}

\section*{}

\section*{TERMINAL}
- Feather Touch Capacitance Keyboard
- 60 Key Standard ASCII

PLUS + Hex Keypad
PLUS + 8 Special Function Keys
PLUS +20 Screen Editing Keys
- SOROC Type Screen Attribute Set
- Half Intensity

\section*{COMPUTER}
- 8 Slot S-100
- 64K Dynamic Ram
- 4MHZ Z-80
- Serial Printer Port (150-19.2K)
- Double Density Disk Controller
- Programmable Baud Rate
- Programmable Keyboard Set

\section*{DISK STORAGE}
- Dual Double Density 51/4 Single Sided Drives
- DOUBLE SIDED Option
- Double Sided, 77

Track, Option
- Color Matched Enclosure
- Self Contained Power Supply


Figure 1: The typical nontechnical user confronts a "black box" that contains large amounts of knowledge on a given subject.
language in a computer's memory into ordinary language. For example, the designer of an automobile engine might describe repair procedures in a formal language. (After all, we expect that the designing of mechanical devices will someday be done principally by computer systems, which may prefer formal languages.) From this formal description, instruction manuals in various languages could be generated.
A more sophisticated system could generate special manuals for particular groups or individuals. Taking into

\section*{EXPAND APPLE AND ATARI 16K RAM CARD \\ These exciting new additions to our line will meet the demand for} low cost alternatives to the higher priced language and ram cards. The ConComp Apple II 16 K Ram Card will work with all exisitng software compatible with the Apple Language Card' and the Microsoft 2-80 Softcard. \({ }^{5}\) Allowing up to 64 K of user memory, the Ram Card helps make complete use of Pascal, CP/M, \({ }^{4}\) and larger programs like VisiCalc. \({ }^{3}\) The Atari \(800^{2}\) version is compatible with all Atari software.
Both cards are constructed using high-speed high-quality dynamic RAM and come with a full one year warranty.
For more information please call or write.
'Trademark of Apple Computer Inc.
\({ }^{2}\) Trademark of Alari inc.
Jrademark of Personal Sottware Inc.
"Trademark of Digital Research
STrademark of Microsoft Consumer Products, Inc
account that mechanics know much about auto repair, a smart system would generate a different manual for mechanics than for automobile owners, but on the basis of the same underlying information. Information on elementary mechanical tasks would be included in manuals for less knowledgeable individuals. An ultimate system would tailor a manual to the background of each individual.

It is worth noting that a repair manual need not be written in linear sequence in a typical book format. Using a computer, advice about how to proceed on any particular problem could be dynamically generated to apply specifically to the task at hand. We will return to this topic later in the article.
- As part of a system-An interesting use of natural-language processing is as part of a larger computer-based system. For example, imagine devices that not only communicate in English, but also:
- provide answers to questions by accessing large data bases
- control complex equipment such as industrial robots, power generators, or missile systems
- furnish expert advice about medical problems, mechanical repairs, how to buy stocks, or what to cook for supper
- teach courses in a broad range of subjects

An extreme example of a computer-based system that would use natural-language processing as an integral component is a robot that communicates in English. Such a robot might be expected to perform as many tasks involving the use of natural language as might be done by a human assistant.

The importance of these potential applications and the basic science needed to make them possible has long been appreciated by scientific-funding agencies of the United States government. Current progress in the field is due largely to support from the Defense Advanced Research Projects Agency, the National Science Foundation, and the Office of Naval Research.

\section*{What Existing Systems Can Do}

One of the most important and feasible areas for the application of natural-language processing is accessing data in data bases. Billions of dollars have been spent in collecting and encoding such data. However, this information is generally not readily available to the people who need it. The situation is illustrated by figure 1 .

An executive in the widget business wants to direct a simple question to his black box. He wants to know, "How many widgets did we sell in August?" He knows the information is in the black box, but he lacks the expertise to make the box understand him.

As shown in figure 2, he must find an interpreter (computer programmer) who can translate his question into a formal query to give to the machine. Unfortunately, programmers are out drinking coffee when you need them,

\title{
When it comes to microcomputer software we wrote the book.
}

How do you stay up-to-the-minute with the rapidly changing world of microcomputer software? Get the Lifeboat Catalog.

\section*{The Latest Innovations}

The new Lifeboat Catalog is packed with the latest state-of-the-art soft ware. And if we publish a new program after the latest catalog has gone to press, we enclose a flash bulletin in your copy.

\section*{The Greatest Selection}

Because Lifeboat is the world's largest publisher of microcomputer soft ware, our catalog offers you the greatest selection of programs for business, professional and personal use. Our more than 200 programs range from integrated accounting and professional practice systems to office tools for bookkeepers and secretaries to sophisticated tools for programmers. Included are business systems, word processors, programming languages, database management systems, application tools and advanced systems utilities.
We specialize in software that runs on most small business computers. Our more than 60 media formats, including floppy disks, data cartridges, magnetic tape and disk cartridges, support well over 100 computer brands of domestic and foreign manufacture.

\section*{Get Full Support}

We give the crucial dimension of after-sales service and full support to everything we sell. That includes:
- A telephone hotline where technical and customer service representatives will answer your questions 11 hours a day. An update service for software and documentation.
- Telephone, telex and mail-order service at the New York headquarters and at overseas offices in England, France, Switzerland, West Germany and Japan.
- Export service providing software delivery to six continents.
- Subscriptions to Lifelines \({ }^{\mathrm{rm}}\), the monthly magazine that offers comparative reviews, tips, techniques, identified bugs and updates that keep you abreast of change.

\section*{Get It Now}

Lifeboat now serves tens of thousands of satisfied customers with our breadth of up-to-date, fully tested, fully supported and competitively priced software.

You may not need all we offer, but we offer just what you need. After all, we wrote the book.

LIFEBOAT WORLDWIDE ofters you the world's largest library of software. Contact your nearest dealer or Lifeboat:


\section*{You are} ready for MICRO if you want to. . .
\(\square\) Go beyond canned software Use your computer for more than games
\(\square\) Learn advanced programming techniques
\(\square\) Understand the inner workings of your computer
\(\square\) Get the most out of your 6502/6809 system
Month after month, MICRO gives readers sophisticated software applications, detailed discussions of programming languages, and indepth hardware tutorials.
To get the most out of your machine, say YES to MICRO today! We accept VISA or
Mastercard. \(\mathbf{\$ 1 8 . 0 0}\) per year in the U.S.,
\$21.00 elsewhere.
Use Our 24-hour Toll-free Service 800-227-1617 \({ }_{\text {Ex. } 546}\)

In California: 800-772-3545, Ext. 546


34 Cheimsford Street
P.O.Box 6502

Chelmsford, MA 01824


INTERPRETER
Figure 2: The nontechnical user obtains information from the computer through the use of an interpreter (computer programmer), who translates the English question into a form the machine understands.
or they are working on a project more important than your project-so they cannot help you this week. When a programmer is available, misunderstandings often occur and there are problems in creating proper code. By the time an answer is extracted from the computer, it may no longer be timely and may not even be relevant!

\section*{The LADDER System}

To produce timely answers to questions and quickly clear up problems as to how a decision-maker's question is to be interpreted, the turnaround time must be cut from hours or days to seconds.

Research groups around the world are attempting to do this by automating the programmer in figure 2 . For example, the LADDER system developed at SRI International (see references 11 and 12 at the end of this article) is capable of translating a question such as:

\section*{TO WHAT COUNTRY DOES THE FASTEST SUB BELONG?}
into either the code of listing 1 or listing 2 , depending on which DBMS (data-base management system) has the relevant data. An explanation of these segments of code is unnecessary here. The point is that systems exist that are capable of accepting simple English queries specifying

Text continued on page 314

\title{
SOFTWARE TO SELL COMPUTERS
}
and International Micro Systems can provide you with the largest selection of quality business applications ever developed for the microcomputer industry.
If you are just looking for a G.L., A/P, and Payroll, you can find them in a dozen ads in this magazine. But thers's a much bigger market for micros out there than that. Where can you find a fully interfaced Wholesale/Retail Distribution System? How about Manufacturing Inventory Control including Production Scheduling \& Control. See that one anywhere else? Maybe your market is Medical/Dental and IMS has the full systems there too. You can't sell computers without software and IMS has the finest selection of software available for you. Each system has been developed by the IMS professional staff and we support what we sell.
But thats not all. International Micro Systems has the strongest dealer marketing plan in the industry. With our.

\section*{s245 Dealer Demo System.}
we put all the software shown below in your office or store ready to demo to your prospects and we include the promotional material and our unique video sales presentation to help you move systems. Give us a call or drop us a card and let us show you what selling business systems should be all about.

Financlal Systems
GL. \(A / P\). \(A / R\) Payroll
Cash Receipts/Disb.
Job Costing
Mailing List Mgmt.
Medical/Dental Office.Scheduler
Patient Billing \& A/R Insurance Forms
Governmental/Educational Student Record Keeping and Scheduling Fund Accounting

Wholesale Distribution System Purchasing \& Receiving Inventory Contral Invoicing \& Receivables Salesman Comm. Reporting Backorder Management
Manufacturing Inventory Control Finished Goods Inventory Mgmt. Parts Inventory Mgmt. Parts Pupchasing \& Receiving Bill of Material Production Scheduling

For detalls on our demo special, contact us at: 8425 Quivira Road, Lenexa, Kansas 66215 Phone: (913) 888-8330

Listing 1: An English-language query translated to an equivalent program in DATALANGUAGE.

\section*{English Query-}

To what country does the fastest sub belong?
DATALANGUAGE Query-
BEGIN
DECLARE Y1 STRING (, 100) , D=' \('\)
DECLARE Y2 STRING \(\left.(, 100), \mathrm{D}={ }^{\prime}\right\}^{\prime} Y 2={ }^{\prime} 00.0^{\prime}\)
DECLARE Y3 INTEGER Y3 \(=0\)
DECLARE Y5 STRING (, 100) , D \(\left.={ }^{\prime}\right\}^{\prime} Y 5=0\)
DECLARE Y4 STRING (, 100), \(\left.D={ }^{\prime}\right\}^{\prime} Y 4=0\)
FOR R1 IN SHIPCLASCHAR WITH (R1.TYPE2 EQ 'S') AND
(R1.TYPEl EQ 'S') FOR R2 IN SHIPCLASDIR WITH (R2.SHIPCLAS EQ R1.SHIPCLAS)

FOR R3 IN SHIP WITH (R3.UICVCN EQ R2.UICVCN) BEGIN
\(\mathrm{Yl}=\mathrm{R} 3 . \mathrm{MCSF}\)
IF Yl LE '99.9' AND Y2 LT Y1 THEN
BEGIN
\(Y 2=Y 1\)
Y5 \(=\) R3.NAT
\(\mathrm{Y} 4=\) R3.NAM
\(Y 3=1\)
END
END
IF Y3 EQ 1 THEN
BEGIN
NSTDPORT.STRING1 = Y4 NSTDPORT.STRING2 \(=\) Y5
END
END


Permanent protection for small computers, communications, medical and other sensitive electronic equipment. Surge Sentry works in parallel with the power line to shunt destructive power surges in picoseconds! Triggers at 10\% above the nominal peak voltage.

At \(\$ 89.50\), it's less than the cost of a service call. Easy to install for immediate protection. Several models to choose from to fit your specific application. For details and a free brochure, call or write:

208 Mount Hermon Road \#2
Scotts Valley, CA 95066
(408) 438-5760

Dealer inquiries invited.

Listing 2: An English-language query translated to an equivalent DBMS20 program.

English Query-
To what country does the fastest sub belong?
DBMS20 Query-
COMPUTE XSTRX11 = '00.0' \$
COMPUTE XY10 \(=0 \$\)
FIND FIRST SHIPCLASCHAR RECORD OF BLUEAREA
AREA \$
13 IF ERROR-STATUS = 307 GO TO \(14 \$\)
COMPUTE XAND \(16=0 \$\)
IF SHIPCLASCHAR-TYPE2 NE 'S' GO TO 17 \$
COMPUTE XAND16 \(=1 \$\)
IF XAND16 \(=0\) GO TO \(15 \$\)
COMPUTE XAND18 \(=0 \$\)
IF SHIPCLASCHAR-TYPEI NE 'S' GO TO 19 \$
COMPUTE XAND18 \(=1 \$\)
19 IF XAND \(18=0\) GO TO \(15 \$\)
COMPUTE XSTRZ12 \(=\) SHIPCLASCHAR-MCS \$
IF XSTRZ12 LT '00.0' OR XSTRXI1 LE XSTRZ12 GO TO \(15 \$\)
COMPUTE XSTRXIl = XSTRZ12 \$
COMPUTE XYIO \(=1 \$\)
COMPUTE XSTR 29 = SHIPCLASCHAR-MCS \$
FIND NEXT SHIPCLASCHAR RECORD OF BLUEAREA AREA \(\$\)
GO TO 13 \$
-\$
IF XY10 \(=0\) GO TO XT \$
FIND FIRST SHIPCLASCHAR RECORD OF BLUEAREA AREA \(\$\)
20 IF ERROR-STATUS \(=307\) GO TO \(21 \$\)
COMPUTE XAND23 \(=0 \$\)
IF SHIPCLASCHAR-TYPE2 NE 'S' GO TO 24 \$
COMPUTE XAND23 \(=1 \$\)
IF XAND23 \(=0\) GO TO \(22 \$\)
COMPUTE XAND25 \(=0 \$\)
IF SHIPCLASCHAR-TYPEI NE 'S' GO TO 26 \$
COMPUTE XAND25 = \(1 \$\)
26 IF XAND25 = 0 GO TO \(22 \$\)
COMPUTE XAND27 \(=0 \$\)
IF SHIPCLASCHAR-MCS NE XSTR29 GO TO 28 \$
COMPUTE XAND27 \(=1 \$\)
IF XAND27 \(=0\) GO TO \(22 \$\)
FIND FIRST SHIPCLASDIR RECORD OF BLUEAREA AREA \$
30 IF ERROR-STATUS = 307 GO TO 31 \$
COMPUTE XAND33 \(=0 \$\)
IF SHIPCLASDIR-SHIPCLAS NE SHIPCLASCHAR-
SHIPCLAS GO TO 34 \$
COMPUTE XAND33 \(=1 \$\)
IF XAND33 \(=0\) GO TO \(32 \$\)
SET SHIP-UICVCN TO SHIPCLASDIR-UICVCN \$
FIND SHIP RECORD \$
35 IF ERROR-STATUS = 326 GO TO \(36 \$\)
PRINT SHIP-NAM SHIP-NAT \$
FIND DUPLICATE SHIP RECORD \$
GO TO \(35 \$\)
-\$
FIND NEXT SHIPCLASDIR RECORD OF BLUEAREA AREA \$ GO TO \(30 \$\)
- \$

FIND NEXT SHIPCLASCHAR RECORD OF BLUEAREA
AREA \$
GO TO \(20 \$\)
- \$

GO TO XT \$
END

\title{
ALL THESE FEATURES... IN THIS SMALL SPACE... AT THIS LOW PRICE! \\ Greater computer power . . . fewer separate components . . . larger capability . . . simpler to operate . ... modular maintenance . . . \\ \\ 4,695 \\ \\ 4,695 \\ These are the unique benefits of the Quasar
} Data QPD-100 Floppy Disk Computer . . . plus unsurpassed reliability ...plus 12-month warranty on all PC boards.

Its highly reliable, double density drive is compact. Accepts both single AND double-sided disks.

Upgradeable from the Z-80 microprocessor-based system to our 16 BIT microprocessor-based system by simply plugging in extra PC cards. Hard disk and multi-user systems available.

As your requirements grow, your QDP-100 can grow to fit them.

The Quasar Data QDP-100H is a larger version with 6 -megabyte capacity; includes one double-sided floppy and one \(5 \frac{1}{4}\) microwinchester hard disk.

Both the Quasar Data QDP-100 and QDP-100H are fully compatible with all standard terminals.

Phone or write for descriptive bulletin and specifications. And ask for a demonstration. Dealer inquiries invited.

\section*{QUASAR DATA'S QDP-100 COMPUTER SYSTEM.}
BASIC LANE) motherboard (Optional)
\[
\begin{aligned}
& \text { Compiler } \\
& \text { leal-time }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Real-time clock } \\
& \text { Monitor in Pon }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Monitor in PROM } \\
& \text { Manuals sun }
\end{aligned}
\]
\[
\begin{aligned}
& \text { tation supplied: All documen- } \\
& \text { "CP/M Hand schematics, inmen }
\end{aligned}
\]
\[
\begin{aligned}
& \text { "CP/M Hand schematics, including } \\
& \text { ccounting sustbook" by Syber. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Accounting systems: by Sybex. } \\
& \text { A/P, P/R, included } G / L, A / R \text {. }
\end{aligned}
\]
2.80 is a trademark of Zilog Corp.

CP/M and MPIM
are trademarks of Digital Research Corp.
CBASIC is a trademark of Compler Systems Inc.

\title{
Quasar Data Products
}

10330 Brecksville Road, Brecksville (Cleveland), Ohio 44141


Listing 3: An actual conversation with the LADDER system. Boldface words represent user input. Material in square brackets replaces lengthy material not relevant to this article.

1-Give me the length of the Kenedy. spelling-> KENNEDY
PARSED!
Give the length of the ship KENNEDY JF

LEN \(=1072\)
2-width and draft
PARSED!
Trying Ellipsis: GIVE ME WIDTH AND DRAFT OF THE KENEDY
Give the beam and draft of the ship KENNEDY JF
(BEAM 130 DFT 36)
3-Who is her commander?
Give the rank and name of the commander of the ship KENNEDY JF
(RANK CAPT NAME MOFFETT P)
4-What about the For?
PARSED!
Trying Ellipsis on: THE FOX
WHO IS THE FOX COMMANDER
Give the rank and name of the commander of the ship FOX
(RANK CAPT NAME EVERETT J)
5-What U.S. merchant ships carrying vanadium ore are within 500 miles of the Kimlow?
PARSED!
Give the position of and time at position for the ship KIMLOW T
Give the name of merchant American ship S
where the type of cargo on \(S\) is VNAD
the great-circle distance from the position of \(S\) to
\(15-33 \mathrm{~N}, 30-10 \mathrm{~W}\), is less than or equal to 500
SHIP = GREENVILLE VICTORY, CRAIN ME, TOTOR
6 -How fast are the U.S. subs with lengths greater than 150 feet? PARSED!
Give the maximum cruising speed for and name of American ship S where the first character of the type of \(S\) is \(S\)
the second character of the type of \(S\) is \(S\)
the length of \(S\) is greater than 150
( \(\AA\) long table relating the names and maximum cruising speeds of American submarines is printed.]
7-What French ships are at readiness status 1?
PARSED!
Give the name of French ship S
where the state of readiness of \(S\) is 1
There is no French ship S
NONE

Text continued from page 310:
what information a user wants, then generating fairly complex programs specifying how the computer is to retrieve the information.

Two problems are being confronted together:
Problem 1: The system must translate from English into a formal language.
Problem 2: The system must convert a statement of what is wanted into a statement of how to get it.

Problem 2 is concerned with automatic programming, an artificial-intelligence problem currently receiving much attention (see reference 2). (Fortunately, most work on natural-language processing needs to consider only a highly restricted subset of this general problem.)

What it's like to use a system such as LADDER is suggested by the transcript, shown in listing 3, of an actual interaction. The system prompts users with a transaction number followed by a hyphen. The user then types in a question or command. (In this and future listings, we refer to the question half as a query and to the question/response pair as an interaction.) Query 1, "Give me the length of the Kenedy," contains a misspelled word. LADDER corrects this automatically, typing a note to the user directly below the input line. Once LADDER has corrected the spelling error and completed an analysis of the input, it types the message "PARSEDI", and displays its interpretation of the user's query. The system then calls a remote data base to retrieve the answer-in this case, the length (abbreviated to LEN) of the Kennedy is 1072 (feet).

Query 2 is not a complete sentence. In fact, it makes no sense when considered in isolation. But in the context of the preceding query, it is clear that the intended meaning is, "Give me the width and draft of the Kennedy." Leaving out pieces of a sentence is called ellipsis. Processing such elliptical inputs is more difficult than it may seem. The system has to avoid such interpretations as, "Give me the length of the width and draft," or even, "Give width and draft the length of the Kennedy."

Query 3 illustrates the use of a pronoun, another linguistic construct that cannot be interpreted in isolation.

Query 4 demonstrates a more sophisticated form of ellipsis in which the analysis involves more than just grammatical substitution of the new input into the old one. (This is accomplished in LADDER by looking for "WHAT ABOUT" at the heginning of an input, ind then applying the standard elliptical technique :. what follows.)

Query 5 illustrates a major benefit of natural-language processing: the user can interact with the system in terms of the job being done, letting the system be concerned with what is required from the data base. Though this is only one question from the user's perspective, it requires two questions of the data base. First, the location of the Kimlow must be determined, and then the appropriate ships within 500 miles of that location must be retrieved. The process of translating from the user's terms to those of the data base obstructs the user's decision-making job. It is therefore an appropriate process to automate.

Interaction 6 causes a large body of information to be retrieved from the data base. Althoug omitted from the listing to save space, a table summarizing the answer is displayed to the user.
Interaction 7 shows an example of a cooperative response to the user's question. The user asks a question about the readiness of French ships. However, the data base contains no information about French ships. Therefore, the literal answer to the user's question, NONE, is inappropriate by itself, since it leads the user to believe all French ships are unready. To provide a more informative response, LADDER presents additional information showing the rationale for producing the NONE response.

\title{
Lhe A2-3D1 Graphics \\ Family... professional 3D and 2D graphics for the Apple II
}

\section*{Now for non-programmers!}


\section*{A2-3D1 Graphics Package \\ \(\$ 59.95\) on disk (32K required)}
\(\$ 49.95\) on cassette (16K required)

\section*{A2-3D2 Fnhancement}
\(\$ 24.95\) on disk (48K and A2-3D1 required) \(\$ 19.95\) on cassette (32K and A2-3D1 required)

Running on the Apple II: A2-3D/A Saturn Navigator

For direct order, include \(\$ 3\) for UPS or \(\$ 5\) for first class mail delivery. Illinois residents add 5\% sales tax. Visa and Master Card accepted.

\section*{A2-cE1 Graphics Editor} \(\$ 34.95\) on disk (48K and A2-3D1 required)

A2-3D/A Saturn Navigator \$24.95 on disk (48K, A2-3D1, and Applesoft required)

The A2-3D1 is the graphics utility you can depend on whether you're mapping a town, presenting charts at a business meeting, or animating games

Now this versatility is available for the nonprogrammer with the A2-GE1 graphics editor and programmer. Create images as you view them. Șcan them, animate them, combine them, or add text or labels. With a minimum of fuss, you can prepare all sorts of scientific, business, or educational presentatiońs.

Add the A2-3D2 enhancement package for color, and as a bonus you'll also be able to manipulate images independently of each other-as many different objects at once as your memory will accommodate.
When it's time for some challenging and educational entertainment, run the A2-3D/A Saturn Navigator. You'll enjoy an adventurous flight to Saturn, enter its orbit, and rendezvous with an orbital space station that awaits your arrival.

We've reached our goal of giving you the most sophisticated graphics utilities in the marketplace

\section*{see them now at your dealer!}


Communications Corp. Box V, Savoy, IL 61874 (217) 359-8482

Telex: 206995

LADDER's methods for dealing with natural-language inputs are similar to those used by compilers and interpreters for such languages as BASIC and Pascal. For example, a BASIC interpreter might deal with assignment statements by looking for the pattern:
\[
\text { LET< variable> }=\text { <expression> }
\]

This pattern could match an instruction of the form:
\[
\text { LET } X=5+Y
\]
with " \(X\) " filling the role of the < variable> and " \(5+Y\) " filling the role of the <expression>. Associated with this pattern, the interpreter would have a function for storing the value of the expression into the memory location named by X .

Similarly, LADDER uses patterns such as:

> WHAT \(<\) BE \(>\) THE < SHIP-ATTRIBUTES \(>\) OF <SHIP-DESCRIPTION \(>\)
that can match sentences such as:

\section*{WHAT ARE THE LENGTHS AND DRAFTS OF US CARRIERS?}

Like an interpreter or compiler, LADDER associates a function with each pattern. The function associated with
the example just cited would produce calls to the database management system to retrieve attributes of ships and take as parameters the names of the attributes and a description of the ships of interest. Most of LADDER's knowledge about language and the world is implicitly encoded in its grammar and associated functions. The grammar contains much information about the particular data base being queried and is by no means a standard grammar of English. A grammar of this type is called a pragmatic or semantic grammar (see references 4 and 11).

\section*{Summary of LADDER-Like Systems}

In a later section, we will say more about what systems like LADDER can do. For now, it is sufficient to note the following:
- The computer capability shown in the transcript of listing 3 is of considerable practical utility.
- LADDER deals with a relatively large and complex data base that includes over 100 fields in fourteen files and has records for 40,000 ships.
- LADDER has been performing at this level of capability since 1976 (except for the cooperative responses such as those in interaction 7, which are relatively new-see reference 14).
- There are several systems in laboratories around the world that are capable of essentially the same level of performance as shown in listing 3. These include the systems described in references \(10,14,24,25,26\), and 31 .

\section*{ECT \\ Building Blocks for Microcomputer Systems, Dedicated Controllers and Test Equipment.}

\section*{\(\mathrm{R}^{2} / / 0\) S-100 ROM, RAM \& \(1 / 0\) BOARD}


ECT's \(R^{2} / / O\) is an \(S-100\) Bus I/O Board with 3 Serial I/O Ports (UART's), 1 Parallel I/O Port, 4 Status Ports, 2 K of ROM with the 8080 Apple Monitor Program and 2K of Static RAM.
\(\$ 295.00\)


RM-10 S-100 RACK MOUNT CARD CAGE
ECT's RM-10 is a rack mount 10 slot Card Cage with
Power Supply, consisting of an ECT-100 rack mount
Card Cage ( \(19^{\prime \prime} \mathrm{W} \times 12.25^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{D}\) ), the MB-10 Mother
Board (with ground plane and termination) all 10
connectors and guides and the PS-15A Power Supply
(15A @ 8V, 1.5A @ \(\pm 16 \mathrm{~V}\) ).
\(\$ 295.00\)

\title{
"OUR NEWEST DEVELOPMENT IN THE CONTINUING EXPANSION OF THE UCSD p-SYSTEM" \({ }^{\text {"SOFTWARE. VERSION IV." }}\)
}

\author{
JOHN BRACKETT, President, SofTech Microsystems
}


UCSD p-System and UCSD Pascal are trademarks of the Regents of the University of California. LSI-11 is a trademark of Digital Equipment Corp.

Backed by a dedicated team of professionals, SofTech Microsystems continues to enhance the world's most widely-used, portable software development system. Today it's the UCSD p-System, Version IV. Able to run on most major microprocessors including 8086, Z-80, 8080, 8085, 6502, 6809, 9900 and LSI-11 \({ }^{\text {TM }}\), Version IV is the developer's tool to make perfect programs more possible. It consolidates all the best features of earlier versions, while allowing for much larger applications, concurrent processing and improved debugging. With the addition of BASIC, more macro cross-assemblers, and improved documentation, Version IV is truly a total, professional software development and execution environment.

And, it's backed by Sof Tech Microsystems, the first to deliver a complete, portable software system for most major microprocessors with UCSD Pascal \({ }^{\text {M }}\), FORTRAN-77, BASIC, and multiple assemblers.

For tomorrow, the expansion continues. More 16 bit microprocessor installations. The performance impact of native code generation. New system utilities and languages. New tools for creating applications more rapidly. The SofTech Microsystems team is at work today to increase your options for the future.

Get the software system that's going places. Distribution licenses and single copies available. Write or call for details, so you can start going places, too.


\section*{mIICROS4STEMS}
a SUBSIDIRRY OF SOFTECH
For the software that's going places.
9494 Black Mountain Road, San Diego,
CA 92126, (714) 578-6105
TWX 910-335-1594

Listing 4: A dialogue between an expert and an apprentice repairman showing definitely determined noun phrases (underlined).

A: HOW DO I REMOVE THE FLYWHEEL?
E: FIRST LOOSEN THE TWO SMALL ALLEN HEAD SETSCREWS HOLDING IT TO THE SHAFT THEN PULL IT OFF.
A: THE TWO SETSCREWS ARE LOOSE BUT I'M HAVING TROUBLE GETTING THE WHEEL OFF.
E: USE THE WHEEL PULLER . DO YOU KNOW HOW?
A: NO
E: LOOSEN THE SCREW IN THE CENTER AND PLACE THE JAWS AROUND THE HUB OF THE WHEEL: THEN TIGHTEN THE SCREW.
A: THE LITTLE METAL SEMICIRCLE FELL OFF WHEN I TOOK THE WHEEL OFF.

For restricted classes of applications, systems such as LADDER provide language-processing capabilities that are very useful. Nevertheless, LADDER falls far short of being an ideal system, both conceptually and linguistically.
LADDER's concept of the world is based on the underlying conventional data-base management system to which it provides access. Data-base management systems can effectively store large numbers of individual, concrete facts, such as:

\section*{THE KENNEDY IS OWNED BY THE US}

But they are incapable of dealing in a general way with more logically complex notions, such as disjunction, quantification, implication, causality, and possibility. They act as if they were dealing with information about a world containing a fixed number of objects and relationships among them, with the objects and relationships being immutable.
Perhaps LADDER's most important linguistic deficiency is its limited notion of linguistic context. With minor (though useful) exceptions, LADDER treats each input as if it were given in isolation. To perceive the problem, let's consider the question:

Isolated from all contexts, this question should be interpreted as a request for the names of the commanding officers of all US tankers in the data base. But if a user has just asked the question, "What is the status of convoy C867" and has received information on a number of ships in the convoy, including two US tankers, the sample question should elicit the captains' names for only the two tankers in the convoy. LADDER ignores the context, however, answering the question as if it had been asked in isolation.

The ability to follow a changing context and make accurate references to prominent objects is a fundamental characteristic of human communication. In fact, about half the words used in ordinary'speech are found in DEF NPs (definitely determined noun phrases), the linguistic constructions most often used to refer to objects in context. Note, for example, all the definitely determined noun phrases underlined in the dialogue shown in listing 4.

The need to understand context throws considerable doubt on the idea of building natural-language interfaces to systems with knowledge bases independent of the language-processing system itself. This is because the information in the knowledge base may be needed simply for comprehension of a question. For example, to understand the phrase "the filter" in:

\section*{IF I CHANGE THE OIL IN MY CAR, WHERE SHOULD I LOOK FOR THE FILTER?}
it is necessary to know that automobiles use oil cleaned by a filter. Such knowledge makes possible the assumption that such a filter, the one on the user's car, is the referent of "the filter." We cannot translate the question into a formal query to an auto-maintenance system unless the translation system also has some information about the nature of auto maintenance.

Systems for Dealing with Dynamic Microworlds SHRDLU, a system developed by Terry Winograd at MIT around 1970 (see reference 29), was one of the first systems to deal with some of the complexities of context and address a domain of greater logical complexity than

\title{
UCSD p-System* for the INTERTEC SUPERBRNIN \({ }^{\text {wim }}\) \\ With UCSD Pascal*, FORTRAN, and BASIC \\ VERSION IV. 0
}

UCSD p-System includes: operating system, editor, filer, library, z80 assembler, and documentation.
with Pascal
\(\$ 600\)
with FORTRAN 600
with BASIC

\footnotetext{
UCSD p-System and UCSD Pascal are trademarks of the Regents of the Universtity of Californla
- Trademark of Intertec Data Systems
}

\title{
If you need M68000, Z8000, or 8086 Software, take it off our shelf.
}


YASSOCLITES. NC




Why wait up to 6 months for high quality 16 -bit resident system software, when you can get it now?

Hemenway Associates can give you the software tools you need to get the most out of your 16-bit hardware. Because 8086, Z8000 and 68000 Systems Software is sitting on our shelves right now.

Single user operating systems, macro assemblers, text editors, floating point packages, multi-tasking operating systems, linking loaders and PASCAL compilers are all ready for immediate delivery.

You've heard about Hemenway
Associates' system designs in the pages of EDN. But now you can have Hemenway-
designed software for you processor. Our software is e:
to any hardware configuratio manufacturers evaluation boards blown microcomputers. It's efficient, eas to-use and backed by ongoing support

So whether you're a microcomputer manufacturer, software developer or indlvidual microcomputer owner, Hemenway has the software for you.

For the hard facts on Hemenway software, write or call: Hemenway Associates, 101 Tremont Street, Boston, Massachusetts 02108. Phone: 617-426-1931.

TWX 710321 1203. TELEX 921735.
Circle 159 on inquiry card.


Figure 3: The microworld of blocks used by the SHRDLU program, which can manipulate objects in the microworld and answer questions about them.


Figure 4: SHRDLU in the process of executing the command "PICK UP A BIG RED BLOCK".
can be handled by a conventional data-base management system. An example of the types of interactions SHRDLU can support is shown in listing 5. At the beginning of the dialogue, both user and system are talking about a small microworld of blocks configured as shown in figure 3.

In interaction 1 of listing 5 , SHRDLU is asked to pick up a big red block. Since there is only one such block in the microworld, SHRDLU knows what to pick up. Complicating the situation, however, is a green block resting on the big red block. SHRDLU is forced to devise a plan that involves moving the simulated robot arm to the green block, lifting the green block, moving the block to a clear place on the table, placing the green block on the table, releasing the green block, returning to the red block, grasping the red block, and, finally, lifting it up.

Listing 5: An actual conversation with the SHRDLU system. Associated images of the blocks microworld are given in figures 3, 4, and 5.

1- PICK UP A BIG RED BLOCK. OK.
2 - GRASP THE PYRAMID. I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
3- FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT IN THE BOX.
BY "IT" I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING. OK.
4 - WHAT DOES THE BOX CONTAIN? THE BLUE PYRAMID AND THE BLUE BLOCK.
5 - WHAT IS THE PYRAMID SUPPORTED BY? THE BOX.
6 - HOW MANY BLOCKS ARE NOT IN THE BOX? FOUR OF THEM.
7 - WHY DID YOU CLEAR OFF THE RED BLOCK? TO PICK IT UP.
8 - WHY DID YOU DO THAT? BECAUSE YOU ASKED ME TO.


Figure 5: The microworld after execution of the command "FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT IN THE BOX". (This takes place after the action of figure 4.)

When this is done (after considerable computation time), the microworld configuration is as shown in figure 4 and SHRDLU responds with a simple "OK".

In interaction 2, the user asks SHRDLU to grasp "the pyramid." But there are two pyramids in the microworld context, and the linguistic context contains no clues to choose between them. SHRDLU realizes that it cannot identify the referent of "the pyramid" and tells the user so.

Interaction 3 reveals SHRDLU's ability to deal with a fairly complex noun phrase containing a relative clause and a comparative construction, and to handle problematic words such as "one" and "it." The result of this

exchange is the microworld configuration shown in figure 5. Note that the system has found it necessary to put down the big red block it was holding.

Interaction 4 illustrates SHRDLU's question-answering ability. In the process of answering this question, the blue pyramid and blue block become the most salient objects in the linguistic context.

In interaction 5, the user again makes use of the phrase "the pyramid." SHRDLU is now able to assign a specific referent to the noun phrase. In particular, SHRDLU picks the pyramid most recently mentioned in the conversation.

In interaction 6, SHRDLU displays its ability to count and to handle negative constructions. Its response suggests a key limitation of SHRDLU-it assumes it knows everything there is to know about the microworld. In particular, it assumes it knows about all the blocks. To see how this simplifies things, ask yourself how many people (or blocks) are not in the room you are in.

Interactions 7 and 8 show SHRDLU's rudimentary ability to deal with references to actions, rather than just to simple objects, and to recall the history of previous actions and their causal linkage-essential skills for entering into conversations about dynamic worlds.

\section*{Limitations of SHRDLU}

The sample SHRDLU dialogue illustrates the system's capacity to cope with dynamics in both the physical and linguistic environments.

As observed by Wilks (see reference 28), SHRDLU's apparent power derives largely from dealing with a logical, small, simple, closed microworld. The microworld is logical because all the facts about it can be stated in terms of first-order logic. This is fortunate because powerful problem-solving methods exist for dealing with bodies of facts in this form. But these powerful methods are computationally expensive and become increasingly inefficient as objects and facts proliferate and become more complex.

Fortunately for SHRDLU, its microworld contains fewer than a dozen objects, including the robot arm, and their interrelationships and the actions that can change those interrelationships are relatively simple. For example, there are no messy objects like pieces of rope or bodies of water that can assume an infinite variety of shapes or that can split or combine to form new objects. Furthermore, there are no cerebral creatures in the microworld to complicate the picture by having wants, goals, beliefs, and the like.

Finally, the microworld is closed because it is assumed to be completely knowable. If the box is empty and SHRDLU plans to put the blue block in it, there is no possibility that a gremlin will fill up the box with junk, turn it upside down, break it, nail a lid on it, or perform any of infinitely many activities. If SHRDLU wants to know if the box is empty, it simply tries to prove that it contains something, and watches to see if the proof fails. Anything in the microworld that is knowable is provable,

\section*{MAIL ORDER DISCOUNTS}

\section*{apple computer}

APPLE II PLUS 48K \$1,099

WE dISCOUNT PRICES - NOT SERVICE

\section*{HARDWARE}

DISK II DRIVE \& INTERFACE
DISK II SECOND DRIVE
BASF \(51 / 2^{\prime \prime}\) DISKETTES ( 10 )
LANGUAGESYSTEM WIPASCAL
INTEGER BASIC FIRMWARE CARD
APPLESOFT II FIRMWARE CARD
CENTRONICS PRINTER INTERFACE CARD
HIGH-SPEED SERIAL INTERFACE CARD
graphics tablet
APPLE IEEE 488 INTERFACE CARD
M\&R SUP.R.MOD RF MODULATOR
MICROSOFT Z-80 SOFTCARD SYSTEM
MICROSOFT 16 K RAM CARD
VIDEX 80 COLUMN BOARD
HAYES MICROMODEM II
AMDEX \(13^{\prime \prime}\) COLOR MONITOR
NEC 12" GREEN MONITOR
SILENTYPE PRINTER WINTERFACE
EPSON MX. 80 FT
QUME SPRINT \(5 / 45\) PRINTER


\section*{SOFTWARE}
\begin{tabular}{|c|c|}
\hline & \\
\hline APPLE PLOT & 60 \\
\hline TAX PLANNER & 99 \\
\hline APPLE FORTRAN & 159 \\
\hline APPLE PILOT & 19 \\
\hline APPLE MUSIC THEORY & 39 \\
\hline APPLEWRITER & 65 \\
\hline DOW JONES PORTFOLIO EVALUA & 45 \\
\hline DOW JONES NEWS \& QUOTES REP & 85 \\
\hline THE CONTROLLER & 495 \\
\hline VISICALC (16 SECTOR) & 159 \\
\hline VISIPLOT & 149 \\
\hline VISITRENDIVISIPLOT & 215 \\
\hline DESKTOP PLAN II & 159 \\
\hline BPI BUSINESS SOFTWARE (EACH) & 335 \\
\hline SUPER TEXT II. & 125 \\
\hline PROGRAMMA APPLE PIE & 110 \\
\hline EASYWRITER (80 COLUMNS) & 219 \\
\hline D.B. MASTER & 180 \\
\hline MICROSOFT FORTRAN & 149 \\
\hline
\end{tabular}


ATARI \(80016 K\) \$759


\section*{computer age. inc.}

Authorized Apple Dealer \& Service Center 4688 CONVOY STREET, SAN DIEGO, CA 92111
(714) 565-4062

\title{
STATE OF THE ART MEMORY
}


256KB LSI \(11 / 23^{®}\) SINGLE DUAL WIDTH BOARD
The First and Only 256KB Memory on a Single Dual Board.
4 MEGABYTE ADDRESS FIELD - Most memories available for the DEC PDP 11/23 are only addressable to 256 K bytes ( 18 address lines). The \(\mathrm{Cl}-1123\) is addressable to 4 mega bytes ( 22 address lines) so there is no need to worry about obsolescence.
FAST ACCESS AND CYCLE TIME - With an access time of 240 NSEC and cycle time of 400 NSEC one is insured the best throughput on the PDP 11/23 system.
PARITY - The Cl-1123 generates and checks parity for each byte of memory. Totally DEC compatible.
BATTERY BACKUP POWER CONSUMPTION - Power requirement for the module is only 1.2 AMP from the 5 volt supply. The \(\mathrm{Cl}-1123\) is easily configured for battery back-up mode of operation requiring only 300MA from a single 5 V back-up supply for 256 KB memory in the down state. SINGLE OTY. PRICE: \(\quad 32 \mathrm{~K} \times 18 \$ 575 . \quad 128 \mathrm{~K} \times 18 \mathrm{\$ 1925}\).

\section*{512 KB SINGLE BOARD MULTIBUS® MEMORY} State of the Art Multibus Memory Design. First to Offer 512KB on One Board.
The CI-8086 module is compatible with both 8 or 16 bit Multibus Systems.
PARITY - The CI-8086 generates and checks even parity with selectable interrupt on parity error.
FAST ACCESS AND CYCLE TIME - Data access is 270NSEC and cycle time is 375 NSEC.

16 MEGA BYTE ADDRESSING - The memory is addressable in 16 K increments up to 16 mega bytes.
LOW POWER CONSUMPTION - Total power consumption is under 8 watts.
SINGLE OTY. PRICE: \(\quad 128 \mathrm{~K} \times 9 \mathbf{\$ 1 3 5 0 .} \quad 512 \mathrm{~K} \times 9 \$ 2995\).


64K \(\times 9\) EXORCISER® \({ }^{\circledR}\) I SINGLE BOARD MEMORY
For Exorciser I, Exorciser II and Rockwell System 65.
FAST ACCESS AND CYCLE TIME - Data access time is 225 NSEC and cycle time is 400 NSEC, allowing the unit to work as a static RAM at clock rates in excess of 1.5 mega hertz. For 2 mega hertz operation the board can be easily configured to utilize a cycle stealing refresh operation.
ADDRESSING - On-board memory select is available in 4 K increments up to 64 K words of memory on either the VUA or VXA control inputs.
PARITY - On board even parity with output jumper select to the system bus as a parity error or non-maskable interrupt.
Complete board power consumption is under 7 watts.
SINGLE QTY. PRICE:
\(64 \mathrm{~K} \times 9 \$ 575\).

Tasted and bumed in. Full yeer warranty.

\section*{DON'T ASK WHY WE CHARGE SO LITTLE, ASK WHY THEY CHARGE SO MUCH. it Chrislin Industries, Inc.}

\author{
31352 Via Colinas • Westlake Village, CA 91362•213-991-2254
}

\section*{DYNACOMP}

\author{
Quality software for*: \\ atari \\ PET \\ APPLE II Plus \\ TRS-80 (Level II)** \\ NORTH STAR \\ CP/M Disks/Diskettes
}

\section*{CARD GAMES}

BRIDGE 2.0 (A vallable for all computers) Price: \(\$ 17.95\) Caserte/ 521.95 Dukerte An all-inclusive version of this most popular of eard games. This program both BIDS end PLAYS
either contract or duplicate bridge. Depending on the conuact, your computer opponents will elher either contrect or duplicate bridge. Depending on the conurtet, your computer opponents will elither
play the offense OR defense. If you bid too high, the computer will double your contractl BRIDGE 2.0 play the orfense OR defense. If you bio advised players and is an excelle nil learning tool for the bridge provides chaljenging enternainment for solmanced players a
novice. See the software review in 80 Software Critique.
HEARTS 1.5 (Avallable for all computers)
Price: 515.95 Canerte/ 519.95 Datierte An exciting and entertiaining computer version of this popular card game. Hears is a trick-oriented game in which the purpose is not to take any hearts or the queen of spades. Play against two computer
opponents who are armed with hard-to-beat playing stregegies. HEARTS 1.5 is an ideal game for inopponents who are armed with hard-to-beat playing stretegies. REARTS 1.5 is in ideal geme for inv
troducing the uninitinted (your spouse) to computers. See the software review in Bo Sof ware Critique.
STUD POKER (Atari only)
Prike: 511.95 Canetle/ \(\$ 15.93\) Dlakette This is the classic gambler's card game. The computer deats the cards one at a time and you (and the
computer) bet on what you see. The computer does not cheat and usually bets the odds. However, it computer) bet on whet you see. The computer does not cheat and usually bets the odds. However, it
sometimes bluffs! Also included is a five card draw poker beting practice program. This package will somecimes bluffi Also included is a five card dras
run on a 16 K ATARI. Color, zraphics, sound.
POKER PARTY (Avallable for all computers)
Price: \(\mathbf{5 1 7 . 9 5}\) Camette/ \(\mathbf{5 2 1 . 9 5}\) Dtukette POKER PARTY is a draw poker simulation based on the book, POKER, by Oswald Jacoby. This is the most comprehensive version avaluble for microcomputers. The pary consists of yourself and is
other (computer) playess. Each of these players (you will get to know them) has a diffitht personality in the form of a varying propensity to bluff or fold under pressure. Practice with POKER PARTY
before ging to that expensive game tonightl Apple Cassette and diskette versions require a 32 K (or before soing to that expensive game tonightl Apple Cassette and diskette versions require a 32 K (or larger) Apple II.
CRIBBAGE 2.0 (TRS 80 oaly)
Price: \(\$ 14.95\) Cassette/518.9s Dukette This is simply the best cribbage game available. It is an excellent program for the cribbage player in
search of a worthy opponent as well as for the novice wishing to improve his game. The graphics are search of a worthy opponent as well as for the novice wishing to improve his game. The graphics are
superb and assembly language routines provide rapid execution. See the software review in Bo Software Critique.

\section*{THOUGHT PROVOKERS}

MANAGEMENT SIMULATOR (Atarf, North Star and CP/M only) P̈rice: 519.95 Canette
 similar games played at graduate business schools, each player or team controls a company which manufacturers three products. Each player attempls to outper form his competions by setting selling prices, the highest slock price when the simulation ends.
FLIGHT SIMULATOR (Available for all computen)
Price: \(\mathbf{5 1 7 . 9 5}\) Camelte/521.95 Dtakette A realistic und extenslve mathematical simulation of ure-off, flight and landing. The program utilizes aerodynamic equations and the characteristics of a jeal airfoil. You can practice instrument approaches and navigation using radials and compass hendings. The more advanced flyer can aiso per form loops,
half-rolts and similaracrobatic maneuvers. Alhough this program does not employ graphics, it is ex-half-rotis and simuar aerobatic maneuvers. Alhough this program does no
citing and very addictive. See the software review in COMPUTRONICS.
VALDEZ (A vallable for all computers)
Prike: \(\mathbf{\$ 1 5 . 9 5}\) Camerte/519.95 Dukelle VALDEZ is a computer simulation of supertanker navigation in the Prince William Sound/Valdez Narrows tegion of Alasig. Included in this simulation is a realistic and extensive \(256 \times 256\) element
map, portions of which may be viewed using the ship's alphanumeric rader display. The motion of the map. portions of which may be viewed using the ship's alphanumeric rader display. The motion of the
ship itself is accurately modelled mathematically. The simulation also contalns a model for the tidal ship itself is accurately modeled muthernatically. The simulation also contalns a model for the tidal
patterns in the region, as well as other traffic (outgoing tankers and drifting icebergs). Chart your patterns in the region, as well as other traffic (outgoing tankers and drifting icebergs). Chart your
course from the Gulf of Alaska to Valdez Harborl See the software review in 80 Software Critique.
BACKGAMMON 2.0 (Atarl, North Star and CP / M only) Prke: \(\$ 14.95\) Cmelte/S18.95 Diskette This program tests your backgammon aktils and will also improve your game. A human can compe te againus a computer or agninst another human. The computer can even play itself. Either the humen or the computer can double or generate dlce rolls. Bourd positions can- be crented or saved for replay.
BACKOAMMON 2.0 is played in accordence with the official rules of backgammon and is sure to provide many fascinating sessions of backgammon play.
CHECKERS 3,0 (PET only)
Price: \(\mathbf{\$ 1 6 . 9 3}\) Cascette/ \(\mathbf{\$ 2 0 . 9 5}\) Dukelle This is one of the most challenging checkers programs avallable. It has 10 levels of play and allows the user to change ikill levels at any time. Though providing a very tough game at level 4-B, CHECKERS
3.0 is practically unbeatable at levels 9 and 10 .

CHESS MASTER (North Star and TRS- 80 only)
Price: \(\mathbf{5 1 9 . 9 8}\) Canette/533.95 Dtakette This complete and very powerful program provides five levels of play. It includes casting, en pausent
capiures and the promotion of pawns. Addtionally, the board may be preset before the start of play. coptures and the promotion of pawns. Additionally, the board may be preset before the start of play.
permitting the examination of "book" plays. To maximize execution apoed, the program is writen in permitting the examination of "book" plays. To maximize execution apoed, the program is written in
assembly language foy SOFTWARE SPECIALISTS of California). Full graphice are employed in the assembly language (by SOFTWARE SPECIALISTS of California). Full graphice are emplayed in the
TRS-80 version, and two widths of alphenumeric display are provided to accommodate North Sur users.
LEM LANDER (32K Apple Dlak ouly)
Prike: \(\$ 16.95\) Denketue Pilot your LEM LANDER to a safe landing on any of nine different surfaces renging from smooth to ireacherous. The geme paddies are used to conirol craft atitude and thrust. This is a real-time hish res
challengel
FOREST FIRE! (A tan oaly)
Prke: \(\$ 16.98\) Camette/520.94 Dtakette
\(s\) you in the middle of a forct: fire. Your Using excelient graphics and sound effects, this simulation puts you in the middle of a forcst fire. Your job is to direct operations to put out the fire while compensating for changes in wind, weather and ter-
rein. Not protecting valunble stuctures can result in starting penalites. Life-fike varimbles are provided rein. Nol protecting valuable stuctures can result in starting penaties. Life-ike varimbes are provided
to make FOREST FIREI Very suspenseful and chullenging. No two gmmes have the same selting and there are 3 levels of difficulty.
NOMINOES JIGSAW (Atart, Apple and TRS- 50 onty) Prke: 516.95 Camette/ 520.95 Dhkette A jigsaw purrie on your computef Complete the puzzie by selecting your pieces from a tuble contisting of 60 different shapes. NOMINOES JIGSAW is a virtuoso programming effort. The graphics are superlaive and the puzze will challenge you with its chree levela of difficulty. Scoring is based upon the
number of gueses taken and by the difficulty of the board set.up.

\section*{MONARCH (Atarl only)}

Price: \(\mathbf{5 1 1 . 9 8}\) Canetle/515.93 Dhakette MONARCH is a fascinating economic simulation requiring you to survive an 8 year term as your nation's leader. You determine the mount of acreage devoted to industrial and usicultural use, how
much food to distribute to the populace and how much should be spent on pollution contiol. You will much food to distribute to the populace and how much should be spent on pollution control. You
find that all decisions involve a compromise and that it is not easy to make everyone happy.

\section*{CHOMP OTHELLO (Atarl only)}

Prke: \(\mathbf{\$ 1 1 . 9 5}\) Comette/ \(\mathbf{5 1 5 . 9 5}\) Dhaketie CHOMP-OTHELLO? It's really two challenging games in one. CHOMP is similer in concept to NIM; you must bite off parr of a cooke, but avoid thang the polsoned ponion. OTHELLO is the popular will run on a 16 K system.

\section*{DYNACOMP OFFERS THE FOLLOWING}
- Widest variety
- Guaranteed quality
- Fastest delivery
- Friendly customer service
- Free catalog
- 24 hour order phone

\section*{AND MORE..}

STARTREX 3.2 (Avaliable for all computers) Price: \(\$ 11.95\) Camette/ \(\$ 15.95\) Dhekette This is the classic Strantek slmulation, but with several new features. For example, the Klingons now Shoot at the Enterprise without wanning while also attacking starbases in other quadrants. The Klingons ale antack with both light end heavy cruisers and move when shot at! The situation is hectic when the Enterprise is besieged by three heavy cruisers and a starbase S.O.S. is received The Klingons
get even! See the softwere reviews in A.N.A.L.O.C., 80 Software Critique and Game Merchandising.
get event See the softwere reviews in A.N.A.L.O.G., 80 Software Critique and Game Merchandising
Prike: \(\mathbf{5 1 4 . 9 3}\) Cemette/518.9s Dakette
 This is an exciting graptical stoulation of the problems involved in elosely observing a black hole with a space probe. The object is to enter and maintain, for a prescribed time, an orbit close to a smali black
hole. This is to be achieved without coming so near the anomaly that the tidal stress destroys the probe. Control of the craft is realistically simulated using side jes for rotation and main chrusters for ecceleration. This program employs Hi-Res graphics and is educational as well as challenging.
SPACE TILT (Apple and Atari only)
Price: 510.95 Camethe/S14.95 Duketle Use simple? Not when the hole gets smaller and smaller! A built-in timer allows you to measure your still ageinst others in this habit-forming action game.
MOVING MAZE (Apple only)
Price: 510.95 Camerte/514.95 Dhaketle MOVING MAZE employs the games paddies to direct a puck from one side of a maze to the other. However, the maze is dymarmically (and randomiy) buil, and is continually being modified. The objec-
tive is to cross the maze without touching (or being hit by) a wall. Scoring is by en elapsed time indicator, and three levels of play are provided.
ALPHA FIGHTER (Atarl only)
Price: \(\$ 14.98\) Cuselte/ 511.95 Diskette Two excellent graphics end action programs in onel ALPHA FIGHTER requires you to destroy the alien star ships passing through your secior of the galaxy. ALPHA BASE is in the path of an alien UFO Invasion; let five the siget by and the game ends. Both games require the joystek and
ly more difficult the higher you scoret ALPHA FIGHTER will run on 16 K systems.
THE RINGS OF THE EMPIRE (Atari only)
Price: \(\mathbf{5 1 6 . 9 5}\) Camette/520.95 Dhat ketle The emplre has developed a new batle stallon protected by rotating rings of enerty. Eech time you blasi through the rings and deasroy the station, the empire develops anew sation with more protective
rings. This excling game ruas on 16 K systems, employs extensive graphics and sound and can be played by one or two players.
INTRUDER ALERT (Atari only)
Price: \(\mathbf{5 1 6 . 9 8}\) Cameetc/520.98 Dhakelte This is a fast paced graphics game which places you in the middle of the "Drendsats" having just stolen
its plans. The droids have been aleried and are directed to destroy you al all costs. You musif find and enter your ship to escape with the plans. Five levels of difficulty are provided. INTRUDER ALERT requires a joysuck and will run on 16 K systems.
GIANT SLALOM (Atarl oaly)
Price: \(\mathbf{S 1 4 . 9 5}\) Camette/S18.93 Dlakette This real-time acton game is gunanteed addictivel Use the joystick to control your pach through against other players or simply take practice runs ageinst the clock. GIANT SLALOM will run on 16 K against other
systems.

TRIPLE BLOCKADE (Atarl only)
Price: \(\$ 14.93\) Caselte/ \(\mathbf{5 1 8 . 9 5}\) Dtalette TRIPLE BLOCKADE is a two-to-three player graphics and sound sction game. It is based on the classic video arcade game which millions have enjoyed. Using the Acari joysticks, the object is to direct
your blockeding line around the screen without running into your apponent(s). Although the concept is your blockeding line around the screen without rumning into your opponent
simple, the combined graphics and sound effect lead to "high anxicty".
GAMES PACK I (A vallable for all computers)
Price: 510.98 Camette/514.93 Dlakette GAMES PACK I contains the classic computer games of BLACKJACK, LUNAR LANDER, CRAPS,
HORSERACE, SWITCH end more. These games have been combined into one lage pre HORSERACE, SWITCH and more. These games have been comblined into one lafge program fot case
in loading. They are individually accessed by a convenient menu. This collection is worth the price just for the DYNACOMP version of BLACKJACK.

Price: \(\$ 10.93\) Camelte/ 514.95 Dlakette
TTO, ACEY-DUCEY, LIFE, WUMPUS
GAMES PACK II (Avallable for all computen) GAMES PACK II includes the games CRAZY EIOHTS, JOTTO, ACEY-DUCEY, LIFE, WUMPUS and others. At with GAMES PACK 1, all the gumes are londed as one program un
menu. You will pardeularly enjoy DYNACOMP's version of CRAZY EIGHTS.
Why pay \(\$ 7.95\) or more per program when you can buy a DYNACOMP collection for jusil \(\$ 10.957\)
MOON PROBE (A tarl and Nortb Star onty)
Price: \(\$ 11.98\) Camette/ \(\$ 15.9\) Duketue This is an extremely challenging "lunar hander" program. The user must drop from orblt to land at a predetermined arget on the moon's surface. You control the thrust and orientation of your craft plus
direct the rate of descent and approach angle. direct the rate of descent and approach angle.

\section*{ADVENTURE \\ CRANSTON MANOR ADVENTURE (North Star and CP/M oaly) Price: \(\$ 21.98\) Dhkette At last 1 A compreheanive Adventure game for North Slar and CP/M systems. CRANSTON MANOR ADVENTURE takes you into mysterious CRANSTON MANOR where you attempt to gather without a fight. The number of rooms is greater and the asocisted descriptions ape much more elaborate than the current popular serics of Adventure programs, making this emene the top in its clase. Play can be stopped at any time and the status stored on diskette.}

\section*{ABOUT DYNACOMP}

DYNACOMP is a leding distributor of small system software with sales spanning the world (currently in excess of 40 countries). During the past two years we have greatly enlarged the DYNACOMP product line, but have maintained and improved our high level of quality and customer support. The achievement in quality is apparent from our many repeat customers and the software reviews in such publications as COMPUTRONICS, 80 Software Critique and A.N.A.L.O.G. Our customer support is as close as your phone. It is always friendly. The staff is highly trained and always willing to discuss products or give advice.

\footnotetext{
ATARI, PET, TRS-80. NORTHSTAR, CP/M and IBM are registered tradenames and/or
- TRS-80 disketues are not supplied with DOS or BASIC. Circle 129 on Inquiry card.
}

\section*{BUSINESS and UTILITIES}

SPELLCUARDTM (CP/M OAH)
Mer: 520.95 Dut




MAIL LIST 2.2 (Apple, Atart and Nortb Ster dikelte oaly)

 emier. A very valuble protemi
FORM LETTER SYSTEM (FIS) (A Ger, Apple a D Nort Slar dikette onty)
Mre: s21.\%


SORTH (North Star only)
Price: 539.ss Dukerke SORTIT is a seneral purpoce sort profram witen in 8000 a uembly language. Thil proaram will sort sequential data files SORTIT is easily ued mith fives generaled Dy DYNACOMP'i MAIL LIST prognem and is very veraule io its capativitief for C data file worting
PERSONAL FINANCE SYSTEM (Atan add North Star ody)
Tran: SLu. \(5 s\) Duken
 efined codes by month or by payee. PFS will even prod payye, and diuplay informalion ot expendilures by any of 26 uner
 and ovet 1000 recordin per dist by making a few simple chanses to the prowrams). You can record checks plus catio expernes so MILY BUDGET (Apple oaly)

Prev: S4.9s Dwatis The FAMILY BUDGET is i very convenient financinl record-keepian proerno. You will be able to trep thect of cash and credit expenditures 13 well as incoome on a daily basis. You can record ue deductible itemi and chaituble donacions. The
 control over an otherwise complicated (end unor panizodl) rubject
THE COMMUNICATOR (A art onty)
Prive: Sen.es Duntile This softwere pack ne conaina a menu drivea collection of proprams for facilitating efficicat twoway communications
 duces "coonest time" and thus the serike chasge. You may alleo tocord the complete contentis of a communications vesion.

 your seguence of time-chare commands end proprams, and the Auri will franumit heme al needed; batch procecuing. All this Iddi up to ming both coansent time and your time.



 odior and processed. In Fact, text fikes can be built uing ED and later formatted using TEXT EDITOR II. All in all, TEXT

DFILE (Alari and Norti Star oaty)
 locangs of the dessed fie or program
FindIt (North Ster 0aby)
 ate birthdey, andivertary and appointment searches for the personal focords snd appointmant searches for the commercial reGRAFIX (TRS- 30 onty) This unique progiam allows you to eally creane graphics diratly from the keyboard. Prou "draw" your figure using the pro-
 lable. Draw a "happy face", call it HS and then print if fiom your program uting PRINT H\$l This is a very euy way to creale
end save graphli?

\section*{EDUCATION}

HODGE PODGE (Apple oaly, 48K Applesofl or Integer BASIC)
Prikr: 519.95 Cumeltr/523.ss Dentell Let HODGE PODGE be your child's bsby suter. Pressing any tey on your Apple will resulit in a different and invizuing "happening" related to the letter or number of che chosen key. The proaran's afaphics, color and sound we a delight for children TEACHER'S PET I (Avallable for al computer) Price: \(\mathbf{5 1 1 . 9 5}\) Cemerte/515.95 Dekety This is the first of DYNACOMP's educationel pactages. Primarily intended for pre-chool to stade 3, TEACHER MORSE CODE TRAINER (TRS \(* 0\) only)


 avalibie including number, punctuation and aphabel lesth, as weliat he keyng of your own meshege. A very effective way learn code!

\section*{STATISTICS and ENGINEERING}

DIGITAL FRLTER (Avalliabte for all compoteri)

 Choose from a menu of fitex forss. The filter florms are subvequenty converted into non-recuraive convolution coefficients
which permit rapid dasa processings In the explicit deeign made the shape of the frequency transfer function is specified by Which permiit rapid dala processing. In the explicit design mode the shape of the frequency transter function is specifised by approximated 10 vanying ocegree according of chic number of points used in the caltulation. These filuers may optionally also be
 Filmer include ploting of the datu before and arter filering,
are convenient data sorase, revieva and ediring procedures.
DATA SMOOTHER (Not avalable for Atarl)
Proce: 514.95 Canmin/5is.95 Denelle This ppecial datu amoothing proyrem may be used to rapialy derive usf(u) information frome noisy businest and engineering date which are equally speced. The woftware feature choice in deyrec and range of fit, at well as st
FOURIER ANALYZER (Avilimble for all computeri)
 ironica, communications and buinesu.
TFA (Triaster Fubction Agalyzer)

 engineering-onenled docibel vernur los--requency plot as well an das editing features. Wherea FOURIER ANAL YZER is de signed for educational and sientific use, JFA is an ensineering tool. Available for all computers.
HARMONIC ANALYZER (Avallabte for ill computera)

 need dot be equally speced of in ordef. The orieinal data is wored end a cubic papline interpolation is uned to create the data fle equired by the FFT aldorithm

REGRESSION I (Avaliable for all compulen)

 etc.) and much more. In addinton, new fit may be tried withoui reentering the data REGRESSION, is is certioninly the cornet. tone proganem in any date undysis wfiwere library,
REGRESSION II (PARAFTT) (Aveliabte for all compater) \(\qquad\) Price: 519.98 Camoru/s23.98 Denteme PARAFIT is decienod to handle Lhove cases in whikb the parmmeters are imbedded (posibely nonlincaly) in the fiting func-
 lincs. Datia and resuls may be maniplitated end phe
and PARAFIT for thowe complicaled functions.
 performing the buic regresion calculation, this program dio provides easy to ube datu entry, storase, retrievil end editiog functioas. Ja addition, the user may interrogate the solution by supplying valuea for the independent waitabies. The number of and and daia size is limited only by the av
REGRESSION I, II add MULTILINEAR REGRESSION may be purchased together for \(\$ 51.95\) (three casectes) or \(\mathbf{\$ 6 1 . 9 3}\) ANOVA (Avallable for all compulem) \(\qquad\) Proer 139.95 Camerte/su3.ss Dwiente
 software packane inchide the 1 -wly, 2 way and N -way procedures. Also provided are the Yates \(2^{\mathrm{K}}\) - P factorial designs. For


BASIC SCIENTIFIC SUBROUTINES, Volume I (Nol arallable for Alari)

 subroutine.

Colbection e1: Chapters 2 and 3: Data and function plosting, complex varibiles
Collection n: Chapter 4: Marria and vector operations
Collection n: Chapiets 5 and \(6:\) Randor pupbre
Chapiers 5 and 6: Rasdom aumber zeneruton, wriea approtmation


OOTS (A vallable for al compulen)
 the detree of the polynomial, and bocaux the procodure is iteratve, the nocuracy is senerally very sood. No initial guesuce ure

ACTIVE CIRCUIT A NALYSIS (ACAP) (4AK Apple onty) Prav: 529.95/329.95 Dewavie ACAP is Che Analon circuil derisner's answer to LOGIC SIMULATOR, With ACAP you may arayze the reppons of en re.
 magnitude of thee voltagse, the frequency response of a fiter or amplifier may be completely determined with reapeet to both

ACAP in casy to leam and une. Simply dacribe the circuil in terms of the element and theis placement, and eaocute. Circuit
 LOGIC SIMULATOR (Apple ODIV: ASK RAM)

Prke: 12.95 Comette/sun.ss Deketle With 1 OGIC SIMULATOR You may exily yen your complicated diyiual logix dasign with reapect to given aet of inpus io


 LOGIC DESIGNER (North Star and CP/M oaly) Prike: SM. ss Duketit
erta iege and compli-




\section*{ORDERING INFORMATION}

Ali orders are procewed and athipped within, 48 hours. Pleave enclose payment with order and include the appropriatc compucer is-
 \(\approx\)

\(\qquad\)
Al for DYNA
DYNACOMP.
DYNACOMP, Inc

Players: customer, server, cashier
Props: restaurant, table, menu, food, check, payment, tip Actions:
1. Customer goes to restaurant
2. Customer goes to table
3. Server brings menu
4. Customer orders food
5. Server brings food
6. Customer eats food
7. Server brings check
8. Customer leaves tip for server
9. Customer gives payment to cashier
10. Customer leaves restaurant

Table 1: A restaurant script for the SAM program.
and, therefore, anything that cannot be proved must be false.
The world that people deal with in everyday conversations is extensive, complex, and largely unknown and unknowable. To use natural language to converse about the real world, more sophisticated methods are needed.

\section*{Systems with Knowledge of Ordinary Situations}

One of the more interesting attempts to deal with ordinary human situations, in contrast to interfacing with a data base or a model of a microworld, was made by Roger Schank and Robert Abelson, aided by their students at Yale University. Their system, SAM (for Script Applier Mechanism), as described in reference 22,

was built to cope with certain kinds of everyday problems. For example, the system is told the following story:

John went to a restaurant.
He ordered the lamb.
He paid the cashier and
left the restaurant.
Then the system is asked:

\section*{What did John eat?}

It might seem trivial for a system to answer that John ate the lamb-but nowhere in the story is this explicitly stated. Nor is it directly deducible from what was said. To understand the story, the system must have both knowledge of what usually happens in restaurants and an ability to apply that knowledge to particular situations.

Schank and Abelson encoded SAM's knowledge about everyday situations in formal constructs called scripts. The information contained in a script about restaurants is shown in table 1. It includes a list of players who participate in the normal routine of a restaurant, a list of props supporting the action, and a sequence of generic actions that characterize what usually happens when a customer visits a restaurant.
The information in this script can be used to support a variety of commonsense-reasoning tasks, including a reply to the question, 'What did John eat?" The processing is as follows: the system identifies "John went to a restaurant" with action 1 from the script. In doing this, John is assigned the role of the customer. The system identifies "He ordered the lamb" with action 4, assigning the role of food to "the lamb." (Notice that with "he" referring to John, the customer is the same in both actions 1 and 4.) "He paid the cashier" is identified with action 9 and "[he] left the restaurant" with action 10.

Although not all the actions in the script were explicitly mentioned, it is reasonable (but not strictly necessary) to assume that they happened nonetheless. In particular, action 6 , the customer eating the food, probably did happen. Moreover, because the entities playing the various parts in the script remain constant throughout its enactment, the system assumes that, for this particular visit to the restaurant, the customer in each action is John and the food is "the lamb." Therefore, action 6 particularizes to "John ate the lamb," providing the answer to the original question.

Information in scripts can be used for more than just answering questions; it can also be used to produce "paraphrases" of a story. For example, SAM can convert the original story:

John went to a restaurant. He sat down. He got mad, He left.
into the "paraphrase":
John was hungry. He decided to go to a restaurant. He went to one. He sat down in a chair. A waiter did not

\title{
MORE BANG \\ \\ Qantex Impact Printers \\ \\ Qantex Impact Printers 150 Characters Per Second 150 Characters Per Second 136 Columns Per Line
} 136 Columns Per Line
}

The microprocessor controlled Series 6000 is packed with standard features. True lower case descenders and underlining. Bidirectional logic seeking. Built-in test capability. Rugged 400 million character print head. Beautiful 96 character set in a \(9 \times 9\) matrix. Parallel, or up to 19,200 baud serial interfaces supporting RS-232, X-ON, X-OFF or Current Loop. Full operator controls. Quietized, sleek enclosure to enhance your system. Delivery from stock.

60 Plant Avenue, Hauppauge, N.Y. 11788 (516) 582-6060

TWX 510-227-9660
(800) 645-5292


RKANSAS
emco Electronics RIZONA he Phoenix Group Inc ALIFORNIA asic Systems Corp. asic Systems Corp. asic Systems Corp. LINOIS
lectro-Tech Marketing Assoc. ingineared Sales vDIANA
udio Specialists
OUISIANA
licro Computer of New Orleans (504) 885-5883 IARYLAND ystems International Inc. IASSACHUSETTS \& S Electronics, Inc.
(501) 663.0375
(602) 967-1421
(213) 673-4300 (714) \(268-8000\) (408) 727-1800
(312) \(588-4535\)
(312) 832-8425
(219) 234-5001
(301) 977.0100
(617) 458-4100

MINNESOTA
Integrated Peripherals
Vikeland Sales
MISSOURI
ESC Sales \& Leasing
NEW YORK
Washington Electric Co.(212) 226-2121/(800) 221-5416
Daily Business Products, Inc. (516) 543-6100
800) 645-5556/(212) 594-8065

Synchro Sound Enterprises
PENNSYLVANIA
QED Electronics
TENNESSEE
Southland Video Distributors
TEXAS
Datanet, Inc.
VIRGINIA
Nine Associates, Inc.
Distributor inquiries welcome!
(612) 831-0349 (612) 645-4647
(314) 997-1515 (516) 484-1852
(215) 674-9600
(800) 238-3274
(214) 669-1758
(703) 273-1803
*Registered Trademark of North Atlantic Industries. Inc.

AUSTRALIA
Mitsui Computer Systems 02-9299921
CANADA
Computer Markets 416-445-1978
DENMARK
T.M.S. Dataudstyr (45) 2-911122

ENGLAND
Northamber Limited (44) 372-67646
FRANCE
Gepsi
(33) 1-554-9742

GERMANY
Technitron
HONG KONG
Computerworld Ltd. 5-44033
Hong Kong Equipment \(\quad 5-453870\)
ITALY
Eltran s.r.l.
(030) 55026-41554-44414

NETHERLANDS
Compudata Benelux B.V. 31-73-215700
SPAIN
2i Ingenieria Informatica
204-2099

\section*{Monitoring and Measurement with the Apple II*?}


\section*{The Al13 sets the Standard of Excellence.}

\section*{Applications:}
- Sciertific Lab Data Acquisition
- Home Energy Management
- Industrial Process Control
- Testing and Quality Control
- Monitoring and Logging Data

The Al13 plugs into a single slot in Apple II and provides a modular. low cost transformation of the Apple into a precision measurement system.
- Economical Modular Approach to Measurement
- 16 Independent Input Channels
- 12-Bit Precision A/D Conversion
- Software Selectable Input Range
- Complete Software Disk Included

Interactive Structures has been producing Apple Data systems since 1977. You've heard about one of them: our NASA Spacelab project. Let us show you how to put your Apple to work at a monitoring task.

See your Apple Dealer or contact us today.
go to the table. John became upset. He decided he was going to leave the restaurant. He left it.

This restatement is not a true paraphrase because it adds many details based on speculation about what happened. But such an ability to speculate on the basis of knowledge about how our everyday world is structured is the very feature that makes SAM interesting.
Much of SAM's knowledge is not about natural language at all, but about our everyday world. SAM demonstrates that understanding natural-language stories about mundane actions requires more than a knowledge of language-it requires a knowledge of the world. The more language is studied, the more apparent it becomes that fluent communication in natural language is a process of the total intellect. Language, thought, and knowledge are inextricably intertwined.

\section*{Limitations of SAM}

SAM's scripts provided one of the first mechanisms in a language processor for dealing with the structured sequences of actions that make up much of ordinary life, but they suffer from a number of limitations:
- Only a single object can serve the role of player or prop. This makes it impossible to handle stories about restaurants with many tables, customers, or servers. The problem of figuring out what the phrase "the customer" refers to becomes trivial because there can be only one customer.
- The actions in a script follow a strict linear sequence, making it impossible to deal with alternative possibilities, simultaneous or overlapping actions, or a repetition of actions.
- It is difficult to determine which particular script or scripts are appropriate for understanding a given story.

\section*{The TDUS System}

The SHRDLU example discussed earlier suggested the potential richness of interactive dialogue in context. The SAM example showed how inference (ie: filling in the blanks regarding what was implied, as well as what was explicitly stated) is essential in understanding natural language. To determine how knowledge-based inference and dialogue management interact, as well as work toward solving a problem of practical value, a group of researchers at SRI International investigated cooperative, task-oriented, man-machine dialogue (see reference 19). They developed a system called TDUS (Task-Oriented Dialogue Understanding System), which had the goal of communicating with a human apprentice about repair operations on electromechanical equipment. The key research problems considered concerned how to encode knowledge about the repair operations and how to follow the context of a dialogue as the apprentice moved from task to task in the course of performing a repair operation.

In TDUS, information about how various tasks can be performed is recorded in data structures called procedural networks (see reference 21), which can be viewed


Nobody's better protection than The Marshal in Winchester territory.

You got yourself a Winchester disk drive with all that large system power. Great! But trying to utilize your floppy drive for backup just isn't working. And bit-streaming tape cartridge drives offers no practical protection, because the usual need is archival storage and replacement of individual files lost through operator error; but the streamer tape data cannot be reconstructed by separate files easily.

\section*{Enter The Marshal to your rescue.}

He's the only match in speed, capacity, and capability for your Winchester. As Thomas S. Stellinger, Manager of Marketing Literature with Computer Service Systems Network, Inc. stated in InfoWorld, "Intelligent tape subsystems, combining the 1/4-inch tape cartridges with file-oriented software offers the best solution to hard disk backup...a utility program... allows the user to save every file in the system, as well as to restore individual files by name."
The Marshal from TKS Corporation.
The only complete hardware/software protection device for computer hard disk systems.
The Marshal follows commands, is fast, and thinks for himself.
Formatted capacity is 13.4 megabytes. The transfer rate is 192,000 bits per second. And he can determine which files have been updated since last saved, in order to recopy only those specific files saving time. Then records the date he made the copy.

\section*{Perfect protection for the perfect price.}

Your OEM Distributor can introduce you to a rack mount unit or a table top console for much less than you'd guess. Take this ad to your dealer today, save a heap of money off the regular price, and get the best protection available in Winchester territory. The Marshal from Turnkey Systems Corporation would sure be happy to help you.


Turnkey Systems Corporation 8472 NW 56 Street, Miami, FL 33166


Figure 6: A procedural net for the process of installing a pump for an air compressor.


Figure 7: A procedural net expanding an action referenced in figure 6.


Figure 8: A procedural net that contains actions repeated in a loop.
as generalizations of scripts. Simplified procedural nets are shown in figures 6, 7, and 8. For example, the net of figure 6 indicates how installing a pump for an air compressor can be divided into a number of subtasks. The first subtask is to attach the pump to the platform. Once this is done, either the aftercooler elbow or the brace is installed. Once the aftercooler elbow is installed, the aftercooler is installed. Once the brace is installed, the pulley is installed. When both the aftercooler and pulley have been installed, regardless of the order accomplished, the task of installing the pump is complete.


TTTT TTTTTTT TTTTTT TTTT ITTTTTT TTTTT TTTTT TTTT TTTT TTTTTTTTTT ITTTTT.
A AAAAAAAAAAA AAAAA AAA
SUBTASK
A \(\left[\begin{array}{l}\text { AAAAAAAA AAAAA AAA AAAAAAAAA } \\ \text { AAAAA AAAAA AAAAAAAAA AAAAAA } \\ \text { AAAAAAAAAAAAAAA AAAAAAAAA A } \\ \text { AAAAA AAA AAAAAAAAA AAAAAAAA } \\ \text { AA AAAAAAA AAAAAAAAAAA. }\end{array}\right.\)

TTTT TTTTTT TTTTTTTT TTTTT TTTTT TTTTTTTTTTT TTTTT TTTTT,


Figure 9: The structure of a task (top) is reflected in the structure of an English dialogue about the task (bottom). When discussing the task, descriptions referring to the overall task (the two paragraphs of the letter \(T\) ) are interspersed with the paragraphs of text referring to subtask \(A\) and subtask \(B\).

Much like a script, the procedural net associates an action with a number of subactions. However, as opposed to the strict sequence of actions in a script, the procedural net imposes only a partial ordering on subactions. Moreover, subactions are usually associated with procedural nets of their own, which specify in yet greater detail how tasks are divided. For example, the "attach pump" action referred to in figure 6 is described further in figure 7, while the "secure with bolts" action referred to in figure 7 is described further in figure 8. The net of figure 8 contains a loop specifying the repeated procedure of using a wrench to tighten each bolt.

As mentioned earlier, a major problem for naturallanguage processing systems is following the dialogue context and being able to ascertain the referents of noun phrases by taking the context into account. In preparing to build the TDUS system, Barbara Grosz collected a number of dialogues between human experts and apprentices performing repair tasks (see reference 8). After constructing procedural nets for the tasks, it was discovered that, as a general rule, the structure of task-oriented dialogues closely follows the structure of the nets representing the division of the task itself. As shown in figure 9, if a task divides into subtasks \(A\) and \(B\), the dialogue tends to start with general information about the overall task, then enters a subdialogue about subtask A followed by a subdialogue about subtask B.

\title{
 GRAPHICS . .THE LNW80 COMPUTER
}


When you've compared the features of an LNW80 Computer, you' 11 quickly understand why the LNW80 is the ultimate TRS80 software compatible system. LNH RESEARCH Offers the mOst complete microcomputer system at an outstand ing low price.
We back up our product with an unconventional 6 month warranty and a 10 days full refund policy, less shipping charges.
LNW80 Computer
\(\$ 1.450 .00\)
LNH80 Computer w/B8W Monitor one 5 " Drive . \(\$ 1,915.00\) Al) orders must be prepaid, CA residents please include \(6 \%\) sales tax. Contact us for shipping charges
* TRS8O Product of Tandy Corporation.
** PMC Product of Personal Alicrocomputer, Inc.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{FEATURES COMPARE} & RES AND PERF & MANCE & \\
\hline & LHW80 & P14C-80** & MODEL III \\
\hline PROCESSUR & 4.0 MHZ & 1,8 1/12 & 2.0 MHZ \\
\hline LEVEL II BASIC INTERP. & YES & YES & LEVEL III BASIC \\
\hline TRS80 MODEL I Level II compatible & YES & YES & NO \\
\hline 48K BYTES RAM & YES & YES & YES \\
\hline CASSETTE BAUD RATE & 500/1000 & 500 & 500/1500 \\
\hline FLOPPY OISK CONTROLLER & \[
\begin{aligned}
& \text { SINGLE/ } \\
& \text { COUBLE }
\end{aligned}
\] & SINGLE & SINGLE/ DOUBLE \\
\hline SER1AL RS232 PORT & YES & YES & YES \\
\hline PRIMTER PORT & YES & YES & YES \\
\hline REAL TIME CLOCK & YES & YES & YES \\
\hline \(24 \times 80\) CHARACTERS & YES & NO & NO \\
\hline VIDEO MOHITOR & YES & YES & YES \\
\hline UPPER AND LOWER CASE & YES & OPTIONAL & YES \\
\hline REVERSE VIDEO & YES & NO & NO \\
\hline KEYBOARD & 63 KEY & 53 KEY & 53 XEY \\
\hline HUMERIC KEY PAD & YES & NO & YES \\
\hline B/W GRAPHICS, \(128 \times 48\) & YES & YES & YES \\
\hline Hi-RESOLUT LON 8/N GRAPIIICS, \(480 \times 192\) & YES & NO & NO \\
\hline Hl-RESOLUTIOH COLOR GRAPHICS (NTSC), \(128 \times 192\) in 8 COLORS & YES & NO & HO \\
\hline HI-RESOLUTION COLOR GRAPHICS (RGB), \(384 \times 192\) In 8 COLORS & OPTIONAL & NO & NO \\
\hline WARRARTY & 6 MONTHS & 90 Days & 90 OAYS \\
\hline TOTAL SYSTEM PRICE & \$1.915.00 & \$1,840.00 & \$2,187.00 \\
\hline LESS MONITOR AND DISK DRIVE & \$1,450.00 & \$1,375.00 & --- \\
\hline
\end{tabular}

\section*{LNW80}
bare printed cipitult board a manual
\(\$ 89.95\)
The LNWBO - A high-speed color computer totally compatibie with the TRS-80*. The LNWBO gives you the edge in satisfying your computation needs in business, scientific and personal computation. With perfomance of \(4 \mathrm{AHz}, Z B D A \mathrm{CPU}\), you'll achieve pertion. With performance of formance of over twice the processing speed of a TRS-80*. This means you'll get the performance that is comparable to the most expensive microcomputer with the compatibility to the world's most popular computer (TRS-80*) resulting in the widest soft-
ware base.
FEATURES
TRS-80 Model 1 Level 11 Software Compatible
High Resolution Graphics
RGB Output - \(384 \times 192\) in 8 Colors
NTSC Video or RF MOD - \(128 \times 192\) in 8 Colors
Black and White - \(480 \times 192\)
\[
4 \mathrm{HHz} \text { CPU }
\]

500/1000 Baud Cassette
Upper and Lower Case
16 K Bytes RAM, 12 K Bytes ROM
Solder Masked and Silikscreened

\section*{LNW SYSTEM EXPANSION}
bare printed circuit board AND MANUAL \$8.95
WITH GOLD CONHECTORS
\(\$ 84.95\)

The System Expansion will allow you to expand your LNW80. TRS-80* or \(\mathrm{PMC}-80^{\text {\#* }}\) to a complete computer svstem that is still totally software cumpatille with the TRS-80* Model 1 Level II.

\section*{features:}

32K Bytes Mennry
\(5^{\text {5 }}\) Fluppy Controller
Serial RS232 20ma \(1 / 0\)
Parallel Printer
Real Time Clock
Screen Printer 8us
On Bodrd Power Supply
Solder Masked and Silkscreened

\section*{LNDoubler\&DOS PLUS 3.3D}

Assembled and Tested w/DOS PLUS 3.3D..
\(\$ 175.00\)
Double-density disk sturage for the LNW Research's "System Expansion" or the Tandy's "Expansion Interface". The L.HDoublerTM is totally sof tware compatible with any double density software generated for the Percom's Ooubler***. The LNDoublerTM provides the following outstanding features.

> Store up to 350 K bytes on angle \(5^{\prime \prime}\) disk Single and double density data separation Precision write orecomoensation circuit

Precision write precompensation circuit
Software switch between single and double density Easy plug in installation requiring no etch cuts, jumpers or soldering
35, 40, 77, 80 track \(5^{\prime \prime}\) disk operation
120 day parts and labor Warranty
*** Doubler is a product of Percom Data Cumpany, Inc.
DOS PLUS 3.30
Micro Systems software's double density disk operating system. This operating system contains all the outstanding features of a well developed 005 , with ease in useability.

\section*{KEYBOARD}

LNW80 KEYBOARD KIT
\(\$ 84.95\)
The Keyboard kit contains a 63 key plus a 10 key, \(P, C\). board, and remaining components.

\section*{CASE}

LTHW8O CASE
\(\$ 84.95\)
The streamline design of this metal case will house the LNWBO,
LWN System Expansion. LNW80 Keyboard, power supply and fan, LNDoublerTM, or LNW Data Separator. This kit includes alithe hardware to mount all of the above. Add \(\$ 12.00\) for shipping
PARTS AVAILABLE FROM LNH RESERARCH
4116-200ns RAM


Of greater interest is the fact that referential expressions tend to refer to objects salient in the current subtask or higher in the task hierarchy, but generally do not refer to objects in sibling subtasks. For example, if in the dialogue of figure 9 a wrench \(W_{1}\) is mentioned in one of the initial utterances before entering subdialogue \(A\), and if a second wrench \(W_{2}\) is mentioned within subdialogue A, the phrase "the wrench" uttered in subdialogue B more likely refers to \(W_{1}\) than to \(W_{2}\)-even though \(W_{2}\) was mentioned more recently. (This is clearly in violation of the rule used by SHRDLU in interaction 5 of listing 3.) In this regard, referential expressions in natural languages tend to follow much the same conventions as do variable references in block-structured programming languages such as ALGOL and Pascal. But the block structure of natural language is not indicated explicitly.

TDUS's ability to follow real-world tasks and deal with shifts in both the linguistic and physical context is illustrated in the transcript of listing 6 , which relates to information contained in the nets of figures 6 through 8.

In interaction 1, the apprentice sets the stage by specifying what action is being done. This allows TDUS to pinpoint the location in the INSTALL-PUMP net where the apprentice appears to be. In interaction 2, the apprentice refers to a bolting action and a wrench used in that action. Neither of these is in the top-level representation of the ATTACH-PUMP net, but they both occur in the subordinate net of figure 8. TDUS finds this subnet and determines that no other relevant subnet refers to a dif-

\section*{A LOGIC ANALYZER FOR \(\$ 395\) ?}


\section*{YES! O W L \\ LA \(1600-\mathrm{A}\) \\ High Speed 16 Channels}

Interfaces to dual channel scope or Apple computer.
- 10 MHZ capture rate
- Gold plated connectors and clips
- Stores 16 words of 16 bits
- Crystal controlled internal clock
- \(1,0, \mathrm{X}\) compare word bit selection
- Time domain display
- Data domain display*
- Hex display*
- Internal and external trigger modes
- Opthons with userof apple computor

Comes complete with interconnecting cables; logic probe clips, diskette for Apple computer, and operating instructions.

- Send for FREE brochure Osborne Wilson Labs. 508 Waterberry Drive Pleasant Hill, California 94523 (415) 932-5489
ferent bolting action. Therefore, the system responds by specifying the wrench mentioned in the net shown in figure 8.

In interaction 3, the apprentice asks for the location of the bolts. TDUS does not operate under the closed-world assumption and realizes that there are some things it does not know. Luckily, the user finds the bolts in interaction 4.

In interaction 5 , the apprentice refers to "the wrench." TDUS determines that the reference is to the wrench mentioned in interaction 2 and tells the apprentice its location. In interaction 6, TDUS resolves " it " as pertaining to the same object.

In interaction 7, the apprentice tells TDUS that the pump-attaching operation is completed. The system infers from this that all the constituent subtasks have also been done. To make sure, it reviews these assumptions for the apprentice. This filling in of intermediate steps is much like that in the SAM examples.

In interaction 8, the apprentice poses a logically complex question involving the modal concept "should." TDUS's rudimentary notion of "should" interprets the question as asking whether the action mentioned is com-

Listing 6: An actual conversation with the TDUS system. With this system, the computer supervises a task performed by a human apprentice. Human input is shown in boldface.

1- I AM ATTACHING THE PUMP. OK.
2 - WHICH WRENCH SHOULD I USE TO BOLT IT? USE THE BOX-END WRENCH.
3 - WHERE ARE THE BOLTS? I DON'T KNOW.
4- 1 FOUND THEM OK.
5 - WHERE IS THE WRENCH? THE BOX-END WRENCH IS ON THE TABLE.
6 - I FOUND IT. OK.
7 - I ATTACHED THE PUMP.
OK.
THE FOLLOWING HAS BEEN ASSUMED:
YOU PUT THE PUMP AT THE PLATFORM. YOU BOLTED THE PUMP TO THE PLATFORM WITH THE BOLTS
8 - SHOULD I INSTALL THE PULLEY NOW? NO.
THE NEXT STEP IS:
INSTALL THE AFTERCOOLER ELBOW ON THE PUMP OR
INSTALL THE BRACE ON THE PUMP.
9 - I'M DOING THE BRÃCE NOW. OK.
"DO" IS ASSUMED TO MEAN:
YOU ARE INSTALLING TḢE BRACE
10 - I'VE DONE IT. OK.
"DO" IS ASSUMED TO MEAN:
YOU INSTALLED THE BRACE.
THE FOLLOWING HAS BEEN ASSUMED: YOU PUT THE BRACE AT THE PUMP. YOU SECURED THE BRACE.
11 - I'VE INSTALLED THE PULLEY. OK. \\ \title{
PintersPlus \\ \title{
PintersPlus \\ \\ computers, peripherals, \\ \\ computers, peripherals, accessories and supplies!
} accessories and supplies!
}


APPLE ACCESSORIES
LOBO Disk II Add-On ............ 419.
SUPERTERM 80 Col. Card ....... 329.
Z80 Soft Card . . . . . . . . . . . . . . . 295.
H.S. Serial Card ................ 179.

СОММ. Card . . . . . . . . . . . . . . . . 179
HAYES Micromodem ............. 319.
PARALLEL Printer Card . . . . . . . . . . 149.
16K Ram Card .................. 189.
GPIB IEEEE-488 Card . ........... 259.
VISTA A40 Disk II Add-On ....... 349.
VISTA A80 Disk II Add-On . . . . . . 529.
VISTA A160 Disk II Add-On ..... 799.
VISTA A800 DJ. Den. \(8^{\prime \prime}\) Con.
529.

SOFTWARE
VISICALC
DESKTOP Plan II
DB MASTER
119.00

ADDRESS Book
SUPER Text II
CCA Data Mgmt

Diablo 630 RO
\$2,395.
Diablo 1640 RO
Diablo 1650 RO
C.Itoh Starwriter RO

TI 810 RO
2,795
3.095.

1,695.
TI 820 RO
1.695.

Anadex DP9500/9501
1.795.

1,345.
EFSONS

Complete Stock of MX-80, MX-80 F/T MX-100 Printers, Graphics Chip Sets Cards and Cables

\section*{NOVELL IMAGE 800}

150 CPS Heavy Duty Matrix \(15^{\prime \prime}\) wide carriage, expanded. compressed and double density "correspondence quality" printing at 80.96 and 136 columns. true descenders, underlining. superscripts. subscripts. Up to 3 K Buffer, optional character set and graphics option.
List \$1,395.
\$1,295.00

\section*{PRINT ELEMENTS}

NEC Thimbles
\$ 14.95
Plastic Daisy Wheels
for Qume. Diablo. Stanuriter . ...... 6.00
Metal Daisy Wheels .............. 59.00
IBM Selectric Elements
19.00

RIBBONS



\section*{MAGNETIC MEDIA}

Premium Quality At Bargain Prices 51/4" Diskettes, all Formats 100\% Certified with hub rings, box of 10 Single sided, single density ........ 26.50 Single sided, double density ........ 29.50
Double sided, double density........ 38.50
\(8^{\prime \prime}\) DISKETTES, ALL FORMATS 100\% CERTIFIED
Single sided, single density
29.50

SSSD Error Free..............
34.50

Single sided, double density
39.50
49.50


MPI 88 G Matrix
High resolution dot:addressable graphics for Apple. Enhanced "correspondence quality" printing. Tractor and Friction feed. Serial and Parallel Input. 100 cps Bidirectional printing. 80. 96. and 132 column widths!

List \$799.00
\(\$ 599.00\)
Apple II I/O Card
\(\$ 110.00\)
PET/IEEE I/O Card. .................... 55.00
Single Sheet Feeder . . . . . . . . . . . . . . . . 25.00
QT Cover
25.00


NEC SPINWRITERS
5510/5530 RO
\$2,595.
5520 KSR


OLYMPIA ES100RO
Letter quality. Daisy wheel printer/typewriter interfaces to Apple, Atari, NEC, TRS80 and RS232 Serial ports. A truly cost effective letter quality printer that functions as a typewriter.
List \(\$ 1690\). . . . . . . . . . . . . . . . . . . . \(\$ 1395.00\)
TO PLACE YOUR ORDER CALL: TELEPHONE

TELEX
(714) 744.7314

697120


\section*{Computer Products}

910-105 W. San Marcos Bivd., San Marcos, CA 92069 TERMS OF SALE: Cash, check, money order, bank wire transter. credit card or purchase orders from qualified firms and instututons. Please include telephone number with order and expiration date on credit card orders. Califorria residents add \(6 \%\) sales tax Advertised prices are lor prepaid orders F.O.B. shipping poirt. Add \(3 \%\) for shipping in U.S Pncing and availability subject to change without notice.
patible with one of the possible next steps in the procedural-net model of the task at hand. Since it is not, TDUS answers in the negative, but goes on to outline the range of acceptable alternatives at this point in the process.

Interaction 9 is of considerable interest in that it contains the pro-verb "do." This is a reference to some action involving the apprentice and the brace. But the action is not completely specified. By examining the procedural net, TDUS determines that the likely thing to do with a brace in this context is to install it-so TDUS makes that assumption and reports it to the apprentice.

Interaction 10 demonstrates TDUS's ability to comprehend an extreme case of contextually dependent use of language. Neither "done" nor " it " conveys much information. Here, "it" refers not to some object in the world, but to an action previously alluded to by the phrase "doing the brace."

\section*{Limitations of TDUS}

TDUS exhibits a reasonable understanding of the interplay among various types of possible real-world actions, and it can follow the evolution of particular instantiations of those actions. However, it has little understanding of the goals and motivations of the apprentice with whom it holds conversations.

An exchange well beyond the capability of TDUS is shown in the following actual dialogue between a novice and an expert mechanic:

\section*{1. WHAT DO I DO NEXT?} REMOVE THE BOLT.

\section*{2. HOW DO I GET IT OFF? USE THE RATCHET WRENCH.}

\section*{3. WHAT'S A RATCHET WRENCH? IT'S ON THE TABLE.}

\section*{Computers may simplify your business, but it isn't always simple to choose one.}


\title{
Qume Data Trak" Floppy Disk Drives
}

\section*{The Data Trak" 5} double-sided double-density drive uses state-of-the-art technology to give you superior data integrity through improved disk life, data reliability, and drive serviceability using \(51 / 4^{\prime \prime}\) media.
Qume's independent head load yields wear characteristics far superior to competitive drives. This superior wear performance produces savings on both diskette usage and drive maintenance.
Improved data reliability, resulting from superior amplitude and bit shaft characteristics, optimizes operator efficiency and reduces processing time for end-users.
And Data Trak's unique modular design means simplified field servicing for you and your customers.

\section*{Design Features}

Expanded storage capacity - Two-sided, double-density
Proven head carriage assembly - Ceramic head with tunnel erase - Dual-head flex mounting arrangement - Superior head load dynamics
Precise lead screw actuator • Fast access time - 12 ms track-to-track \(\bullet\) Low friction and minimum wear - Low power dissipation
Additional features - Industry standard \(51 / 4\) media format • ISO standard write protect - Door lock out for media protection • Requires DC voltage only • Daisy Chain up to 4 drives - Heads load on command independent of loading media

\section*{Product Specifications}

Performance Specifications - Capacity: Unformatted: 437.5 K or 500 K bytes; Qume Formatted: 286.7 K or 327.7 K bytes • Recording Density: 5456 BPI • Track Den-

sity: 48 TPI - Cylinders: 35 or \(40 \cdot\) Tracks: 70 or \(80 \cdot\) Recording Method: FM or MFM • Rotational Speed: 300 RPM - Transier Rate: 250 K bits \(/\) second - Latency (avg.): \(100 \mathrm{~ms} \bullet\) Access Time: Track-totrack 12 ms ; Settling 15 ms - Head Load Time: 50 ms

\section*{The Data Trak 8} double-sided double-density drive uses state-of-the-art technology to give you superior data integrity through improved disk life, data reliability, and drive serviceability.

Qume's innovative approach to controlling head load dynamics yields wear characteristics far superior to competitive drives. In independent evaluation, Data Trak 8 is setting industry standards for tap test performance. This superior wear performance produces savings on both diskette usage and drive maintenance.
Improved data reliability, resulting from superior amplitude and bit shift characteristics, optimizes operator efficiency and reduces processing time for end-users.
And Data Trak's unique modular design means simplified field servicing for you and your customers.

\section*{Design Features}

Expanded starage capacity • Two-sided, double-density
Fully IBM compatible - IBM 3740 and System 32 drives • IBM 3600 and 4964 drives - IBM System 34 drives
Proven head carriage assembly - Ceramic head with tunnel erase - Dual-head flex mounting arrangement - Superior head load dynamics
Fast, precise steel belt drive • Fast access time - 3 ms track-to-track • Low friction and minimum wear - Low power dissipation
Additional leatures - ISO standard write protect - Programmable door lock Negative DC voltage not required - Daisy Chain up to 4 drives - Side-by-side mounting in standard 19" RETMA rack • Compatible with Shugart SA850/SA851


\section*{Product Specifications}

Períormance Specilications • Capacity: Unformatted: 1.6 Mbytes/disk; IBM Format: 1.2 Mbytes/disk - Recording Density: 6816 BPI - Track Density: 48 TPI - Cylinders: \(77 \bullet\) Tracks: \(154 \bullet\) Recording Method: MFM - Rotational Speed: 360 RPM - Transfer Rate: \(500 \mathrm{Kbits} / \mathrm{sec}-\) ond - Latency (avg.): 83 ms • Access Time: Track-to-track 3 ms ; Settling 15 ms ; Average 91 ms • Head Load Time: 35 ms • Disk: Diskette 2D or equivalent


Figure 10: A sentence that conveys different information to different people.

The key point to note here is that, in interaction 3, the response is not a direct answer to the question. If TDUS could answer this question at all, it would likely respond with a dictionary definition such as: "a tool for grasping and turning the head of a bolt, consisting of fixed or adjustable jaws mounted on a pawl that is engaged by the toothed end of a gripping bar." The person who answered query 3 understood the motivation behind the question. It was asked so the inquirer would know the description of a ratchet wrench, so he could find it, so he could grasp it, and so he could use it to remove the bolts. Understanding the inquirer's hierarchy of goals, the respondent addresses one of the goals closer to the end of the chain (finding the wrench). The cooperative respondent saves the inquirer the trouble of taking the step of locating the wrench from its description.

\section*{Beyond Current Systems}

Researchers in computational linguistics have only recently begun to appreciate the impact on naturallanguage communication of what the participants in a conversation know about each other's knowledge, beliefs, plans, and goals. To appreciate the importance of such knowledge, consider the situation illustrated in figure 10.

A young mother is giving a birthday party for Junior, and Grandma has come to help. Grandma's task is to light the candles on the cake, so she asks, "When shall I light the candles?" The mother replies, "We'll have the cake as soon as the children wash their hands," which informs Grandma that it will be about five minutes. The mother knows that the bigeared kids are listening, so she phrases her response to serve multiple purposes for multiple audiences. With her one statement, she tells Grandma when the candles need to be lit and, in a nice, indirect way, tells the children to get their dirty hands washed. She knows that her response to Grandma will serve this purpose because she knows that:
- the children want the cake
- her response to Grandma will convey to them the information that all that stands in the way of their getting it is to wash their hands
- if they know that all that stands in the way of their getting cake is to wash their hands, they will perform the ritual forthwith
- it takes them about five minutes to wash their hands

Similarly, Grandma now knows that she should light the candles in five minutes because she knows that the mother knows all the circumstances just outlined and that the mother knows Grandma knows that the mother knows it. Thus, Grandma infers that the mother expects her to understand that the children are being told to wash their hands, that they are motivated to do it right away, and the result five minutes later will presumably be washed hands reaching avidly for cake.

No system is currently capable of handling language with this level of sophistication, but a number of researchers are actively engaged in studying the various problems involved; see references \(3,5,6,7,13,14,16\), 18,23 , and 27 . Much of this work is concerned with the difficulties of interpreting not just what is literally said, but also of establishing the underlying intention. Should this work succeed, systems may be capable of the kind of reasoning indicated in listing 7.

The examples of the locked toolbox and the birthday party support a central point: communicating in natural language is an activity of the total intellect. Seen in broad perspective, the use of natural language can be placed in a general framework that seeks to account for all human activity. Within this framework, humans are seen as intelligent beings motivated by complex sets of goals they seek to fulfill by planning, executing, and monitoring sequences of actions-some of which are physical, some linguistic. That is, uttering a sentence is just as much an action as taking a step or taking a bath. Whereas the usual purpose of a physical action is to alter the physical world, the usual purpose of a linguistic action is to alter

Listing 7: An imaginary conversation with a TDUS-like system showing the possible behavior of a computer system that reacts to human needs in a way not currently possible by existing systems.

USER:
THE TOOLBOX IS LOCKED.
SYSTEM: (WHY IS HE TELLING ME THIS? I ALREADY KNOW THE BOX IS LOCKED.)
(I KNOW THE USER NEEDS TO GET IN. PERHAPS HE IS TELLING ME THE BOX IS LOCKED BECAUSE HE BELIEVES I CAN SOMEHOW HELP.)
(TO GET IN TAKES A KEY. THE USER KNOWS THIS AND KNOWS I KNOW IT. THE KEY IS IN THE DRAWER. IF THE USER KNEW THIS HE WOULD JUST UNLOCK THE BOX. THEREFORE, HE MUST NOT KNOW IT.)
(I CAN MAKE HIM COME TO KNOW IT BY SAYING "THE KEY IS IN THE DRAWER." I AM SUPPOSED TO HELP. I WILL SAY IT.)
THE KEY IS IN THE DRAWER.

Into computers? Robotics? Want to get started? Take 6 great books for \(\$ 2^{95}\)
(values to \$94.70)

\section*{. . . and get one FREE!}

All the latest info on software, hardware, applications, and theory at savings up to \(75 \%\). Plus, discounts on software, games, cassettes, disks . . . and more!


List \(\$ 8.95\)






List \(\$ 12.95\)


List \(\$ 9.95\)

ist \(\$ 12.95\)


List \$13.95



List \(\$ 9.95\)

Join now and get How to Build Your Own Working 16-Bit Microcomputer . . . FREE!! (List \$4.95)

\section*{7 very good reasons to try The Computer Book Club}
- Reduced Member Prices. Save up to \(75 \%\) on books sure to increase your know-how
- Satisfaction Guaranteed. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections-mains. alternates, extras-plus bonus offers. Comes 10 times a year with dozens of up-to-the minute titles you can pick from
- "Automatic Order". Do nothing, and the Main selection will be shipped automatically! But ... if you want an Alternate-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling Membership obligation, and qualify for discounts on many other volumes
- Extra Bonuses. Take advantage of added-value promotions, plus special discounts of software, games, and more - Exceptional Quality. All books are first-rate publisher's editions, filled with up-to-the-minute info

Please accept my Membership in The Computer Book Club and send the 6 volumes circled below, plus a free copy of How to Build Your Own Working 16-Bit Microcomputer. I
understand the cost of the books selected is \(\$ 2.95\) [plus How to Build Your Own Working 16 -Bit Microcomputer. I
understand the cost of the books selected is \(\$ 2.95\) [plus shipping/handling). If not satisfied, I may return the books shippinghandling). If not satisfied, I may return the books
within ten days without obligation and have my Membership cancelled. 1 agree to purchase 4 or more books at reduced Club prices during the next 12 months, and may resign any time thereafter.
\[
\begin{array}{rrrlllll}
841 & 985 & 995 & 1045 & 1050 & 1053 & 1055 & 1062 \\
1071 & 1076 & 1088 & 1095 & 1111 & 1160 & 1169 & 1187 \\
1195 & 1200 & 1203 & 1205 & 1209 & 1229 & 1271 & 1275
\end{array}
\]

\section*{ \\ THE COMPUTER BOOK CLUB Blue Ridge Summit, PA 17214 \\ \(\square\)} and send the 6 volumes circled below, plus a free copy of

Name
Phone
Address
Cily
State
Zip
Walid for new memburs only. Foreign and Canadiadd \(20 \%\). Orders outside f.s. or Canada must lee prepald with international money orders in US.S. dollars.\} BY.9n :


\title{
Astonishing!
}

The EP12 interface card for the Apple Computer* and Epson MX-80 Printer** is astonishing. All the features you've ever seen in printers for Apple, plus some new features you'd never expect from a low-cost printing system. All in firmware for the first time, so no more disk juggling to do a graphics print! All features are simple built-in commands...

3 Varieties of Screen Dumps
- Hires Graphics - 24 different formats
- Lores Graphics - 16 level gray scale
- Text - Prints exactly what's on the screen

\section*{Special Graphics Features}
- Dot plotting - \(960 \times 792\) points on a page
- Special characters you define in Software
- 16-level gray scale print mode

Versatile Line and Page Control
- Variable line spacing and page length
- Variable line length
- Tabs for indentation and column printing

Built-in convenient human features

\footnotetext{
- Indication on the screen if paper runs out.
- All functions are short mnemonic commands
- Manual is written for the Apple owner
}

See your Apple Dealer today.


Interactlve Structures, Inc.
112 Bala Avenue
PO Box 404
Bala Cynwyd, PA 19004
the mental states of the hearers. In the latter case, the desired modification may be to add knowledge, change a mood, or establish a new goal for the hearers.
A speaker may plan and execute linguistic actions to change some aspect of a hearer's mental state, not as an end in itself, but as part of an overall plan to achieve some more ambitious end. Just as a child might push over the first domino of a long row to make them all tumble in sequence, a lifeguard at the beach may yell "Shark!" at swimmers to set off a chain of reasoning in their minds that will result in a mad dash for the shore, which is the lifeguard's intended mechanism for accomplishing the primary goal of preserving life.

Given this view of how language works, it becomes less important to ask what a given utterance means (what does "Sharkl" mean?) and more important to ask about the effect it produces. People in advertising have an explicit understanding of this concept, but all of us use it implicitly when we understand the agony conveyed by the string of curses uttered by the handyman who smashes his finger, and when we realize that our friend's question, "Do you know the time?," deserves more than a "yes" or "no" answer.

The understanding of poetry can even be cast in this mold. The poet deliberately triggers certain chains of inference in readers. Indeed, an important element in the appreciation of poetry is the reader's awareness of the interplay among the inference chains followed, the chains followed partway that turn out to be not quite appropriate, and the surface meanings of the sentences comprising the poem itself. To experience this, just consider the title of T S Eliot's poem, "The Love Song of J. Alfred Prufrock."

\section*{The Nature of Natural-Language Research}

The previous sections discussed the capabilities and limitations of specific natural-language processing systems. But it must be recognized that these systems are merely spin-offs of the underlying science. In essence, most researchers in this field do not think of themselves as engineers seeking to evolve better natural-language processing systems, but rather as scientists concerned with the following related problems:
- identification of sources of knowledge necessary for understanding or generating natural language
- discovery or devising of mechanisms for encoding and applying such knowledge in a mechanical device
- creation of integration frameworks to control and coordinate the application of a variety of knowledge sources

Once sources of knowledge have been identified, whole subdisciplines come into being to study the associated bodies of knowledge, their structure, and methods for their computerization. Some of the major knowledge sources are discussed below.

Lexical knowledge concerns individual words, the parts of speech they belong to, and their meanings.

Syntactic knowledge has to do with the grouping of words into meaningful phrases. For example, syntactic



The ZVX4 MEGABYTER is for the APPLE II user who wants to DOUBLE file size, expand the capability of existing business software, and make other SERIOUS applications more viable.
Now you can have compatibility with IBM, INTEL, CP/M*, 280 Softcard*, UCSD Pascal, and others.
Look what the MEGABYTER dual density \(8^{\prime \prime}\) floppy disk controller, with its LSI circuitry and reliable industry standard IBM 3740 format, means to you:

\section*{INCREASED STORAGE}
- Increase online storage to 2 Mega bytes
- Double your maximum accounts and file size
- Add high capacity efficient hard disk backup
- Control up to 4 Shugart SA800/SA850 drives

\section*{IMPROVED COMPATIBILITY}
- Operate APPLE DOS 3.1/3.2/3.3, mini disks
- Preserve existing software investment
- Interchange data with other computers

\section*{SIMPLIFIED OPERATION}
- Reduce disk handling and I/O slot usage
- Gain automatic single/double density operation
- Change to double sided drives with one switch

Available at your Apple dealer. Call or write today!!


SORRENTO VALLEY ASSOCIATES 11722 SORRENTO VALLEY ROAD SAN DIEGO, CA 92121
(714) 452-0101

\footnotetext{
* CP/M trademark of Digital Research, Inc. Z80 Softcard trademark of Microsoft, Inc.
}
knowledge distinguishes between the following two sentences:

\section*{NAME THE PARTS OF THE PUMP THAT WAS FIXED BY JOE. \\ NAME THE PARTS OF THE PUMP THAT WERE FIXED BY JOE.}

In particular, it is the syntactic number distinction between WAS and WERE that indicates whether the pump or the parts were fixed.

Syntactic ambiguity is a common source of trouble in natural-language processing systems. For example, decisions about where to associate the prepositional phrase "on the table" in:

\section*{PUT THE HAMMER IN THE TOOLBOX ON THE TABLE.}
can lead to any one of the interpretations:

\section*{PUT THE HAMMER THAT IS IN THE TOOLBOX ONTO THE TABLE. \\ PUT THE HAMMER INTO THE TOOLBOX THAT IS ON THE TABLE. \\ WHILE YOU STAND ON THE TABLE, PUT THE HAMMER INTO THE TOOLBOX.}

Compositional semantics is the knowledge of how to compose the literal meaning of large syntactic units from the semantics of their subparts. Its utility is illustrated by the pair of sentences:

\section*{THE MAN HELD THE NUT (with a wrench). THE WRENCH HELD THE NUT.}

These two sentences are syntactically identical, but the subject of the first sentence is the agent of the action "hold," whereas the subject of the second is the instrument used by the agent. The lexical entry for the verb HOLD indicates that it is used to refer to actions in which an agent (usually a person) using an instrument exerts a force on some physical object. The syntactic subject of the verb might refer either to the agent or the instrument. But the semantics of HOLD indicate that these roles must be filled by objects of mutually disjoint classes of objects. Utilization of this knowledge allows a system to assign the role of agent to THE MAN, but assign the role of instrument to THE WRENCH.

Discourse knowledge concerns the way clues from the current context are used to help interpret a sentence. For example, if we have just been talking about this month's issue of BYTE, the noun phrase "the magazine" in:

\section*{I'VE ALREADY READ MY COPY OF THE MAGAZINE.}
is easily understood in this context as referring to this month's issue of BYTE. Yet, we often have personal knowledge of hundreds of issues of various magazines.

\section*{Micro computer software company gets macro results.}

"Software is the hottest segment of the personal computer industry. After all, it's the software that solves problems. And Business Week has precisely the type of readers who are looking for solutions to the kinds of problems we solve. Top and middle management of corporations. That's why right from the start we committed a substantial portion of our marketing budget to advertise in Business Week. And we're very pleased with the results. Since our first insertion, our monthly sales have more than doubled."

James M. Dow, President Microcom, Inc.

When Microcom began in 1980, the Boston-based manufacturer of personal computer software wanted to spread the word to corporate

managers about its first product -an electronic mail package for Apple \({ }^{\text {TW }}\) computers called Micro-Courier \({ }^{\text {TTM }}\) Not only to managers who already have Apples, \({ }^{\text {™ }}\) but to the fastgrowing market of managers in corporations who are thinking of buying personal computers to help them and their staffs do a better job.

For Microcom's Jim Dow, Business Week brought his market into focus. Business Week has a take-action audience of over 6 million corporate decision makers. And they look to Business Week to keep them informed on computer developments. Business Week is the only general busi-

ness publication with an entire editorial section, Information Processing, covering events and trends in the computer industry. Every week.

As Microcom found out, one of the best times to link up with Business Week is right at square one. But for small companies or large companies, Business Week gets big-time advertising results. Call your nearest Business Week representative today.

\section*{BusinessWeek}
 TH

Source: MRI (Spring, '81)/Pub. est.


Figure 11: A graph of capability versus cost for systems that can handle natural-language queries.

The ability to pick the one of current interest is based on specific knowledge of the current situation.

World knowledge is concerned with information about how the world is currently configured and about physical constraints upon possible configurations. For example, we understand:

\section*{PRESIDENT REAGAN FLEW TO CALIFORNIA.}
to mean that he was flown to California as a passenger in an airplane. Had the sentence been about a bird, we might have taken the sentence to mean that the bird did the flying.

As an example of how knowledge about the current physical situation can be of aid in understanding sentences, consider again the sentence:

\section*{PUT THE HAMMER IN THE TOOLBOX ON THE TABLE.}
discussed in the earlier paragraph on syntax. If we know that the hammer is currently in a toolbox on the floor, the only interpretation of the sentence is to lift the hammer out of the toolbox and place it onto the table. The other interpretations are ruled out because they are impossible in the current state of the world.

Knowledge of mental states relates to comprehending the knowledge and goals of other participants in a dialogue. The use of such knowledge is shown in the locked-toolbox example in listing 7.

\section*{Cost as a Function of Capability}

The preceding sections sketched a spectrum of naturallanguage processing capabilities-ranging from isolated
questions about the data in conventional data bases, through the literal interpretation of utterances in dynamic contexts, to an understanding of the underlying goals and mental states of participants in a dialogue. As would be expected, progression through this spectrum entails rapidly escalating costs in two areas: the research and programming effort required to reach a particular level of capability, and the computing resources (measured in the number of machine instructions that must be executed and the memory requirements) needed to function at a given level.
This situation is illustrated graphically in figure 11, which plots cost as a function of system capability. Although the diagram shows a sharp rise in cost with increased capability, the situation is probably even more dramatic than indicated, and the cost scale might best be interpreted as being logarithmic.

The capability dimension has been separated into three major regions by two dividing lines. It appears that capabilities beyond (to the right of) the leftmost line require systems with explicit models of concrete objects in the world, the relationships among them, and the types of processes that can alter those relationships. The more advanced capabilities beyond the rightmost line require further enhancements for modeling such things as the mental states of dialogue participants.

Figure 12 repeats the curve of figure 11, but also shows curves for developing three kinds of systems. Systems on curve A are built without the use of explicit models. They cover most of the principal linguistic phenomena needed for accessing conventional data bases and, up to the point at which curve \(A\) intersects curve \(B\), can be constructed and operated more economically than other types of systems. As the need for world models increases, at-

\section*{ - For Micro-Computers}

In the past few years, a "micro-revolution" has been taking place - personal computers are fast becoming an integral part of our daily lives. With this revolution comes a need for a powerful new programming language, one which is highly sophisticated yet easy to use.

LOGO brings to children, as well as adults, the ability to exercise full control over an extremely rich and challenging micro-world - they become active participants in their own learning experience. Powerful ideas can become a reality.

LOGO Computer Systems Inc. is a new company which has been formed to develop and disseminate the LOGO methodology. Our product line includes hardware, software, written materials and training services.


150 Montarville Blvd.
Suite 200
Boucherville, Quebec
Canada J4B 6N1
(514) 641-0966

368 Congress St. Boston, Mass. U.S.A. 02210
(617) 451-2646


Figure 12: A graph of capability versus cost for different kinds of natural-language systems. Curve \(A\) refers to systems that do not use explicit world models. Curve B refers to systems that do use explicit world models. Curve \(C\) refers to systems that are built on a knowledge base including information about the goals and beliefs of other intelligent entities.
tempts to circumvent the problem by using various ad hoc methods become prohibitively expensive or downright impossible.
Systems on curve B are built with explicit world models that lack the ability to deal with intensional concepts, such as the goals and beliefs of others. Although these systems have greater capability potential than those on curve A, they entail considerable initial costs in the construction of machinery to support and exploit the models.
(Intensional concepts take into account the meaning, rather than just the truth values, of logical sentences. In standard logic, the truth value of a complex formula depends only on the truth of its subexpressions (eg: the truth of ( P OR Q ) depends only on the truth of P and the truth of \(Q\); no other properties of \(P\) and \(Q\) matter). The operator BELIEVE, however, is intensional because the truth of " A believes that P " depends on the meaning of P , not just its truth value. The problem is that many of the rules of standard logic, such as substitution of equals for equals, do not apply when intensional operators are involved. To use a classic example, since "the morning star" and "the evening star" refer to the same object, it must be the case that "the morning star is Venus" is true if, and only if, "the evening star is Venus" is true. However, it might be that "John believes the morning star is Venus" is true, but that "John believes the evening star is Venus" is false because, although the two embedded sentences possess the same truth value, they differ in meaning.)
Systems on curve C, if any existed, would be built upon a knowledge base supporting many intensional concepts. The initial costs of creating computational
machinery to support this level of sophistication appear to be quite high.

In today's computing environment, and in light of the current state of the art in natural-language processing, the only systems that perform robustly and efficiently are systems of type A. As mentioned in an earlier section on LADDER-like systems, there are a number of systems of this type, including one (INTELLECT, described in reference 10) available now as a commercial product.

A number of experimental systems of type \(B\) have been built, including SHRDLU, SAM, and TDUS. But these systems are currently of little practical value because they are relatively slow and use models that, while consuming considerable memory, cover pieces of the world too small to be of much more than academic interest.
Computational linguists and workers in related fields are devoting considerable attention to the problems of type-C systems. But currently, only bits and pieces of components for such systems are being constructed. For example, Moore (in reference 17) and Appelt (in reference 1) have devised formal methods for reasoning about the knowledge of others, and Perrault, Allen, and Cohen (in references 6 and 18) have devised systems that actually plan speech acts. But there is a huge gulf between the first experiments that demonstrate the feasibility of a principle and the creation of useful systems based on that principle. Our current state of understanding in naturallanguage processing is similar to that of the ancient makers of Chinese fireworks as compared with modern space research. In terms of achieving fluency in the field, our current experiments are merely fireworks poking a few holes in the darkness.

Nevertheless, even though the fluent use of natural

\section*{Main/Frames Main/Frames s.me}
- 14 Basic Models Available
- Assembled 8 Tested
- Power Supply:

8v@15A, \(\pm 16 \mathrm{v} @ 3 \mathrm{~B}\)
- 15 Slot Motherboard (connectors oplional)
- Card cage \& guides
- Fan, line cord, fuse, power \& reset swillches, EMI filler
- \(8 \mathrm{vg} 30 \mathrm{~A}, \pm 16 \mathrm{v} @ 10 \mathrm{~A}\) option on some models


\section*{Write or call for our} brochure which includes our application note:
'Building Cheap Computers' NIECRAND
8474 Ave. 296 • Visalia, CA 93277 • (209) 733-9288 We accept BankAmericard/Visa and MasterCharge

TERMINALS FROM TRANSNET
PURCHASE PLAN • 12.24 MONTH FULL OWNERSHIP PLAN • 36 MONTH LEASE PLAN
\begin{tabular}{|c|c|c|c|c|c|}
\hline & ofschiption & URCHasE & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { ONIT LEASE } \\
& \text { PI MONTH } \\
& \text { MOS } 24 \text { mas }
\end{aligned}
\]} \\
\hline \(D E C\) & LA36 DECwriter II LA34 DECwriter IV LA34 DECwriter IV Forms Cirl LA120 DECwriter III KSR LA120 DECwriter III RD VT100 CRT DECscope VT132 CRT DECscope & \[
\begin{array}{r}
51.095 \\
1.095 \\
1.095 \\
2.295 \\
2.095 \\
1.995 \\
1.995
\end{array}
\] & \[
\begin{array}{r}
5105 \\
95 \\
105 \\
220 \\
200 \\
153 \\
190
\end{array}
\] & \[
\begin{array}{r}
24 \text { MOS } \\
558 \\
53 \\
58 \\
122 \\
112 \\
85 \\
106
\end{array}
\] & 540
36
40
83
75
58
72 \\
\hline TEXAS INSTRUMENTS & TI745 Portable Terminal II765 Bubble Memory Terminal II Insight 10 Terminal TI785 Portable KSR. 120 CPS T1787 Portable KSR. 120 CPS II810 RD Printer TIB20 KSR Printer & \[
\begin{aligned}
& 1.595 \\
& 2.595 \\
& 945 \\
& 2.395 \\
& 2.845 \\
& 1.895 \\
& 2.195
\end{aligned}
\] & \[
\begin{array}{r}
153 \\
249 \\
90 \\
230 \\
273 \\
273 \\
182 \\
211
\end{array}
\] & \[
\begin{array}{r}
85 \\
138 \\
138 \\
53 \\
158 \\
152 \\
102 \\
117
\end{array}
\] & \[
\begin{array}{r}
58 \\
93 \\
34 \\
86 \\
86 \\
102 \\
69 \\
80
\end{array}
\] \\
\hline DATAMEDIA & DTBO/1 CRT Terminal DT80/3 CRT Terminal DT80/5L APL 15 CRT & \[
\begin{aligned}
& 1.695 \\
& 1.295 \\
& 2.295
\end{aligned}
\] & \[
\begin{aligned}
& 162 \\
& 125 \\
& 220
\end{aligned}
\] & \[
\begin{array}{r}
90 \\
70 \\
122
\end{array}
\] & 61
48
83 \\
\hline LEAR SIEGLER & ADM3A CRT Terminal ADM31CRT Terminal ADM42 CRT Terminal & \[
\begin{array}{r}
875 \\
1.450 \\
2.195
\end{array}
\] & \[
\begin{array}{r}
84 \\
139 \\
211
\end{array}
\] & \[
\begin{array}{r}
47 \\
78 \\
717
\end{array}
\] & \[
\begin{aligned}
& 32 \\
& 53 \\
& 79
\end{aligned}
\] \\
\hline HAZELTINE & \begin{tabular}{l}
1420 CRT Terminal \\
1500 CRT Terminal \\
1552 CRT Terminal
\end{tabular} & \[
\begin{array}{r}
945 \\
1.095 \\
1.295
\end{array}
\] & \[
\begin{array}{r}
91 \\
105 \\
125
\end{array}
\] & \[
\begin{aligned}
& 51 \\
& 58 \\
& 70
\end{aligned}
\] & 34
40
48 \\
\hline TELEVIDEO & \begin{tabular}{l}
920 CRT Terminal \\
950 CRT Terminal
\end{tabular} & \[
\begin{array}{r}
895 \\
1.075
\end{array}
\] & \[
\begin{array}{r}
86 \\
\uparrow 103
\end{array}
\] & \[
\begin{aligned}
& 48 \\
& 57
\end{aligned}
\] & 32
39 \\
\hline NEC SPINWRITER & Letter Quality. 55, 15 RO. Letter Quality. \(55 / 25\) KSR & \[
\begin{aligned}
& 2.895 \\
& 3.295
\end{aligned}
\] & \[
\begin{aligned}
& 278 \\
& 316
\end{aligned}
\] & \[
\begin{aligned}
& 154 \\
& 175
\end{aligned}
\] & \[
\begin{aligned}
& 104 \\
& 119
\end{aligned}
\] \\
\hline QUME & Letter Quality KSR. 55 CPS Letier Quality RO. 55 CPS & \[
\begin{aligned}
& 3.395 \\
& 2.895
\end{aligned}
\] & \[
\begin{aligned}
& 326 \\
& 278
\end{aligned}
\] & \[
\begin{aligned}
& 181 \\
& 154
\end{aligned}
\] & \[
\begin{aligned}
& 123 \\
& 104
\end{aligned}
\] \\
\hline CENTRONICS & 730 Desk Tap Printer 737 W/P Desk Top Printer & \[
\begin{aligned}
& 715 \\
& 895
\end{aligned}
\] & \[
\begin{aligned}
& 69 \\
& 86
\end{aligned}
\] & \[
\begin{aligned}
& 39 \\
& 48
\end{aligned}
\] & \[
\begin{aligned}
& 26 \\
& 32
\end{aligned}
\] \\
\hline
\end{tabular}

FULL OWNERSHIP AFTER 12 OR 24 MONTHS • 10\% PURCHASE OPTION AFTER 36 MONTHS

\section*{MICROCOMPUTERS} APPLE • COMMODORE • HP85 • DEC LSI 11

ACCESSORIES AND PERIPHERAL EQUIPMENT
ACOUSTIC COUPLERS • MOOEMS - THERMAL PAPER • RIBBONS • INTEAFACE MOOULES • FLOPPY OISK UNITS


IRANSNET \(^{\text {comporanton }}\)
1945 ROUTE 22 • UNION, N.J. 07083 - (201) 688-7800
TWX 710-985-5485

\section*{Select a modem for your computer ...easy as ABC.}

CHOOSE A. The Smart One \({ }^{\text {mw, Modet }}\) AM232, with its own built in microcontroller. Auto Dials, Auto Answers, Auto Modes (originate/answer), "Direct Connect" for any computer with an RS232 interface ... 2299.00 .

CHOOSE B. The Acoustic Modem, Model AMII/A, for the Apple*. Comes complete with a powertul operating system. Supports 25 easy to use keyboard commands and operates interactively with your programs. No interface card requiren! . . . \$179.00.

CHOOSE C. The "Direct Connect" Modem, Model AMIl, for the Apple*. Comes complete with a powerful operating system. Supports Auto Dial, Auto Answer, 27 easy to use keyboard commands and operates interactively with your programs. No interface card required! . . . \$289.00.

Be a part of the information revolution. It's tun, exciting, informative, educational. Call or write your order today. COD's accepted.


2094 Front Street • East Meadow, New York 11554 • Telephone 516.794.1072 All "Direct Connect" modems are FCC certified. *Registered trademark of Apple Computer, Inc.
language by machines may still be years away, it is important to realize that many practical applications of natural-language processing can be supported by systems of types A or B, both of which can be built now. Although the computational costs for natural-language processing will always be relatively high when compared with machine languages, the introduction of VLSI (very large-scale integration) technology promises to ease the attendant cost. Processes that were once performed only in the laboratory on research computers costing over one million dollars are becoming practical on personal computers. As a general trend, the expense of programming continues to rise while computer hardware continues to drop in price. For some applications, we may have already reached the point where it is cheaper to create systems that use subsets of English than it is to train people to use formal languages.

\section*{Current Capabilities of Type-A Systems}

To reach a better understanding of the types of naturallanguage processing possible on a cost-effective basis using technology available today, consider the dialogue of listing 8, which shows some of the more advanced types of processing available in the LADDER system.
Interaction 1 shows how LADDER deals with sentences it cannot understand. After trying to interpret the input as first a complete and then an elliptic sentence, LADDER
prints an error message indicating that the word " NY " is not known to it. The system also indicates that to complete the partial input, "How far is the Kennedy from the port of," it needs a construction matching its internal concept of a <PORT>. In interaction 2, the user seeks information about what LADDER would accept as a valid expression for a <PORT>. This is a very interesting question because it is not about the data in the data base, but rather a question about the languageprocessing system itself. LADDER can process questions about a variety of knowledge sources, including special routines that inspect its own internal information about the linguistic constructions it can accept. Using one of these special routines, LADDER produces a list of possible expressions for <PORT>, including the expression NEW YORK, which the user identifies as being what is meant by NY.

At this point, the user could rephrase the question by using NEW YORK in place of NY. But it is important for natural-language processing systems to accommodate the linguistic constructions their users are comfortable with-to accept inputs in the users' own terms, rather than force the users to master the system's terms. In particular, the learning of synonyms is relatively inexpensive computationally and quite helpful to users. In interaction 3, the user types a statement in English to tell LADDER that NY is a synonym for NEW YORK. Then, in interaction 4 , the user asks that interaction 2 be tried again. This


\section*{TRS-80}

COMPUTERS


Model II 64K
Model III 32K
3360.00 freight included 2150.00 freight included Daisy Wheel Printer 1710.00 freight included

We can save you more on all the TRS-80 Computers, and we will! All items are brand new. We have the full line of TRS-80 computer products. Call collect (303) 945-2864 for price quotes.

\section*{WE PAY ALL SHIPPING}

NO TAXES ON OUT OF STATE SHIPMENTS
W-B SPORTING GOODS
727 Grand Avenue
Glenwood Springs, Colorado 81601
CALL COLLECT (303) 945-2864

\section*{DISK DRIVE WOES? PRINTER INTERACTION? MEMORY LOSS? \\ ERRATIC OPERATION? \\ Don't \\ Blame The Software!}

Power Line Splkes, Surges \&


Hash could be the culprit!
Flopples, printers, memory \& processor often Interact! Our patented ISOLATORS eliminate equlpment interaction AND curb damaging Power Line Spikes, Surges and Hash.
- ISOLATOR (ISO-1) 3 filter Isolated 3-prong sockets; Integral Surge/Spike Suppression; 1875 W Maximum load, 1 KW load any socket
ad any
\(\$ 62.95\)
- ISOLATOR (ISO-2) 2 iliter isolated 3-prong sockot banks; ( 6 sockets total); Integral Spike/Surge Suppression; 1875 W Max load, 1 KW elther bank
- SUPER ISOLATOR (ISO.3), similar to iSO.1 except double
filtering \& Suppression........................................... \(\$ 94.95\)
- ISOLATOR (ISO.4), similar to iso 1 except unit has 6 individually filtered sockets
- SUPER ISOLATOR (ISO-11) similar to ISO-2 except double filtering \& Suppresslon
- CIRCUIT BREAKER, any model (add.CB)
\(\$ 94.95\)
CB) . . . . . . . . . . . Add \(\$ 8.00\)
AT YOUR Master.Card, Visa, American Express
DEALERS Order Toll Free 1.800-225.4876 (except AK, HI, PR \& Canada)
ESP Electronic Specialists, Inc.
171 South Main Street, Natick, Mass. 01760
Technical \& Non-800: 1-617-655-1532


We carry the full line of TRS. 80 Computers. All sold at Discount Prices.

\section*{1-800-841-0860 Toli Free Order Entry}

\section*{MILAD MANAREMENT SYSTEMS, JNL.}

No Taxes on Out Of State Shipments

Immediate Shipment
From Stock on Most Items

DOWNTOWN PLAZA SHOPPING CENTER DEPT. \# 1
115 C. SECOND AVE. S.W.
CAIRO, GEORGIA 31728
(912) 377-7120 Ga. Phone No. \& Export TRS. 80 is a reglstered trademark of the Tandy Corp.

A Copy of the Radio Shack 90 day Limited Warranty can be obtained Free upon specific written request to the Electronics Dept. of our Cairo, Georgia Retail Store which is on Authorized Soles Center for Radio Shack Merchondise. Store \#A301


Listing 8: Another actual conversation with the LADDER system.

1-How far is the kennedy from the port of NY?
Trying Ellipsis: ELLIPSIS HASS FAILED
The parser does not expect the word "NY" to follow "HOW FAR IS THE KENNEDY FROM THE PORT OF"
Options for next word of symbol are: <PORT>
2-What is a < PORT>?
PARSED!
"<PORT>" may be any sequence of words following one of the patterns:
\[
\begin{aligned}
<\text { PORT }> & =>\text { CAPE TOWN } \\
& =>\text { NEW YORK } \\
& =>\text { NEW ORLEANS }
\end{aligned}
\]
[etc.]
3-Define NY like New York:
PARSED!
NY
4-redo 2
[i.e., How far is the Kennedy from the port of NY?]
PARSED!
(GCDIST 1974)
5-Q1 Kennedy
[System gives syntax error.]
6-Let "Q1 kennedy" be a paraphrase of "what is the position, fuel
status and homeport of the Kennedy"
PARSED!
\(<\mathrm{S}>=>\mathrm{Ql}<\mathrm{SHIP}>\)
7-ql kennedy
PARSED!
(POSITION 4000N0600E PCFUEL 90 PORT MAYPORT)
8-American subs in the North Âtlantic
Trying Ellipsis: Q1 AMERICAN SUBS IN THE NORTH ATLANTIC
SHIP POSITION PCFUEL PORT

STURGEON 3700N7600W 100 NORFOLK
WHALE 3750N7700W 100 NORFOLK
ASPRO 3000 N 3000 W 100 NORFOLK
[etc.]
9-Let "show the forcestatus of the Kitty Hawk" be like "Display the employment and readiness condition of the Kitty Hawk. Print her destination. List ships in her organization."
PARSED!
[New production added to system.]
10-show the forcestatus of Kennedy
PARSED!
[questions defined in 9 for Kitty Hawk are answered for the Kennedy.]
1!-Define "Kennedy no nagasa wa ikura desuka" like "what is the length of the kennedy.
PARSED!
[Production added to system.]
12-Fox no nagasa wa ikura desuka?
PARSED!
LEN \(=547\)
time, using the newly defined synonym, LADDER successfully interprets the question and produces the answer that the great-circle distance (labeled as GCDIST) from the Kennedy to New York is 1974 miles.

It is worth noting that LADDER must do more to answer queries 2 and 4 than merely retrieve information from a data base. Only the positions of ports and ships are stored in the data base-not the distances between them. Thus, LADDER interfaces not only with the data base, but also with programs that make calculations based on data-base information. Some of these are not trivial. For example, to find how long it would take a ship

\section*{Complete AIM 65 Expansion}

For complete AIM 65 expansion, Forethought Products brings you the AIMMate Series, quality expansion products with price, performance and versatility that puts them in a class of their own


AIM-Mate Series expansion, including RAM (to 48 K ). PROM, I/O, video and floppy disk interface, STD BUS interface, parity protection and more, lets you configure the kind of system you need.

The compact AIM-Mate case puts it all together in a sturdy, portable, desk top unit

Write today for complete details on the AIM-Mate System- AIM 65 expansion products for the professional.

\section*{IFORETHOUGHT PRODUCTS}

87070 Dukhobar Road, Eugene, Oregon 97402 (503) 485-8575

- Uses CP/M or MP/M operating system to work with TRS-80, Apple's with softcard, North Star, Superbrain, Micropolis, and many other microcomputers Needs a minimum of 16 K of RAM. Uses single density \(8^{\prime \prime}\) or \(51 / 4^{\prime \prime}\) diskette.


ELLIS COMPUTING SOFTWARE TECHNOLOGY

600 41st Avenue
San Francisco, CA 94121

\section*{MICROSTAT}

Microstat is an advanced statistics pachage designed for use in research. education and industry. Microstat is a file-oriented statistics package with a Data Management Subsystem (DMS) that creates the data files plus the ability to: odit, list, destroy, delete cases, augment, sort, ramk-order, lag, move, merge and transform the data. The date transforms include: add, subiract, multiply, divide, reciprocal, log, natural log and antilog, exponential, lineor transformations plus adding any number of yariables to create new variables.

Once the file is created, it can be used to produce: Descriptive statistics, Hypothesis tests (mean and proportion). ANOVA (one-way, Iwo-way and random blochs), Scatterplots, Frequency distributions, Correlation analysis, Simple and Multiple regressien, Time Series, Nonparametric tests (11 of them), Crosstabs and Chi-square, Factorials, Parmutatians, Combinations, and 8 Probability distriburions.

The price of Mierostat is \(\mathbf{\$ 2 5 0 . 0 0}\) and the user's manual is available for \(\$ 20.00\) and includes sample printouts. Since the printouts reference standard statistics texthooks and journal articles, you can compare the accuracy of Mierostat to results produced on much larger systems. No other statistics package seems to have the confidence to do that . . . at any price.

Microstat is avaihable for the North Star DOS and Basic, Microsofi's Basic-80 \({ }^{\text {TM }}\) ( 5.03 or later) and Compiler Systems \({ }^{\text {CBasic2 }}{ }^{\text {TM }}\). Please specify \(\mathbf{8}^{\prime \prime}\) SD (soth-sectored) or North Star 5\%" disk when ordering.

ECOSOFT
P.O. Box 68602

Indianapolis, IN 46268
(317) 283-8883


\section*{INTERCHANGE}

If you use the CP/MTM operating system. life just got a whole lot easier for you. Interchange is a 2 -80 \({ }^{\text {TM }}\) assambly language program that gives you all of the features that PIP deesn't, plus several unique features. Some of the features of Interchange include:
DIR, in the usual fashion, plus listing all files excluding those with a specified character. Read/write status is also given.
ERA, as usual plus erclusive erases. In addition, a " 0 " switch can be used to query on each erase, a "W" allows erases of R/0 files without query (nermally you are quaried), and an " B " switch if system files are to be included.

LIST permits printer listings with formatting controllad by TAB, WIDTH, LINES and WRAP. If you are using the QT Systems Clock Board, listings include the date and time.

COPY incluting exclusive copies and the optional " a ", " w " and " R " switches plus an "E" switch that queries if the file already exists. It also allows for changing disks in the middle of a copy if either the disk or directory become full. It automatically verifies copies.

STAT, with ambiguous, unambiguous and exclusive listings. It produces an alphaberized listing and includes each file length, total dirsetory entries and space used and unused.
Other commands include RENAME (including ambiguous), HELP, START, END, CLEAR, RESET, DATE, TIME, TAB, WIDTH, LINES, WRAP, OT, SETIT and TYPE. Once you've used Interchange, we doubt that you'll ever use PIP again. The price of Interchange is \(\$ 58.95\) and the manual is available for \(\$ 10.00\). Orders must be accompanied with your CP/W serial number. Interchange is recommended for a 32 K or larger system and will not run with an 8080 CPU . At the present time, only Usar \(\mathbf{D}\) is supported.

CBasic2 is a rogistored tradomark of Compiler Systoms.
CP/W is a rogistered tradsmark of Digital Research.
to reach a given location, LADDER cannot simply divide the great-circle distance by the cruising speed of the ship, because the shortest path between two points on earth often crosses land masses. So LADDER computes routes that avoid land masses, which requires a knowledge of world geography.

Interactions 4 through 8 illustrate LADDER's ability to learn new syntactic constructions, as well as synonyms. Suppose a user has certain questions to ask repeatedly about different ships. Natural language is ideal for onetime questions, but a shorthand version would be useful for those used repeatedly. If, as in interaction 5, the user asks a shorthand question such as "Q1 Kennedy?", a syntax error will occur. However, the user can easily tell LADDER, by giving an example in English, how a new shorthand is to be interpreted. This is done in interaction 6. In response to this request, LADDER creates a new production rule that matches inputs that start with "Q1" and end with any expression designating a <SHIP>

In interaction 7, this newly defined construction is used to ask for information about the Kennedy. In interaction 8, to obtain the same information for all the American subs in the North Atlantic, just "American subs in the North Atlantic" need be typed. LADDER's ellipticalprocessing routine, operating on the newly defined construction just as on the standard ones, fills in the rest. Because there are multiple answers to the question, a table is produced to display the data retrieved.

In interaction 9, the user tells LADDER to make a certain input sequence equivalent to not just one but a whole series of questions. It is as if the user were writing small programs in English, using English pronouns for formal parameters. In interaction 10, the new construction is used, but with a different ship than the one used to define the construction.

As an extreme example of this ability to accommodate the user-defined constructions, in interaction 11, the user tells LADDER a Japanese paraphrase of the English question, "What is the length of the Kennedy?" In interaction 12, the user poses this question about the Fox, rather than the Kennedy, entirely in Japanese.

The language-processing capabilities demonstrated in listings 3 and 8 , while far from those possessed by a fluent
user of natural language, seem quite adequate for a wide range of practical applications. This technology, using the language INTERLISP, is available today in a large computing environment. It requires approximately 500 milliseconds to process a query-far less than the time needed to retrieve information from a large data base. With proven algorithms and data structures in hand, it is now essentially an engineering task to implement this technology on smaller machines in widely available programming languages. Such engineering will require a considerable effort, but the path of development appears to be clear of major theoretical obstacles.

One of the practical problems currently limiting the use of natural-language processing systems for accessing data bases is the lack of trained people and good support tools for creating the knowledge structures needed for each new data base. In laboratory systems, researchers have manually compiled bodies of knowledge such as information about the vocabulary employed in a particular application or about the logical structure of particular data bases. Work has already begun on new methodologies to automate this task or even make it entirely unnecessary (see references 9, 15, and 25).

\section*{Conclusion}

Considerably more research in computational linguistics will be required before mechanical devices can be created that are fluent in the use of natural language. However, current research efforts are shedding new light on the types of knowledge required for communication in human languages, as well as on prospective mechanisms for encoding and applying that knowledge in computers. These efforts are showing that language use is not an isolated intellectual activity; it also involves our basic facilities for commonsense reasoning and planning. A computer system fluent in a natural language will be a genuinely intelligent machine.

Although the fluent use of natural language by machines remains a long-term goal, a number of practical mechanisms have been developed to deal with significant fragments of language in specialized application areas. For many applications, an ability to communicate within such fragments is both sufficient for the task at hand and


\section*{NEW TARBELL S-100 CPU/IO BOARD}

\section*{||l| 11 P \(p_{9}\) \\ Multi-Application ProcessineSystem}


\section*{THREE COMPUTERS IN ONE!}

\section*{THE DIGIAC MAPS \({ }^{\circledR}\) CT-80 SYSTEM}

\section*{Multi-User, Multi-Tasking, Cost Effective.}
- 3 business systems can run concurrently - that's 3 times the overall system productivityl - Time share word processing, accounting, order processing, inventory, forms processing, billing \& more! • 3 workstations can share data base - preparations can be done by several operators concurrently! - All workstations can share common peripherals. - Uses DIGIAC MAPS-80 operating system. (Dlgital Research MP/M) • High level language processors including Fortran - Basic - Pascal-Cobol. - Complete


175 Englneers Road, Sm
175 Englneers Road, Smithtown, N.Y. 11787 Phone: (516) 273-8600
\(\mathrm{MP} / \mathrm{M}\) is a trademark of Dlgital Research Corp.


\section*{GRAPHIC SOFTWARE FOR MICROCOMPUTERS}
by B.J. Korites, PhD - a self-teaching guide that will show you how to write graphics software on your microcomputer. Theory and program listings presented side by side. Contains 61 programs for 2 and 3 dimensional graphics, isometric and perspective transformations, scaling, stretching, clipping, intersections, shading, tablet software, hidden line removal, dynamic simulation, applications to engineering, science and business. Practice problems for classroom use. Covers elementary to advanced concepts. Perfect for professionals, students and software developers. All programs in BASIC, written on the Apple II Plus 48K but convertible to other systems.

\section*{How to Get More Information About NaturalLanguage Processing}

The Association for Computational Linguistics is a professional society for people interested in this subject; it publishes the American Journal of Computational Linguistics. For information, contact Donald Walker, SRI International, Menlo Park CA 94025. Readers are also referred to the American Association for Artificial Intelligence (contact Bruce Buchanan, Computer Science Department, Stanford University, Stanford CA 94305), and the Cognitive Science Society, which publishes the journal Cognitive Science (contact Donald Norman, Center for Human Information Processing, C-009, University of Califomia at San Diego, La Jolla CA 92093).
clearly preferable to forcing users to learn machineoriented languages. In coming years, we expect to see natural-language processing employed in an increasing number of practical applications, enabling more and more people to interact directly and effectively with computer systems.

\section*{Acknowledgments}

We wish to express our thanks to SRI International and Machine Intelligence Corporation for supporting the preparation of this article, and acknowledge the helpful critiques of early drafts that were provided by Barbara Grosz, Norman Haas, Robert Moore, Jane Robinson, and Donald Walker. Listing 5 and figures 3 through 5 were adapted from Understanding Natural Language by Terry Winograd (Academic Press, 1972) with permission of the publisher and author.

\section*{References}
1. Appelt, D E. "A Planner for Reasoning about Knowledge and ACtion. " Proceedings of the First Annual National Conference on Ar. tificial Intelligence, August 1980, pages 235 through 239.
2. Biermann, A B. "Approaches to Automatic Programming." Advances in Computers, volume 15, 1976, pages 1 through 63.
3. Bruce, B. "Pragmatics in Speech Understanding." Advance Papers of the Fourth International Joint Conference on Artificial Intelligence, 1975, pages 461 through 467
4. Burton, R R. "Semantic Grammar: An Engineering Technique for Constructing Natural Language Understanding Systems." BBN Report 3453, Bolt, Beranek, and Newman Inc, Cambridge MA, December 1976.
5. Carbonell, J. "Politics." Inside Computer Understanding (reference 23), pages 259 through 317.
6. Cohen, P R and C R Perrault. "Elements of a Plan Based Theory of Speech Acts." Cognitive Science, volume 3, number 3, 1979, pages 177 through 212.
7. Grosz, B J. '"Utterance and Objective: Issues in Natural Language Communication." Sixth international Joint Conference on Artificial intelligence, 1979, pages 1067 through 1076; also in Al Magazine, volume 1, number 1, 1980, pages 11 through 20.
8. Grosz, B J. "Focusing and Description in Natural Language Dialogues." Elements of Discourse Understanding: Proceedings of a Workshop on Computational Aspects of Linguistic Structure and Discourse Setting, A K Joshi, I A Sag, and B L Webber (editors), Cambridge: Cambridge University Press, 1981
9. Haas, N and G G Hendrix. "An Approach to Acquiring and Applying Knowledge." Proceedings of the First Annual National Conference on Artificial Intelligence, August 1980, pages 235 through 239.
10. Harris, L R. "User Oriented Data Base Query with the ROBOT Natural Language Query System.' Proceedings of the Third International Conference on Very Large Data Bases, October 1977.
11. Hendrix, G G. "The LIFER Manual: A Gulde to Building Practical Natural Language Interfaces." Al Center Technical Note 138, SRI International, Menlo Park CA, February 1977.
12. Hendrix, G G, E D Sacerdoti, D Sagalowicz, and J Slocum "Developing a Natural Language Interface to Complex Data." Association for Computing Machinery Iransactions on Database Systems, volume 3, number 2, June 1978
13. Hobbs, J R and D A Evans. "Conversation as Planned Behavior." Al Center Technical Note 203, SRI International, Menlo Park CA, 1979.
14. Kaplan, S J. "Cooperative Responses from a Portable Natural Language Data Base Query System." PhD Dissertation, University of Pennsylvania, Philadelphia, 1979.
15. Lewis, W H. "TED: A Transportable English Datamanager." Proceedings of the Principal Investigators' Meeting of the ACCAT Program, October 1979.
16. Mann, W. "Toward a Speech Act Theory for Natural Language Processing." ISI/RR-79.75, USC/Information Sciences Institute, Marina del Rey CA, 1980.
17. Moore, RC. "Reasoning About Knowledge and Action." AI Center Technical Note 191, SRI International, Menlo Park CA, October 1980.
18. Perrault, C R and J F Allen. "A Plan-Based Analysis of Indirect Speech Acts." American Journal of Computational Linguistics, volume 6, number 3-4, July-December 1980, pages 167 through 182.
19. Robinson, A E, et al. "Interpreting Natural-Language Utterances in Dialog About Tasks." AI Center Technical Note 210, SRI International, Menlo Park CA, 1980
20. Robinson, J J. "DIAGRAM: A Grammar for Dialogues." ' Al Center Technical Note 205, SRI International, Menlo Park CA, February 1980.
21. Sacerdoti, E D. A Structure for Plans and Behavior. New York: Elsevier North-Holland, 1977.
22. Schank, R and R Abelson. Scripts, Plans, Goals, and Understand ing. Hillsdale NJ: Lawrence Erlbaum, 1977
23. Schank, R and C Riesbeck. Inside Computer Understanding. Hillsdale NJ: Lawrence Erlbaum, 1981
24. Templeton, M. ' 'EUFID: A Friendly and Flexible Frontend for Data Management Systems." Proceedings of the 1979 National Conference of the Association for Computational Linguistics, August 1979.
25. Thompson, F B and B H Thompson. "Practical Natural Language Processing: The REL System as Prototype." Advances in Computers 13, M Rubinoff and M C Yovits (editors), New York Academic Press, 1975.
26. Waltz, D. "Natural Language Access to a Large Data Base: An Engineering Approach." Proceedings of the Fourth International Joint Conference on Artificial Intelligence, September 1975 pages 868 through 872
27. Wilensky, R. "Meta-Planning." Proceedings of the First Annual National Conference on Artificial Intelligence, 1980, pages 334 through 336.
28. Wilks, Y. "Natural Language Understanding Systems within the AI Paradigm: A Survey and Some Comparisons." Linguistic Structures Processing, A Zamplolli (editor), Amsterdam: North-Holland, 1977, pages 341 through 398
29. Winograd, T. Understanding Natural Language. New York: Academic Press, 1972.
30. Woods, W A. "Transition Network Grammars for Natural Language Analysis." Communications of the Association for Computing Machinery, volume 13, number 10, October 1970, pages 591 through 606.
31. Woods, W A, R M Kaplan, and B Nash-Webber. "The Lunar Sciences Natural Language Information System." BBN Report 2378, Bolt, Beranek, and Newman Inc, Cambridge MA, 1972


\title{
Want a Better Printer @ Lower Cost? Compare DIP with the other best seller.
}


\section*{Conducted by Sol Libes}

P
eering Into Radio Shack's Crystal Ball: Tandy Corporation (Radio Shack's parent firm) once kept a very tight lid on upcoming products. But now it's leaking information on product plans, some of which extend well into 1982.

Here's what to expect: Among its most ambitious programs, Tandy plans to double its hardware and software products within the next six months - judging by past performance, it can do it. Several new peripheral hardware products will be added to all of its current machines, from the pocket computer to the Model II business-oriented system. The Model II will be offered with an optional 10-megabyte hard-disk system that will include a 15 k bpi (bits per inch) tape backup. The complete hard-disk system will cost less than \(\$ 5000\). Also in the works is a multiprocessing and -programming system that will allow up to sixteen Model IIs to be chained together. A new system (Model IV?) with capabilities somewhere between the Models II and III, but closer to the Model II, will be unveiled. It will include 8-inch floppy-disk drives and a better disk-operating system, but it won't be CP/M compatible. Expect its base price to be in the \(\$ 1500\) to \(\$ 1800\) neighborhood.

As for software:
- Radio Shack will introduce packages geared toward specific "vertical" markets (eg: medical, legal, educational, etc).
- There will be a software package that allows the Model II to read and write

IBM-format disks and to serve as a terminal on an IBM system.
- There will be upgraded versions of TRSDOS for the Models I, III, and II.
Most of the upcoming Model III software will adhere to the company's policy of maintaining compatibility with the older Model I system. I must give Radio Shack credit for not making the mistake made by most other computer companies who virtually disown their older model computers when a new system is brought out, forcing customers to "junk" the older system and buy a new system merely to run new software.
Tandy also plans to change the name of its Radio Shack Computer Centers to Office Product Centers. These centers will sell copiers, facsimile machines, and other office products, as well as computer systems.

Zllog's New Fall Fashlon: This fall Zilog will introduce an enhanced \(\mathbf{Z 8 0}\) called the Z800. The designation doesn't mean that the \(\mathbf{Z 8 0 0}\) is ten times better than the Z80 and only one-tenth as powerful as the \(Z 8000\), but Zilog claims it will have three times the performance of the \(Z 80\).

Zilog says that the \(Z 800\) will be fully compatible with the \(Z 80\) instruction set, which is a wise decision because the old software can still be used. It will contain circuits that facilitate multiplication, division, and memory mapping to access up to 4 megabytes of memory. It will be offered in a
nonmultiplexed version, like the Z80, and a Z-bus-compatible version that can be used as a \(Z 8000\) peripheral. Zilog hopes to start shipping samples soon.
Commodore Releases
The 6508 Microprocessor: After years of talk about an upgraded version of the 6502 microprocessor (used in the Apple II, Commodore PET, Atari 400 and 800, etc), Commodore Semiconductor, Norristown, Pennsylvania, has finally done it: the 6508. The 6508 has 256 bytes of programmable memory and an 8-bit parallel port. Its instruction set is compatible with the 6502's and its clock rate remains at 2 MHz . Commodore has let it be known that several other versions of the 6502 are forthcoming. They will include timer/ counters, serial ports, and other functions. Its clock rate could go as high as 6 MHz .
s There A Mlcrofloppy Dlsk In Your Future? Sony is currently providing OEMs (original equipment manufacturers) with samples of its rew \(31 / 2\)-inch "micro-floppy"-disk drives. The drive represents a new technology that departs from the traditional 5 - and 8 -inch drives. Sony packs 437.5 K bytes per side into a drive that's \(27 \%\) smaller than standard 5 -inch models. Five-inch drives typically store about 250 K bytes (double-density) or 125 K bytes (single-density).

Even though the \(31 / 2\)-inch drive's compactness is very attractive for portable computers and word-processing
systems, Sony is meeting some resistance from OEMs who are leary of purchasing an unproven product from a single source
The microfloppy has a stiffer media and a rigid envelope with a shutter over the head-access slot to protect the disk. The result is less contamination and better media stability, which, in turn, allows greater accuracy and higher data density. Sony has also borrowed from its video-head technology in developing the read/ write head for this drive.

Sample drives range in price from \(\$ 400\) to \(\$ 500\), not including a controller interface, although many of the currently available controllers can be used with little or no modifications. The price should drop to \(\$ 200\) to \$300, in 500-unit quantities.

Sony plans to use the drives in its new word-processing systems, which will be introduced later this year. A 1-megabyte version of the device is expected early next year, and Sony will probably use it in its Series 35 smallbusiness systems. There are rumors that Sony is developing a \(31 / 2\)-inch hard-disk drive.

Shugart and several other floppy-disk suppliers are taking a hard look at "microfloppies." There is no doubt that the trend is to smaller disk-storage units. The question really is whether or not manufacturers will adopt the Sony format or create a new standard ... or will something different emerge?

\section*{T \\ he IAPX432 PIcture} Becomes Less Fuzzy: Recently, \(E D N\) magazine commented on where the industry can be expected to go

\section*{ANE - WAL NUT CREEK -}

\section*{}

\section*{CHERRY LANE PASCALMM}
 -


 and pid trock PDper or bulld a manogers. uspons paitormonco. onding
mand usgod bl oxx
nessmen 10.


- Find the which hasks ind exponses vary visus collars add

- Se how mot tradefts buing a pinitiod me me

 Requa vovaloble tions.
Formots: B. NS, MP, COOS. SB, TRS2, APPL






PASCAL/M for 8080 ond 8088 processois



TRANS \(86^{\mathrm{TMM}}\). 8125 . Monuol dime 80801280 proprams \({ }^{\text {The }}\)



 ACT ITM . 125 . Man acrambier tor \(280,8080 / 85\), 850

 teatures
 CHEDULES APPOITTMENTS LOR APOONTMENTS UP

 - Replices your openings
 - Apponimments mod.



operoting \& . NS. MP. COOS. FormperCALC \({ }^{\text {TM }}\) - 2295 . Mom in ins daro in 0 SUPERCAL To maninuliate billollions Colm the


 powe disploy cos symbolic.uction commanay itme. cursor connoise dato monipulat ivoked of ony IPM. TRSS
 Requures CPMM. Fomats
\(A C C E S S / 80^{\text {IM }}\). \(2^{995}\).





 conrrol ation monogomont 5 ssiam - 0785 . daro

 Evermhing pouldes ontine und


CPMM \(2 x\) domp ACT 11 logeiner
APPL
Formors: \(8, \mathrm{NS}, \mathrm{C}^{\mathrm{TM}}\). 122 .





```

 M,
    ```
    MORE SOFTWARE PRON \(\$ 125.1525\).
    \begin{tabular}{ll} 
MORE SOFTWAR & \(\$ 130.1535\). \\
TEXTWRITR III & \(\$ 350.1355\). \\
\hline
\end{tabular}
    PEARL LEEEL 2 S650.1525.
    PERRLLELLEL 3 SRL
    \(\begin{array}{ll}\text { CBASIG2 } & 515711 \\ \text { ULTRASOT } & 5325.1530 . \\ & 8650.1335 .\end{array}\)


                GLEC
SBAS

                    W/ SpPIM MENU
                    SPEL MENU
                    MOMEY MRES NVITED

DEALER INQUIRIES INVITED Hodemork Innosys Pearl trodemork CPU Intil
with the new Intel 32-bit microprocessor. I have taken the liberty of extracting some of the major comments here.
The iAPX432 was designed by and for computer scientists, rather than electrical engineers (as were Intel's 4-, 8 -, and 16 -bit microprocessors). The iAPX432's internal elements are less accessible than those in other microprocessors, so writing programs will be different.
"Instead of considering the machine in terms of bits and registers, you must focus on software objects ... the 432 has no assembly language, per se; you might consider its instruction set to be a high-level language
a nearly optimum intermediate language specifically designed to simplify the task of writing efficient compilers. In turn, these compilers can effectively handle progams coded in high-level languages." The iAPX432's instruction set "does not constitute a complete operating system; rather, it contains the essential primitives from which you can construct such an operating system . . the machine can't be programmed directly in code written in, say, Ada or FORTRAN; you need the appropriate compiler. Because the 432 simplifies system programming, programmers need not be hardware experts; thus personnel with a lower level of expertise can program it. Further, programs written in high-level languages can generally be developed more rapidly than those coded in assembly language
"The machine performs arithmetic operations quickly and with a high level of precision. It also automatically prevents many typical programming errors (you can't inadvertently execute data, for example). Further,
it provides functional redundancy checking, a feature that allows graceful system degradation when a CPU [processor] fails in a multiprocessing environment. And finally, the 432 ensures that all programs are naturally reentrant and recursive. The 432 chip set is complex and currently very expensive. It could incur speed penalties when performing certain operations."

The iAPX432 will not be the ultimate processor. "Although its instruction set is close to the ideal," says EDN, "it might be improved in other ways." It will not make 4 -, 8 -, and 16 -bit microprocessors obsolete; and, in fact, it should increase the market for these as 'peripheral processors.
"In summary, a good analogy is that the 432 is to standard microprocessors what the 7400 Series TTL was to discrete-device logic gates and flip-flops. It should free EEs [engineers] from many mundane system-design chores, allowing them to concentrate on more rewarding creative pursuits, while also reducing their projects' software costs. It's a minicomputer replacement, one that will open up scores of application opportunities."

Intel is already shipping a board-level iAPX432 evaluation system, called the Intellec 432/100. It consists of a board with a complete iAPX432 processor, RS-232C serial interface, evaluation software, and seven volumes of documentation. The user can plug the board into an Intel Intellec development system and create and execute iAPX432 programs using an object-oriented language. The 432/100 costs \(\$ 4250\).

The Intellec uses the Intel Multibus (IEEE-796), which has a 16 -bit-wide data bus.

The 32-bit-wide processor is interfaced to the bus via an interface-processor that handles data-bus transfers as two 16 -bit words (the IBM 360 , which was also a 32 -bit processor, handled data transfers as 8 -bit words, on its smaller machines).

Several S-100 (IEEE 696) bus-system manufacturers have iAPX432 development projects underway. I expect to see an S-100-based iAPX432 machine with disk operating system later this year.

Th
he Software Shop:
When I was a kid, I would go to the record shop and buy a copy of one of the top-ten records on the hit-parade. Well, soon I may be going to the "software shop" to buy a copy of one of the top-ten programs. At least that is what Cut \& Curl hopes. It plans to open a franchised chain of stores that sell only software-"software supermarkets." Cut \& Curl already franchises 500 Edie Adams Cut \& Curl and Great Expectations Precision Haircutting salons. The first Programs Unlimited store has been opened, and Cut \& Curl is talking about 100 more stores.

\section*{\(\mathbf{R}\)}
andom News Blts: Apple Computer Inc reported that sales for the first quarter of 1981 tripled over the same period a year ago Sales were nearly \(\$ 79\) million, with a net of \(\$ 9.2\) million-a \(16 \%\) increase over the previous quarter. Also, Apple claims to have produced over 200,000 Apple IIs and that the Apple III's "production problems" have been ironed out (most of the original design group has been fired). The Apple III is now in full production.

Zilog reported an \(\$ 11\) million loss on \(\$ 42\) million
business for 1980. Zilog has yet to show a profit.
Commodore expects to introduce its "Micromainframe," with 132 K bytes of memory and 6502 and 6809 processors. It is really a PET computer with a second processor (the 6809). You can elect to run either the 6502 or the 6809. Commodore claims to have BASIC, FORTRAN, APL, Pascal, and an Assembler ready for the machine. COBOL will come later. The software was developed at the University of Waterloo in Ontario, Canada. Commodore has not yet set the price. . . Interlude, Houston, Texas, claims to have sold 15,000 copies of its sex-oriented software package for the Apple II and TRS-80 computers. The program asks users questions about themselves and their partners, and then tells them how to enjoy their spare time. ... Florida Data Corporation, Melbourne, Florida, has introduced two serial dot-matrix printers that can rocket along at 600 cps (characters per second) for draft or data-processing output and at 150 cps for let-ter-quality output-that's three times faster than any daisy-wheel printer. The let-ter-quality output is produced by passing the head over each line four times, with the dots displaced slightly on each pass to fill in the character. ... Intel will introduce a set of two integrated circuits for the Ethernet controller and interface that will allow a user to implement the physical and data links. A little bit of extra circuitry, some special cables, and interfacing software, and you can connect any personal computer to an Ethernet system.
 - exas Instruments Bubble Bursts: in a surprise move, Texas Instru-

\section*{DEC LSI-11} Components Dependable service at discount prices
Domestic and Export

Mini
 Computer Suppliers,ime. 25 Chatham Rd., Summit, N.J. 07901 Since 1973
(201) 277-6150 Telex 13-6476

\title{
APPLE II PLUS 64K* only \(\$ 1249\)
}

> 16K RAM CARD INCLUDED WITH FACTORY 48K SYSTEM 16K APPLE II PLUS . . . . . . . . . . . . . . . . \(\$ 1129\)

\section*{DISK II DRIVE \& CONTROLLER ONLY \(\$ 519\)}
DISK II DRIVE ADD-ON ..... \(\$ 439\)
SILENTYPE PRINTER \& CARD ..... \(\$ 349\)
2-80 SOFTCARD ..... \$299
HAYES MICROMODEM II ..... \$299
16K RAM CARD ..... \(\$ 130\)
VIDEX VIDEOTERM 80 COLUMN ..... \$269
SEE PAGES 476 \& 477 FOR MANY MORE PRODUCTS AT UNBEATABLE PRICES.
ORDER TOLL FREE 800-854-6654
CALIFORNIA \& OUTSIDE CONTINENTAL U.s. (714) 698-8088
CONSUMER COMPUTERS MAIL ORDER 8314 PARKWAY DRIVE LA MESA, CA 92041


VII"s customarly need top quality and service within stringent
budgetary limits. Naturally, they call A.E.I. For custom systems assisuance, connectors, interfuce bourds and service; For peripherals, Incliding printers, CRT's, disc drives, or modenis; For as little as onc part such as a cable or conncctor, or as much as un cntire unational computer complex for a multi-branch conipany:
Item: A.E.I. tests vitually every item sold, before shipping. Item: A.E.I. Initializes every picce of software, and makes a copy. If you have a problem, A.E.I. can check to locate the problem by using the In-house duplicate, saving yout tince.
Item: . .E.I. has in-house expertise on every Itcm offered.
Item: A.E.I. prices are competitive wid the lowest, no-serntec,
no in-house expertisc dealer.
40\% OF ALL A.E.I. SALES ARE TO PUBLIC AND SEMIPUBLIC INSTTTUTIONS.

A partululist** of A. E. . customers whopurchased during the last quarter of 1980) Includes: University of Nebraska, Undyersity of Virginia, U.S. Dept. of Interior, University of Kentucky, Undiersity of Callforma, Massachuscetts Institute of Technology, U.S. Air Force, Naval Air Development Center, Brown University, University of Oregon, University of Utah, Ohio State Univeritity, University of Southern California, California State Dept. of Water Resources, University of Michigan, and Princeton University:
In the private sector, an equal number of major national organizations purchased durng the same perrod.
You can call A.E.I. too:
-With our nommal fant shippling, we have thac to test; cxpedited shipment muy
.preclude tcating
mercly merely that A.E.I. is proned to have them as customers.


\section*{A Program to Recover "Crashed" Discettes AUTOMATICALLY!}

Maybe it was a lightning storm, static from the rug, or just too late at night to be working. Whatever the cause, when a discette "crashes" and valuable data or programs are destroyed, the loss is enormous, both in time and money.

DISK DOCTOR is a program which automatically recovers bad discettes. Best of all DISK DOCTOR does not require any knowledge of CP/M file structure! If you can operate CP/M, then you can use DISK DOCTOR. The entire system is menu driven with key information displayed.

DISK DOCTOR is comprised of five "wards", each capable of performing a specific discette recovery operation.
- Ward A: Verlfies discettes and locks out bad sectors without touching the good files that remein.
- Ward B: Coples whatever can be read from a "crashed" file and places it Into a good file under user control.
- Ward C: Coples discettes without stopping for bad sectors. Bad sectors are replaced by spaces.
- Ward D: "Un-erases" files. That is, Ward D will recover accidentally erased disk flles.
- Ward E: Dlsplays directory of recoverable erased files. DISK DOCTOR wIll pay for itself the first time it is used.
Best of all, DISK DOCTOR operates almost complete automatically. The smali amount of user interaction is explained in the manual as well as prompted by DISK DOCTOR.

Requires: 48 K CP/M, two drives needed for complete operation. DISK DOCTOR:
\(\$ 100.00\) Manual Alone:
\(\$ 10.00\)
CP/M Formats: \(8^{\prime \prime}\) soft sectored, \(5^{\prime \prime}\) Northstar, \(5^{\prime \prime}\) Micropolis Mod II, Vector MZ, Superbrain DDIQD, Apple II +

First in Software Technology

All Orders and General Information: SUPERSOFT ASSOCIATES P.O. BOX 1628 CHAMPAIGN, IL 61820
(217) 359.2112

Technical Hot Line: (217) 359.2691 (answered only when technician is
avallable)


\section*{\(+\)}

\section*{BYTELINES}
ments (TI) will phase out its magnetic bubble-memory products as part of a com-pany-wide retrenchment program. The move, ironically, comes less than a month after TI announced it was expanding its line. Rockwell International announced a similar move earlier this year. Besides dropping its bubble-memory line, TI also announced plans to get out of the digital-watch business and lay off \(3 \%\) of its work force.

\section*{T}
he 64 K-Bit Memory Devices Are On The Way: Intel and a few other integrated-circuit makers are now shipping 64 K -bit memories. Prices are currently in the \(\$ 30\) range but are expected to drop to around \(\$ 8\) by year's end. Look for products using these circuits by early next year. It's rumored that Apple has placed an order for 60,000 of the devices, at \(\$ 12\) a chip, for a new business computer.

Reportedly, Intel has 256 K-bit memory devices in the prototype stage. Using the 64 K -bit devices, you could build a 64 K -byte memory system using only eight memory circuits. When the 256 K -bit products become available, only two circuits will be required.

MAIL: I receive a large number of letters each month as a result of this column. If you write to me and wish a response, please include a self-addressed, stamped envelope.

\section*{Sol Llbes \\ POB 1192}

Mountalnside NJ 07081

\section*{RIMCOIBOLI MAKES IT ACROSS!}


\section*{. FROM ONE OFERATINGSYSTEM TOANOTHER A VITAL WAY TO PROTECT YOUR SOFTWARE INUESTMENT FOR THE FUTURE!!}

The IAM/CUISNLI language runs on more different Operating Systems and more different-sized computers than any other similar language. For starters, it runs on NCR and TI minicomputers and, in the micro field, on the \(\mathrm{CP} / \mathrm{M}^{2}, \mathrm{MP} / \mathrm{M}^{2}, \mathrm{TRSDOS}^{3}\), OASIS \(^{4}, \mathrm{MOASIS}^{4}\), and UNIX (ONYX version) Operating Systems...to mention only a few.
Until now, serious business software of the scope and flexibility seen in the minicomputer world has not been available on micros. RAM/CUBABI; now allows transfer of such software with a minimum of fuss.

We have participated in such a mini-to-micro transfer of a major set of general business software...using RAll CIIBADLi as the transfer mechanism, of course. Running on literally thousands of minicomputers, these refined, enhanced, and proven software packages cover \(A / R, A / P\), G/L, P/R, Order Entry (with Invoicing and Inventory Control) as well as Sales Analysis. The packages define a new level of achievement for features and flexibility in micro applications software and offer top quality at a reasonable price.

For immediate information, call 714-848-1922 for your complete product descriptions. Be sure to circle no. indicated below.
...PLUS ALIL THE OLD, FAMILIAR FAVORITES that we continue to offer, such as:
General Business-Client Accounting (CPA Write-up) FMS \({ }^{6}\) (Financial Modeling System) NAD \({ }^{7}\) (Name and Address System)
Real Estate-REAP (Real Estate Acquisition Programs) PMS (Property Management System) MLS \({ }^{6}\) (Multiple Listing System)
Health Care-APH \({ }^{8}\) (Automated Patient History)
Word Processing and System Software-Magic Wand \({ }^{9}\)
QSORT \({ }^{7}\)
CBASIC2 \({ }^{\circ}\)
and Cybernetics' unique TRS-803, Model II CP/M offering high performance, hard disk support, and CP/M compatibility.

\section*{Trademarks of:}

1-Ryan McFarland Corp.; 2-Digital Research, Inc.; 3-Tandy Corp.; 4-Phase One Systems, Inc.; 5-Bell Telephone Laboratories, Inc.; 6-American Business Systems. Inc.; 7-Structured Systems Group. Inc.; 8-Cybernetics, Inc.; 9-Peachtree Software, Inc.; 10-Compiler Systems, Inc.

MR SMITH. THIS SOFTWARE WILL DEFINITELY ENHANCE YOUR CURRENT DATA PROCESSING FINANCIAL INUEXING RE IKIEVABILITY.



8041 NEWMAN AVE., SUITE 208 HUNTINGTON BEACH, CA 92647

\section*{Clarcla's CIrcult Court?}

\section*{Dear Steve,}

I am a member of the Evanston Township High School Computer Club, and I was wondering if you could settle a dispute for me. The supervisor of our computer room will not allow us to double-side our floppy disks because of the fact that they accelerate the accumulation of oxide and dust deposits on the read/write head of the disk drive. Is this true?
Scott Coleman
Evanston Il
I don't like to jump into the middle of disputes, but if you can live with my opinion, I will voice it. It should not make any difference whether you have a single-sided or double-sided disk. The diskdrive head does not come in contact with the oxide surface: it rides above it. So, theoretically, it should not cause any accumulation on the read/write head.

Now, that's in theory. In truth, there's always some oxide that comes off on the head, but if the computer room is doing regular maintenance, which is to clean the heads every once in a while, it should never be built up to a point at which it makes any difference anyway.

Perhaps the way to settle this is to have the computer club volunteer to clean the disk drives once in a while. . . . Steve

\section*{Tools of the Course}

\section*{Dear Steve,}

I am beginning implementation of a hands-on microcomputer experimentation and interfacing course here at the University of Dubuque

Theological Seminary. I want to establish a digital-microprocessor laboratory. What would you consider to be the minimum test equipment necessary? Our financial resources are somewhat limited, so your advice would be most helpful.

\section*{Terry A Ward}

Dubuque IA
At the very minimum, I would recommend that you get an oscilloscope. If you can afford it, it should be dual-trace and have at least a 15 MHz bandwidth. With it, you can troubleshoot many pieces of equipment and perform some logic-analyzer functions. If you can afford it, of course, a logic analyzer is always a good piece of equipment to have around. However, you can spend so much time teaching people how to use a logic analyzer that you don't have any time left in the course.

Other than an oscilloscope, the only other piece of equipment that you probably need would be a simple digital voltmeter (DVM) or digital multimeter.

Often the things that are needed when teaching students are not the things that you can buy off the shelf as test equipment. Frequently, simpler equipment, such as a buffered LED (light-emitting diode) that functions as a logic probe, is what's. necessary.

A logic probe, 'scope, and a DVM should take care of practically anything that would arise. : . . Steve

\section*{Auto Warning}

\section*{Dear Steve,}

In a book on microcomputers that I read, the author predicted that an automotive
warning device that would tell drivers they were too close to another vehicle would be devised.

It occurred to me that such a gadget might be realized right now using the Polaroid development kit and a simple single-board computer. Software, it seems to me, might be the biggest hurdle. What do you think?
Bob Crafts
Edgartown MA
The Polaroid ranging sensor is definitely usable for a driver-warning device like the kind you mentioned. However, I don't see this sensor being used as a crashavoidance device because its response time is a little slow. I have seen one company using the device on each side of a car's fenders, with a dashmounted display for the driver. In my mind, while this may work, its feasibility and production is another matter. It would seem to be rather expensive unless produced in large quantities.

When using the Polaroid development kit in an automobile, you must try to isolate the ignition noise from any power being drawn from the car's electrical system. From my experience, the Polaroid ranging kit is also electromagnetic interference and static sensitive. If used in a car, it should be in a shielded enclosure. ... Steve

\section*{Scheming Schematics}

\section*{Dear Steve,}

I would like to expand an Atari 400 or 800 with minimum programmable memory to a full 64 K memory by using 4116 chips. To this expansion board, I would also like to add RS-232C circuitry to handle a printer and
modem. Of course, it would need its own power supply.

I am a technician with a good background in digital electronics but not a circuit designer. Where can I find the necessary schematic and parts list?
Emanuel Soffer
Rockaway NY
Expanding the memory and adding \(R S-232 C\) to the Atari are two completely different problems, each requiring diverse amounts of talent. The 6502 has no intemal refresh logic, as does the Z 80 . External refresh logic must be added.

An RS-232C serial port can be added fairly easily to the expansion connector on the side of the Atari if the proper software is added to the unit. One company that has been working on this is the Code Works, POB 550, Goleta CA 93017. I suggest that you write the Code Works (attention Ron Jefferies) asking about its serial port for the Atari. It should be fairly inexpensive because it's practically all software.

Presently, it is cheaper to use static memory on the Atari. Whether this situation continues will be determined by the prices of dynamic versus static memory, the development of an inexpensive refresh method, or the evolution of new quasistatic programmable memories, such as the Zilog Z6132. If any readers have a good circuit for using dynamic memory with a 6502, I'd appreciate seeing it. . . . Steve

\section*{LIttle Problems Cause Big Ones}

\section*{Dear Steve,}

We have a problem with our 6800 microcomputer.


RACET SORTS - RACET UTILITIES - RACET computes - RACET SORTS - RACET UTILITIES - RACET computes - RACET SORTS - RACETUTILITIES - RACET cOMPUTES -

\section*{FIELD PROVEN!!}

\section*{10 Megabytes and MORE for the TRS-80* Model II plus SHARED ACCESS to HARD DISK DRIVE}

Hard/Soft Disk System (HSDS) Software allows access as single drive. You can have that 10 Megabyte continuous file - that 50,000 name maillist or inventory! Or a directory with 1000 entries! All completely compatible with TRSDOS 2.0 BASIC. You can mix floppy and hard disk drives. Includes special utilities including HPURGE, DCS Directory Catalog System, HZAP Hard Disk Superzap, and many special formatting options. Three to eight times faster than floppy! RACET quality
HARD DISK DRIVE \& CONTROLLER \$5995. Second User \$595.
HSOS Software \$400. (Note: HSDS now also available for CORVUS drives!!)
INFINITE BASIC (Mod I \& III Tape or Disk)
Mod I \$50.00, Mod III \$60.00 Extends Level II BASIC with complete MATRIX functions and 50 more string functions. Includes RACET machine language sorts! Sort 1000 elements in 9 seconds!! Select only furctions you want to optimize memory usage.
INFINITE BUSINESS (Requires Intinite BASIC)
Mod I \& III \(\$ 30.00\)
Complete printer pagination controls - auto headers, footers, page numbers. Packed decimal arithmetic - 127 digit accuracy,,\(+- *\), Binary search of sorted and unsorted arrays. Hash codes.

\section*{BASIC CROSS REFERENCE UTILITY (MOd 1164 K )}
\(\$ 50.00\) SEEK and FIND functions for Variables; Line Numbers, Strings, Keywords. 'All' options available for line numbers and variables. Load fom BASIC - Call with 'CTRL'R. Output to screen or printer!

\section*{DSM}

Mod I \$75.00, Mod 11 \$150.00 \(\$\) Mod \(111 \$ 90.00\)
Disk Sort/Merge for RANDOM files. All machine language stand-alone package for sorting speed. Establish sort specification in simple BASIC command File. Execute from DOS. Only operator action to sort is to change diskettes when requested! Handles multiple diskette files! Super fast sort times - improved disk \(1 / 0\) times make this the fastest Disk Sort/Merge available on your TAS
(Mod I Min 32K 2 -drive system. Mod II 64 K 1 -drive. Mod III 32 K 1 -drive)
GSF (Mod I \& III Tape or Disk - Specify Memory Size)
Mod I \$25; Mod II \$50; Mod III \$30
Generalized Subroutine Facilities. The STANDARD against which all other sorts are compared! And then compare prices! Machine language - fast and powerful! Multi-key multi-variable and multi-key character string. Zero and move arrays. Mod II includes USR PEEKS and POKES. Includes sample programs.

DISCAT (32K 1-drive Min)
Mod I, III \(\$ 50.00\)
This comprehensive Diskette Cataloguing/Indexing utility allows the user to keep track of thousands of programs in a categorized library. Machine language program works with all TRSDOS and NEWDOS versions. Files include program names and extensions, program length, diskette numbers, front and back, and diskette free space.
KFS-80 (1-drive 32 K Min - Mod II 64K)
Mod I, III \$100.00; Mod II \$175.00 The keyed file system provides keyed and sequential access to multiple files. Provides the programmer with a powerful disk handling facility for development of data base applications. Binary tree index system provides rapid access to file records.

MAILLIST (1-drive 32K Min - Noo II 64K)
\[
M
\]

Mod I. III \(\$ 75.00\). Mod II \(\$ 150.00\) This ISAM-based mailiss minimizes disk access limes. Four keys no separate sorting. Supports 9 -digit zip code and 3 -digit state code. Up to 30 all butes. Mask and query selection. Record access times under 4 seconds!!
COMPROC (Mod I \& Mod III - Disk only) Mod I \(\$ 20\); Mod III \(\$ 30\)
Command Processor. Auto your disk to perform any sequence of instructions that you can give from the keyboard. DIR, FREE, pause wat for user inpuh, BASIC, No. of FILES and MEM SIZE, RUN program, respond to Input statemients, BREAK, return to DOS, etc. Includes lowercase driver software, debounce and screenprint! UTILITY PACKAGE (Mod \(\|\) G4K) Important enhancement to the Mod The fitm recovert capabilities alone will pay for the package in even one applicauop ri uly documented in 24 page manual! XHIT, XGAT, XCOPY and SUPEBZAP are used to reconstruct ar fecover date from bad diskettes! XCOPY provides multi-file copies, wildicand' mask select, absolute
 diskette includestrack-0, and abisplute disk hackup/antey withsty 0 , acovery. DCS builds consolidated directorleswitem multhelendskettes tht a shingle display or listing sorted by disk name or file name plus more. Change Disk ID with DISKID. XCREATE preallocates files and sets 'LOF' to end to speed disk accesses. DEBUGII adds single step, trace, subroutine calling, program looping, dynamic disassembly and more!!
DEVELOPMENT PACKAGE (Mod II 64K)
\(\$ 125.00\)
Includes RACET machine language SUPERZAP, Apparat Disassembler, and Model II interface to the Microsoft 'Editor Assembler Plus' software package including uploading services and patches for Disk 1/0.
CHECK, VISA, M/C, C.O.D., PURCHASE ORDER
TELEPHONE ORDERS ACCEPTED (714) 997-495D
-TRS-8O IS A REGISTERED TRADEMARK
OF TANDY CORPORATION
OF TANDY CORPORATION

This problem appears to be entirely within the computer itself. Local experts and Technical System Consultants (it wrote the software) all seem to be baffled by the problem.

The computer is a SwTPC (Southwest Technical Products Corporation) 6800 microcomputer wth 32 K bytes of programmable memory (two 4 K -byte boards at 0000 to 1FFF hexadecimal and three 8 K boards at 2000 to 7FFF), an A2 processor board with SwTBUG monitor, MPC interface, and MF-68 dual disk drives. The system runs under Flex 1.0. The peripherals are: CT64 terminal, AC30 cassette interface, GE Terminet 300 hard-copy terminal, and a PR40 parallel printer.

Running MEMTEST1 indicates one small problem at address 3C2D hexadecimal, but, other than that, there appear to be no problems.

The problem appears when using the PRINT statement running under Disc BASIC 3.0 and all versions of 8 K BASIC. When running a program with any more than 25 characters in a PRINT statement anywhere in the program, one of the following happens:
- The CT64 terminal will go into numerous control character gyrations after printing the first 25 characters.
- Both printers print the same "garbage" after the 25 char-
acters. Each line printed will have the same "garbage" characters after the first 25 characters.

Strangely enough, this problem with the terminal and the printers does not occur with the LIST command on any of the aforementioned versions of BASIC. When I use the 4 K -byte version, I encounter no problems at all with the PRINT statement.
Dave Coultish
Ottawa, Ontario, Canada
I asked our local SwTPC guru, Leo Taylor, to provide an answer. . . Steve

Unfortunately, I can't tell you anything solid, because I do not have the BASIC you are using. I can, however, offer a few suggestions.
I suspect you have confused a few people with your software description. To the best of my knowledge, I guess you have Miniflex and SwTPC BASIC 3.0. Many people are confused between versions of Flex. If you have 5-inch floppy-disk drives, you can't have Flex 1.0 because it requires 8 -inch drives and memory at hexadecimal A000. TSC did not write BASIC 3.0; it was written by Rober Uterwick and adapted by SwTPC.

There is never a "small memory problem." BASIC has a way of finding memory
problems that defy any other means of detection. Since you mentioned the memory error, you probably haven't swapped boards to eliminate it as a suspect. You have enough memory to remove any one board and still have the required 12 K starting at address 0000 and 4 K at hexadecimal 7000. The BASIC you are using will scan for end-of-memory. If it finds a byte it considers bad, it stops scanning, backs up one address, and loads its stack. If the end-of-memory is near the start of a page (such as 3C2D), BASIC will fail to reserve enough stack space. This can cause all sorts of problems. Thus, a minor memory problem becomes a major malfunction. . . . Leo Taylor

\section*{Control Search}

\section*{Dear Steve,}

My company has been looking for a way to communicate with a robot by using radio control. We were
hoping that you might know of an integrated circuit that can be used. We need three or more digitally proportional channels that can be easily controlled by a computer.
Michael Dubno
Bronx NY
National Semiconductor has recently introduced a set of devices for the remotecontrolled toy market that may be of interest to you. The LM1871 (transmitter) and LM1872 (receiver) have the following capabilities:
- two analog channels
-two digital channels
- operates on 27, 49, or

72 MHz band
- regulated pulse-width modulation radio-frequency output

It doesn't have three analog channels as you requested, but it has a lot of power for an 18-pin chip. I recommend that you contact your local National Semiconductor sales representative for pricing and availability.

Steve \(\square\)

In "Ask BYTE," Steve Ciarcia answers questions on any area of microcomputing. The most representative questions received each month will be answered and published. Do you have a nagging problem? Send your inquiry to:

\section*{Ask BYTE}
clo Steve Ciarcia
POB 582
Glastanbury CT 06033
If you are a subscriber to The Source, send your questions by electronic mail or chat with Steve (TCE317) directly. Due to the high volume of inquiries, personal replies cannot be given. Be sure to include "Ask BYTE" in the address.

\section*{6809 SYSTEMS (:) 6809 SYSTEMS © 6809 SYSTEMS}

6809 SYSTEMS
Featuring the Gimix mainframe with 30 amp C.V. ferro-resonant power supply: fifteen 50 pin and eight 30 pin slot Mother Board:
2 Mhz CPU with time of day clock \& battery back-up, 1K RAM, 6840 programmable timer, provisions for 9511 A or 9512
Arithmetic processors, and 4 PROM/ROM/RAM sockets that can hold up to 32 KB of monitor or user sotware.
VAFIETY: you can have \(32 \mathrm{~KB}, 56 \mathrm{~KB}, 128 \mathrm{~KB}\) and up of static RAM. You can use \(5^{\prime \prime}\) and/or \(8^{\prime \prime}\) ' disk drives, single or double density, single or double sided, and single or double tracking with GIMIX disk controllers. You have a wide choice of serial or parallel I/0 cards.
EXPANDABILITY: You can add memory, I/Os, Video or Graphics cards, Arithmetic processors, additional drive capacity, and other hardware now or in the future to this SS50 bus structured system from GIMIX or other SS50 bus compatible manufacturers.

For further intormation. pricing and brochures, contact

The Compeny that dellivers Qually Electronic products since 1975. SOFTWARE VERSATILITY: GIMIX systems can use TSC's FLEX or UNIFLEX and MICROWARE'S OS-9 operating systems. A wide 1337 WEST 37th PLACE, CHICAGO, IL 60609 variety of software and languages is available for these systems.
QUALITY: All boards are assembled, burned-in, and tested and feature GOLD PLATED BUS CONNECTORS. Only top quality com- GImix" and GHOSt* are registered trademarks ponents are used and all boards are fully buffered for maximum system expansion. All boards come complete with bus connectors and all necessary instruction and documentation.

Flex and Uniflex are Irademaiks of Technical Systerns GIMIX designs, manufactures and tests, in-house, their complete line of products. Complete systems are available to fit your Consultants inc. OS9 is a trademark of Microware inc. See needs. Please contact the factory if you have any special requirements.

\section*{small ad: \\ Big Savings \\ Sample Prices \\ DRIVES-LOBO/TANDON/MPI-From \(\$ 270.00\) 64K SUPERBRAIN \(\$ 2640.00\) QD \(\$ 2990.00\) ZENITH Z89/48K-1 DRIVE \\ C. ITOH STARWRITER ( 25 cps ) w/trac. DIABLO \(630 \mathrm{w} / \mathrm{trac}\). NEC \(5510 / 5530 \mathrm{w} / \mathrm{trac}\). \(\$ 2184.00\) EPSON MX-80 \(\$ 475.00\) MX-80FT \(\$ 2650.00\) \\ MX 100 \(\$ 575.00\) \\ FULL LINE OF CCS BOARDS \(\$ 695.00\) \\ Call for prices on items not listed. Prices subject to change. \(\$ 100.00 \mathrm{~min}\). order}

\section*{100\% Compatible Model III Disks}


Disk III Single Drive Assy. \({ }^{1}\) \(\$ 599.00\)

Disk III Dual Drive Assy. \(\$ 864.00\)
IMMEDIATE DELIVERY COMPARE \& SAVE VR DATA's Disk III features:
- Completely compatible w/TRSDOS \({ }^{\text {w }}\)
- State-of-the-art circuitry.
- Fully tested, calibrated and burned in.
- Warranty 120 days
- Installation with simple hand tools
- Optional dual side and/or 80 tk.
- Conforms to FCC Class B Specs.
'DISk III single drive assembly includes: one 40 track \(51 / 4 "\) double density drive, power supply. controller, mounting hardware, and applicable cables.
Prices subject to change without notice
(\%)
777 Henderson Boulevard
Folcroft, PA 19032
To order call toll iree-800 345-8102 or (215) 461-5300 In PA.



Ma in Showroom \& Offices: 216 South Oxford Avenue Los Angeles, CA 90004 WE HONOR VISA and MASTERCHARGE


TELEX: 673477
ORDER DESKS open 7 Oays a Week!
7:00 AM to 7:00 PM Mon thru Sat
Sunday Noon to 5:00 PM
Order Desks: (213) 739-1130
TOLL.FREE TOLL.FREE
(outside Calif.) (within Calif.)
800-421.8045 800-252.2153
Write \& request our FAMDUS Catalog! Hundreds \& hundreds of products-trom many manufacturers-such as SONY, CASIO, VICTOR CODE.A.PHONE, MATTEL, SHARP, CANDN, and on and on. . too many to list here!
All goods subiect to availa bility, this ad super sedes yill grevious oass, we are nor responsible lor evographical errors: we will meer or bear
any advertised prices if the competition thas sny gavertised price
the goods on hatid.
Mintmum shipping and handling \(\$ 4.95\).

HEWLETT
PACKARD

Texas Instruments

\subsection*{11.99/4 Home Computer \(\quad 950.00 \quad \$ 379.95\)} \(10^{\circ}\) Colur Monitar for \(99 / 4 \quad 650.00 \quad 319.95\) \(\begin{array}{llll}32 \mathrm{~K} & \text { Exp. Mem. Module } & 399.95 & 314.95\end{array}\) Extemiled Basic, a MUST for \(100.00 \quad 75.00\) 32 K Muilule Speech Synthesizet
Disk Me mory Drive RF Muilulatar \begin{tabular}{lll} 
Telephone Coupler (Moilem) & 69.50 & 49.50 \\
\hline
\end{tabular} \(\begin{array}{lll}\text { Celinter (sinlid state) } & 225.00 & 189.95 \\ \text { Porm) } & 400.00 & 319.95\end{array}\)

T1.59 Proqimble Calculator
T1.58C Proyrmble Calcudator \(\quad 130.00 \quad 199.95\) PC. 100C Printr/Plotr tor \(59 / 58 \quad 22500093\) \(\begin{array}{llrr}\mathrm{T} .57 \text { Scientitic Calculator } & \mathbf{9 9 . 9 5} & 39.95\end{array}\) \(\begin{array}{lll}\text { MBA Finance \& Business } & 70.00 & 51.95\end{array}\)
\begin{tabular}{ll}
11 Investmit Analyst & 65.00 \\
& 46.95
\end{tabular}
\(\begin{array}{llll}\mathrm{T} .55 \text { Sliille Rule } & 40.00 & 32.95\end{array}\)
Ti.Progimir Hexitrecinl/Octal \(\quad 65.00 \quad 48.50\)
We carty a large inventury of soltware,
accessuries and supplies.

\section*{Prolessional Compurers Retail Your Cust CBPDF \(-48 \mathrm{~K} \quad 3495.00 \quad 3195.00\)} - Dual 8" Drives - 64 col \(\times 32\) line \(/\) color - . 7 MIPS - FAST/ Many more stndard features Fortran \& Pascal available
Many other OSI products available
at discoumted prices, of course!

\section*{ATARI \({ }^{\text {CEEASONAL }}\)}
 Retail: \(\$ 595.00\) Your Cost: \(\$ 339.95\) Language cartridge not included;
Optional basic language cartidge: \(\$ 54.95\) 800 IGK liytes of RAM \(\quad 1080.00 \quad 759.95\) 410 Pragram Recariler \(\quad 90.00 \quad 79.95\) 810 Disk Orive 825 Printer \((80 \mathrm{col}\)

\section*{Centranic 737)}

820 Printer ( 40 col impact) 830 Acoustic Modem 850 Interlace Module Atari VisiCale NEW! Frum TI-Series 10 Persunal Informatio

PRINTERS


1640 K 109 Kinectnalvactors 2965.002699 .00 630 RO Reyboarli, tractors 3072.002899 .95 I650K 136 keyboaril/tracturs 3220.002999 .95 - CENTRONICS dot matrix
\(1460.00 \quad 1199.95\)
99500
\(1045.00 \quad 899.95\)
1870.001695 .00
\(\begin{array}{r}795.00 \\ \hline 139400 \\ \hline 195.00\end{array}\)
60G with graphics New lull sise \(1695.00 \quad 1399.00\)
 WE ALSO HAVE - nOVATION Modems Retail Your Cost CAT - SANYOL CAT Direct

High Resolution, Number I seller \(\begin{array}{llll}13^{\circ *} \text { Color (new) high quality } & 550.00 & 399.95\end{array}\) \(\begin{array}{llll}\text { 12"* Green Phospharous } & 360.00 & 239.95 \\ 12^{* *} \text { Black anil White } & 340.00 & 219.95 \\ 15^{\circ *} \text { Black } & 330.00 & 23995\end{array}\) \(\begin{array}{ccc}15^{\circ "} \text { Black and White } & 370.00 & 239.9 \\ 9^{*} 8 \mathrm{~B} \text { W the best seller! } & 23500 & 149.95\end{array}\) AMDEK(Leedex)High Quality Monitors \(\begin{array}{llll}100 & 12 " B & B N, 12 M H z & 179.00 \\ 100.80 & 12 . " B N \text {, metal cab., } & 199.00 & 159.95 \\ & 199.95\end{array}\) space for floppy
 Color 1 13" Color NTSC comp 449.00329 .95
imput, aud
hi res graphics, speaker
- HAZELTINE Video Disulay Terminals
- OEC VT100 \& VT103
ion Terminal Rerail 995.00 Your Cost 795.00

\section*{YHoctigis}

\section*{COMPLETE CATALOG OF COMPUTER EQUIPMENT AT DISCOUNT PRICES.}

\section*{BEST PRICE EVER! \$169 \\ RAM 65. 16K STAIIC \(5-100\) RAM \\ BY COMPUTER SYSTEM RESOURCES}

FEATURES: Switch selectable I/O port bank select. 4 K address steps. Uses 2114L-3 low power memory. 1 K de-select feature Memory protect. Phantom,fully socketed, assembled and tested. Full one-year warranty.

TELEVIDEO TERMINALS:
Model 912C
Model 920C .
New! Model 950
695.00
. 720.00 .995 .00

EPSON PRINTERS:
Model MX-70 ........... SCALL Model MX-80 .. . . \$CALL

\section*{Q.I. COMPUTER SYSTEMS:}
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \(\mathrm{MF}+\mathrm{DD} 1\) & 25 A. Maintrame: 12 Slot. S100. Dual 8" Drive & . \\
\hline MF-18A & 25 A. Tabletop Mainframe: 18 S.ot. S100 & \\
\hline \(\mathrm{MF}+12 \mathrm{~A}\) & 25 A. Maintrame: 12 Slot. St00. Dual 5" Drive & 00 \\
\hline Z+80A & Single Board. Z-80 Computer \(2 / 4 \mathrm{Mnz} . . \mathrm{S}\) - & 185.00 \\
\hline Z+80A/2.2 & Monitor Program for Z +80 A \& Tarbell or VF-1 & 30.00 \\
\hline RAM 32 & 32K Static RAM Board. Low Power, S-100 & 499.00 \\
\hline OTCIOA & 2 Serial \& 4 Parallel Port & 339.00 \\
\hline OTCCCSA & Clock Calendar Board, S-100 & 25.00 \\
\hline OtCCCAA & Clock Calendar Board, for Apple & \\
\hline OTCCCTR & Clock Calendar Module for TRS-80 & \\
\hline
\end{tabular}

\section*{VISTA COMPUTER COMPANY:}

MODEL DESCRIPTION IALL ASSEMBLED \& TESTED) .................... PRICE
V300/25 . Letter Quality Printer, 25 CPS .................... 895.00
V300/45 . Letter Quality Printer, 45 CPS .................... 2195.00
V-DRIVE .. Dual 8" Disk Cabinet. Power Supply. Rack Mountable ... 375.00

\section*{COMPUTER SYSTEM RESOURCES:}
model description Iall assembled \& testedi ................. price

RAM 16C . Low Power (CMOS) version of RAM 16. 13 Watt . . . 259.00
RAM 65 ...16K Static RAM. I/O Port Bank Select. S-100 ...... 169.00
RAM 65C . Low Power (CMOS) Version of RAM 65. 1.4 Watt . . 279.00
RAM 32...32K Low Power 8/16 Bit Static RAM, Fully IEEE 696499.00
RAM 256 . 256 K 8/16 Bit Dynamic RAM, Fully IEEE 696 . . . . . 1295.00
I/O-8 . . . . 8 Port Serial I/O. Fully IEEE. up to 200K BAUD ..... 395.00

\section*{ORDERING INFORMATION:}

Minimum Order is \(\$ 15.00\). Prices quoted do not include shipping and handling. Foreign orders require prepayment by MICR or Money Order in U.S. funds. Purchase Orders accepted from U.S. Government \& firms with published A1 Rating from Dunn \& Bradstreet. All other orders require prepayment, charge card. or COD shipment.

\section*{TOLL-FREE PHONE NUMBER:}

Call Toll-Free: 1 (800) 423-5141, In Alaska, and Hawaii, call us collect at (213) 883-3244.

\section*{TO RECIEVE OUR FREE CATALOG:}

Call our Toll-Free (800) number, or circle Reader Service \(\#\).

\section*{7131 OWENSMOUTH AVE. / \#21D CANOGA PARK. CALIFORNA 91303 213/883-3244 \\ 800/423-5141 \\ }

\section*{Bools Received}

Apple Crunch, novel by Frederic Vincent Huber. New York: Seaview Books, 1981; 15 by \(22 \mathrm{~cm}, 264\) pages, hardcover, ISBN 0-87223-687-0, \(\$ 10.95\).
Calculator Clout: Programming Methods for Your Programmable, Maurice D Weir. Englewood Cliffs NJ: Prentice-Hall, 1981; 18.5 by \(24.5 \mathrm{~cm}, 235\) pages, hardcover, ISBN 0-13-110411-X, \(\$ 17.95\); softcover, ISBN 0 -13-110403-9, \$8.95.
Computers for Everybody, Jerry Willis and Merl Miller. Beaverton OR: Dilithium Press, 1981; 14 by \(22 \mathrm{~cm}, 173\) pages, softcover, ISBN Q-918398-49-5, \$4.95.
Computer Literacy: Prob-lem-Solving with Computers, C E Horn and J L Poirot. Austin TX: Sterling Swift Publications, 1981; 18.5 by \(23.5 \mathrm{~cm}, 304\) pages, softcover, ISBN 0-88408-133-8, \(\$ 13.95\).

Computer Solution of Large Sparse Positive Definite Systems, Alan George and Joseph W Liu. Englewood Cliffs NJ: PrenticeHall, 1981; 16 by 23.5 cm , 324 pages, hardcover, ISBN 0-13-165274-5, \$24.95.
The Devil's DP Dictionary, Stan Kelly-Bootle. New York: McGraw-Hill, 1981; 13.5 by \(20.5 \mathrm{~cm}, 141\) pages, softcover, ISBN 0-07-034022-6, \(\$ 7.50\).
Electronic Circuits Note Book, Proven Designs for Systems Applications, edited by Samuel Weber. New York: McGraw-Hill, 1981; 22 by 28 cm , 344 pages, hardcover, ISBN 0-07-019244-8, \(\$ 32.50\).
Manual of Pharmacologic Calculations with Computer Programs, Ronald J Tallarida and Rodney B Murray. New York: Springer-Verlag, 1981; 16 by \(24.5 \mathrm{~cm}, 150\) pages, hardcover, ISBN 0-387-90500-6, \$17.50.

Microsoft FORTRAN, Paul M Chirlian. Beaverton OR: Dilithium Press, 1981; 14 by \(22 \mathrm{~cm}, 333\) pages, softcover, ISBN 0-918398-46-0, \$14.95.

Outland, The Movie Novel, edited by Richard J Anobile, from the screenplay by Peter Hyams. New York: Warner Books, 1981; 22 by 27.5 cm , 160 pages, softcover, ISBN 0-446-97829-9, \$9.95.

Program Flow Analysis: Theory and Applications, S S Muchnick and ND Jones. Englewood Cliffs NJ: PrenticeHall, 1981; 16 by 23.5 cm , 418 pages, hardcover, ISBN 0-13-729681-9, \$23.50.

Scientific Analysis for Programmable Calculators with Algebraic Operating Systems, H R Meck. Englewood Cliffs NJ: Prentice-Hall, 1981; 18.5 by \(24.5 \mathrm{~cm}, 175\) pages, hardcover, ISBN 0-13-796417-X, \$15.95; softcover, ISBN 0-13-796409-9, \$7.95.

Software Metrics, edited by A J Perlis, F G Sayward, and \(M\) Shaw. Cambridge MA: The MIT Press, 1981; 16 by \(23.5 \mathrm{~cm}, 404\) pages, hardcover, ISBN 0-262-16083-8, \(\$ 25\).

Thirty-Two BASIC Programs for the Exidy Sorcerer, T Rugg, P Feldman, and K McCabe. Beaverton OR: Dilithium Press, 1981; 14 by 22 \(\mathrm{cm}, 265\) pages, softcover, ISBN 0-918398-35-5, \$16.95.■

This is a list of books received at BYTE Publications during this past month. Although the list is not meant to be exhaustive, its purpose is to acquaint BYTE readers with recently published tities in computer science and related fields, We regret that we cannot review or comment on all the books we receive; instead, this list is meant to be a monthly acknowledgment of these books and the publishers who sent them.


LINE VOLTAGE TRANSIENT CLIPPING
Features Parallel Operation

PROTECTS:
- Computers
- Micro-Computer Systems
- Word Processors
- Cash Registers
- Power Supplies

5000 Hits/Second
PROTECTS AGAINST:
- High Energy Voltage

Transients
-On-Off Switching
- Lightning Induced Transients
- Inrush of On/Off Power

DYMARC INDUSTRIES, INC.

\section*{CATCH THE S-100 INC. BUS!}


Subject to Available Quantilies - Prices Quoted Include Cash Discounts. Shipping \& Insurance Extra
We carry all major lines such as
S.D. Systems, Cromemco, Ithaca Intersystems, North Star, Sanyo, ECT, TEI, Godbout, Thinker Toys, SSM. For a special cash price, telephone us.

Please note our new address.

\author{
S-iDO, inc. \\ 14425 North 79th Street, Suite B Scottsdale, Arizona 85260 800-582-3138 • 602-991-7870 Hours: Mon. - Fri, - 9 a.m. to 6 p.m. MST
}

\section*{EDITOR, ASSEMBLER AND MORE!}

WFVN:
The Micro Works Software Development System (SDS80C) is a complete 6809 editor, assembler and monitor package contained in one Cotor Computer program pack! Vastly superior to RAM-based assemblers/editors, the SDS80C is nonvolatile, meaning that if your application program bombs, it can't destroy your editor/assembler. Plus it leaves almost all of 16 K or 32 K RAM free for your program. Since all three programs, editor, assembler and monitor are co-resident, we eliminate tedious program loading when going back and forth from editing to assembly and debugging!
The powerful screen-oriented Editor features finds, changes, moves, copys and much more. All keys have convenient auto repeat (typamatic), and since no line numbers are required, the full width of the screen may be used to generate well commented code.
The Assembler features all of the following: complete 6809 instruction set; complete 6800 set supported for cross-assembly; conditional assembly; local labels; assembly to cassette tape or to memory; listing to screen or printer; and mnemonic error codes instead of numbers.
The versatile ABUG monitor is a compact version of CBUG, tailored for debugging programs generated by the Assembler and Editor. It features examine/change of memory or registers, cassette load and save, breakpoints and more. SDS80C Price: \(\$ 89.95\)

\section*{PARALLEL O!}

USE A PARALLEL PRINTER with your Color Computer! Adaptor box plugs into the serial port and aliows use of Centronics/Radio Shack compatible printers with parallel interface. Assembled and tested. PIBOC Price: \(\$ 69.96\)

SOURCE GENERATOR: This package is a disassembler which runs on the color computer and generates your own source listing of the BASIC interpreter ROM. Also included is a documentation package which gives useful ROM entry points, complete memory map, I/0 hardware details and more. A 16K system is required for the use of this cassette. 80C Disassembler Price: \(\$ 49.95\)

\section*{CBUG IB HERE!}

MONITOR TAPE: A cassette tape which allows you to directly access memory, I/0 and registers with a formatted hex display. Great for machine language programming, debugging and learning. It can also send/receive RS232 at up to 9600 baud, including host system download/upload. 19 commands in all. Relocatable and reentrant. CBUG Tape Price: \(\$ 29.95\)
MONITOR ROM: The same program as above, supplied in 2716 EPROM. This allows you to use the entire RAM space. And you don t need to re-load the monitor each time you use it. The EPROM plugs into the Extended Basic ROM Socket or a modified ROMPACK. CBUG ROM Price: \(\$ 39.95\)

\section*{LEARN GEOS!}

6809 ASSEMBLY LANGUAGE PROGRAMMING, by Lance Leventhal, contains the most comprehensive reference material available for programming your Color Computer. Price: \(\$ \mathbf{1 6 . 9 5}\)

\section*{ЗЕK RAM:}

MEMORY UPGRADE KITS: Consisting of 4116 200ns. integrated circuits, with instructions for installation. 4K-16K Kit Price: \$39.95. 16K-32K Kit (requires soldering experience) Price: \(\$ 39.95\)

WE SHIP FROM STOCK! Master Charge/Visa and COD Accepled

\section*{TSE-HARDSIDE 1982 Micro-Computer Buyer's Guide.}
I've enclosed \(\$ 2.95\) Please send only your FREE Price List
Charge to my credit card MasterC̄ard Visa
Card No.
Interbank No. Exp. Date
Signature \(\square\)
Name
Address
City
State
Zip Code

\section*{BUS-TO-BUS COMMUNICATION}


\section*{Apple Dealers....}


\section*{apple computer}

We've written TRAVO, a complete surveying package that is second to none. It has all the routines needed for surveying. It's menu driven and heavily prompted. The manual was written in straightforward every day surveying language by a third generation surveyor who has been working with computers since 1965
Surveyors are generally accustomed to dedicated calculators or computers. Most of them are just doing their surveying and engineering computations and are not utilizing the capability of a general purpose computer like the Apple to do payroll, \(G / L, A / P, A / R\), word processing or iob costing.
That's where you come in. You sell 'em the hardware and the other software and we'll help you sell 'em our program. If you or your customer have questions, we'll be happy to answer them for you.
TRAV is no stranger to surveyors. We're advertising in all national surveying publications. We have satisfied users all over the U.S.
Our discounts are great.
Call or write for a user manual.

\section*{Surveyors Supply Co.}
P.O. Drawer 808 Hwy 64 at Old Hwy 1


\section*{LDP888 8088 CDU BOARD}
- 8088 CPU 5 MHz operatlon upgradeable to 8 MHz - 9 vectored Interrupts. Fully complles with IEEE 696 electrlcal and tlming specs - RS232 serial port with modem controls. 1 K bytes of static RAM - 2 EPROM sockets ( 2716 or 2732) - 8087 upgrade kit avallable In Sept. - 8 blt bus eases Interface to other 5100 bus boards - 1MByte address space - 65 K I/O ports

\section*{64/256K MEMORY}
- 8 or 16 blt operation. Meets all IEEE 696 specs. Access time 350 ns from PSYNC Iow - Intel 8203 dynamic RAM controller- 24 or 16 blt ad. dress decoding - No wait states with 5 MHz 8088 or 8086 - Parity with Error Interrupt generatlon - No DMA RESTRICTIONS - 64 K board Is up. gradeable to 256 Kbyte board

\section*{HAZITALL}
- 2 Serial RS232 ports - 2 parallel ports with handshake control - Math processor support ( \(8231 / 9511\) or \(8232 / 9512\) ) - WINCHESTER DISK support - Real time programmable Interrupt. Clock/calendar with battery back up - Synchronous data communicatlon supported

\section*{LDP72 FLOPPY DISK CONTROLLER}
- IBM compatible single and double denslty format - SIngle or double slded drlves - Programmable data record lencth (128 to 8192 bytes sector) - Mult sector and multi track transfer capability. Parallel seeks on up to 4 drlves - On board digltal data separator. Software selectable single or double density operation - Separate connectors for \(5 \% /^{\prime \prime}\) and \(8^{\prime \prime}\) dilves - Software selection of standard or minidrives allowing mixing of both drives on a single controller

\section*{Software support for 88.DOS and CP/M-86.}
\begin{tabular}{llll} 
CP/M-86 & \(\$ 250\) & 86-DOS & \(\$ 195.00\) \\
LDP88 & \(\$ 349.95\) & LDP72 & \(\$ 274.95\) \\
HAZITALL & \(\$ 325.00\) & LDP64K RAM & \(\$ 695.00\) \\
LDP128K RAM & \(\$ 1295.00\) & LDP256K RAM & \(\$ 2095.00\) \\
Complete systems also available. & &
\end{tabular}

Complete systems also available.
CP/M-86 is a trademark of Dlgltal Research
86-DOS Is a trademark of Seattle Computer Products

\author{
OMAS \\ DATA \\ PRODUCTS \\ 11 Cross Street \\ Westborough, MA 01581 \\ Telephone: (617) 366-4335
}

\section*{SAVE \(\$ \$\) DISCOUNT PRICES SAVE \(\$\)}


16K APPLE II
32K APPLE II
48K APPLE II
DISK WICONTROLLER
DISK ONLY
APPLESOFT CARD
INTEGER CARD
PASCAL SYSTEM
SILENTYPE PRINTER
HAYES MICROMODEM
Z-80 SOFTCARD
VIDEX 80 COL. BRD.
16K RAM BOARD

\section*{RAM MEMORY}

FOR TRS-80, APPLE II
16K SET 4116's (200 NS)
1089.00 1134.00 1179.00 535.00 455.00 159.00 159.00 425.00 525.00 295.00 295.00 295.00 169.00

416's(200 NS) 34.95


40016 K
349.00 800 16K 410 Recorder \(\quad 64.00\) 815 Disk 810 Disk 822 Printer 825 Printer 830 Modem 850 Interface Module CX853 RAM CX70 Light Pen cx30 Paddle CX40 Joystick


\section*{North Star Computers}
\begin{tabular}{lr} 
HR2-2D-32K & 2795.00 \\
HR2-20-48K & 2956.00 \\
HR2-2D-64K & 3145.00 \\
HR2-2Q-32K & 2975.00 \\
HR2-2Q-48K & 3165.00 \\
HR2-2Q-64K & 3360.00 \\
HRAM 32K & 469.00 \\
HRAM 48K & 662.00 \\
HRAM 64K & 849.00 \\
HDS-18 HARD DISK & 4025.00 \\
MDS-DRV-D & 495.00 \\
MDS-DRV-Q & 665.00 \\
ADC-1-D & 740.00 \\
ADC-2-D & 995.00 \\
ADC-1-Q & 795.00 \\
ADC-2-Q & 1285.00
\end{tabular}

PRINTERS
EPSON MX 70
EPSON MX-80
399.00

EPSON MX-80 FT 599.00

GRA .00
INTERFACE (APPLE) 90.00

CABLE
75.00
795.00

ENTRONICS 737-3 \(\quad 855.00\)

\section*{IDS 445G 815.00}

IDS 460G 1195.00 \(\begin{array}{ll}\text { IDS } 560 \mathrm{G} & 1450.00\end{array}\)
NEC 5510 WITRACTORS 2650.00 NEC 5520 KSR W/TRAC. 2995.00 QUME 5/45 SPRINT 2675.00 FORMS TRACTOR 195.00 STARWRITER WITRAC. 1695.00 STARWRITER WIO

TRACTOR
1500.00

\section*{General Information:}

We carry a large selection of hard ware and software by other com. panies. Send for our catalog.
We are an authorlzed repair center for We are an authorlzed repair center for
APPLE, ATARI, NORTH STAR, AND APPLE, ATARI, NORTH STAR, AND
EPSON.

5726 INDUSTRY LANE
FREDERICK, MD. 21701

\section*{Store Hours:}

MON. THRU THURS. 9:30 AM-9:00 PM FRI. AND SAT. 9:30 AM-5:00 PM PRODUCTS, INC.

\section*{ATTENTION GOVERNMENT D P USERS AND PURCHASERS}

We represent many fine micro products and manufacturers on the U.S. Government's GSA Schedule, including

\section*{Apple, Cromemco, Micropolis and Seequa Computers}

Purchasing from the Schedule will save you the time consumed by the bid process. Products shipped throughout the United States and world-wide. Visit or write any of our stores for more information or to receive our catalogue of products represented.


257 West Street, Annapolis, MD 21401 - (301) 268-6505
13A Allegheny Avenue, Towson, MD 21204 - (301) 296-0520 9330 Georgia Avenue, Silver Spring, MD 20910 - (301) 588-3748
6671 Backlick Road, Springfield, VA 22150 - (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08002 - (609) 779-0023
Callers outside metropolitan areas served by our stores Please call (301) 268-5801
Career Opportunities Available * An Equal Opportunity Employer

\section*{LETTER QUALITY PRINTER}

\section*{- DUAL USE. A PRINTER AND A TYPEWRITER \\ - SELF TEST PROGRAM BUILT IN}

The BYTEWRITER is a printer consisting of a microprocessor controlled assembly internally connecied to an SCA Coronamatic 80OO office typewriter.


OTHER FEATURES
Back space. Parallel input.
Pin compatible with
TRS 80 expansion interface Typewriter operation with nothing to disconnect.

TO ORDER
Send certified check or money order. Personal checks take 2 weeks. We do not ship C.O.D.
Add S 10 for shipping and handling in continental U.S.A.
N.Y'S. resiclents add 7 क sales tax.

\section*{BYTEWRITER}
members. Contact the Micropolis Users Group at 604 Springwood Cr, Huntsville AL 35803, (205) 883-2621.

\section*{MCMS}

MCMS (Military/Civilian Microcomputer Society) is devoted to the exchange of ideas and information about all types of computers. No particular microcomputer is emphasized. Contact the Military/Civilian Microcomputer Society, Gunter AFS, AL 36114, or call Jim Wolfe at (205) 279-4816.

\section*{Lists of Used Microcomputers}

The Used Computer Exchange is a listing service that puts you in direct contact with sellers. Customers pay \(\$ 5\) for quotes on completed transactions and for full current listings. Sellers pay a commission only if a transaction is completed with a buyer referred by the Exchange.

The Used Computer Exchange lists any microcomputer hardware that originally sold in the \(\$ 400\) to \(\$ 25,000\) price range. Contact the Used Computer Exchange at 2329 Hunters Woods Plz, Reston VA 22091, (800) 327-9191, ext 61; in Virginia, (703) 471-0044.

\section*{1802 Fans}

The VIP Hobby Computer Association is made up of users of the RCA VIP and other 1802-based microcomputers. The group's newsletter, Viper, contains programs, advice, and helpful hints. Membership fees are \(\$ 12\) per year, which includes the newsletter. Contact the VIP Hobby Computer Asso-



\section*{UNBELIEVABLE! State-of-the-art Single-Board computer now available! Can be used In S-100 (Meister, Slave, Multi or Single user) or Stand-Alone configurations.}

FINALIY, stateof-the-art performance is avall able at an affordable price.
COMPARE THESE FEATURES:
- 280A or 280B
- 4 TIMERS IZCTC
- 64K RAM (64KXI CHIPS)
- 2 SERIAL PORTS (ZSIO)
- 4 PARALLEL PORTS (ZPIO)
- UP TO 16 K EPROM \({ }^{2732]}\)
- NEC FLOPPY DISK CONTROLLER
[UP TO FOUR B" DOUBLE SIDEDIDOUBLE DENSTTY DRIVES
- INTELLIGENT WINCHESTER INTERFACE
- ONBOARD EPROM BURNER

FOR THESE SINGLE QUANTITY PRICES:

4MZ VERSION [Z80A]
6 MZ VERSION (Z8OB
4 MZ SLAVE PROCESSOR
NO SLAVE PROCESSOR
6 MZ SLAVE PROCESSOR
OMZ OLAV CONTROLLERS ON BOARO]

The S-100 verslon of thls product can act as a Master processor, Slave processor, or Intelll gent peripheral controller. Intra-processor communication is achleved through the use of effl clent. high speed buss transfers using speclal hardware/software techniques.
We also have what we think is one of the best Implementatlons of a CP/M BIOS avallable of the shelf. The BIOS has the following features
- All Devices INTERRUPT DRIVEN
- Type Ahead Input/Output Buffers
- Real-Time Clock
- Time Of Day Clock
- Mult-level User Password Support
- Menu Driven Utillties for Format, Disk Copy, etc
- Unique Configuration Utility Program for Setting Baud Rates, Changing Step TIme, Changing Passwords, etc.
Cyllinder Concept used for Double SIded Double Density Conflguration Resulting In Increased Performance
\(\qquad\)

1300 East Shaw Avenue • Sulte 164 * Fresno, Callfornia 98710 • (809) 284-0580

\title{
ATTENTION GOVERNMENT D P USERS AND PURCHASERS
}

We represent many fine micro products and manufacturers on the U.S. Government's GSA Schedule, including

\section*{Apple, Cromemco, Micropolis}

\section*{and Seequa Computers}

Purchasing from the Schedule will save you the time consumed by the bid process. Products shipped throughout the United States and world-wide. Visit or write any of our stores for more information or to receive our catalogue of products represented.


257 West Street, Annapolis, MD 21401 - (301) 268-6505
13A Allegheny Avenue, Towson, MD 21204 - (301) 296-0520
9330 Georgia Avenue, Silver Spring, MD 20910 - (301) \(588-3748\)
6671 Backlick Road, Springfield, VA 22150 - (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08002 - (609) 779-0023
Callers outside metropolitan areas served by our stores Please call (301) 268-5801
Career Opportunities Available * An Equal Opportunity Employer
ciation, 32 Ainsworth Ave, East Brunswick NJ 08816

\section*{Amethyst Users Group In Texas}

Amethyst is an expandable text editor and formatter distributed by Mark of the Unicorn. Amethyst's command set is written in BDS C. The Amethyst Users Group assists users in developing extensions to Amethyst. Annual membership is \(\$ 6\), and floppy disks are \(\$ 6\). Contact the group at 1633 Royal Crest, \#1128, Austin TX 78741, (512) 441-9466.

\section*{Sorcerer Users Newsletter}

Port Fe is a newsletter for Exidy Sorcerer users. It includes articles, equipment reviews, and program listings. Subscriptions are \(\$ 15\) in Canada and \(\$ 23\) elsewhere. Contact the Sorcerer Users Group Toronto, POB 1173, Station B, Downsview, Ontario, M3H 5V6, Canada.

\section*{Club In the Heart of Texas}

The Midland Microcomputer Users Association meets at 7 PM on the first Wednesday of the month at the Sound Machine in Midland, Texas. The club's main interests are exchanging information and assisting new computer hobbyists. If you own a microcomputer, you are invited to join, even if you don't live in the area. The annual fee is \(\$ 15\), and a newsletter is being worked on. Contact the Midland Microcomputer Users Association, 1024 Andrews Hwy, Midland TX 79701; or contact Mark T Cruse, 3609 Stanolind, Midland TX 79703, (915) 694-4868.


The original 256 -colorimaging system with high resolution video FRAME GRABBER for the S-100 bus.
Capture and digitize a video frame in \(1 / 60\) of a second. Select the best resolution for your application. from 256 to 1280 pixels per TV line. Display your digitized or computer processed image with 256 gray levels or 256 colors on standard BEW, NTSC or ROB color TV montors.


Features:
Compact twoboard basic syatem

Highest possible quality \(480 \times 512 \times 8\) digitad video Image presently avalabie on the market
- Input capability from TV camera or other sources
\(240 \times 256\) Dhgtreed mage 16 level - Input capability from TV camera or other source
- 2 selectable video A/D converston circults
- Choice of \(1,2,4,8,16\) or 32 bits per pixel
- 32K-byte image memory on the basic system
- 32. 64, 128 \& 256K byte system capactity
- Ughtpen input
- Photographic trigger control input
- Software selectable system parameters
- Interfaces for TRS-80 and other processors
- Comprehensive line of accessortes, monltors and support software

BEND FOR FREE CATALOG
DIGITAL GRAPHIC SYSTEMS 935 Industrial Ave., Palo Alto, CA \(94303 \quad 415 / 856-2500\)

\section*{\(\square\) JANIUS \\ the language that is based on the past but looks to the uses of the future:}

JANUS is a true compiler for a subset of ADA. ADA is the much awaited U.S. Department of Defense language. With JANUS, it is available now on your CP/M system.

JANUS has such features as:
Separate Compilation
Records with variants
Subranges, Enumerations, and Arrays
Initialized Variables
Integers and Arbitrary Precision Reals
Produces ROMable, Re-entrant 8080 machine code and much more . .
JANUS is the face of the future. The structured language that you need for efficient programming. This is your chance to get to the head of the crowd and learn the language that will be the language of the 80 's.
JANUS requires an 8080/8085 or 280 CPU, 56 K of memory, and at least one 8 " floppy disk. JANUS is supplied on a single density \(8^{\prime \prime}\) floppy. For \(\$ 250\), you get the JANUS compiler, linker, assembler, and owners manual.

CP/M is a trademark of Digital Research. Inc. ADA is a trademark of the U.S. Department of Defense

\section*{PR Software}
specialists in state of the art programming
P.O. BOX 1512 MADISON, WISCONSIN 53701

THE UNBEATABLE COMBINATION
Capple \(\approx\) ATARI』 TEAVIELECTRONICS 1 (800) 547-2492


TOLL FREE NUMBER FOR ORDER DESK ONLY. IN OREGON CALL 479-8723. REPAIRS, PARTS, AND WARRANTIES CALL (503) 479-4150. SORRY NO C.O.D.'S. MASTERCHARGE AND VISA ADD \(3 \%\). WE WILL SHIP U.P.S. FREIGHT COLLECT OR ADD \(3 \%\) FOR FREIGHT AND INSURANCE TO AVOID C.O.D. CHARGES. allow 10 days for personal checks to clear. prices subject to ChANGE WITHOUT NOTICE. PRICES GOOD AT MAIL ORDER DEPARTMENT OF STORE \#162 ONLY.

APPLE
disk daive wha 3 controller OISK ORIVE ONLY
Silentype printer winterface
GRAPHICS TABLET
APPLESOFT OR integer firmwabe
language caro ipascall
SERIAL PRINTER CARD
Centronics painter interface. cabd c.c.s. 7710 A

\section*{c.c.s 7720 A}
data shift adaptor
16K RAM CARO (MICROSOF F)
2:-go CARO Imicrosoft)
hayes micromodem
A.B.T. 10 KEYPAD

MER SUP.R-TERM
ME A SUP A. MOD MODULATORI
16K MEMORY EXPANSION
programima joy stick

ATARI
110 PROGRAM RECORDER
810 DISK DRIVE
820 Pbintif
822 THE RMAL PRINTER
82580 CDLUMN PRINTEA
B30 MODEM
850 IN TERFACE MODULE
852 BK MEMORY EXPANSION
85315 K MEMORY EXPANSION
85315 K MEMORY EXPANSION
BASIC LANGUAGE CARTRIDGE
bisicalc lataril
we have atarigame cahtridges


HARDWARE 9" B\&W MONITOR ISANYOI 9"BRW MONITOR (N.E.C.I 12" B8W MONITOR ISANYOI 12" GREEN MONITOR ISANYO 13" COLOR MONITOR IT. H.D.S. 460G PRINTER I.D.S. 4 EOG PRINTER
I.D.S. SGOG PRINTER EPSON MX. 80 PRINTER EPSON CABLE AND INTERFACE CENTRONICS 737.1 PRINTER CENTRONICS 779.2 PRINTER N.E.C. SPINWATTER PRINTEA QUME SPRINT PRINTER TEXAS INST. 99/4

\title{
159
169
199
} \begin{tabular}{l}
169 \\
169 \\
199 \\
\hline 259
\end{tabular} 1999
349
699 699
1099
1329 -

APPLE SOFTWARE
VISICALC
VISICEX
VISIDEX
VISIPLOT
Visiterm
VISITREND
D.O.S. TOOL KIT
O.OS. 3.3 UPOAT

APPLE WRITEA
GENERAL BUSINESS CONTROLLER
SOFTTECHPAYRDLL
STDCKFILE INVENTORY PROGRAM
APPLE ADVENTURE
APPLE LOVENTURE
SARGON CHESS
galaxian
milaESFOotball
COMPUTER OUARTERBACK
MANY OTHER BUSINESS. PERSONAL
AND GAME SOFTWINESE AVAILABLE

530 N.E. "E" STREET GRANTS PASS, ORE

97526
NO SALES TAX


\section*{September 1981}

September-December
Four Seminars from Management Information Corporation (MIC), various sites throughout the US. These seminars are designed for businesspeople who need an introduction to system selection and use. For a complete schedule of seminars, fees, and locations, contact Carol Bell, c/o MIC, 140 Barclay Ctr, Cherry Hill NJ 08034, (609) 428-1020.

\section*{September 8-10}

An Introduction to Microcomputers for the Electronic Data-Processing Professional, Las Vegas NV. This course is designed for electronic data-processing managers, systems analysts, and engineers. Some of the course topics are applications for microcomputers in a large company, programming in BASIC, and future developments of the microcomputer. A general knowledge of computers is recommended. For dates and other information, contact Byte Educational Services, 2412 Second Ave, Seattle WA 98121, (206) 625-1961.

\section*{September 9-11}

Eurographics '81, Technical University, Darmstadt, West Germany. Almost seventy exhibitors are expected to attend this computer-graphics show. Detailed information can be obtained from Diebold Deutschland GmbH, Attn: Dr H J Grobe, Feuerbachstrasse 8, D-6000 Frankfurt/Main, West Germany.

\footnotetext{
September 9-12
Workshops on Pascal and Programming Techniques, University of California Ex-
}
tension, Santa Clara CA. An introduction to Pascal and modern programming techniques and style will be provided in this sequence of four one-day workshops. The sequence is structured so that each workshop is independent but leads to the next. Fees are \(\$ 175\) for individual courses and \(\$ 600\) for the fourpart sequence. Contact Continuing Education in Engineering, University of California Extension, 2223 Fulton St, Berkeley CA 94720, (415) 642-4151.

September 10-11
Office Automation Systems, Holiday Inn, Chicago City Centre, Chicago IL. This seminar will feature discussions on office automation. Among the topics to be covered are Ethernet, Xerox strategies, and worker acceptance of office automation. For information, contact Architecture Technology Corporation, POB 24344, Minneapolis MN 55424, (612) 925-2930.

September 10-13
The Second Annual MidWest Computer Show, McCormick Place, Chicago IL. This show features office systems, data- and word-processing equipment, telecommunications equipment, microcomputers, computer graphics, peripherals, and other related supplies. For information, contact the Na tional Computer Shows, 824 Boylston St, Chestnut Hill MA 02167, (617) 739-2000.

\section*{September 14-17}

Software Info '81, Merchandise Mart Expocenter, Chicago IL. The conference theme is "Productivity Through Packaged Software." Fran Tarkenton is the keynote
speaker. The president of In put, Peter Cunningham, will deliver an address. For more information, contact Software Info, 1730 N Lynn St, Suite 400, Arlington VA 22209, (703) 521-6209.

\section*{September 14-17}

COMPCON Fall '81, Capital Hilton Hotel, Washington DC. The conference theme is "Productivity-An Urgent Priority." This conference is intended to provide a focus on productivity throughout the computer industry. General inquiries for program information should be addressed to COMPCON Fall '81, POB 639, Silver Spring MD 20901, (301) 589-3386.

September 15-16
Workstations, The Convergence of Information Processing and Telecommunications, New York NY. The role of workstations for professional, managerial, and executive use is the focus of this twoday seminar. Speakers will discuss the Xerox Star workstation and other new designs. For more information, contact Probe Research Inc, POB 251, Millburn NJ 07041, (201) 376-7730 or (212) 732-5417.

September 15-17
Wescon/81, Brooks Hall, Municipal Auditorium, and Hilton Hotel, San Francisco CA. Sessions on communications, components and devices, computer and microprocessor hardware and software, office automation, and memory systems will be presented. Exhibits of computer equipment and related products will be featured. Contact Electronic Conventions Inc, Suite 410, 999 N Sepulveda Blvd, El Segundo CA 90245, (213) 772-2965.

September 16-18
Diagnostic Software: Planning and Design, Colonial Hilton Inn, Wakefield MA. The Polytechnic Institute of New York is cosponsoring this seminar for design, test, and diagnostic engineers and managers. Design examples, lectures, informal sessions, and individual and group di-agnostic-programming sessions are part of the course. Tuition is \(\$ 495\). Contact Professor Donald D French, Institute for Advanced Professional Studies, One Gateway Ctr, Newton MA 02158, (617) 964-1412.

September 16-18
The Engineer As a Communicator, Crystal City Marriott, Arlington VA. This conference is sponsored by the IEEE (Institute of Electrical and Electronics Engineers) Professional Communication Society. Some of the topics to be covered are communications technology, computers in technical communications, and information gathering, storage, and retrieval. Contact Dr Daniel Rosich, School of Business Administration, University of Connecticut, Stamford CT 06903, (203) 322-1673.

September 21-24
Microtest '81, University of Kent, Canterbury, England. This symposium will cover the testing, maintenance, and reliability of microelectronic systems from development to field use. Development systems, emulators, reliable software and hardware, and high-level languages are some of the issues to be discussed. Contact the Symposium Secretary, Microtest '81, SERT, 57-61 Newington Causeway, London, SE1 6BL, England.

Ultimate STATIC RAM is here!



Driven by any Micro or Mini Computer


Fully socketed, solder masks. gold contacts and guaranteed for one full year. Delivery: from stock to 72 hours. Ordering: you may call for MC, Visa or COD orders. (Add \(\$ 5.00\) for C.O.D.) Personal checks OK but M.O. speeds shipping. Allow 7 to 15 days to clear personal checks before shipping. Undamaged boards can be returned within 10 days for full refunds.
Illinois residents add \(51 / 4 \%\) sales tax.
OEM, Dealer pricing available

\section*{S.C. Digital}

\title{
MARYMACINDUSTRIES, INC.
}

In Texas Orders Questions \& Answers 1-713-392-0747

\author{
21969 Katy Freeway Katy (Houston) Texas 77450
}

To Order
1-800-231-3680
800-231-3681

\section*{SAVE BIG DOLLARS ON ALL TRS-80 \({ }^{\circ}\) HARDWARE \& SOFTWARE}

TRS-80 BY RADIO SHACK. Brand new in cartons delivered. Save state sales tax. Texas residents add only \(5 \%\) sales tax. Open Mon.-Sat. 9-6. We pay freight and insurance. Come by and see us. Call us for a reference in or near your city. Ref: Farmers State Bank, Brookshire, Texas.

\section*{WE OFFER ON REQUEST}

Federal Express (Overnight Dellvery)
Houston Intercontinental Alrport Delivery (Same Day)
U.P.S. BLUE (Every Day)

References from people who have bought computers from us probably in your city

Telex 77.4132 (Fleks Hou)
- TRS. 80 is a Registered Trademark of Tandy Corp

\author{
ED McMANUS
}


In stock TRS-80 Model II and III
\(\square\)
No Tax on Out of Texas Shipments!

\section*{WE ALWAYS OFFER}
- NO extra charge for Master Card or Visa
We use Direct Freight Lines. No long waits.
\(\square\) We always pay the freight and insurance
- Toll free order number

D Dur capability to go to the giant TRS-80 Computer warehouse 5 hours away, in Ft. Worth, Texas, to keep you in stock.

\section*{OR MORE}

We'll match any advertised price on any item that we carry. And if you find a lower price on what you bought within 30 days of buying it, just show us the ad and we'll refund the difference. It's that simple.

Combine our price protection with the availability of full professional support and our automatic update service and you have the Ultimate Software Plan
It's a convenient, uncomplicated. logical way to get your software.


ORDERS ONLY-CALL TOLL FREE VISA •MASTERCHARGE
1-800-854-2003 ext. 823. Calif. 1-800-522-1500 ext. 823
Overseas -add \(\$ 10\) plus additional postage - Add \(\$ 2.50\) postage and handling per each item - California residents add \(6 \%\) sales tax. Allow 2 weeks on checks. C.O.D. ok. Prlces subject to change without notice. All items subject to availability • (i) - Migs. Trademark.

THE DISCOUNT SOFTWARE GROUP
6520 Selma Ave. Suite 309 - Los Angeles, Ca. 90028 - (213) 666-7677
in'l' TELEX 499-0032 BVHL Attn: DiscSoft - USA TELEX 194-634 BVHL Attn: DlscSoft. TWX 910-321-3597 BVHL Atn: DiscSoft

September 24-25
Microprocessors: Hardware, Software, and Applications, Worcester Polytechnic Institute, Worcester MA. Among the courses to be offered are hardware and software basics, selection and evaluation of microprocessors, memory and input/output systems, multiprocessor systems, real-time-system design, and debugging and circuit testing. For more information, contact Ginny Bazarian, c/o Continuing Education, Worcester Polytechnic Institute, Worcester MA 01609, (617) 753-1411, ext 517.

September 24-27
The Second Annual Mid-Atlantic Computer Show, Washington Armory, Washington DC. For details, see September 10-13.

September 30-October 2
Data and Telecommunications Expo '81, Rhein-MainHalle, Wiesbaden, West Germany. This exhibition and conference will cover data communications, distributed data processing, and telecommunications networks. Future telecommunications developments, international network management, and graphics will also be discussed. Contact Cahners Exposition Group, 222 W Adams St, Chicago IL 60606, (312) 263-4866. In Europe, contact Kiver Communications S A, UK Branch Office, Millbank House, 171/185 Ewell Rd, Surbiton, Surrey, KT6 6AX, England.

\section*{October 1981}

October-November
Workshops from Virginia Polytech, Virginia Polytechnic Institute and State University, Blacksburg VA. Workshops on microcomput-er-design interfacing and programming, digital electronics

THE BIGGEST NAME IN LITTLE COMPUTERS
TRS-80" Model II—Your Best Buy In a Business Microcomputer


\section*{TRS-80 computers, software and peripherals}

Similar values on all merchondise
CALL COLLECT:
915-283-2920 Van Horn Office Supply
701 W. Broadway -- P O Box 1060
Van Horn, Texas 79855

Standard Warranty on Merchandise the nationwide supermarket of sound

\section*{BUY COMPUTERS BY MAIL ORDER AND SAVE 16\%}

\section*{APPLE HARDWARE TERMINALS}

48K (SPECIAL) \(\$ 1,125.00\) Zenith 2.19
Disk \(\$ 440.00\)
\(\begin{array}{ll}\text { Pascal } & \$ 445.00 \\ \text { Graphics Tablet } & \$ 655.00\end{array}\)
Versawriter Digitizer System
\$ 215.00

ATARI \(80016 \mathrm{~K} \quad \$ 775.00\)
\(\begin{array}{lr}\text { PRINTERS } & \\ \text { TI Basic Serial } & \$ 1,495.00 \\ \text { Epson MX. } 80 & \text { CALL } \\ \text { Centronics } 737 & \text { Parallei }\end{array}\)
\$ 719.00
IDS \(560 \quad \$ 1,395.00\)
CROMEMCO COMPUTERS CALL
INTERSYSTEM COMPUTERS CALL
\(\begin{array}{ll}\text { Zenith } 2.19 & \$ 789.00 \\ \text { Soroc } 10120 & \$ 729.00\end{array}\)
Televideo 950 \$ 989.00
Televideo 920C \$ 759.00
Televideo 912C \(\$ 729.00\)
ADDS Viewpoint \(\$ 589.00\)

\section*{SOFTWARE}

Superbrain Double Density 64K
\(\$ 2,650.00\)
Quad Density 64K \(\quad \$ 2,977.00\)

\section*{NORTHSTAR \\ Horizon-2.64 OD}
\(\$ 3,350.00\)

\section*{VERBATIM \& MEMOREX}

\section*{5\%" \$ 27.50}

MONITORS
Leedex 12" B8W \$ 138.00
\(12^{\prime \prime}\) GP \$ 152.00

Send cerlified check (regular checks reaulre 2 weeks 10 clear) or charge 10 VISA or Master Charge. Customer pays shipping.

\section*{MIRO COMPUTERS, INC.}

27 Long Meadow Place South Setauket, L.J., N.Y. 11720 (516) \(423-7955\) CALL MON.SAT., 10AM- \(6 P M\)

\section*{THE SYSTEM INTEGRATERS}
- Are you tired of installing systems that cannot expand to meet your needs?
- Are you tired of the problems of interfacing multi-vendor systems?
- Are you tired of receiving new systems that don't work and waiting days or weeks for replacements?
- Are you tired of making a computer investment and not receiving the professional help and support you deserve?

If you have answered yes to any one of the above questions, you need a change!

We have combined the most flexible microcomputer on the market (Ithaca Dooferalyssianoos") with reliable, large capacity floppy and hard disk storage systems from Qume, Memorex, Shugart and Priam, along with the most dependable CRTs and printers available today. Using the industry standard \(\mathrm{CP} / \mathrm{M}^{*}\) Operating System, our turnkey systems are delivered to you fully assembled, tested and burned in.

PROVEN RELIABILITY - Our turnkey systems have been performing daily for over a year in high volume point-of-sale operations throughout the country.
SOFTWARE AVAILABILITY - A wide variety of application software packages are ready for CP/M systems. Our library contains many of these systems, and it is expanding daily.
CUSTOM DESIGN - P.O.S. Terminals, hardware and software interfaces between Ithaca Intersystems and other specialized I/O devices.
COMPETITIVE PRICES - Floppy-based systems start at \(\$ 7,950,10 \mathrm{MB}\) hard-disk systems with floppy back-up start at \(\$ 10,650\). These are true turnkey system prices that include CRT, printer, and double-sided/density floppies, tested and burned in.

TALK TO THE PEOPLE WHO SELL CUSTOMER SATISFACTION

\footnotetext{
Thademark of thaca intersystems. Inc. *CP/M is a Registered Trademark of Digital
} Research.

for automation and instrumentation, and sessions using the TRS-80 are part of the curriculum. All workshops are hands-on with participants designing and testing concepts on the actual hardware. Contact Dr Lindy Leffel, Virginia Polytechnic Institute and State University, Blacksburg VA 24061, (703) 961-5241.

October 7-9
Institute on Microcomputers for Instruction and Research in Higher Education, Jane S McKimmon Center, North Carolina State University, Raleigh NC. The institute is designed to help high-level educators learn about the microcomputer and the role it can play in higher education. Contact Joyce Currie, c/o North Carolina Educational Computing Service, POB 12035, Research Triangle Park NC 27709, (919) 549-0671.

October 7-21
The 1981 Far East Computer Tour, Japan, South Korea, Taiwan, and Hong Kong. This tour group will visit various computer-related conferences and exhibitions throughout the Far East. Transportation for this threeweek tour, plus shows, meals, and other items are included in trip packages, ranging in price from \(\$ 2290\) to \(\$ 3095\). For more information, contact Terry Butler, Commerce Tours International Inc, 870 Market St, Suite 742-744, San Francisco CA 94102, (415) 433-3072.

October 9-11
Rhode Island Computer and Video Electronics Show, Providence Civic Center, Providence RI. This is the first major computer exhibition and show to be held in Rhode Island. Exhibitors and sales teams will present the latest

\section*{BUTE TOLL-FREE SUBSCRIPTION LINE 1.800-258.5485}

New Hampshire Residents Dial 924-9281
The Quickest Way To
- Order a Subscription
- Renew a Subscription
- Change or Correct an Address
- Give a Friend a Gift Subscription
- Inquire about a Subscription

We are waiting to help you. Call us between:

> 8:30-4:00 Mon.-Thurs. 8:30-1 2:30 Fridays (Eastern Time)

\section*{Z-80 and 8086 FORTH}

Z-80* FORTH - a complete program development system. Uses standard CP/M \({ }^{\text {® }}\) compatible random access disk files for screen storage. Package includes: Interpreter/compiler with virtual memory management, line editor, screen editor, Z-80 Assembler, decompller, utilities, demonstration programs, and 80 page user manual. System requlrements: Z-80 microcomputer, 48 kbytes RAM, CP/M 2.2 or MP/M* 1.1.
\(\$ 50.00\)
Z-80 FORTH WITH NAUTILUS SYSTEMS CROSS-COMPILER Extend/modify the FORTH runtime system, recompile on a host computer for a different target computer, generate headerless code, generate ROMable code with initialized varlables. Supports forward referencing to any word or label. Produces load map and list of unresolved symbols. 107 page manual. System requlrements as for Z .80 FORTH above.
\(\$ 200.00\)
8088 FORTH with line editor, screen editor, assembler, and utilities. Uses standard CP/M compatible random access files for screen storage. Requires 8086 or 8088 microcomputer, 64 kbytes RAM, and CP/M-86 operating system. \(\$ 100.00\)

MACHINE TEST PROGRAM PACKAGE for Z-80 systems. Includes memory, floppy disk, printer, and terminal tests with ali source code. Requires CP/M 2.2.
\(\$ 50.00\)
All software distributed on elght-inch soft sectored single density diskettes. Pilces Include shipping by first class or UPS within USA or Canada. COD charges extra. Purchase orders accepted at our discretlon. (CP/M and MP/M are registered trademarks of Dlgital Research, Inc. Z-80 is a registered trademark of Zllog, Inc.)

\author{
Laboratory Mlcrosystems 4147 Beethoven Street Los Angeles, CA 90066 \\ (213) 390-9292
}

\section*{A REFURBISHED DAISY WHEEL TERMINAL FOR PERSONAL COMPUTER USERS AND SMALL BUSINESSES.}

\title{
Now you can have letter-quality printing and professional featuresfor just \(\$ 1,495\) *
}

AJ daisy wheel printer terminals are renowned for exceptional performance, high reliability, and applications versatility. Now you can have all this for only \(\$ 1,495^{*}\) in our special limited offer.
- 30 cps letter-quality printing
- Changeable type faces
- Full ASCII keyboard with numeric pad
- High resolution X-Y plotting
- Complete electronic forms control
- 128-character buffer
- Asynchronous RS-232 interface
- Printwheel, ribbon cartridge, and cable included
- 30-day parts/labor warranty

And you can choose from a list of options including forms tractor, pin-feed platen, paper trays, side shelves, extra printwheels, APL keyboard and 2 K buffer.

Call your nearest AJ regional office for details: San Jose, CA (408) 946-2900; Rosemont, IL (312) 671-7155; Hackensack, NJ (201) 488-2525. Or check the phone book for the number of your local AJ sales/service office.
- Price excludes options and is subject to change without notice. Model shown includes certain optlons. Otfer available only in the contiguous U.S.


ANDERSON JACOBSON


Diagnostics II is SuperSoft's expanded Diagnostic package.
Diagnostic II builds upon the highly acclaimed Diagnostics I. It will test each of the five areas of your system:

Memory Terminal Printer CPU Disk

\section*{Every test is expanded.}

Every test is "submit"•able. A "submit" file is included in the package which "chains" together the programs in Diagnostics II, achieving an effective acceptance test. All output can be directed to a log file for unattended operation, for example over night testing. Terminal test is now generalized for most crt terminals. A quick-test has been added for quick veriflcation of the working of the system.

The memory test is the best one we have encountered. It has new features, including:
- default to the size of the CP/M Transient Program Area (TPA)
- printout of a graphic memory map burn in test
- bank selection option - memory speed test

Diagnostics-II still includes the only CPU test for 8080/8085/Z80.
A Spinwriter/Diablo/Qume test has been added, which tests for the positioning and control features of the Spinwriter/Diablo/Qume as well as its ASCII printing features. (Serial Interface only)

And, as with all SuperSoft products, a complete online HELP system and user manual is included.
Price: \(\$ 100.00\) (manual only): \(\$ 15.00\)
Requires: 32 K CP/M
CP/M Formats: \(8^{\prime \prime}\) soft sectored, \(5^{\prime \prime}\) Northstar, \(5^{\prime \prime}\) Micropolis
Mod II, Vector MZ, Superbrain DD/QD

VISA


All Orders and General Information:
SUPERSOFT ASSOCIATES
P.O. BOX 1628

CHAMPAIGN, IL 61820
(217) 359-2112

Technical Hot Line: (217) 359-2691
(answered only when technician is available) CPM REGISTERED TRADEMARK DIGTAL RESEARCH

Supersoft
First in Software Technology
in computers and video products for business, industry, government, education, and home use. Contact New Leaf Productions, Suite 335, 77 Ives St, Providence RI 02906, (617) 679-0089.

October 12-15
Information Management Exposition and Conference: INFO 81, Coliseum, New York NY. Discussions on prepackaged, customized prepackaged, and custom-designed software will complement hardware and software exhibits. For more information, contact Clapp \& Poliak Inc, 245 Park Ave, New York NY 10167, (212) 661-8410.

October 13-15
Understanding and Using Computer Graphics, New York NY. Headed by Carl Machover, this two-day seminar examines the state of the art in graphic systems. The focus will be on hardware, software, and applications. Contact Bob Sanzo, c/o Frost \& Sullivan Inc, 106 Fulton St, New York NY 10038, (212) 233-1080.

October 15-18
The Third Annual Northeast Computer Show and Office Equipment Exposition, Hynes Auditorium, Boston MA. This show will feature hardware, software, and supplies for business, education, government, home, and office use. Office systems and equipment will also be shown. Contact National Computer Shows, 824 Boylston St, Chestnut Hill MA 02167, (617) 739-2000.

\section*{October 16-23}

The Fourteenth Brazilian Computer Conference and Exhibit, Anhembi Convention and Exhibit Halls, São Paulo, Brazil. This conference will feature technical talks, conference tutorials,

\section*{8WTE Back Issues for sale}


The following issues are avallable:

\section*{1976: July}

1977: April thru December except October
1978: February thru December except November
1979: January thru December except March
1980: January, March thru August, and December
1981: February to current issue except March Cover price for each issue through August 1977 is \(\$ 1.75\) Domestic; \(\$ 2.75\) Canada and Mexico; \(\$ 3.75\) Foreign.
September 1977 through October 1979 issues are \(\$ 2.50\) Domestic: \(\$ 3.50\) Canada and Mexico: \(\$ 4.50\) Foreign. November 1979 to current is \(\$ 3.00\) Domestic: \(\$ 4.00\) Canada and Mexico: \(\$ 5.00\) Foreign.
Send requests with payment to:
BYTE Magazine
70 Main St, Peterborough NH 03458 Attn: Back Issues
\(\qquad\) - Paymonis trom tortign ceuntries musi bo mado in US lunds Day ible at a US binht.

\section*{SURPLUS BUYS of the YEAR!! DIABLO 10 MEG DISK DRIVES}

MODEL 44 A DISK DRIVE 10 Mb . Earlier design, same \(/ / \mathrm{O}\). Used whale, untested Includes schematics and data ........................................... 1200-s. MODEL 435 MEG DISK DRIVE 100 TPI, good cond., used whole, untested. MODEL 429 POWER SUPPLY +24VOC @ 6 amps. 5 V @ 6 amps Peqis.ee. both the \(44 A\) and 43 drives (above)...................................... \(\mathbf{7 5 . 0 0}\). e .

\section*{MORE BARGAINS}


RO*SELECTRIC-II PRINTER
"Recelve-only" (no keyboard). Features X\&Y steppers plus all solenolds \& standard IBM Selectric-II printer mechanism. Takes Tech-III ribbon cartridges. Less case and platen, mostly whole, "as-is" Schematics included

Dish Drimes 4 Only \({ }^{1} 129^{\circ 0}\) ee




\section*{COMPUTERS,} PERIPHERALS, UNLIMITED:

617/372-8637 18 GRANITE STREET HAVERHILL. MASS, 01830
- Buill-In Power Supplies - 200 Tracks / Inch
- 256 Byles - 24 Seciors / Track - 19.583 Sectors / Platter
REFURBISHED \(A\) NOW
OPERATIONAL
Only \(\rightarrow 00\)\begin{tabular}{l} 
Includes 2 FREE \\
DISK CARTAIDGES
\end{tabular}

\title{
Does Your Printer Have a One Track Mind? Then You Need The Paper Tractor The Paper Tractor turns your tractor feed
} printer into a friction feed printing system. Inexpensively.

With The Paper Tractor you can abandon dull continuous form stock and move into new realms of high quality personalized writing paper. Without costly hardware modifications.

This revolutionary product acts as a carrier,
protecting and guiding any standard letter or
legal size paper through the printing area. Any paper. Bond, parchment, onionskin, vellum, NCR, manuscript paper (sheet music). Even your company or personal letterhead.

The Paper Tractor is a unique solution to the restrictive nature of the tractor feed printer.
\(\star\) Compatible with Matrix, Impact, Daisywheel and Ink Ejection printheads.
\(\star\) Fits front, back and dual tractor paper feeds.
\(\star\) Designed with self-aligning feed system.
\(\star\) Positions letter or legal size paper automatically with an edge-protecting guide.
\(\star\) Designed for use with forward/reverse plotting printers. \#Proven with all major manufacturer's printers, including Epson, Tiger, TI, GP-80M, DEC-Writer, Commodore, Centronics, Radio Shack VVI VII, Beehive, Vista, Grafix Plus, Axiom, Coment, HI-Q, DIP, C-ITOH, Cromemco, Okidata and many more.

Contact your local computer dealer. If he doesn't carry the Paper Tractor, call or write us

\section*{ATTENTION GOVERNMENT D P USERS AND PURCHASERS}

We represent many fine micro products and manufacturers on the U.S. Government's GSA Schedule, including

\section*{Apple, Cromemco, Micropolis and Seequa Computers}

Purchasing from the Schedule will save you the time consumed by the bid process. Products shipped throughout the United States and world-wide. Visit or write any of our stores for more information or to receive our catalogue of products represented.


257 West Street, Annapolis, MD 21401 - (301) 268-6505 13A Allegheny Avenue, Towson, MD 21204 - (301) 296-0520 9330 Georgia Avenue, Silver Spring, MD 20910 - (301) 588-3748 6671 Backlick Road, Springfield, VA 22150 - (703) \(644-5500\)
Plaza 38, 2442 Route 38, Cherry Hill. NJ 08002 - (609) 779-0023
Callers outside metropolitan areas served by our stores Please call (301) 268-5801
Career Opportunities Available * An Equal Opportunity Employer

\section*{"Forget Memory Loss Problems"}
ramlok features:
* \(/-10 \%\) LINE VOLTAGE LIMITS MAX. ONE CYCLE RESPONSE TIME
BROWNOUT/SURGE PROTECTION
- bUllt in battery charger

NOISE INTERFERENCE

GET STANDBY POWER WITH RAMLOK

\(\square\) LADCO
LADCO DEVELOPMENT CO., INC.
P. O. BOX 464, OLEAN, N. Y. 14760

716-372-0168
roundtable discussions, and special events. Computeraided design and manufacture in developing countries will also be discussed. Contact Sucesu São Paulo, Rua Tabapuã, 627-1. \({ }^{\circ}\) andar, 04533, Saठ̋ Paulo, S P, Brazil.

\section*{October 18-20}

The Annual Conference of the New York State Association for Educational Data Systems (NYSAEDS), Syracuse NY. NYAEDS is made up of people with an interest in computers and education. Workshops on the educational uses of microcomputer software will be held. Contact Don Ross, Ardsley High School, Ardsley NY 10502.

October 19-23
Systems '81, Munich, West Germany. Computer systems and their applications will be featured. Additional information is available from Kallman Associates, 30 Journal Sq, Jersey City NJ 07306, (201) 653-3304.

October 20-22
The Annual GovernmentIndustry Data Exchange Program (GIDEP) Workshop, Rickey's Hyatt House, Palo Alto CA. The GIDEP annual workshop is open to anyone interested in the exchange of technical information relating to engineering, failure experience, reliability, and maintainability. Contact the Officer-in-Charge, GIDEP Operations Center, Corona CA 91720.

October 20-22
Computerized Office Equipment Expo, Southwest, Astrohall, Houston TX. Approximately 100 exhibitors will present office equipment and supplies, including wordprocessing systems, at this show. Contact Cahners Exposition Group, 222 W Adams St, Chicago IL 60606, (312) 263-4866.

Event Queue

October 21-24
COMPUTA 81, World Trade Center, Singapore. This international show attracts professionals and buyers from Hong Kong, India, and Sri Lanka. Additional information can be obtained from Kallman Associates, 30 Journal Sq, Jersey City NJ 07306, (201) 653-3304.

October 24-25
The Second Annual New Jersey Microcomputer Show and Fleamarket, Holiday Inn (north) Convention Center, Newark International Airport, Newark NJ. This show will feature 75 commercial exhibitors and more than 100 vendors. User-group meetings will be held. Registration is \(\$ 5\) for both days. Contact Kengore Corporation, 3001 Rt 27, Franklin Park NJ 08823, (201) 297-2526.

October 25-30
The Forty-Fourth Annual Meeting of the American Association of Information Societies (ASIS), Washington Hilton Hotel, Washington DC. The theme for this meeting is "The Information Community: An Alliance for Progress." Among the topics to be addressed are information and creativity, information and society, and overcoming the barriers between information sciences. Contact ASIS, 1010 Sixteenth St, NW, Washington DC 20036, (202) 659-3644

October 27-29
Computer Graphics 81, Regent Centre Hotel, London, England. Some of the topics to be covered are graphics systems: hardware and software; animation; image processing; simulation; and business and home graphics. An equipment exhibition will also be presented. For more information, contact Online Conferences Ltd, Argyle House, Northwood Hills,

Middlesex, HA6 1TS, England.

October 29-November 1
Southeast Computer Show and Office Equipment Exposition, Atlanta Civic Center, Atlanta GA. For details, see October 15-18.

October 31-November 1
Computers in Ambulatory Medicine, Washington Sheraton, Washington DC. The Society for Advanced Medical Systems and the Society for Computer Medicine are sponsoring this conference. Basic and advanced tutorials on the fundamentals of medical computing will be featured along with technical sessions and presentations of papers. Fees are \(\$ 115\) for Society members and \(\$ 165\) for nonmembers. Contact SCM, 9650 Rockville Pike, Bethesda MD 20014, (301) 530-7120.

October 31-November 2
Annual Meeting of the American Society for Cybernetics, Washington Hilton Hotel, Washington DC. The theme for this meeting is "The New Cybernetics." A goal of the meeting will be to redefine the field of cybernetics and to provide a focus for the research efforts of the Society. Among the topics to be discussed are robotics, problem solving, pattern recognition, remote sensing, and communication networks. Contact Dr Laurence D Richards, Department of Administrative Science, Colby College, Waterville ME 04901, (207) 873-1131, ext 587.

\section*{November 1981}

\section*{November 1-4}

DPMA San Francisco '81, San Francisco Civic Center and Brooks Hall, San Francisco CA. This is DPMA's (Data Processing Management Association's) thirtieth

annual conference and business exposition. Contact the conference coordinator, DPMA, 505 Busse Hwy, Park Ridge IL 60068, (312) 825-8124.

November 5
Invitational Computer Conference, Amsterdam, Netherlands. The Invitational Computer Conference is a oneday computer show designed for quantity buyers. Exhibits and seminars are featured. For details, contact B J Johnson \& Associates Inc, 2503 Eastbluff Dr, Suite 203, Newport Beach CA 92660, (714) 644-6037.

November 8-10
The Twelfth ACM North American Computer Chess Championship, Bonaventure Hotel, Los Angeles CA. A four-round, Swiss-style tournament is planned for this year's championship competition. In addition, a roundrobin blitz tournament will be held. Games in this event proceed at a rate of 5 seconds per move. Belle, the current world champion, Chaos, Duchess, Nuchess, and L'Excentrique are among the programs being entered. For more information, contact

Professor Monroe Newborn, School of Computer Science, McGill University, 805 Sherbrooke St West, Montreal, Quebec H3A 2K6, Canada.

\section*{November 9-10}

Software Fair, Stouffers' Riverfront Towers, St Louis MO. This show is made up of software exhibitions from companies whose packages are in current use by members of the Southern and Na tional Industrial Distributors Association. Distributors who are not members of these organizations can also exhibit their wares. Contact Don White or Tony Carroll, 1900 Arch St, Philadelphia PA 19103, (215) 564-3484.

November 9-11
ACM '81, Bonaventure Hotel, Los Angeles CA. This meeting will feature panel discussions on computers, software products in the 1980s, tutorials on computeraided design, and a survey on the impact of robots on employment. Ray Bradbury and Dr Simon Ramo will speak. Computer exhibits and the North American Computer Chess Tournament will also be held. Contact ACM '81, POB 24059, Village Station,

Los Angeles CA 90024, (213) 536-9735.

\section*{November 10-12}

Midcon/81 Show and Convention, O'Hare Exposition Center and Hyatt Regency O'Hare, Chicago IL. Talks on microcomputers, energy, memory, communications, and consumer electronics will highlight this show. Contact Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245, (800) 421-6816; in California (213) 772-2965.

\section*{November 12}

Invitational Computer Conference, Paris, France. For details, see November 5.

November 16-19
The Canadian Computer Show and Conference, International Centre of Commerce, Mississauga, Ontario Canada. For details, contact Reg Leckie, Industrial Trade Shows of Canada, 36 Butterick Rd, Toronto, Ontario, M8W 3Z8, Canada, (416) 252-7791.

November 17
Invitational Computer Conference, Milan, Italy. For details, see November 5.

November 17-19
Understanding and Using Computer Graphics, Atlanta GA. For details, see October 13-15.

\section*{November 19-20}

Western Educational Computer Conference, San Francisco CA. Many of the com-puter-related talks at this conference will cover areas of interest to college instructors and administrators. For details, contact Ron P Langley, Data Processing Services, California State UniversityLong Beach, 1250 Bellflower Blvd, Long Beach CA 90840 .

\section*{November 29-December 1}

National Telecommunications Conference, New Orleans LA. This event is sponsored by the IEEE (Institute of Electrical and Electronics Engineers) and the New Orleans chapter of the Communications Society Conference Board. Some of the papers to be presented will discuss communications electronics, including software, terminals, theory, and data and computer communications. Contact G Allan Ledbetter, South Central Bell, 365 Canal St, Rm 1360, New Orleans LA 70140, (504) 528-7350.

\section*{WIREMASTER}

\section*{a complier for haroware}
- WIREMASTER is a sollware 1001 to aid in the design. layout. and construction ol electronic hardware. It is iniended primarily for wire wrap, lhough it is also highly useful in the layout . error-checking, and trouble-shooting of PC boards
- Inputs are easily derived directly Irom the schematic diagram and fed to WIREMASTER in a CP/M \({ }^{*}\) text tile Outpuls Include a neiwork map that graphically shows all pins and wires. a wire list sorted by lengths and leveis. a paris list. wrap count and contlnuity checklists pius signal and pin cross-relerences
- The resulting information is then used for PC board layours, efror-checking. wiring, component-siulfing, and system-debugging. This forms a complete and an ily updated documentation package. Although ir iuns on small computers. WhEMASTER can handle large projects
- WIREMAS TER runs on any Z80 \(\ddagger\) CP/M system ol 47 K
or larger. including TRS-80 \(\ddagger\) Model II and Apple via SollCard§.
Complete Package - \$125; Manual only - \$10
AFTERTHOUGHT ENGINEERING
7266 Courtney Drive
San Diego. Calitornia 92111
(714) 279-2868

Circle 11 on Inquiry card.


\section*{Software Received}

\begin{abstract}
This is a list of software packages that have been received by BYTE Publications during the past month. The list is correct to the best of our knowledge, but it is not meant to be a full description of the product or the forms in which the product is available. In particular, some packages may be sold for several machines or in both cassette and floppy-disk format; the product listed here is the version received by BYTE Publications.

This is an all-inclusive list that makes no comment on the quality or usefulness of the software listed. We regret that we cannot review every software package we receive. Instead, this list is meant to be a monthly acknowledgment of these packages and the companies that sent them. All software received is considered to be on loan to BYTE and is returned to the manufacturer after a set period of time. Companies sending software packages should be sure to include the list price of the packages and (where appropriate) the alternate forms in which they are available.
\end{abstract}

\section*{Apple}

Desktop Plan II, for development and analysis of business plans for the Apple II. Floppy disk, \$199.95. Personal Software, 1330 Bordeaux Dr, Sunnyvale CA 94086.

NORAD, a graphics arcade game for the Apple II and III. Floppy disk, \$27.50. Western MicroData Enterprises Ltd, POB G 33, Postal Station G, Calgary, Alberta, T3A 2G1, Canada.

Robotwar, a graphics game using programmable robots for the Apple II. Floppy disk, \$39.95. Muse, 330 N Charles St, Baltimore MD 21201.

Time Manager, a personalinformation and organization system for the Apple II. Floppy disk, \$149.95. Image Computer Products Inc, 615 Academy Dr, Northbrook IL 60062.

VisiCalc, the electronic spreadsheet for the Apple II. Floppy disk, \$199.95. Personal Software, (see above address).
VisiDex, a data-base management system for the Apple II. Floppy disk, \$199.95. Personal Software, (see above address).
VisiPlot, a graph-plotting system for the Apple II. Floppy disk, \(\$ 179.95\). Personal Software, (see above address).
VisiTrend and VisiPlot, a utility program that analyzes trends of graphs from VisiPlot for the Apple II. Floppy
disk, \(\$ 259.95\). Personal Software, (see above address).
TRS-80
Armadillo Bug, utility program to manipulate machinelanguage routines for the TRS-80 Color Computer. Cassette, \$12.95. Armadillo Software, POB 7661, Austin TX 78712.

Attack Force, a graphics arcade game for the TRS-80. Floppy disk, \$19.95. Big Five Software, POB 9078, Van Nuys CA 91409.

Cosmic Fighter, a graphics arcade game for the TRS-80. Floppy disk, \(\$ 19.95\). Big Five Software, (see above address).

Faster, a utility program for TRS-80 Model I and II that speeds up the execution time of BASIC programs. Cassette, \$29.95. ProSoft, POB 839, Hollywood CA 91603.

Galaxy Invasion, a graphics arcade game for the TRS-80. Floppy disk, \$19.95. Big Five Software, (see above address).
Meteor Mission II, a graphics arcade game for the TRS-80. Floppy disk, \$19.95. Big Five Software, (see above address).

Super Nova, a graphics arcade game for the TRS-80. Floppy disk, \$19.95. Big Five Software, (see above address).

Tanjali, mind game comparing shapes and colors for the TRS-80 16 K Color Computer. Cassette, \$29.95. Strawberry Software Inc,

POB 743, Vashon Island WA 98070.

CP/M
Analiza, a computerized psychiatrist for the Commodore \(\mathrm{CP} / \mathrm{M}\) computer system. Eight-inch floppy disk, \$35. SuperSoft Associates, POB 1628, 40 Main St, Suite 401, Champaign IL 61820.

SELECT, a CP/M wordprocessing system. Eight-inch floppy disk, \$595. Select Information Systems, 919 Sir Francis Drake Blvd, Kentfield CA 94904.

\section*{Other Computers}

Intruders and Airwar, graphics games for the Interact computer. Cassette, \$10. Ernie Piette, 110 Hillcrest Rd, Pineville LA 71360.

Schedule, a utility program to help organize daily activities for the North Star
computer. Floppy disk . \$19.95. Azimuth Associates, POB 1636, Arlington VA 22210.

Shuttle Ascent Simulation, a graphics arcade game for the Atari 800. Cassette, \$9.95. Starbound Software, POB 214, Cocoa Beach FL 32931.


\section*{PR Problems}

The letter entitled "Plot: North by Northwest," by William McWorter (May 1981 BYTE, page 14), was found to have a bug in line 10 of the program. The first " \(p\) " in line 10 should have been an " \(r\)." The line should read:
\(10 \mathrm{~A} S=\) "rqvwrsvupqpwtstu"
Many thanks to all who wrote in with the correction. \(\quad\)

\section*{"THIIS DISTITALEE" OUT 127,0}

This is all it takes to say this or 143 other expressions with MICROMOUTH* No software drivers or subroutines to load. MICROMOUTH*. the latest Circuit Celler product can be used as an emergency annunicator, as an aid for the handicapped. for process control and to add dimensions to computer games.

Sample phrases that can be programmed are:
"THE TIME IS 4 HOURS 23 MINUTES . . . (BEEP)"
"THE SPEED IS 100 METERS A SECOND . . SLOW DOWN" Thousands of expressions can be added by changing the ROM chips. MICROMOUTH* is plug compatible with APPLE II and TRS-80* Directions included for S100. H8 and parallel port operation.

As featured in BYTE. June. 1981
Complete Kit: APPLE II ...... \(\$ 120.00\)
TRS-80 Model I . \(\$ 150.00\)
Assembled and tested:
APPLE II
. \(\$ 150.00\)
TRS-80 Model I w/power
supply and cable.
\(\$ 170.00\) TRS-80 Model III . . . . . . . . . . \(\$ 200.00\) - MICROMOUTH is a lrademark ol micromin! Inc. DIITTALKER is a Irademark of National Semiconductor Corp.
MICROMINT INC.
917 Midway
Woodmere, N.Y. 11598
Dealer Inquiries Invited

\title{
Big Five Software
}

\section*{Gregg Williams, Senior Editor}

It may seem to many readers that BYTE's Arcade has concentrated on games for Apple and Atari computers. In a sense, this is natural; after all, both machines have excellent graphics, color, and sound capabilities-assets with which Radio Shack's TRS-80 Models I and III are less endowed. Given the coarse graphics, lack of color, and limited sound capabilities of the Radio Shack computers, what do they have in their favor?

The answer is: the ingenuity of Bill Hogue and Jeff Konyu.
Bill and Jeff comprise Big Five Software, a company that has developed an unequaled line of arcade-like software for the TRS-80. At the time of this writing, they had five games. Their first, Super Nova (an adaptation inspired by the Atari game, Asteroids), was reviewed in the May 1981 BYTE's Arcade (page 108). The three games I will describe here are Attack Force (similar to the arcade game Targ), Cosmic Fighter (similar to Cosmic Patrol), and Galaxy Invasion (similar to Galaxian). At present, they also have a game called Meteor Mission II, which resembles the arcade game Lunar Rescue.

\section*{Attack Force}

Attack Force is my favorite game. The player drives a single ship in one of four directions around a "city" seven blocks square. Eight Ramships roam the avenues of the city with the sole intent of ramming and destroying your ship. You can fire missiles at the attackers, and are allowed to lose three ships before the game ends.
Several features make this a fascinating game. The Flagship (on the right edge of the screen in photo 1) can zap a Ramship and change it into a Flagship; or it can simply step into the boundaries of the city and start hunting your ship. A Flagship is especially dangerous because it can fire even when you're not in its line of
sight. Once you clear the screen of all eight enemy ships, you get a stunning visual and aural display (that's right, this game has sound effects), bonus points, and a new set of enemy ships that are somewhat faster and net you more points when destroyed. Each score of 10,000 points gives you an extra ship (as in the other games described in this article), and, like all popular arcade games, the game gets harder and harder until you are inevitably overcome.
One feature that makes Attack Force particularly interesting is a practical joke that occurs at one point in

\section*{At a Glance}

\section*{Name}

Attack Force, Cosmic
Fighter, Galaxy Invasion

\section*{Type}

Arcade-style games

\section*{Manufacturer}

Big Five Software
POB 9078-185
Van Nuys CA 91409
(213) 782-6861
(phone orders only)

\section*{Price}

Model I/Model III cassette
version, \(\$ 15.95\); Model
I/Model III disk version, \$19.95

Author
Bill Hogue

\section*{Format}

Cassette or 5-inch floppy disk

\section*{Language}

Z80 machine code

\section*{Computer}

Radio Shack TRS-80 Model I or III with either 16 K bytes (cassette version), or 32 K bytes and one disk drive (disk version)

Documentation
Color leaflet plus documentation in program


Photo 1: Attack Force in progress.
the game. I won't tell you what or when, so that you can be as surprised and delighted as I was.

\section*{Cosmic Fighter}

Your ship appears at the bottom of the screen and you try to destroy a wave of alien ships that slowly drift from the top to the bottom of the screen in Cosmic Fighter. The alien missiles can move either straight or diagonally down the screen (see photo 2), and once you destroy the first wave (or let them go off the bottom of the screen), a new, more intelligent wave of aliens appears. Occasionally, a deadly Flagship that can fire from any angle ap-


Photo 2: Cosmic Fighter in progress.
pears-you have to destroy this one quickly. If you survive four waves of aliens, you have the chance to fight off the Flagship near your space station and then dock to get extra fuel for the next round. This time, however, the wave of enemy ships requires two hits per ship to destroy. This continues until you either lose three ships or run out of fuel.

\section*{Galaxy Invasion}

Galaxy Invasion is a surprisingly faithful rendition of the popular Galaxian arcade game (which is itself a variation of the original Space Invaders). In Galaxy Invasion, you have a ship at the bottom of the screen that shoots up at a formation of enemy ships (see photo 3). The enemy ships don't move toward you, but instead send out attack groups that "peel off" the main formation, gliding diagonally down the screen and strafing the area they cover with missiles. The ever-present Flagship is just as dangerous in this game as it is in the others. A particularly nice feature is the different kinds of alien ships, all of which flap graphic "wings," both in the main formation and during strafing runs. In fact, it's difficult to imagine how Bill Hogue (who programs all the games) obtains such smooth movement of so many objects on the screen.

Galaxy Invasion lacks the color and the whining sound of attacking enemy ships, but is nonetheless amazingly close to the original arcade game that costs \(\$ .25\) to play.

\section*{Common Features}

All the games use the TRS-80's arrow keys for ship movement and the space bar for missile firing. Unlike


Photo 3: Galaxy Invasion in progress.
many microcomputer-based arcade games that exhibit a delay between a keypress and the reaction to it, these games always respond immediately to any keypress. All the games reviewed here also generate sound effects through the TRS-80 tape recorder and earphone (a standard method to get sound effects in a TRS-80). Although the sound is rough and scratchy, it adds immensely to the arcade quality of the games, the most frequent sound effects occurring every time you fire a missile or an explosion occurs.

Each of the games starts with a fancy billboard outlined in flashing lights, which also contains the names of the ten top scorers. (My only criticism is that for a home environment, ten names seem too many; five would give you more incentive to excel.) If you make one of the top scores, you put your initials into the billboard display.

From the beginning display you can either get a screen of instructions or start the game. All three games allow one or two people to play at the same time. A game may be aborted at any time.

Not only are these games fun to play-they are reasonably priced. At the time of this writing, two versions of each game were available (all supplied on cassette). One tape runs on both a TRS-80 Model I and a Model III with 16 K bytes of memory and costs \(\$ 15.95\).

A disk version of each game is available for \(\$ 19.95\) (one game per disk); the disk will run on any Model I or Model III TRS-80 with 32 K bytes of memory and one disk drive.

Big Five also sells a joystick adapter (\$39.95) that allows you to connect the rugged Atari joysticks to your TRS-80. All Big Five Software programs will respond to a joystick, and although I have not seen the adapter unit, I am confident it is of high quality.

\section*{Conclusions}
- To the best of my knowledge, Attack Force, Cosmic Fighter, and Galaxy Invasion are the best arcade-style games available for the TRS-80 Models I and III. In fact, they represent some of the best examples of microcomputer game animation that I have ever seen. They are as challenging as their arcade counterparts and, as much as possible, overcome the limitations of the TRS-80 graphics.
- Each game is based on an arcade-type game but adds its own distinctive touches. All games use both sound and extensive graphics.
- The games are reasonably priced (especially in comparison to graphics games that range from \(\$ 20\) to \(\$ 40\) each) and are, in my opinion, a "best buy."

\title{
The Prisoner
}

Bob Liddil, POB 66, Peterborough NH 03458

You're on an island with your every need provided for-everything, that is, except your freedom. The island's caretaker is watching and experimenting, his ultimate goal is to take away the last scrap of individuality you possess. It's you against the island. You are The Prisoner.

The Prisoner, by Edu-Ware Services Inc of Canoga Park, California, offers a unique, sometimes bizarre, recreation of an early 1970 s TV series that has attained cult status in recent years. To play the game, you assume the role of a disenchanted member of a covert intelligence agency. You're fed up with The Company-the whole system in general. After quitting the service, you're abducted and spirited off to The Island, an isolated, selfcontained community where electronic surveillance, brainwashing, plots and counterplots, illusions, delusions, and confusions are the order of the day.

This program is not in the Adventure format that has become so popular over the last year, It is, in fact, a graphics-oriented, disk-accessing collection of fixed and randomized events that leaves you pounding your desk in endless frustration trying to make heads or tails of it. This is not necessarily bad because that is the program's intent.

The game is fundamentally a contest between two equally difficult goals. The computer wishes to obtain your resignation code (and, not incidentally, doesn't care how insane it drives you). You, on the other hand, wish to escape from The Island and must use every possible means to do so.

By studying the documentation carefully, you learn (well before booting the disk) that the program is going to lead you on an incredible journey. Before the game begins you are assigned a resignation code. The
documentation explains that this code is a condensation of your reasons for leaving The Company. When you awaken, the game begins in room \#6, which contains a time-consuming invisible maze that is never the same twice. If you escape the maze, the machine greets you by asking you to identify yourself. Considering the twentyminute invisible maze and the possible frustration of having to restart the game due to misinterpreting the screen-the tricks start coming right at the begin-ning-the inattentive player is in for rough sailing.

Once in the courtyard, the movement codes are different from those in the maze. A dead keyboard raises the frustration level before you realize that this is precisely what the author, in the guise of The Caretaker, or Master of the Island, is trying to do.
Subsequent scenarios are contained in twenty 'buildings," each of which you may enter at any time. The trick is to survive and outwit the event once you're inside. For example, there is the Hospital, where an encounter with a "shrink" might be expected, and at the Town Hall you must play politics. There is a Bank, a Courthouse, a Church, and so on. All these locations are riddled with pitfalls and potential disasters. They are all designed to get you to throw in the towel and reveal your code.

The program uses an awesome mixture of graphics, sound, and text. There are high-resolution pictures with beeps and whistles and low-resolution pictures that confound you with simplicity. At times, portions of the program "jump loose" and seem to suffer a programming error. However, the program is not in error-it does this by design. It's a nightmare. The program doesn't do what you think it should.
The Prisoner is not for the easily frustrated, nor for those looking for a shoot-em-up arcade-type game. Instead, The Prisoner is complex beyond belief, nearly unbeatable, and at times irrational on purpose; careening through a calculated mind-warp, its sole function is to entertain.
If you follow the rules, trust your fellow man, or display anything less than a total commitment to antisocial, anti-island behavior, you will be hopelessly doomed to repeated failure.

Author David Mullich, a computer science student at California State University, Northridge, is a meticulous researcher with an artist's eye for depth and detail. In speaking about The Prisoner, he said: "I was sick and tired of all the arcade games and (conventional) Adventure games. They seemed to be imitations of each other."

As a youngster Mullich enjoyed The Prisoner on TV and found that, as a young man, the themes appealed to him. "I dreamed of doing a program on The Prisoner, and through Edu-Ware, I got the chance," he said.

\section*{At a Glance}

\author{
Name \\ The Prisoner \\ Type \\ Epic nonclassical adventure game \\ Manufacturer Edu-Ware Services Inc 22222 Sherman Way Canoga Park CA 91303 (213) 346-6783 \\ \section*{Price} \\ \$29.95 \\ Author \\ David Mullich
}

\section*{Language}

Applesoft BASIC

\section*{Computer}

Apple II or Apple II Plus Applesoft and 48 K bytes of memory

\section*{Documentation}

12-page booklet

\section*{Audience}

Puzzle solvers, adventure fans and students of the weird

Mullich's version of The Prisoner, though not untrue to the series, is a product of his vivid imagination. It will appeal to puzzle solvers and seekers of the bizarre.


\section*{Software Review}

\title{
Three Microcomputer LISPs
}

\author{
Steven P Levitan and Jeffrey G Bonar \\ Computer and Information Science Department \\ Graduate Research Center \\ University of Massachusetts \\ Amherst MA 01003
}
"(TELL ME MORE ABOUT YOUR FAMILY)" With these immortal words, Joseph Weizenbaum's ELIZA program confronted the world with the power of artificial intelligence (AI) techniques. A good deal of that power comes from the expressiveness of the programming language LISP. Some sophisticated and powerful LISP software packages are now available for microcomputers. In this article, we review three LISPs, one of which is distributed with a modern version of ELIZA. The LISP packages are muLISP/muSTAR from The Soft Warehouse, Cromemco LISP from Cromemco Inc, and (T.(L.C)) from The LISP Company.

We have compared two basic issues: speed and functionality. In the LISPs reviewed, you will see that these two aspects are continually traded off: the slower LISP has more capabilities. The trade-off is more complex than in most languages, though. Due to the extreme flexibility of LISP, any feature of one LISP package can usually be emulated in another LISP package at the cost of increased run time.
LISP purchasers should realize that LISP is anything but a standardized language. Most LISPs are fairly idiosyncratic, representing many years of development, modification, and tailoring by their designers and users. The microcomputer-based LISPs are no exception. This can cause problems for new LISP users. A

LISP you purchase may look quite unlike some of the dialects discussed in textbooks. Furthermore, many features of LISP are rarely discussed in texts, but they are quite useful for LISP programming.

\section*{Overview}
muLISP successfully provides a useful artificial-intelligence development system to the microprocessor user community. It is billed as more than a LISP interpreter for the Z80, and it is a good bit more. It provides a reasonable set of LISP functions and special forms. It also supports the user with muSTAR, a development subsystem that makes entering and debugging code as painless as possible.

On the positive side, muLISP runs remarkably fast and allows for the creation and execution of fairly large LISP programs. On the negative side, some of the design decisions about error handling and type checking make debugging in muLISP harder than need be. In particular, muLISP provides almost no facilities to detect obvious nonsensical programs, and it does not allow a user to examine the data stack after an error or user interrupt. We like the ideas that motivated the muSTAR development subsystem, but are disappointed by some of the holes in the design. In particular, it is not easy to alternate between the high-efficiency environment and the development environ-

\section*{At a Glance}

Name
muLISP/muSTAR-80 version 10/06/80
Type
Version of LISP programming language
Manufacturer
The Soft Warehouse
POB 11174
Honolulu HI 96828
Price
\$200, from Lifeboat Associates
1651 Third Ave
New York NY 10028
(212) 860-0300;
\$200, from Microsoft
10800 NE Eighth, Suite 819
Bellevue WA 98004
(206) 455-8080

Format
5-inch or 8 -inch floppy disk
Language used
8080 or Z 80 machine language
Computer needed
8080-, 8085-, or Z80-based computer with at least 20 K bytes of memory, running under a CP/M-compatible operating system

\section*{Documentation}

100 pages, \(81 / 2\) by 11 inches ( 22 by 28 cm ), in a 3 -ring binder

\section*{Audience}

Students, educators, computer-language enthusiasts
ment. Also, the screen editor is not adaptable to all terminals. The example programs delivered with the system are interesting and give just a hint of the power of a micro-computer-based LISP system.

John Allen, who served as guest editor for the August 1979 BYTE LISP issue and wrote Anatomy of LISP, is the primary author of both the Cromemco and (T.(L.C)) LISP systems. Therefore these two LISPs are similar in most respects and will usually be discussed together. We believe that they are, in fact, different revisions of the same program. These LISPs are also a successful attempt to bring LISP into the world of microprocessors.
In many respects, Cromemco LISP and (T.(L.C)) LISP are more modern than muLISP. They lack an integrated development environment, but include many more intrinsic functions and data types, helpful type checking, and error detection. The extra functionality is provided at the expense of speed, but we feel that these LISPs still run acceptably fast. Our most important criticism is of the small, fixed-size stack. These LISPs do not allow one to write the powerful recursive functions that make LISP such a clean and elegant language. This is not necessarily a practical limitation since iteration is cleanly supported, but it is rather inelegant and unaesthetic.

\section*{Data Types in LISP}

Most modern programming languages support a variety of data types. So do modern LISPs. In addition to the basic atoms, integers, lists, and property-list data types, different LISPs support "infinite-precision" integers, floating-point numbers, character strings, arrays, and Pascallike records. For now, we ignore the fact that functions and special forms are also data types in LISP. We discuss them separately below. (Special forms are things that look like LISP functions, but have special conventions for their evaluation. COND is an example of an intrinsic special form.)

The inherent flexibility of the basic

LISP data types allows almost any other data type to be emulated, but at a considerable price in execution speed and/or memory space. For example, we could emulate a character string as a list of single-letter atoms, but operations performed at the end of the "string" would be quite expen-
sive. Furthermore, assuming a twobyte address, more than \(4 n\) bytes would be needed to store an \(n\)-character-length string. One would like a LISP implementation to directly support a variety of data types using machine-level data structures and operations.

\section*{At a Glance}

\section*{Name}

Cromemco LISP, version 1.06

\section*{Type}

Version of LISP programming language

\section*{Manufacturer}

Cromemco Inc 280 Bernardo Ave
Mountain View CA 94043
(415) 964-7400

\section*{Price}
\$295

\section*{Format}

5 -inch or 8 -inch floppy disk

Language used
Z80 machine language
Computer needed
Z80-based computer with at least 48 K bytes of memory, running under Cromemco's CDOS or Cromix operating systems

\section*{Documentation}

135 pages, \(8 \frac{1 / 2}{2}\) by 11 inches ( 22 by 28 cm ), in 3 -ring binder; includes various CDOS manuals and a copy of Artificial Intelligence Programming

\section*{Audience}

Students, educators, computer-language enthusiasts


IEEE 696/S-100
All programming characteristics are software controlled; runs under CP/m*
-CP/m trademark Digital Research, Inc.


IEEE 696/S-100
- 20 parallel I/O lines
- Baud rates: 110 to 9600

\section*{P3OM 3LAJIE?}
- Programs \(1 \mathrm{~K} / 2 \mathrm{~K} / 4 \mathrm{~K} / 8 \mathrm{~K}\) eproms
- Programs EEproms
- Functions as an I/O device
- Programs single or three supply parts
- Phantom slave option
- Extended device option \& much more

\section*{6809 J.3.C.}
(Single-Board Computer)
- 2 K ram
- RS 232 interface
- \(4 \mathrm{~K} / 8 \mathrm{~K} / 16 \mathrm{~K}\) Rom
- Simulated 8080 I/O ports: memory mapped \& much more

ACKERMAN DIGITAL SYSTEMS, INC. (312) 530-8992 110 N. York Rd., Suite 208, Elmhurst, IL 60126

Support of many data types does not imply strict type checking, as in Pascal. LISP style dictates that "reasonable" data-type conversions will happen automatically. For example, if an operation performed on two integer values yields a value not representable as an integer, one would expect LISP to return a floating-point or infinite-precision integer as the value.

Cromemco and (T.(L.C)) LISP support a richer set of data types than does muLISP. They support atoms, 14-bit integers, floating-point numbers, single characters, strings up to 256 characters long, lists, and property lists. Atoms in these LISPs can take only one value. This contrasts with many LISPs, including muLISP, which allow an atom to have two values, one interpreted as a function. Each atom does have an associated property list.

Cromemco and (T.(L.C)) LISP

Cromemco Z-2H, Lisi \$9995 . \$7945 System 2, 64K Lisi \(\$ 4695\)....... \(\$ 3749\) System 3, 64K, Lisi \$7995 . . . . . \(\$ 6395\) Disk Systems
Thinker Toys Discus 2D ....... \(\$ 939\)

M26 Hard Disk, Lisı \$4995 ..... \(\$ 3949\)
Discus M-10, List \(\$ 3695\). . . . . . \(\$ 2995\)
Printers \& Terminals
Paper Tiger IDS-445 ............. \(\$ 649\)
Wilh graphic oplon
Centronics \(730-1\), Lisı \(\$ 795 \ldots . . \begin{array}{r} \\ \hline\end{array} \mathbf{\$ 7 9} 9\)
739-1, List \$995 . . . . . . . . . . . . . . . \(\$ 769\)
704-9 RS232 . . . . . . . . . . . . . . . \(\$ 1495\)
704-11 . . . . . . . . . . . . . . . . . . . . \(\$ 1565\)
TI 810, LISI \$1895 ............ 1489
NEC SPINWRITER 5530 . . . . . . \(\$ 2395\)
NEC SPINWRITER 5515, 5510 . \$ \(\$ 2395\)
Diablo 630 Lisi \(\$ 2 / 11\).... \(\$ 2399\)
Intertube III Lisi \(\$ 895\).... \(\$ 729\)
Zenith Z-19..................... \(\$ 719\)
Televideo 912C . . . . . . . . . . . . . \(\$ 679\)
920C . . . . . . . . . . . . \(\$ 799\)
Hazeltine 1420 . . . . . . . . . . . . . . . . . . . \(\$ 789\)
1500 ................. \(\$ 845\)
Soroc 120 Lisi \(\$ 993\). . . . . . . . . . . \(\$ 689\)
IO135 .................... . \(\$ 719\)
\(140 \ldots . . . . . . . . . . . .\).

\section*{Computers Wholesale \\ P.O. Box 144 Camillus, NY 13031}
(315) 472.2582

Most items in stock for ummediale delivery. Factory sealed cartons. w/lull factory warranfy. NYS residents add approptiate sales lax Prices do not anclude shapping VISA and Masler Charge add 3q. CO.D orders require \(25^{\circ}\) deposit. Prices subject to change without notice.
check data types fairly strictly. For example, single characters, denoted with a back slash (" \(\\) "), are not directly comparable to strings of length one, nor are they directly comparable to single-character atoms. Similarly, the string " 123 " is not directly comparable to the integer 123. Of course, functions are provided to convert between types. Cromemco and (T.(L.C)) LISP do provide facilities for building and supporting user-defined data types.

Cromemco and (T.(L.C)) LISP do have functions that behave differently depending on the type of argument passed in. For example, the ASCII function yields an integer when passed a character and a character when passed an integer:

> (ASCII \C) returns 67 (ASCII 67) returns \(\backslash \mathrm{C}\)

The details of how these data structures are implemented are hidden from the users of (T.(L.C)) LISP. The "clever tricks" which this prevents are no loss to most programmers. The Cromemco LISP manual does discuss details of these data structures for use in writing external assembly-language functions.
muLISP supports atoms (called names in the manual), infiniteprecision integers (actually, they must be in the range \(\pm 256^{253}\) ), lists, and property lists. Each name can take two values-a value that is returned when the name appears as a function call, and a value that is returned in all other situations. Each name also has an associated property list. Strings are partially supported by allowing manipulation of the print names of atoms.
muLISP does almost no type checking. The manual discusses the implementation of the different data types very early, and some knowledge of this implementation is important in using the system. Many operations are defined for all data types, irrespective of whether this makes any sense. CAR and CDR, for example, will work perfectly well on numbers. This may be useful in some situations, but it often causes confus-
ing results and subtle bugs. We feel the marginal extra functionality and generality provided in this way are only an invitation to poor code, obscure hacking, and subtle bugs. If it is necessary to explicitly manipulate an internal representation, there should be an explicit function to do this. Of course, muLISP saves both time and space by not checking data types.

\section*{User-Defined Special Forms}

In a LISP system, one wishes to write things which look like functions, but behave differently. For example, we would like to write things
like the standard LISP AND:
(AND predicate-1 predicate-2 . . . predicate-n)

AND evaluates each predicate- \(i\) in order, stopping if any predicate returns the value NIL (the standard LISP representation of the Boolean value false). There are two independent problems with writing AND as a standard LISP function. First, how do we pass an indefinite number of arguments, and second, how do we pass the parameters unevaluated? Special forms allow us to tell the system to treat the parameters in a
special way. Below, we follow LISP convention and use the word form as a general term for both functions and special forms.
muLISP solves the problem of an indefinite-length parameter list with no-spread forms, in which there is only one formal parameter. (A formal parameter is a dummy variable in the form definition.) When a nospread form is called, a list of all arguments is bound to that single formal parameter. The form uses this list of arguments in any way desired.

In muLISP, call-by-name forms are specified with NLAMBDA (for No evaluation of \(L A M B D A\) ) instead of

Listing 1: Definition of AND-1 in muLISP.
```

(LAMBDA (PRED-LIST)
(COND
((NULL PRED-LIST) T)
% we have recehed the end of the predicates
% and all hi:ve rvaluated"non-NIL -
% return T.
((EVAL (CAR PRED-L)Fil))
(AND-1 (CDR rRt-1)-LIST)))
% eval the ricxt predicate, if non-NIL
% recur on {.lic rest
(T NIL)
% otherwisc, the last prediciate was false,
% exit with MJl.

```
))

Listing 2: A LISP function to print out the integers from 1 to \(N\). The version in listing \(2 a\) is the function written in muLISP. The version in listing \(2 b\) is the function written in either Cromemco LISP or (T.(L.C)) LISP.
(2a)
(LAMIDA (N)
(SETQ CDUNT 1)
slodop
(PRINT CDUNT)
```

((EQ COUNT N) N) % Exit. test
(SETQ COUNT (PI_US (:(NN| 1))))

```
(2b)
(LAMBDA (N)
(D)
```

((CQUNT 1 (PLUS CCIUN' 1)))
; Only one lacal Variable, CDUNT. It is
; initializpd to 1, and incremented on
; each iterefiour,
((E⿴ COUNT N) N)
; Only one cxiti test. It specifies an
; exit with yazlue N when count equals 101
(FRINT COUNT)
; The body colitains only the PRINT
J)

```

LAMBDA. Normal (LAMBDA) functions are call-by-value and evaluate each actual parameter, binding formal parameters to the values of the actual parameters. (Actual parameters are the expressions appearing as arguments to a function call.) In a call-by-name function, the formal parameters are bound directly to the actual parameters. If evaluation is desired for any of these parameters, it is explicitly specified with EVAL.

We can write a muLISP version of AND defined as:

\section*{(NLAMBDA PRED-LIST (AND-1 PRED-LIST))}

Because AND is a call-by-name no-
spread form, all its actual parameters are gathered, unevaluated, into a list that is bound to PRED-LIST. AND-1 is called with PRED-LIST as its single parameter. AND-1 is a call-by-value spread function. AND-1 is then defined as shown in listing 1.
In summary, muLISP supports two types of forms-call-by-value and call-by-name-and two parameterbinding styles-spread and nospread. All four combinations are permitted and useful. muLISP forms are compiled in a way that is largely transparent to the user.

Cromemco and (T.(L.C)) LISP also allow both call-by-value and call-byname (referred to as "callunevaluated" in the manual) forms.

Additionally, LISP macros are supported. A LISP macro has only one parameter, which is bound to the complete text of the expression that calls the macro. For example, consider a macro TEST, which is called with the following expression:

\section*{(TEST JOE (CAR A) 5)}

The formal parameter of TEST would be bound to the expression:

\section*{(TEST JOE (CAR A) 5)}

The macro body is then free to manipulate the original expression with the full power of LISP. The
\begin{tabular}{|c|c|c|}
\hline Issue Discussed & Cromemco and (T.(L.C)) LISP & muLISP \\
\hline Cost & \[
\begin{aligned}
& \text { \$295-Cromemco } \\
& =\$ 150-(\mathrm{T} .(\mathrm{L} . \mathrm{C}))
\end{aligned}
\] & \$200 \\
\hline Data types supported & *Atoms, integers, floating-point, characters, strings, lists, property lists & Atoms, strings, infinite integers, lists, property lists \\
\hline Type checking & *yes & no \\
\hline Number of intrinsic functions & *145-Cromemco; 144-(T.(L.C)) & 71 \\
\hline Parameter options & *Optional, auxiliary, rest & Spread or no-spread \\
\hline Special forms & *Macros, read-macros 'cail-by-unevaluated" & "Call-by-name" \\
\hline Controf flow & DO, PROG1, PROGN, COND, AND, OR, CATCH, THROW & LOOP, implicit sequencing, PROG1, COND, implicit conditional, AND, OR \\
\hline Input and output at the terminal & Allows backspace & *Allows backspace, retype line, abort line \\
\hline Program saving and restoring & Text files, absolute memory image, auto-load & Text files and compressed Internal image files \\
\hline Program-controlled input and output & *Well done, I/O functions work on strings & Well done \\
\hline Space management & Dynamic space allocation for all data types, the stack is fixed in size and too small & *Dynamic space allocation for all data types and the stack \\
\hline User environment & Simple environment for developing. debugging, and executing programs; ability to examine the data stack after errors, extensive error checking; tracing abilities & Separate development (muSTAR) and execution (muLISP) environments; no ability to examine the data stack after errors, 100 little error checking; muSTAR includes a screen editor; tracing abilities; source code for muSTAR included \\
\hline Linking to assembly language & Cromemco-well documented and supported (T.(L.C))-not supported & Possible but poorly documented \\
\hline Documentation/library software & Clear manual suitable for beginners; many examples & Clear user's manual; too terse and formal for beginners; includes several utilities and games \\
\hline Speed & Adequate & * 4 to 7 times faster than the others \\
\hline
\end{tabular}

Table 1: Comparison chart for the versions of LISP reviewed. This table summarizes the differences discussed in the text. For each issue discussed, an asterisk (*) denotes the LISP the reviewers consider to be superior. The absence of an asterisk denotes a tie among the three versions.
\begin{tabular}{|c|c|c|c|}
\hline Expression evaluated in TESTER loop & (T.(L.C)) counts & Cromemco counts & muLISP counts \\
\hline NIL & 8122 & 8061 & 31260 \\
\hline LC & 265 & 258 & 1667 \\
\hline DC & 408 & 409 & 2100 \\
\hline BIGCAR & 556 & 549 & 4316 \\
\hline BIGCDR & 555 & 552 & 4200 \\
\hline '(HAS-AS-MEMBER-I 'B LONG1) & 119 & 119 & 704 \\
\hline '(HAS-AS-MEMBER-R 'B LONG1) & 79 & 79 & 367 \\
\hline '(REMOVE-ELEMENT-I 'B LONG41) & 84 & 85 & 24 \\
\hline '(REMOVE-ELEMENT-R 'B LONG41) & 64 & 66 & 318 \\
\hline '(HOW-RELATED 'FRODO-B 'BILBO-B) & 3 & 3 & 16 \\
\hline \multicolumn{4}{|l|}{Notes:} \\
\hline \multicolumn{4}{|l|}{- All of the above expressions were evaluated as many times as possible in 30 seconds ( 60 seconds for the call to HOW-RELATED). The} \\
\hline \multicolumn{4}{|l|}{-The counts given represent an average of three separate trials, except for the Cromemco counts, which represent one trial. The one} \\
\hline \multicolumn{4}{|l|}{- muLISP performs particularly slowly with REMOVE-ELEMENT-I because this function uses APPEND, which is not intrinsic to muLISP. To run REMOVE-ELEMENT-I we used the recursive version of APPEND supplied in the muLISP utility library. The use of an interative APPEND} \\
\hline \multicolumn{4}{|l|}{-These tests were run on a Cromemco C3 Z80-based system with 64 K bytes of memory running at 4 MHz .} \\
\hline
\end{tabular}

Table 2: Timing results for the LISP benchmark programs. For details on how this table was compiled, see the text box "Notes on LISP Benchmarks."

value computed, however, is then itself evaluated, yielding the final value of the macro call. Often a problem is best solved by manipulating the text of a form's call. Macros allow this manipulation in a clean way. Macros are particularly suitable for hiding data-structure implementations.
Cromemco and (T.(L.C)) LISP allow a very general formal-parameter-list specification for call-by-value functions. In particular, one can specify regular parameters, optional parameters, auxiliary parameters, and a rest parameter. Optional parameters are bound to a specified default value if they are not specified as an actual parameter. Auxiliary parameters are local variables to the function, and they are specified with an initialization value. The rest parameter is bound to a list of all actual parameters not bound to a formal parameter of some other type. This is more flexible than the no-spread parameter of muLISP
because some actual parameters can be required even though the total number is indefinite. The call-byname and macro forms of Cromemco and (T.(L.C)) LISP also allow the definition of auxiliary parameters. We found this sophisticated parameter list to be quite useful and concise once we were familiar with it.

\section*{LISP Control Structures}

Because LISP uses the same representation for data and programs, the difference between control structures and data structures becomes blurred. For example, one function may construct a list which is then evaluated as a function call. We have done this in the function BUILD-LONG-CONS in listing 3. For the purpose of this review, we consider any construct that affects the order of expression evaluation to be a control structure. LISP easily allows the definition and integration of new control structures that reflect the needs of a particular problem. In particular,
the LISPs reviewed here allow one to create new control structures using the special forms described above. This means that if you like a control structure in one LISP, you can usually emulate it in another.

\section*{Sequencing Control Structures}

The simplest control structure allows one to evaluate a sequence of expressions. In muLISP, sequential evaluation is implied by putting several expressions to be evaluated into a list. For example:

> ((PLUS 3 4) (CAR (QUOTE (A B))) (SETQ Z 6))
returns:
(7 A 6)
and binds 6 to the atom \(Z\). Also provided is the PROG1 form which returns the value of the first expression it evaluates, but also evaluates

Text continued on page 396

Listing 3: Benchmark functions for versions of the LISP programming language. These functions are used either to build expressions used in the timing benchmarks or as functions to be benchmarked. BUILD-LONG-CONS, BUILD-DEEP-CONS, and NESTEDAPPLICATION are used to build expressions that test CONS, CAR, and CDR. Listing 5 shows how they are used. REMOVEELEMENT and HAS-AS-MEMBER represent archetypical LISP functions. They are tested in both a recursive and an iterative form. These functions are written in a neutral "standard" LISP, except for the iterative versions of REMOVE-ELEMENT and HAS-ASMEMBER. Comments are delimited with braces (\{ \}). See also table 2 and the text box labeled "Notes on LISP Benchmarks."
```

build-long-cons
{ Builds a CONS expression which, wherr evaluated, will
produce a list LENGTH long of ELENENT. Example:
(BUILD-LONG-CONS 5 'A) returns
(CONS 'A (CONS 'A (CONS 'A (CONG 'A (CONS 'A NI\&)))))
}
(lambda (length element)
(cond ((zerop length) ni))
(t (list 'cons
(list 'quote' element)
(build-lrmag cons (difference length 1)
element)))),
build-deep-cons
{ Builds a CONS expression which, wher, evaluated, will produce
a list DEPTH deep with the inmmermost list containing
ELEMENT. Example:
(BUILD-DEEP-CONS 5 'A) returns
(CONS (CONS (CONS (CONS (CONS 'A NIL) NIL.) NIL) NIL) NIL)
}
(lambda (depth element)
(cond ((zerop depth) (lje.t 'quote element))

```

```

has-as-member-r
{ Returns T if ElEMENT appears in iSl. This is the recursive
version of the function. }
(lambda (element lst)
(cond ((null lst) nil)
((eq element (car lst)) t)
(t (has-as-member element (cdr lst)))))

```
remove-element-r
    \(\{\) Returns a copy of LST with all occurences of ELEMENT
        deleted. This is the recursive verc.jan. 子
            (lambda (element lst)
                (cond ((null lst) nil)
                    ((eq element (car Jsi)) (remove-element-r
                                    element
                                    (cdr lst)) )
                    (t (cons (car lic)
                        (remove-flement element (cdr lst)))))
```

has-as-member-i-muLISP
{ The muLISP iterative version of {HAS-AS-MEMBER. }
(lambda (element lst)
(setq cdr-lst lst)
(loop ((null cdr-lst) ni))
((eq (car cdr-le.t) e)ement) t)
(setq cdr-lst (cdr cdr-lst))))

```
remove-element-i-Cromemco-tlc
    \{ The Cromemco/(T. (L. C)) iterative Vel-sion of REMIJVE-ELEMENT. \}
        (lambda (element lst)
            (do ( (front nil
                                    (if (eq element (car back))
                                    (apperid front (list (car back)))
                                    front)
                            (back lst (cdr back)))
                            (((null back) front))))

Text continued from page 394:
all other expressions in order. For example:
(PROG1 (PLUS 34 ) (CAR (QUOTE (AB)) (SETQ Z 6))
returns 7, but also executes the CAR, throwing away the result, and binds 6 to the atom Z .

The implicit sequence evaluation, while convenient, is often confusing and error-prone. Quite often, incorrect functions evaluate without an error because there is almost always a legal interpretation of any expression. We feel this disadvantage outweighs the convenience of the implicit form.

Cromemco and (T.(L.C)) LISP provide PROG1 as well as a PROGN special form. PROGN evaluates its expressions in sequence, like PROG1, but returns the value of the last expression evaluated.

\section*{Conditional Control Structures}

The standard LISP form for ex-
pressing conditionality is COND. In muLISP, COND is implied in any list of expressions. If any element of the list is of the form:

\section*{( predicate expression)}
and predicate evaluates to non-NIL, then control exits from the outer list with the value of expression. Like the implicit sequence evaluation, this feature trades readability and ease of debugging for conciseness and speed. Of course, an explicit COND is also available in muLISP.

The COND form is augmented with an IF form in Cromemco and (T.(L.C)) LISP:

\section*{(IF predicate expression-1 \\ expression-2 . . expression-n)}

If predicate is true, expression-1 is evaluated and its value is returned. Otherwise, expression-2 through expression-n are evaluated, and the
results of evaluating expression-n are returned.
All three LISPs provide the conditional logical operators AND and OR:
(AND predicate-1 predicate-2 \(\ldots\)
predicate- \(n\) )
(OR predicate-1 predicate- \(2 \ldots\)
predicate- \(n\) )
If any predicate-i evaluates to NIL for AND, or other than NIL for OR, the form immediately returns with that value, evaluating no other predicate-i.

\section*{Recursion and Iteration}

LISP is one of the cleanest languages in which to express a recursive solution to a problem. LISP programs that use only recursion are clean, elegant, and very simple to debug because there are no global variables or side effects. Unfortunately, purely recursive LISP programs are usually too slow. Typically, when an application program is found to be too slow, a few functions are taking most of the time. (In our genealogy program in listing 4, SONG-1 and SING-1 are the critically slow functions.) Once these functions are found, they can each be optimized, usually by making them iterative. Good LISPs must provide clean iterative structures which localize any use of side effects and easily replace recursive structures. All LISPs reviewed here have good iteration constructs.
The LOOP iteration construct of muLISP allows any sequence of expressions within the loop body. If any expressions are of the form:

> (predicatè expression)
then predicate is evaluated on each iteration of the loop. If it is non-NIL, the LOOP returns with the value of expression.

Consider the problem of writing a function to print out the integers from 1 to \(n\), returning the value \(n\). In muLISP this would be written as shown in listing 2 a .
The DO iteration construct of Text continued on page 404

Listing 4: A genealogy program written in LISP. This program is intended to test the LISPs on a moderate-sized program with several modules. It allows one to enter family-tree information through the functions BORN, MARRIED, and FIRST-BORN (FIRST-BORN is used when the parents of the new entry are unknown). The system is initialized with the function CREATEUNIVERSE. The program has three levels: a group of functions that know about kinship, another group of functions that perform a breadth-first search, and finally a set of graph-manipulation functions that implement the family-tree data structure.
```

how-related
{ Describes how P1 is related to Pr?. Fifost we check the simple
cases that P1 is the same as P2 ind that P1 is P2's spouse.
Otherwize, we call DESCRIBE-RELAIJLN after computing the
path in the family tree between Fl Hi'.}
(lambda (p1 p2)
(cond ((eq p1 p2) (lis.t 'same))
((eq pl (spouserof |'i')) (list
(sex-of-spouse p1)))
(t (describe-relation P1
p2
(find-path-between p1 p2)))))

```
describe-relation
    \& Based on a legal connecting path through the family tree,
        describes how P1 is related to Ps. PATH-UP-AND-DDWN is a
        list with the distance up from \(P 1\) to the lowest common
        ancestor and the distance down to Hi: from the lowest
        common ancestor. We use a LAMBDA biriding to cut this
        list into components D1 and D2. \(1 f\) either D1 or D2 is
        zero, the relationship is direct. Uiher cases are dealt with
        by NOT-DIRECT-RELATIONS. 子
            (lambda (p1 p2 path-up-and-do\&ll)
                        (cond ((null path-up-and -down) '(not
                                    related
                                    by
                                    blood))
                    (t ( (lambda (di des)
                            (cond ((radio)
                                (direct-ancestor \(\rho 1\) d己))
                            ( (rq d2 0 )
                                (direct-descendent pidi))
                                (i) (not-direct-relations
                                p 1
                                P2
                                    d 1
                                    d2) ) )
                                    (car path-up-eirid -doun)
                            (cadr path-up eitifi-down)))))
direct-descendent
    \& The relationship is known to be child, grandchild, great
        grandchild, or etc. This function invokes choosing the
        right relation name by sex - son or daughter, and the
        right number of greats. \}
            (lambda (younger distance)
                            (add-grand-greats (sex-of-child younger) distance))
direct-ancestor
    \(\{\) The relationship is known to be parent., grandparent, great
        grandparent, or etc. This function invokes choosing the
        right relation name by sex - father or mother, and the
        right number of greats. \(\}\)
            (lambda (older distance)
                    (add-grand-greats (sex-of-parent older) distance))
```

not-direct-relations
\& Based on the distances D1 and D2, d\&fermine the relation
P1 and P2. If D1 and D2 are both anc, then P1 and P2 are
siblings. If D1 equals D2, and both are greater than one,
then P1 is P2's nth cousin, where | is. D1 (or D2) minus one.
Finally, if D1 is not equal to Dé, alld both are greater than
one, P1 is P2's Nth cousin, M reanved. N is Di minus 1, and M is
the absolute value of the difference between D1 and D2.
}
(lambda (p1 p2 d1 d2)
(cond ((and (eq d1 1) (eq d2 1)) (list
(sex-of-sibling p1)))
((eq d1 dZ) (1is.t (djfference d1 1)
'(|usin))
((eq d1 1) (ancestors-sibling pi d2))
((eq d2 1) (sibli|gs descendent p1 d1))
(t (list (differente dl 1)
'cousin
(abs (difference d2 di))
(remov(d)))'

```
find-path-between
    \(\{\) To find a path between P1 and P2 ue use a breadth first search.
        Starting at P1 we look for P2 onr step away, then two
        steps away, etc. The BREADTH-FIHST--SEARCH is passed a list
        of unexpanded nodes and a goal. ihe unexpanded nodes are
        lists with the follouring informatijut:
            -a person to be checked next
            -the distance traveled up to get tn this person
            -the distance traveled down to get. to this person
            -the last person visited beforc tijis person
        We start with a P1 node and initial values on the unexpanded
        list. 子
            (lambda (p1 p2)
                    (breadth-first-search ()is.i (list p1
                                    0
                                    'the-great-unknown))
                pi')
breadth-first-search
    \(\{\) We take the first unexpanded nodr of the unexpanded list.
        if it represents the goal node, we return its accumulated
        distances. Dtherwize, we check its relations to see who
        needs to be added as nodes to thr uliexpanded list. 子
            (lambda (unexpanded goal-node)
                        (cond ((null unexpandid) mil)
                    (t ( (lambda (next)
                                    (comid ( (ra (node-of next)
                                    goal-node)
                                    () ist (dist-up-of next)
                                    (dist-down-of next)))
                                    (t) (check-relatives
                                    next
                                    goal-node
                                    (cdr unexpanded)) ))
                            (car unexpanded))))
check-relatives

Listing 4 continued:
\{ Appends new nodes on the end of the uriexpanded list. By putting them on the end we get a breadth first search. These new nodes are built by BUILL) NL:W-UNEXPANDED which uses various information from the lar. \(\begin{aligned} & \text { node expanded. }\end{aligned}\)
\}
(lambda (last-expanded person urfixpanded)
(breadth-first-search (append unexpanded
(build-new-unexpanded
(node-of
last-expanded)
(dist-up-of
last-expanded)
(dist-down-of
last-expanded)
(where-of
last-expanded));
(foircon))
build-new-unexpanded
\(\{\) Finds all the neighbors of the node last expanded and builds unexpanded nodes for them. If we have not yet started down in the tree (D-I)(IWivequals O), we can also build unexpanded nodis fram parents of the node last expanded. In each case we will note the new distances and the node list. expanded. \}
(lambda (node d-up d-down from)
(append (make-unexpanded (s.ong node 'child)
lude
d up
(flus d-down 1)
from)
(cond ( (eq d-dowll ()) (make-unexpanded
(song
node
'parent)
node
(plus d-up 1)
d-down
from))
(t nil)))
make-unexpanded
\& Given a list of nodes and information about how we got to those nodes, builds unexpanded nodes for the breadth first search. We do not meike an unexpanded node for THE-GREAT-UNKNDWN or for the pli:ce we were at two steps ago. In this way we avoid infinitily looping through the family tree.
(lambda (node-list from d-up d-down from-from)
(cond ((null node-list.) rijl)
( (or (eq (car node-list)
'the-grtest. -linknown)
(eq (car nride-list) from-from))
(make-unexpandcd (cir node-list)
from
(i) IP
d-riown
firam-from)
(t (cons (list (cer llode-list)
d-11p
d - 0 ( 0 (u)
\{ This and the next three functions select sub fields of an unexpanded node. \}
(lambda (unexpanded-entry) (cár unexpanded-entry))
```

dist-up-of
(lambda (unexpanded-entry) (ci;ir unexpanded-entry))
dist-down-of
(lambda (unexpanded-entry) (caddr unexpanded-entry))
where-of
(lambda (unexpanded-entry) (cadddr unexpanded-entry))
born
{ Allows a user to declare that PEfliUN cif sex SEX was born
to PARENT1 and PARENT2. Various gli:ph primitives are
used to link the new arrival into the family tree. These
primitives are explained below. f
(lambda (person parent1 parenter sex)
(progn (cun person)
(bun person sex)
(cip person 'chijd parent1)
(cip person 'chisld parent2)
(cop person 'parent parent1)
(cop person 'parent parent2)
person))

```
married
    \(\{\) Allows a user to declare that PEKSiNl and PERSON2 were
        married. The graph processing primitives used to do
        this are explained below. .
            (lambda (person1 persone)
                    (progn (cap person1 'spouse person2)
                        (list personl pers.on2)))
add-grand-greats
    \(\{\) Adds the right NUMBER of "grand"
        basic relationship name \(\quad\) NE-CASE. ;
            (lambda (one-case number)
                (cond (eq number 1) (list one-case))
                            ((eq number 2) (Lisit 'grand one-case))
                            (t (cons 'great
                                    (add-grand•areats one-case
                                    (difference
                                    number
                                    1) ) ) ) )
add-greats
    \{ Add the right NUMBER of "great"s to the basic relationship
        name \(O N E-C A S E\). Note that "grand"s ere not used. This
        is more common usage for great uncles and aunts. \}
            (lambda (one-case number)
                    (cond ((eq number 1) (list one-case))
                        (t (cons 'great
```

ancestors-sibling
\& Builds up the appropriate kind of uncle or aunt based
on the sex of UNCKE-DR-AUNT and the DISTANCE. f
(lambda (uncle-or-aunt distanre)
(add-greats (sex-of-uncle.or-aunt uncle-or-aunt)
(difference die.tance 1)))
siblings-descendent
{ Builds up the appropriate kind of niece or nephew based
on the sex of NIECE-OR-NEPHEW and l.f* DISTANCE. }
(lambda (niece-or-nephew distance)
(add-greats (sex-of-nicce cor-nephew niece-or-nephew)
(difference dis.tance 1)))

```
spouse-of
    f Follows NODEs spouse link using aroph processing primitive. .?
            (lambda (node)
                            (car (song node 'spouste)))
```

sex-of-child

```
    \{ This and the next 6 functions chose the appropriate relation
        name based on the PERSONs name. They all pass a FEMALE-CHDICE
        and a MALE-CHOICE to CHDOSE-BY-SEX, uliich actully looks
        up the sex of PERSON and returns a chice. 子
            (lambda (person)
                            (choose-by-sex person 'disughter 'son))
sex-of-parent
    (lambda (person)
    (choose-by-sex person 'mother 'father))
\begin{tabular}{rl} 
sex-of-spouse & \\
& (lambda (person) \\
& \((\) choose-by-sex person 'ujff. 'husband))
\end{tabular}
sex-of-uncle-or-aunt
    (lambda (person)
    (choose-by-sex person 'e:llit 'uncle))
sex-of-niece-or-nephew
    (lambda (person)
    (choose-by-sex person 'uirce 'nephew))
sex-of-sibling
    (lambda (person)
            (choose-by-sex person 's.js.ter 'brother))
choose-by-sex
(lambda (person female-choice mis)e-choice)
(cond ( (eq (sex-of persun) 'female)
female-choice)
(t male-choice)) )
sex-of
\(\{\) Uses graph processing primitives to look up the sex of PERSON \}
(lambda (person) (vun person))

Listing 4 continued：
\｛ Useful to enter a person whose perents are not known．\}
（lambda（person sex）
（progn（cun person）
（bun person sex）））

\section*{create－universe}
\｛ Sets up the two global lists used bu the graph processing system．The UNIVERSE－ND．DE－JIST is．\(e\) Jist of all the nodes in the system．Here，a node is a person in the family tree． The UNIVERSE－EDGE－LIST holds all thr connections between nodes in the system．These are kcpt es triples of（nodel edge node2）to represent an edge called EDGE pointing from NODE 1 to NODE2．In this case the edges will be familial relations．This function also creates THE－ GREAT－UNKNOWN who is related to rin alle＇子

\section*{（lambda nil}
（progn（setq universe madewlist nil）
（setq universe cuịe－list nil）
（cun＇the－greal unkrown）））
cun
\｛ Creates a mode in the universe by ufic：ting the UNIVERSE－NODE－LIST．子
（lambda（node）
（progn（setq universe nndiflist（cons node universe－node－list））
node)
bun
〔 Binds a value to a mode in the universe．Node values are kept on the node＇s property list，urifer the indicator VALUE． Here the value of a node is the pertoons sex．\}
（lambda（node value）（putprop nurie value＇value））
vun
\｛ Get the value of a node in the ulijvrre．e．The converse of bun \}
（lambda（node）（getprop node＇Vílue））
sun
\｛ Set of all nodes in the universe．This．is just the UNIVERSE－NODE－LIST itself．\}
（lambda nil universe－node－lisi．）
cip
\｛ Create an inpointing edge．This just reverses the arguments passed to it and calls add－triple which does the work．子
（lambda（nodel edge node2）
（progn（add－triple node＇c eige nodel）nodel））
cop
£ Creates an outpointing edge，from nodel to node2．As above but without the reversal of argumerits．\(\}\)
（lambda（nodel edge node2）

〔Creates a pair of edges one in each direction．子
（lambda（nodel edge node2）
（progn（rip nodel edge norie？）（cop nodel edge node2；））
sing
\｛ Set of nodes who point to this nolle via edges of type EDNE． here we just set up the call for the recursive helper function．\}
（lambda（nodel edge）（sing－1 notiel edge universe－edge－1ist））
sing－1
\(\{\) This is the recursive version of the helper function for sing． Since this function and song－1 brilous are the two workhorses of the graph functions，we used iteriotive versions in the timing tests．The recursive versions ere shown here for clarity．The function CDRs down \(U\)（iujtaly the UNIVERSE－ EDSE－LIST）looking for a triple of the form（nodel edge nodea）where nodec equals N1 con edge equals E． Whenever it finds such a triple it ciNSes the nodel element to the set of nodes to be returnc．d．Ilis is just the set of nodes which have edges of type which point to N1．子
（lambda（n1 e u）
（cond（（null u）nil）
（（and（eq（cadar \(u\) ）\(E\) ）（eq（caddar \(u\) ）\(n i\) ））
（cons（caar u）（sjng̣－1 ni e（cdr u））））
（t（sing－1 n1 e（（dy u）））））
song
\｛ Set of nodes which NDDE1 points to vie：an edge of type EDGE．
This is just like sing above，except it calls song－1．\}
（lambda（node1 edge）（song－1 model edge universe－edge－list））
song－1
\｛ Identical to sing－1 above except here we are matching nodel and edge of the triple and returning nodee．\}
（lambda（ni e u）
（cond（（null u）nil）
（（and（eq（caar \(u\) ）ris）（eq（cadar u）e）） （cons（caddar（1）（sung－1 n．e（cdr u））））
（t（song－1 ni e（cir u）））））

\section*{dun}
\(\{\) Destroys a node in the universe hy removing it from the UNIVERSE－NODE－LIST and the UNIVFRSE－EDGE－LIST．
the real work is done by retriples and remember below．\(\}\)
（lambda（node）
（progn（setq universe－riciselist（remember node

\title{
(setq universe-codge-list (retriples node universe-edge-list)
}

Mode)
remember
\{ Remove all ocurrences of NDDE in l Jin. This is just a simple recursive constructor fanction. It CDRs down the Iist and CONSes together all elements which are not NODE. \(\}\)
(lambda (node list)
(cond ( (null list) nil)
( (eq (car list) nudf) (remember node
(cdr list))
(t (cons (car list) (remember node (cdr
(ist))) ) )
```

retriples
{ Remove all triples from U (the UNIVr-fdE-EDGE-LIST) where
N is either nodel or node2. This eliminates any edges
which point to or from node N. }
(lambda (n u)
(cond ((nullu) nil)
((or (eq n (caar u)) (eq n (caddar u)))
(retriples n (t|u u)))
(t (cons (car u) (rririples n (cdr u))))))
add-triple
{ Updates the global UNIVERSE-EDGE-I. ISil to reflect the new
edge given by the triple (N1 E N:'). E points from N1 to N2.}
(lambda (n1 e n2)
(setq universe-edge-ljr.t (eippend universe-edge-list
(list
(list n1 e n2)))))

```

Text continued from page 396:
Cromemco and (T.(L.C)) LISP is more complex, more powerful, and more baroque. Particularly useful is the ability to specify an arbitrary number of local variables, how each is to be initialized, and how each is to be modified at each iteration. Also, one can specify an arbitrary number of exit tests and associated exit values. Finally, an arbitrary and possibly empty sequence of expressions make up the loop body. Our counting example above for Cromemco and (T.(L.C)) LISP is given in listing 2 b .

\section*{Nonstructured Function Exits}

Sometimes we want a function to
exit from an arbitrary number of function call levels. For example, we might design a system that always allows users to type QUIT to return to the system's top command level. The CATCH and THROW forms of Cromemco and (T.(L.C)) LISP give this capability.
For example:

\section*{(CATCH label expression-list)}
says to evaluate the expression-list, much like a PROGN. If, during that evaluation, the expression:

\section*{(THROW label exit-expression-list)}
is evaluated, then the CATCH immediately returns with the value
returned by treating exit-expressionlist as a PROGN. This exit ignores any intervening computation or pending functions specified within the CATCH expression-list. If a THROW with the corresponding label is not evaluated, the CATCH is treated just like a PROGN. Note that the label is just an atom to establish a correspondence between a given CATCH and THROW.

\section*{Input and Output in LISP}

Since LISP is a highly interactive language, an implementation must have high-quality \(1 / \mathrm{O}\) (input/output) capabilities. A user will be involved with three similar (and often interchangeable) aspects of I/O. First
there is the common method of interaction with the interpreter: typing expressions and reading the results. Second, there are the techniques of saving and restoring disk files containing programs and data. Third, there are the input and output operations that happen during userfunction execution.

The distinctions here are somewhat arbitrary. Since the difference between program and data is explicitly not enforced in LISP, it is easy to create functions that, for instance, write themselves onto disk. In fact, a common way to load programs is to redefine the source of expressions for the "driver" as a disk file rather than the keyboard. For the sake of clarity, though, we discuss the three aspects
of I/O mentioned above as separate topics.
Terminal I/O in all three LISPs leaves something to be desired. muLISP allows for CP/M-style within-the-line editing during input. It recognizes 1 X (control- X ) as rubout; \(\uparrow \mathrm{R}\) as retype line; IU as abort line. It has the usual backspace and delete characters. If the user, while typing an expression, goes beyond one line of text, the system does not reprompt the user. This is especially important if the user is not sure if the form he or she is typing is correct (in terms of matching parentheses). The user has no indication from the system that it is expecting more input rather than executing the desired expression.

Cromemco and (T.(L.C)) LISP accept input in an immediate mode. When appropriate, they do not wait for a carriage return to accept a legal expression. Unfortunately, they allow no within-the-line editing except for backspacing. On a hard-copy terminal, this can be extremely frustrating. On a video terminal, this would not be a serious problem.

Cromemco and (T.(L.C)) LISP have very flexible and easy-to-use read-macro capabilities. The input routines are table-driven in such a way that the user can easily redefine the meaning of any ASCII (American Standard Code for Information Interchange) character, even to the point of causing the system to invoke a

Text continued on page 407

Listing 5: A set of LISP expressions used to conduct the benchmarks of table 2.
\% Ewrressions to set ur tine basic benchmerks \%
```

(SETG LC (EUILIM-LONG-CONS 5O 'A))
(SETQ LC(BUILIOHEF-CONS 5O A))
(SETQ LONG (EVAL LC'))
(SETG LIEEF' (EUUAL. IIC))
(SETQ ETGCAFK (NEGTELI-AFFINCATTON CAK'49 (DEEF))
(SETQ BIGCLIF(NESTEM-AFFINCATION CMFA 49 'LONG))
(SETG LONGI (AF'FENII LONG '(B)))
(IIE MIX-4-1 (LENGTH EI E:2)
(CONII
((L.T LENGTH I.) N.TL..)
(T (AFFENM (LIST EJ EI E1 EXEQ)
(MJX\cdots4-1 (SUR LENGTH S) EI E2)
)
)))
(SETQ LONG41 (MIX-4-1 50'A 'E))
% The mul.ISF version of tester %
(IIE TESTER (FORM)
(SETQ COUNT ()) % iriitializes the courit %
(FORNT (FECLAIM)) % Ferform arn initiam sarbaser rollect, %
(LOOF % loow irifiriltise (uritial ari wotermal "iriterrumb") %
(EUAL FOFM) % eval the \&x,ressiom to be tested %
(SETG COUNT (F'..US COUNN 1)) % imeremerat the comint %
))

```

Listing 5 continued：
```

% The next four definitions are helfers to enter the data %
% base. IIF is the Cromemco ano (T. (L.C)) LJSF function %
% to defirie call-by name, no-5pread functions. InE defiries %
% a call-by-value spread furictiom.
(LIF F (X) (FIFST-BOFN (CAFi X) (CALIFK X)))
(UF E (X) (BOFN (CAF X) (CALMF X) (CALILFX X) (CALILIF X)))
(IIF M (X) (MAFINIELI (CAR X) (CALIR X)))
(IIF C (X) (C-1 (CAF; X) (CALIF X) (CLLIF X)))
(IIE C-1 (FI F'2 CS-LIST)
(CONH ((NULL CS-LIST) NIL)
(T (CONS (BOFN (CAF CG-LIGT) F゙\ FO (CALIFCS-LIST))
(C-1 F'1 F゙2 (C[IIF(CS-LJST))))))
% The followins exmrersjoris eriter the FAGGTNS arid
% rook familly trees.
%
(MAFFIEI (F BALEB-B MALE) (F BEFYYLLA-BOFFIN FEMALE) d
(C EALERO-E EEFYYLIA-BOFFIN MUNGO-E MALF FOANGY-F FEMALE FONTO-B MAIEE
LAFBGO-B MAILE LILYY-G FEMALE)
(MAFFIEI (F LAUFA-GFUEF FEMAINE) (QUOTE MUNGO-F))
(C LAUFA-GFUBE MUNGC-M BUNGO-B MALE)
(MAFFICEII (F BELLANONNA...TOOK FEMALES) (QUOTE EUNGO-B))
(C BELLAIIONNA-TOOK BUNGO-B EILEO-G MALE)
(MAFFITEII (F TANTA-HOFNBLOWEF FEMAIE) (QUOTE LARGO-B))
(C TANTA-HOFNELOWEF LAFGO-B FOSCO- F MALE)
(MAFKIELI (F FUBY..HOLGER FEMALE) (OUOTE FOGCOME))
(C FUGY-HOLGEF FOSCO\cdotsH [MFOGOMF MALE)

```

```

(C FFFIMULA-EFANLIYBUCK LFOGO-E FFODO--F MALE:)
(MAFFIEII (F THE-OOLI-TOOK MALE) (F AXAMANTA-CHUEE FFMALF))
(C THE-COLIMTOOK AMAMANTA-CHUBM BELLADONNAMTOOK FEMALE MTFABELIA- TOOK FEMMLE)
(MARFIEII (QUOTE MTFABELLA-TOOK) (F GOFRAROC-MFANGYEUCK MALE))
(C MIFABELLA-TOOK゙ GOFBALOC-BFANLIYEUCK゙ FKIMLLA-BFANLIYELUCK, FEMMALE)

```

A．

Text continued from page 405:
MACRO form when it sees a given character.
Although it is possible to redefine the READ function in muLISP, it is not as convenient as the read-macro capability described above. An example of the usefulness of read-macros is:

\section*{'expression}
which, in (T.(L.C)) and Cromemco LISP, will be transformed into:

\section*{(QUOTE expression)}

Not only is this not done for you in muLISP, it is not easy to change the system to do it.
To overcome the lack of a readmacro capability, muLISP provides auto-quoting. This means that any atom not bound to a value is bound to itself as a value. This is normally done for numbers (the value of " 3 " is three), but most LISP systems raise an error when asked for the value of an undefined atom. The consequences of this are discussed further in the section on error handling.

\section*{Disk I/O}

Basically, programs are stored on disk as text files or "internal image" files. Text files here are simply ASCII files of function definitions, atom values, and function calls in the same "free-format" style used when typing at the console. Internal image files are "snapshots" of the memory taken at the time they were created, including all the bindings of values that were in effect. muLISP compresses all active data structures that define the environment and generates a coded file that can be loaded with the execution system. The other two LISPs take advantage of the SAVE utility of CP/M and CDOS. They exit to the operating system, and the user must explicitly SAVE a memory image of the entire user area.

In muLISP, the internal image files can also be brought in, using LISP functions. Restoring an environment in this way is fast, but it will explicitly destroy any environment (bindings) that were in effect at the time of the
load. In the other LISPs, one is actually reloading memory with the exact contents it had at the time of the exit. This, again, is done through CP/M or CDOS and cannot be done from LISP.

On the other hand, (T.L.C)) LISP and Cromemco LISP both have an auto-load feature not available in muLISP. This feature, while complicated to use, allows the programmer to store functions on disk as part of a large virtual memory. Functions can be stored and loaded only if actually needed (called). After the execution of the function, the system can reclaim the space it occupied (NOKEEP or SMASH), or the function can remain resident (KEEP or NOSMASH) after its first access.

Program-controlled I/O in all three LISPs is surprisingly easy, partly because the LISP language allows the programmer to treat programs as data. Still, "CP/M-compatible" disk I/O is generally a messy subject at best, and all three of these LISPs do an exceptional job of hiding the gory details from the programmer.

\section*{Space Management}

Since data structures in LISP are dynamic (ie: their size changes during program execution), it is generally a good idea to have dynamic reallocation of memory space in a LISP system. This means that there is no a priori limit on the number of variables, functions, or strings. Rather, as more space is needed for one kind of object, it is found at the expense of space available for other kinds of objects.

Cromemco and (T.(L.C)) LISP accomplish dynamic allocation by a technique in which memory is broken into 256 pages of 256 bytes each. Any of these pages can, in theory, be used for storage of any data type. But the entire page is always used for the same type of object. This scheme has two major advantages. First, it simplifies type checking. The high byte of any object's address defines the type of that object as well as identifying its location. The page-byte-totype correspondence is kept in a table in memory. This table allows for the second advantage. If more space for a
ADA \({ }^{\prime \prime}\) A NEW BEGINNING

ADA/M - Compiles ADA program for Host system execution.
Excellent for learning ADA and converting existing programs. Includes ADA Compiler and Compiler ADA Programming Support Environment (CAPSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 495\).
ADA/C - Compiler and Kernal APSE (KAPSE) for CP/M@ . . . . . . . . . . . \(\$ 995\)
ADA Programmers Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$25.
ADA Syntax Reference Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$6.
Specify exact configuration and operating system. Courses are available for compiler customers to learn the most powerful and complex software language, ADA.
Credit for purchase of ADA/M will be given toward purchase of larger ALS. Royalty will be paid to customers who convert existing programs into ADA for inclusion in the ALS, ADA Language System library.
DIGITAL ELECTRONIC SYSTEMS, INC. Box 5252, Torrance, California 90510 213/539-6239

given type of object is needed, a page of memory is allocated by simply changing the entry in the table for an unused page. If, on the other hand, an allocated page is made free (by the garbage-collection process), a change to the table allows this space to be claimed by another data type.

Unfortunately, the stack, which is used for both variables and control information, must use a contiguous area of memory if it is to be fast. This means that when the stack is full the system cannot allocate an arbitrary
free page of memory to the stack. A solution to this would be to move other data around to free up a page adjacent to the stack. But, with the pointer conventions discussed above, this would be a very messy and timeconsuming job. Therefore, Cromemco and (T.(L.C)) LISP use a fixed-size stack. This decision poses a real problem because recursive-style and iterative-style programming make very different demands on the size of the stack. In fact, curiously, the stack size is fixed regardless of the total memory size of the system.

\section*{Collector Edition BYTE CDVERS}

The Byte covers shown below are available as beautiful Collector Edition Prints. Each full color print is \(11^{\prime \prime} \times 14^{\prime \prime}\) including a \(1 \% / 2^{\prime \prime}\) border, and is part of an edition striclly limited to 500 prints. (Print numbers 2, 4, 6. 7 and 8 are editions of only 100 prints, and some quantities are very low.) The aptist Robert Tinney has personally inspected signed and numbered each print. A Certificate of Authenticity accompanies each print guaranteeing its quality and limiled number

Collector Edition Prints are carefully packaged llat to avoid bending. and are shipped flist class. The price of each print is \(\$ 20\). plus \(\$ 3\) per shipment for postage and handling (\$6 overseas). Collector Prints 9.12 are available as a sel of 4 for \(\$ 70\). Because cerlain prints have sold out. Sets 1.4 and Sets \(5-8\) are no longer available as sets.

To order your own beautifut Collector Edition Byle Cover use the convenient coupon below Visa or MasterCard orders may call Toll Free.

muLISP uses a truly dynamic scheme. At any time, all data types are competing for memory. As demands for one type increase, the other spaces shrink. Because this includes the stack, space is better used in this system. The cost of this feature is, of course, time. The user must wait for data areas to be moved around during program execution. However, we found the time penalty to be minimal.

\section*{Linking}
muLISP and Cromemco LISP both support user-defined assemblylanguage functions. The current version of (T.(L.C)) LISP apparently does not. Assembly-language routines allow the user to extend his or her LISP system in various ways. Special functions can be made to run significantly faster, or functions can be written to take advantage of special hardware such as a color graphics screen.

The Cromemco LISP system gives the user extensive, if obtuse, documentation and several support programs to allow the user to build assembly-language routines that are linked into the LISP system. Once a linked system is created, it can be saved as an internal image file and then used as the regular LISP system.

The muLISP solution is less ambitious but still workable. muLISP allows up to four assembly-language routines to be incorporated into the system. The routines must be called by jump instructions located in fixed addresses in memory, and the bodies of the routines must exist in locations "invisible" to LISP-that is, above the operating system. Since the routines are not in the LISP area, saving an internal image file of muSTAR will not allow the user to reload the linked system. Rather, the system must be regenerated each time it is used. This could be done in a straightforward way using a CP/M command file.

\section*{User Environment}
muLISP exhibits an approach to the environment presented by the LISP system that differs from the
other two LISPs. One example of this is the idea of having a separate development environment as well as an execution environment. A development environment supports editing and debugging of functions (programs) in an interactive setting. While development and testing can be done in muLISP's execution system, there are no facilities to make this easy. Another example of the difference is the related stance on error handling, which is discussed below.

The development subsystem, muSTAR, is an internal image file which is delivered with the muLISP system. (It is an application program written in LISP.) muSTAR is a menubased program that allows for the user to pick any of the following options:

\section*{- Edit Function}
- Edit Variable
- Edit Property
- Eval LISP
- Eval-Quote LISP
- Trace Function
- Untrace Function
- Read File
- Write File
- Select Drive

Menu-based systems are generally designed to be used with video terminals. This one is no exception: it is a joy on the screen of a 9600 bps terminal and very frustrating on a 300 bps DECwriter.

The editor that comes with muSTAR is a flexible screen editor intended to be adaptable to any type of video terminal. Unfortunately, the "interrupt execution" character, Escape, is used by some terminals for cursor control. Since Escape is detected at a very low level in the system, there is no way to tailor the screen editor to use these terminals. Unlike some LISP "structure" editors that use atoms and expressions as the units to be modified, the muSTER editor is a conventional characteroriented screen editor; however, it is convenient and easy to use. When functions are being edited, the text is pretty-printed to make it easier to read and edit.
The Trace and Untrace facilities
allow the user to specify to the muSTER system that when a given function is called the system should print its arguments before the execution of the function and the result afterward. This is the single most inportant tool for the user in the process of debugging and developing programs.

Read and Write are for text files and assume a CP/M file extension of ".LIB". The files can be created either by muSTER or by an external editor. Read works in the obvious way. Write, however, writes out only func-
tins and variables whose names appear on the property list of the atom that is the name of the file. While this can be done using the Edit Property function of muSTER, it is easy to forget to add new function names during a session and thus lose your work when you exit the muSTER system.
The error-handling facility in muLISP is virtually nonexistent. The three "advisory" messages: ZERO DIVIDE ERROR, END-OF-FILE READ, and NO DISK SPACE are printed at the console, and the
\[
\begin{aligned}
& \text { - Upgrade for Whitesters } \\
& \text { cross-compiler useratic }
\end{aligned}
\] - Allows full 8 -bit operations without promotion - Assembler/code generator expanded to
take full advantage optimizer
\[
\begin{aligned}
& \text { - Asst full ad peephole optimize } \\
& \text {-post-pass peep over } \\
& \text { - } 15-35 \% \text { code space reduction over } \\
& \text { Whitesmith }
\end{aligned}
\]
- Many other features
\[
\begin{aligned}
& \text { suite } 205 \\
& \text { Ave. N., } 542.7611
\end{aligned}
\]
offending primitive function is forced to return NIL. Execution of the rest of the user function proceeds, according to the manual, "normally." The only error that causes termination of execution is INSUFFICIENT MEMORY SPACE. When execution stops, as when the Escape key is typed, the user has four options. He or she can continue execution, go back to the top-level driver, restart muLISP, or go back to the CP/M system. Unfortunately, the user cannot examine the functions or arguments that caused the problem.

Because of the auto-quoting and implicit-sequence-evaluation features of the system, there are no other errors that can occur during program execution. In fact, since evaluation of any syntactically legal expression is defined, and the input routines for the driver loop ensure that only legal expressions are read in, the user cannot cause any error other than the ones listed above.

Although this may be an elegant concept, it makes debugging awkward at best and virtually impossible at worst except for the Trace
SAVE BIG BUCKS

\section*{Model II 64K \$3395}


\section*{IDS PAPER TIGERS}

Dot Resolution Graphics quality print
IDS 445G 7 wire printhead, graphics \(\ldots .\). (List \(\$ 985\) ) \(\ldots . . \$ 795.00\)
IDS 460G 9 wire printhead, graphics \(\ldots .\). (List 1094 )..... 886.00
IDS 560G 9 wire, wide carriage, graphics...(List 1394 ) \(\ldots \ldots .1129 .00\)

\section*{Model I}
\begin{tabular}{|c|c|}
\hline 26-1140 Expansion Interface ..... \$249.00 & 26-1167 91/2 Line Printer VII .... \$ 360.00 \\
\hline 26-1141 16K Exp. Interface . . . . . . . 359.00 & 26-1166 Line Printer VI .......... 1080.00 \\
\hline 26-1142 32K Exp. Interface ........ 469.00 & 26-1158 Daisy Wheel II ........... 1798.00 \\
\hline 26-1145 RS 232C Board ............ 84.00 & 26-1165 Line Printer V ........... 1710.00 \\
\hline 26-1160/1 Mini Disk Drive ........ 419.00 & 26-1401 Cable ........................ 36.00 \\
\hline 26-1563 Scripsit-Disk .............. 79.00 & \\
\hline 26-1566 Visicalc .................... 83.00 & \\
\hline
\end{tabular}

Color Computer 4K \$353
26.3001 4K ................................................................... \(\$ 353.00\)
26.3002 16K Ext. Basic ................................................ . . . 533.00
26.3009 Joysticks ............................................................ 22.50

26-3010 Color Video . . . . . . . . . . . . . . ..................................... . . . 353.00
26-1206 Recorder . ......................................................... . . . 54.00
All prices are subject to change without notice. Freight, handling, and insurance charges are extra. Most items are shipped United Parcel Service. Model II and other hardware weighting over 50 lbs. is shipped freight collect by truck. Certified Check for immediate shipment from stock. Master Charge, Visa or Bank Card add 3\% surcharge.

\section*{Vern Street Products 114 West Taft Sapulpa, 0k 74066}

The Computer Store, Inc. 4949 South Peoria Tulsa, Ok 74105 918-747-9333
option available in muSTAR. Since this is not available in the core muLISP system, you would always do development in muSTAR.

Cromemco LISP and (T.(L.C)) LISP take a more traditional attitude to the user environment and error handling. Errors are flagged in many situations. In particular, the errors UNDEFINED VARIABLE and WRONG NUMBER OF ARGUMENTS, as well as data-type violations, are checked for during program evaluation. The characters G, Control-G, and Bell act like the Escape key in muLISP to end execution of user functions. In addition, the function ERROR can be called by a function at any time.

Once an error occurs, evaluation stops, a message is printed, and the user has several options. He or she can examine the function or arguments that caused the error, trace the execution stack back through all the nested calls, or "pop" up the stack (to the top or any intermediate place) giving a return value for the function that was called at that level. Although these functions are a good idea, they are poorly explained in the manual.

\section*{Documentation, Library Software}

We were very pleased with the quality of the documentation for all three LISPs. Because Cromemco and (T.(L.C)) LISP are just different versions of the same program, the two user's manuals are almost identical. These manuals begin with a long discussion of LISP style and philosophy and include a discussion of how to code a recursive descent parser in LISP. This background information is quite good and will be a great help to a beginner. Most of the function descriptions include an illustrative example. The Cromemco LISP manual adds a section on the internal representation of data structures and gives information needed to link to assembly-language subroutines. The (T.(L.C)) LISP manual includes some annotated LISP examples adapted from Ar tificial Intelligence Programming (see the "Where to Learn LISP" text box for a description of this book and
other useful LISP information). These examples are prefaced by a discussion of the differences between (T.(L.C)) LISP and the LISP used in Artificial Intelligence Programming. We found this discussion quite useful. Both manuals are about 135 pages long.

The muLISP manual, which is about 100 pages long, is shorter and terser, but of high quality. This manual gives a limited amount of background information. The function descriptions are in a formal metalanguage that is complete but often obscure. These descriptions would be much clearer if they included examples. The manual includes commented listings of many useful utilities and the muSTAR development environment, and they will be quite useful for users who wish to tailor their LISP environment. In particular, there are instructions for tailoring the muLISP screen editor to different kinds of terminals.

Cromemco LISP is distributed with a fairly complete set of Cromemco software, including the CDOS operating system, several CDOS utilities, and a screen editor. Unfortunately, the screen editor can only be used with a Cromemco terminal. This is downright unfriendly of Cromemco, particularly since it is trivial to provide the "hooks" to do screen editing with almost any modern terminal. Also provided are files with LISP utilities, a trace function, a pretty-printer program, examples from Artificial Intelligence Programming, and examples of the more esoteric features of Cromemco LISP.
(T.(L.C)) LISP is distributed with the same example and utility files as Cromemco LISP. Also included are several additional files of examples.
muLISP is distributed with the muSTAR utility and the other utilities described in the manual. Also included are several games and programs, including a version of Weizenbaum's ELIZA, called DOCTOR, and a guessing game which learns, called ANIMAL.
muLISP has the beginnings of an active user group and software library. Information about the user
group and the software is published in a small newsletter available to muLISP purchasers. (T.(L.C)) LISP purchasers also receive a newsletter, though it is less formal and less regular. As of now, there is no (T.(L.C)) LISP users' group.

\section*{Conclusions}
- Cromemco and (T.(L.C)) LISP have many modern features, yet they still run acceptably fast. The auto-load feature potentially allows very large programs to run in a virtual-memory environment. The documentation is
quite good and would be useful for LISP beginners. Cromemco LISP also includes information that would be useful to someone adding his or her own machine-language subroutines. A major drawback of these LISPs is a small, fixed-sized stack that severely limits the use of recursive functions. (T.(L.C)) LISP is the cheapest of the LISPs reviewed here- \(\$ 150\). Cromemco LISP, with only a small amount of additional functionality, is the most expensive- \(\$ 295\).
- muLISP is an extremely fast LISP with a complete but basic set of
\(\square\)


In previous issues, we listed more than 50 reasons why PMMI MM- 103 modems are superior, along with a list of satisfied users that is now too long to print. Quality, integrity and low cost have made the MM-103 America's most popular modem. PMMI was the first to gain FCC approval and meet IEEE-696 \$-100 standards. You won't find another modem for the S-100 bus with a wider range of Baud rates, more extensive and controllable software and such an unbeatable warranty. And since PMMI has eliminated the need for an acoustic coupler or an RS 232 adapter, your connection is more reliable and you buy no unnecessary hardware.

\section*{SO DON'T DELAY!} GO WITH THE MODEM WITH EXPERIENCE!

features. It is distributed with muSTAR, a nice LISP development environment that includes a screen editor. The documentation is good, but it is too terse and formal for beginners. Much of the speed of muLISP comes from features that make programs hard to read and hard to debug. In particular, muLISP does almost no type checking or error detection.
- LISP is alive and well and living in a Z80 microprocessor. Although there are great differences between muLISP and the other two packages, we feel that all three are successful products. Each would allow a user to develop and use fairly large LISP programs.

\section*{Acknowledgments}

The benchmark tests were performed on a system purchased and supported by Army Research Office grant DAAG29-79-G-0046. We would like to thank E Jeffrey Conklin and Caxton C Foster

\section*{Where to learn LISP: Recommended Books and Articles}
1.Allen, J. Anatomy of LISP. New York: McGraw-Hill Book Co, 1978. An examination of many issues in computer science through LISP-tinted spectacles. This is also the only published discussion of many modern LISP implementation techniques and styles.
2.Allen, J. "An Overview of LISP" in BYTE, August 1979, page 10. A compact overview to LISP style and usage. All the important LISP functions are discussed. The most difficult aspect of learning LISP is understanding exactly when and how values get bound to names. These issues are not discussed. 3.Charniak, Eugene, Christopher Riesback, and Drew McDermott. Artificial Intelligence Programming. Hillsdale NJ: Lawrence Erlbaum Associates, 1979. A very complete introduction to sophisticated uses of LISP for AI programming. The first few chapters do a good job of explaining the name-value-binding issues.
4.Friedman, Daniel. The Little LISPer. London, England: Science Research Associates Inc, 1974. An entertaining introduction to the style of LISP programming. This book does not cover everything you need to know to use LISP on a real machine. It, again, avoids key issues of how and when LISP names get values.
5.McCarthy, John. "Recursive Functions of Symbolic Expressions and Their Computation by Machine," Communications of the Association for Computing Machinery, pages 184 through 195, April 1960. This is where it all started, the article that suggested that the mathematical lambda calculus could be embodied in a programming language.
6. Winston, Patrick Henry. Artificial Intelligence. Reading MA: AddisonWesley, 1977. An easily understood introduction to AI and AI programming. 7.Winston, Patrick Henry and Berthold Klaus Horn. LISP. Reading MA: Addison-Wesley, 1981. A pleasant, chatty introduction to LISP.

\section*{SciTronics introduces}

\section*{REAL TIME CLOCKS}

\section*{with full Clock/Calendar Functions}

\section*{The Worry-free Clocks for People Who Don't Have Time to Worry!!}

\section*{What makes them worry-free?}
- Crystal controlled for high (.002\%) accuracy
- Lithium battery backup for continuous clock operation ( 6000 hrs !!!)
- Complete software in BASICincluding programs to Set and Read clock
- Clock generates interrupts (seconds, minutes, hour) for foreground/background operation

\section*{Applications:}
- Logging Computer on time
- Timing of events
- Use it with the SciTronics Remote Controller for Real Time control of A.C. operated lights and appliances


Versions available for:
- S-100 bus computers RTC-100 \$159
- Apple II computer RTC.A \(\$ 129\)
- SciTronics RC-80 RC-80CK \(\$ 109\) owners

\section*{Send SciTronics Inc.}

Check or 523 S. Clewell St., P.O. Box 5344 money
order to: Bethlehem, PA 18015
(215) \(868-7220\)

Please list system with which you plan to use controller • Master Charge and Visa accepted. COD's accepted. PA residence add sales tax.

\section*{BYTE's Bits}

\section*{MIcrosoft Drops APL Interpreter}

Microsoft has dropped work on an APL interpreter. The demand of other projects has caused the company to stop work on the interpreter for 8 -bit microcomputers. The company still plans to develop a 16-bit version.

\section*{BYTE's Bugs}

\section*{Price Mis-Steak}

In the April 1981 "Software Received," the price of the "Beef Cattle Least-Cost Ration Program" was incorrectly listed. The correct price is \(\$ 495\). A demonstration tape of the program is available for \(\$ 5\).

For information on the program, contact Agricultural Software Consultants, 1706 Santa Fe, Kingsville TX 78363 (512) 595-1937.

\section*{Do more with your Commodore. Plug in the printer that business professionals prefer.}

Discover the quality difference and move up to Mannesmann Tally printing. The high speed 8024 serial printer comes ready to plug into and work with your Commodore system. No fussing with convertors or adapter boxes.
Here's what you get. Print speeds up to 200 lines per minute. Full 132 column printing. Conforms with Commodore specified program functions for full software compatibility. Whisper quiet operation. Clean, crisp and pleasing print quality that's always consistent copy to copy. Rugged, industrial strength construction. A print head that promises years of usage before replacement. A machine you can drive as hard as you want, yet it never requires preventive maintenance. Never needs periodic adjustments.
There's more. An easy to change, snap-in ribbon cartridge. Dual tractor paper engagement for positive alignment. A built-in self-test routine. Double wide printing on demand. A nine-needle print head model for true descenders on lower case characters. An optional Quick-Tear kit for forms removal immediately after printing. See this machine for yourself.
Ask for the Model 8024 at your nearest Commodore dealer or contact us.
Mannesmann Tally, 8301 S. 180th St. Kent, WA 98031. Phone: (206) 251-5524.

\section*{MANNESMANN TALLY}

\title{
The Emperor's Old Clothes
}

The 1980 ACM Turing Award was presented to Charles Antony Richard Hoare, Professor of Computation at Oxford University, England, by Walter Carlson, chairman of the awards committee. The presentation took place at the \(A C M\) Annual Conference in Nashville, Tennessee, October 27, 1980.

Professor Hoare was selected by the General Technical Achievement Award Committee for his fundamental contributions to the definition and design of programming languages. His work is characterized by an unusual combination of insight, originality, elegance, and impact. He is best known for his work on axiomatic definitions of programming languages through the use of techniques popularly referred to as axiomatic semantics. He developed ingenious algorithms such as Quicksort and was responsible for inventing and promulgating advanced datastructuring techniques in scientific programming languages. He has also made important contributions to opeprating systems through the study of monitors, and his most recent work is on communicating sequential processes.

Before his appointment to Oxford in 1977, Professor Hoare was Professor of Computer Science at The Queen's University in Belfast, Ireland, from 1968 to 1977, and was a Visiting Professor at Stanford University in 1973. From 1960 to 1968 he

\footnotetext{
Acknowledgments
BYTE wishes to thank Professor CAR Hoare and the Association for Computing Machinery for granting us permission to reprint this article, which originally appeared in the February 1981 Communications of the ACM. Copyright 1981 by the Association for Computing Machinery, Inc. Reprinted by permission.
}


Professor Charles Antony Richard Hoare
held a number of positions with Elliot Brothers Ltd, England.

Professor Hoare has published extensively and is on the editorial boards of a number of the world's foremost computer science journals. In 1973 he received the ACM Programming Systems and Languages Paper Award. Professor Hoare became a Distinguished Fellow of the British Computer Society in 1978 and was awarded the degree of Doctor of Science Honoris Causa by the University of Southern California in 1979.

The Turing Award is the Association for Computing Machinery's highest award for technical contributions to the computing community. It is presented each year in memory of \(\operatorname{Dr}\) A M Turing, an English mathematician who made many important contributions to the computing sciences.

A transcript of Professor Hoare's 1980 Turing Award Lecture follows.

My first and most pleasant duty in this lecture is to express my profound gratitude to the Association for Computing Machinery for the great honor which they have bestowed on me and for this opportunity to address you on a topic of my choice. What a difficult choice it is! My scientific achievements, so amply recognized by this award, have already been amply described in the scientific literature. Instead of repeating the abstruse technicalities of my trade, I would like to talk informally about myself, my personal experiences, my hopes and fears, my modest successes, and my rather less modest failures. I have learned more from my failures than can ever be revealed in the cold print of a scientific article, and now I would like you to learn from them, too. Besides, failures are much more fun to hear about afterwards; they are not so funny at the time.
I start my story in August 1960, when I became a programmer with a small computer manufacturer, a division of Elliott Brothers (London) Ltd, where in the next eight years I was to receive my primary education in computer science. My first task was to implement for the new Elliot 803 computer a library subroutine for a new fast method of internal sorting just invented by Shell. I greatly enjoyed the challenge of maximizing efficiency in the simple decimal-ad-
dressed machine code of those days. My boss and tutor, Pat Shackleton, was very pleased with my completed program. I then said timidly that I thought I had invented a sorting method that would usually run faster than SHELLSORT, without taking much extra store. He bet me sixpence that I had not. Although my method was very difficult to explain, he finally agreed that I had won my bet.
I wrote several other tightly coded library subroutines, but after six months I was given a much more important task-that of designing a new advanced high-level programming language for the company's next computer, the Elliott 503, which was to
have the same instruction code as the existing 803 but run sixty times faster. In spite of my education in classical languages, this was a task for which I was even less qualified than those who undertake it today. By great good fortune there came into my hands a copy of the Report on the International Algorithmic Language ALGOL 60. Of course, this language was obviously too complicated for our customers. How could they ever understand all those begins and ends when even our salesmen couldn't?

Around Easter 1961, a course on ALGOL 60 was offered in Brighton, England, with Peter Naur, Edsger W Dijkstra, and Peter Landin as tutors. I
attended this course with my colleague in the language project, Jill Pym, our divisional Technical Manager, Roger Cook, and our Sales Manager, Paul King. It was there that I first learned about recursive procedures and saw how to program the sorting method which I had earlier found such difficulty in explaining. It was there that I wrote the procedure, immodestly named Quicksort, on which my career as a computer scientist is founded. Due credit must be paid to the genius of the designers of ALGOL 60 who included recursion in their language and enabled me to describe my invention so elegantly to the world. I have regarded it as the

THE FORMULA \({ }^{\text {TM }}\) allows the computer professional to focus on the most important part of business: the needs of the client. Customized systems for any business application can be created in a fraction of the time required by conventional methods.
- Interactive data entry, file updating, and maintenance routines are automatically generated from a definition of the fields.
- Reports can be created through a unique full screen editor simply by typing a sample format.
- Menus and job streams are defined through a preprogrammed parameter-driven procedure.
- Fast response time is insured because each routine can be interpreted directly by the computer and data management is controlled by an efficient ISAM algorithm.

THE FORMULA \({ }^{\text {TM }}\) is a complete system language which brings the process of developing applications closer to the user's description of his needs. That's THE FORMULA \({ }^{\text {TM }}\) for success.

Disk and manual, \(\$ 595\). Manual only, \(\$ 60\).
THE FORMULA \({ }^{\text {TM }}\) will run on any 8080 or \(Z 80\) computer with CP/M,* 48K RAM, 300K total disk storage, and a CRT.

\author{
DMA - WE SPEAK YOUR LANGUAGE.
}
highest goal of programming language design to enable good ideas to be elegantly expressed.
After the ALGOL course in Brighton, Roger Cook was driving me and my colleagues back to London when he suddenly asked, "Instead of designing a new language, why don't we just implement ALGOL \(607^{\prime \prime}\) We all instantly agreed-in retrospect, a very lucky decision for me. But we knew we did not have the skill, or experience at that time to implement the whole language, so I was commissioned to design a modest subset. In that design I adopted certain basic principles which I believe to
be as valid today as they were then.

\section*{Principles of Design}

The first principle was security, the principle that every syntactically incorrect program should be rejected by the compiler and that every syntactically correct program should give a result or an error message that was predictable and comprehensible in terms of the source language program itself. Thus no core dumps should ever be necessary. It was logically impossible for any source language program to cause the computer to run wild, either at compile time or at run time. A consequence of this principle

is that every occurrence of every subscript of every subscripted variable was on every occasion checked at run time against both the upper and the lower declared bounds of the array. Many years later we asked our customers whether they wished us to provide an option to switch off these checks in the interests of efficiency on production runs. Unanimously, they urged us not to-they already knew how frequently subscript errors occur on production runs where failure to detect them could be disastrous. I note with fear and horror that even in 1980, language designers and users have not learned this lesson. In any respectable branch of engineering, failure to observe such elementary precautions would have long been against the law.

The second principle in the design of the implementation was brevity of the object code produced by the compiler and compactness of run time working data. There was a clear reason for this: the size of main storage on any computer is limited, and its extension involves delay and expense. A program exceeding the limit, even by one word, is impossible to run, especially since many of our customers did not intend to purchase backing stores.

This principle of compactness of object code is even more valid today, when processors are trivially cheap in comparison with the amounts of main store they can address, and backing stores are comparatively even more expensive and slower by many orders of magnitude. If as a result of care taken in implementation the available hardware remains more powerful than may seem necessary for a particular application, the applications programmer can nearly always take advantage of the extra capacity to increase the quality of his program, its simplicity, its ruggedness, and its reliability.

The third principle of our design was that the entry and exit conventions for procedures and functions should be as compact and efficient as for tightly coded machine-code subroutines. I reasoned that procedures are one of the most powerful features of a high-level language, in that they
both simplify the programming task and shorten the object code. Thus there must be no impediment to their frequent use.

The fourth principle was that the compiler should use only a single pass. The compiler was structured as a collection of mutually recursive procedures, each capable of analyzing and translating a major syntactic unit of the language-a statement, an expression, a declaration, and so on. It was designed and documented in ALGOL 60, and then coded into decimal machine code using an explicit stack for recursion. Without the ALGOL 60 concept of recursion, at that time highly controversial, we could not have written this compiler at all.

I can still recommend single-pass, top-down recursive descent both as an implementation method and as a design principle for a programming language. First, we certainly want programs to be read by people, and people prefer to read things once in a single pass. Second, for the user of a time-sharing or personal computer system, the interval between typing in a program (or amendment) and starting to run that program is wholly unproductive. It can be minimized by the high speed of a single-pass compiler. Finally, to structure a compiler according to the syntax of its input language makes a great contribution to ensuring its correctness. Unless we have absolute confidence in this, we can never have confidence in the results of any of our programs.

\section*{Principles at Work}

To observe these four principles, I selected a rather small subset of ALGOL 60. As the design and implementation progressed, I gradually discovered methods of relaxing the restrictions without compromising any of the principles. So in the end we were able to implement nearly the full power of the whole language, including even recursion, although several features were removed and others were restricted.

In the middle of 1963, primarily as a result of the work of Jill Pym and Jeff Hillmore, the first version of our compiler was delivered. After a few
months we began to wonder whether anyone was using the language or taking any notice of our occasional reissue, incorporating improved operating methods. Only when a customer had a complaint did he contact us, and many of them had no complaints. Our customers have now moved on to more modern computers and more fashionable languages, but many have told me of their fond memories of the Elliott ALGOL System. The fondness is not due just to nostalgia, but to the efficiency, reliability, and convenience of that early simple ALGOL System.
As a result of this work on ALGOL, in August 1962 I was invited to serve on the new Working Group 2.1 of the International Federation of Information Processors (IFIP) charged with responsibility for maintenance and development of ALGOL. The group's first main task was to design a subset of the language which would remove some of its less successful features. Even in those days and even with such a simple language, we recognized that a subset could be an improvement on the original. I greatly welcomed the chance of meeting and hearing the wisdom of many of the original language designers. I was astonished and dismayed at the heat and even rancor of their discussions. Apparently the original design of ALGOL 60 had not proceeded in that spirit of dispassionate search for truth which the quality of the language had led me to suppose.

In order to provide relief from the tedious and argumentative task of designing a subset, the working group allocated one afternoon to discussing the features that should be incorporated in the next design of the language. Each member was invited to suggest the improvement he considered most important. On October 11, 1963, my suggestion was to pass on a request of our customers to relax the ALGOL 60 rule of compulsory declaration of variable names and adopt some reasonable default convention such as that of FORTRAN. I was astonished by the polite but firm rejection of this seemingly innocent suggestion. It was pointed out that the redundancy of ALGOL 60 was the

\section*{WHAT'S BEITER THAN AN ISAM}

And Will Turn
MICROSOFTS
BASIC
COBOL
FORTRAN
DIGITAL'S
PL/I-80
CBASIC
PASCAL/MT+ S-BASIC CROMEMCO 16K BASIC into first class appilication languages?

\section*{MICRO B+ \({ }^{\text {Tw }}\)}

The first and most complete implementation of B-TREE index structures for microcomputers. B-TREES eliminate index file reorganization.

\section*{Search}

An index of over

> 10,000 Key Values In Less Than One Second

\author{
On A Floppy Disk System
} for only
\$260.00!
System Houses:
MICRO B+'"
Available in Language \(C\)
FAIR COM
Shipping \$4 USA / \$8 Foreign We accept VISA and MASTERCARD

Pufl-80 is a trademark of Digital Research CBASiC is a trodemak a Compiler Systems. ine SBASIC is a lrodemank of lodoz Frogramming PASCAL/MT I is a frodemork of MT Micro Syslems
best protection against programming and coding errors which could be extremely expensive to detect in a running program and even more expensive not to. The story of the Mariner space rocket to Venus, lost because of the lack of compulsory declarations in FORTRAN, was not to be published until later. I was eventually persuaded of the need to design programming notations so as to maximize the number of errors which cannot be made, or if made, can be reliably detected at compile time. Perhaps this would make the text of
programs longer. Never mindl Wouldn't you be delighted if your Fairy Godmother offered to wave her wand over your program to remove all its errors and only made the condition that you should write out and key in your whole program three times? The way to shorten programs is to use procedures, not to omit vital declarative information.
Among the other proposals for the development of a new ALGOL was that the Switch declaration of ALGOL 60 should be replaced by a more general feature, namely an ar-

\title{
BOOKKEEPING MADE SIMPLE
}


The Menu

\section*{THE \\ BOOKKEEPER SYSTEM \({ }^{\text {TM }}\)}

Dealer Inquiries Welcome

(615) 452-1027
- A Combined General Ledger, Accounts Payable, Accounts Receivable, and Payroll
- Expandable to Include Inventory, Order Entry, Certified Payroll, or Mail List
- Complete Easy-To-Follow Manual and Instructions
- For Microcomputers using CP/M. OASIS or TRSDOS Operating System
-64 K Minimum, Hard Disk Compatible
- Demonstration Disk Available

CP/M, OASIS and TRSDOS are TM's of Digitol Research, Phose One Systems and Tandy Corp., respectivelv.

179 West Smith Street, Gallatin, TN 37066

We're Writing Programs For People
ray of label-valued variables, and that a program should be able to change the values of these variables by assignment. I was very much opposed to this idea, similar to the assigned Go To of FORTRAN, because I had found a surprising number of tricky problems in the implementation of even the simple labels and switches of ALGOL 60. I could see even more problems in the new feature, including that of jumping back into a block after it had been exited. I was also beginning to suspect that programs that used a lot of labels were more difficult to understand and get correct, and that programs that assigned new values to label variables would be even more difficult still.

It occurred to me that the appropriate notation to replace the ALGOL 60 switch should be based on that of the conditional expression of ALGOL 60 , which selects between two alternative actions according to the value of a Boolean expression. So I suggested the notation for a "case expression" which selects between any number of alternatives according to the value of an integer expression. That was my second language design proposal. I am still most proud of it, because it raises essentially no problems either for the implementer, the programmer, or the reader of a program. Now, after more than fifteen years, there is the prospect of international standardization of a language incorporating this notation-a remarkably short interval compared with other branches of engineering.

Back again to my work at Elliott. After the unexpected success of our ALGOL Compiler, our thoughts turned to a more ambitious project: to provide a range of operating system software for larger configurations of the 503 computer, with card readers, line printers, magnetic tapes, and even a core backing store which was twice as cheap and twice as large as the main store, but fifteen times slower. This was to be known as the Elliott 503 Mark II software system. It comprised;
1. An assembler for a symbolic assembly language in which all the rest of the software was to be written.
2. A scheme for automatic ad-
ministration of code and data overlays, either from magnetic tape or from core backing store. This was to be used by the rest of the software.
3. A scheme for automatic buffering of all input and output on any available peripheral device, again to be used by all the other software.
4. A filing system on magnetic tape with facilities for editing and job control.
5. A completely new implementation of ALGOL 60, which removed all the nonstandard restrictions which we had imposed on our first implementation.
6. A compiler for FORTRAN as it was then.

\section*{Deadline Pressures}

I wrote documents which described the relevant concepts and facilities, and we sent them to existing and prospective customers. Work started with a team of fifteen programmers, and the deadline for delivery was set some eighteen months ahead, in March 1965. After initiating the design of the Mark II software, I was suddenly promoted to the dizzying rank of Assistant Chief Engineer, responsible for advanced development and design of the company's products, both hardware and software.
Although I was still managerially responsible for the 503 Mark II software, I gave it less attention than the company's new products and almost failed to notice when the deadline for its delivery passed without event. The programmers revised their implementation schedules, and a new delivery date was set some three months ahead, in June 1965. Needless to say, that day also passed without event. By this time, our customers were getting angry and my managers instructed me to take personal charge of the project. I asked the senior programmers once again to draw up revised schedules, which again showed that the software could be delivered within another three months. I desperately wanted to believe it, but I just could not. I disregarded the schedules and began to dig more deeply into the project.

It turned out that we had failed to
make any overall plans for the allocation of our most limited resourcemain storage. Each programmer expected this to be done automatically, either by the symbolic assembler or by the automatic overlay scheme. Even worse, we had failed to simply count the space used by our own software which was already filling the main store of the computer, leaving no space for our customers to run their programs. Hardware address length limitations prohibited adding more main storage.

Clearly, the original specifications of the software could not be met and had to be drastically curtailed. Experienced programmers and even managers were called back from other projects. We decided to concentrate first on delivery of the new compiler for ALGOL 60, which careful calculation showed would take another four months. I impressed upon all the programmers involved that this was no longer just a prediction; it was a promise. If they found they were not meeting their promise, it was their personal responsibility to find ways and means of making good.

The programmers responded magnificently to the challenge. They worked nights and days to ensure completion of all those items of software which were needed by the ALGOL compiler. To our delight, they met the scheduled delivery date; it was the first major item of working software produced by the company over a period of two years.
Our delight was short-lived; the compiler could not be delivered. Its speed of compilation was only two characters per second, which compared unfavorably with the existing version of the compiler operating at about a thousand characters per second. We soon identified the cause of the problem: it was thrashing between the main store and the extension core backing store which was fifteen times slower. It was easy to make some simple improvements, and within a week we had doubled the speed of compilation to four characters per second. In the next two weeks of investigation and reprogramming, the speed was doubled
again to eight characters per second. We could see ways in which within a month this could be still further improved, but the amount of reprogramming required was increasing and its effectiveness was decreasing; there was an awful long way to go. The alternative of increasing the size of the main store so frequently adopted in later failures of this kind was prohibited by hardware addressing limitations.

There was no escape: the entire Elliott 503 Mark II software project had to be abandoned, and with it, over thirty man-years of programming effort, equivalent to nearly one man's active working life. And I was responsible, both as designer and as manager, for wasting it.

A meeting of all our 503 customers was called and Roger Cook, who was then manager of the computing division, explained to them that not a single word of the long-promised software would ever be delivered to them. He adopted a very quiet tone of delivery, which ensured that none of the customers could interrupt, murmur in the background, or even shuffle in their seats. I admired but could not share his calm. Over lunch our customers were kind to try to comfort me. They had realized long ago that software to the original specifications could never have been delivered, and even if it had been, they would not have known how to use its sophisticated features, and anyway many such large projects get cancelled before delivery. In retrospect, I believe our customers were fortunate that hardware limitations had protected them from the arbitrary excesses of our software designs. In the present day, users of microprocessors benefit from a similar protectionbut not for much longer.

At that time I was reading the early documents describing the concepts and features of the newly announced OS 360, and of a new time-sharing project called Multics. These were far more comprehensive, elaborate, and sophisticated than anything I had imagined, even in the first version of the 503 Mark II software. Clearly IBM and MIT must be possessed of some secret of successful software de-
sign and implementation whose nature I could not even begin to guess at. It was only later that they realized they could not either.

So I still could not see how I had brought such a great misfortune upon my company. At the time I was convinced that my managers were planning to dismiss me. But no, they were intending a far more severe punishment. "OK, Tony," they said. "You got us into this mess, and now you're going to get us out."
"I don't know how," I protested, but their reply was simple. "Well then, you'll have to find out." They even expressed confidence that I could do so. I did not share their confidence. I was tempted to resign. It was the luckiest of all my lucky escapes that I did not.

Of course, the company did everything they could to help me. They took away my responsibility for hardware design and reduced the size of my programming teams. Each of my managers explained carefully his own theory of what had gone wrong, and all the theories were different. At last, there breezed into my office the most senior manager of all, a general manager of our parent company, Andrew St. Johnston. I was surprised that he had even heard of me. "You know what went wrong?" he shouted (he always shouted). 'You let your programmers do things which you yourself do not understand." I stared in astonishment. He was obviously out of touch with present-day realities. How could one person ever understand the whole of a modern software product like the Elliott 503 Mark II software system?

I realized later that he was absolutely right; he had diagnosed the true cause of the problem and he had planted the seed of its later solution.

\section*{Defining the Problems}

I still had a team of some forty programmers. We needed to retain the goodwill of customers of our new machine and even regain the confidence of the customers for our old one. But what should we actually plan to do when we knew only one thing-that all our previous plans
had failed? I therefore called an allday meeting of our senior programmers on October 22, 1965, to thrash out the question among us. I still have the notes of that meeting. We first listed the recent major grievances of our customers: cancellation of products, failure to meet deadlines, excessive size of software "not justified by the usefulness of the facilities provided," excessively slow programs, failure to take account of customer feedback. "Earlier attention paid to quite minor requests of our customers might have paid as great dividends of goodwill as the success of our most ambitious plans," we concluded.

We then listed our own grievances: lack of machine time for program testing, unpredictability of machine time, lack of suitable peripheral equipment, unreliability of the hardware even when available, dispersion of programming staff, lack of equipment for keypunching of programs, lack of firm hardware delivery dates, lack of technical writing effort for documentation, lack of software knowledge outside the programming group, interference from higher managers who imposed decisions without a full realization of the more intricate implications of the matter, and overoptimism in the face of pressure from customers and the sales department.

But we did not seek to excuse our failure by these grievances. For example, we admitted that it was the duty of programmers to educate their managers and other departments of the company by presenting the necessary information in a simple palatable form. The hope "that deficiencies in original program specifications could be made up by the skill of a technical writing department...was misguided. The design of a program and the design of its specification must be undertaken in parallel by the same person, and they must interact with each other. A lack of clarity in specification is one of the surest signs of a deficiency in the program it describes, and the two faults must be removed simultaneously before the project is embarked upon." I wish I had followed this advice in 1963; I wish we all would follow it today.

My notes of the proceedings of that day in October 1965 include a complete section devoted to failings within the software group; this section rivals the most abject selfabasement of a revisionist official in the Chinese cultural revolution. Our main failure was overambition. "The goals which we have attempted have obviously proved to be far beyond our grasp." There was also failure in prediction, in estimation of program size and speed, of effort required, in planning the coordination and interaction of programs, in providing an early warning that things were going wrong. There were faults in our control of program changes, documentation, liaison with other departments, with our management, and with our customers. We failed in giving clear and stable definitions of the responsibilities of individual programmers and project leaders. Oh, need I go on? What was amazing was that a large team of highly intelligent programmers could labor so hard and so long on such an unpromising project. You know, you shouldn't trust us intelligent programmers. We can think up such good arguments for convincing ourselves and each other of the utterly absurd. Especially don't believe us when we promise to repeat an earlier success, only bigger and better next time.
The last section of our inquiry into the failure dealt with the criteria of quality of software. "In the recent struggle to deliver any software at all, the first casualty has been consideration of the quality of the software delivered. The quality of software is measured by a number of totally incompatible criteria, which must be carefully balanced in the design and implementation of every program." We then made a list of no less than seventeen criteria which has been published in a guest editorial in Volume 2 of the journal Software Practice and Experience.

\section*{Recovery Period}

How did we recover from the catastrophe? First, we classified our 503 customers into groups, according to the nature and the size of the hard-
ware configurations which they had bought. For example, those with magnetic tapes were all in one group. We assigned to each group of customers a small team of programmers and told the team leader to visit the customers to find out what they wanted, to select the easiest request to fulfill, and to make plans (but not promises) to implement it. In no case would we consider a request for a feature that would take more than three months to implement and deliver. The project leader would then have to convince me that the customer's request was reasonable, that the design of the new feature was appropriate, and that the plans and schedules for implementation were realistic. Above all, I did not allow anything to be done which I did not myself understand. It worked! The software requested began to be delivered on the promised dates. With an increase in our confidence and that of our customers, we were able to undertake fulfilling slightly more ambitious requests. Within a year, we had recovered from the disaster. Within two years, we even had some moderately satisfied customers.
Thus we muddled through by common sense and compromise to something aproaching success. But I was not satisfied. I did not see why the design and implementation of an operating system should be so much more difficult than that of a compiler. This is the reason why I have devoted my later research to problems of parallel programming and language constructs which would assist in clear structuring of operating systemsconstructs such as monitors and communicating processes.

While I was working at Elliott, I became very interested in techniques for formal definition of programming languages. At that time, Peter Landin and Christopher Strachey proposed to define a programming language in a simple functional notation that specified the effect of each command on a mathematically defined abstract machine. I was not happy with this proposal because I felt that such a definition must incorporate a number of fairly arbitrary representation
decisions and would not be much simpler in principle than an implementation of the language for a real machine. As an alternative, I proposed that a programming language definition should be formalized as a set of axioms, describing the desired properties of programs written in the language. I felt that carefully formulated axioms would leave an implementation the necessary freedom to implement the language efficiently on different machines and enable the programmer to prove the correctness of his programs.

But I did not see how to actually do it. I thought that it would need lengthy research to develop and apply the necessary techniques, and that a university would be a better place to conduct such research than industry. So I applied for a chair in Computer Science at the Queen's University of Belfast, where I was to spend nine happy and productive years. In October 1968, as I unpacked my papers in my new home in Belfast, I came across an obscure reprint
of an article by Bob Floyd entitled, "Assigning Meanings to Programs." What a stroke of luck! At last I could see a way to achieve my hopes for my research. Thus I wrote my first paper on the axiomatic approach to computer programming, published in the Communications of the \(A C M\) in October 1969.
Just recently, I have discovered that an early advocate of the assertional method of program proving was none other than Alan Turing himself. On June 24, 1950, at a conference in Cambridge, he gave a short talk entitled, "Checking a Large Routine," which explains the idea with great clarity. "How can one check a large routine in the sense of making sure that it's right?" Turing asked. "In order that the man who checks may not have too difficult a task, the programmer should make a number of definite assertions which can be checked individually, and from which the correctness of the whole program easily follows."
Consider the analogy of checking

\section*{FINDING SOLUTIONS AND BEING COMPETITIVE IS OUR BUSINESS. \\ Having problems and looking for a computer to help solve them? Are you finding computer dealers come in one of two ways? Either Full system support with Full price or Take it or Leave it with Low price. At Omega we don't believe that you should have to make a choice. Yes, we're in business to sell products but also, to solve your problems. Our prices will be the \\  lowest possible. Our support and} product quality will be second to none. Check out our Mail Order prices in this ad (our retail prices will be higher). See if you don't agree with our first claim. for our second claim, call us with your data processing needs and problems. Better yet, come in and see us. Finding solutions and being competitive is our business. We never forget either of them.

an addition. If the sum is given as a column of figures with the answer below, one must check the whole at one sitting. But if the totals for the various columns are given with the carries added in separately, the checker's work is much easier, being split up into the checking of the various assertions (that each column is correctly added) and the small addition (of the carries to the total). This principle can be applied to the checking of a large routine, but we will illustrate the method by means of a small routine: one to obtain \(n\) factorial without the use of a multiplier. Unfortunately, there is no coding system sufficiently generally known to justify giving this routine in full, but a flow diagram will be sufficient for illustration. That brings me back to the main theme of my talk, the design of programming languages.

During the period August 1962 to October 1966, I attended every meeting of the IFIP ALGOL working group. After completing our labors on the IFIP ALGOL subset, we started on the design of ALGOL \(X\), the intended successor to ALGOL 60. More suggestions for new features were made and in May 1965, Niklaus Wirth was commissioned to collate them into a single language design. I was delighted by his draft design, which avoided all the known defects of ALGOL 60 and included several new features, all of which could be simply and efficiently implemented, and safely and conveniently used.
The description of the language was not yet complete. I worked hard
on making suggestions for its improvement, and so did many other members of our group. By the time of the next meeting in St. Pierre de Chartreuse, France, in October 1965, we had a draft of an excellent and realistic language design which was published in June 1966 as "A Contribution to the Development of ALGOL" in Communications of the \(A C M\). It was implemented on the IBM 360 and given the title ALGOL W by its many happy users. It was not only a worthy successor of ALGOL 60, it was even a worthy predecessor of Pascal.

At the same meeting, the ALGOL committee had placed before it a short, incomplete and rather incomprehensible document describing a different, more ambitious and, to me, a far less attractive language. I was astonished when the working group, consisting of all the best known international experts of programming languages, resolved to lay aside the commissioned draft on which we had all been working and swallow a line with such an unattractive bait.

\section*{Two Design Paths}

This happened just one week after our inquest on the 503 Mark II software project. I gave desperate warnings against the obscurity, the complexity, and overambition of the new design, but my warnings went unheeded. I conclude that there are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it
so complicated that there are no obvious deficiencies.
The first method is far more difficult. It demands the same skill, devotion, insight, and even inspiration as the discovery of the simple physical laws which underlie the complex phenomena of nature. It alsa requires a willingness to accept objectives which are limited by physical, logical, and technological constraints, and to accept a compromise when conflicting objectives cannot be met. No committee will ever do this until it is too late.

So it was with the ALGOL committee. Clearly the draft which it preferred was not yet perfect. So a new and final draft of the new ALGOL language design was promised in three months' time; it was to be submitted to the scrutiny of a subgroup of four members including myself. Three months came and went, without a word of the new draft. After six months, the subgroup met in the Netherlands. We had before us a longer and thicker document, full of errors corrected at the last minute, describing yet another but to me, equally unattractive language. Niklaus Wirth and I spent some time trying to get removed some of the deficiencies in the design and in the description, but in vain. The completed final draft of the language was promised for the next meeting of the full ALGOL committee in three months' time.

Three months came and went-not a word of the new draft appeared. After six months, in October 1966,

\footnotetext{
communications. Z80/Z8000
- Synchronous 10 800KB
- Asynchronous to 24 KB
- Serial RS. 232 or 20 Ma .
- IEEE 488 - 78 GPIB
- Disiflbuted Systems
- BISync -DEC net -X. 25

ANALOG I/O
- Low/HIgh Level AD
- X-Ducer Compensation
- 16 to 64 Channel MUX
- DillerentisuSIngle Ended
- Programmable Galn
- 12114 BIt Resolution
- VIdeo Digilizers
- Multiple DACs

DIGITAL I/O
- Optically Is olated - High Level AC or DC - Pulse Couni IIO - Programmable Timers - Programmable Timers - UNI.BUSIIEEE Drivers - Voice Synihesizers

\section*{LSI-11/PDP-11} SYSTEMS

\section*{f ASC Computers \\ }

Featuring a full range of industry standard 8 and 16 Bit Micro-Processors, Memories, I/O Controllers, Analog/Digital Modules and Peripheral Equipment. -ASC CUSTOM MICRO-COMPUTER SYSTEM CONFIGURATIONS. Expedited delivery on the latest technology in Micro-Computers, Disk Memories and Peripheral options, including Software and System Integration. ASC Micro-Computer Systems are offered with optional IEEE/S-100 Bus, INTEL MULTI-Bus, MOTOROLA EXOR-Bus, or STD-Bus compatible MicroProcessors, Memories, I/O Controllers, and Enclosures to your specifications.

Call ASC for prompt quotations on Micro-Computer configurations

\section*{20401 Harpor Ave.
St. Char Shores St. char Shory:
michigan 8001}

8085/8086/88 6800/09/68000
\(\square\) PERIPHERALS .
- Flexible Diske to 1 Mb
- Winchester Disks to 300 Mb
- Magnetic Tape Units
- Pinters/Terminals
- Videc Cameras
- Color Graphles
- CRT DIsplaya/Plotters

DSYSTEMS
- Modular Expandeblilly
- Industrlal Enclosures
- Rack-Mounting Cabinets
- IV Termination Panels
- Portable DAS Option - Control Console/Displays - Development Systems SOFTWARE
- CPIM Operating Systems - Multi-User Support - Fortran, Basic, Pascal - DAS . Process Languages - DAS Process Langus Language
- Notwork Communications - Graphics and Applications
}
the ALGOL working group met in Warsaw. It had before it an even longer and thicker document, full of errors corrected at the last minute, describing equally obscurely yet another different, and to me, equally unattractive language. The experts in the group could not see the defects of the design and they firmly resolved to adopt the draft, believing it would be completed in three months. In vain, I told them it would not. In vain, I urged them to remove some of the technical mistakes of the language, the predominance of references, the default type conversions. Far from wishing to simplify the language, the working group actually asked the authors to include even more complex features like overloading of operators and concurrency.
When any new language design project is nearing completion, there is always a mad rush to get new features added before standardization. The rush is mad indeed, because it leads into a trap from which there is no escape. A feature which is omitted can always be added later, when its design and its implications are well understood. A feature which is included before it is fully understood can never be removed later.
At last, in December 1968, in a mood of black depression, I attended the meeting in Munich at which our long-gestated monster was to come to birth and receive the name ALGOL 68. By this time, a number of other members of the group had become disillusioned, but too late: the committee was now packed with supporters of the language, which was sent up for promulgation by the higher committees of IFIP. The best we could do was to send with it a minority report, stating our considered view that "...as a tool for the reliable creation of sophisticated programs, the language is a failure." This report was later suppressed by IFIP, an act which reminds me of the lines of Hilaire Belloc:

But scientists, who ought to know Assure us that it must be so. Oh, let us never, never doubt What nobody is sure about.

I did not attend any further meetings of that working group. I am pleased to report that the group soon came to realize that there was something wrong with their language and with its description; they labored hard for six more years to produce a revised description of the language. It is a great improvement but I'm afraid that, in my view, it does not remove the basic technical flaws in the design, nor does it begin to address the problem of its overwhelming complexity.

Programmers are always surrounded by complexity; we cannot avoid it. Our applications are complex because we are ambitious to use our computers in ever more sophisticated ways. Programming is complex because of the large number of conflicting objectives for each of our programming projects. If our basic tool, the language in which we design and code our programs, is also complicated, the language itself becomes part of the problem rather than part of its solution.

\section*{Another Project}

Now let me tell you about yet another overambitious language project. Between 1965 and 1970 I was a member and even chairman of the Technical Committee No. 10 of the European Computer Manufacturers Association. We were charged first with a watching brief and then with the standardization of a language to end all languages, designed to meet the needs of all computer applications, both commercial and scientific, by the greatest computer manufacturer of all time: I had studied with interest and amazement, even a touch of amusement, the four initial documents describing a language called NPL, which appeared between March 1 and November 30, 1964. Each was more ambitious and absurd than the last in its wishful speculations. Then the language began to be implemented and a new series of documents began to appear at six-monthly intervals, each describing the final frozen version of the language, under its final frozen name PL/I.

But to me, each revision of the doc-

\section*{Employment Opportunities}

\author{
FOR INFORMATION \\ REGARDING THIS \\ SECTION \\ Call 212-997-2556
}

\section*{COLORADO!}

\section*{PROGRAMMING COORDINATOR}

Responsible for planning, organizing and monitoring programming projects. Also supervises program production and maintenance. Requires B.S. degree in Management Information Systems or related field and three years programming and/or systems design experience, including one year as a project leader preferred. Solid Fortran programming skills a must.

\section*{ENGINEERING SYSTEMS ANALYST}

Analyzes and evaluates user requirements and designs and implements systems and procedures for engineering applications. Requires a B.S. degree in Computer Science or related field and three years systems programming experience.

\section*{EE/COMPUTER SCIENCE}

Will be involved in the development, testing, integration and maintenance of the software associated with the Energy Management System. Requires a B.S. degree in computer science, electrical engineering, mathematics or reiated field. Fortran programming and real-time systems experience desirable.

Submit resume to: Tri-State Generation \& Transmission Assn., Inc. Personnel Department BT, P.O. Box 33695, Denver, CO 80233.

An Affirmative Action / Equal Opportunity Employer


TRI-STATE


\section*{Let}

McGraw-Hill's Classified Ads Work For You
ument simply showed how far the initial \(F\)-level implementation had progressed. Those parts of the language that were not yet implemented were still described in free-flowing flowery prose giving promise of unalloyed delight. In the parts that had been implemented, the flowers had withered; they were choked by an undergrowth of explanatory footnotes, placing arbitrary and unpleasant restrictions on the use of each feature and loading upon a programmer the responsibility for controlling the complex and unexpected side-effects and interaction effects with all the other features of the language.

At last, March 11, 1968, the language description was nobly presented to the waiting world as a worthy candidate for standardization. But it was not. It had already undergone some seven thousand corrections and modifications at the hand of its original designers. Another twelve editions were needed before it was finally published as a standard in 1976. I fear that this was not because everybody concerned was satisfied with its design, but because they were thoroughly bored and disillusioned.

For as long as I was involved in this project, I urged that the language be simplified, if necessary by subsetting, so that the professional programmer would be able to understand it and be able to take responsibility for the correctness and cost-effectiveness of his programs. I urged that the dangerous features such as defaults and on conditions be removed. I knew that it would be impossible to write a wholly reliable compiler for a language of this complexity, and impossible to write a wholly reliable program when the correctness of each part of the program depends on checking that every other part of the program has avoided all the traps and pitfalls of the language.

At first I hoped that such a technically unsound project would collapse, but I soon realized it was doomed to success. Almost anything in software can be implemented, sold, and even used given enough determination. There is nothing a mere scientist can say that will stand against the
flood of a hundred million dollars. But there is one quality that cannot be purchased in this way-and that is reliability. The price of reliability is the pursuit of the utmost simplicity. It is a price which the very rich find most hard to pay.
All this happened a long time ago. Can it be regarded as relevant in a conference dedicated to a preview of the Computer Age that lies ahead? It is my gravest fear that it can. The

> There is nothing a mere sclentlst can say that will stand agalnst the flood of a hundred million dollars.

mistakes which have made in the last twenty years are being repeated today on an even grander scale. I refer to a language design project which has generated documents entitled strawman, woodenman, tinman, ironman, steelman, green and finally now Ada. This project has been initiated and sponsored by one of the world's most powerful organizations, the United States Department of Defense. Thus it is ensured of an influence and attention quite independent of its technical merits, and its faults and deficiencies threaten us with far greater dangers. For none of the evidence we have so far can inspire confidence that this language has avoided any of the problems that have afflicted other complex language projects of the past.
I have been giving the best of my advice to this project since 1975. At first I was extremely hopeful. The original objectives of the language included reliability, readability of programs, formality of language definition, and even simplicity. Gradually these objectives have been sacrificed in favor of power, supposedly achieved by a plethora of features and notational conventions, many of them unnecessary and some of them, like exceptions handling, even dangerous. We relive the history of the design of the motor car. Gadgets and glitter prevail over fundamental concerns of safety and economy.

It is not too latel I believe that by careful pruning of the Ada language, it is still possible to select a very powerful subset that would be reliable and efficient in implementation and safe and economic in use. The sponsors of the language have declared unequivocally, however, that there shall be no subsets. This is the strangest paradox of the whole strange project. If you want a language with no subsets, you must make it small.

You include only those features which you know to be needed for every single application of the language and which you know to be appropriate for every single hardware configuration on which the language is implemented. Then extensions can be specially designed where necessary for particular hardware devices and for particular applications. That is the great strength of Pascal, that there are so few unnecessary features and almost no need for subsets. That is why the language is strong enough to support specialized extensions-concurrent Pascal for real-time work, Pascal Plus for discrete event simulation, UCSD Pascal for microprocessor work stations. If only we could learn the right lessons from the successes of the past, we would not need to learn from our failures.

And so, the best of my advice to the originators and designers of Ada has been ignored. In this last resort, I appeal to you, representatives of the programming profession in the United States, and citizens concerned with the welfare and safety of your own country and of mankind: do not allow this language in its present state to be used in applications where reliability is critical, ie, nuclear power stations, cruise missiles, early warning systems, anti-ballistic missile defense systems. The next rocket to go astray as a result of a programming language error may not be an exploratory space rocket on a harmless trip to Venus. It may be a nuclear warhead exploding over one of our own cities. An unreliable programming language generating unreliable programs constitutes a far greater risk to our environment and to our society than unsafe cars, toxic
pesticides, or accidents at nuclear power stations. Be vigilant to reduce that risk, not to increase it.
Let me not end on this somber note. To have our best advice ignored is the common fate of all who take on the role of consultant, ever since Cassandra pointed out the dangers of bringing a wooden horse within the walls of Troy. That reminds me of a story I used to hear in my childhood.

\section*{The Emperor's Old Clothes}

Many years ago, there was an Emperor who was so excessively fond of clothes that he spent all his money on dress. He did not trouble himself with soldiers, attend banquets, or give judgment in court. Of any other king or emperor one might say, "He is sitting in council," but it was always said of him, "The emperor is sitting in his wardrobe." And so he was. On one unfortunate occasion; he had been tricked into going forth naked to his chagrin and the glee of his subjects. He resolved never to leave his throne, and to avoid nakedness, he ordered that each of his many new suits of clothes should be simply draped on top of the old.

Time passed away merrily in the large town that was his capital. Ministers and courtiers, weavers and tailors, visitors and subjects, seamstresses and embroiderers, went in and out of the throne room about their various tasks, and they all exclaimed, "How magnificent is the attire of our Emperor."

One day the Emperor's oldest and most faithful minister heard tell of a most distinguished tailor who taught at an ancient institute of higher stitchcraft, and who had developed a new art of abstract embroidery using stitches so refined that no one could tell whether they were actually there at all. "These must indeed be splendid stitches," thought the minister. "If we can but engage this tailor to advise us, we will bring the adornment of our Emperor to such heights of ostentation that all the world will acknowledge him as the greatest Emperor there has ever been."

So the honest old minister engaged
the master tailor at vast expense. The tailor was brought to the throne room, where he made obeisance to the heap of fine clothes which now completely covered the throne. All the courtiers waited eagerly for his advice. Imagine their astonishment when his advice was not to add sophistication and more intricate embroidery to that which already existed, but rather to remove layers of the finery, and strive for simplicity and elegance in place of extravagant elaboration.
"This tailor is not the expert that he claims," they muttered. "His wits have been addled by long contemplation in his ivory tower, and he no longer understands the sartorial needs of a modern Emperor." The tailor argued loud and long for the good sense of his advice but could not make himself heard. Finally, he accepted his fee and returned to his ivory tower.

Never to this day has the full truth of this story been told: that one fine morning, when the Emperor felt hot and bored, he extricated himself carefully from under his mountain of clothes and is now living happily as a swineherd in another story. The tailor is canonized as the patron saint of all consultants, because in spite of the enormous fees that he extracted, he was never able to convince his clients of his dawning realization that their clothes have no Emperor.


Transplanted Apple Shoppe
Joesph L Rollinson is the new publisher of The Apple Shoppe Magazine. Apple Shoppe, which describes itself as the "journal of Apple applications," is a periodical for users of Apple II and III computers. The magazine was previously published by David Smith of Placentia, California. Mr Rollinson is a native of San Diego, California.

Apple Shoppe is published eight times a year, for a subscriber's cost of \(\$ 12\) in the United States. Contact The Apple Shoppe Magazine, POB 22026, San Diego CA 92122.

THE MOST FrWERFIL EMALL BUEINEEE CDMPUTE IN THE WORLロ

The IBC ENSIGN business computer was designed from the ground up to run MP/M, multiuser OASIS. MVT-FAMOS, and other multi-user Z-80 operating systems faster than any other computer in the world.
Consider these features:
- Up to 16 users
- Up to 768 K byte memory
- Up to 150M bytes/disk drive
- 17M byte tape cartridge
- 46 M byte 9 track tape
- 6 MHz 2-80B CPU

But it takes more than a lot of \(1 / 0\) ports, memory, and disk storage to make a super multiuser computer. The ENSIGN has what it takes.

MULTIPE MICROPROCESSORS: The ENSIGN has two separate Z-80's and 32K byte memory buffer to handle all \(1 / 0\) between CRT's and printers at baud rates up to 19,200 baud.

A third Z-80 handles all disk and tape 1/0 Commands from the main CPU are totally supervised by the disk slave Z-80.

And the main CPU is the new \(6 \mathrm{MHz} 2-80 \mathrm{~B}\) running at full speed with 120 nsec memory

PERIPHERALS: The ENSIGN supports the tape and winchester disk family from Kennedy Co. These drives, tape cartridges, and 9 track tape drives are the premier of the industry. Yet prices are low on the ENSIGN.
SOFTWARE: If you are running MP/M, OASIS. or MVT-FAMOS you will run better on an ENSIGN. And if you're not already tied to one of these systems you may want to try IBC-SUPERDOS SUPERDOS is very powerful and very very fast.


For dealership information contact: = Integrated \(\begin{aligned} & \text { Business } \\ & \text { Computers }\end{aligned}\)

22010 S. Wilmington Avenue, Suite 306 Carson, CA s0745 • Call (213) 518-4245

\section*{Technical Forum}

\title{
Microcomputers and the IRS
}

\author{
James C Kingman, Chief, Examination Section \\ Helena International Revenue Service District \\ Helena MT 59601
}

\begin{abstract}
Although the author is an employee of the Internal Revenue Service, the content of this article is his opinion and does not necessarily reflect the position of the United States Internal Revenue Service....SM
\end{abstract}

The 1980s will see unprecedented growth in the use of microcomputers by small independent businesses and professional persons. With great potential for fast, accurate processing of accounting data and other types of business records at a minimal cost, microcomputers, like photocopying machines, will soon be standard equipment in most offices.

Microcomputers offer a means of simplifying recordkeeping systems while producing more timely, accurate, and detailed reports than were ever possible using a manual accounting system. The greatest benefit to a small business or professional person, however, is the cost. For a cost comparable to the annual salary of a bookkeeper, the individual can purchase a hardware and software system capable of many times the work output of a single person. If the system is well planned and properly implemented, it can result in an overall cost savings and a significant increase in the usefulness and efficiency of the record-keeping system.

Traditionally, a person entering a new business works with his accountant to set up a record-keeping system that meets generally accepted accounting principles and practices. These systems provide a logical method of tracing detailed records such as invoices and vouchers through the accounting process to the final financial reports. The systems usually produce a general ledger which is supported by subsidiary ledgers or such journals as Accounts Receivable and Accounts Payable. These, in turn, provide a complete listing of the detailed records. Thus, with the traditional method it is possible to trace an individual detailed record through the entire system. This system of tracking records is known as the "Audit Trail."

As more and more business and professional people acquire and learn to program their microcomputer systems, there may be a temptation to simplify record-keeping systems to the point where the Audit Trail is lost. For example, an individual might be tempted to write a program that would simply require the input of detailed records
and would produce completed financial statements as output. While such a program would be very simple to write and even simpler to operate, it would completely eliminate any form of Audit Trail.
The lack of an Audit Trail creates two major problems:
First, any error or discrepancy on the original detailed record would be impossible to locate without a complete reconstruction of all detailed records. Suppose you had such a simplified program for your Accounts Receivable. Each day, week, or month you would key in new charges and payments on account. At the end of the period your simple system would produce a statement for each customer, without any reference to the original detailed records. Such a program might work well as long as no errors were made in entering the detailed records. What would happen, however, if one of your customers paid \(\$ 50\) on his account and you recorded \(\$ 57\) Without a reference to any records, you would need to manually reconstruct the customer's entire account to verify whether or not he had, in fact, paid \(\$ 50\). Not only would the process be time-consuming-it would create a relation problem with the customer because of the original error.
The second problem with such a program is that it is unacceptable to the Internal Revenue Service. Section 6001 of the Internal Revenue Code of 1954 requires, in part, that "every person liable for any tax imposed by this title, or for the collection thereof, shall keep such records, render such statements, make such returns and comply with such rules and regulations as the Secretary may from time to time prescribe." Under the authority of this code section, the Internal Revenue Service has issued Revenue Procedure 64-12 (Cumulative Bulletin 1964-1, Part 1, page 672), which defines "guidelines for record requirements to be followed in cases where part or all of the account records are maintained within automatic data processing systems." The Internal Revenue Service has also issued Revenue Ruling 71-20 (Cumulative Bulletin 1971-1, page 392), which holds that "punched cards, magnetic tapes, disks, and other machine-sensible data media used in the automatic data processing of accounting transactions constitute records within the meaning of section 1.6001-1 of the regulations." Let us see how this Revenue Procedure and Revenue Ruling affect the busi-
ness or professional person using a microcomputer in his business.

Revenue Procedure 64-12 deals directly with the need for an Audit Trail in an accounting system. Section 1.01 of the Revenue Procedure states its purpose:

\section*{Section 1. Purpose}
. 01 The purpose of this Revenue Procedure is to set forth guidelines specifying the basic record requirements which the Internal Revenue Service considers to be essential in cases where a taxpayer's records are maintained within an automatic data processing (ADP) system. References here to \(A D P\) systems include all accounting systems which process all or part of a taxpayer's transactions, records, or data by other than manual methods.

Section 3 states the objectives of the Revenue Procedures:

\section*{Section 3. Objectives}
....The ability to provide in legible form the data necessary to determine at a later date whether or not the correct tax liability has been reported must be carefully considered in designing and programming a machine system. This factor may add to the complexity of the system and require additional cost, but this cost may be negligible in comparison to the expense that may be incurred at a later date if the system cannot practically and readily provide the information needed to support and substantiate the accuracy of the previously reported tax liability.
(Emphasis supplied.)
Section 4 gives the specific record requirements that the Internal Revenue Service considers essential in any ADP accounting system:

\section*{Section 4. ADP Record Guidelines}
. 01 ... A computer's accounting program must include a method of producing from the punched cards or tapes visible and legible records which will provide the necessary information for the verification of the taxpayer's tax liability.
. 02 General and Subsidiary Books of Account.-A
(1) general ledger, with source references, should be written out to coincide with financial reports for tax reporting periods. In cases where subsidiary ledgers are used to support the general ledger accounts, the subsidiary ledgers should also be written out periodically.
(2) Supporting Documents and Audit Trail.-The audit trail should be designed so that the details underlying the summary accounting data, such as invoices and vouchers, may be identified and made available to the Internal Revenue Service upon request.
(3) Recorded or Reconstructible Data. - The records must provide the opportunity to trace any transaction back to the original source or forward to a final total. If printouts are not made of transactions at the time they are processed, then the system must have the ability to reconstruct these transactions.

Revenue Ruling 71-20 clarifies the term "records" as used in Code Section 6001:
....It is held that punched cards, magnetic tapes, disks, and other machine-sensible data media used for recording, consolidating, and summarizing accounting transactions and records within a taxpayer's automatic data processing system are records within the meaning of section 6001 of the Code and section 1.6001-1 of the regulations and are required to be retained so long as the contents may become material in the administration of any internal revenue law...

Both the Revenue Procedure and the Revenue Ruling are well known to most large companies using computer systems in their accounting process, but they may not be as well known to the small business using mini- and microcomputer systems. These businesses should check the following items in order to be sure their systems meet the requirements of the Internal Revenue Service:
- Any system or program should preserve the integrity of the Audit Trail so that any summary total may be traced back to the original detailed records, and any detailed record may be traced forward to the summary total.
- If the system or program does not produce printouts of the detailed transactions as they are processed, then the system or program must have the ability to reconstruct these transactions at the request of the Internal Revenue Service.
- If the system or program maintains accounting records on machine-sensible data media, such media are considered records and must be maintained for the same period of time as a hard-copy printout.
\(\bullet\) Finally, if the system or program does maintain such machine-sensible data media, the system or program must include a method of producing visible and legible printouts of the media.

This article may raise more questions than it has answered. What should you do if you have questions about your system? A final quote from Revenue Ruling 71-20:
...taxpayers who are in doubt as to which records are to be retained or who desire further information should contact their District Director for assistance.

\section*{Technical Forum}

\title{
Add Dual Trace and Delayed Sweep to Your Oscilloscope
}

\author{
Robert J Stetson, BASF Systems \\ Crosby Dr, Bedford MA 01730
}

Occasionally the need arises to make timing comparisons between two signals with an interval delay. However, with a conventional oscilloscope you cannot scan a looped serial-data exchange with the clock in registration and still look at the data that occurs 40 bytes later. In this situation, you may want to build an add-on unit that converts your present single-channel scope to a digital dual-trace scope with delayed sweep for about \$15.

\section*{Theory of Operation-Data Multiplexer}

Figures 1 and 2 show the complete logic diagram of the unit. Figure 2 is a simple, stable, clock circuit. A chopping frequency of 1 F CLK was selected, since it is common among dual-trace scopes. The 555 integrated circuit is used as a free-running timer that generates 2 F CLK. Since the output of the 555 is highly asymmetrical, it runs at twice the desired rate, and 2 F CLK is fed to the input of a 74LS74-type D edge flip-flop. The 74LS74 is wired as a divider and neatly converts the pulse train from the 555 timer into a perfectly symmetrical square wave of half the frequency of 2 F CLK. It is important that 1 F CLK be symmetrical to insure that the two traces have the same relative brightness. This brightness is a direct function of the sample time (controlled by 1 F CLK) for each channel.

In figure 1, 1 F CLK enables the channel 1 NAND gate (74LSO0) when high, and enables the channel 2 NAND gate (74LS00) through a 74LS04 inverter when low. The two channels are multiplexed into a single signal on pin 11 of the 74LS00, an active low NOR gate.

Vertical separation of the traces can best be understood by walking through the circuit with OV input to both channels. If both inputs stay at a low level, the output on pin 11 of the 74LSOO NOR gate stays low. Even though there is no signal, the output signal, SCOPE, will switch at 1 F CLK speed.

The diagrams in figure 4 show the relationship between the 100 k -ohm 1 F CLK leg of the summing network and the 150 k -ohm DATA leg. With 1 F CLK in a low logic state, the DATA input selects one of the two possible zones in the channel 2 area of the screen. With 1 F CLK high, the DATA input selects one of the two channel 1 areas of the screen:

Where DATA is low, DATA \(=0 \mathrm{~V}\)
Where 1 FCLK is low, \(1 \mathrm{FCLK}=0 \mathrm{~V}\)

Where DATA is high, DATA \(\approx 2 \mathrm{~V}\)
Where 1 FCLK is high, 1 F CLK \(\approx 3 \mathrm{~V}\)
The output from the summing network is one of the four possible combinations:
\[
\begin{aligned}
& \text { low }+ \text { low }=\text { channel } 2 \text { low } 0+0=0 \mathrm{~V} \\
& \text { low }+ \text { high }=\text { channel } 2 \text { high } 0+1=2 \mathrm{~V} \\
& \text { high }+ \text { low }=\text { channel } 1 \text { low } 1+0=3 \mathrm{~V} \\
& \text { high }+ \text { high }=\text { channel } 1 \text { high } 1+1=5 \mathrm{~V}
\end{aligned}
\]

Even though half of the oscilloscope display time is spent on the upper area of the screen and half on the lower, the traces appear as two solid lines, because the 1 F CLK is synchronized with the two channel inputs, but not with the scope. The chopping frequency free-runs with relationship to the horizontal-sweep frequency of the scope, which is synchronized only with the signal at the input to channel 1.
Any attempt to synchronize on the signal at the multiplexer's SCOPE output will fail. The multiplexing action only allows you to synchronize on 1 F CLK; otherwise, as the two channels of data race across the screen they will be out of synchronization with the horizontal oscillator in the scope. A sample of the signal on which you want to synchronize is taken from the channel 1 input before it gets chopped by the multiplexer. This signal is then coupled by the trigger-control circuit to the scope's SYNC or TRIGGER input.

\section*{Trigger Control Circuit Theory}

When INT (internal trigger) is used, the channel 1 probe should always be on the signal from which you want to synchronize. The 74LS04 inverter at the channel 1 input buffers the input signal so that the circuit being sampled does not see the added load of the extra circuitry. The second 74 LS 04 reinverts the signal to its true polarity
Inverters are placed in the channel 2 signal path to balance the gate delays between the two channels. This ensures accurate results, regardless of the quality of the scope.
Another 74LS04 inverter gates the signal over to a switch where either NORMAL trigger mode or DELAYED SWEEP is selected.
With the MODE switch in the NORM position, the


Figure 1: Multiplex interface schematic for adding dual trace and delayed sweep to an oscilloscope. See text for details on how the circuit works.
trigger signal is switched straight through to the 74LS04 inverter, which drives the 2 N 2222 transistor outputdriver.

The TRIGG output is monitored by the coupling capacitor, which sets off the trigger timer and lights the trigger LED (light-emitting diode). The 74LS74 driving the trigger LED acts as an inverter: with its preset and clear inputs both low, the output on \(Q\) and \(\bar{Q}\) are high. But, when the clear input goes high, the output \(\bar{Q}\) goes low. In this way, the \(\vec{Q}\) output will always be the inverse of the clear input, while the Q output remains high at all times. As long as the trigger LED remains lit, the scope is being triggered.

With the MODE in the DELAY position, the trigger pulses are routed through the SLOPE switch. The SLOPE switch directs the pulse to either the A or B input of a 74 L 121 monostable multivibrator.

I chose a 74L121 over other multivibrators because it is not retriggerable. While a 74LS123 would reduce the parts count, recurring triggers would extend the delay time indefinitely.

By using the RANGE and VERNIER controls, you can adjust the delay time. These controls increase or decrease the time from the selected edge of the triggering pulse to
the timeout of the first stage of the timer chain. The second 74L121 fires when the first one times out. The second emits a short spike from which to trigger the scope.

An additional feature, the SOURCE switch, allows you to trigger from an independent source. This may be an index pulse, sector pulses or other reference signals from equipment you are working on.

Mastering the use of this unit requires patience. For instance, the channel 1 trigger source can be used only in certain applications. Other applications are best served by the external trigger option. Under certain conditions during the delayed-sweep mode, a vertical line appears on the left edge of the screen, caused by the deflection of the beam in the absence of a horizontal trace.

Since this add-on unit can only be used on logic-level signals, the unit under test can supply power. No internal power supply is shown, but you may prefer to add one.

The true amplitude of the signals on the SCOPE output will be less than the \(2 \mathrm{~V}, 3 \mathrm{~V}\), and 5 V levels in the description given here, because the output of the TTL devices during their source mode are less than the supply voltage. Also, the resulting voltage will be further reduced by the input impedance of the scope.

Caution: If you're tempted to cut up the front panel of


Figure 2: Clock and trigger circuit.



Figure 4: Operation of the circuit shown in figures 1 and 2. Each of the four input conditions decodes to four different zones on the oscilloscope screen.

\section*{COMPSTAT}

THE MOST COMPREHENSIVE STATISTICS PACKAGE AVAILABLE FOR MICROCOMPUTERS. NORTH STAR BASIC AND 8" BAZIC* VERSIONS AVAILABLE.

OVER 420 PROGRAMS COVERING ANALYSIS Of VARIANCE, BASIC STATS, CONTINGENCY tABLE TECHNIQUES, ESTIMATION, EXPLORATORY DATA ANALYSIS, FOURIER ANALYSIS, NONPARAMETRIC STATISTICS, MULTIVARIATE STATISTICS, PROBABILITY PLOTTING, QUALITY CONTROL, RANDOM VARIRTE GENERATION, REGRESSION, ROBUST TECHNIQUES, SAMPLING, STATISTICAL DISTRIBUTIONS, SURVIVAL techniques and time series.

COMPLETE PACKAGE
\(\$ 1500\)
MANUAL ONLY
\(\$ 100\)
TOPICS SOLD SEPARATELY AT \(\$ 200\) A TOPIC.
COMPSTAT
P.O. BOX 268

GLOUCESTER POINT, VA. 23062
*BRZIC IS A REGISTERED TRADEMARK OF MICAO MIKE'S.


\section*{QUME DT 8}
s545
Includes 1 year factory warranty
QUME DT 5
s315
QUME SPRINT 9/45 s2295

\section*{INTERLINK MODEM}
- 300-600 BAUD
- ASYN/SYN
- AUTO DIAL
- AUTO ANSWER
- SERIAL AND MODULAR JACK INTERFACE
- 2 YEAR WARRANTY \({ }^{\text {s }} 119\)

TELETEK FDC 1
- 4 MHZ CPU
- NEC 765 FDC
\({ }^{\text {s } 605}\)
1 YEAR WARRANTY

\section*{LIGHT PEN}

WITH CORD \& SOCKET \(\$ 75\)

\section*{FLOPPY DISK ADD.ONS}
- DUAL-DOUBLE DENSITY DRIVES
- ENCLOSURE
- POWER SUPPLY
- FAN
- ALL CABLES
- 1 YEAR WARRANTY 8" SYSTEM \({ }^{\text {S }} 1375\) 51/4" SYSTEM \$949

\title{
An Almost Optimum Z80 Memory Test Program
}

\author{
Ira J Rampil, 60 Haven Ave Apt 15D, New York NY 10032
}

One of the great joys of building a computer is testing to see whether or not it works. The most interesting subsystem to check is the memory. Even average-sized memory systems contain several hundred thousand bits, each of which must be checked to insure that it can store and output the desired data. The memory must also be tested to confirm both the uniqueness of the address and the absence of bit-to-bit interference. Problems such as printed-circuit-board shorts and decoder-circuit bugs can cause data access at one address to disturb data at an entirely different address. Decoder-circuit bugs are usually encountered when a new memory is first brought up, but printed-circuit-short problems can and do occur at any time. Most memory component failures also occur early.

It is not feasible to detect and localize any but the most severe problems through the use of manual hardware debugging techniques. Memory bugs are best found by using software techniques, provided that plugging the questionable boards into the system bus doesn't cause the whole system to crash. As long as the processor, some peripherals, and at least some memory are up, programs can be loaded and run to test the remaining memory.

The most obvious test is to store all possible combinations of bits. Unfortunately there are \(2^{262144}\) possible combinations in a 32 K - by 8 -bit memory. To test each possible combination separately would take a length of time significantly greater than the projected duration of the universe.

A great deal of research has been done in order to find tricks that will shorten the time required to test memory, but many manufacturers and suppliers of microcomputer kits seem unaware of the results. For example, I recently built a system kit that was supplied with a memory test program that counted from 0 to hexadecimal FF, checking each increment in every byte in memory. It took more than five minutes per pass in my 34 K memory, and the program failed to detect four address-line foil bridges, one solder splash, and the bad decoder chip that mapped two 8 K boards into the same memory location. It did locate a data-to-address foil short and a few bad memory chips, but the program crashed after every bug it caught. By contrast, the program I'm about to describe can detect all of these problems and most others, except certain bit-to-bit interference problems, within a single byte. It runs
on the same system in less than 3 seconds per pass.
Memory problems usually occur as input (address) or output (data) lines that are stuck at either a 0 or a 1 , or a line having the value of a different line. Such problems are the result of open circuits or shorts to power lines. Blown memory devices usually have bits that are internally shorted or open. It should be understood that memory test programs will detect these problems and usually supply the offending addresses, but will almost never diagnose the problem. Diagnosis remains a human function that uses clues provided by memory test and dump routines. After localizing a bug, successive dumps of the offending area of memory while changing data at that address will reveal patterns characteristic of the particular bug.

The program described here is based on an algorithm described by John Knaizuk and C R P Hartmann (IEEE Transactions on Computers, April 1977). This algorithm is called optimal because it uses the minimal number of memory accesses to test the memory for all single-bit errors. It also catches many multiple-bit errors.

The memory under test is divided into three partitions based upon the byte addresses modulo 3. When a partition is accessed, all memory addresses within it are accessed. Each partition is then independently accessed. The address lines and the decoding circuits are exhaustively tested. Data lines and memory chips are also tested, to the extent that each bit must be able to write and read back both a 0 and a 1 . The algorithm uses a total of four accesses per address. This corresponds to the number of accesses required to read and write a 0 and a 1 in each location.

The program shown in listing 1 was written for a Digital Group Z80 system, but it can be easily transported to other Z80 and 8080 systems. The major changes will be in the character output linkages and system utilities. I do not claim that this code is optimally short or fast. It was written to be legible, and it is fast enough and reasonably short. If an error is encountered, the offending address is printed, along with the erroneous data byte read and the correct byte. Errors do not terminate the test and an " A " is printed at the completion of the test sequence

Listing 1: A memory test program for the Z 80 microprocessor. Although written for a Digital Group Z80 system, it can easily be modified for 8080 and other Z80 systems. Note the use of octal notation.

ASSM 006000100000


Listing 1 continued:


\section*{Technical Forum}

\title{
How to Build an Inexpensive Cassette Level Indicator
}

\author{
Dr Milan D Chepko \\ 119 Belleville Ct \\ Thief River Falls MN 56701
}

Looking for an inexpensive way to adjust the level of your recorder when loading programs into your microcomputer? The circuit diagram in figure 1 shows two LEDs (light-emitting diodes) and a 270 - to 330 -ohm resistor wired across the line from the recorder's earphone jack. The earphone or speaker is optional, but it allows you to hear the data transfer in operation. A photograph of the completed circuit is shown in photo 1.

Most microcomputers require about two volts of audio signal for reliable operation. Since LEDs "turn on" at about 1.7 V , adjust the recorder's volume control until one of the LEDs begins to flicker steadily, and you should be in business. The LEDs also seem to absorb some of the extra signal if you turn the volume up too high.

Technlcal Forum is a feature intended as an interactive dialog on the technology of personal computing. The subject matter is open-ended, and the intent is to foster discussion and communication among readers of BYTE. We ask that all correspondents supply their full names and addresses to be printed with their commentaries. We also ask that correspondents supply their telephone numbers, which will not be printed.


Photo 1: The cassette level indicator built inside a small plastic box.


Figure 1: Schematic diagram of the cassette level indicator.

\section*{Software Review}

\section*{Interactive Fiction: Six Micro Stories}

Bob Liddil, The Programmer's Guild, POB 66, Peterborough NH 03458

Adventure International has a new concept in computer simulation called Interactive Fiction. The product I'm reviewing is a sampler of six Interactive Fiction stories. The sampler is, of course, designed to whet your curiosity about the full-length titles offered by the company.

Defined in its simplest terms, an Interactive Fiction episode is a story that needs your responses to achieve its outcome. It goes far beyond Adventure's two-word responses by encouraging you to input complete sentences. I must confess that, at first, I was uncomfortable with the new format. Gradually, though, I became accustomed to bantering with the computer.

The first story places you in wartime Nazi Germany. You're an Allied spy, and you must uncover as many secrets as possible. You have been invited to a banquet, where you find yourself chatting with a high-ranking Gestapo officer. The conversation between you and the computer determines whether you live or die.

In another scenario, you are a near-bankrupt shipping tycoon entertaining a Greek billionaire. He has just made a \(\$ 30\) million offer for your company, but you know that in a day or so your company will be worth only \(\$ 10\) million. I took great delight in fleecing that fellow for \(\$ 70\) million.

Interactive Fiction seems to be a stylized Eliza or Dr Chips, both of which are programs that cause the computer to act as if it understands your input. While giving the illusion of intelligence, these scenarios actually have a smaller vocabulary than the most basic Adventures. For example, there's a story about a chance encounter in San Francisco. You're in a park and you stumble upon a pretty girl who has dropped her books. Her monosyllabic replies not only break the mood of the story, but sadly attest to the lack of intelligence in the program. Don't misunderstand me; these stories do have some redeeming qualities.

As in Eliza, the computer "psychiatrist," it is obvious that the program zeros in on individual words, ignoring
most of the input. The rest of the stories in the sampler are similarly disappointing in their lack of versatility; there are only a couple of ways each story can be played.

I suspect that Six Micro Stories is not an adequate showcase of the Interactive Fiction concept. The stories fall far short of what the computer community expects from Scott Adams. As a party mixer or novelty, this offering will fill the bill, but don't buy this package expecting the high-quality entertainment you've received from Adventure International in the past.

Six Micro Stories should be approached as a sampler. If you expect more, you are inviting disappointment. If you want to get into the heart of this new format, you had better get Local Call for Death or Two Heads of the Coin, two full-length titles in the Interactive Fiction product line.

\section*{At a Glance}

\section*{Name}

Interactive Fiction: Six Micro Stories

Type
Adventure-type userinteractive game

\section*{Manufacturer}

Adventure
International
POB 3435
Longwood FL 32750
(305) 862-6917

Price
\(\$ 15\)
Format
5-inch floppy disk

\section*{Language}

Mixture of BASIC and machine code

\section*{Computer}

Radio Shack TRS-80 Model I with one disk drive and 32 K bytes of memory

\section*{Documentation}

Several screens of information within the program

\section*{Audience}

Adventure enthusiasts and people who like role-playing games


\section*{DP/NET: Redefined}

\section*{INDIVIDUAL/NET}

WORD PROCESSOR


S-100, 7 Slot, 360K Double Density


\section*{DUAL/NET}

\section*{SMALL BUSINESS aPPLICATIONS}


Up To 4 Terminals Can Be Slaved Off Master


TELAPHONE/NET

\title{
Configurability
}

\section*{SYSTEM/NET}

\section*{LARGE SYSTEM NUCLEUS}


Hard Disc and 8" Floppy Any Combination of Master or Slave


MASTER/NET

\section*{"BUY" WORD FOR THE 1980's}

NETWORKING is the newest 'buzzzord' in microprocessors. Delta Products has produced a superior hardware system that cannot be matched in either cost or performance.
Don't buy a system that has "designed-in" limitations; check the following:

\section*{PERFORMANCE}

This is where DP/NET \({ }^{\oplus}\) beats them all. Delta does multiuser and multitasking operations by using distributed processors. DIGITAL RESEARCH has provided a new operating system (CP/NET \({ }^{\circledR}\) ) which combines \(M P / M^{\oplus}\) and \(C P / M 2.2^{\text {® }}\) into the world's most powerful microcomputer system.
The system cannot be bogged down by adding more users. High-speed DMA transfers from Host to Slave, allow many processors to share workloads. (There can be 3 processors at EACH user terminal; a Z-80 for screen function, and a pair of 8085/8088 for main processing.)

\section*{FLEXIBILITY}

One of the most important advantages of \(D P / N E T^{\oplus}\) is that you never have to purchase more system than you currently need. Your system can start with a 5" minifloppy 32 K terminal for under \(\$ 3000.00\). Adding a second terminal and additional mass storage is as simple as the original purchase. Networking up to 16 OR MORE intelligent and semi-intelligent work stations can follow in perfect step with the growth of your Company and requirements.

\section*{COST}

Since you never buy more computer power than you need, the system cost is matched to the demand to be placed upon it. DELTA PRODUCTS has a lot of experience in building micros, with over 2000 DELTA systems now in the field. DELTA component cost has always been extremely competitive. DELTA's new "networking system" is a natural and simple combination of the competitive "good deals" we have been offering for some time.

\section*{SOFTWARE}

A computer system to the end user IS THE SOFTWARE. All \(C P / M^{\oplus}\) compatible programs run perfectly on the \(D P / N E T T^{\oplus}\). DELTA PRODUCTS is currently writing its' own high-performance custom data base, screen editor, order entry/inventory, and accounting packages in PL/1. Target release date for the complete package is November, 1981.

\section*{SOLD ONLY THROUGH DEALERSHIPS}

CALL FOR YOUR NEAREST REPRESENTATIVE
delta products
15392 Assembly Lane Huntington Beach, CA 92649 TELEPHONE: (714) 898-1492


TELEX: 681-367 DELTMAR HTBH


\section*{FROM}

RETAIL STORE 22297 EUCLID AVENUE EUCLID, OHIO 44117
(EAST 222nd \& EUCLID AVE.)

PRICES IN EFFECT Sept. 1, 1981 THRU September 30, 1981.
Prices, Specifications, and Olferings subject to change
without notice.

TO ORDER CALL TOLL FREE 1-800-321-9390 IN OHIO, call (216) 289-1210 (COLLECT)

\section*{OFFICES}

26111 BRUSH AVENUE EUCLID, OHIO 44132
(SEND MAIL ORDERS HERE)
- Add \(\$ 3.00\) for shipping \& handling. - \(\$ 3.00\) EXTRA lor C.O.D.
- Ohio residents add \(51 / 2 \%\) sales
tax.

TRS. 80 is a trademark of the Radio Shack Division of Tandy Corporation. PLAIN JANE is a Trademark of Meta Technologies Corporation.

\title{
What's New? SYSTEMS
}

\section*{The Stratos}

The Stratos is a 4 MHz , Z80-based computer with 80 K bytes of progammable memory and 1.2 megabytes of floppy-disk storage lexpandable to 5 megabytes). Stratos features a ROM (read-only memory) monitor, CP/M 2.2, the Spellbinder wordprocessing program, a CBASIC or a Pascal compiler, business and personal-reminder software, printer driver routines for most printers, and two RS-232C ports.

Additional features of the Stratos include a memorymapped video controller, utilities that allow many combinations of disk drives and formats to be connected, a light pen, and an ACcontrolier port. The Stratos microcomputer is housed in a teakwood case. Contact Symbiotic Systems Inc, 118 Naglee Ave, Santa Cruz CA 95060, (408) 425-5533

Circle 501 on inquiry card.

\section*{A Ralr Thing Indeed}

Inside Rair Microcomputer Corporation's Black Box \(3 / 30\) is a 5-megabyte Winchester hard disk and a dual-sided, double-density floppy-disk drive for backup. The Black Box 3/30 features either the CP/M or MP/M operating systems and an IEEE-488 bus with 64 K bytes of programmable memory and 16 programmable \(1 / O\) linput/output) ports.

For applications and development, Rair offers BASIC, PL/1, FORTRAN, COBOL, and Pascal. The Black Box 3130 costs \(\$ 7500\). Contact Rair Microcomputer Corporation, 4101 Burton Dr, Santa Clara CA 95050. (408) 988-1790. Circle 502 on inquiry card.

\section*{TIny BASIC Computer Board}

The K-8073 single-board computer features National's INS8073 Tiny BASIC Microinterpreter microprocessor. Features include serial communication data rates from 110 to 4800 bps 位s per second), a cassette-tape I/O (input/output). 8 K bytes of EPROM (erasable programmable readonly memory). I K of programmable memory with expansion to 8 K externally, STD bus structure, remote controller for single-wire data control from remote stations, and 24 bidirectional I/O lines. The board is supplied with a 2 K ROM (read-only memory) of development utilities and a real-time calendar/clock.

The \(\mathrm{K}-8073\) requires +5 V and costs \(\$ 388\). Contact Transwave Corporation, RD 1 Box 489, Vanderbilt PA 15486. (412) 628-6303.
Circle 503 on inquiry card.

\section*{The LNW80 Microcomputer}

The LNW80 microcomputer is software-compatible with the TRS-80. It includes a 4 MHz , Z80A microprocessor, high-resoIution black-and-white and color graphics, 12 K bytes of ROM (read-only memory), 16 K bytes of programmable memory, upperand lowercase display, reverse video, an RF (radio frequency) modulator, expansion bus, cassette interface, and power supply.

The LNW80 costs \(\$ 1664\) with a black-and-white monitor and a single 5-inch floppy-disk drive, but it can be purchased without peripherals for \$1200. For details. contact LNW Research Corporation, 14661 C Myford Rd. Tustin CA 92680, (714) 544-5744
Circle 504 on inquiry card.

\section*{Xerox 820 Microcomputer}

The Xerox 820 microcomputer can be used as a word-processing system, a business computer, or both. The basic 820 system includes two RS-232C and two parallel ports, dual 5-inch floppy-disk drives each with a 92 K-byte unformatted capacity, a standard keyboard, and a 12 -inch black-and-white video-display monitor with 24 lines by 80 characters.

The 820 features a 780 microprocessor with 64 K bytes of programmable memory and 4 K bytes of ROM (read-only memory). The CP/M operating system and applications software, including CBASIC-2. COBOL 80 , MBASIC, and word-processing programs, are available. A wordprocessing system utilizing WordStar and the SuperCalc electronic spreadsheet are available as options. It can be connected to the Ethernet communications network. The Xerox 820 costs \(\$ 2995\) and is available from Xerox and authorized dealers. For further details, contact the Office Products Division, Xerox Corporation, 1341 W Mockingbird Ln, Dallas TX 75247.

Circle 505 on Inquiry card.

\section*{Sierra 4000}

The Sierra 4000 computer is an S-100, Z80-based computer that features dual floppy-disk drives and a hard disk. Together, these devices provide a total of up to 96 megabytes of storage. A twodrive hard-disk system is optional.

For more information, contact Sierra National Corporation, 5037 Ruffner St, San Diego CA 92111 . (714) 277-4810.

Circle 506 on inquiry card.

\section*{What's New? SOFTWARE}

\section*{MP/M-86 Operating System}

Digital Research's MP/M-86 is a multiuser operating system for 8086-based microcomputers. It is compatible with the CP/M-86 operating system and programs. MP/M-86 will support networking capabilities through CP/NET. It allows multiple users to execute programs with only one copy of the object code in main memory.

Other features of the MP/M-86 operating system are file and record lockout, standard input/output, and internal queue mechanisms that support mutual exclusion, pipes, synchronization and communication between

\section*{New Personal Software Products}

Personal Software has five new items in its product line: a new version of the VisiCalc business and planning program and four new VisiCalc-compatible programs. The new VisiCalc program includes a full implementation of a program-independent data-storage format called Data Interchange Format. It allows transfers of files between VisiCalc and other text and data programs regardless of format structure. An Edit command lets users edit formulas without retyping them. Also Boolean functions and the ability to choose specific elements in a list based on the results of another calculation are featured. The new VisiCalc costs \(\$ 199.95\).
multiple tasks. Customized operating environments can be defined within the MP/M-86 structure. For more information, contact Digital Research Inc, POB 579, 801 Lighthouse Ave, Pacific Grove 93950, 14051 649-3896. Circle 507 on inquiry card.


VisiPlot is a new VisiCalc-compatible program with high-resolution color plotting and graphics. It costs \(\$ 179.95\). VisiDex is a per-sonal-information system that can handie mailing lists and personal calendars. It costs \(\$ 199.95\). VisiTrend/VisiPlot is a combination of VisiPlot graphics and a program for time-series manipulation, trend forecasting, and descriptive statistics. Its suggested price is \(\$ 259.95\). Then, there is VisiTerm. which can send and receive files from the other Visiprograms over telephone lines to any other computer. VisiTerm is \(\$ 149.95\)
For details, contact Personal Software Inc. 1330 Bordeaux Dr, Sunnyvale CA 94086, 1408) 745-7841. Circle 508 on inquiry card.

\section*{Music Reader}

Music Reader I shows you the notes while it plays the melody through the Apple II's speaker. You can learn to read treble and bass clefs, note values, time and key signatures, sharps and flats.
and complex rhythms because the program plays what you write. Music Reader I comes on a floppy disk and costs 530 . Contact Shafer Software, 749 W Fremont Ave, Sunnyvale CA 94087. Circle 509 on inquiry card:

\section*{Applesoft Compller}

The Hayden Book Company's Applesoft compiler can increase a BASIC program's speed as much as ten times and occupies only 3.2 K bytes of memory. The 17-pass compiler generates true machine code. High-resolution graphics and shape tables are supported, and multiple programs can reside in memory at the same time.

Hayden's Applesoft compiler requires a 48 K -byte Apple II Plus or Apple II with Applesoft in ROM (read-only memory), the Autostart ROM, and at least one floppy-disk drive. The compiler can be used with multiple- and hard-disk drives, and it can work on systems using the Apple Language Card or Microsoft RAMCard. The compiler costs \(\$ 200\). Contact Hayden Book Company Inc, 50 Essex St, Rochelle Park NJ 07662. (201) 843-0550.

Circle 510 on inquily card.

\section*{Alr Combat Game}

The Computer Air Combat game recreates World War II aerial combat. The player(s) choose from thirty-six fighters or Dombers. Each plane is rated in historical accuracy and detail for firepower, speed, maneuverability, damage-tolerance, and climbing and diving ability. Five scenarios are provided to refight actual combat engagements.

Computer Air Combat includes a rule book, two map-board charts, and three player-aid charts. The game is available for 48 K-byte Apple lls with Applesoft in read-only memory and a floppy-disk drive. It costs 559.95. Contact Strategic Simulations Inc, 465 Fairchild Dr, Suite 108. Mountain View CA 94043, (415) 964-1353.

Circle 511 on inquiry card.

\title{
What's New? \\ SOFTWARE
}

\section*{Language for Education-TI Logo}

TI Logo was designed for the T1-99/4 microcomputer. It is the end result of collaboration between Texas instruments and the Massachusetts Institute of Technology. TI Logo has been tested in schools in New York City and Dallas, Texas, with students ranging from nursery school through the tweifth grade.

TI Logo is structured so that children can successfully use the computer with little formal instruction. Students can draw geometric figures and designs and program the movement of special graphics figures. To work with the language, students must teach the computer what to do, which makes learning with TI Logo an interactive process rather than a feedback situation. Using TI Logo, students make on-thespot judgments as to whether their approach to a problem is effective

\section*{The MDBS-ORS}

The MDBS-QRS add-on lets nonprogrammers interrogate any Micro Data Base Systems data base using English-like commands. Utilities defining macroinstructions are included. Titles and synonyms for the various database entities can be defined. A report generated in response to a query can be displayed in a standard or customized format using the Report Writer feature. String comparisons are allowed, and an optional conditional clause can be included for highly selective data retrieval. Existing data values can be modified. It is available for s300 from Micro Data Base Systems Inc, POB 248, Lafayette IN 47902, (317) 448-1616.

Circle 513 on inquiry card.

A TI Logo set-up requires the software and a TI-99/4 computer with a video display, floppy-disk drive and controller, and a mem-ory-expansion unit. TI Logo sofiware costs 5299.95 . For more in-
formation, contact the Customer Relations Department, Texas Instruments Inc, POB 53, Lubbock TX 79408.

Circle 512 on inquiry card.

\section*{CP/M Cross-Assemblers}

Avocet Systems's XASM family of cross-assemblers can now run on 8080 and Z80-based microcomputers under CP/M and similar operating systems. Pseudooperation codes support nested conditional assembly, listing-format control, definition of mnemonic synonyms, and the inclusion of external source files. The assemblers generate object files in the Intel HEX format.

Other members of the XASM family of cross-assemblers are designed for 6805, 6801, 1802. 6502, 6800, COP400, and other microprocessors. Each XASM cross-assembler costs \(\$ 200\); manuals cost \(\$ 25\). Contact Avocet Systems Inc. 804 S State St, Dover DE 19901, (302) 734-0151.
Circle 514 on inquiry card.

\section*{Music and Animation Program}

Rainbow Writer is a graphics, text, music, and animation program that runs on the Apple II and the Apple II Plus computers. It can create special effects that feature color, animation, letters, shapes, and sounds. The program lets users define character fonts and choose between nine sizes and nineteen different colors of upper- and lowercase English and Greek letters. Musically, the program offers six chromatic octaves and note sustain. Music data can be stored on disk.

The suggested retail price is s39.95. For details, contact Personal Software Inc, 1330 Bordeaux Dr, Sunnyvale CA 94086. (408) 745-7841.

Circle 515 on Inquiry card.

\section*{What's New? \\ PUBLICATIONS}

\section*{Evaluation of Educatlonal Programs}

School MicroWare Reviews contains user evaluations of instructional programs and packages for the Apple, PET, and TRS-80 microcomputers. Each edition includes an index to evaluations in other publications. The reviews are organized by school department and within that by subject. Each review contains comments about the quality of the documentation, the instructions to users given by the programs, the student-computer dialogue, and other concerns. The evaluation includes the producer, price, hardware configuration, storage medium, program type, grade level, and functional description. School MicroWare Reviews costs 530 per edition.

Also available is the School MicroWare Directory. A subscription to it costs \(\$ 20\) per year. It contains descriptions of over 900 programs. If you are a directory subscriber and provide a courseware evaluation that follows a form provided by the publishers, you can receive Reviews free if your evaluation is published. Nondirectory subscribers whose material is published receive Reviews at half price. Contact Dresden Associates, POB 246. Department BY-1, Dresden ME 04342. (207) 737-4466.

Circle 516 on inquiry card.

\section*{LIterature on Computer Sclence and Technology}

The United States Government Printing Office has books and manuals on computer-related subjects for sale. For information on titles and ordering, contact the Superintendent of Documents. US Government Printing Office, Washington DC 20402.
Circle 517 on Inquiry card.

\section*{MIcrosoft Catalog}

Microsoft Consumer Products has a new cataiog that describes all of the software products it produces and sells. The free catalog is available at Microsoft dealers or by contacting the company at 400 lo8th Ave, NE, Suite 200, Bellevue WA 98004, (206) 4541315.

Circle 518 on Inquiry card.

\section*{Structured Requirements Definition}

Structured Requirements Definition, by Ken Orr, covers recent advances in systems theory, tools, and methodology. The book is written for analysts, programmers, managers, and users. It is available for \(\$ 25\) from Ken Orr and Associates Inc, 715 E 8th, Topeka KS 66607. (800) 255-2459: in Kansas (913) 233-2349.
Circle 519 on inquiry card.

\section*{Courseware Evaluatlon Guldelines}

Guidelines for Evaluating Computerized Instructional Materials is a guide for buying and selling instructional software. Previous programming experience is not assumed in this book for users and creators of educational computer software. Divisions within the guide explain ways to determine what sort of software is needed, how to look for it, and minor modifications that can be made.

Guidelines for Evaluating Computerized Instructional Materials costs \(\$ 3.75\). Contact the National Council of Teachers of Mathematics, 1906 Association Dr, Reston VA 22091. (703) 620-9840.
Circle 520 on inquiry card.

\section*{FORTH BegInner's Book}

Starting FORTH is for novice FORTH programmers. It embraces such topics as defining words, compiling words, vectored execution, virtual memory, and number-scaling techniques. Many programming examples and illustrations are featured. The book is published by Prentice-Hall Inc. For more information, contact FORTH Inc, 2309 Pacific Coast Hwy. Hermosa Beach CA 90254, (213) 372-8493.
Circle 521 on inquiry card.

\section*{DEC LSI/PDP-11 Systems Catalog}

A catalog featuring DEC (Digital Equipment Corporation) LSI/PDP-11 computer systems, peripheral equipment, and software is available from Compumart Corporation. Compumart distributes equipment and systems from DEC and peripherals from other major manufacturers. For your copy, contact Compumart Corporation, 65 Bent St, POB 568, Cambridge MA 02139. (617) 491-2700.

Circle 522 on inquiry card.

\section*{Software Protection}

The legal protection of computer software is examined in Computers, Copyright and the Law. This report was developed to help software authors make decisions about protecting their product's proprietary rights. The report encompasses the theories behind software protection, but it emphasizes protection methods and their relationship to software sales, leasing, and licensing. Contact Educational Programming Systems, 1328 Baur Blvd, St Louis MO 63132, (314) 991-0300.

Circle 523 on Inquiry card.

\section*{What's New? \\ PUBLICATIONS}


\section*{Internatlonal Software Directory}

The International Microcomputer Software Directory is a reference source of new and established software for all applications and systems. The directory is divided into sections listing programs for specific computers, describing categories of programs, and a section for users wishing to buy from a particular software house. Programs are cross-referenced throughout the sections. Details as to date of release, warranties, distributors, medium, source code, compatible systems, special configurations needed, limitations, and prices are all provided.
The directory is available for s29; updates are available every six months. System-specific directories that are extracted and cross-referenced from the main data base are available for \(\$ 12\). These directories list programs written for the Apple, TRS-80, and PET computers, and the CP/M operating system. The directory is available from Imprint Software, 4205 Howes, Fort Collins CO 80521, (303) 482-5574. In England, contact Imprint Software, 16 Milton Ave, Highgate, London, N6

Circle 524 on inquiry card.

\section*{600 Mlcroprocessors Cross-Referenced}

The Microprocessor IC D.A.T.A. Book lists characteristics of over 5000 integrated circuits, including over 600 microprocessors and associated programmable and read-only memory devices, interface-support circuits, processor architecture, and manufacturer software support. Processors are cross-referenced by generic numbers, technical characteristics, logic, block drawings, instruction sets, outline drawings, and manufacturers. The book is published twice a year. The subscription rate is \(\$ 55\) per year. Contact D.A.T.A. Inc, POB 26875-PR, San Diego CA 92126. (800) 854-7030; in California (714) 578-7600.
Circle 525 on inquiry card.

\section*{Computer Music Journal}

A special two-part issue of Computer Music Journal, a quarterly from MIT Press, surveys the applications of artificial intelligence to music. Articles deal with devices that will be capable of listening to, understanding and playing music, and reports on research underway that hopes to explain human musical cognition. Other topics include the use of the computer as an assistant for musical-score analysis and composition, automatic music transcription from sound to score, multilevel graphic representation of scores and sound in natural languages, intelligent music instruments, new theories of music, and an introduction to LISP.
A subscription to the Computer Music Journal costs \(\$ 25\) per year. Contact the MIT Press, 28 Carleton St, Cambridge MA 02142, (617) 253-2889

Circle 526 on inquiry card

\section*{SoftwareVendor Dlrectory}

The fourth edition of the Software Vendor Directory contains 1001 software vendors, 4195 products, and 80 hardware and 200 software categories. The directory costs \(\$ 57.95\). Optionally, the directory can be purchased for S 100, which includes two updates at six-month intervals. A single update costs S25. Also, a CP/M disk version is available for s78. Contact Micro-Serve Inc, 250 Cedar Hill Ave, Nyack NY 10960, (914) 358-1340.

Circle 527 on inquiry card.

\section*{Gulde to Publlshed Materlal on Computers}

Bookguide 1: Microprocessors and Microcomputers covers publications that describe the concepts, applications, and potential of microprocessor devices. It lists authors, abstracts, publishers, and prices for nearly 500 titles from 39 publishers. Books on more than 50 topics ranging from histories to dictionaries. microcomputer architecture, programming techniques, personal computers, and artificial intelligence, are listed. Bookguide 1 is available for \(\$ 11.50\) from Leatherleaf Book Services Inc. POB 28, Pembina ND 58271.
Circle 528 on inquiry card.

\section*{Books for the Apple}

MICROIApple 1 is the first volume of a series of books that will contain articles from Micro, The 6502 Journal. The articles contain Apple program listings, which are on a floppy disk that accompanies the book. MICROIApple 1 costs \(\$ 24.95\), including the disk. Contact Micro Ink Inc, POB 6502. Cheimsford MA 01824.
Circle 529 on inquiry card.

\title{
What's New? \\ PERIPHERALS
}

\section*{Connect an Olympla ES100 to a Microcomputer}

Using the Ren Tec RS-232C interface, the Olympia ESIOO typewriter can provide letter-quality printing and still function as a standard typewriter. The Ren Tec RS-232C uses CMOS (Complementary metal-oxide semiconductor) logic. It accepts an RS-232C serial or a parallel interface; accommodates odd, even, or no parity; features handshake logic; and also provides any charactertranslation format.

The Ren Tec ES costs \(\$ 295\). For additional details, contact Renaissance Technology Corporation, 3347 Vincent Rd, Pleasant Hill CA 94532, (415) 930-7707.

Circle 530 on inquiry card.

\section*{Color Printer for the Apple}

The OmniColor II is a color-ink jet printer with a 16 K - or 32 K byte buffer. Intended for the Apple II, software for 3.3 DOS is included. The OmniColor II uses eight colors, prints at 40 cps (characters per second), and can
print paper up to 13 inches wide, as well as print overlay pages and screens. It features normal or expanded print and the ability to dot-plot any section of memory. Contact Omnico Computer Corporation, 3300 Buckeye Rd. Atlanta GA 30341. (404) 455-8460. Circle 532 on inquiry card.

\section*{Double Your Graphics Capabillty}

The Double Hi-Res card provides two levels of grey scale and can display 80 columns by 24 lines. It is designed for the Apple II or III and is compatible with the Apple III's super-high-resolution graphics. Character sets can be defined with the Define Font program supplied. The Double Hi-Res features italics, underline, multi-ple-character sets as well as
graphics on the same screen, proportional spacing, mathematics symbols, and APL- and Japanesecharacter sets. Multiple-character sets can reside in memory simultaneously.

The price for the Double Hi-Res card and support software on a floppy disk is \(\$ 295\). Contact Spies Laboratories, POB 336. Lawndale CA 90260, (213) 644-0056. Circle 533 on inquiry card.

\section*{The Rhythm Box}

The Rhythm Box synthesizes bass and snare drums, wood blocks, short and long cymbals, hand claps, and tom-toms. It is programmable in Level II BASIC or assembly language. The unit has a phono jack for connection to an audio system, a power supply, a manual including BASIC and as-sembly-language software examples, and a selection of rhythm charts. The Model RBX-T for the TRS-80 Model I Level II is available for \(\$ 149\).

The Model RBX-S is for \(5-100\), Apple II, PET, and other systems. It connects to 9600 bps (bit per second) serial interfaces using either RS232C or 20 mA currentloop levels. It costs si79. For more information, contact Newtech Computer Systems Inc, 230 Clinton St, Brooklyn NY 11201, (212) 625-6220.

Circle 531 on inquiry card.

\section*{Thin Floppy-Disk Drives}

The Thinline 8-inch floppy-disk drives are 5.9 cm (23/10 inches) high and weigh 7 pounds. These double-sided head drives can be turned on and off by control signals from the interface. Head positioning is accomplished by a band-driven carriage. The door arrangement has been simplified by using a lever that closes and positions the disk in the drive. The Thinline drives record at 48 and 96 tracks per inch.

\section*{11 by 11 Digitizer}

The Demi-Pad is an 11-by 11 -inch digitizer tablet featuring a 200-sample-per-second rate. It includes a Z80-based interface, which provides RS-232C ASCII American Standard Code for Information Interchange) or binarycoded data, and 0.001-inch resolution. The Demi-Pad comes

There are two models available. The TM 848 - 1 stores 600 K bytes on one side of a disk and TM 848-2 stores 1.2 megabytes on both sides. The drives can be used in single- and double-density applications. For more information, contact Tandon Corporation, 20320 Prairie St, Chatsworth CA 91311. (213) 993-6644.

Circle 543 on inquiry card.

\section*{What's New?} MISCELLANEOUS

\section*{5-Inch Drives for the TRS-80 Model III}

Percom Data Company has 5-inch floppy-disk drives for the TRS-80 Model III. Systems can be ordered with either \(40-\) or \(80-\) track drives rated for double- and single-density operation. The first two drives mount inside the computer; the others mount externally. The first internal drive comes with a four-drive controller, a two-drive power supply, cables, a double-density disk operating system, and mounting hardware.

The four-drive controller features data-separation and writeprecompensation circuitry. It is capable of handling two-headed drives and single-density 8 -inch drives. The computer can use the Model III's disk operating system or Percom's OS-80/III. The first internal drive sells for \(\$ 749.95\) in the 40-track version and \(\$ 914.95\) in the 80-track version.

The second internal drive in-

cludes the drive mechanism, electronics, and installation hardware. It costs \(\$ 315\) in the 40-track version and \(\$ 474.95\) in the 80 track version.
Single external 40 -track drives are 5439 , and the dual 40 -track drives are \(\$ 878\). Cables for the ex-
ternal drives are \(\$ 29.95\). For details, contact Percom Data Company Inc, 211 N Kirby, Garland TX 75042. (800) 527-1592; in Texas, (214) 272-3421.

Circle 535 on inquiry card.


\section*{Speech Processor}

The Mimic speech processor converts speech to digital data and reconstructs the digital representation to analog form for reproduction through a speaker. The system can be used for digital speech-communications applications without a computer. The speech data rate is user-selectable, with speech reproduced at rates from 9600 to \(20,000 \mathrm{bps}\) (bits per second)

There are four versions of the

Mimic speech processor: a \(\$ 20\) bare board, an assembled and tested module for 579 , a \(\$ 149\) system configured for parallelport interfacing, and a TRS-80compatible plug-in version for s169. Documentation, including program examples and schematics for an S-IOO bus interface, is also available. Contact Mimic Electronics Company. POB 921. Acton MA 01720.

Circle 536 on Inquiry card.

\section*{Small-Systems Software and Services Sourcebook}

Small Systems Software and Services Sourcebook lists and cross-indexes software and services available to users of miniand microcomputers in business,
professions, and government. Entries include software and service listings related to system software, application software, and consulting and services in medical, business, investment, modeling, and other applications. The
book has some marketplace listings and display advertising. For more information, contact Information Sources Inc, 1807 Glenview Rd, Glenview IL 60025. (312) 724-9285.

Circle 537 on inquiry card.

\section*{What's New? \\ MISCELLANEOUS}

\section*{Buy and Sell}

Horsetrader is a publication for buyers and sellers of computer equipment. It features used, new, and rebuilt computers, terminals, printers, and other items. For information on ad or subscription rates, contact Horsetrader, POB 11712. Santa Ana CA 92711, 1714) 832-0628.

Circle 538 on inquiry card.

\section*{Book Catalog}

Telecom Library's 1981 catalog contains more than 300 titles of books, periodicals, training manuals, and audio cassettes for information professionals. The catalog features books on telecommunications management, data communications, data processing, computer programming, office automation, word processing, teleconferencing, satellites, and cable television. The catalog is free from Telecom Library Inc, 205 W 19th St. New York NY 10011. (212) 691-8215. Circle 539 on inquiry card.

\section*{CBASIC Program Dlrectory}

Compiler Systems Inc has published a directory listing 157 business-application programs as well as vertical-market packages written in CBASIC available from 30 software vendors. The CBASIC Software Directory provides a description of each program, its memory requirements, and the vendor's name, address, and telephone number. Unless noted, all products support CP/M and MP/M and require at least one floppy-disk drive. The directory is available for \(\$ 14.95\) from Compiler Systems inc, 37 N Auburn Ave, \(P\) OB 145, Sierra Madre CA 91024, (213) 355-1063.

Clicle 540 on inquiry card.


\section*{Single-Board Computer}

A single-board computer with analog, serial, and power-control l/O (input/output) has been announced by Wintek. The board features a 6801 or 68701 microprocessor with 2 K bytes of ROM (read-only memory). 128 bytes of programmable memory, and an internal and an external timer. The 12-bit A/D (analog-to-digital) converter can be configured for eight single-ended or four differential inputs. The eight digital I/O lines can be configured for
any mix of \(A C\) or \(D C\) inputs or outputs. The serial \(1 / \bigcirc\) allows half-duplex 20 mA current-loop communication to a host computer at software-selectable rates.

The prices range from \(\$ 88\) to \$295, depending on options and quantity. Applications include remote data acquisition, machinery control, and energy management. Contact Wintek Corporation, 1801 South St, Lafayette IN 47904, (317) 742-8428.

Circle 541 on inquiry card

\section*{Software for the Atari}

Personal Software has introduced MicroChess and Checker King for the Atari 400 and 800 microcomputers. Both games feature an on-screen, real-time clock for game timing. The games require 8 K bytes of memory and are priced at \(\$ 19.95\) each, on cassette.

The MicroChess program turns a color-display screen into a chessboard. It has eight selectable
levels of play, plays by tournament rules, and allows no illegal moves.
Checker King allows single, double, and triple jumps, forces jumps, and performs according to the tournament rules of checkers. For details, contact Personal Software Inc, 1330 Bordeaux Dr, Sunnyvale CA 94086, 1408) 7457841.

Circle 542 on inquiry card.


JBE one channel A-D \& D-A Converter can be used with any system having parallel ports - Interfaces with JBE Paraliel I/O Card - D.A conversion time \(-5 \mu \mathrm{~s} \cdot \mathrm{~A} \cdot \mathrm{D}\) conversion time \(20 \mu \mathrm{~s}\) - Uses JBE 5V power supply - Parallel inputs \& outputs include 8 data bits, strobe lines \& latches - Analog inputs \& outputs are medium impedance 0 to 5 volt range.
79-287
ASSM \(\$ 79.85\)
Bare Board \$39.95
Kt \(\$ 50,85\)
6502 MICROCOMPUTER


JBE's \(41 / 2 \times 31 / 4\) dedicated controller features: - 1024 bytes RAM (two 2114s) - 2048 bytes EPROM (2716) • Uses one 6522 VIA (comp. doc. Incl.) - Interfaces with JBE Solid State Switches \& A-D \& D-A Converter - Uses JBE 5V power supply 2716 EPROM avallable separately (2716 can be programmed with an Apple II \& JBE EPROM Pro grammer \& Parallel Interface) - 50 pin connector included in kit \& assm.
80-153
ASSM. \(\$ 110.05\)
Bare Board \$49.95
Kit \(\$ 89.85\)

\section*{SOLID STATE SWITCH}


Your computer can control power to your printer, lights, stereo \& any 120VAC appliances up to 720 watts ( 6 amps at 120VAC). Input 3 to 15 VDC - 2.14MA TTL compatible • Isolation \(-1500 \mathrm{~V} \cdot\) Non zero crossing \(\cdot\) Comes in 1 or 4 channel version.

\section*{79-282-1}

ASSM. \(\$ 13.95\)
Bare Board \(\$ 6.95\)
Kit \(\$ 10.95\)
79-282-4
ASSM. \(\$ 49.95\)
Bare Board \$24.95
Kit \(\$ 39.95\)
APPLE II DISPLAY BOARD

JBE's \(4-1 / 8^{\prime \prime} \times 3 \cdot 1 / 4^{\prime \prime}\) single board dedicated computer is designed for control functions. It features: - A Z80 Microprocessor software compatible with the 280,8080 \& 8085 Microprocessors - Uses a 280 PIO chip for IIO which has 2 independent 8 bit bidirectlonal peripheral interface ports with handshake \& data transfer control - Uses one 2716 EPROM (2K) \& two 2114 RAM memories ( 1 K ) - Single 5 V power supply at 300 MA req. - Clock frequency is 2 MHz , RC controlled - Board comes with complete doc. - 50 pin connector is included - 2716 EPROM available separately.
80-280
ASSM. \(\$ 128.05\)
Bare Board \(\$ 49.95\)
KITS119.95

\section*{PRINTER INTERFACE}


JBE Parallel Printer Interface interfaces your Apple \(11 \pm\) to Centronics \({ }^{\circ}\) compatible printers. This \(3^{\prime \prime} \times 4^{11}\) board features: on board ROM Compatible with integer Basic, Applesott and Pascal - Has one 8 bit paraliel latched output port with selectable pesitive or negative strobe and one bif input selectable for Ready or Ready - Cable and Connectors avallable separately.
80-297
ASSM. \(\$ 79.95\) KIt \(\$ 69.95\)
4 ft . Std. Dip Jumpers 16 pin \(\$ 4.25\) Champ Connector

\section*{POWER SUPPLIES}
- Use wall transformers for safety - Protected against short circuit and thermal breakdown.
\[
5 \text { VOLT POWER SUPPLY }
\]

Rated at 5 V 500 MA - Operates JBE A.D \& D.A Converter, Z80 \& 6502 Microcom. puters, 8085 \& 8088 Microcomputers.
80-160
ASSM. \(\$ 20.95\)
Bare Board \(\$ 8.95\)
Kit \(\$ 16.95\)
\(\pm 12\) VOLT POWER SUPPLY
Rated at \(\pm 12 \mathrm{~V}\) 120MA - Can be used as a single 24 V power supply •Ideally suited to OP.AMP experiments.

\section*{80-161}

ASSM. \$22.95
Bare Board \(\$ 8.95\)
Kit \$18.95


80-144
Bare Board \$25.95
ASSM. \(\$ 49.95\) Kit \$42.95
- Has run-stop, single step switch • Has 16 address LEDs, 8 data LEDs \& 1 RDY LED - All lines are buffered.
6502 \$9.95 \(6522 \quad \$ 9.95\) Z80 CPU \(\$ 9.95\) Z80 PIO \(\$ 9.95\) \(2716 \quad \$ 14.95\) 2716 Programmed

- Interfaces printers, synthesizers, keyboards, JBE A.D \& D-A Converter \& Solid State Switches - Has handshaking logic, two 6522 VIAs \& a 74LS 05 for timing • Inputs \& outputs are TTL compatible.
79.295

ASSM. \(\mathbf{\$ 6 9 . 9 5}\)
Bare Board \(\$ 39.95\)
Kit \(\$ 59.95\)

\section*{2716 EPROM PROGRAMMER}
 JBE 2716 EPROM Programmer was designed to program 5V 2716 EPROMS - It can also read 2716s. It interfaces to the Apple II using JBE Parallel I/O Card \& fourtibbon cable connectors - An LED indicates when power is being applied to the EPROM - A textool zero insertion force socket is used for the EPROM - Comes with complete doc. for writing and reading in the Apple II or Apple II + - Cables avallable separately.

\section*{80-244}

ASSM. \(\$ 49.95\)
Bare Board \(\$ 24.95\)
2 Ft. Ribbon Cable
Kit \(\$ 39.95\)
\(\$ 4.25\)

\section*{BARE BOARDS}

\section*{APPLE II EXTENDER BOARD}
\(31 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}\). Price includes 50 pin Con. nector.
\(80-143\)
\(\$ 12.95\)

\section*{80853 CHIP SYSTEM}

State-of-the-art system using an 8085, 8156 \& either an 8355 or 8755 - Instruction set 100\% upward compatible with 8080A.
Bare Board
\$24.95

\section*{80885 CHIP SYSTEM}

An 8086 tamlly microcomputer system using an \(8088 \mathrm{CPU}, 8284,8155,8755 \mathrm{~A}\) \& an 8185.
Bare Board
\(\$ 29.95\)

\section*{CRT CONTROLLER}

This intelligent CRT Controller uses an 8085A CPU \& an 8275 Integrated CRT Controller. It features: - 25 lines ( 80 Char./IIne) - \(5 \times 7\) dot matrix • Upper \& lower case - two 2716s (controller \& char. generator) - serial interface RS232 \& TTL • baud rates of 110, 150, \(300,600,1200,2400,4800 \& 9600\) - keyboard scanning system - unencoded keyboard is req'd e uses +5 V \& \(\pm 12 \mathrm{~V}\) power supplies - Doc. includes program listing \& composite video clrcult.
Bare Board only (Doc. incl.) \$39.95 Programmed 2716s each \(\$ 19.95\)

\section*{What's New?}

\section*{MISCELLANEOUS}


\section*{Compact Fluorescent Dlsplay Panel}

The itron square-format DMI \(28 \times 128\) C 128 by 128 dot matrix display panel is slightly over 76.6 by 76.55 mm square 13 inches) and only 20 mm 10.8 inch) thick. It is capable of displaying special symbols, geometric patterns, graphics, block and cursive alphanumerics, continuously
scrolling images, and lighted areas. Each dot is individually addressable, and ascenders and descenders, script lettering, linear graphics, and charts can be produced. For more information, contact Noritake Electronics Inc 22410 Hawthorne Blvd, Torrance CA 90505, (213) 373-6704.

Circle 544 on Inquiry card.

\section*{Plggybacked Prototyping Boards}

Circbords are perforated prototyping boards that can add 24 square inches of working area and 20 to 60 DIP |dual-inline package) positions when mounted on spacers, piggybackstyle, on edge connector boards. Circbords can also be installed using card guides or in aluminum extrusions.

The Model 8001 is designed for solder connections. It holds up to twenty 16 -pin integrated circuits. The Model 8002, for wrapped wire, can hold up to thirty-five 16-pin DIPs. On the 8003 model, up to sixty 16 -pin DIPs, or any combination of devices, can be attached using solder or wirewrap. Each Circbord costs \(\$ 9.95\). Contact Vector Electronic Company, 12460 Gladstone Ave, Sylmar CA 91342, (213) 365-9661. Clrcle 545 on inquiry card.

\section*{16 K-Byte ROM from OKI}

OKI Semiconductor Inc has introduced an NMOS (n-type metaloxide semiconductor), 128 K-bit ROM (read-only memory). The MSM-38128 is organized as 16 K bytes by 8 bits. It has a 450 ns maximum access time, operates off a single +5 V supply, and features a 120 mA supply current in the operating mode and 20 mA current in standby. Compatible with the 128 K-bit 2364 ROM from intel, the MSM 38128 features power-down state and is nonclocked. All inputs and outputs are TTL |transistor-transistor logic) compatible.

For information, contact the the company at 1333 Lawrence Expy, Suite 401, Santa Clara CA 95051. (408) 984-4842

Clircle 546 on inquiry card.

\section*{We carry Apple II+ from Bell \& Howell}


PROGRAM YOUR OWH EPROMS
Bnading Iron for PET/CBM
EPROM Prognmmer with software for all ROM verslons. Includes all necessary hardwars and software to prognm or copy 2716 and 2532 EPROMS.

\section*{Paper-Mate Word Processor}
\(\$ 39.95\)
PET/CBM tull teawred 60 command system by Michael Riley. Uses either tape or disk and any printer. Includes intext commands, tloating cursor, scrolling. etc.

\section*{FLEX-FILE Data Base for CBM/PET}

Random file handling systern with Report Writer and Mail Label Handler. By Michael Riley


\section*{CASSETTES - AGFA PE-611 PREMIUM}

High output, low noise. 5 screw housing, labels.
\(\begin{array}{llll}\mathrm{C}-10 & 10 / 5.65 & 50 / 25.00 & 100 / 48.00\end{array}\) \(\begin{array}{llll}\text { C-30 } & 10 / 7.30 & 50 / 34.00 & 100 / 66.00\end{array}\) All other lengths available. Write for price list.


\section*{4 PART HARMONY MUSIC SYSTEM for PET}

The Visible Music Monitor, by Frank Levinson allows you to easily enter, display, edit, and play 4 part harmony music. Includes whole notes thru 64 ths (with dotted and triplets), tempo change, key signature, transpose, etc. The \(\mathrm{KL}-4 \mathrm{M}\) unit includes \(D\) to \(A\) converter and amplifier (add your own speaker).
KL-4m Musk Beard wilth YMM Prognm
\(\$ 59.90\)

\section*{THE STAR MODEM}

From Livermore Data Systems
RS232 MODEM SALE \$128 IEEE 488 MODEM SALE \(\$ 199\) RS232 CCITT \(\$ 170\) IEEE 488 CCITT \(\$ 280\)

STAR Modem is the price performance leader with a full 2 YEAR FACTORY WARRANTY.

REVERSAL (Spracklen) 32K Apple 28.00

Super FORTH 48K Apple
Energy Miser for PET, Apple, or Zenith Data Manager (Lutus) 24 K Apple Histo-Graph (Boyd) 48K Apple Data-Graph (Boyd) 48 K Apple Apple II User's Guide (Osborne) Introduction to Pascal (Sybex) Pascal Handbook (Sybex)
Graphics Cookbook for Apple
Musical Applications of Micros (Chamberlin) Basic FORTRAN (Coan)
KMMM Pascal for PET 40.00
24.50
40.00
24.50
40.00
12.00
10.30
12.00 20.00
\$75 translator for faster execution. 16 K with tape or disk.

\section*{EARL for PET [disk file based)}
\(\$ 65\)
Editor, Assembler, Relocator, Linker to generate relocatable object code.

\section*{FORTH for PET/CBM or Apple}

A full-eatured FORTH with extensions conforming to Forth Interest Group standards. Includes assembler, string processing capabilities, disk virtual mernory multiple dimensioned arrays, lloating point and integer processing.
 WRITE FOR SYSTEM PRICES
*** EDUCATIONAL DISCOUNTS *** Buy 2 PET/CBM Computars. racolve 1 FREE

Word Pro \(3+-32 \mathrm{~K}\) CBM, disk, printer 250
Word Pro \(4+-8032\). disk, printer 335
OZZ Data Base System for CBM 8032335
VISICALC for PET or ATARI
170
SM-KIT - Super PET ROW Utill
40
Programmers Toolkit - PET ROM Utilities \(\quad 34.90\)
PET Spacemaker II ROM Switch
2 Meter PET to IEEE or IEEE to IEEE Cable
36.00
40.00

Dust Cover for PET
6.00
\(\begin{array}{lr}\text { IEEE-Parallei Printer Interface for PET } & 110.00\end{array}\)
IEEE-RS232 Printer Interface for PET 120.00
The PET Revealed
17.00

Library of PET Subroutines
17.00

MIPLOT Intelligent Plotter
by Watanabe Instruments (Digiplot)


Has all intelligent functions for producing graphs and drawings including \(\delta\) vector and 4 character commands. Solid and broken lines can be specified. Character generator for alpha numeric, and symbols. Characters can be rotated in 4 orientations, and can be 16 sizes. Coordinate axes drawn by specitying graduation interval and number of repetitions. Parallel ASCII interlace, \(11 \times 17\) paper.

\section*{SPECIALS}
\begin{tabular}{lr} 
EPSON MX-80 Printer & \(\mathbf{4 7 5}\) \\
EPSON MX-80 F/T Printer & 575 \\
EPSON MX-70 Printor & 380 \\
EPSON MX-100 Printer & 770 \\
Centronics 739 Printer & 750 \\
STARWRITER Dalsy Whool Printor & 1445 \\
Leedex Video 100 12" Monitor & 129 \\
ZEWITH DATA SYSTEMS & \\
Z19 Video Terminal & 729 \\
Z89 with 48K & 2150 \\
Extra 16K RAM & 115 \\
Z-47 Dual 8" Drive & 2775 \\
\hline
\end{tabular}

SYM-1
209
SYM BAS-1 BASIC or RAE-1/2 Assembler 85
KTM-2/80 Synertek Video Board

\section*{DISK SPECIALS}


SCOTCH (3M) 5 \(1 /\) " \(^{\prime \prime} \quad 10 / 2.85 \quad 50 / 2.75 \quad 100 / 2.65\) SCOTCH (3M) \({ }^{8 \prime}\) \(10 / 2.90 \quad 50 / 2.80 \quad 100 / 2.70\) Verbatim \(51 / 4\) 10/2.45 50/2.40 100/2.35 (add 1.00 for \(51 / 4\) " Verbatim plastic storage box) Verbatim \(8^{\prime \prime}\) Dbl. Dens. 10/3.45 50/3.35 100/3.25 BASF 51/4" 10/2.40 20/2.35 \(100 / 230\) WRITE tor prices on WABASH Disks
WE STOCK MAXELL DISKS
Diskette Storage Pages 10 for 3.95
Disk Library Cases \(\quad 8^{\prime \prime}-2.85 \quad 5^{\prime \prime}-2.15\)

ATARI \(800 \quad \$ 745\)
All Atari Modules 20\% OFF
atari educational plan wrta for dutills.

\section*{A P Products 15\% OFF A P Hobby-Blox 15\% OFF}

\section*{ALL BOOK and SOFTWARE PRICES OISCOUNTED}

The 8086 Book (Osborne)
14.00

Z8000 Assembly Language Programming \(\quad 16.90\)
PET Personal Computer Guide (Osborne) 12.75
PET and the IEEE-488 Bus (Osborne) 13.60
6502 Assembly Language (Osborne) \(\quad 14.45\)
Programming the 6502 (Zaks)
6502 Appllcations Book (Zaks)
6502 Software Cookbook (Scelbi)
CP/M Handbook (w/ MP/M) Zaks
10.45

Practical BASIC Programs (Osborne) 9.45

Some Common BASIC Programs (Osborne)
Source Hookup over 1000 programs/services 88


Double Your 51/4" disk storage capacity without adding a drive.
Get twice as much from your H 88 or H89 microcomputer. Our FDC-880H floppy disk controller. in conjunction with your \(51 /{ }^{\prime \prime}\) drives, for example. expands memory capacity from 256 bytes to 512 bytes per sector
And it handies single and doublesided. single and double-density. \(8^{\prime \prime}\) and 5 \(1 / 1 /\) drives - simultaneously
Call 714/275-1272 today or write for details.
C.D. R. Systems Inc.

Controlled Data Recording Systems. Inc 7667 Vickers St.. San Diego. CA 92111

Circle 55 on inquiry card.


\section*{Scotch}

DISKETTES

\section*{}

51/4"'Sgl. Dens. 26.70/10
Specify soft, 10 or 16 hard sectors
8'' Sgl. Dens. 27.30/10
8' Dbl. Dens. 35.80/10
Specify soft or 32 hole hard
Add \(\$ 2.00\) shipping - Michigan add \(4 \%\) tax
LYBEN COMPUTER SYSTEMS
27204 Harper Ave.
St. Clair Shores, MI 48081
Authorized Distributor
Information Processing Products


Clicle 196 on Inquiry card.
CONTROL-Z
SINGLE BOARO 2-80R COMPUTER FOR CONTROL USES

 Soum


为
PRICE: ss\%s



\section*{COMPUTER-AID}

1122 DELAVINA SANTA BARBARA, CA 93101 (80'5) 866-3077

ONE BOARD CP/M SYSTEM!

only \(\$ 750\) Assm., Tested \& Burned-In for one week

\section*{Features:}
- \(81 / 2\) by 12 inches
- 10 MHZ 8085 CPU
- 64K RAM
- 3 RS. 232 channels
- 8272 Floppy Disk Controller
- Handles Single/Double Density
- One to Four Drives. 801 R or 850R

Documentation \(\$ 15\) CP/M Floppy Disk Operating System \(\$ 150\) Check or Money Order


Circle 32 on inquiry card.

\section*{ATARI OWNERS}

Parallel Printer Interface for the ATARI 800
connects to controller jacks 3 and 4 works with BASIC/DOS/ASSEMBLER FOUR printer connectors available TRENOOCM 100/200 \(\qquad\) A8P. 1 ATARI 825/CENTRONICS 730/737 A8P-2 EPSON MX \(\cdot 80 / \mathrm{MX}\) - 70 \& other \(36 \mathrm{pin} \cdot \mathrm{ABP}-3\) - Fits all other parallel Centronics plus

Okidara, Anadex, Base 2 Mtcrotek. etc. D.S. PAPER TIGER 440/445 . . . . . . . A8P-4
\(\$ 69.95{ }^{6 \%}\) ca cales ax order by part number M.C./VISA accepted
graphics printing soft ware g ATARI 400 printer interfaces also available

To order toll free 1-800-344.7493 In CA call 12091 667-2888
HACROTRON


\section*{WANTED:}

APPLE, PET, TRS-80, CP/M (0)

Westico is a publisher and distributor of protessional software for microcomputers If you have a new program ready for distribution or want your existing programs to reach a larger market, contact: Phillip Woellhof, V.P. Mktg Westico, Inc.
25 Van Zant Street
Norwalk, CT 06855 (203) 853-6880

To increase your profits, take advantage of Westico's worldwide promotion and olstributlon.


The Software Express Service
Circle 197 on inquiry card.


Microprocessor Catalog 40 page cotalog of 6500 single board camputers.
Intertace madules. SpRint 68 cantral compular devolopment system, wizRD mullitosking DOS assomblers. compriers, biAsic. crass assembiers, cross compliers. custom engineering. OEM applicallons VT wiwter 1801 Soulh streel 347.742.8428

\section*{NOBODY KNOWS MORE ABOUT ADDING MEGABYTES TO YOUR TRS-80 MODEL II* THAN AMERICAN SMALL BUSINESS COMPUTERS}

THE CAMEO CONNECTION The Cameo 10 Million Character Disk Drive Subsystem (pictured in foreground) Is A 5 Megabyte Fixed, 5 Megabyte Removable Cartridge. Type Disk Drive. Advantages To This Unit Are Ease of Backup For Data and Program Files and Low Cost. By Attaching A Multiplexor Unit Several Model II's Can Be Attached To The Cameo Disk Drive. For Further Pricing, Availability, and Operating Systems Options, Call or Write to American Small Business Computers and ask for the CAMEO CONNEC. TION.


THE CORVUS CONNECTION
The Corvus Disk Drive Subsystem (center of picture) Is Available in 5, 10, and 20 Million Character Capacities. The Corvus System Is The Ultimate in The Sealed "Winchester, All-Fixed" Type Drive. The Corvus is Designed To Operate In The Harshest Environments Such As Factories, Oil Rigs, Etc. Backup Of Data Is Accom. plished Via Optional MIR. ROR Backup Device Where. by Data Is Written Onto A Standard Video Tape Record. er. A Great Number of Model II's May Be Attached To The Corvus Via An Optional CONSTELLATION Multiplexor. For Further Pricing, Availability, and Operating Systems, Call Or Write to American Small Business Computers and Ask for the CORVUS CONNEC. TION.

\section*{THE AMERICAN SMALL BUSINESS COMPUTERS MINI-WINCHESTER SPECIAL} The MINI-5 (being held by Corporate President Robert Webster) Is American Small Business Computer's Very Own Disk Subsystem. The MINI-5 Offers Approximately 5 Million Characters of Information Storage and is Based On the Famous Seagale Technology ST-506 Micro Winchester Drive. Now You Can Own State-OF-The-Art Technology At An Affordable Price - Only \(\$ 3500\) - Which Includes Drive, Contoller Electronics, Power Supply, Cabinet, Cables, Documentation and Operating System Software.

DEALER INQUIRIES INVITED

\section*{AMERICAN SMALL BUSINESS COMPUTERS}


NEW! for the '89 from
MAGNOLIA•
MICROSYSTEMS

\section*{DOUBLE DENSITY DISK CONTROLLER}
for both \(51 / 4^{\prime \prime} \& 8^{\prime \prime}\) drives only \(\$ 595\) complete including \(\mathrm{CP} / \mathrm{M}^{\text {™ }} 2.2\)

MAGNOLIA MICAOSYSTEMS, INC. 2812 Thorndyke W., Seattle 98199 (206) 285-7266 (800) 426-284

CP/M is a trademark of Digital Research.

Cliclè 199 on Inqulry card.
\begin{tabular}{|c|}
\hline FULLY AUTOMATED BARCHARTS \\
\hline Use the TBAR program with your produce fully automated barcharts. Produce professional quality charts in two colors with many \({ }^{\text {features. }}\) \\
\hline  \\
\hline Price: 5175.00 \\
\hline JMCA Software, Inc. 4717 University Dr., NW Suite 106 Huntsville, AL 35805 \\
\hline
\end{tabular}

Circle 182 on inquiry card.

\section*{\(\mathrm{CHIPS}_{\&}\)}

DALE [3
THE INFLATION FIGHTERSI - RAM -

4116 200ns \(8 / \$ 16.25\)
2114 L 300ns \(8 / \mathrm{s} 18.45\)
4164 200ns \(\$ 27.00\)
- EPROM -

2716 (5v)450ns \(8 / \$ 5.35\) ea. \(\$ 5.75\) ea. 2732 ( \(5 v\) ) 450 ns \(8 / \$ 13.50 \mathrm{ea}\). \(\$ 14.50 \mathrm{ea}\).
We buy from Manufacturer's Authorized Distributors. All Chips are fully Guaranteed. Call for quantity pricing Ple use allow up to 3 wks . for personal checks to
cleat.
Add 52.50 Shipping \(\varepsilon\) Handling
C.O.D. \({ }^{3} .00\). Wash re residents add \(5.4 \%\) Sales Tax Chips \(\varepsilon\) dale
P.O. Box 31607

Scattic. Wash. Zip 98103 Master Charge
1-206-524-9126 VISA accepted.

COMPUTER SHOWS
SECOND ANNUAL
NJ MICROCOMPUTER
SHOW AND FLEAMARKET - 1981
NEWARK, NEW JERSEY
Sat. Oct. 24 \& Sun. Oct. 25
10-5:30 PM \& 10-3:00 PM HOLIDAY INN (NORTH) NJ Turnpike - Exit 14 (Take Route 1-9 Service Road - Follow Signs) REGISTRATION \(\$ 5.00\)
FLEAMARKET ONLY \(\$ 3.00\)
Fleamarket Permits \(\$ 5 /\) Spot (Includes Admission)
Commercial Exhibits •User Groups • Fleamarket SECOND ANNUAL
NATIONAL " 80 "' MICROCOMPUTER
SHOW (FOR TRS•80* USERS) April 29, 30, May 1, 1982 NEW YORK STATLER HOTEL NEW YORK CITY
100 Exhibit Booths • Speakers • User Groups -TRS-80 is a Trademark of Tandy Corporation
For Registratlon, Exhibitor or Fleamarket Information Contact:
KENGORE CORPORATION
3001 Route 27 • Franklin Park, NJ 08823 (201) 297-2526


Circle 288 on inquiry card.
\[
\text { C. } \begin{aligned}
& \text { C. WRI T E R } \\
& \text { TRS-8 O* } \\
& \text { Color Computer } \\
& \text { WORD PROCESSING }
\end{aligned}
\]
user modifiable ex. basic w/page forhatiting, hove, tabs, deletion Insertion, global search \& edit centering, indenting, page pause ASCII CODES, JUSTIFY, 32K OPIION this ad prepared with c.c. hriter Dist: TRANSFORMATION TECHNOLOGIES tTRS-80 is a Th of Tandy Corp.
\$30 Check or M.O. to C. C. WRITER

194 Lockwood Ln. Bloomingdale, IL6010B

HP.85's
HP.83's
HP. 9895 Dual 8 ," Drives
HP-8292 Dual \(5^{\prime \prime}\) Drives HP-7225B Plotter
Apple II + Computers LOBO Disc Drives EPSON MX-70 Printers with Apple 1/0 IDS 445G Printers NEC Spinwriters with Tractors IOS 460G Printers IDS 460G Printers IDS 560G Printers
 300 Dual \(8^{\prime \prime}\) Drive computer with 64K RAM, OASIS, CP/M 2.4MB Disc
memory, 2 serial ports, 1 paralle memory, 2 serial ports, 1 parallel port and a Televideo
910 CRT
\(\$ 2540.00\) . \(\$ 1760.00\) \(\$ 5300.00\) . \(\$ 1960.00\) . \(\$ 1720.00\) \(\$ 1720.00\)
\(\$ 1090.00\) . \(\$ 395.00\)
. 450.00 . 899.00
. \(\$ 2560.00\) \(\$ 1099.00\) 1330.00

CDC Lark АИ 210\%a36-5350

DuE Dild SYSTEMS
"THE COMPLETE SYSTEMS AND SUPPORT TEAM"

Circle 209 on Inquiry card.


CIrcle 161 on Inquiry card.

\section*{MEMOREX FLEXIBLE DISCS}

WE WILL NOT BE UNDERSOLDII Call Free (800)235-4137 for prices and information. Dealer inquiries invited and C.O.D.'s accepted


Circle 278 on inquiry card. Santa Clara, CA 95054 Will calls: 2322 Walsh Ave (408) 988-1640 TWX 910-338-2139

INTEGRATED CIRCUITS


PROM Eraser
assembled. 25 PROM capacity 537.50 (with timer \(\$ 69.50\) ) 6 PROM capacty OSHA UL version \(\mathbf{\$ 7 8 . 5 0}\) (with timer \(\boldsymbol{\$ 1 0 8 . 5 0}\) )

\section*{280 Microcomputer}

16 bit \(1 / 0,2 \mathrm{MHz}\) clock, \(2 \mathrm{~K} \mathrm{RAM} ,\mathrm{ROM} \mathrm{Bread-}\) \(\$ 2850\) Full kit 599 no Monito. Bare Board Supply Kit \(\$ 35.00\). Tiny Bazic \(\$ 30.00\)
S-100 Computer Boards
8K Static Godbout Econo liA Kit 149.00 16K Static Godbout Econo XIV Kit 269.00 24k Static Godbout Econo XX-24 Kit 414.00 32k Static Godbout Econo \(X X\) - 32 Kit 537.00 16K Dynamic RAM KIt 32K Dynamic RAM Kit 289.00 64K Dynamic RAM Kit 399.00 Video interlace kit

81 IC Update Master Manual \(\$ 79.95\)
Comp. IC data selecior. 2 vol. master reference
guide. Over 51.000 cross reterences. Free update service through 1981. Domestic postage 54.75 .

\section*{Modem Kit \$60.00}

State of the art, orig., answer. No tuning necessary. 103 compatible 300 baud. Inexpensive acoustic coupler plans included. Bd. Only
\$17.00. Anick in
Gremlin Color Video Kit \$69.95
\(32 \times 16\) alphaznumerics and graphics, up to 8 colors with 647 crips On board RF Modulator Kit \(\$ 4.95\)

NiCad Battery Fixer/Charger Kit Opens shorted cells that wont hold a charge and then charges thern up. all in one kit w/ful parts and instructons.
Rockwell AIM 65 Computer
6502 based single boand with tull ASCIl keyboard and 20 column thermal printer. 20 char. alphanumeric display, ROM monitor, fully expandable. S405.00. 4K version S450.00. 4 K Assembler \(\$ 85.00\). BK Basic Interpreter \(\$ 100.00\).
Special small power supply for AlM65 assem. in frame \(\$ 54.00\). Complete AlM65 in thin bnefcase with power supply \(\$ 499.60\). Molded plastic enclosure to fit both AlM65 and power supply 547.50. Special Package Price: 4K AIM, 8K Basic power supply, cabinet \(\$ 625.00\).
AIM65/KIMNIM/Super Ell 44 pin expansion board: 3 female and 1 male bus. Board plus 3 connectors \(\$ 2.95\).
60 Hz Crystal Time Base Kit \(\$ 4.40\) Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy.

\section*{Video Modulator Kit}
\(\$ 9.95\)
Convert TV set into a high quality monitor w/o affecting usage. Comp. kit wfill instruc.
Multi-volt Computer Power Supply \(8 v 5\) amp. \(\pm 18 \mathrm{v} .5\) amp. \(5 v 1.5 \mathrm{amp}\). -5 v \(.5 \mathrm{amp} .12 \mathrm{v} .5 \mathrm{amp},-12 \mathrm{v}\) option. \(=5 \mathrm{v} . \pm 12 \mathrm{v}\) are regulated. Basic Kit S35.95. Kit with chassis and all hardware \(\$ 51.95\). Add \(\$ 5.00\) Shipping. \(\$ 1.50\) shipping.

\section*{NEW 16K-RAM PERSONAL COMPUTER}
\(5229^{00}\) frcian mate
For \(\$ 229^{\circ 0}\) you get the new Interact Model "R" Computer, 16K-RAM, 2K.ROM, 8080A Microprocessor, color, sound, full 53 keyboard, high speed cassette, AC adapter, R.F. Modulator, Black Console Case, 90 days parts and labor warranty, owners' guide, FCC approved.
15 DAY FREE TRIAL Return within 15 days complete and undamaged for refund of purchase price.

PROTECTO ENTERPRIZES BOX 550, BARRINGTON, IL 60010 PHONE 312/382-5244 TO ORDER

MULTIBUS for SALE:
SBC 86/12A ...... \$1200
SBC 80/30 ......... \$ 450
SBC 064 ......... \$ 900
SBC 604 ......... \$ 85
SBC 614 ......... \$ 85
BLC 556 ......... \$ 175
Much more in stock. We buy/swap/ sell any/all computer systems. Add \(2 \%\) for shipping/handling.

\section*{Oracle Electronics \& Trading Co., Inc.}

467 Hamilton Ave., Suite 22 Palo Alto, CA 94301 (415) 321-7650

RS-232 PROBLEMS?


LET THE RS-232 TESTER HELP YOU SOLVE YOUR COMPUTER INTERFACE PROBLEMS. DESIGNED TO CONNECT IN SERIES WITH ANY RS-232 INTERFACE, IT DISPLAYS THE STATUS OF SEVEN OF THE MOST IMPORTANT LINES: TRANSMIT DATA, RECEIVE DATA, REQUEST TO SEND, CLEAR TO SEND, DATA SET READY, CARRIER DETECT, AND DATA TERMINAL READY. THE RS- 232 TESTER REQUIRES NO POWER AND MAY BE LEFT IN THE LINE PERMANENTLY.
\$39.95 POST PAID
\(B\) \& B ELECTRONICS
BOX 475/MENDOTA, IL 61342

Circle 35 on Inquiry card.

Serial Printer Interface

(RS232C) tor
APPLE I®
onlys \({ }^{179} \ddagger\)
assembled
rested
burned in/ ourned in
- Powerlui ON BOARD SOFTWARE provides -TOP OF FORM \& AUTO PAGING
-LIST lormat for program listings (inserts 1 or 2 blank lines atter any user specitied program line) "HARD COPY" reproduces screen text on printe: INPUT from printers wilh keyboards
-32 DIP SWITCH levers selecI ALL printer interlace parameters (columns/Ine. lines/page. vertical margins and more)
- BAUD rates between 70 and 1500
- Output funclions selected via ATTRACTIVE color coded CONTROL PANEL (lits under keyboard -Conirol panel and 7 it printer cable included ORDER NOW or send for MORE INFORMATION
RADIX, Inc. \(\quad\) CO residenis add \(3^{\circ} \%\) sales tax PO Box 3465

Foreign orders aded \(10 \%\) Litileton CO 80161 MC VISA COD/MO - reqistered liademark of Apple Compuler Inc

Circle 315 on inquiry card.

\section*{LOWEST POSSIBLE PRICES} BEST POSSIBLE WARRANTY


\title{
MICROPROCESSOR SUPPORT I.C.'S
}

\section*{WE GUARANTEE FACTORY PRIME PARTS}


\section*{6809 Small C Compiler}

Generates assembly language source output
- Requires only 16 K memory
- Library functions in source code
- Generates position independent code
- Supports most C functions
- Generates ROMmable code

INTRODUCTORY PRICE \(\$ 75\) specify 5 or 8 inch diskette SSB or FLEX

7ERMS: Check or Moner Order. Californid residents udd 6\%. C. O. D. orders add \(\$ 3.50\) shipping \& handiling.

DUGGERT GROWING
POST OFFICE BOX 305 SOlana beach.CA 92075 714.755 .4373

Availuble soon: Basic to C Converter

Circle 126 on Inquiry card.


Circle 19 on Inquiry card.


\(15 / 16^{\prime \prime} \times 3^{1 / 2 "} \quad\) white pressure 1 up - pin feed sensitive

PRICE INCLUDES SHIPPING Packed 5M per box - Min. order 1 box - \(\$ 14.75\) Check with order - Mass Residents add 5\% Sales Tax

CHECK-MATE
P.O. Box 103, Randolph, MA 02368 Telephone: 617-963-7694

Circle 58 on inquiry card.


DIGITAL PROPORTIONAL CONTROLLER

7 BIT TTL/CMOS INPUT OPTICAL ISOLATION

INTERFACE COMPUTERS TO MOTORS, HEATERS, LAMPS

120 VAC 240 VAC
15 AMP
CS
3715 WHITSELL AVE PALO ALTO, CA 94306 (415) 493-0779

Circle 98 on Inquiry card.


PROFESSIONAL MICROCOMPUTER


THE BEST VALUE ON THE MARKET
- 280 4MHZ - 64K RAM
- DUAL 8" DRIVES • 1.2 MB STORAGE
- 2 Serial l/o - 2 Parallel lo
- OPERATING SYSTEM AND UTLLITIES MICRO BUSINESS ASSOCIATES. INC 500 SECOND STREET
SAN FRANCISCO. CA 94107
415-957-1343

Circie 217 on inquiry card.

\section*{BIBLIOTAK}

The Bibliographic Management System
- Includes journals, books and symposia (patents, technical reports, government documents available soonl)
- A minimum of 500 reterences per blbliography
- Rapid cilation entry through mulli.page video orms
- Search by authors, tilles, edtiors, dates andior keywords
- User defined output formats
- Requires 48 K Apple II, ROM Applesoft \& two drives
- \(\$ 300.00\)

Scientific Software Products 3171 Donald Avenue
Indimapolls, iN 46224 Inallonapolis, IN 46224
\((317) 200-0467\) IN residents add 4\% tax please Dealer inquintos weicome Visie il and Apposot aro rrademaiks ol Apple Co

Clicle 320 on Inquily card.


\title{
WE WILL NOT BE UNDERSOLD
}

DISK DRIVES FOR TRS.80* Model I


CCI-100 5 \(1 / 4,40\) Track (102K) \(\$ 299\)
ADD.ON DRIVES FOR ZENITH Z. 89
CCl. \(189 \quad 51 /\) " \(^{\prime \prime}, 40\) Track ( 102 K ) \(\$ 394\)
Z. 87 Dual \(51 /\) / \(^{\prime \prime}\) system \(\$ 995\)

External card edge and power supply included. 90 day warranty/one year on power supply.

RAW DRIVES
\(51 / 4\) "TEAC Or TANDON \$CALL POWERSUPPLIES \$CALL
DISKETTES - box of 10


\section*{SYSTEM SPECIAL}

Apple II Plus 48 K w/drive and controller. Epson MX-80 printer and interface. SUP-R Mod RF Modulator: List \$2965 You Pay \(\$ 2299\)


APPLE PERIPHERALS \$ CALL

\section*{S - 100 CALIFORNIA COMPUTER SYSTEMS}


\section*{PRINTERS}


NEC SPINWRITER
Letter Quality High Speed Printer R.O.
R.O. with tractor feed
\$2395
\$2555
KSR with tractor feed \$2795
\(\begin{array}{lccccc}\text { NEC SPINWRITER } & 3500 \text { Series, } 5 \text { new models } & & \text { SCALL } \\ \text { EPSON } & \mathrm{MX}-70 & \mathrm{MX}-80 & \mathrm{MX}-80 \mathrm{FT} & \mathrm{MX1} 00 & \text { SCALL }\end{array}\) PAPER TIGER
\begin{tabular}{lll} 
IDS 445 & Graphics \& 2K buffer & \(\$ 695\) \\
IDS 460 & Graphics \& 2k buffer & \(\$ 799\) \\
IDS 560 & Graphics & \(\$ 999\)
\end{tabular}

ANADEX DP-8000 \$849 DP-9500101 \$1295
OKIDATA
Microline 80 Friction \& pin feed \$ 415
Microline 80 Friction, and pin \& tractor feed \$ 500
Microline 82 Friction \& pin feed feed \$ 615
Microline \(83 \quad 120 \mathrm{cps}\), uses up to 15" paper \$ 849
CENTRONICS 739, new model with graphics \$ 749
C. ITOH

Starwriter I 25 cps, parallel interface \$1449
Starwriter I 25 cps, serial interface \$1529
Starwriter II 45 cps , parallel interface \(\$ 1829\)
Starwriter II 45 cps, serial interface \$1949

\section*{PRINTER SPECIAL}

SEIKOSHA GP-80M
List \$399
You Pay \(\$ 319\)

\section*{MONITORS}

BELL \&
HOWELL 9"B\&W BHD911 \$195
LEEDEX \(12^{\prime \prime}\) B \& W \(\$ 129 \quad 12^{\prime \prime}\) Green Screen \(\$ 159\)
SANYO \(\quad 9^{\prime \prime}\) B \& W \(\quad \$ 149 \quad 12^{\prime \prime}\) Green Screen \$238
ZENITH 12"B \& W \$219 \(13^{\prime \prime}\) Color \$406
\(12^{\prime \prime}\) Green Screen \$129
TELECOMMUNICATIONS
LIVERMORE STAR MODEM 2-year guarantee * \(\$ 125\)
UNIVERSAL DATA SYSTEMS UDS-103 \$179
D-CAT HARD WIRED DIRECT MODEM \$189
AUTO-CAT Auto Answer, Direct Connect Modem \$249
APPLE-CAT II
\$349
D.C. HAYES MICRO-MODEM \$295
D.C. HAYES SMART-MODEM \$235

CCI Telnet Communications Package \$135
APPLE ACCESSORIES AND SOFTWARE
VISICALC \$155.00


HI•RES FOOTBALL \$ 35.00

For fast delivery, send certified checks, money orders or call to arrange direct bank wire transfers. Personal or company checks require two to three weeks to clear. All prices are mail order only and are subject to change without notice. Call for shipping charges.


\section*{database manager for TRS-80'Model I}
- CREATE random access disk files 15 fields or 255 bytes/record Files can span 4 disk drives
Password protected file access - Database DIRECTORY displays all user files and their attributes - Powerful TRANSACTIONS-add, edit, read, delete \(\&\) list records Efficient binary tree sorts
- Sophisticated QUERY with multikey relational \& logical operations - REPORT formatter requires only for user to select desired fields Automatic sub \& grand totals May be used with lower case
- Entirely MENU DRIVEN operation
- Extensive error trapping routines - Extensive error trapping routines - Requires \(32 k-2\) disk drives

Introductory price \(\$ 59.95\)
Visa and MasterCard accepted

\section*{mentor software}

816 McLane Ave-Morgantown, WV 26505
Tandy Corp. Trademark
Circle 212 on inquiry card.


Circle 386 on inquiry card.

FACTORY PRIME STATIC RAM CHIPS 2114 Super Low Power 200 ns . \(1 \mathrm{Kx4}\)
\(\$ 2.90\)
6514 CMOS 300 ns . \(1 \mathrm{Kx4}\)
6116 CMOS 200ns. 2 Kx 8
\(\$ 6.90\)
Add \(\$ 500\) Hading arders ind.. \(\$ 22.50\) FACTORY PRIME From the same shipments used in

32KB STATIC RAM CARDS
for the SS50 and SS50C BUS
( 16 KB - \$298.12), (24KB - 348.14 )
(32KB - \(\$ 398.15\) )
CK UP
NEWI 64KB BATTERY BACK UP CMOS RAM CARDS
Two independently addressable 32kB blocks, each with extended addressing. ( 56 KB - \(\$ 994.56\) ), ( \(64 \mathrm{~KB}-\$ 1088.64\) ) 2MHZ 6809 56KB SS50 SYSTEMS \(\$ 2498.29\) DISK SYSTEMS AVAILABLE

\section*{ㄷImIX \({ }^{\text {ma }}\)}

1337 W. 37th Place - Chicago, IL 60609 (312) 927-5510 - TWX 910-221-4055 The Company that delivers.
Quality Electronic products since 1975.
Gimix \({ }^{=}\)and GHOSTs \({ }^{\text {s }}\) are Regislered Trademarks of GIMIX INC.

\section*{PRIAM}

Disk Subsystems and
Accessories,
(SMD interface available)
lowest cost and greatest established relia. bility for H.P., DEC, Apple, Z-80, \(8085 \ldots\) and so on
We can show you how to overcome "foreign disk" warranty worries.

Special Opportunity:
14A. S-100 Power Supply Kit
Input: 95-220VAC, \(50 / 60 \mathrm{~Hz}\)
Outputs: 14A © \(\pm 8 \mathrm{VDC}\)
\(\$ 29^{95}\)
\(2 A\) @ \(\pm 18 \mathrm{VDC}\)
Includes: UL Spec. Transformer, Rectifiers, Computer Grade Capacitors. RFI line filter, and Schematics.

\section*{ADVANCED TECHNOLOGY \\ 735 Loma Verde, Palo Alto, CA 94303 415-493.5930}

Send 36 ct SASE for our 16 page flyer

Clicie 10 on Inquiry card

\section*{CP/M \({ }^{\text {® }}\) Compatible} \$GOLD DISK\$ Z-80 Software Z-80 Disassembler \$175. creates assembly language source files
\[
\text { E-Z Text } \quad \$ 75
\]
unique text file word processor
Bower-Stewart \& Associates POST OFFICE BOX 1389 HAWTHORNE. CALIFORNIA 90250


Circle 43 on Inquiry card.

********************
**COMPUTER SURPLUS**

Brand new Perkin-Elmer No. 550 terminals -priced ridiculously low. Call us for a quote.
CALL VICTOR CLOUGH (216) 473-0866

Also buy scrap computer systems, printed circuit boards, connectors etc.
LARGE VOLUME ACCEPTABLE

\section*{DATA HARDWARE}

701 Beta Dr. \#4
Cleveland Ohio 44143

\section*{DEALERS WELCOME}

Circie 101 on Inquiry card.

\section*{ARE WE CRAZY?}

NO:, WE ARE KLOFOX, the people that bring to you a system with so many features, it our competitors do). We belleve high qualIty need not have a high price, and our systems prove 1t!
for just 1695.00 , you'll get a \(2-80\) system with 64k of RAM, and up to \(8 k\) of bank-selected PROM. The two bidirecional parallel ports let you interface to almost anything. The basic system is equipped with one SD \(8^{\prime \prime}\) disk drive, but can easily expanded to four giving one megaby te of on-1nne storage. You will have a cholce between an \(80 \times 24\) terminal simulating video both (at an extra charge).

Our systens 111 run \(C P / M\) and MP/M, and he include our custom BIOS and XIOS. plus many other useful system utilities.

\section*{KLOFOX}

PO BOX 93
SAN LUIS OBISPO, CA 93406 USA
(805) 528-7440

Note: \(C P / M\) and \(M P / M\) are both trademarks of Digital Research of Pacific Grove, CA

Circle 185 on Inquiry card.

\section*{COMPUTER \\ EOUIPMENT \\ \& SOFTWARE BARGANS}

\section*{EVERY MONTH}


BUY, SELL OR TRADE ALL TYPES OF COMPUTER EQUIPMENT AND SOFTWARE (pre-owned and new) among 20,000 readers nationwide in BIG (11×14') pages. Classified ads are only 10' per word and are indexed for easy and fast location. Subscription: \(\$ 10\) a year / 12 issues. Money back guarantee. Sample copy, \(\$ 1.50\).

P.O. Box F-14

Titusville, FL 32780
(305) 269-3211

MasterCard or VISA subscription orders only
call TOLL FREE 1-800-327-9920
12A 1/O
RAM. expandable to 128 K
expansion
31A MInl-Disks
ves. 143 K per drive
C-8001A \(\$ 1295\) PC-8012A
3031A . \(\$ 1295\)


Byre harco disk
12 2-bood, 4 serial. 2 paras
Ram useable per us
A multi-user DOS
up: 1 MByte fioppy
: Optional lape cartridge

List
\(\$ 12.750\)
13.250
13.750
13.250
13,750

14,250


OT SYSTEM+
12 Z-80A. 2 serial. 2 paratle floppies. doubla density
onitor for RS-232
0.2
onal 6. 8, or 12 slot motherboard onal single or double-sided fioppi
 S(12) ....... 3795 SYS+DS(12) ..... 4695

ve with \(5 \%\) " floppies MINI-SYSTEM \(+\left(5 \%{ }^{*}\right)\)
 +SS(8) ...... 2595 MSYS*DS(8) .... 2895

OT RAM+16
16K Static, S-100
- switchable RAM
\(\$ 35\) 4MHz Kit ... \(\$ 180 \quad 4 \mathrm{MHz} \mathrm{A} \mathrm{\& T} \ldots \$ 165\)

\section*{QT \\ DISK \\ CKAGES}

\section*{QT SBC+2/4}

\section*{00 Single Board Computer}
"Correspondence" quality print
Unbeatable price

STARWRITER
- Daisywheel printer

Diablo compatible
- Nationwide service
- Centronics parallel or RS-232 serial
- 25 cos or 45 cos, specity

Tractor ... \$200
EPSON MX-100
- Wide carriage
- Friction. tractor, graphics
 ealer
 A\&T
All SD items available
38007 Z-80 Starter Board ................... . . \(\$ 424\)
38013 VDB-8024 ( 60 Hz )
38020 Expandoram II-16K
38023 Expandoram II-64K
38025 PROM 100
38059 Versalloppy II (RS-232)
38060 Versalloppy II (VDB-8024)
38061 SBC-200 (VDB-8024)..
Call tor kit, software, ano cable prices

\section*{CALIFORNIA}

COMPUTER SYSTEMS 15\% Discount
All CCS items avaliable

STATIC MEMORY SYSTEMS
64K Static S-100
- See ad. this issue
- Intermix RAM and EPROM
- 200ns, very low power

SMS-64K AAT

\section*{QT Z+80 CPU}
- 2 or 4 MHz , switch
- Monitor with jump
- Serial port to 9600 baud

Kit . . . \$165
A\&T ... \(\$ 225\)

\section*{OT EXPANDABLE + REV II}

S-100 64K Dynamic RAM
- 2 or 4 MHz . switch
- Bank switch. IEEE Standard
- On board refresh. 4 layer PC
- Burned in. iested.

EXP + \(16 \ldots\). . \(\$ 270\) EXP + \(48 \ldots . . . \$ 310\)
EXP + 32
290 EXP + 64
330
(Less \$40-kit)

\section*{QT I/O+}

S-100 4 Parallel, 2 Serial
- On board crystal
- Prog. baud
- 16 prog. timers
- 8 level prog. interrupt

Brd . . \$70 Kit... \$235 A\&T... \$375

\section*{QT SILENCE+}

S-100 Motherboards
- Full ground shield network
- Specify board, kit, or assembled
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\[
6-K \ldots . . .{ }^{40} 8-K \ldots . . .
\]} \\
\hline \multicolumn{4}{|l|}{6-A ....... 50 8-A ......... 70 12-A . . . . . . . . . 90} \\
\hline \multicolumn{4}{|l|}{18-8 ............. \$50 22-8 ................ . 975} \\
\hline \multicolumn{4}{|l|}{18-K ............. 100 22-K ................ 140} \\
\hline \multicolumn{4}{|l|}{18-A ............. 140 22-A} \\
\hline
\end{tabular}

\section*{QT MAINFRAMES}
- 18A power supply. S-10
- Drive power supply
-Specify motherboard slots
- Specity 8 ", \(5 \%\) " or no floppy

2-8" Floppy w/motherboard

\section*{MF8-8}

MF8-12
\(\begin{array}{r}5625 \\ .650 \\ \hline 675\end{array}\)
2-5 \(1 / 4^{\prime \prime}\) Floppy-w/Motherboard
MF5-6
\(\$ 450\)
No Floppy-w/Motherboard
\(\mathrm{MF}+12\)
MF +18
MF+22 \(\quad\) OT

\section*{SINGLE}

8" CABINET
Accepts one 8" lloppy
\(117 v\) AC/220v AC
- Data cable. power cables

DOC+8

S-100


\section*{NEC SPINWRITER 55CPS}
- Receive only. serial interface

IDS PAPER TIGERS
\#445
\(\# 460 \mathrm{G}\)
4560 G

\section*{TELETEK}

FOC-1 Single Board Computer.
\(\$ 685\)

QT S-100 EXTENDER
- with connector

Kil
530 A8T
CABLES
RS-232- male/male - 9 ft. .................. . \(\$ 24.00\)
RS-232 - male/male - 18 ft
.29 .00

\section*{ADDS VIEWPOINT} Smart CRT Terminal
- \(80 \times 24\)
- Detachable keyboard

The Best for Less.

-6. 8 or 12 siot
- Accepts Silence + mother
- With card guldes
- Accepts \(4^{\text {" }}\) tan
- Specity with mother. with fan

6 Slot ( \(5 \% / \mathrm{w} \times 10 \%{ }^{2} \times 6 \times \mathrm{h}\) )
CC+6.
\(C C+6 M\).
\(C C+6 M / F\)
8 Slot ( \(71 / 4 w \times 101 / \mathrm{hd} \times 6 \mathrm{~m}\) )
CC+ 8 .
\(\mathrm{CC}+8 \mathrm{M}\)
\(\mathrm{CC}+8 \mathrm{M} / \mathrm{F}\)
12 SIot ( 11 1/2w \(\times 101 / \frac{1}{6} \times 6\) " h )
CC+12.
\(C C+12 \mathrm{M}\)
CC+12M/F

\section*{ADES \\ S-100 \\ HARD DISK}
- PRIAM \(33508^{\circ \prime}\) Wincheste
- 31 MByte with CP/M 22
- With S-100 controlier
- Cables. cabinet, power supply
- Full line available
\#S33 List ......... \$5195 Now ............ . \(\$ 3850\)

\section*{2 MBYTE}

FLOPPY FOR

- 2 double density, double sided 8" drives - Cabinet, power supply, cable, controller
- DOS 3.3 compatible (Pascal and CP/M optional) - This package is best. spec for spec: price for price Suggested List ... \$2550 Now Only ...... \$2050 SAVE \(\$ 500\) CP/M Patch \(\$ 75\) Pascal Patch \(\$ 75\)

\section*{ADD-ON DRIVE FOR APPLE}
- Works with Apple disk controller
- Functionally identical to Apple
- Expandable to 40 track

Prairie Fire Price
BULK DISKETTES
- Single side, double
density
- Specity hard, soft. \# of sectors
- Sold In hundreds

51/4" .........s215/100 \(8^{\prime \prime}\)............... \$275/100
Library cases

\section*{ANTI-STATIC CHAIR MAT}
- 4'x5' black, hard
- With ground strap
- New religion-thousands of believers

List ............ \$185 Special ........... \$160
QT CLOCK/CALENDAR+
Apple, S-100, TRS-80
(Specity)
- Date. month, year
- Day of week. leap year
- 24 hour or AM-PM
4 interrupt intervals
- With software
- Now with on-board battery
S-100/Apple/TRS . ......................... \(\$ 150\)

\section*{Floppy- \\ Data: \\ Card Edge \\ Type SD • Jade \\ \begin{tabular}{|c|c|c|}
\hline DSC-34-1 & Single, mini & \$24.00 \\
\hline DSC-34-2 & Dual, Mini & . 29.00 \\
\hline DSC-34-4 & Quad, Mini & . 34.00 \\
\hline DSC-50-1 & Single. \(8^{\prime \prime}\) & 24.00 \\
\hline -DSC-50-2 & Dual, 8 " & 32.00 \\
\hline DSC-50-4 & Quad, 8" & 40.00 \\
\hline
\end{tabular}

Floppy-Data: Pin Type
CCS • Tarbell • Teletek
\begin{tabular}{|c|c|c|}
\hline DSP-34-1 & Single. Mini & \$24.00 \\
\hline DSP-34-2 & Dual, Mini & . 29.00 \\
\hline DSP-34-4 & Quad, Mini . & . 34.00 \\
\hline DSP-50-1 & Single. \(8^{\prime \prime}\) & . 24.00 \\
\hline DSP-50-2 & Dual, 8 ". & 29.00 \\
\hline DSP-50-4 & Quad, 8" & 34.00 \\
\hline \multicolumn{3}{|l|}{8" Floppy-DC Power} \\
\hline PDC-8 & 24" long & \$7.00 \\
\hline
\end{tabular}

\section*{INTEGRATED CIRCUITS}
\begin{tabular}{|c|c|c|c|}
\hline 4116 (200ns) & 2.00 & 8257 & 5 \\
\hline 14 (450ns) & 2.00 & 8295 & \\
\hline 2708 & 3.50 & MC14411. & \\
\hline 16 & 6.50 & 14411x+at & 95 \\
\hline 6 (5-12V) & 8.00 & 1771801 & \\
\hline & 13.00 & 1791401 & \\
\hline 64 (220ns) & 25.00 & S2350 & \\
\hline z-80A & 12.95 & NBT26 & 50 \\
\hline 30A & & & \\
\hline 85A & 20.00 & 1489 & \\
\hline \(86-4\) & 60.00 & D3242 & 5 \\
\hline TMS9900 & 29.95 & TMS5501. & \\
\hline 8212 & 3.50 & Th16028. & \\
\hline 14 & 4.50 & 6845P & \\
\hline 28 & 6.00 & & . 95 \\
\hline & 6.00 & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{FULL ELIZA FOR YOUR MICRO!}

\section*{





 MERE IS AN ACTUAL SAMPLE OF ELIZA'S CONVERSATIONAL ABLITY All men yot alaso \\  \\  \\ WHAT WOULO IT MEAN IO YOU IF YOU GOI SOME HELP? Petliags could lian io get aion wit my mothe \\ YHAT RESEMQ \\ Yoes in itense \\ untaneis istaitas of}

arificial intelioence asearo
921 NOATH LA JOLLA AVENUE
1213) 656 . 7356.

K=1

Circle 28 on inquiry card.


Circle 298 on Inquiry card

\section*{EPSON}

DOT MATRIX PRINTERS SUPER DISCOUNTS ON
MX-80F/T \(\underset{\substack{\text { seef } \\ \text { Lowerl }}}{\text { Sow }}\) MX-80 \(\underset{\substack{\text { s.ansen } \\ \text { Lowenl }}}{\text { M }}\) IN
MX-100 semer STOCK
We also stock direct connect cables for TRS-80, Apple, Atari, Pet or RS 232

\section*{CALL TOLL FREE}

1-800-344-7493
in CA and for service (209) 667-2888

\section*{floppy disks.}
\(100 \%\) CERTIFIED AND TESTED PREMIUM QUALITY

\section*{© BASF}

Immediate off the shelf delivery. . . one box or quantity orders welcome

\section*{SAVE ⿰ㅛㅇ \(40 \%\)}

WE PAY SHIPPING!
CALL OUR ORDER DESK NOW!
Western States: Los Angeles . . (213) 469-9661 Phoenix . . . . . (602) 277.5766 Central States: Dallas....... (214) 988-1885 All Others:
(805) 985-9824

MATIOMAL DATA SUPPLIES, IMC.

Circle 252 on inquiry card
- Л ATARI \({ }^{8}\)

\section*{Atari 800 16K K......810.00 16K RAM... \\ 85.00}

Atari 80048 BK ........ 950.00 Alari 850 Interface....... 176.00 Atari 810 Disk....... 460.00 Atari 830 Modem.......... 156.00 Alari 400 16K........ 379.00 Microsoff Basic.... 72.00

\section*{TELECOMMUNICATIONS PACKAGES} Base Unit, A850, A830, TeleLink with 800: \(\$ 1150.00\) with 400: \(\$ 710.00\) PLUS FREE NOVATION SUPERMIKE!
The Bit Bucket is a company made up of computer professionals. We are able to provide low prices as well as technical support. Give us a calt and find out why we consider the Atari the best home computer on the market today. You won't be disappointed.

The Bit Buchet


Speciallizing in Atari Home Computers P.O. Box 365

Newton Highlands, MA 02161 (617) 783.3144

Circle 40 on Inquiry card.

Heath/Zenith 89 Users I6K MEMORY EXPANSION CARD

to make a H/Z89 a 64 K
machine.
Assembled
and Tested
\(\$ 100.00\)
COMPUTER TABLES
\(60 \times 28 \times 28\)
\(\$ 186.40\)
\(48 \times 28 \times 28\)
\(\$ 162.40\)
Shelves Availoble
PRINTER STAND \(\$ 75.00\)


SECURED COMPUTER SYSTEMS
12011 Aclare St. - Cerritos, CA 90701
(213) 924-674

- Discounts Discounted -

We Feature
CP/M - Osborne - Rejas - Forth Micro-soft - Micro-Pro Micro-AP - Fortran - S-Basic

Special Feature Packages
CP/M - Peachtree Programs
General Ledger
Acct. Rec.
Acct. Payable-
Pay Roll
\(\$ 1250.00\) Plus - Sales Tax Plus - Shipping

\section*{This sale terminates when this ad closes}

Mailing Addres Act Now.

3204-A Production Avenue Oceanside, California 92054 Telephone (714) 439-6201

Circle 276 on inquiry card.


Circle 186 on inquiry card.

\section*{ANALOG DIGITAL DIGITALE ANALOG}

CONVERSION MODULES SOFTWARE GAIN CONTROL


For additional details about the AD-100-4 and other fine California Data Corporation \(100 \%\) Individually tested, high reliability products. circle the reader service card number below or for faster response
write or cail us.

CALIFORNIA DATA
CORPORATION
3475 Old Conejo Road, suite C- 10
Newbury Park. CA 91320
(805) 498-3651

\section*{DEALS \(\square\) DEALS \(\square\) DEALS}

OUR BUYERS ARE IN CONTACT WITH EVERY MAJOR SUPPLIER AND O．E．M． bUY HERE AT 1000 PIECE

\title{
男置䊖 MICRO SALES
}

\section*{QUANTITY PRICES}

ALL MERCHANDISE 100\％ GUARANTEED！ 15 DAY FULL CASH REFUND！

11 EDISON DRIVE＊NEW LENOX＊ILLINOIS 60451 CALL TOLL FREE：1－800－435－9357 \(\star\) MONDAY thru SATURDAY （ILLINOIS RESIDENTS CALL：815－485－4002）＊8：00 a．m．to 6：30 p．m． TERMS：Prepayment－C．O．D．up to \(\$ 100.00-\mathrm{M} / \mathrm{C}\) Visa \＄5．00 Processing and Handling added to each order PLUS Shipping Charges．Please allow personal check to clear before shipment．

\section*{JUST HOT STUFF}

POWER SUPPLIES

If you can beat these prices we will be truly amazed．OEM＇s at 500 lot pay more than this． Call or write for full spec．sheets．


DISK POWER SUPPLIES
\begin{tabular}{|c|}
\hline DISK POWER SUPPLIES \\
\hline PRIAM－SHUGART－CENTURY－MICROPOLIS \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|c|}
\hline\(+5 V @ 9 A\) & \(-5 V @ 8 A\) & \(+24 V\)＠ 9 V ＠ & US 384 & 89.00 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ SHUGART－SIEMANS－MPI 5 \(\%_{4}{ }^{\circ \prime}\)} \\
\hline ＋5V＠5A & ＋12V＠．9A & US．340 & 33.50 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|}
\hline+5 V ＠2A & +12 V ＠4A & & & US．323 \\
\hline
\end{tabular} SHUGART－SIEMANS－CDC \(8^{\circ}\) \begin{tabular}{|l|l|l|l|l|}
\hline\(+5 V\)＠1A & \(-5 V\)＠．5A & ＋24V＠ \(1.5 A\) & US 205 & 52.50 \\
\hline
\end{tabular}
 \begin{tabular}{|l|l|l|l|l|}
\hline\(+5 V @ 3 A\) & \(-5 V @ .6 A\) & \(+24 V @ 5 A\) & \(U S\) & 162 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|}
\hline\(+5 V @ 1.7 A\) & \(-5 V @ 1.5 A\) & \(+24 V @ 2 A\) & \(U S\) & 272 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|}
\hline\(+5 \mathrm{~V} @ 2 \mathrm{~A}\) & \(+12 \mathrm{~V} @ .4 \mathrm{~A}\) & \(-12 \mathrm{~V} @ .4 \mathrm{~A}\) & US．HTAA & 37.50 \\
\hline
\end{tabular}

\section*{TELEVIDEO 950}

Televideo 950 －\(\$ 950.00\) Televideo 912C－ 665.00 Televideo 920C－ 720.00 ADDS R－25－ 710.00 Also have 920C，SOROC． HAZELTINE，etc．What we don＇t have is room on this page．Call Toll Free 800 number for prices

\section*{\(\$ 499.00\)}

Look closely at the photo and see other adds in this rag at \(\$ 995.00\) ．Perfect units warranteed．Onlx 500 pes．Same story manufacturerer had too many．

\section*{S－100 CARD EXTENDER} \(\$ 12.50\)
（Gold Contacts）
As long as there is a price war，we will figh vour battle．Compare at your local Dept． store and buy U\＄MICRO
\begin{tabular}{l}
\(5 \% \prime \prime\) \\
\(5 \% \prime \prime\) \\
\(5 \%^{\prime \prime}\) \\
\(8^{\prime \prime}\) \\
\(8^{\prime \prime}\) \\
\(8^{\prime \prime}\) \\
\hline
\end{tabular}

\section*{C－ITOH PRINTER \\ R}


MEMOREX－VERBATUM－WABASH

\section*{BASF FLOPPIES} BOX OF 10 ONLY
 SOFT
\(\$ 2.65\) ea． HARD \(10 \quad 2.65\) ea HARD \(16 \quad 2.65\) ea SOFT 1D 3.25 ea． SOFT 2D SOFT 2DDS
3.85 ea ．

SPECIAL OF THE QUARTER
S1－MOD（KIT）


Complete S－100 12 Slot Computer．Ample system power with regulated power for drives． Excellent for Subsystem or Hobby usé． 4 hours to build．（ 6 conn．incli，less fans）

DUAL DRIVE SUBSYSTEM \(\$ 995.00\)

\section*{\(\$ 195.00\) w／no Drives} If this loaks like a Lobo Drive System，don＇t be fooled．Just because it
 looks like one，works like 2 SHUGART 801R POWER SUPPLY one，smells ike ane，and tastes like one（？）
doesn＇t mean it has to cost like one！
TWIN VERTICAL DRIVE\＄
\(5^{\prime \prime} \$ 550.00-8^{\prime \prime} \$ 980.00\)
Attractive，convenient
and compact Two Drive
Mass Storage includes
Power Supply．Drives，
Cabinets and Cables．


Double Sided，Double
Track available too！\＄145．00 Kit（Less Cable）


The first time this world popular CPU offered in Kit． 2 serial，

\section*{Z－80 CPU（KIT）}

3 parallel，CTC，EProm
 Z .80 at 4 mhz ．Software buad rate，etc．（less Prom \＆cable）\＄212．00

\section*{EXPANDABLE RAM}
＊SPECIAL＊SPECIAL＊SPECIAL＊
This is the best all around 64 K board you can buy．If after you see it，you don＇t agree return for full refund．Bank Select by extended address lines or 1.0 .40 H ．


U\＄－D\＄K \＄255．00
Double Density \(8^{\prime \prime}\) and \(5^{\prime \prime}\) Disk Controller disigned for S－100 IE EE standards．Uses Western Digital 1795， 1691
2143 Chip Set．

\section*{FANS \＄14．95}

These are brand new， in the box fans．Not
noisey bearing pullouts．


3－1／8＇
Never again at these low pricesl

\section*{SPECIALS OF THE MONTH}

\section*{4116s}

Expansion \(16 K\) Dynamic
RAMs for Apple RAMs for Apple，TRS． 80
S－100 systems．T．l．，Mostek

\section*{\(\$ 2.95\)} Intel，Call for manufacturer．

200 NS

\section*{INTEL}

8251 8255
\(\$ 4.95\)
\(\$ 6.50\)
VERY POPULAR I．O．CHIPS BY LEADING MANUFACTURER

\section*{\(2114 s\)}

One of the world＇s two most popular STATIC RAMs．Factory prime
 tested units．Sold in lots of 8 only FUJITSU，HITACHI，etc．


\section*{CMOS Version \(\$ 4.50\) ！}

The other of the world＇s most papular STATIC RAMs．This one is 4 K by 1 organization．Don＇t buy Gold，buy these，the price won＇t last！

\section*{2716s \(\quad \$ 7.50\)（ 450 NS） 2708s \(\quad \$ 6.95\)（ 450 NS ）}

Remember when 2716 s were \(\$ 50.00\) and hard to get？These units are so beautiful it＇s hard to part with them．But we will，for a small price． Guaranteed！

\section*{SHUGART DRIVE} \({ }^{4}\)

Manufacturer had
too many，buys at \(8^{\prime \prime \prime} 851 \mathrm{R} \$ 585.00\) 1000 piece rate，

\section*{8＇801R \＄395．00}

\section*{SIEMANS DRIVE \\ 8＇100－8 \\ Very Special Price on \(\$ 375.00\)}
these BRAND NEW current production units Add \(\$ 10.00\) for Extended 1 Year Warrantee！


Circle 262 on inquiry card.

\section*{68000}

ERG68-696 68000 CPU available and in production. Meets or exceeds all aspects of IEEE696 S-100 standard
\$1995
Z-80 emulation and integrated 68000 systems also available.

Empirical Research Group, Inc. PO Box 1176
Milton, WA 98354 206-631-4855

Clrcle 140 on Inquiry card

\section*{RUN BIG CPM* PROGRAMS ON YOUR MODEL 1 TRS-80*}

WITH 39 or 54 K of use space.Can use Mixed Drivers \(51 / \%\) or \(8^{\prime \prime}\) (Variable Tracks) Compatable with all TRS*80 Operating Systems and all TRS*80 Programs.(usable on 48 K disk systems only) Boards lit into keyboard inclosure.
FREEDOM OPTION................. \(\$ 245\) MEMORY EXPANSION OPTION.... \(\$ 295\) Send Check or Money Order to: (MASS. RESIDENTS. PLEASE INCLUDE SX TAK)

P.O.Box \(2368 \cdot\) Woburn, MA. 01888 (617) 044-5329
, 0188
(415) 851-1172

Clircle 271 on Inquiry card.


\section*{WRITE YOUR OWN COMPILERS IN PL/C}

PLC (Programming Language/Compllers) Is the implementation of a BNF superset as a nlgh-level programming language. Our \(Z 80\) verston runs on a \(32 \mathrm{~K} \mathrm{CP} / \mathrm{M}^{\mathrm{TM}}\) system and generates TDL-format assembler code.
The PLC Compiler, Runtime Library, and Compller Source Code are shlpped on an A license Alcume alig CPU llcense foes are as follows:
\$1000 - PLC Compiler, Runtime Library, Compilar PLC Source, and PLC Source Code for a PLC Compiler Version which produces PROCESSOR.INDEPEN DENT macro source.
\(\$ 5000\) - As above, plus commented Assem. bler Source Code for the Compller and Runtime Library

A PLU information package is available for \(\$ 25\)
MRD Systems, Inc.
Box 147, Spring Valley, MN 55975
CPiM is a registered Irademark of Digital Researen


Circle 279 on Inquiry card.


\section*{LOWEST PRICES IN THE WEST,NORTH, SOUTH \& EAST}
APPLE III OPTION A:3850APPLE \(\mid / 196 \mathrm{~K}\)Information Analyst Package12 " B/W Monitor
APPLE III OPTION B: ..... 4350
SAME AS OPTION A PLUS:DISK II for APPLE III
APPLE III OPTION C: ..... 4800SAME AS OPTION A PLUS:DISK II FOR APPLE IIISILENTYPE Thermal Printer
APPLE HARDWARE
Parallel Printer Interface Card ..... 160
Communications Card ..... 195
High Speed Serial Interface ..... 425
Centronics Printer Interface ..... 185
Applesoft Firmware Card ..... 160
Integer Firmware Card ..... 160
Disk |[ only ..... 475
Graphics Tablet ..... 625
OTHER HARDWARE
Alf Music Synthesizer (3 Voice) ..... 245
9 voice ..... 175
ABT Numeric Keypad ..... 119
Micromodem II ..... 295
Apple Clock ..... 245
Rom Plus with Keyboard Filter ..... 175
IntrollX-10 System ..... 250
Romwriter ..... 150
DoubieVision \(80 \times 24\) Video Interface ..... 245
CCS Arithmetic Processor ..... 399
CCS Parallel Interface ..... 119
16K Ram Card ..... 145
Microworks DS-65 Digisector ..... 339
SVA 8 inch Disk Controller ..... 335
Sup-R-Mod ..... 30
CCS Synchronous Serial Interface ..... 119
CCS Asynchronous Serial Interface ..... 99
Corvus 10 Meg . Hard Disk ..... 4395
Corvus Constellation. ..... 595
MISCELLANEOUSISUPPLIES
16K RAM ( \(200-250\) NS) ..... 29
Verbatium Datalife Diskette (Box of 10) ..... 30
Dysan Diskettes (Box of 5) ..... 22
Apple Diskettes (Box of 10) ..... 45
Verbatim Diskette Boxes (Holds 50 Disks) ..... 18
Silentype Paper (Box of 10 rolls). ..... 40

Leedex Video 100 12" ..... 140
Sanyo 9 " Monitor ..... 195
KG-12C Green Phos. Monitor ..... 275
Sanyo \(12^{\prime \prime}\) Green Phosphor. Monitor ..... 275
NEC 12" Green Phosphor. Monitor ..... 275
Sanyo 12" B/W Monitor ..... 250
PRINTERS
Apple Sllentype with Interface ..... 525
IDS 445 (Paper Tiger) with Graphics ..... 650
IDS 460 with Graphics ..... 1049
IDS 560 with Graphics 10) ..... 1199
Centronics 737 ..... 795
NEC Spinwriter (RO, Serial) ..... 2650
SOFTWARE
The Controller ..... 525
Apple Post (Mailing List Program) ..... 40
Easywriter Professional System ..... 195
Apple Pie 2.0 ..... 95
DB Master Data Management ..... 175
The Cashier ..... 210
Apple Writer ..... 65
Visicalc ..... 170
CCA Data Management System ..... 90
Full Screen Mapplng for CCA DMS ..... 59
Pascal Interactive Terminal Software (PITS) ..... 29
Basic Interactive Terminal Software (BITS) ..... 29
Data Capture ..... 29
Data Factory DMS ..... 110
Apple Plot ..... 55
Apple Pilot ..... 120
Magic Wand Word Processor (Needs Z-80 Softcard) 34Dow Jones Portfolio Evaluator45
Fortran ..... 140

\section*{\(\$ 100\)}

203232 K STATIC RAM A \& T
450 NSEC . \(\$ 579.00 .300\) NSEC . \(\$ 585.00 .200\) NSEC . \(\$ 629.00\) 2116 16K STATIC RAM A \& T
450 NSEC \(\$ 285.00,300\) NSEC \(\$ 289.00 .200\) NSEC . \(\$ 329.00\)
206564 K DYNAMIC RAM A \& T
2200 S-100 MAIN FRAM A \& T
2122 FLOPPY DISC WITH CP/M \(2.2^{\circ}\)
28026502 PROCESSOR A \& T
2810A 280 CPU A \& T
2710A 4 SERIAL \(1 / 0\) A \& T
2718 A 2 SERIAL. 2 PARALLEL A \& \(T\) 272044 PARALLEL A \& I
Phoro boands WW . . S39.95. SOLDERTAIL
\(\$ 548.95\)
\(\$ 379.95\)
5329.95

S282.95
\(\$ 249.95\)
\(\$ 291.95\)
\(\$ 305.95\)
\$214.95
\$29.95

APPLE PROOUCTS
7114A 12K ROM/PROM
\$68.50
7424A CALENOAR/CLOCK
7440a PROGRAMMABLE TIMER
7470A A TO O CONVERTER
7490A GPIB (IE 488) INTERFACE \(\$ 10695\)
\$98.50
\(\$ 105.95\)
. \(\$ 265.95\)
7110 A ASYNC SERIAL \(\$ 125.95\)
1712A SYNC SERIAL
7120A PARALLEL STANDARD
1720B PARALLEL CENTRONICS 7811B ARITHMETIC PROCESSOR W/DISC 7 711C ARITHMETIC PROCESSOR W/ROM 7500A WW BOARD \(\$ 98.95\)
\$98.95
5342.95 \(\$ 342.95\)
\$22.95
75IOA SOLDERTAFL BOARO
S23.95

\section*{SOFTWARE}

2610 CP/M \({ }^{*}\) MACRO ASSEMBLER ON DISK
\(\$ 76.95\) 2620 CP/M-SYMBOLIC INSTRUCTION DEBUGGER 2630 CP/M ' TEXT FORMATER S64.25 S64.25
2640 CP/M*BACKGROUND PRINT* UTILITY

OTHER CCS PRODUCTS ARE AVAILABLE CALL FOR PRICE

MICROCOMPUTER PRODUCTS

\section*{S100 PROOUCTS}


OTHER SSM PRODUCTS ARE AVAILABLE CALL FOR PRICES.


MONDAY.FRIDAY, 8:00 TO \(12: 00\). \(1: 00\) TO 5:30 THURSDAYS, 8:00 TO 9:00 P.M.
(415) 728.9121
P.O. BOX 955 - EL GRANADA, CA 94018 LEASE SEND FOR IC. XISTOR AND COMPUTER PARTS LIST

SEPT. SPECIAL SALE
ON PREPAID ORDERS
(Charge cards and c.od or po not available on these offers)
WAMECO BOARDS WITH MIKOS PARTS \(10 \%\) OFF ADVERTISED PRICE

\section*{W IC \(_{\text {inc. wameco inc }}\) BOAROS WITH MIKOS PARTS}
\begin{tabular}{|c|c|}
\hline MEM-3 32K STATIC RAM. PCBD & S36.95 \\
\hline KIT LESS RAM . . . . . . S95.95, A \& T & \$135.95 \\
\hline CPU-2 280 PROCESSOR, PCBD & \$32.95 \\
\hline KIT LESS ROM. . . . . . . S109.95. A \& T & \$149.95 \\
\hline EPM-2 16K/32K EPROM. PCBD & \$32.95 \\
\hline KIT LESS ROM. . . . . . S65.95, A \& T & \$99.95 \\
\hline FPB-1 FRONT PANEL. PCBD & 548.50 \\
\hline KIT . . . . . . . . . S144.95, A \& T & \$184.95 \\
\hline CPU-1 8080 PROCESSOR, PCBD. & \$29.95 \\
\hline KIT . . . . . . . . . . \$89.95. A \& \(T\) & \$129.95 \\
\hline QMB-12 13 SLOT MOTHER BOARD. PCBD & \$39.95 \\
\hline KIT . . . . . . . . . . S95.95. A \& T & S135.95 \\
\hline
\end{tabular}

OTHER WAMECO PRODUCTS ARE AVAILABLE. CALL FOR PRICES.

MIKOS PARTS ASSORTMENTS ARE ALL FACTORY R.AAKED PARIS KITS INCLUDE ALL PARTS LISTED AS REOUIRED FOR THE COMPLETE KIT LESS PARTS LISTEO. ALL SOCKETS INCLUOEO

LaRGE SELECTION DF LS TTL AVAILABLE.
PURCHASE \(\$ 50.00\) WORTH OF LS TTL AND GET \(10 \%\) CREDIT TOWARD ADDITIONAL. PURCHASES. PREPAID ORDERS ONLY.

VISA or MASTERCHARGE. Seno account number, mertbank numbet. exputation date and sign your ordel Aporax. postage will be added Check or money order will be Sent post pard in US II you are not a reqular customer. please use charge. casther's checho residenis ado \(6^{\circ}\) of lax. Money back 30 - day guaranlee We cannot accepi relunned ic's inat have been soldered 10 . Prices subject 10 Change without nolice \(\$ 10\) mhimum adter. \(\$ 1.50\) aterice charge in orders less than \(\$ 10.00\).

\section*{STOP DON'T TURN THIS PAGE. . .}
if you are tired of dealing with mail order houses that never have in stock what you need, when you need it. We are not a mail order house. Micro Source of Texas is a stocking wholesale distributor of microcomputer printers, video display terminals, and supplies. What makes us different? We don't just take orders!

Whether you're a dealer, systems integrator or first-time micro user, you expect help from your supplier in determining the best product to fit a particular application. We give that help, and more. Since complete documentation is essential, we provide it with every order we ship. And if you're located in Texas, stop by and we'll demonstrate our products without obligation. Try to do that mail order!

Don't waste valuable time. Talk to Micro Source. We can help.

ource

\section*{LOOK}

AT THESE POPULAR. . .
. low cost, high quality products:
- EPSON MX-80 matrix printer
- C.ITOH "Starwriter" WP printer
- TELEVIDEO Model 910 CRT terminal and many more!

What about supplies? No hassle. We stock ribbons and accessories for EPSON, C.ITOH, DIABLO, QUME, NEC. DEC, and CENTRONICS printers. All products and supplies are in stock. available for immediate delivery.

Micro Source of Texas is a specialty distributor handling only peripheral hardware. We don't sell microcomputers or software. So if you're a systems dealer, consider us a dependable supplier, not a competitor

Micro Source wants to be your source.

\section*{Micro Source of Texas, Inc 834 N Glenville Drive Richardsorn. Texas 75081}

214-690-5111

\section*{LISTEN}

TO WHAT WE OFFER. . .
LOW PRICES
The best in the industry! Because of our volume purchases, we offer attractive discounts to independent dealers and micro systems builders. Call or circle our reader inquiry number and receive a current dealer price list and catalog.

IMMEDIATE DELIVERY
We stock a variety of popular micro printers and display terminals including EPSON, C.ITOH, and TELEVIDEO. If your needs are immediate, we'll ship within 24 hours of receiving your order. And if you're nearby, just drop in and pick up your order the same day

TECHNICAL ASSISTANCE
Micro Source offers in-depth application assistance to Apple, Commodore, and TRS-80 deaters, among others. We want you to buy the right product with the right interface at the right price. Product support and courteous service are "standard features" with Micro Source. Call today and make us prove it!

\section*{WE'RE IN TEXAS}

Ask about our NO FREIGHT CHARGE special offer to Texas customers

\title{
DOWN-TO-EARTH PRICES ON OUT-OF-THIS-WORLD PERSONAL GOMPUTERS AND GOMPONANTS.
}

Look at this!


\section*{Ohio Scientific Superboard II \(\$ 329\)}
- It's the first complete computer system on a board.
- Superboard II uses the ultra powerful 6502 Microprocessor
- 8K Microsoft BASIC-in-ROM
- 4K static RAM on board, expandable to 8 K
- Full 53-key keyboard, with upper and lower case. Plus user expandability.
- Video interface and audio cassette interface.
The Ohio Scientific Superboard II at \$329 - in today's economy - has got to be the best buy by far. It will entertain you with spectacular graphics made possible by its ultra high resolution graphics and super fast BASIC. It will help you in school or industry, as an ultra powerful scientific calculator. Advanced scientific functions and a built-in ''immediate', mode allow you to solve complex problems without programming.

The Superboard II can be expanded economically, for business uses, or to remately control your home appliances and security. Even communicate with other computers.

\section*{Read what's been written about Superboard II:}
"We heartily recommend Superboard II for the beginner who wants to get into microcomputers with a minimum cost. A real computer with full expandability."
--POPULAR ELECTRONICS, MARCH 1979
"The Superboard II is an excellent choice for the personal computer enthusiast on a budget."
-BYTE, MAY 1979

\title{
Look at these easy hardware prices:
}
610 Board For use with Superboard II and Challenger 1P. 8K static RAM. Expandable to 24 K or 32 K system total. Accepts up to two mini-floppy disk drives. Requires +5 V @4.5 amps.
Mini-Floppy Disk Drive Includes Ohio Scientific's PICO DOS software and connector cable. Compatible with 610 expander board. Requires +12V @ 1.5 amps and +5V@ 0.7 amps. [Power supply \& cabinet not included.] ..... 299
630 Board Contact us for important details. ..... 229
AC-3P \(12^{\prime \prime}\) combination black and white TV/video monitor. ..... 159
4KP 4K RAM chip set. ..... 79
PS-005 5V 4.5 amp power supply for Superboard II. ..... 45
PS-003 12V power supply for mini-floppies. ..... 45
RF Modulator Battery powered UHF Unit. ..... 35
AC-12P Wireless remote control system. Includes control console, two lamp modules and two appliance modules, for use with 630 board. ..... 175
AC-17P Home security system. Includes console, fire detector, window protection devices and door unit for use with 630 board. ..... 249
C1P Sams C1P Service manual ..... 8
C4P Sams C4P Service manual ..... 16
C3 Sams Challenger III manual ..... 40
Ohio Scientific and independent suppliers offer hundreds of programs for theSuperboard II, in cassette and mini-floppy form.
Freight Policies all orders of \(\$ 100\) or more are shlpped firight prepaid. Orders of less than \(\$ 100\) pleesse add \(\$ 4.00\) to cover shipping costs. Ohlo residents add \(5.5 \%\) Sales Tax.
Hours: Call Monday thru Friday.
8:00 AM to 5:00 PM E.D.T.
TOLL FREE: \(1-800-321-5805\)
Guaranteed Shipment
Cleveland Consumer Computers \& Componentsguarantees shipment of computer systemswithin 48 hours upon receipt of your order.Our failure to ahip within \(\mathbf{4 8}\) houraontitles you to 35 of software, FREE.

To Order: Or to get our free catalog Call 1-800-321-5805 TOLL FREE. Charge your order to your VIBA or MABTER CHARGE account. Ohio residents call: [216] 464-8047. Or write, including your check or maney order, to the address listed belaw.

CLEVELAND CONSUMER COMPUTERS \& COMPONENTS p.O. Box 46627 Cleveland, Ohio 44146
Order Form: P.O. Box 48827
\(\square\) Superboard II \$329. \(\square\) RF Modulator \(\$ 35\).
\(\square 10\) Board \(\$ 298\).
\(\square\) Mini-Floppy Disk Drive \(\$ 299\). \(\square\) AC-3P 1 2" B/W Monitor \(\$ 159\)
NAME ..... SS
CITY.

\(\qquad\)
 STATE:
 ZIP:
PHONE:
MASTER CHARGE
\(\qquad\) MONEY ORDER
Credit Card Account \#
Expires
\(\qquad\) Interbank \#[Master Charge]
TOTAL CHARGED OR ENCLDSED \(\$\) \(\qquad\) [Ohio Residents add \(6.5 \%\) Sales Tax] Orders of less then \(\$ 100\), please add \(\$ 4.00\) to cover shipping costs. Orders will be accepted from U.S. and Canada only. All prices quoted are U.S., date of pubication, standard UPS shipping FOB the factory.
COMPUTERS
ATARI＂ \(800^{\text {T }}\)
COMPUTER SYSTEM
\(16 \mathrm{k} \rightarrow \$ 750.00\)
\(48 \mathrm{k} \rightarrow 898.00\)
＇APPLE II PIUs＂
\(48 \mathrm{k}-\$ 199.00\)
\(64 \mathrm{k}-\$ 1399.00\)

\section*{MONITORS}
 1971 SO．STATE COLLEGE
ANAHEM，CALIF．92806
（714）937－0637
VIST CHECK－M／O
S10．MIN ORDER／CA．RES．ADD \(6 \%\)
FRT．



\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{74500} \\
\hline 74500 & 39 & 745138 & 75 \\
\hline 74502 & 45 & 745140 & ． 00 \\
\hline 74503 & 38 & 745158 & ． 75 \\
\hline 74504 & 39 & 74S174 & 1.35 \\
\hline 74506 & 39 & 745175 & 1.35 \\
\hline 74510 & 39 & 745182 & 75 \\
\hline 74515 & 45 & \(74 \mathrm{St89}\) & 4.25 \\
\hline 74S20 & ． 55 & 74S201 & 6.75 \\
\hline 74522 & 55 & 74S240 & 2.75 \\
\hline 74530 & 75 & 745244 & 296 \\
\hline 74537 & 55 & 74S251 & 2.75 \\
\hline 14550 & 65 & 745287 & 2.95 \\
\hline 74551 & A9 & 745288 & 2.96 \\
\hline 74564 & 55 & 745299 & 5.75 \\
\hline 74 574 & 65 & 74S470 & 9.25 \\
\hline 74586 & 96 & 74 S471 & 9.50 \\
\hline 745112 & 1.95 & 745473 & 9.50 \\
\hline 74S132 & 1.45 & 745474 & 9.5 \\
\hline
\end{tabular}

> COMPONENTS そ䂇ぞ毅



FLOPPY DISK DRIVES
Qume Datatrak－8 ．．．．．．．．．．．．．．．．．．．．．\(\$ 540\)
Virtually the industry standard．High quality／reliabil－ ity．Full featured，double－sided，double density．
SA851 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 540\)
Full featured drive，double sided，double density SA801R ．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄395 Single sided，double density，very consistent

FDD100－8
Qume Datatrak 5 SA． 400

5 \(1 / 4^{\prime \prime}\)
\(51 / 4 \prime \prime\)
\(51 / 4\)
\(51 / 4^{\prime \prime}\)

CPU
CCS 2810
\＄ 275
Godbout Z－80A
\＄ 275
Godbout 8085A
\＄ 295

\section*{MEMORY}

CCS 2065 64K dynamic

\＄ 625

CCS 2116 32K static

\＄ 675

Godbout RAM 17 64K

\＄1250

\section*{1／0}

CCS 27104 SIO ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 325
Godbout Interfacer 1
\＄ 225
Godbout Interfacer 2 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄ 225

Qume S／5－Daisy Wheel Printer
Sprint 5／45 RO
\＄2699
Sprint 5／55 RO
2829
Sprint 5／45 KSR
3029
Sprint \(5 / 55\) KSR
3159
Forms Tractor ．．．．．．．．．．．．．．．．．．．．．．．．． 210
Pinfeed platen ．．．．．．．．．．．．．．．．．．．．．．．．． 155
Paper Guide
Paper Basket ．．．．．．．．．．．．．．．．．．．．．．．．． 50
many print wheels，ribbons，\＆more available．

MISCELLANEOUS


\section*{GLOBAL} P－1． 40.00 Solise mainto P－3： 60.00 P－3： 460.00 Alime midn to

\section*{LPK－1：}

 \(\$ 1895\) \(\$ 1895\) CARDS
MICROSOF 280 \＄29500 \({ }_{\text {VIDE }} \$ 16000\) VIID \begin{tabular}{l}
30 ckm \\
529500 \\
\hline
\end{tabular} KEYBOARD
ENHANCER Calif com
\(\qquad\) \begin{tabular}{l} 
clock \\
\(\$ 12400\) \\
\hline 102
\end{tabular}
PRINTERS EPSON \(\$ 56000\)
CENTHONICS
\(737-1\)
\(\$ 95000\)
753－1
BLSE II，inc
800 B
\(\$ 64900\)
374900

We are expecting a large shipment of mini＇s，many types．Call for details．

\section*{CONTROLLERS}

Tarbell single density
Tarbell single density \(A \& T \ldots . .\).
Tarbell double density A \＆T ．．．．．．\＄425
CCS 2422 w／CPM 2.2
Godbout Disk 1
MDA MXV－21 LSI－11 controller
\(\$ 450\)
（ RX －01，RX－02 compatible）

\section*{PRINTERS}


150 cps bidirectional-9×9 dot matrix, quietized case, 136 col, vertical form control and many other functions
\(\$ 1195\)
the best price/performance ratio available.

\section*{8" DISK DRIVE SALE}

\author{
8 " SHUGART SA801R
}

S450
QUME DATATRACK 8
Enclosure, power supply for \(28^{\prime \prime}\) drives A\&T
NNC industrial grade enclosure for 2 drives with P.S. \$625 2 for \(\$\)

MORROW Discus \(2 \mathrm{D}+\mathrm{CP} / \mathrm{M}^{*}\)

\section*{\(\$ 299\)} \(\$ 445\) RS-232 serial to 19,200 baud \(x\)-on, \(x\)-off add \(\$ 40\)

MTeletype 40,300 LPNi-typewriter quality, RS. from Only 232 interface. This quality printer is available in many configurations including forms access, quietized case, etc.
Teletype 43
from \(\$ 995\)
Teletype AP-200, 340 cps dot matrix (similar to Data Prod. M-200) \$2799
NEC Spinwriter- 55 cps , bidirectional, letter quality
\[
\text { R.O } \$ 2660 \quad \text { KSR }
\]

DIABLO 630-40 CDS, bidirectional, daisy wheel, plot/graph \$2449
C. ITOH Starwriter, 25 cps , daisy wheel
\(\$ 1575\)
C. ITOH Starwriter, 45 cps , daisy wheel
\(\$ 1849\)
EPSON MX-80, \(80 \mathrm{cps}, 9 \times 9\) dot matrix
SCALL
ANADEX 9500/9501, up to 200 cps , high resolution dot \(\$ 1349\)
OKIDATA Microline \(80,80 \mathrm{cps}, 9 \times 7\) dot matrix
Microline 82, bidirectional, friction/pin feed \(\$ 490\)
microline 82, bidirectional. friction/pin feed \(\$ 599\)
Microline 83, bidirectional. 120 cps , uses \(15^{\prime \prime}\) paper
\(\mathrm{T} /-810,150 \mathrm{cps}\), Basic
Package-Compressed print, vertical form control
CENTRONICS 704-9,180 cps, 9x9 dot matrix, 132 col , RS-232 \(704-11,180 \mathrm{cps}, 9 \times 9\) dot matrix, 132 col , parallel \(730,100 \mathrm{cDs}, 7 \times 7\) dot matrix, same as R.S. LPII \(737.80 \mathrm{cps}, \mathrm{nx} 9\) dot matrix, same as R.S. LPIV 739 Graphics

\section*{HARD DISK SPECIALS}

CORVUS 10 MB and controller 20MB and controller Constellation Network Multiplexer Mirror Video Tape Disk Backup
MORROW 26MB + controller + CP/M 2.2 CAMEO cartridge drive controlier controller, CDC Hawk Drive ( 5 fix, 5 rem) controller, Western Dynex ( 5 fix, 5 rem) Winchester \(5 \frac{1}{4}\) drives complete with case, cable. software, S-100 controller. Adapter avail. for use with
XCOMP any Z-80 system. Cartridge drive controllers avail.
5MB
10MB
List
- S3398

Quantity discounts available!
: \(\because=3\) SRIA CONTROLLER FOR PRIAM
\$3398
\(\$ 875\)
\$1695

\section*{\(\$ 1830\)}
\(\$ 1595\) \(\$ 1695\)

\section*{5660}
\(\$ 849\)
SCALL
\$1085
\(\$ 1199\)
DEC LA-34
S-100 SPECIALTIES

\(\triangle\)
DP1Z-80A, CPU, 64K ram, floppy cont., RS-232 port, SIOO IEEE, 8 slot in adds terminal, inc. CP1M2.2 \$CALL
Delta has Winchester based networks of up to 16 users available
Systems Group Call us for best prices on these high quality 2nd generation boards and systems.

We carry the full line of ADES disk and tape controliers and subsystems.

\section*{FULLY CONFIGURED BUSINESS SYSTEMS}

The following are some examples of the fully assembled and tested business and scientific computer systems which we offer. All include CP/M 2.2 . 64 K bytes dynamic RAM, Z-80A 4 mh CPU. We offer a full line of quality. tested software.
Delta TVD w/ 1.2 Mb floppy drives, 2 serial, 3 parallel ports SCALL Delta 1004 w/10 MB hand disk, IMB floppy, 6 serial, 3 parallel ports SCALL CCS 2210A w/floppy controller, 1 serial port
CCS \(300-1 \mathrm{~A} w / 1.2 \mathrm{MB}\) floppy drives, 2 serial, 2 parallel ports \(\$ 4849\) CCS \(400-1 \mathrm{~A}\) w/10MB hard disc, 2 serial, 2 parallel ports \(\$ 6999\) Optional CP/M for CCS 300, 400 (OASIS available) \(\$ 150\) NNC 80 w/1MB floppy drives, 2 serial, 3 parallel ports \(\$ 3799\)
NNC 80 W w/.5MB floppy, 8.4MB hard disc, (OASIS optional) \$6693
ALTOS single and multi-user systems Scall
MORRDW Decision 1, MICRDSOFT basic, UNIX Scall
TERMINALS
AMPEX DIALOGUE 30,80 \$CALL
TELEVIOEO 912 C \$950 \$725 920 C \(\$ 1030 \quad \$ 789\)
950 C \$1195 \(\$ 989\)
SORDC IQ 120
IQ 140
\(\begin{array}{rr}\mathbf{\$ 1 9 9 5} & \mathbf{\$ 7 2 9} \\ \mathbf{\$ 1 3 9 5} & \mathbf{\$ 1 1 4 9}\end{array}\)
INTERTUBE III or EMULATOR (multi-terminal) \(\mathbf{\$ 8 9 5} \mathbf{5 7 9 9}\)
DEC VT-100 \(\$ 2050\) \$1575
Similar savings for our HAZELTINE and LEAR SIEGLER lines
LOOK HERE!
AMPEX
Dialogue 80"
Call us for ALL your softwear needs Dialogue GIVEN SPECIAL CONSIDERATION.


ALL OF OUR PERIPHERALS CAN BE CONFIGURED FOR RADIO SHACK* MODEL II

\section*{DEALER and INTERNATIONAL INQUIRIES WELCOME}

\section*{WASHINGTON COMPUTER SERVICES}
an affiliate of \(\left\langle\left\langle\left(\right.\right.\right.\) ELECTRIC COMPANY \(\left.\left.\left._{\text {WASH }}^{\text {ETO }}\right\rangle\right\rangle\right\rangle\) est. 1912
CUSTOM COMPUTER ROOM WIRING SINCE 1960
97 Spring Street
New York, N.Y. 10012
Hours: 8AM-5:30PM (EST) Mon.-Fri.

TO ORDER: CALL OUR TOLL-FREE NUMBER: \(\star(800)\) 221-5416 \(\star\) In N.Y. State and for technical information call 1-(212) 226-2121
For fast delivery, send certified checks, money order or call to arrange direct bank wire transfers. Personal or company checks require two to three weeks to clear. All prices are mail order only. Prices subject to change without notice; call for latest prices. Prices include 2\% cash discount. N. Y. residents add sales tax.
Quantex is a trademark of North Atlantic Industries, Inc. Radio Shack is a trademark of the Tandy Corp. v/rer CP/M* is a trademark of Digital Research

\title{
SAVE UP TO \$600.00 NOW on TRS-80 Computers \& Accessories
}

\section*{With This Coupon}

Now you can own a great little computer at a great big dicount off the manufacturer's list price. For home or office use the Radio Shack line of computers is first in quality, performance and price.

- FREE SHIPPING in the 48 continental contigious states.
- NO SALES TAX collected on out-of-state orders.
- convenient ordering Call us toll free.
- FREE COMPLETE PRICE LIST available upon request.

\section*{Model II}
\begin{tabular}{|c|c|c|c|c|}
\hline Catalog
Number & List Price & Charge By Phone & Check Or Money Order & Cash Price You Save \\
\hline Radio Shack \({ }^{\text {® }}\) TRS. 80 Model II & & & & \\
\hline 26-4002 64K 1-Disk Model II. & 3,899.00 & 3,579.30 & *3,299.00 & 600.00 \\
\hline Radio Shack \({ }^{\text {® }}\) TRS-80 Model III & & & & \\
\hline 26-1062 Model III 16K. & 999.00 & 865.00 & 865.00 & 134.00 \\
\hline 26-1066 Model III 48K. & 2,495.00 & 2,243.50 & *2,149.00 & 346.00 \\
\hline Radio Shack \({ }^{\text {® }}\) TRS-80 Color Computer & & & & \\
\hline 26-3001 4K Color Computer. & 399.00 & 359.10 & 359.10 & 39.90 \\
\hline 26-3002 16K Color Computer. & 599.00 & 539.10 & 539.10 & 59.00 \\
\hline Atari \({ }^{\text {® }}\) CX- 2600 Video Computer System & 180.00 & 164.95 & 164.95 & 15.05 \\
\hline Pioneer \({ }^{\text {O }}\) VP. 1000 LaserDisc Player & CALL FOR & PRICES & & \\
\hline Mattel Electronics \({ }^{(1)}\) Intellivision \({ }^{\text {c }}\) Home Video System & CALL FOR & PRICES & \(8 \square\) & A119 \\
\hline Magnavox \({ }^{\text {( }}\) Odyssey \({ }^{\text {2 }}\) Home Video System & CALL FOR & PRICES & & \\
\hline Magnavox \({ }^{(1)}\) Magnavision \({ }^{\text {® }}\) Videodisc Player & CALL FOR & PRICES & \(\underline{\square}\) & 0 \\
\hline
\end{tabular}

CALL TOLL FREE 800-531-7466• (Operator 19) • Texas \& Principal Number 512/581-2766• Telex 767339 Dept. 19•1117 Conway Avenue - Mission, Texas 78572

NEW BRANCH
2912 N. Main. Fort Worth. Texas 76106 • Phone Number 817-625-6333 • Telex 794836
TRS-80 is a Trademark of Tandy Corp. *With this coupon only! Prices subject to change without notice.

SUNNY LOW LOW COST POWER.SUPPLIES

FOR S-100, FLOPPY DISKS


KIT 1, 2 \& 3 For S- 100


R3 For Three 8" or 51/4" Disk Drives

S-100 POWER SUPPLY KITS (OPEn frame with base plate, 3 hrs. assy. time)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ITEM & USED FOR & @ + 8 vac & @-9 vac & @ +16 Vac & © -16 Vdc & @ + 28 vdc & SILE W \(\times 0 \times H\) & PRICE \\
\hline KIT 1 & 15 CARDS SOURCE & 15A & & 2.5A & 2.5A & & \(12^{\prime \prime \prime} \times 5^{\prime \prime} \times 4 \%\) \%", & 52.95 \\
\hline KIT 2 & SYSTEM SOURCE & 25A & & 3A & 3A & & \(12^{\prime \prime} \times 5{ }^{\prime \prime} \times 4 \%\) 年" & 59.95 \\
\hline KIT 3 & DISK SYSTEM & 15A & 1A & 2 A & 2 A & 4A & \(14^{\prime \prime} \times 6\) " \(\times 4 \%\) \% & 67.95 \\
\hline
\end{tabular}

\section*{DISK DRIVE POWER SUPPLY "R3" regulated. open frame, assy \& tested}


S3 2 in 1 Unit for S-100 and two \(8^{\prime \prime}\) or \(514^{\prime \prime}\) Disk Drives. It fits most Disk System Mainframes. OPTION 1) REPLACE + 24 V BY + 12 V 2) FOR SIZE I ONLY ADD + \(12 \mathrm{~V} @ 1\) @ AT AN ADDITIONAL \(\$ 12.00\) IDEAL FOR THREE 8 or \(51 / 4\) FLOPPY DISK DRIVES. SUCH AS SHUGART \(801 / 851\). SIEMANS FDD 100-8/200-8 OR 100-5 ETC
DISK SYSTEM PWR SUPPLY "S3" OPEN FRAME, ASSY. \& TESTED. COMPACT SIZE: \(10^{\prime \prime}(\mathrm{W}) \times 6^{\prime \prime}\) ( D\() \times 5^{\prime \prime}(\mathrm{H}) 92.95\)
REGULATED OUTPUTS FOR DISK DRIVES \(+5 V\) @ \(4 A .-5 V @ 1 A .+24 V @ 4 A(O R+12 V @ 4 A)\) SHORTS PROTECT
UNREGULATED OUTPUTS FOR \(S-100+8 \mathrm{~V} @ 14 \mathrm{~A} \pm 16 \mathrm{~V} @ 3 \mathrm{~A}\) (OPTION ADD OVP FOR +5 V . ADD \(\$ 5.00\) )
A COMPLETE UNIT FOR DISK SYSTEM WITH THE MAINFRAME CONTAINING 12 SLOTS \& TWO \(8^{\circ \prime \prime}\) or \(51 / 4^{\prime \prime}\) DISK DRIVES
POWER TRANSFORMERS (WITH MOUNTING BRACKETS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM & PRIMARY & SECONDARY \# 1 & SECONDARY \#2 & SECONDARY \#3 & SIZE \(W \times \mathrm{D} \times \mathrm{H}\) & PRICE \\
\hline \(\mathrm{T}_{1}\) & 110/120 & \(2 \times 8 \mathrm{Vac} .15 \mathrm{~A}\) & 28 Vac CT, 2.5A & & \(374^{\prime \prime} \times 35 / 6^{\prime \prime} \times 31 /{ }^{\prime \prime}\) & 21.95 \\
\hline \(\mathrm{T}_{2}\) & 110/120 & \(2 \times 8 \mathrm{Vac}, 25 \mathrm{~A}\) & \(28 \mathrm{Vac}, \mathrm{CT}, 3.5 \mathrm{~A}\) & & \(33 / 4^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 27.95 \\
\hline T3 & 110/120 & \(2 \times 8 \mathrm{Vac}, 15 \mathrm{~A}\) & \(28 \mathrm{Vac}, \mathrm{CT} .2 .5 \mathrm{~A}\) & \(48 \mathrm{Vac}, \mathrm{CT}, 2 \mathrm{~A}\) & \(33 / 4{ }^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 29.95 \\
\hline \(\mathrm{T}_{4}\) & \(110 / 120\) & \(2 \times 8 \mathrm{Vac}, 6 \mathrm{~A}\) & \(28 \mathrm{Vac} . \mathrm{CT} .1 .5 \mathrm{~A}\) & \(48 \mathrm{Vac}, \mathrm{CT}, 3 \mathrm{~A}\) & \(33 / 4{ }^{\prime \prime} \times 35 / 6^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 22.95 \\
\hline \(\mathrm{T}_{5}\) & 110/120 & \(2 \times 8 \mathrm{Vac} .6 \mathrm{~A}\) & \(28 \mathrm{Vac} . \mathrm{CT}, 2 \mathrm{~A}\) & & \(3^{\prime \prime} \times 3^{\prime \prime} \times\) & 14. \\
\hline
\end{tabular}

\section*{SHIPPING For each power supply \(\$ 5.50\) in} Calif., \(\$ 7.50\) in other states, \(\$ 14.00\) in Canada. For each Transformer \(\$ 5.00\) in all States, \(\$ 10.00\) in Canada. Calif. Residents add 6\% Sales Tax

SUNNY INTERNATIONAL
(TRANSFORMERS MANUFACTURER) (213) 328-2425 MON-SAT 9-6

MAILING ADDRESS:
P.O. BOX 4296

TORRANCE, CA 90510


22129½ S. VERMONT AVE TORRANCE, CA 90502

\title{
Better Products,
}

\section*{\(J A D E\)}

Double-D \({ }^{\text {тм }}\)

Get the Inside Track

S. 100 bus compatible - Reads and writes single or double density \(\bullet\) Density is software selectable - Controls up to four 5-1/4" or \(8^{\prime \prime}\), single or doublesided drives \(\bullet\) Single or double-sided drives may be mixed in the same system - On-board Z-80A to assure reliable operation - EIA level serial printer interface on board, baud rates to 9600 (perfect for despooling operations) - Uses IBM standard formats - Designed to meet IEEE signal disciplines - Works with 8080,8085 , and Z-80 CPU's.
IOD-1200B Bare Board
1OD-1200K Kit
\(\$ 59.95\)

IOD-1200A A \& T
\(\$ 299.95\)
SFC-58001200E \(D D\) boot PROM
\(\$ 375.00\)
SFC-59002001F CP/M 2.2 for DD \(\$ 149.95\)

\section*{\(J A D E\) \\ Memory Bank \({ }^{\text {T }}\)}

\section*{8 or 16 Bit Dynamic Memory}

A 64 K S-100 dynamic memory that looks toward the future. - S-100 standard pinout and signal discipline -8 or 16 bit words, automatically, depending on the type of CPU on the bus *4-layer PC board designed for extremely low-noise operation.

With its on-board refresh controller, this board allows DMA operations without regard to time factors. It will'run reliably at any system clock rate up to 4 MHz -because it is clocked with the system clock itself (no one-shots are used for timing operations). Its unique design enables it to switch from a 64 K by 8 -bit board to a 32 K by 16 -bit board automatically (responds to IEEE's 16 Rqst line and, if enabled, replies with 16 Grant).
M EM-99730B Bare Board MEM-99730K Kit, no RAM
\(\$ 49.95\) MEM-16730K 16 K kit MEM-32731K 32 K kit \(\$ 199.95\) \(\$ 219.95\) \(\$ 239.95\) \(\$ 259.95\) \(\$ 279.95\) MEM-64733K 64 K kit Assembled \& Tested dd \(\$ 50.00\)

- \(\mathrm{MHz}_{2} 2-80\) CPU, \(80 \times 25\) display with graphics and 8 colors, 32 K RAM. 24 K ROM. parallel/serial/cassette interfaces, upper/lower case, numeric keypad, 10 special funtion keys. uses CP/M 2.2 .
NEC-8001A 32 K CPU/keyboard NEC-8012A I/O with 32K RAM NEC-8031A Dual disk unit
VDM-651200 \(12^{\prime \prime}\) green CRT
NEC-1202D Hi-res \(R G B\) color CRT NEC-90005 Gen. accting softwr
\(\$ 1095.00\) \(\$ 695.00\) \(\$ 1095.00\) \(\$ 269.95\) \(\$ 1045.00\) \(\$ 375.00\)

\section*{\(J A D E\) \\ The Big Z \({ }^{\text {т }}\) \\ Z-80A Based CPU}


S-100 bus compatible - Switch selectable 2 or 4 MHz operation • Serial I/O port - Accomodates a 2708, 2716, or 2732 EPROM in shadow mode allowing full use of 64 K RAM • MWRITE signal is generated automatically if used without front panel - On-board 8251 USART controls serial port at baud rates from 75 to 9600 baud - Switch selectable \(1 \mathrm{~K}, 2 \mathrm{~K}\), or 4 K boundary fully buffered -Power-on jump to EPROM
CPU-30201K Kit
\(\$ 139.95\)
CPU-30201A A \& T
\(\$ 189.95\)
CPU-30200B Bare board
\(\$ 35.00\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Memory Chips on Sale} \\
\hline & [-9) & (1)-2.4 & 25-19 & 501+ \\
\hline 21141. \& MHz & 3.35 & 2.9\%) & 2.75 & 2.49 \\
\hline 27082 MHz & 4.90 & 3.9\%) & 3.45 & 2.90 \\
\hline \(25332{ }^{2} \mathrm{MHz}\) & 24.49 & 19.90) & 15.90) & 12.90 \\
\hline 27162 MHz & 8.90) & 7.45 & 6.45 & 5.75 \\
\hline 27164 MHz & 19.90) & 15.45 & 13.45 & 11.75 \\
\hline 27322 2 M \({ }^{\text {2 }}\) & 24.90 & 19.9\%) & 15.90 & 12.90 \\
\hline 2733 / M M & 839.9\% & 29.90) & 24.90 & 19.90 \\
\hline 2758 2 MHHz & 6.90 & 6.25 & \(5.50)\) & 4.50 \\
\hline \(411682(x)\) ns & 3.25 & 2.9\%9 & 2.49 & 1.99 \\
\hline \(41684200{ }^{\text {ns }}\) & 28.90) & 24.90) & 22.90 & 19.90 \\
\hline
\end{tabular} \(\begin{array}{llllll}4164 & 20(0) n s & 28.90 & 24.50) & 22.90 & 19.90\end{array}\)

\section*{Disk Sub-Systems}

Shugart, Siemens, Qume


Handsome metal cabinet with proportionally halanced air flow system - Rugged dual drive power supply - Power cable kit - Power switch, line cord, fuse holder, cooling fan - Never-Mar rubher feet - All necessary hardware to mount 2 \(8^{\prime \prime}\) disk drives, power supply, and fan • Does not include signal cable

Dual 8" Subassembly Cabinet
END-000420 Bare cahinet
\(\$ 59.95\)
END-000421 Cabinet kil
\(\$ 225.00\)
END-000431 A \& T
\(\$ 359.95\)
8" Disk Drive Subsystems
Single Sided, Double Density END-000423 Kit w/2 FDl(o).8I)s . \(\$ 975.00\) END-000424 A\& Tw/2 FIDIOO.8Ds \$1175.00 END-000433 Kit w/2 SA-801Rs ... \(\$ 999.95\) END-000434 A \& \(T\) w/2 SA-80/Rs \(\$ 1195.00\)

\section*{\(8^{\prime \prime}\) Disk Drive Subsystems}

Double Sided, Double Density
END-(000426 Kit \(\omega / 2\) ITT-8s END-000427 A\& \(T w / 2\) I)T.8s
\(\$ 1475.00\) 000427 A \& \(1 w / 2\) DT.8s \(\$ 1675.00\) END-(000436 Kit w/2 SA.851Rs .. \(\$ 1495.00\) END-000437 A \& Tw/2 SA-85/hs \(\$ 1695.00\)

\section*{JADE S.P.I.C.}

Our "SPICy" New I/O Board


New, from JADE, one of the most advanced, technologically sophisticated Serial/Parallel Interrupt Controller systems in the world. On a single IEEE S-100 standard board, JADE has packed two bi-directional parallel ports with full handshaking, four serial channels (asynchronous, IBM-compatible bi-synch, synchronous, HDLC/SDLC) with full and complete modem control lines, and 16 counter-timer channels.

Utilizing the highly advanced Zilog peripheral chips, (Z-80 SIO, PIO \& CTCs), the SPIC board is fully programmable to serve as the foundation for a multi-user multi-tasking system. Each of the seven \(2-80\) peripheral chips can generate its own interrupt vector, with daisy-chain priority levels. Each counter-timer channel can be programmed to monitor an interrupt vector line on the S. 100 bus. Each SIO channel can be driven independently with separate \(\mathrm{Tx} / \mathrm{Rx}\) clocks so your peripherals can have varied baud rates from 110 to 76,800 baud
IOI-1045B Bare Board
\(\$ 49.95\)
IOI-1045K 2 CTC's, I SIO, 1 PIO ... \(\$ 179.95\)
IOI-1045A A \& T
IOI-1046K 4 CTC's, 2 SIO's, \(I\) PIO \(\$ 219.95\)
IOI-1046A A\&T
\(\$ 299.95\)

\section*{Build It Yourself and Save \$1850}

\section*{Complete S-100 Micro-Computer Kit}

4 Mhz Big Z CPU, 64 K Memory Bank, Double.D disk controller, 12 slot mainframe, dual disk subassembly with 2 double density 8" disk drives \& power supply, ADDS Viewpoint terminal, CP/M 2.2. boot PROM, system monitor, \& all necessary cables and manuals - PLUS FREE Business Software Package. Save over \$1850.00 \$2795.00

\section*{Jade Business Software}

Now, for the first time, at an amazingly low price, \(\mathrm{CP} / \mathrm{M}\) and SDOS users can get an affordable business software package. Just look at these programs! All come complete with basic code (written to run under CBASIC 1), for easy customizing and modification. All software is self-documenting. The package price includes a word-processing system. When printed on the system's printer, all files with the extension xxxTOT. constitute a complete manual. No manuals are supplied with the package other than as they appear on the disks. All software is supplied on \(8^{\prime \prime}\) premium quality JADE Diskettes. Software sold as is. (Sorry, but at these low prices we can not offer our usual friendly support and handholding.)
Includes: General Ledger, Payroll, Invoicing, Inventory Control Accounts Recievable, Cash Dishursements, Fixed Assets, Cash Receipts, \& Mailing List Management.
Special Package Price
\(\$ 249.95\)

\title{
Lower Prices 9
}


BEST BUY in PRINTERS - Epson
MX-70 l. 32 column. 80 CPS, \(5 \times 7\) dot matrix, adjustable tractor feed. \& kraphics
PRM-27070 List \(\$ 459\)
\(\$ 399.95\)
MX-80 1:32 column, 80 CPS. bi-directional/logic seeking printing. \(9 \times 9\) dot matrix, adjustable tractor feed. \& 64 sraphics characters
PRM-27080 List \(\$ 645\)
\(\$ 474.95\)
MX-80FT same as MX:80 with friction feed and full graphics added
PRM-27082 List \(\$ 745\)
\(\$ 574.95\)
MX-100 233 column, correspondence quality, whra-high resolution graphics. up to \(1.5^{\prime \prime}\) paper. friction feed \& remotable/adjustable tractor feed. \(18 \times 18\) dot matrix, 80 CPS, programmahle forms handling
PRM-27100 List \(\$ 945\)
\(\$ 795.00\)
PRA-27084 Serial interface
\(\$ 69.95\)
PRA-27088 Serial intf \& \(2 K\) buffer
\(\$ 144.95\)
PRA-27081 Apple card
\(\$ 74.95\)
PRA-27082 Apple cable
PRA-27086 IEEE 488 card
PRA-27087 TRS-80 cable
\(\$ 22.95\)
\(\$ 52.95\)
PRA-27085 Graftrax II
\(\$ 32.95\)
PRA-27083 Extra ribbon \(\$ 95.00\)

\section*{SPINWRITER - NEC}

65 cps. hi.directional. letter quality printer with deluxe tractor mechanism, both parallel and serial interfaces onboard. 16 K huffer, ribbon, print thimble, graphics, micro. space juslification, data cable, and self test/diagnostic ROM.
PRD-55511 without \(16 K\) buffer
\(\$ 2795.00\)
PRD-55512 with 16 K buffer
\(\$ 2895.00\)

\section*{Accessories for TRS-80}

DISK DRIVES for TRS-80
\(23 \%\) more storake, 8 times faster. 40 track with free patch. 120 day warranty.
MSM-12410C Save \(\$ 125.00\) !!!
\(\$ 325.00\)
\(8^{\prime \prime}\) DISK DRIVES for MODEL II 2 double density drives with cabinet, power supply, \& cables END-000433 Kit \(\$ 1050.00\)
END-000434 Assembled
\(\$ 1250.00\)
WCA-5036A Cable (required) \(\$ 29.95\)

\section*{16K Atari . . . \(\$ 359.95\)}

\section*{ATARI 800 - Atari}

Complete personal computer with high resolution color graphics. built in RF modulator. I cmntroller parts. internal spenher, \(16 K^{\prime}\) RAM \& \(8 K^{\prime}\) ROM

SYO-2080A 16 K Atari 800 Atari 800 with 32K of RAM Atari 800 with 48 K of RAM SYO-2040A 16 K Atari 400 MSM-330810 Dish drive MSM-330815 Dual driue IOX-5050A 850 interface MEX-16853K 16 K RAM module SFI-241011005 Visicale
\(\$ 759.95\)
\(\$ 799.95\)
\(\$ 849.95\) \(\$ 359.95\) \(\$ 595.00\)
\(\$ 1395.00\) \(\$ 199.95\) \(\$ 69.95\)
\(\$ 184.95\)

\section*{Accessories for Apple}


16K MEMORY UPGRADE
Add 16K of RAM to your TRS.80, Apple, or Exidy in just minutes. We've sold thousands of these 16 K RAM upgrades which include the appropriate memory chips (as specified by the manufacturer), all necessary jumper blocks. fool-proof instructions, and our I year guarantee. MEX-16100K TRS-80 kit .............. \$25.00 MEX-16101K Apple kit \(\$ 25.00\) MEX-16102K Exidy kit ............... \(\$ 25.00\)

16K RAM Card - Microsoft
(There is life after 48 K )
MEX-16300A A \& \(T\)
\(\$ 174.95\)

\section*{Z-80* CARD for APPLE}

Two computers in one, \(2-80 \& 6502\), more than doubles the power \& potential of your Apple, includes \(2.80^{\circ} \mathrm{CPU}\) card, CP/M 2.2, \& BASIC-80
CPX-30800A A \& T
\(\$ 299.95\)

APPLE CLOCK - Cal Comp Sys
Real time clock w/battery back-up
IOK-2030A A \& T
\(\$ 109.95\)

\section*{DISK DRIVE for APPLE}
\(51 / 4\) " disk drive with controller for your Apple
MSM-12310C with controller ...... \(\$ 475.00\) MSM-123101 w/out controller ..... \$375.00

\section*{\(8^{\prime \prime}\) DRIVES for APPLE}

Controller, DOS, two \(8^{\prime \prime}\) double densisty drives, cabinet. power supply, \& cables
Special Package Price Kit
\(\$ 1399.95\)

PRINTER INTERFACE - C.C.S. Centronics type I/O card w/ firmware IOI-2041A A \& T
\(\$ 99.95\)

AIO, ASIO, APIO - S.S.M.
Parallel \& serial interface for your Apple (see Byte pg 11)

\section*{IOI-2050K Par \& Ser kit}
\(\$ 139.95\)
IOI-2050A Par \& Ser A \& T
\(\$ 169.95\)
IOI-2052K Serial kit
\(\$ 89.95\)
IOI-2052A Serial A \& T
IOI-2054K Parallel kit
\(\$ 69.95\)
IOI-2054A Parallel A \& T
\(\$ 89.95\)

\section*{A488-S.S.M.}

IEEE 488 controller. uses simple basic commands, includes firmware and cable, I year guarantee, (see April Byte pg (1)
IOX-7488A \(A \& T\)
\(\$ 399.95\)

CPS MULTICARD - Mtn. Computer
Threc cards in one! Real time clock/calendar, serial interface \& paralled interface all on one card.
IOX-2300A A \& T
\(\$ 199.95\)

\section*{Apple-CAT - Novation}

Software selectable 1200 or 300 baud, direct connect, auto-answer/auto-dial, auxiliary 3-wire RS232C serial port for printer.
1OM-5232A Save \(\$ 50.00\) !!!

\section*{Single Board Computers}


AIM-65 - Rockwell
6502 computer with alphamumeric display, printer, \& keyboard. and complete instructional manuals CPK-50165 1K AIM
\(\$ 424.95\)
CPK-50465 4K AIM …............ \$499.95
SFK-74600008E \(8 K\) BASIC ROM ... \(\$ 99.95\) SFK-64600004E \(4 K\) assembler ROM \(\$ 84.95\) PSX-030A Power supply \(\$ 64.95\) ENX-000002 Enclosure \(\$ 54.95\)
\(4 K\) AIM. \(8 K\) BASIC. pouer supply, \& enclosure
Special package price .............. \(\$ 675.00\)
Z-80* STARTER KIT - SD Systems
Complete Z-80* computer with RAM. KOM. I/O, display, keyhoard. manual. and kluge area.
CPS-30010K Kit
\(\$ 369.95\)
CPS-30010A A \& T
\(\$ 459.95\)

SYM-1 - Synertek Systems
Single hoard computer weith IK of RAM. 4 K of ROM. key.pad. L.EI) display, 20 ma \& cassette interface on homrd.

CPK-50020A \(A \& T\)
\(\$ 249.95\)

\section*{Video Terminals}

\section*{VIEWPIONT - ADDS}

Detachable keyboard, serial RS232C interface, hand rates from 110 to 19.200 , auxiliary serial output port. \(24 \times 80\) displa, titable screen, intemational character set
VDT-501210 Sale Priced
\(\$ 639.95\)

\section*{TELEVIDEO 950}

Detachable keyward. split screen with line lack. etched CRT. programmable function keys. on-screen status line. buffered auxiliary port. It x 10 dot matrix. self test. serviced nation wide by General Electric
VDT-901250 List \$1195.00
\(\$ 995.00\)

\section*{Video Monitors}

\section*{Leedex / Amdek}

Reasonably priced video monitors
VDM-801210 Video 100 12" B\&W
\(\$ 139.95\)
VDM-801230 Video \(100.8012^{\prime \prime}\) B\& \(W \$ 179.95\)
VDM-801250 12" Green Phospor .... \$169.95
VDC-801310 \(13^{\prime \prime}\) Color 1 \(\$ 379.95\)

\section*{13" COLOR MONITOR - Zenith}

The hi res color you've been promising yourself
VDC-201301
\(\$ 449.00\)
12" GREEN SCREEN - NEC
20 MHz , P3l phosphor video monitor with audio, exceptionally high resolution. A fantastic monitor at a very reasonable price
VDM-651200 \(12^{\prime \prime}\) monitor
\$269.95

\section*{EPROM Erasers}

\section*{EPROM ERASERS}
L.S. Engineering UV eraser for up to 18 EPROMs

XME:3200 A \& \(T\)
Sprctronics hi intensity industrial eraser
XME-3100 Without timer
XME-3101 With timer
\(\$ 94.50\)

\title{
Faster Service.
}

\section*{S-100 PROM Boards}


PB-1 - S.S.M. 2708. 2716 EPROM board with built-in programmer MEM-99510K Kit \(\$ 154.95\) MEM-99510A \(A\)
\(\$ 219.95\)
PROM-100-SD Systems
2708. 2716. 2732, 2758. \& 2516 EPROM programmer MEM-99520K Kit
\(\$ 219.95\)
MEM-99520A Jade \(A \& T\)
\(\$ 269.95\)
EPROM BOARD - Jade
16 K or 32 K uses \(2708^{\prime}\) s or \(2716^{\prime}\) s, 1 K boundary MEM-16230K Kit
\(\$ 79.95\)
MEM-16230A \(A \& T\)
\(\$ 119.95\)

\section*{S-100 Video}

\section*{VB-3 - S.S.M}

80 characters. \(x\) 2flines expandable to \(80 \times 48\) for a full page of text, upper \& lower case. 256 user defined symbols, \(160 x\) 192 graphics matrix, memory mapped, has key board input.
IOV-1095K \(\& \mathrm{MHz}\) kit
\(\$ 349.95\) IOV-1095A 4 MHz A \& T \(\$ 439.95\) IOV-1096K \(80 \times 48\) upgrade \(\$ 39.95\)

\section*{VDB-8024-SD Systems}
\(80 x\). \(4 / 10\) mapped video board with keyboard I/O, and on-hoard \(Z .80 A^{\circ}\)
1OV-1020K Ki
\(\$ 399.95\)
IOV-1020A Jade A \& T
\(\$ 459.95\)
VIDEO BOARD - S.S.M.
64 characters \(x 16\) lines, \(128 \times 48\) matrix for graphics, full upper/lower case ASCII character set, numbers, symbols and kreek letters, normal/reverse/blinking video. S. 100. 1OV-1051K Kit
IOV-1051A A \& T
IOV-1051B Bare board
\(\$ 149.95\)
\(\$ 219.95\)

\section*{Motherboards}

\section*{ISO-BUS - Jade}

Silent, simple, and on sale - a better motherboard 6 Stot ( \(51 /{ }^{\prime \prime} \times 8 \pi^{\prime \prime}\) )

MBS-061B Bare board MBS-061K Kit MBS-061A \(A \& T\) 12 Slot \(193 /\) " \(^{x} 8\) \% \(^{\prime \prime}\) MBS-121B Bare board MBS-121K Kit
MBS-121A A \&
18 SIot (141/2" x \(8 \%^{\prime \prime}\) )
MBS-181B Bare board
MBS-181K Kit
MBS-181A \(A \& T\)

\section*{S-100 Memory}


EXPANDORAM II - S D Systems
4 MHz RAM board expandable from 16 K to 64 K MEM-16630K 16 K kit MEM-32631K 32 K kit MEM-48632K 48 K kit MEM-64633K 64K kit Assembled \& tested \(\$ 275.95\) \(\$ 295.95\)
\(\$ 315.95\) \(\$ 335.95\) add \(\$ 50.00\)

\section*{64K RAM - Calif Computer Sys}
/ MHz bank port / bank byte selectable, extended addressing, 16 K bank selectable, PHANTOM line allows memory overlay, 8080 / Z 80 / front panel compatible. MEM-64565A A \& T
\(\$ 575.00\)
32K STATIC RAM - Jade
2 or 4 MHz expandable static RAM board uses 2114L's MEM-16151K 16 K 4 MHz kit
\(\$ 169.95\)
MEM-32151K 32 K 4 MHz kit
\(\$ 299.95\)
Assembled \& tested add \(\$ 50.00\)

16K STATIC RAM - Mem Merchant 4 MHz 16 K static RAM hoard, IEEE S 100 , hank selectable. Phantom capability, addressa ble in \(4 K\) blocks, "disable-able" in 1 K segments, e.tended addressing. low power
MEM-16171A A \& T
\(\$ 174.95\)

\section*{S-100 Disk Controller}

DOUBLE DENSITY - Cal Comp Sys
s1/4" and \(8^{\prime \prime}\) disk controller. single or double density, with on-board boot loader ROM. and free CP/M 2.2* and manual set.
IOD-1300A A \& T
\(\$ 369.95\)
VERSAFLOPPY II - SD Systems
New double density controller for both \(8^{\prime \prime}\) \& \(51^{\prime \prime}\)

\section*{IOD-1160K Kit}
\(\$ 339.95\)
IOD-1160A A \& \(T\)
\(\$ 379.95\)

\section*{Disk Drives}

\section*{\(8^{\prime \prime}\) DISK DRIVES}

Highly reliable double density floppy disk drives Shugart 801 R single sided, double density
MSF-10801R SA-801R .............. \(\$ 425.00\)
Special Sale Price ............ 2 for \(\$ 790.00\)
Shugart 851 R double sided, double density

\section*{MSF-10851R SA-851R}
..... \$595.00
Special Sale Price
2 for \(\$ 1150.00\)
Siemens FDD100-8D2 single sided, double density
MSF-201120
\(\$ 385.00\)
Special sale price
2 for \(\$ 750.00\)
Qume Datatrak 8 double sided, double density
MSF-750080 SA.851R compatible . \(\$ 599.95\) Special sale price

2 for \(\$ 1160.00\)
JADE DISK PACKAGE
Double density controller, wo \(8^{\prime \prime}\) double density floppy disk drives, CP/M 2.2 (configured for controller), hardware and software manuals, boot PROM, cabinet, power supply fan, \& cables
Special Package Price Kit
\(\$ 1395.00\)
\(51^{1 / \prime \prime}\) Diskettes \(B o x\) of 10
\(\$ 22.00\)
\(\mathbf{8}^{\prime \prime}\) Diskettes Box of 10 .... \(\$ 24.00\)

\section*{S-100 CPU}


CB-2 Z-80 CPU - S.S.M.
2 or 4 MHz Z-80 CPU board with provision for up to 8 K of ROM or \(4 K\) of RAM on board, extended addressing. IEEE S.100, front panel compatible.

CPU-30300K Kit
\(\$ 239.95\)
CPU-30300A A \& T
\(\$ 299.95\)

2810 Z-80* CPU - Cal Comp Sys
\(2 / 4 \mathrm{MHz}\) Z.80A * CPU with RS. 2.32C serialI/O port and on hoard MOSS 2.2 monitor PROM. front panel compatible. CPU-30400A \(A \& T\)
\(\$ 269.95\)

SBC-200 - SD Systems
4 MHz 2.80* CPU with serial \& parallel I/O ports, up to 8 K of on-board PROM, software programmable baud rate generator, 1 K of on board RAM, 2.80 CTC
CPC-30200K Kit
\(\$ 339.95\)
CPC-30200A Jade A \& T
\(\$ 399.95\)

\section*{S-100 I/0}

I/O-4 - S.S.M
2 serial I/O ports plus 2 parallel \(1 / O\) ports
IOI-1010K Kit
\(\$ 179.95\)
IOI-1010A A\&T \(\$ 249.95\)
IOI-1010B Bare board
\(\$ 35.00\)

\section*{Novation Cat Modem}


D-CAT 300 baud, direct connect modem
1OM-5201A Special sale price
\(\$ 169.95\)
AUTO-CAT Auto answer/origiate, direct connect 10M-5230A Special sale price

\section*{Place Orders Toll Free}

Continental U.S. Inside California 800-421-5500 800-262-1710

For Technical Inquires or Customer Service call: 213-973-7707

\section*{ \\ Computer Products}

4901 W. Rosecrans, Hawthorne, Ca 90250
TERMS of SALE: Cash, checks, credit cards, or l'urchase Orders from qualified firms and institutions. Minimum Order \(\$ 15.00\). California residents add \(6 \%\) tax. Minimum shipping \& handling charge \(\$ 3.00\). Pricing \& availibility subject to change

\title{
16K
}

74LS00
74 LSOO
\(74 \mathrm{LSO2}\)
74 LSO 4
74 7SSO5
\(74 \mathrm{LSO9}\)
74LS10
74LS11
74 LS 13
74 LS 15
4LS21
4 4SS22
74 LS27
\(74 L 530\)
74LS33
74LS38
74 7S42
44S548
74LS49
74 LS54
74LS55
4 LS73
74LS74
74 LS 75
4LS78
74 LS83
74 LS86
\(74 \mathrm{LS90}\)
\(74 \mathrm{LS9} 9\)
74 7S993
74 LS96
74LS109
74LS113
74LS11
74LS123
74 LS 12
\(74 \mathrm{LS126}\)
\(74 \mathrm{LS136}\)
74LS137
744 S 138
74 S 139
741 S145
\(74 \mathrm{LS148}\)
\(74 \mathrm{LS151}\)
74 LS 153
\(74 \mathrm{LS154}\)
74 LS 155
744 S 156
74LS:58
74LS160
74LS 161
74 LS 162

74LS 16

9 4LS164
4 LS 165
4 LS 166 74LS 166 74LS169 74LS170
 4LS1781
4 LSi89
4 LS19 4LS191 4LS192
4LS 193
4LS194 \(\rightarrow 4 L S 195\)
 \(\rightarrow 4\) \begin{tabular}{l}
95 \\
95 \\
\hline 95
\end{tabular} 7400 SERIES

\begin{tabular}{|c|c|}
\hline Ti.V. & MISC. \\
\hline \(\underbrace{\substack{11350}}_{\text {Mc }}\) &  \\
\hline cicker & \({ }^{\text {brab }}\) \\
\hline Lus65 & \\
\hline  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{CMOS} \\
\hline 74 COO & . 35 & 74 C 373 & 2.75 & 4018 & 95 & 4093 & . 95 \\
\hline 74 CO 2 & . 35 & 74 C 374 & 2.75 & 4019 & . 45 & 4099 & 1.95 \\
\hline 74 CO 4 & . 35 & \(74 \mathrm{C901}\) & . 80 & 4020 & . 95 & 14409 & 8.95 \\
\hline 74 C 08 & . 35 & \(74 \mathrm{C902}\) & . 85 & 4021 & 95 & 14410 & 8.95 \\
\hline 74 C 10 & 35 & 74C903 & . 85 & 4022 & 1.15 & 14411 & 9.95 \\
\hline 74 C 14 & 1.50 & 74 C 905 & 10.95 & 4023 & . 35 & 14412 & 12.95 \\
\hline 74 C 20 & . 35 & \(74 \mathrm{C906}\) & . 95 & 4024 & . 75 & 14419 & 2.95 \\
\hline 74 C 30 & . 35 & \(74 C 907\) & 1.00 & 4025 & . 35 & 4502 & 95 \\
\hline 74 C 32 & . 50 & 74 C 908 & 2.00 & 4026 & 1.65 & 4503 & 65 \\
\hline 74 C 42 & 1.75 & 74C909 & 2.75 & 4027 & . 65 & 4508 & 1.95 \\
\hline 74 C 48 & 2.10 & \(74 \mathrm{C910}\) & 9.95 & 4028 & . 80 & 4510 & . 95 \\
\hline 74 C 73 & . 65 & 74 C 911 & 10.00 & 4029 & . 95 & 4511 & 95 \\
\hline 74 C 74 & 85 & 74 C 912 & 10.00 & 4030 & . 45 & 4512 & 95 \\
\hline 74 C 76 & 80 & 74 C 914 & 1.95 & 4034 & 2.95 & 4514 & 1.25 \\
\hline \(74 \mathrm{C83}\) & 1.95 & \(74 \mathrm{C915}\) & 2.00 & 4035 & 85 & 4515 & 2.25 \\
\hline \(74 \mathrm{C85}\) & 1.95 & 74 C918 & 2.75 & 4040 & 95 & 4516 & 1.55 \\
\hline 74 C 86 & . 95 & \(74 C 920\) & 17.95 & 4041 & 1.25 & 4518 & 1.25 \\
\hline 74 C 89 & 4.50 & 74 C 921 & 15.95 & 4042 & . 75 & 4519 & 1.25 \\
\hline 74 C 90 & 1.75 & \(74 \mathrm{C922}\) & 5.95 & 4043 & . 85 & 4520 & 1.25 \\
\hline \(74 \mathrm{C93}\) & 1.75 & \(74 \mathrm{C9} 23\) & 5.95 & 4044 & . 85 & 4522 & 1.25 \\
\hline \(74 \mathrm{C95}\) & 1.75 & \(74 \mathrm{C9} 25\) & 6.75 & 4046 & . 95 & 4526 & 1.25 \\
\hline 74 C 107 & 1.00 & 74C926 & 7.95 & 4047 & . 95 & 4527 & 1.95 \\
\hline 74 C 150 & 5.75 & \(74 \mathrm{C927}\) & 7.95 & 4049 & . 55 & 4528 & 1.25 \\
\hline 74 C 151 & 2.25 & 74 C 928 & 7.95 & 4050 & . 55 & 4531 & . 95 \\
\hline 74 C 154 & 3.25 & \(74 \mathrm{C929}\) & 19.95 & 4051 & . 95 & 4532 & 1.95 \\
\hline 74 C 157 & 1.75 & 74C930 & 19.95 & 4053 & . 95 & 4538 & 1.95 \\
\hline 74 Cl 160 & 2.00 & 4000 & . 35 & 4060 & 1.45 & 4539 & 1.95 \\
\hline 74 C 161 & 2.00 & 4001 & . 35 & 4066 & . 75 & 4543 & 2.70 \\
\hline 74 C 162 & 2.00 & 4002 & 25 & 4068 & 40 & 4555 & . 95 \\
\hline 74 C 163 & 2.00 & 4006 & 95 & 4069 & . 35 & 4556 & 95 \\
\hline 74 C 164 & 2.00 & 4007 & 29 & 4070 & . 35 & 4581 & 1.95 \\
\hline 74 C 165 & 2.00 & 4008 & . 95 & 4071 & 30 & 4582 & 1.95 \\
\hline 74 C 173 & 2.00 & 4009 & 45 & 4072 & 30 & 4584 & 95 \\
\hline 74 C 174 & 2.25 & 4010 & 45 & 4073 & 30 & 4585 & . 95 \\
\hline 74 C 175 & 2.25 & 4011 & . 35 & 4075 & 30 & 4702 & 12.95 \\
\hline 74C192 & 2.25 & 4012 & . 25 & 4076 & 95 & 4724 & 1.50 \\
\hline 74 C 193 & 2.25 & 4013 & . 45 & 4078 & . 30 & 80 C 07 & 95 \\
\hline 74 C 195 & 2.25 & 4014 & . 95 & 4081 & . 30 & 80C95 & 85 \\
\hline 74 C 200 & 5.75 & 4015 & . 95 & 4082 & 30 & 80C96 & . 95 \\
\hline 74 C 221 & 2.25 & 4016 & 45 & 4085 & 95 & 80C97 & . 95 \\
\hline & & 4017 & 1.15 & 4086 & 95 & 80C98 & 1.20 \\
\hline
\end{tabular}

\section*{DIP SWITCHES}
\({ }_{5}{ }^{5}\) position
4 position
5 position
6 position
7 positlon
.95
CONNECTORS
RS232 MALE RS232 FEMALE RS232 HOOD S. 100 ST
S. 100 WW

74490

\section*{74S00 SERIES}

74500 \(\stackrel{i}{\Delta}\)

\section*{74585}

\section*{74 S 163
74 S 168}

VOLTAGE REG'S
\begin{tabular}{|c|c|c|c|}
\hline  & gुত & g\%o & ஷூ \\
\hline  & \[
\] &  & ㄷ్入入 \\
\hline  & T్ల్ర్ల్ల్ & 9 & T¢¢4 \\
\hline  &  &  &  \\
\hline
\end{tabular}

\section*{TRANSISTORS}

PN2222 1011.0010018 .99 2N3904 \(1011.00 \quad 10018.99\) \(\begin{array}{ccc}\text { 2N3906 } & 1011.00 & 10018.99 \\ 2 N 3055 & 79 & 10 / 6.99\end{array}\) \(\begin{array}{lll}\text { 2N3055 } & .79 & 10 / 6.99 \\ \text { IN4148 } & & 25 / 1.00\end{array}\) N4148
N4004 \(25 / 1.00\)
\(10 / 100\)
\(T=T 0.220 \quad K=T 0.3 \quad L=T 0.92\)

JDR MICRODE VICES, INC.

TERMS: For shlpping Include \(\mathbf{5 2 . 0 0}\) for UPS Ground; \(\mathbf{5 3 . 0 0}\) for UPS Blue Labal Arr, \(\$ 10.00\) minlmum ordar. Bay Ara sales tax. W0 ressiry the right to ilmit guantitles and substitute manufacturer. Prices subject to change wilhout notice

\section*{4K STATIC RAMS 8/18.95 2114 LOW POWER 450ns}

\section*{ALL MERCHANDISE 100\% GUARANTEED GALL US FOR VOLUME QUOTES}


DYNAMIC RAMS
\begin{tabular}{lrrr}
4027 & \((250 \mathrm{~ns})\) & 2.50 & 100 pcs \\
\(4116.150(150 \mathrm{~ns})\) & \(8 / 21.95\) & 2.65 \\
\(4116-200\) (200ns) & \(8 / 19.95\) & 2.35 \\
4116.300 (300ns) & \(8 / 16.95\) & 2.00 \\
4164 & \((200 \mathrm{~ns})\) & CALL & CALL
\end{tabular}


Consumer Computers announces it's lowest prices ever.

\section*{Apple Cards and Hardware}


16K Ram Card by \(\mathrm{CCI} .\).
Language System w/Pascal
Silentype Printer w/Interface card Novation Apple-Cat II Videx videoterm 80 column \(w / g r a p h i c s\) .80 Sottcard by Microsoft

ABT Numeric Keypad (oid or new kybrd) ALF 3 voice Music Card Alr g voice Music Card
Alpha Syntauri Keyboard System
Corvus 10MB Winchester Disk system
Lazer Lower Case Plust
SSM AlO Serial/Parallel ard A T
Sup-R.Terminal 80 Column Card
SVA ZVX4 Megabyter \(8^{\circ}\) disk controller
SVA 2 Single Den. 8 disk controlle
Digisector Camera interface
ThunderClock Plus
Symtec Hi-Res Light Pen Graphics Tablet
Parallel Printer interface card Hi -Speed Serial interface card
Smarterm 80 column card
Joystick by Keyboard Ca
A/D + D/A interface
Introl/X•10 controller card
Clock/Calendar card
Supertalker SD-200
Romplus+ Card
Clock/Calendar Modul
Asynchronous Serial Interface Card
Centronics Parallel Interface Card
Arithmetic Processor Card
(Top Ten)

Raster Blaster
29
Hungry Boy
Adventure by Microsoft
Pulsar Il
Space Eggs
Fosmos Mision
(Space Invaders)

WE OFFER HUNDREDS OF SOFTWARE GAMES. PLEASE CALL OR WRITE FOR A LIST.

\section*{VIDEO TAPES}

WE SELL HUNDREDS OF FEATURE FILMS ON VHS AND BETA VIDEO TAPE CALL OR WRITE FOR A PRICE LIST.

The versatile Apple Computer


16K 趿 \$1025 48K gow \$1129 \(64 \mathrm{~K}^{*}\) aie \$1249 *16K Ram Card instalied on 64 K .

TOLL FREE ORDER LINE 800-854-6654
California \& outside continental U.S.
(714) 698-8088

International Telex 695-000 Beta CCMO
APPLE / / /


These systems come complete with the information analyst software package and a video monitor of your choice.
96K FOR ONLY \({ }^{\$ 3495}\) 128K FOR ONLY \({ }^{3} 3995\)

\section*{AVAILABLE NOW!}


\section*{NEC MICROCOMPUTER}

PC-8001A 32K RAM COMPUTER
PC. 8012 A I/O UNIT W/32K RAM
PC-8031A DUAL MINI-DISK DRIVE UNIT


Without
Controller

\section*{Solution Software the Apple II}
\begin{tabular}{|c|c|}
\hline Visicalc 3.3 & \\
\hline CCA Data Management & . 85 \\
\hline DB Master & 69 \\
\hline WordStar (Apple 80 co. version) & 299 \\
\hline Super Text 1 & 139 \\
\hline Desktop Plan [1 & 169 \\
\hline Applewriter & \\
\hline Infotory & 225 \\
\hline Landlord Apt. Mngmt & 649 \\
\hline Stock Tracker by H\&H & 175 \\
\hline Easywriter & 225 \\
\hline ASCII Express & 59 \\
\hline Peachtree Business Software & ALL \\
\hline Applesoft Compiler & 185 \\
\hline Visiterm & 129 \\
\hline Visitrend/Visiplot & 219 \\
\hline Real Estate Analyzer & 89 \\
\hline Tax Preparer & \\
\hline DOS Toolkit & 65 \\
\hline Tax Planner & \\
\hline Dow Jones Portiolio Evaluator & 45 \\
\hline Dow Jones News \& Quotes Repo & 85 \\
\hline Apple Fortran & 165 \\
\hline Apple Pilot & 129 \\
\hline Controller Gen. Bus. System & 49 \\
\hline The Analyzer Dakin 5 & 519 \\
\hline Music Theory ...... & \\
\hline
\end{tabular}

\section*{WHAT'S NEW FROM CONSUMER COMPUTERS}

Buying Mail Order saves time, money and energy!


ATARI 400 16K \(\$ 349\)


We have the Sorcerer II in stock at unbeatable prices. Available in \(16 \mathrm{~K}, 32 \mathrm{~K} \& 48 \mathrm{~K}\) models. Please Call for Price.
S. 100 Expansion Unit
Word Processing Pac. Word Processing P
Development Pac.

429
179
PMC-80 Micro Computer

\section*{\(\$ 599\) 16K}

Compatible with TRS.80 Model 1 hardware and software!

\section*{S-100}

Quality S-100 cards available now at incredibly low prices

\section*{Kit \(\begin{gathered}\text { Assm \& } \\ \text { Tested }\end{gathered}\)}

CALIFORNIA COMPUTER SYSTEMS
Z. 80 CPU 2810

64K Dynamic Ram board
n/a
64 K Dynamic Ram board
16 K Static Ram 2 MHz n/a
16K Static Ram 4 MHz
Dbl Density Floppy Disk Controller
12 Slot S. 100 Mainframe

\section*{SSM}
2.80 CPU CB- 2
ard
VB. \(380 \times 24\) Video board
(714) 698-8088 International Telex 695-000 Beta CCMO
Use your Mastercard, Visa, American Express, Carte Blanche, Diners Club to charge your order phone. Open 7 days.

Video Monitors


Amdek/Leedex Video 100 12* B\&W
Amdek (Hitachi) \(13^{*}\) Color ........

Sanyo \(12^{*}\) Green Phospher Screen
Sanyo \(13^{*}\) Color w/excellent resolution .............. 449

Anadex 9500/9501 w/ 2K Buffer ...................... 1299 C. Itoh Starwriter 25 CPS ........................... 1499 C. Itoh Starwriter 45 CPS ............................ 1899 Espon MX.70 …....................................... CALL
Epson MX.80 F/T
CALL
Paper Tiger IDS. 445
Paper Tiger IDS. 460
Paper Tiger IDS. 460
Paper Tiger IDS-560
Paper Tiger IDS-560 ..............
Silentype w/Apple \(\mathbb{I}\) interface card
Qume Sprint 5/45
Silentype w/apple II


\section*{Interface}
\$349


\section*{How to Order:}

Ordering Information: Phone orders using VISA, MASTERCARD, AMERICAN EXPRESS, DINERS CLUB CARTE BLANCHE, bank wire transler, cashiers or certified check, money order, or personal check (allow ten days to clear.) Unless prepaid with cash, please add \(5 \%\) for shipping, handling and insurance minimum \(\$ 5.00\) ). California residents add \(6 \%\) sales tax. We accept COD's. PO's accepted from Educational Institutions. All equipment is subject to price Ehange and availability without notice. All equipment is new and complete with manufacturer's warranty. Showroom prices may differ from mail order advertisement.

Send Orders to:
COMSMnMer

8314 Parkway Drive
La Mesa, California 92041

\title{
CALL US TODAY FOR SPECIAL SYSTEM PACKAGE PRICES . . .
}

\section*{Now is the time to buy a complete system of your choice...}
- CROMEMCO SYSTEM 2
- DYNABYTE
- NORTHSTAR - SUPERBRAIN

Complete with printer and software. READYTO USE!!!

\section*{Participate in our expansion sale.} MiniMicroMart is moving to larger quarters to serve you with a larger staff and with the largest inventory of systems and peripherals.

0000000000000000000000000000000000000000

> MiniMicroMart, Inc.

\title{
WE ARE MOVING TO LARGER OUARTERS!
}

Thank you...
. . . for making our expansion possible and for helping make us the leading distributor of microprocessor systems, terminals and printers.

We are showing our appreciation by producing a special catalog with thousands of items at greatly reduced prices.
Call or write today. Help us move our inventory before we have to move it.


> MiniMMicrowart, Inc.


JUST WRAP KIT
Just Wrap tool for daisy chain wiring.
Tool strips as it
wraps and cuts.
Includes one 50 foot
spool of wire.

Part No. Description
Price
JW-1. Just Wrap Tool \(\$ 14.95\)
JWK.6 Tool w/4 Spools and
JUW1 24.95
R.JW. \(\quad 50\) Ft. Replacement Wire
3.49

JUW-1 Unwrapping Tool 3.49
- Specify Color: Red, Blue, White or Yellow
 Wrap

Modified Wrap
1) thenly

Part No.
Description
Price
\(\begin{array}{lrr}\text { WSU30 } & \text { Regular } & \$ 6.95 \\ \text { WSU30M } & \text { Modified } & 7.95\end{array}\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\Longrightarrow \mathrm{T}_{\text {T }}\) TERMINALS} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\Longrightarrow=0\) (1) \(0,63 \mathrm{~mm}\) )}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{พw \(\mathbf{2}\) - 3 L} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|c|}{mis} \\
\hline \multicolumn{3}{|l|}{- Gold Plated} \\
\hline & & Wmi 25 PER PKG. \\
\hline Part No. & Description & Price \\
\hline WWT-1 & Siotted Terminal & \$4.98 \\
\hline \multirow[t]{2}{*}{WWT-2} & Single Sided & \\
\hline & Terminal & 2.98 \\
\hline WWT-3 & IC Socket Term. & 4.98 \\
\hline \multirow[t]{2}{*}{WWT-4} & Double Sided & \\
\hline & Terminal & 1.98 \\
\hline \multirow[t]{2}{*}{INS 1} & Insertion Tool for & \\
\hline & above & 2.49 \\
\hline
\end{tabular}

\section*{SOCKET WRAP - ID}


\section*{socket before}

Wrap-ID wrapping to
Pel. Pend identify pins.

Bulk Bulk Part \# Price Price Part \# Price Price 14ID \(1.49 / 10 \quad 5.50 / 100\) 22ID \(1.49 / 5 \quad 5.95 / 50\) \(\begin{array}{lllllll}16 I D & 1.49 / 10 & 5.95 / 100 & 24 I D & 1.49 / 5 & 5.95 / 50\end{array}\) 18ID \(1.49 / 10 \quad 5.00 / 50 \quad 281 D \quad 1.49 / 5 \quad 6.50 / 50\) \(\begin{array}{lllllllll} & 201 D & 1.49 / 5 & 5.00150 & 401 D & 1.49 / 5 & 5.00 / 25\end{array}\)

\section*{PRODUCTS}
 clamping action, accommodate wire sizes 14.30 AWG (1,8-0, 25 mm ). Pins are solder plated copper, .042 inch ( 1 mm ) diameter, on .200 inch ( 5 mm ) centers.
\begin{tabular}{lcr} 
Part No. & Description & Price \\
TS- 4 & 4-Pole & \(\$ 1.69\) \\
TS-8 & 8-Pole & 2.59 \\
TS-12 & 12-Pole & 3.49 \\
TS6MD & 2-Pole Interlocking & \(3 / 1.79\)
\end{tabular}


DESOLDERING PUMP
Easy one hand operation. Rugged all metal construction Replaceable TEFLON \({ }^{\text {© }}\) Tip. Selt cleaning on each stroke. Suction precisely regulated for reliable desoldering without damage to delicate circuitry.
DSPI Desoldering Pump \(\quad \$ 9.95\)


Compatible with all logic families using a 4 to 15 V power supply. Thresholds automatically programmed. Visual indication of logic levels to show high, low, bad level or open circuit logic pulses.
-10 N sec. pulse responses
- 120 K input impedence.
- Automatic reselting memory.
- Includes tip with protective cap \&
coiled cord.
PRB-1
\(\$ 36.95\)

\section*{LOGIC PULSER}

Superimposes a pulse train (20 pps) or a single pulse onto the circuit node under test without un-soldering IC's.
- Automatic polarity sensing
- 2 us pulse width
- Finger tip push button actuated
- Includes tip with protective cap \& coiled/cord.
PSL- 1
\(\$ 48.95\)

\section*{VACUUM VISE}

Unique vacuum-based light duty vise for precision handling of small components and assemblies. Rugged
 ABS construction. \(11 / 2^{\prime \prime}(32 \mathrm{~mm})\) travel for maximum versatllity. Also features screw lugs for permanent installation.

VV1 Vacuum Vice
\$3.49
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
- Auto-I \\
- Anti- \\
- Modif \\
Part No. \\
BW2630 \\
BT30 \\
BT2628 \\
BC1
\end{tabular}}} & & & \begin{tabular}{l}
exing \\
rwrap \\
Wrap
\end{tabular} &  \\
\hline & & & & Description & Price \\
\hline & & & & Tool & \$19.85 \\
\hline & & & & \$30 Bit (not incl.) & 3.95 \\
\hline & & & & \#28 Bit (not incl.) & 7.95 \\
\hline & & & & Batteries \& Charger & 14.95 \\
\hline
\end{tabular}

\section*{INSERTION/EXTRACTION TOOLS}

Part No. Description Price
INS1416 14-16 pin Inserter \(\quad \$ 3.49\)
MOS1416 14-16 pin MOS Safe Inserter
MOS2428 24-28 pin MOS Safe Inserter Inserter 7.95

\section*{40 pin MOS Safe \\ MOS40 40 pin}
7.95

EX1 14-16 pin
IC Extractor
1.49

EX2 24.40 pin
7.95


\section*{IC DISPENSER}

Allows IC's 10 be dispensed from their tube at a time and picked up by insertion tools above
- Dispenses \(8-42\) pin

IC's - Compatable with all IC carrying tubes Use with WK7 for MOS safe insertion.
Part No. Description
Price
MDD1 1 Chan. Dispenser \(\$ 21.85\)
MDD5 5 Chan. Dispenser 83.43 MDD10 10 Chan. Dispenser 160.45 - *No Discount.

\section*{IDC CONNECTORS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
RIGHT ANGLE HEADERS \\
SOLDER TAIL \\
WIRE WRAP
\end{tabular}}} & Size & Part No. & Price \\
\hline & & & & & 10 & IDE10B & \$3.95 \\
\hline Size & Part No. & Price & Part No. & Price & 26 & IDE26B & 5.00 \\
\hline 10 & 1DH10SRB & \$1.20 & IDH10WRB & \$2.60 & 34 & IDE348 & 6.05 \\
\hline 20 & IDH20SRB & 1.90 & IDH20WRB & 4.15 & 40 & IDE408 & 6.90 \\
\hline 34 & IDH26SRB & 2.75 & IDH26WRE & 5.35 & 50 & IDE508 & 7.50 \\
\hline 34 & IDH34SRB & 3.75
3.75 & IDH34WRE
IDH40WR & 6.25 & & & \\
\hline 50 & IDH50SRB & 4.75 & IDH50WRB & 9.20 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{.1" Spacing. Crimps onto cable with ordinary vise \& mates with standard .062" Card Edge.}} \\
\hline \multicolumn{5}{|l|}{1" Spacing. Mounts on PC Board \& Mates with IDS Socket below. Elector Bars - \(4 / 1.00\)} & & & \\
\hline
\end{tabular}
with IDS Socke! below. Elector Bars - \(4 / 1.00\)

25 PIN "D" CONNECTORS
\begin{tabular}{lcr} 
Solder Style & Part No. & Price \\
Male & DB25P & \(\$ 2.95\) \\
Female & DB25S & 3.95 \\
Cover & DB25C & 1.50 \\
\hline IDC Siyle & & \\
Male & & \\
Female & IDB25P & 6.25 \\
Cover & IDB25S & 6.60 \\
IDB25C & 1.60
\end{tabular}

Solder Siyle solders onto cable, IDC Style crimps onto cable with vise. 9 , 15,37 and 50 pin available also.


CABLE PLUGS
\begin{tabular}{lrr} 
Size & Part No. & Price \\
14 & IDP14B & \(\$ 1.45\) \\
16 & IDP16B & 1.65 \\
24 & IDP24B & 2.50 \\
40 & IDP40B & 4.15 \\
& \\
1" Spacing. Crimps onto cable with \\
Ordinary vise \& plugs into standard IC \\
Socket.
\end{tabular}

WIRE WRAP SUPPLIES


Selective Plating provides gold in contact where it counts. 3 -level wrap. Save by buying sockets by the tube. All gold available at \(1 / 2 \Phi / p i n\) extra charge.

RIBBON CABLE
\begin{tabular}{lrrrr} 
& \multicolumn{3}{c}{ Solid Color } & \multicolumn{2}{c}{ Color Coded } \\
& 10 ft & 100 ft & 10 ft & 100 ft \\
Size & 10 & 17.00 & 4.00 & 30.00 \\
10 & 2.90 & 17.00 \\
14 & 3.40 & 23.80 & 5.00 & 42.00 \\
16 & 3.70 & 27.20 & 5.60 & 48.00 \\
20 & 4.40 & 34.00 & 7.00 & 60.00 \\
24 & 5.00 & 40.80 & 8.00 & 72.00 \\
26 & 5.40 & 44.20 & 8.60 & 78.00 \\
34 & 6.80 & 57.80 & 11.00 & 102.00 \\
40 & 7.80 & 68.00 & 13.00 & 120.00 \\
50 & 9.50 & 85.00 & 16.00 & 150.00
\end{tabular}


SOCKETS
\begin{tabular}{lrr} 
Size & Pari No. & Price \\
10 & IDS10B & \(\$ 1.88\) \\
20 & IDS20B & 2.75 \\
26 & IDS26B & 3.50 \\
34 & IDS34B & 4.50 \\
40 & IDS40B & 5.40 \\
50 & IDS50B & 6.50
\end{tabular}
. 1 " Spacing. Crimps onto cable with ordinary vise \& mounts to header sold above.

\section*{WIRE KITS}

Kit No. 1 - \(\$ 9.95\)
\begin{tabular}{|c|c|c|c|}
\hline 250 & 3 " & 100 & \(4^{1 / 2}{ }^{\prime \prime}\) \\
\hline 200 & \(31 / 2{ }^{\prime \prime}\) & 100 & \(5{ }^{\prime \prime}\) \\
\hline 100 & \(4^{1 /}\) & 100 & 6 " \\
\hline \multicolumn{4}{|c|}{Kit No. 2 - \$24.95} \\
\hline 250 & 21/2" & 250 & \(5^{\prime \prime}\) \\
\hline 500 & 3 " & 100 & 51/2" \\
\hline 500 & \(31 / 2^{\prime \prime}\) & 100 & \(6{ }^{\prime \prime}\) \\
\hline 500 & 4 " & 100 & 61/2" \\
\hline 250 & 41/2" & 100 & \(7{ }^{\prime \prime}\) \\
\hline \multicolumn{4}{|c|}{Kit No. 3 - \$34.95} \\
\hline 250 & 21/2" & 500 & 41/2" \\
\hline 500 & 3 " & 500 & 5" \\
\hline 500 & \(31 / 2^{\prime \prime}\) & 500 & 51/2" \\
\hline 500 & 4" & 500 & 6 " \\
\hline \multicolumn{4}{|c|}{Kit No. 4 - \$59.95} \\
\hline 500 & 21/2" & 1000 & \(41 / 2^{\prime \prime}\) \\
\hline 1000 & \(3^{\prime \prime}\) & 1000 & 5" \\
\hline 1000 & \(31 / 2\) " & 1000 & 51/2" \\
\hline 1000 & 4 " & 1000 & 6 " \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
'repaid orders over \(\$ 50\) shipped prepaid via JPS. All others add \(\$ 3.00\) for handling. VISA, IC, COD's and open account orders will be iharged freight. \$15 minimum order. \$100 ninimum open account order.

\section*{DISCOUNT SCHEDULE}

\section*{Order}
\$15-99
100-199 200. 499 500-999 1000 up

Amount Net less 10\% less 15\% less 20\% less \(25 \%\)

Discount and the name of this magazine must be mentioned at time of order to get discount. Discount applies on all items except as noted, "No Discount."


\section*{HEWLETT
PACKARO}
```

cosm,

```
\(\qquad\)



```

MP.41CV MP. Card Reader
275.00 MP-OptICal Wand
HP.41C
MINIMOVER. 5 3

```


\(\underset{2}{18955.00}\)

corpple |l/ ..... Triple

\section*{New Clepple software}


\begin{tabular}{|c|c|c|}
\hline ica & 169.00 & WOROSTAR-The Benchmark \\
\hline siplot-Graph your
Visicalc Workheols & 149.00 & Wordprocessing sotiware requites z .80 \\
\hline Visiltrendivisiploi-visiplot & & 80 CPIM.Wordprocessor has no \\
\hline & & \\
\hline dex - The iltrmale & 219.00 & lisplay Key funclions \\
\hline Visiterm-Communicate wiother Systems & 209.00 & MAIL-MERGE:A Wordstar Ennance. \\
\hline BPIGeneral Ledger & 299.00 &  \\
\hline BP/ Accounls & \({ }^{2999.00}\) & SPELLGUARO Will proorread Wordstar \\
\hline Slockilie Inventory System Intotory Inventory System & \[
\begin{aligned}
& 349.00 \\
& 289.00
\end{aligned}
\] &  \\
\hline Microcom Microcoutier & \({ }^{229.00}\) & SUP \\
\hline & &  \\
\hline & & FORTRA 80. By Mictosoll \(\quad 195.00\) \\
\hline ware Utillty Pk & & COBOL 80 By Microsott 749.00 \\
\hline
\end{tabular}


\section*{Vista A800 Quad Density DMA 8" Disk Controller \\  \\ 5... mas}

Special Complete Subsystem Offer - V1000 whtwo Qume Dalatrack 8 - Cable, ready to run - AB00 Apple II 8 " Disk Controller Total value \(\$ 2939^{\circ 0}\)


\section*{ADVANCED COMPUTER PRODUCTS}


FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES 1. Proven Quality Factory tested products only. 2. Guaranteed Satisfaction Call For Special School Discounts MICROPROCESSORS

ADVANCED SUPPORT
ask
Z.BO SUPPORT CHIPS



FLOPPY DISK \(1 / 0\)
\(1771.0188^{-1} 8\) Minllogen. \(1 / 0\) 1781 Dual Floppy
179.01 Dui Flooy
179102 Oual Flopapy 179300.05 Flopy
179700.05 Floppy
19610 OAT Separalor

FLOPPY CHIP SET \begin{tabular}{|lll}
\hline Double Density & & \\
Double Sidad & Includes & 1797 \\
S79.95/set & 1691 \\
\hline & 2193 \\
\hline
\end{tabular}
A/D CONVERTERS


 TV CHIPS/SOUND








6800 SUPPORT CMIPS
 6821
6828
6834
6845
684
6857
6850
6852
6860
6862
6871
6875
6880
1468
6804
680
680
6320
6522
6530
6532
6551


\section*{MOS PROMS}


CHARACTER OEN,

UARTS/BAUD RATE

\section*{}

\title{
California Digital
} Post Office Box 3097 B - Torrance, Galifornia 90503


\title{
California Digital \\ Post Office Box 3097 B • Torrance, Galifornia 90503
}


All merchandise soid by California Digital is premium grade.
Shipping: First five pounds \(\$ 2.00\); cach addlitional add \(\$ .40\)
lorelgn orders \(10 \%\) shipping. Excess will be refunded.
Open accounts extended to state supportcd educational institu-
open accounts extended to state supportcd educational institu-
lions and companies with a "Strong than \& Bradstrect. Warchousc: 15608 Inglewood Btyd. Visitors by appointment.


\section*{Nemanal}
 AUTDMDTIVE/ INSTRUMENT CLOCK APPLICATIONS: - In-dash autoclocks
Ater-markes outo/
AV clocks
Al
- 12voc opror Inst
- Portable/bartery Features: Bright \(0.3^{*}\) green display. Internal crystal timebase. : 0.5 sec./day accup. Auto.display brightness controt
logic. Display color filtersbie to blue. blue-green, green \& MA1003 Module (3.05"L×1.75"Hx. H .98"D) . \(\$ 16.95\) CLDCK MDDULES

\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
8 OHM SPEAKER \\
\(21^{\prime \prime}-8\) Ohm - 25 watt A0201 \\
\(\$ 1.25\) ев. 2/\$1.95 вв. \(10 / \$ 7.95\) ea.
\end{tabular} \\
\hline  & \begin{tabular}{l}
BATTERY HOLDER \\
- Holds 2 ea. C cells \\
- Aluminum Case \\
- 5" leads \\
H-801-159 \\
\(\$ .45\) each \\
10/\$3.95
\end{tabular} \\
\hline  & \begin{tabular}{l}
BATTERY HOLDER \\
- Holds 4 ea. C cells \\
- Plastic case - \(9^{\prime \prime}\) leads \\
\(\$ .49\) ea. \(10 / \$ 4.25\)
\end{tabular} \\
\hline
\end{tabular}

EPROM Erasing Lamp H Ersuos 2708; 2716, 1702A, \(52030,52040\).
Erases up to 4 ehips within 20 minutes. Msintuins constent exposure distance of one inch. Specisl conductive foam liner eliminates static build-up. - Built-in sataty lock to provent UV expomer - Compact - oniy \(7.5 / 8^{\prime \prime} \times 2-7 / 8^{\prime \prime} \times 2\)
 JOYSTICKS

\begin{tabular}{|c|}
\hline  \\
\hline  \\
\hline
\end{tabular}
MICROPROCESSOR COMPONENTS


\section*{I \(==\) \\ GLDBAL
SPECIALTIES} MABUCHI RE280 S .99 each . . . 10/57.50 . . . 100/\$50.00



AC and DC Wall Transtormers


TRS-80

\section*{16K Conversion Kit}


\footnotetext{
The JE610 ASCII Keyboard Kit can be interfaced into

 nents and a doublesided Printed wiring board. Tha
kevooard asiembly requires +5 V © 150 mA and -12 V
 butfared. Two user-deting kevi provided for cuntom
epplicatlons. Caps lock for upper-caseonly alpha charac. serl. Usilizes o 2376 (40-oin) encoder read-only mamory chip. Outputs diractly compatible with TTL/DTL or
MOS logic arrays Easy interfaclng with s 16 -pin dip or JE610/DTE-AK \(\begin{gathered}\text { (After assembled } \\ \text { as pictursd above) }\end{gathered} \ldots . . \$ 124.95\)




JE600 Hexadecimal Encoder Kit


The JEESOO Encoder Keyboara KIt provides iwo separate hexadecimol algits roduced fom sequintial key entris:
to sllow direct programming for 8 bit mitroprocessor
 with 9 LED readouth. Also includedisiak kev emtry itrobe. Features: F ull B -bit latchad output for mlcroprocessor
uso. Three user-deflne kovi with one belng blitable oparatlon. Debounce circult proviled for all 19 kevz. 9 LED radoutt to verlify entries. Eaty Interfacing with
itandarod 16 .pln ic connector. Only +5 VDC required n. SIze: \(3 y^{\prime H} \times 8 \%{ }^{-1}{ }^{2} \times 8 \times 8\)


K 19 19-Key Keyboard (Kayboard only) . . . \(\$ 14.95\)

}
"THE BIG BOARD"
OEM - INDUSTRIAL - BUSINESS - SCIENTIFIC SINGLE BOARD COMPUTER KIT! Z-80 CPU! 64K RAM!


THE FERGUSON PROJECT: Three years in the works, and maybe too good to be true. A tribute to hard headed, no compromise, high performance, American englneering! The Big Board gives you all the most needed computing features on one board at a very reasonable cost. The Big Board was designed from scratch to run the latest version of \(\mathrm{CP} / \mathrm{M}^{*}\). Just imagine ail the off-the-shelf software that can be run on the Big Board without any modifications needed! Take a Big Board, add a couple of 8 inch disc drives, power supply, an enclosure, C.B.T., and you have a total Business System for about \(1 / 3\) the cost you might expect to pay.

\section*{FULLY SOCKETED!}

FEATURES: (Remember, all this on one board!)
\$649응
( 64 K KIT BASIC I/O)

\section*{SIZE: \(8^{1 / 2} \times 13^{3} \%\) IN.} SAME AS AN 8 IN. DRIVE. REQUIRES: +5V @ 3 AMPS
\(+-12 \mathrm{~V} @ .5 \mathrm{AMPS}\).

\section*{64K RAM}

Uses industry standard 4116 RAM'S. All 64 K Is avaliable to the user, our VIDEO and EPROM sections do not make holes in system RAM. Also, very special care was taken in the RAM array PC layout to eliminate potential nolse and glitches.

\section*{Z-80 CPU}

Aunning at 2.5 MHZ . Handes alt \(\mathbf{4 1 1 6}\) RAM refresh and supports Mode 2 INTERUPTS. Futty butfered and runs 8080 software.

\section*{SERIAL I/O (OPTIONAL)}

Full 2 channels using the \(\mathbf{Z 8 0}\) SIO and the SMC 8116 Baud Pate Generator. FULL RS232! For synchronous or asynchronous communication. In synchronous mode, the clocks can be transmitted or received by a modem. Both channets can be set up for elther data-communicalion or data-lerminats. Supports mode 2 inl. Price for all parts and connectors: \(\$ 85\).

BASIC I/O
Consists of a separate paratlel port ( 280 PIO) for use with an ASCII encoded keyboard for input. Output would be on the \(80 \times 24\) Video Display.

\section*{\(24 \times 80\) CHARACTER VIDEO}

Whit a crisp, flicker-free display that looks extremely sharp even on small monitors. Hardware scroll and full cursor control. Composite video or split video and sync. Character set is supplied on a 2716 style ROM, making customized tonts easy. Sync pulses can be any desired length or polarily. Video may be inverted or true. \(5 \times 7\) Matrix. Upper \& Lower Case

\section*{FLOPPY DISC CONTROLLER}

Uses WD1771 controller chip with a TTL Data Separator for enhanced reliability. IBM 3740 compatible. Supports up to four 8 inch disc drives. Directly compatible with standard Shugart drives such as the SA800 or SA801. Drives can be contigured for remote \(A C\) off-on. Auns CP/M* 2.2.

TWO PORT PARALLEL I/O (OPTIONAL)।
Uses Z-80 PIO. Full 16 blts, fully butfered, bi-directionat. User setectable hand shake polarlity. Set of all paris and connectors for parallet I/O: \$29.95

REAL TIME CLOCK (OPTIONAL)
Uses Z-80 CTC. Can be conflgured as a Counter on Aeal Time Clock. Set of all parts: \(\mathbf{\$ 1 4 . 9 5}\)

\section*{SYSTEM COMPARISON}

64K RAM KIT
\(80 \times 24\) VIdeo Kit
Floppy Disk Controller Kit
SER P PAR
S-100 Mother Boar
SUB TOTAL
\$370.00 Talk about bangs per buck! The prices shown for 365.00 S 100 kits were laken from the July 1980 BYTE. 235.00
185.95 This will give some basis for comparison between 189.95 the Blg Board and a similar system implementa129.95
45.00 Hon on the S 100 Buss.
- 45.00

CP/M* 2.2 FOR BIG BOARD
The popular CP/M \({ }^{-}\)D.O.S. modified by MICRONIX SYSTEMS to run on Blg Board is avallable for \(\$ 150.00\).

PC BOARD
Blank PC Board with Rom Set and Full Documentation. 5199.00

PFM 3.0 2K SYSTEM MONITOR
The real power of the Big Board lies in its PFM 3.0 on board monilor. PFM commands include: Dump Memory, Boot CP/M*. Copy. Examine. Fill Memory, Test Memory. Go To. Read and Write I/O Ports, Disc Read (Drive, Track, Sector), and Search. PFM occupies one of the Iour 2716 EPROM locations provided.
2-80 is a Trademark of Zilog.

TERMS: Shipments will be made approximately 3 to 6 weeks atter we receive your order. VISA, MC, cash accepted. We will accept COD's (for the Big Board only) with a \(\$ 75\) deposit. Balance UPS COD. Add \(\$ 3.00\) shipping. USA AND CANADA ONLY

\title{
DIGITAL RESEARCH COMPUTERS (214) 271-3538
}

32K S-100 EPROM CARD NEW!

\(\$ 79.95\)
KIT
USES 2716's
Blank PC Board - \(\$ 34\)
ASSEMBLED \& TESTED ADD \(\$ 30\)

SPECIAL: 2716 EPROM's ( 450 NS) Are \(\mathbf{5 9 . 9 5} \mathrm{Ea}\). With Above Kit.

KIT FEATURES
Uses +5 V only 2716 ( 2 Kx 8 ) EPROM's
Allows up to 32 K of software on line!
IEEE S-100 Compatible.
Addressable as two independent 16 K
blocks.
5. Cromemco extended or Northstar bank
select.
6. On board wait state circuitry if needed.

Any or all EPROM locations can be disabled
8. Double sided PC board, solder-masked. sllk-screened.
9. Gold plated contact fingers.
0. Unselected EPROM's automatically powered down for low power.
Fully buffered and bypassed.
Easy and quick to assemble

\section*{16K STATIC RAM KIT-S 100 BUSS}

FOR AMHZ
ADD \(\$ 10\)


KIT FEATURES
1. Addressable as four separate 4 K Blocks
2. ON BOARD BANK SELECT clrcultry. (Cro memco Standard') Allows up to 512 K on line! 3. Uses 2114 (450NS) 4K Static Rams.
4. ON BOARD SELECTABLE WAIT STATES.
5. Double sided PC Board. with solder mask and silk screened layout. Gold plated contact fingers
6. All address and data llnes fully buffered.
7. KIt includes ALL parts and sockets
8. PHANTOM is jumpered to PIN 67
9. LOW POWER: under 1.5 amps TYPICAL from
the +8 Voll Buss
10. Blank PC Board can be populated as any multiple of 4 K

BLANK PC BOARD W/DATA-533 LOW PROFILE SOCKET SET- \(\mathbf{\$ 1 2}\) SUPPORT IC'S \& CAPS-\$19.95 ASSEMBLED \& TESTED-ADD \(\$ 35\)

\section*{NEW! STEREO!}

\section*{S-100 SOUND COMPUTER BOARD}

At last, an S-100 Board Ihat unieashes the full power of two
Unbelievable General Instruments AY3-8990 NMOS computer sound IC's. Allows you under total computer control to generate an Intinite number of special sound eflects for games or any other program. Sounds can be called In BASIC. ASSEMBLY LANGUAGE, etc.
KIT FEATURES
* TWO GI SOUND COMPUTER IC'S.
* Four parallel I/o ports on board.
- USES ON board audio amps or your stereo
* ON BOARD PROTO TYPING AREA
- ALL SOCKETS, PARTS AND HARDWARE ARE INCLUDED

- PC BOARD IS SOLDERMASKED. SILK SCREENED. WITH GOLD CONTACT
- EASY. OUICK. AND FUN TO BUILD. WITH FULL INSTRUCTIONS
- USES PROGRAMMEO I/O FOR MAXIMUM SYSTEM FLEXIBILITY.

Botn Basic and Assembly Language Programming examples are included

\section*{SOFTWARE:}

SCL* is now available! Our Sound Command Language makes writing Sound Effects programs a SNAPI SCL" also includes routines for Register-Examine-Modify, Memory-Examine-Modify, and Play-Memory. SCL" is available on CP/M' compatible diskette or 2708 or 2716 . Diskelye EOOOH. (Diskette is 8 Inch Sott Sectored)

\section*{4K STATIC RAM}

National Semi. MM5257. Arranged \(4 \mathrm{~K} \times 1 .+5 \mathrm{~V}, 18\) PIN DIP. A Lower Power, Plug in Replacement for TMS 4044. 450 NS. Several Boards on the Market Will Accept These Rams. SUPER SURPLUS PURCHASE! PRIME NEW UNITS! 8 FOR \(\$ 16 \quad 32\) FOR \(\$ 59.95\)

\section*{Digital Research Computers}
P.O. BOX 401565 • GARLAND, TEXAS 75040 • (214) 271-3538

\section*{s29900 \\ KIT}

For 2 MHZ Add \(\$ 10\)

Blank PC Board \(\$ 50\)
```

 For SWTPC
 6800-6809 Buss
    ```

Support IC's and Caps \(\$ 19.95\)
Complete Socket Set \(\$ 21.00\)

\section*{Fully Assembled, \\ Tested, Burned In} Add \(\$ 30\)


At Las! An affordable 32 K Static RAM with full 6809 Capability.

\section*{FEATURES:}
1. Uses proven low power 2114 Siatic RAMS.
2. Supports SS5OC - EXTENDED ADDRESSING.
3. All parts and sockets included.
4. Dip Switch address select as a 32 K block.
5. Extended addressing can be disabled. 6. Works with all existing 6800 SS50 systems. 7. Fully bypassed. PC Board is double sided, plated thru, with silk screen.

\section*{16K STATIC RAM SS-50 BUSS}

PRICE CUT!

\section*{\$159 \\ KIT}

FULLY STATIC!
FOR 2MHZ
ADD \$10

FOR SWTPC 6800 BUSS!

ASSEMBLED AND TESTED - \(\$ 35\)

BLANK PC BOARD-\$35 COMPLETE SOCKET SET-\$12 SUPPORT IC'S AND CAPS-\$19.95

\section*{SPECIAL PURCHASE!}

\section*{UART SALE!}

\section*{TR1602B - SAME AS TMS6011,} AY5-1013, ETC.

40 PIN DIP

\section*{TR1602B}

\section*{CRT CONTROLLER CHIP}

SMC \#CRT 5037. PROGRAMMABLE FOR \(80 \times 24\), ETC. VERY RARE SURPLUS FIND. WITH PIN OUT. \$12.95 EACH.

\section*{NEW! G.I. COMPUTER SOUND CHIP}

AY3-8910. As fealured in July. 1979 BYTEI A fantastically poweriul Sound \& Music Generator. Perfect for use with any 8 Bll Microprocessor. Contains• 3 Tone Channels. Noise Generator. 3 Channels of Amplitude Control. 16 bit Envelope Period Control, 2-8 Bit Paralfel I/O. 3 D to A Converters, plus much more! All in one 40 Pin DIP. Super easy interface to the \(\mathrm{S}-100\) or other busses. \(\$ 11.95\) PRICECUT!
SPECIAL OFFER: \(\$ 44.95\) each Add \(\$ 3\) for 60 page Data Manual
TERMS: Add \(\$ 2.00\) postage. We pay balance. Orders under \(\$ 15\) add 75\$ handling. No C.O.D. We accept Visa and MasterCharge. Tex. Res. add \(5 \%\) Tax. Foreign orders (except Canadia) add 20\% P \& H. Orders over \$50, add 85屯 for insurance.


\title{
Opomuch rim:
}

\section*{Nopepots}

\section*{rucrosam Dual 77 us D/Sided.} 12MB S-100 Subys monos3mg Drialyik s/sided cecrió's-100'Subsys. Manoun fisci 77 th \(/\) sided 315 as sioo subsys. MeR23\%, Dual Ths:80 77 de Add-bs ropionma sNeL, 2R5-80. Ad

Nupoodo
bitended \(i=10\) poo
Lerve it suppled onist tropts
Whesy: supplied on 7 itrack

17 Add HIST PRICE \(\$ 689,00\)

HSTT PRICE SI8ab.00 oup rich instroo ILBT PRICS S153400 ous prous s\%.00 HSTPRTES \(\$ 939,00\) cur prot 8 695.00 , HST PRCE Si30100 oin maces s aso,00 IST PRICE \$ 69900 oun proge shse90



\section*{Yivisoozs. 25 CPS Dafy wheel \\ Visysoors 45 CPS Detsy Wheel \\ Modians \\ urina esposand acoustic}

Hover 0300 BCud ACOustic
Hovinctio 300 boud Dred
Nov, UCCAT 0.300 soud Dreat

\section*{Pra}

\section*{sceso} 15900

\section*{\(\stackrel{4}{4}\)}
sioner
suger
smovo


\section*{}
 reatured tyrune atis
ust PRICE s189500 OUR REGE H6es.00 uist Pruce salpsco OUR PRYCS IIPs.00

UST PRICE \(\$ 19900\) swas prics si2900 WSY PRICE s198.00 ous Prick 8175.90 \(\therefore\) ust prece 8190.00 our prac sexa HST PRCE S29500 cup vich 25000




\section*{HLUSE DMinS}

ITYTE T1:4 D
\begin{tabular}{|c|c|c|}
\hline rypuods & 35 Dig 6 Funct & \% \\
\hline 3uphon & 35.pig 7 Funct. & pres sil \\
\hline tujusors & 35 Dig 9 runct & Prics 52 \\
\hline micto & F1:4D & \\
\hline Fusio & 3.5 Dig Ac Oper & ct \\
\hline rumom & 3.5-DIg AC/DC & pract \\
\hline
\end{tabular}
 Guet in 14 U: DM.

Ftm:03 BIIUS

\section*{ITM1D PI:4in}

\section*{ \\ }

1:19130R12:7n





\(\qquad\)


\section*{SEND \$1 \({ }^{00}\) for 60 Page} CATALOG

\section*{TRS-80/APPLE MEMORY EXPANSION KITS from Leading Manufacturers \\ 8 for \(\$ 20 .{ }^{0}\) \\ for TRS-80 Keybaord}

\section*{Plugboards \\ }

VCT \(-366796^{\prime \prime} \times 4.5^{\prime \prime}\)
VCT-3677-26.5" \(\times 4.5^{\prime \prime}\)
510.68

Cen. Purpose D.I.P. Boards with Wrap. Epoxy Class \(1 / 16^{\prime \prime} 44\) pin poxy Class \(1 / 16^{\prime \prime} 44\) pin con. WCT- \(36906.5^{\prime \prime} 22 / 44\) pin 44 pin con con. spaced. 156

\(626.5^{\prime \prime} \times 4.5^{\prime \prime}\)
2.29.6
\(\$ 10.85\)

-3690-12 \$26.64 Card Exlender has 100 conlacl 50 per side on .125 centers Allached connector-is compan 156 ctrs. Extenders ... \(\$ 15.66\)

\section*{Unclassified Ads}

FOR SALE: TRS-80 Madel I Level II with 16 K memory. lowercase installed, in mint condition. Including 5200 system desk. manual and computer books. and complete library of games and software fincluding Scripsit packagel worth \(\$ 300\). Complete system worth over S 1400 for only \(\$ 1000\). Mike Clary. 3008 E Meadow Grove Rd. Orange CA 92667. 1714) 998.0155.

FOR SALE: Netronics ELF II microcomputer with 8 K programmable memory. RS-232 interface. cassette-rape interface, Netronics video terminal. Motorola video monitor. Tiny BASIC on cassette. and full documentation. 5400 (price negotiable). Mike Heirmann. 114 S Overbrook. Si Charles MO 63301. [314] 723-3950 weekends or atter 4:30 weekdays.

FOR SALE: DEC/Heath H-11 16-bit computer. DEC LSI-11 16 -bit processor with floating-pont processor option. 56 K 128 KW, 16 .drt) MOS memory, serial port (20 mA or RS-232). dual 8 -ınch disk drive, disk operatıng system. FORTRAN compiler, and BASIC. Spare parts include LSI-II processor card. Memorex 8 -inch disk drive. disk controller. memory, and disik controller paris. Cables, service manuals, and operation manuals. New cost over \(\$ 10.500\). Sell for \(\$ 6000\). Mike. 16121 920-2440.

FOR SALE: IBM/Escon Selectric typewriter (correcting, with legal keyboard. Elght months old, Factory-instalted RS-232C interface with backspace and lab. In new condition, too slow for my purpose. \(\$ 1600\). Also, four Axiom printers, Model Ex801P parallely. Trouble-free printers in original boxes. My project canceled. 5425 each or all four for \(\$ 1600\). J Turner. 309 Mac . Corkle Ave. St Albans WV 25177. (304) 776-3675.

FOR SALE: Decitek paper-tape reader. Easily runs at 600 cps. 7 -inch rack mount. Complete power supply, parallet interface, and documentation, \(\$ 200\) or best offer. Tom Lock, 375 Front St, Box B-12, Berea OH 44017, [216] 234-2798.

FOR SALE: Set of 8 K Microsoft BASIC ROMs for Netronics Explorer-85 computer. All documentation included: \(\$ 60\). Wameco MEM-IA 8 K S-100 bus static memory with 300 ns low-power programmable memorles: 575. Pat Taylor, 1200 S Market St. Bloomsburg PA 17815. (717) 784-6173.

FOR SALE: PET/CBM 2001 with 16 K programmable mem ory plus Skyles Tookit read-only memory to debug BASIC programs. About one year old. 5650 FOB. Many PET programs included. Also. Divert-A-Matic phone-call diverter. SASE for description. S150. Consider exchange for tape answerer. P Young. 1496 Cherrywood Dr. San Mateo CA 94403. (415) 574-4212 or 349-4325

FOR SALE: SIM-I microcomputer with I K programmable memory, expandable to 4 K and \(5 \mathrm{I} 1 / \mathrm{O}\) tines. 5135 . Mike Underwood. Rte 3 Box A-594. Troutville VA 24175. (703) 977-4337

FOR SALE: Litton 1241-1251 with Multiplexer General Ledger, Payroll. Amonizaton. Depreciation Software, supplies. etc. Best offer. Alan Phelps. 1664 McDade Est. Conroe TX 77304. 17131756-8889.

WANTED: The United States Yacht Racing Union is developing a Rece Manderfement Manual for use by race committees. A section will be devoted to computer and calculator programs. We are seeking programs retated to sailing, race scoring. handicapping, measurement rules. etc. A library of these programs is being maintained. A listing of the programs available will be included in the manual. United States Yacht Racing Union. POB 209. Newport RI 02840.

FOR SALE: Goobout Interfacerl25: 5200. C5I Oume Sprint 3 interfacer with 16 K buffer; 5450 . Jade Big 2280 processor card: \(\$ 150\). Pintrol Oume Sprint 3 interface card: \(\$ 75\). Spellbinder word-processing program: 5300 . All tems in excellent condition with manuals. Kirby Nickell. 2844 Angetique. St Joseph MO 64501

FOR SALE: BYTE from January 1977 thru August 1977 and March 1981. \$21. Dest offer. of trade for the following BYTEs: Seprember 1975 inru Ocrober 1976. February 1980. September 1980. October 1980. or January 1981. Mark D Ybarra. 2604 Botolink Dr, San Jose CA 95I25. 1408\} 264-7789.

WANTED: Canndges for Video Brain computer. Also need instructions for Finance cartidge. Paricularly interested in Wordwise 2 cartidge and any schematic information. James Kasperski. 23-0i 30 Dr, Long Island City NY 11102

FOR SALE: Zenith/Heath H.1I system. 64 K programmable memory. two 8 -inch floppy-disk drives. HT-I I, and Pascal software. Fully DEC PDP-11/03 compatible. 54200 . K W Scholz. 8216 Pickering St. Pniladelphaa PA 19150. 1215) 248-0439 evenings.

FOR SALE: Heath H-8 computer. Assembled and tested with manual. Will sell for best offer. David Wong. 1916 Grand Conc. New Yori NY 10457. [212] \(294-8087\)

FOR SALE: T 1.810 printer with full ASCII uppercase and lowercase, floor stand, paper carch, and riboons. \(\$ 1100\). HP. 232 IP interactive video terminal with built-in printer. \(\$ 2100\). Both items purchased for a remote station, but never used and are in brand-new condition. James Leonard. 58 Beverly Dr Columbiana OH 44408. (216) 482-2291.

FOR SALE: 32 K Exidy Sorcerer. BASIC and Assemble ROMPACS plus Extended Cassette BASIC. RS-232. parallel. dual cassette control. All documentation plus internal hardware and software manuals. Over \(\$ 450\) worth of software |graphics games, word processing, data base. utilities, e(c). All in excelient condition for \(\$ 1250\) or best offer. With Comprint printer, ado \$500. With 12 -inch monitor. add \(\$ 75\). R L Henne. 5870 Wood Flower. Burke VA 22015, 1703) 250-5323

FOR SALE: IMSAI 8080 microcomputer with 48 K memory Processor Technolagy boards included are: \(3 \mathrm{P}+5 \mathrm{NO}\). CUTS cassene, GPM. VDM-1, and ALS-8 chip set \(\mid 4\) chips \(\mid\). Cromern co Doards included are: TV Dazzler. ZPU processor. and 8 K Bytesaver. Miscellaneous boards are: TB-I Extender. IMSAI MIO interface. and others. Comes with Infotion Vistar GTX video dis play. Sofiware includes: I5 K Exiended BASIC. Music Sysiem games. eic. Ail manuals included. Over \(\$ 5200\) invested, firs offer over \(\$ 3300\) takes everything. Steve Dover, 821 Laramie Wilmette IL 60091. (312) 251.4683 evenings.

FOR SALE: Heath/Zenith disk software for \(\mathrm{H}-17\) disk sys tem. I changed to CP/M. and have the latest HDOS 2.0 with Ex tended BASIC. editor, assembler. debugger, etc. With all manuals and Dinder. never run. Also. Mictosoft BASIC fo Heath \(\mathrm{H}-8\) or \(\mathrm{H}-89\) under HDOS. Latest version supports assem bly-language subroutines. Never used. Either or both for half current catalog pilce. G Hammond. (603) \(366-4012\) evenings.

FOR SALE: Tano Outpost II 6800 computer. 48 K , two RS-232 I/O ports. wo 5 -inch Shugart disk drives. Tano BASIC COPS II (utility programs). Hemingway editot. compiter. and link editor. Also. Flex II ROM. Flex il. editor. compiler, and debugger. Several disks and all manuals. \(\$ 2000\) or best offer Arthur Shore. (415) 364-5006

UNCLASSIFIED POLICY: Readers who are soliciting or giving advice, or who have equipment to buy, sell or swap should send in a clearly typed notice to that effect. To be considered for publication, an advertisement must be clearly noncommercial, typed double spaced on plain white paper, contain 75 words or less, and include complete name and address information.
These notices are free of charge and will be printed one time only on a space available basis. Notices can be accepted from individuals or bona fide computer users clubs only. We can engage in no correspondence on these and your confirmation of placement is appearance in an issue of BYTE

Please note that it may take three or four months for an ad to appear in the magazine.

FOR SALE: IMSAI PCS \(80 / 30\) with 48 K . dual single/double density diskette drives (I megabyte total. InteHigent keyboard [IKB-I). Leedex VT-100 monitor, and IMDOS 54000 or bes offer. Bill Leverlng. 26 Maple Rd. Westiord MA 01886. (617) 692-3847.

FOR SALE: Apple il plus 64 K Pascal-language system. Zenith I 3 -inch color montor. IDS-440 printer with graphics option. Hayes modem. dual disk drives. Mountan Clock. Controller. Cashier. Apple Writer. Apple Post, VisiC atc 1.37. Dow Jones Stock Evaluator. personal programs. and other ac cessonies. \(\$ 5900\) complete. Frilz E Hockman. 45 Grampian Bivd. Williamsport PA 17701. (717) 326-4954 or 368-8631.

FOR SALE: Rockwell AIM 65 with 4 K programmable memory. ROM-based text editor/assembler. 8 K BASIC in ROM. power supply. and manuals. \(\$ 475\). Greg Vatt. 7170 S Lewis Way, Litteton CO 80127. (3031 979-1998.

FOR SALE: Terak \(8510 /\) graphics computer system in perfect working condition. Includes DEC LSI-II processor. 56 K programmable memory. 8 -inch floppy drive. 240 by 320 black and-white graphics on 12 -inch video display. full ASCll key board. and UCSD Pascal software. including volumes 3 thru 5 of the USUS library. Excellent for schoois. industry. or fanatic hobbyists. (Similar systems originally spawned UCSD Pascal.) Cost 58285 new: make offer. Jerome Wood. 6105 Harris Raytown MO 64133. [816| 356-8290 after 5 PM weekdays.

WANTED: 16 K or 32 k Exidy Sorcerer/Sorcerer II computer I am primarily interested in the computer liself. but will consider systems with peripherals /casserte or disk. printer, video monitor, etc). Please state asking price in first letter-will pay any reasonabie price, depending on condition and age. Christopher Lett, 145 Meadow Ln, New Rochelle NY 10805.

FOR SALE: Pro-Log 280 single-board computer, Mode 7803. for the standard bus. This board is brand new-never been out of its protective package. SISO or trade for sailboat Wayne Miller. 83 Brookwood Ci. Eigin IL 60120

FOR SALE: Pascal Microengine computer manufactured by Western Digital Corp. The system is fully boxed and factory tested. This is not just a board: it is virtually unused. You get 64 K programmable memory and a processor that is optimized for the use of Pascal. Asking \(\$ 3000\), but will take the best ofter. Robert Powers. 75 W Green St. Pasadena CA 91105, [213) 792-0893.

FOR SALE: Two complete SwTPC computers. Each has 24 K, MPS, MPC. MPL. JPC rast cassette, two tape decks CT-64. 9-inch Sanyo. Fa st BASIC with files. much software. and all cables. Ready to use, \(\$ 800\) each or \(\$ 1500\) for both. including PR-40 printer. Will trade for two CT-82 terminals. Howard Johnson. \{207] 244-7444

FOR SALE: 16 K Commodore PET computer, including ex ternal cassette drive. Programmer's Tooikit ROM. Soundware's Souncbox. and assorted programs. Game programs include Mlcrochess 2.0. Super Startrek. Tanks. Otheilo, Backgammon Breakout. and Bowling. Math programs include Infinite Long Division. Synthetic Division of Polynomials, and a polar-graph plotting routine. \(\$ 900\). Mike Sorna. 118 Georgetown PI Mckeesport PA 15135. 14121751-8075.

FOR SALE: SD systems boards: SBC. 200 Z 280 processor \$280. VDB-8024 video controller: \(\$ 300\). Expandoram ll 64 K : \$250. All assembled and tested at factory. never used. 6 months old. Also. California Computer Systems miainfame 12 -siot motherboard. and power supply: \(\$ 290\). Xerox word processing keyboard: 530 . \(10 \%\) off purchase of entire group. John A Maurer. (3131 884-047)

FOR SALE: Recently purchased HP-4IC sysiem, including HP-4 IC caiculator, two memory modules. printer with six rolls of paper. card reader with two packs of cards. rechargeable battery pack. and all manuals. 5600 . Paul Deines. POB 279. Marshalltown IA 50158. [515\} 754.2177 work. 753.3661 home.

FOR SALE: Anderson Jacobson 242A acoustic coupler Used. but in good Condition. Best offer. Greg McDonatd. 1434 Fenwick Ln. Silver Spring MD 20910. 13011587-8536

\section*{Reader Service}

Inquiry No.
Page No.

47th STREET PHOTO 123 A B DIGITAL DESIGN 103 AB COMPUTERS 451
ABM PRODUCTS
ABM PRODUCTS 190
ACKERMAN DIGITAL SYS 389 ACTION CNMPUTER 85
ADAPTIVE DATA \& ENERGY 183
ADV.COMP.PROD. 482, 483 ADV.MICRO SYS. 126 ADVANCED TECH 460 AFTERTHOUGHT ENG. 38 AFIERTHOUGHT ENG.
ALLENBACH IND. 158 ALPHA BYTE STORAGE ALPHA BYYE STORAGE 31
ALPHA BYTE STORAGE 120 121
ALSPA COMP.SYS. 458 ALTOS COMP.SYS. 152, 153 AMER.COMP.\& TELECOMM. 265 AMERSMALL BUSN CO AMER.SMALL BUSN.COMP 453 ANADEX 145
ANCRONA 228
ANDERSON JACOBSON 377 APPARAT INC 77
APPLE COMPUTER INC 12, 13 APPLE COMPUTER INC 12, 13 APPLE COMPUTER INC 346 APPLIED SYSTEMS 422 ARTEC ELECTRONICS 88 ARTIFICIAL INT'L.RESRCH 462 ASAP COMP.PROD.INC. 335 ASAP COMP.PROD.INC. 236, 237
ASHTON.TATE 282, 283 AUTOCONTROL INC 452 AUTOMATED EQPTMNT. 357 AVOCET 14
B \& B ELECTR. 456 BASF SYSTEMS 279 BEAMAN PORTER 269 BELL,JOHN ENGR. 449 BETA COMP.DEVICES 275 BISON PRODUCTS 461 BIT BUCKET, THE 462 BIZCOMP 253 BOWER-STEWART 460 BUSINESS OPERTING SYS 167 BUSINESS WEEK 341
BYTE BOOKS 249 BYTE BOOKS 250 BYTE BOOKS 251 BYTE BOOKS 252 BYTE WATS 377 CALIF DATA CORP 462 CALIF. DIGITAL 484, 485 CALIF.COMP.SYS. 21 CALIF.COMP.SYS 20 CAMEYS.INC 452 CDR SYS.INC 452 CHATSWORTH DATA CORP 125 CHECK-MATE 458
CHECKS.TO.GO 10 CHIPS \& DIN INDUSTRIES 32 CINEMATRONICS 496 CLEV.CONS.COMP.\& COMP. NTS. 467 CMC,INT'L 220 COMPONENTS EXPRESS 369 COMPSTATCO. 431 COMPUMART 184, 185 COMPUPRO/GODBOUT 244, 245 COMPUSERVE 291 COMPUTER AGE 322 COMPUTER AID 452 COMPUTER DISC.OF AM. 270 COMPUTER EXCHANGE 321 COMPUTER FURN.\& ACCSS. 30 COMPUTER MAIL ORDER 247 COMPUTER PLUS 456 COMPUTER SHOPPER 460 COMP SPCLTIES. 100, 101 COMPUTER STORE THE 410 COMPUTER WRHSE. 117 COMPUTERS ETC. 368 COMPUTERS ETC. 370

Inquiry No.
Page No.

35 C
COMPUTERS ETC
COMP.PERIPH.UNLTD 379
COMPUTERS WHOLESALE 390 COMPUTEX CORP 294
COMPUTIQUE 285
COMPUVIEW PROD.INC. 69
CONCOMP IND. 308
CONCOMP IND. 357
CONCORD COMP.PROD. 468
CONSUMER COMP. 139
CONSUMER COMP. 476, 477
CPU SHOP 298
CROMEMCO 1,24
CROME
CYBERNETICS INC
8 W DIGITAL 26
359
DATA DISCOUNT CTR 130
DATA GENERAL 70,7
102 DATA-ED 161
DATALEX COMPANY, THE 318
DATASOUTH COMP CंORP 67
DATASOUTH COMP CORP 27
DATATRONIC 287
DELTA PRODUCTS 438, 439
DENVER SFTW.CO., THE 151
DESIGNER SOFTWARE 81
DIGIAC CORP 351
DIGIBYTE SYS CORP 205
DIGICOMP RESRCH CORP 160
DIGITAL ELECT.SYS 407
DIGITAL GRAPHIC SYS 371
DIGITAL MARKETING 355
DIGITAL MARKETING 6
DIGITAL PRESS 157
DIGITAL RESEARCH 127 DIGITAL RESEARCH COMP-488, DIP INC. 353
120 DISCOUNT SFTW GRP, THE 374 DISK SUPPLY 363
DMA 166
122 DMA 41
123 DUAL SYS.CONTROL CORP 76 DUAL SYS.CONTROL CORP 78 DUAL SYS.CONTROL CORP 80 DUGGER'S GROWING SYS 458 OYMARC IND. 365
DYNABYTE BUSN.COMP. CIII
DYNACOMP 324, 325
DYSAN CORP 136, 137
ECOSOFT 349
ELECTROLABS 468
ELECTRONIC CONTROL 316
ELECTRONIC SPCLISTS 347
ELECTRONIC SYS.FURN 102
ELECTRONICS CENTER 12
ELLIS COMPUTING 349
EMPIRICAL RESRCH GRP. 456
EMPIRICAL RESRCH GRP. 464 EMPIRICAL RESRCH GRP. 464
EPSON AMERICA 299 EPSON AMERICA 299 ESCON 373
142 EXPOTEK 393
F.E.C.LTD. 464

143 FORETHOUGHT PRODUCTS 349
144 FREDERICK COMP.PROD. 367
FSS 460
FYI INC. 456
GIDDINGS \& LEWIS 191
GIMIX INC 362
GNT AUTOMATIC INC 242
H \& E COMPUTRONICS 227
H \& E COMPUTRONICS 227
\(H\) \& E COMPUTRONICS 229
H \& E COMPUTRONICS 27
HANLEY ENGNRING 457
HAYES MICROCOMP.PROD. 63
HAYES MICROCOMP.PROD. 215
HEATH COMPANY \(16,17,207\)
HEATH POSTCARD 400 A\&B
159 HEMENWAY ASSOC. 319
160 HEWLETT-PACKARD 51
162 HOUSTON INSTRUMENTS 224
HOUSTON INSTRUMENTS 224
IMS INTERNATIONAL 159
INDEPENDENT BUS.SYS. 119
166 INFOSOFT SYSTEMS INC 286
167 INNOVATIVE PROD. 364
168 INT'L.MICRO SYS 311

Inquiry No.
Page No.

171 172
173 173 174 193
175 176 177 178
180
181
182
183.

184
186
187
88 LADCO DEVELMNT CO INC 380
LIFEBOAT ASSOC 263
LIFEBOAT ASSOC 213
LNW RESEARCH 331
LOGO COMP.SYS. 343
LOMAS DATA PRODUCTS 367 LYBEN COMP.SYS. 452 MACROTRONICS 452 MACROTRONICS 462 MAGNOLIA MICROSYS 454 MALIBU ELECTR CORP 143 MANNESMANN TALLY 413 MARTEC 369
MARYMAC INDUSTRIES 373
MASTER ELECTRINC 96 MAURO ENGINEERING 268
MAXTEK 32
407
MCGRAW-HILL BOOK CO 256 257
MCGRAW.HILL BOOK CO 350 MCMILLAN BOOK CLUBS 305 MEADE'S DATA SYS 454 MEAS.SYS. \& CONTROLS 28, 29 MEMORY MERCHANT 53 MENTOR SOFTWARE 460 META TECHNOLOGIES 440 MICRO AGE COMP.STORE 174 175
MICRO BUSINESS WORLD 179 MICRO BUSN. ASSOC 458 MICRO BUSN. SYS 125 MICRO COM 147 MICRO DECISIONWARE 140 MICRO FOCUS 79
MICRO HOUSE 280, 281 MICRO 310
MICRO MANAGEMENT SYS 347 MICRO MINT 38
MICRO PRO INT'L 231
MICRO SCI 93
MICRO SOURCE OF TX 466 MICRO WORKS, THE 365 MICROACE 369
MICROCOMP.TECH.INC 173 MICROCOMPUTER APP. 387 MICROCRAFT SYS 214 MICRODASYS 201
MICROMAIL 376
MICROMATE ELECTRIINC 345 MICROSOFT (CPD) 111
MICROTECH EXPORTS
MICROTECH EXPORTS 212 MIKOS 466
MILLER MICROCOMP.SERV 288
MINI COMP.SUPPLIERS 357
MINI MICRO MART 478
MINI MICRO MART 479
MIRO COMPUTERS INC 375
MORROW DESIGNS 57 MORROW DESIGNS 5 MOUNTAIN VIEW PRESS 195 MPI 181
MRD SYS INC 464
MSD 156
50 MTI 18
51 NASHUA CORP 162
NAT'L DATA SUPPLIES 462 NATIONAL COMP SHOW 339 253 NEBS 208

\footnotetext{
To get further information on the products advertising in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from the list. Add an 18 -cent stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE. The index is provided as an additional service by the publisher, who assumes no liability for errors or omissions. *Correspond directly with company
}

Inquiry No.
Page No.
-

NETRONICS 104, 106, 348
255
NORSEA DATA CORP 165
NORTH AMER TECH 178
NORTH AMER TECH 178
NORTH AMER TECH 82
NORTHWEST COMPUTER 361
NOVATION 290
NRI SCHOOLS ELECTR DIV 289
OASIS SYSTEMS 258
OHIO SEINTIFIC INSTR CIV
OKIDATA CORP 219
OLIVER ADVANCED ENGIN 464
OLIVER ADVANCED
OMEGA MICRO COMPUTER 421
OMEGA SALES 302, 303
OMIKRON 49
OMNI' RESOURCES 115
ORACLE ELECTR 456
ORANGE MICRO 148,
ORION INSTRUMENTS 464 OSBORNE COMPUTERS 33
OSBORNE WILSON LABS 332
OSBORNEMCGRAW-HILL 107
OWENS ASSOC 254, 255
PACIFIC COMP BRK 226
PACIFIC DISC SFTW 462
PACIFIC EXCHANGES 382
PACIFIC EXCHANGES 454
PACIFIC EXCHANGES 464
PACIFIC EXCHANGES 416
PACIFIC MEDIA PRODUCTS 194
PAGE DIGITAL 480, 481
PALOMAR COMP EQUIP 333
PAN AMERICAN ELEC INC 470
PAPEA TRACTOR 379
PASSWORD DISTR 43
PC NEWSLETTER 382
PEACHTREE SOFTWARE 73
PERCOM DATA 7, 15
291 PERSONAL COMPUTERS 272
PETRO.LEWIS CORP 234
PHASE ONE SYS INC 267
293 PICKLES \& TROUT 366
294 POLY PAKS 458
POLYLINE CORP 464
POPULAR COMPUTING 225
POTOMAC MICRO-MAGIC 411
POWER ONE INC 163
PRACTICAL MGMNT SYS 462
PRIORITY ONE 490, 491
PRIORITY ONE 492, 493
PROTECTO ENTERPR 456
PURCHASING AGENT, THE 186
QANTEX DIV 327
QUALITY COMP PARTS 464
QUALITY COMP PARTS 8
QUALITY SOFTWARE 91
QUASAR DATA PROD INC 313
QUEST ELECTR 455
R K S ENTERPRISES INC 312
R. A.SOFTWARE 371
R.R.SOFTWARE 371

RACET COMPUTES 361 RADIO SHACK 35 RADIO SHACK ASSOC STR 124 RADIO SHACK.GLNW SPR 347 RADIX INC 456
ROBOTICS AGE 36
SC DIGITAL 37
S. 100 INC 365

SCIENTIFIC ENGRG LABS 206
SCIENTIFIC SFTW PROD 458
SCION CORP
SCITRONICS 412
SCOTTSDALE SYSTEMS 154
SCR
SEATTLE COMP PRODS 113
SECURED COMP SYS
SELECT INFO SYS 293
SIERRA DATA SCIENCES 370
SLUDER 456
SOFTWARE ARTS 273
SOFTWARE ARTS 273
SOLID STATE SALES 172
SORRENTO VALLEY ASSOC 340
SOUTHERN COMP SYS 456
SOUTHWEST TECH PROD CI
SPECIALIZED BUSN SYS 375 SPECTRUM SOFTWARE 197 SSM MICRO COMP PROD 11
STATCOM CORP 89
STATIC MEMORY SYS 235
SUBLOGIC 315
SUNNY INT'L 470
341 SUPER STAR INT'L 222
SUPERSOFT 54, 99, 155, 358 378, 381
342 SURVEYOR SUPPLY CO 367
343 SYBEX 93
SYNCHRO SOUND 334
344 SYNCTRONICS 170
397 SYNEMED, INC 109
345 SYS INTERFACE CONSUL 92

Inquiry No. Page No.
346 SYSTEMS PLUS 189
- TAB BOOKS 337

347 TARBELL ELECTR 351
349 TEAM ELECTR 371
TECHNICAL SYS CONS 199
350 TECMAR INC 301
351 TEI, INC 61
353 TELERAM COMMUNC 306
354 TELEVIDEO INC 209
355 TEXAS MOMP SYS
356 TEXAS COMP SYS 204
- TEXAS INSTRUMENTS 135

Inquiry No. Page No.
357 THREE M COMPANY 223
358 THREE M COMPANY 94
359 THREEM COMPANY 95
THUNDERWARE 187
TINNEY,RBT.GRAPHICS 408
360 TKS CORP 329
361 TNW CORP 367
362 TOSHIBA AMERICA INC 23
363 TRANSFORMATION TECH 454
364 TRANSNET CORP 345
365 TRANSWAVE CORP 193
66 TRINITY GRP, THE 460
367 TSEHARDSIDE 366

Inquiry No. Page No.
368 U.S. MICRO SALES 307
369 U.S. MICRO SALES 463
370 U.S. ROBOTICS 271
371 UNIVERSAL SFTW.STUDIOS 418
373 VAN HORN OFFICE SUPP 375
374 VANDATA 409
374 VANDATA 409
375 VECTOR ELECTR 86
376 VECTOR GRAPHICS 75
377 VERBATIM CORP 87
378 VERTICAL DATA SYS INC 150
390 VIDEX 277
UTER CO 105
380 VOTRAX 168, 169

Inquiry No. Page No.
VR DATA 363
381 WASHINGTON COMP SERV 469
382 WEIGH SYSTEMS TECH 292
WESTICO INC 171, 452
383 WESTWARE 129
WHITESMITHS LTD 131
384 WICAT SYSTEMS 55
385 WICAT SYSTEMS 217
49 WILLIAMS LABS 368
386 WINTEK CORP 452
387 WINTERHALTER \& ASSOC 326
388 X COMP 297
ZOBEX 83

BOMB
BYTE's Ongoing_Monitor Box
\begin{tabular}{|c|c|c|}
\hline Article \# & Page
38 & \begin{tabular}{l}
Article \\
Build an Unlimited-Vocabulary Speech Synthesizer
\end{tabular} \\
\hline 2 & 52 & The Big Board: A \(z 80\) System in Kit Form \\
\hline 3 & 58 & The Xerox Alto Computer \\
\hline 4 & 72 & Tree Searching, Part 1: Basic Techniques \\
\hline 5 & 112 & One Step Forward-Three Steps Backup \\
\hline 6 & 146 & Misosys Software's DISKMOD: Put Radio Shack's Editor/Assembler on Disk \\
\hline 7 & 150 & MINCE, A Text Editor \\
\hline 8 & 164 & Artificial intelligence \\
\hline 9 & 180 & A High-Level Language Benchmark \\
\hline 10 & 200 & Science Fiction's intelligent Computers \\
\hline 11 & 216 & Symbolic Differentiation à la LISP \\
\hline 12 & 238 & Knowledge-Based Expert Systems Come of Age \\
\hline 13 & 284 & The Atari Tutorial, Part 1: The Display List \\
\hline 14 & 304 & Natural-Language Processing, The Field in Perspective \\
\hline 15 & 384 & BYTE's Arcade: Big Five Software; The Prisoner \\
\hline 16 & 388 & Three Microcomputer LISPs \\
\hline 17 & 414 & The Emperor's Old Clothes \\
\hline 18 & 436 & Interactive Fiction: Six Micro Stories \\
\hline
\end{tabular}

\section*{June вомв Speaks Out}

Steve Ciarcia's "Build a LowCost Speech-Synthesizer Interface" has talked its way into first place this month. Steve gets the \(\$ 100\) purse for his description of National Semiconductor's Digitalker speechsynthesis system. The article, obviously, left our readers speechless. The \(\$ 50\) second-place award goes to Gary Kildall for his article, -CP/M: A Family of 8 - and 16-Bit Operating Systems," which describes the de facto standard "software bus." Robert Greenberg and James Larson tied for third place. Greenberg's "The UNIX Operating System and the XENIX Standard Operating Environment" provided an inside look at a largecomputer operating system for microprocessors. Larson's article, "The Ins and Outs of CP/M." clarified and expanded on input/output and disk interfacing within the CP/M environment.

\section*{GAME DESIGNERS}

CINEMATRONICS, a leader in the coin-operated video game industry, is expanding its game design staff. We are seeking individuals with the special talent for game design, exceptional creativity, and superior Assembly language programming skills.
CINEMATRONICS offers competitive salaries, paid sick and vacation time, medical coverage, pension and profit sharing. If you're looking for an excellent opportunity with a rapidly growing, employee conscious company, please forward your resume to Sandra Baca, Director of Personnel:

\section*{Buying the powerful Dynabyte 5615 isn't only smart, it's cost efficient.}


The 5615 is the sure way to get the system you need. With more power for the price. You can select memory to 400 KB on our S-100 bus architecture. Choose from 3 sizes of Winchesters to 45 MB and have diskette backup to your system also. If it's tape back-up you need, then choose our 5700 . If you need less storage, our 51/4" floppy 5200, our 8 " floppy 5300 or our 5400 system using both floppies, with up to 3.6 MB capacity, can be yours.

The 5615 system is available with either single user CP/M or our enhanced MP/M for multi-user applications. Our MP/M operating system supports up to eight terminals, with a separate or shared spooler, and up to sixteen printers with no required partition space. Add to this multi-tasking, bank switching, record lockout, type-ahead and DMA and you have an MP/M operating system that supports a host of existing languages and meets minicomputer standards.

No multi-user applications library is so responsive to your needs. The 5615 features Business Manager, \({ }^{\text {TM }}\) the fully integrated, menu-driven, well documented, easy to install accounting system that gives you file/record protection, HELP commands, multi-level security, keyed data access, internal disk management, available source code and more.

System expandability, power and price/performance are further enhanced by on-hand availability, quantity discounts, 180 -day warranty and a national WATS line for support.

Whether you use or sell computer systems, you should ask about the microcomputer that puts minicomputer capability in your hands. That's the 5615. That's the Dynabyte Difference. Call Mike Seashols, V. P. Marketing (800) 227-8300. In California (415) 329-8021. Dynabyte, 115 Independence Drive, Menlo Park, California 94025.

\section*{"Over 15,000 items in inventory could be a nightmare. But it's not 'cause my Challenger computer works like a dream."}
"My fastener business is growing rapidly. I have over 800 customers utilizing my 15,000 inventory items daily. Keeping irack of inventory, orders, and receivables at this volume level could be a nightmare. But it's not 'cause my Challenger computer works like a dream. Terrific, Ohio Scientific!'

Richard Nolan, President, Aerospace Nylok Corp., Hawthorne, New Jersey

Ohio Scientific was first to add Winchester hard disk drives to microcomputers. This advanced technology allows low cost microcomputers to store over 100 times as much information on line as they could before.

"With our Challenger computer we've developed sophisticated real estate programs and information files that give our customers and our sales associates that extra edge in fast, accurate real estate market information analysis and forecasting.
We now have a strong managerial accounting and market information system as well as word processing at an affordable cost. Terrific, Ohio Scientific!"

Charles Smith, Jr., President, Montague, Miller \& Co., Realior Charlottesville, Virginia

OHIO SCIENTIFIC HARD DISK BASED MICROCOMPUTERS START AT LESS THAN \(\$ 10,000\) AND ARE SOLD BY MORE THAN 400 DEALERS NATIONWIDE. FOR THE ONE NEAREST YOU,

CALL 1-800-321.6850 TOLL FREE.
 and I can't believe how reliable my Challenger has been, with all it has to keep track of. But, it's been doing it for two years now, and that's terrific, Ohio Scientific!"

Wade Carlson,
Vice President. Wally Carlson \& Sons, Lindstrom, Minnesota```


[^0]:    - CROMIX is a trademark of Cromemco, Inc.
    tUNIX Is a trademark of Bell Telephone Laboratories

[^1]:    U.S. Pat. No, 4121283

[^2]:    ${ }^{-}$CP/M and CPIM- 86 are trademarks of Digital Research

    - MILESTONE is a trademark ol Organic Software

[^3]:     Ol'TIMUM and Misru-INCIIISH are Uademarts of IVI:ON Compurer Systems. Inc.

[^4]:    For International Sales Inquiries contact: SIGMA INTERNATIONAL. INC., P.O. Box 1118, Scottsdale, AZ 85252 USA (602) 994.3435 / Telex 165745 Sigma

[^5]:    Votrax is a trademark of Federal Screw Works, Inc.

[^6]:    Copyright © 1981 by Steven A Ciarcia.
    All rights reserved.

[^7]:    Special thanks to Ray Long of Custom Photo and to Greg Peterson and Phil Walton of Tech Circuits for their expert printed-circuit design and production talents.

[^8]:    Editor's Note: Steve often refers to previous Circuit Cellar articles as reference material for the articles he presents each month. These articles are available in reprint books from BYTE Books, 70 Main St, Peterborough NH 03458. Ciarcia's Circuit Cellar covers articles that appeared in BYTE from September 1977 through November 1978. Ciarcia's Circuit Cellar, Volume II presents articles from December 1978 through June 1980.

[^9]:    Acknowledgments
    $I$ would like to thank Dr Brian Reid and Mark Roberts of Stanford University for their time and helpful comments; also Sandy Lanzarotta of Xerox and Cindy Paulinac for their help and support.

[^10]:    - North Star ${ }^{\circ}$ Cromemco • Heath H8/H89 • SuperBrain • Apple II Softcard ${ }^{\bullet}$ TRS-80 Model II $\varepsilon$ Model I Most other CP/M Systems with CRT or Memory Mapped Displays ${ }^{\bullet}$ MP/M • CP/M-86

[^11]:    ## Articles Pollicy

    BYTE is continually seeking quality manuscripts written by individuals who are applying personal computer systems, designing such systems, or who have knowledge which will prove useful to our readers. For a more formal description of procedures and requirements, potential authors should send a large (9 by 12 inch. 30.5 by $22.8 \mathrm{~cm} \mid$, self-addressed envelope, with 28 cents US postage affixed, to BYTE Author's Guide, POB 372, Hancock NH 03449.

    Articles which are accepted are purchased with a rate of up to \$50 per magazine page, based on technical quality and suitability for BYTE's readership. Each month, the authors of the two leading articles in the reader poll (BYTE's Ongoing Monitor Box or "BOMB") are presented with bonus checks of $\$ 100$ and $\$ 50$. Unsolicited materials should be accompanied by full name and address, as well as return postage.

[^12]:    *Trademark of Digital Equipment Corp.

[^13]:    *Multiple sources available.

[^14]:     Tel:402 2497 -JH Svstems, Etobicoke, Ontario, Cenada. Tel: (416) $621-0538$ - S.A.Micro Service, Paris, France, Tel: 2053871 - Servonic. Munich. West Germany. Tel: 089483253 - GBK. The
    
     Cambridge, MA, Tel: (617) $864-3638$ - Link Systems, Santa Monica, CA. Tel: (213) 453-1851- EDS, Frazer, PA, Tel: (215) 296-7300 - Ouali-Tvpe, Inc., Livermore CA, Tel: (415) 447-6121 Spl San Diego, CA Tel: $(714)$ 268-4346- Khalsa International, Merndon, VA, Tel: ( 703 ) 437-0404-
    UCSD PASCAL is a trademark of Regents of U. of C CP/M is a trademark of Digital Research. Inc.

[^15]:    
    
    

[^16]:    -Price approximate and may vary In your area. Daily lease based on: \$17.000 principal. 20\% annual interest, 5-year term Includes: Altos ACS8000-10 computer, letter quality printer, four preclsion terminals and get-rolling software Does not Include tax. installation. training and maintenance.

[^17]:    'Trademart of Western Digital Trademark of Univenity of Californis
    'Registered Trademark of Zilog, Iac. 'Registered Trademark of Digital Research

[^18]:    About the Author
    Steven $K$ Roberts is a free-lance writer and microprocessor-systems consultant living in Dublin, Ohio. He is the author of Micromatics (published by Scelbi Publications) and Industrial Design with Microcomputers (to be published in early 1982 by Prentice-Hall).

    Research for this article included attendance at the First International Conference on Artificial Intelligence, held at Stanford University in August 1980.

[^19]:    About the Author
    Jim Gilbreath is the head of the Computer Sciences and Simulation Department at the Naval Ocean Systems Center. He has 23 years of experience in both hardware and software technology.

[^20]:    Acknowledgments
    My thanks to Cindy and Jerry Hargis for persuading me to read The Two Faces of Tomorrow. I would also like to thank John Woodcock, Assaciate Professor of English at Indiana University, for his comments on this article, and Professor Douglas Hofstadter, Dr Fanya Montalvo, David Moser, and my father, Eugene Byrd, for their encouragement and constructive criticism.

[^21]:    Paymenl Money Order Casher's Check. Cerlified Check Personal cheeks take 3 wks VISA. MC

[^22]:    About the Author
    Lt Ronald L Nicol was stationed at the Naval Research Laboratory in Washington DC and, later, aboard the USS M G Vallejo as Reactor Controls Officer and Main Propulsion Assistant. Currently, he is a Chemistry and Material Science Instructor at the Naval Nuclear Power School.

[^23]:    Runs on most Z80/8080/8085 microcomputers with CP/M (TM of Digital Research). 48 K . and terminal with addressable cursor. - Also available for the Apple Computer, requires Microsofi SoftCard. Apple Computer is a registered trademark of Apple Compuler. Inc. - MicroPro products sold only through authorized dealers. - I 981 MicroPro International Corporation.

[^24]:    We are an equal opportunity employer, $\mathrm{m} / \mathrm{f} / \mathrm{h}$.

[^25]:    * 2 year limited warranty.

[^26]:    11 interfacer 2. Adds three full duplex parallel ports, and one serial port with all the features of an Interfacer 1 serial port, to your computer. $\$ 199$ Unkit, $\$ 249$ A/T, $\$ 324$ CSC.

