

SYSTEMS - SOLUTIONS

If you have a problem that can be solved by a computer-we have a systems solution.

- Two central processors with maximum RAM capacities of 56 K and 384 K bytes
- Three types of disk drives with capacities of $175 \mathrm{~K}, 1.2 \mathrm{M}$ and 16 M bytes
- Two dot matrix printers with 80 and 132 line capacity
- A Selectric typewriter interface and a daisy wheel printer

Match these to your exact need, add one or more of our intelligent terminals and put together a system from one source with guaranteed compatibility in both software and hardware.

Southwest Technical Products systems give you unmatched power, speed and versatility. They are packaged in custom designed woodgrain finished cabinets. Factory service and support on the entire system and local service is available in many cities.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION 219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216
(512) 344-0241

The single card computer with the features that help you in real life

COMPLETE COMPUTER

In this advanced card you get a professional quality computer that meets today's engineering needs. And it's one that's complete. It lets you be up and running fast. All you need is a power supply and your ROM software.
The computer itself is super. Fast 4 MHz operation. Capacity for 8 K bytes of ROM (uses 2716 PROMs which can be programmed by our new 32K BYTESAVER ${ }^{\text {® }}$ PROM card). There's also 1 K of on-board static RAM. Further, you get straightforward interfacing through an RS-232 serial interface with ultra-fast speed of up to 76,800 baud - software programmable.
Other features include 24 bits of bidirectional parallel I/O and five onboard programmable timers.

Add to that vectored interrupts.

ENORMOUS EXPANDABILITY

Besides all these features the Cromemco single card computer gives you enormous expandability if you ever need it. And it's easy to expand. First, you can expand with the new Cromemco 32K BYTESAVER PROM card mentioned above. Then there's Cromemco's broad line of S100-bus-compatible memory and I/O interface cards. Cards with features such as relay interface, analog interface, graphics interface, optoisolator input, and A/D and D/A conversion. RAM and ROM cards, too.

Card Cage

32K BYTESAVER PROM card

EASY TO USE

Another convenience that makes the Model SCC computer easy to use is our Z-80 monitor and 3 K Control BASIC (in two ROMs). With this optional software you're ready to go. The monitor gives you 12 commands. The BASIC, with 36 commands/functions, will directly access I/O ports and memory locations and call machine language subroutines.

Finally, to simplify things to the ultimate, we even have convenient card cages. Rugged card cages. They hold cards firmly. No jiggling out of sockets.

AVAILABLE NOW/LOW PRICE

The Model SCC is available now at a low price of only $\$ 450$ burned-in and tested (32K BYTESAVER only \$295).
So act today. Get this high-capability computer working for you right away.

Low-cost hard disk computers are here

 11 megabytes of hard disk and 64 kilobytes of fast RAM in a

 11 megabytes of hard disk and 64 kilobytes of fast RAM in a Z80A computer for under $\$ 10 \mathrm{~K}$. Two floppy drives, too. Z80A computer for under $\$ 10 \mathrm{~K}$. Two floppy drives, too. Naturally, it's from Cromemco.

 Naturally, it's from Cromemco.}

It's a reality. In Cromemco's new Model Z-2H you get all of the above and even more. With Cromemco you get it all.

In this new Model Z-2H you get not only a large-storage Winchester hard disk drive but also two floppy disk drives. In the hard disk drive you get unprecedented storage capacity at this price- 11 megabytes unformatted.

You get speed-both in the 4 MHz Z80A microprocessor and in the fast 64 K RAM which has a chip access time of only 150 nanoseconds. You get speed in the computer minimum instruction execution time of 1 microsecond. You get speed in the hard disk transfer rate of 5.6 megabits $/ \mathrm{sec}$.

EXPANDABILITY

You get expandability, too. The high-speed RAM can be expanded to 512 kilobytes if you wish.

And the computer has a full 12 -slot card cage you can use for additional RAM and interface cards.

BROADEST SOFTWARE SUPPORT

With the Z-2H you also get the broadest software support in the
microcomputer field. Software Cromemco is known for. Software like this:

- Extended BASIC
- FORTRAN IV
- RATFOR (RATional FORtran)
- COBOL
- Z80 Macro Assembler
- Word Processing System
- Data Base Management with more coming all the time.

SMALL, RUGGED, RELIABLE

With all its features the new $\mathrm{Z}-2 \mathrm{H}$, including its hard disk drive, is still housed in just one small cabinet.

Hard disk drive at lower left can be interchanged jusi by sliding out and disconnecting plug. Seven free card slots are available. Z -2 2 H includes printer interface card.

Included in that cabinet, too, is Cromemco ruggedness and reliability. Cromemco is time-proved. Our equipment is a survey winner for reliability. Of course, there's Cromemco's all-metal cabinet. Rugged, solid. And, there's the heavy-duty power supply (30A @ 8V, 15A @ +18 V , and 15A @ -18V) for circuitry you'll sooner or later want to plug into those free card slots.

CALL NOW

With its high performance and low price you KNOW this new $\mathrm{Z}-2 \mathrm{H}$ is going to be a smash. Look into it right now. Contact your Cromemco computer store and get our sales literature. Find out when you can see it. Many dealers will be showing the $\mathrm{Z}-2 \mathrm{H}$ soon-and you'll want to be there when they do.

PRESENT CROMEMCO USERS

We've kept you in mind, too. Ask about the new Model HDD Disk Drive which can combine with your present Cromemco computer to give you up to 22 megabytes of disk storage.

page 20

page 28

page 74

Foreground

28 COMPUTERIZE A HOME by Steve Ciarcia

Controlling appliances in your home is one of the many chores that may be delegated to a personal computer. One product that is readily available is the Sears Home Control System used in this month's Ciarcia's Circuit Cellar.

56 A COMPUTER-CONTROLLED LIGHT DIMMER, PART 1: DESIGN

by John H Gibson You can use your computer in conjunction with programmable timers to easily control a light dimmer. Since programmable timers simplify both hardware and software in such applications, you may think of other applications.

74 A FURNACE WATCHDOG by Theron Wierenga

January is a month in which most of us show a greater than average concern for the state of our own home heating systems. After moving into a new house Theron decided to let his computer keep track of the furnace.

122 TELEPHONE DIALING BY COMPUTER by Edward Joyce

Your computer can ease the burden of remembering and dialing telephone numbers. This computer-controlled interface can dial your most frequently used numbers on Touch Tone telephone systems.

129 ANALYSIS OF POLYNOMIAL FUNCTIONS WITH THE TI-59 CALCULATOR, PART 2 by Pierre Chancé

This article describes the operation of the polynomial evaluation programs for the Tl - 59 given in part 1 . One program calculates the roots of a sixth-order polynomial, while the other produces a plot of the function on the Tl PC-100C printer.

156 alpha lock for your ascil Keyboard by Terry Conboy

This article presents a method to produce only uppercase letters from a keyboard capable of both uppercase and lowercase operation. Control and special characters are not shifted, and the shift lock can be easily turned off.
180 RELOCATING 8080 SYSTEM SOFTWARE by John Lipham
The ability to relocate programs in memory space is often helpful when you are changing from one system to another, or adding a new program to your present system. John discusses some of the problems that are encountered during relocation on the 8080 microprocessor and gives two programs that perform most of the work.
212 eighteen with a die, a learning game player by Russell R Yost People learn from their mistakes. Computers can too, if given the right program. Russell enabled his personal computer to learn how to win a simple game by writing the program described in this article.

Background

20 MAKING COLOR SLIDES WITH AN INTECOLOR MICROCOMPUTER

by Alan W Grogono An intecolor intelligent color terminal (or other color-based computer) is used to generate color images that can be directly photographed. Slide production from a video image is relatively cheap, and the image can be altered during the design process with a minimum of effort.

100 what Computers cannot do by T G Lewis

Designers constantly try to build better and faster computers. Recent technology has produced many advances, but the question remains, "Is computing qualitatively better than when it first began7" T G Lewis discusses this issue.

118 INDIRECT ADDRESSING FOR THE 6502 by Kenneth Skier

The 6502 processor allows the user to perform certain indirect addressing operations. However, indirect addressing is not available for all instructions. Kenneth informs us of an easy way to perform indirect addressing on the 6502 when it is not normally available.

136 the plot continues by Leslie B Walter

The plotter described in this article is capable of being run by hardware and software drivers and gets around some of the physical difficulties, such as large torque and wobble factors, that confront some plotter designs.

160 A COMPUTER-GENERATED REMINDER MESSAGE by E M Pass

This article describes a system that can help you to remember important future events. The system, called Tickler, is helpful in remembering to perform actions that have to be repeated periodically.

Nucleus

NOTICE:

The 1980 Priority One
Electronics Engineering Selection Guide
begins on page 80-C1 in this issue

6 Editorial: The Era of Off-the-Shelf Computers Has Arrived
14 Letters
115 BYTE News
148, 151 Technical Forum: Aids to the Direct Reception of Weather Satellite Photographs;
An lmproved Maze Program
174, 206, Programming Quickies: A
Pascal Checkbook Balancing Program; A

French-English Dictionary; Z80 User
Stack Emulation
176 Book Reviews
194 Clubs and Newsletters
195, 199 BYTE's Bugs
196, 150 BYTE's Bits
200 Event Queue
230 What's New?
271 Unclassified Ads
272 Reader Service, BOMB

Publishers

Virginia Londoner, Gordon R Williamson
Assoclate Publisher
John E Hayes
Assistant
Jill E Callihan

Editorlal Director

Carl T Helmers Jr
Executive Editor
Christopher P Morgan
Editor in Chiet
Raymond G A Cote
Senlor Book Editor
Blaise W Liffick
Editors
Richard S Shuford, Gregg Williams
Asslstant Editor
Bob Braisted
Editorial AssIstants
Gale Britton, Faith Ferry
New Products Editor
Clubs, Newsietters
Charles Freiberg
Drafting
Jon Swanson
Production Director
Nancy Estle
Senior Copy Editor
David William Hayward
Copy Editors
Faith Hanson, Warren Williamson,
Robin M Moss, Anthony J Lockwood
Art Director
Ellen Bingham
Production Art
Wai Chiu Li, Christine Dixon,
Holly Carmen LaBossiere, Deborah Porter

Typographers

Cheryl A Hurd, Debe L Wheeler,
Sherry McCarthy

Advertising Director

Patricia E Burgess
Assistants
Ruth M Walsh, Marion Gagnon
Adv/Prod Coordinator
Thomas Harvey
Marketing Coordinator
Laura A Manson
Circulation Manager
Gregory Spitzfaden
Assistants
Pamela R Heaslip, Agnes E Perry,
Melanie Bertoni, Barbara Ellis
Dealer Sales
Anne M Baldwin
Receptionist
Jacqueline Earnshaw

Traffic Department

Mark Sandagata, Thomas Yanni

Comptroller

Daniel Rodrigues
Assistant
Mary E Fluhr
National Advertlsing Sales Representatlves: Hajar Associates Inc
East
280 Hillside Av, Needham Heights MA 02194 (617) 444-3946

521 Fifth Av, New York NY 10017
(212) 682.5844

Midwest
664 N Michigan Av, Suite 1010,
Chicago IL 60611 (312) 337-8008
West, Southwest
1000 Elwell Ct, Suite 227, Palo Alto CA 94303 (415) 964-0706/(714) 540-3554

ON THE COVER

The theme of this issue's cover illustration is "the domesticated computer." Robert Tinney has taken the idea of the remote controlled appliances suggested by Steve Ciarcia's article on page 28 and combined it with some imaginative cabinetry in a household setting. In the process, Robert used his artistic license to employ radio imagery with antennae and aetheric airbrushing as an alternative to ultrasonic techniques described by Steve.
Either way, practical means of safely controlling 110 V appliances from the computer with total electrical isolation now exist - both for the homebrewer and as practical products advertised in this issue.

Officers of McGraw-Hill Publications Company: Paul F McPherson, President; Group Vice President: Daniel A McMillan; Group Vice President-Planning and Development: James E Boddorf; Senior Vice President-Editorial: Ralph R Schulz; Vice Presidents: Robert B Doll, Circulation; James E Hackett, Controller; William H Hammond, Communications; Thomas H King, Manufacturing; Edward E Śchirmer, International.

BYTE is published monthly by BYTE Publications Inc, 70 Main St, Peterborough NH 03458, a wholly-owned subsidiary of McGraw-Hill, Inc. Address all mail except subscriptions to above address: phone (603) 924-7217. Address subscriptions, change of address, USPS Form 3579, and fulfillment questions to BYTE Subscriptions, PO Box 590, Martinsville NJ 08836. Second class postage paid at Peterborough NH 03458 and at additional mailing offices-USPS Publication No. 102410 (ISSN 0360-5280). Subscriptions are $\$ 18$ for one year, $\$ 32$ for two years, and $\$ 46$ for three years in the USA and its possessions. In Canada and Mexico, $\$ 20$ for one year, $\$ 36$ for two years, $\$ 52$ for three years. $\$ 32$ for one year air delivery to Europe. $\$ 32$ surface delivery elsewhere. Air delivery to selected areas at additional rates upon request. Single copy price is $\$ 2.50$ in the USA and its possessions, $\$ 2.95$ in Canada and Mexico, $\$ 4.00$ in Europe, and $\$ 4.50$ elsewhere. Foreign subscriptions and sales should be remitted in United States funds drawn on a US bank. Printed in United States of America.

Address all editorial correspondence to the editor at the above address. Unacceptable manuscripts will be returned if accompanied by sufficient first class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Entire contents copyright © 1980 by BYTE Publications Inc. All rights reserved.

BYTE ${ }^{\ominus}$ is available in microform from University Microfilms International, 300 N Zeeb Rd, Dept PR, Ann Arbor MI 48106 USA or 18 Bedford Row, Dept PR, London WC1R 4EJ ENGLAND.

Subscription WATS Line: (800) 258-5485
Office hours: Mon-Thur 8:30 AM - 4:30 PM Eastern Time Friday 8:30 AM - Noon

Altos Computer Systems
2378-B Walsh Avenue
Santa Clara. CA 95050

Apple Computer
10260 Bandley Dr Cupertino. CA 95014

Commodore Business Machines, Inc.
3330 Scott Boulevard
Santa Clara. CA 95050

Digital Microsystems Inc. (Formerly Digital Systems) 4448 Piedmont Ave
Oakland. CA 94611

Industrial Micro Systems
633 West Katella. Suite L Orange, CA 92667

North Star Computer
2547 9th Street
Berkeley. CA 94710

Polymorphic Systems
460 Ward Dr.
Santa Barbara. CA 93111

Problem Solver Systems
20834 Lassen Street
Chatsworth. CA 91311

Processor Applications Limited
2801 E. Valley View Avenue West Covina. CA 91792

Technico Inc.
9130 Red Branch Road
Columbia. MD 21045

Texas Electronic Instruments
5636 Etheridge
Houston. TX 77087

Thinker Toys
1201 10th Street
Berkeley, CA 94710

Editopial

The Era of Off-the-Shelf Personal Computers Has Arrived

Carl Helmers

This issue marks the beginning of a new decade: the 1980s. It may be appropriate at this time to pause and see how technology has progressed. At the turn of a previous decade, the only computers I could get my hands on were those large and expensive behemoths of the 1960s, the IBM 360s, Univac 1108s, and DEC PDP-6s, which I used during my occasional employments while an undergraduate physics student. Those machines represented such large capital investments that there was no way I could possibly own one.

At the time I knew that minicomputers existed. But they too were quite expensive. The minicomputer of late 1969 was also very limited in peripherals and systems software. At that time minicomputers were usually made by Digital Equipment Corporation, used a Teletype with paper tape for mass storage, and they may have had all of 8 K words of memory with 12 bits per word. It was an era in small computers when $\$ 30,000$ might have purchased the hardware equivalent of today's $\$ 500$ single-board engineering system; for example, a Rockwell AIM-65 with some added memory and a power supply. (This single-board 6502-based computer includes printer, tape interface, systems software and keyboard. With all required purchases, it costs about $\$ 500$ to $\$ 600$. A system such as this is equivalent to (if not better than) one of the typical minicomputer "installations" of the late 1960s.)

As we entered the 1970s, the beginnings of the large-scale integration microcomputer technology had been made. In existence at that time were 4-bit computers in high-technology calculator products, as well as such great accomplishments as 1024 -bit shift register memories (slow) and high-speed 64-bit transistor-transistor logic (TTL) memories (power hungry). Mass storage on small machines in 1969, if it was electronic, was done on various randomly or serially addressable tape devices. These tape units were sold at prices comparable to the present-day retail price of a dedicated Winchester technology 10 -million-byte hard disk drive. But the more common mass storage was mechanical, eg: the paper-tape reader and punch on a Model ASR-33 Teletype. As we enter the next decade, we find a much different picture.

The 64-bit memory part of late 1969 has increased in size to today's latest technology 64 K bit dynamic memories. This is an increase in density of just over 3 decimal orders of magnitude ($1024 \cong 10^{3}$). The primitive 4-bit architectures of then current calculators have become the 32-bit architectures of current machines such as the Motorola 68000, which is now seeing its first limited deliveries to prototype laboratories. At the end product level, smart machines have taken off in myriad directions, ranging from the dedicated controllers of computerized toys and microwave ovens, to the modern personal computer.

With the new extremely large-scale integration devices, the era of the 32 -bit personal computer with high-resolution graphics display, main memory of 256 K bytes and from 10 to 50 million bytes of hard disk capacity on line is nearly here. In 1980, such a system can be built with the central computer consisting of just 33 major parts: 32 memory chips and a 68000 microcomputer.

"After working all day with the computer at work, it's a kick to get down to Basic at home. And one thing that makes it more fun is my Shugart minifloppy ${ }^{\top M}$. We use Shugart drives at work, so when I bought my own system I made sure it had a minifloppy drive.
"Why? Shugart invented the minifloppy. The guys who designed our system at work tell me that Shugart is the leader in floppy design and has more drives in use than any other manufacturer. If Shugart drives are reliable enough for hard-working business computers, they've got to be a good value for my home system.
"When I'm working on my programs late at night, I can't wait for cassette storage. My minifloppy gives me fast random access and data
transfer. The little minidiskettes ${ }^{\top M}$ store plenty of data and file easily too.
"I made the right decision when I bought a system with the minifloppy. When you lay out your own hard-earned cash, you want reliability and performance. Do what I did. Get a system with the minifloppy.

If it isn’t Shugart, it isn't minifloppy.
 \checkmark Shugart
 435 Oakmead Parkway, Sunnwale. California 94086

TI 99/4

Built in equation calculator, $13^{\prime \prime}$ color monitor, 16 -bit C.P.U., TI Basic w/13 digit precision, and more!
CALL US FOR LOW PRICE!
Soroc IQ 120
High quality, professional text-editing terminal. 73 -key board, built in 2K RAM. $\$ 789$

Hazeltine 1500

7×10 matrix, baud rates to 19,200; full keyboard with numeric pad, full function CRT at a new low price!
$\$ 950$

TI 810
Basic 150 cps serial. 'The industry leader at a new low price! Save over $\$ 300$.
\$1589

Centronics 730

100 cps, parallel, 3-way feed, 80 -character buffer...the new leader in small printers from Centronics. Save $\$ 100$.
$\$ 895$

Comprint 912

Low priced electrostatic matrix printer, 225 cps. Serial \$535 Parallel 499

North Star Horizon

Call us for our low prices on the industry's most popular C.P.U.

$$
\begin{array}{lr}
\text { Televideo 912 } & \$ 779 \\
\text { Centronics 704 } & \mathbf{\$ 1 6 8 5} \\
\text { Heath WH 14 } & \$ 749
\end{array}
$$

Over 2000 products from over 100 manufacturers. Prices subject to change without notice, products subject to avaliability. FOB Tempe, AZ (5\% sales tax in Arizona)
Call Cili fee 1-800-528-1418 MCOMOLD

Ancillaries, such as buffers and read-only memories, might double that count to 66. In a very approximate systems sense, the manufacturing cost of an electronic system is proportional to the number of parts involved. This is exclusive of intangibles like software and aesthetics. So the manufacturing cost of such a device two years from now will make it the typical personal computer.

But what of right now? Where would we stand if there were to be no technological improvements in off-the-shelf personal computers? What is the state of today's technology? I am going to describe some of the criteria that make up the design of a good modern personal computer system - and then I will make some comments about a particular system I just purchased and upon which I am creating this editorial. The fact that I have made a particular choice reflects the necessity for choice and not necessarily that other machines might not have served me as well. I will leave comments about this particular machine until later while I go into more details about what I see as the state of the art in small computers at the beginning of the 1980s.

The Personal Computer Circa 1980 . . .

As of this writing, October 1979, the state of the art in personal computing is such that the user is king. It is possible to enter a computer store and witness the operation of a typical modern system, try it out, then purchase one just like it to take home and use. The discriminating user must pay attention to a number of technical points relevant to the function of systems: areas of hardware, systems software, applications software, and plain oldfashioned idiosyncracies such as aesthetics and programming styles enter into a decision about which computer to purchase. But there is a core of minimum function which must be met in the contemporary small computer.

Starting this tour of function at the level of system design, what are the characteristics of the processor and memory required? First, remember the often overlooked point that the particular processor used is an arbitrary consideration within a broad range. This is especially so in an era when high-level languages and systems software can insulate the programmer from needless details of lowlevel code.

In present-day personal computers the processors which are typically used are 8 -bit devices: 8080s, 6502 s , Z80s, 8085s, 6800s, and 6809s. In raw performance statistics, all of these are comparable within a factor of 2 or 3 depending upon the benchmark chosen. Each has its own strengths and weaknesses. The basic limitation of present-era computers is the 8 -bit bus, which cycles at only a several megahertz rate (a typical system memory access time is 200 to 500 nanoseconds). Transferring a byte at a time is often the most significant speed limitation.

Thus the processor choice is relatively unconstrained among the various off-the-shelf computers available today. What of memory? Whatever the processor, the more memory available, the better the system. I believe that the convenient and pleasurable use of the small computer as it exists today requires a bare minimum of 32 K (ie: 32,768) bytes. Of the computers I use regularly, two have 64 K bytes and one has 53 K bytes. The primary criterion for selecting memory technologies for a user of a

At Intersystems, "dump" is an Instruction. Not a way of life. (Or, when you're ready for IEEE S-100, will your computer be ready for you?]

We're about to be gadflies again. While everyone's been busy trying to convince you that large buses housed in strong metal boxes will guarantee versatility and ward off obsolescence, we've been busy with something better. Solving the real problem with the first line of computer products built from the ground up to conform to the new IEEE S-100 Bus Standard. Offering you extra versatility in 8-bit applications today. And a full 16 bits tomorrow.

We call our new line Series II.M And even if you don't need the full 24 -bit address for up to 16 megabytes (!) of memory right now, they're something to think about. Because of all the perform-
ance, flexibility and economy they offer. Whether you're looking at a new mainframe, expanding your present one or upgrading your system with an eye to the future. (Series II boards are compatible with most existing S-100 systems and all IEEE S-100 Standard cards as other manufacturers get around to building them.) Consider some of the features: Reliable operation to 4 MHz and beyond. Full compatibility with 8 - and 16 -bit CPUs, peripherals and other devices. Eight levels of prioritized interrupts. Up to 16 individually-addressable DMA devices, with IEEE Standard overlapped operation. User-selectable functions addressed by DIPswitch or jumpers, eliminating soldering. And that's just for openers.

The best part is that all this heady stuff is available now! In our advanced processor - a full IEEE Bus Master featuring Memory Map ${ }^{\text {IM }}$ addressing to a full megabyte. Our fast, flexible 16K Static RAM and 64 K Dynamic RAM boards. An incredibly versatile and
economical 2-serial, 4-parallel Multiple I/O board. 8-bit A/D-D/A converter. Our Double-Density High-Speed Disk Controller. And what is undoubtedly the most flexible front panel in the business. Everything you need for a complete IEEE S-100 system. Available separately, or all together in our new DPS-1 Mainframe!

Whatever your needs, why dump your money into obsolete products labelled "IEEE timing compatible" or other words people use to make up for a lack of product. See the future now, at your Intersystems dealer or call/ write for our new catalog. We'll tell you all about Series II and the new IEEE S-100 Bus we helped pioneer. Because it doesn't make sense to buy yesterday's products when tomorrow's are already here.

Corceratysamemas

Ithaca Intersystems Inc.,
1650 Hanshaw Road/P.O. Box 91, Ithaca, NY 14850
607-257-0190/TWX: 5102554346
modern computer is that it be in the system, competently engineered, and reliable. Engineering jargon terms like "static" versus "dynamic" are meaningless once a product has passed the design stage and becomes a reliable massproduced product. The fact that nearly all massproduced computers use dynamic memory is a statement about the costs of various semiconductor engineering technologies. When I buy a computer off the shelf, I care only about the quantity of main memory available for use as a resource.

In addition to the need for adequate main memory, the next question is, what of magnetic mass storage? At a bare minimum, the personal computer should have on the order of 500 K bytes of on-line storage, preferably in two or more drives. In today's technology, the most prevalent magnetic medium is the 5 - or 8 -inch floppy disk, with single-, double- or quad-density recording. Although recently introduced in personal computers, the hard disk technology based on drive products, from firms like Shugart, IMI and Micromation, is not nearly as prevalent as it will be in 1980 and beyond; the standard configuration for most small computers is two or more floppy disk drives as 1979 draws to a close.

At the level of user interfaces, the standard display hardware of a usable small computer is the 24 (or 25) line by 80 -character video display. In some machines this is built in as a board in the system itself; on others it is provided in the form of a high-speed serial link (typically 19.2 kbps) to a video terminal. In either design, the terminal interface has a standard keyboard similar to a typewriter, and both upper and lowercase text are sup-
ported. In this era, when the marginal cost of a full upper and lowercase text capability is low compared to system cost, there is no excuse for perpetuating primitive computers' use of only uppercase text. Still remaining at a hardware level, it is necessary to have a hard copy device for most effective use of a small computer (or a large computer for that matter). Rare is the person who can remember all the details of a program without hard copy; and rare is the computer system with sufficient redundant displays so that multiple independent pages of text can be conveniently viewed simultaneously. In a personal computer at prices within reason today, hard copy is a necessity.

What about the options and their availability? Does the computer in question have a de facto standard bus design which is used by independent companies to design compatible peripherals? At the present time, the personal computer world has four principal bus systems available
two that are represented by multiple computer manufacturers ($\mathrm{S}-100$ and SS-50), and two that are represented by one computer manufacturer and many independent compatible peripherals manufacturers (Apple II and Radio Shack TRS-80). These bus designs allow owners of small computers to mix and match peripherals beyond those of the standard variety every manufacturer provides. Thus we can find music boards, modem boards, real-time clocks, and even hard disk memories which plug into the bus definitions of one or more of the widely used de facto standards.

Going on to the issue of software and its specifications,
Text continued on page 93

FINALLY, Apple II ${ }^{(0)}$ software for the discerning computerist, and the not-so-discerning beginner

AppleAids ${ }^{\text {™ }}$

Little Tricks ${ }^{\text {™ }}$

A series of carefully explained subroutines containing a potpourri of useful programming techniques in Integer Basic and Applesoft, such as specific key stroke identification. timing loops, disappearing question marks on input, no question marks on input, and many more.
Cassette (16K) 14.95 Disk (32K)
19.95

Scroll Control ${ }^{\text {™ }}$

Have you ever wondered why you cannot list an Integer Basic or Applesoft program one screen-page at a time? So have we, and we did something about it! Our machine language Scroll Control, hidden in RAM so as not to "bump" into your program, can be engaged or disengaged at a flick of the keyboard. Why be frustrated when instead you can control the scroll? Cassette 9.95 Disk...... 14.95

Compulaw ${ }^{n}$ Series

-Alitax Estimator' ${ }^{\text {rM }}$

This Applesoft program, prepared under the supervision of an attorney, estimates disposable income after alimony and child support payments and federal taxes. For use by laymen and attorneys. 1980 tables Cassette (24 K) 9.95 Disk (32 K)
14.95
*Pensionner ${ }^{\text {™ }}$
A companion to Alitax Estimator in Applesoft designed to calculate the present value of a pension in states in which a pension is subject to division in marital dissolution cases.
Cassette (24 K).
9.95 Disk (32K)

Form-li-Out ${ }^{\text {m }}$

A series of routines in Integer Basic and Applesoft containing detailed explanation and examples of programming techniques necessary to prolessionalize your screen output. Included are right and center justification, windowing, tabbing, cursor positioning among others.
Cassette (16K).......... 14.95 Disk (32K)
19.95

Track \& Sector List ${ }^{\text {T }}$

This is the ultimate disk utility. Instead of a catalog, have you ever seen those dreaded words "I/O ERROR"? Is all lost? NO! Now your disk may be saved. Also you can eliminate bad sectors, remove control characters imbedded in file names, change the disk volume number, and more. This machine language program is supplemented by extensive tutorial documentation worth its weight in gold. Disk only (32K) 24.95

Hex and Decimal Learning Tree ${ }^{\text {w }}$

My ABC's ${ }^{\text {TM }}$

An early learning Integer Basic program using over one hundred and fifty high resolution graphic letters and pictures in a drill-and-practice format designed to develop identification of capital and small letters, and association of letters with pictures. Scoring capability allows monitoring. Child tested and teacher recognized. Cassette (48K) 14.95 Disk 19.95
Now I Can Rhyme ${ }^{\text {TM }}$
A companion to My ABC's in Integer Basic. The child selects those high resolution pictures which rhyme. Score-keeping capability allows monitoring. Incorporates progressive levels of difficulty. Cassette (48K)....... 14.95 Disk (48K)
N.J. res. add 5\% sales tax Apple II and Applesoft are registered trademarks of Apple Computer, Inc. Add $\$ 1 /$ item, shipping and handling - professional, but not a substitute for legal advice
P.0. Box 774 M

Morristown, NJ 07960
(201) 539-3770

New from SSM.

80 Character Video

With 80 characters per line our VB3 is the perfect video interface for word processing. It proxiuces a standard 80x 24 display of upper and lower case characters or as much as 80×51 for a full page of text. The matrix for graphic display goes up to 16()르(). And with optional EPROM. as many as 256 user programmed characters or symlols can be produced.

VB3.3 is menory mapped for rapiel screen updating. But it occupies memory only when atetivated. So one or more VB3.3s cutn lee located at the same address with a full 65 K of mem(n) still araikable to the user.

It generates both U.S. and Eurnpean TV rates and meets the new IEEE S-10() standard. Oher features include keybandimput. hack on white or white on hlack. one level of grey. uncerline. strike thru. Wlinking charr. hank-oul chan:. and programmande cursor. Suftware inclucers a CP/M compatille driver and a powerful terminal simulater:
\IB.3 is atailable in several Culligurations. Retail prices starl ill S.Th hit, SH()assembled.

Z-80 CPU
We spent over a year designing the CB2 to assure that it will be the most fully S-100 compatible Z-80 CPU on the market.

It operates at 2 MHZ or 4 MHZ by DIP switch selection and includes two sockets for 2716/2732 EPROMs or TMS 4016 2K RAMs. Memory sockets can be disabled. Separate run/stop and single step switches allow system evaluation without. the benefit of a front panel.

CB2 also features an MWRITE signal. firmware vector jump, and an output port to control 8 extended address lines fallowing use of more than 6 K K of memory Jumper uptions generate the new IEEF: $S-10(0)$ signals to insure fut ure S-100) compatibibity.

Retail price- $521($) kit. S275. assembled.

Our line CPL. Viders. 1 (), R.A.M. EPROM. EPROM Progralumer. Music. Prototyping. Terminator. Extender and Mosher lwards. Available assembled.r as kits.

Microcomputing comes of age.

Ohio Scientific's OS-65U Level 3 operating system software brings new networking and distributed processing capabilities to microprocessor based computer systems.

Until now, the only alternative for low cost multiple-user computer applications was time-shared systems. However, a serious drawback of microcomputer or minicomputer multi-user time-share systems is the fact that under heavy work loads they slow down to a crawl since the central processor time in such a system is shared by all of the users.
In a microprocessor based distributed processing system, using floppy based microcomputers as intelligent terminals (local systems) most of the work load is handled locally. Overall system performance does not degrade under heavy job loads. Each local system performs entry, editing and execution while utilizing the central data base for disk storage, printer output, and other shared resources.
For more demanding applications it is desirable to have several data bases, each with its own collection of local systems. Such an inter-connected set of data bases is called a network.
Each data base and its local intelligent and dumb terminals is called a cluster.

Level III

OS-65U Level 3 now supports this advanced networking and distributed processing capability as well as conventional single user operation and time-sharing. Level 3 now supports local clusters of intelligent microcomputer systems as well as
dumb terminals for the purpose of utilizing a central Winchester disk data base and other shared resources. The system also has full communications capability with other Level 3 data bases providing full network capability. The system utilizes Ohio Scientific's low cost, ultra high performance computer systems throughout for intelligent terminals as well as data bases. This general systems configuration provides a cost/performance ratio never before attained in this class of computer power.
Level 3 resides in each network data base. A subset system resides in each intelligent terminal. Each data base supports up to 16 intelligent systems and up to 16 dumb terminals. However, since dumb terminals can heavily load the system, they should be kept to a minimum. Level 3 also supports a real time clock, printer management, and other shared peripherals.

Data Base Requirements

Minimal requirements for a Level 3 network data base are a C3-C or C3-B computer system with 23 or 74 megabytes respectively, console terminal, 100 K bytes RAM and a CA. 10X 16 port I/O board for network and cluster communications.

Intelligent Terminal Requirements

Any Ohio Scientific 8" floppy based computer with 56 K RAM and one data base communications port.

Connections

Intelligent terminals and networked data bases are connected by low-cost cabling. Each link can be up to 10,000 feet long at a transfer rate of 500 K bits per second, and will cost typically 30¢ a foot (plus installation).

Syntax

Existing OS-65U based software can be directly installed on the network with only one statement change! Level 3 has the most elegantly simple programming syntax ever offered on a computer network.
File syntax is as follows:
DEV A.B.C.D. Local Floppies unchanged from $\begin{array}{ll}\text { DEVE } & \text { Local hard disks } \\ \text { DEV K-2 } & \text { Speclicic network }\end{array}$ Data Bases
Each of up to 8 open files per user can be from 8 separate origins. Specific file and shared peripheral contentions are handled by 256 network semaphores
with the syntax Waite N
Waite N, close.

The network automatically prioritizes multiple resource requests and each user can specify a time out on resource requests. Semaphores are automatically reset on errors and program completion providing the system with a high degree of automatic recovery.

A Typical System

A typical system with two network data bases will have 148 megabytes of disk, four intelligent subsystems equipped with dual floppies, two dumb terminals, a word processing printer, a fast line printer, network data base manager software and 1000 ft . of interconnecting cable. Utlizing . 7 MIPS processors throughout it will cost less than $\$ 50,000$ plus installation. GT option computers (1.2 MIPS) can be utilized at a slightly higher cost.

One Step at a Time

Best of all, Ohio Scientific users can develop distributed processing systems economically one step at a time. A user can start with a single user floppy system, add a hard disk, then time-sharing, then a second Winchester data base for backup and finally cluster intelligent terminals to achieve a full network configuration.
For literature and the name of your local dealer, CALL 1-800-321-6850 TOLL FREE.
(1) P- FITMF

1333 SOUTH CHILLICOTHE ROAD AURORA, OH 44202 • [216]562-3101

The Microcomputers you should take seriously.

The Challenger III Series is the microcomputer family with the hardware features, high level software and application programs that serious users in business and industry demand from a computer system, no matter what its size.

Since its introduction in August, 1977. the Challenger III has become one of the most successful microcomputer systems in small business, educational and industrial development applications. Tens of thousands of Challenger III's have been delivered and today hundreds of demonstrator units are set up at systems dealers around the country.

The Challenger III systems offer features which make their performance comparable with today's most powerful mini-based systems. Some of these features are:

Three processors today, more tomorrow.

The Challenger 111 Series is the only computer system with the three most popular processors - the 6502A, 68B00 and $Z \cdot 80$. This allows you to take maximum advantage of the Ohio Scientific software library and programs offered by independent suppliers and publishers. And all Challenger III's have provisions for the next generation of 16 bit micros via their 16 bit data BUS, 20 address bits, and unused processor select codes. This means you'll be able to plug a CPU expander card with two or more 16 bit micros right in to your existing Challenger III computer.

Systems Software for three processors.

Five DOS options including development, end user, and virtual data file single user systems, real time, time share, and networkable multi-user systems.

The three most popular computer languages including three types of BASIC plus FORTRAN and COBOL with more
languages available from independent suppliers. And, of course, complete assembler, editor, debugger and run time packages for each of the system's microprocessors.

Applications Software for Small Business Users.

Ready made factory supported small business software including Accounts Receivable. Payables, Cash Receipts, Disbursements, General Ledger, Balance Sheet, P \& L Statements, Payroll, Personnel Files, Inventory and Order Entry as stand alone packages or integrated systems. A complete word processor system with full editing and output formatting including justification, proportional spacing and hyphenation.

OS-DMS, the software star.

Ohio Scientific offers an Information Management system which provides end user intelligence far beyond what you would expect from even the most powerful mini-systems. Basically, it

allows end users to store any collection of information under a Data Base Manager and then instantly obtain information, lists, reports, statistical analysis and even answers to conventional "English'" questions pertinent to information in the Data Base OS.DMS allows many applications to be computerized without any programming!

The "GT" option yields submicrosecond microcomputing.

Ohio Scientific offers the 6502C microprocessor with 150 nanosecond main memory as the GT option on all Challenger III Series products. The system performs an average of 1.5 million instructions per second executing typical end user applications software (and that's a mix of 8,16 and 24 bit instructions!).

Mini-system Expansion Ability.

Challenger III systems offer the greatest expansion capability in the microcomputer industry, including a full line of over 40 expansion accessories.

Networking and Distributed Processing

OS-65U level 3 now provides networking capabilities as well as time sharing ability allowing Challenger III based systems to be expanded to meet the most demanding business applications.

Prices you have to take seriously.

The Challenger III systems have phenomenal performance-to-cost ratios. The C3-S1 with 48 K static RAM, dual $8^{\prime \prime}$ floppies, RS. 232 port, BASIC and DOS has a suggested retail price of under $\$ 4000.80$ megabyte disk based systems start at under $\$ 13,000$. Our OS.CP/M software package with BASIC, FORTRAN and COBOL is only $\$ 600$, and other options are comparably priced.

For literature and the name of your local dealer, CALL 1-800-321-6850 TOLL FREE.

Circle 7 on inquiry card.
C3. B wins Award of Merit at WESCON ${ }^{\prime} 78$ as the outslanding microcomputer application for Small Business.

Letiers

Tic Tac Rebuttal

In his letter to BYTE (October 1979. page 175), Mr Miller raises some interesting points. However, his comments about my Tic-Tac-Toe program (BYTE May 1979, page 196) do require further examination.

Apparently, aesthetics in programming is in the eye of the beholder; Mr Miller found my table-lookup method unappealing. It is more aesthetically pleasing to me to compute a move only once, then use it, rather than to recompute the same move each time it is used, Since a Tic-Tac-Toe game is readily represented as a decision tree, I felt that a table-lookup algorithm was the most natural implementation, and regretted the necessity of using more clumsy methods for the special cases.
A further advantage of a table-lookup method is its modularity; one movelogic block may be readily changed
without affecting other parts. You may recall that there was a logic bug in the published program (see "BYTE's Bugs," August 1979, page 194). This was easily corrected by changing only five numbers in the data table.

The concept is similar to that of a chess program; the better ones use a table-lookup for the early moves of the game, before things get too complicated.

As for taking advantage of the microprocessor's capabilities, it is more natural for it to increment an address to find a prestored number than to compute; its built-in computing power is limited to addition. More complicated computing must be done by "brute force and awkwardness" in the machinelanguage programming of the BASIC interpreter.

Mr Miller did not like for the computer to always move first. As I stated in the article, I wanted the computer to play an aggressive game. It is readily
apparent that the computer cannot play an aggressive game if the user moves first; it can then play only a defensive game, and wait for the user to blunder. Actually, I do have a user-first Tic-TacToe program that uses a similar tablelookup method of play. While it plays the best possible game within the limits of a user-first game, it is still "curiously limited" and I felt that its inclusion would detract from the performance of the published program.
To play a rational Tic-Tac-Toe game, it is necessary but not sufficient for the program to be unbeatable. A rational program must not just respond to the current situation, but it must be goaloriented. To set a "trap" requires three moves in the proper sequence. This planning ahead is readily done with a table-lookup method, but I suspect that it would be difficult to do by following Mr Miller's proposed system.

I suggest that Mr Miller submit a Tic-Tac-Toe program based upon his 9-step strategy. It is much more meaningful to compare the performance of working programs than to compare a working program with a theoretical one.

Delmer D Hinrichs
2116 S E 377th Ave
Washougal WA 98671

UNIX-type File Available

We applaud Jim Howell's plea ("Operating Systems: Let's Have Some UNIX-Inspired Software," September 1979 BYTE, page 82) for more sophisticated system software on microcomputers.
We would like to point out that UNIX-style file systems are, however, available already for microprocessors (at least the 6800s) in our SDOS product.

The SDOS file system supports files which may be randomly addressed to the byte; as many bytes as desired may be read or written in a single system call. Sector sizes of the disk hardware underlying the file system are completely invisible to the application program. Disks with different capacities and sector sizes can even be mixed on the same system. Regular I/O devices such as terminals and printers are treated identically, with the result being that applications object programs move unchanged from one SDOS hardware configuration to another.

The Honor Graduate

There's been a lot of talk lately about intelligent terminals with small systems capability. And, it's always the same. The systems which make the grade in performance usually flunk the test in price. At least that was the case until the SuperBrain graduated with the highest PPR (Price/Performance Ratio) in the history of the industry.

For less than $\$ 3,000^{*}$, SuperBrain users get exceptional performance for just a fraction of what they'd expect to pay. Standard features include: two dual-density mini-floppies with 320 K bytes of disk storage, up to 64 K of RAM to handle even the most sophisticated programs, a CP/M Disk Operating System with a high-powered text editor, as-
sembler and debugger. And, with SuperBrain's S-100 bus adapter, you can even add a 10 megabyte disk!
More than an intelligent terminal, the SuperBrain outperforms many other systems costing three to five times as much. Endowed with a hefty amount of available software (BASIC, FORTRAN, COBOL), the SuperBrain is ready to take on your toughest assignment. You name it! General Ledger, Accounts Receivable, Payroll, Inventory or Word Processing . . . the SuperBrain handles all of them with ease.

Your operators will praise the SuperBrain's good looks. A full ASCII keyboard with a numeric keypad and function keys. A non-glare, dynamically focused, twelve inch screen. All in an attractive desktop unit weighing less than a standard
office typewriter. Sophisticated users will acclaim SuperBrain's twin Z-80 processors which transfer data to the screen at 38 kilobaud! Interfacing a printer or modem is no problem using SuperBrain's RS232C communications port. But best of all, you won't need a PhD in computer repair to maintain the SuperBrain. Its single board design makes servicing a snap!

So don't be fooled by all the freshman students in the small systems business. Insist on this year's honor graduate . . . the SuperBrain.

2300 Broad River Road, Columbia, SC 29210 (803) 798-9100 TWX: 810-666-2115

Also, like UNIX, SDOS is completely interrupt-driven.
SDOS currently runs on seven manufacturers' systems, handling over ten different types of drives, including floppy, Winchester, and 10 M byte cartridge drives.

We point out the obvious disadvantages of systems such as FLEX and CP / M; they are tied (and thus tie the application) irrevocably to the floppy disk hardware to which they were originally attached. Further, file I/O under these systems requires a lot of knowledge (ie: code) in the application to perform random access.
Yes, the industry does generally need more sophisticated system software.

Ira D Baxter

Software Dynamics
2111 W Crescent, Suite G
Anaheim CA 92801

A Stitch in Time?

Karen Wolfe's article in October BYTE "Power Helps Analyze Electric Bills," (page 48) led me to analyze Karen's sewing power. With the assistance of a sewing machine and a pocket calculator, neither of them programmable, I reached
the following conclusions: For 100 hours running time on the sewing machine she probably spends close to eight hours a day sewing, including cutting, pinning, etc.

In a month Karen sews about 21 miles - that's 25,000 double seams the full length of the kid's jeans. 50 miles of thread speed through denim. Enough to weave 400 square feet of new cloth.

If Karen is ahead of the game and is in fact getting her stitches in in time, she is saving 189 miles of sewing each month. If she is not in time, she is wasting 18.9 miles of stitches, 45 miles of thread, and $\$ 1.38$ of electricity.

Ken Bramham

apt 160, 15 rue Leon Bloy
92260 Fontenay-aux-Roses
FRANCE

Willard Irwin Nico 1928-1979

Personal computing pioneer and author Bill Nico passed away recently in Houston, Texas. Bill died of cancer July 2, 1979 at the age of 50 .

Bill Nico is perhaps most widely known for his writing. He wrote several articles for BYTE ("Shooting Stars,"

ANOTHER FIRST FROM MOUNTAIN HARDWARE. SUPFRAMTMR.

FOR YOUR APPLE
SuperTalker is a peripheral system which permits the output of exceptionally high quality human speech through a loudspeaker under program control. Initially, words, sentences or phrases are digitized into RAM memory through a microphone. Speech data in RAM may be then manipulated like any other data. The system consists of a peripheral card, microphone, loudspeaker, and operating software. \$279 assembled and tested.

May 1976; "Sys 812,", January 1977; "Sweet Auto Line," February 1977) and was author of Heath Company's best selling, self-instructional courses BASIC Programming and Assembly Language Programming. One of Bill's personal friends was Robert Tinney, artist for many BYTE covers. Robert drew Bill on the December 1977 cover.

Not so well known is the fact that Bill Nico was one of the first real computer hobbyists in the US. Bill's homebrew 8080 computer built in 1974 had to be one of the first in the country.
Bill was also one of the best BASIC and 8080 programmers around. He could get more out of his disk-based IMSAI than anyone. He could write systems software and languages, but felt just at home with a small business package or a real-time industrial control program.

Bill was also pretty good at hardware. He was a professional logic designer and did a fair amount of consulting in this field. His home was perhaps one of the most fully automated in existence. It was a virtual electronic showplace. Bill was also an active amateur radio operator (W5PRZ).
It was only in recent years that Bill discovered his talent for teaching. Bill taught frequently in Heath's computer classes. His great empathy and personal awareness made him a gem of a teacher. His practical nature and down-to-earth approach made him the favorite of every student. It was hard not to learn in his classes.

Bill Nico was born August 30, 1928 in Los Angeles. He graduated from Burbank High in 1946 and served in the Army from 1950 to 1953. His electronics training came from Pierce College in Los Angeles. Bill worked in a variety of electronic engineering and sales jobs in California and Texas from 1953 to 1969. He was manager of the Heathkit Electronic Center in Houston from its opening in 1969 until 1975 when he left to form his own company. From 1975 to 1979 he operated as a consultant and writer from his Houston-based firm, Delta-t.

Those of us who knew and worked with Bill will miss him greatly.

Lou Frenzel

1588 Oak Ter
St Joseph MI 49085

Marsport Forces Resurface

Mr Reiland made some comments about my "Marsport" article (April 1979, page 84) in his letter to BYTE (October 1979, page 209). While I appreciate his compliments, I do differ with him on

The easy way to learn about computers: BUILD ONE

Yes, you can do it. Heath makes it simple with easy-to-build kits and step-by-step assembly manuals that lead you from unpacking to final plug-in.
And once you build your own computer, you'll know it inside-out. You'll know how to make it work for you.
Software, designed especially for Heathkit Computers, includes innovative programs
for running your home or business, and exciting games your kids will enjoy.
The Heathkit User's Group (HUG), made up of owners of Heathkit Computers, will share with you a library of over 400 programs that they've written to make your computer serve you in ways you never imagined.
Heathkit Computers may be low-cost kits.

But they're not playthings. They're powerful, high-capacity computers designed for complex programming. You'll find complete systems - hardware, software, accessories - within the pages of the colorful, 104-page, Free Heathkit Catalog. And you'll find service any time you need it at 55 locations throughout the U.S. or at the Heathkit factory.

ED E E E CATALOC

For complete descriptions of Heathkit Computers and nearly 400 other electronic kits for your home, business or pleasure, send for the latest, free Heathkit Catalog. Or you can pick up your catalog at a nearby Heathkit Electronic Center.

If Coupon is missing write: Heath Co.,

Dept. 334-612, Benton Harbor, MI 49022

Heathkit Products are also sold and serviced at Heathkit Electronic Centers (units of Veritechnology Electronics Corporation) throughout the U.S. See your white pages. DEC is a registered trademark of Digital Equipment Corporation.

- - Heath Company,

Heathkif Dept. 334-612

Benton Harbor, MI 49022
[] YES Please send me my FREE Heathkit Catalog.
I am not currently receiving your catalogs.

Circle 11 on inquiry card.
one point: he objected to my statement about a circular orbit, "The attraction of gravity is exactly balanced by the centrifugal force at all times." All that I can say is, if this is "confusion," I am in good company. In the NASA book Space Mathematics (January 1972, page 119), two forces are defined:
where
$F_{1}=$ Centripetal force
$\mathrm{m}=$ Mass
$v=$ Velocity
$\mathrm{r}=$ Radius from center
$F_{2}=G M m / r^{2}$
where:
$F_{2}=$ Gravitational force
$G=$ Universal gravitational constant
$M \& m=$ Masses of the two bodies
$r=$ Radius between centers
They then say, 'The physical situation, if these two forces are equal, is represented in ... (a circular orbit)." (Emphasis added.) They further show how, by setting these two forces equal, one can solve algebraically for the circular orbit velocity. While their terminology is slightly different from mine, their meaning is obviously the same as I expressed.

One further point: Mr Reiland seemed
surprised that a three-dimensional landing simulation could be programmed on a programmable calculator. This program is far from the limit! I have since programmed a similar three-dimensional rendezvous simulation, that keeps track of two objects in their orbits simultaneously. In it, the spaceship is initially at rest on the surface of the primary, while a target satellite is in a random elliptical orbit. The user waits until the satellite is in the best position, lifts off, matches orbits with the satellite, and rendezvous with it. To try this more difficult exercise, send $\$ 1$ to cover my copying and postage costs for a 12 -page write-up and listing for the HP-67/97 (as submitted to the Hewlett-Packard Users' Library). Include two blank magnetic cards and I can record the program on them.

Delmer D Hinrichs
2116 S E 377th Ave
Washougal WA 98671

It Happened Again

It has happened again. Every time I

decide to let my BYTE subscription lapse because of the high price of the magazine, along comes an issue so jampacked with well-written, informative, readable articles, that I am forced to renew my subscription again. The most recent issue, the one on LISP (August 1979), just did it again.

The LISP articles simply covered almost everything one would want to know in an introduction, and did it well. In addition, there were excellent articles on more advanced subjects symbolic math systems and patterndirected languages being the prime cases to point to - for those who want to delve deeper, or who already knew LISP and its implications and implementations. All of these articles were wellwritten, tool

Amazing is the only word.

Dave Mellinger, LISP hacker
c/o Datek Inc
2336 Wilson Blvd
Arlington VA 22201

Elegant Input Recognizer

While working on a Star Trek program, I came across the problem of command mnemonics. I wanted the user to be able to type commands as alphabetic mnemonics, not numbers (for example, TRP for torpedo). Also, I wanted him or her to be able to type in the initial of the mnemonic, also for expediency.

However, I did not want the remaining letters to be arbitrary (having the computer recognize only the first letter would mean that THE PHASERS would work for TRP). It's not easy to memorize the mnemonics, so users could easily make mistakes in typing in commands, thereby moving two quadrants west when they wanted to fire the photon torpedo banks. I have seen this happen on many occasions. So, I did a little brainstorming, and came up with this:

IF LEFT\$('TRP',LEN(A\$)) $=\mathrm{A} \$$ THEN PRINT "TRP"
This works just as well for YES. This one-line comparison will allow " Y ," "YE," or "YES," but not "YEAH," "ALYESKA," or even "YESNO." I agree that it is really not necessary to put all that user-input protection in a computerassisted instruction (CAI) program, but if you want to use it, you can implement it very easily in any BASIC with LEFT\$ and LEN. It's also useful for other applications, such as my Star Trek problem.

[^0]
ALTOS COMPUTER SYSTEMS PROUDLY ANNOUNCES

SUn-5nta $4088000-6$

$\triangle \angle L O S$

FIRST

Double Density $Z 80$ Micio-Computer plus Twin 8." Floppies plus 14.5 Mb . Winchester Disk for under $\$ 9,5,00 \mathrm{l}$ And morel 4 User CcRMM for under $\$ 12,0001$

ALTO'S COMPUTER SYSTEMS, LEADER IN SANGLEBQARD TECHNOLQGY DQES IT ÁĢAIN WITH ITS SINGLEBOARD ACS\$000-6. TOTAL BB'LSNESS COMPUTER

HIGH TECHNOLOGY ACAIN

The new ACS8000-6 single board computer 15 packed with ultra-high technology: 280 double-density computer up to 208 Kb of high speed RAM, Floppy-disk and Wipchester Hard Disk controllers, DMA, up to 6 serial/2 Parallel I/O, optional 32 bit floating point processor All on One Board, fully socketed, fully documented rellable and maintainable.
ADVANCED MULTI-USER SOFTWARE Our new ALTOS Multi-User Executive (AMEX) supports four independent CP/M compatible programs in ảny of six languages: Basic, Fortran, Cobol, Pascal, APL, C. and a wealth of complete business application packages.

WINCHESTER-MASS. STORAGE

We're rstaying with Shugartitorboth fiopples aind Winchester hand cilsk. Why? simple, low price, solld rellability and theyire out -next doo'r helghbor. Our single board computer supporis typ'to; 4, Mbyte'squflopplés and 58 Mbytes of Winchester nhining underwAMEX.

DLEOS
COMPUTER SYSTEMS 2338-A Walsh Avenue Santa Clara, Ca. 95050

MINI PERFORMANCE FOR $1 / 2$ COST Prices you mill love fintry level ACS8000-6 Hard Disk System $\$ 9,450$ 2 - - sets $10,670,4$ users $\$ 11,960$. AMEX -sipparate at $\$ 250$.
AVAILABLE NOW Birclay? ornfinquiry caid Call for your nearest Alios dealer. (408), 244-5766: Telex. 171562 ALTOS SNTA.

Making Color Slides with an Intecolor Microcomputer

Photo 1: Two examples of computergenerated slides containing color text material.
lenses or close focusing attachments are essential.
The computer allows images to be formed on a high-resolution screen offering eighty characters per line and either forty-eight lines of small letters or twenty-four lines of double-height
letters. Lines, bar graphs, vector graphics, and simple drawings can also be constructed. The color for the background and for the foreground (the character or line) can be separately selected from the eight available colors.

Software

A program called Menu is used to:

- prepare a new floppy disk for saving images,
- prepare images,

Abstract

About the Author Dr Grogono is an Associate Professor of Anesthesiology at the State University of New York, Upstate Medical Center, in Syracuse New York. He trained in London, England. and emigrated to the United States in 1974. He uses microcomputers with graphics for teaching. for recreation, and as described in the accompanying article, for color slide making. He has written many scientific papers in his specialty, anesthesiology. and is anthor andior editor of several books. He is an active member of the American Heart Association and directs the Advanced Cardiac Life-Support Instructor's Course in Syracuse NY. For the New York Stute Society of Allesthesiologists anmual meeting in New York, he runs the panel "Research by New investigators." He is also " member of the lcarus high-speed hydrofoil suiling project which set a B-Class. World Sailing speed record in Weymouth. England, in 1970.

"Our reputation rests on digits, decimal points, and details. We wouldn't trust them to anything less than Scotch Brand Data Cartridges."

Bill Birkett, Vice President, Trade Graphics, Inc., Livonia, Michigan

The unique design of a data cartridge provides great reliability, high storage capacity and long tape life. And where could you possibly get better data cartridges than Scotch Brand, made by 3 M , the people who invented the data cartridge system itself?
3 M controls every step in manufacturing. Top quality magnetic tape and precision components are part of every Scotch Data Cartridge. Over twenty-five years of service to the computer industry assure you of the utmost reliability.
Scotch Data Cartridges are available in miniature DC 100A, the standard-size DC 300A and now, an extra-length DC 300XL with 50% more storage capacity. They are compatible with most cartridge systems including Hewlett-Packard, IBM, NCR, Tektronix and TI.
To find out where you can find Scotch Data Cartridges or virtually any other data recording medium, call toll-free: 800-328-1300. (In Minnesota, call collect: 612-736-9625.) Ask for the Data Recording Products Division.
If it's worth remembering, it's worth Scotch
Data Recording Products.

- transfer the contents of the display memory onto the floppy disk

The program also places the computer into a suitable mode. The scroll mode is replaced by the page mode, and the screen image is made to correspond with the appropriate memory locations.

Image Preparation

Simple word slides are best prepared in CRT mode (a mode which allows direct user interaction with the graphics display). The keyboard allows letters to be positioned anywhere on the screen. Colored text, borders, and backgrounds are used for effect. Considerable rearrangement and adjustment is possible using the delete and insert keys for characters and lines. When the image is complete, the disk is inserted and the AUTO key is pressed to run the storage program. The image is automatically transferred to the disk to be photographed later. Examples of text slides prepared in this way are shown in photos 1a and 1 b .

More complicated slides may be produced by employing a program to prepare the display (eg: to generate a graph or a histogram). Examples of slides prepared in this way are shown in photos 2 a and 2 b . When such a program is being written, it is important to remember that the process of transferring the image to disk uses a BASIC program that will replace the preparation program in memory

Color Selection

Color slides are usually most successful when the image or letters are brighter than the background. With the bright foreground image, any spreading due to light-scatter on the cathode-ray tube, the film or the projection screen tends to enlarge a line or a character instead of extinguishing it. Therefore, of the sixtyfour color combinations available, only about twenty are useful for slides.

If the alignment of the red, blue, and green electron beams in the cathode-ray tube is imperfect, the focus of the screen image may suffer. This problem may be minimized by judicious choice of foreground color. In such cases, use a color scheme in which the image is formed by turning only a single beam on and off as it

$2 b$

Photo 2: Two examples of computer-generated slides containing colored graphic material.
sweeps across the tube. For example, with white text on a magenta background, only the green electron beam is modulated, and a good image can be obtained even if the beam alignment is poor.

Photography

The images are recalled for photography using the same program. The program recalls the images one by one. Photographs must be made in ambient darkness to avoid unwanted reflections. Certain colors
tend to require more exposure than others (eg: red and blue on black backgrounds).

Color film does not always reproduce television images perfectly. Red, in particular, may appear somewhat brown. A Kodak CC40R filter is supposed to correct this, but the exposure time required is doubled. I have prepared slides with and without the filter. I currently use Kodak Ektachrome 64 (ER-135) with no filter. The films, filters, and exposures I used are shown in table 1.

A word of warning about returning

The Paper Tiger sets a new stan- Plus lots more. For a free dard for low-cost impact printers. brochure, print sample, or the

More capability. More versatility.

- Eight software-selectable character sizes.
- 80 and 132 column formats.
- Full forms control.

DotPlot ${ }^{\text {TM }}$ graphics option.

- Connects directly to Apple II TRS-80, and other personal computers.
name of the Paper Tiger dealer nearest you, write or cail. Integral Data Systems, 14 Tech Circle, Natick, Massachusetts 01760.
Call toll-free 800-343-6412.
In Massachnuselts. Aleske, and Hawail call (617) 237.7610.

Clicle 14 on inquiry card.

Aperture f 3.5

Film	Speed (ASA)	Filter	Exposure Seconds'
Kodak	64	None	0.5
Ektachrome ER 135			
Kodak Ektachrome ER 135	64	CC40R	1
Kodak Kodachrome KM 135	25	None	1
Kodak Kodachrome KM 135	25	CC40R	2

Table 1: Exposures and films used to photograph displays on the Intecolor microcomputer.
films to the manufacturer for developing and mounting: if slides have a black background, an automatic film cutter may be unable to recognize the frame boundaries. Several films have been returned irreparably damaged, sometimes with half of a slide in one mount and the other half in the next mount. The use of colored back-
grounds is recommended for visual pleasure as well as preservation of your work. If you are in doubt, it is probably wise to ask for your film to be returned uncut.

Discussion

Slide preparation using a small computer and color-transparency film has a number of advantages; several colors can be used on a single slide, the photography is simplified, and the color slides are more durable. In addition, when the computer is suitably located, the drafting and checking are more convenient and may even be reduced to a single step. I now find it easy to design a slide at the keyboard. Decisions about spacing, positioning, and color can be made, revised, and implemented as the image is being prepared. This has reduced the first five steps to two, namely drafting the image and saving it on disk. The photographic process is reduced to making the exposures, developing the film, and mounting the slides - a considerable saving in steps and labor.

TRS-80/NORTH STAR SOFTWARE

By J. Roehrig as seen in Byte, Kilobaud and Personal Computing Magazines

1. Chess - written in Basic. Beats Microchess.
2. Scrabble - makes your computer a Scrabble opponent.
3. Baseball - based on Major League results, keeps all statistics. Players periom true to lite. Seen in July 1978 Personal Computing and November 1979 Byle.
4. Bowling Secretary - keeps all necessary statistics. Seen in June 1978 Kibbaud.
5. Taxes - all new tax rates. Long form, short form, Schedules A, B, C and Income Averaging. Seen in March 1978 Personal Computing
6. Accounting - double entry system produces Joumal Entry Log. Balance Sheet and Income Statement.
7. Basketball - just like Baseball. Cover article from January 1979 Personal Computing.
8. Horse Racing - improved version of December and January 1980 Byle article. Graphics, horses run true to form, past pertormances maintained. Realistic win, place and show payoffs.
9. Trotters - same as above but for Trotters.
10. Handicapper - a systematic way to evaluate wagers at the Track or OTB.
11. Games - 3D TIC TAC TOE as in April 1978 Kilobaud, Boxing as in January 1978 Personal Computing and Football as in February 1978 Personal Computing.
12. Backgammon - a challenging opponent who uses the doubling cube. Very graphic.

NEW NEW NEW - TRS-80 Graphic Skill Games for 2 players or 1 against the computer 13. Baseball 14. Boxing 15. Football 16. Golf 17. Bowling 18. Horse Racing

All programs have been improved; each has its own instruction booklet and sells for: Cassettes $\$ 7,6$ for $\$ 40,12$ for $\$ 75,18$ for $\$ 105$ Diskettes $\$ 10,6$ for $\$ 55,12$ for $\$ 100,18$ for $\$ 140$
SEND ORDERS TO:
or CALL C.O.D.'s TO: (516) 643-1931 (C.O.D.'s shipped within 48 hours)

The quality of slides produced in this way is very pleasing. Audience members inquire how the slides are made and express appreciation of the color and the technique. Distortion is negligible, and the quality of curved and oblique graph lines is adequate for lecture slides (for the graphs the resolution is 1 in 160 on the X axis and 1 in 192 on the Y axis).

The cost of making slides is hard to evaluate. The lecturer's time and the time spent fetching, carrying, and checking are often assumed by the organization. However, even those costs that remain are significant. Between $\$ 6$ and $\$ 10$ is probably the minimum cost of laying out the simplest text and preparing a diazo slide. Slides for a one-hour lecture may cost approximately $\$ 500$.
Preparing slides on the computer simplifies the photographic process. This alone represents a saving of about $\$ 2$ per slide. The time spent designing the slide and arranging the layout can be reduced as well. However, any time spent employing the additional choices of colors and layouts may offset this potential savings to some extent. The disks used for storing the images cost $\$ 5$, or about 50 cents per slide. However, the disks are reusable and should therefore not represent an appreciable cost per presentation.
The greatest savings would be realized by those illustration departments that are frequently expected to prepare histograms, regression graphs, scatter diagrams and graphs of functions. A few appropriate programs would allow numerical data or mathematical functions to be directly converted to color images. A final advantage is that Ektachrome processing is commonly available commercially on a same-day basis. Slides can be prepared, photographed and reviewed in twenty-four hours.

The computing equipment described in this article costs about $\$ 6000$. Any illustration department handling much slide preparation, particularly that involving slides of graphs, should find it worthwhile to review the type of material they handle and its cost. The Intecolor computer has now been used to prepare hundreds of slides. A similar program will also work on the Compucolor II with only slight sacrifice in definition, resolution, and color rendition.

EDICERT:IDBOUI WHCHESHERBMETUP

Corvus has the answer:

Corvus-the company that brought Whahester technology to the microcomputer-is now delivering the solution to backup for less than $\$ 1500$.

I's called the Corvus MIRROR ${ }^{\text {a }}$, a backup employing lowcost removable media with a total capacity of up to 100 million bytes each. In approximately ten minutes, you can transfer an entire ten million byte disk without operator Intervention.

Corvus is the company that glves you a complete systems solution to the mass storage needs of microcomputers. Our syatems have fully compatible hardware and sofiware for the Applet (including Apple Pascal), S-100 Bus, TRS-80 \ddagger, and now the LSh-11 and ALTOS computers. We utllpe proven Winchester technology with IMl-7710 drives. Up to four elght-Inch disks can be used with our Z-80 based controller.

Interested In our new removable-media backup or our pace setting Winchester systems? Both are available now. Call or write for full information.

CORVUS SYSTEMS, Inc.

One of the best values
 computers is now

 includes H 8 Computer with 16 K memory, four-port serial 1/O and operating software, plus H17 Floppy Disk System (shown here with optional second drive) and H19 CRT Terminal - all in kit form.

Tealhlat 18 Compuler

- 8080A CPU has more software written for it than any other CPU
- 7 plug-in board positions for flexibility in configuring your system
- Up to 65 K memory capacity
- Front panel keyboard for direct access to registers and memory
\$289 kit purchased separately. Was $\$ 379$. You save $\$ 90$.
$\$ 349.00$ assembled

Heantiv [17 Foppy
Disk System

- Instant access to programs and data
- 100 K bytes storage area
- 250 ms typical random access time
- Includes interface controller board
$\$ 495.00$ kit purchased separately $\$ 550.00$ assembled

Featian By Promak
viden iermingi

- Z80 microprocessor-controlled
- 25×80, upper and lower case
- Direct cursor addressing
- 8-user-function keys
$\$ 675.00$ kit purchased separately $\$ 995$ assembled
5% diseomil on kod ware, memory and linterfacin!
Special 5\% discount applies to all software, memory and interface
boards when purchased with the H8 system.
Seven plug-in board positions on the H8 let you configure any combination of memory and I/O's that suits you. Heathkit memory boards come in $16 \mathrm{~K}, 8 \mathrm{~K}$ and 4 K increments. Interface boards are available for parallel, serial and cassette I/O's.

Whrote seleution of suthuafe
No computer system is better than the software that supports it. The wide selection of H 8 software includes operating systems software and MICROSOFT" BASIC.

HUC has over 40 grosu me
An extensive library of programs is available to owners of Heathkit Com-

puters through the Heath User's Group (HUG). The experience of this computerite group can help you get the most from your computer.

Plus Heathkit cielice

You get the most thorough documentation ever written when you buy your Heathkit Computer. So it's easy to get your system assembled and operating quickly.
And you get one of the most reliable service organizations after you buy. More than 55 service locations throughout the U.S., plus a factory service phone give you fast access to experts when you need them.

It's all at your heathht
 Flectronic Genter

Computers, peripherals, software and accessories - in kit or assembled form - you'll find them all at your Heathkit Electronic Center. You'll even find educational support like
the special self-instruction programs that teach you BASIC and Assembly language programming.

Gieak tie whice periss in the dity yearast rim for whe hockiton of youn Heathin Electronim ectilazg

Alexandria, VA Anahelm, CA

Atlanta, GA
Ballimore, MD Boston, MA Buffalo, NY Chicago, IL Cincinnali, OH Cleveland, OH Columbus, OH Dallas, TX Denver, Co Detroil, MI El Cerrito, CA Fair Lawn, NJ Frazer, PA Hartiord, CT Hartiord, CT
Houston, IX Indianapolts, IN Jericho, NY Kansar City, KS Los Angeles, CA Loulsville, KY Mlami, Fí Milwaukee, W Milwaukee, WI
Minneapolis, MN

FRTE CATAIOG

Write for a FREE Heathkle Catalog containing the complete Ilne of Heathklt Computers, plus nearly 400 other electronic kits for your home, work or pleasure.
 Heath Company, Dept. 334614 Benton Harbor, Mich. 49022

Giapcias Bipcuit Gellap

Copyright © 1980 by Steven A Clarcia. All rights reserved.

Computerize a Home

Steve Ciarcia
POB 582
Glastonbury CT 06033

I anxiously glanced around the Circuit Cellar. Devoid of the usual sounds of the stereo or television, the equipment fans imparted a distinctly uneasy sensation of mechanical presence.

The room was totally dark except for a few pilot lights and a video display. There were no games, no fast-moving program listings; only a single line was written on the screen. In the dim luminescence I could barely distinguish the furniture from the bookcases. A little experience navigating in the dark would have been useful, but I opted for modern technology and reassuringly patted the flashlight in my pocket.

I pushed the button on my digital watch and noted the time. As it neared the prearranged hour, I turned instinctively to the terminal. Soon I'd know which of us was in control!

Almost immediately the display changed and printed out "AUTOMATIC CONTROL INITIATED." Simultaneously I could hear a highpitched noise. It sounded almost like an insect chirp. There are no crickets down here; it must be a subharmonic. So far so good, but did it work?
"Steve, did you just blow a fuse?" My wife stood in the doorway and called down the stairs. It didn't bother her that there weren't any lights on. After all, if you blow a fuse, shouldn't the lights be off?
"The kitchen light went off and the
bedroom light came on. Wait! The bedroom light just went off and the kitchen light came back on. Now they're both off."
I grinned in a way that only a Cheshire cat could appreciate "Sorry, Joyce, just experimenting on the latest article." Chuckling softly, I continued. "I hope you don't mind, but the computer seems to have taken over."
"Can it make beds?" she replied.
I should have known that she wouldn't be taken in that easily. "OK, I'll tell the computer to keep its sphere of influence to the cellar. I'll let you know what the password is later."

As if by magic, the Circuit Cellar lights were activated. The test was successful.

Security Versus Control

Even though it may seem true at times, our house has not been taken over by a computer. I was simply testing the latest addition to my home control system.

In previous issues of BYTE, I presented a series of articles on the construction of a home security system. (See "Build a Computer Controlled Security System for your Home": Part 1, January 1979 BYTE, page 56; Part 2, February 1979 BYTE, page 162; Part 3, March 1979 BYTE, page 150.) This was not a theoretical dissertation. It was, in fact, an over-
view of the system installed in my house. The original concept was configured around a single-board 8085 system and designed primarily as an alarm controller. Even though it works, it has definite limitations.

Eventually I became dissatisfied with just having a super burglar alarm. It seemed a shame to dedicate all that hardware and expense to a function with such a limited capacity. The obvious step was to expand the concept to be a "home control" system where security is but one of many possible applications. To do this requires more memory; the single board has been replaced by a 26 K byte Z80-based computer with a video display. Operating in either high-level or assembly language, it is as adept at keeping the checking account straight as it is at scanning input ports searching for an intruder. Add to it the ability to activate and communicate with my large diskbased development system, and it is indeed a powerful tool.
The major difference between the two system concepts is the output control structure. As an alarm, the computer is strictly configured to scan and analyze a multitude of event inputs, such as door switches and motion sensors. Its decision process is immediate, but its output control is relatively limited. These generally consist of several lights, a siren, and an automatic phone dialer. Even in

Get

The best is now even better...

New Features
 New Commands New Capabilities New Manual

Features

Editor:

- Interactive editing with Dynamic Screen Imaging
- Direct insert with word wrap
- Extensive disk handling: DIR, ERASE, disk change, etc.
- Insert/Delete/Move
- Step by Character, Word, Line, Paragraph, Page, Screen
- 26 Temporary buffers
- Find/Replace with conditional test

Formatter:

- Fully integrated with Editor
- On-screen Preview
- Extended Page, Margin and Indent control
- Hyphenation
- Super- and Sub-scripting
- Operator prompts and input
- Center, underline, bold face, red print
- Type face control, height, pitch,
- Header/footer lines
- Page number control

Photo 1: BSR X-10 system as marketed by Sears and called the Sears Home Control System.

Photo 2: The internal electronics of the command-control console.
the sophisticated system I presented, these hardwired outputs were kept to a minimum to reduce costs.

Generalized home control extends computer control capability far beyond the few outputs of the original system. It is conceivable that all of the lights and AC outlets in the house could be affected. A few lights outside are barely enough. Lighting in the bedrooms, kitchen, and garage should be included, with the stereo and television thrown in for good
measure. If you live in a cold climate and use an automobile engine-block heater, why not turn it on automatically before you get up in the morning? Tired of searching around in the dark for the light switch? Let the door sensor from the alarm system trigger the lights as you walk into a room. How about some soft music ten minutes after you enter? The list is endless.
This expansion seems to be a contradiction considering my previous
concern over wiring costs. To accomplish this feat, either every AC outlet must be directly wired to the computer through relays as in the original system or the control capability must be added remotely to each light and appliance.

AC Remote Control

This latter suggestion is not as farfetched as it might seem. There have been many technological advances in the past year. One of the more significant achievements comes from BSR (USA) Ltd-specifically in the area of AC remote control. The BSR X-10 control system is shown in photo 1 . Clockwise from the center, the five components are: command console, appliance module, cordless controller, lamp module, and wallswitch module. With these units, lowcost AC control is a reality.

The BSR X-10, also marketed by Sears as the Sears Home Control System, operates through carrier current transmission from the command console to the receivers. When a button is pushed on the command console to activate a remote receiver, a coded signal is sent through the house wiring. Each receiver monitors these transmissions and responds only when its particular code is sent.
Figure 1 la is a block diagram of the $\$ 39$ command module and photo 2 shows its internal electronics. The heart of this, as well as the other system components, consists of custom large-scale integration (LSI) chips manufactured for BSR by General Instrument Corp. In normal operation the twenty-two-button keypad is continuously scanned. When a key is pressed, this designated function and a house code (previously set by a thumbwheel switch on the bottom of the command console) are combined into a single message. The digital message is directed to the transmitter section, where it modulates a 120 kHz carrier. The control signal appears on an oscilloscope as a series of pulse bursts. This is shown in photo 3.

There is a second method where the command console designates a control function and transmits a message. Each control console contains a ultrasonic receiver. In the picture this is the metallic cylindrical component with the two protruding pins and shielded cable soldered on them. The BSR X-10 system facilitates

MORECOLOR MORE SOUND MOREGRAFHICS CAPABILILSS,

Compare the built-in features of leading microcomputers with the Atari personal computers. And go ahead, compare apples and oranges. Their most expensive against our least expensive: the ATAR ${ }^{\circ} 400$ "
Start with graphics capabilities. The ATARI 400 offers 128 color variations. 16 colors in 8 luminance levels. Plus 29 keystroke graphics symbols and 8 graphics modes. All controlled from a full 57 key ASCII keyboard. With upper and lower case. And the system is FCC approved with a built-in RF modulator. That's just for openers.
Now, compare sound capabilities. Four separate sound channels and a
built-in speaker. With the optional audio/ digital recorder, you can add Atari's unique Talk \& TeachTEducational System cassettes.
Here's the clincher: Solid state (ROM) software. For home management, business and entertainment. Or just plug in an Atari 10K BASIC or Assembler language cartridge and the full power of the computer is in your hands.
Memory? 8 K expandable to 16 K . And that's just for the ATARI 400 at a suggested retail of only $\$ 549.99$.
The ATAR ${ }^{\circ} 800^{\circ}$ gives you all that and much more.
User-installable memory to 48K. A full-stroke keyboard.

With a high-speed serial I/O port that allows you to add a whole family of smart peripherals. Including up to four individually accessible disk drives. And a high speed dot-matrix impact printer. And, the Atari Program Recorder is included with the 800 system. Suggested retail price for the ATARI 800 (including recorder) is \$999.99.

Make your own comparison wherever personal computers are sold.
Or, send for a free chart that compares the built-in features of the ATARI 400 and 800 to other leading personal computers.

Photo 3: Oscilloscope picture of command-control console transmission on the AC line. (Photo courtesy of Mark Scheffler.)

Photo 4: Handheld cordless controller showing top and internal circuitry.
remote channel and function selection through a handheld ultrasonic transmitter. This unit is shown in photo 4 and diagrammed in figure 1c.

When a key is pressed, it is encoded and transmitted as a series of 40 kHz tone bursts. The command console, receiving this information through its ultrasonic receiver section, takes this data as if a button had been pushed on the command console. It then adds the house code and simultaneously transmits the command message over the house wiring.
The receiver part of the system is also quite sophisticated, considering that each receiver costs less than \$15. These receivers, shown in photos 5 and 6, can be placed virtually anywhere. An overhead light can be accommodated by replacing the standard on/off wall switch with a wallswitch module. An appliance such as a dehumidifier is controlled through an appliance module.

All receivers are basically the same. A block diagram of an appliance module is shown in figure 1b. The receiver section monitors the AC line waiting for a coded message corresponding to its unique house (A thru P) and unit device (1 of 16) code.

Figure 1: Block diagrams of the integral parts of the BSR X-10. The block diagram for the control console is given in figure 1a, the appliance module in figure $1 b$, and the remote control transmitter in figure 1c.

To turn on channel 10 , simply press " 10 " and then the " ON " button sequentially. When the appliance module activates, it sounds like a relay engaging. In actuality, BSR uses an inexpensive solenoid to operate a 15 A push-button Microswitch.

The lamp and wall-switch modules use a triac instead of this pseudorelay. Unlike the appliance module,
which only operates as an on/off switch, these units have the additional ability to automatically brighten or dim when the corresponding function buttons are pressed on the command console. Finally, all receivers can be locally activated without the command console. To turn on a light or motor, simply flip the power switch from on to off and

"onComputing reallymakes "onComputi personal computers easy to understand."

 Written in non-technical language, onComputing ${ }^{T M}$ contains articles on the capabilities of microcomputers, getting started, latest reviews of personal computers, where to purchase and how to use your computer.

$\boldsymbol{A}_{\text {nyone can learn the funda- }}$ mentals of using a computer. onComputing readers receive practical advice and helpful hints on how to get the most out of a personal computer, explanations of computer terminology, and, periodically, an updated list of active computer clubs.

BBenefit from the experience of other computer enthusiasts. Articles in onComputing are written by well known authors as well as competent amateurs. They share their ideas on how to use the computer as a tool for business, education, home entertainment, laboratory work and other applications.

CSomputer experts edit onComputing for the new user, not the computer professional. The editors combine their esoteric knowledge of computer science and equipment to produce concise, non-technical material which can be readily understood by anyone interested in using a computer-for fun or profit.

onComputing, Inc.

70 MainSt., Peterborough, NH03458
Start your subscription today.
EVERY THREE MONTHS onComputing will bring the latest developments in the field of personal computing: use, applications, books, selection-all in an easy-to-read style.
onComputing Subscription Dept. P.O. Box 307, Martinsville, NJ 08836 REGULAR subscription rate:
\square U.S. 1 yr. (4 issues) @ $\$ 8.50 \quad \square$ Canada. \& Mexico, 1 yr. (4 issues) @ $\$ 10.00$ FOREIGN (to expedite service, please remit in U.S. funds drawn on a U.S. bank.) O Europe (and all other countries, except above), 1 yr.@ \$12.00-surface delivery. \square Start my subscription with current issue. \square Start with Vol. 1 No. 1
\square Bill Visa \square Bill Master Charge \square Bill me (North America only)

Card Number
Signature
Name (please print)
City
State/Province/Country Code

Photo 5: The wall switch module replaces standard wall switch and allows remote control. Two slotted-top rotary switches under the switch lever are for setting house and device codes.

Photo 6: The appliance module.
back to on again. This automatically triggers the receiver module into an on condition.

Controlling the BSR X-10

When I first started using the BSR X-10, I could hardly believe its versatility and low cost. The only problem is that operation of the BSR $\mathrm{X}-10$ is completely manual. The only way to use the control receivers is through the command console or
ultrasonic transmitter and by physically pressing the buttons.

I would not say that I have a never-say-die attitude, but considering my original security system, with an average cost of $\$ 250$ per AC output channel, my future computercontrolled house depended heavily on less expensive input/output (I / O). It was absolutely necessary to find some method of utilizing the control receivers.

Three possible solutions came to mind:

- Directly synthesize the commandconsole waveform and transmit it directly onto the AC line.
- Brute force contact closure-attach either relays or comple-mentary-metal-oxide semiconductor (CMOS) switches in parallel with the push buttons and activate the relays from the computer.
- Synthesize the waveform from the ultrasonic controller and let the computer "talk" to the command console.

Simulating the command-console output sounds simple in theory. (This is somewhat like estimating software costs.) Simulating the device-control code and using it to modulate a 120 kHz carrier frequency leads to contact with a hostile environment. The output from the computer must be attached to the AC line. This requires isolation through either transformers or optoisolators, plus many discrete components to properly match impedances. It is a shame to reinvent the wheel when BSR has already designed such an effective transmission system. Although possible in theory, this approach is too messy to warrant further consideration.

The second alternative is brute force. This can usually work, but you must be careful. In essence this method entails wiring relays or CMOS switches across the push buttons and remotely, but still mechanically or electronically, closing the contacts corresponding to a particular button. Figure 2a illustrates the keypad connections for both the command console and cordless controller. The configuration is a 3 by 8 scanning matrix. To turn on channel 6 , simply short pins 28 and 18 together. Likewise, "dim" would be pins 25 and 23. While twenty-two separate singlepole, single-throw switches could be used, figure $2 b$ demonstrates an easier alternative.

Two CMOS switches can be used in combination with the ultrasonic controller to provide this capability. Connected to 5 bits of a latched parallel output port, the two integrated circuits channel the appropriate lines together. To turn on channel 12, a row-select code of binary 001 would be set on B2, B1,

THE MOST POWERFUL MICROCOMPUTER SOFTWARE EVER DEVELOPED IS ALSO THE EASIEST TO USE

FOR USE ON

MICROCOMPUTERS

MICROSYSTEMS INFORMATION MANAGEMENT PACKAGE

PUTS ANY OR ALL YOUR BUSINESS FILES INTO A POWERFUL DATABASE.
CREATE VIRTUALLY ANY RELATIONSHIP YOU CAN THINK OF. ENGLISH-SPEAKING REPORT GENERATOR.
POWERFUL USER COMMANDS NORMALLY FOUND ONLY IN LARGE COMPUTERS. SELF-EXPLANATORY, EASY TO USE, SUCH AS "INPUT," "OUTPUT," "LIST," "PRINT," "CHANGE," "DELETE," "EXCLUDE"" "INCLUDE," AND, PERHAPS MOST IMPORTANT OF ALL, "HELP!"
STRAIGHTFORWARD INPUT AND EDITING ROUTINES- "IDIOTPROOF."

OPERATOR'S MANUAL WITH FULL USER INSTRUCTIONS IS ONLINE WITH HELP COMMANDS. PROBLEMS? JUST TYPE "HELP!"
COMMANDS CAN BE USED CONDITIONALLY ON ANY RECORD OR ON ANY FIELD WITHIN A RECORD
IN-MEMORY SORT, OR, (FOR BIG FILES) DISK SORT.
ALL DATABASE FUNCTIONS ARE SUBROUTINES- CUSTOM PROGRAMMING SIMPLIFIED.
OPTIONAL CASH REGISTER POLLING AND CONTROL PACKAGE AVAILABLE TO QUALIFIED BUYERS (REQUIRES INSTALLATION CONSULTATION)
OVER TWO YEARS' IN-FIELD TESTING. MIMP WORKSFLAWLESSLY
ONE YEAR SUBSCRIPTION TO APPLICATIONS NEWSLETTER FREE WITH PURCHASE.
TYPICAL APPLICATIONS: INVENTORY, CUSTOMER FILES, CASH REGISTER CONTROL (OPTIONAL EXTRA), DOCTOR/: DENTIST/LAWYER APPOINTMENTS OR CLIENT/PATIENT FILES, SALES RECORDS, MAILING LISTS.

INTRODUCTORY OFFER \$295

THE EEY TO THIS SOFTWARE IS ITS SIMPLICITY OF OPERATION.

BUS-II

CPA.APPROVED COMPLETE ACCOUNTING SYSTEM: GENERAL LEDGER, ACCOUNTS PAYABLE, ACCOUNTS RECEIVABLE. BRANCH ACCOUNTING HANDLES UP TO FIVE DIVISIONS. COMPLETELY INTERACTIVE. SELF.UPDATING.
BĂTCH ACCOUNTING INSISTS ON BEING "IN BALANCE." USER MENU. OPERATOR PROMPTING FOR CORRECT ENTRIES. HIGHLY FLEXIBLE FORMATTING OF FINANCIAL REPORTS. NO KNOWLEDGE OF DEBITS AND CREDITS REQUIRED (EXCEPT RECURRING JOURNAL ENTRIES- ASK YOUR ACCOUNTANT).
EXAMPLES OF REPORTS (FROM GENERAL LEDGER MODULE)
CHART OF ACCOUNTS
DETAILED GENERAL LEDGER
CASH RECEIPTS JOURNAL
CASH DISBURSEMENTS JOURNAL
JOURNAL ENTRIES JOURNAL
PROFIT-AND-LOSS JOURNAL
BALANCE SHEET
IDEAL FOR ACCOUNTING FIRMS AS WELL AS SMALL BUSINESSES.
PROVEN THROUGH YEARS OF USE.
THIS ACCOUNTING PACKAGE REQUIRES ONLY A HIGH SCHOOL-LEVEL UNDERSTANDING OF BOOKKEEPING.

ONLY
\$295
dUAL EIGHT-INCH FLOPPY DISE DRIVES REQUIRED.

MIMP \& BUS-II OPERATE ON ALL OHIO SCIENTIFIC 8-INCH OR WINCHESTER DISK MICROCOMPUTERS W/48 K RAM. USER-ORIENTED SYSTEMS - NO PROGRAMMING REQUIRED
CREDIT CARD ORDERS
CALL
(304) 291-5400
all orders shipped prepaid within Continental u.s. please do not send cash. OVERSEAS ORDERS PLEASE INCLUDE POSTAGE- 5 LBS. SORRY, NO C.O.D.

Figure 2: The keyboard in the BSR X-10 command console and remote control unit is connected to a custom LSI integrated circuit. Figure $2 a$ shows the keyboard in relation to lines coming from the BSR custom integrated circuit. The functional schematic in figure $2 b$ could be used to replace the keyboard with an I/O port.
and $B O$, respectively, and a columnselect code of binary 10 would be set on B4 and B3. The ON key would be a code of 11100 for bits B4 thru BO, for example.

The circuit of figure 2 b will work only with the handheld batterycontrolled unit. The command-console electronics, which run on -20 V , can use the same logical concept, but relays must be substituted for the CMOS switches. The command console is not isolated and its electronics are floating at 120 VAC . To be totally safe, it is best not to bother with it.

Hardwiring to the handheld unit keyboard will work, but it also has some detrimental features. In operation, the ultrasonic unit consumes an
average of 30 mA , while peak currents are about 100 mA . Alkaline batteries are a must. Short of direct connection to the computer's power supply through a 9 V regulator, there is always the hazard of battery brownout. If I were depending upon this system, I would not have a critical component powered by battery.

Talking to the BSR X-10

The sensible alternative is to construct an interface that facilitates cordless communication between the computer and the BSR X-10 command controller. Safety is the primary consideration. There is no hazard in using the controller or receivers as long as their cases are
intact. The BSR X-10 is Underwriters' Laboratories listed. Attachments between the computer and the command module must be done carefully and only by experienced people. By maintaining the structural integrity of the components, you are not limited to use with the computer. The command console can be moved around the house, and it is placed within range of the computer only when automatic control is desired.
Practical accomplishment of this goal is achieved using the ultrasonic receiver found within the command module. An interface is constructed that formats function codes into message strings; these strings are transmitted to the command console as 40 kHz pulses. In essence, the interface simulates the activity of a cordless-controller unit.
Figure 3 describes in detail the communication between the two subsystem components. Each of the twenty-two buttons has a unique 5 -bit code (listed in table 1). For example, channel 5 has a code of 00010 with respect to bit positions D8, D4, D2, D1, and F. The ALL LIGHTS ON key generates the code 00011.

The actual message that communicates this selection is approximately 100 ms long and is composed of thirteen 8 ms segments. Each segment consists of a burst of 40 kHz directed to an ultrasonic transducer. Data is pulse-width modulated. A logic 1 is a 4 ms burst and a logic 0 is a 1.2 ms burst.

To signify channel 5 , the interface first sends a start bit to alert the receiver of the pending message transmission. This is a 40 kHz tone for 4 ms . Next, the 5 -bit selection code is sequentially transmitted as a series of 1.2 and 4 ms bursts of 40 kHz . This is followed by transmission of the logical inversion of the 5 -bit selection code and a 16 ms end-ofmessage tone. All messages use the same format; only the 5-bit selection code varies.

Figure 4 is an interface specifically designed to send this message and facilitate wireless remote control. Incorporating complete circuitry for address decoding and data storage, it appears to the computer as a single output port. Turning on the table lamp is as simple as sending a 1 -byte output to the interface port. As with

8/16 RAM

Good through

 the '80s

The 16-bit micros are coming - fast!

1980 will be the year of the 16 -bit microprocessor. With their increased speed, with their expanded instruction sets which dramatically simplify programming, and with the sophisticated languages and operating systems their architectures support, the 16bit micros promise a many-fold increase in computing power. Here at Seattle Computer, we have been shipping our 8086 CPU card since early November, but this is just the beginning for us. We plan to augment the capabilities of our 8086 with sophisticated new hardware for the disk and for serial communications, and with our new interruptdriven, multi-user disk operating system. All will be introduced by midyear. Not that we are alone in the 16 -bit world - Microsoft BASIC is available now for the 8086, with other languages in the works. Several other firms have announced or are developing 8086 CPU cards, and no doubt systems using the $\mathbf{Z 8 0 0 0}$ or $\mathbf{8 8 0 0 0}$ will appear by the end of the year.

8/16 Fully Meets IEEE Standard

The $8 / 16$ was designed to be in full compliance with the proposed IEEE Standard for the S-100 Bus. This Standard defines extensions which allow 16 data bits and 24 address bits while maintaining compatibility with the original bus. The $8 / 16$ fully implements these extensions, and thus can be expected to interface smoothly with these new 16-bit machines.

How it works. . .

The $8 / 16$ chooses a data path width of 8 or 16 bits by sampling the newly-defined bus line over which the "Sixteen Request" signal is sent. All 16 -bit processors will use this signal. If it is present, the $8 / 16$ organizes itself as 8 K by 16 bits. If it is absent, the $8 / 16$ is 16 K by 8 bits wide, just like any other 8-bit memory. Thus data path width selection is automatic.

For your 8-bit machine. . .

To use the $8 / 16$ in your 8 -bit machine, all you need to do is set the address of the board on its DIP switches and plug it into your computer. The $8 / 16$ offers "extended addressing" as proposed by the IEEE, which is an alternative to "bank select" in opening adress space beyond 64 K . With extended addressing, memory can appear as a smooth, continuous block of up to 16 megabytes, any of which can be accessed at any time. This contrasts with bank select in which blocks of up to 64 K are switched on and off by special software. If your system does not provide the 8 extra address lines required for extended addressing, this feature may be disabled and the extralines ignored at the flip of a switch. The $8 / 16$ is fully static so there is no need for concern over clocks or in applications using DMA. Our current oneyear reliability on similar boards is 98% so you can expect years of trouble-free service from your 8/16.

. . .and then 16-bits

This is what the board was designed for. It is guaranteed to run with our 8086 CPU set when the clock is at 8 Mhz . As it was designed to the IEEE Standard, there should be no trouble interfacing to any manufacturer's CPU.

To order. . .

There are two ways to go. Check with your local dealer. If he does not have the $8 / 16$ in stock, he can order it and have it for you in a few days. Or, you can order direct from the factory for \$525. Bank cards, CODs okay. There is a 10-day return privilege on factory orders. All boards are guaranteed for one year - both parts and labor. Available from stock.

OUTPUT PORT BITS INTERFACE FUNCTIONS

Figure 3: Description of coded message sent from the cordless controller to the command console via ultrasonic communication. The necessary codes are shown in table 1.
the majority of my designs, it is both processor and speed independent. It works equally well in BASIC or assembly language programs. Connected to port 9 (as in my example software), turning on a table lamp or the hall lights in BASIC is a one-line command, OUT 9,5 (from the code list of table 1). Turning it off is simply OUT 9,7.

The circuit will work on virtually any computer, although the pin designations in figure 4 refer specifically to the Radio Shack TRS-80 Model I. All connections are made directly to the computer address and data buses. In the TRS-80 this is done through the expansion connector. In a computer such as an Apple II, the circuit could be built to plug directly into the back-plane connector or to be connected by a ribbon cable.

The electronics can be divided into three subsystems: port latch and address decoding, pseudo pulsewidth modulator, and message serializer. Photo 7 illustrates the prototype of figure 4.

ICs 9 thru 13 make up the address decoding and data latch. For a TRS-80, I have arbitrarily chosen an address of 127 decimal (in my software examples, I use port 9). When
the address bus and OUT line (corresponding to I/O WRITE on some systems) indicate execution of an output command, the contents of the data bus are stored in ICs 11 and 12.

CHANNEL NUMBER OR FUNCTION	$\begin{aligned} & \text { BINARY CODE } \\ & \text { D8 }{ }^{\text {D4 D2 D1 }} \end{aligned}$					DECIMAL OUTPUT TO INTERFACE CIRCUIT
1	0	1	1	0	0	12
2	1	1	1	0	0	28
3	0	0	1	0	0	4
4	1	0	1	0	0	20
5	0	0	0	1	0	2
6	1	0	0	1	0	18
7	0	1	0	1	0	10
8	1	1	0	1	0	26
9	0	1	1	1	0	14
10	1	1	1	1	0	30
11	0	0	1	1	0	6
12	1	0	1	1	0	22
13	0	0	0	0	0	0
14	1	0	0	0	0	16
15	0	1	0	0	0	8
16	1	1	0	0	0	24
ALL OFF	0	0	0	0	1	1
ALL LIGHTS ON	0	0	0	1	1	3
ON	0	0		1	1	5
DIM	0	1	0	0	1	9
BRIGHT	0	1	0	1	1	11

Table 1: Cordless controller push-button codes and decimal equivalents.

Chief

For years many small business system buyers thought that in order to get "real" performance and enough storage to be a "real" business system they would have to sacrifice the family jewels.

But with the introduction of the Smoke Signal Chieftain series office computers a lot of people's minds have been changed.

Because we designed the highly reliable Chieftain small business system with the most innovative combination of performance and efficiency around.

At your fingertips there are 64.000 characters of random access memory and you can address anywhere from 740,000 characters to 2 million characters with Smoke Signals's new double density controller. For larger concerns. there's a 20 M byte hard disk available.

At a time when other small computer manufacturers tell you "you're on your own". Smoke Signal offers an abundance of easy-to-use software programs such as order entry. inventory control.
accounts receivable, invoice entry, payroll, word processing and much, much more. There's BASIC. COBOL and FORTRAN - even a multi-user BOS (Business Operating System) that allows for numerous users simultaneously.

Chieftain systems starting at under $\$ 200.00$ per month display performance on par with systems costing twice to three times as much.

So call (213) 889-9340 for your nearest autho-
 rized Smoke Signal dealer - he'll be glad to demonstrate the Chieftain's high reliability and ease of operation.

For dealers only, circle 22. All other inquiries, circle 63.
BROADCESTIME
31336 Via Colinas. Westlake Village. California 91361. (213) 889-9340

Photo 7: Prototype of the circuit shown in figure 4. The ultrasonic transducer is remotely located, and ICs 9,10,11,12, and 13 are contained on another board.

Bits 0 thru 4 will contain the function code (from table 1) and bit 7 is used to turn the transmitter output on and off. For further information on ad-
dress decoding and output ports, I refer you to Ciarcia's Circuit Cellar from BYTE Books and the article entitled "Memory Mapped I/O," which

> Make your own interface easily for Apple II ${ }^{i}$ and Superkim ${ }^{3}$ with Vector 4609 Universal Plugbord!

HIGH CAPACITY:
2216 -pin DIPs or 240 -pin plus 18 sixteen-pin DIPs.

VERSATILE
.1 inch grid; . 042 inch diameter holes.

- Extra I/O connector-gold plated.
- Extended length! Extra area! No interferance.
- Wrap wire ar solder.
- Quick solder mounting of any IC sockets.
- Hot tinned 2 ounce copper power \& ground buses between IC leads for easy connection.
(2) T. M. MICROPRODUCTS
first appeared in the November 1977 BYTE, page 10 .

In figure 4, the 5-bit function code, as well as its logical inversion, are attached to a 16-to-1 multiplexer, IC1. As the 4 -bit counter IC7 increments, each of the input lines of the multiplexer is sequentially routed to the output, pin 10. With address position 0 permanently tied high and the next ten addresses wired as function-code inputs, the output of IC1 will reflect the first eleven 8 ms message segments.
ICs 3, 5, 6, and 8 act as a digital modulator. If the output of IC1 pin 10 is a logic 1 (such as the start bit), a 4 ms burst of 40 kHz will be routed through IC5 and appear at pin 6. A logic 0 on pin 10 results in a 1.2 ms burst. The timing of these events is rather critical. The rate of clock one (IC8d) should be as close to 125 Hz as possible (8 ms period), and clock two (IC8e and IC8f) should be similarly set to 40 kHz . Use potentiometer R1

As of the writing of this article, Mountain Hardware Inc (300 Harvey West Blvd, Santa Cruz CA 95060) has announced a plug-in card for the Apple II that, like the control card described in this article, transmits to the BSR X-10 Command Console. In addition, the company offers control soft? ware tailored to the Apple II with at least 32 K bytes of programmable memory. Cost of the unit is $\$ 189$ for the controller board alone and $\$ 279$ for the controller board, the X-10 Command Console, and three remote modules.

The following items are available from:

The Micromint Inc
917 Midway
Woodmere NY 11598
Telephone: (516) 374-6793

1. Assembled and tested interface board and plastic encase $\$ 79.50$
2. Cable and connector for TRS-80 \$14.95
3. Cable and adapter board for Apple II $\$ 29.95$
4. Cable and adapter board for S-100 bus $\$ 34.95$
5. 0.5 A power supply $\$ 9.95$

New York residents please add 7\% sales tax.

HERE'S WHAT THE DOCTOR PRESCRIBES FOR YOUR
AILING MICROCOMPUTER: muLISP from the Soft Warehouse

- Over 80 primitively defined LISP functions.
- Infinite precision integer arithmetic expressed in any desired radix base from 2 through 36.
- Automatic dynamic memory manage. ment performed by an efficient garbage collector.
- Flexible but structured program control constructs including an extended COND and multiple exit LOOP.
- Extremely fast execution speed achieved by the use of shallow binding, address typing, and a closed pointer universe.

The Soft Warehouse can fill your prescription with the muLISP-79 cm Software System. It is fully integrated into the popular CP/Mem Operating System and available for a number of different drives.

If Math Anxiety is your affliction, we also offer the muMATH-79tm Symbolic Math System. Read about it in the August '79 issue of BYTE.

Call or write us directly for more information.

P.O. Box 11174 , Honolulu, Hawaii 96828 Telephone (808) 734-5801

Figure 5: A typical application of the wireless remote control. All of the modules are connected over the house wiring.
to set the monostable multivibrator (or one-shot) IC6a to a period of 4 ms . Use R2 to set the one-shot IC6b to 1.2 ms .

The output of IC5 should generate the first eleven segments of the message. IC2, using the same technique as IC1, adds a 16 ms end-ofmessage tone burst as segments 12 and 13. The message is repeated in 24 ms as the counter (IC7) loops to 0 . It will send the same data as long as the contents of ICs 11 and 12 have not
changed and the output-enable line has not been brought high.
All of the components (except possibly the 40 kHz transducers) are readily available. Low-power Schottky transistor-transistor logic (TTL) devices should be used where specified to properly interface with the TRS-80 or similar low-power bus systems.
One further note for prospective TRS-80 circuit builders. To use this

Text continued on page 48
Listing 1 on page 46

Make the SBC/9 the heart of your computer and put to work the most outstanding microprocessor available, the 6809.

the Mighty 6809
Featuring more addressing modes than any other eight-bit processor, position-independent coding, special 16 -bit instructions, efficient argu-ment-passing calls, autoincrement/ autodecrement and more, it's no wonder the 6809 has been called the "programmers dream machine."

Moreover, with the 6809 you get a microprocessor whose programs typically use only one-half to two-thirds as much RAM space as required for 6800 systems, and run faster besides.

And to complement the extraordinary 6809, the Percom design team has developed PSYMON", an extraordinary 6809 operating system for the SBC/9 ${ }^{\text {" }}$

PSYMON" - Percom SYstem MONitor

Although PSYMON" includes a full complement of operating system commands and 15 externally callable "trademark of Percom Data Company, Inc.
utilities, what really sets PSYMON" apart is its easy hardware adaptability and command extensibility.

For hardware interfacing, you merely use simple, specific device driver routines that reference a table of parameters called a Device Control Block (DCB). Using this technique, interfacing routines are independent of the operating system.

The basic PSYMON" command repertoire may be readily enhanced or modified. When PSYMON" first receives system control, it initializes its RAM area, configures its console and then 'looks ahead' for an optional second ROM which you install in a socket provided on the SBC/9" card. This ROM contains your own routines that may alter PSYMON" pointers and either subtly or radically modify the PSYMON" command set. If a second ROM is not installed, control returns immediately to PSYMON" ${ }^{\prime \prime}$

- Provision for multi-address, 8 -bit bidirectional parallel I/O data lines for interfacing to devices such as an encoded keyboard.
- A serial interface Reader Control output for a cassette, tape punch/reader or similar device.
- An intelligent data bus: multi-level data bus decoding that allows multiprocessing and bus multiplexing of other bus masters.
- Extended address line capability - accommodating up to 16 megabytes of memory - that does not disable the onboard baud rate clock or require additional hardware'in I/O slots.
- On-board devices which are fully decoded so that off-card devices may use adjoining memory space.
- Fully buffered address, control and data lines.

The SBC/9", complete with PSYMON" in ROM, 1 K of RAM and a comprehensive users manual"costs iust \$199,95.

PERCOM DATA COMPANY. INC. 211 N KIREY GARLAND. TEXAS 75042 (214)272-3421

To place an order or request additional literature call toll-free 1-800-527-1592. For technical information call (214) 272-3421. Orders may be paid by check, money order, COD or charged to a VISA or Master Charge account. Texas residents must add 5\% sales tax.

Circle 25 on inquiry card.

Welcome to Percom's Wide World

Each LFD mini-disk storage system includes:

- drives with integral power supplies in an enamel-finished enclosure
- a controller/interface with ROM operating system plus extra ROM capacity

\author{

- an interconnecting cable
 - a comprehensive 80 -page users manuai
}

Low-Cost Mini-Disk Storage in the Size You Want.

Percom LFD mini-disk drive systems are supplied complete and ready to plug in the moment they arrive. You don't even have to buy extra memory. Moreover, software support ranges from assembly language program development aids to high-speed disk operating systems and business application programs.

Mini-disk storage system prices:

The LFD-400 and -400 EX systems and the LFD-800w and -800EX systems are available in 1-, 2- and 3-drive contigurations. The -400, -400EX drives store 102 K bytes of formatted data on 40 -track disks, and data may be stored on either surface of a disk. The -800, -B00EX drives store 200 K bytes of formatted data on 77 -track disks.
The LFD-1000 systems (not pictured) have dual-drive units which store 800 K bytes on-line. The LFD-1000 ${ }^{\text {anen }}$ controller accommodates two drive systems so that a user may have as much as 1.6 M bytes on-line.

MODEL

For the SS-50 Bus:
LFD-400
LFD-800
For the EXORciser* Bus
LFD-400EX
LFD-800EX
LFD-1000 ${ }^{\text {cisis }}$

1-DRIVE
SYSTEM
\$ 599.95 895.95
\$ 649.95
945.95

2-DRIVE SYSTEM
\$ 999.95
$\$ 1399.95$
2195.95
$\$ 1449.95$
2245.95
(dual) $\$ 2495.00$ (quad) $\$ 4950.00$

EXORciser* Bus LFD-400EX! ${ }^{\text {(iiw }}-800 E X^{\text {(iiw }}$ Systems

Upgrade to 6809 Computing Power. Only $\$ 69.95$

Data Terminal \& Two-Cassette
Interface - the CIS-30+

Circle 242 on inquiry card.

- Interface to data terminal and two cassette recorders with a unit only $1 / 10$ the size of SWTP's AC-30. - Select 30, 60 or 120 bytes per second casselte interfacing: 300,600 or 1200 baud data terminal interfacing.
- Optional mod kils make CIS-30 + work with any microcomputer. (For MITS 680b, ask for Tech Memo TM-CIS-30+-09.)
- KC Slandard/Bi-Phase-M (double frequency) cassette data encoding. Dependable self-clocking operation. - Ordinary functions may be accomplished wilh 6800 Mikbug* monitor

Prices: Kit, \$79.95; Assembled, \$99.95. Prices include a comprehensive instruction maneal. Also available: Test Cassette, Remote Control Kit (for program control of recorders), IC SockeI Kit, MITS 680 b mod documentation and Universal Adapler Kil (converts CIS-30 + Ior use with any compuler).

of 6800 Microcomputing.

6800/6809 SOFTWARE

System Software

6800 Symbolic Assembler - Specity assembly options at time of assembly with this symbotic assembler. Source listing on diskette
\$29.95
Super BASIC - a 12 K exlended random access disk BASIC lor the 6800 and 6809 . Supports 44 commands and 31 functions. Interprets programs written in both SWTP 8K BASIC (versions 2.0, $2.2 \& 2.3$) and Super BASIC. Features: 9-digit BCD arithmetic, Print Using and Linpul commands, and much more. Price
$\$ 49.95$ TOUCHUP - Modifies TSC's Text Editor and Text Processor for Percom mini-disk drive operation. Supplied on diskette complete with source listing
$\$ 17.95$

Operating Systems

INDEX - This easy-lo-use disk-operating and file management system for 6800 microcomputers is fast. V0 devices are serviced by interrupt request. INDEX(i) accesses peripherals the same as disk files - new devices may be added without changing the operating system. Other leatures: unlimited number of DOS commands may be added • over 60 system entry points - display only those files at or above user-specified file activity level - versions available for SWTP MF-68, Smoke's BFD-68 and Motorola's EXORciser*. Price
$\$ 99.95$ MINIDOS-PLUSX - An extension of the original MINIDOS for LFD-400w mini-disk systems, MINIDOSPLUSX manipulates tiles by six-character names. Supports up to 31 files. Resident commands include Initialize, Save, Allocate, Load, Files (directory list), Rename and Delete. Supplied on 2708 ROM with a minidiskette that includes transient utilities such as Copy, Backup. Create, Pack and Print Directory. Price \$34.95. PSYMON* - Percom SYstem MONitor for the Percom single-board/SS-50-bus-compatible 6809 computer accommodates user's application programs with any mix of peripherals without moditying programs. PSYMONie also fealures character echoing to devices other than the communicating device, sophisticated register and memory dump routines and more. Price (on 2716 ROM)
$\$ 69.95$. WINDEX ${ }^{\text {we }}$ - Described in delail elsewhere on this page.

Business Programs

General Ledger - For 6800/6809 computers using Percom LFD mini-disk storage systems. Requires little or no knowledge of bookkeeping because the operator is prompted with non-technical questions during data entry, General Ledger updates account balances immediately - in real time, and will print financial statements immediately atter journal entries. User selecls and assigns own account numbers; tailors financial statements to firm's particular needs. Provides audit trail. Runs under Percom Super BASIC. Requires 24K byles of RAM. Supplied on minidiskette with a comprehensive users manual. Price
$\$ 199.95$.
FINDER ${ }^{\text {es }}$-- This general purpose data base manager is written in Percom Super BASIC. Works wh 6800/6809 computers using Percom LFD-400*) mini-disk drive storage systems. FINDERTil allows user to define and access records using his own terminology - customize file sitructures to specitic needs. Basic commands are New, Change, Delete, Find and Pack. Add up to three user-defined commands. FINDER plus Super BASIC require 24 K byles of RAM. Supplied on minidiskette with a users manual. Price
$\$ 99.95$ Mailing List Processor - Powerful search, sort, create and update capability plus ability to slore 700 addresses per minidiskelte make this list processor efficient and easy to use. Runs under Percom Super BASIC. Requires 24K bytes of RAM Supplied on minidiskette with a users manual. Price $\$ 99.95$.

From the Soltware Works

Development and debugging programs for $6800 \mu \mathrm{Cs}$ on diskette:
Disassembler/Source Generator \$30.95 Reloc'tng Disas'mblr/Segmented Text Gen $\$ 40.95$ Disassembler/Trace Support Relocator Program $\$ 25.95$ Relocating Assembler/Linking Loader $\quad \$ 55.95$ SmithBUG** (2716 EPROM)
$1 / 2$-Price Special on Hemenway Software!
CP/68 \ddagger disk operating system \$ 49.97
STRUBAL $+\ddagger$ compiler
. $\$ 124.97$
EDIT68 text editor
MACRO-Relocating Assembler
Linkage Editor (LNKEDT68)
\$ 19.97

Cross Reference utility
\$ 24.97
Coss Relerence unility . \$ 14.97
Circle 245 on inquiry card
rademark of Percom Data Company. Inc.

- trademark of Motorola Corporation
\$Trademark of Hemenway Associates Company
- SmithBUG is a trademark of the Soltware Works Company

And 'looking into' is just what you do with the Electric Window ${ }^{\text {™ }}$ as you peer right into memory space where characters are being input and manípulated. Display is memory-resident. programmable and generates up to 2480 -character lines. Other features include: - standard character generator plus provision for optional special character generator

- dual intensity, high-lighting alphanumeric display
- scrolling by a programmable register - programmable display positioning
- programmable interlaced or non-interlaced scan
- descenders on lower case letters • users manual with application instructions and listing of WINDEX driver.

WINDEX is a fast video display driver program for the Electric Window. WINDEX also features: program and keyboard control of character generators - displayable control characters - under program control - automatic scrolling - a driver routine for the parallel input keyboard feature of the Percomr 6809 Single-Board Computer, the SBC/9we - auto-linking to PSYMON, the ROM operating system for the SBC/9ie . Prices: ROM version: \$39.95; LFD-400 ${ }^{\text {wow }}$ compatible diskette (source and object files): $\$ 29.95$.

Circle 243 on inquiry caro

Now Available! the SBC/9 MPU/Control Computer

(Single-Board-Computer/6809) - stands alone as a control computer, but also compatible with the SS-50 bus for use as an MPU card. Includes PSYMON® (Percom SYstem MONitor) in a 1 K ROM and provides for additional 1 K of ROM. Also includes 1 K of RAM. Features: Super Port - provision for multi-address, 8 -bit bidirectional data lines • an intelligent data bus for multi-level data bus decoding • an on-board 110-baud to 19.2 kbaud clock generator • extended address capability - to 16 megabytes without disabling baud clock or adding hardware. And much more. Supplied with PSYMON and comprehensive users manual. Price
$\$ 199.95$
See full page ad elsewhere in this magazine for all of the SBC/9 ${ }^{\text {TM }}$ features. Circle \#244.
Full Feature Prototyping PC Boards

All of the features needed lor rapid, straightforward circuil protolyping. Use 14-, 16-, 24- and 40-pin DIP sockets - SS-50 bus card accommodates 34 - and 50-pin ribbon connectors on top edge, 10-pin Molex connector on side edge - 1/0 card accommodates 34-pin ribbon connector and 12-pin Molex on top edge

- $1 / 0$ card is $1-1 / 4$ inches hlgher than SWTP V0 card - interdigitated power conductors - contacts for power regulators and distributed capacitance bypassing - use wire wrap, wiring pencil or solder wiring - tin-lead plating over 2-oz copper conductors wets quickly, solders easily - FR4-G10 epoxy-glass subsirate.

SS-50 Bus Card: $\$ 24.95$
Circle 246 on inquiry card.

To place an order or request additional literature call tollfree 1-800-527-1592. For technical information call (214) 272-3421. Orders may be paid by check, money order, COD or charged to a VISA or Master Charge account. Texas residents must add 5% sales tax.

PRICES ANO SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

PERCOM DATA COMPANY, INC 211 N. KIREY GARLAND. TEXAS 75042 (214)272-3421

Listing 1：Demonstration program for the Sears Home Control System．

```
& %ir
```



```
9) EEM
```



```
96 FEM
4% FEF
```



```
105 (1,m (% (20),5(20)
```



```
115 LATA 6,22,0,16,8,24
120 FOF }X=1\mathrm{ TO 16
125 FEAOC C(X) :KEM C(X) IS CHANNEL. NUMBEFi
I.30 NEXT X
135 GOSUH 2OO :GOTO 300
190 FEEM
195 REM
2OO FFINT "CUFFENT GTATUS IS :"
205 FOF X=1 TO 16
2]0 FFINT "CHANNEL *梠" IS ": :IF S(X)=1 THEN FRINT"ON" ELSE FRINT"OFF"
220 NEXT X
2 2 5 ~ F E T U F N
300 FFFTNT "DO YOU WANT TO CIEAR ALI OUTFUTS TO START":INFUT A$
30S IF A$:="YES" THEN F=1 ;GOSUB 9050:FOF Z=1 TO 16:S(Z)=0 :NEXT Z :FEM CLEAF ESF OUTFUTS
310 FFINT "SET CONTFOILEFR OUTFUTS EY ENTEFING CHANNEL NO. ANL FUNCTION"
315 F%MINT"EMTEF CHANNEL NO. (0 TO EXIT) "; JNFUT C
317 IF C=O THEN GOSUB 200:GOTO 300
320 FFTNT"CHANNEL ":C,* IS ":ITF S(C)=1 THEN FRINT"ON" ELSE FRINT"OFF"
325 FFENT"ON,OFF゙,NEXT,OK REUIEW;":INFUY A$
330 TF A$:"ON" THEN S(C): = :X=C:GOSUE 9000:F=5:GOSUB 9050 :GOTO 31S:FEM TUFN CHANNEL C, ON
340 TF A$# "OFF" THEN S(C)=0:X=C:GOSUE 9000: F:=7:GOSUB 90SO :GOTO 315:FEM TUFN CHANNEL C OFF
350 IF A$= "NEXT" THEN C==C+1:GOTO 3%O
300 GOSIJH 200 :G0TO 315
3096, Fit i4
8998 FEEM
GOOO FENO ESF HOME CONTFOL. DETUER
9010 FEEM C(X) IS CHANNEL CODE
901% クUTY Q,O゙(X) :FEM SET CHANNEL
9020 60Su# 9085
9025 FETUFN
9OSO FFM FIINCTTON IRTUEF
```



```
9065 0UT 9,F
9070 gosur 908%
9075 GIIT 9.128 :FEM HTT 7 SHIIS UFF TFAMSIHICEF OUTFUT
9080 hETH|N
9 0 9 2 ~ R E M ~
9084 Fil-ia
```


FEATM
RUN
CHOOSE ONE OF THE FOLIOWING:
AUTOMAT TC CONTFOL SYSTEM ON
MANIJAL CONTKOL. / CUFFFENT STATUS
FRINT THE CURFENT TIME
REUTEW DEF AULT SETTJNGS ANL AUL TG CONTFOL LIST
YOUF CHOTVE ? 4

10	YılU	ANT	10 REV		TH	SETTINGS（Y／	）	？Y
1	．AT	2	HOURS	0 M	Minutes	TUFN CHANNEL．	10	ON
2	．AT	17	Houkes	0	MINUTES	TUFEN CHANNEL．	10	OFF
3	，AT	18	HOURS	30	MINUTES	TUEN CHANNEL．	6	ON
4	－AT	19	HOUFS	25	MINUTES	TUFN CHANNEL	6	OFF
5	－AT	1.7	HOUFIS	40	MINUTES	TUFN CHANNEL	6	ON
6	．AT	20	HOUFiS	20	MINUTES	TUFN CHANNEL	6	OFF
7	．$A T$	20	HOUFS	35	MINUTES	TURN CHANNEL	6	ON
8	－AT	21	HOUFS	50	MINUTES	TURN CHANNEL	6	OFF
9	，AT	22	HOUES	0	MINUTES	TURN CHANNEL	6	ON
10	－AT	23	HOURS	50	MINUTES	TUFN CHANNEL	L 6	OF
11	－AT	1	HOUFS	50	MINUTES	TUFN CHANNEL	6	ON
12	．AT	2	HOURS	45	MINUTES	TUFN CHANNEL	6	OF

JUST WRAP Wire-Wrapping

- AWG 30 Wire

- .025" Square Posts

- Daisy Chain or Point To Point - No Stripping or Slitting Required ...JUST WRAP ${ }_{\text {тм.... }}$ - Built In Cut Off - Easy Loading of Wire - Available Wire Colors: Blue, White, Red \& Yellow
U.S.A.,FOREIGN PATENTS PENDING

JUST WRAP TOOL WITH ONE 50 FT. ROLL OF WIRE		
COLOR	PART NO.	U.S. LIST PRICE
BLUE	JW•1.B	\$14.95
WHTTE	JW•1.W	14.95
YELLOW	JW-1. Y	14.95
RED	JW-1.R	14.95
REPLACEMENT ROLL OF WIRE 50 FT.		
BLUE	R.JW B	\$ 2.98
WHITE	R•JW $\cdot \mathrm{W}$	2.98
YELLOW	R.JW.Y	2.98
RED	R.JW R	2.98
JUST WRAP-UNWRAPPING TOOL		
	JUW•1	\$ 3.49

Listing 1 continued:

13	. AT	16	HOUFS	0	MINUTES	TUFN CHANNEL	1	ON
14	.AT	22	HOUFS	0	MINUTES	TUFN CHANNEL	1	OFF
15	AT AT	23	HOUFS	0	MINUTES	TUFN CHANNEL	4	ON
16	.AT	0	HOURS	30	MINUTES	TUFN CHANNEL	4	OFF
17	.AT	19	HOUFS	30	MINUTES	TUFN CHANNEL	5	ON
18	.AT	21	HOURS	20	MINUTES	TUFN CHANNEL	5	OFF
19	.AT	22	HOUFS	0	MINUTES	TURN CHANNEL.	5	ON
20. AT	1	HOUFS	0	MINUTES	TURN CHANNEL	5	OFF	

```
        1......CHANGE LIST
        2......ANHITO LIST
        ()......EXIT TO MENU
?2
    ENTEF TIME ,CHANNEL, ANLI FUNCTION
ENTFYY NO. 21 ? 2330,3,ON
ENTEY NO. 22 ? 0,0,0
```

```
1......CHANGE LIST
2......ANLW TO LIST
O......EXIT TO MENU
```

? 0

CHOOSE ONE OF THE FOLLOWING:

```
1. AUTOMATIC CONTFOL SYSTEM ON
2. MANUAL CONTFOL / CURFIENT STATUS
3. FRINT THE CURFENT TIME
4. FEUIEW LIEFAULT SETTINGS ANI ALII TO CONTFOL LIST
```

 YOUR CHOICE ? 1
 AUTOMATIC CONTFOL INITIATED
23 HOURS 43 MINUTES

Listing 2: Program to compare the time from a real-time clock against a list of operations to be performed at specific times. A sample run of the program demonstrates how the entries may be varied.

Text continued from page 42:
interface properly, you must have Level 2 BASIC to address output ports. Also, in most Level 2 systems, +5 V on the expansion connector has been disconnected at the factory. It will be necessary, therefore, to provide a separate 5 V 300 mA power supply for the interface electronics.

Using the Interface

A typical application is demonstrated in figure 5. The receivers can be placed around the home to control a variety of appliances and lights. With the addition of the real-time clock outlined in a previous Circuit Cellar article ("Anyone Know the Real Time?" August 1979 BYTE, page 50) you can add timed activation of these control functions as well.

Listing 1 shows a simple BASIC program that demonstrates the interface capabilities. The command console is plugged in and positioned within 20 feet on a direct unobstructed line with the interface output transducer. The program starts by asking if you want to clear all outputs and start fresh. Since the BSR X-10 is an open-loop control system, and you have no way of knowing which receivers are activated, this is a prudent choice.

To turn on channel 6, simply answer the appropriate questions with " 6 " and "ON". The status of all channels can be reviewed at any time.

The program responds by calling a control output routine. Turning channel 6 on requires two outputs to the command console. One sets channel 6 (as if pressing the 6 button), and the other sets the "on" function (as if pressing the ON button). To allow enough time for the command console to respond, delay loops are inserted. The result is a 2 -second signal to set device code 6 and a 2-second message that tells it to turn on. The process can be reversed with a 6 and an OFF program command. All sixteen channels can be just as easily cycled.

Listing 2 is the logical extension of this basic concept. Using a real-time clock, you can create a list of precisely timed events. It can be used to control house lighting during vacations or to turn the coffee maker on at 6:30 AM. The program incorporates a default list of data statements. Each statement is formatted as time, chan-

Text continued on page 54

MicroPro International Corporation

THE BEST GETS BETTER! Yes, in just a few months, thousands of users now know that WORD-STAR ${ }^{\text {TM }}$ is the word processing product that truly transforms the performance of Z-80, 8085, and 8080 microcomputers into a class with systems costing far more. Look at these recent enhancements: Print spooling; directory; foreign language adaptability; microspace justification; mailing list merge; CP/M*1.4, 2.0 \& MPM compatible, and more. Examine our features and order yours now!

MicroPro Price List:

Software/Manual

Word-Star ${ }^{\text {T.M. }}$	$\$ 495 / 40$
Word-Master $^{\text {T.M. }}$	$\$ 150 / 25$
Tex-Writer	
T.M.	$\$ 75 / 15$

\$495/40
\$ 75/15

Super-Sort IT.M. $^{\text {T.M. }}$
Super-Sort
IIT.M.
Super-Sort
IIIT.M

Software/Manual

$$
\$ 250 / 25
$$

\$200/25
\$150/25

For more information and the name of your nearest dealer, contact MicroPro International Corporation. Dealer/Distributor/O.E.M. Inquires Invited

Listing 2 continued:

LIST

```
100 REM
110 REM THIS FFOGRAM PROUIIIES FEAL TIME CONTROL OF AC AFFLIANCES
L20 FEM EY CONNECTING THE SEARS HOME CONTFOL SYSTEM AND A FEAL TIME CLOCK
I30 FEM TOGETHEF.
140 FEM
150 FEM COFYFIGHT 1979 STEUEN CIARCIA
160 FEEM
170 FEM
180 GOSUB 350 :REM LOALI LIATA TABLES
190 FEM FROGRAM OFTIONS AFE MALE THROUGH MENU SELECTIONS
200 FFRINT ;FRINT: FFRINT "CHOOSE ONE OF THE FOLLOWING :"
2 1 0 ~ F R I I N T ~
220 FFRINT*1. AUTOMATIC CONTFOL SYSTEM ON*
230 FFRINT"2. MANUAL CONTFOOL / CURRENT STATUS
240 FRINT"3. FRINNT THE CURFENT TIME"
250 PRINT"4. REUIEW DEFAULT SETTINGS ANM ADII TO CONTROL LIST"
260 FRRINT
270 FFINT" YOUR CHOICE "; :INFUT Z1
280 IF Z1:=1 THEN FFINT"AUTOMATIC CONTROL INITIATED" : GOTO 1190
290 IF Z1:=2 THEN GOSUE 740 :GOTO }81
300 IF Z1=3 THEN GQSUB 1470 :FRINT :F'RINT"THE FRESENT TIME IS "; :GQSUE 1130 :GOTO 200
310 IF Z1=4 THEN GOTO 940
320 G0T0 200
330 REM
340 FEM
350 REEM SET UF TABLE OF CHANNEL/OUTFUT CONES
360 LIM C(20),S(50)
370 LIATA 12,28,4,20,2,18,10,26,14,30
300 LIATA 6,22,0,16,8,24
390 FOF X:=1 ro 16
400 FEAD C(X) :FEM C(X) IS CHANNEL NUMBER
410 NEXT X
420 REM WHEN FFROGRAM IS INITIATEI THE FOLIOWING LATA TABLE CONSTITUTES THE DEFAULT CONTFOL SETFOINTS
A3O FEM SETPOINTS AFE STOFEII AS IATA STATEMENTS IN THE FORM OF TIME,CHANNEL,AND FUNCTION
44O FEM W=TOTAL NUMEER OF IATA STATEMENTS
450 FENM
A60 IIlM W(50),A(50), E(50),A$(50), L(50)
470 W:=20 :FEM W=TOTAI NUMEEF OF DEFAULTS
4B0 IMAT'A O200,10,"ON" :FEEM MEHUMIMIFIEER
490 LIATA 1700,10,"OFF"
500 (1aTA 1830,6:"ON" :FEM SFARE EENROOM LIGHTS
610 DATA 1.925,S,"GFF"
G% IMTA 1.940,6,"ON"
:330 LATA 2020.6,"OFF"
#40 LATA 2035,6,"ON"
550 0nTA 2150,6, "OFF"
GB(%) MATA 2%00,0,"ON"
5%0 nata 2350,d,"OFF"
580 \IATA 0150,6, "ON"
590 [IATA 0245.6."OFF"
600 MATA 1600,1,"ON" :FEN CIFCUIT CELLLAR ACCESS. FLUG
610 LIATA 2200,1" "OFF"
O2O DATA 2300,4,"ON" :FEM CEILLAK' HAL,L
630 LIATA 0030,4,"OFF"
640 DATA 1930,5,"ON" :REM MASTEF BETIROOM
650 OATA 2120,5, "GFF"
600 MATA 2200,'5,"ON"
670 LATA 0100%5."OFF"
680 FOF L.=1. TO W :REAO A(L),B(L),A$(L) :FEEM SET TTME,CHANNEL,OFUNCTION
```


OHV:HII PRNHIFRS AYATABHE NOW:

For years we have been our own bigsest customer. Until now you couldn't buy an Olivetti printer unless you bought a complete Olivetti calculator. Now, for the first time, our complete line of OEM printers is available for immediate shipment in any quantity. For use in calculators, electronic scales, cash registers, mini computers, CRT hard copy output, data loggers, medical and scientific instruments, or any application where a paper tape printout is desired. Olivetti has a quality OEM printer for you.

Fectures:

\square High Speed
\square Low Cost-The Best Really Can Cost Less!
\square fewer Moving Parts
\square Proven High Reliability and Long Life
\square Over 3 Million In Use by Olivetti Alone
\square Lightweight and Compact - Extremely Versatile
\square Available With 6 V or 18V Motor
\square Low Power Usage
\square Graphic Capabilities (PU1828 and PU1840)
\square All Printers are Available With or Without Interface Boards

For Further Information Please Contact:

Olivetti Corporation

20370 Town Center Lane
Cupertino, California 95014
Telephone: 408/996/3867

Listing 2 continued：

490 NE：AT L．
700 FEETUFEN
710 STOF
$\because 20$ FEM
730 KE197 FEM
740 FFINT＂CUFFENT STATUS JG：＂
750 FOF：$X=1$ TO 16

770 NEXT X
780 REE TUKN
790 REM
30以 REM
日． 6 FRIMT＂MO YOU WANT TO CLEAR ALL OUTFUTS TO STAFT＂：INFUT A事
B2O IF A $=$＂YES＂THEN $F=1$ ：GOSUE $1380: F O R ~ Z=1$ ．TO $16: S(Z)=0$ ：NEXT Z ：REM CLEEAR ESR OUTFUTS
330 FFEJNT＂SET CONTFOLLEF OUTFUTS BY ENTEFTING CHANNEI NO．ANLI FUNCTION＂
340 FRINT＂ENTEFK CHANNEL NO．（O TO EXIT）＂：INFUT E
350 if $\mathrm{C}=0$ THEN GOTO 200

C70 FFTNT＂ON，DFF，NEXT，OF FEUIEW＊：INFUT AD
：360 TF $\because G=" O N " T H E N S(C)=1: x:=C: G 0 S U E 1330: F=5: 60 S U E 1380$ ：GOTO 840：REM TUFN CHANNEL C ON

900 1．F A\＄：＝＂NEXT＂THEN $\mathrm{C}=\mathrm{C}+1: \mathrm{GOTO} 860$
710 GOS1JB 740 ：9010 840
920 fitm
950 REF
970）FRIN：FFINT＂GO YOU WANT TO KEUIEW THE LFFAULT SETTINGS（Y／N）＂：：TNHUT B\＄
950 IF H $\$>\times Y$ THEN GOTO 1000
960 Fink $1=1$ TO W
9701 1．＝INT（A（L）／100）

990 NFXY 1.

IOIO F゙KINT＂O．．．．．．EXJT TO MENU＂：INFUT Z2？
1020 TF $22=0$ THEN GOTG 200
1030 TF $22 \div 1$ THEN FFKNT＂RECOFO ENTFY TO RE CHANGEU＂
1．040 1 NF－UT 2.3

1076 FFGINT＂CHANGE ANOTHEF Y／N＂$\hat{\prime}$ ：INFUT $Z \$$ ：IF Z $\$=$＂Y＂THEN GOTO 1030 ELSE 1000
1080 IF Z2．22 THEN GOTO 1000
10\％0）EEM STAF゙T AMHITIONS AT END OF LUEFAULT LIST
1100 FRINT＂ENTER TIME ，CHANNEI，ANS FUNCTTON＂

I． 20 GOTO 11%
J． 130 REM 4 gIGTT FOFBMT FOUTINE

LISO PRINT T2，＂HOURS＂TT3＂MINUTES＂：RETUFN
11．50 FEM
1． 170 FEEM
1．1．80 FEM
1190 EFKí CONTFOL OUTFUT SUBFOUTINE－－－－－SETFOINT MONITOF：
$1200 \quad 55=0$
1210 （GOSUE 1470 ：FEM GET TTME
1220 IF TI®TS THEN GOSUR 1130 ：TS＝TI \ddagger REM FRTNT TIME
i． 230 FOF L $=1$ TO W
1240 TF $T 1=A(L)$ THEN $X=H(1): G O S U E 1330:(G O S U B 1280$
1．250）NEXT L

1270 190TO 1210

1300 RETURN
1310 FEM
1320 FEEM
1330 FEM ESF HOME CONTFOL DRIUER
1340 FEM $C(X)$ IS CHANNEI COLE
1350 OUT $9, C(X)$ ：REM SET CHANNEL
1360 （G0SUF 1.460
1370 RETURN
1．380 FEM FUNC：TION INRTUEF
1.390 REM F＝FUUNCTION CODE

1400 0．J $9, F$
1410 GOS（JF 1460
1420 OUT 9.128 ：REM BTT 7 SHUTS OFF TRANSXUCEF OUTFUT
1430 RETUFIN
1440 REM
1450 REM
1460 FOF $Q=0$ TO 900 ：NEXT Q ：FETUFN ：FEM PELAY TIMER

A FULL NETWORK DATA MANAGEMENT SYSTEM FOR MICRO COMPUTERS the Ultimate Software Tool:
 AVAILABLE FROM
 Micro Data Base Susitems, inc.

```
        MDBS IS A VERSATILE
        DATA BASE MANAGEMENT SYSTEM
- PROVIDES FLEXIBILITY OF A FULL NETWORK DATA
        BASE SYSTEM
- EFFECTIVE REPRESENTATION OF COMPLEX DATA
    STRUCTURES
- RECORDS CAN BE ORDERED ON VARIOUS SORT KEYS
- COMMANDS TO ADD, DELETE, UPDATE, SEARCH AND
        TRAVERSE THE DATA BASE
- SORTED, FIFO, LIFO, NEXT AND PRIOR SET ORDER
        ING PROVIDED
- PROVIDES DATA PROTECTION
- STRAIGHTFORWARD USE OF ISAM-LIKE STRUCTURES
- COMPARABLE TO DATA BASE SYSTEMS PREVIOUSLY
        AVAILABLE ONLY ON LARGER COMPUTERS
                    MDBS IS CODASYL
                ORIENTED WITH EXTENSIONS
    - EXPLICIT REPRESENTATION OF MANY-TO-MANY SETS
- RECORD TYPES MAY OWN OTHER OCCURRENCES OF THE SAME RECORD TYPE
- DIFFERENT RECORD TYPES CAN PARTICIPATE IN A SINGLE SET
- MULTIPLE LEVELS OF READ/WRITE PROTECTION
- NAMES OF DATA ITEMS RECORDS, SETS AND FILES ARE WHOLLY USER DEFINABLE
```


MDBS IS FOR THE SERIOUS APPLICATIONS PROGRAMMER

```
- POWERFUL COMPONENT IN INFORMATION PROCESSING
- RELIEVES TEDIUM OF FILE HANDLING DETAILS
- OEMS CAN RAPIDLY AND INEXPENSIVELY DEVELOP APPLICATION SOFTWARE
- USEFUL IN OISTRIBUTED PROCESSING ENOEAVORS
```

SOFTWARE DELIVERED ON MINI.OR FULLSIZED FLOPPY DISKS USING CP/M ${ }^{\circledR}$. NORTH STAR, OR TRS -80° COMPATIBLE FORMATS

- MDBS INTRODUCTORY OFFER $\$ 750.00$

- USERS MANUAL (alone) $\$ 35.00$

- Distributors and OEMS Contact MDBS for Special Rates
- Application Programming Contracts will be Considered.

Indiana Residents Include 4\% Sales Tax.

WE ACCEPT

features

- WRITTEN IN Z.80 COOE FOR MAXIMAL EXECUTION EFFICIENCY ANO MINIMAL MEMORY USAGE. (8080 VERSION EXTRAI.
- ROUTINES ARECALLABLEFROMBASIC (OR OTHER HOST LANGUAGESI TO FACILITATE FAST AND EASY APPLICATION PROGRAMMING.
- routines can be orged to satisfy user require. MENTS.
- SUPPORTS DATA BASES SPREAD OVER SEVERAL DISK DRIVES (MAXIMUM OF 8). DISKS MAY BE MINI- OR FULL. SIZED FLOPPIES OR HARD DISKS.
- I/O AND HOST LANGUAGE INTERFACE ROUTINES ARE ISOLATED FOR EASY ADAPTATION. PATCHES FOR MANY COMMON OPERATING SYSTEMS/HOST LAN. GUAGE COMBINATIONS AVAILABLE, INCLUDING CP/M ${ }^{\circledR}$ WITH BASIC, FORTRAN AND COBOL, NDRTH STAR DDS AND BASIC, ETC.

REQUIREMENTS

- Z.80 Basad System (8080 Systems Extra 6502 Version Forthcoming)
- 8 to 16K Bytes (Depending on Options) in Addition to the Operating System, Host Language and Users Program.

PACKAGE INCLUDES

MDBS DDL DATA DEFINITION LANGUAGE ANA. LYZER/EDITOR. The user specifies data structures to be used in a concise Data Definition Language (DDL). The MDBS Data Definition Language Analyzer/Editor allows the user to interactively create and edit DDL specifications and to initialize the data base for use based on these specifications.

250 PAGE USERS MANUAL with extensive documentation of the MDBS System.

MDBS• DMS DATA MANAGEMENT ROUTINES. These are the routines callable from the host language (BASIC, PASCAL, etc.) which perform the data base operations of finding, adding, and deleting records; fetching and storing data items; and traversing the (possibly complex) data structure.

SAMPLE APPLICATION PROGRAMS written in North Star BASIC which illustrate various features of MDBS.

MICRO DATA BASE SYSTEMS, INC P.O.BOX 248 LAFAYETIE, IN 47902

CP/M is a registered trademark of Digital Research Corp. TRS-80 is a registered trademark of Radio Shack / Tandy Corp.

Listing 2 continued:
1.470 FEM THIS FOUTINE IS THE FEAL TIME CLOCK INTERFACK LRIUER 1480 REM HARHWARE TESCRIBEG IN AUG. '79 BYTE
1490 REM IT FEAUS TN $2 A O O$ HR. FOKMAT ANG TS CONMECTED TO PORT 8

$15 \% 0$ 1F $1=16$ THEN 1530 EIEF 1510
1530 MO $=T$ ANH $15:$ GOSUF 1530
1540 M1: $=\mathrm{T}$ AiNR 15 :GOSUR 1630

$1560 \quad H 1=T$ ANO 15 :GOSUB 1630
$1570 \mathrm{~T} 1=(H 1 *: 10+H 0) * 100+(\mathrm{M} 1 * 10+\mathrm{MO})$: REM TIME TN 3400 FORMAT
1580 TF ROOFT THEN 1590 ELSE FOWT : GOTO 1510

1600 FIETUFN

1620 FEEM $141=$ TENS OF MINUTES MO =MITNTES

FEATMY

IN-STOCK NATIONWIDE... FOR IMMEDIATE DELIVERY
EASTERN REGIONAL SALES OFFICE: Schenectady, N.Y. (518) 399-9200 ALA.: Huntsville, Rakes Engr. \& Marketing Corp. (205) 883-9260 ARIZ.: Phoenix, PLS Assoc. (602) 279-1531 CAL.: Pasadena, A-F SIs. Engr. (213) 681-5631; San Diego, A-F SIs. Engr. (714) 226-8424; San Jose, Richards Assoc. (408) 246-5860 COL. Denver, PLS Assoc. (303) 773-1218 CT.: Litchfield, Digital SIs. Assoc. (203) 567-9776 FLA.: Orlando, OEMMarketing Corp. (305) 299-1000 GA.: Duluth, Rakes Engr. \& Marketing Corp. (404) 476 -1730 ILL.: Chicago, Coombs Assoc. (312)
 MICH.: Southfield L.H. Dickelman Co (313) 353-8210 MINN. Minneapolis, Engr Prod Assoc (612) 925-1883 N.J.: Whippany, Livera-Polk Assoc (201) 377-3220; Marmora, Holdsworth (609) 398-4340 N.M. Albuquerque N.:: Whippany, Livera-Polx Assoc. (201) 377-3220; Marmora, Holdsworth (609) 398 -4340 N.M.: Albuquerque, $446-9587$ N.C.: Charlotte, Over \& Over Inc. (704) $527-3070$ OHIO: Cleveland, Marlow Assoc. (216) 991-6500; Dayton, Marlow Assoc. (513) 434-5673 OKLA.: Tulsa, Advance Technical SIs. (918) 743-8517 ORE.: Portland, Jas. J. Backer (503) 297-3776; Salem, Jas. J. Backer (503) 362-0717 PENN.: Pittsburgh, Marlow Assoc. (412) 831-6113; Newtown Sq., Holdsworth \& Co. (215) 356-8550 TEX.: Dallas, Advance Technical SIs. (214) $361-8584$; Solld State Electr. (214) 352-2601; Houston, Advance Technical Sis. (713) 469-6668; Solid State Electr. (713) 772-8483 UTAH: Salt Lake City, PLS Assoc. (801) 466-8729 WASH.: Seatte, Jas. J. Backer (206) 285-1300; Radar Elec, Co. (206) 282-2511 WIS.: Milwaukee, Coombs Assoc. (414) 671-1945 EUROPE: Hanex. L.A., CA (213) 556-3807 CANADA: Duncan Instr., Wéston, Ontario (416) 742-4448; Winnipeg, Manitoba, Cami Gard Supply Ltd. (204) 786-8481

[^1] SEE OUR COMPLETE PRODUCT LISTING IN EEM \& GOLDBOOK

Text continued from page 48:
nel, and function. To turn on a coffee maker connected to a unit 6 appliance module simply write: DATA 0630,6, "ON". This technique allows us to set up a specific vacation or holiday repertoire. Just load the program and run it. The list of control data can be added to while the program is running. This allows specific actions such as shutting off the television at 2 AM in case you fall asleep during the late show. Entries such as these are retained only as long as the program is running. They must be reentered if the BASIC program is terminated.

Conclusion

I always try to present interfaces and applications that I think will interest BYTE readers. I consider this one is particularly significant considering the cost advantages over earlier technology. I will not replace the relay-controlled lighting in my home, but further expansion of $A C$ control will use the hardware from this article. There are, of course, many situations where the BSR X-10 is inappropriate, but considering the sophistication when it is connected to a computer, I am going to look a lot harder for ones that apply.

Next Month:

It is getting a little cold in Connecticut, and Venezuela is our oil connection. As a result, I have installed a wood stove and have eight cords of wood piled up in the backyard. Realize that not just any stove can be put in the Circuit Cellar, so next month I will discuss my "ComputerControlled Wood Stove."

Call For Papers Association for Computing Machinery Conference

Papers are invited on any aspect of computing. Papers must be received by February 18, 1980. For more information, contact Gordon Sherman, Technical Program Chairman, ACM 80, University of Tennessee Computer Center, Knoxville TN 37916, (615) 974-6758.

We're looking for the most original use of an Apple since Adam.

What in the name of Adam do people do with Apple Computers?

You tell us.
In a thousand words or less.
If your story is original and intriguing enough, you could win a one-week all-expense paid trip for two to Hawaii. Which is the closest we could come to paradise.

Win fabulous prizes for creative writing.

To enter, drop by your nearest Apple dealer and pick up an entry blank. Fill it out. Then write an article, in 1000 words or less, describing the unusual or interesting use you've found for your Apple.

A jury of independent judges will cast the deciding vote for the grand prize: a week for two, airfare included, in Hawaii.

The judges will also choose 16 additional winners, two each from eight categories:

Circle 31 on inquiry card
graphics/music, entertainment, home, business, education, scientific, professional, and industrial. And each winner will choose from a long list of longed-after Apple peripherals-from Apple Disk II's to Graphics Tablets to printers. Or you can take a $\$ 250$ credit towards the purchase of any Apple product.

The contest ends March 31,1980. All winners will be notified by May 15.

Entry forms are available at your participating Apple dealer. Call 800-538-9696, (800-662-9238 in California), for the one nearest you.

Mail the entry blank, your article and any photos to: Apple Computer, "What in the name of Adam" contest, 10260 Bandley Drive, Cupertino, CA 95014.

And may the juiciest application win.

A Computer-Controlled Light Dimmer Part 1: Design

John H Gibson
Physics Department
Alma College
Alma MI 48801

Microcomputer hobbyists are generally and loosely classified as either software or hardware types, depending on where their dominant interests and fascinations lie. Software types find data manipulation a satisfying end in itself. They dream of ever-expanding memories, and they use their computers to organize their finances, keep kitchen records, and play complex video games. Hardware types look for ever more interesting ways to interface their microcomputers with the outside world. They lie awake at night devising new ways of making their computers control lights, appliances, and mechanical devices. Their homes are filled with wires, relays, and remote sensors.

I am a hardware type. I love to make electrical and mechanical devices respond to automatic control. My most recent interest, which I would like to share with you, has been in using a very simple microcomputer for lighting control.

Of all the control techniques developed by the microcomputer hobbyist, lighting control has remained the most primitive. Until recently, lighting control with a microcomputer was usually restricted to simple on and off switching. Proportional control, the controlled dimming of lights, required either expensive hardware or an impractically large software overhead and was therefore beyond the reach of most microcomputer hobbyists.

The recent appearance of peripheral programmable timers for microcomputers has changed all of this. Proportional lighting control with a microcomputer is now both inexpensive and easy to achieve.

Introduction to AC Phase Control

In traditional designs, lamp dimmers used either a rheostat to regulate the current through the lamp, or an
autotransformer to adjust the voltage across it. Either of these inherently analog devices requires that a knob be turned to change the lamp brightness, and neither device is amenable to microcomputer control.

Modern lamp dimmers use the technique of proportional AC phase control. A semiconductor switch in series with the lamp is opened and closed 120 times per second. The switch's operation is timed to permit a current to flow through the lamp only during a controlled fraction of each half cycle of the 60 Hz alternating voltage supplied by the power line. Because this is a switching process, it is inherently digital, and it is therefore a ready candidate for microcomputer control.

The switching device most commonly used for AC phase control is the triac. A triac is a semiconductor device that functions as a latching switch. Once turned on, the triac remains on and cannot be turned off until the current through it drops to zero.

Figure 1 a is a drawing of a triac, and figure 1 b shows its schematic symbol. The terminals through which the switched current flows are labeled MT1 (main terminal 1) and MT2 (main terminal 2). A third terminal, called the gate, is used to turn on the triac, that is, to establish conduction between main terminal 1 and main terminal 2 . Because of its latching property, once the triac is turned on by the gate, it remains on until the current through main terminal 1 and main terminal 2 drops to zero.

Figure 2 illustrates the basic switching arrangement for AC phase control. A triac and a lamp are connected in series with the $120 \mathrm{~V}, 60 \mathrm{~Hz} \mathrm{AC}$ power line. A mechanical push-button switch in series with the triac's gate is pushed and released 120 times per second, or once during each half cycle of the 60 Hz alternating voltage applied to the triac and lamp.

(b)

Figure 1: Sketch of triac (1a) and schematic symbol for a triac (1b).

the
 microcomputer people ${ }^{\circledR}$ THE VITAL INGREDIENT: EXPERTISE

> Defore you buy your new microcomputer, chances are you have a lot of questions. Important questions that could mean the difference between a working system and a wasted system. The vital ingredient is expertise. The microcomputer people at Camputer Mart are expert at answering your questions and helping you put together the best system for your application. Whether It's for business, the home, or the laboratory, come see the experts at Computer Mart of New Jersey. We have the vital ingredient.

Figure 2: Basic switching arrangement for proportional AC phase control using a triac.

At the beginning of each AC half cycle, the triac does not conduct, so no current flows through it and the lamp. Then, a momentary ($30 \mu \mathrm{~s}$) closure of the push-button switch sends a current pulse into the triac's gate. This current pulse turns on the triac, establishing conduction between main terminal 1 and main terminal 2.
Because the triac is a latching switch, it then remains on (even though the push button is released) until the end of the AC half cycle, when the current through it drops to zero. The triac then turns off and remains off until the next momentary closure of the push-button switch.
The 380 ohm resistor limits the gate current pulse to a value that will not damage the triac's gate.
Figure 3 illustrates when the current does and does not flow through the lamp during each AC half cycle. In this illustration, the push-button switch is open (and the triac off) for the first 5 ms of the 8.33 ms ($1 / 120$ second) positive half cycle. The push button is then momentarily closed.

At this time the triac turns on, and current flows through it and the lamp until the end of the positive half cycle, when the current drops to zero. The triac then turns off and remains off until the next momentary closure of the push button. The next push-button closure occurs during the negative half cycle, when the triac again turns on and remains on until the negative half cycle ends.
Current therefore flows through the lamp for only a fraction of each AC half cycle. The size of that fraction depends on how late in each half cycle the push button is momentarily closed and the triac turned on. The longer the delay in turning on the triac during each half cycle, the less power will be supplied to the lamp.
The simplified switching arrangement of figure 2 is for illustration only. Obviously, no mechanical switch can be pushed and released with the speed and timing accuracy needed to make this a reliable way of achieving proportional phase control of the power supplied to the lamp.
This does not mean that it is difficult to design circuits that will deliver properly timed trigger pulses to a triac. Many analog circuits that do this can and have been designed. They range in complexity from simple, manually adjusted resistor/capacitor phase-shift networks used in household lamp dimmers to sophisticated ramp-and-pedestal circuits that provide AC phase con-

FOR THE VERY BEST IN
 NORTHSTAR© COMPATIBLE SOFTWARE

DATA BASE MANAGERS SPECIALII \$10.00 OFF of Selector-1ll C2

SELECTOR-III C2: SuperSoft is proud to offer the Selector-III C2 at a special $\$ 10.00$ discount. Selactor III allows instant recall of any racord using any information item in the record. This makes Selector-III the most powerful Data Base Management System in micro-computers todayl You can define a data format and begin entering your data in minutas. Helps bring applications on inn in hours instead of months. Note: Selector-lil C2 Selector-lif C2 is. \$335.00 $1 \$ 10.00$ off lisell (Manual alone: $\$ 20.001$ appications

INSURANCE AGENTS

CRS - Client Record System. A complete program package for the Insurance agent. CRS will provide you with very fast online access to your client records, print reports and mail labels, and give you all the information you will need to increase your sales through the use ons Chs as a MARKETNG TOOL
Cas stores a complate record lor client that includes the name, address, telephone *, as well as provisions for customer ", salesman " and up to six policies lexpandable. if needed). Write for details
CRS comes with two(2) user's manuals, one for the owner, and one for office personnell (minimal system: one drive, 40K RAM starting 2000H) $\$ 250.00$ (Manual: $\$ 40.00$)

TEXT PROCESSORS

TFS - Text Formatting System. At last a full featured text processor for NorthStar that you can rely onl TFS has left \& right margin justification, page numbering, chaptering, page headings, centering, paged output \& MORE. Supports powerful text manipulation including: global \& local 'search and change,' file merges and block moves. This means that you can restructure your text file at any time to look the way you want it to, you can even Chain files together from disk for documents larger than your current memory.
TFS is completely 'load and so' therefore you can start using it at once. You get twol2) user 8 manual: ons is a Quick Start manual to get you going in minutes, the other is an in
depth study of TFS. (TFS requires RAM from 0000 H to 2000 H) 875.00 (Manual only. depth study of TFS. (TFS requires RAM from 0000 H to 2000 H) 875.00 (Manual only:
$\$ 20.00$)

SPEECH SYNTHESIZER SOFTWARE

'ANGLOPHONE' - Lets any 8080/Z80 computer convert ordinary English into phonetic codes to drive Votrax, computalker, and TRS-80 Voice synthesizes. This is a hardworking. teated program suitable for use in the most demanding situations. (Details below). Inquire or specific prices and media.

COMPUTER AIDED INSTRUCTION

M IS S - Microcomputer Instructional Support System. A complete, self-containad CAI package applicable to home, school or business education. Includes everything needed to create sophisticated computer learning environment. MISS allows one to create any type student is prompted 100% of the way and need have no special knowledge A special feature is the optional use of a unique algorithm which separates spelling errore from incorrect responses. Absolutely no programming knowledge is required. MISS is completely nteractive and maintains complete records on any number of students and lessons (limited only by disk spacel. MISS is a completely ftexible system that will allow you to tither create lessons or to purchase pre-programmed lessong which run under MISS. Comdate with user's manual.... 840.00 (Manual alone: $\$ 10.00$)

ASSEMBLERS

ARIAN - A complete 8080 assambler that interfaces directly to your DOS. ARIAN is completely 'load and go'. Features include: dynamic fiie and RAM allocation, custom disk and RAM command capability, several library routines directly accessable by the user. Also, a use; it is an assembler that executive. ARIAN manual (ARIAN requires RAM from O000H to 2000H) $\$ 50.00$ (Manual alone: $\$ 10.00$) ARIAN Utility Package - Several disk based utilities. Includes a complete DEBUG Package: \$50.00

PROGRAMMING LANGAUGES

Tiny' Pascal - This is famous Chung/Yuen 'tiny' Pascal. FAST - ELEGANT - STRUCTURED. Local and global variables plus procedure and function independence make 'tiny' Pascal great for high speed applications. Compiles to 8080 code that executes up to 25 times faster than BASIC. You also receive SOURCE to "tiny' Pascal written in Pascal. This means that you can compile the compilerl Add features, relocate, etc. (you will need 36 K to do this) $\$ 40.00$

UTILITIES

DE B E - (Ooes Everything But Eat!) This is a must for NorthStar user's. You can: COMPACT \& EXPAND BASIC programs. Compacting removes unnecessary spaces and remarks. This saves money and makes programs run faster. Expanding puts them back again.

Cross-reference BASIC programs by variables and transfer statements.
Global substitutions of variables and transfer stataments.
Formatted print outs of BASIC programs as well. $\$ 40.00$

SPECIFY SINGLE OR DOUBLE DENSITY

TRS-80 COMPATIBLE SOFTWARE

'Tiny' Pascal FOR TRS-80

Now you too can have Pascall The famous Chung/Yuen 'tiny' Pascal has been specially designed for the TRS-801 The full power and elegance of 'tiny' Pascal is at your command. Programs written in 'tiny' Pascel run at least 4 times faster than the same program in BASICI 'tiny' Pascal is also a great way to learn Pascal programming, \& fun too.
Best of all, you only nead a 16 K Level II TRS-801 No disk is required. The 'tiny' Pascal perating system is seif-contained and very easy to use.
'Tiny' Pascal is a subset of standard Pascal \& includes: RECURSIVE PROCEDURE/FUNCTION, IF THEN ELSE REPEAT/UNTIL, 'PEEK' \& 'POKE', WHILE DO, CASE, MOREI (Plus full graphics for your TRS-BO).
You can save and load programs to and from tape in both source or compiler form.
You get all this and more, plus a user's manual for $\$ 40.00$

SPEECH SYNTHESIZER SOFTWARE

'ANGLOPHONE': At last you can take complete advantage of your TRS-80 voice synthesizer. Forget about cumbersome phonetic codes. With 'Anglophone' you can simply use ordinary English. Completely interfaces with BASIC, or just about any other programming language. 'Anglophone' applies sophisticated pronunciation rules to transform normal English spelling into speech using the TRS-80 Voice Synthesizer. Minimum hardware: Level II, 16K, Voice Synthesizer. Comes complete with user's manual and test program. .. $\$ 45.00$

ALL ORDERS PREPAID OR C.O.D. ILLINOIS RESIDENTS ADD 5\% SALES TAX
(217) 344-7596

Energy-Miser

enargy-Miser is a complete heating/cooling analyais program for your home, office or businessi With Enargy-Miser you can calculate haat loss because of poor insulation, leaky doors and windows, poor planning and more. With Energy-Miser you can pradict the annual savings on your utility bilis ior various improvements or modifications, including: use of solar power, better insulation, opening and closing drapery, etc.
But there is even more: Energy-Miser can also calculate your Return on Investmant. That is, you can find your break point for converting to solar, for insulating better, atc. EnergyMiser evan takes into consideration the Energy Tax Creditl Energy-Miser is a program designed to save your money!
Enargy-Miser is a proven program written by a professional and includes a complete user's manual for \$22.50. (Minimum System 16K Level II, No Disk Required)
'TALKING TERMINAL': The 'Talking Terminal' program turns a TRS-80 into a talking computer terminal. The 'Talking Terminal' program receives input from a ramote computer and converts it to spoken words. Its many user options include: Instant Replay, spelfed speech, silent or pronounced punctuation, and more. Minimum hardware: Level II, 16K, Voice Synthesizer, RS-232C board and expansion interface. $\$ 145.00$

P.O. Box 1628

Champaign, IL 61820

trol in response to an input analog voltage level.
Unfortunately, none of these analog circuits is easily controlled by a microcomputer. For microcomputer control, something entirely different is needed.

Computer Control of the Triac

To begin, consider how to connect a microcomputer to a triac. Figure 4 shows a simple circuit for coupling a microcomputer's output to a triac's gate. The coupling device is a Motorola MOC3011 optically isolated triac driver. It consists of a light-emitting diode (LED) and an optically coupled silicon bilateral switch (SBS).

In operation, each microcomputer-generated current pulse through the LED produces a flash of light that trig-

Figure 3: Graph of the current flowing through the triac and lamp. During each AC half cycle, the current begins to flow when the push-button switch is momentarily closed and continues to flow until the current drops to zero. This example shows the push-button switch closed approximately 5 ms after the beginning of each $8.33 \mathrm{~ms} A C$ half cycle.

Figure 4: Electrical isolation between the computer and the triac is achieved with a device containing an LED and a silicon bilateral switch (SBS).

Photo 1: Output of the synchronizer. The waveform was recorded with a vertical scale factor of 1 V per division and a horizontal time base of $100 \mu \mathrm{~s}$ per division. Its zero is at the bottom line of the screen.
gers the silicon bilateral switch into momentary conduction. This sends a current pulse into the triac's gate, turning on the triac for the rest of that AC half cycle. The circuit operates just like the push-button circuit described earlier, except that the push button has been replaced by the silicon bilateral switch, and the triac is now turned on by each microcomputer-generated current pulse.

Electrical isolation is an important feature of this circuit. The MOC3011 permits the microcomputer to control the $120-V A C$ lamp circuit while remaining electrically insulated from it.

How is the microcomputer to generate the properly timed pulses needed to control the triac? Proportional AC phase control requires 120 pulses per second, with each pulse occurring at a controlled delay interval after the beginning of an AC half cycle. Part of this pulse generation can be performed by software, but there is also an important hardware requirement. The microcomputer can produce properly timed pulses only if it knows when each AC half cycle begins. That is, the microcomputer must be synchronized to the AC power line.

This design problem has a two-step solution. The steps are:

1. Design a circuit that generates a pulsed logic-level change at the beginning of each AC half cycle.
2. Use this pulsed logic-level change to signal the microcomputer at the beginning of each AC half cycle.

Figure 5 shows a synchronizing circuit that achieves the goal of step 1. The circuit's output remains at logic 1 (5 V), except when it goes to logic 0 for about 0.4 ms at the beginning of each AC half cycle. This output is the

Figure 5: Synchronizer necessary to provide correct timing reference. IC1 is a zero voltage switch that produces a current pulse (from pin 4) at the beginning of each AC half cycle. This current pulse is optically coupled through IC2 to pull a current pulse through R2, thus generating a momentary logic 0 at the synchronizer's output. For convenience and electrical safety, the circuit shown inside the dotted line should be built into a protected, insulated enclosure.

TO ORDER

By Phone: (415) 848-8233. Visa
MC, American Express
by Moil: Indicate quantily desired. Include payment.
Shipping: Add S1.5O per book (UPS) or $75 c$ (4 th class- allow
4 weeks delivery).
Tax: in California, add tax.
croprocessor interacing is no longer on art. it is a sel of techniques, and in some cases, just a set of components. This book introduces basic interfacing concepts, and then presents in detail implementation fechniques for both hardware and software. It covers the essential peripherals, from keyboard to ficppy disk as well as standard buses (8100 to IEEE 488) and introduces basic troubreshooting techniques. Ret, C2O7, 450pp. Third, (expanded) edilion. \$13.95
pulsed logic-level change required.
How is the microcomputer signaled, as required by step 23 The answer to that question depends on how you plan to complete the design of the AC phase control.

One method is to connect the synchronizing signal to one of the microcomputer's interrupt inputs. Upon receipt of each interrupt, the computer enters a programtiming loop to count off the desired delay. At the end of the delay, the program generates an output pulse to trigger the triac and then waits for the next synchronizing interrupt.
An interrupt-driven microcomputer using programtiming loops can handle very simple AC phase control applications, but this scheme becomes unworkable for even moderately sophisticated programs. This is because a wide-range power control capable of adjusting a lamp from complete darkness to full brightness requires a timing loop that runs nearly the full duration of each AC half cycle, leaving almost no time to execute the rest of the program.
It would be much easier to let the microcomputer simply compute a number representing the delay time required and leave it to a peripheral timing device to actually count off each delay time and trigger the triac.
Now such a peripheral timing device will be discussed.

The Programmable Timer

A programmable timer is a peripheral device designed for connection to the microcomputer bus. It can be con-

FREE Catalog

New 4-way relief from problems with minicomputer supplies and accessories.

1. One-stop shopping.

Inmac (formerly known as Minicomputer Accessories Corporation) has a catalog of Over 1000 products. Everything from racks and lineprinter paper to connectors and cables. Each designed to help keep your minicomputer or word processing system up and running.
2. Hassle-free ordering.

Inmac lets you order by
 mail or phone. So keep this free catalog close. It makes those once-tough tasks like ordering your magnetic media easy, fast and foolproof
3. Fast shipment of just the quantity you need.

Inmac ships your order within 24 hours from centers in California, New Jersey and Texas. In a bind? Call us for the many special services that can get your products to your installation even faster, with no minimum-order requirement.
4. Field-proven quality means precision performance.

Inmac guarantees every product in these 70 pages for at least 45 days. And even some for up to ten years.

Send for your FREE Inmac catalog or call (408) 727-1970 today!

[^2] - 1979 International Minicompuler Accessories Corporation
figured (by software) so that, driven by an external signal (ie: the synchronizing signal discussed earlier), it generates an output pulse after each input pulse. It accomplishes this with the interval between input and output pulses equal to a programmed delay.
This is just what is necessary for an AC phase control. A programmable timer can relieve the microcomputer of all the processing required for delay timing and output pulse generation. With a programmable timer attached, the microcomputer is free to run sophisticated programs that need only load the timer with a new delay number each time a changed delay time is required.
To gain a closer look at the timer's operation, a simplified model will now be examined.
Figure 6 is a diagram of such a timer. In addition to its connections to the microcomputer bus, this timer also has a gate input \bar{G} and an output O. Inside the timer are three addressable registers. They are:

- an 8 -bit, write-only control register used to establish the timer's operating mode (much as a control register configures the operation of a peripheral interface adapter (PIA));
- a 16-bit, write-only latch. Its contents are divided into two 8 -bit bytes, called M , for the most significant byte, and L, for the least significant byte. These two bytes are placed in the latch by the program running in the microcomputer, and they may be changed by the program at any time;

[^3]
CompucolorII. The personal computer for when nimu finamian namuse the enterprising mind. "venineome tas? You meela versatile,

BUY ONE of these great professional books

MINICOMPUTER SYSTEMS, Organiza. tion, Programming, and Applications. By Richard H. Eckhouse, Jr. and L. Robert Morris. 2nd Ed., 491 pp., illus. Updated, revised, and expanded, this is a book for every systems programmer, systems designer, computer scientist, and application specialist who wants to know more about microcomputer hardware, soffware, and design.
787/026 Pub Pr., \$21.95 Club Pr., \$17.75
MICROELECTRONICS: Digital and Analog Circuits and Systems. By Jacob Millman. 801 pp., 700 illus. Exciting news for the thousands of engineers who want a thorough refresher and updating on today's ICs. Will be welcomed by both digital and analog electronics engineers at every level of proficiency
$423 / 27 x$

TOMATIC DATA PROCESSING HANDBOOK. Edited by The Diebold Group. 976 pp., 269 illus. Written by a staff of internationally recognized authorities on ADP, this comprehensive handbook explains systems, programming and the languages, communications processes, and the design and installation of today's computers.
168 /075 Pub Pr., \$38.95 Club Pr., \$25.75
THE Z.80 MICROCOMPUTER HAND. BOOK. By William Barden, Jr. 304 pp., illus., paperbound. This book gives you the entire "state of the art" in microcomputer technology today. Arranged in three convenient and logically developed sections, the book discusses architecture and interface signals, then powerful interrupt sequences of Z-80 and interfacing examples of I/O memory devices.
$784 / 914 \quad$ Pub Pr., $\$ 8.95 \quad$ Club Pr., $\$ 7.60$

HANDBOOK OF OPERATIONAL AMPLIFIER CIRCUIT DESIGN. By D. F. Stout; edited by M. Kaufman. 434 pp., 223 illus. Compact, concise, and highly concentrated, this unique "one-stop" designer's handbook contains an enormous amount of information 617/97X

Pub Pr., \$29.65
Club Pr., $\$ 17.50$
PRINTED CIRCUITS HANDBOOK.
Edited by C. F. Coombs, Jr. 2nd Ed., 634 pp., 595 illus. Covering the subject of printed circuits from the design's idea to final acceptance, this enormously well-received work includes double-sided plated boards through printed boards and also the major variations such as multilayer and flexible circuits.
126 /089 Put Pr., $\$ 32.50$ Clut Pr., $\$ 24.50$
PRINCIPLES OF INTERACTIVE COM-
PUTER GRAPHICS. By William M. Newman and Robert Sproull. 2nd Ed., 544 pp., illus. Now in a revised, updated Second Edition, this is a volume that has long been THE standard source of information for designers! 463/387 Pub. Pr., \$24.95 Club Pr., \$19.95
PROGRAMMABLE CALCULATORS. By Chartes J. Sippl and Roger J. Sippl. 526 pp. illus, $61 / 2 \times 10$ format, paperbound. Profusely illustrated, this book analyzes pocket "programmable" calculators. The authors concentrate on the trade-up models that users will soon be purchasing
$784 / 493 \quad$ Pub Pr., $\$ 13.95 \quad$ Club Pr., $\$ 11.50$
THE 80BOA BUGBOOK: Microcomput. er Interfacing and Programming. By Peter R. Rony, David G. Larsen, and Jonathan A. Titus. 416 pp., with figures, charts, and tables, paperbound. Gives you the basic concepts of microcomputer interfacing and the assoclated microcomputer 1/O programming to develop your own interfaces. For the 8080 user, this book will be invaluable.
783/845 Pub Pr., \$9.95 Club Pr., \$8.45

MICROPROCESSOR PROGRAMMING FOR COMPUTER MOBBYISTS. by N. Graham 783/56X Pub. Pr., \$12.95 Club Pr., $\$ 10.95$

ILLUSTRATED DICTIONARY OF MICROCOMPUTER TERMINOLOGY. By M. Hordeski 786/631 Pub. Pr., $\$ 12.95$ Club Pr., $\$ 10.95$

HOME COMPUTER PROGRAMS. By J. W Trudell. Jr. \& M. Landberg

FUNDAMENTALS OF COMPUTER AL. GORITMMS. by E. Horowitz \& S. Sahni 786/380 Pub. Pr., \$19.95 Club Pr., $\$ 15.95$

ELECTRONICS DICTIONARY. By J. Markus 404/313 Pub. Pr., \$24.50 Club Pr., \$19.50

APPLYING MICROPROCESSORS, New Hardware, Software, and Applications. Edited by L. Ahman \& S. E. Scrupski 191/603 Pub. Pr., $\$ 19.50 \quad$ Club Pr., $\$ 15.50$ 57 PRACTICAL PROGRAMS \& GAMES IN Basic. By K. Tracton

MICROPROCESSOR ARCHITECTURE AND PROGRAMMING. By W. F. Leahy 784/612 Pub. Pr., 519.95 Club Pr., $\$ 14.95$

MICROPROCESSOR AND MICROCOMPUTER SYSTEMS. By G. V. Rao
$783 / 659 \quad$ Pub. Pr., $\$ 24.50 \quad$ Club Pr., $\$ 19.50$

THE BASIC COOKBOOK. By K. Tracton 786/615 Pub. Pr., \$7.95 Club Pr., $\mathbf{\$ 6 . 7 5}$

om GET ONE FREE (anuemon samo COMPUTER PROFESSIONALS' BOOK CLUB.

ELECTRONICS ENGINEERS' HAND. BOOK. Editor in Chief, D. G. Fink. 2,104 pp., 2026 illus. Brings together in one instantreference volume the essential principles. data, and design information known today on the components, circuits, equipment, and systems of all the various specialties that make up modern electronics
209/804 Pub Pr., $\$ 52.50 \quad$ Club Pr., $\$ 37.50$
ELECTRONIC GAMES, Design, Pro. gramming and Troubleshooting. By W. H. Buchsbaum and R. Mauro. 335 pp., 338 illus. Information you need to design, program, and troubleshoot electronic games is right here in this widely popular hands-on guide. $087 / 210 \quad$ Pub Pr., $\$ 17.50 \quad$ Club Pr., $\$ 14.00$
MEMORY DESIGN: Microcomputers to Mainframes Edited by LAURENCE ALTMAN. 192 pp., illus., $81 / 2 \times 11$ format Keep "up" with memory chips. through this collecfion of key ar licles from Electronics magazine. Data. diagrams. and discussions put all the technology to work for you in one authoritative book-a volume so up to date. it's a pleasure 10 use.
191/549 Pub. Pr., $\$ 18.50 \quad$ Club Pr., $\$ 15.50$

PROGRAMMING LANGUAGES. By Allen B. Tucker, Jr. 439 pp., illus. Gives you not only the princlples of design but the applications of six major programming languages. Shows you their strengths and weaknesses in solving various representative "benchmark" problems. 654 /158 Pub Pr., \$22.00 Club Pr., \$16.50

MICROCOMPUTERS/

MICROPROCESSORS

Hardware, Software, and
Applications. By John L. Hilburn and Paul N. Julich. 372 pp., illus. Expressly created for people involved in the design, use, or maintenance of digital systems using microcomputers. The authors describe the theory and workings behind microprocessor architecture, read-only memory (ROM), randomaccess memory (RAM), and input/output interfacing methods.
771/449 Pub Pr., $\$ 22.50 \quad$ Club Pr., $\$ 16.50$
LOGIC DESIGNER'S MANUAL. By John D. Lenk. 504 pp., illus. Written for logic IC users rather than for designers of logic ICs, this book uses time-tested existing commercial logic ICs to solve all design and application problems. 784 / 671

Put Pr., \$18.95 Clut Pr., \$15.75
HOW TO DESIGN AND BUILD YOUR OWN CUSTOM TV GAMES. By David L. Heiserman. 544 pp., illus. Shows you how to create and build TV games from scratch and
modify the ones you already have.
$786 / 585 \quad$ Pub Pr., $\$ 14.95 \quad$ Club Pr., $\$ 11.95$

MICROPROCESSOR

APPLICATIONS MANUAL. By Motorola Semiconductor Products, Inc. 720 pp., illus., $81 / 2 \times 11$ format. With nuts-and-bolts practicality, this manual by the Motorota people (who should know) gives you detalled applications information on microprocessors and assumes no prior knowledge on your part about MPUs 435/278 Pub Pr., $\$ 38.00$ Club Pr., $\$ 26.50$

PERSONAL COMPUTING: Hardware and Software Basics ELECTRONIC BOOK SERIES. 224 pp., 175 illus., outsized $81 / 2 \times 11$ format Gives you comprehensive guidance to the present state of the art in personal computers - an overall survey of the technology, and methods available to perform various tasks, facts about the work others are doing - and just how they are doing it. 19V514 Pub. Pr., \$14.95 Club Pr., \$11.95

ENCYCLOPEDIA OF COMPUTER SCI. ENCE. Edited by Anthony Ralston and C. L Meek. 1,500 pp., 60 illus., 100 charts, 7×10 format. This first and only in-depth coverage of the entire field of computer science in a single volume is comprehensive and completely up to date
769 /01X Pub Pr., $\$ 60.00 \quad$ Club Pr., $\$ 39.95$
ANALOG SYSTEMS FOR MICRO. PROCESSORS AND MINICOMPUTERS. By Patrick H. Garrett. 248 pp., illus. Explores all possibilities for analog systems in one applications oriented volume - with many specific examples.
$786 / 496 \quad$ Pub Pr., \$18.95 Club Pr., $\$ 14.95$

Choose any one of these books at the special club discount, and select any other as your gift Free of Charge when you enroll.

Why YOU should join now!

- BEST BOOKS IN YOUR FIELD - Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the latest books in your field.
- BIG SAVINGS - Build your library and save money too! We guarantee savings of at least 15% off publishers' list prices on every book. Usually $20 \%, 25 \%$ or even higher!
- BONUS BOOKS - You will immediately hegia to participate in our Bonus Book Plan that allows you savings between $70-80 \%$ off the publisher's price of many books.
- CONVENIENCE - 14 times a year you receive the Club Bulletin FREE, fully describing the Main Selection and alternate selections, together with a dated reply card. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection - or no book at all - you simply indicate it on the regular reply card and return it by the date specified. You will have at least 10 days to decide. If, because of late mail delivery of the Bulletin you should receive a book you do not want, just return it at the Club's expense.

As a Club menber, you agree only to the purchase of four books (including your first selection) over a two-year period.

Computer Professionals' Book Club

P.O. Box 582, Hightstown, New Jersey 08520

Please enroll me as a member and send ma the twa books indicated, alling me for my first selection only at the discaunted member's price, plus tocal tox. postage ond handing it not satisfied, I may relurn the dooks within 10 days and my membership will de conceled I agree to purchase a minimum af 3 additonal books during the next 2 yeors os outined under the club plan described in this od. Membership in the club is continuous but cancellable by me ony lime after the tour book purchose requirement nos been furfilied

Orders from outside the US must be prepaid with internotional money orders in U.S dollors
Chorge my \square VISA \square MASTER CHARGE Exp Date
Ciedit Cord \# \quad MC Bonk \#
Signoture
Name
Address
Cily State. Zip
Corporote Alfiliotion
This order subject to acceptonce by McGraw-Hill All prices subject to change wimout notice. Otfer good oniy to new members A postoge and nonding charge is added to all shipments.

- a 16-bit, read-only counting register. A momentary logic 0 at the timer's gate input causes this register to be loaded with bytes M and L from the latch. The counting register then decrements on each cycle of the microprocessor clock. When the count reaches zero, a voltage pulse is delivered to the timer's output. Details of this operation will be described shortly.

For this application, the synchronizing signal should be connected to the timer's gate, and the timer's output used to trigger the triac.

Now examine the timer in detail by stepping through one cycle of its operation:

1. Upon receipt of a momentary logic 0 at its gate, the timer loads its counting register from the latch (without changing the number stored in the latch). If it is not already low (logic 0), the timer's output goes low.
2. The output remains low for an interval equal to $(M+1) L+1$ periods of the microprocessor's clock. At
the end of this interval, the timer's output goes high (logic 1).
3. The output remains high for L periods of the microprocessor's clock. At the end of this time, the output again goes low.
4. The output remains low until another momentary logic 0 at the gate starts the cycle again.

This timing sequence is illustrated in figure 7 and example outputs are shown in the photo 2 sequence.

For this application, it is convenient to make L a fixed quantity and let M range from hexadecimal 00 to FF . This choice allows you (1) a fixed output pulse width LT, regardless of the delay chosen, and (2) program control of the timed delay by specification of a single 8 -bit byte M.

How is the size of L chosen? The time for one complete cycle of the timer is:

$$
\begin{aligned}
\text { Timer cycle } & =\text { Delay time }+ \text { Output pulse width } \\
& =[(\mathrm{M}+1) \mathrm{L}+1] \mathrm{T}+\mathrm{LT} \\
& =(\mathrm{M}+1)(\mathrm{L}+1) \mathrm{T}
\end{aligned}
$$

Photo 2: This series of photos shows how the timer's output pulses lag behind those from the synchronizer and how the alternating voltage across the lamp is determined by the delay value contained in the timer latch. The numbers indicate the hexadecimal value. The top row of photos shows how the timer's output pulses lag those from the synchronizer by a time proportional to the delay value. The synchronizer's output is the series of negative pulses across the top half of the screen, while the timer's output is the series of brief positive pulses (blips) across the bottom half. Both waveforms were recorded with a vertical scale factor of 2 V per division and a horizontal time base of $2 m s$ per division. The synchronizer's output has its zero at the screen's horizontal center line, while the timer's zero is at the bottom line.

The bottom row of photos shows the alternating voltage across the lamp as determined by the delay value in the timer's latch. The waveforms were recorded with a vertical scale factor of 50 V per division and a horizontal time base of 2 ms per division.

Figure 7: Timer input and output pulses in the single-shot, dual 8 -bit operating mode. The output pulse begins at time $t=$ $[(M+1) L+1] T$ after the input gate pulse, where:
$M=$ most significant byte loaded from the timer latch into the counting register
$L=$ least significant byte loaded from the timer latch into the
counting register
$T=$ period of microprocessor clock

Now...
 You, the small systems user can enjoy the advantages of HI -performance low cost computer graphics

41PL(9)T Digital Ploters

The perieci smalf system output dovice
C. Displays data in easy to read graphtaal format
8. Bơth berlal anthe parallal inpute buftivint
 (DNAA)

- Plotimgispeed ypr to Predite (00\% mimjoer sect
- Mimportution of both $\mathrm{Q} . \mathrm{Dit}$ and 0.00 m. (0.1 mm arid 0a mm)
$[7] P \Delta D^{\text {Digltizars }}$

The perfeot small syetom Inpus device
0. Pesalution and repeatablity of $0.005 \mathrm{ln}, Y 0.1 \mathrm{~mm}$

* Orighas completily didylatabto
- AG232C and 8 ${ }^{3}$ bit parrift-inte Plice selactab the ther corn akd

O Optionalite-display phow satuil velues beino dnpetries

For complete Information contact Houston Instrument, One Houston Square, Austln, Texas 78753. (512)837-2820. For rush literature requests persons outside Texas call toll free 1-800-531-5205. In Europe contact Houston instrument, Rochesterlaan 6, 8240 Gistel Belgium. Phone 059/27 7445.
 insimhturl
"the graphics - reconder company"

circl 38 on inguiry card.
TM Frademarin dh hobleton instrumien *if. 8 Domeatió Prico Only

If the maximum value of M is hexadecimal $F F$ or decimal 255 , then the maximum time for one cycle of the timer is:

$$
[\text { Timer cycle }]_{\max }=256(\mathrm{~L}+1) \mathrm{T}
$$

Each AC half cycle has a duration of $8333 \mu \mathrm{~s}$. If you wish one cycle of the timer at maximum delay to just equal one $A C$ half cycle, you must have:

$$
8333 \mu \mathrm{~s}=256(\mathrm{~L}+1) \mathrm{T}
$$

which requires that:

$$
\mathrm{L}=\frac{8333 \mu \mathrm{~s}}{256 \mathrm{~T}}-1
$$

The value picked for L clearly depends on the period T of the microprocessor clock. For example, if the clock period is $2.5 \mu \mathrm{~s}$ (for a 400 kHz clock), the computed value for L is:

$$
\mathrm{L}=\frac{8333 \mu \mathrm{~s}}{256(2.5 \mu \mathrm{~s})}-1=12=\text { hexadecimal } O C
$$

Using this computed value for L does not work in practice. This is because an intentional, small delay in the synchronizer causes the timed cycle actually to begin about $100 \mu \mathrm{~s}$ after the start of each AC half cycle, thus slightly reducing the time remaining in the half cycle for the timer to operate. However, for this particular example, a value of $\mathrm{L}=11=$ hexadecimal $O B$ does work well.

For this example, the timer's output pulse width therefore is:

$$
\mathrm{LT}=11 \times 2.5 \mu \mathrm{~s}=27.5 \mu \mathrm{~s}
$$

Figure 9: Circuit for connecting one timer output to the AC circuit it controls. The AC phase-control circuit contained within the dotted lines should be built into a metal box, and the triac's isolated mounting tab securely fastened to the inside wall of the box. (Substitution of a different triac without the isolated mounting feature will require the use of special mounting hardware to electrically isolate the triac from the wall of the enclosure.)

Table 1: Register selection in the MC6840 programmable-timer module.
pendent timers, it is possible to control three different AC circuits.

Each timer in the MC6840 also has its own externalclock input (pins $\overline{\mathrm{C} 1}, \overline{\mathrm{C}} 2$ and $\overline{\mathrm{C} 3}$) for use when timer-counting frequencies different from that of the microprocessor clock are needed. The external-clock inputs are not needed in this application.

Table 1 describes register selection in the MC6840. The MC6840 contains ten addressable registers. Nine of these are the control registers, timer latches, and counting registers for the three timers. The tenth is a status register containing interrupt flags. The status register will not be used.

The three register-select inputs RS0, RS1, and RS2 should normally be connected to the microcomputer's low-order address lines $A 0, A 1$, and $A 2$ respectively. Because the control registers and the timer latches are all write-only registers, while the counting registers and the status register are all read-only registers, the R / \bar{W} input in effect serves as a fourth register select line. This feature precludes the use on MC6840 registers of any MC6800 processor instructions that operate directly on memory. Examples of such instructions are INC (increment), DEC (decrement), and CLR (clear).

The next section examines in detail how the MC6840 is programmed for proportional AC phase control.

System Power-Up

A system power-up or a momentary low-logic level on the MC6840's RESET line causes the following actions:

- All three timer outputs are set low.
- All three timer latches are preset to hexadecimal FFFF, and the three counting registers are loaded from the latches.
- All three control registers are cleared, except that bit 0 of control register 1 is set. Setting this bit causes all three counting registers to be held in their preset state, so that the timers do not run.

Timer Initialization

The MC6840 is a versatile device with several
operating modes. This application requires that each timer in the MC6840 be configured for single-shot dual 8 -bit operation. The MC6840 is initialized for this application by loading hexadecimal B6 into control register 3 (CR3), hexadecimal B7 into control register 2 (CR2), and hexadecimal B6 into control register 1 (CR1).
The order in which these registers are loaded is important. Control registers CR3 and CR1 share a single address space, with bit 0 of CR2 selecting whether control register CR3 or CR1 is accessed (CR2 bit 0 cleared selects CR3; CR2 bit 0 set selects CR1).
For example, if control registers CR3 and CR1 share address hexadecimal 8000 and CR2 occupies address 8001 , then (recall that CR2 bit 0 is cleared on system power-up or RESET) an appropriate initialization sequence is the following sequence of MC6800 instructions:

LDA A	\#\$B6	Control word for CR3 Control word for CR2
LDA	B	\#\$B7

Loading the Timer Latches

With the MC6840 initialized and the program running, the brightness of each lamp is controlled by the number stored in its associated timer latch. If not disturbed, these numbers remain unchanged, and the lamps glow with constant brightness. To change the brightness of any lamp, it is necessary only to load a new number into its timer's latch.
It is important that the two bytes of each timer latch be loaded in the proper order. Although table 1 may lead you to believe that the most significant bytes of the three latches have three different addresses, in reality these three addresses lead to a single 8 -bit buffer. To load a particular latch, this buffer register must first be loaded with the most significant byte. Then, when the least significant byte is loaded into space L of the latch, the buffer's contents are automatically transferred to the latch's space M.

For example, suppose the three timer latches occupy hexadecimal addresses 8002 through 8007 , and are assigned as follows:

M1: 8002
L1: 8003
M2: 8004
L2: 8005
M3: 8006
L3: 8007

If you wish to load M1, M2, and M3 with new delay numbers DELAY1, DELAY2, and DELAY3 but leave L1, L2, and L3 unchanged with hexadecimal 1E stored in each, the program sequence that would accomplish this is:

LDA	A	DELAY1
LDA	B	$\# \$ 1 \mathrm{E}$
STA	A	$\$ 8002$
STA	B	$\$ 8003$
LDA	A	DELAY2
STA	A	$\$ 8004$
STA	B	$\$ 8005$
LDA	A	DELAY3
STA	A	$\$ 8006$
STA	B	$\$ 8007$

It is important to understand that, even though L1, L2, and L3 remain constant, it is not possible to avoid reloading a latch's least significant byte each time you want to change its most significant byte. There is no other way to access the most significant bytes of the timer latches.

Controlled Fading

Proportional AC phase control is most interesting when it is used to fade lamps on and off at controlled rates. This has application to theatrical lighting control, planetarium operation, and control of multiple projectors in a slide show.

Controlled fading may be accomplished by using a program-timing loop to slowly increment or decrement a delay number toward some final value set by the program. The fading stops when the final value is reached. Fading up or down resumes when the program sets a new final value.

The basic timing element can be either the microprocessor's clock or a 120 Hz interrupt signal produced by the synchronizer. Of these two choices, I prefer the latter, simply because it is much slower and therefore easily used to achieve slow fading rates.

But even 120 Hz is too fast. If the delay number is decremented 120 times per second, a lamp fading from complete darkness (DELAY $=\mathrm{FF}$) to full brightness (DELAY $=00$) will do so in only 2.1 seconds.

An intermediate register is needed, one which may be incremented or decremented 120 times per second and the carry or borrow generated is used to increment or decrement the delay number.

Summary

You have been introduced to the basic principles of proportional AC phase control; seen how a triac is used for this purpose and how a programmable timer may be used to drive the triac; and looked closely at the Motorola MC6840 programmable timer module configured for this application. A method of using a program timing loop to slowly fade a lamp up and down in brightness has been outlined. You now have all the information necessary to try this on your own.

In part 2 of this article I shall create a program and circuit example on the Heathkit ET-3400 microprocessor trainer that will perform the lighting control functions discussed so far.

GIVE YOUR APPLE VISION FOR CHRISTMAS!

The DS-65 Digisector* opens up a whole new world for your Apple H. Your computer can now be a part of the action, taking pictures to amuse your friends, watching your house while you're away, taking computer portraits . . . the applications abound! The DS. 65 is a random access video digitizer. It converts a TV camera's output into digital information that your computer can process. The DS. 65 features:

- High resolution: 256×256 picture element scan
- Precision: 64 levels of grey scale
- Versatility: Accepts either interlaced (NTSC) or industrlal video input
- Economy: A professional tool priced for the hobbyist

The DS-65 is an intelligent peripheral card with on board software in 2708 EPROM. Check these software features:

- Full screen scans directly to Apple Hi-Res screen
- Easy random access digitizing by Basic programs
- Line-scan digitizing for reading charts or tracking objects
- Utility functions for clearing and copying the Hi.Res screen

Let your Apple see the world!
DS-65 Price: $\$ 349.95$
Advanced Video FSII Camera Price $\$ 299.00$
SPECIAL COMBINATION PRICE: $\$ 599.00$

APPLE SELF.PORTRAIT
P.O. BOX 1110 DEL MAR, CA $92014714-942-2400$

TARBELL VDS $=10$ vertuen linisk subssetcemu

SYSTEM INCLUDES:

- 2 Siemens 8" Disk Drives
- 1 Cabinet with Fan and Power Supply.
- 1 Tarbell Floppy Disk Interface, assembled \& tested.
- 1 CP/M Disk Operating System.
- 1 Tarbell BASIC.
- All Cables and Connectors.
- Complete User Documentation.
- Fully factory assembled and tested.

VDS-II Single Density . . .\$1888 VDS-IID Double Density $\$ 1999$

TARBELL DOUBLE DENSITY INTERFACE FOR $8^{\prime \prime}$ FLOPPY DISK

Under Tarbell Double-Density CP/M, single and double density disks may be intermixéd. Thie syistem automatically determines whether single or double density is in plaçe.

- Software select single or double density.
- Phase-locked-loop and write precompensation for reliable data recovery and storage.
- On-board phantom bootstrap PROM is disabled after bootstrap operation so all 64 K memory address space is available to user.
- DMA in single or double density permits multi-user operation.
- Extended addressing provides 8 extragddaresis bies, permitting direct transfers anywhere in a magabyte address range.
- Select up to 4 drives, single or dou'blessided",
- New BIOS for CP/M included with intefface on single density diskette.

CP/M is a registered tradfmark of Digital Reseavch.

A Furnace Watchdog

Theron Wierenga
POB 2007
Holland MI 49423

Having recently moved into a new home and being a home computer enthusiast, I naturally began looking for an application for my homebrew microcomputer. During the big snowstorm of January 26, 1978, I was snowed in for four days. This situation encouraged the development of several ideas.

With forty-eight km (thirty mile) per hour winds producing 1.8 to 2.4 m (six to eight foot) snowdrifts alongside of the house, and with emergency food source information being broadcast on the local radio
station, it was natural that I began to think about the heating system in the house. During a conversation with my wife several questions arose, and we dug out an information booklet that had been supplied with the furnace. We also began to record the furnace on-off cycles.

More questions arose. How long was the burner on? What were the cycle times? How much gas did it burn per cycle, and what was the cost of this gas? What would be the effect if I used my fireplaces for heating? How much would additional insula-
tion help, and did it really help to turn the thermostat down at night?

It became obvious that the only way to answer these questions would be to monitor the burner cycles of the furnace on a continual basis. This seemed to be an ideal task for my homebrew 8080A microcomputer. By the time the storm had ended, my notebook contained schematic diagrams of all the additional circuitry that would be needed to interface the furnace burner to the computer, and the first drafts of the necessary software were written.

Photo 1: Interior of the gas furnace. The computer interface circuit board is at the lower left, just to the right of the light green paper tag. The gas solenoid is slightly above the center of the photograph.

Photo 2: The author's homebrew 8080A-based microcomputer system. Two circuit boards of interest have been removed from the card cage and are displayed in the foreground. The real-time clock and cassette interface board is on the left; the programmable read-only memory board is on the right.

About the Author:

Theron Wierenga is a thirty-four-year-old assistant principal at Muskegon High School where he formerly taught physics and computer science. His undergraduate degree in physics is from Hope College, Holland MI. His master's degree is in educational leadership from Western Michigan University.

He has worked during summers at Brookhaven National Laboratory, and for the PLATO group at the University of Illinois at Urbana.

His recreational interests are early US postal history and electronics. He has designed and built many electronic projects, including a homebrew 8080A computer system and an Altair 8800 system. He is presently working on a Mite printer mechanism for a hard copy I/O device. His primary enjoyment comes from building hardware.

Computer

The microcomputer which was used is unique. It was assembled between May 1977 and January 1978, and uses the 8080A microprocessor. The circuitry was packaged on four $41 / 2$ by 6 inch (11.43 by 21.24 cm) wire-wrap boards joined by a motherboard using standard 44-pin double readout edge connectors on 0.156 inch (0.402 cm) centers. The four boards consist of:

8080A central processor ${ }_{\text {a }}$ bus drivers, and a serial I/O (input/output) port using the Intel 8251 programmable communication interface.

4 K byte programmable memory using 21L02-type static memory devices.

8 K byte programmable read-only memory using Intel 2708 circuits.

Real-time clock, Kansas City format cassette interface, and a parallel I/O port.

After some effort and a little hair pulling, it was possible for me to squeeze a copy of Processor Technology's 5K BASIC into six 2708-type programmable read-only memories. A monitor (which resides in another 2708) contains routines to load memory, display memory, jump to a specified address, and begin program execution. The monitor can also fill blocks of memory, move blocks of memory, set the real-time clock, read the real-time clock, print the current time on the terminal, record programs on cassette, and play back programs from cassette.

Konan's SMC-100 Is versat/Ie, fast, cost efficlent. It's the d/ak controller that brings 8 - 100 bus m/cro computers together with large capachty hard dlsk drives.

Versatlle

Interfaces S - 100 bus micro computerswith all fixed or removable media disk drives with storage module (SMD) interfaces. Each Konan SMC- 100 will control up to 4 drives ranging from 8 to 600 megabytes per drive, including most "Winchester" type drives. Up to 2400 megabytes of hard disk per controller! And you can take your pick of hard disk drives: Kennedy, Control Data, Fujitsu, Calcomp, Microdata, Memorex, and Ampex, for example.

Fast

SMC-100 transfers data at fast, 6 to 10 megahertz rates, with full onboard sector buffering and sector interleaving, and a DMA that's faster than other popular S-100 DMA controllers.

Cost afflc/ent

SMC- 100 is priced right to keep your micro computer system micro-priced. It takes advantage of low-cost-permegabyte disk drive technology to make the typical cost less than $\$ 80$ per megabyte.
The OEM / Dealer single quantity price is only $\$ 1650$, with driver ROM option. Excellent quantity discounts are available.

SMC. 100 aval/ab/IIty:

Off the shelf to 30 days in small quantities. (Complete subsystems are on hand for immediated delivery.)

Konan has the'answers. Talk to them today. Call direct on Konan's order number: 602-269-2649. Or write to Konan Corporation, 1448 N. 27th Avenue, Phoenix, Arizona 85009.

1448 N. 27th Avenue • Phoenix, Arizona 85009 • 602-269-2649

Chicago.

Mail order buying is fine for books. But here you get to work with actual machines, feel what they're like, make a hands-on decision, and get instant delivery, to boot.

No watting.

As one of Apple Computer's top national dealers, we maintain a complete stock of hardware, software, courteous help, service when needed, and total support all the time. We make sure your new computer works right before you take it home, that the interfaces and peripherals work, that you understand the documentation, that the bugs are gone, and that you get everything you want. It's all here. Right now.

English spoken.

We speak all the popular computer languages, except gobbledegook. We also happen to be especially skilled at the language of value. For your home or your business.

Money talks.

For instance, this month's special is an entire Apple II Plus "Business Manager's System" (Apple II is a trademark of Apple Computer, Inc.) for the price of the hardware alone. It means you get the Apple II Plus computer with 48 K of RAM, two disk drives, a $9^{\prime \prime}$ video monitor, a Centronics 779 printer and controller, plus all the topquality turn-key business software in the "Controller" package, regularly $\$ 625$. The whole $\$ 4,995$ value is yours for just $\$ 4,370$!

BEM PLENTY MORE.

In fact, you could think of all the Apple II hardware and software advertised elsewhere in this publication as a kind of catalog for our comfortable new store. Then come on in and check it all out in person. (Too bad if you don't live in Chicago or the suburbs. Come on vacation.) 106 E. Oak St., Chicago, Ill. 60611 (312) 337-6744.

Figure 1: Electronic circuit that allows the computer to tell whether the furnace burner is on or off. The mercury switch is contained in the thermostat, and is connected in series with the gas solenoid and a source of 28 VAC electricity. The voltage difference between the contacts of the mercury switch is 28 VAC when the switch is open (when the furnace burner is off), and O VAC when the switch is closed (when the burner is on). When the furnace is off, the phototransistor in the optoisolator conducts in its saturated mode. When the furnace is on, the phototransistor does not conduct.

The only additional necessary hardware was a simple interface to the furnace that the computer could read to determine whether the burner was on or off.

Monitoring Hardware

The only information from the furnace needed by the computer is whether the burner is on or off. This could be supplied to the processor through 1 bit of a parallel input port. Since the computer has a real-time clock, it can then calculate the length of time the burner is on and the amount of gas used. I timed the gas meter over several long periods and found that the furnace took seventeen seconds to burn a cubic foot (28.32 liters) of gas. This measurement was confirmed by figures supplied by the manufacturer of the furnace.

Figure 1 shows how I obtained the one logical bit of information (on or off) from the furnace circuitry. The gas solenoid is connected to a 28 V AC source by the mercury switch in the thermostat. The bimetallic coil in the thermostat tips the switch on as the room temperature decreases, and tips it off as the temperature increases. The contacts of the mercury
switch show 28 VAC when open (furnace burner off) and 0 VAC when closed (burner on).

When the burner is off, the 28 V AC signal is passed to a bridge rectifier made of diodes D1 thru D4. The pulsed DC current is smoothed by capacitor C1 and flows through the light emitting diode (LED) in the optoisolator (OPTO-1), saturating the phototransistor. When the mercury switch closes, no current flows through the LED, and the phototransistor will be in the nonconducting state.

If you have a parallel input port available (actually only one bit of an 8 -bit port is needed), you need only connect point A of the circuit to the input of the least-significant bit (LSB) of the port and point B to the system ground. A 1000 ohm pull-up resistor to the +5 V supply should also be connected to the input. A twisted pair of wires can be used to connect the circuitry in the furnace with the input port on the computer.

My computer did not originally have a parallel input port, so I had to construct a simple one with a minimum of parts. Referring to figure 2, an 8 T 95 three-state buffer was

MicroDaSys Software ${ }^{T M}$ CP/M ${ }^{T M}$ Compatible

The Pencil Sharpener ${ }^{\text {rM }}$ - Now with subscripts and superscripts! The form letter merge utility for the Electric Pencil $I^{\top M}$. $\$ 195$. Order Code: PSI.

Osborne Accounting Packages. Complete CBASIC II source diskettes of the best accounting software at the lowest price. Accounts Payable, Receivable, Payroll and General Ledger. $\$ 99$ each. Order Codes: APO,ARO, PCO,GLO.

6800 and 6809 Cross Assemblers for 8080 and Z80 CP/M Systems. Full Mnemonic assemblers with complete options specification and output formatting. $\$ 89$ each. Order Codes: ASM68, ASM69.

For all software specify format: $8^{\prime \prime}, 5^{\prime \prime}$ North Star, $5^{\prime \prime}$ Micropolis.

We Need Your Help!

An International Company Called MicroDaSys has designed a dynamite solution for the small businessman seeking a computer. We call it the "millie"iM. It's a system that combines the absolute best business sofiware available with fast, dependable hardware.

The "millie" is the smartest buy a small business can make. It comes with the most powerful accounting, word processing and applications software available. And to take advantage of that power, the "millie" uses the 5 -100 bus, eight inch disk drives and the universal CP/M \ddagger operating system. It can be programmed in BASIC, FORTRAN. Pascal and dozens of other languages. Best of all, "millip" prices start at under $\$ 3000$. The one illustrated includes a reproduction-quality printer and full accounling and word processing software for just \$6,995 "Millie" has been in use for over a year in the US. Europe. South America and Australia. It is a proven design, regularly updated as the state-of-the-art advances.

But an international company can't knock on doors. Without branch offices in everv city of the US (and the world) we have the same problem as dozens of other computer manufacturers. We simply can't contact all of the small businessmen who could benefit from our "millie". That's where you come in.

We seek your help. Sell our "millie" as a complete, integrated system to your neighborhood businesses, universities, writers and other professionals. If
you're reading this mataylne yous probably have all the expertise required to demonstrate and sell "millies". All that's really cecquired is the molivation to seek out prospective customers and the ability to present "millie's" features to them in a way most under. standahle to them. Put us in your customer's place.

We offer you a piece of the eaciting romputer market, the chance to work with the most sophisticated software and hardware availahle and best of all, a handsome commission and no minimum burchase requirements (not even one!)

It's easy to sell "millies". You will the supported by all international advertising campaign, "dependable system made by a well known manufacturer, and the best documentation available. All you need is the enterprise to seek out new customers and provide them with the support they need (perhaps esarning your own consulting fees) during and after installation. We will even supply you with potential sales leads in your area - Reader Service: Questionaires, Direct Mail Inquiries, and Telephone Respranses. These are peole who want you to sedl them a "millire"' Alt you nued to do is act!

You've got nothing to lose! there are ahscolutely no strings. no mumimum purchasise, no spereial degrees or instruction reguited, no retall slore neeressary. All that is repuired is the sincere desire tes carn money selling our computers. Jonn the fascinating field of computer sales now. The market is ready if you are? Write or call today for vour introductory sales package and complete info.

MicroDaSys S-100 Products

8P2SM I/O Card. Eight 8 -bit parallel 1/O ports with handshaking, one serial RS-232 I/O port, one modem $/ / \mathrm{O}$ port. $\mathrm{Kit} \$ 149$, Assembled $\$ 199$. Order Codes 8P2SMK, 8P2SMA.
MD690a S-100 6800 CPU card. 10 K PROM space, IK RAM, 2400 baud cassette interface, 2 Parallel I/O Ports. Kit $\$ 198$, Assembled $\$ 258$. Order Codes: MD690aK, MD690aA

New!

ColorMaster ${ }^{\text {TM }} 80 \times 25$ Full Color Memory-mapped Video Board. Kit $\$ 399$, Assembled $\$ 499$. Order Codes: CMK, CMA.
4P4S I/O Card. Four 8 bit parallel I/O ports with handshaking, four serial RS-232 or TTL I/O ports. Kit $\$ 199$, Assembled $\$ 249$. Order Codes: 4P4SK, 4P45A.
Super $Z^{T M}$ - The amazing system on a board. Z80 Processor, two parallel I/O ports, serial RS-232 I/O port, counter/timer, 2708/2716 EPROM, and 48K Dynamic Ram -All on one card! Assembled only $\$ 950$. Order Code: sz .

Manuals for hardware and software are $\$ 15$, creditable towards purchase.

6809!

 Single Board Computer

S-100 Compatibility. 6809 Computability

- IK RAM - RS-232 level shifters
- 10K PROM space - 20 I/O lines
- Parellel keyboard input
- Memory-mapped video firmware
- Fully s-100 compatible (including 8080 type I/O)
- MONBUG II monitor included
- 2400 baud cassette interface

\$299 Assembled

\$239 Kit
Order Codes:
MD690bA
MD690bK

Figure 2: A simple input port that can be used to transfer one bit of information concerning the furnace status to the computer. The address of this input port is hexadecimal $O D$, determined by the eightinput NAND gate and the inverter.

this generates the
//OR ON THE S-100 BUS

Listing 1: The "watchdog" program, written in Processor Technology 5K BASIC. Once started, this program loops continuously, monitoring the status of the furnace and printing summary data as required. A flowchart is shown in figure 3.

```
10 REM = FURNACE WATCHDOG
12 REM - TO BE STARTED WITH FURNACE OFF
20 DIM M2(12)
22 I9=0;J9=0;G2=.21149
26 PRINT"INPUT MONTH,DAY"
28 INPUT M9,D9
30 PRINT"LAST DOLLAR TOTAL:"
35 INPUT K
40 PRINT;PRINT
41 REM - GET TIME
42 gOSUB }60
43 52=S
44 REM - STORE # DAYS IN MONTHS
45 FOR C=1 TO 12
4 6 ~ R E A D ~ M 2 ( C )
48 IATA 31,28,31,30,31,30,31,31,30,31,30,31
4 9 ~ N E X T ~ C ~
50 L=0
55 REM - LOOP TO READ INPUT PORT 14
60 T=0
70 FOR C=1 TO 10
80 Z=CALL(12074)
```

used, as the data bus in the computer is bidirectional. A 74LS30 8-input NAND gate and a single inverter decode the input port address, which is $0 D$ hexadecimal or thirteen decimal. The $\overline{\mathrm{I}} \mathrm{OR}$ signal from the Intel 8228 bus driver gates the input signal onto the bus. This $\overline{\mathrm{I} / \mathrm{OR}}$ signal can be duplicated in an S-100 bus machine by NANDing the input instruction (INP) signal from pin 46 together with the DBIN signal on pin 78.

Real-Time Clock

Before I begin to describe the software used, a few words about the real-time clock will be useful. The real-time clock that is used is my own design, and is unique to this computer. Any type of real-time clock could be used in the system. It makes no difference whether or not it uses extensive hardware, software timing loops, interrupts, etc- as long as the processor can obtain the time upon request and be able to convert this into the time of day in absolute daily elapsed seconds (ie: time of day 00:00:00 equals 0 seconds, time 02:03:04 equals $2 \times 3600+3 \times 60+$ $4=7384$ seconds and time 23:59:59 equals 86,399 seconds). A subroutine is used in the BASIC program (in listing 1) beginning at line 600 to derive the absolute time in seconds from the twenty-four-hour real-time clock. Regardless of the type of realtime clock you use, some sort of subroutine will be necessary to calculate the time in absolute seconds. It is also very convenient to have a routine that prints out the current time in traditional form on your terminal.

Software

The main program used by this system (listing 1) is written in BASIC. The BASIC interpreter used is Processor Technology's 5K BASIC. Simply stated, the program continually monitors the furnace burner's state, and each time it shuts off, the computer prints out a line of information on the furnace's last burn cycle. A burn cycle is defined as the interval between two burner-off events.

To eliminate errors induced by switch bounce, ten read operations are done in sequence from the input port. If all of the ten inputs represent the same on or off state, then the pro-

Solve your personal energy crisis. Let VisiCalc"Software do the work.

With a calculator, pencil and paper you can spend hours planming, projecting, writing, estimating, calculating, revising, erasing and recalculating as you work toward a decision.

Or with the Personal Software ${ }^{\text {te }}$ VisiCalc program and your Apple* Il you can explore many more options with a fraction of the time and effort you've spent before.

VisiCalc is a new breed of problem-solving software. Unlike prepackaged software that forces you into a computerized straight jacket, VisiCalc adapts itself to any numerical problem you have. You enter numbers, alphabetic titles and formulas on your keyboard. VisiCalc organizes and displays this information on the screen. You don't have to spend your time programming.

Your energy is better spent using the results than getting them.

Say you're a business manager and want to project your annual sales. Using the calculator, pencil and paper method, you'd lay out 12 months across a sheet and fill in lines and columns of figures on products, outlets, salespeople, etc. You'd calculate by hand the subtotals and summary figures. Then you'd start revising, erasing and recalculating. With VisiCalc, you simply fill in the same figures on an electronic "sheet of paper" and let the computer do the work.

Once your first projection is complete, you're ready to use VisiCalc's unique, powerful recalculation feature. It lets you ask "What if?", examining new options and planning for contingencies. "What if" sales drop 20 percent in March? Just type in the sales figure. VisiCalc instantly updates all other figures affected by March sales.

Circle 46 on inquiry card.

Or say you're an engineer working on a design problem and are wondering "What if that oscillation were damped by another 10 percent?" Or you're working on your family's expenses and wonder "What will happen to our entertainment budget if the heating bill goes up 15 percent this winter?" VisiCalc responds instantly to show you all the consequences of any change.

Once you see VisiCalc in action, you'll think of many more uses for its power. Ask your dealer for a demonstration and discover how VisiCalc can help you in your professional work and personal life.

You might find that VisiCalc alone is reason enough to own a personal computer.

VisiCalc is available now for Apple Il computers with versions for other personal computers coming soon. The Apple II version requires a 32 k disk system.

For the name and address of your nearest VisiCalc dealer, call (408) 745-7841 or write to Personal Software, Inc.,

592 Weddell Dr., Sunnyvale, CA 94086. If your favorite dealer doesn't already carry Personal Software products, ask him to give us a call.

PERSON NL SOFNKAE

VisICalc was developed exclusively for Personal Software by Software Arts, Inc., Cambridge, Mass

Listing 1 continued:

```
90 T=T+Z
100 NEXT C
110 IF T=L THEN 60
120 IF T=10 THEN }16
130 IF T=0 THEN 210
140 GOTO }6
150 REM - GAS ON ROUTINE
160 GOSUB 600
170 G=S
180L=10
190 GOTO }6
200 REM - GAS OFF ROUTINE
202 REM - DO CALCULATIONS ANII PRINT OUT LAST BURN CYCLE
2 1 0 ~ G O S U B ~ 6 0 0 ~
215 REM - HAS TIME CROSSEI MIDNIGHT
220 IF G<S THEN 250
230 I=86400-G+S
240 GOTO 260
250 I=S-G
260 J=(I/17700):#G2
262 19=19+1
264 J9=J9+J
265 K=K+J
266 REM - HAS TIME CROSSED MIDNIGHT
268 IF S2`S THEN 274
270 D=86400-S2+5
272 GOSUB 500
273 GOTO 275
274 I=S-S2
275 R=(I/D):*100
280 0=CALL (6262)
288 PRINT TAB(1),M9,"/",D9,
290 PRINT TAB(11),"On",INT((I/60)*100)/100,"Min.,",
292 PRINT TAB(27),INT(R*10)/10,"% of",INT((D/60)*100)/100,
294 PRINT TAB(43),"Min. cycle f",INT((J+.005)*100)/100.
296 PRINT TAB(65),"夕",INT((K+.005)*100)/100
298 52=5
300 GOTO 50
4 9 9 ~ R E M ~ - ~ M O N / D A Y ~ U P D A T E ~
500 D9=D9+1
510 IF D9<=M2(M9) THEN 560
520 189=1
530 M9=M9+1
540 IF M9<13 THEN 560
550 M9=1
5 6 0 ~ P R I N T ; P R I N T ; P R I N T ~
5 6 5 ~ P R I N T " D A I L Y ~ T O T A L S ~ - - ~ O n " , I N T ( ( I 9 / 8 6 4 ) * 1 0 ) / 1 0 , " \chi " ~
568 18=19/1700
570 PRINT TAB(16),"Cost is %",INT((I8*G2)*100)/100
575 PRINT TAB(16),INT(I8*10)/10,"CCF Used"
580 PRINT;PRINT;PRINT
585 19=0;J9=0
590 RETURN
599 REM - FETCH TIME IN SEC.
600 D1=CALL(12032)
610 02=CALL (12041)
6 2 0 ~ D 3 = C A L L ~ ( 1 2 0 4 7 ) ~
630 D4=CALL (12053)
640 B5=CALL (12059)
6 5 0 ~ D 6 = C A L L ( 1 2 0 6 5 ) ~
660M=(10*D1+D2):*60+(10*[13+[14)
670 S=M*60+(10*D5+D6)
6 8 0
RETURN
```

Figure 3: Simplified flowchart of the watchdog program given in listing 1. Once started, the program loops continuously, checking the status of the furnace and printing summary data as required.

gram accepts this as a true indication of the burner's status. Figure 3 is a simplified flowchart of the program.
Essentially the program loops continually, looking for a change in the burner status. If there is a change, there are two different flow paths depending on whether the burner has just turned on or turned off. If the burner has just turned on, the current time is stored in the variable G. If it has just shut off, the current time and the value stored in G are used to calculate how long the burner was on and the percentage of time the burner

Even at 5:12 a.m., its hard to quit playing Personal Software's strategy games.

A quick game before turning in can become an all-night session when you load any of the Personal Software '" strategy games into your Apple, PET* or TRS-80.* They'll challenge, teach and entertain you. And now there are two new gamesGammon Gambler ${ }^{\text {'" }}$ and Checker King ${ }^{\text {'" }}$-joining Bridge Partner,'" Time Trek ${ }^{\text {'" }}$ and the best-selling Microchess.'

Gammon Gambler is a sure bet. With ten levels of skill, you can begin a novice and become an expert. Whichever level you play,

Gammon Gambler the computer moves so quickly you don't have to wait. The program follows U.S. tournament rules, and includes the doubling cube to spice up the game. Written for the Apple and PET by Willy Chaplin.
Checker King-you probably forgot how much fun it is! If you move and change your mind, take it back and move again-without a peep from the computer. Play eight skill levels. Add and remove pieces. Save three board positions for later play. And solve three challenging checker puzzles. Written by Michael Marks for the Apple, PET and TRS-80.

Microchess, the most widely used personal computer chess program, is a nearly perfect chess opponent for the total novice or the advanced enthusiast. Written by Peter Jennings for the Apple, PET and TRS-80.

sonal Software programs, go see a demonstration. For the name of your nearest Personal Software dealer, call (408) 745-7841 or write to Personal Software, Inc., 592 Weddell Drive., Sunnyvale, CA 94086.

Bridge Partner. You against the computer in over 10 million different hands of contract bridge. You can even specify the hands' high card points. Written by George Duisman for the Apple, PET and Level II TRS-80.

Time Trek is easy to learn, difficult to master and impossible to forget. Take command of a starship in real-time action to make the galaxy safe again. PET version by Brad Templeton. TRS-80 program by Joshua Lavinsky.

Personal Software, Inc., also produces the VisiCalc' ${ }^{\prime \prime}$ program (the software that's

Checker King revolutionizing personal computing), CCA Data Management System, the Vitafacts series and other exciting software for the Apple, PET and TRS-80. Now that you've read about the Per-

Apple is a irademark of Apple Computer, Inc.; PET is a trademark of Commodore Business Machines, Inc.; TRS-BO is a trademark of the Radio Shack Division of Tandy Corp Circle 47 on inquiry card.

Table 1: Use of variables in the BASIC program of listing 1. The physical items of data represented by each variable are shown here. During leap years (such as 1980), the array M2 must be modified to reflect the greater number of days in the month of February.

D	Number of total seconds in the previous burner cycle, from last burner-off event to cur- rent burner-off event.
D1	Most significant digit (MSD) of current time; number of tens of hours.
D2	One digit of current time; number of units of hours.
D3	One digit of current time; number of tens of minutes.
D4	One digit of current time; number of units of minutes.
D5	One digit of current time; number of tens of seconds.
D6	Least significant digit (LSD) of current time; number of units of seconds.
D9	The current day of the month.
G	Absolute daily elapsed time in seconds that the burner was on in the current cycle.
G2	Cost of gas in dollars for 100 cubic feet (2832 liters).
I	Number of seconds the burner was on in the previous cycle.
I8	Total number of units of gas used for the day, one unit $=100$ cubic feet (2832 liters).
I9	Accumulated number of seconds the burner has been on during the day.
J	Cost, in dollars, for the previous burner cycle.
J9	Accumulated cost of gas for the total day.
K	Accumulated total cost of gas since the program was started.
L	Set to zero if the burner is currently off, set to ten if the burner is currently on.
M	Current time in minutes from 00:00:00.
M2	A subscripted array of twelve values containing the number of days in each month, ig-
M9	The current leap years.
R	Percentage of time the burner was on during the previous burner cycle.
S	Absolute daily elapsed time in seconds from 00:00:00.
S2	Time, in absolute daily elapsed seconds, that the burner was off in the previous cycle.
Z	The value returned by a machine language subroutine, set to zero if the burner is off and

was on during the last cycle. A calculation of the cost of the gas used is done, as well as the total running
cost. This information is then printed out on the terminal.

Table 1 describes the physical data

PASCAL/M TM
 PASCAL/M is an implementa. fion of the Standard Pascal programming language de. signed by Niklaus Wirth.

PASCAL/M does all input/output and file manipulation via calls to CP/M. The flle Interface Intrinsics were chosen to promote Pascal program transportability and to provide a brldge between CP/M and the Standard Pascal language definition. In selecting and defining extensions to PASCAL/M, heavy weight was glven to compatlbility with other existing Pascal Implementations. Over 40 extensions to Standard Pascal support:

- Console Cursor Controls
- Type String
- Untyped files (for memory image $1 / 0$)
- Segment procedures (memory sharing)
- String and Character procedures to support insertion, deletion and replacing of character data.

PASCAL/M provides single precision floating point (Type Real). Both integer (16 bit) and long integer ($32 \mathrm{bit}, 9$ digit) arithmetic are supported. An optional version will support the AMD 9511A or the intel 8231 math chips.

PASCAL/M requires 56K RAM and one floppy disk. The package includes diskette with P Code Compiler. Interpreter, and Runtime Library: Pascal User Manual and Report by Jensen and Wirth; and PAS. CAL/M User's Reference Manual. The cost is $\$ 350$. For manuals only - $\$ 35$. Dealer inquires welcomed. Visa/MC.
-CP/M is a rrademark of Digral Research
Digital
2670 Cherry Lane
M8KETII!
(415) $938-2880$
that the variables in the program represent. These descriptions should help in understanding the program's details.

There are eight places where the CALL function is used in the BASIC program. The CALL function branches to a machine language subroutine in the following way. An address (in decimal) is supplied as the argument, and program execution is transferred to that address. Any desired value to be returned to the BASIC program is put in the variable to the left of the equal sign by placing it in the HL register pair before returning from the subroutine. A RETURN instruction at the end of the machine language routine returns control back to the BASIC program. My machine language routines begin at hexadecimal address 2 FOO .

The CALL at line 80 simply reads input port hexadecimal OD and returns either a logical zero or one to denote whether the burner is off or on, respectively.

The CALL at line 280 transfers control to a machine language routine that reads the real-time clock and prints the current time on the terminal in standard form. The variable Q is not used for any calculations, but rather just supplies the necessary syntax for the BASIC interpreter. A subroutine called TTOP, which resides at hexadecimal address 189D in the monitor, is used within this routine as well as in the machine language routines that begin at hexadecimal memory location 2 FOO . TTOP reads the real-time clock and stores the 6 -digit time (as ASCII characters) beginning at hexadecimal memory location 2254.
The six CALLs beginning at line 600 are used to retrieve the individual digits of the current time of day from the real-time clock. The six digits are then used to calculate the absolute time of day in seconds.
The machine language subroutines are shown in listing 2 and are quite straightforward. The subroutines S1 through 56 each read a single digit of the time and return it to the BASIC program in the HL register pair. Subroutine $S 1$ is always the first called, and the actual clock-read operation is done here just once. MASK is used to strip high-order bits from the ASCII character representation of

Oregon
 Software

To the users of OMSI Pascal-l for the PDP-ll:

We are pleased to make available to you the new version (Vl.2) of OMSI Pascal-l. VI. 2 contains many enhancements and improvements, and you will find it easier to operate and even more reliable. The following overview outlines the most significant changes incorporated in the new version. For details, please ask for the V1. 2 Language Specification and User's Guide (s).

Extended precision real arithmetic: a compiler switch causes all real calculations to be carried out with 15 digit precision (standard PDP-ll double precision four-word format). Extended precision is supported on all PDP-ll and LSI-ll processors, and on all operating systems. The precision of the library functions is also extended.
Debugger: the interactive debugger is now entirely Pascal-oriented, and is conversant with all user identifiers, types, scope rules, and the source program. The debugger has the capability, for example, to intercept a fatal error and display the last executed statements, or to accept and store commands for display of variables at a breakpoints.
Profile: if you have ever wondered where your program spends its time, the Profile can produce a listing and show you the number of times every line is executed.

Fatal error recovery: the system error procedure can be replaced by a Pascalcoded routine.

Direct access files: the procedure Seek(file,record) is a builtin procedure, and causes the file buffer to be positioned to any desired record.

File options: many enhancements have been made in file processing, allowing (for example) large buffers and spanned records on RSTS and RTll, and RSX file attributes including variable-length records. The RSTS file support uses 24-bit block numbers for RSTS V7 large file capability. All systems now support a full default filename when opening files.

Fast MACRO: most of the compilation time is actually spent in MACRO and the linking loader. On RSTS systems, a new utility (MAC) performs both of these functions in one-third of the time.

String package: included with VI. 2 is a set of procedures and functions for handling dynamic length character strings. The package is written for portability in Standard Pascal.
Order information: to OMSI Pascal-l licensees in warranty or extended support, VI. 2 is available for the cost of handling, media, and shipping; other parties please contact Anne Smith, Vice-president for Sales.

Yours truly,

Donald Baccus
Vice-president, 'Software Engineering.

Circle 50 on inquiry card.

Computer terminals, business systems, lab components . . . they all need desks and enclosures. That's what we're all about. Computer Furniture and Accessories offers a standard line of furniture suitable for a wide variety of applications. Handsome, rugged, economical furniture in all shapes, sizes and colors. Basic models shipped from stock in days, not months. And we're nice people to deal with. What more could you ask for?

Computer Furniture and Accessories, Inc.
1441 West 132nd Street Gardena, CA 90249 (213) 327.7710

Listing 2: Machine language subroutines that are called by the BASIC program of listing 1, shown here in assembler for the 8080 processor. Routines 51 through 56 each read a single digit of the time from the real-time clock. The digit value is returned to the BASIC program in the HL register pair. S1 is always the first to be called, and the actual clock read operation is done only once. MASK strips the high-order bits from the ASCII character representation of the digit.

8080 MACRO ASSEMBLER, UER 2.0 ERRORS = 0 FAGE 1

NO PROGRAM ERRORS

1
8080 MACRO ASSEMBLER, UER 2.0 ERRORS $=0$ FAGE 2

SYMBOL TABLE

* 01

A	0007	B	0000	C	0001	I1	0002
E	0003	H	0004	L	0005	M	0006
HASK	$2 F 24$	PSU	0006	S1	$2 F 00 *$	S2	$2 F 09 *$
S3	$2 F 0 F *$	SA	$2 F 15 *$	S5	$2 F 1 B *$	S6	$2 F 21 *$
SP	0006	TTOP	189Π				

IC B180
: 102F0000CD9D183A5422C3242F3A5522C3242F3A78 :102F10005622C3242F3A5722C3242F 3A5822C324BF
1102 F 20002 F 3 A5922E60F6F 2600C9DRODE6016F2606
:022F300000C916
: 0000000000
*

MPI presents the perfect answer to your inflation-riddled printer budget. THE MODEL 88T DOT MATRIX PRINTER. The first in a series of new full-capability low-cost printers designed specifically for the general use computer market. The Model 88T is a fully featured printer with a dual tractor/pressure-roll paper feed system and a serial or parallel interface. The tractor paper feed system provides the precision required to handle multi copy fanfold forms, ranging in width from 1 inch to 9.5 inches. For those applications where paper costs are important, the pressure-roll feed can be used with 8.5 inch roll paper. A long-life ribbon cartridge gives crisp. clean print without messy ribbon changing. The microprocessor controlled interface has 80.96 or 132 column formating capability while printing upper and lower case characters bidirectionally at 100 characters per second.

With all of these features, plus quality construction, continuous duty print head and attractive styling, the Model 88T would easily sell at the competition's "under $\$ 1000^{" 1}(999.99)$ tag. But we are offering it for only $\$ 749$; this should make you happy and several hundred dollars richer.

Write for complete specifications and pricing information.

Televideo SMARTCRT TVI 912

Microprocessor Based

Reverse Video
Blinking, Underling
Tabbing
Numeric Keupad Standard
Upper/Lower Case Standard
Protected and Conversation

Modes

Lear Siegler Code Compatible Eight Different \in diting Features One Page of Memory Standard
Single Unit Price $\$ 840.00$
(Quantity pricing available)
Add $\$ 60.00$ for Serial Printer Port
Add $\$ 60.00$ for Second Page Memory
Add $\$ 20.00$ Shipping
Illinois Residents Add Appropriate Sales Tox
Send for additional information, check, money order or C.O.D. certified check to the address below.

... add the sound dimension to your system

 nOiSEMN《ER ${ }^{\circ}$Soundboard Uses Two GI RY 3.8910 I.C.'s to Generate Sound Effects Under Software Control S- 100 Bus Compatible
Breadboard Area Allows Gosy Adoptation to any System
On Board Audio Amplifier
four 8-Bit I/O Ports
1/O Addresses are Switch Selectable
PCB onlu $\$ 34.95$
Send for additional information, check or money order to:

Ackerman

Digital Systems, Inc.
110 North York Road • Suite 208 Elmhurst, Illinois 60126 Tel. 312-530-8992

Illinois Residents Add Appropriate State Sales Tax

Table 2: Example of the output produced by the BASIC watchdog program of listing 1.
 DaILy TOTALS -- On 28%

Cost is 3 14.2 CCF Used
each number to yield the binary value before it is returned to the BASIC program.

The input subroutine begins at hexadecimal memory address 2F2A. Only the least significant bit (LSB) of the byte input from input port OD is used.

Some sample output from the mainline program is shown in table 2. Although a large amount of data is supplied by this program, it is difficult to visualize the trends in the daily consumption of gas without some additional analysis of the data. Therefore, a second BASIC program is used to produce a simple bar chart
of daily gas consumption.
The bar chart program appears as listing 3. Several sets of data, each consisting of three numeric values, are obtained from the "watchdog" program of listing 1. These data sets are entered into the DATA statements beginning at line 500 . Each set is read as the variables H, M, and T , which are the hour and minute the burner shut off after each cycle, and the length of time it was on. The number of data sets should correspond to the number of burner cycles in the day being charted.
An array D of 144 entries is created. Each entry represents ten

: PRODGY YOUNG AND BRILLIANT

The result? Incredible speed and storage capacity and economical systems development and maintenance.

Abstract

. . . "Though it may look like many other microcomputer systems - . . . Prodigy One literally speeds away from them." - . . Max Schindler, Software EditorELECTRONIC DESIGN.

Your local Prodigy dealer maintains an extensive library of field proven application software. Available applications include General Ledger, Accounts Receivable, Accounts Payable, Payroll, Medical Billing, and a remarkable system for the Personnel Placement Industry. All are easy to use yet provide a level of sophistication unheard of in its price class. And Prodigy also does word processing!
Prodigy systems are supported by a nationwide organization of thoroughly trained, experienced professionals. Your Prodigy dealer is a SINGLE source for hardware, software and a level of service that continually insures effective, trouble free operation
Speed, sophistication, and low cost; an incredible combination for a small business computer. Would you expect less from a prodigy?

AN OPEN LETTER ON THE TEXAS INSTRUMENTS TI-99/4 HOME COMPUTER
It's a fact that the new TI-99/4 is the most sought after home computer on the market today. However, the demand far exceeds the factory's ability to produce them, so they will be in shopt supply, for all dealers, for the foreseeable future.
As a practical and equitable solution, CTC has sot up a priority shipping schedule for our customers.
Here's how it works.
You send us your order for a TI-99/4, with a $\$ 150$ deposit (cash or credit card). Upon receipt of your order and deposit, we record your name and the date it is received on our priority list, and send you a confirmation of its receipt and your position on the priority list by return mail.
As we receive our allocation of TI-99/4's we will ship them to our customers according to their position on our waiting list. Simply stated, it's First Come, First Served.'
Safeguards:
You may cancel your order any time upon 30 days written notice and receive a full refund of your $\$ 150$ deposit.
You may call us at any time and we will tell you your position on the list, and our best estimate of when you can expect delivery.
CTC'S DISCOUNT PRICE \$1099

The Computer People
San Diego's largest Discount Computer \& Calculator Store. 5560 Ruffin Road. San Diego, CA 92123
Please ship me the followidey merchaalize.
TI HOME COMPUTER PRODUCTS
PHCOOMM TI. $59 / 4$ Homs Compuler
$\begin{array}{ll}\text { Prazoon } & \begin{array}{l}\text { Deposit } \\ \text { Duan Cossente Cablit }\end{array} \\ \text { PMP1100 } & \end{array}$
PMP 1100 Rumolt Comerrals (Puin)
PAP 1500 Speech Syanthesies
COMMAMD MODULES
PHM 3000 Diagnostic
PHM 3001 Dempmataion
PHM3001 Demonstration
PHM 3002 Ealy Learning Fun
PHM3003 Begnowny Grammer
PHM3004 Number Magic
PhM3005 Videa-Gruphs
PHM3006 Hame Financial Decisions
PHM3007 Houssihold Budget Mansagemem

- PHM3009 Foothall

PHM3010 Physcial fitness

Street or P.O.
City
88

Listing 3: BASIC program that prints bar graphs from data accumulated by the watchdog program of listing 1. An example of the output of this program is shown in figure 4.

```
100 REM - BAR CHART PRINTOUT FOR
110 REM - FURNACE WATCH DOG
120 REM
130 DIM D(144)
135 REM - SET ARRAY TO ZERO
140 FOR I=1 TO 144
150 D(I)=0
160 NEXT I
165 REM - READ TIMES
170 READ H,M,T
175 IF T=0 THEN 250
177 REM - CALCULATE PLACE IN ARRAY
178 REM - AND LENGTH OF TIME ON
180 X=H*6+INT((N/10)+.5)
190 T=INT((T/10)+.5)
200 IF T>O THEN 220
210 T=1
212 REM - FILL ARRAY UHEN ON
220 FOR I=X TO X-T+1 STEP -1
230 D(I)=1
240 NEXT I
245 GOTO 170
250 RESTORE
252 GOSUB 400
254 REM - PRINT OUT ARRAY AS 144 BARS
255 FOR J=1 TO 144
258 REM - CR IF=0
259 REM - BAR IF=1
260 IF D(J)=0 THEN 300
270 FOR K=1 TO 30
280 PRINT"X".
290 NEXT K
291 REM - PRINT TIME ON LAST BAR
292 IF D(J+1)<>0 THEN 300
294 READ H,M,T
296 PRINT" ",H,"HRS.",H,"MIN.",
300 PRINT
310 NEXT J
315 GOSUB 400
320 STOP
399 REM - PRINT LINE OF IIASHES ROUTINE
400 FOR Z=1 TO 40
402 PRINT"-",
4 0 4 ~ N E X T ~ 2 ~ I ~
4 0 6 ~ P R I N T ~
408 RETURN
500 DATA 1,50,9.78,2,26,11.23,3,1.11.31,3,35,11.51,4,9,11.45
510 DATA 4,43,11.65,5,18,11.5,5,53,12.33,7,24,65.9,9,56,10.1
5 2 0 ~ D A T A ~ 1 0 , 3 5 , 1 1 . 8 8 , 1 1 , 1 6 . 1 1 . 2 6 , 1 2 , 0 , 1 0 . 8 8 , 1 2 , 4 5 , 1 0 . 5 , 1 3 , 3 4 , 1 0 . 0 3 ~
530 DATA 14,26,9.7,15,28,9.28,16,32,9.21,17,28,10.53,18,18,11.48
540 DATA 20,44,111.3.21,20,14.43
999 DATA 0,0,0
```

minutes of time during the day. A value of one is assigned to an array entry if the furnace was on during the major part of the corresponding ten minute interval, otherwise the value is left at zero. This array is then printed as 144 lines, which are blank
if the array value is equal to zero and filled in with X_{s} if the value is equal to one. The time is printed alongside the filled-in bar corresponding to the time interval in which the burner shut off. A sample output of the program is shown in figure 4.

 software in the source. Here
from a single

 manual and object contact Techncte 3 percent for Master Charge
on cassette
All orders should includerders). Mas

The particular day shown in figure 4 is February 22 1978. Several interesting features can be determined from the output. The thermostat was turned down sharply before midnight, and the furnace did not come on again until 1:50 AM. The furnace cycled smoothly about every half hour until 5:53 AM. At about 6:30

AM when we arose for the morning, the thermostat was turned up. The burner was on for about one hour. The heat accumulated during this hour was not completely wasted when we left for work at about 7:30 AM , and the thermostat was again turned down. Notice that the burner did not cycle again for about $21 / 2$

Figure 4: Sample output of the bar chart program of listing 3. This provides a graphic record of data obtained from the watchdog program of listing 1.

$X 13$ HRS. 34 MIN.
 $x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x x 2$ HRS. 26 HIN. $x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x 3$ HRS. 1 MIN.

	3 HRS. 35 HIN.

	XXXXXXXXXXX

$X \quad 4$ HRS. 43 HIN.

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 $X X$ ${ }_{x} \times X \neq X$

$$
7 \text { HRS. } 24 \text { MIN. }
$$

$X X$ 15 HRS. 28 MIN.

$x x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x$ 18 HRS. 18 MIN.
${ }_{x} x X$
XIXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 $x \mid x X$ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 ${ }_{x} X$ XIXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

hours. Between 9:56 AM and 6:18 PM (18:18 in 24-hour style), the cycle time lengthened as the outdoor temperature rose, and less energy was needed to maintain a constant temperature. At about 7:00 PM (19:00) we returned home and turned the thermostat up. The furnace ran for about one hour and fifty minutes. After this time it cycled once more before the thermostat was turned down for the evening. The furnace did not cycle again until after midnight.

The burner was on twenty eight percent of the time during this particular day, and 40,210 liters (1420 cubic feet) of gas was burned at a cost of $\$ 3$. The weather was quite harsh. A low temperature of $-18^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{F}\right)$ and a high of $-3^{\circ} \mathrm{C}\left(29^{\circ} \mathrm{F}\right)$ were recorded, and the winds were sixteen to twenty-five km per hour (ten to fifteen miles per hour).

A secondary fact that came out of the data concerns the use of a fireplace in our home. This fireplace is located in the living room, about six meters (twenty feet) around a corner from the thermostat. Whenever the fireplace is burning, even moderately, the living room area and nearby thermostat are kept warm enough that the furnace does not run at all. This encourages a considerable savings, since we use the fireplace often on evenings that we are home.

Conclusion

This system provides an excellent starting point for an individual interested in monitoring the consumption of energy used for heating. An extension of this system might be useful to a homeowner who adds a supplemental solar heating system to the conventional heating system already present in the home. Aside from monitoring the energy used, the computer in this situation could also monitor the solar energy generated. In addition, the computer could also operate the two heating systems, turning on the conventional furnace when there is not enough available solar energy.

Individuals may desire different specific information from the furnace watchdog, therefore they may have to write their own software for a systematic analysis of the data obtained.

Bob admits he thought his computer had reached the limit of its capabilities. Then he discovered the BASIC Compiler from Microsoft.
"It's incredibly fast," he boasts. "Nothing was as fast as my Microsoft BASIC inter-preter-yet this new compiler is actually 3-10 times faster.
"And that's not all", he beamed. "My compiler has the same language features as Microsoft 5.0 BASIC and runs in my 40K CP/M system.'
Bob says, "When Microsoft comes out with a new product, I know it's got to be good. And this BASIC Compiler is the wizard I've been waiting for.
"At last, I can generate relocatable machine language modules from my Microsoft BASIC programs-machine code that's highly optimized. And because the Microsoft macro assembler and loader come with the BASIC Compiler, BASIC programs are easily linked to assembly language subroutines or Microsoft

FORTRAN and COBOL programs.
Just like the pros,' smiled Bob.
"What's more, the compiler generates a fully symbolic listing of the machine language that's generated - a great way for me to learn assembly code on my own."

Bob believes in giving credit where credit is due. "Microsoft turned my BASIC computer into a genuis for $\$ 395$, but I was smart enough to recognize a good thing immediately."

If you want to get the most out of your computer and your BASIC programs, ask for more information on the Microsoft BASIC Compiler. We know you'll compliment yourself on a very smart move.

MICROSOFT

10800 N.E. Eighth Suite 819
 Bellevue, Washington 98004 206/455-8080 Telex 328945
We set the standard.

If you haven't, we'd be surprised if you're using your computer at anywhere near its full potential. Because if it won't determine the most efficient assignment of resources and/or personnel, compute the yields of a bond over different periods, or calculate your income taxes, you might just as well have stuck with a pad and pencil.

The fact of the matter is that you just don't learn to program overnight. Which is precisely why Folio Books Basic Software Library (BSL) was developed. Using simple, straightforward BASIC language, the BSL leads you through every step necessary to input hundreds of useful and entertaining

> There are hundreds of reliable, complete and most of all useful programs in the Basic Software Library
programs. Just punch it into your computer exactly as it appears in the BSL.

But just in case your BASIC may not use one of our functions, we've included an appendix in Volume V which gives conversion statements for

19 different BASICS. Or, to convert your favorite program to Fortran or

Over 116,000 volumes already sold... and two more editions have just arrived!

APL or just about any other language, the appendix in Volume II defines all the statements and parameters used in our programs.

Over 85% of the programs listed in the first five volumes can be executed in most systems with 8 K BASICS and 16 K of free user RAM. If you only have 4 K of BASIC, you can still input 60% of the first five volumes in only 8 K of user RAM.

The Basic Software Library puts hundreds of reliable, complete and most of all USEFUL programs at your fingertips. So don't wait any longer. Feed your computer a good book and start using your system the way it was meant to be used. You won't be alone-over 116,000 volumes of the BSL are already in use. Just take a look at all the programs you could be feeding your system tonight - then CALL Folio Books at (800) 423-4864 (in California, call collect at (213) 795-5224) to order your own Basic Software Library.
It'll be the tastiest meal your system ever had.

Volume 1: Business and Personal Bookkeeping I'rograms $\$ 24.95$
Bond - Computes price and interest for bond purchases.
Building- Analyzes the cost of building design proposals.
Compromal - Compules effective compound interest rates.
Decision 1. Makes a lease/buy decision for vou.
Dodision? - Makes the decision of whether to buy a component or make it.
Depreciation. Calculates depreciation by tour different methods.
Effictint Calculates the most efficient assignment of resources and/or persomel.
thai - Predicts your yearly cash flow. Instimment - Performs monthly installment accounting.
Interest. Computes interest accruals monthly.
Investments - Computes annual rates of return on investments.
Mortpaye - Makes a comparison of morigage terms.
Optimize - Optimizes the layout for plant, shop, office, etc.
Orider - Determines your economic order quantity for inventory ilems.
Ruld - Computes true annual interest
rates.
Re'lirn 1-Computes lessor's rate of

These are just some of the programs contained in the BSL!

[^4][^5]Appendix A: Basic Stntement Definitions
Volume III: Advanced Business Programs $\$ 39.95$
Billing - Performs posting and billing of accounts.
hmentory- Maintains data for inventory records.
Pauroll - Computes payrolls with a full set of deductions.
Risk- Performs a risk analysis on capital investments.
Scherdule 2 - Performs the most elficient scheduling of men and resources to location.
Shipping. Solves the problem of scheduling and assignments.
Stock: - Computes the value of stochs. Suitch - Calculates the effects of a bond switch.
Volume IV: Genernl Purpose Progroms $\$ 9.95$
Bonds - Computes the yields for a bond over different periods.
Funds 1 - Calculates long-term predictions of funds.
Funds 2 - Plots the results of the predictions above.
Go-Moku• Go-Moku: ancient Chinese game of chance.
Life - Life: truly a battle for survival, a real challenge.
Lonns - Calculates annuities, loans
and mortgages.
Popul - Performs propulation projections for defined areas.
Profits - Determines the profitability of a firm's various departments. Qubic - 3-Dimensional Tic-Tac-Toe. Rates - Calculates the effective annu, l interest rate for stated interest.
Sands. Computes savings plan profiles.

Volume V: Experimenter's Programs 59.95

Basetwll • ['lays a full nine innings of baseball.
Compure - Compares lwo groups of data.
Comfil 10. Determines the confidence limits for normal pupulation.
Differ - Compares the difference of the means for data of equal variance. Fonrier - Evaluates the fourier series. hitegers. Computes integers as the sum of other integers
Losic - Determines conclusions from logic statements.
Primes - Factors numbers into their primes.
(hamdrac Solves quadratic equations. Regression 2 - Calculates linear regressions.
Rowlefle" Computerized "wheel of fortune" plays roulette
Stat 10 . Calculates quantities for two groups of paired data.
Stat 11 - Computes sample statistics. Top. Computes cost for surfacing road or driveway
Vary - Performs analysis of a variance table; one-way random design.
Appendix B: Stutement Comersion Algorithns

Volume VI: A Complete Business Progrant 549.95
Lededer - Maintains ALL company accounts and generates financial reports. Includes routines for: Pyrl, Inventors, Depreciation, Accounts Receivable, Accounts 「'avable.

Volume VII: Professional Programs $\$ 39.95$
Chess - Designed to challenge the average player.
Medpil-Complete patient billing system for doctors, dentists. Also permits the maintenonce of a patient history record.

Wdproc - Wordprocessing for law yers, publishers, writers, etc. Write, store and change from rough draft to final copy in a variety of formats.
Volume VIII: Home Owners Program $\$ 19.95$
1040-Ttx $=1040$ Taxpaver's return, itemized or standard deductions. Balamo. Reconciles bank statements. Checkinok - Balances your checkbook Instlo 78 - Computes real cost on fjnanced items.
Deprec 2-Computes depreciation, four methods, any time period.
Appendix C: Favorite Program Conversions
NEW! Volume IX:
Programs for the Traveler $\$ 19.9 .5$ Auto. Expense and mileage (kilometers) calculations.
Cypher. Codes and decodes private messages.
Hurrifac - Hurricane tracking and projection program.
ID - Vehicle identification program Lorama - Loran "A" position program. Nimigate - Computes ninimum time courses.
Omegn - Omega position program. Pafterns - Generates computer pictures. Radar - Vehicle tracking program. $R D F$ - Position location program.

Volume X:

1. A Comprehensive Business Program $\$ 69.95$
The complete software program to deal with virtually any business problem. Contains the following programs:

- Accounts receivable.
- Accounts payable.
- Merchandise inventory
- Check register.
- Fixed assets.
- Payroll.
- Balance and profit and loss sheets.
- Year-end reports.
- Building a data base.
- Sample data.
- ACBS 1 (use)
- Data sheeds.
- Sample business forms.
- Tax updating.
- Basic statements
- Source listings

Order 3 or more volumes and receive a 10% discount; order 5 or more and we pay shipping and handling in addition to your 10% discount.

ORDERING INFORMATION: Call toll-free (800) 423-4864 M-F 11-5 p.m., Sat. 9-12 noon Pacific Time. Mail order: include name, address and telephone. M/C and Visa customers include: your name as it appears on your card, card \#, expiration date. All orders add $\$ 1.00 /$ volume for shipping and handling. California residents add 6% sales tax. We ship UPS unless otherwise requested.

(800) 423-4864 In Califorrin call collect: (213) 795-5224 Folio Books

P.O. Box 4100-H, Los Angeles, California 90041 BSL Also Available at Leading Computer Stores Everywhere.

Editorial continued from page 10 :

what are the typical criteria expected in the modern personal computer? For one thing, systems software is required to use the rich hardware capabilities of the small system. The days of an integer subset of high-level language X with a disk operating system capable of only simple data transfer operations are gone. The modern personal computer user at a minimum requires an extended disk BASIC with files and strings and an operating system with all the appropriate filing, editing and utility amenities. Nearly all the widely advertised systems have this kind of capability.

In what I consider to be the ultimate in usefulness for current computers, we find the high-level language orientation of computers with manufacturer-independent Pascal, C, ANSI standard FORTRAN, and BASIC languages.

The particular case of the UCSD Pascal system is pioneering a machine independence never before seen in computing. Users are driving the mass-produced computer market, with no single company having dominance enough to dictate styles of languages. The success of UCSD Pascal over the past two years as a machineindependent package available from numerous manufacturers is one of the joys of present-day computing. I can edit, compile, and use the operating system on one machine in a manner identical with my interactions on another machine. I use three different computers with totally different hardware processor designs - yet, with UCSD Pascal, the operating systems are functionally identical, so I do not have to switch personalities constantly.

I have demonstrated with friends that it is possible to send object code produced by the UCSD Pascal compiler to other machines where it will execute and behave the same way. The manner of transportation at the hardware level is sometimes via disk media where compatibility exists, and, where different disk formats are involved, we have transferred files through the means of serial RS-232C compatible data connections.

This Pascal-based system is actively supported by a number of manufacturers, now prominently including personal computer manufacturers Apple and North Star as well as the integrated circuit manufacturer Western Digital. UCSD Pascal is available in versions for DEC PDP-11 minicomputer systems (upon which it was originally developed), CP/M-based 8080 and Z80 systems, Motorola 6800 -based systems, and even the Radio Shack TRS-80. On all these diverse hardware configurations - with a working useful criterion of 500 K bytes mass storage, 50 K or more bytes of memory - the same operating system and compilers run, can pass files compatibly between each other, and achieve systems performance sometimes missing from the minicomputers and behemoth computers of today and yesterday.

So with this in mind as the ultimate in off-the-shelf technology, let's summarize: A desirable contemporary personal computer has 64 K bytes of memory, about 500 K bytes of mass storage on line, any old competently designed computer architecture, upper and lowercase video terminal, printer, and high-level languages such as that provided by the UCSD Pascal software system. This is the state of the art in small computing as it stands to date.

Experience the excitement of a new era in computer simulation as you make your landing approach after a practice flight in your FS1. Then return to the skies where enemy fighters are waiting to intercept you.
The FS1 is a visual flight simulator that gives you realistically stable aircraft control. And its beautifully accurate graphics are produced by a high-performance driver capable of drawing 150 lines per second.
Please DO NOT confuse the FS1 with other software claiming to offer flight simulation. The FS1's sophistication, speed, and beauty are way beyond the ordinary.
See the FS1 package demonstrated at your dealer's, or order directly from subLOGIC. Either way, it's only $\$ 25$ plus 75 ¢ for UPS or $\$ 1.50$ for iirst class mail. VISA and Mastercharge accepted.
*16K required. Specify your system: Apple II or TRS-80 Level I or Level II.

The engineering and graphics experts
opening a new era in computer simulation.

A Particular System

The previous discussion of the glowing generalities of our entry into the 1980s with personal computing technologies is only part of the information you need when contemplating a purchase. To provide a concrete example of a particular case, I shall describe the new computer I just bought. First, why did I need a new one? The computer I have been using until recently (a Northwest Microcomputer Systems Model 85/P) executes the UCSD Pascal system, meets all the minimum requirements, and had served me well for nearly a year.

But no computer, however competently engineered, is immune to dumb users like yours truly. As an attempt to get around a relatively minor hardware problem, I managed to plug a terminal into the wrong socket and fry a power supply, possibly worse. After a month of withdrawal symptoms, my frustration level reached such a peak that I had to get another computer. . . . NOW!

INSTANTLY! Thus the genesis of this month's editorial celebrating the existence of off-the-shelf personal computers - when I had the need to get one, a computer was available from a local retailer, and purchased with cash over the counter.

To be sure, I had been contemplating a new computer for some time. I had also been looking into a possible small UCSD Pascal facility for a good friend of mine who desires a computer to handle his local political campaign data processing activities. Thus I had actually priced out a system that was available off the shelf at Bob McGuffie's Computerland store in Nashua, New Hampshire. The system was an Apple II with UCSD Pascal and assorted peripherals. Then, the frustration level rose to exceed my threshold of action during the weekend of the Philadelphia Personal Computing '79 show. On Saturday of that week, I called Bob at his store in New Hampshire to firm up an order for a slightly expanded system.

The order for the system was placed on October 6. I picked up the system on October 11, with all items except an extra set of read-only memories for a second pair of floppy disk drives. Here is what I am now using to write editorials, write various memos involved with my everyday work, explore miscellaneous uses of personal computing, etc:

Apple II Plus Computer with . .
UCSD Pascal Option (64 K total memory),
Serial Communications Interface,
Four 5-inch floppy disk drives (2 controllers, 520 K bytes on line),
Parallel Printer Interface,
D C Hayes Micromodem II, and extra phone line.

To this list of equipment should be added an Integral Data Systems Model 440 "Paper Tiger" printer which I had ordered a month earlier with the intention of using as a scratch printer. Also added to this list is a COPS-10 terminal which was manufactured by the Computer Peripheral Corp, of which several were already owned by BYTE. This set of equipment (including the printer but omitting the cost of the COPS-10 terminal) cost only $\$ 6000$ and, except for two read-only memory parts which arrived ten days later, was delivered off the shelf.

As the Apple Pascal comes delivered, it is oriented

The ORIGINAL Computer People Who KNOW computers and offer EVERYTHING you need in Small Computer Systems

Compare PRICE, QUALITY, DELIVERY, SERVICE and
you'll see why you don't have to look anyplace else!

SUPER

 TEXAS INSTRUMENTS 810 Multi-COpy

We carry a full line of Texas instruments products

LA 34

DECwriter IV Teleprinter $\$ 1095.00$

SINGLE QUANTITY PRICE

We have a full staff of Programmers and Computer Consultants to design, configure and deliver a Turnkey Computer System to meet your specific requirements.
toward use of the Apple II video display, a 24 -line by 40 -character display built into the computer. Because of the short line width and uppercase only characteristics of the built-in Apple II display, I do not prefer to use it as a primary UCSD Pascal terminal. This is no great problem because the clever hardware design of the Apple Pascal option and the documentation which comes with the system make it fairly trivial to reconfigure the UCSD Pascal system for operation via any typical terminal. At bootstrap time, the Apple II Pascal system simply checks to see if a Serial Comunications card is plugged into slot number 3 of the Apple peripheral bus. If so, it uses that card as the system terminal instead of the built-in Apple display. It of course makes default assumptions about the terminal, but these proved to be adequate to check some major points about the interface. The major technical problem was discovering that my terminal generated a default bit in the wrong state when parity was suppressed, and that its cursor addressing feature did not seem to work. The parity default problem was solved by changing a jumper option in the terminal. The cursor addressing problem was solved by a GOTOXY kludge.

Using the Apple II built-in display as a bootstrapping tool, I was able to run the UCSD system's SETUP program to create a SYSTEM.MISCINFO file for the COPS-10 terminal. This mode of operation also enabled me to write a custom Pascal "GOTOXY" procedure which is used by the UCSD Pascal system to do cursor addressing with the particular terminal involved. It turn-

LOGON affers you this excellent small reliable printer at a low introductory price. Every DP-8000 is complete with the latest features: - Adjustable tractors and IK input buffer. Standard features include:
-RS232C, current loop and centronics parallel - 80 columns - 112 char/sec

- 96 char set - 9×7 lont - Bidirectional printing
- Top of form, skip over perfi, out of paper, eight vertical tabs, etc.
a" S 795
Plus S20.00 snipping and handiline.
Terms - check wifh order Allow 3 weeks for delivery

Logoninc.
246O Lemoine Ave.
FortLee, NJ. O7O24 2O1-224-6911
212-594-82O2
ed out that, as a kludge, I had to do cursor addressing with a "home" followed by a sequence of "cursor down" and "cursor right" operations - a technical point I have not yet resolved. The problem that keeps me from using direct cursor addressing is either the inability of the terminal to understand its documented addressing sequences, or the inability of the compiled GOTOXY procedure to emit the cursor escape character. The kludge gets around the problem temporarily at the price of some cursor movement delays. Listing 1 shows the Pascal code which resulted. Since the program was edited and compiled before I had the terminal attached, it uses uppercase only. As I write these notes the cursor addressing kludge remains in the system, slowing down operation of the UCSD system's screen editor during deletions and cursor positioning.

After getting the terminal to work with default parameters I was able to write a Pascal procedure which is compiled and saved as SYSTEM.STARTUP. When

Listing 1: This GOTOXY procedure meets the requirements of cursor control for the UCSD Pascal system, given an Apple II driving a COPS-10 terminal. It uses an inelegant kludge for cursor positioning, one which requires a total of 105 character times to reach the worst case position. Sooner or later it will be replaced when direct cursor control's subtleties are mastered using my terminal. This listing (and listing 2) was produced on the Integral Data Systems Model 440 "Paper Tiger" printer that is attached to the Apple via a parallel printer port. A custom Pascal print utility program is used to transfer files to the printer in formatted form instead of using the system's Filer program.

PROGRAM GOXY;

PROCEDURE FGOTOXY(X,Y:INTEGER);

```
(* COPS 10 - GOTOXY *)
CONST
    HOME = 25;
    DOWN = 10;
    ACROSS = 12;
VAR
    SEND: PACKED ARRAY[0..0] OF 0..255;
    J.I : INTEGER;
BEGIN
    SEND[O] := HOME;
    UNITWRITE(2,SEND,1);
    IF X>79 THEN X:=79
    ELSE IF X<0 THEN X:=0;
    IF Y>23 THEN Y:=23
    ELSE IF Y<0 THEN Y:=0;
    IF Y<>O THEN
        BEGIN
            SEND[O] := DOWN;
            FOR I := 0 TO Y-1 DO
                UNITWRITE(2,SEND,1)
            END:
    IF X<>O THEN
            BEGIN
            SEND[O] i= ACROSS;
            FOR I : = 0 T0 X-1 DO
                UNI TURITE(2,SEND,1)
            END
END;
```

BEGIN (* DUMMY MAIN *)
END.

asuroucs covers he covit

..with new, low-priced printers for small businesses

Now small businesses can have the advantage of Centronics performance. We have new models to meet the needs of small businesses a selection that covers the court. And we've followed-through by pricing them lower than other printers that can't match Centronics' features and reliability.

TOP-RANKED TEAM We understand your small business needs - that's why Centronics has sold more printers to the small business market than anyone else. We have new, fullyfeatured models designed for small business applications. High throughput for inventory control. Full 132-column width for accounts receivable. Versatile forms handling capability
for invoicing, payroll, and statements. Plus excellent print quality for labels and listings. The bottom line: with Centronics, small businesses can have mainframe performance at micro prices.

READY FOR ANY TOUR These printers are designed to deliver maximum in-service time, a key consideration for a small business. And we have the largest worldwide service organization of any independent printer company.

DON'T WRITE - phone Bob Cascarino today at (603) 883-0111, extension 4032, or contact any of our 15 U.S.A. or 9 international sales offices. Centronics Data Computer Corporation, Hudson, New Hampshire 03051.

Listing 2: This is a first cut at the program SYSTEM.STARTUP, which is executed every time UCSD Pascal wakes up on the Apple II with the COPS-10 terminal. It uses direct addressing of memory through a standard Pascal variant record technique isolated in the procedure "set_memory." The memory locations directly addressed from procedure "set_up_cops" are the addresses described for various parameters of the Apple II Serial Communications Interface card.

```
PROCEDURE SEt_UF_COES;
    CONST
        slot=3;
        data_rale_address=1144;
        slor_bils_address=1272;
        parily_address=1400;
        linewidth_address=1784;
        data_bits_arddress=1912;
        op_modes_address=2040;
    PROCEDURE sel_memory (value,address:INTEGER);
        TYPE
            ptr = TCHAF;
            memory_access=(fointer,number );
            memory =
                    RECOFII
                CASE memory_access OF
                    fointer : (a_fointer:ftr);
                    number : (a_number:INTEGER)
                    ENU;
        UAF
            anubute : nemory;
        BEGIN (set_memory)
            anybyte.a_number ;= addresstslot;
            anybyte.a_fointert := CHF(value)
        END;
```

 BEGIN (set_uf_cofs)
 6
 All constants for settins up the Aprle-II serial lerminal fort are determined from information on pases 21 to 24 of the Serial Interface Cardmanual, *WF-A2L0008/030-0012 ... 3/79-10K KF. Fieference is also made to the manual for the COF'S-10 terminal

3
($19200 \mathrm{BF} \cdot \mathrm{S}=1$)
set_nemory 1 ,dala_rate_address) ;
(COFS can use 2. stor bits)
sel_memory ($3,5 \mathrm{lof}$ _-bils_address);
(no farily, no checksum \}
set_nenory ($\left.6, F a r i t y _a d d r e s s\right) ;$
(COPS has 80 character lines)
set_nemory (80, linewidlh_address);
(COFS generates 8 data +1 start bits)
set_memary(9,data_bits_address);
(no linefeed, lower case,no delay,no television)
sel_memory 224 , of_modes_address)
END (set_ur_cors);

BEGIN
sel_up_cops;
WRITELN(\cdot);
WRITELN(");
WRITELN("');
WRITELN('COPS-10 lerminal setur completed');
WRITELN(${ }^{\prime \prime}$);
URITELN(${ }^{\prime}$)
WRI YELN(${ }^{\prime \prime}$);
WRITELN(' ');
WRITELN('AF'FLE-2 Pascal System al BYTE');
WRITELN(");
WRI TELN(" ');
WRITELN(");
WRITELN('Remember to set the date using the Filer');
WRITELN('")
END.
executed, this procedure manipulates the Apple II serial communications port through absolute memory addresses. SYSTEM.STARTUP changes defaults so that the terminal will run at $19,200 \mathrm{bps}$, its maximum rate. In listing 2, the procedure "set_memory" is used to place arbitrary information in arbitrary memory locations; the procedure "set_up_cops" references "set_memory" in order to set up the hardware specific control locations of the serial port in slot number 3 of the Apple. Reading and learning about these system configuration details took about a weekend of work.

As my deadline for this editorial approaches, I have yet to try out the D C Hayes Micromodem with the system, although I expect it will be quite controllable from Pascal programs - perhaps with a link to a short 6502 assembly-language program if I use the read-only memory routines of the modem card.

The printer quite obviously works, as seen by the sample listings. One of my first application tasks was typing in my 1025-line Pascal print utility program as I had used it on my previous UCSD-based system. Only two language related points worked differently on the UCSD version II.O Apple as compared to the UCSD version I. 5 booted through CP/M. First, I found that the intrinsic procedure PAGE(OUTPUT) did not work on my Apple, possibly due to some problem in my use of the SETUP utility to configure the system for my terminal. Second, I
received a syntax error for a statement which had compiled just fine in UCSD Pascal version I. 5 and which the version II. 0 documentation of Apple implies should work: READ(KEYBOARD, anychar) where "anychar" is a variable declared CHAR. I got around both these problems by using the UCSD-specific intrinsic procedure UNITWRITE and UNITREAD, respectively.

This Apple II system with UCSD Pascal demonstrates that the state of the art in small computers is powerful indeed. I was able to walk into a computer store and purchase a full-fledged machine with mass storage, lots of memory, a good high-level language, operating system, and printer. At $\$ 6000$ this fits the bill of being personally affordable yet possessed of those features which make for a complete computer system. Of course there are other computers which are functionally equivalent to this Apple II system. I use its purchase as an example of what the state of the art is at present - a concrete example of my "ideal" abstraction of a personal computer cast into a specific and eminently useful form as a mass-produced product.

Note:

You may have noticed that the familiar "In This BYTE" page is missing from this issue. We have integrated the information from that page into the "In The Queue" page so that readers do not have to repeatedly flip between these corresponding pages.

BUTE is available in microform

Please send me additional information.

Name \qquad
Institution \qquad
Street \qquad
City \qquad
State \qquad Zip \qquad

University Microfilms International
300 North Zeeb Road Dept. P.R.
Ann Arbor MI 48106 U.S.A.

18 Bedford Row
Dept. P.R.
London, WC1R 4EJ England

What Computers Cannot Do

T G Lewis
Computer Science Department
Oregon State University
Corvallis OR 97331

Figure 1: The game of Look is used to illustrate the concept of computability. A piece of cheese (C) is placed in any one of the squares, and a mechanical mouse robot (R) is placed in any other square. The object of the game is for R to find C.

Rapid advances in computing, resulting from the microcomputer revolution, are surprising even experienced computer professionals. A single integrated circuit microprocessor can perform the same number of computations per second as the expensive, large-scale computer of ten years ago. Yet, in a technical sense, both the type of computer and the things that computers are used for seem to have changed very little in the last ten years.

Ten years ago, BASIC was used in a manner similar to that of today, except that more people are now using it. Ten years ago computers had registers and memories to perform calculations; today register and memory costs have decreased fantastically. The cost of computing has declined, making it available to almost everyone. But has computing itself changed?

Can computers do any more today than they could ten years ago? Has there actually been any progress made in computing since Babbage's Analytic Engine, one hundred years ago?

What is meant by progress, and what is meant by computing? If progress is measured by the number of computers sold, the impact on society, or the size of the computer industry, then something has certainly increased and something else has decreased. What effect computers have had on our society is a moot question indeed, but one that I leave for another philosopher.

If computing is measured in terms of the number of machine cycles executed this year as compared to last year, or in terms of the number of programs written, then something has again increased and perhaps something else has decreased (like size or cost). But this kind of reasoning misses the point.
The essence of computing centers on two fundamental questions: (1) what exactly is computable, and (2) is it possible to compute more today than ten years ago? If these two questions can be answered, I believe that we can determine if progress has been made, whether this progress is due to microcomputers or their dinosaur ancestors, the maxicomputers.

Back to Games

Suppose a simple game called Look is played. Look is so trivial that it is easily played by any low intelligence animal. In fact, Look may be played by a simple machine.

A 4 by 4 grid of squares is arranged as shown in figure 1. A piece of cheese is placed in one of the squares and a mechanical mouse is placed in any other square. The mouse is a robot designated by " R "; the cheese is represented by "C." The objective is for robot R to find cheese C . The game immediately poses a problem for robot designers, for they must program R to find C without outside help. How is R instructed to locate C ?
The first area of concern is the simplest program for R. If it is impossible to solve the robot programming problem in a simple manner, a sophisticated solution will probably fail.

Suppose R is designed to move one step in any of directions North, South, East and West. This is called a step action, and the direction is designated by writing STEP W for a single step in the western direction, for example.
Clearly, the robot must know when it has encountered a barrier (wall) and when it has found the cheese. Hence, mouse R is also empowered with a sensor that sets a condition code. Codes Barrier and Found are set by sensors on board R.

The STEP and condition code designs are a start toward a working mouse. They allow the robot to move

[^6]
TRS. 80 MODEL II FORMAT NOW AVAILABLE

DIOITAL RESEARCH ulifitus plus fuil documeniation. CP/M avaitable conliguted for most popular compulef/disk systems includ.
ing : Norn Star Single. Double or Ouad densty. Allar θ^{-} disks. Heloos 11. Exidy Sorcerer, Vector MZ. Heath H17 \dagger
or Ha9 . TRS. $80 \dagger$, ICOM 3712 and COM Micro Disk

$\square \mathrm{MP} / \mathrm{M}$
\$300/550

MAC - 6080 Macro Assembier. Full inlel macro delinalions, Pseudo Ops include RPC. IRP. AEPT. TITLE.
PAGE, and MACLIE. Z-80 library inciuded. Produces Intel absolure hex outpul plus symbols fite for use by SID
(see below)
s85/315
-1 SID - 8080 symbotic debugger. Full trace, pass count and break-pont program lesting syslem witn back-lrace
and hislogram ulifities when used with MAC. provides l full symbolice display of memory tabels and equated val-
N
TEX - Text lormater to create paginated. page-num.
bered and juslified copy from source lext fles. direcianle cred and juslificd copy 10 m source lex lies. dreclian DESPOOL -Program 10 permil simultaneous prining of data from disk while user executes another prograan
from the console

Mierosoft prices al comented.

MICROSOFT

BASIC-80 - Disk Exlended BASIC. ANSI compalible with long variable names, WHILENEND. Chaining. vati-
abte length file records BASIC COMPILER - Language compatible wilh standard Mictosolt relmeatable binary oulput. Includes
Macto-80. AIso finkable to FORTRAN. 80 of COBOL-BO code modules . $\mathbf{\$ 3 5 0} \mathbf{\$ 2 5}$ FORTRAN- 80 - ANSI 66 (except for COMPLEX) plus many extensions. Includes relocalable object cod
phiet. finkng loadet, hibrary wilh manager. Also inctudes
S400/ $\mathbf{\$ 2 5}$ COBOL- 80 - ANSI 74 Relocalable object outpul
Format same as FORTRAN-80 and MACRO-80 mod ules. Complete ISAM. interactive ACCEPT/DISPLAY.
COPY, EXIEND
$\mathbf{S 6 2 5 / 5 2 5}$ MACRD-80 - B080 ZBO Macro Assamblor. Inlel and Loader. Library Manager and Cross Feterence Lis xuacrosc

 EOIT-80 - Very lasi random access lext editor tor lex with or without line numbers. Global and intra line com-
mands supported. File compare utlity included $\mathbf{\$ 8 9 / \$ 1 5}$

MICRO FOCUS

STANDARD CIS COBOL - ANSI 74 COBOL slandard compiler fully validaled by U.S. Navy tests to
ANSI level 1 . Supoors many tealures to level 2 including dymamic loading ol COBOL modules and a full ISAM "ire teality. Also. program segmentation. Interaclive debug
and powertui Interaclive extensions to support proiecled
 FORMS 2 - CRT screen editor. Oulput is COBOL data descriptions for copying into cis Cobol programs. dexed tives using CRT prolected and unprotecied sereen tormals. No programming expenence needed. Oulput
program directy compiled by CIS COBOL (siandard)

EIDOS SYSTEMS

KISS - Keyed Index Sequantial Search. OHers com management. Includes buill-in utility functions for 16 32 bil arinmetic. String integer conversion and string compare. Delivered as a relocatable linkabie module in Bo. elc.
KBASIC - Microsom Disk Extended BASIC wilh all KISS tacibties, inlegrated by implementation ol nine
adduivonal commands in language. Package includes
kISS KISS. REL as descnbed above. and a sample mail lis

mICROPRO

(1) WORD-MASTER TexI Edilor - In one mode has superset ol CP/MS ED commands including qlobal
searching and replacing, forward and backwards in lie. in

SOFTWARE SYSTEMS

\square

- PASCALZ - z.e8 native code PASCAL complier. lachng io CP/M is through tho supporl library. The pack-
 cords. ${ }^{\text {V }} 3$ Upgrade mith variant recoras ans pecled 2/80
slings ex.
$8395 / 825$ PASCAL/MT - Subsel of standard PASCAL Geninduded. Supports interrupt procedures and ACD anth-

Source for PASCALMT iun ime package. Requires
MAC. (See under Digital Research.)

Stuictied micel are. Syferd discomited!

STRUCTURED SYSTEMS GROUP

CEENERAL LEDGER - Interacive And nexibe sys. lem provding proor and report outputs. Cuslomization of
COA created inleractively. Mullple branch accounting centers. Exlensive checking perlormed at data ontry for proot, COA cortectness. etc. Journat enitries may be backs up input thes. All reporis can be tallored as neces-
sary. Requires CBASIC-2 - ACCOUNTS RECEIVABLE - Open ilem syslem with oulpul hor iniernal aged repons and customer-onented statement and blliting purposes. On-Line Enquiry parments. Interlace to General Ledger provided if boih ACCOUNT Requires CBASIC
\$698/\$25
aged slate-
ACCOUNTS PAYABLE - Provides aged slatemenis of accounts by vendor with check wring for
selecled invoices. Can be used alone or meneral
Ledger and/or with NAD. Requires CBASIC. $\mathbf{2} \mathbf{\$ 6 9 0 / \$ 2 5}$ ANALYST - Customized data entry and reporiung sys.
tem User specilies up 1075 dito items per record. Inlerlem User specilies up 1075 diptr items per record. inter-
active data eniry rainev/ and updale facilty makes
information manidement asy. Sophislicated repor
 tion. Requires CBASIC-2. 24×8 CRT, printer and $\mathbf{~} \mathbf{5 2 2 5 1 5}$
sysiam.
LETTERIGHT - FIogram 10 create. edi and type letdelete and move texl, with good video screen presentation. Designed to integrate with NAD lor lorm letier mail-
NAD Name and Address selection syslem - interactive mall us! creation and mainienance program winh output as full reports with reterence data of resticted intorma-
tion for mait labels. Transtier system for extaction and tion or mait labels. Transier system for extraction and
lransier of selecied records to create new liles. Requires
CAASIC. 2
OSORT-Fast sortmerge program for files with lixed

ORAMAM-DORIAN Sonmort Uon

GENERAL LEDGER - An on line sysiem: no balch ing is requlted. Entnes to olher GAAAMMM-DORIAN ac. lishes cusiomized C.OA Provides iransaclion register. rocord ol fournal oniner, rial bolances and monithly closcurtent year wilh previcus year Requires CBasic. 5495/535 ACCOUNTS PAYABLE - Maintans vendor list and
 system. Requires CEASIC-2. Supplied in source.

ACCOUNTS RECEIVABLE - Creates Inal balance

reports. prepares slatements. agop accounts and records iomer payment activity Rapopts can be posied to ditter. ent ledger accaudis. Eniries automalically update
GAAHAM-DORIAN general ledger or runs as sland alone syslem. Requires CBASIC-2. Supplied In source. PAYROLL SYSTEM - Mainlains amploye master PA YROLL SYSTEM - Manlains employee master
tile. Computes payroll withnolding for FICA. Federal and
Slate taxes. Prints payroil register, checks. Siate taxes. Prints payroll register, chechs. quarterty re-
pons and $\mathrm{W} \cdot 2$ forms. Can generate ad noc repors and pons and W.2 forms. Can generate ad hoc reponts and CBASIC. Supplied in source code. S495/\$35 INVENTORY SYSTEM - Captures stock lovels, costs, sources, syales. ages, Caprovies, markup, elc.
Transaction intormation may be entered ior reporting by Transaction information may be enfered lor reporting by
salesman, yype ol sale. dale of sole. elc. Aepors avai. able bolh lor accounling and decision making. Requires
(1) TOB COSTING - Designod ior goneral coniraciors. accounling packages for lrackitg and analysing ex.
penses. User establish austomized cest calegones and job phases Permis companson ol actual versus
and DORIAN generanedger of funs as stand GRAHAM.
I. APARTMENT MANAGEMENT SYSTEM -
(1) shows late renis. vacancy nolices. valysancies. . income
lost thiough vacancies,

- CASH REGISTER

Maintalns tires on
and item. Tracks
ries dala by sales person and ilem. Tracts sales. over.
Diny C-interactive interpretive system lor leaching structured programming tochniques. Manual incrudes luil
source listings
$\$ 75 / \$ 40$

BDS C COMPILER - Supports most malor toatures recursive unction ovaluation, linkabio wilh library 108080 blnary oulpul, Lacks data inititizalion. long \& troat type | cludos "C" Programming Languago book by Kernghan 8 |
| :--- |
| Ritchie..................................$~$ | $10 / \mathbf{1 5}$

WHITESMITHS' C COMPILER - The ultimate in systams soltware tools, Produces laster code than pas-
cal wilh more extensive facilities. Conlorms to the lull UNIX Version 7 C language. described by Kernighan and Ritchie and makes avaitabte over 75 functions for
pertorming l/o. string manlpulation and storage alloca-

1. POL YVUE/80 - Full screen editor for any CRT with XY cursor positioning. Includes vertical and horizontal
scrolling. interactive search and replace. automatic rext wrap around for word processing. operations for manipu

- POLYTEXT/80
apolit generasie lorm letiers with custom fields and conditional variable pilch justlication and motion oplimization.
$\mathbf{8 8 5} / \mathbf{\$ 1 5}$

ALGOL-60 - Powerlul block-5tuctured language lion of memory. Vory compact (24 K total RAM) system mplem ening almosi all Algol 60 report tetaturos plus many powersuleniensions including siring handing direc:
disk addess $/ \mathrm{O}$ elc.

몽280 DEVELOPMENT PACKAGE

Smind 1) disk tite ling editor. with global inter and intre-lingtacit. monics, conditional assembly and cross iteterence lable eapabilues. (3) linking loader producing absolute inte \square ZDT - Z80 Debugger to lraca, break and examine reg dy disptays. 535 when ordered with Z80 Devets package
\square DISTEL - Disk based disassembler DLXitan Z80 source code, listing and cress reference 8080
 TEXTWRITER III - Text formatter 10 jusily and pagt nate leners and oiner doumenis. Special tealures in. liles or console. permiting reciee documonts to be
crealed Irom linked fragmenis on olther files. Has facillues for scrted index, table of contenis and tootnote insertions.
Ideal for contracts, manuals, etc.

- list maintenance. Fealures include keyed fecord extrac lion and latel production. A form leyte, program is in finuous torms. Requires CBASIC-2
WHATSIT 7ows interacilive dala-base sysiem using
assoc alive lags to retriveve informalion by subject. Hashing and random access used for last response. . Requires
XYBASIC Inieraclive Process Control BASIC - Full byles. rotale and shith. and to test and set bits. Available Integer Disk or Inleger ROMable
Extended Disk or Extended ROMable........ $\$ 395 / \mathbf{\$ 2 5}$
SthaL/80 Struetured Macio Assembled Language Package of poweriul general purpose lex1 macro proc
essor and SMAL structured language comprief. SMAL is an assembles language with IF.THEN-ELSE. LOOP.
AEPEAT.WHILE, DO-END. GEGIN.END SOntlucI
\square SELECTOR III-C2 - Data Base Processor to create sorted reports with numerical summaries or mailing labels. Comes with sample applications including Sales ler. And Client'Palient Appoiniments, elc. Requires
CeaSic verston 2. Supplied In sourco code. $\$ 295 / \$ 20$
\square CPM/374X
 mawon and edit the data sel contents. Provides full file
transter facillies botween 3741 volume data sets and transter fac
CPiMlies
8ASIC UTILITY DISK - Consists of (1) CAUNCH. 14 - Compacing utilly to reduce the size and increase he speed ol programs in Microsott Basic and TRS 80
Basic. (2) DPFUN - Double precision subro tines tor square root, nalural log, log base to, sin, arc sin, hyper: $\$ 50 / \$ 35$
(1) TME STRING BIT - Fortran characler sting han. catenate and compare character stungs. This package
completely eliminales the probiems associated with character string nandling in FORTRAN. Supplied wilh
ESTAM - Ulility lo link one compuler to anolmer also speed (no conversige (H) hex). with CRC block control

Filppy Disk Kit - Yemplale and instructions to modily sled sided dnves diskenes lor use ol second sioe in sin FLOPPY SAVER Protection tor center holes of 5\%

CPMM is a liademark ol O.
Z80 is al nesearch

CPM iol Meain. TRS-80 Model I and PolyMorphr 2833 are
modiled and musi use specially Compled versions ol sysiem
 (1) User license agreement tor the Droducl must de signed and
eellunead 10 Lieboal Associates belore shiment may be mide

Software for most popular 8080/Z80 computer disk systems including NORTH STAR, iCOM, MICROPOLIS, DYNABYTE DB8/2 \& DB8/4, EXIDY SORCERER, SD SYSTEMS, ALTAIR, VECTOR MZ, MECCA, 8"IBM, HEATH H17 \& H89, HELIOS, IMSAI VDP42 \& 44, REX, NYLAC, INTERTEC, VISTA V80 and V200, TRS-80 MODEL I and MODEL II, ALTOS, OHIO SCIENTIFIC and IMS 5000 formats

Lifeboat Associates, 2248 Broadway. N.Y.. N.Y. 10024 Lifeboat Associates, 2248 Broadway. N.Y.. N.Y. 10024
(212) 580-0082 Tolex: 220501 (New nusuber!
one square in any compass direction, detect a barrier, or locate the cheese. Surely radar or any other sophisticated tool is not needed to solve the Look problem.

Sit back and watch R move one square at a time after each command it is given. Recall, however, that Look is a game played only by a mechanical mouse without human intervention; R is a robot. A robot can be defined as follows:

Robot: Any device that operates without direct human control.

By this definition, a wall clock is a robot because it keeps time independently of direct human instruction. An automobile, however, must have direct contact with a human in order to operate.

The Look mouse must be given a brain with enough intelligence to find its own way from one square to another. This is where the concept of computing arises.

The Concept of Computing

A robot that acts without direct human guidance must possess two types of control: (1) basic actions and (2) intrinsic control for sequencing basic actions. The following two sets are chosen in keeping with the simplest possible design:

ACTIONS:
STEP X, set condition code, BARRIER, FOUND, NOT FOUND, and START, STOP, where X is N, W, E, S.

CONTROL: simple sequence of a collection of actions, looping of actions, decision (branch) capability.

These actions and control are programmed into R through some yet to be determined mechanism. A pseudolanguage will be used to illustrate the programs in this article, but it is important to remember that every programming language for every computer known to the author has at least the three control constructs listed above; that is, it is conjectured that the intelligence being given R is no more than the intelligence of very simple computers. This leads to the following hypothesis:

Hypothesis 1: Any robot mouse with the actions and control given to R can be programmed to solve the Look problem.

It is possible to go even further with this hypothesis and claim that the solution to the Look problem is indeed possible. Possible means that a path from the starting location of R to the square occupied by C exists and is computable:

Hypothesis 2: Any path leading to C from R is a computation, and furthermore, any machine with the properties of R is able to perform such a computation.

There is now a concept of computing. For the game of Look, a computation involves finding a path. A function is a set of operations that tries to calculate a computation

BATTERY-WRAP WIRE WRAPPING TOOL model BW-2630

- POSITIVE INDEXING
- ANTI-OVERWRAPPING
- BITS AVAILABLE FOR AWG 26, $28 \& 30$
- BATTERY OPERATED
- LIGHT WEICHT

BATTERIES AND
BIT NOT INCLUDED
U.S.A. FDAEIGN PATENTS PENDING
0
OK MACHINE \& TOOL CORPORATION
3455 CONNER STREET, BRONX, N.Y. 10475, U.S.A. PHONE (212) 994-6600 • TELEX: 125091

MICTOM/ET It's off and running. And delivering as promised.

What is MicroNET?

It is the personal computing service of CompuServe, Incorporated. CompuServe is a nationwide commercial time sharing computer network with large-scale mainframes. MicroNET allows the personal computer user access to CompuServe's large computers, software and disc storage during off-peak hours (from 6 PM to 5 AM weekdays, all day on Saturdays, Sundays and most holidays).

What do I get?

You can use our powerful processors with X-Basic, Fortran, Pascal, Macro-10, AID or APL. You get 128 K bytes of storage free (just access it at least once a month). Software includes games-including networking multi-player games -personal, business and educational programs.
In addition, there is the MicroNET National Bulletin Board for community affairs,
for sale and wanted notices and the MicroNET Electronic Mail System for personal messages to other MicroNET users. You can even sell software via MicroNET.

NEW! MicroQUOTE, a security information system for corporate stocks and public debt. NEW!MicroNET Software Exchange with dozens of new programs available for downloading to your personal computer at a specified charge. NEW! Executive programs for TRS-80, Apple II and CP/M systems (so your machine and ours can talk to each other error-free). You can switch between terminal and local mode while on line.
What do I have to have to use MicroNET?
The standard 300 baud modem. MicroNET has local phone
service in most major cities (see below) and a reduced phone charge in over a hundred others.

What is the cost?

We've saved the best for last. There is a one-time hook-up charge of only $\$ 9.00$! Operating time-billed in minutes to your VISA or MasterCharge card-is only $\$ 5.00$ an hour.

Want more information?

Good. Write to us at the address below. We'll send you a full packet of information about MicroNET.

CompuServe

Personal Computing Division Dept. B 5000 Arlington Centre Blud. Columbus, Ohio 43220

MicroNET is available via local phone calls in the following cities: Akron, Atlanta, Boston, Canton, Chicago. Cincinnati, Cleveland, Columbus, Dallas, Dayton, Denver, Detroit, Houston, Indianapolis, Los Angeles, Louisville, Memphis. West Caldwell (NJ), New York, Philadelphia, Pittsburgh, San Francisco, Stamford (CT). St, Louis, Toledo, Tucson and Washington, D.C.
Access to the MicroNET service is available in 153 other cities for an additional charge of $\$ 4.00$ per hour.

". . . but the really impressive stuff is in the back room."
(ie: a path from R to C). A function is computable if R can get to C, and a function is undecidable if there is a possibility that R will fail to reach C .

Programming a Function in Look

Now an attempt is made to build a robot R that finds its way to C. The first attempt is again a simple approach to the problem. Suppose R is instructed to go West until reaching a barrier, then another direction is chosen and it continues to travel in that direction until reaching a barrier, and so on. Such a program might look like the pseudolanguage program shown in listing 1.

Of course, this program does not solve the Look puzzle. It may correctly locate the cheese C if C is in a boundary square (see figure 2). The problem is that C may or may not be in a square along the circular path established by program CIRCLE. Hence, it is undecidable whether or not CIRCLE computes a path leading to C.
The intelligence of R must be increased in order to guarantee a computable path (as opposed to an undecidable path). Clearly, the problem with CIRCLE is that it fails to cover every possible square. How can no square be left uncovered?
A second simple program (see listing 2) is attempted that exhaustively scans every possible square until it locates C. Lines 200 thru 220 move R to a left side square. The program must cover every square, but since R may be initially placed anywhere within Look, a starting point must be established that guarantees an exhaustive scan of the sixteen squares. This is done in lines 230 thru 250.

กЛАБรАП゙"

KEYED FILE MANAGEMENT SYSTEM

Sophisticated applications made simple.

Put data at your fingertips...easily accessed. displayed. and updated by key. MAGSAM'" allows your CBASIC programs to create and access sophisticated keyed file structures through simple CBASIC statements
Powertul, aftordable, and easy to use.
MAGSAM' ${ }^{\prime \prime}$ is now available in three versions offering an array of features and capabilities. Standard MAGSAM" features include random by key. sequential by key. generic by key. randomly by record number, and physical sequential access techniques. Each MAGSAM'" Package incudes the MAGSAM'u file manager, tutorial program, file dump utility. User Guide. Reference Card. and one year update service.

- MAGSAM'" - MOst advanced version. Secondary Indexing with any number of keys, and Record and Key Deletion with automatic reuse of freed space.
- MAGSAM II' - Single Key support with full Record and Key

Delete capability

- MAGSAM $I^{\prime \prime \prime}$ - Entry level version Single Key support withou Delete functions. .. $\$ 75 \dagger$
- MAGSAM' User Guide only - comprehensive tutorial and reference manual

Available for 8^{*} soft sector. Micropolis, and TRS-80 disk formats Requires CP/M ${ }^{\circ}$ or derivative and CBASIC. Distributed as CBASIC subroutines in source form
Visa and Masterchagre welcome. Dealer and OEM inquiries invited

Micpo Arplicatione group
7300 CALDUS AVENUE VAN NUYS. CA 91406

[^7]CIRCLE:
START R ;
REPEAT LOOP
STEP W ; IF FOUND THEN STOP ;
UNTIL W BARRIER ;
REPEAT LOOP
STEP N ; IF FOUND THEN STOP ;
UNTIL N BARRIER :
REPEAT LOOP
STEP E : IF FOUND THEN STOP ;
UNTIL E BARRIER ;
REPEAT LOOP
STEP S ; IF FOUND THEN STOP;
UNTIL S BARRIER ;
REPEAT LOOP
STEP W : IF FOUND THEN STOP ;
UNTIL W BARRIER ;
STOP CIRCLE

Listing 1: Pseudolanguage program that calculates circular paths on the Look game board.

Figure 2: Path computed by the CIRCLE program (listing 1). CIRCLE creates circular paths for R on the game board, which may or may not intersect with C. It is therefore undecidable whether or not CIRCLE computes a path leading to C.

EXHAUST:

```
200 REPEAT LOOP
210 STEPW :IF FOUND THEN STOP
220 UNTIL W BARRIER;
230 REPEAT LOOP
240 STEPS ; IF FOUND THEN STOP
250 UNTIL S BARRIER ;
260 REPEAT LOOP
REPEAT LOOP
    REPEAT LOOP
    UNTIL E BARRIER
STEP N ; IF FOUND THEN STOP ;
    REPEAT LOOP
    STEP W ; IF FOUND THEN STOP
    UNTIL W BARRIER ;
    STEP N ; IF FOUND THEN STOP ;
    UNTIL N' BARRIER ;
    STOP
```

Listing 2: Pseudolanguage program that makes an exhaustive sweep through every square on the Look board.
R is now in the proper lower left position to begin looking for C by systematically visiting every square. This is done by moving N after every E or W BARRIER is found as shown in figure 3.
This version of the program for R illustrates two conceptually important features. Indeed, this program is called an algorithm because (1) it will systematically carry out the basic actions in a deterministic (predictable) manner every time it is executed, and (2) it will reach a STOP statement every time it is run. The question remains, however: will this program (algorithm) find C every time?

Looking for \mathbf{C}

The program for exhaustive search lacks a certain elegance. For example, the sophistication of R could be increased to add subroutine capability:

SUBROUTINE MOVE: (X,Y)
1010 REPEAT LOOP

1020 STEP X; IF FOUND THEN STOP; 1030 UNTIL Y BARRIER;

This would reduce program size and complexity by using pieces of the program iteratively. Such an improvement may benefit a programmer or reduce the cost of building robots, but does nothing to improve the concept of computing.

The EXHAUST program becomes easier to understand and write when additional control is supplied. However, the addition of subroutines, interrupts, and other sophisticated features does nothing to increase the computational power of robots. This is an important fundamental concept:

Hypothesis 3: Every function that can be computed, can be computed by a robot with only three control operations: (1) sequence, (2) looping, (3) conditional branching.

If true, this means that every solution to the Look puzzle is possible with the simple machine designed here. There is no path through Look that cannot be computed with the power of robot R. Does this mean that every computation in Look is computable by R? In this specific game, the answer is yes. We have not proven the above hypotheses, but they can be supported by evidence.

What Are the Limits?

What is not computable, if such a simple machine (R) is able to compute every function in Look? (This corresponds to finding every path from R to C.) If internal barriers are added to Look as shown in figure 4, does R need more power? The answer is no. A larger, more sophisticated program may be required, but it can be constructed from the same simple building blocks as before.

Suppose that an attempt is made to fool robot R by removing C entirely (see figure 5). What becomes of algorithm EXHAUST? Reexamination of the algorithm shows that the program eventually halts when every square has been searched by R at least once. The STOP action executed when C is located is a different STOP than the one executed when C is missing from the game

Figure 3: The exhaustive sweep solution is an inelegant but effective method that systematically visits every square on the board, looking for C.

Figure 4: Adding an internal barrier to the Look game. R does not need any more computing power to solve such a layout, but the program may have to be more sophisticated.

Figure 5: Removal of the target C from the game. Although R can no longer find C, the program will still halt, and through suitable adjustments, the program can tell whether or not C was found.

Heuristics

SpeechLink ${ }^{\text {TM }}$

Talk To Your Computer . . .

- Voice data entry to the Apple® computer
- Voice control of your Apple® system
- User variable vocabulary (64 words and up)
- Applesoft \& Integer Basic compatible with or without disk operating system

Useful For . . .

- Collecting inventory data
- Running the Apple® as a terminal
- Controlling production test equipment (say "test 2")
- Menu selection of programs (say "stocks")
- Entering stock market data
- Educational programs for the kids (say "square")
See your computer dealer. Model 2000 suggested retail price \$259, model 20A \$189.

Heuristics

```
1285 HAMMERWOOD AVENUE
SUNNYVALE, CALIFORNIA 94086
408/734-8532
```

Apple ${ }^{-}$is a registered trademark of Apple Computer Corporation

Figure 6: A heuristic technique for finding C. The programmer has assumed that C is more likely to be found in the center squares, and has thus accelerated the search at the expense of an occasional failure.
board. Can it be known which stop is executed when EXHAUST halts?

Suppose lines 210, 240, 280, 300, 320, 340, and 360 in listing 2 are modified to display the condition code setting when a STOP is executed. Then when the robot halts, the condition code can be examined to see if it says FOUND or NOT FOUND.

Indeed, R can be built cleverly enough so that it stops and informs you of its condition. This requires that R eventually stop. When it stops, it is asked whether or not it has found a path to C. This leads to another important concept in computing:

The Halting Problem: A robot that computes an algorithm must eventually halt. If a robot tries to compute a function (ie: find a path) that does not guarantee the termination of its search, the robot is computing an undecidable function.

Normally, undecidable functions are avoided in computing. Often, however, the risk of encountering a nonterminating search is not great, and thus the rules can be relaxed to speed up the robot. For example, suppose that the EXHAUST algorithm is replaced by a faster heuristic. That is, the search strategy is changed as follows: the exhaustive search procedure is too slow. Its speed can be increased by increasing the robot's speed (technological improvement in equipment), or by decreasing the search space (eliminating the number of squares considered). Perhaps the cheese is in the central squares most of the time. If so, a nearly perfect batting average can be obtained by searching the middle four squares only. Figure 6 suggests one possible heuristic for computing a path to C.

Perhaps the "four-square" heuristic will locate C, perhaps not. This approach may seem too casual, but interestingly enough, much of the software in contemporary systems is of this nature. That is, many programs are heuristic in nature rather than algorithmic, because they have reduced their search space to only the most probable paths. One way of defining a heuristic is as "a procedure for finding the solution most of the time."

32K Board Pictured Above

Why Not the Best? From The Dynamic RAM Company.

2 MHz	4 MHz
$16 \mathrm{~K}-\$ 249$	$\$ 259$
$32 \mathrm{~K}-\$ 375$	$\$ 395$
$48 \mathrm{~K}-\$ 500$	$\$ 530$
$64 \mathrm{~K}-\$ 625$	$\$ 665$

We have now been shipping our 2 MHz dynamic RAM boards for over two years. Hundreds of 4 MHz boards have been going out every month since early 1979. Our reliability is proven in the thousands of systems which contain our board. Many qualityminded systems houses across the country and overseas are using our boards for their equipment.
Our prices still beat all. Despite rising 16 K memory chip prices (at least from reputable suppliers), Central Data continues to give you the best buy in memory today. Nobody offers a board with a capacity of 64 K , assembled, tested, and guaranteed for a full year at the price we do.

Deselect around PROMs. Our boards have the important deselect feature which lets you overlap any fixed memory in your system with no interference.
Our features make the board easily used and expanded. You address our boards on 16 K boundaries with mini-jumps (small shorting plugs that slide over wirewrap pins) near the top of the board for easy access. If you want to expand your board after you have purchased it, all that you need to do is add memory. We can supply you with expansion packages $(\$ 150-2 \mathrm{MHz}$, $\$ 160.4 \mathrm{MHz}$) which include eight RAMs that you can depend on as well as two mini-jumps for addressing. And of course, our board never generates wait states.

Low power consumption keeps your computer running cool and reliable. The total power consumption of our 16 K board is typically less than 4 watts (+8 V @ 300 ma , +16V @ 150ma and
-16V@20ma). Boards with additional memory typically increase power consumption only 1 watt per 16K!
Standard S-100 Interface. Our board is designed to interface with any standard S-100 CPU. All of the timing of the board is independent of the processor chip, and the board is set up for different processors by changing two plugs on the board.
Call or write us today. That will guarantee a fast response with more information on the board. Or make an order - you'll probably have the board in two weeks! If you're interested, also ask for a catalog on our Z8000 16-bit processor board designed for the MULTIBUS. All of these products are available to your local dealer, also.
Central Data Corporation, 713 Edgebrook Drive, PO Box 2530, Station A, Champaign, IL 61820. (217) 359-8010

Central Data

Hypothesis 4: Many computer programs are heuristic in nature because they do not satisfy the halting problem, or do not cover the search space of solutions.

More has been required of the little robot than is required of real computer programs. Thus, R is a good model of what machines can do. Still, there must be something R cannot compute. In fact, there is: R cannot tell if its program is an algorithm or merely a heuristic. This is one of the cornerstones of computing.

A More Powerful Robot: GR

Suppose a more powerful generalized robot, GR, is constructed. GR is basically like R, except $G R$ solves a problem called DECIDE. This new game is played as follows: the instructions for a program written in robot R's language (eg: the EXHAUST problem) are given GR as its inputs. Thus, GR plays the DECIDE game on a program instead of a checkerboard. GR is smart enough to interpret the instructions directly and to determine the halting condition of R.

Let us assume that the EXHAUST program is given to GR. GR interprets EXHAUST and, when it reaches a STOP, announces that R has halted. Further, GR announces HALT NOT FOUND or HALT FOUND, depending on the condition code setting of R : In fact, GR is a general robot because it can interpret programs for other robots. In a sense, GR can simulate R because it can interpretively execute any program which can be written for R:

Hypothesis 5: Any machine GR that can simulate a robot of the power of R is a universal robot. A universal robot is limited in its power, being able to compute only computable functions.

Can a problem be found that is too difficult for GR? It would be interesting to discover if such an uncomputable function exists. GR is quite similar to real computers. For example, an Intel 8080 could be simulated on a Motorola 6800 to perform the functions of a universal robot. Thus, if problems too difficult for GR are discovered, they will also be too difficult for the Intel 8080, Motorola 6809, IBM 370, CDC 7600, or Cray-1!

The Halting Problem Revisited

It was stated earlier that the GR machine can interpret any program and decide whether or not it halts. To be more precise, however, a GR robot cannot in general decide whether an arbitrary program from R's library of programs will halt or run forever. Notice the emphasis on any arbitrary program. A specific program can be examined and it can be determined that it will halt. This was done for the EXHAUST program. However, a decide algorithm is being sought that can be written before any program from R is tried. Thus, the DECIDE program must be smart enough to handle any program it is given. This is where the problem appears. Suppose a program is written in the language suggested earlier for R. This language made R powerful enough to compute anything that robots can compute. Thus, the DECIDE algorithm can be written in this language. The DECIDE algorithm is loaded into a mouse just like R, and it becomes super-
mouse GR. Now GR can decide whether or not a given program halts and, if so, whether or not the arbitrary program being interpreted has found its solutions. If it is shown that at least one program exists for which GR fails, then the DECIDE algorithm is undecidable (ie: it is not an algorithm). In fact, there is such a program.

If the DECIDE program itself is input into GR, a paradox is created for GR. If it executes to a STOP action and announces a HALT FOUND termination, the DECIDE program has succeeded. If, on the other hand, GR reaches a STOP and announces HALT NOT FOUND, then GR must itself have reached a NOT FOUND condition. This, however, is impossible, because GR cannot reach a FOUND termination point within the loaded DECIDE algorithm at the same time it reaches a NOT FOUND termination point within the interpreted DECIDE algorithm. Therefore, the DECIDE problem is unsolvable and is, in short, a problem no computer can compute:

Hypothesis 6: The general halting problem is undecidable. This is an example of a problem computers cannot solve.

After that mind twister, it may be argued that such a problem is of no practical significance. Unfortunately, the halting problem is completely analogous to several important practical problems in computing. Here are a few:

Hypothesis 7: A robot GR that can test any other robot R to determine if R is malfunctioning is impossible to build.
Hypothesis 8: A robot GR that can examine any other robot and determine if R is secure (impenetrable by a team of spies) is impossible to build.
Hypothesis 9: A robot GR that can examine a programming language robot R and determine if it is without ambiguity is impossible to build.

In essence, it has been illustrated that computers have their limits regardless of their size, speed, number of registers, or sophisticated instruction sets. This notion is summarized in the next hypothesis:

Hypothesis 10: Progress in computing has led to microcomputers and circuits that still cannot solve the same problems that earlier computers could not solve.

In other words, computing has advanced in a technological sense only, and not in a conceptual sense. The limitations of computing remain the same: the power of computing is the same.

All computers do essentially the same thing. Some are easier to program because they have high-level instructions. Some are faster because their organizations are more efficient. However, the fundamental problems of computing remain.

Difficult Problems

Fable: An old man was about to send his son into the world to travel. He bent over and wheezed into his proud son's face, 'Hear me well, son. The world has

Mainframe

Owners... Should be Your Next Hardware Investment!

Designed for business. Radio Shack's design concept for TRS-80 Model II was to build a business computer - not a hobby, "home" or personal computer that could be used by the businessman. Model II is compact, fast and powerful. It's ideal for a small business, and also "just right" for many time-consuming small jobs within larger businesses. For firms with large mainframe computers, Model II can handle the jobs that constantly interrupt the data processing schedule - or those too hot to wait for open time on the mainframe. Use it either as a stand-alone computer or an intelligent terminal.

Language. Model II's interpretive BASIC language is easy to use, and will soon be supplemented by other compiler languages. The built-in half-meg disk storage can be expanded to two megabytes. Vectored interrupts, direct memory access and a separate keyboard processor add to the throughput.
Availability. TRS-80 Model II is on display at 50 Radio Shack Computer Sales/Service Centers and 100 specialized Computer Departments in major area Radio Shack stores. It's being delivered through our 7300 retail outlets on a first-come, first-served basis. Visit your nearest Radio Shack store for details or write the address below.
TRS-80 Model II 32 K
1-Disk Systems from
${ }^{8} 3450$
TRS-80 Model II 64K
4-Disk System (shown) ... \$6599

- 32K or 64K RAM
- Bullt-In $8^{\prime \prime}$ Floppy (500K Bytes)
- Supports 4 Floppies. (Up to 2 Megabytes)
- DMA and Vectored Interrupts for Faster Throughput

Interpreter BASIC (Other Languages Avallable 2nd Quarter 1980)

- Z-80A Processor at 4 MHz
- Separate Keyboard Processor
- 2 RS-232C I/O Ports, 1 Centronics Parallel Port

Radio Shaek

The biggest name in little computers ${ }^{(\pi T)}$ A Division of Tandy Corporation - Over 7000 Locations in $\mathbf{4 0}$ Countries

Free 24-Page TRS-80 Catalog Write: Radio Shack, Dept. CMA-413, 1300 One Tandy Center, Fort Worth, Texas 76102
many perplexities."
"Yes, father, I have heard," the young man replied.
"There are two kinds of difficulties that will befall you as you find your way. There are problems that you can solve, and problems that you cannot solve. Be wise and spend your energies only on the problems you can solve."
"I will remember, father."
The Look example can now be returned to, and energy can be applied to solving a problem that it is possible to solve. EXHAUST is a blunt approach to computing a path from R to C. It may be, however, that EXHAUST is the easiest way to compute the location of C .

An algorithm need be only as complex as the problem at hand. Therefore, if the complexity of the problem can be determined, a program can be designed that is no more complex than the problem. Is this possible?
The EXHAUST problem is actually rather uricomplicated. Suppose that initially the cheese is in any square. If there are S squares, the cheese can be in any one of (S-1) squares with probability $1 /(\mathrm{S}-1)$. The average number of steps for R to compute along the EXHAUST trail is the average of $1+2+3+\ldots+(\mathrm{S}-1)$:

$$
\underset{\text { \#STEPS }}{\text { AVERAGE }}=\sum_{\text {STEPS }=1}^{\text {S-1 }} \frac{\text { STEPS }}{S-1}=\frac{\mathrm{S}}{2}
$$

Hence, the average number of steps to find C is half the total number of squares in Look.

The problem can be more difficult if C is located at the worst possible location (eg: at ($(-1$) steps from robot R). This is called the worst case complexity of Look, or SWORST $=(\mathrm{S}-1)$. In either the average or worst case condition, the EXHAUST algorithm will complete in a number of steps proportional to S. The complexity of Look is $\mathrm{O}(\mathrm{S})$. Since S is a straight line when plotted on graph paper, the Look puzzle is called linear:

Hypothesis 11: Linear problems are easy, polynominal problems are more involved, and exponential problems are difficult.

Suppose the Look problem is modified to a more realistic situation. Try to trace the roots of your family tree back to 1600 AD . A great-great . . . great-grandparent is given as a target (C). You must trace your father or mother first, then their father or mother, etc. If your ancestors never practiced incest, remarried, etc, you will have to compare at least 2^{R} ancestors to find the shortest path back to your roots, where $\mathrm{R}=$ number of generations.

The roots problem is difficult because of the exponential growth in the computation. Thus, an exponential problem is hard.

Let us examine another version of Look that poses a test for the power of microcomputers and maxicomputers

new rron MOUNTAL HARDWARE. THE APPLE CLOCK.

NEW UTILITY FOR YOUR COMPUTER.

Until now, there hasn't been a Real-TimeClock for the Apple II*. The Apple Clock from Mountain Hardware keeps time and date in 1 mS increments for over one year. On-board battery backupkeeps the clock running in the event of power outage. Software controlled interrupts are generated by the clock. That means you can call up schedules, time events, date printouts ...all in real time on a programmed schedule.

EASY TO USE.

The Apple Clock is easily accessed from BASIC using routines carried in on-board ROM. With it, you can read time and program time-dependent functions for virtually any interval. From milliseconds to days, months or a year.

PLUG IN AND GO.

Plug the Apple Clock into a peripheral slot on your Apple II and you're ready to go.

FEATURES.

- Time and date in 1 mS increments for periods as long as one year. - Software for calendar and clock routines, as well as an event timer are contained on onboard ROM.
- Program interrupts.
- Crystal controlled accuracy of $\pm .001 \%$.
- On-board battery backup keeps your clock in operation even during power outage.

REAL TIME AT THE RIGHT PRICE.

At $\$ 199$ assembled and tested, it's the clock your Apple has been waiting for. And, it's available now through your Apple dealer. Drop in for a demonstration. Or return the coupon below.
A COMPLETE LINE.
Mountain Hardware also offers a complete line of peripheral products for many fine computers.

Figure 7: The traveling salesperson problem. A salesperson wishes to visit all six cities in a given district, once every month. The problem is to compute the shortest path that goes through each city only once.
alike. Suppose a die is tossed to decide which direction to take: N, W, E, or S. A random number generator is used to produce a random walk around the Look checkerboard. Will such an approach add to the complexity of computation? A random selection introduces chance into the EXHAUST algorithm. This is called a nondeterministic procedure (similar to a heuristic), because the exact path may not be reproducible due to the randomness. Eventually the path would be discovered, because there is a nonzero probability that every square will be visited by the meandering robot R.
A nondeterministic procedure may be more complex than a deterministic procedure, or surprisingly it may be less complex, because it reduces the search space statistically. For example, under certain constraining rules, the random walk through Look can produce an answer in $\mathrm{O}(\sqrt{ })$ average steps. This is an improvement over the average for EXHAUST. (The maximum or worst case analysis can be much greater, however.)

The most difficult problems faced by computers are known as NP - complete problems. Their algorithms are nondeterministic in nature and perform in a time proportional to some power of the length of their input data. This class of problems can be illustrated by examining the traveling salesperson game.

Traveling Computer Salesperson

Suppose a computer salesperson is given a district with six cities. Each city must be visited once every month. The salesperson wants to compute the shortest path that goes through each city one time only.

A map is shown in figure 7 along with candidate paths between any two cities in the district. Each connecting line is labeled with the distance between cities. What is the shortest route that begins at A and returns to A after passing through every city? Does this problem have a solution? If one path exists, is it unique, or are there others of equal distance?

The complexity of this problem and others like it continues to be a conceptually difficult computation for computers. The difficulty of a number of important problems in computing is just being realized.

This raises some philosophical questions for the future. For example, is the functioning of brain cells a complex problem? If so, is the path established by a thought process representable as a computable function? Even if thought is a computable function, it might also belong to the class of NP -complete problems, and thereby be difficult for computers to handle.

Conclusion

In summary, we must be realistic about the power of computers. There are functions that no computer can compute, and there are functions that require impressive performance to manage. The current crop of microcomputers is no more able to compute a solution to problems than computers of a decade ago. Programmers may, however, have learned new ways to apply computing power in the interim.

On the optimistic side, many practical problems remain to be solved in our society. Computers can help solve them and, due to the microcomputer revolution, there is an opportunity to economically apply this technology to the real world. Along the way, do not forget the limits to computing.

BIBLIOGRAPHY

Appl, K and W Haken, "The Solution of the Four-Color-Map Problem." Scientific American, volume 237, number 4, October 1977, page 108.

Gardner, M, "Mathematical Games: In Which Joining Sets of Points by Lines Leads into Diverse (and Diverting) Paths," Scientific American, volume 237, number 5, November 1977, page 18.
Additional discussion of the four-color problem appears in Martin Gardner's "Mathematical Games" column in the issues of Scientific American for September 1960, April 1975, and April 1976.

Million-Character Computer System One-Year Transferable Warranty

Standard Features on All Systems

- Central Processing Unit with 12 slots; 2 MHz (expandable to 4 MHz with pipelining architecture)
- 8 Free Slots for expansion; capacity for 442,368
characters of memory within standard chassis
- 49,152 characters of 200 ns random access memory; 150 ns memory optional
- 8 vectored interrupts; all input and output is interrupt driven
- 1.2 million characters, double sided, dual $8^{\prime \prime}$ diskettes. IBM 3740 compatible
- Printer controller; Centronics compatible - Magnum BASIC. Extremely fast business BASIC with full editing capabilities, print using, sequential and random files, integer and floating point arithmetic with up to 16 digits precision; N -dimensional matrices and much more A superset of Microsoft 16K extended disk BASIC
- Interactive conversational macro assembler and editor for 6800 family microprocessors
- One-year transferable limited warranty on parts and
labor for all SEE hardware
- Guaranteed 24 -hour turn-around time on repairs

Optional Features on All Systems

- Up to 64 interconnected, intelligent terminals with no degradation of response time. Each is a stand alone CPU. True distributed processing
- Expandable to 12 MB of 150 ns RAM for each terminal
- Up to 64 RS232 ports with full communications. Talks to any peripheral or CPU with RS232 interface
- Expandable to 4 MB of diskette storage
- Up to 660 MB hard disk storage with removable modules
- ANSI standard 10.5 inch tapes (1600 BPI)
- 11 MB cartridge tape system
- Matrix and word processing printers from 55 CPS to 1400 LPM
- Choice of 6809 and/or 6512 CPU board with speed of up to 4 MHZ with 150 ns memory
- Interactive relocatable macro assembler, development system and DOS for 6502 and 6512 microprocessors. Can assemble source programs up to 2 MB long
- PASCAL compiler
- FORTRAN compiler
- BASIC compiler
- COBOL compiler
- Powerful word processing software
- Comprehensive business software, incl. General Ledger,

Accounts Receivable, Accounts Payable, Inventory, Payroll;
Packages for Physicians, Publishers, Manufacturers, etc.

Quantity discounts to bona fide dealers, OEMS, and schools Special configurations and modular shipment available A few distributorships available in the United States and other countries

Take the mystery out of programming with the latest from BYTE Books ${ }^{\text {tm }}$

You Just Bought a Personal What?

by Thomas Buyer and Margot Critrhfield Whether you are a novice programmer or an experienced computer user, this book is filled with practical ideas for using a personal computer at home or work. It will take you through the steps necessary to write your own computer programs, and then show you how to use structured design techniques to tackle a variety of larger projets. The book contains over 60 ready -touse programs written in Radio Shack TRS-80 level II BASIC in the areas of educational games, financial record keeping. business transactions, disk-based data file and word processing. $\$ 11.95 \mathrm{pp} .256$ ISBN 0-07-018492-5

The BYTE

Book of Pascal
Edited by Blase W. Liffick
Based on the growing popularity of Pascal, as a programming language, numerous articles. language forums and letters from past issues of BYTE magazine have been compiled to provide this general introducdion to l'ascal. In addition, this book conrains several important pieces of software including two versions of a Pascal compiler

- one written in BASIC and the other in 8080 assembly language; a p-code interpreter written in both Pascal and 8080 assembly languages; a chess playing program; and an AP'L interpreter written in Pascal. $\$ 25.00$ Hardcover pp. 342 ISBN 0-07-037823-1

Beginners Manual for the UCSD Pascal System
 by Kenneth Bowses
 Written by the originator of the UCSD

Pascal System, this highly informative book is designed as an orientation guide for learning to use the UCSD Pascal System. Once familiar with the system, you will find the guide an invaluable reference tool for creating advanced applications. This book features tutorial examples of programming tasks in the form of self-study quiz programs. $\$ 11.95 \mathrm{pp} .184$ ISBN 0-07-006745-7

HOOKS OF INTEREST TO COMPUTER PENNE

Please send \qquad copies of You Just Bought a Personal What? copies of Beginners' Guide for the UCSD Pascal System copies of The BYTE Book of Pascal

| | Title | |
| :--- | :---: | :---: | :---: |
| Name Company | | |
| Street City | State/Province | Code |

Check enclosed in the amount of \$
Bill Visa Bill Master Charge
Card No. \qquad Exp. Date
Add 60 c per book to cover postage and handling.
BYTE BOOKS Division - 70 Main Street

INTEL 32-BIT MICROPROCESSOR RUMORED: As reported in this column last April, Intel was rumored to be working on a 32 -bit microprocessor. The project is moving closer to reality as Intel has assigned a part number to the device. It will be called the 8800 (not to be confused with the Altair 8800 computer). The instruction set will not be compatible with Intel's 8 -bit or 16 -bit microprocessors. The device will be housed in the new 64 -pin QUIP (quad-in-line package, see "BYTE News," June 1979) which is cheaper, smaller, and easier to test than dual-in-line packages. The 8800 is reportedly being developed at Intel's facility in Aloha OR. The first test prototypes are reported to have been produced.

TI RF MODULATOR FCC WAIVER GRANTED: The Federal Communications Commission (FCC) has granted Texas Instruments a waiver which permits II to connect its personal computers to home color television receivers using a radio frequency (RF) modulator. TI originally petitioned the FCC for approval of the RF modulator system in February 1979. The petition was rejected since the regulations required that the complete system be submitted for approval: TI submitted only the RF modulator for approval. Subsequently, Texas Instruments applied for a waiver, provided that the modulator unit met the standards.

The FCC asked other personal computer system manufacturers to comment on the TI request. Radio Shack, Apple Computer, Commodore, Mattel, and Atari responded negatively to the request. Apple, Atari, and Mattel went to great expense to comply with the FCC regulations. The Radio Shack and Commodore systems, which contain integral displays and do not use RF modulators, do not come under the FCC regulations.

The FCC decision further waives testing by the FCC and merely requires that the manufacturer provide the FCC with test results showing compliance. In a related action, the FCC relaxed the standards on RF interference generated by commercial and personal computer systems.

Several personal computer manufacturers that compete with TI have already stated that this waiver will give TI a competitive advantage. Furthermore, several firms publicly questioned the FCC's rulemaking methods in making its decision. The likelihood now is that the other personal computer makers will offer systems with RF modulators. It will probably take these manufacturers at least a year to bring out such competing systems.

ULTRA MINI-FLOPPY DRIVE INTRODUCED: Sanyko Seiki Manufacturing Co, Tokyo, Japan, has begun producing samples of an ultra-small floppy disk drive and controller. Called the FMC-100, it uses a 2 -inch floppy disk that stores 8 K bytes on one track. It is intended for use in wordprocessing typewriters and personal computer systems.

THWARTING COMPUTER SOFTWARE PIRATING: A patent (number $4,168,396$) has been issued to Robert M Best, Seattle WA, for a "microprocessor which prevents the piracy of computer programs." The device reportedly uses cryptography to protect the software. It is called a cryptomicroprocessor and stores software in cipher to prevent if from being copied, disassembled, or altered by unauthorized processes. Authorized users can decipher the software with special encryption keys. The patent states that the device is intended primarily for use in personal computer systems.

AC LINE TO TTL INTERFACE IC INTRODUCED: General Instrument Optoelectronics of Palo Alto CA has introduced a low-cost, 8 -pin integrated circuit that can be used to directly monitor AC power line circuits and provide transistor-transistor logic (TTL) outputs. The device, therefore, can be used to interface your microprocessor inputs easily and directly to monitor AC power-lineoperated devices such as motors, solenoids, relay contacts, and the like. It can also be used to detect power failure and other such applications.

FLAT PANEL TERMINAL DISPLAYS BECOMING AVAILABLE: Computer terminals using flat-screen video displays are getting close to the marketplace. The technology is based on the plasma panel developed by Owens-Illinois, Toledo OH, in the late 1960s. Currently, Interstate Electronics of Anahiem CA, IBM, and Fujitsu have these panels in production. Control Data and NCR are planning large-scale production. IBM now makes approximately 100,000 plasma panels annually, which
are all used in-house. Interstate Electronics currently sells a plasma display terminal that has a 512 by 512 matrix of dots and can display alphanumeric characters and graphics.
Plasma panel makers are working on getting the cost down to the point where these displays can compete with cathode-ray tube (CRT) displays. This is still expected to take several more years.

RANDOM RUMORS: IBM will soon unveil small business (Model 5105) and multiterminal (Model 5130) computers in their 5100 line of microcomputers. The 5105 computer will begin at $\$ 4500$ and the 5130 will range from $\$ 21,500$ to $\$ 37,500$. The basic 5105 will include 16 K bytes of programmable memory, a 960 -character video display screen, a magnetic tape cartridge, and a thermal or electrostatic printer. Increasing memory up to 96 K bytes, adding a 1920 -character screen, floppy disks, and high-speed printer, and including software packages will raise the 5105 price up to $\$ 20,000$. It is expected that the 5105 will penetrate the personal computer market to some extent even though it is intended to be an entry-level business computer system . . . IBM is also rumored to have an intensive research and development effort trying to develop a low-cost alternative to the cathode-ray tube (CRT) screen display. Reportedly they are currently investigating 24 different alternatives. At this time, the most promising is the multiplexed liquid-crystal display It is rumored that a Japanese electronics company will shortly introduce a $\$ 600$ personal computer system that is hardware and software compatible with the Radio Shack TRS-80 (Level-II BASIC, 16 K version) By the end of 1979, over 2,500,000 floppy disk drives had been manufactured.

64 K EPROMS AVAILABLE BY MID-YEAR: Samples of 64 K bit erasable-programmable read-only memory (EPROM), organized as 8 K words by 8 bits, are currently being distributed to customers by Motorola, and production quantities are expected to be shipped by the end of the second quarter of 1980. Motorola has put their 64 K EPROM in a 24 -pin package by multiplexing the program supply and chip-enable signals on the same pin. Intel and Texas Instruments, it is believed, will use 28 -pin packages for their 64 K EPROMS.

In the meantime, the supply of 2708 EPROMS (1 K words by 8 bits) has caught up to demand and prices are now in the $\$ 6$ range. The demand for the 2716 EPROM (2 K words by 8 bits) is still very strong, and hence the devices are selling in the $\$ 20$ to $\$ 24$ range.
Texas Instruments is currently the largest manufacturer of EPROMs with about 38% of sales. Intel is second with 29%. Fujitsu and Hitachi share third place with 8% each.

AT\&T RUNS INTO TROUBLE WITH UNIX: The Association of Data Processing Service Organizations (ADAPSO) has petitioned the US Department of Justice to take action against AT\&T's sale of software products, particularly the UNIX operating system. UNIX is one of the most popular software systems for larger Digital Equipment Corp (DEC) PDP-11 machines. Most users feel that UNIX is better than DEC's software.

ADAPSO maintains that AT\&T is in violation of a 1956 consent decree. In 1978 the Justice Department authorized an investigation after a similar petition by the Computer and Communications Industry Association (CCIA).

Developed at Bell Laboratories in 1969, UNIX was offered to non-Bell organizations starting in 1973, for $\$ 20,000$ per computer. In the first half of 1978 , Bell reported $\$ 580,000$ revenues from about 800 non-Bell users.

Whitesmiths Ltd, a New York software house, is currently working on an LSI-11 version of UNIX.

[^8]MAIL: I receive a large number of letters each month, as a result of this column. If you write to me and wish a response, please include a stamped, self-addressed envelope.

Sol Libes
Amateur Computer Group of New Jersey
(ACG-NJ)
1776 Raritan Rd
Scotch Plains NJ 07076

WIIL SYSTEMS ATD SOFIUARE
 system 1 . . . Fecl free to mik and match

Twin Minl W/32K

$\$ 139.00$ Leodex Monltor

$\$ 110.00$
Keyboard

Base 2

SVSTEM 2
multueser gapazle

8010		CBASIC	\$115.00	WORDSTAR	S495.00	DATABASE	\$150.00
		MBASIC	\$300.00	ACCTS. PAYABLE	S699.00	INVENTORY	\$440.00
CPM 1.4	\$175.00	FORTRAN	\$395.00	ACCTS. RECEIVABLE	\$699.00	OSORT	\$ 95.00
CPM 2.0	\$150.00	COBAL.	\$625.00	GENERAL LEDGER.	\$899.00	NAD	\$ 79.00
MPM MULTI.USER	\$850.00	PASCAL	\$265.00	SUPERSORT	\$225.00	LETTERAIGHT	S180.00

West:
delta PRODUCTS
1653 E. 28th Street Long Beach, Calif. 90806 Tel: (213) 595-7505

DATABASE OSORT. $\$ 440.00$ NAD \$ 79.00 LETTERRIGHT

East:

DELTA PRODUCTS

1254 South Cedar Road New Lenox, Illinois 60451
Tel: (815) 485-9072

Indirect Addressing for the 6502

Kenneth Skier
25 Myrtle Ave
Cambridge MA 02138

One of the most attractive features of the 6502 processor-in fact, of the entire 6500 series-is the flexibility offered by its thirteen addressing modes. Unfortunately, these addressing modes are not always available when you want them. Indirect indexed addressing, for example, is available for load and store instructions (and a few others), but not for jump to subroutine (JSR).

A structured approach to programming leads one to write many programs as nested subroutines, and it is not always desirable for the programmer to specify the addresses of those subroutines in advance. For a given application, you may want the user to choose the address of the next subroutine that the processor will execute, or you may want software to calculate or look up that adddress, perhaps in response to sampled input conditions. In either case, you need indirect addressing for the jump to subroutine instruction.

In the 6502, the jump to subroutine instruction has only one addressing mode: absolute. So how can you get what the 6502 does not have?

One solution is to use the jump to subroutine instruction (JSR, hexadecimal 20) in your program, and follow it with two reserved bytes (ie: when you write the program, you do
not care what is in those two bytes). The rest of your program follows those two bytes. When your program runs, it will ask the user to specify the address of the next subroutine, or else it will look up or calculate that address according to some algorithm. It will then store that address in the two reserved bytes mentioned earlier (low byte first). When the 6502 processor executes the JSR instruction, it will use the next two bytes for the address of the subroutine it is supposed to execute.
This technique will work, but I avoid it for several reasons. First, it requires writing a program that modifies itself, and a simple error in such a program can cause it to self-destruct or subtly deface itself, not something I would look forward to debugging. Second, such a program may work fine in programmable memory, but it cannot work in read-only memory. The third reason is the clincher: this technique is unnecessary. You can have a program execute a subroutine and calculate or look up its address without requiring that it modify itself.
What is the solution? Use the zero page.

Set aside four consecutive bytes in the zero page of memory. The first part of your program, which presumably initializes I/O (input/-
output) ports, variables, flags, table pointers, etc, will write a hexadecimal 20 (JSR) into the first of these zeropage bytes, and a hexadecimal 60 (RTS) into the fourth of these zeropage bytes. (It need not do anything to the second and third bytes.) When it is time for your program to select the address of a subroutine and then perform a subroutine jump to that address, have your program calculate or look up the subroutine's address and then store it, low byte first, in the second and third zero-page bytes mentioned above.

Now your program can jump to a fixed address: the address of the first of these four zero-page bytes. Upon arrival at the zero page, the processor will perform a subroutine jump to a new address: the address it previously looked up or calculated. When it finishes executing that subroutine, it returns to the fourth of the zero-page bytes, which tells the processor to return to the program that called it. In practice your program jumps to a subroutine with a fixed address, whereupon it jumps to a subroutine with a calculated address. In effect, however, you get indirect addressing for the JSR instruction.

The effect can be impressive.
Using this technique, you can display an address, then let the user

OMNIX

AUNIX**LIKE OPERATING SYSTEM FOR Z-80 MICROPROCESSORS

1. Multi-user \& multi-process
2. Input/output redirection using pipes, links, and forks
3. User accessible spooler \& event queue manager
4. Powerful structured macro language for shell programming
5. WHENEVER, UNTIL, IF-ELSE, \& WHILE shell commands
6. Mountable, hierarchical, password-protected file systems
7. Global, group, \& individual file permissions
8. Memory support from 64 k to 1 M ; disk support to 4000 M
9. Installed on Industrial Microsystems \& Cromemco CS-3
10. Compatible with software developed on $\mathrm{CP} / \mathrm{M}^{\oplus}$
11. Now available from Yourdon
12. Single CPU license: $\$ 350$, support: $\$ 75 /$ year
change that address or execute it as a subroutine. It is an effective way to give a GO function to a read-only memory monitor. I have discovered many other applications for this technique in system software and applications programs.

Using this technique, your program can jump to the Xth subroutine in a table: the table would simply be a list of the addresses of eligible subroutines. Assuming that the beginning of your program initialized the first and fourth of the zero-page bytes (to hexadecimal 20 and 60, respectively), your program might look like listing 2.

This technique works quite nicely, but why go to all of that trouble each time you want to call a subroutine? Listing 3 shows a subroutine named CALL SUBROUTINE (X). The programmer need only load the X register with the number of the desired subroutine, and call CALL SUBROUTINE (X). (See listing 4 for a program segment that does just that.)

In other words, you can call a subroutine by a name that you've given it, rather than by its explicit address. To relocate any such subroutine, you need only change its address in the table of subroutine addresses; the routines that call it need not be changed in any way.

Here is one last point. You do not have to put the four bytes ($20, \mathrm{XX}$, $\mathrm{XX}, 60$) in the zero page; you can put them anywhere in programmable memory. However, putting them in the zero page lets your program operate on the second and third of these bytes (that is, on the subroutine's address), with the zero-page addressing mode available on many other instructions. Thus, by putting those four bytes in the zero page, you can make your overall program shorter (and probably faster) than it would be if you put those bytes elsewhere in programmable memory.

Incidentally, this technique may be used for any instruction, not just for JSR. To achieve such indirect addressing for other instructions, do not write a hexadecimal 20 in the first byte; write the op code for the instruction you want to execute. (Be sure that your program follows that op code with the appropriate one or two byte operand, and that your program writes a return [RTS, hexadecimal 60] in the byte following that operand, or your program, like

Listing 1: A program to initialize the zero-page bytes.

LDA	$\# \$ 20$	Write JRS
STA	zero page byte \#1	and
LDA	\#\$60	RTS into
STA	zero page byte \#4	zero page
	\cdot	
	\cdot	
remainder of initialize routines		

Listing 2: The indirect addressing method discussed can be used to jump to one subroutine in a table of subroutines. If the start of the program initializes the first and fourth byte of the zeropage reference to a jump to subroutine (JSR) command and a return (RTS) command, the coding for using the table might look as above. Note that "Zero Page Byte \#3" does not mean address 0003; rather it means the address of the third of the zeropage bytes referred to in this article.

Listing 3: Routine to create subroutine call using zero-page addresses.

LDA	TABLE,X	Look up address
STA	zero page byte \#2	of Xth subroutine and copy that
INX		address into the
LDA	TABLE,X	zero page.
STA	zero page byte \#3	Execute that subroutine.
ISR	zero page byte \#1	Return to caller.

Listing 4: Shorter program segment to simulate an indirect subroutine jump.

LDX subroutine \#
JSR CALL SUBROUTINE (X)
remainder of program

Charlie on the MTA [a legendary subway passenger...RSS], may never return.) In any case, the program that calls this function must do so by exe-
cuting a subroutine jump to the first of these zero-page bytes, even if those zero-page bytes do something other than call a subroutine.

LINK68: An M6800 Linking Loader is a one pass linking loader which allows separately translated relocatable object modules to be loaded and linked together to form a single executable load module, and to relocate modules in memory. It produces a load map and a load module in Motorola MIKBUG loader format. This book provides everything necessary for the user to easily learn about the system, including a detailed description of the major routines of the Linking Loader, including flow charts. While implementing the system, the user has an opportunity to learn about the nature of linking loader design as well as simply acquiring a useful software tool.
ISBN 0-931718-09-0
Authors: Robert D. Grappel \& Jack E. Hemenway
Pages: 72 Price: $\$ 8$

Tiny Assembler 6800, Version 3.1 is a small (4 K) but sophisticated and useful assembler for a large subset of the Motorola 6800 assembly language. The book includes detailed notes on the design and implementation of Version 3.0 of the assembler, a complete description of the enhancements upgrading the Tiny Assembler to Version 3.1, an updated user's guide, and complete listings for both versions, making this book the most complete documentation possible for Jack Emmerich's Tiny Assembler.
ISBN 0-931718-08-2 Pages: 80 Price: $\$ 9$
Author: Jack Emmerichs

RA6800ML: An M6800 Relocatable Macro Assembler is a two pass assembler for the Motorola 6800 microprocessor. The Assembler can produce a program listing, a sorted Symbol Table listing and relocatable object code. The object code is loaded and linked with other assembled modules using the Linking Loader LINK68. There is a complete desciption of the 6800 Assembly language and its components. Each major routine of the Assembler is described in detail, complete with flow charts and a cross reference showing all calling and called-by routines, pointers, flags, and temporary variables. In addition, details on interfacing and using the Assembler and error messages generated by the Assembler are included. This book provides the necessary background for coding programs in the 6800 assembly language, and for understanding innermost operations of the Assembler.
ISBN 0-931718-10-4
Author: Jack E. Hemenway
Pages: 184 Price: $\$ 25$

Telephone Dialing by Computer

Edward Joyce
4603 Lyceum Dr
San Antonio TX 78229

How would you like to have your computer dial a seven-digit telephone number in about $3 / 4$ of a second? For a small investment in hardware components and construction time, your personal computer can dial a telephone number faster than you can say that number. This article describes the construction and operation of a dual-tone multiple-frequency (Touch Tone) dialing device that interfaces with an ASCII computer terminal and can be used for automatic telephone dialing.

Many practical applications can be designed around an automatic dial feature, but the most obvious is a personal telephone directory. In such a system, a list of frequently dialed telephone numbers and associated names is displayed on the computer terminal. The user selects the number to be dialed by entering a single corresponding character on the computer keyboard (see table 1). A feature that could be incorporated is an option to redial the last number dialed, which would be useful for reaching busy numbers.
Assuming that you have a microprocessor and an ASCII terminal, the additional hardware that is required can be constructed for less than $\$ 20$. Furthermore, this Touch Tone interface does not require its own I/O (in-

[^9]

Photo 1: Dialing the telephone is done by selecting from a menu displayed by the computer on the screen of the video terminal.
put/output) port, the telephone can be used both automatically and manually, the programming is relatively simple, and either a Touch Tone or rotary-dial telephone can be utilized. (Note that the telephone exchange to which the line is connected must be capable of interpreting Touch Tones. Some telephone systems (such as those in Peterborough NH) still cannot use Touch Tone dialing....RSS]

Touch Tone Interface

A block diagram of the hardware is shown in figure 1. Note that communication with the Touch Tone
device is established through the terminal. Specifically, the computer generates tones by sending certain characters to the terminal. Since most ASCII codes have predesignated meanings (for example, hexadecimal 30 is the digit 0 , hexadecimal 41 is the letter A, etc), it is necessary to assign the Touch Tone controls to ASCII codes not used by your terminal. A logical choice for these assignments is among the thirty-two ASCII control codes (hexadecimal 00 thru hexadeci-

[^10]

SUPERBRNN ${ }^{\mathrm{m}}$

The Honor Graduate

OEM's... End Users. . Computer Dealers. \$2995!
SuperBrain users get exceptional performance for just a fraction of what they'd expect to pay. Standard system features include: two double density minifloppies with 320 K bytes of disk storage. 64K of RAM memory to handle even the most sophisticated programs, a CP/M Disk Operating System with a high powered text editor, assembler, debugger and a disk formator. And, with SuperBrain's S. 100 bus adaptor, you can add all the programming power you will ever need.. .even a 10 megabyte disk!

SuperBrain's CP/M operating system boasts an overwhelming amount of available software in BASIC, FORTRAN, COBOL, and APL. Whatever your application . . General Ledger, Accounts Receivable, Payroll, Inventory or Word Processing ... SuperBrain is tops in its class. But best of all, SuperBrain tackles your toughest jobs for less than onethird the cost of other similar systems.

You'll appreciate the careful attention given to every engineering detail. Standard SuperBrain features include: a full ASCII keyboard with numeric pad and user-programmable function keys. A non-glare, dynamically focused, 12 -inch CRT for sharp images everywhere on the screen. Twin Z80 microprocessors to insure efficient data transfer to auxiliary peripheral devices. A universal RS-232 communications port for serial data transmission. And, a single board design to make servicing a snap!

Performance and packaging have never been better matched. Your operators will appreciate SuperBrain's good looks. You'll appreciate SuperBrain's outstanding value. Twin 280A processors, dual double density disk drives, and a high resolution CRT terminal. All in a single, smart looking, selfcontained desktop unit. And, all for a price that's substantially less than the competition!

Make no mistake about it. The freshman students in the small systems business can't begin to compete with this year's honor graduate. The SuperBrain. The only system at the top of its class in price and performance

679 Highland Ave.
Mon-Fri 9:30-5:30 MasterCharge \& Visa Accepted Needham, MA 02194
Microcomputer Systems Division

Table 1: Typical information displayed on the computer terminal in an automatic telephone dialing system that can be set up using the dialing device described in this article. The user types a single-character access code on the computer keyboard and the system dials the corresponding telephone number automatically.

Figure 1: Block diagram of connections in the system.

Table 2: Row and column input lines on the integrated tone dialer device, associated tone frequencies, and corresponding digits or signaling codes derived from the combination of two tones of different frequency.
mal 2 F). Most terminals use ten or twelve of these thirty-two codes for predesignated functions (such as line feed and carriage return). However, there are generally about twenty codes that can be used for other purposes. The Touch Tone device described here will use ten of these control characters.

How are the ASCII control characters sent to the Touch Tone device? By utilizing the decoding logic of the terminal. In units such as the Southwest Technical Products Company CT-64, all thirty-two control characters are decoded by the terminal. Some of the control characters are acted upon by the terminal (eg: line feed); however, those which are not used are brought out to labeled pads on the main circuit board for custom use and user-defined functions. For tone generation, simply choose ten of these user-defined control characters and connect the appropriate pins to the corresponding pins of the Touch Tone device.

Terminals which do not decode the unused ASCII control characters or do not present at least ten pins for user-defined functions require construction of a control-character decoder. The control-character decoder runs in parallel with the terminal and requires only two integrated circuits.

Touch Tone Generating Circuit

Now that the method of interfacing the terminal with the Touch Tone circuit has been described, the actual operation of the Touch Tone device will be discussed. Basically, it consists of two medium-scale integration (MSI) quad $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches, a Mostek integrated tone dialer, and a relay for switching the Touch Tone device to the telephone.
The integrated tone dialer requires two inputs (a row input and a column input) to generate a tone. These input signals activate tones as shown in table 2. Activating row 1 and column 1 generates the tones for the digit 1 ; activating row 3 and column 2 generates the tones for the digit 8 , etc.

IDS Announces

S-100 Energy Management Module

The 100-EMM Energy Management Module provides temperature measurement at four separate locations indoors or out; monitors eight (8) doors, windows, or fire sensors; controls six external devices via relay or optoislator; and provides an intrusion alarm with battery backup (alarm operates even during primary power outages). Put the 100-EMM to use in your home or business and claim a 30\% tax credit for the cost of your S-100 computer system including the 100-EMM. (Purchasing the 100-EMM can actually save you several times its cost in tax credits. Full instructions for filing are included in the 100-EMM manual.)

BUY THIS S-100 BOARD AND GET A 30\% TAX CREDIT BASED ON THE COST OF YOUR COMPUTER SYSTEM!

100-EMM Energy Management Module Assembled and Tested \$395.00 Kit $\$ 345.00$

Options for 100-EMM:

CP-52 Cable Panel - Terminates two 26 -conductor flat cables in 26 screwlugs. Use it for convenient interconnection of the 100-EMM to the "outside world". \$45.00
CABL-26-STD 26-Conductor Flat Ribbon Cable - Four feet in length with connectors for 100-EMM and CP-52 above. $\$ 35.00$ Other lengths available on special order. Add $\$ 1.00$ per foot.

OTHER PRODUCTS FROM IDS. The most complete source of S-100 compatible modules for process control, data acquisition, energy management, and data communications.

88-MODEM S-100 ORIGINATE/ANSWER MODEM WITH AUTODIALER. Software selectable baudrate provides any baudrate from 66600 baud. Provides 1.5 stop bits when operated in 5 -bit code mode. Auto-answer programs available for CROMEMCO CDOS, CP/M, North Star Horizon and MDS, and Alpha Micro.
Assembled and Tested $\$ 395.00$ Kit $\$ 245.00$

88-UFC UNIVERSAL FREQUENCY COUNTER

Four software selected inputs. Measure frequency from O-650 MHz and period from .lus to 1 Second. Extensive software included.
Assembled and Tested $\mathbf{\$ 2 9 9 . 0 0}$ Kit $\mathbf{\$ 1 9 9 . 0 0}$ TemperatureCompensated Crystal Oscillator option $\$ 145.00$

88-SAI SYNCHRONOUS/ASYNCHRONOUS INTERFACE

The most versatile serial interface on the market. Computer access/control of all data and handshake lines and provision for masked interrupts, inversion of any input or output signal, and onboard baudrate generation for $110,134.5,150,300,600$, $1200,2400,4800,9600$, and many other baud rates. Many more features.
Assembled and Tested $\mathbf{\$ 2 9 9 . 0 0}$ Kit $\mathbf{\$ 1 9 9 . 0 0}$
INTERNATIONAL DATA SYSTEMS, INC.

Mailing Address:
Post Office Box 17269 Dulles International Airport Washington, DC 20041
Telephone (703)661-8442

88-SPM TIME OF DAY CLOCK with battery backup. Set the clock with three out instructions: no delays! Programs included in North Star BASIC, CBASIC, and 8080 assembly language.
Assembled and Tested with crystal option $\$ 199.00$ Kit less crystal option \$99.00 Crystal Option Kit \$25.00

88-RCB RELAY CONTROL BOARD

16 Relays on one board. Control appliances, production equipment, or even musical instruments (See BYTE Magazine Sept 1977 page 12)
Assembled and Tested $\$ 299.00$ Kit $\$ 199.00$

Figure 2: Schematic diagram of the dualtone multiple-frequency (Touch Tone) telephone dialing circuit. Connections to the terminal apply to the Southwest Technical Products Corp CT-64 unit. Terminals which do not decode the entire ASCII character set may require additional decoding circuitry for use with the telephone interface. The isolating telephone coupler is required for connection to the telephone line of devices which have not been given approval by the Federal Communications Commission.

The tone combinations for the characters A, B, C, and D (column 4 of table 2) do not have corresponding keys on a normal telephone Touch Tone pad but are reserved for future use. Since you will be generating only the tones 0 thru 9, only inputs for columns 1 thru 3 and rows 1 thru 4 will be needed. Hence, seven ASCII control characters will be needed to activate the three columns and four rows. Use of the other three ASCII control characters (for a total of ten) is discussed later.

The purpose of the latches (IC 1 and IC2) is to hold the output state of the logic decoder of the terminal. Since the terminal processes only one character at a time and the tone dialer requires the simultaneous presence of two input signals, the latch holds the first input from the terminal while the second input is being transmitted. There is a latch for each column and row of the integrated tone dialer. The latch IC2 is also used to control a relay for attaching the tone device to the telephone. A schematic of the complete Touch Tone generating circuit is shown in figure 2.

The output of the integrated tone dialer goes into an isolating coupler connected to a telephone. The coupler must be approved by the Federal Communications Commission, and it is required for user con-

Number	Type	+5 V	GND	+12 V
IC1	74279	16	8	
IC2	74279	16	8	
IC3	5086 N		6	1.7
IC4	LM380		7	14

Table 3: Power supply connections for integrated circuits in figure 2.

Many software programs are restricted by the 116 K available on the $5^{\prime \prime}$ drives now on the market. Some business programs require 12 or more diskettes, which can be both confusing and error inducing.

WIZARD offers three solutions:
"WIZARD $1+1$ " : single 8" drive system; 256K \$1695.
"WIZARD $2+2$ " : two 8"' drive system; 516K \$2495.
"WIZARD PLUS" : two 8" drives, double sided; over 1 megabyte \$3195.
All systems are ready to run, fully assembled and tested, and include:
SHUGART full size $8^{\prime \prime}$ floppy disk drive(s).
Controller Card for your Apple (48K RAM required)
All interface software, cables, connectors, cabinet and power supply.
ONE YEAR parts and labor warranty from defects in material and workmanship.
WATCH FOR NEW WIZARD PRODUCTS FROM D\&T ELECTRONICS: we are currently developing a 10 Megabyte disc, and other hardware/software.

ALL SYSTEMS AVAILABLE NOW (stock to two weeks).
SEE YOUR LOCAL APPLE DEALER, OR CONTACT THESE WIZARD DISTRIBUTORS:

MARCOMP
175 East Edgewood Drive McMurray, PA 15317
(412) 941-5936

COMPUTER DISTRIBUTORS, INC.
PO BOX 9194
Austin, TX 78766
(512) 345-9729

DEALER INQUIRIES INVITED

SOFTWARE: We have software available to run on these expanded capacity systems; please send for our list.
If you are a software writer and have programs currently on $5^{\prime \prime}$ that would benefit from the expanded capacity of our $8^{\prime \prime}$ systems, we would like to hear from you.
structed devices which attach to the telephone company's equipment. Approved couplers can be purchased for approximately $\$ 5$ from electronic supply houses, or they can be leased from the telephone company for $\$ 2$ to $\$ 4$ a month.

As previously mentioned, there are three more ASCII control characters required by the Touch Tone device. These perform the reset, relay on, and relay off functions. The reset control is used to turn a tone off after it has been turned on (the tone combination is turned on by activating a row/column combination). (That is, once a row and column have been turned on, they remain on until a reset is issued.) Reset is also used to clear the latches after powering up the circuit. Note that the control character used for reset (pin 13 of the terminal 74154) is connected to the reset pin of the latch for each row and column control (IC1 and IC2). A single reset operation clears all of the row and column latches. This is more convenient than clearing the row and column latches individually.

The relay on and relay off controls are used to make connection to and disconnect from the telephone. The Touch Tone device is connected to the telephone coupler immediately before dialing and is disconnected from the terminal immediately after dialing. This prevents random signals and noise (such as that generated at power on) from entering the telephone line from the terminal.

In my system, the power supply for the Touch Tone device was taken from the terminal's power supply. After the Touch Tone generating circuit has been constructed, the volume output from the integrated tone dialer should be adjusted with a VU meter so that it will be in the range of -6 to 0 dB . Output signals less than -6 dB in level will not be recognized by the telephone company equipment. Output levels greater than 0 dB cause cross-modulation into other phone lines. The general operation of the Touch Tone device can be tested offline by entering the various control characters with the terminal in full duplex mode.

Introducing... MINHFLEX Designed Specifically to Protect 5" Diskettes

> The Newest Member of The Advance Access Diskette Protection Family

For Further Information CALL TOLL FREE $800323-0254$ ADVANCE ACCESS GROUP
10526 W. Cermak Westchester, IL $60153 \quad 312562-5210$ "Manufacturers of Information Processing Supplies"

Dialing

Once the hardware is functioning correctly, dialing is simple. Basically, it consists of the following steps:

- Turn the line connection relay on (send the control character for relay on to the terminal).
- Turn column on for Nth digit (send the control character for the column of digit N to the terminal).
- Turn row on for N th digit (send the control character for the row of digit N to the terminal).
- Wait 40 ms .
- Turn tone off (send the control character for reset to the terminal).
- Wait 40 ms .

The preceding steps are performed once for each digit of the telephone (for example, seven times for a local telephone number).

- Turn relay off (send the control character for relay off to the terminal).

Note that from the perspective of the microprocessor unit, generating Touch Tones is accomplished in the same manner as displaying characters on the terminal screen. The 40 ms delays are minimum times required by the telephone company equipment. A tone must stay on for at least 40 ms , and there must be at least a 40 ms delay between tones.

Summary

This Touch Tone interface, used in conjunction with a microprocessor and an ASCII terminal, is an example of a practical computer application in communications. I advise personal computing enthusiasts who construct their own Touch Tone devices to be most careful when debugging the software. Sending random sequences of digits through a Touch Tone interface can be a painful way to debug your program (although the pain may not be felt until the telephone bill arrives a few weeks later).

[^11]
Build your own microcomputer as you learn computer technology at home.
 \section*{New from NRI! The Most Complete and Up-to-date Home Study Course Ever Offered}

As the microprocessor revolutionizes the computer world and microcomputers appear almost everywhere, NRI brings you a new, convenient, and effective way to keep up with this expanding technology. It's NRI's Computer Technology Course, created and designed exclusively for learning at home in your spare time.

Featuring NRI's Exclusive

 Dual Language MicrocomputerNRI goes beyond book learning to give you practical, "hands-on" experience in designing circuitry, interfacing components, programming, and troubleshooting. As you learn, you actually assemble NRI's designed-forlearning microcomputer, incorporating the latest advances in the state of the art. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. And it's yours to keep, put to work in your own home or business.

You also build and keep your own test instruments, including a transistorized voltohm meter and CMOS digital frequency counter. And NRI's Discovery Lab ${ }^{\text {® }}$ broadens your horizons with specialized experiments and theory demonstrations.

The Proven Way to Learn at Home

You don't have to worry with travel, classes, or time lost from work when you learn the NRI way. As they have for more than 60

years of teaching technical subjects, NRI brings the material to you. You study in your spare time, at your convenience, using "bite-size" lessons that program material into logical segments for easier assimilation. You perform experiments and build equipment using kits we supply. And your personal NRI instructor is always available for consultation should you have questions or problems. Over a million students have already shown the effectivenuss of NRI training.

Choice of Courses

Several courses are available, depending upon your needs and background. NRI'sMaster Course in Computer Technology starts with the fundamentals, explores basic electronics and digital theory, the total computer world, and the microcomputer. The Advanced Course, for students already versed in electronics and general computers, concentrates on the microprocessor and microcomputer In both courses, you build all instruments and your own computer.

Send for Free Catalog...

 No Salesman Will CallGet the details on these exciting new courses in NRI's free, 100 -page catalog. Shows all kits and equipment, lesson outlines, and full information, including facts on other electronics courses. Mail the coupon today and we'll rush your catalog. No salesman will ever call. Keep up with the latest technology as you learn on your own computer. If coupon has been removed, write to NRI Schools, Computer Department, 3939 Wisconsin Ave., Washington, D.C. 20016.

NRI Schools

McGraw-Hill Conltnulng Education Center 3939 Wisconsin Avenue Washiugton, D. . 20016
NO SALESMAN WILL CALL
Please check for one free catalog only.
\square Computer Electronics Including Micrucomputers
\square TV/Audio/video Systems Servicing
\square Complete Communications Electronios with CB • FCC Licenses • Aircratt Mobile, Marine Electronics
\square CB Specialists Course
\square Amaleur Radio - Baslc and Advanced

Analysis of Polynomial Functions with the TI-59 Calculator

Part 2

Pierre Chancé
20 Rue de Longchamp
75116 Paris FRANCE

Consider the following polynomial:

$$
\mathrm{P}(x)=x^{4}-8 x^{2}+7
$$

For $\mathrm{P}(x)=0$ it is essential to study the characteristic elements, derived polynomials $\mathrm{P}^{\prime}(x)$ and $\mathrm{P}^{\prime \prime}(x)$, and automatically plot the function curve. The procedure is as follows:

1. Read the magnetic card of the main program in groups 1 and 2.
2. Initialize by depressing key A.
3. Enter each of the coefficients with the keys. Start with the coefficient for x^{6} by depressing key B each time. A 0 is entered for any term not having a power of x. Thus, you can perform the sequence 0 B, 0 B , 1 B, 0 B, -8 B, O B, 7 B.
4. Depress key C.

Depressing key C causes the processing of $\mathrm{P}(x)$ to its conclusion with no other intervention.

When reading listing 1 , the following are seen successively, separated by program spaces:

- the column of the seven given coefficients or the Os which replace them
- the group of the lower boundary a and upper boundary b
- the group of interval $(b-a)$ and increment Δx
- the indication of the maximum error

After these appear the following results:

- the group of roots followed by the series 9.999...? that indicates the end of determination of the roots
- the table of the thirty-nine values of x
- the table of the thirty-nine values of $\mathrm{P}(x)$

If it is desired to retain the data for $\mathrm{P}(x)$ to plot the function curve later, this is the time to record it in groups 3 and 4.

The procedure for the first derived polynomial is even simpler:

1. Depress key B' once; this causes all the coefficients of $\mathrm{P}^{\prime}(x)$ to be printed one after the other.
2. Depress key C.

The second derived polynomial is obtained in the same manner. The same applies for the derivatives of order n, provided the polynomial remains derivable. Notice that it is useless to reinitialize to change from one polynomial to the next.

Plotting the Function Curve

By convention, hereafter designate the data used in plotting the function curve as listing 2. It can be the table of values of $\mathrm{P}(x)$ already recorded or any other that could be substituted for reasons that will be discussed. The plot itself will be designated figure 1.

\because
\therefore

Figure 1: The six segments of output from the Tl-59 that define the function curve.

PAINTER NOT INCLUDED IN PRICE

MINIMAX SERIES COMPUTER

THE MINIMAX SERIES WAS DESIGNED TO OFFER THE MARKET MINICOMPUTER CAPABILITIES AT MICROCOMPUTER PRICES. COMPARE THE CAPABILITIES \& PRICE!

 CONTACT NEECO FOR FULL SPECS - FREE MINIMAX MANUAL.
MEET THE MINIMAX COMPUTER

 THE MINIMAX SERIES COMPUTER WAS DESIGNED BY INDUSTRY PROFESSIONALS. COMPARE THE PRICE AND FEATURES TO ANY OTHER COMPUTER IN ITS CLASS!

- THE MINIMAX SERIES COMPUTER IS AN INTEGRATED, COMPACT UNIT CONTAINING THE CPU, DUAL DENSITY DISK STORAGE. 12 INCH CRT, ANO FULL STYLE KEYBOARD, WITH SEPARATE NUMERIC ENTRY PAD. ALL KEYS (INCLUDING CURSOR) WITH FULL REPEAT - HYERID 2 MEGAHERTZ 6502 CPU • 108 K SYSTEMRAM (48K USER) - FASTEST FLOPPYDISK ACCESS I24K LOADS IN 4.2 SECONDS) - $16 K$ ROM CONTAINS COMPUTHINK BASIC (AN EXTENDED MICROSOFT BASICI WITH EXTENDED PRECISION DOS INCLUDES COMPLETE FILE I/O WITH FULL RANDOM ACCESS, COMPLETE MONITOR WITH DEBUG \& TRACE, AND TINY G5O2 ASSEMBLER - COMPLETE HIGH RESOLUTION GRAPHICS WITHINDIVIDUAL DOT (240×512) POINT SCREEN ADDRESSABILITY FULL SCREEN TEXT EDITING WITH OVERWRITE. INSERTION OR DELETION - SPLIT SCREEN/WINDOW MODES - INDIVIDUAL FIELD EDITING WITH FIELD PROTECT AND AUTO SKIP TO NEXT FIELD DISK STORAGE SYSTEM TRANSFERS GK PER SECOND WITH AUTO VERIFY AND PARITY CHECK - 12 INCH CRT-64 CHARACTERS BY 30 LINES. UP TO THREE PROGRAMMABLE CHARACTER FONTS FOR LANGUAGES OR SPECIAL CHARACTERS * - SWITCHABLE 110 OR 22OV OPERATION © - - HYBRID CPU IS MICROPROGRAMMABLE WITH 64 USER DEFINABLE OPCODES. CHOICE OF BOOK OR 2.4 MEGABYTE DISK STORAGE O FULL SERIAL RS-232C PORT WITH PROGRAMMABLE BAUD RATES AND MODEM CONTROL SIGNAL - DEDICATED DISK PORT PRINTER PORT SUPPORTS PARALLEL COMMERCIAL PRINTERS - 24 PIN I/O USER PORT - PAGEMATE DATABASE aVAILABLE - PLM COMPILER AVAILABLE BUSINESS PACKAGES AVAILABLE - COMPLETE DIAGNOSTICS \& SChEMATICS INCLUDED - COMPLETE USER MANUAL INCLUDED
MINIMAX I - $\$ 4495 \quad \begin{aligned} & \text { MINIMAXI-. } 8 \text { MEGABYTE } \\ & \text { ON LINE MINIFLOPPY STORAGE }\end{aligned}$ MINIMAX II - $\$ 5995 \quad \begin{aligned} & \text { MINIMAX II- } 2.4 \text { MEGABYTE } \\ & \text { ON LINE B" FLOPPY STORAGE }\end{aligned}$
THE MINIMAX WAS DESIGNED AND IS MANUFACTURED BY COMPUTHINK COMPUTER CORP. DISTRIBUTED IN EUROPE AND THE EASTERN U.S. BY NEECO.

HARDWARE AND SOFTWARE FOR YOUR PET!

The PET is now a truly sophisticated

| PRODUCT | | DESCRIPTION | PRICE |
| :--- | :---: | :---: | :---: | AVAILABILITY Business System with the announcement of these peripherals and software packages. 2nd Cassette $\$ 100$ IMMEDIATE - The $16 \mathrm{~K} / 32 \mathrm{~K}$ (iarge keyboard) units do not include a cassette drive. Order C2N Cassette. 2040 Floppy Drive requlres a 16 K or 32 K unit. 8 K RAM Retrofit available July. ALL PETS ARE FULLY TESTED BY NEECO BEFORE SHIPMENT. NEECO IS A FULL CUSTOMER-ORIENTED COMPANY. CALL FOR OUR FREE CATALOG. ALL ORDERS OVER $\$ 795$ WILL RECEIVE A FREE NEECO PET DUST COVER AND $\$ 100$ OF SOFTWARE FROM OUR CATALOG IF YOU MENTION YOU SAW THIS AD.

PET-DISK BASED BUSINESS SOFTWARE

SOFTWARE/APPLICATION
WORDPRO II / WORD PROCESSING
WORDPRO III / WORD PROCESSING GENERAL LEDGER
ACCOUNTS PAYABLE
ACCOUNTS RECEIVABLE
MAILING LIST
MICROLEDGER
MICROPAY
MICROREC
MICROINV
MICROPERS

REQUIRES
$2040+16 K$ PET
$2040+32 K$ PET

AUTHOR
PRO/MICRO
CMS SOFTWARE

AVAILABILITY

IMMEDIATE	$\$ 100$
JANUARY	$\$ 200$
IMMEDIATE	$\$ 295^{*}$
JANUARY	$\$ 295^{*}$
JANUARY	$\$ 295^{*}$
IMMEDIATE	$\$ 100$
"	$\$ 140$
$\prime \prime$	$\$ 140$
$\prime \prime$	$\$ 140$
$"$	$\$ 140$
$"$	$\$ 140$

*The CMS Software (G/L, A/R, A/P) are based on Osborne \& Associates trial tested business basic software. Software is complete with full documentation and user instructions. All packages require a printer for output. Commodore recommends the NEC Spinwriter (available from NEECO) as the output printer for WORDPRO.

PRODUCTS ARE AVAILABLE TO DEALERS VIA MICROAMERICA DISTRIBUTING (617-449-4310)

FOR WORD PROCESSING NEC IS BEST!

* 55 characters per second output speed
* Changeable thimble for different typestyles
* Less than 1% warranty malfunction rate
* IBM quality letter output
* Dealer inquiries invited

THE NEC SPINWRITER
MODEL 5530-P $\left.\quad \begin{array}{c}\text { Centronics } / / 0 \\ \text { modified for PET }\end{array}\right)$
\$2995
*Price includes IEEE interface to PET. IEEE Port is available for use with 2040 Dual Disk.
-The NEC 5530-P is the output printer recommended by Commodore for their Word Processing System.

679 Highland Ave. Needham, MA 02194

Mon-Fri 9:30-5:30
MasterCharge \& Visa Accepted
(617) 449-1760

Telex: 951021

MICROAMERICA DISTRIBUTING
"Nationwide distributors of Computer Equipment" 21 Putnam Street
Needham, MA
02194
(617) 449-4310

Listing 1: A listing containing the data and error specification for a six-degree polynomial, $P(x)$. Thirty-nine values of x are also printed along with the corresponding values of $P(x)$ calculated for each value of x.

Text continued:
The procedure is as follows in practice:

1. In groups 3 and 4 read listing 2 mentioned above.
2. In groups 1 and 2 read the magnetic card of the program for the function curve.
3. Initialize by depressing key A.
4. With the keys enter the two extremes envisaged for the curve starting with the lower and then each time depressing key B
5. Depress key C.

Depressing key C initiates the entire process with no other intervention. The six strips obtained are separated by cutting with scissors, and are assembled with glue or adhesive tape. This is the standard automatic procedure, and nothing prevents the operator from applying it in every case using the data collected in listing 1.
However, you may desire to center the reproduction in a smaller field. When examining the table of values of $\mathrm{P}(x)$ obtained, it is obvious that, for registers R_{21} thru R_{25} and R_{55} thru R_{59}, small variations in x cause considerable variations in $\mathrm{P}(x)$. In other words, the curve ends with parabolic branches. In the same way a photographer takes a close-up of a subject, you can neglect the infinite range and concentrate on useful details.

For this purpose, you must disconnect automatic operation and gain control of the depth of field. This time, the procedure will be as follows:

1. Reread the card of the main program in groups 1 and 2.
2. Initialize by depressing key A.
3. Re-enter the initial coefficients of R_{10} to R_{10} by each time depressing key B as previously indicated.
4. Switch to programming mode LRN, and perform the few modifications required:

- Replace the neutral NOP instructions provided for this purpose at statements 087, 096 and 119 by R/S instructions.
- Replace the initial partition of the interval (a, b) at statements 120 thru 122 by as many NOP instructions.
- Replace all occurrences of ϵ with a deliberately excessive number, for example 999...

5. Return to the calculating mode, and depress key C. The rest of the program will be executed but will stop whenever useful to permit the entry of a data item of your choice:

- Boundary a with the first stop: here, it will be 3 in absolute value but the calculator will recognize it as negative 3 .
- Boundary b with the second stop: it will again be 3.
- Partition of the interval (a, b) at the third stop: keep it at 20 on seeing the value of the interval the machine has just printed out after the boundaries.

Naturally, each data entry with the keys is followed by operation of the R/S key to restart the calculation.
What happens now? Without getting involved in a root calculation that is no longer of interest at this point, the

Let your LSI-II*break

 With our Bank-Switching family

In LOCAL mode our memory is functionally just like DEC memory. But when you run out of memory space you're not lost. Add an inexpensive Bank-Switch Controller (BSC-256) and you can go to two megabytes. Add another and go to four megabytes.
So don't get boxed in with other brands of
LSI-11* memory. Break free. Join the family:
RMA-032 32K by 16 bit RAM. $\$ 1200$ On-board refresh (Single qty.)
RMS-016 16K by 16 bit ROM. $\$ 300$ (Intel 2716) (Single qty.)
BSC-256 The Bank-Switch \$300 Controller (Single qty.)

Substantial quantity discounts are available. For a free copy of our Bank-Switching manual, call or write on your company letterhead.
Digital Pathways Inc.
4151 Middlefield Road
Palo Alto, CA 94306
(415) 493-5544
*Registered trademark of Digital Equipment Corporation

Listing 2: Listing of a sample input of data used to plot the function curve.

$$
\begin{array}{r}
-0.9 \\
-0.75 \\
-0.65 \\
-0.35 \\
-0.10 .6 \\
0.15 \\
0.45 \\
0.65 \\
0.75 \\
1.05 \\
1.35 \\
1.25 \\
1.8 .8 \\
1.95 \\
2.25 \\
2.4 \\
2.55 \\
2.85
\end{array}
$$

$$
\begin{array}{r}
-8.4224 \\
-3675=375
\end{array}
$$

$$
679.375
$$

$$
25849375
$$

$$
-2.4464
$$

$$
-8.60449375
$$

$$
\begin{array}{r}
1.1761
\end{array}
$$

$$
\begin{array}{r}
1.1761 \\
31640625
\end{array}
$$

$$
\begin{array}{r}
1640625 \\
4.2496
\end{array}
$$

$$
\begin{aligned}
& 4.2496 \\
& 1006 \geq 5
\end{aligned}
$$

$$
\begin{array}{r}
+2100625 \\
6.2881
\end{array}
$$

$$
\begin{array}{r}
\text { 6. } 2881 \\
2050625
\end{array}
$$

$$
6.82050625
$$

$$
6.82050625
$$

$$
6.2881
$$

$$
5.42100625
$$

$$
4.2496
$$

$$
2.8: 640625
$$

$$
1.1761
$$

$$
-10.604493 ?
$$

$$
-2,+464
$$

$$
4.25849375
$$

$$
-5,9375
$$

$$
-7.36 .99375
$$

$$
-8,4224
$$

$$
-8.96099375
$$

$$
-8.8319
$$

$$
\therefore .87109375
$$

$$
\begin{array}{r}
-5.9024 \\
-37+9375
\end{array}
$$

$$
\begin{array}{r}
37 \\
1.8241
\end{array}
$$

$$
7.99500025
$$

calculator simply indicates the lowest root in approximate fashion and then rapidly prints out the tables of values of x and $\mathrm{P}(x)$ at the assigned values of a and b (see listing 2).

All that remains is to use these values contained in

registers R_{21} to R_{59} for the plot by continuing with the known steps as follows:
6. In groups 1 and 2 read the card of the program for the function curve.
7. Initialize with key A.
8. With the keys punch in $-9 B$ then $8 B$ to enter the extremes which are obviously appropriate here.
9. Depress key C which delivers the six ideal strips after this mathematical "zooming" as can be seen from looking at the curve in detail (see figure 1).

Above all, the question is one of knowing if this plot is technically satisfactory.

For verification purposes, see if the coordinates of the minimums found by the calculation ($\pm 2,-9$) and the coordinates measured on the plot are consistent. More precisely, determine the abscissa of the minimums with an ordinate of -9 . From the small median triangular sign marking the 0 abscissa on the base line, you can easily count ± 13 intervals each having a value of 0.15 , the increment of x. This gives $\pm 13 \times 0.15= \pm 1.95$. This abscissa is very close to the value calculated (± 2), and it can be said that the plot is extremely accurate.

As for the points of inflection, their ordinate is found to be $-1.888 \ldots$ for $\mathrm{P}(x)$ evaluated from the roots of $\mathrm{P}^{\prime \prime}(x)$ $=0$, in other words abscissas of ± 1.154700. The points of inflection whose abscissa is ± 1.15 in accordance with the calculation fall slightly before the eighth point on the base line at the abscissa ($8 \times 0.15=1.20$). This is also very close to the value calculated. These are the points where the curve crosses its tangent.

The zero ordinate can easily be deduced from a simple rule. Given that the difference between minimum and maximum is $9+8=17$ in absolute value and there are 4 $\times 20+17=97$ elementary intervals between these points, each has a value of 0.175 . From this the axis of the abscissas is at $9 / 0.175=51$ intervals from the minimum of the curve.

From the table of $\mathrm{P}(x)$ it can be seen that the curve cancels between registers R_{34} and $\mathrm{R}_{33}, \mathrm{R}_{46}$ and R_{47}, and that this effectively corresponds to the interval 6-7 of the base line. Without providing the precision of a professional plotter, the reproduction obtained is thus of suitable quality given the means employed.

Conclusion

When a procedure is used for a rather long calculation that requires only three keyboard operations:

- initialization by key A
- data entry by key B or B'
- complete execution by key C
the drawbacks of the relative slowness of calculation are considerably reduced.

The Tl-59 cannot execute its program with great speed. However, most users can tolerate a delay of a few minutes with no hardship. Some will appreciate the option of allowing users to disable automatic operation to follow their own inspiration.

Back-Up

'Security... for your S-100 hard disk data'

The availability of fast, reliable, high capacity hard disk storage for the S-100 computer market has created a wave of excitement. It has also underscored the somber necessity for a reliable means of backup. No serious application is practical without a dependable, economical method for backup and archiving of critical on-line data.

Now, CSSN breaks the barriers to hard disk applications by offering the complete solution for data security . . . a cartridge tape drive (13.4 megabyte

The Plot Continues

Leslie B Walter
72 Central St
Farmington NH 03835

Figure 1: A sketch of the complete plotter mechanism.

Figure 2: Cutaway showing details of drive mechanism. The motor drives the shaft, turning the disk. The interrupter sends a pulse to the controller each time a hole passes through it. A cable wrapped around the shaft comes up through the plotting bed and pulls the crossbar along the slide. There should be a cable at each end of the crossbar.

I had a dream the other night. A wondrous vision: I built an inexpensive, simple plotter and it worked. I remember that just before retiring, I was reading the March 1977 BYTE, specifically the article on building a plotter using model aircraft servomotors ("Give Your Micro Some Muscles," page 9).

The servomotor idea sounded great at first, but is quite complicated to run. For one thing, the plotting routine must constantly send out carefully timed pulses. Either that or you need a set of programmable clocks. Second, you must have a circuit that indicates when the plotter is finished with the current line segment or you would be plotting the next line before the first line is finished (unless you want to wait out the worst case every time). Third, there is that trigonometric routine. I don't even want to think about that. Fourth, there is the problem of wobble. With arms long enough to give a decent sized plotting area, the slightest bump or small snag on the paper and your beautiful plot begins to look like a Los Angeles seismograph record. Arms rigid enough to avoid this problem would be extremely difficult to build. There is also the problem of play. At the end of 10 -inch arms, a small amount of play at the servomotors would be greatly magnified, possibly enough to miss the desired point by a fair margin.

I propose the following alternative design approach. The idea isn't perfect, but I think it will work.

Mechanical Description

The basis for the plotter (and the hardest part to build) is the crossbars (figures 1 and 2). These are two sets of perpendicular bars that slide on long rails set at the edge of the plotting bed. The pen mount with its solenoid sits on the intersection of the bars. It slides along in a fashion similar to the crossbars and their rails. By moving the crossbars to the proper X, Y coordinates the pen moves with the intersection to the desired point.

The bars are moved by cables wrapped around a drive shaft. Rotating the shaft in one direction moves the bar up (or down). The other bar is moved by a similar arrangement, right or left. In order to keep track of where the bars are, each drive shaft has a disk mounted on the end with holes evenly spaced around it. As the disk rotates
The
TO ORDER CALL (212) 687-5000

64K \$3245

More than an intelligent terminal. the SuperBrain outpertorms many other systems cosing three to five times as much. Endowed with a helty amount o take on your toughest assignment. You name ill General Ledger. Accounts Receivable, Payroll, Inventory or Word Processing. . .the SuperBrain handles

Features Include:

- two dual-density minitlopples with 320K bytes of disk storage - a CPM Disk Operating System with a high-powered text editor assembler and debugger.

Superbrain \& Centronics 704 only $\$ 4595$
Accounts Recelvable/Pare General Ledger \$ 125
apple

NEW!

APPLE II PLUS ONLY\$1195
A complete self-contained computer system with APPLESOFT floating point
BASIC In ROM. full ASC I I keyboard in a light weight molded carrying case.

Features Include:

- Expandable to 48 K

Supertalker.	279	Micromodem	379
Disk	595	Programmer's Ald	50
Add-on Disk	495	Speechiab	229
Pascal Card	495	Lightpen	250
Business Soltware	625	Communication Card	225
Monitor	159	Modem	200
Printer Card	180	EPROM Programmer	100

- 16-bir microprocessor - 16 K RAM
$13^{\prime \prime}$ color monitor
(24 lines of 32 chrs -26K ROM operating system (includes 14K BASIC) sound -3 tones, 5 octaves Larolors: 192×256 res. programs ary of ROM yase only FINALLY TEXAS INSTRUMENTS TI-99/4 Home Computer
Many Peripherals. Coming soon!
Over1000 software tapes, books, disks on display. Come in and brouse. \$1150 Includes 13

NEW!

MINIMAX

The Minimax Series Computer is an Integrated, compact unit containing the CPU, Disk Storage, 12 inch CRT, and Features Include

- 2 Megahertz 6502 CPU
- 108k System RAM
- High Res. Graphics (240×512)
- Switchable. 110 or 220 V Operation
- Choice of 800 K or 2.4 Megabyte Oisks - Business Packages Available 395 ea - Serial and Parallel I/o on line minifloppy storage MINIMAX II-2.4 Megabyte on tine $8^{\prime \prime}$ floppy storage.
NEW! \$1895 List $\$ 2500$ CENTRONICS 704
- Upper/Lower Case
- 9×9 Matrix
- Tracior Feed

Paper Width
RS-252 Seri
CENTRONICS 753

- 130-150 cps - Proportional Matrix Prinie
$\$ 2495$

Compucolorll

COMPUCOLOR II Disk-Based Model 3
Advaiced hardware and sotware technology

gives you:

- Advanced Color Graphics
- 16K ROM Operating Systern
- GK RAM User Memory - 4K RAM Refresh - RS 80 A Microcompuler 1
RADIO SHACK • PET • SORCERER • APPLE - COMPUCOLOR • ETC.
PRINTERS • PRINTERS • PRINTERS The COMPUTER FACTORY'S extensive CENTRONICS 779
inventory and wide selection ol computer TRENDCOM 100 printers assures you of linding the printer TRENDCOM 200 best sulted tor your needs and PAPER TIGER 440. specificalions The following printers work XYMEX 10.00
well with all known personal computers. XEROX 1740

CENTRONICS 730

Parallel $\$ 895$

Serial \$945 100 CPS - MICR
CONTROLLEDI
Traclor \& Friction Feed - Uses
Single Sheets, Roll. Fantold - Upper
\& Lower Case - LIght Weight
ANDERSON JACOBSON

onnt

Asser 1 coroe NOW IN STOCK

 S $\$ 1095$ Compieiery peluwblane bral \begin{tabular}{l}

- Sencten in 15 Mol Givers

Plus 35 Freight-in Charge

\hline
\end{tabular} 뎌를

\$35 of Software with purchase of any computer on this page.

Min Credit Card Order $\$ 75$
Open
Mon.-Fri.
10-6
Sat. 10-4
NY residents add 8% sales tax - Same day shimment on prepard and for computers 53 lor hoards. $\$ 1$ each cassette tape.
with the shaft, the holes pass through an optical interrupter (a U-shaped device with a light source on one side and a phototransistor on the other). Each time a hole passes through the interrupter, a pulse passes to the control circuit, driving a counter up or down depending on the direction it's turning. By comparing the counter, which contains the current position of the bar, with the desired destination point, the control circuits can move the bar in the proper direction.

One small problem lies in the hardware department. The motors which drive the crossbars must be able to stop fairly fast, at least before the next hole comes up on the disk. If not, the plotter would signal the computer that it is finished even though the motors would have to reverse themselves to return to the origi-
nal point. If you are using motors that are geared down (ie: the motors are spinning fast, but the shaft is turning slowly) then this problem tends to disappear. The disadvantage to geared down motors is time, of course. The more gear reduction that is used, the longer it takes to draw a line segment, and the longer your processor is sitting idle. The ideal motor is one that turns the shaft as fast as the pen and paper can tolerate and which can stop quickly.

Controlling the Plotter

From here there are two ways in which you can control the plotter: software and hardware. My choice is hardware, although both methods have their advantages.

The hardware controller I came up with (figure 3) is simple. Set up three input/

Figure 3: A block diagram of a hardware plotter controller.

RADIO SHACK COMPUTER OWNERS TRS-80 MODEL I AND MODEL II
 MONTHLY NEWSLETTER

- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING•GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS AND MORE

PROGRAMS AND ARTICLES PUBLISHED IN OUR FIRST 12 ISSUES INCLUDE THE FOLLOWING

- A COMPLETE INCOME TAX PROGRAM (LONG AND SHORT FORM)
- INVENTORY CONTROL
- STOCK MARKET ANALYSIS
- WORD PROCESSING PROGRAM (FOR DISK OR CASSETTE)
- LOWER CASE MODIFICATIONFOR YOUR VIDEO MONITOR OR PRINTER
- PAYROLL (FEDERAL TAX WITHHOLDING PROGRAM)
- EXTEND 16.DIGIT ACCURACY TO TRS. 80 FUNCTIONS ISUCH AS SQUARE ROOTS AND TRIGONOMETRIC FUNCTIONS)
- NEW DISK DRIVES FOR YOUR TRS-80
- PRINTER OPTIONS AVAILABLE FOR YOUR TRS-80
- A HORSE SELECTION SYSTEM***ARITHMETIC TEACHER
- COMPLETE MAILING LIST PROGRAMS (BOTH FOR DISK OR CASSETTE SEQUENTIAL AND RANDOM ACCESS
- RANDOM SAMPLING***BAR GRAPH
- CHECKBOOK MAINTENANCE PROGRAM
- LEVEL II UPDATES***EVEL II INDEX
- CREDIT CARD INFORMATION STORAGE FILE
- BEGINNER'S GUIDE TO MACHINE LANGUAGE AND ASSEMBLY ANGUAGE
- LINE RENUMBERING
- AND CASSETTE TIPS, PROGRAM HINTS, LATEST PRODUCTS COMING SOON (GENERAL LEDGER, ACCOUNTS PAYABLE AND RECEIVABLE. FORTRAN.80, FINANCIAL APPLICATIONS PACKAGE, PROGRAMS FOR HOMEOWNERS, MERGE TWO PROGRAMS, STATISTICAL AND MATHEMATICAL PROGRAMS (BOTH ELEMENTARY AND ADVANCEDI . . . AND

WORD PROCESSING PROGRAM (Cassette or Disk)

For writing letters, text, mailing lists, etc., with each new subscriptions or renewal.

C/LEVEL II RAM TEST -

Checks random access memory to ensure that all memory locations are working properly.

ONE YEAR SUBSCRIPTION
\$24
\$48
\$ 4
SAMPLE OF LATEST ISSUE
START MY SUBSCRIPTION WITH ISSUE \qquad
(\#1 • July 1978 • \#7 • January 1979 • \#12 • June 1979)
NEW SUBSCRIPTION \qquad RENEWAL \qquad
CREDIT CARD NUMBER EXP. DATE \qquad
signature \qquad
NAME \qquad
ADDKESS

[^12]Figure 4: A sketch of the 45° syndrome. The stepped lines indicate the type of line drawn by a software driven plotter. The lines with the single angle are the type drawn by the hardware controller. If the line segment to be drawn is less than a few plotter steps long, the difference is negligible.

At Last!

HIGH RESOLUTION S-100 GRAPHICS

Complete interface Assembled and tested On-board memory Standard video output Monitor extra FOB Cambridge

- LIGHT PEN
- HIGH RESOLUTION - 512×640 MATRIX - S-100 PLUG-IN - HIGH SPEED
- SOFTWARE

Send for brochure and data
CAMBRIDGE DEVELOPMENT LAB
44 Brattle Sireet. Cambridge. MA 02138 Call 1617) $547 \cdot 3894$
output (I/O) ports: one for commands and one each for the X and Y coordinates.

The command port accepts four commands: pen up, pen down, signal and move. The two pen commands are self-explanatory; the signal command generates an audible tone. This is an option 1 included for signalling the end of a plot or calling attention to a particular point in the plotting process.

The move command starts the motor circuits (otherwise they would start moving the plotter before both coordinates were in) and also generates a hold signal for the processor until the line segment is finished. When the move command is received, the motors drive the crossbars until the counters, which hold the current plotting position, match up with the eight-bit latches which contain the position that the plotter is to move to. When the coordinates match, the hold line is dropped, allowing the computer to output the next command.

The comparator circuits are also used to determine whether the pulses coming from the interrupters are used to drive the counters up or down.

The only other circuit needed is an initialization circuit that drives the pen to location $(0,0)$ and clears the counters. This is used to synchronize the counters and pen when the plotter is first turned on.

As to the circuits which actually drive the motors and pen solenoid, these depend on the components themselves. If you wish to drive the plotter directly by software, the two coordinate $1 / O$ ports are used to read the current location of the pen. A software routine then decides how to move the crossbars, one step at a time, to get to the desired point. However, this requires more commands for the plotter, such as X up, X down, Y up, Y down.

With this hardware method you run into what I call the 45° syndrome. Since the motors turn at about the same speed, the pen will tend to move at an angle which is a multiple of 45°. For example, if the pen has farther to go in the X direction, the pen will reach the proper Y coordinate first, giving a line with two segments (figure 4). If the line you wish to draw is a multiple of 45°, drawing axes and such, then this presents no problem, but with lines at other

Word Processors are here. Jusi thumb through the pages of this magazine. There are at least five different companies selling them. So, which one's for youces? And what about cost. Are you witling to pay the 300 plus dollars that some of the companies are asking?

Welt go ahead and compare! AU-
TOTYE comes out ahead in EVERY category!
Features? AUTOTYPE has more powarful leatures than ANY other Word ake our word. Go ahead, compare AUTOTYPE has an exclusive MACRO programming capability. No other Word rocessor can make that claim. AU TOTYPE also has a scratch Holding Buffer. Again. no one eise even comes
rice? AUTOTYPE beats 'ern alll With a price tag of $\$ 195$, AUTOTYPE is well balow the competition. But, again, doril ust take our word. Go ahead, look for ourseli. Then fill out the order form below to start processing words instead using a word processor!

CANI MOVE PARAGRAPHS ROUND?

YESI AUTOTYPE has a Holding Bufier that can be used to save any amount of text and then Unhold it to the location you want. AUTOTYPE even allows you lo do muliple Unholds!

CANI MERGE CUSTOMERS
JAMES INTO LETTERS?
YESI AUTOTYPE COnteins a "merge cheracter that may be placed anywhere in text. Then, at the time text is printed, a sepparate file may be merged nto the leature that NO OTHER WORO PROCESSOR has

CANIENTER TEXT IN SOME OTHER FORMAT THAN 64 CHARACTERS WIDE?

YES! AUTOTYPE has a screan redimet from 16 characters wide to 120 haracters wide. There's even horizonal scrolling to view the text! Once more. we're far beyond the competitionl
CANIT HANDLE TEXT LARGER THAN MY COMPUTERS MEMORY?

YESI Most other Word Processors demand that the entire text be inside the computer. AUTOTYPE allows you to spool" your text trom the disk. This means that you can have edit files that are over 200 type written pages long!!
CAN IT UNDERLINE?
CAN IT INDENT?
CAN IT HYPHENATE?
YESI YES! YES! YESI AUTOTYPE has ALL the standard Word Processor leatures including undertining text, boldiace printing and paragraph inand hard hyphens. Soft hyphens are used as the end of lines and disappesi if movedt
WHAT ABOUT INSERTING IN THE MIDDLE OF A WORD?

Certainlyl AUTOTYPE allows inserting anything anywherel You can move into the middie of any word. Now THAT'S POWERI

CAN IT SEARCH AND REPLACE?
YESI But, there's morel AUTOTYPE ar lows simple searches or search and replace. AUTOTYPE also allows wild card characlers in the search string for probable matchingla very simple feaerfull

CAN IT DO AUTOMATIC PAGE
NUMBERING AND TITLING?
Of Coursel Any length title up to the current line fengith. Page numbers can enough the number of blank lines below the title is adiustablel

DOES IT HAVE "OYNAMIC" PRINT FORMATTING?

OH YESI And with a flarel The pages that you see printed here were all printedirom the same file. Only the print they were all printed on a standard serial printer, Complete "dynamic" print formatting can be accomplished with NO alteration of textll Lel's see the competition make that claim!
CAN IT DO SUBSCRIPTS AND SUPERSCRIPTS?

YESI Once again, AUTOTYPE has the reaiures to be called a true procesprocessor.
CAN IT VERTICAL TAB?
YESI And do negative vertical tabs to the too of page alsot This is invaluable for two column printing.

CAN YOU ADJUST THE INDEN LINE LENGTH AND JUSTIFICATION?
COMPLETELYI Either in the text itsen. by manusl formatting commands or gives you that kind of choice!

WILL IT EXECUTE A SERIES COMMANDS AUTOMATICALLY?
YES! That's one of AUTOTYPE's standard features. No other Word Proces. commands that AUTOTYPE has.

ARE THE TABS ADJUSTABLE?
All tab stops are displayed graphically with a simple command. Tai removal ments and are simple cursor move more "guessing where your tobs set. Theyre all laid out in front of you! HOW MUCH DOES AUTOTYPE cost?
\$195. This question is the easiest to answer. It's simple. We want you to use your computer to its fullest extent And we want you to be able to do it at a reasonable price. This is the one area where our competition is way ahead of ush They simply charge more than we dol
HOW DOI ORDER?
We thought you'd never askl Just fill Out the order form below and mail to INFINITY MICRO. Or call us directly and place your order. It'll be shipped the same day

WORD PROCESSING POWER IS HERE! With AUTOTYPE ${ }^{\odot}$

Mail To:

INFINITY MICRO

P.O. BOX 4627

SANTA CLARA, CA 95050
(408) 988-1867

VIDEO
Memory mapped Video at CCOO hex. as 64 characters by 16 lines. Processor Tech or equivalent.*Cursor addressable terminal. (ADM-3A)
\square *Cursor addressable terminal. (HAZELTINE 1500)
DISKCP/M on IBM standard $8^{\prime \prime}$CP/M on Micropolis MOD ICP/M on Micropolis MOD II
CP/M on North StarCP/M on Double Density 8" Please specify Manufacturer.

NAME

ADDRESS
CITY \qquad STATE \qquad ZIP
PHONE
Please ship \qquad AUTOTYPE disks and manuals immediately! Please find enclosed \$ \qquad @ \$195/each.
*Available Nov-Dec of 1979
Copyright (c) 1979 Infinity Micro
angles it will become apparent, especially if the lines are very long.

If, as in most plotting, the increments are very small, this problem is no more serious than the usual stepping phenomenon that occurs on most plotters. With the software driven plotter, the routine can smooth a long line out by adjusting the increments in the X and Y directions.

The decision of which method to use lies mostly in the use to which you will put the plotter. If you're drawing long straight lines, then by all means use the software driven method. If you are like me and plan to use it mostly for plotting functions, the hardware method is much simpler to use because the length of the line segments tends to be short.

Design Details

In designing a plotter for your own use, there are three factors to keep in mind. They are the desired resolution, the size of the plotting area and the number of bits used for the coordinates. Determining any two of these factors automatically sets the third.

For instance, in my design I used a resolution of 0.05 inches (0.13 cm) and an 8-bit coordinate system. This gave me a plotting
area of 12.8 inches (33 cm) square. That was big enough for me.

The drive shaft is what causes problems. In order to have an exactly evenly spaced set of holes on the disk, you have to have a shaft with a circumference that is a multiple of the resolution, in this case 0.05 inches $(0.13 \mathrm{~cm})$. This is not easy. Short of going to a machine shop and having them turn out special drive shafts, I decided to search for a standard diameter that would come close. One half inch works out fairly well.

With 31 holes in the disk, the formula:

$$
\text { RES }=(\pi \times \mathrm{DIAM}) / \mathrm{H}
$$

gives the true resolution. Here, π is 3.1415 , DIAM is the drive shaft diameter (0.5 inches), H is the number of holes and RES is the true resolution, in this case 0.05067 inches, which was close enough to 0.05 to suit me.

What this formula means is that the holes divide the circumference of the drive shaft into 31 segments, each one 0.05067 inches long. Thus as the cable comes off the shaft, driving it one hole means that the crossbar will move 0.05067 inches.

The only other critical parts are the crossbar slides since the crossbars must glide smoothly...

Low Power 32K RAM for Heath ${ }^{\circledR}$ H8 computers only \$479
 DG-32D 32K RAM FEATURES:

\checkmark Plugs into Heath ${ }^{\text {m }}$ H8 Computer
\checkmark Ready to use. Fully assembled, tested \mathcal{E} burned in
\checkmark Operates with existing Heath memory
\checkmark Protected Memory Output Buffers in the event of Address error.
\checkmark Utilizes popular 4116 RAM devices
\checkmark Memory Address DIP switch changeable
\checkmark Arranged as 4 Independent 8 K Blocks
Low Power Consumption: Less than 6 watts, typical
\checkmark Transparent Refresh
\checkmark One year guarantee
\checkmark Compatible with all current H 8 peripherals.

D-G Eiectronic Deveiopments Co. brings you a totally compatible, fully assembled and tested 32 K RAM for Heath H8 computers. The DG-32D has less than 6 watts power consumption. This allows you to add a full 32 K bytes of Random Access Memory without taxing or replacing your computer's power supply. Engineered to plug-in and run without any user modifications, the DG32D can be used with or without existing H8 RAM without modification. Protection of the memory output buffers is provided in the event of assigning two blocks to the same address space. The DG-32D is the ideal answer to expansion of the Heath H 8 computer . . . Low power consumption, low price, high capacity, total engineering and exacting production methods.

Ordering Information: DG-32D RAM available only from DG Electronic Developments Co., P.O. Box 1124. 1827 South Arrnstrong, Denison, Texas 75020. Check. money-order. VSA or Master Charge. Phone orders accepted on charge orders. NO COD's. Foreign orders add 30\%. Texas residents add 5\%. For VSA or Master Charge orders call 214-465-7805. \$479.00 freight prepaid.

Discover

the most organized (and inexpensive) way to keep up with what's new in computer techniques and management-

The Library of Computer and Information Sciences

(Publishers ${ }^{\text {Prices shown) }}$
62620. MICROCOMPUTER HANDBOOK Charles /. Sipph. Detailed reference to the technology and applications of microprocessors. $\$ 19.95$
79155. SOFTWARE INTERPRETERS FOR MICROCOMPUTERS. Thomas C. McIntire. How to design a reliable software interpreter for any microcomputer system. $\$ 18.95$
70093. PRIMER FOR SMALL SYSTEMS MANAGEMENT. Grady M. Easley. Spells out the supervisory skills needed in the day-to-day administration of a small computer complex. $\$ 18.95$
53704. HOW TO DESIGN, BUILD AND PROGRAM YOUR OWN WORKING COMPUTER SYSTEM. Robert l? Haviland. $\$ 12.95$
49600. THE FUTURE WITH MICROELECTRONICS. Barron and Curnow. Shows how futur developments will Iransform every area of suciety from the factory to the home.
$\$ 17.50$
42303. A DISCIPLINE OF PROGRAMMING lidsecr W.' Dijkstra. Impressive new programming tools to solve problems that range from the everyday to the complex.
$\$ 20.95$
55353. INFORMATION RETRIEVAL SYSTEMS: Characteristics, Testing, and Evaluation 1: Wilfred Lancaster, A comprehensive and practical iniroduction to information retrieval. $\$ 19.95$

40071-2. COMPUTER SYSTEMS PERFORMANCE EVALUATION. Domenico Verrari. Counts as 2 of your 3 books.
$\$ 29.95$
79167. SOFTWARE RELIABILITY GUIDEBOOK. Robert L. Glass. Spells out all the technological and management techniques. $\$ 18.95$
59920. MANAGEMENT: Tasks, Responsibilities Practices. Peter I: Drucker. The skills, techniques and tools a good executive needs to stay effective in modern management. \$17.50

39890-2. COMPUTER DATA-BASE ORGANIZATION. James Martin. An invaluable planning tool having over 200 diagrams. Counts as 2 of jour 3 books.
$\$ 26.50$
50551. GRANTS: How to Find Out About Them and What to Do Next. Virginia P. White. $\$ 19.50$

> Take any 3 books (values to \$64.85) for only \$1.00 each
> if you will join now for a trial period and agree to take 3 more hooks-at handsome discounts-ower the next 12 months
62748. MINICOMPUTER SYSTEMS: Organization, Programming, and Applications. Eckhouse and Morris.
$\$ 21.95$
41785. DEBUGGING SYSTEM 360/370 PROGRAMS USING OS AND VS STORAGE DUMPS. D. H. Rindfleisch. A superior guide to storage dump debugging. Illustrations, examnles, sample dumps.
$\$ 19.95$
40010. COMPUTER ['OWER FOR THE SMALL BUSINESS. Sippl ant Dahl. A complete and practical guide to micro and mini compurers that will mee the needs of your small business.
$\$ 15.95$
87218. THE WIRED SOCIETY: A Challenge For Tomorrow. James Martin. How the modern revolution in telccommunications portends vast changes in the way we live and do business. \$12.95
39858. COMPUTER ARITHMETIC: Principles, Architecture, and Design. Kai Hwang, Covers algorithmic flow charts, arithneetic and Boolean equations, schematic logic circuit diagrams. 422 pages, with over 230 illustrations.
$\$ 21.95$

32268. ADVANCED ANS COBOL WITH | STRUCTURED PROGRAMMING. Gary |
| :--- |
| Brown. |
| $\$ 19.95$ | Brown.
32269. THE ENTREPRENEUR'S MANUAL. Business Start-Ups, Spin-Offs, and Innovative Management. Richurd M. W'hite, Jr. $\quad \$ 16.95$
32270. ALGORITHMS + DATA STRUCTURES = PROGRAMS. Niklaus Wirth.
$\$ 20.95$

39737-2. COMPACT NUMERICAL METHODS FOR COMPUTERS. J. C. Nash. Hundreds of ways to solve mathematical problems on small computers. Counts as 2 of your 3 books

-EXTRAORDINARY VALUE!

44900-3. ENCYCLOPEDIA OF COMPUTER SCIENCE. Edited by Anthony Ralston and Chester Lo Meek. More than 1550 outsize pages of information on every aspect of computer science-from algebra to automata theory, from basic terminology to string processing languages. 470 articles by 208 experts. Over 700 charts, tables, graphs, and diagrams. Counts as 3 of your 3 books.
$\$ 60.00$

If the reply card has been removed, please write to
The Library of Computer and Information Sciences
Dept. 7-AA9, Riverside, N.J. 08370
to obtain membership information and application.

GAMES

Warfare I 4-game anthology, Level II, 16K \$7.95 Backgammon by Scott Adams.Level II, 16K $\$ 7.95$
X.Wing II by Chris Freund. Level II, 16K $\$ 9.95$ Talpan by Art Canfil. Level II, 16K $\$ 9.95$
Sargon Chess by Dan and Kathe Sprackien. Level II, 18K \$19.95
Chese Companlon by Michael Kelleher. Level II, 16K $\$ 7.95$
Three D Tic Tac Toe by Scott Adams. Level II, 16K $\$ 7.95$
Concentration by Lance Micklus. Level II, 16K $\$ 7.95$
Amazin' Mazes by Robert Wallace, Level II, 16K $\$ 7.95$
Time Bomb by David Bohike. Level II, 16K \$4.95

LIfe Two by Leo Christopherson. With sound Level II, 16K \$14.95
Androld Nim by Leo Christopherson. With sound - Level II, 16K \$14.95
Cubes by Leo Christopherson Level II, 16K $\$ 9.95$
Mastermind II by Lance Micklus $\$ 7.95$
Mastermind II - Source Llst $\mathbf{\$ 2 0 . 0 0}$
Robou/Breskaway Game duo by Lance Micklus. Level II, 4K \$7.95
Tycoon by David Bohlke. Leval II, 16K \$7.95
SIalom by Denslo Hamiln. Ievel II, 16K $\$ 7.95$
9 Games for Preschool Chlldren by George Slank. Level II, 16K \$9.95
Ton PIn by Frank B. Rowlett, Jr. Level II, 16K $\$ 7.95$
Attantic Balloon Crossing by Dean Powell. Level
II, 16K \$9.95
Space Batties by Level IV, Level II, 16K Tape or 32K Disk, Tape -\$14.95, Disk - $\$ 19.95$

Star Trak III. 3 by Lance Micklus Level II, 16 K $\$ 14.95$
Dog Star Adventure by Lance Micklus. Level II. $16 \mathrm{~K} \$ 9.95$
Safarl by David Bohlke. Level II, 16K \$7.95
Treasure Hunt by Lance Micklus. Level II, 16K $\$ 7.95$
'Round the Horn by George Blank. Level II, 16K $\$ 9.95$
Pork Barrel by George Blank. Level II, 16K $\$ 7.95$ Kamiksze by Russell Starkey. Level II, 16K $\$ 7.95$ All Star Baseball by David Bohike. Level II, 16K $\$ 7.95$
Barricade by Small Systems Software. Machine Language - $\$ 14.95$
Journey To The Center Of The Earth by Greg Hassett. Level II, 16K Tape $\$ 7.95$
Pentominoss by James Garon. Level II, 16K $\$ 7.95$
Snake Eggs by Leo Chrlstopherson. With sound Level II, 16K \$14.95

Z80 Software Gourmet Guide And Cookbook

from Scelbl. $\$ 14.95+\$ 1$ postage.
Seven levels of play faster, better end game. randomized opening.

BOOKS

Sargon Handbook by Don \& Kathe Spracklen. $\$ 14.95$ plus $\$ 1.00$ shlpping and handiling.
The Basic Handbook by Dr. David A. Lien. $\$ 14.95$ plus $\$ 1$
280 Instruction Handbook by Scelbl Pubilcatlons. $\$ 4.95$
The Littio Book Of BASIC Style by John Nevison. $\$ 5.95$ plus $\$ 1$
TRS-80 Assembly Language Pro gramming by William Barden, Jr. \$3.95 plus $\$ 1$
Introduction to TRS-80 Graphics by Don Inman. $\$ 7.95$ plus $\$ 1$
Leaming Leval il by David A. Lien. $\$ 15.95$ plus $\$ 1$

Caiculator by R. W. Robltallie, Sr Level II, 4K \$2.95
Moving Stgnboard by Clicle Enter: prises. Leveil II. $4 \mathrm{~K} \$ 9.95$
Histograph/Scattergram by Gary S. Breschini. Level II, 16K \$9.95.
Simpie Simon by George Blank. Level II. Written in BASIC. $\$ 4.95$

Math Drili by K. L. Brown. Level II, 16K $\$ 4.95$
RPN Calculator by Russell Starkey. Level II, 16K \$9.95
Ham Radlo by Michaél Kaliehēr. Level II, 16K \$9.95
Ham Radio ARS I.1 (32K disk) \$24.95 Electronics Assistant by John Adamson. Level II, 16K \$9.95
Preflight by Stephen Hebbler. Level 1I, 16K \$20.00
Baalc Statistics by Steve Relsser. Level II, 16K \$20.00
Drili Masters by Computer Graphics . specify title desired. Level II, 16 K \$7.95 each. German, Russlan, Itallan, Spanish, or Music Theory
Keyboard-80 by John Adamson. Level II, 18K \$9.95

SPECIAL PURPOSE

(2) 0,0
 by Lance Micklus

The STANDARD in Smart Terminal Programs for the TRS-80
(32K Disk)
$\$ 79.95$

IMPORTANT

No sales tax.

All C.O.D.'s or special • dellvery orders are a minimum of $\$ 5$ for special handiling

When ordering Percom please add $\$ 5$ each, packaging and handling fee.

PRICES DO NOT • INCLUDE SHIPPING

BUSINESS

Inventory II. 2 by M. Kelleher and R. W. Robltaille, Sr. 16K dlak systems $\$ 59.95$
Inventory Syatem II. 3 by M. Kelleher. Improved verslon, $\$ 79.95$
Inventory 'S' by Roger W. Robitailie, Sr. Level II, 16K Tape - $\$ 24.95$; 32K Dlsk $\$ 39.95$
Payroll by Stephen Hebbler. For dlak systems. 32K $\$ 59.95$
Accounte Recelvable II by S. Hebbler. 32K disk systems $\$ 79.95$
Appointment Log by Michael Kelleher. Level II, 16K $\$ 9.95$ Dlsk version, $\$ 18.95$
General Ledger I by M. Kelleher, requires 32 K Dlsk, $\$ 79.95$
Mall Llat II by R. W. Robltallie, Sr. 32K disk systems $\$ 99.95$
Small Bualneas Bookkeeping by R. W. Robltallie, Sr. Level II, 16K. With journal -\$22.00; Without journal - $\$ 15.00$

PERSONAL

Typlng Tutor by Roger W. Robltalle, Sr. Level II; 16K $\$ 19.95$
Secrete of the Tarot by John T. Phillipp. Level II, 16K $\$ 9.95$
Biorhythms by Frank B. Rowiett, Jr. Level II, 4K $\$ 4.95$
Personal Finance by Lance Micklus. Level II, 16K. $\$ 9.95$
Advanced Peraonal Finance by Lance Micklus for 32K disk systems $\$ 24.95$
Home Financial Management by Mlchael Kelleher. Level II, 16K $\$ 9.95$

HARDWARE ACCESSORIES

Cassettes boxes of ten each. C-10- $\$ 6.50$ plus $\$ 1.00$ shipplng C-20 $\mathbf{\$ 7 . 5 0}$ plus $\$ 1.00$ shipplng
Diskettes Dysan, (premlum qually) box of 5 \$24.95 plus $\$ 1.00$ shlpping; natlonally known brand, box of 10 . $\$ 34.95$ plus $\$ 1$ Diakette Storage Box $\$ 5.00$

WANTED
Used TRS-80 equipment! We buy and sell used equipment. Call or write for detalls.

SPECIAL
\$669. TRS-80 16K, LEVEL II NO KEYPAD.

SAVE $\$ 167$.

TRS. 80 expansion interface with our 16K RAM, single PERCOM disk drives with cable, and NEWDOS operating system. $\$ 830$.

Floppy Armour ${ }^{T M}$ Protectlve envelope for ship. pling floppy disks, 5 -pack $\cdot \$ 4.95$ plus $\$ 1.00$ ship.

Ellminate 90% of the hassle of a disk system by replacing your TRS-DOS with NEWDOS! faster, more rellable, many more features $\$ 49.95$. or
Add Superzap, Directory checks, other uthilles. NEWDOS +5. $\$ 99.95$
PACKAGE PRICE $\$ 150$
SEPARATELY:
MACRO ASSEMBLER $\$ 80$.
FORTRAN \$8C.
ping and handiling
NEWDOS

- A trademark of Radlo Shack and Tandy Corp.

Text-80 by Frank B. Rowlett, Jr. For 32K disk systems \$59.95
8080-280 Converslon Level II, 16K $\$ 15.00$
Renumber by Lance Micklus. Level II, avaliable In 16 through 48K (speclify when ordering) $\$ 7.95$ Renumber source listing $\$ 20.00$
Electric Pencll by Mlchael Shrayer. Powerful machine language word processing system. Level II, 16K tape - $\$ 100$; Disk version - $\$ 150$ Level III BASIC by Microsoft. \$49.95
Level I In Level II by Apparat. Level II, 16K \$15.00 Fortran by Microsoft. 32K - 2 Dlsks. New tow price $\$ 195.00$

Aids to the Direct Reception of Weather Satellite Photographs

William D Johnston, 1808 Pomona Dr, Las Cruces NM 88001

A recent note in "BYTE's Bits" (June 1979 BYTE, page 225) brought to the attention of BYTE readers the prospect of direct reception of weather satellite photographs by amateurs using home-built equipment. The purpose of this brief article is to expand on that note, and to direct the interested reader to a number of existing resources.

Applications of the home computer in this field are many and varied. They include such projects as orbital predictions, antenna tracking calculations, signal error analysis, generation of map overlays, and weather system modeling, to name just a few. Most of the mathematical calculations involved are quite simple, requiring the use of nothing more difficult than high school trigonometry. A computer enthusiast can derive a great deal of personal satisfaction from writing software to arrive at the correct solutions. Those who are hardware oriented will want to go a step further and use their computers to drive a tracking antenna in real time.

The 1968 report by Vermillion (NASA SP-5079) mentioned in BYTE's Bits was not the first to appear on the subject. A comprehensive article on building a home receiving station appeared in QST magazine as far back as 1965. Vermillion himself put out a number of other excellent NASA reports since the 1968 document, including SP-5080 and TN D-7994. Scientific American carried a construction article based on a design similar to the 1965 QST equipment.

The great majority of technical literature on the subject, however, has appeared in the various American and British amateur radio magazines over the past five or six years. A review of the annual indices (usually appearing in the December issues) of Ham Radio, QST, Radio Communication, and Wireless World will reveal a wealth of information. These articles are indexed under "Satellites," "Weather Satellites," "OSCAR," and "Facsimile." The subject matter runs the gamut from construction details for homebrew state-of-the-art receivers and recorders, to surplus equipment conversions, to computer software for orbital calculations and antenna tracking.

An excellent book on the subject has been written for amateurs by Ralph Taggart. Mr Taggart is the author of

Don't settle for less than the total perlormance built into your Z80 Computer. Wake up its entire potential with an OASIS Operating System the high-powered, professional software package that takes full advantage of $Z 80$ power.

Utilizing optimized $Z 80$ code, OASIS makes the system run faster. More and better tools let you develop software faster, 100.

It's easy to use because all the tools you need are included: ISAM files. hard and floppy disk support, editor, user accounting with logon, password privilege level, and file security. Options: BASIC Compiler, spooler. text editor and output processor.
development package, and more.
The BASIC Compiler is also an interpreter, complete with debugger. It makes programs run faster, takes less memory, and provides software security. A first for micros, it's an OASIS exclusive.

FEATURES: Sngle. 8 Mult-User / User Accounting/MullıTasking/
 Keyed (ISAM). Dreci \& Sequential Files / Had \& Floppy Disk Suppori/ Extensive Documentaion
Oasis PRODUCTS: Single.User Operating System/Mult-User Operatmg System/Macro Re-localing Assemblet/Debygger/Linher/Edilos/ Dragnostic \& Mantenance Ulithtes/InteracIme EXEC Language/ Re-eniranI BASIC Compitet
Oasis is availaale FOR: Allos/Bnlings/Cigutal Mic rosysfems/ Digital Group/Cromemco/Vecior Graphic/Mictomaion/Compucorp/ Norin Stay / Onys/Ben Controls/TRS-B0 Mod II/ Normex and others
Order OASIS direct from:
Phase One Systems, Inc.
7700 Edgewater Drive, Suite 830
Oakland, CA 94621
Telephone (415) 562-8085 TWX 910-366-7139
My computer configuration (specify make, disk system, etc.)
\qquad
Name
Street Address (No Box \#)
City

Multi-User OASIS, available for most computer configurations, gets even more performance out of your system. It has all the Single-User features. PLUS a re-entrant BASIC Compiler, file and record locking, variable time-slicing, user-to-user communications, and extended memory addressing. All fully upward compatible with Single-User.

Documentation?...complete and extensive. And, of course, there's plenty of application software.

OASIS operating systems. languages, development packages. system utilities - all fully integrated. all from one source.

Ask your dealer or manufacturer. Or send the coupon direct, today.

EQ CROSSING	AT	67 DEGS	
TIME	AZ	EL	RNG
MINS	DG	OG	KM
4	177	0	3483
5	178	3	3093
6	180	7	2706
7	183	12	2327
8	186	18	1961
9	192	26	1618
10	202	37	1319
11	223	49	1102
12	262	55	1022
13	299	48	1108
14	318	36	1328
15	327	26	1628
16	333	18	1971
17	336	12	2336
18	339	7	2715
19	341	3	3100
20	342	-1	3488
1			
EQROS5ING	AT	68	DEGS
TIME	AZ	EL	RNG
MINS	$0 G$	$D G$	KM
4	179	0	3479
5	180	3	3092
6	182	7	2708
7	185	12	2333
8	190	18	1971
9	196	26	1636
10	207	35	1347
11	228	46	1141
12	264	51	1070
13	297	45	1158
14	315	34	1375
15	325	25	1670
16	331	18	2008
17	335	12	2370
18	338	7	2745
19	340	3	3127
20	342	-1	3513

Listing 1: A small portion of a typical satellite tracking printout generated on a home computer. The data can be calculated in real time, or a perpetual-prediction printout (about fifty pages long) can be prepared in advance. All calculations are based on the exact location of the ground station that is to use the printout.
many of the articles that have appeared in the amateur radio magazines, including a very good introductory treatise for beginners.

BYTE has published material which is directly applicable to the subject. This was related to computer generation of map overlays for satellite photos. It is a very handy capability to have on occasions when your received pictures show nothing but cloud cover and you need a system of reference (see my article series "Computer Generated Maps," May 1979 BYTE, page 10; June 1979 BYTE, page 100).

Those who are concerned about the cost and complexity of such a project need not worry. It is entirely possible to assemble a station capable of receiving high-resolution photos (both visible light and infrared images) with an outlay of less than $\$ 100$. Excellent quality picture recorders, capable of recording images up to 19 inches (48 cm) square, are available on the surplus market for as little as $\$ 50$. Recorders that produce pictures about 4 by 6 inches (10 by 15 cm) can be found for as little as $\$ 10$. Advertisements in the amateur radio magazines and visits to ham radio swap meets provide the best leads to equipment buys. Many of the previously mentioned articles even show you how to build a recorder from scratch,
 York. New York 10020. Stockholders holding 1\% or more of stock are: Donald C. McGraw Jr.; Harold W. McGraw Jr.; John L. McGraw: William H. McGraw; June M. McBroom; Elizabeth McGraw Webster; all of 1221 Avenue of the Americas, New York, New York 10020; Occi and Company. c/o Occidental Life of California, P.O. Box 3635. Terminal Annex, Los Angeles, California 90054.

Patents Awarded to Apple

The US Patent Office has granted Apple Computer Inc, 10260 Bandley Dr, Cupertino CA 95014, two patents for the switching power supply and color video-display designs used in the Apple II personal computer.
The AM-2 power supply is a 40 W , multiple-output
flyback switching device with a unique starting and restarting circuitry scheme and a secondary winding mechanism which counteract typical power supply problems of power dissipation and breakdown.

The video display includes a special timing reference mechanism and a recirculating shift register that resolves the difficulties involved in simultaneously generating horizontal, vertical, and color frequency signals. They also eliminate many of the components normally required in a video display.

Put the BYTE on the IRS with Aardvark

In an era when computers are an integral part of business and entertainment, and computer software is more and more sophisticated, Aardvark is yet another breed in advanced computer software. Aardvark's Micro Tax series is a true user-oriented Federal Income Tax package. Specifically developed by qualified tax professionals for use on personal home computers, this low-cost, time-saving Aardvark Micro Tax package accurately and efficiently computes your federal income tax liability. Aardvark will display and fill in facsimile Form 1040 and related schedules and, if connected to a Centronics printer, will print out these facsimile forms auto-
matically. Each program is designed to use the appropriate tax table or rate schedule.
The more advanced Micro Tax II and III also calculate Income Averaging, Maximum Tax on Earned Income, Minimum Tax and Alternative Minimum Tax. The Aardvark package is compatible with Apple 11 and TRS-80 users and includes an indexed instruction manual and input forms for easy input of tax data. To see how Aardvark can be tax-deductible, check the instructions in the binder of the manual. You can also use the binder to store pertinent 1979 tax records. Cure your headaches this tax season, order today...and put the BYTE on the IRS with Aardvark!

MICRO TAX I \$25
Form 1040
Schedule A
Schedule B
Schedule TC
(will not calculate Income Averaging, Max Tax or Alternative Minimum Tax)

When Ordering Specify:
TRS-80 16K Level II Basic Apple II 32K with Applesoft Basic Apple II 16 K Micro with Applesoft ROM Card

MICRO TAX II
Form 1040
Schedule A
Schedule B
Schedule G (Inc. Avg.)
Schedule TC
Form 4625 (Minimum Tax)
Form 4726 (Max Tax)
Form 6251 (Alt. Min. Tax)

MICRO TAX III
\$50
Program 2 plus
Schedule C
Schedule D
Schedule E
Schedule SE
Form 2119-Sale of
Personal Residence

Coming Soon - Micro Tax Package for PET and TI Systems.
P.O. Box 26505 Milwaukee, WI 53213

				GROUND STATION AT：NEW HAMPSHIRE，					PETERJOKOUGH			$4253 N$		$7157 m$				$\begin{array}{r} \text { EL } \\ \text { OEG } \end{array}$	RANGE KM
$\begin{gathered} \text { SYIWCHRON } \\ \text { SAIELLI } \\ \text { LOIVG } \\ \text { OEG } \end{gathered}$		$\begin{aligned} & A 2 \\ & \text { LEG } \end{aligned}$	EL	Rainge Rm	$\begin{gathered} \text { SYNCHRO } \\ \text { SATCLL } \\ \text { LUNG } \\ \text { UEG } \end{gathered}$		$\begin{array}{r} A L \\ D E G \end{array}$	$\begin{array}{r} \text { EL } \\ \text { DEG } \end{array}$	RAIJGE KM	SYNCHRONOUS SATELLITE		$\begin{array}{r} A Z \\ D E G \end{array}$	$\begin{array}{r} E L \\ \Delta E G \end{array}$	RANGE KM	SYNCHRONOUS SATELLITE				
0	＊	103	4	$41 i m 1$															
1	＊	103	5	41112	46	W	144	34	$38<73$	± 1	＊	cu7	37	38035	136	W	257	10	40576
2	n	104	6	41039	47	W	146	34	38234	92	\cdots	208	37	38060	137	W	$25 ?$	9	40653
3	，	105	7	40453	48	W	147	35	38197	43	＊	209	36	38097	138	W	253	9	40729
4	＊	105	7	40010	45	W	148	35	38161	94	＊	411	36	38130	139	W	254	8	40807
勺	＊	106	6	4074	50	w	149	36	38127	95	＊	412	35	38163	140	W	255	7	40884
\bigcirc	＊	107	9	40724	51	W	151	36	$38 \cup 94$	96	＊	213	35	38201	141	W	255	7	40062
7	＊	109	10	40043	b2	W	152	37	38063	47	＊	<14	34	38230	142	W	256	6	41041
d	＊	108	10	$4050 y$	53	w	153	37	38 u 32	98	＊	216	34	38277	143	W	257	5	41120
${ }^{4}$	＊	100	11	4044	54	\cdots	155	37	38004	99	＊	<17	34	30317	144	W	258	4	41199
10	＊	110	12	40410	25	：	156	38	$37+77$	100	${ }^{*}$	＜16	33	38350	145	w	254	4	41278
11	＊	111	$1<$	40243	56	W	157	38	37451	101	＊	419	33	30401	146	＊	25°	3	41358
12	．	111	11	$40<6 y$	b7	W	159	36	37927	102	＊	<20	32	33445	147	W	260	2	41438
13	＊	112	14	4014%	58	W	160	39	37904	103	＊	261	31	38491	148	W	260	1	41518
14	，	113	14	40120	29	W	161	39	37083	104	＊	223	31	38537	149	W	261		41598
15	，	114	15	40030	00	W	163	39	37064	105	${ }^{*}$	<24	30	30583	150	w	262	0	41679
10	${ }^{*}$	115	10	39314	01	W	164	39	37046	1 10	＊	く23	30	38634	151	w	＊＊＊	＊	－＊＊＊
17	＊	110	17	34900	62	W	166	40	37029	107	＊	220	29	36685	152	W	＊＊＊	＊	＊＊＊＊
10	＊	116	17	39630	63	W	107	40	37015	108	${ }^{*}$	227	29	38730	153	w	＊＊	＊＊	－＊＊＊
14	＊	117	10	34704	64	W	168	40	37801	109	＊	$\bigcirc 28$	26	36789	154	w	＊＊	\cdots	＊＊＊＊
20	n	115	15	3yluo	65	W	170	40	37789	110	＊	くく9	28	38843	155	w	＊＊＊	－	－＊＊＊
21	＊	110	19	39035	66	W	171	40	37779	111	＊	230	27	38890	156	W	＊＊＊	－	＊＊＊＊
26	${ }^{*}$	120	26	34505	67	W	173	40	37771	112	＊	<31	26	38954	157	w	＊＊	＊	＊．．．．
23	＊	121	21	394\％y	88	W	174	40	37763	113	，	432	20	39011	158	w	＊＊＊	－	＊＊＊＊
24	＊	12.	21	39434	69	W	176	40	37758	114	w	≤ 53	25	39070	159	w	＊＊＊	－	＊＊．．
25	${ }^{*}$	122	22	39570	70	W	177	40	37754	115	．	234	24	39129	160	＊	＊＊＊	－	＊＊＊＊
20	＊	123	23	39507	71	W	179	41	37752	116	＊	<35	24	39189	101	W	－•＊	＊	－＊．．．
27	${ }^{*}$	$1<4$	2	$3 y<45$	72	W	180	41	37751	117	＊	230	23	39251	162	＊	＊＊	＊	－＊＊＊
28	＊	125	24	34183	73	W	182	41	37752	118	＊	437	23	39313	163	w	\cdots	＊	－＊．＊
24	＊	120	25	$391<3$	74	w	103	40	37754	119	＊	<38	22	39377	104	w	＊＊＊	＊	＊＊＊＊
30	＊	127	22	39064	75	W	184	40	37758	$1<0$	＊	239	21	39441	165	w	＊＊	＊	＊．．．＊
31	＊	120	20	390U0	76	W	106	40	37764	121	＊	639	21	39500	106	W	＊＊	＊＊	－．．．．
32	${ }_{\text {＊}}$	129	20	$38 \rightarrow 40$	77	W	187	40	37771	$1<2$	＊	240	20	$3457<$	167	W	＊＊	－	－＊＊＊
35	${ }^{*}$	13 C	27	$300 \% 2$	78	W	189	40	37780	$1<3$	${ }^{*}$	＜41	19	39634	168	W	＊＊	＊	＊＊＊＊
34	＊	131	20	38057	79	W	190	40	37790	124	＊	242	19	39707	169	w	＊＊＊	－	＊＊＊＊
33	＊	132	$2 d$	30184	60	，	192	40	37002	125	\ldots	$2+3$	10	39775	170	W	＊．	－＊	＊．．．＊
30	＊	133	29	36791	81	W	193	40	37816	126	－	244	17	39845	171	W	－．	－	＊\cdot ．${ }^{\text {a }}$
37	＊	134	29	38079	82	W	195	39	37031	127	，	245	16	39915	172	W	－．	$\bullet \cdot$	＊＊＊＊
30	＊	135	30	$380<y$	63	W	196	30	37848	128	，	245	10	39980	173	w	＊＊	－	＊．．．＊
34	＊	132	30	30080	84	W	197	39	37866	129	${ }^{*}$	246	15	40057	174	W	－．	\cdots	＊＊＊＊
40	＊	137	31	30 3¢	85	W	199	39	37085	130	＊	C47	14	40130	175	W	－＊＊	－	＊＊＊＊
41	＊	139	3.	38480	66	K	200	39	37907	131	＊	448	14	40203	176	W	＊＊	－	＊＊＊＊
42	${ }^{n}$	14 C	32	30441	87	＊	202	38	37429	132	${ }^{\prime}$	＜49	13	40270	177	W	＊＊＊	\bullet	＊＊＊＊
4.3	＊	141	35	30347	06	＇	203	38	37954	133	＊	249	12	40350	178	w	－＊	＊	＊．．．
44	\％	142	33	38354	89	W	204	38	37979	134	＊	250	12	40425	179	W	－．${ }^{\text {c }}$	－	＊．．．${ }^{\text {a }}$
45	．	143	34	38315	90	W	206	37	38007	135	\cdots	251	11	40500	180	W	＊＊	－	＊＊＊＊

＊．meains that a geosynchronous satellite at the given position is not visible from this ghuunu station．

Listing 2：Part of a geosynchronous satellite antenna－pointing chart created on a home computer．Knowing the station longitude of a particular satellite，one simply refers to that entry in the chart to find the antenna－pointing angles．The illustrated example was prepared for a ground station located in Peterborough NH，site of the offices of BYTE Publications．
using simple materials（eg：a kitchen rolling pin for a recording drum！），if you cannot find or do not want to buy a surplus recorder．

The necessary radio receiving equipment is also rea－ sonably simple．If you already own a general coverage receiver，a converter can be built for as littie as four or five dollars．In fact，many public－service band radios and scanners can receive the satellites directly（on 137.5 MHz ），and all you need to add is an outdoor antenna．

Satellite tracking should be a snap for the average com－ puter enthusiast．The published literature includes many articles on satellite tracking software．The only addi－ tional data you need is the time and longitude of the equator crossing of an occasional reference orbit（once every few weeks or so）．Reference orbit information is transmitted daily via teletypewriter to most National Weather Service（NWS）offices on the TBUS circuit．The National Weather Service also carries the information on their high－frequency radio teletypwriter（RTTY）circuits． The American Radio Relay League station W1AW trans－ mits the same information by both voice and radio teletypewriter．See any recent issue of QST for the W1AW transmission schedule．It is also possible to have
your name put on a mailing list maintained by the National Environmental Satellite Service，and receive this information by mail on a monthly basis．

Some weather satellites are in geosynchronous orbits； that is，their periods of revolution are the same as the rotational period of the earth（ie： 24 hours）．Consequent－ ly，they remain stationary with respect to the earth＇s sur－ face．This makes life really simple because you do not have to track them．It is only necessary to compute the antenna pointing angles once for each satellite．A recent article about locating geosynchronous satellites in QST gives the procedure for doing this on either a pocket calculator or a home computer．

Listings 1 and 2 show portions of the output from typical home－computer programs for polar orbiting and geosynchronous satellites，respectively．The programs that produced them are based on articles that have appeared in amateur radio magazines，and they require just a few seconds to execute．

As you can see，there are quite a few areas of oppor－ tunity for home computer projects in this exciting field．It is intriguing to receive real－time weather satellite photos right in your own home and to try to outguess the
weatherman! You can even use your computer to maintain weather records over long periods of time to aid in your forecasting.
I do not personally have additional advice to offer on construction details or equipment recommendations, other than to refer the reader to the many excellent articles already in print. I can, however, provide some assistance with tracking data. As an extension of a service I provide to amateur radio operators to assist in tracking the OSCAR communications satellites, I also provide perpetual orbital-prediction printouts for the current primary polar orbiting weather satellite, TIROS-N. (I have discontinued the printouts for all of the earlier weather satellites, but the service will be extended to include NOAA-6, which was launched in June 1979.) A printout showing antenna pointing data to all geosynchronous satellite locations, in one-degree increments, is also available.
All printouts are computed based on the exact station location, and can be used directly for tracking or as a check on the accuracy of programs you develop on your own. There is a nominal charge for the printouts ($\$ 5.00$ for the TIROS-N printout, and $\$ 1.00$ for the geosynchronous satellite printout) to help defray the cost of postage and materials. If you would like additional information about the printouts, be sure to enclose a selfaddressed, stamped envelope with your letter.

[^13]
An Improved Maze Program

David Lyons, 77 Elizabeth St S, Brampton Ontario,

 CANADA L6Y 1R31 enjoyed "My Computer Runs Mazes," by David E Stanfield in the June 1979 BYTE, page 86. I agree that the form of the listing provided is easy to enter, but it could be difficult to modify the program for other systems. Therefore, I have compiled the following information which might help.
The maze matrix will not print properly on terminals with line lengths other than thirty-two characters or

The most widely used Pascal system. Compilers to complete development software. For most popular microcomputer systems. With full documentation and support. From one source.

9494 Black Mountain Road
San Diego, CA 92126 714/578-6105
UCSD Pascal is a trademark of the Regents
of the University of California.

Find out more. Send this coupon.
\square Please send UCSD Pascal description and order form.
\square Please send distributor and volume license information.

Name
Title
Company
Address
City/State/Zip
Computer system
Send to: SorTech Microsystems
9494 Black Mountain Road
San Diego, CA 92126
Byte 1

Listing 1: Adding carriage return and line feed to maze display output.

Hexadecimal Address	Hexadecimal Code	Instruction Mnemonic	Operand
0283	26 EB	BNE	$\$ 0270$
0285	BD $025 F$	ISR	CRLF
0288	01	NOP	
0289	01	NOP	

without screen wraparound, since screen wraparound is relied upon for the carriage return and line feed after each row of alternating X and space characters. These missing characters can be added by a modification to the appropriate printing routine, as in listing 1.
Cursor-right and cursor-up characters do not always seem to be standard. The locations in which they occur are listed in table 1, if you need to alter them. Contrary to what is implied in the listing in the original article, the maze-running program is contained in two sections of memory, one from hexadecimal 003D to 0060, and the other from hexadecimal 0100 to 0784 . Also, the display memory is located between hexadecimal 0800 and 09FF.
Now I shall suggest some possible enhancements. Provisions are made to open up corridors and set the goal, but not to replace a wall or remove the food except by redrawing the entire maze. By adding the patch in listing 2 , the command table can be extended to allow the setting of an X at the current cursor location by pressing the X key.
If the goal is not accessible in the maze, the same branches can be searched repeatedly before the search ends. This seems due to the search strategy of eliminating only the end location of a branch each time a dead-end is reached, even though the entire branch back to the nearest node could be eliminated when backtracking is necessary. The strategy can be modified so that dead-end paths are searched only once by changing four conditional branch (BEQ) instructions as shown in table 2.

Listing 2: Command table extension.

Hexadecimal Address	Hexadecimal Code	Label	Instruction Mnemonic	Operand
02B3	BD 0785		JSR	PATCH
0785	81 58	PATCH	CMP A	\#'X
0787	2608		BNE	NFOUND
078A	BD 02 DD		JSR	BACKSPACE
078D	8658		LDA A	\#'X
078F	A7 00		STA A	0, X
0791	39		RTS	
0792	7E 02 D3	NFOUND	JMP	RESTORECHAR

Move-Right Character
031B
0498
0520
0686
Move-Up Character
03AD
056F
069C

Table 1: Hexadecimal addresses of instructions using cursorcontrol characters.

Hexadecimal Location	Hexadecimal Branch Value
05C8	42
05 FB	E9
0624	27
0643	E9

Table 2: Search strategy modification. Deposit the indicated branch values into the corresponding memory locations.

This change also has the added advantage of allowing the search to terminate on its own. You do not have to reset the computer if a loop is encountered in a maze. I hope that these comments will help others to enjoy this program.

How to Start and Run A Successful Business Hands-On-Techniques for:

- uncovering lucrative markets and products
- using the basic components involved in a business plan land some innovative wrinkles which will help your plan attract capitall
- approaching venture capital groups
- money leveraging
- implementing management-by-objective, management-by-exception, and manage-ment-by-motivation systems which maximize growth
- accomplishing market penetration
- a list of the keys that venture capitalists look for
- a comprehensive list of venture capital groups that continually invest in new ideas
- use of profit center controls

For the businessman who wants to make a dime do a dollar's work, who wants marketing and sales boiled down to a commonsense discipline, and who wants to be abie to perceive the major frontiers of American business in the next decade, there is no better book. This is the sort of instruction for which businessmen commonly pay consultants $\$ 50$ an hour. The first investment you should make. THE ENTREPRENEUR'S MANUAL can be one of the most profitable you'll make.

> Satisfaction guaranteed Send $\$ 24.95$ now to: Rabininc P.O. BOX 942, N.Y., N.Y. 10004 add $\$ 1.10$ for C.0.0.

MICROSOFI CONSUMER PRODUCTS CONTINUING THE MICROSOFT TRADITION

Microsoft set the standard in microcomputer system software. We know more about the structure and capabilities of today's microcomputers than anyone else. And now we're using that power in a whole new way!

Announcing Microsoft Consumer Products. Distinctive software packages backed by the Microsoft name. Each is created by a top-notch programmer and comes to you fully documented, at a cost you can afford.
Microsoft Editor/Assembler-Plus.' Now get every feature of Radio Shack's Editor/Assembler and T-Bug all in one package. PLUS-many "big computer" features to simplify your programming, editing and debugging. All in a low cost cassette package. Don't waste time creating both source and object tapes-Assembler-Plus assembles directly into memory. Supports macros and conditional assembly, too. Editor-Plus simplifies editing with extra commands like Substitute, Move, Copy and Extend. And Z-Bug,'" the most powerful debugger ever available for the TRS-80, has single step execution, direct execution in calculator mode and symbolic references. And, you can use up to 8 breakpoints at a time, with no need to remove a breakpoint before proceeding. For the 16 K , Level II, cassette TRS-80. Priced at $\$ 29.95$.
Microsoft Adventure. Only Microsoft offers Adventure complete, as originally written for the DEC PDP-10, now implemented on personal computers. The ultimate fantasy/logic game, Adventure allows you to explore the depths of the "Colossal Cave", collecting treasures and magic, solving puzzles; avoiding hazards and adversaries-including the dreaded killer dwarves. Don't be fooled by imitation or incomplete versions. Only Microsoft has it all. Adventure fills an entire disk with everything you need for your exploration. Written by Gordon Letwin, of SOFTWIN. Associates. Adventure for the TRS-80 requires a single-disk. 32 K system. For the Apple $11,^{*}$ a single-disk, 32 K system with either the standard disk or language card system. For just $\$ 29.95$.
事

Microsoft Typing Tutor. There's no easier way to master your keyboard! Faster and more efficient than any other teaching method, Typing Tutor helps you if you're starting from scratch or simply building speed. The secret lies in Typing Tutor's exclusive TRM ${ }^{\text {'" }}$ or "Time Response Monitoring" software. TRM monitors your keyboard 20 times per second so the computer can evaluate your skill. Your speed. Your errors. Your weakest keys. Typing Tutor tells you where you stand then automatically adjusts itself to help you improve. Written by Dick Ainsworth and Al Baker of the Image Producers, Inc. For the Apple II with 16 K and Apple BASIC or the TRS-80 with 16 K and Level II BASIC. Priced at \$14.95.
Microsoft Level III BASIC. Upgrade your Level II TRS-80 and increase your programming efficiency without additional hardware. Microsoft Level III loads from cassette tape on top of the Level II ROM. It gives you every feature of Disk BASIC except disk file commands. But that's not all-Level III's highspeed graphics turn your TRS-80* into a virtual electronic drawing board. And there's program renumbering, long error messages, quick shift-key entries. time-limit INPUT statements and many more features. System requirements: Level II BASIC and 16 K . Occupies 5.2K RAM. Priced at $\$ 49.95$.
Where To Buy. Microsoft Consumer Products are sold by computer retailers nationwide. If your local computer store doesn't have them, call us. Phone (206) 454-1315. Or write Microsoff Consumer Products, 10800 Northeast Eighth, Suite 819, Bellevue,WA 98004.

Abstract

-TRS-80 is a trademark of Radio Shack Corp. "Apple ll is a trademark of Apple Computer, Inc.,'" Editor/Assembler-Plus and Z-Bug are trademarks of Microsoft. TRM is a trademark of The Image Producers. Inc.

Alpha Lock for Your ASCII Keyboard

Terry Conboy
1231 Crestview Dr
San Carlos CA 94070

There are times when you need to hold the output of your keyboard in the uppercase mode for all alphabetic characters. A great deal of software is designed to accept only uppercase alphabetic American Standard Code for Information Interchange (ASCII) characters. The circuit given here is designed to be placed between the transistor-transistor logic (TTL) parallel output of the keyboard and the parallel input port on the computer (or the input to the parallel-toserial converter in a serial data arrangement). The programmer will then be able to reduce the beautifully designed 128-character set to a 102-character set.

A quick glance at a table of ASCII characters will show that the alphabetic characters are easy to recognize. (Such a table appeared in "Complete ASCII" by Dàvid M Ciemiewicz in the February 1978 BYTE, page 19.) They all have a 1 in bit 6 (the most significant data bit not considering the parity bit). Lowercase characters have bit 5 equal to 1 , and uppercase characters have bit 5 equal to 0 . If the problem was as simple as this, the circuit shown in figure 1 would do the trick. (I was inspired to

[^14]| ASCII Character | $\begin{aligned} & \text { Binary } \\ & 6543210 \end{aligned}$ | $\text { Bits } 6,4,3$ Octal | $\begin{aligned} & \text { Bits 2,1,0 } \\ & \text { Octal } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| (1) | 1000000 | 4 | 0 |
| [| 1011011 | 7 | 3 |
| 1 | 1011100 | 7 | 4 |
|] | 1011101 | 7 | 5 |
| \wedge | 1011110 | 7 | 6 |
| A | 1011111 | 7 | 7 |
| ' | 1100000 | 4 | 0 |
| | 1111011 | 7 | 3 |
| ! | 1111100 | 7 | 4 |
| \} | 1111101 | 7 | 5 |
| \sim | 1111110 | 7 | 6 |
| Delete | 1111111 | 7 | 7 |

Table 1: The 12 ASCII characters with a binary representation having bit 6 (the most significant data bit, not considering the parity bit) equal to 1 that should not be shifted by the uppercase alpha-lock function.

Figure 1: A simple circuit to provide alphabetic uppercase lock. It causes the undesired shift of 6 punctuation and control codes in addition to the alphabetic characters.

You JustBought a Personal What?

by Thomas Dwyer and Margot Critchfield

Whether you are a novice programmer or an experienced computer user, this book is filled with practical ideas for using a personal computer at home or work. It will take you through the steps necessary to write your own computer programs, and then show you how to use structured design techniques to tackle a variety of larger projects. The book contains over 60 ready-to-use programs written in Radio Shack TRS-80 Level II BASIC in the areas of educational games, financial record keeping, business transactions, disk-based data file and word processing. \$11.95 ISBN 0-07-018492-5

Figure 2: An alphabetic uppercase lock circuit which shifts only the 26 alphabetic characters when enabled by the switch.
develop this circuit by an idea description "Recognize Uppercase Letters Only with a Simple 2-Gate Circuit," in Electronic Design, July 19 1977, page 106, written by Chacko Neroth.)

Of course there is a catch. There are 64 binary combinations in which bit 6 is 1 , and only 52 of them are letters. The remaining combinations are punctuation marks, with the exception of the delete control code, as shown in table 1. If the keyboard omits these characters, the simple circuit of figure 1 will force bit 5 low when bit 6 is 1 and the circuit is enabled. However, if the keyboard does have these codes (and it probably has delete), remembering to unshift when necessary can be a headache.

To overcome this problem, it is necessary to detect the 12 nonalphabetic characters and inhibit the shift automatically. My first thought was to use a multitude of inverters
and 8 -input NAND gates (such as the system described by Steve Ciarcia in "Build a Keyboard Function Decoder," July 1978 BYTE, page 98), but there had to be a better way. Use of a programmable read-only memory would be nice, but it seemed like overkill and perhaps more expensive than necessary.

The solution turned out much simpler than I expected. By forming the octal equivalent of the group of bits 6, 4, and 3 and of the group of bits 2, 1, and 0, as shown in the last columns of the table, the user can see that by detecting the coincidence of these combinations, the desired shift enabling line can be obtained. The lucky combination of octal numbers allows the use of a 3-to-8-line decoder (74LS138) to unscramble the 3 most significant bits of interest and an 8-line multiplexer/data selector (74LS151) driven by the 3 least significant bits. By selecting the pro-
per outputs from the decoder and data selector (those corresponding to the codes we wish to recognize), there can be case shifting at the proper times. The new circuit is shown in figure 2.

When the high-order bits are decoded, the corresponding output goes to 0 . If the low-order bits select a 0 output from the decoder, the shift enable line will also go to 0 . This allows bit 5 to pass through unchanged. If the alpha-lock function is not desired, allowing the active-low strobe input on the data selector to be pulled up to a 1 will force the shift enable line to 0 regardless of the data being sent.

The use of low-power Schottky TTL integrated circuits allows adding the alpha-lock function while typically increasing the load on the power supply by only 14 mA . The cost of the three integrated circuits will be easily under $\$ 2$.

A Computer Generated Reminder Message

E M Pass
President
Computer Systems Consultants Inc
1454 Latta Lane NW
Conyers GA 30207

Listing 1：The Tickler filing program written in MSI 14 K Disk BASIC．

```
015G FEM TICKLEF MESSALIE S'NSTEM
0200 5TRING= 63
030G DIGITS= %
9400 LIHE=0
0609 DIM H(255)
0706 Z=G
9800 FS=号
GGOG FG=6
10UG PRINT "TICKLEE MESSALE SYSTENY"
110G INKFUT "INSERT DMTR DISK: RND HIT RETUFN",乙夆
1150 IF 25="NEW" [OOSUB 5460
1EGO OFEN #10, "TICKLPX", FOR UPDATE
```



```
1400 GET #10
```



```
144日 CLUU`E #10
1459 [US1JE 6460
14%G GUTI音OG
15010 H1=N\sqrt{}{5}
16000 F
15%0 FRINT "ENTER FRINT CONTEOL HS FOLLIUNS:"
```



```
1550 IF LEFTF(2も,1)<"F" [UUTO 15%0
1500 IF LEFT変(ご,1)こ"U" GOTO 15シ0
1,GE INFUT "ERTEF GURRERST DATE (YMNMDDO", DG
172G IF [G% INT (DG) COTO 17G19
174日 01= INT < 0%, 190619)
1760 0J=0%-[1*150130
1709 0- = INT (LS/106)
1:G0\ 0 = CO-02*105
1060 IF FESC01-3% 11 [ifTO 1T00
```



```
LEGO FFEINT PF:INT : FEINT : FREINT
1OE11 IF H1-2 GiOTU 2500
201U FUF: O=2 TO H1
2020 LET #土G
20419 IF N1<1 GUTO 206G
```



```
SGHUIF LEFTT(ESG1)="H"
OGH IF RE゙ンCNG GTO 2SuE
```



```
ZHO FRINT "ENTFN'SFE OHTE UFCNHTE NESOHGE"FFINT
21.40 2=2+1
2.45 T=58
1510 I=I -i
2154 IF I< 20 GUTO 2160
215E IF M10主(MF,I,S)=" " [iOT门 2154
```



```
20! COG!JE EG0%
```



```
2<-G FE|NEITE \1G
```



```
-5 IE FO-1 GOTO
O60 IF FGOGS HOHF+1
```



```
SHT9 NERT G
O2G FREIHT FRIIHT:FFIINT FRLLPIT
2-2U F'GINT "ENTER ENTF゙Y PNHEENTS TO EE DELETED:"
```

Most people and businesses share the common problem of being required to perform some actions at definite future dates．These actions may be of a one－time－only nature，or they may be p．eriodic according to some rule．
The penalty for forgetting an event such as a birthday may be minor，but the penalty for neglecting to file an income－tax return may be more severe．
Solutions to the problem are num－ erous，and include the use of human memory alone，writing notes on a wall or desk calendar，or maintaining． an ordered stack of notes and forms． The solution that I suggest here，call－ ed the Tickler filing system，involves the use of a computer to help perform this function．The program described here was written for a small maintenance service company which has，in addition to the normal requirements of small businesses，the necessity of keeping track of periodic preventative maintenance calls for its client companies．
The Tickler system enables a clerk to input a series of messages，each of which has a starting date and a code indicating the type of repetition desired for the message．Each time that the program is executed，it can check a file of messages and print and reschedule all messages for which the time limit has expired since the last printing．The clerk can then delete and add additional messages，as required．Since the program contains no features that are specific to the maintenance service company，it

THERE'S NO NEED TO COMPROMISE WITH COMPUPRO"'.

We don't compromise on our designs so you don't have to compromise on performance. Our expanded 5 - 100 line is the answer to the needs of professional computer users - just ask the dealers who specify our components when making up systerns for scientific, commercial, and industrial applications. Speaking of dealers, Godbout products (under the CompuPro ${ }^{\text {th }}$ name) are now available from more dealers than ever before . . . which makes it even easier for you to experience Codbout quality in person. Shop around, compare prices, and compare specs: we think we know whose products will earn a space in your computer

MORE NEWS FROM THE MEMORY LEADER.

This month, we spotlight Econoram XIltA - an S-100 bank select board that's completely compatible with Alpha Mlero, Cromemco, and similar systems (all 8 bits of the data word are available for bank select). Addressable on (K bound-
aries. Available in $16 \mathrm{~K}, 24 \mathrm{~K}$, or 32 K configurations; see list below (which includes our other popular memories) for prlces.

All Econoram* memories are fully static, run with 5 MHz (or slower) systems, include a 1 year limited warranty, and generally come in three different configurations to suit your needs - unkit, assembled and tested, or qualified under our high-reliabllity Certified System Component program (200 hour burn- In , immediate replacement in event of failure within 1 year of invoice date).

8K Econoram IIA 16K Econoram IV 16K Econoram VIIA-16
24K Econoram VIIA-24
16K Econoram IX-16
32K Econoram IX-32
32K Econoram X
32K Econoram XI
16K Econoram XIIIA-16
24K Econoram XIIIA-24
32K Econoram XIIIA-32
16K Econoram XIV 16K Econoram XV-16 32K Econoram XV-32
Buss 8 Notes
S-100
S-100
S-100
S-100
Dig Grp
Dig Grp
S-100
SBC/BLC
S-100 (1)
S-100 (1)
S-100 (1)
S-100 (2)
H8 (3)
H8 (3)

Unkit	Assm	CsC
$\$ 149$	$\$ 179$	$\$ 239$
$\$ 269$	$\$ 329$	$\$ 429$
$\$ 279$	$\$ 339$	$\$ 439$
$\$ 398$	$\$ 485$	$\$ 605$
$\$ 319$	$\$ 379$	n / a
$\$ 559$	$\$ 639$	n / a
$\$ 529$	$\$ 649$	$\$ 789$
n / a	n / a	$\$ 1050$
$\$ 329$	$\$ 419$	$\$ 519$
$\$ 429$	$\$ 539$	$\$ 649$
$\$ 559$	$\$ 699$	$\$ 849$
$\$ 299$	$\$ 359$	$\$ 459$
$\$ 329$	$\$ 395$	n / a
$\$ 599$	$\$ 729$	n / a

$16 \mathrm{~K} \times 16$ or $32 \mathrm{~K} \times 8$ Econoram XVI - coming soon!

(1) Bank select board addressable on 4 K boundaries.
(2) Extended addressing (24 address Ilnes). Single block addressable on 4 K boundaries, (3) Bank select option lor implementing memory systems greater than 64 K

THE GODBOUT COMPUTER BOX:

\$259 desk top, \$299 rack mount (inuoductory picice)

The ideal home for your computer. Includes dual AC outlets and fuseholder on rear, power switch, heavy-duty Ilne fllter, black anodized front panel (with textured vinyl painted cover for desk top version); pre-drilled base accepts our high-performance $\mathrm{S} \cdot 100$ motherboards or types by Vector, Callfornia Dlgital, and others. Rack mount version includes stides for easy pull-out from rack for maintenance or board changing. You can even cut a hole in the front panel and put in a mini-floppy . . . all in all, this is a functional, versatlle, and handsome enclosure that does justice to the finest computer systems.

LIMITED QUANTITY SPECIAL:
 PASCAL/M ${ }^{\text {T }}$ MEMORY!

PASCAL can give a microcomputer with CP/M more power than many minls! And for a limited time only, you can buy an assembled 32 K Econoram X, plus our totally standard WIrth PASCAL/M ${ }^{\text {w }} 8^{\prime \prime}$ diskette, for $\$ 799$ (regular combined price. \$999). Includes manual, plus Wirth's definitive book on PASCAL; specify Z80 or $8080 / 8085$ version. Hurry - this is an Introductory special. Diskette oniy without memory board: $\$ 350$.
A

DO YOU SPEAK TRS-80**?

We've been expanding the memory of Model I TRS. 80° machines for over a year now with our low power, high speed memory expansion chip set (\$87.20). Now you can use the same chip to expand memory in Apple, newer PET, Exidy Sorcerer, and Heath H89 machines - as well as expand a 32 K Model II TRS $80^{* *} 1048 \mathrm{~K}$ or even 64 K . And if that isn't enough memory tor you, watch this space for news on our high-density, Model II compatible 64 K board with bank select! "TRS. 80 is a trademark of the Tandy Corporation.

HIGH-PERFORMANCE MOTHERBOARDS

19 slot: \$174 unkit, \$214 assm
12 slot: \$129 unkit, \$169 assm
6 slot: $\$ 89$ unkit, $\$ 129$ assm
Unkits have edge connectors and termination resistors pre-soldered in place for easy assembly. These boards exceed the latest S .100 specs and will work with 5 to 10 MHz CPUs. Includes true active termination, grounded Faraday shield between all buss signal lines, and edge connectors for all slots.

2708 EROM BOARD \$85 unkit

4 independently addressable 4 K blocks, with dipswitch selectable jump start built right into the board. Includes all support chips and manual, but does not include EROMs.

ACTIVE TERMINATOR BOARD \$34.50 kit

Plugs into any S-100 motherboard (although ours don't need it) to reduce ring. ing, crosstalk, noise, and other buss-related problems.

S-100 MEMORY MANAGER BOARD \$59 kit, \$85 assm, \$100 CSC

Now you can add bank select and extended addressing to older S. 100 machines like the Altair, IMSAI, Sol, Polymorphic, etc. Either use this board with our new extended addressing boards, or retrofit our high density Econorams (the ones with phantom or exira qualifier lines) for use with the Memory Manager to get up to $1 / 2$ a megabyte of memory space for your computer.

2S "Interfacer" S-100 I/O Board \$189 unkit, \$249 assm, \$324 CSC
Dual RS-232 ports with full handshake; EIA232C line drivers and receivers $(1488,1489)$ along with current loop (20 mA) and TTL signals on both ports. Onboard crystal controlled timebase with independently selectable Baud rate generators for each port (up to 19.2 KBaud). Hardware UARTs.

3P PLUS S "Interfacer II" S-100 I/O Board \$189 unkit, \$249 assm, \$324 CSC

Incorporates 1 channel of serial IIO (with all the features of a port from the 2 S "Interfacer"), along with 3 full duplex parallel ports. The parallel section uses LSTTL octal latches for latched input and output data with 24 mA drive current, attention/enableland strobe bits for each parallel port (with selectable polarlity). interrupts for each input port, and separate 25 pin connectors with power for each channel along with a status port for Interrupt mask and port status.
from

SEND FOR OUR FREE CATALOGUE
should be of general use to other businesses and individuals needing a similar facility．

A sample series of executions of the program appears in this article．The program provides prompts for the user after the file has been establish－ ed．The user must enter NEW to establish the file．The ability to enter messages，message types，and starting dates should provide sufficient flex－ ibility for virtually any simple ap－ plication．

Program Details

The program in listing 1 was writ－ ten using a SwTPC 6800 running the MSI 14K Disk BASIC interpreter level 1．3．The hardware includes 32 K bytes of main memory，one MSI floppy disk drive，and one low－ speed（thirty character per second） printing terminal．The interpreter and this program require about 24 K bytes of memory．Since it uses ran－ dom access techniques，adapting the program to a cassette tape system would be difficult．Implementing it on another disk system or on a timesharing system should not be dif－ ficult．

A flowchart of the major portion of the system appears as figure 1 ．

Initialization

Line 200 of listing 1 sets the string length to 68 bytes．For those with SwTPC 8 K BASIC，this statement may be replaced with POKE $(62,68)$ ． Line 300 sets up the output routine to print numeric values with a floating， not fixed，decimal point．Line 400 causes the output routine to ignore right margin considerations on out－ put．

Line 600 allocates an area of 255 variables to point to those records that have been deleted and may be reused．Line 1100 causes the com－ puter to wait until the clerk indicates that the proper disk has been mounted，since the data disk is kept apart from the program disk．Line 1150 checks for the entry of the word NEW，which indicates that the data file does not yet exist and is to be con－ structed．

Line 1200 opens the data file in update mode；the MSI BASIC interpreter allows opening data files in Input，Output and Update modes． Line 1300 defines the format of the

[^15]
Why Should I Help A Hospital In Memphis?

Because St. Jude Children's Research Hospital offers hope to stricken children wherever they may be.

Abstract

1. St. Jude Children's Kescarch Hospital is the only institution dedicated solely to conquering catastrophic discases of childhood. 2. Since opening in 1962, St. Jude Children's Research Hospital has brought hope in some of these diseases where previously none existed. 3. St. Jude Children's Research Hospital's impressive studies of infantile malnutrition have become the basis for governinent programs to feed

poverty-level children.
4. Treatment procedutes developed by St. Jude Children's Rescarch Hospital are freely disseminated to doctors and hospitals all over the world and have been incoipurated into the standard pediatric literature
5. St. Jude Children's Research Hospital depends on public contributions to continue its lifesaving work.

St. Jude Children's Research Hospital is uniquc. Under one roof, its basic and clinical doctors and scientists look for the answers that will save children in every community regardless of race, creed or religion. Children admitted to its research programs receive total medical care at no cost. Some live and sume die, but from these patients comes the knowledge that may some day eliminate these dreadful diseases, giving hope to now hopeless children everywhere

Why Help?

Why should you help? Because St. Jude Children's Research Hospital knows no boundaries. Its impact is everywhere. Because you care.

Listing 1 continued：

E4Bも IF 家

ES\＃U INFIUT＂ENTEF RNMEEE UF MESEHEES TH BE HELD IN FILE＂，N

EJM N＝I

ESG FTF $1=2$ TI
E65．5 FUJT \＃15

EEOH LLDEE H1以
天ーU FETUEPは

TEUTH－INT（14－J）12）

CI FEETUET

TO $\quad L=5+65$

？ $515 \quad \leq=-1$
？$=$ ITT

$7-16 \quad \leq=L-3+S 1$

$7 \rightarrow 0 \quad J=5+=-12+L$
$\overrightarrow{-i d} \quad I=10 \mathrm{~B}+\langle\mathrm{N}-4 \overrightarrow{3}+1+L$
TJEO FEETHEN

ED M1－H2

FiJe CcT 115

data file record，shown in table 1. Since this defines an 85－byte record and each sector on the MSI disk（GSI 110）is 256 bytes in length，there will be three records per sector．

Lines 1400 through 1480 check the first record in the data file．If the message text is not TICKLER，the program assumes that the disk is not valid and asks the clerk if the disk should be cleared．Lines 1500 and 1600 retrieve the current and max－ imum end－of－file pointers from the first record in the file．

Control Options

Lines 1620 through 1680 request print－control for the current execu－ tion of the program．Options are ex－ plained in table 2．Lines 1700 through 1900 obtain the current date from the clerk and validate it．Line 1940 checks for run option of N （no printing）and， if it is N ，skips the checking of the current messages．

Message Display

Lines 2000 through 2300 succes－ sively check every message in the file． Line 2020 reads the next record in the

THE MM－103 DATA MODEM AND COMMUNICATIONS ADAPTER
 FCC APPROVED
 Both the modem and telephone system inferface are FCC approved，accomplishing all the required protective functions with a miniaturized，proprietary protective coupler．
 WARRANTY
 One year limited warranty．Ten－day unconditional refurn privilege．Minimal cost，24－hour exchange policy for units not in warranty．
 HIGH QUALITY
 -50 dBm sensitivity．Auto answer．Auto originate．Auto dialer with computer－controlled dial rate． 61 to 300 baud （anywhere over the long－distance telephone network）， rate selection under computer control．Flexible，soff－ ware－conirolled，maskable interrupt system．
 ASSEMBLED \＆TESTED
 Not a kit！（FCC registration prohibits kits）

Call for further information：
VOICE：（703）750－3727
MODEM：（703）750－0930（300 baud）

Potomac Micro－Magic，Inc．

Write for brochure：
First Lincolnia Bldg．，Suite B1
4810 Beauregard St．
Alexandria，Va． 22312

BUIDNGBLOCKS OFTHEFUTURE

A versatile dual density
fioppy disk controller. Backed up with dual density CP/M ${ }^{\mathrm{m}}$ (S150) and available NOW!!
$\$ 325$ assembled

VIDEO CONTROLLER

Memory mapped 80×24 with dual character sets (programmable!) user rom space and HARDWARE SCROLLING. Firmware available.
\$349 assembled

All DATASPEED products are fully assembled and tested and warranted.

DATASPEED, INC.,
1302 NOE ST.
SAN FRANCISCO
CA. 94131
(415) 282-5616

Figure 1: Flowchart of a portion of the Tickler program that initializes disk files, selects options, prints messages, and computes new time intervals for the next activation of periodic messages.

				$\begin{gathered} \text { Option } \\ S \end{gathered}$	Description Selectively print and update
Variable	Description	External Length	Type		messages
N1	Message type	2 bytes	Numeric	A	List all messages without up-
N2	Days	3 bytes	Numeric		dating dates
N3	Message date	6 bytes	Numeric	N	Only enter messages
N4	Date of last update	6 bytes	Numeric	U	Update message dates without
M\$	Message text	68 bytes	Character		listing

Table 1: Format of the data file record for opening data.

Table 2: Options for updating messages.

BITS gives you Aceess to Tools

Tools are only as useful as the user's skills.

Sharpen your computing skills with the latest microcomputer books from BITS.

BEGINNER'S MANUAL FOR THE UCSD PASCAL SYSTEM by Kenneth L. Bowles

\square Here from the originator of UCSD PASCAL is a system orientation guide and reference manual. It explains the use of the screen editor, file manager, and compiler with quizzes for PASCAL self study and guides to use of disk files and libraries of specialized routines. Appendices with specific instructions for the Apple II, TRS-80, and Terak 8510A implementations are included. If you're just learning PASCAL, the book Microcomputer Problem Solving Using PASCAL by Bowles is recommended as a companion text.) This book will have you running your PASCAL programs quickly, even if you have no computer experience. 229pp.
\#249 \$11.95

280 SOFTWARE GOURMET GUIDE \& COOKBOOK by Nat Wadsworth

\square From Scelbi Publications we have an appetizing and long awaited addition to their Gourmet Guide series. They've served up the $\mathbf{Z 8 0}$ instruction set with a buffet of useful assembly language routines par excellence! The menu: The 280 instruction set, Utility routines, Stack operations, Input/output processing, Conversion routines, Search and sort routines, Decimal arithmetic routines, Floating point routines, Space capture, and Creative programming concepts. 322 pp .
\#250
\$14.95

NUMBERS IN THEORY AND PRACTICE
 Blaise W. Liffick, editor

\square This reference, Volume 3 in BYTE Books TM Programming Techniques series, is a mix of reprints of articles from BYTE Magazine and much new material. In an effort to equip the microcomputer user with a background in numbers and computational methods, it covers the number system, floating point numbers, numerical methods, random number generators, and the math behind computer graphics. Of value to both the novice and the experienced microcomputer programmer. 184pp.
$\$ 8.95$

THE S-100 \& OTHER MICRO BUSES

by Elmer C. Poe and James C. Goodwin
\square This book is about microcomputer buses; the hardware paths through which the microcomputer's processor communicates with present and future system components. A general discussion of bus structure is followed by chapters on 11 of the most widely used bus systems, including the S-100, TRS-80, Apple II, Pet, and Kim buses. Also included are chapters on bus to bus interfacing. A valuable collection of microcomputer data. 144 pp .
\#247
$\$ 5.95$

BITS PROGRAMMER PAD"

Improve your assembly language programming skills with BITS PROGRAMMER PADS ${ }^{\text {TM }}$. Available for the $2-80$ 8080A, 6502 , 6800 or 1802 microprocessors. Punched for 3 -ring notebooks, and printed on both sides (pictured above). 50 page pads, only $\$ 2.50$ each. (Shipping and handling: USA-75 ${ }^{\circ}$ for 1 pad, $\$ 1.25$ for 2 or more; Foreign - $\$ 1$ per pad to a max. charge of $\$ 4$.)

BEST OF INTERFACE AGE: VOLUME I SOFTWARE IN BASIC Edited by Carl D. Warren

 \square The first volume of this new series contains classic software; four microcomputer versions of BASIC: Lawrence Livermore Labs ' 8080 BASIC, Dr. Wang's Palo Alto Tiny BASIC (8080), National's Tiny BASIC for SC/MP, and Robert Uiterwyk's 68004 K BASIC. Each includes full assembly language listing and guides to aid in implementing and using the interpreters. More to come. 314 pp .\#248 \$12.95

6502 ASSEMBLY LANGUAGE PROGRAMMING

by Lance A. Leventhal
$\square 6502$ programmers Osborne and Associates have included the 6502 in their Assembly Language Programming series! They thoroughly cover the 6502 instruction set and include assembler conventions, code conversions, arithmetic problems, and program design, debugging, testing, and documentation. Over 80 program examples are included, the 6520 PIA and 6522 VIA are covered, and the 6502 interface system is explained. Comprehensive coverage! 606pp.
\#226 \$12.95

MICROCOMPUTER PROBLEM SOLVING USING PASCAL

by Kenneth L. Bowles \square This book is designed both for introductory courses in computer problem solving at the freshman and sophomore college level, and for individual self-study. Graphics are stressed in this version of the book. A complete single-user software system based on PASCAL has been developed at the University of California at San Diego, where the author is a professor in the Department of $A p$ plied Physics and Information Science. This system embodies extensions to the standard PASCAL which include the necessary functions and procedures for handling graphics and strings. 563 pp.
\#077 $\$ 9.80$

BASIC BASIC, 2nd EDITION

by James \mathbf{S}. Coan
\square Basic BASIC gives you step-by-step instructions for using a terminal, writing programs, using loops and lists, solving mathematical problems, understanding matrices and more. The book contains a wealth of illustrations and example programs, and is suitable for beginners on many different levels. It makes a fine reference for the experienced programmer, too. 256 pp .
\#014
\$8.95
POSTAL CHARGES
U.S.- $\$.75 /$ book to a maximum of $\$ 3.00$; Foreign- $\$ 1.00 /$ book to a maximum of $\$ 4.00$ (surface rate): UPS (U.S. only)- $\$ 1.751$ st book. $\$.75$ each additional book to a maximum of $\$ 4.00$; Foreign Air Mail- $\$ 7.00 /$ book.

Figure 2: Flowchart of (2a) the routine that deletes messages and (2b) the routine that adds messages to the file.
file. Lines 2060 through 2090 check the print-control option and current date to determine if a given message is to be listed. Lines 2100 and 2120 print a heading before the first message. Lines 2145 through 2156 reduce the number of trailing blanks to be printed.

Line 2160 formats and prints the current message, along with entry number and type, expiration date, and date of last update. Line 2180 checks the print-control option for A (print all), and if it is A, bypasses updating the message date. Lines 2190 through 2220 update the message date and type, as required, on disk. Lines 2240 through 2280 add deleted record numbers to a table for later reuse.

Message Deletion

Lines 2320 through 2580 allow the clerk to delete additional lines from the file and add any deleted record
numbers to the table described above. Deleted lines are recognized by having a message type of zero. Figure 2a shows the deletion procedure.

Entering New Messages

The message addition procedure is shown is figure $2 b$.

Lines 2600 through 4020 allow the clerk to enter new messages into the file. Line 2600 requests that a message type be entered. Line 2620 ensures that an integer value was keyed. Line 2640 checks this value for zero and, if it is zero, prepares to exit the program. Line 2660 checks this value for validity and, if it is not valid, causes the information on lines 2700 through 2920 to be printed. These lines identify the message types, shown in table 3.

Line 3020 returns to request that a new message type be entered for an invalid type entry. Lines 3040
through 3220 request that a date be entered to be used as an initial message date. Lines 3240 through 3260 request the clerk to enter the message text and ensure that something was entered.

Lines 3280 through 3390 attempt to allocate a record number for the new entry from those just deleted or at the

Type	Description
0	Deleted
1	Specific date only
2	Weekly
3	Biweekly
4	Monthly
5	Bimonthly
6	Quarterly
7	Semi-annually
8	Annually
9	Every N days

Table 3: Message types available in the Tickler system. These values are contained in the M1 and N1 variables in the BASIC program.

Model DMB-6400 Series dynamic 64k byte RAMS incorporate the features which are standard in the DM-6400 Series and adds bank select for multi-user-timesharing applications.

- alpha micro, Cromemco, and NORTH STAR output port bank select.
- Memory bank size can be incremented to 64 k bytes in 16 k increments.
- Four (4) 16k byte, functionally independent memory banks.
- Eight (8) 64k byte banks of memory per output port for expansion to 512 k bytes for each output port.

Model DM-6400 Series dynamic 64k memory boards feature IEEE S-1 00 compatible timing and on board transparent refresh.

- Memory selectable and deselectable in 4 k byte increments.
- 25 MHz on board crystal oscillator for independent timing.

DMB-6400 and DM-6400 Common Features:

- $4 \mathrm{MHz} \mathrm{Z80}$ operation with no wait states.
- Tested and burned-in.

ONE YEAR GUARANTEE

THE FOLLOWING PRODUCTS ARE AVAILABLE

- DMB-3200/32K RAM
\square DM-6400/64KRAM
- DM-4800/48K RAM

ATTRACTIVELY DISCOUNTED OEM AND DEALER QUANTITY PRICES AVAILABLE
U.K. \& EUROPEAN REPRESENTATIVE
abacus computers lto.
62. NEW CAVENDISH STREET

LONDON. WIM 7LD U.K.
TEL: 01-580/8841 TELEX: 88!-3085
AUSTRALIAN REPRESENTATIVE: COMPUTERLAND OF MELBOURNE 555 COLLINS STREET MEL BOURNE. VIC3000 TEL 625581

[^16]end of the current file. Lines 3400 through 3450 read the data at the allocated record number and overlay the record with more current data. Lines 3460 through 3820 continue this process by filling in parameters depending upon message type. Lines 3760 through 3800 request and validate the number of days for message type 9 (repeat every N days). Line 4000 updates the record on disk. Line 4020 returns to request additional message entries.

Message Repetition

Lines 6000 through 6400 compute the next message activation date for a message whose current-activation interval has elapsed. It does this using the message type and old expiration date. If the newly computed message date is still earlier in time than the current date, the new message date becomes the old date, and the new message date is recomputed.

Data File Initialization

Lines 6460 through 6700 prepare a new-disk data file for use by the program. Lines 6460 and 6480 validate the format request. Lines 6500 and

6520 open the file for output, creating a new file, and provide the format of each record, as described earlier. Lines 6540 through 6570 request and validate the maximum number of records to be placed into the data file. Lines 6580 through 6660 format the records in the file. Line 6680 closes the file to complete the last sector and directory entry.

This disk-clearing subroutine is shown in flowchart form as figure 3.

Date Conversion

Lines 7000 through 7460 provide Gregorian date to Julian day number (as used by astronomers, a system that counts consecutive days since January 1, 4713 BC) conversions to help facilitate the process of recomputing the message activation date for message types $1,2,3$, and 9. To calculate the Gregorian date N days from another, the following steps are performed:

1. Convert Gregorian date to Julian day number.
2. Add N to Julian day number.
3. Convert Julian day number to Gregorian date.

Figure 3: Flowchart of the subroutine that initializes a new disk file.

Figure 4: Flowchart of the routine that terminates execution of the Tickler system in an orderly mamer.

Exit Procedures

A flowchart of the exit operations is shown as figure 4.
Lines 9000 through 9300 update the first record in the file, which contains

A BUSINESS PROPOSITION from INTERTEC D^TA SYSTEMS

Dear Computer Enthusiast:

As a result of the phenomenal growth our company has experienced during the past year, there are now many excellent opportunities in our national dealership program. And as a result of this expansion in our dealership network, there are new employment opportunities in the marketing and technical divisions of our company. We'd like to talk about these opportunities for just a minute.

Our two major products, the InterTube II Video Terminal and the SuperBrain Video Computer are, to say the least, an overwhelming success. This widespread acceptance and demand for our products naturally requires the establishment and maintenance of a comprehensive dealer/service network. Many retailers and other microcomputer resellers have already joined our team. They are now realizing the true advantages our unsurpassed price/performance products can give them. How about you? Isn't it time you breathed a little new life into your operation? Dealership and OEM contracts are now being established in many areas. Call us today and discuss your requirements. You'll find us to be quite responsive.

Of course, our ability to successfully penetrate and maintain our position in this ever-increasingly competitive marketplace is due to the support of our many marketing, technical and service personnel. As our marketshare increases, so does our requirement for qualified personnel. We are presently recruiting marketing representatives to work closely with our dealers in the field. A sales/management background in this industry would qualify you for consideration for one of these positions. Also, we are in search of technical personnel to assist us here in South Carolina in supporting the varied applications our customers have for our products. At present, we are recruiting Basic, Fortran and Assembly language programmers as well as lab and production technicians.

Whatever your interests may be, dealership or employment, we urge you to carefully consider the advantages of association with our company. Pause for just a moment and give us a call at $803 / 798-9100$. And if you don't believe us, ask the industry experts. They will tell you we're on the way to the top! So, why not join us now and enjoy the ride.

Best Regards,

The Marketing Department INTERTEC DATA SYSTEMS CORPORATION

Dear Intertec,
Yes, I'm interested! Please call me with more information about the opportunities l've checked below.
\square Dealership Programs
\square OEM Arrangements
\square Marketing positions presently available in my area.
\square Technical Support positions available at the factory
\square Other (specify) \qquad

If you're interested in dealership or OEM arrangements, please send us some detailed information on the nature of your present business including: 1) type of business; 2) length of time in business; 3) number of employees in sales, service and administrative positions; 4) products presently represented and/or manufactured, and 5) your application for our products.

If you're interested in employment, whether it be in a field marketing position or a technical factory position, please enclose a resume detailing your experience and salary requirements.

Don't delay! Give us your name and address below and return this advertisement to:

INTERTEC DATA SYSTEMS
The Marketing Department
2300 Broad River Road
Columbia, South Carolina 29210
If you're in a big hurry to reap the benefits of association with Intertec, skip the form and call us direct at 803-798-9100. Just ask for someone in the Marketing Department.

Your name

Company

Street

City, State \& Zip

Telephone \qquad

Listing 2：A sample series of executions of the Tickler program．

```
#:--.-*;
```



```
OEFS OATG OISK HTO HIT. RETJWRO
```



```
    TMFES REE FE FOLLOWS
        I=FPEC!FIF [MTE ONL*
        I="SEEL:F
```



```
        I=M丁NTHLV
        I=MJNTHLV
        O=SHFTEF:L%
```



```
        G=E\EF%% N OH:`
```



```
SO
```



```
EMTEF TESGHES NESEAESO
```



```
EirIF REGOHUE" RESEHEE J
ERTEF T\becauseFE FOF NEH NESSHOE &O=OUIT,GG=HELFO? S
```



```
OTEF REEOHGE NESOHEGA
```



```
ENTER EOOHE NESHES
```



```
EOS TESASE NESOHE
```



```
EMTEF RESEHONOESSHE ?
```



```
GWEP TOE FGF NEW MEOGHE SOMHIT,GF=HEDF?
ZTEF NESGEE RESHSE E
```



```
BE FEHC":
#r゙j":
FTMOES HESEOTE SNSTEN
```



```
    OM
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline ETTF゙， & Ti：E & OnTE & UFPTME & THESEAGE \\
\hline \(\pm\) & 2 & 709 & ア9609 & －TESSALE 1 \\
\hline \(\bigcirc\) & － & 7 Ca & 70969 & －TEESALE \\
\hline 7 & 4 & 7 \％ind & P90\％ & －TESSHGE \\
\hline \(\equiv\) & 5 & －3y & 7 T & －TEESHGE 4 \\
\hline 5 & 5 & 7 70905 & 70 & －TEESFLE 5 \\
\hline 7 & \(\stackrel{7}{ }\) & \(\bigcirc 96+51\) & 70009 & －RES＇MGE 6 \\
\hline B & 3 & \(\bigcirc\)－\％iost & 7905 Co & －TESSAGE 3 \\
\hline 3 & 3 & P\％000 & 79609 & －RESAGE 3 \\
\hline 19 & & P904ti & 79060 & －RIESSAGE \\
\hline
\end{tabular}
ENTEF ENTFM NUMEEFS TO EE OELETED，FILLDUEO B＇S ZERU？D
```



```
EMTEF PUHMEEF: IF OHNS? 24
```



```
INSERT FFOGFITH UIER: ANCI HIT FETIFNN?
```


HEI RERO:
HSI
TFIN EXLEF MESSAEE SY゙STEM

ENTER PRITNT CONTROL F゙コ FOLLISHJ:
$\overline{5}=5 E L E C T$ IVE, $\bar{H}=H L L, N=N O W E, U=H F D R T E$ OHL'r ? \bar{y}
ENTEF EUPFENT CHTE (YMMDDO? 790951

Erita：	TMP：	CHTE	1\％OMTE	TESEAGE
\because	\because	78090		－TES＇SALE \pm
2	\cdots	Tanjev	7 F90	－TESFME
$\stackrel{\square}{-1}$	4	7965	7 Cug ¢0	－TESSHGE ？
$\bar{\square}$	F	7695	P9096\％	－TESEHEE 4
3	31			－RYESEE：

E:GTEF ENTR゙, NUTEEFS TU BE OELETEO. FTLLUNED EY ZEFO: Э
3 HELETED
HTEF ENT: NHMEEPE TY EE UELETED. FTLLONEO E", ZERO? क
ENTEF TYFE FOR NEW MESSTOE \&OOUT GOJ=HEDF? D
S:EERT PRUUFAM OESH HNO HIT RETURTM?
MJI EEML":
FFTH
FIERLER TESSAGE SVOTEA
GUEFT GHTH OISM HRL HIT FETUFR"

E:TROM TUFE DHTE UFLUATE MESSALDE

E：drair	HFE	DHTE	UFIRTE	FF Sint
$=$	\because	\bigcirc	7097碞1	－MESJMGE 2
\cdots	\cdots	7 T 906E		－TESごLIE ご
4	4	$\cdots \mathrm{F} 9410$	P96301	－NESJMLSE
5	5	790415	79606：	－TEESTLIE 4
E	5	796519	796	－MESSHGE 5
7	$?$	7 $=19491$	596	－MEJTLE 5
16	1	75157191	P960\％	－MESEAGE ${ }^{\text {a }}$
11	3	1－90401	796210	－ftE 3 HEE 10

EMTEF ENTFY NUMEEFS TO EE LELETEO，FDLLUTHED BY DEFO？ら

IPSERT FROGRAM DISK HND HIT RETIJRN'?
MSI FERW
\#だ
Eis
T - EFRRUF \#
MSI REFOH
\#P:UN
TISKLEF NESOEGE SYSTEM
INGERT DATH DISH HNC HIT RETIJFH?
ENTEF PPINT EONTPOL FTS FULLOWS:
ENTEF PPINT EONTPOL FTS FOLLOWS
$S=S E L E E T$ IVE, $\bar{H}=H L L, N=W I N E, V=1$ IPCNTE ONL' >5
ENTEF EJFFENT CHTE 《ソMMMCD:? 79050

ENTR ${ }^{\text {b }}$	TIPE	OHTE	UFPCRTE	MESSALE
3	3	？ 00591	790591	－TESSAGE 2
4	4	7×0901	790501	－MESSALE E

ENTER ENTR＇Y NUMEERS TO BE CELETED，FOLLOWED BY ZERO？9 ENTER ENTR＇NUMEERS TO BE CELETED，FDLLOWED BY
ENTER TYPE FOR NEW MESSAGE（OENTUIT， $99=H E L F) ? ~$ ENTER TYPE FOR NEW MESSAGE QGENUIT，
INSERT PRUGRPM DISK RND MIT RETUFNN？
HSI REROV
current and last record numbers．Line 9400 closes the file to update the first record and directory entry．

Line 9500 restores the input routine so that commas become string
delimiters once again．Line 9990 re－ quests the clerk to insert the program disk and acknowledge this action．

If you or your business have the problem of needing one－time or per－
iodic reminders，then this program should be worth the effort it takea to key it in（and convert it，if necpasary）． There are rewards for using it and penalties for not using it．

Progreamaing Ouickies

A Pascal Checkbook Balancing Program

Carl T Helmers, Editorial Director, BYTE Publications

Probably the most hackneyed example of what one can do with a personal computer is the proverbial checkbook balancing program. Well, here I have gone and done it: I sat down and profaned Pascal by writing a simple little interactive checkbook balance figuring program (listing 1).

The interactive sequence at initialization reflects a hardware specific aspect of a system which has UCSD Pascal bootstrapped through the CP / M operating system's "BIOS" drivers. This is the use of the "<control> $\mathrm{P}^{\prime \prime}$ character from the keyboard to toggle a single bit flag which determines whether or not the printer is on. We assume the program is off upon entry, so that one

depression of the <control>P character will turn on the printer through the "BIOS" keyboard driver's action.

The general outline of the program, found in the last eight non-blank lines of listing 1, is fairly standard and applicable to a host of specific uses. For nearly every use of a computer, we start with a procedure called initialization which sets up the necessary initial conditions of processing. Then, we continue with a repeat until done loop construct which does the main logic of the process over and over again.

When the flag done becomes true during the main logic, the repeat loop discontinues and we fall through to the standard procedure summarize which does any final processing before the program is complete. Of course, in this particular example, summarize is a null operation, since I have no particular need to provide any reporting or file operations other than those encountered in the main loop. I have left the dummy procedure summarize in the listing to document this need for a possible summary procedure in a more elaborate version of the same program.

This program is run in UCSD Pascal, version 1.5. This same program should run identically on any computer with the UCSD Pascal software system. A sample run follows the listing. I have used the program now for several months; the interactive sequence used for all the detailed computations could be much improved, even though the present form has proved quite practical.

Listing 1: A Pascal listing of the checkbook balancing program.
PROGRAM checks;
\{ A simple little program written March 251979 by Carl Helmers \}
\{Time from inception to working program approximately 15 minutes \}

VAR
done : BOOLEAN; detail,balance : REAL;
anychar : CHAR;
count : INTEGER;

PROCEDURE initialize;
BEGIN
balance $:=0$;
count $:=0$;
(The following sequence turns on my printer if It type <ctri p>\} PAGE (OUTPUT);
WRITELN ('Checkbook balancer program'):
WRITELN ('Set printer to top of form, press 〈ctrl p>, then any key. '); READ (KEYBOARD, anychar) ;
\{Premature end of program if I type 〈esc> now\} IF anychar $=$ CHR (27) THEN done $:=$ TRUE ELSE done $:=$ FALSE;
(A sequence to get the initial balance...\}
IF NOT done THEN
BEGIN
anychar := ' N ';
REPEAT
WRITELN(' $\left.{ }^{\prime}\right)$;
WRITELN ('Enter Initial Balance');
READLN (balance);
WRITELN('Balance Starts at ',balance:10:2);
WRITELN('Is this correct?');
READ(KEYBOARD, anychar);
WRITELN (anychar) UNTIL ($\left(a n y c h a r=' y^{\prime}\right)$ OR (anychar=' $\left.y^{\prime}\right)$) END;
END \{initialize\};

PROCEDURE process one check;
VAR
s : STRING [50];

```
PROCEDURE get_charge;
```

 BEGIN
 anychar \(:=\) 'N';
 REPEAT
 WRITELN('Enter amount of ',s,': '):
 READCN(detail);
 WRITELN('Is ' detail:10:2, the correct value of the 's,
 '? ' \(;\)
 READ (KEYBOARD, anychar)
 UNTIL ((anychar=' \(y^{\prime}\)) OR (anychar=' \(Y^{\prime}\)))
 END \{get_charge):
PROCEDURE display_balance;
3EGIN
WRITELN ('
END (display balance):
BECIN \{process one check]
WRITELN('');
WRITELN('C? D? I? or <esc>')
READ (KEYBOARD, anychar);
WRITELN(anychar)
IF anychar = CHR (27)
THEN
done $:=$ TRUE
ELSE
CASE anychar OF
'C', C' :
BEGIN
s : = 'check':
get_charge;
balānce : = balance - detail:
display bal ance
END;
'D', 'd':
BEGIN
S := 'deposit':
get charge;
bolance : = balance + detail;
display balance
END:
'I','i':
BEGIN
s := 'interest';
get charge:
balance $:=$ balance + detail;
display balance
END
END \{CASE\};
END (process_one_check);

```
PROCEDURE summarize;
    BEGIN
        {Remarkable... this procedure doesn't do anything!]
    GND (summarize):
```

BEGIN (checks)
(isn't this simple... all we do is \}
initialize:
REPEAT
process_one_check
UNTIL done;
summarize
END.

Listing 2: A sample run.

```
Checkbook balancer program
Set printer to top of form, press <ctrl p\rangle, then any key.
Enter Initial Balance
3.1415927
Balance Starts at 3.14
Is this correct?
```

```
Enter Initial Balance
1000
Balance Starts at 1000.00
Is this correct?
Y
C? D? I? or <esc>
Enter amount of check:
15
Is 15.00 the correct value of the check?
    Current Balance = 985.00
C? D? I? or <esc>
3
C? D? I? or <esc>
2
C? D? I? or <esc>
C
Enter amount of check:
32.98
Is 32.98 the correct value of the check?
                                    Current Balance = 952.02
C? D? I? or \langleesc\rangle
i
Enter amount of interest:
Is 2.00 the correct value of the interest?
    Current Balance = 954.02
C? D? I? or <esc>
d
Enter amount of deposit:
Ente
1000
Is 1000.00 the correct value of the deposit?
                                    Current Balance = 1954.02
C? D? I? or <esc>
C
Enter amount of check:
270
Is 270.00 the correct value of the check?
                                    Current Balance = 1684.02
C? D? I? or <esc>
```


Double your memory not the price!

COMPARE AT $\$ 695$

Remex RFD 4000/8" Floppy Disc Drive Double the storage! Double sided . . . Double density!!
Offers quality and features found in drives costing
much more! - Single or Double Density a Double-Sided Drive ■ Door Lock INCLUDED \quad Write-Protect INCLUDED 180 Day Warranty
Compatible with Shugart 850/851 Low Power Operation ensures
LONGER LIFE!! - Model RFD 4001 offers Data and Sector Separator available opmons/accessories
\square Dual Orive Power Supply \square Single Drive Power Supply and Cabinet, \$119.95 and Cabinet \$139 95 and Cabinet, \$139.95 Interface Manual, $\$ 2.95$ \square RFD 4000 Manual, $\$ 5.95 \square$ Drive Cabinet, $\$ 29.95$

COM

Book Reviews

Illustrating BASIC

Donald Alcock Cambridge University Press, 1977
134 pages, softcover with ring binding $\$ 4.95$ hardcover $\$ 14.95$

If you are looking for a good introductory BASIC text containing informative illustrations, short programs, a fundamental approach to programming in BASIC, and if you enjoy reading a unique typeset format, then Illustrating

BASIC by Donald Alcock, is for you.
In order to set the general approach used throughout this book, the author presents a line drawing of the famous program "bug." This is but one of the many "biff! bam! pow!" Batman and Robin type inserts used to reinforce specific concepts

Big savings from AJ on TTYs, couplers, and modems.

Off-lease equipment, refurbished by AJ at the factory.

Abstract

ASR 33-\$725 (Qty. 1) KSR 33-\$595 (Qty. 1) Or lease for as low as $\$ 49 /$ month (36-month lease). including service. - 30-day parts/labor warranty* - Send and receive - Paper tape punch - Pedestal mounted - Visa or Master Charge -

Or lease for as low as $\$ 45 /$ month (36 -month lease). including service.

AJ Couplers/Modems

- The Cadillacs of the industry
- Some models under \$100
- 30-day parts/labor warranty*
- Variety of models - up to 1200 bps

> Quantities limited and first-come, first-served. So call toll-free now: (800) 538-9721. California residents call (408) 263-8520.

- Fast delivery
- Nationwide AJ service network
- Visa or Master Charge
- isa or Master Charge

A specially designed SF TACTICAL BATTLE GAME for your PET, TRS-80 or APPLE Computer.
The man called Sudden Smith watched the five blips on his screen spread out to meet the enemy. Two freighters converted into something like battlewagons, powerful but slow, and three real cruisers: the most powerful group of warships ever seen near the Promethean system - except for the Stellar Union fleet opposing them. Everyone was calling it Starfleet Orion, though it existed for only this day. It was life or death, and, after the object lesson on the planet Spring, everyone knew it.
STARFLEET ORION is a complete 2 player game system

- rule book - battle manual - cassette
- ship control sheets - program listings

Includes 2 programs, 22 space ship types, and 12 playtested scenarios. Game mechanics are extremely simple, but play is exciting, challenging, and rich in detail. Specify PET (8K), TRS-80 (Level II, 16K), or APPLE II (16K \& 32K) \$19.95.

Ask your local dealer or send your check to:
Automated Simulations
Department Y P.O. Box 4232 Mountain View, CA. 94040
California residents please add 6% sales tax

```
WE CARRY -
- CROMEMCO
- NORTH STAR
- VECTOR GRAPHICS
- THINKER TOYS
- NEC
- CENTRONICS
- INTERTUBE
- SERENDIPITY
- PERKIN ELMER
- TEXAS INSTRUMENTS
```

Professional A/R, A/P, Ledger, Payroll, Medical Billing software with customization available. Send for our catalog Send for quote.

SARA-TECH COMPUTERS
P. O. Box 692 Venice, FL 33595
(813) 485-3559

SPECIALIZING IN QUALITY MICROCOMPUTER HARDWARE

 INDUSTRIAL • EDUCATIONAL • SMALL BUSINESS • PERSONALBUILDING BLOCKS FOR MICROCOMPUTER SYSTEMS, CONTROL \& TEST EQUIPMENT

$\mathbf{R}^{2} / / O$
2K ROM
2K RAM
3 Serial Ports
1 Parallel Port
WIRED: $\$ 295.00$

ECT-100-F
RACKMOUNT CARD CAGES
KIT: $\$ 200.00$
WIRED: $\$ 250.00$

POWER SUPPLIES, CPU's, MEMORY, OEM VARIATIONS ELEGTRONIG CONTROL TEGHNOLOGY

763 RAMSEY AVE. HILLSIDE, N.J. 07205 (201) 686-8080

3 does just that with the GOTO. Some of the programs include: solving a pair of simultaneous equations having any number of righthand sides; area calculations for triangles, rectangles, and circles; and the game of Moo (quite similar to Bulls and Cows; ie: a numberbased Mastermind).

A useful routine in Chapter 3 introduces the reader to stacks and to the concept of recursion via the GOSUB statement. This by-the-way approach of intro-
ducing and examining a relatively complex idea is done rather subtly and painlessly.

Arrays are covered quite well in Chapter 4, and matrix operations are presented in Chapter 5. The concepts in Chapter 4 concerning arrays are enhanced when the reader finishes examining the matrices in Chapter 5. The author explains and illustrates matrix functions, although not all BASIC systems have them. He then manipulates
matrices without the functions, using nested loops. Some of the more interesting matrix operations include: arithmetic operations upon arrays; transposing a matrix; initializing an array to all zeros or all ones; inverting a matrix; and input and output statements performed on arrays.

The array manipulating routines deal primarily with matrix algebra applications and could prove useful to the engineer or the mathematician.

FEATURES

- FORT// 80 directly addresses 8080 ports as FORTRAN variables
- I/O drivers accessed via FORTRAN read/write statenients
- FORT//80 accepts embedded in-line machine code
- 8080 condition codes are available as FORTRAN
keywords and can be operated upon
- Multiple assignment operators accepted
- Interleaved listings and object code for quick debugging
- Symbolic names up to 31 char long simplify documentation
- Constants expressable to base 2,8, 10, 16 or as char strings
- Compact: Needs only 25 K for compiler and minimum workspace
- Fast; Runs up to 10 times as fast as PLM
- FORT//80 directives spectily location ol code in memory at run-time
- Interrupt and interrupt control
- FORT//80 control of interrupts and interrupt service lines
- All code runs on 8080, 8085 and $Z 80$ (upward compatibility)
- FORT//80 is a true resident conpiler and generates directly executable objecl code. No run time package needed
- FORT//80 is very fast. It compiles quickly and produces dense highly optimized code
- Single and double precision IBM format floating point arithmetic

FORT / / 80 CPM version and manual on $8^{\prime \prime}$ diskette
FORT / /80 Language manual separately
FORT / / 80 Implementation manual
Sample diskette validation program and data
Shipping charges to US and Canada postpaid, overseas add $\$ 5.00$. Please add appropriate state sales tax. Master Charge and Visa accepted.

1. FORT//80 is supplied on a single use basis, subject to the signing of a non-disclosure agreement.
2. FORT//80 can be implemented with other disc operating systems using the implementation manual or special versions available by quotation.
3. The purchase price of manuals and sample programs will be credited towards subsequent purchase of FORT / / 80
matheay elantinios
BOX 4072, ROCHESTER, NY 14610
PHONE ORDERS CALL 716-271-6487

-

Distributors:

- Digital Research of Texas, Box 401565, Garland, TX 75040, (214) 271-2461
- Electrolabs Inc., Box 6721, Stanford, CA 94305, (415) 321-5601
- Arkansas Systems Inc., 8901 Kanis Rd., Little Rock, KS 72205, (501) 227-8471

4Arkon Electronics Lid., 409 Queen St. W., Toronto, ONT M5V 2A5, (416) 868-1315
Dealer inquiries invited.
${ }^{\text {ImAkron Electronics Ltd. }}$

Chapter 6, entitled "Complete Example Programs," contains only two programs. The first is a routine which converts Roman numerals to Hindu-Arabic (such as VII to 7). The other program is a critical-path analysis routine. Expecting a host of programs in this chapter, I was disappointed to find only two. They are good example programs which bring together most everything the reader has seen so far. Perhaps they could have been included as wrap-up programs in other chapters.

The remaining three chapters ("Commands and Signing On," "Files of Data," and "Syntax") explain how the typical BASIC interpreter handles the RUN, SAVE, UNSAVE, OLD, NEW, and CATALOG commands (the reader is cautioned as to the particulars of his or her personal BASIC); a typical sign-on session (see your owner's manual for this one); a short (unfortunately) discussion pertaining to sequential and direct-access files; and a modified BackusNaur notation used to summarize the syntax of BASIC.

I ran most of the examples presented in the text on my Level Il TRS-80. Since the author does not use any machine- or interpreterdependent statements in his examples, there should be no problem in running the examples on other microcomputers. Some caution is expressed by the author, however, with regard to the lack of portability of BASIC. The reader should examine his or her BASIC manual for any differences between what the author labels "minimal BASIC" and the BASIC used in the reader's computer.

Overall, Illustrating BASIC is a good first book for the novice computerist. The author's Preface statement does ring true after reading this book: "You don't have to be a computer scientist to read this book: It is for students meeting computers for the first time; for those in industry (parti-
cularly engineers) who never formally studied computing but would like to write simple computer programs; for managers who do not want to write programs but would like to know more about a field in which they often have to take decisions; and for those who can already write in BASIC but seek a broader view of portable programming and an introduction to a few programmers' techniques like state tables and list processing."

Len Gorney
Box 91 RD 5
Salisbury Rd
Clarks Summit PA 18411

Implementing Software for Non-Numeric Applications

William M Waite
Prentice-Hall, 1973
110 pages hardcover $\$ 21.00$

Implementing Software for Non-Numeric Applications is a textbook on list and string processing languages. It covers the basics of lists and strings, and how to implement languages in order to deal with these data types. There are two major reasons why a computer hobbyist might want to read this book: to learn how such languages work and to learn how to i rplement them.

Most of the book is about lists. It begins with a discussion of what lists are, and then presents an ideal machine for processing them (cf Pascal p-code), a fairly simple list processing language called HELP, and then LISP. The discussion of LISP focuses fairly heavily on what LISP does internally and why. After more discussion of complex lists, the book proceeds to a disciussion of strings; SNOBOL4 is introduced but not discussed in the detail that LISP is treated. The
final section is on implementation.

The author of the book favors implementation by abstract machine modeling; this is the way in which Pascal is implemented. It has the advantage that a compiler or interpreter, once written, can be implemented on new machines with much less effort than would otherwise be the case. The discussion of implementation is more than just theoretical; the appendices contain complete FORTRAN listings for an abstract machine model,
and for HELP language compiler and interpreter.

HELP is a language similar to LISP. The software may be directly implemented if you have a FORTRAN compiler; otherwise it has to be translated into assembler (or perhaps BASIC, if execution speed is not important). I cannot say how successful this would be; I already have LISP for my Z80 processor and so was not tempted to implement HELP.

In conclusion, this book is fairly heavy going. If you
want a thorough introduction to how list languages work, why they do what they do, and how to implement them, this is an excellent book. If you want an introduction to LISP, it would probably be better to first read an introductory text. Then read Implementing Software for Non-Numeric Applications to really understand the way things work.

John A Lehman
716 Hutchins \#2
Ann Arbor MI 48103 ㅌ

A Cat acoustic modem lets your computer talk face to face with any other compatible computer or terminal within reach of your phone. It takes the data you type into your terminal and sends it out over standard telephone lines. It's that simple.

Talk to your office computer from home. Send or receive data from anywhere. Swap programs in Basic, Pascal, Fortran, Cobol or whatever-it doesn't matter
to Cat. It's the accurate, reliable, affordable (under \$199) modem that talks your language.

Available at Hamilton/Avnet, Kierulff Electronics, Byte Shops, Computerland, and your local computer store.
Novation. Inc.. 18664 Oxnard Street, Tarzana, California 91356

Relocating 8080 System Software

John G Lipham
Dept of Physics University of North Carolina
at Charlotte
Charlotte NC 28223

Owners of both large and small computer systems often experience software problems when the time comes to upgrade the system. All old applications programs will have to be modified to run under the new system. However, the real problem occurs when you want to use some or all of the old system software. This was recently the situation at the University of North Carolina at Charlotte (UNCC) Physics Department.

The original hardware consisted of an IMSAI mainframe with 20 K bytes of memory interfaced with a Teletype and audio cassette. We added a floppy disk and Tektronix 4006-2 graphics terminal. To operate the disk, we acquired the CP/M operating system written by Digital Research and distributed by IMSAI.

The CP/M system has a disk-based version of BASIC called BASIC-E, which was written by Gordon Eubanks. This is an excellent version that allows up to 31 characters for variable names, nearly form-free entry of statements with line numbers required only for program transfer (eg: GOTO ..., GOSUB ..., etc), and numerous built-in functions, as well as file handling capabilities. However, it is unusual for BASIC

[^17]because programs are first created using an editor, compiled into an intermediate file (using BASIC-E), and finally run (using RUN-E). Our system is used primarily for instructional purposes and some of our students have had no previous programming experience. Hence, we felt that it was desirable to have an interactive version of BASIC for their use.

We already had an interactive BASIC with our old system. However, there was a catch. To run under the CP/M system, it was necessary to shift the origin of BASIC to the address hexadecimal 0100 from its original starting address of 0000 . (The CP / M monitor uses the addresses hexadecimal 0000 thru 00FF.)

In principle, if you have an assembly-language listing and an assembler program, it is always possible to reassemble the assembly-language code to machine code with a new starting address. However, with our old version of BASIC, this listing consisted of 113 typed pages! Ignoring the difficulty of just entering this amount of code, a moment's reflection will show that the assembler and the code would never fit in 20 K bytes. (The machine code itself occupies about 9 K bytes.) Assembling the code in pieces that fit is a possibility. But, even with a cross-reference table of variable names, this would be an excruciating process. Hence, we were left with the only practicable alternative: relocating the machine code directly.

Thus it was with great interest that I read Leor Zolman's article in the July 1977 BYTE entitled "A Machine Code Relocator for the 8080 ." I have used the program written by Zolman
and have found that it works as advertised.

However, I have oversimplified my initial statement of the problems faced in modifying our old BASIC to run under CP / M. There were segments of the old software that had to be removed to be compatible with CP/M. Thus, to avoid a lot of NOPs, various relocations to lower-memory addresses had to be made. (Various additions and replacements also had to be made.) As pointed out by Zolman, his program works by moving blocks of code tail-to-tail. Hence, "relocating backward into lower memory fails if the difference between the source and destination address is not greater than the block length." Also, his suggested solution to this limitation of performing two relocations was impracticable because of our memory limitations.

I found that by making some modifications I could remove the limitation in Zolman's original program at the cost of 36 additional bytes of program code. This modified relocator program is presented in listing 1. As written, the program is designed to run with the CP/M system's Dynamic Debugging Tool (DDT), which is a type of monitor program for machine-code programs. I found this to be a useful procedure, since the Dynamic Debugging Tool allows the machine's memory to be reviewed and modified via a terminal keyboard. I also found the disassembler routine of this program to be invaluable. (The program can be modified to run without a monitor, or with another monitor, by changing memory location hexadecimal 2DCC.)
announces

North Star Horizon Timesharing

 with
Hard Disk Interface

In excess of 120 megabytes bulk storage capacity now possible. Several different hard disk units are available, interfaced to North Star DOS and BASIC.
Two to seven-user timesharing North Star Horizon integrated computer systems with: Dual density or quad capacity eight inch drives and/or hard disk units with your choice of a variety of printers.
A complete selection of innovative business application software is available for North Star* systems.

Foreign orders are our specialty.
Dealerships are available. Call or write for descriptive literature, hard disk availability and/or dealer information package.

Micro Mike's, Incorporated

905 South Buchanan * Amarillo, Texas 79101 * USA Telephone: 806-372-3633
making technology uncomplicated - for People

The world's most popular microcomputer, with 16K of memory and Level 11 basic for only $\$ 750$, complete with full 90 day Radio Shack warranty. We accept check, moneyorder orphone orders whth VisaorMasterCharge. (Shipping costs added to charge orders).
Dlsk drives, printers, peripherals, software and games . . . you name it, we've got it (Both Radio Shack \& other brands). Write or call for our complete price list.

AUTHORIZED DEALERSHIP

CP/M ${ }^{\circ}$. 0 FOR THE MOD-II The Latest CP/M Operating System up and running now on the TRS-80 MOD-II

THE PROBLEM...

Yes, the TRS-80 Mod-II is the most powerful computer you can buy for the money today. And yes, it is as good as computers selling for up to three (or more) times the price.
But just like the IBM 5110 Radio Shack compares it with, the new TRS-80 Mod-ll suffers from a familiar problem...not enough systems software, not enough applications software.
SOLVED...
We've done it. Taken the world's most popular microoperating system and matched it to the world's newest micro business computer. It's up and running today, and you can have it in your Mod-ll this week. And we mean STANDARD CP/M Version 2.0. The latest and best. With all of its features. And some of our own.

STANDARD CP/M 2.0 FEATURES

- Microprocessor Control Program
- Includes Editor, Assembler, Debugger, Utilities
- Supports Floppy and Hard Disks

PLUS SOME OF OUR OWN

- Reads single and double density diskettes
- Single drive copy and backup routines
- All routines optimized for TRS-80 Mod-II

WHAT YOU GET

- The complete CP/M diskette from Digital Research Corp.
-The MPU diskette with our additions and patches to make it work on the TRS-80 Mod-II
- Seven manuals from Digital Research Corp.
- One manual from MPU to explain our additions Make no mistake. This is not just a promise, it's a powerful working system. Order C.O.D. Send $\$ 25$ down, pay $\$ 225+\$ 2.50$ Shipping \& Handling, or save C.O.D. and shipping by sending $\$ 250$ with your order. Master Charge and Visa also accepted. Air Shipment add $\$ 2.00$. California residents add 6% sales tax.
IN STOCK NOW. MANY APPLICATIONS PROGRAMS AVAILABLE NOW. BASIC, FORTRAN, COBOL, APPLICA. TIONS PACKAGES AVAILABLE FOR BUSINESS \& PRO. FESSIONS! FOR INFORMATION CALL (415) 592-6633.

POSTOFFICE BOX8OB SAN CARLOS, CALIF 94070
CPIM is a trademark of Digital Research Corp. TRS. 80 is a trademark of Tandy Corp.

While there are some differences in detail as to the operation of the modified relocator，this program is run in the same manner as Zolman＇s original program．For ease of refer－ ence I have retained Zolman＇s nomen－ clature．（nb：Using this nomenclature， you view the memory as though you were looking down into a barrel． Numerically smaller addresses are at the top and numerically larger ones are at the bottom．）The same pieces of information are required for a reloca－ tion and reference fix，as in Zolman＇s program．This required information is outlined in table 1，which，except for memory addresses，is the same as Zolman＇s．

The LXI Problem

As pointed out by Zolman，the load immediate（LXI）instruction is a potential source of problems in relo－ cating machine－code programs．The main difficulty is that this instruction is frequently used for two different jobs：to load a constant into a register pair，and to load an address into a register pair．The relocator program cannot distinguish between these two uses．Hence，if a program constant happens to be equal to an address within the program block being moved，an erroneous reference fix will be made．

Unfortunately there seem to be no widely accepted conventions for the use of this instruction that produce easily relocatable machine code． Adoption of the following conven－ tions is suggested for all those de－ siring to write relocatable code：
（1）The LXI instruction shall be used only to load addresses into a register pair（eg：LXI H，3101H）．
（2）All program constants shall be loaded into a register pair using 2 move immediate instructions（eg： MVI H，31H MVI L，01H）．

The cost of adopting these conven－ tions is relatively modest in that it will take 4 bytes to load a 2－byte con－ stant into a register pair，instead of the 3 bytes required using the LXI in－ struction．Furthermore，if you only want to zero out a register pair，the following sequence of instructions achieves the same result at no addi－ tional cost，without using the LXI in－ struction：

Listing 1：A relocator program for use on 8080 systems．This is a modified version of the relocator program written by Leor Zolman in the July 1977 BYTE．This relocator will move a source program to any location in memory and fix address references．Reloca－ tions of a source－program block to any address outside the source are performed without overwriting．The program is designed to run with the Dynamic Debugging Tool（DDT）of the CP／M software system．If need be，the program can be modified to run without a monitor or with another monitor by changing the contents of hexa－ decimal memory location 2DCC．While differing in some details with Zolman＇s relocator program，it requires the same information and is run in the same manner．

2060			0 RG	2D06\％	；SET ORIGIN
2 DOE	31162 E	BEGIN：	LXI	SP，STACK +8	；INTIALIZE STACK
2De3	2A632E		LHLD	SBOT	；BOTTOM OF SOURCE
2 D66	EB		XG HG		；D，E＝SBOT＝（B）
2 DE 7	2Ab12E		LHLD	SSTRT	； $\mathrm{H}, \mathrm{L}=$ SSTRT $=(A)$
2D6A	4D		MOV	C，L	
2D9B	44		30 V	B， H	；SAVE IN B，C
2D0C	CDCD2D		CALL	COMPH	；COMPLIMENT（A）ADD 1
2D6F	19		DAD	D	； $\mathrm{H}, \mathrm{L}=(\mathrm{B})-(A)=$ BLOCKSI2E
2 DIG	E5		PUSH	H	：SAVE ON STACK
2 DII	2A652E		LHLD	DTOP	；TOP OF DESTINATION
2 D 14	EB		XC HG		； $\mathrm{D}, \mathrm{E}=\mathrm{DTO} \mathrm{P}=(\mathrm{C})$
2D15	69		MO V	L，C	
2D16	60		MOV	H, B	；H，L＝SSTRT
2 D 17	CDCD2D		CALL	COMPH	
2D1A	19		DAD	D	； $\mathrm{H}, \mathrm{L}=(\mathrm{C})-(A)=D I S P L$
2D1B	220c2E		SHLD	DISPL	；SAVE DISPLACEMENT
2DIE	F5		PUSH	PSW	：HAS SIGN OF DISPL
2D1F	3A0B2E		LDA	FUNC	；CHECK FOR MOUE
2D22	B7		ORA	A	
2D23	CA602D		JZ	5TEP2	：IF FIX REF．ONLY
2 D 26	Fl		POP	PSW	
2D27	DA3E2D		JC	DO WN	；（C）＞（A）IF CARRY SET
			$\begin{aligned} & \text { : IF COME } \\ & \text {;SO MOVE } \end{aligned}$	here destinat IS DONE HEAD	ION 15 above source TO－HEAD
2D2A	EB	UP：	XCHG		； $\mathrm{H}, \mathrm{L}=\mathrm{D}, \mathrm{E}=\mathrm{DTO} \mathrm{P}$
2D2B	DI		POP	D	；DっE＝BLKSIZE
2D2C	6A	X：	LDAX	B	； $\mathrm{B}, \mathrm{C}=$ SSTRT $=$ SOURCE PTR．
2D2D	77		MOV	M，A	；MOVE TO NEW LOG．
2D2E	7A		MOV	A，D	
2D2F	B7		0 RA	A	
2D30	C2382D		JNz	Y	；CHECK IF THRU
2 D33	7B		MO V	A，E	
2D34	B7		ORA	A	
2D35	CA582D		Jて	TEST	：IF DeEsb ThEN MOVE DONE
2D38	23	Y：	INX	H	；INCR DEST．PTR．TO NEXT
2D39	63		INX	B	；INCR SOURCE PTR．
2D3A	1 B		DCX	D	；COUNT DOWN BLKSIZE
2D3B	C32C2D		JMP	X	；CONTINUE
			；If COME	HERE DESTINA	ION IS BELOW SOURCE
			； 50 MOVE	15 DONE TAIL	T0－TAIL
2D3E	EB	DO WN：	XCHG		\％ H L L＝D，E＝DTOP
2D3F	D1		POP	D	；D，E＝BLKSIZE
$2 \mathrm{D4} \mathrm{\%}$	D5		PUSH	D	：SAVE ON STACK
2 D .11	19		DAD	D	；H，L＝DBOT＝DTOP＋3LKSIZE
2342	EB		XC HG		；D，E＝D30 T：H，L＝BLKSI2E
2 D 43	09		D．AD	B	；H，L＝SSTRT＋BLKSI ZE＝SB0T
2 D44	EB		XC HG		；D，E＝SEOT：H，L＝DEOT
2 D 45	C 1		POP	B	；B，C＝BLKSIZE
2 D46	1 A	XX：	LDAX	D	；D，E＝SOURCE PTR．
2 D 47	77		MOV	M，A	；MOVE TO NEW LOC．
2D4B	78		MOV	A, B	
2D49	87		ORA	A	
2D4A	C2522D		JNZ	YY	；CHECK IF THRU
2D4D	79		MOV	A，C	
2D4E	B7		ORA	A	
2D4F	CA582D		Jて	TEST，	； $\mathrm{B}, \mathrm{C}=0, \mathrm{MOVE}$ DONE
2 D 2	2 B	YY：	DCX	H	；PT．TO NEXT DEST．
2 D 53	1B		DCX	D	；PT．TO NEXT SOURCE
2D54	0B		DCX	B	COUNT DOUN BLKSIZE
2 D 55	C3462D		JMP	XX	CONTINUE
2D58	3abb2E	TEST：	LDA	FUNC	：a02 IF MOVE ONLY
2D5B	FE02		CPI	62H	
2D5D	CACC2D		JZ	DJNE	
			；COME HER	E TO DO REFER	Ence fixing．
			；NECESSAR	Y ONLY FOR 3	BYTE OP CODES
2D60	$01 E 72 \mathrm{D}$	STEP2：	LXI	B，TABL 3	；B，C $=$ TABLE PTR
2 D63	2Aも32E		LHLD	SBOT	；NEED TO ADD 1 TO SBOT
2D66	23		INX	H	
2 D67	22032E		SHLD	SBOT	
2D6A	2Ab72E		LHLD	START	；D，E＝MEMORY PTR．
2D6D	EB		XCHG		
2D6E	2A692E	CHEKF：	LHLD	SSTP	；CHECK FOR END Of file
2D71	CDCD2D		CALL	COMPH	；D，E＝MEM．PTR．
					Listing 1 continued on page 184

For Business Systems Software
 Programmers Only！！
 Machine Language ISAM
 FOR
 TRS－80＊Models I and II ACCESS TIME $1 / 2$ SECOND！

This machine language ISAM ROUTINE provides file access sophistication required to implement complex business software， and is completely compatible whith TRS－80＊BASIC．
Specifications：based on 1000 record file，key length of 6，data length of 64
Access time of $1 / 2$ second
Best add／delete time of 1 second
Average add／delete time of 2 seconds
Worst case add／delete time of 5 seconds
Keys up to 25 characters
Data up to 255
Provides next highest key upon each file access．
Preset range of allowable key values，set upon file creation up to 4 files held open concurrently．
No special utilities needed to＂Reclaim＂used record space．
Model I Routine occupies 5 K of user space（loads at top of user memory）
Model II Routine occupies 6 K of user space（loads at top of user memory）
EOF，file full，empty，key not found，INVALID key value and all
TRS DOS＊error codes supported．
TRS－80 Model I（ $32 \mathrm{~K}+48 \mathrm{~K}$ only）$\quad \$ 160.00$ TRS－80 Model II（ 64 K only）$\quad \$ 170.00$
Includes：All necessary documentation，file creation program，file inspection program，machine language ISAM routine and loader．

－TRS－80 and TRS DOS are trademark of Tandy Corparation，which bas no relationship to RCR Inc．
$\mathrm{Z}_{\mathrm{S}}-$ SYSTEMS

The Z_{S}－SYSTEMS 64 K RAM board is designed to operate in any 280 based microcom． puter having S－100 bus．It uses 16K dynamic RAM chips， \＆features：

－Board select

－Bank select
－Transparent on－board refresh
-2 or 4 MHz operation （w／no wait state）
－Memory disable

FLOPPY DISK CONTROLLER

Handles with no modification

 up to：4 standard $8^{\prime \prime}$ drives
（Shugar or compatible）or
－ 3 minidrives $5^{\prime \prime}$
Run with 2 or 4 MHz CPU

64K RAM BOARD

Compatible with Cromemco and M／PM multiuser．Fully assembled，burned in，\＆ tested．Available from stock to 60 days
As low as $\$ 500.00$ in quantities of 100

Price of one．．．．．．．．$\$ 695.00$
With 16K RAM．．．．．．$\$ 359.00$ Plus shipping charges

Use CP／M Disk Operating System Using the 1771 LSI controller
Price of one．．．．．．．．．．．．．．．．$\$ 245.00$
PC board only．．．．．．．．．．．．．．．$\$ 35.00$

TRS MOD I and MOD II PROGRAMS FROM 長 RACET computes 灵

∞ BASIC for Level II and Disk Systems \＄49．95

Full MATRIX Functions－ 30 BASIC commands！！
Mathematical and common matrix functions．Change arrays in mid－program．Complete array handling．Tape array read and write， including strings．Common subroutine calls．
Over 50 more STRING Functions as BASIC commands！！String manipulation，translation，compression，copying，search，screen control，pointer manipulation and utility functions．Includes multikey multivariable machine language sorts．Load only machine language functions that you want！Where you want in memory！ Relocating linking loader！More than you ever expected！！

∞ BUSINESS（Requires Infinite BASIC）\＄29．95

20 Business oriented functions including：
Printer Automatic Pagination with headers and footers！
Packed Decimal Arithmetic（ + ，－，＊，$/$ ） 127 digits！
Binary array searched and hash code generator！

COMPROC Command Processor for Disk Systems $\$ 19.95$

Auto your disk to perform any sequence of DOS commands， machine language loads，BASIC，memory size，run program， respond to input statements，etc．Single BASIC command file defines execution！Includes auto key－debounce，screen print and lower case software driver．
New Products Jan／Feb！We answer reader response inquiries！！
ATTN／System Houses．We license usage of our routines！
TRS Add•On OEM＇s－Direct BASIC commands tailored for your hardware．

REMODEL + PROLOAD Specify 16，32，or 48K Memory $\$ 34.95$ RENUMBER any portion or all of BASIC program．Line references adjusted．
MOVE any portion of a BASIC program from one location to another．
DELETE lines or ranges of lines while using the utility．
MERGE all or any portion of a program from tape．（Load lines 300－500 from your tape to existing program at line 1000 with renumbering on the way in！）
SAVE combined／merged programs，or any portion to tape with VERIFY．

COPSYS Copy Systems Tapes（Editor／Assembler Format）$\$ 14.95$
GSF（ $\mathbf{1 6}, 32$ ，or 48 K ）$\$ \mathbf{2 4 . 9 5}$
18 Machine language routines using＇USR＇calls．Includes RACET sorts，array handling，and fast lines and scrolls．

DOSORT（Specify 32 or 48K $\mathbf{2}$ disk minimum）$\$ 34.95$

Sort／Merge multi－diskette sequential files．Multiple keys and variables．Includes GSF－machine language sorts，comparators and string handling．

MOD II SUPPORT

RACET is supporting the MOD II！！
Call or write for current information！We have a MOD II Superzap and other assembly language tools！
Ask your dealer if he carries our products！
DEALERS！We will work with you directly or through our distributors．

2 D74 19
2D75 DACC2D $2 D 78$ 1A 207967
2D7A AF
2D7C 2C
2D7D 7D
2D7E FEIB
2D86 CABC2D
2D83 0 A
$20 B 494$
2D85 CAA12D
2D88 3
2D89 C37C2D
2D8C 『ID52D
2D8F AF
2D90 6F
2D91 2C
2D92 7D
2093 FE13
2D95 CAC52D
2D98 ©A
$2 D 9994$
2D9A CAC42D
2D9D 03
2D9E C3912D
2DA1 2AB32E
2DA4 CDCD2D
2DA 713
2DAB IA
2DA9 $4 F$
2DAA 13
2DAB 1A
2DAC 47
2DAD 69
2DAE DAC52D
2DEl 2ADI2E
2DB4 CDCD2D
2DB7 09
2DE6 D2C52D
2DBB 2A6C2E
2DBE 99
2DBF 7C
2DC® 12
2DC1 1B
2DC2 7D
2DC3 12
2DC4 13 OUT
$\begin{array}{ll}\text { 2DC5 } & 13 \\ \text { 2DC } 6 \text { DIE72D }\end{array}$
2DC9 C36E2D
2DCC FF

2DCD 7C

2DCE $2 F$
2DCF 67
2DD0 7D
2DDI $2 F$
2DD2 6F
2DD3 23
2DD4 C9

2DD5	$060 E 16$	TABL2：	DB	06H，BEH， 16 H
2DD 8	1E262E		DB	1EH，26H，2EH
2DDB	363EC6		DB	36H， $3 \mathrm{EH}, 8 \mathrm{C} 6 \mathrm{H}$
2DDE	CEDED6		DB	6CEH，6DEH， 0 O6H
2DE1	DBDEE6		DB	ODBH，ODEH，OE6H
2DE4	EEF6FE		DB	6EEH，6F6H， 0 FEH
2DE7	011121	TABL3：	DB	Q1H，11H． 21 H
2DEA	222A31		DB	22H，2AH，31H
2DED	323AC2		DB	$32 \mathrm{H}, 3 \mathrm{AH}, \mathrm{QC} 2 \mathrm{H}$
2DFG	C3C4CA		DB	6С $3 \mathrm{H}, 6 \mathrm{C} 4 \mathrm{H}, 8 \mathrm{CAH}$
2DF3	CCCDD2		DB	GCCH，日CDH，OD2H
2DF6	DADADC		DB	GDAH，${ }^{\text {CDA }}$ ，GDCH
2DF9	E2E4EA		DB	OE2H， $6 E 4 \mathrm{H}, 8 \mathrm{EAH}$
2DFC	ECF2F4		DB	DECH， OF $2 \mathrm{H}, ~_{\text {OFAH }}$
2DFF	FAFC		DB	QFAH，©FCH
2E01		SSTRT：	DS	02H
2 EO		SBOT：	DS	82H
2E®5		DTOP：	DS	62H
2 EO 7		START：	DS	62H
2 EO		SSTP；	DS	02H
2E6B		FUNC：	DS	01\％
2E日C		DISPL：	DS	62H
2E®E		STACK：	DS	88 H

2E日E
NEXT：

COMP3：
AGAIN

COMP2：

DAD	D
JC	DONE
LDAX	D
MOV	H，A
XRA	A
MOV	L．A
INR	1
MOV	A．L
CPI	27D
JZ	AGAIN
LDAX	B
SUB	H
Jて	MTCH3
INX	B
JMP	COMP3
LXI	B，TABL 2
XRA	A
MOV	L，A
IN R	L
mov	AsL
CPI	19 D
JZ	OUT1
LDAX	B
SUB	H
JZ	OUT2
INX	B
JMP	COMP2
LHLD	SBO T
CALL	COMPH
IN X	D
LDAX	D
MOV	C，A
INX	D
LDAX	D
MOV	B，A
DAD	B
JC	OUT1
LHLD	SSTRT
CALL	COMPH
DAD	B
JNC	OUTI
LHLD	DISPL
DAD	B
MOV	A，H
STAX	D
DCX	D
MOV	A，L
STAX．	D
INX	D
IN X	D
LXI	B，TABL3
JMP	CHEKF
RST	67
；＊＊＊＊＊	SUBROUTINE
MOV	A，H
CMA	
MOV	H，A
MOV	A，L
CMA	
MOV	L，A
INX	

DDIFF．＞$=6$, CARRY SET
；LOAD MEM．USING D，E
SAVE IN H
ZERO ACCUM．
：SET UP CNTR．
BUMP CNTR
；CHECK FOR END OF TABLE
：IF THRU，LOOK 2 BYT OPS
；LOAD TABLE ENTRY
COMP．WITH CURR．MEM．
；JMP IF MATCH
：ELSE BUMP TABLE PTR．
；LOOK AGAIN
；NOW，LOOK AT 2 BYTE OPS
；ZERO ACCUM．
；SET CTR．
；BUMP CTR．
－CHECK FOR END TABLE
；NO MATCH 2 OR 3 BYTE OPS
；LOAD TABLE ENTRY
COMP．WITH CURRENT MEM．
；JMP IF MATCH
ELLSE BUMP TABLE PTR．
：LOOK AGAIN
；FOUND 3 BYTE OP CODE
；IS ADDR．IN RANGE？
；GET LO ADDR．BYTE
；LOAD IN ACC．
：STORE IN C
；GET HI ADDR．BYTE
； $10 A D$ ACC．
；PUT IN B
；H，L＝MEM．ADDR．－SBOT
；MEM．ADDR．$>=S B O T+1$ ，C SET
；LESS THAN（A）？
； $\mathrm{H}, \mathrm{L}=\mathrm{MEM}$ ．ADDR．－SSTRT
；MEM．ADDR．＜SSTRT，C＝0
；IF COME HERE，IN RANGE．
；H．L＝MEM．ADDR．＋DI SPL
；STORE NEN HI ADDR．
；PT．AT LO ADDR．BYTE
；STORE NEW LO ADDR．BYTE
；ADV．PTR．TO NEXT OP
；RESET TABLE PTR．
；CONTINUE
；FINIS，RETURN TO DDT
＊＊＊＊
SUBRO UTINE USED TO
；FIND 2＇S COMPLIMENT
SREPRESENTATION OF
；HoL REGISTER PAIR
$24 \mathrm{AB} \quad 11$ 21AE．
Afterward，control passes to the monitor and the operator consults the listing to verify that the code is cor－ rect．If not，a manual fix must be per－ formed．（Using CP／M＇s Dynamic De－ bugging Tool program as a monitor makes this an easy task．Simply typ－ ing in S24AB to the terminal invokes a routine that displays both the memory address（ 24 AB ）and the memory contents（01）of the desig－ nated location．It then waits for a change to be entered，a command to look at the next memory location，or a command to quit．）When the pro－ gram is reentered，the search for LXI operation codes resumes at the next operation code following the pre－ viously found LXI operation code．

To operate FIXLXI you need only

DATA TERMINAL EQUIPMENT－FROM MICROMAIL

LA34 DECwriter IV \＄1，199．00
－Upper／lower case， 9×7 dot matrix
－ $10,12,13.2,16.5$ characters／inch
－ $2,3,4,6,8$ or 12 lines／inch
－ $22^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{H} \times 151 / 2^{\prime \prime} \mathrm{D}, 25 \mathrm{lbs}$ ．
－ 110 or 300 baud，RS 232 C serial ASC：I
－Friction feed，paper width $10 \mathbf{1 5}^{\prime \prime}$

New

 from DIABLODIABLO 1640 \＄2，690．00 Recive－only \＄2，331．00
High－quality daisywheel printing at 45 cps ．
DIABLO 1650 \＄2，779．00
Recaive－only \＄2，419．00
Metal daisywheel printing at 40 cps ．

T．I． 810 prinler \＄1，695．00
－Includes upper／lower case
－ 150 characters per second
－RS 232C serial interface
－Adjustable forms tractor

SOROC IQ $120 \quad \$ 795.00$
－RS 232C，upper／lower case，full ASCII
－Numeric keypad，protected fields
－Cursor keys plus addressable cur－ sor
－Auxiliary extension port

SOROC IO $140 \$ 1,250.00$
－RS 232C and 20 mA current loop
－Extensive editing features
－25th line terminal status display
－ 16 function keys（ 32 with shift）

NEC Spinwriter
 Call or write for prices

To Order：Send cerlified check（personal or company checks require two weeks to clear）including handling＊and 6% sales tax if delivered within California．
＊Handling：Less than $\$ 2,000$ ，add 2% ；over $\$ 2,000$ ，add 1% ．Everything shipped freight collect in factory cartons with manufacturer＇s warranty．

MICROMAIL • BOX 3297 • SANTA ANA，CA 92703 （714）731－4338
specify the starting address (SSTAR) and the ending address (SSTP) of the code to be examined. In listing 2 this information is entered at hexadecimal addresses 2E42 and 2E44.

Employing the FIXLXI program with a terminal operating at a data rate of 1200 bits per second (bps), I found that I could get through our BASIC listing in less than two hours. Similar results were obtained when I relocated another old assembler program.

Data Block Problems

It is not good programming practice to place program constants in the midst of executable code. Unfortunately, this and other kludges are frequently found. However, you will find in most cases that the program constants are at least huddled together in a contiguous block. If this is true, the data block can be moved, but no fixing of references should be performed within the data block. As indicated by Zolman, the procedure in this case is to perform the fixing of references in two stages. First, program references are fixed in the program block up to, but not including,

Table 1: These six pieces of information must be entered into the locations shown (beginning at hexadecimal location 2E01 for listing 1) before a relocation can be performed with the modified relocator program.

Label	Number of Bytes	Address	Comments
a	2	$\begin{aligned} & \text { 2EO1, } \\ & 2 E 02 \end{aligned}$	First address of block to be relocated
b	2	$\begin{aligned} & 2 E 03, \\ & 2 E 04, \end{aligned}$	Last address of block to be relocated
c	2	$\begin{aligned} & \text { 2EO5, } \\ & \text { 2E06 } \end{aligned}$	Destination address
d	2	$\begin{aligned} & \text { 2E07, } \\ & \text { 2E08 } \end{aligned}$	First address to have references fixed
e	2	$\begin{aligned} & \text { 2EO9, } \\ & 2 E O A \end{aligned}$	Last address to have references fixed
f	1	2E0B	$\begin{aligned} 00 & =\text { fix references only } \\ \text { Function select: } 01 & =\text { move block and fix references } \\ 02 & =\text { move block only } \end{aligned}$

the data block. Then, skipping over the data block, program references after the data block are fixed for the remaining portion of the program block.

In addition to the usual data block problems that have been mentioned, there is another difficulty encountered when systems software is relocated. The data blocks in an applications program will normally
contain constants that are independent of the location of the program. In a systems software program like BASIC this is not true for all constants. This is so because of the design logic of an interpreter program. Essentially the interpreter works by comparing an input command or function to a table of legal commands or functions. If a match is found, con-
rext continued on page 190

New from Osborne/ McGraw.Hill

Adam Osborne
 foretells the Next Industrial Revolution

A revolution based on microelectronics. Will it prove to be a dream or a nightmare? In his new book, Dr. Osborne takes an honest look at the microelectronics boom; he scrutinizes what is happening today and predicts what will certainly be happening tomorrow.
Running Wild - The Next Industrial Revolution by Adam Osborne \#28.4. $\$ 3.95$

PET ${ }^{\text {® }}$
Personal Computer
Guide
by C. Donahue \& J. Enger NEW this Winter

Everything you always wanted to know about PET but Commodore didn't tell you. A practical guide to PET programming techniques, graphics, operation, and how to cope with those *\&! PET peculiarities.
\#30-6. \$15.00

PET ${ }^{\text {(1) }}$ and the IEEE 488 (GPIB) Bus
by E. Fisher and C. W. Jensen NEW this Winter
This is the only complete guide available on interfacing PET to GPIB. Learn how to program the PET interface to control power supplies, signal sources, signal analyzers and other instruments.

The book's full of practical information, as one of its authors assisted in the original design of the PET GPIB interface. eprer is a registered tsademark or Commodore Business Marchines \#31-4. \$15.00

630 Bancroft Way, Dept. B1. Berkeley, CA 94710
51073

ANNOUNCING:

MICROSTAT

A complete statistics package for husiness, scientific, education and research work. No other package has the features of MICROSTAT. For example:

- File oriented with COMPLETE editing
- A Data Management Suhsystem for editing, sorting, ranking, lagging, data file transfers PLUS 11 data transformations (e.g., linear, reciprocal, exponential, etc.) - Frequency distributions - Simple and multiple regression - Time series (including exponential smoothing) • 11 Non-parametric tests • Crosstabs/Chi-square
- Factorials (up to $1,000,000!$!, permutations, combinations
- 8 Probability distributions - Scatterplots
- Hypothesis test (Mean, proportion) • ANOVA (one and two-way) - Correlation • Plus many other unique features

Users manual: $\mathbf{\$ 1 0 . 0 0}$ (credited towards purchase) and includes sample data and printouts. Uses
NORTH STAR BASIC 32K of memory, one or two disk drives (2 recommended). Printer optional. Price: $\$ 200.00$

CP/M 2.0

Expand the horizons of your TRS-80 model II with the industry standard operating system, CP/M version 2.0 , and get these advantages over TRSDOS:

- compatible with hundreds of existing software packages
- wide choice of programming languages: BASIC, PASCAL, FORTRAN, COBOL, C, ASSEMBLER, and others
- faster disk access
- more storage per diskette
- assembler, editor, file handler, and dynamic debugger included with the operating system

Introductory price: $\$ 175$ including manuals

For full details about how CP/M 2.0 can
 improve the performance of your TRS-80 model II, contact:
P.O. BOX 1206. GOLETA. CA 93017. (805) 967-9563

Z-80/TRS-80 ${ }^{\text {™ }}$ Users
BOOK YOU'VE WANTED NOW CAN BE YOURS
THE Z-80: HOW IT WORKS
(THE PROGRAMMERS PERSPECTIVE)
By Monte Corum
Best Most Complete Reference Yet cpu Operation Explained Addressing Modes Demystified Register Functions Described Instructions Defined Interrupts Diagrammed
Cycles Outlined Formats Described Execution Described in Text, Notation and Diagrams Meaningful Analysis of 698 Commands in Formatted, Usable Tables
Simple, Consistent Notation and Formats
A Programmer's Book, Beginner or Experienced Ideal Text for Class Instruction
Pricse: $\$ 17.95$ Plus Tax and Shipping VISA \& MSTRCHRG-NUMBER AND EXP. DATE PREPAID WE SHIP
MICROWARE ASSOCIATES, INCORPORATED
9301 N. 58th St. DPT. AAA SCOTTSDALE, AZ. 85253

DEALER INQUIRIES INVITED
T* TRS-80 IS A TRADEMARK OF TANDY CORP

S-100, 6-PORT COMMUNICATIONS

- INTERFACES MULTI TERMINALS, COMPUTERS, PRINTERS, MODEMS, ETC.
- 2, 4, OR 6 CHANNELS; 2 OPTIONAL RTC'S
- SELECTABLE I/O ADDRESS
- PROGRAMMABLE SYNC. CHARACTERS
- SYNC AND ASYNC
- HARDWARE ERROR CHECKING (CRC-16, CCITT)
- COMPLIES WITH: EIA RS-232C STANDARD; IEEE PROPOSED S-100 BUS STANDARD
FULL 6-PORT CONFIGURATION (ASSEMBLED AND TESTED) . \$895.00
For information, contact : Dianne Polk (703) 893.4330 $\times 100$

Inco, Inc.

7916 Westpark Drive \square McLean, Virginia 22102

You have been reading about our astounding high pertormance microcomputer products. Our X-9000 Pascal MICROENGINE ${ }^{\text {P. }}$: CPU that executes Pascal $13 x$ fater than an LSF-11 and $3 x$ faster than a POP11-34, Our X-920 CRT matches the fealures of the SOROC 10140 bytea of memory directly and is coming soont
un Wesiern Oigilal Coiporanon
DISPLAY/EDIT TERMINAL Model X-920
$\$ 920$

$\$ 820$ (Without 18 function keys)
STANDARD FEATURES (partlal list)

- Microprocessor controlled
* Serlal RS232C and 20 ma current toop
- 24 lines $\times 80$ characters
- 96 ASCII displayablers
* 96 ASCII displa yable characters
- Upper and lower case
* 12×10 character resolution
* Dual intensity display
- Clear full intensity data only
- Programmable reverse video
- 105 keys with alpha lock
- 14 key numeric pad with decimal
- 16 special function keys
- 8 edil function keys
- 2 block transmission key
- Self test mode
- Block mode
* 80 storable tabbing
- Insert/delete character and line
- Scrolling
- Addressable cursor
- A host of other features, including cursor controls and remote commands such as clear to nulls, spaces. end of line, end of screen; set hi.fo.zero intensity: set blink: etc
- Optlonal screen print \& 2nd page memory

For our system or for yours, in commercial, technical. educational or personal applications, the Computex \times-920 is unmatched in its class.

All features of the Hazeltine 1400 and ADM-3A Plus: 128 ASCll characters $\times 10$ matrix Reverse vhiftock... Print key... mode . Transparent mode.... Backspace numeric pad.

List price ${ }^{\$ 956}$
PERKIN-ELMER (Model 550)

Of the shelf delivery now on the Model X-920 and P-E Model 550 . Add 40 lb . shipping Customer satisfaction is guarenteed. Fult refund with the return of any product MICROENGINE ${ }^{\text {º }}$ owners manual $\$ 19.95$; X-920 MICROEN Manual $\$ 10$, 10% down guarantees priority, il residents add 10\% down guarantees priority. IL residents add accepted.
romputex stands for competence. We service Computex stands for competence. We servily
what we sell. Written hardware warranty. What we sell. Written hardware warranty. We provide expert technicul aupport.
(312) 684-3183

COMPUTEX
"The Computer Experts" 5710 Drexel Avenue Chicago, IL 60637

Listing 2: An 8080 program to facilitate the examination and correction of load χ immediate (LXI) instructions. (Because of the multiple uses of the LXI instruction, the relocator program of listing 1 can, in certain circumstances, mishandle the 2 bytes of information following the LXI code.) The program is designed to run with the Dynamic Debugging Tool (DDT) of the CP/M software. Given the starting and ending addresses of a source program block, this program finds LXI operation codes. It then displays the following information on the user's terminal: the memory address where the LXI instruction is located; the operation code; the 2 bytes following the operation code. Control is then passed to the monitor to allow the operator to make any needed corrections. Upon reentry the search for LXI operation codes is resumed at the next operation code following the LXI operation code previously found.

2000			0 RG	2D00H	; SET ORIGIN
2006	61182 E	START:	LXI	B, TABL 3	; B,C=TABLE PTR
2 203	2A422E		LKLD	SSTAR	; D, E=MEMDRY PTR.
2D06	EB		XCHG		
2D67	314E2E		LXI	SP, STACK+8	; INTIALI2E STACK
2D0A	CDEB2D		Call	BUSY	; CHECK CRT Status
2D0D	3EDA		MUI	A, DAH	:LINE FEED
2D0F	D304		OUT	CRT	; TO CRT
2D11	CDEB2D		Call	BUSY	:CHECK Status
2014	3E0D		MUI	A, ©DH	; CARR. RET
2D16	D304		OUT	CRT	; TO CRT
2D18	3A452E	CHEKF:	LDA	SSTP +1	; CHEGK FOR END OF FILE
2D1B	92		SUB	D	
2DIC	C2262D		JNz	NEXT	; CONTINUE IF NOT
2DIF	3A442E		LDA	SSTP	
2D22	93		SUB	E	
2 D 23	CA9D2D		J2	ENDF	:QUIT IF END
2D26	1 A	NEXT:	LDAX	D	:LOAD MEM. CONTENTS USING PTR.
2 D 27	67		MOV	H, A	: SAVE IN H
2D2 8	AF		XRA	A	; 2ERO ACCUM.
2D29	67		MOV	L,A	: SET UP CNTR.
2D2A	2C	COMP3:	INR	L	; BUMP CNTR
2D2B	7D		MO V	A,L	
2D2C	FE1B		CPI	270	; CHECK POR END OF TABLE
2D2E	CA3A2D		JZ	AGAIN	; JMP IF THRU
2D31	®A		LDAX	B	: LOAD TABLE ENTRY
2 203	94		SUB	H	; COMP. WITH CURR. MEM.
2D33	CA4F2D		$J 2$	MTCH3	; JMP IF MATCH
2 D36	¢3		INX	B	: ELSE BUMP TABLE PTR.
2 D3 7	C32A2D		JMP	COMP3	: LOOK AGAIN
2D3A	01862 E	AGAIN:	LXI	B, TABL2	; PTR HAS ADDR 2 BYTE OPS
2D3D	AF		XRA	A	: $2 E R O$ ACCUM.
2D3E	$6 F$		MOV	L, A	; SET CTR.
2D3F	2C	COMP2:	INR	L	; BUMP CTR.
2D40	7D		MOV	A,L	
2D4 1	FEL 3		CPI	190	; CHECK FOR END TABLE
2 D43	CA572D		JZ	NOMAT	; JMP IF THRU
2 D46	BA		LDAX	B	: LOAD TABLE ENTRY
2 D 47	94		SUB	H	; COMP. WITH CURRENT MEM.
$2 \mathrm{D4} 8$	CA562D		J2	MTCH2	; JMP IF MATCH
$2 \mathrm{D4B}$	03		INX	B	; ELSE BUMP TABLE PTR.
2D4C	C33F2D		JMP	COMP2	: LOOK AGAIN
2D4F	7D	MTCH3:	MOV	A,L	; POUND 3 BYTE OP CODE
2050	FEB5		CPI	85D	:LXI'S FIRST POUR IN TABL3
2 D 52	DA5E2D		JC	FDLXI	; IF LeE4 OP IS LXI
2 D55	13	NOLXI:	INX	D	SNOT LXI IF HERE, SO
2056	13	MTCH2:	INX	D	: MOV MEM. PTR. TO NEXT LOC.
2057	13	NOMAT:	In X	D	
2 D5 8	B1182E		LXI	B, TABL3	; RESET TABLE PTR.
2D5B	C3182D		JMP	CHEKF	CONTINUE SEARCH
2D5E	7A	FDLXI:	MOV	A, D	; FOUND LXI, PREP FOR OUT
205F	CDAD2D	ADDR:	CALL	BYTEI	:OUTPUT IST DIGIT:HI ADDR
2D62	7A		MOV	A, D	
2063	CDB52D		CALL	BYTE2	;OUTPUT 2ND DIGIT:HI ADDR
2066	7B		MOV	A, E	
$2 D 67$	CDAD2D		CALL	BYTEI	;OUTPUT IST DIGIT:LO ADDR
2D6A	7B		Mov	A, E	
2068	CDB52D		CALL	BYTE2	:OUTPUT 2ND DIGIT:LO ADDR
2D6E	CDDC2D		CALL	SPACE	3INSERT TWO SPACES
2D71	1 A	OPCOD 8	LDAX	D	
2 D 72	CDAD2D		CALL	BYTE1	OUUTPUT OPCODE BYTES
2075	1 A		LDAX	D	BOF LXI INSTRUCTION
2076	CDE52D		CALL	BYTE2	
2D79	CDDC2D		CALL	SPACE	:INSERT TWO SPACES
2D7C	13	CONST:	INX	D	SD, E POINTS TO 16 日IT
2D7D	13		INX	D	; CONSTANT POLLOYING LXI OP
2D7E	1 A		LDAX	D	:LOAD IT IN ACCUM.
2D7F	CDAD2D		CALL	BYTE1	SOUTPUT $15 T$ DIGIT OF CONSTANT
2D82	1A		LDAX	D	: LOAD AGAIN (BYTE1 CLOBEERS)
2 D83	CDB52D		CALL	BYTE2	:OUTPUT 2ND DIGIT(ASCII CODE)
2D86	1B		DCX	D	; POINT TO 3RDE4TH DIGITS
2 D87	1 A		LDAX	D	: LOAD IN ACCUM.
2 D 88	CDADED		CALL	BYTE1	\%OUTPUT 3RD DIGIT
2088	1A		LDAX	D	:LOAD AGAIN
2D8C	CDE52D		CALL	BYTE2	:OUTPUT 4TH DIGIT

Listing 2 continued on page 190

VULCAN = DBMS

THE PROFESSIONAL DATABASE

 MANAGEMENT SYSTEMFor $8080 /$ Z 80 systems under CP/M or PTDOS

* VULCAN is a complete database management system that has 38 powerful, easy to learn, English-like commands to manipulate files, records, fields, and scratch-pad variables.
* VULCAN has a command repertoire which includes such commands as: SORT, REPORT, APPEND, INSERT, EDIT, COPY, REPLACE, LOCATE, DISPLAY, DO, LIST, and LOOP.
* VULCAN structured data records can be selectively chosen for processing using complex Boolean, string, or mathematical expressions.
* VULCAN can be used in interactive or program mode. The program mode uses modern structured command programs to combine powerful DBMS operations.
* VULCAN is written in assembly language for efficient information processing and requires 36 K bytes CP / M system and one or more disk drives.
* VULCAN can accept or store data in standard ASCII files to be compatible with BASIC, FORTRAN, etc.

$$
\begin{array}{ll}
\text { *VULCAN (CP/M or PTDOS) } & \$ 490 \\
\text { Manual only } & \$ 25
\end{array}
$$

SCDP

Software Consultation Design and Production
6542 Greeley St.
Tujunga, CA 91042 (213) 352-7701
California residents add 6% sales tax.

Disc/3 MART, INC. DO IT YOURSELF LOW-LOW PRICES

ANADEX Printer, DP 8000
(with 4 free zip pack ribbons)
HAZELTINE 1520 1319.00

IMS 16K RAM Memory Board 350.00
SOROC IQ 120 TERMINAL Assembled . . 795.00
TI "SILENT 700" PORTABLE PRINTERS
TI 743 (RO) 1095.00
TI 743 (KSR) 1250.00
TI 994 Personal Computer 1150.00

CARTRIDGES • DISKETTES • MAG TAPE ACCESSORIES

ADDS, CENTRONICS, HAZELTINE, IMSAI, LEAR SIEGLER, TECHTRAN, TI, VECTOR GRAPHICS AND OTHERS
STORE HOURS: 9 A.M.-5:30 P.M. Mon. through Fri. Call or write for quotes or information.

Disc/3
MART, INC.

1840 LINCOLN BLVD.,
SANTA MONICA, CA 90404
(213) 450-5911

EXCITING MAIL ORDER DISCOUNTS

NOVATION CAT
ACOUSTIC MODEM

- answer. originate - 300 bauo
- LOW PRofile design 5179^{00}

- apple il acerssoring.

APPLE SOFT BASIC CARD. $: 155$
OC HAYES MICROMODEM. $: 335$ ALF MUSIC SYNTHISIZEA........ 240 ALF MUSIC SYNTHISIZE...... ${ }^{\circ} 4,650$

APPLE DISK II 440 WITH CONTROLLER CARD ... 495 PASCAL LANGUAGE SYSTEM. " 450 INTEGER BASIC CARD 155

SD EXPANDORAM

-64K S. 100 DYNAMIC RAM BOARD - WORKS WITH Z.80, 808088085 - BANK SELECT. PHANTOM REFRES - BANK SELECT •PHANTOM REFRESH
-NO WAIT STATES REQUIRED

WITHOUT MEMORY
\qquad
32 KKIT
48 K KIT
48 KKI
64 KKIT
\qquad $\$ 149.00$
215.00 269.00
349.00
409.00 $+409.00$

ADD $\$ 50$ FOR ASSEMBLED \& TESTED

LEEDEX VIDEO 100
12" BLACK \& WHITE MONITOR - VIDEO BANDWIDTH $12 \mathrm{MHz} \pm 3 \mathrm{db}$ -COMPOSITE VIDEO INPUT

$\$ 12900$

SOROC IQ 120

- SERIAL RS232C
- FULL ASCH II UPPER/LOWER CASE
- NUMERIC KEYPAD CURSER KEYS
- SCREEN CONTROL \& $\$ 750^{00}$

PROTECTED FIELDS

- Also available.

SOROC IQ 140 ¹,225.00

- TO ORDER .

Fhone orders mited. using credt cards. Or 3end cashlers
check or money order that draws on a U.S. bank. Please add 3% ($\$ 10$ Minimum) for handling, shipping (air service) and
msurance, or equipment wil be shipped freight collact
(xoxas mexy
tactory cartons with the manufacturers wartanty. Equipment
is subject to price change and avatabtity without notice.

Listing 2 continued:

Text continued:
trol is passed to that routine within the BASIC code. This procedure is frequently implemented by storing the address of the desired routine immediately adjacent to the command (function). (Actually, since commands (functions) are not all the same length (RESTORE is larger than FOR), it is common practice to place a delimiter, such as 0 , immediately after the command (function). The address of the proper routine then follows.)

Thus, after the system software has been relocated and program references fixed, the command and function table addresses must also be fixed. These areas will usually be clearly indicated in the program listing. Also, since the data that must be changed is reasonably small, a manual fix can be readily performed. The success of this process is dependent upon your knowing the new addresses of the command (function) routines. Consequently, if a number of shifts and/or additions must be made, I would strongly suggest that changes and fixes be made one at a time. While this procedure requires more work, it is preferable to making all changes at once, since it is easy to lose track of where everything is located.

Caveat Emptor

After carefully implementing the programs and following the procedures that have been outlined, you may still find that your relocated software has glitches. Excluding pilot error, the source of any problems can logically be only an improper reference fix. While there may be many ways for this to happen, I have found only two species of software bugs that create this problem.

The first, and potentially least troublesome, bug occurs when an isolated byte or two of data is buried in the middle of executable code. With this particular gem I also found a call to a subroutine whose sole function was to implement a jump over the data! (I'm not making this up. I really did find this super kludge.)

If you are extremely lucky, the isolated byte(s) will not just happen to be the same as one of the 2 - or 3 -byte operation codes. In this case the relocator program will assume incorrectly that it is a 1-byte operation and correctly continue to search for 3-byte operation codes. In the more

NO FRILLS! NO GIMMICKS! JUST GREAT DISCOUNTS MAIL ORDER ONLY

HAZELTINE	
1400 . . .	
1410	Call
1420	For
1500	Prices
CENTRONICS	
779-2	995.00
700.2	1350.00
703 tractor	2195.00
Micro Printer	395.00
730	975.00
NORTHSTAR	
Horizon I assembled. 1629.00	
kit	1339.00
Horizon II assembled	1999.00
	1599.00
TELETYPE	
Mod 43	995.00
INTERTEC	
Sujerbrain	2195.00

HAZELTINE

DIGITAL SYSTEMS
Computer $\$ 4345.00$
Double Density
Dual Drive $\ldots2433 .00$
TELEVIDEO
\(\left.\begin{array}{c|c}TELEVIDEO

912 ··· ··· ···

920 ··· ··· ···\end{array}\right\}\)| Call |
| :---: |
| For |
| Frices |

DEC
LA 34 1149.00
CROMEMCO
System III \$1000 off .. 4990.00
TEXAS INSTRUMENTS
810 Printer ….... 1595.00
ATARI $800 \quad 795.00$

ADDS Regent 25CALL
Optima Cabinets (New) . . . 99.95
5" Scotch Diskette Box/29.95
8" Scotch Diskette ... Box/34.95

Most items in stock for immediate delivery. Factory-fresh, sealed cartons.
DATA DISCOUNT CENTER
Box 100 135-53 Northem Blvd., Flushing, New York 11354, 212/465-6609
N.Y.S. residents add appropriate Sales Tax. Shipping FOB N.Y.

BankAmericard, Master Charge add 3%. COD orders require 25% deposit.

T.D.Q.
 TAPE DATA QUERY

THE IDEAL SOLUTION FOR PERSONAL AND VERY-SMALL BUSINESS DATA MANAGEMENT

PET-8K

TRS-80-LVL II
COMPLETE CASSETTE FILE MANAGEMENT SYSTEM
-fnclish-like command languace
-REPORT GENERATOR

- UTIlity packace
-NO PROGRAMMING KNOWIIEDGE REQUIRED
-REQUIRES 2 CASSETTE RECORDERS
- T.D.Q. APPLICATION CASEBOOK

COMPLETE DIRECTIONS TO MICRO-COMPUTERIZE:

- INVENIORY CONTROL - CUSTOMER DIRECTORY
- accounts receivable - appointment scheduling
- accounts parable
- order processinc
- Label printinc - VEndor master file - payroil journal
- CHECK PRINTING - CHECKBOOK JOURNAL
- invoice printing
- telephone book
- SPECIAL YEAR SND SALE RRICE SLLECTION includes
CASEBOOK; 2 CASSETTES; 3 USER'S MANUALS \& REF. CARDS ORDERS MUST BE RECEIVID BY IAN. 31, 1980 SIND CHLCK OR MONEYGRDER IO:
H. GELLER COMPUTER SYSTEMS
P.O. BOX 350

NEW YORK, N.Y. 10040
[N.Y. RESIDINTS ADD SALES IAX]

Published by Datasouth Computer Corporation, 627-F Minuet Lane, Charlotte, NC 28210.

For LA36 Owners, 1200 Baud Breakthrough
charlotte AspokesmanforDatasouth Computer Corp. confirmed reportsof LA36DECwriters ${ }^{\text {B }}$ printing at blazing speed. With Datasouth's DS120 Terminal Controller, the LA36 prints bidirectionally at speeds up to 165 cps with true 1200 baud throughput. A 1000 character internal print buffer eliminates the need for fill characters.

Well-Endowed With Features

Versatile performance features include complete forms control and data formatting capability programmable from either the keyboard or data stream; plus both an EIA RS232-C and 20 mA Current Loop interface.

Easy Installation

This blazing speed is accomplished by replacing the LA36 logic card with the DS120 unit-which
is fully compatible with existing electronics.

Results Are In

As BAUD NEWS went to press, DS120's were providing enhanced speed and versatility for more than 3000 LA36 owners. The micro-processor-based electronics have proven very reliable, and service, when needed, has been prompt and efficient. Of course, the DS120 comes with a 90 -day warranty on materials and workmanship.

Delivered Nationwide

Datasouth reports a network of stocking distributors in major cities throughout the U.S. for prompt service and delivery. The spokesman added that he welcomes inquiries and will gladly give youall the details on the DS120. He can be called at 704/523-8500 or addressed at Datasouth's office, 627-F Minuet Lane, Charlotte, N.C. 28210.

DEC is a registered trademark of Digital Equipment Corporation. Installation of the DS-120 will void any DEC warranty or service contract.
usual case, the isolated byte will be identical to a 2 - or 3-byte operation code. Then the possibility exists not only for an improper reference fix, but also for a mangling of the operation code(s). Fortunately, this mangling process is generally not selfpropagating, so the damage is usually localized.

The second, and potentially most troublesome, bug involves the writing of relocatable code. While it may come as a surprise, yes there is such a thing as nonrelocatable code. To see that this is so, recall that the relocator program fixes references by operating only on the 2-byte hexadecimal constant following 3-byte operation codes. Implicit in this procedure is the logical assumption that all references to program addresses will be made via 3 -byte operation codes. Certainly this is the easiest and most natural way to handle addresses. However, it is possible to use the 1 - and 2 -byte operation codes to manipulate addresses.
As a case study of this particular "buggy" (and bugging) practice, I submit the verbatim example from a listing of an assembler program in listing 3.

In this example the programmer needed to load the character following an operation code into the DE register pair without disturbing
the HL register pair. Without a detailed knowledge of other program constraints, it is difficult to specify a foolproof fix for this code. Assuming no stack problems, appropriate substitutions are suggested in listing 4.

Those wishing to write relocatable code will avoid use of the programming practice illustrated in listing 3, (This is not an onerous requirement, since code that violates this convention tends to be tortured and unnatural.) Those who, for proprietary or other reasons, wish to write nonrelocatable code will liberally sprinkle their code with such examples.

What To Do

At this point it is reasonable to ask what can be done if you encounter one of the exotic bugs I have discussed. Unfortunately, there is no quick fix that is generally applicable. However, the following guidelines and suggestions may be helpful.

First, the source of the bug needs to be isolated to an area less than the size of the whole program. To do this, study the actual operation of the program. For which commands or functions does the program fail? After this bit of detective work, examination of the command or function table of your listing will tell you where to begin looking for the bug(s).

If nothing turns up at this point, the bug may be in a subroutine called by the command (function) routine. Even worse, it may be in a subroutine called by the subroutine, etc.

Finally, if all else fails, it will be necessary to perform a step-by-step trace of the operation of the program. At best this is a tedious process. If, however, you have isolated the bug, it is possible to set up a breakpoint that is activated only upon entry to the program segment that is suspect. (A breakpoint works by causing program control to pass to the monitor when the breakpoint is encountered. Before the breakpoint is activated, program execution is performed at normal machine speed.) With the Dynamic Debugging Tool program of the CP/M system distributed by IMSAI, a single breakpoint can be set by temporarily replacing a byte of the suspect software with the RST 07 instruction (FF in machine code). After the monitor has control, you can use it to generate a detailed trace of the program's operation for the suspect area.

After this recounting of the perils of relocating systems software, I hope that the reader is not totally discouraged. For well-designed software, relocation can be easily managed using the relocator and FIXLXI programs.

Address	Hexadecimal Code	Instruction Mnemonic	Operand	Commentary
BDC4	$3 E$	FO	MVI	A,ABUFF and OFFH

Listing 3: An example of poor programming practice. In this example, the programmer has loaded the DE register pair without disturbing the HL register pair. However, because the reference to the address hexadecimal D4FO is done via 1 and 2-byte op code, this machine is not machine relocatable.

Address	Hexadecimal Code	Instruction Mnemonic	Operand	Commentary
BDC4	11 F0 D4	LXI	D,D4F0	;LOAD BUFFER ADDRESS
BDC7	E5	PUSH		;SAVE H.L PAIR
BDC8	68	MOV	L.B	;GET LENGTH OP CODE
BDC9	2600	MVI	H,00	;PAD WITH ZEROS
BDCB	19	DAD	D	;ADD LENGTH TO BUFFER
BDCC	EB	XCHG		;PUT RESULTS IN D,E
BDCD	E1	POP	H	;GET H,L BACK
BDCE	1A	LDAX	D	;FETCH CHARACTER AFTER

Listing 4: Another method of performing the operation shown in listing 3. Here the reference fo the address hexadecimal D4FO is done using the LXI op code. This code is machine relocatable.

HHEAVY DUTY COUPLER

Crystal control punches through rain-soaked, muddy lines to grab weakened signals.

Heavy duty rubber cups hold fast . . . knock out noise.

Torture testing boosts reliability above 99%.
DATEC Heavy Duty couplers are guaranteed.
We're building our reputation on acoustic couplers. We've got to build them better.

D戸тㄷㅁ

Datec Incorporated 300 E. Main Street Carrboro, N.C. 27510 DAIEC 30 orignate inote and answet: Full or half duplex switchable. 0.300 BPS.

CP/M SOFTWARE

Word Processing For CP/M

FMTText Formatter
Use FMT and your text editor to convert your CP/M system to a powerful word processor. FMT features include automatic page headings and footings, page numbering. centering. underscoring. external file merging, and in-line console input. FMT works with any video, CRT, or hardcopy terminal and printer combination. Added capabilities for daisy-wheel printers: superscripting, subscripting, and half-line spacing.

Run Cromemco Software Under CP/M

ADAPT Software Interface
Now you can get Cromenco software to run on your CP/M system. ADAPT interfaces those powerful Cromenco packages lexcept for Multi.User BASICI to any CP/M Version 1.4 system without patching. ADAPT works without changes for any memory size.

Fast RATFOR

RATFOR (RATional FORtran).
RATFOR lets you write structured code that translates to MicroSoft or Cromemco FORTRAN. TSW's RATFOR \{RATional FORITan\} precompiler runs at more than 1000 statements per minute. Documentation includes "Software Tools" book by Kernighan and Plauger (ADAPT and RATFOR packages combined S125)

THE SOFTWARE WORKS
8369 Vickers
San Diego, CA 92111
17141569-1721

WE ARE KNOWN FOR OUR PROMPT, COURTEOUS SERVICE

PAPER TIGER
Graphics option, add \$199.
198 cps. 8 software selectable character sizes, adjustable tractor, plain paper, Impact, dot matrix printer. An outstanding value!

DECwriter 35/36 upgrade
 Specs available
 INCREASE BAUD RATE TO 1200 \$750.

IMS 5000 and IMS 8000 Complete $Z 80$ systems starting at $\$ 2,050.4 \mathrm{I} / \mathrm{O}$ ports, 1 K EPROM bootstrap loader, double density drives, $5^{1 / 4}$ or $8^{\prime \prime}$ disks. S-100 bus. 12 slot
mainframe. A beautiful, high quality system. Runs CP/M.
INTERTEC SUPER BRAIN $\ldots \ldots \ldots \ldots . . \$ 2,885$.
Dual Z80, dual double density floppies, 32K RAM
(expandable) 4Mhz., CP/M, Contained in Intertube II.
INTERTUBE II . $\$ 875$.
SOROC IQ 120 . $\$ 865$.
IMS 16K Fully static memory, $250 \mathrm{~ns} \ldots \ldots .$.
MARINCHIP SYSTEMS 990016 BIT CPU
Price includes DOS, BASIC, word processor, text editor,

linking loader	Assembled	\$700.
	Kit	\$550.
Complete syst	ms configured from	\$5,700.

DRIVES

SIEMENS 8 "double density, Shugart compatible . . . \$450.
PER SCI 277 . $\$ 1,200$.
299B
\$1,700.
INNOTRONICS 2 drives with cabinet and power . . $\$ 1,565$.
Shugart compatible. Extremely reliable.

CONTROLLERS:

Tarbell single density . \$255.
Konan S-100 hard disk controller 5180
TEI Mainframes completely tested and assembled 12 slot . $\$ 433$. 22 slot . $\$ 609$.
MODEM: "THE CAT" from Novation $\$ 190$. Originate/answer, 300 baud. Incredibly compact!
CENTRONICS, TEXAS INSTRUMENTS, PRINTERS, DIABLO, NEC SPINWATER, DEC LA 34, PET, TRS-80 ALSO AVAILABLE.
TO ORDER: We ship within 24 hours of receipt of certified check, bank check or money order. Credit cards add 4%. Personal checks: allow ten days.

COD'S ACCEPTED AT NO EXTRA CHARGE.
Shipping charge: $\$ 13$. for terminal, $\$ 4$. for memory, modems. N.Y. residents add sales tax. Prices and availability subject to change without notice

DEALER INQUIRIES INVITED.
WE EXPORT TO ALL COUNTRIES OVERSEAS CALLERS USE (212) 448-6298 OR TWX: 7105882844 CABLE: OWENS ASSOC.

We have no reader inquiry number
Please call or write. Product sheets available.

JOHn d.OWENS ASSOCHATES, inc.

12 SCHUBERT STREET
STATEN ISLAND, NEW YORK 10305 (212) 448-6283 (212) 448-6298
U.S. ROBOTICS, INC.

- Tabs
- 132 columns
- 10. 12. 13.2. 16.5
characters/inch
- 2, 3, 4, 6. 8 or 12 lines $/$ inch
- Oplional tractor feed

Teletype Model 43 KSR \$1049.00

- 110 or 300 baud
- RS232C/ASCII
- Pin teed $/ 81 / 2^{\prime \prime} \mathrm{H} \times 11^{\prime \prime} \mathrm{W}$ paper is perfect for filing and copying

- Shiftlock Key
- Print Key
- Integrated Numeric Pad
- Editing Functions
- Exiremely Compact: $15^{\prime \prime} \mathrm{W} \times 19^{\prime \prime} \mathrm{D} \times 14^{\prime \prime} \mathrm{H}$
- Upper/lower case. true descenders
- Dot matrix. impact printing

LA34 DECwriter IV $\$ 1199.00$

- 110 or 300 baud
- RS232C/ASCII
- Friction feed/up to 15 " wide paper
- 9x7 dot matrix. impact printing
- Upper/lower case

The 550 BANTAM

 from Perkin-Elmer $\$ 799.00$
All the features of the

 Hazeltine 1400 \& LSI ADM-3A plus- Upper/Lower Case
- 7×10 Character Matrix
- White or Black Characters
- Transparent Mode
- Addresable Cursor
- Tab Function
- Backspace Key

PENRIL 300/1200

 MODEM Originate/Auto-Answer $\$ 799.00$- RS232
- Full duplex over voice grade phone lines
- 1 year warranty
- Stand alone

- 0-300 or 1200 baud
- Bell 212A \& 103/113 compatible
- FCC certified for direct connection to phone lines via RJ11C voice jack (standard extension phone jack)

USR-300 Series

USR-310 Originate

Acoustic Coupler \$159.00

- 0-300 Baud
- Bell 103/113 compatible
- Stand Alone
- RS232
- 1 Year Warranty
- Crystal Controlled
- State of the Art LSI circuitry
- 5 stage active filters

USR-330 Originate/ Auto-Answer
 connection to phone lines via standard extension phone jack.

USR-320
Auto-Answer Modem \$319.00

U.S. Ragatics, INE.

1035 W. LAKE ST.
$\begin{array}{lrl}\text { Sales } & \text { chicasa, ILL. } 60697 & \text { (312) } 733-0497 \\ \text { General Offices } & (312) 733-0498\end{array}$
General Offices (312) 733-0499

Glubs and Newsletteps

Hobby Computer Club of Holland (HCC)
The HCC now has over 3000 members in 12 local groups which meet on a monthly basis. They welcome information on all aspects of microcomputing and currently are in need of information on hardware and software for the Apple II. Contact the HCC, Christinalaan 171, Eindhoven, NETHERLANDS.

Home Software Exchange's Program of the Month Club
This club offers an opportunity for persons who own small computers to buy and sell cassette computer programs. Upon joining, each member receives a yearly catalog of all programs listed on the exchange and monthly newsletter updates. A $\$ 2$ royalty fee is given each time a member's program is purchased. Membership dues are $\$ 6$ per year. To join send the membership dues and the programs you wish to list on cassettes with a listing of the program and a short description.
Contact the Home Software Exchange, 1716 Dixie Dr, Jackson MS 39209.

Computerized Investments Club

The purpose of this club is to trade ideas, data, and programs related to the stock, option, and commodity markets. Club projects include the development of computerized trading and investment systems, and the development of a shared data base.

Write to Computerized Investments Club, R D 1 Box 138, Sicklerville NJ 08081.

Videodisc News

This monthly newsletter is designed for readers in communications, education, television, audio and visual production, information storage and retrieval, microcomputers, and home video entertainment. Articles will cover new developments in software and hardware, competitive comparisons, conferences and services, and more. A special subscription rate of $\$ 95$ per year is available to BYTE readers.

Contact Subscriber Services, Videodisc News, POB 5340, W Bloomfield MI 48033.

Medical Computer Journal

$M C J$ is a newsletter that is devoted to information about computers and their uses in the daily practice of private physicians. Issues will cover the most common illnesses and the use of computers in dealing with them, computer systems,
laboratory test interpretation and analysis using computers, and ideas for the uses of computers in offices.
Subscriptions are $\$ 15$ per year. For information, contact Dr Aziz Ghaussy, editor of the MCI, 42 E High St, E Hampton CT 06424.

Computer Newsletter for Engineers

Engineering Computer Applications Newsletter ($E C A N$) is being published monthly to inform and advise engineers on how to use advanced computer technology and increase productivity and profits. ECAN will contain articles on small
computers, peripheral equipment, engineering programs, combining large and small computers, graphics in engineering design, and many other topics. Subscriptions are $\$ 36$ per year. Contact ECAN, 5 Denver Tech Ctr, POB 3109, Englewood CO 80111.

Crescent City Computer Club

This club meets once a month in a general meeting and they also have monthly meetings for their specialized groups. Their meetings are held at 8 PM in room 2120 of the University of New Orleans Science Bldg, on the main campus. The club also publishes a newsletter that covers the events of the meetings.

Contact the Crescent City Computer Club, POB 1097, University of New Orleans LA 70122.

Arcadian Newsletter

This newsletter has articles concerning various aspects of computing. Programs, schedules of events, corrections of programs, and general information items appear. Ads are welcome, and the latest issue included an item from the editor looking for reviews of software programs.

Contact Arcadian, 3626 Morrie Dr, San Jose CA 95127.

Apple Canada Users Group

This new group has been meeting on the first Wednesday of every month at the Computerland/Toronto store, 2180 Yonge St,
Toronto, Ontario Canada. The meetings begin at 7:30 PM.

Contact Apple-Can, 2180 Yonge St, Toronto, Ontario M4S 2B9 CANADA.

Heath Users Group (HUG) Newsletter

REMark is a HUG

 membership magazine published quarterly for members only. The newsletter contains articles on programming, expanding the capabilities of Heath computers and items of general interest. Subscriptions are $\$ 14$ a year and should be sent to the Heath Users' Group, Hilltop Rd, St Joseph MI 49085.
Sphere Newsletter

The Sphere Microcomputer Newsletter contains hardware and software features of interest to M6800 microcomputer owners and more specifically to Sphere owners. The newsletter is mailed 6 times a year. The subscription rate is $\$ 12$ and should be addressed to Jeffrey Brownstein, 2 Tor Rd, Wappingers NY 12590. Material for publication should be sent to coeditor Roger J Spott, 13975 Connecticut Ave, Wheaton MD 20906.

BYTE's Bugs
 Like All Modern Vehicles - The Cost Goes Up

George, the programmable toy van from Beneficial Marketing, was listed in the November issue as costing $\$ 24.95$. This should read $\$ 39.95$.

Apple II Plus TRS-80 (Level II)

All software is supplied with complete documentation which includes clear explanations and examples. Each program will run with standard terminals (32 characters or wider) and within 16K program memory space. Except where noted, all software is available on North Star diskette (North Star BASIC or Microsoft BASIC for those North Star systems running under CP/M), TRS-80 cassette (Level 11) and Apple cassette (Applesoft BASIC). These programs are also available on PAPER TAPE (Microsoft BASIC).

FLIGHT SIMULATOR
(as described in SIMULATION, Volume II)
A realistic and extensive three-dimensional simulation of take-off, flight and landing. The program utilizes aerodynamic equations and the characteristics of a real airfoil. You can practice instrument approaches and navigation using radials and compass headings. The more advanced flyer can also perform loops, half-rolls and similar aerobatic maneuvers.

Price: $\$ 17.95$ postpaid
SIMULATION, Volume II (BYTE Publications): $\$ 6.00$

VALDEZ

A simulation of supertanker navigation in the Prince William Sound and Valdez Narrows. The program uses an extensive 256×256 element radar map and employs physical models of ship response and tidal patterns. Chart your own course through ship and iceberg traffic. Any standard terminal may be used for display.

Price $\$ 14.95$ postpaid

BRIDGE 2.0
An all-inclusive version of this most popular of card games. This program both BIDS and PLAYS either contract or duplicate bridge. Depending on the contract, your computer opponents will either play the offense OR defense. If you bid too high the computer will double your contract| BRIDGE 2.0 provides challenging entertainment for advanced players and is an excellent learning tool for the bridge novice.

Price: $\$ 17.95$ postpaid
HEARTS 1.5
An exciting and entertaining computer version of this popular card game. Hearts is a trick-oriented game in which the purpose is not to take any hearts or the queen of spades. Play against two computer opponents who are armed with hard-to-beat play. ing strategies.

Price: $\mathbf{\$ 1 4 . 9 5}$ postpaid

MAIL LIST I NEW
A many-featured mailing list program which sorts through your customer list by userdefined product code, customer name or Zip Code. Entries to the list can be conveniently added or deleted and the printout format allows the use of standard size address labels. Each diskette can hold approximately 900 entries.

Price: $\mathbf{\$ 1 8 . 9 5}$ postpaid (available for North Star only)
TEXT EDITOR I (Letter Writer)
An easy to use, line-oriented text editor which provides variable line widths and simple paragraph indexing. This text editor is ideally suited for composing letters and is quite capable of handling much larger jobs.

Price: $\mathbf{\$ 1 4 . 9 5}$ postpaid

COMPRESS

Make your BASIC programs run faster and use less memory I In many cases you can reduce the size of your programs by 30% or more, while improving execution speed by a comparable amount. Save money by storing more programs on each diskette or cassette.

Price: $\$ 9.95$ postpaid
GAMES PACK I NEW
Seven entertaining games for less than a dollar a kilobytel Play CATAPULT, CRAPS, SWITCH, HORSERACE, SLOT MACHINE, BLACKJACK and LUNAR LANDER. This is an excellent way to introduce your children to computers.

Price: $\$ 10.95$ postpaid
All orders are processed within 48 hours. Please enclose payment with order. If paying by MASTER CHARGE or VISA, include all numbers on card. Foreign orders add 10% for shipping and handling.

Write for detailed descriptions of these and other programs available from DYNACOMP.

DYNACOMP

P.O. Box 162

Webster, New York, 14580
New York State residents please add 7% NYS sales tax.

SPRING 1980

> Future Strategy, Management, \& Design for:

- Distributed Processing
- Data Base
- Networks
- Corporate Strategy

Atlanta
 San Francisco
 New York
 Chicago

Feb. 25-29
March 17-21
March 17-21
March 24-28

CALL OR WRITE: (213) 476-9747

P.O. BOX 49765, LOS ANGELES, CA. 90049 (213) 476-9747

BYTEs Bits

A New System for Medical Data Processing

The Computer Center Inc, 433 Valley Ave, Birmingham AL 35209, is marketing the Doctors Office Computer System (DOCS). DOCS organizes precise methods to control cash flow and has the capability to handle all doctors' medical and financial bookkeeping needs in a single system. The present package processes charge and payment entry, patient statements, insurance billing, Medicare and Medicaid submittals, collection agency referrals, and the patient accounting system identifies unpaid charges by age, amount, and percentage of payment. Additionally, the patient accounting system handles patient admission updates, records, and appointments.
DOCS is designed to run on an Alpha Micro 100, with a minimum of 64 K memory and is currently being adapted for use on Texas Instruments and Hewlett-Packard systems. To install DOCS, a medical group can expect to invest from $\$ 35,000$ to $\$ 70,000$ for hardware and software.

Call for Papers

On August 27-28, the IEEE Computer Society will sponsor the Second Workshop on Picture Data Description and Management in Asilomar, California. This conference will address the problems of storage, retrieval and manipulation of pictures of great complexity and of large numbers of pictures. Papers on pictorial information systems, applications of pictorial data bases, picture syntax and semantics, combinatorial problems in image data structures, data structures for image data mangement, computer graphics of
complex images and animation, ir nge stores, computer architecture for picture processing, and other topics are being solicited. To submit papers, please send four copies to Professor S K Chang, Program Chairman, 1980 PDDM Workshop, Dept of Information Engineering, University of Illinois at Chicago Circle, POB 4348, Chicago IL 60680.

Word Processor Cuts Hospital Paperwork Costs

Due to annual hospital cost increases and the escalating requirement for paperwork of government agencies, insurance companies and other groups, hospital paperwork is expanding constantly.

Burroughs Redactron word processing equipment has powerful text editing, formatting, file management and arithmetic capabilities to partially or completely automate the completion of Medicaid forms, patient records of all kinds, laboratory results and patient correspondence, as well as other hospital related documents; so that paperwork is handled quickly, accurately and at a lower cost.

Tufts-New England and the Presbyterian Hospital of Dallas, are using these systems to facilitate accurate and economic preparation of patient discharge summaries, for surgical reports, to update pharmaceutical inventories, controlling and printing tests and test results, and much more, The use of the system has resulted in more efficient and economical use of time and attention in hospitals and laboratories. For more information, contact Redactron Corp, 95 Horse Block Rd, Yaphank NY 11980.

Circle 140 on inquiry card.
tekas inctrumemt cumb

CENTKANICS HEINICRS

P79-1 FEIC.FE
730-1 NEY PRNTK
-30-3
MICKOFI 3390. MICKB SI
commoldoke gusiness machimes
FET $2001-8 \%$
FE1 2001-10N, 8
FE1 2001-32N,
floper
PEE 2022 TKAC.FD FFINTEK
PET 2023 FKIC.FIFRINEK
north star COnputers
Big :i SAUINGS
Intektec superlieain
the honor grabuate comfutek
hisflay tekhinals
fatertube il
HAZELTINE 1400
$1+10$
1500
1510
multi-business computer eystems 2 PORARLGOROUGH SIREET

ORTLANL, CONN, OO
$(203), 342-274)$
Circle 143 on inquiry card.

CROMEMCO SYSTEMS DISCOUNTED

System 2 with 64k RAM—\$3195 System 3 with 32k RAM—\$4795 with 64k RAM—add \$ 595
Discounts up to 20% on most Cromemco hardware. We carry the full Cromemcoline

TORREY PINES BUSINESS SYSTEMS
14260 Garden Rd., Suite 8A
Poway, California 92064
(714) 486-3460

FIELD ENGINEERS

Never sell yourself short! If you fix computers and their peripherals, and it is time for a job change, let

FIELD SERVICE SEARCH

locate the best opportunities for you. Employer pays fees. Call collect (312) 398-5535.

Address:

FIELD SERVICE SEARCH
925 E. Rand Road Arlington Heights, IL 60004 Private Employment Agency

Circle 141 on inquiry card.

TRS-80 users
 Learn FORTH

FORTH is a sinctured high level language that dramatically cuts program development tithe. You can expand the FORTH language by delining new operations and data types. FORTH programs are compiled to reduce memory space and speed execution.
tinyFORTH is a complete version of the powerful FORTH language tailored to the TRS-80. The tinyFORTH system includes FORTH, a text editor. an assembler, graphics, and cassette I/O.
Learn FORTH on your own computer. The tinyFORTH user's manual contains hundreds of examples to teach you FORTH in a hands-on style. tinyFORTH for 16 k level 11 TRS-80:
Cassette and full documentation
.$\$ 29.95$
Documentation only
All orders are fully guaranteed. And $\$ 1.50$ for postage and handling. Order with check, money order. Visa, or Mastercharge

Write for a FREE booklet describing FORTH.

The Software Farm

Box 2304 Dept. Ald Reston, VA 22090

Circle 144 on inquiry card.
\$ MINI FLOPPY AT \$
\$ STORE DISCOUNT \$
SINGLE SIDED-\$225.00
DOUBLE SIDED-\$345.00
CABINETS-CABLES AND POWER SUPPLIES ARE
ALSO AVAILABLE
INTERFACE, INC
20932 CANTARA ST
CANOGA PARK,CA 91304
(213) 341-7914

SURPLUS ELECTRONICS

ASCII

ASCII

IBM SELECTRIC
(

BASED I/O TERMINAL
WITH ASCII CONVERSION INSTALLED \$645.00

- Tape Drives - Cable
- Cassette Drives - Wire
- Power Supplies 12V15A, 12V25A.

5v35A Others. - Displays

- Cabiners - XFMRS • Heat

Sinks - Printers - Components
Many other Items, SEND $\$ 1.00$ FOR CATALOG
REFUNDABLE FIRST DRDER
WORLDWIDE ELECT. INC.
130 Northeastern Blvd.
Nashua, NH 03060
Phone orders accepted using VISA or MC
Call 603-889-7661

Circle 142 on inquiry card.

Communications/Control CPU Card
CPU -Z.80 1 K RAM
16 bit interval timer and interrupt
EPROM * 2708 standard (2716 optional)

- Serial Communications-RS-232 interface, UART Complete MODEM capability, programmable baud rates, etc.
-Parallel IIO- 16 bits in (TTL), 16 . bits Out (TTL)
- Power - on and external reset
-EPROM not included
$\$ 195$ assembled, tested, with warranty and documentation

Immediate delivery from stock! All orders shlpped prepaid
MC, VISA, phone orders welcome
Utah residents add $43 / 4$ sales tax

Circle 145 on inquiry card.

16 K RAMS \& RAM CONTROLLERS
16 KX 1 DYNAMIC RAMS HKA16R3

- 200 NSEC ACCESS/375 NSEC CYCLE TIMES

AL CHIPS SUANEO IN ANO

- PBCE WIH DATA SHEET FULLY TESTED

56800 in oty Of $8 /$ That's s8. 50 EACH
$6800 / 650264 \mathrm{~K}$ BYTE RAM 8 CONTROLLER SET MAKE G4K BYTE MEMORY FOR YOUR 6800 OR 6502 HIS SET INCLUDES
32 M5K 4116-3. $166 \times$ 1, 200 NSEC RANS

- 1 MC3242A MEMORY AOORESS MULTIFLEXER and countea
- Data \& application sheets. parts testeo ano guarantego.

DYNAMIC MEMORY CONTROLLER MCHBOM GENERATES RAS/CAS B REFESSH TIMMNG FOR 16K TO GAK BYTE MEMORIES
PRICE WITH DATE SHEET: $S 1395$ EACH
MEMORY AOORESS MUXICOUNTER \#C3w2.AP - MUX ADODESS \& REFFESH COUNTER FDR 16K TO 6ak gute memories

PRICE WITH DATA SHEET: S12 50 EACH
Quanfity discounts avallable

 64 Salts tax PHONI OROtRS wh11 6334460 MEASUREMENT SYSTEMS \& CONTROLS. WC.

Computer Chess Competition

Chess 4.9, the program written by David Slate and Larry Atkin of Northwestern University, regained the title of North American Computer Chess Champion in the tournament held during the convention of the Association for Computing Machinery (ACM) in Detroit, Michigan from October 28 to October 31, 1979.

Slate and Atkin's program (then called Chess 4.7) was upset in the 1978 championship by the program Belle, written by Ken Thompson of Bell Laboratories. Belle won the 1978 competition with a perfect score of four wins in the 4 -round Swiss System tournament. (See "Computer Chess Report,"
May 1979 BYTE, page 174.)
In the 1979 Tenth Annual North American Computer Chess Championship, however, Belle suffered a setback in the third round of

Player		$\begin{aligned} & \infty \\ & \frac{D}{\bar{D}} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \text { 高 } \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{\|c} 3 \\ \vdots \\ \vdots \\ \overrightarrow{0} \\ 0 \\ 0 \end{array}$			$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \mathbf{3} \\ & 9 \\ & \hline 0 \\ & 0 \end{aligned}$	$\underset{=}{8}$	$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \dot{\circ} \\ & \dot{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D } \\ & \stackrel{D}{c} \\ & \stackrel{\rightharpoonup}{\vec{n}} \\ & \hline \end{aligned}$	Score
Chess 4.9		$1 / 2$	1				1	1		1				$31 / 2$
Belle	1/2			1/2	1				1					3
Duchess	0		,	1					1		1			3
Chaos		$1 / 2$	0				1	1					1	21/2
L'excentrique		0				$1 / 2$				1			1	21/2
Mychess					$1 / 2$				0		1	1		21/2
Blitz 6.9	0			0				$1 / 2$	1/2			1		$11 / 2$
Sargon 2.5		0	0			1	1/2	1/2						$11 / 2$
Ostrich 80	0				0					V	$1 / 2$	1		$11 / 2$
Awit			0			0				$1 / 2$,		1	$11 / 2$
BS '66'76						0	0	0		0		-	1	1
Rufus				0	0						0	0	N	0

Table 1: Cross-table of the results of games in the Tenth Annual North American Computer Chess Championship, held October 28 to October 31, 1979 in Detroit, Michigan. The table contains blank entries, since each program did not play every other program in the 4 -round Swiss System event.
competition when the Chaos program (written by Mike Alexander, Fred Swartz, John O'Keefe, and Victor

Berman of the University of Michigan) fought Belle to a draw. The hopes of Belle's backers were further dashed

TURN-ON!

Now have full computer control of up to 256 lights, appliances and even wall switches without special wiring. The SciTronics REMOTE CONTROLLER permits direct control of the inexpensive BSR remote line-carrier switches sold by Sears, Radio Shack and many others.
HOW IT WORKS: Writing 3 control words to the controller board sends one of 6 in structions over the a-c line to the desired switch. The instructions include any remote on, off, all off, any light bright, dim, or all on. Reading the board tells if busy.

FEATURES:

* FULL S-100 COMPATIBILTY - all lines fully buffered, board address dip swlich selectable to span 65 K .
- FULL TRS-80.1 COMPATIBILITY-board housed in attractlve woodgrained case with power supply and connector cable allows direct connectlon to TRS.80-I expanslon port.
* COMPATIBLE WITH OTHER SYSTEMS-combination of on-board select swliches and
complete connector wiring information allows ease of use whith Apple II, PET, KIM, SYM, HEATH H8, plus others.
* SYSTEM SELECT SWITCHES - chose active high or low inputs, addressed or l/O drlve, parallel or serlal entry, non S. 100 inputs llke VMA, clocking on any transition.
- SIMPLE TO USE-sample software included for all systems Ilsied, all IC's socketed.

APPLICATIONS:

- Make your entlre home, business or apartment "computer controlled"
- Save energy by controlling lights and appllances
- Control lights and alarms for security systems

REMOTE CONTROLLER BOARD
\$159. ENCASED SELF POWERED CONTROLLER FOR TRS-80-1
\$184.
remote swilthes not included
Send check or money order to:

SciTronics Inc.

523 S. Clewell St., P.O. Box 5344 Bethlehem, PA 18015
(215) 868-7220

Please list system whith which you plan to use controller. Master Charge and Visa accepted. PA residents add sales tax.
when Chess 4.9 also achieved a draw with Belle in the fourth and final round.
With this final half-point, Chess 4.9 wrested a clear-cut victory in the tournament with a score of $31 / 2$ out of 4 possible points.

Three programs of the twelve competing in the event were run on microcomputer systems. The program Mychess, written in Z80 assembler language by David Kittinger of Anchorage, Alaska, ran on a Cromemco Z-2D system with 64 K bytes of memory and gained a score of $21 / 2$ points. Dan and Kathe Spracklen entered version 2.5 of Sargon, which ran on a 6502-based electronic chessboard processor; the program obtained a score of $11 / 2$ points. The program Rufus, written by Charles Sullivan in 6502 assembler, did not fare so well. It lost all games and ended with a score of zero. Rufus ran on an Apple II computer in 48 K bytes of memory.

Besides these three programs that used microprocessors to calculate what moves to make, two programs that ran on large computers employed microprocessors to control electronic chessboards that indicate moves with lightemitting diodes and transmit opponent's moves automatically. Both Chess 4.9 and Blitz 6.9 (written by Robert Hyatt and Albert Gower of the University of Sourthern Mississippi) used these devices.
The tournament was organized by a committee comprising Monroe Newborn, Ben Mittman, Ira Purchis, and David Dahm. The tournament director was International Master David Levy (who was featured in "Chess 4.7 versus David Levy," by J R Douglas, December 1978 BYTE, page 84). In attendance as observers were one-time World Champion Max Euwe (oy - vuh), president of the Federation Internationale des Echecs (FIDE), and George Koltanowski, former presi-
dent of the United States Chess Federation (USCF) and noted player of blindfold chess.

Stanford University professor John McCarthy presented the tournament awards and spoke at a ceremonial luncheon held on the final day of the ACM convention.
A cross-table of game results achieved by the twelve programs is reproduced here in table 1. According to Dr Newborn, the strength of play of all the programs in the 1979 competition was greater than in the previous tournaments.
An interesting experiment took place on the Saturday preceding the tournament. David Levy, with an ability rating of about 2390, played a single game against a team consisting of David Slate (USCF rating of about 2050) and his program, Chess 4.9 (also rated at about 2050).
The purpose was to find out if cooperation between man and machine could produce better play than either man or machine playing alone.
According to rating statistics, a player rated 2050 should, in a 20 -game match, win perhaps two games and draw perhaps five. It was expected that the Slate-Chess 4.9 team would have an effective rating of about 2150 , with Levy favored to win.

True to expectation, Levy used his knowledge of the strong and weak areas of the opposing team and won the game. Nevertheless, development of the symbiotic relationship between the human player and a computer may yet extend the capabilities of both men and machines.

Microcomputers in Education

A nonthreatening first experience with microcomputers for kindergarten to 12th grade teachers has been developed by Dan Isaacson at the University of Oregon. He designed a selfinstructional, laboratorytype course to help teachers
use computers without having to be programmers.

The course consists of programs and text that show how to turn on the computer, load programs, explore materials at various levels in fine arts, business, English, foreign languages, consumer economics, and more. The program will be released in the summer of 1980 for use by public schools and colleges of Education. For more information, contact Dan Isaacson, Computer Center, University of Oregon, Eugene OR 97403.■

BYTE's Bugs

Reformatting Dollars and Cents

Mr J R Borden of Laguna Hills CA, has pointed out an error in my recent letter on formatting dollars and cents ("Good Cents," September 1979 BYTE, page 150). In trying to compact the procedure to one line, I erred in the roundoff, the results not being correct for \$1.995 and similar cases. A correct ver-
sion is given in line 30 of the adjacent listing.
20 IF $X<0$ THEN $X=$ ABS
(X): PRINT "一";
$30 x=X+0.005:$ PRINT
'"\$": INT (X);".";RIGHT\$
STR\$ (INT (100 * (X + 1)),2)

Mr Borden also considered the case of negative quantities. To handle these requires an additional line, line 20 in the listing.

I apologize for any inconvenience this error may have caused.

James D Childress 5108 Springlake Way Baltimore MD 21212 -

「The AJ 630 idata terminal. Low noise. Low price. High performance.

The AJ 630 thermal printing data terminal. Now you can get a lot of terminal for a little money.
Just look at its features:

- Exceptionally quiet thermal operation
- Desktop portability
- Proven reliability
- Selectable printing speeds up to 30 cps
- AJ-supplied thermal paper
- Standard ASCII and APL configurations
And look at its price:
- Just \$53 a month on a 36-month standard lease, including maintenance -and equally attractive payout lease.
- Just $\$ 995$ for outright purchase.

In short, you can have a fullfledged data terminal for about the price of a high-quality electric typewriter.

And to make it as easy as possible for you to have the AJ 630, you can even use your Visa or Master Charge cards.
The AJ 630 comes with our standard 30-day parts and labor limited warranty. And is backed by AJ's nationwide service network.

Act now. Write Anderson Jacobson, Inc., 521 Charcot Avenue, San Jose, California 95131. Or call your nearest AJ regional office: San Jose, CA (408) 946-2900; Rosemont, IL (312) 671-7155; Hackensack, NJ (201) 488-2525.

JANUARY 1980

Education Coordinators'
Workshops 1980. Held throughout 1980, these workshops will cover costing, justifying costs, course design strategies, scheduling, record keeping and reporting to management. For information on when and where the workshops will be held, write to Deltak Inc, 1220 Kensington Rd, Oak Brook lL 60521, or call (312) 920-0700.

Jamuary 3-4

 Hawaii International Conference on System Sciences, Honolulu HI. The conference will cover developments in theory and practice in software andhardware, and advanced computer systems applications in selected areas, with emphasis on medical information processing and computer-based decision support-systems for upper level managers in organizations. For more information, contact Perry G Patteson, Office of Management Programs, University of Hawaii, 2404 Maile Way, Honolulu HI 96822.

Jaruary 5-8
International Winter Consumer Electronics Show, Las Vegas Convention Center, Grand Ballroom of the Las Vegas Hilton and the Jockey Club Hotel, Las Vegas NV. The show will have over 850 exhibitors covering markets including audio systems, software, television and

video tape and disk systems, home computers, calculators, and many more. Contact Consumer Electronics Shows, 2 lllinois
Center, Suite 1607, 233 N
Michigan, Chicago IL 60601.

January 5 and 12
Introduction to Computing and Personal Computers, Human Computing
Resources, 10 St Mary St, Toronto Ontario M4Y 1P9 CANADA. This course will cover introductions to computers, programming, software and hardware, using computers in homes and offices, and buying and owning a personal computer.

January 8-24

 Tuesdays and Thursdays, Introductory Programming in BASIC, Human Computing Resources, 10 St Mary St, Toronto Ontario M4Y 1P9 CANADA. Direct execution of commands, the writing of simple BASIC programs, system dialects, error handling and debugging, and programming methods and style will be covered in this course.
January 15

Invitational Computer Conference, Orange County CA. New developments in computer and peripheral technology such as Pascal systems, printers, and streaming tape drives will be featured in this conference directed to the quantity buyer. For more information, contact B J Johnson and Associates, 2503 Eastbluff Dr, Suite 203, Newport Beach CA 92660.

January 15-18

 TV-Microelectronics and Microprocessing Exhibition, National Exhibition Centre, Birmingham, England. Manufacturers and suppliers of microprocessors, electronic and microcomputer games, video display units,In order to gain optimum coverage of your organization's computer conferences, seminars, workshops, courses, etc, notice should reach our office at least three months in advance of the date of the event. Entries should be sent to: Event Queue, BYTE Publications, 70 Main St, Peterborough NH 03458. Each month we publish the current contents of the queue for the month of the cover date and the two following calendar months. Thus a given event may appear as many as three times in this section if it is sent to $u s$ far enough in advance.
video cameras and projection systems and digital consumer electronics are invited to participate. Over 9000 retailers, wholesalers, distributors and government buying authorities are expected to attend this show. For more information, contact TMAC, 680 Beach, Suite 428, San Francisco CA 94109.

January 17

Electronic Road Shows, Proud Bird Restaurant, Los Angeles Airport, Los Angeles CA. This traveling exhibition of components, materials and instruments is being produced by the Electronic Representatives Association (ERA). Over 80 ERA member firms will participate, and products from over 700 electronic companies will be displayed. For more information, contact the Southern California ERA office, 20969 Ventura Blvd, Suite 9, Woodland Hills CA 91364.

January 21-24

American Association of Physics Teachers and the American Physical Society, Chicago Marriott Hotel, Chicago IL. An introduction to microprocessors, a Pascal programming workshop. and a course on the use of personal computers in learning physics, plus more sessions on microprocessors will be presented.

Contact the American Association of Physics Teachers, Graduate Physics

MAXIMUM VALUE FOR YOUR DOLLAR	
NORTH STAR COMPUTER DOUBLE DENSITY	KTER PRODUCTS ASM KIT
HR2-1-32K-D	\$1590. $\$ 1850$.
HR2-2-32K-D	1910. 2200.
MDS-A-D	550.640.
EXTRA DRIVE	330.
QUAD DENSITY	KIT ASM
HR2-1-32K-Q	\$1750. $\mathbf{2} 2040$.
HRZ-2-32K-Q	2230. 2560.
MDS-A-Q	720.800.
EXTRA DRIVE	480.
All HORIZONS now come standard with 3 ports and all edge connectors	
and minimum 32 K memory. ${ }^{\text {a }}$ AIT ASM	
RAM-16K WIPARITY	\$300. \$345.
RAM-32K WIPARITY	475. 520.
FPB-A	205. 270.
VERBATIM DISCS, BOX OF 10 . . $\$ 29$. PP We will try to beat any deal. Call:	
A.E.I. 3851 HACKETT AVE. LONG BEACH, CALIF. 90808	

Circle 153 on inquiry card.
FLOPPY DISK REPAIR

- Per:Sci and Shugart - Quick turnaround - Eight inch and minis

National Computer Service 1023 N. LaBrea Hollywood, CA. 90038 213-851-2226

Circle 154 on Inquiry card.

Circle 157 on inquiry card.

TRS. 80 Model I and II quality software DALA BASE MAMAEER IOM.IV You can use it to mandain a data hase \& pooduce epouts whoul 569 pogramming Dotine lie parampleis \& apoct lomals co-line features key programming Deline liee parameters s report hormais on-ine reatues keyy
 accoumis receivabil ACli.lli
One or more drives Order enliy calculales sales lax shipping amouni tor $\$ 69$ mulliple Ilems Clefii checking aging. sales analysis. invoices slatemenls

 stiorge loo tex! Wiitten in BaSclc Ao special hardware and lexal limil. Use lor
 hardware change and mulliple nout texi files
MALIMG LIST advanced MAIL-V
Fasis sorl by any tieid Mulliple labels and reporls \& digit selection code new rip code eat screen inpul. live keytoard. powerlut report wiler MOO-.II 59 invehtory inv.v

 II 5149
All proqrams are on-line interactive, random access virluatly bug liee
 sollware vendors to oftes low cost manuals so your can rompare and dyoid those high prited undocurnenied an-memory progams Send S5 lor a MOO-I manual and $\$ 10$ to MCO-II
MOO-II programs are exiensively modilied guaranteed 10 wno with 1 year
 MICRO ARCHITECT
96 Dothan St.. Arlington. MA 02174

CASSETTES

Premium tape and cassettes acclaimed by thousands of repeat order microcomputer users. Price includes labels, cassette box and shipping in U.S.A. VISA and M/C orders accepted. California residents add sales tax. Phone (415) 968-1604

MICROSETTE CO.
 475 Ellis Street
 Mt. View, CA 94043

Circle 155 on inquiry card.

Circle 158 on inquiry card.

[^18]> The largest family of disk drives from the largest supplier, drives come complete with power supply and cabinet.
T-Pertec FD200, 40 track. use both sides
TF-3 Shugart SA400. 35 track, same as tandy $\$ 389$
TF-5 MPI B51. 40 track $\$ 379$
TF-70 Micropolis. 77 track with 195 K of storage \$639
TDH-1 Dual sided drive. 35 track
$\$ 499$

PRINTERS

DP800 Anadex. 80 column. 112cps	\$950
LP779 Centronics 779	\$1099
LP730 Centronics 730	\$950
LP700 Centronics 700-1	\$1495
LP701 Centronics 701-1	\$1759
LP702 Centro ics 702-2	\$1995
SPW-1 Spinwriter-NEC	\$2495

NEW! LINE PRINTER BASE 2

Base 2 Printer 80,132 col., graphics so LPM with tractors

DRIVES FOR ANY MICROCOMPUTER *

Does not include power supply \& cabinet. MOD II DISK DRIVES NOW AVAILABLE

New DOSt with over 200 modifications and corrections to TRS-DOS $\$ 99$
New DOS 40 trock .. $\$ 110$
AJA Word Processor . $\$ 75$
AUA Business Program . $\$ 250$
Racet Infinite Basic $\$ 49.95$
Disk Drive Alignment Program $\$ 109$
Radix Data Base Program . $\$ 99.95$
Electric Pencil
$\$ 150$
ALL PRICES CASH DISCOUNTED. FREIGHT FOB/FACTORY
Circle 239 on inquiry card.

2080 South Grand Ave.
Santa Ana, CA 92705
(714) 979-9923

7310 E. Princelon Ave.
Denver, CO 80222
(303) 758-7275

Building, State University of New York at Stony Brook, Stony Brook NY 11794.

Jamuary 22-24
Designing, Installing and Managing An International Telecommunications Private User Network, Dallas TX. This course is intended for communication professionals interested in understanding and developing communication systems, services, and techniques. For more information, contact Telecom Systems Group, 579 Pompton Ave, Cedar Grove NJ 07009.

January 23-26

International Microcomputers Minicomputers Microprocessors (IMMM), Harumi Exhibition Centre, Tokyo Japan. This is a show for manufacturers, commercial and financial establishments, service industries and institutions, and design engineers interested in buying computer systems, components and services. For more information, contact Industrial and Scientific Conference Management Inc, 222 W Adams St, Chicago IL 60606.

January 28-30

Communication Networks '80, Sheraton Washington Hotel, Washington DC. The program will offer 50 conference sessions in areas such as fiber optics, satellite communications, systems networks, and innovations in electronic mail and office administrative networks.

For further information on registration, speaking opportunities or exhibit space, contact William Leitch, The Conference Company, 60 Austin St, Newton MA 02160.

Jamary 28-30
Principles of Programming Languages, Las Vegas NV. This symposium concerns practical and theoretical aspects of principles and innovations in the design, definition, and implementation of programming languages. Some topics are
algorithms and complexity bounds for language processing tasks, specification languages, error detection and recovery, and unusual or special-purpose languages that raise issues of principle. Contact Professor John Werth, Dept of Mathematical Sciences, University of Nevada, Las Vegas NV 89154.

January 30-February 1 MIMI'80 Asilomar, Asilomar Conference Grounds, Pacific Grove CA. This symposium covers all aspects of mini and microcomputers including technology, hardware, software engineering, languages, education and more. Contact The Secretary, MIMI '80 Asilomar, POB 2481, Anaheim CA 92804.

FEBRUARY 1980

February 6 Invitational Computer Conference, Ft Lauderdale FL. This conference is directed to the quantity buyer and will feature the newest developments in computer and peripheral technology. Contact B J Johnson and Associates, 2503 Eastbluff Dr, Suite 203, Newport Beach CA 92660.

February 12-14

Data Communications Conference and Exhibition, Harbour Castle Hilton, Toronto Ontario, Canada. Panel sessions, presentations, workshops, and technical sessions related to the field of data communications will be featured. Network control, management, performance and architecture; communications hardware and software; fiber optics; distributed data processing; and international communications policies are some of the subject areas that will be discussed.

The exhibition at the convention center will feature over 100 exhibitors.

For more information, contact Whitsed Publishing

Ltd, Suite 2504, 2 Bloor St W, Toronto Ontario M4W 3E2 CANADA.

Fphruary 13-15
The IEEE International Solid State Circuits Conference, San Francisco CA. This conference is a forum for the presentation of advancements in all aspects of solid state circuits. It will cover design, performance, fabrication, testing, and applications in digital, analog, microwave, and other areas of new solid state circuits, device structures, phenomena and systems. For more information, contact Lewis Winner, 301 Almeria Ave, POB 343788, Coral Gables FL 33134.

Februtry 18-21

European Information

Management Exhibition and Conference, Wembley Conference Centre, London England. This show will exhibit microcomputer systems and peripheral items with demonstrations and applications focused on problem solving for the management executive. Contact, Expoconsul, 420 Lexington Ave, New York NY 10017.

Fehruary 22-23
Louisiana Computer Exposition, University of Southwestern Louisiana, Lafayette LA. This conference is entitled "Distributed Systems Based on Mini and Micro Computers." It will cover programming languages, operating systems, evaluation of distributed systems, design criteria for distributed systems, and other related topics. There will be exhibitions of equipment and papers will be read and discussed. For more information, contact the Computer Science Dept, University of Southwestern Louisiana, POB 44330, Lafayette LA 70504.

February 25-27

Communication Networks '80, Shoreham Americana Hotel, Washington DC. This
conference and exposition will cover business communications. For program information, contact the Director of Program Development, The Conference Company, 60 Austin St, Newton MA 02160. For exhibit information, contact the national sales manager, Communications Networks '80, POB 96, Haddon Heights NJ 08035.

Felruary 25-28
Compcon 80, Jack Tar Hotel, San Francisco CA. The conference theme is 'VLSI: New Architecture Horizons." It will be devoted to developing advanced technologies for computers. Contact Compcon Spring '80, POB 639, Silver Spring MD 20901.

February 26-28 Nepcon West ' 80 , Anaheim Convention Center, Anaheim CA. The conference and exhibit will deal with the latest advances in electronics by covering such topics as wave soldering, etching, automated assembly, die attaching, hybrid circuit packaging, photo lithography, precious metal recovery, laser annealing, and much more. For further information, contact ISCM Inc, 222 W Adams St. Chicago IL 60606.

February 26-20
Office/Korea/80, Korea Exhibition Center, Seoul Korea. Exhibits at this exposition will include the range of products needed in offices from computers, word processing equipment and software to stationary, supplies, furniture and services. Information about the show may be obtained from Expoconsul, a division of Clapp and Poliak, 420 Lexington Ave, New York NY 10017.

MARCH 1980

March 3-5
Office Automation Conference, Georgia World

Guaranteed software from Data Access Corporation. . .

TRS-80 ISDMS INDEXED SEQUENTIAL DATA MANAGEMENT SYSTEM

Interactive Data Base Definition Random Key Access To Any Record Sequential Key Access To Any Record Fast Assembler Sorting On Any Field Complete Interactive File Maintenance
Fast In-Memory Directory Of All Records Automatic Blocking \& Unblocking Of Records Loads It's Assembler Program from BASIC BASIC \& Assembler Source Included Sample Data \& Programs Included Includes Assembler Disk Sort
INKEY\$ Data Entry Routine Runs On 2, 3 or 4 Drives

IF YOU'VE GOT A TRS-80* DISK SYSTEM, WE'VE GOT A FAST, FEATURE PACKED SOFTWARE SYSTEM THAT'S READY TO GO TO WORK FOR YOU NOW! INTERACTIVELY DEFINE A DATA BASE AND BEGIN USING IT IN HOURS! BUILD YOUR APPLICATION WITH ISDMS, ITS A SOLID FOUNDATION!

PRICE: $\$ 175$.

ISDMS WITH REPORT GENERATOR

The complete ISDMS Package combined with a report definition and generation program. With ISDMS and the Report Generator you can create a complete file and report system without writing a line of code!

PRICE: $\$ 225$

TRS-80 BUSINESS PROGRAMS TRS-80 Model II conversions available soon

Accounts Receivable, up to 1200 Accounts $\$ 500$
On-Line Inventory, up to 1800 Items. $\$ 600$
Point Of Sale Inventory, up to 3000 Items \$750
General Ledger w/Check Writer $\$ 500$
Payroll, All Fed., State Taxes, Tips \& EIC $\$ 500$
Mailing List, up to 1800 names on 4 Disks \$200Licensed copies of Data Access 'TRS-80 programsare guaranteed to load and run on operationalsystems, and to be free from programming defects.
DEALER INQUIRIES INVITED
Data Access Corporation

Congress Center, Atlanta GA. A combination conference and exhibition of office computer systems has been developed to help management understand the growing technology of business computer systems. For more information, contact H A Bruno and Associates Inc, 78 E 56th St, New York NY 10022.

March 10-12
1980 National Office Exhibition and Conference, Automotive Building, Exhibition PI, Toronto Canada. Subject areas of the conference will include energy conservation, small business computers, micrographics, word processing, telecommunications, copiers, office landscaping, and many others. There will be approximately 100 exhibitors presenting their products and giving demonstrations.
For more information, contact Whitsed Publishing Ltd, Suite 2504, 2 Bloor St W, Toronto Ontario M4W

$3 E 2$ CANADA.

March 14-16 West Coast Computer Faire, Civic Auditorium and Brooks Hall, San Francisco CA. An expected 15,000 attendees, over 340 exhibits, and more than 100 conference speakers will highlight this year's program. Exhibitor and speaker information may be requested from the Computer Faire, 333 Swett Rd, Woodside CA 94062.

March 17-20

Interface '80, Miami Beach Convention Center, Miami Beach FL. This conference and exposition is devoted to data communications, distributed data processing, and networking. Approximately 1000 exhibitors are expected and attendance is expected to exceed 12,000 . For information, contact Interface '80, 160 Speen St, Framingham MA 01701.

March 17-21

Applied Time Series
Analysis, University of

California at Los Angeles CA. This course is designed for engineers, scientists, programmers, economists and other users of digital time series who require modern methods of data analysis using the fast Fourier transform, digital filtering, power spectral densities and correlation functions. The lectures cover topics relating to the Fourier transform, sampling linear systems, convolution, covariance, digital filtering, power and cross-spectral density functions, and introductions to new methods in spectral analysis and rotating machinery analysis. For more information, contact UCLA Extension, 10995 Le Conte Ave, Los Angeles CA 90024.

March 20

Electronic Road Shows, Castaways Restaurant, Burbank CA. See January 17 for details.

March 24-28
Fourth European Conference
on Electrotechnics, Stuttgart. This conference will review recent development trends and applications in the field of microelectronics. Microprocessors, computer communication, industrial electronics applications of microelectronics in the automobile and in medicine, and other topics will be covered. The conference language will be English. Contact Professor Dr W E Proebster, IBM Deutschland GmbH, Postfach 800880 , D-7000 Stuttgart 80 GERMANY (BRD).

March 26-28
Viewdata '80, Wembley Conference Centre, London England. Viewdata 80 is an international exhibition and conference on video-based systems and microcomputer industries. The British Post Office is presenting the Prestel Show, about electronic mail services.

Contact TMAC, 680
Beach St, Suite 428, San
Francisco CA 94109.

MILEL OSBORNE BUSINESS SOFTWARE in CBASIC2 or CROMEMCO 16K BASIC

	* features *
Four Complete Packages...	
	- General Ledger
	Accounts Receivall
	Acrounts Payable
	Payroll with Cost Accountin
Strong support from Osborne Manuals	
	CBASIC2 runs under CP/M or under CDO version 1.07 on Cromemco compulers
	16K BASIC runs on Cromemco compu
	Cursor addressing routines for Hazelline, Lear Siegter and Cromemon (Beehive) Terminals
	Source Codes and Installation Instructions provided along with disks
	lomatic Command Start-up

* hardware required *
- One or more 8" or 5" Floppy Drives
- CRT with cursor addressing
- 132-Column Printer

\$ 95 per package 1OONON: Add Si In ohypurix C sin add th-1:37 Suhen 1 .4 COLDII CAROS ACCIPIEO

- dealer inquiries invited.

- Call or Write for free Catalogue and More Information -
* We will Customize any of our programs at our Standard Consulting Rates *

Ah! MICAMSatisfyin' Software
That turns your system on!
MICro Applications and Hardware

- CONSULTANTS and SOftWare developers -

MICAH Box 22212 San Francisco, California 94122 USA phone: 415/664-0778

TRS-80, PET, A.E. soncent HardwarelSoftware Systems

Available now:

- HAM INTERFACE--including the most sophisticated RTTY systems money can buy.
- Baudot and ASC I I printer interfaces.
- Electra Sketch", ANIMATION GRAPHICS Compiler

W rite or call for free catalog

MACROTRONICS, inc.

P.O. Box 518 (A) Keyes, CA 95328 (209) $634.8888 / 667 \cdot 2888$ (R) (S) We are experiencing telephone difficulties, please keep trying.

Circle 166 on inquiry card.

searching through

 NORTH STARBASIC PROGRAM LISTINGS. ITR OUR NEW "SCAN" COMMAND YOU CA INSTANTLY OISPLAY OR PRINT

- all lines that contain a selected variable - all occurrences of gosub or goto ALMBER
- all references to any line nutiben
- all occurrences of any character. number. LINE NUMBER. GROUP OF CHARACTERS OR ANYTHING THAT IS CONTAINED IN ANY BASIC LINE Tlus +s not onp of how "lunuy wroprams wititen in BASIC" It is NORIH STAR BASIC 11 wonl not citeci noumat OASIC

 -
- Available for version 6 as well as 14 digit basic
- State your verston when ordering

Dealer inizuiries Inviled

ELECTRONIC TECHNICIANS
SOFP:IARE SERVICES
1012 CASITAS PASS RD
CARPINTERIA. CA 93013 805.684 .6049

DISCOUNT PRICES

NORTH STAR APPLE $\|$
POLYMORPHIC INTERACT HAZELTINE SOROC CENTRONICS MICROTEK INTERTUBE \& Others

Call for Prices (301) 694-8884

FREDERICK COMPUTER PRODUCTS
Municipal Airport
Frederick, MD. 21701
Circle 167 on inquiry card.

The AE-35 is a one-board microcomputer ulllizing
The AE-35 is a one-board microcomputer ullilzing
\qquad

- an 8 -bit inout, output, and bl-directional port - fully programmable nand shake llnes on each port
- crystal dased fímer
- bytes
- provisions for program memory to 4 K Dytes
- single supoly capabilily (+5 V)
- Smain 10 cos (99.95-sing

Contact factory for avallability
money order, check, or C.O.D.
Adfoll Electronles, Inc.
5 East Long Stroet, Sulte 1012 614.221 .3080

Circle 168 on inquiry card.

Memorex Floppy Discs

 Lowest prices. WE WILL NOT BE UNDERSOLD! Buy any quantity 1-1000. Visa. Mastercharge accepted. Cail free (800)235-4137 for prices and Information. All orders sent postage paid.

Circle 171 on inquiry card.

H9 OWNERS!

Now you too can have graphic capabilities similar to those of the TRS•80 with GRAFIX. No modification to ex isting circuit boards is required. GRAFIX simply plugs into existing IC sockets.
Comes with complete instructions. Full 6 month warranty.

Kit \$59.95

Assembled and tested $\$ 69.95$

Northwest Computer
 Services, Inc.

8503 N.E. 30th Avenue Vancouver, WA 98665

CASSETTE
DUPLICATION

TRS-80 (I \& II). PET, APPLE, KIM. ATARI
Quality software duplication is more than copying cassettes. Microsette duplication uses a proprietary high speed duplicator designed specifically for computer program duplication. The finished products are of consistent quality, guaranteed to load. Minimum order is 100 with discounts for higher quantities. Call (415) 968-1604 for details.

MICROSETTE CO. 475 Ellis Street
Mt. View, CA 94043

CATCH THE S-100 INC. BUS!

Ithaca Audio Z-80 Processor, Assembled \& Tested 2 MHZ
Godbout Econoram IIA, 4 MHZ 8 K "Unkit"
Mullen TB-2 Extender Board with Probe-Kit
$49.00 \quad 39.00$
Morrow's Micro Stuff/Thinker Toys Switchboard Kit
$199.00 \quad 165.00$
North Star Horizon 2-32k-D Assembled \& Tested
$2765.00 \quad 2299.00$
S.D. Systems Z-80 Starter Kit w/PIO
$249.00 \quad 210.00$

Subject to Available Quantities - Prices Quoted Include Cash Discounts Shipping \& Insurance Extra. We carry all major lines such as
S.D. Systems, Cromemco. IMSAI, Vector Graphics, North Star, Sanyo, ECT, TEI, Godhout, Thinker Toys, Hazeltine, IMC For a special cash price telephone us.

Bus. S-IDD,inc. Address. . 7 White Place Clark, N.J. 07066 Interface. . 201-382.1318

A French-English/ English-French Dictionary

Dr Fred Levit, 251 E Chicago Ave, Chicago IL 60611

The program FRENGLSH turns a microcomputer into a foreign language dictionary. As written here, it will look up the French or English word entered and then print the translation. It does not translate phrases or sentences, but serves as a replacement for a paper dictionary.
FRENGLSH is written in CBASIC and uses two files which are stored on a disk. The first file, called DICTION, is a random access file each record of which contains pairs of words with the pairs separated by slashes. Each pair of words consists of a French word followed by a dollar sign and then the corresponding English word, or an English word followed by a colon and then the corresponding French word. As you can see in table 1, the word pairs are arranged in the record alphabetically by the left-hand word of each pair.
The second file used by FRENGLSH is called FRINDEX and is an index to the diction file. It contains a list of the first words in each record of the DICTION file, arranged alphabetically, with the corresponding line number in the DICTION file where that word is found. This file is read into an array in memory so that it can be searched rapidly when the program is running.
When a word is entered, FRENGLSH first searches the index to find the line number in DICTION where the wanted word pair will be found (lines 70 to 97 of listing 1). It then goes to that line in the file and searches the record for the wanted word plus the correct separator. Searching for the word with the separator appended avoids problems caused by similarly spelled words with different meanings which may be shared by French and English. When the correct left-hand member of the word pair has been found then the right-hand member of the pair is extracted (lines 99 thru 108, listing 1) and the entered word and its translation are printed.(See listing 2.)

The DICTION file contains about 1100 French words, which includes those most commonly used and needed by someone studying the language. Naturally not every word one might seek can be found, but, before giving up, FRENGLSH does one more thing. The infinitive form of most French verbs ends in er or -oir, and that is the way the verbs are listed in a dictionary. But many verbs are most frequently encountered in the second person form,

Table 1: A portion of the file DICTION. Each record of 240 characters or less occupies about two and a half lines. Note that the words are in pairs, either French\$English or English:French. The list is alphabetized by the left-hand word in each pair.
"/A\$TO/ABORD\$APPROACH/ABOVE:AU-DESSUS(V)/ABOVE ALL:SURTOUT/ABSENCE:ABSENCE(LA)/ABSENCE\$ABSENCEI ABSENT:ABSENT/ABSENT\$ABSENT/ABSOLUMENT\$ABSOLUTELYI ABSOLUTELY:ABSOLUMENT/ACCEPT:ACCEPTER/"
"/ACCEPTER\$ACCEPT(TO)/ACCIDENT\$ACCIDENT/ACCIDENT: ACCIDENT(LE)/ACCORD\$AGREEMENT/ACCOUNT:COMPTE(LE)/ ACE:AS(LE)/ACHAT\$PURCHASE/ACHETER\$BUY(TO)/ACHEVER\$ FINISH(TO)/ACIER\$STEEL/ACQUAINTANCE:CONNAISSANCE(LA)/"'
"IACQUERIR\$ACQUIREIACQUIRE:ACQUERIRIACROSS: TRAVERSIACT:AGIRIACTIF \$ACTIVEIACTION\$ACTION OR STOCK/ACTION:ACTION/ACTIVE:ACTIF/ACTUEL\$PRESENT TIMEIADD:AJOUTERIADDITION\$CHECK(RESTAURANT)."
"/ADDITIONAL:ADDITIONNELIADDITIONNEL\$ADDITIONAL/ ADDRESSER\$ADDRESS(TO)/ADIEU\$GOODBYE/ADMETTRE\$ ADMIT(TO)/ADMIT:ADMETTRE/ADRESS:ADRESSE(LA)/ADRESSE\$ ADRESSIADULT:ADULTE(LE)/ADULTE $A D U L T T^{\prime \prime}$
"/ADVANCE(TO):AVANCER/ADVANTAGE:AVANTAGE(LE)! ADVENIR\$HAPPEN(TO)/ADVENTURE:AVENTURE(LA)। ADVERTISEMENT:ANNONCE(LA)/AFFAIRE\$BUSINESS/AFIN\$SO THAT/AFRICA:AFRIQUE(LA)/AFFIQUE\$AFRICA/AFTER:APRES ${ }^{\prime \prime}$
"/AFTERNOON:APRES-MIDI(LE)/AFTERWARDS:ENSUITE/ AGAINST:CONTRE/AGIR\$ACT(TO)/AGREEMENT:ACCORD(LE) AIDE\$HELPIAIDER\$HELP(TO)/AILLEURS\$ELSEWHERE/AIMABLE\$ AMIABLEIAIMER\$LIKE OR LOVEIAINSI\$SO/AIR\$AIRI'
"/AIR:A
$B>$

Listing 1: A listing of FRENGLSH. The program is written in CBASIC so that the line numbers at the left are not referenced by GOTO statements. Instead statement numbers are added by the programmer for statements which must be returned to. For example, line 61: GOTO 75 sends the program to line 48 , which is statement 75.

```
PEM PPDGPAM FREMGLSH IS COPYPIGHTED (1978) bY
PEN THE PUTHOR, FQED LEVIT M.D., AND ALLG PIGHTS
M THE FESEPVED.
    DIM WOPDS(198),LINE.NUM:189)
    PPINT -% 1.G-
    epintipfintippint
    ffint thar30);-PPDgram FREMELSM-
    FRINT TAR,ZEI:"A FPENCM-EMGLISH-FPENCH DICTIONAPY'
    gRINT:PRINT
    PRINT METAGTIMG mDDE is cOEMCM-EMGLISH. TO DEVEDSE mODE
    PRIMMT ENTEP A I IMSTEAD OF A WOPD-
    point-io end tme program emtep a & instead df a nord*
    p&IMT:PEIMT
    print "plefse wimt 40 secomis uhile ime load
    PEINT:PPINT
    dPEm -diction" pecl zo4 n: ě
    MODE%="F"
EM
    FEM #FFIMIEXND IMDEXINTD M
    IF EML' al THEM 50
    M1/2lLE -1
        PEAB nI.N:WDADS/NP,LINE.NUMIM
        N=1!+1
    wemi
    So clo:E 1
    peint -emtep fmench wdili aftee fri= dp englism after em= -
    PFINT:PFIMT
pEM
                    emter mofd to be :Olight
    3 PFIMT:PFINT
```



```
        fyT ElHTEEED.uOpDS
    #5 WOFi. :OUGHTS=EMTEPED. WDSLS
    IF WDND.:DNEMT3="%" THEM:TOF
```



```
        MJF/h.:OMNHT &=
        M0 IO =5
    IF MOFD.: :UGMTS="1" ANL MINES="E" THEN-
        MOREs="F":
DEM
        pal waflo:Oughts to 15 chapacteps
        MHILE LEM.MOpD.jOUSHTs%-1s
```


DEC LSI-11 Components Dependable service at discount prices Domestic and Export
 Computer Suppliers,line. 25 Chatham Rd., Summit, N.J. 07901 Since 1973
(201) 277-6150 Telex 13-6476
©Mini Computer Suppliers. Inc.

Listing 1 continued:


```
MEM
                EEgIN SENTCH OF INHEY:
    TGF.LINE =1
    METTOM.LINE = N-1
```



```
    IF WDFIL.:OUGWTS = WOELS'MIDLINED
        THEHI LITE. SOUGMT =MIDLIME:\
        60 TO 340
```



```
        THEN EDTTDM.LINE=MIDLINE
```



```
        THEM IOF.LINE=MIOLINE
        if gotTOM.line-top.lime me I then-
        60 T0 10%
    IF WOPLIM, :OMSMTS LT HOFHACEOTTOM.LINES
        THETH LINE. SOUGNT =TOF. LINE:
        GO TO 500
    IF WDFD.: OUGHTS, SE WIPDS.EATTOM.LINES
        THEM LIHE.:OUSHT=KDTTOM. LINE:
        % 10 500
mEM
            MaTCH FOE wapt heEDED
    S00 PEFG mE.LINE.SOUGHT:AS
        LOCI= MGITCH.ENTEFED. WOF[HS+SEPAFATOPS.FS. 1)
        IF LOC: = O THEN TOD TO 1000
```



```
            fFINT TRANELGTEII LNGFD
    #PINT ENTEPED.WOFDB:" = - :TRGNELGTEDS
    $0 TO -5
                WGFID HOT FDUMD. CMECH FOF YERB ENIIMG
    LOUM FPINT ENTEPED.WDFDS:" NOT FOUND.: *:
    IF PIGHTS EMTEPED.HOPDS,E) E"Eこ" THEM\
        ENTEPED. WDFHS=LEFTS/ENTEPED.WOFDs.LENIENTERED, HOPDS)-こ) +"ER":N
        G0 10 s5
    IF FIGHTS|ENTERED.WOPD&,Z,#"ER" THEN
```



```
        % % 35
    FRINT "WH: YOUP WOFlV :RELLED CDPPECTLY %"
    80 TD 75
    ENH
```

ending in ez. For example, vouloir means "to want" while voulez means "you want." Parler means "to talk" and parlez means "you talk." If the word you give to FRENGLSH ends in ez and is not found in the DICTION file, FRENGLSH will search for the root of the word with an er ending, and, if that fails, for an -oir ending (lines 116 thru 128 in listing 1). Only if those additional two searches are unsuccessful does FRENGLSH report failure.

As can be seen, at 130 lines, including comments and blank lines, FRENGLSH is not a very long program. Of course, the real problem is in creating the DICTION file with its thousands of words. This was done by using several other programs. One program permitted the entry of word pairs, assigning the correct separator, and writing the list to a file which was then corrected using the system editor. These lists were concatenated as they

Listing 2: In this run of FRENGLSH the first prompt $F R=$? was answered by typing "bonjour," and FRENGLSH found the corresponding English word "hello." In the third example, the word "voulez" is not the dictionary form of the verb. The eze ending signifies it is second-person present tense. FRENGLSH did not therefore find "voulez," so it looked for the stem of the word with common infinitive endings, er or -oir. "Vouloir," the correct infinitive form of the verb, was found and the corresponding English was printed.

PROGRAM FRENFLSH
A FRENCH-ENGLISH-FRENCH HICTIONARY

STARTING MOLIE IS FRENC:H-ENGLISH. TI REVERSE MODE ENTER A 1 INSTEAII DF A WIRD

TD ENI THE PROGRAM ENTER A 9 INETEAD DF A MORD

FLEESE MAIT 40 SECDNDS NIHILE WE LDAII

ENTER FRENCH LDRD HFTER FR= DR ENGLISH AFTER EN=

```
FR= % EDNJDUR
EDNHUNF = HELLD
FR= % ATTERIR
HTTERIR = TQ LANII (AIRPLANE)
FF= ? VDULEZ
```



```
FR= ?
```

were created, and the completed list was split into twenty-six separate lists, each beginning with a different letter of the alphabet. These individual lists were then proofread, corrected, concatenated, and alphabetized to make a single long file. The final file was then read by a program which created the DICTION file by inserting slashes between the word pairs and assembling the pairs into records of 204 or less characters. Finally a small program was used to read the first word in each record in the DICTION file, together with its record number, to create FRINDEX, the index file.

FRENGLSH is quite fast. Most of the time it is considerably faster than thumbing the pages of a paper dictionary, especially for people like me who have never really learned which letters follow which in the alphabet.

Z80 User Stack Emulation

Allen Gelder, Box 11721 Main Post Office,
San Francisco CA 94101

Passing arguments to subroutines via the Z 80 hardware stack is complicated by the presence of the subroutine return address at the top of the stack. This artifact of the CALL instruction makes a cork-in-thebottle effect that precludes just PUSHing the arguments onto the stack and later POPing them into the subroutine after the CALL. The problem is solved on the new Motorola 6809 by the addition of a user stack which does
not participate in the CALL housekeeping. Such a structure is easily emulated and can be integrated very naturally into the Z 80 instruction set by the use of the restart instruction group.
Recall that the restart (RST) instructions are 1-byte calls to selected page 0 locations. For example, hexadecimal op code D7 is RST 10. When program flow encounters this instruction, the program counter (register PC) will be pushed onto the stack and control will be transferred to location 0010. Often this location contains a vector to the actual routine, which will typically be concluded by a return (RET). This is the arrangement here (see listing 2, page 210). It is easy to link this emulation; just initialize UPSTOR with a 2 -byte user pointer to the desired top of the user stack, and then vector the restarts as indicated. (See listing 1, page 210.)
When program flow encounters a D7 op code (RST 10), the result will be a POPU DE, that is, the top of the user stack will be popped into DE, and the user pointer (UP) will be updated. Similarly, a DF op code (RST 18) will result in a PSHU DE onto the top of the user stack, etc (see table 1). This action is perfectly consistent with current hardware stack usage, right down to the near congruence of the POPU and PSHU instruction bytes.
The difference is that this stack is totally controlled by the user, at very little programming expense. In the configuration of table 1, the user stack access covers the primary register pairs $\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$ and AF. An alternative assignment (see listing 3, page 210, and table 2) of restarts can include registers IX and IY. This is at the expense of register pairs DE and AF, but saves one byte over the corresponding PUSH or POP IX (or IY) instruction.

Interpretation of the restart group of instructions is varied. In the literature, the restart instructions are described as saving space, useful for interrupts, or as leftover 8080 instructions. In practice they are often usurped by the input/output (I/O) software, or perhaps page 0 is submerged in read-only memory. If this is the case in your Z80-based system, it is worth looking for a vector table in programmable memory or in some other way gaining access to the restart instructions. Because they are an embedded group of 1-byte, user-programmable instructions, they bestow a kind of microprogrammability on the Z80.

User Stack Instruction										Hardware Stack			Instruction
POPU	BC	C7	(RST00)	POP BC	C1								
PSHU	BC	CF	(RST08)	PUSH BC	C5								
POPU	DE	D7	(RST10)	POP DE	D1								
PSHU	DE	DF	(RST18)	PUSH DE	D5								
POPU	HL	E7	(RST20	POP HL	E1								
PSHU	HL	EF	(RST28)	PUSH HL	E5								
POPUU	AF	F7	(RST30)	POP AF	F1								
PSHU	AF	FF	(RST38)	PUSH AF	F5								

Table 1: Restart (RST) instructions assigned to user stack in listing 1.

User-Stack Instruction				Hardware-Stack			Instruction
POPU	IX	D7	(RST10)	POP IX	DDE1		
PSHU	IX	DF	(RST18)	PUSH IX	DDE5		
POPU	IY	F7	(RST30)	POP IY	FDE1		
PSHU	IY	FF	(RST38)	PUSH IY	FDE5		

Table 2: Restart (RST) instruction assignments made by modified user-stack emulation in listing 2.

In this user stack setup, the restart instructions are exploited as 1-byte PSHU and POPU instructions in service of an emulated processor architectural feature. They could as easily call an emulated addressing mode not available on the Z 80 . The point is that an appropriate use of the restart group is in calling instruction-like subroutines that represent the primitives serving the user's own fanciful structure. Thus you can design your own corner of the Z80. Let your curiosity PSHU into trying it.

$9^{\text {new }}$ kits!

QK-100 Triple A. D Converter
$\$ 36.95$
QK-101 Dual Air Temperature Sensors
QK-102 Dual Ground Moisture Sensors
QK-103 Power Supply with Dual Sockets
QK-104 Dual Liquid Temperature Sensors
QK-105 Dual Photo Sensors
QK-106 Dual Water Level Sensors
QK-108 Dual Surface Temperature Sensors
QK-109 Dual Hall-Effect DC Magnetic Sensors
QK-110 Mulitiplier and Voltage-Controlled AmD
QK-112 Peak Sense and Hold/Sample and Hold
QK-115 8/16 Input Analog Multiplexer
QK-122 Dual Instrumentation Amplifier
QK-124 Log and Antı-Logarithmic Functions
QK-133 Multiple Audible Alarm
QK-134 Multiple Analug Comparators
QK-138 Dual "People" Sensors
QK-900 Socket and Mounting Board

SOFTWARE BREAKTHROUGH!

A true breakthrough in 8080 development software has been achieved...

R-A-I-D

RAID stands for "Real-time Interactive Assembler Debug," but RAID is much more.

SIMULATOR - AAD is st atue simulaor and reat Imme debug in one! Simulation mode provides TOTAL CONTROL of test program. It's crash proof! Segments of memory may be wrile.protected. limits specified for stack. program counter, elc. Simulation mode is transparent and both modes may be used together for high speed simulations.

SYMBOLIC DEBUG - RAid is a tully symbolic debug, including labels and operands! Also included are multiple radix. multiple break points. memory search. 9 display formals. single-step, multi-step, displaylalter registers or memory. programmable outpul, etc. Over 70 commands in all!

ASSEMBLYIDIS-ASSEMBLY - memary may be displayed or altered in instruclion mnemonic form com. plete with symbolic labels and operands. Exclusive feature per. mits "following" subroulines during dis-assembly.

TRACING - Elaborate trace lacilities have been included. Trace each instruction as execuled. trace subroutines as enlered and exited, Irace by breakpoinl dumps with user programmable dump data

FULL DISK ACCESS
In addition to toading/. saving named files. RAID permits reading/writing on a specified Irack \& sector basis

FLOATING POINT OPTION • permis direct display or alteration ol FPP (see below) numbers. 12 digit mantissa. exponent to ± 127. BCD format.

CP/M COMPATIBLE - pAID will un on any CP/M sysiem of 24 K or more. Works with both ASM and MAC assemblers fully symbolically.

TO ORDER: Specify software desired and enclose check or money order (COD ok).
A) RAID without floating point option
$\$ 150.00$
B) RAID with floating point option, and FPP source code $\$ 250.00$
C) FPP Floating Point Processor only
$\$ 125.00$
D) RAID Documentation Only
$\$ 25.00$
E) ISIS to CPM Conversion Utilities $\$ 125.00$

All software supplied on CP/M compatible 8" diskette. ISIS versions also available.
 Birmingham, AL 35205 (205) 933-1659

Listing 1: Vectoring RST10.

0010 C310 5000099 RST10 JP FROM10 : Now D7 calls FROM 10

Listing 2: Assembled program for $Z 80$ user-stack emulation using restart (RST) instructions.

5000	00100		Ont	50001		
5000 00	00161	SPSTOR	NOP			Sf : 9 aved here.
5001 D¢	00102		NOP			
500200	00103	UPSTOR	NOP			(1) saved here.
5003 D0	00104		NOP			
500:: E5	00105	FROMOD	PUSH	HL		Vector CT : Crrro .
5005 21C1め	00106		Lil			
50081828	00107		JR	USRSTK		
500A E5	00108	FROMD 8	PUSH	HL		Vector CF here.
500B 21C500	00109		LD	HL, Ø0C5H		
500E 1822	00110		JR	USRSTK		
5010 E5	10111	FROM1 1	PUSH	HL	;	Vector Di nere.
5011210100	. 20112		LD	HL, 00 D 1 H		
5014 181C	00113		JR	USnsonk		
5016 E5	00114	FROM1 8	PUSH	HL	;	Vector NF here.
5017 21D500	00115		LD	HL, $\emptyset 0 \mathrm{D} 5 \mathrm{H}$		
501A 1916	00116		$\therefore \mathrm{R}$	USRSTK		
501r E5	00117	FROM2D	PUSH	HL.	;	Vertor F7 here.
501D 21E100	00118		LD	:!L, ØØE]H		
50201810	00119		JR	USIRSTK		
5022 E5	nol20	FROMas	! USH	HL	;	Vector Ef here.
5023 21E500	001.1		LD	111, DOE5 H		
5026 180A	00122		JR	USRSTK		
5028 E5	00123	FROL 30	PUSH	HL	;	Vertor Fi here.
5029 21F100	00124		LD	H1, DOF 2 H		
502C 1804	00125		IR	UGRSTK		
502E E5	00126	FROM 38	PUSII	HL	;	Vertur FF here.
502F 21F500	00127		LD	HL, OOF5 ${ }^{\text {d }}$		
5032223 F 50	00128	USRSTK	LD	(OPS'OR), HL	;	Flare in OPGTOR.
5035 E 1	001:99		POP	HL		
5036 ED' 30050	00130		1.1	(SPGTMP), SP	;	Save the if.
503A ED7B0?50	141131		LD	(3P, (UFSTOR)	;	Initialize : ser - stack.
503E: $\emptyset \emptyset$	00132	OP: TOR	NOP		;	Event hafpens here.
503 F D0	00132		NOP			
501:0 ED730250	0013%		LD	(UFSTOR), SP		Save the lle.
504.4 ED7EØ050	00135		LD	SP, (SPSTOR)	,	Restore the Sf.
5048 C9	00136		RET			Hack to prograr.

Listing 3: Alternate assembled listing to include index registers $I X$ and IY. These two sections of code are directly substituted for the code in listing 2.

5010 E5
5011 21DDE1
5014 181C
5016 F. 5
5017 21DDE5
501A 1816

00111 FROMI	PUSH
00112	LD
00113	JR
00114 FROM18	PUSH
00115	LD
00116	JR

H. ; Vector ! 7 here.

HL, E1DDH
US:RSTK
Hil. ; Vector DF here.
HL, E.5 DDH
USRSTK

5028 E 5	00123	FROIA 36	$\mathrm{PIJ}=\mathrm{H}$	HL	Vector F't here.
5029 21FDE1	00124		LD	HL, E1FDH	
502C 1804	00125		JR	USRSTK	
502E E5	00126	FROM 38	PUSH	HL	; Vector FF here.
502F 21FDE5	00127		LD	HL, ESFDH	
$5032223 E 50$	00128	USRSTK	LD	(OPSTOR),	; Place in OPSTOR

16K STATIC MEMORY (RAM)

250 nsec Access Time, Assembled. tested, and Guaranteed. $\$ 300.00$
Fully Static - TMS 4044
S. 100 Bus - Buffered lines, Dip Sw address in 2. 8 K blocks 4 K incr., Write Protect, Phantom disable, Battery backup, fully Socketed. Bank Select - Porl 40H (Cromemco Software Comp.). 80 H or COH .
Guarantee - One full year. To order, call for Visa. M.C. or C.O.D. (\$4 fee.) Personal check o.k. M.O. speeds shipping. Stock to 72 hour clelivery. Illinois residents add $5 \% \%$ tak.

S. C. DIGITAL

P.O. Box 906, Aurora, IL 60507 Phone: (312) 897-7749

Circle 181 on inquiry card.

BYTE's New

 Toll-free Subscriber W.A.T.S. Line (800) 258-5485To further improve service to our customers we have installed a toll-free WATS line in qur Peterborough, New Hampshire office. If you would like to order a subscription to BYTE, or if have a question related to a BYTE subscription, you are invited to call (800) $258-5485$ between 8:30 AM and 4:30 PM Eastern Time. This applies to calls from within the continental US onf:

We thank you and teol forward to serving you

GAME DESIGN

Leading Coin-op Amusement Game company will consider use of YOUR pinball, video or other game idea on a royalty, commission or other basis. WRITE FOR DISCLOSURE FORM BEFORE SUBMITTING GAME IDEA.

Department BMA

P.O. Box 236

Bensenville, IL 60106

H-8 OWNERS

AD-8/4 H

Analog/Digital Subsystem

- 8 Analog Input Channels
- $100 \mu \mathrm{~S}$ A/D Conversion Time
- 4 Analog Output Channels-

Each with Sample and Hold

- Full 8 Bit Resolution
- Uses Single Card Slot
- Fully Assembled and Tested
- Full Documentation Provided
- VISA and M.C. Accepted
$\$ 125.00$
CCM, Inc.
P.O. Box 2308

Reston, VA 22091

Circle 182 on inquiry card.

STATISTICAL DATA

DATABANK programs contain 10 years of monthly statistical data on ten related subjects. Information is the most current available. Each cassette is date stamped. Includes graphs, tables, trends, comparisons, update routine, and external input.
Programs available for TRS-80 L2, 16 K

- General Economy
- Manufacturing \&e Trade
- Industrial Production
- Money \&e Credit
- Money Rates \&e Yields
- Commodity Spot Prices
- Mortgage Terms de Yields
- Forelgn Exchange Rates
- Energy Production
- Petroleum Production
$\$ 29.95$ each
3 for $\$ 84.95$
Cassette storage album included with order for six or more programs.
D DATABANK POB 9883
Ft Lauderdale, FL 33310

Circle 184 on inquiry card

THE AMSAT-GOLEM 80 PROJECT

Front Panel Hardware

Boards

$\$ 45.00$

Kits $\$ 245.00$
Assembled and Tested
$\$ 349.00$
AMS80 Software
Documentation (178 pages)
$\$ 15.00$
Source code $8^{\prime \prime} \mathrm{CP} / \mathrm{M}^{\bullet}$ disc $\$ 30.00$
Source code 5" Northstar* (CP/M*) $\$ 30.00$
Object Code $5^{\prime \prime}$ Northstar" $\$ 10.00$
Write for information on other S-100 cards and software optimized for Amateur Radio communications, control and logging

SNOW MICRO SYSTEMS INC.
P.O. Box 1704

Silver Spring, MD 20902

CP/M and Northstat are registered trademarks.

Circle 183 on inquiry card

Radio Shaeki oun....
 COMPUTER CENTER

MILRI MANAGEMENT
 sYstems Up To 15\% Discount On TRS-80's

```
            WE HAVE THE HIGHLY
            RELIABLE LOBODISK DRIVE
                INSTOCKI
```

 MINIMALL-DOWNTOWN SHOPPING CENTER
 CAIRO, GEORGIA JIV28
 912.377 .7120
 Circle 185 on inquiry card.

RS 232C Computer Compatible Paper Tape Readers Available from Stock

Addmaster Corporation announces that the Model 612 Stand Alone Paper Tape Readera is now available from stock and is shipped in 1 to 3 working days after receipt of order. The Model 612 has greater capacity than earlier models. The ability to read 5 to 8 -level tape and to transmit 7 to 11 frames per character at 50 to 9600 baud are among the new features. Others include starting and stopping on characer af all peeds' cholce 50
 60 Hz power and aven, odd or no parity
RS 232, curroilo Single unit price of the now Model 612 la $\$ 656.00$ Single uni
to $\$ 779.00$

Addmaster Corporation
416 Junipero Serra Drive
San Gabrial CA 91776
(213) 285.1121

Eighteen with a Die A Learning Game Player

Russell R Yost Jr
1825 E Palo Verde Dr Phoenix AZ 85016

The simulation of human intellect by a machine of human invention has fascinated mankind for centuries. Unfortunately, the attainment of such a goal still seems to be distant. The advances in machines that might achieve such a goal seem to be continually offset by additions to our knowledge of the complexity of the human intellectual process. Simple game-playing machines, however, are feasible, and their popularity probably stems from the above mentioned human yearning, even though these games represent only a narrow slice of human intellect.
Game-playing programs are of great value to the personal computer owner, since results of great interest to spouse and neighbors can be produced with only a small investment in memory and software. Rarely do such programs involve more than logic plus simple integer arithmetic, and they are so short that hand assembly of machine-language programs is entirely feasible.
Many games are well adapted to interaction with the human player through the same I/O (input/output) channel used for programming. I am sure that the first program tried by most buyers of the Southwest Technical Products Corp 6800 computer system (after some memory check programs) is the Tic-Tac-Toe program whose listing is supplied with the computer kit.

Although such beginner games soon become boring, game-playing programs of real and continuing challenge are now becoming feasible for all amateur computer owners. Meanwhile, simple game players such as the one described here continue to intrigue computer enthusiasts.

Game Categories

Thus far I have been using the term "game player" loosely, and indeed the term is loosely used in many articles. Three distinct categories are easy to define: puzzles, gambling machines, and man versus machine game players.

It seems to me that a game like Shooting Stars (by Willard I Nico, May 1976 BYTE, page 42) is really a puzzle that the human tries to solve in as few moves as possible. Star Trektype games might be considered examples of a gambling program. Through the use of random number generators, the human's moves produce random results following prescribed odds; luck is involved in the result.

Tic-Tac-Toe is an example of a man versus machine game. The machine plays the role of an adversary, playing by the same rules that apply to the human.

This last category comes the closest to the simulation of human intellect, which is why I feel it is of great interest to the computer owner. However,
all three types of games are interesting to players, and many games combine elements of all three in their architecture.

Game Learning Program

A natural extension of the third category is the game learning and playing program. In this type, the machine is given the rules of the game, but initially does not possess any strategy for selecting its moves. Through playing a series of games with the human, it learns a strategy for increasing its chances of winning. This type comes even closer to the simulation of human intellect.
The design of such machines has been one of my hobbies for over thirty-five years. I recently purchased a computer because my ambitions outgrew what could be built using relays and stepping switches, or even

[^19]small-scale integration logic elements. Software generation for such machines is now my current hobby.
The learning process can be implemented in various ways. One way is the "reward or punishment" approach exemplified by the game Hexapawn, which was described by Martin Gardner and based on a learning machine developed by Donald Michie. (See 'Mathematical Games," Scientific American, volume 206, number 3, March 1962, page 138.)

The computer's response to each game situation is selected at random from a set of legal moves whose individual selection probabilities are the result of a previous experience. After each game in which the computer wins, the moves that it used are enhanced in probability. After each game it loses, the moves that it used are reduced in probability.
Gardner presented a simple model of such a game in which each response was the label of a box containing a certain number of beads. Losing moves were penalized by the removal of beads; winning moves had beads added to their boxes. The probability of selecting a given move in future games was related to the number of beads contained by its box. Robert Weir described a simpler process in which the various response probabilities were either 0 or 1 ("Hexpawn: A Beginning Project in Artificial Intelligence," November 1975 BYTE, page 36).

Win Table

Another learning process is the construction of a table of winning moves for each position or situation of the game. Many games are characterized by the existence of such a table. Each player tries to move to prevent the other player from getting to a winning situation in the table. Such a table is sometimes referred to as a game tree because of the multiple branches that lead to a single final winning position represented by the trunk of the tree.
For learning, the machine can initially be given the table of all possible moves for each game situation, with winning moves unidentified. For each situation the machine plays from, it fills in the winning moves by determining which of its permitted moves prevent the player from reaching a winning situation. Furthermore, after making its move, the machine may

In a game-learning program, the machine is given the rules of the game, but initially possesses no strategy for selecting its moves.

again analyze the new situation, before allowing the player to take his or her turn.

For the early games in a sequence of games, when most of the winning moves are unidentified, this process produces many errors. However, when the end of the game can be reached from the situation being analyzed, this process correctly identifies winning moves.

In subsequent games of a series, the correct entries appearing close to the end of the game permit the correction of earlier errors. To do this, the computer designates as losing moves those resulting in a situation from
which the player can, with a legal move, attain a winning situation.

The net result is that during a series of games, the win table, which originally identified none of the winning moves, is gradually improved until it contains no significant errors and a sufficient number of winning moves to enable the machine to play faultlessly. Thereafter, one of the two players has no chance to win unless the other errs. Naturally, the game must be arranged so that the losing player is the human player; otherwise the learning process would not be apparent.

The above process of computer learning is quite similar to the way a human would learn to play such a game. At the start of the early games, play would be more or less random. Near the end of each game the beginning player would consider the opponent's legal responses to each of the permitted moves, and would try to select one that prevented a win by the opponent. In subsequent games the player would remember the situations from which he or she was able to win,

- Complete Sub-System: DRIVE, CONTROLLER, and CABLES for S100 computers - Uses the most popular drive for small business systems - 10 Megabyte formatted capacity -5 MB fixed platter plus $\simeq 5 \mathrm{MB} 5440$ removable cartridge for FAST BACK-UP and UNLIMITED off line STORAGE - Look Ahead buffer for maximum performance - expandable to 40 MB - Supported by CP/M 2.0, MP/M, Oasis, Famos, Fordos, Tempos Operating Systems a Beautiful teak finish table top (shown) enhances any office decor Rack mount also available ■ Dealers/OEMs contact John Costello.

XCOMP; $\mathbb{N} C ., 9915-A$ Businesspark Ave., San Diego, CA 92131 • (714) 271-8730

CP/Li ${ }^{\circ}$ SOFTWARE TOOLS

HEW ED-80 TEXT EDITOR

ED-80 offers a refreshing new approach for the creation and editing of program and data files conversationally -and it saves you money. Its powerful editing capabilities will satisty the most demanding professional - yet it can still be used by the inexperienced beginner.

Look at These Outstandling Features:

- FULL SCREEN window displays with for ward and backward scrolling for edit ing your data a page-at-a-time, rather than line-by-line.
- Provides you with all the features found on the large mainframe and minicomputer editors, such as IBM, UNIVAC. CDC, and DEC.
- Commands include forward or backward LOCATE. CHANGE, and FIND; and INSERT, DELETE, REPLACE, APPEND, SAVE, PRINT, WINDOW, MACRO, TABSET', SCALE, DUMP, and others.
- Compatible with existing CP/M edit and text formatted files, with CBASIC, and with Microsoft's MBASIC, FORTRAN, COBOL, and ASSEMBLER.
- CHANGE commands allow you to make conditional changes and to use vari able length strings.
- Designed for CP/M and derivative operating systems, including LIFEBOAT CDOS, IMDOS, DOS A, ADOS, etc.
- GET and PUT commands for concatenating, moving, dupticating, and merging your edit files on the same or different diskettes.
- Provides you with fast memory. 0 -memory COPY commands, and an inter: mediate butfer for copying lines over-and-over.
- Saves your last LOCATE, CHANGE, FIND, and APPEND command for éasy re-execution.
Simple line-oriented commands for character string editing
- Safe guards to prevent catastrophic user errors that result in the loss of your edit file.
INLINE command tor your character-oriented editing.
Designed for today's CRT's, video monitors, and teletypewriter terminals. Thoroughly field tested and documented with a comprehensive User's Manual and self-instructional tutorial.

And remember - in today's interactive programming environment - your most important software tool is your text editor. ED-80 is already working in industry, government, universities, and in personal computing to significantly cut program development time and to reduce high labor costs. Why not let ED-80 begin solving your text editing problems today? ED. 80 is protected by copyright and furnished under a paid-up license for lems today? ED-80 is protected by copyright and furnished under a paid. 4 license for
use on a single computer system. Single Density Diskette and Manual: $\mathbf{5 9 9 . 0 0}$, or the use on a single computer system. Single Density Diskette and Manual: $\$ 99.00$, or the
Manual alone: $\$ 20.00$ (credited with purchase of the Dishette). Specity Disk make/model, $5^{\prime \prime}$ or $8^{\prime \prime}$, hard or soft sectored. ORDER NOW and we'll pay the postage!

SOFTWARE DEVELOPMENT \& TRAINING, INC.
Post Office Box 4511 - Huntsville, Alabama 35802 Dealep Inquirles Weicomed
(1) CP/M is a trademaph of Digital Research

General Ledger PAYROLL Accounts Receivable \& Payable

Flexible and sophisticated business software that is among the highest quality on the market. Originally developed by OSBORNE \& ASSOCIATES and rapidly becoming a standard. Our service is support. We will send you these programs with the proper I/O and CRT specific subroutines for your hardware configuration. Get back to business and leave the programming to us. Include hardware description with order.

- Accounts Receivable and Payable 145.00
- Payroll (California)
- Non California state tax calculations (please inquire) . 15-250.00
- General Ledger . 145.00
- Multiple profit center option for G/L 25.00
- Manuals (each) . 15.00

All programs in CBASIC under CP/M (includes source) UTILITIES

- DOS MOVER for NORTH STAR. Moves DOS and BASIC anywhere you want it. (i.e., from 2A00 to 0000) 35.00
- ALS-8 MOVER on North Star Disk.

Synergetic Computer Products

3885 Magnolia Drive - Palo Alto, CA 94306
(415) 856-6049

Visa - Mastercharge - COD - Certified Check
CP/M is a trademark of Digital Research
and would attempt to attain those positions earlier in the game.

There is another interesting parallel to human behavior in a machine that learns by this scheme. The machine's rate of learning (ie: the rate at which it corrects errors in the win table) is dependent on the skill of the human opponent. Since the human cannot win when the win table is error-free, the only way the new player can win early in a series of games is to take advantage of the errors, by playing to reach those situations for which the win table is erroneous. If this is done, the machine has an opportunity to analyze the results of moves from, and correct the errors for, that situation. On the other hand, if the human plays poorly and does not take advantage of the machine's errors, the machine does not correct the errors for early game situations, but wins in the end game.

A final, and most provocative parallel to the learning process of living systems is the need for random trials to discover winning moves that have been erroneously erased or never discovered. In analyzing a given situation, the machine sometimes cannot find a winning move because of an error in a situation closer to the end of the game. I found that no fixed preprogrammed move strategy would guarantee that the machine would correct such an error.

It was absolutely essential for the machine to try moves at random each time it analyzed that situation until it "accidently" made the correct move, played to the erroneous situation, and then corrected the error residing there. This is a striking analogy to the random attempts of the smallest insect (or for that matter, a human baby) to manipulate its environment.

A Suitable Game

As implied above, it is essential to find a simple game to demonstrate learning by filling in the win table. At the same time, the game must be challenging enough to maintain the interest of its human player. Eighteen with a Die is such a game.
I discovered a variant of the game in a book by Geoffrey Mott-Smith a number of years ago (Geoffrey MottSmith, Mathematical Puzzles for Beginners and Enthusiasts, The Blakistone Co, Philadelphia PA, 1946). As described, the game was
played with a die (half of a pair of dice). One player makes a random roll for his first play. Thereafter each player, in turn, turns one of the four vertical faces of the die upward by rotating it 90 degrees in a direction of the player's choice. A running total of all the plays is kept, and the object is to make the total hit a given target value on the move. Mott-Smith used the goal number of thirty-one.

I have shortened the game to the goal number of eighteen, and have allowed the first player a free choice for the first move, rather than making it random. Mott-Smith described an algorithm by which, given the current total and the last player's move, a winning play could be derived. However, it was not infallible, particularly near the end of the game. Thus the idea of the win table evolved as the approach to a learning machine.
Since the opposite faces of a die sum to seven, the rules for Eighteen with a Die become the following:

The machine's rate of learning is dependent on the skill of the human opponent.

after the first play, each player may play a number from one to six inclusive, but it may not be the number just played by his opponent nor its complement with respect to seven. Thus, if the total is seventeen, one is a winning play if the opponent has not just played one or six. Sixteen is always a winning situation for the player whose turn it is. The player can win by playing two, or if that is not legal, by playing one, which prevents the opponent from hitting eighteen exactly on his turn.

Electromechanical Game Player

In 1959 I designed and constructed a relay and stepping-switch machine that demonstrated this learning game.

I called it GLIM, for Game Learning Intelligent Machine. Photo 1 shows GLIM and the author (quite a bit younger then). Each memory bit was implemented as a pair of neon lamps sharing a common dropping resistor.

One of the lamps of each pair was used internally as part of the memory readout system. The other was included in a random display on the front panel which was shaped somewhat like a human brain. Though randomly arranged (to prevent utilization by the human player), the lamps that would be lit when the win table was error-free were located in the upper part of the brain display. Thus the degree to which the machine had become "highly" educated could be estimated.

The memory was read out by a motor-driven scanner containing six photocells, one for each of the six plays that the machine might make. A servo-mechanism positioned the scanner over a 6 by 18 array of neon lamps so that the photocells could

Photo 1: The author with Game Learning Intelligent Machine (GLIM) in 1959. GLIM was a machine built with hard-wired logic in the form of relays and stepping switches that played the game Eighteen with a Die. It was a forerunner of the general-purpose computer of today that uses software to play the same game. GLIM contained eighteen 6 -bit words of memory consisting of pairs of neon lamps, one pair for each bit. Each lamp pair had a common, current-controlling dropping resistor.

scan ahead in the memory, looking for lighted memory cells through a "legal play" mask mounted on the scanner. Plexiglas light collectors formed an optical OR function, while the mask formed an AND with each neon cell.

For example, the photocell that looked at the row of memory corresponding to the current total plus a move of one was masked so that it could see only the neon lamps in columns 2, 3, 4, and 5 of the memory array. These are the human's legal responses to a play of one. The next photocell could see only columns 1 , 3, 4 and 6. Similar logic is embodied in the program described in this article.

As described above, the machine would play faultlessly after its win table was error-free. With the goal number of eighteen, the first player (the human) has no winning play and is doomed to lose every game after the machine has learned the game. To make the game more interesting, the logic was designed to cause the machine to "goof" occasionally. It skipped the procedure of picking out a winning move and merely selected a random legal play. In the program given here this is available as a software option. If selected, the goofs occur at random (controlled by a pseudo-random number generator) about once every eight machine plays.

Software Game Player

Figure 1 shows the flowchart of the main program for Eighteen with a Die. As can be seen, it is quite general. Most of the details that characterize it for this particular learning game are contained in the subroutines which are described below. The storing of human play (HPLAY) and machine play (MPLAY) in lastplay (LSTPLA) is an exception. Another exception is the setting of scan flag (SCNFLG) to allow the win table (WINTBL) to be updated both before and after the machine's play is added to the total.

The initialization subroutine (INITLZ) is flowcharted in figure 2. Mask table (MSKTBL) is initialized with a pattern of ones that correspond to legal responses to plays represented by the row indices. The least significant bit (LSB) represents a response of one.

Next, win table (WINTBL) is ini-

Figure 2: Flowchart of the initialization subroutine (INITLZ). The bit pattern set into mask table (MSKTBL) signifies legal responses to plays denoted by the row numbers. Win table (WINTBL) is loaded with blanks until the six rows after the game end. These rows are loaded to cause correct winning plays to be found during game playing.
tialized. Rows 1 through 18 are cleared, signifying no winning moves. However, rows 19 through 24 (those reachable by attempted plays from 18) are loaded with ones in both the 1 and 2 columns. One or both will represent a legal, winning human response, and will cause correct win or lose move information to be recorded in one or more of the columns of win table rows 13 through 18, when individual games have progressed that far. RANUM must be initialized to any nonzero value for the pseudorandom number generator.

LTSTIN is a 2-byte variable that is the operand for the legal test (LGLTST) subroutine. The low-order byte could be loaded and utilized before a double-precision load and test is made, so the high-order byte

Input Character	Hexadecimal ASCII	CT1024 Terminal Response	SwTPC Peripheral Response
Control-P	10	Cursor home up	Same
Control-U	15	Erase to end of line	Same
Control-V	16	Erase to end of page	Same

Table 1: Use of cursor and cassette tape control characters assumed in this program, compared with uses recommended by Southwest Technical Products Corp.
must be initialized to zero. SCOREH and SCOREM are used to accumulate the human's and machine's scores, and must start from zero for each series of games.
After initialization, the main program prints the game instructions, ending with the question, "READY TO PLAY7" All such messages and formats are stored as strings of ASCII characters, terminated by hexadecimal 04 (Control-D, or EOT).

After loading the microprocessor's X register with the starting address of the string, the string is output by a subroutine starting at hexadecimal E07E in the MIKBUG monitor. It tests
for hexadecimal 04, outputs the character to the terminal, increments the X register, and recycles. Detection of a hexadecimal 04 causes a return to the user program. If you do not have MIKBUG or a similar monitor, you can easily write this subroutine.
Next, a human response to the question at the end of the instructions is sought, a Y , or N , signifying yes or no. Again, a MIKBUG subroutine INEEE (location E1AC) is used for this process. The ASCII character representing the human's response ends up in the A accumulator. After the human's response to this question, one of two messages is printed.

Both begin by erasing the instructions.

For a Y response, the message then comprises the new game header, while the "thanks for playing" message occurs for any other response. Instruction erasure is performed by ASCII control characters at the start of each of these two messages that activate cursor-home and erase-to-end-of-page (EOF). The ASCII codes I have used for such terminal controls are shown in table 1. The codes are compatible with those recommended by SwTPC.

Figure 3: Flowchart of subroutine to get a valid, legal human's play (GTVLHP). A MIKBUG subroutine (INEEE) is used to input a move. After verifying that the play is in the valid range 1 through 6 , LGLTST is called to see if the move is legal.

The "goof" feature causes the computer to make an occasional mistake.

Figure 3 shows the flowchart for the subroutine get valid legal human play (GTVLHP). This begins by looking for an ASCII character from the keyboard to be loaded into accumulator A, which is accomplished by using the MIKBUG INEEE subroutine. Subtracting hexadecimal 30 converts the ASCII code to a binary number, which is tested to determine if it is in the range 0 through 6 . If the number is not in this range, an "invalid" message is printed. It is then subjected to the legal test (LGLTST) subroutine, figure 4, where it is compared with last play (LSTPLA) according to the rules governing legal plays. Legal plays are then loaded into HPLAY. Illegal plays are denoted by setting the zero flag bit in the M6800's condition register to one.

Figure 5 shows the flowchart for the subroutine advance and analyze total (AVAZTO). Two totals are actually calculated. One is TOTBCD, a binary-coded-decimal version of the total that is output to the terminal. Each time it is augmented by adding LSTPLA to it, the 6800 decimal adjust instruction (DAA) is employed to restore the number to binary-codeddecimal form. TOTAL is the total in hexadecimal notation and is used in the program for detecting the end of the game, advancing the win table index, etc. If the total equals or exceeds hexadecimal 12 (decimal 18), the flag, ENDGAM, is set, and the win or lose logic decides who won and increments the scores acccordingly. The scores are used only for display, and are stored in binary-coded-decimal form.

The next subroutine used is revise win table (RVSTBW), shown in figure 6. This process is accomplished in two steps. First, the rows of the win table corresponding to trial machine plays of 1 through 6 are ANDed with corresponding rows of mask table, which contain the legal responses to those plays. The results are stored in a 6 -byte table of winning human response flags (WHRF).

Next, machine trial play pattern
(MPTPAT) is initialized to hexadecimal 20 , which sets bit 5 to 1 . The index register, X, is initialized to a corresponding value of six. Starting with six and decrementing facilitates subsequent use of the 6800's stack pointer.

In the second phase of this subroutine, each row of the WHRF table is tested to see if any winning human responses were found in the first phase for the play held in the X register. If no winning human response was found, MPTPAT is ORed into the win table row cor-

Figure 4: Flowchart of the legality testing subroutine (LGLTST). The legal-move flag is first cleared to indicate an acceptable move. The computer-generated random plays of 0 and 7 are rejected. A trial play is then compared with the last play (LSTPLA) and with a value of $7+$ LSTPLA to implement the rules. If the flag returns from this routine with a value of 1 , the move is not legal.

Figure 5: Flowchart of the subroutine for game analysis (AVAZTO). LSTPLA is added to two totals, a binary-coded-decimal version for display and a hexadecimal version for internal program use. If the game is over, the binary-coded-decimal score of the winning player is incremented.

responding to the current total, to add an apparent winning move to the row. If any winning human response was found, the Xth column of the win table row corresponding to the current total is zeroed, by being ANDed with the one's complement of MPTPAT, thus deleting any erroneous winning play indication.

In the first case, X represents an
apparent winning play for the machine, so it is tested to determine if it is a legal play. If so, it is stored in machine play, winning (MPLAW). X is then decremented and MPTPAT is shifted right by one place, to correspond to a play of five, and the second phase is repeated. At the conclusion, MPLAW holds the smallest winning play discovered, and the win table

Treat Yourself Royally with GIMIX Unique and Incomparable Boards and Systems... DIP-switch Versatility for use with both SS50 (6800) and SS50C (6809) Systems (SWTP. etc.)

32K STATIC RAM BOARD

- SS50C Extended Addressing (can be disabled)
- 4 separate 8K blocks
- Low Power 2114L RAMS $(2$ AMP TYP. for 32K)
- Write Protect
- Fully Socketed for 32K
- Gold Bus Connectors

NEW:
16K . . \$328.12
24K. . $\$ 438.14$
32K. . $\$ 548.15$
16 \& 24K Versions are socketed for 32K and require only additional 2114 S for expansion.
All GIMIX Memory Boards are assembled, burned-in, and tested at 2 MHz .

FACTORY PRIME STATIC RAMS

2114L 450 ns . . . $\$ 5.90$ 200 ns $\$ 6.90$
4044450 ns . . $\$ 5.90220 \mathrm{~ns} \ldots . . \$ 6.90$
THE UNIQUE GIMIX
80×24 VIDEO BOARD

* Upper and Lower Case with Descenders
- Contiguous 8×10 Character Cells
- Hardware Scrolling
* X-Y Addressable Hardware Cursor

It is the ONLY Video Board that gives you Software Control of:

- A programmable RAM Character Generator plus

2 EPROM Character Generators (128 char. ea.). - Selecting 256 Displayable Characters from 384 available.

- Normal or inverse video, full or reduced intensity or combinations of these by both ASCII Code and Bit 8.
- GHOSTability - multiple boards at the same address.
Fully decoded, occupies only 2 K of address space
Fully socketed - Gold bus connectors.
Assembled, Bumed-in, and Tested at 2 MHz
Deluxe Version
$\$ 458.76$
Without RAM Character Generator . . \$398.24
Other Video Boards from $\$ 198.71$

THE
 CLASSY

- Ferro-resonant Power Supply
- Heavweight Aluminum Cabinet with fan and provisions for two 5 " disk drives.
-6800/6809 Mother Board, fifteen 50 pin and 8 DIPswitch addressable 30 pin slots - Gold Plated Pins. Fully decoded.
$\$ 798.19$
With Baud Rate Generalor on Mother Board . . . \$828.19
32K SYSTEM Incomparable Features.
at a Comparable Price!........ $\$ 1,594.59$ includes: Chassis, 6800 ĆPU, з $з 2 \mathrm{~K}$ RAM Board, Choice of IIO Card.
16K Version of above
\$1,374.49
Phone, write, or see your dealer for details and prices on our broad range of Boards and Systems for the SS50/SS50C bus and our AC Power Controd Products for all computers.

1337 W. 37th Place - Chicago, IL 60609 (312) 927-5510 - TWX 910-221-4055

The Company that delivers.

Quality Electronic products since 1975.
GIMIX and GHOST* are Registered Trademarks of GIMIXIXe.

Figure 6: Flowchart of the subroutine that revises the win table (RVSTBW). The win table row corresponding to the total before and after the computer's play is revised by trying all possible computer plays, and by selecting those plays that block the human from a legal winning response. The smallest apparent winning computer play is saved in MPLAW. The following logical notation is used: "." is logical AND, " + " is logical OR.
row for the current total has been updated, based on examining the next six rows of the win table.

Making the Machine Fallible
The subroutine select machine play (SELMPL) shown in figure 7 is needed because sometimes no machine winning plays are found, in which case the machine must choose a legal play at random. If the "goof" feature is desired, the program's current winning move (MPLAW) will be ignored, and a random play will be selected.

The generate random play (GNRNPL) subroutine actually generates numbers from 0 thru 7. The occurrence of a zero causes the computer to make a random move if the "goof" option is active. Next, MPLAW is tested to determine if it has changed from its initial value of zero. If it is no longer zero, its value is loaded into MPLAY as the machine's play. If MPLAW is zero, another random number from 0 thru 7 is generated and tested for legality. Numbers are generated again and again until a legal one is found for use as MPLAY, the machine's move.

The GNRNPL subroutine (figure 8, page 229) uses logic feedback around a shift register to generate a pseudorandom sequence. Two bytes plus the carry bit comprise a 17 -stage register. Since seventeen is a prime number. coding theory assures us that every unique feedback arrangement will generate a sequence that will not repeat until after $2^{17}-1$ (or 131,071) shifts. The three least significant bits are masked off to generate numbers from 0 thru 7.

Three shifts are used to generate each play, to assure that all three bits are randomly changed. I could have used a shorter shift register, but I found that with a shorter register, a given play was followed by only a few of the theoretically possible values. A few additional instructions are required to implement the 17-stage register, in which any given play will be followed with nearly equal probability by all of the values 0 thru 7.

The feedback comprises the Exclu-sive-OR of the zero and third order bits. This is accomplished by ANDing the low-order byte with hexadecimal 09. The carry bit is set to one if the result is one or eight and to zero if the result is zero or nine. The carry bit is

Figure 7: Flowchart of the subroutine that determines the machine's play (SELMPL). If the goof option is selected, the odds are one in eight that the computer will make a random legal play, instead of playing the apparent winning play discovered while revising the win table. If no winning play is found, a random play is made.
then shifted into the most significant bit of the high-order byte. The least significant bit is shifted into the carry and then into the most significant bit of the low-order byte. The latter's least significant bit is discarded.
During initialization, at least one of the shift register bits must be set to one, otherwise only zeros would circulate endlessly. The full 17-bit word cannot take the value zero, but the three least significant bits can take this value.

Other Random Methods

The above scheme has the disadvantage that the sequence is fixed by
the initialization constant, so that each new series of games set up by loading the program start out with the same sequence of random plays. If the human should play the identical sequence of moves for a whole series of games, the machine's responses to those moves would not vary.

I have employed a way around this in other machines using the player's response time, measured in sufficiently small units, to generate random numbers. For example, three asynchronous free-running flip-flops at frequencies of 100,141 , and 173 Hz can be allowed to run during the time the computer is waiting for the
human to respond. When stopped by the response, they will represent a random binary number from 0 thru 7 that depends on the human's response time measured in hundredths of seconds, modulo 7 . Using frequencies related by ratios close to $\sqrt{ } 2$ and $\sqrt{ } 3$ assures that the flip-flops will generate a relatively long sequence (of order 100) before repeating.

This approach was not feasible, however, when using a MIKBUG subroutine to get the human's response.

Listing 1 is the program listing in assembler format for the SwTPC 6800. MIKBUG subroutines were freely used for input and output. All constants and variables are stored on page one of memory, starting at hexadecimal address 0020 . The initialization subroutine is also stored here. The main program begins at hexadecimal 0100. Messages start at hexadecimal 02DO and extend to hexadecimal 057F. About 1380 (decimal) bytes are needed. Addresses from 0000 to 001F were not used, in compliance with SwTPC's suggestion that these be reserved for a disk operating system.

You may wish to revise message formats. Revisions of starting addresses will require revisions of the load index register (LDX \#) instructions in the main programs and subroutines wherever the messages are printed.

How to Play Against the Machine

The human player has several options for competing with the machine. With the goof feature disabled, try to see how many games you can win, starting with the win table empty, before the machine is winning every game. Your strategy should be to induce the machine to load as many errors as possible into the win table, then play to inhibit the machine from correcting those errors.

When you have memorized all of the winning plays for each total, you will do better. This knowledge can be acquired through experience, or by examining the win table after the machine has thoroughly learned the game. Unless the goof feature is used, some winning moves may not be found by the machine, but it will find enough that one or more will be legal

Text continued on page 229

How to Use the Program Listing

The program in listing 1 was assembled using Jack Emmerichs's Tiny Assembler for the 6800 processor. Since this assembler operates using only one pass through the source code, it must handle forward references in a special way.

A forward reference occurs during assembly when some instruction in the program references a symbol that appears after it in the source code. (A symbol is a label for an instruction or for data, Since the assembler has not yet come to the referenced symbol and does not know what its address is, the assembler cannot initially generate the proper object code.

If you have your own assembler, you will face no difficulty in using Eighteen with a Die (since you will probably wish to reassemble it on your own system). If you do not have an assembler in your 6800 system and want to enter the object code directly from listing 1 , you must be aware of the behavior
of the Tiny Assembler in its treatment of forward references.

As the Tiny Assembler scans the source code, it maintains a forward-reference table in memory. When it comes to a forward reference, such as:

JSR TXTOUT

(which appears at hexadecimal location 0109 in listing 1) that has not been encountered and is therefore not yet defined in the symbol table, the Tiny Assembler generates "dummy" code (consisting of zeros) in the locations where the address of TXTOUT should be. Data identifying TXTOUT and keeping track of where the dummy code was generated is placed in the forward-reference table.

When the Tiny Assembler gets to the definition of TXTOUT in the source listing, it resolves all previous forward references to TXTOUT at once. At the place in listing 1 where the symbol

S-100 INTELLIGENT COLOR GRAPHICS BOARD CGS-808

The COS-808 is an inteiligent color
graphics board for the S-100 bus. The
CaS-808 is simple to use. just plug it
in and run. It requires no memory
space and litle software overhead.

Features:

- MC6847 video display generator, on-board 8085 microprocessor.
- Elght colors-green, yellow, blue, red, buff. cyan, magenta, orange.
- 11 programmable modes ranging from 64×64 to 256×192 in 4 and 1 colors.
- I/O mapped for true S. 100 compatibility.

Software:

- Firmware Pack I-clear screen, change mode, plot point, draw line, alphanumeric/semigraphic, read/write screen.
- Firmware Pack II-relative and absolute modes, ellipses, alphanumerics (two sizes), 3D hidden dot.
- Firmware Pack Ill-shaped ellipses, shaded polygons, chain lines, move point, move line, bar graph, expansion port driver.
CGS.808B (Bare "Kit") .. 12500
(Includes PC board. documentation, MC6847. MC1372, 8085 and 2708
wlth Firmware Pack 1)
CGS.808A (Assembled and Tested) . $\$ 399.00$
Firmware Pack II. $\$ 60.00$
Firmware Pack III
SubLogic 2D Graphics Driver
$\$ 99.00$
$\$ 35.00$
SubLogic 3D Graphics Driver
\$ 30.00
Phone Orders Welcome - VIsa/Mastercharge - Add $\$ 3.00$ for Shipping 8 Handiling
Callfornia Residents Add 6% Sales Tax - Call or write for your rree brochur.

BIOTECH ELECTRONICS

P.O. Box 485, Ben Lomond, CA 95005
(408) $338: 2686$

TXTOUT appears, we see the source code:

TXTOUT JMP PDATA1

At this point the following object code is generated:

$018 E$	$7 E$	$E O$	$7 E$
$010 A$	01	$8 E$	
0017	76		
0126	67		
0137	56		
$018 B$	02		
$015 D$	30		
$017 F$	$0 E$		

The resolution of hexadecimal location 010A uses the extended addressing mode; other resolutions shown use the relative addressing mode. After the address of the symbol TXTOUT is found, the reference to TXTOUT is deleted from the forward-reference table.

When the output of the assembler is loaded into memory by the loader program, the forwardreference resolution data is written over the dummy values (zeros) that were originally generated. If loading the object code by hand, they should be written over the dummy values in the same way.

You can, if you wish, look at the symbol table shown at the end of the listing at any time to find out what values were obtained for all symbols during the assembly. The Tiny Assembler uses only four characters (the first three and the last one) of a symbol, and the symbol table uses these condensed symbols, not the full spellings found in the program.

Complete documentation about the Tiny Assembler appeared in the following BYTE articles by Jack Emmerichs: "Designing the Tiny Assembler: Defining the Problem،" April 1977, page 60; "Implementing the Tiny Assembler," May 1977, page 84; "Expanding the Tiny Assembler," September 1977, page 44.

Reprints of these magazine articles plus PAPERBYTE bar codes for optical scanning are available in book form under the title Tiny Assembler 6800, Version 3.1, by Jack Emmerichs. You may obtain this book for $\$ 9.60$ (including postage) from BYTE Books, 70 Main St, Peterborough NH 03458.

Listing 1: Complete assembler listing Eighteen with a Die as coded for the 6800 microprocessor in a system equipped with a MIKBUG (or MIKBUG-compatible) monitor.

Listing 1 contimued:

0163	27 AE	>	BEa	MI	ELSE, SET UP NEW GAME.
0165	26 B4	>	bra	M2	
0157					
0167	BD 1 Co	>M5	JSR	RUS T3W	If GAME NOT OVER, LOOK AHEAD FOR
$014 C$					
016 A		>*			h Responses to m trial plays
D16A	70.0048	>*			and revise win table.
¢1 6A		>	TS T	SCNFLG	if scan flag clear, then
0150	2708	>	BEQ		GET NEXT H. PLAY.
016 F	BD 0900	,	JSR	SELMPL	else, select m. play.
A172	9652	>	LDAA	MPLAY	
0174	9746	>	STAA	LS TPLA	
ด 176	4 F	,	clra		clear scan flag to revise win table by
0177		>*			looking ahead after mS play.
0177		>	STAA	SCNFLG	
0179	9748 9747	>	StaA	HTURN	Clear h. turn flag.
Q178	CE 8000$8 D$	-	LDX	\#MES 6	ANNOUNCS M'S PLAY,
-17E		>	9SR	txtout	
0180	9652	>	LDAA	MPLAY	
0182		>	JSR	OUTHR	
¢ 185	BD EИ 6B 26	>	bra		AND PROCESS IT.
0187	-	*			
0187		2			
0137	CE 0000	>M6	LDX	\#MES 7	if SCAn flag was reset, request
Q15E	18				
018 A	8 D 90	>	BSR	TXTOUT	next h. PLAy,
0 18C	29 AA	>	bra	M3	ASD GET IT.
918 E					
918 E		> TX TOU	JMP	PDATA1	BSR TARGET FOR MIKBUG STRING PRINT
0 IPA	7E EQ G1 RE				
0117	76				
0126	76				
0137	67 56				
0188					
0150	62 38				
0175	®E				
0191		** SURR OUTI			
0191				NE GTVL	lhp - get valid legal h. Play.
0191		** S			
ด1Aの	BD EI AC	-	OR G	slab	
Q 1 ag		>GIVLHP	JSR	I NEEE	GET H. KEYBOARD INPUT;
0139	01 Ag				
Q1A3	8930	>	SUSA	\# 536	CONVERT TO HEX.
-1as	$2 F 00$,	BLE	G1	IF LESS THAN 1 ,
0147	8106	>	CMPA	${ }^{6}$	
Q1ag	2 F 0	>	BLE	0	OR GREATER THAN 6.
Q1AB		>			
01 AB	CE 00 0¢	>61	LDX	*MES8	PRINT "INVALID"
9146	${ }^{\circ} 4$				
gIaE	8 D DE	>	BSR	TXTOUT	
9130	26 EE	,	BRA	GTVLHP	AND IRY AGAIN.
0182		>			
9132	9748	$>{ }^{-2}$	Sta	LTS II $\mathrm{N+}$	+1 CHSCK H. PLAY FOR LEGALITY.
- IAA	07				
0194		>	JSR	LGLTS T	ZERO (Z) SIT OF C REG. $=$ IF
-187		>	BNE		Play is legal.
0189	CE 26 OR OE	>	LDX	\#MES9	IF NOT, PRINT "ILLEgAL"
ด19c		>	BSR	Txtout	
albe	8D DA	$>$	bra	GTVLHP	AND TRY AGAIN.
0100		$>$			
01 ca	9648	>63	LDAA	LTS II :	+1 store valid legal h play.
0188	87				
9102	9745	>	StaA	hPLAY	
0104		,	R TS		
Qics	39	>			
-1C5		>* LEG	GAL TE	T S.R.,	, LGLTS T
Q1c5		>			

N্た

ю6 о

[^20]

Listing I continued: $\begin{array}{lllll}\text { OAF9 } & 15 & & \\ \text { CAFA } & \text { AE } & 45 & 57>\end{array}$ M 4 FD 204741 0 5F0 4D $453 F$ 0503202522 05065022 2C 0509 4F 5220 ©50C 22 4E 22 050F29 2! 351164 6512 6512 0.512 051200 61140512 $0513544841=$ $05164 E$ 4E 53 E51920464F 651C 5220 50 $051 F 4 C$ 41 59 0522494547 0525 2E 2043 $05284 F 5 E 45$ $052820594 F$ ©52E 55 O52FODOA \quad $0531454 E 4 A=$ 6534 4F 5945 0537442049 053 A 542041 053 D 53204 D $\begin{array}{llll}65 & 45 & 55 & 43\end{array} 48$ 0543204153 $05462 H 492 E$ 0549 ED © $054 \mathrm{~B} 534545=$ OS4E $20594 F$ 055155204 C

```
NCB EOL
FCC 23,NE'N GAME? ("Y" OR "N")
> FCB ENDST
>* THANKS, ETC. - MES5
ORG $512
FCB CRET
FCC 28,THANKS FOR PLAYING. HOPE YOU
FDB CRLF
FCC 24,E!lJOYED IT AS N:UCH AS I.
FDB CRLF
FCC 14,SEE YOU L^TER!
```


0565 50 AC 41
0568592049
05635320

$\begin{array}{ll}\square 56 E & > \\ 56 E & >* \\ & \text { YOUR PLAY? }\end{array}$
riss 7
O56E $\quad>$ Y YOUR PLAY?
$\begin{array}{llll}056 E & & > & \text { ORG } \\ \& 56 E 25 & >M E S 7 & \text { FCC } & 1, .\end{array}$
¢ 138056 E
056 F 0 A ØA $\quad>\quad$ FDB LHFDS
$0571202059>\quad$ FCC 13, YOUR PLAY?
Ø574 4F 5552
057720504 C
$057 \mathrm{~A} 4159 \quad 3 \mathrm{~F}$
657020
$657 E 64 \quad$ FCS ENDST
$\begin{array}{lll}657 E 04 & > & \text { FCS ENDST } \\ 057 F & & \end{array}$
END
<<< UNRESOLVED I TEMS >>>

THE [- SSENCE of output quality

- Any IBM SELECTRIC ${ }^{\oplus}$ can be converted to produce high quality output at an affordable price!
- Interfaces directly to S100, Parallel, RS-232 or IEEE-488.
- Compatible with TRS-80, Sorcerer, Pet, Apple, Horizon, etc.
- Why be printer bound? Prices from

Escon Products, Inc.
171 Mayhew Way, Suite 204 Pleasant Hill, Ca., 94523 (415) 935-4590

At last. . .
 the mechanical interface

Turn your electric typewriter into a low cost, high quality hard copy printer.

30 Day Delivery
User list
\$46900
Dealer Inquiries Invited.

Now available with interfaces for most personal computers: TRS-80, Apple, GPIB, etc.

The all new I/O Pak from Rochester Data, inc. interfaces the keyboard of any commercially available electric typewriter with any computer. The result: low cost, high quality hard copy. Write today for more Information.

ROCHESTER DATA

incorporated
3100 Monroe Avenue, Rochester, New York 14618

Table 2：Symbols for the Eighteen with a Die learning program （written for the Motorola M6800 processor）shown in listing 1.

A 1	020A	A2	0217	A3	ด218	A 4	0226	A VAO	G1E
CHMF	1016	CONL	E0E3	CRET	600D	CRHM	0010	CRLF	－DCA
ENDM	0049	ENDT	009 4	EOF	0016	EOL	0 0． 15	GI	$\square 1 A B$
G2	0182	63	0100	GNRL	028a	GR1	0283	GR2	B2CO
GR3	02C1	GTVP	glac	HPLY	0045	H TUN	0047	I 1	D0 7A
12	0284	I NEE	EIAC	I NIZ	9050	LI	0108	LGLT	OICE
LNFD	日00A	LNFS	gala	LS TA	ด月 46	LTSN	004 A	M1	0113
12	［11B	M3	0138	M4	0145	M5	0167	N6	9187
MES 1	02 DG	MES2	03 Fg	MES 3	0465	MES 4	0456	MES 5	2512
MES 6	B55A	MES 7	Q56E	MES8	9422	MES 9	0482	MESA	－4CE
MESB	B4EA	MESC	64DD	MPL	0953	MPLY	0052	MPTT	0040
MSKL	0020	OUTR	E06B	OUTS	EดCA	PDA I	EO7E	R1	0242
R2	0254	R3	［26E	R4	6278	RA NM	0958	RUSW	0230
SCNG	0048	SCOH	0041	SC OM	9042	SELL	日290	SPI	0295
SP2	629 B	SP3	92A7	SSTO	9054	TOTD	0044	TOTL	0043
TXIT	018E	WHR F	0040	WI NL	ดด2 7	WTBP	0056	C	

Text contimued from page 221：
for every total having winning moves．（Some totals，including zero， have none．）

Using the goof feature，and if the human does not err and seizes every opportunity to win，the game becomes a game of luck．The random plays made by the machine may be winning plays，and a sequence of winning plays found at random is not impossible．With the goof feature activated，the machine will sometimes surprise you by playing the very first game of a series faultlessly．

The game can readily be extended to a goal total greater than eighteen． Multiples of nine assure that no win－ ning play is available to the first player．Longer games will slow the learning process；not only will each game be longer，but the propagation of＂good＂information from the end of the win table to its beginning will require many more games．Another elaboration could be a＂brain＂ display similar to the one that I imple－ mented in my mechanical machine， GLIM．

REFERENCES

1．Gardner，Martin，＂Mathematical Games，＂ Scientific American，Volume 206，Number 3，March 1962，page 138.
2．Gardner，Martin，The Unexpected Han－ ging，Simon and Schuster，New York， 1969.

3．Mott－Smith，Geoffrey，Mathematical Puzzles for Beginners and Enthusiasts The Blakistone Co，Philadelphia， 1946.
4．Nico，Willard I，＂Shooting Stars，＂BYTE， Volume 1．Number 9，May 1976，page 42.
5．Wier，Robert R，＂Hexpawn：A Beginning Project in Artificial Intelligence．＂BYTE， Volume 1，Number 3．November 1975. page 36 ．

Wel' 8 NBN?

Apple Writer - A LowCost Text Editor for Apple II Users

Using the Apple Writer, a document needs to be typed into the computer only once; corrections, text additions and the rearrangement of text can be accomplished easily and quickly. Automatic search and replacement for specified words or phrases, justification of text, and uppercase and lowercase type are some of the other features of Apple Writer. The 48 K byte storage capacity of the Apple II permits storage of at least 12 pages of text in each online file.

The package consists of two master 5 -inch floppy disks and an operating manual. The floppy disks include an interactive tutorial which the user can call to the screen for quick learning or review of the Apple Writer system. The cost for the system is $\$ 75$. Contact Apple Computer Inc, 10260 Bandley Dr, Cupertino CA 95014.

Circle 562 on inquiry card.

Program Simulates Solar Home

The Sunsim-1 program calculates the sun's energy in hourly intervals at any specified location on earth, and demonstrates its use for domestic space heating, cooling, and hot water heating,

Cumulative energy and temperature values are displayed, including solar energy collected and used, backup energy used, thermal and hot water storage temperatures, and more. Users can input their requirements for size of home, volume of thermal storage, and area and angle of solar collector. Written in Level II BASIC for TRS-80 this program requires 16 K bytes of storage. Sunsim 1 is available on cassette for $\$ 49$ from Solartek, POB 298, Guilderland NY 12084.

Circle 563 on inquiry card.

Dental Office Management Package

Dental System I performs patient registration and inquiry, manages registration and inquiry, manages
accounts receivable, including aging, and provides delinquency reports. Itemized statements and insurance forms can be printed, finance charges on past due amounts can be included for any patient, or the entire practice. The system produces a daily journal of charges, receipts and adjustments, a payment journal summarized by payment method, a report summarizing charges generated by each doctor or tremized statements and insurance forms system produces a daily journal of

Pascal Compiler for the 6800

Dynasoft Pascal is a subset of standard Pascal intended for cassette-based microcomputers that cannot support full-scale implementations such as UCSD Pascal. It includes the control structures of standard Pascal and supports most of the data types. Language extensions include EXTERN, PROCEDUREs and FUNCTIONs, LINK to other Pascal programs, an optional OTHERWISE clause on the CASE statement and absolute memory addressing.

The one-pass compiler produces pseudo-code which requires only a 1.3 K byte interpreter to execute, making it possible to run programs in as little as 2 K bytes. The system, including the compiler, interpreter, a line-oriented

C Compiler for 8080 and Z80 Microprocessors

The BDS C Compiler is the implementation of a subset of the C Programming Language. It is designed for 8080 and Z80 microcomputer systems running under the CP/M 1 operating system. The practical minimum memory size necessary to run BDS C is 32 K bytes, although many modestly sized programs may compile in as little as a 24 K byte system. A larger memory size allows for larger sized source files, since BDS C loads the entire source file into memory at one time. Separately compiled functions can always be linked together, so a C source file which is too lengthy for compilation in one group may be broken up into pieces, compiled separately, and then linked together for execution.

The C Compiler and a copy of The C Programming Language, by Ritchie and Kernighan, are available from Lifeboat Associates, 2248 Broadway, New York NY 10024, for $\$ 110$. The manual is $\$ 15$. Circle 565 on inquiry card.
hygienist, recall and reminder lists, and more.

Minimum hardware requirements are a 64 K byte computer, two doubledensity 8 -inch floppy disk drives, a video terminal and a 132 -column printer. This system can support a practice with up to 4000 patients and the addition of a hard disk would make it possible to handle a larger number of patients.

The price for the Dental System I is $\$ 1995$. For further information, contact STR Corp, 5455 Buford Hwy, Suite B-123, Atlanta GA 30340.

Circle 567 on inquiry card.
editor, and system supervisor, occupies little more than 7 K bytes of memory and compiles a 2000 -character source program in 12 K bytes of memory.

Price for the basic cassette version, with manual, is $\$ 35$, from Dynasoft Systems, POB 51, Windsor Junction, North Saskatchewan BON 2 VO CANADA.

Circle 564 on inquiry card.

LISP Interpreter for Apple II

This new LISP system features a builtin prettyprinter and LISP editor, both written in LISP, along with prompts that make it clear that LISP is taking in an expression and returning its value. Errors are trapped by the interpreter, and a full trace-back can be printed. Owl LISP has eliminated the PROG pseudofunction, yet defines local variables by using an extended syntax which allows for optional and local variables with default values. Owl LISP also provides a LOOP, WHILE, and UNTIL construction to allow for iterative programming. PEEK, POKE and CALL are provided to access Apple graphics and other functions. String processing can be carried out using IMPLODE and EXPLODE which convert between character strings and lists.

The system consists of about 6 K bytes of code, 300 bytes of garbage collector work space and 4 K bytes of predefined LISP work space. LISP costs $£ 40$ from Owl Computers, 41 Stortford Hall Park, Bishops Stortford, Hertfordshire, CM23 5AJ ENGLAND.

Circle 566 on inquiry card.

Where Do New Products Items Come From?

The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgement the information might be of interest to the personal computing experimenters and homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to this marketplace. The information is printed more or less as a first in first out quene, subject to occasional priority modifications. While we would not knowingly print untrue or inaccurate data, or data from unreliable companies, our capacity to evaluate the products and companies appearing in the "What's New?" feature is necessarily limited. We therefore cannot be responsible for product quality or company performance.

The missing link between any CP/M or TRSDOS computers!

A commercially oriented telecommunications facility for transmitting and receiving CP/M* and TRSDOS** files, BSTAM has BIG computer features for your micro:
links computers directly at 9600 baud with UARTS, or via phone lines using modems
\square full speed data transfer without hex conversion overhead

- full wildcard expansions to send * .COM, etc.
reliable error detection and automatic retry with console messages for status and errors
It's Terrific!
We use it ourselves! s150 ${ }^{\text {Eg }}$ egi puter ${ }^{\text {s }} 5$ hitanel *CP/M is a trademark of Digital Research -TRSDOS is a trademark of Tandy Corporation

2248Broadway New York, N.Y. 10024 (212)580-0082 Telex:220501

TRS-80® BUSINESS SOFTWARE

 for Model I \& Model IICP/M ${ }^{\circledR}$ and CBASIC ${ }^{\circledR}$ based software oriented toward business applications.

FEATURING
Model I CP/M (sel. 1.5) $\$ 150.00$
Model II CP/M (rel. 2.0). 250.00
APH (Automated Patient History). 175.00
DOWNLOAD program 95.00
RESIDENTIAL PROPERTY ANALYSIS
system.
300.00

The Genuine Article:
Osborne \& Assoc. CBASIC source programsO\&A Payroll w/Cost Accounting. \$250.00
OEA Accts. Rec./Accts. Payable ... 250.00
OEA General Ledger w/Cash Journal. 250.00 O\&A CBASIC books for above (each). . . . 15.00

Send 30¢ SASE for CP/M Users Group software list \mathcal{E} free "CP/M Primer".

- TRS. 80 is a registered trademark of Radio Shack. a Tandy company * $C P / M$ is a registered trademark of Digital Research - CBASIC is a registered trademark of Software Systems

B041 NEWMAN AVENUE - SUITE 208. HUNTINGTONBEACH. CALIFORNIA 92647 \%

Music System for Apple II

Micro Music Inc, University Plaza, Suite 8, 309 W Beaufort, Normal IL 61761, has released Micro Composer, an Apple Il compatible music-system that allows the user to enter, display, edit, and play music with up to four voices in a 4-octave range. The program allows the user to see all four voices as music is played; enter music by a coding system which keeps track of rhythmic durations, program pitch, rhythm and timbre; choose from seven tone colors for each voice or create tone colors; and has seven preset timbres. Micro Composer comes with a manual, software, and a music card for the Apple Il extension slot and is connected to an 8 ohm speaker. Memory requirements are 32 K bytes for the cassette-based system and 48 K bytes for the disk-based system. The price for the package is $\$ 220$.

Circle 568 on inquiry card.

MMSForth for the TRS-80

Forth is a structured language similar to Pascal except that, in Forth, the programmer defines additional commands as they are needed. The MMSForth System Diskette supplies reliable disk I/O, virtual memory, double precision integer math, in-line editing, string handling and arrays, and user called disk and tape I/O. MMSForth includes full source code for the majority of MMSForth which is written in Forth. Speed is approximately half that of assembler code, while development is usually much less than half.

This system costs $\$ 64.95$ from Miller Microcomputer Services, 61 Lake Shore Rd, Natick MA 01760.

Clrcle 569 on inquiry card.

Radio Shack Has
 Variety of Software for TRS-80 Systems

Radio Shack's programs come on cassette and 5-inch floppy disks for the TRS-80 systems. Among the new programs available are a General Ledger I, an Inventory Control System, Statistical Analysis, Real Estate, a Level-I BASIC course that teaches the user how to program, and several advanced programming aids. Radio Shack also has a number of computer games and novelty programs for the TRS-80. For further information on Radio Shack TRS-80 software or products, contact the Radio Shack Computer Customer Service, 205 NW 7th St, Ft Worth TX 76106.

CIrcle 570 on inquiry card.

Hard Copy Graphics Program for the PET, Apple II, and TRS-80

West Coast Consultants software provides users with full graphics capability for Houston Instrument's Hiplot plotter. Programs that drive the plotter through an RS-232 interface are currently available on tape cassette for the PET, Apple II, and TRS-80. The programs are written in BASIC and require a minimum of 16 K bytes of memory. For further information, contact West Coast Consultants, 1775 Lincoln Blvd, Tracy CA 95376. The prices are $\$ 50$ and $\$ 75$ for the programs.

Clicie 571 on inquiry card:

Pascal Software Compiler for the 1802 Microprocessor

The new GR-Pascal compiler runs with a minimum of 20 K bytes of programmable memory plus a floppy disk system and utilities. Minimum target systems can be from 2 K bytes upwards of program code, including full 16-bit arithmetic package for signed integer variables. The compiler is written in Pascal and features a provision for assembler code, hexadecimal numbers, byte variables, interrupt procedures and

Adaptable Operating System for 6809 Microprocessor

Percom Data Company has developed a 6809 operating system for the company's new SS-50 bus-compatible 6809 control computer and other 6809 microprocessing systems. The 1 K byte operating system, called PSYMON, includes eight monitor-type commands and fifteen callable utilities. Hardware adaptability is easy because interfacing is accomplished with simple, specific device driver routines that reference a table of parameters called a Device Control Block (DCB) which is independent of the operating system. Command expansion or modification is facilitated by a feature that allows user-written routines in read-only memory to alter PSYMON pointers and enhance or modify the basic PSYMON command repertoire.
The erasable-programmable read-only memory version for the Percom SBC/9 sells for $\$ 39.95$ and the versions for the other systems sell for $\$ 69.95$ including a users manual. For information, contact Percom Data Company, 211 N Kirby, Garland TX 75042.

Circle 572 on Inquiry card.
disk input/output (I/O) facilities. A typical 200 -line Pascal program will compile into 3 K bytes of programmable memory, and processing speed is increased by a factor of 3 to 4 by restricting variables to signed integers with 16-bit accuracy.
The compiler comes on an 1802 circuit in 2 K bytes of read-only memory onboard with 64 K bytes of programmable memory and sells for $£ 40$. For more information, contact The Golden River Co Ltd, Telford Rd, Bicester, Oxfordshire, OX6 OUL ENGLAND.

Circle 573 on Inquiry card.

Data Base Management System for Microcomputers

This data base management system (DBMS) runs on 8 to 16 K bytes of read-only memory for 280,8080 , and 6502 systems. This system provides a full network capability and generalizes some features of the CODASYL approach. The Data Definition Language Analyzer/Editor and Data Manipulation Language permit many-to-many-set relationships. Full data base security is maintained by providing read and write access levels for all record types, items,
and set relationships. A common data base is maintained in order that no data need be duplicated in different files, and different applications can be supported in the one data base. Routines are callable from host languages and have input/output (I/O) and host language interface routines isolated for adaption to North Star, CP/M, and TRS-80 operating systems.
The user's manual and sample application programs are included in the package which costs about $\$ 800$. For more information, contact Micro Data Base Systems Inc, POB 248, Lafayette IN 47902.

Círcle 574 on Inquiry card.

EPROM PROGRAMMERS

EP-2A SERIES

- PROGRAMS 2708 and 2716 EPROMS
- Price $\$ 59.95$ Assembled and Tested
Kit price $\$ 49.95$
- Includes Connector

EP-2A-78 SERIES

- PROGRAMS 2708, 2716, 2758. TMS 2716 and TMS 2532 EPROMS
* textool zero force SOCKET
- Price \$79.95 Assembled and Tested
- Includes Connector

Software available for the Rockwell AIM-65, MOS Technology KIM-1, Synertek SYM-1, Motorola D2, RCA VIP and many other single board computers that use the $6502,6800,8080 / 85, Z-80,1802$,
F-8 and 2650 CPU's. Stock. Specify one set of software

Optimal Technology Inc.

Blue Wood 127
Earlysville, VA 22936 U.S.A.
Phone (804) 973-5482

What you'c' is what you get:

C Compiler for CP/M

New, and available now! An easily affordable compiler incorporating most of the features of the full C language

BD SOFTWARE

System requirements: CP/M and at least 24 K of RAM
Variable Types: char, int, unsigned
Composite Types: arrays, structures, unions
Pointers: to variables, structures, unions and functions
Features: is a structured language, all functions (Programs) recursive; more powerful expression operators than any other von Neumann type language; allows free-formatted source; close enough to UNIX** C to make conversions feasible.
Speed: On 2 MHz 8080, the statement for $(i=1 ; i<30000 ; i++) x=5$; takes about 4 seconds to execute.
Package contains: compiler, linker, library manager; standard function library; sample source files include games, a terminal emulator with disk $/ / O$ plus the source for many standard library functions; BDS C User's Guide; Book-The C Programming Language by Dennis Ritchie and Brian Kernighan of Bell Labs.

Price: $\$ 110$
Recipient of the Computer Lib Seal of Approval
-CPIM is a Irademark of Digltal Research Corp

- UNIX is a trademark of Bell Laboralories

Lifeboat Associates

2248 Broadway, New York, N.Y. 10024 (212) 580-0082 Telex 668585

VAK-4 DUAL 8K-RAM $\$ 379.00$ VAK-2 8 K-RAM ($1 / 2$ populated) $\$ 239.00$

VAK-4 16K STATIC RAM BOARD

- Designed specifically for use with the AIM-65, SYM-1, and KIM-1 microcomputers
- Two separately addressable 8K-blocks with write protect.
- Designed for use with the VAK-1 or KIM-4* motherboards
- Has provisions for mounting regulators for use with an unregulated power supply
- Made with 1st quality 2114 static ram chips
- All IC's are socketed
- Completely assembled, burned-in, and tested

We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send $\$ 1.00$ (International send $\$ 3.00$ U.S.) for airmail delivery of our complete catalog.

- Product of MOS Technology

2967 W. Falrmount Avenue • Phoenix, AZ 85017 • (602) $265-7564$

Whabe New?

SYSTEMS

AMD Delivers the AmZ8000 System

The AmSYS $8 / 8$ floppy disk-based system, designed to support the AmZ8000 processor in both hardware
and software, supports the 8080,8085 and Z 80 microprocessors also. Its basic configuration contains 32 K bytes of memory, two floppy disk drives, and multiple serial and parallel input/output (I/O) ports. Software support includes a disk operating system; macroassembler for the AmZ8000; translators from 8080, 8085 and Z80 code to AmZ8000 code; Pascal compiler for the AmZ8000 and a variety of software packages. Prices start at $\$ 7450$. AMD also has the AMC $96 / 4016$ Evaluation Board, which incorporates the AmZ8002, 8 K bytes of programmable memory, twenty-four parallel I/O lines, two RS-232 serial I/O ports, 12 K bytes of erasableprogrammable read-only memory sockets, system clock and resident monitor for \$975.

Contact Advanced Micro Devices Inc, 901 Thompson PI, Sunnyvale CA 94086. Circle 591 on inquiry card.

Multiprocessor S-100 CP/M Compatible Computer

The Discovery Computer System MP Series A, from Action Computer Enterprise Inc, 75 W Green St, Pasadena CA 91105, features an 8080 microprocessor with 32 K bytes of programmable memory (expandable to 64 K bytes), two serial and two parallel input/output
(I / O) ports per processor, a separate S-100 bus for each processor, dual 8 -inch floppy disk drives, a video terminal with 24 lines by 80 columns display, 128 upper and lowercase ASCII characters, and an optional printer. Up to 4 -user processors can be configured within a single chassis with the ability to expand through auxiliary mainframes and processors.
The Distributed Processing Operating System (DPOS) contains CP/M and supervises reading and updating of files, provides write protection on a disk basis, and prevents incorrect interleaving of file updates. CBASIC-II is provided as the standard user language.

Single-user systems, expandable to multiuser capabilities, start at $\$ 3000$. A complete four-user computer can be purchased for $\$ 11,000$. Kits are also available.

Clrcie 592 on inquiry card

Inexpensive Word Processor Capable of Powerful Formatting and Text Editing

The SDS 420 consists of a video display, keyboard, floppy disk storage that will store 1.2 M bytes of memory, computer, and printer. In addition to standard formatting, the SDS 420 word processor has instructions for right justification, underline, bold text, include a file, indent, exdent, columns, decimal alignment, headings, footings, subscripts and superscripts. The 12 -inch screen will display 25 lines of 80 characters per line with variable speed scrolling. The printer will print up to 96 standard characters at 45 characters per second.

The system retails for under $\$ 12,000$ from Scientific Data Systems, 12640 Beatrice St, Los Angeles CA 90066.

Circle 590 on inquiry card.

Separate BASIC Computer for S-100 Systems

The DLX-10 is a single-board computer that executes BASIC directly in high-speed hardware from 5 to 10 times faster than 8080 systems or 2 to 5 times faster than Z 80 systems. It does not replace the microprocessor but functions as a separate BASIC computer. It can boost an S-100 bus microcomputer system into the performance range of a minicomputer.

The DLX-10 runs independently of the main processor and accesses memory as a direct memory access (DMA) device. It runs in parallel to the existing processor, has a stack architecture, and utilizes on-board programmabe memory to hold intermediate computations.

BASIC source language programs are translated by software to relocatable BASIC stack-machine object code and are then executed by the DLX- 10 .

The DLX-10 comes with software to run Northstar BASIC or CBASIC for $\$ 1250$ from Alasda Computer Systems, 12759 Poway Rd, Poway CA 92064. Circle 593 on inquiry card.

Whasis Naw?

SYSTEMS

Microcomputer Kit with 8086 Processor

The Intel SDK-86 is a complete 8086 microcomputer system on a board with memory and I/O (input/output) systems in kit form. This stand-alone 16-bit microcomputer allows designers to obtain hands-on experience with Intel's 8086 16-bit HMOS microprocessor, which offers ten times the processing power of the 8080 processor.
Included in the kit is an 8086 processor; 8 K bytes of 2316 or 2716-type read-only memory; 2 K bytes (expandable to 4 K bytes) of 2142 -type programmable memory; 48 parallel I/O lines (implemented through two 8255A programmable peripheral interface devices); an RS-232 or current loop serial 1/O structure (implemented via an 8251A universal synchronous/asynchronous receiver-transmitter); selectable data rate from 110 to 4800 bits per second (bps); TTL-compatible bus signals and parallel 1/O signals; 24-key hexadecimal data and control keyboard; 8-digit hexadecimal display and control (using an 8279 programmable keyboard and display controller); and 256 vectored interrupts.

The 2 K bytes of 2142 -type programmable memory can be doubled by implementing additional devices in the positions provided. There is room for 8 K bytes of program instructions using either or both of the keyboard and terminal software monitors included in the kit. There is a fully buffered system bus. Programs and data may be entered three ways: from the built-in keyboard; through a built-in serial communications interface; or via cable (SDK-C86) from
any Intellec Microcomputer Development System.

A complete design library is provided with the kit. This library includes both the assembly and user manual, plus an MCS-86 user manual and 8086 assembly language reference manual. The SDK-86 microcomputer kit is priced at $\$ 780$. For further information, contact intel Corp, 3065 Bowers Ave, Santa Clara CA 95051.

Clrcle 594 on inquiry card.

Personal Computer

 Introduced by Texas InstrumentsTexas Instruments has introduced a personal computer featuring easy-to-use computing power for personal finance, home management, family entertainment

and education. Designated the Model TI-99/4, the system consists of a console with 16 K bytes of programmable memory, a wide range of sound effects, sixteen colors for graphic display, a powerful extended BASIC programming language, and a 13 -inch color video monitor.
At the heart of the $\mathrm{Tl}-99 / 4$ is a library of Texas Instruments Solid State Software command modules. These command modules allow users instant program accessibility. Solid State Software command module titles include: Demonstration, Diagnostic, Early Learning Fun, Beginning Grammar, Number Magic, Video Graphs, Home Financial Decisions, Household Budget Management, Video Chess, Football, Physical Fitness, Speech Construction, Investment Analysis, Personal Record Keeping, Statistics, Early Reading, and Tax and Investment Record Keeping.

Among peripheral accessories offered is a Solid State Speech synthesizer with a price of $\$ 150$. By building a basic vocabulary into the language system, home programmers can place audible messages in their programs. The speech synthesizer module has a 200 -word vocabulary and plugs into the console. Speech can be written into programs using BASIC programming language. Future command modules will call up
spoken words automatically.
TI BASIC is a full floating point, 13-digit expanded version of BASIC that is fully compatible with ASCII and the BASIC specification of the American National Standards Institute. TI BASIC includes a full complement of 24 BASIC statements, 14 commands, color graphics, and sound and music over four full octaves. A Beginner's BASIC Guide for self-teaching comes with the TI-99/4. For users knowledgeable about programming, McGraw-Hill has published Programming BASIC With the TI Home Computer, a book by Herbert Peckham.

Remote controls are offered as accessories to the Tl-99/4. Two of these controls may be connected to the computer at the same time. Each includes a multiposition $\left(360^{\circ}\right)$ rotary lever with a side-mounted pushbutton. Other accessories offered by Texas Instruments include: a printer, disk storage, and an RS-232 interface device for connecting the computer to other electronic devices.

The price for the TI-99/4 system is $\$ 1150$. Solid State Software command modules carry prices ranging from $\$ 19.95$ to $\$ 69.95$ each. For further information, contact Texas Instruments Inc, Consumer Relations, Attn Tl-99/4, POB 53, Lubbock TX 79408.

Circle 595 on inquiry card.

What's New?

 PERIPHERALSNew Motherboard for the
KIM-1, SYM-1, and
AIM-65

The Little Buffered Mother motherboard incorporates 4 K bytes of programmable memory on the motherboard itself, which, when used with either the SYM-1 or AIM-65, gives the user a total of 8 K bytes of contiguous programmable memory (5 K contiguous on the KIM-1). The motherboard also has regulators for the on-board logic and has the power required for all three microprocessor boards, except the +24 V for the AIM printer.

The unit is available for $\$ 139$ without programmable memory or for $\$ 189$ with 4 K bytes of programmable memory. Optional boards for the Little Buffered Mother include programmable memory and a programmer, parallel input/output (I/O), and disk controller.
For more information, contact Seawell Marketing, 315 NW 85th St, Seattle WA 98117.

High-Capacity Hard Disk Drive for S-100 Systems

MicroAge has introduced the Fujitsu M2201 Drive with S-100 bus controller for North Star Horizon systems. This system allows accessing up to 40 M bytes of disk storage per drive with the capability of adding up to 4 drives per system. The M2201 was developed with the advent of a new type of direct memory access (DMA) disk controller board capable of very high-speed data transfer. A 2400 RPM rotation combined with a quick seek time and relatively low latency time give the M2201 an average access time of 30 ms .

The system is available for $\$ 9995$. For more information, contact MicroAge Wholesale, 1425 W 12th Pl, Tempe AZ 85281.

Clicle 597 on inquiry card

Low-Cost Peripheral Accepts Hand-Printed Characters

With the PrestoDigitizer tablet, users can communicate with their computers through ordinary hand-printed characters. Stroke direction and sequence are the parameters which are transmitted to the computer that allow it to recognize the user's style of handprinted characters. The learning and recognition algorithms fit in approximately 2 K bytes of memory. Versions of the tablet are available for several popular computers. The tablets can recognize the entire uppercase alphabet, numerals, and many punctuation marks. The PrestoDigitizer retails for $\$ 48.50$, including software, from Innovision, POB 1317. Los Altos CA 94022.

Circle 598 on inquiry card.

8-Inch Fixed Disk Drive Series Offers Low Cost Per Megabyte

An 8 -inch Winchester fixed disk drive series that offers 5 and 10 M bytes at a low cost has been introduced by Shugart, 435 Oakmead Pky, Sunnyvale CA 94086. Specifications include a capacity of 5.33 M bytes per drive for the SA1002 and 10.67 M bytes for the SA1004; formatted capacity is 4.2 and 8.4 bytes, respectively. Transfer rate for each type is 4.34 M bits per second. Average access time is 70 ms . The Winchester drives offer the same environmental specifications as the standard 8 -inch floppy disk drive. Mean time between failure (MTBF) is 8000 power-on hours of typical usage. Optional data separator and controller printed circuit boards are available.

Price for the SA1002 in single quantities is $\$ 1600$ and $\$ 1980$ for the SA1004. Circle 599 on inquiry card.

MCD Consulting Introduces the Bionic Voice

Designed around a Computalker Consultants CT-1 Speech Synthesizer, the Bionic Voice uses English language design. Knowledge of phonemes or phonetic alphabet is not required. Predefined dictionaries are provided, and custom dictionary entries may be added. Rapid conversations are possible, because of the English language design. The Bionic Voice can be operated like a conventional language or spelling board. All numerals, letters of the alphabet, and any words or phrases defined on the keyboard may be vocalized instantly as the keys are depressed. There are no commands or codes to memorize nor is knowledge of computers necessary.

To upgrade to a version of the Bionic Voice that has more capability, a simple change of keyboard and computer program can be made.

The Bionic Voice may be used as a voice response for nonvocal or nonverbal individuals; for educational and instructional applications in speech pathology and linguistics; and as a foreign language translator. The Bionic Voice is not limited to voice synthesis. It may be applied to other computer functions. The price ranges between $\$ 2700$ and $\$ 3500$ depending on necessary modifications.
For further information about the Bionic Voice, contact MCD Consulting, 8306 Selleck, 600 N 15th St, Lincoln NE 68508.

Circle 600 on inquiry card.

Whet 8 N8N?
 PERIPHERALS

Video Digitizer Allows Display and Storage of Computer Generated Images

This fast-scan video digitizer can be utilized in consumer environments and in medical, security and other special-
purpose applications requiring image storage and analysis.

This device, for S-100 bus computers, converts output from the video camera (or other source of composite video) into 8 -bit gray scale digital information. Maximum horizontal resolution is approximately 700 points per line and vertical resolution is 480 lines per image. Data can be transferred via software to either a memory mapped high-resolution video board or to main memory. A driver program, implementing sixteen shades of gray, is included for controlling the board, displaying images on a high-resolution video board, storing images on disk and printing images on a matrix printer.
The price for the video digitizer is S175, and it is available from Vector Graphic Inc, 31364 Via Colinas, Westlake Village CA 91361.

Circle 601 on inquiry card

Digital Controller for Touch Screen Digitizer

The TSD Touch Screen Digitizer enables untrained personnel to gain access to a data base by simply touching
the screen with a finger. The controller provides an interface between the touch screen and other computer equipment. The controller provides all timing signals required by the screen; measures the time delay between the transmitted signal and the reflected signal from an object touching the glass, which allows the resulting data to be adjusted to overlay the display behind the touch screen; processes and filters the echo times to produce clean X, Y position data; and formats the X, Y data into either parallel or serial form.
It is available from TSD Display Products Inc, 35 Orville Dr, Bohemia NY 11716, for \$2000.

Circle 602 on inquiry card.

The Microtek MT-80 Printer

The MT-80 series printer supports the full uppercase and lowercase 96 -character ASCII set in three software selectable fonts on original plus three copies. The printer contains a

240-character buffer, with optional data buffers to 4 K available in 1 K increments. A self-diagnostic program is automatically run on power up. Life expectancy of the print head is 100 million characters and mean time between failures (MTBF) is 1 million lines.

The pin feed system can accept fanfold forms from 4.5 inches (11.5 cm) to 9.5 inches (24 cm) wide. The unit features top of form control and up to 10 vertical tab settings. Form length is software programmable in one-line increments.

The unit weighs 22 pounds and measures 7.3 by 17.7 by 14.8 inches (18 by 45 by 37 cm). The Centronicscompatible parallel interface version is priced at $\$ 750$ and the serial (RS-232) version is priced at $\$ 835$. The MT-80G, with an IEEE-488 interface, is also available. Contact Microtek Inc, 7844 Convoy Ct, San Diego CA 92111. Circle 603 on inquiry card.

Versatile Printer from Malibu Design Group

The Model 165 printer can be operated as a high-speed dot matrix printer at 165 characters per second (cps); a reduced speed, letter-quality dot matrix printer at 90 cps ; or a fult graphics matrix printer. The 165 printer can do computer portraits, custom character sets such as Japanese, music symbols, high-density characters for word processing, and more.
Underlining, expanded characters, programmable horizontal and vertical tabs, selectable left margin, user adjustable platen and a feature that shuts off the fan when the printer is idle (which reduces noise and power consumption) are some of the features of this printer
Price for the basic Model 165 is $\$ 2395$ from Malibu Design Group Inc, 8900 Eton Ave, Suite G, Canoga Park CA 91304.

Clicle 604 on inquiry card.

Pocket Computer for General-Purpose Use

Using easily loaded electronic applications modules, the Nixdorf LK-3000 personal computer can be freely programmed to be used as a personal date book or telephone directory, or it can function as a data collection system capable of communication with other data processing systems. The unit also functions as a hand-held language dictionary to translate German, English, French, Greek, Italian, Spanish, Polish and Swedish words and idioms. The unit is produced by Nixdorf Computer Corp, 168 Middlesex Tpke, Burlington MA 01803, and is priced at $\$ 140$.

Circle 605 on inquiry card.

What's New?

PERIPHERALS

Inexpensive and Compact Printer

The low-profile DIP-80 features 7 by 7 or 14 by 14 dot matrix printing, upper and lowercase character set, 100
character per second (cps) bidirectional printout, roll or fanfold paper, a full 96 -character ASCII set, upper and lowercase printing at either 80 or 96 characters per line on 8.5 inch wide paper, and a 2 -line buffer. Paper feed, at the rate of 1 line per second, is accomplished through a friction roller. Interface options include Centronicscompatible parallel, RS-232C serial or 20 mA current loop. The printer measures 15.75 by 9 by 3.5 inches (40 by 23 by 8.8 cm) and is available from DIP Inc, 210 Lincoln St, Boston MA 02111, for $\$ 625$.

Circle 606 on inquiry card.

Telecommunications Facility for Transmitting and Receiving CP/M

The Byrom Software Telecommunications Access Method (BSTAM) allows transmission of program or data files between any two computers and is compatible with all $8080 /$ Z80 systems using CP / M operating systems or a derivative, including Heath and TRS-80 adaptations. Transmissions are made over a normal voice-grade telephone line at 300 bits per second (bps) and over direct wire interconnections at 9600 bps . Error checking, cyclic redundancy check (CRC) error checking, protocol informa-
tion, and group file transmission are featured but no data expansion is performed, resulting in fast transfers. BSTAM can precisely transfer data over poor circuits, with retry provisions and perfect reporting in the event of hard errors. The user interface allows a long sequence of files to be sent, with the file names automatically announced to the receiving computer. Sample drivers for 8250, 8251, 6850 and other Universal Asynchronous Receiver Transmitters (UARTs) are provided.

BSTAM comes on floppy disk for $\$ 150$. Documentation is $\$ 5$. Contact Lifeboat Associates, 2248 Broadway, New York NY 10024.

Circle 607 on inquiry card.

Apple Serial and Parallel Interface

The A10 interface allows maximum flexibility for interfacing an Apple II with peripherals such as printers, plotters, terminals, modems and other computers. The software-programmble serial interface uses the RS-232 standard and includes three handshaking lines. A switch selects nine standard data transmission rates. On-board firmware provides a powerful driver routine that eliminates the need to write any software to utilize the interface. The A10's parallel interface features software programmable I/O ports with enough lines to handle two printers simultaneously with handshaking control.

The A10 comes with serial interface firmware, two cable assemblies and a manual with easy to follow application notes. It is priced at $\$ 175$ assembled, and $\$ 135$ in the kit form, from SSM (Solid State Music), 2116 Walsh Ave, Santa Clara CA 95050.

Circle 608 on inquiry card

Single Chip Real-Time Signal Processor

Intel Corp has developed a single chip real-time analog input/output (I/O) microcomputer, the 2920 Signal Pro-

cessor, and the SP20 hardware and software support package. The 2920 converts analog input signals to digital information, processes this information in its computer, and produces analog outputs in a real-time mode. The SP20 support package, a 2920 software simulator assembler and 2920 erasableprogrammable read-only memory (EPROM) board, run on the Intellec Microcomputer Development System. The 2920 interfaces directly with analog signals using the on-chip circuitry and can handle multiple signals using I/O multiplexers, enabling thousands of complex analog systems to be formulated from one standard integrated circuit. The device can implement functions such as filters, limiters, oscillators, modulators and demodulators, nonlinear conversions, and perform logical operations all under program control.
The 2920 can be used in phase lock loops, complex filters, test and instrumentation circuits, speech processing, medical electronics, and many other applications. The 2920 device costs about $\$ 300$ and the support package costs $\$ 3400$. Contact Intel Corp, 3065 Bowers Ave, Santa Clara CA 95051. Circle 609 on inquiry card.

What's New? PUBLICATIONS

Bubble Memory Design Handbook

A 64-page catalog presenting the features, descriptions and functional characteristics of the 71101 M bit bubble memory and its support device family is now available from Intel Magnetics Inc. Included in the handbook are specifications, diagrams, and tables for the 7110 magnetic bubble memory, the 7220 controller, 7230 current pulse generator, 7242 dual formatter/sense amplifier, 7250 coil predriver, 7254 quad VMOS drive transistors, and IMB-100 development board.

Contact Intel Literature Dept, 3065 Bowers Ave, Santa Clara CA 95051, for free copies of the guide.

Circle 610 on inquiry card.

Quarterly Review of Software for TRS-80

80 Software Critique is a collection of reviews of TRS-80 cassette software. Program reviews are included only if they have been run several times; weak points and bugs in programs are documented. Program reviews include games, simulations, educational programs, music programs, and others. Business software is not included. Names and addresses of software vendors are provided and software prices are included. A one year (4 issues) subscription is $\$ 24$ and the price of a single issue is $\$ 7$. Write to 80 Software Critique, POB 134 Waukegan IL 60085.

Circle 611 on inquiry card.

New Heathkit Catalog Available Free

A new 96-page catalog describing nearly 400 electronic kits designed for the hobbyist is available from Heath Co, Dept 350-880, Benton Harbor MI 49022. New products in this catalog include the H89 computer, a 3.5 digit auto ranging multimeter, a low-priced DC to 5 MHz single-trace oscilloscope, and more.

Circle 612 on inquiry card.

Wall Chart and Book on the Z80

The Working Programmer Press, 5080 Shady Ave, San Jose CA 95129, has the Z80 processor pins and elements on a wall-chart poster and work-sheet that measures 18 by 24 inches (46 by 60 cm). lt retails for $\$ 7.95$ by mail.

The drawings are from the book The Z80, How It Works, A Programmers Perspective, published by Microware Associates Inc, Scottsdale AZ. The book describes the working and programmable elements for the $Z 80$. Sections on instruction cycles with detailed register interactions are included.

Circle 613 on inquiry card.

New Language for the 6502 User

XPLO is a simplified Pascal-type language available for 6502 systems with less than 32 K bytes of memory. It is a fast, structured compiler, so users can talk to their computers in their own language. Versions for 20 K Apple II, KIM, TIM, and SYM systems are available for under $\$ 70$. For further information on XPLO and other languages, assemblers, and games, plus a free catalog, write to The 6502 Program Exchange, 2920 Moana, Reno NV 89509.

Circle 614 on inquiry card.

Educational Software Catalog for Personal Computers

A new mail order catalog devoted exclusively to educational software is being published by Queue, 5 Chapel Hill Dr, Fairfield CT 06432. The catalog will contain listings from numerous publishers. Software listings will be separated by educational level and field, and by computer. Listings for all popular personal computers will be included, and all software can be ordered directly from Queue.

Circle 615 on inquiry card.

Analog Dialogue

This publication includes application articles on very high-speed data acquisition, statistics methods using RMS to DC, checking converter linearity, a 300 kHz continuous 12 -bit conversion system, and more. Product descriptions include voltage to current (V/I) converters for process control, a 14 -bit

Bugbook IV, Microcomputer Interfacing with the 8255 PPI Chip

This new book details microcomputer input/output (I/O) techniques and their implementation with the 8255 Programmable Peripheral Interface (PPI) integrated circuit. Techniques and experiments are presented in such a way that the principles can be applied to other PPI chips by students, scientists and engineers. All of the modes of operation are detailed, and a clear explanation of data transfer processes, flag sensing, bit testing, and similar topics are included. The price is $\$ 8.50$. For more information, contact E and L Instruments Inc, 61 First St, Derby CT 06418.

Circle 616 on inquiry card.
sample/hold amplifier, CMOS switches, three power supplies, and several data converters. The booklet is available for free from Analog Devices, Rt 1 Industrial Park, POB 280, Norwood MA 02062.

Circle 617 on inquiry card.

Connecticut microComputer Catalog

This catalog presents the Data Acquisition Modules Systems (DAM), including the AIM 16 analog to digital (A/D) converter. The publication also includes program reviews and a list of dealers for the company's products. Contact Connecticut microComputer Inc, 150 Poçono Rd, Brookfield CT 06804.

Circle 618 on inquiry card.

Whatis New?

Parallel Input/Output and Timer Board

A parallel input and output (l/O) board has been developed by Tecmar Inc, 23414 Greenlawn Ave, Cleveland OH 44122, for interprocessor communications. It has two 16-bit parallel input ports and two 16 -bit parallel output ports, status word for polled operation, interrupts for vectored interrupt operation, and is individually maskable from software.

Tecmar also has a 16 -bit timer with 8 -bit prescaler, intervals up to 8.4 seconds with resolution of 128 microseconds, status byte for polled operation, interrupt for vectored interrupt operation, and is compatible with conventional S-100 8080 and Z80 systems.
The cost for the entire board is $\$ 350$. Circle 619 on inquiry card.

A Single Board Computer System

The VP Single Board Computer System provides the functions needed for business, process control or software development systems. No other boards of any type are required. Incorporating on-board voltage regulators, it will even operate from a 12 V battery. The multiple serial and parallel input and output (I / O) ports allow the VP to interface with transducers, modems, couplers, terminals, printers, plotters, digitizers, temperature, pressure, voltage monitors and many other devices with an electrical output. The typical configuration includes a Z 80 processor, Centronics printer port, 8 -bit parallel input port, RS-232C serial port, disk controller for eight drives, and 32 K bytes of programmable memory. The software library includes operating systems,

BASIC, CBASIC, FORTRAN, COBOL. and business accounting, payroll, and word processing packages. The board is available from Data World Inc, 7541 Ravensridge Dr, St Louis MO 63119, for $\$ 900$.

Circle 620 on inquiry card

Computer Games Telephone Network

GameMaster is a computer gaming information network that is available for PET, Apple II, TRS-80, and any other personal computer that is outfitted with a modem. The system offers games, information, educational programs and other items of interest for computer users in the Midwest. For more information, contact GameMaster, 205 W Wacker Dr, Suite 1517, Chicago IL 60606.

Circle 621 on inquiry card

Smoke Signal's New 6809 Chieftain Computer

Smoke Signal Broadcasting has developed a new integrated computer system utilizing the Motorola 6809 processor, and configured around the new

Chieftain microcomputer with programmable read-only memory (PROM) or erasable-programmable read-only memory (EPROM) storage, and a minimum of 32 K bytes of programmable memory.

The system also includes expansion

capability to at least 256 K bytes - and perhaps up to 1 megabyte - requiring, larger memory cards than the current 16 K byte board. In addition, the new motherboard will handle as many as sixteen serial or parallel ports in its 30 -pin input/output (I/O) section. Nearly unlimited I/O capability is possible if the user wishes to use any of the 50 -pin positions.

Smoke Signal has also developed a new disk controller allowing either single- or double-density recording techniques to be employed. Along with the ability to handle double-sided disks, users can store up to 1 megabyte on each 8 -inch floppy disk (320 K bytes on a 5 -inch floppy disk). Current users of any SS-50 bus disk system compatible with the Smoke Signal system can purchase the controller board separately or as part of the new Chieftain.
The new controller allows instant access and immediate response to an interruption request at any time during disk operation or other multiuser applications. The unit can be expanded for multiuser operation.

The Smoke Signal disk operating system has been converted to run on the 6809, as well as the text editor and text word processor. All higher-level languages are available for the 6809 including UCSD Pascal.

A hard disk capability on the order of 15 megabytes of fixed storage and 15 megabytes of removable storage is available, expandable to 80 megabytes of fixed storage.

For more information, contact Smoke Signal Broadcasting, 31336 Via Colinas, Westlake Village CA 91361, or call (213) 889-9340.

Circle 622 on inquiry card:

JUST ATTACH THIS COUPON TO YOUR ORDER OR MENTION WHEN PLACING YOUR ORDER BY PHONE

16723 Roscoe Blva. Sepulveda, CA $91343{ }^{\circ}$

What's New?

MISCELLANEOUS

Fiber Optic Evaluation
Kit for Systems Engineers

The BASIC Programmer's Toolkit

The Toolkit is a collection of machine language firmware aids designed to enhance the writing, debugging and polishing of BASIC programs for the PET. This 2 K byte read-only memory chip offers additional read-only memory storage, avoiding any need to load tapes or give up valuable programmable

Motorola has introduced a fiber optic evaluation kit, developed to give designers experience with the latest fiber optic components. The kit is called The Link, and refers to the optical link between the transmitter and receiver of any system with all of the optical portions needed. The kit includes an MFOE103FB fiber optic infrared lightemitting diode (LED) source, an MFOD402FB integrated detector/preamplifer, a 1 meter length of fiber optic glass cable with matching AMP connectors, design considerations, applications and circuit ideas.

Price for the kit is $\$ 99$. Additional ferrule semiconductors and components are available. Contact Motorola, POB 20912, Phoenix AZ 85036.

Circle 629 on inquiry card.

storage. The Toolkit contains 10 powerful commands to help programmers with their PET. The board attaches to the memory expansion port of any 8 K byte PET. The Toolkit costs $\$ 79.95$ and the version for the 16 K or 32 K byte PET retails for $\$ 49.95$. For more information, contact Palo Alto ICs, 430 Sherman Ave, Palo Alto CA 94306.

Circle 630 on inquiry card.

National Semiconductor Corp has developed a low-cost transmitter/receiver pair of integrated circuits that allow for the design of lightweight and compact remote control systems. The LM1871 and 1872 make use of an unusual pulse code modulation technique that allows the chip set to handle analog and digital control signal information. The chip set is adaptable for use in toys, such as model cars, airplanes and trucks with simple on/off digital control to sophisticated units with several channels of proportional analog control.

The LM1871 and 1872 feature two digital and two analog channels for control, operation in the 27 MHz and 49 MHz unlicensed bands or in the 72 MHz licensed band, 50 meter outdoor control range, and an internal voltage regulator which keeps radiated power constant even if the supply voltage changes. The chips have built-in flip-flops which eliminate the need for bulky timing components.

The devices come in 18 -pin dual inline packages and operate on 9 V or less. They are priced at approximately $\$ 12$ for the set. For more information, contact National Semiconductor Corp, 2900 Semiconductor Dr, Santa Clara CA 95051.

Joystick for Apple II

ISC Inc, 2224-C Old Middlefield Way, Mountain View CA 94043, has introduced the Model VS20/APL Videostick X / Y controller for the Apple II. The unit features a large push (firing) button and a linear joystick designed specifically for applications such as plotting graphics or playing games. The controller plugs directly into the Apple II and can be hand-held or table positioned.
The Videostick is priced at $\$ 39.95$, and is available from Computer Plus Inc, 1324 S Mary, Sunnyvale CA 94087.

Circle 632 on inquiry card

Floppy Disk Mailer

Inmac, 2465 Augustine Dr, POB 4780, Santa Clara CA 95051, has designed a floppy disk mailer that protects up to five standard floppy disks or five 5 -inch floppy disks against bending, curling or cupping in transit. The disks are placed in the center of the new Inmac mailer, then the mailer is folded according to the instructions printed on the mailer itself, assuring safety in mailing. Consisting of 10 mailers, a package costs $\$ 10$. When purchased simultaneously, three or more packages cost $\$ 8.50$ per package.

MATCHMAKER TECHNOLOGY

TURNKEY DISK SUBSYSTEMS
SORCERER

DISK

 IS

For those who wish to avoid the aggravation, fussing, irritation, annoyance etc., of assembling your own subsystem, plug in and GO!!!

APPLE

FEATURES:

- $28^{\prime \prime}$ Floppy DISK DRIVES (Single Sided)
- Color Coordinated Cabinet with Power Supply
- Expanded version of APPLE-DOS
- Single Density Disk Controller
- Full Cabling, Connectors + Documentation
- Assembled and Tested
- Plug In and GO!!!
\$1695.00

OPTIONS:

$-28^{\prime \prime}$ Double Sided Drives (In place of Single Sided) $\$ 2395.00$

- 16K Internal Memory Expansion Kit
69.00

PET

Prices and specifications same as for APPLE except PET Operates via PET-DOS

TRS-80

Prices and specifications same as for SORCERER with following exceptions:

- Expansion Interface necessary
- Space for up to 48 K plug-in dynamic memory on Controller Card
- Software package as above
\$ 995.00

SORCERER

FEATURES:

- 2 8' $^{\prime \prime}$ Single Sided Floppy Disk Drives
- Single and/or Double Density
- Color Coordinated Cabinet with Power Supply
- Full RS-232 Interface
- OS-1 Disk Operating System (Fully CP/M compatible) CP/M is a registered trademark of Digital Research
- Full Cabling, Connectors + Documentation
- Assembled and Tested
- One S-100 Slot available for Memory Expansion
- Plug In and GO!!!
\$2195.00

OPTIONS:

- $28^{\prime \prime}$ Double Sided Drives (In place of Single Sided) $\$ 2845.00$
- 32K Dynamic RAM Memory Board, Assembled and Tested
\$ 299.00
- 16K Dynamic RAM Internal Memory Expansion Kit \$ 69.00
- Deluxe Business Software package includes:

C BASIC
WORD PROCESSING SOFTWARE INTERACTIVE "Big 4":

General Ledger, Accts. Payable, Accts. Rec. and Payroll
\$ 695.00

- 10 MBY Removeable Hard Disk - Call for Details

ANOTHER Fine Product brought to you exclusively by the folks at:

What's New?
 MISCELLANEOUS

Scotchflex Brand Breadboard System from 3M

3M has developed a breadboard system that eliminates stripping, soldering and crimping of wires. Connections are made with continuous, 30 AWG
solid insulated wire which is easily inserted into the " U "-contact with a hand-tool supplied by 3 M , saving time and labor. Multiple bussing is simplified by putting 2 wires into each contact which provides 4 connections. The contacts are only about one-third the height of wrap posts so prototype circuit boards can be mounted in the same space occupied by production boards. Wires can be removed without unwrapping or cutting, and dual sockets and plug strips can be removed with an inexpensive hand-tool, simplifying reuse of the board and components.

Kits with 8 contact solder strips, plug strips, 16 position dual sockets and Scotchflex "U"-contacts cost \$97.50. Separate components are also available. Contact 3M Co, POB 33600, St Paul MN 55133, Dept EP9-9.

Circle 638 on inquiry card.

Microcomputer Users Provided Access to Commodity Futures Data Base

A commodity futures data base, used by professionals in the field, is being made available to personal computer owners. The MJK data base provides daily information on 38 major commodities including interest rate futures and foreign currencies, as well as agricultural commodities with cash and price information on many. The data becomes available at $2: 15 \mathrm{PM}$ (PST) each trading day. In addition to providing daily price, volume and open in-
terest data, MJK makes available a series of programs for calculating moving averages, spread charts, bar graphs, etc. POISE is a special program for testing trading systems in the history of the data base.

A minimum of $\$ 25$ per month is charged after a subscriber set-up fee of $\$ 25$. Additional charges for the service are $\$ 16$ per hour for connect time and 14 c a second for processor usage. Included is the cost of TYMNET, providing telephone connection at local message-unit rates from most US population centers. For further information, contact Krause and Co, Central Tower Building, San Francisco CA 94103. Circle 639 on Inquiry card.

Heathkit H8 E, dender Board Kit

The H8 Extender Board allows Heathkit owners to troubleshoot their machine easily because each board is up above the computer for access to all circuits and components. Jumper links in power lines make power measurement simple. The links can be replaced with fine copper wire, which protects the traces or the motherboard from damage due to excessive current during testing.
The kit features a double-sided printed circuit board, with plated through holes, and a Molex, 25 -pin edge connector, with formed leads.
The kit is available from Mullen Computer Products inc, POB 6214, Hayward CA 94545, for $\$ 39$.

Circle 640 on Inquiry card.

> Talking Language Translator Is Introduced by Texas Instruments

A talking Language Translator, utilizing speech synthesis and offering solid state electronic modules for English, French, German and Spanish, has been introduced by Texas Instruments Inc,

POB 53, Lubbock TX 79408. Designed for world travelers as an aid in communicating in a foreign country and for language students in learning to pronounce a foreign language, the handheld device is programmed with a vocabulary of words and phrases selected for everyday use, and can be used as a basic vocabulary for learning a language.

The Language Translator has the ability to form thousands of spoken phrases by linking together its spoken vocabulary words. Each module contains about 1000 words of which half will be spoken and displayed, while half will be displayed only. Components include a speech synthesizer integrated circuit, a controller, and four read-only memories. An earplug is provided for quiet use.

There are five basic functions for users:
in a numerical code to access one of 25 preprogrammed phrases.

- Partial phrases - users may form thousands of their own phrases by linking preprogrammed partial phrases with words from the word memory
- Translate mode - translates 1000 words from input language to output language.
- Memory learn mode - drills user on pronunciation and translation of userselected words
- In the learn mode - a programmed drill assists the user to learn.

The Language Translator is priced at approximately $\$ 250$.

English, Spanish, French and German modules are available. Japanese and Chinese will be ready in the first quarte of 1980. The approximate price of each is $\$ 50$.

SAVE THE WHALE

The Fin Whale is the world's greatest long-distance communicator.

Scientists believe that loud, deep-tone, low-frequency sounds made by Fin Whales (frequencies around 20 hertz, or cycles per second) actually travel underwater for distances of at least 500 miles, and under optimum conditions might carry for a radius of over 4,000 miles, potentially reaching an area greater than the entire Atlantic Ocean.

Fin Whales, the second largest creatures ever to have lived on planet earth, grow up to 24 meters in length (exceeded only by the 30 -meter Blue Whale), and inhabit all the oceans of the world. Tens of thousands of Fin Whales have been "harvested" in recent years, by agreement of the International Whaling Commission, for the sale of products for which substitutes are readily available.

The CONNECTICUT CETACEAN SOCIETY is a small, totally volunteer, non-profit education and conservation organization dedicated to seeking the abolition of all whale killing. Any concerned citizen can help our efforts by sending name and address and a $\$ 15$ or more contribution to: CCS, P. O. Box 145, Wethersfield CT 06109.
 51/4" BASF Magical Miniatu drive only $2 / 3$ the size of others is reliable and durable and quickly gaining in popularity with our customers Single ar dual density fast access times $\$ 259.00$
Tarbell Controller may be reconfigured to control $51^{\prime \prime}$ drives and includes short cable for one drive. KIT \$179.00, ASM \$265, but only $\$ 219$ with purch. of 2 drives.
 Upward Compatable From "XX/X" (What did you say, Digital Research??)

PS: SUPERDOS-I runs on the TRS-80, and can transform it from a toy computer to a real business machine !!!

For the first time in something like 10 years, a new STANDARD in removable media has evolved. Selected bv Datapoint, and others who have not yet announced, this drive is beautifully simple and easy, if not trivial to maintain. $920 \mathrm{kBy} / \mathrm{sec}$. transfer rate, 3600 RPM 39 Ibs and only 125 Watts.

Cable Kits For 8" Drives with $10^{\prime} 50$ cond. cable and conn ectors. Also power cable and connectors. Flat cable assem if you wish. For one drive 27.50, two 33.95, three 38.95

Cable Kits for $51 / 4$ " Drives as above, bu 34 cond. For one drive 24.95, two 29.95.

"Power One" Model CP206 Power Supply adequate for at least two drives. $2.8 \mathrm{~A} / 24 \mathrm{~V}$ $2.5 \mathrm{~A} / 5 \mathrm{~V}, 0.5 \mathrm{~A} /-5 \mathrm{~V}$ beautiful quality. $\quad \$ 99.00$

CABINETS for FDD120 and 801R drives, or CP206 supply. Matte finish in mar resistant black epoxy paint and stacking design 29.95
 DISKETTES (3M, MRX, BASF Georgia Magnetics, \& Victor Borge) 8" $\quad \$ 39.95 / 10$ 51/4" \$29.95/10
32K - \$490.00 16K - \$290.00
NEWI! - CHRISLIN 64K Dynamic RAM $\$ 750.00$ (Showing Amazing Similarity to Tarbell's unit) (16K Shown in photo)

32K-\$549.00 16K-\$349.00
"BACK TO SCHOOL" KEYBOARD SPECIAL

CHERRY "PRO" Keyboard \$19.00 Streamlined Custom Enclosure $\$ 34.95$ BOTH ONLY $\$ 124.95$!!!!!!!!

Daisy Wheel Printers Qume Sprint $3 \backslash 45$

PRINTER (factory warr.) \$1199.00 POWER SUPPLY (Boschert) \$349.00 (shown mounted on rear of printer) COMBINATION SPECIAL \$1699.00

Electrolabs

POB 6721, Stanford, CA 94305 415-321-5601 800-227-8266 Telex: 345567 (Electrolab Pla) Visa MC Anı. Exp.

ESAT 2OOB

BI-LINGUAL 80×24 COMMUNICATING TERMINAL
Scrolling, full cursor, bell, 8×8 matrix, $110-19,200$ baud, Dual Font Applications. Arabic \& Hebrew, Multilingual Data Entry Forms Drawing, Music, \& Switchyards. \$349.00

DATA DISPLAY MDNITDAS

Used 12" Sylvania monitors. Composite Video, $15 \mathrm{MHz}, 120 \mathrm{VAC}$. Rebuilt with NEW P39 anti-glare tube $\$ 19.00$ New P4, 109.00, used P4 79.00.
U-fix model, $10 / \$ 300.00$

"OEM STYLE" as above, will fit any case. (Both versions serviced by qualified tech). ldentical to above but subtract $\$ 12.00$ Doppler Motion Sensor

New!

Intrusion Detector
Extremely effective microwave motion detector for detecting unwanted visitors. Ignores mice and other non-larcenous creatures Operates on 12 VDC or from small transformer supplied, Output is relay closure for alarm control interface, or to switch on lights annunciators Will operate THROUGH door of closet or thin wall. Best application seems to be to turn on outside lights to help invited guests, and to intimidate unwanted ones. $\$ 159.00$ Water Repellent Cover $\$ 24.95$

SOCKET SPECIAL

CP/M* Source Code -- FREE! when you purchase "OS-1" Electrolabs' new operating system for the 2-80 designed to have exactly the appearance of UNIX**, including virtual I/O, "set TTY", a tree and a shell, filters and pipes PLUS total compatability with CP/M software!
(Because OS-1 is truly a comprehensive "OS", and not merely a file handling "DOS', we have changed the name from "Superdos" to "OS-1")

VIRTUAL I/O - copy with a single command between floppy and hard disk, or from TTY to printer to tape to disk... etc., etc. No messy I/O routines to write, \& no awkward transfers. SECURITY - 9 modes of file protection, user and login protection. MULTI-USER - up to 256 passwords. (non-simultaneous users) 16MBy FILE SIZE - but no limit to no. of directories per device, thus allowing EASY implementation of gigantic storage devices.
"SET TTY" - for printer or crt: tabs, page width, buffer, cursor, UC/LC, fonts, formfeed, arbitrary control characters etc., etc.
"LOGIN" - automatically executes user selected programs and "set TTY". OCCUPIES 12 K By - only 50\% larger than CP/M, but 500\% more features. $C P / M \& C D O S ~ C O M P A T A B L E$ - your library is guaranteed to run!

Abstract

- (Naturally, we are not giving away the version of CP/M written by Digital Research, Please pardon our pun, but they might object. What we ARE giving you is a greatly enhanced version of CP/M which resides on OS-1, and allows the user of OS-1 to run any and all of his programs, packages or system utilities which are already running on CP/M. We give you the source code at no charge so that you mav modify any part of the CP/M to suit your own system requirements. At no charge, you also receive the enhancement allowing 4 MBy files instead of 256 K .)

OS-1 (with debugger, linker and screen oriented editor	\$199.00
Update service, per year	29.00
Symbolic Debugger	150.00
MACRO-Assembler (Creates relocatable code)	150.00
"C' Compiler	660.00
FORTRAN Compiler	100.00
BASIC Compiler (very fast)	350.00

PAPER TIGER

IDS MODEL 440

- 8 Software Selectable Character Sizes
- Parallel \& Serial Interface
- 98 ASCII Character set, upper \& Lower case
- Forms length control
- Tractor Feed \$995.00

Graphics option with 2K CRT screen buffer add $\$ 199.00$

DYNAMIC DEVICES MODEM

- Acoustically coupled modem assembly set
- Asynchrous 0-300 Baud
- Switchable originate or answer modes
- Operates full or half duplex mode
- 15 minute assembly $\quad \$ 149.95$

NEVV YEAR'S IC (While Supply Lasts)		SPE	JLAR	$\begin{aligned} & \text { TMS2716 } \\ & 2732 \end{aligned}$	$\begin{aligned} & 19.00 \\ & 95.00 \end{aligned}$
		7001	ts) 2.00	CPU	
MEMORY \& EPROM			$16 \mathrm{~K})$ 69.00	1802CD	\$19.95
2114-2	\$ 3.00	5204	4.95	6502	6.25
	6.99	2708	8.95	2-80	9.95
$\begin{aligned} & \text { Fd411 } \\ & 2107 \text { (pull outs) } \end{aligned}$	2.50	2516	35.00	Z.80A	12.95
	2.00	2716	35.00	8080A	8.99
				8085	22.00
ELECTROLABS				8741	79.0
			FLOPPY CONTROLLERS		
POB 6721 Stanford, CA 94305			1771	\$26.95	
415-321-5601	800-227-8266		1791	37.95	
Telex: 345567 (Electrolab Pla)			MISCELLANEOUS (CALL US!!)		

for B\&W and Color Imaging and Graphics
Light pen, A-D, D-A, TV synchro (needs no time base correction or adjustment with anything between random interface \& NTSC commercial standard). T.V. single frame grabber ("snapshot"). Up to 1 Byte of attributions per pixel.
LSI-100 \& S-100 applied to:
Graphic Presentation - such as computer generated animation \& other graphic displays up to 256 colors \& up to 256 b\&w gray scales. Image Analysis - using built-in FRAME GRABBER, for medical Image enhancement, contour analysis, \& pattern recognition. Commercial TV Tilting \& Advertising - using synchronization capability. Interactive graphics - using light pen accessory.
BASIC CONFIGURATION -
LSI. 11 \$1995. S-100 \$1265. For TRS-80/Exidy Add $\$ 595.00$ Includes: Data Board - 32K (480 $\times 512 \times 1$ pixel) D-A 16 level video generator. Video Synchronization Circuitry. Address Control \& Timing Board.
FEATURES - High speed. DMA
 or 2 KBy window memory mapped interface. Full NTSC commercial color capability. Low power consumption. Excellent Software Dptions - Accessories - Software Options include: light pen, auxilliary outputs, text mode, memory and much more. Accessories include: b\&w and color cameras and monitors. Software: "Plot" 2D or 3D, "Tilting", "Contour", "Image Enhancement", "Vector Curve Generation".

Call for price and details
trademarks of Digital Research and Western Electric respectively.

Electrolab's System Switcher Model SPO4

FEATURES:

Brown-Out Proof
Line Frequency Indifferent Very Low EMI
U.L. Approved

20 KHz
High Efficienc.y
Soft Start
Extremely Lightweight
Open Frame Design Short Circuit and OV Protection 20,000 Hour MTBF (M)L 217B) Adaptable to Un-Interruptable Power applications. and
Low Costl! (just look at DEC's price)
for the

COMPUCRUISE

Put a computer i your car, which gives you the most effeccruise control ever designed, plus complete trip computing, fuel management systems, and a remarkable accurate quartz crystal time system. So simple a child can operate, the new CompuCruise combines latest computer technology state-of-the-art reliability in a package which will not likely be available on new cars for years to come Cruise Control - Time, E. T. Lap Timer, Alarm - Time, Distance. Fuel to Arrival - Time, Distance. Fuel to Empty * Time. Distance and Fuel on Trip • Current or Average MPG, GPH • Fuel Used. Distance since Fillup • Current and Aver age-Vehicle Speed Inside, Dutside or Coolant Temperature - Battery Voltage English or Metric Display. $\$ 169.95$ without cruise control \$129.95.

FLOPPY DISK STORAGE BINDER This black three-ring binder comes with ten transparent plastic sleeves which ac commodate either twenty, five-inch or
ten. eight-inch floppy disks. The plastic sleeves may be or dered separately and added as needed. A contents file is in cluded with each sleeve for easy iden tification and arganiz ing. Binder \& 10 hol ders \$14.95 Part No. B800: Extra holders 95° each. Part No 800

OPTO-ISOLATED PARALLEL INPUT BOARD FOR APPLEII
There are 8 inputs that can be driven from TTL logic or any 5 voit source. The circuit board can be plugged into any of the 8 sockets of your Apple II. It has a 16 pin socket for standard dip ribbon cable connection.
Board only \$15.00 Part No. 120, with parts \$69.95. Part No. 120A.

TIDMA

- Taje Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate - S-100 bus compatible \bullet 8oard only $\$ 35.00$ Part No. 112, with parts $\$ 110$ Part No. 112A

SYSTEM

 MONITOR8080. 8085. or Z-80 System monitor for use with the TIDMA board. There is no need for the front panel. Complete
with
dacumentation with documentation

16K EPROM

Uses 2708 EPROMS. memory speed selection provided, addressable anywhere in 65 K of memory. can be shadowed in 4 K increments. Board anly $\$ 24.95$ part no. 7902, with parts less EPROMs $\$ 49.95$ part no. 7902A.

ASCII KEYBOARD

TTL \& DTL compatible - Full 67 key array - Full 128 character ASCII output • Positive logic with outputs resting low • Data Strobe - Five user-definable spare keys • Standard 22 pin dual card edge connector - Requires +5 VDC. 325 mA . Assembled \& Tested Cherry Pro Part No. P70-05AB. \$1:19.95.

ASCII KEYBOARD

53 Keys popular ASR-33 format - Rugged G-10 P. C. Buard - Tri-mode MDS encoding - Two-Key Rollover - MDSIDTL/TTL Compatible • Upper Case lockout • Data and Strobe inversion option - Three User Definable Keys - Low contact bounce - Selectable Parity • Custom Keycaps - George Risk Model 753. Requires $+5,-12$ volts. $\$ 59.95 \mathrm{Kit}$.

ASCII TO CORAESPONDENCE CODE CONVERTER

This bidirectional board is a direct replacement for the board inside the Trendata 1000 terminal. The on board connector provides RS-232 serial in and out. Sold only as an assembled and tested unit for $\$ 229.95$ Part No. TA 1000C

DISK JACKET ${ }^{\text {TM }}$

Made from heavy duty .0095 matte plastic with reinforced grommets. The minidiskette version holds two 5-1/4 inch diskettes and will fit any standard three ring binder. The pockets to the left of the disk ette can be used for listing the contents of the disk. Please order only in multitudes of ten. $\$ 9.95 / 10$ Pack.

ATARI 800
Computer with 8 K \$995.00, disk drive $\$ 549.00$ printer $\$ 599.99$

VIDEO TEAMINAL 6 lines, 64 columns ${ }^{-}$ Upper and lower case - 5x7 dot matrix - Serial RS-232 in and out with TTL parallel keyboard input - On board baud rate generator 75, 110. $150,300,600, ~ \&$
1200 jumper selectable. Memory 1024 characters (7-21L02) - Video processor chip SFF96364 by NecuIonic - Contral char acters (CR, LF. \rightarrow, \uparrow, Һ. non destructive cursor, CS, home, CL - White characters on black background or vice-versa. With the addition of a keyboard, video monitor or TV set with TV interface (part no. 107AJ and power supply this is a complete stand alone terminal •also S-100 compatible - requires $+16, ~ \&-16$ VDC at 100 mA , and 8 VDC at 1A. Part No, 1000A $\$ 199.95$ kit.

RS-232/20mA INTERFACE

This board has two passive, opto-isolated circuits. Dne converts RS-232 to 20 mA , the other converts 20 mA to RS 232. All connections go to a 10 pin edge connector. Requires +12 and -12 valts Board only \$9.95, part no. 7901, with parts \$14.95 Part No. 7901A

COMPUCOLOR II
Model 3. 8K \$1395 Model 4, 16K \$1595. Model 5, 32K \$18 95. Prices include color monitor, computer and one disk drive

PET COMPUTER
With 32 K \& monitor \$1195. Dual Disk Drive - $\$ 1195$

or

APPLE II PLUS
16K - \$995. 32k
\$105G, 48K - \$1123
Disk \& cont. $\$ 589$

REMDVES RECDRDINGS IN DNE SECOND! The process eliminates static positive / negative ions and maintains original tone quality with minimal tape hiss - To im prove tone quality - To reduce hissing - For quick and easy to erase - No battery or liquid required - Powerful and effective action • Unconditional 2 year guarantee year ger-8uarante.

16K RAMS
For the Apple, TRS-80 or Pet $\$ 8$ each Part No. $4116 /$ 2117.

> APPLE II HOBBY PROTOTYPING

> CARD
> $\$ 14.95$ Part No 7907

T.V. INTERFACE

- Converts video to AM modulated RF. Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobbs' Journal. Recommended by Apple Power required is 12 volts AC C.T., or +5 volts DC - Board only \$7.60 part No. 107. with parts $\$ 13.50$ Part No. 107A

PARALLEL TRIAC OUTPUT BOARD FOR APPLEII

This board has 8 triacs capable of switching 110 volt 6 ainp loads (660 watts per channell or a total of 5280 watts. Board only \$15.00 Part No 210, with parts \$119.95 Part No. 210A

TRS－80 ${ }^{\text {ES }}$ SERIALI／O

－Can input into basic －Can use LLIST and LPRINT to output．or output continuously • RS－232 compatible Can be used with or without the expansion bus－On board switch selectable baud rates of $110,150,300,600$ ， 1200．2400，parity or no parity odd or even， 5 to B data bits，and 1 or 2 stop bits．D．T．R． line－Requires＋5 -12 VDC • Board only $\$ 19.95$ Part No． 8010 with parts $\$ 59.95$ Part No．8010A，assembled $\$ 79.95$ Part No． 8010 C．No connectors pro－ vided，see below．

nector Port
0825 P 56 com mith
9．a conductor
cable 51095 part
Cable 51095

withattachedcon
nectors tolit TRS－
80 and our seral oorrd $\$ 1995 \rho_{\text {art }}$

RS－232／TTL INTERFACE

－Converts TTL to RS 232，and converts RS 232，and converts RS－
232 to TTL Two sep－ arate circuits－Re－ quires -12 and +12 volts • All connections go to a 10 pin gold plated edge connector kit \＄ 9.95 Part No． 232A 10 Pin edge connector $\$ 3.00$ Part No．10P．
\qquad
录
？
（145）
H．

RS－232／TTY INTERFACE

This board has two active circuits，one converts RS－232 to 20 mA ，and the other converts 20 mA to RS－232．Requires +12 and -12 volts． $\$ 9.95$ Part No．600A
8ox of 10．5＂\＄29．95， 8＂$\$ 39.95$.
Plastic box，holds 10 diskettes，5＂－\＄4．50， $8^{\prime \prime}$－$\$ 6.50$
－Type 103 －Full or half duplex Works up to 300 baud o Drigi－ nate or Answer No coils，only low cost components TTL in－ put and output－serial －Connect $B \Omega$ speak－ er and crystal mic． directly to board Uses XR FSK demod－ ulator Requires +5 volts－Board only $\$ 7.60$ Part No．109， with parts \＄27．50 Part No．109A

DISKETTES

 e
to 30 ate is continuously adjustable from 0 to 30.000 ．Plugs into any peripheral connector Low current drain．RS－232 input and output On board switch selectable 5 to 8 data bits， 1 or 2 stop bits，and parity or no parity either odd or even－Jumper selectable address－SOFTWARE－Input and Dutput routine from monitor or BASIC to teletype or other serial printer－Program for using an Apple Il for a video or an intelligent terminal． Also can output in correspondence code to interface with some selectrics．Also watches DTR E Board only \＄15．00 Part No． 2，with parts $\$ 42.00$ Part No．2A，assembled 2，with parts $\$ 42.00$
$\$ 62.00$ Part No． 2 C

8K EPROM

PIICEON
Saves programs on PROM permanently funtil erased via UV light）up to BK bytes．Programs may be directly run from the program saver such as fixed routines or assemblers．S－ 100 bus compatible－Room for 8 K bytes of EPROM non－volatile memory（ 270 B ＇s）．On－ board PROM programming－Address relocation of each 4 K of memory to any 4 K boundary within 54 K ．Power on jump and reset jump option for＂turnkey＂systems and computers without a front panel－Program saver software available •Solder mask both sides－Full silkscreen for easy assembly． Program saver software in 12708 EPROM $\$ 25$ ．Bare board $\$ 35$ including custom coil． board with parts but no EPROMS \＄139，with 4 EPROMS $\$ 179$ ，with 8 EPROMS $\$ 219$ ．

WAMECO PRODUCTS WITH

ELECTRONIC SYSTEMS PARTS

FDC－1 FLOPPY CONTROLLER BOARD will drive shugart．pertek．remex $5^{\prime \prime}$ \＆8＂drives up to 8 drives，on board PROM with power boot up．will operate with CPM Inot included．PCBD（ínaily）iMSAi size hex FPR－1 Front Panel．（Finally）insai size hex displays．Byte or instruction single step． MEM－1A 8Kx8 fully buffered，S－100，uses 2102 type RAMS． amb－12 MOTHER BOARD． 13 slot nated，S－100 board only ．．．．．．．\＄34．95
CPU－1 8080A Processor board $\mathrm{S}-100$ with 8 level vector interrupt PC8D $\$ 25.95$ RTC－1 Realtime clock board．Two independ－ ent interrupts．Software grogrammable． EPCBD 1ブロO2̆ 4K ÉPROM
card PCBD …．．．．．．．．．．．．．．．．．．．．．$\$ 25.95$ $\$ 49.95$ with parts less EPROMS
EPM－2 $2708 / 271616 K / 32 K$ EPM－2 270日／271616K／32K EPROM card PCBD
$\$ 24.95$ QMB－9 MOTHER BOARD．Short Version of QMB－12． 9 Slots PCBD ．．．．．．$\$ 30.95$
MEM－2 16 Kx F Fully Buffered 2114 Board PCBD ．．．．．．．．．．．．．\＄25．95，\＄269．95 Kit

T．V．
 TYPEWRITER

－Stand alone TVT － 32 char／line， 16 lines，modifications for 64 char／line included －Parallel ASCII（TTL） input－Video output － 1 K on board memory －Output for computer controlled curser Auto scrall－Non－ destructive curser－ Curser inputs：up，down， left，right，home，EOL． EOS－Scroll up，down －Requires +5 volts at 1.5 amps，and -12 volts at 30 mA －All 7400．TTL chips－ Char．gen． 2513 Upper case only Board only \＄39．00 Part No．106，with parts \＄145．00 Part No． 1064

UART \＆ BAUD RATE GENERATOR

－Converts serial to parallel and parallel to serial－Low cost on board baud rate gener－ ator－Baud rates： $110,150,300,600$ ． 1200 ，and 2400. Low power drain +5 volts and -12 volts required－TTL com－ patible－All characters contain a start bit． 5 to 8 data bits， 1 or 2 stop bits，and either odd or even parity．All connections go to a 44 pin gold plated edge connector e Board only \＄12．00 Part No． 101 with parts $\$ 35.00$ Part No．101A． 44 pin edge connector \＄4．00 Part No．44P

HEX ENCODED KEYBOARD

E．S．

This HEX keyboard has 19 keys， 16 encod－ ed with 3 user defin－ able．The encoded TTL outputs，8－4－2－1 and STROBE are debounced and available in true and complement form． four onboard LEDs indicate the HEX code generated for each key depression．The board requires a single +5 volt supply．Board only $\$ 15.00$ Part No． HEX－3．with parts $\$ 49.95$ Part No．HEX－ 3A． 44 pin edge con－ nector \＄4．00 Part No． 44 P ．

DC POWER SUPPLY

－Board supplies a regulated＋5 volts at 3 amps．，$+12,-12$ ，and -5 volts at 1 amp ．Power required is 8 volts $A C$ at 3 amps．，and 24 volts AC C．T．at 1.5 amps ．Board only $\$ 12.50$ Part No．60B5，with parts excluding transformers $\$ 42.50$ Part No．6085A

Mention part no．description，and price．In USA shipping paid by us for orders accompanied by check or money order We accept C．D．D．orders in the U．S．only，or a VISA or Master Charge no．，expiration date，signature，phone no． shipping charges will be added．CA residents add 6.5% for tax．Outside USA add 10% for air mail postage and han－ dling．Payment must be in U．S．dollars．Dealer inquiries invited． 24 hour order line（408） $448-0800$

Send for FREE Catalog ．．．a big self－addressed envelope with 41 \＆postage gets it fastest！

Jィ

ALS CHIPS 15% OFF !! MEMORY PRICES REDUCED !!!

S D SYSTEMS SALE II!

S D SYSTEMS EXPANDORAM

EXPANDABLE TO 64K USING 4116 RAMS

tnterfaces with most popular S-100 boards Bank selectable: PHANTOM provision Draws only 5 watts fully populated Designed to work with Z-80, 8080, and 8085 systems No wait states required
16 K boundaries \& protect via dip switches Kits come with sockets for full 64 K Invisible refresh
MEM-16130K (16K KIT)
$\$ 199.00$
MEM-16130A (16K A\&T)
$\$ 249.00$
$\$ 265.00$
$\$ 315.00$
$\$ 339.00$ $\$ 389.00$ $\$ 394.00$
$\$ 444.00$ MEM-32131A (32K A\&T) MEM-48132K (48K KIT) MEM-48132A (48K A\&T) MEM-64133K (64 K KIT)

S D SYSTEMS
 PROM-100

VERSATILE EPROM PROGRAMMER

S-100 bus compatible (note: board height 7") Dip switch setects $2708,2716,2732,2758$, or 2516 's 25 VDC programming pulse generated on board Programming time only 100 seconds for 16 K bits Support-software listing provided in manual Program and erasure verification
Software provides for reading of object file from CP/M and programming into EPROM
MEM-99520K (KIT)
$\$ 145.00$
MEM-99520A (A\&T)
$\$ 215.00$

S D SYSTEMS

EXPANDOPROM

EXPANDABLE TO 32K USING 2716 EPROMS

S-100 bus compatible, uses 2708 or 2716 EPROMs Dip switches allow selection of : each EPROM, 16 K or 32 K boundary, wait states
MEM-32220K (KIT)
$\$ 135.00$
MEM-32220A (A\&T)
$\$ 199.00$

GET THE INSIDE TRACK

 JADE DOUBLE-DDOUBLE DENSITY DISK CONTROLLER
Read/write single or double density, 8 " or $51 / 4$ "drives On board Z-80 insures reliable operation
CP/M compatible in either single or double density Density is software selectable
Up to 4 single or double sided, single or double density drives may be mixed on the same system EIA level serial printer interface on board-up to 9600 baud (perfect for despooling operations)
All the hard work of disk access is done by the on board Z-80A and 2 K memory, leaving your hos CPU free for its normal duties
Uses IBM standard formats for proven reliability THIS BOARD REALLY WORKS I!!!! 10D-1200K (DOUBLE-D KIT)
IOD-1200A (DOUBLE-D A\&T)
$\$ 285.00$
1OD-1200D (MANUAL ONLY) $\$ 349.00$
. $\$ 15.00$

S D SYSTEMS

VERSAFLOPPY
II
DOUBLEDENSITY DIS CONTROLLER

Single or double density floppy disk controller 985600 bytes on $8^{\prime \prime}$ double sided diskettes 259840 bytes on double sided $51 / 4^{\prime \prime}$ diskettes S-100 bus (IEEE) standard compatible JBM 3740 format in single density
$8^{\prime \prime}$ and $51 /{ }^{\prime \prime}$ " drives controlled simultaneously
Operates with Z-80, 8080, and 8085 CPU's Controls up to 4 drives
Vectored interrupt operation optional
IOD-1160K (KIT)
$\$ 305.00$
IOD-1169A (A\&T)
$\$ 399.00$

VERSAELOPB

VERSATILE FLOPPY DISK CONTROLLER

IBM 3740 soft sectored format
S-100 Z-80 or 8080 compatible
Controls up to 4 single or double sided drives
Compatible with all popular disk drives CP/M compatible
Listings for control software included
IOD-1150K (KIT)
$\$ 139.00$
10D-1150A (A\&T)
$\$ 229.00$
NEW 2 OR 4 MHz REV. C BOARD

팔 JADEB B B

Z-80 CPU BOARD WITH SERIAL I/O PORT 2 or 4 MHz switchable, on-board 2708, 2716, or 2732 EPROM useable in SHADOW mode (full 64 K RAM) Automatic MWRITE generation if no front panel On-board USART for sync or async RS232
CPU-30201K (KIT)
$\$ 159.00$
CPU-30201A (A \&
$\$ 209.00$

S D SYSTEMS EMPAMDBAM

4 MHz RAM BOARD EXPANDABLE TO 256K

S-100 bus compatible, up to 4 MHz operation Expandable memory from 16 K to 256 K Dip switch selectable boundaries Page-mode allows up to 8 boards on the same bus Invisible refresh; PHANTOM output disable Designed to operate in Z-80 based systems MEM-16631K (16K KIT)
MEM-16631A (16K A\&T) $\$ 325.00$ MEM-32632K (32K KIT) $\$ 359.00$ MEM-32632A (32K A\&T) MEM-48632K (48K KIT) MEM-48632A (48K A\&T) MEM-64632K (64K KIT) MEM-64632A (64 K A\&T)

S D SYSTEMS VDB-8024

80×24 //O MAPPED VIDEO BOARD
 80 character by 24 line display, 7×10 dot matrix Composite or seperate TTL video outputs On-board keyboard interface with power On-board Z-80 and 2K RAM
Blink, underline, reverse, protect, up/down scrolf Upper/lower case characters, 32 special characters Optional 128 user-programmable characters
IOV-1020K (KIT).
$\$ 295.00$
IOV-1020A (A\&T)
$\$ 459.00$
S D SYSTEMS
SBC-100/200
2 OR 4 MHz SINGLE BOARD COMPUTER

S-100 bus compatible Z-80 CPU 1 K of on-board RAM
4 EPROM sockets accomodates 2708. 2716. or 2732 One parallel and one serial I/O port 4-channel counter timer chip (Z-80 CTC) Software programmable serial baud rates CPC-30100K (2 MHz KIT) $\$ 215.00$ CPC-30100A ($2 \mathrm{MHz} \mathrm{A} \mathrm{\& T}$) CPC-30200K (4 MHz KIT) CPC-30200A ($4 \mathrm{MHz} \mathrm{A} \mathrm{\& T}$)
$\$ 345.00$
$\$ 255.00$
$\$ 365.00$

PRICES SLASHED FOR JANUARY !!! CALL TOLL-FREE AND SAVE

 800-421-5809 CONTINENTAL U.S. 800-262-1710 INSIDE CALIFORNIA
Z-80 STARTER KIT

COMPLETE Z-80 MICROCOMPUTER

On-board keyboard, display. EPROM programmer and cassette interface
On-board S-100 interface
Wire-wrap area and room for 2 S-100 connectors Two 8-bit parallel I/O ports, 4-channel CTC. 5 programmable breakpoints
Examine and change memory. I/O ports. or register CPS-30010K (KIT)
$\$ 219.00$
CPS-30010A (A8T)
$\$ 365.00$

CP/M 2.0

Digltal Research has done it again! This new release of their industry standard disk operating system is bound to be an even bigger hit than the original verslon. All of the fundamental file-size restrictions of release 1 have been eliminated. while maintaining full compatibility with the earlier versions. This new release can be field-configured by the user for a single mini-disk up through a multiple drive hard-disk system with 128 megabyte capacity. Field coniliguration can be accomplished easily through use of the Macro Library (DISKDEF) provided with CP/M 2.0.

A powerful operating system for only ... $\$ \mathbf{\$ 5 0 . 0 0}$
JADE'S NEW MOTHERBOARDS THE ISO-BUS
WE'RE PROUD OF OUR MOTHER !

BARE BOARD 6-SLOT
KIT
ASSEMBLED \& TESTED
12-SLOT
BARE BOARD
KIT
ASSEMBLED \& TESTED
BARE BOARD 18-SLOT
KIT
ASSEMBLED \& TESTED
$\$ 24.95$
 KIM-1 compatible On-board printer Full ACSII keyboard
AIM-65 w/1K RAM.. $\$ 375.00$ AIM-65 w/4K RAM.. $\$ 450.00$ BK BASIC ROM. $\$ 100.00$
POWER SUPPLY.. $\$ 59.95 /$ CASE for AIM-65..\$49.95 4K Assembler/EdItor. $\$ 80.00$ Special Package Price
$\$ 599.00$
AIM-65. 8K BASIC ROM. Power Supply, and Case

JADE

MEMORY EXPANSION KITS

TRS-80 APPLE EXIDY

Everything you need to add 16 K of memory to your computer. Your kit comes neatly packaged with easy to follow instructions. In just minutes your computer is ready to tackle more advanced software.

$\$ 75.00$

AVAILABLE IN FEBRUARY

NEW JADE P/S I/O

PARALLEL/SERIAL/INTERRUPT BOARD Z-80 SIO/PIO, 2 CTCs, expands to 2 SIOs, 4 CTCs 4 serial ports (async, sync, bisync, SDLC/HDLC) 2 parallel ports with full handshake
Soltware baud rate generators, interval timers, counters, and generates 32 vectored interrupis Designed especially for MP/M multi-user multitasking operating systems. For use with Z-80 only IOI-1045B (BARE BOARD) $\$ 45.00$ 1OI-1045K (KIT) 12.9 IOI-1045A (A \& T) $\$ 224.95$

Circle 210 on inquiry card.

HOBBYWORLD ELECTRONIOS

America's Largest Mail-Order Computer Store
$7+15$
$7+15$
$7+15$
$7+15$
$7+15$
$7+15$
$7+15$
$7+15$
$i+15$
$7+15$
$7+15$
$7+1$
$7+1$
$7+1$
74
$7+15$
$7+15$
$7+15$
7415
$7+15$
$7+15$
$7+15$
7415
7415
$7+15$
$7+1$
$7+1$
$7+15$
$7+15$
7415
$7+15$
7415
7415
$7+15$
$7+15$

74L\$
Order by Cat Na 999 and type TYPE TYPE PRICE NO
NO. PRICE NO. PR
7415 00 $\begin{array}{lll}7418 \\ 7+15 & 00 & 28 \\ 7415157\end{array}$

HAZELTINE TERMINALS

CMOS

Order by			
TYPE	PRICE	TYPE	
NO.	Prict	NO	PRICE
CD 4000	19	CD 4028	85
CD 4001	23	CD 4030	45
CD 4002	23	CD 4035	99
CD 4006	1.09	CD 4040	1.10
CD 4007	25	CD 4044	. 79
CD 4008	28	CD 4045	. 89
CD 4009	45	CD 4046	1.19
CD 4010	39	CD 4049	45
CD 4011	28	CD 4050	45
CD 4012	25	CD 4051	1.15
CD 4013	36	CD 4052	. 69
CD 4014	99	CD 4053	1.19
CD 4015	. 99	CD 4066	85
CD 4016	45	CD 4069	. 49
CD 41017	1.10	CD 4071	. 26
CD 4018	. 99	CD 4081	29
CD 4019	42	CD 4082	29
CD 4020	1,10	CD 4510	99
CD 4021	1.25	CD 4516	. 79
CD 4022	1.10	CD 4519	. 59
CD 4023	. 29	CD 4522	1.25
CD 4024	. 75	CD 4526	1.25
CD 4025	16	CD 4528	. 99
CD 4026	1.45	CD 4529	. 49
CD 31127	. 49		

MICROPROCESSORS

ATARI

THE AFFORDABLE COMPUTER

sophisilcated, yet simple. De plus nore and noole The model

 signed by the expert in home \quad Boo has all the falures of the compuler hased weressonies. It 4 OH plus two channel dipital re wunt become obsolele, because corder, aK RAN1, (e pand.alte io alumed cxpandalse memory. nents, and comprehensive atray $10 \mathbf{3 2 K}$). of soflware nordules. Whether 2172 Alari 400 Per. $\$ 550.00$ you've had nogramming experi. 2172 sonal Computer "perating yout Alari in no lime at all: Fealuses of the Model to0 include: 57 hey keybrard, highresselution collor graplics. Built.

$$
\begin{array}{ll}
\text { Alari } \text { Boo Per- } & 995.00 \\
\text { Sonal Compuler } & \\
\text { Atinidish Drive } & 750.00 \\
\text { Aor Ano: } &
\end{array}
$$ nection witl, any shandard conlor nection will any shandard collor Digind Rectr

for 400

$$
\begin{aligned}
& \text { Alari geo Per- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } 8 \text { no } \\
& \text { Line Prin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Line Printer for trino.or } \\
& 800
\end{aligned}
$$

HOW TO ORDER

Pay by chech. Mastercharge, please include expiration date. Foreign pay in U.S. funds. Order by phome or mail, ot at our retail. MINIMUM ORDER \$10. please scinefissue vou are andering from. Prices valid thru lasi day of cover dale. SHIPPING: USA:: add $\$ 2.00$ for the first 2 lbs . For ground adal 35e for added ll lb . For Air add 756 for addrl th. FOREIGN: surface: add \$3.00 for firs1 $\$ 11.00$ for firsi $2 \mathrm{lhs} . \$ 5$ for each
addr'I lo. CODs $\$ 1$ addr'l. Guar
anteed salisfaction for 320 days or your momer back! Not responsihle for typographical errors. Some items subiect priot sale. We reserve the right SEND FOR FRE
SEND FOR FREE CATAIOG
Computers and accessories. dish drives, printers. Impegaled circuits. tiDs. senmicamiuetors. plus more and mone! 1 he widesi selection at the lowest wies! Circle our reader serice number
or phone/write loday for your

19511 Business Center Dr. Dept. B1 Northridge, Ca. 91324

PLEASE WRITE FOR CATALOG OR WHILE IN DALLAS, VISIT OUR RETAIL
STORE AT 201 LOCHWOOD MALL,
DALLAS, TEXAS 75218
(GARLAND ROAD AT JUPITER).

ORDERING INFORMATION \& TERMS: Orders Under 515.00 add 75c handling. No C.O.D. We accept Visa, MasterCharge, and American Express cards. Tex. Res. add 5% tax. Foreign orders (except Canada) add 20% P8H. 90 Day Money Back Guaraniee on all items. Add 5% PRH, maximum $\$ 5.00$ ORDER BY PHONE - (214) 324-5509

The EXPANDORAM is available in versions from 16 K up to 64 K , so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invisible on-board refresh, and IT WORKS!

- Bank Selectable
- Phantom
- Power 8VDC, + 16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Major Brand 16K RAMS
- PC Board is doubled solder masked and has silk-screened parts layout
- Extensive documentation clearly written

SD'S PROM 100 PROM Programmer Board The PROM-100 Programmer is a development tool for S-100 Bus computer systems. The Zero Insertion Force Programming Socket extends above the card cage height for easy access to PROM devices. Software verifies PROM erasure, verifies program loading and provides for reading of object file from Disk or PROM and programming into PROM/EPROM. Features include: On-board generated 25vdc Programming pulse, TL compatible, maximum programming time for 16,389 bits is 100 seconds. Programs: 2708, Intel 2758, 2716, 2732 and TI 2516. DIP Selectable EPROM type
PROM-100 Board Kit
$\$ 149.95$

SD'S VDB-8024 VIDEO DISPLAY BOARD

The VDB-8024 features its own on-board $Z 80$ microprocessor. This gives the capability of using software (included in ROM) to control functions and enhancements without interference with the computer's CPU. Included in the special features: 80 characters by 24 lines display, keyboard power and interface. composite and separate video output, 2K on-board RAM, a total of 256 available characters, full cursor control, forward and reverse scrolling, underlining, field reverse, field protect enhancements, programmable characters.

VDB-8024 KIT \$289.00

TARBELL FLOPPY DISK INTERFACE

Compatible with Z80 \& 8080. S-100 Bus. Uses CPM operating system. Plugs directly into your IMSAI or ALTAIR - Fastest transfer rate
KIT $\$ 190.00$ Assembled \& Tested $\$ \mathbf{2 6 0 . 0 0}$

TARBELL CASSETTE INTERFACE

Plugs directly into your IMSAI or ALTAIR • Fastest transfer rate - Extremely reliable -
Phase encoded • 4 extra status \& control lines KIT $\$ 99.95$

Z80 STARTER KIT

Kit: $\mathbf{\$ 2 1 9 . 9 5}$ Assembled \& Tested $\$ 369.95$ SD System's 280 Starter Kit enables the novice to build a complete microcomputer on a single board. Featuring the powerful $Z 80$ microprocessor, the Z80 Starter Kit feafures - Keyboard and Display - Audio Interface PROM Programmer - Expansion and Wire Wrap Area - On Board RAM - 4 Channel Counter/Timer -Z-BUG Monitor in PROM • I/O Ports.
-S-100 Bus Compatible - Up to 4 Mhz Operation

- Expandable Memory from 16 K to 256 K
- DIP Switch Selectable Boundaries
- Uses 16K (4116) or 64K (4164) Memory Devices
- Page Mode Operation Allows up to 8 Memory Boards on Bus
- Operates with Z80 CPU's
- Phantom Output Disable
- Invisible Retresh (Synchronized with Wait States)

SD EXPANDORAM

- Complete kit includes all Sockets for 64 K
- Memory access time: 375ns, Cycle time 500 ns .
- No wait states required
- 16K boundaries and Protection, via Dip Switches
- Designed to work with Z-80, 8080, 8085 CPU's

EXPANDORAM 64K Kit (16K Ram)

WITHOUT MEMORY

$\$ 139.00$
16K 209.00 275.00 340.00 405.00

SD'S VERSA FLOPPY II

SD'S MPB-100
Z80 CPU
BOARD KIT
The MPB-100 provides
a $\mathbf{Z 8 0}$ microprocessor

based CPU for S-100 Bus systems. Front panel usage is optional, making the MPB-100 suitable for upgrading existing systems to $\mathbf{Z 8 0}$ level. A PROM socket is provided on-board which makes the MPB100 adaptable to process control applications. Fea tures include: Power-on Jump to 4 K boundaries, 2 Megahertz or 4 Megahertz operation, optional wait states, on-board PROM socket.
MPB-100 KIT
$\$ 199.00$

SD'S
 "VERSAFLOPPY I" KIT

FEATURES: IBM 3740 soft sectored compatible, S-100 BNS Compatible for Z-80 or 8080 . Controls up to 4 drives (single or double sided). Directly controls the following drives: Sugart SA400/450 Mini Floppy • Shugart SA800/850 Standard Floppy - PERSCI 70 and 277 • MFE 700/750 • CDC 9404/9406 $\$ 135.00$

COMPUTER CORNER

CPU'S
280
2114 (300ns)
280 PIO
2708
4115
4115
4116
1771
1791
AELATED CHIPS

DIP SWITCHES		$\begin{aligned} & \text { Jumbo Red LED's } 8 / 1.00 \\ & \text { Jumbo Green LED s } \\ & \text { Jumbo Yellow LED's } \\ & \text { U.9.95 } \\ & \text { Jumbo Amber LED's }\end{aligned} 4 / .95$	
3 Pos.	\$1.10	MVRed 10	10/1.00
4 Pos.	\$1.12	FND 70CC	. 95
5 Pos.	\$1.16	DL 747CA	. 65
6 Pos.	\$1.20	OL 728 CCC	1.19 1.50
7 Pos.	\$1.22	Red Filter 4"Bezel	2.50
8 Pos.	\$1.26	Green Filter 4"Bezel	- 2.50
9 Pos.	\$1.36	Amber Filter 4"Bezel 4N25	2.50 1.60
10 Pos.	\$1.30	4 N 26	1.25
		4N28	. 95
		4 N 31	1.20

SD'S EXPANDORAM II
The Randem Access Memory

SD Systems' ExpandoRAM II is a dynamic RAM board with capacities from 16 K bytes (4116) to 256K bytes (4164). It operates on the industry S-100 Bus. The design allows 8 boards to operate from the same S-100 Bus. The ExpandoRAM II is compatible with most S-100 CPU's based on the 280 microprocessor.

EXPANDORAM II KIT

W/O	EXPANDORAM II KIT
16K 285.00
32K 375.00
48K	465.00
64K	. . . 555.00

BETSI PET to S-100 Interface \$ 119.00 PET Connectors-Parallel or IEEE \$ 1.95 Cassette Port
1.45
9.45

Axiom EX-801 PET Printer (with graphics) Axiom EX-820 PET Plotter
Anderson Jacobson 841 Selectric Leedex Video 100 12" Monitor Heath WH 19 Terminal (factory asm.) Healh WH14 Printer (factory asm.) IEEE-RS 232 Printer Adaptor for PET
$\$ 749.00$ Programming the 6502 (Zaks) $\$ 1015.006502$ Applications Book (Zaks) $\$ 119.006500$ Manuals (MOS Technology) \$ 770.00 Programming a Microcomputer: 6502. \$735.00 6502 Assembly Language 88.00 (Osborne) NEW!

PET SPECIALS

*FREE
PET 16N 16K full size graphics keyboard \$995 \$130 PET 16B 16K full size business keyboard \$ 995 \$130 PET 32N 32K full size graphics keyboard $\$ 1295 \$ 170$ PET 32B 32K full size business keyboard $\$ 1295$ \$170 PET 8N 8K full size graphles keyboard \$795 \$100 PET 2040 DUAL DISK DRIVE-343,000 bytes $\$ 1295 \$ 170$ PET 2022 Tractor Feed Printer \$ 995 \$130 PET 2023 Pressure Feed Printer \$849 \$110 PET C2N External Cassette Deck $\quad \$ 95 \$ 12$ Used 8K PETs (limited quantities) \$495
*Amount of Free Merchandise with Purchase of PET-CBM Item

KIM-1 $\$ 159$ (add $\$ 30$ for power supply) SYM-1 $\$ 209$ All Books and Software 15\% Of BAS-1 Microsoft ROM Basic for SYM Memory Plus (KIM, SYM, AIM) SYM Assembler in ROM SEA-16 New 16K Static RAM Seawell Motherboard - 4K RAM Space KTM-2/80 Synertek Video Board S-100 16K Static RAM Kit SALE 2716 EPROM (5 volt)
6550 RAM (for 8 K PET)
522 \$9... $6502 \$ 9.75 \quad 6522 \$ 9.00 \quad 6520 \$ 5.50$ 2114 L 450 ns $\$ 5.3524$ @ $\$ 4.95$ TIS PET Workbooks - set of 6 @ $\$ 4.45$

Dust Cover for PET \$ 21.50

Programmers Toolkit - PET ROM Utilities $\$ 8.90$ Sargon II (TRS-80 or Apple) NEW! Microchess for PET (Peter Jennings) 4.90 PET 4 Voice Music System $\$ 17.90$ \$ 29.90 4 Voice Music Monitor for PET CmC Word Processor program for PET \$ 15.90 Adventures by Scott Adams
\$ 85
$\$ 195$
Auto Scroll, insert, delete, form letter append, etc. $\$ 85 \mathrm{KK}$ Version $\$ 24.00 \quad 16 \mathrm{~K}$ or 32 K with disk $\$ 89.00$
\$325 Cassettes (all tapes guaranteed) AGFA PE611 $\$ 139$ Premium quality, high out put lownoise in 5 screw $\$ 349$ housing with labels:
$\begin{array}{lllll}\$ 219 & \text { C-10 } & 10 / 5.65 & 50 / 25.00 & 100 / 48.00\end{array}$ $\begin{array}{lllll}\$ 39 & C-30 & 10 / 6.90 & 50 / 30.00 & 100 / 57.00\end{array}$ $\$ 12.70$

SALE

3M "Scotch" 8" Disks 10/\$31.00 3M "Scotch" 5" diskettes. Verbatim 5 " diskettes. 10/\$31.50 10/\$26.50 Diskette Storage Pages 10/\$ 3.95 Disk Storage Boxes $8 " \$ 2.85 \quad 51 / 4 " \$ 1.95$ Write for quantity prices)

115 E. Stump Road
Montgomeryville, PA 18936
(215) 699-8386

699-5826

ATARI — INTBODUCTORY SPECIAL

ATARI 400, Atari 800, and all Atari Modules 20\% OFF.

MINIMAX

by COMPU/THINK minimax 1 (.8 Mıaplytit Disks) $\$ 4495$ minimax II [2.4 Mequbyle Diskyl \$5995

SPECIAL - MINIMAX prices include Compu Think PAGEMATE Database and Report Writer at no charge
The most advanced complete microcomputer system available. Includes CPU, 12" CRT, Full Keyboard, 2 Quad-Density Disk Drives, 2 Megahertz 6502 Hybrid Processor (double speed), 108 K System Memory, High Resolution (512 x 240) Graphics, Programmable Character Fonts, Microsoft Extended BASIC, DOS with Random Access I/O, Full Complement of I/O Ports Monitor with Debug, Trace, and Tiny Assembler, Fifth (PL/M and Forth combination) Interpreter, Complete editing and entry with split screen capability, 64 Microprogrammable Opcodes, Business software (with Database) available

Computer Terminal
 COMPLETE ${ }^{5149}$

The Nerronics ASCII/BAUDOT Computer Terminal Kit is a microprocessor-controlled, stand alone keyboard/terminal requring no computer memory or sofiware. It allows the use of either a 64 or 32 characler by 16 line professional display format with selectable baud rate, RS232-C or 20 ma. output, full cursor control and 75 ohm composite video output.
The keyboard follows the standard typewriter configuration and generates the entire 128 character ASCII upper/lower case
set with 96 printable characlers. Features include onboard set with 96 printable characters. Features include onboard regulators, selectable parity, shift lock key, alpha lock jumper, a drive capability of one ITY load, and the ability to mate direcily with almost any computer, including the new Explorer/85 and ELF products by Netronics.
The Cornputer Terminal requires no l/O mapping and includes $i \mathrm{k}$ of memory, character generator, 2 key rollover, processor controlled cursor control, parallel ASCII/BAUDOT to serial conversion and serial to video processing-fully crystal controlled for superb accuracy. PC boards are the
highest quality glass cpoxy for the ultimate in reliability and highest
long life.

VIDEO DISPLAY SPECIFICATIONS

The heart of the Netronics Computer Terminal is the micro-processor-controlled Netronics Video Display Board (VID)
which allows the terminal to utilize either a parallel ASCII or BAUDOT signal source. The VID converts the parallel data to serial data which is then formatted to cither RS232-C or 20 ma current loop output, which can be connected to the serial 1/O on your compuler or other interface, i.c., Modem.
When connected to a computer, the computer must echo the character received. This data is received by the VID which processes the information, converting to data to video suitable cideo monitor. The VID generates the cursor, horizontal and certical sync pulses and performs the housekecping relative to which character and where it is to be displayed on the screen. Video Output: 1.5 P/P into 75 ohm (EIA RS-170) - Baud Rate: 10 and 300 ASCII • Outpuls: RS232-C Or 20 ma. current loop

 GBCDEEIIJMM,
 abcdefohi iklmoparstuwxiz\{1\}-1
 \section*{}

 RSTUVHXYZ.?:35H(J., $9014!57: 2 / 68 \cdot$Cursor Mudes: Home, Backspace, Horizontal Tab, Line Feed. Vertical Tab, Carriage Return. Two special cursor sequences are provided for absolute and relative X-Y cursor addressing• Cursor Control: Erase, End of Line, Erase of Screen, Form
Feed. Detete - Monitor Operation: 50 or 60 Hz (jumper lectable.

Continental U.S.A. Credit Card Buyers Outside Connecticut

CALL TOLL FREE 800-243-7428

page

Precut Wire Wrap Wire

PRECUT WIRE SAVES TIME AND COSTS LESS THAN WIRE ON SPOOLS

Kynar precut wire. All lengths are overall, including $1^{\prime \prime}$ strip on each end. Colors and lengths cannot be mixed for quantity pricing. All sizes listed are in stock for immediate shipment. Other lengths available. Choose from colors: Red, Blue, Yellow. Orange, Black, White, Green and Violet. One inch tubes are available at 504. State second choice on colors when possible.

Length	$\mathbf{1 0 0}$	$\mathbf{5 0 0}$	$\mathbf{1 , 0 0 0}$	Length	100	500	$\mathbf{1 , 0 0 0}$
2.5 inches	1.04	2.98	5.16	6.5 inches	1.60	5.37	9.84
3	1.08	3.22	5.65	7	1.66	5.63	10.37
3.5	1.13	3.46	6.14	7.5	1.73	5.89	10.91
4	1.18	3.70	6.62	8	1.78	6.15	11.44
4.5	1.23	3.95	7.12	8.5	1.82	6.41	11.97
5	1.28	4.20	7.61	9	1.87	6.76	12.51
5.5	1.32	4.48	8.10	9.5	1.92	6.93	13.04
6	1.37	4.72	8.59	10	1.99	7.26	13.57

Kit \#1 Less than $2.7 \mathrm{C} / \mathrm{ft}$.				Kit \#2		$\begin{array}{r} \$ 19.95 \\ 2 \mathrm{c} / \mathrm{ft} .(\# 30) \end{array}$		KIT \#3Less than $1.7 \mathrm{c} / \mathrm{ft}$.(\#30)				Kit \#4 Less than $\$ 44.95$ 				\#30 Spools			
250	3"	100	4"	250	$21 / 2^{\prime \prime}$	250	$5^{\prime \prime}$	500	21/2"	500	41/2"	1000	21/2"	1000	$41 / 2 "$	50 ft	1.75	1.60	1.40
250	3"	100	5"	500	$3^{\prime \prime}$	100	51/2"	500	3"	500	$5^{\prime \prime}$	1000	$3^{\prime \prime}$	1000	5"	100 ft	3.00	2.75	2.50
100	$4^{\prime \prime}$	100	6 "	500	$31 /{ }^{\prime \prime}$	250	$6 "$	500	$31 / 2^{\prime \prime}$	500	51/2"	1000	$31 / 2^{\prime \prime}$	1000	5"	250 f	4.75	4.50	4.25
				500	4"	100	61/2"				6 "	1000	4"	1000	$6^{\prime \prime}$	500 ft	8.50	8.00	7.50
							7"									1000 ft			10.50

Wire Wrap Tool

- Auto Indexing
- Anti-Overwrapping
- Modified Wrap

BW2630	5
BT30	\#30 Bit 2.95
BT2628	\#26 Bit 7.95
BC1	Batteries \& Charger. . 11.00
*Requires	$2{ }^{\text {" }}$ " ${ }^{\text {N }}$ Nicad Batteries

JANUARY SALES!

Solderless Breadboarding

SK10 2/\$25.00 S3660 The SK10's unique matrix configuration is embedded in a high temperature plastic molding. It gives you 64 pairs of 5 common spring contacts for principle circuit construction and a serles of common buss strips (8) of 25 connectlons each.
Dimensions: $.33^{\prime \prime} \mathrm{h} \times 2.2^{\prime \prime} \mathrm{w} \times 6.5^{\prime \prime} \mathrm{I}$

TI Edge Card Connectors

$\begin{aligned} 44 \text { pin ST } & \left(.156^{\prime \prime} \text { centers }\right) \\ 100 \text { pin ST } & \left(.125^{\prime \prime} \text { centers }\right)\end{aligned}$ 100 pin WW (.125" centers)

All connectors gold plated

F2VIC Sockets

AN HIGH RELIABILITY eliminates trouble. "Side-wipe" conlacts make 100% greater surface contact with the wide, llat sides of your IC leads for posilive electrical connections.

WIRE WRAP	Size	Quant./Tube	Price Ea.	Price/Tube
SOCKETS	08 pin WW	52	.31	$\$ 16.12$
3-level Gold	14 pin	60	.32	$\$ 19.20$
Closed Entry Design	16 pin	52	.34	$\$ 17.68$
All prices include Gold	18 pin	23	.50	$\$ 11.50$
2-level Sockets	20 pin	21	.65	$\$ 13.65$
Also Available	22 pin	19	.70	$\$ 13.30$
Sockets sold at these	24 pin	10	.70	$\$ 7.00$
prices by the tube only.	40 pin	10	.95	$\$ 9.50$
		7	$\mathbf{1 . 2 0}$	$\$ 8.40$

OADEAING INFORMATION
Orders under \$25, add \$2 handling

- Blue Label or First Class. add $\$ 1$ (up to 3 Ibs.)
- CODs, VISA \& MC orders will be charged shippin

California Digital Post Office Box 3097 B - Torrance, California 90503

With Purchase of The INTEGRAL DATA 440 Paper Tizer

Your Choice, $\$ 200$ Value 1) Graphics Option Package 2) Interface for APPLE II 3) TRS. 80 Printer Interface Calitornia Digital has resently
rescarched the complete low copinion that tie 115840 pate Tiger is, withuall doubt, the host versatile and offers the ing under $\$ 1.000$
This quality dol matrix printer Sonware selectable eharacter size to chlow print densities upto 132
charreters per line. Ful forns handing capabilities and tractor foed mechansing adpustable to 9.5 . The Paper Tiger is engineered to aecept either parallel or RS232 serial ASCl1. 110/2:0V.50/6011z.

 yourchié \$38. Includes Uista Interface Cable

TELETYPE MODEL 43

4320 KEYBOARD
TTL AAA $\$ 1050$ RS $232 \ldots$. AAK 1150 $\begin{array}{ll}\text { Friction... AAE } & 1100 \\ \text { 103 Modem AAB } & 1575\end{array}$ plus 103 Modem AAB 1575
FREE PLASTIC LIBRARY CASE
hpurchase of each box of with purchase of each box of
verbatim mini.diskettes. $\$ 5$ value. $\$$ (B) Box of 10 SPECIAL APPLE II IGK MEMDAY COLOR-GRAPHICS•SOUND $3288 \begin{gathered}\text { Mif.sug. } \\ \text { Retail.... }\end{gathered}$

Scotch

 0

SPECIAL CIRCUITS

SPECIAL CIRCUITS

WMC/inc. WAMECO INC.

FDC. 1 FLOPPY CONTROLLER BOARD will drive shugart. perlek. remic $5^{\prime \prime}$ \& $8^{\prime \prime}$ drives up 108 drives. on board PROM with power bool up. will operale with CPM ${ }^{\text {i* }}$ Inot included)
… \$42.95
FPB. 1 Front Panel IMSAI size. hex displays Byte. or instruction single step
$\$ 47.50$
MEM-1A $8 K \times 8$ fully buflered. S-100, uses 2102 type MEM-1A 8KX8 fully buflered. S-100, uses 2102 type
rams. PCBD $\$ 25.95$ QM. 12 MOTHER BOARD. 13 slot. terminated. S. 100 board only
$\$ 38.75$
CPU. 1 8080A Processor board S. 100 with 8 level vector interrupt PCBO \$26.95 RTC. 1 Realtime clock board. Two independent interrupts. Sofiware programmable. PCBO . \$23.95 EPM-1 1702A 4K Eprom caro PC80 $\$ 25.95$ EPM-2 2708/2716 16K/32K
EPROM CARD PCBD $\$ 25.95$
aM-9 MOTHER BOARO. Short Version of OM-12. 9 Slots PCBO $\$ 30.95$
MEM-2 $16 \mathrm{~K} \times 8$ Fully Buffered
2114 Board PCBD
$\$ 26.95$
PTB-1 FOWER SUPPLY AND TERMINATOR BOARO PCBD
$\$ 25.95$
80804 $\$ 9.95 \quad 2708$............ . .. $\$ 8.99$ 8212 $.249 \quad 2114$ (450 NS) low pwr 5.99 $\begin{array}{lllllll}8214 & \text {.... } & 4.49 & 2114 \text { (250 NS) low pwr .. } 6.99 \\ 8224 & \text {. } & & & 3.49 & 2102 A-4 \mathrm{~L} & 1.20\end{array}$

(415) 592-1800 P.O. Box 424 - San Carios, California 94070 Please send for IC. Xistor and Computer parts list

JAN. SPECIAL SALE ON PREPAID ORDERS

FPB-1 with MIKOS \#14
Front Panel Kit
\$119.95
8Kx8 Ram 450 NSEC fully buffered, 2.5
amps typical $\$ 99.99$

MIKOS PARTS ASSORTMENT

WITH WAMECO AND CYBERCOM PCBDS

MEM- 2 with MIKOS ${ }^{*} 7$ 16K ram

with L2114 450 NSEC
$\$ 249.95$
MEM-2 with MIKOS ${ }^{5} 13$ 16K ram
with L2114 250 NSEC $\$ 279.95$
MEM-1 with MIKOS 1450 NSEC 8 K RAM $\$ 11995$
CPU-1 with MIKOS 28080 A CPU MEM-1 with MIKOS 3250 NSEC $8 K$ RAM
QM-12 with MIKOS $* 43$ slot mother board
RTC-1 with MIKOS 5 real time clock EMP.1 with MIKOS ${ }^{10} 4 \mathrm{~K} \quad 1702$ less EPROMS
594.95
$\$ 144.95$

EPM- 2 with MIKOS 11 16-32K EPROMS less EPROMS
QM-9 wilh MIKOS *12 9 slot mother
FPB-1 with MIKOS *14 alt parts
$\$ 89.95$
$\$ 54.95$
or front panel
MIXOS PARTS ASSORTMENTS. ARE ALL FACTORY PRIME PARTS. KITS INCLUDE ALL PARTS LISTED AS REOUIAED FOA THE COMPLETE KIt LESS PARTS LISTED ALL SOCKETS INCLUDED.

VISA or MASTERCHARGE Send account number, interbank number. expiration date and sign your order Approx postage will be added Check or money order will be sent posi paid in US. It you are not a regular customer. Dlease use charga. cashier's check or posisi money order. Othenwise there will be a two.wesk delay for checks to clear. Catt. rasidents add
$\mathbf{6 \%}$ 1ak. Monay back 30 day guaranies. We cannol accepl re. lurned ic's that have been soldered to. Prices subject to change whithoul notice. $\$ 10$ minimum order. $\$ 1.50$ service charge on orders less then $\$ 10.00$.

WAMECO

THE COMPLETE PC BOARD HOUSE EVERYTHING FOR THE S-100 BUSS

* FPB-1 FRONT PANEL BOARD. Hex Displays, IMSAI Replaceable. PCBD
. $\$ 54.95$
* FDC-1 FLOPPY DISC CONTROLLER BOARD

Controls up to 8 Discs. PCBD
$\$ 45.00$

* MEM-1A 8K BYTE 2102 RAM BOARD

PCBD
$\$ 31.95$
KIT 450 NSEC $\$ 141.95$

* MEM-2 16K BYTE 2114 RAM BOARD

PCBD $\$ 31.95$
KIT 450 NSEC . $\$ 299.95$

* CPU-1 8080A CPU BOARD with Vector Interrupt.

PCBD . $\$ 31.95$
KIT
$\$ 124.95$

* EPM-1 4K BYTE 1702A EPROM

PCBD . $\$ 29.95$
KIT LESS PROMS
$\$ 59.95$

* EPM-2 16K or 32K BYTE EPROM 2708 or 2176 Interchangeable.
PCBD . $\$ 30.00$
KIT LESS PROMS $\$ 74.95$
* QMB-9 9 SLOT MOTHER BOARD

Terminated. PCBD . $\$ 35.00$
KIT . $\$ 89.95$

* QMB-12 12 SLOT MOTHER BOARD
Terminated. PCBD . $\$ 45.00$

KIT . $\$ 115.95$

* RTC-1 REALTIME CLOCK

Programmable Interrups $\$ 27.95$
KIT . $\$ 79.95$

* PTB-1 POWER SUPPLY BOARD

PCBD $\$ 30.95$
KIT LESS REGULATORS $\$ 55.95$

DIGITAL RESEARCH COMPUTERS (214) 494-1505

16K EPROM CARD-S 100 BUSS

s59.95
KIT
FIRST TIME OFFERED! BLANK PC BOARD - $\$ 28$

USES 2708's!
Thousands of peisonal and business systems around the world use this board with complete satisfaction. Puts 16 K of software on line at ALL TIMES! Kit features a top quality soldermasked and silk-screened PC board and first run parts and sockets. Any number of EPROM locations may be disabled to avoid any memory conflicts. Fully buffered and has WAIT STATE capabilities

OUR 450 NS 2708° S ARE S8.95 EA. WITH PURCHASE OF KIT]

ASSEMBLED
AND FULLY TESTED
ADD \$25

16K STATIC RAM KIT-S 100 BUSS

\$259 кіт

KIT FEATURES
Addressable as four separate 4 K Blocks.
2. ON BOARD BANK SELECT circultry (Cro
memco Standard!). Allows up to 512 K on linel Uses 2114 (450NS) 4K Static Rams.
ON BOARD SELECTABLE WAIT STATES.
5. Double sided PC Board, with solder mask and
silk screened layout. Gold plated contact fingers
6 All address and data lines fully buffered.
Kit includes ALL parts and sockets.
Kit includes ALL parts and sockets
8. PHANTOM is jumpered to PIN 67.
9 LOW POWER: under 1.5 amps TYPICAL from the +8 Volt Buss.
10. Blank PC Board can be populated as any mulliple of $4 K$.

BLANK PC BOARD W/DATA-533
LOW PROFILE SOCKET SET-\$12
SUPPORT IC'S \& CAPS-\$19.95 ASSEMBLED \& TESTED-ADD $\$ 30$ OUR \#1 SELLING RAM BOARD!

PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS! FACTORY CLOSE OUT - SPECIAL PURCHASE! \#16KRA

16K S-100 Dynamic Ram Board \$149.95

We purchased the remaining inventory of PT's popular 16 K Ram Board when they recently closed their plant. Don't miss the boat! These are brand new. fully tested. ASSEMBLED and ready to go. All are sold with our standard 90 day limited warranty!!
Orig. 5429 each! 72 Page Full Manual. Included Free!

Z-80 PROGRAMMING MANUAL

By MOSTEK, or ZILOG. The most detailed explanation ever on the working of the Z-80 CPU CHIPS. At least one full page on each of the 158 $Z-80$ instructions. A must reference manual for any user of the $Z-80.300$ pages.
\$12.95

SALE! LOW POWER-250NS
 8 FOR 2114 RAM SALE!
 S55

$4 K$ STATIC RAM'S. MAJOR BRAND. NEW PARTS.
These are the most sought after 2114^{\prime} s, LOW POWER and 250 NS FAST: SPECIAL SALE: $\$ 7^{50}$ ea. or 8 For $\$ 55$

Digital Research Computers

P.O. BOX 401565 •GARLAND, TEXAS 75040 • (214) 494-1505

21L02 (450 NS RAMS!)

Thousands of computer systems rely on this rugged, work horse, RAM board. Designed for error-free. NO HASSLE. systems use.

Blank PC Soard w/Documentation $\$ 29.95$

ASSEMBLED AND FULLY
BURNED IN ADD $\$ 30$
ALL ASSEMBLED BOARDS ARE TESTED AT 4 MHZ .

Low Proftle Socket Set...13.50
Supnort IC's (TTL 8 Regulators) $\$ 9.75$
Bypass CAP's (Disc \& Tantalums) $\$ 4.50$

16K STATIC RAM SS-50 BUSS

PRICE CUT!

${ }^{5} 249$

FULLY STATIC AT DYNAMIC PRICES

FOR SWTPC 6800 BUSS!

ASSEMBLED AND
TESTED - $\$ 30$
BLANK PC BOARD-\$26 COMPLETE SOCKET SET- $\mathbf{~} 12$ SUPPORT IC'S AND CAPS-\$19.95

Perfect for

S-100 Z80 CPU CARD

s15995

WIRED!
NOT AKIT!

4 MHZ

ASSEMBLED AND TESTED! READY TO USE! Over 3 years of design efforts were required to produce a TRUE S-100 Z80 CPU at a genuinely bargain price!
FEATURES:
BRAND NEW!
$\star 2$ or 4 MHZ Operation. \star Generates MWRITE so no front panel required. - Jump on reset capability. $\quad * 8080$ Signals emulated for $\$ \mathbf{}-100$ compatability * Top Qually PCB. Silk Screened. Solder Masked Gold Plated Contact Fingers

NEW! G.I. COMPUTER SOUND CHIP

AY3-8910. As featured in July, 1979 BYTE! A fantastically powerful Sound \& Music Generator. Perfect for use with any 8 Bit Microprocessor. Contains: 3 Tone Channels. Noise Generator. 3 Channels of Amplitude Control, 16 Bit Envelope Period Control. 2-8 But Parallel /O. 3 D to A Converters, plus much more! All in one 40 Pin DIP. Super easy to interface to the S-100 or other busses.
SPECIAL OFFER: $\$ 14.95$ each Add $\$ 3$ for 64 page Daté Manual
TERMS: Add \$1.00 postage, we pay balance. Oidels unde, $\$ 15$ add $75 c$ handling. No C.O.D. We accept Visa and MasterCharge. Te). Res. add 5% Tax. Foreign orders (excep! Canada) add 20% P \& H. 90 Day Money Back Guarantee on all items.

困
MICPO
BUSINESS WORLD
Immediate response to your orders (verbal or written). Phone (213) 371-1660

WORLD FAMOUS SONY TRINitaon Sharpest picture color television -15"Diag, now comes with direct input video. Get your "COLOR MONITOR" for the Apple II or Atari for only $\$ 495.00$

Plastic Floppy

Disk Holder $\begin{gathered}\text { Disk Holder } \\ \text { (up to 10) } 8^{\prime \prime} \\ \$ 3.95\end{gathered} \begin{gathered}\text { Disk Holder } \\ \text { (up to 10) } 5^{\prime \prime}\end{gathered} \$ 3.25$

commodore pet

A truly professional
computer system
16K \$849. 32K \$1095. Dual Floppy Disk

Model $2040 \$ 1095$.
Single Disk Drive $\$ 795$.
Tractor Feed Printer
Model 2022* $\$ 849$.
Friction Feed Printer
Model 2023* \$749.

* need a IEEE to PEI cable 45.00 or an IEEE to IEEE cable 35.00

DYSAN DISKETTES

 the cadillac of theFLOPPY DISKS
at low low prices 8" (BOX OF 10) $3740 / 1$ sgl side/ sgl density 4.00 ea 3740/1D sgl side/ dbl density 6.50 ea 5" (BOX OF 5) 104/1 soft sector 4.00 ea 107/1 10 sectors 4.00 ea 105/1 16 sectors 4.00 ea For each 2 boxes ol 8 " or 4 boxes ol 5 " you get one plastic storage case. but hurrysupply is limited.
EPSON (A SEIKO COMPANY) TX-80 Printer with Graphics Capabilities. 7×6 dotmatrix. Parallel (Centronics) standard 80 cols. Tractor Feed Model $\$ 695$. Friction Feed Model \$595. Popular Computer Interfaces available for only $\$ 79$. (including cables)

■くAl■. M100

Prices subject to change without notice.

VISA and MASTER CHARGE WELCOME. Allow 2 weeks for cashiers check to clear, 4 weeks for personal checks. Add 2% for shipping and
16K RAM set of 84116 's 200 ns or better $\$ 65.00$ handing. Calif. residents add 6% sales tax

MICRO
BUSINESS WORLD
Lawndale. Califiornia 90260(213) 371-1660 Circle 222 on inqulry card.

4116's
 4116 's (250NS)

FOR APPLE, TRS 80 , HEATH
11542-1 KNOTT ST.
GARDEN GROVE, CA 92641
(800) 854-6411
(714) 891-2663

IMSAI CONNECTORS
100 PIN • SOLDERTAIL
$\$ 3.00$ each OR
10 for $\$ 2.75$ each
WRITE TO US FOR
OUR NEW CATALOG

2708's
 SPECIAL

 450NS. 8.00 each OR 8 for $\$ 60.00$ORDERING INFO

NAME, ADDRESS, PHONE SHIP BY: UPS OR MAIL SHIPPING CHRG: ADD $\$ 2.50$ UP TO (5) LBS
. 1 @ 12 Volts
CERAMIC CAPS
10c each OR
100/\$9.00

LO.PRO SOCKETS			
	1.24	25.99	100 up
14 PIN	. 15	. 14	13
16PIN	. 16	. 15	14
18 PIN	. 19	17	15
2OPIN	. 27	25	23
24 PIN	. 35	31	27
28 PIN	. 40	. 33	29
4OPIN		46	41

REGULATORS
320T-5.... (.80)

340T-5.... (.75)
340T-12. . . (.75)
78H05... (5.00)
78L12.... (.35)

MICROBYTE 16K RAM BOARD
-FULLY S-100
- 2 MHz OR 4 MHZ
-4K BANK
- EXTENDED MEMORY
- NO DMA RESTRICTIONS
- ASSEMBLED \& TESTED
$2 \mathrm{MHZ} \$ 250.00$

SA800 ${ }_{\text {Disk }}^{\text {DIVE }}$

INSTALLED IN DUAL CABINETWIPWR SUPPLY ASSEMBLED \& TESTED
(1) DRIVE INSTALLED \$695.00
(2) DRIVES INSTALLED $\$ 1125.00$

MICROBYTE 32K RAM BOARD

-FULLY S-100
COMPATIBLE

- USES LO-PWR $4 K \times 1$ MM5257 STATIC RAM - 2 MHZ OR 4 MHZ
- BANK ADDRESSABLE
- EXTENDED MEMORY

MANAGEMENT
-8-BIT OUTPUT PORT

- NO DMA RESTRICTIONS
$2 \mathrm{MHZ} \$ 525.00$
$4 \mathrm{MHZ} \$ 540.00$

2716's
 5 VOLT ONLY 450NS.

$\$ 35.00$ ea.
8/\$250.00

4MHZIU-ART $\$ 5.00$ ea.

LM324	.75	2104	1.50
LM348	1.05	4108	3.00

LM348	1.05	MCM 6574

LM377	1.25	MCM 6574
CHARACTER		

LM380	.75	CHARACTER
GENERATOR		

LM556	.75	GENERATOR
LM3900	.50	$\$ 7.00$
ea.		

2732's
(4K) E-PROM
$\$ 95.00$ ea.

When the people behind the products count!

(Formerly the CPU Shop)

As the CPU Shop, we have been dedicated to meeting the needs of the microcomputer user. The success of the CPU Shop has led to ComputerCitythe merging of our manufacturing, wholesale and mail order divisions with our rapidly expanding retail outlets to provide the increased products and services the microcomputer consumers of today and tomorrow want-and need. We remain dedicated to providing the same service, technical assistance and fair pricing you've come to expect from the CPU Shop.
Deniollaire
David C. Lourie, President

ComputerCity Sampler Disk Drives

When you're ready to add disk storage to your TRS-80*, we're here to help. Our CCl- $100^{\text {m" }}$ and $-200^{\text {m }}$ drives offer more capacity than Radio Shack 35 -Track (85 K Bytes) drives. These drives are fully assembled, tested and ready to plug-in the moment you receive them. They can be intermixed with each other and Radio Shack drives on the same cable. 90 day warranty.
CCl-100 ${ }^{\text {m" }} 40$ Track (102 K Bytes) $\mathbf{\$ 3 9 9 . 0 0 ~ C C l - 2 0 0 ~}{ }^{\text {mid }} 77$ Track (197 K Bytes) $\mathbf{\$ 6 7 5 . 0 0}$

Printers

Letter Quality High Speed Printer
NEC Spinwriter: Includes TRS-80* interface software, quick change print fonts, 55 CPS, bidirectional, high resolution plotting, graphing, proportional spacing and tractor feed assembly. 90 day warranty $\quad \$ 2979.00$ Also: Centronics, Paper Tiger, HI Plot Digital Plotter 16K Memory Up-grade Kits
Fast and ultrareliable DISK OPERATING SYSTEMS NEWDOS by Apparat ${ }^{+}$ NEWDOS "PLUS" by Apparat ${ }^{+}$ DOS 3.0 by the original author of 2.1
$\$ 99.00$

\$49.95
$\$ 99.95$
\$49.95

DISKETTE TRS-80* BUSINESS SOFTWARE BY SBSG

Free enhancements and upgrades to registered owners for the cost of media and mailing. 30 day free telephone support. User reference on request.
Fully Interactive Accounting Package: General Ledger,
Accounts Payable, Accounts Receivable and Payroll.
Report generating.
Complete Package (requires 3 or 4 drives) $\$ 475.00$
Individual Modules (requires 2 or 3 drives) $\mathbf{\$ 1 2 5 . 0 0}$
Inventory II: (requires 2 or 3 drives) $\$ 99.00$
Mailing List Name \& Address II
(requires 2 drives)
\$129.00
Intelligent Terminal System ST-80 III: $\quad \mathbf{\$ 1 5 0 . 0 0}$
The Electric Pencil from Michael Shrayer $\$ 150.00$ File Management System: \$ 49.00
Budget Control Program II by CSA \$ 49.95
Cash Register System II by CSA \$99.00

Coniouteremty

A division of CPU Industries, Inc.
175 Main Street, Dept B. 1 Charlestown, MA 02129
Hours: 10AM - 6PM (EST) Monday - Saturday
For detailed information, call 617/242-3350
Massachusetts residents add 5\% Sales Tax
${ }^{74} \mathrm{CCl}-100$ and -200 are ComputerCity inc. trademarks
Tandy Corporation Trademark +Requires Radio Shack TRSDOS

Massachusetts residents call 617/242-3350

Retail Store Locations:

175 Main Street, Charlestown, MA
K Mart Plaza, Manchester, NH
50 Worcester Road (Rt.9), Framingham, MA 165 Angell Street, Providence, RI
Visa and Master Charge accepted
Franchise and dealer inquiries invited

EDGE CARD CONNECTORS: GOLD PLATED:
Abbreviations: S/E Solder Eye . S/E Sold Tail: W/W Wire Wrap.

BUILD YOUR OWN LOW COST MICRO-COMPUTER POWER SUPPLIES

FOR S-100 BUS, FLOPPY DISCS, ETC.

POWER TRANSFORMERS (WITH MOUNTING BRACKETS)

ITEM	USED IN	PRI. WINDING	SECONDARY WINDING OUTPUTS			W× $\begin{array}{r}\text { SIZE } \\ \times \sim\end{array}$	$\begin{aligned} & \text { UNIT } \\ & \text { PRICF } \end{aligned}$
NO.	KIT NO.	TAPS	$2 \times 8 \mathrm{Vac}$	$2 \times 14 \mathrm{Vac}$	$2 \times 24 \mathrm{Vac}$		
T1	1	$0 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 7.5 \mathrm{~A}$	$2 \times 2.5 \mathrm{~A}$		$33 / 4^{\prime \prime} \times 35 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}$	21.95
T2	2	OV, $110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 12.5 \mathrm{~A}$	$2 \times 3.5 \mathrm{~A}$		$33 / 4^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}$	27.95
T_{3}	3	OV, $110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 9 \mathrm{~A}$	$2 \times 2.5 \mathrm{~A}$	$2 \times 2.5 \mathrm{~A}$	$33 / 44^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}$	29.95
T4	4	OV, $110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 4 \mathrm{~A}$		2×3 A	$33 / 4 \times 35 /{ }^{\prime \prime} \times 31 / 8{ }^{\prime \prime}$	21.95

POWER SUPPLY KITS (OPEN FRAME WITH BaSE PLATE, 3 hRS. ASSY. TIME)

ITEM	USED FOR	@ +8 Vdc	@ -8 Vdc	@ +16 Vdc	@-16 Vdc	@+28 Vdc	SIZE $W \times D \times H$	UNIT PRICE
KIT 1	15 CARDS SOURCE	15A	-	2.5A	2.5A		$12^{\prime \prime} \times 6^{\prime \prime} \times 47 / 8^{\prime \prime}$	51.95
KIT 2	SYSTEM SOURCE	25A		3A	3A		$12^{\prime \prime} \times 6^{\prime \prime} \times 47 / \mathrm{s}^{\prime \prime}$	58.95
KIT 3	DISC SYSTEM	15A	1A	2A	2A	4A	$14^{\prime \prime} \times 6^{\prime \prime} \times 47 / 8^{\prime \prime}$	66.95
KIT 4	DISC SOURCE	8A	1A			5A	$10^{\prime \prime} \times 6{ }^{\prime \prime} \times 47 /{ }^{\prime \prime}$	49.95

EACH KIT INCLUDES: TRANSFORMER, CAPACITORS, RESIS, BRIDGE RECTIFIERS, FUSE \& HOLDER, TERMINAL BLOCK, BASE
PLATE, MOUNTING PARTS AND INSTRUCTIONS.
DISC DRIVE POWER SUPPLY "R3"
ASSY. \& TESTED, OPEN FRAME, SIZE: $9^{\prime \prime}(W) \times 5^{\prime \prime}(D) \times 5^{\prime \prime}(H)$
59.95

SPECS: +5V@5AREGULATED, -5V @ 1A REG., + 24V @ 5A REG., SHORTS PROTECT.
IDEAL FOR 2 SHUGART 801/851 OR SIEMANS FDD 100-8/200-8 DISK DRIVES \& ROCKWELL AIM-65.
SHIPPING FOR EACH TRANSFORMER: $\$ 4.75$. FOR EACH POWER SUPPLY: $\$ 5.00$ IN CALIF. $\$ 7.00$ IN OTHER STATES. CALIF. RESIDENTS ADD 6% SALES TAX. OEM WELCOME.

SUNNY INTERNATIONAL (TRANSFORMERS MANUFACTURER)

MAIL ORDER:
P.O. BOX 4296

TORRANCE, CA 90510

Telephone: (213) 633-8327

NEW PRODUCTS!

Super Color S-100 Video Kit \$99.95 Elf II Adapter Kit \$24.50

Expandable to 256×192 high resolution color graphics. 6847 with all display modes computer controiled. Mermory mapped. 1 K RAM expandable to 6 K . S-100 bus 1802, 8080, 8085, 280 etc. Gremlin Color Video Kit $\$ 59.95$ 32×16 alpha/numerics and graphics; up 108 colors with 6847 chip; $1 K$ RAM at E000. Plugs resolution Graphics.

Quest Super Basic

Quest, the leader in inexpensive 1802 systems announces another first. Quest is the first company worldwide to ship a full size Basic for 1802 systems. A complete function Super Basic by Ron Cenker including floating point capability with scientific notation (number range $\pm .17 \mathrm{E}^{\circ}$). 32 bit integer ± 2 billion; Multi dim arrays; String arrays: String manipulation: Cassette $1 / 0$. Save and load, Basic, Data and machine language programs; and over 75 Statements. Functions and Operators.
Easily adaptable on most 1802 systems. Requires 12 K RAM minimum for Basic and user

Plugs into Ell Il providlng Super Elf 44 and 50 pin bus plus S. 100 bus expansion (With Super Expansion). High and low address displays, state
1802 16K Dynamic RAM Kit \$149.00 1802/S-100 expandable to 32K, Hidden reiresh RAM $\$ 79.00$.
programs. Cassette version in stock now. ROM versions coming soon with exchange privilege allowing some credit for cassette version.
Super Basic on Cassette
Tom Pitiman's 1802 Tiny Basic Source listing now avallable. Find out how Tom PIttman wrote Thy Basic and how to get the most out of It. Never offered betore.
S-100 4-Slot Expansion
S 9.95
Super Monitor VI.I Source Listing $\$ 15.00$ Coming Soon: Assembler, Editor, Disassembler, DNAD, Super Sound/Music, EPROM programmer.

RCA Cosmac Super Elf Computer \$106.95

Compare features before you decide to buy any A 24 key HEX keyboard includes 16 HEX keys other computer. There is no other computer on plus load, reset, run, wall, input, memory prothe market today that has all the desirable bene- lect, monitor select and single slep. Large. on fits of the Super Elif for so little money. The Super Ell is a small single board computer that does many blg things. It is an excellent computer for training and for learning programming with its with additional memory, Full Basic, ASCII Keyboards, video character generation, etc. Before you buy another small computer, see if it includes the following features: ROM monitor; State and Mode displays; Single step; Optional address displays: Power Supply: Audio Amplifier and Speaker; Fully socketed for all IC's; Real cost of in warranty repairs; Full documentation.
The Super Elf includes a ROM monitor for program loading, editino and execution with SINGLE STEP for program debugging which is not inSTEP you can see the microprocessor chip operating with the unique Quest address and data bus ling with the unique Quest address and data bus
displays belore, during and after executing indisplays belore, during and after executing in-
structions. Also. CPU mode and instruction cycle structions. Also, CPU mode and instruction cycle
are decoded and displayed on 8 LED indicators. An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own music or using many music programs already written. The speaker amplifiter may also be used
to drive relays for control purposes.

Super Expansion Board with Ca

This is truly an astounding value! This board has been designed to allow you to decide how you want it optioned. The Super Expanslon Board comes with 4K of low power RAM fully addressable anywhere in 64 K with built-in memory protect and a casselle Intertace. Provisions have been made for all other options on the same
board and it fits neatly Into the hardwood cabinet board and it fits neatly Into the hardwood cabinet alongside the Super Elf. The board includes slots for up to 6 K of EPROM (2708, 2758, 2716 or TI for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor $\$ 19.95$ is available as an on board optlon in 2708 EPROM which has been praprogrammed with a program loader/ editor and error checking multi file cassette
read/write software, (relocatible cassette file) another exclusive from Quest. It includes register save and readout, block move capability and video graphics driver with blinking cursor. Break points can be used with the register save feature to isolate program bugs quickly, then follow with
single step. The Super Monitor is written with
board displays provide output and optional high and low address. There is a 44 pin standard connector slot for PC cards and a 50 pin connector slot for the Quest Super Expansion Board. Power supply and sockets for all IC's are included in the price plus a detailed 127 pg , instruction manual which now includes over 40 pgs. of software info. including a series of lessons to help get you started and a music program and graphics target game.
Many schools and universities are using the Super Elf as a course of study. OEM's use it for training and research and development.
Remember. other computers only offer Super Elf features at additional cost or not at all. Compare before you buy. Super Elf Klt $\$ 106.95$, High address optlon \$8.95, Low address opition \$9.95. Cusiom Cabinet with drilled and labelled plexigiass front panel $\mathbf{\$ 2 4 . 9 5}$. Expansion Cabinet Bathery Memory Saver Kit $\$ 6.95$. All kits and options also completely assembled and tested. Questdata, a 12 page monthly sottware publication for 1802 computer users is available by subscription for $\$ 12.00$ per year.
Tiny Basic Cassette $\$ 10.00$, on ROM $\mathbf{5 3 8 . 0 0}$, original Elf kit board $\$ 14.95 .1802$ sotware; Moews Video Graphics $\$ 3.50$. Games and Music $\$ 3.00$, Chip 8 Interpreter $\$ 5.50$.

sette Interface \$89.95

subroutines allowing users to take advantage of monitor functions simply by calling them up. Improvements and revisions are easily done with the monitor. If you have the Super Expansion Board and Super Monitor the monltor is up and running at the push of a button.
Other on board options include Parallel input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the input port. RS 232 and 20 ma Curent Loop for teletype or other device are on board and if you need more memory there are two S-100 slots for static Ram or video boards. Also a 1 K Super Monitor version 2 with video driver for full capability display with Tiny Basic and a video interface board. Paraliel $1 / 0$ Ports $\$ 9.85$, AS $232 \$ 4.50$, TIY 20 ma $1 / \mathrm{F} \$ 1.95, \mathrm{~S}-100$ S4.50. A 50 pin connector sel with ribbon cable is available at $\$ 15.50$ for easy connection between the Super Ell and the Super Expanslon Board.
Power Supply KIt for the complete system (see Multi-volt Power Supply).

Same day shlpment. First line parts only Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.
integrated circuits

ROCKWELL AIM 65 Computer
6502 based single board with full ASCII keyboard and 20 column thermal printer. 20 char. alphanumeric display, ROM monitor, fully expandphanumeric display, ROM monitor, fully expand-
able. $\$ 375.00$. 4 K version $\$ 450.00$. 4 K Assembler $\$ 85.00,8 \mathrm{~K}$ Basic Interpreter $\$ 100.00$.
Special small power supply for AIM 65 assem. in frame 549.00 . Complete AIM 65 in thin briefcase with power supply $\$ 485.00$. Molded plastic enclosure to fit AlM 65 plus power supply $\$ 47.50$.
AIM $65 / \mathrm{KIM}$ NIM/Super Elf 44 pin expansion board; 3 female and 1 male bus. Board plus 3 connectors $\$ 22.95$.
AIM 65/KIMNIM I/O Expansion Kit; 4 parallel and 2 serial ports plus 2 Internal timers $\mathbf{\$ 3 9 . 0 0}$. PROM programmer for $2716 \$ 150.00$.

Multi-volt Computer Power Supply $8 \mathrm{v} 5 \mathrm{amp}, \pm 18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp},-5 \mathrm{v}$ $.5 \mathrm{amp}, 12 \mathrm{v} .5 \mathrm{amp},-12$ option. $\pm 5 \mathrm{v}, \pm 12 \mathrm{v}$ are regulated. Kit $\$ 29.95$. Kit with punched rame $\$ 37.45, \$ 4.00$ shipping. Woodgrain case $\$ 10.00$, $\$ 1.50$ shipping.

PROM Eraser
Will erase 25 PROMs in 15 minutes. Ultraviolet. assembled
$\$ 37.50$
60 Hz Crystal Time Base Kit $\$ 4.40$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy.

79 IC Update Master Manual $\$ 35.00$ Complete IC data selector, 2500 pg . master reference gulde. Over 50,000 cross references. Free
update service through 1979 . Domestic postage update service through 1979. Domestic postage \$3.50. No foreign orders

The DATATRANS 1000

A completely refurbished IBM Selectric Terminal with built-in ASCII Interface.

Features:

$\$ 1495$

- 300 Baud
- 14.9 characters per second printout
- Reliable heavy duty Selectric mechanism
- RS-232C Interface
- Documentation included
- 60 day warranty - parts and labor
- High quality Selectric printing Off-line use as typewriter
- Optional tractor feed available
- 15 inch carriage width

HOW 'TO ORDER DATA-TRANS 1000

1. We accept Visa, Master Charge. Make cashiers checks or personal check payable to:

DATA-TRANS

2. All orders are shipped
F.O.B. San Jose, CA
3. Deliveries are immediate

For orders and information
DATA-TRANS
2154 O'Toole St.
Unit E
San Jose, CA 95131
Phone: (408) 263-9246

The new Apple II with Applesoft BASIC built-in! Eliminates the need for a \$200 Firmware Card and includes new Autostart ROM for easy operation. This combined
with the FREE accessories from NCE could save you up with the FREE accessories from NCE could save you up to $\$ 400$ on a 48 K Apple II system!
16K Apple II Plus - $\$ 1195$ (take $\$ 100$ In free accessories) 32K Applell Plus - $\$ 1345$ (take $\$ 150$ in free accessories)

Apple II Accessorles
General Business
PASCAL
Integer BASIC ROM Card
VISI-Calc
Centronics Printer Intertace
Disk and Controller.
Parallel Printer Card.
Communications Card

Firmware Card
 Nus STOCN Nowh

EVERY ITEM IN THIS ADVERTISEMENT IS IN STOCK AND READY TO SMIP EXCEPT WHERE NOTED.

PAPER TIGER 440SPE

The Graphics Printer for Apple II
Now you can print illustrations. block letters, charts. graphs. and more - all under software control. And with the expanded buffer. the Paper Tiger can hold the text from an entire 24 -line-by-80-column CRT screen.
$\$ 1194.00$
$\$ 625$
$\$ 495$
$\$ 495$
$\$ 99$ $\$ 225$ $\$ 595$ $\$ 180$ $\$ 225$ $\$ 195$ 5195
5200. Auto
CP/M

Heath's third generation of computers is a compact. hi-style desktop unit which includes a complete terminal, a computer and a disk All-In-One! System includes Bootstrap in ROM. other programs available separately. HDOS operaling system includes Heath's BASIC, an assembler and text editor along with Important disk utlities. Microsoft language requires HDOS.

WH89 with 16K RAM
\$2,295
WH89 with 32K RAM
WH89 with 48K RAM
WH17 Second Disk Drive
Dual-port Serial Interiace
MOUS Operating System
Microsoft BASIC
Word Processing
NCE/CompuMart, SI1907
DEPT. BY10,

IMPORTANT ORDERING INFORMATION
All orders must Include 4% shippling and handling. Mass. residents add 5% sales tax; Mich. residenis 4%, lor sales lax.

Phones open trom 8:30 a.m. to 5:30 p.m. EST Mon.-Fr. • P.O.'s accepted from DAB rated companles - shipment contingent upon recelpt of signed purchase order * Sorry no C.O.D.s * All pilces are subject to change without nollce - Most liems in stock for Immedtate shipment call lor dellvery quotatlon * in the Ann Arbor area? Our retall store ls open 11:00 a.m. to 7:00 p.m Tues.-Fr., 10:00 a.m. to 5:00 pm. Saturdeys (dosed Sun. and Mon.)

APPLE II PLUS**

${ }_{16 K}$ (limited only $\quad \$ 990.00$

posects
175.00
22.00
29.95

| 22.95 |
| :--- | 54.96

74.95 74.95
59.00

Card $\begin{array}{ll}\text { Pascal Card........... } \\ \text { Parallel Prinier Card } \\ 16500 & \text { M } 8 \text { R Modulalor } \\ \text { Sanyo Casselte. }\end{array}$ Communications Card... 210.00 16K Upgrade Kil Business Sotware Pkg....625.00 Apple Radio Cap
10 Me $\begin{array}{ll}10 \text { Megabyte Hard Disk... } 69500 & \text { 日 }^{*} \text { Floppy Controller } 350.00 \\ \text { D.C. Hayes Modem } 349.95 & \text { Heurisilcs Speechlab... } 179.95\end{array}$

ADVANCED

 COMPUTER PRODUCTS
FLOPPY DISK DRIVES

PERSCI Model 277 Dual.... 1195.00 MPI B51-61/4.40 tracks ...279.00 WANGGOSIEMENS 5/4"Drive. 290.00

EXIDY SORCERER ONLY $\$ 799.00$

$\$ 799$ w/8K \$1099 w/16K \$1249 w/32K \$1449 w/48K User programmable or use carridges. Combines the desirable teatures of the Ple. APPLE and
plete expandable computer system - H VIO expansion kit $\$ 149.00$ * * Vista V-200 add-on mini-

Hopoy for Exidy. (requires exp.
module) w/CPM...... $\$ 699.00$

* New Word Processing Pac $\$ 99.0$
- incluoes:

Keyboard 8 enclosure
90 day Warranty
Video \& Casselle Cable
Complete Documentation

* Module...........
* Cassette recorder
* Sanyog Monior

Add $\$ 299.00$
Add $\$ 44.95$
Add $\$ 169.95$ runs 200 hrs on 1 battery. 10 Meg Ohm Input. 1 yr. guarantee, made in U.S.A. test leads included.

Avallable Accessories
RC. 3115 V AC Adapter
$\$ 7.50$
CC-3 Deluxe Padded Vinyl Carrying Case $\$ 7.50$ VP. 10×10 DCV Probe Adapterl
Protector 10 kv .. $\$ 14.95$
$\$ 35.00$ CS-1 10 Amp Curent Shunt $\$ 14.95$

We are proud to offe the SOL-20 with a dual floppy subsystem all operating under CP/M. Now you can use the SOL-20 and take advantage of the unlimited CP/M based software that is available

VDB-8024

Video Display Board \$319 KIT
With On-Board Z80 Microprocessor \star Full 80 Characters by 24 lines ciisplay:

* Characters displayed by High Resolution
7×10 Marix.
* Keyboard Power and Interface
* Composite Video Output.

Separate TTL Level Synchronization and Video Outputs.

* 2 K Byes independent On Board Memory.
\star On-Board 280 Microprocessor.
* Glich Free Display

TRS-80/APPLE

MEMORY EXPANSION KITS 4116's 16K (200/250 ns.) 8 pcs. for $\$ 74.95$ w/instructions \& jumpers.

HICKOK
LX303
\$74.95
. . . and it's COLOR SALE \$100.00 OFF "The Compucolor II""

* Color Graphics 13" Color CRT - Proven 8080a CPU System - 16K Extended Disk Basic - Up $10111{ }^{\circ}$ Key Keyboard - Up to 32K• RAM
* Minidisk Drive 51.2 K Bytes/Side

Model 3 w/8K, 72 Key Keypoard, RS232. SALE \quad TAKE $\$ 1495.00$ Model $4 \mathrm{w} / 16 \mathrm{~K}, 72$ Key Keyboard, RS232 $\$ 100.00$ … $\$ 1695.00$ Model 5 w/32K, 72 Key Keyboard, RS232 OFF ... $\$ 2295.00$ Options: 101 Key Keyboard.............................. Add $\$ 150.00$ Formatted Diskeltes.

Add $\$ 225.00$ Formatted Diskeltes.
$.2 / 519.95$
$\$ 19.95$
Diskette Library Inc. Hangman. Othello, Math, Chess Startek Blackjack, Cublc Tic Tac Toe. Flnance Vol. I, Finance Vol. II, Bonds and Securities, Assembler, Text Editor, Personal Data Base

Finally! We've heard so much about it and we are proud to offer.

- Color - Up to 72K - 16 Color Graphics - Music Sound Solld State Software
limited otr: $\mathbf{\$ 1 1 5 0 . 0 0}$
A. MINI-DISK

SYSTEM

- SOL-20 w/32K
- VISTAV 200 o controlver
- (2) Iocuble densily dives
- C M/M w/documentation
- Assembled 8 lested
$\$ 2995.00$
SOL IKRA (expandable to 65 K) RAM boards. Assembled and socketed w/o memory, data delay and proms
Only.
B. STANDARD FLOPPY SYSTEM - SOL
- VISTAO W/24K
- (2) 8^{84} disk dives
- CPMM w/documentation
$\mathbf{\$ 3 2 9 5 . 0 0}$

Sol-20 Keyboards. Only $\$ 139.95$

KIM-1
Now only
$\$ 179.00$
** Power Sup

* Co........ Add $\$ 59.95$
* Cassette Recorder
* \star Sanyo 9 " Monitor

Add enclosure $\$ 29.95$.

$\$ 375.00$

* On Board 20 column elphanumeric pintit. $W / 1 K$ RAM
$W / 4 K ~ R A M ~$ W/4K RAM.
Assembler R Assembier ROM Add $\$ 855.00$ BASIC IN ROM ... Add $\$ 100.00$ Power Supply...... Add 569.95
Enclosure

SBC-100

2-80 based singleboard computer by SD Systems

* 1 K RAM
* RS232 port
* 4 channel counter/timer

Kit …............. $\$ 239.00$
Assembled $\$ 369.00$

- 8080A
- Monitor ROM
+25 Kay Kayboard
+ K
- Cassette l/O

RCA COSMAC VIP

$\$ 299.00$
0

ADVANCED COMPUTER PRODUCTS

IMS STATIC RAM BOARDS

16 K Static
5509.00
$\$ 479.00$
$\$ 799.00$
se9900
ANADEX PRINTER

FLOPPY DISKETTES

TARBELL FLOPPY INTERFACE Assembled tor Shugart............... SALE \$286.05
Assembled Olher Drives. Assembled Olher Drives
 Vistad Versa Flopoy Kit
SD SD Versa Floppy Assembled
Tares Cassette $1 / 0 \mathrm{Kit} . . .$.

NEW CENTRONICS 730 PRINTER

 WOW$(\$ 945,00)$ $\begin{aligned} & \text { Uses any paper roll, fanfold, } \\ & \text { single sheets, } 96 \text { character } \\ & \text { AScli, } 7 \times 7 \text { dot matrix } 50\end{aligned}$

Z-80/Z-80A/8080 CPU BOARD * On board 2708 * 2708 included (450ns.) * Power on jumo * completely sockeled - Z-80 Assembled and Tested $\$ 185.00$ - Z-80 Kit. S 129.95 - 2-80 Bare PC Board s 34.95 * For 4 MHz Speed Add $\$ 15.00$ 8080A Kit 8080A Assembled. S 99.95 $\$ 149.95$

S-100 MOTHERBOARD SPECIAL 8 slot expandable w/9 conn. reg \$69.95. NOW 552.95
SIEMEN'S FLOPPY SALE - Special buy while supply lasts. - 8" Drive with DoubleDensity - 90 Day Warranty \$3\$0.00

ACOUSTIC COUPLER SPECIAL

AJMCIAL PURCHASE

OF SURPLUS UNITS

		STATIC RAM HEADQUARTERS						
		${ }_{\substack{2 \\ 2,102}}^{\substack{2,102}}$						
		250ns						
		${ }_{\text {conem }}$						
		211440380n!	TEXTOOL ZERO INSERTION FORCE					
		sioct						
					to Pin 51025			
		CONNECTORS						
		CHARGE COUPLED DEVICES						
		$\$ 18.95$ each (reg. 43.00)			CTS DIPSWITCHES 			
		CRYST			MAKED PC BOARD SALE			
					(ex			
		50						
					(120			
					,enime Cick			
			 ${ }^{0,0 \mathrm{MH}+2}$					
			DISPLAYS/OPTO/LED'S * 7 seament * Calc * clocks *					
		FNO $500 / 5031 \mathrm{CC}, 500$. Hed 			ENERATORS			
		FND B00/803 (CC) 800 Red XAN 3062500^{-}Green						
					ENERATORS			
					act 4024 VCO Lus66 veo \qquad			
					FLOPPY DISK I/O			
					Pd 372 Nec Floppy 1791 Dual Floppy			
					tV interfaces			
Rams								
		MAN 2A 320 Rad Aphn-Numpric 5.95PAAN 10A 270^{-}Red ADDh a-Numernc						

SPECIAL PURCHASE (while supply lasts)

21L01-4(450 ns.)... 99 MM $2114 \mathrm{~N} . \ldots . .449$ TMS 4060 (p. 2 . . . 1.15 MK 3870 (programmed)

MC 14411........ 9.90	. 95
4.95	. 95

P8251 Intel....... 4.95	$27 S 08(32 \times 8)$
FCM 7001 Clock ... 5.50	$75492 \ldots . .95$
F............ 75	

 MM 5314 Clock ... 3.95 2513-001 (U.C.) 795
8085.

NOTICE: WE DO CUSTOM PROM PROGRAMMING

COMPUTER SPECIALS

	LIST	SALE	IPSI 1620 Diable RO 3295.		
Apple II Plus w/ 16 K	1195.	930.			2695.
PET 2001.16N	995.	895.	Anadex DP 8000		895.
Exidy Sorcerer w/8k	895.	795.	Centranics Micro ${ }^{\text {P- }}$ -	595.	395.
Compucolor II w/8k	1495.	1395.	Centronics Micro $5 \cdot 1$	595.	525.
Cramemco Sys 111	5990.	4990.	Sorac io 120	995.	850.
Horizan $\mathrm{w} / 16 \mathrm{~K}$	1599.	1349.	Telefype Model 43	1349.	1150.
TE1 P1208 w/32K			MiPiot Platter	1085.	899.
Jual Hoppy \& CRT			Hipiot Digith		735.
(1 avail) ${ }^{\text {a }}$	4995.	2995.	interube II	895.	784.
Pascal Microengine	2995.	2395.	SOL 20		1095.

Widen the ability of yourTiS-80

The Vista V80:\$395

The Vista V80 Mini Disk System is the perfect way to widen the capabilities of your TRS-80* Microcomputer. Quickly and inexpensively. Our \$395 price tag is about $\$ 100$ less than the Radio Shack equivalent. Our delivery time is immediate (24 hour turnaround from our Santa Ana, Ca. factory). And our system is fully interchangeable. That's just the start.

It will give you 23\% more storage capacity by increasing useable storage from 55,000 to 65,000 bytes per drive with our new software patch.

It can work 8 times faster than the TRS-80 MiniDisk system, because track-to-track access is 5 ms versus 40 ms for the TRS-80. You can realize this added speed
once the new double disk expansion interface is available without expensive modification of the existing unit.

It has a better

warranty than any comparable unit warranty available - a full 120 days on all parts and service. When you consider how much more goes into the Vista V80, that shows a lot of faith in our product.

A full 3 amp power

 supply means you have $21 / 2$ times the power necessary to operate the V80, and full ventilation insures that there will be no problems due to overheating.The Vista V80 Mini
Disk System requires Level II Basic with 16K RAM Expansion interface (it operates from the Radio Shack interface system. It
comes complete with a dependable MPI Minifloppy disk drive, power supply, regulator board and vented case. It's shipped to you ready to run - simply take it out of the box and plug it in. You're in business. From the company that means business - Vista Computer Company.

The Vista Computer Company. Manufacturers of Quality Computer Systems and Software.
714/953-0523
1401 Borchard
Santa Ana, Ca. 92705

UhaclessiliedAds

FOA SALE: The first sixteen issues of BYTE in mint con dition. Best offer over $\$ 100$. Pat Gerstle, 1460 Oak Cir, Boulder CO 80302.

FOR SALE: SwTPC 6800 computer with 12 K memory, SWTBUG, serial and parallel inpul/output (I/O); CT-1024 terminal with scrolling mod in Enclosure Dynamics case; AC- 30 cassette interface; GT6144 graphics board with joystick, each housed in separate cases; all inter. connecting cables, full documentation, and large variety of software (SwTPC 4 K and 8 K BASIC, Microsoft BASIC. Assembler, games); \$650. A Maryanski, 424 Grant Av, Eatontown NJ 07724, (201) $542 \cdot 4735$.

FOR SALE: PERTEC iCOM FDOS-II dual drive/single densily floppy disk drive with Intel interface card Almost new. Paid $\$ 3300$, will take best offer received one month after offer appears. Gary Miner, POB 1177, Santa Cruz CA 95061, (408) 429.1331.

FOR SALE: An S. 100 bus system comprised of the following: TDL 280 processor board. TDL system monitor board with two serial ports and one parallel port, cassette intertace, and read-only memory monitor. TDL video display board with 1920 characters and graphics. Keyboard. Morrow 16 K memory board. All housed in Vector Graphics box with 18 A power supply. Best offer. Richard Blum, 3 Mohawk Dr, Westboro MA 01581, (617) 366-9734.

FOR SALE: IMSAI 8080 with Micropolis double density floppy disk, 32 K bytes static programmable memory (250 ns), 8 K Bytesaver board with 16 K read-only memories, additional 16 K programmable-memory board without chips, SIO-2, PIO-4, Tarbell cassette board, Mountain Hardware clock board, OAE paper-tape reader, Hazeltine 1500, $80 \cdot$ column printer, modem, and ultraviolet read-only memory eraser. All boards fully socketed, up and running. All brand new. Write for more details, give phone number. Jim Bartkus, 6519 S Kostner Av, Chicago IL 60629.

FOR SALE: Monroe 326 scientific calcutator with cassette drive model 392, programmable 120 steps and I welve data registers, with nicads and charger, software included for financial analysis. Asking $\$ 600$ or best offer. Stanley Katz, 208 Hamden 305, Marshall MN 56258, (507) 537-1136.

FOR SALE: BYTE and Kilobaud magazines in good condition. Complete sets, volume 1 number 1 thru present date. Make offer for elther or both sets. Mel Hart, 936 Dontaos Dr, St Louis MO 63131, (314) 966-4263.

FOR SALE: TAS-80, Level 2 BASIC, 16 K complete with video monitor, power supply, keyboard, cassette unit. Level 1 and 2 manuals, game soffware, all in perfect condition, I pay shipping; $\$ 750$. Robert E Stahl, 18273 Gum Tree Ln, Huntington Beach CA 92646, (714) 842-5832.

FOR SALE: Computer Automation Alpha/LSI-2 computer with 8 K 16 -bit words of core memory, front panel, and 8 -port serial input/output (I/O) board. $\$ 1000$. Phil Hughes, POB 2847, Olympia WA 98507, (206) 357.4415 days or (206) 352-9637 evenings.

FOR SALE: S. 100 boards, Processor Technology cassette user lapes system interface with CUTER, Extended Cassette BASIC and ALS-8, \$160; VDM-1, \$150; BASE 216 K fast static programmable memory, $\$ 325$; Digital Micro System 16 K statlc programmable memory, \$290; IMSAI 8080 processor board, \$80; Advanced Computer Products LOGO 18 K static programmable memory, $\$ 180$. All assembled and tested. Teletypewriter paper, Canary, \$3. T Tai, POB 142, Eagleville PA 19408.

FOR SALE: FIrst iwo volumes of BYTE, excellent condillon, complete. Please submit bids for both complete sets or individual issues. Magazines wlll go to highest bidder(s). K Watson, 600 Arapahoe 7, Boulder CO 80302.

FOR SALE: Solid State Music $10-4,2 P+2 S$, input/ output (//O) board, S-100, documentation. Best offer. Stuart Sheedy, 1 Schoolhouse Ln, Syosset NY 11791, (516) 921-4321.

FOR SALE: Terminet 300 keyboard printer. Excellent condition. Friction-feed Model B, RS.232, 10/15/30 cps (switch selectable), upper/lower case, 118 column, ASCII terminal. Full set of documentation included. Best reasonable offer. F P Godicl, Rd 2 POB 135, Oswego NY 13126, (315) 343-3314.

FOR SALE OR TRADE: SwTPC $6800 / 2$ with 24 K total memory; CT-64 terminal; AC-30 cassette interface; NP-N calculator Interface. All equipment unassembled. In original cartons with ail manuals and documentation. Sell for cash, or trade for TRS. 80 expansion interface with memory, mini disk system, printer, etc. Gary Blanken, 1804 Ladd St, Silver Spring MD 20902.

FOR SALE: Teletype ASR33. Excellent condition. Wired for motor control, with pedestal, and one box of new paper tape; $\$ 850$. DSI paper-tape winder for Teletype 33; $\$ 50$. United Data 20 mA to RS.232C converter; \$125. R Groome, 1701 E 12th St Apt 9W West Tower, Cleveland OH 44114, (216) 621-4129.

FOR SALE: Assembled Heathklt H8, H9, and cassette recorder. Hardware includes 24 K memory and cassette interface. Software is Heath Extended BASIC, Assembler, Game Set 1, Biorhythm, and Space War. Included are reference manual and most of REMarks(HUG magazine) to date. Would cost nearly $\$ 1800$ as a kit. The flist check or money order for $\$ 1440$ gets it. G Counsil, 125833 Av, San Francisco CA 94122, (415) 664-4508.

FOR SALE: Two IMSAI 4 K static programmable memory boards with individual 1 K write protect. $\$ 85$ each. One Polymorphics Video-Graphics board with 16 by 64 character display and 48 by 128 graphics display. 1 K of on board programmable memory and a parallel port for keyboard. \$150. All for S-100 bus. Everything assembled. Frederick Stark, 859 Standish, Pacifica CA 94044.

FOR SALE: TDL ZPU Z80 processor card and TDL Z16 memory card with 8 K bytes. Includes TDL 280 macroassembler, TDL 8 K BASIC, TDL 1 K monitor, and memory test software on paper lape. Documentation included: macroassembler user manuat, 280 processor technical manual, 216 manual, and 8 K BASIC user manual. All for $\$ 500$ or best offer within thirly days. Art Wetzel, 1123 Walnut St, Pittsburgh PA 15221, (412) $624-5208$ or (412) 241-3578.

FOR TRADE: Are you interested in swapping soffware? If you send me an original game program in any version of TDL BASIC or either version of CBASIC, I will send you a game program in the appropriate language. Along with the program include a SASE, and two extra coples of your program, if possible. Your program must be typed or printed by computer. Michael Schiff, 184 Foch Av, Lawrenceville NJ 08648.

FOR SALE: Tarbell tape Interface board, assembled and working, $\$ 80$ or best offer. Also, Memorex model 650 Hoppy disk drive, 8 inch, hard-sectored, with documentaIton, $\$ 200$ or best offer. Frank Tuccio, 80 N Rallroad Av, Mahwah NJ 07430.

Unclassified Policy

Readers who are soliciting or giving advice, or who have equipment to buy, sell or swap should send in a clearly typed notice to that effect. To be considered for publication, an advertisement must be clearly noncommercial, typed double spaced on plain white paper, contain 75 words or less, and include complete name and address information.

These notices are free of charge and will be printed one time only on a space available basis. Notices can be accepted from individuals or bona fide computer users clubs only. We can engage in no correspondence on these and your confirmation of placement is appearance in an issue of BYTE.

Please note that it may take three or four months for an ad to appear in the magazine.

WANTED: CAI programs wanted. Teachers, do you have any orlginal TRS-80, PET, or Apple CAl programs for trade with other teachers? Bob Purser, POB 466, EI Dorado CA 95623.

FOR SALE: Complete set of BYTE magazine from first Issue to 1979. Make offer. Benjamin Clark, Rt 3 POB 800, Moncks Corner SC 29461.

FOR SALE: Static-memory boards assembled with original documentation. Godbout 4 K, paid $\$ 130$, asking $\$ 50$; SD Sales 4 K lowpower, paid $\$ 95$, asking $\$ 65$; MITS Altair $88001 \mathrm{~K}, \$ 25$. All three boards for only $\$ 125$ and I pay insurance and postage. Also, I have an ASR33 teletypewriter with built-in 101C data set and phone dialer. Asking $\$ 875$ or best offer. Barry Woo, 949 Erica Dr, Sunnyvale CA 94086, (408) 737-2935.

FOR SALE: PDP. $8 / \mathrm{L}$ computer; $\$ 1000$. James Foy, (609) 646.2132 after 6:00 PM.

BUY, SELL OR TRADE: Digital Group equipment. Have input/output (IIO), video display, 280 processor, dual PhiDeck system, keyboards, monltors, cabinets, etc. Need memories and TVC 96, real-world interface, etc. Jack Buster, POB 8062, Anchorage AK 99508, (907) 349-3324.

FOR SALE: Data General Nova 1220 minicomputer with 32 K bytes programmable memory, Auto-Program-Load, paper-tape reader and Teletype Interfaces, manuals, logic dlagrams, and paper tapes. All in mint condition. $\$ 1500$ plus shipping. R C Meyer, 61813 th St NE, Owatonna MN 55060, (507) 451-6911 evenings.

FOR SALE: Input/output (I/O) board, S-100, Morrow Speakeasy, one parallel, one serial, cassette with contrat for three machines, 512 bytes programmable memory, read-only memory with bootstrap and cassette routines on board. Assembled and tested, with cable. Best offer over \$110. Rusty Bryttan, 78 Clinton PI, Bronx NY 10453, (212) 367-0663.

FOR SALE: Altair computer, two 4 K dynamic memories, ACR, PIO. $\$ 500$ or best offer. Also complete backlog of BYTE, best offer. Dan Starr, 58 Spruce St, Princeton NJ 08540 .

FOR SALE: 1 am selling parts and spares from my old computer to pay for my new computer. All parts made by Intel. 13 K bytes P2102A-4; $\$ 1.50$ each, 4 K bytes C1702a; \$4 each, 24 D8212; $\$ 2$ each, 3 C8080A; $\$ 7$ each, 3 D8224; \$3 each, 8 P8226; \$2 each, 2 P8214; \$4 each, 20 unused d3601 read-only memory like 825126 ; $\$ 3$ each. Please add $\$ 1$ for UPS. Send cashier's check or money order. Frank Worrell, Lakeshore Dr RD4, Colchester VT 05446.

Readep Sepvice

To get further information on the products advertised in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the
 the marketplace provided by BYTE. This helps us bring you a bigger BYTE. *Correspond directly with company.

Inquiry No.
 Page No.

Aardvark Software 151

AB Computers 254
Ackerman Digital Systems 86
Addmaster Corp. 211
Adroil Electronics 205
Advanced Access Group 128
Advanced Computer Prod 268, 269
All Electronics Corp 201
Altos 19
American Square Computers 211 Anderson Jacobson 176
Anderson Jacobson 199
Apparat 202
Apple Computer 55
ASAP Computer Products 262
Atari Personal Computers 31
ATV Resear ch 197
Automated Simulations 177
Avionic Enterprises (A.E.I.) 201
Beckian 264
Beta Computer Devices 110
Biotech Electronics 222
BYTE Back Is
BYTE Back Issues 185
BYTE Books 114. 121. 157. 173 C \& Electronic
\& S Electronics Mart 181
California Digital 257
Cambridge Development Labs 142
CCM Inc. 211
Central Data 107
Centronics 97
Compucolor Corp 6
CompuMart 267
CompuServe (Micronet) 103 Computer City 263
Computer Distributors 127
The Computer Factory 139
Computer Furniture \& Acc 8d Computer Headware 18
Computer Mart of NJ 58
Computer Speciallies 189
Computer Room 76
Computer Service Center 201 Computer Serv Sys Niwk (CSSN) 137 Computex 188
CTC 88
CT Micro Computer 200
Corvus Systems 25
Cromemco 1, 2
Cybernetics Inc 231
Data Access Corp 203
DataBank 211
Data Discount Center 191
Data South Computer 191
Data Speed 165
Data Trans 266
Datec 193
Della Products 117
DES.MAR Electronics 201
DG Electronics 144
Digital Marketing 82
Digital Pathways 135
Digital Research Corp (CA) 148

Inquiry No.

Page No.

20 Digital Technology Inc 35
32 Digltus Corp 57
129 Disc 3189
221 Digital Research: Computers 261
138 Dynacomp 195
124 Ecosoft 187
207 Electrolabs 243, 246, 247
111 Electronic Control Technology 177
208 Electronic Systems 248, 249, 266
169 Electronic Technicians 205
196 Escon 228
193 Factory Direct Sales 217
141 Field Service Search 197
210 Fordham Radio Supply 252
167 Frederick Computer 205
121 Fulureworld 185
194 Geller 191
98 Godbout Electronics 161
84 H\& E Computronics 141
97 Hayden Book Co 159
11 Heath Company 17
17 Heath Company 26, 27
11 Holsy World
38 Housion Instruments 67
inco Inc 187
ind
Infinity Micro 143
Infosoft Systems Inc
Inmac 62
Integral Data 23
Interface Inc 197
International Data Systems 125
Intertec Data Systems 15
104 Intertec Data Systems 171
Ithaca Intersystems 9
Ithaca Intersystems 14
209 Jade Co 250, 251
218 Jameco 258, 259
43 Konan Corp 75
Lifeboat Associates 101, 231, 233 Logon Inc (Technical Marketing) 96 MacMillan Book Club 145
Macrotronics 205
McGraw-Hill Book Company 64, 65 Measurement Sys \& Cont 169. 197
165 Micro Appl \& Hardware (MICAH) 204

66 Micro Applications Group 104
159 Micro Architect 201
172 Microbiotic Computing 205
222 Micro Business World 262
239 Microcomputer Technology Inc 202 MicroDaSys 77
Micro Dala Base Systems 53
Micro Diversions 5
122 Micromail 185
114 Micro Mikes 181
Micro Pro International 49

Inquiry No.
Page No.

155
168
Microsette 201
56 Microsoft 91
95 Microsof 91
40 Microtek 71
120 Microware 187
Microware 187
The Micro Works 72
The Micro Wor
Micro World 8
Mldwest Computer Peripherals 170
219 Mlkos 260
81 MOM 136
Mini Computer Suppliers 207
Morrow/Thinker Toys 69
Mountain Hardware 16
MPI 85 Hardware 11
MPU 181
176 MT Microsys (Formerly Metatech) 206
143 Multi Business Computer Sys 197
143 Multi Business Computer Sys 197
National
NEECO 123
737 NEECO 132
215 Netronics 25
238 Netronics 255
174 Northwest Computer Sery Inc 205
113 Novation 179 NRI Schools 129
235 Ohio Scientific Instrument CIV
7 Ohio Scientific Instrument 12, 13
27 OK Machine and Tool 47
64 OK Machine \& Tool 102
Olivetti 51
onComputing 33
202 Optimal Technology 233
123 Oregon Software 83
136 Owens Assoclates 193
171 Pacific Exchanges 205
217 Page Digital 256
164 PAIA 204
200 Pan Am Electronics \&A Radlo Shack
Auth. Sales Ctr.) 231
234 Per Com Dala C It
25 Per Com Data 43
26 Per Com Data 44
241 Per Com Data 44
242 Per Com Data 44
243 Per Com Data 45
244 Per Com Data 45
245 Per Com Data 45
246 Per Com Data 45
46 Personal Software 79
47 Personal Software 81
Phase One Systems 149
125 Pickles \& Trout 187
99 Potomac Micro Magic 164
Polyline Corp 201
53 Power One
Priority One (insent
248 Priority One 241
179 The Q Kit (Div JR Conwell Corp) 209
227 Quest Electronics 265

Inquiry No. Page No.
94 Rabininc 154
19 RACET Computes 183
212 Radio Hut 253
112 Ramsey Electronics 178 Ramsey Electronics 178
Reliable Cash Register (Systems Specialists) 183
204 RNB Enterprises 233
197 Rochester Data 228
175 S-100 206
110 Sara Tech 177
128 SCD Digital 211
128 SCDP 189
150 SciTronics 198
21. Seattle Computer Products 37 Shugart 6, 7
Sigma International 207
107 Sirius Systems 175
22 Smoke Slg Broadcasting (Dealers) 39 Smoke Signal Broadcasting 39 Smoke Signal Broadcasting 39 Softagon Inc 10 Softech Micro Systems 153 Softech Micr
191 Software
191 Soffware Dev \& Training 214
144 The Software Exchange 147
24 The Soft Warehouse 42
135 The Software Works 193
214 Solid State Sales 254
158 Sorrento Valley Associates 201
180 Southern Sys of Birmingham 210
233 Southwest Tech Products Corp CII SSM 11
SubLOGIC 94
Sunny Inlernational 264
Supersoft 59
Sybex 61
Synchro Sound 95
Synergetic Computer Products 214 System Engineering Enterprises 113 Tarbell Electronics 73 Technical Systems Cons (TSC) 89 Technology Transfer 196 Terminal Data Corp 201 3/M Company 21
Torry Pines 197
170 Ucatan Computer Store 205 University Micro Films 99
137 US Robotics 194
145 Vantage Data Products 197
Vector Electronics 40
2 Vista Computer Company 270
206 VR Data 245

- Wameco 260

Whales 245
142 Worldwide Electronics 197
190 X-Comp 213
71 Yourdon Software Prod Group Inc 118
$118 \mathrm{Z}_{\mathrm{S}}$ Systems 183

BOMB - BYTE's Ongoing Monitor Box

Article No.
ARTICLE
1 Grogono: Making Color Slides with an Intecolor Microcomputer3 Gibson: A Computer-Controlled Light Dimmer4 Wierenga: A Furnace Watchdog
5 Lewis: What Computers Cannot Do7 Joyce: Telephone Dialing by Computer
8 Chance: Analysis of Polynomial Functions with the TI.59 Calculator, Part 29 Walter: The Plot Continues
10 Conboy: Alpha Lock for Your ASCII Keyboard11 Pass: A Computer-Generated Reminder Message12 Lipham: Relocating 8080 System Software20
2 Clarcia: Computerize a Home 2856100
6 Skier: Indirect Addressing for the 6502 118100122129136156
13 Yost: Eighteen with a Die, A Learning Game PlayerPage

October BOMB

"Picking Up The Pieces" (page 76) by Alfred S Baker won first place in the October 1979 BOMB. Second place was taken by Fred R Ruckdeschel's "Curve Fitting With Your Computer" (page 150). "Self-Refreshing LED Graphics Display"(page 58), by Steve Ciarcia, placed third.

Low Cost Add-On Storage for Your TRS-80*. In the Size You Want.

When you're ready for add-on disk storage, we're ready for you. Ready with six mini-disk storage systems - 102K bytes to 591K bytes of additional on-line storage for your TRS-80*.

- Choose either 40 -track TFD-100 ${ }^{\text {TM }}$ drives or 77-track TFD-200 ${ }^{\text {TM }}$ drives.
- One-, two- and three-drive systems immediately available.
- Systems include Percom PATCH PAK \#1 ${ }^{\text {TM }}$, on disk, at no extra charge. PATCH PAK \# ${ }^{\text {Tu }}$ de-glitches and upgrades TRSDOS* for 40- and 77 -track operation.
-TFD-100 ${ }^{\text {TM }}$ drives accommodate "flippy disks." Store 205 K bytes per mini-disk.
- Low prices. A single-drive TFD-100 ${ }^{\text {M }}$ costs just \$399. Price includes PATCH PAK \# $1^{\text {TM }}$ disk.
- Enclosures are finished in systemcompatible "Tandy-silver" enamel.

Whether you need a single, 40track TFD-100 ${ }^{\text {TM }}$ add-on or a three-drive add-on with 77 -track TFD-200 ${ }^{\text {TMS }}$, you get more data storage for less money from Percom.

Our TFD-100 ${ }^{\text {TM }}$ drive, for example, lets you store 102.4 K bytes of data on one side of a disk - compared to 80 K bytes on a TRS-80* mini-disk drive and 102.4 K bytes on the other side, too. Something you can't do with a TRS-80* drive. That's almost 205 K bytes per mini-disk.

And the TFD-200 ${ }^{\text {TM }}$ drives provide 197K bytes of on-line storage per drive

- 197K, 394K and 591 K bytes for one-, two and three-drive systems.

PATCH PAK \#1 ${ }^{\text {TM }}$, our upgrade program for your TRSDOS*, not only extends TRSDOS* to accommodate 40and 77 -track drives, it enhances TRSDOS* in other ways as well. PATCH PAK $\# 1^{\text {TM }}$ is supplied with each drive system at no additional charge.

The reason you get more for less from Percom is simple. Peripherals are not a sideline at Percom. Selling disk systems and other peripherals is our main business - the reason you get more engineering, more reliability and more back up support for less money.

In the Product Development Queue . . . a printer interface for using your TRS-80* with any serial printer, and .. The Electric Crayon ${ }^{\text {rM }}$ to map your computer memory onto your color TV screen - for games, animated shows, business displays, graphs, etc. Coming PDO!

T4 TFD-100. TFD-200. PATCH PAK and Electric Crayon are trademarks of PERCOM DATA COMPANY.

- TRS 80 and TRSDOS are Irademarks ol Tandy Corporalion and Radio Shack which have no relationship to PERCOM DATA COMPANY.

PERGOM

PERCOM DATA COMPANY, INC. 211 N. KIRBY • GARLAND, TX. - 75042

To order add-on mini-disk storage for your TRS-80*, or request additional literature, call Percom's toll-free number: 1-800-527-1592. For detailed Technical information call (214) 272-3421.

Orders may be paid by check or money order, or charged to Visa or Master Charge credit accounts. Texas residents must add 5% sales tax.
Percom 'peripherals for personal computing'

Step up to your next computer C
 STEP UPTO AC4P FROM OHIOSCIENTIFIC

Youknow about compulers. In fact. you probably own one now. One that you might be thinking of expanding. We have a better idea. Take a giant step into the personal computing future with an amazing, new C4P from Ohio Scientific.

SPEED SEPARATES THE COMPUTERS FROM THE TOYS

The C4P MF has execution speed that is twice as fast as Apple II or Commodore PET and over THREE times as tast as TRS-80. They are many times faster than the recently introduced flock of video game type computers. And, as if that weren't fast enough, the C4P nearly doubles its speed when equipped with the GT option.

Just look at the back panel of the C4P MF.

All the $1 / 0$, you'll ever need!

C4P ${ }^{5} 698$

8K BASIC-in-ROM, 8 K of static RAM and audio cassette interface. Can be directly expanded to 32 K static RAM and two mini-floppy disks.

C4P MFs 1695

All the features of the C4P plus real time clock, home security system interface, modem interface, printer interface, 16 parallel lines and an accessory BUS. The C4P MF starts with 24 K RAM and a single mini-floppy and can be directly expanded to 48 K and two mini-floppies. Over 45 diskettes now available including games. personal, business, educational and home control applications programs as well as a real time operating system, word processor and a data base management system

Compulers come with keyboards and llopples where specitied. Other equipment shown is optional.

For literature and the name of your local dealer, CALL 1-800-321-8850 TOLL FREE.

1333 SOUTH CHILLICOTHE ROAD AURORA, OH 44202•[216]562-3101

[^0]: Mits Hadeishi
 1460 W 182nd St
 Gardena CA 90248 ■

[^1]: Power One Drive •Camarillo, CA 93010 • Phone: 805/484-2806 •TWX: 910-336-1297

[^2]: 2465 Augustine Drive, P.O. Box 4780, Santa Clara, CA 95051

[^3]: Figure 6: Model of the programmable timer, showing gate input \vec{G}, output O, the connection to the microcomputer bus, and the addressable registers. The arrows pointing from the latch to the counting register indicate the data transfer that takes place at the beginning of each count.

[^4]: return for uncertain assets.
 Refirm 2 - Computes a lessor's rate of return after taxes.
 Plus 16 ganes and 12 gruphic programs!
 Volume II: Math and Engincering Programs $\$ 24.95$
 Conte. Calculates convolutions. Intensify - Calculates and plots RF or Acoustic intensities.
 Loln. Calculates longitude and latitude from interstellar fix or distance.
 Matro-Simulates a language compiler.
 Max. Min. - Calculates the maxinum and minimum values of function over a specific interval.
 Naraid - Calculates position from altitude and azimuth of celestial bodies.
 Planet - Calculates sun and moon positions hourly.
 PSD. Calculates Power Spectral Densities and FFT's.
 Rand 2-Generates random integers between X and Y.
 Solve' - Solves polynomials by Bairstow's Method.
 Sphere Trian - Solves any spherical triangle.
 Track- Calculates course and distance and incremental vectors.
 Variabler Finds all variables in BASIC

[^5]: programs.
 Vertor - Calculates final position; given start and motion vectors.
 Plotting and Statistics Prograns Binmmial - Calculates binomial probability distributions.
 Chi-Sif. Applies the Chi-Square test to samuples.
 Corff. Calculates coefficients of fourier series to approximate a function.
 Confindence 1 - Calculates confidence limits on linear regressions.
 Comfidence 2- Calculates confidence limits for a sample mean.
 Correhtions: P Performs auto and cross correlations with plots.
 Exp-Distri Calculates exponential distribution for a sample.
 Paired - Compares two groups of data using the rank test.
 Polynomial Fit : Performs least squares polynumial fit.
 Stal 1 - Finds the mean, variance and standard deviation.
 Stur 2. Computes various statistical measures for a variable.
 T-Disfrilution \cdot Calculates normal and T-distributions.
 Unpmired - Compares two groups of unpaired data.
 Varime Z - Analyzes a variance table of one-way random design.
 $X Y \cdot$ I'lots functions of X and Y.

[^6]: About the Author
 Dr Lewis is an Associate Professor of Computer Science at Oregon State University, where he lectures on software engineering and personal computer systems. He is the author of How to Profit from Your Personal Computer and The Mind Appliance: Home Computer Applications.

[^7]: -Trademark of Digital Research \dagger Single site license

[^8]: IBM and MCA TO MARKET VIDEO DISK: IBM and MCA Inc have formed a joint venture, called Discovision Associates, to develop, manufacture, and market video disks and players. Until now, MCA has been the sole manufacturer of optical video disks. It is hoped that this will broaden the use of video disk technology in the home entertainment, industrial education, and information fields. The optical disk technology, which uses a laser to record and play back the recorded material, shows promise for use in the computer field. It could be used to store large amounts of read-only digital data in much more compact form than presently is possible on magnetic disks. North American Philips is also marketing a video disk player and RCA plans to introduce a system soon.

[^9]: About the Author
 Ed Joyce attended the University of Pittsburgh and Trinity University where he completed a master's degree in Computing and Information Sciences. Since 1973 he has worked as a professional programmer with interests in multiprocessor microprocessor systems and speech recognition. Currently he is employed at Small Systems Engineering Dept, Data Point Corp in San Antonio TX. His recreational interests are backpacking and motorcycle touring.

[^10]: Touch Tone is a registered trademark of the Bell System for its dual-tone multiple-frequency signaling equipment.

[^11]: Acknowledgements
 I am grateful to Dink Stockert, Dr David Crouch, and Carl Zettner for their assistance in the design and construction of the hardware. Lynn Mason, of Cimarron Information Systems Inc, was very generous in providing a computer system for preparation of the text of this manuscript.

[^12]: ** ADD \$6/YEAR (CANADA. MEXICO) • ADD \$12/YEAR AIR MAIL. OUTSIDE OF U.S.A., CANADA \& MEXICO ***

[^13]: REFERENCES

 1. Anderson, Wendell G، "Amateur Reception of Weather Satellite Picture Transmissions," QST, November 1965, page 11.
 2. Johnston, William D. "Computer Generated Maps," BYTE, May 1979, page 10 and June 1979, page 100.
 3. Johnston, William D, "Locating Geosynchronous Satellites," QST. March 1978, page 23.
 4. Ruperto, Eugene F, "Weather Satellite Picfures Are Picked Up in the Home," Scientific American, January 1974, page 114.
 5. Taggart, Ralph E, "Amateur Weather Satellite Reception," 73, May 1976, page 52.
 6. Taggart, Ralph E. Weather Satellite Handbook, 1976, 73 Inc.
[^14]: About the Author
 Terry Conboy is employed as a staff engineer for microwave telecommunications development at GTE Lenkurt in San Carlos CA. Interested in computers and digital communication, he is an Extra class amateur radio operator and has published articles in several ham radio magazines.

[^15]: Listing 1 continued：

 2401 IF $O P 1$ LiJTO $2 S=0$

 $24: 0$ IF $\mathrm{Q}=1$ CUTG $2=0$

 －4EG EET \＃さら

 こ56u GijTj 2ここ日

 $\therefore 3$ F－ETI：
 2
 349 Fo？
 CEU FEIMT＂

 ESHE FRINT＂．\quad EEIMONTHLY＂

 EGSE FRIUT＂
 OUG FREPTT＂，$\quad=$
 Ge0 FRINTT＂
 0 SOTO

 3050 If MBCOG me＝0

 1 10 $00=06-05 \% 180$

 ЭOU IF HE＇S［4－$-1 E$ ）

 $-140=78+1$

 If $\mathrm{H} 1 \mathrm{Cl}_{\mathrm{L}}^{\mathrm{n}} \mathrm{B}=1$
 $\mathrm{H} 1=+7+1$
 $\mathrm{AB}-\mathrm{F}$

 家 \＃1
 ÉT \＃10

 N $4=[9$
 5150

 $\because 10$－Liti 45135

 \therefore 湤

 -64 5！！Tis 1015
 标
 ĳTij 9045
 N2＝12
 シプリ LOT日 10以
 ETG0 1 PFIJT＂ENTEF NUMEEF：UF DHM゚S＂，NE

 －
 GOTM 4904
 A1H1 F：EWF：ITE t10

 EGUY IF N1ぐこ EETUFW

 E1U 1F P1：EOTU ES日G
 ET10 U5！」E 7015
 E $160 \quad 5=6+\mathrm{V}^{2}$
 2180 5！5！ $5 \quad 790$

 E－1．IF PAGEGUTU E1FG

 5－6 $\quad J=J-12$

[^16]: MEASUREMENT systems \& controls incorporated

 867 North Main Street - Orange, CA 92668
 Telephone: 714/633-4460

[^17]: About the Author
 lohn Lipham's first contact with programming was as a graduate student in physics at the University of North Carolina at Chapel Hill. There he discovered PL/1 and assembly language for the IBM 360 . Recently he has been working with a colleague on a project using an IMSAI microcomputer system. The goal of the project is to develop software to aid in teaching plysics, and to interface the system to scientific instruments for research purposes.

[^18]: IR
 SALE

 ALL BRAND NEW 16K LEVEL 2
 FULL WARRANTY \$699. ALSO
 $16 K$ MEMORY UPGRADE $\$ 59$
 TRS80 3SPEED KIT UPGRADES
 TRS80 TO FAST, S LOW AND
 NORMAL SPEEDS $\$ 19$.
 5V-EPROM 2716 \$35.
 2708 EPROMS $\$ 7$.
 MICROTEK PRINTERS $\$ 725$
 SOFTWARE AND INTEGRATED
 C I RCUITS (TTL'S, MOS CMOS)
 SEND FOR FREE CATALOG
 Des-mar electronics
 POST OFFICE BOX 4482
 AGNEW STATION
 SANTA CLARA, CA. 95054
 © CALIF. ADD 6.5\% TAX

[^19]: About the Author
 Russell Yost studied physics at the Califormia Institute of Technology before World War II diverted him into working on defense electronic systems. Since 1952 he has worked for Motorola; he is now the chief engineer for radar systems in the Government Electronics Division. When he saw the rising tide of microprocessor electronics, he bought a Southwest Technical Products 6800 computer system to gain experience in the new field. He uses the 6800 system to design logic circuits at home; at work he writes FORTRAN programs for simulation on a Sigma 5 computer. He is active in amateur radio and photography.

[^20]: $* ~$

