
the smalisystems journal



## Someday all terminals will be smart.......

- 128 Functions-software controlled
- $7 \times 12$ matrix, upper/lower case letters
- 50 to 38,400 baud-selectable
- $82 \times 16$ or $92 \times 22$ format-plus graphics
- Printer output port
- "CHERRY" keyboard

CT-82 Intelligent Terminal, assembled and tested.
. $\$ 795.00$ ppd in Cont. U.S.


## Here's how you can be fully computerized

 for so much less than you thoughtBUSINESS - EDUCATION - ENGINEERING - MANUFACTURING

We are pleased to announce the first professional time-sharing system in the microcomputer field.

Naturally, it's from Cromemco.
This new multi-user system will do all of the tasks you usually associate with much more expensive time-sharing computers. Yet it's priced at an almost unbelievably low figure.

Look at these features:

- You can have up to 7 terminals plus a fast, 132 -column line printer
- You can have a large system RAM memory that's expandable to $1 / 2$ megabyte using the Bank Select feature
- Each user has an independent bank of RAM
- You can have floppy disk storage of up to 1 megabyte
- You have confidentiality between most stations
- And, make no mistake, the system is fast and powerful. You'll want to try its fast execution time yourself.



## PROGRAMMERS LOVE OUR BASIC

This new system is based on Cromemco's well-known System Three Computer and our new Multi-User BASIC software package.

Programmers tell us that Cromemco Multi-User BASIC is the best in the field. Here are some of its attractions:

- You can use long variable names and labels up to 31 characters long - names like "material on order" or "calculate speed reduction."
- You get many unusual and helpful commands that simplify programs and execution - commands such as PROTECT, LIST VARIABLES, NOLIST, and many more.
- No round-off error in financial work (because our BASIC uses binarycoded decimal rather than binary operation). And we've still been able to make it FAST.
- Terminals and printer are interruptdriven - no additional overhead until key is pressed.
- The conveniences in this Multi-User BASIC make it much easier to write your own application software.
- A line editor simplifies changes. BENCHMARK IT - NOW
In the final analysis, the thing to do is see this beautiful new system at your dealer. See its rugged professional quality. Evaluate it. Benchmark it for speed with your own routine (you'll be agreeably surprised, we guarantee you).

Find out, too, about Cromemco's reputation for quality and engineering.
look into it now because you can have the capabilities of a fully computerized operation much quicker and for much less than you ever thought.


# The single card computer with the features that help you in real life 

## COMPLETE COMPUTER

In this advanced card you get a professional quality computer that meets today's engineering needs. And it's one that's complete. It lets you be up and running fast. All you need is a power supply and your ROM software.

The computer itself is super. Fast 4 MHz operation. Capacity for 8 K bytes of ROM (uses 2716 PROMs which can be programmed by our new 32K BYTESAVER ${ }^{\text {® }}$ PROM card). There's also 1K of on-board static RAM. Further, you get straightforward interfacing through an RS-232 serial interface with ultra-fast speed of up to 76,800 baud - software programmable.

Other features include 24 bits of bidirectional parallel I/O and five onboard programmable timers.

Add to that vectored interrupts.

## ENORMOUS EXPANDABILITY

Besides all these features the Cromemco single card computer gives you enormous expandability if you ever need it. And it's easy to expand. First, you can expand with the new Cromemco 32 K BYTESAVER PROM card mentioned above. Then there's Cromemco's broad line of S100-bus-compatible memory and I/O interface cards. Cards with features such as relay interface, analog interface, graphics interface, optoisolator input, and A/D and D/A conversion. RAM and ROM cards, too.


## EASY TO USE

Another convenience that makes the Model SCC computer easy to use is our Z-80 monitor and 3K Control BASIC (in two ROMs). With this optional software you're ready to go. The monitor gives you 12 commands. The BASIC, with 36 commands/functions, will directly access I/O ports and memory locations and call machine language subroutines.

Finally, to simplify things to the ultimate, we even have convenient card cages. Rugged card cages. They hold cards firmly. No jiggling out of sockets.

## AVAILABLE NOW/LOW PRICE

The Cromemco Model SCC is available now at a low price of only $\$ 450$ factory assembled (\$395 kit).

So act today. Get this high-capability computer working for you right away.

## Foreground

10 THE TOY STORE BEGINS AT HOME, by Steve Ciarcia Build a challenging musical game in BASIC

26 SIMULATING PHYSICAL SYSTEMS, The Two-Dimensional Ideal Gas, by Mark Zimmermann Experiment with physical models on your computer

46 SOURCES OF NUMERICAL ERROR, by Daniel R Buskirk Learn how to control errors from rounding and truncating

84 MARSPORT: The Three-Dimensional Celestial Mechanics Simulation for the HP 67/97, by D D Hinrichs Pilot a spaceship to a soft landing on the Martian surface

110 STANDARD DATA ENCRYPTION ALGORITHM, Part 2: Implementing the Algorithm, by R V Meushaw The Standard Data Encryption Algorithm on a KIM-1 computer. Part 2 of two parts.

132 QUEUING THEORY, Part 1: Queue Representation, by Len Gorney
Waiting lines are so important that an entire area of mathematics is devoted to their study
176 THE POWER OF THE HP-67 PROGRAMMABLE CALCULATOR, Part 2, by Robert C Arp, Jr An example solution of simultaneous equations

## Background

20 CROSS-POLLINATING THE APPLE II, by Richard Campbell
Add an Intel 8251 programmable communications interface
54 SMART MEMORY, Part 1, by Randy C Smith
The concept of associative ("smart") memory is discussed
66 A SIMULATED VIEW OF THE GALAXY, by Mark Dahmke
Viewing constellations from other parts of the galaxy, and related matters
144 CRYPTOGRAPHY IN THE FIELD, Part 2: Using the Pocket Calculator, by John P Costas Using a pocket calculator to implement a field cipher

166 LIFE CAN BE EASY, by Randy Soderstrom
A simple implementation of Life
170 AN EASY WAY TO CALCULATE SINES AND COSINES, by Robert Grappel
Relative sine and cosine values in one byte
210 AN INTRODUCTION TO MICROPROGRAMMING, by Ben E Cline The fundamental level of control

218 A DIGITAL ALPHANUMERIC DISPLAY, by Daniel Chester A 7 segment display

224 MICROCOMPUTER TIMESHARING: A Review of the Techniques, by Kenneth JJohnson Designing multiuser systems

236 A BINARY GUESSING GAME, by Mark Zimmermann and James Blodgett Calculator pattern recognition


## Nucleus



4
6
8
8
42
50, 247
53, 192, 20
64, 175, 22
172
190
Letters
Book Reviews
Technical Forum
BYTE's Bugs
BYTE's Bits

Editorial: On the Importance of Backups

Desk Top Wonders: Digital Circuit Simulation Nybbles: BASIC Cross-Reference Table Generator
.

193 BYTE News
202 Event Queue
204 Clubs and Newsletters
222 Programming Quickies: Label and File Program
238 Languages Forum
249 What's New?
278 Unclassified Ads
280 BOMB
280 Reader Service




 tional in United States funds drawn on a US bank. Printed in United States of Americs
 manuscripis or photos. Opinions expressed by the authors are not necessarity those of BYTE. Entire contents copyright © 1979 by $B$ YTE Publications Inc. All rights reserved.
 ENGLAND.

Randy Soderstrom provides a quick and simple Life program for the 8080 in his article Life Can Be Easy.
page 166

When working with trigonometric quantitics, it is not always necessary to arrive at the precise value. Often a relationship between the desired value and the entire range of allowable values is sufficient. Robert Grappel discusses such an implementation in An Easy Way to Calculate Sines and Cosines.
page 170
In The Power of the HP-67 Programmable Calculator, Part 2, Robert C Arp Jr concludes his discussion of the HP-67 with a practical applications program for solving simultaneous equations.
page 176
The ability to microprogram a processor increases the power and usefulness of that processor to a particular user. Microprogramming allows one machine to appear as several different processors while using the same hardware. Ben E Cline gives us An Introduction to Microprogramming and shows how it can be used. page 210

Could you use a pocket-size alphanumeric terminal? One of the main problems with this type of device is the size of the video screen used for output. By using 7 segment displays, Daniel Chesterhas thought of a way to make A Digital Alphanumeric Display.
page 218
Is it practical to use microcomputers for timesharing? In Microcomputer Timesharing, Kenneth J Johnson reviews some of the techniques developed forlarge computers with an eye toward utilizing them on a microcomputer.
page 224

Artificial intelligence (AI) on a programmable calculator? Why not? A Binary Guessing Game shows you how. Authors Mark Zimmermann and James Blodgett describe a pattern recognition algorithm that tries to outguess the operator, often with remarkable success.
page 236

| Puhlishers <br> Virginia Londoner <br> Gordan A Williamson <br> Vice-President Periodicals <br> Jotn E Hayes <br> Assistant <br> Jiil E Callihan | Production Editors <br> David William Hayward <br> Ann Graves <br> Art Director <br> Ellen Bingham <br> Production Art <br> Wai Chia Li <br> Christine Dixon <br> Typographars <br> Cheryl A Hurd <br> Stephen Kiuse <br> Debe L Wheeler | Circulation Manager <br> Gregory Spitzfaden <br> Assistants <br> Pamela A Heasip <br> Agnes E Forry <br> Melanie Berton <br> Dealer Sales <br> Ginnie F Boudrieau <br> Anno M Baldwin | National Advertising <br> Sales Repersentatives: <br> Hajar Associates Ine <br> East <br> 280 trilside Av <br> Needham Heights MA. 02194 <br> 16171 444.3946 <br> 52.1 Fifth Av <br> New Yorik NY 10017 <br> $12121682-5844$ | Drafting |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Techart Ass |
|  |  |  |  | Typography Goedway Graphics |
|  |  |  |  | Photography Ed Crabure |
| Editorial Diractor <br> Cari T Heimers Jr <br> Executiva Editor <br> Cheistopher P Morgan <br> Editer in Chief <br> Faymond GA Cote <br> Sanior Editor <br> Blaise W Littick <br> Editor <br> Richard Shuford, N4ANG <br> Editorial Assistant <br> Gale Britton <br> New Products Editor <br> Clubs, Newsletters <br> Laura A Hanson <br> Drafting <br> Jon Swanson |  | Ginnie F Boudrieau Anno M Baldwin <br> Traffic Department |  | Editorial Associate <br> Daniel Fylstra <br> Associates |
|  |  | Fick Fuette Mark Sandagata | Midwest. <br> 664 N Michigan Av | Walter Banks Steve Ciarcia |
|  | Advartising Diractor Patricia E Burgess Assistant Ruth M Walsh | Book Division: Publisher <br> Edmand C Kolly di | Suite 1010 Chicago IL 60611 \|312| 337 -800 | David Fylstra Ira Rambil Distributors: |
|  | Adv/Prod Coordinator Thomas Harvey Advartising Billing Noreen Bardsley | Patricia Curran William Hurlin <br> E S Associates | West, Sauthwest <br> 1000 Elwell C1 <br> Suite 227 <br> Palo Alto CA 94303 | Eastern Canada AS 232 Distribution Campany 186 Queen St W. Suite 232 Toronto ONTARIO M5V-121 |
|  | Don Bardsley | Comptroller Kevin Mapuir | (4151964-0706/1714) 540-3554 | Western Canada |
|  | Recaptionist <br> Jacqueline Earnshaw | Assistant <br> Mary E Flute | Printing <br> The George Banta Company | 26236 26th Av RR 5 Aldergrove BC VOX IAO |

# How to buy a personal computer. 

Suddenly everyone is talking about personal computers. Are you ready for one? The best way to find out is to read Apple Computer's "Consumer Guide to Personal Computing." It will answer your unanswered questions and show you how useful and how much fun personal computers can be. And it will help you choose a computer that meets your personal needs.

## Who uses personal computers.

Thousands of people have already discovered the Apple computer-businessmen, students, hobbyists. They're using their Apples for financial management, complex problem solving - and just plain fun.
You can use your Apple to analyze the stock market, manage your personal finances, control your home environment, and to invent an unlimited number of sound and action video games. That's just the beginning.
What to look for.
Once you've unlocked the power of the personal computer, you'll be
using your Apple in ways you never dreamed of. That's when the capabilities of the computer you buy will really count. You don't want to be limited by the availability of pre-programmed cartridges. You'll want a computer, like Apple, that you can also program yourself. You don't want to settle for a black and white display. You'll want a computer, like Apple, that can turn any color tv into a dazzling array of color graphics.* The more you learn about computers, the more your imagination will demand. So you'll want a computer that can grow with you as your skill and experience with computers grows. Apple's the one.

## How to get one.

The quickest way is to get a free copy of the Consumer Guide to Personal Computing. Get yours by calling 800/538-9696. Or by writing us. Then visit your local Apple dealer. We'll give you his name and address when you call.
*Apple Il plugs into any standard TV using an inexpensive modulator (not included).

## applatis




Altos Computer Systems
2378-B Walsh Avenue Santa Clara. CA 95050

Apple Computer
10260 Bandley Dr.
Cupertino. CA 95014
Digital Microsystems Inc.
(Formerly Digital Systems)
4448 Piedmont Ave.
Oakland, CA 94611

Imsai Mig. Corporation
14860 Wicks Blvd.
San Leandro, CA 94577

## Industrial Micro Systems

633 West Katella, Suite L
Orange, CA 92667
North Star Computer
2547 9th Street
Berkeley. CA 94710
Percom Data
318 Barnes
Garland, TX 75042
Polymorphic Systems
460 Ward Dr.
Santa Barbara, CA 93111
Problem Solver Systems
20834 Lassen Street
Chatsworth, CA 91311
Processor Applications Limited
2801 E. Valley View Avenue West Covina, CA 91792

## SD Sales

3401 W. Kingsley
Garland, TX 75040
Smoke Signal Broadcasting
6304 Yucca
Hollywood. CA 90028
Technico Inc.
9130 Red Branch Road
Coiumbia. MD 21045
Texas Electronic Instruments
5636 Etheridge
Houston. TX 77087
Thinker Toys
1201 10th Street
Berkeley, CA 94710
Vista Computer Company
2807 Oregon Court Torrance. CA 90503

## On the Importance of Backups

## by Carl Helmers

The other day I had a problem using my computer system which many readers may have had. The lesson to be learned from my experience forms the subject of this essay.

This problem is one of zapping the file structure of a disk. Sooner or later everyone who uses a small computer system will encounter a similar situation. One could be tempted to think, naively, that such problems are limited to large computer systems with large sensitive flying head disk media, but this is by no means the case. Floppy disks can be logically zapped just as easily.

I, like many of our readers with systems, have not been letting my system lie idle in the house. In the years since starting this publication with my associates in 1975, I have been suffering withdrawal symptoms from big computers and associated time sharing software. In my case it was everyone's favorite target of criticism, TSO running on a large IBM 360 system. Well, finally small computers got to the point where they could support my style of language, Pascal. Last summer, I bought the Northwest Microcomputer Systems model 85/P with UCSD Pascal as its operating system, filing system, editor and high level language package.
(An aside: at present, the options are hardly limited to the $85 / \mathrm{P}$ as many other small computer manufacturers have begun offering versions of this excellent software; at present one can get it on machines ranging from a dual mini-floppy Apple II or North Star Horizon, to machines with full size floppies like my 85/P, or the Cromemco system we are using at BYTE as an editorial computer, to the most exotic of all Pascal machines, the Western Digital "Pascal Micro Engine" which directly executes the p-code intermediate output of the UCSD compiler. Recent word from Apple has it that the UCSD Pascal system with full Turtle graphics will be available in June of this year for approximately $\$ 400$ hardware and software cost. The hardware consists of a special 16 K programmable memory card added to a 48 K Apple II with single or dual disks. The software is the complete UCSD system of editor, file system, Pascal compiler and utilities.)

Recently I have been writing my editorials for BYTE using the excellent screen oriented editor program of the UCSD system. I have been learning Pascal so that I can make it my principal software development tool. I have been learning the details of using Pascal as a significant hardware oriented programming aid, a limited function with the $85 / \mathrm{P}$ but one which will blossom to full fruition when 1 get the Pascal microengine sometime in the coming months.

All this is but a prelude. I have also learned anew the opportunities for making foolish mistakes. One of the most foolish is that of not periodically backing up files against possible losses. The losses I refer to can stem from numerous causes.

We all, quite naturally, assume that the systems software is perfect, but there is that nagging 1 percent of doubt that everyone has. So even if we had perfect media, it would be necessary to back up files by copying from one disk to another as insurance against software failure. But that is hardly the major problem.

"I own a fast-growing business and before I bought my computer system I put in a lot of late hours keeping up with my accounting and inventory control. Now the computer does my number crunching quickly, so I have time after hours to have some fun with the system. My son and I started out playing Star Trek on the system, and now we're learning to play chess.
"When I was shopping around for my system, the guys in the computer stores demonstrated all the unique features of the minifloppy. I've got to admit that at first I didn't really understand all the technical details. But now that I use the system every day, I really appreciate the minifloppy's fast random access and data transfer. I like the reliability, too.
"I'm glad I went with Shugart drives. Look, when you lay out your own money for a system. you want dependable performance and good value. Do what I did. Ask for the system with the minifloppy.

# If it isn't Shugart, it isn't minifloppy. 

435 Oakmead Parkway, Sunnwale. California 94086

## DIGICAST DATA

I just read Mr Halsema's article, "The Digicast System: Receiving Data and Information over your FM Radio" (January 1979 BYTE, page 100) and I noted a few technical deficiencies in his description of an FM station's signal spectrum.

Mr Halsema describes the L-R difference signal centered around 38 Khz as the pilot carrier. In actual practice the station transmits a $19 \mathrm{Khz}( \pm 2 \mathrm{~Hz})$ stereo pilot tone at 8 to 10 percent modulation. This is the synchronizing signal used by the receiver in demodulating the $L+R$ and $L-R$ signals into discrete $L$ and $R$ channels.

In FM broadcasting, the 75 Khz deviation Mr Halsema refers to is the 100 percent modulation point. We could get into modulation index and other parameters, but the BYTE letters column is not the place for this. Suffice it to say that "high fidelity music" transmission is not restricted by the current modulation limits.

Two factors that may limit the growth of digicasting in metropolitan areas are present. Assuming that the 67 Khz SCA (Subsidiary Communications Authorization) signal is used for digicasting, the first factor is the "Joudness" game that many stations get caught up in in the quest for larger market shares. The 19 Khz pilot eats up 10 percent of the modulation capability. The 67 Khz SCA signal eats up another 10 percent of the modulation capability. This leaves a maximum of 80 percent modulation capability for your main carrier program material. While this is only a 1 db to 2 db decrease in "loudness" compared to a nonSCA or a mono station, there are many programming and time sales people who believe that they need to be the loudest station on the dial. The second factor is that some major market broadcasters subscribe to music syndication services. Some of these services (notably Jim Schulke's SRP service) have been known to write clauses into their contracts that forbid the subscribing station from using an SCA signal.

As a sidenote, two years ago while I was still in broadcast engineering, I was contacted by an outfit called Cables \& Wireless Ltd. They were looking for an SCA signal to use for electronic message (or mail) service. My station was under a "no SCA signal" clause with a music syndicator and I had to turn them down, but recently Computer Decisions magazine published an article on electronic mail that briefly discussed the Cables \& Wireless Ltd system.

I look forward to digicasting with great anticipation but I fear that it will become mired in the infinite jungle of federal regulations.

Noel M Moss
UniCard
1034 S Brentwood Blvd St Louis MO 63117

Continued on page 206.

Computerland ${ }^{\circ}$
ALABAMA
Huntsville
ARIZONA Phoenix
ARKANSAS
Little Rock
CALIFDRNIA
Belmont
Dublin
El Cerrito
Hayward
Los Altos
Los Angeles
Los Angeles
Saddleback Vatley
San Bernardino
San Diego
San Diego East
San Francisco
San Jose
Santa Maria
Santa Rosa
Thousand Daks
Tustin
Wafnut Creek
COLORADO
Colorado Springs
Denver
CONNECTICUT
Fairfield
DELAWARE
Newark
FLORIDA
Boca Raton
Ft. Lauderdale
J.cksonville

GEORGIA
Atlanta
HAWAII
Honolulu
ILLINOIS
Artington Heights
Downers Drove
Mundelein
Niles
Dak Lawn
Peoria
ANSAS
KANSAS
Overland Park
KENTUCKY
Louisville
MARYLAND Rockville
MICHIGAN
Grand Rapids Grand Rapid
Southfield
MINNESOTA Bloomington
MISSOURI Springfield
NEW HAMPSHIRE Nashua
NEW JERSEY
Cherry Hill
Bergen County
Morristown
NEW YORK
Buffalo
thaca
Nassau County
NO. CAROLINA Charlote
OHID
Cleveland
Columbus
OREGON
PENNSYLVANIA
Harrisburg
TEXAS Austin
Dallas
South West Houston
Houston Bay Area
UTAH
Salt Lake City
WASHINGTON Bellevue
Federal Wa Tacoma WASHINGTON, D.C
WISCONSIN Madison Milwaukee
INTERNATIDNAL Brisbane, Australia Brussels, Belgium
Manila, Philippines Sydney, NSW Australia Winnipeg, Canada
(205) 539-1200
(602) 956-5727
(501) 224.4508
(415) $595-4232$
(415) $828-8090$
(415) $233-5010$
(415) $538-8080$
(213) $371-7144$
(213) $371-7144$
(415) $941-8154$
(213) 776-8080
(213) 449-3205
(714) $770-0131$
(714) $886-6838$
(714) 560-9912
(714) 464-5656
(408) 253-8080
(805) $928-1919$
(707) 528-1775
(805) 495-3554
(714) 544-0542
(415) 935-6502
(303) $574-4150$
(303) 759-4685
(203) 255-9252
(302) 738-9656
(305) 368-1122 (305) 566-0776 (904) 731-2471
(404) 953-0406
(808) $521-8002$
(312) $255-6488$
(312) 964-7762

Catl Directory Assistance
(312) $422-8080$ (309) 688.6252
(913) 492-8882
(502) 425-8308
(301)948-7676
(616) 942-2931
(313) $356-8111$
(612) $884-1474$
(417) 883-7085
(603) 889-5238
(609) 795-5900
(201) 845-9303
(201) 539.4077
(716) 836-6511
(516) 742-2262
(704) 536-8500
(216) 461-1200
(614) 888-22 15
(503) $620-6170$
(717) 763-1116
(512) 452-5701
(214) 363-2223
(713) $488-8153$
(801) 364-4416
(206) 746-2070
(206) 838-9363
(206) 581-0388
(703) 893-0424
(608) 273-2020
(414) 466-8990

072219777
432905
58-36-66
(204) 772-9519

Mansfield OH 44903

# BEFORE YOU BUY COMPUIIER'1, UISI'1 COMPUIERLAND 

If the truth is that you want a computer . . . then we want to be your computer store.

We're ComputerLand, the \#1 computer store chain in the U.S. What's meaningful about that fact is, that ComputerLand has been chosen by more people as having what they ve been looking for. And, since you're looking, let us tell you what you'll find, when you visit a Computertand store.

You'll find a product line that's continually evaluated to provide you with the widest and best selection in quality, brand name microcomputers anywhere. You'll find an enthusiastic and knowledgeable staff able to interpret all the equipment specifications, in terms of how they apply to you, and in a way you'll understand. You'll find demonstration areas where you can get a firsthand experience of running a computer yourself.


You'll find educational materials to give you a total insight into the world of microcomputers.

You'll find a fully equipped service deportment to provide whatever assistance is required to keep your computer running in top-notch condition. You'll find computer user's clubs to join, where you can share ideas with people as enthusiastic as yourself. And, with each new visit, you'll find excitement-from the people you deal with, the equipment they offer, and from your own ever-growing personol involvement.


ComputerLand Corp.
14400 Catalina SI.
San Leandro, CA 94577
(415) 895-9363

Franchise Opportunities Worldwide.


Enough about us. How about what computers do. To attempt to describe all the things your computer might do, would be to describe your imagination. So instead, we'll briefly list some of the many things for which small computers are already being used.

In business, the advent of the versatile and compact microcomputer has put the benefits of computing within reach of small companies. With systems starting at less than $\$ 6000$, the businessman can

computerize things like accounting, inventory control, record keeping, word processing and more. The net result is the reduction of administrative overhead and the improvement of efficiency which allows the business to be managed more effectively.

In the home, a computer can be used for personal budgeting, tracking the stock market, evaluating investment opportunities, controlling heating to conserve energy, running security alarm systems, automating the garden's watering, storing recipes, designing challenging games, tutoring the children ... and the list goes on.

In industry, the basic applications are in engineering development, process control, and scientific and analytical work. Users of microcomputers in industry have found them to be reliable, costeffective tools which provide computing capability to many who would otherwise have to wait for time on a big computer, or work with no computer at all.


And now we come to you, which leads us right back to where we started: If you want a computer, then we want to be your computer store.

Whether you want a computer for the home, business or industry, come to ComputerLand first. We'll make it easy for you to own your first computer. Because, simply put, we really want your business. When you come right down to it, that's what makes us \#1.

## The Toy Store Begins at Home

## Piapcio's Gipatit Gellap

Simon is a trademark of the Milton Bradley Corporation.

Figure 1a: Hardware tone generator for the musical tone sequencer. The computer plays a sequence of lights and associated tones and detects the player's response. (All transistors are 2 N 2222 .)


COMPUTER OUTPUT

TONE
OSCILLATOR

SPEAKER
DRIVER


Steve Ciarcia
POB 582 Glastonbury CT 06033

## "Mister? Mister?"

A little boy was tugging on my sleeve. It startled me that in today's sophisticated society anyone would attempt to attract my attention by such an obvious, though effective, means. Impatient and undaunted by the scowl I flashed in his direction, he said, "Mister? Do you know where the toy department is?"

I have never acquired what some people call the ability to commune with children. Perplexed therefore as to the presentation of a proper reply, I considered an indignant, wave-of-the-hand dismissal of "Over there, kid." On the other hand, should I consider a character reversal with a Santa Claus imitation and invite the young man to hop up on my shoulder while we looked over the store directory together? The latter seemed hardly my style and the former was much too harsh even considering his still firm attachment to my sleeve.
"Mister? Mister?"
The delay only heightened his fervor.
I looked up and found myself staring straight at the shirt pocket button of a very large man. Instantly I calculated that this male figure dressed in jeans, heavy boots and a woolen shirt was a foot taller than I.

His relationship with the boy was quickly clarified as he said in a deep paternal voice, "Come on Brucie, 1 think it's over there where that crowd is." I waited for Paul Bunyan and son to be safely on their way before I made my next move.

Stark reality returned, however, when I remembered that I, too, was looking for the toy department. It verges on humiliation actually. Why do they have to categorize everything? Just because an item is manufactured by a toy company doesn't immediately classify it as a toy. I mean, big people have constructive leisure time manipulatives and little people have toys. Department stores should realize the embarrassment of crossing this line and have an "amusements for the sophisticated" department and a "toys for tots" department.

Finding the toy department was no problem. I simply stood where I was and slowly rotated $360^{\circ}$. The noise peaked at about $160^{\circ}$ SSE and I cautiously proceeded in that direction. The noise in my immediate vicinity became sharply amplified as two young boys raced by, carrying some unidentifiable toy devices.

I spied my objective ahead - the electronic games counter. I got into line between two youngsters and their parents. Were these PG or $R$ rated games? I saw no parents with the kids playing basketball in the next aisle. Perhaps the cost of computerized games warranted closer parental scrutiny. $\$ 5$ for a hockey stick is one thing, but $\$ 50$ for a talking plastic robot is another. All the games at this counter incorporated microprocessors as their intelligence. Some simulated war games

Figure 1b: Details of the circuit in figure la, showing one of the four light and sound generating sections.

[^0]

Photo 1: Player console for the computerized musical tone game. Players attempt to repeat a sequence of tones and corresponding lights chosen by the computer at random.
and produced authentic battle sounds while others proved to be formidable challengers in games of chance.

I looked through the products in the case, hoping to spot the one I so desperately wanted. Would this be another store that was completely sold out? Would I never get my Simon?
"Sir? Can I help you?" the salesman asked. His attitude was surprisingly pleasant considering that he worked in the store's combat zone.
"I don't see it!"
"See what, sir?"
Still vaguely pleasant, his tone changed to "I've had a long day, buddy. Let's not play 20 questions."
"Simon of course!" I replied. "But I know you don't have any. No one does."
"You're in luck, sir. I believe we re-


Photo 2: Bottom view of the player's console. The ribbon connector attaches to the user's personal computer.
ceived a back ordered shipment yesterday. I'll check."

A young gir! behind me said, "Did you hear that, mommy? They have Simon! I can practice for the competition after all."

I said, "Competition? Simon?"
"Sure. Everybody's got one. Except me, that is. We have contests in school to see who can remember the longest tune. It's fun. Oh, I can't wait!" she responded, tugging on my sleeve.
"That sounds exciting. I hope you do well in the contest," I said.

The salesman returned.
"I have one left. You're in luck."
I hardly had time to smile as he passed it to me. I heard a whimper from behind me and sensed the little girl's disappointment. Saying nothing I turned to look at her. She tried to hide her anguish.
"What is your name, little girl?" I asked, stooping down a bit to be more at her level.
"Brenda," she said wistfully.
"That's a coincidence. I have a little...er, girl named Brenda too." I had to catch myself - as I have a female Scottish Terrier named Brenda. Parents might get upset if you compare their children to dogs. "She's a little smaller than you are."
"Is Simon for her, Mister?"
"No, she likes playing with tennis balls. But no matter. I've only been looking at this game. I'm not sure I really want to buy it just yet. Would you like it?"

She offered several relieved thank-yous as 1 bolted for the door. I was in a hurry to get to the department store two blocks up the street before they closed. . . .

## Musical Games Are Addicting

Some time ago I was in a stuffy business meeting. When it became apparent to the chairman that most of the attendees were asleep, he pulled out a saucer shaped object with four colored areas on it and slid it along the table. It stopped in front of me and went "beep" and lit a red light. Instructed to respond in kind, I pressed the red area which turned out to be an oversized lighted pushbutton. The saucer replied "beep-boop" and lit the red and green lights sequentially. It became immediately apparent that the plastic saucer was a game and the object was to duplicate the sequential tones it played. The task became increasingly difficult as it added another note each time around. If missed, it made a sound like a "raspberry" before starting a new game.

This "game" turned out to be Simon, from Milton Bradley Corporation. It uses a microprocessor to synthesize the tones, light the lights, and generate the sequence.

# "If this M-XVI from CCS had been available in the ' 30 s, I would have had the secret of invisibility wrapped up in half the time." <br> THE INVISIBLE MAN 

 EA$0:$

The place was alive with "mad doctors" 40 years ago. For good reasons. They couldn't get what they wanted. Labs were piled high with incomplete kits, defective gear, and undecipherable support documentation.

All that's history now that California Computer Systems has arrived on the computer hobbyist scene. We'll see that no electronics maverick goes away mad.

Three proofs positive: our new M-XVI Static RAM Module for S-100 bus systems... our new PT-1 Wire-Wrap Board . . . and our new Soldertail Prototyping Board. The M-XVI features include: fully static design, use of popular 2114 static RAMs, ability to meet IEEE proposed $\mathrm{S}-100$ signal standards, full buffering, addressability in 4 K blocks, and bank select by bank port and bank byte. The PT-1 Wire-Wrap Board has all $\mathrm{S}-100$ signals specified and provisions for four regulators. The Soldertail Board has all $\mathrm{S}-100$ signals labelled, provisions for four regulators, and can accept 16-24-and-40 pin spacing.

Take a tip from the Invisible Man. He's quit derailing trains, robbing banks, and scaring helpless damsels since CCS gave him what he wants. If you're looking for satisfaction, too, check out our new product line today at your nearby computer store.


California Computer Systems
309 Laurelwood Road
(408) 988-1620

## So Nobody Goes Away Mad.

Circle 37 on inquiry card.

## Build Your Own Musical Game

It is only logical that any of the $\$ 30$ to $\$ 50$ electronic toys in department stores can be simulated with the average $\$ 6000$ personal computer. (This is why critics frequently call computers illogical.) The distinguishing feature between a toy built around a microprocessor and the average

Figure 2: Flowchart for the computerized musical game.
home computer is the packaging and I/O (input/output) interface. With the exception of addressable memory, the microprocessor in a battleship game has a processing capability comparable to the more general purpose processors like the 8080 and 6800 . The major difference is that single chip computers incorporate limited quantities of programmable memory, read only memory, and I/O in one package. This is the most costeffective approach for a dedicated task like a game. The most popular single chip com-


# Now You Can Make Your Own Magic 

Unleash the Full Power of Your
Personal Computer With the All-New Aladdin Personal Programs ${ }^{\text {TM }}$ vouthe medelic of a fall tamene of
 Cripherially desicimed do support the most propulat persenal


Sombe Persimial Pruarallis: ${ }^{1 / 4}$ will 1.the venuto faldway places: ul exisimg action-packed diventures Ohtiers will trimbl fun-Filled feammer expreriencers home ro youand vour child Still others are desigured for youl own














Welcome To The All-New World Of Aladdin. And Get Ready To Make Your Own Magic
puter in the computer games market is the Texas Instruments TMS 1000. Customized versions of this integrated circuit are used in the majority of electronic games.

Presuming that we can write a program on our large computer that accomplishes the same logical objective as the dedicated game, the only real difference becomes I/O. Most personal computers incorporate ASCII keyboards, video displays, and tape cassette interfaces for I/O. Electronic board games use a few switch inputs (constant closures) and lights or buzzers for output and, because there is little operating system overhead, sound effects are directly synthesized by program timing loops. Theoretically, if we attach these switches and lights to a convenient I/O port on our computer we should be able to program a similar or even more challenging game.

Building a musical game that tests the players' ability to memorize a string of tones is a simple task. Input to the computer consists of four switches, one for each of four tones. Output from the computer is likewise four signals which light four colored lights on the player console. Each light corresponds to a distinctive tone.

The game is simple to play. The computer plays a tone and the player responds by
pressing the button for that same tone. Next, the computer plays two notes and the player replies accordingly. Each correct exchange results in adding one more note to the string. Eventually either the player misses by being unable to replay the exact tone sequence, or wins by attaining some preset number of notes without failure. The former is signified by an ungracious combination of tones and the latter by a distinctive tune played by the computer in celebration.

There are two possible design approaches. One is to use machine language and a "bare bones" interface consisting of four switches and four lights directly connected to a parallel input and output port. Timing loops written into the software produce the tones. This method uses the least hardware but requires considerably more software.

The second alternative is to use a high level language such as BASIC and use an external hardware interface for tone generation. This is the approach I have taken. Experimenters wishing to use another approach can easily follow the logic flow of BASIC and in this way I am not confining the reader to a particular microprocessor. Also, on-the-spot program variations to accommodate individual players are more easily implemented in a high level language.

## OVERBYTES AND UNDERPRICES THE COMPETITION


$\beta$ etasystem

PASCAL OPERATING SYSTEM: The smoothest, most convenient operating system available, featuring a powerful screen oriented text editor, the fast PASCAL compiler, file and library handling system, linker, library, BASIC compiler, and more.

Z-80 MICROCOMPUTER: Northstar based 4 MHz S-100 microcomputer with 64k RAM, serial and parallel ports, dual Micropolis quad density ( 630 kbytes formatted) disk drives.

60 cps DOT MATRIX PRINTER: Centronics model 779 with tractor feed and paper stacker.

FULL FUNCTION INTELLIGENT TERMINAL: Microterm ACT-V, with addressable cursor, protected fields, erase to eol, erase to eos, reduced intensity, protected fields, much more.

| Microcomputer/Dual Drive/64k/Pascal | $\begin{aligned} & \text { RETAIL } \\ & \$ 4695 \end{aligned}$ | $\begin{gathered} \text { ibs PRICE } \\ \$ 3995 \end{gathered}$ |
| :---: | :---: | :---: |
| Printer/tractor feed/paper stacker | \$1250 | \$1095 |
| Terminal | \$880 | \$795 |
|  | \$6825 | \$5885 |

Buy complete system and receive all cables and box of disks free.


Complete descriptions of the best in personal computers - now available in kit and assembled versions

In the world of personal computing, compatibility of design and operation is an important consideration. The computer hobbyist or small business user of today doesn't have time to iron out hardware and software problems that can arise from a "shotgun" approach to system design.
Heathkit Personal Computer Systems are just ihat-systems. They were designed around each other for total complementary performance. Expansion within the computer itself and with our peripheral devices is always a trouble-free transition.
You can start with our low-cost 8-bit H8 Computer and just 4K of memory as an introduction to computing. Its easy to use octal data entry and 9-digit octal readout make learning a simple matter. As your abilities grow, so can your computer. Add more memory and one or more peripherals
 like the H9 Video Terminal with its ASCII keyboard for convenient entry and display of your programs. And you can store your programs in one of three ways too! Choose our new WH17 Floppy Disk System (single and dual drives available) for the ultimate storage mode. Its expanded 40-track hard sectored diskette has 102 K Bytes of available storage so you can store hundreds of programs on one disk. If paper tape storage is your preference, choose our H10 Paper Tape Reader/Punch. For the most in economy, we offer a cassette player/recorder too. The H8 is indeed a complete system.
The ultimate personal computer is our 16-bit H11A. Very few people will ever need more computing power than our H11A has to offer. Based on the world-famous DEC* PDP-11/03, it has enough capability for virtually any program-small business or hobby. The H11A offers unequalled software, too, so the number of useful applications is virtually unlimited. The H11A has its own

Heath Co., Dept. 334-520, Benton Harbor, MI 49022

Floppy Disk System, the WH27. And what a floppy it is! Fullycompatible with the DEC RX01 floppy for the PDP-11/03, the WH27 lets you take advantage of all existing PDP-11/03 software in addition to those you develop on your own. Dual drives give you 512K Bytes of program and data storage. The WH27's Z80 microprocessor-based controller permits a head motion of only 6 mS (versus DEC's 10 mS ) for data access times that are considerably faster. Other features include built-in self test on powerup; mechanical interlock to prevent disk damage; write protect function that precludes written-over disks; complete HT11 disk operating system software that includes extended BASIC with files and virtual arrays, utilities (with macro-assembler), text editor and more. An extended FORTRAN which supports the ANSI standard (1966 FORTRAN IV) will be optionally available soon.
Read more about Heath system-designed computers and other outstanding kits (nearly 400 in all) in the latest Heathkit Catalog. It's FREE.

## Send for your FREE Copy today!

Or bring this coupon to your nearby Heathkit Electronic Center (Units of Schlumberger Products Corporation) where Heathkit products are displayed, sold and serviced.


Photo 3: Corner of the circuit cellar showing the $64 K$ dual floppy disk Z-80 system used by the author to drive the musical tone game.

Listing 1: Program for the musical tone game, written in 8 K Zapple BASIC.


```
    90 REM
    92 REM * CIARCIA'S CIRCUIT CELLAR COPYRIGHT 1979 **
    94 REM
    100 PRINT"THIS IS A MUSICAL GAME TO TEST YOUR MEMORY"
    105 REM
    110 REM
    115 REM FIRST THING WE DO IS SET UP A TABLE OF 64
    120 REM RANDOM NUMBERS WITHIN THE CHOICES OF 1,2,4, OR 8.
    125 REM THESE NUMBERS ARE SINGLE BITS WHICH INDICATE A
    130 REM PARTICULAR TONE AND COLORED LIGHT.
    135 REM THE COMPUTER INTERFACE IS BITS O THRU 3 OF I/O PORT 3
    140 REM
    200 DIM R(64) :DIM S(64) :DIM A(64)
    205 A=0
    210 FOR S=0 TO 63
    220 R=INT(RND(1):10)
    230 IF R>3 THEN 220
    240 R(S)=255-2^R :REM THE INPUT TO THE INTERFACE IS LOW TRUE LOGIC
    245 REM TO TURN ON A TONE ALL BITS ARE HIGH EXCEPT THE
    247 REM ONE WHICH IS TO BE COMMUNICATED
    2 5 0 ~ N E X T S ~ S
    260 REM
    270 REM
    4 0 0 ~ S = 0 : A = A + 1
    410 OUT 3,R(S) :GOSUB 2000:REM TURN ON TONE
    420 OUT 3,255 :REM TURN OFF TONE
    4 2 5 ~ S = S + 1
    430 IF S=A THEN 450 ELSE 410
    4 5 0 ~ S = 0
    4 6 0 ~ W = 1 N P ( 3 )
    465 IF W<>255 THEN 470 ELSE 460:REM HAS A BUTTON BEEN PUSHED?
    470 IF W=R(S) THEN 480 E LSE }60
    4 8 0 ~ S = S + 1
    4 8 1 \text { REM A IS PRESET TO EQUAL WIN NUMBER. THIS CAN BE } 1 \text { TO 64 TONES}
    4 8 2 ~ I F ~ A = 1 6 ~ T H E N ~ P R I N T " Y O U ~ W I N " ' : G O T O ~ 7 0 0 ~
    4 9 0 ~ W = I N P ( 3 )
    495 IF W<>255 THEN 490 :REM HAS THE PLAYER RELEASED THE BUTTON?
    500 IF S=A THEN }58
    510 GOTO 460
    520 REM
    530 REM
    580 REM RETRY DELAY
    585 FOR T=0 TO 3:GOSUB 2000:NEXT T
    590 GOTO 400
    600 PRINT'SSORRY,YOU MISSED IT ..... YOU HAD ";A;" NOTES IN THE
        SEQUENCE"
    605 PRINT"TRY AGAIN"
    6 1 0 \text { OUT 3,0 :REM TURN ON ALL TONES}
    620 FOR T=0 TO 3:GOSUB 2000 :NEXT T
    625 OUT 3.255
    6 3 0 ~ G O T O ~ 2 0 5 ~
    7 0 0 \text { FOR T=0 TO 6 :REM PLAY TUNE TO INDICATE A WINNER}
    705 OUT 3,254 :GOSUB 2050:OUT 3,253 :GOSUB 2050
    710 OUT 3,251:GOSUB 2050:OUT 3,247 :GOSUB 2050
    715 OUT 3,255: NEXT T
    7 2 0 \text { GOTO 205}
1980 REM
1990 REM THE VALUE OF T1 SETS THE TONE DURATION
2000 FOR T1=0 TO 250 :NEXT T1 :RETURN
2050 REM WIN DELAY TIMER
2060 FOR Q1=0 TO 80 :NEXTQ1 :RETURN
```

Figure 1a illustrates the hardware interface of this musical game; photos 1 and 2 demonstrate typical layouts. A more detailed description of an individual tone generating section is given in figure 1 b . Normally, both signal points $A$ and $B$ are at a high logic level and the tone is off. The tone and light can be turned on by either a low output signal from the computer or the pushbutton being pressed. The resulting high level output of IC1a turns on the oscillator formed from IC1b and IC1c and drives the light through transistor $\mathrm{Q}_{1}$.

A flowchart of the software as written in BASIC is shown in figure 2. When the game is initialized, a random number generator sets up a tone sequence of 64 notes. After playing the first note it waits for the player's response and then repeats the action adding another note. The software is written so that the speed of player response is not important. Player frustration is strictly limited to remembering the tone sequence. The BASIC program which plays this game is shown in listing 1.

I have found that this game is a good way to demonstrate my computer to people totally unfamiliar with them. Some of my more computer oriented friends jokingly suggest that I may be doing things the hard way using a 64 K byte dual disk Z-80 system for the game.

If you have any questions, good ideas or comments on this or previous articles, please write to me, enclosing a self-addressed, stamped envelope. Eventually I answer them all.

Next month, the "Circuit Cellar" topic will be communication on a laser light beam.■


## Specifications:

S-100 compatible. MFM encoding, 35 tracks with ten 512-byte sectors per track. 179,200 bytes on double density SA-400 and North Star BASIC, DOS, and Monitor included.

For further Information, write for full color catalog or contact your local computer store.

New from North Star Double Density Performance at Single Density Prices

The new HORIZON computer and Micro Disk System now record in double density! That means each new Shugart SA-400 minifloppy disk drive accesses 180 K bytes of on-line information. All double density HORIZON computers and Micro Disk Systems have a redesigned controller which allows the use of quadruple capacity disk drives as they become available in early 1979. A three-drive North Star System with quadruple capacity disk drives will access over a megabyte of on-line information. But, best of all there's no price increase for double density models.
North Star BASIC and DOS have been upgraded to accommodate the increased capacity and yet run existing programs with little or no change. The new disk system also supports single
density, so existing single density diskettes can still be used. Single density SA-400 drives previously purchased with North Star systems can also be used.

## Pricing

HORIZON with one double density SA-400 minifloppy (180K bytes), 16 K RAM, Z80A processor and serial I/O port: $\$ 1599$ kit, $\$ 1899$ assembled.
MICRO DISK SYSTEM with one double density SA-400 minifloppy, controller board and power regulation: $\$ 699$ kit, $\$ 799$ assembled. (Cabinet and power supply $\$ 39$ extra each.)
North Star $\star$ Computers 2547 Ninth Street
Berkeley, California 94710
(415) 549-0858


# Cross-Pollinating the Apple II 

About the Author
Richard Campbell is a software engineer working for Lexitron Corporation, a manufacturer of 8080 based text processors. His hobbies include computing, flying and photography.

> Richard Campbell 7032 Quakertown Canoga Park CA 91306

I have an Apple II personal computer, which I like a great deal. I have noticed that most construction articles dealing with custom interfaces for the Apple assume that one must use Motorola or MOS Technology


Photo 1: The serial interface circuit as constructed using the Intel 8251 programmable communications interface. Point-to-point wiring on an Apple prototype board was used. The board is pictured lying on page $12-46$ of the Intel Component Data Catalog.
peripheral integrated circuits. Since I use the Intel 8080 family of devices in my work, and want to add a serial interface to my Apple, I've decided to try a little crossbreeding. The interface was designed to be RS-232 compatible and to allow receiving and transmitting with the ability to add modem control signals easily in the future.

## Circuit Design

The heart of the interface is the Intel 8251 programmable communications interface. The 8251 performs serial-to-parallel and parallel-to-serial conversion. The operating characteristics and mode of the 8251 are programmable by sending the proper bytes to it from the Apple bus. The interface is set up to handle asynchronous communications. National Semiconductor's 1488 and 1489 integrated circuits handle the RS-232 and TTL (transistor-transistor logic) level conversions. Since I am using only one of four buffers per chip, many other RS-232 signals could easily be added such as Data Set Ready and Clear To Send.

Data rate generation is handled by dividing the 7 MHz signal from the Apple bus by 8 , using a 74LS161 synchronous 4 bit counter. This 895.125 kHz output is applied to the input of National Semiconductor's MM5307AA programmable divider. Four switches select the data rate as shown in table 2. The resulting data rates are 3 percent low, but in actual practice this is close enough. Two gates of a 74LS04 device are required to interface the 8251 circuit to the Apple bus.

## Construction

The circuit was constructed using point-to-point wiring on an Apple prototype board. This board comes with a manual which provides an excellent explanation of the Apple bus. Nothing is particularly critical about the wiring (although I wouldn't run the 7 MHz signal all around). A $0.1 \mu \mathrm{~F}$ capacitor should be placed near each integrated circuit be-

# "Our reputation rests on digits, decimal points, and details. We wouldn't trust them to anything less than Scotch Brand Data Cartridges." 



Bill Birkett, Vice President, Trade Graphics, Inc., Livonia, Michigan

The unique design of a data cartridge provides great reliability, high storage capacity and long tape life. And where could you possibly get better data cartridges than Scotch Brand, made by 3 M , the people who invented the data cartridge system itself?
3 M controls every step in manufacturing. Top quality magnetic tape and precision components are part of every Scotch Data Cartridge. Over twenty-five years of service to the computer industry assure you of the utmost reliability.
Scotch Data Cartridges are available in miniature DC 100A, the standard-size DC 300A and now, an extra-length DC 300XL with $50 \%$ more storage capacity. They are compatible with most cartridge systems including Hewlett-Packard, IBM, NCR, Tektronix and Tl.
To find out where you can find Scotch Data Cartridges or virtually any other data recording medium, call toll-free: 800-328-1300. (In Minnesora, call collect: 612-736-9625.) Ask for the Data Recording Products Division.

If it's worth remembering, it's worth Scotch
Data Recording Products.


Photo 2: The serial interface board installed inside the Apple I/.


| 0300 | A9 | CE |  | LDA | \#\$CE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0302 | 8D | C1 | CO | STA | \$COC1 | SET 8251 MODE (SEE 8251 DATA SHEET) |
| 0305 | A9 | 27 |  | LDA | \#\$27 |  |
| 0307 | 8D | C1 | CO | STA | \$COC1 | SET 8251 COMMAND |
| 030A | 20 | 58 | FC | JSR | \$FC58 | CLEAR THE SCREEN AND HOME |
| 030D | A9 | 60 |  | LDA | \#\$60 | GET CURSOR CHAR |
| 030F | 20 | ED | FD | JSR | \$FDED | PUT CURSOR ON SCREEN |
| 0312 | C6 | 24 |  | DEC | \$24 | BACKUP SCREEN INDEX TO OVERWRITE CURSOR |
| 0314 | AD | C1 | CO | LDA | \$COC1 | CHECK 8251 STATUS |
| 0317 | 29 | 02 |  | AND | \#\$02 | MASK OFF RECEIVE READY BIT |
| 0319 | F0 | 12 |  | BEQ | \$032D | BRANCH IF NOT READY |
| 031B | A9 | AO |  | LDA | \#\$A0 | GET A BLANK |
| 031D | 20 | ED | FD | JSR | \$FDED | OVERWRITE THE CURSOR |
| 0320 | C6 | 24 |  | DEC | \$24 | BACKUP SCREEN INDEX |
| 0322 | AD | C0 | CO | LDA | \$COCO | GET CHAR FROM 8251 |
| 0325 | 09 | 80 |  | ORA | \#\$80 | SET BIT 7 HIGH |
| 0327 | 20 | ED | FD | JSR | \$FDED | PUT CHAR ON THE SCREEN |
| 032A | 4C | OD | 03 | JMP | \$030D | PUT UP NEXT CURSOR AND LOOP |
| 032D | 2C | 00 | CO | BIT | \$C000 | CHAR ENTERED ON KEYBOARD? |
| 0330 | 10 | E2 |  | BPL | \$0314 | BRANCH IF NO |
| 0332 | AD | 00 | CO | LDA | \$C000 | GET CHAR FROM KEYBOARD |
| 0335 | 8D | C0 | C0 | STA | \$COCO | OUTPUT CHAR TO BE SENT BY 8251 |
| 0338 | AD | 10 | CO | LDA | \$C010 | RESET KEYBOARD |
| 033B | 4C | 14 | 03 | JMP | \$0314 | CHECK FOR NEXT CHAR |

Listing 1: Program in assembler language for the 6502 processor. This enables the Apple I/ to function as a full duplex terminal.
tween ground and +5 V . The +12 V and -12 V supply lines should also be decoupled to ground using $0.1 \mu \mathrm{~F}$ capacitors. Do not use high value electrolytic capacitors, since this interferes with the Apple's switching power supply. The RS-232 input, output, and ground should go to a standard DB25 connector.

## Using the Interface

Listing 1 contains a program, entered with the Apple's assembler, that sets the Apple up for use as a terminal. Data received from the input port is displayed on the screen, and whatever is typed on the keyboard is sent out the transmit line. This program operates the Apple as a full duplex terminal. In other words, there is no internal logical connection between the keyboard and the screen. The characters that are typed

Photo 3: The serial interface is used here to connect the Apple I/ to an Intel SDK-80 microcomputer.


## COMPU THINK"

You've heard of our dual disk drives, memory expansion, and other peripheral's which also includes software, i.e., Fortran, PLM, Basic complier, SourceEditor, Autolink, Pagemate Database and a complete line of business applications.

COMPU/THINK manufactures complete small business systems, for the professional programmer, engineer and small businessman. We offer complete customer support including maintenance. If you're a small businessman who is not a programmer or a programmer who is interested in sophisticated products • at reasonable prices, call us the company who thinks about its customew!

For further information call or write:

Frank Price,
.Director of Marketing

COMPU/THINK 3260 Alpine Road •
Menlo Park, Calif. 94025
. (415) 854-2577

Dealę:Anquiries invited.

## "GOMPUTER SYSTEMSPFOR BUSINESS".



Figure 1: Schematic diagram for the serial interface.

Table 1: Power wiring table for figure 1.

| Number <br> IC1 | Type <br> 74LS04 | +5 V <br> 14 | Gnd <br> 7 | $-\mathbf{1 2 V}$ | +12 V |
| :---: | :--- | :---: | :---: | :---: | :---: |
| IC2 | 8251 | 26 | 4 | - | - |
| IC3 | 74 LS161 | 16 | 8 | - | - |
| IC4 | MM5307-AA | 4 | - | 12 | - |
| IC5 | 1488 | - | 7 | 1 | 14 |
| IC6 | 1489 | 14 | 7 | - | - |


| Data Rate Selection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| S4 | S3 | S2 | S1 | Data Rate (bps) |
| C | C | C | N | 50 |
| C | C | N | C | 75 |
| C | C | N | N | 110 |
| C | N | C | C | 134.5 |
| C | N | C | N | 150 |
| C | N | N | C | 300 |
| C | N | N | N | 600 |
| N | C | C | C | 900 |
| N | C | C | N | 1200 |
| N | C | N | C | 1800 |
| N | C | N | N | 2400 |
| N | N | C | C | 3600 |
| N | N | C | N | 4800 |
| N | N | N | C | 7200 |
| N | N | N | N | 9600 |
| C = |  |  | $\mathrm{N}=$ open (not closed) |  |

8251 set for $\div 16$ mode

Table 2: Switch settings to select various data rates for this serial interface. A dual in line pin-type switch may be used.
appear on the screen only if the device you are communicating with echoes them back to you. With this program the board has communicated perfectly with an Intel single board computer at a data transmission rate of 600 bits per second.

## Conclusion

Some experimenters have faced difficulty in attempting to interface the Apple 11 to such devices as the Motorola 6820 PIA (peripheral interface adapter). Most of the problems stem from a 25 ns timing delay on the bus lines of the Apple. I advise erstwhile interfacers not to become bogged down in this sort of thing; there are too many new and useful integrated circuits available with which to work.

Not all highly programmable devices are as fussy about timing as are the standard support devices for the 6800 and 6502 processors. My design shows that other families of circuits may be utilized without much trouble. The design using the 8251 device has suffered no timing glitches such as the ones that plague circuits using the 6820 device.

The moral is to keep your eyes open to discover new and versatile integrated circuits and to experiment with them, whatever processor you use. Signetics has invented an interface circuit, the 2651, which is similar to the 8251 . The principal difference is a built-in data rate generator. If I can obtain one, I know what my next experiment will be.■


After programming a 2708 or 2716 EPROM you won't need a screwdriver to pry it out of SSM's new PB1 board equipped with Textool sockets. Just flip the lever and lift it out. And on the same board there are 4 sockets waiting for 2708 or 2716 EPROMs that can be independently addressed to any 4 k or 8 k boundary above 8000 hex. Two boards in one.
PB1 has two separate programming circuits so 2708 or 2716 ( 5 v ) type of EPROMs can be programmed without modifying the board. Programming voltage is generated on-board by a DC-DC converter; no need for an external power supply. Programming sockets are Dip Switch addressable to any 4 k boundary. And complete software is provided for programming and verifying EPROMs.

With our Magic Mapping ${ }^{\text {mM }}$ feature, unused EPROM sockets don't take memory space, so you are never committed to the full 4 k ur 8 k of memory. The board can be configured for 0 to 4 wait states. Use fast or slow EPROMs. All lines are buffered.
The PB1 kit is available at over 150 retail locations or directly from SSM for $\$ 139.95$ (with Textool sockets) or $\$ 119.95$ (without Textool sockets). All SSM kits are backed by a 90 day warranty. Assembled, one year warranty.
SSM manufactures a full line of S-100 boards, including CPU, Video, I/O, RAM, EPROM, Music, Prototyping, Terminator, Extender and Mother boards. For complete details just send for our new, free brochure.
PB1 2708/2716 Programmer \& 4k/8k EPROM Board


We used to be Solid State Music. We still make the blue boards.

# Simulating Physical Systems The Two-Dimensional Ideal Gas 

Mark Zimmermann
Caltech 130-33
Pasadena CA 91125

Computers are becoming increasingly valuable in the sciences, for data reduction and analysis and for the simulation of physical systems. With a machine to do the repetitious work, an astronomer can follow the orbits of hundreds or thousands of stars as they are affected by their mutual gravitational fields and move to make a globular cluster or a spiral galaxy. A chemist can follow molecules in a liquid as they attract and repel and undergo chemical reactions. A physicist can watch the atoms of a gas moving from a low entropy, highly ordered state toward a more probable chaotic configuration, and can follow the random walk motion of any specific particle as it suffers collisions with the rest of the gas.

How does one go about setting up a physical simulation? It's necessary to determine the most important laws that govern the system under investigation. A star


Photo 1: Initial configuration for a run of the ideal gas model.
cluster, for example, is controlled mainly by Newton's law of gravitation. The nuclear reactions which power individual stars are interesting, but probably not very important to the structure of the cluster as a whole. (An exception might be a cluster of extremely massive stars; such stars could run out of fuel and blow up before there was time for their orbits to settle down.)

The first step in programming any physical system is to cut away all the features except those which are crucial to it - in other words, to make a model. If the correct effects and features have been included, the model will act enough like the physical system to be useful and accurate, and the model will be small and simple enough to be computable in a reasonable amount of time and space.

Secondly, one must take the equations that govern the model and translate (and sometimes simplify) them into a form which a machine can handle. Today, only a few very high-level systems (such as MACSYMA, REDUCE, SHEEP, and FORMAC) can handle abstract equations and functions, and even these sophisticated systems can't do very much. Until people learn how to explain the details of problem solving mathematics better, most machines are best at manipulation of discrete, finite precision numbers. So, if one wants to compute the flight of a Frisbee, one needs to turn the continuous differential equations for its motions into discrete difference equations. It's analogous to the way one plots a diagonal line on a teletypewriter the continuous line is broken up into a discrete set of points that the printer then approximates as best it can. If the printer can type smaller, the approximation is better. Similarly, if the smooth equations describing the Frisbee's flight are broken up into tinier steps, then the approximate solution the machine generates comes closer to the actual motion.

Finally, given the model of the physical system to be simulated, and given a translation of the equations controlling that model into a machine acceptable form, the rest is easy: just write the program! Ah, if it were only so. To avoid gross errors and smaller bugs, it's best to write in a high-level language (BASIC, FORTRAN, Pascal, etc), but then the resulting code usually runs unacceptably slowly. It seems to be a general consequence of Murphy's Law ("Anything that can go wrong, will!") that any physical system interesting enough to be worth simulating is too complex to be effectively simulated. So, compromises are always necessary. Astronomers try to simulate galaxies using a thousand point masses and an approximate force law, instead of using the actual ten billion stars with $1 / r^{2}$ fields. Chemists settle for a few hundred molecules in their "liquid," instead of $10^{23}$ or so. All they can do is hope that enough of the many-body collective effects show up for their too small models to be interesting, and that the cost of computing comes down enough for them to simulate bigger systems next year. As calculations get cheaper, that last hope seems to be the best.

Another way to compromise between the human speed and efficiency of programming in a high-level language, and the computer speed and efficiency of programming in machine language is obvious: do both, and produce a hybrid program. The BASIC (or Pascal, or whatever) program provides the framework and handles non-time-critical tasks; it then calls machine language modules to perform the innermost loops, the timeconsuming parts of the program which are simple enough to write accurately and rapidly in such a low-level language. As a developmental tool, this top-down approach is infinitely better than writing all machine language code and then spending days debugging it. In fact, if the program can be entirely written in the high-level language


Photo 2: One time step later, particle number 0 has moved ten units to the right and is colliding with particle number 31 at $X=10, Y=0$.


Photo 3: A view of the simulation 102 time steps after starting.

Figure 1: 90 degree type collision for two particles with equal and opposite initial velocities.


Photo 4: A velocity distribution histogram after 102 steps. Note the energy error (possibly due to roundoff and truncation error, or maybe I accidentally hit the $G$ key). Energy error is worse at these low energies when most particles have only very small velocities.


Photo 5: Configuration for a high temperature gas with a total energy of 1207 units.
and then run (slowly, perhaps) on small, special cases to test out the fundamental equations, so much the better. The machine language subroutines can then be written and substituted in only as necessary.

With this 3 step approach (model, translate, program), simulating physical systems isn't necessarily easy, but it is systematic and can be interesting and educational.

## The Ideal Gas

As an application of the above principles, I've programmed in BASIC and 6502 machine language (on a Commodore PET) a simulation of an ideal gas - a gas made of pointlike particles that interact only by direct collisions. An actual gas, of course, is made of molecules or atoms which have size and internal structure. The molecules may react when they collide with sufficient energy, and they may influence each other (via electrical forces) even when they are quite far apart. The gas may condense into a liquid or solid phase if its temperature is low enough and its pressure high enough.

The model I made does not include those features. It doesn't even include the three dimensions in which the physical gas moves! For speed and simplicity, I restricted the gas particles to move in two dimensions within the 50 by 80 cell "box" of the PET's video screen. The two-dimensional gas is interesting in itself, and it actually occurs, approximately, when atoms get adsorbed on the surface of some crystals. The adsorbed particles are relatively free to move from place to place on the crystal surface, but they are not free to leave the surface if the temperature is low enough. (If this physical system isn't exciting enough for you, you can imagine that the program is simulating a large number of balls on a billiard table, or perhaps hockey pucks sliding on ice.)

Several other features of the model I made are important. I used only 256 gas particles for two reasons: it made the machine language routines simpler, and more particles would have filled up too large a fraction of the screen. As a general rule, the errors in simulating a random process shrink as $1 / \sqrt[N]{N}$, where $N$ is the number of objects in the simulation. For example, if a pollster asks 100 randomly chosen people for their opinion on some issue, he or she typically makes about $1 / \sqrt{100}=10 \%$ errors in estimating the general opinion based on the finite sample. If the average number of molecules in one cubic centimeter of air is

## Graphics for small systems were too expensive.

## Until Now


digital plotters
TM


The perfect small system input device

- Resolution and repeatability of 0.005 in .
- Origin is completely relocatable
- RS232C and 8 bit parallel interface selectable at the connector
- Accuracies of $\pm 0.015 \mathrm{in}$. $(0.4 \mathrm{~mm})$ - Optional LC display shows actual values being inputted - Digitizing surface $11^{\prime \prime} \times 11^{\prime \prime}$ - Priced at $\$ 795$ *

(Optional LC display)



## DOUBLE DENSITY



## SOLID SAVINGS!

Now you can put your S-100 system solidly into a full-size, single/double density, 600 K bytes/side disk memory for just $\$ 1149$ complete.

DISCUS/2D ${ }^{\text {TM }}$ single/double density disk memory from Thinker Toys ${ }^{\text {TM }}$ is fully equipped, fully assembled, and fully guaranteed to perform perfectly.

DISCUS/2D ${ }^{\text {TM }}$ is a second generation disk memory system that's compatible with the new IBM System 34 format. The disk drive is a full-size Shugart 800R, the standard of reliability and performance in disk drives. It's delivered in a handsome cablnet with built-in power supply.

The S-100 controller utilizes the amazing Western Digital 1791 dual-density controller chip ... plus power-on jump circuitry, 1K of RAM, 1K of ROM with built-in monitor, and a hardware UART to make I/O interfacing a snap.

The DISCUS/2D ${ }^{\text {TM }}$ system is fully integrated with innovations by designer/inventor George Morrow. Software includes BASIC-V'M virtual disk BASIC,

DOS, and DISK-ATE ${ }^{\text {TM }}$ assemblerleditor. Patches for CP/M* are also included. CP/M*, MicroSoft Disk
BASIC and FORTRAN are also available at extra cost.
DISCUS/2D ${ }^{\text {TM }}$ is the really solid single/double density disk system you've been waiting for. We can deliver it now for just $\$ 1149$. And for just $\$ 795$ apiece, you can add up to 3 additional Shugart drives to your system. Both the hardware and software are ready when you are.

Ask your local computer store to order the DISCUS/2DTM for you. Or, if unavailable locally, write Thinker Toys, ${ }^{\top \mathrm{M}} 1201$ 10th St., Berkeley CA 94710. Or call (415) 524-2101 weekdays, 10-5 Pacific Time. (FOB Berkeley. Cal. res. add tax.)
*CP/M is a trademark of Digltal Research.
Morrow makes disk memory for
Thinker Toys

## ASK FOR THINKER TOY ${ }^{\text {tm }}$

PRODUCTS AT YOUR LOCAL DEALER NOW

| ALABAMA <br> Jack Rober Ison \& Associates <br> Comouler Store <br> 586 Shade Cresl Road <br> Birmingham. AL 35226 <br> (205) 328-9890 |
| :---: |
| ALASKA <br> Comouter Cache 529 'I" Street Anchora9e, AK 99510 (9071277-7914 |
| ARIZONA <br> -Computerland-Phoenıx Billmore Plaza 3160 E. Camelback Phoenix. AZ 85016 (6021 956-5727 |
| ARKANSAS <br> Microsystems <br> Roule 1. Box 765 <br> Rogers. AR 72756 |
| CALIFORNIA <br> Advanced Compuler Products, Inc. <br> 1310 Easi Edinger <br> Santa Ana. CA 92705 <br> 17141 558-88 13 |
| Bingham Electronics 100 Vallecitos Way Los Gatos. CA 95030 (408) 395-0010 |
| Byte Shop-Berkeley (Computer Center) 1514 University Avenue Berkeley. CA 94703 (4) 15) 845-6366 |
| Byte Shop-Hayward 1122 "B" Stree! Hayward. CA 94541 (415) 537-2983 |
| Byte Shop-Lawndale 16508 Hawthorne Blvd. Lawndale. CA 90260 [213) 371 -2421 |
| Byte of Palo Alto-1 2233 El Camino Real Palo Alto. CA 94306 (415) 327-8080 |
| Byte of San Diego 8038 Clairement Mesa Blvd. San Diego. CA 92111 (714) 565-8008 |
| Byte al Palo Alto-It 475 Sacramento San Francisco, CA 94111 (4 15) 434-2983 |
| Byte Shop-San Ratael 509 " B " Francisco Blvd. San Rafael, CA 94901 (415) 457-9311 |
| Byte Shop-Santa Clara 3400 El Camino Real Sanla Clara. CA 95051 (408) 249-4221 |
| Computer Center. Inc. 4014 Geary Bivd. <br> San Francisco. CA 94118 (415) 387-2513 |
| Computer Components 5848 Sepulveda Blvd. Van Nuys. CA 91411 (213) 786-74t1 |
| -Computertand. inc. 14400 Catalina Street San Leandro. CA 94577 (415) 895-9363 |
| Computerland-EI Cerrito 11074 San Pablo Avenue Et Cerrito. CA 94530 (415) 233-5010 |
| Computerland-San Francisco <br> 117 Fremont Street <br> San Francisco. CA 94105 <br> (415) 546-1592 |
| Data Machines, Inc. 1228 Foisom Sireat San Francisco. CA 94103 (415) 864-7200 |
| Digital Deli Computer Store 80 w I El Camino Real <br> Mt. View. CA 94040 <br> (415) 961-2670 |
| Electronics Enterprises Rio Linda. CA 95673 (916) 901-2010 |
| t.C.E. Hause Inc 398 N.E. Street P.O. Box 336 San Bernardino. CA 92401 (714) 888-3690 |
| Integrated Computer Systems 3304 Pico Biva. <br> Santa Monica, CA 90405 <br> (213) $450-2060$ |
| Khalsa Computer Systems 500 So. Lake Avenue Pasadena. CA 91101 (213) 684-3311 |

Logic Systems
5717 Bryce Canyon Pace Sacramento. CA 95842 916) 331-7176

ACC
505 Cypress Point Drive Mt. View. CA 94043 415) 969-4969

Max Computing Systems
7417 Winding Way
Fair Oaks. CA 9562
916) 961 -5817

Micro-Sun Computer Center
Farmerly Byte-Walnut Creek
2989 North Main
Walnut Creek. CA 94596
14151 933-6252
Omega Enlerprises
921 N. La Jolla Avenue
Hollywood, CA 90046
213) 654-2214
C. Compulers

10166 San Pablo Avenue
El Cerrito. CA 94530
(415) 527-6657

Pilgrim Computer Products
1444 Pioneer Way
EI Cajon. CA 92020
714)278-8764

Redding Computer Service
610 W. Cypress Avenue
Redding. CA 96001
916) 246-1170

COLORADO
Compuler Technology
6311 Federal Blvd.
Denver. CO 80221
303) 427-4438

CONNECTICUT
\& A Computer Store
30 Jefierson Avenue
New London, CT 06320
1203) 447-1079

FLORIDA
Byte Shop-FI. Lauderdate
1044 E Oakland Park Blud
t. Lauderdale. FL 33334

3051 561-BYTE
Byte Shop
7825 Bird Road
Hiami. FL 33155
Computer Center of
Palm Beaches
2827 Exchange Court
West Paim Beach. FL 33409
Mest Palm Beach.
Digitat Design Center
601 Golden Harbour Drive
(305) 994-4826

Microcomputer Systems. Inc.
144 S. Date Mabry
8131879-4225
GEORGIA
Micro Business Systems
103 Commerical Avenue
(404) 834.7705

HAWAll
Mahato Microsystems Lted.
Honolulu. H1 968
808) 922-2152

ILINOIS
Bies Systems
7037 W. North Avenue
Oak Park, IL 60302
(312) 386-3323

Computerland-Peoria
4507 N. Sterling
Peoria. IL 61614
3091688.6252
Computer Station
3659 Nameokl Road
618) 452-1860
llini Microcomputers
612 E. Ogden Avenue
(312) 420-8813

Lillipute Computer Mart. Inc
446 Oakton Street
Skokie. IL 60076
312) 674-1383
NDIANA
Audiospecialists
401 North Michigan
outh Bend, $\mathbb{N} 4860$
1219) 234-500

Compuler Center (Byte Shop \#61) 5815 Johnson Drive
Mission. KS 662

Computerland-Rockville
18065 Frederick Rd. (RI. 355 )
Rockville. MD 20855
3011 948 -7676
MASSACHUSETTS
Computer Mart. Inc
1395 Main Streel
Waltham, MA 0215
6171899-4540
Computer Shop-Cambridge
288 Noriolk Siree1
Cambridge. MA 02138

## MICHIGAN

The Abacus
Rt. 1: Box 193: US-31
Berrien Springs, MI 49103
616) 429-3034

Computerland-Soulhfield
29673 Nor thwestern Highway Southfield. M1 48034
313) 356-811

Computer Mart-Royal Oak
1800 W. 14 Mile Road
313) 576-9900

Micro Computer World
313 Michigan NE
Grand Rapids. M1 49503
616) 451-8972

Neal and Associates
4215 Shetland Drive
Ann Arbor, MI 48104
(313) 973 -0979

Tri-Cities Computer Mart
3145 Shattuck
Saginaw, MI 48602
(517) 790-136
minnesota
1351 Larc Industral Inc
1351 Larc Industrial BIVd.
Burnsvilte. MN 55337

NEBRASKA
Omaha Computer Stora
4540 S. 84th Street
(402) 592-3590

## NEVADA

Byte-Reno (Cyber Sense. Inc.)
104 S Kietzke Lane
(702) 826-8080

NEW HAMPSHIRE
Computerland-Nashua
Nashua. NH 03060
(603) 889-5238

Microcomputers. Inc.
36 Otlerson Street
(603) 889-1646

NEW JERSEY
Applied Computer Research
445 Brick Blvo
Bricktown. NJ 08723
(201) 477-4222

Allantic Microsystems
82 Maryknoil Road
2011549-0189
The Computer Emporium
Avenues of Commerce/Bldg. 103
2428 Route 38 Cherry Hill, NJ OBOO2
(609) 667-7555

S-100. Inc.
Clark, NJJ 07066
(201) 382-1318

NEW YORK
Byte Shop-New York
130 E. 40h Street
New York, NY 10016
(212) 889 -4204

The Computer Corner. Inc.
White Plains Mall
200 Hamilton Avenue
White Plains, NY 10601
(914) WHY-DATA

Computer Enterprises
O. Box 71 NY 13086
(315) 637-6208

Computer Mart-New York, Inc.
118 Madison Avenue
New York. NY 10016
New York. NY 100
(212) $686-7923$
Computer Microsystems
1311 Northern Bivd.
Manhasset, NY 11030
(516) 627-3640

3470 Erie Blvd. East
Dewitt. NY 1321
315) 446-1284

Home Computer Center
671 Manroe Avenue
Rochester, NY 14607
(716) 244-6237

Long isiand Computer
General Store
103 Allantic Avenue
ynbrook. NY 1156
(5i6) 887-1500
Micro World Computer Store
435 Main Streel
Johnson City. NY 13790
(607) 798-9800

Mini Micro Mart. Inc.
1618 James Street
Syracuse. NY 13202
(315) 422-4467

NORTH CAROLINA
Futureworld
2514 University Drive
Durham. NC 27707
(919) 489.748

OHIO
Byte Shop-Ohio
19524 Center Ridge Road
Rocky River. OH 44116
333-326

- Computariand-Cleveland

1288 Som Center Road
leveland. OH 44124
216) 461-1200

OKLAHOMA
2918 N. MacArthur Bivd
2918 N. MacArthur Bivd.
(405) 947-5646

OREGON
Byte Shop-Beaverton
3482 S.W. Cedar Hills Blvo
(503) 644 -2686

PENNSYLVANIA
PENNSYLVANIA
Byte of Pennsylvani
Byte ol Pennsylvania
1045 Lancaster Avenue
Bryn Mawr. PA 19010
(215) 525-7712

Marketline Systems. Inc.
2337 Philmont Avenue
Huntingdon Valtey. PA 19006
(800) 523-5355

SOUTH CAROLINA
Byte Shop \#32
1920 Blossom
920 Blossom Stree
Columbia. SC 29205
(803) 771 -7824

TEXAS
Easi Texas Computers
305 Clemson Drive
(214) 561-2635
(214) $561-1648$

Microbyte-Abacus
2218 Crawford
Houston, TX 77002
(713) 757-1128

Micro Mike's
905 Buchanan
Amarillo. TX 7910
(806) 372-3633

Neighborhood Computer Store
4902 34th Street \#20
Lubbock. TX 79410
(806) 797-1488

UTAH
Byte of Salt Lake City
261 South State
Salt Lake Clity. UT 84111
(801) 355-1041
Computertand or Salt Lake City
161 E. 2nd South
Salt Lake City. UT 84111
(801) $364-4416$
VIRGINIA
Computarland of Tysons Corner
8411 Old Courthouse Road
Vienna. VA 22180
703) 893-0424

The Computer Place
2718 Colonial Avenue SW
Roanoke. VA 24015
The Compuler Systems Store
1984 Chain Bridge Road
McLean. VA 22102
(703) $821-8333$
(703) 82 1-833

Redi-PGMS
7916 Westpark Drive
McLean. VA 221
WASHINGTON
-Computarland/SKC
1500 South 336th Street
Federal Way. WA 98003
(206) 838-9363

Personal Computers. Inc. South 104 Freya Spokane. WA 99202
(509) 534-3955

WISCONSIN
Lancer Electronics. Inc
2700 S. Chicago Avenue
So. Milwaukee. W1 53172
So. Milwaukee. W1 53172
(414)762-6500

AUSTRALIA
Automation Statham Ply. Ltd.
Automation Statham
47 Birch Street
Bankstown. NSW 2200
BELGIUM
Pulsion
Avenue Albent Mahiels, 13/0B1
B-4020

## CANADA

The Byte Shop-Vencouve
2151 Burrard Stryet
Vancouver. B.C. V6J 3H7
(604) 736-051 t

Compumart
Compumart
411 Roosevelt Avenue
Ottawa. Ontario K2A 3X9
(613) 725-3192

Custom Computing Systems. Inc.
Custom Computing Systems.
204 2nd Avenue
Saskatoon. Sask. S7K $2 B 5$
(306) 242-7808

Home Computer Center
Home Computer Ce
6101 Yonge Street
Willowdale. Ontario M2M 3W2
(416) 222-1165

Orthon Computer Company
12411 Stony Plain Road
(403) 488-2921

Pacilic Computer Store
4509 Rupert Sireet
Vancouver. B.C.
(604) 438-3282
TJB Microsyslems. Lid.
10991 124 h Street
Edmonton. Alberta T5M OHS
(403) 455-5298

Trintranics. Lid.
Trintronics. Lld.
186 Queen Street W
Toronto. Ontario H5V 121
(416) 598-0260

ENGLAND
AEM Systems Lid.
12A Landon Sireel
Southport. England
(0704)79761

Interam Computer Systems Ltd.
59 Moreton Street
Victoria. London S.W. 1
01-8340261/2733
GERMANY
Computershop GMBH
D-7800 Freiburg im Breisgau
West Germany
JAPAN
1-15-16 Sapokanda
Chiyoda-Ku, Tokyo
MEXICO
I.T.E.S.O

1342-8 Ninas Heroes
Guadalaiara
SINGAPORE
Oo Departmental Store
100 Upper Cross Street 917788
Sys-Tech Pte Lid.
5568 Rochor Centre
Rochor Road. Singapore ?
2927645

## Thinker Toys-

-Thinker Toy ${ }^{\text {TM }}$ Products may be
-Thinker Toy
purchased Products may be
stores wortdwide.

5800 thru 6036
6144 thru 6399 6400 thru 6655 6656 thru 6911 6912 thru 7167 7168 thru 7423 7424 thru 7679 7680 thru 7935 7936 thru 8191 10

11 thru 25
26,27
28
29,30
31,32
6050 thru 6074
6075 thru 6099
6100 thru 6114

5632 thru 5654
5655 thru 5660
5661 thru 5679
5680 thru 5685
5686 thru 5689
5690 thru 5726
5727 thru 5746
5747 thru 5779
5780 thru 5799
5800 thru 5809
5810 thru 5824
5825 thru 5848

5849 thru 5866

5867 thru 5882
5883 thru 5886
5887 thru 6036

6037 thru 6049

Contents Or Function
Move particles one step forward in time, bouncing off walls as necessary.
Plot particles on screen, colliding ones which fall in same cell on the 50 by 80 grid. High bytes of $X$ coordinates.
Low bytes of $X$ coordinates.
High bytes of $Y$ coordinates.
Low bytes of $Y$ coordinates.
High bytes of $V X$ velocities.
Low bytes of $V X$ velocities.
High bytes of $V Y$ velocities.
Low bytes of VY velocities.
Current screen character at location to be plotted.
Table of PET $1 / 4$ graphics symbols; translates to and from "binary graphics symbols."
Low, high bytes of current screen address.
"Binary graphics symbol" to be put onto current location (1, 2, 4, or 8 ).
High, low bytes of $M=(A+B+C+D) / 2$.
High, low bytes of TEMP=M-B.
Low bytes of table of left ends of screen lines.
High bytes of table of left ends of screen lines.
Table of graphics symbols, in order defined to be $1,2,3,4, \ldots, 15$ in 'binary graphics symbols."
Move $X$ coordinate.
Check to see if in box: fix if not.
Move $Y$ coordinate.
Check to see if in box; fix if not.
Increment counter; do next particle if not done.
Fix if gone off left edge.
Fix if gone off right edge.
Fix if gone off bottom.
Fix if gone off top.
Transfer table to page 0 of memory.
Put address of screen left edge of line to be plotted into 26,27.
Put "binary graphics symbol" to be plotted into 28, and add location in line to be plotted to 26,27.
Find current graphics symbol which occupies space to be plotted in; look up in table and translate to "binary graphics symbol."
Plot particle if space to which it goes isn't already occupied.
Increment counter and go back to 5810 if not through.
A collision has occurred! Scan back to see which particle has collided with the one about to be plotted, and fix their velocities, as in text.
This space intentionally left blank.

Table 1: Comments on Gas machine language modules given in listing 2.


Photo 6: Velocity histogram for the high temperature gas shown in photo 5.

Text continued from page 28:
$3 \times 10^{19}$, then the fractional fluctuation in this number is about $1 / \sqrt{3 \times 10^{19}} \approx 0.2$ parts per billion - small, but measurable. (The human ear is sensitive enough to barely hear these fluctuations - try it, if you can find a quiet enough place!) So, the errors that the 256 particle gas model will tend to make are of the order of $1 / \sqrt{256} \approx 6 \%-$ not terribly bad.

A second important feature of my model is the way it handles collisions. Time is broken into steps, and two particles which end a timestep in the same cell are considered to collide. It would be far more complicated to calculate distances between particles as they move and to declare a collision only if their center-to-center distance fell below a certain limit. It also turns out not to matter much, as far as the final equilibrium state of the gas is concerned. Actual collisions are sometimes grazing, sometimes head-on, and generally everywhere in between, depending on the details of the interactions between the molecules and their impact parameters. None of that really matters for our purposes.

The important feature of all collisions in gasses is that the collisions always conserve energy and momentum. Energy is just kinetic energy for pointlike particles: $1 / 2 m v^{2}$. To simplify the arithmetic, I let all of my gas particles have mass $m=2$, so their energies are just the squares of their velocities. In two dimensions, velocity has components along the $X$ and $Y$ axes; call them $V X$ and VY. The momentum of a particle is just its mass times its velocity. Momentum thus has $X$ and $Y$ components, each of which must separately be conserved, that is, remain constant during a collision.

To be specific, suppose that $V X$ and $V Y$ are arrays, and that particles numbered 1 and 2 are colliding. If arrays $W X$ and $W Y$ are used to hold their velocities after the collision, then conservation of energy says that (total energy after) $=($ total energy before), that is, $W X(1)^{2}+W Y(1)^{2}+W X(2)^{2}+W Y(2)^{2}=$ $V X(1)^{2}+V Y(1)^{2}+V X(2)^{2}+V Y(2)^{2}$. Conservation of $X$ momentum says that $W X(1)+$ $W X(2)=V X(1)+V X(2)$, and conserving $Y$ momentum implies that $W Y(1)+W Y(2)=$ $V Y(1)+V Y(2)$.

Now, if the velocities before the collision are known, then there are four velocities afterwards to solve for: WX(1), $W Y(1), W X(2)$, and $W Y(2)$. Three equations are not enough information to solve for four unknowns. The missing equation contains the details of the collision - whether it is head-on or glancing or what. One might write out this fourth equation (it's done in most freshman physics textbooks) in terms

# Aequario 

LOWEST PRICES * FAST DELIVERY •

## DOUBLE DENSITY HORIZON I KIT

Today's best buy. 180K bytes per disk. The chosen computer for two MicroWorld systems . . . Autoscribe - The Paperwork Manager and Bookkeeper - The Office Accountant ${ }^{\text {t. }}$. Single density still runs on your new Horizon, or you can copy and
convert all North Star soffware and proyour new Horizon, or you can copy and grams to double density.

- exclusive application software
- add'l 16K memory (kit), \$349
- add'l disk drive (kit), \$349



## double the storage at the same price!



## NEW!

Call for low assembled prices. Double density also available on North Star disk sub-system, \$599 kit.



## TI 810 PRINTER



## MicroWorld Specials

Integral Data Printer ..... \$ 749
Add for Tractors ..... \$ 150
Mime Terminal ..... \$ 742
Hazeltine 1410 Terminal ..... \$ 765
Hazeltine 1500 Terminal ..... \$1097
Teletype\$1019
Dataproducts M-200 ..... \$2921
Vector Graphics MZ ..... \$3225
Exidy 16 K Sorcerer ..... \$1035
Data General\$CALL
Qume Sprint 5 RO ..... $\$ 2895$
DEC LS 120 Printer ..... \$CALL
Centronics 779 Printer\$1095
Micropolis 1042 Mod
I Drive ..... \$CALL
TI 59 Calculator ..... \$ 219
Novation CAT Modem ..... \$ 199
TI 820 Termina ..... $\$ 2199$North Star HorizonSoftware\$CALL
Dataproducts B-300Printer\$5346
IPSI 1620 Diablo RO ..... $\$ 2705$
Hitachi 9" Monitor ..... \$ 184
Cromemco System II ..... $\$ 5299$

## MICROUDRLD"

Bringing information technology to your doorstep 1425 W. 12th PI. • Tempe, AZ 85281 • 602-894-1193


No extra charge for credit card orders

Circle 232 on inquiry card
Freight collect, F.O.B. Tempe No other handling charges

Listing 1: BASIC program for the PET which simulates an ideal gas. This program uses the assembly language modules shown in listing 2. The notation used in this listing is described in table 3.

117 REM TO CENTER THE PARTICLES IN THEIR RESPECTIVE SQUARES
120 FOR I=0 TO 255
130 POKE 7168+1,0: POKE 7424+1,0: POKE 7680+1,0: POKE 7936+1,0
140 POKE 6400+1,128: POKE 6912+I,128: NEXT I
150 REM ARRANGE PARTICLES NICE LY HERE
160
180
190
200 FOR $1=240$ TO 255: POKE 6144+1,2*(1-240): POKE 6656+1,20: NEXT I
300 DE=30: REM PRELIMINARY TIME DELAY

600 GET A\$: IF AS='"' GOTO 400
610 IF $A \$={ }^{\prime \prime} R "$ THEN $A \$=\cdots \cdots \cdot: N=0$ : GOTO 400
620 IF $A \$="{ }^{\prime}{ }^{\prime \prime}$ " THEN $A \$=" \cdot \prime \cdot: D E=2^{*} D E:$ GOTO 400
630 IF $A \$=$ "'G" THEN A $\$=$ ="'": POKE 7168,10: GOTO 400
640 IF $A \$={ }^{\prime \prime} F^{\prime \prime}$ THEN $A \$=\cdots \cdots ; D E=D E / 2:$ GOTO 400
650 A $\$=\cdots \prime: E=0: P R I N T S C \$$
670 FOR $1=0$ TO 20: $V X(1)=0$ : $V Y(1)=0$ : NEXT I: REM CLEAR ACCUMULATORS
700 FOR $1=0$ TO 255: $\mathrm{HX}=\operatorname{PEEK}(7168+1): \operatorname{HY}=\operatorname{PEEK}(7680+1): \operatorname{LX}=\operatorname{PEEK}(7424+1)$
720 LY=PEEK $(7936+1)$ : REM CALCULATE VELOCITIES, ADJUST IF NEGATIVE
IF HX > 127 THEN HX=HX-255: LX=LX-256
760 IF HY $>127$ THEN HY=HY-255: LY=LY-256
$780 \vee X=H X+L X / 256: V Y=H Y+L Y / 256: E=V X * V X+V Y * V Y+E$ : REM ADD UP ENERGY
: :: : : : : :REM NOW COMES PLOTTING : : : : : : : :
$V X=I N T(V X): V Y=I N T(V Y): I F(V X>10) O R(V X<-10)$ THEN $V X=$ SGN(VX)*10
795 REM LIMITS PLOTS TO BETWEEN -10 \& 10
800 IF (VY>10) OR (VY<-10) THEN VY=SGN(VY)*10
$810 \quad V X=V X+10: V Y=V Y+10$
815 REM ACCUMULATE COUNTS IN VX \& VY ARRAYS; SCALARS VX \& VY ARE DIFFERENT!! REM CALCULATE AX AND AY, ADDRESSES FOR PLOT OF A GIVEN VX AND VX(VX), ETC.
$A Y=33572-40^{*} V Y+1 N T(V Y(V Y) / 8)$
$840 \quad \mathrm{CX}=\mathrm{UP}(\mathrm{VX}(\mathrm{VX})-8 * \operatorname{INT}(V X(V X) / 8)): \mathrm{CY}=\mathrm{R} \mid(V Y(V Y)-8 * \mid N T(V Y(V Y) / 8))$
845 REM CX \& CY ARE GRAPHICS CHARACTERS USED FOR SOME VX OR VY
850 POKE AX,CX: POKE AY,CY

GET TAB
GET $A \$$ : IF $A \$={ }^{\prime \prime \prime \prime}$ GOTO 1020: REM WAIT UNTIL DONE LOOKING AT GRAPHS
REM POKE 135,22 FOR SAF ETY!! (KEEP BASIC BOUNDED)
REM GAS COPYRIGHT 1978 MARK ZIMMERMANN
REM GRAPHICS SYMBOLS FOR PLOTS IN DATA STATEMENTS
DATA 100, 111, 121, 98, 248, 247, 227, 160, 101, 116, 117, 97, 246, 234, 231, 160
DIM UP(7), RI(7), VY(20),VX(20): FOR $1=0$ TO 7: READ UP(1): NEXT I EM UP ARRAY IS FOR UPWARD GRAPH, RI FOR RIGHTWARD; VY \& VX HOLD VELOCITIES
FOR I=0 TO 7: READ RI(I): NEXT I
SC\$ DRAWS THE AXES FOR THE GRAPHS
SCS="c/s 10-1bd lbd lbd lad bdb5لbd lbd lbd bd bob0Jbd lbd lhd bd $\mid b d b b-5-$
 SC\$ $=S C \$+^{\prime \prime} b d 5 \underline{u}^{\text {T }}$ bbd 10 home ${ }^{\prime \prime}$
REM MEMORY ALLOCATIONS: 6144-6399, HI BYTES OF $X$ COORDINATES
REM 6400-6655, LO BYTES OF X; 6656-6911, HI BYTES OF Y
REM 6912-7167, LO BYTES OF Y; 7168-7423, HI BYTES OF VX; 7424-7679.
LO VX
REM 7680-7935, HI BYTES OF VY; 7936-8191, LO BYTES OF VY
PRINT "HIT 'R'TO RESET TIMER"
PRINT "' 'S' TO MOVE SLOWER'"
'F' FOR FASTER'
'G' TO GOOSE PARTICLE \#O"
PRINT "AND ANY OTHER KEY TO PLOT VELOCITIES"
REM 120-140 FILL THE VELOCITIES WITH ZEROES AND THE LO BYTES OF POSITIONS

SYS(5632): REM MOVE ONE TIMESTEP
PRINT " $\underline{c / s}{ }^{\prime \prime} ;: N=N+1: R E M$ CLEAR SCREEN; N COUNTS TIME
SYS(5800):REM PLOT \& COLLIDE THEM!
PRINT N:T=TI
$X 0=1 N T(P E E K(6144) / 2): Y 0=1 N T(P E E K(6656) / 2):$ POKE 33728+X0-40*YO, 42:REM MARK $\ddagger 0$

860
1000

## A Beautiful Way To Interface



The SOROC IQ 120 is the result of an industrywide demand for a capable remote video display terminal which provides a multiple of features at a low affordable price. The IQ 120 terminal is a simple self-contained, operator / computer unit.
The IQ 120 offers such features as: 1920 character screen memory, lower case. RS232C extension, switch selectable transmission rates from 75 to
19,200 bps, cursor control, addressable cursor, erase functions and protect mode. Expansion options presently available are: block mode and hard copy capability with printer interface. The Ia 120 terminal incorporates a 12 -inch, CRT formatted to display 24 lines with 80 characters per line.

There's an Ohio Scientific dealer near you.




|  (8003) 785 3939 | Control Technology Gillelie. Wr 82718 307862.030 |
| :---: | :---: |
| Exx Engineering <br>  renimsset | 1277 Chemin St. Jean Bernieres. Ouebec. Canada GOS $(116) 831.4522$ |
| Computer Power of Memphis Memphls. TN Avenut 3811 Compular Powerot Oak Ridge 800 Olak Ridga TurripikeOak Rlige. FN37830 $(615) 482.9031$ |  Stalion $P$ Toronio. Onlarlo |
|  | Cinnad Robo.Tronics |
|  | 509161 in N |
|  | Personnel Cosi Controu mons Frieway |  |
|  |  |  |
|  |  |
|  |  |
| ¢0k. Enierorises |  |
| comer |  |
| Cyboriromes | Austria 2065 |
| Housion mix 7 70\% |  |
| , 3778.8331 | IEC Mnmernational flectro |
|  | Avenue Chnes |
|  | 021521. |
|  |  |
|  | The Siluio Quary MII. |
|  | Whitshiut Enol |
|  | ${ }_{6}$ Abacus Compulers 5 |
|  |  |
|  |  |
| puler Shop |  |
|  | Stosm |
|  | Lendion Milat |
| Fer Election |  |
| W.i. Mainsi | Noirtere Ches |
|  | ${ }^{06006}$ |
|  | ${ }^{\text {Janaz Computer Shoo }}$ |
|  |  |
| East 3300 South |  |
| 484.650\% 4 \% 8109 |  |
| ction |  |
| Sail) 88.8 .735 ${ }^{\text {a }}$ | ghelece |
|  | Compumak 11 |
|  <br>  |  |
|  |  |
| cen | Sky |
|  | 20125 Mitano |
|  | ${ }^{10221688.3005}$ |
|  |  |
|  | O39 |
|  | Mevico |
|  |  |
| Mioricespiems ol Virolin |  |
|  |  |
|  |  |
|  |  |
|  | 078.56033 |
|  |  |
|  | , |
| $\text { (509) } 948.3330$ | $888880^{1004}$ |
|  | Puento Aico Computer |
|  | Po |
|  |  |
|  |  |
|  | P. |
|  |  |
|  |  |
| Indian Hodid Compuier |  |
|  | Sumbers |
|  | switzealand |
|  |  |
|  | 8asali Swizern |
| Somer |  |
|  | ${ }_{\text {atem }}$ |
| and |  |
|  | Mapacilio. Venezvela |
|  | oenhant |
|  | Bintiostasse 2 |
| (808) 784.7979 <br> Madizon Compuler Store | Went |
|  | (0210112 2124 |
|  | atemyzeme |
|  | P.o. 8000 Num |
|  | Wetisemend |

Contor Tecennoleay Gilliile Wo , leter. .ubebec. Cannodig Gos Omon 220 compuling 110 Traronio.
 Roborironces
500 ibit
NW
 S.1.c

Venazuela 3392
Buenos Altes A8.2547 1211 Capilal Fed

Sys. Aulomation Propr thic
28 Clark $\$ 1$. Crows Nesi.
Austrglia
(02) 439.6477
IEC (ninternational Electronic)
Avenue Chatios Plisnier. $3 F$


The Studio. Quarry Mill
Box Corshim
Wiltshive. England
022121.3269
Abacus Computers Limuted
62 New Cavendish Street
London W1. England
01.590 .8841
amatican Dala.Home
Othice Computer
Chesham House U-Microcomputers Northwich. Cheshire O606. 7562 12 Rue Pasquiler Snop $75008{ }^{7}$ Paris. France Elacironic Che des Chanier France
$950-2820$

Compumak Lid
117 Solonos St Alhers 142 . Greece
3832952

Skylab
Vial Mina 66
20125 Mitano
tyaly
1021 688.3800
Ediconsuli S.R L
Via Caccini i2
039.39 -985

Electronica S.A De C
Mentico 8.0
5.33 .11 .80
Ingenieurs Bureau
Joh. Vermeer Str 7
Netherland:
078.56033
Porayra 8 assoc S R.L
Airas Schreibor 225
Urb. Aurora Miraltores

Puento Rico Computer Sales
P.O. Box 2038
Hato Ray.
Puerio Rico 00919

Sociedad Anontma
Dovenleas
P.O. Box 701
${ }^{2} 30.770$
1solronic AB
$80 \times 3058$
18303 Taby
$1081750-0155$
Nafitaxco Corp
4023 Baset
Basel Switionand 4023
$10114151)^{483826}$

Maracaipo. Venezvela

BISY
Rherinstasse 2
Wost Germinny
$(02101) 28124$
Datensysteme $\mathbf{G m b}$
Alstrolder
Stcasse
De8100 Darmstad
West Germany
$(06151) 71.4444$

#  FLOPPY DISK BASED COMPUTER FOR UNDER 1000 



## ${ }^{59} 995$

## Complete mini-floppy computer system

## 10K ROM and 12K RAM

Instant program and data retrieval
The Challenger 1P Mini-disk system features Ohio Scientific's ultra-fast BASIC-in-ROM, full graphics display capability and a large library of instant loading personal applications software on mini-floppies including programs for entertainment, education, personal finance, small business and now home control!


The C1P MF configuration is very powerful. However, to meet your growth needs it can be directly expanded to 32 K static RAM and a second floppy by simply plugging these options in. It also suports a printer, modem, real time clock and AC remote interface as well as the OS-65D V3.0 development oriented operating system.

## Or Start with the C1P CASSETTE BASED Computer for just \$349.

The cassette based Challenger 1P offers the same great features of the mini-disk system including a large software library except it has 4K RAM and conservative program retrieval time. Once familiar with personal computers, you'll be anxious to expand your system to the more powerful C1P MF.

You can move up to mini-disk performance at any time by adding more memory and the disk drive. Contact your local Ohio Scientific dealer or the factory today.

> "Both systems require a video monitor, modified TV or RF converter and home television for operation. Ohio Scientific offers the AC 3 combination 12 " black and white TV/monitor for use with either system at $\$ 115.00$ retail.

All prices, suggested retail.


Listing 2: The 6502 assembly language modules for use with the ideal gas program.

| LABEL | MNEMONIC |  | COMMENTS |
| :---: | :---: | :---: | :---: |
| BEGINMOVE: | LDX | \#0 | ;initialize particle counter |
|  | LDY | \#0 | ;clear Y register |
| TOP: | $\begin{aligned} & \text { LDA } \\ & \text { CLC } \end{aligned}$ | VXLO, X | ;move $\times$ coordinate of particle ;by adding $V X$ to $X$ |
|  | ADC | XLO, X |  |
|  | STA | XLO,X |  |
|  | LDA | VXHI,X |  |
|  | ADC | XHI, X |  |
|  | STA | XHI,X |  |
|  | BMI | NEGX | ;bounce off left wall if x.LT. 0 |
|  | CMP | \#80 |  |
|  | BCS | BIGX | ;bounce off right wall if x.GE. 80 |
| RETX: | $\begin{aligned} & \text { LDA } \\ & \text { CLC } \end{aligned}$ | VYLO,X | ;move y coordinate <br> ;by adding VY to $Y$ |
|  | ADC | VLO, $X$ |  |
|  | STA | YLO,X |  |
|  | LDA | VYHI,X |  |
|  | ADC | YHI,X |  |
|  | STA | YHI, X |  |
|  | BMI | NEGY | ;bounce off bottom if y.LT. 0 |
|  | CMP | \#50 |  |
|  | BCS | BIGY | ;bounce off top if y.GE. 50 |
| RETY: | INX |  |  |
|  | BNE | TOP | ;do all 256 particles |
| NEGX: | TYA |  | ;prepare to reflect -x to x |
|  | SEC |  | ;by subtracting from 0 |
|  | SBC | XLO, X |  |
|  | STA | XLO, X |  |
|  | TYA |  | ;another 0 in accumulator |
|  | SBC | XHI, ${ }^{\text {P }}$ |  |
|  | STA | XHI,X |  |
| REFLVX: | TYA |  | ;reflect velocity vx also |
|  | SEC |  |  |
|  | SBC | VXLO, $X$ |  |
|  | STA | VXLO,X |  |
|  | TYA |  |  |
|  | SBC | $V \times H I, X$ |  |
|  | STA | VXHI,X |  |
|  | JMP | RETX | ;return to main program |
| BIGX: | LDA | \#255 | ;prepare to reflect $\times$ to $160-x$ |
|  | SEC |  | ;(actually, 159.99. . .-x) |
|  | SBC | XLO, X |  |
|  | STA | XLO,X |  |
|  | LDA | \#159 |  |
|  | SBC | X HI , X |  |
|  | STA | X HI , X |  |
|  | JMP | REFLVX | ;reflect velocity vx using previous code |
| NEGY: | $\begin{aligned} & \text { TYA } \\ & \text { SEC } \end{aligned}$ |  | ;reflect V to -y |
|  | SBC | YLO,X |  |
|  | STA | YLO,X |  |
|  | TYA |  |  |
|  | SBC | YHI,X |  |
|  | STA | YHI,X |  |
| REFLVY: | TYA |  | ;reflect velocity wy also |
|  | SEC |  |  |
|  | SBC | VYLO,X |  |
|  | STA | VYLO,X |  |
|  | TYA |  |  |
|  | SBC | VYHI,X |  |
|  | STA | VYHI,X |  |
|  | JMP | RETY | ;return to main program |
| BIGY: | $\begin{aligned} & \text { LDA } \\ & \text { SEC } \end{aligned}$ | \#255 | ;prepare to reflect y to $99.99 \ldots-\mathrm{y}$ |
|  | SBC | YLO, $X$ |  |
|  | STA | YLO,X |  |
|  | LDA | \#99 |  |
|  | SBC | YHI,X |  |
|  | STA | YHI, X |  |
|  | JMP | REFLVY | ;use previous code to reflect w |

Listing 2 continued on next page.

| BEGINMOVE | 5632 |
| :--- | :--- |
| BEGINPLOT | 5800 |
| XHI | 6144 |
| XLO | 6400 |
| YHI | 6656 |
| YLO | 6912 |
| VXHI | 7168 |
| VXLO | 7424 |
| VYHI | 7680 |
| VYLO. | 7936 |
| OLDCHAR | 10 |
| GRAFTAB | 11 |
| ADDRNOW | 26 |
| NEWSYMB | 28 |
| MHI | 29 |
| MLO | 30 |
| TMPHI | 31 |
| TMPLO | 32 |
| SCRTABLO | 6050 |
| SCRTABHI | 6075 |
| SYMBTAB | 6100 |

Table 2: Specific addresses used in the 8 K byte PET Gas program. Addresses are given in decimal.

```
c/s = clear screen.
b = backspace (cursor left).
d = down (cursor down).
= right (cursor right).
u = up (cursor up).
home = cursor home.
```

Table 3: The PET uses special graphics symbols to denote cursor control characters. Since these special characters cannot be typeset, the above notation is used in the program.

## Text continued from page 34:

or truncation errors. When an $X$ coordinate ends up less than 0 or greater than 80,1 reflect the particle off the left or right wall and reverse its $X$ velocity; when a Y coordinate falls outside the box's range ( 0 to 50 ), I do the same for it. (Since I don't check for arithmetic overflows, if velocities get larger than about 32, there is a chance for error; this isn't a serious restriction, in practice.) In this format, addition and subtraction are trivial, and the only trick to dividing by 2 is to get the sign bit correct after shifting right.

That's all there is to the model. The details that are explained in the remarks in the BASIC listing (listing 1), and in the commentary about the listing 2 machine language modules in table 1 , are probably of interest mainly to 6502 system users, especially PET owners who can use the program without modification. (At top speed, it makes about seven timesteps per second!) Much more interesting in general are the "bells and whistles" that can be added to the bare model for convenience and physical insight.

Tinker, Tailor, Soldier, Sailor . . . Doctor, Lawyer . . . the Chieftain's here.

No matter whether you're a serious hobbyist or a serious businessman, the Chieftain 6800 microcomputer with capabilities that surpass the Z-80 is made for you.

SmokeSignal'squality-packed Chieftain I features two 5.25 -inch minifloppy drives and Chieftain II features two 8-inch floppy drives.

Both microcomputers provide 32 K static memory, two serial I/O ports, a 2 MHz processor board, a 2 K RAM monitor, a nine-slot motherboard with builtin baud rate generator and gold connectors for high reliability. The Chieftain's stylish leath-er-grained cabinet houses the above with its own cooling fan and regulated power supply.

Every Chieftain is complete with system software and is totally burned-in as well as tested to further insure high reliability.

And it's expandable to 64 K memory with up to 2 megabytes floppy disk storage.

So see your nearest Smoke Signal dealer, he'll be glad to show you how to get your wampum's worth. Systems start at $\$ 2,595$.


## Hail to the Chieftain



Listing 2 continued on next page.

First, it's easy to write a loop to add up the kinetic energy of each particle; the total energy of the system should be conserved. Roundoff (from the division by 2 , in particular) does make small errors occur, but l've found them to be tiny even after hundreds of timesteps. It is interesting to note that the energy is directly proportional to the temperature of the system. The eye can easily tell the difference between "hot" and "cold" gasses, with some experience.

It is also interesting to plot the velocities of the gas particles. In theory, after lots of collisions have occurred, the distributions of $V X$ and $V Y$ velocities should be bell shaped (also called "Gaussian" or "normal") curves (see photos). It's quite satisfying to see a ridiculous initial distribution, with all the particles at rest except for one, evolve as collisions happen toward the normal curve. (The width of the distribution is proportional to the square root of the temperature.) There are fluctuations away from this equilibrium distribution, of course, but they are small, roughly $1 / \sqrt{N} \approx 6 \%$ in this model.

Another educational phenomenon that this model can illustrate is called Brownian motion, the "random walk" that a particle in the gas executes as it is buffeted by other objects. It's a 1 line addition to the original program to change the symbol for one particle (number 0 , for example) to something distinctive, so its motion can be followed. (An asterisk was used in the photos here.) On long timescales, the net motion of a particular particle is less than one might expect - the average distance it moves is not (average speed) $\times$ (time), but (average speed) $\times \sqrt{\text { (time }})$. (Albert Einstein got his Nobel Prize partly for his explanation of Brownian motion, published in 1905.)

There are many other "theoretical experiments" that one can do with this model of a gas. One could count the collisions off a wall and check the ideal gas law which relates pressure, density, and temperature. Another experiment could be to measure the "speed of sound" in the gas, by giving a push to the particles on one side of the box, and seeing how long it takes the resulting density wave to move across. (The box may be too small and the gas too dilute to do this cleanly, however; I'm not sure.) It might be nice to connect up the screen edges, so that particles which move off the right side appear at the left, etc. That way, one could set up a "wind" (a net nonzero momentum in some direction) and it would last forever (within roundoff) without hitting any box walls. Another possibility is to evolve a system forward in time for a while, and then reverse all velocities.

Effectively, this reverses time-if roundoff is unimportant, the particles should retrace their paths and return to the initial configuration, like a movie run backwards!

This simulation of a gas is extraordinarily simple in principle, but displays a surprising wealth of realistic physical phenomena. It's not surprising that slightly more complicated laws, acting on larger numbers of particles, can make galaxies and DNA molecules, snowflakes and cyclones. The challenge is to simplify and then simulate them! $\quad$

## BIBLIOGRAPHY

1. Aarseth, Sverre J, and Myron Lecar, "Computer Simulations of Stellar Systems," Annual Reviews of Astronomy and Astrophysics, volume 13, 1975, pages 1 thru 22.
2. Lykos, Peter (editor), '"Minicomputers and Large Scale Computations," from a symposium sponsored by the ACS Division of Computers in Chemistry, American Chemical Society, Washington DC, 1977. (See chapters 11 and 12 in particular.)
3. Reif, F, Statistical Physics (Berkeley Physics Course), volume 5, McGraw-Hill, New York, 1967.

| ROR | A | ;otherwise sign bit will be lost!!! |
| :---: | :---: | :---: |
| STA | MHI |  |
| ROR | MLO | ;division by 2 completed |
| LDA | MLO | ;calculate after-collision velocities now. as described |
| SEC |  | ; in text |
| SBC | VYLO,X |  |
| STA | TMPLO | ;save in temporary place |
| LDA | MHI |  |
| SBC | VYHI,X |  |
| STA | TMPHI |  |
| LDA | MLO | ;proceed to collide all velocities |
| SEC |  |  |
| SBC | $\checkmark \times L O, Y$ |  |
| STA | VYLO,X |  |
| LDA | MHI |  |
| SBC | $\checkmark \times \mathrm{HI}, \mathrm{Y}$ |  |
| STA | VYHI,X |  |
| LDA | MLO |  |
| SEC |  |  |
| SBC | VYLO, Y |  |
| STA | VXLO, Y |  |
| LDA | MHI |  |
| SBC | VYHI,Y |  |
| STA | VXHI,Y |  |
| LDA | MLO |  |
| SEC |  |  |
| SBC | VXLO,X |  |
| STA | VYLO,Y |  |
| LDA | MHI |  |
| SBC | $\checkmark \times H I, X$ |  |
| STA | VYHI,Y |  |
| LDA | TMPLO |  |
| STA | VXLO,X |  |
| LDA | TMPHI |  |
| STA | VXHI, $\times$ |  |
| JMP | INCRX | ;collision finished - go back to main program |



Adaptive Information<br>Processing: An Introductory Survey by leffrey $R$ Sampson Springer-Verlag,<br>New York 1976<br>214 pages<br>$\$ 14.80$



A book that deals with theoretical computing machines, the biology of an amoeba, and a very good checkers program should pique the interest of many readers. Adaptive Information Processing: An Introductory Survey is excellent for someone who wants a thorough overview of the subjects covered.

The book deals with three broad topics: information and automata, biological information systems and artificial intelligence. The second and third are at opposite ends of the spectrum of adaptive information processors: living organisms and "intelligent" computer programs that mimic human thought. But the first topic, which deals with the nature of information and with certain imaginary, idealized computing machincs, summarizes a body of knowledge that sets an upper bound on the transmission of data and on the problem solving limits of any computer. It is only in the light of these limitations that the later examination of living and nonliving information processing systems becomes meaningful.

The first section has five chapters on communication theory, coding information, finite automata, Turing machines, and cellular automata. The last three subjects refer to three levels of idealized computing machines that mathematicians and computer scientists have devised and studied to determine what problems can and cannot be solved on a given machine. Most important are two facts: firstly, the Turing machine is capable of solving any problem that any computer can solve; and secondly, there are certain problems that a Turing machine cannot solve. This implies that there are problems insoluble by computer. The fourth chapter is especially good for its condensation of the work done along these lines, in particular, the famous "halting" problem for the universal Turing machine.

The "Biological Information Processing" section devotes a chapter each to information processors on four levels: the biochemical, genetic, neural, and nervous system levels. The first chapter gives a concise description of the role of enzymes and DNA in the processes of biological information transfer. The fifth chapter deals with limited attempts of scientists to simulate various levels of biological processes via computer programs.

The final section deals with five artificial intelligence topics: pattern recognition, game playing, theorem proving, generalized problem solvers and natural language processing. Here, the author admits that his mate-


AL: Birmingham: Computer Center Inc., (205) 942-8567. CA: Costa Mesa: Orange County Computer Center, (714) 646-0221. Los Angeles: Computers Are Fun, (213) 475-0566. Modesto: Computer Magic, (209) 527-5156. Mountain View: Digital Deli, (415) 961-2670. WaInut Creek: MicroSun Computer Center, (415) 933-6252. CT: Bethel: Technology Systems. (203) 748-6856. FL: Ft. Lauderdale: Byte Shop of Ft. Lauderdale, (305) 561-2983. Miami: Byte Shop of Miami, (305) 264-2983. Tampa: MicroComputer Systems, (813) 879-4301. ID: Boise: Byte Shop Computer Store, (208) 345-3811. IL: Lombard: Midwest Microcomputer. (312) 495-9889. IA: Davenport: Memory Bank, (319) 386-3330. MA: Waltham: Computer Power, (617) 890-4440. MD: Silver Springs: Computers Etc., (301) 588-3748. Towson: Computers Etc., (301) 296-0520. MO: Florissant: Computer Country, (314) 921-4434. NJ: Cherry Hill: Computer Emporium. (609) 667-7555. Iselin: Computer Mart of New Jersey, (201) 283-0600. NY: Endwell: The Computer Tree, (607) 748-1223. NYC: Computer Mart of New York, (202) 686-7932. White Plains: The Computer Corner, (914) 949-3282. NC: Raleigh: ROM's 'N' RAM's, (919) 781-0003. OH: Akron: The Basic Computer Shop, (216) 867-0808. OR: Beaverton: Byte Shop Computer Store. (503) 644-2686. Portland: Byte Shop Computer Store, (503) 223-3496. PA: King of Prussia: Computer Mart of Pennsylvania, (215) 265-2580. RI: Warwick: Computer Power, (401) 738-4477. TN: Kingsport: Microproducts \& Systems, (615) 245-8081. TX: Arlington: Computer Port, (817) 469-1502. Arlington: Micro Store, (817) 461-6081. Houston: Interactive Computers, (713) 772-5257. Houston: Interactive Computers, (713) 486-0291. Lubbock: Neighborhood Computer Store. (806) 797-1468. Richardson: Micro Store, (214) 231-1096. UT: Salt Lake City: Home Computer Store, (801) 484-6502 VA: McLean: Computer Systems Store, (703) 821-8333. WA: Bellevue: Byte Shop Computer Store, (206) 746-0651. Lynnwood:
Byte Shop Computer Store, (206) 775-7436. Seattle: Byte Shop of Seattle, (206) 622-7196.
WI: Madison: The Madison Computer Store, (608) 255-5552. Milwaukee: The Milwaukee Computer Store, (414) 445-4280. DC:
Georgetown: Georgetown Computer Emporium, (202) 337-6545. CANADA: London, Ontario:

The Computer Circuit Ltd., (519) 672-9370. Toronto, Ontario: Computer Mart Ltd., (416) 484-9708. Vancouver, B.C.: Basic Computer Group Ltd.. (604) 736-7474. ARGENTINA: Buenos Aires: Basis Sistemas Digitales. 93-1988 or 57-7177. AUSTRALIA: Prospect: A.J.F. Systems and Components Pty. Lid., 269 1244. Sydney: Automation Statham, (02) 709.4144. BELGIUM: Bruxelles: Computerland, 02/511.34.45. COLOMBIA: Bogota: Video National, 326650. DENMARK: Copenhagen: Peter W. Holm Trading ApS 01-543466. MEXICO: Mexico City: Industrias Digitales, (905) 524-5132. SPAIN: Barcelona: Interface S.A., (93) 301 7851. SWEDEN: Stockholm: Wernor Elektronik, (0) 8717-62-88.
UNITED KINGDOM: Huntingdon, England: Comart, Ltd., (0480) 74356. London: The Byte Shop Lid., 015542177 . VENEZUELA: Los Ruices, Caracas: Componentes Y Circuitos Electronicos TTLCA, 355591.


# Sol.The small computer that won't fence you in. 

A lot of semantic nonsense is being tossed around by some of the makers of so-called "personal" computers. To hear them tell it, an investment of a few hundred dollars will give you a computer to run your small business, do financial planning, analyze data in the engineering or scientific lab - and when day is done play games by the hour.

Well, the game part is true. The rest of the claims should be taken with a grain of salt. Only a few personal computers have the capacity to grow and handle meaningful work in a very real sense. And they don't come for peanuts.

## Remember, there's no free lunch.

So before you buy any personal computer, consider Sol ${ }^{\boxplus{ }^{®}}$ It costs more at the start but less in the end. It can grow with your ability to use it. Sol is not cheap. But it's not a cielusion either.

Sol small computers are at the very top of the microcomputer
spectrum. They stand up to the capabilities of mini systems costing four times as much.

No wonder we call it the serious solution to the small computer question.

Sol is the small computer system to do the general ledger and the payroll. Solve engineering and scientific problems. Use it for word processing. Program it for computer aided instruction. Use it anywhere you want versatile computer power!

## Build computer power

 with our software.At Processor Technology we've tailored a group of high-level languages, an assembler and other packages to suit the wide capabilities of our hardware.

Our exclusive Extended BASIC is a fine example. This BASIC features complete matrix functions. It comes on cassette or in a disk version which has random as well as sequential files.

Processor Technology FORTRAN is similar to FORTRAN IV and
has a full set of extensions designed for the "stand alone" computer environment.

Our PILOT is an excellent text oriented language for teachers.

## Sold and serviced only by the best dealers.

Sol Systems are sold and serviced by an outstanding group of conveniently located computer stores throughout the U.S. and Canada.

For more information contact your nearest dealer in the adjacent list. Or write Department B, Processor Technology, 7100 Johnson Industrial Drive, Pleasanton, CA 94566. Phone (415) 829-2600.

In sum, all small computers are not created equal and Sol users know it to their everlasting satisfaction.
rial emphasizes the heuristic programming school of thought, which favors the methods that produce the maximum amount of inte/ligence, rather than those schools that try to model human thought processes. Each chapter in this section describes the terminology, basic concepts, and techniques of the subject. The game playing chapter is useful for readers interested in designing sophisticated game playing programs.

These last chapters describe the most impressive "intelligent" programs in several fields: Guzman's See, which analyzes and recognizes solid geometric forms from a video picture; Samuels' checker playing program, one of the most successful game playing programs; the theorem proving Logic Theorist and the General Problem Solver (both by Newell, Shaw, and Simon); Weizen-
baum's Eliza and Raphael's Sir, both written to appear to understand conversational English.

Each chapter ends with a complete bibliography and a short set of exercises. A lot of material is presented in a short space, and the readability of the book varies with the reader's familiarity with the basic concepts of the subject being presented. Except for this one necessary shortcoming, the book still manages to cover some of the most important ideas and programs in computer science history. The section on biological information processing systems augments the book's value.

## Gregg Williams <br> 1605 Eastmoreland \#3 Memphis TN 38104

BASIC Programming for Scientists and Engineers by Wilbert $N$ Hubin Prentice-Hall Inc, Englewood Cliffs, NJ 1978
$\$ 9.95$ paperbound

With personal computers currently following a geometric growth curve, I think BASIC will become the Esperanto of the cognoscenti; it nearly is now. Since the professional community forms a large user group, I feel the science and engineering people will need the ability to work in other languages besides the ubiquitous FORTRAN. Mr Hubin's fine book is one of the best first books of BASIC that I have seen. It is suitable for both the experienced programmers seeking to add BASIC to their repertoires, and for the beginning science students who need both computer and technical problem solving experience.

The first portion of the book is devoted to learning the language. The various statements of BASIC are defined and illustrated, and there is a discussion of elementary terminal usage as well as hints for using BASIC in the most efficient manner. Each type of statement has review questions and problems for each subsection, and, for the insecure among us, answers. Hints on troubleshooting are a nice bonus for the newcomer, since it takes a little ACL (accumulated computer lore) before one develops a fecl for debugging code. Segments of programs show just how code consisting of BASIC statements can be used to accomplish the reader's purpose.

The chapter on flowcharting ably demonstrates the fundamentals of this art, discusses their applications, and then provides a diverse sampling of problems to sharpen the reader's skills. The author's editorial on flowcharting may even bring old hands back to the fold of those who document programs before they become operational. Handily, once again, solution flowcharts are in the appendix.

The concluding two chapters are devoted
to solving technical problems with a computer. The problems deserve a mention here, since they form a nucleus of problems suitable for a science course. Equations of motion, centers of mass, Hermite polynomials, and others serve to show the student how to apply the computer to classroom concepts. The range of problems is superb, from simultaneous equations and least squares fit to solutions of differential equations and error analysis. Each application mastered will mean a valuable addition to the reader's skills. The problems are drawn from the gamut of the engineering ranks and the physical sciences, and footnotes refer the reader to the journals of science. Completion of these exercises will give the practitioner a mastery of BASIC and a few fundamentals of science.

The appendices offer a summary of BASIC statements and the meaning of each. There is a short example of terminal usage employing a Digital Equipment Corp PDP-11 as an example. Especially handy is the section on BASIC error messages, although it is a bit brief. In familiarizing yourself with a new machine or language, deciphering the error messages is usually a headache. The computer's opinion of the defects in a program is often expressed in a cryptic manner.

While machines vary, beginners' mistakes do not, and the common ones are listed. In addition, there is a useful index. The bibliography focuses on books applying computers to the physical sciences. Throughout the book, the print is well-displayed and easy to read. If you are thinking of learning BASIC, think of this book.

Noal K Julkowski
18755 Van Buren St
Salinas CA 93901 ■


# INTERTEC'S <br> INTERTUE 

VIDEO DISPLAY TERMINAL
The InterTube Video Display Terminal is truly representative of the latest state-of-the-art advances in microprocessor technology. Its basic teletypewriter compatability combined with its numerous "smart" terminal features satisfy the universal requirement for a low-cost, high performance video terminal.
You get everything you need for cleaner input and faster throughput. An upper and lower case character set displayed on a sharp $8 \times 10$ dot matrix. A full 24 line by 80 character screen. A status line which is displayed in half-intensity. A complete ASCII keyboard with an 18-key numeric pad.
You get full cursor addressing, automatic repeat of all keys, individual backspace and shiftlock keys. A graphics mode to facilitate easy design and display of all types of forms.
And you get everything your operators need to make their jobs a pleasure. A hooded display that cuts glare and gives extra privacy. A wide bandwidth monitor for sharp images everywhere on the screen. Below-the-line character descenders to make reading easier. A programmable white-on-black or black-on-white display, and a self-test mode for easy maintainability.

You get high powered text editing with such features as character and line insert/delete, full and/or partial block transmit, programmable end-of-line terminators, and protected fields. All standard. And all for a retail price you won't believe . . . only \$874. Incredible!

## ATTENTION RETAILERS:

InterTube Terminals are easy to sell for one simple reason. They outperform the competition so well that it's embarrassing to have any other terminal on display. Add to that InterTube's rugged design which insures you of the reliability that brings customers back. And modular design engineering that makes servicing a snap!
But best of all, the InterTube is readily available. Just a quick call and you'll have units in stock. Immediately! And our scheduled delivery program will help you keep them in stock.
Good margins, good service, good delivery. Simple? You bet it is! InterTube dealerships are now available in many areas. Contact us today and start selling from stock tomorrow!


NTETTEC

## Sources of Numerical Error

## Daniel R Buskirk <br> POB 211

The Rockefeller University New York NY 10021

A growing number of microcomputer enthusiasts are finding the need to perform control operations, evaluate complicated mathematical expressions and analyze statistical data. In short, many hackers want to tackle problems conventionally left to larger computers. To do this, they must become acquainted with error analysis.

Programmers need to be concerned about errors in any program involving the evaluation of a function or algebraic expression, or one which involves a large number of simple but repetitive operations. Even in control applications, it is often critical to be aware of the potential for error.

What do we mean by error? The numerical analyst, a professional mathematician involved with the design and analysis of numerical algorithms, recognizes three distinct types of error. The first is the blunder, which is not an error at all in the mathematical sense. A blunder is a gross error: a mistake in program logic, a typographical error, or perhaps only a misplaced decimal point. The mathematician, like the rest of us, must shrug his shoulders at a blunder, and hope to do better next time. Blunders need not concern us here.

Certainly blunders account for the vast majority of errors; but what other types of errors are there if we ignore blunders? One type is the truncation error. For example, take the infinite series representation of the function $\sin (x)$ :

$$
\sin (x)=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$


#### Abstract

About the Author Daniel Buskirk is currently a graduate fellow at Rockefeller University, where he is studying neurobiology. He has a bachelor's degree in mathematics and zoology. His current professional interest is the application of mathematical and computer methods to the study of neuronal structure. When not working, he enjoys photography, playing the piano, and, of course, fiddlling with microcomputers.


If we were to use this relation to evaluate $\sin (x)$ in a computer, we could not carry this series on forever. Whenever we stop, we have failed to evaluate the remaining terms in the expression, or truncated the series. Those who understand a little calculus will recognize that this series converges; that is, it gets arbitrarily close to the correct value when sufficiently many terms are calculated. But there must always be a small but finite truncation error (if this computation is carried out on a digital computer).

Another calculation involving truncation error is the evaluation of integrals using the trapezoidal rule. Though an infinite series of trapezoids, each approaching zero width, will give us the area under the curve (its definite integral) exactly, any computer evaluation must settle for a finite number of trapezoids. Thus there will be truncation error. To be sure, it is generally possible to avoid the consideration of truncation error by simply requiring that the truncation error be less than the precision of the whole calculation. However, the clever programmer recognizes that there are usually several different infinite series representations of any function. Often, one of these series will require significantly fewer terms to come within the required precision.

The error of most concern to numerical programmers is not truncation error but rather roundoff error. Since the word length in most computers is fixed, any number that exceeds this length must be rounded off before it can be stored in the computer's memory. This error is the most significant, so we shall consider it in more detail.

Although almost all "big" computers store numbers in binary digits, the following examples are given in base ten because it is more familar (and it is similar to the binary coded decimal format often used in microcomputer floating point packages).

Most computers store a real number by breaking it down into a mantissa and an exponent, much like scientific notation. A word which looks like this:

## Our Two Bits



Bit Pad ${ }^{\text {TM }}$ is the low-cost digitizer for smali computer systems. Better than a joystick or keyboard for entering graphic information, it converts any point on a page, any distance into its digital equivalents. It's also a menu for data entry. You assign a value or an instruction to any location on the pad. At the touch of a stylus, it's entered into your system.

Who can use it? Anyone from the educator and the engineer to the hobbyist and the computer games enthusiast. The data structure is byte oriented for easy compatibility with small computers, so you can add a power supply, stand alone display, cross-hair cursor and many other options.

Bit Pad by Summagraphics. The leading manufacturer of data tablet digitizers. Bit Pad. The only words you need to say when considering digitizers.
$\$ 1,000$ creativity prize. Just write an article on an original Bit Pad application and submit it to any national small-computer periodical. If the editors publish it-and the decision is solely theirs-Summagraphics will pay you $\$ 1,000$.
 Phone (203) 384-1344. TELEX 96-4348

Dealer inquiries invited

would represent the real number $0.7352 \times$ $10^{5}$ or 73520 . Now, if we wish to store a number larger than four decimal places, we must round it off. (It is true that our exponent here is limited to two decimal places. Any exponent with three or more places in this case represents an overflow condition. Since overflow is generally easily avoided, we will not discuss it here.) Consider the numbers $8,931,724$ and 0.761253 . In the first case, rounding off to 0.8931 x $10^{7}$ represents an error of 724 . The error in rounding the second is $53 \times 10^{-6}$. Thus, it is most common for the numerical analyst to speak of relative error rather than absolute error. In this case, both errors will be on the order of $10^{-4}$ of the value being stored in memory.

If this error seems trivial, let us look at an example, albeit a contrived one (more realistic examples will be examined later). For instance, if we wish to evaluate the expression:

$$
\frac{1}{a-b}
$$

where $\mathrm{a}=.89136$ and $\mathrm{b}=.89134$. Rounding $a$ and $b$ and subtracting, we get 10,000 rather than 50,000, the correct answer. Thus our answer was off by a factor of five even though our round off error was very small. It might be argued that double precision calculation would have eliminated the problem completely. Clearly, accuracy increases with increased word length, but roundoff never disappears. Since some hand calculators use up to 13 decimal digits in storing numbers while displaying ten digits, we might expect them to have "more than enough" accuracy. But in many engineering and statistical problems, calculators can make significant errors. The reader concerned with calculator accuracy might wish to read the short article by Bernard Cole in the November 251976 issue of Electronics.

The reason for the problem with roundoff, even with 13 digit accuracy, is the situation most frustrating for numerical programmers. Roundoff occurs at every step of any program. In a very long program, roundoff error may have been introduced many millions of times. This error may propagate itself and accumulate into a very large error in the result. Programs in which this propagation of error is likely to occur (finding the inverse of a large matrix, for
instance) are generally so complicated that it is impossible to predict precisely what the effect of constant rounding off will be. Often the numerical analyst resorts to probability theory to get an idea of how much error is likely to be in the results.

Errors often become critical when functions are calculated. Let us assume we have a value for the variable $x$ stored in memory. There is some error associated with $x$ (perhaps roundoff error, or maybe x is the result of a physical measurement). We'll call this error $\delta$. Thus $x=x_{0}+\delta$, where $x_{0}$ is the unknown true value of $x$. It may be very easy to calculate some function of $x, f(x)$, but what is the error of the result? Let us define the error of the result as $\epsilon$. Then:

$$
f\left(x_{0}\right)+\epsilon=f\left(x_{0}+\delta\right)
$$

If we know our initial error $\delta$ is small, we would like to assume the error $\epsilon$ is small as well. If the function is simple, or involves only one variable, we can be confident the resulting error is not large if neither $\delta$ nor the derivative of the function at $x_{0}$ is large. But what about functions of more than one variable? What about complex algorithms such as the solution to simultaneous equations, often done using a process mathematicians know as Gaussian elimination? Very often, small errors in the input values will yield results which are off by a significantly large amount. So large, in fact, that the results are worthless and the programming is futile. This situation is distressingly common in everyday problems in science, engineering and the social sciences. Numerical analysts call a problem well posed if small errors in input still result in a reliable answer. However, even a well posed problem can be solved inaccurately if the programmer has not chosen his algorithm cautiously.

With all this talk about errors, what can be done? Is there any hope at all of obtaining consistently reliable results? Unfortunately, there are no general methods. However, the programmer who is aware of how errors can occur is in a better position to compensate for them. For instance, let's look at the general quadratic equation:

$$
x^{2}+2 b x+c=0
$$

[Note: The expression on the left side of this equation is equivalent to the familiar form used to generate the quadratic formula, $a x^{2}+b x+c$. However, it leads directly to the computationally simpler form of the two roots $\mathrm{X}_{1}$ and $\mathrm{X}_{2} \ldots \mathrm{CM}$ ]

If we have a computer of word length $t$, we might reasonably hope to solve for $x$ by using the formulas

$$
\begin{aligned}
& x_{1}=-b+\sqrt{b^{2}-c} \\
& x_{2}=-b-\sqrt{b^{2}-c}
\end{aligned}
$$

These formulae work well in most cases, but the astute programmer should notice that there is a problem if $\mathrm{b}<0$ and

$$
\frac{|\mathrm{c}|}{\mathrm{b}^{2}}<10^{-\mathrm{T}}
$$

In that case:

$$
x_{2}=-b-\sqrt{b^{2}-c}
$$

will give an erroneous result. A programmer who tests for this condition can then calculate the correct result simply, using the relation

$$
x_{2}=c / x_{1}
$$

For another example, consider the experimenter who wishes to record the temperature of his home hourly, 24 hours a day, and print out the average of the last 24 readings (perhaps he also wants to execute some control operation based on this average). Being inclined toward efficiency, this fellow decides that after having added 24 readings for the first average, for each of the succeeding averages he need only add the newest reading and subtract the oldest from his running total, rather than read all the readings every hour. What might happen here is that small errors which occur during the arithmetic are never disposed of and can accumulate without any upper limit. Perhaps the error might eventually become as large as the measurement itself! If this programmer were not quite so "efficient" and calculated using the last 24 readings each hour, the error would be, at most, 24 times the error for each data point.

Folk wisdom claims, "There's more than one way to skin a cat." Likewise, there's more than one way to do most calculations. $A+B-A$ does not always equal $B$ to a computer. Algebra tells us that $A(B+C)$ $=A B+A C$, but again, the computer sometimes disagrees. It is the programmer's responsibility and challenge to understand his algorithms and to choose them wisely. The reward for the trouble is results he can trust!■

## REFERENCE

Ralston, Anthony, A First Course in Numerical Methods, McGraw-Hill, New York, 1965.

## APPLE OWNERS: <br> You chose the best. Now, make it better!

With our exclusive Superchip (ROM firmware) your APPLE can deliver the best of both-graphics and text-processing.


- Full ASCII character set (lower case)
- 31 other, useful non-ASCII characters
- User-defined characters with our Character Edit Cassette
- Enhanced editing capabilities for program and data modification And, it works with your existing APPLE programs-Integer BASIC and Applesoft.

- The Character Edit program defines each new character in a magnified format with a few easy key strokes.

- Since you can now build characters, you can also create new character setsforeign alphabets, music, games, whatever.

The Superchip plugs into your APPLE with no modification.


Shipping Charge (each) \$.75
I attach check or money order for \$ $\qquad$ -.

Or, charge my: $\square$ VISA $\square$ Master Charge
Bank Card No.
Expiration Date
Name $\qquad$
Address
City ___ State________

Signature
Telephone orders accepted with charge card:

-     -         -             - 

14 Standish Cir
Andover MA 01810

## A Comparison of

Bar Code Encoding Schemes

The purpose of this article is to compare some of the encoding schemes which might be used for bar code software. The three most important characteristics of an encoding scheme are:

- Packing efficiency: how many data bytes per printed page.
- Vulnerability to wand speed changes and other timing errors.
- Number of storage bytes required for timing information, assuming post read processing of timing data.

Other less important factors include human readability and the constancy of DC output level.

Three methods have previously been defined in "A Proposed Standard for Publishing Binary Data in Machine Readable Form," by Walter Banks and Carl Helmers, November 1976 BYTE, page 10: bar width modulation (format 1), ratio recording (format 2), and fixed gap bar width modulation (format 3). The other schemes listed in table 1 include frequency modulation (FM), phase encoding (PE), nonreturn to zero inverted (NRZI), synchronized nonreturn to zero inverted (SNRZI), modified frequency modulation (MFM), group coded recording (GRC) and zero modulation (ZM).

In phase encoding (PE), a 1 is represented by a transition from white to black and a 0 by the opposite transition. Additional transitions are added to account for successive 1 s or 0 s. The frequency modulation (FM) encoding method provides a transition in either direction at every bit boundary, and an additional transition to mark each 1 . The resulting code is very similar to that created by the phase encoding method, since both provide timing information at least once per bit.

The nonreturn to zero inverted (NRZI) encoding scheme generates a black to white (or vice versa) transition for every 1 . The absence of a transition denotes a 0 . This method has the disadvantage that no timing information is generated during a string of Os. The synchronized nonreturn to zero inverted (SNRZI) method adds a 1 to every byte to guarantee at least one piece of timing information per byte. If the redundant clock transitions are eliminated from the frequency modulation code, the number of transitions per bit is halved, doubling the possible density of data for a given minimum module width; this is modified frequency modulation (MFM).

Zero modulation (ZM) and group coded recording (GCR) are modifications of the nonreturn to zero inverted method which are designed to guarantee timing information at least once every two or three bits, respectively. In group coded recording, each 4 bit

Table 1. Comparisons of various encoding schemes. Overheads such as parity and sync bytes were not included in the packing density calculations. The maximum timing bytes per data bit were determined assuming perfect bar codes and do not allow for such problems as dirty bar codes.

| Encoding scheme | Packing density |  | Timing tolerances |  |  | Memory requirement |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average data <br> bit duration <br> ("modules") | Data bytes <br> per page | Absoluate timing <br> (tolerance <br> ("modules") | Wand speed <br> tolerance | Constant DC <br> level | Maximum timing bytes <br> per data bit |
|  | 3 | 1170 | 0.5 | $25 \%$ | No | 2 |
| Format 3 | 2.5 | 1400 | 0.5 | $25 \%$ | No | 2 |
| FM/PE | 2 | 1750 | 0.5 | $25 \%$ | Yes | 2 |
| Format 1 | 1.5 | 2330 | 0.5 | $25 \%$ | No | 2 |
| NRZI | 1 | 3500 | 0.5 | $6 \%$ | No | 1 |
| SNRZI | 1.125 | 3100 | 0.5 | $10 \%$ | No | 1 |
| MFM | 1 | 3500 | 0.25 | $12.5 \%$ | No | 1.125 |
| GCR | 1.25 | 2800 | 0.5 | $16.7 \%$ | No | 1 |
| ZM | 1.125 | 3100 | 0.25 | $12.5 \%$ | Yes | 1.25 |

## The TARBELL Connection

In an effort to offer products that meet the continually changing demands of the microcomputer industry, TARBELL ELECTRONICS is pleased to offer immediate delivery of these quality components and operating software. All TARBELL products are available from computer store dealers every where.

## Tarbell Floppy Disk Interface

- Plugs directly into your IMSAI or ALTAIR and handles up to 4 standard single drives in daisychain.
- Operates at standard 250 K per second on normal disk format capacity of 256 K bytes.
- Works with modified CP/M Operating System and BASIC-E Compiler.
- Hardware includes 4 extra IC slots, built-in phantom bootstrap and onboard crystal clock. Uses WD 1771 LSI chip.
- Full 6-month warranty and extensive documentation.
- Kit \$190 . . . . . . Assembled $\$ 265$.

Specify drive for assembled units. Complete disk subsystems with operating software available. Please inquire for details.

## Tarbell Disk BASIC

- Runs on 8080, 8085 or Z80
- Searches a file quickly for a string.
- Up to 64 files open at once.
- Random Access.
- Assignment of $1 / O$.
- Alphanumeric line labels allowed.
- Read and Write string or numeric data.
- Unlimited length of variable names and strings.
- Procedures with independent variables.
- Number system 10 digits BCD integer or floating point.
- Chain to another program.
- Cause programs to be appended onto programs already in memory.
- Cause interpreter to enter edit mode using 15 single character edit commands.
Occupies 24 K of RAM. Tarbell BASIC on CP/M Disk . . . . . . . . . . $\$ 48$. Source on paper or CP/M Disk . . . $\$ 25$. CP/M and BASIC-E on disk with manuals.
$\$ 100$.


## Tarbell 32K RAM Memory

- 32 K Static Memory
- S-100 Bus Connector
- 9 regulators provide excellent heat distribution.
- Extended addressing (bank switching.)
- Phantom line.
- Low power requirement.
- 20-Page operating manual.
- Full 1 -year warranty.
- Assembled and tested full price only $\$ 625$
- 16 K version also available, assembled and tested only $\$ 390$.


## Tarbell Cassette Interface



[^1]
## Tarbell Cassette BASIC

Includes most features of ALTAIR Extended BASIC, plus these added fcatures:

- Assignment of I/O.
- Alphanumeric line labels.
- Unlimited length of variable names and strings.
- Number system 10 digits BCD integer or floating point.
- Procedures with independent variables.
- Read and Write string data.
- Multi-file capability.

Full price with complete documentation
Prepaid, COD, or cash only. California residents please add 6\% sales tax.
ALTAIR is a trademark/tradename of Pertec Computer Corporation CP/M is a trademark/tradename of Digital Research


Technical Forum is a feature intended as an interactive dialog on the technology of personal computing. The subject matter is open-ended, and the intent is to foster discussion and communication among readers of BYTE. We ask that all correspondents supply their full names and addresses to be printed with their commentaries.
unit of data is mapped into a unique 5 bit word chosen to assure no more than two consecutive 0 s . In zero modulation each bit is mapped into two bits and the result encoded in nonreturn to zero inverted format. The net result is comparable to that provided by group coded recording with the advantage, useful in the magnetic recording field, of a constant DC level.

All these schemes can be handled relatively simply in software. The deciding factor should be made on other grounds.

Table 1 compares the number of data bytes which can be printed on an 8.5 by 11 inch ( 21.6 by 27.5 cm ) page, assuming a narrow bar width of 0.014 inches ( 0.04 cm ) and a line to line spacing of 0.15 inches $(0.38 \mathrm{~cm})$. Several of the methods listed will provide between 2500 and 3500 bytes per page. Since packing density is not particularly critical in this application, the choice should be made on the basis of the remaining and crucial criterion: vulnerability to wand speed changes and other timing errors.

It is in this area that the requirements of hand held optical reading diverge from those of machine driven magnetic recording. In the magnetic recording field, short term variations of the relative velocity between the medium and the head are held to a mini-

mum. The designer's main concern is with the absolute value of the permissible phase error; ie: the amount by which timing error may apparently move a transition before playback errors occur. The speed of a hand held wand may vary widely from place to place on the data track. In this case we are concerned with the permissible percent speed change which can occur between two transitions relative to the average speed over the previous few transitions. This may be calculated as the percentage ratio of the permissible phase error to the maximum time which can occur between transitions.

Table 1 expresses the timing tolerance of each scheme in terms of the permissible speed change and the absolute timing error. Since the modified frequency modulation and zero modulation methods have to distinguish between bars which are $1,1.5$ and 2 modules wide, they are both twice as sensitive as the others to absolute errors such as printing tolerances, and may be rejected for bar code printing for this reason.

The choice between the remainder may be made on the basis of a compromise between packing density and speed tolerance. The percent speed variations listed in table 1 are permissible only in the ideal case, in which printing tolerances and other timing errors are zero. In real life, short term consistency of wand speed is more critical than table 1 makes it appear to be. ASCII code printed by the nonreturn to zero inverted method can have eight successive zeros, even if the null character is not permitted. This leads to a very low speed change tolerance. The synchronized nonreturn to zero inverted method reduces the number of consecutive zeros to five by introducing an extra 1 per byte. Nevertheless, the speed tolerance is still low and both methods may be eliminated for this reason.

Of the remainder, group coded recording has the greatest packing density, by 20 percent, but the others have a 50 percent greater tolerance to speed variations. It is questionable whether the software complication and lower speed tolerance of group coded recording are worthwhile in this application.

This leaves frequency modulation, phase encoding, bar width modulation, ratio recording and fixed gap bar width modulation as alternatives. All these methods have the same speed and absolute timing tolerances. The choice may be made on the basis of packing density. The bar width modulation method comes out far ahead of the other methods. Bar width modulation is the logical choice for the encoding of printed software intended for recovery by a hand held light wand.■

## BYTE® Bugs

Puzzling Machine Language Puzzler
The "Machine Language Puzzler" in BYTE January 1979, page 52 was very interesting. However, 1 must disagree with the author's detailed analysis of how the program works. It is a CALL FFFD instruction located at address FFFD which repeatedly calls itself, pushing a return address of 0000 on the stack, until all of memory is zeroed including the program itself.

Let's take a detailed look at what happens after memory locations 0001 through FFFC have been zeroed. First, the CALL FFFD instruction is fetched from locations FFFD, FFFE, and FFFF. This causes the program counter to be loaded with FFFD, and Os are written into locations 0000 and FFFF. At this point the CALL instruction has been changed to a CALL 00FD, but the program does not yet branch to address OOFD as stated. The next instruction is still fetched starting at address FFFD, since the CALL FFFD was fetched from memory before location FFFF changed from FF to 00 . Now the CALL OOFD is fetched, $0 s$ are written into locations FFFE and FFFD, and the program starts executing NOPs at address 00FD. Note that no NOPs are executed at all until all of memory has been zeroed.

In the case where memory only exists at addresses 0000 to 00 FF and FF00 to FFFF, operation of the program is very complex. It proceeds as above through zeroing all existing memory and branching to a NOP at 00FD. When the FF (RST 7) is executed at location 0100, a 0101 is pushed on the stack at locations FFFC and FFFB. Memory continues to fill up with 0101s until a 01 is written at location 00FF. Starting at this point the return address pushed on the stack may be 0101,0102, or 0103 depending on whether the RST 7 is executed at 0100,0101 , or 0102. Remember that one or two bytes of FF may be read as data of a LXI B, data instructions. The program ends up executing a complex sequence of $L X I B$, STAX $B$, and INX $B$ instructions in a loop starting at address 0038 and ending with a RST 7 instruction at 0100, 0101, or 0102. The program will keep changing itself as the stack wraps around forever.

It is still an interesting program. The net effect, in the first case, is still the same. I wonder if a similar program that zeros out all of memory including itself exists for other microprocessors as well?

Get a


## Not just a machine that emulates one.

The Pascal engine doesn't merely interpret P -Code, its instruction set is P-Code. This powerful computer runs the full UCSD Pascal Operating System and includes all of the following items:

- Pascal microengine ${ }^{\text {TM }}$ with 32 bit FLOATING POINT instructions including floating point MULTIPLY \& DIVIDE with provision for expanding instruction set to include double precision.
- 64 K bytes ( 32 K words) of RAM expandable to 128 K bytes. ( 64 K words)
- FLOPPY DISC CONTROLLER with
direct memory access (DMA)
switch selectable for:
- single, or double density
- 8" floppy or mini floppy
-1 to 4 drives (same type)
- Complete UCSD Pascal Operating System
-PASCAL compiler —File Manager
-BASIC compiler - Screen oriented editor
-GRAPHIC package -Debugger
- Two RS-232 asynchronous ports (110-19,200 baud)
- Two 8-bit parallel ports
- Auto test microdiagnostics
- Documentation
\$2900 Complete with stylized low profile housing and power supply

19th floor, 61 Broadway, New York, N.Y. 10006 212-480-0480

# Smart Memory 

Randy C Smith
115 Crosby Ct \#2
Walnut Creek CA 94598

## About the Author

Randy Smith is employed by Semionics Associates as the design engineer for the REM S-100 board and is the coinventor of REM. His personal interests include artificial intelligence research, especially language comprehension.

There is a useful distinction being made today between two types of display terminals: so-called "dumb" terminals perform the necessary functions of data reception, transmission, and display. Their intelligent counterparts, however, are capable of performing sophisticated data manipulations on their own, relieving the host processor of some of the routine burden. The same distinction could be drawn from memory systems. In most machines the memory component forms a passive blackboard: its function, the principal one of any memory, is to remember. Yet memory systems can be built which take a more active processing role.

What kinds of things could a smart memory do? The normal random access memory has unique addresses for its cells, and an address must be provided to read or write information, one cell at a time. The concept of address or location as a necessary attribute of content may be difficult for beginning programmers to grasp. A far more palatable idea to the human thinker is that words, shapes, or sounds serve to "call up" the information associated with them.

Suppose we distribute some intelligence throughout our special memory system, animating it by changing each memory word into a demon. These demons are jumbled about together in a darkened cave, and their principal characteristic is that they

$X=$ DON'T CARE

EXAMPLE FORMAT

| ITEM <br> CLASSIFICATION | GENERIC <br> GROUP | SUBTYPE | QUAN <br> TITY |
| :--- | :--- | :--- | :--- |

Figure 1: An example of full word parallel information retrieval.
recognize when they are being spoken about. Aside from that, they are rather lazy, working only when standing up, and sitting down for a snooze at the earliest opportunity. For example, our demons might represent inventory information for a hardware store.
"Alright, everybody on your feet!" (Otherwise nobody would pay attention.)
"I want anyone who knows anything about hammers."
(There is a resounding thud as all sorts of appliance demons, chainsaw demons, etc sit down and resume their naps.)
"Specifically, ball-peen hammers."
(Claw hammer and jackhammer demons drop out, leaving, in this example, one solitary demon.)
"How many do we have on hand?"
We did not need to know where the demon was who answered us. A reply to our query emanated from the mouth of the cave. We don't even know how many demons lurk inside - since all demons work simultaneously, we got our answer in a time independent of their number. Consider what this means for information retrieval: if the preceding "program" takes N microseconds for a file of 10 inventory items, and the file grows to $10,000,000$ items, the processing time required is still N microseconds. Therein lies one of the most tantalizing aspects of a memory system like this - adding more information (more memory) improves system performance:

- More itens are processed in the same time;
- There are no address space saturation or segmentation problems, since addresses are not used - a single bit signal (on/off) can distinguish accesses to this memory from normal addressed memory requests.

A memory having qualities like those just illustrated is called an associative memory or CAM (content addressable memory). Not too surprisingly, associative computer memories in varying forms have been proposed many times before. The reasons why people

|  |  | $\stackrel{\text { O}}{\mathrm{O}}$ | $\begin{aligned} & \text { 山 } \\ & \hline \end{aligned}$ | $\stackrel{\times}{\underset{\sim}{\omega}}$ | $\frac{\mathfrak{x}}{\mathbb{x}}$ | $\underset{\sim}{\underset{\sim}{\sim}}$ |  | ETC | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | 191 | (10) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | ENGINEER | 45 | F | BLD | BL | - | - | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | SECRETARY | 33 | F | - | - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | - | - | - | - | - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| JACKSON | sue | - | - | - | - | - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | JANITOR | 50 | M | - | - | 8/78 | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | MANAGER | - | F | - | - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| JONES | MIKE | ENGINEER | 38 | M | BR | BR | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| - | - | - | - | F | - | - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | ENGINEER | 41 | M | BR | BL | - | - | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | - | - | - | - | - | - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| JETER | BOB | ENGINEER | 27 | M | BR | BR | 5/78 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

(I) SET
(2) $J O B=" E N G I N E E R "$
(3) HAIF = "ERR"
(4) EYES = "BR"
(5) LASTNAME = "J??????"
(6) AGE $>25$
(7) AGE < 30
(8) $\mathrm{SEX}=$ "M"
(9) READ(LASTNAME,FIRSTNAME
(10) READ(LASTRAISE)
(including the author) "reinvent" the concept with some regularity are twofold: the descriptions of this form of memory rarely make it past technical parallel machine architecture symposia or journals into the more commonplace world; and the beauty and power of a memory that can by its very nature eliminate or ease searching, sorting, table lookup, and pattern matching is so striking-the idea is so natural in human terms that it occurs to many individuals.

Figure 1 shows a conceptual associative memory word holding information from the previous example. It can be seen that a long word is desirable to store related data. Exact match was the only comparison function used (and is the basic, sometimes only, associative function available in the integrated circuit forms of this memory). A mask is applied to all the words and selects the part of the words to be treated (either matched against, or read out). The comparand is the common information that all words test. Due to the length of associative words, some real desigus compare the words with the comparand one bit at a time (bit serial, word parallel). This reduces the amount of comparison logic and the size of the data paths to reasonable levels, although a full word comparison takes longer.

Comparisons are usually over lengths much less than the full word size, so the compromise is a good one. With each word
there is one separate bit of information for the response status, called the tag. The SET function forces the tags to their responding state (1), thereby activating all words initially. A good survey of associative memory articles and architectures is found in Yau and Fung. There is also a new, easy to follow book on the subject by Foster (see bibliography). The full word parallel design of figure 1 will be used for the examples, since it is the simplest conceptually. A more practical architecture that can be built for an S-100 computer will be outlined in part 2 .

## Selection

More intelligence can be added to our demons.
"Everybody up!"
(1) SET - Load personnel file from diskette.
"Who, in my employ, - an engineer, brown hair and eyes,
(2) $J O B=$ "engineer"
\& (3) HAIR = "br"
\& (4) EYES = "br"
last name "J . . . " something, between 25 and 30 years old - has been dating my daughter?"

Figure 2: When selecting a final response, check that one of the response bits is still set after all questions have been asked and answered.

## For your SWTP 6800 Computer...

 PERCOM's'"FLOPPY DISK SYSTEM

## the



Ready to plug in and run the moment you receive it. Nothing else to buy, no extra memory. No "booting" with PerCom MINIDOS", the remarkable disk operating system on EPROM. Expandable to either two or three drives. Outstanding operating, utility and application programs.


## PERCOM

PERCOM DATA COMPANY, INC.
Dept. B 318 Barnes Garland, Texas 75042
(214) 272-3421

For the low $\$ 599.95$ price, you not only get the disk drive, drive power supply, SS-50 bus controller/interface card, and MINIDOS ${ }^{\text {ru }}$, you also receive:

- an attractive metal enclosure - a fully assembled and tested interconnecting cable $\bullet$ a 70 -page instruction manual that includes operating instructions, schematics, service procedures and a complete listing of MINIDOS ${ }^{\text {™ }} \bullet$ technical memo updates - helpful hints which supplement the manual instructions - a 90 -day limited warranty.


## SOFTWARE FOR THE LFD-400 SYSTEM

## Disk operating and file management systems

INDEX $^{\text {™ }}$ The most advanced disk operating and file management system available for the 6800. INterrupt Driven EXecutive operating system features file-and-device-independent, queue-buffered character stream I/O. Linked-file disk architecture, with automatic file creation and allocation for ASCII and binary files, supports sequential and semi-random access disk files. Multi-level file name directory includes name, extension, version, protection and date. Requires 8 K RAM at \$A000. Diskette includes numerous utilities . . . . . . . $\$ 99.95$ MINIDOS-PLUSX An easy-to-use DOS for the small computing system. Supports up to 31 named files. Available on ROM or diskette complete with source listing.
$\$ 39.95$

## BASIC Interpreters and Compilers

SUPER BASIC A 10K extended disk BASIC interpreter for the 6800. Faster than SWTP BASIC. Handles data files. Programs may be prepared using a text editor described below . $\qquad$ \$49.95 BASIC BANDAID ${ }^{m}$ Turn SWTP 8K BASIC into a random access data file disk BASIC. Includes many speed improvements, and program disk CHAINing \$17.95
STRUBAL $+^{\text {™ }}$ A STRUctured BAsic Language compiler for the professional programmer. 14-digit floating point, strings, scientific functions, 2-dimensional arrays. Requires 16K RAM and Linkage Editor (see below). Use one of the following text editors to prepare programs. Complete with RUN-TIME and FLOATING POINT packages $\$ 249.95$

## Text Editors and Processors

EDIT68 Hemenway Associates' powerful disk-based text editor. May be used to create programs and data files. Supports MACROS which perform complex, repetitive editing functions. Permits text files larger than available RAM to be created and edited.
\$39.95
TOUCHUP ${ }^{\text {TM }}$ Modifies TSC's Text Editor and Text Processor for PerCom disk operation. ROLL function permits text files larger than available RAM to be created and edited. Supplied on diskette complete with source listing
\$17.95

## Assemblers

PerCom 6800 SYMBOLIC ASSEMBLER Specity assembly options at time of assembly with this symbolic assembler. Source listing on diskette
$\$ 29.95$
MACRO-RELOCATING ASSEMBLER Hemenway Associates' assembler for the programming professional. Generates relocatable linking object code. Supports MACROS. Permits conditional assembly . $\$ 79.95$ LINKAGE EDITOR - for STRUBAL + '" and the MACRO-Relocating assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 49.95$ CROSS REFERENCE Utility program that produces a crossreference listing of an input source listing file ............. \$29.95

## Business Applications

GENERAL LEDGER SYSTEM Accommodates up to 250 accounts. Financial information immediately available - no sorting required. Audit trail information permits tracking from GL record data back to source document. User defines account numbers ........ \$199.95 FULL FUNCTION MAILING LIST 700 addresses per diskette. Powerful search, sort, create and update capability . . . . . . . . . . . . . \$99.95 PERCOM FINDER ${ }^{\text {T }}$ General purpose information retrieval system and data base manager $\$ 99.95$
'" irademark of PERCOM Data Company. Inc.

## Ordering information

To order, call toll free 1-800-527-1592. MC and VISA weicome. COD orders require $30 \%$ deposit plus $5 \%$ handling charge. Allow three weeks for delivery. Allow three extra weeks if payment is by personal check. Texas residents add $5 \%$ sales tax.

## NOW Add-on Mini-Disk for the TRS•80



- Trademark of Tandy Corporation

Dual and triple drives also available.


Requires 16K RAM, Level II BASIC and Expansion Interface.

## PERCOM DATA COMPANY, INC.

Dept. E 318 Barnes Garland, Texas 75042 (214) 272-3421

To Order Call 1-800-527-1592


## Text continued from page 55:

\& (5) LASTNAME = "J???????????"
\& (6) AGE $>25$
\& (7) AGE < 30
\& (8) SEX = " $m$ "
"Has he had a raise lately?"
(9) READ (LASTNAME, FIRSTNAME)
(10) READ(LASTRAISE)

Figure 2 shows another example of information retrieval, this time with a personnel file, and again with a single demon finally selected. Response of the demons is shown after each step. Any of the relational comparisons as well as exact match can be added easily to the function set. Information has been broken down into fields and field lengths the user deemed most valuable. Since this word format can be stored on floppy disk with the data, the driving program or operating system has casy access to it and can manipulate the mask to select

## Command

(1) SET
(2) MW FL1,FL2,FL3,FL4,OF 16
(3) ADD LASTMO TO STD
(4) REGION = ' $W$ '
(5) STD $>100$
(6) MW FL1,0
(7) SET
(8) REGION $=$ ' $E$ '
(9) STD $>75$
(10) MW FL2,0
(11) SET
12) REGION = 'C'
(13) STD $>50$
(14) MW FL3.0
(15) SET
(16) FL1,FL2,FL3 = 111 2
(17) MW FL4,0
(18) SET
(19) FL4 $=1$
(20) QUERY
(21) JUMP Z, (26)
(22) READ(LASTNAME,FIRSTNAME)
(23) PRINT(LASTNAME,FIRSTNAME)
(24) NXT
(25) JUMP (20)
(26) END

## Action

Activate all words.
Initialize all four flags at once."
STD $\leftarrow$ STD + LASTMO for all words.
Select western region salesmen.
FL1 $=0$ marks the members of this group with sales to date over $\$ 100,000$.

Eastern region salesmen with sales to date over \$75,000.

Central region salesmen with sales to date over $\$ 50,000$.

All salesmen not included in the three* subsets above have $F L 4=0$.

The union of the three subsets
Any members left in this set?
Transfer to statement 26 if not.
Read the specified fields of the first responder and print them.
Turn off first responder (select next one).
the field requested for each operation. A top level program could be as utterly readable as the one given with the example. So far, only the first step in utilizing information in the associative memory has been illustrated - the selection process. The overall set of entries is logically reduced by selection criteria to the subset of interest. Members of the smaller set may now be updated in parallel, or read out (in part, if desired) on some priority basis; the former involves parallel writing of the associative words, and the latter, responder resolution (when there is more than one answer).

## Multiwrite

Now that the demons we want are on their feet, what kind of work can they do besides checking their description? They can all be told to change it at the point specified by the mask (ie: all responding words can be made to change their values at once to the value on the comparand bus). This process of writing a common datum, in parallel into all responding words, is called multiwrite responders by Foster, and he calls associative memories possessing this ability CAPPS (content addressable parallel processors). Whole sets of items can be updated (eg: marking certain bills as paid), or, if the selection criterion is known to produce a unique result, more specific information can be written (change John Q Williams job title to manager).

Again, we can be sending these associative write commands into the interior of a dark cave. We know which demons are reacting, but we don't know where they are, nor do we care. The nearest use of address information occurs when the mask is changed to operate on a specific field (whose relative location inside each word has been previously established).

By setting the mask to enable the writing of only a single bit (or bits), parallel program flags can be kept with each word, recording the word's membership in some selected group, with the flag itself possibly becoming

Table 1: A complete information processing example with parallel update, and the use of disjunctive sets.


Wordsmith is the video text editing system you've been waiting for its power, flexibility and simplicity help you carve any text editing task down to size -in a way you can understand We wanted a system that allows you to think in traditional ways about text layout, yet at the same time makes the traditionally tedious operations such as cut and paste simple and fast. We think we've done it. We want you to decide for yourself

## Power

Page Oriented Philosophy. A document is a collection of pages. The screen displays one entire page at a time. Simple random access page flipping commands take you quickly to any page in the document. Equally efficient commands allow you to insert, delete, copy and move pages both within one document and across documents.


Extensive Block Manipulation Capabilities. Using "windows", portions of text, charts, etc., can be quickly and effortlessly moved around on the current page, or across pages. The shape and size of any window can be changed in real time, with the contained text automatically reformatting itself theeding word and paragraph boundaries) to conform to the new shape.

template template and hop from wind ow to windaw.

File Switching. Moving from document to document to examine, copy, move and change text is like rolling off a log. You're not confined to one disk file at a time anymore.


Change Text Shape

- Instantaneous Formatting. Compacting lextraneous blank deletion) and right justifying are simple commands that tidy up a full page or window's worth of text in the blink of an eye. Random access cursor movement, line and character insert and delete, line and page split and join, and a host of other line and character level commands help you put text in its place quickly and accurately.


## The <br> MOOROSMith'

## TEXT EDITOR

## Defining the New Generation of Text Editing

```
from Micro Diversions, Inc. 8455-D Tyco Rd. Vienna, Va. 22180 (703) 827-0888
```

- Direct $\mathrm{CP} / \mathrm{M}^{(6)}$ and North Star DOS compatibility
- Available for $40 \times 86,24 \times 80$ and $16 \times 64$ memory-mapped video boards
- Fully reentrant for efficient multi-programming environments (6K program space, 5 K data area)
- 8080 and $Z 80$ compatibility


## Ordering <br> Information: <br> $\$ 200$ <br> (Screensplitter ${ }^{\text {M }}$ Owners: \$BO) <br> Manual only: \$15

Check. VISA. Mastercharge

1. CP/M or North Star DOS version?
2. TTY or QUME interface?
3. Brand and memory address of video display board?
4. Ship on single or double density. $5^{\prime \prime}$ or $8^{\prime \prime}$ diskette?
part of future selection criteria. Alternatively, these flags might be used to save carry or overflow information during parallel arithmetic routines. Indeed, combining these program variables with further comparison sequences makes possible a whole list of parallel associative routines like:

## MAXIMUM <br> MINIMUM <br> NEXT GREATER THAN <br> NEXT LESS THAN <br> ADD or SUBTRACT constant ADD or SUBTRACT fields STRING SEARCH (pattern matching) SORT on any field.

Figure 3 demonstrates the method of flagging responding words, table 1 shows a complete information processing example with parallel update, and the use of disjunctive sets.

## Responder Resolution

When it becomes necessary to get information out of the words rather than just updating them in place, some form of arbitration is required to handle cases of multiple responders. It is useful to have a query function to tell if there are any responding words. "Is anybody in there?" Any demons sitting down and asleep would not answer,


ALL FLAGS ARE INITIALIZED TO A KNOWN STATE (O)

3) $A G E>50$
4) STATE = IL
5) MW FLAG, I

Figure 3: Multiwriting allows the user to write data into all locations that are responding at the same time.
and any amount of simultaneous yes replies would still be interpretable. In fact, any answer at all, except total silence, indicates there is at least one responder. A single, readable bit line on which each word ORs its tag (responder $=1$ ) would tell the central processor whether or not any active words were left. (With some analog hardware we might even count the number of responders by measuring the intensity of the answer.)

It is not acceptable to walk to the mouth of the cave and yell inside, "I want the name of anyone who speaks French." If only one standing demon meets this requirement, the answer you hear will be true, but in general you may expect to be greeted with an unintelligible mixture of voices. To handle the problem, a priority list can be implemented at the hardware level. All words in the system are daisy-chained together to one word arbitrarily defined as having the highest priority. When an associative read is executed, a small amount of time is allowed for the chain to select the highest priority responder, and that responder alone is enabled to place its requested field(s) on the data in bus to the processor. With a companion function, Next, which turns off the first responder, information may be extracted serially from each active word without addresses and without conflict.

Without addressing, we are able to do the following: select via content those words we want (in parallel); process them in place (in parallel); and read out their information (serially).

Entering data into an associative memory initially is a serial operation, so provision is often made for random access addressing. With absolute fixed addresses, associative memory may be quickly loaded from secondary storage or main memory through DMA (direct memory access) or block transfers. Random access reads and writes are both allowed. To save address space when using this addressable associative memory, the memory may be arranged into banks occupying the same locations. Random access memory requests affect only the addressed memory section whose bank is selected; associative instructions ignore bank information and activate the whole memory.

Given the addressing order now placed on the memory, an alternative to the priority list responder resolution hardware is available. The tags of words sequential in address space may be blocked into groups and fed to the central processor as data from special input ports or memory locations. The processor can then scan the bits in order for 1 s (responders). Since tag N represents word N in the associative mem-

Sound. VP-595 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. \$24:

Muslc. VP-550 Super Sound Board turns your VIP into a music synthesizer. 2 sound channels. Program control of frequency, time and amplitude envelope (voice) independently in each channel. Program directly from sheet music! Sync provision for controlling multiple VIPs, multitrack recording or other synthesizers. \$49:

Memory. VP-570 RAM Expansion Board adds 4 K bytes of memory. Jumper locates RAM in any 4 K block of up to 32 K of memory. On-board memory protect switch. \$95.

EPROM Programmer. VP-565 EPROM Programmer Board comes complete with software to program, copy and verify 5 -volt 2716 EPROMs-comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. $\$ 99$ :"

EPROM Interface. VP-560EPROM Interface Board locates two 5 -volt 2716 EPROMs ( 4 K bytes total) anywhere in 32 K of memory. VIP RAM can be re-allocated. $\$ 34$ : action games! 16-key keypad VP-580 with cable (\$15) connects to sockets provided on VP-590 Color Board or VP 585 Keyboard Interface Card (\$10)

# COSMAC VIP lets you add computer power a board at a time. 

With these new easy-tobuy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIP computer system starts at just \$249* assembled and ready to operate.

## Simple but powerful—not just a toy.

Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's

easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Take the first step now.
Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.
-Suggested retail price. COP18S711 does not include video monitor or cassette recorder. - Available 1st Quarter. 1979.

Photo 7: Video display of an inquiry to Semionics' associative memory board, REM, and the response. In the inquiry, ? is a don't care character which will match anything.

## 

## CHICSEX CERACD

## CHISSOM EONCE 12210 1928 $194-98-3261$

## CIIESOM $11 / 21-1910$ 19-26-119



16N9-CEESTUIEN-D LOS-ALTOS

632-0.E6CN-80 MTM.VIEM

266-LMMA-LY MTM.UIEY
ory, an absolute word address can be derived and information read random access style.

The accessing of data via address makes this second responder resolution technique nonassociative, but it is sometimes used to avoid the extensive hardware of the priority list.

## The Real Time Pinch

When the first generation of computers was being built, hardware was critically expensive, and the von Neumann architecture a general purpose design which truly minimizes hardware through serial processing was not seriously questioned. With the plummeting cost of electronic parts, minimizing hardware has become less important to the designer. The desire to maximize throughput, particularly in multiuser situations, has led to the introduction of parallel processing at all architectural levels with the concomitant increase in hardware complexity - from multiprocessor systems, to machines incorporating multiple independent I/O (input/output) channels, down to distributed processing logic, as in an associative memory. The concept of a general purpose parallel computer is quite hazy, so the thrust has been to build specialized hardware for the von Neumann machine to deal with the parallel components of computing as they are recognized.

Some products for associative processing are commercially available. On the high end, STARAN is a very expensive associative machine from Goodyear Aerospace, and may be the only machine of its kind for sale. On only a slightly less grand level, there are a few 16 bit or smaller CAMS (integrated circuit associative memory integrated circuits), which even in quantities of 100 carry a price tag of about $\$ 1.50+$ per bit. They are fast parts, some with speeds in the 10 to 40 ns range. IBM also uses such fast, and small associative memories in the
virtual memory hardware of the 360/67 for quick address lookup. But associative memory for a large computer subsystem need not be nearly so fast, nor could it be tolerable at such a price. Cost, in the world of electronics, is not necessarily a function of complexity, but of volume.

Unfortunately, large manufacturers must usually see millions of projected sales before entering the marketplace with anything really new. Big businesses, meanwhile, cannot afford to walk away from years of accumulated software on their present machines, no matter how cumbersome. Software is expensive to create and maintain, so big installation inertia will keep sales volume at a trickle. Yet given the ubiquity of sorting, searching, merging, updating, and linking in such business systems, it is no small irony that a judiciously used associative memory subsystem could in many cases greatly reduce software complexity, and therefore expense (not to even mention greatly increase program speed). To review, costs will not come down, nor viable products become available until expected sales volume goes way up, and at $\$ 1.50$ per bit. . . .

The cycle, representative of large scale business, may perhaps be broken at the new grass roots level - the home, small business, or research system where inertia is at a minimum. An add-in associative memory can be designed with off-the-shelf integrated circuits and random access memories for a cost to memory ratio of only 2 or 3 to 1 . This memory design is discussed in part 2 (May 1979 BYTE).

## BIBLIOGRAPHY

1. Foster, Caxton C, Content Addressable Parallel Processors, Van Nostrand Reinhold Co, New York, 1976.
2. Yau, S S and Fung, H S, "Associative Processor Architecture - A Survey," Computing Surveys, volume 9, number 1, March 1977.


## Horizon Disk Capacity Keeps Growing

The Horizon is now capable of 720 K bytes on-line! The Horizon can connect to four double density $51 / 4$ " single-sided disk drives. Each of those drives can access 180K bytes of information. A four drive system accesses 720 K bytes!

That's capacity you don't usually find in a microcomputer, but there's even more to come! The North Star disk controller board is designed so that twosided disk drives may be added as soon as they become available from North Star.

Existing Horizons will accommodate the new two-sided drives so North Star owners can simply add additional drives to up-grade their system. Each two-sided drive will access 360 K bytes! That means the maximum on-line disk storage for the Horizon will increase to over 1.4 million bytes!

## New Cabinet <br> for Disk Drives

North Star additional disk drives are now available with the same high quality wood cover as the Horizon computer! The Additional Drive Cabinet (ADC) is designed to accept either one or two drives for the Horizon or for mounting North Star Micro Disk System drives. Like the Horizon, the ADC is available with either wood or blue metal cover. Included is a new power supply capable of powering one or two drives. The ADC is $\$ 129$ in kit form. Assembled, with one drive the ADC is $\$ 599$, with two drives $\$ 999$.

## Pascal Now Available for Horizon

The much-heralded Pascal language is now being offered for use with the North Star Horizon computer. North


Inside view of Horizon with processor board, RAM board, disk controller, two drives, and power supply.
Star, with the co-operation of the University of California at San Diego, is now delivering a Pascal Program Development system. North Star Pascal is ideally suited for developing large programs because of features such as: long variable names, block-structured control statements, and compilation. North Star Pascal is available on $51 / 4^{\prime \prime}$ diskettes for use with the Horizon or Micro Disk System. North Star Pascal will operate with either the $\mathbf{Z 8 0}$ or 8080 microprocessor.
Pascal, including documentation, is available in either single or double density versions for \$49.
An auxiliary Pascal diskette, containing an 8080/280 assembler and some additional Pascal utilities, is available for $\$ 29$. Complete information is available at your local retail computer store.


## First Double Density, Now Double Memory

The new North Star 32K RAM board (RAM-32) has doubled the memory density of the popular Horizon computer. Available either with the Horizon or other S-100 bus computers, the RAM-32 runs at full speed - no wait states with the 4 MHz Z80A microprocessor (as well as with slower $\mathrm{Z80}$ and 8080 processors). Addressability of the RAM-32 is switch-selectable in four 8 K regions.
North Star RAM features like bankswitching and parity checking are standard. The parity checking capability means that the RAM-32 is constantly diagnosing itself. That's a plus for your system. The fact that parity checking is a North Star RAM-32 standard is a plus for your pocketbook! There is no extra charge for this important capability.
A Horizon with 48 K of RAM can be configured by using one North Star 16K RAM board and a RAM-32. Need more memory? 56 K canbe configured by using two RAM-32 boards with one 8 K region switched off.

## NORTH STAR MDS, ZPB, FPB FOR OTHER S-100 COMPUTERS

Upgrade your system with these North Star products - available for any S-100 computer: Micro Disk System - a complete $51 / 4^{\prime \prime}$ floppy disk system. 280 Processor Board, or the Hardware Floating Point Board.

## Horizon and RAM board prices are:

|  | Kit | Assembled |
| :--- | :---: | :---: |
| Horizon $-1-16 \mathrm{~K}$ | $\$ 1599$ | $\$ 1899$ |
| Horizon $-1-32 \mathrm{~K}$ | 1849 | 2099 |
| Horizon $-2-32 \mathrm{~K}$ | 2249 | 2549 |
| RAM-32 | 599 | 659 |
| RAM-16 | 399 | 459 |

4 A typical Horizon configuration: CRT, Horizon computer, Additional Drive Cabinet (ADC).

## NorthStar

## Computers

2547 Ninth Street
Berkeley. California 94710
(415) 549-0858

## BYIEs Bits

## Motorola 6809 Card Folding

A useful item of documentation furnished with the Motorola 6809 microprocessor is the MC6809 Microprocessor Instruction Set Summary card. Printed on heavy stock, it contains vital information for the programmer in condensed form. This combination of heavy stock and condensed information gives this document an information density of $4.72 \times 10^{7}$ characters per slug, a figure imaginable only with advanced technology.

Users who peruse the card, however, might have difficulty in refolding it to its original compact configuration. Therefore we present here helpful instructions to refold the card.

The first step is to differentiate between the pages of the card. Luckily, this is much easier than integrating between the pages, or even reading between the lines. Here we employ the convention of using letters of the English alphabet. Upper case is preferred for clarity, but lower case may be employed if you are coding a word processing system.


Completely unfold the card and stretch it out on a flat surface. Using a pencil, inscribe the letter $A$ on the top righthand corner of the first page, the page containing the title and programming model. Move the pencil down to the second page, and inscribe the character B in the top righthand corner. Continue this process, incrementing the alphabetic character down the length of the card until you reach the last page, which should bear the appellation $J$. This completes the page distinction routine.

## Speakensy Software"

FINANCIAL ANALYSIS SPORTSTRIVIA MICROTRIVIA


## APPLE • PET •TRS $\mathbf{8 0}$

Now available at over 1,000 stores worldwide!
Spenkensy אoftwore
Box 1220, Kemptville, Ontario, Canada, K0G 1J0
(613) 258-2451

Having identified the pages, you are now ready to begin the actual folding process. Grasp the bottom page J. Fold it up on top of page 1. Now take page 1, and fold along the F-G seam so that the back side of page I contacts the back side of page D. Take care that page 1 does not become unfolded from I.

Take heart, we're almost through. Grasp the top edge of page $G$ and fold along the C-D seam so that the front side of page $G$ contacts the back side of page A. Moving quickly now, fold the front side of page $C$ to the front side of page B. Take the A-G aggregate, and fold the whole thing back onto page $E$. The folding process should now be complete, and the card returned to its original state.

User options at this point include: placing the card in your pocket, placing the card in a desk drawer, or binding the card with a paper clip.

Note please, that these instructions are based on preliminary folding information provided by Motorola. It is possible that actual production sample of the card will have a different foldout specification.

In addition to its unique topological properties, the card will be of interest because of the information printed on it. Included are addressing mode summaries, operation descriptions, register bit assignments, vectors and stacking order, and miscellaneous data. . . .RS $=$

## NE Computerized Bulletin Board

We have received an announcement from the New England Computerized Bulletin Board System informing us that they have been in operation since December 1977. In order to connect to the CBBS, a terminal with a modem or acoustic coupler and a phone line is necessary. The procedure is as follows: set your terminal to 300 , or 110 bps ( 30 or 10 characters per second) full duplex. Dial (617)963-8310 and wait for the carrier. Place the phone in the acoustic coupler and hit carriage return on your terminal a few times. The CBBS will then respond and take you the rest of the way.-

# Everybody's making money selling microcomputers. Somebody 'sgoing tomake money servicing them. 

## New NRI Home Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers

Seems like every time you turn around, somebody comes along with a new computer for home or business use. And they're being gobbled up to handle things like payrolls, billing, inventory, and other jobs for businesses of every size...to perform household functions like budgeting, environmental systems control, indexing recipes, and more.

Growing Demand for Computer Technicians...
Learn in Your Spare Time
Even before the microprocessor burst upon the scene, the U.S. Department of Labor forecast over a $100 \%$ increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer. NRI can train you at home to service both microcomputers and their big brothers. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends without quitting your present job. Assemble Your Own Microcomputer

NRI training includes practical experience. You start with meaningful experiments building and studying circuits on the NRI Discovery Lab. ${ }^{(8)}$ Then you build your own test instruments like a transistorized volt-ohm meter, CMOS digital frequency counter...equipment you learn on, use later in your work.

And you build your own microcomputer, the only one designed for learning. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. It's the

kind of "hands-on" training you need to repair and service units now on the market.

Mail Coupon for Free Catalog No Salesman Will Call
Send today for our 100 -page, fullcolor catalog. It describes NRI's new Microcomputer Technology course in detail, shows all equipment, kits, and lesson plans.
transceiver...TV/Audio/Video Systems Servicing with training on the only designed-for-learning 25 " diagonal color TV with state-of-the-art computer programming. With more than a million students since 1914, NRI knows how to give you the most in home training for new opportunity. If coupon has been removed, write to NRI Schools, 3939 Wisconsin Ave., Washington, D.C. 20016.

## RUSH FOR FREE CATALOG

 And it also tells about other NRI courses... Complete Communi-

McGraw-Hill Continuing
Education Center 3939 Wisconsin Avenue

 Washingion, D.C. 20016
Please check for one free catalog only NO SALESMAN WILL CALL


| Name | (Please Print) |
| :--- | :--- |
| Street |  |
| City/Seate/Zip |  |
| Accredited by the Accrediting Commission of the National Home Study Council | 170.049 |

## A Simulated View of the Galaxy



Figure 1: The celestial coordinate system.


Figure 2: A Miller projection is used for plotting the data.

At one time or another, each of us lets our imagination wander; perhaps to places familiar to us, or places we have never been and can only dream about exploring. Often, my imagination leads me to the questions: "What does our sun look like from neighboring stars?" and "What do our familiar constellations look like from other points of view?" Have you ever wished that you could travel anywhere in the universe whenever you wanted to? With the help of computers and graphics displays we can begin to answer some of these questions and have fun exploring what we know about the galaxy at the same time.

## Getting Started

Several things are needed to simulate the stars in our galaxy; an algorithm that will allow us to shift our position with respect to the Earth based coordinate system; actual or hypothetical coordinates of stars; and a display device on which to plot the resulting star maps. The first version of this program was written four years ago and run on an IBM 1130 computer. Output was in the form of a printer plot. 50 stars were entered, using data on the 50 brightest stars in our sky. Since positions given in star catalogs are in celestial (spherical) coordinates, right ascension (RA) corresponding to longitude ( 0 to 23 hours), declination (DEC) corresponding to latitude ( -90 to +90 degrees), and distance in light years were entered directly into a disk file. The program then performed the necessary conversions to get values in radians. Figure 1 shows the celestial coordinate system.

The author wishes to thank TRC Photographic Specialists of Omaha NE for their help.

## Coordinate Transformations

In order to display the stars as they would appear from another point in space, their coordinates must be converted to a manageable form. Shifting the origin of the coordinate system appears to be the easiest way to obtain the desired results. Declination and right ascension must be converted to radians first:

$$
\begin{aligned}
& R A=R A \times 0.261799 \\
& D E C=D E C \times 0.01745
\end{aligned}
$$

where RA and DEC represent right ascension and declination, respectively. Then the celestial coordinates can be converted to rectangular coordinates:

$$
\begin{gathered}
X=R \times \cos (D E C) \times \cos (R A) \\
Y=R X \cos (D E C) \times \sin (R A) \\
Z=R X \sin (D E C)
\end{gathered}
$$

The resulting rectangular coordinates are in units of light years, because of the variable $R$ (distance). The coordinates may be kept in three arrays for easy manipulation.

Next, the origin must be shifted to the new point of view. The celestial coordinates of the destination or new origin are given by the user of the program (through console input) and converted to rectangular coordinates with the same set of equations used above. To shift the origin, the following three equations should be used:

$$
\begin{aligned}
X^{\prime} & =X-X_{0}, \\
Y^{\prime} & =Y-Y_{0}, \\
\text { and } Z^{\prime} & =Z-Z_{0}^{\prime},
\end{aligned}
$$

where $X_{0}, Y_{0}$, and $Z_{0}$ are the rectangular


Photo 1: Side view of our galaxy from 90,987 light years.
coordinates of the new origin; $\mathrm{X}, \mathrm{Y}$, and Z are the old coordinates of a star in the three arrays; and $X^{\prime}, Y^{\prime}$ and $Z^{\prime}$ are the resulting shifted coordinates.

To display the stars, the rectangular coordinates must be converted back to celestial coordinates:

$$
\begin{gathered}
\left(R^{\prime}\right)^{2}=\left(X^{\prime}\right)^{2}+\left(Y^{\prime}\right)^{2}+\left(Z^{\prime}\right)^{2} \\
R A^{\prime}=\arctan \left(Y^{\prime} / Z^{\prime}\right) \\
D E C^{\prime}=\arcsin \left(Z^{\prime} / R^{\prime}\right)
\end{gathered}
$$

It is also necessary to multiply by the appropriate scale factors to be compatible with the screen or window dimensions of the display device. The current version of the program displays the stars in the form of a Miller projection, as shown in figure 2. This produces a distorted view on the top and bottom of the display but does show the entire sky. An alternate format magnifies the window to display only a 50 by 50 degree frame. This gives the impression of looking out the window of a spaceship, but makes navigation difficult.

In order to shift the window, we must introduce some new variables to indicate in the program which rotations are required. This can most easily be accomplished by altering the equations used for shifting the origin:

A glossary is provided on page 80.


## HELLO FELLOW COMPUTERIST...

At this time I wish to introduce myself. I am PERRY POLLOCK, the owner, manufacturer and designer of the products advertised in this issue of this fine magazine. In the issues to come, I will be introducing more powerful interfaces for the various popular computers.

To take advantage of this opportunity, I would like to tell you a little about my beliefs, aims and policies. Starting out as a hobbiest, I realize your needs, concerns and most of all the requirements of a good, well designed and fairly priced interfaces for your computer. It is my goal to supply you with the most for your investment and the highest quality possible.

All the products are designed by me. They are first drawn out and logically analyzed. Then they are wire wrapped and tested. When I am satisfied that it functions well, then I will etch a sample printed circuit board, then and only then, will I commit the design to a mass production run.

All the parts used in our products are of the highest quality. The manuals are written so you can understand all the phases of construction and operation. How many times have we bought a product and it lacked for a good, understandable manual, or has it had so many flaws that we could swear that we were re-designing the product. ALL OF THIS IS IN THE PAST. These products are not offered unless they are right!!!

Another one of my aims is to let you know who you are dealing with. How many times have we ordered a product and wondered who we were really dealing with. Then ... if we had problems, how difficult was it to contact them? Because of all this, I have chosen to publish a picture of myself (I'm not vain, really) and a picture of my wife Korrine (pictured below). I am available 24 HOURS A DAY. I have a telephone answering service that will put your call through to me anytime day or night, or if you wish you can call me at home. (602) 886-5037. If you have a problem, question or just want to talk, give me a call.

I have many exciting new products under development. It will be an exciting year and I hope you will enjoy the interfaces designed for you and I. I know these interfaçes have made my computer more enjoyable for me and hopefully for you.

Sincerely,

Perry and Korrine Pollock
Your fellow computerists WORLD POWER SYSTEMS, INC.
P.S.: My guarantee . . . If you are not satisfied with the product. return it to your dealer or me for a full refund within 5 days of purchase.


## 3 S+P INTERFACE CARD



A POWERFUL I/O INTERFACE CARD FOR ANY S-100 BUS. THREE SERIAL PORTS AND ONE PARALLEL PORT. FULLY HARDWARE OPERATED. NO SOFTWARE INITIALIZATON REQUIRED. IN ADDITION, THIS BOARD WILL OPERATE WITH ANY SOFTWARE. USER IS ABLE TO SELECT STATUS BITS TO FIT ANY SOFTWARE CONFIGURATION.

## FEATURES

- SELECTABLE BAUD RATES: All baud rates are dip switch selectable. Each port can be set for its own baud rate. CRYSTAL CONTROLLED baud rates. This interface card can operate with any Micro-processor at any speed. The $3 \mathrm{~S}+\mathrm{P}$ does not depend on the CPU for its originating clock. 110-9600 baud
- EASY CONFIGURATION: The $3 \mathrm{~S}+\mathrm{P}$ is easy to set. All port addresses are set by dip switches. Each port can be assigned, independent of each other.
- SOFTWARE COMPATIBLE: The $3 \mathrm{~S}+\mathrm{P}$ will be compatible with most software arrangements due to the ability to set the status bits and the parity. Parity, character length, stop bits all set by dip switches. Each port can be set to it's own individual arrangement.
- HIGH QUALITY: The highest quality parts are used. P.C. Board is with plated through holes, solder mask, silk screen legend and gold plated contacts
- OUTPUT ARRANGEMENT: All outputs terminate at the top of the card via a 26 contacts. Standard 26 pin IDC connectors mate with each port. RS-232, current loop at each serial port and full data lines at the parallel port connection. Operation is asynchronous mode, but can be configured for synchronous operation by minor re-configuration.
- FULL DOCUMENTATION: A complete manual of operation and construction is included. Easy construction and 3 hours is the estimated construction time. Just plug in. set the switches and enjoy all the different configured software. NO MORE changing the software to match your I/O board. Just set the board and enjoy.


## Kit <br> \$159.95

## Assembled <br> $\$ 189.95$

## OPTIONS

Connecting cables from 26 pin to standard DB-25 are separate. Molded factory cables are available for $\$ 14.95$ each. Cables have 26 pin IDC connector at one end and DB-25 female at other end, connected by ribbon cable

## TERMS

CASH WITH ORDER, VISA, MASTER CHARGE. NO C.O.D. 'S! PERSONAL CHECKS REQUIRE 3 WEEKS TO CLEAR

## ORDER FROM

 WORLD POWER SYSTEMS, INC.1161 N. El Dorado Place, Tucson, Arizona 85715 24 Hour Order Phone No: 602-886-2537

Table 1: Execution times of one iteration of the program with various numbers of stars. Times include plot or display device data transfer rates.

| Number of <br> Stars | IBM-1130 | 8080/BASIC | $8080 /$ ASM | IBM 370/158 |
| :---: | :---: | ---: | ---: | ---: |
| 10 | 4 minutes | 10 seconds | 0.5 seconds | 0.1 seconds |
| 100 | 6 minutes | 100 seconds | 5.0 seconds | 0.3 seconds |
| 400 | 8 minutes | 400 seconds | 20.0 seconds | 1.0 seconds |

Table 2: Star coordinates taken from star atlases and catalogues. Besides using real stars, the author also input 300 "imitation" stars to fill out the galaxy to what it actually looks like. The stars listed should be enough to produce interesting patterns in a reasonable amount of home computer time. Names (popular or scientific) are rough approximations in English ulphabet. An asterisk represents ficticious "fill-out" stars to represent extragalactic objects.

| Name | Right Ascension (hrs) | Declination (degrees) | Distance (light yrs) | Magnitude |
| :---: | :---: | :---: | :---: | :---: |
| A. CETUS | 02.983 | 003.900 | 250.0 | 2.8 |
| A2. LIB | 14.800 | -15.833 | 62.0 | 2.9 |
| THI. ERI | 02.933 | -40.517 | 120.0 | 3.4 |
| SUN | 00.000 | 0.000 | . 1 | -9.0 |
| AND.GALAXY | 00.667 | 4.100 | 1500000.0 | 7.8 |
| AND. A | 00.668 | 4.100 | 1500000.0 | 7.8 |
| AND. B | 00.666 | 4.200 | 1500005.0 | 7.8 |
| AND. C | 00.665 | 4.400 | 1500010.0 | 7.8 |
| AND. D | 00.668 | 4.300 | 1501000.0 | 7.8 |
| AND. E | 00.667 | 4.500 | 1500100.0 | 7.8 |
| AND. F $\geqslant *$ | 00.660 | 4.000 | 1500150.0 | 7.8 |
| AND. G | 00.656 | 4.400 | 1500050.0 | 7.8 |
| AND. H | 00.660 | 4.550 | 1510000.0 | 7.8 |
| AND. I | 00.661 | 4.500 | 1510001.0 | 7.8 |
| AND. J | 00.667 | 4.600 | 1510000.0 | 7.8 |
| EG224A | 00.667 | 041.001 | 1500000.0 | 5.0 |
| EG224B | 00.669 | 041.000 | 1500000.0 | 5.0 |
| EG224C | 00.665 | 041.001 | 1500000.1 | 4.9 |
| EG224D | 00.666 | 041.002 | 1500001.0 | 5.0 |
| EG224E | 00.665 | 041.001 | 1500000.0 | 5.0 |
| EG224F | 00.668 | 040.999 | 1500000.0 | 5.0 |
| EG225COMP | 00.630 | 041.420 | 1500000.0 | 9.9 |
| EG201COMP | 00.667 | 040.600 | 1500000.0 | 9.5 |
| PLEIADES | 03.733 | 023.950 | 4300.0 | 4.7 |
| SIRIUS | 6.716 | -16.6 | 8.7 | -1.4 |
| A.CENTAURI | 14.600 | -60.6 | 4.3 | -. 2 |
| CANOPUS | 6.380 | -52.6 | 2300.0 | -. 7 |
| VEGA | 18.586 | 38.733 | 23.0 | . 1 |
| CAPELLA | 05.216 | 045.950 | 42.0 | . 2 |
| ARCTURUS | 14.223 | 019.450 | 32.0 | . 2 |
| PROCYON | 07.612 | 005.350 | 10.0 | . 5 |
| ARCHERNAR | 01.598 | -57.483 | 70.0 | . 6 |
| B CENTAURI | 14.005 | -60.133 | 130.0 | . 8 |
| ALTAIR | 19.805 | 008.733 | 18.0 | . 9 |
| ALDEBARON | 04.550 | 016.416 | 54.0 | 1.1 |
| SPICA | 13.376 | -10.900 | 190.0 | 1.2 |
| FORMALHAUT | 22.915 | -29.883 | 27.0 | 1.3 |
| DENEB | 20.662 | 045.100 | 465.0 | 1.3 |
| RIGEL | 05.202 | -08.250 | 545.0 | . 3 |
| BETELGEUSE | 05.875 | 007.400 | 300.0 | . 9 |
| BELLATRIX | 05.367 | 006.300 | 230.0 | 1.7 |
| E. ORION | 05.567 | -01.233 | 300.0 | 1.7 |
| K. ORION | 05.767 | -09.683 | 2100.0 | 2.2 |
| D. ORION | 05.497 | -00.333 | 600.0 | 2.5 |
| L. ORION | 05.550 | 009.917 | 1600.0 | 3.7 |
| ANTARES | 16.438 | -26.316 | 170.0 | 1.2 |
| REGULUS | 10.095 | 012.216 | 70.0 | 1.3 |
| B. LEO | 11.800 | 014.733 | 43.0 | 2.2 |
| G. LEO | 10.300 | 019.983 | 90.0 | 2.6 |
| E. LEO | 09.733 | 023.917 | 100.0 | 3.1 |
| TH. LEO | 11.217 | 015.600 | 150.0 | 3.4 |

Table 2 continued on next page.

Text continued from page 67

$$
\begin{aligned}
X^{\prime} & =X-X_{0}, \\
Y^{\prime} & =Y-Y_{0}, \\
\text { and } Z^{\prime} & =Z-Z_{0},
\end{aligned}
$$

will become:

$$
\begin{aligned}
X^{\prime}= & \left(X-X_{0}\right)(\cos \phi)(\cos \theta)+ \\
& \left(Y-Y_{0}\right)(\sin \theta)(\cos \phi)+ \\
& \left(Z-Z_{0}\right)(\sin \phi) \\
Y^{\prime}= & \left(Y-Y_{0}\right)(\cos \theta)- \\
& \left(X-X_{0}\right)(\sin \theta) \\
Z^{\prime}= & \left(Z-Z_{0}\right)(\cos \phi)- \\
& \left(X-X_{0}\right)(\cos \theta)(\sin \phi)- \\
& \left(Y-Y_{0}\right)(\sin \theta)(\sin \phi)
\end{aligned}
$$

where:

$$
\begin{aligned}
& \theta= \text { rotation about the } X \text { axis on the } \\
& Y, Z \text { plane, } \\
& \phi= \text { rotation about the } Z \text { axis on the } \\
& X, Y \text { plane. }
\end{aligned}
$$

Also, when converting back to celestial coordinates, scale factors must be introduced to produce a 50 by 50 degree field of view. The user may wish to experiment with other window formats.

## Expanding the Model

Looking at the sky from various points of view in space is interesting, but I have found that animation really shows the power of the simulation technique, and of animated graphics. With the coordinates of over 400 stars (100 real stars and 300 that add the general shape of the Milky Way spiral arms of our own galaxy), we can begin the exploration of our universe. Unfortunately, 400 stars do not make a galaxy, or even a small

## About the Author

Mark Dahmke is currently employed by the University of Nebraska Computer Network as a programmer/analyst in the Academic Computing Services section. He is also a senior computer science major. At home Mark owns an 8080 based system with 32 K bytes of memory and a floppy disk drive. His work involves graphics, electronics, writing and systems programming.


## Because it does.

In your work, data is too important to lose. So if you use a Floppy Disk with even a minor flaw-like a dropout you risk a lot. That's why Maxell has taken the danger out of Floppy Disks.

Maxell: the worlds most dependable Floppy Disks.
We ve devoted two generations to building our reputation as manufacturers of the world's finest magnetic media. Our Floppy Disk technology achieves a consistency that is rarely equalled . . . and never surpassed.

Even the jackets our floppys come in are made to resist heat and mechanical shock. And they're specially treated to prevent the build-up of static charges, so they do their part to increase the total reliability of their precious contents.

## Made better than most specifications.

To guarantee complete interchangeability, all Maxell floppys conform to ISO. ECMA. ANSI. JIS, and IBM standards.

But even more important to you, Maxell's own tolerances are tougher than the industry's

And our inflexible Quality Control inspections permit nothing to blemish our hard-earned reputation.

So when your job depends on full data retrieval, depend on Maxell Floppy Disks. They work best . . . and so will you.

Maxell offers the full range of Floppy Disks, from standard 8 -inch to $51 / 4$-inch, plus Data Cassettes.
Dealer inquiries invited.


## maxell. <br> DATA PRODUCTS <br> The Quality Alternative

Maxell Corporation of America. Data Products Group 60 Oxiord Drive. Moonachie. NJ 07074 Tel. (201) 440-8020

Table 2, continued:

| D. LEO | 11.217 | 021.000 | 140.0 | 3.5 |
| :---: | :---: | :---: | :---: | :---: |
| 2. LEO | 10.250 | 023.567 | 500.0 | 3.6 |
| M. LEO | 09.850 | 026.167 | 110.0 | 4.1 |
| R.D SCO | 15.900 | -28.500 | 450.0 | 4.0 |
| SCO | 16.883 | -42.317 | 300.0 | 3.8 |
| T.H. SCO | 17.567 | -42.967 | 140.0 | 2.0 |
| SHAULA | 17.500 | -37.067 | 200.0 | 1.7 |
| E. SCO | 16.783 | -34.200 | 75.0 | 2.3 |
| K. SCO | 17.650 | -39.000 | 360.0 | 2.5 |
| D. SCO | 15.938 | -22.533 | 590.0 | 2.5 |
| G. SCO | 16.883 | -42.317 | 100.0 | 3.8 |
| POLLUX | 07.705 | 028.150 | 31.0 | 1.2 |
| CASTOR | 07.523 | 032.000 | 44.0 | 1.6 |
| E. GEM | 06.700 | 025.167 | 200.0 | 3.2 |
| GEM | 06.217 | 022.517 | 300.0 | 3.4 |
| D. GEM | 07.300 | 022.033 | 300.0 | 3.5 |
| Y. CAS | 00.900 | 060.450 | 200.0 | 2.2 |
| A. CAS | 37.833 | 059:267 | 230.0 | 2.4 |
| B. CAS | 00.108 | 058.883 | 45.0 | 2.4 |
| D. CAS | 01.400 | 060.083 | 150.0 | 2.8 |
| E. CAS | 01.867 | 063.517 | 100.0 | 3.7 |
| D. TAURUS | 05.383 | 28.567 | 130.0 | 1.7 |
| TAU | 05.633 | 021.000 | 350.0 | 4.1 |
| HYADES | 04.250 | 016.000 | 300.0 | 4.0 |
| E. TAU | 04.450 | 019.117 | 300.0 | 4.0 |
| E URSAE MAJ | 12.863 | 056.233 | 50.0 | 1.7 |
| DUBHE | 11.000 | 062.017 | 105.0 | 1.9 |
| N. UMA | 13.767 | 049.467 | 210.0 | 1.9 |
| MIZAR | 13.367 | 055.183 | 190.0 | 2.2 |
| D. UMA | 12.233 | 057.200 | 100.0 | 2.2 |
| B. UMA | 10.980 | 056.650 | 76.0 | 2.4 |
| Y. UMA | 11.867 | 053.967 | 88.0 | 2.5 |
| B CRUCIS | 12.746 | -59.416 | 465.0 | 1.5 |
| A CRUCIS | 12.396 | -62.816 | 150.0 | 1.6 |
| E CANIS MAJ | 06.945 | -28.900 | 325.0 | 1.6 |
| ACRUX | 12.400 | -63.150 | 220.0 | . 9 |
| E. CARINA | 08.358 | -59.350 | 330.0 | 1.7 |
| B. CARINA | 09.217 | -69.517 | 300.0 | 1.8 |
| A. TRIA | 16.717 | -68.933 | 130.0 | 1.8 |
| MIRFAK | 03.350 | 049.683 | 270.0 | 1.9 |
| Y. VEL | 08.133 | -47.183 | 100.0 | 1.9 |
| ALHENA | 36.583 | 016.450 | 78.0 | 1.9 |
| KAUS. AUST | 18.350 | -34.417 | 160.0 | 1.9 |
| AL WAZOR | 07.100 | -26.317 | 650.0 | 1.9 |
| MURZIM | 06.342 | -17.933 | 300.0 | 1.9 |
| D. VEL | 08.717 | -54.517 | 70.0 | 2.0 |
| ALNITAK | 05.633 | -01.967 | 400.0 | 2.0 |
| B. AURIGAE | 05.933 | 044.950 | 84.0 | 2.0 |
| PEACOCK | 20.367 | -56.900 | 160.0 | 2.1 |
| POLARIS | 01.817 | 089.033 | 470.0 | 2.1 |
| Y. UMI | 01.530 | 073.000 | 500.0 | 4.7 |
| N. UMI | 01.620 | 076.000 | 700.0 | 5.7 |
| D. UMI | 01.795 | 086.100 | 650.0 | 5.0 |
| E. UMI | 16.850 | 082.130 | 550.0 | 5.1 |
| TH. UMI | 01.572 | 078.100 | 750.0 | 5.0 |
| A. OPH | 17.550 | 012.600 | 67.0 | 2.1 |
| NUNKI | 18.867 | -26.367 | 160.0 | 2.2 |
| A. AND | 00.088 | 028.817 | 120.0 | 2.1 |
| ALPHARD | 09.417 | -08.433 | 200.0 | 2.2 |
| AL NA'IR | 22.083 | -47.200 | 91.0 | 2.2 |
| SUHAIL | 09.100 | -43.233 | 220.0 | 2.2 |
| B. PER ALGOL | 03.082 | 040.767 | 100.0 | 2.2 |
| A. ARI | 02.067 | 023.233 | 74.0 | 2.2 |
| B. GRUS | 22.650 | -47.150 | 325.0 | 2.2 |
| B. CETI | 00.683 | -18.267 | 57.0 | 2.2 |
| B. UMI | 14.850 | 074.367 | 270.0 | 2.2 |
| 1. CARINA | 09.267 | -59.067 | 100.0 | 2.2 |
| TH CENT. | 14.067 | -36.117 | 86.0 | 2.2 |
| D. PUPPIS | 08.033 | -39.867 | 800.0 | 2.3 |
| Y1. AND. | 02.033 | 042.083 | 400.0 | 2.3 |
| ALPHECCA | 15.550 | 026.883 | 67.0 | 2.3 |
| Y. CYGNUS | 20.333 | 040.100 | 470.0 | 2.3 |
| B. AND | 01.117 | 035.350 | 75.0 | 2.4 |
| Y. DRA | 17.917 | 051.500 | 150.0 | 2.4 |
| N. CMA | 07.367 | -29.200 | 270.0 | 2.4 |
| A. PHE | 00.400 | -42.583 | 76.0 | 2.4 |
| E. PEG | 21.700 | 009.650 | 250.0 | 2.5 |
| A. PEG | 23.033 | 014.933 | 100.0 | 2.6 |
| N. OPH | 17.125 | -15.667 | 76.0 | 2.6 |
| Y. CRV | 12.217 | -17.267 | 130.0 | 2.8 |

fraction of it, but with a little imagination (which was all we had in the first place) we can mentally fill the gaps in the model. The current version of the simulation runs on an IBM 370-158 with a 2250 graphics display unit. The 2250 has a resolution of 4096 by 4096 points. With a slight modification to the program, it will run in a continuous loop, starting with a direction vector and velocity in light years per iteration. The effect is that of a space craft with almost unlimited velocity. With a fast processor, the impression of speed is dramatic. Velocities of 10,000 light years per second have been simulated. There are no relativistic effects, but it might be interesting to add the necessary equations-especially if color graphics are available. The Doppler shifts would be most striking. The stars in the direction of travel would be intensely blue, while those receding from the observer would be a deep red.

## Adding More Stars

As my desire to travel outward increased, I soon realized that I would have to have something to travel to. Additions to the model included the Andromeda galaxy (approximately 1.5 million light years away), the Magellanic clouds (our nearest intergalactic neighbors) and several other extragalactic objects. One problem with adding more stars is that the execution time goes up proportionately. When experimenting with computer based simulations, this soon becomes apparent. Note that in listing 1, the algorithms have been optimized to the extreme, to cut down on the execution time. Comparison tests were run on several systems with the results shown in table 1.

The IBM-1130 was slowed down by its printer, used to generate a printer plot of the star map. The 8080 is almost fast enough to compete with the 370 , if it didn't have to do the floating point calculations in software. A floating point hardware board would probably decrease the times given for the 8080 by a factor of 10 . The 370 is a multiprogramming system-running several other programs at the same time. Thus, the simulation has to compete with other programs and is also slowed down by competition for peripheral devices such as video terminals, the 2250 graphics display, printers, and card readers.

## Implementation

The details of implementation depend on the computer, display device, and language used. The original IBM-1130 version used a printer plot because that was the only out-

# Include us in your plans for 1979!! 

 Sophisticated technology, lowpressure living, with more pro-
fessional and personal advantages
than we can list.


The following are current career openings:

## SYSTEMS ANALYSTS/REAL TIME PROGRAMMERS

- Operating System Design
- Microprocessor Soltware-Assembly Language
- I/O Drivers
- Diagnostics


## TEST SYSTEMS ENGINEERS/ DEVELOPMENT ENGINEERS

- 8080 Based Microprocessor Design
- ATE Programming of Microprocessor Boards
- NMOS, EMOS, CMOS, LSI \& MSI Technologies
- Multiprocessor Systems Architecture


## SUPPLIERS QUALITY ASSURANCE

- Vendor Quality Management
- Interfacing with Design Engineering, Product Test, Field Engineering, Purchasing
\& Manufacturing
- Components-Specilication \& Product Design


## INDUSTRIAL/MANUFACTURING ENGINEERS

- Assembly Routines, Labor Estimating, Production Line Layouts
- Facility \& Capital Equipment Analysis
- ATE \& CAM
- Production Support \& R\&D Liaison


## POWER SUPPLY DESIGNERS

- Design and Develop Low-Voltage Switching Power Supplies
- Adherence to UL/CSA and International Satety Standards
- Worst Case Design on Circuits

If you quality for any of the above, call us at: 302-934-8111, or send resume and salary require ments, in complete confidence, to: Mr. Joseph G. Buskirk, NCR Corporation, Dept. , Engineering \& Manufacturing, Mitchell Road, Millsboro, DE 19966.



Photo 2: Our galaxy from - 5983 light years.


Photo 3: The night sky as seen from the Northem Hemisphere of Earth. Note the Big Dipper in the upper center, Leo just above and right of center, and the Milky Way down the left and across the middle.
put device available. Since the available memory was limited ( 8 K words), the program was written to make heavy use of disk files for storage of the starting coordinates and intermediate results. The last phase of the program scanned the disk file containing the shifted coordinates and produced a printer plot.

The second version ran on an IBM/360-65 and plotted on a Tektronix 4013 graphics display terminal. Although neither of these first two versions was animated, single star maps could be obtained.

The 2250 version required considerably more programming effort. Since the 2250 is a high speed device, true animation was finally possible. The 2250 refreshes its display from a core buffer loaded from the processor. Coordinates are plotted and mapped into the buffer; subroutine EXEC is then called and the entire buffer is sent to the display. Unfortunately the buffer must be cleared before another iteration can take place-but clearing the buffer also clears the screen. The solution is to maintain two separate buffers. One can be displayed on the screen while the other is being cleared and loaded. If this is not done, the display will flicker with a duty cycle of about 10 percent on, 90 percent off, since the calculation time is greater than the intermediate display time.

## Sample Output

Photo 1 is a side view of our galaxy from 90,987 light years. As you can see, the model is not accurate because the middle of the galaxy is almost empty. Also, the large bright spot on the right side of the galaxy represents the tight group of 100 stars that form our local constellations. At the bottom of the screen distance, right ascension, declination, and velocity have been displayed for reference. The minus sign on the distance means that the direction of travel is opposite the direction the right ascension/ declination vector. Photo 2 is a view of our galaxy from -5983 light years. Photo 3 shows the sky from Earth (note the Big Dipper in the upper center, Leo just above and right of center, and the Milky Way down the left side and across the bottom). Photo 4 shows our local constellations from 2937 light years, against the background of the Milky Way. Photo 5 is another side view of the Milky Way from one million light years (viewed with the 50 by 50 degree window). The two small objects just below and to the right of the galaxy are the large and small Magellanic Clouds. They are approximately 100,000 light years from the Milky Way.


* Bright . 300 ht. common cathode display $\star$ Uses MM5314 clock chip
$\star$ Switches for hours, minutes and hold functions
* Hours easily viewable to 20 feet
$\star$ Simulated walnut case
$\star 115$ VAC operation
* 12 or 24 hour operation
$\star$ Includes all components, case and wall transformer * Size: 6 -3/4" $\times 3-1 / 8^{\prime \prime} \times 1-3 / 4^{\prime \prime}$
* Ouartz crystal controlled
* Three stopwatches in one: single event, split (cummulative) and taylor (sequential timing)
* Uses 3 penlite batteries
* Size: $4.5^{\prime \prime} \times 2.15^{\prime \prime} \times .90^{\prime \prime}$
* Use Intersil 7205 Chip
* Plated thru double-sided P.C. Board
$\star$ LED display (red)
$\star$ Times to 59 min. 59.59 sec. with auto reset

* Four .630" ht. and two .300" ht. common anode displays
* Uses MM5314 clock chip
* Switches for hours, minutes and hold functions
* Hours easily viewable to 30 feet
$\star$ Simulated walnut case
* 115 VAC operation
* 12 or 24 hour operation
* Includes all components, case and wall transformer
* Size: $6.3 / 4^{\prime \prime} \times 3-1 / 8^{\prime \prime} \times 1-3 / 4^{\prime \prime}$


## Jumbo 6-Digit Clock Kit

alabama
Mobile
ALASKA
ALASKA
Anchorage
ARIZONA
ARIIZONA
Yumb
Yalifornia
CALIFORNIA
Betlifowet
Berkulev
Berkuley
Missinan Vayo
Monterey
Monterey
Octunside
Octionside
Palo Alto
Prato alio
Pasacrenemento
Sacramento
Sacramunio
San Carlos
San Oiego
San Fernando
San Francisco
San Jose Oto
Santa Ana
Santa Crue
Santa Crue
Sanra Marra
Santa Morinca
Sursun City
Sursun City
Sunnvwale
Vallujo
Wainut Crase
colorado
Aurora
CONNECTICUT aridgeport
FLORIDA FLORIDA
FI Lavderdule
GE ORGIA
Adlanta
Colunibus
Colunibus
Honolulu
IDAHO
Idwho Fails
ILLINOIS
Evanstorn
Groveland
Mount Prospect

NOW!!! OVER 3


Illuinois (Continued) Spectronics inc.
Oak Park
Rocklord

| ILLINOIS (Continued) |  |
| :---: | :---: |
| Oak Park | Spectronics inc. |
| Rocklord im | Imperial Computer Systems |
| Schaumburg | Dara Dorssin |
| INDIANA |  |
| Easr Chicago | Acso Electronics Corp. |
| IOWA |  |
| indianota | Electronix Limited |
| KANSAS |  |
| Wichita | Ampreur Rasio <br> Equoment Campany |
| KENTUCKY <br> Lexington |  |
|  | Radio-Electronic Equipment Co. |
| LOUISIANA |  |
| Baton Rouge | Pefican Electronits |
| Houma | Peincan Elecrroncs |
| Metarie | Pelican Electronics |
| MARYLANO |  |
| Churchurile | Churchwille Elecriomes |
| Damascus | Damascus CB |
|  | I\&MElectronics |
| RockuilleRockville | Compurer Workshop |
|  | Heathkil Elecrronic Center |
| Towson ${ }_{\text {lowson }}$ | Baynesville Electronucs Inc. |
| Towson ${ }^{\text {Heathent }}$ Electronic CenterMASSACHUSETS |  |
|  |  |
| Pitrificid | Pistsictel Aadio Co. Inc. |
|  | Computer Mart inc. |
| WorcesterMichigan | RM Electronics inc. |
|  |  |
| Ann Arbor Wed Clawon | Wedemever Electronic Supply |
|  | Aadro Supply E Engineernig |
| Detroif Fhirt | Hearhis Eidetronic Center |
|  | Hobby Electronic Center |
| Gurden City | Compurer Centar |
| Lonsing $\begin{aligned} & \text { Lansing } \\ & \text { Weor }\end{aligned}$ | Fulton Radio Supply Co. |
|  | ademever Eloctronic Supply |
| Midiend <br> Mi. Ctemens | Computrom, Corp. |
|  | The Compurer Store |
| Niles | Nilies Radio Supply |
| MINNESOTA |  |
| DufuthHopkins | Northwest Radio of Duluth |
|  | Houthktt Eloctrant Center |
| Sr. PsuiMissour | Heazhkit Electronc Center |
|  |  |
| El Dorado SpungsMONTANA | Hungs Beckman Electroints |
|  |  |
| Montana | Conter Redio Supply |
| Boceman | Efectronic Service \& Dist. |



Paname City $\quad$ Somted S.A
SINGAPORE

DIMENSION FX (400), FY(400), FZ (400)
REAL NRA, NDEC, NEWR
C READ IN AND STORE RECTANGULAR COORDINATES FOR STARS IN FX, C FY, AND FZ ARRAYS.

DO $11=1,400$<br>READ $(5,100)$ CRA, CDEC, CDIST

C FIRST, CONVERT CRA, AND CDEC TO RADIANS

```
CRA = CRA *. }26179
CDEC = CDEC * . 01745
CXY = DIST * COS (CDEC)
FX (I) = CXY * COS (CRA)
FY (I) = CXY * SIN (CRA)
FZ (I) = DIST * SIN (CDEC)
CONTINUE
```


## FORMAT (3(10F7.3))

C RA, DEC, AND DIST REPRESENT THE POLAR COORDINATES FOR THE C DIRECTION VECTOR. VEL IS THE VELOCITY OR RATE OF CHANGEOVER
C EACH ITERATION OF THE ALGORITHM.

DIST $=0$.
$R A=3.1415927$
$D E C=0$.
$V E L=0$.
C ADVANCE THE DISTANCE COUNTER BY ADDING THE VELOCITY FOR ONE C ITERATION.
$10 \quad$ DIST $=$ DIST + VEL
C NOW COMPUTE THE NEW LOCATION IN SPACE FROM RA, DEC, DIST.
$A X Y=D I S T * \operatorname{COS}(D E C)$
$A X=A X Y * \operatorname{COS}(R A)$
$A Y=A X Y * \operatorname{SIN}$ (RA)
$A Z=$ DIST * SIN (DEC)
C NOW ENTER THE INNER DO LOOP WHERE THE SHIFTED COORDINATES
C ARE FOUND, CONVERTED TO CELESTIAL COORDINATES AND PLOTTED.

$$
\text { DO } 20 I=1,400
$$

```
XP = FX (I) - AX
YP=FY (I)-AY
ZP}=FZ(1)-A
NRA = ATAN (YP / XP)
NEWR = SQRT (XP * XP + YP * YP + ZP * ZP)
NDEC = ARSIN (ZP / NEWR)
```

C TEST FOR QUADRANTS MESSED UP BY THE ARCTANGENT FUNCTION.

```
IF (XP.LT. O.) NRA = NRA + 12. 
IF ((XP.GT.O.).AND. (YP.LT. O.)) NRA = NRA + 24.
```

C TEST FOR SCREEN LIMITS.

$$
\begin{aligned}
& \text { IF (NRA.GT. 24.) NRA }=N R A-24 . \\
& \text { IF (NRA.LT. } 0 . \text { ) NRA }=\text { NRA }+24 .
\end{aligned}
$$

C PLOT POINTS HERE, USING THE APPROPRIATE SUBROUTINE CALLS FOR THE C AVAILABLE DISPLAY DEVICE.

> CALL P POINT (-NRA, NDEC)

20
CONTINUE
C CLEAR SCREEN: PREPARE FOR NEXT ITERATION.
C TEST FOR CONSOLE INPUT: CHANGES IN DIRECTION, VELOCITY, SCREEN WINDOW FRAMING, ETC.

GO TO 10
STOP
END
Listing 1: Generalized FORTRAN version of galaxy simulation. This program can be converted almost directly into BASIC. Note: for those people not having an arcsin function: $\arcsin$ function: $\arcsin (x)=\arctan \left(x / \sqrt{1-x^{2}}\right)$.

## Get Your Up-Grade Kit Here:

AL: Birmingham: Computer Center, (205) 942-8567: Huntsville: Computerland, (205) 539-1200. AZ: Tuscon: Myotis Enterprises, (602) 326-5306. CA: Berkeloy: Byte Shop, (415) 845-6366; Davis: Capitol Computer Systems, (916) 483-7298; El Cerrito: Compu terland, (415) 233-5010; Hayward: Computerland, (415) 538-8080; La Mesa: EDP Management Inc., (714) 4625400; Los Altos: Computerland, (415) 941-8154; Marina Del Rey: Base 2, (213) 822-4499; Mt. View: Byte Shop Computer Store, (415) 969-5464; Digital Deli, (415) 961 2670; Pato Alto: Byte Shop, (415) 327-8080Sacramento. Capitol Computer Systems, (916) 483-7298; San Diego: Byte Shop of San Diego, (714) 565-8008; San Francisco Byte Shop, (415) 434-2983; Computer Center Inc., (415) 0640:Computerland (415) 546-1592. Sen Jose: Elec0640, Computerland, (415) 40-1. San, Raf Jose. Electonic Sysems, (408) 22 407, San Ralael. Compute Demo Room Inc. (415) 457-9311: Santa Clara: Byte Shop Computer Store, (408) 249-422 1, Wainut Creek: corpule tertand of Denvar, (303) 759-4685; Englawood: Byte Fairtid (203) 37432. New London: R a R Computer Store (203) 447-1079 . New London. RaR Computer A0e, (305) 791-9080; Computerland (305) 566-0776: Age, ( 305 ) 191-8080; Computeriand, (305) 566-0776; Panama Clty: Boyd Eber Corp (901) 760 4492. Tampa: Microcomputer Systems (813) $879-401$ CA.Smyrna: Computerland of Atianti (404) 953-0406. Hi: HonoIulu: Computerland (808) 521-8002. IL: Champaion: Byte Shop (217) 352-2323; Niles: Computerland (312) $967-1714$; Oak Lawn: Computerland (312) 422-8080; Peoria: Computerland (309) 688-6252. KY: Louisville Computerland, (502) 425-8380. MA: Cambridge: Computer Shop, 617) 681-6270; Waltham: Compute Mart Inc., (617) 899 -4540. MD: Rockville: Computerland of Gaithersburg, (301) 946-7676. Mi: Ann Arbor: Newmann Computer Exchange, (313) 994-3200; East Lansing: New Dimensions in Computing Inc.. (5i7) 337 2880; Kentwood: Computerland of Grand Rapids, (616) 942-2931; Royal Oak: Computer Mart, (313) 576-0900. MN: Bloomington: Computerland of Bloomington, (612) 884-1474; Minneapolis: Computer Depot Inc., (612) 927
5601. NB: Omaha: America Computers, (402) 592-
1518. NC: Raleigh: Byte Shop, (919) 833-0210. NJ: Budd Lake: Computer Lab of NJ, (201) 691-1984; Clark S-1UU. (2U1) 382-1318; fselin: Computer Mart of NJ, (201) 283-0600; Succasunna: Computer Hut, (201) $584-$ 4977. NY: Carie Place: Computeriand of Nassau, (516 742-2262; Elmira Heights: Red Ten Electronics, (607) 734-3566; Ithaca: Computerland of Ithaca, (607) 277 4888; Johnson City: Micro World, (607) 799-9800; New York City: Computer Mart of NY, (212) 686-7923; Syracuse: Computer Shop of Syracuse Inc., (315) 4461284; White Plains: Computer Corner, (914) 949-3282. OH: Cincinnati: Digital Design, (513) 561-6733; Columbus: Mini Micro Computer Worid Inc., (614) 235-5813; Ohio Microcomputer Specialists, (614) 488-1849; Dayton: Computer Solutions, (513) 223-2348. OK: Oklahoma City: Microlithics Inc., (405) 947-5646; Micronics, (405) 942-8152. PA:' Frezer: Personal Computing Corp., (215) 647-8463; Philedelphia: Microtronix, (215) 665-1112; State College: Micro Computer Products Inc., (814) 238-7711. TX: Austin: Computer land, (512) 452-5701; Dallas: KA Electronic Sales, (214) 634-7870; Ft. Worth: Patrick Associates, (817) 531-2761 Garland: Digital Research Corp., (214) 271-2461; Houston: Computerland of SW Houston, (713) 9770909; Houston Computer Mart, (713) 649-4188; San Antonio. Micromant, (512) 222-1426. UT: Orem: Johnson Computer Electronics, (801) 224-5361. VA: Alexandria: The Computer Hardware Store Inc., (703)
548-8085; Computers Plus, (703) 751-5656: Arlington Arlington Electronics Whoiesalers (703) 524 2412 Arlington Electronics Wholesalers, (703) 524-2412. 2070. Seatte: Mepnolie Microsystems (206) $285-7266$ WI: Madison: Computerland of Maditon (208) 275-2020. WI: Madison: Computeriand of Madison, (608) 273-2020 CANADA: ONTARIO: Mississauga: Árisia Microsystems (416) 274-6033. Toronto: Computer Mart Lid (416) 484-9708. BRITISH ISLES: CHESIRE: Cheadie: New Bear Computing Store, 061-491-0134. ESSEX: illford: Byte Shop Lid., 01-554-2177. HARTFORDSHORE: New Barnet: Computer Components, 14 Station Rd. I8RAEL: Haifa: Microcomputer Eng. Ltd., 31-070. WEST GERMANY: Munich: ABC Computer Shop, Schellingstrasse 33, 8000 Munchen 40; Microcomputer Shop. Toelzerstr, 8, D-815 Holzkirchen; Wedel: Digitronic Computer Systems, Bei-der Doppeliche 3-5.

## The Simple Up-Grade

Trying to add compurter memory is not much fun if you don't get everything you need.


Receiving unprogrammed jumpers and having to program them yourself is nat much better, Most important, that's the place where the problems are introduced.

So Ithaca Audio's better idea is the Simple UpGrade: Each Simple UpGrade is specially designed to make adding memory foolproof. We include all the parts you'll need; 8 prime, tested 16 K RAMs, along with concise step by
step directions and diagrams. And if a personality jumper is required, if's pramade.

The TRS-80* memory expansion was our first Simple Up-Grade. Now there are two more-for owners of Apple II $^{+}$and Exidy Sorcerer $\ddagger$ computers. Each kit is 100\% guaran-teed-if a part ever fails, we replace it FREE. Your lihaca Audio dealer has them in stock, only $\$ 140$. Now you can afford to add high quality, high density memory to your system for remarkably little-far less than you would expect to pay from Radio Shack, Apple, or Exidy directly.



These Simple Up-Grades are lithaca Audio's first step in adding more capability and reliability to your computer at lower cost. Other Up-Grades are on the way to your dealer now.

## ITHACA AUDIO <br> P.O. Box 91 <br> Ithaca, New York 14850 <br> Phone: 607/257-0190

[^2]
# 3 POWERFUL INTERFACES FOR THE TRS-80* AND S-100 BUS 



Model MCC-K (kit) \$129.95
Model MCC-A (assem.) \$159.95


Model EPR-80K (kit) \$129.95 Model EPR-80A (assem.) \$159.95


Model MS10-K \$129.95 Model MS10-A (assem.) \$149.95

## MASTER CONTROL CONSOLE

A COMPLETE COMMAND CENTER FROM YOUR KEYBOARD OR FROM ANY LEVEL II OR DISK BASIC PROGRAM. TUrn on bells, sprinkiers, sense fire and burglar alarm, anyihing that needs a switch can be controlled by the command center

- 16 OUTPUT LINES: With 8 relays. SPST. and 8 TTL diode prolected signals
- 16 OUTPUT LINES: 8 lines wilh OPTO-COUPLERS and 8 TTL diode prolecied
- FULL LED PANEL: For slatus indicators ol all conirol lines.
- COMPLETE WITH CABINET: Has attraclive sloping cabinel
- FULL HEAVY DUTY POWER SUPPLY: Contains power supply. No exlernal power needed
- EASY CONNECTION: Plugs into TRS-80 expanslon port edge card rear of keyooard or belween keyboard and expanslon interlace
- 2-EDGE CONNECTORS: 2-adoilional expansion 40 pin eoge conneciors.
- NEEDS NO SOF TWARE: Operales from OUT and IN sialements Irom BASIC or machine code slatements. Example: (Oul 5. $1=$ Iurn on swilch 5 . Oul $5.2=1$ urn ofll swith 5. elc.)
- Complete manual and sample programs: Comes wilh comprehensive manual


## EPROM PROGRAMMER +3

- SELF CONTAINED: Comes housed in an allraclive cabinel with self conlained power supply
- PROGRAMS: This unit programs the popular 2708.2716 Eproms. Personality modules tor other Eproms will be available al a later date.
- FIRMWARE: On board firmware so that no sottware need be writen or entered into your CPU syslem. The firmware can be shul ofl when nol in use. Firmware residents at F0000 The firmware in and out of system is controlled from a switch on front panel
- 3-ADDRESSABLE ROM LOCATIONS: The Eprom Programmer has three sockets on Iront panel which are addressable to any location by dip switch. In aodition each ROM location can be shut off or turned on by switches located on the tront panel.
- MONITOR: A monitor is supplied within the tirmware for pertorming severat lunctions Move memory, debug. verify, program from memory, program from TTY input, elc.
- EASY CONNECTION: The Eprom Programmer is altached with ease. For the TRS-80 users. the unit plugs into the rear of the keyboard or between the keyboard and expansion interface. Included with the unlt are two additional 40 pin edge connections for interfacing of other interfaces. For the S-100 users. a molded connection cable is supplied and it is inserted into one of the connectors on your mother board. Plug it in and it is ready to use
- FULLY BUFFERED: add address and data lines are fully buffered.
- OTHER FEATURES: Other features include slalus lights for which ROM selecled. switch enable for programming. pulse (burn) indicator firmware select-deselect swich. on and oft and dip swithes for the addressing of each ROM location


## SERIAL PARALLEL I/O MODULE

THIS POWERFUL INERFACE MODULE ALLOWS THE TRS-80 COMPUTER OWNER TO COMMUNICATE OVER 8 SEPARATE RS- 232 OR PARALLEL CHANNELS. ALL SELECTABLE FROM A SIMPLE COMMAN IN LEVEL•\| OR DISK BASIC OR MACHINE CODE NOW YOU CAN INTERFACE PRINTERS. TAPE READERS. OTHER RS-232 OR CURRENT LOOP SERIAL DEVICES OR aNY PARallel device

- 8-SERIAL INPUT/OUTPUT PORTS: Fully butlered
- 8=PARALLEL INPUT/OUTPUT PORTS: Fülly bulfered
- EASY CONNECTION: Connects to the expansion porl edge card connector between keyboard and expansion interlace or direct to rear of the TRS-80 keyboard.
- DIP SWITCH: All ports, baud rate, parity, eic all set by dip swilches
- ON BOARD FIRMWARE: No soltware driver routine needed lor operation of the module Simple OUT and $\operatorname{IN}$ statements operate the module
- RS-232, CURRENT LOOP: All 8 channels can be selected lor RS-232 or currenl loop.
- BAUD RATE SELECTION: All channels dip switch selectable for individual baud rates from 110 to 9600 baud
- COMPLETE DOCUMENTATION: Complete instruction manual. Just plug in and set the switches and you are able to communicate with the ousiside wortd. This module also inctudes 2 additional 40 pin edge connectors tor conneciton of other intertaces.

TERMS
CASH WITH ORDER, VISA, MASTER CHARGE. NO C.O.D.'S! PERSONAL CHECKS REQUIRE 3-WEEKS TO CLEAR ORDER FROM

## WORLD POWER SYSTEMS, INC.

1161 North El Dorado Place, Tucson, Arizona 85715
24 Hours Order Phone No: 602-886-2537
(Dealers: Write or phone for information)
STOCKING DISTRIBUTOR FOR SOUTHERN CALIFORNIA CONTACT: CALIFORNIA DIGITAL 213-679-9001
-Trademark: Radia Shack
WATCH FOR MODULE "50"

## 3 POWERFUL INTERFACES FOR THE TRS-80* AND S-100 BUS

## TRSv80 TO S-100 BUS CABLE ADAPTER

- FULL INTERFACE: Contained within the cable assembly, is a small enclosure. This enclosure contains ali the logic to convert your TRS-80 to be compatible with the S-100 bus system.
- FULL BUFFERING: All address. data and signal lines are fully buffered.
- EASY CONNECTION: It is easy to connect. Jusi plug the one end of the cable into one slot on your $\mathrm{S}-100$ system and plug the other end into the rear of the TRS. 80 keyboard or between the expansion interface Tupn on and go
- TWO EDGE CONNECTORS: Two addtion 40 pin port edge connectors are provided for other connection of expansion interfaces
- POWER: All power is derived from the S-100 bus structure. Since the TRS-80 will not support other devices hooked to its power supply. it is a must that your $\mathrm{S}-100$ supply $8-10$ volts D.C. Logic card contained withın the cable has on board 5 volt regulator Current requirements is 375 ma . Unit has separate terminal for exterior connection of DC power requirement if it is to be supplied outside the S-100 bus system.
- FULL OPERATION MANUAL: Not much need for a manual. but we have prepared one with full principal of operation. etc


Model CAB-80K (kit) $\$ 99.95$ Model CAB-80A (assem.) \$119.95

## TRS-80 TO S-100 BUS

- FULLY SELF CONTAINED POWER SUPPLY. (10 AMP)
- BUS TERMINATION: Bus termination and conditioning for no cross talk or noise etc.
- S-100 SIGNALS: All required $\mathrm{S}-100$ signals are generated by on board logic and is fully compatible with the TRS-80.
- COMPLETE: Comes complete with cabinet. card guides, on off switch and sockets. Nothing else to buy.
- STAND ALONE: This system can stand alone or can operate with the TRS-80. All input, output, address and signal lines fully buffered between TRS-80 and S-100 BUS system.
- EASY CONNECTION: Just plug it into the rear of the keyboard or between the keyboard and expansion interface. Also includes two 40 pin edge connectors for connection to other interfaces.


Model RSB-K (kit) \$249.95 Model RSB-A (assem.) \$289.95

## S-100 EPROM PROGRAMMER +3

*All the same features of the TRS-80 model. Comes complete with interface cable, S-100 plug-in card. Totally self-contained power supply, plus many other extras.


Model EPR-100K (kit) \$129.95 Model EPR-100A (assem.) \$159.95

## TERMS

CASH WITH ORDER, VISA, MASTER CHARGE. NO C.O.D.'S! PERSONAL CHECKS REQUIRE 3 WEEKS TO CLEAR.

# ORDER FROM <br> WORLD POWER SYSTEMS, INC. 

1161 N. El Dorado Place, Tucson, Arizona 85715
24 Hour Order Phone No: 602-886-2537
STOCKING DISTRIBUTOR FOR SOUTHERN CALIFORNIA CONTACT: CALIFORNIA DIGITAL 213-679-9001

- Trademark: Radio Shack


Photo 4: The local constellations from 2937 light years against the background of the Milky Way.

## Other Possibilities

Computer enthusiasts who are also interested in astronomy or physics might want to experiment with the Doppler shift effect mentioned earlier-requiring a color graphics display. Also, giving the stars colors related to their surface temperatures might be interesting. Another possibility would be the addition of magnitude (brightness). The IBM-1130 version calculated magnitudes and used different printer characters to indicate stars, but the 2250 does not have a programmable intensity control.

Another interesting possibility lies in the three-dimensional nature of the model. If two images were plotted side by side on the screen at slightly different viewing angles, a pair of stereoscopic viewing glasses would permit a truly three-dimensional view. I have experimented with the stereo three-dimensional effect by placing similar Gould hard copy plots side by side. The sense of depth produced gives one a feeling of vertigo.

Since the model is animated, navigation experiments are possible. Perhaps the algorithms presented here could be written into a game program producing the ultimate celestial exploration game.․

## GLOSSARY

Buffer: Temporary storage area in main memory, usually used to prepare or receive data from input or to output devices.

Declination: The angle from the celestial equator to the star. Equivalent to latitude (-90 to 90 degrees).

Doppler shift: Apparent changes in frequency due to direction of travel and speed. For example, if you are moving towards an object that is emitting light, the frequency of the observed light is higher. The reverse is true for the opposite direction of travel.

Extragalactic objects: Objects outside the domain of a galaxy.

Light year: The distance light will travel in one year at 186,284 miles per second ( 300,000 kilometers per second) - about $5,870,000,000,000$ miles.

Magnitude: The brightness of a star. Each unit of magnitude signifies a difference in brightness factor of $\mathbf{2 . 5 1 2}$.

Right ascension: The arc measured along the equator, from 0 hours to the base of the star's vertical declination circle.

Photo 5: Another side view of the Milky Way galaxy from 1 million light years. The two small objects just below and to the right of the galaxy are the large and small Magellanic Clouds.

## For pasonal coupunt useis



# oncompputing <br> A newquarterly by the staff of BYTE 

This totally new publication is entertaining, informative, and uncomplicated. It is edited for the attomey, accountant, writer and other professional or business person aware of the personal computer as a tool for business, education, home entertainment, laboratory work and other applications.
Compiled and edited by the staif of BYTE, latest developments covered in onComputing will include creative uses of the small computer, books for the computer user, how and where to buy your personal computer and numerous features conceming the fascinating woild of the niangprocessors.
bigcoum to chapie subscribers will result insubatanial stingsihe (hial price (uls)




SUBSCRIBE NOW! COMPLETE AND MAIL ATTACHED POSTAGE PAID REPLY CARD onComputing, Inc. $\square 70$ Main Street $\square$ Peterborough, N.H. $03301 \square$ Tel. 603/924-7217

DIGITAL RESEARCH utilities. Available for wide variety of disk systems including North Star, Helios II. Micropolis, iCOM (all systems) and Altair Supports computers such as Sorcerer. Horizon, Sol System III Versatile, Altair 8800, COMPAL-80, iCOM Attache and TRS 80. Specify desired configuration
.\$145/\$25
$\square$ MAC - 8080 Macro Assembler. Full Intel macro definitions. Pseudo Ops include RPC, IRP, REPT, TITLE, PAGE, and MACLIB. Z-80 library included. Produces Intel absolute hex output plus symbols file for use by SID (see below) $\mathbf{\$ 1 0 0 / \$ 1 5}$SID - 8080 symbolic debugger. Full trace, pass count and break-point program testing system with back-trace and histogram utilities. When used with MAC. provides full symbolic display of memory labels and equated values .......\$85/\$15
$\square$ TEX - Text formatter to create paginated, page-numbered and justified copy from source text files, directable to disk or printer
piner
DESPOOL - Program to permit simultaneous printing of data from disk while user executes another program from the console

## MICROSOFT

Disk Extended BASIC* - New version, ANSI compatible with long variable names, WHILE/WEND, chaining, variable length file records $\qquad$ 300/\$25$\square$ FORTRAN-80* - ANSI '66 (except for COMPLEX) plus many extensions. Includes relocatable object complier, linking loader, library with manager. Also includes MACRO-80 (see below)

COBOL-80* - ANSI '74 Pseudo-compiler with relocatable object runtime package. Format same as FORTRAN-80 and MACRO-80 modules. Complete ISAM, interactive ACCEPT DISPLAY, COPY, EXTEND
. $5625 / \$ 25$
$\square$ MACRO-80 - 8080/Z80 Macro Assembler. Intel and Zilog mnemonics supported. Relocatable linkable output. Loader Library Manager and Cross Reference List utilities included

MACRO-80 plus FORTRAN subroutine library available. Li brary includes ABS, SIGN, EXP, DLOG, SQRT, DSQRT ATAN, DATAN etc. etc.EDIT-80 - Very fast random access text editor for text with or without line numbers. Global and intra-line commands sup ported. File compare utility included
.S89/\$15
-See MICROPRO tor Microsoft languages with sort capabiltles.

## XITAN (software requires Z-80 CPU)

Disk BASIC - Fast powerfut interactive interpreter. PRIVACY password security. Can dynamically open a large number of files simultaneously for random or sequential lioZ-TEL - Text editing language. Expression evaluation iteration and conditional branching ability. Registers available fo lext and commands. Macro command strings can be saved on disk for re-use
.S69/\$20
$\square$ ASM Macro Assembler - Mnemonics per Intel with Z-80 extensions. Macro capabilities with absolute Intel hex or relocatable linkable output modules
$\square$ LINKER - Link-edits and loads ASM modules . . .569/\$20Z-BUG debugger - Trace, break-point tester. Supports decimal, octal and hex modes. Dissassembler to ASM mnemonic set. Emulation technique permits full tracing and break-point support through ROM . . . . . . . . . . . . . . . . .\$89/\$20

Corresponder - Mail list system, supporting form generation with personalized greetings. Reference fields permit sorting and extraction by name, address fields or reierence data using Super Sort. Requires CBASIC ...........S95/\$25
BASIC/S - Mircrosoft BASIC with Super Sort Capability
$\square$ FORTRAN/S - Microsoft FORTRAN-80 with Super Sort capability
. $5550 / \$ 25$
$\square$ COBOL/S - Microsoft COBOL-80 with Super-Sort capability

## SOFTWARE SYSTEMS

$\square$ CBASIC Disk Extended BASIC - Non-interactive BASIC with pseudo-code compiter and runtime interpreter. Supports futl file control, chaining, integer and extended precision variables etc. Version 1 users can receive Version 2 and new manual for $\$ 45$ with return of original diskette. Standard CP/M and TRS-80 CP/M versions available
.S95/\$15

## STRUCTURED SYSTEMS GROUP

$\square$ General Ledger - Interactive and flexible system providing proof and report outputs. Customization of COA created interactively. Multiple branch accounting centers. Extensive checking performed at data entry for proof, COA correctness etc. Journal entries may be batched prior to posting. Closing procedure automatically backs up input files. All reports can be tailored as necessary. Requires CBASIC
$\square$ Accounts Receivable - Open item system with output for internal aged reports and customer-oriented statement and billing purposes. On-Line Enquiry permits information for Customer Service and Credit departments. Interface to General Ledger provided if both systems used. Requires CBASIC . $\mathbf{\$ 7 5 0 / \$ 2 0}$
$\square$ Accounts Payable - Provides aged statements of accounts by vendor with check writing for selected invoices. Can be used alone or with General Ledger and/or with NAD. Requires CBASIC
\$900/\$20

# Software for most popular 8080/Z80 computer disk <br> systems, including NORTH STAR, MICROPOLIS, iCOM, SD SYSTEMS, HELIOS, ALTAIR, TRS-80 and 8" SOFT SECTORED formats. 


$\square$ NAD Name and Address selection system - Interactive mail list creation and maintenance program with output as full reports with reference data or restricted information for mail labels. Transfer system for extraction and transfer of selected records to create new files. Requires CBASIC ..... \$79/\$20
$\square$ QSORT - Fast sortmerge program for files with fixed record length, variable field length information. Up to five ascending or descending keys. Full back-up of input files created. Parameter file created, optionally with interactive program which requires CBASIC. Parameter file may be generated with CP/M assembler utility

## OTHER

Z80 Development Package - Consists of: (1) disk file line editor, with global inler and intra-line facilities; (2) Z80 relocating assembler, Zilog/Mostek mnemonics, conditional assembly and cross reference table capabilities; (3) linking loader producing absolute Intel hex disk file for CPIM LOAD DDT or SID facilities. Standard CP/M and TRS-80 CP/M ver sions available.\$95/\$15
$\square$ WHATSIT - Interactive data-base system using associative tags to retrieve information by subject. Hashing and random access used for fast response. Requires CBASIC . $\$ 125 / \$ 25$
$\square$ DISINTEL - Disk based disassembler to Intel 8080 or TDL Xitan Z80 source code, listing and cross reference files. Intel or TDL/Xitan pseudo ops optional. Runs on 8080. Standard CP/M and TRS-80 CP/M versions avaiable
$\square$ DISZILOG - As DISINTEL to Zilog/Mostek mnemonic files Runs on Z80 only. Standard CP/M and TRS-80 CP/M versions available
. $\$ 65 / \$ 10$
$\square$ ZASM Assembler - Disk-based assembler for Zilog/ Mostek mnemonic Z-80 code. Creates output in absolute Intel hex. Requires Z-80 to operate . . . . . . . . . . . . . . . . . . $\$ 45 / \$ 10$


Lifeboat Associates, 164 West 83rd Street, New York, N.Y. 10024 (212) 580-0082
Please send me:

| Software |  | Price |
| :--- | ---: | ---: |
|  | $\square$ manual alone |  |
|  |  |  |
| $\square$ Check enclosed $\square$ U.P.S. COD | $\square$ manual alone |  |
| $\square$ Visa $\square$ Master Charge | Sub total |  |
| Account \# | Exp. Date | Shipping |
| Signature | $\$ 1.00$ for C.O.D. |  |

My computer configuration (specifying disk system)

## Name

Address (No. P.O. Box)
City
State
Zip
EFFECTIVE MARCH 1,1979
${ }^{1}$ The Soltware Supermarket is a trademark of Lifeboat Associates

# Marsport, Here I Come 

Delmer D Hinrichs 2116 S E 377th Av
Washougal WA 98671

## The Three-Dimensional Celestial



Figure 1: Mars, with the orbiting spaceship and the target landing site. Both rectangular and spherical coordinate systems are shown.

## Introduction

The motion of a freely falling body in a gravity field has many interesting characteristics. One of the better methods of showing this is with a simulation, in this case written for the Hewlett-Packard HP-67 or HP-97 programmable calculator.

Lunar lander simulation programs, in which the application of thrust is used to counteract gravity, have become quite popular. Extending the lunar lander concept to two dimensions allows study of the motion of bodies in orbit. Further extension to three dimensions, as in this program, makes it possible to investigate orbital plane changes. Since Mars has a much stronger gravity field than the moon, the effect of gravity is accentuated.

## Running the Program

This program is designed as a threedimensional Mars lander so you can exercise your three-dimensional visualization of space. With a limited fuel supply you can pilot a spaceship from its initial orbit around a spherical simulation of Mars to a soft landing at a designated target site on Mars' surface. The initial orbit does not pass over the target site. The three-dimensional trajectory of the spaceship is calculated as a series of segments under your control.

Realistic features of the program include:

- True inverse square law gravity acts upon the estimated midpoint of each trajectory segment.
- The thrust of the spaceship's rocket engine simulates the use of ahydrogenoxygen fuel, with an exhaust velocity of $4 \mathrm{~km} / \mathrm{s}$.
- The spaceship loses mass as fuel is used; with less total mass, the spaceship accelerates more rapidly for the same fuel usage rate.
- If the limited fuel supply is exhausted, the spaceship automatically free-falls to impact on the surface of Mars.
- After impact with or landing on Mars' surface, the actual landing position, velocity, and remaining fuel are interpolated from the segment-end conditions immediately before and after impact. Also, the distance along the spherical surface of Mars from the impact site to the target site is calculated.

To avoid some pilot errors, there are data entry checks: the maximum fuel usage rate is limited to $100 \mathrm{~kg} / \mathrm{s}$. The maximum segment duration is limited to 60 seconds. If an attempt is made to burn more fuel than actually remains, only the actual remaining fuel is burned.

# Mechanics Simulation for the HP 67/97 

One difficult part of landing the spaceship with this program is to correctly interpret exactly where the spaceship is and where it is going at all times; that is, to visualize its movement in three dimensions. To make this as easy as possible, the position is displayed as the spaceship's altitude from Mars' spherical surface, plus two position angles, $\phi$ and $\theta$, as shown in figure 1. The coordinate system is fixed with the origin at the center of Mars, and both position angles equal 0 at the designated target landing site. If Mars is considered as a globe like the Earth, then angle $\phi$ is degrees of longitude and angle $\theta$ is degrees of latitude. The $X, Y$ plane intersects Mars' surface along its equator. Therefore, angle $\phi$ is in the $X, Y$ plane, and angle $\theta$ is from the $X, Y$ plane. Then $Z$ and $-Z$ are the north and south poles, respectively. The maximum range of angle $\phi$ is $\pm\left(0^{\circ}\right.$ to $\left.180^{\circ}\right)$, while the maximum range of angle $\theta$ is $\pm\left(0^{\circ}\right.$ to $\left.90^{\circ}\right)$. Note that when angle $\theta$ is exactly $\pm 90^{\circ}$, angle $\phi$ is indeterminate.

Similarly, the spaceship's velocity is displayed as a magnitude and two velocity angles, $\phi$ and $\theta$. The velocity vector is parallel to the vector from the origin to a position with the same angles. Thus if velocity angles $\phi$ and $\theta$ are both 0 , the spaceship's velocity is parallel to the $X$ axis, and toward more positive $X$ values, regardless of the spaceship's position.

Now that we know where we are and where we're going, let us check out the spaceship's operation, summarized in table 1. We must first decide on the initialization method we want to use. To start with a relatively easy landing problem, use the fixed initialization on the Three-Dimensional Mars Lander program card (program listing 1); this always puts the spaceship in the same position and at the same velocity in a nearly circular orbit. When landing from this fixed initialization becomes too easy, use one of the random initialization routines of program listing 2; these put the spaceship at a random altitude ( 107 to $3,607 \mathrm{~km}$ ), in a
Step Instructions Input Keys Output
1 Prepare for Three-Dimensional Mars landingUse either:
(a) Fixed initialization:
(1) Load Three-Dimensional Mars Lander
(2) Initialize;
E
0.000
(3) Go to step 2.
(b) Random initialization:
(1) Load Random Initialization Program;

|  |  | 0.000 |
| :---: | :---: | :---: |
| $. x \times x \times x \times$ | B | $0 . x \times x$ |
|  | A | - |
|  | R/S | 1.000 |
|  | C | Status |
|  | E | Status |
|  |  | - |
|  |  |  |
|  | C | $t / 2$ |

2 Optionally, reset segment duration, $t$ seconds.
t/2
3 Enter either a free-fall or a rocket burn:
(a) Free-fall $n$ segments of $t$ seconds each;
n
A
Status
(b) Rocket burn for one segment of $t$ seconds;
(1) Angle of thrust $\phi$, degrees;
(2) Angle of thrust $\theta$, degrees;
(3) Fuel usage rate, $\mathrm{kg} / \mathrm{s}$; $(0$ thru 100)

| $\phi$ | ENTER |
| :---: | :---: |
| $\theta$ | ENTER |
| $\mathrm{kg} / \mathrm{s}$ | B |

Status
4 To calculate next trajectory segment, go to Step 2.

## Notes

- When fuel is gone, there is a print/pause of 10000 , then the spaceship free-falls to impact.
- After Mars impact, there is a print/pause of 3393, then the landing status is displayed.
- Status is a double stack review of: Stack Register
(a) Segment time, seconds (after landing, impact-to-target distance, km); T
(b) Position angle $\phi$, degrees; $\quad$ Z
(c) Position angle $\theta$, degrees; $\quad \mathrm{Y}$
(d) Ship's altitude, km (after landing, vertical error of estimated position); X
(e) Remaining fuel supply, kg; T
(f) Velocity angle $\phi$, degrees; $\quad$ Z
$(\mathrm{g}$ ) Velocity angle $\theta$, degrees; Y
(h) Ship's velocity, km/s. X
- Any status display may be repeated by pressing D.

Table 1: Operating instructions for the optional random initialization program and for the Three-Dimensional Mars Lander program.
random three-dimensional direction from Mars, and going in a random direction. The circular initialization puts the horizontal spaceship in a circular orbit. The elliptical initialization puts the spaceship at a random location on an orbit of random ellipticity. Some of these elliptical orbits may eventually terminate on Mars if not modified.

To repeat the same initial conditions with the random orbits, enter the same random seed prior to initialization. For an unpredictable initial status, use the SPIN routine, which increments the random seed until it is manually stopped. Repeated pressing of the $C$ or $E$ keys gives a different initial status each time.

After initialization, the user may change the segment duration (segment time stays as set until reset), then decide whether to free-fall or to make a rocket burn for each segment. Any number of segments of freefall may be calculated automatically, without intermediate status displays. It is best not to free-fall too many segments at a time initially. Rocket burns are made one segment at a time by specifying the threedimensional thrust angles and the fucl usage rate for each segment. At a fuel usage rate of $100 \mathrm{~kg} / \mathrm{s}$, the initial acceleration rate is about 0.45 gs , gradually increasing to about

4 gs as fuel is used up (gs are units of acceleration: at the Earth's surface, the accelcration of gravity is 1 g , or $9.81 \mathrm{~m} / \mathrm{s}^{2}$ ). Of course, lower fuel usage rates will give lower acceleration rates. To reverse the direction of a vector in three dimensions (to reduce velocity), add $\pm 180^{\circ}$ to velocity angle $\phi$ and change the sign of velocity angle $\theta$ to get the required thrust angles. (See figure 1 to help visualize this.) Segment duration, thrust angles, and fuel usage rate may be decimal numbers; the number of segments of free-fall must be an integer.

With the fixed initialization, the spaceship starts at position angles of $\phi=45^{\circ}$ and $\theta=35.264^{\circ}$ (see figure 1). If the spaceship were over the Earth instead of over Mars, this would correspond to a position about 175 km north of Baghdad, in Iraq. The designated landing site is at position angles of $\phi=0^{\circ}$ and $\theta=0^{\circ}$, or (on the Earth) on the equator and on the Greenwich meridian, due south of Ghana off the Atlantic coast of Africa. Initially, the orbit of the spaceship is horizontal and it is heading due west. If it were over the Earth, the orbit would not cross the equator until just off the east coast of South

Text continued on page 100.


The new Pascal Computer System is driven by a unique 16 bit Pascal MICROENGINE ${ }^{\text {™ }}$ - the first microprocessor hardware designed exclusively for direct high-level language execution. The processor is incorporated into a single board computer system, the WD/90, which directly executes Pascal intermediate code generated by the University of California at San Diego (UCSD) Pascal compiler, Release III.O. Since P-code output by the Pascal compiler represents an ideal architecture for a computer executing Pascal programs and since the WD/90 directly executes P-code (no interpreter), these programs execute up to five or more times faster than equivalent systems.

The WD/90 Pascal MICROENGINE ${ }^{\text {T }}$ Computer includes: Pascal MICROENGINE ${ }^{\text {ru }}$ processor -64 K bytes of RAM Memory - Two
RS-232 asynchronous/synchronous ports (110-19.2K
baud-full duplex) Two 8 -bit parallel ports ( 500 kHz
maximum data rate) Floppy disk controller with direct memory access (DMA), switch selectable for: single or double density (IBM format); mini or standard floppy; 1 to 4 drives (same type) Floating point hardware (proposed IEEE standard) Memory Mapped I/O E Enclosed power supply Complete UCSD Pascal Operating System (Release III.0)

WESTERN DIGITAL
3128 Redhill Avenue, Box 2180 - Newport Beach, CA 92663 (714) 557-3550, TWX 910-595-1139

FOR FURTHER INFORMATION CONTACT DISTRIBUTOR: CIT (714) 979-9920
RETAIL: Your LOCAL COMPUTER Store
OEM: Your WESTERN DIGITAL Sales Representative

Iumningcomputer pugmammers


## imtocomputer composers:

For the first time: Hard-to-obtain computer music material has been collected into one convenient, easy-toread book.

The BYTE Book of Computer Music combines the best from past issues of BYTE magazine with exciting new material of vital interest to computer experimenters.
The articles range from flights of fancy about the reproductive systems of pianos to Fast Fourier transform programs written in BASIC and 6800 machine language. Included in this fascinating book, edited by Christopher P. Morgan, are articles discussing four-part melodies, a practical music interface tutorial, electronic organ chips, and a remarkable program that creates random music based on land terrain maps!

ISBN 0-931718-11-2

## $\$ 10.00$

Buy this book at your favorite computer book store or order direct from BYTE BOOKS Add 50c per book for postage and handling


Figure 2: Simplified flow diagram for the ThreeDimensional Mars Lander program.

## P安

## OFFERS A NEW CONCEPT IN SOFTWARE PRESENTATION FOR IT'S EXCITING LINE OF PROGRAMS

## PRS MAKES A BREAKTHROUGH IN DOCUMENTATION

Every PRS program comes with a complete and instructive handbook. This unique documentation is written in clear and easy-to-understand English. PRS offers you a true fluency in computeruser dialogue.

## MICROFILE: A NEW DATAFILE MANAGEMENT PROGRAM

With PRS MICROFILE you can: Manage any list of items. Edit files. Sort items alphanumerically. Search by keys. Total columns. Justify columns. Save and retrieve data with mass storage media.
PRS MICROFILE documentation also solves one of the major concerns of beginners. A special chapter explains how you can interface newly acquired software with you specific configuration.

## CORE: AN INDISPENSABLE "BRAIN-SURGEON"

This PRS program is essential for the TRS-80 level II.
Here's a partial list of commands: Examine and modify memory. Display memory in Hex, ASCII, or CPU registers. Enter ASCII in memory. Fill
memory. Move block of memory. Verify memory. Locate string. Branch to routine. Go to and execute (two breakpoints available). Hex arithmetic. Question input ports and command output ports. Tape Cue, on/off. Read file in memory (bias available). Write file from memory. Memory test. Etc. Disk version soon available.

## A2FP: A PLOTTING PROGRAM FOR APPLE II

This PRS program is a "modern age" tool for students, engineers and researchers.
A2FP plots 2-dimensional functions in HIRES graphics. Uses the full screen ( $280 \times 192$ points.) Plots on Cartesian coordinates. Gives complete parameters of plotted curves. Superimposes plots. Offers many plotting modes.

## DDS II: THE FAMOUS DYNAMIC DEBUGGING SYSTEM

DDS II is incredibly powerful. Although designed for microcomputers, it is even more sophisticated than the built-in debugging environments supported by most large main frames.
DDS II assembles and disassembles all 8080 code. Performs "software openheart surgery", artfully displaying on
the screen all registers, program instructions and memory. Simulates dual screen capability. You can switch on command from the DDS II display to the program output. It's like having two video monitors for the price of one. Updates the display while monitoring the program. Includes a full array of monitoring tools. TRS-80 version soon available.

## PRS PROGRAMS ARE PROTECTED IN A BEAUTIFUL CASSETTE OR DISK FOLDER

The PRS cassette or floppy disk and manual for your PRS programs are protectively nestled in an efficient and durable gold-imprinted folder.

## PRS SUPPORTS YOUR MAJOR BRANDS

Over 20 packages are currently available. Use the coupon below for a complete description of each PRS program and listing of versions produced for each program.

## VISIT YOUR NEAREST DEALER TODAY

Let your dealer demonstrate the excellence of PRS programs.


Listing 1: Mars Lander program for the HP $67 / 97$ programmable calculator. Clear flags, set for DEG, and set display to FIX 3 before recording program. User entry points are capitalized in comments.


Listing 1 continued on next page.

When Microsoft put Level II BASIC on TRS-80, you got a glimpse of its full potential.

## Now Microsoft introduces:


and TRS-80 will never be the same!

TRS-80 FORTRAN includes the finest Z-80 development software available:

Z-80 Macro Assembler, versatile Text Editor, and Linking Loader.

TO: Microsoft. 10800 NE Eighth, Suite 819. Bellevue, WA 98004
$\square$ Send me free TRS-80 FORTRAN overview.
$\square$ Send me TRS-80 FORTRAN and Z-80 development software for $\$ 350.00$.
$\square$ Check enclosed
$\square$ Master Charge
$\square$ VISA
Card Number $\qquad$ Exp. Date

Cardholder's Signature
Name $\qquad$
Address
City
ity $\qquad$ State $\qquad$ Zip

Clip the coupon and ORDER NOW, or send for free overview for more details about TRS-80 FORTRAN.

TRS-80 FORTRAN is supplied on two minldiskettes and requires a 32K system with one disk drive. Dealer inquiries invited.

MICROSOFT
10800 NE Elghth, Sulte 819 Bellevue, WA 98004

Listing 1, continued:


Listing 2: Optional random initialization for Mars Lander. Clear flags, set for DEG, and set display to FIX 3 before recording program. User entry points are capitalized in comments.

| Location |  |  | Program | Steps |  |  | Commentary |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | LBLC | SF 2 |  |  |  |  | CIRCULAR: Set for random circular orbit. |
| 003 | LBLE | 6 | 0 | STOA | 2 |  | ELLIPTICAL: Set segment time, gravity |
| 008 | $\square$ | STO 8 | 4 | 3 | EEX | 3 | constant, Mars radius, |
| 014 | STOD | 3 | 3 - | 9 | 3 |  | ship's mass, ship's random radius |
| 019 | STOE | 9 | EEX | 4 |  |  | $\phi$ and $\theta$. |

Listing 2 continued on page 98.

## LLABMTENTD

"BOOKS OF INTEREST TO COMPUTER PEOPLE


More BYTE BOOKS in your future...

## ... And the future

THE BYTE BOOK OF COMPUTER MUSIC combines the best computer music articles from past issues of BYTE Magazine with exciting new material-all written for the computer experimenter interested in this fascinating field.
You will enjoy Hal Chamberlin's "A Sampling of Techniques for Computer Performance of Music", which shows how you can create four-part melodies on your computer. Forthe budget minded, "A $\$ 19$ Music Interface" contains practical tutorial information-and organ fans will enjoy reading "Electronic Organ Chips For Use in Computer Music Synthesis".
New material includes "Polyphony Made Easy" and "A Terrain Reader". The first describes a handy circuit that allows you to enter more than one note at a time into your computer from a musical keyboard. The "Terrain Reader" is a remarkable program that creates random music based on land terrain maps.
Other articles range from flights of fancy about the reproductive systems of pianos to Fast Fourier transform programs written in BASIC and 6800 machine language, multi-computer music systems, Walsh Functions, and much more.
For the first time, material difficult to obtain has been collected into one convenient, easy to read book. An ardent do-it-yourselfer or armchair musicologist will find this book to be a useful addition to the library.


ISBN 0-931718-11-2
Editor: Christopher P. Morgan
Pages: approx. 128
Price: $\$ 10.00$
SUPERWUMPUS is an exciting computer game incorporating the original structure of the WUMPUS game along with added features to make it even more fascinating. The original game was described in the book What To Do After You Hit Return, published by the People's Computer Company. Programmed in both
 6800 assembly language and BASIC, SUPERWUMPUS is not only addictively fun, but also provides a splendid tutorial on setting up unusual data structures (the tunnel and cave system of SUPERWUMPUS forms a dodecahedron). This is a PAPERBYTE ${ }^{\text {TM }}$ book.

TINY ASSEMBLER 6800, Version 3.1 is an enhancement of Jack Emmerichs' successful Tiny Assembler. The original version (3.0) was described first in the April and May 1977 issues of BYTE magazine, and later in the PAPERBYTE ${ }^{\top M}$ book TINY ASSEMBLER 6800 Version 3.0.
In September 1977, BYTE
 magazine published an article entitled, "Expanding The Tiny Assembler". This provided a detailed description of the enhancements incorporated into Version 3.1, such as the addition of a "begin" statement, a "virtual symbol table", and a larger subset of the Motorola 6800 assembly language. All the above articles, plus an updated version of the user's guide, the source, object and PAPERBYTE ${ }^{\text {M }}$ bar code formats of both Version 3.0 and 3.1 make this book the most complete documentation possible for Jack Emmerichs' Tiny Assembler.

```
ISBN 0-931718-08-2
Author: Jack Emmerichs
Pages: 80
Price: \(\$ 9.00\)
```

A walk through this book brings you into Ciarcia's Circuit Cellar for a detailed look at the marvelous projects which let you do useful things with your microcomputer. A collection of more than a year's worth of the popular series in BYTE magazine, Ciarcia's Circuit Cellar includes the six winners of BYTE's On-going Monitor Box (BOMB) award, voted by the readers themselves as the best articles of the month: Control the World (September 1977), Memory Mapped 10 (November 1977), Program Your NextEROM inBASIC (March 1978), Tune In and Turn On (April 1978), Talk To Me (June 1978), and Let Your Fingers Do the Talking (August 1978).
Each article is a complete tutorial giving all the details needed to construct each project. Using amusing anecdotes to introduce the articles and an easy-going style, Steve presents each project so that even a neophyte need not be afraid to try it.


ISBN 0-931718-07-4
Author: Steve Ciarcia
Pages: approx. 128
Price: $\$ 8.00$

# is right now! 

BASEX, a new compact, compiled language for microcomputers, has many of the best features of BASIC and the 8080 assembly language-and it can be run on any of the 8080 style microprocessors: 8080, Z-80, or 8085 . This is a PAPERBYTE ${ }^{\text {TM }}$ book.
Subroutines in the BASEX operating system typically execute programs up to five times faster than equivalent programs in a BASIC interpreter-while requiring about half the memory space. In addition, BASEX has most of the powerful features of good BASIC interpreters including array variables. text strings, arithmetic operations on signed 16 bit integers, and versatile 10 communication functions. And since the two languages, BASEX and BASIC, are so similar, it is possible to easily translate programs using integer arithmetic data from BASIC into BASEX.
The author, Paul Warme, has also included a BASEX Loader program which is capable of relocating programs anywhere in memory.


ISBN 0-931718-05-8
Author: Paul Warme
Pages: 88
Price: $\$ 8.00$
PROGRAMMING TECHNIQUES is a series of BYTE BOOKS concerned with the art and science of computer programming. Itis a collection of the best articles from BYTE magazine and new material collected just for this series. Each volume of the series provides the personal com-
 puter user with background information to write and maintain programs effectively.
The first volume in the Programming Techniques series is entitled PROGRAM DESIGN. It discusses in detail the theory of program design. The purpose of the book is to provide the personal computer user with the techniques needed to design efficient, effective, maintainable programs. Included is information concerning structured program design, modular programming techniques, program logic design, and examples of some of the more common traps the casual as well as the experienced programmer may fall into. In addition, details on various aspects of the actual program functions, such as hashed tables and binary tree processing, are included.

SIMULATION is the second volume in the Programming Techniques series. The chapters deal with various aspects of specific types of simulation. Both theoretical and practical applications are included. Particularly stressed is simulation of motion, including wave motion and flying objects. The realm of artificial intelligence is explored, along with simulating robot motion with the microcomputer. Finally, tips on how to simulate electronic circuits on the computer are detailed.

ISBN 0-931718-13-9
Editor: Blaise W. Liffick
Pages: approx. 80
Price: $\$ 6.00$
Publication: Winter 1979

RA6800ML: AN M6800 RELOCATABLE MACRO ASSEMBLER is a two pass assembler for the Motorola 6800 microprocessor. It is designed to run on a minimum system of 16 K bytes of memory, a system console (such as a Teletype terminal), a system monitor (such as Motorola MIKBUG read only memory program or the ICOM Floppy Disk Operating System), and some form of mass file storage (dual cassette recorders or a floppy disk).
The Assembler can produce a program listing, a sorted Symbol Table listing and relocatable object code. The object code is loaded and linked with other assembled modules using the Linking Loader LINK68. (Refer to PAPERBYTE ${ }^{\text {M }}$ publication LINK68: AN M6800 LINKING LOADER for details.)
There is a complete description of the 6800 Assembly language and its components, including outlines of the instruction and address formats, pseudo instructions and macro facilities. Each major routine of the Assembler is described in detail, complete with flow charts and a cross reference showing all calling and called-by routines, pointers, flags, and temporary variables.
In addition, details on interfacing and using the Assembler, error messages generated by the Assembler, the Assembler and sample IO driver source code listings, and PAPERBYTE ${ }^{\text {TM }}$ bar code representation of the Assembler's relocatable object file are all included. This book provides the necessary background for coding programs in the 6800 assembly language, and for understanding the innermost operations of the Assembler.

ISBN 0-931718-12-0
Editor: Blaise W. Liffick
Pages: 96
Price: $\$ 6.00$

ISBN 0.931718-10-4
Author: Jack E. Hemenway
Pages: 184
Price: $\$ 25.00$

LINK68: AN M6800 LINKING LOADER is a one pass linking loader which allows separately translated relocatable object modules to be loaded and linked together to form a single executable load module, and to relocate modules in memory.Itproduces a loadmap and a load module in Motorola MIKBUG loaderformat. The Linking Loader requires 2 K bytes of memory, a system console (such as a Teletype terminal), a system monitor (for instance, Motorola MIKBUG read only memory program or the ICOM Floppy Disk Operating System), and some form of mass file storage (dual cassette recorders or a floppy disk).
It was the express purpose of the authors of this book to provide everything necessary for the user to easily learn about the system. In addition to the source code and PAPERBYTE ${ }^{\text {TM }}$ bar code listings, there is a detailed description of the major routines of the Linking Loader, including flow charts. While implementing the system, the user has an opportunity to learn about the nature of linking loader design as well as simply acquiring a useful software tool.

| ISBN 0.931718-09-0 |
| :--- |
| Authors: Robert D. Grappel |
| \& Jack E. Hemenway |
| Pages: 72 |
| Price: $\$ 8.00$ |
| Winter 1979 |

TRACER: A 6800 DEBUGGING PROGRAM is for the programmer looking for gooddebugging software. TRACER features single step execution using dynamic break points, register examination and modification, and memory examinationand modification. This book includes a reprint of "Jack and the Machine Debug" (from the December 1977 issue of BYTE magazine), TRACER program notes, complete assembly and source listing in 6800 assembly language, object program listing, and machine readable PAPERBYTE ${ }^{\text {TM }}$ bar codes of the object code.

MONDEB: AN ADVANCED M6800 MONITORDEBUGGER has all the general features of Motorola's MIKBUG monitor as well as numerous other capabilities. Ease of use was a prime design consideration. The other goal was to achieve minimum memory requirements while retaining maximum versatility. The result is an extremely versatile program. The size of the entire MONDEB is less than 3 K .
Some of the command capabilities of MONDEB include displaying and setting the contents of registers, setting interrupts for debugging, testing a programmable memory range for bad memory locations, changing the display and input base of numbers, displaying the contents of memory, searching for a specified string, copying a range of bytes from one location in memory to another, and defining the location to which control will transfer upon receipt of an interrupt. This is a PAPERBYTE ${ }^{\text {IM }}$ book.

ISBN 0-931718-06-6
Author: Don Peters
Pages: 88
Price: $\$ 5.00$

BAR CODE LOADER. The purpose of this pamphlet is to present the decoding algorithm which was designed by Ken Budnick of Micro-Scan Associates at the request of BYTE Publications, Inc., for the PAPERBYTE ${ }^{\text {TM }}$ bar code representation of executable code. The text of this pamphlet was written by Ken, and contains the general algorithm description in flow chart form plus detailed assemblies of program code for 6800,6502 and 8080 processors. Individuals with computers based on these processors can use the software directly. Individuals with other processors can use the provided functional specifications and detail examples to create equivalent programs.

ISBN 0-931718-01-5
Author: Ken Budnick
ISBN 0-931718-02-3
Authors: Robert D. Grappel
E Jack E. Hemenway
Pages: 24
Price: $\$ 6.00$

Pages: 32
Price: $\$ 2.00$

BYTE BOOKS Division • 70 Main Street • Peterborough, New Hampshire 03458


## TSC BASIC for 6800

## The fastest floating point BASIC for any micro.

Move over 6502! Out of the way 8080! The fastest floating point BASIC for any micro now runs on the 6800. And with the TSC name, you know it's top quality.

TSC BASIC is not only fast, but complete with over 50 commands and functions. Features include six digit floating point math, full transcendental functions, unlimited string length, if/then/else construct, logical operators, and two-dimensional arrays (including string arrays).

Available now on KCS cassette for $\$ 39.95$. Requires 9 K minimum, no source listing included. Soon to come is a version for the FLEX ${ }^{\text {™ }}$ disk operating system.


Technical Systems Consultants, Inc.

Listing 2, continued from page 92:



| Operation | Keys | Display | Explanation |
| :---: | :---: | :---: | :---: |
| Load Three-Dimensional Mars Lander program | - | 0.000 | - |
| Initialize (fixed orbit) | $E$ | 60.000 | T Default segment time, seconds |
|  |  | 45.000 | $Z$ Position angle $\phi$, degrees |
|  |  | 35.264 | $Y$ Position angle $\theta$, degrees |
|  |  | 1803.152 | X Ship's altitude, km |
|  |  | 80000.000 | T Initial fuel supply, kg |
|  |  | -45.000 | $Z$ Velocity angle $\phi$, degrees |
|  |  | 0.000 | $Y$ Velocity angle $\theta$, degrees |
|  |  | 2.828 | $X$ Ship's velocity, km/s |
| Rocket burn for 60 seconds, $\phi=135^{\circ}, \theta=0{ }^{\circ}, 100 \mathrm{~kg} / \mathrm{s}$ | 135, ENTER, 0, ENTER, 100, B | 60.000 | T Segment time, seconds |
|  |  | 42.820 | Z Position angle $\phi$, degrees |
|  |  | 35.245 | $Y$ Position angle $\theta$, degrees |
|  |  | 1802.794 | $X$ Ship's altitude, km |
|  |  | 74000.000 | T Remaining fuel supply, kg |
|  |  | -46.751 | Z Velocity angle $\phi$, degrees |
|  |  | -1.238 | $Y$ Velocity angle $\theta$, degrees |
|  |  | 2.553 | $X$ Ship's velocity, km/s |
| Free-fall 66, 60 second segments | 66, A | 60.000 | T Segment time, seconds |
|  |  | -115.974 | $Z$ Position angle $\phi$, degrees |
|  |  | -33.762 | $Y$ Position angle $\theta$, degrees |
|  |  | 5.694 | $X$ Ship's altitude, km |
|  |  | 74000.000 | T Remaining fuel supply, kg |
|  |  | 145.618 | $Z$ VelocitV angle $\phi_{\dot{\prime}}$ degrees |
|  |  | -7.423 | Y Velocity angle. $\theta$, degrees |
|  |  | 3.907 | $X$ Ship's velocity, $\mathrm{km} / \mathrm{s}$ |
| Free-fall one, 35 second segment | 35, C, 1, A |  |  |
|  |  | $6706.884$ | T Impact-to-target distance, km |
|  |  | -118.488 | $Z$ Impact position angle $\phi$, degrees |
|  |  | -34.135 | $Y$ Impact position angle $\theta$, degrees |
|  |  | -0.206 | $X$ Impact position vertical error, km |
|  |  | 74000.000 | T Remaining fuel supply, kg |
|  |  | 144.164 | $Z$ Impact velocity angle $\phi$, degrees |
|  |  | -6.425 | $Y$ Impact velocity angle $\theta$, degrees |
|  |  | 3.913 | $X$ Ship's impact velocity, $\mathrm{km} / \mathrm{s}$ |

Table 2: Demonstration of the Three-Dimensional Mars Lander program's operation. Note that the thrust from the rocket burn is directly opposite to the initial velocity.

## Text continued from page 86:

America. Follow the demonstration example in table 2 to help to understand the spaceship control, and the status displays. The HP-97 prints status displays.

A good landing is within $100 \mathrm{~m}(0.100$ km ) of the target site, with a near-vertical descent ( $\phi= \pm 180^{\circ}$, and $\theta=0^{\circ}$, for velocity angles), and at an impact velocity of less than $1 \mathrm{~m} / \mathrm{s}(0.001 \mathrm{~km} / \mathrm{s})$. There is plenty of fuel on board to make a good landing at the target site from even a "worst case" random orbit. The initial mass ratio is 9 to 1 .

Note that the display reads in kilometers and in $\mathrm{km} / \mathrm{s}$; in the normal FIX 3 display format, you can read down to the nearest meter and $\mathrm{m} / \mathrm{s}$. When near to landing, it is helpful to change the display to FIX 6 , so that you can read down to the nearest millimeter and $\mathrm{mm} / \mathrm{s}$. Also note that during descent, the spaceship's position is given in degrees, and on Mars' surface, one degree is about 60 km .

## Celestial Mechanics

Celestial orbits of a relatively light body around a massive primary may be represented by the conic sections: circle, ellipse, parabola, and hyperbola, all formed by the intersection of a plane with a cone at various angles. In this program we are concerned only with circular and elliptical orbits, since parabolas and hyperbolas represent nonrepeating, or one pass orbits.

In a circular orbit, the orbiting body always has the same velocity and the same distance from the primary. The attraction of gravity is exactly balanced by the centrifugal force at all times. Both the body's potential energy (a result of altitude) and its kinetic energy (a result of velocity) are constant.

An elliptical orbit is far more common; a circular orbit is really just a special case of an elliptical orbit. In an elliptical orbit, the body's velocity and its distance from the primary are continually varying. While the body's potential energy varies with its alti-

## BUTE is available in microform



Please send me additional information.

## University Microfilms International

Name $\qquad$ 300 North Zeeb Road Dept. P.R.
Ann Arbor, MI 48106 U.S.A.

Street $\qquad$
18 Bedford Row
Dept. P.R.
London, WC1R4EJ
England
tude, and its kinetic energy varies with its velocity, its total energy remains constant. Its energy is merely oscillating between kinetic and potential forms.

If we are in a spaceship, how do we change altitude with a minimum energy usage (ie: minimum fuel usage)? Under some special circumstances, this is fairly straightforward. For example, to go from one circular orbit to another circular orbit in the same plane - but at a different altitude the minimum-fuel-usage maneuver is known as a Hohmann transfer. It is simply an ellipse tangent to both circular orbits. A Hohmann transfer is made in three stages:
(1) Thrust along the current direction of motion (or against it) until the velocity has increased (or decreased) enough to form an elliptical orbit that reaches just up (or down) to the desired new circular orbit altitude;
(2) Wait in elliptical transfer orbit until the new altitude has been reached on the opposite side of the primary from the start;
(3) Thrust along the current direction of motion (or against it) until the orbit has been circularized at the new altitude. Note that the direction of this second thrust must be opposite to the initial direction of thrust (since we are now on the opposite side of the primary), though both increase (or decrease) the spaceship's velocity.

But how can we use this method to land on the surface of the primary? Just perform a Hohmann transfer to zero altitude, then stop! Of course, this assumes that the landing trajectory is tangent to the surface, and that we stop instantly. While this is theoretically the most efficient way to land from orbit, we can't quite actually do it this way; we have to leave some room to slow down and stop and a little extra for maneuvering room. However, the closer we can approach this theoretical minimum-fuel-usage landing, the lower the actual fuel usage will be.

To repeat: for a minimum-fuel-usage landing from orbit, an initial rocket burn is made when the spaceship is on the opposite side of the primary from the landing site to slow down enough to pass over the landing site at a low altitude; then free-fall until near to the target site. At the last possible moment, again make a rocket burn (or series of rocket burns) to stop orbital velocity, and to land vertically on the surface at the target site. Note that Mars' very thin atmosphere is ignored.

But what do we do when the landing site
is not in the plane of the orbit? Just change the plane of the orbit so that the landing site is in the plane of the orbit. This can create two complications:
(1) Since orbital velocity around Mars is fairly high, it takes a lot of fuel to change the plane of the orbit;
(2) In general, the heading of the spaceship in orbit is continually changing. But what is the proper heading to make the plane of the orbit pass through the landing site?

The answer to (1) is, literally, roundabout. If the plane change is very great, it will save fuel to first do a Hohmann transfer to a higher altitude so that the spaceship's velocity will be lower, before changing the plane of the orbit. Then come back down on another elliptical orbit to a low altitude over the target landing site. In answer to (2), there are two planes that the spaceship's orbit can be in, that also pass through the target site, where the heading does not change: the equator, and the Greenwich meridian. If we approach the target site along the equator or along the Greenwich meridian, there is no problem of constantly changing headings.

Note that any free-fall orbit is planar (that is, flat), and that the plane of the orbit always passes through the center of the primary. Therefore the orbit's path on the surface of the primary is always a great circle. (A great circle is formed by the intersection of the primary's surface with a plane passing through the center of the primary.) It passes over the equator twice for each complete orbit, and over the Greenwich meridian (or its extension, position angle $\phi$ $= \pm 180^{\circ}$ ) twice for each complete orbit.

## Program Organization

To squeeze this rather complex program into the 224 program steps available in the Hewlett-Packard HP-67/97, considerable use was made of subroutines, as shown in program listing 1 . Note that subroutines may have two entry points. To translate this program to other systems, remember that the HP-67/97 uses RPN (reverse Polish notation) on a 4 register stack. Therefore function symbols follow data entry, the same as though you were doing the calculation manually. Flags and conditional tests skip the following program step if the test is false.

The more important equations used for calculating the random initialization, the


The Magic Machine is an introduction to computing for young children. The drawings and text show how two children find uses for a computer in their home.
The Magic Machine will help the child in your life to understand some of the functions of computers in his world, and to better understand the importance of computing in your world.
The Magic Machine comes COMPLETE WTH CRAYONS, and is lots of fun to color and read.

ISBN 0-931718-17-1

## $\$ 2.00$

Buy this book at your favorite computer bookstore or order direct from BYTE BOOKS. Add $75 \mathbb{\$}$ per book for postage and handling

## Operation

Random Initialization:

$$
\begin{aligned}
& V_{c o}=\sqrt{C_{g} / R} \\
& R V_{z}=-\left(R V_{x} P_{x}+R V_{y} P_{y}\right) / P_{z}
\end{aligned}
$$

Spaceship's Trajectory:

$$
\begin{aligned}
& V_{r}=V_{i}-V_{e \times h} \ln \left(M_{f} / M_{i}\right) \\
& P_{g}=P_{i}+V_{r} t / 2 \\
& g=C_{g} / R^{2} \\
& V_{f}=V_{r}-g t \\
& P_{f}=P_{i}+\left(V_{i}+V_{f}\right) t / 2
\end{aligned}
$$

After Impact with Mars' Surface:

$$
\begin{aligned}
& V_{i m p}=V_{f}+c / d\left(V_{i}-V_{f}\right) \\
& P_{i m p}=P_{f}+c / d\left(P_{i}-P_{f}\right)
\end{aligned}
$$

Distance $=59.22\left(\cos ^{-1}((\cos \phi)(\cos \theta))\right)$
Distance $=\sqrt{P_{y(i m p)}^{2}+P_{z(i m p)}^{2}}$

## Variable Definition

$V_{c o}=$ Velocity for a circular orbit, $\mathrm{km} / \mathrm{s}$
$C_{g}=$ Mars' gravity constant, $43,000 \mathrm{~km}^{3} / \mathrm{s}^{2}$
R = Radius, Mars' center to spaceship, km
$R V_{Z}$ etc $=$ Relative velocity in $X, Y, Z$ directions
$P_{X^{\prime}}$ etc $=$ Spaceship's position in $X, Y, Z$ coordinates
$\mathrm{V}_{\mathrm{r}}=$ Spaceship's velocity after rocket burn, $\mathrm{km} / \mathrm{s}$
$V_{i}$ and $V_{f}=$ Initial and final ship's velocity, $\mathrm{km} / \mathrm{s}$
$V_{\text {exh }}=$ Rocket exhaust velocity, $4 \mathrm{~km} / \mathrm{s}$
$M_{1}$ and $M_{f}=$ Initial and final ship's mass, kg
$P_{g}=$ Position of spaceship for gravity calculation
$P_{i}$ and $P_{f}=$ Initial and final ship's position
$t=$ Segment duration time, seconds
$\mathrm{g}=$ Gravity acceleration, $3.74 \mathrm{~m} / \mathrm{s}^{2}$ at surface
$\mathrm{V}_{\text {imp }}=$ Impact velocity on Mars' surface, $\mathrm{km} / \mathrm{s}$
$\mathrm{c} / \mathrm{d}=$ Interpolation ratio
$\mathrm{P}_{\text {imp }}=$ Spaceship's impact position on Mars' surface
59.22 =Kilometers per degree along Mars' surface

Distance $=$ Impact-to-target distance along Mars' surface, km
$\phi$ and $\theta=$ Spaceship's impact position angles, degrees
$P_{y(i m p)}=$ Spaceship's $Y$ impact position, km
$\mathbf{P}_{\mathbf{z} \text { (imp) }}=$ Spaceship's $\mathbf{Z}$ impact position, km

Table 3: Random initialization, spaceship trajectory, and impact status calculations. The trajectory and impact equations do not give exact velocity and impact data, but do give good approximations. The calculated values increase in accuracy as segment duration and velocity decrease and as radius increases. While the equations are shown in their simplest linear form, calculations are actually carried out in three dimensions, using rectangular or spherical coordinates. Note that the initial conditions for one segment were the final conditions for the previous segment.

Polar to Rectangular:

$$
\begin{aligned}
& X=R \cos A \\
& Y=R \sin A
\end{aligned}
$$

Rectangular to Polar:

$$
\begin{aligned}
& R=\sqrt{X^{2}+Y^{2}} \\
& A=\tan ^{-1}(Y / X)
\end{aligned}
$$

For calculation of the angle $A$ :
a) If $X=0$, substitute a very small number for $X$, ie: perhaps $10^{-10}$
b) If $X<0$, add $180^{\circ}$ to $A$
c) If $X<0$ and $Y<0$, subtract $180^{\circ}$ from $A$

Table 4: Polar-to-rectangular and rectangular-topolar coordinate conversions.



| Registers |  |  | Labels |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Primary |  | Secondary | A | Free-Fall | 0 | Free-Fall Loop |
| 0 Temporary Loop Count | SO | - | 8 | Rocket Burn | 1 | - |
| $1 \times$ |  | $\times$ Initial | C | Segment Time | 2 | Recall Position |
| 2 y New Position | S2 | $v$ Initial | D | Display Status | 3 | Skip Alternate Calculation |
| 3 z | S3 | $z)$ Position | E | Fixed Initialization | 4 | Shift Data, Second Register Set |
| $4 \times$ | S4 | $\times$ | a | Update Velocity | 5 | Interpolation Loop |
| 5 y ¢ New Velocity | S5 | $\text { v }\left\{\begin{array}{l} \text { Initial } \\ \text { Velocity } \end{array}\right.$ | b | Update Position | 6 | Skip Interpolation |
| $6 z^{\prime}$ | S6 | $2)$ | c | Rectangular to Spherical | 7 | Mars Surface Impact |
| 7 Ship's Mass | S7 | Ship's Mass |  | Recall Velocity | 8 | Data Shift Loop |
| 8 Last Altitude | S8 | - | e | - | 9 | Out of Fuel |
| $9 \quad 10,000$ | S9 | - |  |  |  |  |
| A Segment Time, t |  |  | Flags |  |  |  |
| B t/2 |  |  | 0 On, Store New Position |  |  |  |
| C - |  |  | 1 On, Out of Fuel |  |  |  |
| D Gravity Constant |  |  |  |  |  |  |
| E Mars' Radius |  |  | 3 - |  |  |  |
| 1 Loop Count |  |  |  |  |  |  |



## For Homeowners, Businessmen, Engineers, Hobbyists, Doctors, Lawyers, Men and Women

We have been in business for over nine years building a reputaHon for providing a quality product at nominal prices - NOT what the traffic will bear. Our software is:

- Versatile - as most programs allow for multiple modes of operation.
- Iutorial - as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- Comprehenslve - as an example our PSD program not only computes Power Spectral Densities but aiso includes FFTs, Inverse-transforms, WIndowing, sllding Windows, simultaneous FFTs varlable data slzes, etc. and as a iast word our software is:
- Readable - as all of our programs are reproduced full size for ease in reading.
- Vitually Machine Independent - these programs are wrttten In a subset of Dartmouth Basic but are not oriented for any one particular system. Just in case your Basic might not use one of our functions we have included an appendix in Volume $V$ which gives conversion algorthms for 19 different Basic's; that's right, just look it up and make the substitution for your particuiar version. If you would like to convert your favorite program Into Fortran or APL or any other language, the appendix in Volume II will define the statements and their parameters as used in our programs.
Over 85\% of our programs in the first five volumes will execute in most 8 K Basic's with 16K of tee user RAM. If you only have 4 K Basic, because of lis lack of string functions only about 60\% of our programs in Volumes I through $V$ would be useable, however they should execute In only 8 K of user RAM.
For those that have specific needs, we can tallor any of our programs for you or we can witle one to fit your specific needs.



## available at most computer stores

Master Charge and Bank Amertcard accepted.
Add $\$ 1.50$ per voiume nondiling. all domesme shipments sent U.PS except APO Add $\$ 1.50$ per voiume honding. all domenic shipmens sent u.p. excepi Ap, shipment and make payable in U.S. dollars only
Our Software is copyrighted and may not be reproduced or sold.

Key Biscayne, FL 33149
Phone orders call 800-327-6543 information - (305) 361-1153

## ACOMPUTER AGE, INC. Business Systems Division

is offering $\square S B D R N E ' S$ quality software packages, written in CBASIC, for immediate delivery
PAYROLL WITH COST ACCOUNTING ACCOUNTS RECEIVABLE AND
ACCDUNTS PAYABLE
GENERAL LEDGER

| 8" CPM diskette | $\$ 85.00$ |
| :--- | ---: |
| $5^{\prime \prime}$ North Star CPM diskette | $\$ 85.00$ |
| also: |  |
| CPM | $\$ 145.00$ |
| CBASIC 5" or $8^{\prime \prime}$ | $\$ 95.00$ |

Other systems software also available
Complete turn-key Business Systems available including:

Auto-Scribe Word Processing System
\$7595.00
Bookkeeper Client Write-up System
$\$ 6895.00$
Integrated Business System of G/L, A/P, A/R, Payroll, Inventory
$\$ 5995.00$
Other systems to be available soon
Custom programming services.
Computer Age, Inc.
1308 N. Federal Hwy.
Pompano Beach, FL 33062
[305] 946-4999

## computer mart of new jersey

computer mart of pennsylvania

## 43

 themicrocomputer
people ${ }^{\text {e }}$ Computers don't make o computer store, PEOPLE do. Our people have been involved with microcomputers since day one. We offer experience and expertise unparalleled in the microcomputer industry. Whether you are in the market for a complete system, peripherals, custom software, service, or just some friendly advice; there simply is no other place to $\mathbf{g o .}$


Cemperter Mart of Fennaylvanio
 Wog citrumo PA 19400 (2t5) $265 \cdot 750$
spaceship's trajectory, and for interpolating landing conditions are given in table 3. The second equation on table 3 uses the method of direction cosines to set a horizontal orbit for any spaceship position. Many systems do not have rectangular-to-polar and polar-torectangular functions; these may be performed using software functions or subroutines, with the equations given in table 4. The use of storage registers, labels, and flags in the program is shown in table 5 .

The program operation is shown most clearly in figure 2. At the beginning of calculations for each segment, the same position, velocity, and fuel data are in both the primary and the secondary registers. During the rocket burn and free-fall calculations, only the data in the primary registers is progressively updated. After all trajectory calculations for the segment have been made, the secondary registers still contain the initial segment data, while the primary registers now contain the final segment data. Then there is a test for Mars impact during the segment; if impact has occurred, initial and final segment data are used to interpolate impact status; if impact has not occurred, primary register data is copied into the secondary registers in preparation for calculation of the next segment. If the program is still in a loop of free-fall segment calculations, the next segment is calculated; otherwise, the current status data is displayed and the program halts.

The impact interpolation method is shown in figure 3. The calculated impact-to-target distance is correct only for the hemisphere of Mars that is centered upon the designated target site. If the landing is within a square about 240 meters on a side centered upon the designated target site, roundoff in the cosine function causes a calculated miss distance of 0 . If you are this close, Mars' surface may be considered as flat, and a simpler alternate miss distance calculation is used.

## Conclusions

This program may be considered as primarily a game program, or as primarily a celestial mechanics simulation program. In either case, as you learn how to control the spaceship for better landings using less fuel, you will also be learning more about the intuitive "fee!" of celestial mechanics, and will gain a greater appreciation of some of the problems of space flight.

Watch that fuel gauge, and happy landings!■

# At last．．．get the power of the APL language on Z80－based microcomputers 

## Write finished applications software in a fraction of the time you＇d need to write similar programs in BASIC，FORTRAN，or COBOL

APL is one of the most concise，powerful prog． ramming languages，but until now its use was limited to large mainframe computers because the language occupied so much memory．APL has been used by some companies with very large computers since 1966 ， to save countless costly hours of program preparation． Now Vanguard Systems Corporation has implemented this potent computer language to run on 280 micro－ processors．

APL／ $880^{\text {m }}$ is useful，not only for mathematics and engineering applications，but also for text pro－ cessing and other business applications．It＇s easy to learn，quick to write．APL／Z80 helps you develop functional software，and debug it，in about one－fifth the time it takes you to program equivalent functions in BASIC，FORTRAN，or COBOL．APL／Z80 lets you focus on the probiem you want to solve，rather than on the programming language you＇re using． Your choice：one or many

In one line of code，APL often does what other languages require many lines to do．We haven＇t room here to show side－by－side comparisons of equivalent programs in APL，BASIC，FORTRAN，and COBOL．The other languages take too much space．But we can show you some sample APL programs．Test your current language yourself by writing an equivalent program for each example here．You＇ll quickly see the time advantages APL／Z80 offers．

## Example

This APL／Z80 expression inputs a list of values （list B），computes the average of all items in the list，then prints the average：

$$
\square \leftarrow(+/ B) \div \rho B \leftarrow \square
$$

In other languages，this expression may require at least one loop and perhaps 10 statements． Example

This APL／Z80 expression inputs a list of values （list A）：sorts the list from lowest to highest values， and prints out all values in the list $A$ in ascending order：

$$
\square \leftarrow A[\Delta A \leftarrow \square]
$$

In other languages，this expression usually takes two loops and 15 to 20 statements． Example

This APL／Z80 function computes the mean，vari－ ancr，and standard deviation for a list called $X$ ．

iN：VAR：SD
iVAR
in
In other languages，a program equivalent to this can be quite cumbersome．When you try writing one， you＇ll find yourself wishing you had APL／Z80 already．

Don＇t let the unusual symbols in APL／Z80 worry you．APL has so many complete functions built into the language itself，there aren＇t enough letters in the English alphabet to give every function a unique single－character name．Of course，APL／Z80 could name each function with four or five letters，as BASIC does，but that rapidly eats up memory．Besides， once you learn a language，you start using abbrevia－ tions anyway．APL／Z80 lets you use abbreviations from the very beginning，saving memory space both in your head and in your machine．

It has taken more than 2 years of concentrated work to produce APL／Z80，but it gives you much of the power of APL on a large mainframe，for a fraction of the cost．APL／Z80 can handle not only shared variables，but also arrays of up to 8 dimensions．

Whether you＇re an engineer，an educator，or a businessman，Vanguard Systems Corporation brings you the full power of APL at a price you can afford． Now you can enjoy the privacy and convenience of

## Check these APL／Z80 features：

－up to 27k byte active workspace on systems using CP／M＊or Digital Group systems using DISKMON
－system variables，execute，\＆format are implemented
－disk workspace and copy object library －shared variables
－arrays up to 8 dimensions
－dynamic execution of system commands
－auxiliary processor for interfacing I／0 ports
－auxiliary processor for indexed file systems
－canonical representation，fix
－latent expression
－can boot directly into appication program from system power－on．
your own low－cost APL microcomputer，right on your desktop．
Software only，or hardware／software together
If you need both hardware and software，order our APL／DTC ${ }^{\text {TM }}$ for only $\$ 6495$ ．This is a complete APL／Z80 hardware／software configuration with 26 k
usable active APL workspace，dual quad－density mini－ disk drives，and video console．Because each APL／DTC is custom－assembled，your unit will be shipped 30 to 60 days after we receive your order．Local main－ tenance on the hardware is available in major metro－ politan areas．Write or call us for more details on machine specifications．

If you already own any 280 －based computer with CP／$M^{*}$ disk operating system，or a Digital Group system with DISKMON，you can get APL／280 on your machine for only $\$ 350$ ．This includes the end user software license，object code floppy disk，and complete documentation．If you want to read the documen－ tation before ordering the complete set，our user＇s manual is available separately at $\$ 25$ per copy．

## We can ship your order now！

At Vanguard Systems，we＇re ready to ship your APL／280 ${ }^{\text {TM }}$ license／disk／documentation package or user＇s manual today．We have them in stock for immediate delivery．Act now to begin saving hours and headaches by developing powerful，precise appli－ cations programs in APL／Z80．Mark the items you need and mail the coupon today with your check， money order，or VISA／MasterCharge information．You＇ll be glad you did．
＊Trademark of Digital Research

[^3]
## The Standard

## Data Encryption Algorithm

## Part 2: Implementing the Algorithm

Robert V Meushaw
4188 Brittany Dr
Ellicott City MD 21043

Part 1 of this article described the five basic functions which must be performed to implement the Standard Data Encryption Algorithm:
permutation operations,
table lookup,
circular rotation,
byte exchange, and
modulo 2 addition.
Of course, there are many iterations of these functions in the encryption and decryption process.

## Design Approach

When I began the design, I knew that there were many possible approaches. However, I also knew that the one hard constraint I faced was the amount of memory available on the basic KIM-1 computer. This constraint was the determining factor in the design, and, as a consequence, in the efficiency and speed of the implementation. In order to determine how much memory I would have for the program, I began to estimate the amount of storage I would need to hold all of the tables I needed. My preliminary estimate was that for each entry in each permutation table I would need one byte (I actually needed slightly more, as you will see). This assumption meant that I would need 312 bytes - almost one third of the memory available to me. I next looked at the Select S1 thru S8 function. There are eight separate tables with 64 entries each. However, since each table entry required only four bits instead of eight (the entries range from hexadecimal 0 to F), I knew that if I was clever I could get away with half a byte per entry. I would
still need 256 bytes for these tables, of course. So before 1 even started on the program, one half my available memory was committed.

The impact of the above results became clear when I looked at the memory requirements for subkeys K1 thru K16. Each subkey would require 6 to 8 bytes (depending on how data was represented), giving a possible total storage requirement of 128 bytes. Since I would be left with only about 128 bytes for the program (and I didn't think that was enough) I made the decision to generate each subkey as I needed it.

## Module Design Difficulties

The actual design of the individual modules went through several iterations. My primary problem was that the optimization of the overall program meant that the design of each module was intimately involved with the design of other modules-not usually a good design approach. A revision of any module usually resulted in several iterations of changes to other modules. An example of this coupling is the following:

- efficient design of the Select S1 thru S8 module requires inputs to be available as 8 bytes of 6 bits each.
- in order to generate the input as required above, the subkey and the results of the Select E permutation must be represented as 8 bytes of 6 bits each.
- the design of the module which performed the permutation function had to be modified and reoptimized to allow for less than 8 bits per byte in the result.

I am sure that many readers have encountered the same type of difficulty in developing relatively complex software which must be optimized for speed, space, or both. It was a frustrating experience because of the many revisions required.

## Data Movement

One of the first tasks in designing this program, or any program, was the definition of the data structures and the data transfers which will occur. The basic data elements to be manipulated are:

- 8 bytes of plaintext input (PT)
- 8 bytes of key
- 8 bytes of subkey
- 8 bytes for Ci and Di
- 8 bytes of storage for intermediate results (TEMP).


Table 9: Data format and data movement used in the software implementation of the Standard Data Encryption Algorithm.

# Solve Problems By Simmlation... 

## with simulations of many concepts, including - wave motion - flying objects - artificial intelligence - electronic circuits - and robot motion!

SIMULATION is a collection of the best articles from BYTE Magazine on this useful computer technique, plus exciting new material on the subject.
SIMULATION is the second volume in the Programming Techniques series on the art and science of computer programming from BYTE BOOKS. Editor BlaiseW.Liffick's selection of materialfurnishes not only background information from which the personal computer user is able to write and maintain simulation programs, but also actual programs for simulating many situations. Theoretical and practical applications of this technique are explored in articles dealing with specific aspects of simulation.
Learn how to find solutions to your problems through SIMULATION.

ISBN 0-931718-13-9

## \$6.00

Buy this book at your favorite computer book-
store or order direct from BYTE BOOKS.
Add 50 c per book for postage and handling

"BOOKS OF INTEREST TO COMPUTER PEOPLE"

## "Efficiency is in. Extravagance IS -nerumet

That's why when you look for top-quality, low-cost, add-onmemory you should always look for Vector Graphic on your memory boards. It means they stand behind every product through over 200 Vector Graphic dealers.

Vector Graphic is the only one who designs in so much quality for so little cost.

The 48K Dynamic RAM memory board is used in the Vector MZ microcomputer, although any Z-80/S-100 computer system can take advantage of the problem-free transparent refresh offered in this high-quality, low-cost add-on-memory.

It's no secret, Vector Graphic is carefully assembling state-of-the-art 16 K -bit dynamic boards. And each board is thermally cycled, aged and continuously read-write tested over 400 million error-free cycles.

The new 48 K board consumes less than 4 watts total power and provides the same superior design and reliability found in all products from Vector Graphic. Remember, it's memory that works.

Table 8 depicts the data transformations and data transfers that occur. The first item shows that the plaintext data is permuted by the initial permutation and stored in the bytes originally occupied by the plaintext data.

Figure 7: Flowchart of module which performs the permutation function TFORM.


For each of the transformations which occur, table 9 shows the format of both the data input and the results of the operation. Each rectangular box represents one byte. As an example, consider the transformation Permuted Choice 2 (PC-2). The input is Ci ( 28 bits) and Di ( 28 bits) and the output is stored as 8 blocks of 6 bits each. The label $C D$ (to the left) shows the source data, and subkey shows the destination of the results of the permutation.

## Permutation Module: TFORM

At this point I can begin the detailed explanation of the major modules. The module where most of the work is done (and where most of the time is spent) is TFORM. Steps $1,2,3,4,7$ and 9 of table 8 depict the permutation functions performed. The operation of this module is similar in each case; only the input parameters are different. The primary input parameters to TFORM are: source data address, destination address tor results, and permutation table address. For example, to perform the permutation shown in step 4 of table 8, TFORM would get the source address of PT (right), the destination address of TEMP, and the table address of the Select $E$ permutation.

A general flowchart of TFORM is shown in figure 7. It provides a top level description of the operation for those readers who want to program the function on different machines.

The first task is to update the input parameters used by the routine. In addition to the parameters described above, the routine also needs the number of elements in the permutation table (PCOUNT), the number of bytes in the result of the permutation (WCOUNT), and the number of bits in each result byte (BCOUNT).

Here's how the permutation is done. The first element of the permutation table is obtained. This element tells which bit of the input is the first bit of the result, as follows: referring to figure 8 , bits 0,1 and 2 refer to the byte of the source data to be used; bits $3,4,5$ and 6 refer to a mask number to be used to isolate the proper bit. At this point, an example might help. Figure 9 shows how the first bit of Permute $P$ is obtained. The first bit of the result is bit 16 of the input this corresponds to byte 1 of the input


Figure 8: Format of elements of permutation table.


OK MACHINE \& TOOL CORPORATION 3455 CONNER ST., BRONX, N.Y. 10475 (212) 994-6600/TELEX 125091
-MINIMUM BILLING S25.00/ADD SHIPPING CHARGE S2.00Y NEW YORK CITY / STATE RESIDENTS ADD APPLICABLE TAX.


Figure 9: Example of permutation operation being used to obtain first bit of Permute Presult.

Figure 10: Table organization for Select S1 through 58 data.

ANDed with mask 8. Once the bit is isolated, it is forced into the carry bit by first clearing the carry bit and then adding hexadecimal FF. The value of the carry bit is then shifted into the result byte.

The process described above is continued for all the elements of the permutation table. The number of bits in each result byte is controlled by BCOUNT. Each result byte is temporarily stored on the program stack.

| SI, S2 INDEX | 0 | 0 | x | $x$ | x | $x$ | x | x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3, 54 INDEX | 0 | 1 | $x$ | $x$ | $x$ | $x$ | $x$ | $x$ |
| S5, S6 INDEX | 1 | 0 | x | X | X | X | X | $x$ |

s,

$$
0 \times x \times x \times x
$$

S7, S8 INDEX


After completion of all bit permutation operations using all table elements, the result bytes are taken from the stack and placed at the proper destination address.

This routine, as well as others, makes extensive use of the 6502 indirect, indexed mode of addressing. It is a particularly powerful technique for sequencing through many tables, as this program does.

Before leaving the description of this routine, I should explain one problem I had with the permutation table for Permuted Choice 1. For the results of each permutation except Permuted Choice 1, there are either 6 or 8 bits in each byte. Table 9 shows that two bytes of the result have only 4 bits. To achieve consistency in the code for TFORM, I added eight elements to the permutation table of Permuted Choice 1. They force these extra bits to 0 , using mask 0 , and allow all bytes of the result to have eight bits.

## Select S1 thru S8 Module

As described before, the Select S1 thru S8 function transforms groups of six bits into groups of four bits according to tables S 1 thru S8. Table 9 shows that each group of six bits is contained in one byte of source data. Figure 10 shows the organization of the data for the tables S1 thru S8.

In order to transform each 6 bit source group into the proper 4 bit result group, you must generate an index into the segment containing the S1 thru S8 data. As seen in


# Some plain words about Word Processing 

## Microtronix introduces the "Turnkey" Word Processing Package for \$2150



figure 10, the index into each individual table is controlled by bits 6 and 7 of the index byte.

Let's examine how to map the last byte of the source data using S8. Figure 11 shows that the low order 6 bits from the source byte are used to select a byte from the 64 bytes in the S7, S8 segment. To access the correct 64 byte segment (S7, S8) we force the two high order bits to 11 . The resulting byte is used as an index into the table. If you mask the high 4 bit word of the accessed byte (which also contains S7 data), the proper 58 data is selected. Of course, the table data must be properly ordered within S8, but that's fairly easy.

In order to carry out the other transformations, you proceed in a similar fashion. The only changes would be the two high order bits used to index the proper segment of the table, and whether you mask the low or high nybble.

A general flowchart of this module is provided in figure 12.

## ROTATE Module

As I said before, 1 decided to generate each subkey as I needed it. To generate subkeys $\mathrm{K}_{1}$ thru $\mathrm{K}_{16}$, it is necessary to perform left rotations of Ci and Di and then perform Permuted Choice 2 as shown in part 1. The number of left shifts is determined by using the iteration count, LOOPCT, as an index into the table SHIFTM. This module is
relatively straightforward except for the problem caused by the half byte boundary shown in figure 13.

A second problem arises in the case of decryption. In this case, the subkeys must be generated in reverse order (ie: K16 thru K1). In order to generate them properly, the rotation of Ci and Di is done by right shifting and by using the SHIFTM table in reverse sequence and by performing Permuted Choice 2 before the right rotation is done. This may seem strange, but I gave it a great deal of thought to make sure it was right. It is the simplest way that I could devise to do the decryption correctly, and it works!

## What's Left?

The only remaining module is the one which swaps two groups of four bytes each. This module is called SWAP, and it performs the swap function and block transform function discussed in Part 1.

## Put Them All Together

The main module, DES is really a master controller for the other modules. It initializes the parameters used by TFORM, performs the appropriate modulo 2 additions shown in table 8, makes sure that subkeys are properly generated during encryption and decryption, and maintains the iteration count. Figure 14 is a general flowchart for this module.

## WHEN THE FUN AND GAMES ARE OVER, you shouldn't

 have to gamble on your microcomputer's ability to get down to business. You won't with Outpost 11. It's a serious unit with quality components: Cherry, full ASCII keyboard; Setchell-Carlson CRT, $24 \times 80$ characters, $7 \times 9$ dot matrix; inverse, grey, blink; form generation characters; Shugart floppy disk drives; M6800 CPU; 32 k bytes RAM; glass-epoxy PC boards, manufactured and tested to Mil Q 9858-A; entire unit 100-hour burn in tested; IC's tested to Mil P 883; I/O interrupt prioritizing structure; softsectored disk format; business BASIC; self diagnostics; software development packages; etc; etc; etc. All this and more at only $\$ 2,595$,suggested retail price. See Outpost 11 at a dealer listed or write us for the name of a dealer near you. ZANO Corporation, 4301 Poche Court West, New Orleans, La. 70129

THE SERIOUS MICROCOMPUTER


Dealers: DALLAS, Eclectic Corp. - 214-358-1307• GREENVILLE SC, Plus, Inc. - 803-242-9090 • HOUSTON, Eclectic Corp. - 713-228-7798 • IDAHO FALLS ID, Great Plains Computer Co. - 208-526-9051 - NEW ORLEANS, TANO - 504-254-3500 - SALT LAKE CITY UT, Home Computer Store - 801-484-6502. SEATTLE, Empire Electronics -206-244-5200. Dealer inquiries invited - 504-254-3500. TWX 810-591-5229.

Figure 12: Flowchart of module which performs the select S1 through S8 mapping function SELECT.


Figure 13: Rotation of the bits in Ci,Di requires special attention to bit 28 because it is in the middle of a byte.

The only particular point worth noting is that the parameters used by TFORM to perform the proper permutation are stored sequentially in the order used. The order of the information in the table DATA is:
Initial Permutation data
Permuted Choice 1 data
Permuted Choice 2 data
Select E data
Permute $P$ data
Inverse Initial Permutation data

Once the Initial Permutation and Permuted Choice 1 are performed, the DES routine sequences TFORM thru Permuted Choice 2, Select E, and Permute P, for 16 iterations. Then TFORM performs the inverse Initial Permutation to complete the encrypt or decrypt operation.

## Using the Program

The Standard Data Encryption Algorithm program is written as a subroutine which can be called at hexadecimal address 0176. In order to use the routine, three things must be supplied: mode, plaintext, and key. The mode byte (location 0000) is set to 00 for encryption or FF for decryption. The plaintext is 8 bytes of data (locations 0001 thru 0008) which is to be encrypted or decrypted. The key is eight random bytes provided by you (locations 0009 thru 0010) to control the algorithm. The encrypted (or decrypted) result is returned to locations 0001 thru 0008.

A call to DES uses 12 bytes of stack storage. If your other programs use the stack, you should take care to avoid overwriting. the main routine. Many of the page zero locations used by DES may be used for other purposes between calls. These hexadecimal locations are 0011 thru 002C and 0038 thru 0040. A memory map of the entire program is shown in figure 15.

When the encryption key is loaded, you should make sure that the bits are nearly as random as possible, since it is the randomnes's of the key which makes it difficult for an outsider to decrypt the cipher. If you attempt to load ASCII characters as key, it is likely that the most significant bit of each byte will be zero. This will substantially reduce the strength of the algorithm. An alternate way to handle the key is as 16 ASCII characters, with random contents in the four low order bits. The four low order bits of these characters can be compacted to form the eight bytes of key which the algorithm requires.


64K bytes of fast. low power dynamic RAM.

32K bytes of faster static RAM.
$\$ 59500$

Both Our UNCommon Dynamic and our UNCommion Static RAMS have the following features and specifications:

- Compatible with: IMSAI, VECTOR, SOL, TDL, MITS, IA, CROMEMCO, NORTH STAR, and most other S-100 systems.
- Inputs buffered with 1 LS TTL load.
- Outputs are all three state.
- Memory selectable and deselectable in 4 K increments.
- DIP switch selectable addressing.
- Phantom selectable on pin 67.
- Disc compatible. DMA compatible to 1 MHz .
- Reliability - all boards are fully tested
a. Bus address and control line timing skew.
b. Word pattern sensitivity.
c. All boards are burned-in.
- Full documentation.
- Industrial quality design and components. Glass epoxy boards. Silk screened legends. Gold plated edge connectors. All IC's on sockets.
- Delivery - Stock to 30 days.
- Guaranteed performance for one year on parts and labor. Full refund if returned undamaged within 14 days.

Our UNCommon Dynamic RAM Features:

- 64K bytes of dynamic RAM with on board transparent refresh.
- S-100 interface compatible with crystal controlled timing INDEPENDENT of bus or processor timing.
- No wait states or cycle stealing with 8080 or $\mathbf{Z 8 0}$ to 4 MHz . Up to 5 MHz with I wait state.


## Our UNCommon Static RAM Features:

- 32K bytes of static RAM using 300 n Sec low power static RAMS.
- No wait states or cycle stealing with 8080,8085 , or $Z 80$ processors up to 5 MHz .
- Organized in 8 independently addressable $4 K$ byte increments at 4 K boundaries.

UNCommon Dynemic RAMS

- DMGA00 OAK RAM - $\$ 005$

DM4800 S8K RAM - 3595
DM $3200-32 \mathrm{~K}$ RAM - 5405
UNCommon Seatic RAM
C S 133200 32K RMA - 3505
Enckesed in achech or money order lot
Mays lor cnecks to cleat bank thank you

Please bill my $\square$ BA. $\square$ VISA or $\square$ MASTERCHARGE account Card No.: Four digits bove name on Mar date $\qquad$

[^4]


Figure 14: Flowchart of the main routine for the Standard Data Encryption Algorithm.
PAGE: 00001
0000
*CIS COBOL (V2.0) DIVISION. N-UP.
*CIS COBOL (V2.0) DIVISION. N-UP.
0000
0000

* DIVISION.
$\begin{array}{ll}\text { ** } & \\ \text { * } & \\ 0 \text { IDENTIFICATION DIVISION.SET-UP. } & 0000 \\ \text { STOCK-FILE-SETS } & 0000\end{array}$
000010 IDENT 0 PROGRAM-ID. STOCK-FI LTD.
000020 PROGRAM. MICRO FOCUS
0000
0000
000030 AUTHOR. MENT DIVISIOION. 00.
000040 ENVFFIGURATION SEC MDS-800.
000050 CONF
000050 CONFRECOMPUTER. MDS -800


000080 INPUT-CONTROL
000090 FILE-CONTCT STOCK-FINEEXED
$\begin{array}{ll}000090 & \text { SELECT SIOION INDEXED } \\ 000100 & \text { ORGANIZATYNAMIC } \\ 000110 & \text { ACCESS DYNA }\end{array}$
000120 RECORD KEY.
000140 DATA DIVISION. RECORD 32.
000140 FILE SECTION. RECORD 32.
000150 SOCK-FILE;
000160 FD STOCK-FITEM.
00017001 STOCK-SOCK-CODE PIC KIC $02(24)$
$\begin{array}{lll}000170 & 02 & \text { STOCNUCT-DESC PIC } \\ 000180 & 02 & \text { PRODUCT- }\end{array}$


00022001 SCREEN-CODE PIC 02 ASK-COD PIC $X(59)$. 0 , VALUE DESCRIP'
$\begin{array}{lll}000230 & 02 & \text { FILLER RIC X } \\ 000 & 02 \\ 0 & \text { ASK-DESC PIC } X(16) \text { VALUE }\end{array}$
$\begin{array}{lll}000240 & 02 & \text { ASK-DESC PIC X } X(25) \text { VALUE } \\ 000240 & 02 & \text { SIC } X(39) \text {. VALUE UNIT S: } \\ 000250 & 02 & \text { SI-DESC PIC } X(39) \text { V }\end{array}$

$\begin{array}{lll}000260 & 02 & \text { FILTER RIC } X C X(21) \\ 000270 & 02 & \text { ASK-SIZE RIC } \\ 00028 \\ 000280 & \text { ENTER-IT REDEFINES SCREEN-HER } \\ 016)\end{array}$
000290 ENTER-IT RIC X(16). 02 IC $\times(4)$.
$\begin{array}{llll}000290 & 02 & \text { FILTSTOCK-COOC } \\ 000300 & 02 & \text { CRT-STER PIC }(76) \\ 000310 & 02 & \text { FILLER } X(24) .\end{array}$
$\begin{array}{lll}000310 & 02 & \text { FILTER PIC } \\ 000320 & 02 & \text { CRT-FROD-DESC PIC } \\ 002\end{array}$
$\begin{array}{lll}000310 & 02 & \text { FILLERROD-DESC } \\ 000320 & 02 & \text { CRT-PRR PIC X(56). } \\ 000330 & 02 & \text { FILLER (4). }\end{array}$
$\begin{array}{lll}000330 & 02 & \text { FILLER PIC } X E \\ 000340 & 02 & \text { CRT-UNIT-SIZE } \\ 00350 & 02 & \text { FILLER PIC } X .\end{array}$
0017
0018
$\begin{array}{rrr}000350 & 02 & \text { FITLER PISN. } \\ 000360 & \text { RROC.EDURE DIVISION. }\end{array}$
0018
002 F
000360 PROCEDURE DIVISION.
000370 SPACE.
$\begin{array}{lll}000370 & \text { PROC.EDURE } \\ 000370 & \text { SRI. } & \\ 000380 & \text { DISPTAY SPACE. } \\ 000390 & \text { OPEN I-O STOCK-FITE . } \\ 000400 & \text { DISPLAY SCREEN-HEADINGS . }\end{array}$
$\begin{array}{lll}000370 & \text { PROCEDUR } & \\ 000380 & \text { SRI. DISPLAY SPACE. } \\ 000390 & \text { OPEN I-O STOCK-FILE. } \\ 000400 & \text { DISPLAY SCREEN-HEADINGS . } \\ 000410 & \end{array}$
000410 NORMAL-INPUT. SPACE TO ENTE
000420 MOVE SPAC ENTER-IT.
$\begin{array}{ll}000420 \text { MOVE SPAC ENTER-IT. } \\ 000430 & \text { DISPLAY } \\ 000440 \text { CORRECT-ERROR. }\end{array}$
0030
0036
Coseres)
Coseres)

$\begin{array}{ll}\text { MOVE SPACE TO EN. } & 0065 \\ \text { DISPR } & 006 \mathrm{~F}\end{array}$
000420 NORMAVE SPACETER-IT. $\quad 006 \mathrm{~F}$
0077
000440 DISPLRRROR. SORRETT-ERTIT. SPACE GO TO END-ITRRECT-ERROR. 0070

|  | 0075 |
| :--- | :--- |
| 000450 CORRECT-ERR ENTER-ISNE SPACE GO GO TO CORRECT | 0070 |

                                  \(\begin{array}{ll}000450 \text { CORRE ACCEPT ENTERK-CODE F SPACERIC GO TO } \\ 000460 & \text { IF CRT-STOCK-SI2E NOT NUMERICT-DESC. }\end{array}\)
                                  0088.9
    
0097
000460 IF CRT-SITIT-SIZE NOTO PRODUCT-DES.
0097
009 A
000470 IF CRT-UNIT-SISDESC TO PRODU.SIZE.
$009 A$
$\begin{array}{ll}000460 & \text { IF CRT-SITT-SI2E NOT TO PRODUC. } \\ 000470 & \text { IF CRT-UNIT } \\ 000480 & \text { MOVE CRT-PROD-DESC TO UNIT-SIZE. } \\ 000490 & \text { MOVE CRT-UNIT-SIZE TO TO STOCK-CODE. }\end{array}$
0098
000490 MOVE CRT-UNIT-SICEDE TO STOC
009 F
$\begin{array}{ll}000490 \\ 000500 \\ 000510 & \text { MOVE CRT-STOCK-CODE } \\ \text { WRITE STOCK-ITEMi IN }\end{array}$
OOA3
000510 WRITE STORK-ITSNUT
$\begin{array}{ll}000520 & \text { GO TO NORMAN INP } \\ 000530 & \\ 000540 & \text { END-IT. }\end{array}$
$\begin{array}{ll}000530 & \text { END-IT. } \\ 000540 & \text { CLOSE STOCK-FILE. } \\ 000550 & \text { DISPLAY SPACE. } \\ 005 \text { WROGRAM*. }\end{array}$
From Micro Focus Ltd.
$\begin{array}{ll}000540 & \text { END-ILOSE STOCR-FE. } \\ 000550 & \text { DISPLAY SPACE. } \\ 0056 \text { PROGRAM". }\end{array}$
$\begin{array}{ll}000550 & \text { DISPLAY SRA } \\ 000560 & \text { DISPLAY EN } \\ 000570 & \text { STOR RUN. }\end{array}$
STOP
000580 OND LIST

CIS COBOL is the Compact, Interactive, Standard COBOL which offers for the first time a cost-effective key to full commercial use of microcomputers.
It can be used simply and naturally, offers facilities unavailable with other forms of COBOL, and produces efficient code without wasting space. For example, a 32 K byte sytem is sufficient to run the compiler or a substantial application program.
CIS COBOL contains the most relevant parts of the ANSI 74 standard plus extra facilities to provide a powerful interactive business language.

The CIS COBOL Object Pack is available for shipment on IBM compatible diskette to users of a variety of $8080 / Z 80$ based computers running the $C P / M^{*}$ operating system.

## Dealer and Application Vendor terms are available

Now enhanced to version 3 with FORMS utility to generate COBOL source direct from CRT image.
Micro Focus offers a CIS COBOL licencing package to OEM's including access to internal documentation and program source plus an Interfacing Kit to enable CIS COBOL to be implemented quickly in the OEM's own hardware and software environment. The CIS COBOL compiler is itself written in COBOL making it self compiling and thereby extremely portable.

MICRO FOCUS LTD 58 Acacia Road, London NW 86AG, ENGLAND, UK

Telephone 017228843 TLX 28536
Our telephone number in December issue of BYTE was incorract.

* CP/M is a trademark of Digital Research

|  |  | CLC <br> LDA <br> STA <br> STA <br> STA <br> STA | $\$ 00$ <br> WORD 1 <br> WORD 2 WORD 3 <br> WORD 8 | Initialization |
| :---: | :---: | :---: | :---: | :---: |
| 2 bytes 2 bytes 2 bytes 2 bytes | 3 cycles <br> 2 cycles <br> 2 cycles <br> 5 cycles | LDA <br> AND <br> ADC <br> ROL | $\left.\begin{array}{l} \text { SOURCE } 1 \\ \$ X X \\ \$ F F \\ \text { WORD } 1 \end{array}\right\}$ | Basic in line coding to permute one bit |
| 8 bytes total | 12 cycles total | LDA AND ADC ROL | SOURCE 2 <br> \$XX <br> \$FF <br> WORD 1 |  |

Table 10: 6502 instructions which could be used to in line code the permutation function. Fastest time to permute one bit requires 72 cycles and 8 bytes of memory.

| Key | Plain | Cipher |
| :---: | :--- | :--- |
| 7CA110454A1A6E57 | 01A1D6D039776742 | 690F5B0D9A26939B |
| 0131D9619DC1376E | 5CD54CAB3DEF57DA | 7A389D10354BD271 |
| 07A1133E4A0B2686 | 0248D43806F67172 | 868EBB51CAB4599A |
| 3849674C2602319E | 51454B582DDF440A | 7178876E01F19B2A |
| 04B915BA43FEB5B6 | 42FD443059577FA2 | AF37FB421F8C4095 |
| 0113B970FD34F2CE | 059B5E0851CF143A | 86A560F10EC6D85B |
| 0170F175468FB5E6 | 0756D8E0774761D2 | 0CD3DA020021DC09 |
| 43297FAD38E373FE | 762514B829BF486A | EA676B2CB7DB2B7A |
| 07A7137045DA2A16 | 3BDD119049372802 | DFD64A815CAF1AOF |
| 04689104C2FD3B2F | 26955F6835AF609A | 5C513C9C4886C088 |
| 37D06BB516CB7546 | 164D5E404F275232 | 0A2AEEAE3FF4AB77 |
| 1F08260D1AC2465E | 6B056E18759F5CCA | EF1BF03E5DFA575A |
| 584023641ABA6176 | 004BD6EF09176062 | 88BF0DB6D70DEE56 |
| 025816164629B007 | 480D39006EE762F2 | A1F9915541020B56 |
| 49793EBC79B3258F | 437540C8698F3CFA | 6FBF1CAFCFFD0556 |
| 4FB05E1515AB73A7 | 072D43A077075292 | 2F22E49BAB7CA1AC |
| 49E95D6D4CA229BF | 02FE55778117F12A | 5A6B612CC26CCE4A |
| 018310DC409B26D6 | 1D9D5C5018F728C2 | 5F4C038ED12B2E41 |
| 1C587F1C13924FEF | 305532286D6F295A | 63FAC0D034D9F793 |
|  |  |  |

Table 11: Sample test words for the Standard Data Encryption Algorithm.

## Text continued from page 120:

Data encrypted using the Standard Data Encryption Algorithm will be decrypted properly as long as the correct 8 byte boundaries are maintained. This allows you to independently decrypt 8 byte blocks of data in memory. There are other ways of using the encryption algorithm which require data to be decrypted in the same sequence as it was encrypted. If you are interested in adapting DES to these other techniques, you should refer to textbooks dealing with cryptography.

As a final note in using the encryption


Figure 15: Memory map for the Standard Data Encryption Algorithm program.
program, all of the routines, permutation and selection tables, and TFORM input parameter tables (array DATA) may be relocated by altering a small number of address references.

## Timing Analysis

One of my primary objectives in programming the Standard Data Encryption Algorithm was to determine the efficiency of the 6502 processor in handling a task which requires lots of bit manipulation. In order to determine the efficiency of the implementation, 1 calculated the approx-


If you've got a floppy disk controller on your S-100 bus, you've got a big problem. Because when you want to upgrade your system from single to double density, or from single-sided to double-sized, or from $5^{\prime \prime}$ to $8^{\prime \prime}$ floppy, you'll have to throw that old controller off the bus.

But not any more you don't. Because at DATASPEED, we've developed one controller that works with all four kinds of floppy disk drives. And doubles the density, too.

## Works with all floppy disk drives.

Single-sided minifloppys. ${ }^{\text {TM }}$ Double-sided minis. Single-sided maxis. Even the new double-sided maxis with up to 8 megabytes. This is the only controller in the world that works with all four.

## Handles any upgrade.

When you want to go from single-sided to double-sided drives, this great new controller reads each side automatically. And you can upgrade from $5^{\prime \prime}$ to $8^{\prime \prime}$ disks just by changing a simple Header socket.

## Packs in twice the data.

Now you can pack double density data on every side of every disk. Because we've designed in a bootstrap PROM that automatically controls any shift from single to double density. And, of course, when you're running double density, you can transfer data in half the time. lets you transfer all your files to double density.

## We call it The Conductor.

The DATASPEED Floppy Disk Controller. It handles all your upgrades. It packs in twice as much. And at only $\$ 295$, it's even the cheapest way to go. That's why this is one controller you'll never have to throw off the bus. And that's why we had to call it The Conductor. Ask for it at your local computer shop or send $\$ 295$ for immediate delivery. By the way, we have Double-Density CP/M ${ }^{\text {m }}$ for only $\$ 100$. Complete disk drive systems are available.

Write us for more information. Dealer inquiries welcome. And watch our future ads for trade-in offers. DATASPEED, INC., 1302 Noe Street, San Francisco, CA 94131.
THE CONDUCTOR ${ }^{\text {m }}$

imate number of machine cycles spent in each module during one encryption cycle． The cycle times which I used for each instruction were taken from the data pro－ vided by MOS for the 6502．My calcula－ tions revealed the following times：

| DES（Main）Routine | $-\quad 4300$ cycles |
| :--- | :--- |
| Rotate | -1900 cycles |
| Select S1－S8 | -7500 cycles |
| TFORM | -146000 cycles |

This indicates that over 90 percent of the time is spent in the module TFORM． These calculations also indicate that the to－ tal encryption time is approximately 160 ms ； assuming the $1 \mu \mathrm{~s}$ cycle time of the KIM－1． In order to verify these calculations，I timed a loop which performed 256 encryption operations．The observed execution time was 164 ms ．Not bad for a rough estimate．Max－ imum throughput would be about 390 bps．

I next wondered what maximum through－ put could be achieved，given unlimited mem－ ory．The two most obvious changes to make were to perform subkey generation only once，and to optimize TFORM．Table 10 shows the basic instructions which could be used to code the basic permutation func－ tions，such as Permute $P$ in line．It also shows the number of machine cycles re－ quired and the number of bytes of memory required．These changes would reduce the

Listing 1：The DES program implemented on the basic KIM－1 module．


| 0 ¢？ | 1080 ${ }^{\circ}$ |  |  | \＄0087 |
| :---: | :---: | :---: | :---: | :---: |
|  | ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ |  |  |  |
|  | HEMORT LOCATIONS |  |  |  |
|  | ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ |  |  |  |
| か） 7 | MODE | ＊ | 10000 | EHCRYPT／DECRYPT MODE |
| 0 ¢ 8 ？ | PTL | ＊ | 10001 | PT（LEFT）START |
| の） 0 ？ | PTR | ＊ | 50005 | PT（RIGHT）START |
| 0りを？ | KE＇i | ＊ | 10009 | KEY START |
| Oい心．？ | TEMF＇ | ＊ | 50011 | TEMPGRARY STORAGE |
| 008 ？ | SUEKEY | ＊ | \＄0019 | SUBKEY START |
| OOE？ | C01 | ＊ | f00こ1 | START OF C（I） |
| －りジ？ | C0 2 | ＊ | 50022 |  |
| 0.36 ？ | C0， 3 | ＊ | fóc3 |  |
| ）いま？ | 104 | ＊ | 50024 |  |
| つらを？ | 1．0．5 | ＊ | 50025 | START OF O（I） |
| 0りを？ | B06 | ＊ | 50026 |  |
| 0ッら？ | 507 | ＊ | 50027 |  |
| 008？ | CL\％ | ＊ | 10028 |  |
| のけ8？ | LDOFCT | ＊ | 50025 | ITERATIOH COUHT |
| 0188. | BITCHT | ＊ | 500こ\％ | －BITS PER HORD |
| Oubi | SEIMHT | ＊ | 1002A | DATA POINTER FOR SI－S8 |
| 0り玉？ | HCLC | ＊ | fucci | TEMPORARY STORAGE |

Listing 1 continued on next page．
number of cycles spent in TFORM to about 16900．The time for one encryption cycle would be reduced to about 31 ms ，and maxi－ mum throughput would increase to 2000 bps．Memory requirements would increase to about 3500 bytes．

It is clear that although the 6502 can per－ form at a reasonable rate，its instruction set is not well suited to high speed implemen－ tation of the Standard Data Encryption Algorithm．If bit test instructions were avail－ able，similar to those of the Zilog Z－80，it would theoretically be possible to reduce the time spent in TFORM by 50 percent．It would then make sense to speed up the other routines．I would not be surprised if through－ puts of 8,000 to $10,000 \mathrm{bps}$ were possible．

## Conclusions

I have demonstrated that the Standard Data Encryption Algorithm can be imple－ mented on the basic KIM－1 with reasonable performance．However，it is clear that the instruction sets available for most processors are not well suited to an efficient implemen－ tation of the algorithm．It is also clear that the basic functions necessary to perform the algorithm（ie：bit permutations）are not well suited to implementation in software． I have shown that an increase in memory to about 3500 bytes will allow the through－ put to be increased from 390 bps to about 2000 bps．

I have attempted to present a coherent description of the Standard Data Encryption Algorithm for those readers who may be interested in reprogramming it．Table 11 provides a set of test words to verify your implementation．These test words are part of those available from National Bureau of Standards Special Publication 500－20．

The coding of my encryption program is provided in listing 1．For anyone inter－ ested in obtaining a KIM compatible cassette with the Standard Data Encryption Algor－ ithm program，several driver routines for Teletype and keypad，a shortened version of the program，and complete documenta－ tion，send $\$ 6$ to $R$ Meushaw， 4188 Brittany Dr，Ellicott City MD 21043.

## REFERENCES

Data Encryption Standard，FIPS Publication 46, US Department of Commerce／National Bureau of Standards， 1977.

Validating the Correctness of Hardware Imple－ mentations of the NBS Data Encryption Standard， NBS Special Publication 500－20，US Department of Commerce／National Bureau of Standards， 1977.

Katzan，H，The Standard Data Encryption Algo－ rithm，Petrocelli Books Inc，New York， 1977.

16K BYTES OF MEMORY, SPEECH,


Two years ago we wrote a piece on the most startling product of the decade. The first personal computer. It actually brought the miracle of computing power within reach of small businesses. At less than $\$ 1000$, it was even affordable for home use.

That was two years ago. Today, that same unit. and other second and third generation models are still being sold. Enter now Interact's fourth generation Americanmade personal computer with total sound. color, 16,000 bytes or words of usable memory, and superb ease of handling at hundreds of dollars less than any comparably equipped computer.

## GIANT COMPUTER HARDWARE

Beneath its cover is the Intel $8080^{\circ}$ microprocessor brain-a powerful logic component used in computers costing tens of thousands of dollars. Interact loads data up to 5 times faster than most other compacts. Its 8080 brain does all of the complex data saving, processing and retrieval chores. All that's left is typing in the data through the 9 inch. 53 -key standard typewriter keyboard.

## WHY IT COSTS LESS

Since the unit performs in color, it is designed to hook up to any TV antenna terminal. If we included a color screen (CRT), we'd have to charge more. Witness the 16 K Radio Shack Model. It's only black and white, and with its screen that isn't even a TV. it costs $\$ 899.00$. Ours, with full sound and color is several hundred dollars less. Interact full sound is generated three ways: There are game action sounds from the microprocessor, tunes within the programs and actual speech and music from any cassette software. In fact, it is the only computer able to transmit full sound through a TV. Image resolution is superb.

## THE MOST EFFICIENT BUSINESS

 TOOL EVERInteract ${ }^{\text {• comes ready to handle a wide }}$ range of business applications. Its Level II Basic. and 16 K byte system capacity give you the instruction set and the room to write your own programs for payroll, inventory, client records, etc. For accountants, attorneys, doctors, salespeople, and smali businesses. it's a lot of computer for very little money.
For the enlightened computer expert, our Level II Basic is Interact's version of the Microsoft ${ }^{\text {tm }}$ and is equivalent to all Level II programs currently available. The program includes: a superset of operations in floating point with integer and string arrays, direct memory access, direct statement execution, two character variable names, user definable functions, multi-statement lines, editing, scrolling, file management, and more.

## AN INCOMPARABLE SCHOOL TEACHER

Since it can talk, play music and perform in color. Interact is a phenomenal teacher.

That's why High/Scope, an educational research foundation, was commissioned to develop an exclusive Language Arts program for it. The 8-unit program ranges from Letter Recognition for preschoolers through Word Root, Grammar, Critical Reading and Writing exercises for the 8 to 15 year old. Students listen, take notes and prepare assignments through the computer. Similar math and foreign language programs are also being prepared. By comparison, any one of these courses given by a tutor or commercial school could easily cost as much as the computer itself.


IT'S A BRILLIANT MUSIC TEACHER A comprehensive music program and a piano keyboard overlay turn the computer into a perfect pitch maestro. You can practice, write a tune or record. To create a melody, you can select both key and tempo. A staff is displayed on which to write your song, note by note, complete with rests and values. Play the composition back; correct any note; instantly transpose it to another key; or store it on a blank cassette for later revision. A student can listen to his lesson and transpose it into another key for use with $F, B^{p}$. $E^{b}$ horns, etc. The youngster then plays along in the right key, in the correct meter. It's a fantastic application.
of COURSE, IT PLAYS GAMES
Interact is a total entertainment center with color, sound, and music. There are Chess. Backgammon, Hangman, Regatta Races, Concentration, Trailblazers, Blackjack. Star Track-games that would cost any arcade owner \$2000 or more. Challenge the computer or another opponent. Each game will bring family and friends together for hours of quality fun.
FCC AND CSA APPROVED FOR YOUR TV The Interact computer, with built-in storage and programmability, is FCC and CSA approved for attachment to any TV. It is UL listed and operates onstandard 110 V household current. It's portable, too: weighs 12 pounds and is only $19^{\prime \prime} L \times 12^{\prime \prime} W \times 8^{\prime \prime} D$.

SPECIAL OFFER-OVER $\$ 300$ WORTH OF FREE PROGRAMS - INCLUDING LEVEL II Interact is exceptional. But, there is just no way to prove it, unless you are enjoying it in your own home and business. You have to try it. That's why we are giving you 14 different full color and sound programs FREE-including Edu-Basic and the Basic Level II program for advanced applications. It's our way of backing up everything we've said and making it worth your while to check it out for yourself. Your $\$ 300$ FREE value includes:
Edu-Basic ${ }^{\text {r" }}$ - Level II Basic . Blackjack . Compute-A-Color ${ }^{\text {rw }}$ - Hangman ${ }^{\text {rw }}$ - Knockdown ${ }^{\text {w }}$ - Trailblazers ${ }^{\text {re }}$ - Dogfight ${ }^{\text {Tw }}$ - Showdown ${ }^{\text {™ }}$. Regatta ${ }^{\text {re }}$ - Concentration - Add-Em-Up ${ }^{\text {mm }}$. Computer Maze ${ }^{\text {™ }}$ - Biorhythm ${ }^{\text {r" }}$ and 1 Blank Data Tape.
Fourteen programs are actually more than other computers have to offer. They're yours FREE with your purchase of the Interact. If, after 15 days you are not satisfied with your Interact, you may return it for a prompt refund of the purchase price. Sorry, but you'll have to return the 14 programs and the data cassette also. The unit is backed by a ninety-day parts and labor limited factory warranty.
CREDIT CARD ORDERS CALL TOLL FREE
800-621-5809
ILLINOIS RES: 800-972-5858
24 HOURS 7 DAYS/WEEK

[^5]

## ROTATE BITS $1-28$ OF D LEFT ONE EIT









 (



 $\stackrel{+-}{\omega}$品







## 


$88 \%$
各莒稆
88.
88





Listing 1, continued:


$\begin{array}{llllllll}02 F 9 & O A & 21 & 2 B & 2 A & 22 & 36 & 41\end{array}$

$1788 \quad 28 \quad 29 \quad 2 A \quad 2 B \quad 2 \mathrm{C} \quad 2 \mathrm{D}$ 2E 2 F
$\begin{array}{lllllllll}1790 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37\end{array}$
$\begin{array}{lllllllll}1798 & 38 & 39 & 3 A & 3 B & 3 C & 30 & 3 E & 3 F\end{array}$
$\begin{array}{llllllllll}1740 & 00 & 00 & 00 & 00 & 24 & 25 & 27\end{array}$

$\begin{array}{lllllllll}1780 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$
17BE OS O9 OA OB OC OD OE OF
0300 EF 0.341 FD $08 \quad 74$ 1E 47
$\begin{array}{lllllllll}0308 & 26 & E F & F B & 22 & \text { B } 3 & 08 & 84 & 1 E\end{array}$
031039 AC AT 6062 E1 CA BH
$\begin{array}{lllllllll}0318 & 5 C & 96 & 90 & 59 & 05 & 3 B & 7 A & 85\end{array}$
$032040 \mathrm{FQ} 1 E \mathrm{CB} \mathrm{ET}$ SH BE 21
0328 OA 4364 9F 2014 B1 72
0330 F5 5B CS E6 于C 3776 EC
$0338 \quad 39$ AO A3 O5 52 GE OF DS
0340 AT DO DO 78 SE OB E3 9S
$03486036364 F$ F9 60 5A A3
0350112410287 C8 52 75 EC
0358 BE C 1 4C BA 24 FE BF 19
0360 DA 1366 HF 49 DO 9006
0368 8E 6A FE $913780 \quad 0078$
0370 BF 4911 F4 23 ES EE 3 B
$0378 \quad 55$ BL M 257 E8 22 74 CE
0380 2C EA C1 EF 4 A 24 1F C2
$038879 \quad 47$ H2 7 E E 86 09 68 15
$039080 \quad 56$ 5D 1133 FD F4 HE
0398 DE 3007 9B ES 83 9E E8
$03 \mathrm{HO} 49 \quad \mathrm{B4}$ 2E 83 IF C 2 BE 7 C
$03 H 8$ A2 19 D8 E5 7 C C $2 F 830 \mathrm{O}$
0360 FT 6 G 90 FE C4 O1 5A 97

| 0388 | 61 | $A 6$ | 30 | 40 | $0 B$ | 58 | $E 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$03 C 040$ D1 B2 OF 28 BD E4 78
$03 C 8 F 5 \quad 4 A O F 93$ BB 17 O1 A4
$03 D 0$ ЗA EC C9 359356 TE CE
$0308 \quad 55 \quad 20$ AO FE $6 \mathrm{C} \quad 89 \quad 17$ 62
$03 E 0176248$ B1 B4 DE DI E7
O3E8 CY 14 3C 4 A TE HE ES 70
() 3 F リ HO $9 F \mathrm{FS} 5 \mathrm{~S}$ SA 19 SG S F


## CP/M ${ }^{+}$TRS-80

## The CP/M Operating System now available for Radio Shack's TRS-80

CP/M OPERATING SYSTEM

- Editor, Assembler, Debugger, and Utilities
- For 8080 and Z-80 Systems
- Up to four floppy disks
- Documentation includes: CP/M Features and Facilities CP/M Editor Manual CP/M Assembler Manual CP/M Debugger Manual CP/M Interface Guide CP/M Alteration Guide
CPIM System Diskette and Documentation (Set of 6 manuals) for \$150.
CP/M Documentation (Set of 6 manuals) only $\$ 25$.
MACT MACRO ASSEMBLER
- Compatible with new Intel Macro standard
- Complete guide to Macro Applications

MAC Diskette and Manual for \$150.

SID ${ }^{\text {© }}$ SYMBOLIC INSTRUCTION DEBUGGER

- Symbolic memory reference
- Built-in assembler/disassembler

SID Diskette and Manual for \$125.
TEX TEXT FORMATTER

- Powerful text formatting capabilities
- Text prepared using CP/M Editor

TEX Diskette and Manual for \$125.
HIGH-LEVEL LANGUAGES

- Basic
- Fortran
- Cobol
- Call or write for information

USER'S GROUP

- 35 disks with utilities, games and applications
- Call or write for information



## INTRODUCING G2 LEVELIII BASIC.

## Now do more than everbefore with the most powerful Basic you can buy for the TRS-80.

Open the manual and load the cassette. Then get ready to work with the most powerful Basic interpreter you've ever had your hands on...Level III Basic for Radio Shack Compulers. It loads right on top of the Level II ROM, and in just 5 K of space, opens up your capability to new dimensions. For starters, this new cassette-based interpreter gives you the whole catalog of disk programming power Plus graphics commands. Plus powerful editing commands. Plus long error messages, hex and octal constants and conversions, user defined functions and a number of commands never before available on either cassette or disk interpreters! Easier Loading, Fewer Keyboard Errors. G2 Level III Basic eliminates aggravations you've had, including keyboard "bounce" and those super-sensitive lape deck settings. Programs will load easier, and you'll have far less trouble with input errors.
Basic Access to RS-232. Until now, if you wanted to access your RS-232 interface, you had to work in assembly language. G2 Level Ill Basic does the work for you, letting you use your interface with Basic statements.
Have You Wished for More Power? This new interpreter gives you 10 machine language user calls for subroutines, long error messages, a new TIME \$ call for your real time accessory, plus measure or limit input timing that lets you put a time limit on responses when you're playing games or giving exams. And the list doesn't stop here.
Easier and More Powerful Graphics. This new Basic includes three simple commands that can eliminate dozens of program steps. PUT transfers information from a designated array to your screen; GET reverses the process. LINE-makes your computer do the work when you input beginning and end poinls. Give it two diagonally opposite corner locations, and il'll oulline the rectangle you're looking for.
Only Microsoft Could Do It. G2 Level Ill Basic was created by Microsoft, the same company that wrote Level II Basic for Radio Shack. And it actually uses Level II as a foundation for this enhanced add-on. By the time you've mastered all it can do, calling up the flexibility of the graphics commands, and even enjoying the convenience of renumbering, you'll wonder how it was all possible. Il's like getting a whole new computer for your computer.
Available Now for Only $\$ 49.95$. You get the power that might otherwise cost you hundreds of dollars in additional equipment for only $\$ 49.95$. Price includes the User Manual, a Quick-Reference Card, and a preprogrammed cassette lape. Load the tape, open the manual, and get ready to work with the most powerful Basic Interpreter you've ever had your hands on. G2 Level III Basic for the TRS-80. Another member of the growing G2 Personal Computer Program Library.

For the name of the G2 dealer nearest you, call us toll-free at $800 / 538-8540$ or 800/538-8541. In Califormia, please call 800/672-8691.


# Queuing Theory, 

the Science of Wait Control

## Part 1: Queue Representation

Len Gorney
POB 96 RD 1
Clarks Summit PA 18411

How many times have you waited in a line? Do you always get to a supermarket checkout counter without having to wait? Is the pump at the gas station always open and ready for you as you drive into the service area? It's difficult to imagine anyone going anywhere and not having to wait in a line.

Since we're computer oriented, let's define a waiting line by its proper name that is, a queue.

A queue is a waiting line controlled by some service mechanism. A customer enters a queue at the tail of the queue, waits in line until he or she arrives at the head of the queue, is serviced at the head of the queue, and, finally, leaves the queue. At the supermarket a customer pushes a cart to one of the lines formed at the checkout area and waits in a line until finally arriving at the cash register at the head of that line. After checking out the purchases, that customer leaves the queue.

## Queue Examples

Other examples of queues can be found in many areas of our everyday lives. The supermarket checkout queue is a commercial type of queuing system. Other commercial queues include the bank teller queue, the barbershop queue, the gas station queue, etc. The field of transportation is not without its share of queues: traffic lights, turnpike toll booths, airport runways, loading and unloading docks are but a few examples.

Of course, we have personal queues. How about that shelf of books you're planning to read some day?

## Let's Have Order

A queue is defined as a waiting line, and since a waiting line has both a beginning (tail) and an end (head), a queue must also have both these properties.

The head and tail idea implies that customers entering (being inserted) or leaving (being deleted) must follow a definite ordering scheme as members of the queue. This ordering scheme is defined as the dispatching discipline of the queue.

The usual dispatching discipline of a queue is known as first in first out or FIFO. An orderly queue exhibits this scheme. The first person entering the queue is the first person to receive service, and the last person entering the queue is the last person to receive service. Any person entering after the first but before the last must spend some time waiting in the queue before service may be rendered.

The first in first out discipline is but one of many ordering schemes that queues follow. Other servicing disciplines include last in first out (eg: a stack of dishes), a priority queue, and shortest line first or longest line first (these are multiple queuing systems and will be discussed later).

## Queue Representation

How can we represent a queue as part of a computer program? The following piece of BASIC coding (a one-dimensional array) could be used to represent a queue in a computer program:

## 10 DIM Q(100).

A queue is nothing more than a special purpose one-dimensional array. Just as the ordinary one-dimensional array is represented as a single row or a single column structure $n$ locations long or deep, the queue can be represented as a single row structure $n$ locations long.

## Over and Under

When an array is dimensioned to 100 locations, the program cannot access the

# Wondering which memory is best for you? <br> base 2•offers the following products to the S-100 market at the industry's lowest prices: 




#### Abstract

8K Static Memory Board This 8 K board is available in two versions. The $8 \mathrm{KS}-\mathrm{B}$ operates at 450 ns for use with 8080 and 8080A microprocessor systems and Z-80 systems operating at 2 MHz . The 8 KS -Z operates at 250 ns and is suitable for use with $\mathrm{Z}-80$ systems operating at 4 MHz . Both kits feature factory fresh 2102's (low power on 8KS-B) and includes sockets for all IC's. Support logic is low power Schottky to minimize power consumption. Address and data lines are fully buffered and 4 K bank addressing is DIP switch selectable. Memory Protect/Unprotect, selectable wait states and battery backup are also designed into the board. Circuit boards are solder masked and silk-screened for ease of construction. These kits are the best memory value on the market! Available from stock... 8KS-B $\$ 125$ (assembled and tested add \$25.00)

8KS-Z $\quad \$ 145$ (assembled and tested add $\$ 25.00$ )


## 16K Static Memory Board

Base 2 can now offer the same price/performance in 16K static RAM as in its popular 8K RAM. This kit includes 8 K bank addressing with 4 K boundary address setting on DIP switches. This low power unit provides on-board bank selection for unlimited expansion... No MUX board required. Using highest quality boards and components we expect this kit to be one of the most popular units on the market. Available in two speed ranges, the $16 \mathrm{KS}-\mathrm{B}$ operates at 450 ns while the $16 \mathrm{KS}-\mathrm{Z}$ operates at 250 ns .

16KS-B $\$ 285$ (assembled and tested add $\$ 25.00$ )
$16 \mathrm{KS}-\mathrm{Z} \$ 325$ (assembled and tested add $\$ 25.00$ )



## S-100 for Digital Group Systems

This kit offers, at long last, the ability to take advantage of S-100 products within your existing Digital Group mainframe. Once installed, up to four $S$ - 100 boards can be used in addition to the existing boards in the D.G. system. The system includes an "intelligent" mother board, ribbon cables to link existing D.G. CPU to the DGS-100 board and a power wiring harness. The DGS-100 is designed to fit in the $5-3 / 4^{\prime \prime} \times 12^{\prime \prime}$ empty areain the standard D.G. cabinet. It may seem expensive but there's a lot here! End your frustration! DGS-100 \$295

## Z-80 CPU Board

Our Z-80 card is also offered in two speed ranges. The CPZ-1 operates at 2 MHz and the CPZ-2 operates at 4 MHz . These cards offer the maximum in versatility at unbelievably low cost. A socket is included on the board for a 2708 EPROM which is addressable to any 4 K boundary above 32 K . The power-on jump feature can be selected to address any 4K boundary above 32K or the on-board 2708. An On-board run-stop flip-flop and optional generation of Memory Write allows the board to run with or without a front panel. The board can be selected to run in either the 8080 mode, to take advantage of existing software, or in the Z-80 mode for maximum efficiency. For use in existing systems, a wait state may be added to the M1 cycle, Memory request cycle, on-board ROM cycle, input cycle and output cycle. DMA grant tri-states all signals from the processor board. All this and more on toD quality PC boards, fully socketed with fresh IC's. CPZ-1 \$110 CPZ-2 \$125


Send for more details on these products. Get on our mailing list for information on more soon to be announced products at factory-direct prices from BASE 2. Why pay more when you can get the best at these prices???
P.O. Box 3548 - Fullerton, Calif. 92634
(714) 992-4344

CA residents add 6\% tax
MC/BAC accepted • FOB - U.S. destination

Listing 1: Simple BASIC simulation of a row queue. Pseudorandom number generation is done to ensure that the queue simulation works correctly as described in the text. A sample run of the program is also shown.

| 1000 |  | DIM Q(5) |
| :---: | :---: | :---: |
| 1001 | REM |  |
| 1002 | REM | INITIALIZE QUEUE TO EMPTY STATE |
| 1003 | REM |  |
| 1010 |  | FOR J2 = 1 T0 5 |
| 1020 |  | $Q(\mathrm{~J} 2)=-9$ |
| 1030 |  | NEXI J2 |
| 1031 | REM |  |
| 1032 | REM | INITIALI2E TAIL TO HEAD Of Queue |
| 1033 | REM |  |
| 1040 |  | $T=5$ |
| 1041 | REM |  |
| 1042 | REM | START OF MAIN SIMULAIION LOOP |
| 1043 | REM |  |
| 1050 |  | FOR J2 = 1 TO 15 |
| 1051 | REM |  |
| 1052 | REM | GENERATE A RANDOM NUMBER TO DETERMINE |
| 1053 | REM | AN IMSERTION UHEN N < 5 |
| 1054 | R EM | A DELETION WHEN $N>=6$ |
| 1055 | REM |  |
| 1060 |  | $N=I N T(R H D(1) * 10)+1$ |
| 1070 |  | PRINT "NUMBER="; N3 |
| 1080 |  | IF $N<25$ GOSUB 1170 |
| 1090 |  | IF $\mathrm{N}=6$ G0SUB 1240 |
| 1091 | REM |  |
| 1092 | REM | PRINT QUEUE CONTENTS |
| 1093 | REM | PRINT TAIL POINTER VALUE |
| 1094 | REM |  |
| 1100 |  | PRINT © QUEUE= ${ }^{\text {- }}$ |
| 1110 |  | FOR J3 = 1 TO 5 |
| 1120 |  | PRINT Q(J3) ${ }^{\text {P }}$ |
| 1130 |  | NEXI 33 |
| 1140 |  | PRINT - TAIL= ${ }^{\text {® }}$ \% T |
| 1141 | REM |  |
| 1142 | REM | END OF MAIN SIMULAIION LOOP |
| 1143 | REN |  |
| 1150 |  | NEXT J2 |
| 1160 |  | STOP |
| 1161 | $R$ R |  |
| 1162 | REM | INSERTION ROUTINE |
| 1163 | REM |  |
| 1164 | REM | WHEN T = O QUEUE IS FULL, I.E. OVERFOW |
| 1165 | REM | ELSE, IMSERT N AT TAIL AND DECREMENT TAIL |

104th or -36 th location. These integer values are not within the boundaries of the dimensioning statement. If the program attempts to address out of range locations during execution of the program, an overflow or underflow condition occurs. Overflow occurs when a location greater than that given in the dimensioning statement is addressed. Likewise, underflow occurs when a negative subscript is given as an addressing value.

Some BASIC interpreters allow for addressing location 0 of an array. If an array is dimensioned to 100 locations, the actual number of legally addressable locations is 101 (counting location 0 as the first available location).

The program listings in this article do not take advantage of this extra available array location. The first available location is always array location 1 , and the last available location is equal to the integer value given in the dimensioning statement.

Let's get back to overflow and underflow as these conditions apply to queues. If we assume that our queuing program will not address a location above or below those given in the dimensioning statement, overflow and underflow take on a somewhat different meaning.

A queue overflow occurs when the program attempts to insert an item into our queue and the queue is filled to its capacity. Underflow in a queue structure occurs when the program attempts to delete an item from the queue but there are no items in the queue.

## Queue Operations

Items in an ordinary one-dimensional array can have many operations performed

on them. A program can insert items anywhere within the array, and items can be removed from any legal location within the array. Items can be examined and left in place or moved to any location within an array.

A queue can have only two operations performed upon its items. The first of these allowable operations is the insertion of an item into the queue. This insertion can be done only at the tail of the queue. The second operation allows for deletion. Deletion is done only at the head of the queue.

The Simple Row Queue
The program shown in listing 1 is a simulation of a row queue (see figure 1). The mechanics of a row queue follow the definitions we have seen so far.

The row queue has its tail at location 1 of array Q , while its head is at location 5 of array Q . The choice of these locations for tail and head is arbitrary. I chose this scheme


Figure 1: Simple row queue. This type of queue has a stationary "head" and a moving 'tail." As data items are deleted from the head, all of the data items in the queue are moved toward the head, and the tail pointer is decremented by 1. As more data is entered into the queue at the tail, the location of the tail pointer is incremented by one location.

Listing 1, continued:




Figure 2: Circular queue in three states of use. Figure $2 a$ is an empty queue, in which the head pointer and the tail pointer point to the same location in the queue. Figure $2 b$ shows a partially filled circular queue. The tail pointer moves ahead of the head pointer as data Items are added to the queue. As an item is deleted, the head pointer moves towards the tail pointer. Figure 2c shows a full queue. In this state the tail pointer has caught up with the head pointer. Note that one location in the queue will be left empty. If this were not done, the next item added to the queue would make the head and tail pointers point to the same location, which would seem to indicate that the queue was empty.
because it is easier to output the queue during execution of the program in a normal left-to-right reading fashion.

The head (service facility area) of the queue of listing 1 is always at location $\mathrm{Q}(5)$. The tail of the queue (the location in the queue where items will be inserted) moves from location 5 toward location 0 of array Q as items are inserted into the queue. When items are deleted, the tail of the queue moves from its present value toward location 5.

The tail of the row queue is indicated by a tail pointer (variable T ). When T is 5 the queue is empty: that is, there are no items in the queue. When T is 0 the queue is filled to its capacity and no insertions can be made without causing an overflow condition.

To simulate the action of a queue properly, listing 1 generates pseudorandom numbers to determine queue insertion or deletion. The importance of randomness in proper queue operation is explained later.

Before you execute the program in listing 1 , run through its operations with pencil and paper. This approach will show you how the program will run before the actual operation is simulated by the computer. This method will also clarify the mechanics of a simple row queue operation.

## The Circular Queue

A major disadvantage of our simple row
queue is the fact that items must be moved toward the head of the queue after each deletion. /Editor's Note: This is not true for all implementations of a row queue. Often, the pointers indicating the head and tall of the row queue are moved instead of all the data inside the queue. . . RGAC] The loop in line numbers 1370 through 1400 of listing 1 accomplishes this move. If we're trying to represent a queue simulation in a computer program, why not use some programming techniques to take advantage of decreasing execution time and thereby eliminate some of the unwieldy code?

The circular queue, figure 2 , is also represented as a special purpose one-dimensional array. The simple row queue has a pointer to keep track of the location where the next item insertion was to take place. The circular queue also has this tail pointer.

The difference between the row and circular queue lies in the addition of another pointer to indicate the location of the head of the queue. The simple row queue always has its head at the last available location of the array Q . The circular queue structure can have its head anywhere within the queue.

## Circular Queue Representation

The circular queue operates in the same manner as the simple row queue. Items are still inserted into the location given as the tail point location of array Q .


PROVIDES MONITOR AND TAPE SOFTWARE in ROM. TERMINAL and TAPE PORTS on SAME BOARD. CONTROLS ONE or TWO TAPE UNITS (CC-8 or 3M3B).

This is a complete 8080,8085 , or $Z 80$ system controller. It provides the terminal I/O (RS232, 20 mA or TTL) and the data cartridge I/O, plus the motor controlling parallel I/O latches. Two kilobytes of on board ROM provide turn on and go control of your Altair or IMSAI. NO MORE BOOTSTRAPPING. Loads and Dumps memory in hex on the terminal, formats tape cartridge files, has word processing and paper tape routines. Best of all, it has the search routines to locate files and records by means of six, five, and four letter strings. Just type in the file name and the recorder and software do the rest. Can be used in the BiSync (IBM), BiPhase (Phase encoded) or NRZ modes with suitable recorders, interfaces and software.

This is Revision 8 of this controller. This version features 2708 type EPROM's so that you can write your own software or relocate it as desired. One 2708 preprogrammed is supplied with the board. A socket is available for the second ROM allowing up to a full 2 K of monitor programs.

Fits all S100 bus computers using 8080 or $\mathbf{Z 8 0}$ MPU's. Requires 2 MHz clock from bus. Cannot be used with audio cassettes without an interface. Cassette or cartridge inputs are TTL or RS232 level.

AVAILABILITY - Off the shelf.


$$
\begin{aligned}
& \text { 2SIO (R) CONTROLLER } \\
& \$ 190.00 \text {, Tested \& Assmb. }
\end{aligned}
$$

## DOUBLE DENSITY FLOPPY DISK CONTROLLER

A new floppy controller for 5" and 8" drives utilizing the new 1791 chip to provide single or double density recording. Flip the switch to use one or the other mode. Can load memory from single density and re-record it double density on the same drive so you can transfer or re-record your programs and files. Comes with new format program for double density on disk to replace your old single density format program. (Soft Sector IBM format). $\$ 320.00$ assembled and tested.
$C P / M^{\circledR}$ is now available, rewritten as necessary to utilize it with the double density disk controller card above, $\$ 100.00$ with manuals, $\$ 70.00$ without manuals. CBASIC and other software can be supplied by our dealers, in double density form.
SWTP Disk drive owners, you can now use your drive with $\mathrm{CP} / \mathrm{M}^{\circledR}$ and our Z 80 board below. All $\mathrm{CP} / \mathrm{M}^{\circledR}$ compatible programs will run in your altered SWTP.
Tape Software-We can now supply XITAN Z80 software in KC Standard or CC-9 formats.

## Z 80 BOARD for SWTP COMPUTER

Now you can use the 8080/Z80 software programs in your SWTP 6800 machine. Replaces your MPU board with a $Z 80$ and ROM so that you are up and running with your present SWTP memory and MPS card. 1 K ROM on board replaces MIKBUG and enables you to use XITAN Z80 software which we can supply.

AVAILABILITY - Off the shelf.

\$190.00, Tested \& Assmb.
For U.P.S. delivery, add \$3.00. Overseas and air shipments charges collect, N.J. Residents add 5\% Sales Tax. WRITE or CALL for further information. Phone Orders on Muster Charge and BankAmericard accepted.

Listing 2: BASIC listing for a circular queue simulation. Lines 1900 through 2100 are the insertion routine; lines 2110 through 2270 are the deletion routine. A sample run of the program is shown at the end of the listing.

| 1000 |  | DIM Q(5) |
| :---: | :---: | :---: |
| 1001 | REM |  |
| 1002 | REM | INITIALIZE QUEUE IO EMPTY STATE |
| 1003 | REM |  |
| 1010 |  | FOR $\mathrm{N}=1$ TO 5 |
| 1020 |  | Q(12) $=-9$ |
| 1030 |  | NEXT J2 |
| 1031 | R $\mathrm{EM}_{1}$ |  |
| 1032 | REM | IHI IIALIZE HEAD AND TAIL POIMTERS |
| 1033 | REM | TO HEAD OF QUEUE LOCATION |
| 1034 | REM |  |
| 1040 |  | $H=5$ |
| 1050 |  | $T=5$ |
| 1051 | R EM |  |
| 1052 | REM | START OF MAIN SIMULATION LOOP |
| 1053 | R EM |  |
| 1060 |  | FOR J3 = 1 T0 10 |
| 1061 | REM |  |
| 1062 | REM | GENERATE A RANDOM NUMBER TO DETERMINE |
| 1063 | REM | AN INSERTION UHEN $N<5$ |
| 1064 | REM | A DELETION UHEN $\mathrm{N} \rightarrow$ ( 6 |
| 1065 | REM |  |
| 1070 |  | $N=$ INT ( RND (1) * 10) +1 |
| 1080 |  | IF $N$ < 5 GOSUB 1900 |
| 1090 |  | IF N = 6 GOSUB 2110 |
| 1091 | REM |  |
| 1092 | REM | PRINT QUEUE CONTENTS |
| 1093 | REM | PRINT TAIL AND HEAD POINTER VALUES |
| 1094 | REM |  |
| 1100 |  | FOR J4 = 1 TO 5 |
| 1110 |  | PRINT Q(J4): |
| 1120 |  | NEXT J4 |
| 1130 |  | PRINT * TAIL AT*; T; * HEAD AT* ${ }^{\text {* }}$ |
| 1131 | REM |  |
| 1132 | REM | END OF MAIM SIMULATION LOOP |
| 1133 | REM |  |
| 1140 |  | HEXT J3 |
| 1150 |  | STOP |
| 1151 | REM |  |
| 1152 | REM | INSERTION ROUTINE |
| 1153 | REM |  |
| 1154 | REM | CHECK TAIL AND HEAD POINTER VALUES |
| 1155 | REM |  |
| 1900 |  | IF H = I GOTO 1970 |
| 1910 |  | IF H < I GOTO 2030 |
| 1920 |  | IF T $=1$ GOTO 2030 |
| 1930 |  | IF H = 5 GOTO 2080 |
| 1931 | REM |  |
| 1932 | REM | INSERT ITEM AT Q(H) |
| 1933 | REM | SIMCE QUEUE IS EMPTY |
| 1934 | REM |  |
| 1940 |  | $Q(5)=N$ |
| 1950 |  | $T=4$ |
| 1960 |  | GOTO 2050 |
| 1970 |  | IF I $<2$ OOTO 2000 |
| 1971 | REM |  |
| 1972 | REM | RESET POINTERS TO HEAD OF QUEUE |
| 1973 | REM |  |
| 1980 |  | $H=5$ |
| 1990 |  | $I=5$ |
| 1991 | REM |  |
| 1992 | REM | CHECK IF Q(T) EMPTY FOR POSSIBLE INSERT |
| 1993 | REM |  |
| 2000 |  | IF Q(T) $<>-9$ GOT02080 |
| 2010 |  | $H=5$ |
| 2020 |  | $T=5$ |

Listing 2 continued on page 140.

The major difference is in the way which the program controls the head location of the queue. A new variable called H (for head pointer) points to the array location which holds the item ready for deletion.

An item is inserted into the queue at the location pointed to by the tail pointer. After this insertion, the pointer is moved by one location in readiness for another insertion. When an item is deleted, the head pointer comes into play. In the simple row queue, the head is always at the last available location. In the circular queue, the head of the queue is defined by the value of the head pointer variable H . After an item is deleted, the head pointer is moved one location toward the value of the tail pointer. In this structure, data items remain stationary; only the pointers vary, indicating relative positions of the tail and the head of the queue.

This queue structure is clearly advantageous when we're dealing with long queues. If a row queue is filled to its capacity and an item is deleted, every remaining item has to be moved one at a time toward the stationary head of the row queue. The circular queue moves the head pointer by only one location, thereby cutting program execution time.

The tradeoff is time versus space. The circular queue program is longer than the simple row queue; however, the time to execute the circular queue routine is shorter since the majority of code execution in the simple row queue is during the moving of the items after a delete operation.

In the circular queue, the tail pointer chases the head pointer during insertions. During deletions, the head pointer chases the tail pointer.

When the circular queue is filled to capacity, the head and tail pointers are at adjacent locations. No more items may be inserted simply because there is no more available space to fit an item into the queue. An overflow condition occurs if an insertion is attempted on a filled queue.

An underflow occurs when the queue is empty and a deletion is attempted. An empty circular queue is one in which the tail and the head pointers are at the same location in the array $Q$.

The program given in listing 2 simulates a circular queue. Again, a pencil and paper method of initial execution may prove helpful. After the mechanics of this structure are understood, then execute the program.

This completes our discussion of two different types of queues and their representation in a computer. In part 2 we will consider queues in the world around us and fit them into the structures already developed.



The PERKIN－ELMER BANTAM

$\$ 799.00$
All the Features of the Hazeltine 1400 \＆LSI ADM－3A Plus


TELETYPE
MODEL 43

| KSR | with RS232 10 or 30 CHAR／SEC 132 COLUMNS UPPER／LOWER CASE |
| :---: | :---: |
|  | USR－310 |
|  | Originate |
|  | Acoustic |
|  | Coupler |
| Crystal Co | Stand Alone |
| Crystal Co | olled RS232 |



USR－330
Originate Auto－Answer
\＄324．00 Modem
FCC Certified for Direct Connection to Phone Lines
USR－320 Auto－Answer
Only Modem
$\$ 299.00$
All Units include a 120 day warranly Optional Maintenance package available．
Any Product may be returned within 10 days for a full refund．

## L．S．RロB日TICS，INC． 1035 W．LAKE ST． CHICAGO，ILL．Gasa7

[^6]Listing 2，continued：

```
2021 REM
2022 REM NORMAL TAIL INSERTION
2023 REM
2030 Q(T) = N
2040 T = T = 1
2050 PRIMT * *
2060 PRINT "ARRIVAL"
2070 RETURN
2080 PRINT * *
2090
2100
2101 R EM
2102 REM
2103 REM
2104 REM
2105 REM
2110 IF H = I GOTO 2150
2120 IFH>0 GOTO 2190
2130 H = 5
2140 GOTO 2180
2150 IF H < O GOTO 2180
2160 H = 5
2170 T = 5
2171 REM
2172 REM DELETE FROM Q(H) IF Q(H) HAS AN ITEM
2173 REM ELSE, QUEUE IS EMPTY, I.E, UNDERFLOW
2174 REM
2180 IF Q(H) = -9 GOTO 2240
2190 Q(H) = -9
2200 H = H - 1
2201 REM
2202 REM RESET POINTERS FOR NEXT DELETE
2203 REM
2210 IF H 0 GOTO 2260
2220 H=5
2230 RETURN
2240 PRINT * *
2250 PRINT " UNDERFLOW
2260 RETURN
2270 END
RUN
ARRIVAL
-9 -9 -9 -9 3 TAIL AT 4 HEAD AT 5
ARRI VAL
-9 -9 -9 2 3 TAIL AT 3 HEAD AT 5
ARRIYAL 4 2 3 TAIL AT 2 HEAD AT 5
-9 -9 4 2-9 TAIL AT 2 HEAD AT 4
ARRI VAL
-9 5 4 2 -9 TAIL AT I HEAD AT 4
ARRI VAL
    3 5 4 2 -9 TAIL AT O HEAD AT 4
ARRI VAL
    3 5 4 2 1 TAIL AT & HEAD AT 4
OVERFLOW
3 5 4-9 1 TAIL AT 4 HEAD AT 3
ARRIVAL
3 5 4 3 1 TAIL AT 3 HEAD AT 3-
```


## Our new I/O board gives you unparalleled flexibility and operating convenience . . . the specs speak for themselves:

- 2 independently addressable serial ports dip switch selectable addresses
- Real LSI hardware UARTS for minimum CPU housekeeping
- RS232C, current $\operatorname{loop}(\mathbf{2 0} \mathrm{mA})$, and TTL and signals on both ports
- Precision, crystal-controlled baud rates up to $\mathbf{1 9 . 2}$ KBaud (individually dip switch selectable)
- Transmit and receive interrupts on both channels, jumperable to any vectored interrupt line
- Industry standard RS232 level converters with five RS232 handshaking lines per port
- Optically isolated current loop with provisions for both on-board, and off-board, current sources
- UART parameters, interrupt enables, and RS232 handshaking lines are software programmable, withpower-on hardware default to customer-specified hard-wired settings for maximum flexibility
- Port connectors mate directly to ribbon cable and DB25 connectors in standard pinouts
- RS232 lines will conform to either master or slave configurations
- Board gives full feature operation with both 2 and 4 MHz systems
- Low power consumption: + 8V @ 450 mA max ( $\mathbf{3 5 0} \mathrm{mA}$ typ); $+16 \mathrm{~V} @ 150 \mathrm{~mA}$ max ( 70 mA typ); -16 V @ 70 mA max ( $\mathbf{5 5} \mathrm{mA}$ typ)
- No software initialization required for board operation, although board parameters may be altered by software


Amazingly enough, all these features won't cost you more than other types of I/O boards that do a whole lot less. Visit your local computer store and see one in person, or order direct from us.

## o•Godbout's got S-100 Bెank Select!

We're happy to announce a new family of $\mathbf{S} \cdot 100$ Econoram" boards, each with two independently selectable banks - perfect for Alpha Micro Systems, Marinchip, and similarly structured machines. Low power, 4 MHz operation, and of course . . . completely static operation.

| Name | Storage | Buss | Addressable on | Design | Unkit | Assm | csc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Econoram XII" - 16 | 16K X 8 | S-100 | 8 K boundaries | static | \$369 | \$419 | \$519 |
| Econoram XIIm-24 | 24K X 8 | S-100 | 8 K boundaries | static | \$479 | \$539 | \$649 |
| Econoram XIII ${ }^{\text {m }}$ | 32K X 8 | S-100 | 16K boundaries | static | \$629 | \$699 | \$849 |

Please note: CompukitT from Godbout boards are generally available in 3 forms: unkit (sockets, bypass caps pre-soldered in place for easy assembly); assembled and tested; or qualified under the Certified System Component (CSC) program (200 hour burn-in, guaranteed 4 MHz operation over the full commercial temperature range, and immediate replacement in event of failure within 1 year of invoice date).

| Name | Storage | Buss | Design | Speed | Configuration | Unkit | Assm | CSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ECONORAM II ${ }^{\text {™ }}$ | $8 \mathrm{~K} \times 8$ | S-100 | static | 2 MHz | dual 4 K | \$139 | \$159 | N/A |
| ECONORAM IV ${ }^{\text {M }}$ | 16K X 8 | S-100 | static | 4 MHz | single 16 K | \$295 | \$329 | \$429 |
| ECONORAM VI ${ }^{\text {m }}$ | $12 \mathrm{~K} \times 8$ | H8 | static | 2 MHz | 1-8K, 1-4K | \$200 | \$270 | N/A |
| ECONORAM VII ${ }^{\text {M }}$ | $24 \mathrm{~K} \times 8$ | S-100 | static | 4 MHz | 2-4K, 2-8K | \$445 | \$485 | \$605 |
| ECONORAM IX ${ }^{\text {m }}$ | $32 \mathrm{~K} \times 8$ | Dig Grp | static | 4 MHz | 2-4K, 1-8K, 1-16K | \$649 | N/A | N/A |
| ECONORAM $X^{\text {m }}$ | $32 \mathrm{~K} \times 8$ | S-100 | static | 4 MHz | 2-8K, 1-16K | \$599 | \$649 | \$789 |
| ECONORAM XI ${ }^{\text {M }}$ | $32 \mathrm{~K} \times 8$ | SBC | static | 4 MHz | 2-8K, 1-16K | N/A | N/A | \$1050 |

[^7]

TERMS: Allow 5\% shipping, excess refunded. Cal res add tax.
VISA ${ }^{\oplus}$ /Mastercharge ${ }^{\oplus}$ call our 24 hour order desk at at (415) 562-0636. COD OK with street address for UPS (UPS COD charge applies). Prices good through cover month of magazine.


BOX 2355, OAKLAND AIRPORT, CA 94614

HOT-OFF-THE-PRESSES-CATALOGUE: Our new catalogue is something you need if you're into electronics. Parts, kits, computers, electronic music, specials . . . it's really packed, and it's free. Just send us your name and address, we'li take care of the rest.

# NEECO 

PET 2001 - 32K


## PROUDLY ANNOUNCES THE NEWEST PET MICROCOMPUTERS BY COMMODORE!

## THE NEW C commodore PET PERIPHERALS!



2040

## Dual Drive Floppy Disk

The Dual Drive Floppy is the latest in Disk technology with extremely large storage capability and excellent file inanagement. As the Commodore disk is an "Intelligent" peripheral. it uses none of the RAM (user) memory of the PET ${ }^{\text {ru. }}$. The Floppy Disk operating system used with the PET ${ }^{\text {l* }}$ compute! enables a program to read or wrile data in the background while simultaneously translerring data over the IEEE to the PET ${ }^{\text {w" }}$. The Floppy Disk is a reliable low cost unit, and is convenient for high speed data transler. Due tc the latest technological advances incorporated in this disk, a total of 360 K bytes are available in the two standard $5 \%{ }^{\prime \prime}$ disks. without the problems of double tracking or double density. This is achieved by the use of lwo microprocessors and fitteen memory I.C.s buill into the disk unlt. Only two connections are neces. sary - an A/C cord and PET ${ }^{\text {tw }}$ inlerlace cord.

The $\mathrm{PET}^{\text {m }}$ is now a truly sophisticated Business System with the announcement of these Peripherals.

| PRODUCT | DESCRIPTION | PRICE | AVAILABILITY |
| :---: | :---: | :---: | :---: |
| PET 2001-8K* | 8K RAM | \$ 795 | IMMEDIATE |
| 2001-16 | 16K RAM | \$ 995 | MAY-JUNE |
| 2001-32 ${ }^{\text {- }}$ | 32K RAM | \$1195 | MMEDIA |
| ET 2021 PRINTER | ECTROSTATIC | \$ 550 | JULY-AUG |
| ET 2022 PRINTER | RACTOR/ROLL | \$ 995 | JULY-AUGUS |
| ET 2023 | ROLL FEED | \$ 850 | JULY-AUGUS |
| ET 2040 | MINI-FLOPPY | \$1095 | JULY-AUGUS |
| PET C2N | 2nd CASSEETTE | \$ 100 | IMMEDIATE |
| NEW PET USER | UAL | \$ 10 | IMMEDIATE |
| - these units include the C2n Cassette and small keyboard. the full size KEYBOARDS MAY NOT BE AVAILABLE UNTIL THIS SUMMER. |  |  |  |
| NEECO IS NOW ACCEPTING \$25 DEPOSITS ON THE SYSTEM COMPO NENTS OF YOUR CHOICE! PURCHASE ORDERS ARE ACCEPTED IN LIEU OF DEPOSITS. NEECO IS A FULL COSTOMER SERVICE ORIENTED COMPANY. PLEASE CALL FOR ADDITIONAL INFORMATION |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |



## INTRODUCING - THE NEW

 DUAL DRIVE MINIFLOPPY FOR PET!

DKH641 IS A PRODUCT OF COMPUTHINK.

DUAL MINI FL OPPY DRIVE WITH 100K PER DISK SIDE FOR TOTAL 200K ON LINE COMMERCIAL LOADING SPEEDS - 8 K LOADS IN 2.6 SECONDS COMPLETE. DOS REORGANIZES SPACE AFTER SAVE OR ERASE FOR EFFICIENT STORAGE.

- DISKMON ADOS OVER 20 COMMANOS TO BASIC INCLUDING DISK DATA FILES.
- DISKMON COMMANDS SUPPORT COMMERCIAL PRINTER OFF PARALLEL PORT SUCH AS CENTRONICS LINE OF PRINTERS (AVAILABLE FROM NEECO)
FULL DISK SOFTWARE SUPPORT - FORTRAN \& PLM COMPILERS 90 DAY MANUFACTURER'S WARRANTY ON HARDWARE - READY TO USE ON DELIVERY. FULL MANUAL AND UTILITY DISKETTE INCLUDED
- CALL OR WRITE FOR COMPLETE INFORMATION ON THE "DISKDRIVER"
- THIS SYSTEM REQUIRES EXPANDAPET MEMORY (MINIMUM 16K)

DKH642 - DUAL DRIVE SYSTEM, COMPLETE WITH DISKMON ............ $\$ 1295.00$
ASM7890 - PET ASSEM
1295.00

LNK 456 - AUTOLINK LINKING LOADER ON DISKETTE WITH MANUAL..... $\$ 49.95$
PLM400 - COMPILER ON DISKETTE (AVAILABLE APRIL/MAY) ............... \$49.95
FOR300 - FORTRAN COMPILER ON DISKETTE (AVAILABLE APRILIMAY)... \$69.95
DKL067 - DISKMON ASSEMBLER LISTING/OOS ............................... $\$ 19.95$
DATA100 - COMPLETE DATA BASE SYSTEM (PRICE APPROXIMATE) ....... $\$ 400.00$ BASCOMP - BASIC COMPILER ON DISKETTE (AVAILABLE MAY).
NGP200 - 20 GAMES ON OISKETTES
$\$ 49.95$
BKGAM - BACKGAMMON ON DISKETTE ........................................ \$24.95
MICRO - MICROCHESS ON DISKETTE ......................................... $\$ 24.95$
CEN779(1) - CENTRONICS 779.1 , ROLL FEED DOT MATRIX COMMERCIAL PRINTER
$\$ 1245.00$
CEN779(2) - SAMEAS779(1)BUT WITH TRACTORFEED - PLUG INTO PET . ... $\$ 1345.00$ AX10M -ELECTROSTATIC5.5INCHPRINTERWITHALLOFPET'SGRAPHICS $\$ 495.00$

## PET COMPUTER

## NEECO

NOW OFFERS A FULLSIX MONTH WARRANTY ON ALL PETS! - AN ADDITIONAL 3 MONTHS!


WHY NOT BUY FROM THE BEST?
8K PET OK PET A PETS RECEIVE 48 HR. 'BURNIN' BY NEECO BEFORE SHIPMENT ET $(8+16 \mathrm{~K}) \$ 1220$ * FULL CUSTOMER SERVICE AND FULL PRODUCT SUPPORT. 32K PET $(8+24 \mathrm{~K}) \$ 1320$ * 48 HR MAXIMUM 'TURNAROUND' ON PET WARRANTY * SERVICEON PETS PURCHASED FROM NEECO. ALL PRICES INCLUDE 48 HR. PRE. * FULL PRE.PURCHASE INFO AVAILABLE FROM OUR PET INFO SHIPMENT TESTING \& 3 FREE CASSETTE PROGRAMS
PRICES SHOWN ABOVE IN. CLUDE EXPANDAPET. PME MEMORIES WILL HAVE HIGHER COMMODORE PRICING.

PACKAGE - WE ANSWER CUSTOMER QUESTIONS!

* AUTOMATIC SOFTWARE/HAROWARE UPDATES VIA OUR PET OWNERS MAILING LIST - CALLWWRITE TO BE LISTED! * COMMERCIAL QUANTITIES AVAILABLE.
* WE ALSO MARKET REPLACEMENT RAMS \& ROMS, ETC. * OFF THE SHELF DELIVERIES (NO DEPOSIT REQUIRED). SCHOOL INQUIRIES INVITED!


## INTERNAL MEMORY EXPANSION FOR PETI

EXPANDAPET ${ }^{\text {™ }}$<br>INTERNAL MEMORY EXPANSION UNIT



DEALER INQUIRIES INVITED

## - MOUNTS EASILY INSIDE YOUR PET

 -EASY TO INSTALL ( 15 MINUTES) - NO DEGRADATION OF PET SYSTEM -USES LOW POWER DYNAMIC RAMS -90 DAY PART\&LABOR, 1 YR-RAMS. - 30 DAY MONEY BACK GUARANTEE. - MOUNTING SLOTS FOR 4 BOARDS. - CALLLWRITE FOR ADDITIONAL INFO - DEALER INQUIRES INVITED.EXPANDAPET PRICES
$16 K_{(+8 K}$ PET $\left.=24 k\right) \quad \$ 425$ $\left.24 \mathrm{~K}_{(+8 K} \mathrm{PET}^{2}=32 \mathrm{~K}\right) \quad \$ 525$ $32 \mathrm{~K}(+8 K$ PET $=40 \mathrm{~K}) \quad \$ 615$ OPTIONAL PLUG-IN BOARDS 32K UNIT ALLOWS• 8 K OF 4K EPROM DAUGHTER BOARD ASSEMBLY LANGUAGE USING 2716 EPROMS .... \$50 SUBROUTINES ACCESSED VIA THE USR COMMAND.
EXPANDAPET IS A PRODUCT OF COMPUTHINK

##  KEYBOARD FOR PET!



- COMMERCIAL QUALITY KEYBOARD WITH METAL ENCLOSURE. -BASIC TYPEWRITER DESIGN FOR TOUCHTYPISTS.
- SINGLE KEY FUNCTIONS FOR ALL CURSOR CONTROLS.

SHIFT/RUN, INSERT, CLEAR SCREEN/HOME CURSOR, MORE

- FUNCTIONS SIMULTANEOUSLY WITH PET'S KEYBOARD.
-PLUGS DIRECTLY INTO PET'S LOGIC BOARD.
DOES NOT USE USER OR IEEE-488 PORTS.
- NPK-101 IS FULLY TESTED \& READY TO USE

ATTACHES DIRECTLY TO FRONT OF PET'S FRAME.

- CAN BE USED AS A REMOTE TERMINAL (SPECIAL ORDER)
-30 DAYS TRIAL PERIOD • 90 DAY WARRANTY.
- CALL OR WRITE FOR FULL SPECS.INITIAL QTY LIMITED.


## NOW AVAILABLE!

NPK-101 IS A PRODUCT OF NEW ENGLAND ELECTRONICS.

## WE CANNOTLISTALLOF OUR SOFTWARE AND HARDWARE PRODUCTS CALLOR WRITE FOR OUR *FREE*SOFTWARE/HARDWARE DIRECTORY DOMESTIC \& OVERSEAS DEALER INQUIRIES INVITED ON * MEMORY * KEYBOARD * FLOPPY <br> NEECO <br> NEW ENGLAND ELECTRONICS CO., INC. <br> 679 HIGHLAND AVE., NEEDHAM, MASS. 02194 <br> (617) 449-1760 <br> AS OF MON.-FRI. 9:30-5:30, SAT. 10-2, EST.

## Cryptography

John P Costas, Phd
Senior Consulting Engineer
GE Company
Court St Bldg 4, Rm 38A
Syracuse NY 13221


Table 8: A transposition mode operation using program Crypto. In this example the number displayed by the calculator (J.M) is 6.002 . When enciphering, this means that the character in position 6 of the plaintext is placed in position 2 of the ciphertext. If this were deciphering, the character in position 2 of the ciphertext would be placed in position 6 of the plaintext.

| $\begin{array}{c}\text { Alphabetical } \\ \text { Order }\end{array}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| (1) | Numerical |  |  |
| Order |  |  |  |$]$

Table 9: Mixed alphabet used in the examples. Column 2 was derived from program Crypto using values of $A: 0.5,7.625,3.125,26$ and $R / S: 0$.

As mentioned in part 1 of this article (March 1979 BYTE, page 56), a field cipher is a technique for encoding plaintext so that it can be easily decoded with pencil and paper (or calculator) in the field, so to speak. The calculator program of listing 1 when used with the procedures described offers the user an effective field cipher capability. Unlike most field cipher machines, which perform substitution only, the program Crypto (listing 1) offers both transposition and substitution. The transposition operation is mandatory and provides the main strength of the cipher. Substitution may be added for further protection if desired. The basic principles of operation are first described, including detailed instructions for usage. Following this, a discussion of program organization is given.

Since Crypto performs both transposition and (optionally) substitution, a transposition table and substitution key are involved in the processing of each character. It is convenient to define a few terms:

| Na |  | alphabet size (no practical limit); |
| :---: | :---: | :---: |
| Nc | - | number of characters in message ( 300 maximum); |
| J | - | plaintext character position $(1,2, \ldots, N c)$ |
| M | - | ciphertext character position $(1,2, \ldots, N c)$ |
| P | - | plaintext character $(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots) ;$ |
| $\overline{\mathrm{P}}$ | - | plaintext character value; |
| C | - | ciphertext character (A, B, C, . . .); |
| $\bar{C}$ | - | ciphertext character value; |
| K | - | key value used in substitution process. |

The program uses a random number generator which must be initialized with a seed, R0, and two parameters, A1 and A2. These three numbers plus the character count are entered into the stack, after which A is depressed. One more number completes the entry, after which R/S is depressed. The

## in the Field

 Calculatordemonstration numerical key is: $\mathrm{R} 0=0.5$; $\mathrm{A} 1=1.625$; and $\mathrm{A} 2=3.125$.

Transposition Only Mode
The character manipulations for transposition only are illustrated in table 8. The top two rows, an index row and a plaintext character row, are concerned with plaintext. The bottom two rows are ciphertext index and ciphertext. Each time Crypto is cycled, a pair of integers is displayed in the format:

## J.M

and are interpreted in the enciphering operation as "plaintext character from position J goes to ciphertext position M." Number J is simply indexcd every cycle ( $1,2, \ldots, N c$ ). Crypto produces the M values randomly in the range 1 to Nc with no repetitions (transposition table). For the cycle illustrated in table 8 , the display shows 6.002 , which requires that the $B$ from $J=6$ be moved to $M=2$. By this means the plaintext characters are reordered in a random fashion to form the ciphertext.

The deciphering operation works in an obviously reverse fashion. The displayed J.M is read as "ciphertext character at position M goes to plaintext position J." Thus in table 86.002 would return the B from ciphertext position 2 to the correct plaintext position 6.

## Mixed Alphabet Generation

If the optional substitution operation is to be added to the transposition operation, numerical equivalence for cach character of the alphabet must be established. In the discussion which followed the Vigenerc Tablcau method (March 1979 BYTE, page 57, table 3), an ordered alphabet was used in which the numerical values ran, in order, from 0 to one less than the alphabet size $(\mathrm{Na}-1)$. In the work which follows, two changes are made. The numerical equivalents are moved

| Location |  |  | Key |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | fLBLA | fCLREG | $f \mathrm{P} \leftrightarrows \mathrm{S}$ | ST03 | ST04 | hR $\downarrow$ |
| 07 | STO2 | hR $\downarrow$ | STO1 | hR $\downarrow$ | STOO | STOA |
| 13 | R/S | hCFO | $f \mathrm{f}<0$ ? | hSFO | hABS | STOC |
| 19 | hCF1 | $\mathrm{fx}_{\mathrm{x}}=0$ ? | hSF1 | fFIX | 2 | ENTI |
| 25 | 2 | 9 | hy* | STOE | 1 | STO6 |
| 31 | fLBL1 | 5 | 0 D | ST05 | fLBL5 | RCL4 |
| 37 | fGSBE | ST09 | 3 | 0 | ST08 | $\div$ |
| 43 | fint | ST07 | 1 | 9 | $-$ | CHS |
| 49 | hSTI | RCL8 | RCL9 | - | RCL8 | RCL7 |
| 55 | $x$ | $+$ | 2 | h $\times$ ¢ 5 y | $h y^{\text {x }}$ | STO7 |
| 61 | RCL(i) | $h \times \leftrightarrows y$ | $\div$ | gFRAC | $\bigcirc$ | 5 |
| 67 | gx>y? | GTO4 | 1 | STO.5 | RCL5 | fx $\ddagger 0$ ? |
| 73 | GT05 | fLBL2 | RCL3 | fGSBE | STO9 | 1 |
| 79 | 9 | hST | RCL(i) | STO8 | RCLE | ST07 |
| 85 | fLBL3 | RCL8 | RCL7 | g $\mathrm{x} \gg \mathrm{y}$ ? | Gt06 | STO-8 |
| 91 | fLBL9 | 1 | RCL7 | gax y? | GT07 | 2 |
| 97 | STO $\div 7$ | GTO3 | fLBL7 | fDSZ | RCL(i) | ST08 |
| 103 | RCLE | ST07 | GTO3 | fLBL6 | RCL9 | $\mathrm{fx}=0$ ? |
| 109 | GT08 | 1 ) | STO.9 | GT09) | fLBL4 | 2 |
| 115 | STO $\div 7$ | fLBL8 | RCL7 | STO+(i) | 2 | 0 |
| 121 | hRCl | $-\mathrm{B}$ | 3 | 0 | $\times$ | $\mathrm{RCL7}$ |
| 127 | fLN | 2 | fLN | $\div$ | ) | 1 |
| 133 | $+$ | IINT | $-$ | EEX | 3 | $\div$ |
| 139 | RCL6 | $+$ | STO5 | DSP3 | R/S | hF?1 |

Listing 1 continued on page 152.

Entries:
A: A0, A1, A2, Nc
R/S: Na
$\mathrm{Na}=0$ transposition only.
Naキ0 transposition and substitution
+Na encipher
-Na decipher

## Registers:



Listing 1: Crypto program written for the HP 67. This program performs encryption and decryption functions by transposition and substitution as described in the text. The value of Nc must be less than or equal to 300 and the value of Na must not exceed 999. Flag FO has two states: true for decipher and false for encipher mode. Flag F1 is true when only transposition mode is wanted and false when the dual transposition and substitution mode is used. Flag F2 is used in the random number generation loop.
to the range of 1 to the alphabet size for user convenience only. Secondly, a mixed alphabet is recommended, such as that shown in table 9. This type of alphabet is no harder to use and offers an increase in security over the ordered alphabet.

Generation of such an alphabet is trivial. Columns 1 and 3 are prepared first. Program Crypto is then run in the transposition only mode with a character count equal to the alphabet size. The $M$ values generated are copied into column 2 ; the J index corresponds to column 3. The data thus formed in columns 1 and 2 permits column 4 to be filled in. Table 9 allows convenient alphabetic-tonumeric conversions (columns 1,2) and numeric-to-alphabetic (columns 3,4 ).

## Dual Mode Operation

Table 10 illustrates the situation in which substitution is done in addition to transposition. Note that a plaintext numerical value row has been added to the plaintext section and a ciphertext numerical value row has been inserted into the ciphertext section. The $\overline{\mathrm{P}}_{\mathrm{j}}$ row is filled by use of columns 1 and


Table 10: An example of the dual mode operation of program Crypto, which performs transposition and substitution. To encipher the example shown, the calculator first displays a J.M number. In this case it is 7.002. The user then enters the plaintext value ( $\bar{P}_{j}$ ) or 11. The calculator then displays 7.002024 in the form J.M $\overline{C m}$. This values means that the character which was in the seventh position of the plaintext is moved to the second position of the cipher text and given a value of 24 . The value 24 is then given the alphabetic equivalent or $V$. When deciphering, the calculator again displays a value in the form I.M. Again it will be 7.002. The user then enters the value of the ciphertext $(\bar{C} m)$, which is in position 2. This number happens to be 24, the value of the letter $V$. The calculator then displays a number in the form of J.M $\bar{P}$, or 7.002011 for the example. This instructs the user to transfer the number that was in position 2 to position 7 and give it a value of 11. This value is converted into the equivalent alphabetic or 1.

Either of these processes is repeated for the entire plaintext or codetext until the entire message is decoded or encoded.

2 of table 9. Each Crypto cycle now has two parts. In the first part the machine halts with J.M in the display, as before. The user then enters the plaintext ( $\overline{\mathrm{j}}$ ) value ( 11 for 1 in this case) from the plaintext value row and depresses $R / S$. The machine will perform the appropriate addition (modulo Na ) and halt showing:

$$
\text { J.M } \overline{\mathrm{C}} \mathrm{~m} .
$$

For the table 10 example the display would show:
7.002024.

The user then places 24 in position 2 of the ciphertext value ( $\overline{\mathrm{C}} \mathrm{m}$ ) row and depresses $\mathrm{R} / \mathrm{S}$ for the next cycle. Columns 3 and 4 of table 9 may be used later to convert the character values to equivalent characters Cm .

In the deciphering operation one starts with the ciphertext and obtains the Cm values from table 9. During the J.M halt in the Crypto cycle the user enters $\overline{\mathrm{C}} \mathrm{m}$ ( 24 from position 2 in the 7.002 example) and depresses $R / S$. The subtraction operation (modulo Na ) is performed and the result is shown as:

$$
\text { J.M } \overline{\mathrm{P}} \mathrm{i} ;
$$

which would be:

$$
7.002011 .
$$

This directs that 11 be placed at position 7 of the $\bar{P}_{j}$ row which is thus filled and later converted to character equivalents to complete the deciphering operation.

In actual usage a single index row may serve for both J and M. However, one may wish to record $M$ of the displayed J.M pair as a record of the transposition operations.

## Detailed Instructions and Examples

Tables 11 and 12 give detailed instructions for the use of Crypto in the transposition only mode. Tables 13 and 14 give instructions for operation in the dual (transposition and substitution) mode.

These tables contain 10 character examples using the demonstration message and demonstration key. The complete demonstration message processed by transposition only (table 11) using the demonstration key, becomes:

$$
\begin{array}{cc}
\text { (A: } 0.5,1.625,3.125,40 \mathrm{R} / \mathrm{S}: 0 \\
\text { EBAEY } & \text { ECNTM } \\
\text { I PDEO } & \text { RRYPP }
\end{array}
$$




NEWI THE ELECTRIC PAINTBRUSH by Ken Anderson for 4K Level I and II TRS-80s: Create the most dazzling graphics displays you have ever seen with a minimum of effort. The Electric Paintbrush is actually a simple 'language' in which you can write 'programs' directing your paintbrush around the screen-drawing lines, turning corners, changing white to black, etc. Once defined, these programs may be called by other programs or repetitively executed, each time varying the parameters of brush movement.


The machine language inter preter executes your programs almost instantaneously, allowing you to create real-time, animated graphics displays. The screen photos above are actually 'snapshots' of the action of a single one-line program over about thirty seconds. Mesmerize your friends with visual effects they've never seen on a TV screen! There's no limit to the variety of exciting and artistic graphics displays you can create with The Electric Paintbrush. And it's available now for only ............... \$14.95


MICROCHESS is the culmination of two years of chessplaying program development by Peter Jennings, author of the famous 1 K byte chess program for the KIM-1. MICROCHESS 2.0 for 8 K PETs and 16K APPLEs, in 6502 machine language, offers 8 levels of play to suit everyone from the beginner learning chess to the serious player. It examines positions as many as 6 moves ahead, and includes a chess clock for tournament play. MICROCHESS 1.5 for BRIDGE CHALLENGER by George Duisman for 8 K PETs, Level II 16K TRS-80s, and 16K APPLEs: You and the dummy play 4 person Contract Bridge against the computer. The program will deal hands at random or according to your criterion for high card points. You can review tricks, swap sides or replay hands when the cards are known. No longer do you need 4 people to play! ........ $\$ 14.95$
TIME TREK by Brad Templeton with sound effects for 8 K PETs is Personal Software's answer to the proliferation of Star Trek games. This is a real time action battle game which requires fast thinking as well as sharp wits. There are no 'turns' in Time Trek: your scanners and ship's status report are constantly updated on the screen, and you can enter commands as fast as you can press the keys. You use your shields, phasers and photon torpedoes against enemy Klingons in a game where you can move, steer and fire at the same time. Star Trek aficionado or not, you'll appreciate the excitement and excellence of this real time game.. $\qquad$ $\$ 14.95$
WHERE TO GET IT: Look for the Personal Soffware ${ }^{\text {tw }}$ display rack at your local computer store. Over 275 dealers now carry the Personal Software ${ }^{\text {TM }}$ line-more than any other brand. If your local dealer doesn't already carry Personal Soffware ${ }^{\text {4 }}$ products, ask him to call us at (617) 782-5932. Or you can order direct from us by check, money order or VISA/Master Charge. If you havequestions, please call us first at (617) 783-0694. If you know what you want and have your VISA/MC card ready, you can use any telephone to

Or you can mail your order to the address below. To add your name to our mailing list for free literature and announcements of new products, use the reader service card at the back of this magazine.

## Personal Software ${ }^{T M}$

4 K TRS-80s, in Z-80 machine language, offers 3 levels of play (both Level I and Level II versions are included and can be loaded on any TRS-80 without TBUG). MICROCHESS checks every move for legality and displays the current position on a graphic chessboard. You can play White or Black, set up and play from special board positions, or even watch the computer play against itself! Avairable now at a special introductory price of only.
$\$ 19.95$


# Look for Personal Software ${ }^{\text {TM }}$ products at the dealer nearest you! 

## ALABAMA

BYTE SHOP
Muntsville. AL 35805
COMPUTERLAND
Huntsvilie. AL 35805
THE LOGIC STORE
Opetika. AL 36801
ALASKA
ALPHA ELECTRONICS
Anchorage. AK 99503
ARIZONA
PERSONAL COMPUTER PLACE
Mesa. AZ 85202
COMPUTERLAND OF PHOENIX
Phocnix AZ 85016
COMPUTER SHOWROOM
Tucson. AZ 85710
ARKANSAS
COMPUTERLAND
Litile Rock. AR 72212
DATACOPE
Little Rock. AR 72204
CALIFORNIA
JAY-KERN ELECTRONICS
Bakersfield. CA 93305
BYTE SHOP
Burbank. CA 91506
BYTE SHOP OF SACRAMENTO
Citrus Heights. CA 95610
COAST COMPUTER CENTER
Costa Mesa. CA 92627
CAPITOL COMPUTER SYSTEMS
Davis. CA 95616
COMPUTERLAND SAN DIEGO EAST El Cajon. CA 92020
COMPUTERLAND OF EL CERRITO EUSINESS CA 94530 BUSINESS ENHANCEMENT
Escondido. CA 92027
CHANNEL DATA SYSTEMS
Goleta. CA 93017
RAINBOW COMPUTING
Granada Hils. CA 91344
JADE COMPUTER PRODUCTS
Hawthorne. CA 90250
BYTE SHOP OF HAYWARD
Mayward. CA 94541
COMPUTERLAND OF HAYWARD
Hayward. CA 94541
COMPUTERLAND OF WEST L.A.
COMPUTERLAND OF SOUTH BAY
Lawndale. CA 90260
A-VIDD ELECTRONICS
Long Beach. CA 908
LOS Allos Ca
BYTE SHOP
Mountaın View. CA 94040
HOBEY WORLD ELECTRONICS
Northridge. CA 91324
COMPUTERS-MADE-EASY
Paimdale, CA 93550
BYTE SHOP OF PLACENTIA
Placentia. CA 92670
COMPUTERLAND
San Bernadino. CA 92404
San Bernadino. CA 92404
COMPUTERLAND OF SAN DIEGO
San Diego. CA 92111
COMPUTER MERCIHAN
San Diego. CA 92115
COMPUTERLAND
San Francisco. CA 94105
VIDEO GAMES \& COMPUTERS
San Francisco. CA 94118
COMPUTERLAND OF SAN JOSE
San Jose. CA 95129
COMPUTERLAND (Central
San Leandro.
San Louis Obispo. CA 93401
MARIN COMPUTER CENTER
San Ralael. CA 94903
ADVANCED COMPUTER PRODUCTS
Santa Ana. CA 92705
BYTE SHOP
Santa Clara. CA 95051
COMPUTER FORUM
Santa Fe Springs. CA 90670
THE COMPUTER STORE
Santa Monica. CA 90401
SANTA ROSA COMPUTER CENTER
Santa Rosa. CA 95404
BYTE SHOP
Suisun. CA 94585
COMPUTERS PLUS
Sunnyrale. CA 9408
BYTE SHOP OF TARZANA
Tarzana. CA 91356
COMPUTERLAND OF
THOUSAND OAKS
Thousand Oaks. CA 91360
SMALL SYSTEM SOFTWARE
Thousand Oaks. CA 91360
COMPUTER COMPONENTS
Van N.iys. CA 9141
COMFUTERLAND
Wainut Cieek. CA 94598
BYTE SHOP
Nesiminster CA 92683
COMPUTER COMPONENTS OF
Wrosiminster CA 9268

COLORADO
BYTE SHOP
Boulder. CO 80301
COMPUTERLAND
Colorado Sprıngs. CO 80917
AMPTEC
Denver. CO 80216
COMPUTERLAND
Denver. CO 80222
BYTE SHOP
Englewood. CO 80110
MICRO WORLD ELECTRONIX
Lakewood. CO 80226
CONNECTICUT
COMPUTERLAND OF FAIRFIELD
Fairfield. CT 06430
JRV COMPUTER STORE
Hamden. CT 06518
THE COMPUTER STORE
Martlord, CT 06103
THE COMPUTER STORE
Windsor Locks. CT 06096
WASHINGTON D.C.
COMPUTER CABLEVISION
Washington. D.C. 20007
FLORIDA
COMPUTERLAND
Boca Raton. FL 33432
THE COMPUTER STORE
Bradenton. FL 33505
THE COMPUTER STORE
Clearwater. FL 33516
UCATAN
Destin, FL 3254
BYTE SHOP
Fort Lauderdale, FL 33334
COMPUTERLAND
Fort Lauderdale. FL 33308
COMPUTERS FOR YOU
Fort Lauderdale. FL 33312
DATA MOVERS
Fort Meyers. FL 33901
FOCUS SCIENTIFIC ENTERPRISES
Miami, FL 33132
GRICE ELECTRONICS
Pensacola. FL 32589
COMPUTER AGE
Pompano Beach. FL 33062
PAPERBACK BOOKSMITH
Sarasota. FL 33581
AMF ELECTRONICS
Tampa. FL 33612
MICRO COMPUTER SYSTEMS
Tampa. FL 33609
COMPUTER CENTER OF
COMPUTEACENTER OF
West Palm Beach. FL 33409
GEORGIA
ADVANCE COMPUTER TECH
Allanta. GA 30328
COMPUSHOP
DATAMART
Allanta. GA 30305
THE LOGIC STORE
Columbus. GA 31906
COMPUTERLAND OF ATLANTA
Smyrna. GA 30080

## Hawall

COMPUTERLAND
Honolulu. HI 96813
MICROCOMPUTER SYSTEMS
Honolulu, HI 96813
RADIO SHACK (Dealer)
Linue. Ht 96766
IDAHO
NORTHWEST COMPUTER CENTER
Boise. ID 83704
ILLINOIS
COMPUTERLAND OF
ARLINGTON HEIGHTS
Arlington Heighis. IL 03904
FARNSWORTH COMPUTER CENTER
Aurora. IL 60505
KAPPEL'S COMPUTER STORE
Belleville. IL 62220
DOW-COM
Carbondale. IL 62901
BYTE SHOP
Champaign. IL 61820
THE ELEKTRIK KEYBOARD
Chicago. IL 60614
EMMANUEL B. GARCIA JR.
AND ASSOCIATES
Chicago. IL 60613
PERSONAL COMPUTER
Chicago. IL 61820
COMPUTERLAND
Downers Grove. IL 60515
COMPUTER STATION
Granite City. IL 62040
ILLINI MICROCOMPUTERS
Naperville. IL 60540
COMPUTERLAND OF NILES
Niles. IL 60648
COMPUTERLAND
Oak Lawn. IL 60453
COMPUTERLAND OF PEORIA
Peoria. IL 61614
WAL LACE ELECTRONICS
Peorata. IL 61614
DATA DOMAIN
Schaımburg. IL 60195

DATA DOMAIN OF FORT WAYNE
Fort Wayne. IN 46805
HOME COMPUTER CENTER
Indianapolis. IN 46220
PUBLIC COMPUTING
Lafayette. IN 47904
OWA
SYNCHRONIZED SYSTEMS
Des Moines. IA 50310
THE COMPUTER CENTER
Waterloo. IA 50701
KANSAS
PERSONAL COMPUTER CENTER
Overland Park. KS 66206
COMPUTER SYSTEMS DESIGN
Wichita, KS 67214
LOUISIANA
COMPUTER SHOPPE
Melaire. LA 70002
MARYLAND
COMPUTERLAND
hockville. MD 20855
COMPUTERS ETC.
Towson, MD 21204
COMPUTERS UNLIMITED
Towson, MD 21204
MASSACHUSETTS
THE COMPUTER STORE
Burlington, MA 01803
THE COMPUTER STORE
Cambridge. MA 02139
MAD HATTER SOFTWARE
Dracut, MA 01826
NEW ENGLAND ELECTRONICS
Springfield. MA 01103
michigan
NEWMAN COMPUTER EXCHANGE
Ann Arbor. MI 48104
NEW DIMENSIONS IN COMPUTING
East Lansing. MI 48823
COMPUTER HOUSE DIV
Jackson. MI 49202
COMPUTERLAND OF
GRAND RAPIDS
Kentwood, MI 49508
COMPUTRONIX
Midiand MI 48640
COMPUTER MART OF ROYAL OAK
Royal Oak. M1 48073
TRI CITY COMPUTER MART
Saginaw, MI 48603
Southtield MI 4803
LEVEL FOUR PRODUCTIONS
westland. MI 48185
Wesiland. MI
COMPUTERLAND
Bloomington, MN 5543
MINN. MICRO SYSTEMS
Minneapolis. MN 55454
MISSISSIPPI
OXFORD SOFTWARE CO.
Oxford. MS 38655
MISSOURI
FORSYTHE COMPUTERS
Clayton. MO 63105
COMPUTER COUNTRY
Florissant. MO 63031

## NEVADA

HOME COMPUTERS
Las Vegas. NV 89109
NEW HAMPSHIRE
TRS-80 SOFTWARE EXCHANGE
Milford. NH 03055
COMPUTERLAND OF NASHUA
Nashua. NH 03060
BITS. INC.
Peterborough. NH 03458
NEW JERSEY
COMPUTER LAB OF NJ
Budd Lake. NJ 07828
COMPUTER EMPORIUM
Cherry Hill. NJ 08002
COMPUTER MART OF NJ
iselin. NJ 08830
MSM ELECTRONICS
Medford. NJ 08055
COMPUTERLAND
Morristown. NJ 07960
COMPUTERLAND
Paramus. NJ 07652
COMPUTER NOOK
Pine Broak. NJ 07058
COMPUTER ENCOUNTER
Princeton, NJ 08540
TYPTRONIC COMPUTER STORE
Ramsey. NJ 07446
NEW YORK
COMPUTERLAND
Buffalo. NY 14150
COMPUTERLAND
Carle Place. NY 11514
COMPUTER SHOP OF SYRACUSE
De Wilt. NY 13214
THE COMPUTER TREE
Endwell. NY 13760
LONG ISLAND COMPUTER
GENERAL STORE
Lynbrook. NY 11563
COMPUTER MICROSYSTEMS
Manhasset. NY 11030
THE COMPUTER FACTORY
New York. NY 10017

New York, NY 10016
AUTOMATIC SYSTEMS
Poughkeepsie. NY 12603
COMPUTER HOUSE
Rochester. NY 14609
THE COMPUTER STORE
Rochester. NY 14618
HOME COMPUTER CENTER Rochester. NY 14607
THE COMPUTER CORNER White Plains. NY 10601
READOUT COMPUTER STORE
Williamsville, NY 14221
NORTH CAROLINA
BYTE SHOP
Charlotte. NC 28212
COMPUTERLAND
Charlotte, NC 28205
FUTUREWORLD
Durham. NC 27707
BYTE SHOP
Greensboro. NC 2740
MICROCOMPUTER SERVICES
Hickory. NC 28601
BYTE SHOP OF RALEIGH
Raleigh. NC 27605
OHIO
BASIC COMPUTER SHOF
Akron. OH 44314
CINCINNATI COMPUTER STORE
Cincinnati. OH 45246
21 ST CENTURY SHOP
Cincinnati. OH 45202
CYBER SHOP
Columbus, OH 43227
MICRO MINI COMPUTER WORLD
Columbus. OH 43213
COMPUTER SOLUTION
Dayton. OH 45409
DAYTON COMPUTER MART
Dayton. OH 45409
ASTRO VIDEO ELECTRONICS
Lancaster. OH 43130
COMPUTERLAND OF CLEVELAND
Maylield Heights. OH 44121
RADIO SHACK (Dealer)
St. Clairsville. OH 43950
HIGH TECHNOLOGY
Oklahoma City. OK 73106
MICROLITHICS
OkIahoma Cily. OK 73127
HIGH TECHNOLOGY
Tulsa. OK 74129
Tulsa. OK
THE COMPUTER STOR

1. Prepare table as example table 11b shows and enter plaintext Pj.
2. Switch calculator to RUN and ON.
3. Load program.
4. Input data $R_{0}, A_{1}, A_{2}, N c$. Follow each entry except the last with ENTT. Press $A$. 5. Input data 0 .
5. Depress R/S to start program.
6. Calculator will stop with a number in the form J.M. Copy plaintext character at position J to ciphertext position M .
7. Depress R/S and return to step 7.
8. Repeat the steps 7 and 8 loop. Pressing R/S after character Nc will cause the ERROR sign to flash. When flashing stops, press R/S one time.
9. If program is to be restarted, return to step 4.

Encipherment Example
(11b)

| $\mathrm{J}, \mathrm{M}$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pj | M | A | Y | U | P | B | 1 | D | P | R |
| Cm | A | B | M | P | D | I | P | R | U | Y |

Table 11: Crypto instructions for enciphering in the transposition only mode. The key is $A: 0.5,1.625,3.125,10 R / S: 0$.

1. Prepare table as example table 12 b shows and enter ciphertext Cm .
(12a)
2. Switch calculator to RUN and ON.
3. Load program.
4. Input data $R_{0}, A_{1}, A_{2}$, Nc. Follow each entry except the last with ENT个. Press $A$. 5. Input data 0 .
5. Depress $R / S$ to start program.
6. Calculator will stop with a number in the form J.M. Copy ciphertext character at position M to plaintext position J.
7. Depress R/S and return to step 7.
8. Repeat the steps 7 and 8 loop. Pressing R/S after character Nc will cause the ERROR sign to flash. When flashing stops, press R/S one time.
9. If program is to be restarted, return to step 4.

Decipherment Example
(12b)

| $J, M$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Cm | A | B | M | P | D | l | P | R | U | Y |
| Pj | M | A | Y | U | P | B | I | D | P | R |

Table 12: Crypto instructions for deciphering in the transposition only mode. The key is $A: 0.5,1.625,3.125,10 \mathrm{R} / \mathrm{S}: 0$.

1. Prepare table as example table 13 b shows. Enter plaintext Pj and, using alphabet table, enter $\overline{\mathrm{P}} \mathrm{j}$ values.
2. Switch calculator to RUN and ON.
3. Load program.
4. Input data $R_{0}, A_{1}, A_{2}, N c$. Follow each entry except the last with ENT个. Press $A$.
5. Input data Na.
6. Press R/S to start program.
7. Calculator will stop with a number in the form J.M. At index $J$ select and enter $\overline{\mathrm{P}} \mathrm{j}$ and press R/S.
8. Calculator will stop with a number in the form J.M $\overline{\mathrm{C}} \mathrm{m}$. At index M in table enter $\overline{\mathrm{C}} \mathrm{m}$ from display.
9. Press R/S and return to step 7.
10. Repeat the steps 7,8 and 9 loop. Pressing R/S after character Nc flashes the ERROR sign. When flashing stops, press R/S one time.
11. Using alphabet table convert $\mathbf{C m}$ to Cm to obtain ciphertext.
12. If program is to be restarted, return to step 4.

## Encipherment Example

(13b)

| $\mathrm{J}, \mathrm{M}$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Pj | M | A | Y | U | P | B | I | D | P | R |
| Pj | 22 | 07 | 10 | 21 | 19 | 02 | 11 | 23 | 19 | 25 |
| Cm | 13 | 01 | 10 | 22 | 19 | 11 | 05 | 06 | 22 | 09 |
| Cm | H | F | Y | M | P | I | Z | X | M | G |

index.
plaintext.
entered at step 7 from alphabet table. program output from step 8.
from alphabet table.
Table 13: Crypto instructions for enciphering in the dual transposition and substitution mode. The sample table used for enciphering is shown in table 13b. The key is A:0.5, 1.625, 3.125, 10 R/S: 26; table 9 used.

## WEINA NNTOU <br> CONTC <br> LTTRY.

The same message enciphered in the dual mode (table 13) becomes:

$$
\begin{array}{cc}
\text { (A: } 0.5,1.625,3.125,40 \mathrm{R} / \mathrm{S}: 26 \text { ) } \\
\text { SFHIU } & \text { JIFYY } \\
\text { IMPA I } & \text { XRVXZ } \\
\text { SAVVW } & \text { PARTU } \\
\text { SGIWM } & \text { VFFBG. }
\end{array}
$$

In the dual mode operation a conversion operation may be saved at each end of the system by using the numerical $\overline{\mathrm{C}} \mathrm{m}$ data directly as the cryptogram. The disadvantage to this is that the number of characters to be transmitted is doubled. In some circumstances transmission of numerals may be preferred over alphabetic characters in spite of the expanded volume.

## Use of Nulls

Many procedures may be followed which will aid in protecting the cipher. One of these is the use of nulls. This procedure is very simple to use and actually speeds up the enciphering and deciphering process as discussed in the text box on search strategy. To use this technique, specify a message character length (Nc) to program Crypto which is larger than the actual message length. For example, consider a message of length 100 and an Nc value specification of, say, 125. Crypto is used in the normal way until all 100 message characters are processed into the ciphertext. At this point the 125 character ciphertext contains 25 (scattered) blank spaces. Fill these blank spaces with characters chosen by you at random. When finished, the cryptogram will contain 25 totally irrelevant characters randomly located in the ciphertext.

The nulls present no problem to the decipherer since Crypto will point that person to genuine data for the first 100 processing cycles; after that the nulls are indicated. It might be wise to clearly delineate the end of a message by appending some prearranged terminal symbol to the plaintext. The speed of operation may be greatly increased by use of nulls since this keeps the mean processor time low, as discussed in the text box on search strategy. The longer messages should definitely use nulls to speed up the process. The use of nulls is clearly advantageous, since this presents the cryptanalyst with some additional possibilities that must be sorted out. Make sure that the nulls you supply blend well with the genuine ciphertext. Do not attempt, for example, to bal-


GALACTIC BLOCKADE RUNNER-an exciting, different and sophisticated space war game with interesting graphic displays. Plays better than many of the Star Treks out there. T1/4 T2/16 P A $\$ 9.95$ SCI-FI GAME SAMPLER-includes 3 games-Space Monster, Lunar Lander and Space Battle, all with graphics. T1/4 T2/16 ? $\$ 5.95$
SOLARIA-a sophisticated fantasy economic simulation-you won't believe the complexily of this one's output. T2/16 P $\$ 9.95$

PILOT - The educational language-Ready for your TRS-80! This version comes complete with a built in editor and 3 sample programs. Tape Version $\$ 14.95$

Disk Version \$24.95

Please Sir-Could you tell me where I can Find Soflware for my Microcomputer?

IJIET PLANNING PACKAGE-use your computer to help plan a safe, reliable diet-calculates what your weight should be, your daily caloric allowance-helps plan your menu. TI/4 T2/16 $\$ 14.95$ OTHEL.LO II1-A strategy board game-play with the computer, a friend or have the computer play aqainst itself. T1/4 T2/4 P A $\$ 7.95$
DAIL.Y BIORHYTHM PROGRAM-has interesting moving line display, gives 30 day graph and more! T1/4 T2/4 $\$ 5.95$
MICRO-TEXT EDITOR-non desiructable cursor, graphics capability, versital editing options, save \& load screen. output to printer. T2/4
$\$ 9.95$

## GIVE A VOICE AND EARS TO YOUR APPLE COMPUTER!

APPLETALKER—speach synt hesis for your APPLE computer!
APPI.ELISTENER-specch recognition for your APPLE computer. A nice companion program to the
one ahove. Just think of the possibilities!
$\$ 19.95$
MICROCHESS-play chess with your computer. Uses graphic display and provides various levels of difficulty. T1/4 T2/4 P A $\$ 19.95$ BRIDGE CHALLENGER-why wait to get 3 other people together to play? Your computer's ready anytime. T2/16 P A \$14.95 AIR RAID-a machine language, real-ime, areade type game. Shoot down planes as they fly by. T1/4 T2/4
RSM-2-a machine language monitor for the TRS-80. Many, many features including a built in disassembler. \$26.95

Disk Version $\$ 29.95$

## A NEW AND EXCITING VERSION OF STAR TREK IS ON THE WAY! WATCH OUR ADS FOR DETAIIS OR SEND FOR FREE CATALOG.

APPIE 21-black jack for your APPLE!

## CALL OR WRITE FOR DETAILS

TAR WARS/SPACE MAZE-sci-fi games for your APPLE. MICRO-TAX 78 - just in time to help you prepare your returns. Does form 1040 and schedules A, B, C, SE, D \& 4797. T2/16
$\$ 12.95$
RENUMBER-a machine language program for renumbering your BASIC programs, one of your mosi useful programming tools. T2/4
100'S MORE - SEND FOR FREE CATALOG - GIVE TYPE OF COMPUTER
$T \quad$ TRS-80 Level/Mem $10 \%$ OFF IF YOU BUY 3 OR MORE!

IF YOU WOULD LIKE TO HAVE YOUR COMPANY NAME HERE AS ONE OF OUR RETAIL DISTRIBUTORS CALL

Listing 1, continued from page 145:

| 145 | GTÓa | ENTT | ) | $-$ | RCLO | RCLC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 151 | $\times$ | fint | hF? | GTOfc | $+$ | GTOfd |
| 157 | gLBLIC | CHS | RCLC | $+$ | $+$ | gLBLfd |
| 163 | RCLC | ga>y? | CLX | - | 1 | $+$ |
| 169 | EEX | 6 | $\div$ | RCL5 | $+$ | DSP6 |
| 175 | R/S | gLBLfa | 1 | STO.3 | RCL3 | h $1 / x$ |
| 181 | 1 | STO+6 | 6 | RCL3 | gx>y? | GT01 |
| 187 | GTO2 | fLBLE | hSF2 | RCLA | gLBLfe | RCL1 |
| 193 | $+$ | RCL2 | $h y^{\text {x }}$ | gFRAC | STOA | hF ? 2 |
| 199 | GTOfe | $\times$ | FINT | RCLO | RCL1 | $+$ |
| 205 | RCL2 | $h y^{*}$ | gFRAC | ST00 | RCLA | $->$ |
| 211 | h $\mathrm{h}^{1 / \mathrm{x}}$ | hR $\downarrow$ | hRTN |  |  |  |

Listing 2: Keygen program written for the HP 67. This program generates numerical keys from alphabetic phrases for program Crypto. When using this program, the user needs to know both the key base and the number of the key within the key sequence produced. A detailed description of how to operate program Keygen is given in table 15.

| Location |  |  | Keys |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | fLBLD | ENTT | EEX | 100 | $\div$ |
| 7 | fFIX | DSP4 | ST06 | STO7 STOD | CLX |
| 13 | STO9 | 1 | ) | 25 | STOA |
| 19 | RCL6 | EEX | 3 | $X$ gFRAC | ) |
| 25 | 7 | 5 | $\times$ | STOB | RCL6 |
| 31 | EEX | 6 | $\times$ | gFRAC 3 | ) |
| 37 | 7 | 5 | $x$ | RCLA + | STOC |
| 43 | hRTN | flble | ST08 | flbL9 (RCL9 | RCL8 |
| 49 | $\mathrm{g} \times>\mathrm{y}$ ? | GT08 | RCL6 | STO7 STOD | CLX |
| 55 | STOS | fLBL8 | RCL8 | RCL9 - | 1 ) |
| 61 | $-$ | $\mathrm{fx}_{\mathrm{x}}=0$ ? | GT07 | hSTI flBbL6 | gGSBfd |
| 67 | fDSZ | GT06) | fLBL7 | RCL8 (ST09 | gGSBfd |
| 73 | RCL7 | RCL9 | $+$ | R/S R RCLE | ) |
| 79 | -7 | 5 | $\times$ | RCLA + | R/S |
| 85 | RCLD | 3 |  | 7 5 | X |
| 91 | RCLA | $+$ | R/S | 1 STO 18 | GT09 |
| 97 | gLBLfd | RCL7 | RCLB | $\pm$ RCLC | $h^{\text {¢ }}$ |
| 103 | gFRAC | ST07 | RCLD | RCLB + | RCLC |
| 109 | $h y^{*}$ | gFRAC | STOE | RCLB $+{ }^{+}$ | RCLC |
| 115 | hy | gFRAC | STOD | RCL7 - | h $1 / \mathrm{x}$ |
| 121 | hRTN |  |  |  |  |

ance out the letter frequency count in a transposition only cipher by manipulation of the nulls.

As an example of the use of nulls the following 40 character demonstration message is used with RRXYY appended as end of message indicator. An alphabet length of 60 is chosen, which yields 15 nulis. The cryptogram follows with the nulls underlined:

```
A: }\quad0.5,1.625,3.125,6
R/S: 0
(transposition only)
```

| NBEAR | TLCNL |
| :--- | :--- |
| AOTEM | SPEPI |
| XRTPN | POEYD |
| WRRRT | ONECR |
| YYFYI | UOENT |
| GMUIR | TSCNY |

The 15 nulls are distributed randomly throughout the ciphertext. The reader may verify the operation by deciphering this cryptogram. Note that the first null pointed to will be on plaintext character 46, which is the start of the junk region.

In addition to the use of nulls, some other precautions may be taken to protect the cipher. The beginning and end of a message can represent sources of vulnerability. Standard or easily guessed salutations and signatures can be of great help to the cryptanalyst. One counter to this is to insert a few nonsense words at the beginning and end of each message using prearranged delineation flags. There is also the bisection method, which involves starting the message from some point near the middle, going to the end and then picking up the start. This buries the head and tail of the message somewhere in the middle of the cryptographic process.

The key of program Crypto is the 3 number group ( $R_{0}, A_{1}, A_{2}$ ). Program Keygen (listing 2) provides for convenient generation of thousands of keys from an easily remembered keyphrase. There is absolutely no excuse for using a given key more than once. In dual mode operation use one key for the mixed alphabet transposition table (table 9) and a different key for the Crypto enciphering operation. (By the way, do not be overly impressed by the added complexity of the dual mode cipher. In this business, complexity and security are not necessarily correlated. The transposition only mode represents a very effective cipher in spite of its simplicity of operation. Don't be afraid to use it.)

The limited speed, storage and 1/O (input/output) facilities of today's pocket

## First Time Offer for the Micro Market



DATA-SCREEN ${ }^{\circledR}$ TERMINAL
A NEW LOW COST, MICROPROCESSOR CONTROLLED CRT TERMINAL QUALITY - APPEARANCE ECONOMY
ONLY \$995.00 (aty 1)
DELIVERED CONT. USA
90 DAY WARRANTY GUARANTEES YOU YOUR EQUIPMENT WORKS PROPERLY

1 YEAR EXTENDED WARRANTY AT SPECIAL RATES

## Go First Class

## $\checkmark$ Our Specifications Before You Buy

DISPLAY

| SCREEN CAPACITY. Characters | 2000 |
| :---: | :---: |
| Characters per line | 80 |
| NUMBER OF LINES | 25 |
| SCrEEA | P4 phosphor (white) |
| tUBE SIZE(DIAGONAL) | 12 inches ( 30.4 cm ) |
| VIEWING AREA | 54 square inches ( 137.1 cm ) |
| ChARACTER SIZE | $0.20^{\prime \prime}$ high $\times .08^{\prime \prime}$ wide ( 5.08 mm high $\times 2.03 \mathrm{~mm}$ wide) |
| fefresh rate. | 60 Hz ( 50 Hz avallabla) |
| SCAN METHOD | Raster |
| CHARACTER GENERATION | $5 \times 7$ character in an 8 $x 10$ dot matrix |
| CURSOR. . . . . . . | Blinking block |
| MEMORY |  |
| TYPE | Random Access Memory |
| CAPACITY | 2000 characters |

OPERATOR CONTROLS
POWER ONIOFF SWITCH
On rear of unit
BRIGHTNESS CONTROL . . . . . . . On rear of unit

SPECIFICATIONS
INTERFACE

| DATA FORMAT |  |
| :---: | :---: |
| DATA 8ITS | 7 serial. asynchronous |
| DATA BIT 8. | 1.0 or deleted |
| PARITY | Odd. even or deleted with error displayed as DLE |
| STOP BITS | 1 or 2 |
| DATA TRANSFER RATE | $\begin{aligned} & 50,75,110,134.5,150 \text {, } \\ & 300,600,1200,1800 \text {. } \\ & 2000,2400,3600,4800 \text {, } \\ & 7200,9600 \text { BAUD } \end{aligned}$ |

STANDARD FEATURES

| INVERSE VIDEO | Operator or sotiwere selectable |
| :---: | :---: |
| TRANSMIT MODES | Half or full duplex lswitch selectable) |
| DATA ENTRY | Top or bottom line |
| END OF LINE BELL | Switch selectable |
| CURSOR POSITIONING | $X-Y$ |
| CURSOR ADDRESS | Load and read |
| DISPLAYABLE CHARACTERS | 126 (including space) |
| CURSOR CONTROLS | Up, down, left, right, home, return |
| AUTOMATIC ROLL-UP | Switch selectable |
| AUTO CARRIAGE RETURN AND LINE FEED | Switch selectable |
| MONITOR MODE | Special "Monitor" Mode allows display of control codes (first two columns) of ASCII Code Chart). |



DEALER NETWORK IS NOW BEING SET UP - YOUR INQUIRY IS INVITED


OLDEST INDEPENDENT COMMERCIAL CRT TERMINAL MANUFACTURER
3S SALES, INC.
calculators are compensated for in Crypto by putting the user to work. Because of the manual cooperation required, one quickly learns to keep messages brief. Thus the tendency to keep traffic volume down is, in a lefthanded sort of way, an aid in protecting the cipher.

## Program Organization

Extensive use is made of a pseudorandom


Figure 1: A simplified block diagram of program Crypto.

# 5 reasons why you should not buy the electric pencil II'" 

 Check the appropriate box(es): You love typing the same copy 20 thousand times a day. Your secretary can type 250 words per minute.
You're dying to spend $\$ 15,000$ on a word processing system, just for the tax investment credit.
All your capital assets are tied up in a 10 -year supply of correction fluid. You never commit a single thought to paper.
If you have checked one or more boxes, you do not need The Electric Pencil. On the other hand, you may want to join the thousands of people who haven't checked a single box.

The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a string of continuous characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since line endings are never delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes as needed in full view of the user. The typing of carriage returns or word hyphenations is not required since lines of text are formatted automatically.

As text is typed and the end of a line is reached, a partially completed word is shifted to the beginning of the following line. Whenever text is inserted or deleted, existing text is pushed down or pulled up in a wrap around fashion. Everything appears on the video display as it occurs, which eliminates guesswork. Text may be reviewed at will by variable speed scrolling both in the forward and reverse directions. By using the search or search and replace functions, any string of characters may be located and/or replaced with any other string of characters as desired.

Numerous combinations of line length, page length, line spacing and page spacing permit automatic formatting of any form. Character spacing, bold face, multicolumn and bidirectional printing are included in the Diablo versions. Multiple columns with right and left justified margins may be printed in a single pass.

## Wide screen video

Versions are available for Imsai VIO video users with the huge $80 \times 24$ character screen. These versions put almost twice as many characters on the

## CP/M versions

Digital Research's CP/M, as well as its derivatives, including IMDOS and CDOS, and Helios PTDOS versions are also available. There are several NEC Spinwriter print packages. A utility program that converts The Electric Pencil to CP/M to Pencil files, called CONVERT, is only S35.

## Features

- CP/M, IMDOS and HELIOS compatible
- Supports four disk drives
- Dynamic print formatting
- DIABLO and NEC printer packages
- Multi-column formatting in one pass
- Print value chaining
- Page-at-a-time scrolling
- Bidirectional multispeed scrolling controls
- Subsystem with print value scoreboard
- Automatic word and record number tally
- Cassette backup for additional storage
- Full margin control
- End-of-page control
- Non-printing text commenting
- Line and paragraph indentation
- Centering
- Underlining
- Bold face


## Upgrading policy

Any version of The Electric Pencil

## Have we got a version for you?

The Electric Pencil II operates with any 8080/Z80 based microcomputer that supports a CP/M disk system and uses an Imsai VIO, Processor Tech. VDM-1, Polymorphic. VTI, Solid State Music VB-1B or Vector Graphic video interface. REX versions also available. Specify when using CP/M that has been modified for Micropolis or North Star disk systems as follows: for North star add suffix $A$ to version number; for Micropolis add suffix B, e.g., SS-IIA, DV-XIB.

| Vers. | Video |  | Printer | Price |
| :--- | :--- | :--- | :--- | :--- |
| SS-II | SOL |  | TTY or similar | $\$ 225$. |
| SP-II | VTI | TTY or similar | 225. |  |
| SV-II | VDM | TTY or similar | 225. |  |
| SR-II | REX | TTY or similar | 250. |  |
| SI-II | VIO | TTY or similar | 250. |  |
| DS-II | SOL | Diablo 1610/20 | 275. |  |
| DP-II | VTI | Diablo 1610/20 | 275. |  |
| DV-II | VDM | Diablo 1610/20 | 275. |  |
| DR-II | REX | Diablo 1610/20 | 300. |  |
| DI-III | VIO | Diablo 1610/20 | 300. |  |
| NS-II | SOL | NEC Spinwriter | 275. |  |
| NP-II | VTI | NEC Spinwriter | 275. |  |
| NVRII | VDM | NEC Spinwriter | 275. |  |
| NR-II | REX | NEC Spinwriter | 300. |  |
| NI-II | VIO | NEC Spinwriter | 300. |  |
| SSH | SOL | Helios/TTY | 250. |  |
| DSH | SOL | Helios/Diablo | 300. |  |

## Attention: TRS-80 Users!

 The Electric Pencil has been designed to work with both Level I (16K system) and Level II models of the TRS-80, and with virtually any printer you choose. Two versions, one for use with cassette, and one for use with disk, are available on cassette.may be upgraded at any time by simply returning the original disk or cassette and the price difference between versions, plus $\$ 15$ to Michael Shrayer Software. Only the originally purchased cassette or diskette will be accepted for upgrading under this policy.

The TRS-80 disk version is easily transferred to disk and is fully interactive with the READ, WRITE, DIR, and KILL routines of TRSDOS 2.1.

| Version | Storage | Price |
| :--- | :--- | :--- |
| TRC | Cassette | $\$ 100$. |
| TRD | Disk | $\$ 150$. |



6800 ASSEMBLY LANGUAGE PROGRAMMING

## by Lance A．Leventha！

Lance A．Leventhal discusses as－ sembly language programming for com－ puters using the 6800 microprocessor． The 6800 instruction set is presented in depth with chapters on assemblers， simple programs，code conversion，ta－ bles and lists，subroutine，input／output， interrupts，program design and docu－ mentation，and sample projects．$\$ 8.50$ ．

8080 A／ 8085 ASSEMBLY LANGUAGE PROGRAMMING

## by Lance A．Leventhal

This book provides an introduction to assembly language programming for the 8080 A and the 8085 processors．In－ cluded are sections on the instruction sets for the two processors，assemblers， simple program examples，code con－ version，table and lists，subroutines， 10 ，interrupts，program design，and de－ bugging．Many examples and illustra－ tions are included to cover critical points． 467 pp．$\$ 8.50$ ．

## PAYROLL WITH COST ACCOUNTING IN BASIC

## by Lon Poole

$\square$ includes program listings with re－ marks，descriptions，discussion of the principles of each program，file lay－ outs，and a complete user＇s manual with step－by－step instructions，flow charts and sample reports with CRT displays． All 35 programs are written in the wide－ ly used computer language BASIC，and work together to produce a payroll， right down to the printing of paychecks and maintaining of employee records $\$ 15.00$ ．


ACCOUNTS PAYABLE AND ACCOUNTS RECEIVABLE by Lon Poole and Mary Borchers $\square$ This is a set of 21 programs which constitute an invoice－linked accounts payable and a low－volume invoice ac－ counts receivable system for small business． 318 pp．$\$ 15.00$ ．

## Bits Presents the

 Osborne LibraryINTRODUCTION TO MICROMPUTERS Volume 0

## by Adam Osborne

Written for the absolute beginner， ＂The Beginners Book＂tells you what microcomputer systems are all about： the component parts，options available， and what they can do for you．Volume 0 also gives an introduction to micro－ computer logic．\＄7．95．

## SOME COMMON BASIC PROGRAMS

by Lon Poole and Mary Borchers
$\square$ At last，a single source for all those hard to find mathematics programs！ Some Common BASIC Programs com－ bines a diversity of practical algorithms in one book：matrix multiplication， regression analysis，principal on a loan， integration by Simpson＇s rule，roots of equations，operations on two vectors， chi－square test，check writer，geometric mean and variation，coordinate conver－ sion and a function plotting algorithm． These are just some of the many pro－ grams previously available only as part of software math package systems for large scale computers．All the programs are written in a restricted BASIC suit－ able for most microcomputer BASIC packages，and have been tested and debugged by the authors．$\$ 8.50$ ．

## AN INTRODUCTION TO

 MICROCOMPUTERS，Vol．1， 2 and 3by Adam Osborne
Microcomputer designers and users are presented with a continually expanding array of processors and support chips． Each of these microprocessor families has its own advantages and disadvant－ ages for a given application．
$\square$ Volume $I$ is subtitled＂Basic Con－ cept＇＇．This is the book which presents a framework of ideas concerning the de－ sign and use of small computers imple－ mented with LSI．Topics include defini－ tions of the microcomputer，fundamen－ tal concepts of logic and numbering characteristics of instruction sets，etc． \＄8．50．
$\square$ Volume 2 describes different micro－ processors in such a manner as to make them easily comparable to one another． Architecture，timing，instruction set and usage are detailed for each．（In－ cludes hardcover binder）．$\$ 20.00$ ．
$\square$ Volume 3 includes descriptions of memory devices，parallel and serial $1 / 0$ devices，CPU single and multi－support devices，system busses，and much more．（Includes hardcover binder）\＄20．－

Volumes 2 and 3 are published in loose－leaf form with hardcover binder． Update subscriptions available．

## GENERAL LEDGER

## by Osborne \＆Associates


#### Abstract

$\square$ General Ledger is the complement to the other two books in the Osborne \＆ Associates series of BASIC business programs：Payroll with Cost Accounting and Accounts Payable and Accounts Receivable．It is written in an extended BASIC with information to aid the user in implementing it in his or her own version of BASIC． General Ledger accepts postings from Account Payable，Accounts Receivable，or postings entered directly；maintains balances for current month，quarter，years and previous three years；and prepares trial balances，income statements，balance sheet and other financial reports．Well documented business software at a very reasonable price．$\$ 15.00$ ．


In place of the old keyphrase PATRICIA ZLOTNIK, three keystream generator numbers $\left(R_{0}, A_{1}, A_{2}\right)$ now become the key. The demonstration values are chosen as:

$$
\begin{equation*}
(0.5,1.625,3.125) \tag{7}
\end{equation*}
$$

This move from keyphrase to numerical key required by automation is undesirable. A word or phrase is much more easily remembered than a sequence of digits. In oider to humanize this process, the program Keygen is written which accepts a keyphrase and produces any number of machine-oriented keys ( $R_{0}, A_{1}, A_{2}$ ).

The ideal sequence generator would provide an infinite sequence of $R_{n}$ values, each value being statistically independent of all other values. In practice the sequence must eventually repeat. There is a finite number of digits in the representation of $R_{n}$, so there is a finite number of different $R_{n}$ values that may be produced. Since $R_{n}+1$ is a function only of $R_{n}$, once a value is produced that has appeared before, a computational cycle is entered which cannot be broken and a periodic sequence results. This can create serious cryptographic vulnerability problems, especially if the sequence repeats during the processing of a message. Other shortcomings of sequence generators, such as correlation tendencies or biases, can also be exploited by the cryptanalyst.

Protection against looping is provided in Crypto using a technique ascribed by D E Knuth and I Gait to R W Floyd. See especially problem numbers 6 and 7 in Section 3.1 of the Knuth book in the bibliography. Floyd's algorithm requires that a second sequence generator be used, which is cycled twice for every cycle of the first generator. The values of $R_{n}$ and $R_{2 n}$ are compared. As Knuth shows, equality will always be reached before cycling begins. After each cycle of $R_{n}$, comparison is made with $R_{2 n} n$, and, if equality is detected, Crypto halts (at step 211). If this occurs (very, very unlikely), pick another ( $\mathrm{R}_{0}, A_{1}, A_{2}$ ) key and try again. The author has tested many keys selected at random and found sequence lengths much longer than required for any message, even in the worst cases. The demonstration key ( $0.5,1.625$, 3.125), for example, has a nonrepeating sequence length which lies between 18,303 and 24,403, after which cycling takes place with a period of 6101.

## Transposition Operation

The operating principles of program Crypto can be explained with the aid of

## Search Strategy

The method of generation of the random integer $R$ for selection of M-field cells (phase A, figure 1) does not preclude repetition in the random number sequence. That is, on a given pass an $M$ cell can be pointed to that which has already been used. The bits in the special registers are used to represent M-field cells, bit off meaning cell open and bit on meaning cell already used. Access to and control of these bits currently involves arithmetic rather than logical operations, and processor time becomes an important consideration.

In the phase A portion of figure 1, repeated trials are made to find an open cell. Up to T such trials are permitted before phase B is entered as a slow but sure last resort solution. Timing runs indicate that one phase A trial requires 4.375 seconds of processor time. Hence we define a time cost Ca as:

$$
\begin{equation*}
\mathrm{Ca}=4.375 \text { seconds. } \tag{8}
\end{equation*}
$$

This is the time required to test one isolated bit in one of the ten special registers.

In phase B an exhaustive search is made of each bit in the $M$-field. The overhead is lower here and it takes only 1.533 seconds to search each cell. However, the mean cell number searched until the specified empty cell is found will be roughly half the number of characters in the message ( $\mathrm{Nc} / 2$ ). Hence the mean cost of the phase B operation Cb , is:

$$
\begin{equation*}
\mathrm{Cb}=1.533\left(\frac{\mathrm{Nc}}{2}\right)=0.767 \mathrm{Nc} . \tag{9}
\end{equation*}
$$

Note that the phase B cost increases with the number of characters in the message. For long messages, the cost of phase B becomes much greater than the cost of phase A. We seek now a strategy which minimizes the mean overall time cost ( Co ) for an M cell selection in the transposition table generation. (The substitution operation takes a very short time to complete.)

If the number of open cells is $S$ then the probability of success ( Ps ) per phase A trial is simply:

$$
\begin{equation*}
P_{s}=\frac{S}{N c} \tag{10}
\end{equation*}
$$

On a given phase A pass, let the first success be on trial $K$. The probability of this is:

$$
\left(1-P_{s}\right)^{K-1}\left(\mathrm{P}_{\mathrm{s}}\right) ;
$$

and the total cost of this phase A operation is:

$$
(\mathrm{K})(\mathrm{Ca}) .
$$

The probability that T consecutive failures will occur in phase A (and hence require use of phase $B$ ) is:

$$
\left(1-P_{\mathrm{s}}\right)^{\mathrm{T}}
$$

The cost when this occurs is:

$$
(\mathrm{TCa}+\mathrm{Cb}) .
$$

Putting these results together, the mean overall cost for a transposition table entry calculation becomes:

$$
\begin{equation*}
C_{o}=\sum_{k=1}^{T}\left(1-P_{s}\right)^{K-1} P_{s} K C a+\left(1-P_{s}\right)^{T}(T C a+C b) \tag{11}
\end{equation*}
$$

Using the identity:

$$
\begin{equation*}
\sum_{N=0}^{K-1} N X^{N}=X\left[\frac{K X^{K-1}}{X-1}-\frac{X^{K}-1}{(X-1)^{2}}\right] \tag{12}
\end{equation*}
$$

allows equation 11 to be reduced to:

$$
\begin{equation*}
\mathrm{Co}=\mathrm{Ca}\left[\frac{1-\left(1-\mathrm{Ps}^{\top}\right)^{\top}}{\mathrm{Ps}_{\mathrm{s}}}\right]+\mathrm{Cb}\left(1-\mathrm{P}_{\mathrm{s}}\right)^{\top}+ \tag{13}
\end{equation*}
$$

The function Co is monotonic in $T$ and behaves as indicated in figure 2. When $T$ is equal to 0 , no phase A trials are made and the cost is simply the phase B cost (Cb). As $T$ increases without limit (success in phase $A$ is forced to prevent use of phase $B$ ) the mean overall cost has an asymptote of $\mathrm{Ca} / \mathrm{Ps}$. If this value is smaller than the cost of phase $B$ $(\mathrm{Cb})$, the lowest mean cost (time) is achieved with the penalty that some calculations may never finish.

As the encipherment (or decipherment) progresses, S becomes smaller and eventually the critical point is reached when the value of the asymptote $\mathrm{Ca} / \mathrm{Ps}$ equals the cost of phase $\mathrm{B}(\mathrm{Cb})$. Using equations (8), (9) and (10), this critical value ( Sc ) is seen to be:

$$
\begin{align*}
S c & =(N c)\left(\frac{C a}{C b}\right) \\
& =(N c)\left(\frac{C a}{0.767 N c}\right)=5.7 \tag{14}
\end{align*}
$$

which simply says that when the number of empty cells reaches approx: imately 6, phase A operation is too expensive (in time) because the probability of success is too low. The strategy at this point is to cut out phase A completely and go directly to phase B. The parameter T controls the exchange of maximum processor time for a transposition table calculation to the mean processor time, Increasing T results in lower mean times and longer maximum times.

Figure 2 shows that, for sufficiently large values of $T$, the mean time (Co) becomes inversely proportional to the probability of success in phase A (Ps) and hence the number of opens cells (S). One way of keeping the probability of success (Ps) high and the mean cost (Co) low is to pick a number for Nc (message length) which is greater than the actual message length. The program is then used only to process all the legitimate message characters. The remaining spaces are filled with randomly selected characters (nulls). By this artifice, the number of available cells $(S)$ is not permitted to run down to its critical value. Use of this technique is detailed in the main text.

The 2 phase approach of figure 1 has real value even if faster computation is at hand. Random tests of isolated M cells will always be faster than the contiguous $M$-field search required in phase B. Hence the optimization strategy will always be able to contribute to computational efficiency. Additionally, the pseudorandom nature of the transposition table calculations helps isolate the resulting cryptogram from the keystream generator, hence strengthening the cipher.

## Key Generation

Those concerned with field ciphers generally concede that the basic method of operation cannot be kept secret. The security of the cipher, therefore, rests in the key. In some of the examples given in part 1 of
figure 1. The ten special registers S0-S9 of the HP 67 are reserved for up to 300 ciphertext character position indicators (M-field). A bit is reset (0) if the corresponding position is open and can accept a ciphertext character. Conversely, the bit is set (1) if that M-field position has been filled in a previous transposition operation.

The transposition operation of figure 1 is comprised of two phases, A and B. Upon entry to phase $A$ the sequence generator is cycled and a random integer number $R$ in the range 0 to $\mathrm{Nc}-1$ is generated. Position $R$ is then tested in the M-field and if the Rth position is open the bit is set and phase $B$ is bypassed. If the position is already filled, additional tries via loop $A$ are executed. If an open position is not found in T trials, phase B is entered.

Phase $B$ is demanding of processor time, but success here is guaranteed. A count $S$ is kept of the number of open spaces remaining in the $M$-field. The sequence generator is cycled and random integer number $R$ is generated in the range 0 to $S-1$. The entire $M$-field is then searched and the open positions are counted until the Rth one is reached. When this happens the corresponding bit in the $M$-field is set and phase B is complete.

Following phases $A$ and $B$ an $M$ value is computed and the transposition pair J.M is displayed with the program halted. The transposition portion of the program is now complete.

## Substitution Operation

In dual mode operation the user would at this point enter $\overline{\mathrm{P} j}$ (encipher) or $\overline{\mathrm{C}} \mathrm{m}$ (decipher) and press $R / S$ to restart the program. The necessary residue arithmetic would be done as shown in table 10 and the program would again halt showing either:

$$
\text { J.M } \overline{\mathrm{C}} \mathrm{~m} \text { (encipher) }
$$

or

$$
\text { J.M } \bar{P}_{j} \text { (decipher). }
$$

The substitution key is generated from the $R_{n}$ register of the Floyd algorithm; the sequence generator is not cycled for this operation. In the transposition only mode, this whole process is bypassed as indicated in figure 1.

## Throughput Optimization Strategy

After this information is disposed of by the user, the program is restarted. If the number of open spaces in the $M$-field is $Q$

## TRS-80 OWNERS AVAILABLE FOR IMMEDIATE DELIVERY SOFTWARE DISKETTE

 CASSETTEPackage \# 1036 (Level II) ..... $\$ 495.00$
COMPLETE SMALL BUSINESS - This program is a complete small business program that was tailored to work for most small business applications. The program includes such things as Accounts Receivable, Accounts Payable, Invoicing, Inventory Control, Payroll and General Ledger.
Package \# 1038 (Level II) ..... \$ 99.95
ACCOUNTS RECEIVABLE
Package \# 1039 (Level II) ..... $\$ 99.95$ACCOUNTS PAYABLE
Package \# 1044 (Level II) ..... $\$ 125.00$
INVENTORY CONTROL
Package \# 1045 (Level II) ..... \$ 99.95
INVOICING
Package \# 1046 (Level II) ..... \$ 99.95
Package \# 1047 (Level II) ..... $\$ 99.95$
MAILING LIST
Package \#1024
Package \#1026
$\$ 24.95$
(Level II, DISKETTE),
Includes the followingSPACEWAR I - BANNER - UFO ATTACK - PILE UP -BIORHYTHM - AUTO RACE and WORDS.(Level II, DISKETTE)

Includes the folloving:
SPACEWAR II - CIVIL WAR - TRAP THE TRIBBLE LIFE - KNIGHT - CONCENTRATION and LUNAR LANDER.
OVER 150 EXCITING PROGRAMS MORE EVERY DAY *
EDUCATION

Also available for PET and APPLE. All SOFTWARE-80 programs are guaranteed. Programs available in Level I and Level II Basic. All of our business programs will operate with printer; custom programs also available. With certified check or money order, all orders shipped within 24 hours. Personal checks allow 2 weeks.

Send for our complete catalogue.

## SOFTWARE-80

18228 Cabrillo Court Fountain Valley, CA 92708

ALL PRICES AND PROGRAMS ARE SUBJECT TO CHANGE WITHOUT NOTICE
this article, the keys were easily remembered keyphrases such as ROYAL NEW ZEALAND NAVY, PHYSICAL EXAMINATION, and our own PATRICIA ZLOTNIK. In program Crypto the key becomes the 3 number group $\left(R_{0}, A_{1}, A_{2}\right)$ such as $(0.5,1.625,3.125)$.

Since keyphrases are more easily remembered than a sequence of digits, program Keygen has been written to permit the use of keyphrases for the generation of keys for program Crypto. One part of the program key is a 10 digit integer which we may call the key base. Once this base number is entered into Keygen, a number of keys may be generated. Each key triplet is identified by a key number $N$. If a different key base is used, a different sequence of $\left(R_{0}, A_{1}, A_{2}\right)$ keys will be generated. If Keygen is employed, the user needs to know both the key base used to produce the sequence of keys and the number of the key within the sequence.

A convenient way of relating keyphrase to key base is to number the normal alphabet using 2 digit numbers. That is: $\mathrm{A}=01, \mathrm{~B}=02, \mathrm{C}=03$, $\ldots, X=24, Y=25, Z=26$. Now simply associate each letter with the second digit of its corresponding numerical value. Ten characters are selected from the keyphrase and their digit-for-character equivalences form the key base. For example, calling once more upon our friend from the main text yields:

> PATRICIAZL (keyphrase); 6108939162 (key base).

Using Keygen with this key base, a table of keys may be created and listed by key number N as follows:

| N | $\mathrm{R}_{0}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ |
| ---: | :---: | :---: | :---: |
|  | 0.6233 | 1.7175 | 2.8561 |
| 1 | 0.4283 | 1.7423 | 2.6784 |
| 2 | 1.7579 | 3.5444 |  |
| 3 | 0.6564 | 1.8209 | 3.8895 |
| 4 | 0.3809 | 1.9392 | 4.8296 |
| 5 | 0.6771 | 1.9619 | 3.9956 |
| 6 | 0.6119 | 1.7418 | 2.3276 |
| 7 | 0.7612 | 1.9241 | 3.4082 |
| 8 | 0.7039 | 1.7517 | 2.4218 |
| 9 | 0.9190 | 1.3436 | 3.4242 |

A little imagination in the use of Keygen should make it possible never to have to repeat the use of a key. For example, in a multiple-user environment, each user could be assigned a unique block of key numbers. These would be used in some form of rotation that could be restarted after a new key base is invoked. All users must know the key base by prearrangement. The key number, however, could be contained in the cryptogram. If certain groups are set aside by prearrangement as control groups, the key number information could be contained in these characters.

For example, let the third group of each cryptogram be a control group and assume the same alphabetic-numeric equivalence described in the keyphrase-key base relationship. Let the center character of the third group indicate mode: even number for transposition only, odd number for dual mode. The first two characters of this group could represent mixed alphabet key number for dual mode or would be nulls in the transposition only mode. The last two characters could represent the encipherment operation key number. The control group JNGTI, for example, signals dual mode, indicates key number 4 for mixed alphabet generation, and shows that key number 9 was used in encipherment. The control group is inserted into the cryptogram after encipherment and removed before decipherment.
or less, phase $A$ is skipped and phase $B$ is entered directly. Otherwise the program loops back and enters phase A. This strategy and the choices of $T$ and $Q$ are designed to minimize the mean processing time (details are in the text box on search strategy). Coincidentally this approach presents the cryptanalyst with a highly nonlinear, multivalued barrier from the cryptogram back to the key $\left(R_{0}, A_{1}, A_{2}\right)$. On some passes $R_{n}$ is cycled only once. At the other extreme it is also possible that $R_{n}$ is cycled $T$ times in phase $A$ and one time in phase $B$ for a total of $T+1$ cycles of the $R_{n}$ generator. The luck of the draw nature of the transposition algorithm can produce some dramatic changes in the flow of events arising from very minor situation differences, such as adding or subtracting one character from the plaintext. This algorithm has some interesting trapdoor or one way properties.

## General Remarks

With the notable exception of Vernam's onetime key, all cryptographic systems are considered to be vulnerable to cryptanalytic attack. As a consequence any proposed cryptographic technique must be evaluated for degree of security before being used. The adversary roles of the cryptographer and the cryptanalyst have existed for centuries. Mathematical proofs of security (usually based on the impossibility of testing the vast number of combinations offered) have lured innumerable amateurs and a few professionals over the years into positions that later proved embarrassing to the people who formulated the proofs. These proofs of invulnerability were destroyed by competent cryptanalysts who accepted the futility of exhaustive searches and instead searched for other means to break the system. The question of security, which is the very core of cryptography, encompasses many disciplines and occupies the full-time efforts of thousands of talented people worldwide. Part III of the Shannon paper and sections VI and VII of the Diffie and Hellman paper are highly recommended for background in this area (see bibliography).

Standard evaluation methods of secrecy systems involve cryptanalytic attacks on the system. The ciphertext only attack is the weakest test, since the analyst is given only ciphertext with which to work. Systems which fail this test are rated as very weak. The known plaintext attack allows the analyst access to corresponding portions of plaintext and ciphertext. The most severe test is the chosen plaintext attack, in which


# © osborne \& associates, inc. BUSINESS SOFTWARE FOR MICROCOMPUTERS 

Osborne \& Associates is publishing its business systems in book form. These systems represent five years of development and testing by O\&A programmers, and the books include more than a year's worth of extensive and detailed documentation.

What systems are we selling?

## 1) PAYROLL WITH COST ACCOUNTING <br> 2) ACCOUNTS PAYABLE AND ACCOUNTS RECEIVABLE 3) GENERAL LEDGER

Each book sells for $\$ 15.00$, and includes source listings in Wang BASIC, program and system documentation, and user's manual. Each is a complete package by itself, or all three may be implemented together to form a complete system with interdependent files.

And if Wang BASIC won't work, or you don't know programming, or you'd rather not key in thousands of words of source code, take a look at the list of consultants who have adopted O\&A programs. converted them to run on many popular systems, and are waiting to hear from you.

## CP/M CBASIC: GOOD NEWS

## FOR CONSULTANTS, COMPUTER STORES AND SOFTWARE HOUSES

Osborne \& Associates is converting its business software from Wang BASIC — as it was originally published — to CP/M CBASIC, which runs on many floppy disk-based microcomputer systems. We will only sell the CP/M magnetic surface to consultants, computer stores and software houses. Osborne \& Associates prefers to write and sell books, not customize the programs or answer the end user's questions. The disk for each book sells for $\$ 250.00$. Once you buy the floppy disk you can copy it, resell it, change it or use it. We place no restriction on the magnetic surface: we copyright only the printed word in our books. CBASIC Payroll is available now. All three systems are scheduled to be available in the first half of 1979; call or write for the exact availability of each system.

If you are an end user interested in the CBASIC programs, write or call us. We will put you in touch with your closest dealer.


Table 15 gives detailed user instructions for program Keygen. An error halt at program location 120 (very unlikely) indicates that a looping condition has been detected in the Keygen random number generator. The largest permissible key number value for this key base is one less than the difference between the contents of register 8 and register I. Either stay within this limitation or change the key base. As a precaution, one could generate the highest numbered key to be used when a new key base is invoked to insure that there are no looping problems within Keygen. As mentioned before, it is very unlikely that this condition will ever be encountered. The 3 sequence generator cycles required by the Floyd algorithm serve double duty in Keygen. For each key triplet generated, the $R_{n}$ register of Keygen supplies the seed; one less than $R_{2 n}$ is used to compute $A_{1}$; and $R_{2 n}$ is employed in the $\mathrm{A}_{2}$ calculation.

1. Prepare table as example table 14 b shows. Enter ciphertext Cm and,
(14a) using alphabet table, enter $\overline{\mathrm{C}} \mathrm{m}$ values.
2. Switch calculator to RUN and ON.
3. Load program.
4. Input data Ro, $A_{1}, A_{2}, N c$. Follow each entry except the last with ENT $\uparrow$. Press $A$.
5. Input data Na; follow Na with CHS (that is enter -Na ).
6. Press R/S to start program.
7. Calculator will stop with J.M in display. At index $M$, select $\bar{C} m$ and enter. Press R/S.
8. Calculator will stop with a number in the form J.M Pj. At index J in table enter $\overline{\mathrm{P}}_{\mathrm{j}}$ from display.
9. Press R/S and return to step 7.
10. Repeat the steps 7,8 and 9 loop. Pressing R/S after character Nc flashes the ERROR sign. When flashing stops press R/S one time.
11. Using alphabet table convert Pj to Pj to obtain plaintext.
12. If program is to be restarted, return to step 4.

## Decipherment Example

(14b)

| $J, M$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C m}$ | $H$ | $F$ | $Y$ | $M$ | $P$ | 1 | $Z$ | $X$ | $M$ | $G$ |
| $\bar{C} m$ | 13 | 01 | 10 | 22 | 19 | 11 | 05 | 06 | 22 | 09 |
| $\bar{P} j$ | 22 | 07 | 10 | 21 | 19 | 02 | 11 | 23 | 19 | 25 |
| Pj | $M$ | $A$ | $Y$ | $U$ | $P$ | 8 | 1 | $D$ | $P$ | $R$ |

## index

ciphertext
from alphabet table. Enter at step 7. from program at step 8.
from alphabet table.

Table 14: Crypto instructions for deciphering in the dual transposition and substitution mode. The sample table used in deciphering is shown in table 14a. The key is $A: 0.5,1.625,3.125,10$ R/S: -26; table 9 used.

1. Set calculator switches to RUN and ON.
2. Load program.
3. Enter the 10 digit integer key base number and press $D$.
4. Enter key number N desired and press E .
5. Display will show a number in the form N. Rowith four digits assigned to Ro. Key number $N$ is shown for identification only.
6. Press R/S to obtain $A_{1}$.
7. Press $R / S$ to obtain $A_{2}$. This completes key number $N$ data $\left(R_{0}, A_{1}, A_{2}\right)$.
8. If R/S is pressed at this point, the program cycles back to step 5 with $N+1$ replacing N . Thus, the $5,6,7,8$ loop may be used to obtain a sequence of keys.
9. After step 7, the user may start a new sequence by returning to step 4. To save time, plan use so that $N$ values are called for in ascending order.
10. Step 3 may be entered after step 7 to change the key base.

Table 15: Detailed instructions for using program Keygen to generate keys which are used with program Crypto.
the analyst chooses the plaintext source material and the corresponding ciphertext is also made available for analysis.

With the above in mind, the trapdoor systems described earlier display yet another fascinating difference from the classical cryptographic techniques. Normally the material for plaintext attacks must be obtained through devious means. In the trapdoor case the public encryption key invites
chosen plaintext attack at the leisure of the analyst. If the system is strong enough to survive this test, it is strong indeed by classical standards. The revival of the large number of possibilities argument which has been discredited so many times in the past is also most curious. Can it be that the trapdoor approach results in a situation in which large numbers are both necessary and sufficient? Consider this remarkable statement by Martin Gardner:

> Computers and complexity theory are pushing cryptography into an exciting phase, and one that may be tinged with sadness. All over the world there are clever men and women, some of them geniuses, who have devoted their lives to the mastery of modern cryptanalysis. Since World War I/ even those government and military ciphers that are not onetime pads have become so difficult to break that the talents of these experts have gradually become less useful. Now these people are standing on trapdoors that are about to spring open and drop them completely from sight.

This statement, cited in the bibliography, is made all the more remarkable when one considers the stature of the man who made it. Aside from the trapdoor hypothesis, there is the indication here that emerging technology has been favoring the cryptographer and that the cryptanalyst is being outdistanced in this phase of the race. Advances in computer technology may have given governments the privacy they seek for their communications. Will further advances extend this same privilege to the common citizen?

Progress in communication techniques, data processing and data storage has made it increasingly convenient for governments to invade the privacy of their citizens. Further developments in cryptographic theory and related digital processing devices are bound to lower costs considerably. The step from insuring the privacy of computer based business transactions to insuring the privacy of personal communications and records is not too hard to imagine. Science knows no politics or philosophy. Technology, which in the past has permitted established groups to invade the privacy of the individual, may be about to make restitution.

## Evaluation of Crypto

In the qualitative discussion which follows, a known plaintext attack will be

## Drive a Winner:



## FLLL SIZE.IDUL DENSITY. AFFORIDMBLE PRICE

We are offering, for a limited time, the industry proven Remex RFD1000B Disc Drive at an introductory price of $\$ 395$. This is the lowest price ever advertised for a full size disc drive. This drive can operate in either single or double density mode and can store up to $800 k$ bytes unformatted. It has been on the market for three years and has been proven in the field.
We are also a service center and ready to service what we sell at rates that keep hobbyist and small OEM budgets in mind.

## $\$ 395.01$

-Decals and Wheels not included in purchase price.
BONUS OFFER: We willinclude two important options-Optical Write Protect and a Door Lock Mechanism-list price value $\$ 50$. for only $\$ 25$. for ordering promptly. If you include check or money order with your order, we will include these two options absolutely FREE.


The Computer Factory
P. O. Box 155

Arlington Ma. 02174

## Name

$\overline{\text { Address }}$
Cliy State Zlp

| Disc Drives @ 5395. |  |
| :---: | :---: |
| Opllons Packages © $\mathbf{5 2 5}$. |  |
| Shippling ( $56.00 /$ drive) |  |
| Tax (Mass. Residents) |  |
| total |  |

- Check or M.O. with order
(Getfree optlons package)
-C.O.D. (Include $25 \%$ with order)
- M.C.\#
- V/8a\# $\qquad$

Signature

Figure 2: Graph showing the variation in the mean cost with respect to the number of trials allowed to take place to find an empty cell.

assumed as the testing vehicle. The reason for making transposition mandatory in Crypto may be demonstrated by considering a known plaintext attack on a substitution cipher. In such a cipher, character positions remain unaltered in the cryptogram. The ciphertext character values are the modulo sums of key and plaintext values. The known plaintext attack removes the plaintext value cover to reveal the key generator values. The analyst then attempts to determine the generator parameter settings by use of the known sequence of


## NO SOFTWARE OR HARDWARE CHANGES REQUIRED. JUST PLUG IN AND RUN!

- $5 \times 7$ Impact Dot Matrix
- 80 Char/Line
- 64 Char ASCII (Upper Case)
- 110 Char/Sec.
- 66 Lines/Min.
- Accepts 8-1/2" TTY Roll paper
PRINTER \$650.00
INTERFACE: BUILT $\$ 100.00$
KIT $\$ 60.00$
INFOR \& SCHEMATIC $\$ 5.00$
Shipped Freight collect. Send check, M.O.:

INCLUDES - Power Supply, Built in Selftest, Parallel Interface, Line Buifer and Cables. Housed in a three piece plastic cabinet with all control electronics. Retail for over $\$ 1,100$. PRINTER BRAND NEW NEVER USED IN FACTORY SEALED CARTON. Operating Manual included. Supplies Limited
Guaranteed to be in good working order at time of delivery.
Write for Interface Info on Heath, Apple, Imsai, Sol, Northstar
INTERNATIONAL ELECTRONICS EQUIPMENT CORP.
P.0. Box 522542, Miami, Florida 33152
generator key numbers. In a straight substitution cipher the security load is carried entirely by the keystream generator. Gait indicates that shift register generators produce very poor ciphers, especially the linear congruential generators which are in common use (see bibliography).

No claim for greatness is made for the generator used in Crypto as defined in equation (5). We have ignored Knuth's admonition not to select a random generator at random. While this algorithm appears to be satisfactory, there would be no hesitation in replacement by a better algorithm that fits into the available coding space.

The sequence generator and the organizational logic of Crypto (figure 1) work together against the cryptanalyst. Consider a transposition only cipher and a known plaintext attack. The characters of the plaintext are scattered throughout the ciphertext with replications. There are 13 Ts in the sample of known plaintext, for example, and 48 Ts in the cryptogram. There are too many ways to relate these two groups (plain-text-ciphertext) in order to get sequence generator output strings for analysis.

It should also be noted in figure 1 that that the phase A/phase B logic plays an important role in frustrating analysis. Even if consecutive plaintext transpositions could be identified, this does not mean that sequential outputs of the random number generator were involved. There may have been several loop A cycles in search of an open M field position between placements. The future behavior of the system of figure 1 from any point on is a function of the entire past history of the system. This seems to demand a chosen plaintext attack based on the beginning of the message. The analyst cannot jump into the middle of the process, so to speak. In fact, even if the entire transposition sequence ( $M_{1}$, $\mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{Nc}}$ ) were known, there does not appear to be a sure way of working back to the $\left(R_{0}, A_{1}, A_{2}\right)$ generating key. The quantizing operation $\operatorname{INT}\left[\mathrm{Nc} \times \mathrm{R}_{2 n}\right.$ ] defines only a range for $R_{2 n}$ when the result is given, and represents a complicating factor. The lost odd cycle of the sequence generator in the transposition operation should also prove quite annoying to the analyst. The Floyd algorithm is thus used to protect the cipher in two ways.

Further protection may be obtained from the substitution operation. If the alphabet is expanded to include numerals, the scrambled order of numerals in the transposition only cryptogram may still be too revealing. In such cases the dual mode of operation is highly recommended. I believe that a very effective cryptographic
capability results if Crypto is used according to the instructions given.

The author wishes to express his thanks to $\operatorname{Dr} / \mathrm{C}$ Buchta and Dr S B Akers, Jr, both of the General Electric Company, for many interesting comments and criticisms.

| I O E OL |  | A O M N A |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | F G P T H |
| F I I E R | T O O O E |  |  |  |
| M U S E X | H H X A R |  |  |  |
| H S L N T | S R R R D H |  |  |  |
| A D O T Y | R S R F N |  |  |  |
| A F T E H | T K E B A |  |  |  |
| O O E A O | G S H U T |  |  |  |
| R W X W I | F I K M R |  |  |  |
| F W R G O | P D N U D |  |  |  |
| T I Y R T | B O Y U L |  |  |  |
| S E G O R |  |  |  |  |

## BIBLIOGRAPHY

1. Kahn, David, The Codebreakers, the Story of Secret Writing, Macmillan, New York, 1967.
2. Vernam, G S, "Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic Communications," Journal of the American Institute of Electrical Engineers, volume 45, pages 109 thru 115, 1926.
3. Shannon, C E, "Communication Theory of Secrecy Systems," Bell System Technical Journal, volume 28, October 1949, pages 656 thru 715.
4. Diffie, $W$ and Hellman, $M E$, "New Directions in Cryptography." IEEE Transactions on Information Theory, volume IT-22, number 6 , November 1976, pages 644 thru 654.
5. Knuth, D E, The Art of Computer Programming, volume 2, Seminumerical Algorithms, Addison-Wesley, Reading MA, 1969.
6. Rivest, R L, Shamir, A and Adleman, L, "A Method for Obtaining Digital Signatures and Public Key Cryptosystems," Communications of the $A C M$, volume 21, number 2, February 1978, pages 120 thru 126 and 179.
7. Gait, J, "A New Nonlinear Pseudorandom Number Generator," IEEE Transactions on Software Engineering, volume SE-3, number 5, September 1977, pages 359 thru 363.
8. Gardner, Martin, "Mathematical Games/A New Kind of Cipher That Would Take Millions of Years to Break," Scientific American, August 1977, pages 120 thru 124.
9. Gaines, Helen F, Cryptanalysis, A Study of Ciphers and Their Solutions, Dover, New York, 1956. (Formerly published under the title, Elementary Cryptanalysis.)


## MULTI-TASKING!

The TEMPOS Operating System is quickly becoming the standard in MultiUser, Multi-Tasking operating systems for 8080 and 280 microcomputers. Multi-Tasking means that, even with only one user at one terminal, more than one job can be running on the system simultaneously! If you have ever had to go get a cup of coffee while you wait for your computer to print listings, you know the advantages of a system that will handle one job while you are working on another. TEMPOS is a true time sharing system, and the maximum number of jobs is limited only by your memory.

## MULTI-USER!

Want to share your computer with another user? With TEMPOS all it takes is another terminal . . . up to seven interactive terminals are allowed! And with Re-Entrant programs, each user does not need a complete copy in memory. We include three Re-Entrant programs (the OPUS/THREE HighLevel Language, the TEXTED Text Editor, and FILES, a disc file directory/manipulator) or write your own! In addition, we include an assembler, a linking loader, over a half-dozen other utility programs and over 60 system subroutines, callable by the programmer!

## PROVEN!

With TEMPOS, you get a package that has been tested in our facilities for over two years, and in the field at over 50 different installations. We have used this system ourselves for everything from writing high-level languages to developing applications to text editing to games. TEMPOS is undoubtedly the most flexible software tool on the market . . . and you can have it for much less than you think!

## COMPATIBLE!

TEMPOS is available for many different systems; pre-written drivers may include yours. Or, using our interactive System Generation Routine, you can add your own. Call or write now for our free catalog and the name of a dealer near you. The TEMPOS Operating System is available for $\$ 787.00$, the manual set (price may be credited toward the purchase of the TEMPOS package) for $\$ 21.50$ (prices include shipping within the U.S.).


1642 S. Parker Road, Suite 300, Denver, Colorado 80231
(303) 755-9694

# Life Can Be Easy 

Randy Soderstrom 4601 Goldfinch Dr Madison WI 53714

I've written a fairly short and simple program (about 220 bytes) to play Life on an 8080 based system. You need only two pages of memory for the program and the playing board. When this was originally written, I had only 1 K bytes of memory in my Altair, so this version is a simple one. A few extensions are suggested, but they are not necessary to enjoy Life.

The playing board is a 16 by 16 grid taking one page ( 256 bytes) of memory. Only the two least significant bits of each byte are used, and the leftmost column and top row are used as a border. If you don't use the border, the top of the board is next to the bottom, and the right edge is next to the left edge.

The board is arranged as shown in figure 1. The number in each box is its address in memory. It is initialized by first setting all locations to 00 . Next, hexadecimal locations 00 through $0 F$ (the top row) and 10, 20, $30 \ldots$ E0, F0 (left

| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | OA | OB | OC | OD | OE | OF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1 C | 1 D | 1E | 1 F |
| 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2F |
| 30 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3F |
| 40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4F |
| 50 |  |  |  |  | 55 | 56 | 57 | 58 | 59 | 5A | 5B |  |  |  | 5 F |
| 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6A | 6B | 6 C | 6D | 6E | 6 F |
| 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 7A | 7B | 7 C | 70 | 7E | 7F |
| 80 |  |  |  |  | 85 | 86 | 87 | 88 | 89 | 8A | 8B |  |  |  | 8F |
| 90 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 9 F |
| AO |  |  |  |  |  |  |  |  |  |  |  |  |  |  | AF |
| B0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | BF |
| CO |  |  |  |  |  |  |  |  |  |  |  |  |  |  | CF |
| DO | D1 | D2 |  |  |  |  |  |  |  |  |  |  |  |  | DF |
| EO | E1 | E2 | E3 | E4 |  |  |  |  |  |  |  |  |  |  | EF |
| FO | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | FA | FB | FC | FD | FE | FF |

Figure 1: Layout of the Life board in memory. The number of each box is its address. The shaded boxes are border cells.
column) are set to hexadecimal FF. Each cell with FF is a border cell and is ignored by the rest of the program. The function of the border will become clear later.

The initial pattern must be loaded by some other loader program or through your front panel. You simply draw the first generation on a sheet of graph paper numbered as in figure 1, then set the address of each line cell to hexadecimal 01.

Each byte looks like figure 2. Note that only the two least significant bits of each byte are used. Bit zero is a 1 if that cell is alive this generation. If it will be alive next generation, bit one is also a 1. To make the next generation into this generation, we need only shift each memory location to the right.

The program is written to be simple not efficient or fast - and consists of six main routines that are called repeatedly for each cell (see listing 1). Subroutine NCOUNT, for example, is called about 1,900 times each generation.

The first routine, BDINIT, initializes the board (clears it and sets up border) and then jumps to your loader to get the initial pattern. After you have loaded an initial pattern, you will want to write it out on your terminal before the next generation is computed. This is done by routine WRITE. The border characters are written as a slash and the live cells as a star.

Before a line is written, it is scanned for live characters. If none are alive, a slash and a carriage return are output, and the next line is checked. This saves the computer the task of writing a line of blanks and can save considerable time in writing out small patterns.

Now we have the board set up and the initial pattern loaded and checked. The computer is ready to calculate the next generation. Since the status of a cell (alive or dead next generation) depends only on the number of live neighbors, the program simply goes from one cell to the next counting the number of live neigh-


Figure 2: Bit zero is the present generation bit. Bit one is the next generation bit. The rest of the word is not used.
bors. For example, if we are looking at the cell at location hexadecimal 68, we would check cells 57 thru $59,67,69$ and 77 thru 79. This is done by subroutine VALCK. When the routine is exited, register E holds the number of live neighboring cells.

Next subroutine ESET is called. This routine sets the next generation bit if register $E$ equals 3 , clears it if register $E$ equals $0,1,4,5,6,7$, or 8 and sets it equal
to the present generation if register $E$ equals 2. The only variation from this procedure concerns the border cells. They are treated as dead cells when counting neighbors. If we are pointing to a border cell when VALCK is called, the routine is exited before any tests are performed. To initialize the board, begin at BDINIT. After you have loaded the first generation, enter at WRITE, and your work is done.

Listing 1: The board initialization routine (BDINIT) sets the entire board (figure 1) to 00. Next the border cells are set to FF. A jump is then made to the loader program to get the initial pattern. Subroutine WRITE displays the board on the video display. Border characters are written as a slash, live cells as a star. If your display doesn't scroll on a carriage return, you will have to change this routine. The next generation is calculated by subroutine MOVE by calling VALCK and ESET for each cell. After MOVE is done, routine UPDATE is entered and the board is output. Update rotates each nonborder cell to the right. The next generation bit moves into the present generation bit. VALCK is called by the main MOVE routine. MOVE sets register pair BC to the address of the current cell. The HL registers look at its neighbors. NCOUNT checks the cell addressed by register pair HL. If that cell is alive, register $E$ is incremented. This routine is called repeatedly by VALCK which sets up the HL register pair before calling. ESET sets the next generation bit based on the contents of register E. ESET is called after VALCK and determines the number of live neighbors.

| Hexadecimal <br> Address | Hexadecimal <br> Code | Label | Op Code | Operand |  | Comment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 A 00$ | 06 | 00 |  | BDINIT | MVI | B,00 |



| OABD | OA |  |  | ESET | LDAX | B | Get current cell addressed by BC. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OABE | FE | FF |  |  | CPI | FF | Border cell? |
| OACO | C8 |  |  |  | RZ |  | Return if border. |
| 0 AC1 | E6 | 01 |  |  | ANI | 01 | Clear next generation bit. |
| $0 \mathrm{AC3}$ | 1D |  |  |  | DCR | E |  |
| $0 \mathrm{AC4}$ | 1D |  |  |  | DCR | E |  |
| $0 \mathrm{AC5}$ | CA | D2 | OA |  | JZ | SRVIVE | If register E is 2 cell will survive. |
| $0 \mathrm{AC8}$ | 1D |  |  |  | DCR | E |  |
| $0 \mathrm{AC9}$ | CA | CE | OA |  | JZ | ALIVE | If register E is 3 cell is alive next generation. |
| OACC | 02 |  |  |  | STAX | B | Cell is dead next generation. |
| OACD | C9 |  |  |  | RET |  |  |
| OACE | F6 | 02 |  | ALIVE | OR1 | 02 | Set next generation bit. |
| OADO | 02 |  |  |  | STAX | B | Put back in memory. |
| OAD1 | C9 |  |  |  | RET |  |  |
| 0AD2 | FE | 00 |  | SRVIVE | CPI | 00 | Cell dead now? |
| OAD4 | 02 |  |  |  | STAX | B |  |
| OAD5 | C8 |  |  |  | R2 |  | If dead, return. |
| 0AD6 | F6 | 02 |  |  | ORI | 02 | If alive now, set next generation bit and put back in memory |
| OAD8 | 02 |  |  |  | STAX | B |  |
| OAD9 | C9 |  |  |  | RET |  |  |

Possible Improvements

In this program the time needed to compute the next generation is insignificant compared to the time needed to write out and observe the pattern. I feel that any effort to speed up execution just isn't worth the trouble.

The first routine you should add would be a better way to load the initial pattern. If you have cursor control (up-down, rightleft), it should be easy to add a fast, easy loader. A 16 by 16 grid is small for doing
any serious experimenting on. Many interesting patterns run into the border; or if you don't use the border, the left edge interferes with the right and top interferes with bottom. You will have to use the dual addition instructions and complement arithmetic in VALCK, because adjacent cells won't always be on the same page.

I am interested in hearing about any improvements to this program or about any interesting patterns you may discover. Have fun! ${ }^{\square}$

## SPECIALIZING IN QUALITY MIGROGOMPUIER HARDWARE

INDUSTRIAL • EDUCATIONAL • SMALL BUSINESS • PERSONAL
BUILDING BLOCKS FOR MICROCOMPUTER SYSTEMS, CONTROL \& TEST EQUIPMENT

$R^{2} \quad 1 / O$
2K ROM 2K RAM
3 Serial Ports
1 Parallel Port


16 K RAM
fully static MEMORY


# An Easy Way 

## to Calculate Sines and Cosines

Robert Grappel<br>148 Wood St<br>Lexington MA 02173

The instruction set of a typical 8 bit processor can be quite confining at times. Any task requiring more than simple integer addition and subtraction can become a nuisance. There are reference books from which multiplication and division routines can be obtained, and square root and other functions can be built by using expansion, iteration, or other well-known methods. Implementing these algorithms on a microprocessor uses much space and programming time. Trigonometric functions are among this class of


Listing 1: 6800 routine for computing sines and cosines over the range 0 to $\pi / 2$ radians (0 to 90 degrees).
difficult functions. However, if one can tolerate accuracy of one part in 100, and allow about 1 ms per computation, the routine described in this article will provide sine and cosine values in a very simple 40 byte routine. I have coded it for a Motorola M6800 processor but it could easily be converted to any other processor.

Theory
The algorithm is based on two trigonometric identities:

$$
\begin{aligned}
& \operatorname{sine}(\theta+s)=\sin (\theta) \cos (s)+\cos (\theta) \sin (s) \\
& \cos (\theta+s)=\cos (\theta) \cos (s)-\sin (\theta) \sin (s)
\end{aligned}
$$

where $\theta$ is the angle we are interested in and $s$ is a small step in angle added to $\theta$. If we make the step small enough, we can approximate $\sin (\mathrm{s})$ and $\cos (\mathrm{s})$ as follows:

$$
\begin{aligned}
& \sin (s)=s \\
& \cos (s)=1
\end{aligned}
$$

Combining these four equations we get:

$$
\begin{aligned}
& \sin (\theta+\mathrm{s})=\sin (\theta)+\mathrm{s} \cos (\theta) \\
& \cos (\theta+\mathrm{s})=\cos (\theta)-\mathrm{s} \sin (\theta)
\end{aligned}
$$

Solving for sine and substituting into the cosine formula:

$$
\cos (\theta+\mathrm{s})=\left(1+\mathrm{s}^{2}\right) \cos (\theta)-\mathrm{s} \sin (\theta+\mathrm{s})
$$

Since $s$ is very small, we can neglect $\mathrm{s}^{2}$ and write:

$$
\cos (\theta+s)=\cos (\theta)-s \sin (\theta+s)
$$

Given that we have values for $\sin (\theta)$ and $\cos (\theta)$ at some point, we can get to any other angle by stepping through the two approximations, first computing $\sin (\theta+\mathrm{s})$ and then using that to compute $\cos (\theta+\mathrm{s})$. We choose to start at $\theta$ equal to zero, and set $\cos (\theta)$ to the largest positive value that can
be stored as a signed byte without causing overflow when negated and decremented. Hence $\cos (0)=126$. Similarly the $\sin (0)=0$. The step size is chosen to be 0.0625 radian or about $3.58^{\circ}$. The step size must be a binary fraction so that all the multiplication involved in the equations can be performed by arithmetic shifts. If more accuracy is needed, the step size is easily reduced by introducing more shifts into the algorithm.

## Program

The assembly code program for the Motorola 6800 version of the routine is shown in listing 1. When called with the angle stored in variable THETA, it returns the sine and cosine of that angle. The accuracy is quite good for angles less than $\pi / 2$ radians ( 90 degrees). For angles larger than $\pi / 2$ radians, other trigonometric identities can be used:

$$
\begin{aligned}
& \sin (\theta)=\cos (\pi / 2-\theta)=\sin (\pi-\theta) \\
& \cos (\theta)=\sin (\pi / 2-\theta)=(-\cos (\pi-\theta))
\end{aligned}
$$

Thus, the sine and cosine of any angle can be computed from the values over the range 0 to $\pi / 2$ radians. These identities can be coded quite easily.

All the other trigonometric functions can be computed from the values of sine and cosine. All that is needed is an integer division routine such as the following:

$$
\begin{aligned}
& \operatorname{cosec}(\theta)=126 / \sin (\theta) \\
& \sec (\theta)=126 / \cos (\theta) \\
& \tan (\theta)=\sin (\theta) / \cos (\theta) \\
& \cot (\theta)=\cos (\theta) / \sin (\theta)
\end{aligned}
$$

Be careful of overflows and division by zero problems.

This algorithm can perform other tricks. It can generate continuous sine waves of any desired amplitude, period, or phase. Coupled with a digital to analog converter, it could form part of a modem or synthesizer. It could simulate mixers, AM or FM modulators, keyers, etc.

The maximum frequency it can generate depends on the processor cycle time. A 6800 processor running with a 1 MHz clock could generate a 200 Hz sine wave since there are about 50 machine cycles per step, and about 100 steps per wave. Increasing the step size to 0.125 radians would increase the maximum frequency to about 500 Hz . A step size of 0.25 radians would yield a maximum frequency of nearly 1050 Hz .

I hope that this algorithm will help programmers solve problems involving trigonometric functions, and that applications for microcomputers will expand into new areas where these functions are useful. -


There is a reason so many Datec customers are communication line technicians, computer engineers and data prociessing experts. They recommend Datec for the simple, solid state, rugged design that has proven to be more reliable than bigger name couplers.

Acoustic coupiers are the work horses of a data communications system. They should work every time, every day, so that you can install them and then forget them.

No wonder communication line technicians have nicknamed the Datec 32 the
"heavy duty" acoustic coupler.


Circle 90 on inquiry card.

Listing 1：TI－59 calculator program for the digital circuit simulator．

| －100100 | Fig | LE：L | 1141 | 1010 | 0 | 曰В口 | 73 | F心\％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ถ11 | 3 | EIN | 1142 | 20 | 201 | 1981 | 101 | 1 |
| 口1\％ | Eit | ETF | 1.14 | 71 | SEF | 1982 | 22 | INU |
| 103 | İ10 | ［10 | 1044 | İו！ | 010 | 1183 | 59 | INT |
| ［10］4 | E． 1 | GTO | 1145 | 60 | EI | 1.84 | E5 | ＋ |
| 105 | 33 | $\therefore$ 天 | 146 | 92 | RTH | 185 | 43 | FCL |
| 回 | IIO | II | 1.47 | 68 | HDF | 188 | 311 | 30 |
| ［10？ | 76 | LE：L | 1148 | 69 | NDF | 可 | 5 | $+$ |
| 10\％ | 35 | 1／\％ | 1.49 | 68 | HDF＇ | $18 \%$ | 43 | F＇L |
| －10\％ | 71 | EFF | 1.15 | 71 | SEF： | 1089 | 29 | 29 |
| －110 | 411 | IHII | 051 | －10］ | ロ100 | 19 | $\bigcirc$ | － |
| 111 | 109 | 109 | 152 | 30 | 30 | 191 | 93 |  |
| 112 | 43 | FCL | 153 | 71 | SEF： | 1.92 | 111 | 1 |
| $\square 1 \%$ | 3 | S10 | 154 | ［10］ | ITI | 193 | 95 | $=$ |
| 114 | 5 | $\div$ | 15 | －110 | －ا心 | 1994 | 22 | INV |
| 115 | I1 1 | 1 | 156 | 92 | FTH | 1195 | 67 | E ${ }^{\text {d }}$ |
| $\square 16$ | 1010 | II | 115 | $\theta 8$ | NDF＇ | U9\％ | I！ | 01 |
| $\underline{17}$ | 95 | $=$ | 175 | ES | NDF | 1197 | 111 | 11 |
| ¢18 | 92 | FTH | 05 | 68 | HDF | 159 | 11 | 1 |
| 119 | E | HOF | 10．1 | It | 1 | 1199 | 42 | STO |
| ロ20 | 43 | FEL | 1761 | 94 | ＋- | 100 | 30 | 30 |
| 121 | 29 | 2\％ | D62 | 47 | FFII | 115 | 92 | FTN |
| 12E | $4 \%$ | FRII | 16.3 | 31 | 30 | 10 | 66 | HDF |
| 口\％ | \％ | － | 10.4 | $\square 1$ | 1 | 103 | 5 | NDF |
| $\underline{124}$ | 些 | FTH | 16.5 | 44 | 5114 | 1104 | P6 | LEL |
| 125 | ES | NDF＇ | 16．5 | 31 | 30 | 105 | 15 | E |
| $\underline{16}$ | 6S | NOP | 196 | 32 | FTH | 116 | 115 | \％ |
| 口ご | G | HDF | 10． 0 | $\theta$ | NDF＇ | 107 | 10 | IT |
| $\square 28$ | 6 | HDF | Dis | 8 | NDF＇ | $10 \%$ | 32 | X：T |
| 127 | E | HDF | 历？ | 43 | ELL | $10 \%$ | 10 | 0 |
| 130 | 43 | FOL | 171 | 27 | 29 | 110 | 32 | x：T |
| 121 | 29 | 29 | 172 | 75 | － | 111 | 42 | STD |
| 132 | E．7， | EG | 1073 | 43 | FİL | 112 | 11 | 10 |
| $13 \%$ | IT0 | 以10 | 1174 | 311 | 30 | 113 | 11 | 1 |
| 1.34 | 37 | 37 | 1775 | 95 | $=$ | 114 | 63 | EX＋ |
| 135 | 42 | 三T0 | 176 | 32 | $x^{2}$ | 115 | 10 | 10 |
| 136 | 3 | 30 | 117 | 42 | ST0 | 115 | 76 | LEL |
| 137 | F | FiTH | 1978 | 30 | 30 | 11？ | 26 | LDG |
| 13 | E | HDF | 1179 | 92 | F：TH | $11 \%$ | 53 | E．${ }^{+}$ |
| 1039 | ES | HDF |  |  |  |  |  |  |
| －14 | 71 | EFF： | Listil | 7 | conti | oppo | te p | age． |

The program in listing 1 was developed for a TI－59 calculator to allow simulation or testing of combinational logic circuits．The circuit elements allowed and their identifi－ cation numbers are：

| Number | Type |
| :---: | :--- |
| 20 | AND |
| 30 | OR |
| 40 | NAND |
| 50 | NOR |
| 60 | NOT |
| 70 | XOR |
| 80 | SR latch |

Registers 11 through 25 are used to store the input values to the circuit．The circuit elements themselves are stored in registers 31 through 99．A code word is stored in each register that defines its inputs and its function．The format used is：

XXYYZZ．V，
where：

$$
\begin{aligned}
X X & =\text { Input Device } 1 \\
Y Y & =\text { Input Device } 2 \\
Z Z & =\text { Device Identification Number } \\
V & =\text { Output of this device }(0 \text { or } 1) .
\end{aligned}
$$

IMMEDIATE DELIVERY
MODEL 40300 LPM PRINTERS

－Mechanism or complete assembly
－80－column friction feed
－80－column tractor feed
－132－column tractor feed


## INTERFACES

－EIA－RS232
－Simplified EIA－like interface
－Standard serial interface
－Parallel device interface

MODEL 43 TERMINALS

－ 4310 RO（Receive Only）
－ 4320 KSR（Keyboard Send－Receive）
－ 4340 BSR（Buffered Send－Receive）
INTERFACES
－TTL Serial
－EIA RS232 or DC20 to 60 ma
－103－type built－in modem

Note that the complete code must be entered for each device. Therefore, for the NOT device the same input number is entered for both $X X$ and $Y Y$.

The minus sign is used as a code to indicate that a device has been asserted. At the start of each run the machine automatically sets all registers to a positive value. After the run is completed, each register should have a minus sign. The output value is given by the first digit to the right of the decimal point.

The circuit itself is set up on the machine by storing the appropriate values in registers 31 and greater. Devices are assigned registers consecutively starting with 31 , in any order desired. However, the program runs faster with consecutive assignments. A 0 stored in a register tells the calculator that all devices have been processed. Therefore, you must be certain that no register numbers are skipped and that the last valid register is followed with a register containing 0 .

The input values are stored into registers 11 through 25 by the following coding:

$$
\begin{array}{ll}
\text { logical } 0 & \text { store }-1.0 \\
\text { Iogical } 1 & \text { store }-1.1
\end{array}
$$

An alternate, and more convenient, method is available for registers 11 through 18. Just enter the logical value, 0 or 1 , and press one of the keys $A$ to $D$ or $A^{\prime}$ to $D^{\prime}$ in accordance with the following assignment table:


## Listing 7, continued:

| 119 | 10 | 10 | 173 | 77 | GE | 227 | 01 | 1 | 281 | 32 | X:T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 120 | 44 | sum | 174 | 38 | SIN | 228 | 94 | +/- | 282 | 01 | 1 |
| 121 | 10 | 10 | 175 | 22 | INV | 229 | 64 | PD* | 283 | 05 | 5 |
| 122 | 63 | EX* | 176 | 59 | INT | 230 | 10 | 10 | 284 | 42 | ST0 |
| 123 | 10 | 10 | 177 | 65 | $\times$ | 231 | 61 | GTD | 285 | 10 | 10 |
| 124 | 50 | I×I | 178 | 01 | 1 | 232 | 33 | Xz | 286 | 61 | GTD |
| 125 | 22 | INV | 179 | 001 | 0 | 233 | 76 | LBL | 287 | 42 | STD |
| 126 | 67 | EQ | 180 | 94 | +/- | 234 | 23 | LNX | 288 | 76 | LEL |
| 127 | 28 | LDG | 181 | 95 | $=$ | 235 | 87 | IFF | 289 | 17 | $\mathrm{E}^{\prime}$ |
| 128 | 76 | LBL | 182 | 42 | STD | 236 | 00 | 00 | 290 | 32 | X:T |
| 129 | 39 | CDS | 183 | 30 | 30 | 237 | 39 | CDS | 291 | 01 | 1 |
| 130 | 22 | INV | 184 | 01 | 1 | 238 | 43 | RCL | 292 | 06 | 6 |
| 131 | 86 | STF | 185 | บ̄ | U | 239 | 30 | 30 | 293 | 42 | STD |
| 132 | 00 | 00 | 186 | 00 | 0 | 240 | 91 | R/S | 294 | 10 | 10 |
| 135 | 63 | EX* | 187 | 49 | PRI | 241 | 81 | RST | 295 | 61 | GTD |
| 134 | 10 | 10 | 188 | 27 | 27 | 242 | 76 | LEL | 296 | 42 | ST0 |
| 135 | $0 \%$ | 3 | 189 | 43 | RCL | 243 | 11 | H | 297 | 76 | LBL |
| 136 | 00 | 0 | 190 | 27 | 27 | 244 | 32 | X:T | 298 | 18 | $c^{\prime}$ |
| 137 | 42 | STD | 191 | 59 | INT | 245 | 01 | 1 | 299 | 32 | X:T |
| 138 | 10 | 10 | 192 | 22 | INV | 246 | 01 | 1 | 300 | 01 | 1 |
| 139 | 76 | LEL | 193 | 44 | SUM | 247 | 42 | STD | 301 | 07 | 7 |
| 140 | 33 | $\mathrm{X}^{2}$ | 194 | 27 | 27 | 248 | 10 | 10 | 302 | 42 | STO |
| 141 | 43 | RCL | 195 | 42 | STO | 249 | 61 | GT0 | 303 | 10 | 10 |
| 142 | 10 | 10 | 196 | 26 | 26 | 250 | 42 | ST0 | 304 | 61 | ETI |
| 143 | 85 | $+$ | 197 | 73 | FC \% | 251 | 91 | R | 305 | 42 | STI |
| 144 | 01 | 1 | 198 | 26 | 26 | 252 | 76 | LEiL | 306 | 76 | LEL |
| 145 | 95 | $=$ | 199 | 77 | GE | 253 | 12 | E | 307 | 19 | I' ${ }^{\prime}$ |
| 146 | 66 | Fild | 200 | -38 | SIN | 254 | 32 | XiT | 308 | 32 | X:T |
| 147 | 42 | STD | 201 | 22 | INV | 255 | 01 | 1 | 309 | 01 | 1 |
| 148 | 10 | 10 | 202 | 59 | IHT | 256 | 02 | 2 | 310 | 06 | 8 |
| 149 | 73 | FC \% | 203 | 65 | $\times$ | 257 | 42 | STD | 311 | 42 | ST0 |
| 150 | 10 | 10 | 204 | 01 | 1 | 258 | 10 | 10 | 312 | 10 | 10 |
| 151 | 67 | EQ | 205 | 010 | 0 | 259 | 61 | GT0 | 313 | 61 | GT0 |
| 152 | 23 | LNX | 206 | 94 | +/- | 260 | 42 | STO | 314 | 42 | STD |
| 153 | 22 | INV | 207 | 95 | = | 261 | 76 | LEL | 315 | 91 | Fis |
| 154 | 77 | GE | 208 | 42 | STD | 262 | 13 | C | 316 | 76 | LBL |
| 15.5 | 33 | $x=$ | 209 | 29 | 29 | 263 | 32 | X:T | 317 | 42 | ETD |
| 156 | 55 | $\div$ | 210 | 43 | RCL | 264 | 01 | 1 | 318 | 01 | 1 |
| 157 | 01 | 1 | 211 | 27 | 27 | 265 | 03 | 3 | 319 | 94 | +/- |
| 158 | 00 | 0 | 212 | 65 | $\times$ | 266 | 42 | STD | 320 | 72 | ST* |
| 159 | 00 | 0 | 213 | 01 | 1 | 267 | 10 | 10 | 321 | 10 | 10 |
| 160 | 00 | 0 | 214 | 00 | 0 | 268 | 61 | ETD. | 322 | 32 | X:T |
| 161 | 0 | 0 | 215 | 00 | 0 | 269 | 42 | ST0 | 323 | 65 | $\times$ |
| 162 | 95 | $=$ | 216 | 95 | - | 270 | 76 | LEL | 324 | 93 |  |
| 163 | 42 | STD | 217 | 59 | INT | 271 | 14 | I | 325 | 01 | 1 |
| 164 | 27 | 27 | 218 | 42 | STD | 272 | 32 | X:T | 326 | 95 | $=$ |
| 165 | 59 | INT | 219 | 09 | 09 | 273 | 01 | 1 | 327 | 22 | INW |
| 166 | 22 | INW | 220 | 71 | SER | 274 | 04 | 4 | 328 | 74 | SM* |
| 167 | 44 | SuM | 221 | 35 | $1 / X$ | 275 | 42 | STD | 329 | 10 | 10 |
| 168 | 27 | 27 | 222 | 63 | EX* | 276 | 10 | 10 | 330 | 65 | $\times$ |
| 169 | 42 | ET0 | 223 | 10 | 10 | 277 | 61 | GTD | 331 | 01 | 1 |
| 170 | 26 | 26 | 224 | 59 | INT | 278 | 42 | STD | 332 | 00 | 0 |
| 171 | 73 | RC* | 225 | 74 | 51\% | 279 | 76 | LEL | 333 | 95 | $=$ |
| 172 | 26 | 26 | 226 | 10 | 10 | 280 | 16 | $\mathrm{H}^{\text {' }}$ | 334 | 91 | R/S |



The DS-80 features full compatibility with the proposed IEEE S-100 standard and all current S-100 CPUs. New improved circuit design enhances performance. The DS-80 offers random access video digitization of up to $256 \times 256$ spatial resolution and 64 levels of grey scale, plus controls for brightness, contrast and width. It is versatile enough to handle any video processing task-from U.P.C. codes (above) and blood cell counting to computer portraiture and character recognition. The DS-80 comes fully assembled, tested and burned in. Included is portrait software compatible with the Vector Graphic High Resolution Graphics Display Board.
DS-65 FOR THE APPLE....
Please allow two weeks for delivery. Master Charge and BankAmericard

DS-80 for the $\mathbf{S}$-100 bus $\$ 349.95$
DS-68 for the S-50 bus 169.95
COMING SOON!


| Truth Table |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 1}$ | 12 | 13 | OUTPUT |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Figure 1: Example of a digital circuit simulation. All of the logic gates are numbered sequentially. In this circuit there are three inputs (11, 12, 13) and one output. The set up of the registers is shown, along with a truth table which is a result of running the program and giving different inputs to 11, 12 and 13.

The circuit in figure 1 demonstrates the principles involved.

Note that the code number for each device type is the actual line number for the subroutine that simulates that device. Since memory is at a premium, each device was programmed in as short as possible sequence that obtained the desired result. No attempt was made to follow any structured programming techniques!

Also, the calculator is programmed to assert only those devices whose inputs are connected to devices that are asserted.

Therefore, circuits with feedback (like the crossed-NOR flip flop) cannot be directly simulated. Note that program runs faster in natural order of circuit evaluation.

This program uses some of the more advanced programming features of the T1-59 calculator, such as indirect addressing and flag operations. However, the program is straightforward and should be fairly easy to understand for most novice programmers.

The advantage of the simulator, of course, is the ease of setting up and quickly changing any reasonable circuit. No power supply is required and no purchasing of components is required until the circuit is thoroughly acceptable on the simulator.

The program is stored on both edges of one card. The data on a particular circuit can be stored on a card by pressing " 3 2nd Write.'"

## Megabytes for the

Now users of the most popular microcom. puters can add truly massive disk storage to their systems with Micromation's Megabox. It features dual $8^{\prime \prime}$ drives with double density recording to provide over one Megabyte of disk storage. Or you can choose optional double-headed drives to provide over two megabytes. Micromation is a leading supplier of floppy disk systems for micros.

A TRS-80* compatible Megabox plugs directly into the TRS-80. This version of Megabox includes provision to add up to 32 K of RAM to your TRS-80* system, so you can have up to 4 Megabytes of disk storage and 48K of RAM without an expansion interface. This Megabox brings big system performance to your system at one-third the cost per byte of mini-floppy systems.

Our SOL*-version of the Megabox installs without modification, and the software is all ready to go. Micromation's double density recording gives you nearly twice the storage of the Helios* at a substantially lower price - and most importantly, you can run CP/M" so you have access to the broadest range of software available in microcomputing.

Combine an Exidy Sorcerer* with a Megabox by plugging the controller into the Sorcers' S-100 expansion bus. Boot from our Sorcerer* system diskette and you're up and running without any modifications to your hardware or software.
174 April 1979 OBYTE PublicationsInc

Our DOUBLER double density floppy disk controller features true double density recording with a capacity of 512 K bytes on each side of the diskette. Doubler systems are easy to install and use. A hardware UART is included on the controller to provide instant system communications. The controller can do a power-on-jump to the on-board PROM bootstrap. And its fast and reliable because the board's hardware includes a phase-lock oscillator and CRC error detection circuitry.

Micromation disk systems are designed to run $C P / M_{1}^{\star}$ the industry standard operating system. You can choose higher level languages such as MBASIC, CBASIC, FORTRAN, COBOL, or PASCAL. And there's a wide selection of business application packages to choose from.

Megabox systems open new opportunities for owners of todays most popular microcomputers. They feature the highest available capacity, performance, and reliablity. And they are compatible with your system. But best of all, at $\$ 2295$ a Megabox is priced for value. Ask for details at your local computer store or contact Micromation, 1620 Montgomery St., San Francisco, CA 94111 or phone (415) 398-0289.

## MICROMATMON <br> MUROMAUION



The Megabox with 1,000,000 existing software to easily keep a

## BYTEs Bits

Another Life
l've discovered a fourth glider and two new oscillators for Jonathan Millen's "One-Dimensional Life" (December 1978 BYTE, page 68). The new glider has period 5 ; it evolves from hexadecimal location 65F. My first new oscillator can be made by starting with cither 394 F or 22 cells in a row - it has period 13. The other oscillator, with period 21, has the ancestor 12157.

Paul Heckbert
4 Ames St, H303
Cambridge MA 02139.

Call For Papers: Sixth Data Communications Symposium

The Sixth Data Communications Symposium, scheduled for November 27 thru 29 in Pacific Grove CA, will concentrate on the design of systems for network user services. Original research and development papers are being solicited for topics related either to the application of specific technical issues that
arise from the application nature of a data communication system, or to the application of general technical problems that are directly applicable to the planning, analysis, and design of the systems across the boundary between applications. Four copies of a completed paper and a 500 word summary should be sent no later than April 1 to Dr Wushow Chou, North Carolina State University, Computer Studies Program, POB 5490, Raleigh NC 27650. Include name, address, phone number, and affiliation. All papers will be refereed and authors of selected papers will be notified by June 1, 1979. All papers accepted for presentation will be published in the conference proceedings. $\oplus$

## Data Transfer

It is practical to transfer programs directly from one microcomputer to another computer over the telephone without intermediate storage by using readily available equipment. Specifically, 1 have read TRS-80 BASIC programs into the CSU-Long Beach PDP $11 / 45$ operating under RSTS. The terminal used was a 33 ASR Teletype with an A) 260 acoustic coupler. The Small Systems Hardware RS-232 interface unit was used to output from the TRS-80.

Many terminals have an auxillary or similar connector for attaching other RS-232 devices to the terminal. The trick is to connect pin 3 of the TRS -80 RS 232 output to pin 2 of this plug. (Normally, pin 3 would be connected to pin 3 of the auxillary connector if the terminal is to be used as a printer. The other pins connections remain the same but probably only pin 7 is needed.) After establishing contact with the PDP $11 / 45$ an LLIST command to the TRS80 causes it to output directly to the PDP 11/45. In my case, the PDP $11 / 45$ checked each statement as it was entered and could send back error messages to the Teletype. Since the operation was full duplex without echo this did not interfere with the data transmission from the TRS-80. If a half duplex system is used it is essential that there be no turn-around on the line during transmission since the TRS-80 does not stop until the end of the LLIST. The program is immediately executable on the PDP 11/45.

A 10,000 byte program was trans. mitted in 17 minutes at 110 baud. Obviously a higher rate could be used to speed up the process.

Dr Edward M McCormick 13100 Chapman, Apt 3-113
Garden Grove CA 92640

# TRS-80, Sol, Sorcerer: 


byte storage capacity can be operated with general ledger, accounts receivable, and payable.


Circle 223 on inquiry card.

[^8]
## The Power of the

# HP-67 Programmable Calculator, Part 2 

Listing 1: A simultaneous equations program which can solve systems of up to nine equations in nine unknowns. Listing 2 explains how to run this program.


Listing 1 continued on opposite page.

## Example Program

Last month I described the features and performance of the Hewlett-Packard HP-67 and HP-97 programmable calculators. This month I conclude with a practical application program. I have chosen for an example a program which uses the more powerful HP-67 operations. Likewise, I have chosen to write a program which will provide the solution to a general set of simultaneous equations, traditionally one of the most laborious mathematical solutions to obtain, yet one of the most useful solutions in electrical engineering.

The HP Math Pac contains a program to solve four simultaneous equations in four unknowns by Gaussian elimination, and the Standard Pac contains a program to solve three simultaneous equations in three unknowns by matrix operations. The program shown in listing 1 solves any system of up to nine simultaneous equations in nine unknowns by the method of "Gaussian elimination using the largest pivots." [Because of its efficiency, the Guassian elimination pivot method is a popular method for solving simultaneous equations. The term "pivot" refers to the $(r, r)$, a diagonal element of the coefficient matrix during the rth step of the process. This method is discussed in a number of numerical methods books. See also the reference at the end of this article. . .CM/ The primary utility of this program would be in calculator aided design.

When the analysis of an electronic system is based upon a linear model, the unknown quantities will usually appear only to the first power, and the coefficients in the equations will usually be constants. Such a set of $n$ equations relating $n$ unknowns can be expressed in the form:

$$
\begin{aligned}
& \text { Equation 1: } A_{1} X_{1}+A_{2} X_{2}+\ldots+A_{n} X_{n}=Y_{1} \\
& \text { Equation 2: } B_{1} X_{1}+B_{2} X_{2}+\ldots+B_{n} X_{n}=Y_{2} \\
& \text { Equation 3: } \ldots \quad \ldots \quad \ldots \quad \ldots \\
& \text { Equation n: } m_{1} X_{1}+m_{2} X_{2}+\ldots+m_{n} X_{n}=Y_{n}
\end{aligned}
$$

Robert C Arp Jr
3961 Acapulco Dr
Campbell CA 95008
in which each $X$ is an unknown quantity, the $m$ terms are the coefficients of the unknowns and the $Y$ terms are the right-hand sides of the equations.

## The Gaussian Elimination Pivot Method

To solve a general system of simultaneous equations by Gaussian elimination using the largest pivots, perform the following steps:

1. Inspect the coefficient ( $\mathrm{A}_{1}, \mathrm{~B}_{1}, . . . \mathrm{m}_{1}$ ) of the first term $\left(X_{1}\right)$ in each of the system equations. The equation having the largest coefficient (in absolute value) of the first term is taken as the first pivotal equation.
2. Divide the first pivotal equation, equation $1(1)$, by the coefficient $A_{1}$ of its first term $X_{1}$. The result will be a new equation, equation 1A (1), in which the coefficient of the first term is 1 . (The digit enclosed by parentheses in each equation label indicates the number of the system to which the equation belongs.)
3. Multiply equation $1 \mathrm{~A}(1)$ by the coefficient $B_{1}$ of the first term $X_{1}$ of the second equation, equation $2(1)$ to obtain the new equation, equation $1 \mathrm{~B}(1)$.
4. Subtract equation $1 \mathrm{~B}(1)$ from the second equation, equation $2(1)$, to eliminate the first term of equation $2(1)$. The resulting equation will be one of the equations in a new system with $n-1$ equations in $n-1$ unknowns.
5. Repeat steps 3 and 4 with each of the remaining equations in the original system. The set of equations, for which the first term has been eliminated, forms a new system having $n-1$ equations with $X_{2}$, $X_{3}, \ldots X_{n}$ as unknowns.
6. Inspect the coefficient of the first term in each of the new system's equations. The equation having the largest coefficient (in absolute value) of the first term is taken as the next pivotal equation.
7. Divide the new pivotal equation by the coefficient of its first term. The result will be a new $A$ equation in which the coefficient of the first term is 1 .
8. Multiply the new $A$ equation by the


Listing 1 continued on next page.

coefficient of the first term of the second system equation to obtain a new $B$ equation.
9. Subtract the new $B$ equation from the second system equation to eliminate the first term of the second system equation. The resulting equation will be one of the equations in a new system which has one less unknown than the system being processed.
10. Repeat steps 8 and 9 with each of the remaining equations in the system being processed. The resulting set of equations, from which the first term has, again, been eliminated, forms a new system of equations having one less unknown and one less equation than the preceding system.
11. Repeat steps 6 thru 10 until a final set is obtained which consists of the single equation:

$$
Z X_{n}=Y_{n} .
$$

Being the only equation in the system, it must, of course, be the pivotal equation. When this pivotal equation is divided by the coefficient of its first term, the value of $X_{n}$ will be known.
12. The value for $X_{n}$ must then be substituted into the $(n-1) A$ equation and the equation must be solved for $X(n-1)$.
13. The values which have been obtained for $X_{n}$ and $X(n-1)$ must then be substituted into the ( $n-2$ )A equation and the equation solved for $X(n-2)$.
14. Continue in this manner until the 1 A equation is solved for $X_{1}$ of the original system of equations after substituting the values obtained for all other unknowns.
15. The solution should be checked by substituting the values obtained for the unknowns into each equation of the original system, performing the indicated multiplications, additions and subtractions, and comparing the left side of the equation to the right side. They should be reasonably close to equality.

In electronics engineering, the system of simultaneous equations could be the result of writing the mesh equations for a circuit such as that shown in figure 1. The nine mesh equations for this circuit are listed in table 1.

The system of nine simultaneous equations for the circuit are shown in standard form in table 2. The first pivotal equation is equation 1. The unknowns in a system of mesh equations are the currents. The right side of each equation is a summation of the voltage sources in the mesh represented by the equation.

The instructions for running the simultaneous equations program in listing 1 are shown in listing 2. Using the system of nine

## AVAILABLE NOW



## $\$ 1695$ т.I. 810 printer

- 150 cps bi-directional impact printer
- Tractor feed, $3^{\prime \prime}$ to $15^{\prime \prime}$, up to 6-part
- Programmable forms length
- EIA RS-232 serial, 110-9600 baud

Options:

- Upper/lower case \$90-Stand \& paperbasket \$135
- Forms Length Control $\$ 90$-Vertical Format Control $\$ 180$
- FLC/Compressed Print $\$ 180-\mathrm{VFC} /$ Compressed Print $\$ 270$

- Upper/lower case, $24 \times 80$ 12" display - Numeric keypad, cursor control keys - RS-232 interface plus extension port


## Need more intelligence?

 SOROC IQ $140 \$ 1345$Need a Texas Instruments portable, ASR or KSR? Call MICROMAIL


Teletype $43 \$ 999$

- Upper/lower case, 132 columns
- RS 232 serial, 110 or 300 baud
- $12^{\prime \prime} \times 81 / 2^{\prime \prime}$ pin-feed paper

(1620 pictured)


## Diablo 1641/3 $\$ 2910$

- Letter-quality printing
- HyType II daisywheel printer
- RS 232 serial, 110-1200 baud


## FROM MICROMAIL

To order: Send a certified check or money order. Personal or company checks require two weeks to clear
Handling: Less than $\$ 2000$, add $2 \%$; over $\$ 2000$, add $1 \%$ Tax: California residents add $6 \%$ sales tax.
All terminals shipped freight collect in original carton with manufacturer's warranty.

## Opportunity for growth in a dynamic market with an expanding product line

The Electro Optics and Devices/Solid State Division, Lancaster, PA, has a position available for a Marketing Manager for our personal computer products.

Individual should have experience in the personal computer industry in sales or marketing, engineering experience also desirable and a college degree is preferred.


Responsibilities:

- Distribution
- Merchandising
- Product Planning
- Liaison Between Sales and Engineering
- $25 \%$ Travel Involved

Send resume in confidence to:
C. E. Hyde, Manager, Employment

RCA Corporation
New Holland Avenue
Lancaster, PA 17604

Competitive starting salary plus company paid benefits.
An Equal Opportunity Emplover M/F

equations (table 2) in a sample run of the program, listing 3 shows the contents of the registers at various points in the program, and listing 4 summarizes the original coefficients of the equations plus the calculated currents.

A "check" program and its instructions are shown in listings 5 and 6 . Note that the quantity obtained for the left side of the equation may not be exactly equal to the right side due to round off approximations.

The "simultaneous equations" program of listing 1 calculates the values of the unknowns for any system containing no more than nine equations. The program is listed on calculator program worksheets upon which the addresses of program memory are preprinted. In addition, the program work-

> Mesh 1: $-40+11_{1}+2\left(I_{1}-I_{2}\right)+3\left(I_{1}-I_{3}\right)=0$
> Mesh 2: $2\left(I_{2}-I_{1}\right)+\left.4\right|_{2}+5\left(I_{2}-I_{4}\right)+6\left(I_{2}-I_{3}\right)=0$
> Mesh 3: $3\left(I_{3}-\left.\right|_{1}\right)+6\left(1_{3}-I_{2}\right)+7\left(I_{3}-I_{5}\right)=0$
> Mesh 4: $5\left(I_{4}-I_{2}\right)+81_{4}+9\left(I_{4}-I_{6}\right)+10\left(I_{4}-I_{5}\right)=0$
> Mesh 5: $7\left(I_{5}-I_{3}\right)+10\left(I_{5}-1_{4}\right)+11\left(I_{5}-1_{7}\right)=0$
> Mesh 6: $9\left(I_{6}-\left.\right|_{4}\right)+121_{6}+13\left(I_{6}-I_{8}\right)+14\left(I_{6}-I_{7}\right)=0$
> Mesh 7: $11\left(I_{7}-I_{5}\right)+14\left(I_{7}-I_{6}\right)+15\left(I_{7}-\left.\right|_{9}\right)=0$
> Mesh 8: $13\left(I_{8}-I_{6}\right)+16 I_{8}+17 I_{8}+18\left(I_{8}-\left.\right|_{9}\right)=0$
> Mesh 9: $15\left(I_{9}-I_{7}\right)+18\left(I_{9}-I_{8}\right)+19 I_{9}=0$

Table 1: The nine equations for the circuit shown in figure 1.


Figure 1: An example of the type of circuit for which nine mesh equations may be written. The resulting system of equations contains nine unknown currents.

| Equation 1: $6 I_{1}$ |
| :--- |
| $-2 I_{2}$ |
| $-3 I_{3}$ |

Table 2: The nine simultaneous equations for the circuit in figure 1, shown here in standard form (ie: with the variables arranged in order for each equation).
sheets have labeled columns for listing the symbolic key codes, the numeric codes which appear in the display for each step of the program, and a column for comments.

The first page of the set of program worksheets contains prelabeled blocks which allow other useful information about the program to be stored. For example, the first section of listing 1 contains the following information about the simultaneous equations program in abbreviated form:

## A. Registers

1. Registers R0 thru R9 and RS0 thru RS9 are used to store constants in a sequence that is reversed from the order in which they appear in the equations of each system. Note: Processing the first system ( $n$ equations) yields a system of $n-1$ equations; processing the second system ( $\mathrm{n}-1$ equations) yields a system of n -2 equations; . . . processing the nth system (1 equation) yields $X_{n}$.
2. Register A is used to store the number of equations in the original system of simultaneous equations.
3. Register B is used as a pointer for the registers R0 thru R9; register $C$ is used as a pointer for the registers RS0 thru RS9. Registers B and $C$ are decremented in a manner which allows constants to be indirectly recalled from the primary and secondary storage registers so that, using these constants, mathematical operations may be performed upon each equation of each system.
4. Register D starts at 1 and counts the number of pivotal equations that have been divided by their first term. When $D=A$, all pivotal equations have been processed, and $X_{n}$ has been computed.
5. Register E starts at $D+1$ and counts the number of equations in each system that have been processed. When all equations of a system have been processed, $\mathrm{E}=\mathrm{A}$ and the display calls for the next pivotal equation.
6. Register I takes care of miscellaneous temporary storage.
B. Labels

The main program has two parts which are actually subdivided into several smaller programs. Furthermore, most of the subprograms contain one or more subroutines which are used to conserve program steps.

# Personal Computing... It All Comes Together at NCC '79. 

Only during the National Computer Conference will you have an opportunity to experience personal computing to the fullest. And that's why the 1979 Personal Computing Festival, June 4-7 in New York's Sheraton Center Hotel, formerly the Americana, is different. As a conference within a conference, it will give you the chance to explore the complete spectrum of information processing while concentrating on those aspects of personal computing you won't want to miss...including equipment, applications, ideas, and new developments that have created excitement throughout the entire computing community.

Only at NCC '79 will you find such a panorama of computer products on display...ranging from micros to maxis, from processors to peripherals. Included will be the latest innovations in low-cost computing for business, professional, and home use.
Against the backdrop of the prestigious NCC, the Personal Computing Festival has attracted many well-known experts and personalities who will participate in an information-packed technical program and compete for prizes for the best presentations. Join them in exploring applications ranging from use of small business systems and financial analysis to personal networking, new information utilities, and aid to the handicapped.

You will also have ample opportunity to discuss new ideas and novel approaches to shared problems, to find out what to expect in the year ahead, and observe interesting and clever applications demonstrated by the individuals who developed them.

Plan now to take part in a unique personal computing experience at NCC '79. You can register for the Festival at the Sheraton Center Hotel, 52nd Street between 7th Avenue and Avenue of the Americas, for only $\$ 15$ which includes your copy of the

NCC '79 Personal Computing Proceedings. Registrations, excluding the Proceedings, also are available at $\$ 5$ for one day and $\$ 9$ for all four days. The Proceedings will be available separately at $\$ 8$. For additional information on NCC '79, including housing and registration procedures, contact AFIPS, 210 Summit Avenue, Montvale, N.J. 07645; telephone 201/391-9810. To obtain information on the special NCC Travel Service call toll-free 800/556-6882.


Listing 2 continued on next page.

1. Subprogram A: initiates the first part of the main program.
2. Subprogram B: divides pivotal equations by their first term and outputs an $A$ equation.
3. Subprogram C: multiplies $A$ equations by the coefficient of the first term of each succeeding system equation, subtracts the results of the multiplication from that equation and outputs the equations of a new system.
4. Subprogram D: initiates the second part of the main program.
5. Subprogram E: operating upon the A equations, computes $X_{1}$ thru $X(n-1)$ by multiplying the previously computed X values by their constants and subtracting the results from the right side of the A equation.
6. Subroutine a: initializes $B$ and $C$ registers every time B is pressed after a new pivotal equation is stored in the primary registers and every time C is pressed after a new equation is stored in the primary registers.
7. Subroutine b: clears registers R0 thru R9 to 0 .
8. Subroutine $c$ : recalls each term of the equation being processed in the proper order.
9. Loops d, 0,2 , 4: these loops allow the same mathematical operation to be performed many times within the same subprogram.
10. Routine 1: compares the contents of $D$ to the contents of $A$ and transfers execution to routine 9 when $D=A$.
11. Routine 3: a short routine which calls subroutine a.
12. Routine 5: stores the address of the first coefficient of each equation of the new system being generated in register I, then recalls the coefficient, stores its absolute value in I, and finally displays the absolute value of the coefficient for 5 seconds.
13. Routine 6: increments E register and decrements $D$ register in the second part of the main program.
14. Routine 7: displays the number of the unknown X which has been computed in a continuous loop until $\mathrm{R} / \mathrm{S}$ is pressed.
15. Routine 8: calls for the next pivotal equation by displaying its number.

## CompuCruise <br> <br> The Computerized Copilot <br> <br> The Computerized Copilot <br> 

## At the push of a button your onboard navigational computer will perform 44 important functions in your car, van or truck:

- Computerized Cruise Control - More than a simple speed maintaining device available as an option by automobile manufacturers. It establishes and maintains a preselected road speed. You tell the computer how fast you want to travel and CompuCruise takes over. It also features resume and traffic flow adjust.
- Efficient Fuel Management - CompuCruise is programmed to answer any question regarding fuel usage. It will tell you your most fuel efficient driving speed; which brand and grade of fuel is most economical in your vehicle (tests show in excess of $11 \%$ difference in major unleaded brands alone); effects of tire brands, types \& pressures; when tune-up and repair is needed; whether tune-ups have been properly performed; plus other useful fuel saving data.
- Trip Computer-By inputting expected trip distance, CompuCruise will continually display time, distance or fuel to arrival... all computed and updated once a second and based on current vehicle speed and fuel consumption.
- To Empty Function - Automatic data sensors allow CompuCruise to display time, distance, or fuel to empty ... based on current vehicle speed and fuel consumption.
- Highly Accurate Quartz Crystal Time Function- Displays time of day; elapsed trip time (hours and minutes); elapsed time (minutes and seconds until 59 min . 59 sec . then hours and minutes); easily set wakeup or reminder alarm.
- Temperature - Inside temperature, outside temperature (if desidered, outside temperature sensor can be located to provide engine coolant temperature). Displayed in fahrenheit or celsius.
- Battery - Generator Voltage - CompuCruise will warn you of impending electrical failure by displaying battery and charging voltage.
- Sophisticated Yet Simple - Because of its automatic data sensors, CompuCruise can perform all of its functions with the touch of a button. Yet with all its sophistication, its operation can easily be learned in a few minutes. It can be used with any foreign or domestic vehicle, (except diesel or fuel injected engines) and can be installed by a trained mechanic in less than two hours.


## EACH COMPUCRUISE CONTAINS:

1. Command Module $3^{\prime \prime} \times 6^{\prime \prime} \times 13 / 16^{\prime \prime}$
2. Throttle Servo
3. Speed Sensor
4. Flow Sensor
5. 2 Temperature Sensors
6. Brake-Clutch Disengagment Switch
7. Mounting Hardware for flush or bracket mounting.
8. Installation Manual
9. Use Manual

CompuCruise provides other advantages. The cruise control helps to eliminate speeding tickets. The computer serves as a diagnostic instrument to detect minor engine problems before they become major and costly ones. The precision clock and trip computer provide valuable enroute information whether cross country or local shopping. The battery voltage readout is especiaily helpful. Present vehicle instrumentation tells you nothing about battery condition. With CompuCruise, you are warned before failure that service is necessary.

Available for $\$ 199.95$, (Add $\$ 5.50$ for front wheel drive) plus $\$ 2.50$ for insured UPS shipping and handling from:
3 i.m. $\begin{aligned} & \text { P.O. Box 428, } 25 \text { Route 101, } \\ & \text { Peterborough, N.H. } 03458\end{aligned}$
Call your charge card
Call your charge card orders toll-free:
1-800-258-5477
In N.H.: 924-3355


Listing 2, continued:

| STEP | INSTRUCTIONS AND | INPU |  | OUTPU |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | remarks | LABEL | KEY | DISPLAY | CARD |
| 19. | GO TO step 12 until the dielt "2.00000 00" appears in the display, calling for the second pivotal equation. A new pivotal equation must be stored in the primary registers each time the program halts automatically and displays a dizit. 2, indicating the desired pivotal equation. When the pivotal equation digit is displayed, the decimal point will not be rlashing, nor will the digit be displayed in a continuous loop. The digit, $Z$, is also the number of the system being processed. The first pivotal equation must be stored by using the keyboard. Subsequent pivotal equations are stored by inserting a data card. |  | 0 | 2.0000000 |  |
| 20. | The new pivotal equation is that equation of the new system, 2, for which the largest (in absolute value) pirat term has been observed. This equation, as are the other equations of the new syatem. 2, is stored on a magnetic card. |  |  |  |  |
| 21. | Ingert side 2 of the card which contains the new pivotal equation. | 1 (2) |  | crd |  |
| 22. | When ord appears in the display, press CLX. |  | cix | 2,00000 00 |  |
| 23. | Press \& PきS. |  |  |  |  |
| 24. | Press B. | divide | ${ }_{B}$ | $2.0000{ }^{\text {crd }}$ |  |
| 25. | When crd appars in the display, insert side 1 of card 1a(z). |  |  | crd |  |
| 26. | When crd appears again, insert side 2 of card 1A(2). |  |  | 0.0000000 | 1A(2) |
| 27. | Press 1 P P S. |  | $P \stackrel{t}{\text { P }}$ | 0.0000000 |  |
| 23. | Insert side 2 of card $w(2)$ [Card $w(Z)$ no longer needed]. where $w$ is the equation of the system, 2 . currently being processed. | w(2) |  | crd |  |
| 29. | When crd appears in the display, press CLX. |  | cix | 0.0000000 |  |
| 30. | Press $\mathcal{P}$ PきS. |  | f |  |  |
| 31. | Press C. |  | $P \geqslant S$ | $\begin{aligned} & \mid 0.0000000 \\ & \text { mi }(w)(z+1) \\ & \text { misplayed } \\ & \text { for } 5 \text { sec- } \\ & \text { onds with } \\ & \text { flashing } \\ & \text { deoimal } \\ & \text { deoint. } \end{aligned}$ |  |
| 32. | When flashing decimal point appears, record the absolute value of the coefficient for the first term of each equation, $w$. of the system being created. If the coefficient is missed while the decimal point is flashing, it may be recalled by pressing h RCI after atep 34, before proceeding with step 35. |  |  | crd |  |
| 33. | When crd appears in the display, insert aide 1 of $w(2+1)$. |  |  | crd |  |
| 34. | When crd appears in the display again insert side 2 of card $W(2+1)$. |  |  | 0.0000000 | $w(2+1)$ |
| 35. | Insert side 2 of card $1 \mathrm{~A}(\mathrm{Z})$. | 1A(2) |  | crd |  |
| 36. | When crd appears in the display press CLX. |  | CLX | 0.0000000 |  |
| 37. | GO TO step 27 until a new digit "2.00000 $00^{\prime \prime}$ appears in the display, calling for the next pivotal equation. |  |  |  |  |
| 38. | When the new digit <br> " 2.0000000 " appears in the display, 60 To step 21. Eventually, the digit "n. 0000000 " will appear in the display. The nth pivotal equation is the only equation |  |  |  |  |

Listing 2 continued on opposite page.
16. Routine 9: displays the value of $X_{n}$ with flashing decimal in a continous loop until $R / S$ is pressed.
C. Display

The information under DISP indicates that engineering notation has been selected and that numbers appearing in the display will be rounded off to five significant digits after the first one. When engineering notation is selected, numbers are shown in the display with exponents of 10 that are multiples of 3. As with all HP-67 display formats (unless $f$ RND is pressed), calculations are performed using full 10 digit numbers (10 digit mantissa and 2 digit exponent of 10 ).
The instructions to be used while running the simultaneous equations program, shown in listing 2, are listed on calculator run worksheets. These worksheets list the manual steps which must be followed to obtain the solution to the system of equations, inputs you must supply to the calculator by pressing keys or inserting cards, and outputs from the calculator in the display or on cards.

Although it might appear that many magnetic cards are needed to run the program, note that cards containing the equations of a system are no longer needed after the equations have been processed with the pivotal equation of the system. Therefore, these cards may then be used to record the equations of another system.

These instructions are self-explanatory (I hope), therefore, I will allow them to speak for themselves. Please note, however, that the instructions contain loops that refer you to steps previously accomplished. Remember that $n$ pivotal equations must be processed and each equation contained in a pivotal's system must be processed with the pivotal equation.

As a further aid in understanding both the program and the HP-67, listing 3 shows what is stored in each register after selected program steps. The calculator register worksheets illustrated in these figures are a valuable debugging tool and serve as explicit program documentation.

All of the forms shown in this article, except the one shown in listing 4, may be used with any HP-67 (and with other calculators as well) program. The form shown in listing 4 has been prepared specifically for simultaneous equations. This worksheet can be used to list the constants of the original system of equations, to record the first terms of each of the other systems as they appear in the display so that the pivotal equations may be easily spotted, and finally, to record the value of each unknown.

With the help of special forms designed for the occasion, the powerful repertoire of the HP-67 (and the HP-97) has been examined, yet I have taken from you none of the pleasures in store as you begin your adventures with this versatile calculator.

The example program presented will be an added attraction to those anticipating the purchase of an HP-67, as well as to those fortunates who already possess one. When you look at the price tag on the HP-67, compare its cost to the cost of computer time and memory which would be necessary to run similar programs. In addition, think of the programs you could run on the HP-67 which might never be run otherwise.

## Listing 2, continued:

Kuo, Benjamin C, Linear Networks and Systems, McGraw-Hill, New York, 1967, pages 63 to 104. A good discussion of introductory network theory.

Pearson, Carl (ed), Handbook of Applied Mathematics, Van Nostrand, New York, 1974, pages 906 to 908 . Gives a treatment of the Gaussian elimination method.

Listings 3, 4, 5 and 6 are continued on pages 186 and 188.

Listing 3: Selected register worksheets for the sample program discussed in the text. These sheets illustrate the contents of the registers at various key points in the program.

| PROGRAM TITLE: 9 Equation Example |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APPLICATION: Calculator-Aided Design |  |  |  |  |  |  |  |  |
| PROGRAMMER: Bob Arp |  |  |  |  | DATA CARD LABEL: None |  |  |  |
| LAST PROGRAM STEP: |  |  | 010 |  | NEXT PROGRAM STEP: 011 |  |  |  |
| EQUATION: |  |  | EQUATION: |  |  | COUNTERS AND CONSTANTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| RO | 0.0000000 |  | RSO | 0.0000000 |  | A | 9.0000000 |  |
| R1 | 0.0000000 |  | RS1 | 0.0000000 |  | B | 0.0000000 |  |
| R2 | 0.0000000 |  | RS2 | 0.0000000 |  | C | 0.0000000 |  |
| R3 | 0.0000000 |  | RS 3 | 0.0000000 |  | D | 1.0000000 |  |
| R4 | 0.0000000 |  | RS 4 | 0.0000000 |  | E | 0.0000000 |  |
| RS | 0.0000000 |  | RS5 | 0.0000000 |  | I | 0.0000000 |  |
| R6 | 0.0000000 |  | RS6 | 0.0000000 |  | X | 1.0000000 |  |
| R7 | 0.0000000 |  | RS? | 0.0000000 |  | $Y$ | 19.0000000 |  |
| R8 | 0.0000000 |  | RS8 | 0.0000000 |  | 2 | 0.0000000 |  |
| R9 | 10.0000000 |  | RS9 | 0.0000000 |  | T | 0.0000000 |  |
|  |  |  |  |  |  | LSX |  |  |
| PROGRAMMER: |  |  |  |  | DATA CARD LABEL: EQ. 1A(1) |  |  |  |
| LAST PROGRAM STEP: |  |  | 046 |  | NEXT | PROGRAM STEP: 047 |  |  |
| EQUATION: |  |  | EQUATION: 1A(1) |  |  | COUNTERS AND CONSTANTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| RO | 0.00000 |  | RSO | 6.66667 | $Y$ | A | 9.00000 |  |
| R1 | 0.00000 |  | RS1 | 0.00000 | A9 | B | 0.00000 |  |
| R2 | 0.00000 |  | RS2 | 0.00000 | A 9 | C | 10.00000 |  |
| R3 | 10.00000 |  | RS3 | 0.00000 | A7 | D | 1.00000 |  |
| R4 | 0.00000 |  | RS4 | 0.00000 | A6 | E | 2.00000 |  |
| R5 | 0.00000 |  | RS5 | 0.00000 | A5 | I | 10.00000 |  |
| R6 | 0.00000 |  | RS6 | 0.00000 | A4 | X | 0.00000 |  |
| R7 | 0.00000 |  | RS? | -. 500000 | A3 | $Y$ | 2.00000 |  |
| R8 | 0.00000 |  | RS8 | -. 333333 | A2 | 2 | 1.00000 |  |
| R9 | 0.00000 |  | RS9 | 1.00000 | A1 | T | 9.00000 |  |
|  |  |  |  |  |  | LSX |  |  |
| PROGRAMMER: |  |  |  |  | DATA CARD LABEL: $1(2)$ |  |  |  |
| LAST PROGRAM STEP: 119 |  |  |  |  | NEXT PROGRAM STEP: 120 |  |  |  |
| EQUATION: |  |  | EQUATION: $1(2)$ |  |  | COUNTERS AND CONSTANTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| Ro | 0.00000 |  | RSO | 13.33333 | $Y$ | A | 9.00000 |  |
| R1 | 0.00000 |  | RS1 | 0.00000 | A8 | B | 0.00000 |  |
| R2 | 0.00000 |  | RS2 | 0.00000 | A7 | C | 10.00000 |  |
| R3 | 0.00000 |  | RS3 | 0.00000 | A6 | D | 1.00000 |  |
| R4 | 0.00000 |  | RS 4 | 0.00000 | A5 | E | 3.00000 |  |
| R5 | 0.00000 |  | RS5 | 0.00000 | A 4 | I | 16.33333 |  |
| R6 | 0.00000 |  | RS6 | -5.00000 | A3 | $\chi$ | 0.00000 |  |
| R7 | 0.00000 |  | RS? | -7.00000 | A2 | $Y$ | 3.00000 |  |
| R8 | 0.00000 |  | RS8 | 16.33333 | A1 | 2 | 9.00000 |  |
| R9 | 0.00000 |  | RS9 | 0.00000 |  | T | 16.33333 |  |
|  |  |  |  |  |  | LSX |  |  |
| PROGRAMMER: |  |  |  |  | DATA CARD LABEL: 2(2) |  |  |  |
| LAST PROGRAM STEPI <br> EQUATIONI |  |  | 119 |  | NEXT PROGRAM STEP, 120 |  |  |  |
|  |  |  | EQUATION: 2(2) |  |  | COUNTERS AND CONSTANTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| RO | 0.00000 |  | RSO | 20.00000 | Y | A | 9.00000 |  |
| R1 | 0.00000 |  | RS1 | 0.00000 | B9 | B | 0.00000 |  |
| R2 | 0.00000 |  | RS2 | 0.00000 | 88 | C | 10.00000 |  |
| R3 ${ }^{\circ}$ | 0.00000 |  | RS3 | 0.00000 | B7 | D | 1.00000 |  |
| R4 | 0.00000 |  | RS4 | 0.00000 | B6 | E | 4.00000 |  |

Listing 3 continued on next page.

Listing 3, continued:


| R8 | 0.00000 |  | RS8 | 0.00000 | A2 | 2 | 9.00000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R9 | 0.00000 |  | RS9 | 0.00000 | 11 | T | 9.00000 |  |
|  |  |  |  |  |  | LSX |  |  |
| PROGRAMNER, |  |  |  |  | data card labeli 1a 9 ) |  |  |  |
| LIST PROGRAM STEPI |  |  | 130 |  | NEXT | PROGRAM STEPI 131 |  |  |
| BQUATIONI |  |  | EQUATION, 1A(9) |  |  | COUNTERS AND CONSTAMTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| Ro | -8.16534 |  | RSO | . 220939 | Y | $A$ | 9.00000 |  |
| R1 | 36.9574 |  | RS1 | 1.00000 | 49 | B | 0.00000 |  |
| R2 | 0.00000 |  | RS2 | 0,00000 | 18 | c | 10,00000 |  |
| R3 | 0.00000 |  | RS3 | 0.00000 | 17 | D | 9.00000 |  |
| 84 | 0.00000 |  | RS4 | 0.00000 | 16 | E | 36.9574 |  |
| R5 | 0.00000 |  | RS5 | 0.00000 | 15 | 1 | 10.00000 |  |
| R6 | 0.00000 |  | RS6 | 0.00000 | 14 | x | 9,00000 |  |
| R7 | 0.00000 |  | RS? | 0.00000 | 13 | Y | 9,00000 |  |
| R8 | 0.00000 |  | RS8 | 0.00000 | 12 | 2 | 9.00000 |  |
| R9 | 0.00000 |  | RS9 | 0.00000 | A1 | T | 9,00000 |  |
|  |  |  |  |  |  | LSX |  |  |
| APPLICATION, D has just been pressed to initiate Part II. |  |  |  |  |  |  |  |  |
| PROGRAMMRR I |  |  |  |  | DATA CARD LABEL, |  |  |  |
| LAST PROGRAM STEPI |  |  | 141 |  | NEXT | PROGRAM STEPi 142 |  |  |
| EQUATIONi |  |  | EQUATION: |  |  | COUNTERS AND CONSTANTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| Ro | 10.00000 |  | RSO | 8.16534 |  | $\wedge$ | 9.00000 |  |
| R1 | . 220939 | 19 | RS1 | 36.9574 |  | B | 0,00000 |  |
| R2 | 0.00000 |  | RS2 | 0,00000 |  | c | 10.00000 |  |
| R3 | 0.00000 |  | RS3 | 0.00000 |  | D | 9.00000 |  |
| R4 | 0.00000 |  | RS4 | 0.00000 |  | E | 1.00000 |  |
| R5 | 0.00000 |  | RS5 | 0.00000 |  | I | -. 220939 |  |
| R6 | 0.00000 |  | RS6 | 0.00000 |  | X | 1.00000 |  |
| R7 | 0.00000 |  | RS? | 0.00000 |  | Y | 0.00000 |  |
| R8 | 0.00000 |  | RS8 | 0.00000 |  | 2 | -. 220939 |  |
| R9 | 0.00000 |  | RS9 | 0.00000 |  | T | -. 220939 |  |
|  |  |  |  |  |  | LSX |  |  |
| PROGRAMUER I |  |  |  |  | DATA CARD LABEL, |  |  |  |
| LAST PROGRAM STEPI |  |  | 189 |  | NEXT | PROGRAM STEP, 190 |  |  |
| EQUATION: |  |  | EQUATION, 1A(8) |  |  | COUNTERS AND CONSTANTS |  |  |
| REG | CONTENTS | LBL | REG | CONTENTS | LBL | REG | CONTENTS | LABEL |
| RO | . 140633 |  | RSO | . $0645869^{\circ}$ |  | 1 | 9.00000 |  |
| R1 | . 220939 | 19 | RS1 | -. 344197 |  | B | 1.00000 |  |
| R2 | . 140633 | 18 | RS2 | 1.00000 |  | c | 11.00000 |  |
| R3 | 0.00000 |  | RS3 | 0.00000 |  | D | 8,00000 |  |
| R4 | 0.00000 |  | RS4 | 0.00000 |  | E | 2.00000 |  |
| R5 | 0.00000 |  | RS5 | 0.00000 |  | 1 | 2.00000 |  |
| R6 | 0.00000 |  | RS6 | 0.00000 |  | X | 8.00000 |  |
| R7 | 0.00000 |  | RS7 | 0.00000 |  | Y | 8,00000 |  |
| R8 | 0.00000 |  | RS8 | 0.00000 |  | 2 | 8,00000 |  |
| R9 | 0.00000 |  | RS9 | 0.00000 |  | T | 8.00000 |  |
|  |  |  |  |  |  | LSX |  |  |

CALCULATOR REGISTER WORKSHEET
TREBOR ENGINEERING

Listing 4: A special simultaneous equations worksheet showing the constants of the original nine equations of the sample problem discussed in the text. The first terms of each of the intermediate systems are shown along with the solution.

| TITLE: Nine Equations Example |  |  |  |  |  |  |  |  | $\text { PAGE } 1 \text { OF } 1$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APPLICATION: Solves systems of up to 9 simultaneous equations |  |  |  |  |  |  |  |  | $\text { DATE: } 12 / 27 / 76$ |  |
| SYSTEM 1 CONSTANTS |  |  |  |  |  |  |  |  |  |  |
| EQ | 日1 | n2 | m3 | $\mathrm{m}^{4}$ | m5 | m6 | n7 | $\mathrm{m}^{\text {E }}$ | \#9 | Y |
| 1 | 6 | -2 | -3 | 0 | 0 | 6 | 0 | 0 | 0 | 40 |
| 2 | -2 | 17 | -6 | -5 | 0 | ¢ | 0 | 0 | 0 | 0 |
| 3 | -3 | -6 | 16 | 0 | -7 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | -5 | 0 | 32 | -10 | -9 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | $-7$ | -10 | 28 | 0 | -11 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | -9 | 0 | 48 | -14 | -13 | 0 | 0 |
| ? | 0 | 0 | 0 | 0 | -11 | -14 | 40 | 0 | -15 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | $-13$ | 0 | 64 | $-18$ | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | -15 | -18 | 52 | 0 |
| REG | R9 | R8 | \#7 | R6 | R5 | $\mathrm{R}^{4}$ | R3 | R2 | 181 | Ro |
| FIRST TERMS (ABSOLUTE VALUE) |  |  |  |  |  |  |  |  |  |  |
| EQ | SYSTEM |  |  |  |  |  |  |  | Variables |  |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $\mathbf{X 1}$ | 9.12165 |
| 1 | 16.3333 | 11.5000 | 30.0701 | 19.4895 | 44.7189 | 28.1314 | 59.4605 | . 220939 | X2 | 2.49275 |
| 2 | 7.0000 | 2.1428 | 11.3043 | 3.3834 | 15.9096 | 4.6250 | 20.4661 |  | $\times 3$ | 3.24814 |
| 3 | 5.0000 | 7.0000 | 9.0000 | 11.0000 | 13.0000 | 15.0000 | $\times \times$ |  | $\times 4$ | . 928924 |
| 4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | $\times \times$ |  |  | $\times 5$ | 1.37839 |
| 5 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  |  |  |  | $\times 6$ | . 386434 |
| 6 | 0.0000 | 0.0000 | 0.0000 | $\checkmark$ |  |  |  |  | X 7 | . 597162 |
| 7 | 0.0000 | 0.0000 |  |  |  | $\bigcirc$ |  |  | X 8 | . 140634 |
| 8 | 0.0000 | $8 \times$ | 8 | $\times$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | X9 | . 220939 |
| SIMULTANEOUS EQUATIONS WORKSHEET TREBOR ENGINEERING |  |  |  |  |  |  |  |  |  |  |

## C OMPUTERWARE for 6800's

## THE BASICS

(that we're famous for...)

- Random SSB Basic
89.95
- Flex Disk Basic
- Cassette Basic
- Prom Basic cassette 2716 49.95
29.95
100.00
250.00
- Renbas w/ SOURCE LIST 24.95

W/ SOURCE DISK
34.95

We register our BASIC owners and offer future enhancements at reasonable prices.

## FOR WORK

- CHECK FILE
- HOME MAILING (VI)
49.95
- HOME INVENTORY 49.95
- BUSINESS MAILING (V2) 89.95
write for information about our
COMMERCIAL BUSINESS SOFTWARE including:

INVENTORY CONTROL order entry aCCOUNTS RECEIVABLE MAILING SYSTEM and MORE
all using RANOOM ACCESS capabilities

## AND PLAY

- LEARN BASIC 39.95
- LEARN ASSEMBLER 19.95
- PILOT DISK 24.95

W/ SOURCE LIST $\quad 37.95$ W/ SOURCE DISK 49.95

- MUSIC for the Newtech Model 68

$$
\begin{array}{ll}
\text { 4-Part Music \# 1 } & 24.95 \\
\text { 4-Part Music \# 2 } & 24.95
\end{array}
$$

Interpreter - coming soon compose on your keyboard!
for more information circle inquiry no. for quick information write to us

## COMPUTERWARE

6800 specialists 830 FIRST STREET ENCINITAS, CALIF. 92024
(714) 436-351.2

## \$ $\$ \$ \$ \$ s \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ s \$ s \$ \$ \$$

\$ Send us this coupon before $\$$
\$ April 30,1979 and get \$
\$ $\square$ Both Learn Basic \$
\$ and Learn Assembler 49.95 \$
\$ $\square 10 \%$ off any software order \$
\$ of more than $\$ 50.00$ \$
\$\$\$s\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$s\$\$

## Albert Ginstein

March 14, 1879 - March 14, 1979

World renowned photographer Lotte Jacobi announces the release of an outstanding series of photographs of the man who by his powers of reason and moments of wild speculation became instrumental in shaping the modern world.

This unique portfolio of 25 five by seven portraits, selected from photographs taken over a span of two decades, have been assembled to mark the centennial of Albert Einstein's birth.

The price of this remarkable set is $\$ 22.95$. first class postage and handling included. Available from:


POB 428. 25 Route 101 Uest. inc Peterborough. N.H. 03458
Books to erose the impossible
Charge Card Orders May Be Placed On Our Toll-Free Number: 800-258-5477
(In New Hampshire Call 924-3355)


Listing 5: Instructions for running the program in listing 6 which checks the solutions obtained by the program in listing 1.

Blank coding forms like the ones used in this article may be purchased from Robert C Arp Jr, 3961 Acapulco Dr, Campbell CA 95008.

Listing 6: A program which accepts the coefficients calculated by listing 1 and checks them for accuracy.


## The Fourth

## Trenton Computer Festival



April 21 \& 22, 1979

## - Super Outdoor Flea Market - Indoor Commercial Exhibit Area

 - Formms, Talks and Seminars - Convenient to NY, PA, MID and DEL
## Hundreds of Door Prizes - Banquet Saturday Night

For additional information call 609-771-2487
Admission \$4-Students \$2

Banctuct $\$ 10$. Aroid
disappointment - pre-regisler for the banduct! Send your check for \$10 per person to: TCF 79, Trenton Statc College, Trenton, N..J. $086 \%$.

Sponsored by:
Amateur Computer Group of Dept. of Engincering
New Jersey
Philadelphia Area Computer Socicty
Trenton State college I)igital Compoter Socicty

Techoology, Trenton State
College
I. E. E. E.E., I'rinceton Section

## STAR SHIP SIMULATION

## by Roger Garrett

$\square$ Star Ship Simulation is a design for a program to simulate the operations of the starship Enterprise, as defined on the original TV program, on a computer. Navigation, communication, helm, medical, engineering, and science functions are realized, along with the actions of several other Federation and enemy craft. The program is presented in a general structured form with information to aid the user in implementing it for a particular hardware/ software set-up. pp.122, \$6.95.

PROGRAMMING THE 6800 MICROPROCESSOR
by Bob Southern
[ This self-instruction workbook is a guide to the fundamentals of assembly language and machine code programming of the 6800 microprocessor and its peripheral devices. Considerable coverage is given to programming of the input and output devices. The asynchronous communications, interface adapter, each with their various modes of operations, are explored in detail in both noninterrupt and interrupt modes. Program design and documentation are emphasized along with programming hints and aids. $200 \mathrm{pp} ., \$ 6.75$.


POB 428, 25 Route 101 West Peterborough, NH 03458
Books to erose the impossible

## SCIENTIFIC AND ENGINEERING PROBLEM SOLVING WITH THE COMPUTER by William Ralph Bennett Jr.

[ One of the most exciting books we've seen in years. Besides teaching BASIC (which it does admirably), this lively, lucid book presents a wealth of imaginative and unusual applications programs and simulations taken from many disciplines. The exercises run the gamut from random processes to the dynamics of motion, from entropy in language to the Watergate problem. You'll discover BASIC applications in lasers and in the Fourier series and the law (!). In its diversity and elegant style, it ranks with Donald Knuth's works as a milestone in the art fo computing. Hardcover, 457 pp, \$19.95.

Name

## Address

$\square$ Check enclosed
$\square$ VISA $\square$ MC
Expires

Postage $\$ .75 /$ book or $\$ 1.00$ outside U.S.
Prices subject to change without notice


Vas
DIAL YOUR BANK ORDER ON OUR TOLL-FREE LINE 800-258-5477

## 64KB MICROPROCESSOR MEMORIES

\author{

- S-100 - \$695.00 <br> - SBC 80/10 - \$750.00 <br> - 6800-\$750.00
}


CI-S 100 64K $\times 8$

$\mathrm{Cl}-1103$ 32K $\times 16$


CI-6800 64K x 8


CI-8080 64K $\times 8$
CI-S100 - 64K $\times 8$ on a single board. Plugs directly into the IMSAI, MITS, TDL, SOL and most other S-100 Bus computers. No wait states even with $Z 80$ at 4 Mhz . Addressable in 4 K increments. Power requirement 6 watts. Price $\$ 695.00$.
$\mathrm{Cl}-1103$ - 8K words to 32 K words in a single option slot. Plugs directly into LSI 11, LSI 11/2, H11 \& PDP 1103. Addressable in 2 K increments up to 128 K . $8 \mathrm{~K} \times 16 \$ 390.00$. $32 \mathrm{~K} \times 16 \$ 750.00$ qty. one.
CI-6800 -16 KB to 64 KB on a single board. Plugs directly into Motorola's EXORcisor and compatible with the evaluation modules. Addressable in 4 K increments up to 64 K . $16 \mathrm{~KB} \$ 390.00$. 64 KB \$750.00.
CI-8080 - 16 KB to 64 KB on single board. Plugs directly into Intel's MDS 800 and SBC 80/10. Addressable in 4 K increments up to 64 K . $16 \mathrm{~KB} \$ 390.00$. 64KB $\$ 750.00$

Tested and burned-in. Full year warranty.
Chrislin Industries, Inc.
Computer Products Division
31352 Via Colinas - Westlake Village, CA 91361 - 213-991-2254

Circle 47 on inquiry card.

# BASIC Cross-Reference Table Generator 

William and Alice Englander<br>1966 Titus St<br>San Diego CA 92110


#### Abstract

A standard compiler feature for high level languages like COBOL and PL/I is a cross-reference of the source program. In the simplest case, each named element in the program is listed in a report with the line numbers of all statements containing that element. Words which have special meanings in the language being cross-referenced, such as READ or IF, are ignored.

Features of more sophisticated crossreference facilities include placing the elements in alphabetical order, showing the statement number in which an element is defined separate from its references, defining the use of the element as a sending or receiving field and cross-referencing both data elements and procedural elements (statement labels).


As we began program development in BASIC on our microprocessor, we discovered the pleasures of using BASIC, but were surprised to find that cross-references of our BASIC programs could not be produced with any of our regular system software. In addition, our survey of the literature did not turn up any BASIC crossreference programs.

A cross-reference can be an extremely useful programming aid. When you are debugging a program, it allows you to quickly find each statement which deals with a particular variable. For example, if the program is looping you can look at each reference of the loop control variable to ensure that it has been initialized, that it is being incremented, and that a check for the upper limit is being made. A cross-reference is

Text continued on page 192.

```
CBO!iC BSGAME
CHASIE COMFTLER UEF 1.01
    FRINT EGINARY SEAKCH GAME"
    FREINT
    INFUT "HIT FETUKN WHEN FEAIIY TO FLAY';LINE ANS$
    FANLIOMIZE
    10 LOW=1
        HIGH:=1000
        NO=TNT(FNII*HIGH)+1
        FOR T=1 TO 24
            FFINT
            NEXT I
        2O FRINT
    FRINT "ENTER NUMBEF: IN THE FANGE*;LOW;"THFOUGH*;HIGH
    INFFUTT GUESS
    IF (GUESSCLOW) OR (GUESSHIGH) OR (GUESSYINT(GUESS)) THEN
        FRINT "TFYY AGAIN":\
        G0 TO 20
    IF GUESS*NO THEN\
        LOW=INT(GUESS+1):\
        FRINT 'YOU'RE LOW':\
        CO TO 20
    1F GUESSSNO THEN\
        HIGH=INT(GUESS-1):\
        FKINT "YOU'RE HJ.GH*:\
        GO TO 20
    FFINT "YOU WIN!!!"
    FRINT
    FETNT "FLAY AGAIN?*
    INFUT ANS*
    IF LEFT$(ANS$,1)=*Y" THEN\
        GO TO 10
    FRTNT "ENLI OF GINAFY SEAFCH GAME*
    STOF
    ENI:
NO ERRORS INTEETEI
```

CREUN XFEF
CRIN VEFI 1.O3

ENTEF NAME OF FFOGFAM TO EE CKOSS-FEFEFENCEI ESGAME
CROSS-KEFEFENCE LISTING OF FFOLBAM E:HSGAME. BAS
UAFILABL..
FE:FFF゙ENCES
」. 8
(1) $\quad 7 \quad 17$ -

I. $0 \mathrm{WW} \quad$| 3 | 12 | 14 | 1 |
| :--- | :--- | :--- | :--- |

ANS:
HECH
GuF: B

| 28 | 29 |
| :---: | :---: |
| 7 | 12 |

18

| 13 | 1.4 | 14 | 14 | 14 | 17 | 18 | 21 | 22 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Listing 1: An example program with a crossreference table generated by the BASIC cross-reference generator program.

## About the Authors

William and Alice Englander have a programming and consulting firm in the San Diego area. While most of their program development is done on customers' large scale computers, they also do work for customers on their IMSAI 8080 disk based system. They are both computer systems instructors at National University.

Please send $\qquad$ c:opies of BYTE Nybble \# $\qquad$ at \$ $\qquad$ nostpaid

## __Check Enclosed



BYTE Nybbles Library, 70 Main St, Peterborough NH 03458
You may photocopy this page if you wish to keep your BYTE intact.
handy when you need to make a program change, too. You can quickly see what names have already been used if you need to define a new variable. And you can double check your planned changes against uses of the existing variables, which may enable you to use existing ones instead of having to define new ones.

In BASIC, a cross-reference listing can be especially useful in helping you to verify that you have used correct names in your code. Since BASIC sets up variables for you without requiring explicit definitions, you can accidentally miscode a variable name and cause some elusive program problems. A quick look at the cross-reference would alert you right away since you would see both the correct name and the improperly coded name.

Our BASIC cross-reference program was written using C-BASIC on an IMSAI 8080 disk based system running under $\mathrm{CP} / \mathrm{M}$. Depending on your configuration, enhancements could probably be made which would speed up the processing time. A typical program and cross-reference table is shown in listing 1 on the preceding page.■

The Nybbles Library is an inexpensive means for $B Y T E$ readers to share some interesting but specialized forms of software. These programs are written by readers with small computers and printer facilities, and are therefore designed for particular systems. The algorithms and programming techniques can be used by readers with similar equipment, or can serve as an inspiration for improvisation on computers of differ. ent characteristics.

Potential authors of such programs should send us a self-addressed stamped envelope, with a request for a copy of our Guidelines for Nybbles Authors. Payment for Nybbles items is based on sales and length of the item. Rates are set at the time of acceptance.

Nybbles Library programs are sent in listing form, printed on 8.5 by 11 inch paper on both sides. The Nybbles Library programs are punched with three holes for collection in loose leaf binders, and come in an attractive folder which serves as a cover. This month the BASIC Cross-Reference Table Generator has been added to the Nybbles Library. You can order a personal copy of this program (BYTE Nybbles Library Document \# 105) for $\$ .75$ postpaid ( $\$ 1.05$ overseas postpaid) by filling out the coupon on the preceding page.

## BYTEs Bugs

Motor Source Error
A list of stepping motor sources in "A Stepping Motor Primer, Part 1: Theory of Operation, ${ }^{\text {, }}$ by Paul Giacomo (February 1979 BYTE, page 90) was incomplete. We omitted Superior Electric Co, 383G Middle St, Bristol CT 06010, a major manufacturer of stepping motors. -

## Polyphony Made Accurate

Perusal of my copy of the January 1979 BYTE, containing my article "Polyphony Made Easy," reveals two errors in the schematic on page 106.

First the trivial one: the counters are incorrectly labeled as 7473 (in fact, both are called IC10a). They are, in reality, 7493 s .

Second, the multiplexers - all nine of them - have a pinout error. Instead of "B A C" along the bottom of each one (input address), they should read "A B C," with the pin numbers changed accordingly to " 11 to 9 ."

These are not crippling errors anyone who's reasonably familiar with TTL (transistor-transistor logic) would spot the first one immediately, and the second would cause scrambled key codes but would sooner or later be figured out.

Steven K Roberts
129 N Galt Av
Louisville KY 40206.

Finishing the Job

[^9]
# BYTE News 

## |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

32 Bit Microprocessors Are Rumored. While Zilog and Motorola are struggling to get their 16 bit microprocessorICs into production, Texas Instruments and Intel have been delivering theirs for some time. Now rumors abound that both TI and Intel will show prototype 32 bit processors by the end of the year and may be in production by the end of 1980 or the beginning of 1981.

Tremendous Growth of Personal Computer Systems Predicted for 1979. Mike Shea, marketing director for Atari, who recently brought two personal computer systems to the market, predicts a four to sixfold increase in personal computer sales for this year. He feels that between 200,000 and 300,000 personal computer systems will be sold this year, compared to 50,000 last year, and said that in the future Atari will pay less attention to developing new game consoles and instead concentrate on bringing out new software for existing units.

Fairchild Camera \& Instruments predicts that 4.6 million programmable video games will be sold this year, worldwide, compared to 2.1 million in 1978 . Further, they predict that 18 million cartridges, worth $\$ 110$ million, will be sold, compared to 5.7 million, worth $\$ 18$ million, last year.

Nonvideo games growth should prove even more dynamic, according to industry pundits. Sales should reach $\$ 290$ million in 1979, and possibly $\$ 500$ million in 1980.

Lear Seigler Shipped 40,000 Video Terminals in 1978. The Data Products division of Lear Seigler announced that in 1978 they shipped 40,000 video display terminals. This was more than they shipped in their six previous years of doing business. LS is predicting an increase in video display sales in 1979 of 25 to 30 percent.

Centronix Reports 20 Percent of Its Printers Go to Personal Computer Makers. Centronix, the leading maker of dot matrix printers, predicts that about 20 percent of its 1979 business will be from Tandy (Radio Shack TRS-80) and from Apple Inc. At the beginning of the year they were shipping 1700 printers per month to Tandy (in other words, 20,400 per year). Centronix is getting set to introduce a high density dot matrix printer and a word processing impact printer to compete with Diablo and Queme.

Computer Stores Becoming Big Business. Computer stores are becoming mass merchandisers, judging by an order recently placed with Perkin-Elmer Corp. Their terminal division announced that Micro-Age, a chain of five computer stores in Arizona and Texas, placed an order with them for 2000 of their new Bantam video display terminals. That's a far cry from the garage-type computer store operations of just a year or two ago.

Battle Shaping Up in 32K EROM. In February 1978 Texas Instruments introduced its TMS 25324 K by 8 EROM (erasable read only memory), with full production promised for April or May. This meant that they were well ahead of all the other integrated circuit manufacturers. They accepted orders for the device at $\$ 54$ in 100 price lots. Intel introduced their 2732 erasable read only memory in November. Needless to say, the pinouts were different and a heated debate developed in the JEDEC committee over which would be the standard. TI hoped their 10 month lead would favor them. However, they encountered production problems and only started to deliver samples by year-end. Intel, in the meantime, is in production and has already lined up at least one second source. TII is promising production quantities by April. The unit price on the Intel part is currently $\$ 140$. The 2732 also uses the same pinout as the 2716 and 2708 EROMs.

HP May Be Developing Personal Computer System. Hewlett-Packard is rumored to be developing a new personal computer system at its Corvallis Oregon Consumer Products division. HP has been selling a desktop computer with BASIC in read only memory and an IEEE-488 interface for a few years now. It is expected that the system will be a scaled down version of this system, that it will have a base price of $\$ 1000$, and that it will be on the market this fall.

Tandy Developing New Computer. Tandy is rumored to be in development of a second generation Radio Shack TRS-80, possibly with coior capability. Tandy, which has a 200,000 square foot plant and staff of 700 making the TRS-80, is supposedly looking for an outside manufacturer of the new system. Tandy also plans to develop many new software packages for introduction this year.

Magnavox Files Suit on Microprocessor Video Game Patents. Magnavox, the originator of video games played on home TV receivers, has filed suit against several manufacturers of programmable TV video games; among them
are Fairchild, Bally, Sears Roebuck and Montgomery Ward. Magnavox has won previous suits on dedicated, nonprogrammable video games. Some industry experts feel that if Magnavox is successful in this suit, the next step might be to try to license makers of personal computers that connect to home TV receivers.

DEC Forms Retail Products Group. Digital Equipment Corporation, the largest manufacturer of minicomputers, has formed a retail products group. Its initial objective is planning for expansion based on its successful experience with a retail store, which opened last August in Manchester NH. Located in a shopping mall, the store sells small computer systems starting at less than $\$ 10,000$.

Flat Panel Displays Getting Closer to Production. Last month I reported on a flat panel terminal display being readied for production by General Telephone and Electronics. Several other companies have also announced that they have display panels in development. However, none appear near to replacing the present video displays, such as that of GT\&E. Nonetheless, they are worth reviewing.

Datascreen Corp, of Mountain View CA, will soon start sampling a 40 character LCD (liquid crystal display) panel ( 5 by 10 dots) which works off 5 V and consumes 250 mW .

Westinghouse has already demonstrated a 180 by 180 line LCD panel for TV use. Hitachi has shown a 120 line panel. Neither, however, is near production.

Electroluminescent type panel samples are already available from Sharp. A 480 character display using a 7 by 9 dot matrix, with complete drive electronics, is currently available for $\$ 2500$. A 240 by 320 dot graphics panel will be available next year.

ISSCC Gives Preview of New Technology Coming. The annual International Solid State Circuits Conference, held in Philadelphia, February 14 to 16, saw the presentation of new hardware technology still in the research and development stage. These devices will not be on the market for at least a year yet, and most are still 2 to 3 years off. But all are real and coming. Here's a partial list of some of those presented at the ISSCC:

From Intel: a self-refreshing dynamic 4 K programmable memory with 200 ns access, an NMOS 4 K static programmable memory with 25 ns access, a 16 K HMOS static programmable memory with 45 ns access, a 5 V only 16 K dynamic programmable memory with 100 ns access and an analog I/O (input/output) microprocessor with on board erasable read only memory.

From Texas Instruments: a simple 1 transistor cell.
From Nippon Telephone and Telegraph: a 128 K bit read only memory and a megabit full wafer MOS programmable memory with 350 ns access.

From Hitachi: a 1 K programmable memory with 5 ns access.
The Robots Are Taking Over. There are already about 20,000 robots at work in US factories. But this is just the beginning. Japan and several European countries are already ahead of the US in introducing manufacturing robots and automation under computer control.

Automation experts claim that in most manufacturing situations a product spends 95 percent of its time moving and waiting. Time is money. Hence, automation can cut this wasted time tremendously, effecting considerable savings.

Zilog Reports $\$ 18$ million in Sales. Zilog, the creator and maker of the Z-80 processor, has reported sales for 1978 of $\$ 18$ million. The company, which started in late 1975 , and brought the Z-80 to the market in 1976, operated in the red in 1976 and 1977. A company spokesman said that in 1978 they were "at breakeven."

The Altair May Live Again. When Pertec bought MITS and its Altair line of PC system in 1977, they deserted the hobbyists who made the Altair a succèss. Pertec tried to change the Altair into a small business computer system. Things did not go too well. Pertec moved MITS from Albuquerque to California and then Pertec stopped making Altairs in June 1978. Pertec now is going to resurrect the Altair and start producing it again, in a new plant it is building in Albuquerque (of all places). Pertec plans to market it to small business users and not to personal computer users.

Computers Produce $\$ 350$ Million Trade Surplus. It seems that all we read about in the newspapers are trade deficits. Well, last year the US exported $\$ 350$ million in computer gear. Canada was the biggest purchaser ( $\$ 12$ million), and Japan was second ( $\$ 10$ million). Actually the US exported $\$ 406$ million but imported $\$ 56$ million in computer gear.

IBM Keeps Growing and Growing. When microcomputers came out and skyrocketed in popularity, many pundits predicted that IBM's domination of the computer business was coming to an end. However, that is not what has
happened. Today IBM has a larger backlog of orders than ever before. Their current backlog is more than four times the computing power it has ever shipped. Delivery time on its new 303X large computers is now over two years, and IBM has orders for about 13,000 of these machines, which replace large 370 s.

Paper Newspapers and Mail May Soon Be a Thing of the Past. The ground work for a digital electronic mail system is now in the works. Imagine having your newspapers, magazines, bills, etc, delivered to you directly via your personal computer system, and likewise being able to write letters (with on line text editing, naturally) and then transmit them at the press of a button. It is already here in some large corporations and government agencies. But during the 1980s, this technology will explode into business offices and homes. It is rumored that TI, HP and IBM are developing personal computer systems specifically for these emerging applications.

Further, last December Xerox filed a petition with the FCC to develop a digital mail/communication system using microwave. It would provide for document distribution, data communication, etc, at rates up to 256 K bytes, which is far greater than current telephone systems and even than Bell's new T-carrier system now being installed. Xerox claims they will be able to deliver documents at less cost than the US mail. Each office desk would be equipped with a keyboard, video display, disk and processor; and would be able to do word processing, sorting, etc, in addition to mail handling. The mail handling naturally would be controlled by computer and hence include automatic addressing, priority routing, multipoint delivery, automatic transmission of previously stored messages, scan messages, etc.

GT\&E is setting up a group to test market (in early 1980) a system to transmit data via telephone lines onto modified TV receivers in homes and offices. The system will be similar to the Viewdata systems currently under test by the British Postal System. GT\&E is also negotiating for Viewdata licenses. ITT, TI and RCA reportedly are doing the same. TI, however, is currently testing a home information system in Salt Lake City that sends data over regular broadcast channels.

Also getting into the business is the US Postal Service, which last fall asked the US Postal Rate Commission for authority to offer an on line service called Electronic Computer Originated Mail (ECOM). ECOM is expected to start this year. The sender writes a "letter" on a terminal and sends it via telephone to the post office, who routes it to the destination post office where it is printed and delivered in the conventional way. This will be used mostly for mailing bills, overdue notices, etc.

This communications revolution will be boosted by the new Advanced Communications Service (ACS) for which AT\&T recently received approval. ACS will lower data transmission costs and increase service. It will lower costs via shared communications facilities and make possible interfacing of incompatible terminals and computers and provide user selectable communications capabilities.

A few personal computer groups have already started a simple system called PCNET. The leading PCNET activity is run by the CACHE group (Chicago Area Computer Hobbyist Exchange). Other PCNET groups are functioning in the San Francisco, LA and Atlanta areas. The PCNET uses modems and telephone lines for communication. A writeup on PCNET appeared in the November 1978 BYTE.

Another personal computer approach has been taken by AMRAD (Amateur Radio Research and Development Corp) in McLean VA. They have established a bulletin board type system using telephone and 2 meter radio telephone. ${ }^{-}$

## PET PRINTER

GET HARD COPY FROM YOUR COMMODORE PET USING A STANDARD RS-232 PRINTER


The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. Now, the PET owner can obtain hard copy listings and can type letters, manuscripts, mailing labels, tables of data, pictures, invoices, graphs, checks, needlepoint patterns, etc., using a standard RS-232 printer or terminal.

ADAPTER


## TRS-80 SOFTWARE ON

## COMPATIBLE CASSETTES OR DISKETTES


(INCLUDES SHIPPING AND HANDLING) Colorado residents add $6 \%$ sales tax


SOF MMARE ROYALTY PLANS. PET PROGRAMS.
AND TRS Bo COMPATIBLE PERIPMERALS ALSOAVAILABLE

New DOS 6000 E. Evans Av. Bldg. 2
Denver. Co. 80222 (303) 758-7275 now available. Call or write for details.


Don Lancaster's "Cheap Video" concept allows almost unlimited options, including:

* Scrolling• Full performance cursor.
* Line/Character formats of 16/32, 24/80, 32/64.... or almost anything.
* Graphics -up to 256 X 256 B \&W; 96 X 128 COLOR ( requires low-cost option modules )
* Works with 6502, 6800 and other micros.

SPECIAL OFFER: Buy the Kit Cupper case alphanumeric option included) \& get the Book at $1 / 2$ price.
Fanes electronics, dept.4-b, 1020 w. wilshire blvo.. oxlahoma city, ox 73116

| I'm Sold. PLEASE RUSH..... | () SEND FREE CATALOG |
| :---: | :---: |
| ( ) TVT 658 Kit \& Cheap Video Cookbook - 342.95 (enclosed) |  |
| ( ) TVT $65 / 8 \mathrm{Kit}$ only (book required for assembly)-\$39.95 |  |
| name: | $\cdots$ |
| address: |  |
| city: | zip: |

Another cause for possibility of losing files is just plain lack of experience with the system involved. A friend of mine who works at Digital Equipment Corporation tells the tale of how he once forgot which of several operating systems he was working on - and deleted a whole slew of files thanks to a "feature" known as wild card operations. Such operations are shortcuts to allow more than one file name to match the file name specified to the operating system. This friend's problem came from the fact that one PDP-11 operating system had a wild card specification that in another operating system was a unique specification.

There are more than just wild card opportunities for not understanding or forgetting how the operating system software works. There are many ways in which the user of any small computer can interfere in disk filing operations so that the file will be lost, or a whole disk file directory will be lost. For example, all it takes is the simple removal of the disk from the drive or resetting of the computer while an operation is being performed. Thus the fundamental rule of small computer and big computer use is "don't touch the computer during a disk (or tape or any other filing) operation."

But when you introduce the possibility of physical errors due to imperfect media, the whole problem gets complicated, and sometimes such a simplistic rule has to be violated. My problem may have resulted from the facts that I have been using one floppy disk for three months solidly and that I was updating a file one stormy winter day. Because floppy disk media are contact media, they are indeed subject to wear. Whether it was wear or the wiles of Peterborough Flicker And Flash division of New Hampshire Public Service, on the day of the disaster I got a little message from the physical I/O disk drivers which support the operating system.

It was an ominous message, for several reasons. First, it occurred during a "krunch" operation which is the UCSD Pascal system's disk file compression program. Second, it occurred after the last file had been moved, so it was most likely during a directory write operation. Third, it was one of these frus. trating situations where an apparently infinite retry loop was involved, with one error message coming every 15 or 20 sec onds. So, I violated the rule stated above and reset the computer.

That was the end. The directory was no longer valid, I had no alternate directory, and I had not the foggiest idea ahead of time about what to do to fix this situation. The
directory included maybe 20 or 30 Pascal programs which I had written during the preceding month or so, including a really useful one called "littleblackbook." Well, in my experience using computers, the best course of action following such a disaster has always been to sit back and contemplate what has happened, to avoid compounding the problem with hastily conceived actions.

One thing was obvious. Only the directory had gotten zapped. This was confirmed by the use of some of the utility functions built into the UCSD Pascal system software: in the Filer portion of the system, one can scan for bad blocks on a disk, then enter a fixup routine to try and recover most of the data. The bad block was obviously in the directory, due to its physical location on the disk and that in using another copy of the system no directory could be found among the remaining data on the damaged disk. Knowing this, plus the fact that the files in the UCSD are stored contiguously on the disk, I knew that all the actual data was out there and that I just could not get at it through the normal directory methods.

But, if I could read the disk without the benefit of paying attention to such niceties as file structures, I would be able in principle to recover from this problem by writing a
relatively simple program. Well, I proceeded to do exaclly that. Since most of my data was in the form of programs, my first step was to write a program which would search arbitrary disk blocks in sequence from a starting block to the end of the disk. As each block was read by the program, 1 printed a confirmation message giving the current block number.

In this search, the program would look for the key word PROGRAM which begins every program's text file. When found, I would print out the first 20 characters of the file starting at the word PROGRAM. This would give me a physical block address directory of all the Pascal programs on the damaged disk. The program entitled Recover found in listing 1 accomplished this end for me, using the low level I/O procedures of UCSD Pascal called UNITREAD, UNITBUSY and UNITCLEAR. Output was directed to the screen and to the printer using the usual techniques of the $85 / \mathrm{P}$ implementation of UCSD Pascal: a control P character is intercepted from the keyboard to toggle on and off the output to the Diablo Hylype II printer 1 have on the system.

Once I had this printed directory of physical blocks which had the word "PRO-


TO ORDER
By phone: 415 848-8233, Visa, MC, Amer Express
By mail: circle books on ad. Include payment.
Shipping: add 65c per book (4th class) or $\$ 1.50$ laster shipping (UPS).
Double for cassetles and overseas. Tax: in California add lax.
FREE DETAILED CATALOGUE
 Tel 415 848-8233 Telex 336311

2020 Milvia Street Berkeley, CA 94704 DEPT. B -

GRAM" in them, I proceeded to modify and extend Recover until I had a second Pascal program called Grabber which would physically grab the good data from the damaged disk and write it on the new system disk as a file called A.TEXT. Grabber starts at a block address obtained by Recover's listing and transfers all data to the new file. This continues until a block is found containing the magical key word END. which marks the last line of every Pascal program in the system.

The text of Grabber is found in listing 2 accompanying this editorial. It has a couple of minor technical points worth noting. First, the UCSD Pascal system editor program tries to keep integral lines of text (marked by carriage return codes) within one block of 512 bytes of data. Since lines vary in size there is usually a segment of null data at the end of each block. Second, the UCSD Pascal system uses a form of data compression to eliminate redundant spaces at the beginning of each line of text in a file, so the first two bytes physically following a carriage return character are often (but not always) not text at all but codes indicating line compression. Thus in converting the file, the conversion program Grabber had to ignore all nonprinting characters except carriage returns and various combinations of characters following a carriage return.

The end result of running Grabber is always a file called A.TEXT, which I can then change to a name appropriate for the program being recovered. In this way, the new system disk could be restored with the contents of any program I wanted to use from the old disk. Now, of course, the old disk will never be modified in any way until I have recovered all the data I want from it.

The final version of the Grabber program as I wrote it is shown in listing 2a. It is still not perfect, for there are various strange combinations of carriage return and indentation codes which crop up when a file is recovered in this manner. It only handles the most common states of indentation codes. The exceptions are relatively benign, in that they get turned into arbitrary characters at the beginning of lines. These characters can in turn be edited out of the file after the grabber has completed its operation. Verification of the success of this strategy has been provided by several programs which compile and run as expected after transfer to new files using Grabber.

As for new operating procedures, I have now started to make a more regular practice of backing up files on my system disk. It turns out that there is no particular difficulty in transferring the entire contents of a
disk from one drive to another using the UCSD Pascal system's filer program. So, readers who wish to learn from my little fiasco should consider taking the time at least once per day to copy all the files on their main disk to a backup disk as a little bit of logical insurance against a serious filing system problem which may or may not ever happen. This is an important practice even if all you are using your computer for is fun and games, for every program that is ever written takes time and energy to create and type into a computer.

Listing 1: The first stage in the process of recovery from the directory zeroing disaster was to write an exploratory Pascal program called Recovery. The zapping of course only applied to the current system disk, copied from the master supplied with the system. Thus it was possible to make a new system disk for the purposes of compiling programs such as this one.

```
{Program to scan blocks on disk for text string "PROGRAM"}
PROGRAM recovery;
CONST
    disk = 5;
VAR
    blocknr,i,j : INTEGER;
    anychar : CHAR;
    buffer : PACKED ARRAY[0..511] OF CHAR;
    PROCEDURE initialize;
    BEGIN
        WRITELN('Enter starting block number for scan');
        READLN(blocknr);
        FOR j := 0 TO 5ll DO buffer[j] := ' ';
    END {initialize};
    PROCEDURE findprogram;
    BEGIN
        WRITEIN('Checking Block |',blocknr);
        UNITCLEAR(disk);
        UNITREAD(disk,buffer,512,blocknr,0);
        UNITWAIT (disk);
        j := 0;
        WHILE j < 480 DO
            BEGIN
                IF (
                    (buffer[j+0]='P') AND
                    (buffer[j+1]='R') AND
                (buffer[j+2]='0') AND
                (buffer[j+3]='G') AND
                (buffer[j+4]='R') AND
                (buffer[j+5]='A') AND
                (buffer[j+6]='M'))
                THEN
                    BEGIN
                        FOR i := j TO j+20 DO WRITE(buffer[i]);
                        WRITELN('');
                        j := 505
                END;
                j := j + l
            END;
        blocknr := blocknr + 1
    END {findprogram};
BEGIN {recovery}
    initialize;
    REPEAT
            findprogram
            UNTIL blocknr > 1100;
END. {recovery}
```


# Write faster in BASIC, FORTRAN, or COBOL 

## Document \& modify more easily, too

Human-engineered to do the job better. Yes, you really can get flawless code faster, using the Stirling/Bekdorf ${ }^{\text {TM }}$ system of software development tools with structured programming concepts. The $78 \mathrm{~F} 2,78 \mathrm{P} 4$, and 78 Cl are human-engineered to reduce initial errors, improve de-bugging speed, and aid concept communication.

First, use the 7852 Flowchartrix TMto lay out your original concept blocks. Then use it to write a finely detailed flow chart.
$54 \%$ more logic cellis than other flowchart forms, put far more of your program on each page. Each Flowchartrix has a full 77 logic cells, not just 50 . This saves paper, and makes your finished flowcharts easier to understand. By seeing up to 27 extra steps of a program on each page, you comprehend program flow more clearly. You save money and storage space, too.

Every matrix cell in the $7 \times 11$ matrix has a specific label to help you track branch points. When you write program documentation, having a separate reference point for each cell makes your program much easier to describe clearly.

With Flowchartrix, you don't need a shape template to draw remarkably regular logic symbols. Guides for the most-used logic symbols are right in each matrix cell, to help you draw most standard flowchart symbols entirely free-hand.

78P4 Print-Out Designers are next. When you finish flowcharting, lay out the printed reports your program will generate. Then when you write code you blaze through the report generation segments right along with the rest of your program.

Unique $70 \times 160$ matrix accommodates even proportional. spacing word processor formats. The 160 -column width can handle practically any printer format. The 78 P 4 is big, $14^{1 / 2 \times 22 \text { inches, because we've scaled the cell size to human writing }}$ comfort, not machine print. giving nearly twice the character-writing area of other printout design sheets.

Special 5-column area records the program line number of the code which creates each printed line. It shows, at a glance, exactly which line of code creates each line of your report, saving hours of needless search time when you must change the report format (and don't you always have to, sooner or later?)

Every sheet of 78 Cl gives you 2 form uses for the price of one. Use 78Cl's full 28 line $\times 80$ column grid area to code regular program steps. Then for interactive or instructional sections, simply keep your characters within the appropriate CRT indicator lines, and you'll automatically know where every character will show on your CRT screen.

28 line $\times 80$ column coding capacity saves you 14 sheets out of every 100 , compared to 24 -line forms. 86 sheets hold more program steps than 100 sheets of any 24 -line form, yet we offer full-size $6 \mathrm{~mm} \times 3 \mathrm{~mm}$ grid blocks to give you comfortable writing room and visual space between lines.

Works with your CRT display, no matter what brand you own. Equipped for both 16 line $\times 64$ column and 24 line $\times 80$ column display formats.

Available in three versions (one for BASIC languages, one for FORTRAN, another for COBOL ), the 78 Cl is so powerful we include a 7 -page instruction manual with every order.

Every tool in the Stirling/Bekdorf system is surfaceengineered to take both pen \& pencil without blotching. Our tough, extra-heayy, 22= paper is pure enough to use with critical magnetic ink character reáders, and gives you crisp. sharp characters with pencil or plastic-tip pen.

Every part of our system uses eyecomfortable soft blue grids. All grid rulings, tints, and division rules are reproduced in a special shade of blue, easy on your eyes even after hours of continuous programming. If you're a professional programmer, you'll particularly appreciate our improvement over the green lines you've been writing on.

A 3 -ring binder is one more of our secrets for your success. All your notes, logic concepts, flowcharts. code, CRT layouts, print-out designs, and documentation can be kept together, in order, in one place. When everything you create stays together, debugging and modification is much simpler.

Order your supply of the world's most advanced software development tools, right now, before you hatch even one more bug.


> You don't buy a personal computer everyday. So when you do, make sure you know what you're buying.

## Hayden can help with 4 introductory guides!

A Consumer's Guide to Personal Computing and Microcomputers (Freiberger/Chew)
You need no previous knowledge of microcomputers to understand and use the introductory principles and products that are explained and reviewed. *5680-X. paper, \$7.95

## Small Computer Systems

 Handbook (Libes) A primer covering the practical knowledge you should have to be able to intelligently purchase, assemble, interconnect, and program the microcomputer. *5678-8, paper, $\$ 8.45$The 6800 Microprocessor: A Belf-Study Course with Applications (Leventhal) A self-teaching introduction to the popular 6800 microprocessor, containing 15 lessons that emphasize the control applications of microcomputers.
*5120-4, paper, $\$ 7.95$
APL: An Introduction (Peelle) Teach yourself the APL language by using this book - with or without a computer! Includes many examples of APL expressions and selected exercises.
*5122-0. paper, $\$ 8.50$

Hayden Book Company, Inc.
50 Essex Street
Rochelle Park, NJ 07660
Available at your local computer store!


Listing 2: The second stage in the process of recovery was a modification and extension of the first program, now renamed Grabber. Once the earlier version of the program had printed out a rough listing of block numbers and names of programs, the program shown at (a) was created to transfer these files from the bad disk to a good disk. At (b) is shown an example run for recovery of a Pascal program of some 5 blocks in length.
(program to copy physical io files to "A.TEXT" text file)
PROGRAM grabtext;
CONST
acarriagereturn $=13$ \{decimal integer equivalent of ASCII <CR>\};
indentcode $=16$ \{decimal integer equivalent of ASCII ©LE>\};
disk $=5$ (physical unit address of righthand floppy drive\};
VAR
blockcount ,blocknr, i,j,k : INTEGER;
onecharacter, anychar : CHAR;
buffer : PACKED ARRAY [0..511] OF CHAR;
filename : STRING [32];
ifoundareturn : (no, yes, spacecount):
theoutput : FILE OF CHAR;
PROCEDURE initialize;
BEGIN
blockcount :=-1;
ifoundareturn := no;
WRITELN('Enter starting block number to grab from right drive'); READLN(blocknr);
filename := 'A.TEXT';
WRITELN ('Output will be to the file "A.TEXT"');
WRITELN('Do you approve?');
READ (KEYBOARD, anychar);
WRITELN (anychar);
IF anychar<>' $y^{\prime}$ THEN
BEGIN
WRITELN ('When you have figured out what you want to do,'
'tryme again'):
blocknr : $=9999$ (to force premature end of program)
END;
REWRITE (theoutput, filename)
END \{initialize\};

PROCEDURE makenormal;
BEGIN (simply transfer if printing character\}

( $\left.k \ll \operatorname{ORD}\left({ }^{\prime}\right\}^{\prime}\right)$ )
)
WRITE (theoutput, onecharacter); ifoundareturn := no \{--> first state\}
END [makenormal):
PROCEDURE transferblock; BEGIN
[first grab the block from the bad disk] WRITELN('Transferring Block \#',blocknr); UNITCLEAR (disk);
UNITREAD (disk,buffer, 512,blocknr, 0) : UNITWAIT (disk) ;
\{then transfer the block to output file\}
FOR $j$ := 0 TO 511 DO
BEGIN
onecharacter := buffer[j];
\{test for end of file\}
IF $j>3$ THEN
BEGIN
IF (
(buffer[j-3]='E') AND
(buffer $[j-2]=$ 'N') AND
(buffer[j-1]='D') AND
(onecharacter = '.')) THEN

BEGIN
WRITELN('I found END. in block *', blocknr);
blocknr : $=2000$
END
(2a)

```
IF (
```

            (k) \(=\) ORD(' ' \()\) )
            ( \(\left.k<=\operatorname{ORD}\left({ }^{\prime}\right\}^{\prime}\right)\) )
            )
            foundareturn \(:=\) no \(\{-->\) first state
    

blockcount := blockcount - l;
IF blockcount < 1 THEN
BEGIN
WRITELN('Enter number of blocks to do');
READLN(blockcount);
IF blockcount = 0 THEN blocknr := 9999;
IF blockcount > 20 THEN blockcount := 20
END;
IF blocknr < 1103 THEN transferblock
UNTIL blocknr > 1102;
CLOSE (theoutput, LOCK)
END.
Enter starting block number to grab from right drive
Output will be to the file "A.TEXT"
Do you approve?
y
Enter number of blocks to do
5
Transferring Block \#259
Transferring Block \#260
Transferring Block \#261
Transferring Block \#262
I found END. in block \#262 ■

```
```

```
        { legal possibilities are as follows
```

```
        { legal possibilities are as follows
        ... <any><any>...<any>
        ... <any><any>...<any>
    ... \langleCR\rangle\langleCR\rangle ...
    ... \langleCR\rangle\langleCR\rangle ...
    ... <CR><DLE><n>\langleany> ...
    ... <CR><DLE><n>\langleany> ...
    ... <CR><DLE\rangle\langlen\rangle\langleDLE\rangle\langlen>...<\langleDLE\rangle\langlen\rangle\langleany>...
    ... <CR><DLE\rangle\langlen\rangle\langleDLE\rangle\langlen>...<\langleDLE\rangle\langlen\rangle\langleany>...
    }
    }
    k := ORD(onecharacter);
    k := ORD(onecharacter);
    CASE ifoundareturn OF
    CASE ifoundareturn OF
        no:
        no:
            IF k <> acarriagereturn THEN
            IF k <> acarriagereturn THEN
                    makenormal
                    makenormal
                ELSE
                ELSE
                    BEGIN
                    BEGIN
                            WRITE(theoutput,onecharacter);
                            WRITE(theoutput,onecharacter);
                            ifoundareturn := yes {--> next state}
                            ifoundareturn := yes {--> next state}
                END {IF...ELSE...};
                END {IF...ELSE...};
        yes:
        yes:
            BEGIN
            BEGIN
                IF k=indentcode THEN
                IF k=indentcode THEN
                        BEGIN
                        BEGIN
                    WRITE(theoutput,onecharacter);
                    WRITE(theoutput,onecharacter);
                            ifoundareturn := spacecount {-->next state}
                            ifoundareturn := spacecount {-->next state}
                    END
                    END
                    ELSE
                    ELSE
                    BEGIN
                    BEGIN
                            IF k = acarriagereturn THEN { ->> same state}
                            IF k = acarriagereturn THEN { ->> same state}
                            WRITE(theoutput, onecharacter)
                            WRITE(theoutput, onecharacter)
                            ELSE {->>first state}
                            ELSE {->>first state}
                        makenormal
                        makenormal
                    END
                    END
                END;
                END;
        spacecount:
        spacecount:
            BEGIN
            BEGIN
                        WRITE(theoutput,onecharacter);
                        WRITE(theoutput,onecharacter);
                                    ifoundareturn := yes {--> previous state}
                                    ifoundareturn := yes {--> previous state}
                END
                END
            END {CASE};
            END {CASE};
        END [FOR];
        END [FOR];
    blocknr := blocknr + l
    blocknr := blocknr + l
END {transferblock];
END {transferblock];
BEGNN {grabber)
BEGNN {grabber)
    initialize;
    initialize;
    IF blocknr < }1103\mathrm{ THEN
    IF blocknr < }1103\mathrm{ THEN
        REPEAT
        REPEAT
```

                        N
    ```
                        N

\section*{Historical Correction}

Regarding Keith S Reid-Green's article "The History of Computers: The IBM 704" (January 1979 BYTE, page 190), the magnetic core storage unit, shown in photo 1 , is the IBM 737. It had a capacity of 409636 bit words. The 32 \(K\) core storage, referred to in the article, is the IBM 738 and did contain a minor amount of solid state logic.

The IBM 711 (photo 3) could read any of 80 card columns, selectable by a plugboard whose access is shown under the identification tag. Only 72 of those 80 columns could be read at any one time, however. Also the \(Q\) bit of the multiplier-quotient register was used in multiply to contain bits of partial product during shifts.

I am sure that all of us "old-timers" who worked on the 704 appreciate your nostaglic look backward to the early days of this industry.

Warren G Tisdale
Rt 6 Box 348 N
Raleigh NC 27612

\section*{Commander in Chief Generalized}

Regarding the program Commander in Chief, presented in December 1978 BYTE, page 192, there are several minor errors: location 093 should read \(\Varangle\) instead of \(\Theta\); and PGM should be inserted at location 041. To get different games each time, one need only enter any number before pressing (E). The program can be modified in the following manner to remove the necessity of entering a new seed number for each game:


Dennis Grundler
818 E 22nd St
Marysville CA 95901

April 3-5, Specifications of Reliable Software, Hyatt Regency Hotel, Cambridge MA. This conference is sponsored by the IEEE Computer Society. Contact Douglas T Ross, Softech Inc, 460 Totten Pond Rd, Waltham MA 02154, (617) 890-6900.

April 5-6, Computers in Ophthalmology, St Louis MO. This is a course in application of computers to ophthalmic patient care and clinical reseach. Sessions dealing with data bases, automated patient testing, artificial intelligence, and image processing are being planned. Contact Robert Greenfield, DSc, Biomedical Computer Laboratory, Washington University School of Medicine, 700 S Euclid Av, St Louis MO 63110.

April 9-11, Computer Contract Negotiation, Atlanta GA. This 3 day course is designed to give participants sound answers to the complex ramifications of preparing and negotiating computer contracts. Contract Brandon Consulting Group Inc, 505 Park Av, NY NY 10022.

April 9-11, Data Processing Operations Management, Miami FL. This seminar will emphasize the management skill and techniques applicable to the data processing operations function. The curriculum is designed toward practical, applied management techniques to provide a sounder understanding of the ways of managing data processing operations more effectively. Contact The University of Chicago, Center for Continuing Education, 1307 E 60th St, Chicago IL 60637.

April 9-12, Interface '79, McCormick PI, Chicago IL. This is the seventh annual conference and exposition on data communications and computers. Contact The Interface Group, 160 Speen St, Framingham MA 01701.

April 16-20, Data Communication Systems and Networks, George Washington University, Washington DC. This course is designed for systems analysts, engineers, managers, and others who need a better working knowledge of data communication systems. The course will be of particular value to those who are currently planning, designing or implementing a computer that involves data communications. The objective of the course is to provide participants with an understanding of the basic principles and current techniques involved in computer to computer and terminal to computer communications and networking. Contact Continuing Engineering Education, George Washington University, Washington DC 20052.

April 18-20, Understanding and Using

Computer Graphics, Dallas TX. This course is for people who are now using or making decisions about using computer graphics and its role in their organization. It will describe computer graphics; show how installing computer graphics can be justified; explain what hardware and software systems are available and give costs and performance comparisons. Contact Frost and Sullivan, 106 Fulton St, NY NY 10038.

April 23-26, Middle Eastern Electronic Communications Show and Conference, Bahrain Exhibition Ctr, Bahrain. The exhibition will consist of companies marketing communication systems, products, and services. Contact Gerry Dobson, MECOM '79, Arabian Exhibition Management, 11 Manchester Sq, London W1M 5AB.

April 23-27, PASCAL Programming for Mini and Microcomputers, Ramada Inn, Woburn MA. This course covers a general approach to the use of high level languages in small computers, including an intensive course in PASCAL program. ming, and an introduction to structured programming techniques. Contact Institute for Advanced Professional Studies, One Gateway Center, Newton MA 02158.

April 23-27, High Speed Computer Organization: Super Machines and Low Cost Systems, Holiday Inn, Westwood CA. For computer designers, system architects, project leaders and managers involved in the implementation, application and evaluation of high speed computing systems. The course provides a thorough understanding of the principles of high speed computer organization and their use in cost effective systems. Several commercial and paper high speed computers are presented and compared. Contact UCLA Extension, 10995 Le Conte Av, Los Angeles CA 90024.

April 24-26, Electro/79 Show and Convention, New York Coliseum and Americana Hotel. Contact William C Weber Jr, general manager, Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245.

April 30-May 2, First Annual International Conference on Computer Capacity Management (ICCCM), Washington DC. Individuals involved in computer capacity management will present papers on research, experiments and other activities concerned with the importance, requirements and benefits of capacity management in today's data processing environment. Contact Marken Communications, 2275 E Bayshore Rd, Palo Alto CA 94303.

May 11-13, The West Coast Computer Faire, San Francisco Civic Auditorium. This is a conference and exposition on personal computers for home, business, and industry. Contact Computer Faire, POB 1579, Palo Alto CA 94302, (415) 851-7075.

May 21-25, Systems Analysis Workshop, Chicago IL. This workshop will teach systems analysts and others needing systems analysis skills to use a practical set of tools and techniques to evaluate user requests and document requirements for new data processing systems. Contact Brandon Systems Institute, 4720 Montgomery Ln, Bethesda MD 20014.

June 6-8, Eighth Annual Conference of the MUMPS Users Group, Marriott Hotel, Atlanta GA. Papers will be presented on all aspects of MUMPS development, implementation, and use. Contact Judith Faulkner, Program Committee, Department of Psychiatry, Clinical Sciences Center, 600 Highland Av, Madison WI 53792.

June 6-8, Twelfth Annual Association of Small College Computer Users in Education Conference, Denison University, Granville OH . Sessions will include the presentation of papers and demonstrations of the educational use of microcomputers, computer textbook surveys, discussions with authors of computer texts, administrative uses of computers in small colleges, and a tutorial on microprocessors. Contact Douglas Hughes, Computer Center, Denison University, Granville OH 43055, (614) 587-0810.

June 6.8, Computer Contract Negotiation, NY NY. This 3 day course is designed to give participants sound answers to the complex ramifications of preparing and negotiating computer contracts. Contact Brandon Consulting Group Inc, 505 Park Av, NY NY 10022.

June 19.21, International Microcom. puters / Minicomputers / Microprocessors '79, Palais des Expositions, Geneva Switzerland. The 1979 conference program will probe advances in systems and equipment with emphasis on practical applications and uses of minicomputers and microcomputers as well as the techniques important to their development. Contact Industrial \& Scientific Conference Management Inc, 222 W Adams St, Chicago IL 60606.

June 20-22, The 1979 Symposium of the Wilmington Section of the Instrument Society of America, University of Delaware, Newark DE. The symposium theme: Measurement Technology for the '80s is being programmed by three of ISA's divisions: Process Measurement and Control, Analysis Instrumentation, and Water and Waste Water Industries. Contact A H Straightiff, E I Du Pont de Nemours and Co Inc, (302) 366-3810.

June 27-29, Machine Processing of Remotely Sensed Data, Purdue University, W Lafayette \(\operatorname{IN}\). The symposium will focus upon the theory, implementation and novel applications of machine processing of remotely sensed data. Contact Purdue University, Laboratory for Applications of Remote Sensing, 1220 Potter Dr, W Lafayette IN 47906. -

\section*{（1TRS－80 Complete System}

Includes：CPU／Keyboard，Power Supply， Video Monitor，Cassette Recorder，Manual， and Game Cassette．
（2）Line Printer
（3）Mini Disk System （4）C－10 Cassettes 5 Verbatum Diskettes


Description
TRS－80 Complete System Level II－4K RAM
TRS－80 Complete System Level II－16K RAM
Expansion Interface Pertec FD200 Disk Drive BASF 6106
Centronics 779 Printer Centronics 101 Printer Anadex DP－8000 Printer Centronics P1 Printer 560 （selectric）Printer Memory Unit（installed） （kit）
Verbatum Diskettes ea．\(\quad \$ \quad 4.95\)
\begin{tabular}{lr} 
& 3 \\
& 10 \\
Maxell Diskettes & ea． \\
& 3 \\
& 10 \\
C－10 Cassettes & 5 \\
& 25 \\
C－30 Cassettes & 12 \\
Paper（ \(91 / 2 " \times 11^{\prime \prime}\) fanfold， \\
3500 sheets）
\end{tabular}

\section*{Each}
\＄ 628.2 .0
\＄ 889.20
\＄ 269.10
\＄ 385.00
\＄ 495.00
\＄1299．00
\＄1400．00
\＄ 995.00
\＄ 445.00
\＄ 975.00
\＄ 138.00
98.00
12.00
37.00
7.50
21.00
60.00
4.50
\(\$ 18.75\)
＋ 23.95
\＄ 29.95

1 MEG OF DISK MEMORY on line for TRS－80 \＄2670

Includes：
2 Double Density \(8^{\prime \prime}\) Disk Drives with Controller
1 HUH Electronics 8100－
S－100 Interface to TRS－80
FREE with package
1 CP／M Software for TRS－80
\(\$ 145.00\) value

Write or call for new innovations－ Printers，Disks，Etc．

\section*{पッ⿵人}

777 Henderson Boulevard N－6
Folcroft Industrial Park
Folcroft PA 19032
（215） \(461-5300\)
In Washington，DC area：（703）938－1099

\section*{MODEL 3400 ロUAL DRIVE SUB－SYSTEM}

Your system is only as good as the components that make it up．The heart of the 3400 Sub－System is the proven excellence of the Innotronics manufactured Model 410／420 Diskette Drives．They are complemented by a custom enclosure design made up of top quality


3400 Rack Mounted Subsystem components and featuring distinctive solid woods such as cherry and walnut for the desk top Model 3400 F． If your system demands consistently high performance from your 8 －inch Floppy Disks，then this equipment is the answer．
Available for the first time a fully integrated design that you can customize to your needs．We believe we manufacture the highest quality Diskette Drives and Integrated Sub－ Systems on the market today．


BROOKS ROAD，LINCOLN，MASS． 01773 TEL．617－259－0600



BREAKOUT - - \$10.00


Total amount spent was 4350.59 Total income was 2.75
Dor Yodytisht or \({ }^{4}\) wfending profile for thir

\section*{HOUSEHOLD FINANCE}

PARTS 1\&2-- \$15.00

Dual Joystick Interface (with two programs)- \(\mathbf{S}^{\mathbf{S}} \mathbf{4 5 . 0}\)

\section*{LIFE - - - - - - - \$PO.OO}

ORDERS: Send check, money order, or VISA/Mastercharge (include expiration date) and add \(\$ 1.50\) shipping. Calif. residents add \(6 \%\) sales tax.

INFORMATION: More information on these and many other currently available programs is available on a free flyer. Write directly to Creative Software.

Creative Soffware
P.O. BOX 4030, MOUNTAIN VIEW, CA 94040

\section*{Hlubs and Newsletiters}

Exchange Information with Brazilian TRS-80 Group

A Brazilian TRS-80 users group is interested instarting a software and hardware experience exchange with other user groups. Contact Douglas Gilson, RUA Sambaiba \#516, Leblon, Rio De Janeiro 20,000 BRAZIL.

\section*{The Cleveland Digital Group}

The Cleveland Digital Group meets at 2 PM on the third Sunday of each month in the old railroad station at Safier's Inc, 8700 Harvard, Cleveland OH 44105. Write the club at the above address for more information.

The Valley Computer Club Changes Meeting Location

The Valley Computer Club of Burbank CA is no longer meeting at the Harvard School in Studio City. The club, which has 228 members, now meets at the Burbank Board of Realtors Hall, 2006 W Magnolia Blvd in Burbank. The time remains the same as the first Wednesday of each month at 7 PM. Inquiries should be sent to The Valley Computer Club, POB 6545, Burbank CA 91510.

Apple II Users Group in Denver Area
A new Apple 11 users group, called Apple Pi , has been formed in the Denver area. They meet at 7:30 PM the first Thursday of each month in room 271, Green Center, Colorado School of Mines campus in Golden CO. They have begun a software exchange and are planning a training, hardware and software ideas exchange as well as a newsletter. Contact Austin R Brown Jr, secretary, 407 Peery Pky, Golden CO 80401, (303) 279-5388.

Educational, Recreational Computer Club

The ERCC (Educational, Recreational Computer Club) was formed in Owosso MI in September of 1978. Meetings are scheduled monthly and usually include a speaker. A large portion of each meeting is devoted to discussion and trade of programming ideas. Plans for the future include forming a club library and possible group purchases. A newsletter is published monthly and is available for \(\$ 2.50\) a year to nonmembers. Contact Paul Heimnick, 1415 Olmstead St, Owosso MI 48867, (517) 723-7602.

\section*{St Louis Area Computer Club}

The St Louis Area Computer Club meets at 7 PM on the first Thursday of the month at the Thornhill Branch of the St Louis County Library on Fee Fee Rd north of Olive Rd. The meetings are open to the public. Club dues are \(\$ 5\) which includes a newsletter. Contact SLACC, POB 28924, St Louis MO 63132.

\section*{Glitch Kickers Computer Club}

The Glitch Kickers Computer Club has recently formed in Des Moines IA and is looking for new members. The club is open to anyone, whether you have a computer or are just interested in learning about computers. The club plans to work in several areas, among them education, writing software and starting a personal computer network. The club meets the first and third Saturday of each month at 2 PM. The meeting place is the Computer Emporium, 3711 Douglas, Des Moines IA. For further information, call (515) 279-8861.

\section*{Commodore PET 2001 User Group}

PET User Group is an organization for people interested in the Commodore PET 2001 computer. Their purpose is to share and exchange applications, programs, and hardware expansion techniques; and to provide general user feedback. The first year membership is \(\$ 5\) and will include six issues of the PET User Notes. Write Gene Beals, POB 371, Montgomeryville PA 18936.

Delaware Club Develops Home Heater Control

Jodie Hobson, president of the Delaware Users of Microprocessor Systems, writes to tell us that his club is interested in both hardware and software and they are combining both in the development of a home heater control as a club project. The club meets the first Monday of each month at the University of Delaware. Contact Jodie at 318 B Chapel Av, Claymont DE 19703 or call (302) 792-2319.

\section*{New Mexico Computer Society}

Dick Franzen, president of the NMCS (New Mexico Computer Society), has written to inform us of the existence of his club. NMCS promotes the understanding and use of computer technology in all areas of our society. They have a
diverse membership including high school and college students; housewives; electronic and computer technicians; and various professional and business people. Anyone interested in computers, regardless of their level of understanding or expertise, is encouraged to attend one of their meetings. The club's interest groups include: TRS 80 basic programming, TRS-80 advanced programming, TRS-80 business applications, M6800, software, personal programmable calculators, and computer technology. NMCS meets quarterly; however, each of the interest groups has its own meeting schedule which is published in their monthly newsletter, the Bit Stream. For more information, write or call Dick at POB 26544, Albuquerque NM 87125, (505) 292-1572.

\section*{MicroComputer Investors Association}

The January 1979 issue of The MicroComputer Investor, the journal of the MicroComputer Investors Association, continues to reflect admirably upon the activities of the association. In this issue there are 18 articles within the journal's 214 pages. Each article deals with utilizing microcomputers to make or manage investments. The association is professional and nonprofit in nature. Dues are currently \(\$ 30\) per year. Membership in the association carries with it the requirement for each member to submit one article per year for publishing in the association's journal. Persons desiring to become members of the MicroComputer Investors Association should send a self-addressed stamped envelope to J Williams, 902 Anderson Dr, Fredericksburg VA 22401.

\section*{Caterpillar Computer Club}

The members of the Caterpillar Computer Club are interested in home built as well as prepackaged systems to be used in home applications or civic interest applications. Some instrumentation is club owned and may beloaned out. They meet the first Thursday of each month at 7 PM in the Caterpillar Administration Building, 100 NE Adams, Peoria IL 61629. Contact Robert Miller, club president, 1539 Moss, Peoria IL 61606.

\section*{Publication for Apple II Owners}

Apple Pugetsound Program Library Exchange (A.P.P.L.E.) is an association of approximately 400 members throughout the United States. Each month they publish a magazine called Call - A.P.P.L.E. which contains information on the Apple II's capabilities, utility, programs and general tidbits of useful facts. Volume I has been compiled into a bound edition consisting of all the articles published in 1978. For further information about obtaining the magazine or Volume I, contact Call - A.P.P.L.E., 670839 th Av SW, Seattle WA 98136.

Newsletter for Computalker CT-1 Speech Synthesizer

Computalker Consultants, manufacturers of the Computalker CT-1 speech synthesizer, have announced the first issue of The Word from Computalker, a user newsletter. The Word is a 16 page newsletter designed to open up two way communication between Computalker Consultants and users of the CT-1 speech synthesizer and other interested parties. It contains items of interest about CT-1 applications, new software, new hardware, software fixes, software written by users, technical manual updates, and more. The premier issue of The Word is free to all who write for a copy. Five issues will be included with the purchase of each CT-1 speech synthesizer. Additional copies of The Word will cost \(60 \not\) each and may be obtained by writing to the company at 173021 st St, Suite A, Santa Monica CA 90404.

\section*{Attention: Phoenix AZ Computer Users}

A new computer club is forming in the metropolitan Phoenix area. For more information, call or write Marc Tessler, 3520 W Dunlap Av, \# 106, Phoenix AZ 85021, (602) 249-6224.

Attention: Long Island Computer Enthusiasts

Aileen Harrison, treasurer and secretary of the Long Island Computer Association, has written us that the club meets at 8 PM on the third Friday of the month at New York Institute of Technology, Route 25A, Old Westbury NY, building 500, room 508. One hour before the regular meeting the 6800 users group meets at the same location and every second Friday of the month the 8080 user group meets. The club is entering its fourth year and has approximately 140 members. The meetings consist of various programs such as "show and tell," tutorials, hardware lectures, language lectures, group discussions by members, computer manufacturer presentations, and presentations by computer stores describing the products they market. The dues are \(\$ 10\) per year and every paid member gets a free raffle chance each month on some "goodie." Also paid members are entitled to borrow USCD Pascal disks and users manual on a monthly first come first serve basis. Members receive a copy of the monthly meeting notice. For more information, contact Aileen at 36 Irene Lane E, Plainview NY 11803.■


\section*{Continued from page 8:}

\section*{1802 QUEST FOR INFORMATION}

Hey, how about some support for the poor little 1802? It is no longer an obscure processor used by few of us. Many personal computers utilize this chip-the RCA VIP, Quest Super EIf, Netronics EIf II, many homebrew systems, and others. An 1802 recently went up in an OSCAR satellite! Much software is available to 1802 users, including debug and monitor routines, video games, Tiny BASIC, and general purpose programs available from the many 1802 based clubs.

Writing one's own software is simple, due to the unique \(\operatorname{COSMAC}\) architecture. The processor contains sixteen 16 bit general purpose registers that can be used to hold data and memory addresses to point to stacks, subroutines, etc. The program counter can be changed to any one of these under program control, facilitating the use of subroutines.

What about hardware? The 1802 is completely static and CMOS, resulting in very low power dissipation, an important consideration when designing battery operated systems. It is available in two voltage versions: 4 to 6 V and 4 to 12 V . There is also an on chip direct memory access controller that simplifies loading of programmable memory, since
this can be done in hardware without the need for a bootstrap read only memory. Memory interface is simple and straightforward, because no bizarre data multiplexing is performed; sequential high and low order bytes of the memory address are strobed onto an 8 bit bus by two timing pulses. Once decoded, the address is used just as any other 16 bit address bus. Hardware single step is also easily implemented. I/O (input/output) is especially simple, due to three binary encoded output lines that can be controlled by the processor to select one of eight input and output devices directly. Also available are four flag lines that can be tested by the processor to determine a course of action. These features, coupled with the simple 93 instruction set and RCA support chips make software and hardware development painless (and sometimes even fun).

We avid 1802 fans are no longer a tiny minority, and would like some support from BYTE, a magazine that many of us subscribe to for the purpose of discovering the latest in the computer world. The 6800 and 8080 A are good processors, but there are others on the market.

In addition, please go a little heavier on hardware. Also, I would like to see an article on the very basics (no pun intended!) of Pascal. I've read and reread the previous pieces, but I still can't make

\section*{6800 PERFORMANCE PRODUCTS FROM MICROWARE}

A/BASIC COMPILER Unmatched for speed, versatility and efficiency, generates pure 6800 machine language from BASIC source. Fast integer math, strings, logical and array operations. Output is ROMable and requires no runtime package. Cassette version requires RT/ 68 and 8 K RAM. Disk versions require 12 K and have complete disk \(1 / O\) statements plus other extensions.
Cassette Version - A/Basic V1.0C
\(\$ 65.00\)
SWTPC Miniflex - A/BASIC V2.1F
\(\$ 150.00\)
SSB DOS-68 - A/BASIC V2.1S \(\$ 150.00\)
RT/6B OPERATING SYSTEM Compatible MIKBUG replacement ROM with expanded, improved monitor plus real-time multiprogramming executive. 1000 's in use since 1976.
RT/68 MX on 6830 ROM (Mikbug pin compatible)
\(\$ 55.00\)
RT/68 MXP on 2708 ROM (EPROM pin compatible)
\(\$ 55.00\)
6800 CHESS challenging chess program, two difficulty levels. Runs in 8K RAM. Mikbug-compatible object plus A/BASIC source. Specify cassette, SSB or SWTPC minidisk.
CHESS V1.0
\(\$ 50.00\)
DR. ELIZA 6800 version of famous MIT artificial intelligence program. Computer as psychoanalyst communicates in plain English dialog. Mikbug compatible object plus A/BASIC source. Specify cassette, SSB or SWTP minidisk. ELIZA 1.0
\(\$ 30.00\)
AS-1 A/D INTERFACE. Eight channel, 8-bit high speed A/D system for SS-50 I/O buss. Assembled.
\(\$ 115.00\)
AS-4 D/A INTERFACE Four channel 8-bit ultra fast D/A system for SS-50 I/O buss. Independent isolated \(Z\)-axis strobe output for oscilliscope or plotter graphics. Assembled.
U.S. orders add \(\$ 2\) for shipping. VISA and MASTERCHARGE welcome. Call or write for free 6800/6809 catalog.

2035 East Ovid Ave.
Des Moines, IA 50317
(515) 265-6121
heads nor tails out of a Pascal listing.
Other than these few gripes, I enjoy your magazine, and look forward to its arrival every month.

\author{
Ivan Dzombak \\ 621 Spring St \\ Latrobe PA 15650
}
[Authors take note! Our articles come from our readers. Let's see some more information on the 1802-RGAC.]

\section*{CANCELLED AND HAPPY?}

Recently 1 took advantage of your offer to receive one free issue of BYTE by filing for a subscription and canceling after receiving the first issue.

Although I did cancel the subscription upon receiving the first free issue, I do wish to compliment you on the quality of BYTE. I canceled not because I did not think BYTE to be a good buy for the computer hobbyist, but because it made it clear to me just how big the hobby is! As an active amateur radio operator in the process of designing and building some new major pieces of hardware, I decided that I had better get more of that work out of the way before I delve into computers too deeply.

I expect to return to BYTE in about a year or so-a short time before I begin any extensive home computer experimentation. That first issue of BYTE has convinced me that it will provide the means for coming up to speed on the subject.

Richard A Griffiths
6510 Foster St
District Heights MD 20028

\section*{A BASE COMMENT}

I enjoyed Harold Pritchard's tip on using an ordinary calculator for addition and subtraction of hexadecimal numbers (January 1979 BYTE, page 165). Your readers might be interested to know that this technique works for all number bases from 2 through 99. To use for other bases, all you need do is find the number to add or subtract for carrys and borrows. The "magic number" is simply 100 minus the base being used. For hexadecimal it's \(100 \cdot 16=84\) as we've seen. For octal it's \(100-8=92\), and for binary, \(100 \cdot 2=98\). As with hexadecimal, four digits is the most you can work with using an 8 digit calculator.

\section*{David L Johnson \\ 4106 Montreal Av \\ Prince George, VA 23875}

\section*{COPYRIGHT INFORMATION GATHERING}

I'm becoming more and more interested in the question of software copyrights. I'm sure the editors at BYTE agree that this is a subject which is confusing to anybody who starts talking about it; there are no legal precedents, nobody really knows how to
define the dividing line between ex. pected use of published software and theft.

I'm polling editors and the major computing magazines, hoping they will help me define some of these issues. l'd appreciate getting your views on this thorny subject. Besides being editor of Dr Dobb's Journal, I'm getting a master's degree at Stanford in journalism-this quarter I'm taking a course in the law school entitled "Communications Law." I will be talking (and in fact, am already talking) with lawyers and legal scholars on this subject-frankly, they're more confused than anybody else. One consensus among the legal people l've talked to is this: the dividing line between expected use and theft is money.

When you publish software, what do you expect will happen to it? An interested computerist will adopt or adapt the program for his or her own use? A club will play around with it? Another magazine-nonprofit, for instance like mine-will reprint it? When do your hackles rise over use of software originally printed in your magazine? When does it become unfair?

What I want to do is gather comments from people like you and combine them with advice and facts from iegal scholars. After which, I will write an article attempting to pull this data together and make sense of it. Hopefully, the article will be the first of many others in which people in the field will try to arrive at some working conclusions.

I look forward to hearing from you.

\section*{Suzanne Rodriguez Dr Dobb's Journal}

POB E
1263 El Camino Real Menlo Park CA 94025

When we publish software, it is subject to copyright, the only meaningful form of protection. Just as we would expect someone to formally ask for per. mission to reprint an article published in BYTE magazine, we would expect similar respect from anyone going beyond the bounds of fair use with respect to program copies taken from our products. In short, when we publish a program with copyright protection, whether as part of a book or as part of an article, we would expect anyone copying and distributing such a program to write requesting permission to do so. We are not averse to giving permissions with credit, and no publisher with a longterm view would, in my opinion, have a blanket policy against granting such permissions.

If anyone were to widely reproduce copies of our products without our permission, chances are we would find out about such use and be forced to examine the effects and our options in such a situation. There is a matter of our own reputation, which can be compromised by indiscriminate reproduction of our products even if there is no monetory gain to be had by the person or
persons engaging in such unauthorized reproduction.

As for software publishing, when we buy a program for reproduction in book form, or as a simple listing plus documentation (often accompanied by machine readable code), we treat it in the same way as we treat the ideas of an author writing a conventional article or book. We are buying the embodiment of those ideas in a particular written or program form, not the ideas or concepts which constitute the program or work of writing. Because of the rampant confusion in the software area, our typical contract with authors of software explicitly states that we are buying an exclusive license to the software reproductions in book form, with the rights to license the software in other ways to manufacturers or media distributors retained by the author. The act of sale of the book or listing copy is then, in our view, totally analogous to the act of sale of such items as a phonograph recording, a book about some subject, a video recording, or other relatively conventional published work. This act of sale carries with it an implied zone of fair use reproduction possibilities, but is in no way a license to widespread reproduction whether it is done commercially or by some "nonprofit' entity.

Basically, there should be a software
publishing analogue of the ASCAP or BMI organizations of the music world, but the field is too young at present. There are a number of questions to be answered as history unfolds in this field but, contrary to your letter's viewpoint, there are historical precedents which can certainly be examined and applied to the new concept of computer programs as works of authorship and original composition. . . .CH

\section*{IBM Emulation Information Needed}

As an avid BYTE reader, I have, as a last resort, turned to you to request some assistance. I am looking for a software house that can supply the com. munications software for effecting IBM 3780 and Teletype emulation using a standard mini/micro system. There are a number of manufacturers (ADDS, Datapoint, SYCOR) who have such emulators available when one purchases or leases their equipment; however, I do not wish to be tied down to any one manufacturer. The software is proprietary and cannot be used on the standard systems. Can you supply any leads in this area?

George J Lehmann
Data Processing Consultant
163 S Sycamore Av
Hollywood CA 90036


HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS! Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuils-the very first night-even if you've never used a computer before! ELF II micomoneactit COMPUTER sg995 Stop reading about computers and get your hands on one! With a \(\$ 99.95\) ELF II and our Short Course by Tom Pittman, you master computers in no time at all! EL.F II demonstrates all 91 commands an RCA 1802 can execute and the Shore Course quickly teaches you to use each of the 1802 s capabilities. ELF II
also displays graphics on any \(T V\) set, including an exciting new targeUmissile aiso displays graphics on any Thet, including an exciting new targetmissile
gun game! Add-ons are among the most advanced available anywhere. You get gungame: Add-ons are among the most advanced available anywhere. You get massive computing potential. No wonder IEEE chapters, universities and major
corporations al! use EL.F II to train engineers and students! Kit is easily assembled in a single evening and you may still have time to run your first programs before going to bed! - SEND TODAY!

\section*{NOW AVAILABLE FOR ELF II-}
- Tom Pittman's Short Course On Mi. croprocessor \& Computer Programming teaches you just about everything there is to know about EL. \(\| \mid\) or any RCA 1802 computer. Written in nontechnical language, it's a learning breakthrough for engineers and laymen alike. \(\$ 5.00\) postpaid!
\(\square\) Deluxe metal cabinet with plexiglas dust cover for ELF II. \(\$ 29.95\) plus \(\$ 2.50 \mathrm{p} \& \mathrm{~h}\).
- ELF II connects to the video inpur of your TV set. If you prefer to use your antenna terminals, order RF Modulator, \(\mathbf{\$ 8 . 9 5}\) postpaid.
G GIANT BOARD \({ }^{\text {T }}\) kit with cassette I/O. RS 232-C/TTY I/O. 8-bit P I/O. decoders for 14 separate J/O instructions and a system monitor/editor \(\$ 39.95\) plus \(\$ 2\) p\& h.
OKlute (Prototype) Board accepts up to 36 IC's. \(\$ 17.00\) plus \(\$ 1 p \& h\).
D 4k Static RAM kit. Addressable to any 4 k page to 64 k . \(\$ 99.95\) plus \(\$ 3\) p\&h. \(\square\) Gold plated 86-pla connectors (one required for each plug-in board). \(\$ 5.70\) post paid.
[] Professionai ASCII Keybogrd kit with 128 ASCll upper/lower case set, 96 printable characters, onboard regulator, parity, logic selection and choice of 4 handshaking signals to mate with almost any computer. \(\$ 64.95\) plus \(\$ 2\) p\&h.

D Deluxe metal cabinet for ASCI! Keyboard, \(\$ 19.95\) plus \(\$ 2.50\) p\&h. - ELF II Tiny BASIC on cassett tape. Commands include SAVE, LOAD. \(\pm x, \dot{+}()^{2}, 26\) variables A-Z. LET, IFITHEN, INPUT, PRINT, GO TO, GOSUB, RETURN, END REM, CLEAR, LIST, RUN, PLOT PEEK, POKE. Comes fully documented and includes alphanumeric generator required to display al phanumeric characters directly on your TV screen without additional hardware. Also plays tick-tack-toe plus a drawing game that uses ELF II's hex heyboard as a joystick. 4k memory required. \(\$ 14.95\) postpaid.
C Tom Pittman's Shori Course on Tiny BASIC for ELF II, \(\$ 5\) post paid. D Expansion Power Supply (required when adding 4k RAM). \$34.95 plus \(\$ 2\) p\&h.
DeLf.BUG \({ }^{\text {* }}\) Deluxe System Monitor on cassette tape. Allows displaying the contents of all registers on your TV at any point in your program. Also dis plays 24 bytes of memory with full ad dresses, blinking cursor and auto scroll. ing. A must for the serious programmer! \(\$ 14.95\) postpaid.
Coming Soon: A-D, D-A Converter, Light Pen, Controller Board, Color Graphics \& Music System....and more!
Call or write for wired prices!

Netronics RED Lid., Dept. BY-4
333 Litchfield Road. 333 Litchfield Road. \begin{tabular}{rr} 
New Milford, CT 06776 (203) 354 Phone \\
\hline
\end{tabular}
Yesi I want to run programs at home and have enclosed: \(\square \$ 99.95\) plus \(\$ 3\) postage \& handing tor RCA COSmAC ELF II th. \$4.95 for power supply (required) for Short Course on Microprocessor 8 Computer Programming.
I went mine wired and tetted with power supply, RCA 1802 User's Manua! and Short Course Includad lor Just \$149.95 plus \(\$ 3 \mathrm{psh}\)
I am also enclosing payment (including postage \& handling) for the items checked at the left.
Total Enclosed (Conn. res. add tax) you are enclosing Money Order or Cashier's Check to expedite shipment.
USE YOUR \(\square\) VISA \(\square\) Master Charge (Interbank "
Account "
Signature
 Exp. Date PHONE DRDERS ACCEPTED (203) \(354-9375\) Print
Name
Adame
Address
City
City
State \(\qquad\)
_ 2ip

I liked the articles on Life in the December 1978 BYTE.

An area of Life that \(I\) find particularly fascinating is the behavior of Life forms in universes other than the flat two-dimensional universc. For example, in cylindrical or torus shaped universes it is possible for various kinds of stable "shock waves" to exist. These consist of complete loops around the universe and travel at the velocity of light, or twice as fast as a space ship. The simplest forms look like combs and can leave various kinds of debris behind or simply empty space. Another class of objects not found in the flat universes are "universal oscillators" that can exist in finite universes of the torus type and which engulf the entire universe.

To investigate these kinds of Life forms I wrote a program in COSMAC 1802 machinc language that runs on the RCA VIP Computer. The geometry of the universc can be selected by the user. Speed is very desirable if you are trying to determine the fate of a particular pattern and I spent considerable effort to maximize the program speed. The program calculates about five generations per second for an almost full universe up to 25 generations per second for an almost empty one. The actual
speed can be set to a lower value by the user and this is useful for examining a pattern in detail or for designing new patterns.

To make the program generally useful ! added pattern storage and pattern editing features. Those readers who are interested in obtaining copies of the program can write to ARESCO, POB 43, Audubon PA 19407.

Brian Astle
22 Fieldston Rd
Princeton NJ 08540

\section*{KUDOS}

After reading so many complaints (and suffering from the same problem myself) about vendors of computer peripherals, I'd like to salute one of the "good guys" of the industry. We're always quick to condemn, buthow many of us take the time to give praise when someone's worked hard to earn it???

I nominate for "The Good Guy of the Month Award" Warren Rosenkrantz, superstar of \(V\) R Data Corporation in Folcroft PA. After dealing with several other rather questionable firms, I received a flyer from \(V R\) Data congratulating me on the purchase of my Radio Shack TRS-80 and listing several peripherals at very attractive prices. I inves-

\section*{FideIn Fssociative Memory for the S-100 bus}

Discussed and dreamed about by computer scientists for years, Con-tent-Addressable Memory (CAM) is now here at an affordable price. CAMs have been so costly to build that few have actually been produced. Now Semionics has developed a simplifięd design, lowering the cost by two orders of magnitude. This new memory is called Recognition Memory (REM), since (like the human brain) it can recognize words, patterns, etc.

Adding a REM board to con ordinary microcomputer converts it into a very powerful machine known as a Con-tent-Addressable Parallel Processor (CAPP).
Features:
4 K bytes per board
Static-no refresh needed
Can be used as ordinary RAM or as CAM

RAM access time: 200 ns
CAM access time: \(4 \mu \mathrm{~s}\)
Multiwrite-writing into multiple locations with one instruction Masking-for individual bit access
Multiple REM boards accessed in parallel

Adds 17 associative memory func. tions to instruction set of \(Z-80\) or 8080 .

\section*{Applications:}

Pattern Recognition - Information
Retrieval \(\bullet\) Compiling \& Interpreting
- Natural Language Processing Code Compression * Artificial Intelligence
Price: \(\$ 325\)
4K firmware package of REM routines: \(\$ 80\)

\section*{Xsemionics}

41 Tunnel Road • Berkeley •CA 94705 (415) 548-2400
tigated and, to make a long story short, began what I hope to be a long and rewarding business relationship.

Warren and his staff exhibited a willingness to help a fledgling computerist. They brought back that old, forgotten trait that makes good businessmen great-the customer comes first. Sure, like everyone else in this mad industry, we had probiems such as printer modifications that didn't work and the disk drive that gave weird results. However, Mr Rosenkrantz spent considerable time and effort to correct these problems and, together, I think we both learned a lot. He's also very knowledgeable in the field of electronics and is quickly becoming a pro on the TRS-80. What do you expect from a guy who starts work at 5:30 AM and sometimes doesn't quit until after 10 PM ?

I reiterate that praise is something earned-and Warren Rosenkrantz of VR Data Corporation has certainly earned praise from this very satisfied customer.

> Clifford W Coughlin
> 30 S Kirklyn Av
> Upper Darby PA 19082

\section*{"THUS \& SO" IMPLEMENTATION}

In the December 1978 BYTE Carl Helmers, comparing BASIC to Pascal, made the point that:

> In BASIC I would have to reference /a procedure / in the program with a number artificially created for that purpose. I might say GOSUB 10000 , for example, when I really mean to call and execute a thus-and-so procedure.

Good point! Because of this lack of expressiveness in ordinary BASIC the Canon model BX-1 allows statements such as GOSUB "Thus\&so". Elsewhere in the program the same alphanumeric literal appears as a label, identified as such by the keyword FLAG. Note that, due to using quotes, it is possible to use upper and lower case, special characters, spaces and even graphic characters. It is not necessary to begin with a letter or to avoid keywords of the language. The BX-1 does, however, limit the length of the label to eight characters.

GOTO may be used in the same way. Furthermore, the BX-1 executes statements such as ON A\$ GOTO "YES", "NO", "MAYBE", "HELP!". If A\$ matches any of the literal strings shown, then a branch to the location so labeled will occur. If there is no match, execution continues with the next statement. The statement form except with GOSUB is also in the BX-1 language.

As far as ! am aware, the observation of Mr Helmers is correct for all other BASIC implementations.

\section*{Craig Busse} Canon USA, INC 140 Industrial Dr EImhurst, IL 60126 .

\section*{apple computer* SOFTWARE FOR BUSINESS}

\section*{includes:}
* Mailing List
* General Ledger
* Payroll
* Phone Directory
* Customer Information
* Invoice Writer
* Inventory
* Check Writer
* Complete Business System
* Master Business System

Available Soon Word Processor
videositinorld
2224 N. University, Peoria, II. 61604
Phone 309/686-9352
- Trademark of Apple Computer Co. Inc.

\section*{PET WORD PROCESSOR}


This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer.
Script directives include line length, left margin, centering, and skip. Edit commands allow the user to insert lines, delete lines, move lines and paragraphs, change strings, save onto cassette, load from cassette, move up, move down, print and type.
The CmC Word Processor Program addresses an RS232 printer through a CmC printer adapter.
The CmC Word Processor program is available for \(\$ 29.50\). Add \(\$ 1.00\) for postage and handling per order.

Order direct or contact your local computer store.


CONNECTICUT microCOMPUTER 150 POCONO ROAD
BROOKFIELD, CONNECTICUT 06804 (203) 775-9659

\footnotetext{
WE SHIP FROM STOCK - EVERYTHING FACTORY FRESH, FULLY WARRANTEED
TELETYPE MODEL 43 TTL . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 985\)

HAZELTINE 1500 assembled . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 945\)
1510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 1,085\)
PER SCI
Model 277 Dual Disk Drive, single density
\(\$ 1,210\)
Slimline cabinet w/power supply
\$299
MARINCHIP SYSTEMS M9900 CPU
The Complete, Compatible 16 bit CPU for the \(\mathrm{S}-100\) Bus


Assemble your own system or let us assemble one for you. Our system will include:

M9900 CPU PROM/RAM/SIO PASCAL
TEI 12 slot mainframe TARBELL Disk Controller
IMS 64K Fully static memory (Four 16 K Boards)
PER SCI Model 277 Dual Disk Drive, Slimline cabinet, power supply.
COMPLETELY TESTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 5,700\)
IN ADDITION: With the purchase of this system, \(\$ 50\) off the price of any terminal we stock.
We also configure systems to suit your individual requirements.
IMS MEMORY BOARDS, 16KB, FULLY STATIC \(\$ 459\)
S-100 MAINFRAME 12 slot, TEI Model MCS-112
\(\$ 433\)
To Order: \(\$ 10\) shipping for Teletype, Hazeltine, PerSci and Mainframe. \(\$ 3\) shipping for other items. 24 hr . shipping upon receipt of certifled check or money order. Personal checks: allow 10 days. Credit cards: 4\% charge. NY residents add tax

WE EXPORT
We have no reader inquiry number. Please call or write.
JOHN D. OWENS ASSOCIATES, INC.
STATEN ISLAND, NEW YORK 10304
YVENING WEEKEND, HOLIDAY CALLS WELCOM
(212) 448-6283
(212) 448-6298
}

\section*{Why Pay More?}

Why pay for more printer than you need? Our series 40 printers offer more features for less bucks than any other commercial quality printer on the market today. A complete stand-alone 40 column impact dot matrix printer with a 64 character ASCII set. Includes power supply, casework and interface electronics, Single quantity price for the parallel ASCII interface model is \(\$ 425\). Serial RS232/current loop interface models start at \(\$ 575\). OEM discounts available.

For more information write to:
MPI 2099 West 2200 South, Salt Lake City, Utah 84119 or call (801) 973-6053.


\title{
An Introduction to Microprogramming
}

\section*{Ben E Cline 702 Southgate Dr Blacksburg VA 24060}

Figure 1: Functional block diagram of a conventional bus structured computer. Solid lines indicate data paths and broken lines indicate control lines.

Many computer users have not been exposed to the subject of microprogramming although it was introduced more than 25 years ago. With the advent of microprogramined microprocessors, though, more and more people are gaining access to the world of microprogramming. The purpose of this article is to provide an introduction to the subject.

The word microprogramming was introduced in 1951 by M V Wilkes to describe a method of implementing the control circuits of a digital computer that differed from the conventional hardwired logic approach. The actions of a microprogrammed processor during the execution of an instruction are determined by a program in high speed memory called the control store. The data paths, memory units, and arithmetic and logic circuits of the processor are directly controlled by bits in a microinstruction held in the control store. Each machine instruction results in the execution of one or more microinstructions.


\section*{Conventional versus Microprogrammable Architectures}

Figure 1 is a functional block diagram of a conventional bus structured computer. The memory unit is used to hold both data and machine instructions. The arithmetic and logic unit (ALU) performs arithmetic and logic functions such as addition, logical AND, etc. The input and output (IO) control unit communicates with the external world. Data is passed between memory and the arithmetic and logic unit by a bus system. The IO, arithmetic and logic unit, memory, and bus circuits are controlled by hardwired logic to generate the necessary signals to fetch, decode and execute machine instructions.

A microprogrammed architecture is presented in figure 2. This functional diagram is similar to figure 1 except for the control unit. The conventional control unit has been replaced with a programmable control unit. Each step of the machine level instruction fetch and each step of a machine instruction execution is controlled by a microinstruction. The microinstructions are held in the control store. The control store is a highspeed memory which is usually independent of main memory. The address control unit determines which microinstruction will be fetched and executed next. Several addressing methods are discussed later in this article. The microinstruction register (MIR) holds the current micrpinstruction being executed. The microinstruction in the register is decoded by the decode logic which generates signals to control 10 , arithmetic and logic unit, memory and bus according to the actions specified in the microinstruction.

The decode and address control circuits of the microprogrammable architecture are

\section*{RADIO SHACK COMPUTER OWNERS}

\section*{TRS80 MONTHLY NEWSLETTER}
- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING•GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS
. . . .AND MORE

\section*{WORD PROCESSING PROGRAM \\ (Cassette or Disk)}

For Writing Letters, Text, Mailing Lists, Files, Etc. With Each New Subscriptions or Renewal

\section*{:COMPITRINES: \\ Box 149 \\ New City, New York 10956}

ONE YEAR SUBSCRIPTION \$24
TWO YEAR SUBSCRIPTION \$48
SAMPLE OF LATEST ISSUE \$4
START MY SUBSCRIPTION WITH ISSUE
(\#1 - July 1978 • \#7-January 1979)
NEW SUBSCRIPTION \(\qquad\) RENEWAL
CREDIT CARD
NUMBER EXP. DATE

SIGNATURE
NAME \(\qquad\)

ADDRESS

\footnotetext{
Send for FREE Software Catalogue (Including listings of hundreds
of TRS-80 programs avallable on cassette and diskette).
}

PERSONAL INFORMATION MANAGEMENT SYSTEM


\section*{Personal Informa-} tion Management System is indeed a data base management program. It's carefully customized for the small system owner. You can define and construct your own data bases. Each record can contain up to ten fields. You define what goes in each Then modify it whenever you want through use of just three commands. You can search, list, sort and also sum columns of numbers. Complete source listing is included. Check No. 10 on the coupon.

ONLY \$9.95*

\section*{Z80 INSTRUCTION} HANDBOOK
 tical guide for the novice, intermediate or advanced programmer. Pocket size. Check No. 20 on coupon. JUST \(\$ 4.95^{*}\)

\section*{LEARN MICROCOMPUTERS}

A new multimedia information package. Includes text (Understanding Microcomputers) plus highquality cassette. For the beginner. Covers all the basics quickly, easily and enjoyably. All the fundamentals behind the operation of virtually every microcomputer. Clear. Concise. Tells what to look for includes chapter-by-chapter synopsis of the book.
Check No. 40 on coupon.

6800 \& 8080 SOFTWARE

\section*{COOKBOOKS}

Now you can cook up mouthwatering programs. Delectable "how to" facts include 8080 or 6800 instruction sets. How to manipulate stacks. Flow charts. Source listings. General purpose routines for multiple precision operation. Programming time delays for real time. And much niore. In No. 50 ( 6800 ) and No. 60 (8080) on coupon.

ONLY \(\$ 10.95 *\) EACH


SCELBI Publications
P. O. Box \(133^{\prime}\) PP STN, Mliford, CT 06460
*IMPORTANT ORDERING INFO! Include 75 cents postage/handling for each item. Prices shown are for North American customers. Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks.
\(\square\) No. \(10 \quad\) №. \(20 \quad \square\) No. \(30 \quad \square\) No. \(40 \quad\) No. \(50 \quad\) ( No. 60 Name (please print)

Card No. \(\qquad\) Bank No. \(\qquad\) Exp. \(\qquad\) Address

City/State \(\qquad\) Zip

Signature \(\qquad\) Amt. Enclosed \(\qquad\)


Here's a variety of






 \begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist }\end{array}\) \\
engineer, technician
\end{tabular}
or hobbyist apply
the language to \begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist }\end{array}\) \\
engineer, technician
\end{tabular}
or hobbyist apply
the language to
 \begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist }\end{array}\) \\
engineer, technician
\end{tabular}
or hobbyist apply
the language to \begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist }\end{array}\) \\
engineer, technician
\end{tabular}
or hobbyist apply
the language to \begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist, } \\
\text { engineer, technician }\end{array}\) \\
or hobbyist apply
\end{tabular}
the language to
practical problems.
Covers mathematics,
finance and statis
tics, mechanical en-
gineering and elec-
tronics. For fun be-
tween such serious
applications, Hang-
man and Space Cap\begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist, } \\
\text { engineer, technician }\end{array}\) \\
or hobbyist apply
\end{tabular}
the language to
practical problems.
Covers mathematics,
finance and statis
tics, mechanical en-
gineering and elec-
tronics. For fun be-
tween such serious
applications, Hang-
man and Space Cap\begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist, } \\
\text { engineer, technician }\end{array}\) \\
or hobbyist apply
\end{tabular}
the language to
practical problems.
Covers mathematics,
finance and statis
tics, mechanical en-
gineering and elec-
tronics. For fun be-
tween such serious
applications, Hang-
man and Space Cap\(\left.\begin{array}{l}\begin{array}{l|l}\text { BASIC } & \begin{array}{l}\text { programs in BASIC } \\ \text { language to help the } \\ \text { student, scientist }\end{array} \\ \text { engineer, technician }\end{array} \\ \text { or hobbyist apply } \\ \text { the language to }\end{array}\right\} \begin{array}{ll}\text { practical problems. } \\ \text { Covers mathematics, } \\ \text { finance and statis }\end{array}\) \begin{tabular}{l|l} 
BASIC & \(\begin{array}{l}\text { programs in BASIC } \\
\text { language to help the } \\
\text { student, scientist }\end{array}\) \\
engineer, technician
\end{tabular}
or hobbyist apply
the language to \(\left.\begin{array}{l}\begin{array}{l|l}\text { BASIC } & \begin{array}{l}\text { programs in BASIC } \\ \text { language to help the } \\ \text { student, scientist }\end{array} \\ \text { engineer, technician }\end{array} \\ \text { or hobbyist apply } \\ \text { the language to }\end{array}\right\} \begin{aligned} & \text { practical problems. } \\ & \text { Covers mathematics, } \\ & \text { finance and statis } \\ & \text { tics, mechanical en- } \\ & \text { gineering and elec- } \\ & \text { tronics. For fun be- } \\ & \text { tween such serious } \\ & \text { applications, Hang- } \\ & \text { man and Space Cap- }\end{aligned}\)


CALCULATING
WITH BASIC
-
much simpler than the control circuits used to implement the full instruction set of the conventional machine. However, the simplicity of the elementary hardwired microcontroller is partially offset by the addition of a new element: the control store. A significant part of the cost of a microprogram-


Figure 2: Functional block diagram of a microprogrammed bus structured computer. Solid lines indicate data paths and broken lines are used to indicate control lines.

Figure 3: Input side of a typical bus in a hypothetical computer. The register names (MD, MA, etc) are not important and serve only as labels for this example.



Figure 4: Portion of a horizontal microinstruction to control the connection of registers to the bus in figure 3. Each box is a microinstruction bit that enables the indicated register-tobus connection.


Figure 5: Portion of a vertical microinstruction to control the connection of registers to the bus in figure 3. Here, three bits are used to encode a choice between seven registers or a 0 "no operation."
med computer also lies in the set of microprograms which must be developed and debugged to simulate a full virtual machine instruction set. As a result, the costs of the two types of computer architecture are probably comparable.

The microprogrammable central processor is often referred to as the host machine because many different virtual machines can be superimposed on it by changing the control store. By implementing different microprograms in the control store the hardware seems to change from the viewpoint of the virtual machine software. For this reason, a microprogrammable computer is said to emulate the architecture of a particular virtual machine.

This emulation technique is a powerful tool. It enables the same basic hardware to implement the instruction sets of many different computers. For the homebrew computer builder who goes this route, a basic 8 bit microprogrammed machine acting as the host might be programmed to emulate any one of the existing 8 bit microprocessors. The same host machine might even be used to emulate an IBM 370 so that some widely available public domain software could be utilized. Potential microprogrammers should be warned, however, that creating the microprogram for such an emulation is not a trivial undertaking.

\section*{Microinstruction Formats}

There are two microinstruction formats: horizontal and vertical. Most machines use a combination of these two. In a horizontal system, each bit in the microinstruction controls one data path or function in the machine. Figure 3 shows the input side of one bus in a hypothetical machine containing several registers. The A, B, MA, MD, PC, IR and I registers may be logically switched onto this bus, which might then route the data to one input of the arithmetic and logic unit.

Figure 4 shows a portion of a possible horizontal microinstruction format to control the data paths of figure 3. Seven bits are reserved in each microinstruction to indicate which, if any, registers are to be switched onto the bus. If all these bits are 0 , no data is put on the bus and the bus carries a value of 0 . If any of the seven bits of the current microinstruction is 1 , the corresponding register is put on the bus. To avoid conflicts, only one bit position in the 7 bit bus field may be logical 1 at any given time. Depending on the electronics of the bus structure, switching more than one register onto the bus at the same time may damage the hardware or simply give unpredictable results.

A vertical microinstruction format groups similar functions into operation codes called micro-orders. A micro-order for the bus input of figure 3 is given in figure 5. Since only one binary code can exist in the 3 bit field, it is not possible to put more than one register on the bus at a time. The vertical microinstruction format is more compact than a corresponding horizontal format.

Each microinstruction typically contains bits to control all computer functions. In a microinstruction, the two inputs of the arithmetic and logic unit and the destination of the output would be specified. The main memory read and write functions are specified by microinstruction bits. Bits for testing register quantities are also provided along with bits to cause jumps and subroutine calls in the microprogram. "No operation" may be specified if a particular bus or function is not used for a microprogram step.

\section*{Control Store Addressing}

The control store is much like a conventional memory. In cases of machines where user microprogramming is not allowed, a read only memory is used to contain the standard virtual machine instruction set. If the manufacturer supplies microinstructions to emulate more than one machine, or if user microprogramming is allowed, a programmable memory called a writable control store is used. If users are allowed to add instructions but not alter the basic instruction set, part of control store will be read only memory for the basic instruction set and part will be writable control store for additional instructions.

Homebrew computer people who choose to do microprogramming will most likely implement a writable control store and hardware to load it. Another alternative is to use inexpensive high-speed programmable read only memory to store microinstructions.

One control store addressing technique often used is to execute microinstructions in scquence. This technique is typically used with the vertical microprogramming format. A microinstruction counter, which is similar to a program counter or instruction counter in a virtual machine environment, is used to step through the microprogram. A microinstruction may contain a jump command which is indicated by a certain bit pattern in one of the micro-orders. With this technique the jump address is contained in the microinstruction in place of certain other micro-orders; thus, not all operations can be specified in a microinstruction that specifies a jump function.

Another addressing technique uses a field
in each microinstruction to specify the address of the next microinstruction to be executed. Horizontal microcoding formats typically use this technique. This method requires additional bits in each microinstruction that the sequencing method does not need.

\section*{Executing Virtual Machine Instructions}

Executing a virtual machine instruction typically begins with the microprogrammed instruction fetch. The instruction fetch is performed by a microprogram routine which sends the virtual machine program counter contents to a memory address register, cycles memory and puts the instruction which comes back from memory into the instruction register (IR). This instruction has a virtual machine op code which indicates which operation should be performed. To emulate the instruction, the proper microprogram in control store must be selected and executed. For example, if the op code 4 means ADD and the ADD microprogram begins in control store location 100, the next microinstruction fetched after loading the ADD instruction into the instruction register should be fetched from location 100

One method of providing the proper mapping between op code and control store address is by an indirect jump through the instruction register op code field. When the op code indirect jump is specified (by a specific bit pattern in the current microinstruction), normal control store addressing is suspended and the op code gives the address of the next microinstruction to be fetched and executed. If a 4 bit op code is used, an op code indirect jump would cause the next microinstruction to be fetched from a control store location from 0 thru 15 , depending on the op code value. The first 16 locations of the control store would contain jump instructions to the microprograms for each of the 16 op codes. If the ADD instruction is op code 4 and the ADD microprogram is at location 100, control store location 4 would contain a microinstruction specifying a jump to location 100 (see figure 6).

A second method for relating op codes to microprograms is the use of a read only memory mapper. A special read only memory contains the beginning address of microprograms which emulate each virtual machine instruction. When the mapper is invoked, the op code in the instruction register is used to address the read only memory which looks up the proper address of the microprogram to emulate the virtual machine instruction indicated by the op code (see figure 7).

This method is used in such machines as the HP 2100 minicomputer. A memory mapper is not flexible enough to be used in a computer where the virtual machine instruction set is altered dynamically. To change the virtual machine instruction set easily, a new mapper must be invoked. The read only


Figure 6: Mapping an op code into a microprogram routine by means of a table of indirect jumps. Here the op code 4 picks the fifth jump in the table, causing the microprogram to execute the ADD routine.


Figure 7: Another way to map microroutines: the instruction register op code field is used to address a special read only memory that points to the proper microprogram routine. Here the example of figure 6 is illustrated using a read only memory mapper.
memory mapper is most useful for manufacturers who supply a fixed set of microprograms that emulate only one virtual machine.

In both mapping techniques, a table of beginning addresses of microprograms is kept - one in control store and one in an independent read only memory. These tables are referred to as jump tables.

\section*{Hybrid Systems}

Some of the flexibility of a microprogrammed processor is lost when certain functions are not controlled entirely by microinstructions. For example, input/output on the HP 2100 minicomputer is handled in hardware and merely initiated and synchronized by microcode. As more control functions are performed in hardware and the ability to use different instruction formats is hampered, the number of different virtual machine instruction sets that can be easily emulated decreases. On the other hand, if certain control functions are handled by hardware and the machine level instruction format is relatively fixed, a virtual machine instruction set may be emulated efficiently.

The hybrid combination of microprogramming with some custom hardware is used in most general purpose computers. Functions which cannot be handled easily in microcode, such as isolating specific instruction register bits, are delegated to hardware. The flexibility of microcode is still available for instruction sets that take advantage of the hardware functions.

\section*{Advantages and Disadvantages}

There are several advantages to a microprogrammable architecture. For computer designers, the choice of the virtual machine instruction set may be postponed longer than with a conventional architecture, allowing hardware and software design to overlap and influence each other. Instructions may be added after the computer has been designed, built and marketed. As examples of this, the HP 2100 minicomputer's floating point option is implemented entirely in microcode, and the DEC LSI-11 floating point feature is achieved by plugging in an extra control store read only memory.

It is also possible with a microprogrammed machine to market a line of computers with similar instruction sets even though the actual hardware of less expensive machines may be very different from the more complex models. The IBM 360 computer uses 32 bit words and 16 general purpose registers. Some of the smaller IBM 360s have less than 16 registers and 32 bit data paths but are


\section*{TSA \(\longdiv { \text { 50FTTMARE } }\)} -nnounces our new product line

DAISY
On screen WORD PROCESSING with a serial terminal.

WPDAISY
DATABASE

TSA/OS

RLASM
DAISY with a built in text formatter.
A complete data management system with on screen updating.
,
Our operating system. Includes a full library of disk, terminal and device drivers.

A relocatable linking macro assembler with linking loader and symbolic debugger.

We provide well tested products
with the support you need on both coasts.
- DEALER INQUIRIES INVITED -

39 Williams Drive
Monros, CT 06468
(203) \(261-7963\)

\section*{CATCH THE S-100 INC. BUS!}

\author{
S.D. Versafloppy Disk Controller Kit
}
I.M.C. ' \({ }^{\text {Pro' }}\) Dual Extender Card
Ithaca Audio TRS-80 16K Memory Upgrade Kit
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{19} \\
\hline 5-100 & (0) \\
\hline & OUR
SPECIAL \\
\hline LIST & \({ }^{\text {Satelial }}\) \\
\hline 159.00 & 135.00 \\
\hline 39.00 & 33.00 \\
\hline 140.00 & 119.00 \\
\hline
\end{tabular}
T.E.I. 22 Slot Mainframe Fully Assembled with All Edge Connectors
845.00
633.00

Centronics 779 Printer w/tractor feed 1350.00
995.00

IMSAI S-10 2-1 Kit Serial Interface 125.00
106.00

IMSAI I-KB-1 Microprocessor Controlled Keyboard
395.00
170.00

Call for Our Prices on:
Cromemco, IMSAI, Vector Graphic, North Star, Sanyo, Hazeltine, IMC plus Most Other Major Lines.
Subject to Avallable Quantities - Prices Quoted Include Cash Discounis Shipping \& Insurance Extra

Bus.


Address. Clark, N.J. 07066 Interface. . 201-382.1318


\section*{TAKE A BIGGER BYTE}

If you're looking for a big piece of the action, come to Parker Brothers, a leader in the Toy and Game industry. Our Beverly, Massachusetts location puts you in the spotlight of the technological R\&D capltal of the country, and within ten minutes of the sailing capital of the world. So, get a bigger bite out of life. Come to Parker Brothers, and investigate the satisfaction of the New England way of life.

\section*{Microcomputer Programmer}

Programming single board computer prototypes in assembly language and PL/M, you will provide software development support for our rapidly growing Electronics Development Section. Involvement includes final production development; responsibility for liaison with vendor programmers; programming micro-computer-controlled test equipment to meet QC requirements; final algorithm development and programming production microcomputers.

A BSCS and/or 1-3 years experience in microcomputer programming; hardware interface experience and proficiency in at least one microcomputer assembly language; familiarity with the Intel development system and/or a four bit microcomputer helpful.

\section*{Please send resume and salary history to}

Michele Peluso
PARKER BROTHERS
50 Dunham Road, Beverly, MA 01915
An Equal Opportunity Employer M/F

microprogrammed to appear like full-sized 360 s. Such microcoded versions are, of course, slower than the more expensive models.

Some manufacturers allow the user to add special instructions to their machine by use of microprogramming. Functions or portions of routines that are executed frequently in the user's system are good candidates for implementation in microcode. Microcode routines run faster than similar routines executed in main memory.

One disadvantage of allowing user microprogramming is the possibility of altering the standard instruction set. This could eliminate compatibility with other machines of the same model and decrease the reliability of a system's software. Since manufacturers sell both hardware and software, user microprogramming is usually not provided because of the compatibility factor. The design of microprogramming by the user seems presently limited to special applications and people who design their own computers from the ground up.

\section*{Studying Microprogramming}

Studying the microprogramming users manual for one or more user microprogrammable machines will provide much information about microprogramming. Another source (although heavy reading) of information is a copy of IBM's patents on the system 360. If a microprogrammable machine is available, writing some simple microprograms will provide a lot of insight. If no microprogrammable machine is available, the microprogrammable architecture of a real or hypothetical machine can be simulated on a conventional machine. A simulator usually will not provide insight into the hardware timing problems that can be encountered on a real machine, but it can be used to try out microcoding ideas.

It is possible that a microprocessor system could be converted to support user microprogramming. The National IMP-16 and Raytheon RP-16 both use read only memory to control bit-sliced register and arithmetic and logic units. It is possible that a programmable read only memory or a writable control store could be substituted for the standard read only memory if timing problems could be overcome and if the control logic in the standard read only memory circuits can be simulated.

Another possibility is the use of a tran-sistor-transistor logic (TTL) bipolar microcontroller integrated circuit. This chip is typically a 4 bit slice in some microprogrammed central processor's data paths. Putting four 4 bit microcontrollers together
with a control store and address control logic implements the central processor of a 16 bit computer. This technique is being used for the next generation of high performance minicomputers and is a plausible way for the homebrew computer designer to implement a microcoded machine.

Although this type of project would allow more people to work with microprogramming, it seems to be a sizable engineering problem. Is anyone interested?

\section*{Conclusion}

Microprogramming offers something for both hardware and software proponents. The software fan can approach microprogramming from the programming viewpoint. Since the microprograms in control store must be efficient for the machine to run quickly, the design and programming of microcode is a challenging activity. Microassemblers and microcode editing and debugging programs should also appeal to the software person. The design and implementation of a microprogrammed machine should similarly interest the hardware enthusiast. A microprogrammable machine that resembles a new design may be used to test, at least partially, a new hardware design. Microprogramming should interest and challenge many computer experimenters.-

\section*{REFERENCES}
1. Chu, Yaohan, Computer Organization and Microprogramming, Prentice-Hall, Englewood Cliffs NJ, 1972.
2. Husson, Samir S, Microprogramming Principles and Practices, Prentice-Hall, Englewood Cliffs NJ, 1970.
3. Microprogramming Guide (for Hewlett-Packard Model 2100 Computer). Hewlett-Packard Co, Cupertino CA, 1972.
4. Rosin, Robert F, "Contemporary Concepts of Microprogramming and Emulation," Computing Surveys, volume 1, number 4, December 1969, pages 197 thru 212.
5. Wilkes, M V, "The Growth of Interest in Microprogramming - A Literature Survey," Computing Surveys, volume 1, number 3, pages 139 thru 145.

Editor's Note: BYTE is looking for more articles on the subject of homebrew computers with microprogrammed instruction sets. This is one of the most advanced state of the art techniques in computer science, yet it should be possible for individuals and clubs to do significant work in this area. . . . CH


Five models available. Universal tinned buses, pads or plain. 0.042 inch diameter holes on 0.1 inch grid for mounting anything anywhere. For interface, memory, breadboarding.
R681-2 RECEPTACLE FITS 8803 MOTHERBOARD Model R681-1 has 0.062 inch long 0.025 inch square tails.


\section*{BEAUTIFUL VP2 ENCLOSURE-supplied completely} assembled for packaging. S-100 based systems. Clear aluminum with blue vinyl finished slide-off sides, top, and perforated bottom cover; heavy chassis plate, removable front and reat panels, adjustable connector/Motherboard mounting struts, card guides (plastic guides supplied uninstalled). VP2, \$159.00. VP1.

cards mount perpendicular
to front, \(\$ 163.00\). BP17-9 accessory back panel, \(\$ 10.95\).
Low-noise model 8803 S-100 Motherboard not shown. Eleven positions ready for connectors. Glass epoxy, solder masked etched circuitry for passive and active termination, twelve tantalum capacitors and instructions. \$29.50.
*DuPont
trademark Prices subject to change without notice.
Send for complete data. Packaging systems for other
card sizes and systems, rack mounting are available
VECTOR ELECTRONIC COMPANY, INC.
12460 Gladstone Avenue, SyImar, CA 91342
telephone (213) 365-9661; TWX (910) 496-1539

\section*{A Digital Alphanumeric Display}

\section*{Daniel Chester}

Dept of Computer Sciences
University of Texas at Austin Austin TX 78712

\section*{Editor's Note:}

Although prices have been significantly reduced since this article was written in 1976, the ideas presented are still quite valid. The learning experience involved with designing and building any type of interface is invaluable. . . . RGAC

The demand for microprocessors for personal use is growing phenomenally. If these personal computers are to be more than fancy desk calculators, however, they need to be able to receive and display letters of the alphabet as well as numbers. While there are numerous terminals on the market that make such communications possible, they are so expensive that a complete computer system is still prohibitively priced. How can the costs of inputting and outputting alphabetical characters be reduced?

Getting letters into a computer is relatively easy. There are lots of surplus keyboards around which can do this for a reasonable cost. The hard part is getting the computer to answer back in a readable form that isn't just a string of digits. Television displays will do the job, if you have a spare television; but there is another way that will permit you to build a terminal without a television, a way which may even provide you with an alphanumeric terminal little larger than a pocket calculator. The secret is to use the same digital displays that desk calculators use.


Figure 1: Labelled 7 segment digital display.
\begin{tabular}{|c|c|c|c|c|c|}
\hline A & A & T & \(t\) & \# & \(三\) \\
\hline B & 6 & U & 4 & , & , \\
\hline C & [ & V & 4 & 1 & \(\Gamma\) \\
\hline D & \(d\) & W & 4 & ) & 7 \\
\hline E & \(E\) & X & 4 & * & 0 \\
\hline F & \(F\) & Y & 4 & + & -1 \\
\hline G & 9 & Z & 2 & , & - \\
\hline H & h & 0 & \(\square\) & - & - \\
\hline 1 & 1 & 1 & 1 & & \\
\hline J & \(\downarrow\) & 2 & 2 & / & \(\sim\) \\
\hline K & \(\vdash\) & 3 & 3 & : & 1, \\
\hline L & \(L\) & 4 & 4 & ; & 」 \\
\hline M & \(\Pi\) & 5 & 5 & \(<\) & ᄃ \\
\hline N & п & 6 & 5 & \(=\) & \(=\) \\
\hline O & 0 & 7 & 7 & \(>\) & ح \\
\hline P & \(p\) & 8 & B & ? & ح \\
\hline Q & 9 & 9 & 9 & 7 & 7 \\
\hline R & r & ! & \(!\) & \(\leqslant\) & 5 \\
\hline S & 5 & " & " & \(\geqslant\) & 3 \\
\hline
\end{tabular}

Table 1: Alphanumeric characters and corresponding output from the 7 segment digital display.

A digital display consists of a decimal point and seven line segments. If the decimal point and line segments are numbered as shown in figure 1, each display pattern represents eight bits of information. Only 21 of the 256 possible patterns are used by calculators. After a few hours of experimenting, I found, surprisingly, that most letters of the alphabet are included among the remaining 235 patterns. Although far from ideal, it is possible to display a large, recognizable character set on 7 segment digital readouts. The character set that I came up with is shown in table 1 . One of the shortcomings of this set is that some letters are upper case and others are lower case. This inconvenience is unavoidable, except for a few letters like \(\mathrm{C}, \mathrm{G}\), and U. Some letters, like \(K\) and \(X\), are impossible to display others, like \(M, V\) and \(W\), are just difficult. For these letters, and the other symbols in the character set, I chose patterns that are in some sense "close" to the desired

\title{
THE MM-103 DATA MODEM AND COMMUNICATIONS ADAPTER
}

\section*{FCC APPROVED}

Both the modem and telephone system interface are FCC approved, accomplishing all the required protective functions with a miniaturized, proprietary protective coupler.

\section*{WARRANTY}

One year limited warranty. Ten-day unconditional return privilege. Minimal cost, \(\mathbf{2 4}\)-hour exchange policy for units not in warranty.

\section*{HIGH QUALITY}

50 dBm sensitivity. Auto answer. Auto originate. Auto dialer with computer-controlled dial rate. 61 to 300 baud (anywhere over the long-distance telephone network), rate selection under computer control. Flexible, soft-ware-controlled, maskable interrupt system.

\section*{ASSEMBLED \& TESTED}

Not a kit! (FCC registration prohibits kits)

LOW PRICE—\$319.95 For Modem AND Coupler

Call for further information:
VOICE: (703) 750-3727
MODEM: (703) 750-0930

\section*{APPLE II SOFTWARE}


TURF ANALYSIS Take the guesswork out of handicapping wilh this new and easy way to handicap horse racing on the APPLE II. This program provides incredibly accurate predictions through the use of multiple regression and you don't have to know statistics to use it. You may use as many variables and as much data as you like. You're only limited by the available memory in your computer. TURF ANALYSIS has been fully tested and more often than not. It will beat the experts. (Requires \(\boldsymbol{J} 16 \mathrm{k}\) of free memory.) \(\$ 20.00\)

THE FORECASTER Let your APPLE do the work for you. THE FORECASTER performs a complete lifnear regression analysis and gives you an accurate regression equation within seconds. Your data is then graphed in High Resolution Graphics and a trend line is plotted by using the regression equation. THE FORECASTER is an excellent tool for those important trend analysis. (Requires \(\beth 16 \mathrm{k}\) of free memory.) Applesoft lirmware card required
\(\$ 15.00\)
MATRIX INVERT This program will quickly find the inverse and determinant to a symmetrical matrix or solve a system of symmetrical linear equations. (Requires \(\boldsymbol{J} 16 \mathrm{k}\) of Iree memory.)
\(\$ 12.00\)
THE PLOTTE With the APPLE II. this program will allow you to easily plot equations in High Resolution Graphics in fust seconds. THE PLOTTER is perfect for the beginning or advanced math student. (Requires \({ }^{\text {an }} 16 \mathrm{k}\) of tree memory.)
Applesoft lirmware card required
\(\$ 13.00\)
SOLO AACE is a very exciting and challenging Low Resolution auto race game where you drive a race car over curvy roads and around obsticals. You are allowed only 5 wrecks at which time you must have accumulated as many points as possible. This challenging game is superbly written and is sure to give hours of fun. (Requlres \(>16 \mathrm{k}\) of free memory.)
\$8.00
MANDALA SUPREME (Side 2: Game of Thinkum)
You can now create artistic objects on the APPLE II similar to the popular Double Bessel Function within minutes. Simply enter a few numbers, and the APPLE will mathimatically create a superior 3 dimensional-like object. (Requires \(\beth 16 \mathrm{k}\) of tree memory.) Applesott firmware card required

FUNPAK 1 The FUNPAK 1 is a small library of 5 programs all rolled into one. If you like a challenge, the Rat Race Maze, Mine Field or Canyon Bomber has It. On the other hand, If you're interested in a little sound odyssey, then try the Music Machine or Sound. The FUNPAK 1 is sure to give hours of enjoyment. (Requires \(>16 \mathrm{k}\) of free memory.)

PRO FOOTBAL
Never before has there been a program that can predict such unbelievably accurate pointspreads with the APPLE II. This program was fully tested during the 1978 season and it consistently beat
the experts. You may predict real or hypothetical games within seconds * from data saved on cassette or disk. The data file requies only 10 rundown of the season's activity. Each program includes a complete 1978 season data file. (Requires 22kk of tree memory.) \(^{\text {I }}\)

COLLEGE FOOTBALL SImlar to the PRO FOOTBALL program, COLLEGE FOOTBALL will glve accurate pointspread predictions within seconds on the APPLE II. This program contains over 78 major college football teams and a complete 1978 season ilie. (Requires \({ }^{\text {D35k of }}\) free memory.) ................................................ \(\$ 20.00\)

See your dealer Or for Immediate delivery SEND CHECK OR MONEY ORDER TO:

\section*{Systems Design Lab}

\author{
121 8th St. Altizer
}

Huntington, W.Va. 25705
304-525-8932


Figure 2: Sample message written in 7 segment display code.


Figure 3: Block diagram of an alphanumeric display panel.
ones. Even with these imperfections, however, this display code is quite readable, as is shown by the sentences in figure 2.

A simple 8 character alphanumeric display panel can be made from eight single digit readouts and eight shift registers. Each shift register corresponds to a different line segment in the digital displays. All the bits in register 1 are connected in parallel to segment one in each of the readouts, and the other registers are connected in similar fashion to the other segments as shown in figure 3. When an 8 bit pattern is fed into the registers via their left shift inputs and the registers are shifted, the appropriate display character appears on the rightmost readout. As more characters are entered in this way, they progress, ticker tape fashion, across the display panel until they disappear at the left end of the display. To make this display panel compatible with other computers besides your own, you can use a 256 word by 8 bit read only memory to convert from ASCII code to the display code required by this panel. To extend the panel, just add more readouts and more shift registers so as to extend the original eight registers.

The most practical form of alphanumeric input is the ASCII encoded keyboard, but the digital display code makes possible a computer terminal the size of a pocket calculator. Alphabetical characters could be entered by drawing them with a stylus on a pattern of eight metal sensing areas arranged as shown in figure 1. A small number of digital readouts would display the output.■

Call for Papers: Third International Conference on Computer Software and Applications

Papers are being solicited for the Third International Conference on Computer Software and Applications (COMPSAC 79). Sponsored by the IEEE Computer Society, COMPSAC 79 will bring together computer practitioners, users, and researchers to share their ideas, experiences, and requirements for applications software, management techniques, and software development support, including automated techniques. The conference will be held November 5 thru 8 at the Palmer House, Chicago IL. Some of the areas where papers are invited include: software development methodology, software management, database management systems, data communication and computer networking, computers and biomedicine, business office automation, industrial and design automation, application oriented languages, software testing and tools, and legal implication of electronic data processing technology. Papers should range in length between 1000 and 5000 words. The submission deadline is June 1, 1979. For additional information, contact Dr William Smith, executive director, Toll Electronic Switching and Operator Services Division, Bell Laboratories, Naperville IL 60540.․

Call for Papers: Twelfth Annual Microprogramming Workshop

The Twelfth Annual Microprogramming Workshop to be held November 18 thru 21, 1979 at the Hershey Motor Lodge Convention Center, Hershey PA will provide a forum for practical and theoetical aspects of firmware and related areas. Authors in industry and academia are encouraged to submit papers for formal presentation. Topics for consideration at the workshop include, but are not limited to: directly executable (intermediate) languages; language oriented architectures; emulation; microprogrammable host machines; on chip microprogramming; microprogramming experience; microprogramming languages; firmware development methodology; support tools for microprogramming; database support; operating systems and security kernel support; and signal processing. Formal sessions will be enhanced by informal discussions in a workshop atmosphere. Papers should be submitted in triplicate by June 1, 1979 to Richard A Belgard, MICRO-12 program chairman, Data General Corp, 62 Alexander Dr, Research Triangle Park NC 27709.

\section*{TRS-80 CORNER}

\section*{ANNOUNCING...ONE-STOP SHOPPING FOR YOUR TRS-80 MICROCOMPUTER}

\section*{SOFTWARE (State of the Art)}
- Disc-based business software
- FORTRAN for the TRS-80
- Functional, cassette-based programs
- Ol course, some games
- And much more

\section*{HARDWARE}
-16 K RAM kits with instructions
- \(51 /{ }^{\text {" }}\). Minidiskettes - only the very best - Scotch
- C-10 Data-settes - blank cassettes for programs
- Isolation Filters - the insurance you need!
- All Radio Shack equipment at \(10 \%\) oll
- And much more

BOORS
- David Lien's - "The BASIC Handbook" - A must for every programmer
- Coming Soon - David Lien's - "The LEVEL II Handbook" A must lor every Level II owner
- The Adam Osborne Series on Microcomputers
- Robert E. Purser's - "Computer Cassettes" - A compilation of all TRS- 80 Soltware on the market

\section*{CONSULTING SERVICES}
- Including installation and hands-on training with the TRS-80 Business System, for those end-users who are not computer hobbyists
- and much more

FOR MORE INFORMATION WRITE CIRCLE ENTERPRISES, INC. POST OFFICE BOX 546
GROTON, CONNECTICUT 06340

\section*{SHOULD it be a Heathkit'?}

Whether you are considering the purchase of an additional peripheral or your first computer you should know more about Heath \({ }^{\circledR}\) computer products. Heathkit \({ }^{(k)}\) has a continuing commitment to selling well-documented computer kits and software. Are they for you? How can you find out?

Read Buss: The Independent Newsletter of Heath Co. Computers, where information on new products is printed as it leaks out of Benton Harbor, not held back to suit a marketing plan. Buss is not a company-controlled publication, so it can deal with weaknesses of Heathkit \({ }^{\circledR}\) products as well as their strengths. It features news of compatible hardware and software from other vendors. Every Buss issue has candid accounts of experiences of Heathkit \({ }^{\circledR}\) owners. Results of their discoveries, which of ten include hardware modifications, save subscribers headaches-and money. That's proven by two years' experience. So Buss can guarantee a full refund any time you're not satisfied.

Buss is mailed first class (by airmail outside North America). The 24 -issue subscription gives you the choice of starting with the latest issue or with available back issues (about 8 are still in stock). Send \(\$ 8.00\) for 12 issues or \(\$ 15.25\) for 24 (overseas, \(\$ 10.00 / 12 ; \$ 19.25 / 24\) US funds) to: Buss

325-B Pennsylvania Ave., S.E. Washington, DC 20003
The Independent Wewsletter of Heath Co. Computers

\section*{NOTICE TO BYTE READERS Withdrawal Of Offer}

In the October, 1978 issue of BYTE,
Reston Publishing Company of Reston, Virginia, advertised a computer kit, RECOMP I.

This product is NOT available, however, and the offer is withdrawn. We regret any inconvenience to potential purchasers.

\section*{Reston Publishing Company}

1140 Sunset Hills Road Reston, Virginia, 22090

\section*{the mechanical interface!}

Turn your electric typewriter into a low cost, high quality hard copy printer.


\section*{ROCHESTER DATA}
incorporated
3100 Monroe Avenue, Rochester, New York 14618

\title{
Label and File Program
}

\author{
Andrew A Carpenter POB 841 \\ Gordonsville VA 22942
}

I occasionally need to order a part that I cannot obtain at my local vendor. Thus, I wrote a parts order program for this purpose on my SwTPC computer. The program generates two letters and two address labels. I keep one letter for my file.

Lines 8 and 2100 erase the screen and place the cursor in the upper left hand portion of my CT-1024 terminal. The program starts off by asking if a vendor's name and address is needed. If not, the program jumps to the letter form at line 2100. The user keys in the information prompted by lines 2110 thru 2245. If only one line is needed for parts, a carriage return may be entered when prompted for the second part (lines 2220 thru 2245).

If an address is required, the user is prompted to enter the first letter in the manufacturer's name. The letter \(B\) will list lines 250 thru 278 on the PR-40 (Bell and Howell) printer. The command LIST \#7 on lines 50 thru 110 lists the lines noted on the number 7 output device. In this case, the output device is the printer. Lines 200 thru 2000 are reserved for vendor's names and addresses. They may be changed to suit the user's requirements. Lines 50 thru 150 select the various sections of the address file.

Listing 1: Parts order program written for the
SwTPC 6800 computer.

\footnotetext{
0008 PRINT CHR\$(16); CHR\$(22)
0010 PRINT"'PARTS ORDER""
0012 INPUT "NEED AN ADDRESS (Y/N)",B\$
0015 IF B \(\$={ }^{\prime}\) 'N" GOTO 2100
0020 PRINT "FILES ARE LISTED A-Z"
0030 INPUT "WHICH FILE ARE YOU
SEARCHING FOR", A\$
0050 IF A\$ \(=\) '" \(A\) " LIST \#7, 200,248
0060 IF A\$='"B' LIST \#7, 250,278
0065 IF A\$ \(=\) "C'" LIST \#7, 280,298
0070 IF A\$="D" LIST \#7, 300,318
0080 IF A\$='"G' LIST \#7, 350,378
0100 IF A\$='"L" LIST \#7, 450,498
}
\begin{tabular}{|c|c|c|c|}
\hline 0110 & IF A\$='M' LIST \#7, 500,610 & 2290 & PRINT \#7. TAB(20); 'TV SERVICE" \\
\hline 0155 & PRINT & 2300 & PRINT \#7, TAB(20); ''GORDONSVILLE, \\
\hline 0160 & GOTO 2100 & VA.' & \\
\hline 0200 & ADMIRAL DISTRIBUTOR & 2310 & PRINT \#7, \\
\hline 0202 & DIXIE APPLIANCE CO. & 2320 & PRINT \#7, TAB(20);E\$ \\
\hline 0204 & BOX 12766 & 2330 & PRINT \#7, \\
\hline 0206 & ROANOKE, VA. 24028 & 2340 & PRINT \#7, \\
\hline 0208 & & 2350 & PRINT \#7, A\$+L\$ \\
\hline 0250 & BELL \& HOWELL DISTRIBUTOR & 2353 & PRINT \#7, B\$+M\$ \\
\hline 0252 & BELL \& HOWELL CO. & 2355 & PRINT \#7, C\$+N\$ \\
\hline 0254 & GENERAL SERVICES & 2358 & PRINT \#7, \\
\hline 0256 & 7100 MCCORMICK ROAD & 2363 & PRINT \#7, ''GENTLEMEN:'' \\
\hline 0258 & CHICAGO, ILL. 60645 & 2365 & PRINT \#7, \\
\hline 0260 & & 2370 & PRINT \#7, "PLEASE SEND C.O.D. THE \\
\hline 0280 & CONCORD DISTRIBUTOR & FOL & OWING PARTS" \\
\hline 0281 & STEREO LAB II, INC. & 2380 &  \\
\hline 0282 & 2350 MIDDLE COUNTRY RD. & "'." & \\
\hline 0283 & CENTEREACH, NY 11720 & 2390 & PRINT \#7, \\
\hline 0284 & & 2400 & PRINT \#7, 1\$;'" ";H\$ \\
\hline 0300 & DELCO DISTRIBUTOR & 2405 & PRINT \#7, O\$;" ";P\$ \\
\hline 0302 & MOLLEN BROS. AUTO & 2410 & PRINT \#7, \\
\hline 0304 & 2727 W. BROAD ST. & 2420 & PRINT \#7, "THANK YOU." \\
\hline 0306 & RICHMOND, VA. & 2430 & PRINT \#7, \\
\hline 2100 & PRINT CHR\$(16); CHR\$(22) & 2440 & PRINT \#7, TAB(20);"YOURS TRULY," \\
\hline 2105 & PRINT \#7, & 2460 & PRINT \#7, \\
\hline 2107 & PRINT '" 'LETTER FORM'" & 2470 & PRINT \#7, \\
\hline 2108 & PRINT & 2480 & PRINT \#7, TAB(20):'A.A. CARPENTER" \\
\hline 2110 &  & 2490 & PRINT \#7, \\
\hline 2130 & INPUT "ADDRESS",B\$,M\$ & 2500 & NEXTI \\
\hline 2150 & INPUT '"CITY \& STATE', C (\$,N\$ & 2505 & PRINT \#7, "--------------" \\
\hline 2170 & INPUT "DATE",E\$ & 2510 & PRINT \#7, "--------------" \\
\hline 2190 & INPUT "MFR",F\$ & 2520 & PRINT \#7, A\$+L\$ \\
\hline 2210 & INPUT 'MODEL \& EQUIP TYPE",G\$ & 2530 & PRINT \#7, B \$+M\$ \\
\hline 2220 & INPUT "'QUAN \& PART NO. \({ }^{\prime}\), \(1 \$\) & 2540 & PRINT \#7, C\$+N\$ \\
\hline 2230 & INPUT 'PART DESCRIP", H\$ & 2550 & PRINT \#7, "--------------" \\
\hline 2235 & PRINT & 2560 & PRINT \#7. 'A.A. CARPENTER, TV \\
\hline 2240 & INPUT '"QUAN \& PART NO. '', O\$ & SERV & \\
\hline 2245 & INPUT '"PART DESCRIP",P\$ & 2570 & PRINT \#7. "BOX 841" \\
\hline 2260 & FOR I=1T02 & 2580 & PRINT \#7, "GORDONSVILLE, VA. \\
\hline 2265 & PRINT \#7, "---------------" & 22942 & \\
\hline 2270 & PRINT \#7, & & \\
\hline 2280 & PRINT \#7, TAB(20); & 2590 & PRINT \#7, "--------------" \\
\hline "A.A & CARPENTER" & 2600 & END \\
\hline
\end{tabular}


\title{
Microcomputer Timesharing
}

\section*{A Review of the Techniques,} With Pointers to Further Reading

Kenneth J Johnson 56 Hodge Ln
Hartford, Northwich Cheshire CW8 3AG ENGLAND

Until I read Steve Ciarcia's article "Having a 'Private Affair' with your Computer" in April 1977 BYTE, page 18, I had not envisaged my 6800 or my 8080 as the basis of a timesharing system. Then I asked myself, "Why not? Why shouldn't a microprocessor be capable of supporting a timesharing system?" I subsequently had the opportunity at the ONLINE conference held in London England on May 141977 to see Robert Uiterwyk's 6800 based multiuser system. This prompted me to search back through the literature (especially that of the time when timesharing systems were first being introduced) to check on the problems their designers encountered and their solutions. This article is the outcome. It does not set out to specify in detail how a timesharing system can be established, but it does deal with the main problems involved. Perhaps it will provide a starting point for readers' systems development.

\section*{Requirements}

Timesharing has been defined in many different ways. For our purpose it will be taken to mean the concurrent, effective utilization of computer resources by several users, possibly at remote terminals. It will imply multiprogramming, possibly multiprocessing; in general, multiple access to system resources.

The key requirement in any multiprogramming or timesharing system is that programs and data should not be bound, that is, converted into hardware dependent form, until the moment of execution. This
requirement has many implications and may involve many problems, some of which have been solved in different ways with varying degrees of success. This article examines what is perhaps the main problem: relocating programs and data in a multiprogramming environment. The related problems of scheduling and priority systems, memory addressing algorithms and resource allocation are also discussed briefly.

\section*{The Problem}

A timesharing system should be designed to execute user programs in such a way as to provide reasonable service and to satisfy each user's requirements. This means that each user should believe that he has all the benefits of a dedicated computer. It is the basic philosophy of timesharing and leads directly to the concept of virtual machines linked to physical computer resources through address mapping tables.

Typically, individual user programs are allowed exclusive use of the computer resources in some order of priority for short periods. They are stopped after a certain time, frequently before completion, to allow other user programs to be given their exclusive use of resources. They are continued at some future time from the point where they were stopped, in either the same memory area or a memory area different from the one they were allocated when first allowed to run.

To be able to continue a program in this way, the system must have facilities to preserve the status of a program when it is

Circle 203 on inquiry card.


THE EDUCATIONAL LANGUAGE NOW READY FOR YOUR TRS-80

THIS VERSION FEATURES A BUILT IN EDITOR (THE ONLY ONE WITH ONE ON THE MARKET THAT WE KNOW OF) AND COMES WITH THREE SAMPLE PROGRAMS.
THIS IS A PROGRAMMING LANGUAGE SO SIMPLE A YOUNG CHILD CAN USE IT.

ALONG WITH YOUR ORDER YOU WILL RECEIVE THE LATEST LIST OF PILOT PROGRAM PACKAGES. WHICH SELL FOR \(\$ 7.95\) EA.
AND-YOU WILL BECOME A MEMBER OF THE PILOT USERS GROUP, WITH A NEWSLETTER SENT TO YOU FREE FOR THE NEXT YEAR!

ORDER NOW!!
TAPE \$14.95
DISK \$24.95
(OTHER VERSIONS WILL BE AVAILABLE SOON)


900E SALEM ROAD • DRACUT. MA 01826
- PHONE: (617) 682-8131
wh …

\section*{IMMEDIATE DELIVERY Domestic \& Export} DEC LSI -11
COMPONENTS A full and complete line with software support available.


Mini Camputer Supaliers, lic.
25 CHATHAM ROAD
SUMMIT, NEW JERSEY 07901
SINCE 1973
(201) 277-6150

Telex 13-6476

\section*{22 START-AT-HOME COMPUTER BUSINESSES}

\section*{in "The Datasearch Guide to Low Capital, Startup Computer Businesses"}

CONSULTING • PROGRAMMING • SOFTWARE PACKAGES
- COM - FREELANCE WRITING - SEMINARS - TAPE/DISC CLEANING - FIELD SERVICE • SYSTEMS HOUSES • LEASING - SUPPLIES • PUBLISHING • TIME BROKERS hardware distributors - sales agencies HEADHUNTING - TEMPORARY SERVICES - USED COMPUTERS • FINDER'S FEES • SCRAP COMPONENTS • COMPUTER PRODUCTS AND SERVICES FOR THE HOME.

Plus - Loads of ideas on moonlighting, going full-time, image bullding, revenue building, bidding, contracts, marketing, professionalism, and more. No career planning tool like it. Order now. If not completely satisfied, return within 30 days for full immediate refund.
- \(81 / 2 \times 11\) ringbound \(\bullet 156\) pp. \(\quad \$ 20.00\)

Phone Orders 901-382-0172

\section*{DATASEARCH}
incorporated
5694 Shelby Oaks Dr., Suite 105, Dept. B, Memphis, TN 38134

Rush___copies of "Low Capital Startup Computer Businesses" at \$20 per copy to me right away.

\section*{NAME/COMPANY}

ADDRESS
CITY/STATE/ZIP
\(\square\) Check Enclosed \(\square\) Bankamericard Master Charge


\begin{tabular}{ll} 
state & condition \\
active & \begin{tabular}{l} 
in a working state. \\
wait
\end{tabular} \\
\begin{tabular}{l} 
ready to run whenever brought into main memory. \\
user wait \\
waiting for the user to issue a command.
\end{tabular} \\
file wait & \begin{tabular}{l} 
temporarily held up waiting to be serviced by IO device. \\
temporarily delayed until another user program has finished using
\end{tabular} \\
dormant & \begin{tabular}{l} 
requested program of data file. \\
stopped running and has returned control to supervisory program,
\end{tabular} \\
dead & \begin{tabular}{l} 
but its machine conditions have been preserved. \\
terminated.
\end{tabular}
\end{tabular}

\section*{.}
wait
user wait
10 wait
dormant
dead
in a working state.
號 run wer to issue a command. stopped running and has returned control to supervisory program, but its machine conditions have been preserved. terminated.

Table 1: All possible states that a program may exist in at a particular point in its execution cycle.
stopped and to restore it when it is resumed. That is to say, at the point in time when one user's program is stopped and another user's program is resumed, the instantaneous description of the former program must be saved and the description of the latter restored. These instantaneous descriptions are typically referred to as the current "state" of the user program. The state of a program typically contains such information as the contents of the accumulators, program counter, and condition code register. The stateword might also contain pointers to the address mapping tables which determine the correspondence between virtual and physical addresses.

To explain this process in more detail, it is necessary to examine the factors which make multiprogramming possible and to study a typical system in operation.

\section*{Multiprogramming Requirements}

Technically, there are a number of considerations which decide whether it is possible to run programs together. In the book Computer Timesharing (see references), Popell specifies a minimum of five:
- A supervisory program referred to as executive, monitor, or supervisor.
- An interrupt processing system.
- Memory protection facilities to prevent one program from destroying others.
- Dynamic program and data relocatability so that the same routine can be reentrant. That is, the routine can be used, unmodified, in different memory locations at different times.
- Direct access facilities, or at least the facility for the convenient addressing of peripheral equipment. (For personal computers the floppy disk is the typical example of a direct access device.)

Typically, user programs to be run are stored in auxiliary memory, usually disk, readily accessible so that the supervisory program can switch them into main mem-
ory when their times to operate arrive. Each program is allocated the required area in main memory and that area is protected by either hardware or software, from interference by other programs. Any instruction attempting to address an area outside the allocated memory block is trapped and prompts an error message.

A system of priorities is usually implemented. The supervisory program permits the execution of the program with the highest priority until such time as it is suspended for some reason. Priorities are usually determined by a scheduling algorithm which is used by the supervisory program to keep a record of the status of each user program. Table 1 lists all the possible states of a program at a particular point in time.

If, by bringing a program into its area in main memory, there is a storage conflict, the program with the lower priority status must be restored to its place in auxiliary memory. This process is variously called swapping, switching, push-pull or roll out-roll in.

The most common cause of program suspension is a peripheral operation such as 10 . But there are others such as a machine or program error or the lowering of priorities. Until suspended, however, user programs run for periods of time determined by the scheduling algorithm. At the end of each program's appropriate time slice (or when it changes status) the supervisory program determines which user program is to be run next. The state of the program which is to be suspended (contents of accumulators, index registers, condition code register, etc) will then be saved either in a supervisor's stack or dumped to auxiliary memory.

The supervisory program then retrieves the next user program from auxiliary storage, together with that program's old state. It loads this program into main memory, processes it, restores it, proceeds to the next user program and so on, until it returns to the first user program to give it a second burst of processing (if required). Then it continues the cycle. It can be seen that the quintessential function of the supervisory program in a timesharing system is scheduling.

\section*{Scheduling}

On early machines, programs were assembled into the part or parts of main memory they were to occupy during run time in much the same way as they are on microcomputers today. If a large program required too much memory, it was necessary to assemble the program in sections, transferring each section as it was completed to auxiliary storage and restoring it (if nec-

\section*{"BIG-EDIT" FOR BIG APPLE II PROGRAMMERS}
- Convert your INTEGER or APPLESOFT BASIC programs to "text" files on disk for easy editing and subroutine library development!
- Quickly change lines in "text" programs; search and replace occurrences of strings; merge lines from other program files; restructure programs!
- Renumber your programs - you specify the starting number and increment!
- Strip REM's from "execution" versions of your programs (improves speed and frees up memory)!
- Create and edit non-program text files (letters, announcements . . . I!
- Prints upper and lower case on line printer, inverse video on screen!
- Comes complete with System Disk, User's Manual and handy Reference Card!
REQUIRED: APPLE II with Floppy-Disk drive, APPLESOFT BASIC in ROM, and 32K minimum RAM (48K is recommended). "BIG-EDIT" supports optional printer.

\author{
GARVEY, MARTIN \& SAMPSON, INC. \\ 210 Bavarian Drive (C) \\ Middletown, Ohio 45042 \\ Phone: (513) 423-6608
}

Enclosed is \$39.95. Send me "BIG-EDIT" (ASAP!).
Name
Address
City/State/Zip


\section*{G/PM' SOFTWARE TOOLS}

\section*{ED-80 TEXT EDITOR}

THE PROGRAMMER'S MOST IMPORTANT SOFTWARE TOOL - WHY NOT MAKE IT YOUR BEST?

ED-00 encompasses the features found on large mainframe and minicomputer editors, such as the IBM 370, CDC 170, UNIVAC 1100, and the DEC PDP. 11 series computers, plus additional features designed for floppy disk based operating systems. It is a context editor which is compatible with C/PM and its derivatives, including IMDOS, DOS-A, CDOS, atc.
Over 50 commands are provided, inctuding forward or backward LOCATE, CHANGE, and FINO commands: INSERT, DELETE, REPLACE, APPEND, PRINT, LIST, MACRO upper and lower CASE. SCALE, TABSET, and WINDOW commands; and GET and PUT upper and fower CASE. SCALE, TABSET, and WINOOW commands; and GET and PUT
commands for repositioning, duplicating, concatenating, and managing text files and commands for repositioning, duplicating, concatenating, and managing text files and
libraries. Sophisticated search and change techniques are provided for managing libraries. Sophisticated search and change techniques are provided tor managing
GASIC. FORTRAN, COBOL, PL/I, ALGOL, APL, PASCAL, ASSEMBLER. TEXT BASIC. FORTRAN, COBOL, PL
FORMATTED, and other file types.
The WINDOW command allows instantaneous full screen displays of both the current and surrounding lines for further editing, and provides for forward and backward scrolling in the full screen mode. Designed for today's high speed CRT's and video monitors, the WINDOW command separates ED-0 from all other available editors, and is not hardware dependent.
Up to three MACRO commands may be defined for iterative execution of concatenated edltor commands. Once defined, they may be subsequently executed, or recalted for observation. A MACRO may also be defined and executed in a single operation.
Configurabie parameters for tailoring the editor to the user's keyboard and environment are provided through the use of the C/PM Dynamic Debus Tool (DDT). The WINDOW, WINDOW NEXT, WINDOW PREVIOUS, NEXT LINE, and PREVIOUS LINE commands fall in this category. These commands are considered so important to text editing that only one key has to be depressed to cause any one of them to execute.
A CURRENT LINE NUMBER is internally maintained by the editor for displaying when prompting for input and with certain other commands. Line numbers are dynamically adjusted as the result of line inserts and deletes, and may be used for positioning within the file. They are not stored or associated with the text in any manner.
ED- \(\mathrm{BO}_{0}\) is thoroughly documented with a User's Manual of over 35 pages describing each command and feature, and includes numerous examples. It is 9.5 K bytes in size, and a minimum C/PM operating system of 20K is recommended. A User's Mamual and standard size single density diskette are \(\$ 69.00\). A User's Manual is \(\$ 7.50\), refundable with purchase. COD and money orders shipped next day. COD orders require 10\% deposit. Personal checks mustclear before shipment. Include \(\$ 2.00\) shipping/handing per order.

> SOFTWARE DEVELOPMENT AND TRAINING, INC.
> P.O. Box 4511 C/PM0 \({ }^{\text {He }}\) is atrademark of Digititl Ressearch

\section*{NORth StAR * Disk OWNERS}

\section*{THE MOST COST-EFFECTIVE MACHINE} language development systems available THE XL-8080 \& XL-Z80 SYSTEMS

EDITOR ** Create \& modify source listings using 15 powerful commands. Provides string search/replacement, auto-line numbering, multi-diak file storage, automatic memory management, built-in tab, printer listings and much more. Also, a North Star-compatable line editor provides rapid line edit capability.

ASSEMBLER * Processes source listings directly from disk and optionally stores binary code in memory or on disk. Features multi-disk/file processing, multi-length labels, symbol table listing, console or printer output, etc..Allows any size program (source or code) to be processed!

DISASSEMBLER * Processes an object file on disk and produces source file listings both on a second disk file and on the console or printer.
"MAXIMIZES DISK CAPABILITY
-USES EXISTING DOS USER I/O ROUTINES
- REQUIRES LESS THAN 16K MEMORY TO OPERATE

XL-8080 SYSTEM w/complete documentation \(\$ 39.95\)

XL-Z80 SYSTEM (same as above but processes z80 Zilog-format tiles \(\$ 59.95\)
XL-ZP/M SYSTEM (Z80 Assembler for CP/M) \(\$ 59.95\)

Avallable at your local computer store or by sending check or money order to:
2
CDMPUTER
PRONETS
P.O. Box 805
Mesa, AZ 85202

Dealer inquiries wetcome

\section*{OMSI PASCAL'}

Reliable, eflicient, production Pascal compiler for the DEC PDP- 11 family, induding the \(L 51-11\).

\section*{Full Language}

All elements of Standard Pascal, including the capabilities not found in student Pascals. Extensions for complete lowlevel control with direct memory and I/O device access, embedded assembler.code, FORTRAN procedure interface.

\section*{Productlon}

Integrated with DEC operating systems (RSTS/E, RTII, RSX, IAS). Compatible with existing file structures, editors, and utilities. Interactive symbolic Debugger with breakpoins and full trace.

\section*{Performance}

Fast one-pass compiler runs in 16 K words ( 32 KB ), translates thousands of lines per minute. Produces compact PDP-11 code that runs circles around interpretive or threaded languages.

\section*{Proof}

In production use since 1975 - now at more than
300 customer sites. Warranted for 1 year after purchase.
Write for information, demonstration, manuals, and benchmark.


2340 SW Canyon Road Portland, Oregon 97201 (503) 226-7760 TWX 910-464-4779

DEC. PDP, RSTS, AT-11, ASX, IAS, and LSI-11 wre trademarks of Digital Eq. Corp.

\section*{Improve your game with . . .}

\section*{>> \(>\) FASTGAMmOn > \(>{ }^{\prime \prime \prime}\)}

An exciting new backgammon opponent!


OUTSTANDING FEATURES! - Computer makes good moves instantaneously. Literal and graphic displays of each move. Option to replay same rolls. Eight-page instruction manual.
Available on cassette ( \(\$ 20\) ) for:


SOL*
Available on diskette ( \(\$ 25\) ) for: TRS-80*

COMPAL-80***
SOL/NORTH STAR* APPLE II**
- Micropolis dual density

\section*{SEE IT NOW AT YOUR LOCAL COMPUTER DEALER}


OR ORDER DIRECT FROM
Quality Software
0051 Odessa Avenue, Sepulveda, CA 91343 (California residenis add 6\% sales rax)
essary in overlays) immediately prior to entry. For this purpose, a suitable portion of memory was reserved for the segment of the program being assembled, and for each instruction two separate addresses had to be recorded: one giving the address of the current instruction and the other indicating the address it would occupy at run time. With elaborations, this technique became the basis of early timesharing systems.

Basic to the running of these early systems was the concept of independent peripheral operation. The processor, having initiated an 10 routine for one program, could then proceed to service the computational needs of other programs until the 10 routine signaled its completion by interrupting the processor operation. For various reasons, these timesharing arrangements did not fully utilize even the relatively slow storage access time on some computers. The multiprogramming concept was developed fully to realize this potential. The logic was incontrovertible: if the machine had spare memory and spare peripherals, these could have been utilized by a second program. If this still left unused capacity, why not load a third program to use the peripherals and access time not required by the first and second programs; and so on.

Tsujigado showed that it was theoretically possible to process simultaneously a large number of programs (256) in the conversational mode. Although theoretically possible, this would be impractical even now on large computers because of the large memory requirements. In consequence, it is necessary to resort to swapping techniques, and a suitable scheduling algorithm.

The swapping techniques adopted initially depended upon the hardware design (the control mechanisms varied widely between manufacturers and between models). Some hardware is still required for effective control of the process, but the software usually provides the necessary control procedures. In "Computer Software" (see references) Archibald et al specify the necessary software features. They include:
- A means of reserving memory and peripherals for exclusive use by individual programs for predetermined periods of time.
- A means of switching from one program to another to optimize computer performance.
- Facilities to relocate programs dynamically during execution as the overall pattern of programs in the computer changes.
The effect of these routines is to provide multiprogramming facilities which enable
many users to initiate programs and to schedule them through the system according to their relative predetermined priorities.

The simplest system is based on a circular queue for "round robin" scheduling. Each program accepted into the system is assigned a fixed time slice and processor operation is switched from one program to another in round robin fashion until each program is completed. In this arrangement, only one active user program is in main memory at one time. Other active programs are held on disk,

In other systems several user programs may reside in main memory simultaneously. The operational switching between them is controlled by a clock which is used to generate an interrupt to signal the processor that a certain time period has elapsed. The scheduling algorithm is then entered every time a clock interrupt occurs. If it is found that the program in main memory has exhausted its time slice or has changed its status, that program is swapped for the next program in the queue.

Most sophisticated installations of any size find the need to operate a system of queues. The appropriate queue to be serviced by the processor at any particular time will be selected according to priority and program type by the scheduling algorithm. Programs are initiated, or relcased for processing by being selected from the tops of the various queues which are formed in accordance with the particular installation's design philosophy. In addition to systems of queues, the supervisory program normally has to deal with systems of priorities. Again, what determines these priorities will be a matter of design philosophy. Various criteria are used in practice. Usually it is possible for the system itself to cause priorities to be modified while programs are being queued. Such modifications are especially desirable in real time systems because one program might be continually bypassed; or because a deadline is approaching and the program concerned is not being serviced.

From time to time it may be that a program being queued will have to take precedence over a program being serviced. Downgrading of priorities happens often in scheduling systems. To facilitate this, some operating systems provide a roll in-roll out facility which enables the supervisory program to make a request for processing time on behalf of a higher priority program in the queue. This will result in a lower priority program being rolled out to enable the new program to be processed. Programs rolled out in this way are written into temporary storage along with their current status. When changing circumstances permit the reloading


\section*{The experienced 2114 4K static RAM}

From EMM - the industry's largest supplier of 4 K static RAMs - a 2114 with a year and a half of delivery behind it. Not a new part. Just a new pin-out of a proven part. 1K x 4 organization. 5 V only. Standard 18-pin DIP. It draws only 300 mw , has all the speed you need for microprocessor applications.

\section*{Eminilsemininc.}

A division of Electronic Memories \& Magnetics Corporation 3883 North 28th Avenue, Phoenix, Arizona 85017 (602) 263-0202

\section*{NEW! for the DE[ \({ }^{\text {™ }}\) HIGH RESOLUTION GRAPHICS!}


Now there is a complete Software Package and a simple, tow cost Logic Circuit that gives the PET 2001 HIGH RESOLUTION GRAPHICS. It can plot 3-D images, pictures, fancy graphs, maps-almost anything! Points are plotted on a high resolution matrix of \(236 \mathrm{~h} . \mathrm{x} 191 \mathrm{v}\). Graphic displays can be stored on tape cassettes.

Do it yourself with the Graphics Hardware Manual from Conley Graphics. Complete hardware information, diagrams, and easy to understand explanations ailow you to build your own Logic Circuit for the affordable price of ONLY \(\$ 15\). Parts are readily available from popular electronics stores. Now, high resolution graphics opens up a world of new uses for the PET!

Complate Software Package and Graphics Hardware Manuat \(\qquad\) \(\$ 19.95\)
wailonetero: CONLEY GRAPHICS
211 Purdue Avenue, Kensington, CA. 94708
Calif. residents add 6\% Sales Tax PET is a trademark of Commodore Business Mach

\section*{Main/Frames \({ }^{10 \mathrm{~m}} \$ 200\) Main/Frames \({ }^{\text {tem }} \$ 200\) \\ - 14 Basic Models Available} - Assembled \& Tested
- Power Supply:
\(8 v @ 15 A\), \(\pm 16 v @ 3 A\)
- 15 Slot Motherboard
(connectors optional)
- Card cage \& guides
- Fan, line cord, fuse, power
\& reset switches, EMI filter
- 8v@30A, \(\pm 16 \mathrm{v} @ 10 \mathrm{~A}\) option on some models


Write or call for our brochure which includes our application note: 'Building Cheap Computers' NEGPAND
8474 Ave. 296 • Visalia, CA 93277 • (209) \(733-9288\) We accept BankAmericard/Visa and MasterCharge
of programs temporarily suspended, the supervisory program will automatically roll in these programs and they will restart from where they left off.

It may be that the exact locations in memory which such programs and their data were using are no longer available. To deal with this situation, operating systems provide the facility to relocate programs dynamically.

\section*{Scheduling Methods}

To summarize the discussion so far, there are basically two methods of scheduling:
- Simple swapping systems with only one program at a time residing in main memory for a fixed unit of time in accordance with a system of priorities.
- Elaborate systems which overcome the disadvantage of only one user program in main memory at a time with consequent waste of time due to switching.

This necessity of switching programs into and out of main memory at speeds approaching the internal clock rate leads to further problems which can only be solved with additional hardware and software facilities. In particular, since a given user program does not always get loaded into the same place in memory it leads to addressing problems.

\section*{Addressing Techniques}

In most systems, individual programmers will have to write their programs without knowing which other programs, if any, will share main memory with theirs. The implication must be that they will need to use symbolic addresses that will be converted to absolute addresses at some time by the supervisory program when allocating memory space and peripherals to the various programs. This necessity has led to the present timesharing philosophy which requires the conceptual separation of absolute storage addresses from the logical system addresses.

In a multiprogramming system, resources are not normally allocated to programs until execution time. Since the physical resources allocated may be different during each time slice, it is essential that the run time representation of programs should be in hardware independent form. This means that the addresses in particular should be virtual addresses. Physical addresses will be represented by an address mapping table which will be updated whenever programs are moved from main memory to temporary storage and vice versa.

As Wegner points out, the structure of the address mapping table will depend not
only on the relation between the virtual address space and the physical address space, but also upon the hardware facilities available for performing address mapping. For example, in "Addressing Structures" (see references) Gammage recalls that the need for dynamic program relocation was met on second generation machines by the provision of a single base register, the contents of which were added to a virtual address generated within the program to map it into an actual main storage address.

The major drawback here was that the program had to be moved between main storage and temporary storage as a single unit (a wasteful process where large programs are involved). It also meant that no program could be larger than the available main memory space.

To overcome these problems, more elaborate addressing structures were devised. These structures reflected the hierarchical organization of problem oriented programs and the need in real time systems to provide for the organization of sets of independent, multiprogrammed jobs. To give the facility of dynamic program relocation, for example, some machines were fitted with special hardware. IBM built upon the addressing system of the IBM 360, which allowed only two levels of addressing, and provided a third level. They did this by providing two sets of additional base registers, one set to act in the same way as the base registers of the IBM 360 (being accessible to the programmer). The other set, sometimes known as segment registers, accessible only to the supervisory program, are used in allocating storage.

Gammage outlines three such schemes, but suggests that because these schemes use variable length segments as the basic unit for storage swapping, they are very inefficient in terms of storage utilization. Their inefficiencies cannot be overcome completely unless a full paging system is employed, using fixed length units for swapping.

\section*{Paging}

Most modern machines provide some kind of virtual memory structure if they are to be used for multiprogramming. This addressing space may be provided by hardware or created interpretively by software. Most modern systems also interpose an address mapping structure between virtual and physical addresses.

Typically, the virtual address of a word in memory consists of two parts. The first refers to a page number (a fixed size block of main memory). The second refers to a location within the block. In operation, secondary memory is connected to these

\section*{Whats happeaned to "therinht to heletalone?"}

Brandeis called it "the right most valued by civilized men." In today's computer age, it is rapidly disappearing. Covering all the technological and legal aspects of the problem, the editor of Privacy Journal has now written
 let alone and what you can do to shore it up."-Bill it up. - Boyers. endangered is your right to be
"one of the most helpful books I have read this veara book you cannot read without discovering how

\footnotetext{
-
}


\section*{HARD DISC FOR S100 MICROS}

> The XCOMP DCF- 10 Disc Controller provides the OEM with a high performance. low cost interface for fixed and removable (2315 or 5440 ) cartridge disc drives. The DCF-10 is currently supported by two operating systems. For information or manuals, contact XCOMP.


9915-A Businesspark Ave., San Diego, CA 92131 • (714) 271-8730

\section*{FREE Catalog}

\section*{Your source of 4-way relief from problems with minicomputer supplies and accessories:}
1. One-stop shopping Minicomputer Accessories free catalog has over 800 products. Magnetic media Racks. Line-printer paper Computer-room furniture Cables and connectors both standard and custom built Buy any quantity you need when you need it
2. Hassle-free ordering Minicomputer Accessories lets you order by mail or phone keep the catalog close Il makes once-tough lasks like ordering media easy. fast and toolprool

3. Lightning-fast shipment Minicomputer Accessories ships your order within 24 hours from distribution centers in California and New Jersey Our shelves are always toaded with emergency tems so yours don't have to be. Need your order faster than 3 to 4 days? We'll arrange for services to get it there nexl day
4. Field-proven quality

Minicomputer Accessories demands stringent testing and star performance betore any product is included in our catalog That's why we have the contidence to guarantee every product for at least 45 days... and some for up to 10 full years

Send for your FREE CATALOG.
It's your problem-solver from Minicomputer Accessories Corporation.

\section*{Announcing}

\section*{SMALL BUSINESS COMPUTERS Magazine}

\section*{The magazine for users and potential users of small business computer products and services}
- The monthly mayczine for husinessmen in the process of purchasing or installing their first com puters
- The practical hou" to puhication writeen in mon technical language and stressing business applica ions for small computer systems Each monthly issue includes:
FEATURE SURVEY REPORTS: Such as. Soffware Pockoges for Small Business Applications, Small Manufacturing Sustems. Inventorv Control Sustems. Microcomputer Business Appliactions, and so on
APPLICATION STORIES: Real.life examples of computer applications in the small business en vironment - capahilities. benefits. what to watch for. and much more of direct interest to the small businessman

COMPUTER PROFILES • IDEAS AND INNOVATIONS • INFORMATIVE ADS

SPECIAL CHARTER SUBSCRIPTION
12 issues @ \(50 \%\) off

Recelve the next 12 issues of Small Business Computer Magazine lor just \(\$ 9\). . . 50 \%.off the cover price

Mail the coupon today to: SMALL BUSINESS COMPUTERS Magazine
33 Watchung Plaza - Montclair. NJ 07042

SMALL BUSINESS COMPUTERS Magazine - 33 Watchung Plaza - Montclair, NJ 07042
- YES. Enter my charter subscription at the ': price cost of \(\$ 9\) for 12 monthly issues.
\(\square\) Check enclosed
ㅁ Bill me
Name
Organization
Address
City/State \(\square\) Zip
blocks through high speed 10 devices that permit programs to be swapped directly from disk into any one of the main memory blocks without interfering with processor operation. This process is known as direct memory access and allows execution of one user program in one block of memory while programs are being swapped to and from another block.

Main memory is similarly divided into physical pages, each capable of handling one page of a program or block of data. Program pages, although the same size as main memory pages, will not necessarily be contiguous in main memory and may well occupy different main memory pages at different times. One of the functions of the supervisory program in a paging environment is to form and keep up to date a page table which establishes a mapping of the program and data pages into physical pages. By this means, the address of a page within a program is transformed via the page table into an absolute memory location.

In practice, to achieve dynamic relocation, it is necessary to extend the instruction address to include a segment number as well as a page and location number and to leave the binding of address parameters until run time. The segment number is then used to access a segment table belonging to the user whose program is running at that instant. The reference in the segment table is to the page table which in turn maps onto the physical page and through this to the physical address.

This scheme can be very clumsy and take too long, unless the machine is fitted with additional registers which permit the development of an associative memory. The associative memory combines the segment and page numbers, so that only one interrogation is required to find the number of the physical page containing the appropriate address. Systems in which page registers are designed to be accessed associatively operate various page turning algorithms which determine:
- Whether certain pages are in memory.
- Whether pages are to be preserved or overlaid.
- How recently pages have been used so that, if need be, they can be disposed of when new pages are brought into memory.

These systems are the basis of the virtual memory concept which in turn provides the means for dynamic relocation.

\section*{Dynamic Relocation}

Let us spell out the need for dynamic relocation in a timesharing system. In general, a program consists of instructions and data.

While being executed it will contain references to intermediate results. These will need to be mapped or translated into references to specific parts of the machine (machine addresses, device numbers, etc). This can be accomplished at three different times:
- During compilation, assembly, or translation into machine code. The result is an absolute program which will be assigned to the same memory locations and use the same peripherals each time it is run, assuming they are available. (This is the most common scheme for user programs in typical personal computers.)
- When the program is loaded. Most machines have a relocating loader which enables programs to be relocated statically.
- During execution, using dynamic relocation.

In multiprogramming it is difficult, if not impossible, to allocate memory concurrently to two or more independently written programs if they are absolute programs. The allocation method requires that the particular combination of programs to be run at any one time and their storage requirements are known in advance. This is information that is not always available when the programs are written.

If the absolute addresses are left untranslated by the assembler or compiler and translated by a relocating loader into actual addresses only when the program is loaded for execution, the particular combination of programs to be loaded together can be decided just prior to loading. This method is known as static relocation. Using static relocation it is possible, with a relocating loader, to allocate memory to a program eacn time it is executed, provided:
- The program can be separated into a data part and a procedure part.
- The procedure part is never modified during execution.
- The data part, including the contents of registers at the time of interrupt, contains no absolute memory addresses.
- When the program is interrupted, the data part is dumped onto auxiliary storage.

These four conditions are not difficult to achieve. Nevertheless, the relocation of an interrupted program by this method has a number of significant drawbacks, which are summarized by Denning in his article "Virtual Memory" (see references).

In dynamic relocation, the translation of virtual addresses to main memory addresses


For Professional Data Processing Results Specify
"SCOTCH" 3M FIoppy Diskettes
\begin{tabular}{|c|c|c|c|c|}
\hline ITEM CODE & DESCRIPTION & Price & ' SPECIAL PRICE EACH & \({ }^{+}\)SPECIAL Box OF 10 \\
\hline 3M-740.0 & 8 Soft-seclored IBM format for IBM. IMSAL. Cromemco & \$6.50 & \$5.50 & \$49.00 \\
\hline 3M.740-32 & 8 32 -sectors. hard sectored tor Shugart, Tektonics Processor Tech & 5680 & \$5.80 & \$51.00 \\
\hline 3M.744.0 & 5" Solt-sectored IBM format tor Apple. TAS-80. IMSAI. Cromemco, SWTPG, Compucolor. Intelligent Systems & 5850 & 55.50 & \$49.00 \\
\hline 3M.744.10 & 5 10-sectors. hard sectored tor NorthStar. Wang & \$6.50 & \$5.50 & \$49.00 \\
\hline 3M.744.16 & 5 16-sectors, hard sectored for Micropolis. Altair. PCC & 3650 & \$5 50 & \$49.00 \\
\hline
\end{tabular}
- To quality for these SPECIAL prices. payment must accompany order. or call with credit card Prices are FOB. our warehouse. Add 51.50 shipping 8 handiung per each 10 (or wasa) diskettes N.Y. state residents add appropriate sales tax.

Shipments wall be made lrom stock
Order loday from your authorized deater for 3M Company "SCOTCH" brand 740 diskettes.

\section*{16K STATIC RAM}


Kit price \$285 450 nsec
\(\$ 320250\) nsec Memory Chips

Add \$25 for assembled, tested, Guaranteed.
Static TMS 4044- Fully Static \(4 K \times 1\) Memory chips for better data integrity and DMA compatibility.
Fully S-100 Bus Compatible-All lines fully buffered. Dip Switch Addressable in two 8 K blocks, 4 K increments. Write Protectable in 2 blocks, Memory Disable using Phantom (pin 67) or strappable to any other pin.
Bank Select-Using Output port 40H (Cromemco software compati-ble)-addressable to 512 KB of RAM or for time share. Also has alternate port \(80 \mathrm{H}-\mathrm{making}\) over 1 million byte of RAM available.
Quality Components-First quality parts, fulty socketed. Glass epoxy board with sitk screened legends, solder masks, Gold Contacts.
Guaranteed-parts and labor for 90 days. You may return the undamaged board within 10 days for a full refund. Foreign and kit purchasers-parts only guaranteed; no return privilege.
Orders- You may phone for Visa, MC, COD orders. (\$4 handling charge for COD orders only) Personal checks must clear prior to shipping. Shipping-Stock to 72 hours normally. Will notify expected shipping date for delays beyond this. Illinois residents add 5\% tax. Please include phone number with order.

\section*{S.C. Digital}
P.O. Box 906

Phone:
Aurora, IL 60507 312-897-7749
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Narth
PROGR \\
You can look to us \\
** Inter \\
Thinker Toys 8"' for North Star Compu Additional Drives
\end{tabular} & \begin{tabular}{l}
MUlke's \\
YOUR \\
Star \(\star\) Con AMMING SPECIA \\
for innovative and im tec Intertubes now ava \\
isk Drives Many diff ters '995* computers -79500 include full Library. S
\end{tabular} & \begin{tabular}{l}
IPUTERS ISTS! \\
inative programs ble ** \\
ent and diversified ystems available. All access to Program tems start at \({ }^{4,995^{\circ}}\)
\end{tabular} \\
\hline \begin{tabular}{l}
DOSCHG \\
Patches to connect Thinker Toys 8' Disk Drives to North Star DOS \& Basic. Fully supports all North Star Functions on \(8^{\prime \prime}\) disk. \\
*49.95
\end{tabular} & \begin{tabular}{l}
CSUB \\
A set of Functions defined in North Star Basic that handle all disc accessing (Sequential, Random, \& Keyed Access) and all CRT display, formatting \(\mathcal{E}\) Input. A SUPERB APPLICATION PROGRAM DEVELOPMENT PACKAGE. \\
*49.95
\end{tabular} & \begin{tabular}{l}
TIMESHARE \\
Patches to North Star DOS \& BASIC that take advantage of the versatility of the Horizon computer to implement an interrupt driven bank-switching time sharing system. Requires additional memory \& terminals. \\
\$49.95
\end{tabular} \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
Micro Mike's \\
905 Buchanan, Amarillo, Texas 79101 806-372-3633
\end{tabular}} \\
\hline
\end{tabular}

If you need Business Reports with fancy frills you have the wrong company. We don't put these in our Software or our Ads. Both cost *** You *** Money.

But if you need solid, Down-To-Earth Software for your North Star, Imsai, or other low cost Data Processing System written in Microsoft Basic or Cbasic including GL, AR, AP, Inventory, Payroll, Mailing List and Fixed Asset Accounting then you "** Do "** have the right company.
give us a try - We know you'll be glad you did
We honor Vise and Mastercharge


102 Avenida Dela Estrella
Suite 208
San Clemente, CA 92672
(714) 492-7633
is delayed until the last possible moment (until access to memory is required in running the program). Because the program contains no absolute addresses, it is independent of the actual memory allocation it receives. This means that it can be interrupted at any time and subsequently reloaded into a different part of memory without modification. This desirable facility can only be achieved at the expense of additional hardware and more complex instruction formats. This is desirable since instructions in general must now hold untranslated addresses in a form appropriate to the relocation technique adopted.

There is also the related problem of storage protection (the need to prevent user programs from interfering with each other while being processed). The usual solution to this problem is to allow them to operate in well defined areas of memory only (unrestricted access to all parts of memory being reserved for the supervisory program only). Frequently the technique used to achieve dynamic relocation can also be used to effect storage protection.

\section*{Conclusion}

Many programs running concurrently in a multiprogramming environment typically require far larger total memory space than is available in a particular system. The virtual memory concept and dynamic relocation techniques outlined here have solved many of the problems of managing and optimizing the use of large, hierarchical memories. These techniques are often seen in large computer systems and can be adapted (in principle) for use in microcomputer timesharing systems.■

\section*{REFERENCES}
1. Archibald, HIA, et al, "Computer Software," Journal of the Institute of Administrative Management, England, 1966.
2. Coffman, EG Jr, and Kleinrock, L, "Computer Scheduling Methods and their Countermeasures," volume 32, AFIPS, SJCC, 1968.
3. Denning, PJ, "Virtual Memory," Computing Surveys, volume 2, number 3, Sept 1970.
4. Dennis, JB, "Segmentation and the Design of Multi-programmed Computer Systems," IEEE International Convention Record, Part 3, 1965.
5. Dennis, JB, and Glaser, EL, "The Structure of On-line Information Processing Systems," Information System Sciences: Proc of 2nd Congress, Walker, DW, ed, 1965.
6. Gammage, ND, "Addressing Structures," Journal of British Computer Manufacturers, 1966.
7. Popell, SD, ed, Computer Timesharing, Pren-tice-Hall, Englewood Cliffs NJ, 1966.
8. Tsujigado, M, "Multi-programming, Swapping and Program Residence Priority in the FACOM 230-60," AFIPS, SJCC, volume 32, 1968.
9. Wegner, P, "Machine Organization for Multiprogramming," Proc-ACM National Meeting. 1967.


\section*{A Binary Guessing Game}

Mark Zimmermann

\title{
Calculator Pattern Recognition
}

MJ House, Caltech 1.87
Pasadena CA 91126

James Blodgett 45 Southern Blvd Albany NY 12209

Humans and animals do not as a rule behave at random: instinct and past experience play too important a role. In the computer, a good pseudorandom string of digits isn't hard to produce, but to get genuinely unpredictable output is tremendously difficult.

This article introduces pattern recognition and gives a sample program that recognizes patterns with better than random accuracy. The program is in game format to add to the fun, but it can be easily adapted to other purposes.

We will look only at binary patterns (ie: sequences of 0 s and 1 s ). This is not a limitation, since any string of symbols can be encoded into a corresponding binary sequence using a suitable conversion code such as ASCII, and, of course, neurons and flip flops are binary devices. (One could encode the text of this article up to this point in binary, and attempt to predict the rest of what we are going to say; if you want to try, good luck!)

Consider the string:
10101101
What is the next digit?
There is no correct answer, and in fact, there is no "best" answer. A lot depends on what kind of system generated the string. [Recent mathematical work has shown that, in general, there can be no "best" element following a given string of elements; that indeed any element can be shown to be the correct successor to any given string . . . CM] If the string were generated by an algorithm with almost no "memory" of the immediate past, but with a possible bias toward 0 or 1 (such as a roulette wheel), a good strategy would be to note the majority of 1 s appearing and to bet on 1 in the future, regardless of what the last digit was. On the other hand, a human producing a pattern may tend to repeat sequences made in the past, even if an attempt is made to avoid them.

It is usefui to define the term "depth"
at this point to mean the longest recent sequence of digits that a program will consider. The basic pattern recognition algorithm we have developed simply looks at the last few digits in a string, checks to see what choice followed that sequence previously, and guesses that the same choice will follow this time.

As a specific example, consider the above binary string. A depth 0 algorithm does not look back at all; it has no memory. It simply guesses that the next digit will be the same as the present one (a 1 in the previous example). A depth 1 program checks back to the previous time. that a 1 occurred (the sixth digit in our example), and, since it is followed by a 0 , makes the prediction 0. A depth 2 routine searches for the previous occurrence of 01 , and a depth 3 for 101.

The program listed in this article performs the procedure described above precisely, to depth 3. (Special circumstances which require further processing are discussed below.) All this is not difficult when you have plenty of program and memory space. Implementing it on the HP-25 calculator requires considerable economization, though. If readers with calculators have need of "bit packing and manipulation" it would be worth their while to spend a few hours puzzling out the logic involved, but for applications and gaming, this isn't necessary.

Now that you know the algorithm, it is possible to defeat it in a competition by taking advantage of its weakness (an overreliance on past patterns). For a simple depth N program, it is possible to generate a pattern of length \(2 \mathrm{~N}+1\) that varies in such a fashion that the program is constantly one step behind and never gets a right answer. A depth 0 routine, which just guesses that the most recent digit will be repeated again, is fooled by the simple string 1010101010.... A depth 1 program will fail when it meets 110011001100. ., that is, the pattern 1100 repeated continuously. A pattern that will defeat depth 2 is 11101000 . This combination is not unique,
but once such a pattern is found and used, the program will always guess incorrectly. We won't mention a pattern to defeat our depth 3 program, but one can be found fairly easily now that you know how it works.

The program is about evenly matched with human opponents. It is very difficult for a human to win decisively (ie: to get more than 15 points ahead) without analyzing the logic of the program. Don't spoil your friends' fun: let them play without first explaining how it works.

Unfortunately we seem to have spoiled the fun by explaining most of the game's logic in this article. If the reader will change step 9 to " 4 ," and step 44 to " \(\div\)," the program will acquire new evasive tactics: it is now designed to outthink the readers of this article! It will also recognize much longer patterns, although it takes a bit longer to learn them. Readers can still foil the program in this mode, but the task is considerably more difficult.

Several questions of interest remain unanswered. First, what is the optimum depth for a machine to look when attempting to outguess a human? How much does it depend on who is playing? (Do 6 year olds tend to generate simpler patterns than adults?). Are there other algorithms better equipped to tackle human opponents? Are deeper or more complex programs also more interesting? What about a base 3 number guessing game such as "rock paper scissors," or a more intriguing video display? What is it that makes artificial intelligence (AI) programs so interesting in general? Psychologists and software experimenters might consider working on some of these problems.

\section*{Implementation on Other Systems}

Our program should be convertible for use on most programmable calculators with conditional branching and several memory registers. It will not work without extensive revision on some microcomputers because it requires at least 8 digit accuracy.

Watch the \(10^{\mathrm{X}}\) function; it must be absolutely, not approximately, accurate for integers in the range between \(x=+4\) and \(x=-4\). If it is not, write a routine to correct it.

Some calculators like the SR-52 do not have the required INT and FRAC functions, but these functions can be easily programmed.

Note that there is an implicit "GO TO \(00, R / S^{\prime \prime}\) at the end of the program, since this is what the calculator does when it runs past step 49.■
\begin{tabular}{|c|c|}
\hline Address & Operation \\
\hline 01 & \(\mathrm{STO}+3\) \\
\hline 02 & \(\mathrm{STO}+2\) \\
\hline 03 & RCL 0 \\
\hline 04 & f PAUSE \\
\hline 05 & f \(x \neq y\) \\
\hline 06 & Go To 09 \\
\hline 07 & 2 \\
\hline 08 & STO-7 \\
\hline 09 & 2 \\
\hline 10 & RCL 2 \\
\hline 11 & \(f \mathrm{x} \geqslant \mathrm{y}\) \\
\hline 12 & - \\
\hline 13 & g ABS \\
\hline 14 & RCL 5 \\
\hline 15 & \(\times\) \\
\hline 16 & \(\mathrm{STO}+4\) \\
\hline 17 & 8 \\
\hline 18 & RCL 3 \\
\hline 19 & \(f x \geqslant y\) \\
\hline 20 & - \\
\hline 21 & g ABS \\
\hline 22 & STO 3 \\
\hline 23 & 4 \\
\hline 24 & - \\
\hline 25 & g \(10^{x}\) \\
\hline 26 & STO 5 \\
\hline 27 & RCL 5 \\
\hline 28 & RCL 1 \\
\hline 29 & \(\times\) \\
\hline 30 & RCL 4 \\
\hline 31 & \(x \geq y\) \\
\hline 32 & \(\div\) \\
\hline 33 & g FRAC \\
\hline 34 & RCL 1 \\
\hline 35 & \(\times\) \\
\hline 36 & \(f\) INT \\
\hline 37 & STO 2 \\
\hline 38 & \(\times\) \\
\hline 39 & STO-4 \\
\hline 40 & f LAST x \\
\hline 41 & 2 \\
\hline 42 & STO \(\times 3\) \\
\hline 43 & STO \(\times 2\) \\
\hline 44 & R \(\downarrow\) \\
\hline 45 & f INT \\
\hline 46 & STO 0 \\
\hline 47 & 1 \\
\hline 48 & STO + 7 \\
\hline 49 & RCL 7 \\
\hline
\end{tabular}

Listing 1: A pattern recognition program written for the HP-25 programmable calculator. The operator enters a series of binary digits and the calculator attempts to guess each one, giving itself points when successful and penalizing itself when wrong. Unless the operator enters digits that are truly random, the algorithm stands a good chance of detecting patterns in the operator's string of figures.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Instructions for Running the Binary Guessing Game} \\
\hline Step & Comments & Data & Keys \\
\hline 1 & Key in program. & & \\
\hline 2 & Set display digits. & & f FIX 0 \\
\hline 3 & Initialize. & & \begin{tabular}{l}
f PRGM \\
f REG
\end{tabular} \\
\hline 4 & Kev in values. & \[
\begin{array}{r}
10 \\
11.1001 \\
1
\end{array}
\] & \[
\begin{aligned}
& \text { STO } 1 \\
& \text { STO } 4 \\
& \text { STO } 7
\end{aligned}
\] \\
\hline 5 & Clear stack. & & f STK \\
\hline 6 & Start program. & & R/S \\
\hline 7 & Program stops with score displayed, for opponent's guess. Enter 1 or 0. limportant: don't enter any other number or run with score displayed.) & 1 or 0 & R/S \\
\hline 8 & HP- 25 displays its guess, then the cumulative score: + for opponent, - for HP-25. & & \\
\hline 9 & Go to step 7. & & \\
\hline \multicolumn{4}{|l|}{Notes: The advanced program described in the article also uses the above instructions. If you convert back to the regular version after running the advanced version, the contents of several memory registers will cause problems. To avoid this, start over at step 3 above. After changing the two steps necessary for the advanced program, remember to return to 00 to run the program. The advanced program will guess 0 for several times until it learns your style. To avoid this, try 123.0123 STO 4.} \\
\hline
\end{tabular}

Note: We received the following letter detailing several possible changes to the BASIC language. Readers might try implementing them on their own systems if they do not already have these instructions available ... RGAC.

\section*{Amended BASIC}

\author{
Robert Paul Bass II 4827 N 63 Ln Phoenix AZ 85033
}

Having been an avid programmer for many years, l've seen many ways for "Mr Murphy" to add some of his handiwork to programs. In order to accommodate some of the beginning programmers, 1 felt that a new version of BASIC that incorporated some of Mr Murphy's ideas would be appropriate to help explain away some of those mistakes that we all make at some time or another. Here I present some of the new statements and functions that I would like to see in this new version of BASIC.

\section*{Assignment}
\begin{tabular}{ll}
10 LET \(A \# 4 * G\)\begin{tabular}{l} 
Set \(A\) to any value \\
not equal to the \\
expression.
\end{tabular} \\
20 LET \(B \simeq 19 / \mathrm{T}\) & \begin{tabular}{l} 
Set \(B\) approximate- \\
ly equal to the \\
expression.
\end{tabular}
\end{tabular}

These are also handy for generating data to test routines that need data close to a particular value, or if any value but one can be used in a program.

\section*{IF-MAYBE}

100 IF G \(=17.4\) MAYBE 210

Advanced implementations of this statement could have nested conditions, ie:

110 IF G \# A*2 MAYBE 210
THEN AGAIN 300
OR PERHAPS 405
Modified FOR - NEXT
200 FOR N \(=0\) TO ABOUT 100 .

\section*{300 NEXT N}

This statement is used when one isn't absolutely sure how many times to execute a loop.

\section*{MISPRINT and MISREAD}

\section*{320 MISREAD A \$ 330 MISPRINT B,S}

These are the standard input/output (IO) statements, except that they have a built in glitch generator to produce those inexplicable characters that appear in everybody's output. Caution must be exercised when both of these statements are used in one program because it is possible that the errors could cancel out.

\section*{COMEFROM}

\section*{350 COMEFROM 100}

This is great for debugging programs as it allows the programmer to trace back where he should have been going.

\section*{FUZZ Function}
\[
400 \text { FUZZ }=39
\]

This function tells the actual monitor program that executes the BASIC program how picky it will be regarding errors. If FUZZ=0, the program will execute correctly regardless of how many errors there are in the program. If \(\mathrm{FUZZ}=99\), the entire system will crash on the smallest logical or even syntactical error.

\section*{FORGET}

440 FORGET 450-560
This would be used to indicate which statements should be ignored.

\section*{DIMENSIONLESS}
```

10 DIMENSIONLESS A,B,C,D,E,F,G,
H,I,\,K,L . . .

```

This was designed for the theoretical mathematicians working on problems involving points, those zero dimensioned beasties. Systems using this statement should have plenty of memory, since an infinite number of DIMENSIONLESS statements are allowed (and usually needed) so that the programmer can define lines, planes and spaces.

BLINK
\[
500 \text { BLINK } 10 \quad \begin{aligned}
& \text { Blink for } 10 \text { sec- } \\
& \text { onds. }
\end{aligned}
\]

This is used primarily in demonstration
programs where a visitor can see the front panel lights of the computer. When executing this statement the lights will blink in a fashion guaranteed to impress anyone who doesn't know too much about computers. With appropriate interfaces, this could be used with your Christmas tree lights next winter.

\section*{GLITCH}

\section*{530 GLITCH}

This is the most invaluable statement that the up and coming programmer can use. It will randomly choose a location in memory or in the internal registers and will change one bit of that word.

\section*{SLOWDOWN}

650 SLOWDOWN

When entering a particularly difficult portion of a program, this statement would be used to slow down the computer so it won't stumble over the program's harder portion.

\section*{WHOA}

\section*{720 WHOA}

Same basic (no pun intended) use as the SLOWDOWN statement but it is primarily used after a series of particularly easy statements to remind the computer that the easy stuff is over and it will have to dig in again and get to work.

I hope that these suggestions for additions to BASIC will inspire some enterprising young programmer to invest a couple of man-years to develop this new version of the old language that we all know and love. Good luck - you'll need it.■

\section*{Pascal versus BASIC: Round 2 Includes FORTRAN}

\section*{Lawrence C Andrews 2634 Wycliffe Rd Baltimore MD 21234}

The article "Pascal versus BASIC: An Exercise," by Allan M Schwartz (August 1978 BYTE, page 168) is a typical example of a language chauvinist using a language ineptly and then pointing to the faults in the code he has written as inherent properties of the language.

The function GCD (page 172) that he has written (leaving aside the BASIC version) has several faults, to wit:
1) \(X\) and \(Y\) are not declared in the Pascal version.
2) The FORTRAN version will develop an infinite loop if \(X\) or \(Y\) equals zero (no comment there excludes \(X, Y\) greater than zero).
3) The FORTRAN version never defines the functional value of GCD and so will not even compile in a good compiler.
4) There sure are a lot of GOTOs and statement numbers in his program; in particular, statement 180 is totally useless. GOTO 180 should be GOTO 120.
5) There is no reason to have any GOTOs. It could be written as in listing 1.
6) If you don't mind downward branching GOTOs (generally considered to be harmless) function GCD can be written as shown in listing 2.

As in Pascal the flow is clear and flowcharting is simple (Warnier-Orr diagrams are still better). I don't run down Pascal but I fail to see why Schwartz runs down FORTRAN just because he writes a pidgin dialect inexpertly. In FORTRAN, as in Pascal, "Go to statements can fog the otherwise clear logic of a routine," as Schwartz states in his article. FORTRAN 77 with IF. . . THEN . . ELSE statements, and zero trip counts on DO loops, removes most of Schwartz's FORTRAN objection. Anyone can write a bad program in any language. Pascal is no exception to that statement. \(\quad\) -
```

INTEGER FUNCTION GCD (X,Y)
INTEGER X,Y,A,B, LIM
C. . . X,Y GT.O
A = X
B=Y
LIM = MAXO (A,P)
DO 1000I=1, LIM
IF (A.GT. B)A = A-B
IF (B.GT.A)B=B-A
GCD = A
IF (A. EQ. B) RETURN
1000 CONTINUE
END

```

Listing 1: The GCD function written in FORTRAN with no GOTO statements.

DO \(1000 \mathrm{I}=1\), LIM
IF (A.GT. B) \(A=A-B\)
IF (B.GT. A) B = B-A
IF (A. EQ. B) GO TO 2000
1000 CONTINUE
2000 GCD = A
RETURN
END
Listing 2: A much shorter version of the GCD function using one downward branching GOTO statement.


\section*{The face is (becoming) familiar}

No surprise...it stands out in the crowd. The quality and reliability that Industrial Micro Systems' customers have grown accustomed to is now available in our complete system. A system that will grow with your needs.

You can start with a minimum 16 K , single disk system. The system shown above can be expanded to \(608 \mathrm{~K}-\) Bytes of fast RAM with three double-sided, double-density drives. And more to come.

The microcomputer industry standard CP/ \(\mathrm{M}^{\text {™ }}\) operating system is delivered with the system. PASCAL is available. Industrial Micro Systems systems users are developing an impressive array of application software.

The system is offered in rack mount and table top versions and also in our own desk enclosure.

In addition to gaining in familiarity, the Industrial Micro Systems picture for total system products should be coming into focus for everyone. Advanced, reliable electronics...industry standard software... and functional, high quality enclosures.

Industrial Micro Systems, your source for complete systems. And the prices are right.

Ask your dealer to see the full Industrial Micro Systems line of products and be watching for exciting new additions soon to come from Industrial Micro Systems, 628 N. Eckhoff St., Orange, CA 92668. (714) 633-0355.

\section*{INDUSTRIAL MICRO SYSTEMS,INC \\ The great unknown.}

\section*{Note on an Easy}

\section*{Programming System}

Mike Brown
POB 2263
West Lafayette IN 47906

I have just completed reading Joseph Weisbecker's article "An Easy Programming System" (December 1978 BYTE, page 108). I was quite favorably impressed--with one minor exception. The random number facility does not seem to be very good, but could be improved with one minor modification. Regardless of what pseudorandom number generator is used, the idea is to provide a sample from a uniform distribution in the range of \([0 . . K K]\). The technique of simply using a mask is clearly not satisfactory. If, for example, \(K K=02\), the range of pseudorandom numbers is [0. .2]. However, by using the mask, the possible numbers obtained are 0 and 2 . It is not possible to get a 1 .

There are several ways around this problem. The simplest is the rejection method in which new pseudorandom numbers are generated until one is found to be small enough. Since most pscudorandom number generation routines I have seen are fairly quick, this method would probably be satisfactory as long as KK is reasonably large.

My suggestion is a refinement of the rejection method, which will work fairly well even as KK gets small:
- Determine high order 1 bit position in KK ( \(p\) ). Form mask with bits 7 thru \((p+1)\) off and bits \(p\) thru 0 on (m).
- Generate pseudorandom number in range of [0. .255] (r).
- \(\mathrm{r} 2=\mathrm{r} \times \mathrm{m}\).
- If r2>KK, go to second step. Otherwise \(r 2\) is the required pscudorandom number.

In the worst case, only an average of two random numbers will have to be picked, and verifying a good number or rejecting a bad number is a quick and easy task. \(\quad\) -


\section*{Ever wonder what it takes to win a contest ?}

In late 1978, Mullen Computer Products ran an applications contest for the Controller Board Kit. While we're congratulating the winners, you might want to see what we considered contest-winning material.


1st PRIZE: John D. Gill, Blountville, TN.
\(\star \star )
lohn's application used the board as an interface between the 5 V logic of an IMSAI 8080 and the 100 VDC relay logic used by a Friden Flexowriter. He included software timing tricks to avoid passing current through the relays until fully closed. We felt his entry was very practical. imaginative. used the Controller Board to good advantage, and deserved ist place.

\section*{2ne Pil2 E Peter Midnight, Oakland, CA.} Peter proposad a computerized editing and synchronization system for double system sound tracks. The entry was wellthought out and novel.

Runners-up included: Vaughn Jupe. Carlotta, CA (satellite tracking and othar amateur radio applicalions); Gregory Yob, Pulu Alto, CA (phase controlled waterbed vibrator); Glenn King. Topeka, KS (telephonetcomputer/dialing inlerface); Paul McKnight, Washington, DC (microprocessor controlled typewriter/computer interface); and Mike O'Brien. Colorado Springs. CO (IC testing dovice).

Thanks to averyone who particlpated in the contest. and for the uniformly high quality of the entriet
If you'd like more information on the amazingly versatile
Mullen Controller Board kit, visit your local computer store or write us direct.

\section*{MULLEN Computer Products BOX 6214, HAYWARD, CA 94545}

HAZELTINE 1400
only
\$649.95 !
- Verbatim Mini Diskettes \$3.70 each (boxes of 10)
- Two-tier walnut formica enclosure for SA-400 Shugart. . . \$39.95
- Typewriter Ribbons (many makes such as Diablo, Centronics, DEC and print wheels)
- TRS-80 16K

Expansion Kit. . \(\$ 89.95\)
- Centronics 779 tractor - \(\$ 1150.00\)
- Horizon 11 ass. \(\mathbf{-} \$ 1999.00\)


Mail TORA SYSTEM INC Order 29-02 23rd Avenue Astoria NY 11105
(212) 932-3533

\section*{Midas Business Software \({ }^{\text {TM }}\) Programs \\ (disc based)}

MBSI
Point of sale \(\quad \$ 49.95\) cash register/ inventory update

MBSII-1
Personal
\(\$ 29.95\) checkbook

MBSII-2 Smallbusiness \$39.95 checkbook

MBSIII-1 Basic mail list \(\$ 49.95\)
MBSIII-2 Extended mail \(\$ 59.95\) list
Forward check or money order to: ISDG Inc.
312 Highgate Avenue
Buffalo, New York 14215

Circle 181 on inquiry card.

\section*{TRS-80}

MEMORY EXPANSION to 16 K
Each Kit


Includes easy to follow instructions
Jumpers and 8-16K Rams
2 Sets (32K) \$165
3 Sets (48K) \$249
6 Months Guarantee
- Visa - Master Charge -

Calif. Add 6\% Sales Tax

\section*{MicroComputerWorld \\ Box 242}

San Dimas, CA 91773

Terminal Systems
Dealing!
ADM 3 A

for the best deal catil?
 (213) 769-6772. (714)738-4444 \{415\}537-7723 (800)423-2449 Rely on US

Circle 367 on inquiry card.

\section*{WILD \& CRAZY ASSEMBLY PROGRAMMERS}

The number 2 manufacturer of stand alone POS terminals needs experienced assembly programmers to help introduce 14 new software based products in 1979. Challenging assignments currently exist at all levels including applications, diagnostics and systems software development. Great benefits including yearly vacation to Europe. Starting salary 16 -30K. Please call or write Dave Adams, (617) 246-2815. N.E. Recruiters, 6 Lakeside Office Park, Wakefield, MA 01880.
Collect calls accepted. Strict confidence assured. All fees, relocation and interviewing expenses assumed by company.

Circle 71 on inquiry card.

\section*{TIME SERIES AND STATISTICAL ANALYSIS PACKAGE}
this package allows the user to:
1. LOAD data into dynamically CREAIED FILES.
2. EDI THE DAIA.
4. PRINT OUT AVDA

PRINT OUT AND PLOT THE DATA
SOME OF THE TYPES OF aNALYSIS include:
1. FOURIER ANALYSIS
2. CROSS AND AUTO CORRELATION
3. Probability and distribution FUNCTIONS
4. PEAK. AVERAGE AND ROOT MEAN SQuared
5. MEAN, VARIANCE and Standard deviation
6. LINEAR, EXPONENTIAL AND GEOMETRIC REGRESSION
this packace is written in north star BASIC AND CAN BE PROVIDED AS ALISTING OR ON A DISKETTE FOR \(\$ 125.00\)

\section*{Potter's Programs}

22444 Lakeland
St. Clair Shores, MI 48081
Phone 313-573-8000

Circle 218 on inquiry card.

TRS-80 Quality Software
at mass-production prices!
WORD PROCESSOR: Helps prepare letters, manuals, books. Use diskette file for text, page, line control, centering, margin justification, etc Diskette \$39 Levelll, 16K vers. \$29
MAIL: Lets you enter, display, search, update delete name \& address info. Reports \& labels delete name \& address info. Reports \& labe sorted in name, state, city or zip code order Diskette \$35
INVENTORY: Full control saves you thousands of dollars. Several reports.
Diskette \(\$ 39\)
DISKETTE data base manager/report generator.
32 K required
KEY random access: blocking \& hashing DOS. \(\$ 19\)
SDRT \& LINKED-LIST. Level II. \(\$ 10\) each or \(\$ 16\) both.

Level I or II
Cassette data base manager ( 16 K ) Cassette inventory control [ 16 K ]
Stock security info \& enalysis
Check balance
Stock \& check

\section*{APPLE II}

TINY BUSINESS SOFTWARE
ACCOUNTS RECEIVABLE - 100 customer accounts max, 8 transạctions/ month/customer (typical), month end and individual postings, automatic interest calculations. \(\$ 75.00\)
ACCOUNTS PAYABLE - 100 payable accounts max, 8 transactions/ monthly/payable (typical), month end posting. \(\$ 75.00\)
PERPETUAL INVENTORY CONTROL 100 suppliers, 900 individual inventory items, heuristic reorder pro cedure. \(\$ 100.00\)
All of these programs have random record access, easy addition and deletion of items, password protection on sensitive procedures. MIN. REQUIREMENT 48K APPLE II, one disk OPT. REQUIREMENT 48K APPLE II, two disks These procedures for screen environment, printer options available soon.
DOCUMENTATION only for the above \(\$ 10\) ea. CHECK OR MONEY ORDER ONLY DEALER INOUIRIES WELCOME
CUSTOM COMPUTING
EM SYSTEMS INC

\title{
Some Contrary Opinion
}

Peter D. Robertson 17047 Via Pasatiempo San Lorenzo CA 94580

After scanning your August 1978 BYTE, some amusing images came to mind. One was a landscape wherein 10,000 programmers sat in front of their terminals, each one saying, "Gee, if I only had Pascal, I could do this a lot easier than in lousy old BASIC. I really need Pascal." Another image was of Niklaus himself, saying, "Isn't it amazing how many fools there are who ignored Euler, but are wholeheartedly supporting Pascal?" Yet neither language has any real input/output (IO) or was meant for any real machine. Euler was, after all, the more serious effort. Pascal is only a teaching toy.

This is how I see the programming language controversy in the world of personal computing. First of all, Pascal belongs to a class of highly structured, strongly typed languages. This means that it is hard to use. All variables must be explicitly typed, and control structures must follow a rigid syntax, or else the program is garbage. For welldocumented, widely distributed programs, this is "good programming practice." For personal computing, this is useless. Secondly, Pascal is difficult to learn.

I spent six months studying Pascal intensively, but even so, there are a number of subtleties and nuances of the language which escape me today. Yet it took only two weeks to master BASIC. Thirdly, Pascal was not meant to be debugged. Pascal is so good that every program you write is supposed to be correct. You just type it in, compile it, run it and move on to the next program. If it doesn't work, then hopefully your computer has PDB, the Pascal debugger program, to help you sort things out. Whereas in BASIC, every statement is (or should be) checked for errors when it is entered, not when it is interpreted. For run time errors, most BASICS allow you to print the values of variables and execute statements selectively, changing them as needed, rather than having to recompile every time.

In short, I don't see how Pascal can ever extinguish BASIC as the language of choice for personal computing. For industrial systems programming, sure, but not for personal applications. Pascal is, after all, only a

\title{
NOBODY SELLS THE BEST FOR LESS
}
\begin{tabular}{lrr} 
Exidy S-100 Expansion Unit for & \begin{tabular}{c} 
LIST \\
PRICE
\end{tabular} & \begin{tabular}{c} 
SPECIAL \\
PRICE
\end{tabular} \\
Sorcerer & 299.00 & 255.64 \\
Expandor Black Box Printer & 491.95 & 420.61 \\
Ithaca Audio 16K Memory Upgrade \\
for Exidy Sorcerer \& TRS-80 & 140.00 & 119.70 \\
Teletek System Central Interface & 385.00 & 329.17 \\
ATV Research Micro-Verter & 35.00 & 29.92 \\
Cromemco 32K Bytesaver Kit & 195.00 & 166.72 \\
Scotch 5" Diskettes (Box of 10) & 65.00 & 45.00 \\
\multicolumn{3}{c}{ Ca/l for our prices on: } \\
North Star, Sanyo, Integrai Data Systems, IMC, Problem Solver, SSM, \\
\multicolumn{4}{l}{ Vector Graphic, Dynabyte, ECT, Oliver, Sorcerer } \\
Subject to Available Quantities - Shipping and Insurance Extra \\
WE ARE NOW AUTHORIZED DISTRIBUTORS \\
FOR SCOTCH DATA PRODUCTS
\end{tabular}

HOURS: Monday: 12 to 6, Tuesday-Friday: 12 to 9, Saturday: 10 to 6 Computer Lab of New Jersey 141 Route 46
Budd Lake, New Jersey 07828
Phone (201) 691-1984
Prices valid thru May 15, 1979

\section*{ONLY PROGRAMMERS SHOULD BE ALLOWED TO MANAGE FILES!}

Isn't that ridiculous? They're your files, your information and your needs. Take control of them now with

FMS-80
the only fully integrated microcomputer File Management System. From initial file definition through selective report generation, FMS-80 takes you every step of the way interactively.

Written entirely in assembly language, FMS-80 is both efficient, fast and will run under any \(\mathrm{CP} / \mathrm{M}\) based program (IMDOS, CDOS, etc).
Also ask about REMOTE-80 Intelligent Terminal Software; SCREEN DESIGNER - interactively create and utilize video forms; and MLU-the complete Mailing List Utility.

DEALERS: Liberal discounts and painless evaluation packages available. Contact us on your letterhead for additional information.

COMPUTERS PLUS, INC.
678 S. Pickett St.
Alexandria, VA 22304. (703) 751-5656

12" BLACK \& WHITE LOW COST VIDEO TERMINAL
\$139.00 LIST
Add \(\$ 5\) for shipping and handling
Texas residents add \(5 \%\) sales tax

- Ideal for home. personal and business computer systems: surveillance moniters - 12 "diagonal video monitor "Com. posite video inpur - Compatible with many computer
systems. Solid state circuitry for atable \(\mathcal{E}\) sharp pic. ture - Video bandwidth-12 \(\mathrm{MHz}_{\mathrm{L}} \pm 3 \mathrm{DB}\) - Input im pedance-75 Ohms. Resolution-650 Ines Minimum IN Central \(80 \%\) ol CRT; 550 Lines Minimum beyond central \(80 \%\) of CRT ref EIA RS. 375 . Dimensions-11.375" high; \(16.250^{\circ}\) wide: \(11.250^{\circ}\) deep (exelude video input con nector) - Weight-6.5 KG ( 14.3 lbs ) net

Use Master Charge/Visa or send money order
Micro Products Unlimited
p.O. Box 1525 , Arlington. TX 76010

817/461.8043

Circle 224 on inquiry card.

\section*{'68' MICRO JOURNALTM}
\(\star\) The only ALL 6800 Computer Magazine. CHARTER
SUBSCRIPTION SPECIAL
1 -Year \(\$ 10.50 \quad 2\) Years \(\$ 18.50\) 3 Years \(\$ 26.50\)
OK, PLEASE ENTER MY
SUBSCRIPTION
Bill my: M/C \(\square\) VISA \(\square\) Card \#
Expiration Date
For \(\square 1\)-Yr. \(\square 2\) Yrs. \(\square 3\) Yrs. Enclosed: \$
Name
Street
City
State___Z_____
'68' MICRO JOURNAL'M 3018 Hamill Road HIXSON, TN 37343

Circle 323 on inquiry card.

\section*{Special for TRS. 80 and APPLE II} Users


\section*{Diskettes}

MD 525-01 - Soft Sect. MD 525-10 - Hard Sect MD 525-16 - Hard Sect.
3 for \$10.
( \(8^{\prime \prime}\) Disks - 3 for \(\$ 12\) )
Check, Money Order, Visa or
Master Charge Accepted. No COD's.


Circle 110 on inquiry card.

Want to stick it on your bumper? Honk if you like "bumper bits." It's the new way to communicate with your fellow computer pros on the highways and byways of life. Each bumper sticker is black-onwhite, \(4 \times 14^{\prime \prime}\). \(\$ 1.95\) each; 3 for \(\$ 5\).
a. Want to hop in
and compare peripherals?
b. Semiconductors are only in charge of the woodwinds
c. Waiter, look at debug in my soup

Send_no. of:_a._-b._(California residents add sales tax.) Mail checik, cash or money order to:

\section*{bumper-bits \(_{T}\)}

Box 2062, Menlo Park, CA. 94025


Circle 302 on inquiry card.

\section*{WELCOME TO}

\section*{"THE SOURCE"}
* * * * * * * *
- 8080/Z80 DISX-BASEO DISASSEMBLER
- RUNS ON \(8000 / 8005\) OR ZEO UNDER CP/M
- SUPPORTS FULIEOINSTRUCTIONSET
- object code disassemsito ibom disk nol from memorr
- Disassemeled code oirtcted to disk or printer
- CQDID Cross-reference table
- symbol table

MANYOPIIONS
- EITMER TOL MNE MONICS [TSOURCE] ot

MAC MNEMONICS|MSOURCE!
AVAILABLE ON \(8^{\prime \prime}\) SINCLE DINSITY fIOPD OR \(s^{\prime \prime}\) FIOPPY[CP/M FOR NORTM STAR BY LIIIBOAT]
\[
\begin{array}{llll}
\text { PRICES: } & \text { TSOURCE } & \mathbf{5 1 9 . 9 5} & \text { NY SIALI } \\
& \text { MSOURCE } & \mathbf{5 1 9 . 9 5} & \text { RISIDINIS } \\
& \text { BOTM } & \$ 69.95 & \text { ADD 7\% }
\end{array}
\]

\section*{M) \(B\)}

COMPUTER
ASSOCIATES

Circle 26 on inquiry card.


SINGLE BOARD COMPUTER \$99.50*
with \(6800 \mathrm{MPU}, 6850\) serial I/O, 2 6820 paraliel I/O ( 32 lines), 512 RAM, socket for 2708, 2716. EROM. Interface modules for industrial control, data acquisition, lab instrumentation, on 44 pin \(41 / 2 " \times 61 / h^{\prime \prime}\) PCB's. RAM, ROM. CMOS RAM/battery, A/D, D/A, Driver/Sensor, Serial I/O. Parallel 1/O, Counter/Timer, IEEE 488 GPIB, floppy controller.
- OEM (500 piece) price

F waiter Corp.
902 N. 9th Street
Lafayette, IN 47904
Phone (317) 742-6802

RS232 USERS


Low cost RS232 switch kit will allow a variety of connections. Kit contains no wires. Latest P. C. board and switching technology. Up to three devices can be switched with a turn of the knob. Ideal for connecting three driving sources to one printer. CRT, PROM Programmer, MODEM, etc

Price \(\$ 64.95\) Kit \(\$ 47.95\)
GILTRONIX INC.
Call: 415/493-2199
programming language, whereas BASIC is an entire programming system. If you want to write something neat and elegant, use Pascal, but expect to spend a lot of time on it. If you want to get the job done, however, maybe BASIC isn't so bad. \({ }^{\text {■ }}\)

\title{
How To Define an OS Which Does Not Need a Wizard
}

James E Jones
123 NE 2nd Moore OK 73160

I have noted a trend towards microcomputer operating systems which allow programs to be written without worrying about peculiar device interfaces. Nothing could please me more. 10 and interrupt programming are the worst part of the transfer from large to micro. There is one disaster that must be avoided, though: the user's interface with it, when it comes, will resemble OS/360 or 370 "JCL" (Job Control Language).

Other than the DD statement, JCL mainly presents tolerable nuisances. Indeed, it once made a perverse sort of sense. JCL is 360 macroassembler with a " \(/ /\) " at the beginning of each statement, and in the times when everybody used assembler and had to know the sordid details of the DCB, it was actually convenient. But in my experience, most people use high level languages now. (I'm from an academic background and probably biased. For purposes of argument, I'll even admit that FORTRAN and COBOL are high level languages.) These people, who enjoy the advantages of such languages when programming, are saddled with large amounts of machine dependent trivia when JCL time comes. Maybe it's not like having to write your own CCWs, but the user must still be concerned with many device peculiarities. (Don't tell me that's what procedures are for. Users must always fill in anything not foreseen by the procedure writer, who can't have much foresight in such cases.) Processes that are easy to think in terms of become cumbersome to write or maybe impossible.

The worst part is that in the name of upward compatibility, the user is forever stuck with it.

So what does this harangue against OS/370 have to do with us? Just this: once an operating system arises in the micro-

\section*{LSI-11 TIME}


It's TIME you brought your LSI-11 up to DATE. TIME and DATE, two important parameters in the computer world, are available to your LSI-11 on one DUAL SIZE BOARD. When requested, the TCU-50D will present you with the date (month and day), time (hour and minutes), and seconds. Turn your computer off and forget about the time - your battery supported TCU-50D won't, not for 3 months anyway. The correct date and time will be there when you power up.

The TCU-50D is shipped preset to your local time, but can be set to any time you want by a simple software routine.

\section*{AT \(\$ 295\) YOU CANT AFFORD TO IGNORE TIME}

Time is only one way we can help you upgrade your LSI-11 or PDP-11 system. We'd also like to tell you about the others. So contact Digital Pathways if you're into -11's. We are too.


4151 Middiefield Road - Palo Alto.
California 94306 - Telephone (415) 493-5544


\section*{TERMINALS FROM TRANSNET}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
PURCHASE \\
12-24 MONTH FULL OWNERSHIP PLAN 36 MONTH LEASE PLAN
\end{tabular}} \\
\hline SCRIPTIO & PURCHASE & 12 mos. & \begin{tabular}{l}
MONTH \\
24 MOS.
\end{tabular} & 36 \\
\hline \multicolumn{5}{|l|}{LA36 DECwriter II............ \$1,595 \$ 152 \$ 83 \$ 56} \\
\hline \multicolumn{5}{|l|}{LA34 DECwriter IV .......... \(1,295 \quad 124 \quad 67\) 45} \\
\hline \multicolumn{5}{|l|}{LA120 DECwriter III, KSR .... \(2,295 \quad 219120\)} \\
\hline LS120 DECwriter III, RO & 1,995 & 190 & 104 & 70 \\
\hline \multicolumn{5}{|l|}{LA180 DECprinter I, RO...... 1.99519010470} \\
\hline VT100 CRT DECscope . . . . . . & 1,695 & 162 & 88 & 59 \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{llllllll}\text { T1745 Portable Terminal ..... } & 1,875 & 179 & 98 & 66\end{array}\)} \\
\hline \multicolumn{5}{|l|}{T1765 Bubble Memory Term. . 2,795} \\
\hline T1810 RO Printer . . . . . . . . . & . 1,895 & 181 & 99 & 66 \\
\hline \multicolumn{5}{|l|}{TI820 KSR Printer ........... \(2,395 \quad 229 \quad 125 \quad 84\)} \\
\hline \multicolumn{5}{|l|}{ADM3A CRT Term. ........... 875 84} \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{lllllll}\text { QUME Letter Quality KSR. ... } & 3,195 & 306 & 166 & 112\end{array}\)} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{llllll}\text { QUME Letter Quality RO. ..... } & 2,795 & 268 & 145 & 98\end{array}\)}} \\
\hline & 895 & 86 & 47 & 32 \\
\hline \multirow[t]{2}{*}{HAZELTINE 1410 CRT ........
HAZELTINE 1500 CRT
HAZELTINE 1520 CRT} & 1,195 & 115 & 62 & 42 \\
\hline & 1,595 & 152 & 83 & 56 \\
\hline DataProducts 2230 . . . . . . . . . & . 7,900 & 755 & 410 & 277 \\
\hline DATAMATE Mini Floppy...... & . 1,750 & 167 & 91 & 61 \\
\hline \multicolumn{5}{|l|}{FULL OWNERSHIP AFTER 12 OR 24 MONTHS 10\% PURCHASE OPTION AFTER 36 MONTHS} \\
\hline \multicolumn{5}{|l|}{ACCESSORIES AND PERIPHERAL EQUIPMENT ACOUSTIC COUPLERS • MODEMS • THERMAL PAPER RIBBONS - INTERFACE MODULES - FLOPPY DISK UNITS} \\
\hline \multicolumn{5}{|l|}{PROMPT DELIVERY • EFFICIENT SERVICE} \\
\hline \[
\begin{array}{r}
\text { TRANS } \\
2005 \text { ROUT } \\
20
\end{array}
\] & \[
\begin{aligned}
& V_{E T} C \\
& \text { TE 22, U } \\
& 1-68
\end{aligned}
\] &  & \[
\begin{aligned}
& A T / C \\
& .070
\end{aligned}
\] & \\
\hline
\end{tabular}


\section*{A UNIQUE NEW PRODUCT}
protects your hardware and your investment. Saves maintenance, downtime and looks great. Our Dust Covers come in hundreds of sizes each custom designed to fit a particular model of terminal, CPU, Line Printer, Floppy Disk. They're a proven way to help eliminate dust and dirt accumulation, improve system reliability and save many times the cost in reduced maintenance and downtime. What's more, your satisfaction is \(\mathbf{1 0 0 \%}\) guaranteed.
Cover Craft Dust Covers are available from your local computer retailer or contact Cover Craft.

Can you afford to wait any longer?


COVER CRAFT
P.O. Box 555. Amherst, NH 03031 Telephone (603) 673.8592
world, because of its very real advantages, there will be exactly the same pressures for its maintenance that there are for those of the dinosaurs: rewriting costs, upward compatibility, and difficulties of relearning. The first OS must be the best we know how to write, using the experiences gained from the minis and maxis.

Those who are considering writing an OS, please consider these as possible guidelines:
(1) The OS functions ought to be callable by user's programs, not restricted to the OS or some privileged set of programs. On the 370 , users' programs for the most part can only read and write, unless they wish to write assembler programs to subvert the system. All other functions are performed by the OS between jobs or by mysterious, nearly unusable utilities programs. (Around here, they are called the futilities.) Users should be able to write utilities on which natural selection can work. Let only the convenient survive.
(2) The OS functions should be a clean, orthogonal, simple set that does not refer to any device perversities. Not only will such an OS be easier to use, but it would be a true standard, transportable between processors. (Consider the increased ease of communication of programs that would result.) To see how it can be done, read the July 1974 CACM paper on Unix. For heaven's sake, read at least the first three chapters of Software Tools by Kernighan and Plauger.

I want a system that I can use without spending all my time fighting its bureaucracy. As time goes on, there will be fewer and fewer hardware hackers, and more people raised on high level languages running on microcomputers. These people will depend on the OS written by the hackers, and it scares me to read about people thinking about 10 in big system terms, with a plethora of access methods. If it's done correctly, everyone, including the hackers, will have an environment far better suited for people and working on problems instead of commas, buffers and blocksizes.■
[Editorial Note: Buried within this letter are numerous references to acronyms which every OS/370 Job Control Language (JCL) hacker must deal with in everyday life. Being lazy, and rationalizing on the grounds of not perpetuating the mistakes, we leave the text as is, filled with references to JCL, DD statements, CCWs, DCBs, and all the other incantations of the wizards of OS. . .CH]

\title{
A Fix for the Dazzler
}

\author{
Michael A Baltrush \\ New Jersey Institute of Technology 323 High St \\ Newark NJ 07102
}

The New Jersey Institute of Technology purchased a Cromemco Dazzler as a kit which was constructed by a student during the summer of 1977. Plugging the unit into our S-100 bus computer system, we found that it produced pretty pictures on a video monitor. But an unfortunate side effect was that our terminal printed garbage while the Dazzler was operating. An investigation revealed a pulse on the SOUT line during the time the direct memory access (DMA) transfer was taking place. Cromemco was informed of this by letter and their response was. . . "your serial I/O (input/output) board cannot tolerate DMA." But the problem is deeper than tolerance of an I/O board. Our S-100 system uses a Z-80 processor rather than an Intel 8080. During direct memory access on the 8080, the PHOLD (S-100 pin 74) is asserted by the peripheral and is answered with PHLDA (S-100 pin 26). The PHLDA signal appears at the leading edge of \(\phi_{1}\) and the address bus and data bus are floated (put in three-state output condition) at \(\phi_{2}\). Thus there is a period of time between PHLDA and the floating of the buses.

During direct memory access of the \(\mathrm{Z}-80\), the PHOLD signal is asserted by the peripheral and is answered with PHLDA. The appearance of PHLDA signals that the address bus and data bus are floated with no delay. In use, the Dazzler controls the buses and the signals derived from the control bus. In our system the assumed delay between PHLDA and the floating of the buses does not exist. Therefore, the SOUT signal was uncontrolled during that interval and was treated as a high signal, which is the SOUT assertion level.

A fix for this problem is to take control of all the lines at the assertion of the

NO FRILLS! NO GIMMICKS! JUST GREAT DISCOUNTS MAIL ORDER ONLY
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{HAZELTINE} \\
\hline 1400 & \$ 650.00 \\
\hline 1500 & 995.00 \\
\hline Mod 1 & 1495.00 \\
\hline \multicolumn{2}{|l|}{CENTRONICS} \\
\hline 779.1 & 954.00 \\
\hline 779-2 & 1051.00 \\
\hline 700-2 & 1350.00 \\
\hline 761 KSR tractor & 1595.00 \\
\hline 703 tractor & 2195.00 \\
\hline \multicolumn{2}{|l|}{NORTHSTAR} \\
\hline Horizon I assembled. & 1629.00 \\
\hline kit & 1339.00 \\
\hline Horizon II assembled. & 1999.00 \\
\hline kit .... & 1599.00 \\
\hline Disk System & 589.00 \\
\hline \multicolumn{2}{|l|}{TELETYPE} \\
\hline Mod 43 & 995.00 \\
\hline \multicolumn{2}{|l|}{IMS} \\
\hline 16K Static Memory. . & . 459.95 \\
\hline
\end{tabular}

DIGITAL SYSTEMS
\begin{tabular}{|c|c|}
\hline Computer & \$4345.00 \\
\hline \multicolumn{2}{|l|}{Double Density} \\
\hline Dual Drive & 2433.00 \\
\hline \multicolumn{2}{|l|}{IMSAI} \\
\hline VDP 80/1000 & \$5895.00 \\
\hline VDP 40 & 3795.00 \\
\hline VDP 42 & 3895.00 \\
\hline VDP 44 & 4195.00 \\
\hline 16K Memory assem. & 399.00 \\
\hline PCS 80/15 & 679.00 \\
\hline
\end{tabular}
\(15 \%\) oll on all other imsal products
CROMEMCO System III \$1000 off . . 4990.00
\(10 \%\) ofl on all other Cromemco products
TEXAS INSTRUMENTS 810 Printer ..... 1595.00
CENTRONICS
Micro Printer
495.00

Most liems in stock for immediate delivery. Factory-fresh, sealed cantons.
DATA DISCOUNT CENTER P.O. Box 100
135-53 Northem Blvd., Flushing, Now York 11354, 2124465-6609
N.Y.S. residents add appropriate Sales Tax. Shipping FOB N.Y. BankAmericard, Master Charge add \(3 \%\). COD orders require \(25 \%\) deposit.

```

.PROGRAM LIBRARY from
CASCADEENTERPRISES ON CASSETTE TAPE

- If you use Solosrn or have an 8080 Solrm System, G2ru Extended Basic is faster and better than others requires (15.5K)
$\$ 49.95$
- For our 6800 users G2Tm Standard Basic specifically for the S.W.T.P.C.rm 6800 requires (7K) $\$ 34.95$ Both G2 basics are by Microsoftrm
- We have the following games and entertainment which will זun in these machines:

```

```

G2 Beat the House includes Blackjack, Craps, Roulette and Slot Machine. Craps is a very big program. Ours left 3 K usable in Level II 16K TRS-80rm. Allows a family to play as a group against the computer.
Call us anytime except Sunday (916) 926 -5154 or write
As an introductory
offer-the first 500
CASCADE ENTERPRISES orders get a free
10 minute blank cassette.
Box 213
Cal. Res. add $6 \%$ tax
Bank Cards add shipping \& handling $\$ 2.00$
$\square \mathrm{M} / \mathrm{C} \square \mathrm{B} / \mathrm{A}-\mathrm{Visa}$ Expires
Signature

```

Figure 1: Portion of Cromemco Dazzler circuitry which is used to control direct memory access to system memory.

The information in this technical forum was also sent by the author to the newsletter of the Amateur Computer Group of New Jersey.



Figure 2: Addition to the Cromemco Dazzler circuit to eliminate problem-causing pulses on the author's Z-80 S-100 bus system. The fix eliminates spurious SOUT pulses that can cause garbage to be printed out on the system printer when the Dazzler is operating.

PHLDA signal. This is done by removing IC57 (a 7495), bending pin 12 straight out and reinserting IC57. This removes the effect of pin 12 's output from the circuit. A signal must be supplied from pin 11 of IC57. Unfortunately, for simplicity, buffering must be used to be consistent with TTL loading rules. Fortunately, an uncommitted socket exists on board \# 2. A 7407, a hex noninverting buffer with open collector output, can be mounted in this socket along with the pull up resistor. The additional integrated circuit is connected as in figure 1.■

\section*{DAM YOUR COMPUTER}

DATA
ACQUISITION by
MODULES
NOW YOUK COMPUTER CAN LISTEN TO THE KEAL WURLD YOU GET 168 BIT ANALOG: INPUTS WITH OUR AIMí

MEASURE - RECORD - CONTROL
- TEMPERATURE
: DIRECTION
- PRESSURE
: LIGHT LEVELS
- DG
POLLUTION CONTROLS
- DARKROOMS
- HUMIIITY
- LIGHT
- JOYSTICKS
- ENERGY CONSERVATION EQUIPMENT
- GREENHOUSES
- SPEED

WEATHER STATIONS
- NOISE POLLUTION
- PH
- EARTHQUAKE TREMORS
- VElocity
- acceleration
- GAMES

CONNECTICUT microCOMPUTER
I5O POCONO ROAD BROOKFIELO. CONNECTICUT OG8OA
(203) 775.9659

\section*{Whets New?}

\section*{Where Do New Products Items} Come From?

The information printed in the new products pages of BYTE is obtoined from "new product" or "press release" copy sent by the promoters of new products. If in our judgment the information might be of interest to the personal computing experimenters and homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to this marketplace. Whlle we would not knowingly print untrue or inaccurate data, or data from unreliable companies, our capacity to evaluate the products and companies appearing in the "What's New?" feature is necessarily limited. We therefore cannot be responsible for product quality or company performance.

Camac Interface Board for Integrated Circuit Pluggable Wire Wrap Use


Circle 640 on-inquiry card.

Camac interface boards for integrated circuit pluggable wire wrap applications are now available from Garry Manufacturing Co, 1010 Jersey Av, New Brunswick N 1 08902. The new boards are plug compatible with the Camac standard instrumentation bus. They provide 38 universal rows of 64 socket terminals per row, with ground and voltage terminals between every other row, spaced .300 inch \((.76 \mathrm{~cm})\). The boards will accommodate up to 12516 pin integrated circuits or an equivalent mix of larger integrated circuits.

The new boards are available at \(\$ 2\) to \(\$ 3\) per integrated circuit position.-

Products for the PET
PET Shack Software House, POB 966, Mishawaka IN 46544 has available a line of products for the Commodore PET. Their products include a complete set of schematics of all the boards in the PET plus parts layout and identification; a complete disassembled listing of all seven read only memories

Dust Covers for Computers and Terminals


Cover Craft has recently announced a new line of high quality protective dust covers to fit all popular brands of computers and peripherals. Hundreds of sizes are available, each designed to precisely fit a specific model. Each cover is cus-
tom designed and hand cut from high quality textured flexible vinyl. All seams and edges are machine stitched for maximum strength. Contact Cover Craft, POB 555, Amherst NH 03031.

Circle 642 on inquiry card.
plus identified entry points and machine language monitor program listing; and a multitude of software on cassette. The schematics are priced at \(\$ 35\) and the read only memory routines are \$19.95.

Cirele 641 on inquiry card.

Instrument Enclosures for Designers and Manufacturers


This S series of sloped top panels and the \(V\) series of vertical front panels provide a wide range of uses. Vertical and sloping panels are finished brushed and clear anodized. Covers are finished in hard scratch resist, baked-on black textured enamel. Rubber feet and hardware are provided. All models are of flanged construction, using .063 inch (. 16 cm ) 14 gauge tempered aluminum. A prepunching option on all models is available with instructions upori request. Pricing ranges from \(\$ 4.43\) to \(\$ 17.90\) each in quantities of one to four. For more information contact AAK Corp, POB 7. Methuen MA 01844 .

Circle 643 on inquiry card.

\section*{PUBLICATIONS}

\section*{The Computer Book Features Workbook Format}

The Computer Book by Fred Lee is an introductory reference for readers, student and nontechnician alike, who wish to improve their understanding of the digital world. This 365 page self-teaching workbook format guide is presented in a clear, straightforward style. In addition to text on each page, the top third of each page graphically represents a memory location which includes memory and address registers
to be filled in by the reader so he or she goes through the same logical steps that a computer would follow while running a program. A sampling of the contents includes: number systems and codes, vacuum cleaners and circuits, the instruction set, programming, thumbs-on experience, assembly language, high level language, microprocessors, and microcomputers. The book is priced at \(\$ 28\) and is available from Artech House, 610 Washington St, Dedham MA 02026.

Circle 620 on inquiry card.

Teach Yourself How to Use BASIC


BASIC For Home Computers is a self-contained book for learning BASIC. The authors have used Microsoft BASIC for the MITS Altair computer; however, BASIC learned in this book will apply to any computer that understands a similar version of BASIC. This selfinstructional book shows you how to read, write and understand BASIC. The material is presented in short numbered sections called frames, each of which teaches something new about BASIC and either asks a question or telis you to write a program.

Answers are given, and numerous applications and games are included. The book is priced at \(\$ 5.95\) and is published by John Wiley and Sons Inc, 605 Third Av, New York NY 10016. -

Superior Electric Offers Free Stepping Motor Control Catalog


This 28 page catalog covers 16 new Slo-Syn stepping motor controls. It includes new translator and preset indexer modules, power supply modules, open chassis and buffered translators, open chassis preset indexers and completely packaged translators, preset indexers and buffered translators. Controllers drive at rates up to 5000 steps per second ( \(1.8^{\circ}\) steps) or 10,000 half steps per second ( \(0.9^{\circ}\) steps).

The catalog utilizes charts, specifications, speed versus torque curves and connection diagrams to facilitate selection of correct unit.

For this free catalog write to The Superior Electric Co, 383 Middle St, Bristol CT 06010.ㅍ

Circle 622 on inquiry card.

Technical Brochure on Video Analog to Digital Converter


This recently published four page technical brochure by Datel Systems, 1020 Turnpike St, Canton MA 02021, details the electrical and mechanical specifications on the new video analog to digital converter Model ADC-TV8B. This converter features an 8 bit resolution, 20 MHz encoding rate, and an internal high speed sample hold. It is ideal for digital television processing and transmission, radar digitizing, and ultrahigh speed data acquisition systems. Other features in this brochure include block diagrams, timing diagrams, technical notes and applications.

Círcle 624 on inquiry card.

Catalog Offers Used Electronic Instruments

REI Sales Company, which sells used state of the art electronic instruments and equipment, has announced the publication of a new 20 page catalog of equipment for sale. The catalog is available free upon request.

500 different products from 76 manufacturers are listed; items available are amplifiers, analyzers, attenuators, counters, couplers, detectors, filters, generators, meters, microcomputer development systems, oscilloscopes, power supplies, recorders, synthesizers, and miscellaneous equipment.

Terms and conditions of purchase and sale prices of all items are described in this illustrated, indexed catalog, which is available from REI Sales Co, 1 North Av, Burlington MA 01803 .

Circle 625 on inquiry card

Handbook of Archer Semiconductors


The Semiconductor Reference Handbook is a compilation of data on Radio Shack's line of Archer semiconductors. A cross-reference listing for replacement of transistors, diodes and other interchangeable semiconductor devices is listed at the back of the book. The total number of cross-referenced devices exceeds 46,000 . These listings are computer selected and are based on analysis of the key parameters of the listed devices.

The price is \(\$ 1.95\). For further information contact Radio Shack, Fort Worth TX 76102.

Interested in Sound Recording?
Home Recording for Musicians by Craig Anderton is a 182 page book which explains how to make professional sounding tapes inexpensively at home. This fully illustrated book includes information on tape decks, multichanneled recorders, microphones, studio setup, tapes, mixing, noise reduction, special effects and more. A special projects section and demonstration record are included. It is priced at \(\$ 9.95\) and is distributed by Music Sales Corp, 33 W 60th St, New York NY 10023.

\section*{MEMORY SALE! have it your way ... 16K \$295.00!! (450 NS) \(\$ 327.00\) !! ( 250 NS) \\ 32K \$485.00!! (450 NS) \(\$ 549.00\) !! (250 NS)}

ASSEMBLED AND TESTED ONLY! ..... Check features before you buy any other memory
- Extended addressing allows board to exist anywhere in 1 megabyte of memory on standard \(\mathrm{S}-100\) bus
- LOW Power, 1.8 Amp per 16K
- 9 Regulators for perfect heat distribution


\section*{MEMORY MANAGEMENT}
\$135.00!!
- Turn banks of memory on and off
- "Sensitize" board to 15 CPU instructions (similar to DEC System)
- Extends addressable memory space to 1 megabyte


\section*{VIDEO TERMINAL SIMULATOR}
\(\$ 295.00\) ! !
- Plugs into S-100 Bus and simulates all functions of a Soroc or other RS-232 type terminal. A simple video monitor such as a Sanyo or Sony TV will perform as a smart terminal by writing into an 10 Port.
- 2K Eprom, 4K Ram (2 video pages)
- Lower Case Descenders ( \(16 \times 64\) or \(24 \times 80\) )
- Tabs, protected fields, home/load cursor, blink, reverse video, underline, page erase, etc.

\section*{West Coast:}

\section*{delta PRODUCTS}

1653 E. 28th Street
Long Beach, Calif. 90806
Tel. (213) 595-7505

ORDER NOW!!

\section*{SALES}
\&
SERVICE

\section*{East Coast:}

DELTA PRODUCTS 1254 South Cedar Road New Lenox, III. 60451
Tel. (815) 485-9072

\section*{TRS－80 \({ }^{\text {E．S．}}\)} SERIALI／O
－Can input into basic －Can use LLIST and LPRINT to output，or output continuously \(\bullet\) RS－232 compatible Can be used with or without the expansion bus－On board switch selectable baud rates of 110，150，300，600， 1200，2400，parity or no parity odd or even， 5 to 日 data bits，and 1 or 2 stop bits．D．T．R． line－Requires +5 ． -12 VDC－Board only \(\$ 19.95\) Part No． 8010 ， with parts \(\$ 59.95\) Part No．日010A，assembled \(\$ 79.95\) Part No． 8010 C．No connectors pro－ vided，see below．


ElA／RS－232 con
nector Pars nector Part No
OB25P 5600 ，wu 9．日 conductor
conion 510.95 Part cabla \(\$ 10.95\)
No 08259

3 ribbon cable
mithateschad con
whathached con．
BO End our serval boures 19955 Par No．3CAEAO

\section*{RS－232／TTL：} INTERFACE
－Converts TTL to RS－ 232．and converts RS－ 232 to TTL－Two sep－ arate circuits -Re － quires -12 and +12 voits－All connections go to a 10 pin gold plated edge connector －Board only \(\$ 4.50\) Part No．232，with parts \(\$ 7.00\) Part No． 232A 10 Pin edge connector \＄3．00 Part No．10P


\section*{S－100 BUS} ACTIVE TERMINATOR

Board only \＄14．95 Part No．900，with parts \(\$ 24.95\) Part No．900A


\section*{AS－232／TTY： INTERFACE}
－Converts RS－232 to 20 mA current loop and 20 mA current loop to RS－232－Twosep arate circuits－ Re － quires +12 and -12 volts－Board only \＄4．50 Part No． 600 ， with parts \(\$ 7.00\) Part No．600A

\section*{MODEM ：}
－Type \(103 \bullet\) Full or half duplex \(\bullet\) Works up to 300 baud－Origi－ nate or Answer－No coils，only low cost components－TTL in－ put and output－serial －Connect \(\mathrm{\theta} \Omega\) speak－ er and crystal mic． directly to board Uses XR FSK demod－ ulator－Requires +5 volts－Board only \(\$ 7.60\) Part No． 109 with parts \＄27．50 Part No． 109 A


VERBATIM MINIDISK


Box of 10
\(\$ 29.95\)


APPLE II；
SERIALI／O
INTERFACE
Baud rate is continuously adjustable from 0 to 30,000 －Plugs into any peripharal connector Low current drain．RS－232 input and output \(\bullet\) On board switch selectable 5 to星 data bits， 1 or 2 stop bits，and parity or no parity either odd or even e Jumper selectable address－SOFTWARE－Input and Output routine from monitor or BASIC to telatype or other serial printer－Program for using an Apple Il for a video or an intelligent terminal． Also can output in correspondence code to interface with some selectrics．Also watches DTR－Board only \＄15．00 Part No． 2．with parts \＄42．00 Part No．2A，as sembled \＄62．00 Part No． 2 C

\section*{8K EPROM}

PIICEON
Saves programs on PROM permanently（until erased via UV light）up to BK bytes．Programs may be directly run from the program saver such as fixed routines or assemblers．－S－ 100 bus compatible－Room for 日K bytes of EPRDM non－volatile memory（ 270 B ＇s）．© On－ board PROM programming－Address relocation of each 4 K of memory to any 4 K boundary within 64K－Power on jump and reset jump option for＂turnkey＂systems and computers without a front panel－Program saver software available－Solder mask both sides－Full silkscreen for easy assembly： Program saver software in 1270 EPROM \(\$ 25\) ．Bare board \(\$ 35\) including custom coil， board with parts but no EPROMS \(\$ 139\) ，with 4 EPROMS \＄179，with E EPROMS \＄219


\section*{WAMECO INC．}
wmcine

FDC－1 FLOPPY CONTROLLER BOARD will drive shugart，pertek，remic \(5^{\circ \prime} \& 日^{\prime \prime}\) drives up to 1 drives，on board PROM with power boot up，will operate with CPM（not includedl．PCBD ．．．．．．．．．\＄42．95 FPB－1 Front Panel．（Finalily）AMMÄ size hex displays．Byte or instruction single step． MEM－1A \(\mathfrak{K} \times\) x fully buffered． \(\mathrm{S}-100\) ，uses 2102 type RAMS
PCBD type RAMS．\(\$ 2495 \$ 168 \mathrm{Kit}\) QME－12 MOTHEAR BOAARD， 13 slot term nated， \(\mathrm{S}-100\) board only ．．．．．．．is \(\$ 34.95\)
CPU－1 日0日0A Processor board S－100 with日 level vector interrupt PCBD \(\$ 25.95\)
RTC－1 Realtime clock board．Two independ－ ent interrupts．Software \(\$ 25.95\) ．\(\$ 60.95\) Kit

card PCED with parts less EPROMS
\(\$ 49.95\) wing EPM－2 \(2708 / 271616 K / 32 K\)
EPAOM card PCBD
\(\mathbf{S}^{\$ 24.95}\) OMB－9 MOTHER BOARD．Short Version of QMB－12． 9 Slots PCBD ．．．．．\＄\(\$ 30.95\)
MEM－2 \(16 \mathrm{~K} \times\) B Fully Buffered 2114 Board
PCBD ．．．．．．．．．．．．．．\＄25．95，\＄269．95 Kit

\section*{T．V． \\ TYPEWRITER}
－Stand alone TVT － 32 char／line， 16 lines，modifications for 64 char／line included －Parallel ASCII（TTL） input－Video output － 1 K on board memory －Dutput for computer controlled curser Auto scroll－Non－ destructive curser－ Curser inputs：up，down， left，right，home，EDL， EOS－Scroll up，down －Requires +5 volts at 1.5 amps，and -12 volts at 30 mA －All 7400 TTL chips 7400，TTL chips Char．gen 2513 － Board only \＄39．00 Part No．106，with parts \＄145．00 Part No． 106 A


\section*{UART \＆}

BAUD RATE GENERATOR：
－Converts serial to parallel and parallel to serial－Low cost on board baud rate gener－ ator Baud rates： 110，150，300， 600 1200 and 2400 ． Low power drain +5 volts and -12 volts required TTL com－ patible－All characters contain a start bit， 5 to 1 data bits， 1 or 2 stop bits，and either odd or even parity．© All connections go to a 44 pin gold plated edge connector Board only \(\$ 12.00\) Part No． 101. with parts \(\$ 35.00\) Part No．101A， 44 pin edge connector \(\$ 4.00\) Part No．44P


\section*{HEX ENCODED KEYBOARD}

\section*{E．S．}

This HEX keyboard has 19 keys． 16 encod－ ed with 3 user defin－ able．The encoded TTL outputs， \(\mathrm{e}-4-2-1\) and STROBE are debounced and available in true and complement form． Four onboard LEDs indicate the HEX code generated for each key depression．The board requires a single +5 volt supply．Board only \＄15．00 Part No． HEX－3，with parts \＄49．95 Part No．HEX－ 3A． 44 pin edge con－ nector \＄4．00 Part No． 44 P ．


\section*{DC POWER SUPPLY：}
－Board supplies a regulated＋5 volts at 3 amps．，\(+12,-12\) ，and -5 volts at 1 amp．－Power required is 8 volts \(A C\) at 3 amps ．，and 24 volts AC C．T．at 1.5 amps．E Board only \(\$ 12.50\) Part No．6085，with parts excluding transformers \(\$ 42.50\) Part No．60B5A

10 Order：Mention part number，description，and price．In USA，shipping paid for orders accompanied by check．money order，or Master Charge．BankAmericard，or VISA vis number，expiration date and signature．Shipping charges added to C．D．D．orders．California residents add 6．5\％for tax．Dutside USA add \(10 \%\) for air mail postage and handling，no C．D．D．＇s．Checks and money orders must be payable in US dollars．Parts kits include sockets for all ICs，components，and circuit
 board．Documentation is included withall products Prices ara in US dallars．No open accounts．To eliminate tarlff in Canada boxes are marked＂Computer Parts．＂Dealer inquiries invited． 24 Hour Drder Line：（40日）226－4064
if Circuits designed by John Bell For tree catalog including parls lisls and schematics，send a sell－addressed stamped envelope．

ACCELEWRITER DOUBLES = DECWRITER SPEED

The ACCELEWRITER doubles the LA36 Decwriter's speed from 30 to 60 CPS. The ACCELEWRITER is a small molded module which plugs into the printer's lagic board.

The ACCELEWRITER enables the Decwriter to print at its "catch-up" speed of 60 CPS all of the time. You must be able to program fill characters into the data stream atter carriage returns.

Easy installation and easy reconversion. if ever desired. Compatible with standard Decwriter option boards. Full one-vear warranty. Only \(\$ 115.00\).

Please write or mone.
Illinois residents add \(5 \%\) sales tax
Available NOW from
LARKS ELECTRONICS \& DATA P. O. Box 22

Skakie, Illinois 60077 (312) 677-6080

TRS-80 16K MEMORY EXPANSION KIT
INCLIDDES 8 TESTED \& GUARANTEED MSK 41163 IGK RAMS. PROGRAMMING PLUGS \& EASY-TO-FOLLOW INSTRUCTIONS. \(\$ 7200\) PER KIt
6800 64K BYTE RAM SET AND CONTROLLER
CHIP SET MAKE GAX BYTES OF MEMORY FOR YOUR
6800 THE CHIP SETS WCLUDE:
\begin{tabular}{llll}
\(\$ 29500\) & 32 & M5K \\
\hline
\end{tabular}
PER COMPLETE SET. 1 MC3242AP MEMORY AODRESS MULIIPLEXERICOUNTER.
DATA \& APPLICATION SHEETS.
PARTS TESTED \& GUARRNTEED.
\begin{tabular}{|c|c|}
\hline 16K DYNAMIC RAMS & 4 K \\
\hline M5K 4116-3 200 NSEC & Equlv. 70 TMS40144-30 \\
\hline ACCESS TIME/J75NSEC & 3OONSEC ACCESS TIME/ \\
\hline CYCLE TIME.TESTED \& BURNED.IN & CYCLE TIME FOR 4 MHZ Z-8D OPERATION. \\
\hline \$850 EACH/min.pTY 8 & \$750 EACH/MIN. QTY. 8 \\
\hline & TESTED\& GUARAKTEED \\
\hline
\end{tabular}

OUANTITY OISCOUNTS AVAILABLE
ALI ORDERS POSTPAID. U. F FUNDS. CHECK OR MONEY ORDER. VISA, BA, MASTERCHARGE - SEND ACCOUNT NO. EXPIRATION DAIE INTERBANK NO., Z SIGNED ORDER. PHONE OROERS: 714/633-4460
MEASUREMENT SYSTEMS \& CONTROLS,INC. MEMORY DEVICES DIVISION, DEPT. B3

867 NORTH MAIN ST, ORANGE, CA 92668

Circle 216 on inquiry card.

Pascal Micro Engine \(\quad \$ 2695.00\)

\section*{black = white/color}

Monitors - Comblnation Revi/monitor sets - Modulator klts * B-W Cameras * Color Cameras * Audlo Subcartier klis * Parts


WRITE or PHONE for DETAILS \& PRICING.
DIAL: 402-981-3111
Dealers welcomed. Well established program.
\(\qquad\)
ATV Researgh
Dakota City
NE, 6873 i

Circle 19 on inquiry card.
Circle 221 on inquiry card.

\section*{SUPPLIES}

- FLOPPY DISKS, MINI OR
- jm data carthioges

DC300A, DC100A
- 3M digital casseties
- 3M OR MEMOREX AUDIO

CASSETTES, C-60
- 3m oisk cartridges WE DFFER:
- competitive Phicing IMmEDIATE DELIVERIES |Any Quantityl
UNCONDITIONAL GUARANTEE
BETA BUSINESS SYSTEMS 8369 VICKERS ST., WG SAN DIEECO. CA 92゙1
(714) \(565-1505\) (714) \(565-1505\)

\section*{SHORT CASSETTES}


MICROSETTE CO
777 Palomar Ave. Sunnyvale, CA 94086

\section*{Duplication Services}

Microsette also offers professional duplication services for Commodore PET and Radio Shack TRS-80 Level I and Level II cassettes. Our service provides mastering, quality control, all material including twopiece box, affixing of your labels or supplying our blank labels and shipping. Prices start at \(\$ 2.00\) each in 100 quantity.

MICROSETTE CO.
777 Palomar Ave. - Sunnyvale, CA 94086

SURPLUS ELECTRONICS

\section*{ASCII}


ASCII

IBM SELECTRIC
BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED \$645.00
- Tape Drives - Cable

Cassette Drives - Wire
- Power Supplies 12V15A, 12V25A

5 V35A Others, Displays
Cabinets - XFMRS - Heat
Sinks - Printers Components Many other items Write for free catalog
WORLDWIDE ELECT. INC.
130 NORTHEASTERN BLVD NASHUA, N.H. 03060
Phone orders accepted using VISA or MC. Toll Free 1-800-258-1036 in N.H. 603 -889.7661

Circle 314 on inquiry card.
Circle 395 on inquiry card.

\section*{TRS - 80}

SPECIAL PROMOTION SALE
SAVE 10\%, 15\% or more on ALL Computers, Peripherals, Software, and ALL other fine Radio Shack \({ }^{\oplus}\) products.
NO TAXES on out-of-state ship ments.
FREE Surface delivery in U.S.
WARRANTIES will be honored by your local Radio Shack \({ }^{\oplus}\) store.

Offered exclusively by
Radio Shack \({ }^{\ominus}\)
Authorized Sales Center 1117 Conway
Mission, Texas 78572
(512) 585-2765


\section*{VANGUARD \\ 1GK STATIC RAM}
- Designed for IEEE S100 Bus Standards.
Fully static and fully buffered
Configured as four 4 K blocks within a 64 K address space. Each block separately addressable and write-protectable.
- Components and assembly fully burned-in and tested. One year guarantee.

Assembled Kit Board
250 nsec chips \(\$ 340\). \(\$ 300 . \$ 35\).
450 nsec chips \(\$ 300\). \(\$ 260\)
Order direct by check, Visa or Master Charge. California residents please add \(61 / 2 \%\) tax.

Advanced Memory Technology 480 Mercury Drive, Sunnyvale, CA (408) 736.3864

\title{
MORE BRAIN FOR YOUR BUCK
}

COMPUCOLOR HORIZON-I SOROC IQ120 SD SALES KITS 16K MEM 32K MEM 64K MEM new-VIDEO BD Z 80 STARTER SET
1495.00 1395.00 795.00
250.00
365.00
615.00 250.00 VERSAFLOPPY SBC-100

CROMEMCO
DYNABYTE
EXTENSYS
INDUST. MICRO
NORTHSTAR
SEALS
VECTOR GRAPHIC
TEI
MICROPOLIS
tarbell
T. I.

IMSAI
EXIDY
NEC
QUME
D.E.C.

AXIOM
HAZELTINE
BALLY
CENTRONICS
DIABLO
RADIO SHACK
MAIL ORDER ONLY
SEND 50\& FOR OUR CATALOG \& PRICES

TO ORDER SEND CHECK OR M.O. add
\(1 \%\) for shipping
Calif. res add 6\% tax

\title{
HOLLYWOOD SYSTEMS \\ 9100 Sunset blvd. \\ suite 112
}
L.A. CALIF. 90069


\section*{16K EPROM CARD-S 100 BUSS}


\title{
s59.95 \\ KIT \\ OUR \\ BEST \\ SELLING \\ KIT!
}

USES 2708's!
Thousands of personal and business systems around the world use this board with complete satisfaction. Puts 16K of software on line at ALL TIMES! Kit features a top quality soldermasked and silk-screened PC board and first run parts and sockets. All parts (except 2708's) are included. Any number of EPROM locations may be disabled to avoid any memory conflicts. Fully buffered and has WAIT STATE capabilities.
\begin{tabular}{|c|}
\hline OUR 450NS 2708'S \\
ARE \(\$ 8.95\) EA. WITH \\
PURCHASE OF KIT \\
\hline
\end{tabular}
ASSEMBLED
AND FULLY TESTED ADD \(\$ 25\)

8K LOW POWER RAM KIT-S 100 BUSS 250 NS SALE!

(450 NS RAMS!)
Thousands of computer systems rely on this rugged, work horse, RAM board. Designed for error-free, NO HASSLE systems use
KIT FEATURES:
Doubled sided PC Board with solder mask and silk screen layout Gold plated contact fingers.
All sockets included.
Fully buffered on all address and data lines.
Phantom is jumper selectable to pin 67.

FOUR 7805 regulators are provided
Blank PC Board w/Documentation \(\$ 29.95\)
Low Profile Socket Set...13.50 Support IC's (TTL \& Regulators) \(\$ 9.75\)
Bypass CAP's (Disc \& Tantalums) \(\$ 4.50\)
ASSEMBLED AND FULLY BURNED IN ADD \$30

\section*{COMPLEMENTARY POWER TRANSISTORS}

SILICON NPN AND PNP. TO-220 CASE VCEO - 40V PD - 30 WATTS FOR AUDIO POWER AMPS, ETC

TIP29 - NPN YOUR CHOICE
FULLY
STATIC, AT DYNAMIC PRICES

WHY THE 2114 RAM CHIP? We feel the 2114 will be the next indusiry standard RAM chip (like the 2102 was). This means price. availability, and quality will all be good! Next. the 2114 is FULLY STATIC! We feel this is the ONLY way 10 go on the S-100 Buss! We've all heard the HORROR stories about some Dynamic Ram Boards having trouble with DMA and FLOPPY DISC DRIVES. Who needs these kinds of problems? And finally. even among other 4 K Rams are created equal! Some of the other 4 K have clocked chip enable lines and varlous timing windows juat as critical as Dynamic RAM's. Some of our competitor's 16 K boards use these "tricky" devices. But not us! The 2114 is the ONLY logical choice for a trouble-free, straightiorward design

BLANK PC BOARD W/DATA- \(\$ 33\)
LOW PROFILE SOCKET SET-\$12 ASSEMBLED 8 TESTED-ADD \(\$ 30\)
SUPPORT IC'S \& CAPS-\$19.95

KIT FEATURES
1. Addressable as four separate 4 K Blocks (Cromemco Standard!). Allows up to 512 K on
line! 4. ON BOARD SELECTABLE WAIT STATES 5. Double sided PC Board. with solder mask an silk screened layout. Gold plated contact lingers 6. All address and data lines fully buffered 8. KIt includes ALL parts and sockets 8. PHANTOM is jumpered to PIN 67. 9 LOW POWER: under 2 amps TYPICAL from the \(\rightarrow\) Volt Buss. 10. Blank PC Board can be populated as any

2114 RAM'S-8 FOR \$69.95

TIP30 - PNP
3 FOR \$1

\section*{16K DYNAMIC RAM CHIP}
\(16 \mathrm{~K} X 1\) Birs. 16 Pin Package. Same as Mostek 4116-4. 250 NS access. 410 NS cycle time. Our best price yet for this state of the art RAM. 32 K and 64 K AAM boards using this chip are readily available. These are new. full aranteed devices by a major ontg. VERY LIMITED STOCK!

\section*{8 FOR \$89.95}

\section*{450 Ns \(\quad 2708\) EPROMS}

Now full speed! Prime new units from a major U.S. Mfg. 450 N.S. Access time. \(1 \mathrm{~K} \times 8\). Equiv. to 4-1702 A's in one package.
\[
\$ 16.75 \text { ear } \quad \$ 995
\]

4 FOR \(\$ 5000\) PRICE CUT
not associated WITH
DIGITAL RESEARCH OF CALIFORNIA. THE SUPPLIERS OF com sortwans.

MALLORY COMPUTER
gRADE CAPACITOR
30.000 MFD 15 WVDC

Small: \(3 \times 2\) Inches
5 to 20 VDC at 1. AMP. Short circuit protected by current limit. Uses IC regulator and 10 AMP Power Darlington. Very good regulation and low ripple. Kit includes PC Board, all parts, large heatsink and shielded transformer. 50 MV . TYP Regulation
\(\$ 1.99\) ea. 3 For \(\$ 4.99\)

> \$15.99 KIT

New! REAL TIME
Computer Clock Chip
N.S. MM5313. Features BOTH 7 segment and BCD outputs. 28 PIn DIP. \(\$ 4.95\) with Data
"THE COLOSSUS"
FAIRCHILD SUPER JUMBO LED READOUT A full .80 inch character. The biggest readout we have ever sold! Super efficient. Compare at up to \(\$ 2.95\) each from others! YOUR CHOICE
FND 843 Common Anode
349 \(\qquad\) ( 6 for 56.95 )

\section*{Digital Research Corporation}
P.O. BOX 401247Y • GARLAND, TEXAS 75040 - (214) 271-2461

TERMS: Add \(30 c\) poslage, we pay balance Orders unde, \(\$ 15\) add \(75 ¢\) nanding No C.O.D. We accept Visa. MasterCharge, and American Express cards Tea Res add 5\% Tax Forengn orders (except Canada add \(20 \%\) P \& H 90 Day Money Bach
Guarantee on all flems.



\section*{SOFTWARE}

Software Patch for SwTPC 8 K BASIC Adds Disk Data File Capability

A software patch that adds disk data file commands and functions to SwTPC's 8 K byte BASIC has been announced by PerCom Data Company Inc, 4021 Windsor, Garland TX 75042. SwTPC 8 K byte BASIC is for microcomputers that use the 6800 processor.

The software patch is overlaid after 8 K byte BASIC has been loaded in memory. This may be done either manually or from a PerCom disk which includes the patch and a loader program. The modified BASIC takes up 10 K bytes of memory. The patch permits up to four data files to be active concurrently and files may be formatted and updated in place. Formatted files may be accessed randomly.

In addition to OPEN, CLOSE, LOAD and SAVE commands, the program features special instructions that simplify data manipulation. The software patch includes nine commands and functions.

A listing of the patch program and user instruction manual sells for \(\$ 10\). A listing, manual and disk recording of the patch and patch loader sells for \$15.■

Circle 593 on inquiry card meters.

\section*{6800 Compiler}

Written in 6800 assembly language, this 3 pass compiler (on floppy disk) provides a disk based high level language for microcomputers with at least 16 K bytes of programmable memory. The new language, called STRUBAL (Structured Basic Language), features fully relocatable and linkable code. Versions of the compiler are available for iCOM FDOS-II, Smoke Signal Broadcasting DOS68 and SwTPC Flex.

The software supports a full set of scientific functions, one-dimensional and two-dimensional arrays, three data types ( 16 bit integer, 10 digit floating point and variable length strings), structured programming forms, string functions, embedded assembly language in the source program and common and dummy sections. Line numbers are not required in source programs. Subroutines may be separately compiled or assembled and called by named para-

The price of STRUBAL is \(\$ 99.95\), which includes a user's manual. For further information contact Hemenway Associates Inc, 151 Tremont St, Suite 8P, Boston MA \(02111 .{ }^{-}\)

\author{
Circle 594 on inquiry card.
}

6502 Assembler in BASIC


The 6502 Assembler in BASIC lets you write programs in assembly language for the 6502 microprocessor and have them translated to machine language for direct execution on the PET. The assembler accepts all standard 6502 instruction mnemonics, pseudo-ops and addressing modes, and evaluates binary, octal, hexadecimal and character constants, symbols and expressions. Source programs can be read from cassette and object programs can be assembled anywhere in memory. The package includes both 1 and 2 pass versions of the assem. bler, a text editor and a disassembler, and a 30 page manual with PET machine language programming hints, for \(\$ 24.95\). It is available from Personal Software, POB 136, Cambridge MA 02138 .

Circle 595 on inquiry card.

Heurikon Introduces BASIC and Disk Operating System

The Heurikon Corp, 700 W Badger Rd, Madison WI 53713, has announced the addition of Heurikon BASIC and disk operating system (DOS) to its line of MLZ-80 microcomputer products. Heurikon BASIC and DOS is a multilevel system offering two levels of concurrent operation and a disk operating system with file management. The system provides both edit and real time program areas which run concurrently. Real time programs run independently from the keyboard and program editing functions. A real time program is given highest operating priority and may be started automatically in response to external stimuli. Edit area programs will be interrupted to service real time operations. When the real time program completes a task, control is returned to the interrupted point in the edit program. New programs may be developed and tested in edit while the real time program continues to monitor external events. Heurikon BASIC and DOS file management architecture allows any number of variable length files to be cataloged on the disk.

This system is available configured to run on the Heurikon MLZ-80 microcomputer system, which is fully compatible with Intel's SBC Multibus. It can be provided on disk or in erasable programmable read only memory. \(\quad\)

\footnotetext{
Circle 596 on inquiry card
}

Software Package for 8080 and Z-80 Microcomputers

The SOS (single user operating system) package provides the user with a step between the Opus stand-alone high level languages and the Tempos multiuser/multitasking operating system. The SOS package includes: Opus/Three, the high level compiler/interpreter from AS ; ; Texted, an easy to use, line oriented text editor; Assembl, an 8080 assembler; Files, a diskette file manipulator; and Utilities 1, a package of 12 utilities programs.

Full upward compatibility has been retained to allow the user of SOS to access data and programs developed at lower levels; all may be used under the TEMPOS operating system as well. All floppy disks and serial device input/ output (1O) is handled by SOS; a system generation routine lets the user define 10 drivers as required.

The recommended hardware configuration includes an 8080 or Z-80 processor, 32 K bytes of programmable memory, one or two floppy disk drives, and terminals as required. The system typically resides in less than 10 K bytes of programmable memory.

The package is priced at \(\$ 385\) and the user's manual set may be purchased separately for \(\$ 20\), which is credited toward purchase of the SOS package. For more information contact Administrative Systems Inc, 222 Milwaukee, Suite 102, Denver CO \(80206 . \square\)

Circle 597 on Inquiry card.

Language Family Designed for Z.80 Computers

Designated PLZ, this family of system programming languages is implemented as a set of disk based programs that run in the RIO operating system of Zilog's Z-80 computers. Linkage to other languages such as BASIC, COBOL and FORTRAN is straightforward. PLZ permits a systematic combination of high level machine-independent modules with low level machine-dependent modules within the same program.

The high level modules utilize the procedure oriented PLZ/SYS language. PLZ/SYS blends elements of such languages as Pascal, ALGOL, PL/I, and C to provide a medium for expressing algorithms in a high level, structured fashion. PLZ/SYS requires minimal run time support.

A structured assembly language, PLZ/ASM, provides all of the low level programming capabilities necessary for the user to manage such processor resources as registers, memory, accesses and input/output (IO) operations.

Initial PLZ program implementation consists of the PLZ/SYS compiler, PLZCG code generator, Zinterp interpreter, Plink linker, PLZ/ASM translation filter, and PLZ IO package.

For more information contact Zilog, 10340 Bubb Rd, Cupertino CA \(95014 .{ }^{-}\)

Circle 598 on inquiry card.

\section*{0-DAY FREE TRIAL \(=\) FREE Catalog}

\section*{\(\$ 750\)}

PGT
- 14K ROM, 8K RAM
- Fast Microsoft BASIC
- Integral Tape \& CRT
- Graphics \& Lower case

5795
- Real-time clock
- IEEE and Parallel I/O

The most computer value you can buy in a single box, the PET is a complete system. It's our most popular computer.


THE PET

\section*{CONNECTION}


A Home Computer 8 a video Game in a Songte Unit!
INTERACT Model One 14 FREE CASSETTFS, wort \(\$ 294\). 8K-\$499 16K-\$599



MICROSOFT FAPE
 home compule, ihan The Inter.
nei Model One is tor you Moolel sci Model One is tor you Nookll
loyou coloo iv snd youve gol
boin' you can pisy one of the
 Best of all you gel ove, s2ga
 Micro soli tree mith The Purchase of
likK Inieract Model I This saves you
549.95


 secono casgette fon pet \(\$ 95\)



\section*{apple II}


The most powerful computer you can attach to your TV NCE/CompuMart now carries the popular Apple II microcomputer system. It easily attaches to any TV and can be used for either business or games. To see why the Apple II continues to be the leader in TV-display computers, write for more information.
:6K Apple II Computer 48K Apple II Computer Disk Drive \& Controller Second Disk Drive only
\(\$ 1195\)

\section*{in STOCK NoW Only
\(\$ 699.00\)}

Now a 5th Generation in Terminals: Immediate Delivery
Hazeltine 1500 full of features \(\quad \$ 1049\)
Hazeltine 1510 with buffer logic \(\$ 1149\) Hazeltine 1520 with printer interface \(\$ 1499\) call or write for more information

\section*{CDB MS OF THE}
in Stock
NOW!

\section*{\(\$ 675.00\)} 32K PET

With the trade-in of your working PET.

\section*{\$1,195.00 otherwise}


\section*{ S-100 MPA}

1250 North Main Street, Department BY49
P.O. Box 8610 Ann Arbor, Michigan 48107

\section*{10 DAY RIETUAN PRIVILEGE}

S-100 MPA gives your PET complete control of the S-100 bus (even DMA). Get an assembled unit at kit price.


Rockwell
AlM65


 - 20 cot ascil memel grunke 150 - Suliturit (st ten aparanvmacte 200nJis ASCI Aphin numers gevisy
 tipmsion conn firy our wamsi
 - tay Paver connections \(\$ 375\)

Oplians - 4K aOm assombienteris In bisic mom

KTM-2
A new concept in terminals
Only \(\$ 349.00\)



 Desl buy in letminal boatas


SANYO MONTTOR


\section*{KIM-1}
 sALE

\section*{\(\$ 169.95\)}
\(\$ 214.95\)
EXPAND YOUR KIM SYSTEM:
KIM SI
KIM to S-100 Board
Assembled \(\quad \$ 169\) Connecior Set 15 KIM 4 Expansion board 89.95 MICRO TECH POWER SUPPLY KIM ENCLOSURE


\(\$ 23.50\)
New Acoustic Coupler \(\$ 159\)








\section*{s.ngle boaso}

VIDEO TERMINAL by XITEX


 THL comp

Assumblea \& lestied NOW \(\$ 187\)
(313) 994-3200

- michigan resicents add 4\% sales tax - Forelgn diling (U.S. currency only) - P.O.'s accepted from D\&B rated companies - shipment contingent upon recelpt of stgned purchase order • Phones open from 9:00 a.m. \(\mathbf{7 : 0 0}\) p.m. EST Monday-Friday, 10:00
invited-call for credit application - Most ltams In stock for immadiate shipment-call for dellivery quotation - Sorry-no C.O.D.'s • All prices subject to change without notice. © In the Ann Arbor area? Retall store open 11:00 a.m.-7:00 p.m. TuesdayFriday, 10:00 a.m.-5:00 p.m. Saturdays (closed Sunday \& Monday)

\section*{J 기 \(\mathcal{Z}\) Computer Products}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
B51 5\％ \\
295.00 \\
by Micro Perlpherals，Inc．Operates in elthe single density（ 125 KB ， unformatted）or double density （ 250 KB ，unformatted）modes，up to 40 tracks，with a track－to－track access time of only 5 ms． \\
SA801R \\
by Shugart Single－sided 8：＂\＄400py disk drive． \\
FD8－100 \\
\(\$ 395.00\) GSI／Siemens．Runs cooler and quieter than 801 （ \(8^{\prime \prime}\) ） DM2700．S includes SABOlR． \(10^{\prime \prime} \times 10^{\prime \prime} \times 16^{\prime}\) cablnet，power supply，data cable．
fan，AC line filter． \\
1791 BD1 \\
Dual Density Controller Chip \\
\(\$ 49.95\)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
－TWO SIEMENS／GSI 8＂FLOPPY ORIVES
－POWER SUPPLY FOR ABOVE
－JaOE／TARBELL DISK CONTROL KIT｜SIOO｜
－CP／M OPERATING SYSTEW WITH BASIC．E
－package of 10 blank 8＂DISKE TTES
Price if purchased separately： SII92．50
Jade speclal package deal： \(\$ 1050.00\)

]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

14 PIN
16 PIN

100 for \(\$ 30.00\)
 Sockets are end and side stack3－LEVEL GOLD
WIRE WRAP SDCKWIRE WRAP SOCKETS able，closed entry．

\section*{GOLD PLATED
S－100 EDGE CONHEC S－100 EDGE CONNECTORS} Solaertall \(\$ 30.00\) \＄3．25 each Wire Wrap \(\$ 30.00 \$ 4.50\) each


\author{
10 for \(\$ 40.00\)
}

\section*{TRENDCOM 100}

Intelligent Printer


Interface \＆Cable for TRS－80 \(\$ 45 .{ }^{00}\)

\section*{Integral}

\section*{Data Systems}


Interface \＆Cable for Apple \(\$ 60 .{ }^{00}\)
－ 40 character per second rate
－Low cost thermal paper
－ 96 character set
－Microprocessor controlled
－Bidirectional look－ahead printing －Qulet operation－No external power supplies－Only two driven parts－High reliablity Clear \(5 \times 7\) characters －Attractive metal and plastic case

\section*{EXPANDOR＇S BLACK BOX PRINTER}

This 64－character ASCII impact printer with 80 －column capability is portable and uses standard \(81 / 2^{2 \prime}\) paper and reg－ and parallel interface are Included． Assembled and complete with manual and documentation．only \(\$ 470.00\)
（ 90 day manufacturer＇s warranty）




Gen．Purpose D．I．P．Boards with Bus Pattern tor Solder o Wire Wrap．Epoxy Glass 1／1 44 pin con．spaced 156
\(36779.6^{\prime \prime} \times 4.5^{\prime \prime} \ldots 510.90\) \(3677.26 .5^{\prime \prime} \times 4.5^{\prime \prime} \ldots 5 . .59 .74\)
veato Plugboards \({ }^{8800 V}\)
Jniversal Microcomputer mosessor plugboard．Usie with S． 100 bus．Com．
plete whit heat sink of hardware． plete when heat sink a haridware．
\(5.3^{\prime \prime} \times 10^{\prime \prime}=1 / 16^{\circ}\).
\(8801-1\)
Saine as b800V except plan：less power buses \＆heat sink． \begin{tabular}{llll}
\hline & 1.4 & 5.9 & 10.24 \\
\hline & 19.95 & 11.95 & 15.9
\end{tabular} \begin{tabular}{llll}
\hline 8800 V & 19.95 & 17.95 & 15.96 \\
\hline 80011 & 14.05 & 13.46 & 11.95 \\
\hline
\end{tabular} \(\begin{array}{llll}8801.1 & 14.95 & 13.46 & 11.96\end{array}\)

\section*{S－100 MOTHER BOARDS} JADE 6．SLOT
\begin{tabular}{ll} 
Kit & \(\$ 41.95\) \\
Assembled \＆Tested & \(\$ 56.95\) \\
Bare Board & \(\$ 24.95\)
\end{tabular}

9－SLOT＂LITTLE MOTHER＇ \(\begin{array}{ll}\text { Kit } & \$ 85.00 \\ \text { Assembled \＆Tested } \\ \$ 99.00\end{array}\) Bare Board \＄35．00 13－SLOT＇＂QUIET MOTHER＂ Kit \(\quad \$ 95.00\) Assm．\＆Tested \(\$ 110.00\) Bare Board \(\$ 40.00\)
22－SLOT＂STREAKER＂
Assm．\＆Tested \(\$ 149.00\)

\section*{エคエコ}

VIDEO INTERFACE
S－100 Compatibie Serial Inter． face with Sockets Included． Alt \begin{tabular}{l} 
Assembled \＆Tested \(\$ 117.95\) \\
\hline 159.95
\end{tabular} Bare Board w／manual \＄ 35.00

\section*{Z80A SPECIAL} 4 MHz CPU Chip今ิ \(\$ 14.95\) 个人 TU－d
Convert your T．V．set into a Video Monitor Kit

\section*{TRDDİ}

\section*{Products}
＂KANSAS CITY STANDARD＂ TAPE INTERFACE

Part No． 111
Board \(\$ 7.60\) ；with par is \(\$ 27.50\)
RS－232／TTL INTERFACE Pari No． 232
Converts TTL to RS． 232 and RS－232 10 TTL Board only \＄4．50； with parts \(\$ 7.00\)
RS－232／TTY INTERFACE Part No． 600
Converts RS－ 232 to 20 mA current loop，and 20 mA current loop to RS－ 232
Board only \＄4．50：
with parts \(\$ 7.00\)

\section*{4 VERBATIM \({ }^{\text {r．m }}\) FLOPPY DISKS}
\(5 \%\) in．Minidiskettes
Sofl sector， 10 sector，or 16 sector \(\$ 4.40\) each or
box of 10 for \(\$ 40.00\)
8 in．Standard Floppy Disks Soft Sector \(\$ 4.75\) each－10 for \(\$ 42.50\)

\section*{FLOPPY DISK INTERFACE JADE FLOPPY DISK（Tarbell board） \\ Kit \(\quad\) \＄175：00 \\ Assembled \＆Tested \(\$ 250.00\) \\ S．D．Computer Products \\ VERSA－FLOPPY \\ Kit \\ Assembled \＆Tested \\ \(\$ 159.95\)}

Bare Board w／Manual \＄ 30.00

Check the impressive features on Integral＇s IP－125 Impact Printer only \＄799

\section*{LOADED WITH EXTRAS AT NO EXTRA COST}

 of 256 endracters．Instanianeous print rale to 100 ensfacters per second．Multipie coples without adiustment＝Reinking rlbbon mechanism＝Fiont Pancl oparatoicontrols－Altractive
table tov console

IP－125 Integral Data System IP－125 Friction Feed Printer － 96 upper \＆lower case ASCII character set －Enhanced character control
－Serial RS232C Interface（std．factory wiring） －Parallel TTL Interface（factory wired on rea．）
－ 256 byte multiline buffer
IP－225 Integral Data System IP－ 225 Tractor Feed Printer －All standard features of IP－125
－Tractor feed paper drive
－Forms Control Option（P1250）


3690－12

\section*{CARD EXTENDER}

Card Extender has 100 contacis． 50 per side on ， 125 centert．Altached connector is com－
patitre with S． 100 Bus Sy stems \(\quad . \quad \$ 25.00\) 3890 B．5＂ \(22 / 4\) pin． 156 ctre． Extendert


P pattern plugboards for IC＇s Epoxy Glass \(1 / 16^{*} 44\) pin con． spaced 150.
\[
36625.5^{\prime \prime} \times 4.5^{\prime \prime} \ldots . .
\] \(3662.29 .6^{\prime \prime} \times 4.5^{\prime \prime} \ldots \$ 11.45\)


H1．Density Dual．in．Line Plug boatd for wire wrap with Powet \＆Gid．Bus Epoxy Glass \(1 / 16^{*} 44\) pin con．spaced .156.
\(36829.6^{\prime *} \times 4.5^{\prime \prime} \ldots . . \$ 10.98\) \(3682.26 .5^{\prime \prime} \times 4.5^{\prime \prime} \ldots 59.81\)

\section*{PLACE ORDERS TOLL FREE:}

\section*{LEEDEX MONITOR}
- 12" Black and white
- 12whz Bandwidth
- Handsome Plastic Gase
\(\$ 139.00\)


\section*{10 wicte includes \\ KIM 1 Modute muriter \\ ?OLD ROM Bytes Madrual wall sute Sche Talc. Hadmae Mancal Puog amminny Mariuat
Hfugi aminers Hele ience. (:ara Kepoora Usul?}

\section*{ㄹ. \$245 \\ 6502 - based slngle board computer with keyboard/display, KIM-1 hardware compatible, complete documentation.}

SYM-1 CASE \(\$ 29.95\)
MICROPROCESSORS
\(\mathrm{F8}\)
\(280(2 \mathrm{MHz})\)
\(280 A(1 \mathrm{MHz})\)
\(C O P 1802 C O\)
6502
6800
6802
8008.1
8035
8035.8
8035.8
8080 A

8080 A
B 0859
8080A SUPPORT DEVICES 8212
8214
8216
8224 (2MH2)
\({ }_{8226}^{8224.4}(4 \mathrm{MHz})\)
8226
8228
8238
8228
8238
8243
82.43
8251
8253
8255

8255
8257
8259
8275
\begin{tabular}{l}
8275 \\
8279 \\
\hline
\end{tabular}
USRT
S2350
AY5.1013A
TR1602B
TM56011
iM6403
BAUD RATE GENERATORS
MCl4411
14411 Crystal
6800 PRODUCT
6810 P
6820 P
6820 P
6821 P
6834 P
6850 P
6850 P
6852 p
6860 p
6860P
6871 P
6875 P
6880 p
CHARACTER GENERATORS
2513 Upper \((-12+5)\)
2513 Upper ( 5 volt)
2513 Lower ( 5 volt) MCM6571 up scan
MC
ROMS
1702 A
2708
2708
2716
\(2716(5+12)\) TI
\(2716(5 v)\) INTEL
\(2758(5 v)\) SS
DVNAMIC RAMS
\(4160 / 4116\) (200ns)
\(2104 / 4096\)
\(2104 / 4096\)
21078.4
TMS4027/4096 (300ns)
STATIC RAMS
\(21 \mathrm{L02}(450 \mathrm{~ns}\)
\(21 \mathrm{LO}(250 \mathrm{~ns})\)
\({ }_{21}^{21002}(250 \mathrm{~ns})\)

FLOPPY DISK CONTROLIERS \(177!801\)
\(179!\)
KEYBOARD CHIPS AY5.2376
AY5.3600
AY5-3600
MM5 740
 16.95
20.00
14.95 4.00
7.95
1.95

\section*{Rockwoll Alin-65: The Head-siart In inicrocomputers}

A KIM-1 compatible machine with rd printer and a real \(k\)
\(\$ 37500 \mathrm{w} / 1 \mathrm{~K}\) RAM \(\$ 450.00 \mathrm{w} / 4 \mathrm{~K}\) RAM \(4 K\) assembler/editor in ROM: \$ 80.00 8K BASIC in ROM: Power supply: Case for AlM-65:
Special Package Price: \(\$ 599.00\)
AIM-65 (4K), Power Supply, Case, and 8 K BASIC ROM

\section*{KIMSI}

INTERFACE/MOTHERBOARD Makes S .100 cards plug-in compatible with KIM!
Kit \(\$ 125.00\)
Assembled 8: \(\quad \$ 165.00\) Tested
\(\$ 165.00\)

\section*{BETSI}

INTERFACE/MOTHERBOARD Makes S-100 cards plug. in compatible with PET! Kit
Assembled \(\$ 119.00\) Assemb \(\$ 159.00\)

\section*{The Piggy \({ }^{\text {TM }}\) is here!}
\(\$ 2.95\)


\section*{\(\$ 6.75\)
\(\$ 9.75\)
\(\$ 10.95\)}
\(\$ 3.9\)
\(\$ 4.0\)
\(16-10\) 4.00
-100 -100
1.20
1.50 1.20
1.50
2.60 \(\$ 2.65\) \(\$ 49.95\)
\(\$ 13.75\)
\(\$ 13.75\)

\section*{Computer Products \\ 4901 W. ROSECRANS AVENUE Department "B" 3 HAWTHORNE. CALIFORNIA 90250 U.S.A. \\ }

Cash, checks, money orders, and credlt cards accepted. Add freight charge of \(\$ 2.50\) for orders under 10 lbs. and \(\$ 1.00\) service charge for orders under \(\$ 10.00\). Add \(6 \%\) sales tax on all parts delivered in Callornia. Discounts avallable at OEM quantitles.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice

Jade Memory Expansion Kits for TRS-80 and Apple!

\section*{4116 's}

\section*{8 for \(\$ 69.96\)}
(16K \(\times 1,200 \mathrm{~ns}\) )
includes dip plugs and Instructions

\section*{\(\star\) TRS-80 Kit \(\star\)}
(16K \(\times 1,300 \mathrm{~ns})\)
includes connectors and instructions \(\$ 75.00\)
Call for discounts on larger quantilies

\section*{'JMSAJ'-TYPE CARD} GUIDE 8PECIAL:
Regular Price \(30 d\) each
SPECIAL: 10 for \(\$ 1.00\) !

\section*{New Prices}

DYNAMIC RAM BOAROS EXPANDABLE TO 64K 32K VERSION - KITS Uses 4115 ( \(8 \mathrm{~K} \times 1,250 \mathrm{~ns}\) ) Dynamlc RAM's, can be expanded in 8 K increments up to 32 K :

8K \$159.00 24K \(\$ 249.00\) \(16 K \quad \$ 199.00 \quad 32 K \quad \$ 299.00\)

\section*{4115 SALE \\ 8 for \$39.95}

64K VERSION - KITS Uses 4116 ( \(16 \mathrm{~K} \times 1,200 \mathrm{~ns}\) ) Dynamic RAM's, can be expanded In 16 K increments up to 64 K :
\(16 K \quad \$ 249.00 \quad 48 K \quad \$ 469.00\) 32K \(\$ 369.00 \quad 64 K \quad \$ 569.00\)
\(\rightarrow \begin{gathered}\text { STATIC RAM } \\ \text { SPECIALS }\end{gathered}\)
\[
2114 \text { 's, low power }(1024 \times 4)
\]
\begin{tabular}{l|l|l|l|} 
& \multicolumn{2}{c}{1.15} & \(16-99\) \\
45 Ons & 8.00 & 6.95 & 5.50 \\
300 ns & 9.00 & 8.00 & 6.50 \\
\hline
\end{tabular}

TMS4044/MM5257, low power
\begin{tabular}{l|l|l|l|}
\hline 450 ns & 8.00 & 7.50 & 6.50
\end{tabular}
\begin{tabular}{l|l|l|l}
300 ns & 9.95 & 8.75 & 8.00 \\
\hline
\end{tabular}

4200A (4K×1. 200ns)
\begin{tabular}{|l|l|l|}
\hline 9.95 & 8.50 & 8.00
\end{tabular}
\(4100(4 K \times 1,200 \mathrm{~ns})\)
8.25
8.00

\section*{STATIC RAM BOARDS}

\section*{JADE 8K}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{450 ns} \\
\hline & 250 ns & \$14 \\
\hline \multicolumn{3}{|l|}{Assembled \& Tested:} \\
\hline & 450 ns & \$139 \\
\hline & 250 ns & \$169.75 \\
\hline are & & \$ 25.00 \\
\hline
\end{tabular}

16K - Uses 2114 's (low power) Assembled \& Tested:

RAM 16 (250ns) \(\$ 375.00\) RAM 16日(450ns) \(\$ 325.00\) 16K with memory management Assembled \& Tested:
\(\begin{array}{ll}\text { RAM } 65 \\ \text { RAM } & (250 n(450 n s) \\ 450\end{array} \quad \$ 390.00\)
32K Static
Assembled \& Tested.
\(250 n s \quad \$ 795.00\)
\(\begin{array}{lr} & \$ 725.00 \\ 250 n s k i t & \$ 575.00\end{array}\)

Full Size Floppy Disk Memory Completely Assembled


Discus 1 is a full-size floppy disk memory for S-100 systems using the 8080 processor. The Discus 1 is sold as a complete system, assembled and tested, with all required hardware and software. Hardware included in the Discus I system includes a Shugart 800R full-size disk drive fully mounted in a custom, all metal cabinet with an independent power supply; a Disk Jockey I S-100 controller with a capacity for seven additional disk drives; and all necessary cables and connectors.

The controller offers an on board serial input and output (10) port to which all system software has been interfaced. The 10 routines can then be modified with tive included system software at the user's convenience.

Software included features an integrated Disk/Ate system containing most utilities: disk operating system, file management, system debugger, text editor, batch processor and 8080 assembler. Also included is BASIC-V, a virtual disk BASIC with the ability to address up to 2 M bytes, and to accommodate a wide variety of data types including string-oriented arrays with an unlimited number of dimensions. Also included are patches for CP/M.

The Discus I system sells for \(\$ 995\) plus tax and handling. For users wishing to supplement the Discus I software, several extra cost options are available. CP/M for Digital Research is available for \(\$ 70\). Microsoft Extended Disk BASIC for \(\$ 199\) and Disk FORTRAN for \(\$ 349\) are also available. For further information, contact Thinker Toys, 1201 10th St, Berkeley CA 94710.-

Circle 632 on inquiry card. .

Programmable Memory Board for M6800


The SME 6808 is an 8 K byte by 8 bit low power static programmable memory board for microcomputer systems which utilize the M6800 bus structure. The fully assembled and tested memory board operates from a single 5 V power supply and is available in versions with either 250 ns or 500 ns access time.

The module is organized as two 4 K byte arrays which can be independently located at any 4 K byte boundary in the 64 K byte addressing range of the system. Base address selection for each array is made via on board jumpers. Switches provided on the board allow selection of a read only mode of operation for each of the 4 K byte arrays. This permits the user to simulate read only memory for software development applications, or to protect data from being overwritten during program execution.

Slow memory circuitry can be provided with the SME6808 module. This option permits the 500 ns board to be used in applications with high speed processors or protects investments in memory as high speed processors are added to existing systems.

The price of the 500 ns board is \(\$ 324.95\); the 250 ns version sells for \(\$ 399.95\). Slow memory circuitry is available for either version at an additional cost of \(\$ 10\). Ultra low power modules are also available. Contact American Technologies, POB 23001, Rochester NY 14692.

Circle 633 on inquiry card.


Memory Board with Vector Jump
The MB-8A memory board, which uses 2708 erasable read only memories, is fully buffered, has reverse voltage protection, and includes vector jump capabilities which enable the user to jump to any 256 bit location on the board.

Features of the new board include magic mapping, which automatically disables any socket with no read only memory installed, allowing the use of additional programmable memory. The board does not require the use of a front panel. Just reset and go. The MB-8A is plug compatible with all S-100 bus mainframes and has dual-in-line package (DIP) switch selection of eight wait states.

The price of the MB-8A is \(\$ 95\) from SSM, 2116 Walsh Av, Santa Clara CA 95050.■

Circle 634 on inquiry card.

\section*{Memory Board for S-100 Bus}

PCE Electronics has announced the \(16 / 4+1\) erasable read only memory and programmable memory board for the S-100 bus. This board features accommodations for up to 162708 i K word by 8 bit erasable read only memory integrated circuits, addressable in four separate 4 K byte blocks. Any block may be addressed on any 4 K byte boundary in memory and any of the 16 erasable read only memory sockets may be disabled. The erasable read only memory section is capable of generating zero to four wait states.

The programmable memory section of the \(16 / 4+1\) utilizes eight 21 L 021 K
by 1 bit static programmable memories. The 1 K byte block of programmable memory is addressable on any 1 K byte boundary in memory. Either 250 ns or 450 ns programmable memories are avatilable with the board.

Other features of the board include complete buffering, solder mask, silk screened component location diagram, sockets for all integrated circuits and complete documentation.

The price for the board in kit form is \(\$ 130\), or \(\$ 155\) for an assembled and tested board. The 250 ns programmable memory circuit is \(\$ 5\). For more information contact PCE Electronics, 4782 Dewey Dr, Fair Oaks CA 95628.*

Circte 635 on inquiry card.

\section*{ITHACA AUDIO}

\section*{THE OEM MARKETPLACE}

\section*{IA Expands S-100Line \\ Video Display \\ Field-proven \\ reliable engineering}

Board
Featuring a full 128 upper/lower case ASCII character set stored in a 1 K buffer memory. Easy to read 16 line \(\times 64\) character format can be displayed on an inexpensive video monitor or a modified TV set. Includes a TTY software driver. Add our powerful K 2 FDOS to create a versatile operator console.

\section*{\$25.00}

\section*{Disk Controller Board}

Controls up to 4 single or double sided drives. Data protect features include automatic disable of write-gate during power-down for data integrity. Supported by a reliable software package, K 2 FDOS and complete diagnostic documentation.

\section*{\$35.00}

\section*{K2}

Operating System
Power full disk software in the DEC tradition. Includes Text Editor (TED), File Package (PIP), Debugger (HDT), Assembler (ASMBLE) HEXBIN, 1 COPY, System Generator (SYSGEN). Command syntax follows Digitals 0S-8, RT/ 11 format. Firs in a family of high level sottware. Soon to be released, FORTRAN \& Pascal Compilers.

\section*{\(\$ 75.00\)}

Over 10,000 boards worldwide prove Ithaca Audio provides the quality and reliability you demand.

Ithaca Audio Boards are fully S-100
compatible, featuring gold edge connectors and plated-through holes. All boards (except the Protoboard) have fully buffered data and address lines, DIP switch addressing, solder mask and parts legend.

2-80 CPU Board Most powerful 8 bit central processor available. Featuring power-onjump, provision for on-board 2708. Accepts most 8080 software.
\(\$ 35.00\)
8K Statc RAM Board High speed static memory at the lowest cost per bit. Includes memory protect/unprotect and selectable wait states.
\(\$ 25.00\)
2708/2716 EPROM Board Indispensable for storing dedicated programs and often used software. Accepts up to 16K of 2708's or 32K of 2716's.
\(\$ 25.00\)
Protoboard Universal wire-wrap board for developing custom circuitry. Accepts any size DIP socket.
\(\$ 25.00\)


\section*{RAM! \\ 32K for \(\$ 359\).}

Ithaca Audio is now stocking the Mostek 4115 add-on RAM for S.D.'s Expandoram. Buy their basic board, 32 K of RAM from us and SAVE.
S.D. SALES Expandoram board Ithaca Audio 32 4115's @ \(\$ 5.00\) ea.

32K Only

\title{
MassStorage at Incomparable Prices.
}

\section*{IthacaAudio Floppy Disk}
- Up to 250K bytes, single sided
- Up to 500K bytes, double sided
- Data protect
- Powerful software operating system includes 8 utility programs, text editor.

Add the capacity of full size disk to your S-100 microcomputer. Controller, Disk Drive, and Software available separately.

\section*{Memorex single sided \\ 550 Flextble Disk Drive}
\(\$ 456\).
Memorex double sided 552 Flexible Dlsk Drive
\(\$ 330\).
Disk Controller Board \$35.
K2 FDOS Available on 8 " floppy disk w. manual \(\$ 75\).

\section*{Quality Components}
\begin{tabular}{lr} 
ZILOG Z-80 & \(\$ 19.00\) \\
ZILOG Z-80A & 23.00 \\
INTEL 2708 & 11.00 \\
FAIRCHILD 2102 LHPC & 1.60 \\
FAIRCHILD 2102 LIPC & 1.35
\end{tabular}
\begin{tabular}{|c|}
\hline IMSAI 8080 KII with 22 Slot M.B. \\
\(\$ 560.00\) \\
plus \(\$ 10.00\) shipping. \\
\hline
\end{tabular}

\section*{HOW TO ORDER}

Send check or money order. include \(\$ 2.00\) shipping per order N.Y.S. Residents include tax.

For technical assistance call or write to:
```

ITHACA
AUDIO
P.O. Box 91
Ithaca, New York 14850
Phone: 607/257-0190

```

\section*{Whats New?}

\section*{PERIPHERALS}


This new Selectric input and output (10) writer interface, called Typeaway, offers an easy, economical way to add hard copy capabilities to an S-100 system. Typeaway is a complete package of everything required to interface a model 731 or 73510 writer to an \(5-100\) computer. The total package includes: a single \(S-100\) compatible printed circuit board with solenoid drivers; 10 ports; complete software in programmable read only memory; all the cable and connectors needed to connect a Selectric to Typeaway, including a 50 pin A connector; and a versatile DC power supply.

Typeaway can be adapted to work with any factory version of a Selectric 10 writer. Software supplied in two 1702A programmable read only memories is all that is necessary to operate a Selectric 10 writer as either an input or output device. All control functions and code conversions are programmed in the board's firmware.

The tested and assembled version is priced at \(\$ 350\) and a kit version sells for \(\$ 275\). For further information contact Micromation Inc, 524 Union St, San Francisco CA 94133.■

Circle 570 on inquiry card.
S. 100 Expansion for Commodore's PET Computer


Forethought Products, POB 8066, Coburg OR 97401 has announced a PET to S-100 interface and motherboard named Betsi. Betsi is a single circuit board that contains all the necessary logic to interface s-100 boards to the PET.

The board attaches directly to PET's memory expansion connector and provides both interface logic and four S-100 slots on a single compact circuit board. Betsi operates with any S-100 power supply and doesn't inter-
fere with use of PET's parallel or IEEE ports.

In addition to its compatibility with most available S-100 boards, Betsi has an on board dynamic memory controller which allows it to be expanded to 32 K bytes with a single \(\mathrm{S}-100\) card.

The kit (which includes one S-100 connector) is priced at \(\$ 119\). \(\$ 165\) is the price for the assembled and tested board (which includes four S-100 connectors).

Circte 606 on inquiry card.

\section*{DEC VT-52 Compatible Video}

The Elite 3052A video terminal is a buffered VT-52 compatible terminal with a single page video memory. It offers formatting capability, eight levels of screen enhancements, and a detached keyboard.

The terminal displays 1920 alphanumeric characters in a 24 line, 80 character format and offers a series of features for VT-S2 users that includes: an unmatched range of operating modes; host control of block transmit function in local or remote environment; communications flexibility through switch selectable EIA or 20 mA current loop interfaces; buffered support of host-toprinter data transfers; ten user function keys; 8 level video, which requires no memory address space; and 15 data transmission rates, up to 9600 bps, selectable from keyboard.

The Elite 3052A is priced at \(\$ 1700\) in single quantities and \(\$ 1360\) in quantities of 100 . Write to Datamedia Corp, 7300 N Crescent Blvd, Pennsauken NJ \(08110 .{ }^{-}\) Circte 607 on inquiry card.

\title{
Smart Venus 2001 Video Board \\ Assembled and Tested \(\mathbf{\$ 2 5 9 . 9 5}\) - Complete Unit with 4K of Memory and Video Driver on Eprom assembled and tested \$339.95 \\ OPTIONAL: • Sockets \(\$ 10.00\) - 2 K Memory \(\$ 30.00\) • 4 K Memory \(\$ 60.00\) - Video Driver Eprom \(\$ 20.00\) - Text Editor Eprom (Includes Video Driver \$75.00) \\ \\ S-1 00 Plug-In • Parallel Keyboard Port \\ \\ S-1 00 Plug-In • Parallel Keyboard Port \\ On board 4K Screen Memory (Optional). On board Eprom (Optional) for Video Driver or Text Editor Software. \\ 
}

\section*{Up and Down Scrolling through

\section*{Up and Down Scrolling through Video Memory}

Reverse Video, Blinking Characters.
DIsplay: 128 ASS 11 Characters \(64 \times 32\) or \(32 \times\) 16 Screen format (Jumper Selectable). 7 by 11 Dot Matrix Characters.

American or European TV Compatible (CRT Controls Programable)

\section*{Dealer Inquires Invited}

\section*{GRAND OPENING SPECIAL!}

15 MHZ DUAL TRACE

\section*{Portable Scope}


BREAKTHRU MODEL MS-215
- Battery or A.C. Operated - External and Internal Trigger - Time Base-. 1 m Sec ./Div. Into 21 Calibrated Ranges 3\% Accuracy • Input Impedance 1 M Ohms - Complete with Input Cables, Battery and Charger.
OPTIONAL: • Leather Case \(\$ 45.00\) • \(10: 1\) Probe \(\$ 27.00\) (2 for \(\$ 49.00\) ) Prices Good through 5/31/79
MS-15 Single Trace Scope \$299.

\section*{* \({ }^{31 / 2}\) DIGIT DM LCD Readout}

SIZE: \(1.3^{\prime \prime} \mathrm{H} \quad 2.7^{\prime \prime} \mathrm{W} \quad 4.0^{\prime \prime} \mathrm{D}\)
- .5\% Accuracy • AC-DC

1-1000V - Ohms \(1 \mathrm{~K}-10 \mathrm{M}\)
- Current ImA-1 Amp
- 100\% Overload Protection

OPTIONAL: • Leather Case \(\$ 20.00\)
- NiCad Battery and Charger \$16.00

N
3.5 LED DIGITS

\section*{Panel Meter}
-. \(5 \%\) Accuracy
- Voltage Range \(0-1000 \mathrm{~V}\)
- Power: +5V 200mA

- Auto Zero - Update Rate: 3 Rdg. / Sec.

ASCII Keyboard Kit \$77.


Assembled and Tested \(\$ 93.00\)
- Single +5 V Supply • Full ASCII Set (Upper and Lower Case) - Parallel Output • Positive and Negetave Strobe 2 Key Rollover - 3 User Definable Keys - P.C. Board Size: \(17-3 / 16^{\prime \prime} \times 5^{\prime \prime} \cdot\) Control Characters Molded on Key Caps - Optional Provision For Serial Output
OPTIONAL: Metal Enclosure \(\$ 27.50\) • Edge Con. \(\$ 2.00\) • Sockets \(\$ 4.00\) - Upper Case Lock Switch \(\$ 2.50\) - Shift Register (For Serial Output) \(\$ 2.00\)

Dealer Inquiries Invited

\section*{Apple II I/O Board KIt}

Plugs into Slot of Mother Board
- 18 Bit Parallel Output Port (Expands to 3 Ports) 21 Input Port - 15mA Output Current Sink or Source - Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc. 1 free software listing for SWTP PR 40 or IBM selectric.
PRICE: 1 Input and 1 Output Port \(\$ 49.00\)
1 Input and 3 Output Ports \(\$ 64.00\)
Dealer Inquiries Invited

SHIPPING \(\$ 3.50\) / California residents add \(6 \%\) sales tax
ELECTRONICS WAREHOUSE Inc.
15820 Hawthorne Boulevard
Lawndale, CA 90260
(213) 370-5551


\title{
WAMECO \\ \\ THE COMPLETE PC BOARD HOUSE \\ \\ THE COMPLETE PC BOARD HOUSE EVERYTHING FOR THE S-100 BUSS
} EVERYTHING FOR THE S-100 BUSS
}
* FPB-1 FRONT PANEL BOARD

Hex Displays, IMSAI Replaceable ...... \(\$ 50.00\)
* FDC-1 FLOPPY DISC CONTROLLER BOARD

Controls up to 8 Discs ........................... \(\$ 45.00\)
* MEM-1A 8K BYTE 2102 RAM Board .... \(\$ 30.00\)
* MEM-2 16K BYTE 2114 RAM Board .... \(\$ 30.00\)
* CPU-1 8080A CPU Board

With Vector Interrupt .............................. \(\$ 30.00\)
* EPM-1 4K BYTE 1702A EPROM ........... \(\$ 30.00\)
* EPM-2 16K or 32K BYTE EPROM
2708 or 2176 interchangeable ........... \(\$ 30.00\)
* QMB-9 9 SLOT MOTHER BOARD Terminated
\(\$ 35.00\)
* QMB-12 12 SLOT MOTHER BOARD
Terminated
* RTC REALTIME CLOCK

Programmable Interrupts
\(\$ 30.00\)

FUTURE PRODUCTS: 80 CHARACTER VIDEO BOARD, IO BOARD WITH CASSETTE INTERFACE.
DEALER INQUIRIES INVITED, UNIVERSITY DISCOUNTS AVAILABLE AT YOUR LOCAL DEALER
wmc


RCA Cosmac Super Elf Computer \$106.95
Compare features before you decide to buy any plus load, reset, run, wait, input, memory proother computer. There is no other computer on tect, moniltor select and single step. Large. on the market today that has all the desirable bene- board displays provide output and optional high fits ol the Super Elf for solititle money. The Super and low address. There is a 44 pin standard Ef is a small single board computer that does many blg things. it is an excellent computerfor training and lor learning programming with its machine language and yet it is easily expanded with addilional memory, Tiny Basic, ASCII Keyboards, video character generatlon, etc. The Super Elf includes a AOM monitor for program loading, edititng and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP You can see the microprocessor chip operating with the unlque Quest address and data bus displays betore, during and atter executing instructions. Also, CPU mode and instruclioncycle are decoded and displayed on nine LEO indicator lamps.
An RCA 1861 video graphlcs chip allows you to - connect to your own TV with an inexpenslve video modulator to do graphics and games. There is a music or using many music programs already written. The speaker amplifier may also be used to drive relays for control purposes.
A 24 key HEX keyboard includes 16 HEX keys

\section*{Super Expansion Board with}

This is truly an astounding value! This board has been designed to allow you to decide how you want it optioned. The Super Expanslon Board comes with 4 K of low power RAM fully addressable anywhere in 64 K with built-in memory probeen made for all other options on the same been made for all other options on the same
board and it fits neatly into the hardwood cabinet alongside the Super Elt. The board includes slots for up to 6K of EPROM (2708, 2758, 2716 or TI 2716) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor \(\$ 19.95\) is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader/ editor and error checking multi file cassette read/write sotware, (relocatible cassette file) another exclusive from Quest. It includes register save and readout. block move capability and video graphics driver with blinking cursor. Break points can be used with the register save feature
to isolate program bugs quickly, then follow with to isolate program bugs quickly, then follow with single step. The Super Monitor is written with
subroutines allowing users to take advantage of monitor functions simply by calling them up.

Auto Clock Kit
\(\$ 15.95\)
DC clock with 4.50 displays. Uses National MA-1012 module with alarm option. Includes
light dimmer crystal timebase PC boards. Fully regulated. comp. instructs. Add \(\$ 3.95\) for beautiful dark gray case. Best value anywhere.

RCA Cosmac VIP Kit \(\$ 229.00\) Video computer with games and graphics. Fully assem. and test. \$249.00
Not a Cheap Clock Kit \(\$ 14.95\) Includes everything except case. 2 - \(P C\) boards. 6-50 LED Displays. 5314 clock chip. transformer. all components and full instructions. displays. Red only, \(\$ 21.95\) Case \(\$ 11.75\)

\section*{60 Hz Crystal Time Base Kit \(\mathbf{\$ 4 . 4 0}\) Converts digital clocks from AC line frequency} to crystal time base. Outstanding accuracy, Kit includes: PC board. IC, crystal, resistors. ca-
connector for PC cards and a 50 pin connector for the Quest Super Expanslon Board. Power Supoly and sockets for all IC's are included In the price plus a detailed 90 page instruction manual.
Many schools and universities are using the Super Elf as a course of study. OEM's use it for training and research and development.
Remember, other computers only ofler Super Ell teatures at additional cost or not at all. Compare before you buy. Super Elf KIt \$106.95, High address option \(\$ 8.95\), Low address oplion \$9.95. Custom Cabinet with drilled and labelled plexiglass front panel \(\$ 24.95\). NiCad Battery Memory Savar Kil 56.95 . All kits and optlons also come completely assembled and tested Quesidata, a 12 page monthly software publication for 1802 computer users is avaliable by subscription for \(\$ 12.00\) per year.
Tiny Basic for ANY 1802 System Cassette \(\mathbf{5 1 0 . 0 0}\). On \(\boldsymbol{\text { ROM }} \mathbf{\$ 3 8 . 0 0}\). Super Ell owners, \(30 \%\) off. Object code IIstIng with manual \(\$ 5.00\). Object list, manual and paper tape \(\mathbf{\$ 1 0 . 0 0}\). Original ELF Kit Board \$14.95.
Cassette Interface \(\$ 89.95\)
Improvements and revisions are easily done with the monitor. If you have the Super Expansion Board and Super Montor the monitor is up and running at the push of a button.
Other on board options include Paralial Input and Output Ports with lull handshake. They allow easy connection of an ASC'Il keyboard to the input port. RS 232 and 20 ma Current Loop for teletype or other device are on board and if you need more memory there are two S-100 slots for static RAM or video boards. A Godbout BK RAM staic Ram or video doaros. A Godoout ok Ran board is available for \(\$ 135.00\). Also a \(1 K\) Supe Monitor version 2 with video driver for full capa binty display will ITY \(20 \mathrm{ma} \mathrm{I/F} \$ 1.95, \mathrm{~S}-100 \$ 4.50\). A 50 gln connector set with rlbbon cable is available at \(\$ 12.50\) for easy connection between the Super Elf and the Super Expansion Board.
The Power Supply Kit for the Super Expansion Board is a 5 amp supply with multiple positive and negative voltages \(\$ 29.95\). Add \(\$ 4.00\) for shipping. Prepunched frame \(\$ 5.00\). Case \(\$ 10.00\). Add \(\$ 1.50\) for shipping.

\section*{Digital Temperature Meter Kit}

Indoor and outdoor. Switches back and forth. Beautiful. \(50^{\prime \prime}\) LED readouts. Nothing like it available. Needs no additional parts for complete. full operation. Will measure \(-100^{\circ}\) to \(+200^{\circ} \mathrm{F}\), tenths of a degree. air or liquid. Very accurate. \(\quad \$ 39.95\) \(\begin{array}{ll}\text { Beautiful woodgrain case w/bezel } & \mathbf{\$ 1 1 . 7 5}\end{array}\)

NiCad Battery Fixer/Charger Kit Opens shorted celis that won't hold a charge and then charges them up, ail in one kit w/full parts and instructions.

\section*{PROM Eraser Will erase 25 PROMs in
i5 minutes. Ulitraviotet, assembled \(\$ 34.50\)}

\section*{Rockwell AIM 65 Computer}

6502 based single board with full ASCII keyboard and 20 column thermal printer. 20 char. alphan umerlc display, ROM monitor, fully expandable. \(\$ 375.00\). 4 K Assembler \(\$ 85.00\), 8 K Basic interpreter \(\$ 100.00\). Power supply assembled in case \(\$ 60.00\).

Same day shipment. First line parts only Factory tested. Guaranteed money back. Quality IC's and other components at lactory prices.
integrated circuits

 and save over \(\$ 100^{\circ}\)


\section*{Introducing the \\ Vista V80 Mini Disk System}



19355 BUSINESS CTR DR 684 NORTHRIDGE, CA 91324

TRS-80 SOFTWARE
Cal No. 1093 SARCON CuISS SARGONCHESS, II. SAAR IRELII. SAMIIR.V. CRIBAAGEI/III. REAL TIME LUNAR LAND
BRIDGE CHALIENGER AIR RAIDV/II PIOTIII. SMALI BUSINESS BOOKKEEPING DAILY ENORHYTHM PRO
MICRO TEXT EDIIORVI/I INVENTORY MODULARVII

\section*{CASSETTES}


Pike


IC MASTER \(\$ 45\)

SEND FOR FREE SPRING CATALOG FEATURING:

\author{
FACTORY FRESH PRMI ICS, LEDS
READOUTS. RECIFIERS. ZENERS. TRS-80 ADD.ONS, S-100 3OARDS PC AIDS, TEST EQUPMENT, BOOKS
SOTWAAE, AND MORE
}

ORDER BY MAIL PHONE MASTLRCHARCE VISA, CODS OKIADD SIS



\title{
California Digital Post Office Box 3097 B • Torrance, California 90503
}

\section*{Hazeltine 1400 \\ CRT TERMINAL \(\$ 735\) , mitur}

The Hazeltine 1400 Vidio Display Terminal is designed to uptimize interactive real-time operations. The interface is RS232-C interface at baud rates that are switch selectable up to 9600 baud.
- All 128 ASCII Codes

 - 80 Characters per Line

Immedlate Delivery
\begin{tabular}{|c|c|}
\hline & \multirow[t]{5}{*}{} \\
\hline DB25s female \(\$ 395\) & \\
\hline '395 & \\
\hline & \\
\hline & \\
\hline
\end{tabular}


Shugarit Associates
SA800-R Floppy Disk Drlve The most cost cffective way to store data proc essing information, when random recall is a
prime factor. The SABOO is fully compatible prime factor. \(\mathbf{w}\) ith the IBM 3740 format. Write protect eir cultry. low maintenance \& Shugart quality.

\section*{\(\$ 445.50\)}

\section*{TXHATYPE MODXX 43}

Even 11 wa heve to gle thom away, warre going to shlp more of ell our compatitors.

Model 43AAA (TTL)
\(\begin{array}{lllll}\text { EACH } & \frac{3}{8} & \frac{10}{85} & \frac{25}{825}\end{array}\)


 Warld Pawer SPECIAL APPLE II IвK MEMOR COLOR • GRAPHICS • SOUND \$1024 Mfy. Sus. PLUS SHIPPING \(\$ 1195\)

MSIOa L/O Modual. ... . \(\$ 129.95\) MCCa master control.... \$149.95 RSBa S-100 interface. . . . \(\$ 289.95\) EPR80a Eprom prog. . . . \(\$ 159.95\)
EPR100a Eprom prog. . . \(\$ 159.95\) Data sh
\(\qquad\)

- As you may be aware, publisher require advertigers to submit their
date. That much lead prior to press a volatile such as memory circuits, makes it extremely difficul to project future cost and availability.
To obtain the best pricing on memory we have made volume commitments to our suppllers. which in turn affords us the opportunity to sell these circuits at the most competitive prices. Please contact us if you if you have a demand for volume state of the art mem SY products. \(\begin{array}{lllllll} & 1-31 & 32-99 & 100-5 C & -999 & 1 \mathrm{~K}+\end{array}\) \(\begin{array}{lllllll}21 \mathrm{LO2} 450 \mathrm{nS} . & 1.49 & 1.19 & 1.05 & .95 & .89 \\ 21 \mathrm{~L} 02 & 250 \mathrm{nS} . & 1.69 & 1.49 & 1.45 & * & .75\end{array}\) \(\begin{array}{llllll}211202 & \text { 250ns. } & 1.69 & 1.49 & 1.45 & * \\ 2114 & 1 K x 4 & 450 & 6.95 & 6.50 & 6.25 \\ 6.00 & 5.75\end{array}\) \(\begin{array}{llllll}2114 & 1 \mathrm{Kx} \\ 2114 & \mathrm{KX} & 300 & \text { B. } 95 & 8.50 & 8.25 \\ 8.50 & 8.00 & * \\ 40444 \mathrm{KX} 1 & 450 & \text { 5. } 95 & 5.50 & 5.00 & *\end{array}\) \(\begin{array}{lllll}40+44 \mathrm{KX} 1 & 450 & 5.95 & 5.50 & 5.00 \\ 40+4 & 4 \mathrm{Kx} 1 & 250 & \mathbf{8 . 9 5} & \mathbf{9 . 5 0} \\ \mathbf{9 . 0 0}\end{array}\) \(\begin{array}{lllll}4045 & 1 \mathrm{Kx} 4 & 450 & 8.95 & 8.50 \\ 4045 & 8.00 \\ 4 \mathrm{Kx} 4 & 250 & 9.95 & \text { g. } 50 & 9.00\end{array}\) \(\begin{array}{lllllll}4045 & \mathrm{Kx4} & 450 & 8.95 & 8.50 & 8.00 & *\end{array} \quad *\) SPECIAL CIRCUITS
\(Z 80 \mathrm{~A}+\mathrm{MHz}\).
8080 A CPU
8080 A CPU
8085
B086 Intel 16 bits

AY5-1013A UART 4.95 Floppy Disc Controllers WD 1781 single D. 39.95 WD 1791 D/D 3740 *

APPLE RS-232
Serial Interface \({ }^{\text {² }} 59.95\)
Interfaces
Apple II to
Teletype or
al printer.
ELECTRONIC SYSTEMS

DiqiCast
A/V-100 R.F. MODULATOR \(529.95_{\text {audio and vidio }}^{\text {Brade }}\) on your existing color
ed for the Apple II.

Extender Board
MUllen \({ }^{\text {W4.95 }}\)
Facilitates design and trou bleshooting of all \(\mathrm{S}-100 \mathrm{mi}-\)
crosystems. crosystems. Includes logic
probe along with high-low and pulse LED display. Also avallable, the Mullin
\(\mathrm{CB}-1\) controller board \(\$ 88\).
S. 100 PROTOTYPE BOARD Srow protion

 noo- Mre wios beyor
Thumbwheel

\section*{5
3
0
0
3
8}

\section*{Attention TRS-80 Owners}

\section*{\(\$ 650\)}

\section*{WORD PROCESSING TERMINAL}

LAWY ERS, BUSINESSMEN. .... This terminal, when properly interfaced to your computer, allows you the flexibility of gener-
ating computerized error free correspondence. Gives your client and business associates the impression that each letter was personally iyped for the recipient. Compose your correspondence and "Fill-in" formis on your computer, edit on your acreen and when your text is letter perfect instruct your computer to print an error free copy on your terminal.
The heart of this terminal is the durable IBM Selectric Typeof IBM service centers is at your disposal. The terminal is functional as a regular office typewriter when not performing computer work. moved from several months 150 of these terminals will be re moved from service, returned to the manufacturer, inspected sale two-hundred Diablo printers. Within three weeks every unit was sold. Don't pass this opportunity to purchase a word processing terminal at an excellent price.
Selectric Ferminal \(\$ 650\) (FOB Los Angeles). Shipping to the East coast aprox. \(\$ 35\). Combined TRS-80 interface and power supply
available. Documentation will be supplied to those Individuals who want to do their own custom interfacing
Sorry. but credit cards will not be accepted on thia purchase

\section*{ATTENTION TRS-80 \& APPLE USERS}


BUILD YOUR OWN LOW COST MICRO-COMPUTER POWER SUPPLIES FOR S-100 BUS, FLOPPY DISCS, ETC.


POWER TRANSFORMERS (WITH MOUNTING BRACKETS)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ITEM } \\
& \text { NO. } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { USED IN } \\
& \text { KIT NO. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PRI. WINDING } \\
& \text { TAPS }
\end{aligned}
\] & \multicolumn{3}{|c|}{SECONDARY WINDING OUTPUTS} & \[
\begin{gathered}
\text { SIZE } \\
\mathrm{W} \times \mathrm{D} \times \mathrm{H} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { UNIT } \\
& \text { PRICE }
\end{aligned}
\] \\
\hline T1 & 1 & OV, \(110 \mathrm{~V}, 120 \mathrm{~V}\) & \(2 \times 9 \mathrm{~A}\) & \(2 \times 2.5 \mathrm{~A}\) & & \(33 / 4 " \times 35 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 19.95 \\
\hline T2 & 2 & \(0 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}\) & \(2 \times 13.5 \mathrm{~A}\) & \(2 \times 3.5 \mathrm{~A}\) & 2×2.5A & \(334^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 25.95 \\
\hline \(\mathrm{T}_{3}\) & 3 & OV, \(110 \mathrm{~V}, 120 \mathrm{~V}\) & 2×10A & \(2 \times 2.5 \mathrm{~A}\) & \(2 \times 2.5 \mathrm{~A}\) & \(33 / 44^{\prime \prime} \times 43 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 27.95 \\
\hline T4 & 4 & OV, \(110 \mathrm{~V}, 120 \mathrm{~V}\) & \(2 \times 4.5 \mathrm{~A}\) & & \(2 \times 4.5 \mathrm{~A}\) & \(33 / 4 \times 35 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) & 19.95 \\
\hline
\end{tabular}

POWER SUPPLY KITS (OPEN FRAME With base plate, 3 hrs. assy. time)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ITEM & USED FOR & @ +8 Vdc & @-8Vdc & \(@+16\) Vdc & @ -16 Vdc & @+28 Vdc & SIZE \(W \times D \times H\) & UNIT PRICE \\
\hline KIT 1 & 18 CARDS SOURCE & 18A & & 2.5A & 2.5A & & \(12^{\prime \prime} \times 6^{\prime \prime} \times 47 / 9^{\prime \prime}\) & 46.95 \\
\hline KIT 2 & SYSTEM SOURCE & 25A & & 3A & 3A & & \(12^{\prime \prime} \times 6^{\prime \prime} \times 47 / 8^{\prime \prime}\) & 54.95 \\
\hline KIT 3 & DISC SYSTEM & 18A & 1 A & 2A & 2 A & 4A & \(14^{\prime \prime} \times 6^{\prime \prime} \times 47 / \mathrm{s}^{\prime \prime}\) & 62.95 \\
\hline KIT 4 & DISC SOURCE & 8A & 1A & & & 8A & \(10^{\prime \prime} \times 6^{\prime \prime} \times 47 /{ }^{\prime \prime}\) & 44.95 \\
\hline
\end{tabular}

EACH KIT INCLUDES: TRANSFORMER, CAPACITORS, RESIS., BRIDGE RECTIFIERS, FUSE \& HOLDER, TERMINAL BLOCK, ALUM. CHASSIS PLATE, ALL NECE. MTG. PARTS AND INSTRUCTIONS.

SHIPPING: FOR EACH TRANSFORMER: \(\$ 4.75\). FOR EACH KIT: \(\$ 5.00\) IN CALIF, \(\$ 7.00\) IN OTHER STATES. CALIF, RESIDENTS ADD \(6 \%\) SALES TAX.
MASTER CHARGE, VISA \& OEM WELCOME.

SUNNY INTERNATIONAL
(TRANSFORMERS MANUFACTURER) Telephone: (213) 633-8327

STORE:
7245 E. Alondra Blvd.
Paramount, Ca. 90723
STORE HOURS: 9 AM-6 PM

MAIL ORDER
P.O. Box 4296

Torrance, Ca. 90510

Visit our new retail location!
\(\left(\begin{array}{c}2 \\ +9.704 \\ -968 \% \\ 645\end{array}\right.\)
LM3A 3 dig 1\% DC \$73\%06- \(\$ 120.60\) LM \(3.5 A \quad 31 / 2\) dig. . \(5 \%\) DC \$358-51 - \(\$ 142.65\) LM40A 4 dig. \(1 \%\) DC \$209:00- \(\$ 188.10\) LM4A 4 dig .03\% DC \$250001- \(\$ 225.00\)
- Rechargeable batteries and charger in. cluded
Measures DC Volts, \(A C\) Volts, Onms and Current
Automatic polarity, decimal and overload indication
No zero adjustment and no full-scale ohms
- adjust \(\begin{aligned} & \text { Battery-operated - NICad batteries; also AC } \\ & \text { lina }\end{aligned}\)
inne operation.
- Large LED display for easy reading without interpolation

Part a liboo guaranteed 1 yeer
Losine case.
33.50
\(\$ 20.00\)

N L 안
\(\$ 318\).
MINISCOPE
E.

With
ndwidth.
15 megahertz bandwidth.
- External and internal trigoer. Seidiv- 21 PROBE 1C
setlings .3 .1 microsec. 100.5 secid.






 OIP SOLDER TALL On 250 spaceo
Tous lor EECTOR and MASI molne
boat \(\begin{array}{ccc}\$ 14 & 59 & 1024 \\ \$ 2.00 & 8375 & \$ 3.50\end{array}\)



\(\begin{array}{lll}1.4 & 5.9 & 10.24 \\ 55.00 & 54.75 & 54.50\end{array}\)
Other Popular Edge Connectors

 \(\begin{array}{lllll}3.50 & 3300 & 82.75 & 82.50\end{array}\)

 \(\$ 29.50\)

\section*{ach
 8800 V \\ Mniversal Mrciocompuler/processor
olugboard use with S. 100 bus Com \\ plete wilh neat sink os hardware \(53 x\) \\ \(\begin{array}{lll} & 5.4 & \$ 0.24 \\ & \$ 19.95 & \$ 1795\end{array}\)} 8801-1 Plugboard for Wire Wrap
Sume as 8800 V excepl plain. less powes buses \& heal sink


\section*{3 LEVEL GOLD WIRE WRAP SOCKETS}

Sockets purchased in multiples of 50 per type may be combined for best price
\begin{tabular}{lrrrrr} 
& 1.9 & 10.24 & 25.99 & \(\mathbf{1 0 0 . 2 4 9}\) & 250.999 \\
8 pin* & .40 & .36 & .34 & .31 &. .97 \\
14 pin \(^{*}\) & .45 & .39 & .37 & .34 & .32 \\
16 pin & .50 & .42 & .40 & .36 & .34 \\
18 pin & .70 & .60 & .55 & .50 & .45 \\
20 pin & .90 & .80 & .75 & .65 & .62 \\
22 pin \({ }^{*}\) & .95 & .85 & .80 & .70 & .65 \\
24 pin & .95 & .85 & .80 & .70 & .65 \\
28 pin & 1.25 & 1.15 & 1.00 & .95 & .90 \\
40 pin & 1.65 & 1.45 & 1.35 & 1.20 & 1.10
\end{tabular}
All sockers are GOLD 3 level closed eniry' End and side stacable. 2 level. Solder Tail, Low

LIQUID CRYSTAL DIGITAL CLOCK.CALENDAR
- For Aulo. Home, Ollice
- Pusn bulton for seconds reiease for date Clocks moum snywnero win ellner 3 m doubl Hasd Red do VELCRO, Ancludeo.
- MODELS ICD. 1015 . portable mod
 - Mobigd
\(\$ 34.95\).




CARD EXTENDER Card Extender has 100 co tacts 50 per side on .125 centers-Attached connec-


ryand

\section*{Phenolic}

PRICE
PART NO. SIZE 1.9 10.19 \(\begin{array}{cccc}\text { PART NO. } & \text { SIZE } & 1.9 & 10.19 \\ \text { 64P44XXXP } & 4.5 \times 6.5^{\prime \prime} & \$ 1.56 & \$ 1.40\end{array}\) \(\begin{array}{llll}169 P_{44 X X X} & 4.5 \times 17^{\prime \prime} & \$ 3.69 & \$ 3.32\end{array}\)

Epoxy Glass
\(\begin{array}{llll}64 \text { P44 } & 4.5 \times 6.5^{\prime \prime} & \$ 1.79 & \$ 1.61 \\ 84 P 44 & 4.5 \times 8.5^{\prime \prime} & \$ 2.21 & \$ 1.99\end{array}\) \(\begin{array}{llll}84 \mathrm{P44} & 4.5 \times 8.5^{\prime \prime} & \$ 2.21 & \$ 1.99 \\ 169 \mathrm{P}_{44} & 4.5 \times 17^{\prime \prime} & \$ 4.52 & \$ 4.07\end{array}\) \(\begin{array}{llll}169 P 44 & 4.5 \times 17^{\prime \prime} & \$ 4.52 & \$ 4.07 \\ 169 P 84 & 8.5 \times 17^{\circ *} & \$ 8.03 & \$ 7.23\end{array}\)

\section*{2708}

8K 450 ns
EPROM FACTORY PRIME \(\$ 12.00\) EA. \(25+\) Call For 8 for \(\$ 65.00\)

TRS-80
MEMORY EXPANSION KITS
4116's RAMS
(16Kx1 200ns)


PANAVISE TILTS, TURNS, AN
ROTATES TO ANY POSITION.
IT HOLDS YOUR WORK
Exactir whene rou wantir

556.95 with tube Perfectly balanced fluorescent lightino with prectston mapnitier lens. Tough thermoplasitc shade. Easy lens re
moval. New wite cllp deston permits easy installation and removal of fluorescent tube. Comes with plastlc shleld to protect tube from solling and
\[
\begin{aligned}
& \text { shleld to } \\
& \text { damage. } \\
& \text { Colors. Gra }
\end{aligned}
\]

Colors: Gray, bisck. and Chocolate Brown.
Comes with
Comes with one 22 wall T. 9 Ciretine fluores
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{W 14816 PIN WO L'WIRE WRAP}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{S SCKETS} \\
\hline \multirow[t]{3}{*}{} & \$30 \\
\hline & 6.G3 100 for \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{50 of each for \(\$ 32.00\)}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}


\section*{ORDER TOLL FREE \\ }
except CA., AK., HI., Call (213) \(894 \cdot 8171\)



The EXPANDORAM is available in versions from 16 K up to 64 K , so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invisable on-board refresh, and IT WORKS!
- Bank Selectable
- Phantom

Power 8VDC, \(\pm 16 \mathrm{VDC}, 5\) Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is doubled solder masked and has silk-screen parts layout.
DISC DRIVES

\section*{OGIC PROBES}

CSC logic probes are the ullimate lool for breadboard design and leating These hand-held units provide an Insiant overvilow of clicull condilions.

 essy pulse derection.
cif cuifa snd nodes. Simple, duallivel delecior L'EOs tell 11 quickiy, correct
 - 0. .. MI snd LO LEOS BIInk On of Off. tracking "1" or "0" atatas at square wave trequinncies up io 1.5 MHz . Puise LEO blinks on for \(1 / 2\) second during
pulse transition. Criolce of three modele to meot Individual requiremenls: oudget, project and speed of logic clicuite.
MODEL LP. 1
Hand-held logic probe provides inslant reading of logic levels for TTL, DTL,
MTL O CMOS. Inout MTL or CMOS. Input Imperdances : 100,000 ohms. Minlmum Datoctabte Putae
50
ne
 High spaed thain or g
dolected and siored.
CsC Modal LP. 1 Lagle Probe - Nal Each
342.70

\section*{SD EXPANDORAM \\ The retimate S-100 Memary}

- Extensive documentation clearly written
- Complete Kit includes all Sockets for 64 K
- Memory access time: 375ns, Cycle time: 500 ns .
- No wait states required.
- 16 K boundries and Protection via DIp Swltches
- Designed to work with \(\mathrm{Z} \cdot 80\), 8080, 8085 CPU's.
EXPANDO 64 KIT (4116)
16K
\(\$ 245.00\)
\(\$ 310.00\)
\(\$ 375.00\)
\(\$ 440.00\)

CONTINENTAL SPECILILIES COPPORAION Logic Probes and Digital Pulsers

\section*{ DEC LSI.11. PDPSS. PDP 11.}
 Dual 36 Pİ DECIHEATH conneciors.
 VECTOR.PAK ASSEMBLED MICROCOMPUTER CASES Adjusiabla packaging syatem for S-100 bus microcompulers, compoliblo with Altali - 8800 and IMSAI 8080 size cards
unsighily screws or lasteners,
- Flnished In dark blue texturad vinyl.
- Finished in dark blue fexturad vinyl.
- Instanlly accessibie interlors with silp ou
- Instanily accessible interlors with silp oul
covers.
- Removable recessed rear and front \(\$ 183.00\)
 systems tor any card or card spacing within
size fimitations. No cuiting of drilling necessary.
- Perlorale
- Perloraled bottom cover for cooler opera. DESCRIPTION Assembled case wilh pertorated bottom
cover. Instalied mounting atruts for card cover. Instalied mounting atruts for card Cards top loaded, spanning front to back.
Card pulde (92 palr) and chassis piate sup Card puide (til palr
plled uninstalled.

8001.1
Piain no etched circulify except contacis. Pro. duces maximum lioxibility.

\begin{abstract}
MODEL LP
Economy veraton of Model LP.1. Safer then a voltmater. More accurste than acope. Input impedence: 300.000 onme. Minimum Oetecteble P Pulet: 300 speed Irain of singla event. Pulas Mamory: Nono
CSC Model LP. 2 Logle Probe - Not Each.
MODEL LP. 3
pedince: 500,000 ohms. Captures pulses as ehort as 10 ne Input Im.
 CSC Model LP. 1 loople Probe- Nal Each

\section*{Dioital pulsen}

The ultimate in speed and ense of operaiton. Elmply conneci clip toads 10 positive and negative power, then touch DP-t's probe to a circuir node the pustibulton and trioger an opposito polarity pulse into the circuit. Fsat Houbleshooting includes injecting slon sls s1 key poinis in TIL. DTL. CMOS or other populafer circuits. Test with alnole pulso or 100 pulses per socond
via buitt ln dual control push bution: button solocis single shol or con tinuous modes. LED indicator bution: outton solecis single shot or con lor single pulse or conithuously for i Dulse Iraln. Completely automalic, pencil.sizo Isbilleld, pulse genertor for any fomily of digital clicuits. Out. put: Th-state. Polatity: Pulse sanding auto-polarity, Sync and Source: 100 tor pulse Irain. CsC Wodel DP. 1 Dlgllei Pulser-Noi Each
\end{abstract}


\title{
Visit our new retail location！
}

\section*{FREE！ \\ 16 Pin Test Clip With The Purchase Of A．C．E．BOARD}

Model 227 has greater capacity for buses than the 218．The universal matrix of 2712 solder－ less，plug－in tie points is comprised of 384 separate 5 －tie－point terminals， 24 vertical distribution buses leach with five connected 5 －tie－point terminals）plus 4 hopi－ tie point terminals．Buses may be linked together in any combination to provide functions such as voltage and
ground distribution，reset and clock lines，shift command，etc．

A．C．E 236


\section*{ED ALL－CIRCUIT EVALUATORS}

A．C．E 2ロロ－K Part No． 923383 Part No． 92
\＄18

728 SOLDERLESS PLUG－IN TIE POINTS CAPACITY：UP TO 846 －PIN DIP＇s －Two 6 －way binding post －Size：4－9／16＂by 5－9／16＂ －Kit form－lowest cost This handy breadboard kit，the smallest in the ACE series，offers excellent versatility of 728 solderiess，plug－in tie points includes 136 sep ot 728 solderiess，plug－in tie points includes 136 sep consisting of 6 connected 4 tie point terminals．．．typically for voltage and ground．Complete assembly instructions included．
\(A \cdot C \cdot E\) PD Part No． 923332

\section*{872 SOLDERLESS PLUG－IN TIE POINTS} CAPACITY：UP TO 816－PIN DIP＇ －Two 5－way binding posts －Size：4－9／16＂by 5－9／16 －Fully assembled Model 208，the smallest assembled board in the ACE series，has 6 more distribution
buses than the 200－K．The matrix of 872 solder． less，plug．in tie points is comprised of 136 separate he－point terminals plus 8 distribution buses，each wit 6 connected 4 －tie－point terminals．Use buses for voltage and ground distribution，reset lines，clock lines．shift command，etc．

1．032 SOLDERLESS PLUG－IN TIE POINTS \(A \cdot C \cdot E\) Dロ1－K \(\quad\) CAPACITY：UP TO 12 14－PINDIP＇s Part No． 923334

1,224 SOLDERLESS PLUG－IN TIE POINTS

all the most wanted features at a most wanted price

\(\$ 74^{95}\)
Big \(1 / 2\)＂High LCD Display．
Use Indoors or Out 200 Hour 9V Battery II fe Auto Zero，Polarity， Overrange Indication PRIORITY ONE ELECTRONICS．

 ct 10 mut Cum 16723B Roscoe Blvd．Sepulveda．C JA 91343 rems VISA．MC BAC check Money Order LU D．US Funds Only LA residents ado \(6 \%\) sales lax Mini． mum order \(\$ 1000\) Orders less than \(\$ 7500\) include \(10 \%\) sniping anon minding．excess refunded Just in case please include your phone no

Here is the handful accuracy you＇ve been waiting for Handsomely encased．Compact．Efficient．Only 8 ounces． Hickok＇s exciting，new LX 303， \(11 / 2\) digit Mini－Multimeter with high quality components，one year guarantee and rugged Cycolac case offers features previously found only in ex． pensive units ．．．at a price under \(\$ 75.00\) ！So why wall any longer？The amazing LX 303 is here，NOWI Another American made test equipment breakthrough from Hickok．

SPECIFICATIONS：
DC VOLTS（5 RANOES）： 0.1 mV to 1000 V ；Accuracy \(\pm 0.5 \%\) rd \(\pm 0.5\) DC VOLTS（5 RANOES）： 0.1 mV to 1000 V ；Accuracy \(\pm 0.5 \%\) dg \(\pm 0.5 \%\)
f．s．；Input lImped；10Ma；Max．Input 1 kV except 500 V on 200 mV range． AC（ I 2 dB max．at 5 kHz ）：Max．Input：BOOV
RESISTANCE（ 0 LOW POWER RANGES）： 0.1 II \(200 \mathrm{Mu;}\) ；Accuracy：\(\pm\) \(.05 \%\) rag \(\pm 0.5 \% \mathrm{f.s}\). （ \(\pm 1.5 \%\) rag on 20Murange）；input protected to 120VAC all ranges．
DC CURRENT（G RANGES）： .01 nA to 100 mA ；Accuracy：\(\pm 1.0 \%\) rig \(\pm\)
\(0.5 \%\) ISS．
DIMENSIONS AND WEIGHT： \(5.7: 8^{\circ \circ} \times 3.3 / 8^{\circ \prime} \times 1.3 / 4^{\prime \prime} .8\) OZ：POWER：

TRS-80 USERS
"The Wait is finally over" ACT - I Software
- Computerized Home Money Management System.
- Save time and gain budget control.
- Take the work and worry out of money management.
- Weakly, Monthly, \& Annual totals for Income, Payments, Taxes \& Interest.
- Checking account maintenance including 5 week projected check balance.
- easy to use. on one cassette. 16K. Level II.
- ACT - 1 Monthly Newsletter keeps you up to date.
- Software. Oocumentation \& User In. structions.

For Information:
THE PROGRAMMING SHOP 260 Sheridan Ave Palo Alto, CA 94306

Circle 306 on inquiry card.

\section*{THE FRUGAL FRONT PANEL} Series PCB's








 COMPUTER CANOPY DUST COVERS


 cmecr witm rouniocal compurenstone ronavalaburr

Oigital Oynamics. Inc.


AURORA, IL. AREA FARNSWORTH COMPUTER CENTER

1891 N. Farnsworth Ave. At the E-W Tollway Aurora, II.
Ph. 312-851-3888
Personal 8 Business Microcomputers, Peripherals
- Apple
-Cromemco
- North Star

APPLEII 16K RAM \(\$ 1195.00\) Including

20 FREE PROGRAMS
- Add on Memory \(\$ 150.00\)

Weekdays 12 to 8, Sat. 10 to 5

Circle 132 on inquiry card.

CROMEMCO
Less 20\%
System II - System III

\section*{NORTHSTAR}

Less 15\%
Horizon \& Boards

Sara Tech Electronics, Inc.
P.O. 692

Venice, FL 33595
(813) 485-3559

Circle 317 on inquiry card.

\section*{FLOPPY DISK REPAIR}

- PerSci and Shugart
- Quick turnaround
- Factory trained on PerSci

National Computer Service 7501 Sunset Blvd Hollywood CA 90046 213-851-2226


Circle 182 on inquiry card.

\section*{জivblocic for graphics!}

\section*{The best S100 graphic} display boards!
MATROX ALT-256
(256 x 256 resolution)
MATROX ALT-512
\(1512 \times 256 \times 1\) or
\(256 \times 256 \times 2\) resolution)
And the best graphics software for support!


Circle 357 on inquiry card.

\section*{WORD PROCESSING}

MICRO FILE MK IIA
Demo Unit - One Only
Original retail price \(\$ 8,755\)
Extended BASIC
Assembler
Document Processor
Editor
Letter Writer
Complete Documentation
Reduced for Quick Sale \(\$ 5.495\)
SUNNY COMPUTER STORES, INC.
University Shopping Center
1238A S. Dixie Hwy.
Coral Gables, FL 33146
(305) 661.6042

SOLID STATE SALES . . . Amnounces a Breaththrough in Compuler Technology


THIS REMARKABLE VP- 1 COMPUTER/ INTERFACE KIT HAS THE FOLLOWING FEATURES
- IT PRODUCES COMPOSITE VIDEO OUTPUT IN A \(128 \times 128\) MATRIX FROM A DIRECT MONITOR CONNEC TION USING \(8 K\) OF MEMORY
- THE SYSTEM USES A STANDARD S 100 BUSS
WILL NOT TIE UP COMPUTER SOFTWARE WHEN NOT ADDRESSED IT DISPLAYS CONTINUOUSLY WHEN NOT ADDRESSED
- IT MAY PRODUCE PSEUDO COLOR ANDIOR GRAPHICS (UP TO 16 GREY LEVELS, 4 BIT BINARY)

\section*{A PICTURE MAY BE TAKEN BY OUR CAMERA, STORED IN A COMPUTER IN REAL TIME AND THEN DISPLAYED ON A CRT AT AN AFFORDABLE PRICE}

\section*{VIDEO COMPUTER \\  PROCESSING SYSTEM}
gRay LEVELS
THE CAMERA WILL TAKE BETWEEN 15 AND 100 FRAMESISECOND. THE CAMERA CONNECTS TO THE PROCESSOR WITH SEVEN LINES. THIS INCLUDES VIDEO AND TIMING SIGNALS APPLICATIONS
- CONTINUOUS SURVEILLANCE
- INSPECTION OF MOVING PARTS WITH PROPER STROBING
VISUAL GRAPHIC INPUT TO A COMPUTER
- Character or pattern RECOGNITION
- PICTURES MAY BE TAKEN DIRECTLY FROM A TV WITHOUT ELECTRICAL CONNECTIONS
- the interface kit may be used SEPARATELY AS A \(128 \times 128\) 16 LEVEL GRAPHIC DISPLAY

OUR VP1 VIDEO SYSTEM CONSISTS OF THE FOLLOWING KITS:
- CCD 202C SOLID STATE VIDĖO CAMERA KIT (CASE INCLUDED) . \(\$ 399^{\circ 0}\)
- VP- 1 COMPUTERIVIDEO INTERFACE KIT (3 BOARDS)
\(\$ 599^{\circ}\)
- ASSEMBLED 8K MEMORY BOARD (OPTIONAL)
\(\$ 235^{\circ 0}\)

\section*{THIS VIDEO COMPUTER KIT CAN WORK WITH THE GE, REDICON, OR ANY OTHER \(128 \times 128\) SENSOR CAMERA}


Send 25t for our catalug featuring
45 Hampshire St. Cambride.


Circle 379 on inquiry card.

\section*{Memorex Floppy Discs}

Lowest prices. WE WILL NOT BE UNDERSOLDI! Buy any quantity \(1-1000\). Visa, Mastercharge accepted. Call free (800)235-4137 for prices and information. All orders sent postage paid.


Circle 293 on inquiry card.


Computer Data Publishing P.O. Box 598 Cleveland. Ohio 44107 (216) 221.5440

\section*{Companies.}

\author{
Do we have your product information?
}

\section*{UaclassifiedAds}

FOR SALE: TI TM990/100M-1 mierocomputer board with TIBUG monitor in read only memory, 256 words of programmable memory. TM990/103 microterminal, TM990/511 extender board and all documentation. It is a great little machine. I lust don't have time 10 build a system around it. List price is over \(\$ 750\), It's yours for \(\$ 550\) postage paid. W H Ganoe, 1634 E Drachman, Tucson, AZ 85719.

FOR SALE: Like new 33ASR. Purchased new and seldom used, 5850 . 101 C data se: 1110 bps modem) very nice, \(\$ 200\). CCU to interface 33ASR with 101C. \(\$ 100\). All three \(\$ 1,000\). Joe Turile, POB 147, Corunna MI 48817. (517) 743-4607 at ter 6 PM.

SCHOOL SALE TORAISE MONEY: Two Mohawk Data Sciences super compaci card readers model SCCR 6002 ( \(62 / 3\) cards per second), Iwo A B Dick videojet ink-jet printers model 96001250 charac ters per second, with parallet interface). Both appear to be working and are hardly used. Also selling three Micro Systems Inc Micro 810 compu ters. They are microprogrammable, 220 ns , with teletypewriter interface and a combined total of 16 K core memory. The Berkeley High School Technology Club is selling these to raise money for projects, activities. eac. Any reasonable offer considered. Conract Eric Martinot, 2206 B Jefferson Av, Berkeley CA 94703, (415) 849-2663

FOR SALE: Heath microprocessor course and trainer. Includes all accessories, instructions. and course examination. \$200. A Alberto. 634 Blvd East, Weehawken, NJ 07087, (201) 864.1472.

HELP: For ND. \(812 / \mathrm{BR}\) - 2412 users, is there any existing users group for the ND. 812 or BR-2412 minicomputer; or are there any other Individual users of these orphaned systems who would like to communicate for mutual support? Write or phone: Bill Hunt, 237 South Blvd, Oak Park IL 60302. 13121365.0194.

FOR SALE: Altair 8800 microcomputer with 28 K memory; has \(3 \mathrm{P}+\mathrm{S}\), cassettes user tape system board, VDM, 16 K read only memory board with monitor, 1 K board for stack, and keyboard. Asking \(\$ 1400\). Larry Belmontes Jr, 1762 Yale Si, Corpus Christi TX 78416, (5121 855-2687.

WANTED: Drawings, schematics and pin oul data to interface a Sycor inc. Model 303 Key -Cassette to a microcomputer. Will pay for documentation Jim Cook, 1145 I Olson Dr, Garden Grove CA 92641

FOR SALE: Prolag read only memory programmer with UV Ilight eraser. Program, copy, read, or edit 1702 UV read only memories. Excellent condition in attache case. Cost \(\$ 2000\). Sell for \(\$ 640\). Bill Fujitsubo, 1506 Sandcastle Dr. Corona del Mar, CA 92625

FOR TRADE: Texas Instruments Silent 700 portable terminal, model number 725. Perfec working condition and clean. Want to trade for used Decwriter HI or video type terminal. Will consider sale outright. Mark Jay Hunt, 3040 Vistamonte Dr, San Jose CA 95118, (408) 265.7799 nights.

FOR SALE: Digital Group 2.80 system: 34 K four Phidecks; keyboard; monitor: dress cabinets for all; all soflware IMaxiBASIC, Business BASIC, Assembler, Startrek, Chess, etcl. Must sell - any reasonable offer accepted. John Case, 6703 Timberhill. San Antonio TX 78238, (512) 681.7504.

FOR SALE: TV camera parts; 7735A Vidicon tube brand new \(\$ 30 ; 16 \mathrm{~mm}\) lens \(\$ 10\); deflection and focus coil \(\$ 18\); video amplifier \(\$ 5\); and other miscellaneous goodies. Schematics available. Every thing I have for \(\$ 45\) plus shipping. S Stoddard 12 Kathy Dr, Poquoson VA 23662. 18041668 7682.

FOR SALE: Disk and tape drivers from GE-115 computer system plus disk packs and other parts. Also Teletype ASR33, \(\$ 500\); Dura Mach-10 needs considerable work or good for parts, \(\$ 100\) Altair 2-SIO board, \(\$ 100 ; \mathrm{XY}\) plotter with 10 by 15 inch ( 25.4 by 38.10 cm ) plotting bed, \(\$ 200\) 72 CPS paper tape reader, \(\$ 25\); 3 M microfiche viewer/orinter, \(\$ 100\). Will consider trades. SASE for more information. Don Bailey, 19 Shaker Rd. Coneord NH 03301.

FOR TRADE: 8080 FORTRAN MITS disk version for 8080 COBOL or MITS timesharing BASIC. Manuals included. K R Roberts, 10560 Main St Suite 515, Fairfax VA 22030, (1703) 378-7366, (703) 591-6008, (703) 691-0277.

FOR SALE: January thru December 1978 BYTE (volume 3) complete, mint condition, unopened. These 12 issues are yours for \(\$ 15\) lincludes tourth class. shippingl. Send check or money order to John Burnet, 10324 S Prospect Av. Chicago IL 60643.

FOR SALE: Two Solid State Music 4 K Static programmable memory boards from a working (and lovable) Altair 8800 , asking \(\$ 80\) each or both for \(\$ 150\). Also have a working Digital Group TVC.F (video interface and audio cassette tool It ifists for \(\$ 195\), but it's yours for \(\$ 130\). Dale Morris, 4334 N Quincy, Kansas City MO 64117.

FOR SALE: Tektronix 535A scope with \(H\) widehand preamp and M 4 trace plug-ins, \(\$ 400\) plus shipping. Tektronix TM503 instrument module enclosure and iwo blank modutes, new, \$200. MFE digital cassette drive, model 205, four cassettes with clock track and documentation, \$120. J A Titus, POB 242, Blacksburg VA 24060, 1703 \(951-9030\).

FOR SALE: Three S D Sales 4 K static program mable memory boards, fully operational, with all documentation. 500 ns access, data read at PDBIN! All three shipped promply for cert fied funds of \(\$ 180\) (that's less than \(1.5 \&\) per bit!!. W Haward Adams, 1590 S Kramerla St, Denver CO 80224. \(13031756-4052\).

KIM USERS: Powerful console input monitor (CIM) lets you enter, edit, and execute programs from ASCII encoded keyboard on BASIC KIM CIM modes are: address, program, text, data increment. decrement, and execule. Complete documentation included for \(\$ 16.50\) postage paid Add \(\$ 5\) for CIM cassette. E R Kittlaus, POB 2175. Seal Beach, CA 90740

FOA SALE: BYTE issue numbers 1 thru 16 in mint condition for best offer. Dave Babcock 107 SE Jay. Pendleton OR 97801

FOR SALE: Panasonic \(81 / 2\) inch diagonal black and white video monitor with UHF type con nectors. \(\$ 50\) or best offer. Charles Baumer, 5055 W Drummond PI. Chicago IL 60639, (312) 637.0414

HALF PRICE SALE: Factory wired IMSAI 8048 Control Computer with 2 K programmable memory instalied. New condition, runs perfectly fully documented. \$190 via UPS. H A Chinn 757 Bolanos Ct. Pori Charlotte FL 33952, (8131 625-2032.

FOR SALE: Partially assembled SwTPC CT-64 terminal kit. Keyboard and video terminal com pleted and working with sockets for all integrated circuirs. \$250. Allan J Hogue, RR 2. Norwalk IA 5021 1. (515) 462.3220.

\section*{W.W L'NCI.ASS/FIFD POI.U'Y}

Resders who have equipment, software or other item to buy. sell or swad should send in a clearly ryped nolice to that effect. To be considered for Dubtication. an edwer sement must be cleariy noncommercia. ryped double acec on plain were piess, and nclude complete name and address information
These notices are liee of charge and will breponted one cepled trom individuals or bona tide compurer users clutis onty. We can engage in no correspondence on these and vour contirmation of placement is appesrance in an issue of BYte.

Please note ithat il may take three or four months for an od to spopar in the magusine.




\section*{}

\section*{Wheel Printers}
-DIABLO HYTYPE I Model 1200 Printer Mechanism: used, complete and operational. Requires power supply, case \& mCPU interface. 15 day return privilege - no other warranties. LIMITED QUANTITY! -6' Ribbon cable \& connector for printer Main Logic PCB \(\$ 750.00\) \(\$ 10.00\)
- "As-is" spare printer PCB's for parts (Logic, Heat Sink, Control): ea. \$20.00 - NEW TAPE DRIVE CONTROLLER for Microcomputer: POS Version 11 tape drive controller is now available, permitting the 8080 or \(Z .80\) owner to read and write standard IBM NRZ1 format tapes las well as ASCII tapes) with the Ampex Model TMX tape drive described below. Contraller is sold anly with tape drive, comes complete with connector cables to CPU and sofiware listing in 8080 assembly language (specify 2 MHz or 4 MHz system.)
-Ampex TMX tape drive \{used) with Version II Controller
.\(\$ 1500.00\) - AMPEX MODEL TMX TAPE DRIVE: Ideal for microcomputerist who wants backup mass storage or access to IBM-type systems via standardized 2400 series \(\%^{\prime \prime}\) mag tape. Specs: 9 -track, NRZ1 standard, 800 8PI, \(12^{\prime \prime} / \mathrm{sec}\)., 1200 ft . reels ( 11 megabvte capacity.) Drive is like new \& comes with 8 -bit CPU controller diagram (requires anly \(11 / / C\) 's) \& mCPU interface instructions: Prices: Drive \& Documentation. . . . . . . . . . . . . . . . . . . . . . . 5750.00 Controller \& cable for mCPU, assembled \& iested 750.00 DIGITAL CASSETTE DRIVE (from GTE/IS Terminall: 1800 baud. 6250.00 AC motor; fwd/rewnd circuitry plus tape head, no read/write electronics \(\$ 25\) -FORMS TRACTORS, Moore Variable width "Form A-Liner" for print terminals: a) Model 565P for 15" Carriage IBM Selecirics (new):- . . . . . . .
b) Model K81 for OUME or DIABLO Hyivpe I or II printers (new):
\(\$ 50.00\)
\(\$ 90.00\)
-POWER SUPPLIES for Disk Drive, mCPU, tested under load shown
-No. 519 (w/fan \& AC cord): +5V reg., \(\pm 12 \mathrm{~V}\) reg., +24 V , @5A (10 lb.).
\(\$ 29.95\) S59.95
- SELECTRIC 1/O TERMINALS (by GTE/Information Systems). Both ASCII \& IBM code versions with microcomputer interface sofiware \& hardware (RS. 232 eonnector.) Cassette drive models permit up to 2400 baud data transfer rate as well as off-line data storage, use as memory ivpewriter, \(\&\) use as data entry device for office personnel familiar with Selectric iypewriters but not computers. Wide-carriage, interchangeable iype spheres: optional built-in modem. All units cleaned. adjusted \& warranted

Model 5541 (IBM Correspondence code)
\(\$ 695.00\)
Model 5550 (corres. code, built-in cassette drive) . . . . . . . . . \(\$ 1195.00\)
Model 5560 (ASCII code, built-in cassette drlve) ..... \(\$ 1295.00\)
-IBM SELECTRIC 725 TYPEWRITER I/O w/solenoids switches \& magnet driver PCB (from GTE/IS terminal) plus instructions for 8080 printer-driver interface hardware \& software.
a) Typewriter mechanism complete, cleaned \& adjusted. .. . \$375.00 b) Case from terminal \& power supply \((+24 \mathrm{~V}, \pm 12 \mathrm{~V},+5 \mathrm{~V} @ 5 \mathrm{~A})\). \(\$ 75.00\)
c) \(\mathrm{a} \& \mathrm{~b}\) plus output ASCI interface to mCPU 8 -bit parallel port . \(\$ 650.00\) - POS 103/202 "MIX or MATCH" MODEM: BELL 103 ano/or BELL 202 FAEQUENCIES: Unique POS control design permits use in one housing of both Bell-compatible \(10310-300\) baud) and 202 ( \(0-1200\) baud) modem modules originally made by VADIC Corp. for a telephone company subsidiary. FEATURES: RS-232 serial interface, auto-answer, auto-dial, LED display telephone line interface via acoustic coupler, manual DAA, or auto-answer DAA (sold sefarately.) FULLY ADJUSTED; no special tools required. 3.000 mile range over standard dial-up telephone lines.
-POS 103 MODEM (with Auto Answer, Auto Dial).
-POS 202 MODEM (Half-Duplex with Reverse Channel).
-POS 202 MODEM (Half-Duplex w/Rev. Ch., Auto-Answer)
- POS 103/202 MODEM (Auto-Answer, Auto-Dial).
\(\$ 179.95\)
S249.95
\(\$ 279.95\)
\(\$ 399.95\)

\section*{NO RISK! 15 DAY APPROVAL ON ALL MAIL-ORDERS}

Full documentation included PLUS interface instructions where indicated. All equipment is shipped insured FOE Palo Alto within 14 days after check clears or COC order is received. Prices may change without notice.

PACIFIC OFFICE SYSTEMS, INC.
2600 EI Camino Real, Suite 502
Palo Alto. Calif. 9430
(415) 321.3866

Call or write for details, quantity prices, catalog. 15 day return privilege PLUS 90 dav no charge replacement of defective parts. All orders shipped from stock. No back orders, no substitutions. M/C \& VISA accepted.

\section*{Reader Sepvice}

To get further information on the products advertised in BYTE, flll out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from the IIst. Add a 15 cent stamp to the card, then drop It in the mail. Not only do you gain Infarmation, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE.

\section*{Inquiry No. Page No.}

Aaron Associates 234
Administrative Systems 165 Advanced Memory Technology 253
AJA Software 235
Alladin Automation 15
Ancrona 270
Apparat. Inc 196
Apple Computer 5
ATV Research 253
Austin Electronics 269
Base 2133
Beckian Enterprises 254
Beta Business System 253
Bits Inc 156, 183, 187, 189
"Bumper 8its" 244
8usiness Applications Sofiware 235 Buss/Charles Floto 221 8YTE 8ack Issues 227 BYTE Books 87, 93-96, 103, 105, 112 BYTE Subscriver 221 BYTE WATS Line 215
California Computer Systems 13
California Digital 271
Camelot Direct 127
Cascade Enterprises 247
Central Data 197
Chrislin Industries 190
Circle Enterprises 221
Computer Age 108
Computer Data Publishing 278
Computer Enterprises 233
Computer Factory (MA) 163
Computer Factory 147
Computer Interface Technology 24
Computer Lab of NJ 243
Computerland 8,9
Computer Mart of NJ \& PA 108
Computer Plus Inc 243
Computerware 18
Computhink 23
Conley Graphlcs 230
CT Micro Computer 195
CT Micro Computer 209
Cover Craft 246
Cover Craft 246
Cromemco 1.2
Cromemco 1 , 2
Custing Edge of Technology 53
Cutting Edge of Technoiogy 53
Cybernetic Micro Systems Inc 229
Cybernetic Micro Systems
Data Discount Center 247
DataSearch 225
DataSearch 225
Dota Speed 125
Data Speed
Delta Products 251
Digital Dynamics 276
Digital Dynamics 276
Digital Pathways 245

Inquiry No. Page No.
5 DRC (CA) 235
DRC (CA) 235
101 DISKS Eic 244
102 Doubleday \& Company 231
5 Echo Design \& Development 192 Eclectic Corp (Div of TANO Corpl 49 Ecosoft 244
Ecosoft 244
Electrolabs 279
Electronic Control Tech 169
Electronic Systems 252
Electronics Warehouse 265
EMM/Semi Inc 229
Farnsworth Computer 276
Federal Communications Corp 172
FMG Corp 130
Garvey, Martin \& Sampson 227
Giltronics 244
Godbout Electronics 141
GRT 131
Hayden Book 200
H\& E Computronics 211
Heath Company 17
Hobby Worid 269
Hollywood Systems 254
Houston Instruments 29
HUH Electronics 241
Independent Businass Systems 16
Industrial Micro Systems 240
innotronics 203
Integrand 230
Interactive Microware tnc 223
Interactive Sys Design Group 276, 242 International Elec Equip 164 Intertec Data Sys Corp 45 Ithaca Audio 76, 77, 263 Jade Co 260, 261
Jameco Electronics 256. 257 Jim-Pak 75
205 Larks Electronics \& Data 253
Lifeboat Associates 82, 83
Mad Hatter Software 151
203 Mad Hatter Software 225
209 Maxell Tape 7
215 Measurement Sys \& Controls 121
216 Measurement Sys \& Controls 253
217 Micro Architect 242
218 Microcomputer World 242
219 Micro Diversions 59
220 Micro Focus Lid 1
222 Micro-Mail 179
221 Micro Mart 253 17, 223 Micromation Inc 174, 175
204 Micro Mike's 234
224 Micro Products Unitd 244
229 Microsatte 253
229 Microselte 25
228 Microsoft 2117

Inquiry No. Page No.
211 Microware 206
231 The Micro Works 173
232 Micro World 33
230 Mikos 270
233 Minicomputer Accessories 232
Mini Computer Suppliers Inc 225
MJB Computer Associates 244
255 Morrow/Thinker Toys 30, 31
265 mpi 209
267 Mullen Computer Boards 241
270 National Computer Service 276
278 Natlonal Multiplex 137
NCC '79 Personat Comp Festival 181
79 NCR Corp 73
81 NEECO 142
282 NEECO 143
280 Netronics Research 205
287 Netronics Research 207
New England Recruiters 242
283 Newman Computer Exchange 259
285 North Star Computers 19, 63
NRI Schools (Electronics Div) 65
290 Ohio Scientlfic CIV. 36,37
286 OK Machine \& Tool 115 onComputing 81
Oregon Software 228
292 Osborne \& Associates 161
Owens Associates 209
294 Pacific Dlgital 245
293 Pacific Exchanges 278
296 Pacific Office Systems 279
297 PAIA Electronics Inc 196
298 Parker Brothers 245
301 Per Com Data 56, 57
302 Personal Software Inc 148, 149, 244
303 Pet Shack Sofiware House 216
305 Phone I 41
307 Potomac Micro-Magic Inc 219
308 Potter's Programs 242
312 Priority : 273. 274, 275
300 Processor Technology 42, 43
306 The Programming Shop 276
309 PRS 89
10 Quality Software 228
311 Quest Electronics 267
314 Radio Shack Authorized Sales CtI 253
329 RCA (PA) 179
322 RCA Solid State 61
324 Reston Publishing Company 222
315 Rochester Data 222
316 S.100 Inc 215
316 S-100 Inc 215
17 Sara-Tech Electronics 276
331 SCDigital 233
318 Scetbi Computar Consulting Inc 211
Scientific Research 107
313 SCR Electronics 266
320 Semionics 208

Inquiry No. Page No.
319 Michaal Shrayer Sofiware 155 Shugart 6, 7
'68' Micro Journal 244
Small Business Computers Magazine 232
Ed Smith's Software Works 227
Ed Smith's Software Works 227
Software \(80 \quad 159\)
Software Dynamics 235
SSM 25
Solid State Sales 277
Soroc Technology Inc 35
Southwest Technical Products Corp CII
Speakeasy Sofiware 64
Stirling Bekdorf 199
Structured Systems Group CIII
Sub Lagic 276
Summagraphics Corp 47
Sunny Computer Systems 276
Sunny International 272
Sybex Inc 198
Synchro Sound 99
Synergetics 215
System Design Lab 219
TANO Corp 119
Tarbell Electronics 51
Technical Systems Consultants 97
Terminal Systems 242
3/M Company 21
3 S Sales Inc 153
3 S Sales Inc 272
Tiny C 52
Tora System Limited 242
Total Information Services 225
TransNet Corp 246
Trenton Computer Festival 189
TRS-80 Software Exchange 139
TSA Soffware 215
University Microfilms 101
US Brokers 278
US Robotics 140
Vanguard Systems Corp 109
Vector Electronics 217
Vector Graphics Inc 113
Video World 209
Vista Computer Co 268
Wr Data 203
Wameco 266
Web Associates 276
Western Digital Corp 86
Wintek 244
World Power Systems Inc 68, 69, 78, 79
Worldwide Electronics 253
X Comp 231
400 Xitex 134
398 XL Computer Products 227
*Correspond directly with compony.

Article No.
ARTICLE
PAGE
Ciarcia: The Toy Store Begins at Home ..... 10
Campbell: Cross-Pollinating the Apple II20
Zimmermann: Simulation of Physical Systems ..... 26
Buskirk: Sources of Numerical Error46
Smith: Smart Memory
Dahmke: A Simulated View of the Galaxy66
Hinrichs: Marsport Here I Come ..... 84
Meushaw: The Standard Data Eneryption Algorithm ..... 110
Gorney: Queuing Theory ..... 132Costas: Cryptography in the Field, Part 2144
Soderstrom: Life Can Be Simple ..... 166
Grappel: An Easy Way to Calculate Sines and Cosines170
Arp: The Power of the HP-67 Programmable Calculator, Part 2 ..... 176
Cline: An Introduction to Microprogramming ..... 210
Chester: A Digital Alphanumeric Display ..... 218
Johnson: Microcomputer Time-sharing ..... 224Blodgett: A Binary Guessing Game

\section*{Innovations and Home Security Top BOMB Scores}

The January 1979 BOMB put a variety of topics at the top of our list. The first place prize of \(\$ 100\) goes to Joel Boney and Terry Ritter for "A Microprocessor for the Revolution: The 6809" (page 14). The second place prize of \(\$ 50\) went to Steve Ciarcia for "Build a Computer Controlled Security System for Your Home, Part 1 (page 56).

The third place article was "History of Computers: The IBM 704," by Keith ReidGreen (page 190). Fourth place was Part 4 of "Creating a Chess Player," by Peter Frey and Larry Atkin (page 126).■


\title{
The Nicrocomputers you should take seriously.
}

The C3 Series is the microcomputer family with the hardware features, high level software and application programs that serious users in business and industry demand from a computer system. no matter what its size.

Since its introduction in August, 1977, the C 3 has become one of the most successful mircocomputer systems in small business, educational and industrial development applications. Thousands of C3's have been delivered and today hundreds of demonstrator units are set up at systems dealers around the country.

Now the C3 systems offer features which make their performance comparable with today's most powerful minibased systems. Some of these features are:

\section*{Three processors today, more tomorrow.}

The C3 Series is the only computer system with the three most popular pro-cessors- the 6502A. 68B00 and Z-80. This allows you to take maximum advantage of the Ohio Scientific software library and the tremendous number of programs offered by independent suppliers and publishers. And all C3's have provisions for the next generation of 16 bit micros via their 16 bit data BUS. 20 address bits, and unused processor select codes. This means you'll be able to plug a CPU expander card with two or more 16 bit micros right in to your existing C3 computer.

\section*{Systems Software for three}

\section*{processors.}

Five DOS options including develop. ment, end user, and virtual data file single user systems, real time, time share, and networkable multi-user systems.

The three most popular computer languages including three types of BASIC
plus FORTRAN and COBOL with more languages on the way. And, of course. complete assembler, editor, debugger and run time packages for each of the system's microprocessors.

\section*{Applications Software for Small}

\section*{Business Users.}

Ready made factory supported small business software including Accounts Receivable. Payables. Cash Receipts. Disbursements, General Ledger. Balance Sheet. P \& L Statements, Payroll, Per sonnel files, Inventory and Order Entry as stand alone packages or integrated systems. A complete word processor system with full editing and output formatting including justification, proportional spacing and hyphenation that can compete directly with dedicated word processor systems

There are specialized applications packages for specific businesses. plus the vast general library of standard BASIC, FORTRAN and COBOL software. OS.DMS, the new software star. Ohio Scientific has developed a remarkable new Information Management system which provides end user

\section*{The C3 Series from Ohio Scientific.}
intelligence far beyond what you would expect from even the most powerful minisystems. Basically, it allows end users to store any collection of information under a Data Base Manager and then instantly obtain information, lists, reports, statistical analysis and even answers to conventional "English" questions pertinent to information in the Data Base OS-DMS allows many applications to be computerized without any programming!
The new "GT" option heralds the new era of sub-microsecond

\section*{microcomputers.}

Ohio Scientific now offers the 6502C microprocessor with 150 nanosecond main memory as the GT option on all C3 Series products. This system performs a memory to register ADD in 600 nanoseconds and a JUMP (65K byte range) in 900 nanoseconds. The system performs an average of 1.5 million instructions per second executing typical end user applications software (and that's a mix of 8.16 and 24 bit instruc. tions!).

\section*{Mini-system Expansion Ability.}

C3 systems offer the greatest expan. sion capability in the microcomputer industry, including a full line of over 40 expansion accessories. The maximum configuration is 768 K bytes RAM. four 80 million byte Winchester hard disks. 16 communications ports. real time clock. line printer. word processing printer and numerous control interfaces.

\section*{Prices you have to take seriously.}

The C3 syslems have phenomenal performance-to cost ratios. The C3-S1 with 32 K static RAM. dual 8 " floppies. RS- 232 port. BASIC and DOS has a sug gested retail price of under \(\$ 3600\). 80 megabyte disk based systems start at under \(\$ 12.000\). Our OS-CP/M soltware package with BASIC. FORTRAN and COBOL is only \(\$ 600\). The OS.DMS nucleus package has a suggested retail price of only \(\$ 300\). and other options are comparably priced.

To get the full story on the C3 systems and what they can do for you. contact your local Ohio Scientific dealer or call the factory at (216) \(562 \cdot 3101\).

C3.B wins Award of Merit al WESCON 78 as the oulstanding microcomputer application for Small Business.```


[^0]:    Copyright © 1979 by Steven A Ciarcia. All rights reserved.

[^1]:    - Plugs directly into your IMSAI or ALTAIR.
    - Fastest transfer rate: 187 (standard) to 540 bytes/second.
    - Extremely reliable-Phase encoded (self-clocking).
    - 4 extra status lines, and 4 extra control lines.
    - 37-page manual included.
    - Device code selectable by DIP-switch.
    - Capable of generating Kansas City tapes.
    - No modification required on audio cassette recorder.
    - Complete kit $\$ 120$................. . Assembled $\$ 175$.
    - Manual may be purchased separately . . . . . . . . . . . $\$ 8$.
    - Full 6 -month warranty on kit and assembled units.

[^2]:    -TRS-80 is a registered trademark of Tandy Corp
    †Apple II is a registered trademark of
    Apple Computer: Inc
    $\ddagger$ Snrcerer is a registered trademark of Exidy, Inc

[^3]:    Flease rush the items ordered below．I understand the software license for AFL／Z80 ${ }^{\mathrm{rm}}$ covers one machine for one end－user and includes a non－disclosure agreement to protect Vanguard Systems Corporation＇s proprietary rights．Prices and specifications subject to change without notice．

    Complete APL／280 ${ }^{\text {Tm }}$ Software Packages include end－user limited license．object code disk．and documentation manual：
    $\square$ for CP／M disk operating system．$\$ 350$ specify version（check one） for serial ASCII APL terminal
    Ior 64 －char．video display （Vect．Graph．．Proc．Tech，or compatible）
    $\square$ for 80 char．video display （compatible wNect．Graph．\＆ similar boards）
    $\square$ for Digital Group DISKMON operating system，$\$ 350$
    Please describe your disk to be sure you get the correct object code disk for your machine （check one box in each column）

    | （check one box in each column） |  |  |
    | :--- | :--- | :--- |
    | SIZE | DENSITY | FORMAT |
    | $\square 5^{*}$ ．Floppy | $\square$ single | $\square$ soft－sectored $8^{\circ}$ |
    | $\square 8^{*}$ floppy | $\square$ double | $\square$ OSI |
    |  | $\square$ quadruple | $\square$ Micropolis |
    |  |  | $\square$ North Star |
    |  |  |  |
    |  |  | compatible |

    ## Accessories

    $\square$ APL Video Character Generator ROM，\＄25 （directly replaces MCM－6571－A to give true APL characters）
    $\square$ APL／ASCII Character Generator Board． $\$ 89.95$ ，for Vector Graphic．Processor Te． chnology，\＆similar boards
    APL／Z80 ${ }^{\text {TM }}$ User＇s Manual alone

    ## $\square \$ 25$

    APL／DTC ${ }^{\text {rM }}$ Hardware／Software Unit
    $\square$ A complete machine／software configura tion．Includes CFU，dual quad－density mini－disk drives，video terminal，APL char－ acter generator，end－user limited license for software，object code disk，and docu． mentation．\＄6495，shipped freight collect FOB San Antonio．
    NOTE．Texas residents must add $5.5 \%$ sales tax to all prices．We ship UPS，so P．O．box address must give phone number．International customers should write for details on shipping rates \＆requirements before ordering．

    Enclosed is my check fol $\$$
    OR Charge to．$\square$ MasterCharge $\square$ Visa
    Card＝
    exp．date
    Ship to Name
    Address City $\quad$ Phone

[^4]:    MEASUREMENT
    systems \& controls
    867 North Maln Street
    Orange. California 92608 Telephone: (714)633-4460

[^5]:    D 801 Green Bay Rd., Lake Bluff, IL 60044 ? 2 ODIRECT

    A DIVISION OF UNITED EDUCATORS. INC.

[^6]:    Sales
    General Offices
    Service
    （312）733－0497
    （312）733－0498
    （312）733－0499

[^7]:    TRS-80 CONVERSION KIT \$109 (3/\$320)
    Our kit is warranted for 1 year, comes complete with dip shunts, and uses 250 ns access time chips for operation at 4 MHz . Upgrades 4 K TRS-80 10 16K, or populates Memory Expansion Module (our easy-to-follow instructions show you how); also expands memory in APPLE and Exidy Sorcerer computers.

[^8]:    TRS-80 is a TM of Tandy Corp.
    SOL and Helios are TM's of Processor Technology Corp.
    Sorcerer is a TM of Exidy Inc. CP! M is a TM of Digital Research. April 1979 O BYTE Publications Ine 175

[^9]:    The Programming Quickie "Single Stepping the 8080 Processor' ()anuary 1979 BYTE, page 179) has one small bug in it. A line of code was left out of the program listing on page 180. The last line of the program should read: 118A JMP FINI C37D10.■

