

anili

SYETEM B 54,495,00

40K Bytes RAM Memory 1,200,000 Bytes Disk Storage
Desk with laminated plastic surface
DOS and BASIC with random and sequential files
TERMINA:L-Upper-Lower case and full control character decoding

\#1 IN RELIABILITY

When you choose Cromemco you get not only the industry's finest microcomputers but also the industry's widest microcomputer selection.

What's more, you get a computer from the manufacturer that computer dealers rate $\# 1$ in product reliability.*

Your range of choice includes our advanced System Three with up to four $8^{\prime \prime}$ disk drives. Or choose from the System Two and Z-2D with $5^{\prime \prime}$ drives. Then for ROM-based work there's the Z2. Each of these computers further offers up to $1 / 2$ megabyte of RAM (or ROM).

We say these are the industry's most professional microcomputers because they have outstanding features like these:

- Z-80A microprocessor - operates at 250 nano second cycle time - nearly twice the speed of most others.

[^0]Up to 512 kilobytes of RAM and 1 megabyte of disk storage

System Three Two to lour disks Up to 512K of RAM/ROM Up to 1 megabyte of disk

- 30-amp power supply - more than adequate for your most demanding application.
- 21 card slots to allow for unparalleled system expansion using industry-standard S-100 cards.
- S-100 bus - don't overlook how important this is. It has the industry's widest support and Cromemco has professionally implemented it in a fully-shielded design.
- Cromemco card support of more than a dozen circuit cards for process control, business systems, and data acquisition including cards for A-D and D-A conversion, for interfacing daisywheel or dot-matrix printers, even a card for programming PROMs.
- The industry's most professional software support, including COBOL, FORTRAN IV, 16K DiskExtended BASIC, Z-80 Macro Assembler, Cromemco MultiUser Operating System - and more coming.
- Rugged, professional all-metal construction for rack (or bench or floor cabinet) mounting. Cabinets available.

FOR TODAY AND TOMORROW

Cromemco computers will meet your needs now and in the future because of their unquestioned technical leadership, professionalism and enormous expandability.

See them today at your dealer.
There's no substitute for getting the best.

Specialists in computers and peripherals
280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 • (415) 964-7400

Foreground

Nucleus

 Software-Chung-Yuen Software-Ciarcia Hardware Design-Bondy Languages-Kheriaty
Background

In This BYTE
On Entering Our Fourth Year
The NCC ' 78 Personal Computer Show
Letters
BYTE's Bits
BYTE's Bugs
Event Queue
Programming Quickies: Plugging the KIM-2 Gap
Clubs and Newsletters Directory
Book Reviews
What's New?
Unclassified Ads
BOMB
Reader Service

A "TINY" PASCAL COMPILER, Part 1: The P-Code Interpreter

LET YOUR FINGERS DO THE TALKING: Scanner Applications
S2L: AN ALTAIR (S-100) TO LS!-11 BUS ADAPTER

WADUZITDO: How To Write a Language in 256 Words or Less

GRAPHIC MANIPULATIONS US Graphics-Hungerford
THE MATHEMATICS OF COMPUTER GRAPHICS Graphics-Posdamer
APL AND GRAPHICS
Software-Kellerman
SOME WORDS ABOUT PROGRAM STRUCTURE
Software-Hearn
ANTIQUE MECHANICAL COMPUTERS: The Torres Chess Automaton History-Williams
MATH IN THE REAL WORLD
Software-Boney

Technical Forum: Making an H9 Understand Lower Case

BYTE is published monthly by BYTE Publications Inc, 70 Main St. Peterborough NH 03458. Address all mail except subscriptions to above adctress: phone (603) 924-7217. Address all editorial correspondence to the editor at the above address Unacceptable manuscripts wilt be returned it accompanied by sufficient first class postage. Not responsible for lost manu* Unacceptable manuscripts wilt be returned it accompanied by sufficient first class postage. Not responsible for lost manu*
scripis or phoros. Opinions expressed by the authors are not necessarily those of BYTE. Address all subscriptions, change of scripis or photos. Opinions expressed by the authors are not necessarily those of BYTE. Address all subscriptions, change of
address. Form 3579. and fulfilment complaints to BYTE Subscriptions. PO Box 590 . Martinsville NJ 08836. Second class postage paid at Peterborough NH 03458 and at additionat mailing offices-USPS Publication No. 102410. Canadian second class registration No. 9321 . Subscriptions are $\$ 15$ for one vear. $\$ 27$ for two vears, and $\$ 39$ for three vears in the USA and its possessions. In Canada and Mexico. \$17.50 for one vear. $\$ 32$ for wwo vears. and $\$ 46.50$ for three vears. $\$ 25$ for a one vear subscription by surface mail worldwide. Air delivery 10 selected areas at additional rates available upon request. \$25 for a one year subscription by air delivery to Europe. Single copy price is $\mathbf{S 2 . 0 0}$ in the USA and its possessions, $\$ 2.40$ in Canada and Mexico, $\$ 3.50$ in Europe, and $\$ 4.00$ elsewhere. Foreign subscriptions and sales should be remitted in United States funds. Printed in United States of America. Each separate contribution to this issue and the issue as a collective work copyright (C) 1978 by BYTE Publication Inc. All rights reserved.

PUBLISHERS
Virginia Londoner
Gordon R Williamson
Carl I Helmers II
VICE-PRESIDENT, PRODUCTION
Jud th Havey
PRODUCIION MANAGER
Karen Gregory
ADVERTISING DIRECTOR
John Hayes
Girculation manager
Grerory Spiufaden
SENIOR EDITOR
Christopher P Morgan
EDITOR
EDIIOR
Raymond G A Cote
PRODUCTION EDITORS
Nancy Salmon
David William Hayward
PRODUCTION ASSISTANT
Cherrl A Hurd
PRODUCTIONART
Stephen Kruse
Wai Chiu Li
Dorothy Shamonsky
NEW PRODUCTS EDITOR
CLUBS, NEWSLETTERS
Laura A Hanson
ASSISTANT ADVERTISING DIRECTOR
Faticia Clark
ADVERTISING PRODUCTION COORDINATOR
Thomas Haney
ADVERTISING ASSISTANTS
Noreen Bardkley
COMPIROIL
COMPTROLLER
ASSISTANT TO COMPTROLLER
Ruth M Walsh
EDITORIAL ASSISTANT
Gislr Brition
GIRCULATION ASSISTANTS
Orissine Dixon
Ann Graves
Pasela R Heaslip
Aqnes E Perry
OEALER SALES
TRAFFIC MANAGER
Rak Fuette
HECEPTIONIST
1acqueline Earnshaw
brafting
Techari Associates
DRAWING EDITOR
Kent Richard
IYPOGRAPHY
Geodway Geaphics
THOTOGRAPHY
LdCrabtree
PRINTING
The Cieorge Banta Company
associate editor
Daniki Fylstra
associates
Walter Banks
Steve Ciarcia
Osvid F ylsera
Porita lsacson
HOOK DIVISION
PIBLISHER
Thomas / Herman
PR oduction manager
Ldmand C Kelly Ir
EDITOR
Richard Shuford
PRODUCTION ASSISTANT
Katherine Lative
ADVERTISING SALES REPRESENTATIVES
EAST, MIDWEST
Hajir Associates in
West Roxbury MA 02132
(617) 325. 5380

100 W Chic aso Av
Chicago IL 60610
(312) 337.8008

WEST, SOUTHWEST
$8 u c k l e y / B a r i s ~ A s s o c i a t e s ~ I n c$
912 South Barrington, Suite 202
Los Angeles CA 90049
(213) $826-4621$

DISIRIBUTORS
EASTERN CANADA
RS.232 Distribution Company
186 Queen 51 W. Suite 232
Toronto ONTARIO
westerncanada
Kitronic Lld
Alderzove BC VOX

In This

method of manipulating graphics. The manipulations become simpler when the implementation language is designed to work with matrices. APL is such a language. Eduardo Kellerman gives us a taste of what happens when you mix APL and Graphics.
page 40

About the Cover. . .

The computer artwork for the cover of this issue of BYTE is the work of Ed Kellerman, whose article appears on page 40 . It was done using the facilities of IBM in Endicott NY, with the APL language as the major tool and a Tektronix plotter for producing the black images for the various colors of the line drawing component of the cover.

But we looked at the resulting artwork, and then asked Ed if he would allow us to provide some additional hand coloration by Ellen Shamonsky of our art department. (Ellen is the person responsible for the airbrush work on July 1978's cover, which we forgot to credit in that issue.) Ellen provided the multicolored airbrush background for the present cover, using the artwork supplicd by Ed as the guide for positioning the various zones.

A background in vectors and matrices can give you a set of powerful tools for manipulating shapes on a graphics display. Read Jeffrey L Posdamer's The Mathematics of Computer Graphics. You may find that the mathematics is not as difficult as you think.
page 22

As other articles in this issue demonstrate, matrix operations are one

Altair (S-100) to LSI-11 Bus Adapter. Here is a starting point for those interested in laking advantage of numerous personal computing peripherals in combination with the 16 bit Digital Equipment Corporation LSI-11 computer.
page 102

If you intend to use your computer for arithmetic operations it is necessary to have a floating point arithmetic package. Joel Boney's article on implementing a binary floating point package will help you implement Math in the Real World if you don't have an appropriate package at your fingertips in a high level language or program library. page 114

A displayed object can be defined within a matrix in a program. Once the object has been so defined it is a simple matter to perform Graphic Manipulations Using Matrices as described by Joel Hungerford.

page 156

Are you faced with the prospect of owning a just built computer system bare of all niceties such as BASIC or even assembler? Somehow, it is difficult to impress noncomputer people by adding 1 to 1 to get 10. Larry Kheriaty has an interesting language to solve this problem. For Larry's solution read WADUZITDO: How to Write a Language in 256 Words or Less.
page 166

Articles Policy

BYTE Publicolions Inc is continually seeking quality manuscripis written by individuals who are applying personol computer systems, designing such sys. tems, or who hove knowledge which will prove useful to our readers. For will prove useful to our readers. For cedures and requirements, potential authors should send a self-addressed stamped envelope to BYTE Authors Guide, 70 Moin St. Peterborough NH 03458

Articles which are occepted are purchased with a rate of $\$ 45$ per pub. lished page, based on rechnical quality and suitability for the intended readership. As to articles appearing in BYTE magasine, each month, the outhors of the iwo leading articles in the reader poll (BYTE's Ongoing Monitor Box or "BOMB") are presented with bonus checks of $\$ 100$ and $\$ 50$. Unsolicited moterigls should be uccomponied by full nome and address, as well as return postoge.

Editorisa

On Entering Our Fourth Year

By Carl Helmers

With this issue, we begin our fourth year of publication of BYTE magazine. The project remains as exciting, if not more so, than when we first put logether an issue of the magazine in the summer of 1975. A lot has changed as the people involved with this publication have grown and learned about the process of magazine production. Yet a lot remains similar.

The basic goal of this magazine is not likely to change: to provide readers with a continuing stream of novel icteas and information about computers and related fields.

The assumption made about the BYTE reader is that he or she possesses curiosity combined with a willingness to experiment with and learn about topics related 10 computers and computing. To this end we provide a wealth of tutorials on hardware and software aspects of computer science - as well as specific "do it yourself" items on neat projects which can be done by the reader. And all this is tied together with an emphasis on the fun which can be had through the use of computing technology in various ways.

We started out with this idea about the goals of the magazine, and no real knowledge about how far we could take it. After all, the skeptics (on occasion including myself) would ask, can there be that many people interested enough in computers to buy your magazine? But, reflecting the growth of personal computing manufacturing, we went from a 96 page black and white first issue to a 208 page typical current issue, from essentially 0 circulation as of the decision to start the magazine to a present circulation in excess of 140,000 paid copies per month. Perhaps we even played a small part in promoting that growth by providing our advertising and editorial content as a service to the industry. -

HORIZON

 THE COMPLEIECON

 THE COMPLEIECON}

Look To The North Star HORIZON Computer.

HORIZON ${ }^{\text {TM }}$ - a complete, high-performance microprocessor system with integrated floppy disk memory. HORIZON is attractive, professionally engineered, and ideal for business, educational and personal applicaticns.
To begin programming in extended BASIC, merely add a CRT or hard-copy terminal. HORIZON-1 includes a Z80A processor, $16 K^{\text {RAM, minifloppy }}{ }^{\text {TM }}$ disk and 12 -slot S-100 motherboard with serial terminal interface - all standard equipment.

WHAT ABOUT PERFORMANCE?

The Z80A processor operates at 4 MHZ - double the power of the 8080. And our 16K RAM board lets the Z80A execute at full speed. HORIZON can load or save a 10 K byte disk program in less than 2 seconds. Each diskette can store 90 K bytes.

AND SOFTWARE, TOO

HORIZON includes the North Star Disk Operating System and full extended BASIC on diskette ready at power-on. Our BASIC, now in widespread use, has everything desired in a BASIC, including sequential and random disk files, formatted output, a powerful line editor, strings, machine language CALL and more.

EXPAND YOUR HORIZON

Also available - Hardware floating point board (FPB); additional 16 K memory boards with parity option. Add a second disk drive and you have HORIZON-2. Economical serial and parallel I/O ports may be installed on the motherboard. Many widely available S-100 bus peripheral boards can be added to HORIZON.

QUALITY AT THE RIGHT PRICE

HORIZON processor board, RAM, FPB and MICRO DISK SYS. TEM can be bought separately for either $\mathbf{Z 8 0}$ or 8080 S-100 bus systems.

HORIZON-1 \$1599 kit; \$1899 assembled.
HORIZON-2 \$1999 kit; $\$ 2349$ assembled.
16K RAM - \$399 kit; \$459 assembled; Parity option \$39 kit; \$59 assembled. FPB $\$ 259$ kit; $\$ 359$ assembled. $Z 80$ board $\$ 199$ kit; $\$ 259$ assembled. Prices subject to change. HORIZON offered in choice of wood or blue metal cover at no extra charge.
Write for free color catalogue or visit your local computer store.

ex civisy

 chive

Hensill

Sol Terminai Computer

तथ

The small computer that won't fence you in.

A lot of semantic nonsense is being tossed around by some of the makers of so-called "personal" computers. To hear them tell it, an investment of a few hundred dollars will give you a computer to run your small business, do a great amount of financial planning, analyze a host of data in the engineering or scientific lab and when day is done play games by the hour.
Well, the games part is true. The rest of the claims should be taken with a grain of salt. All of the personal computers will help you learn about computers and how they work in general and the kinds of things they can do for you. Only a few have the capacity to grow and handle meaningful work in a very real sense. And they don't come for peanuts.

Remember, there's no free lunch.

So before you buy any personal computer, consider Sol."' the small computer. Consider it because it costs more at the start so in the end it costs less. Consider it because it can grow with the complexity of the tasks you ask it to perform and grow with your ability to use it. No, it's not cheap. But it's not a delusion either.
From the very beginning, Sol small computer systems were designed to be at the very top of the microcomputer spectrum. We designed them so you wouldn't have to add costly extras to do many jobs. We designed them so you could add quality peripherals and more memory to take care of more complex tasks. We designed them
to use the best fully supported disk operating system on the market today, PTDOS, which we also designed. We designed them to use our Helios II mass memory. And for Sol small computer systems we designed new and adapted existing soft ware to give you the choice of the best on the market today.

Build computer power

 with our software.No system is complete without software, and at Processor
Technology we have tailored a group of high level languages, and assembler and other packages to suit the wide capabilities of our hardware.

Take a look at our exclusive Extended BASIC as an example. In cassette form, this BASIC features string and advanced file handling, special screen commands, timed input, complete matrix, logarithmic and trigonometric functions, 8 digit precision and square root. The language handles serial access files, provides tape rewind and offers cursor control for graphics capability.

The disk version has all the number crunching talents of the cassette BASIC plus instant access to data and programs on floppy disks. It includes random as well as sequential files and a unique ability to update sequential data in place.

Processor Technology FORTRAN is similar to FORTRAN IV and has a full set of extensions designed for the "stand alone" computer environment. Thousands of special application programs available through books and periodicals have
already been written in this well established language.

Processor Technology PILOT is an excellent language for teachers. It is a string-oriented language designed expressly for interactive applications such as programmed instruction, drill and testing.
No wonder we call it the serious solution to the small computer question.

It's the small computer system to do the general ledger and the payroll. Solve engineering and scientific problems. Use it for word processing. Program it for computer aided instruction. Use it anywhere you want versatile computer power!

Sold and serviced only

 by the best dealers.Sol Systems are sold and serviced by an outstanding group of conveniently located computer stores throughout the United States and Canada. They are also available in Australia, Europe, the United Kingdom, Central America, South America, Japan and Singapore.

For more information contact your nearest dealer listed on page 123. Or write Department B, Processor Technology Corporation, 7100 Johnson Industrial Drive, Pleasanton, CA 94566.
Phone (415) 829-2600.
In sum, all small computers are not created equal and Sol users know it to their everlasting satisfaction.
Circle 305 on inquiry card.
Processor Technology

The NCC 78 Personal Computer Show

Chris Morgan, Senior Editor

Photo 1: Complex high resolution graphics created with UCSD Pascal.

Photo 3: 8 K content addressable memory board from Semionics. The $\$ 525$ price tag is the lowest we've seen for this type of memory.

Photo 2: Color graphics being generated by Exidy's new Sorcerer personal computer.

The official attendance was 57,240 that's how many people cane to the National Computer Conference in Anaheim CA June 5 thru 8.

Easily the biggest computer show in history, the NCC overflowed the huge Anaheim convention center into a neighboring garage annex converted to handle the extra booths. The personal computing section of the show has grown into a major show of its own in just two years: the crowds there were no less impressive than at the main show.

A diversity of products greeted visitors to the show: everything from digitizers to compilers; Pascal to peripherals; color video systems to surplus parts; and so on. One of the most significant hardware devices on view was an 8 K content addressable memory board for the S-100 bus from Semionics in Berkeley CA. In a normal memory, the address of data is input, and the memory reads from (or writes to) its

The ${ }^{\$ 6,995}$ DP Center.

The IMSAI VDP-80
Until now, owning real computing power meant paying unreal prices. The IMSAI VDP-80 Video Data Processor is a complete computer, intelligent terminal and megabyte floppy disk mass storage system including disk operating system (IMDOS) and BASIC software. All in one compact cabinet. All for just \$6995.* A complete desk top DP center.

For small business applications, the VDP-80 places a stand-alone computer at your fingertips. And, our full line of add-on peripherals assures that the system can be expanded as your needs do.

For the large business user, with an existing central mainframe, the VDP-80 is the ultimate remote processor. You have the advantage of powerful local processing capability, plus the epitome in cost-effectiveness for implementing a distributed data communications network.

Take a close look at the following features. Then you'll know why we call our VDP-80 the desk top DP center.
\square Powerful, High-Speed, Central Processor. 3 mHz Intel 8085 microprocessor. 32 K or 64 K RAM memory. Parallel and serial I/O. Asynch, synch, and bisynch communications. Programmable baud rates (.05-56 KB).
\square Megabyte Mass Storage. PerSci dual floppy, double density disk drives standard. One million byte storage capacity. Three dual floppy drives can be added-on providing 4 million bytes of on-line storage.
\square Drives, Printers, Plotters, Terminals, Modems and Tape Drives. Supports up to six terminals or modems, and four tape drives. Drives plotters, serial printers and line printers (up to 300 lpm).
$\square 12^{\prime \prime}$ CRT, 24x80 Field, Memory-Mapped, EPROM Controlled Font. Character and line insert/delete allows fast program correction and text editing. Inverse video and programmable field allows highlighting or enlarging graphic information display. Titled fields protect information blocks from being written over accidentally. EPROM controlled font (up to 256 different characters) allows foreign language and special purpose character forms. Video board includes 4K memory-mapped refresh RAM.
\square Alphanumeric Intelligent Keyboard. 62-pad main keyboard. Programmable 12-pad control keyboard. Standard typewriter and calculator keyboard layouts. N-key rollover reduces operator error during high-speed data entry.

- Commercial BASIC, FORTRAN IV, IMDOS

Software. Built-in ROM monitor allows extensive debugging and diagnostics. BASIC, interactive or compiler version. FORTR AN IV, Level 2 Ansi compiler. IMDOS IMSAI's multi-disk operating system.

Distributed processing, financial reporting and analysis, word processing, whatever your application, the VDP-80 is your answer.

Visit your dealer for information, or dial (415). 483-2093 and we'll tell you how you can put our $\$ 6,995$ DP Center on your desk top. When it comes to small business computers, Just Ask IMSAI.

- Base price VDP.80/1000 \$6,995, with 32K R ^M memory and dual double density floppy disk drive. U.S. Domestic Price Only.
Features and prices subject to change without notice.

Photo 4: A throng of people attends the Micro Mouse Maze heat being run by James Hamblen's large economy size "mouse," shown, which traversed the maze in 4:32:28 minutes - the second best time for the show.

Photo 5: Compucolor

 Model 3 with optional keyboard displaying some unseasonal color graphics. The unit is undoubtedly one of the most cost effective full color graphics systems on the consumer market. Only 117 more shopping days left.Photo 6: Color expansion board for the RCA Cosmac VIP computer. The board costs $\$ 89$ and generates eight colors as well as musical tones.

Photo 7: Homebrew 3 voice computer controlled music synthesizer built by John Prott and Don Shertz of Monterey CA.

contents at that address. In a content addressable memory, the data being sought is presented to the memory, and the memory returns the address of that data (or a suitable code if the data cannot be found.)

The UCSD Pascal Project people were on hand with some impressive graphics displays generated using the Pascal language, and John Pratt and Don Shertz of Monterey CA displayed their homebrew computer music synthesizer which sounded very good.

Mary Ann Duganne and Hal Glicksman displayed a program designed to help Mary's 7 year old son John who has cercbral palsy. Two widely spaced keys on the keyboard are activated by John's fists to move a cursor on a screen and spell out words. For more information, write Hal Glicksman, 76 Market St, Venice CA 90291.

The first entries competed in the amazing Micro Mouse Maze contest, cosponsored by IEEE Computer and Spectrum magazines. The object was to design a self-powered electronic "mouse" that could solve a maze in the fastest possible time. The sponsors of the contest were amazed (pun intended) at the response to the contest call: over 6000 people wrote for contest kits. Maze trials will be conducted at various computer shows over the next two years before a winner is declared.

These are just some of the highlights of a tremendous show. Next year the NCC will be in New York City. If attenclance figures continue to climb at this rate, they'll have to hold the show in Madison Square Garden. \quad -

"Our gep lvas to prodtcee 100% rotritle wesiness programs."

"What do we mean by reliable programs? Three things: good program design, documentation, and full support.
DESIGN Good program design meets a wide variety of customer needs without reprogramming.

Keith Parsons, President
Alan Cooper, VP, Systems Development

Our programs are comprehensive yet retain their flexibility. They allow convenient backup, are easy to use and have been thoroughly tested and field proven.
DOCUMENTATION We consider the quality of the documentation to be as important as the programs themselves. That's why our manuals are clear, concise and complete.
SUPPORT And when it comes to support we're second to none. We release periodic updates, answef your questions and are available to provide technical assistance. Now that's reliable."
Our growing Business Systems series currently includes: GENERAL LEDGER, ACCOUNTS RECEIVABLE, NAD (Name and Address File system), QSORT (full disk sort/merge), and CBASIC (a powerful business Basic). For details, contact our sales manager, Richard Ellman.

Struckured Syhtemr Group

by other Apple owners. Our Software Bank is your link to Apple owners all over the world.

Alive with the sound of music.

Apple's exclusive built-in
 speaker delivers the added dimension of sound to your programs. Sound to compose electronic music. Sound to liven up games and educational programs. Sound, so that any program can "talk" back to you. That's an example of Apple's "people compatible" design. Another is its light, durable injection-molded case, so you can take Apple with you. And the professional quality, typewriter-style keyboard has n-key rollover, for fast, error-free operator interaction.

Apple is the proven computer.

Apple is a state-of-the-art single board computer, with advanced LSI design to keep component count to a minimum. That makes it more reliable. If glitches do occur, the fully socketed board and built-in diagnostics simplify troubleshooting. In fact, on our assembly line, we use Apples to test new Apples.
*Apple Il plugs into any standard TV using an inexpensive modulator (not included). **In California. call 408/996-1010.

Apple peripherals are smart peripherals.

Watch the far right column of this ad each month for the latest in our growing family of peripherals. We call them "intelligent interfaces." They're smart peripherals, so you can plug them in and run them from BASIC without having to develop custom software. No other personal computer comes close to Apple's expandability. In addition to the built-in video interface, cassette I/O, and four A/D inputs with two continuously variable game paddles, Apple has eight peripheral slots, three TTL inputs and four TTL outputs. Plus a powerful, state-of-the-art switching power supply that can drive all your Apple peripherals.

Available now.

Apple is in stock and ready for delivery at a store near you. Call us for the dealer nearest you. Or, for more details and a copy of our "Consumer's Guide to Personal Computers," call

apple computer ${ }^{\text {a }}$

Programming is a snap! I'm haltway through Apple's BASIC manual and already l've programmed my own space wars game.

Those math programs I wrote last week-l just rewrote them using Apple's mini-assembler and got them to run a hundred times faster.

New from Apple.

Introducing Disk $\mathrm{II}^{\text {T }}$: instant access to your files.

Our newest peripheral is Disk II, a high-density $51 / 4$ " floppy disk drive for fast, lowcost data retrieval. It's perfect for storing large bodies of data such as household finances, address files and inventories; you can find any record in just half a second. No more searching through stacks of cassettes; with a few keystrokes, your system will load, store and run any file by name. Disk II consists of an intelligent interface card, a powerful Disk Operat. ing System (DOS), and one or two drives. Your handle up to seven Apple will handle up to sev
purteen drives, for control of nearly 1.6 megabytes of data, with no expansion chassis. The combination of ROM-based bootstrap loader and an operating system in RAM provides complete disk handling capability, including these special features:

- Soft sectored - Random or sequential file access - Program chaining capability - Universal DOS command processor works with existing languages and monitor - Full disk capability in systems with as little as 16K RAM - Storage capacity: 113 kilobytes/diskette.

See Disk II now at your Apple dealer. Sold complete with controller and DOS at \$495. ${ }^{1}$

Peripherals in stock

Hobby Board (A2B0001X), Parallel Printer Interface (A2B0002X), Communication Interface (A2B0003X), Disk II (A2M0004X).

Coming soon

High speed Serial Interface, Printer II, Printer IIA, Monitor II, Modem IIA.
${ }^{t}$ Price subject to change without notice.
Circle 15 on inquiry card.
Apple's smart peripherals make expansion easy. Just plug 'em in and they're ready to run. I've already added two disks, a printer and the communications card.
 .

A Solid State Keyboard as Modern as Your Computer

Solid state electronics has moved the computer quickly from the business world into personal uses. Meanwhile, computer keyboards have hardly moved at all.
Now TASA introduces a keyboard as modern as your computer. Don't confuse it with ordinary flex switches. It is fully solid state and self-contained, ready to plug in and use. Since it has no mechanical moving parts, it responds quickly to your touch. And it provides full ASCII coding in TASA's exclusive color-keyed layout that makes it easier to say what you want to say to your computer.

This is the TASA Micro Proximity Keyboard, and it sells for only $\$ 49.95$. Despite the price, CMOS/LSI integrated circuits make it totally reliable inside. With the sensors behind a shield of polycarbonate -the most rugged plastic ever developed-it is also durable and reliable outside.
The TASA Keyboard contains all the features you would expect in a professional keyboard-shift, shift lock, control functions, and a normal typewriter format.

If you're tired of costly mechanical keyboards and kits you have to assemble, bring your computer up to date the easy way. Plug in a TASA Keyboard. It will never come between you and your computer.
$\$ 49.5$

The TASA Keyboard

Features:

$\square 51$ Keys, with entire 128 position ASCII code output.

- All keys identified as to Unshift, Shift and Control outputs.
\square Full 8 -bit ASCII output with selectable positive or negative parity.
\square Single power supply, 12.520 V unregulated.
\square Output TTL, DTL and CMOScompatible.
- Full solid state design with no moving parts.
\square Standard PC edge connecter.
\square Use on any flat surface, or with
\square Optional plastic support stand (as shown)

Touch Activated Switch Arrays, Inc. 2346 Walsh Avenue, Santa Clara
California 95050 (408) 247-2301

NAME

ADDRESS

CITY

STATE

Enclosed is my check for \$ to cover:

TASA Keyboards
@ \$49.95- \$
_Optional stands
@ \$12.00-
$\$$

Shipping and handling
charge at $\$ 5.00$
per keyboard- \$
SUBTOTAL—\$
\qquad
Sales Tax, 6\%—\$
(Callfornia residents only)

TOTAL ENCLOSED \$
9/78
Price subject to change without notice

WANTED: A RANDOM NUMBER CIRCUIT

Writing a really good pseudorandom number generator is not an easy thing to do; Knuth devoted half a volume to the process. Also, if you base a computer game on a pseudorandom number generator, you have the awkward problem of supplying a seed for each game. For these reasons, I would like a way of getting truly random numbers into a microprocessor. One way to do this is to have the computer increment a counter while waiting for the user to enter something. If the computer is fast enough, the low order bits of the counter will be random. However, this method is not good for generating large numbers of random numbers, since the user must be consulted for each one. What I really want is a circuit which generates random bits. l've heard that such circuits exist, based on something called "noisy" diodes. Where can I get details?

Scott D Johnson
241 Linden Av
Ithaca NY 14850
Certain processors, like the Zilog Z-80, have methods of apparently forming a rondom seed number. Since the hidden refresh counter for dynamic memory is always in operation it can be paged whenever a seed for a pseudorandom number generator is required. Within certain constraints it may also be possible to use a series of these numbers as pseudorandom numbers.

WHAT A SMALL COMPUTER CAN DO FOR THE MULTIPLY HANDICAPPED

Being extremely green at this computer game and having no hardware experience (come to think of it no experience whatever) I have only had my Apple about threc weeks, but I have a glimpse of the tremendous possibilities now open to me .

Since breaking my neck whilst on National Service in Germany, I've been able to move my head, left, right and slightly backwards and forwards and that's my lot. If anyone tries lying on the floor on his back, using the above movements and tries writing his name with a pen in his mouth (holding a pad above) they will quickly realise there's not a big variety of things someone in my position can do.

Now imagine the same person with the keyboard of a computer in front of him you find the limits go up tenfold.

I know there are machines like "Possom" issued in certain cases by the UK government. It will connect the disabled to TV telephone, it will open doors and curtains, and work a typewriter, about a dozen functions and it costs between $£ 1,400$ and $£ 1,600$ depending on the number of functions.

The processor I have is an "Apple II" 16 K and because I have to work with a stick in my mouth, the shift and control keys have had to be modified so that they work like a typewriter and use two movements to lock and release.

The Apple has opened up a new world I didn't know existed. It now makes jobs possible, the design and colour graphics and all the games (and don't knock the games, remember your capabilities while lying on the floor) and all this at a touch with a stick, and at costs comparable with "Possom."

All I have to do now is buckle down and do a lot of studying and practicing.

I hope this gives some of your readers a glimpse of what a computer could do for the disabled and severely disabled. Also wonder if they have the same problem I have of doing a bit more, and a bit more to find it's 3 AM, or later, and that you have to force yourself to turn that switch off.

Charles Smith
222 West Ct
The Thistle Foundation Edinburgh EH 16 4EB
SCOTLAND

SOME NOTES FROM JAPAN

You may be interested in details of two recent Tokyo shows. At the Business Machines Show Sharp featured a new programmable calculator, the PC1300. This features magnetic card program storage, alphanumeric printer and display. It has 26 memories (A thru Z), program size is up to "256 steps," two levels of subroutine nesting are allowed, size is 44 by 123 by 220.5 mm (1.7 by 4.8 by 8.7 inches), weight is 680 grams (8 ounces). Numeric format is 10 digit mantissa, 2 digit exponent. Display scrolling (programmed?) was demonstrated at the show. Display and printer are both 16 characters wide.

Continued on page 66

Considering a Microcomputer? Be Sure to Check Out the Product Offerings of the World's Largest Full Line Microcomputer Company.

All Ohio Scientific machines come with microcomputing's fastest full feature BASIC-in-ROM or on-Disk for instant use.

Challenger I Series

Economical computer systems that talk in BASIC. Ideal for hobbyists, students, education and the home.
$\left.\begin{array}{ccc}\text { Superboard II - World's first complete system on a board } \\ \text { including keyboard, video display, audio } \\ \text { cassette, BASIC-in-ROM and up to 8K RAM }\end{array}\right)$ 4K RAM $) \$ 279$

Minimum Configuration	Base Price

Challenger IIP Series

Ultra high performance BUS oriented microcomputers for personal, educational, research and small business use.
$\mathrm{C} 2-4 \mathrm{P}$ - The professional portable
$\mathrm{C} 2-8 \mathrm{P}$ - The world's most expandable personal machine
for business or research applications 4K RAM
\$ 598

C2-4P Disk - The ultimate portable
C2-8P Single Disk - Ideal for education, advanced personal users, etc.
C2-8P Dual Disk - Most cost effective small business system

Challenger II Serial Interface Series

Same great features as Challenger IIP Series for those who have serial terminals: small business, education, industry.
C2-0-Great starter for users with a terminal
C2-1 - Great timeshare user accessory; cuts costs by running simple BASIC programs locally
C2.8S - Highly expandable serial machine, can add disks, etc.

4K RAM \$ 298
4K RAM \$ 498
4K RAM
\$ 545
Challenger III The Ultimate in Small Computers
The unique three processor system for demanding business, education, research and industrial development applications.

C3-S1 - World's most popular $8^{\prime \prime}$ floppy based microcomputer
C3-OEM - Single package high volume user version of C3-S1
C3-A - Rack mounted multi-user business system directly expandabe to $\mathrm{C} 3-\mathrm{B}$
C3-B - 74 million byte Winchester disk based system. World's most powerful microcomputer

32K RAM $\$ 3590$ dual floppys 32K RAM dual floppys 48K RAM dual floppys 48K RAM dual floppys

OHIO SCIENTIFIC also offers you the broadest line of expansion accessories and the largest selection of affordable software!

Compare the closest Ohio Scientific Model to any other unit you are considering. Compare the performance, real expansion ability, software and price, and you will see why we have become the world's largest full line microcomputer company.

[^1]
The $\mathrm{c}-\mathrm{BP}$

An exceptional value in personal computing

OHIO SCIENTIFIC offers the broadest line of BUS compatible microcomputer boards. This line includes several new and exciting products which are not available anywhere else, such as a three processor CPU board, dual port memories and a multiprocessing CPU expander.

OHIO SCIENTIFIC has delivered approximately 100,000 boards based on our 48 line BUS and is now delivering thousands per week in 17 models of computers and dozens of accessories.

Product Description	Special Features	Power Supply Voltages hea'd		Dac. Price	Assemb Part \#	roduct Price
CPU - Challenger 11 CPU BASIC.in.ROM 6502 based CPU with serial IIO 4 K RAM machine code monitor	- Can use four 2716 EPROMS instead of BASIC or can be conligured for disk	$+5!-9$	500	39.00	C2-0	298.00
- Chatlenger III CPU has 6502A. 6800 and 280 micros. RS. 232 serial port. machine code monitor	- 1 megabyte memory man. ager. soltware programmable vectors	$+5 /-9$	510	NA	C3.0	490.00
- 5602 multi-processing CPU expander runs PDP.8. 280 and 8080 code	- Runs concurrently with another OSI CPU	$+51-9$	5602	125.00	NA	NA
RAN - 16K static RAM (Ultra low power)	- 215 NS access lime automatic power down standby mode	$+5 t+12 l-9$	520	35.00	CM-3	498.00
- 8K static RAM (low cost)	- Expandabie lo 16K	+ 5	-	-	СМ-7	198.00
- 16K static RAM (IOw cosi)	- Can be expanded to dual port operation	$+5$	525	35.00	CM-8	339.00
- 24K static RAM (high density)	- 20 address bits	+ 5	527	35.00	СМ-9	
- 4K slatic RAM (2102 based)	- Can be populated for 4 K by 12 bits	+5	420	35.00	CM-2	125.00
- 16K dynamic (ultra low cosi) - 32k dynamic	- Uses 4027 RAMS - 20 address bits	$+5 i+12 l-9$ $+5 i+12 l-9$	$\begin{aligned} & 530 \\ & 530 \end{aligned}$	NA	CM-4 CM-5	$\begin{aligned} & 249.00 \\ & 698.00 \end{aligned}$
- 48 K dynamic (high density)	- 20 address bits	$+5!+12-9$	530	NA	CM-6	990.00
EPROM Boards - 8K 6834 EPROM board	- 16 line parallel port and on board programmer	$+51-9$	450	35.00	NA	NA
- 4K 1702A EPROM board	- 16 line parallel port	$+51-9$	455	35.00	NA	NA
- Audio Cassette interface Kansas City standard 300 baud	- Expandable to CA.7C	$+5 /-9$	430	35.00	CA.6C	99.00
-RS. 232 porl board	- Expandable to CA.7S	$+5 i-9$	430	35.00	CA.6S	99.00
- Combination audio casselte two 8 bit DACs. one last A/D and 8 channel inpul mux	- Also Features 8 parallel I/O lines	$+5 /-9$	430	35.00	CA.7C	399.00
- Combination PS. 232 two 8 bit DACs. one fast A/D and 8 channel input mux	- Also features 8 parallel I/O lines	$+5 /-9$	430	35.00	CA-7S	399.00
- 32 by 32 characler video display inlerlace	- Keyboard input porl	$+5 /-9$	440	35.00	NA	NA
- 32 by 64 character video display interface	- Upperllower case graphics and keyboard port	$+5$	540	NA	CA. 11	249.00
- 16 port serial board RS-232 and/or high speed synchronous	- 75 to 19.200 baud and 250 K and 500 K bit rates individually strappable	$+5 /-9$	550	35.00	CA-10X	$\begin{gathered} 200.00 \\ 10 \\ 900.00 \end{gathered}$
- Parallel (Centronics) Line Printer Interface	- With cable	$+5 /-9$	470	NA	CA-9	249.00
- 96 Line Remote Parallel Interface	- Interface "Front End remotable via 16 pin ribbon cable	$+5$	-	-	CA-12	249.00
- Voice $1 / 0$ board with Votrax. module	- Fully assembled voice output. experimental voice inpul	$+5 /-9$	-	-	CA. 14	525.00
DISKS - Single $8^{\text {" }}$ lloppy disk. 250 Kbytes slorage	- Complete with operating system software and disk BASIC	$+5 /-9$	470	NA	CD.1P	790.00
- Dual 8" floppy disk. 500 Kbytes storage	- Complete with operating system soilware and disk BASIC	$+5 /-9$	470	NA	CD. 2 P	1390.00
- 74 Million byte Winchester disk and interlace OTHER	- Complete with OS-65U operating system	$+5 /-9$	-	-	CD. 74	6000.00
- 8 slot backplane board with connectors	- Can be daisy-chained to n-slots	-	580	39.00	NA	NA
- Prototyping board - Card Extender	- Handles over 4016 pin IC's - With connectors	-	$\begin{aligned} & 495 \\ & 498 \end{aligned}$	$\begin{aligned} & 29.00 \\ & 29.00 \end{aligned}$	-	-

For more information, contact your local OHIO SCIENTIFIC Dealer or the factory at (216) 562-3101

1333 S. Chillicothe Road • Aurora, Ohio 44202

The C3-B by Ohio Scientific

The world's most powerful microcomputar systam is far more affordable than you may think:

STANDARD FEATURES:

- 74 million byte Winchester technology disk drive yields mainframe class file access speeds and capacity.
- High level data file software makes high performance file structures like multikey ISAM easy to use.
- Triple processor CPU with 6502A, 6800 and $\mathrm{Z}-80$ gives the programmer the best of all worlds in performance and versatility.
目 The included 6502A based extended disk BASIC by Microsoft out-benchmarks every micro available, including $4 \mathrm{MHz} \mathrm{Z}-80$ and LSI-11 with extended arithmetic.

48K of high reliability static RAM is standard.

- High density $8^{\prime \prime}$ floppys provide program and data mobility from machine to machine.
- Completely integrated mechanical system with UL-recognized power supplies; continuous duty cycle cooling; modular construction and rack slide mounted subassemblies.

Based on a 16 slot Bus-oriented architecture with only 7 slots used in the base machine.

Directly expandable to 300 megabytes of disk, 768 K of RAM in 16 partitions, 16 communication ports, plus console and three printers.

C3-B's have been in production since February, 1978, and are available now on very reasonable delivery schedules.

The C3-B was designed by Ohio Scientific as the state of art in Circle 290 on inquiry card.

small business computing. The system places its power where it's needed in the small business environment; in the data files. The C3-B's advanced Winchester technology disk, coupled with its smart controller and dedicated high speed memory channel, gives the C3-B data file performance comparable with today's most powerful maxi-computers.

Yet, the C3-B costs only slightly more than many floppy only computers but offers at least a thousand times performance improvement over such machines (50 times storage capacity multiplied by 20 times access speed improvement).

But what if your business client cannot justify starting with a C3-B?

Then start with Ohio Scientific's inexpensive C3-S1 floppy disk based system running OS-65U. When he is ready, add the CD-74 big disk and directly transfer programs and files from floppy to big disk with NO modifications.

That's upward expandability!
*Rack as shown above complete with 74 megabyte disk, dual floppys, 48K of static RAM, OS-65U operating system and one CRT terminal under $\$ 13,000$.

Multiple terminal systems with printers and applications software are priced in the mid-20's.

Jeffrey L. Posdamer
Dept of Computer Science
SUNY at Buffalo
Ridge Lea Rd
Amherst NY 14226

The Mathematics of

Computer graphics by Joel Hungerford

Computer Graphics

Graphic assistance by Vivian Day

The personal computing literature is filled with material describing the hardware of microprocessors using video graphics. A great deal has also been written about specific graphic applications including video games, computer art, etc. Computer graphics is, however, a powerful tool that requires for its use an understanding of a set of underlying computing and mathematical principles. The purpose of this article is to present some of these principles in the context of personal computing.

The screen of a video display is essentially a space with two dimensions. While a number of schemes exist for dealing with twodimensional spaces, the most common is

Cartesian coordinates. Each point in the space is represented by a pair of numbers corresponding to its distance from two axes at right angles to each other. On a video display this pair of numbers corresponds to the scan line number and picture element within the scan line. The notation $[x y]$ will be used here to denote the element number and scan line number. Due to the nature of displays, the values for x and y are integers of limited range. Each pair of values corresponds to a unique point in the display space.

For many problems in which computer graphics is useful, a second space is used. This is the problem space (see figure 1). This corresponds to the description of the problem geometry as opposed to the screen. The representation [u v] will be used here for problem spaces. For Space War its dimensions may be measured in parsecs, for a tennis simulation it may be measured in inches, etc. Problem spaces may be integer or real,

Figure 1: Problem space versus display space. The screen of a video display is essentially a space with two dimensions, commonly addressed by integer Cartesian coordinates. In creating graphics images, it is often useful to perform calculations in what is called a problem space and later map onto the display space. For instance, if you are creating a game of action football for your graphics display, it may be more useful to perform the calculations with u and v coordinates measured in yards (your problem space) and later convert to the display space with its integer coordinates.
bounded or unbounded and are defined by the nature of the problem, not the use of computer graphics as a tool.

Naturally, there must be a way to convert from one space to the other when both are used. If

```
xsmin = left screen value
xsmax = right screen value
vsmin = bottom screen value
ysmax = top screen value
upmin = minimum problem space u
        coordinate value
upmax = maximum problem space u
        coordinate value
vpmin = minimum problem space v
        coordinate value
vpmax = maximum problem space v
        coordinate value
```

and
then the point [u v] in problem space maps into a point $[x y$] in screen space as follows:

$$
\begin{aligned}
x= & \left(\frac{u-u p m i n}{u p m a x-u p m i n}\right) \times(x s \max -x s \min)+ \\
& (x s \min) \\
y= & \left(\frac{\text { v-vpmin }}{\text { vpmax-vpmin }}\right) \times(y s m a x-y s \min)+ \\
& (y s \min)
\end{aligned}
$$

In most cases, operating on individual points is only a beginning. Generally, techniques are needed to deal with line segments that connect points to define figures and regions.

If two points $P_{0}=\left|x_{0} y_{0}\right|$ and $P_{1}=$ $\left[x_{1} y_{1}\right]$ are to be connected by a line segment, it is often necessary to compute every point on the connecting line (see figure 2). A traditional representation of the straight line is of the form:

$$
y=m x+b
$$

where

$$
m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \text { and } b=y_{0}-\left(x_{0} \times m\right)
$$

To compute the series of points that would represent the line segment connecting P_{0} and P_{1}, a program would start with the point at $\left(x_{0}, y_{0}\right)$ add $m X \Delta x$ to y_{0} and Δx to x_{0} enough times to reach x_{1} and $y_{1}(\Delta x$ means a small increment of x). It is important to realize that m, b and the intermediate values of x and y may take on noninteger values. For each intermediate point, the rounded values of x and y are used to designate a picture element to be displayed as part of the line's representation.

An alternative to this scheme is the "parametric" line representation. Here, the mathematical representation of the infinite line that passes through P_{0} and P_{1} is not used.

Figure 2: The straight line, a basic element in many displays. If two points are to be connected by a line segment, in a raster graphic display it is necessary to calculate every point on the connecting line. In the case of a vector display, only the endpoints of the vector need be computed.

Instead, we represent only the points between P_{0} and P_{1} :

$$
\begin{aligned}
& x=(1-t) x_{0}+t x_{1}=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y=(1-t) y_{0}+t y_{1}=y_{0}+t\left(y_{1}-y_{0}\right)
\end{aligned}
$$

where t varies from 0 to 1

$$
\begin{aligned}
& (x, y)=\left(x_{0}, y_{0}\right) \text { at } t=0 \\
& (x, y)=\left(x_{1}, y_{1}\right) \text { at } t=1
\end{aligned}
$$

A line similar to the above line is generated, but with simpler, more direct computations.

For more advanced systems, a number of hardware schemes for line generation exist. Since hardware is not the topic of discussion in this article, refer to reference 1 for a discussion of binary rate multipliers, digital differential analyzers and multiplying digital to analog converters.

Another basic graphics element is the polygon. The polygon is a plane figure consisting of all points inside and on the boundary of a simply connected series of straight lines. For our purposes it is more convenient to represent a polygon by a list of its vertices than by a list of the entire set of displayed points. Polygons raise the issue of the differences between video or raster displays and line drawing vector or calligraphic displays.

The line drawing display has been a standard graphics device. It contains hardware to draw lines between points in the screen space. The image is drawn by tracing over each line in the image in the order the lines were specified. Thus, only points on displayed lines are scanned.

The raster display uses a fixed scanning pattern that covers the entire screen. At

FULL SIZE FLOPPY DISK \$995 COMPLETE!

DISCUS $\mathrm{I}^{\text {" }}$ full-size floppy disk system is an overinight success : . . because it's delivered so complete you can have it running in a single evening.
For just $\$ 995$, i's a complete memory system. Complete with all harchare and software. Completely assembled. Completely interfaced. And tested as a complete system.
And you can not only solve your memory shortage faster, you can solve it longer . . . because DISCUS I^{T} is a full-size floppy system with 3 times the storage and 5 times the speed of mini-floppies. Your $\$ 9 \% 5$ DISCUS $\mathrm{I}^{\mathbf{T M}}$ system includes a Shugart 800R full-size drive with power supply in a handsome freestanding cahinet, our 8 -drive capacity $\mathbf{S - 1 0 0}$ controller with on-board bulfer and serial interface, all cables and connectors, and all the sofiware you need. Your
software library includes DOS, text editor, 8080 assembler (all integrated in DISX/ATE"), our BASIC-v" advanced virtual disk BASIC able to handle a wide variety of data formats and address up to 2 megabytes and patches for CP/M*. And if's all inferfaced to your controller's serial I/O port to avoid 1/O guesswork.
And it's all yours for $\$ 995$. We even offer CP/M for just $\$ 70$, Micro-Soft Extended Disk Basic for just $\mathbf{\$ 1 9 9}$ and Micro-Soft Fortran for just \$349 as nice options to add to your library.
No wonder i''s an overnight success!
See DISCUS It today at your local computer shop. Or if unavailable locally, send your check or money order direct to Thinker Toys" (add $\$ 7$ for handling; California residents add tax). Or call (415) 524.5317, 10.5 Pacific Time.

A product of Morrow's Micro-Stuff for
screen positions which are parts of the displayed image, the scanning beam is intensified, causing images to appear on the screen. On a line drawing display, polygons can be represented by their boundaries; on a raster display they can be "colored in."

Displaying Polygons

A polygon is represented by an ordered set of points: $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$. An alternative notation for this collection is a matrix:

$$
M=\left[\begin{array}{c}
x_{0} y_{0} \\
x_{1} y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{1} y_{n}
\end{array}\right]=\left[\begin{array}{c}
m_{11} m_{12} \\
m_{21} m_{22} \\
\cdot \\
\cdot \\
m_{n 1} m_{n 2}
\end{array}\right]
$$

Each element of the matrix is a number, specified by its row index and column index. In memory, arrays are typically stored in consecutive locations in either row or column order. It is necessary to calculate an element address from the row and column indices of a particular element in order to access it.

Given the vertices, how can the displayed interior points be calculated? Let us assume (as is usually the case) that the display scans from top to bottom and from left to right. For each line segment in the polygon, determine the vertex with the maximum y value and sort the edges in descending order by the maximum y value. Every vertex in the polygon is now represented in two places: as the beginning and end of two lines. Beginning with the topmost vertex, a line generation algorithm is used on any line that crosses the current y value. Because of the sort that was performed, line segments which begin lower on the screen may be ignored. Since both ends of the line segment are present, a line is dropped from the computation when its "lower" end is passed. For every line passing through the current y value, the x value has been calculated. The points generated are now sorted by x value.

Starting with the minimum x value, fill in picture elements on the scan line until the next value is encountered; leave empty picture elements until another picture element (if any) is encountered. As the program scans from left to right, the x values occupying odd numbered positions (1st, 3rd. . .) in the x-sorted list cause picture element insertion to begin; the even position elements cause picture element insertion to
be superseded. Figure 3 shows how this process can be generalized and applied to an arbitrary plane figure in outline form, ie: a letter "P." This procedure is repeated as the y value is stepped down the screen space for each scan line until the "lowest" vertex is encountered, ending the figure.

Transformations

Now that the basic graphic elements have been defined in terms of points and a set of algorithms which generate lines and arbitrary figures from the points, it is necessary to examine the operations needed to manipulate points to perform useful tasks. There are three basic transformations in two dimensions: translation, rotation, and scaling or magnification.

Translation is the movement of a point or points by an amount in x and an amount in y. The motion is such that neither the shape, size nor orientation is changed. It may be expressed as:

```
x'=x+changex
y'=y+change 
```

where the changex need not equal changey.
If all of the points associated with a line or figure are translated by an equal amount, the graphic element is translated without change in size, shape or orientation. Figure 4

Figure 3: Creating a letter P with a raster scanning video display. During each scan line the program creates blanks until it comes to the first line. After this point it creates solid picture elements until it encounters the next line, whereupon it switches back to blanks. The algorithm states that solid picture elements should follow odd numbered line intersections and that blanks should follow even numbered line intersections.

NORTH STAR 16K RAM A star from our Horizon

The North Star 16K RAM board is a star performer in our HORIZON computer. Just as important, it is the ideal memory for most other S-100 bus systems. No other RAM board can surpass the speed, reliability, and quality features of the North Star 16K RAM at any price.

SPEED - The North Star 16K RAM is the fastest S-100 bus memory board available. No wait states are required, even with a $\mathrm{Z80}$ at 4 MHz . And, of course, this outstanding 16K RAM will operate with both 8080 and $Z 80$ processors at 2 MHz . Industry standard 200 ns dynamic RAM chips are used. Invisible on-board refresh circuitry allows the processor to run at full speed.

RELIABILITY - The North Star 16K RAM is designed to match the same high standards as our MICRO DISK SYSTEM and HORIZON computer. For example, all address and data signals are fully buffered. A parity check option is available with the 16 K RAM for applications requiring immediate hardware error detection. If a memory
error occurs, a status flip/flop is set and an interrupt can inform the processor. Or, if preferred, an error status light will go on.

FEATURES - The North Star 16K RAM offers many desirable features. Addressability is switch-selectable to start at any 8 K boundary. The board can perform bank switching for special software applications, such as timesharing. Also, bank switching can be used to expand the amount of RAM beyond 64 K bytes. Power consumption is minimal - the maximum power requirements are: .6A@8V;.4A@+16V, and .1A@-16V.

PRICES - \$399 kit. \$459 assembled, tested and burnedin. Parity option: $\$ 39$ Kit. $\$ 59$ assembled, tested and burned-in.

Write for free color catalog or visit your local computer store.

Figure 4: Translation in the xy plane.
shows the effect of a translation applied to our arbitrary figure, the letter "P." Rotation is a somewhat different problem. It involves a computation which maintains shape but changes orientation. A rotation will generally leave only one point in the twodimensional space with its position unchanged: the center of rotation. For the sake of simplicity, the rotation computation is developed with the point $(0,0)$ as the center of rotation. The polar coordinate representation is used (see figure 5). Later it will be shown how to rotate about any arbitrary point. The point to be rotated, P_{0}, is at position ($\times_{0}, \mathrm{y}_{0}$) (see figure 6). This is at a distance r from $(0,0)$ and the line from the origin to P makes an angle of a with the x axis. From trigonometry we know that:

$$
\begin{aligned}
& x_{0}=r \cos (a) \\
& y_{0}=r \sin (a)
\end{aligned}
$$

If P_{0} is rotated about $(0,0)$ by an angle of b to become P_{1} then

$$
\begin{aligned}
& x_{1}=r \cos (a+b) \\
& y_{1}=r \sin (a+b)
\end{aligned}
$$

but from trigonometry we may substitute

Figure 5: Polar coordinate representation of a point in the xy plane.

Figure 6: Rotation of vector about the origin.
for the sum-of-angles form:

$$
\begin{aligned}
& x_{1}=r \cos (a) \cos (b)-r \sin (a) \sin (b) \\
& y_{1}=r \cos (a) \sin (b)+r \sin (a) \cos (b)
\end{aligned}
$$

but from above we get

$$
\begin{aligned}
& x_{1}=x_{0} \cos (b)-y_{0} \sin (b) \\
& y_{1}=x_{0} \sin (b)+y_{0} \cos (b)
\end{aligned}
$$

The last of the basic transformations is scaling or magnification. This involves a change in size without change in orientation. Depending on the definition of shape, it is either unchanged or changed "without distortion." As in rotation, only a single point in the plane is unchanged by a particular scaling transformation and once again, for convenience, the origin [00] is left unchanged. The equations:

$$
\begin{aligned}
& x_{1}=s x_{0} \\
& y_{1}=s y_{0}
\end{aligned}
$$

will scale x and y by a factor s. The factor may be greater than or less than 1. If a negative value is used for s, then reflection about the origin is performed. If the scale factors for x and y are different, then "stretching" is accomplished. Figure 7 illustrates several scaling transformations applied to the "P" figure seen in several eariier illustrations.

Vectors and Matrices

The use of matrix notation allows simplified extensions and combinations of the basic transformations. A matrix is a rectangular array of numbers identified by row and column numbers. Every row in a particular matrix has the same number of entries, as does every column. The notation $A(1, J)$ refers to the element of matrix A in the ith row and Jth column. A matrix has a size associated with it, [rc], which defines the

DEAR BOSS
JUST THOUGHT ID LET YOU KNOW THAT I'M BACK FROM THE COMPUTER SHOW. THE TERMINAL WE WANT IS THE IQ IO FROM SOROC (SEE SNAP SHOT). THIS UNIT IS NOT ONLY SMART LOOKING, BUT HAS ALL THE FEATURES WE NEED IN THE BASIC PRICE. FOR EXAMPLE: THE IQ IO INCLUDES NUMERIC KEYPADS AND PROTECT FIELDS AS STANDARD. I LOOKED AT THE OTHER TERMINALS AS YOU SUGGESTED, BUT FOUND THEM TO BE EITHER"PAPER TIGERS", OR TOO "DUMB" FOR OUR CONSIDERATION. ANYWAY, YOU ASKED ME TO DECIDE AND AT \$995* FOR THE IQ 120, IT WAS THE EASIEST ASSIGNMENT I'VE HAD.

REGARDS Chit Buy u

* PS. $1-4 \$ 995 / 5-49 \$ 800 / 50-99 \$ 750$
number of rows and number of columns. For matrices \mathbf{A}, B and \mathbf{C} each having the same number of rows and columns, the following rules are true:

$$
\begin{aligned}
A= & B \text { if } A(1, J)=B(1, J) \text { for all elements } \\
A= & B+C \text { when } A(1, J)=B(1, J)+C(1, J) \text { for all } \\
& \text { elements } \\
A= & B-C \text { when } A(1, J)=B(1, J)-C(1, J) \text { for } \\
& \text { all elements }
\end{aligned}
$$

While addition and subtraction of matrices follow in fairly simple fashion from scalar (nonmatrix) arithmetic rules, multiplication and operations similar to division are not at all similar. (A scalar is a quantity that is completely specified by a single number, compared with multiple number data constructs, which are vectors and matrices.)

A matrix with only one row is called a row vector. Similarly, a matrix with only one column is called a column vector. The subject of matrix multiplication is first examined with these simplified forms. While

Figure 7: Scaling an arbitrary figure in the xy plane.
there are two forms of vector multiplication, only the dot product (also called the vector-inner-product) is presented here. Again, using a matrix A (the row vector), B (the column vector) and C (their product) the vector product computation will be described. A vector product can exist only if the number of elements in A and the number of elements in \mathbf{B} are equal. If each of these has N elements then

$$
\begin{aligned}
C= & A(1,1) \times B(1,1)+A(2,1) \times B(1,2) \ldots+ \\
& A(N, 1) \times B(N, 1) .
\end{aligned}
$$

This is called the dot product of the two vectors. It is the sum of the pairwise products of their elements. C, the dot product of the two vectors, is a single number (a scalar) not a vector or matrix. For example:
let

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \quad \text { row vector } \\
& B=\left[\begin{array}{r}
3 \\
5 \\
7 \\
11
\end{array}\right] \quad \text { column vector }
\end{aligned}
$$

$$
A \cdot B=C=1 \times 3+2 \times 5+3 \times 7+4 \times 11=78
$$

Now suppose that A and B are not restricted to one column and one row, respectively. Instead, we let A have size $\left|r_{A} C_{A}\right|$ and B have size $\left|r_{B} c_{B}\right|$. The matrix product can only be computed if $c_{A}=r_{B}$: that is, the number of columns in A is equal to the number of rows of B. Two matrices for which this is true are called conformable. C will now have size $\left|r_{A} c_{B}\right|$, inheriting its size from both \mathbf{A} and \mathbf{B}. Each element in \mathbf{C} (which is no longer a scalar) results from the dot product of a row in A with a column in B:

$$
\begin{aligned}
C(1, J)= & A(1,1) \times B(1, J)+A(1,2) \times B(2, J) \ldots \\
& +A(1, N) \times B(N, J)
\end{aligned}
$$

where

$$
N=c_{A}=r_{B}
$$

For complete informotion write to: PERSONAL SYSTEMS CONSULTING P.O. Box 20286 El Cajon. Colifornio 92021
Ad Design. Joanne De Vore. Kwik Kopy Printing \#215

A COMPLETELY REFURBISHED "SELECTRIC" ASCII TERMINAL FOR THE SMALL BUSINESSMAN OR SERIOUS HOBBYIST.

The AJ 841 I/O Terminal. Now with RS232 interface. Now available from dealers.

Demand for our AJ 841 I/O computer terminal has been great. And now that we've finally added RS 232 interface, it will get even greater. So while you can still order it direct from us, now you can also buy it from dealers around the country.

The AJ 841 features:

- Choice of Serial RS 232 or parallel interface
- ASCII code
- 14.9 cps printout
- High quality Selectric printing
- Reliable, heavyduty Selectric mechanism
- Off-line use as typewriter
- Documentation included
- 30-day warranty - parts and labor
- Mail order shipments to AJ office or direct to you.

Warranty and service available from your local AJ dealer or from AJ offices in: Atlanta/Boston/Chicago/Cincinnati/ Cleveland/Columbus/Dallas/ Detroit/Hackensack/Houston/ Los Angeles/New York/Philadelphia/ San Jose/Washington, D.C.

Full warranty information available on request.

Order with coupon-or from your local AJ dealer

For location of your nearest AJ dealer call toll-free: 800/538-9721.
(Calif. residents call 408/263-8520)

HOW TO ORDER DIRECT

FROM THE FACTORY

1. Make cashier's check or money order payable to Anderson Jacobson, Inc. and mail to:

Anderson Jacobson, Inc.
PERSONAL COMPUTER TERMINAL 521 Charcot Avenue San Jose, CA 95131
2. You will be notified when your unit is ready for shipment. Allow six to eight weeks for delivery.
3. Shipments direct to you require a collect freight charge (FOB San Jose) plus \$25 for a special shipping carton. Shipments to nearest $A J$ office include freight in the $\$ 35$ handling charge.
4. For warranty or repair service, return unit to local dealer or to designated AJ service location.
Available only in U.S.

CLIP AND MAIL WITH ORDER

Select interface:
\square RS $232 @ \$ 1195$ or
\square EBCD or

- Parallel @ \$1095
\square Correspondence
\square Ship direct to me (freight collect, FOB San Jose, $+\$ 25$ box)
\square Ship to AJ office (shipping and handling \$35)
Number of units
Sales tax at delivery location Shipping and handling \$35 each TOTAL \qquad

NAME \qquad
ADDRESS
CITY \qquad STATE \qquad ZIP

PHONE()

PERCOM's'inssembel anan Tostan

 FLOPPY DISK SYSTEM

only $=8500^{95}$

The LFD-400 is ready to plug in and run the moment you receive it. Nothing else to buy! Not even extra memory!

YOU GET:

(1) The popular Shugart SA 400 minifloppy ${ }^{\text {º }}$ drive. Drive alignment is double checked by PerCom before shipment.
2 The drive power supply-fully assembled and tested.
(3) LFD-400 Controller/Interface-plugs into the SS-50 bus accommodates three 2708 EPROMs - fully assembled and tested.
(4) MINIDOS ${ }^{\text {T }}$ - the remarkable LFD-400 disk operating system on a 2708 EPROM • plugs into the LFD-400 Controller card • no extra memory required • no "booting" needed.
5 Attractive metal enclosure.
6 Interconnecting cable-fully assembled and tested.
7 Two diskettes-one blank, the other containing numerous software routines including patches for SWTP 8K BASIC and the TSC Editor/Assembler.
(8) 70-page instruction manual-includes operating instructions, schematics, service procedures, and the complete listing of MINIDOS ${ }^{\text {mim }}$.
(9) Technical Memoupdates - helpful hints which supplement the manual instructions.
(D) 90-day limited warranty.

Minifloppy is a trademark ol Shugart Associates. MINIDOS is a trademark of PERCOM Data Company, Inc.
The LFD-400 is readily expanded to either two or three drives. Write for details. Send for our free brochure for more information about the LFD-400 Floppy Disk System and LFD-400 software.
To save you money, the LFD-400 Floppy Disk System is avallable only from PerCom. Because of the special pricing, group and dealer discounts are not avallable.

MC and VISA welcome. COD orders require 30% deposit plus 5% handling charge. Allow three extra weeks if payment is by personal check. The LFD-400 Floppy Disk System is availabie immediately. Allow three weeks for testing and transportation. Texas residents add 5% sales tax.

TM

PERCOM DATA COMPANY, INC.
Dept B 318 BARNES•GARLAND, TX. 75042
(214) 272-3421

PERCOM ${ }^{\text {T }}$ 'peripherals for personal computing'

Figure 8: Rotation of an arbitrary figure about an arbitrary point.
and where I takes on all integer values from 1 to r_{A} and J takes on all integer values from 1 to C_{B}. For example:
let

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
1 & 2 \\
5 & 7 \\
3 & -1
\end{array}\right] \\
& { }^{{ }^{\prime} A}=3 \\
& { }^{C_{A}}=2 \\
& B=\left[\begin{array}{llll}
3 & 1 & 4 & 1 \\
5 & 9 & 2 & 6
\end{array}\right] \\
& r_{B}=2 \\
& C_{B}=4
\end{aligned}
$$

The number of columns in matrix \mathbf{A} is equal to the number of rows in matrix B. In equation form, this means that:

$$
\begin{aligned}
& c_{A}=r_{B}=2 \\
& {\left[r_{C} c_{C}\right]=\left[\begin{array}{ll}
3 & 4
\end{array}\right]}
\end{aligned}
$$

Therefore, we can calculate the matrix result C:

$$
\begin{aligned}
& C=\left[\begin{array}{llll}
1 \times 3+ & 1 \times 1+ & 1 \times 4+ & 1 \times 1+ \\
2 \times 5 & 2 \times 9 & 2 \times 2 & 2 \times 6 \\
5 \times 3+ & 5 \times 1+ & 5 \times 4+ & 5 \times 1+ \\
7 \times 5 & 7 \times 9 & 7 \times 2 & 7 \times 6 \\
3 \times 3- & 3 \times 1- & 3 \times 4- & 3 \times 1- \\
1 \times 5 & 1 \times 9 & 1 \times 2 & 1 \times 6
\end{array}\right] \\
& C=\left[\begin{array}{rrrr}
13 & 19 & 8 & 13 \\
50 & 68 & 34 & 47 \\
4 & -6 & 10 & -3
\end{array}\right]
\end{aligned}
$$

For any matrix M there is a special matrix which, when multiplied by M, yields M. This is called the identity matrix (1). It is similar in role to the value 1 in scalar multiplication. Naturally, the identity matrix must be conformable with a particular M. I is a square
matrix, with zeros everywhere but on the diagonal, where the value 1 is placed. The diagonal is the set of elements where the row index equals the column index. For example, if I and M are both 3 by 3 matrices, then $\mathrm{IM}=\mathrm{M}$:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] M=M
$$

Now let's turn back to rotations, and see how these may be applied to a collection of points describing a figure on the display screen.

Two comments are worth noting at this stage. It is often useful and necessary to apply the same transformation to several points. This occurs when applying a transformation to items such as polygons or more complex collections of points. Additionally, it is useful to combine basic transformations to create more complex transformations.

A collection of points may be represented as a matrix:

$$
\left[\begin{array}{cc}
x_{0} & y_{0} \\
x_{1} & y_{1} \\
\vdots \\
\vdots \\
x_{n} & y_{n}
\end{array}\right]
$$

Recall the basic operations of scaling, rotation and translation:
Scaling (about the origin)

$$
\begin{aligned}
& x_{1}=s_{x} x_{0} \\
& y_{1}=s_{y} y_{0}
\end{aligned}
$$

Rotation (about the origin)

$$
\begin{aligned}
& x_{1}=x_{0} \cos (b)-y_{0} \sin (b) \\
& y_{1}=x_{0} \sin (b)+y_{0} \cos (b)
\end{aligned}
$$

Translation

$$
\begin{aligned}
& x_{1}=x_{0}+\text { changex } \\
& y_{1}=y_{0}+\text { changey } .
\end{aligned}
$$

If these transformations could be represented as appropriate matrices, they could be applied simultaneously to all points in the collection. Scaling may be represented in matrix form as:

$$
\left[\begin{array}{ll}
x^{\prime} y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

or, for a collection of points:

$$
\left[\begin{array}{cc}
x_{0}^{\prime} & y_{0}^{\prime} \\
\cdot & \\
x_{n}^{\prime} & y_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
x_{0} & y_{0} \\
& \cdot \\
x_{n} & y_{n}
\end{array}\right]\left[\begin{array}{ll}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Rotation through angle babout the origin may be represented as:

$$
\left[\begin{array}{cc}
x_{0}^{\prime} & y_{0}^{\prime} \\
\cdot & \\
\cdot & \\
x_{n}^{\prime} & y_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
x_{0} & y_{0} \\
& \cdot \\
& \cdot \\
x_{n} & y_{n}
\end{array}\right]\left[\begin{array}{rr}
\cos (b) & \sin (b) \\
-\sin (b) & \cos (b)
\end{array}\right]
$$

Translation presents a somewhat more difficult problem. No 2 by 2 transformation matrix can be devised that will transform a group of points by a uniform displacement. An alternative representation of the translation is:

$$
\begin{aligned}
& x^{\prime}=(x) 1+(y) 0+1 \cdot \text { changex } \\
& y^{\prime}=(x) 0+(y) 1+1 \cdot \text { changey }
\end{aligned}
$$

If we now represent all points in twodimensional space with a 3 element vector of the form [x y 1] for the point at $[x y]$, then the translation operation may be represented in matrix form as

$$
\begin{aligned}
{\left[\begin{array}{ccc}
x_{0}^{\prime} & v_{0}^{\prime} & 1 \\
& \vdots & \\
x_{n}^{\prime} & v_{n}^{\prime} & 1
\end{array}\right]=} & {\left[\begin{array}{ccc}
x_{0} & y_{0} & 1 \\
& \cdot & \\
x_{n} & y_{n} & 1
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\text { changex changey } & 1
\end{array}\right] }
\end{aligned}
$$

Note that a third (unnecessary) column is added to the translation matrix to make the results have the same dimensions as the input points.

The scaling matrix is now rewritten as:

$$
\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The rotation matrix is now:

$$
\left[\begin{array}{ccc}
\cos (b) & \sin (b) & 0 \\
-\sin (b) & \cos (b) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The use of an $n+1$ element vector to represent a point in n-dimensional space is known as the use of homogeneous coordinates.

Now that a uniform representation, the 3 by 3 matrix, is available for transformations, two questions arise: (1) How can more complex transformations be implemented?
(2) What effects are obtained from matrices which do not fit into the special structures generated for the basic transformations?

Most complex geometric operations may

Transformed Coordinate Matrix (n by 3)	Coordinate Matrix (n by 3)	$\begin{gathered} \text { Translation to } \\ \text { Origin by }\left(-X_{r},-Y_{r}\right) \\ (3 \text { by } 3) \end{gathered}$	Rotation by Angle b (3 by 3)	Translation by (X_{r}, Y_{r}) (3 by 3)
$\left[\begin{array}{ccc}X_{0}^{\prime} & Y_{0}^{\prime} & 1 \\ & \vdots & \\ & \vdots & \\ & \cdot & \\ & \cdot & \\ & X_{n}^{\prime} & Y_{n}^{\prime}\end{array}\right]$	$=\left[\begin{array}{ccc}X_{0} & Y_{0} & 1 \\ & \vdots & \\ & \vdots & \\ & & \\ & & \\ & & \\ X_{n} & Y_{n} & 1\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ -X_{r} & -Y_{r} & 1\end{array}\right]$	$\left[\begin{array}{lll}\cos (b) & \sin (b) & 0 \\ -\sin (b) & \cos (b) & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ X_{r} & Y_{r} & 1\end{array}\right]$

Example 1.

be implemented as a sequence of basic operations. A few examples are examined next.

Rotation About an Arbitrary Point [$x_{r} y_{r} 1$]
Since we know how to rotate about the origin, the point R and the object are first moved to the origin. The object is then rotated and the system moved back so that R is at its original location. A matrix representation of this procedure is shown in example 1. The point R will be unchanged by this sequence of transformations. Transformations are not generally commutative; ie: the order of application of the transformations is fixed to achieve a particular combined result.

A similar statement is truc for matrix multiplication:

$A B \neq B A$ in general.

But, matrix multiplication is associative. That is, if the order of the matrices is fixed, the order in which the individual multiplications is performed does not matter as far as the value of the result is concerned. Thus, in the example shown, we could combine the last three (transformation) matrices by multiplication to yield a single 3 by 3 matrix which represents the combined transformation. If more than three points are represented in the coordinate matrix, this technique will reduce the amount of computation necessary to calculate the result.

As a general comment, it is useful to decompose complex transformations into a serics of basic transformations. Any transformation which preserves shape in the sense discussed above can be decomposed into a series of basic transformations represented as matrices. The product of these matrices will be the matrix representation of the complex transformation.

A general 3 by 3 matrix might be represented by:

$$
T_{3}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & i & j
\end{array}\right]
$$

(h intentionally omitted)
Three special cases of this matrix have been presented that represent the basic transformations. While the products of such basic transformations can yield many of the cases of the general T_{3} matrix, it is useful to examine some other simple cases. The 3 by 3 identity matrix:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

yields a result identical to the original set of points. This is a null transformation. The effect of setting elements a and e (referring to the general T_{3} matrix elements) equal to other values results in scaling. Setting elements g and i to nonzero values creates a translation. The process of setting element b to a nonzero value is shown in the following equations:

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=b x+y
\end{aligned}
$$

The effect of this change on our figure " p " test pattern is shown in figure 9. This type of transformation is known as a y shear. Note how the "P" has been distorted in the y direction only by this operation.

Figure 9: An example of y shear.

GET THE LOW DOWN BEFORE YOU BUY
 SO YOU WANT TO BUY A COMPUTER??

This new book presents an objective look at the top 24 micro systems sold throughout the world.

It discusses the Pros and Cons of each system in No Uncertain Terms and takes a straightforward look at the micro computer industry as it relates to YOU.

Written especially for the layman in a language he can understand. Profit from the mistakes of others.

Includes hundreds of references.

Table of Contents

1. Introduction
2. Don't get hung up on the chips
3. Which category do you fit into
4. Now - About the Hardware
5. Peripherials that plug in?
6. What? No Software!
7. Helpful Suggestions before spending money
8. Addresses

SCIENTIFIC RESEARCH

P.O. Box 490099-B

Key Biscayne, Florida 33149
Phone Orders Call 800-327-6543

Add $\$ 1$ handling, all domestic shipments sent parcel post. Foreign orders add $\$ 4$ for air shipment and make payable in U.S. funds.

Figure 10: An example of x shear.

Similarly, setting element d equal to a nonzero value causes an x shear as shown in figure 10 :

$$
\begin{aligned}
& x^{\prime}=x+d y \\
& y^{\prime}=y
\end{aligned}
$$

If element c or element f is nonzero, or if element i is not one, the result of the transformation is of the form:

$$
\begin{gathered}
h \neq 1 \\
(h \times h y h)
\end{gathered}
$$

Here, $h x$ and $h y$ are considered to be biliteral (2 letter) symbols or variable names, not products of h and x or y. In this case, we divide each element of the vector by the last (or homogeneous) element. Thus, the coordinates of the point (x, y) in two-space may be represented by an infinite number of homogeneous representations $\mid h x$ hy $h \mid$. The process of dividing through by the homogeneous coordinate is known as homogeneous normalization (see table 1).

A particular problem arises when $h=0$. In this case, division is undefined. An understanding of this situation is attained by letting h go to zero.

The value of the normalized point in table 1 goes out along a line from the origin through the point $\left[\begin{array}{ll}a & b\end{array}\right]$; as h approaches zero, the point goes to infinity. Thus the representation $\{a b 0 \mid$ defines a point at

Editor's Note: Analogies Between Hardware and Software

Readers with a hardware background are no doubt familiar with the concept of limiting the range of a signal, or "clipping" it. This is often accomplished using a nonlinear device such as a diode. In this article, we find the same concept used in the software which transforms a list of points making up an image so that it will fit on a display screen. Here, instead of an analog signal, the "signal" being limited is the numerical range of the coordinates being computed. The implementation is different, but the concept is identical. . . CH

Homogeneous Representation			Normalized Representation	
hx	hy	h	\times	y
$\underline{\text { a }}$	$\underline{\square}$	1	a	$\underline{\square}$
$\underline{ }$	$\underline{\text { b }}$. 1	10a	10b
$\underline{\underline{a}}$	$\underline{\square}$. 01	100a	100 b

.	.	.		-
-	i	-		\cdots
$\underline{ }$	$\underline{\square}$	0	undefined	undefined

Table 1: Homogeneous versus normalized representation of coordinates in twodimensional space. The homogeneous representation of the coordinate pairs is a way of encoding the numbers in a general manner using the extra element h in the matrix row. The values of the coordinates are found by dividing h into each coordinate (expressed here as variable names, ie: " $h x$ "; this does not mean " h times x "). The results are shown in the right side of the table. The extra column in the homogeneous form of the matrix is needed to make the matrix conformable with other matrices used for translation operations.
infinity along the line from the origin through $[a b]$. This representation of points at infinity is completely consistent with all previous discussion and definitions of transformations. The only truly undefined homogeneous value in two-dimensional space is $[000]$.

In transforming graphic elements, a problem may arise regarding the screen space boundaries. Portions of objects may fall outside the screen space after transformation. A similar situation may arise when objects are converted from problem space to screen space. It is therefore necessary to have a procedure for "clipping" the portions of objects outside the screen space so that the on-screen portion is accurately portrayed. The procedure described operates on the typical 4 sided rectangular screen.

The screen may be defined by four inequalities:

$$
\begin{array}{ll}
x \geqslant x_{l} & x_{\ell}=\text { leftmost } x \text { value } \\
x \leqslant x_{r} & x_{r}=\text { rightmost } x \text { value } \\
y \geqslant y_{b} & y_{b}=\text { bottom } y \text { value } \\
y \leqslant y_{t} & y_{t}=\text { top } y \text { value }
\end{array}
$$

The procedure operates on each line segment in the image and determines what portion, if any, lies in the screen space.

The two endpoints of each line segment are classified as satisfying or not satisfying each of the four inequalities. Three specific

Figure 11: Three different ways a line can appear. Line (a) is completely within the borders of the video screen. The lines labeled (b) are completely outside of the screen area, and the lines labeled (c) are partially within the screen area.

Figure 12a: Clipping. One way of calculating the cutoff point for a line is to use the traditional method of similar triangles. A disadvantage of this method is that it requires multiplication, a relatively time consuming operation on a computer.
cases may result from this endpoint coding:
(a) Both endpoints satisfy all inequalities.
(b) Both endpoints do not satisfy the same inequality.
(c) Neither of the above.

In case (a) the entire line lies within the screen space and is therefore displayed. In case (b) the entire line lies outside the screen space and is therefore not displayed. Case (c) requires further treatment.

The visible portion (if any) of each case (c) line is determined by cutting it with every inequality line (screen boundary) which is violated by either endpoint. Each inequality or clipping boundary not satisfied will cut the line into two portions, visible and invisible. The portion remaining, if any, will be the line segment visible in the screen space.

One approach to determining the point at which a line is cut by a boundary is derived from geometry (see figure 12a). The formulas for the left x boundary can be derived and the x_{r}, y_{b} and y_{t} results follow in similar fashion. By similar triangles:

$$
\frac{v_{s}-y_{0}}{x_{c}-x_{0}}=\frac{v_{1}-y_{0}}{x_{1}-x_{0}}
$$

but

$$
x_{c}=x_{l}
$$

so

$$
v_{c}=v_{0}+\left(\frac{y_{1}-v_{0}}{x_{1}-x_{0}}\right)\left(x_{Q}-x_{0}\right)
$$

The visible portion of the line is from $\left(x_{Q}, y_{s}\right)$ to $\left(x_{1}, y_{1}\right)$.

An alternative approach, the clipping divider, is more suitable for microprocessor implementation since it uses neither multiplication nor division. It is actually a type of binary search. Using the example in figure $12 b$, we define (x_{m}, Y_{m}) as the midpoint of the line to be clipped. $\left(x_{m}, y_{m}\right)$ is calculated as follows:

$$
\begin{array}{ll}
x_{m}=\left(x_{0}+x_{1}\right) / 2 & \text { (add and } 1 \text { bit shift }) \\
y_{m}=\left(y_{0}+y_{1}\right) / 2 & \text { (add and } 1 \text { bit shift })
\end{array}
$$

If $x_{m}=x_{\ell}$, then y_{m} is the y coordinate of the clipped endpoint and the process is completed. If x_{m} violates the inequality, then replace (x_{0}, y_{0}) with (x_{m}, y_{m}). Recalculate (x_{m}, y_{m}). If the new x_{m} satisfies the inequality, then replace $\left(x_{1}, y_{1}\right)$ with (x_{m}, y_{m}). In either of the last two cases, repeat the procedure with the new line, either $\left(x_{m}, y_{m}\right)$ to $\left(x_{1}, y_{1}\right)$ or $\left(x_{0}, y_{0}\right)$ to (x_{m}, y_{m}). Because of the shifting used to calculate (x_{m}, y_{m}), the process continues no

Figure 12b: Clipping. Another method of calculating the cutoff point of a line on the screen is to use a form of binary search. The method involves halving the line segment successively until the y value converges to the correct answer. This method only requires adding and shifting and is thus quicker to compute than the method of similar triangles.
more times than the number of bits in a word and the y coordinate will converge to the correct value.

This clipping process completes the set of basic operations necessary to operate on two-dimensional information to produce graphic output.

I hope readers will be encouraged to use these practical techniques in their experiments with computer graphics.■

BIBLIOGRAPHY

1. Newman, W, and Sproull, R, Principles of Interactive Computer Graphics, McGraw-Hill Book Company, New York, 1973.
2. Rogers, D F, and Adams, J A, Mathematical Elements for Computer Graphics, McGraw-Hill Book Company. New York, 1976 (paperback, uses BASIC).

NEW BESTSELLERS

PROGRAMMING MICROCOMPUTERS:6502
By Rodnay Zaks, 250 pp, ref C2O2.

NEW. For the beginner. How to use and purchase a system, from the microcompuler box to the peripherals. Why. Business requirements. How to fail. Programming. Which BASIC?
NOW ALSO AVAILABLE ON CASSETtES $\cdot 3$ hrs, ref $\$ 10 \mathrm{Sl} 4.95$

MICROPROCESSORS: from chips to systems By Rodnoy Zaks, 416 PD, rei C2OI
$\$ 9.95$
USED WORLOWIDE AS UNIVERSITY TEXT. A COmprehensive, yet detailed and clear introduction to all aspects of microprocessors. How they work. The ROM, RAM, PIO, UARI. How to interconnect. system development.

TO ORDER

-BY PHONE: call (4 15)848.8233
BankAmericard/Mastercharge accepted
-SHIPPING: no charge when payment included.
ADD: $\$ 1.50 / b o o k$ for fast shipping. - TAX: in California, add sales tax. -OVERSEAS:
SYBEX-EUROPE, 313 rue Lecourbe. 75015 - PARIS, France Tel:(1)8282502

NEW. How to program microprocessors, with 6502 examples: arithmetic, input-output, peripherals. Interrupis. An educational text requiring no prior programming knowledge, yet uselul to those wanting to learn about specific programming techniques. Applicable to PET, KIM, VIM, APPLE.

MICROPROCESSOR INTERFACING TECHNIRUES
By Austin Lesea and Rodnay Zaks, 416 pp, ref C2O7.
ALSO USED WORLDWIDE AS UNIVERSITY TEXT. HOw to connect to all the usual peripherals, from keyboard to floppy disk, including A/D, displays, standard busses (RS232, S1OO, IEEE 488) and oynamic RAMs.

APL and Graphics

Eduardo Kellerman V34/0284
 IBM Corp
 Endicott NY 13760

Entire article and all figures copyright International Business Machines Corporation, 1978. Printed by permission. All graphics were produced digitally (including author's signature).

Figure 1: Equilateral triangle centered at the origin, the basic drawing block of our design.

This article presents an introduction to the use of APL for creating and manipulating graphic images. The paper carries the reader through the steps of interactive graphic design using APL and IBM 5100 APL Graphpak. The last section of this article, giving background information about APL and Graphpak, should be reviewed by the reader not familiar with either of these two topics. August 1977 BYTE is a useful source of APL information. For more detailed information about APL see the references listed at the end of this article.

The initial checkout of the examples was done using an IBM 5100 in stand-alone mode. The results were drawn on an IBM 5103 printer by modifying Graphpak to use output functions from the IBM 5100 Print Plot/APL Problem Solver Library. When the designs grew more complex, the IBM 5100 was connected to an IBM System 370/ Model 168 and the code was executed there. The IBM System 370/Model 168 produced its output on a storage scope equipped with a hard copy unit.

Developing Repetitive Patterns

The first example follows a graphic designer through the development of a pleasing design for wrapping paper. Using a triangle as the basis for experimentation, the coordinates for a triangle centered at the origin are derived as shown in figure 1. A matrix, TRI, is then created to describe the triangle to the DRAW function:

$$
\begin{gathered}
T R I+4301,0,1,0,(\cos 30),(-\operatorname{SIN} 30), 0 .(-\cos 30) . \\
(-\operatorname{SIN} 30), 0,0,1
\end{gathered}
$$

For this example, TRI looks like:

TRI		
1	0	1
0	0.87	-0.5
0	-0.87	-0.5
0	0	1

To create patterns, translate the TRI matrix into the display window and draw it with the following APL function:

```
        \nabla DESIGN1
[1] TR+(\operatorname{cos 30).SIN 30}00
[2] DRAW TR TRANSLATE TRI
    \nabla
```

When executed on the IBM 5100, DESIGN1 gives a very small triangle of the defined dimensions. It will be necessary to increase the size of the triangle since it is presently too small to be used in a design. The function DESIGN2, shown in listing 1 , is written to rotate the triangle 15 times and then translate the magnified pattern into the viewing area before drawing it.

Note in line 4 of listing 1 that the initialization of variable OUT is to be a matrix with no rows and three columns. This is done so that OUT has the proper shape when in line 6 it is catenated with TRI2 (which has three columns). When DESIGN2 is executed on the IBM 5100 the result is:

Even though the original (magnified) triangle is within the viewing window, the complete pattern is not. Instead of moving the whole pattern into the display window, the rotating triangles can be shrunk so they stay within each other. The result of experimenting with different shrinking factors (actually magnifications of less than 1.0) is the APL
function in listing 2. Execution of DESIGN3 results in:

To extend the design over a larger area of the plane, an upside-down version of the nested triangles is used. This upside-down design is obtained by rotating the original design 180° (π radians). The original and new patterns are then drawn side by side. This is accomplished by adding the following two lines at the end of program DESIGN3:
[13] OUT2+180 ROTATE OUT
[14] DRAW 15 magnify ($2 \times$ TR) translate out2
Execution of this program gives:

This pattern is used to cover the plane. To do so, variable OUT is made into a matrix containing the description of both the original set of nested triangles and the upsidedown nested triangles by replacing lines 12 thru 14 with:

[12] out2-tr translate 180 rotate out [13] out+out.[1] our2

Then, to draw the N by M tilings, two nested loops are added at the end of the APL function. These loops are incorporated in lines 14 thru 19 of the function DESIGN7, which is shown in its entirety in listing 3.

Note that, in line 16 of listing 3, unnecessary parentheses were used to make the meaning clearer. However, not enough parentheses were added to make the meaning completely unambiguous to readers not familiar with APL. For example, the expression

$$
T R X \times(1+2 \times J)
$$

could be written

- OESIGN2:TR:ROT:REP;OUT:TRI2

[1]	TR-($\cos 30)$, SIN 30
[2]	ROT +0
[3]	REP - 15
[4]	OUT +03 คо
[5]	LOOP:TRI2-ROT ROTATE TRI
[6]	OUT-OUT,[1] TRI2
[7]	ROT + ROT +5
[8]	\rightarrow LOOP IF $0<R E P+$ REP - 1
[9]	dran 15 magnify tr translate out
∇	
	- DES IGN3;TR MAG ;ROT;REP;OUT:TRI2
[1]	TR+(COS 30), SIN 30
[2]	MAG+1
[3]	ROT-0
[4]	$R E P+15$
[5]	OUT- 0 3 po
[6]	LOOP:TRI2+ROT ROTATE TRI
[7]	TRI2+MAG magnify trin
[.8]	OUT+OUT.[1] TRI2
[9]	ROT-ROT+S
[10]	MAG $-M A G \times 0.87$
[11]	\rightarrow LOOP IF $0<R E P+R E P-1$
[12]	draw 15 magnify tr translate out
∇	

Listing 1: DES/GN2, an APL routine used to rotate the basic triangle and translate it into the viewing window. This operation is repeated 15 times. Note the use of variables in the header line of the function. This assures only local use of those variables.

Listing 2: DES/GN3, an APL routine which rotates and shrinks the basic triangle shape to keep the rotated triangles inside of the previously drawn triangle. This also keeps the rotated triangles within the viewing window.

[^2]Figure 2: Repetitive pattern resulting from the execution of DESIGN1. The prerequisite for accepting this design is aesthetic. The author felt that this was a pleasing arrangement of triangles.

Listing 4: A modification to listing 3, incorporated in line 16, shifts every other row of the pattern half a triangle to produce a more pleasing effect.
∇ N DESIGNA M;TR;TRX:TRY;MAG;ROT:REP;OUT:TRI2;OUT2

[1]	$T R+(T R X+\operatorname{COS} 30) . T R Y+S I N 30$
[2]	$M A G+1$
[3]	ROT +0
[4]	$R E P+15$
[5]	OUT - 0300
[6]	LOOP:TRI2+ROT ROTATE TRI
[7]	TRI2+MAG MAGNIFY TRI2
[8]	OUT+OUT.[1] TRI2
[9]	ROT-ROT-5
[10]	MAG-MAG*0.87
[11]	$\rightarrow L O O P$ IF $0<R E P+R E P-1$
[12]	OUT2-TR TRANSLATE 180 ROTATE OUT
[13]	OUT+OUT.[1] OUT2
[14]	$I+0$
[15]	$L P I: J+0$
[16]	$L P J: T R+\left(T R X \times{ }^{-1}+(2 \mid I)+2 \times J\right), I+T R Y \times(I+1)$
[17]	dRAW 15 magnify tr translate out
[18]	\rightarrow LPJ IF M>J $-J+1$
[19」	$\rightarrow L P I \quad I F \quad N>I+I+1$

Listing 5: DESIGN9, an APL program that produces pictures such as the one shown in figure 4. The basic pattern has been shifted from row to row to produce a more pleasing design.

Powerful Software with Extended Documentation offered by

PRS-

THE PROGRAM OF THE MONTH CORPORATION UNVEILS COMPREHENSIVE CONCEPT IN SOFTWARE PRESENTATION

UNIQUE DOCUMENTATION

Unique documentation gives you clear, complete and instructive text in a graphically appealing manual. This documentation doesn't only provide step by step "how to" but also is geared to help you to understand hardware-software interactions, and to promote further applications.

POWERFUL CODE

Whether it be for games, applications (home and business), or sophisticated programming tools and monitors, PRS permeates the design of its unique code with "human engineering." And you'll appreciate the delicate balance between machine-human dialogue and resident programspace in memory.

BEAUTIFUL CASSETTE-FOLDER

PRS packages your manual and cassette in an elegant and durable gold-stamped folder.

AN ARRAY OF PROGRAMS

ARE AT YOUR FINGERTIPS

PRS presently offers "MICROFILE" a DATA FILE MANAGEMENT program and "DDS II" the famous

DYNAMIC DEBUGGING SYSTEM. New programs will be released at regular intervals.

YOU'LL DISCOVER EXTENSIVE PROGRAM CAPABILITIES

With "MICROFILE," a new DATA FILE MANAGEMENT program, you can:

- Manage any list of items
- Enter new data
- Edit information already on file
- Sort items alphanumerically upwards or downwards
- Search by primary and/or secondary keys (labels)
- List and print selected or all items
- Total sums of columns
- Justify right or left margins of each column
- Delete items
- Save and retrieve data with mass storage media

PROGRAM APPLICATION
 EXPANDS YOUR COMPUTER USAGE

For example, "MICROFILE" manages: Home inventory Listing of musical tapes • Calendar of activities • Vacation itineraries - Checks by categories • Home-upkeep tickler files • Family historical dates • Health records.

PRS SUPPORTS YOUR MAJOR BRANDS
APPLE, PET, SOL, SORCERER, TRS-80, and other systems with Z-80, 8080 and 6502 processors.

VISIT YOUR NEAREST DEALER TODAY Let him demonstrate the excellence

Or write for the name of a dealer in your area to:
PRS-THE PROGRAM OF THE MONTH CORPOR ATION
257 Central Park West. New York, N. Y. 10024

New Product Releases From

PRS THE PROGRAM OF THE MONTH CORPORATION 257 CENTRAL PARK WEST
NEW YORK, N.Y. 10024

Gentlemen:

\square Please place my name on your priority mailing list to receive your descriptive advance releases off all new programs developed by -PRSat regular intervals.
\square Please send me a list of dealers in my area.

Figure 3: Full size design created by shifting the pattern of figure 2. The rows have been shifted in relation to each other for appearance

COSMACVIP

 \$249'gets the entire family into creating video games, graphics and control functions. Forstarters.COSMAC VIP, the completely assembled, ready-to-operate RCA Video Interface Processor, opens up a whole new world of computer excitement. New challenges in graphics, games and control functions. Yet it's just \$249.00.

Easy to buy. And easy to program, thanks to its unique, easy-to-use interpretive language. You get a complete how-to book including programs for 20 games: fun, challenging, and ready to load and record on your cassette.

Simple but powerful.

Built around an RCA COSMAC microprocessor, the VIP is a complete computer system that can grow with you. It has 2K of RAM, expandable on-board to 4 K . Plus a ROM monitor, audio tone output to a built-in speaker, power supply, and 8-bit input and output ports for control of relays, sensors, or other peripherals.

Figure 4: Pattern produced by flipping the triangles over, an example of how easy it is to produce a wide variety of patterns with only small modifications to a basic design program.

TARBELL SOFTWARE Extensive © Inexpensive.

TARBELL CASSETTE BASIC only $\$ 36.00$

Most features of ALTA.IR* Extended BASIC are included PLUS these added features:

- Assignment of I/O
- Alphanumeric line labels
- Unlimited length of strings
- Unlimited length of variable names
- Procedures with independent variables
- Number system 10 digits BCD integer or floating point
Included are commands unique to TARBELL CASSETTE BASIC which provide capabilities to:

CP/M Disk Operating System

The I/O section of this software has been modified to operate with the TARBELL Floppy Disk Interface in 24 K bytes of memory. Five commands permit listing of directory, typing contents of an ASCII file, renaming a file, erasing a file from disk, and saving memory on disk. Fourteen programs are included which are invoked like commands. Six source files are included for transferring between TARBELL Cassette and disk, cold-start loading, Basic I/O system with drivers, and reformatting crashed diskettes. Documentation includes a listing of BIOS and instructions to patch CBIOS for your system. Price is $\$ 100$ on CP/M diskette with documentation. (CP/M is a product of Digital Research).

CP/M 1.4 Update Package

A TARBELL Update Package for those now using CP/M 1.3 is now available on diskette. The Update Package adds new commands and the ability to access four disk drives, as well as 2 new CP / M manuals, TARBELL CP/M User's Guide and a new BIOS listing. Price: $\$ 50.00$.

SP00LER

This 8080 program will save many hours of computing time. It intercepts all output to the list device, spools the output to a high-speed disk file, and directs the spooled data to a low-speed printer during unused cycle time while the CPU waits for transfer of data to and from the console. System throughput is greatly increased with the aid of SPOOLER. Output is never lost due to insufficient memory allocation. Fully compatible with the CP/M file system, SPOOLER permits parallel processing without hardware interrupt, and with minimal impact on other processes. Price: $\$ 50.00$ (Copyright KLH Systems.)

- Initialize I/O channel - Assign a physical device to a logical device • Drop an I/O channel previously assigned - Save the BASIC interpreter and monitor or I/O routines on cassette - Cause programs to be appended onto programs already in memory \bullet Call a procedure and pass variables on the list - Cause interpreter to enter edit mode using 15 single character edit commands.
Tarbell BASIC occupies 18 K of RAM. Source is available on cassette, CP/M** Disk, and printout..-all at reasonable prices. Price for TARBELL CASSETTE BASIC and complete documentation: $\$ 36.00$.

BASIC-E Compiler

Designed to work with CP/M Disk Operating System this software requires a total of 20 K bytes of memory. Included are 26 compiler error messages and 23 run-time error messages. Disk files may be read, written or updated by using both sequential and random access. Included are blocked and unblocked files. Price for compiler and run-time monitor on diskette is $\$ 10.00$. Manual is available separately for $\$ 5.00$. (Public domain software by Gordon E. Eubanks, Jr.).

CBASIC Programming System

Upward compatible from BASIC-E, CBASIC is similar but expanded to include several business oriented facilities, allowing decimal computations to 14 digits of precision, data formatting and PRINT USING statements. Statements allow access to disk files and disk file maintenance. Strings of characters may be read from the console to permit correct input line format to be checked before reading data. General programming features include variable names up to 31 characters, optional line numbers, dynamic debugging tracers, and optional data output to printer. CBASIC on diskette and manual priced at $\$ 100$. (Copyright Software Systems.)

EMPL-an 8080 APL

Especially suited to educational applications, EMPL is an adaptation of APL, using the ASCII character set. This 8 K version occupies the first 5376 bytes of memory and operates in two modes. The Execution Mode permits all instructions to be executed immediately. The Definition Mode permits the user to enter functions. EMPL on Tarbell Cassette with manual is $\$ 15.00$. (Copyright 1977 Erik Mueller).
*AITMAIR is a trademark/tradename of MITS, Inc.
**CP/M is a trademark/tradename of Digital Research.

Figure 5: Basic design for example 2 in the text. The drawing window is shown for clarity.

Figure 6: Series of logos shrinking into infinity, created by experimenting with size. A magnification process is all that is required to reduce the size of the logo and converge into the origin which is at the corner.

Listing 6: LOGOS1, APL program that translates and shrinks the logo into infinity.
but in reality it needs no parentheses at all. Similarly, all the parentheses in

```
(I+TRY*(I+1))
```

are unnecessary. The values for TRX and TRY are computed in line 1 of listing 3.

Variables N and M have been placed in the header line of the new APL function, and now become part of the calling syntax for it. Trying out the new function by entering:

2 DESIGN7 2
results in figure 2.
It appears that a better design can be obtained by shifting every other row by half a triangle. This is accomplished by making use of the residue primitive function,

1

where
211
results in 1 if I is odd, and 0 if I is even. This change is incorporated in line 16 of DESIGN8:
[16] $L P J: T R+\left(T R X \times{ }^{-} 1+(2 \mid I)+2 \times J\right), I+T R Y \times(I+1)$
Also incorporated in line 16 is a shift of TRX units to the left for the entire drawing. The purpose of this shift is to avoid uncovered areas in the display window.

When DESIGN8 was tested, it was clear that an appropriate selection of colors would add significantly to the design. Without going into details, DESIGN8 was modified so that it would create three different, overlapped pictures. Each could then be printed in a different color. The resulting design is shown in figure 3.

Several other interesting designs can be obtained by slight modification of program DESIGN8. For example, instead of rotating the nested triangles to obtain an upsidedown pattern, the sign of the values for the Y axis of the original set of embedded triangles can be reversed. This is equivalent to flipping the pattern over. The result is shown in figure 4. The APL function used to produce the design for figure 4 is shown in listing 5. Additional designs can be created by overlapping patterns.

Designing the Cover

The areas involving graphics in which APL and Graphpak can be used are virtually unlimited. This second example follows a graphic designer who would like to create a design using a customer's trademark. He is told that the design should portray the virtues of the product. For the example consider the logo which appears on the cover of BYTE magazine.

YOU CAN HAVE BOTH

CT-1 parameter data

phonetic apelling

ONLY COMPUTALKER GIVES YOU THE CHOICE

No other speech synthesizer available offers you the flexibility of the Computalker Model CT-1. The parameter editor program, CTEDIT, allows direct manipulation of all 9 control parameters. CTEDIT and parameter data tapes are furnished with the CT-1 synthesizer board.

The optional CSR1 software packege translates ASCII phonetic text strings to speech output. CSR1 is simple to use and is the easiest way to create new speech. CSR1 can also be called as a subroutine from user's code for applications involving program controlled voice output.

The CSR1 phonetic rule system generates control parameters in the same form as used by CTEDIT. Thus, it is possible to further edit the output of the rule system, to achieve natural sounding speech output with minimum effort.

The designer first creates a matrix called BYTE which contains the data required to draw the basic logo. This matrix was created by manually digitizing the logo. The logo can then be drawn, as in figure 5, by entering the command:
dRAW byte
The intention is to create the design at a 90° angle. This way the logo can be moved along the X side of the display window (which is longer than the Y side). By reducing the size of the logo as it is moved, the customer's request for creating a feeling of "never-endingness" can be met. (Note: in figure 5, and in some of the figures that follow, the outline of the display

Figure 7: Spiraling design produced by incorporating a sine function into the shift process.

Figure 8: Pattern composed of a series of shrinking and rotating lines reflected about the Y axis to produce the symmetrical shape shown. The drawing window is displayed for clarity.
window has been added to aid in understanding the discussion.)

One way to move an object while simultaneously shrinking it is to displace it from the origin while using the MAGNIFY function to reduce the values for the X and Y axes. To move the logo diagonally across

∇	LOCOS2;LOGO:I:MAG;TR MAGSIN:MODULATE
[1]	LOGO+180 ROTATE BYTE
[2]	LOGO4 10076 TRANSLATE LOGO
[3]	$I+0$
[4]	$M A G+1$
[5]	$T R+130$
[6]	$\mathrm{MACSIN}+4.210$
[7]	LOOP:FIC+MAG MAGNIFY LOGO
[8]	DRAW TR TRANSLATE FIG
[9]	$M A G+M A G \times 0.74$
[10]	MAGSIN+0.95 \times MA GS IN
[11]	MODULATE $+10((4.5-I),(I-2)) \pm 5$
[12]	MODULATE +MODULATE \times MAGSIN
[13]	$T R+T R+M O D U L A T E$
[14]	\rightarrow LOOP IF 50> $I+I+1$
∇	

Listing 7: Modification to the program. The addition of a sine function to the program changes the shrinking line of logos into a shrinking spiral.

Listing 8: PICTURE1, an APL routine for producing a design using a series of shrinking and rotating straight lines. This design, when added to the pattern already created, results in the front cover of this month's BYTE.

We Start With A Price That's Hard To Beat.

But We Don't Stop There.

Central Data Corporation has combined the benefits of new technology and high-volume company sales to bring you a RAM board with more features and product options for less money.

Lower Prices

More Memory Capability

To begin with, we've reduced the price of our 16 K RAM board by $\$ 40$ to $\$ 249$. At $\$ 425$-a price reduction of $\$ 50$-our 32 K board costs less, too. Plus, we now offer a full 48 K memory board for $\$ 599$. These boards are expandable to 64 K at a price of $\$ 185$ per 16K package. Or you can start right out with a full 64 K board for $\$ 775$.

Improved Board Design

We've also added improvements to the board design at no extra cost to you.

- Deselectable in 2K increments. Our deselect feature enables you to switch off any 2 K to avoid overlap with your existing memory.
- Fully socketed memory. This feature enables you to expand the memory board yourself.
- Plug selectable addressing. Now you can re-address without soldering

Other Standard Features

- Power-saving dynamic board with on-board invisible refresh
- One-year guarantee on parts and labor
-S-100 and Z-80 compatible

Specifications

Storage Capacity
Addressing
Max. Input Load Output Buffering Access Time
Cycle Time
Wait States Generated Maximum DMA Rate
$16 \mathrm{~K}, 32 \mathrm{~K}, 48 \mathrm{~K}$, or 64 K
16K boundaries
One LS TTL load
On all data lines
450ns
480ns
None
1 Mhz

Power Consumption

+16	150 ma
+8	300 ma
-16	20 ma

Other Products From Central Data

Central Data also offers, fully-assembled and in kits, a range of other computer products including (pictured above) our 2650 microprocessor, software packages, TV/Monitor, ASCll keyboard, and (not pictured) floppy disk system, to name just a few.

For More Information

To Place an Order

We welcome any questions you have about our RAM boards or other products. To place an order, or for more information contact:

Central Data Corporation

P.O. Box 2484, Station A

Champaign, IL 61820
Ph. (217) 359-8010
Place orders prepaid or COD. Delivery is stock to 30 days with shipping and handling prepaid in Continental United States. Please include phone as well as name and address.

Description of Graphpak

This section covers common APL terminology, some Graphpak conventions, and a description of APL functions which are used in the paper. The discussion is, by necessity, oversimplified. It provides only enough information to understand the paper. For more complete information on APL and Graphpak, consult the references.

In APL, programs are called functions. Primitive functions are those which are part of the APL system, and are generally written as just one symbol or two overstruck symbols. One of the exceptions is the sine function which is written:

10
For example:

A scalar is a single number, for example: 3.1415. In general, a vector consists of several numbers, for example: $35-2.54$. This definition of scalar and vector suffices as far as this paper is concerned. However, the exact definition of a scalar is "an object with 0 dimensions," and for a vector, "an object of 1 dimension." In fact, a vector can contain one or more elements or be empty.

This paper is limited to the "Drawing Component" and parts of the "Descriptive Geometry Component" of Graphpak. For a description of the other components of Graphpak refer to the IBM 5100 APL Graphpak, Program Description/Operations Manual.

The descriptive geometry functions of Graphpak are designed to perform geometric transformations on descriptions of threedimensional objects, and to display projections of the transformed objects on the display window. The Graphpak display window
is normally a rectangle in the $X Y$ plane with the coordinate origin at the left bottom corner. In this paper the width (X direction) of the window is 100 units and the height (Y direction) is 76 units. Even though only twodimensional objects are used here, the transformations take place in three-dimensional space. The Z dimension is assumed to come perpendicularly out of the page.

To describe a series of lines to be drawn by Graphpak, a matrix with three columns is used. The first column is a binary vector. A 1 tells the program to go to the (X, Y) position indicated by columns 2 and 3 without drawing a line. A 0 means go to the indicated (X, Y) position while drawing a straight line. The function $D R A W$ takes as its argument a matrix that describes a series of lines and draws them. For example, if the variable BOX contains:

$$
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 10 & 0 \\
0 & 10 & 10 \\
0 & 0 & 10 \\
0 & 0 & 0
\end{array}
$$

then $D R A W B O X$ gives:

The desired values can be placed in $B O X$ by entering
$B 0 X+5301000100010100010000$ where

0
(rho) is the reshape (primitive) function. The

Table 1: Geometric transformation functions used in this article.

2 + Translate X Yields Z, a matrix which describes the object X having been translated D [1], and $D[2]$ in the X and Y directions, respectively.

If D is a scalar (a single number), it is assumed to be a translation in the X direction.
2+A ROTATE $X \quad$ Yields Z, a matrix which describes the object X having been rotated $A[1], A[2]$, and A[3] degrees counter clockwise (looking in) about the X, Y, and Z axes, respectively, in that order.

If \boldsymbol{A} contains only one or two values, enough zeros are assumed to precede it to make its length equal to three.

2 \rightarrow P MAGNIFY $X \quad$ Yields Z, a matrix which describes the object Z having been magnified $P[1]$ and $P[2]$ times in the X and Y directions, respectively. If P is a scalar, the function extends that number to all coordinates.
left argument of rho specifies the shape to be given to the right argument. If two matrices describing two objects are to be put together, they can be catenated in the first dimension using
.[1]
For example, using the TRANSLATE function (whose description follows):
$B O X 2+10 \quad 10$ TRANSLATE BOX
DRAW BOX,[1]BOX2
gives:

The geometric transformation functions used in this article are summarized in table 1. In the descriptions given in table 1, TRANSLATE and MAGNIFY are described as operating only in the X and Y directions. This is a simplification for the purpose of the paper. They are capable of performing threedimensional manipulations.

In addition to the Graphpak functions, the following APL functions are used here:

The IF function is used to make the APL code used in the paper clearer to readers not familiar with APL. The SIN and COS functions are also used to make the code clearer to readers not familiar with APL; but in addition, they take an argument expressed in degrees (the APL primitive trigonometric functions assume their arguments to be expressed in radians).
the display window after rotating it 180° requires:

DRAW 10076 TRANSLATE 180 ROTATE BYTE
Incorporating the above into the APL function LOGOS1 (listing 6) to test the hypothesis produces figure 6 .

Next the designer tries to make a spiral by adding an X and Y translation to the shrinking logo using a sine function (in APL, sine is designated by:

10
followed by an argument in radians) which decreases in magnitude. After some experimentation the function in listing 7 was found.

Note the shift by 13 units in statement 5 of listing 6 . This was necessary because the translation using sines (statements 10 thru 15) carried the design into negative X values. Execution of LOGOS2 results in the pattern of figure 7.

There is still some empty space which could be filled with some type of interesting design. After experimenting with rotating a shrinking line, the function in listing 7 was developed.

Lines 10, 11, and 12 of PICTURE1 create a symmetrical picture by reflecting the figure generated about the Y axis. Line 13 determines the minimum translation required to get the figure within the display window. Execution of PICTURE1 results in figure 8. After rotating and making smaller drawings of the design created by PICTURE2, they are placed in the design created with logos. The finished product can be seen on the cover of this issue of BYTE.

In summary, we have followed a graphic designer using APL and Graphpak through two problems and have seen the ease with which these software tools can be used for creating and manipulating graphic images.■

REFERENCES

1. APL Language, IBM form GC26-3847.
2. IBM 5100 APL Graphpak, Program Description/Operations Manual, IBM form SB30-0850.
3. IBM 5100 APL Graphpak Application Brochure, IBM form GB30-0850.
4. IBM 5100 Print Plot/APL Problem Solver Library, User's Manual, IBM form SA21-9264.
5. Iverson, K E, An Introduction to APL for Scientists and Engineers, APL Press, Pleasantville NY, 1976.
6. Iverson, $K E, A P L$ in Exposition, $A P L$ Press, Pleasantville NY, 1976.
7. Iverson, K E, Introducing APL to Teachers, APL Press, Pleasantville NY, 1976.

A good practice in APL is to localize variables needed only within a function by placing them in the header line of the function. In this way all the local variables will disappear from the workspace when the function completes execution . . . RGAC

Real-time interrupts add immense power to your computer

With a real-time calendar/clock your computer can extend its influence into the future - take action at any pre-programmed date and time.

Imagine the possibilities! Program a daily printout of appointments. Program house temperature to rise at 6 a.m. every morning. Program games in which fast reaction time wins. Turn lights on and off to simulate occupancy of an empty house. In your business, print time and date on all computer output hard copy or video display. Make your computer a frequency counter or timeinterval meter. The possibilities are endless - especially if you use our Introl control system to send commands over existing wiring.
We have superb calendar/clocks for Apple II and S-100 computers. The Apple II clock keeps time for over 2 years in 1 ms increments. Programming is simple because of the on-board ROM.

The 100,000 Day Clock for S-100 bus computers keeps time in $100 \mu \mathrm{sec}$ increments. Programming is easy with most BASICs - especially our Introl BASIC.

Both clocks feature crystal controlled accuracy and on-board battery backup. Very simple to interface. Easy to set. And provided with interrupts that do not derail ongoing computer action when the clock commands action.
Calendar/clock for Apple II is $\$ 179$ assembled and tested. For the S-100 clock $\$ 219$ assembled and tested. See them both at your local computer shop.

Mountain Hardware Inc., 5523 Scotts Valley Drive, Scotts Valley, CA 95066. Phone (408) 438-4734.

With technology so advanced, Concept so remarkable, Operation so utterly simple, Cost so incredibly low.

The PET has given rise to a brand new era... The Age of the Personal Computer

HIGH SPEED PRINTER
ACCESSORY

FEATURING AN IEEE-488 BUS

Immediate Delivery

THE PET has become the standard for the personal cormputer industry. Consumer and business publications have lauded its discovery. POPULAR SCIENCE and PLAYEOY have given special tribute to the "mind-boggling" PET
INA LEAGUE WITHIBM, HP
AND WANG MINICOMPUTERS
THE PET is a minicomputer and should not ba confused with game prooucts that hook up to household T.V.s. What sets it apart from other computers is price. While others cost from $\$ 11,000$ to $\$ 20,000$ and more, THE PET, with similar power, costs only $\$ 795.00$.
Features an IEEE-488 Bus - like HP's mini and full size computers. This standard data and control channel permits direct connection to meny peripherals. Over 120 pieces of compatible equipment such as courters, timers, spectrum analyzers, digital voltmeters and cirinter plotters, from HP Phillips, Fhuke, and Textronix, etc., are currently available. ROM Magazine, January 1978, writes, "THE PET comes out of the box. plugs into the wall, and is ready to use," It is equipped with a CAT video display with reverse and blink features, an alphe-numeric keytoard with complete graphics and a built-in standard cassette tape deck.
THE PET has BK bytes of RAM (user memory). Optiona equipment permits expansion to 32 K . And, it has 14 K bytes of ROM (progremmemory).

THE PET COMMUNICATES IN BASIC.
THE EASIEST COMPUTER LANGUAGE
if THE PET wants you to press a key, it will flash. "Press such and such", on the dispiay. You speak back to it through its full size 73-key keyboerd.
EXTENSIVE CHARACTER
ORIENTEDGRAPHICS
The unit features a 9-inch, high resolution. 1000 character CRT. Characters are arranged 40 columns by 25 lines on an Q \times B matrix for superb graphics.
WHAT IS THE PET REALLY FOR?
it is the single most important teaching device for any com puter related subject. It will entertain the most sophisticated data application, or the simplest inquiry/response assign ment. IN THE LAB it hendles instrumencation, proces monitoring, and more. A number of forme soo compenies have aiready made it an integral part of their lab and genera office system.

TECHNICAL SPECIFICATIONS

MEMORY
Random Access Memory (user memory); 8K internal expandable to 32 K bytes
Read Only Memory (operating system resident in the computer: 14 K bytes
8K-BASIC interpreter program, 4K-Operating system, 1 K -Diagnostic routine

VIDEO DISPLAY UNIT
$9^{\prime \prime}$ enclosed, black \& white, high resolution CRT 1000 character display. arranged 40 columns by 25 lines 8×8 dot matrix for characters and continuous graphics Automatic scroiling from bottom of screen
Winking cursor with full motion control
Reverse field on all characters
64 standard ASCII characters; 64 graphic characters KEYBOARD
$91 / 2^{"}$ wide $\times 3^{\prime \prime}$ deep; 73 keys
All 64 ASCII characters available without shift
Calculator style numeric key pad
All 64 graphic and reverse field characters accessible
from keyboard (with shift)
Editing: Character insertion and deletion
CASSETTE STORAGE
Fast Commodore designed redundant-recording scheme assuring reliable data recovery

As a BUSINESS TOOL it will; Maintain ledgers. Keep payrol records. Create P \& L's. Control inventory. Store and analyze sales data. Draw bar graphs. Issue invoices. Hook up to on-line computer system. ATHOME it will; Compute state and federal tax returns. Make heat and insulation analyses Keep Christmas lists. Keep chackbook and finences up to date. A variety of games, from Blackjack to Galaxy, is currently available

Bar Graphs

Black Jack

Amortization Chart

GAME PROGRAMS ARE $\$ 9.95$ EACH:
\square Black Jack \square Draw Poker \square Galaxy Games Space Flight \square Target Bong, Off-The-Wall \square Lunar Lander, Wumpus, Rotate, Tic-Tac-Toe \square Osero, Reverse Spacetrek Kingdom PROGRAMSAT \$14.95 EACH:
ㅁ Mortgage Analysis
\square Diet Planner and Biorhythm

- Basic Basic-by Lodewyck and James

PROGRAMS AT $\$ 24.95$ EACH:
B Basic Investment Analysis-loans, annuities, return on regular and irregular sequences of payments. calendar calculations

- Stock Portiolio Recordkeeping and Analysis keeps track of buys, sells, and dividends. Calculates current value, rates of return
- Checkbook Recordkeeping and Analysis-keeps track of checks and deposits. Anslyzes expenses by date and type
PROGRAMSAT \$29.95 EACH:
\square Basic Math Package-matrix addition, multiplication, determinants and inverses to 16×16, solution of simultaneous inear equations, vector and plane geometry calculations, integration by trepezoidal. Simpson s rule or Goussia quadrature, drentiation Basic Statistics Package-mean, median, variance, standard deviation, skewness, kurtosis, I requency distrmbution linear regression. T-tests, correlation enalyses

FREE ORIENTATION PACKAGE

Your PET comes complete with two programs and an easy-to-follow instruction manual. By working through the routines you will quickly discover how easy it is to gain cormmend of your personal computer.

SERVICE WORLDWIDE

Beceuse your PET is self-contained and compect, professional factory service is never far away. If major service is re quired, the unit can simply be retumed by UPS to an euthorized Commodore PET clinic.
To order your PET send check or money order for $\$ 795.00$ plus \$20.00 for shipping and insurance. To order the PET Printer, add $\$ 695.00$ plus $\$ 12.00$ for shipping and in surance. The Second Cassette is \$99.95. No shipping and insurance charges are required when ordering a second cassette or programs with your PET. Credit card orders are nvited to call our toll free number below. Orders will be accepted on our TELEX, No. 25-5268
Use THE PET for 30 days with no obligation. If, for any reason, you are not satisfied, return it for a prompt and courteous refund. ORDER DIRECT

CREDIT CARD ORDERS CALL TOLL FREE 800-323-2272

ILLINOIS RESIDENTS CALL: 312-595-0461 TELEX ORDERS: 25-5268

Order your PET, Printer Accessory. Second Cassette and Programs from Contemporary Marketing at:

790 MAPLE LANE DEPT. BT-9 BENSENVILLE, IIIINOIS 60106

Contemporary

for Hardware and Software

Everything you need in small computer systems with special emphasis on TERMINALS! Look at these units... compare price, quality, delivery, service... and you'll see why you don't have to look anyplace else!

\$1325.00

TELETYPE MODEL 43 PRINTER

- 132 Characters per line
- 110 or 300 Baud switch selectable
- Full keyboard
- RS 232C Serial Interface standard $\$ \mathbf{1 2 9 9 . 0 0}$

OKIDATA MODEL 110 LINE PRINTER

- 110 CPS dot matrix
$\underset{\substack{\text { Friction } \\ \text { Feed } \\ \text {... } \\ \$ 1199.00 ~}}{ }$ Tractor
$\substack{\text { Treed } \\ 1349.00}$ Feed. RS 232C Serial Serar $\begin{gathered}\text { Snteriace... } 260.00\end{gathered}$

IMSAI 8080 MICROCOMPUTER

- Powerful - Low cost - Easy to use

With 22 Slot Mother Board
$\$ 649.95$
PCS-80/15 Kit
699.00

HAZELTINE MODULAR 1 INTELLIGENT TERMINAL

- 1920 character display
- 8 different video levels
- Full editing capability
- Removable keyboard and much more
Assembled. .
\$1659.00

We carry a full line of the following: TDL, Centronics, Seals, Hazeltine, Micropolis, Vista Hayden, IMSAI, Cromemco, Digital Systems, Compucolor, Icom, Lear Siegler, Okidata, DEC, Javelin, North Star, Peripheral Vision. Same day delivery and shipping on most items. Full modern repair facilities on premises for complete servicing of everything we sell.

SYNCHRO-SOUND ${ }_{\text {Enterprises, inc. }}$
The Computer People
193-25 Jamaica Avenue,
Jamaica, New York 11423
212/468-7067 TWX: 710-582-5886
Hours $9-4$ daily Visit our new showroom and Saturday Working units on display
Dept. bbB BankAmericard - Master Charge

A "Tiny"

Pascal Compiler

Part 1: The P-Code Interpreter

Kin-Man Chung
124 Scottswood Dr
Urbana IL. 61801

Herbert Yuen
POB 2591, Station A
Champaign IL 61820

Roughly speaking, a compiler is a program that translates the statements of a high level language (such as Pascal or FORTRAN) into a semantically equivalent program in some machine recognizable form (such as machine or assembly code). The former is usually referred to as the source program while the latter is called the object program. An interpreter, on the other hand, reads in the source program and starts exection directly, without producing an object program.

There is little doubt that compilers and interpreters are a necessary part of any computer system. The reason most personal computer systems do not have high level language compilers is not that there is no need for them. Compilers, being inherently more complex than interpreters, require more effort to write and more computer memory to run. The main advantage of a compiler over an interpreter is the relative speed. A compiled program typically runs

> About the Authors
> Kin-man Chung is currently a graduate student at the University of Illinois at Urbana-Champaign. Presently his equipment includes an Altair 8800 with 44 K bytes of memory, a North Star disk system, a 100 cps impact matrix printer, and a Selectric terminal. His current interest in microcomputers is the development of an interactive Pascal compiler for microcomputers, and a high resolution graphics system capable of animation.

> Herbert Yuen received a master of science degree in computer science from the University of Illinois at Urbana-Champaign. He is presently working full-time as a research assistant at the university. His primary interest in microcomputers is software systems development. One of his future plans is to implement a small information retrieval system for a microcomputer.
an order of magnitude faster than an equivalent program executed interpretively. In fairness, it must be also pointed out that interpreters are usually easier to use, and more suitable for an interactive environment.

This series of articles is an attempt to describe how a compiler for a subset of Pascal was implemented on an 8080 computer system. It is not our intention to go into details for the reasons for the choice of the language. Pascal is widely recognized as superior to many other languages. For an overview of the language, readers are referred to August 1978 BYTE. The publication, Pascal: User Manual and Report, by Kathleen Jensen and Niklaus Wirth (Springer-Verlag, 1974) should also be consulted as the authoritative source book on the language in its original form.

This is not, of course, the first Pascal compiler ever written for microcomputers. However, instead of waiting for a Pascal compiler to be written for our particular processor, we decided to undertake the project ourselves. In this way, we can add or subtract features from the original Pascal to suit our needs and system capabilities, so that it can be easily integrated with other system software developed so far.

2 Stage Compiler

The compiler is divided into two stages: a p -compiler and a translator. Instead of having the compiler generate machine code directly, it generates code for a hypothetica! machine, called the p-machine. These codes, called p -codes, are then converted into the target machine codes by the translator. Dividing the task of a compiler into two stages offers several advantages. The compiler can be written abstractly, without committing oneself to a particular machine and worrying about details of code generation and optimization. Such a compiler is said to be portable, meaning that it can be used on other computer systems with minimal start up effort. It is only at the last stage of code translation from the p-codes to actual machine codes that we have to commit ourselves to a particular machine.

Another advantage this method offers is greater flexibility when writing the compiler. The compiler and the translator can be coded and debugged separately. The flexibility of such a compiler was apparent to us as we started to introduce more and more Pascal features into our original minimal subset. Seldom was it necessary for us to introduce new p -codes other than those originally specified.

There is also one more reason for breaking

meet

 max!

Now you can buy a complete operational keyboard with full ASCII code capabilities, built to commercial standards, yet priced for the personal user who needs only one. This is not a surplus unit or a manufacturer's overrun, it's a new board designed specifically for the personal computer user.
MAX is MOS/LSI encoded, and includes all 128 ASCII characters, two-key rollover protection and two non-encoded keys with relegendable keytops for user assignment. Everything you need to start entering data immediately
Individual keys for CARRIAGE RETURN, LINE FEED and ESCAPE are provided to give you these important functions without multiple key closures. A low-cost MAX option kit (Part No. 620002) lets you add four CURSOR keys and a HOME key if you need those functions. Coding is already provided.
MAX low-profile switches have gold contacts with wiping action for long life and reliability, and plunger action that is smooth and precise.
Maxi-Switch is a leading supplier of keyboard products to the data terminal industry, and MAX comes from a fine family. Get the full story on the new MAX keyboard for personal computing.
MAX is sold only through authorized dealers such as Century Research \& Marketing. To order your MAX, use the coupon supplied.

Send to: Century Research \& Marketing 4815 W. 77th St.
Mpls., MN 55435
612-831-8586
Enclosed is $\$ 69.95$ (plus $\$ 5.00$ shipping and handling) per MAX keyboard. (For Cursor Kit, add \$3.95.) Please send

keyboards to

Address \qquad

City

Figure 1: Memory overlay structure of the modules of the compiler. The North Star DOS and BASIC start at hexadecimal 2000 and take up approximately 14 K bytes of memory. The p-compiler is the largest BASIC program of the system; in its compressed form (void of all comments and blanks) it occupies 14 K bytes. It reads Pascal source programs created by the editor from disk files, and generates relocatable p-codes directly in memory. We use hexadecimal 0000 to 19FF for p-codes and find it adequate for Pascal source programs under about 300 lines in length. The smaller translator (9 K bytes) produces 8080 codes directly filled into memory. The origin of the codes can be specified. The run time routines (which total $1 K$ bytes of memory) are needed only when the translated 8080 codes are being executed. The interpreter is written in Pascal, compiled and translated. The BASIC interpreter is no longer needed when it or any other Pascal program is being run.
the compiler into two stages: most small computers do not have enough memory space to store the complete compiler. After the p -codes are generated, the p -compiler is no longer needed, and can be overlaid with the translator. Therefore the compiler and the translator can share the same memory locations.

Actually we also use two other utility programs: a text editor and a p-code interpreter. The editor is used to prepare the Pascal source programs. The interpreter is used to interpret the p-codes produced by the p-compiler. This provides another alternative for running the Pascal programs. Because it is equipped with various debugging aids, such as setting up breakpoints in p-codes and outputting values for variables, debugging can be easily done. Only after a program is verified to be correct is

the translator loaded, and 8080 code produced. This allows easy development of the Pascal programs without sacrifying efficiency at run time. Figure 1 shows the overlay structure for the various modules of the compiler. Figure 2 shows the logical flow during a program development.

In this part of the series on our project, we will describe the general plan. The Pascal subset is defined using syntax diagrams. A description of the p-machine and its codes are also given. We will discuss the p-compiler, translator and runtime routines in the following parts.

Bootstrap Compiler

How does one introduce a new language into a computer system with limited computer resources? By computer resources we mean not only the computer hardware like memory and peripherals, but also software tools. We have learned from experience not to attempt programs with the complexity of a compiler in machine or assembly language. This left us with BASIC. Although it is not the most desirable language to write a compiler with, it turned out to be adequate. Some careful thought is needed, of course, to handle recursive subroutine calls from BASIC, a feature central to our compiler writing.

The alternative to BASIC is to go to a commercial computer and write the whole or part of the compiler in an appropriate

satisfaction starts here

MEET THE ECONORAM" FAMILY
These static memory kits deliver outstanding performance at prices even the dynamics can't match. What others consider "extras" we consider necessities, such as buffering on all lines, reliable DMA, sockets, goldplated card fingers... and all the other signs of quality that make up an Econoram.

More good news: Our memory kits (except Econoram $\mathrm{Il}^{\text {* }}$) are now "Unkits". All sockets and bypass caps are pre-soldered into place, turning an otherwise tedious assembly job into a pleasurable, one evening project.

We want to be your memory supplier: and that means offering a superior product at the lowest possible price.

8K ECONORAM II ${ }^{\text {TM }}$

Just try to find a more cost-effective S-100 package! Better yet, get 3 kits (24 K of memory) for only $\$ 375$. Add $\$ 20$ per board for assembled/tested.
\$135

16K ECONORAM IV ${ }^{\text {m }}$

Ideal for S-100 buss system builders who need a big chunk of memory that draws less than 2000 mA . Manual write protect for 4 K blocks; use with or without phantom line. Add $\$ 35$ for assembled/tested.

A dense and flexible $\mathrm{S}-100$ board that draws less than 2000 mA . Configured as two 8 K and two 4 K blocks with independent addressing and protection. Use with or without phantom lines. Add $\$ 40$ for assembled/tested.

MORE ITEMS . . . TRS-80 16K CONVERSION KIT

Why settle for the limitations of a TRS 804 K system? Expand it to 16 K with our conversion kit. Includes eight uPD416 $1 \times 16 \mathrm{~K}$ dynamic memories and instructions for converting your machine to 16 K . You could pay up to $\$ 290$ elsewhere . . . but our kit is only $\$ 190.00$ CPU POWER SUPPLY

Here is an economical, conservatively rated power supply for small computer systems or digital/analog bench work. Delivers +5V @ 4A with crowbar over-voltage protection; also gives ± 12 (3) $1 / 2 \mathrm{~A}$ per side. Adjustable negative bias supply, $5-10 \mathrm{~V}$ (1) 10 mA . All in all, if you need a small power supply you can't beat the performance or the price.

11 SLOT MOTHER BOARD "UNKIT"

Those who recognize value have made the $10 / 11$ slot Motherboard one of our most popular nonmemory kits. Now, we've made it even more desirable by pre-soldering all 11 edge connectors in place to take the tedium out of assembly. Includes our much-copied active termination circuitry that takes the noise, glitches, ringing, and overshoot problems off your buss for optimum data transfer... as well as all edge connectors and plenty of bypass capacitors.

18 SLOT MOTHER BOARD KIT

Same features as our 11 slot version; includes 18 edge connectors and active termination circuitry.

COMING SOON: A NEW FAMILY OF ECONOROMS ${ }^{\text {M }}$

Don't load and reload often used programs or routines; store them in one of our ROM boards. We're putting final touches on 2 boards; one is 16 K , configured as 4 independent 4 K blocks with optional power on start, and uses 2708s. Our other board combines both ROM and RAM and uses 2716 s . Watch this space for further developments.

TERMS: Please allow up to 5% for shipping; excess refunded. Add $\$ 1$ handling for orders under $\$ 10$. Cal res add tax. COD OK with street address for UPS. For VISA ${ }^{\oplus} /$ Mastercharge $^{\infty}$ orders ($\$ 15 \mathrm{~min}$) call our 24 hr . order desk at ($\mathbf{4 1 5}$) 562 -0636. Prices good through cover month of magazine.

16K RAM

Fully Assembled, Tested,

Burned-in

Fully Static TMS 4044

250 nsec. chips-\$425

z-80A 4 Mhz. Fast-This fully assembled and tested 16 K board was designed to operate without wait states in a 4 Mhz . Z-80A system allowing over-generous time for CPU board buffers.

450 nsec. chips-\$375

For 2 Mhz. Systems-Same circuit as above but priced lower because of less expensive memory chips. It is fully assembled, burned-in, tested and guaranteed.

8K Versions Also Available

Both boards available fully assembled with sockets for all 32 MOS chips but supplied with only 8 K of chips. 8K-250 nsec.-\$265. 4K chip set-\$95. 8K-450 nsec.- $\$ 235$. 4K chip set-\$85.

Fully Statlc /s Best - Both boards use the state-of-the-art Texas instruments TMS 4044 which requires no complicated and critical clocks or refresh. The fully static memory chip allows a straight-forward, "clean"' design for the board ensuring DMA compatibility. They use a single 8 volt power supply at 1.8 amps nominal.

Fully S-100 Bus Compatib/e-Each 4K addressable to any 4K slot and separately protected by DIP switches.

Commerclal Quallty Components-First quality factory parts, fully socketed, buffered, board masked on both sides, silk-screened, gold contacts, bus bars for lower noise.

Guaranteed: USA customers - parts and labor guaranteed for one full year. You may return undamaged board within ten days for full refund (factory orders Only - dealer return policy may vary). Foreign customers - parts only guaranteed; no return privilege.

Check your local computer store first

Factory Orders - You may phone for VISA, MC, COD orders. ($\$ 3$ handling charge for COD orders only) Purchase orders accepted from recognized institutions. Personal checks OK but must clear prior to shipment. Shipped prepaid with cross-country orders sent by air. Shipping - normally 48-72 hours. Washington residents add 5.4% tax. Spec. sheet, schematic, warranty statement sent upon request.
language. The finished product (or part of it) can then be transferred to the smaller computer. This is, however, a luxury most of us cannot afford.

Of course, the compiler written in BASIC

Figure 2: Flowchart showing development of a Pascal program.
would be very inefficient and slow. But this actually would not matter, since it would only be used as a bootstrap compiler. The concept of bootstrapping should be familiar to most personal computer owners. We usually use it when initially starting up our computers. After turning on the power, a bootstrap loader is first loaded into the computer (either manually or through the use of read only memory). This bootstrap loader is then used to load the loader, which in turn loads the monitor into memory. The bootstrap loader is a smaller version of the loader; it is just big enough to load the main loader and not adequate to be a general purpose loader.

The same idea can be applied to compiler writing. A compiler for a small subset of a language is first written. This subset should be big enough so that a compiler for a bigger subset of the same language can be written in it. The larger compiler is then written and compiled, using the first compiler. Next, a compiler for a still bigger subset of the same language can then be written and compiled, using the second compiler, and so on until a compiler for the complete language is produced. In actual practice, no more than three stages are used. It does not matter if the first compiler is very inefficient. The idea is to get a working, albeit primitive
and inefficient, compiler with minimum starting effort.

Pascal Subset Syntax

The syntax of Pascal can be described precisely by using a notation usually called Backus-Naur form (BNF). This is a collection of rules for the grammar of the language. Instead of dealing with Backus-Naur form directly, we use an equivalent but more understandable notation: the syntax diagrams. Figure 3 describes the syntax of the Pascal subset we are interested in.

In the syntax diagram, the square boxes are called nonterminal symbols, while the ovals are called terminal symbols. Terminal symbols are the basic building units of the language and require no further expansion. In our case, the names that represent the terminals are also their textual representations in the language. The nonterminal symbols in the syntax diagrams can be expanded using rules specified in another syntax diagram, and there is a syntax diagram for each nonterminal symbol in the syntax diagram. A branch in the diagram represents options allowable by the grammar. When all nonterminal symbols are eliminated by expansion in this fashion, we would have a valid program. We start off a compilation with the nonterminal program. Looking at
SAVE THE WHALE

The world's best computer may be inside a Sperm Whale's head.

The Sperm Whale has the largest brain of any creature that has ever existed on our planet. The brain of this 18 -meter marine mammal weighs up to 9 kilograms. It uses echo-location to find giant squid at ocean depths of over 1,000 meters. More than 13,000 sperm whales are scheduled to be slaughtered this year by agreement of the International Whaling Commission.

The CONNECTICUT CETACEAN SOCIETY is a small, totally volunteer, non-profit education and conservation organization dedicated to seeking the abolition of all whale killing. Any concerned citizen can help our efforts by sending name and address and a $\$ 10$ or more contribution to : CCS, P.O. Box 145, Wethersfield, CT 06109.

There are two mountain peaks of evolution on planet earth; on the land, homo sapienshuman beings; in the sea, cetaceans- whales, dolphins, and porpoises,

PROGRAM

Figure 3: Syntax diagrams of the Pascal subset. For the syntax diagrams of the full Pascal set refer to the book by Kathleen Jensen and Niklaus Wirth, entitled Pascal: User Manual and Report. These diagrams totally define the subset of the language that we are using.
the syntax diagram we see that a program is a block followed by a period (.). Looking at the syntax diagram for block, we notice that it can have an optional declaration part followed by the main body which begins with the string begin, followed by any number of the nonterminal symbols, statement, separated by semicolons (;), and then the string end. The statement block can be further expanded by the syntax diagram for statement, and so on.

The reason we go through the details here is because it is important to precisely describe the features we want to include in our language before starting to write the compiler. It is the first step towards writing the compiler. These syntax diagrams will later become flowcharts for the syntax analyzer of the compiler.

Readers familiar with Pascal will no doubt notice several important features missing from our subset. There is no GOTO statement. The only data type we have is integer and integer array of one dimension. Also missing from the subset is the structured
data type, pointer type, user defined type, and file type. A less obvious omission is passing the parameter of a procedure by address; the parameters are passed by value only. Aside from the fact that these features are difficult to implement, they are not indispensable in our bootstrap process. Of course, features like user defined type and structured type are some of the unique features of Pascal, and should not be omitted in the long run. But we feel that they can be added later.

We have also included some trivial but nevertheless useful enhancements to the language, which we hope do not deviate from the standard too much. One is the addition of the optional clause else to the case statement which provides an exit path if the value of the variable does not fall into any of the case labels. Another is the inclusion of format controls in the read and write statements. Following an expression in a write statement, a pound sign, \#, indicates numeric form and a percent sign, $\%$, indicates hexadecimal format. If there is no
format control, a character whose ASCII code equals the expression is output. Also a hexadecimal constant is prefixed by \%. This allows processing of hexadecimal numbers without conversion by the user.

To allow interfacing Pascal programs with assembly programs, a facility is provided to read or write a byte from or to absolute memory locations. The array mem is a reserved array name that is used to do this.

EXPRESSION

SIMPLE EXPRESSION

INTEGER

STRING

HEXINTEGER

Figure 3, continued: Elementary constructs for Pascal subset. Hexinteger is usually not defined in Pascal but is used here so that actual memory locations can be easily manipulated.

Announcing

 TheDoubler

The ultimate floppy disk controller.

DOUBLE DENSITY ${ }_{\text {means }}$ DOUBLE CAPACITY ${ }_{\text {with }}$ DOUBLE RELIABILITY

Replace your old controller board with THE DOUBLER. Your disk system capacity is doubled. Your cost? $\$ 495$.

S-100 compatible

Supports up to four drives -Single- or double-headed-mini- or full-sized.
IBM compatible - 3740 and 2D
CPIM* version 1.4 compatible.
Transparent single or double density operation.
Reads/writes consecutive sectors for high-speed operation.
Full formatting capabilites.
Performs power-on jump.
Digital phase-lock oscillator with write pre-compensation.
Automatically unloads drive heads when not in use.

THE DOUBLER comes fully assembled and extensively tested. Priced at $\$ 495$, including: PROM bootstrap; CBIOS for CP/M*; hardware UART with RS 232 interface; complete documentation; utility programs; and a one-year warranty. 'CPMM is a rademamol Digual Research

Available NOW at retail computer Btorea.

524 Union St. San Francisco, Ca. 94133 415-398-0289

Continued from page 17

List price was about 100,000 Yen, which means it will sell discount for about $80,000+$ Yen. Like the PC1200 (already on sale in the US) the PC1300 seems to use Sharp's own 4 bit 1 chip 64 pin flatpack microprocessor, with 2 K bytes of read only memory on chip. Sharp earlier released the EL-6000, a child's arithmetic practice calculator.

Mitsubishi had.a 4 bit microprocessor (M58840) with on-chip 8 bit analog to digital converter (5% accuracy claimed).

Panafacom had the C 15 , a BASIC language 16 bit machine with touch keyboard, video display, 15 ips Philips cassette, but no printer (it will be an option). Its BASIC includes graphics, matrices (option) and strings, cassette tape utilities and commands for its IEC bus option. (The 16 bit chip is not new.) 700,000 Yen with 16 K memory, 16 K expansion will be option. They also have a do it yourself kit, the "L-kit," with color graphics.

NEC's BASIC station, a do it yourself 8080 board with hexadecimal keyboard, plus separate alphanumeric keyboard, video (TV) and cassette interfaces, runs a 4 K Tiny BASIC with peek, poke and graphic commands. It costs about 200,000 Yen. Their Level 2 BASIC, with strings, subscripts and arrays, and standard (sin, log, etc) math routines plus up to 18 character alphanumeric names, is due in July. (leevel 1 and Level 2 are not compatible, maybe they plan to use their new 16 bit chip μ PD768B).

A small company, INPEX, has an 8085 kit with large keyboard for machine language programming; the keys correspond to opcodes. Cost is about 80,000 Yen.

KS Wilkinson CPO Box 1748
Tokyo 100-91
JAPAN

RARE CHASSIS?

I want to thank Dan Fylstra for his article in the May 1978 BYTE, page 22, "Convert Your TV Set to a Video Monitor." It was clearly written and well illustrated. I was about to purchase a TRS-80 from Radio Shack and his article convinced me that I should buy a Hitachi TV and a Pickles and Trout converter. Thus I would have both a computer display and a portable TV.

But alas! I live in Dallas TX. And in Dallas TX not one store that 1 called that handles Hitachi TVs has the models with the SX chassis! What's more, the Hitachi district offices listed in the yellow pages have closed and I was given a phone number in Atlanta GA! Now I could have called long distance to Atlanta, but I wasn't interested in ordering a TV from Atlanta or Tokyo. Chances are the model has been discontinued anyway.

Pickles and Trout had a good idea, but does a 12 inch TV exist that is not AC/DC? A TV chassis with a transformer
type power supply does allow an easier hookup than does a "hot" chassis. But if one is not generally available, there is a market for an AC/DC converter that is as specific as the Pickles and Trout unit.

As for me, I ordered the TRS-80 complete with display cathode ray tube (CRT). After all, they toss in the cassette recorder if you buy the whole thing! But I do hope the $S X$ chassis does exist clsewhere so others can use Mr Fylstra's article.

Clarence I Stinson 9138 Chimney Corner Dallas TX 75243

NEEDED: SATELLITE RECEIVER WITH IMAGING CAPABILITY

I would be so grateful for some information concerning satellite receiving stations using computers for data storage and video display. (1 am interested in observing cloud cover.)

If there has been any article in your publication (or any other, for that matter) which deals with this subject 1 would be so pleased to know about it. Perhaps someone has developed such a station using their microcomputer, and who would be generous enough to share their knowledge with others as an article.

Thank you for any help you can provide.

Brad Slocum
 236-D E Red Oak Dr
 Sunnyvale CA 94806

We've not published such an article to date, but it would make an excellent topic for the homebrewer. For output one could use one of the new electrostatic printers with graphic cupability which retail for about $\$ 800$-- or simply display the images on your video outputs with bit map graphics, possibly using colors where available. . . . CH

DREAMING . . .

I am 121/2 years old, and plan to get a computer system up and running in the near future. The mainframe I have selected is the Heathkit H11, incorporating the DEC LSI-11 processor. I chose this mainframe because of the processor employed and the low price, only \$1295. This price is offset by a few disadvantages, such as its bus, with only six slots, and the fact that its price is only relatively low (at this time I have only $\$ 724.08$). But, like any other problems in this world, these can be solved. I can fix the bus problem by simply buying an expansion interface from DEC, but this makes the second problem worse yet. And, unlike other problems, buying more of what you need (money) simply defeats itself in its purpose. So 1 just have to save. (And save, and save. . . .)

However, by the time I finally do
have the money for it, something bigger and better (and slightly more expensive) will have appeared on the horizon. I will probably continue at this pace until 1 am a millionaire at 21. At this point, of course, I will buy a large computer from DEC or some other company and charge people to timeshare on it. Only problem is, I don't know where I am going to get the million dollars in the first place. It's nice dreaming, though, and my dreaming is going to get me somewhere in this world. (I hope so, anyway!)

Norman Aleks
659 Driftwood Ln
San Dimas CA 91773

A sound philosophy. . . .

GOTCHA!

On page 154 of the May 1978 BYTE you described the new products by Lucas-Adams Labs Unltd. The address of this manufacturer was not printed. Could you please let me know the address so that I can enquire about the products?

K L Yeap
2217 7th Av NW
Calgary, Alberta
CANADA T2N 029
Unfortunately, Lucas-Adams Labs Unltd did not supply us with their addiess. However, we thought that our readers would be interested in their (totally fictional) product line so we published the press release. I am sure that with perseverance, their address may be found in the combined amnals of April fools jokes for this year. . . RGAC

KUDOS FOR KENT

It seems E W Kent ("The Brains of Men and Machines," January through April 1978 BYTE) has violated Higher Education Law \# 1: Never explain complex issucs in understandable terms. Kent must be aware of the ramifications of violating this most basic principle of higher education, the most significant being the release of usable information to lay people who might understand it and use it.

Kent has produced a classic, and has given the computer scientist a game plan for the creation of the first real cybernetic system. He has also given the electrical engineering community a new dircction: if you are an engincer, think neuron and cortex instead of bus and processor. While you are doing this (in conjunction with people like E W Kent), the computer scientist will be developing algorithms and operating systems to support your hardware. We have a long road ahead, but thanks to Kent we're on our way.

COMPLETE ONLY $\$ 5145$

 HAZE TNE \& CENTFONICS - All Cabies

OPERATIONAL JN SECOND'S:
 Inserfoo's

SAVE TIME, ENERGY \& MONEY4 Components. purbhased separalely zost $\$ 5693$. Now for a limited time'only-z.eend \$5t.45 to: MANCHESTER EQUIPNENT CO., Inc.
120 Bethpage Rd. = HIcksville, N.Y. 11801
or CALJ. COLECT: (516) $433-061.3$
Gentlemen:
Please rush me my Complete Computer System. Enclosed is $\$ 5145 \square$ Check \square M.O. \square Master Charge \square BankAmericard \# Exp. Date: \qquad
N.Y. Residents Add 8\% Sales Tax.

Shipped F.O.B. Hicksville, N.Y. - Collect.
Name \qquad
Address \qquad Phone
City
State
\qquad

- Please se id more Informa on Deajerinouifes Invited

Figure 1: The process block is the "black box" of programming: it is entered by a single input path, does some arbitrary operations upon data, and is exited by a single output path. The "arbitrary operations" can be as simple as one step in an arithmetic calculation, or as complex as a compilation of a program - it all depends on the point of view taken.

Some Words About Program Structure

Albert D Hearn
98 SW 13th Av
Boca Raton FL 33432

Microprocessor programming, at this point in time, is a black art. Once you have learned the basic instruction set, you're on your own. Some people get the knack of this mysterious task fairly quickly, and some do not. Those who do well seem to have developed some sort of system for going about it. The point is that an organized, systematic approach is required if there is any hope for continued programming success. The purpose of this article is to describe to you one such method which has become very popular with programmers of all types, using all kinds of computers from micros to the giants.

Concept

What we're looking for is simplicity in the writing of programs. This is usually achieved if the program can be reduced to a collection of basic components which fit together in very well-defined ways. This is the concept behind structured programming.

Any program can be considered to have only two basic building blocks. One is the
process block shown in figure 1. It simply performs some defined function, or process. It might represent a simple function requiring only a few, maybe only one, instructions in the program, or a much larger function requiring many instructions. Whatever it does, it has one input and one output.

The second basic block is the decision block shown in figure 2. This elementary capability of any computer is that which gives it all its power and flexibility. It is the ability to alter the path taken by the program based upon the value of some parameter or condition which can be tested by certain instruction types. For example, two numbers can be compared and a test for equality used to decide which of two program paths will be taken as a result.

These two fundamental building blocks will now be used in the construction of a set of basic program structures with which any other program can be built. The three general structures are called sequence, if-then-else and loop. Variations of these will be examined, as well as combinations which can be used to build more complex functions.

Figure 2: The decision block is a simpler concept than the process block, in the sense that the amount of computation required rarely approaches the generality of an "arbitrary process." A decision block has one input and, depending upon a binary condition, takes one of two output paths. In this figure, the names "true," "then" and "yes" denote one possible path; the names "false," "e/se" and "no" describe the other possible path. In programming languages, the "then" or "else" terminology for the two paths is frequently built into the language design; the other terms are frequently seen in flowchart representations of programs.

Remember: In structured programming, everything is a process block, with one input path and one output path.

Editor's Note:
BYTE Flowchart Flow Conventions
As an "ideal" standard, flowcharts in BYTE use a direction of flow convention as follows:

Default flow: Vertical flow is from the top of a diagram toward the bottom, and horizontal flow is from the left of a diagram towards the right, unless explicit flow is used. Thus:

Explicit flow: Vertical flow upward or horizontal flow leftward in a drawing is shown with an explicit arrow at the end of the flow path, thus:

Merged flow: When two or three paths of flow merge, the two or three inputs to the joint path have arrows noted:

Compare the Cybercom blue boards with any others on the market today. You'll find exceptional quality plus prompt delivery and significant cost savings. All Cybercom kits are guaranteed 90 days for parts and labor.
Contact your local computer hobbyist store or write for details.

Solid State Music
2116 Walsh Avenue, Santa Clara, CA 95050
Telephone (408) 246-2707

Circle 335 on inquiry card.

BYTE September 1978

Figure 3: The sequence structure is the simplest programming structure. It can be viewed from the outside as the equivalent of a process block, but upon close examination it is found to contain one or more process blocks.

Basic Structures

The simplest of the program structures, shown in figure 3, is the sequence structure, which is composed of one or more process blocks strung together serially. Like the process block from which it is built, the sequence structure has only one input path and one output path. In fact, you will soon see that one of the rules that we want all structures to conform to is that they have a single input path and output path. Furthermore, an entire program, which can be represented by one large process block, should also conform to this rule.

The next structure is the if-then-e/se structure, shown in figure 4. It consists of a decision block and two process blocks. Only one of the process blocks is executed for any single pass through the structure. The result of the test or comparison represented by the decision block determines which process block is chosen. Notice that

Figure 4: The if-then-else structure is composed of a decision block and two process blocks. The process blocks may themselves be viewed as any form of structure with a single input and a single output path; and thus might in fact be sequence structures, if-then-else structures, etc.
regardless of which path is taken there is one common exit path from the If-then-else structure. This is required to maintain our single exit philosophy.

An if-then-e/se structure does exactly what it says: if a condition is true, then take a specified action, e/se take a specified alternate action. However, there are times when only one action is required in only one of the paths. No action is necessary in the other path. In an actual flow diagram, this is of course shown by drawing a flow line in place of one or the other process block of the if-then-else structure since the most trivial process is simply going to the next process without doing anything. Note however that only one of the process blocks can be made up of this simplest case of "do nothing" since if both process blocks were eliminated from the if-then-else structure, the net effect would be to "do nothing" all the time whether or not the condition was true or false.

The if part of an if-then-else structure is simply any program instruction which can perform a test and take one of two paths depending upon the outcome. In an assembly language, this is usually a conditional jump or a branch instruction based upon the outcome of some comparison, arithmetic operation or other operation which affects processor status flags used in such branches and jumps. The branching instruction specifies the destination address of the beginning of one path. Whether it is the then or the else leg is arbitrarily defined, and the next sequential instruction is assumed to begin the opposite path.

Some higher level languages like BASIC have ready-made if-then-else instructions. BASIC has IF and THEN; ELSE is implied. The following shows how an if-then-else would look in BASIC:

In this example, the else code immediately follows the IF instruction. The GOTO 15 ends the e/se path and causes the program to branch to the common exit point at line 15 . The then path starts at line 10 and ends at line 15. [BASIC is considered to be an "unstructured" language because of the need for an explicit GOTO following

Blaise Pascal

Figure 5: The do-until structure is a looping form whose purpose is to execute a given process block at least once. After executing the process block, the "until condition" is tested and if found to be false, execution loops back to repeat the process block before testing the condition again.
the "false part" of an IF-THEN-ELSE construction.]

If you use assembly language in your programming, and your assembler has a macroinstruction capability, then you can write your own if-then-e/se macros. It is beyond the scope of this article to describe how this is done, but it isn't very difficult.

If you use assembly language and don't have facilities for writing macros, then you can simulate the function of the macroassembler in order to gain the advantages of structured programming. Simply sit down and write yourself a set of standard if-then-e/se structures. Take the five or six most common decision types (equal, not equal, zero, greater than, etc) and write

Figure 6: The do-while structure is a looping form whose purpose is to execute a given process block only if the "while condition" is true. Thus it can execute the process block zero times if the condition is false initially, or an arbitrary number of times so long as the condition remains true during repeated execution of the process block.
skeleton programs for each. Leave blanks for the actual condition to be tested, and leave space for the actual code which will perform the then and else functions. Later, when you need an If-then-e/se while writing a program, you can draw upon your set of prewritten structures. Not only does this eliminate your having to invent similar program sequences over and over again, but it also prevents many bugs and greatly eases the effort you have to put into program writing.

The last basic structure is the loop, which provides a means of repeating a sequence of instructions until some stop condition is found to exist. There are two kinds of loop structures: do-until and do-while.

A do-until structure, shown in figure 5, performs the function in the process block at least once. After that, a test is done to determine if the condition for stopping the process looping has been found true. As long as the condition is not true, the looping continues. When it becomes true the looping ends and the exit path is taken. This type of structure can be used, for example, when you need to search a table of values, looking for a particular value. If you know that the table will always contain a matching entry, the program routine need not be more complicated by logic to detect end-of-table before a matching value is found. Notice that the first table entry is always examined before the decision is made to continue (this is because the ending condition decision is based upon the value of that entry).

The second type of loop is the do-while, shown in figure 6. The difference between this and the do-until structure is that the test is done before the process block is executed. In many cases there is not a lot of significance to this difference because both types of structures can do the same jobs.

In specific situations you will find that one form will usually be better suited or more convenient than the other. The primary difference to remember is that the do-until form always executes the process block at least once whether or not the until condition is true, and that the dowhile may not execute the process at all if the while condition is false at the time of the first test. Experience will best teach you which to use in the various situations.

A variation of the loop structures of either form might be considered, the endless loop or do-forever. This form of loop occurs when the while or until condition is never changed to allow execution of the output

Radio Shack's personal computer system? This ad just might make you a believer.

You can't beat the 4 K system at \$599
... or the step-up
16K system at \$899
... or the fast 4K/printer system at $\$ 1198$

... or the Level-II 16K/printer/disk system at \$2385

TRS-80 "Breakthru"

- TRS-80 microcomputer
- $12^{\prime \prime}$ video display
- Professional keyboard
- Power supply
- Cassette tape recorder - 4K RAM, Level-I BASIC
- 232-page manual
- 2 game cassettes

TRS-80 "Sweet 16"

- Above, except includes 16K RAM

TRS-80 "Educator"

- Above, except includes 4 K RAM and screen printer

So how are you gonna beat the system that does this much for this little? No way!

TRS-80 "Professlonal"

- Above, except includes 16K RAM, disk drive, expansion interface, and Level-II BASIC

TRS-80 "Business"

- Above, except
includes 32K RAM, line printer, and two disk drives

Get details and order now at Radio Shack stores and dealers in the USA, Canada, UK, Australia, Belgium, Holiand, France, Japan. Write Radio Shack, Division of Tandy Corporation, Dept. C-096, 1400 One Tandy Center, Fort Worth, Texas 76102. Ask for Catalog TRS-80.

Figure 7: The various types of structures cun be nested by noting that any place where a process block is indicuted, a more complex structure can be used since it, too, only hus one input puth and one output path of execution. Thus, for example, this flowchart shows nesting of a process Q block and an if-then-else stiucture us the else purt of the if-then-else structure with condition $\mathrm{X}=\mathrm{Y}$?. This second it-then-else in turn has a third if-then-else as purt of its else purt. The colored outlines show the nesting of one structure within unother.
path of the structure. Intentional endless loops are occasionally used, as in the low level programming trick of hanging up execution in a tight loop to flag errors, or the quite legitimate endless loops which form the outer level of control of a typical executive or monitor program. But for most programming purposes, an endless loop is a bug or error in the program.

An Example

Now using the basic structures, we can construct a program of any size and complexity by combining and nesting in any manner as long as some fundamental rules are adhered to:

- The program as a process should have only one input path and one output path.
- Structures within the program can be nested but each structure must be totally contained within the struciure in which it is being nested (this will be illustrated later).
- There should be no branching unless it is part of a structure (for example, the GOTOs required in languages like BASIC).
- Refrain from attempting to optimize the program by violating the above rules. There is a right time for this later.

Before we look at an example of structuring a program, let's first look at how nesting of basic structures works. Figure 7 shows a flowchart of a progidin which,

overall, could be represented by a single if-then-e/se. But when it is looked at in more detail, the else leg contains another if-thene/se as part of the instruction sequence there; the else leg of that structure contains yet another if-then-else. The heavy outlines show that each of the nested structures are totally enclosed by their parent structures; there is no overlap. A BASIC. like program to perform the function shown in figure 9 appears as listing 1. Again, 1 use outlines to illustrate that each structure is embedded in its entirety within another higher level structure. Notice that I have used indentation of lines to increase the readability of the program. Each separate structure should be at a different level of indentation than its parent.

Figure 9: Taking the algorithm of figure 8 and casting it into a standurdized, structured programming form eliminates all GOTO operations in languages with a complete if-then-else structure, and in languages like BASIC, reduces use of GOTO operations to standardized structures. In this flowchart, we've positioned all the blocks to emphusize the nesting of structure. One of the primary reasons for the emphasis on structured programming is one of communications of ideas to other programmers (or the originating programmer at a later date). The claim is made that a flowchart like this one, and its equivalent representution in listing 2, provide a standardized way of communicating algorithms which makes the listing or chart easier to understand und read.

Listing 2: A BAS/C-like application program for activating a buzzer of an automobile given several conditions. A subroutine BUZZ is indicated (by a call with the keyword GOSUB) to actually sound a noise during the loop. In this BASIC-like representation, several liberties with syntux have been taken.

Let's look now at an example of a simple program and show how a structured version might differ from an unstructured version.

The program is one which might be part of a future automobile computer control system using a microprocessor. Its purpose is to trigger a buzzer if the ignition key is left in the lock when the left front door is opened, or if the headlights are left on when the key is not in the lock. A delay is performed before conditions are checked again.

The flowchart in figure 8 shows how we might have drawn it without attempting to apply any of the principles of structured programming. Now, look at figure 9 which shows the structured version. Both forms of the program do the same function, but the structured form is clearly more straightforward and easier to write code from.

Basically, a number of things happened to the flowchart when it was structured. First, all the branches (or GOTOs) became forward branches except those in loop structures. This allows for reading the chart from top to bottom in an orderly way. Secondly, each decision block and process block has been put into a proper structure and nested totally within its parent structure. Thirdly, every structure regardless of its place in the overall program has only one input and one output.

One thing has happened that might appear to be a little strange to you. The sequence structure which performs the buzzer function appears twice now, where it only appeared once before. This is necessary in order to keep the structure clean. Remem-

1	LET $X=0$
2	IF KEY \neq ON THEN 7
3	LET $\mathrm{X}=\mathrm{X}+1$
4	IF $X=5000$ THEN O
5	GOTO 3
6	GOTO 13
7	IF KEY=INLOCK THEN 11
8	IF LIGHT \neq ON THEN 10
9	GOSUB BUZZ
10	GOTO 13
11	IF DOOR \neq OPEN THEN 13
12	GOSUB BUZZ
13	CONTINUE
14	GOTO 1

ber, you cannot simply branch into the other buzzer block because those two structures would then overlap. The inefficiency implied by the double appearance of that block might bother you, but it will probably turn out that the block will be written as a subroutine and the only inefficiency will be an extra call instruction.

Listing 2 is a BASIC-like program for the structured flowchart. (Here "BASIC-like" means using the syntax of BASIC but allowing variable names to be many characters in length for purposes of illustrating their meaning.) I have not attempted to make the program complete and have taken some liberties in order to illustrate my points.

A few words of explanation are in order. First, the instructions at lines 3,4 and 5 represent a do-until structure which is used to implement a delay by simply incrementing a counter (X) until it reaches a large value. The name $B U Z Z$ represents the line number of a subroutine (not shown) which activates an electronic buzzer in the car's dash.

Now is the time to go back and look at the program to make it more efficient in its operation or in the amount of memory required. This should be done only if it is absolutely necessary. If it is necessary, try to maintain the structuring to the extent that it doesn't destroy the clarity of the program or increase its complexity. In our example program, notice that there are three CONTINUE instructions at lines 13, 14 and 15 leading to a GOTO at line 16. The speed of the routine can be improved and the memory requirements can be reduced by eliminating the CONTINUEs and changing any instruction which references any of them to go to line 16. Alternatively, you could change each of those references to go directly to line 1 although you would be seriously interfering with the intent of structuring.

In conclusion, I invite you to try the techniques described in this article when you write your next program. If you have done it any other way before, it takes a little getting used to, but 1 think you will ultimately agree that it has a lot to offer. Hopefully, you will see the benefits in the form of less time spent getting your program designed, written and debugged. In short, I believe that it can help make programming even more enjoyable.■

$\angle L|\mid \text { Baling }|^{T M} D_{2}$

There's a BYTE BOOK in your future...

... And the future

BYTE Publications, Inc. is proud to announce the creation of its new Book Division, which publishes books of interest to computer people. Readers will find a wide range of topics published as BYTE Books, including new material as well as collections of reprints of the best BYTE magazine articles. Users of small computers will find PAPERBYTE ${ }^{\text {TM }}$ Books to be complete descriptions of useful system software including detailed user documentation, source listings where possible, and the PAPERBYTE ${ }^{\text {M }}$ bar code representation of executable code.
To keep the cost reasonable and available to the greatest number of readers, the books will be paperback editions in the $8-1 / 2 \times 11^{\prime \prime}$ format. You may purchase the initial selections directly from BYTE via mail order or from your favorite computer store or book distributor.
PROGRAMMING TECHNIQUES is a new series of BYTE BOOKS concerned with the art and science of computer programming. It is a collection of the best articles from BYTE magazine and new material collected just for this series. The book provides the personal computer user with background information to write and maintain programs effectively.
The first book in the Programming Technique series is entitled PROGRAM DESIGN. It discusses in detail the theory of program design. The purpose of the book is to provide the personal computer user with the techniques needed to design efficient, effective, maintainable programs. Included is information concerning structured program design, modular programming techniques, program logic design, and examples of some of the more common traps the casual as well as the experienced programmer may fall into. In addition, details on various aspects of the actual program functions, such as hashed tables and binary tree processing, are included.

ISBN 0-931718-12-0
Editor: Blaise W. Liffick
Pages: 96
Price: $\$ 6.00$
Publication: Fall 1978

In SIMULATION, the second book of the series, are articles dealing with various aspects of specific types of simulation. Both theoretical and practical applications are included. Particularly stressed is simulation of motion, including wave motion and flying objects. The realm of artificial intelligence is explored, along with simulating robot motion with the microcomputer. Finally, tips on how to simulate electronic circuits on the computer are detailed.

ISBN 0.931718-13-9
Editor: Blaise W. Liffick
Pages: approx. 80
Price: $\$ 6.00$
Publication: Fall 1978
The third book is NUMBERS IN THEORY AND PRACTICE. This book includes information of immense value to both the novice and the experienced personal computerist. The mechanics of the binary system are discussed, including division and multiplication, as well as the places to look for numerical error in programs. Floating point numbers, what they are and how to use them, are covered. There are also sections on numerical methods (functions, approximations, statistics), Boolean math, and several different approaches on how to obtain random numbers.

ISBN 0-931718-14-7
Editor: Blaise W. Liffick
Pages: approx. 100
Price: $\$ 6.00$
Publication: Fall 1978
The fourth book so far scheduled in this series is called BITS AND PIECES. The articles collected for this book are mostly unrelated and do not neatly fit into the topics of the previous three books, but still have a lot to do with programming techniques. Areas such as multiprogramming and interactive computing with the personal computer are discussed, as well as stacks, sorting, Polish notation, and program optimization. This is by far the most general book of the series.

ISBN 0-931718-15-5
Editor: Blaise W. Liffick
Pages: approx. 100
Price: $\$ 6.00$
Publication: Fall 1978

is right now !

RA6800ML: AN M6800 RELOCATABLE

 MACRO ASSEMBLER is a two pass assembler for the Motorola 6800 microprocessor. It is designed to run on a minimum system of 16 K bytes of memory, a system console (such as a Teletype terminal), a system monitor (such as Motorola MIKBUG read only memory program or the ICOM Floppy Disk Operating System), and some form of mass file storage (dual cassette recorders or a floppy disk).The Assembler can produce a program listing, a sorted Symbol Table listing and relocatable object code. The object code is loaded and linked with other assembled modules using the Linking Loader LINK68. (Refer to PAPERBYTETM publication LINK68: AN M6800 LINKING LOADER for details.)
There is a complete description of the 6800 Assembly language and its components, including outlines of the instruction and address formats, pseudo instructions and macro facilities. Each major routine of the Assembler is described in detail, complete with flow charts and a cross reference showing all calling and called-by routines, pointers, flags, and temporary variables. In addition. details on interfacing and using the Assembler, error messages generated by the Assembler, the Assembler and sample IO driver source code listings, and PAPERBYTE ${ }^{\text {TM }}$ barcode representation of the Assembler's relocatable object file are all included.
This book provides the necessary background for coding programs in the 6800 assembly language, and for understanding the innermost operations of the Assembler.

ISBN 0-931718-10-4 Author: Jack E. Hemenway Pages: approx. 120 Price: $\$ \mathbf{2 5 . 0 0}$
Publication: Fall 1978

LINK68: AN M6800 LINKING LOADER is a one pass linking loader which allows separately translated relocatable object modules to be loaded and linked together to form a single executable load module, and to relocate modules in memory. It produces a load map and a load module in Motorola MIKBUG loader format. The linking Loader requires 2 K bytes of memory, a system console (such as a Teletype terminal), a system monitor (for instance, Motorola MIKBUGG read only memory program or the ICOM Floppy Disk Operating System), and some form of mass file storage (dual cassette recorders or a floppy disk). It was the express purpose of the authors of this book to provide everything necessary for the user to easily learn about the system. In addition to the source code and PAPERBYTE ${ }^{\text {M }}$ bar code listings. there is a detailed description of the major routines of the L.inking Loader. including flow charts. While implementing the system, the user has an opportunity to learn about the nature of linking loader design as well as simply acquiring a useful software tool.

> ISBN 0-931718-09-0
> Authors: Robert D. Grappel
> \& Jack E. He menway
> Pages: 48
> Price: $\$ 8.00$
> Publication: Summer 1978

TRACER: A 6800 DEBUGGING PROGRAM is for the programmer looking for good debugging software. TRACER features single step execution using dynamic break points, register examination and modification, and memory examination and modification. This book includes a reprint of "Jack and the Machine Debug" (from the December 1977 issue of BYTE magazine), Tracer program notes, complete assembly and source listing in 6800 assembly language, object program listing, and machine readable PAPERBYTE ${ }^{\text {TM }}$ bar codes for the object code.

ISBN 0-931718.02-3

Authors: Rohert D. Girappel \&
Jack F. Hemenway
Pages: 24
Price: $\$ 6.00$
Available now

TINY ASSEMBLER 6800, Version 3.1 is an enhancement of Jack Emmerichs' successful Tiny Assembler. The original version (3.0) was described first in the April and May 1977 issues of BYTE magazine, and later in the PAPERBYTE ${ }^{\text {TM }}$ book TINY ASSEMBLER 6800 Version 3.0.
In September 1977, BYTE magazine published an article entitled, "Expanding The Tiny Assembler". This provided a detailed description of the enhancements incorporated into Version 3.1, such as the addition of a "begin" statement, a "virtual symbol table", and a larger subset of the Motorola 6800 assembly language.
All the above articles, plus an updated version of the user's guide, the source, object and PAPERBYTE ${ }^{\text {TM }}$ bar code formats of both Version 3.0 and 3.1 make this book the most complete documentation possible for Jack Emmerichs' Tiny Assembler.

ISBN 0-931718-08-2
Author: Jack Emmerichs
Pages: 80
Price: $\$ 9.00$
Publication: Summer 1978
SUPERWUMPUS is an exciting computer game incorporating the original structure of the WUMPUS game along with added features to make it even more fascinating. The original game was described in the book What To Do After You Hit Return, published by the People's Computer Company. Programmed in both 6800 assembly language and BASIC, SUPERWUMPUS is not only addictively fun, but also provides a splendid tutorial on setting up unusual data structures (the tunnel and cave system of SUPERWUMPUS forms a dodecahedron). This is a PAPERBYTE ${ }^{\text {TM }}$ book.

ISBN 0-931718-03-1
Author: Jack Emmerichs Pages: 56
Price: $\$ 6.00$
Publication: Summer 1978

MONDEB: AN ADVANCED M6800 MONITORDEBUGGER has all the general features of Motorola's MIKBUG monitor as well as numerous other capabilities. Ease of use was a prime design consideration. The other goal was to achieve minimum memory requirements while retaining maximum versatility. The result is an extremely versatile program. The size of the entire MONDEB is less than 3 K .
Some of the command capabilities of MONDEB include displaying and setting the contents of registers, setting interrupts for debugging, testing a programmable memory range for bad memory locations, changing the display and input base of numbers, displaying the contents of memory, searching for a specified string, copying a range of bytes from one location in memory to another, and defining the location to which control will transfer upon receipt of an interrupt. This is a PAPERBYTE ${ }^{\text {M }}$ book.

ISBN 0-931718-06-6
Author: Don Peters
Pages: approx. 72
Price: $\$ 5.00$
Publication: Summer 1978
BAR CODE LOADER. The purpose of this pamphlet is to present the decoding algorithm which was designed by Ken Budnick of Micro-Scan Associates at the request of BYTE Publications, Inc., for the PAPERBYTE ${ }^{\text {TM }}$ bar code representation of executable code. The text of this pamphlet was written by Ken, and contains the general algorithm description in flow chart form plus detailed assemblies of program code for 6800 , 6502 and 8080 processors. Individuals with computers based on these processors can use the software directly. Individuals with other processors can use the provided functional specifications and detail examples to create equivalent programs.

ISBN 0.931718.01.5
Author: Ken Budnick
Pages: 32
Price: $\$ 2.00$
Available now

Circle 34 on inquiry card.

BYTE BOOKS Division • 70 Main Street • Peterborough, New Hampshire 03458

Please send the books I have checked.
\square Program Design $\$ 6.00$
\square Simulation $\$ 6.00$
\square Numbers in Theory \& Practice $\$ 6.00$
Bits \mathcal{E} Pieces $\$ 6.00$
\square RA6800ML $\$ 25.00$
Link68 \$8.00
BYTE BOOKS, BYTE BOOKS logo, and PAPERBYTE
Tracer $\$ 6.00$Tiny Assembler (3.1) \$9.00SUPERWUMPUS $\$ 6.00$
Mondeb \$5.00
\square Bar Code Loader \$2.00
Add 50^{c} per book to cover postage and handling

QUESTION：

＂Why are more and more dealers carrying Godbout／Compukittm products？＂
 ANSWER customers＂

 ECONORAM ${ }^{\text {™ }}$ IN PERSON

 ECONORAM ${ }^{\text {™ }}$ IN PERSON}

AT A STORE NEAR YOU．

alabama
COMPUTER CENTER
BIRMINGHAM，ALA． 35209 （205） 942.8567
ICP，COMPUTERLAND
1507 CHAMELISS LANE
BIRMINGHAM，ALA． 35228 （205） 879.0707

ARIZONA

AITS \＆EVTES COMPUTEA BHI9－C NORTH 21ST AVE （802） 242.2507
PEASONAL COMPUTER PLACE
MESA，AZ 85202
（B02） 8338949
GALIFORNIA
GYFE SHOP OF BERKELEY
1514 UNIVERSITY AVE．
（415）845－6386
aYTE SHOP OF CITRUS HEIOHTS
6011 GREENBACK LANE
CITRUS HEIGHTS，CA 95810 （916） 981 －2983
GYTE SHOP PF FAIRFIELO
SU ALDER STREET
SUISUN CITY，
GYTE SHOP OF LAWNDALE
16508 HAWTHORNE BLVD．
（213）371－2421
OYTE SHOP OF LONG BEACH
3453 E．STEARNS
（213） 597.771
arte shop of pasadena
M98 SOUTH LAKE AVE．
PASADENA，CA
$(2137884.3311$
OYTE SHOP OF SAN DIEGO
8250 H VICKERS ST．
SAN DIEGO，CA 92111
（714） $565-6080$
OYTE SHOP OF SAN JOSE
2826 UNION AVE．
SAN JOSE，CA 95124
SAN JOSE，CA 95124
（408） 377.4685
OTTE SHOP OF SANTA BARBARA
WEST MISSION
SANTA BARBARA．CA 9310
86－2638
BYTE SHOP OF SANTA CLARA
SANTA CAMINO REAL （408） $249-4221$
BYTE SHOP OF TARZANA
18424 VENTURA BLVO．
TARZANA，CA 91356
213） 343.3919
日YTE SHOP OF THOUSAND OAKS
2707 THOUSAND OAKS BLVO．
HOUSAND OAKS，CA 91360
（805） 497.9505
BYTE SHOP OF TUSTIN
TUSTIN，CA 92880
1714） $731 \cdot 1886$
arte shop of walnut creek
VALNUT CREEK．CA 94596 WALNUT CRE
（415） $933-6252$
OYTE SHOP OF WESTMINSTER
14300 日EACH BLVD．
WESTMINSTER．CA $928 B$
（714） 894.9131
COMPUTERLAND OF DUBLIN
6743 DUBLIN BLVD
OUBLIN，CA 94568
（415）8208090
COMPUTERLAND OF INOLEWOOD
6840 LA CIENEGA BLVD．
INGL EWOOO CA 90302
ingLEWOOO，
（213）776－8030

COMPUTERLAND OF SAN DIECO 4233 CONVOY STREET SAN DIEGO，CA
（714） $580-9912$
COMPUTER COMPONENTS
S8A8 SEPULVEDA BLVO
VAN NUYS CA 91411
（213）780－7411
COMPUTER STOP CORP．
COMPUTER STOP CORP． LAWNDALE，CA 90280 （213）371－4010
HALTEK ELECTAOMICS
1082 LINDA VISTA
MT．VIEW，CA 940
（415） $989-0510$
（415） 9890510
I．C．ELECTRONICS SUPPLY OR19 W．KATILLA AVE，CA 92887 714）833－2302
ic．ELECTRONICS SUPPL
1．C．ELECTRONICS SUP
SAN DIEGO，CA 92111 （714） 292.5484
L．C．ELECTRONICS SUPPLY
18723．ROSCOE BLVO．
18772．ROSCOE BLVO．
VAN NUYS CA 91408
VAN NUYS，CA
（213） 8948171
（213）8948171
ODD ASSORTMEN
4980 B PACHECO BLVO
（415）228－4180
（415）228－4180
P．C．E．ELECTROMICS
4782 DEWEY（SACTO），CA 95629
FAIA OAKS （918）986－7033

CANADA

ORTHON HOLDINGS LTD． 12411 STONY PLAIN ROAD
EDMONTON ALBERTA CANADA TSN 3N3
（403）480－292
PACOM DISTRIBUTORS，INC．
4509 RUPERT STREET
VANCOUVER，B．C．
CANADA V5R 2 S
（ 604 ）435－3282
TJB MICROSYSTEMS LTD．
EDMONTON，ALBERTA
CANADA TGE 567
（403）455－5298
PDOR RICHARD＇S CALCULATOR CO．
FT．COLLINS，CO 80521
（303）221－1776
SOUND．TRONIX
900．9TH AVE．
GREELEY，CO 80831
FLORIDA
altain computer center 6220 SO．ORANGE BLOSSOM TRAIL
SUITE 1802
ORLANDO，FL 32809
（305） 851.0913
COMPUTER STORE
1549 W．BRANDON BLVD．
BRANDON FL． 33511
BRANDON FL
（893） $885-7659$

GEORGIA
ATAMART，INC．
OTLANTA，GA 30305
404） $286-0336$

HAWAII

COMPACT COMPUTERS
1009 UNIVERSITY AVE．
HONOLULU，HI 85626
（808） 949.1557
MALL COMPUTER SYSTEMS
hono wulu hi gebig HONOLULU，H
（800） 732.5240

ILLINOIS
arte shop of ILLINOIS
CHAO S．NEIL STREET
H17） 352.2323 ILL 61820
ILINI MICRO COMPUTERS

（312） $420-8813$

IOWA
BRIDGE ELECTAONICS
216 －BTH AVE．SO
CLINTON，IOWA 32732
（319）243－8282
COMPUTER STORE OF DAVENPORT
4128 BRADY STREET．
AVENPORT，IOWA 52806
（319）380－3330

KENTUCKY
CONTEMPORARY COMPONENT SALES，INC
OWMAN FIELD ADMINISTAATION BLDG．
OUISVILLE，KY 40205
（502）458－4848

LOUISIANA
COMPUTER SHOPPE，INC．
3828 VETERANS BLVD．
SETAIRIE，LA 70002
O4） 4548600

MICHIGAN
COLOMA COMPUTER CO．
647 JILL ANN DRIVE
COLOMA M1 49
MICRO COMPUTER WORLD
313 MICHIGAN NE
（ 816 ） 451 －8972
COMPUTEA MART
800 W． 14 MILE
ROYAL OAK，MI 48073
（313）578－0900
OUUG aRINKS SOUND
875 WEST RIVER ROAD
KAWKAWLIN，M1 48839
（517）882－8767
LUZIEA ELECTRONICS
ST．CLAIR SHORES，MI 48081
（313）773－9536

MINNESOTA
P．S．TNC．－RES．LABS M625 FIRST AVE．NO．
MOORHEAD，MINN 5658 （218） 2338682

NEBRASKA
GYTE SHOP OF OMAHA
SS23 PAAK DRIVE
（40） $339-7350$

NEVADA

CENTURY 23 IS
LAS VEGAS，NV 89102
（702）878－7997
NEW JERSEY
COMPUTER EMPORIUM
日LVD． 103 －AVE．OF COMMERCE
CHERAY HILL，NJ 08002
（809） 687.7555
S． 100 INC．
7 WHITE PLACE
CLARK，NJ O70e
（201） $382 \cdot 1318$
NEW YORK
COMPUTER MICRO SYSTEMS
311 NORTHERN BLVO．
（516） 627.3840
COMPUTER STORE OF NEW YOAK
55 WEST 39TH STREET
NEW YOAK，NY 10018
（212）221－1404
COMPUTER TREE，INC．
409 HOOPER ROAD
ENDWELL．NY 13760
（60）Ta－1223
COMPUWORLD INC．
2930 W．HENRIETTA ROAD
ROCHESTER，NY 14623
（718）424－1300
MEMORY MERCHANTS，INC．
1350 BUFFALO ROAD
ROGHESTER，NY 14824
（716） $328-5585$
NORTH CAROLINA
aYTE SHOP OF GREENSBORO
218 N．ELM STREET
GRE NS BOAO NC 2740
（1010）275－2983
BYTE SHOP OF RALEIGH
213 HILLSBOROUGH ST
RALEIGH，NC
O19） $833-0210$
RON＇S N RAM＇S
GRABTREE VALLEY MALL
RALEIGH．NC 27612
（918）781－0003

OHIO

aYte shop of ohio
19524 CENTERAIOGE ROAD
ROGKY RIVER，OHIO 44116
216） $333-3261$
CYBERSHOP
OLUMBUS，OHIO 43227
（B14）239－8001

OKLAHOMA
aTS，aYTES \＆MICROS 2918 N．MACARTHUR BLVD．
OKLAHOMA CITY，OK 73127 （405）947．5848

OREGON
altair computer center
OLOS SW NIMBUS AVE
QEAVERTON，OR 97005
（503）644－2314
PENNSYLVANIA
ERIE COMPUTEA CO．
1253 WEST BTH
ERIE PA 18502
（814）454．8691
MICRO－COMPUTEA PRODUCTS，INC．
118 SOUTH PUGH S
STATE COLLEGE PA 1680
（814） $238-7711$
PERSONAL COMPUTER CORP．
FAAZER MALL
（215）847－8463
TEXAS
COMPUTERLAND OF AUSTIN
3300 ANDERSON LANE
（512）452．5701
COMPUTER PORT
928 N．COLLINS
ARLINGTON，TX 78011
（817）469－1502
COMPUTER SHOP OF SAN ANTONIO
6812 SAN PEDRO
SAN ANTONOO，TX 78216
（512）B2BO553
COMPUTERS＇N Things
2825 HANCOCK DRIVE
（512）453－5970
MICRO COMPUTER SHOP
MICRO COMPUTER SHO
$\$ 301$ EVERHART ROAD
CORPUS CHRISTI，TX 78411
（512） $855-4516$
NEIOHBORHOOD COMPUTER STORE
4802 －34TH ST．，SUITE 20
LUB80cK，TX 79410
UNITED KINGDOM
COMPUTER CENTAE
20 DURNSFORD AVE
FLEET，HANTS
02514－29807
VIRGINIA
HOME COMPUTEA CENTER，INC．
2027 VIRGINIA BEACH BLVD．
VIRGINIA BEA
（8C4） $340-1977$
WASHINGTON
COMPUTEA SHOP OF SPOKANE
S． 107 WALL STREET
SPOKANE WA
（500）450．0311
PERSONAL COMPUTERS
SO． 104 FREYA
SPOKANE，WA 9pZ02
（500）534－3956
RETAIL COMPUTEA STORE
S10 NE THTH STREET
SEATLLE，WA 98115
（200） 524410
YE OLDE COMPUTER SHOPPE，INC．
1301 GEORGE WASHINGTON WAY．
（509 040－3230 9 9352
WEST VIRGINIA
COMPUTER STOAE OF CHARLESTON
SUITE MS，MUNICIPAL PARKING BLDG．
CHARLESTON，W．VA 25301
（304） $345-1380$

Antique
 Mechanical Computers

Part 3: The Torres Chess Automaton

Dr James M Williams 58 Trumbull St New Haven CT 06510

But now these men were suggesting that a machine could assist in or substitute for a human mental activity.

19th Century Developments

The automata of the 18 th century were in fact sequence controllers possessing both digital and analog stored programs whose readouts were mechanisms that imitated human and animal actions (computers of a sort). During the next century they inspired a flood of automata, the best of which von Helmholtz described in his 1847 book, Uber die Erhaltung der Kraft, as being equal in achievement to the best in any other branch of science. Derek Price's book, Automata in History, includes material from von Helmholtz (see bibliographical notes).

In the 19th century men were starting to contemplate how mechanisms might be able to improve the human state. Charles Babbage had this notion in mind when in December 1837, precisely 99 years after Vaucanson's marvelous demonstration (see July 1978 BYTE "Antique Mechanical Computers, Part 1") he wrote the first sentence of On the Mathematical Powers of the Calculating Engine: "The object of the present volume is to show the degree of assistance which mathematical science is capable of receiving from mechanism." An obscure accountant of Manchester, Percy Ludgate, working without knowledge of Babbage, expressed the same thought when he wrote in 1909 the first sentence of On a Proposed Analytical Engine: "I propose to give in this paper a short account of the result of about six years work, undertaken by me with the object of designing machinery capable of performing calculations, however intricate or laborious, without the immediate guidance of the human intellect."

I think we may be too near to our machines to see the revolution residing in what these men said. Before Babbage and Ludgate, machines amplified or assisted or enabled the physical actions of humans. But now
these men were suggesting that a machine could assist in or substitute for a mental activity of a human. Machines would enter into the realm of the human brain. It was a breathtaking idea, but not an easy one to put into effect. Babbage's two machines were never fairly begun, nor was Ludgate's. (In Babbage's case the reason was not that nineteenth century machine technology was unequal to the task, but rather because he kept changing his concepts and never produced any completed working drawings as he continuously visualized bigger and bigger machines. For him, the end was never in sight, and he left off working at a point where the machine would have been the size of a basketball court and some yards high. His son completed the "Mill" (ALU) with its printhead long after Babbage's death, in 1906. See Randell in the bibliographical notes for a photo of the Mill and a reproduction of the printout of multiples from 1 to 23 of π in 28 significant figures.)

Torres and the Incredible Chess Playing Automaton

Gifted chess players have been known to play several concurrent games, making moves without hesitation from board 1 to board n, then back to board 1 . The best chess playing programs of today can't do that with any degree of success against most skilled players. But the remarkable fact is that in 1911 a machine was invented that automatically played a particular endgame of chess (King and Rook versus King) against a human opponent, and detected any false moves!

Leonardo Torres was the inventor, and his machine was displayed in the Mechanical Laboratory at the Sorbonne early in 1914. Photo 1, taken from a 1915 issue of the Scientific American Supplement, shows the

PROVIDES MONITOR AND TAPE SOFTWARE in ROM. TERMINAL and TAPE PORTS O SAME BOARD. CONTROLS ONE or TWO TAPE UNITS (CC-8 or 3M3B).

This is a complete 8080,8085 , or $\mathbf{Z 8 0}$ system controller. It provides the terminal I/O (RS232, 20 mA or TTL) and the data cartridge I/O, plus the motor controlling parallel I/O latches. Two kilobytes of on board ROM provide turn on and go control of your Altair or IMSAI. NO MORE BOOTSTRAPPING. Loads and Dumps memory in hex on the terminal, formats tape cartridge files, has word processing and paper tape routines. Best of all, it has the search routines to locate files and records by means of six, five, and four letter strings. Just type in the file name and the recorder and software do the rest. Can be used in the BiSync (IBM), BiPhase (Phase encoded) or NRZ modes with suitable recorders, interfaces and software.

This is Revision 8 of this controller. This version features 2708 type EPROM's so that you can write your own software or relocate it as desired. One 2708 preprogrammed is supplied with the board. A socket is available for the second ROM allowing up to a full 2 K of monitor programs.

Fits all S100 bus computers using 8080 or Z 80 MPU .s. Requires 2 MHz clock from bus. Cannot be used with audio cassettes without an interface. Cassette or cartridge inputs are

9600 BAUD CASSETTE RECORDER

An ASYNCHRONOUS NRZ type Recorder with remote motor start/stop. Error rate 10^{8} at 4800 BAUD. Can be used from 110 to 9600 BAUD into a UART - no clocking required. This is not an audio recorder. It takes RS232 or TTL signals from the terminal or computer and gives back the same signals. No audio interface is used. Motor start/stop is manual or through TTL or RS232 signals.

Tape speeds are $1.6^{\prime \prime} / 3.0^{\prime \prime}$ and $6.0^{\prime \prime}$ per second. 110 volt, $60 \mathrm{~Hz}, 5$ watts. (220 Volts on special order). Can use high quality audio cassettes (Philips Type) or certified data cassettes. Can be used in remote locations from a 12 Volt battery.

Recommended for DATA LOGGING, WORD PROCESSING, COMPUTER PROGRAM RELOADING and DATA STORAGE. Manual control except for motor start/stop. 6800, 8080 or $\mathbf{Z 8 0}$ software for file or record searching available on request with order. Used by major computer manufacturers, Bell Telephone and U.S. Government for program reloading and field servicing.

TTL or RS232 level.

AVAILABILITY - Off the shelf.

6800 CONTROLLER for SWTP \$190.00, Tested \& Assmb.

PROVIDES MONITOR AND TAPE SOFTWARE in EPROM. EXPANDS MIKBUG with 1 K of ADDITIONAL ROM PROGRAM

This is a complete tape controller for the SWTP 6800 system. Has 3 K of EPROM space for your own programs. A 1 K ROM (2708) is provided with all tape and monitor functions. The ROM program is identical to our extensive 8080 ROM program.

Hias one ACIA for one or two tape drives, one UART for an additional Serial port and a 4 bit parallel port for motor control. Will control one or two CC-8 or 3M3B drives with the software provided. Can be used with other tape drives controllable with 4 TTL bits if appropriate software changes are made.

Extra serial port is provided for your use with a second terminal or printer (RS232, TTL or 20 ma).

The ROM program supplements the MIKbug program and is entered automatically on reset. SWTbug compatible ROM is also available.

> AVAILABILITY - Off the shelf.

Z 80 BOARD for SWTP COMPUTER

Now you can use the 8080/Z80 software programs in your SWTP 6800 machine. Replaces your MPU board with a Z80 and ROM so that you are up and running with your present SWTP memory and MPS card. 1 K ROM on board replaces MIKBUG.

AVAILABILITY - Off the shelf.

$\mathbf{\$ 1 9 0 . 0 0}$, Tested \& Assmb.
For U.P.S. delivery, add $\$ 3.00$. Overseas and air shipments charges collect, N.J. Residents add 5\% Sales Tax. WRITE or CALL for further information. Phone Orders on Master Charge and BankAmericard accepted.

Natiomal Multiplex Cormoration

Photo 1: Front (a) and back (b) views of the 1911 chess playing automaton invented by Leonardo Torres. The unit played a particular chess endgame (King and Rook versus King) only and could force a win. The chessboard is shown in the lower right of center in photo 1a. Horizontal and vertical arms moved the pieces (which were actually electrical jacks) from square to square, and the logic circuitry consisted of battery driven relays arranged in a logical tree structure (see figure 3). Photos courtesy of Scientific American (Supplement 80, Number 2079, November 1915).

Torres was a true amateur who did his work because he loved it.
machine. It seems to have been powered by the array of weights atop the console, but it used electricity (almost surely from a battery) in its logic system, which consisted of commutators and intricate switchgear. Indeed, most of the face of the console is covered with relays and switches with their linkages and wiring, but one can make out the vertical chessboard, sans chess pieces, in the lower right quadrant of the face. It is about 8 to 10 inches (20 to 25 cm) wide and has holes in the center of each of the 64 squares that are really plug holes into which fitted the carved chess pieces (actually jacks on their lower ends used to make electrical contact). Sequential switches of two sorts are visible on the apron in the foreground, and the signalling lamps consist of a 3 lamp cluster in the middle with another single lamp on the right.

The machine in operation must have been an amazing sight, for its visible action was automatic. The sliding arms (poorly shown in the photo; located both above and to the left of the board) would grasp the chosen White piece, unplug it, transfer it to a new computed location, and reinsert the piece
into the board. Then it waited for Black's next move. This is a degree of automation I don't recall seeing since 1 last gazed at a Linotype, and in 1914 it must have been an awesome spectacle. To be sure, Black always was checkmated, even with the first move, since White (the machine) had too much strength. If Black made a false move, the machine would sense it and light a signal lamp, then wait until the piece was moved to a legitimate square. Three false moves in the course of a game would "jam" the machine, which would not continue play until a reset switch was closed and pieces were properly placed. Possibly the pieces could be placed anywhere on the chessboard upon initiating a game; accounts do not make this clear. At any rate, the algorithm is quite general and directs the White King a square at a time, and the White Rook a row or column at a time inexorably toward the Black King until he is hemmed in.

In 1922 an improved version was displayed. Photographs and a description may be found in Chapuis (see bibliographical notes). This more modern machine had a horizontal chessboard grooved to accom-

The most complete Software Library in the Business...

for your 6800 or 8080 micro.

Technical Systems Consultants tailors powerful software to small systems. Our large variety of assembly language programs is priced to fit a personal computing budget, but designed to handle the most demanding jobs. We feature editors, text processors, assemblers, math packages, diagnostics, games, and more. Documentation is very extensive with almost every program including a complete, fully commented source listing! Most programs are available with cassette or paper tape and now some TSC 6800 software is offered on SWTPC compatible disks. Send 25Φ for a complete catalog today!

Specialists in Software \& Hardware for Industry \& the Hobbyist

Figure 1: A chart of the algorithm used by Torres' 1911 chess endgame playing automaton.
"It is necessary that the automata imitate living actions according to their inputs, and adapt their conduct to changing circumstances."
modate wires that sensed the location of a piece, and a complex clutch and gear system within the tabletop accomplished White's moves, via magnets. It was all powered by a few small electric motors, and a phonograph record pronounced the words "echec et mat" when Black was checkmated. Figure 1 shows a chart of the action, drawn from the Scientific American article. [According to David Levy in Chess and Computers, the Torres machine is still in good working order and can be seen in the museum at the Polytechnic Institute in Madrid SPAIN. . . .CM/

Torres was one of those vital persons who ornaments the history of science: a person of intense curiosity and independent means who devotes time and energy to the exploration of arcane subjects many decades before the professionals find their way into the original excavations and mine the uncovered veins of ore left behind. He was a true amateur who did his work because he loved it; history is studded with these men: Schliemann, Humboldt, Lavoisier, Rumford, Kelvin, Babbage, Bohr, etc.

Leonardo Torres was born in 1852 in Santander on the north coast of Spain, and was trained as a civil engineer. Unfortunately I could learn only very little about his life since the biography by his son is in French and is not available to me, but a few facts emerge: he was a patriot, and a capable politician as well, who arranged for the Spanish government to liberally subsidize
his "large and well-equipped mechanical laboratory at Madrid." Perhaps this is related to the fact that in 1906 in Bilbao harbor he displayed before the King a small scale radio controlled boat which "could select between various rudder positions and speeds, and cause a flag to be run up and down a mast." A lifelong Francophile, during World War I he designed a plane called the Astra-Torres for the French Air Corps. He also pursued quite mundane things: designs for aerial cablecars, apparatus to test lubricating powers of oil, a "universal pantograph" that automatically corrected any unwanted jiggles by a special linkage.

One of his first interests was mechanical analog computing devices, perhaps before 1900. He was familiar with Babbage's publications. In a paper dated 1920 he outlined an electromechanical calculating machine he exhibited in France. The machine consisted of a modified typewriter and several boxes of apparatus, connected only by a bundle of wires, all mounted on a table for display. (A picture of the machine is in Randell's book; see the bibliography.) The operator types in the numbers desired to be manipulated together with the sign of the operation to be performed, and after a few moments an $=$ followed by the result is typed out. This is a 4 function machine that can deal with perhaps six or seven digits. This was in 1920, mind you! He revealed the

THE FULL POWER OF THE 16 -BIT TMS 9900 MICROPROCESSOR IS NOW AVAILABLE WITH THE UNIQUE COMBINATION OF RELIABLE HARDWARD AND FAST, EASY TO USE SOFTWARE IN THE TECHNICO SS-16. WITH MINICOMPUTER PERFORMANCE THE TECHNICO 16-BIT MICROCOMPUTERS ARE AVAILABLE FROM THE SINGLE BOARD SUPER STARTER SYSTEM AT UNDER $\$ 400$ TO THE FULL SS-16 WITH UP TO 65K BYTES OF MEMORY, MINI-FLOPPY OR FULL FLOPPY DISKS, A 4800 BAUD DIGITAL CASSETTE, 64 COLOR VIDEO BOARD OPTION, RS 232 AND 20 MA CURRENT LOOP ALL COMBINED WITH ONE OF THE INDUSTRYS FASTEST BASICS AND A FULL ASSEMBLER, EDITOR, LINKING LOADER PACKAGE. SYSTEMS ARE AVAILABLE COMPLETELY ASSEMBLED AND TESTED OR IN UNASSEMBLED TEC-KIT ${ }^{\text {TM }}$ FORM. EXPLICIT MANUAL INCLUDED OR AVAILABLE SEPARATELY AT \$35. TO LEARN MORE...JUST TEAR OFF A PIECE OF THIS AD AND RETURN TO TECHNICO OR CALL OUR HOTLINE 1-800/638-2893 OR YOUR LOCAL DEALER.

EUROPEAN MODELS AVAILABLE THROUGH TECHNICO INTERNATIONAL
"Construction of mechanisms which play the role of sense organs is not difficult in theory."
theoretical underpinning for his calculating apparatus in general terms in 1914, in the Essais sur l'automatique. (in 1914, automatique was a new word, translatable as automation or as automatics.)

Torres' essay is so lucid and fresh that today, 64 years after publication, it still casts much illumination on the human and machine interface. After describing a first type of automaton, a machine designed to mimic the movements of a living creature, he describes a second type of automaton (Torres' own italics), ". . . those that imitate, not the simple gestures, but the thoughtful actions of a man, and which can sometimes replace him." He gives examples: ". . the self-propelled torpedo, which knows how to mancuver in order to arrive at its target, the balance which weighs coins so as to choose the ones which are of legal weight." He speaks of the need for a ". . . special chapter of the theory of machines which would be called Automatics" and of the need to investigate "means for constructing automata endowed with a pattern of behavior of greater or lesser complexity." "These automata will have sense organs, ie: thermometers, mag. netic compass, manometers, etc" together with "limbs, ie: machines or mechanisms capable of executing the operations which they are instructed to do." And they will need power sources. "Moreover, it is essential, being the chief objective of Automatics, that the automata be capable of discernment; that they can at each moment take account of the information they receive, or even information they have received beforehand, in controlling the required operation." "It is necessary that the automata imitate living beings in regulating their actions according to their inputs, and adapt their conduct to changing circumstances. "

After noting that construction of mechanisms which play the role of sense organs is not difficult in theory, and that new appa-
ratus to achieve this measuring (sensing) function is invented every day (what cannot be measured today will be measured tomorrow or shortly), he adds that the same may be said of devices to effect the automaton's work. No one can point to a limit in the inventing of machines to perform functions. But, "It is not the same when one asks whether it is possible to construct an automaton which, in order to decide on its manner of working, ponders on the circumstances which surround it. The estimate is, 1 believe, that this may be done only in some very simple cases ... it is thought possible to automate the mechanical operations performed without thinking by a workman, but that those requiring the exercise of mental faculties will never be executed mechanically." "I shall try to show in this article, from a purely theoretical point of view, that it is always possible to build an automaton whose actions depend on a greater or lesser number of circumstances, according to rules which one can impose arbitrarily during its construction." In reference to this quote, Torres described a simple digital device, but with the novelty that it displays a worked out form of conditional branching: ahead of its time, like so much of Torres' writings and work.

In his writings, Torres selected his words so carefully that it is possible to argue his distinction between "to discern," a process of "input which he welcomes and illustrates as measurements; and "to ponder," a verb he seems to reserve for human thought, where more has to be taken into account than just the information of the moment or information previously received. And what is that "more"? I suggest that only people who know mechanics very well can appreciate fully the chasm between their creations and those of life (ie: between organic information and mechanical information). Randell observes, and I heartily agree, that "In all this work [Torres] was deliberately exploit-

- It has the latest news for users - (and prospective users) of Heath
, Co. computer products. It isn't , company-controlled--BUSS can get
- new product information and tid-
- bits about items being developed
- before the official announcement
- by Heath Co. But BUSS does more
, than that--BUSS also lets you in
on news of compatible hardware \& software from other vendors. H8 and H11 users may save enough on these products to pay for a BUSS subscription several times over. And users of the ET-3400 Trainer aren't left out either. The first issue of BUSS came out more than a year ago in April of

1977. Every issue goes by first class mail and almost all orders for new subscriptions are filled within two days. Back issues go fast, but most of those for 1978 are still available. BUSS keeps getting better. So send for it:

12 Issues For $\$ 6.80$

- The Independent Newsletter of Heath Co. Computers 325 Pennsylvania Avenue, S.e. Washington, dC 20003

"Dynabyte bullds confidence into my computer."

Plug-in-and-run performance takes the uncertainty out of owning a computer. That's the kind of computer products Dynabyte builds.

Confidence in your computer is increased because you know that Dynabyte S-100 boards are factory assembled by trained technicians, burned in for 72 hours at elevated temperatures and continuously tested for three days.

That was true of the industry's first assembled and tested 16 k dynamic RAM from Dynabyte, and it continues with all the other products from Dynabyte.

Once you plug Dynabyte boards in their careful design, factory prime components and quality construction keep them running. Dynabyte backs them with a one year warranty-the longest in the industry.

Incompatability is coming to an end. Dynabyte's 16 k and 32 k static RAMs come with access times of either 250ns for Z-80A processors or 450 ns for 8080 and 8085 chips. You can use the

16k static RAMs with Alpha Micro or Cromemco bank switching memory expansion techniques.

Computer users are so confident of Dynabyte's 16k dynamic RAM they have made it the most widely used S-100 dynamic memory in the world.

If you intend to become a proficient data processor but instead are unhappily debugging your system, or want to avoid a lot of debugging, then Dynabyte will be a great choice.

As you spend less time monkeying with hardware and more time computing, you'll become more confident of your abilities and proud of your accomplishments. Isn't that what owning a computer is all about?

Tell your computer retailer with confidence that you want Dynabyte boards-the plug-in-and-run performers.

1005 Elwell Court, Palo Alto, CA 94303. (415) 965-1010.

 \%
8
8
8
8 B anniner
 $\frac{10}{8}=$

32k Fully Static RAM. 250 ns or 450 ns; $4 k$ boundary addressing; no DMA restrictions; full Schrnitt trigger buffering; no wait states; complete S-100 compatibility; conservative thermal design includes eight regulators and heat sinks. 250 ns , $\$ 995.450 \mathrm{~ns}, \$ 925$.

16k Fully Static RAM. 250ns or 450 ns ; bank select is provided and is compatible with most popular schemes for memory expansion beyond 64 k including Alpha Micro and Cromemco systems; 4 k block addressing along 4 k boundaries; write protect with alarm for each 4 k block; full Schmitt trigger buffering. 250ns, \$555 $450 \mathrm{~ns}, \$ 525$.

16k Dynamic RAM. The industry's most popular S-100 dynamic RAM. Self-contained refresh logic is transparent to the 8080 processor and never generates a WAIT state. 1 MHz direct memory access, 16 k addressing. The Original Great Memory by Dynabyte, $\$ 399$

Naked Terminal. 80 character $\times 24$ line $=$

1920 character display capacity. Not just a video interface but a full terminal; plug into a mainframe with keyboard and monitor and save! Upper and lower case; black/white or white/black; block mode editing; addressable cursor; half and full duplex; no software support required; addressable status and $1 / O$ ports, $\$ 350$.

You can find out what our customers already know-Personal Software consistently offers great soffware products. Check out the programs below - they each represent many man-months of expert programming effort. We're sure you'll be pleased with the results.

MICROCHESS 1.5 by Peter JennIngs for 4K Level I and II TRS-80s In Z-80 machine language, easily loaded from cassette using the CLOAD command (TBUG is not needed). Uses standard algebraic chess notation to describe moves. Checks every move for legality. Handles castling and en passant captures. You can play white or black, set up and play from special board situations, or even watch the computer play against itself! With 3 levels of play \$19.95

BRIDGE CHALLENGER by George Duisman for 8 K PETs and 16 K Level II TRS-80s: You and the dummy play four person Contract Bridge against the computer. The program will deal hands at random or according to your criterion for high card points. You can review tricks, swap sides or replay hands when the cards are known. No longer do you need four people to play! $\$ 14.95$ 6502 ASSEMBLER IN BASIC by Dan Fylstra for 8 K PETs: Accepts all standard 6502 instruction mnemonics, pseudo-ops and addressing modes. Evaluates binary, octal. hex, decimal, and character constants, symbols and expressions. Assembles object programs anywhere in memory. includes one and two pass versions of the assembler, text editor and disassembler, with a 30 page manual and PET machine language programming hints. \$24.95
ORDERS: Check, money order or VISA/Master Charge accepted; programs and cassettes guaranteed. If you have questions, please call us at 617-783-0694. If you know what you want and have your VISA/Master Charge card ready, iust pick up the telephone and

[^3]P.O. Box 136-B9, Cambridge, MA 02138
ing the new facilities that electromechanical techniques offered and challenging accepted ideas as to the limitations of machines." But he not only exploited, he revelled; he did more than challenge: he expressed his disbelief and undertook to amaze his skeptics.

Torres worked on what he enjoyed, and a spirit of breathless, childlike fun is visible in all his activities. Imagine in 1906 a radio controlled boat that coasts up to a dock where stands the King of Spain, cuts its engine, heels sharply to starboard, and runs the royal flag smartly up and down the mast! The King salutes, the crowd cheers i Viva la España! What ecstasy it must have been for Torres. This is something beyond a demonstration of Hertzian waves as applied to potential weapons of war. It is something human: a radio controlled triumph. But such moments do not recur frequently. Torres the inventor-scientist is almost surely speaking in this quotation from the Scientific American article (see bibliography) about his 1911 chess player: "There is no claim that it will think or accomplish things where thought is necessary, but its inventor claims that the limits within which thought is really necessary need to be better defined, and that the automaton can do many things that are popularly classed with thought." You can hear the muted sadness, the resignation mingled with pride. Well, it still can play a flawless endgame of chess. If only it could be made to live. The next one I make will, at least, talk.

BIBLIOGRAPHICAL NOTES

1. The information in these articles has been synthesized from various sources | have encountered in reading about the history of computers, several histories of which make mention of Vaucanson in the sentence that directly precedes the one about Babbage. I found no literature explaining Vaucanson's creations until I came across:

Chapuis, Alfred E, and Droz, Edmond, Automata: Historical and Technological Study. Editions du Griffon, Neuchatel SWITZERLAND, 1958.

Here an astonishing and catholic variety of automated devices are described and illustrated, most of them trivial, such as pictures with clockwork-driven, moving figures. It is maddening that Chapuis' Automata treats the great mechanical computers of the past with little care. Chapuis and Droz were in a unique position because they read French, the language of most of the original docu-

CP/M ${ }^{\text {TM }}$ OPERATING SYSTEM

- Editor, Assembler, Debugger, and Utilities
- For 8080 and Z-80 Systems
- Up to four IBM-compatible floppy disks
- Documentation includes:

CP/M Features and Facilities
 CP/M Editor Manual
 CP/M Assembler Manual
 CP/M Debugger Manual
 CP/M Interface Guide
 CP/M Alteration Guide

(IT) DIEITHL RESERRLH

MAC ${ }^{\text {™ }}$ MACRO ASSEMBLER

- Compatible with new Intel Macro standard
- Complete guide to Macro Applications

SID ${ }^{\text {TM }}$ SYMBOLIC INSTRUCTION DEBUGGER

- Symbolic memory reference
- Built-in assembler/disassembler

TEX ${ }^{\text {M }}$ TEXT FORMATTER

- Powerful text formatting capabilities
- Text prepared using CP/M ${ }^{\text {™ }}$ Editor

NOTE: Due to the proprietary nature of CP/M'" software, please enclose your CP/M Serial No. when ordering MAC, SID, or TEX without the CP/M diskette. CP/M'm Serial No.
\square BankAmericard No. \qquad Exp. Date
\square Master Charge No. \qquad Exp. Date \qquad
\square Check or M.O. enclosed.
California residents add 6% sales tax.
Total amount of purchase \$
Name
Address
City \qquad State \qquad Zip

[^4]ments. They had pursued the field of automata so long (Chapuis \& Edouard Gelis published Le Monde des Automates in 1928, as well as making a film about automata in 1945) that their fame on the continent would have enabled them to study the machines minutely. They meticulously reconstructed the dates of inception, untangled the inventors of automata, and deduced the fate of the machines. Their myriad illustrations are unsurpassable.
2. You can read a translation of Vaucanson's own description of his automata in:

Ord-Home, Arthur W J G, Clockwork Music, Crown Publishers, New York, 1973.
which is currently in print. This book mentions and illustrates the Eureka poetry composing machine, a violin playing device, and quotes a newspaper account of one or two astonishing automatons (unless they are fabricated) such as a life-size mannequin that plays violin sonatas under keyboard control. There is little else of interest regarding stored programs. Lots of fun, though.
3. A most valuable survey which speaks of a

great many mechanisms and machines from the historical viewpoint, but describes them hardly at all is:

Price, Derek J deSolla, Automata in History: Origins of Mechanism and the Mechanistic Philosophy, Technology and Culture, volume 5, number 1, 1964.
which is worthwhile for the long perspective it offers on mechanics, and for the sense of continuity it conveys regarding human endeavor. You begin to learn that the world has always been filled with restless, thoughtful, imaginative and inventive people.
4. It is fun to read a splendidly researched volume like:

Carroli, Charles Michael, The Great Chess Automaton, Dover Publications, New York, 1965.
which is still in print and describes a nearly century long hoax (for which Vaucanson had unwittingly cleared the path), as well as Maelzel's actual mechanical achievements that blossomed into an industry by 1900.
5. For me the doyen of computer historians is:

Randell, Brian, The Origins of Digital Computers: Selected Papers, Springer Verlag, Heidelberg, New York, 1973.
where the developments that preceded and led up to the digital computer are spelled out event by event. As if Randell's crystalline commentary were not enough, he includes original papers (some in lucid translation) by Babbage, an incredibly clever man, and just about everybody who did anything useful in the development of computers, such as Aiken, Hopper (the only woman in the book), Eckert, Von Neumann, Goldstine, and Mauchly. They are included here, along with Leonardo Torres. Many machines are also included, such as the Zuse relay computer of wartime Germany, the Bell Labs relay computer, Altanasoff's lowa State computer with its novel capacitor storage system, and of course, ENIAC and EDSAC, those feeble giants.
6. The following article makes fascinating reading:

[^5]
Finally. A dependable microcomputer board.

In performance. In quality. In availability. OEMs, educators, engineers, hobbyists, students, industrial users: Here's our Versatile Interface Module, a fully-assembled, tested and warranted microcomputer board that's a true single-board computer, complete with keyboard and display. All you do is provide a +5 V power supply and the Versatile Interface Module gives you the rest-and that includes fast delivery and superior quality.

Key features include:

- Hardware compatibility with KIM-1 (MOS Technology) products.
- Standard interfaces include audio cassette with remote control; both 8 bytes/second (KIM) and 185 bytes/second (Versatile Interface Module) cassette formats: TTY and RS232; system expansion bus; TV/ KB expansion board interface; four I/O buffers; and an oscilloscope single-line display.

To place your order now, contact your local area distributor or dealer.

OEM Distributors
Kierulff Electronics
Sterling Electronics (Seattle only)
Zeus Components
Century/Bell
Lionex
Hallmark
Intermark Electronics
Quality Components

Technico
General Radio
Western Microtechnology
Future Electronics
Alliance Electronics
Arrow Electronics
Personal Computer Dealers
Newman Computer Exchange
Ann Arbor, Michigan

- 28 double-function keypad with audio response.
- 4 K byte ROM resident SUPERMON monitor including over 30 standard monitor functions and user expandable.
- Three ROM/EPROM expansion sockets for up to 24 K bytes total program size.
- IK bytes 2114 static RAM, expandable to 4 K bytes on-board and more off-board.
- $50 \mathrm{I} / \mathrm{O}$ lines expandable to 70.
- Single +5 V power requirements.
- Priced attractively in single unit quantities with OEM discounts available for larger quantities.

Synertek Systems Corporation.

2589 Scott Blud.,. Santa Clara, California 95050. (408) 988-5690.

Technico
Columbia, Maryland
Computerland
Mayfield Heights, Ohio
RNB Enterprises
King of Prussia, Pennsylvania
Computer Shop
Cambridge, Massachusetts
Computer Cash
Anchorage, Alaska

Energy Electronic Products Los Angeles, California General Radio
Camden, New Jersey
Advanced Computer Products
Santa Ana, California
Computer Components
Van Nuys, California

Let Your Fingers Do the Talking

Scanner Applications

Piepcias
 Bircuit Gellap

Steve Ciarcia
POB 582
Glastonbury CT 06033

In "Let Your Fingers Do the Talking Add a Noncontact Touch Scanner to Your Video Display" (August 1978 BYTE, page 156), I detailed the hardware design of a noncontact touch scanner which sits over a conventional video screen. This system, though lower in resolution, allows a fingertip to simulate the function of a light pen and with proper programming can become as important a peripheral as the common ASCII keyboard.

Quick Hardware Review

The scanner consists of 32 pairs of infrared light emitting diode transmitters and photo transistor receivers arranged around the perimeter of a picture frame. There are 16 pairs on the X axis and 16 pairs on the Y axis. The hardware logic sequentially activates the 32 pairs, first in the X direction (horizontal) then in the Y direc-

I would like to thank Dr Russell Reiss for contributing ideas which have led to this and other articles. . . .SC
tion (vertical). If a physical obstruction is placed in the plane of the scan, one X and one Y beam are interrupted. The corresponding X and Y beam addresses are stored when this happens. Since there are 16 pairs per axis, each coordinate can be represented by a 4 bit code and both the X and Y addresses can be packed into one data byte.

The end result of the hardware logic is a very simple scanner to computer interface. The scanner output is one 8 bit byte containing the 4 bit X and 4 bit Y addresses. The only other signals are a little something often referred to as hand shaking. A data ready line is set to a high level output when the scanner has sensed an obstruction.

This data ready signal can be tied to a parallel input port and scanned as I have done, used as a control line on a peripheral interface circuit, or used directly to generate a processor interrupt. If the touch panel is to be exercised in BASIC, the first method will prove to be easiest. The latter method, normally used with a machine language program rather than BASIC, will be the most efficient from a memory utilization standpoint.

I continue to use BASIC wherever the interface data processing speed allows it. In this way I can write illustrative program examples which are not tied to a particular processor. Of course, the speed advantages of machine language may be useful if your programs using the touch panel have a lot to do; so feel free to strike out on your own using these BASIC programs as a model.

Whatever the software method utilized to recognize the data ready bit, the program action must be the same. After the data ready bit goes high, the data byte is stored and the data ready is reset by momentarily pulsing the ready reset line low. In BASIC, the easiest way to do this is to tie the ready reset line to one bit on a parallel output port (it need only be a strobe rather than a latched output) and then sequentially execute two OUT instructions. The 10 ms pulsewidth I get on my machine is the result of the time it takes for BASIC to respond. The program examples presented in the listings use the following port allocations (in decimal):

Get Graphic with Your Computer:

EXCITING 3-D MAZE BOOKS

3-DIMENSIONAL MAZES by Larry Evans.
Puts you into the puzzle through exciting perspective drawing. \$1.50.

MAZE CUBES by Larry Evans

\square Features 12 colorful cubes which, when constructed, fit together to form a variety of 3 -dimensional maze games. Six basic games create over 1 million maze possibilities! Simple instructions and examples of game variations complete this ideal entertainment for all ages. $\$ 2.95$.

3-DIMENSIONAL MAZES, Volume 2 by Larry EvansBrilliant, tantalizing puzzles that are irresistible to solve. \$1.95.

3-D OPTICAL ILLUSIONS by Larry Evans

Enjoy the mystery and beauty of optical illusions in three dimensions! Five dazzling projects to build, color and amaze. Each phenomenon is thoroughly explained. $\$ 2.50$.
ALTAIR DESIGN, MORE ALTAIR DESIGN,

 \& ALTAIR DESIGN 3 developed by Ensor Holiday$\square K$Keep the loved ones busy while you use your system. . give them any or all of these computer generated Altair Design Books to start them (or yourself) on endless hours of creative coloring. No other coloring books are quite like these. Perfect for the doodler or as gifts for your computerphile friends. $\$ 2.50$ each.

MATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS by David F Rogers \& J Alan Adams

\square This book introduces the mathematical theory underlying computer graphics. The main concentration of the book is fundamental mathematical techniques (rotation and surface description) rather than procedural techniques (hidden line elimination). Each subject, such as surface description, three dimensional transformations, and surface curves, is given a thorough mathematical description. Algorithms for many fundamental elements of an interactive graphics package are given in BASIC. This is a fine addition to the library of anyone seriously interested in graphics. 239 pp. \$11.95.

ARTIST AND COMPUTER edited by Ruth Leavitt
\square A visual treat, as you encounter reproductions of numerous works by computer oriented artists and read about these works in their own words. 160 illustrations, many in color. \$4.95.

PROJECTS IN SIGHT, SOUND, \& SENSATION by Mitchell Waite

Dedicated "to all space cowboys." Detailed theory and practice of seven fascinating amateur electronics projects, along with a complete and detailed appendix on how to make PC boards. The projects included in this book are: The Syntheshape, an art generator that can be used to generate innumerable complex and beautiful patterns on the screen of an oscilloscope. An electronic music box that will play over 3000 possible melodies when the lid is lifted. A way to control muscle tension explained in chapter 4. A musclewave bio-feedback monitor can be used to achieve deep relaxation. The laser-light show transfers light into fascinating patterns in a darkened room. Other projects include a Kirlian camera, a digital ESP machine, and neon-light randomizer. \$5.25.| Data Ready | - Input Port 2 (least significant bit) |
| :---: | :---: |
| Ready Reset | - Output Port 16 (least significant bit) |
| X, Y Coordinate | - Input Port 16 ($\mathrm{b}_{7}-\mathrm{b}_{4}$ is X address) ($\mathrm{b}_{3}-\mathrm{b}_{0}$ is Y address). |

100 REM THIS IS THE ONLY SOFTWARE NECESSARY TO EXERCISE THE SCANNER
110 REM * * RESET SCANNER * **
120 OUT 16,0 : OUT 16,255: REM THIS WILL GIVE A SHORT RESET PULSE TO PORT 16
130 REM *** TEST DATA READY * **
$140 \mathrm{~T}=\mathrm{INP}(2)$: REM THE DATA READY SIGNAL IS BIT O OF PORT 2
150 T=T AND 1 :REM MASK ALL BUT BIT 0
160 IF $T<>1$ THEN GOTO 140 :REM TEST TO SEE IF DATA READY IS SET
170 REM * * * READ DATA ***
$180 \mathrm{D}=1 \mathrm{NP}(16)$:REM SCANNER IS ATTACHED TO PORT 16
190 D1 = (D AND 240)/16 :REM MASK AND SHIFT RIGHT 4 BITS
195 REM D1 IS THE X COORDINATE
200 D2=D AND 15
205 REM D2 IS THE Y COORDINATE
210 RETURN :REM RETURN IS ONLY NECESSARY IF CALLED AS A SUBROUTINE

Listing 1: Subroutine used to determine activated coordinates on the scanner.
10 PRINT "MY SCREEN ITCHES!! PLEASE SCRATCH IT!"
20 GOSUB 100 :REM ACTIVATE SCANNER
30 PRINT "OH!! THAT FEELS SO GOOOOOOOD!!!"
40 END

Listing 2: Example of using the entire video screen as a push button.

```
100 S=USF(25S) :REM IHIS IS A SCFEEN CLEAK FOK IG Z-80
110 FFINT'THIS IS A TEST OF TOUCH INFUT'
12O FRINT'THE SCFEEN IS CURKENTLY HEING SCANNED EY AN AKKAY"
130 FRINT" INFRAREI LEHS ANII OFTICAL SENSORS*
140 FFINT
150 F'RINT-PUINT AT THE SCREEN SOMEFIIACE 
140 GOSUK 1000 :REH GOTO THE SCANNER SUEFOUTINE ANII RETUFN WITH COORLIINATES
170 PFINT ' THANKYOU*
18O FKINT
190 FKINT
2OO FRINT'THE SCANNEK HAKIIWAFE SAYS 1HAT YOU TOUCHELH LOCATION*
```



```
220 GOSUK 2500 : FEM CAIL SI.IGHT LUELAY IIMER
25O S-IJSR(25*) : KE.M CLEAK SCREEN
2\triangleO FFINT'LEI ME: IUEMONSTKATE THE COOFLIINATE SYSTEM
270 FRINT"FUINT YOUK FINGEF AT THE SCREEN ANII I'II FRINT OUT (X,Y)*
2BO FFFINT'TO EXIT JUST FOINT TO LOCATION (1SFIS) ---UPPER RIGHT.
290 GOSUE 1000 :REM CALL SCANNER
300 S=USR(2J5) : REM CLEAR SCREEN
310 IF [11=15 THEN 320 ELSE 330
320 IF [12=15 THEN END
330 PFINT
340 PRINT DI,D2; :REM PRINT COORUINATES
350 GOTO 290
```



```
1010 OUT 18.0 :OUT 1S.255
1050 REM 樟 TEST DATA REAIY ###
1060 T=INP (2)
1070 T=T AND 1
10BO IF T > \ THEN GOTO }106
```



```
1100 D=INP(16)
1110 D 1 = (D AND 240)/16 :REN THIS IS THE X VALUE
1120 [2=D AND 15 :REM THIS IS THE Y VALUE
1130 RETURN
2500 FOR U=1 TO 2000
2 5 1 0 ~ N E X T ~ W ~
2520 RETURN
```

Listing 3: This program outputs the coordinates of the point you are touching on the screen. The output of the program can be used at a higher level to indicate some object that is printed on the screen.

Using the Touch Panel

Using the touch panel in any BASIC program, whether it be game or instructional, will necessitate having a subroutine to read and reset the scanner placed somewhere within the BASIC program. The total software necessary to exercise the touch panel is shown in listing 1.

If a GOSUB 100 command is encountered, BASIC vectors to this subroutine and begins execution. This subroutine will not return until someone touches the screen. Variable D1 would contain the X coordinate and D2 would contain the Y value. Each call to this subroutine results in returning to the main program with the X, Y address of a single touched point. To obtain ten touch inputs would require calling this routine ten times.

The simplest program utilizing the scanner would be one which sensitizes the entire screen to act as one giant push button. Such a program is similar to a press any key option on a keyboard.

The program in listing 2 prints "MY SCREEN ITCHES!! PLEASE SCRATCH IT!" on the video screen, waits for someone to touch any place on the screen and then responds with the message in line 30. Notice that we did not use the coordinate information from the scanner because we only needed to take advantage of the fact that the subroutine returns only if data is ready.

Test the Coordinate System

If one builds the touch panel, the first program written should be one that illustrates the coordinate system dynamically, such as the program in listing 3. (All BASIC programs in this article are written in Micro Com 8 K Zapple BASIC.)

After printing an opening comment on the video screen, the program calls the scanner subroutine as before. This time when it returns, it prints out the X and Y coordinate which was touched as shown in photo 1 . The rest of the program is a repeat of this basic cycle with one exception. The values of D1 and D2 are both compared to 15 after each scan. Should you point at coordinate position $(15,15)$ the program ends.

Converting Position to Function

So far we have displayed only the raw output of the scanner and have not used it in its true application. Telling you that you are pointing to location $(4,2)$ illustrates that the touch panel functions, but does no use-

Heathkit H8 Owners:

 ARE YOII SERIOUS? (Then upgrade your H8 to a 280 with the 2000 DISK SYSTEM8080. $Z 80$ instructions feature powerful block transfer, block search, block I/O instructions, relative addressing,

Powerful Capanilities

The only full size dual diskette system configured especially for the Heathkit H8 Computer is now available for immediate connection. The INFO 2000 Disk System is the best performer for any microcomputer: it's incredibly fast, it uses full $8^{\prime \prime}$ diskettes, and it gives you immediate Z80 capability. The recording format is standard IBM 3740. So you're assured maximum storage capacity, superior error protection, and full interchangeability with other $C P / M^{*}$ based systems.

Simple Connection

The Disk Adapter Board supplied with the INFO 2000 Disk System contains its own Z80 microprocessor. Just swap this board with the 8080 that came with your H8 and you'll have instantly upgraded to a Z 80 microcomputer. The Z80 instruction set includes 158--more than twice as many as the
bit manipulation, index registers and greatly enhanced interrupt processing. All you need to do is plug in the adapter board, cables and AC power, and you're ready to run.

Hassle-Free Operation

Designed just for the H8, the INFO 2000 Z80/Disk Adapter Board includes an EPROM containing PAM-Z. This is a Z 80 -oriented panel monitor which permits the H8 front panel to operate in both hexadecimal and octal modes. A CP/M disk operating system is included which enables you to use Disk BASIC, FORTRAN, COBOL, PASCAL and hundreds of applications programs. Plus, you can still utilize all Benton Harbor software. The flick of a switch gives you either software mode . . . instantly! You should have a minimum of 16 K RAM, and to take full advantage of all the software you can implement, 32 K is recommended. You'll also need the standard Heath serial board and a terminal for a full system.

We're Serious

The H 8 is a good beginning. But why stop there. Go for the best. With this combination of low cost computer and a powerful disk system, you can now perform a tremendous range of tasks. Use your H8 as a sophisticated business system and a powerful design and development tool.

If you're serious.
Delivered assembled and factorytested, the complete disk system includes dual diskette drives, Z80/Disk Adapter Board, power supply, cabinet, cables, and CP/M disk operating system. Full price $\$ 2950$. Available for immediately delivery.
*CP/M is a trademark of Digital Research

CORPORATION
20630 South Leapwood Avenue
Carson, California 90746
(213) 532-1702

> An industrial grade alphanumeric terminal incorporating touch panel input is being manufactured. For information contact:
> General Digital Corp 700 Burnside Av East Hartfort CT 06108

Photo 2: Here is a picture of an experiment which was backed up by a fairIy long BASIC program: using the screen as the input device for a simulation of an ordinary 4 function calculator. The imagination of the user, to use a well-worn cliche, is the only limitation upon trying experiments with special purpose keyboards and interactive sequences on the screen. Use of the video display behind the touch panel area makes easily altered software the determining factor - rather than physical tools in the workshop.

```
100 S=USN(?:SS)
120 FOR L:1 10 12
130 PRINT
140 NEXT \.
130 FRINT FHON
170 If [1:.7 THEN GOTO 300 ELSE GOTO 200
200 REM THIS ROUTINE LECIUES IF YOU ARE FOINIING IO
202 REN SECTOR 1 OF 2
210 IF D2.7 THEN FRINT*UNLISIE[S NUMREF'* :GOTO 2000
220 PRINT'RRENLAA (THE LIITLE WONFER) CIAKC:IA'
230 GOTO 2000
300 REM THIS ROUTINE JIFCILES IF YOU AKE FOINIING TO
302 REM SECTOR 3 OR 4
310 IF D2:`7 THEN FFINI'SCOTTISH TERKIE゙K - I UUN LEGGEII FUKGLAR ALAKH* :GO1O 2000
320 PRINT'BOX SE2 GLASTONRURY,CONN. OSO.3.'
330 GOTO 2000
990 REM
992 REM SCANNER SUEKOUTINE
1000 OUT 16,0 :OUT 16,25S
1010 T:. INF(Z)
1020 T T T ANU 1
1030 IF T:`1 THEN GOTO }101
1040 D=INF(16)
1050 D1=(D ANII 240)/16
1060 D2=0 ANL IS
1070 RETURN
2000 FOR N=1 TO 2000
2010 NEXT N
2020 GOTO 100
```

Listing 4: Illustration of a BAS/C program which divides the screen into four sectors and performs a function dependent on which sector is touched by the user.

Figure 1: Physical arrangement of sectors on the screen as used by program in listing 4.
ful work. If instead some letter or word were at $(4,2)$ and the program used this higher function output rather than just the numerical coordinate, we'd have something.

Fortunately it isn't all that difficult. By dividing the scanner system into fields and having each field represent a function, we can do useful work. A 2 level program must be written. First, it should have the capability of formatting the screen so that the printing is beneath the proper touch coordinate. Then, after returning from the scanner subroutine, it must translate this position value into the function designated by the printing on the screen.

A simple program which divides the screen into four fields or sectors and performs a function dependent on which sector is touched is shown in listing 4. Figure 1 describes the mathematical relationship between the coordinate system and the BASIC program of listing 4.

After printing the opening lines on the screen the program calls for the data from the scanner. The X coordinate (D1) is first tested to see if it is greater than 7. If it is, then either sector 3 or 4 must have been chosen. If D1 is less than 7 then it must be sector 1 or 2 . After choosing whether it is the right or left half of the screen the test is repeated with the Y coordinate. In theory, this binary search method would require no more than eight such tests if all 256 points were designated as separate fields.

A further extension of this binary search

A SMALL

 ANNOUNCEMENT

Our good news comes in a small package. It's the new Verbatim ${ }^{\star}$ Mini Data Cartridge, model TC-150. We've designed it to store data for today's minicomputers. Intelligent calculators and terminals. Word processors. Point-of-sale terminals. Data acquisition instruments. And more. Matter of fact, it plugs right in wherever you're now using 3M's DC-100A or HP's 9162-0061 mini-cartridges. It can be used on HP, TI, Savin, Qantex and 3M drives, among others.

Small wonder!

The TC-150 offers the same rugged packaging, long life and 100% performance testing of all our Verbatim products. And because each Mini Data Cartridge uses quality Verbatim media, you're assured that your data will play back the way you recorded it, bit for bit, byte for byte.
Actual data storage figures depend on your data format, but the recording formats for the Verbatim TC-150 range from single-track 800 bpi up to dual-track 1600 bpi. With room to grow.
Quality mini media. That's our business. At Information Terminals Corp. the whole message

is quality.

Information Terminal Corp.
323 Soquel Way, Sunnyvale, CA 94086.
(408) 245-4400. TWX: (910) 339-9381.

Call Toll Free: (1) 800-821-7700, Ext. 515
(In Missouri call: 800-892-7655, Ext. 515)

In Europe:

Information Terminals S.A.
Case Postale 296
1215 Genève 15
Switzerland
Telephone: 41 (22) 34-90-55
Telex: 22647 ITGE CH
In the Far East:
ITC-Far East
404 Roppongi Skyheights
3-2-21 Roppongi, Minatoku
Tokyo, Japan
Telephone: (03) 583-1981
Telex: J 47879

WHEN
YOUR DATA YOUR DATA
MUST PLAY Specify Verbatim.


```
100 REM THIS FKOGKAM HIS&LAYS A REYEOAREI ON THE CRT SCREEN
110 KEH ANLI ILLUSTRATES LIATA ENTEY WITHOUT A FHYSIL:AL KEYGOARD
120 REM JUST FOINT AT THE LETTERS ANII IT WILL 'TY&E' YOUR MESSAGE
```



```
210 OKINT
z1's r'kINT
2g0 HKINT:I J M N N N NOM
230 FKINT
23S FWINT
2AO FHINT*O F S & u u w w
ZSO FKINT
ES FFINT
SBONRINT:Y Z SFOCE:
OS FFINT
Z6. FKINT
363 HFINT
O,4 GNINT
O6% GISUE 2:00
ZoU GOSUF 1000
270 1F U2,212 THLN FFKINT CHKs(11/2+65)::GOTO 265
200 If 02,=10 THEN PRINT CHRS(01/2+73)::GOTO 265
280 JF D2:=0 THEN FRINT CHR!(DI/2+BI);:GUTO 26S
300 If D2,NG THEF: 302 ELSE 310
302 IF (D1/2+89);91 THEN PRINT CHR&(32)1:GOTO 265
303 FF(INT CHRS(D1/2+89)1:0070 265
303 IF I2=0 THEN GOTO 320 ELSE 330
320 IF D1a15 THEH 330 EISE GOTO 265
330 S=USR(TSS) ;REM CLEAR SCREEN
340 HOINT:TO SETEY EXERCISE--.-TO
340 RRINT TO RETKY EXERCISE----TOUCH SCREEN
350 gosub }100
3&O GUTO 200
1000 OUT 16,O :CUI 16,25S :REM LINES 1000-1070 REAU THE SCANNER DATA
1010 T=INP(2)
10このT=T : %N
1030 IT T<<1 ?.jF!! GOT0 1010
10:E II=INF(16)
```



```
:S.S :2=I .NW IS
:070 kEFUKH
Z500 ERH A.0 :0 :00 :REM THIS IS A SHORT IIELAY
-こ10 NEXT A
?%20 %E:URN
```

Listing 5：Keybourd simulation program．

```
100 KEM THIS IS A SIMTLE PROGRAM TO ILLUSTRATE SIMULIANEOUS
110 kEM lIAIA INPUT FKOM EITHER THE TOUCH PANEL OR THE KEYBOARD
120 DEINF (O) :REM KEYBOAK\I IS ATTACHEII TO FORT O
I3O REM HSH IS KEYROARD STKOHE --- BITS O TO 6 ARE 7 BIT ASCI
140 IF O.`O THEN GOTO ZこO :REM CHECK KEYEOARII STRONE
150 F=INP(2): REM SCANNEF UATA REAIIY IS FORT I LSH
160 I-T AMLI
170 IF f 1 rHEM GOTO 120
170 IF 1 1 THEH GOTJ 120
```



```
190 PRINI'FANEL IOUCHED AT LOCATION ('IMIIIN').
200 GUSUH ?40
210 GOTO 12¢
```



```
#% MRIMH-NE
Z40 nUT 16,0 :OUT 1S, 2ES :REM RLSET SCANNEF HARIIWARE
:GO NE.TURH
```

Listing 6：Method for scanning lwo input devices simultaneously on a Digital Group $\overline{\mathrm{L}} \mathrm{CO} \mathrm{O}$ sjstem．

Photo 3：Touch panel input using the pro－ gram of listing 5．The line of text at the bot－ tom of the display was entered by touching the index finger to each letter in turn．The photo is shown with the letter P about to be pressed．
concept is used in the calculator of photo 2 ． While never meant to replace the hand held calculator it uses a routine similar to the previous example to determine the action of each of the 16 possible entries．The picture is included to present the reader with one of the many possible applications of the scanner．The program，however，is quite long and difficult to explain in an intro－ ductory article such as this．

Simulated Keyboard

One use of the touch panel would be the simulation of direct keyboard entry．Ob－ viously this technique is valuable only where limited data entry is required．Large menu selection programs with numerous choices displayed may not always have the parti－ cular item of interest．By having one of the available selections be a keyboard display and entry routine such as photo 3 and listing 5，the miscellaneous entry could be accommodated．The program of listing 5 displays a keyboard on the video screen and allows one to type by pointing to the in－ dividual characters．The example does not include punctuation and a carriage return， but they could be easily accommodated．

One final note．Using the touch panel need not eliminate the standard ASCII key－ board as an input device．By using the BASIC INPUT command，keyboard entry is still available to the user as is the scanner through a callable subroutine．A program could be written where some entries come from the touch panel and others from the keyboard．A more versatile program would allow input from either device at any time．

Listing 6 is a simple program which demonstrates how BASIC can scan two in－ put devices simultaneously and provide appropriate response．

I hope that this touch panel design will spark the creative interests of other com－ puter enthusiasts．In a field where tech－ nology advances by leaps and bounds and product obsolescence can be described in months，innovative ideas are necessary to extend the concept of creative home com－ puting．By adding advanced peripherals and high level languages，system obsolescence is delayed considerably．

Next month：build a 5 W dual vol tage DC to DC converter for your interfaces．$■$

EXCITING

That's the word that sums up the dynamic small computer show in New York that was established last year at the Coliseum. The lecture areas were filled by interested people, the exhibits were great, the attendance was the highest of any small computer show in the country.
The big point is that everyone who came went away happy. Accountants, hobbyists, lawyers, doctors, brokers, retailers, business people, programmers, research scientists and just plain homeowners.
The second big point is that we're doing it again. This time, bigger and better. Top seminars, top exhibits. Small computers from $\$ 500$ up, software and kits.

Save time. Get your tickets in advance by mail.

NAME \qquad
ADDRESS \qquad
City \qquad State
 Zip

Small Computer Show, Sept. 15-17. 1978, in the New York Coliseum.
(Check One) One Day (\$5)_ Two Days (\$9) _ Three Days (\$13)_
Send check or money order (U.S dollars) payable to
Personal \& Business Small Computer Show to 78 E . $56 \mathrm{th} \mathrm{St}$. . New York. N.Y. 10022.

Abstract

About the Author Ion Bondy has been involved with computers for over ten years, and is currently employed by General Electric's Space Division as a computer systems engineer. He has had experience with a wide variety of computer systems and languages. His chief interests are instruction set design and computer architecture in general, including an enthusiasm for that class of high level language oriented stack machines inspired by the Burroughs " D " machine. He gives lectures occasionally for and is vice president of the Philadelphia Area Computer Society.

S2L: An Altair (S-100)

to LSI-11 Bus Adaptor

Jonathan Bondy

Box 148
Ardmore PA 19003

Table 1: Price comparisons of industrial quality Digital Equipment Corporation LSI- 11 modules and systems with functionally similar modules for the Altair (S-100) bus.

For many months, those of us who admire the architecture of the PDP- 11 computers have been looking for a way to adapt the wealth of Altair ($\mathrm{S}-100$) bus products to this processor. The introduction of the Heath H11 (LSI-11 based) processor has further emphasized the need to solve the problems which have thus far made the LSI-11 incompatible with the Altair (S. 100) bus peripherals. This article describes the problems which exist, and one solution which I see for them. It has been written in advance of actually implementing the solution, but it should prove valuable to all those experimenters who wish to take up the challenge of an LSI-11 to Altair bus adapter.

For years, the only problem with the LSI-11 as a personal computer has been price. The processor board (KD11-F) itself is a rather good deal at a discount level of 20 to 30 percent, but the accessories are somewhat expensive compared with
typical personal computing products as seen in table 1.

Most of the extra expense of the LSI-11 systems can be attributed to three factors:

1. The DEC prices are generally higher. The memory prices demonstrate this.
2. The use of highly regulated power supplies with the DEC products results in a more costly power supply. In addition, few experimenters are likely to homebrew such a power supply due to its complexity and its being the single element which could cause major destruction should it fail.
3. The LSI-11 has no front panel switches, and instead requires the user to examine and modify the state of the machine via a serial console device. While most industrial customers of DEC are able to afford the high cost of a serial terminal, many

Component Compal Hobby Price (S-100 Products)	Typical DEC/MDB/ RDA Price	Comments	
Memory	$\$ 500$ for 16 K bytes	$\$ 900$ for 16 K bytes	
Serial IO	$\$ 100$	$\$ 230$	Required
Parallel	$\$ 100$	$\$ 200$	
Video display memory	$\$ 200$	$\$ 600$	
Power supply	$\$ 100$	$\$ 400$ to $\$ 1000$	
Backplane	$\$ 150$	$\$ 350$	
Chassis	$\$ 200$	$\$ 350$	Two sizes

These prices were effective at the time of the article's writing. Current prices differ markedly...CH
hobbyists have discovered that memory mapped video is both cheaper and faster than a serial device. Because of this, DEC's decision to use the serial interface in this fashion forces a user to either support two terminals (one serial and one memory mapped) or make do with the serial device. It is unfortunate that a serial device, at any reasonable data rate, is simply unacceptable for some of the applications which an experimenter might wish to pursue, one example of which is state of the art word processing applications.

The three conflicting forces of the high prices of the LSI-11 systems, the desire for that processor's architecture, and the problems with the serial terminal requirement have kept me from going ahead with an LSI-11 system for well over a year. I have finally started on a project of my own which is to adapt an LSI-11 to Altair (S-100) bus peripherals and memory.

My idea was that, since the widest variety of reasonably priced peripherals are available on the Altair ($\mathrm{S}-100$) bus, 1 should build an Altair (S-100) to LSI-11 bus adaptor (S2L). In order to start the design of an Altair bus adaptor, a number of decisions had to be made. Initially, I decided that splitting the 16 bit LSI-11 bus (also known as the "Q" bus) into two 8 bit Altair (S-100) buses, one for the even bytes and one for the odd bytes, would create too much havoc. Certainly one could purchase pairs of memory boards and allocate them in the memory address space appropriately, but when dealing with devices such as memory mapped vidco displays, adjacent bytes on the screen would be every other byte in the address space of the LSI-11. Additionally, two of every card would be needed in most cases, and adjacent memory mapped 10 ports (the only type being considered in the case of the PDP-11 architecture) would be on alternate cards. For this reason, I felt that only one Altair (S-100) bus should be connected to the bus adaptor. This implied that multiple byte reads and writes would have to be performed by the bus adaptor and some sort of state machine would have to be built to do this.

The project was made more difficult by the fact that the LSI-11 allows both 16 bit word width reads and writes, as well as single byte writes. (Single byte reads are not required, since the processor can ignore whatever data it wishes.). Additionally, a read modify write cycle is provided, and that had to be supported by the bus adaptor.

VECTOR PACKAGING MATERIALS SAVE TIME \& MONEY

S100 CARDS-100 PLUG CONTACTS-Convenient universal tinned pads and bus lines. For interface, memory expansion, breadboarding. Mount almost anything anywhere on card.


``` S100 CONNECTORS for WIRE WRAPPING or SOLDERING
```


S100 MOTHERBOARD, $\$ 29.50$. 11 positions ready for connectors. Glass epoxy, etched circuitry for passive or active termination, 12 tantalum capacitors and instructions.

PLUS revolutionary Slit-N-Wrap wiring tools, Micro-Vectorbord ${ }^{(2)}$ printed circuit kits, I.C. sockets, extenders.

Send for new catalog.

VECTOR ELECTRONIC COMPANY, Inc. 12460 Gladstone Avenue, Sylmar, CA 91342 phone (213) 365-9661, twx 910-496-1539

540777

Figure 1: Block diagram of the S2L interface which allows Altair (S-100) bus peripherals and memory to be used with the LSI-11 "Q" bus. Details of memory control, interrupt control and DMA control logic blocks are found in figures 7, 8 and 9 respectively.

Finally, both direct memory access and vectored interrupts had to be supported if there was to be any hope of running LSI-11 software on the beast which would result. It should be noted that just because a memory address responds from the Altair (S-100) bus, that doesn't mean that it couldn't be built to look to the LSI-11 as if it were a "normal" LSI-11 device interface. I wouldn't be giving up the facility to use standard PDP-11 software by building this bus adaptor, but merely making it a bit more difficult.

I should note here that what follows is an untested design based on the references given at the end of the article and some conversations with friends who have Altair (S-100) systems. A variety of Altair (S-100) schematics from Processor Technology, IMSAI, Technical Design Labs and Cromemco, to name a few, were scanned to try to insure some approximation of compatibility, but the design is neither built nor tested. I welcome any
comments from readers who are interested in this project.

The block diagram of the S2L bus interface box is shown in figure 1. It consists of three main sections devoted to memory signals, direct memory access signals and interrupt signals. The schematics for the control logic blocks may be found in figures 7 thru 9, but for the time being, I will discuss their function rather than their detailed implementation in order to simplify the discussion.

Let us first consider a memory read operation as diagrammed in figure 2. Note that all times in the timing diagrams are sequenced correctly, but, many times they are not to scale. Also, note that the clock ($\Phi 2$) may be shown as being synchronous with some signals, but this is not necessarily so since the LSI- 11 bus is an asynchronous bus. The LSI-11 indicates the start of a bus cycle by asserting the BSYNC L signal. ("Asserted" means going into a logical 1 state, not becoming +4.5 V ;

You Own the Solution, We Offer You the Problem!

If you own a microcomputer, you may face a fairly common dilemma: scarcity of applications. After the initial hardware thrill has worn off, what are you going to do with all that computing power?

Every two months, Strategy \& Tactics Magazine publishes something to do with that power. It's called a conflict simulation - a game-like re-creation of a real-world military battle or campaign. In such a conflict simulation, all the relationships of the various military units, the terrain, and the objectives are quantified and classified in a very orderly and rigidly specified manner. The unique data handling/problem solving opportunities are fascinating and plentiful - indeed, they are the chief attractions for most serious players.

Many of the subroutines in conflict simulations are naturals for computerization. For example, combat is usually
resolved by recourse to a probability table using dice; movement is regulated by digitally valued hexagonal cells; and most events are ordered by a program-like "sequence of play." In fact, the games in Strategy \& Tactics are virtually paper programs needing only your ingenuity and enthusiasm to interface with the microcomputer environment.

Every issue of Strategy\& Tactics comes with a complete conflict
simulation game plus a feature length, data-rich article on the same subject. In addition, there are other articles on historical and contemporary military affairs along with information about the latest simulation game designs offered by SPI, publishers of Strategy \& Tactics.

Send now for a one year subscription to Strategy \& Tactics - and start creating your own solutions to our fascinating problems.

Figure 2: Timing diagram of an LSI-11 memory read cycle as it is interpreted by the S2L interface and passed on to the Altair (S-100) bus.

Figure 3: Timing diagram of an LSI-11 memory write (16 bit word) cycle as it is interpreted by the S2L interface and passed on to the Altair (S-100) bus.

I am using the trailing " L " to denote negative logic, so in this case assertion means going to 0.4 V .) The negative logic used by all LSI-11 bus signals is due to the bus being implemented with open collector logic, rather than the three state logic which is common in most hobby computers. The rising edge of BSYNC should be used to latch the data and address bus lines (BDAL0 L to BDAL15 L), since at this time they contain the address for the bus cycle. When BDIN L is asserted, the first of the two Altair ($\mathrm{S}-100$) bus cycles occurs. This cycle occurs during the first complete cycle of the S2L clock that occurs after BDIN L is asserted. The first byte read is the most significant byte of the word (ie: the byte with the odd address), and the LSCMP signal is asserted during this time in order to provide the correct address on the Altair ($\mathrm{S}-100$) bus. 1 am assuming that since only 16 bit word reads may be made, all addresses on the bus during read cycles will be even addresses.

The falling edge of the S2L clock $\left(\Phi_{2}\right)$ latches the most significant byte of data enabled by the low state of the MSBCLK signal (A) in figure 2). Then the second read cycle is initiated, this time for the least significant byte (even address). When the cycle completes, the least significant byte is latched with the next S2L clock enabled by a low state on the LSBCLK signal (B) in figure 2). After this, LDEN is asserted to drive the latched data onto the LSI-11's " Q " bus, and BRPLY L is sent back to the LSI-11 to tell it that the data on the bus is valid. The termination of the BDIN signal indicates to the S2L that the data has been accepted by the LSI-11, and the S2L then terminates BRPLY L.

For this interface to work with a reasonable variety of Altair ($\mathrm{S}-100$) bus memory boards, phase 2 clock, RDY1, RDY2 and WAIT signals are provided. Any S2L clock pulse may be inhibited by one or both of the RDY lines until a slow peripheral has data ready, or has accepted data, in a manner similar to that of the 8080 and 6502 processors.

The write cycle, diagrammed in figure 3 , is almost identical to the read cycle. The differentiation between read and write is made by the LSI- 11 by asserting the BDOUT L signal rather than BDIN L. During a write, rather than having to provide two clocks to latch the bytes read, the S2L must provide

Osborne \& Associates announces two new books. . .

AN INTRODUCTION TO MICROCOMPUTERS: VOLUME 2 - SOME REAL MICROPROCESSORS VOLUME 3 - SOME REAL SUPPORT DEVICES

There are hundreds of microprocessors on the market today, but there's nothing like Volume 2 and 3. These books provide the only detailed descriptions of real products from an independent source.

NEW MICROPROCESSORS

Volume 2 describes individual microprocessors, and support devices commonly used only with the parent microprocessor. The new edition represents a massive expansion of our previous Volume 2; among other new material it includes the first detailed description of the Intel 8086 16-bit microprocessor.

NEW SUPPORT DEVICES

Volume 3 describes support devices that can be used with any microprocessor. The majority of this book is new material; in particular it has one of the most comprehensive discussions of memory devices ever printed.

NEW UPDATES

Because of the tremendous amount of material that Volumes 2 and 3 must cover, these books have been written to be updated on a regular bimonthly schedule. Six update sections for each of the two volumes may be purchased on a yearly subscription basis. Each update will describe new products, or products not covered in the original volumes; updates also provide additional information for products already included, and errata pages for previous text.

NEW FORMAT

For your convenience, Volumes 2 and 3 are printed in loose leaf form and may be purchased with or without a binder.

The 1978 edition of Volume 2 and the new Volume 3 of AN INTRODUCTION TO MICROCOMPUTERS will be available at the end of September. To order these or other Osborne \& Associates publications, check the appropriate boxes below.

These prices effective July 1, 1978	PRICE	QTY	AMT
Volume 2 - Some Real Microprocessors 1978 Edition - With Binder	\$20.00		
Without Binder	\$15,00		
Binder alone	\$ 5.00		
Volume 3 - Some Real Support Devices With Binder	\$20.00		
Without Binder	\$15,00		
Binder alone	\$ 500		
Volume 2 and 3 Updates ISubscription to six issues of each series)	\$40.00		
Volume 2 Updates only (six issues)	\$25.00		
Volume 3 Updates only (six issues)	\$25.00		
- $61 / 2 \%$. SF Bay Area residents only TOTAL -6\%. California residents outside SF Bay Area - Payment by check or money order must be enclosed for orders of 10 books or less. Sales Tax (Calif, residents only) Shipping Charges total amount enclosed			

OSBORNE \& ASSOCIATES, INC. P.O. Box 2036 DEPT. 112 Berkeley. California 94702

NAME
ADDRESS
CITY
STATE
SHIPPING CHARGES: Shipping for large orders to be arranged.
Not applicable to Update Subscriptions.
\square All foreign orders. $\$ 3.00$ per book, for air shipment
\square 4th class $\$ 0.35$ per book lallow 3-4 weeks within USA.
not applicable to discounted orders)
$\square \quad \$ 0.75$ per book, UPS (allow 10 days) in the U.S.

- $\$ 1.50$ per book, special rush shipment by air in the U.S.

Please send information on:

- Other O\&A publications
b Becoming an O\&A dealer
- School discounts
- List of foreign distributors
- More information on Volumes 2 and 3

Figure 4: Timing diagram of an LSI-11 memory write (8 bit byte) cycle as it is interpreted by the S2L and passed on to the Altair (S-100) bus.

ALTAIR (S-100) BUS SIGNALS

Figure 5: Timing diagram for the initiation of DMA activity on the Altair (S-100) bus between memory segments on that bus and peripherals on that bus. (DMA from an Altair (S-100) bus peripheral to peripherals or memory on the LSI-11 "Q" bus is not supported in this design.)
a byte selection signal (DOUTSEL) to a multiplexer which will determine which half of the word will be written at any time. The timing is as in the figure. As in the case of the read, I assume that only word width writes will occur with a word (even) address.

In order to perform a single byte write cycle, the S2L performs a normal write cycle, except that it skips the first of the two Altair ($\mathrm{S}-100$) bus writes. Since it is the write to the address with the inverted lowest bit which is skipped, the correct byte is written in half of the time, and the cycle terminates normally. The diagram for this is shown in figure 4.

The LSI-11 bus supplies signals with which the memory and device interfaces reply to the LSI-11 when 10 transactions take place (BRPLY L). The S2L adaptor will respond with a BRPLY L signal whether the address requested is implemented or not. This will cause problems with some LSI-11 software and firmware, especially the firmware ODT LOAD command which sizes memory automatically by sensing when memory addresses fail to set a BRPLY L response. Also, the system of reply signals has another advantage which will be lost when using the S2L adaptor: when attempting to write to ROMs on the LSI-11 system, no BRPLY L is generated and a bus timeout error occurs, which is a good error detection system. The S2L will effectively eliminate this facility.

The procedure for dealing with direct memory access (DMA) is much easier on the Altair ($\mathrm{S}-100$) bus than on the LSI-11 bus, and the S2L interface enables the Altair (S-100) devices to take advantage of the simpler protocol. Looking at figure 5, the device starts the DMA cycle by asserting the HALT L signal to request use of the bus. The assertion of BDMR L by the S2L requests the use of the bus by a peripheral of the LSI-11. The simultaneous assertion of BDMGI L and the termination of BSYNC L and BRPLY L indicates that the DMA privilege has been granted by the LSI-11. The S2L then responds by terminating the BDMR signal, and by asserting both the BSACK L signal to tell the LSI-11 that the bus is in use, and the HLDA L signal to tell the Altair bus peripheral that it may now use the bus. Note that if more than one peripheral wishes to perform direct memory

Choose from these Top Selections

HOW TO BUILD A COMPUTER CONTROLLED ROBOT by Tod Loofbourrow

\square This book combines the dream of robotics-to create an intelligence other than humanwith the reality, by providing both hands-on experience with robotics and an application of a microprocessor. This book details the step-by-step directions for building a robot, controlled by a KIM-1 microprocessor, with the complete control programs clearly written out. \$7.95.

THE ACOUSTICAL FOUNDATIONS OF MUSIC, subtitled MUSICAL SOUND: A LUCID ACCOUNT OF ITS PROPERTIES, PRODUCTION, BEHAVIOR, AND REPRODUCTION by John Backus

\square This is a readable and informative guide that covers the physiological properties of sound, the ear and its perception of sounds, the effect of acoustic environment, the acoustical behavior of musical instruments, and the various applications of electronics and computers to the production, reproduction and composition of music. 312 pp . Only $\$ 10.95$ in hardcover.

THE CHEAP VIDEO COOKBOOK by Don Lancaster

The latest in Don Lancaster's series of hardware books, continues where the TV Typewriter Cookbook leaves off. 256 pp. \$5.95.
COMPUTER DATA DIRECTORY edited by Brad Lynnet

\square This is a new, comprehensive index containing profiles of over 675 small computer manufacturers, stores, distributors, publishers, electronics dealers, and computer clubs. 111 pp . $\$ 4.98$.

PERIODICAL GUIDE FOR COMPUTERISTS January-December 1977 by E Berg Publications

\square This is a comprehensive index of all the articles, book reviews, editorials, letters, record reviews, and miscellaneous small inserts and notes from the top 25 magazines in the field. An indispensable guide for anyone in the fields of personal computing, amateur radio, and electronics. 72 pp. $\$ 5.00$.

UP YOUR OWN ORGANIZATION! by Donald M Dibble

A great handbook on how to start and finance a new business, this is the most comprehensive reference we've seen on the subject. 372 pp . Available for $\$ 14.95$ in hardcover.

FUNDAMENTALS OF RECORDKEEPING AND FINANCE FOR THE SMALL BUSINESS by Robert C Ragan CPA \& Jack Zwick PhD

Once you have your organization or business up and running, records must be kept. Here is a
Abstract

WRITING AT WORK: DO'S, DON'T'S, AND HOW TO'S by Ernst JacobiThe goal of this informative book is "to turn writers into communicators" -addressed to the educated business or professional person. $198 \mathrm{pp} . \$ 7.95$.

\section*{THE FIRST BOOK OF KIM edited by Jim Butterfield, Stan Ockers \& Eric Rehnke}

\squareAttention KIM users! Here is the book you've been waiting for. In it you'll find a beginner's guide to the MOS Technology KIM-1 Microcomputer as well as an assortment of games, diagnostic and utility programs for testing both the computer and external equipment, and chapters on expanding memory and controlling analog devices. $176 \mathrm{pp} . \$ 8.95$.

to receive a free copy of the new bits catalog, just circle the number below on the inguiry card at the back of this magazine; or send us a postcard with your request. the catalog offers over 150 books from WHICH TO CHOOSE.

For your convenience in ordering, please use this page plus the order form on page 111. You may photocopy this page.
0 DIAL YOUR BANK CARD ORDERS TOLL FREE 800-258-5477.
Circle 36 on inquiry card.

ALTAIR (S-100) SIGNALS

Figure 6: Timing diagram of the S2L interface's response to an Altair (S-100) bus vectored interrupt signal. When one of the eight possible vectored interrupt signals is asserted (low), the S2L interface responds by creating a vectored interrupt sequence for the LSI-11 "Q"bus.
access, neither will be able to determine easily which device is being selected. Whenever the Altair ($\mathrm{S}-100$) bus peripheral is finished with the bus, it terminates the HALT L signal, causing the S2L to terminate the BSACK L signal, releasing the bus for the LSI-11 to use.

Note that this interface will not allow Altair (S-100) bus devices to perform DMA to any memory which is on the LSI-11 side of the S2L; I felt that the simplicity of the interface as shown, combined with the
complexity of the extended function interface, was justification for leaving things as shown. In any event, one justification for the development of this adaptor was that Altair bus memory was cheaper than DEC memory, so one can expect most of the system memory to be Altair ($\mathrm{S}-100$) bus memory.

One other point to make is that the LSI-11 on board memory is dynamic and requires refreshing, which the LSI-11 does by microcoded routines. This microcoded refresh creates bursts of bus activity every 2 ms , lasting about $130 \mu \mathrm{~s}$. These bus activations can cause problems in a real time environment, and can cause data overruns in DMA devices if these devices do not allow enough internal buffering to last the $130 \mu \mathrm{~s}$. Although nonburst-mode refresh is possible, the prices which DEC asks for the module are pretty high for the facility. For this reason, use of Altair ($\mathrm{S}-100$) bus static memory and disabling of the KD11-F's dynamic memory and refresh microcode might be useful to some people.

The eight vectored interrupt lines on the Altair (S-100) bus lend themselves directly to interfacing with DEC's vectored interrupt scheme. Looking at figure 6 , the timing for the S2L's interrupt sequence is given. Whenever one of the vectored interrupt inputs from the Altair ($\mathrm{S}-100$) bus (VI0 thru VI7) is asserted, BIRQ L is sent back to the LSI-11 to request interrupt service. The

Figure 7: Memory Control Logic.

BASIC BASIC by James S Coan

If you're not already familiar with BASIC, James Coan's Basic BASIC is one of the best ways to learn about this popular computer language. BASIC (which stands for Beginner's All-Purpose Symbolic Instruction Code) is easy to learn and easy to apply to many problems. Basic BASIC gives you step-by-step instructions for using a terminal, writing programs, using loops and lists, solving mathematical problems, undertanding matrices and more. The book contains a wealth of illustrations and example programs, and is suitable for beginners on many different levels. It makes a fine reference for the experienced programmer, too. $\$ 8.95$.
ADVANCED BASIC by James S Coan

\squareAdvanced BASIC is the companion volume to James Coan's Basic BASIC. In this book you'll learn about some of the more advanced techniques for programming in BASIC, including string manipulation, the use of files, plotting on a terminal, simulation and games, advanced mathematical applications and more. Many useful algorithms are covered, including some clever sorting techniques designed to reduce program execution time. As with Basic BASIC, there are many illustrative example programs included. BASIC doesn't have to be basic with Advanced BASIC! \$7.95.
unmpinin Structured
Programming in $A P L$

8080A/8085 ASSEMBLY LANGUAGE

 PROGRAMMING by Lance A Leventhal\squareThis book provides an introduction to assembly language programming for the 8080 A and the 8085 processors. Included are sections on the instruction sets for the two processors, assemblers, simple program examples, code conversion, tables and lists, subroutines, 10 , interrupts, program design, and debugging. Many examples and illustrations are included. $467 \mathrm{pp} . \$ 8.50$.

ASSEMBLY LEVEL PROGRAMMING FOR SMALL COMPUTERS by Walter J Weller

等
One of the most professionally produced books we've seen. From front cover to back, this book is clear, detailed, and beautifully produced. Using a pseudo mnemonic assembly language, Walter Weller takes you inside the whys and hows of table referencing, data stacks, number conversions, floating point arithmetic, and much, much more. Surely one of the most complete books on this topic. $276 \mathrm{pp} . \$ 14.95$ hardcover.

STRUCTURED PROGRAMMING IN APL by Dennis Geller \& Daniel P Freedman

\square '. . . Our approach is to present the fundamentals of structured programming in APL. Students may go on from here to learn to write faster programs or more compact programs, or more aesthetic programs; this we hope, is where they learn to write working programs." From the Preface. \$9.95.

APL AN INTERACTIVE APPROACH 2nd edition, revised by Gilman \& Rose

Here's an excellent way to introduce yourself to the APL language. APL is rapidly becoming one of the most popular high level languages in the computer field because of its clarity and conciseness. Gilman and Rose have extensively updated their popular book to include the latest information about APL and the various forms now in use. Since the examples are all carefully spelled out, this book is particularly recommended for those who do not have access to an APL terminal. Answers to all problems are included. \$11.95.
Break the Language Barrier

AND COMMUNICATE WITH YOUR COMPUTER

The Microcomputer Bookstore
25 Route 101 West
Peterborough, NH 03458
\square My check enclosed:
Check \#: \qquad

YSSA	Amount:
\square	\square My card $\#: \square$

Expires:
\qquad
Address
City_________________

Signature \qquad

Figure 8: Direct memory access control logic.

LSI-11 will respond by asserting BIAKI L and BDIN L, the former to request that an interrupt vector be placed on the bus, and the latter to indicate that data is coming in on the bus. The S2L responds to this by placing the vector on the bus, and by asserting BRPLY L, to inform the LSI-11 that the bus value is now valid data. The termination of BDIN L and BIAKI by the LSI- 11 results in the S2L's termination of BRPLY L and the release of the bus for other uses. At this point, an interrupt should occur. Each of the eight interrupt lines is prioritized and will cause an LSI-11 interrupt when asserted. The LSI-11 vector address for each Altair ($\mathrm{S}-100$) bus vectored interrupt line will be the value programmed in the read only memory.

I am not going to go through the schematics in figures 7 thru 9 in detail, since their function is fairly well-defined by the timing diagrams and the above discussions. However, a few notes are in order. The use of the 7495 is a bit subtle since the load, which occurs via CLK2 whenever a BDIN or

BDOUT signal is asserted, changes the mode of the shift register from LOAD to SHIFT. This allows the first write to be skipped conditionally upon the state of the BWTBT L signal at the start of the write cycle, and allows the shifting to stop when the one bits coming in from the serial input reach the third flip flop. The latches used for most significant byte and least significant byte storage are 8551 s since they have three state buffers, which allow their output to be placed on the LSI-11 bus conditionally.

REFERENCES

"Introducing the S-100: Standard Small Computer Bus Structure," by William M Goble, Interface Age, June 1977, page 66.

LSI-11, PDP-11/03 User's Manual (EK-LSI11-TM002), DEC, 1975.

Microcomputer Handbook, DEC, 1976.

Also: numerous Altair ($\mathrm{S}-100$) bus peripherals schematics borrowed from friends served as background information for this discussion.

the electric pencil II ${ }^{\text {"' }}$

The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a string of continuous characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since line endings are never delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes as needed in full view of the user. The typing of carriage returns as well as word hyphenation is not required since lines of text are formatted automatically.

As text is typed in and the end of a screen line is reached, a partially completed word is shifted to the beginning of the following line. Whenever text is inserted or deleted, existing text is pushed down or pulled up in a wrap around fashion. Everything appears on the video display screen as it occurs which eliminates any guesswork. Text may be reviewed at will by variable speed scrolling both in the forward and reverse directions. By using the search or the search and replace function, any string of characters may be located and/or replaced with any other string of characters as desired.

When text is printed, The Electric Pencil II automatically inserts carriage returns where they are needed. Numerous combinations of line length, page length, line spacing and page spacing allow for any form to be handled. Character spacing, BOLD FACE, multicolumn as well as bidirectional printing are included in the Diablo versions. Right justification gives right-hand margins that are even. Pages may be numbered as well as titled. This entire page fexcepting the large titles and logo) was printed by the Diablo version of The Electric Pencil II in one pass.

Now on CP/M

You've probably seen The Electric Pencil in action by now. It's the most powerful 8080/z80 character oriented word processor on the market today. Michael Shrayer is now proud to present the new Electric Pencil II.

NEW FEATURES: !!! CP/M Compatible !!! Disk Operating System Supports Four Disk Drives !!! Simple File Management !!! Quick and Easy Disk Storage and Retrieval !!! Dynamic Print Formatting !!! Multicolumn Printing !!! Print Value Chaining !!! Page-at-a-time Scrolling !!! New Bidirectional Multispeed Scrolling Controls !!! New Subsystem with Print Value Scoreboard !!! Automatic Word and Record Number Tally !!! Cassette Backup Capability !!! Full Margin Control !!! End-of-Page Control !!! Non-Printing Text Commenting !!! Line and Paragraph Indentation !!! Centering !!! Underlining !!! BOLD FACE !!!

$$
\begin{array}{lllllllllllllllll}
\text { W } & I & D & E & S & C & R & E & E & N & V & I & D & E & O & ! & !
\end{array}
$$

Available to Imsai VIO video users for a huge 80×24 character screen !!

HAVE WE GOT A VERSION FOR YOU?

The Electric Pencil II operates with any $8080 / 780$ based microcomputer that supports a CP/M disk system and uses a Imsai VIO, Processor Technology VDM-1, Polymorphic VTI, Solid State Music VB-1B, Vector Graphic Flashwriter or any similar memory mapped video interface. Specify when using CP/M that has been modified for Micropolis or North Star disk systems as follows: For North Star add suffix A to version number, for Micropolis add suffix B to version number, e.g. SS-IIA, DV-IIB.

Vers.
Video
SS-II
SP-II
SV-II
SI-II
DS-II
DP-II
DV-II
DI-II VIO

Printer
TTY or similar TTY or similar TTY or similar TTY or similar Diablo 1610/20 Diablo 1610/20 Diablo 1610/20 Diablo 1610/20 \$300.

Price
$\$ 225$.
\$225.
\$225.
$\$ 250$.
\$275.
\$275.
michael shrayer softyare
1253 Vista Superba Drive Glendale, CA 91205 (213) 956-1593

coming attractions

Sort \& Merge Utility !!!
The NEC printer package !!!
The HELIOS Electric Pencil !!!
Pencil to $C P / M$ file conversion !!!
CP / M to Pencil file conversion !!!

The Electric Pencil I is still available for non CP/M users:

Demand a demo from your dealer:

Math in the Real World

Joel Boney Motorola Ine 6707 LaSalle Austin TX 78723

About the Author

Joel Boney is currently employed by Motorola in its Integrated Circuits Division plant in Austin TX. He is responsible for the software input in the system and architectural design for future Motorola processors and peripheral chips. He is currently involved in the MC6809 and MC6805 projects.

Your system is completed. You bought a kit with lots of memory and spent many hours assembling it. The manufacturer's manuals are dog eared. You've read various works on computer programming which inspired you to write integer multiply and divide routines and create your own mathematical statement processor. The routines are thoroughly debugged and now you are ready to enter your first mathematical statement: $5 \div 2=$. The computer promptly responds with ' 2 '. Well, that's not really wrong in integer arithmetic where remainders are often dropped, but most of us learned in the third grade that $5 \div 2$ really equals 2.5 . How do you get your computer to answer 2.5 instead of 2? Read on. The answer lies in floating point or real representation and manipulation of numbers.

Floating Point

A floating point number is a number that can be representated by an integer portion and a fractional portion. The number 2.5 is a floating point or real number; so arc 3.3, 0.9 and 2.0. All can be represented by an integer part and a fractional part. The numbers: 1,8 and 17 are not real since they have no fractional portion. Numbers in scientific notation such as 2.37×10^{8} are real.

Before jumping head first into how to represent floating point numbers in the computcr, an understanding of how floating point numbers are representated in base ten is instructive. For example, in the number 125.76, the digit positions correspond to:
$\left.\begin{array}{|lllllll|}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right) 0$

Figure 1: Format for the arrangement of data in the computer's memory for the binary floating point representation described here. The high order bit of byte 2 will usually be ' 7 ' because of normalization. The only time that this will not happen is when the number being represented is zero.

$1 \times 10^{2}=$	100.00
$2 \times 10^{1}=$	20.00
$5 \times 10^{0}=$	5.00
$7 \times 10^{-1}=$	0.70
$6 \times 10^{-2}=$	0.06

The decimal point merely tells where the boundary exists between the positive powers of ten and the negative powers of ten. Numbers to the left of the decimal point are positive powers of ten and those to the right are negative powers of ten. In binary (base 2) numbers the same rule applies. The base 10 equivalent of the binary number 101.11 is:
$1 \times 2^{2}=1 \times 4=4.00$
$0 \times 2^{1}=0 \times 2=0.00$
$1 \times 2^{0}=1 \times 1=1.00$
$1 \times 2^{-1}=1 \times .5=0.50$
$1 \times 2^{-2}=1 \times .25=\frac{0.25}{5.75}$

The ' \because, which is now called a binary point, denotes the division between positive and negative powers of two. This concept can be expanded to any base, but here we will only consider base 10 and base 2 . In gencral the ' \because might be called the "base point."

Quite often it is more convenient to represent real decimal numbers in scientific notation. This allows both very small and very large numbers to be written with the fewest number of digits (eg: 3.75×10^{-10}, rather than 0.000000000375). Numbers in scientific notation are represented by three parts: integer portion, fractional portion and exponent. In order to conserve memory within the computer and to make calculations have fewer steps, it is more convenient to represent all real numbers with only a fraction and an exponent. This is accomplished by moving all digits to the right of the base point while adjusting the exponent appropriately. Thus all numbers are of the form: . FFF $\times 10^{E E}$ in base 10 (where "FFF" are the fractional digits and "EE" is an expression for the power of ten exponent). This change of form does not in any way alter the value of the number or change the accuracy of the subsequent calculations. For example: 3.75×10^{2}

becomes 0.375×10^{3} thus eliminating the integer portion of the number.

If the fractional portion of a number has a fixed number of digits as is the case within a computer, then the greatest accuracy is achieved if the digit following the base point is nonzero. Using a 5 digit fraction, the number 0.37868×10^{5} is more accurate than 0.03787×10^{6}. We now have formulated two rules that will make calculations easier and maintain maximum accuracy:

- Floating point numbers will consist of only a fraction and an exponent.
- Floating point numbers will be adjusted so that no zeros immediately follow the base point.

The only exception to these rules is the number zero which is allowed to violate rule two. Manipulating numbers so that they conform with the above rules is called normalization.

All of the above examples were in base ten, but as might be expected the concepts are just as valid in base two except the exponent is now a power of two instead of ten. Therefore, numbers are of the form: .FFF $\times 2^{E E}$ (where FFF and $E E$ are now hexadecimal representations of binary numbers). At this point we must decide upon a specific format to use within the computer that will give sufficient accuracy without wasting memory. A fraction containing 24 bits gives an accuracy of $1 / 2^{24}$ or about seven decimal places. A two's complement exponent of base 2 containing seven bits gives an exponent range of approximately $\pm 10^{ \pm 19}$. This format has sufficient magnitude range for many applications and can represent numbers over 38 decimal orders of magnitude.

There are several common formats for floating point numbers. In some, the exponent is a power of 16 and a fraction is considered normalized if any of the four most significant bits are set. Exponents are often represented in "excess" form

Listing 1: Algorithm for inputting real numbers. This algorithm will result in a floating point number in the four byte form described in this article.

```
Begin
    Clear exponent and integer of answer
    Clear fraction of answer (4 bytes)
    Do while input character }\not=\mathrm{ ' ''
            If input character = ' }-\mathrm{ ' then set fraction sign = 1
            If input character is a number then
                Convert input character from ASCII to binary
                Integer: = integer * 10 + input number
            Endif
    Enddo
    N:= l
    Do while input character = number and N < 8
            Convert input character from ASCII to binary
            Fraction: = fraction + (Table(N) * input number)
            N:=N+1
    Enddo
    Do while integer > 0
            Shift integer and fraction one bit right
            Increment exponent
    Enddo
    Normalize answer
    Roundup answer
    Delete integer portion and fraction byte 4
End
```

instead of two's complement form. In this form some appropriate number is added to all exponents so they are all positive. The specific format I chose consists of four 8 bit bytes for each number and is shown in figure 1. The high order bit (bit 7 typically) of byte one is the algebraic sign of the number ($1=-$). The low order seven bits of the first byte (bit 6 to bit 0) are the signed two's complement value of the exponent. Bytes two, three and four contain the normalized unsigned fraction with the understood binary point preceding byte two. Note that bit seven of byte two is 1 for all normalized numbers except zero because of normalizing rule two.

Some sample numbers and their decimal equivalents are given in table 1.

Ins and Outs

Now that we've defined a format for real numbers, how can we put it to use? Several subroutines will be required. We need to be able to read real numbers from a terminal
Begi

Table 1: An example of binary floating point numbers and their decimal equivalents.

\qquad

and convert them to our defined format and vice versa. Also, we need to outline how we can operate on real numbers once they are converted. First, the ins and outs.

The conversion to and from the terminal

Table 2: Decimal fraction to binary equivalent conversions. The table covers only the first seven digits since the accuracy of the routines we are considering is only seven places. This conversion assumes that the exponent is set to zero.

Decimal						
0.1	$=$	00011001	10011001	10011001	10011001	$=10^{-1}$
0.01	$=$	00000010	10001111	01011100	00101000	$=10^{-2}$
0.001	$=$	00000000	01000001	10001001	00110111	$=10^{-3}$
0.0001	$=$	00000000	00000110	10001101	101111000	$=10^{-4}$
0.00001	$=$	00000000	00000000	10100111	11000101	$=10^{-5}$
0.000001	$=$	00000000	00000000	00010000	11000110	$=10^{-6}$
0.0000001	$=$	00000000	00000000	00000001	10101101	$=10^{-7}$

Example 1.

| 1×0.10 | $=$ | 1 | \times | 00011001 | 10011001 | 10011001 | 10011001 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | $\times 0.01$ | $=$ | x | 00000010 | 10001111 | 01011100 | 00101000 |

Example 2.

| Integer | Fraction | | | | Exponent |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00001101 | 00100110 | 01100110 | 01100110 | 01100001 | 00000000 |

Example 3.

| Integer | Fraction | | | | Exponent |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00000000 | 11010010 | 01100110 | 01100110 | 01100110 | 00000100 |

Example 4.

Exponent Fraction
$00000100 \quad 11010010 \quad 01100110 \quad 01100110$

Table 3: Portion of table used to convert the exponent of 2^{e} into decimal notation of the form F× 10 Exp.

is the most difficult part of handling floating point numbers. An attempt is made here to outline a procedure that is well adapted to microprocessors. Several other algorithms are outlined in The Art of Computer Programming, volume 2 by Donald Knuth (see references following this article) including information on converting to and from scientific notation.

Suppose the input string 13.05 is typed at a terminal. Since the computer will see the characters as they are typed left to right, the program in listing 1 can easily convert any number preceding the decimal point into a binary integer. In this example the 13 becomes 00001101, assuming an 8 bit integer. Once the decimal-point is read the fraction can be calculated if a table of unnormalized fractions corresponding to the binary equivalent of 10^{-n} is stored in memory. Since there is no need for n to be larger than the accuracy of the final format, table 2 was calculated with n equal to seven. Table 2 was calculated using a BASIC program to determine which bits in the fraction should be set. Note that the fractions in this table are 32 bits wide instead of the 24 bits required in the final answer. This is done to insure the accuracy of the conversion. Using this table and starting with a zero exponent byte and zero in a 4 byte fractional portion in the answer, when the first number following the decimal point is typed on the terminal it is multiplied by the table value of the fraction for 0.1 and added to the fraction of the answer. Subsequent inputs are multiplied by $0.01,0.001$, etc, and added to the answer until the bottom of the table is reached after seven inputs or the input string is exhausted. Since the input numbers are 0 thru 9 , it is easier and takes less time in a microprocessor to do the multiplication by successive additions. For the example input, 13.15, the fraction is calculated by example 1. Including the integer portion and the exponent the input becomes the representation in example 2. Normalizing this by shifting the integer and fraction four bits to the right and adding 4 to the exponent it becomes example 3.

Now the integer portion and the low order byte of the fraction can be deleted after incrementing the next to low order byte if bit seven of the low order byte was set (rounding up). See example 4 for the final value in the correct 4 by te format. Had the input number been -13.05 instead of +13.05 , the only difference in the number generated would be bit seven of the exponent (fraction sign bit) would be set. Note that if the input had been something like 0.005 the normalizing process described above would require left shifts of the frac-
tion while decrementing thus creating a negative exponent.

Outputting real numbers is slightly more difficult. The fraction and exponent part must be dealt with simultaneously since conversion of the exponent from base 2 to 10 will affect the fraction. Due to this complexity, it is preferable to output real numbers in scientific notation. The output form that is used is $1305 \mathrm{E}+2$ instead of $0.1305 \times 10^{+2}$.

To accomplish the conversion we will need a rather large (4 by 128 byte) table to convert 2^{e} (where e is the exponent of the real number to be output) to $\mathrm{F} \times 10^{\mathrm{Exp}}$ (where F is an unnormalized fraction in our 3 byte notation and Exp is the power of 10 of the number we wish to print. A portion of the middle of the table is given in table 3.

The base 2 exponent e is not a member of the table, but is used as the index into the table to retrieve values of Exp and F. Using e we access the table and multiply the fraction F times the fraction of the number we wish to output using a multiply fraction subroutine described later. The resultant fraction of this multiplication will be the fraction that must be converted and printed followed by the letter E and the decimal value of Exp, including its sign, from the table to obtain the desired scientific notation.

Printing of the fraction uses the same table as used for converting to real format. In the first iteration the binary fraction for 0.1 is subtracted from the fraction until the fraction goes negative. For each subtraction except the last a counter is incremented and becomes the number to print. After the number is printed, the fractional value of 0.1 is added back into the fraction. This whole process is effectively a binary divide by 0.1 . After 0.1 is added back, the procedure is repeated for $0.01,0.001$, etc, until all seven output digits are printed. This process is summarized in listing 2.

It should be noted that the above algorithms pose particular problems on various implementations and the programmer should be cautious of such things as overflow and carry flags as well as round off errors while doing the multiprecision operations.

The Arithmetic

Now we have a format for floating point or real numbers and we know how to input and output them. All that remains is the internal manipulation subroutines. All these subroutines require two normalized real arguments, which in the following text and listings will be referred to as argument 1 (ARG1) and argument 2 (ARG2). They all

Listing 2: Algorithm for outputting real numbers. This algorithm uses table 2 to convert the fraction. The output algorithm shifts the fraction and integer part left until the exponent equals zero or bit 7 of the integer word is set to 1. If bit 7 of the integer word is set, any further shifts will destroy the number.

```
Type entry = record of
                    Exp: }8\mathrm{ bit binary
                    F: 24 bit fraction
Var conv-table: array [ -64..63] of entry
            table: array [1..7] of 24 bit fraction
(* e is the base 2 exponent of the number to be output*)
Begin
        Fraction: = conv-table[e].F * fraction of number to be output
        If Fraction sign = 1 then print ' -'; endif
        Print decimal point
        N:= l
        Do while N <8
            CTR: = - 1
            Do while fraction is positive
                Fraction:= fraction-table(N)
                CTR:= CTR +1
            Enddo
            Fraction: = fraction + table (N)
            Convert CTR to ASCII and print it
    Enddo
    Print 'E'
    If conv-table[e].Exp is negative then print '-'; Endif
    Convert conv-table[e].Exp to decimal ASCII and print it
End
```

create a normalized real answer (ANS). We will use the predefined format except that during the internal manipulation some extra bits are occasionally needed at the right of the fraction to retain accuracy. Only a couple of bits are necessary, but since most microprocessors have 8 bit words, it is easier to add a whole byte to each fraction thus creating a 4 byte fraction instead of the prescribed three bytes. This fraction will be rounded to a 3 byte fraction in the defined format before returning to the caller of the manipulation subroutines.

Addition is defined as ARG1 + ARG2 = ANS. Once again the base 10 analogy will be useful in understanding how to implement an algorithm. If we desire the sum of the two normalized real numbers 0.375×10^{5} and 0.22×10^{4}, we must first make the exponents equal before we can add the fractions. Once the exponents are equal, the fractions can be added and the answer given the common exponent. Thus, the example becomes:

$$
\begin{array}{r}
0.375 \times 10^{5} \\
+0.022 \times 10^{5} \\
\hline 0.397 \times 10^{5}
\end{array}
$$

To make the exponents equal in this example, the number with the smaller exponent was shifted right n decimal digits and its exponent incremented by n. It is desirable to adjust the smaller number since shifting the larger number would require left shifts that might result in numbers being shifted into the integer portion which
would violate the defined format. Any shifting, however, can create accuracy problems in a fixed digit (or bit) computer, since if the magnitude of two numbers differs by a large amount, their sum will be equal to the larger number. For example, if we had a calculator with six digits for a fraction and we added 0.300×10^{8} and 0.20×10^{0}, the answer would be 0.300000 $\times 10^{8}$ since shifting 0.20 seven digits to the right would cause it to become zero.

Listing 3: Algorithm for real addition and subtraction. Before additions or subtractions can take place the numbers must be manipulated so that their exponents are equal.

```
Begin
    Do while exponent ARGl # exponent ARG2
        If exponent ARGl > exponent ARG2 then
            Shift fraction ARG2 right one bit
            Increment exponent ARG2
        Else
            Shift fraction ARGl right one bit
            Increment exponent ARGl
        Endif
    Enddo
    If fraction ARGl is negative then 2's complement fraction ARG1;Endif
    If fraction ARG2 is negative then 2's complement fraction ARG2;Endif
    If operation is addition then
        Fraction ANS: = fraction ARG1 + fraction ARG2
    Else
        Fraction ANS: = fraction ARG1 - fraction ARG2
    Endif
    Exponent ANS: = exponent ARG1 or ARG2
    Normalize ANS
    Roundup ANS
End
```

Listing 4: Real multiplication algorithm. When multiplying real numbers it is not necessary to worry about the exponents being equal. Multiplication can take place under any conditions.

```
Begin
    Fraction ANS: = fraction ARG1 * fraction ARG2
    Exponent ANS: = exponent ARG1 + exponent ARG2
    Set overflow flag if exponent overflowed or underflowed
    Normalize ANS
    Roundup ANS
End
```

Listing 5: The real division routine must check to see if the dividing number is zero. If it is, the overflow flag is set and the routine is ended. The fractional part of the number to be divided should always be smaller than the dividing number. This is assured by shifting the number to be divided one place left and incrementing the exponent.

```
Begin
    If fraction ARG2 = 0 then
        Set overflow flag
    Else
            Shift fraction ARGl one bit right
            Increment exponent ARGl
            Fraction ANS: = fraction ARG1/fraction ARG2
            Exponent ANS: = exponent ARG1 - exponent ARG2
            Set overflow if exponent overflowed or underflowed
            Normalize ANS
            Roundup ANS
        Endif
End
```

Binary real addition is identical to the above decimal example except the shifts are by n binary bits and the exponent is a power of 2 . The algorithm in listing 3 first checks to see if the exponents are equal. If not equal, the fraction of the smaller argument is shifted one place right and its exponent incremented. This continues until the exponents are equal. Since our format stores the fractions as absolute unsigned values, all the fractional portions of negative fractions must be two's complemented before addition can proceed. Once the negation of any negative fractions is completed, the fractions can be added by a multiprecision addition. The fractional portion of the answer is then composed of the sum of the adjusted fractions and the exponent becomes the common exponent. This answer may need to be normalized. In fact, all the manipulation subroutines will require a check for normalization before exit, and therefore a subroutine to normalize arguments is desirable.

Subtraction is defined as ARG1 - ARG2 $=$ ANS. The subtraction routine is identical to the addition routine except a multiple precision subtract is substituted for the addition. In most implementations the addition and subtraction routines are the same routine with a flag to indicate whether a subtraction or addition of the fraction should occur.

Multiplication of real numbers is easier than addition since the fractions can be multiplied regardless of the exponents. The multiplication algorithm in listing 4 is defined as: ARG1 * ARG2 = ANS. The multiplication of the fractions involves a 32 bit by 32 bit multiplication, but only the most significant 32 bits of the result are necessary which reduces the complexity of the multiplication somewhat.

For details on writing a multiplication subroutine check the references, or better yet check the user group library for your microprocessor to see if one already exists. The biggest problem with real multiplication is that overflow or underflow of the exponent can occur during the addition of the exponents. Therefore, the subroutine must take precautions to check for overflow or underflow and flag the result as erroneous if either occurred. The answer obtained by the above algorithm may need to be normalized before returning it to the caller.

Division is similar to multiplication and is defined as ARG1/ARG2 = ANS. Since most division algorithms will not terminate if ARG2 is equal to zero, the division algorithm in listing 5 first checks the fraction of ARG2 to see if it is zero. If it is zero, the algorithm should return with an
overflow indication. Also, many division algorithms require that the fraction of ARG1 be smaller than the fraction for ARG2. The division routine could check to see if this condition exists, or better yet, since we know both numbers are normalized (ie: the most significant bit is set) and since we have added an extra byte for accuracy, we can always shift ARG1 one bit to the right and insure that it is less than ARG2. Of course, we must add one to ARG1's exponent to compensate for the right shift. Now we can proceed with a normal 32 by 32 bit divide of the fractions. Once the fractional portion of the answer is complete, the exponent of the answer is equal to the exponent of ARG1 minus the exponent of ARG2. Again precautions must be taken to insure (or at least flag) that no underflow or overflow of exponents has occurred. The answer may need to be normalized.

Conclusion

This article has attempted to give an overview of what is neccssary to create a package of floating point subroutines that can be used for many applications. Floating point manipulation is not trivial and some microprocessors will be better adapted to the task than others. Instructions that can handle multiple precision arguments such as "add with carry," "subtract with carry" in conjunction with shifts and rotates on memory make the implementation simpler. Be cautioned that the procedures outlined are general and any particular microprocessor will require special procedures to adjust for processor peculiarities. In any case, it scems the majority of the code is dedicated to shifting fractions right or left to insure accuracy or in checking for various error conditions.

On the positive side, a good dcbugged binary floating point package takes less memory and runs faster than the decimal floating point implemented in many BASIC packages. The add, subtract, multiply and divide routines lay the framework for the programmer to create more exotic subroutines such as sine, cosinc, etc. Best of all, when we ask our computer to divide 5 by 2 , it responds with 2.5.■

REFERENCES

1. Knuth, Donald E, The Art of Computer Programming, volume 2, Addison-Wesley, 1969.
2. Digital Computer Design Fundamentals, McGraw-Hill, 1962, pages 70 thru 73.
3. Boney, Joel, Floating Point Package, Motorola User Group Library, 1976.

NEW SOFTWARE AVAILABLE FOR North Star \star Computers

The following software is now being offered for use on the North Star disk systems and Horizon Computers.

CP/M'~ FDOS and Utilities		From $\$ 145$
Microsoft FORTRAN-80		$\$ 400$
Microsoft COBOL-80		$\$ 625$
Microsoft Disk Extended BASIC		$\$ 300$
Xitan SUPER BASIC	(A3)	$\$ 99$
Xitan DISK BASIC	(A3+)	$\$ 159$
Xitan Z-TEL Text Editor	(A3. A3+)	$\$ 69$
Xitan Text Output Processor	(A3. A3+)	N/A
Xitan Macro ASSEMBLER	(A3. A3+)	$\$ 69$
Xitan Z•BUG	(A3+)	$\$ 89$
Xitan LINKER	(A3+)	$\$ 69$
Xitan Package A3 (as keyed above)		$\$ 249$
Xitan Package A3+ (as keyed above)		$\$ 409$
Xitan Fortran IV	$\$ 349$	
CBASIC Compiler/Interpreter BASIC		$\$ 95$
MAC Macro Assembler	$\$ 100$	
SID Symbolic Instruction Debugger		$\$ 85$
TEX Text Formatter	$\$ 85$	
BASIC-E Compiler/Interpreter BASIC	$\$ 30$	
Accounts Receivable	$\$ 750$	
NAD Name \& Address Processor	$\$ 79$	
QSORT Disk File Sort/Merge Utility		$\$ 95$

Available from computer stores nationwide or order direct from:

LIFEBOAT ASSOCIATES
164 W. 83rd Street
New York, N.Y. 10024
(212) 580-0082

The KIM to S-100 bus Interface/Motherboard

- Combines the power of the 6502 with the flexibility of the $\mathrm{S}-100$ bus
- Attaches to any unmodified KIM
- Complete interface logic and fully buffered motherboard in one unit
- On-board regulation of power for KIM
- Eight slots of S-100 compatibility for additional RAM, Video and I/O boards, PROM Programmers, Speech processors.
- Includes all parts, sockets for ICs, one 100 pin connector, and full Assembly/Operating documentation
- Kit \$125, Assembled $\$ 165$
- All units shipped from stock

FORETHOUGHT PRODUCTS
P.O. Box 386-F

Coburg, OR 97401
रु

Our MacroFloppy" goes twice the distance.

Circle 235 on inquiry card.

Introducing the Micropolis MacroFloppy ${ }^{\text {Tm }}: 1041$ and :1042 disk drive subsystems. For the $\mathrm{S}-100 / 8080 / 2-80$ bus. Packing 100% more capacity into a 5%-inch floppy disk than anyone else. 143 K bytes, to be exact. For as little as $\$ 695$.

The MacroFloppy:1041 comes with the Micropolis Mod I floppy packaged inside a protective enclosure (without power supply). And includes an S-100 controller. Interconnect cable. Micropolis BASIC User's Manual. A diskette containing Micropolis BASIC, and a compatible DOS with assembler and editor. The :1041 is even designed to be used either on your desk top, or to be integrated right into your $\mathrm{S}-100$ chassis.

The MacroFloppy:1042 comes with everything the :1041 has, and more. Such as d.c. regulators, its own line voltage power supply, and, to top it off, a striking cover. Making it look right at home just about anywhere.

Both MacroFloppy systems are fully assembled, tested, burned-in, and tested again. For zero start-up pain, and long term reliability. They're also backed up by our famous Micropolis factory warranty.

And both systems are priced just right. $\$ 695$ for the MacroFloppy:1041 and $\$ 795$ for the MacroFloppy:1042.

You really couldn't ask for anything more.
At Micropolis, we have more bytes in store for you.
For a descriptive brochure, in the U.S. call or write Micropolis Corporation, 7959 Deering Avenue, Canoga Park, Califomia 91304 . Phone (213) 703-1121.

Or better yet, see your local dealer.
MICROPSLIS' ${ }^{\text {" }}$
More bytes in store for you.

Event Oueus

September 6.8, COMPCON Fall '78, Capitol Hilton Hotel, Washington DC. Sponsored by the JEEE Computer Society, this conterence will cover computers and communications, interlaces and interactions. Such topics ds microprocessors in communications, multiple computer systems, advances in communications technology and many others will be discussed at this conference. Contact Kenneth H Crandall Jr. COMPCON Fall '78, POB 639, Silver Spring MD 20901.

September 11-12, Microprocessors: Hardware, Software and Application, Worcester Polytechnic Institute, Worcester MA. This intensive, highly focused program is geared specifically for technical professionals who need comprehensive knowledge of the latest microprocessor technology. It will give the attendee a better understanding of current and future microprocessor based systems, likely trends and relevant technologies and a firm foundation in critical areas of microprocessor system design and project managem"nt. Contact Continuing Professional Education, Wor-
cester Polytechnic Institute, Worcester MA 01609.

September 11-15, Coding and Information Theory, Gcorgia Institute of Technology. This course will present the fundamentals of representation, storage and transmission of data. Protection against storage and transmission errors using error detection and error correcting (including Hamming) codes will be developed. Efficiency enhancement through information compressing codes, predictive run encoding and Markov chains (probabilistic finite state machines) will be discussed. Contact Short Course Program Office, 6266 Borlter Hall, UCLA Extension, Los Angeles C.A 90024, (213) 825-3344 or 825-1295.

September 12-14, Computers in Cardiology, Stanford University. This conference will include contributed presentations on the application of computers to cardiovascular research, diagnosis and treatment. Contact Mrs Droni Moo, conference coordinator, Cardiology Division, Stanford University School of Medicine, 701 Welch Rd, Suite 3303, Palo Alto CA 94304, (415) 497-7507.

September 12.14, WESCON/78 Show and Convention, Los Angeles Convention Center and Los Angeles Bonaventure Hotel. Contact Electronic Conven.
tions Inc, 999 N Sepulveda Blvd, EI Segundo CA 90245, (213) 772-2965.

September 15-17, 2nd Annual Personal and Business Small Computer Show, New York Coliseum, New York NY. Exhibitors will include major manufacturers, distributors and publications in the computer field. A lecture series will include topics of interest to business and professional people, hobbyists and the general public. Contact D R McGlynn, 71 N Moger Av, Mt Kisco NY 10549.

September 18-20, Computer Cryptography, The George Washington University. This course is designed to aid managers and users of computer systems in the protection of computer data. Commercial products will be discussed generically and relative capabilities discussed in general. Emphasis will be placed on the implementation, use, cost and impact of cryptographic systems in computers and in evolving computer networks. Contact Continuing Engincering Education Progiam, George Washington University, Washington DC 20052 , (202) 676-6106 or the toll free number (800) 424-9773.

September 18.22, Digital Filters, Georgia Institute of Technology. This course will provide a practical introduction to the subject of digital filters. Topics will include the frequency approach, Fourier

MetaFloppy"

The Micropolis MetaFloppy ${ }^{\text {m }}$ gives you more than four times the capacity of anyone else's 5%-inch floppy. Because it uses 77 tracks instead of the usual 35 .

The field-proven MetaFloppy, with thousands of units delivered, comes in a complete family of models. And, like our MacroFloppy ${ }^{\text {m" }}$ family of disk drives, MetaFloppy is designed for the $5-100 / 8080 / 2-80$ bus.

For maximum capacity, choose our new MetaFloppy: 1054 system. Which actually provides you with more than a million bytes of reliable on-line storage. For less money than you'd believe possible.

The MetaFloppy:1054 comes complete with four drives in dual configuration. A controller. Power supply Chassis. Enclosure. All cabling. A new BASIC software package. And a DOS with assembler and editor. There's even a builtin Autoload ROM to eliminate tiresome button pushing.

If that's more storage than you need right now, try our MetaFloppy:1053, with 630,000 bytes on-line. Or our MetaFloppy:1043, with 315,000 bytes on-line. Either way, you can expand to over a million bytes on-line in easy stages, when you need to. Or want to.

In other words, if your application keeps growing, we've got you covered. With MetaFloppy.

The system that goes bevond the floppy.
For a descriptive brochure, in the U.S. call or write Micropolis Corporation, 7959 Deerinig Avenue, Canoga Park, California 91304 Phone (213) 703-1121.

Or better vet, see vour local dealer.

series and integrals, nonrecursive filter design, theory of recursive filter design, discrete Fourier transforms, fast Fourier transform implementation, estimation of power spectra and nonlinear phenomena due to quantizing signals. This course will be of interest to those who use linear combinations of data. The emphasis is on its basic nature and practicability. Contact Nonie Watanabe, Short Courses, 6266 Boelter Hall, UCLA Extension, Los Angeles CA 90024.

September 29-October 1, International Microcomputer Exposition, Dalias Convention Center, Dallas TX. This exposition will be directed toward all levels of technology from the professional engineer to the beginning computer hobbyist. In addition to the seminars, a panel of experts will be available to answer questions. Contact Beverly Tanner at (214) 271-9311.

October 5-8, Midwest Personal Computing Show, Apparel Center's Expocenter, Chicago IL. More than 200 displays featuring the full spectrum of the latest personal computing developments are expected to be presented by manufacturers and distributors. A comprehensive program of seminars, forums and prac. tical application clinics will parallel the four days of exhibits. Contact Midwest Personal Computing Exposition, ISCM, 222 W Adams St, Chicago IL 60606, (312) $263 \cdot 4866$.

October 16-19, Information Management Exposition and Conference, McCormick Place, Chicago IL. The theme, strategic planning in the information age, was selected to convey the need for a corporate strategy for the gathering, storage, retrieval, dissemination and management's use of information. Computer equipment to be demonstrated will include large, medium and small systems, mini and micro systems, small business systems, terminals, peripherals, data communication systems, data collection and preparation handling systems, magnetic media and accessories. Contact Clapp \& Poliak Inc, 245 Park Av, New York NY 10017.

October 24-26, Project Management for Computer Systems, New York NY. This 3 day seminar will illustrate techniques for planning, implementilg, installing and controlling projects. Specific examples and case studies will be discussed. This seminar is intended for computer project managers, data processing managers, VPs of administration, financial managers and others involved in EDP systems development and implementation. Contact the University of Chicago, Center for Continuing Education, 1307 E 60th St, Chicago IL 60637.

October 27-29, BizComp '78, Murilutt Motor Hotel, Atlanta GA. BizComp ' 78 will highlight the small budget necessary
for the independent business operator to be able to purchase an in-house computer system. All facets of the small business computer industry will be on display from the latest innovations in computers to business software and word processing, supplies and services. Contact Felsburg Associates Inc, 12203 Raritan Ln, POB 735, Bowie MD 20715, (301) $262-0305$.

October 30-November 1, 2nd Annual Data Entry Management Association Conference, Sheraton Harbor Island Hotel, San Diego CA. The conference theme is data entry today and tomorrow and will concentrate on the human side of data entry and distributed data entry. There will be a full schedule of seminars, panel discussions, and workshops, including hands-on workshops with various vendors' equipment. Contact Marilyn Bodek, DEMA, 16E Weavers Hill, Greenwich CT 06830.

October 31-November 3, Tulsa Computer Conference, Skyline Sheraton East, Tulsa OK. Contact Tulsa Chapter Association for Systems Management, 4110 S 100 E Av, Suite 128, Tulsa OK 74145.

November 5.8, Computer Applications in Medical Care, Washington DC. This IEEE sponsored symposium on computer applications in medical care is designed to inform physicians and health

We've reduced digitizers to two words.

\&
Bit Pad is the low-cost digitizer for small computer systems. Better than a joystick or keyboard for entering graphic information, it converts any point on a page, any distance into its digital equivalents. It's also a menu for data entry. You assign a value or an instruction to any location on the pad. At the touch of a stylus, it's entered into your system.

Who can use it? Anyone from the educator and the engineer to the hobbyist and the computer games enthusiast. The data structure is byte oriented for easy compatibility with small computers, so you can add a power supply, stand alone display, cross-hair cursor and many other options.

Bit Pad by Summagraphics. The leading manufacturer of data tablet digitizers. Bit Pad. The only words you need to say when considering digitizers.
\$1,000 creativity prize. Just write an article on an original Bit Pad application and submit it to any national small-computer periodical. If the editors publish it - and the decision is solely theirs-Summagraphics will pay you $\$ 1,000$.

35 Brentwood Ave., Box 781, Fairfield. CT 06430 Phone(203) 384-1344. TELEX 96-4348
care professionals about current and potential applications of computer technology to patient care; and to identify areas of future research and development that need to be addressed. Contact Abund O Wist, PhD, general chairman, Medical College of Virginia, (804) 770-4957.

November 6-8, Asilomar Conference on Circuits, Systems and Computers, Asilomar Hotel and Conference Grounds, Pacific Grove CA. This conference, sponsored by the IEEE Com puter Society, will delve into areas such as circuit theory and design, communication and control systems, computer systems, computer aided design, etc. Contact Donald E Kirk, Electrical Engineering Dept, Naval Postgraduate School, Monterey CA 93940.

November 8-11, Asian Business Expo/ Hong Kong, Kowloon-Canton Railway Convention Complex, Hung Hom, Hong Kong. This exposition will feature displays of over 100 business services and equipment with the opportunity to participate in seminars. Contact Industrial \& Scientific Conference Management Inc, 222 W Adams St, Chicago IL 60606, (312) 263-4866.

November 13-16, COMPSAC, The Palmer House, Chicago IL. The IEEE Computer Society's second international computer software and application conference. This conference will bring together computer practitioners, users and researchers to share their ideas, experiences and requirements for applications software, management techniques, and software development support, including automated techniques. Contact Wallace A Depp, executive director, Processor and Computer Software System Division, Bell Laboratories, Naperville IL 60540, (312) 690-2111.

November 19-22, The 11th Annual Microprogramming Workshop, Asilomar Conference Ground, Pacific Grove CA. This worksop will provide a forum for the discussion and comparison of design techniques for firmware and for the supporting hardware. Informal interaction between groups working in similar research and application environments will highlight the topical session. For more information contact Dr Alice G Parker, Micro-11 program chairman, Dept Electrical Engineering, CarnegieMellon University, Pittsburgh PA 15213, (412) 578-2472.

November 28-30, 9 th Annual Canadian Computer Show, International Centre, Toronto CANADA. Products displayed at this show will include: computer and data processing equipment, supplies and services, including minicomputers, peripheral hardware and software, keypunch services, consulting and contract programming and timesharing. Contact Industrial Trade Shows of Canada, 36 Butterick Rd, Toronto Ontario M8W 328, (416) 252-7791.■

See Sol ${ }^{\circ}$

Progpamaniag Ovickies

at all these fine computer centers

AL: Birmingham: ICP Computerland, (205) 979-0707. CA: Berkeley: Byte Shop, (415) 845-6366. Citrus Heights: Byte Shop, (916) 961-2983. Costa Mesa: Orange County Computer Center, (714) 646-0221. Hayward: Computerland of Hayward, (415) 538-8080. Modesto: Computer Magic, (209) 527-5156. Mountain View: Digital Deli, (415) 961-2670. San Francisco: Computer Center, Inc., (415) 387-2513. San Rafael: Byte Shop, (415) 457-9311. Walnut Creek: Byte Shop, (415) 933-6252. CO: Boulder: Byte Shop, (303) 444-6550. Denver: Byte Shop, (303) 399-8995. CT: Bethel: Technology Systems, (203) 748-6856. FL: Miami: Byte Shop of Miami, (305) 264-2983. GA: Atlanta: Atlanta Computer Mart, (404) 455-0647. IL: Lombard: Midwest Microcomputer, (312) 495-9887. IA: Davenport: The Computer Store of Davenport, (319) 386-3330. MD:
Towson: Computers, Etc...., (301) 296-0520. MI: East Lansing: General Computer, (517) 351-3260. Troy: General Computer, (313) 689-8321. MN: Minneapolis: Computer Depot, (612) 927-5601. MO: Florissant: Computer Country, (314) 921-4434. NH: Nashua: Computerland/ Nashua, (603) 889-5238. NJ: Cherry Hill: Computer Emporium, (609) 667-7555 Iselin: The Computer Mart of New Jersey, (201) 283-0600. NY: Endwell: The Computer Tree, (607) 748-1223. New York: The Computer Mart of New York, (212) 686-7923. White Plains: The Computer Corner, (914) 949-3282. NC: Rateigh: ROMS ' N ' RAMs, (919) 781-0003. OH: Akron: Basic Computer Shop, (216) 867-0808. Columbus: The Byte Shop, (614) 486-7761. OR: Beaverton: Byte Shop Computer Store, (503) 644-2486. Portland: Byte Shop Computer Store, (503) 223-3496. Salem: Computer Pathways, (503) 399-0534. PA: King of Prussia: Computer Mart, (215) 265-2580. RI: Warwick: Computer Power, Inc., (401) 738-4477. SC: Columbia: The Byte Shop, (803) 771-7824. TN: Kingsport: Microproducts \& Systems, (615) 245-8081. TX: Arlington: Computer Port, (817) 469-1502. Arlington: Micro Store, (817) 461-6081. Houston: Interactive Computers, (713) 486-0291. Houston: Interactive Computers, (713) 772-5257. Richardson: Micro Store, (214) 231-1096. UT: Salt Lake City: Home Computer, (801) 484-6502. VA: McLean: The Computer Systems Store, (703) 821-8333. WA: Bellevue: Byte Shop Computer Store, (206) 746-0651. Seattle: Byte Shop of Seattle, (206) 622-7196. WI: Madison: The Madison Computer Store, (608) 255-5552. Milwaukee: The Milwaukee Computer Store, (414) 259-9140.
CANADA: London, Ontario: The Computer Circuit Ltd., (519) 672-9370. vancouver, B.C.: Basic Computer Group Ltc., (604) 736-7474. AUSTRALIA: Victoria: Sontron Instruments, (03) 569.7867. PHILIPPINES: San Juan, Metro Manila: Integrated Computer Systems, Inc., 784-071. JAPAN: Tokyo: Moon base Shinjuku, (03) 375-5078. GREECE: Athens: NKA Attikos, inc., 360-7542. UNITED KINGDOM: Huntingdon, England: Comart, Ltd. (0480) 215005. MEXICO: Mexico City: Industrias Digitales, 905-524-5132. VENEZUELA: Caracas. Componentes Y Circuitos Electronicos, 355-591. SWEDEN: Stockholm: Wernor Elektronik, (0)8-717-6288.

See ad on pages $8 \& 9$.

Blubs and Newsletters

The following is the second BYTE Clubs and Newsletters Directory (the first was published in January 1977 BYTE). The directory was compiled from information supplied by the various clubs listed. A form was sent to all clubs and newsletters listed in the first directory requesting up-to-date information. If the form was not returned, we deleted the club from the second directory. In addition, the listing was correlated with back issues of the magazine and materials on file in the BYTE offices. If information is missing in one or more categories, it means the data was not provided. We will be keeping the file available and updating it for the next directory; so, if there are errors or if you have a new club which has just been formed, send the information to: Laura Hanson, Clubs and Newsletters Editor, BYTE Publications Inc, 70 Main St, Peterborough NH 03458.

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

Zips 00000-10000

1. New England Computer Society
2. POB 198 Bedford MA 01730
3. Mitre Corp Cafeteria, Rt 62, East of Rt 3, Bedford MA
4. First Wednesday of month
5. NECS News/etter (monthly)
6. Dave Day, president; Dave Mitton, secretary
7. (603) 434-4239, (617) 493-3154, respectively
8. $\$ 6$ per year
9. Current users groups are PC Net (personal computing network), TRS-80, 6800, Digital Group, PET, RCA-1802.
10. The Alcove Computer Club
11. 230 Main St

North Reading MA 01864
3. Same
4. Special events
5. None
6. J P Vullo
7. (617) $664-4271$
8. None
9. Hardware and software; systems such as MITS, TRS-80.

1. The Boston Computer Society
2. 17 Chestnut St Boston MA 02108
3. Commonwealth School 151 Commonwealth Av (corner Dartmouth St) Boston MA
4. Fourth Wednesday of every month at 7 PM
5. Being developed
6. Jonathan Rotenberg
7. (617) 227-1399
8. $\$ 5$ per year; includes admission to all meetings and events plus mailing list
9. An information exchange and resource center based upon members' needs. The BCS sponsors: subgroups, advanced and beginner hard-

LEAR SIEGLER ADM/3A \$825

DIABLO 1620/1

T.I. 745 PORTABLE
\$1695
SATISFACTION GUARANTEED
YOUR MONEY WILL BE RE. FUNDED IN FULL IF THE EQUIPMENT FALLS TOMEET THE MANUFACTURER'S SPECIFICATIONS.

LOWEST PRICES • IMMEDIATE AVAILABILITY INTERTUBE \$695

- 24 LINES $\times 80$ CHARACTER DISPLAY
- U/L CASE PLUS NUMERIC KEYPAD
- BLINKING, UNDERLINE, REVERSE-VIDEO, $1 / 2$ INTENSITY
- transmit a character, line or page at a time
- direct or remote cursor positioning
- EIA RS-232 INTERFACE (TO 19,200 BAUD)
- 20/60 mA CURRENT LOOP (TO 9,600 BAUD)
- PRINTER PORT

P. O. BOX 3297 • SANTA ANA, CALIF. 92703 • (714) 731-4338

ORDERING INFORMATION: TO RECEIVE YOUR EQUIPMENT AS QUICKLY AS POSSIBLE, PLEASE INCLUDE THE FOLLOWING - A) YOUR COMPLETE SHIPPING ADDRESS, INCLUDING ZIP, 8) A CERTIFIED CHECK FOR THE FULL AMOUNT OF YOUR ORDER (PERSONAL OR COMPANY CHECKS REQUIRE TWO WEEKS TO CLEAR); INCLUDING HANDLING* AND 6\% SALES TAX, IF A CALIFORNIA RESIDENT.
"HANDLING CHARGE: IF TOTAL ORDER IS LESS THAN \$750, ADD 3\%; \$750 TO \$1999, ADD 2%, OVER \$1999, ADD 1%.

TERMINALS ARE SHIPPED FREIGHT COLLECT - PLEASE MAKE ARRANGEMENTS TO RECEIVE YOUR EQUIPMENT. YOUR ORDER WILL BE SHIPPED BY SURFACE CARAIER UNLESS OTHERWISE INDICATED. EVERYTHING SHIPPED IN FACTORY CARTONS WITH MANUFACTURER'S WARRANTY.
micro-mail welcomes any suggestions that may help us serve you better

ALL UNITS ARE FULLY ASSEMBLED.

WRITE FOR OUR FREE CATALOG.
ware and software sessions, software exchange, various types of guest speakers, ctc, when needed and feasible.

1. TRS Club
2. 96 Dothan St Arlington MA 02174
3. Yes
4. Poik Pow
5. TRS user group; TRS cassette or diskette media. A software library is available at low or copying cost. Library includes inventory, security, games, data base, sort, etc.
6. Rhode Island Computer Hobbyists (RICH)
7. c/o E D lannuccillo POB 599
Bristol RI 02809
8. Jabbour Electronic City
9. Third Tucsday of September, Oclober, November, March, April, May
10. Yes
11. E D lannuccillo
12. (401) $253 \cdot 5450$
13. $\$ 2$ per year
14. Construction projects
15. Our club is small and friendly. Members come from many vocations and many are students; most are not experts in computers. We demonstrate equipment and help each other with problems.
16. The Southern New England Computer Society
17. 267 Willow St New Haven CT 06511
18. Varies
19. Yankee Bits
20. Arthur Downes
21. (203) $562 \cdot 8034$
22. $\$ 3$ covers dues and newsletters
23. Micros, minis and macros from the ELF to IBM 360 and software at all levels
24. Sometimes we will send a sample copy of Yankee Bits. Anybody is welcome no matter what level of interest or knowledge.
25. Bridgeport Area Society for Involved Computerists (BASIC)
26. 12 Wildwood Dr Trumbull CT 06611
27. Trumbull Town Library
28. Second Wednesday each month
29. MICROFLASH published monthly
30. Al Song
31. (203) 268-9807 (nights), (203) 576-6556 (days)
32. $\$ 8$ per year
33. Hardware, software, anything whatsoever to do with computers
34. Established August 1977 with 40 paid members and 150 on the mailing list.
35. Amateur Computer Group of New Jersey
36. 1776 Raritan Rd

Scotch Plains N J 07076
4. Main meeting third Friday of month; 8080/Z-80 user group first Friday of month; 6800/6502 user group fourth Friday of month
5. Yes
6. Sol Libes
7. (201) 277-2063
8. $\$ 5$ per year
9. User groups: CPM, Radio Shack, PET, 8080/Z•80, 6800/6502, 1802 and 9900 . Classes: BASIC, 8080 programming, 6800 programming, 6502 programming and "Getting Started."
10. Software libraries, annual member directory, annual festival, and annual contest. There are 800 members. Starting PC network.

1. New Jersey Apple Users Group
2. Computer Lab of NJ 141 Route 46 Budd Lake NJ 07828
3. First Friday of month, 7:30 PM
4. Dan Fischler

Zips 10000-20000

1. New York Amateur Computer Club
2. POB 106, Church St Station New York NY 10007
3. Varies
4. Untitled, monthly 5 to 10 page newsletter

BASIC is BASIC is

And BASIC does what it should. But if you're ready to step up from Beginner's All-purpose Symbolic Instruction Code, look at OPUS, the high-level 8080/Z80 language from A.S.I. ... roots in BASIC, but designed for business applications. OPUS gives you the capabilities you need, like extended precision, string handling, and easy formatting. OPUS/TWO takes up where OPUS/ONE leaves off, allowing subroutines, overlays, and extended disc file management.

But we didn't stop there. OPUS programs and data are directly upward-compatible, all the way up through TEMPOS, A.S.I.'s multi-user, multi-tasking operating system.

Ask your dealer, or contact A.S.I. We'd like to tell you more. OPUS/ONE $\$ 99.00$ OPUS/TWO $\$ 195.00$ S.O.S. $\$ 385.00$ TEMPOS $\$ 785.00$

ADMINISTRATIVE SYSTEMS, INC. 1642 S. Parker Road, Suite 300 Denver, Colorado 80231 (303) 755-9694

ORDER A MANUAL NOW and we'll apply the price toward your software purchase.

OPUS User's Manual $\$ 12.50$
S.O.S. Manual Set (includes OPUS Manual) $\$ 20.00$
TEMPOS Manual Set (includes OPUS Manual) .. $\$ 20.00$
MASTER CHARGE and VISA accepted.
Add $\$ 1.50$ per manual (set) for shipping/handling in U.S

Alubs and Newsletters

6. Bob Schwartz or John Frederick
7. (212) 663-5549, 866-4298, respectively
8. $\$ 10$ per year
9. Mostly 5100, word processing, some music types.
10. Long Island Computer User Society (LICUS)
11. POB 322

East Northport NY 11731
3. Commack High School South

Commack NY
4. Second Tuesday of each month
5. Queue (monthly)
6. John Vollers or Jim Zukowski
7. (516) 493-3612, 586-3555/ 757-9329, respectively
8. \$3 per year
9. Software development and applications dealing mainly with DEC equipment
10. Informal group meetings; we try to have a guest speaker discuss a relevant subject of interest.

1. Long Island Computer Association
2. 36 Irene Ln E

Plainview NY I 1803
3. New York Institute of Technology
4. Second Friday of month -8080 group; third Friday of month regular meeting and 6800 group
5. The Stuck
6. Aileen Harrison
7. $(516) 938-6769$
8. $\$ 10$ per year, $\$ 5$ students
9. 6800 group, 8080 group, Pascal, BASIC, kit building, and troubleshooting.

1. AEC Transfer
2. 8 Gedney Way
or 147 Fostertown Rd
Newburgh NY 12550
3. AEC Newsletter
4. William Callahan Jr
5. (914) 565-4621
6. 25 cent entry fee; $\$ 5$ subscription fee (subject to change)
7. Correspondence club; newsletter with emphasis on science and science fiction articles.
8. Readership supported for articles and stories, nonprofit; glad to hear from anyone interested in receiving or contributing to newsletter.

9. Computer Hobbyists in Processing (CHIPS)
10. POB 4840

General Electric Co, CSP3-16
Syracuse NY 13221
3. Baker Hall, Electronics Park Syracuse
4. Usually third Thursday each month except July and August
5. CHIPS Newsletter
6. Dave Flagg or Jerry Green
7. (315) 456-1903, 456-7357, respectively
8. $\$ 4$ per year
9. Hobby systems of all kinds and all applications.
10. Approximately 50 members and average meetings attended by 38 to 45 members. Membership not restricted to GE and is drawn from 60 mile radius around Syracuse.

1. Rome Area Computer Enthusiasts (RACE)
2. RD 1, W Carter Rd

Rome NY 13440
3. Patty's Stagecoach Inn
4. Second Tuesday at 7:30 PM
5. Micros Along the Mohawk
6. Michael Troutman
7. (315) 336-0986
9. Special interest groups around the 6800 and $8080 / \mathrm{Z}-80$ microprocessors as well as one for beginners.

1. Students Cybernetic Laboratory (SCYL)
2. c/o A E Adams

RFD Box 260
Chaffee NY 14030
3. Yorkshire NY
4. Irregular
5. Irregular, at present
6. A E Adams or Karl Grampp
7. (716) 849-1433
8. None
9. Intel 8080 , Business applications
10. Club just now becoming reactivated and reorganized.

1. Rochester Area Microcomputer Society
2. POBD

Rochester NY 14609
5. Memory Poges
6. Glenn Alexander, president
7. (716) 377-0697

1. Ithaca Computer Group
2. POB 91

Ithaca NY 14850
5. None
6. S Edelman
7. (607) 273-3271
8. None
9. All

1. Electronotes
2. 1 Pheasant Ln ithaca NY 14850
3. None
4. None
5. Electronotes - Newsletter of the Musical Engineering Group
6. Bernie Hutchins
7. (607) 273-8030
8. Newsletter, monthly 22 page issues, $\$ 20$ per year
9. Electronic music, including digital control of analog synthesizers, and special music synthesis techniques
10. Back issues and other publications are available; write for order forms, descriptions and sample issue.
11. Pittsburgh Area Computer Club
12. 400 Smithfield St

Pittsburgh PA 15222
3. Northway Mall Community Room
4. Third Sunday, 11 AM
5. Yes
6. Fred Kitman
7. (412) $391 \cdot 3800$
8. $\$ 12$ per year
9. Robots and the MACC
10. Meetings consist of a general talk, formal meeting and speaker.

1. The Central Pennsylvania Conmputer Club
2. 1979 Crooked Oak Dr Lancaster PA 17601
3. Elizabethtown Public Library -alternate locations occasionally
4. Third Friday on even numbered months, fourth Wednesday on odd numbered months; 7 PM to 9 PM both nights
5. Dala Dump
6. Joseph Pallas
7. (717) 569-3137
8. $\$ 3$ students, $\$ 7$ adults per year (includes subscription to Duta Dimmp)
9. We are a small group ($30+$ menlbers) which provides help to newcomers and fosters interaction among system owners.
10. PET User Group
11. POB 371

Montgomeryville PA 18936
5. PET User Notes
6. Gene Beals
7. (215) 257.8195
8. $\$ 5$
9. Commodore PET information and program exchange.

1. Philadelphla Area Computer Society
2. POB 1954

Philadelphla PA 19105
3. Science Building, LaSalle College 20th Olney Av
Philadelphia PA

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

Mlubs and Newslatiens

4. Third Saturday of the month, 2 PM
5. The Datu Bus
6. Dick Moberg or Jon Bondy
7. (215) 923-3299, 642-1057, respectively
8. $\$ 10$ ($\$ 5$ student)
9. Subgroups on most major processors/ computers; starship subgroup (for space travel simulation with inicrocomputers), computer network and Pascal
10. PACS currently has over 250 members and is growing fast. Emphasis is placed on education and monthly courses are offered on A/D design, Pascal, 6502 BASICs, operating systems, and many other topics. For meeting information and other local computer news, dial the PACS hotline: (215) 925-5264.
11. Delaware Users of Microprocessor Systems (DUMPS)
12. 2405 Maxwellton Rd

Stanton DE 19804
5. None
6. Jodic S Hobson
7. (302) 998.5594
8. None

DIRECTORY, continued
9. Currently hardware uriented
10. Meetings consist of general business, technical talk or demonstration, and rap session.

Zips 20000-30000

1. Washington Allateur Computer Society
2. 4201 Massachusetts $A v, \# 168$ Washington DC 20016
3. Last Friday of each month, 7:30 PM
4. JWACS ($\$ 5$ per year)
5. Bob Jones, editor
6. For more information, send a SASE to the above address.
7. Microcomputer Investors Association
8. 2415 Ansdel Ci

Reston VA 22091
3. As called
5. The Microcomputer Investor
6. Jack Williams
7. (703) 620-259।
8. Nonprofit, professional association, $\$ 30 / \mathrm{mem}$ ber
9. The fundamental purpose of the association is to facilitate the ex-

GOING TO PC EXPO '78? Then Visit Our "Show Within The Show"! Small Business Systems

USER READY!

TECHNICO, INC.

16-BIT-WORD. FULL SIZE DISCS. USER-FORMATABLE SCREENS GENERATOR REPORT WRITER AVAILABLE NOW'

FULL DOCUMENTATION SUPPLIED WITH EACH.
ATTENTION CIRCUIT DEVELOPERS!
SEE - AP BREADBOARDING, POWERACE, GREATJUMPERS

- B\&K PRECISION TEST EQUIPMENT • PANAVISE
- NLS MINISCOPES • ISOTIP CORDLESS SOLDERING

FOR: - EDP POWER SUPPLIES • OK WIRE WRAP

- CSC LOGIC PROBES

ATLAS

ELECTRONICS
1570 THIRD AVENUE NEW YORK, N.Y. 10028 212-427-4040
OUR 25th YEAR
*NEW YORK COLISEUM, SEPT. 15, 16, 17, 1978. BOOTHS 4101-4104.
change of data and information relating to investments and microcomputers with the express purpose of such interchange being directed toward maximizing profits in stocks, bonds, warrants, stock options and cominodities, including cummodity options and futures straddles.

1. Chesapeake Microcomputer Club Inc
2. POB 87
3. White Oak Library 11701 New Hampshire Av Silver Spring MD
4. Fourth Monday at 7:30 PM 7:30 PM
5. The Analytical Engine
6. Rich Kuzmack
7. (703) 821-2873 (hume)
8. $\$ 12$ per year
9. Processor-oriented special interest groups, investors group, store and forward system with Bell 103 access for message and suftware interchange, PC networking.
10. Geographically-oriented chapters and affiliates in the greater Washington DC/Baltimore area.
11. Anateur Radio Research and Development Corp (AMRAD)
12. 1524 Springvale $A v$

McLean VA 22101
3. Patrick Henry Branch Library 101 Maple St E, Vienna VA 22180
4. First Monday of each month at 8 PM
5. AMRAD Newsletter
6. Paul L Rinaldo
7. (703) $356-8918$
8. Regular $\$ 10$, second in household $\$ 5$, student \$2. Life: regular \$100, second in houschold $\$ 50$.
9. Computers, amateur radio and radioteleprinter operation.

1. Crystal City Computer Club
2. 3008 Mosby St

Alexandria VA 22305
3. Commissioner's Conference Room, Bldg 3, 11th Floor, Crystal Plaza Arlington VA
4. First nonholiday Monddy, 11:30 to 12:30
5. 10
6. Russell E Addms
7. (703) 548-8261
8. $\$ 4$ per year and $\$ 5$ with newsletter
9. Assist newcomers and interchange of programs and ideas
10. Have small library, occasional classes, 48 members; affiliated with
Chesapeake Computer Club.

[^6]1. IBM $5110 / 5100$ Users Group
2. 5541 Parliament Dr

Suite 104
Virginid Beach VA 23462
5. Not yet, but probably every other month
6. Richard E Easton
7. (804) 490-0154
9. Specifically oriented toward $1 B M$ 5110 or 1BM5100 installed users
10. Especially interested in $5110-5100$ applications in the health calce ficld.

1. Tidewater Computer Club
2. 677 Lord Dunmore Dr

Virginia Bcach VA 23462
3. Electronic Computer Programming Institutc, lanaf Office Bldg, fitndf Shopping Center, Military Hwy and Virginia Beach Blvd in Norlolk VA
4. 7:30 PM first and third Tuesdays each month
5. None as of yet
6. C Dawson Ycomans, publicity chairman
8. \$6 for six months
9. Discussions cover hardware and software, system demonstrations.
10. New members are always welcome.

1. Dyna-Micro Users Group
2. POB 1053

Lexington VA 24450
5. Digital Directions
6. Dr Frank A Settle Jr
7. (703) $463-6244$
8. $\$ 15$ initial fec
9. Items of interest to users of MiniMicro and Dyna-Micro designers marketed by E\&L Instruments Inc.

1. West Virginia Computer Socicty
2. 167 Iroquois Trail Ona WV 25545
3. Dunbar City Park, Dunbar WV
4. "Oscillations" of the West Virginia Computer Society
5. Bill England, president
6. (304) 736.9794
7. $\$ 12$ per year, also family and student dues; newsletter subscription $\$ 6$ per year
8. Any and all plases of computers and associated equipment; digital electronics
9. Everyone is welcome to attend meetings. Member MACC.

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS! Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits--the very first night--even if you've never used a computer before!
 language before a computer can understand them. With ELF Il you build a solid foundation in computers so you'll really get selling for suth a low price. Attached to your TV set. ELF 11 becomes a fabulous home entertainment center. lt's capable of becomes a dabulous home entertainment center. fis capabie of
providing endless hours of fun for buth adults and children of all axes! ELI II can create graphics. alphanumeric displays all ages! ELF If can create
and fantastic video games.
No additional hardware is required to connect ELF It to your TV's videv input. If you prefer to connect ELF II to your antenna terminals instead, simply use a low cost RF modulator (to order one, see coupon below).
ELF II's 5 -card expansion bus (cunnectors not included) allows you to expand ELF 11 as your needs for power grows. If you're an engineer or hubbiest. you can also use ELF II as a counter, alarm, lock, thermostat, timer or tele phone dialer, or for countless other applications.

ELF II Explodes Into A Glant!

Thanks to unguing work by RCA and Netronics, ELF If add-ons are amung the most advanced anywhere. Plug in the GIANT BOARD* and you can recurd and play back programs, edit and debug programs. communicate with remote devices and make things happen in the outside world. Add Kluge Board to get ELF II to solve special problems such as operating a mure cumplex alarm system or controlling a printing press. Add 4k RAM board and you can write longer programs, store more information and solve more sophisticated problems.
Expanded. ELF II is perfect for engineering, business, industrial, scientific and personal finance applications. Nu uther small computer anywhere near EL.F II's luw price is backed by such an extensive research and development program.
The ELF-BUG3s Monitor is an extremely recent breakthough that lets you debug programs with lightening speed because the key to debugsing is to know what's inside the reyisters of the microprucessur and, instead of single stepping thruugh your program, the ELF-BUG Monitor, utilizing brtak puints, lets you display the entire contents of the registers un your TV screen at any puint in your program. You find out immediately what's poing on and can make any necessary changes. Programming is further simplified by displaying 24 bytes of RAM with full address, blinking cursor and auto scrolling. A must for serious programmers!
onics will soon be introucing the ELF |I Color Graphics \& Music System-more breakihroughs that ELF 11 owners will be the first to enjoy!

Now BASIC Makes. Programming ELF II Even Ensier!

Like all computers, ELF If understands only "machine language" - the language computers use to talk to each other But, 10 make life easier for you, we ve developed an ELF II Tiny BASIC. It talks to ELF il in machine language for you so that you can program EL.F if with simple words that can be typed out un a keyboard such as PRINT, RUN and LOAD.

"Ask Now What Your Computer Can Do...
 But What Can it Do For YOU!"

Don't be trapped into buying a dinusaur simply because you can afford it and it's big. ELF 11 is more useful and more fun than "big name" computers that cost a lot more money.
With ELF II, you learn to write and run your own programs. You're never reduced to being a mere keypunch operator, wurking blindly with someone else s predeveloped software. you really knuw how to use is sure, owning a computer which you really know how to use is sure to make you a leader. ELF II is the fastest way there is to get into computers. Order from mental language of all computers. Higher level languages such

ГNOW AVAILABLE FOR ELFII- ם Deluxe metal cmbinet. for ASCI

\square Tom Pittman's Short Course On Mi-
 Keyboard, $\$ 19.95$ plus $\$ 2.50$ peh.

croprocessar \& Computer Programm-
ing teaches you just about everything there is to know about El.F II or any RCA 1802 computer. Written in nomtechnical language, it's a learning hreakthrough for engineurs and laymen alike. $\$ 5.00$ pustpaid!
C Deluxe metal cahinet with plexiglas dust cover for Ei.F II. $\$ 29.95$ plus $\$ 2.50 \mathrm{p} \& \mathrm{~h}$.
Q ELF I] connects to the video inpus of your TV set. If you prefer to use your antenna terminals, order RF Modulator, $\$ 8.95$ post paid.
D GIANT BOARD" kit with cassette I/O. RS 232-C/TTY I/O. 8-bit P I/O. decoders for 14 separate t/O instructions and a system monitor/editor $\$ 39.95$ plus $\$ 2$ p\&h.

- Kluge (Prutotype) Board accepts up to 36 t' 's. $\$ 17.00$ plus $\$ 1$ p\&eh.
- 4k Static RAM kit. Addressable to any 4 k puge to 64 k . $\$ 89.95$ plus $\$ 3$ pkh. \square Gold plated 86 -pin connecturs (one required for each plug-in buard). \$5.70 pustpaid.
D Professiunal ASC:Il Keyboard kit with 128 ASCII upperfluwer cane set. 96 printable characters, onboard regu\int lator. parity. logic selection and choice of 4 handshaking signals to mate with almust any compuier. $\mathbf{\$ 6 4 , 9 5}$ plus $\$ 2$ p\&h.

QELF II Tiny BASIC on cassette tape. Commands include SAVE. LOAD, $\pm, \times, \div(1), 26$ variables A-Z, LET, IF/THEN, INPUT. PRINT GOTO, GOSUB, RETURN, END REM, CLEAR, LIST, RUN, PLOT, PEEK. POKE, Cumes fully documented and includes alphanumeric generator required to display alphanumeric characters directly on yout TV screen without additional hardware. Also plays tick-tack-toe plus a rawing game that uses ELF II's hex heyboard as a joystick. quired. $\$ 14.95$ pustpaid Tum Pituman's Short Course on Tiny BASIC for ELF II, $\$ 5$ postpaid. Expunsion Power Supply (required when adding 4k RAM). $\mathbf{\$ 3 4 . 9 5}$ plus $\$ 2$ p\&h.
\square ELFF-BUG ${ }^{\text {4* }}$ Deluxe System Monitor on cassette tape. Allows displaying the contents of afl registers on your TV at any point in your progrant. Also dis plays 24 bytes of nemory with full ad Jresses, blinking cursor and auto serolling. A must for the serious progrant ner! \$14.95 postpaid.
Cuming Soon: A-D, D-A Converter, Light Pen, Controller Buard. Culor Graphics \& Music System...and more! Cell
Call or write for wired prices!

Netronics R\&ED Led., Dept. 0000 333 Litchfield Road,

Phone New Milford. CT 06776 (203) 354-9375 Yasl I want to run programs al home and have endosed: [$\$ 99.95$ plus $\$ 3$ postage \& handling for RCA COSMAC ELF II tht - $\$ 4.95$ for power supply (required for Short Course on Microprocessor \& Computer Programming.
口 I want mint wired and tested with power supply, RCA 1002 User's Manual power supply, Rca 1202 User's Manual plus $\$ 3$ pent
$\square 1$ am also enclosing payment (including postage \& handling) for the items checked postage
at the let.
Total Enclosed (Conn. res. add tax ou are \square Check here you are enclosing Money Ord
USE YOUR \square VISA \square Master Charge USE YOUR \square VISA \square Master Ch
(Interbank \# (Interbank \# - —————)
Account \# - - - -Signature_-_ Exp. DatePrint
Name
City.
State \qquad

Glubs and Newsletiens

1. Triangle Aniateur Computer Club
2. POB 17523

Raleigh NC 27609
3. Dreyfus Auditorium

Research Triangle Park
4. Last Sunday of each month at 2 PM
5. Newsletter
6. Russell O Lyday Jr
7. (919) 787-4137, 541-6957
8. Subscription fec $\$ 6$ per year
9. Introductory as well as advanced topics discussed at each mecting.

Zips 30000.40000

1. Atlanta Area Microcomputer Hobbyist Club
2. POB 7602 Atlanta GA 30357
3. Decatur Federal Savings Dunwoody Village
4. Last Wednesday of each month
5. AAMHC Newsletter
6. Jim Stratigos
7. (404) $894-3505$ (days), 457.8030 (nights)
8. $\$ 10$ per year
9. Personal computing; 6800 and 8080
10. Club participates in the Athanta ham
fest/computer fest which is held annually first weekend in June.
11. Okaloosa Computer Hobbyist Club
12. 32 Denton Blvd, NW \#72

Fort Walton Beach FL 32548
4. Every second and fourth Tuesday
6. Loretta R Guske, secretary
7. (904) $242-5938$

1. Central Florida Computer Club
2. 2821 Sunset Rd Apopka FL 32703
3. Basement of Orlando Utilities Bldg, 500 S Orange Av, Orlando FL
4. Third Sunday of each month, 2 PM
5. Notes on last meeting and points of interest for next meeting
6. John W Neel
7. (305) $862 \cdot 1329$
8. $\$ 10$ per year
9. Helping newcomers to the world of computers; programming classes; keeping up to date on the latest innovations in the computer world.
10. In progress: complete list of members showing type of equipment by CPUs; type of occupation; telephone numbers (work and honic); use of computers.

S-100 BUS COMPATIBLE. The EMM 1104 single card plug-in memory has been field tested and proven in a variety of systems including the Poly 88 , IMSAI, MTTS, COMPAI-80, TLD and CREMENCO. 16K BYTES ON A CARD. Convenient plug-in card, fully burned-in, tested and guaranteed by one of the industry's largest memory suppliers. NMOS STATIC RAM. The 4K static RAMs have been proven in applications ranging from single chip memories to IBM 370 add-on systems. They are Fast, reliable, and no refresh cycle is required.
See your dealer, or contact us for complete information.

日allil

S-100 Bus Compatible Memory

16K bytes on a card

Commercial Memory Products, a Division of Blectronic Memories \& Magnetics Corp. 12621 Chadron Avenue * Hawthorne, Californla 90250 - Telephone (213) 644-9881

1. Indian River Computer Society
2. FIT Elect Eng Dept Country Club Rd
Melbourne FL 32901
3. Florida Institute of Technology Room 112
4. First and third Thursdays of each montlat 7 PM
5. THE $\mu B U S$ (monthly)
6. Frank Canova, president
7. Messages at: (305) 723.3701 ext 330
8. $\$ 3$ initiation fee, $\$ 2$ per quarter
9. Wide interest range from how to get started to large system applications. Many members are involved in homebrew 8080, 6502, 6800, Z-80 and F8 systems, although other systems are used by members as well.
10. Birmingham Microprocessor Group
11. 774 Twin Branch Dr

Birmingham AL 35226
3. "The Computer Center" (temporary)
4. Fourth Sunday each month at 2 PM
5. Newsletter
6. Joc Callaway
7. (205) 933-7806
8. $\$ 6$ per year
9. None

Zips 40000-50000

1. Amateur Computer Socicty of Columbus OH (ACSCO)
2. Computer Data Systems 1372 Grandview Av
Columbus OH 43212
3. Center of Science and Industry
4. First Wednesday every month, 7:30 PM
5. $1 / O$
6. Fred Hatfield K8VDU, president
7. (614) $486-0677$
8. $\$ 10$ per year
9. Personal computer networking, implementation of SAM 76 language versions and amateur radio applications.
10. The Cleveland Digital Group
11. 8650 Harvard Av

Cleveland OH 44105
3. Same
4. Third Sunday of the month, 2 PM
5. The Shift Register
6. David A Roinicki, chalrman: programs committee
7. (216) $524-2434$
8. $\$ 10$ per year
10. Informal meetlngs held every Tuesday night 7:30 on. Speakers come on a regular monthly basis (Sunday meetings).

1. Goodyear Computer Club
2. c/o J F Derry, D-109E PIT 1 Goodyear T\&R Co Akron OH 44316
3. Goodyear Hall, 8 PM fourth Tuesday cach month
4. IAG meets 7 PM before club meeting; club meets at 8 PM, business, speaker, demos; HG meets at 9 PM
5. The Late Edition
6. R Messner, Goodyear Aerospace Corp, D-47063, Akron OH 44315
7. (216) 794-7265
8. $\$ 10$ per year
9. Investment analysis group (IAG), hardware group (HG), software group - under discussion (SG), setting up club library reference service for magazine exchange.
10. Have club Xerox CF-16 (Goodyear surplus) and Burroughs accounting machine. Looking for space to set up. Goodyear employees can telephone into GAC Sigma 9, 5 PM 10 midnight seven days a week using HG modem or equivalent. Membership not limited to Goodyear employees.

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

Custom Build Your Own Microprocessor System

Board Features:

- F-8 CPU with 2K RAM, 4K ROM and 2K PROM
- Asynchronous 2-Channel I/O; Full Duplex, RS-232-C
- Synchronous I/O; Half or Full Duplex, CRC, RS-232-C
- Static Memory with 2K RAM and 4K ROM, 2K PROM
- Static Memory with 8K RAM and 2K ROM, Battery Back-Up
- FSK Modem; TWX/DDD Compatible, Dial Tone and Call Progress Detection, Multi-Tone Dialing
Cabinet Features:
- Front Panel PC Card Access
- Removable Top Cover for Troubleshooting Ease
- Common-Buss Motherboard allows Random Card Placement
- Rear Panel Cooling Fan and Optional EIA Connectors For additional information regarding your specific application, call or write UTEC today.
UNIVERSAL TECHNOLOGY INC.
871 Allwood Road, Clifton, N.J. 07012
Phone: (201) 779-0430

wire wrapping center
 O3

OK MACHINE \& TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 (212) 994-6600 / Telex 125091

Mlubs and Newsletieps

Rugged unit • Full ASCII keyboard • 24×80 character CRT • 32K bytes RAM • M6800 CPU • Mini-floppy disk drive and controller - BASIC software package Over 20 Applications packages available • User documentation.

DEALER INQUIRIES INVITED

Send me \qquad Outpost 11 's. De-	
posit \$200 each, plus \$35 freight	
and insurance. (Pay balance on delivery.)	
Name	
Firm/Title	
Shipping Address	
Phone	
Signature	
Mail to:	
\square	
Corporation	
4521 W. Napoleon Avenue	
Metairie, La. 70001	
(504) 888-4884	
TWX 810-591-5229	

в - Oull your kidaing

1. Compute, Evalute, Trade
2. POB 104

Tipp City OH 45371
3. IUPUI, Indianapolis IN
4. Last Wednesday in month
5. Byte Back
6. Charles Tyzzer
8. None
9. Business systems.

1. Dayton Microcomputer Association
2. Dayton Museum of Natural History 2629 Ridge Av Dayton OH 45414
3. Same as above
4. Last Tuesday of month, 7:30 PM
5. Dayton Microcomputer Association Data Bus
6. Dean Lampman, president Marilyn Mix, vice-president Jack Steele, secretary
7. (513) 984-2084, 253-9468, 256-8005, respectively
8. $\$ 10$ per year includes Data Bus
9. The $6800,8080,6502$ special interest groups meet individually at least once a month
10. For the past two years we have held a 1 day show of computers for the public. This year we demonstrated at the Dayton Amateur Radio Convention and at the National Airborne Electronics Conference.
11. Apple I Library
12. 51625 Chestnut Rd Granger IN 46530
13. Mail
14. Joe Torzewski
15. (219) $272 \cdot 4670$
16. Stamp appreciated for reply
17. Promote Apple I computer
18. Floyd County Computer Enthusiasts
19. RR\#2, POB 466A

New Albany iN 47150
3. Varies
4. Set meetings are uncommon
5. None
6. Nathan Engle
8. None
9. Software, robots, artifical intelligence
10. Most of our members are high school level and we are making an effort to get a computer center in the local school system. Any help we can get would be much appreciated.

1. Purdue University Computer Hobbyist Club (PUNCH)
2. Room 67, Electrical Engineering Bldg Purduc University
West Lafayette IN 47907
3. Matthews Hall, Purdue University
4. Monday nights, 7 PM
5. PUNCH newsletter, published irregularly
6. Don Gille, president
7. (317) $463 \cdot 2340$
8. $\$ 2$ annual dues
9. General hardware and software
design, hobbyist activities, sponsoring the annual IEEE computer show at Purdue (March 24 1979).
10. Southeastern Michigan Computer Organization (SEMCO)
11. POB 9578

Detroit MI 48202
3. Ford Automotive Safety Center Auditorium, Dearborn MI
4. Second Sunday of every month at 7 PM
5. Data Bus
6. Jim Rarus, president
7. (313) 775.5320 (24 hour club news line)
8. $\$ 10$ per year or $\$ 6$ per year 50 miles from Detroit
9. We have a number of special interest groups (SIGs). The following are some of our interests: Radio Shack, S. 100 bus, KIM, 6800, Digital Group, RCA 1802, Heathkit, medical applications, SIG-BIG large machines and microinterfaces. A number of our members are also employed and interested in automotive applications.
10. Charter member of the Midwest Affiliation of Computer Clubs (MACC); host 1978 Computerfest; active in giving talks to educational institutions; access to club computer message service; free time to club members on HP 2000 BASIC system.

1. Mid Michigan Computer Club
2. 15151 Ripple Dr

Linden M1 48451
3. Various places (members' homes)
4. Irregular
5. None
6. Tony Preston
7. (313) 735-5 279
8. None
9. Helping beginners select equipment; program library.

Zips 50000-60000

1. Eastern Iowa Computer Club
2. POB 164

Hiawatha IA 52233
3. REC Bldg, basement

999 35th St
Marion IA
4. Last Sunday of month
5. Yes

1. Quad City Computer Club
2. 2155 W 30 St

Davenport IA 52804
3. Rock Island Arsenal

Rock Island IL 61201
5. Monthly newsletter
6. Cecil Fretwell
7. (319) $386-3723$
8. $\$ 6$ per year

[^7]Watertown WI 53094
3. Meets at above address
4. Fourth Monday at 7 PM
6. Bill Shier, president
9. System building
10. 15 members.

1. Small Computer Engineering Association of Minnesota
2. POB 4244

St Paul MN 55104
3. University of Minnesota, Mechanical Engineering Bldg, Room 4
4. Last Thursday of month at $7: 30 \mathrm{PM}$
5. Twin City Technical Hobbyist
6. Mike Young
7. (612) 884-2841
9. Hardware of different systems. $8080,6800,6502$, MP-1 2, 1802 user groups.
10. 685 members.

1. Resource Access Center
2. 30104 th AvS Minneapolis MN 55408
3. We sponsor SCEAM (Small Computer Engineering Association of Minnesota)
4. We publish Twin Cities Technical Hobbyist as a service to several local computer clubs, whose newsletters are contained therein.
5. R Koplow
6. (612) 781-7608
7. None
8. We are a special educational and research program in EDP and general technical aid to inner city, nonprofit community services. We sponsor microhobbyist clubs and newsletters.
9. Minnesota Computer Society
10. POB 35317

Minneapolis MN 55435
3. Brown Institute, 3123 E Lake St Minneapolis MN
5. Tid BITS
6. Jean Rice
7. 941-1051
8. $\$ 7$ per year includes subscription to the newsletter
9. $8080,6800, Z-80,6502,2650$, 1802, 8085, TRS• 80
10. Board meeting, film, show and tell, main speaker, business meeting, and random access session.

1. $\mathrm{XXX}-11$
2. 514 S 9 th St Moorhead MN 56560
3. By mail
4. Monthly
5. C R Corner
6. (218) 233-6682
7. Coniputer control; machineindependent software
8. RCA 301 Users Group
9. RR 2, POB 585

Rapid City SD 57701
5. Yes
6. Jay Roman
7. (605) $341-5030$
9. Communication via newsletter information about RCA 301/ UNIVAC Series 70 users, equipment, and software.

1. Fargo-Moorhead Computer Club (FMCC)
2. POB 2017

Fargo ND 58102
3. First Thursday: NDSU Fargo Third Thursday: MSU Moorhead
4. First and third Thursdays at 7:30 PM
6. Dan Kary
7. $(218) 233 \cdot 6682$
8. $\$ 5$ per year
9. Circuit design, promoting small computer interest; general programming.
10. About 80 members on list.

1. Missoula Amateur Computer Club
2. 2203 E Crescent Missoula MT 59801
3. First Monday of month
4. David Eggebraaten
5. (406) 728-5657
6. No dues
7. All aspects of microcomputers for persons in western Montana.

Zips 60000-70000

1. CACHE (Chicago Area Computer Hobbyist's Exchange)
2. POB 52

South Holland IL 60473
3. Northern Illinois Gas Bldg, Golf and Shermer Roads, Glenview IL
4. 1 PM, third Sunday of month, July excluded.
5. MicroSCOPE and meeting announcements
7. Hotline (recorded announcement), (312) 849.1132
8. $\$ 10$ per year
9. More general than special - CP/M local users group; SOL/Cuts and 8080-Tarbell cassette software libraries; computer aided instrúction group getting started; North Star users; Digital Group Users, etc.
10. Regular presentations by manufacturers, stores and fellow hobbyists.

1. ICE gine Inc
2. POB 291

Western Springs IL 60558
3. Various dinner meeting locations
5. Ice gine Journal
6. R A Hoekstra
7. (312) $530-0067$
8. Newsletter subscription is $\$ 10$ per year

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

LEARETO IPROGRAM

MGROCONIPITESRS

And at an affordable price. The Modu-Learn ${ }^{\text {M }}$ home study course from Logical Services.
Now you can learn microcomputer programming in ten comprehensible lessons. At home. In your own time. At your own pace.
You learn to solve complex problems by breaking them down into easily programmed modules. Prepared by professional design engineers, the Modu-Learn ${ }^{\text {TM }}$ course presents systematic software design techniques, structured program design, and practical examples from real 8080A micro-computer applications. All in a modular sequence of 10 lessons . . . more than 500 pages, bound into one practical notebook for easy reference.
You get diverse examples, problems, and solutions. With thorough background material on micro-computer architecture, hardware/software tradeoffs, and useful reference tables. All for only $\$ 49.95$.
For $\$ 49.95$ you learn design techniques that make software work for you. Modu-Learn ${ }^{\text {TM }}$ starts with the basics. Our problem-solution approach enables you to "graduate" as a programmer.
Circle the reader service number below to receive our free descriptive brochure and course outline.
Use your Master Charge or VISA card to order today. Call Pat at (408) 245-8855.

Circle 215 on inquiry card.

P.O. Box 60968
Sunnyvale, CA 94088
408-245-8855

Introducing G/2 Extended Basic for Processor Technology's SOL computer series. The best Basic you can buy.

Developed by Microsoft, ${ }^{T M}$ the industry leader in microprocessor languages, and fully debugged and field-proved, this 15.5 K program offers such outstanding features as string arrays, 16-digit accuracy, fully descriptive error messages, automatic line numbering and renumbering in selected increments, long vanable names, trace function for easy debugging, and many other superior capabilities. G/2 Extended Basic can read tapes written in PT's 5K and Extended Basic. This allows you to use all your previously developed programs.

Available now on cassette tape with full documentation. At your dealer, or write for information.

THE REASON YOU BOUGHT YOURCOMPUTER.

Consumer Computer Group 1286 N. Lawrence Station Road Sunnyvale, Califomia 94086 (408) 7342910

Glubs ond Newsletters

9. Timesharing system for members. Very informative newsletter with over 500 subscriptions.
10. SPC-12 Users Group
11. 7706 W Gregory

Chicago IL 60656
3. 2704 W North Av, Chicago IL 60647
5. Soon to be announced
6. Manuel C Martinez
7. (312) 631-6623
8. None at present

1. St Louis Area Computer Club Inc
2. POB 28924

St Louis MO 63132
3. Thornhill Branch, St Louis County Library, FeeFec Rd and Willowyck
4. First Thursday of every month, 7 PM
5. SLACC STACK
6. Frank Curtis, president
7. (314) 993-0589
8. $\$ 5$ per year
9. Every third meeting is "show and tell nite." Special groups include: 8080 homebrew group; modem design group; Dura terminal group
10. The club is a Missouri not-for-profit corporation for educational and scientific purposes related to microcomputers and personal computing. We have a technical and software library for members' use.

1. Computer Network of Kansas City
2. 1251 Kansas Av Kansas City KS 66105
3. Midwest Research Institute, 425 Volker Blvd, Kansas City MO
4. Second Sunday of each month, 6:45 PM
5. Thru-Put, Earl Day, editor
6. Harold J Schwartz, president
7. (913) $371-2616$ (work), $648-5410$ (home)
8. $\$ 12$ per year
9. Completing modem designed by members; hardware schooling and design and trading; software schooling; network priorities and software.
10. We are in the very interesting position since our start (two years ago) to shortly begin a local network. We hope to be tying into a nationwide network late next year.
11. Mid-America Computer Hobbyists
12. POB 13303

Omaha NE 68113
3. Commercial Federal Savings and Loan, Bellcuve NE
4. Second Thursday of each month
5. MACH
6. Thomas F Smith, president
7. (402) $294 \cdot 4479$ (work), 292-6031 (home)
8. $\$ 5$ per year
9. 1802 SIG and Poly 88 SIG
10. Most club members are military stationed at Offutt AFB, NE, SAC Headquarters where a great many
computers are used for command and control application.

1. SCAMPUS
2. 2215-A Walker Dr

Omaha NE 68123
5. SC/MP Users Group Newsletter
6. Tom Bohon, coordinator

Zips 70000-80000

1. CENtral Oklahoma Amateur Computing Association (CENOACA)
2. POB 2213

Norman OK 73070
3. Oklahoma State Univ Tech, 900 N Portland, Oklahoma City OK
4. Second Saturday, 10 AM
5. CENOACA Newsbits (monthly)
6. Lee Lilly or Don Holyoke
7. (415) 737-6121, 329-3209, respectively
8. $\$ 5$ per year
9. 6800 Users Group meets third Saturday at 333 NW 5th, \#2308, Oklahoma City OK. Dr James Petty is the contact person. Demonstrations and special programs planned for each CENOACA meeting.
10. Newsbits accepts free nonbusiness classified advertising (space available) and very low cost business advertising. CENOACA was organized in January 1976 and incorporated as a nonprofit organization under the laws of the state of Oklahoma in June 1976 to
"provide a forum for the exchange and dissemination of information among members concerning the computer arts and sciences."

1. The Tulsa Computer Society
2. POB 1133

Tulsa OK 74101
3. Tulsa Vocational Technical School Seminar Room 3420
E Memorial Dr
4. Last Tuesday of month at 7:30 PM
5. The //O Port
6. Jerry Henshaw
7. (918) $836 \cdot 7364$
8. $\$ 6$ per year

1. The Computer Hobbyist Group of North Texas
2. POB 1344

Grand Prairie TX 75051
3. UTA, University Hall, Room 108 and UTA, Green Center, Room 21530
4. 1 PM, third Saturday; 1 PM, first Saturday, respectively
5. Printed Circuit
6. Bill Fuller
8. $\$ 7$ per year
9. TRS-80, 6502, PET, 9900, Digital Group.

[^8]2. POB 37102

Houston TX 77036
3. Various
4. Second Friday and fourth Tuesday
5. NYBBLE
6. Troxel Ballou
7. (713) $661 \cdot 6806$
8. $\$ 12$ per year

1. JSC Computer Hobbyist Club
2. c/o EP4/L W Jenkins, president NASA LBJ Space Center Houston TX 77058
3. Gilruth Research Center, LBJ Space Center
4. First Thursday, third Monday 5 to 7 PM
5. Meeting announcement flyer
6. EP4/L W Jenkins, president
7. \$7 per year first class mail $\$ 4$ per year JSC interoffice mail
8. Our $B Y T E$ subscription is mailed to JM6/Technical Library where it is available to club members and others in the periodical area.
9. Texas A\&M Microcomputer Club
10. POB M9, Aggieland Station College Station TX 77844
11. Room 203, Zachry Engineering Center, Texas A\&M University
12. Alternate Wednesdays, tutorials on other Wednesdays
13. In process of publishing first issuc
14. Larry Wayne Brown, president
15. (713) $693 \cdot 5748$
16. $\$ 5$ per semester or $\$ 10$ per year
17. APL committee (8080); BASIC committee (6800); hardware and software tutorials; Micro Expo '79.
18. Micro Expo '79 to be held March 2, 3, and 41979 in the Memorial Student Center of Texas A\&M University
19. Alamo Computer Enthusiasts
20. 7517 Jonquill

San Antonio TX 78233
3. Room 104, Chapman Graduate Center, Trinity University
4. Fourth Friday of every month
5. Alamo Computer Enthusiast
6. John R Stanton
7. (512) $657-3069$
8. $\$ 2$ per year subscription
9. All areas

1. Northslde Computer Group
2. 5819 Brenda

San Antonio TX 78240
6. John McClenny Jr
8. No dues
9. $6800,6809,6502$ microprocessors, bipolar bit slices. Projects include 256 by 256 motion graphics; super cheap voice synthesis, making all our software ROMable; flight simulator program.

1. Permian Basin Computer Group
2. Data Processing Dept c/o Ector County Schools POB 3912
Odessa TX 79760
3. Midland chapter: Student Center,

Midland College
Odessa chapter: Elect Tech Bldg, Rm 203, Odessa College
4. Midland chapter: Second Monday each month at 7:30 PM

Odessa chapter: Second Saturday each month at 1 PM
5. None
6. John Rabenaldt
7. Midland: (915) $697-4607$ after 6 PM Odessa: (915) 332.9151 ext 43 weekdays
8. None
9. Comsumer (home) computers; home-built computers; color graphics; floppy disk systems; Selectric typewriter interfaces.

Zips 80000-90000

1. Southern Nevada Personal Computing Society (SNPCS)
2. 1405 Lucilee St Las Vegas NV 89101
3. Clark County Community College Cheyenne Campus, Room 1062
4. 12 noon, second Saturday each month
5. HARD COPY (monthly)
6. Edna H Wells, secretary
7. (702) $642 \cdot 0212$
8. Individual, $\$ 12$ per year; family $\$ 18$ per year; student \$3 per year
9. Our primary purpose is to assist each other in making informed decisions when buying computers, accessorics and software.
10. We have (May 78) 54 members with widely varicd technical backgrounds.
11. Northern Nevada Computer Club
12. c/o UNSCC

POB 9068
Reno NV 89507
3. University of Nevada Computing Center
4. 8 PM, second Wednesday, September thru May
5. None
6. Al Brady
7. (702) 784-4008
8. None
9. Information exchange for small computers.

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

Introducing G/2 Standard Basic for the SWTPC computer series. It'll load faster and do more than you ever thought possible.

Developed by Microsofft, ${ }^{\text {TM }}$ the industry leader in microprocessor languages, and proved for more than 3 years in MITS applications, G/2 Standard Basic is now available for the first time for use with Southwest Technical Products Corporation's 6800 hardware.

Four to eight times faster than the basic you're now using, this interpreter offers string arrays, extensive string functions, Peek, Poke, Wait and Continue, direct execution of statements in the calculator mode, 10 nested machine language subroutines, multidimensional arrays and much more. And it uses only 7 K of memory.

Available now on cassette tape with full documentation. At your dealer, or write for information.

Consumer Computer Group 1286 N. Lawrence Station Road Sunnyvale, Califomia 94086

Functional Automation is a young, extremely wellfinanced mainframe computer company and we're offering you the challenge of a life-time. We want to give you the opportunity to leave your personal stamp on a significant project.

Our computer system employs the first new architecture of the 70 's. It is a 64 bit mainframe, microprogrammed CPU with 128 bit wide WCS, oriented to high level languages. The software is primarily implemented in PL/1.

Openings currently exist in the following areas:

- Language

Implementation

- Operating System
- System Verification
- Device Controllers
- Firmware

All functions include responsibility for design and implementation.

Send your resume to Mr. Jan Grondstra, Functional Automation, Inc., 118 Northeastern Blvd., Nashua, NH 03060.

FUNCTIONAL

AUTOMATION

FORTRAN IV

the most extensive fortran

SYSTEM AVAILABLE, RUNNING ON THE Z-80

* ANSI Standard Fortran IV Compiler
- Byte, Word, Real, Double, Complex, and String data types and operations.
- Produces efficient and compact code.
- Compiles up to 600 statements per minute.
- Expressions in Do loops, output lists, etc.
* Linking Loader
- Marges, links, and locates Fortran and Assembler modules.
- Searches libraries for needed modules.
* Runtime Libraries
- ANSI standard formatter.
- All standard mathematical functions.
- Sequential, Random and Blocked disk I/O.
- Supparts $C P / M_{(B)}$ and user-defined devices.

AVAILABLE NOW!! \$349
OEM Inquiries invited.
รmnoll|l fyyslemis servicss inc.
P.O. Box 2400 Stn. A Champaign, Illinois 61820

CP/M is a Trademark of Digital Research Group.

Glubs and Newsletieps

Zips 90000-99999

1. Glendale College Computer Club
2. 1500 N Verdugo Rd Glendale CA 91208
3. Glendale College
4. R Unterman
5. (212) $240-1000$ ext 200
6. $\$ 2$ per year
7. Compucolor-Intecolor Users Group
8. 5250 Van Nuys Blvd Van Nuys CA 91401
9. Same as above
10. Bimonthly
11. Stan Pro
12. (213) 788-8850
13. $\$ 15$ first year
14. Business programs; game programs; interfacing to other systems; special uses and interfaces to machines.
15. Program interchange.
16. San Diego Computer Society
17. POB 9988

San Diego CA 92109
5. Yes
8. $\$ 4$ membership donation; $\$ 6$ newsletter subscription
9. The San Diego Computer Society is a nonprofit, tax exempt corporation whose purpose is to provide its members and the general public with a useful source of computer related information.
10. Write to above address for membership application.

1. Homebrew Computer Club
2. POB 626

Mountain View CA 94042
3. Stanford Linear Accelerator Center and Sherman Fairchild Medical Center
4. Printed in newsletter
5. Homebrew Computer Club Newsletter
6. Robert Reiling
7. (415) $967-6754$ after 7 PM
8. Donation of $\$ 10$ to $\$ 12$ per year requested to pay meeting and newsletter costs.
10. A sample Homebrew Computer Club News/etter, listing meeting dates and location, may be obtained by sending an SASE to the Homebrew Computer Club Newsletter at the above address.

1. The Apple Core
2. POB 4816

Main Post Office
San Francisco CA 94101
5. Yes
6. Scot Kamins
8. To be determined
10. To qualify as a member, you must own or regularly use an Apple in any memory configuration.

DIRECTORY, continued

1. Bay Area Microprocessor Users Group (BAMUG)
2. 1211 Santa Clara Av Alameda CA 94501
3. 145053 rd St, Emeryville CA
4. First Thursday of each month
5. Buy Area Microprocessor Users Group Newsletter
6. Timothy O'Hare
7. (415) 523-7396
8. Donations; no dues or fees required.
9. The club is open to all interested persons. It has an education forum every month with guest speakers to enlarge computer knowledge.
10. The club also has a software library, group buys on equipment and a swap meet at every meeting.
11. Diablo Professional Users Group
12. c/o R J Hendrickson

321 Golf Club Rd
Pleasant Hill CA 94523
3. Library conference room, Diablo Valley College
4. Fourth Wednesday of each month
5. Mecting minutes constitute the newsletter
6. R J Hendrickson
7. (415) 687-8373
8. None
9. Professional applications of personal computer systems. Meetings are comprised of speakers, demon. strations and random access sessions.

1. 6800 Computer Club
2. POB 18081

San Jose CA 95158
3. University of Santa Clara
4. First Tuesday of each month
5. None
6. Ray Boaz
7. (408) 269-9522
8. None
9. Everything on hardware and software for all 6800 systems.
10. For 6800 users we provide the place to exchange software, discuss problems, find solutions to problems, evaluate vendors, use limited

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

Tip us off to the name of your favorite computer store* and we'll send you a
Verbatim
Diskette for only

$\$ 300$ including postage.

* We'll tip him to our Verbatim dealer program. Dealers: call 800.523.9350 for details.

Iaving Reservations About Your Sotware? HONT NO MORE!
 Smoke Signal Broadcasting presents the

Program for disassembly of object code into source code for direct editing and re-assembly.

- Output directed to tape or disk with either SWTPCo's co-resident assembler format, or Smoke Signal Broadcasting's Text Editing System format.
- Reports number of bytes in source code file, number of external labels, number of local labels, and number of variables for computing memory space necessary to assembly source code generated.

Only $\$ 24.95$ (on cassette), $\$ 30.95$ (on diskette)
We're the "CHIEF" in 6800 products software
SMOKE SHGNAL BROADCASTIWG 6304 Yucca/Hollywood, CA 90028/(213) 462.5652

DIRECTORY, continued
group buying power and exchange information on home computer news and events. We have a software library with programs on tape (KCS) at cost of reproduction and tape. All inquiries are answered when time permits.

1. Sacramento Microcomputer Users Group (SMUG)
2. POB 161513

Sacramento CA 95816
3. SMUD Training Facilities, 59 th St
4. Fourth Tuesday of each month, 7:30 PM
5. Push \& POP
8. $\$ 6$ per year
9. PET and SOL workshops
10. Please write SMUG at the address above with all meeting, membership and other questions.

1. Aloha Computer Club Inc
2. POB 4470

Honolulu HI 96813
3. Leeward Community College
4. First Wednesday of each month, groups at 6:30 PM, and meeting at 8 PM
5. De Bugga
6. Bob Holz
7. (808) $455-0271$ or $455-4854$
8. i eryear
9. (M, Heath, 6800, and PCNET.

1. Portland Computer Society
'. 4032 SE Grant C
Portland OR 97214
Varies
Social: First Thursday of each month; Business: Third Wednesday and Saturday of each month.
2. PCS 1976
3. Percy G Wood
4. (503) $235-9641$
5. $\$ 10$ per year
6. Language Theory SIG.
7. Northwest Computer Society
8. POB 4193

Seattle WA 98104
3. Pacific Science Center
4. First and third Thursday of each month
5. Northwest Computer News
7. (206) 284-6109 (message)
8. $\$ 7$ per year
9. Timeshare at 50 cents per hour,

TURN YOUR COMPUTER INTO A TEACHING MACHINE

The staff at Program Design did not learn about educational technology from a bookwe wrote the book! We have been innovators in such teaching materials as programmed instruction and multimedia presentations. We also belong to that minority in education who actually test materials to see that people can learn from them.

Now Program Design brings this experience to the personal
computer field. PDI is developing a line of educational and game programs for the whole family-from preschool child to adults.

Program Design educational software uses the computer's full teaching potential in exciting and effective ways. Programs are simple to use and memory efficient, and most important . . . they teach!

TAPES NOW AVAILABLE FOR THE TRS-80. PET, APPLE $\|$
SAMPLE OUR SOFTWARE FOR $\$ 2.00$. Send us $\$ 2.00$, your name, address, and type of computer, and we'll send you a tape for your computer with actual samples of our programs.

Or circle our number on the reply card for a printed catalog.
Department 200 PROGRAM DESIGN, INC. 11 IDAR COURT GREENWICH, CONN 06830
annual computer fair in April and software contests
10. First meeting of each month we have guest speaker of demonstration; second meeting of each month is an open forum. News circulation is 1000 .

1. Apple Core Computer Club
2. $220 \mathrm{~N} 2 \mathrm{nd} \mathrm{St}_{\mathrm{t}}$ \#17

Yakima WA 98901
3. J M Perry Institute 2011 W Washington Av
5. None: monthly notification of meeting to members.
6. Jerry P Starzinski, president or Russell Miller, secretary
7. (509) 452-2540 (after 6 PM), 453-7169 (8 AM to 5 PM), respec. tively
8. $\$ 5$ per year
9. Many members have SwTPC 6800 systems. Lively trade of information and programs. Presently have eight working systems, three being build. Some members going into 8080s and others.
10. Club celebrated first anniversary May 251978 and has grown from eight founding members to a present membership of thirty. Lots of new and exciting projects in the planning stages.

1. Anchorage Computer Group
2. 364 H 6 th St

Ft Richardson AK 99505
3. Time and place to be determined
4. Monthly date to be determined.
6. Constantine T Papas
7. (907) 862-1238
9. Assistance to the novice home computerist.

FOREIGN and INTERNATIONAL CLUBS and NEWLETTERS

1. Microcomputers in Psychiatry
2. 26 Trumbull St

New Haven CT 06511
3. none
5. Microcomputers in Psychiatry
6. Marc D Schwarz MD
7. (203) $562-9872$
8. $\$ 6$ per year
9. A bimonthly newsletter for mental health professionals interested in sharing experiences and ideas about the use of computers in the field. Includes information on subscribers' uses of computers for psychiatric testing, history testing, the rapy, research and simulations. Also includes reviews and notices of commercially available hardware and software for use in a mental health setting.

1. Transaction
2. POB 461

Philipsburg PA 16866
5. Transaction
8. $\$ 3$ per year
9. Users group and newsletter for PET owners.

1. KIM-1/6502 User Group
2. 109 Centre Av

Norrisiown PA 19401
5. KIM-1/6502 User Notes
6. Eric C Rehnke
7. (215) 631-9335
8. $\$ 5$ for six issues
9. A communication medium for KIM users
10. Around 2000 members worldwide.

1. Buss
2. 325 Pennsylvania Av SE

Washington DC 20003
3. none
5. Buss: The Independent Newsletter of Healh Company Computers
6. Charles Floto, editor
8. $\$ 7$ for 12 issues
9. Software and hardware compatible with H8, H11, or ET-3400.
10. Sample issue available upon request mentioning BYTE.

1. TRS.80 Users Group
2. 7554 Southgate Rd Fayetteville NC 28304
3. Our group is international so we do not have meetings.
4. TRS-80 Users Group News/etter
5. R Gordon Lloyd
6. (919) 867-5822
7. $\$ 10$ per year (ten newsletters, 20 pages per issue)
8. Radio Shack TRS-80 computer, programs for the TRS-80, and interfacing the TRS-80 to the outside world.
9. SR-52 Users Club
10. 9459 Taylorsville Rd Dayton OH 45424
11. None
12. 52-Notes
13. Richard C Vanderburgh
14. $\$ 1$ per issuc of 52-Notes; back issues start June 1976.
15. 52-Notes: style and technical level are aimed at individuals with above average intelligence and attention span, but whose formal cducation may have ended with high school. Scope is all of the Texas Instruments personal programmable calculators. Coverage of the Tl-58/59 machines began Junc 1977. The SR-52 Users Club is a national/international group.
16. Personal Computing Society
17. c/o James White

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Mceting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

cañda
 systems, inc. Boards D0 Something

If your system needs to know what time it is, our CL2400 is the board for you. The present time in hours, minutes, and seconds is always available for input, and is continuously updated by the highly accurate 60 Hz power terrups? The CL2400 can do that, too, at any of 6 rates. Reference manual with BASIC and assembly language software examples included.

If your system needs on/off control of lights, motors, appliances, etc., our PC3200 System components are for you. Control boards allow one $1 / 0$ port to control 32 (PC3232) or 16 (PC3216) external Power Control Units, such as the PC3202 which controls 120 VAC loads to 400 Watts. Optically isolated, low voltage, current-limited control lines are standard in this growing product line.

CL2400 Real Time Clock
 \$98/Kit \$135/Assembled

La Canada, CA 91011
(213) 790-7957

P.O. Box 516

$\begin{array}{cc}c & \text { PC3200 } \\ \text { Power Control } & \text { System } \\ \text { PC } 3232 \$ 299 / \mathrm{Kit} & \$ 360 / \text { Assm. } \\ \text { PC } 3216 \$ 189 / \mathrm{Kit} & \$ 240 / \text { Assm. } \\ \text { PC } 3203 & \$ 99.50 / \mathrm{Kit} \\ & \$ 52 / \text { Assm. }\end{array}$
$\begin{array}{cc}c & \text { PC3200 } \\ \text { Power Control } & \text { System } \\ \text { PC } 3232 \$ 299 / \mathrm{Kit} & \$ 360 / \text { Assm. } \\ \text { PC } 3216 \$ 189 / \mathrm{Kit} & \$ 240 / \text { Assm. } \\ \text { PC } 3203 & \$ 99.50 / \mathrm{Kit} \\ & \$ 52 / \text { Assm. }\end{array}$
c
PC3200
Power Control
System
PC3232 $\$ 299 / \mathrm{Kit}$
PC3216 $\$ 189 / \mathrm{Kit}$
PC3203 $\$ 39.50 / \mathrm{Kit}$
$\begin{array}{cc}c & \text { PC3200 } \\ \text { Power Control } & \text { System } \\ \text { PC3232 } \$ 299 / \mathrm{Kit} & \$ 360 / \text { Assm. } \\ \text { PC3216 } \$ 189 / \mathrm{Kit} & \$ 240 / \text { Assm. } \\ \text { PC3203 } \$ 39.50 / \text { Kit } & \$ 52 / \text { Assm. }\end{array}$
$\begin{array}{cc}c & \text { PC3200 } \\ \text { Power Control } & \text { System } \\ \text { PC3232 } \$ 299 / \mathrm{Kit} & \$ 360 / \text { Assm. } \\ \text { PC3216 } \$ 189 / \mathrm{Kit} & \$ 240 / \text { Assm. } \\ \text { PC3203 } \$ 39.50 / \text { Kit } & \$ 52 / \text { Assm. }\end{array}$
(formerly comptek)

Hlubs and Newsletiers

1202 Riverview Ln
Watertown WI 53094
5. Soon to be announced
6. Richard A Kuzmack
7. (703) 821-2873 (evenings)
9. The Society's communications objectives will include publication of a newsletter for computer clubs and a club directory. Surveys will be conducted and published to share information on matters of interest to computer enthusiasts. PCS will foster the development of standards such as those necessary to the operation of a personal computer communications network.
10. This national organization was recently formed to facilitate noncommercial applications of computer technology. It will foster communication and coordination among the numerous computer clubs and individuals in the personal computing community. The board of directors of PCS are: Charles Floto, Washington DC; Richard Kuzmack, McLean VA; Sol Libes, Scotch Plains NJ; Larry Press, Santa Monica CA; Jim Rarus, E Detroit MI; Robert Reiling, Mountain View CA; Gifford Toole, Mississauga, Ontario CANADA; M D Turner, Austin TX; and James White, Watertown WI.

1. Theater Computer Users Group
2. 104 N St Mary

Dallas TX 75214
3. Assorted conventions of other groups (USITT, ATA)
4. Random
5. TCUG News/etter
6. Mike Firth
7. (214) 827-7734
8. $\$ 4$ per year
9. Uses of computers of any size, but particularly small ones, in any aspect of producing live drama, including lighting control, ticket management, bookkeeping, inventory, costing, research.
10. A national organization created to share data in a specific area.

1. Association of Small Computer Users
2. 75 Manhattan Dr Boulder CO 80303
3. Interactive Computing, Minicomputer News and Dotopro Feature Reports
4. $\$ 25$ per year
5. The Association of Small Computer Users is a nationwide professional organization devoted to providing an unbiased source of user oriented information on mini and microcomputers for business and scientific applications. It is organized as a nonprofit association to represent and serve small computer users and to provide a forum for the ex-

DIRECTORY, continued
change of information among small computer users.

1. Robot Builder
2. 208 Via Colorin Palos Verdes Estates CA 90274
3. none
4. Robot Builder
5. Michael Westvig
6. (213) $378-0580$
7. $\$ 6$ per year (bimonthly), $\$ 12$ overseas, beginning with volume 2 , number 1, January 1979.
8. Computer Information Organization Inc
9. POB 158

San Luis Rey CA 92068
3. Publishing only
5. Radio Shack Computing, Low-Cost Word Processing and S-100 Bus Computer User Notes
6. Bill McLaughlin, editor
7. (714) 757-4849
8. Radio Shack $\$ 10$ for 12 issues, S-100 $\$ 5$ for six issues and Word Processing $\$ 12.95$ for 12 issues
9. Real uses of computers: either business, home, education, small or large organization
10. Word Processing newsletter is developing interfaces to ordinary electric typewriters, to Selectric, Olivetti and other single element typewriters, to Friden and other special machines.

1. PPC
2. 2541 W Camden PI

Santa Ana CA 92704
5. PPC Journal
6. Richard J Nelson, publisher
8. $\$ 15$ per year
9. To share programs, techniques, news, etc, for HP PPCs.
10. Six chapters at present: Cincinnati/ Dayton, Chicago, Washington DC, Albuquerque, Orange County and NE lowa Chapters. Nearly 2000 members in 35 countries. Started June 1974. For more information send 9 by 12 inch SASE (2 oz postage attached) to above address.

[^9]WE SHIP FROM STOCK
TELETYPE MODEL 43-Only \$985
300 baud, full ASCII character set, 132 column width, 30 cps , quiet, light-weight, dependable.
With RS 232 \$1085

TECHNICO 990016 BIT COMPUTER KIT \$299

RCA VIP KIT . $\$ 230$
EX-150 ELECTRONICS EXPERIMENT KIT. $\$ 65$
HAZELTINE 1500 . $\$ 1045$
haZELTINE 1500 KIT . $\$ 895$
haZeltine 1510 . $\$ 1165$

To order: Check, money order, major credit cards. $\$ 6$ shipping. NYC residents add 8\% tax.

We have no reader inquiry number. Please write or phone.
OWENS ASSOCIATES, DEPT. B-S 147 NORWOOD AVENUE
STATEN ISLAND, NEW YORK 10304
Day, Evening, Weekend Calls Welcome!
(212) 448-6283
(212) 448-6298

Alubs and Newsletieps

DIRECTORY, continued

1. Calculator Lib: The Liberated Calculator Users Club
2. POB 2151

Oxnard CA 93034
3. Ventura County (we do not have a permanent mceting address yet)
5. Quarterly club activity report and the irregulariy pubiished newsletter Calculator Lib
6. Gene Hegedus
7. (805) 486-7191
8. Yearly membership dues of the nonprofit club is $\$ 6$ which includes the quarterly reports. The irregularly published newsletter Calculator Lib is $\$ 2.75$ per issue postpaid.
9. This global club (with members on three continents) is the first to serve the interests of all calculator users, regardless of the make of their machines. It is dedicated to exploring the limits of the state of the art of calculator mathematical techniques.
10. The club presently is in a formative stage, having been organized on requests of Calculator Lib readers and therefore presently we need members who will volunteer as officers of the club, working on the editorial committee (for the quarterly report) as correspondents,
reporters, etc (all this with the understanding that no salaries will be paid). The operation and future action of the club depends upon the interest, ability and resources of the individual members.
More information on The Liberated Calculator User's Club is available for a (\#10) SASE from Gene Hegedus, Calculator Lib, POB 2151, Oxnard CA 93034.

1. Computer Faire
2. POB 1579

Palo Alto CA 94302
3. Varies
4. Varies
5. Silicon Gulch Gazette (a randomly published 4 to 20 page newspaper)
6. Jim Warren
7. (415) 851-7075
8. None
9. Intelligent machines for home, business and industry

1. SOLUS, The Sol User's Society
2. POB 23471

San lose CA 95153
3. Local chapters in various cities across the country
5. SOLUS News

8. $\$ 10$ (US dollars oniy) in USA, Canada and Mexico; \$15 (US dollars only) elsewhere
9. To facilitate exchange of information and software among owners of Processor Technology Sol Computer Systems (or other computers with VDM and CUTS or HELIOS), to review hardware and software products tested for Sol compatibility and consumer advocate.
10. We maintain a cooperative but independent relationship with the manufacturer. Send $\$ 1$ for sample issue of ne wsletter.

1. HEX Users Group
2. 36012 Military RdS Auburn WA 98002
3. None: correspondence only
4. HEX News/etter
5. Charles C Worstell
6. (206) 927-6038 (Tacoma WA)
7. First time send SASE; \$4 for next seven issues of newsletter which is irregular.
8. Low cost, effective system without ASCII keyboard; Motorola 6800 EVK/II kit is most popular.
9. Have monitor system to use BASIC on original 24 key keyboard of Motorola 6800 EVK/II.
10. Societe' d'Informatique Amateur du Quebec
11. C P 9242 Sainte-Foy, PQ CANADA G1V 4B1
12. Pav Vachon, Salle 3870 , Univ Laval
13. Second Monday of each month at 7:30 PM
14. La Routine
15. Gilles Paillard, secretary
16. (418) 871-1960
17. Nonstudent $\$ 20$, student $\$ 15$ or journal only $\$ 10$
18. Activities for current year cease in June with election of new officers, and resume in September.
19. Ottawa Computer Group
20. POB 13218 Kanata Ontario CANADA K2K 1×4
21. National Research Council Auditorium, 100 Sussex Dr, Ottawa Ontario CANADA
22. First Monday of each month, 8 PM
23. OCG Newsletter
24. W Mitchell, secretary
25. (613) 596-2287
26. $\$ 5$ per year and $\$ 5$ initiation fee.
27. Association of Computer Experimenters (ACE)
28. c/o Ken Bevis, 220 Cherry Post Dr Mississaliga, Ontario CANADA L5A 1 H9
29. Hamilton, Ontario CANADA
30. Ipso Facto
31. Bernie Murphy, editor, 102 Mc Craney St, Oakville Ontario, CANADA L6H 1H6
32. Tentatively $\$ 10$
33. Microcomputers, peripherals and software in general, with RCA-1802
microprocessor and software in particular.
34. The ACE club started in September 1977 and has about 450 members from across the US and Canada.
35. Toronto Region Association of Computer Enthusiasts (TRACE)
36. POB 545 , Streetsville, Ontario CANADA L5M 2C1
37. North Campus, Humber College, room J209 and Ontario Science Centre, lecture hall C
38. Fourth Friday of each month, 8 PM and second Sunday of each month, 2 PM , respectively
39. TRACE Newsletter
40. Ross Cooling, president
41. (416) $488-3314$
42. $\$ 15$ per year or $\$ 7$ per year newsletter only.
43. Kitchener-Waterloo Microcomputer Club
44. E2-3354 Electrical Engineering Dept, University of Waterloo Waterloo, Ontario CANADA N2L 3G1
45. Engineering 4, room 3388, University of Waterloo
46. First Wednesday of each month, 7:30 PM
47. None
48. Roger K Sanderson
49. (519) $579-6445$ (home) or 885 . 1211 ext 3815 (work)
50. None
51. We hold very informal meetings for the purpose of getting people with similar interests together. We also have a small dedicated group of regulars who are doing interesting hardware and software development.
52. West Coast Computer Society
53. POB 4476

Vancouver BC CANADA
3. British Columbia Institute of Technology, room D412
4. First Wednesday of each month at 8 PM (no meetings July and August)
5. Print Out
6. Peter Luckham
7. (604) 522-3484
8. $\$ 15$ per year
9. Personal computing.

The listings follow this form:

1. Name of organization
2. Mailing address
3. Meeting location
4. Meeting algorithm
5. Newsletter or publication
6. Contact person
7. Contact phone number
8. Dues or subscription fees
9. Special interests
10. Other comments

It's TIME you brought your LSI-11 up to DATE, TIME and DATE, two important parameters in the computer world, are available to your LSI-11 on one DUAL SIZE BOARD. When requested, the TCU-50D will present you with the date (month and day), time (hour and minutes), and seconds. Turn your computer off and forget about the time - your battery supported TCU-50D won't, not for 3 months anyway. The correct date and time will be there when you power up.
The TCU-50D is shipped preset to your local time, but can be set to any time you want by a simple software routine.

AT $\$ 295$ YOU CANT AFFORD TO IGNORE TIME

Time is only one way we can help you upgrade your LSI-11 or PDP-11 system. We'd also like to tell you about the others. So contact Digital Pathways if you're into -11's. We are too.

DIGITAL PATHWAYS INC.
4151 Middletield Road - Palo Alto,
California 94306. Telephone (415) 493-5544

Having Reservations About Your Sotware? HUND NOMORE!
Smoke Signal Broadcasting presents the

SG-I SOTR GE GEMERATOR

Program for disassembly of object code into source code for direct editing and re-assembly.

- Output directed to tape or disk with either SWTPCo's co-resident assembler format, or Smoke Signal Broadcasting's Text Editing System format.
- Reports number of bytes in source code file, number of external labels, number of local labels, and number of variables for computing memory space necessary to assembly source code generated.

Only $\$ 24.95$ (on cassette), $\$ 30.95$ (on diskette)
We're the "CHIEF" in 6800 products soffware
 6304 Yucca/Hollywood, CA 90028/(213) 462-5652

ENTREPRENEURS

Mlubs and Newsletiteps

Il you can propram a mini and own one, you may have almosi everything to starl your own systems EDP prolessional who successfully did it.

HOW TO START YOUR OWN SYSTEMS HOUSE by Leslie Nelson Second Edition Aug. 1978 213 pages $\$ 36.00$

HANDBOOK OF SMALL BUSINESS COMPUTER CONSULTANTS

Practical guide for programmers, accountants, engineers to become an independent SBC consultanl. Systematic coverage of technical, marketing. linancial and legal aspecis.

198 pages
$\$ 28.00$

Forthcoming:
HOW TO START A SUCCESSFUL COMPUTER STORE
VISA

Bend check to:

EBBEX PUBLIBHING CO.
EB5 Bloomfield Ave., Dpt. Bg
Caldwell, N.J. O7OOE
Credil card orders: send card \#. dale exp. Add $\$ 3.00$ for rush. air-mail shipping. N.J. residents add $\mathbf{5 \%}$ sales lax.

COMING TO ATLANTA IN - СТロВЕR...

BizCOMP '78
October 27-29
Marriott Motor Hotel, Atlanta, Georgia
Crowds.Exposure.Sales. Atlanta, The Computer City Of The South...

BizComp'78, The Reason For Being There!

Plan To Exhibit: Reserve Space Now!

 mdustry will be on displiny lrom the latesi innovalion:, I computitrs in husiness sottwart and word processing supphes and sirvires BizComp 78 will akin "mbthistin in the small buse Simplicity and depenciahulty at mictocomputer systrims

Plan To Attend:

Daily Seminars!
At the door registratoon wilt bu. $\$ 400$ per day Reqister now int $\$ 200$ per day Prefegistithon ofter expires October 20th When ordermi your lickets please makre curtan to irndicate dates you will be attending and number of tickets per diay All tickets are color cided All early regustrants will raceave a special copy of the Expo seminill schedule Tickets will be malled ummediately upon ricent of your check Please make cherks out to Felsburg Associates the

For Complete Details Write Or Call Today!

1. Microcomputer Encounter Group
2. 207-885 Old Esquimalt Rd Victoria BC CANADA V9A 4W9
3. Varghese Cherian, secretary
4. Exchanging information and ideas.
5. Amateur Computer Club
6. 7 Dordells

Basildon, Essex
ENGLAND
5. Six times a year
6. Mike Lord
7. (0268) 411125
8. £ 2 PA or $\$ 4$ (US currency)

1. Hobby Computer Club
2. Delftsekade 12 2266 A J Leidschendam NETHERLANDS
3. Several towns in Belgium and the Ne therlands.
4. Usually once each month
5. Hobby Computer Club Nieuivsbrief (Dutch), bimonthly
6. Dick Barnhoorn
7. Netherlands 070-273537
8. Netherlands: 15 Guilder; Belgium: 225 Franc
9. No bias to any system or microprocessor
10. Membership passed 800 in May 1978. Hardware service (cheap parts and reductions) and software library started in January 1978. HCC Computer Day in October. We're taking part in several large scale exhibitions to promote the concept of personal computing.
11. Japan Microcomputer Club
12. Kikaishinko-kaikan, JEIDA 5-5-8, Shiba-koen, Minato-ku Tokyo JAPAN
13. Same as above
14. Twice a month
15. Micom (Japanese version), Micom Circular (Japanese version), Micro Computer News (English version)
16. Koji Yada, editor
17. 03-438-1869
18. Y6,000 per year
19. All aspects of hobbyist computers for persons in Japan.■
[^10]
Book Reviews

The 8080 Programmer's Pocket Guide Scelbi Computer Consulting Co
Milford CT 06460
$\$ 2.95$
Tychon 8080 Hex Code Card
by Tychon Inc
POB 242, Blacksburg VA 24060
$\$ 2.95$

At first it might seem odd to review the 8080 Programmer's Pocket Guide and the 8080 Hex Code Card at the same time, but they both serve as quick references for 8080 assembler programming and hand assembly of the resulting programs. Either one alone is a great improvement over thumbing through the appendices of larger books; ideally you should have both.

The 8080 Programmer's Pocket Guide is a small booklet (4.5 by 3.5 inches, 11.5 by 9 cm) intended as a quick reference to the 8080 instruction set. It has three sections. The first is a discussion of each instruction in the set describing what it does, what flags

The "Blue Box" IDS MODEL 60 MODEM AND TERMINAL INTERFACE POCKET ANALYZER

Our Model 60 is called "The Blue Box' ' by thousands of users. This compact unit packs the most testing capability per dollar. Pinpoints the source of trouble between the Modem and Terminal. Provides access to all 25 lines of the EIA RS 232 interface. Has 12 monitoring LED's plus two
voltage-sensing LED's. 24 miniature switches allow isolated testing and observation of all signals. Mini-jumpers included for cross-patching and signal monitoring. Sturdy 10 oz . unit has hard plastic case, is battery powered, regular or rechargeable. Immediate delivery.

Tel: (401) 333-6200
TWX: 710-381-0285 Export: EMEC, Box 1285, Hallandale, Florida 33009

Having Reservations About Your Sotware? HUNT NO MORE!
Smoke Signal Broadcasting presents the

TD-1 TRACE/DTEASSEMBLER

Provides interactive tracing and disassembly for 6800 program debugging.

- TRACE allows programmer to control execution of program under test for examination of processor's internal registers and memory on instruction-byinstruction basis.
- DISASSEMBLY converts machine code to easy to read mnemonics.
- Hex code for the opcode and program counter displayed in addition to mnemonic, when instruction is listed.
- Contents of any register or any memory location may be changed at any time.

Only $\$ 19.95$ (on cassette), $\$ 25.90$ (on diskette)
We're the "CHIEF" in 6800 products software
SMOHE SIGNAL BROADCASTIHG
6304 Yucca/Hollywood, CA 90028/(213) 462.5652
6800 SOFTWARE
Payroll $\$ 400$
Math Package, $111 / 2$ digit accuracy with
Fortran style formatting \$100
Editor - Text Processor (with mailing lists \& labels) \$100
Inventory with Job Cost $\$ 400$
other inventory programs from \$200
Accounts Receivable \$400
General Ledger \$400
Stock Market-Club with Tax Reports \$ 75
Digisector Software (scans twice as fast) \$100

Custom Programming Our Specialty

AAA Chicago Computer Center
3007½ W. Waveland Ave.
Chicago, IL 60618
Phone: (312) 539.5833
(3 P.M. - 5 P.M. only)

it affects, and the octal and hexadecimal values for it. The second part is a discussion of a program for loading Intel hexadecimal format paper tapes. The third section is a summary of the instruction set ordered by function. This gives the instruction, its octal and hexadecimal values, the number of cycle states, and the page on which the instruction is discussed.

I find this booklet very useful. There is, however, one minor blemish that may confuse some users. Parts of the booklet are adapted from Scelbi's 8080 Software Gourmet Guide and Cookbook. This cookbook, like previous Scelbi publications, uses a set of mnemonics which were based on those for the 8008. Scelbi has since changed over to the standard Intel 8080 mnemonics, and they use the standard ones throughout the pocket guide. However, some of the discussions taken from the previous book still use the old mnemonics (eg: LBA rather than MOV B, A). Also, the text occasionally
refers to appendices from the cookbook. But these are minor problems; the booklet is well worth having.

Tychon's 8080 Hex Code Card (15 by 8 cm) is a slide rule type summary of the 8080 instruction set. Also available is a card for those who prefer octal. The front of the card gives all the instructions and their hexadecimal values, and tells how each instruction affects the flags. The back of the card gives an ASCII chart, a hexadecimal to binary conversion chart, a chart of the register pairs, and one of the flag byte. The card itself is made of fairly heavyweight cardboard. If Tychon ever puts a plastic card out I'll be among the first to buy it, since the present card is used so much that I may wear it out. If you ever hand assemble programs for the 8080, I highly recommend this card.

John A Lehman
716 Hutchins \#2
Ann Arbor MI 48103 -

langue
Fopum

Making an H9

Understand

Lower Case

George J Frye Frye Electronics Inc POB 23391
9826 SW Tigard St Tigard OR 97223

We have been using the Heathkit LSI- 11 computer as supplied with their model H 9 CRT terminal and recently ran into an interesting problem. Source programs that included lower case alphabetical ASCII characters would not read out on the terminal in an intelligible way; the 64 character generator just went bananas and interpreted these lower case characters as slashes, percent signs, etc.

I have also noted that some other devices, such as the Practical Automation DMTP-6uP Printer, also use 64 character sets, and may be faced with the same problem.

The Heath terminal is easily modified so that both upper and lower case alphabetical characters read out as upper case. (Some form of this modification may also work with the above printer.)

Heath feeds the character generator chip, IC205, with a 6 bit signal latched through from the ASCII bus. The most significant data line is latched onto the character generator board but not run to IC205. A bit of study will show that changing the drive to the most significant bit of IC205 from ASCII bus line 6 to an inverted ASCII bus line 7 will cause the character generator to recognize lower case and upper case alpha characters as upper case (Tektronix uses this trick in their display terminals).

The modification is easily done by cutting the run from pin 15 of IC203 (bit 6) to pin 1 of IC206, soldering in a wire from pin 10 of IC203 (bit 7) to pin 11 of IC219, and soldering in another wire from pin 10 of IC219 to pin 1 of IC206. IC219 is a hexadecimal inverter, and the pins 10 and 11 are the output and input of an unused section of this IC.■

SOMETHING SPECIAL FOR THE S-100 BUS

International Microcomputer ust		OUR
Corp. Keyboard -	PRICE	CASH PRIC
ASR 37 Format with 128		
Characters and a numeric		
Entry Pad. Assembled and tested with enclosu	169	45^{00}
Mountain Hardware Introl		
AC Controller		
Kits.	248	210^{00}
Mullen Extender Board Kit		
with Logic Probe	35^{00}	$29^{\circ 0}$
orth Star Horizon I Kit	159900	$1339^{\circ 0}$
MSAI 8080 Kit (PCS 8010)	69900	569^{95}

Ask About Our Discounts On The Many Other Lines We Stock.

Above Prices Include Cash Discounts. Shipping Charges Extra. Subject To Available Quantities. Bus. ...5-IDO, inc.
Address. . . 7 White Place Clark, N.J. 07066 Interface. . . (201) 382-1318

Having Reservations About Your Sotware?

 HUNT NO MORE!Smoke Signal Broadcasting presents the

5D-26800 BASTC COMPLIER

For High Performance Process Control Programs and Business Applications

- Fast execution---syntax analysis of line not performed each time line is executed.
- More power in runtime package---no room needed for statement analysis, program editing and listing.
- Wider variety of facilities .-. nested conditions, IF -THEN-ELSE, and others.
- Decimal floating point, accuracy to a minimum of 9 digits, dollar values to $\$ 99,999,999.99$.
- PRINT USING for formatted output.
- Utilizes RANDOM ACCESS disk files.
\$325.00 (manual only, \$10.00)
We're the "CHIEF" in 6800 products soffware
SMOIE SIGALL BROADCASTIWG
6304 Yucca/Hollywood, CA 90028/(213) 462.5652

VARIABLE

CONSTANT

Figure 3, continued: Notice that some of the diagrams, for example FACTOR, contain themselves in their own definitions. This is known as a recursive definition.

For instance:

$$
\text { mem }[i]:=m e m[j] ;
$$

reads the byte from the memory location j and writes it back to memory location i. Machine language subroutines can be called from Pascal programs. The statement:

Call (i);
can be used to make a call to memory address i.

The P-Machine

The p-machine is a stack oriented machine consisting of four registers and two memory storage areas. Memory is separated into program storage and data storage areas. The program storage area contains the program codes (p-codes), and remains un-
changed during program execution. The data storage area contains the values of variables. It is also used to store temporary values during arithmetical and logical operations.

Though the variables can be fetched and stored in a random fashion, the data storage area operates as a stack with respect to arithmetical and logical operations and runtime storage allocation. Arithmetical and logical operations are done on the top elements of the stack, and the results of the operations are pushed back on the stack. In this respect, one might call it a zero address machine, since operations (except store and load instructions, which must specify an address) are done without reference to any address. Later we will discuss the use of the stack during runtime storage allocation.

Figure 3, continued.

The four registers in the p-machine are the program counter, P, which points to the next executable instruction in the program storage; the instruction register, 1 , which contains the current execution instruction; the stack pointer, T, which points to the top of the stack, and the base address register, B, which contains the current base address. The functions of the first three registers should be quite clear from the above discussion. The function of register B will become clear after we discuss storage allocation.

Each variable in a Pascal procedure has a
scope and lifetime. The scope of a variable is the range within which it can be referenced. The scope of a Pascal variable is simply the procedure block to which it belongs. The lifetime of a variable is from the time storage is allocated for it to the time storage is disallocated. In Pascal, this is the time the procedure defining the variable is activated to the time a return is executed by the procedure. This is different from the way variables are treated in BASIC, where the scope of a variable is the entire program and its lifetime the entire execution time.

NEW SOFTWARE AVAILABLE FOR MICROP ${ }^{\prime 2}{ }^{\prime \prime}{ }^{\prime \prime}$

The following software is now being offered for use on the Micropolis MetaFloppy and MacroFloppy disk systems.

CP/M" FDOS and Utilities	From $\$ 145$
Microsoft FORTRAN-80	5400
Mictosoft COBOL-80	\$625
Microsoft Disk Extended BASIC	\$300
Xitan SUPER BASIC (A3)	\$99
Xitan DISK BASIC (A3+)	\$159
Xitan Z-TEL Text Editor (A3. A3+)	\$69
Xitan Text Output Processor (A3. A3+)	N/A
Xitan Macro ASSEMBLER (A3. A3+)	\$69
Xitan Z-BUG (A3+)	589
Xitan LINKER (${ }^{\text {a }}$ +1)	369
Xitan Package A3 (as keyed above)	\$249
Xitan Package A3+ (as keyed above)	\$409
Xitan Fortran IV	\$349
Xitan data base management system	\$1.250
CBASIC Compiler/Interpreter BASIC	\$95
MAC Macro Assembler	\$100
SID Symbolic Instruction Debugger	585
TEX Text Formatter	\$85
BASIC-E Compiler/Interpreter BASIC	530
General Ledger	\$995
Accounts Receivable	\$750
NAD Name \& Address Processor	\$79
QSORT Disk File Sort/Merge Utility	\$95

Available from computer stores nationwide or order direct from:

LIFEBOAT ASSOCIATES
164 W. 83rd Street New York, N.Y. 10024

NORTH STAR BASIC PROGRAMS

HUNDREDS SOLD, EACH SYSTEM COMPLETE ON DISKETTE READY TO RUN. WORD PROCESSING, NORTH STAR TUTORIAL I, NORTH STAR TUTORIAL II (TEACHES NORTH STAR BASIC), ACCOUNTS PAYABLE, ACCOUNTS RECEIVABLE, PAYROLL, GENERAL LEDGER, MEDICAL-PROFESSIONAL, billing, sales with sales analysis and gross proFIT, INVENTORY, HISTOGRAM GENERATOR, COMPUTER CHESS, MAILING LABELS.
$\$ 35.00$ each.
SOFTWARE LOCATER (LOCATE, INDEX-FREE SOFTWARE), CHECKBOOK BALANCING, BOWLING-GOLF HANDICAPPER, COIN COLLECTION INVENTORY, IMPORTANT DOCUMENT LOCATER, BUDGET PLANNER, GAME DISK. $\$ 25.00$ each.

IQ TESTER, COMPUTER MEMORY DIAGNOSTIC PERSONAL FINANCE, BUSINESS FINANCE, BIORHYTHM GENERATOR, DIET PLANNER, CRYTOGRAPHIC ENCODER, MATH TUTOR, A SORT UTILITY.
$\$ 15.00$ each.
EQUIPMENT REQUIRED, SINGLE DRIVE, 8K FREE MEMORY, PRINTER OPTIONAL.

TRS-80 LEVEL I \& II (ON CASSETTE) STOCK MARKET ANALYSIS, GRAPHICS, TREND LINE ANALYSIS, BUSINESS APPLICATIONS. $\$ 15.00$.
blank diskettes $\$ 3.80$ (UNDER TEN ORDERED, ADD $\$ 2.00$ FOR SHIPPING; OVER TEN SHIPPED POSTPAID).
CPM COMPATIBLE BASIC PROGRAM LISTINGS ALSO AVAILABLE.

Since procedure activation is strictly a first in, last out process, the use of stack is an appropriate strategy. When a procedure is activated, storage for its local variables is allocated on the top of the stack, and is disallocated when the procedure is terminated. Thus the stack contains all the variables of the currently active procedures. The variables of the last activated procedure are on the top of the stack, those of the second to last activated procedure next to it, and so on.

Since storage allocation is not static, addresses cannot be assigned at compile time, but must be calculated at runtime. The base register, B, always points to the starting location of the segment of the data block in the stack. The addresses generated by the compiler are not absolute addresses, but displacements from some base addresses. If the variable is local, then its address is the displacement from the current base register B; but if the variable is from an outer procedure, then the base address for that procedure should be calculated, and added to the displacement.

To do this, and to ensure proper procedure or function linkage, extra storage is allocated on the stack when a procedure is activated. Figure 4 shows the various quantities present in each of the procedure blocks. The function return value is used only for function calls, and storage is allocated for any parameters needed by the procedure or function. The base address contains the value of the current base register B, and the return address contains the program return address at the place of the call. The functions of the dynamic linkage and the static linkage need further explanation.

The dynamic linkage forms a chain that reflects the procedure activation history. It points back to the base address of the procedure that was activated immediately before this one. For instance, if procedure A calls procedure B, which calls procedure C, then the dynamic link chain points from C to B, and then to A. It is used to ensure that the program returns to its previous state when exiting a procedure. In particular, the base register B must be loaded with the correct base address of the calling procedure. This would be easy to do if we follow a step through the dynamic link chain.

The static link, on the other hand, reflects the static hierarchical structure of the procedures. Each active procedure has a link that points to the procedure (also active) that immediately contains it. The static links actually form a tree, with the

Figure 4: A typical activation record for a function. For a procedure, the function return value is omitted. Note that the procedure and function parameters, as well as the function return value, are below the base register B, and thus would have negative displacements.
main program block as the root. These links, which in general are different from the dynamic links, are used to let programs have access to the correct base address of the variables in an outer procedure, since at compiler time, only the static relationship among the procedures are known. The compiler therefore g enerates the pair (static level difference, relative displacement from the base address) as addresses for variables. The calculation of the addresses from these pairs would presumably slow down the process, but it is a small price to pay for nice features like recursive procedure calls.

Op Code (Hexadecimal)	Mnemonic		Operation
00	LIT	$0, n$	load literal constant
01	OPR	$0, n$	arithmetic or logical operation
02	LOD	v,d	load variable
12	LODX	v,d	load indexed variable
03	STO	v,d	store variable
13	STOX	v,d	store indexed variable
04	CAL	v,a	call procedure or function
05	INT	$0, n$	increment stack pointer
06	JMP	$0, a$	jump unconditional
07	JPC	c,a	jump conditional
08	CSP	$0, n$	call standard procedure

Table 1: Basic p-codes. The v in call, load and store instructions is the difference in static level between the current procedure and the one being called or the one which contains the variable from the base address. An address in a p-code program is shown by a. The condition code, c, can either be 0 or 1.

Software

Games - CRAPS (Las Vegas style) \$6.00
- MULTIPLE LUNAR LANDER $\$ 8.00$
- SLOT MACHINE \$6.00
- GAME PACKAGE: Russian Roulette, Mad Scientist, and ABM \$8.00
Graphics - PICTURE MAKER with AMP'L ANNY \$12.00
- GRAPHICS PACKAGE I: Laser Beam, Space Shuttie, and Blast Off \$10.00
- GRAPhics packace II: Rain in Greece. Flea, Textwriter, Random Walk \$10.00
Scientific - FOURIER FIT: Does curve fitting \$15.00
Systems - RANDOM NUMBER GENERATOR TEST \$5.00
- HEX MEMORY LOADER \$10.00
- MEMORY DUMP PROGRAM \$10.00
- MEMORY SEARCH \$5.00

All Programs Written in BASIC
Complete Easy to Read Documentation Programs Completely Tested

SOFTWARE RECORDS

P.O. BOX 8401-B UNIVERSAL CITY, CA 91608 (cal residents add 6% sales tax)

modem / 'mo • dəm / [modulator + demodulator] $n-s$: a device for transmission of digital information via an analog channel such as a telephone circuit.

- Completely compatible with your IMSAI, ALTAIR*, SOL** or other S-100 microcomputers. Trademarks of *MITS, **Processor Technology
- Designed for use on the dial telephone or TWX networks, or 2 -wire dedicated lines, meets all FCC regulations when used with a CBT coupler.
- All digital modulation and demodulation with on board cyrstal clock and precision filter mean that NO ADJUSTMENTS ARE REQUIRED
- Bell 103 standard frequencies
- Automated dial (pulsed) and answer
- Originate and answer mode
- 110 or 300 BPS speed select
- Complete self test capability
- Character length, stop bit, and parity
- 90 day warranty and full documentation
D.C. Hayes Associates, Inc.
P.O. BOX 9884 ATLANTA, GEORGIA, 30319 (404) 455-7663

The P-Codes

The p-machine has only 11 basic instructions, which are listed in table 1. For the sake of simplicity and easy handling in this version of the implementation, all instructions are four bytes long. The contents of the four bytes are as follows:
byte 1: op - the operation code. byte 2: can be (i) v-static level difference.
or (ii) c - condition code in a jump instruction.
or (iii) 255 - denotes absolute addressing.
or (iv) not used for some instructions.
bytes 3,4: can be (i) d - displacement from the base address.
or (ii) n - numeric constant.
or (iii) a - address in the p-code program.

The OPR (arithmetic and logical operations) and CSP (call standard procedure) are further subdivided into more instructions. The complete set of instruction mnemonics and operations is listed in table 2. The LODX and STOX instructions are used to load and store array elements with the value of the array subscript on top of the stack. The call standard procedure (CSP) instruction is primarily used for input and output (1O) operations. Besides the basic function of inputting and outputting single characters, additional procedures have been implemented to relieve the user from writing 10 conversion routines in Pascal for numeric and hexadecimal numbers. In the future, more procedures can be added to handle the input and output of other data types such as floating point numbers and file records for tape or disk. Meanwhile these seven instructions are suffjcient for convenient use in writing the bootstrap compiler and its related software.

Readers are urged to read the p-code interpreter listing which simulates the operations of the p-machine. The program statements are straightforward and selfexplanatory. Familiarity with the p-machine instruction set is essential in understanding the code generation part of the p-compiler.

The P-Code Interpreter

Since the p-machine is a hypothetical computer, there has to be some method of executing the p-codes generated by the compiler. There are two simple solutions to this problem. One is to write an interpreter which can decode and execute the p codes. The other solution is to write a trans-
lator which can decode the p-codes and output equivalent executable machine codes for an existing computer. Both methods have been used in our compiler system. The first method, although it runs slower, is good for developing programs because many debugging facilities can be implemented in the interpreter. The second method is good for production programs which may need faster execution speed. A p-code to 8080 machine code translator will be described in part 3 of this scries.

The p-code interpreter is made up of two major modules:

- Main program.
- Procedure which simulates the p machine.

Every call to the simulator will execute one p-machine instruction. Each p-machine instruction cycle can be divided into four stages:

- Fetch a p-code from memory.
- Increment the program counter.
- Decode the instruction.
- Execute the instruction.

Several global variables are used to hold the values of the p-machine registers such as program counter, stack pointer, current instruction, etc. A one-dimensional array represents the data stack. Functional operations of the various p-machine instructions are coded directly from the instruction set defined in table 2 . The main program simply initializes the program counter to zero and then calls the simulator repeatedly to simulate machine execution. This sounds
simple but not useful, because the user has no control of the program during execution until it terminates.

In order to enable user control of an executing p-code program, the main program must accept commands from the user which instruct it to call the simulator a specified

G: go - Set program counter to zero; initialize other counters; start execution.
S: single-step - Execute one p-code; display the mnemonics of the next p-code pointed by the updated program counter.
R: run/restart - Start execution from current program counter until the program ends or a breakpoint is reached. This command is used to continue execution at a breakpoint.
B: set breakpoint - A p-code address is entered as a breakpoint after the interpreter prompts with a ?. Up to five breakpoints may be set.
C: clear - All breakpoints previously set are cleared.
Y: display breakpoint - Display the breakpoints already set.
X : examine status - Display the values of: current program counter, base address, stack pointer, the top two elements of the stack.
K : stack content - A value is entered as the stack pointer after the interpreter prompts with a ?. It will then display the values of six stack elements starting from this stack pointer.
T: trace - Display the address and mnemonics of the 16 p-codes last executed. This command is usually applied at a breakpoint. It is used for tracing the logic flow of the program.
E: examine program - A p-code address is entered as a display pointer (DP) after the interpreter prompts with a ?. It will then display the mnemonics of the p-code at this address. This command and the U and N commands are used for examining the p-codes anywhere in the program without altering the current program counter.
U: up - Decrement the display pointer by one and display the mnemonics of the p-code pointed by it.
N: next - Increment the display pointer by one and display the mnemonics of the p-code pointed by it.
Q: quit - Terminate the interpreter program and return to operating system.
Table 3: Interpreter commands. All commands for the p-code interpreter are single characters. A command is entered after the interpreter prompts the user with a $>$ on the video display. Additional information is needed for some commands such as breakpoint and stack addresses. On entry to the interpreter it will ask for the starting memory address of p-codes and initialize the program counter to zero. On exit it will display the number of p-codes executed.

Mnemonic		Description	Mnemonic		Description
LIT	$0, \mathrm{n}$	load literal constant	OPR	0,20	decrement (sp) by 1
OPR	0,0	procedure return	OPR	0,21	copy (sp) to (sp+1)
OPR	0,1	negate (sp)	LOD	v,d	load a word
OPR	0, 2	add (sp) to ($\mathrm{sp}-1$)	LOD	255,0	load a byte from absolute address (sp)
OPR	0.3	subtract (sp) from (sp -1)	LODX	v,d	load a word with index address (sp)
OPR	0,4	multiply (sp-1) by (sp)	STO	v,d	store a word
OPR	0, 5	divide (sp-1) by (sp)	STO	255,0	store a byte to absolute address (sp-1)
OPR	0, 6	low order bit of (sp)	STOX	v,d	store a word with index address (sp)
OPR	0, 7	($\mathrm{sp}-1)$ modulo (sp)	CAL	v, a	procedure call
OPR	0.8	test for (sp-1)=(sp)	CAL	255,0	call procedure at absolute address (sp)
OPR	0, 9	test for (sp-1)<>(sp)	INT	0,n	increment sp by n
OPR	0,10	test for $(\mathrm{sp}-1)<(\mathrm{sp})$	JMP	0,a	jump to location a
OPR	0,11	test for $(\mathrm{sp}-1)>=(\mathrm{sp})$	JPC	0,a	jump to location a if low order bit (sp) $=0$
OPR	0,12	test for $(\mathrm{sp}-1)>(\mathrm{sp})$	JPC	1,a	jump to location a if low order bit (sp)=1
OPR	0,13	test for (sp-1)<=(sp)	CSP	0,0	input 1 character
OPR	0,14	logical (sp-1) OR (sp)	CSP	0.1	output 1 character
OPR	0,15	logical (sp-1) and (sp)	CSP	0,2	input an integer
OPR	0,16	logical NOT of (sp)	CSP	0,3	output an integer
OPR	0,17	shift left (sp) logical	CSP	0.4	input a hexadecimal number
OPR	0,18	shift right (sp) logical	CSP	0.5	output a hexadecimal number
OPR	0,19	increment (sp) by 1	CSP	0.8	output a string

Table 2: The p-machine instruction set. The stack pointer, sp, points to the top element of the stack. The content of the stack element is represented by (sp). The operands of the OPR instructions are replaced by their results on the stack. The result of the six relational operations is 1 if the test is true and 0 if false. With the exception of single operand OPR instructions, all instructions adjust the stack pointer, sp, after execution.

North Star BASIC

A brief summary of North Star BASIC（version 6，release 3）is given for readers not familiar with its particular features．

Variable names are one or two characters long：an alphabetical character fol－ lowed optionally by a decimal digit．There are four types of variables：numeric， string，array of numeric，and function．The string variables are names postfixed by a dollar sign $\$$ ，while function names are prefixed by FN．Functions（and the parameters）are defined by the declaration DEF，and ended by FNEND（for multiline function）．The parameters in the function definition are local to the function，and would not affect variables in the calling program．

Strings cannot be dimensioned．The DIM declarations for strings declare the maximum length of the string variables，not their dimensions．The notation $A \$(3,5)$ denotes the substring of $A \$$ from position 3 to 5 ．Thus if $A \$=A B C D E F G$ ， $A \$(3,5)$ is the string CDE．This substring expression can be used both on the left or righthand side of an assignment statement．

Multiple statement lines are allowed．Statements within a line are separated by either colons，：，or back slashes，\．

Absolute memory locations can be accessed from BASIC programs．The function EXAM（I）returns the content of memory at address 1 ；and the instruc－ tion FILL I，J writes a value of J into memory address I ．

Another feature of North Star BASIC is its ability to read from or write to disk files．The statement OPEN \＃O，＂FNAME＂assigns disk file＂FNAME＂to file unit \＃O．A subsequent READ \＃0，A\＄reads $A \$$ from the disk file，and a WRITE $\# 0, A \$$ writes $A \$$ to the disk file．A built－in function TYP can be used to check the type of data to be read．It has a value of 0 when the end of file is reached．
number of times or to display register and stack contents．This is the simple idea of a debugging interpreter．The debugging aids commonly known include single step execu－ tion，set and reset of breakpoints，and dis－ play of register and stack contents．A num－ ber of these debugging facilities have been incorporated in the p－code interpreter． Table 3 shows the 13 interpreter commands and their functions．Note that the trace command is particularly useful in analyzing mysterious logic flow of a program，such as discovering the path along which a break－ point is reached．This command is more con－ venient to use and much faster than single step execution．The limits on the number of breakpoints and the number of instructions traced can be changed easily in the program．

The first version of the p－code interpreter was written in BASIC．While developing the p－compiler，different constructs of Pascal statements were tested one at a time using the interpreter to verify the correctness of the p －codes generated．After the compiler was debugged，the interpreter was rewritten in Pascal．The program logic is very similar to the BASIC version．Since the program

Listing 1：Pascal source code for the p－code interpreter as output by the authors＇system．This version implements all of the commands in table 3.

```
F-CODES STAF:TS AT GMलM
WANT CGOE FFINTEG?N
    T$F.INTS 
    (F*-COGE JNTERFFETEF: HY 1 Z.?.1F?& E% H YLIFM:
        ( LAST MGLG 4,12゙ア8)
    CONST U=15;E:FLIM=5;SI2E=54(1):SITEI=4&M,
    UAF: Z,F,E,T,EF,F(G,TF,CMO,I,N,K,STOF:INTEGER.
                S:ARRAY[SIZEJ GF INTEGEF:
            TRACE:AFKAY[U] OF IHTEGEF:
            MN: AFFî``2G] OF INTEGEK;
                BREHK:AFIRAY[EFLIM] OF INTEGER:
            (IMFOFTANT GLOFHL VAFIAELFS:
            F:FFGGFAM CGLINTEF: E:ENSE FOIINTER
            T:STAC゙F FOINTEF: EF:E&EGKK FOIINT INCIEX
            TF:TRACE ETHCN: F-TE KO INETRUCTIONH COUNTER
                S: LATA STAC:
                            Z.ETHETJNG ACICIF: (IF F-COCIE)
    FUNC EASE(LEJ)
    UAK EI:INTEGEF;
    UAR EI:INTEGE
        WHILE LEU>A [IOO EEGIN
            B1:=S[B1];LEU:=LEU-1 EN[1;
        BASE:=EL
    ENCI (EASE):
PROC INIT;
    UAR I:INTEGER;
    BEGIN T:=@;E:=1;F:=0;STOP:=0;
        S[1]]:=0;S[2]:=0;S[3]:=-1:
        FG:=0;TF:=U;K:=0;
        FOR I:=0 TO U [IO TEAC.E[I]:=-1
    ENCI (INIT:;
    PROC: CRLF;
    GEGIN WRITE(13,1(4) ENO;
FROC EXEC:;
    UAK X,A,L,F,ICIX: INTEGER;
    BEGIN X:=F SHL z + Z;
        R:=MEM[X+3] SHL & +MEM[X+2];
        TF:=TF+1;IF TF`U THEN TF:=@;
        TRACE[TF]:=F;
        F:=F+1;FG:=F;K:=K+1;
        F:= MEM[X];
        IF F<=8 THEN I [IX:=0
        ELSE EEGIN IGX:=1;F:=F-16 ENC;
        CASE F CIF
    0:BEGIM T:=T+1;S[T]:=A EN[I;
    1: CASE A CIF
    G: BEGIN (FETURN)
                T:=8-1;E:=S[T+2];F:=S[T+3] ENO;
```


714	$T:=T-1$ END；
719	8：CASE A OF 〈C．SP\}
724	Q：EEGIN $T:=T+1$ ；REACSS［T］）ENG：（IN CHAR）
736	
748	2：BEGIN T： T （＋1；REA［IS S［T］首）EN［I；（IN NLIMBER）
760	
772	4：BEGIN T：$=$ T＋I；REA［SS［T］\％）EN［I；（IN HEX）
784	5：BEGIN WFITE（S［T］\％）； $\mathrm{T}:=\mathrm{T}-1$ EM［I；（OUT HEX）
796	8：EEGIN 〈OLT STRING）
800	FOR IOX：$=$ T－S［T］TO T－1 D⿴ WRITE（S［IOX］）；
820	$T:=T-S[T]-1 ~ E N O$
827	ELSE BEGIN WRITE（ ILLEGAL CSP＇）；CRLF；STOP：＝1 END
845	END 〈CASE OF A）
846	ELSE BEGIN WRITE《 ILLEGAL OPCGOE＇）；CRLF；STOP：＝1 ENO
867	END（CASE OF F）
868	ENS \｛EXEC\};
869	
869	FROC COOE（PC）；（PRINT COLE）
869	UAR $\mathrm{X}, \mathrm{M}, \mathrm{IOX}$ ：IHTEGER；
878	BEGIN X：＝FC SHL $2+Z ; N:=$ MEM $[X] * 3 ;$
882	IF $\mathrm{NS}=24$ THEN IDX：$=$＊
887	ELSE BEGIN $\mathrm{N}:=\mathrm{N}-48 ; 10 X:=' X$＇EN［I；
895	WRITE＇＇，PC ，＇＇，MN［N］，MN［N＋1］，MN［N＋2］，IDX，＇
924	
944	END（CODE ，
945	
945	PRCIC：C．E．EF；（CHECK．EFEEHI．FOINT，
945	UAF I ：INTEGEF，
946．	EEGIN IF FEG THEN STUF－$=1$
952	ELSE EEGJN
954	FGF： $1:=1$ TO゙ EF［ıG
961	If EMEAK．［I］＝F THEN EEGIN

structure of the Pascal version is neat and highly readable，the debugging time is minimal．The Pascal source program is shown in listing 1．The program design is rather straightforward．Readers with some programming experience in any high level language should be able to read and under－ stand it without the help of a flowchart or further explanation on program logic．Note that in the main program and procedure exec，the case．．．of statement is put to good use．In the BASIC version the interpreter commands have to be tested within a FOR loop by comparing the input character with a string array，and then an ON．．．GOTO state－ ment is used to branch to various parts of the program．

It must be emphasized again that the interpreter executes p－codes and not Pascal statements．Therefore the user is required to have some knowledge of the p－machine and p－codes．In addition to this，the p－ compiler should be instructed to list p－ codes together with Pascal program state－ ments during compilation．They will be cross－referenced when running the inter－ preter．Obviously this procedure is not as convenient and easy to use as an ordinary BASIC interpreter，but still it provides the only way for debugging Pascal programs in our present version．A new debugging scheme is being planned for the future which will enable the user to debug programs at the Pascal statement level．This means the user may refer to variables and arrays and statements rather than stack contents and p－code addresses．Part 2 will go into details of the design and implementation of the p－compiler．

```
```

 WEITE<' EFEAK.');(OUE(P);
    ```
```

 WEITE<' EFEAK.');(OUE(P);
 STGF:=1 ENO ENCI
 STGF:=1 ENO ENCI
 ENG (CKEFF');
 ENG (CKEFF');
 BEGIN (MAIN)
BEGIN (MAIN)
FOK I:=0 T0 26 [1G
FOK I:=0 T0 26 [1G
MN[I]:=MEM[I+%IEE@]; (MNEMONICS: AFE IN MEMORYY:
MN[I]:=MEM[I+%IEE@]; (MNEMONICS: AFE IN MEMORYY:
WRITE('A[GF:7');REA[M2%);CRLF;
WRITE('A[GF:7');REA[M2%);CRLF;
INIT; CCICIE(F');EP:=(1,
INIT; CCICIE(F');EP:=(1,
KEFEAT WRITE('`');KEA(IGCMD); KEFEAT WRITE('`');KEA(IGCMD);
CASE CMCI OF
CASE CMCI OF
R':EEGIN STOF:=@ FREPERT EXEC;CKBP UNTIL STOF ENOI:
R':EEGIN STOF:=@ FREPERT EXEC;CKBP UNTIL STOF ENOI:
'S':BEGIN EXEC; COGE(P) ENG;
'S':BEGIN EXEC; COGE(P) ENG;
'X':BEGIN

```
```

 'X':BEGIN
    ```
```



```
```

 *S[T]=',S[T]负,'S[T-1]=',S[T-1]手);CFLF
    ```
```

 *S[T]=',S[T]负,'S[T-1]=',S[T-1]手);CFLF
 ENO;
 ENO;
 'G':BEGIN INIT;REFEAT EXEC;CKEF LINTIL STCIF' ENII;
 'G':BEGIN INIT;REFEAT EXEC;CKEF LINTIL STCIF' ENII;
 'T':BEGIN WEITEG' \#TRACE\#');CRLFF;
'T':BEGIN WEITEG' \#TRACE\#');CRLFF;
FOR I:=0 TO U CIO EEGIN
FOR I:=0 TO U CIO EEGIN
TF:=TP+1;IF TP>U THEN TF:=01;
TF:=TP+1;IF TP>U THEN TF:=01;
IF TRACE[TF]>=0 THEN CGOE (TFACE(TP]) END
IF TRACE[TF]>=0 THEN CGOE (TFACE(TP]) END
ENO;
ENO;
'K': BEGIN REA[I< I*);
'K': BEGIN REA[I< I*);
FOR J:=I TO I +E DO
FOR J:=I TO I +E DO
WRITE(' ',S[J]*);CRLF
WRITE(' ',S[J]*);CRLF
ENU;
ENU;
'G':IF BP<EPLIM THEN EEGIN
'G':IF BP<EPLIM THEN EEGIN
BP:=EP+1;WFITE(EP首,':');
BP:=EP+1;WFITE(EP首,':');
RERD<BREAK[BF]\#);CRLF EN[I;
RERD<BREAK[BF]\#);CRLF EN[I;
'C': BEGIN (CLEAF EF)
'C': BEGIN (CLEAF EF)
BF:=0;CRLF ENL;
BF:=0;CRLF ENL;
'Y':BEGIN FOR I:=1 TO EF' DO
'Y':BEGIN FOR I:=1 TO EF' DO
WRITE<' *,GREAK[I]首);CRLF ENO;
WRITE<' *,GREAK[I]首);CRLF ENO;
'E': BEGIN REA[I< PO年); COME(PG) ENC:
'E': BEGIN REA[I< PO年); COME(PG) ENC:
'U': IF FG>O THEN REGIH
'U': IF FG>O THEN REGIH
PQ:=PG-1;COQE (FO) END;
PQ:=PG-1;COQE (FO) END;
'N':BEGIN PG:=P(1+1;CGIE(F(1) ENC:
'N':BEGIN PG:=P(1+1;CGIE(F(1) ENC:
'Q':F:=-1
'Q':F:=-1
ELSE BEGIN WRITE<'??');CRLF EM[I
ELSE BEGIN WRITE<'??');CRLF EM[I
EMO {C:ASE OF CMCI}
EMO {C:ASE OF CMCI}
UNTIL PくO;
UNTIL PくO;
CRLF; WRITE《K并,' INSTR. EXECUITE[I.');CRLF
CRLF; WRITE《K并,' INSTR. EXECUITE[I.');CRLF
1319 ENO (NAIN).
1319 ENO (NAIN).
IHTERFRET(I), OR TRANSLATE(T)?

```
```

IHTERFRET(I), OR TRANSLATE(T)?

```
```


Ilaving Reservations About Your Software？

Smoke Signal Broadcasting presents the NEW

TP－TExT Processang yynem

for document preparation－form letters－footnote handling
－The most powerful text formatter available．
－Over 50 commands for easy paging，margin setting and spacing．
－A formatting language that allows the creation of macros including variables．
－Page numbering（Arabic or Roman numerals）．
－Complete page size control．
－Conditional formatting control．
－Exact title placing．
－Contiguous space and text control．

We＇re the＂CHIEF＂in 6800 products software
SMOKE SIGAAL BROADCASTIHG
6304 Yucca／Hollywood，CA 90028／（213）462－5652

Graphic Manipulations Using Matrices

Joal C Hungerford
 Stearns Rd

Amherst NH 03031
$P=\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|$
$C=\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|$

Figure 1: Two types of matrices used in graphics applications. Prepresents a point in space. The matrix C contains equations to relate the transformed values of X, Y, and Z to the original values.

One definition of graphics might be "a means to convert data into information." Our computers create printed data at a great rate, but all this data is not information until it conveys to a person some trend or fact about the world we live in. A small part of graphics is the conversion of data representing the position in space of the surface of an object into a-three-dimensional picture of that object. The picture may be useful for itself as computer art, or it may help understand something about the object.

Imagine looking down the length of a pencil, using only one eye. With the eraser held away from the viewer, the pencil appears as a polygon with a dark place in the center where the lead is. The length of the pencil and the eraser are invisible. Now imagine the pencil rotated about its point until it is pointed toward the viewer's shoulder. The length of the pencil and the eraser are now visible, and appear in the form of translations to the side and up of the surface of the pencil. The relation between the position of a point on the pencil, specified in three dimensions X, Y and Z, and the apparent translation of that point as the pencil is rotated is expressed by standard equations. These can be written in an organized fashion using matrices. These matrices are called coordinate transform matrices. They are powerful tools because they separate the mathematics associated with the angle of observation from the data describing the surface of an object. The small computers available today make it easy to convert surface data to pictorial information using matrices. This article will show how.

Definitions

The Cartesian coordinate system will be used in this discussion. On a computer graphic screen, X is the horizontal dimension, Y is defined as the vertical dimen-
sion, and Z is depth into the screen. Positive values are to the right, up, and away from the viewer. The origin will usually be in the center of the screen. A plane is described by any two axes. Thus, the X, Y plane is the surface of the computer screen, the Y, Z plane is seen edge on as the Y axis, and the X, Z plane is seen edge on as the X axis.

An equation which does not specifically include a particular coordinate direction will be interpreted to mean that the described line or point may exist anywhere along the unmentioned axis. Thus, $X=1$ represents the entire Y, Z plane located at 1 along the X axis. The line defined by $Y=X$ may exist anywhere along the Z axis; therefore this equation defines a plane tilted 45 degrees from the horizontal, seen edge on at Z equal to zero on the computer screen. A surface may be made parallel to an axis by omitting that axis, as above, or may be specified at all values of X, Y and Z. Thus, $Y=X+Z$ is a surface defined for all space.

Two kinds of matrices will be used here. The first kind is a matrix which represents the coordinates of a point in space, described by X, Y and Z. This matrix, P, is a column matrix, with one column and three rows as shown in figure 1. It will be used to hold the values for a point on the surface, both before and after transformation. All drawing commands will use the X and Y from this matrix.

The second kind of matrix contains the standard equations which relate the transformed values for X, Y and Z to the original values. This matrix, C, has three rows and three columns. The numbers at each position in this matrix are derived from the standard equations for some specific coordinate transformation type, such as a rotation. If the angle of observation of the object is arrived at by two successive operations, such as a rotation in each of two planes, then the matrix, C, which controls this view may have numbers in it that are derived from two matrix equations. The procedure which produces a single matrix combining several operations is called matrix multiplication. Matrix multiplication is used both to produce the particular numbers in the 3 by 3 matrix, C, which describe a point of observation, and then to apply those numbers to derive a transformed 3 by 1 matrix, P , which gives the apparent position of some part of the object's surface.

Computing Procedure

Given the ability to do matrix multiplication (the details will be presented below),
the sequence of operations to produce a three-dimensional picture of an object is short and easily stated:

1. Generate an array of data consisting of the X, Y and Z coordinates of the object to be drawn. This may be either computed as the drawing progresses, or done all at once and stored. The latter way is faster if the viewpoint is to be adjusted to find the most pleasing picture.
2. Define the viewpoint. For this part, a matrix is generated for each motion required to arrive at the desired point of view. The matrices are then multiplied together to produce a single 3 by 3 matrix to be used in the main routine. The order of multiplication may be important.
3. Write a program to draw the object in its untransformed state. This will be a sequence of commands which move the graphic cursor to a spot on the object at the beginning of an edge or other feature, then draw (move leaving a line behind) to another spot on the object. Specify the move and draw coordinates in terms of a column matrix element rather than X, Y and Z. Define the elements at each spot by using each of the points in the array.
4. When the untransformed picture is accurate and understood, then the picture is reoriented by simply inserting a matrix multiplication between the specification of each column matrix and the associated graphic command. The original $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates of the spot on the object are thereby transformed into a new set of X, Y, Z numbers representing the spot seen from the new viewpoint. Each set of coordinates from step 1 is multiplied by the matrix generated in step 2.
4a. An alternate method is to do all the transformations at once, changing all the X, Y and Z points in the array formed in step 1 into transformed X, Y and Z numbers in the same array.

Since the computer screen is really only two-dimensional, only the X and Y elements are used in step 3. After transformation, these numbers are shifted about and contain depth information. The drawing made in this fashion is a projected view rather than a three-dimensional drawing. The difference is that in the projected view sides which are parallel on the object remain parallel in the
projected view, but in the three-dimensional view all lines converge at infinity along the Z axis. The difference is minor. The observer perceives a three-dimensional picture in most cases; the projected view in some figures is perceived either as having relief or depth without the visual clue of lines meeting at infinity. This leads to some interesting optical illusions using projected views.

The rest of this article discusses some of the transformations available and shows the pictorial results of each.

Matrix Multiplication

What information is necessary to write a subroutine to perform the matrix transformations described in this article? The general theory of matrix algebra and its interpretation is beyond the scope of this discussion. For more information and a very clear description of many other uses for matrices, the reader is referred to The Mathematics of Matrices by Philip / Davis. Here are some brief notes on the subject:

Two aspects of matrices are important in matrix multiplication. These are the order of the matrices being multiplied (which one comes first), and the shape of each matrix. The elements in the output matrix resulting from a multiplication of two matrices are each formed by combining numbers in the columns of the first matrix and rows of the second matrix, done in a standard order. All the necessary rows and columns have to exist for the output to exist. Thus, some matrices may be multiplied in one order, but not in the opposite order. The rule is: the number of columns of the first matrix must equal the number of rows of the second matrix.

In table 1, the two matrices may be multiplied in the order (C) (P) but not in the order $(P)(C)$. The result of multiplying $(C)(P)$ is a new column matrix P: A mathematician would say that two matrices are "conformable for multiplication" when the order and shape requirements are met. He would also say " (C) is multiplied by (P) " here. The requirement for conformability leaves one dimension of the shape of each matrix unrestricted. The unrestricted dimensions establish the shape of the output matrix. Tables 1 and 2 summarize the necessary arithmetic. The elements in (C) are numbers, which are each computed in various ways depending upon the desired transformation.
$\left|\begin{array}{ccc}A & B & C \\ D & E & F \\ G & H & 1\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$
$X^{\prime}=\left(X^{*} A+Y^{*} B+Z^{*} C\right)$
$Y^{\prime}=\left(X^{*} D+Y^{*} E+Z^{*} F^{\prime}\right)$
$Z^{\prime}=\left(X^{*} G+Y^{*} H+Z^{*} \mid\right)^{2}$

Table 1: Matrix multiplication format.

Table 2: 3 by 3 matrix multiplication format.

Don Lancaster's ingenius design provides software controllable options including:

- Scrolling • Full performance cursor
- Over 2K on-screen characters with only 3 MHz bandwidth
- Variety of line/character formats including 16/32, 16/64 \qquad even 32/64
- User selectable line lengths

TELL ME MORE! () Send instruction manual for the TVT-6 Kit : with full operational details. $\$ 1$ enclosed.

ELECTRONICS, INC.
City: \qquad State: \qquad Zip: \qquad DEPT. 9-b, 1020 W. WILSHIRE BLVD., OKLAMOMA CITY, OK 73116

Types of Transformations

The operations possible using coordinate transform matrices are not limited to shifting and rotating the picture. A number of more drastic changes may be made to the picture. Some of these changes are: magnification, shear, stretching in one direction, and mapping onto a surface.

The following figures and tables show examples of several coordinate transform operations. Each operation is represented by the matrix, the equations for the output matrix elements, and a figure to show how a picture of a well-known object is changed by the operation.

Unit Matrix

Table 3 shows the unit matrix. This transformation reproduces the picture of the object in its original view as defined above. Figure 2 shows a side view of a coffee cup.
$\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$
$X^{\prime}=\left(X^{*} 1+Y^{*} 0+Z^{*} 0\right)$
$Y^{\prime}=\left(X^{*}+Y^{*}+Z^{*} 0\right)$
$Z^{\prime}=\left(X^{*} 0+Y^{*} 0+Z^{*} 1\right)$

Table 3: The unit matrix.

Figure 2: The standard view (untransformed).
$\left|\begin{array}{llll}1 & 0 & 0 & \left\lvert\, \begin{array}{l}X \\ Y \\ 0\end{array}\right. \\ 0 & 0 & 0 & 1 \\ 0\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$

$$
\begin{aligned}
X^{\prime} & =\left(X^{*} 1+Y^{*} 0+Z^{*} 0\right) \\
Y^{\prime} & =\left(X^{*} 0+Y^{*} K+Z^{*}\right) \\
Z^{\prime} & \left(X^{*} 0+Y^{*} 0+Z^{*} 1\right)
\end{aligned}
$$

Table 4: Expansion along the Y axis by a factor K.

The object may be defined with some shape which is not quite the final version, but which uses easily verified dimensions. Thus, in our example, the height is equal to the diameter, and the square outline in figure 2 quickly shows that the array of data defining the cup is correct in the X and Y dimensions.

Selective magnification along any axis may be used to alter the proportions of the object to a shape that may be nearer that required by the user. Thus, table 4 and figure 3 are appropriate for users with large capacities; table 5 and figure 4 produce a cup for those with wide mouths, while table 6 and figure 6 produce a cup which could be used for filling a pie plate with whipped cream.

If the proportions are correct but the user wants to create several different sizes, table 7 will allow the same magnification to take place along all the axes. One such magnified cup is shown in figure 5.

Figure 3: Expanded along the Y axis by a factor of 1.5.

Figure 5: Magnified by a factor of 0.5.

$\left|\begin{array}{lll|l}K & 0 & 0 & \left\lvert\, \begin{array}{l}X \\ Y \\ 0\end{array}\right. \\ 0 & 0 & 0 & \| \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ \dot{Y}^{\prime} \\ Z^{\prime}\end{array}\right|$

$$
\begin{aligned}
& X^{\prime}=\left(X^{*} K+Y^{*} 0+Z^{*} 0\right) \\
& Y^{\prime}=\left(X^{*} 0+Y^{*} K+Z^{*} 0\right) \\
& Z^{\prime}=\left(X^{*} 0+Y^{*} 0+Z^{*} K\right)
\end{aligned}
$$

Table 5: Expansion along the X axis by a factor K.

Table 6: Expansion along the Z axis by a factor K.

Table 7: Magnification by a factor K.

Figure 4: Expanded along the X axis by a factor of 1.5.

Figure 6: Rotated 90 degrees and expanded along Z axis by a factor of 1.5.

Shear
The object in its original shape may be boring and conventional in shape and lack individuality. This failing may be rectified as in table 8 and figure 7. To shear the object, the position of a point on the object is displaced from its original position by a function of the point's position along an orthogonal axis. These figures displace the points upward by a value equal to half the horizontal distance to each point.

Table 9 and figures 8 and 9 show shear along the horizontal axis. Figure 9 shows the same object as figure 8 rotated 90° to illustrate that the third axis is unchanged by this operation. As in the other operations, shears along all axes may be combined.

Figure 7: Sheared along Y by $X^{*} 0.5$.

Figure 8: Sheared along X by $\gamma^{*} 0.5$.
$\left|\begin{array}{lll}1 & 0 & 0 \\ K & 1 & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$

$$
\begin{aligned}
& X^{\prime}=\left(X^{*} 1+Y^{*} 0+Z^{*} 0\right) \\
& Y^{\prime}=\left(X^{*} K+Y^{*} 1+Z^{*} 0\right) \\
& Z^{\prime}=\left(X^{*} 0+Y^{*} 0+Z^{*} 1\right)
\end{aligned}
$$

Table 8: Shear along the Y axis in the X, Y plane by a factor K.
$\left|\begin{array}{lll}1 & K & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$
$X^{\prime}=\left(X^{*} 1+Y^{*} K+Z^{*} 0\right)$
$Y^{\prime}=\left(X^{*} 0+Y^{*}+Z^{*} 0\right)$
$Z^{\prime}=\left(X^{*} 0+Y^{*} 0+Z^{*} 1\right)$

Table 9: Shear along the X axis in the X, γ plane by a factor K.

Figure 9: Rotated 90 degrees, sheared along X.

Rotations

The object may be reoriented in space by rotating it about any axis. A particular angle of view may be arrived at by some sequence of rotations about each axis. This is casily accomplished using the matrices in the following tables.

A point of confusion occurs when using rotations. The order of multiplication of the matrices (or the order of applying the operations to the object) is important. The axes remain associated with the object, not the screen. This means, for instance, that if the rotation in the X, Y plane shown in table 10 is applied first to the object, then subsequent rotations in the other planes happen in the slanted planes $(X, Z$ and $Y, Z)$ shown in figure 10.

It required some care to accurately predict the final picture after several rotations, especially since projected views lack the visual clue due to lines converging at infinity. Tables 11 and 12 along with figures 11 and 12 show the effects of rotation in the other two planes.

Figure 12: Rotated 45 degrees in the Y, Z plane.

Figure 10: Rotated 45 degrees in the X, Y plane.

Figure 11: Rotated 45 degrees in the X, Z plane.
$\left|\begin{array}{lrl}\operatorname{COS}(T) & -\operatorname{SIN}(T) & 0 \\ \operatorname{SIN}(T) & \operatorname{COS}(T) & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$

$$
\begin{aligned}
& X^{\prime}=\left(X^{*} \operatorname{Cos}(T)+Y^{*}-\operatorname{SIN}(T)+Z^{*} 0\right) \\
& Y^{\prime}=\left(X^{*} \operatorname{SIN}(T)+Y^{*} \operatorname{Cos}(T)+Z^{*} 0\right) \\
& Z^{\prime}=\left(X^{*} 0+Y^{*} 0+Z^{*} 1\right)
\end{aligned}
$$

Table 10: Rotation in the X, Y plane.
$\left|\begin{array}{llr}\operatorname{Cos}(T) & 0 & -\operatorname{Sin}(T) \\ 0 & 0 \\ \operatorname{SIN}(T) & 0 & \cos (T)\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=\left|\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right|$

$$
\begin{aligned}
& X^{\prime}=\left(X^{*} \cos (T)+Y^{*} 0+Z^{*}-\operatorname{Sin}(T)\right) \\
& Y^{\prime}=\left(X^{*} 0+Y^{*} 1+Z^{*} 0\right) \\
& Z^{\prime}=\left(X^{*} \operatorname{Sin}(T)+Y^{*} 0+Z^{*} \cos (T)\right)
\end{aligned}
$$

Table 11: Rotation in the X, Z plane.

Combinations

Table 13 shows an example of the sequential application of two rotations using the procedure shown in table 2 to define the elements. Figure 13 combines the three rotations, a magnification and two scale changes along individual axes. Figure 14 applies shear and rotation. Figure 15 shows just the rotation for comparison purposes.

Table 13: Rotation in the X, Y and Y, Z planes sequentially.

Figure 13: Magnified, expanded, and rotated.

Figure 14: Rotated and sheared.

$$
\begin{aligned}
& \left|\begin{array}{l}
X+k \\
Y+m \\
Z+n
\end{array}\right|=\left|\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right| \\
& X^{\prime}=X+k \\
& Y^{\prime}=Y+m \\
& Z^{\prime}=Z+n
\end{aligned}
$$

Table 14: Translation matrix.

Translation

Moving the object sideways is not shown but is accomplished by adding the translation value to the original value for each axis as shown in table 14.

Figure 15: Rotated but not sheared.

Mapping

All of the examples shown so far have applied the same operation to every point on the surface of the object. The coordinate transform matrix contains the same numbers for all parts of the object. A more complicated operation results when the value (X, Y, Z) associated with a point on the surface of the object is replaced by a function of X, Y, and Z at each point. The result maps the object onto some surface. Thus, if X is replaced by $\sin (X)$, for instance, the object will experience a change in scale which changes with X, and the output position of a point on the object which has a value of X equal to zero, and an arbitrary Y and Z is the same as a point with a value of X equal to 180 or 360 if the computer interprets the value of X as degrees.

The result of replacing X by $\sin (X)$ pictorially is identical to the projected view of a cylinder, parallel to the Y axis, which has the original view (such as figure 2) painted onto its surface. If the dimensions of the object for this example are such that the width is equal to 360 units, then the cylinder is completely circumscribed by the original view of the object.

In order to make a three-dimensional picture of the mapped figure, the other two dimensions must also be specified. For the example here, the depth must also be mapped by setting Z equal to $\cos (X)$. Since the new surface is a cylinder, Y is unchanged.

Mapping Example

Figure 16 shows a label to be pasted on the coffee cup．This label，like the cup itself，is defined by an array of data giving the X, Y and Z coordinates of each point． The standard view is in the Z equal to zero plane．A subroutine then replaces the X and Z values with the mapped values in all the points of the array．Since the standard view of the cup is a side view，and the label is to be pasted opposite the handle， 180° is added to X before computing the mapped functions．The lower left corner of figure 16 is coordinate $(0,0)$ ．

The mapped array of data is now sub－ jected to whatever coordinate transforms are applied to the cup．Figure 17 shows the result as applied to the label alone．Figure 18 shows the completed picture．

Figure 16.

Figure 17.

Figure 18.

RECYCLE（D） COMPUTERS

BUY is SELL is SWAP
Hardware \＆Software
NEW PRODUCT ANNOUNCEMENTS 2こ みつぴ゙突
Mailed ${ }^{\text {st }}$ Class every 3 Weeks
1 yr．（ 18 issues） ） 3.75

ON＿LINE

D．ue Rictle．Jublision （25tablishio Wis

24695 Santa Cruz Hwy．．Los Gatos，CA 95030 the aest way to determine if on line can be of value to you is to try a

A PROFESSIONAL COMPUTER TERMINAL FOR THE HOBBIEST

SINGER

7100／7102
New \＆Reconditioned Terminals with ASCII Code

FEATURES：

\＄650．to \＄1295． 7100
－ASCII CODED without tape punch or reader
－ 110 to 150 BAUD（ 11 to 15 CPS adjustable）
－Word Processing Quality • RS232 Serial or Current loop Interface－Nationwide Service
－Warranty－Off line use as Typewriter
－（Option）Special Interfaces available for Hobby Computers（state which when ordering）

7102
－Same features as 7100 plus tape punch \＆reader

TERMS：

C．O．D．and
Cashier＇s Check
Shipping and
Handling $\$ 35.00$ ea．

COMPUTER CORPORATION H\＆K COMPANY 15 East $31^{\text {st }}$ Street （816）561－1776

Illusions

Figure 19 shows the same object as figure 18 , rotated 180°. While most viewers see the cup with the handle toward them, "looking down into it" in figure 18, many find that figure 19 alternates between looking down into it with the handle away from the viewer, and looking up at it from the bottom, with the handle at the top. This example shows that a relatively minor change in wewpoint may produce a great change in terms of the clarity of the information presented.

Figure 19.

Listing 1.

[^11]
Mapping Uses

Mapping may be used to compress the picture of an object to fit it into a particular space, to selectively emphasize some part while compressing the rest, such as the region near X equal to zero or 180° in this example. Or it may be used to picture some complicated configuration which is more easily defined in a rectangular coordinate system. Thus, a simple rectangular electrode configuration expressed in Cartesian coordinates may be used to compute the electric field lines at each point in the configuration. Mapping processes plus the coordinate transforms may then be used to change the known field picture into one for a complicated electron gun in a cathode ray tube.

Excerpts from the BASIC program which produced the pictures in this article are shown in listing 1. The machine used is a Tektronix 4051 graphic computer with a 4662 plotter, with matrix read only memory. The matrix command A MPY B is specific to this equipment. The rest of the program is in a fairly standard BASIC.

Lines 2000 to 2490 comprise the main program which draws the coffee cup. The purpose of each subroutine is noted. The program defining the various matrices in terms of viewpoint parameters is shown in lines 2535 to 3010 . The program to combine the matrices into a single 3 by 3 matrix, C4, which is applied to the drawing is listed in lines 3120 to 3200. The A MPY B format does the matrix multiplication. In a machine without this extension, a subroutine using the equation listed in the various figures would do the same job, but take much more space.

Lines 4000 to 4300 show part of the much longer listing which defines the cup: $A T(N, 1)=X$, AT $(N, 2)=Y$, A1 $(N, 3)=Z$. The variable Al $(N, 4)$ is a secondary address used with a form of the print command to make it move (21) or draw (20). This is a faster way to draw on the Tektronix machine. Lines 4050 to 4140 draw the top and bottom circle.

Lines 5240 to 5270 convert the cup dimensions to graphics display units (GDUs) which are required to use this style of drawing commands. This program, with all arroys, filled, uses about 28,500 bytes of memory. Incidentally, lacking a printer, I printed the program using the plotter.
$2706 \mathrm{~B} 3(2,2)=\cos (T 3)$
2718 B3 (2, 3) $=-\operatorname{SIN}(T 3)$
2720 B3 (3, 2)-SIN(T3)
2730 B3(3,3) $-\cos (T 3)$
2740 REM B4 IS THE UNIT MATRIX
2750 B4 $=0$
$2768 B 4(1,1)=1$
2778 B4(2, 2) $=1$
2788 B4(3, 3) $=1$
2790 REM B5 EXPANDS ALONG THE X AXIS BY KI 2800 B5=B4
$2810 \mathrm{BS}(1,1)=K 1$
2820 REM B6 EXPANDS ALONG THE Y AXIS BY K2 2830 B6-84
2848 B6(2,2)-K2
2858 REM B7 EXPANDS ALONG THE Z AXIS BY K3
2860 B7-B4
2878 B7(3.3)-K3
2888 REM B8 MAGNIFIES BY K4
2890 B8 $=$ K 4 \# ${ }^{2} 4$
2900 REM B9 REFLECTS IN THE $Y=X$ PLANE
2918 B9:9
2928 B9 (1, 2) $=1$
2930 B9 (2, 1) $=1$
$2940 \mathrm{B9}(3,3)=1$
2950 REM CI SHEARS ALONG THE X AXIS BY K5 X/Y RATIO
2980 Cl-B4
2978 CI $(1,2)=K 5$
2980 REM C2 SHEARS ALONG THE Y AXIS BY K6 X/Y RATIO
2998 C2-B4
3008 C2(2,1)-K6
3018 RETURN
3120 C3-B6 MPY 85
3130 C4=B7 MPY C3
3140 C3=B8 MPY C4
3150 C4DC1 MPY C3
3160 C3-C2 MPY C4
3178 C4-B2 MPY C3
3188 C3=B3 MPY C4
3198 C40B1 MPY C3
3200 RETURN
4000 REM THIS PART FORMS THE TOP AND BOTTOM EDGE OF THE CUP
$4010 \mathrm{~A}(1,1)=18$
4828 A $1(1,2)=18$
483e A: $(1,3)=8$
4046 Al $(1,4)=21$
4050 FOR Nab TO 360 STEP 9
$4860 \mathrm{Al}(\mathrm{N} / 8+2,1)=10 \mathrm{COS}(\mathrm{N})$
$4078 \mathrm{Al}(\mathrm{N} / 9+2,3)=18 \mathrm{mSIN}(\mathrm{N})$
$4880 \mathrm{Al}(\mathrm{N} / 9+2,2)=18$
4890 A $1(N / 9+2,4)=20$
$4100 \mathrm{~A} \mid(N / 9+44,1)=A 1(N / 9+2,1)$
$4110 \mathrm{~A} \mid(N / 9+44,3)=A 1(N / 9+2,3)$
$4120 \mathrm{Al}(\mathrm{N} / 9+44,2)=-10$
$4130 \mathrm{Al}(\mathrm{N} / 9+44,4)=20$
4140 NEXT N
$4142 \mathrm{Al}(43,1)-\mathrm{Al}(44,1)$
$4 \mid 44$ Al $(43,2)-A \mid(44,2)$
$4|46 \mathrm{~A}|(43,3)=A \mid(44,3)$
$4148 \operatorname{Al}(43,4)=21$
4150 REM AI IS FILLED TO $\$ 84$ AT THIS POINT
$4160 \mathrm{Al}(85,1)=10$
4170 A1 $(85,2)=8$
$4180 \mathrm{~A} 1(85,3)=1$
4180 A1 $(85,4)=21$
4280 REM THIS PART DRAWS THE OUTSIDE OF THE HANDLE
4210 FOR N-0 TO 180 STEP 9
$4220 \mathrm{Al}(\mathrm{N} / 9+86,1)=5 \sin (N)+10$
$4230 \mathrm{Al}(\mathrm{N} / 8+86,2)=5-5 \mathrm{COS}(\mathrm{N})$
$4248 \mathrm{Al}(\mathrm{N} / 9+86,3)=1$
4250 A $(N / 9+86,4)=20$
$4280 A_{1}(N / 9+107,1)=A 1(N / 9+86,1)$
4270 Al $(N / 9+107,2)=A 1(N / 9+88,2)$
$4280 \mathrm{~A} \mid(\mathrm{N} / 9+107,3)=-1$
$4290 \mathrm{Al}(\mathrm{N} / 9+187,4)=20$
4300 NEXT N
5208 FOR $\mathrm{N}=1$ TO 262
5218 PRINT OI, A2 $(N, 4): A 2(N, 1), A 2(N, 2)$
5220 NEXT N
5230 RETURN
5248 FOR N N 1 TO 282
5258 A2 (N, 1)=A2 (N, 1)/15w48+50
$5260 \operatorname{A2}(N, 2)=A 2(N, 2) / 1548+50$
$5278 \mathrm{~A} 2(\mathrm{~N}, 3)=\mathrm{A} 2(\mathrm{~N}, 3) / 1540$
5280 NEXT' N
5290 RETURN
5500 FOR N-1 TO 262
5518 VI(1,1)=A1(N,1)
5528 VI $(2,1)=A 1(N, 2)$
5538 VI $(3,1)=A 1(N, 3)$
5548 V20C4 MPY VI
5550 A2 ($N, 1$) $=V 2(1,1)$
5580 A2(N, 2) $=V 2(2,1)$
$5570 A 2(N, 3)=V 2(3,1)$
5580 A2 (N, 4) $=A 1(N, 4)$
5800 NEXT N
5618 RETURN -
 PROM Programmer is the only programmer with all these features:

- Converts a PROM memory socket to a table top programmer: No complex interfacing to wire-just plug it into a 2708 memory socket
- A short subroutine sends dala over the address lines to program the PROM
- Programs 2 PROMS for less than the cost of a personality module. (2708s and TMS 2716s)
- Connect 2 or more in parallel - super for production programming
- Complete with DC to DC switching invertor and 10
urn cermet trimmers (for precision pulse width and amplitude alignment)
- All packaged in a handsome aluminum case
PP-2708/16 . . A \& T \$295.
PP-271.6 (Programs Intel's 2716)

A \& T \$295.

Retro-Graphics ${ }^{\text {™ }}$

For your Dumb Terminal ${ }^{\circledR}$ The Retro-
Graphics PC card mounts easily in the Lear Siegler
ADM-3A to provide you with an affordable graphics computer terminal.
Features:

- Z-80 Based
- Point Plotting
- 512 by 250
- Automatic Vector Generation
- Simple Plug-in Interconnect
- Optional TEKTRONIX Software Compatibility
You will be impressed with the packaging, per-
formance and price of the Retro-Grahics card.
Write or phone today for complete specifications.
DIGITAL RESEARCH \& ENGINEERING 5223 Glide Drive - Davis, CA 95616
(916) $756-8055$

WADUZITDO:

How To Write a Language in 256 Words or Less

Larry Kheriaty
Computer Center Western Washington University Bellingham WA 98225

Every computer owner likes to show his or her microcomputer to friends. The first question the friends usually ask is, "What does it do?" The software system presented here demonstrates what a computer can do in a manner simple enough for almost anyone to understand. Even if you have a larger, more capable system, it is often worthwhile to be able to demonstrate something that can be accomplished on a smaller scale. WADUZITDO is small enough to run on almost any microcomputer yet it allows even the novice user to make the computer "do something."

WADUZITDO is a complete high level language processor that fits in less than 256 bytes on either a 6800 or 8080 based system. The only other requirement is some kind of terminal. The system includes a text editor to allow a program to be entered and modified, and an interpreter to execute the program. The only external routines needed are single character input and single character output such as those provided by most system monitors.

The object of WADUZITDO is to run simple conversational programs. There are just five statement types, roughly derived from the PILOT language. To keep it small only the most essential capabilities are available. This also makes programming very easy. In fact, only a few minutes after my unsuspecting spouse had asked, "What does it do?"' she had written the interactive dialogue program in listing 1 to help me make out a list of acceptable birthday gifts!

Programming in WADUZITDO is straightforward and uncomplicated. For example, to direct the computer to display a line of text on the terminal you use the type statement. The following example shows the format of the type statement.

T:WHAT COULD BE EASIER THAN THIS?

The T is the operation code for type. A colon always follows the operation code.

The text after the colon is displayed exactly as shown.

The accept statement allows the program to receive one input character from the terminal keyboard. Normally it is used after a type that asks for a response. For example:

T:CAN YOU TELL ME WHAT $2+3$ EQUALS?

A:

The accept statement is just the A operation code followed by a colon. When it is encountered execution pauses until the user keys in any single character. Then the input character is saved internally for use in subsequent match statements.

The match statement is used to test the character entered by the user on the previous accept. Match is coded as an M (the operation code), followed by a colon and one character. The character in the statement is compared to the last character entered by the user. The result of the comparison is recorded internally in the match flag: Y if the match is equal, N if it is not equal.

Once set the match flag can be used to conditionally execute or skip any subsequent statement. This is done by placing either a Y (yes) or N (no) immediately before any operation code. If the Y or N is the same as the match flag the statement is executed, otherwise it is skipped. An elaboration of the previous example illustrates the use of match.

T:WHAT IS $2+3$?
A:
M:5
YT:FIVE, RIGHT.
NT:NO, THE ANSWER IS 5.
Normally statements are executed sc-
quentially．The jump statement is used to alter the normal sequence．The format of the jump statement is J，followed by a colon， and a number from zero to nine．The state－ ment 1：0 causes a branch back to the last accept statement executed．Execution resumes from that statement．The J：0 statement can be used to allow the user to reanswer a previous question．For example：

T：HOW MANY FEET IN A YARD？

A：

M：3

YT：RIGHT．
NT：WRONG STUPID，TRY AGAIN．

NJ：0

The second form of the jump makes use of program markers．A program marker is an asterisk，＊，preceding any statement．The statement J： n ，where n is a number from 1 to 9 ，causes a branch to the nth program marker forward from the jump．This form of the jump is shown in the sample program in listing 2 which plays NIM．

The last type of statement is stop．This statement merely terminates execution of the program and returns control to the pro－ gram editor．The format of the stop state－ ment is S ：

To increase the versatility of the language the S：statement can，at the user＇s option， be made to call a user written machine language subroutine from within the WADUZITDO program．To do this requires a one statement modification to the system which is detailed below．If you choose to make this modification you can consider S ：to be the operation code for subroutine rather than stop．The format of the sub－ routine statement is $S: x$ where x is any single character which serves as a parameter to the user written program．The value x will be stored in register A in both the 6800 and 8080 version．It can be used to select dif－ ferent functions to be performed by the program．

During execution any statement which does not fit the syntax of one of the five statement types is printed in its entirety， then execution resumes normally with the next statement．Table 1 summarizes the WADUZITDO instruction set．

When WADUZITDO is first entered con－

T：IT IS EIRTHOAY LIST TIME．
T：THE PIJRPISE OF THIS PROGRAM IS TI
T：DETERMINE WHAT GIFTS ARE AELEPTABLE． T：TYPE THE CODE LETTER ASSOEIATED WITH T：THE POTENTIAL GIFT IDEA．．．
T：A HDME APPLIANCE
T：A HOME APPLIANCE
T：B SDMETHING BORINC
T：B SDMETHING BORING
$T: E$ ITEM DF CLOTHING
T：D SOMETHING DEGORATIVE FOR THE HOISE
T：G GARBAGE DISPOSAL
T：M MY DWN COMPUTER
A：
M：A
YT：UNACEEPTABLE．
M：B
YT：ND WAY．
M： C
YT：ACCEPTABLE IF NITT IJGLY．
$M: D$
YT：OKAY IF CHISEN WITH GOID TASTE
$Y T: S Q$ AS NITT TD BE TACKY．
M：C
YT：YEAH
$M: M$
YT：THE LAST THING IN THE WDRLD
YT：I WOIJLD EVER WANT．
NM：A
NM：B
NM：©
NM：D
NM：
NT：CANT YII READ FOOL，THAT IS NOT
NT：DNE DF THE CHOICES．
NT：TRY A，B，E，D，G DR M
$. J: 0$

T：LETS FLAY NIM WITH 7 PEEELES．
I：WE TAKE TURNS TAKING $1, \dot{L}$ JF 3.
T ：THE LAST DNE TI TAKE DNE LGEES．
T：THERE ARE 7，HIJW MANY ？
A：
M： 1
YJ： 1
$M: Z$
$Y, J: Z$
M： 3
YJ： 6
$T: Y$ IIJ LAN TAKE DNLY 1，二厶，OR 3.
$J: 10$
＊T：THAT LEAVES bi I TAKE 1 LEAVING 5.
T：HOW MANY ？
A：
M： 1
$Y: I: S$
$M: 2$
$M: 2$
$Y . J: 4$
$M: 3$
$M: 3$
$Y: J: 3$
T：YIJ MUST TAKE 1,2 İR 3.
J：
＊T：THAT LEAVES 5．I TAKE 1 LEAVING 4.
T：HOW MANY ？
A：
M： 1
$Y . J: 3$
$M: Z$
$Y . J: 2$
$Y . J=2$
M：3
Y．J：1
T：YOIJ MUST TAKE 1,2 DR 3 DNLY．
$J: B$
＊T：THAT LEAVES THE LAST ONE．
T：I TAKE IT ．．．YDU WIN．
J： 5
＊T：THAT LEAVES え́，I TAKE \＆LEAVINC 1.
J： 3
－T：THAT LEAVES 3，I TAKE 2 LEAVING 1.
$J: 2$
＊T：THAT LEAVES 4，I TAKE 3 LEAVING 1.
©T：HOW MANY ？
A：
M： 1
NT：YOU HAVE NO CHDICE BUT TO TAKE \＆．
NT：HOW MANY ？
NJ：D
T：YOU JIJST TDOK THE LAST ONE ．．．I WIN．
＊T：TO PLAY AGAIN PUSH THE DOLLAR SIGN．
5：

Listing 1：WADUZITDO program written by a non－ computer person．Notice the last line of the pro－ gram，the J：O command． This instruction will make the program execution jump back to the accept statement to try another input．

Listing 2：A NIM playing program．This program demonstrates the jumping capability of the language．

| STATEMENT | FORMAT | WHAT IT DOES |
| :---: | :---: | :---: |
| type | T:text | Display text on the terminal. |
| accept | A : | Input one character from the terminal keyboard. |
| match | M = \mathbf{x} | Compare \times to last input character and set match flag to Y if equal, N if not equal. |
| jump | J : n | If $n=0$ jump to fast accept.
 If $\mathrm{n}=1$ thru 9 jump to nth program marker forward from the J. |
| stop | \mathbf{S} | Terminate program and return to text editor. |
| subroutine | S: x | Call user machine language program (requires modification). |
| conditionals | $\begin{aligned} & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$ | May precede any operation code. Execute only if match flag is Y Execute only if match flag is N . |
| program marker | * | May precede any statement, serves as a jump destination. |

Table 1: Program instructions for the WADUZITDO language.

| EDIT CHARACTER | HEX | MEANING |
| :---: | :---: | :--- |
| $\$$ | 24 | Start execution. |
| 1 | 5 C | Move edit pointer to program start. |
| 1 | 2 F | Display next line of program. |
| $\%$ | 25 | Pad inserted line with nulls. |
| bs or | 08 or 5F | Backspace to correct typing error. |
| cr | 00 | End of statement.
 any other |

Table 2: Editing characters used by the built-in text editor.
trol is passed to the program editor which is used to enter or alter source programs. Also an internal program pointer, called LOC, is automatically set to the beginning of the source area. As each statement is entered on the keyboard the characters are stored and the internal pointer advances. Typing errors may be corrected by entering a backspace and the correct character. To reset the pointer to the start of the program enter a backslash, \. To display the next line of the program enter the mirror image of the reset slash, /. To replace a line, display each line up to but not including the one to be replaced, then enter the new line. The new line should be no longer than the line it replaces. If it is longer, the next line of text is also overwritten. End the replacement line
with a percent key rather than a carriage return. The \% causes null characters to be stored as filler up to the start of the next line. To begin execution of the program enter a dollar sign, \$. (The editing commands are summarized in table 2.)

If you already have a good text editor in your system it may be used instead of the one included. Each statement is variable length, terminated by a carriage return character. All other control characters between statements are ignored.

Complete 6800 and 8080 assembly listings containing source and object code are included to simplify implementation on your system. The 6800 version in listing 3 uses the MIKBUG monitor; the 8080 version in listing 4 uses the SOLOS/CUTER monitor. If you have one of these two system monitors you need not modify the program at all.

The entry point to the system is at location zero. Upon entry the stack pointer is assumed set to address some scratchpad memory area large enough to accommodate a few levels of call. In MIKBUG or SOLOS/ CUTER, as with most system monitors, this is handled automatically by the GO or EXEC command. The 2 byte value stored in LOC (hexadecimal 100) must point to the place where the user program is to be stored. In the assembly listings note that this value is shown as hexadecima! 0106, the first location not occupied by the system.

If you don't have one of the above monitors you must supply character input and character output routines and change the references to $I N$ and OUT to address these routines. In the listings you will find one reference to $I N$ and one to OUT which needs to be changed. If your terminal requires a delay after each carriage return you can set the number of null padding characters by a one byte modification to the statement labeled PLF.

Any of the special characters used by the text editor ($\$, \%, \, /, b s$) can be easily changed to another more convenient character on your keyboard.

As shown in the assembly listings the S : statement halts execution by branching to the text editor. If you don't modify this you can treat it as a stop statement. To use it as a subroutine call you must modify the JMP SUB instruction to be a JSR or CALL (depending on the system) to the appropriate address. Upon entry to the subroutine

S-100 Kits

 at Discount Prices II slot mother boord with sockets ond octive terminotor $\$ 80^{\circ \circ}$ 16 K EPROM boord for 2708^{\prime} 's $\$ 48^{\circ \circ}$ 8 K static ram $\$ 125^{\circ}$There's much more, including complete systems; send for our flyer.

PCE ELECTRONICS

4782 DEWEY DRIVE
FAIR OAKS, CA. 95628

```
masler Cnorge . Add 5% for shipping.
viso
phone ordeee acess ratunded.
Conif. cosidentz oad
(916) 966-7033 6% solez tar.
No COO
```

Circle 288 on inquiry card.

Circle 17 on inquiry card.

USR-310

 ORIGINATE ACOUSTIC COUPLEROperases with
Any Slandard I Ielephone $\$ 139$

$\$ 299 \$ 160$
(1) CCC Certitet Package
standatic exiension phone 1 Iach)

12 Connection io onone lines vid CBS. IDOis OAA whichican be leased liom phone company tor appios $\$ 500$ 'mo plus installation
(ee)
interfaces:

- USR 310 - RS232C only
- USR 320 ano USR 330 - RS232C and 20 OniA
"Speerly, milt ordet "t boith intertaces are required. ado $\$ 10$ to unit price)
all units feature
- 0300 gaud Dala Rale
-. Sland Alone Unil
- Hallif full Duplen
- Fully assembied and Testec - Oplional annual Manlenance Covelage
Prices include shipping and handiling in continental US lilinois Kesidents ada $5^{\circ} \mathrm{O}$ sales 1 ar
U.S. ROBDTICS, INC.

E0: 5502 / Chicago. Illinois 60680 / (3121). 528.9045

CANADIANS

Announcing
HAMILTON LOGIC
SYSTEMS
Specializing in logic devices, microprocessors, memorys, TTL. Cmos, etc.

Send for your catalogue
Box 7
STONEY CREEK
ONTARIO L8G 3×7

SURPLUS ELECTRONICS

 IBM SELECTRIC

 BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED \$695.v0- Tape Drives - Cable
- Cassette Drives Wire
- Power Supplies $12 \mathrm{~V} 15 \mathrm{~A}, 12 \mathrm{~V} 25 \mathrm{~A}$

5 V 35 A Others, Displays

- Cabinets © XFMRS - Heat Sinks - Printers - Components Many other iterns
Write for free catalog WORLDWIDE ELECT. INC. 10 FLAGSTONE DRIVE 10 FLAGSTONE DRIV
HUDSON, N.H. 03051
Phone orders accepted using VISA or MC. Toll Free 1-800-258.1036 in N.H. 603-885-3705

Circle 395 on inquiry card.

TTHE
 COMPUTER
 MHARDNARE ISTORE NC.

Dealers for:
APPLE II, IMSAI
VECTOR GRAPHIC
KIM-I, OAE
CYBERNEX. JIM PAK
With
ALPHA-1 CASSETTE SYSTEM
16 Bits
ALPHA MICRO
TECHNICO STARTER SYSTEM
Catalog Available
818 FRANKLIN ST., ALEX., VA. 703.548.8085

9 WEST CARY ST.. RICHMOND. VA.
804.780.0348

Circle 72 on inquiry card.

Circle 153 on inquiry card.

Disc/a
 DISC/3 COMPANY COMPLETE MICRO bUSINESS SYSTEMS

SOROC IQ 120
\$ 899.95 Assembled
LEAR SIEGLER
\$ 799.95 ADM-3A kit
IMSAI 8080 kit
\$ 599.95
CENTRONICS Business \$1145.00 Printer (132 columns)

Disc/G

DISC/3 COMPANY
1840 LINCOLN BLVD.
SANTA MONICA, CALIF. 90404
(213) 451-8911

Circle 105 on inquiry card.

Circle 386 on inquiry card.
Circle 65 on inquiry card.

Figure 1：Absolute loader format representation of the 6800 WADUZITDO program of listing 3.

| | | seso |
| :---: | :---: | :---: |
| | | －$=0$ |
| | | |
| －$=$ | | |
| $t==$ | ｜｜ | にここ |
| | | |
| | ｜｜｜ | やにこの |
| | | ก＞$=$ |
| $x=0$ | | |
| ce＝ | ｜｜｜｜｜｜｜｜｜｜｜｜｜ก｜｜｜ | |
| | | |

Listing 3： 6800 version of the WADUZITDO language．A dump of the MIK－ BUG format of WADUZITDO（shown in listing 3a，page 172）can be used for manual entry of the program．This version was run locally at BYTE using a SwTPC 6800.

Listing 4： 8080 version of the WADUZITDO language．A hexadecimal dump（shown in listing 4a） is provided for manual entry．This version was run locally at BYTE using a SOL－20．

 S1132010日30720EFR12F26日7BD日0059D2129EA911F Sil 3 9020252612960D5D27969DC649419月27月6655？

 S11300500R860DRDC 38DE720CD814D26129R日RA6RF S113009009C65981010427日2C64EF701日S2日B7R1F5
 511309B0日0812A26F95A26F62日9CR15326日A0R日82C $511302 \mathrm{COA600087E0000208F815426020808900582}$
 S10A00E00008810026F1392F

Listing 3a：MIKBUG format for the 6800 version of WADUZITDO．

日月002A0001CD460日F ESCCA日の日月FE2ACAS2日の बด। बFE5FC2199日2月C 3日3日日FE2FC？
 093040BEC43C0036日日23日DC231007723FEのD日月 40CCF日00C3日30日CD1FCのCA46の日47CD19Cの

日月7日C26C00C35600FEA1C2RE0日22020ICDA6
月090C2A10023237E1659BBCA9ED0 164 FCC356 $00 A 000 F E \angle A C 2 C 30923237 E E 69 F 47 C 255032 A$

 OODO5700FE5AC2D9002323CDDFA日C35700日E ODEO $40460 D C A F O 日 O C D A D O O 7 E 23 F E D D C 2 E 10 日$ 00F00E000600CDADODODF2F200060AC34DOB 01000601 ดの日の日000

Listing 4a：Dump of the 8080 version of WADUZITDO．The format consists of 4 character hexadecimal address and 16 hexa－ decimally coded bytes of information．There is no checksum computed for any of the information．

PAPERBYTE ${ }^{\text {tm }}$ Bar Codes for WADUZITDO

In figure 1 and figure 2，we provide a PAPERBYTE ${ }^{t m}$ bar code represen－ tation for the WADUZITDO programs of listing 3 and listing 4．These bar code representations were created in the absolute loader format docu－ mented in detall in the PAPERBYTE book，Bar Code Loader，written by Ken Budnick of Micro－Scan Asso－ ciates，and available for $\$ 2$ at local computer stores or by mall（add \＄．75 postage and handling）from BITS Inc， 25 Route 101 W，Peterborough NH 03458.

Listing 4，continued：

Text continued from page 168
the index register（6800）or HL register pair（8080）contains the location of the next program statement and should be saved and restored before returning from the subroutine．In the 8080 version the DE register pair should also be saved．Register A will contain the one character parameter，x ， of the S：x．Its use is totally up to the subroutine．

The system has been organized so that the six bytes of changeable data are iso－ lated from the read only portion．This means the rest of the 256 byte system could be placed in read only memory．It would fit in a single 1702A EROM chip．

It is easy to see how this language could be used to write a question and answer con－ versation using multiple choice or true， false answers．It may not be so obvious that more complex logic is possible．The example in listing 2 is a computer versus user NIM game which demonstrates a way this can be done．

Although WADUZITDO is not the ultimate answer to personal computing，it is something that almost anyone can have some fun with，and it definitely squeezes the most out of 256 bytes of memory．

A Pascal WADUZITDO

Notes by Ray Cote Program by Larry Kheriaty

Along with the assembly language ver－ sions of WADUZITDO，Larry Kheriaty sent us the Pascal version shown in listing 5．The program is basically self－documenting and very easy to translate into assembly level programs for any particular processor．The program is indented to show logical relation－ ships between related areas of text．This is sometimes known as prettyprinting．

The first four lines of the program are definition lines for the main program．In Pascal，all variables must be defined com－ pletely at the start of the section in which they are used．＂Completely＂means name and data type．This is a great help since all var－ iables must be explicitly defined．You can easily check to see what type of variable is being used．

WADUZITDO uses two types of var－

| SHLD | LST |
| :--- | :--- |
| CALL | JIN |
| MOV | E，A |
| INX | H |
| MVI | B，ODH |
| EALL | JOUT |
| GALL | PLF |
| JMP | LDOPI |

YES，SAVE LOC OF LAST ACCEPT
ACCEPT DNE GHAR FROM KYBD
SAVE IT
MOVE DVER A
CR
PRINT IT
PRINT LINE FEED
STEP OVER：AND GO ON
$M \quad 7$
NO
STEP OVER M
STEP IUVER：
GET MAT．CH CHAR
ASSUME Y
COMP MATEH CHAR TD INPUT CHAR
BRANCH IF IT MATCHES，FLG：Y
RESULT IS N
SET MATCH FLAG TO Y OR N

NT

| | | | PRICESS JIJMP STATEMENT | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OEA1 | FE | 4A | X．J | CPI | 4 AH | ．${ }^{\text {d }}$ | $?$ |
| DEA3 | C2 | C：303 | | ．JNz | \times S | NO | |
| O日AB | 23 | | | INX | H | StEF | P OVER ． |
| DBA 7 | 23 | | | INX | H | STEP | P DVER |

－ab 7
OMAB 7E
QDA ES DF
DDAB 47
DOAC CZ B500
OBAF ZA 0201
$9 B 82 \quad 035700$
$*$
$\stackrel{.}{*} F$
00B5 2.3
$\begin{array}{ll}\text { BBB } \\ \text { DBE } \\ \text { DE } & \\ \text { FE }\end{array}$
BBBQ Eく B5も0
リOBE 5
ODBD C2 B5以
0050 L． 3 5月B
＊
$\begin{array}{lll}015 & \text { E．} & \text { D200 }\end{array}$
ロロに日 23
080923
0日CA 7E
DOCE C． 0980 ＊
－INX HEXT STEP IVER PARAMETER
DDCE E3 DGQB NEXT STMT MAY BE MADE GO TI ISEER SUBR IOR TO EDRTOR O日CF C3 5700

＊PROEESS TYPE STATMENT AND SYNTAX ERRIJRS
0004 I： 0.7013
9007 23
600823
5009
O日DC
TE

GODF OE 43 PRT SUBR TO PRINT IJP TO NEXT ER
$\begin{array}{lllll}\text { G日DF OE } 43 & \text { PRT MVI C，4BH COUNT OF } 64 \\ \text { GEEI } 46 & \text { PRTA MOV B，M }\end{array}$
OEEZ GD
$00 E 3$ CA FODD
ODE6 CD 4000
OOE9 7E
ODEB FE OD
BEED C2 E100

iables: integer and character. There is also a definition for constants (CONST). CONST informs the compiler that the value being assigned to this variable will not change. Integer variables will only take on whole number values.

The type character (CHAR) means that the variables will take on the values of ASCI/ characters, including all letters, numbers and special symbols.

The last line of the definition section defines a variable PROG as an array of charac-

Listing 5: Pascal listing of WADUZITDO. See notes by Ray Cote.

```
PASBAL VEFSION DF HADIZITDON. LAFRY KHERIATY
FFIIGRAM HAUUZITDIJ;
    GONST PZ=50100; ES=1<7; EIL=10;
    VAR LIILLST,I : INTEGER; LIHR,FLG,LBUF,GBS,GEDL : IHAR;
        FRI]G : ARRAY[1..FZ] IJF IHAR;
    PRIIEDIJRE GHIN; BEGIN AIGEPT (GBUF); ENU;
    FRILEDIJRE SHIJIT; BEG[N DISPLAY (IEUF); END;
    FRIIIUIUE NEHLINE; EEGIN DISPLAY (NL) i'END;
    FRDIEDIJRE LIST; VAR I:INTEGER;
        EEGIN I:= B;
            REPEAT
                EEIJF:= PRDG [LDC]; LDE:= LOC+1; I:=I+I;
                EHOIJT
            INTIL (I:64) OR (GEUF=IEOOL); NEWLINE
        END:
    PRIDIEEDUFE EXELIJTE; VAR DONE : BODLEAN;
        BEGIN LDE:= 1; DONE := FALSE;
            REPEAT
                CBUF := PRIG[LUL] ; IF CBIJF < '* THEN CBUF := '*';
                IF NDTICBUF IN ['*','Y','N','A','M','J','T','S'])THEN LIST ELSE
                GASE CBUF DF
                    ':'LOL:= LOC+1;
                            'Y','N': IF CBIJF=FLG THEN LDL : = LOC + 1
                            ELSE REPEAT CBUF:= PROG[LDC]; LDC:=LOC+I
                                    UNTIL CBUF=CEDL:
                            'A': BEGIN LST: = LOC; CHIN; LCHR :=CBUF;
                                NEHLINE; LOC :=LOC + 2 END:
                            'M' : BEGIN IF LCHR=PROG[LOC+2] THEN FLG IE'Y'
                                    ELSE FLG : x 'N':
                                    LOC : = LDC+3 END;
                            'J':IF PROG[LOL+2]= 'O' THEN LDC s=LST
                            ELSE BEGIN I:= DRD(PROG[LOC+2))-4B;
                            REPEAT LOC:=LOC +11
                                    IF PROG[LOC] = '*'THEN I := I-1;
                                    UNTIL I =% END;
                    'T': BEGIN LOC: = LOC+2; LIST END;
                    'S' : BEGIN DONE : = TRUE: LDC :* I END
                END
        IJNTIL DONE
    END;
    BEGIN CBS : = EHR(BS); CEOL := CHR(EOL); CBUF :*'N':
        WHILE TRUE DO BEGIN
            IF EBUF ='\' THEN LOC :=1
            ELSE IF CBIF=CBS THEN LOC : = LDC-1
            ELSE IF CBIJF='/' THEN LIST
            ELSE IF CBUF='$' THEN EXECUTE
            ELSE IF CBUF='%' THEN
            BEGIN I:=6;
                WHILE (I<64) AND (PROG[LDC] <> CEOL) DO
                    BEGIN PROG[LOC] := EHR(|); LOC s=LOC+1 END:
                        PROC[LOC]:= CEOL; LDI: : LOC + I; NEHLINE
                END
            ELSE LEGIN PRuGLLOCJ := CBUF; LDC := LOC+1;
                IF CBUF=CEOL THEN NEWLINE END:
            CHIN
    END
    END
```

ters. This definition also states that the relative base address of the array will be unity and the variable PZ will be used to specify locations within the array.

After defining our variables we are ready to start the first executable part of the program. In Pascal, the logical parts of the program are broken into procedures, equivalent to subroutines in languages such as FORTRAN. Every procedure is blocked off by BEGIN and END statements. The name of the first procedure is CHIN. After we have determined the name, we are told to begin executing procedure ACCEPT (which will return to us input values in variable CBUF). This is a subroutine which is not shown since it is specific to the processor being used. The next two procedures are also calls to subroutines used to DISPLAY the contents of the buffer and move the output to a new line. These two procedures are also machine dependent. Notice that Pascal allows you to use descriptive names. This is very important when writing a program that you want other people to read or that you want to understand at a later date.

The next procedure, LIST, first defines its own local variables, which it will use only within the LIST routine. As before, the procedure is delimited by BEGIN and END statements. This procedure introduces us to the concept of loops. Here we have a related pair of commands: REPEAT and UNTIL. These two commands cause the one line of three instructions and the call to procedure CHOUT to execute until either the value I is greater than 64 or the variable CBUF is equal to CEOL. Once either of these two conditions occurs, the program logic proceeds to call procedure NEWLINE. At this point the LIST procedure ends and returns to whatever procedure called it.

Procedure EXECUTE looks structurally the same as procedure LIST. There is a definition of variables, the BEGIN and END delimiters, and a REPEAT-UNTIL structure. This time the REPEAT-UNTIL statement is not waiting for a relation to be true, but is rather checking against one variable. Looking at how DONE was defined at the beginning of the procedure, we see that its designation is BOOLEAN. This means that the variable is being used as a logical variable and can take on the value true or false. The REPEAT-UNTIL instruction waits to see if the variable DONE is true. If so, we have finished this procedure and can stop it.

Procedure EXECUTE also contains an IF-THEN-ELSE statement. If the value of CBUF is not contained within the brackets, perform procedure LIST. If the value of CBUF is somewhere within the square brackets, we want to perform an operation related to that value. We now come to another Pascal instruction, the CASE statement.

We are given a set of cases to choose from. The CASE statement tells us that we will be using the value in variable CBUF to determine what is to be done. We scan down each of the cases and find the one labeled with the value in CBUF. Since CBUF is type character we are looking at ASCII characters. Once we find the value of CBUF we execute the statements associated with it that are blocked off by another set of BEGIN and END statements. After we have finished, we move to the end of the CASE statement and then the last line of REPEAT-UNTIL statement.

The next section of the program does not look like the preceding sections. It does not start with a PROCEDURE statement, but has a BEGIN statement. So far we have discussed procedures. Any of the procedures that needed to use variables have defined their own. So why did we define those variables at the very beginning of the program? The reason is not to use them in a procedure, but to use them in the main program. This BEGIN statement is nothing more than the start of the mainline logic for program WADUZITDO. The mainline logic inputs characters and either stores them in an array as program or executes them as commands. This routine will not jump out of the loop and will have to be interrupted to stop. Of course it is possible to create another command that will allow you to exit from this cycle.

Now that we have looked at the Pascal version of WADUZITDO, the reader should refer back to either of the assembly versions. The Pascal version performs the same function as the assembly versions.

The assembly language versions need to be heavily commented for the reader to understand what is happening. Even liberal comments will not help when converting from one assembly language to another. The Pascal version can be easily converted into any machine language. It is also selfdocumenting. Notice that even without a single comment, the Pascal listing is extremely easy to decipher. . . .RGAC■

The New

 Sound Effect GeneratorIntroducing a new dimension for .your computer system - computer generated sound effects. Not canned or recorded sounds, but a fully programmable sound generator capable of duplicating most any mechanical or natural sound. Guaranteed S100 Bus compatability. And, yes, it makes music, too.

Versions will soon be available for Pet, Apple, IBM and other popular brands. Detailed instructions and listings for many sounds are included. Kit-\$135, Assembled-\$175.

Hear for yourself~\$1.00

Its fantastic applications are far too numerous to mention here, so we've made a record you can hear for yourself. Send S1.00 for our 33-1/3 RPM demo record, detailed information and special introductory offer, to:

FORT LAUDERDALE AREA COMPUTER AGE

MICROCOMPUTERS \& PERIPHERALS for HOME, SCHOOL \& BUSINESSES

We specialize in computer systems and provide a full range of computer services. Applications software for business including word processing, payroll and accounts receivable More to come.

DEALERS FOR
Apple Computers Extensys Micromation Hazeltine DEC Soroc Centronics Problem Solvers and Others Cromemco
999 South State Road 7 (441) Plantation, Florida 33317 305-791-8080
\$

WOULD YOU LIKE TO MAKE MONEY WITH YOUR COMPUTER? LET ME SHOW YOU A POSSIBLE WAY. FOR DETAILS, SEND $50 ¢$ (REFUNDABLE) TO:

REAL WORLD SIMULATIONS P. O. Box 4107 TORRANCE, CA 90510
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$.

RADIO SHACK AND COMMODORE USERS

Low Cost Software on Compatible Cassette Tapes for your TRS-80 and PET Computers.

-Games
-Investment/Small Business
-Educational/Scientific
-Kitchen Programs

TRS 80 COMPATIBLE PERIPHERALS
Centronics 779 Line Printer $\$ 999$. (with Tractor Feed)
\$1179.
Shugart SA400 Mini Disk \$399.
Also supplied are the necessary cables which plug directly into your expansion interface unit.

SEND FOR FREE CATALOG

Software royalty plans also available
APPARAT, INCORPORATED P.O. Box 10324 Denver, CO 80210

Circle 47 on inquiry card.

SOS/80

$00 t 101 z 00$ for ilngle B-1nen flopoy, lialted eovory ifelem. yet providee complote prospos derelopment facilition. Includes. eharactar

 enousend-line prosrene proe diak in eeconds). Aleo ineludae test out put proceseor that

 integer arithesitic, and graphici lothen uesed with the poly VTi-64). Sos/80 rune on any 8080-ocepatiole ayetea with RAM from at lasat 3000 to 5000 hax end the Terbell Ploppy diet interface. Expanelion to nupport esallional diak interfaces is in progress.
sos/80. the 1desi eyatee for eincle diak confleuratione. Li diatributed the by Peranal conpuler coro. Prazer. Pa.. 2'5-647-8463. Copplate price on 18k forsat B-inch plopdy 850.00 .

Advenced Interactive syetene B216 Plekering Straet Philecelonie, Pa 19150

Circle 7 on inquiry card.

Computer

CASSETTES
\{Magnetic leadered computer $\{$ \{grade cassettes custom loaded (in one minute increments. $\}$ \{Professional computer grade tape.
\qquad PRICES
From 1 min . to 30 mins. $\$ 1.75$
From 31 mins. to 60 mins. $\$ 2.00$
From 61 mins. to 90 mins. $\$ 2.50$
\{ $\$ 25.00$ minimum order COD $\}$
\} via UPS only.

BAZZY ELECTRONICS CORPORATION 39 No. Rose

Mt. Clemens, MI 48043
(313) 463-2592

BASIC COMPUTER SHOP

 NOW OPEN IN AKRONEasy Freeway access from anywhere in Northeastern Ohlo
Many systems on display with applications soffware up and operating.

OPEN TUESDAY
through saturday 11 AM till 7 PM

The Basic Computer Shop 2671 W. Market Street Fairlawn Plaza Akron, Ohio 44313
(216) 867-0808

Circle 27 on inquiry card.

Circle 11 on inquiry card.

Circle 309 on inquiry card.

* Base 2, 8, 10, 16 on each shect f hex and octal notations to binary
* indispensible for anyone working in assembler or machine code
3 -ring binder fold-out ecif sed in hex, the other in octal Single set $\$ 5.95 /$ set 12 or mor

ETA SYSTEMS CANADALTD ity \& school discounts availab Circle 401 on inquiry card

Whet's New?

Is It a Plot?
Here is one of the most exciting peripherals available for the personal computer user who is interested in graphic arts applications: a very affordable ($\$ 1085$) digital plotter from Houston Instrument called the Hi Plot. The statistics on this machine are impressive to say the least. The resolution of the pen tip is either .005 inch or 0.01 inch giving a total of 1400 by 2000 picture elements or 700 by 1000 picture elements respectively in its 7 by 10 inch (17.8 cm by 25.4 cm) plotting area. Standard ink cartridges are available in four colors, allowing the user to switch cartridges to produce mixed color plots. According to Tom Hall of Houston Instrument it is also possible for the individual user to kludge a standard drafting ink pen into the plotter, allowing a much wider selection of colors to be used in the form of personally chosen inks.

Many of the plotting samples seen in this issue should be reproducible by the small system owner who uses this peripheral, a typical personal system with a high level language and floppy disks, and some imagination.

Complete and ready to plot, the Hi Plot costs $\$ 1085$. Contact Houston Instrument, One Houston Square, Austin TX 78753.■

Circle 569 on inquiry card.

Photo 1: The new Houston Instrument's Hi Plot plotter is shown here in a typical analytical situation: plotting a polar coordinate function in the plane of the paper with Cartesian axes for reference.

Photo 2: The Interface to the user's computer Is via a standard DB-25 connector located on the lower edge of the rear panel of the plotter.

Write for Free North Star Newsletter and Catalog

North Star Computers Inc, 2547 Ninth St, Berkeley CA 94710, is offering the latest issue of its newsletter free on request. In this issue North Star announces eight new application software diskettes and lists more than 50 com-
mercially available application programs ready for use on North Star equipment. In addition, North Star's 16 page product catalog is also available free of charge. \quad

Circle 570 on inquiry card.

Photo 3: Inslde the Hi Plot plotter, we find this pair of stepper motors which drive the mechanism through cable linkages.

What's New?

MASS STORAGE

Micropolis Announces Double Sided Floppy Disk Drives

Double sided floppy disk drives are now available on two of Micropolis Corp's OEM series. The company's MegaFloppy series, Models 1015 and 1055,
features an intelligent controller that facilitates interconnection of four subsystems to a common host interface for a total on line storage capacity of more
than 15 M bytes.
The 1015 is an unpackaged drive designed to integrate floppy disk storage into a system enclosure. This series is expanded to four products of double sided options. Storage capacity ranges from 143 K bytes to 630 K bytes per drive. The Model 1015's file space may be optionally expanded up to 946 K bytes by using the Micropolis intelligent controller and group code recording (GCR) method. The $51 / 4$ inch floppy offers GCR and a microprocessor based controller as standard features. Model 1055 has four soft sectored formats for each of its 77 tracks, yielding a maximum capacity of 1892 K bytes of useable file space on its double sided version. An optional add on module, comprised of two read and write heads and two drives sharing a common controller, increases the subsystem formatted capacity to 3784 K bytes.

The 35 track configuration single drive, double sided 1015 Model III with 287 K bytes of formatted capacity is priced at $\$ 330$ in quantities of 500 . A quad density version, the 1015 Model IV, which has 77 tracks per surface and a track density of 100 tracks per inch with up to 946 K bytes formatted capacity, is $\$ 396$. The Micropolis intelligent controller is a $\$ 369$ option on the quad density version when purchased in quantities of 500. The Model 1055 Model IV. which includes the intelligent controller, power supply, bidirectional interface, enclosure and almost 2 M bytes of on line capacity, is priced at $\$ 1796$ in quantities of 50. For further information, contact Micropolis Corp, 3959 Deering Av, Canoga Park CA 91304.

Circle 556 on inquiry card.

Intelligent Double Density Diskette Controller

This new stand alone intelligent controller, the PerSci Model 1170, is capable of managing either single or double density recording on as many as 32 diskette sides for a total system formatted data capacity of 16 M bytes.

The controller is a compact computer for use in diskette subsystem management and microcomputer applications. It uses microprocessor intelligence to communicate by file name and to assume the housekeeping functions
usually performed by the processor. File management functions include initialization; allocation and deallocation of diskette space; error detection and retry; creating, deleting, renaming, copying of files; and diagnostic testing.

Designed to operate PerSci's recently introduced Model 299 drive, the 1170 is also capable of handling two PerSci Model 277 dual diskette drives or various combinations of Models 299 and 277.

The price is $\$ 800$ in large quantities.

Improved System Disk for System 88
PolyMorphic Systems has announced a seond system software edition for their System 88 microcomputers, making them faster and easier to use. The software includes an enhanced operating system, BASIC, text editor and assembler.

Added to the BASIC language are string arrays and array commands that allow the user to create and manipulate labels for tables and charts, mailing lists, personnel records, inventory, and billing, and so on. For the scientific user, BASIC now has inverse trigonometric, hyperbolic and gamma functions. Also included are new statistical functions that simplify data reduction.

The System 88 text editor now permits the user to move, copy, or delete an entire block of text. Cursor movements are now two-dimensional; the original cursor movements have been retained. For further information, contact Poly. Morphic Systems, 460 Ward Dr, Santa Barbara CA 93111 .

Circte 555 on inquiry card.

Contact PerSci Inc, 12210 Nebraska Av, W Los Angeles CA 90025 . Circle 557 on inquiry card.

| WAMECO | KITS | |
| :---: | :---: | :---: |
| | S-100 P.C. B | |
| | $\begin{aligned} & 8 K \text { RAM } \\ & 8080 \mathrm{CPU} \end{aligned}$ | $\begin{aligned} & 28.00 \\ & 28.00 \end{aligned}$ |
| | 12-Slot Moth | |
| | Board | 33.00 |
| | | |
| ITHACA AUDIO S100 P.C. Boards | | |
| 2708/2716 EPROM | | |
| | | |
| | Boards (N | 28.00 |
| W/W Prototype | | |
| | Board (Ne | 25.00 |
| SOLID STATE MUSIC S-100 Kits \& | | |
| mare Baards | | |
| TATIC R | Bare Board | 25.95 | kits. For complete IC listings write for our catalog.

 MB7 16K STATIC Kit 435.00 MB8 $8 \mathrm{~K} / 16 \mathrm{~K}$ EPROM 25.9 USES 2708's
Kit Less EPROMs 75.95 74L\$00 TTL YOUR COMPLETE SATISFACTION IS OUR GUARANTEE OUR COMPLETE SATISFACTION IS OUR GUARANT

741500 $\begin{array}{llll}74 L 500 & .21 & 74 L \$ 138 & 70 \\ 74 L 502 & 21 & 74 L \$ 139 & 70\end{array}$ $\begin{array}{llll}74 L \$ 02 & 21 & 74 L \$ 139 & .70 \\ 74 L \$ 04 & 24 & 745 \$ 151\end{array}$ $\begin{array}{llll}74 L \$ 04 & .24 & 74 L \$ 151 & .65\end{array}$ $\begin{array}{llll}74 L S 08 & .21 & 74 L \$ 153 & .66 \\ 74 L S 10 & .21 & 74 L \$ 154 & 1.00\end{array}$ | $74 L S 10$ | -21 | $74 L \$ 154$ | 1.00 |
| :--- | :--- | :--- | ---: |
| $74 L \$ 14$ | 85 | $74 L \$ 157$ | .62 |
| $74 L \$ 20$ | 23 | $74 L \$ 160$ | .82 |

| $74 L \$ 20$ | 23 | $74 L \$ 160$ | .82 | B |
| :--- | :--- | :--- | :--- | :--- |
| $74 L \$ 21$ | .23 | $74 L \$ 161$ | .82 | |
| $74 L \$ 22$ | .23 | $74 L \$ 162$ | .82 | |
| $74 L \$ 30$ | .23 | $74 L \$ 163$ | .82 | |

$\begin{array}{llll}74 L \$ 22 & .23 & 74 L \$ 162 & .82 \\ 74 L \$ 30 & .23 & 74 L \$ 163 & .82 \\ 74 L \$ 32 & .30 & 74 L \$ 164 & 98\end{array}$
$\begin{array}{llll}74 L S 30 & .23 & 74 L \$ 163 & .82 \\ 74 L S 32 & .30 & 74 L \$ 164 & .98 \\ 74 L \$ 37 & .31 & 74 L \$ 174 & .75 \\ 74 L S 38 & 31 & 74 L \$ 175 & .79\end{array}$
74 L
74 L
74 L
$\begin{array}{llll}74 L \$ 47 & .75 & 74 L \$ 191 & .90 \\ 74 L \$ 48 & .72 & 74 L \$ 192 & .90 \\ 74 L \$ 73 & .35 & 74 L \$ 196 & 80\end{array}$
$\begin{array}{llll}74 L \$ 48 & .72 & 74 L \$ 192 & .90 \\ 74 L \$ 73 & .35 & 74 L \$ 196 & .80 \\ 74 L \$ 74 & .35 & 74 L \$ 197 & 80\end{array}$
$\begin{array}{lllr}74 L S 75 & .53 & 74 L S 197 & .80 \\ 74 L S 75 & .53 & 74 L S 221 & 1.06 \\ 74 L S 76 & .37 & 74 L 5257 & .71\end{array}$
$\begin{array}{llll}74 L S 76 & .37 & 74 L 5257 & .71 \\ 74 L 586 & .36 & 74 L \$ 258 & .70 \\ 74 L 590 & .52 & 74 L \$ 266 & .26\end{array}$
$74 L 596$
$74 L 592$
$74 L 593$
$\begin{array}{lll}74 L \$ 93 & .52 & 74 \\ 74 L S 109 & .56 & 74 L\end{array}$

| $74 L S 112$ | .36 | $74 L \$ 366$ | .55 | 8212 |
| :--- | :--- | :--- | :--- | :--- |
| $74 L \$ 113$ | .36 | $74 L \$ 368$ | .55 | 8214 |
| $74 L S 114$ | 36 | $74 L \$ 385$ | .59 | 8216 |

$\begin{array}{llll}74 L S 126 & 46 & 81 L \$ 95 & 77 \\ 74 L S 132 & 75 & 81 L \$ 96 & 77\end{array}$
$\begin{array}{llll}74 L S 132 & .75 & 81 L \$ 97 & 77 \\ & 81 L \$ 98\end{array}$ $81 L \$ 97$
$81 L \$ 98$

BOOKS

The Basic Workbook Proramming Proverbs Programming Prover Discovering BASIC COBOL with Stye

 COBOL with StyleAdvanced BASIC Standard Dictionary of Computers \& Information Processing Game Playing with Comput
Game Playing with BASIC
Minicomplers Microorocessors
Digital Experiments Digital Troubleshooting 110 CMOS Digital IC Prolects Analysis and Design of Digital Circuits and Computer Systems
Telephone Accessories Telephone Accessories
You Can Buid
Basic Electronic Switching for
Basic Carrier Telephony

s 5 5.50
6.95 5.50
6.95
6.85 6.85
6.95
7.95 6.95
7.95 16.95
16.95

KITS
 SOLID STATE MUSIC
 VBIB VIDEO INTERFACE

Kit
Bare Board
129.95
RF Modulator TV-1 Converts Video Output to RF For TV antenna
terminals, complete Kit
5.95
8.95
NEW FROM CYBERCOM DIV OF SSM
MB8A-2708 16K EPROM with
Vector Jump Kit 85.00
Vector Jump Kit
OB-1 Vector Jump \& Prototype Kit
Board
49.00 $\begin{array}{lr}1042+2 \text { I/O Kit } & 25.95 \\ \text { SYNTHSIC } & 139.95\end{array}$
SYNTHESIZER SB-1 MUSIC
Kit with
MToftware
MT-1

(Continued) 8080 Machine Languages Programming Robots At Your Doorstep

BEGINNE
Beginning BASIC
Home Computer Beginners Glossary and Guide
Basic BASIC -
15-Slot Mother
Board

 os nvenno

Listen to the Sweet Sounds

of these commercial grade Bell 103 and 202 MODEMS. Fully assembled, adjusted and tuned-in SEND, RECEIVE and CONTROL modules were manulactured by VADIC Corporation and are put in a case with power supply, LED display and EIA Standard RS-232 connectors by PACIFIC OFFICE SYSTEMS.

FEATURES:

- Asycluronous serial data transmission
- Operation over standard 2 -wire unconditioned telephone lines with
up to 1000 mile range.
- Telephone line connection via your choice of: acoustic coupler,

Manual Data Access Arrangement or Auto-Answer DAA (sold separately.)

- LED Display of modem status and signals.
-Size: $6^{\prime \prime} \times 10^{\prime \prime} \times 15^{\prime \prime}$. Ship weight: 10 ibs.

BELL 103 SPECIFICATIONS:

-DATA TRANSMISSION: $0-300$ Biaut rate; full-duplex operation for simul.

- RECEIVE CHANNEL FREOUENCIES: 2025 Hz for Space: 2225 Hz for Mark. - SEND CHANNEL FREOUENCIES: Originate mode 1070 Hz Space, 1270 Hz Mark; Answer mode-2025 Hz Space. 2225 Hz (switchable manually or automatically form originate to answer muxde upon detection of carrier in originate mode.) -Aulo Answer circuitry standarrf; anto dialing leasible without additional circuirry.
- Transinission filter tor echo suppress \& noise reduction over uncondifionted telepblous lines.
-LED Disphay: Power. Carrier Ditect. Sene Datu, Heceive Data.
OPTIONS:
-Self Test Mode provides analog ol dughtal loop-back ol signials for modem diag - Lostucs or half duplex operation.
-LED Disulay of shgnals or status as specilien lay user
- Mult tple housing for up to six noorlem circuir cards.

Prices:
Standard Fealures Si49.95
VADIC Carcuit Card onily, with interface instuctions $\$ 89.95$
Aconsuc Coupler
S 29.95
DAA Kit (private line oniv)
S 14.95
BELL 202 SPECIFICATIONS:

- DATA TRANSMISSION: $0-\mathrm{J} 200$ Baud rate over 2 wire lines; 0.1800 Baud rate over conctitoned lines.
- HALF-DUPLEX operation over 2 -wire lines; FULL-DUPLEX over 4 -wire lines. - MARK FREOUENCY: 1200 Hz : SPACE FREOUENCY: 2200 Hz
- REVERSE CHANNEL COMMUNICATION over 2-wire lines at 5 Baud (387 Hz.)
- Transmission Filter for echo suppress \& noise reduction.
- LED Display of status and signals: Power, Terminal Ready, Modem Ready. Request To Send, Clear To Send.
OPTIONS:
- Sell . Th Anser mede provides analog or digital loop-back of signals for modem diag nosics.
- LED Display of signals or status as speedfied by user
- Multiple Housing for up to six modem circuit cards lincluding combinations of Bell 103 \& 202 styles.)
PRICES:
Standard Features, includes Reverse Channe
Standard Features, with Rev. Ch, and Auto Answer
VADIC Circuit Card only, with interface instructions:
with Reverse Channel, Manual DAA
with Reverse Channel, Auto-Answer DAA

PACIFIC OFFICE SYSTEMS, INC 2600 El Camirio Real, Suite 502 Palo Alto, Calif. 94306
(415) 321.3866

Cill or with lit thelatis, ivanibiy discounts. amil

30 day wartaniy aganst delecis in mareral or work Morship on all used equiprrent. Full documentation
inctudiss PLUS inter face instivcioans where indicated includis PLUS interface instlucions where indicated Avalalatily subtect to mior sale. Poices may chango Palo Alto within 14 days Jl letr check clears or COD
orflet 18 received. M/C 8 VISA Jscepled.

Electrolabs

*TI Sockets 1 cent per pin. All low profile solder tail 8 pin -40 pin.

The "Pro" fully encoded ASCII Keyboard by Cherry. Auto REPEAT feature, 5 special function keys. $300 \mathrm{~mA} / 5 \mathrm{~V}$. (Shown as mounted in 'The Case', Be/ow) \$119.00, 3/99.00, 10+/89.00

USED SYLVANIA The Dumb Terminal for Smart People 12" MONITORS
You Fix: $\$ 24.95$
Working: $\$ 69.95$
Cold Chassis, 251bs.
80×24 with full 128 char. ASCII UC+LC font with all control characters displayed. 300-19,200 baud RS232. 2nd font addressable from keyboard in you-program-it 2708 for APL, Graphics sets, etc. Plug in monitor 1/O connector, 110VAC and you are ready. iNCLUDES: 'The Case', Cherry Kbd. A used monitor, ESAT 200A, all options except vector addressabie cursor and modem. vector addressabie cursor and modem.
Bulletproof design and construction. Normally $\$ 675.00$ What you always wanted your ADM3 to be:
SYSTEM"A" $\$ 649.00 \quad 10 / \$ 599.00$

"The Case" Beautiful and sturdy anodized aluminum case in deep black designed to contain the ESAT 200A, and with a bezel cut out for the Cherry 'Pro' keyboard (installed as shown above) Choose deep brown, light yellow, or crimson to accent or color code your installation. The only choice for hard-use institutional and educational applications. $\$ 69.00,10 / 59.00$

MEMOREX FIVE-FIFTY

* Hard and Soft Sectoring
- Single and Dual Density
* Double side configuration as a retrofit at any time. */10/220V, $50 / 60 \mathrm{~Hz}$ *Pin for pin compatable with Shugart 800,801,850,851 (50 pin edge connecior) \$536, 2/499, 5/475, $10 / 449$ 25/425, 100/405

Double Sided Retrofit $\$ 300$

MINIDISKETTES (5.25')
1-9 10-24 25+
$\$ 4.794 .50 \quad 4.25$

STANDARD (8^{\prime}) DISKETTES
 $\$ 5.994 .99 \quad 4.50$

 CASSETTESR-300 Certified Phillips Type $\$ 5.254 .99$. 4.35 $\begin{array}{lllll}\text { I-150 Certified for audio decks } & \$ 4.60 & 4.30 & 3.90\end{array}$ ('Kansas City' \& SWTP formats)

* NEW! 32 K, S. 100 Universal Static Store. Accepts 2114 RAMs or 70 ns. 3625 PROMs paging up to 8 Mby. Board only with manual and paging software $\$ 69.00$. 32 Kby RAM $450 \mathrm{~ns} \$ 679.00,250 \mathrm{~ns}$ $\$ 789.00$. We have software application notes for multi-task multiuser applications utilizing paging feature.
Shipping and Handling: Surface: $\$ 0.40 / \mathrm{lb}$. Air: $\$ 0 ; 75 / \mathrm{lb} ., 1.00$ minimum Cal. Tax: 6.5\% Insurance: $\$ 0.50$ per $\$ 100.00$

" THE PIGGY

Ampex MCM-8080 Core Memory Board

This 16 K byte core memory for 8080 microcomputers is now available from Ampex Corp, 200 N Nash St, El Segundo CA 90245. Fully compatible with SBC 80 single board computers, the MCM-8080 provides nonvolatile storage for 16 K bytes with a data access time within 325 ns. The read and write cycle times are 780 and 1240 ns , respectively.

Each memory board includes electronics to detect input DC power conditions and inhibit operation when out of tolerance. The microcomputer is a pin compatible alternative to the SBC 016 , SBC 046, SBC 416 and MDS 016 memory boards used with Intel SBC 80/05, $80 / 10$ and $80 / 20$ or equivalent computers. It can be used to provide up to 64 K bytes of addressable locations for either 8 bit or 16 bit applications.

The board measures 12 by 6.75 by 0.50 inches (30.48 by 17.14 by 1.27 cm) and utilizes the +5 V and +12 V power available. Single unit price is $\$ 885$. $\quad \square$

Circle 592 on inquiry card.

C1-6800 Microprocessor Memory

The microprocessor memory C16800 is a 16,384 word, 8 bit dynamic random access memory. The memory module plugs directly into the EXORciser and is plug compatible with the Mex-6812, 6815, 6816-1. Through the use of the 16,384 by 1 bit NMOS dynamic memory parts the memory module capacity can be increased up to 64 K bytes on a single board. An access time of 300 ns accompanied with on board hidden refresh permits maximum utilization of processor speed. The memory is addressable as a contiguous block in 4 K word increments thru 64 K . The on board dual in line package switch assigns the addresses for customer configuration. Prices are $\$ 390$ for 16 K by 8 and $\$ 1230$ for 64 K by 8 . Contact Chrislin Industries Inc, 31312 Via Colinas \#102, Westlake Village CA 91361.

Circle 593 on inquiry card.

Building Block for Cartridge Memories

The Model 650 cartridge transport from North Atlantic's Qantex Division, 200 Terminal Dr, Plainview NY 11803, is designed as an original equipment manufacturer (OEM) memory building block for instruments, word processors, data processing systems for small businesses and, other computer based equip. ment. The unit lists singly for \$475, complete with "intimate electronics," stores up to 23 million bits of unformatted digital data on the four tracks of a DC300A tape cartridge. Optical tachometer holds tape speed at 30 inches per second for read and write operations, giving 48 K bps data transfer rate at 1600 bpi recording density. Tape is accelerated to 90 inches per second for rewind and fast search, permitting any stored data to be accessed in about 20 seconds. The transport can also be supplied with read after write heads for data validation during the actual recording process. \square

Circle 594 on inquiry card.

Two static programmable memory boards capable of battery backup and compatible with Intel's SBC 80/05, SBC 80/10 and SBC 80/20 have been announced by Electronic Solutions Inc, 7969 Engineer Rd, San Diego CA 92111. The two versions are the RAM-4L containing 4 K bytes of memory and the RAM-8L containing 8 K bytes of memory. The RAM-8L uses a single 5 V power supply and draws 1.2 A typical, 1.7 A maximum under operation. During battery backup at 1.7 V , the battery current is 0.5 A typical, 0.8 A maximum. Three alkaline D cell batteries can back up 8 K bytes of memory for 11 hours, according to the company. The RAM-4L is priced at $\$ 312$ and the RAM- 8 L is \$428.

Circle 595 on inquiry card.

Non-Volatile High Speed Semiconductor Programmable Memory

The ElectriCom 4020 is a single card memory designed to meet the requirements for short and long term nonvolatile high speed programmable memory systems. Memory data is maintained for a minimum of 3 months (6 months typical) after the primary board power is removed. The long data retention time allows the 4020 to be used for high speed program and data files that may be removed and stored away from the host processor. On-board nickelcadmium batteries, battery charger and power state monitors eliminate the need for external support circuitry. The primary input power disturbance level at which the 4020 will no longer respond to read or write commands is user set with an onboard potentiometer and LED indicator. Connection to the card edge connector from the 10 headers is made with wire wrap allowing the 4020 to be used with all bus structures including the Altair ($\mathrm{S}-100$). The 4020 is priced at $\$ 287$ and may be purchased from ElectriCom, 12567 Crenshaw Blvd, Hawthorne CA 90250.■

Circle 596 on inquiry card.

IT WILL TELL YOU WHERE TO GO -CPU- $1_{T M} 8080$ A CPU BOARD WITH 8 LEVEL VECTOR INTERRUPT.
\$30. BARE \$185. KIT
\$220. ASSEMBLED AND TESTED
DEALER INQUIRIES INVITED UNIVERSITY DISCOUNTS AVAILABLE
W ThC inc wameo wc.
WMC inc. wain LuNEVEW brve san Jose ca. 5 sba

$2708 / 2716$ EPROM MEMORY BOARD

```
* S-100 BUS
* 1-32 KBYTES USING EITHER 2708 OR 2716 EPROMS
* HIGH/LOW LIMIT ADDRESS RANGE SELECTION
* MEMORY BANK SELECT OPTION
* SOL rm
* SELECTABLE WAIT STATES
* FULLY BUFFERED INPUTS AND OUTPUTS
* DOUBLE SOLDER MASK
* SILK SCrEENED PARTS LAYOUT
* COMPLETE dOCumENTATION
```


\$30. BARE

\$100. KIT (LESS EPROMS)

TESTED AND ASSEMBLED \$130. (LESS EPROMS)

DEALER INQUIRIES INVITED
UNIVERSITY DISCOUNTS AVAILABLE
WWC/inc. WAMECO INC. 3107 LANEVIEW DRIVE SAN JOSE CA 95132

ITHACA AUDIO

THE OEM MARKETPLACE

Ithaca Audio Boards

Are fully S-100 compatable, featuring gold edge connectors and plated-through holes. All boards (except the Protoboard) have fully buffered data and address lines, DIP switch addressing, solder mask and parts legend.

Z-80 CPU Board Most powerful 8 bit central processor available. Featuring power-onjump, provision for on-board 2708. Accepts mos! 8080 software.
$\$ 35.00$
8K Statlc RAM Board High speed static memory at the lowest cost per bit. Includes memory protect/unprotect and selectable wait states.
$\$ 25.00$
2708/2716 EPROM Board Indispensable for storing dedicated programs and often used software. Accepts up to 16 K of 2708 's or 32 K of 2716 s.
$\$ 25.00$
Protoboard Universal wire-wrap board for developing custom circuitry. Accepts any size DIP socket.
$\$ 25.00$

32K for $\$ 319.00$
Ithaca Audio is now stocking the Mostek 4115 for S.D.'s Expandoram. Buy their basic kit, 24k of add-on RAM from us and SAVE.
S.D. SALES Expandoram Kit w. 8 K lthaca Audio 24 4115's @ \$7.00 ea.

TOTAL
S.D. SALES Expandoram Kit w. 32K YOU SAVE

Quality Components

| ZILOG Z-80 | $\$ 19.00$ |
| :--- | ---: |
| ZILOG Z-80A | 23.00 |
| Intel 2708 | 11.00 |
| FAIRCHILD 2102 LHPC | 1.60 |
| FAIRCHILD 2102 LIPC | 1.35 |

IMSAI 8080 Kit with 22 Slot M.B. $\$ 560.00$
plus $\$ 10.00$ shipping.

HOW TO ORDER

Send check or money order, include $\$ 2.00$ shipping per order. N.Y.S. Residents include tax.

For technical assistance call or write to:
P.O. Box 91

Ithaca, New York 14850
Phone: 607/273-3271

Whats New?

New EROM Erasing Lamps

Two new EROM erasing ultraviolet lamps have been introduced by Spectronics Corp, 956 Brush Hollow Rd, Westbury NY 11590. The Spectroline PE-14 is a small ultraviolet lamp designed especially for the small systems users and personal computer enthusiasts: The PE-14T is the same as the PE-14, but has a 60 minute timer for automatic shut off. Both lamps will erase up to six programinable read only memory chips at one time in 14 minutes. Both UV crasing lamps feature a high intensity,

shortwave UV tube, a specular reflector, and a V shaped holding tray that maintains up to six chips at a constant exposure distance. The high intensity tube is fully protected within the anodized aluminum housing, and a safety interlock prevents the unit from operating when the tray is not fully inserted. The conductive foam pad holds the chip in place during exposure and prevents electrostatic build up, while protecting the chip fram possible static charge.

Circle 650 on inquiry card.

Attention Paper Tape Tearers

This advanced splicer punch gauge for all 8, 7-6, and 5 channel perforated tapes is being marketed by Telex Marketing Company, 6464 Sunset Blvd, Los Angeles CA 90028. The Telex Splicer/ Puncher is said to make perfect splices and to repair tears up to 8 inches long. Utilizing a precision scissors type cutting shear, it works with all paper and Mylar tapes. Also featured are a data patch storage compartment, precision code hole punch, precision tape gauge, hold down arms, precision registration pins, and a punch position guide. For $\$ 169.50$ Telex is offering a starter kit which in. cludes the Splicer/Puncher and 300 data patches.■

Circle 652 on inquiry card.

All Circuit Evaluators

These new Powerace all circuit cvaluators have been introduced by A P Products Inc, POB 110, 72 Corwin Dr, Painesville OH 44077. The Powerace line includes three power breadboards, Models 101, 102 and 103. All three models offer 256-5 tie point terminals and 16.25 tie point buses, fused power supply and ground plane. All models feature Super-Strip SS-2s and will accept all DIP sizes plus TO. 55 and discretes with leads to .032 inch diameter. Prices are $\$ 84.95$ for the $101, \$ 114.95$ for the 102 , and $\$ 124.95$ for the 103 . For further information about the different models, contact the company.-

Circle 653 on inquiry card.

TR 1983 Bus Oriented UART
Replacement for 8251 UART

The TR 1983 bus oriented universal asynchronous receiver transmitter (or UART) that is fully compatible with the asynchronous capabilities of the 8251 UART is now available from Western Digital Corp, 3128 Red Hill Av, POB 2180, Newport Beach CA 92663. It has a 28 pin package pinout that allows direct replacement of the 8251 . The TR 1983 features full or half duplex operation, and is powered by a single +5 V supply. For further information, write to the company.-

CSC Proto-Clip Integrated Circuit Test Clips Used to Protect MOS Devices from Static

The CSC Proto-Clip integrated circuit test clips clip gently onto DIP integrated circuit packages and bring their pin connections to the top end of the clip. Cabled versions of this tool include a connecting cable preattached to the top or business end of the integrated circuit test clip. By attaching all leads at the far end of the cable to a good working ground, each integrated circuit pin is effectively shorted to ground and the problem of static discharge during handling is eliminated. The clips are available in $14 \mathrm{pin}, 16 \mathrm{pin}, 24 \mathrm{pin}$ and 40 pin configurations; 18, 24 and 36 inch cables are available in each clip size. Prices for each clip and cable assembly range from $\$ 7.75$ to $\$ 21.75$ (unit quantities). For further information contact Continental Specialties Corp, 70 Fulton Ter, New Haven CT 06509.

Circle 651 on inquiry card

Pocket-Size Solderless Breadboards

The Continental Specialties Corp carries a line of Experimenter socket solderless breadboards. The smallest of these is 3.6 inches by 2.1 inches by .3 inches, about the size of an audio cassette. No soldering, drilling or tooling is required. Parts simply plug right into the breadboard and interconnections are accomplished by pushing short lengths of hookup wire into adjacent holes. Prices range from $\$ 4$ to $\$ 10.95$. Contact Continental Specialties Corp, 70 Fulton Ter, New Haven CT 06509.■

California Digital
 Post Office Box 3097 B • Torrance, Galifornia 90503

What's New?

PERIPHERALS

Use This for a Compact Extension Terminal

The Transactor 111 data terminal utilizes a microprocessor in its design. Features available include synchronous or asynchronous communications line support for both dedicated or polled
multidrop environments. The terminal includes a single line 32 character gas discharge display and a 53 key Teletype style keyboard. It can be directly attached to any computer with an RS-232 or 20 mA current loop interface or can be attached to a communications line through a modem. Switches allow the user to select the operating mode including: 110 to 9600 bps transmission speeds, full or half duplex, cven, odd or no parity, and the station addiess. The unit supports ASCII coded data with EBCDIC coded data available as an option. Other options include an expanded 256 byte data buffer and an addressable RS-232 port. The terminal can be provided with any line protocol for direct replacement of IBM 2260,3275 or other types of terminals. Price is $\$ 995$ from Computerwise Inc, 4006 E 137th Ter, Grandview MO 64030.a

Circle 571 on inquiry card.

High Resolution Graphics

Intelligent Communication Interface
from Apple

Timing Control Unit Available for LSI-11/2

This dual size peripheral board, designated TCU-50D, provides calendar and real time functions for DEC's LSI-11 and LSI-11/2. The unit, equipped with rechargeable battery back up capability, will keep track of the correct date and time for up to three months after the computer's power is turned off. This feature also enables the user to keep track of system down time during power failures. The board will present the date (month and day) and the time (hours, minutes and seconds) when a read instruction is given by the user. The units are shipped working and preset to the correct date and local time at the customer's location. A simple routine can reset the date and time. The TCU-50D costs $\$ 295$ and is available from Digital Pathways Inc, 4151 Middlefield Rd, Palo Alto CA 94306.

Circle 572 on inquiry card.

Abstract

Although this Vector high resolution graphics board has been designed to operate with all Vector Graphic computers with 8 K bytes of static programmable memory, the manufacturer says it is fully compatible with any $\mathrm{S}-100$ bus computer. The board is designed to operate in one of two modes: digital output or 16 level gray scale. It requires +8 VDC and a minimum of 8 K programmable memory and will produce digital graphic displays of 256 pixels horizontal by 240 pixels vertical in the digital mode or gray scale pictures 128 pixels horizontal by 120 pixels vertical. The video output conforms to RS-170 and will interface to standard raster scan monitors. The board is priced at $\$ 235$ fully assembled and tested, $\$ 195$ as a kit, and 8 K bytes of memory must be available in the user's system for a screen buffer. From Vector Graphic Inc, 790 Hampshire Rd, Westlake Village, CA 91361.. Circle 573 on inquiry card.

Low cost telephone communication for the deaf; inexpensive high speed message transfer; computers challenging each other at chess; remote system failure diagnosis; access to data banks and program libraries by phone. . are only a few of the applications made possible by the newly announced inteliigent communications interface from Apple Computer Inc, 10260 Bandley Dr, Cupertino CA 95014.

The new card, Model A2B0003X, can be connected to any device which will accept the industry standard RS-232C serial interface, including the 103 A type modems manufactured by various companies. It operates at 110 or 330 bits per second. The price of the card is $\$ 180$. It is supplied complete, with operating system built in, with cable and operation manual. -

Circle 574 on inquiry card.

16K E-PROM CARD

IMAGINE HAVING 16K OF SOFTWARE ON LINE AT ALL TIME!

KIT FEATURES:

1. Double sided PC board with solder mask and silk screen and gold plated contact fingers.
2. Selectable wait states.
. All address lines \& data lines buf fered!
3. All sackets included.
4. On card regulators.

KIT INCLUDES ALL PARTS AND SOCKETS (except 2708's). Add \$25. for assembled and tested.
S. 100 (Imsai/Altair) Buss Compathle!

PRICE CUT!

$\$ 57.50$ kit

SPECIAL OFFER:

Our 2708's (450NS) are $\$ 12.95$ when purchased with above kit.

Fully Static!

KT FEATHES:

1. Doubled sided PC Board with solder mask and silk screen layout. Gold phated contact fingers.
2. All sockets included.
3. Fully buffered on all address and data lines.
. Phantom is jumper selectable to
4. FOUR 7805 regulators are provided on card.

8K LOW POWER RAM KIT-\$149.00

S. 100 (Imsai/Attair) Buss Compatible!

2 KITS FOR $\$ 279$
Fully Assembled \& Burned In $\$ 179.00$
Blank PC Board w/ Documentation $\$ 29.95$
Low Profile Socket Set 13.50 Support IC's (TTL \& Regulators) $\$ 9.75$
Bypass CAP's (Disc \& Tantalums) $\$ 4.50$
NOT ASSOCIATED WITH DIGITAL RESEARCH OF CALIFORNIA, THE SUPPLIERS OF CPM SOFTWARE.

450 NS!
 2708 EPROMS

Now full speedl Prime new units from a major U.S. Mfg. 450 N.S. Access time. $1 \mathrm{~K} \times 8$. Equiv. to 4-1702 A's in one package.
\$15.75 ea.
4 FOR $\$ 50^{00}$
PERFECT FOR USE WITH OUR BLANK BK PC BOARD SHOWN ABOVE.
8 FOR ${ }^{5795}$
32 FOR \$28
$\$ 12.95$

EMICONDUCTOR

JUMBO CLOCK MODULE

Z-80 PROGRAMMING MANUAL

By Mostek, The major $\mathrm{Z}-80$ second source. The most detailed explanation ever on the working of the Z-80 CPU CHIPS. At least one full page on each of the $158 \mathrm{Z}-80$ instructions. A MUST reference manual for any user of the Z-80. 300 pages. Just off the press.

MAIOOBA
Eatures
EATURES
FOUR JUMBO \% INCH LED DISPLAYS
12 HR REAL TIME FONMAT 12 MR AEAL TIME FONMAT
24 HR ALAAM SIGNAL OUTPUT
SO OR GO HZ OPERATION - So OR GOH2 OPEEATION
 COMPARE AT UP TO TWICE OUR PRICEI
MANUFACTURER'S CLOSEOUT:
SALE!

> 1N4148 DIODES. SILICON factory prime, Full Leads 100 FOR \$2 1000 FOR \$17.50

EACH

MICRO-MINI TOGGLE SWITCH SPDT. BY RAYTHEON. MADE IN USA! WITH HOWR. Computer Clock N.S. MM5313. Feat ures BOTH 7 segment and BCD outputs. 28 pin DIP. $\$ 4.95$ with Data

6 FOR \$5

OPCOA LED READOUT SLA-1. Common Anode. 33 inch character size The original high efficiency LED display. 75 cea . 4 FOR $\$ 2.50$

* YOUR BEST BUY IN WIRE WRAP SUPPLIES

PRECUT WIRE
WhY BUY WIRE ON ROLLS? PRECUT \& STRIPPED WIRE IS

Fast - No mora culling a siripping by hand Rellable-Good. ctean. unitorm strip Economical - Cheaper than using bulk wire
 Wiekit at $5695=211 / 3 \mathrm{~m}$

- 30 Kynar sifipped in^{1} on each end Lengins are ove Colors Red, Blue. Green, Yellow, Blach, Orange. White Wire pachaged in plastic bags. Add 25 efilengin for tubes

| | 100 | 500 | 1000 | 5000 |
| :---: | :---: | :---: | :---: | :---: |
| 2\%in | 78 | 240 | 430 k | 3.89/K |
| 3 in | 82 | 260 | 4 Tik | $422 / \mathrm{K}$ |
| 3% in | 86 | 280 | 312 k | 455.10 |
| tn | 90 | 300 | 552 x | $488 . \times$ |
| 4 4, in | 94 | 321 | $593 / \mathrm{K}$ | $521 / \mathrm{K}$ |
| 5 in | 98 | 342 | 6 34:K | 5 52/k |
| 5\% ${ }^{\text {a }}$ | 102 | 365 | 6 \%/ik | 586.1 |
| 6 in | 106 | 385 | >16.K | 610 K |
| 6 \% in | 1 is | 405 | 759 /k | 632 k |
| 7 in | 120 | 425 | $798 . \mathrm{k}$ | 685\% |
| frin | 125 | 445 | 439 /x | 718/K |
| 6 in | 129 | 465 | 830 K | $753 / \mathrm{N}$ |
| 8\% | 1.32 | 485 | 921/k | tea/k |
| 9 in | 136 | 5.05 | 962/K | 817/K |
| 9 9 | 1.40 | 5.25 | 10.03/k | ${ }^{8} 50 \mathrm{~K}$ |
| 10 in | 145 | 551 | 10.4/k | 8 $83 / \mathrm{k}$ |
| Addl. inches | 10 | 41 | $82 / \mathrm{K}$ | 66/M |

WIRE KITS
\#1 $\$ 6.95$
$\pm 2 \$ 19.95$
$\begin{array}{lllr}250 & 3 " & 100 & 4 y \\ 250 & 3 \% & 100 & 5 \\ 100 & 4 & 100 & 5\end{array}$ $\begin{array}{cccccc}250 & 2 y & 250 & 4 & 250 & 6 \\ 500 & 3 & 250 & 5 & 100 & 6 \\ 500 \\ 500 & 3 & 1 & 100 & 550 & 11 \\ 5001 & \text { Roll Bulk }\end{array}$

SOLDERLESS BREADBOARDS SK 10

 inciudingOver 100 pieces or precul wi In assorted lengits - Iree Choose 1 color Red. Black, Blue Yeliow, Green. White, Orange

Or Assorment.

\qquad

INTERCONNECT CABLES

Single ended douale ended

| | 14 pin | 16 pin | 24 pin | 14 pin | 16 pin | 24 pin |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8. | 124 | 134 | 205 | 224 | 245 | 337 |
| 12 | 133 | 144 | 224 | 233 | 255 | 3.92 |
| 24 | 152 | 185 | 263 | 252 | 276 | 931 |
| 48 | 191 | 206 | 340 | 291 | 317 | 500 |

WIRE WRAP TOOLS

\$34.95

With Free Wire Kit 1
($\$ 6.95$ Value)
hobey wrap
Model BW 630
Batteries \& Charger
11.00

WSU 30 Hand Wrap-Unwrap Sirip Tool 6.25 WSU 30 M . tor Modilied Wrap $\mathbf{7 . 2 5}$ BT 30 Exta Bi!

Dealer Inquiries Invited

PAGE DIGITAL ELECTRONICS

Ordering Information:

- Orders under \$25 and COD's. add $\$ 2$

All others. shipped Ppa in U.S. via UPS 135 E. Chestnut Street 5 For Blue Label (Air) or ist Class, add $\$ 1$ Monrovia, California 91016 Weaccepl Visa \& Mastercharge

Monrovia, California 91016
Phone (213) 357-5005

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices INTEGRATED CIRCUITS
P.O. Box 4430X Santa Clara, CA 95054

4K. Elf Expansion Board Kit with Cassette 1/F $\$ 79.95$
Available on board options: iK super ROM monitor $\$ 19.95$. Parallel $1 / 0$ port $\$ 7.95$. RS232 I/F $\$ 3.50$. TTY 20 ma I/F $\$ 1.95$. S-100 Memory I/F $\$ 4.50$. Need 4 K Expanslon Board Kit tor all above options. Power Supply Kit $\pm 5+12 \mathrm{~V} 5 \mathrm{amp} \$ 24.95$.
Tiny Basic for ANY 1802 System

Auto Clock Kit DC clock with 4-.50" displays. Uses Natlonal MA-1012 module with alarm option. Includes fill dimmer, crystal timebase PC boards. Fully regulated. comp. Instructs. Add $\$ 3.95$
for beautiful dark gray case. Best value
60 Hz Crystal Time Base Kit
All parts and instructions \$4.40.
'78 IC Update Master Manual 1978 IC Update Master Manual $\$ 30.00$ Complete IC data selector 2175 pg . Master reference gulde. Over 42.000 cross references Free update service through 1978. Domestic Free update service through 1978 .
postage $\$ 3.50$. Foreign $\$ 6.00$.

Video Modulator Kit
$\$ 8.95$ Convert your TV set into a high quality monitor without alfecting normal usage. Complete kit with full instructions.

RCA CosmacVIP Kit
 $\$ 275.00$

 Video computer with games and graphics.Sinclair 31/2 Digit Multimeter $\$ 58.95$ Batt. oper. 1 mV and . 1 NA resolution. Reslstance to 20 meg. 1% accuracy. Smáll, portable. completely assem. in case. 1 yr. guarantee.

PROM Eraser
PROM Eraser
Ultraviolet, assembied

TERMS: $\$ 5.00 \mathrm{~min}$. order U.S. Funds. Calif residents add 6% tax. BankAmericard and Master Charge accepted. Shipping charges will be added on charge cards.
FREE: Send for your copy of our NEW 1978 QUEST CATALOG. Include 289 stamp.

COMPUTER INTERFACES \& PERIPHERALS

APPLE II SERIAL I/O INTERFACE *

Part no. 2
Baud rate is continuously adjustable from 0 to 30,000 - Plugs into any peripheral connector - Low current drain. RS232 input and output - On board switch selectable 5 to 8 data bits. 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address SOFTWARE - Input and Output routine
 from monitor or BASIC to teletype or other serial printer, - Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only - $\$ 15.00$ with parts - $\$ 42.00$; assembled and tested - $\$ 62.00$

MODEM *

Pant no. 109

- Type 103 - Full or half duplex - Works up to 300 baud - Originate or Ans.
wer - No coils, only low cost components - TTL input and output-serial Connect 8 ohm speaker

and crystal mic. directly to board - Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$; with parts $\$ 27.50$

DC POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts at 3 amps., $+12,-12$, and -5 volts at 1 amp . Power required is 8 volis AC at 3 amps ., and 24 volis AC C.T. at 1.5 amps. - Board only $\$ 12.50$; with parts excluding transformers $\$ 42: 50$

TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial • Output of board connects to mic. in of recorder - Earphone of recorder connects to input on board - No coils \bullet Requires +5 volts. low power drain \bullet Board $\$ 7.60$; with parts $\$ 27.50$

T.V. TYPEWRITER

Part no. 106

- Sland alone TVT - 32 char/line. 16 lines, modifications for 64 char/line included - Parallel ASCII (TTL) input Video output - IK on board memory. Output for compu. ter controlled cur-

Non-destructive curser - Curser inputs: up, down, left right, home, EOL, EOS - Scroll up, down - Requires +5 volts at 1.5 amps , and -12 volls at 30 mA - All 7400 , TTL chips - Char. gen. 2513 - Upper case only * Board only $\$ 39.00$: with parts $\$ 145.00$

Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate. and direct connectlons for inputs and outputs to a digital recorder at any baud rate. - S-100 bus compatible - Board only $\$ 35.00$; with paris $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Parino. 101 - Converts serlal to parallel and parallel to serial Low cost on board baud rate generator - Baud rates: 110 . 150, 300, 600. 1200, and 2400 - Low power draln +5 volts and -12 volts required

- TTL compatible - All characters contain a start bit, 5 to 8 data bits. 1 or 2 stop bits, and either odd or even parity. - All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$; with parts $\$ 35.00$ with connector add $\$ 3.00$

8K STATIC

 RAMPart no. 300

- 8K Altair bus memory • Uses 2102 Static memory chips • Memory protect - Gold contacts - Wait states • On board regulator $\bullet \mathrm{S}-100$ bus compatible \bullet Vector input option - TRI state buffered - Board only $\$ 22.50$; with parts $\$ 160.00$

RF MODULATOR*

Part no. 107

- Converts video to AM modulated RF, Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this ex-
 tremely stable. Rated very highly in Doctor Dobbs' Journal. Recommended by Apple. - Power required is 12 volts AC C.T., or +5 volts DC \cdot Board $\$ 7.60$; with parts $\$ 13.50$

RS 232/TTY* INTERFACE

Part no. 600

- Converts RS-232 to 20mA current loop, and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volls - Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL* INTERFACE

Part no. 232

- Converts TTL to RS-232, and converts RS-232 to TTL - Two separate circuits

- Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only \$4.50; with parts $\$ 7.00$ with connector add $\$ 2.00$

Whats New?

PERIPHERALS

Pocket-Sized Terminal

An alternative to the Teletype has been developed by Gleichmann \& Co, Wormser Str 9, D 6710 Frankenthal

WEST GERMANY. The pocket-sized terminal has the same electrical interface but according to the company costs about one tenth as much as the conventional solution.

The size of a pocket calculator, the device has a built-in microprocessor, works fully electronically, and is noiseless. It has a keyboard for 64 alphanumeric characters, produces serial ASCll code and is compatible with any equipment that operates on a 20 mA current loop. It has a 9 digit display. The 10 lines are galvanically separated by optoelectronic couplers. Transmission speed is 110 bps or, optionally, 300 bps. The device measures 3 by 6 by 1 inches (7.5 by 15.5 by 2.5 cm) and has a power consumption of 400 mA from the 5 V supply and 140 mA from the 12 V supply.

The US distributor is Sedillo Company Inc, 225 E Sunnyoaks Av, Campbell CA 95008.

Circle 633 on inquiry card.

Interface for Teletype Model 40 Printer

The C/D-40 interface board allows the 300 line per minute Teletype Model 40 printer to connect to a host computer or terminal that offers a Centronics or Dataproducts interface. Complete hardware and software transparency is provided so that plug to plug compatibility exists without making system modifica-
tions. The C-40 allows for the replacement of any Centronics printer and the D-40 provides for Dataproducts replacement.

The board is self-contained and does not require external power when mounted within the printer cabinet, since power is derived from the printer. The board may also be mounted inside the host system. This allows for computer and printer separation, via two wire pairs, of up to 2000 feet.

Standard features include field selectable control character code conversion, parity selection, extended ASCII, and variable motor time out after last character received.

The C-40 is priced at $\$ 795$ and can be obtained from Innovative Electronic Systems Inc, 15200 NW 60 Av, Miami Lakes FL $33014 .{ }^{-1}$

Circle 635 on inquiry card

Plotter Controller

The Serial Language Independent Plotter Controller (SLIP) is installed between your terminal and a modem on a time shared network or between your terminal and a local computer. With the connection of an XY recorder to SLIP, you have plotting and graphics capability. Any teleprocessing site utilizing standard RS-232 serial communications can become a remote graphics facility.

SLIP contains a microprocessor to
provide internal vector and character generation features, allowing a maximum of plotting with a minimum of data exchange. SLIPS capabilities include the support of two way user and computer communications during a plot, and an off line mode which assists in plot layout and design. It also detects and indicates character format errors.

During plot generation SLIP intercepts the plot data from the computer and generates $X Y$ signals to the plotter. The X and Y outputs from SLIP are selectable over a wide range of voltages to accommodate input requirements of most $X Y$ recorders.

The price is $\$ 1465$ from Special Systems Inc, 8045 Newell St, Silver Spring MD 20910.

Círele 636 on inquiry card

Micrographics Printer Combines Graphics and Alphanumerics

A MicroGraphics printer, the EX-820, which can mix high resolution graphics and full ASCll alphanumerics, is now available from Axiom, 5932 San Fernando Rd, Glendale CA 91202, at the single quantity price of $\$ 795$.

Under software control, users have flexibility in mixing alphanumeric ASCII fields and graphic fields on any line. The user can define the size of each graphic field and can choose from four preprogrammed horizontal dot resolutions up to 128 dots per inch. Once the fields have been defined, the EX-820 automatically formats graphic and alphanumeric printouts to user specifications. Vertical dot resolution is fixed at 65 dots per inch. There is also provision for automatic histogram generation.

Standard features include: RS-232C serial input as well as parallel ASCII; driven by an Intel 8048; 512 character multiline asynchronous input buffer, optionally expandable to 2 K byte characters; 96 character ASCII standard, optionally expandable to 256 characters with user programmable fonts; software selection of three character sizes to give 80,40 or 20 column printing; software selection of reverse printing, where light characters are formed on a dark background; 2 K bytes of user programmable read only memory (low cost option) which converts the printer into an intelligent printer.

Dimensions are 11 by $41 / 4$ by 12 inches (28 by 10.8 by 30.5 cm). It weighs 12 pounds (5.4 kg), including a 230 foot roll of paper. -

Circle 634 on inquiry card.

Where Do New Product Items Come From?

The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgment the neat new whizbong gizmo or save the world software package is of interest to the personal computing experimenters and homebrewers who read BYTE, we print the information in some form. We openly solicit such information from manufacturers and suppliers to thls marketplace. The information is printed more or less as a first in first out queue, subject to occasional priarlty modifications.

The EW-2001

 A "Smart" VIDEO BOARD KIT At A "Dumb" Price! A VIDEO BOARD + A MEMORY BOARD + AN I/O BOARD - ALL IN ONE!- STATE OF THE ART TECHNOLOGY USING DEDICATED MICROPROCESSOR I.C. - NUMBER OF I.C.s REDUCED BY 50% FOR HIGHER RELIABILITY - MASTER PIECE OF ENGINEERING • FULLY SOFTWARE CONTROLLED
$\$ 199.95$
Basic Software Included

SPECIAL FEATURES:

- S-100 bus compatible
- Parallel keyboard port
- On board 4 K screen memory (optional)* relocatable to main computer memory
- Text editing capabilities (software optional)
- Scrolling: up and down through video memory
- Blinking characters
- Reversed video
- Provision for on board ROM
- CRT and video controls fully programmable (European TV)

- Programmable no. of scan lines

- Underline blinking cursor

- Cursor controls: up, down, left, right, home, carriage return
- Composite video
*Min. 2 K required for operation of this board.

DISPLAY FEATURES:

- 128 displayable ASCII characters (upper and lower case alphanumeric, controls)
- 64 or 32 characters per line (jumper selectable)
- 32 or 16 lines
(jumper selectable)
- Screen capacity 2048 or 512
- Character generation:
7×11 dot matrix

OPTIONS:

Sockets $\$ 10.00$
2K Static Memory (with Sockets) $\$ 45.00$
4K Static Memory (with Sockets) $\$ 90.00$
Complete unit, assembled and tested with 4K Memory $\$ 335.00$
Basic software on ROM $\$ 20.00$
Text editor on ROM $\$ 75.00$

DEALER
INQUIRIES WELCOMED

8080 SUPPORT

SHIPPING: Keyboard and Video Board: $\$ 3.50$; others: $\$ 1.25$
California residents add 6% sales tax
ELECTRONICS WAREHOUSE Inc.
1603 AVIATION BLVD.
REDONDO BEACH, CA. 90278
TEL. (213) 376-8005 WRITE FOR FREE CATALOG

Algorithmics PR-DW1 Precision Printer

The Algorithmics PR-DW1 Daisy Wheel Printer is a printer designed for use with microcomputer systems for high quality printing and plotting applications. This printer operates under control of an internal microprocessor and communicates with the host microprocessor over a high speed asynchronous parallel interface. It prints bidirectionally at rates of 45 characters per second. The carriage can be positioned left and right in increments as fine as $1 / 48$ of an inch (0.53 mm). Hardware options include 55 characters per second version, metal print wheel, cam feed platen and forms tractor. The interface to the host computer consists of both hardware and software. The hardware component is a custom 50 conductor cable that terminates at the host machine in standard 25 pin connectors. The software consists of two applications packages. One package is for text printing and features bidirectional printing, automatic tabbing, and high speed travel over character spaces and blank lines. The second package is a graphics package that utilizes the $1 / 120$ inch horizontal and $1 / 48$ inch vertical precision print head positioning to achieve full graphics capabilities. Price is $\$ 2678$ from Algorithmics Inc, POB 56, Newton Upper Falls MA 02164.Circle 656 on inquiry card.

All Prime Quality - New Parts Only Satisfaction Guaranteed

EOGE CARO CONNECTORS: GOLO PLATEO.

BOOY: Non brittle, solvent resistant, high temp, G.E. Valox. The finest you can buy CONTACTS: Bifurcated Phos /Bronze: Gold/Nickel.

ALTAIR S.100: Cont./Ctrs. . $125^{\prime \prime}$ Row Spacing, . 140" 50/100 Dip Sold.
$\$ 3.95$ ea.
6.95 ea.
6.

IMSAI S.100: Cont./Ctrs. . $125^{\prime \prime}$ Row Spacing, . $250^{\prime \prime}$ $50 / 100$ Dip Sold. 50/100 W/Wrap 3 IMSAI CARD GUIDES:
CROMEMCO S.100: Cont./Ctrs. . $125^{\prime \prime}$ Row Spacing, . $250^{\prime \prime}$ $50 / 100 \mathrm{Dip}$ Sold.
$\$ 6.50$ ea.
OTHER CONNECTORS AVAILABLE
. $100^{\prime \prime}$ Contac: Ctrs, 140 Row Spacing
 25/50 Sold. Eve. 40/80 Sold. Eve $43 / 86$ Sold. Eve 43/86 Dip Sold.
43/86 Sold. Eye.
$\$ 2.30$ ea
2.95 ea.
4.80 ea
4.90 ea
$.156^{\prime \prime}$ Contact Cers., $140^{\prime \prime}$ Row Spacing. 6/-Sgle. Row (PET) 22144 Sold. Eve. (KIM
2/44 Dip Sold. (KIM)
43/86 Dip Sold
1.90 ea

156" Contact Ctrs., $200^{\prime \prime}$ Row Spacing. 5/30 W/Wrap 3
$\$ 1.05$ еа
$22 / 44 \mathrm{~W} / \mathrm{Wr}$ ap 3
2.30 еа.

36/72 Sold. Eye $36 / 72$ W/Wrap 3 43/86 W/Wrap 3

POLARIZING KEYS FOR ALL OF THE ABOVE:
Specify: IN Contact or BETWEEN Contact: 1 to 49 pcs. $\$ 0.10$ ea. 50 pcs./Up $\$ 0.08$ ea.

SPECIAL
22/44 Pin . $156^{\prime \prime}$ Cont./Cirs. . $200^{\prime \prime}$ Row Spacing.
TIN PLATED CONTACTS
IDEAL FOR PET INTERFACE \& PARALLEL USER PORT

SUBMINIATURE CONNECTORS: (DB 25 SERIES, RS 232.)

```
DB 25 P Male Plug
``` DB 25S Male Plug OB 25S Female Socket OB 51212 -1 Grey Hood OB 51226-1A Black Hood
D 20418-2 Hardware Set \(\$ 2.50\) ea.

SAVE. BUY A SET
0.75 ea 5 pcs.
5 pcs. 1 Set: \(\$ 6.35\) ea. \(\quad 5\) sets: \(\$ 6.15\) es.
\[
\text { NOTE: For Hardware, (D204 18-2) Add } \$.65 / \text { Set. }
\]

\section*{WHISPER FANS}

Excellent for cpmputer cabinel cooling. This is the most quiet fan you will find. Only measures \(43 / 4\) square by \(1 \%\) deep. U. L. Listed.
\begin{tabular}{|c|c|}
\hline 1. C. SOCKETS GOLD. & 1. C. SOCKETS. \\
\hline WIRE WRAP 3 TURN. & Dip Solder. Tin. \\
\hline 14 pin \$0.36 ea. & 14 pin \$0.15 ea. \\
\hline 16 pin 0.38 ea. & 16 pin 0.17 ea. \\
\hline 2708 EPROMS PRIME & \[
\frac{8080 \text { PRIME }}{\$ 9,00 \text { ea }}
\] \\
\hline
\end{tabular}

\section*{WRITE FOR LARGER QUANTITY DISCOUNTS. DEALER INQUIRIES ARE} WELCOME.
WE ARE CONNECTOR (EDGE CARDI SPECIALISTS. IF YOU DO NOT SEE WHAT YOU NEED IN THIS ADVERTISEMENT. PLEASE WRITE US. WE WILL REPLY.

TERMS: Minimum Order \(\$ 10.00\) : Add \(\$ 1.25\) for handling and shipping. All orders over \(\$ 25.00\) in USA and Cansda: WE PAY THE SHIPPING.
NOTE: CA residents please add \(6 \%\) sales tax.
NO C.O.D. SHIPMENTS OA ORDEĂS ACCEPTED.
mall ordeas to Beckian Enterprises
P.O. Box 3089

Simi Valley, CA 93063

\section*{PUBLICATIONS}

PIC Offers Free Metric and Inch Gear Computer

The PIC Design Division of Benrus Corp now offers a metric and inch gear computer in a convenient, one setting, pocket slide rule. This design tool is
capable of indicating 18 different gear functions instantly; inch gear data is on one side of the computer and metric module data on the other. One quick setting of the PIC gear computer gives simultaneous readings of metric modules, diametral pitch, tooth dimensions and circular pitch plus pitch diameter and outside diameter for both metric and inch gears. The PIC gear computer contains 16 basic gear formulas plus drawings which illustrate tooth size and configuration for both metric module and incll gears with \(20^{\circ}\) pressure angle. To send for your free computer write to PIC Design Div, Benrus Corp, POB 335, Benrus Center, Ridgefield CT 06877.■

Circle 605 on inquiry card.

1978 Smith Catalog Offers Many New Products

More than 20 new product groups representing several electronic component or hardware categories are among approximately 10,000 items featured in the newly published, multicolored, 104 page, 1978 full line catalog from Herman H Smith Inc, 812 Snediker Av, Brooklyn NY 11207. The free catalog includes a number of new binding posts, Mil-Spec-jacks, fused test leads, the Hook-on Jr Probe with prods and leads, BredBlox and BredStix, BredBord kits, miniature and projection lamps, power terminals, lacing cords, wire nuts, rubber bumpers and many other new items. The catalog can be obtained by writing the company.■

Circle 606 on inquiry card.

New Products for the Commodore PET 2001

Getting Started with Your Pet is a workbook intended for PET users who are anxious to put their PET to work. This beginner's workbook is said to supplement the documentation provided by Commodore. It covers the fundamentals of PET BASIC and explains its characteristics, limitations and useful features. The descriptive text is said to include step by step, detailed exercises including the expected PET responses. In addition to this beginning text, workbooks on advanced topics are said to be available as well as software applications for the PET. No price was given, so for more information write TIS, POB 921, Los Alamos NM 87544.■

Circle 607 on inquiry card.

\section*{New Catalog from Alcoswitch}

A complete line of miniature (7/8 inch diameter bushing) oil tight pushbuttons, selectors and pilot lights is described in Alcoswitch's new 12 page catalog, publication T278. Over 20 basic models are listed with details concerning control function options and color choices. The contact blocks offered range from logic types to 600 VAC models. This catalog will be sent free of charge to all inquiries. Contact Alco Electronic Products Inc, 1551 Osgood St, North Andover MA 01845.

Circle 608 on inquiry card.

MicroAge Product Information
Literature describing MicroAge's printers, video boards, CRTs, monitors and keyboards is now available from the company. Included with the product descriptions is a complete price list. For this literature write MicroAge, 14250 12th PI \#101, Tempe AZ 85281.■

Circle 609 on inquiry card.

\section*{PRACTICAL MICROCOMPUTER PROGRAMMING:}

\section*{THE INTEL 8080 by Weller, Shatzel, \& Nice}

Here is a comprehensive source of programming information for the present or prospective user of the 8080 microcomputer, including moving data, binary arithmetic operations, multiplication and division, use of the stack pointer, subroutines, arrays and tables, conversions, decimal arithmetic, various 10 options, real time clocks and interrupt driven processes, and debugging techniques.

This 306 page hardcover book is well worth its \(\$ 21.95\) price and should be in every 8080 or Z-80 user's library.
BITS.
25 Boute 101 West
Peterborough, NH 03458

\section*{THE M6800 by W J Weller}

This second volume of the Practical Microcomputer Programming series addresses the problems of applications programming at assembly level for the M6800. In 16 chapters and more than 100 formal examples, the fundamental techniques of assembly level programming are applied to the solution of specific problems with the 6800 . Nowhere theoretical, it is a thorough and detailed methods text for the beginning and intermediate application programmer using the 6800. \(\$ 21.95\). Hardcover.

For your convenience in ordering please use this page plus the order form on p. 111.

Circle 291 on inquiry card.

\section*{\(T \| S\)}

WORKBOOKS FOR THE COMMODORE PET 2001 Gelling Slarted with Your PET

WB-1 \(\$ 4.00\) Covers the fundamentals of PET BASIC: calculator and program mode, data input and output, data representation, program storage on the casselte.
PET String and Array Handiling WB-2 \(\$ 3.95\) Covers string and substring search, concalenation. replacement and manipulalion.
PET Graphics
wB-3 \(\$ 4.95\) Covers use of cursor control and special graphics symbols to draw plots. histograms. and sketches. PET Cassette 1/O WB-4 \(\$ 4.95\) Covers OPEN, CLOSE. string and numeric data files. Miscellaneous PET Features WB-5 \(\$ 3.95\) Covers the clock. random number generator. upper and lowercase alphabetic characters, saving memory space, etc

Don't be "lion" around" Order NOWt Send check or money order today to:
Tis
P.O. Box 921

Los Alamos, N.M. 87544 Money back guarantee.

\section*{CONTROL IT!}

WITh Your TRS-80 (levibasic) and our VAR/80 interface
- 2 OPTO-ISOLATED INPUTS
- 6 LOGIC INPUTS (TTL COMPATIBLE) - 2 RELAY OUTPUTS (EACH 110V,3A)
- 6 LOGIC OUTPUTS (TTL COMPATIBLE)
- INTERNAL POWER SUPPLY
- CONNECTS DIRECTLY TO PORT EDGE CARD

COMPLETE VAR/80 \(\$ 79.95\) ppd.

FREE!
SS data package withapplications. Soft. WARE ANO EXAMPLES INCL UDED WITH EACH ORDER

\section*{3. TELESIS latoonatony \\ BOX 1843
CHR IKOTHE, OHO 45601}
nct visan caro

Circle 373 on inquiry card.

Circle 26 on inquiry card.

\section*{I.IMIT:I) (IFFHR TIIS M(ONTH. WIIIII: S' PPI. Y I. IS'S'}

\section*{ALL NEW!}

Mini Discs \(\$ 3.70\) ea. in boxes of 10
A. Horizon-2
B. Centronic 779
C. Hazeltine 1500
D. Hazeltine 1400
\(A, B \& C\) :
\(A, B \& D:\)
\$4,995
\$4,895

We also stock Imsai, Seals, Okidata, ADM-3A, Xitan and Cromemco. Mail order only.

\section*{TORA SYSTEM LIMITED}

29-02 23rd Avenue Astoria, NY 11105 (212) 932-3533
! ! PHIDECK OWNERS ! !
We Have The Solution To Your Tape Speed Problems! **** ROTA-STROBE ****
Variations in tape speed between PHIDECK drives is the primary reason tapes recorded on difterent dives by you and your friends cannot be read.
If you or your lriends have lrouble reading each others cassettes due to different tape speeds--
If you lack the expensive test equipment fequired to properly check and adjust tape spead
Then you need ROTA-STROBE.
With rota.strobe you can check rape speed in seconds without removing the tape drive cover.
With ROTA-STROBE you no longer need expensive counters or oscilloscopes to check and adjust lape speed.
ROTA.STROBE is designed to work on PHIDECK drives manulactured by Triple I and sold by THE DIGITAL GROUP, PE RIPHERAL VISION and others.

To get your ROTA.STROBE, send \(\$ 4.50\) to EMERGE SYSTEMS, P. O. Box 2518, Satellite Beach, FL 32937. No C.O.D. orders accepted.

Order additional ROTA.STROBES for your friends and ciub members. Allow time for personal checks to clear.

We are dealers for THE DIGITAL GROUP

Circle 131 on inquiry card.

Circle 33 on inquiry card.

\section*{IS YOUR COMPUTER \\ DULL?}

Is he hung up in the same old loop?
Is he sorting and searching his life away?
Turn him on to computer humor!
Bring out his hidden talents with a sophisticated selection of BAUDY JOKES AND BYTING WIT!
Let your computer comic delight your friends with a dazzling display of wit and whimsy! Your computer will have the last laugh!
Shift \(\$ 5.95\) into our register for: LAF-TRAK 1 (on cassette)

\section*{Micro-Madness}
P. O. Box 2250

Pasadena, Ca. 91105
Specify computer or interface type and memory size.

\section*{SOFTWARE}

\section*{Text Processor for the} EPA Micro-68b Computer

TEXT is a word processor which executes on the EPA Micro-680 computer with the following equipment: 16 K bytes of programmable memory, one floppy disk unit, one video display terminal and a printer. TEXT accepts lines of source text interspersed with lines of format control information and formats the text into a printable, paginated document having user designated style. Some of the capabilities of TEXT include: left and right justification; automatic word hyphenation; page headings; page footings, including page numbers; indenting; centering; single, double or triple spacing of lines; footnotes and bibliography references.

The most important feature is that the text stream is free format, which means that the typist, with the aid of the EPA TEXT Editor, can type the document text in any convenient format and TEXT will format the output as desired.

For further information contact Chuck Bennett, Electronic Product Associates Inc, 1157 Vega St, San Diego CA 92110.■

Circle 575 on inquiry card.

\section*{A New DOS for Poly 88 and North Star Disk Systems}

The Lazy Man's DOS (disk operating system) for Poly 88 owners with North Star Disk Systems has been announced by Cardinal Products, 1600 Tilden St, Wichita Falls TX 76309. According to the company, control character commands let you quickly and easily load and start BASIC, jump back to DOS, restart BASIC cold (initialized) or warm (retaining some user program data), list directory while in DOS or BASIC and bring up front panel mode at any time. List scrolling can be controlled on a line by line basis. The control \(Z\) is released for use in the BASIC editor. Delete key backspaces and erases a character at a time. The Poly 88 real time clock interrupt system may be left connected. Diskette and instructions are \$15.95.m

Circle 576 on inquiry card.

\section*{Multitasking Executive Added \\ to Microbench Software}

MTX-11, a multitasking executive for PDP-11 and LSI-11 computers, is the latest addition to Microbench software. The MTX-11 is said to execute multiple tasks on an interleaved basis with software priorities determining which task to execute if competition exists for processor and system resources.

The MTX-11 is priced at \(\$ 1395\) plus \(\$ 100\) per processor and is available from Virtual Systems Inc, 1500 Newell Av, Suite 406, Walnut Creek CA 94596.

Circle 577 on inquiry card.

Compiler BASIC Does Business, Control Applications on Microprocessor Systems

Software Dynamics BASIC, a compiler version of the programming language, is now available for 6800 microprocessor systems. Decimal arithmetic, formatted output and file 10 is said to make SD BASIC ideal for microprocessor business applications such as payroll and inventory. High speed binary arithmetic, transcendental functions, assembly language interface and the performance resulting from compiling BASIC programs makes SD BASIC a tool for building process control programs. According to the company, the software is currently available on American Microsystems MDC, Smoke Signal Broadcasting BFD-68, SwTPC DOS and Wave Mate microcomputers. The 10 Interface Package concept allows you to customize SD BASIC to your DOS system. Further information can be obtained from Software Dynamics, 18914 S Laurelbrook PI, Cerritos CA 90701.■

Circle 578 on inquiry card.

\section*{Software for the H8}

Two tapes are available for the Heathkit H8 computer from a newly formed company called Ed-Pro Inc, 6580 Buckhurst Tr, Atlanta GA 30349. According to the company, one of the tapes contains a collection of 11 game programs, while the other contains personal finance programs for checkbook reconciliation, budgeting and calculation of interest for various kinds of loans and investments. Tapes are supplied with complete program listings and user instructions. The tapes sell for \(\$ 20\) each (with a 10\% djscount if both are purchased)..

Circle 580 on inquiry card.

\section*{Assembly Language Development System for \(\mathbf{8 0 8 0}\) and Z-80}

The Program Development System (PDS) is an assembly language development system for 8080 or \(\mathbf{Z - 8 0}\) microcomputers with at least one disk drive. PDS is said to include a unified assembler/editor, a macro assembler combining the features of a relocating linking loader, a string oriented text editor, and a trace debugger/disassembler. The assemblers favor the Intel instruction mnemonics treating the \(Z-80\) superset as a logical and syntactical extension. Source modules are available for floating point arithmetic, floating point 10 , trigonometric functions, numerical and alphabetic sorting, matrix inversion, fast Fourier transform, and a full function expression evaluator. For further information contact Allen Ashley, 395 Sierra Madre Villa, Pasadena CA 91107.

Circle 579 on inquiry card.

\section*{Data Base and Query System Responds to Pidgin English}

It is said that your home or business computer can manage a data base of stored information and respond to your queries in pidgin English, using a new microcomputer software package called WHATSIT. The system runs in BASIC on a modest personal computer yet it brings the power of a data base manager. Data is stored and retrieved by typing pidgin English requests. Indexing and disk space allocation are handled automatically. The file structure is never frozen but develops automatically through normal use to adapt to user requirements. Stored information Is automatically cross-indexed under any desired headings, and headings may be added or changed at any time. Available in North Star BASIC, the system runs in 24 K of memory. It is offered with three ready to run programs on a minidisk for \(\$ 75\). A manual written in nontechnical language is \(\$ 25\). It is available from Information Unlimited, 698 W 70 S Private Rd, Hebron IN \(46341 .{ }^{-1}\)

Circle 583 on inquiry card.

\section*{Communications Software for LSI-11 Announced}

The RT-11 compatible software driver for the Mighty-Mux 11L, direct memory access (DMA) serial line multiplexer, has been announced by Educational Data Systems, Inc, 1682 Langley Av, Irvine CA 92714.

Providing efficient 10 for any RT- 11 based LSI-11 system, this new package simultaneously supports full duplex asynchronous 10 to as many as 128 ports on the multiplexer. Control requests are provided to determine port status, set port characteristics (bps rates, parity, etc), assign logical and physical port mapping, and abort 10 requests.

For stand alone multiplexing operations, modules are provided which may be linked directly to an applications package. This avoids the intervention and overhead of the RT-11 10 subsystem. A second configuration loads the package as a standard RT- 11 driver.

The driver will function with any VO2 system and is provided at no charge to users of the Mighty-Mux 11L.

Circte 582 on inquiry card.

\section*{Software for Users of}

North Star BASIC
A series of programs for users of North Star BASIC is available on North Star diskette with user instructions. Word processing, investments, inventory and other business oriented programs are offered. A complete catalog of North Star software is now available, including not only California Software material, but programs available from firms around the world. For further information contact California Software, POB 275 , E) Cerrito CA 94530.․

Circte 581 on inquiry card.

\section*{ATWOOD ENTERPRISES}

\$ 79.95 4K RAM
Available assembled and tested \(\$ 89.95\).
\$129.95 4K PROM Bipolar \(512 \times 8\) Proms 93448/6341.

\$ 59.95 DIGITAL I/O
8 parallel ports plus 16 interrupts.
\$ 99.95 ANALOG IN
32 inputs, 8 bits, 100 microseconds.
\$ 49.95 PROM PROGRAMMING Burn
\$129.95 SERIAL I/O
7 serial ports, fully software controlled.
To 500 baud.

\section*{WATCH FOR OUR NEW BOARDS:}

40 line discrete display board
40 line switch input board
40 line new data board

Coming Soon

MOTHER BOARD
8 SLOT
44 PIN BUS
50 Pin Edge Connector
Mother Board \$20.00 ea
Connectors \(\quad 2.50\) ea
Card guides for above \(\$ 10.00\) per set.

MAKE CHECK OR MONEY ORDER PAYABLE TO:

\section*{Kathryn Atwood Enterprises} P.O. Box 5203, Orange, CA 92667 days ARO with money order. For checks allow 7 days for check to clear.

\section*{What's New?}

\section*{SOFTWARE}

Apple BASIC Instructions. . .

Photo 1.
We recently received copies of the new Apple I/ BASIC Programming Manual, written by Jef Raskin of Apple Computer Inc, 20863 Stevens Creek Blvd, Bldg B3-C, Cupertino CA 95014. The manual measures about 6 by 8.5 inches (15 by 22 cm) with 125 pages bound within its covers. The book (see photo 1) is intended to be a working manual for familiarizing its reader with the Apple II computer. Whenever necessary, internal graphics include representations of the machine's key board highlighted with a green color to emphasize a point being made. Listings of computer output are often printed in green, as produced by a matrix printer. When a full screen image is represented
it is typically printed on the matrix printer and reproduced photographically as white on black to emphasize the image of a television screen. Full color reproduction is used for the several pages where actual Apple II output to a color TV is shown.

The manual begins with an introduction on the basics of the hardware and its interconnection. There is a description of the built-in 5 K integer BASIC. The introduction concludes with operation of one of the standard games supplied on cassette with the machine, Breakout. The next chapter is entitled Beginning BASIC, which in turn is followed by Elementary Programming. The formal presentation ends with Strings, Arrays and Subroutines as the last chapter. Several appendices comPhoto 2.
plete the book. Photo 2 illustrates several points about the Apple // BASIC Programming Manual. First, note the light type and the heavy type in the photograph. The lighter printing is green in the original, the heavier printing is black. Second, there is Jef Raskin's inimitable sense of humor which makes the manual an enjoyable experience. Look at page 24 of the Apple II BASIC Programming Manual at a local computer store for one of the most elegant modifications of a standard typing test string ever seen. (The string begins. "THE QUICK BROWN FOX . . . and in its original form is known to everyone, but in its modified form shows a certain humorous familiarity with the urban geography of the northeastern United States.)

While not a reference document by intent, users of Apples will find much information and a verbal delight in the form of this BASIC manual by Jef Raskin. . .CH

Circle 597 on inquiry card.

Software for the

\section*{North Star Disk System}

According to its developers, the Comprehensive Mailing List Program Package, \#ML.INS, is a modular program set which enables the user to start and maintain one or more mailing lists. Operations include: add, delete, search, sort, auto-sort, and sequential printout. Features include: user selectable defaults for ease of entry, user selectable number of labels across page for different printers and label sheets, and user selectable 3 or 4 line address for each independent entry, The software is available with documentation and diskette for \(\$ 25\) from Williams Radio and TV Inc, Com puter Division, 2062 Liberty St, POB 3314, Jacksonville FL 32206.

Circle 598 on inquiry card.

\section*{EMPL Interpreter for 8080}

EMPL is a micro version of APL for the Intel 8080 . It resides in the first 5632 bytes of memory. EMPL has numeric and character vectors, user defined niladic, monadic and dyadic functions, 22 primitive functions and nine system commands. It can be run either in the ASCII or APL character set. The range is \(\pm 32767\) and double byte integer arithmetic is used. EMPL comes with a user's manual that includes information on implementing it on any system using Z-80 or 8080 processors with at least 8 K of memory. EMPL is \(\$ 10\) on Tarbell cassette; \(\$ 20\) on paper tape, North Star disk, CUTS cassette, or MITS cassette from Erik \(T\) Mueller, Britton House, Roosevelt N| 08555. .

Circle 599 on inquiry card.

Utility Package for North Star Micro Disk System

A complete disk utility package for the North Star Micro Disk System is now said to be available from Micro Logistics, POB 922, Madison Square Station, New York NY 10010. PKGUT 1 on diskette includes the following four 8080 machine language programs origined at 0: Packit: packs and unpacks disk files so you can get more storage per disk; Changit: prints, dumps and/or changes data in disk files up to a global level; Sortit: a generalized sorting utility; Compit: file comparison utility which will compare disk files sequentially or by key and display differences. Diskette with full user's documentation is priced at \(\$ 80\).

Circle 600 on inquiry card

\section*{FREE PROBES FREE PROBES FREE PROBES}

触

\section*{\(\$ 435.00\) \\ Curres OC Volts, AC Volts, Onme and Curront indication \\ - Rechergeable batterles and charger \\ - Measuras DC Volts, AC Volts, Ohms ano \\ Current \\ Automatic polarity, decimal and overioad indication \\ *duat \\ Gattery-operated - NiCed betteries; aleo AC line operation. \\ Lerge LED diaplay for masy reading without \\ 4 \\ \\ Tils stand option \\ Purchase any of the LM series Purchase any of the LM series
Meters andbuy the LEATHERCASE}

LM3A 3 dig 1\% DC. LM3.5A 31/2 dig .5\% DC LM \(40 A 4\) dig \(.1 \%\) DC.
LMAA 4 dlg .03\% DC
Rechargeable batteries and charger included

\section*{}

\section*{}
\(\qquad\) PROBE 14 PROBE IC 14

 purchero otcope

- MS-215 Dual Traca Version of MS-15 \(\$ 435\).

 .is in
\[
\begin{aligned}
& \text { - } 15 \text { meganertz bandwidth. }
\end{aligned}
\]

\section*{ \\ \\ \(\$ 10.90\)}
\(\begin{array}{lllll}10 . & \\ 1.4 & 5.160 & 3682-2 & 6.5^{\prime \prime} \times 4.5 \prime \\ 89.81\end{array}\) \begin{tabular}{lll}
317.95 \\
8801.1 & \(\$ 15.96\) & \(\begin{array}{l}\text { Hit-Censity Dual-In-Line } \\
\text { Plumbara }\end{array}\) \\
\hline
\end{tabular}
\(3677 \cdot 26.5^{\prime \prime} \times 4.5^{\circ \prime}\) \(\$ 9.74\)
 Gen. Purpose D.I:P

CARD EXTENDERCard Extendor has 100 centers-Atlachad pide on 125

\section*{\(\begin{array}{cccc}\text { Phenolic } & & \text { PRICE } \\ \text { PART NO. } & \text { SIZE } & 1.9 & 10.19 \\ \text { 64P44XXXP } & 4.5 \times 6.5^{\prime \prime} & \$ 1.49 & 1.34 \\ 169 P 44 \times X X P & 4.5 \times 17^{\prime \prime} & \$ 3.15 & 3.16\end{array}\)}

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{116 /बctot BOARD .042 dia holes on 0.1 spacing for IC's} \\
\hline onolic & & PR1 & \\
\hline PART NO, & \({ }_{4.5 \times 6.5}^{\text {SI2E }}\) & 1.9 \({ }^{1} 19\) & 10.19
1.34 \\
\hline 169P44XXXP & - \(4.5 \times 17^{\circ}\) & \$3.51 & \\
\hline
\end{tabular}

con. spaced. 156

\section*{What's New?}

\section*{SYSTEMS}

Compact Yet Versatile

The ZMS-70 contains a microcomputer system with up to 64 K bytes of memory, a 15 inch diagonal video display, an extensive keyboard, a telecommunications interface and 143 K bytes of on line disk storage. An optional internal hard copy printer interface and external printer is also available. The system is said to include an extensive set of software for both application program development and the day to day operational use of the system. This software comprises a general purpose disk based executive, a file manager, and a complete assembly language development package. In addition, a full set of test, diagnostic and utility programs are provided. Price is less than \(\$ 5000\) from Zentec Corp, 2400 Walsh Av, Santa Clara CA 95050. ■

Circle 588 on inquiry card.

Sirius \(\mid 1\) Complete Computer System

The Sirius 11 computer system features two processors: the Mostek Z .80 for main computations and a Fairchild 3870 that handles all keyboard and video interfacing. Also included are 32.768 K bytes of programmable memory, an RS-232 interface for IO, 8.192 K bytes of programmable read only memory with a 1 K byte monitor supplied, minifloppy disk drive, a 64 key keyboard with alphanumeric and graphic capabilities, and a video interface. Other features include a full disk operating BASIC interpreter, monitor and software programs ranging from home management, personal finance, educational learning programs and process control to business software and games.

The Sirius II selis for \(\$ 1850\). For more information contact Digital Sport Systems, 7th and Elm Sts, West Liberty 1A 52776.

Circle 590 on inquiry card.

Desktop Computer from Cabinet to Complete System

This UC2000 S-100 based computer is presently available in five system configurations ranging from empty mainframe card rack to complete system with processor, memory, multiple floppy disk and printer. The console is provided with a 12 MHz 12 inch video display, 8 card slot mainframe, 18 A power supply, axial blower and various keyboard options. All subsystem modules are plug connected for easy maintenance. A 230 \(\vee 50\) cycle power option is available and EMI filtered power connector is standard equipment. DB25 type connector slots are provided on the rear panel for peripheral interfacing. Although the complete systems \(B\) through \(E\) are supplied with a microcomputer using the 8080 processor, any \(\mathrm{S}-100\) compatible computer can be used in the A system version. Extensive software is available for the 8080 system. Prices start at \(\$ 995\). Contact Infinite Inc, 1924 Waverly PI, Melbourne FL 32901.■

Circle 591 on inquiry card.

\section*{A New Desktop System}

This new microcomputer system, designated System 88, is designed for professional and small business problem solving. The hardware consists of a main unit, upper and lower case keyboard with control keys, and quick updating video monitor. Hardware features include full eight level vectored interrupts and full graphics. The main unit uses an 8080 processor and accommodates from one to three minifloppy drives. The system includes complete operating software on disk plus word processor, BASIC and assembler. Software features include: system software with a file system and built-in application aids; BASIC on disk that has multidimensional strings and numeric arrays, MAT statement, PLOT statement to support graphics, program CHAlNing, variable cross-reference listing by line number, inverse trigonometric functions, array functions SUM, PROD, MEAN, STD; text editor; integral RS-232 printer interface; and complete macroassembler on disk. The main unit of the System 88 has a walnut cabinet with a brushed aluminum front panel. Price for the system, excluding printer, starts at \(\$ 2795\). Contact PolyMorphic Systems, 460 Ward Dr, Santa Barbara CA 93111.

Circle 589 on inquiry card.

\section*{POLY \\ REBELLION \\ WE＇RE FIGHTING BACK INFLATION WITH THIS EXCLUSIVE 1C SALE BUY I AT SALE PRICE，GET \(2 N D\) FOR iC MORE！！}

\section*{LED warce gurs \\
 BECONDS．MON
Cat．Mo．OS 287}
SALE PARTS \＆SEMI＂ONE CENTERS＂

2 swirchis in A oif IC SOCKETS！

14pin orp wirling

POLYPPAKS
Send for FREE
cataloo

No．esime
TTL＇S AT＂CENT－CIBLE＂PRICES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \＆Type Wo． & Each & 2 For & Type Mo． & Each & 2 for & Tyome & Cach & 2 tor \\
\hline －\＄n7400 & ． \(1 *\) & － 20 & － 307485 & 1\％ & ． 20 & －5w74183 & 1.20 & 1.50 \\
\hline －SM7401 & ． 15 & ． 20 & －sm7470 & 15 & ． 20 & －Sm74104 & 1.15 & 1.16 \\
\hline － 5 W7403 & ． 25 & 24 & － 807471 & ． 35 & ． 34 & －SN74160 & ． 78 & ． 0 \\
\hline －\＄n7404 & ． 10 & ． 20 & － 8 M 7472 & ． 10 & ． 20 & － 8 Sn74180 & ． 30 & ． 40 \\
\hline －\＄w7408 & ．10 & ． 20 & －SM7474 & ． 30 & ． 0 & － 5 W74157 & ． & 1.00 \\
\hline －SN740s & ． 10 & ． 20 & － 5 M 7478 & ． 8 & ． 70 & －Emitice & 0 & 1.00 \\
\hline －SM7407 & ． 38 & ． 40 & －SM7480 & 10 & ． 20 & －EN74181 & 1.28 & 1.28 \\
\hline －5M740\％ & ． 38 & 40 & －SN7402 & ． 20 & ． 30 & & 1．5\％ & 1.40 \\
\hline －SN7410 & ． 25 & ． 28 & － \(8 \mathrm{~N} 74{ }^{\text {a }}\) & ． & 1.00 & －Em7414 & 18 & ． 0 \\
\hline －sm7416 & － 38 & ． 36 & － 5 N7484 & ． 48 & ． 50 & － 5 N74143 & ＊ & 1.00 \\
\hline －5M7417 & ． 38 & ． 34 & － \(3 \times 7488\) & ． 78 & ． 0 & － 8 N74106 & 1．00 & 200 \\
\hline －\＄n7420 & ． 32 & ． 33 & －3N7400 & 1.48 & 2.50 & － \(8 \times 374173\) & ． 0 & 1.00 \\
\hline －5N7421 & 480 & ． 30 & －5M7480 & ． 0 & 1，00 & －\({ }^{0} \times 174174\) & 1.78 & 1.0 \\
\hline －5M7423 & ． 28 & ． 30 & － \(5 \times 1488\) & 1.28 & 1.30 & － 5 M74178 & ． 0 & 1.00 \\
\hline －\＄N7428 & ． 18 & ． 20 & － 507482 & ． 78 & ． 0 & & 14 & ． 0 \\
\hline －\＄0w7430 & ． 20 & ． 30 & － 3 M7483 & ． 68 & ． 70 & －En74170 & 1.81 & 200 \\
\hline －\＄N7431 & ． 18 & ． 20 & －5m7483 & ． 78 & ． 0 & －SN74180 & ． 48 & 10 \\
\hline －\({ }^{-1} 7438\) & ． 25 & ． 26 & －3m74es & ． 58 & ． 0 & －Snptias & 48 & 50 \\
\hline －5N7460 & ． 18 & ． 20 & －sm74se & ． 7 & 30 & －SN14100 & 1．00 & 200 \\
\hline －5m7483 & ． 38 & ． 20 & c．sm749 & ． 70 & － 0 & －SN74191 & 1.18 & 1.76 \\
\hline －SM7444 & ． 18 & ． 20 & －\＄ 174107 & ． 20 & ． 30 & － \(8 \times 14102\) & ． 5 & － \\
\hline － 8 N7448 & 1.28 & 1.28 & －SN74133 & ． 38 & ． 40 & － 8 N74103 & ． 0 & 1.00 \\
\hline －\＄N7450 & 18 & ． 20 & －5m74114 & ． 28 & ． 26 & －\＄m74184 & 1.25 & 1．28 \\
\hline －sm74s： & ．10 & 20 & － 8 m 74121 & ． 50 & ． 0 & －EM74197 & ． 78 & ． 78 \\
\hline －\＄n7453 & ．18 & ． 20 & － 8 2074128 & ．\({ }^{\circ}\) & ． 70 & －\＄N74100 & 1．50 & 1.51 \\
\hline － 5 M74s4 & ． 28 & ． 30 & －8m74128 & － & 1.00 & － 5 m74200 & 1.80 & 1.51 \\
\hline －sm74s8 & ． 18 & ． 20 & － 3 374136 & \(4{ }^{4}\) & ． 0 & －\({ }^{\text {chen }}\) & ． 76 & － 0 \\
\hline － 3 N7400 & ． 35 & ． 36 & －SN74140 & 4＊ & \({ }^{\circ}\) & & 500 & 6.00 \\
\hline －5N7482 & ． 38 & .38 & － 5 m7414s & ． 6 & ． 70 & －\＄M7424＊ & 3.15 & 1.75 \\
\hline
\end{tabular}

POP－AMPS AT＂CENT－CIBLE＂PRICES

HAGINE GETTING A CALCULATOR REJECT FOR ONLY A PENMYII \begin{tabular}{l|l|l|}
\hline \(\mathbf{2 t o r}\) & LED OR FLUORESCENT
\end{tabular} PARTS Thrgumbleofa alifeim LATOR GAMBLE
 ARE

 incude＂portuinn dimunn L．5 Amp
1000
2000
400 V
20 or \(5.59 \quad 20\) or 5.60 POTENTIOMETERS

\footnotetext{
CONDENSERMIKE
ZENERS！or

or
wa
1
1
\(\square\)
20 \(\begin{array}{ll}\text { by } \\ v & 3 end{array}\) Cat．
Sme
3 for
3 for
3 for
3 for
3 for
3 tor
品品安安
}

System Memory Interface Forms 2 Chip Microcomputer

A single integrated circuit for microprocessor interfaces which incorporates its own memory, internal timing and 10 ports is now available from Signetics. The 2656 system memory interface (SMI) can be combined with the Signetics 2650 processor to form a 2 chip
microcomputer that provides system flexibility and additional memory and 10 port expansion capabilities. The unit is useful for applications where both reduced chip count and system flexibility are necessary.

The Signetics SMI is a mask programmable circuit that offers 2 K by 8 bit programmable read only memory, 128 by 8 bit static random access memory, eight multipurpose 10 pins for external chip selects or 10 data port bits, an 8 bit latch for output data, and an internal clock generator programmed with crystal, RC or external input.

As an aid to system designers Signetics offers an SMI emulator on a single PC card that duplicates all the functional capabilities of the 2656 SMI chip. The emulator is priced at \(\$ 250\). The SMI chip is available in quantities of 1000 for \(\$ 17\). Contact Signetics, POB 9052, 811 E Arques Av, Sunnyvale CA 94086.

Circle 610 on inquiry card.

Hexadecimal Label Switches Break Keyboard Cost Barriers

Stuck on any panel by its self-adhering backing, this microprofile key. board avoids the congestion and the mounting hardware difficulties of mechanical keyboards. Label switches produce matrix coded output directly and will interface directly with integrated circuit 74C922 for conversion to a binary code. Labels do not bounce and so do not require the usual debounce electronics. Label switches are gold plated insicle and outside and are sealed against the entry of dust or soft drinks. Life is estimated at 100 million operations. A self-contained flexible cable plugs into standard 0.1 inch \((2.54 \mathrm{~mm})\) spacing socket. Price is \(\$ 3.95\) in single quantities from Computronics Engineering, 7235 Hollywood Blva, Hollywood CA 90046.■

Circle 614 on inquiry card.

Optical Comparator for Rapid PC Board Inspection

An optical comparator for inspection of printed circuit boards or other flat electrical and mechanical assemblies is now available from TM Systems Inc; 25 Allen St, Bridgeport CT 06604. The Model 1013 optical comparator is a fully portable, compact device which optically compares production circuit boards with a master or standard assembly. Both boards are placed in the comparator and alternating images are superimposed for viewing by the inspector. Any errors are immediately identified and located. An image sequence rate from 1 to 10 per second can be front panel selected and the illumination intensity is infinitely variable. The comparator features all solid state electronics and is designed for operation under all lighting conditions at any assembly station. Power requirements are \(115 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}\), at \(1 \mathrm{~A} .{ }^{-}\)

Circle 612 on inquiry card.

This Astro universal synchronous asynchronous receiver transmitter (USART), the UC 1971 Astro-Chip Select, is now available from Western Digital, 3128 Red Hill Av, POB 2180, Newport Beach CA 92663. This UC 1971 has many of the features of Western Digital's UC 1671 Astro Multiplexed Address: bisynchronous, asynchronous or isochronous modes, double buffered receiver and transmitter data, convenient interface to data sets and parallel processors. The UC 1971 Astro will interface with all popular microprocessors on the market.

The UC 1971, now second sourced, features the generalized computer interface control signals CS, AO, AI, RE and WE. Another design and operational plus for the UC 1971 Astro is the receiver clock and last transmitter bit outputs for external CRC generation and checking. The operating speed is DC to M bps. For further information and price contact Western Digital. \(\quad\)

Circle 611 on inquiry card.

New 6 Inch LEDs from IEE

A line of red .63 inch LED digital displays designated as IEE-Hercules Series 1800 has been announced by Industrial Electronic Engineers Inc 7740 Lemona Av, Van Nuys CA 91405 Series 1800 includes high brightness, dual element models and also single element models. The dual element LEDs consist of two chips of light emitting material which are electrically interconnected in series and act functionally as single segments. Both types of red LEDs have wide angle and long distance viewing with a high contrast ratio. Common anode and common cathode versions are available with riglit-hand and left-land decimal points and \(\pm 1\) overflow. Series 1800 LEDs are directly interchangeable with Litronix. At the 500 piece level, prices range from \(\$ 1.65\) each for single element to \$1.88 eąch for dual element. ©
circle 613 on inquiry card.

\section*{F. Reichert Sales}

1110 E. garvey ave. W. COVINA, CA 91790

\section*{the s. 100 Bus diagnostic board \\ CENTURION IV}
a LEGION OF DIAGNOSTIC TOOLS ON ONE BOARD!
- exiender board
- PULSE DETECTOR
- LOGIC PROBE - Current shunt
- convertible into backplane.
- on board connectors for scope, dvm, vom, generators, etc.
- On board 5 way connectors and rf connectors.
- OVER 160 WIRE.WRAP pOints for total and complete flexibility in wire wrapping any l/o connector and all logic probe inputs into any and all 100 bus lines, which means you can monitor and measure any parameter on any one of the 100 bus lines, or logic level probe any firty bus lines simultaneously. the only tool of its kind. A must for any serious service effort.

\section*{Kit \(\$ 11900\) Assembled \(\$ 14900\)}

\section*{S-100 32K STATIC MEMORY BOARD}

WITH this board you can begim wilh just 8k of memdar and add on later it can be as simple as inserting more memory Chips. FEATURES
1 fULLY STATIC - USABLE WITH aLI dma devices
2 BUFFEREO WITH NOISE SUPPRESSEO INPUTS
3 POPULATED IN IK INCREMENTS (EACH iK CAN BE ACCESSED Individually)
4 INCLUDES A RELIABLE SINGLE SOURCE + 5 VOLT REGULATOR
5 PROM COMPATIBLE THI BOARD MONIOR CAN BE EXCHANGED (PIN EY PIN WITHOUT BOARO MOOIFICAIION) WITH A BIPOLAR PROM PROGRAHMEO TO YOUR SPECIFICATIONS 6. CREAIIS NO WAIT STAIES

1 PRICES QUOTEO ARF FOR 300 ns 200 mW MEMORIES
- ASSEMBLED UNITS ARE FULLY IESTED AND BURNED IN.
- KITS AND BARE BOARD COME WITH FULL ASSEMBLY AND CHECKOUI INS IRUCTIONS
\begin{tabular}{rcccccc}
& \(8 K\) & \(16 K\) & \(24 K\) & \(32 K\) & BARE \\
KIT & \(\$ 270^{000}\) & \(\$ 440^{00}\) & \(\$ 580^{00}\) & \(\$ 695^{00}\) & BOARD \\
ASSEMBLED & \(\$ 29600\) & \(\$ 46500\) & \(\$ 612^{00}\) & \(\$ 740^{00}\) & \(\$ 3800\)
\end{tabular}

MAXI SWITCH KEYBOARDS
UNENCODED-MOUNTED ON G. 10 GLASS
EPOXY BOARDS.A BLACK METAL FRAME kEEPS KEY SWITCHES SECURELY IN PLACE. NO.

WANT PEACE OF MIND? IN CRITICAL APPLICATIONS USE BIPOLARS!!
825
\(82 S\)

BIPOLAR RAMS 82511 1024x1

\section*{BIPOLAR}

\section*{PROGRAMMABLE LOGIC ARRAYS}
82 S 100
82 S 101
\begin{tabular}{|llr}
& \\
\multicolumn{3}{c}{ BIPOLAR PROMS } \\
8223 & \(256(32 \times 8)\) & \(\$ 2.65\) \\
\(82 \$ 23\) & \(256(32 \times 8)\) & \(\$ 3.40\) \\
\(82 S 126\) & \(1024(256 \times 4)\) & \(\$ 4.95\) \\
93427 & \(256 \times 4\) TRISTATE & \(\$ 4.95\) \\
\(82 S 131\) & \(2048(512 \times 4)\) & \(\$ 6.95\) \\
\(6306 . i\) & \(2 K\) TRISTATE & \(\$ 5.45\) \\
3604 & \(4096(512 \times 8)\) & \(\$ 11.95\)
\end{tabular}

\section*{S-100 EXTENDER BOARD}

A MUST for frouble-
shooling your Computer boards
\(\$ 1795\)
S-100 EXPAMDABLE MOTHER BOARD
- 8 stor expandabie backplane
- duiel-grouno plane ofcouples all signm lines - rellable golo coniact comeectors
\(\underset{\text { KIT }}{\text { COMPLEIE }} \quad \$ 6600\) assembieo \(\$ 8900\)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
S. 100 100 PIN \\
EDGE CARD CONNECTOR gold contacts \\
\(\$ 425\)
\end{tabular} & WIRE WRAP
POST
2 LEVEL
\(10 / 78 \mathrm{c}\)
\(100 / \$ 6.50\)
4 LEVEL
\(10 / 98 \mathrm{C}\)
\(100 / \$ 7.40\) & \begin{tabular}{l}
HI-REL GOLD WIRE WRAP SOCKET POST \\
10/51.20 \\
100/39.90 \\
1000/37900 \\
LI51 P6ice 79 C
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
SUMMER SPECIALS! low profit -SOLDERTAI \\
I.C SOCKETS. Other sizes in previous ad
\end{tabular}} \\
\hline PRICES AND ALI WIHOUT NOTIC & ABILITY SUBJE & Change \\
\hline
\end{tabular}

\section*{Ey yoncor BOARDS}

MB. 1 MK- 8 Computer RAM inot S-100). \(4 K \times 8\), uses 2102 type RAMs. PCBD only
\(\$ 22.00\)
MB. 3 1702A EROM Board. \(4 K \times 8\). S. 100 switchable address and wail cycles. kil less PROMS.... \(\$ 58.00\) MB-4 Basic \(4 \mathrm{KX8}\) ram, uses 2102 type rams \(\mathrm{S}-100\) buss. PC board
\(\$ 25.95\)
MB. 6 A Basic 8 KXB ram uses 2102 type rams. S-100 MB-7 16Kx8. Static RAM uses uP4 10 Protection fully butlered

KIT
. \(\$ 375.00\)
MB-8A 2708 EROM Board, S-100. 8 KX 8 or \(16 \mathrm{~K} \times 8\) kit without PROMS
. \(\$ 75.00\)
MB-9 4KX8 RAM/PROM Board uses 2112 RAMS or 82S129 PROM kit withoul RAMs or PROMs \(\quad \$ 72.00\) \(10-2 \mathrm{~S}-1008\) bit parallel \(1 / \mathrm{O}\) port. 3 il of boards is for kludging Kit \(\$ 46.00\) PCBD ... \(\$ 25.95\) 10-4 Two serial \(1 / 0\) ports with full handshaking \(20 / 60 \mathrm{ma}\) current loop: Two parallel \(/ / \mathrm{C}\) ports. Kit \(\quad \$ 130\) PCBD \(\$ 25.95\) VB-1B \(64 \times 16\) video board, upper lower case Greek composite and parallel video with software. S. 100 Kit \(\quad \$ 125.00\) PCBD Altair Compatible Mother Board. \(11 \times 111 / 2 \times 1 / 8-\) Board only \(\$ 40.00\). With 15 connectors \(\$ 94.95\) Extended Board full size. Board only . S 8.95 With connector
SP-1 Synthesizer Board S. 100

\section*{419 Portofino Drive}

\section*{San Carlos, California 94070}

Please send for IC. Xistor
and Computer parts list

\section*{WIC inc. WAMECO INC.}

MEM-1 8 K×8 fully buffered, S-100. Uses 2102 type rams. PCBD \$24.95 Mother Board 12 slot terminated. \(S-100\), board only . \(\$ 34.95\) CPU-1 8080A Processor board S-100 with 8 level vector interrupt PCBD \(\$ 25.95\) RTC-1 Realtime clock board. Two Independent interrupts. Sollware programmable. PCBD \(\quad \$ 23.95\) EPM-1 1702A 4K Eprom card PCBD \(\quad . \$ 25.95\)
EPM-2 2708/2716 16K/32K
EPROM CARD PCBD .. \(\$ 25.95\)
SHORT MOTHER BOARD Short Version of QM-1A
9 Slots PCBD
\(\$ 27.95\)
2102AL-2 Prime 250 NSEC \(\$ 1.70\)
\(\$ 1.30\)

\section*{2102AL-4 Prime 450 NSEC \(\$ 1.30\)}

2708 Prime (National) \(\$ 9.95\)
1702A-6 AMD Prime \(\quad \$ 3.50\)
\begin{tabular}{lcr}
1702 A & Intel Not Prime (2US) & \(\$ 2.00\) \\
2501 B & \(\$ 1.50\) & 1488 N \\
2502 B & 1.50 & 1489 N
\end{tabular}

LIMITED QUANTITY
8K STATIC RAM. 450 NSEC BUFFERED ASSEMBLED TESTED AND BURNED IN. PARTS MAY BE UNMARKED. ALLOW 3 WEEKS
\(\$ 125.95\)
PCBD \& MIKOS PARTS ASSORTMENT
\#7. All parts, including sockets
and prime 2114 L \(\$ 275.95\)
Assembled, Test and
Burn in by PROKO................. \(\$ 335.95\)

\section*{WAMECO}

16K STATIC 2114 RAM BOARD
PCBD \$24.95

CBD \& MIKOS PARTS ASSORTMENT . All parts, including sockets

Assembled, Test and
Burn in by PROKO.
\$335.95

\section*{Kits based on Wamco \& Cybercom Boards with Mikos parts assoriment. \\ 8080 CPU KIT \(\$ 89,95\) Assembled \(\$ 13595\) REAL TIME CLOCK KIT \(\$ 6595\) Assembled is 9995 VIDEO KIT \$ 8995 Assembled \$135.95 8 K 450 NSEC. (MEM-1) KIT \(\$ 125.00\) Assembled \(\$ 145.95\) 8K 250 NSEC. (MEM-1) KIT \(\$ 155.00\) Assembled \(\$ 180.95\)}
\begin{tabular}{llll}
2504 & 1.50 & MC4044 & 2.25 \\
2507 V & 1.50 & 8038 & 3.90
\end{tabular}
\begin{tabular}{llll}
2510 A & 1.50 & 5320 & 5.95 \\
2517 V & 1.50 & 5554 & 1.90
\end{tabular}
\begin{tabular}{lll}
2517 V & 1.50 & 5554 \\
25188 & 1.50 & 5555
\end{tabular}
\begin{tabular}{llll}
25188 & 1.50 & 5555 & 2.50 \\
25198 & 1.50 & 5556 & 2.50
\end{tabular}
\begin{tabular}{llll}
2521 & 1.50 & 5055 & 1.25 \\
2522 & 1.50 & 5312 & 4.00 \\
2525 & 1.50 & \(\mathrm{MHOO25}\) & 1.50 \\
2527 & 1.50 & MH 0026 & 1.75 \\
2532 V & 1.50 & \(\mathrm{MHOO28}\) & 1.90 \\
2529 & 275 & 5262 & 50
\end{tabular}

INTRODUCTORY OFFER. Good tor the month of this issue.

VISA of MASTERCHARGE. Send account number. expiration date \& sign your order. Approx. postage will be added. Check or money order with order will be sent post paid in U.S. Il you are nol a rugutar cuslomer. please use charge. cashier's check or postal money order. olherwise there will be a two-week delay for checks to clear. Callf, residents add \(6 \%\) lax. Money back 30 day guarantee. We cannot accepl relurned IC's that have been soldered to. Prices subject 10 change without notice. \(\$ 10\) minimum order. \(\$ 1.00\) service charge on orders less than \(\$ 10\).

\section*{UnclessifiedAds}

FOR SALE: All issues of BYTE magazine. Ex cellent condition, no cuts. Best offer received after 60 days of publication of this notice. Charles Wolf. 996 Valencia St, San Francisco CA 94110. (415) 647.5705.

WANTED: APL versions of nongraphic terminal games, such as Wumpushunt. Lunar Lander, Dungeons and Dragons, Adventure. Batlleship, Nim. Space War. Craps, Stot Machine. Sea Hunt and any others that show users that computers can be friendly, even if they win Star Trek 80 percent of the timel Larry \(G\) Leslie, 2626 Angling Rd Kalamazoo MI 49008

CHALLENGER IIP user would like to swap software. applications, etc with other IIP owners. If there is enough response, I will put out a monthly newsletter. Let me know your thoughts. Neil Shapiro. 32-20 91 St. Apt 607. Jackson Heights NY 11369.

FOR SALE: TDL Xitan with system monitor board, video display board, 2 processors, 34 K and 250 nsec memory. George Risk keyboard, 12 inch CRT-TV. Software - 12 K BASIC, Macro assembler, text editor, text processor. All for S2095 assembled and running. Call Jon \(A\) Batcheller, Gainesville FL 32603, (904) 373-7004.

FOR SALE: Altair 8800 B computer with 32 K 200 ns static programmable memorv. two serial ports, one parallel port. PROM board, ACR cassette interface, floppy disk drive and con troller, panel mounted baud rate switches for fast device change, extended BASIC on cassette disk extended BASIC, and DOS, along with 30 floppy disks, \$5000. Steve Mastrianni, 2952 Main St. Coventry CT 06238. 1203) 742.6727 or 1203 664-2401

FOR SALE: ISC 8001 color graphics terminal with U/L case, background color. large keyboard, 80 characters \(\times 25\) lines, 4 K memory: character and line editing. line and plot graphics options. Excellent condition. \(\$ 1500\) cash. Digitronics (IOMEC) Model 2540400 cps tape reader. Complete - never used. Includes fan fold bins 19 inch rack mount. \$350. Commercial Regulated Power Supply \(\pm 15 \mathrm{~V}\) at 12 A and \(\pm 5 \mathrm{~V}\) at 12 A Well-built, enclosed, fan cooled case \(5 \times 8 \times 15\) inches. \(\$ 100\). Two units available. Corliss \(A\) Beck, 2533 Bernice Rd, Suite A2, Lansing IL 60438 , (312) 895-3010.

FOR SALE: SwTPC CT. 64 CRT terminal with screen read option, assembled and tested. \(\$ 600\) TI Silent 700 printer model 751, complete with printhead, Dower supply, modem and maintenance manual. \$200, in excellent condition. SwTPC M6800 computer. mother board, a K memory processor board, serial control interface, paralle interface and complete data on the system fin cluding Motorola's Applications Manual and Programming Manuall. \$375 assembled. Lear Siegler ADM-3A CRT terminal, assembled and tested, S815. Tim Tibbott, 714 North Nottawa Sturgis MI 49091, 16161651.7245

\section*{NEW UNCLASSIFIED POLICY}

Pesders who have aquiamant, software or other items to buy, sell or swap should send in a cloerty typed notice \(t 0\) buy. sell or swap should send in a cloarly typed notice 10 that effece to be considered for publicasion, on advar.
risement must be elearly noncommercial, typod dovile spaced on plain white paper, contain 50 words or less, and incfude complete name and addreas information.

These notices are free of charge and will be
me onty on - spacs aveilable busiz. Notices cent be and copted from individuels or bone fide computer users clubs only. We con engage in no correspondence on thase end your confimetion of placement is appeerance in an issus of BYTE.
Please note ther il mav take three or four months for an ad ro apocer in the magazine.

FOR SALE: Olivetti TE318, ASR33 compatible very quiet, RS.232, 72 characters per line, hal fill duplex, only 120 hours of operation. Asking \(\$ 650\). Prapote Srichareon, 400 Central Park W Apt 15 H. New York NY 10025. (212) 866.5144

FOR SALE: Data reference card for RCA CDP 1802. Opcodes, mnemonics in alpha and numeric sequence. Cross reference: binary. octal, hexa decimal. ASCII. \$1.00 plus SASE, R W Moell 5505 Daywood Ct. Raleigh NJ 27609.

FOR SALE: SWTPC MP.A Microprocessor System Board, Meticulously assembled with gold sockets and all chips. Checked out by SwTPC, nearly new. \(\$ 125\), Gil Shattuck, 116 Vincennes, Charlottesville VA 22901.

FOR SALE: Altair 8800b microprocessor, 18 slot motherboard with 11 edge connectors. Processor Tech 3 P +5 and VDM-1, Tarbell 10 with RO-CHE cassette controller, kevboard Model EW-100B alt assembled with cables and manuals includad: \(\$ 2000\), or best offer. K Mcleanas, 711 E Elizebeth Av, Linden NJ 07036, (201) 994.3100, ext 268 davs or (201) \(925 \cdot 3053\) nights.

FOR SALE: IBM Selectric corres code terminal. Recent mechanical overhaul, ran beautifully until something went in logic board. I have complete IBM mechanical manual and some electronics info, but no complete logic diagram. \(\mathbf{S} 250\) or trade for TVT, DVM, or what have you. James Triplett. POB 815, Leverett MA 01054, (413) 256-6101.

Struggling Artist/Programmer needs hard copy graphics, digital or analog \(X Y\) plotter. Mitch Wade, 20221 Birch St, Santa Ana Meights CA 92707.

WANTED: Prom programmer for 5204 s , Tom Cage. POB 402, Amarillo TX 79105.

FOR SALE: New Polysoftware using A00 or A01 BASIC. Over 50 programs to choose lrom. Send SASE for complete list to John McCaplin. 2203 RidgeCrest, Richardson TX 75080 or call (214) \(235 \cdot 2594\).

FOR SALE: Apple 11 Computer, 16 k memory, three months old, \(\$ 1200\) or best offer. Brand New Sharp 13 inch Color monitor/TV. \(\$ 400\) firm. Bob Majanski, 214 Coalidge Av, Hasbrouck Heights NJ 07604, (201) 288-3742.

FOR SALE: HP 65 Programmable Pocket Calculator. A1 condition, in original box with all original manuals, standard pac, blank programming cards, carrying case, battery charger, etc. \$275. Tom Strigel, 3566 Hwy 101. S Wayzata MN 55391. (612) 473-5743.

FOR SALE: TVT.IV terminal with UART board, 300 bps acoustic coupler and TI Stlent 700 Kev . board all enclosed in standard briefcase with power supply. Several nice modifications. Uses standard TV 10 display 32 characters per line and 16 lines per screen. Memory for 2 or 4 pages of screen. Operates at 110 to 1200 bps. Schematics provided. Very portable and in perfect working order. Components cost \$430. Best offer. Wayne Esch, 860 S Zeeb Rd, RR \#3. Ann Arbor MI 48103. (313) 994-1366 evenings.

FOR SALE: I have designed a BASIC coding form which works well with 32,40 or 64 character per line systems such as the Radlo Shack TRS. 80 and Commodore PET. There are 25 normal use lines plus four additional lines reserved for corrections on each form. I can supply these forms to anvone interested at a cosi of \(\$ 2\) for the first 40 , and \(\$ 2\) for each additional 50 sheets ordered at the same time. I also have TRS-80 programs for sale or trade, please send SASE for list. J DeMita, 53 Fenimore St, Lynbrook NY 11563.

FOR SALE: Selectric terminal. Convert any Selectric typewriter to 10 terminal. Assembled SC/MP controller and ps (RS232 ASCII, 110/300 bps, 256 character buffer, EPROM software) in nice case plus all parts to convert your Selectric \(\$ 500 /\) offer (kit is \(\$ 600\) commercially) TDL rext editor on cassette tape lone copyl \$20. John R Cameron. Dept of Biochemistry. Stanford Medical Center, Stanford CA 94305, 14151327.0341 evenings.

FOR SALE: Floppy disks. Information terminals flexible disks, FD32-1000. Wang flexible disks FD/IV. S2 each. Will take back if they don't fit or work, Gabriel F Gargiulo, 160 Elm St, North Haven CT 06473

FOR SALE: MITS 88-ACR, 88-2SIO TTY, 8800A. \(88-4\) MCS, 88.16 MCS. ASR 33 TTY. Two IBM 5440 hard disks. Must sell. High bidder takes any item. Michael Clark, RD \(=3\), Nazareth PA 18064 (215) 759.6873

FOR SALE: I have 200 rare IBM 11 million cycle, computer type) WIRE relays removed from IBM equipment. 45 V , up to 12 pole tsome latching types). Also have plugs. SASE for list. Price \(\$ 8\) to \(\$ 15\) each depending on type. Will sell for less in quantities. Also a FLEXOWRITER, with tractor feed with 10 ports, \(\$ 295\) plus packing and freight. Jack Weaver, 16255 SW 82 Av, Miami FL 33157 (305) 2384837.

FOR SALE: Altair 8800 computer includes processor board, mother board with 8 connectors souped up power supply good for full 8 A , docu mentation, etc, \$400. Mini Micro Mart RM 2.80 board includes parallel and serial ports, i K monitor PROM cassette tape interface, documen tation. \$300. Terry M Lang, 16300 SW Blanton Aloha OR 97005. (503) 649.9633.

FOR SALE: Apple II computer, single board computer with 36 K memory mounted In plexi glas case with keyboard. A \(\$ 1600\) value, will sell for \(\$ 1000\) cashiers check. Robert Meader, 17721140 NE, Woodinville WA 98072.

FOR SALE: Altair 8800 A, two PT 4 KRA, one 8 K Vector Graphic, 3P \& S, PT 2KRO, MITS ACR. all assembled and working. Includes MITS 4. 8, \& 12 K BASIC on paper tape and Radio Shack cassette tape recorder. First cashier's check for \$1200 takes it. John Hunt, 1 Kelton Ct \#4E. Oakland CA 94611. (415) 652.6408 or (415) 398.0289

FOR SALE: ASR 33 TTY with autoreader, auto punch. print blind features and all parts, main tenance, lube manuals and schemetics. Very good condition. \$650. A W Walker, 1914 Ridgewood Dr, San Diego CA 92139, (714) 479-9074.

FOR SALE: IMSAI 8080 with 13 slots. Four IMSAI 4 K programmable memory (16 K fotal), IMSAI MIO board with cables. Merlin video board with Mal read only memory. All boards are as sembled and working, all documentation included. \(\$ 1300\), I pay shipping. Send money order or cashier's check to: Bruce Paige, 11210 Carvel Ln, Houston TX 77072, (713) 933.8385.

FOR SALE: North Star software special. Personal finance and budgeting package, S15. Memory test S10. Disckopy. S 10 - both for S15. Stock marke analysis package, \(\$ 10\). Correspondence editor, \(\$ 5\). Mail list, \$5, Special assortment disk, \(\$ 10\), plus much more. Send blank disk, or \(\$ 5.25\) for disk Write for complete list. Herb Schildt, 1007 N Division, Urbana IL 61801.

FOR SALE: Over 500 magazines in my collection must go. BYTE beginning 1976. Popular Electronics beginning 1960. Electronics World, 1963 to 1971. Popular Sclence beginning 1961. Mast in mint condition. Best offer for one or all within six weeks of ad appearance. E B Scott. 309 Duke Gariand TX 75043

FOR SALE: Pertec \(7850-99\)-track tape transports. 800 bytes per inch \(\times 11.25 \mathrm{PS}=9 \mathrm{~K}\) bytes per second. NRZI IBM format. 9 by 19 inch rack style. 115 VAC. RMW head. R/W electronics, servo control electronics; computer \& manual motion control. Documentation available: \(\$ 200\) each FOB Gary Gaugler. 2276 Beaver Valley Rd, Fairborn \(\mathrm{OH} 45324,(513) 878.0288\)

VISIBLE OR INFRA RED

USED FOR CHARACTER RECOGNITION FOR COMPUTERS WITH EXTERNAL CIRCUITS

MAY BE USED IN A VACUUM, UNDER WATER; HIGH ALTITUDE

IN MAGNETIC ENVIRONMENT BECAUSE THERE IS NO HIGH VOLTAGE OR MAGNETIC DEFLECTION

\section*{MINATURE SOLID STATE \\ 202 VIDEO CAMERA KIT \\ FEATURING A. . \(100 \times 100\) BIT SELF SCANNING CHARGED COUPLED DEVICE}

\section*{THIS UNIQUE UPDATED CAMERA KIT FEATURES THE FAIRCHILD CCD 202C IMAGE SENSOR}

\section*{ADVANTAGES}
- IN THE FUTURE WE WILL SUPPLY A COMPUTER VIDEO INTERFACE CARD
- All clock voltages operate at 6 V reguiring no adjustments
- Higher video output signal
- We supply the power board, so only a 5 V 1 Amp power source is needed
- The circuitry has been simplified for easier assembly
- Two level TTL output is supplied for interfacing

We supply all semiconductors, boards, data sheets, diagrams, resistors and capacitors, and 8 MM lens. Sorry we do not supply the case, batteries and 5 V supply.

\section*{FEATURES}
- Sensitive to infra red as well as visible light
- May be used for IR surveillance with an IR light source
- Excellent for standard surveillance work, because of light weight and small size
- All components mounted on parallel \(33 / 4^{\prime \prime} \times 61 / 2^{\prime \prime}\) single sided boards
- Total weight under 1 lb .

\section*{\(\$ 34900\) KIT}

Add \(\$ 75 .{ }^{00}\) to assemble and test Add \(\$ 2.00\) Postage and Handling

P.O. BOX 748

WE SHIP OVER \(95 \%\)
SOMERVILLE, MASS. 02.143 TEL. (617) 547.7053

DAY WE RECEIVETHEM

To yet further information on the products advertised in BYTE, fill ous the reader senvice card with your name and address. Then clrcle the appropriole numbers for the odvertisers you select from the list. Add a 15 cent stamp to the card, then drop 11 in the moil. Nol anly do you gain information, but our advertisers are encouraged to use the morketplace provided by BYTE. This helps us bring you a blgger BYTE.
```

Inquiry No.
Page No.

```

\section*{AAA Chicago Computer Center 146}
```

Administrative Systems 125
Advanced Interactive Systems 176
AJA Software 150
Anderson Jacobson 31
Apparat Inc 176
Apple Computer 14
Apple Computer 15
Atlas Electronics 128
ATV Research 169
Atwood Enterprises 199
AVR Electronics 197
Basic Computer Shop 176
Bazzy Electronics 176
Beckian Enterprises 192
Beta Business 197
BITS 95
BITS 109
BITS 111
BITS 196
Biz Comp '78 144
Buss 88
BYTE Books 77.80
BYTE Wats Line 175
California Digital 185
Canada Systems 139
Central Data 51
Computal ker 49
Computer Age 176
Computer Corner 169
Computer Enterprises 127
Computer Factory 151
Computer Hardware Store 169
Computerland 5
Computer Pantry 169
Computer Resources 137
Contemporary Marketing 55
Cromemco 1, 2
Digital Pathways 143
Digital Research (CA) 91
100 Digital Research (TX) 187
103 Digital Research \& Eng 165
105 Disc 3169
110 Dynabyte 89
115 Electrolabs 180
120 Electronic Control Technology 140
125 Electronic Systems 189
130 Electronics Warehouse 191
131 Emerge Systems 197
132 EMM/CMP 130
133 Essex Publishing 144
140 Forethought Products 119

```

Inquiry No. Page No.
142 Functional Automation 136
150 Godbout Electronics 61, 81
149 GRT 134, 135
151 H \& K Computer Corp 163
153 Hamilton Logic Systems 169
155 DC Hayes 152
170 Hobby World 179
175 IMSAI 6, 11
176 Info 200097
177 Information Terminals 99
. 180 Integrated Circuits Unlimited 193
178 Integrated Technology 175
183 International Data Sciences 145
190 Ithaca Audio 183
195 Jade Company 181
200 Jameco 194, 195
201 Lifeboat Associates 119, 150
207 LMN Electronics 205
215 Logical Services 133
216 Manchester Equipment 67
217 The Math Box 197
218 Maxi-Switch 59
208 Micro Madness 197
219 Micro Mail 124
231 Micromation 66
235 Micropolis 120
236 Micropolis 121
237 Mikos 205
255 Morrow/Thinker Toys 25
260 Mountain Hardware 54
265 mpi 161
268 Mullen Computer Boards 140
275 National Multiplex 83
280 Netronics 129
281 New England Electronics 142
283 New England Recruiters 176
285 North Star 7, 27
286 Northwest Microcomputer Sys 71
290 Ohio Scientific Instrument 18-21
287 OK Machine \& Tool 131
291 Oliver Advanced Engineering 165, 197
289 On-Line 163
293 Osborne \& Associates 107
* Owens 141

294 Pacific Digital 158
296 Pacific Office Systems 180
297 Page Digital 188
298 PAIA Electronics 158
292 PanaVise 126
288 PCE Electronics 169
301 Per Com Data 32
267 Per \& Small Business Cmptr Show 10

Inquiry No. Page No.
302 Personal Software 90
276 Personal Systems Consulting 30
303 Poly Paks 203
304 Priority 1201
305 Processor Technology 8, 9, 123
277 Program Design Inc 138
306 PRS 43
307 Quest Electronics 188
* Radio Shack 73

322 RCA 45
* Real World Simulation 176

308 Rondure Co 199
311 S-100 147
- Scelbi CIII
* Scientific Research 35,37

309 S \& D Computer Technology 176
313 Seattle Computer Products 62
316 Michael Shrayer Software 113
312 Shugart CIV
317 Signetics 23
318 SPI 105
319 Small Systems Services 136
320 Smoke Signal Broadcasting 137, 139, 141, 143, 145, 147, 151, 155
330 Software Records 152
335 Solid State Music 69
340 Solid State Sales 207
343 Soroc 29
350 Southwest Technical Products CII
351 Structured Systems Group 13
352 Summagraphics 122
353 Sybex 39
355 Synchro Sound 56, 57
356 Synertek Systems 93
357 Tano 132
360 Tarbell Electronics 47
363 Tasa 16, 17
370 Technical Systerns Consultants 85
372 Technico 87
373 Telesis Laboratory 197
374 TIS 197
377 Tora System Limited 197
376 TransNet 92
378 Utec Corp 131
386 US Robotics 169
389 Vector Electronics 103
387 Wameco 183
143 Whales 63
395 Worldwide Electronics 169
400 Xitex 146
401 Zeta Systems Canada Ltd 176

Article No.
ARTICLE

Posdamer: The Mathematics of Computer Graphics 22
Kellerman: APL and Graphics
Chung-Yuen: A "Tiny" Pascal Compiler
40
Hearn: Some Words About Program Structure
58
Williams: Antique Mechanical Computers: Part 3
68

Ciarcia: Let Your Fingers Do the Talking: Part 2
82
Bondy: S2L: An Altair (S-100) to LSI-11 Bus Adapter
Boney: Math in the Real World
Hungerford: Graphic Manipulations Using Matrices
Kheriaty: WADUZITDO: How To Write a Language
PAGE

\section*{Ear Ear for the June Bomb}

Two "ear" oriented articles were at the top of the June 1978 BOMB results. First prize of \(\$ 100\) goes to Steve Ciarcia for his article "Talk to Me: Add a Voice to Your Computer for \(\$ 35\)," page 142. The \(\$ 50\) second prize goes to Bill Georgiou for "Give an Ear to Your Computer," page 56. The two articles placed 1.6 and 1.3 standard deviations above the mean, respectively.

\title{

}

Introducing famous Scelbi games, now on quality tape...ready to run on your own Commodore Pet...

here's what you get on scelbitape-1...

\section*{AUTO BOX}

It's you against your PET in a fast moving game of back-'em-to-the-wall, box-'em-in action. Move up. Down. Across. Box-in your PET before it boxes you in. Don't bump. You'll lose. You can beat the PET, but you've got to work at it. Thousands of possibilities Millions of moves. Hours and hours of fun, excitement and computer challenge. NOW THROUGH
DEC. 31,1978 95 Regularly \(\$ 9.95\) the cassette

\title{
Ifitisn't Shigart,
it isnit minifloppy:
}

Shugart invented the minifloppy in 1976. Today there are more than 100.000 of the little drives in use. That's because users want the affordable random access data storage of the minifloppy.

Shugart packs years of proven floppy drive technology into this tiny package. Up to 110 kbytes of data storage. Fast random access of about one-half second. And high speed data transfer of 125 kbits per second. Plus sensible, maintenance-free features like write protect to prevent accidental data loss, an activity light to indicate when the drive is selected by your computer and a door interlock to protect your media from darnage.

Our proprietary read/write head provides maximum data interchange margins, and it is
positioned precisely on the selected track by a patented spiral cam actuator. The DC drive motor with integral tachometer assures accurate diskette rotation and low heat dissipation. A die cast aluminum base plate provides a solid foundation for the drive.

At Shugart, iechnology leadership is more than a slogan, it's a commitment. Get reliability and value when you invest your money for floppy disk storage. Ask for the standard of the industry. minifloppy. If it isn't Shugart, it isn't minifloppy.

435 Oakmead Parkway. Sunnwale, California 94086```

[^0]: *Rated in The 1977 Computer Store Survey by Image Resources, Westlake Village, CA.

[^1]: 18
 BYTE September 1978

[^2]: ∇ N DESICN 7 M;TR;TRX;TRY;MAG;ROT:REP;OUT;TR I2;OUT2
 [1] $T R+(T R X+\operatorname{COS} 30), T R Y+S I N 30$
 [2] MAC+1
 [3] ROT +0
 [4] REP -15
 [5] OUT + 03 م 0
 [6] LOOP:TRI2-ROT ROTATE TRI
 [7] TRI2+MAG MAGNIFY TRI2
 [8] OUT+OUT,[1]TRI2
 [9] ROT + ROT +5
 [10] MAC+MAC*0.87
 [11] \rightarrow LOOP IF $0<R E P+R E P-1$
 [12] out2+tr translate 180 rotate out
 [13] OUT+OUT.[1] OUT2
 [14] $I * 0$
 [15] $L P I: J * 0$
 [16] $L P J: T R+(T R X \times(1+2 \times J)),(I+T R Y \times(I+1))$
 [17] DRAW 15 magnify tr translate out
 [18] $\rightarrow L P J$ IF $M>J+J+1$
 $\lceil 19] \rightarrow L P I$ IF $N>I+I+1$
 ∇
 Listing 3: APL program for drawing an N by M tiling of a surface. Each of the tiles consists of a right side up, rotated, magnified triangle series and an upside down, rotated, magnified triangle series.

[^3]: VISA ${ }^{-}$
 nut M-800-325-5400 DIAL TOLL FREE
 1-800-325-6400
 24 hrs In Missouri dial 1-800-342-6600 7 days
 Or you can mail your order to the address below. OUR CATALOG describes many other great software products, including an ASTROLOGY program, a FOOTBALL game, a GRAPHICS utility package and many others. For your free nopy, send a letter giving your PET or TRS-80 serial number, memory size, and your most wanted software product.

[^4]: Post Office Box 579 • Pacific Grove, California 93950 • (408) 649-3896

[^5]: Anonymous, "Torres and His Remarkable Automatic Devices (He Would Substitute Machinery for the Human Mind.)", Scientific American Supplement 80, number 2079, 6 November 1915.
 7. Torres' machine is also described in:

 Levy, David, Chess and Computers, Computer

[^6]: 1. Charlottesville Computer Hobbyists Club
 2. 1928 Arlington Blvd, \#209 Charluttesville VA 22903
 3. Math-Astronomy Building University of Virginia
 4. Second Monday of each month
 5. No name, monthly if pussible
 6. Richard A Stanley
 7. (804) 296-5583 or 293-7976
 8. $\$ 2$ per yedr (supports newsletter)
 9. Software, systems and hardware.
[^7]: 1. Durant Computer Club
 2. 901 S 12 th St
[^8]: 1. Houston Amateur Microcomputer Club
[^9]: The listings follow this form:

 1. Name of organization
 2. Mailing address
 3. Meeting location
 4. Meeting algorithm
 5. Newsletter or publication
 6. Contact person
 7. Contact phone number
 8. Dues or subscription fees
 9. Special interests
 10. Other comments
[^10]: The listings follow this form:

 1. Name of organization
 2. Mailing address
 3. Meeting location
 4. Meeting algorithm
 5. Newsletter or publication
 6. Contact person
 7. Contact phone number
 8. Dues or subscription fees
 9. Special interests
 10. Other comments
[^11]: 2000 DELETE A1, A2, B1, B2, B3, B4, B5, B6, B7, 88, B9, C1, C2, C3, V1,C4, V2
 2002 DIM A1 (262, 4), A2(282, 4), B1 (3, 3), B2(3, 3), B3(3,3),B4(3,3),85(3,3)
 2003 DIM B6(3,3), B7(3,3), B8(3,3), B9(3,3),C1(3,3),C2(3,3),C3(3,3),C4(3,3)
 2004 DIM VI $(3,1), V 2(3,1)$
 2005 REM THIS SUBROUTINE DEFINES THE CUP
 2010 GOSUB 2500
 2090 REM THIS SUBROUTINE DEFINES THE TRANSFORM MATRICES
 2100 GOSUB 2540
 2140 REM THIS SUBROUTINE MULTIPLIES ALL THE MATRICES TOGETHER
 2150 GOSUB 3120
 2150 GOSUB 2160 REM THIS SUBROUTINE CHANGES AI TO A NEW VIEW, A2
 2160 REM THIS S
 2170 GOSUB 5500
 2180 REM THIS SUBROUTINE CMANGES THE CUP FROM USER DATA UNITS TO GDU'S
 2190 GOSUB 5248
 2195 REM THIS SUBROUTINE DRAMS THE FIGURE
 2200 GOSUB 5200
 2490 END

    ```
    2535 REM BI ROTATES IN THE X,Y PLANE BY TI DEGREES
    2540 B1=0
    2550 B1(1,1)=\operatorname{cos(T1)}
    2580 B1(1,2)=-SIN(T1)
    2570 B1(2,1)=SIN(T1)
    2580 B1(2,2)=COS(T1)
    2590 B1 (3,3)=1
    2600 REM B2 ROTATES IN THE X, Z PLANE BY T2 DEGREES
    2610 B2=8
    2620 B2(1,1)=COS(T2)
    2630 B2(1,3)=-SIN(T2)
    2640 B2(2,2)=1
    2650 B2(3,1)-SIN(T2)
    2650 B2(3,1)=SIN(T2)
    2660 B2(3,3)=COS(T2)
    2680 B3=0
    2690 B3(1,1)=1
    ```

