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Introduction
THE book you are about to read, the second edition of

Understanding Digital Electronics, has been com-
pletely revised and is very much up to date. Digital

electronics, however, is constantly changing. It requires con-
tinuous review, vigilant reading, and constant experiment-
ing from all of us who are a part of this exciting, ever -
widening area of study and want to remain knowledgeable
about it.

When I first undertook this project, I looked at this as an
opportunity to review another writer's work and to perhaps,
in some small way, add newer bits (no pun intended) of infor-
mation to it. As a published author myself (Solid -State Elec-
tronics Theory with Experiments, TAB Books, 1987) I knew
the amount of effort required to research, write, and illustrate
a technical book. In that sense, this book was very much a
challenge.

The majority of the chapters in this second edition con-
tain all new circuit diagrams and most contain information
not found in the first edition. Existing diagrams were cor-
rected to reflect electronic symbols used in this country. Most
concepts were expanded upon and explained in simpler, lay-
man's terms.

The most pronounced change is in the last chapter,
"The Arithmetic Logic Unit (ALU)." The original book
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based the theory of the ALU on a device foreign to us here in
the United States. I found it more appropriate to base ALU
theory on the 74181, a device common to many electronic
circuit labs in technical schools throughout the country.

Also, binary arithmetic, along with a great many other
topics, was added to this second edition. This book is, there-
fore, considerably more complete and up-to-date than its
predecessor. That is not to say that it is all-inclusive; no book
ever is. It does reflect a somewhat simpler approach with
more information.

My intentions, then, were to strive for a second edition
which would be more enjoyable and easier to understand
without sacrificing the good intent of the first edition author.
I hope I have achieved those objectives and have instilled in
you, the reader, a desire for further study of digital electron-
ics and eventually, microprocessors.

1

Basic Digital Concepts
To understand digital electronics, you first need to

understand the terms digital electronics and analog
electronics, as well as the basic differences between

the two. This will help those of you with a knowledge of
basic and/or solid-state electronics identify with digital con-
cepts. If you don't have an electronics background, you will
find that digital concepts are relatively easy to understand.
This chapter deals with some of those concepts and shows
the simplicity, and hence the beauty, of digital electronics.

We will explain some advantages and disadvantages of
each type of system or concept, then introduce binary
arithmetic, and finally provide some information about truth
tables. Truth tables are an invaluable tool in designing and
troubleshooting all kinds of digital electronic circuits, from
the simplest to the most complex.

ANALOG SYSTEMS

Analog systems offer a faster response to changes in the ana-
log input signal, and less distortion in systems designed to
amplify and reproduce the input analog signal.

However, analog systems also involve higher power dissi-
pation, more weight, larger size (usually translated to higher
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costs), and greater sensitivity to environmental, or tempera-
ture, changes.

DIGITAL SYSTEMS

Digital systems have many advantages, including smaller
size, less power dissipation, lower costs, lighter weight, and
less sensitivity to environmental changes.

Disadvantages of digital systems are few, and are becom-
ing less and less as our manufacturing processes and engi-
neering capabilities improve. The most significant are
induced distortion, which is an inherent effect of converting
an analog input signal into a digital output signal (A to D or
A/D conversion); and a comparatively long response time in
performing the opposite operation (D to A or D/A conver-
sion). Today's technology has reduced that response time,
but it is still a considered factor in electronic circuit design.

DIGITAL TERMINOLOGY

Digital electronics uses a relatively new vocabulary. It is a
vocabulary filled with terms that are very logical. They also
provide you with a useful base of electronic terms, which is
helpful if you plan to study further those areas of electronics
that include microprocessors and circuits that are controlled
by microprocessors.

Some of these terms are AND gates, OR gates, NAND
gates, NOR gates, and NOT gates. The most important of
these are the AND, OR, and NOT gates. Almost all of today's
digital computers operate on the concepts of these three sim-
ple digital electronic devices.

BINARY NUMBERS

Digital systems employ binary devices which function in
only two states. (Binary simply means two.) These two states
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are described in various ways:

 on/off or close/open for switching devices
 1/0 for counting or computing devices
 true/false or yes/no for logic devices
 pulse/no pulse for trigger circuits
 high/low for practical circuits where voltage levels are

relative (i.e., a low signal is not necessarily zero)

All these pairs of terms mean the same thing, one state
or the other, with no intermediate state. This is the whole
basis of digital (binary) working.

Binary numbers are based on just two digits, 1 and 0.
Individual digits in a binary number then represent equiva-
lent powers of 2, instead of 10 as in the decimal system. A
particular advantage of the binary system is that there are no
multiplication tables as such, and any problem involving
addition, subtraction, multiplication, or division can be bro-
ken down into a series of individual binary operations, with
each switching element in the system being continuously
used (that is, either in the on or off state).

Compared with the decimal system, binary numbers are
tedious as a written language. For example, TABLE 1-1 shows
the binary equivalents of decimal numbers from 1 to 32.

Remembering that the binary system is based on powers
of 2, the simplest way to derive the binary equivalent of a
large decimal number is to subtract the highest power of 2
contained by the number, then subtract the highest power of
2 from the remainder, and so on until only a 1 or 0 is left as
the remainder. For example, to find the binary equivalent of
the decimal number 269, perform the following operation:

The highest power of 2 within 269 is 28 = 256.
This leaves 269 -256 = 13.
The highest power of 2 within this remainder is 23 = 8.
This leaves 13 -8 = 5.
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Table 1-1. Decimal -To -Binary Conversion

Decimal
Binary

Number Decimal
Binary

Number

1 (20) 1 17 10001
2(21) 10 18 10010
3 11 19 10011
4 (22) 100 20 10100
5 101 21 10101
6 110 22 10110
7 111 23 10111
8 (23) 1000 24 11000
9 1001 25 11001

10 1010 26 11010
11 1011 27 11011
12 1100 28 11100
13 1101 29 11101
14 1110 30 11110
15 1111 31 11111
16 (24) 10000 32 (25) 100000

and so on

The highest power of 2 within this remainder is 22 = 4.
This leaves 5-4 = 1.

The corresponding number is thus 28+23+22 with a
remainder of 1. Another way to show it is:

Power
28 =
23 =
22 =
remainder =

Binary
100000000

1000
100

1

100001101

Decimal
256 decimal

8 decimal
4 decimal
1 decimal

269 decimal

This binary number is long, consisting of 9 digits (bits).
It counts in a system involving only 1 or 0 so it can readily be
handled by digital devices. The number of bits (binary digits)
to be handled in a calculation does not represent any practi-
cal limitation. The speed at which these devices can work is

Binary Numbers 5

extremely high. Here, for example, is the number of bits dif-
ferent types of digital circuit devices can handle per second:

MOS(metal-oxide-semiconductor): 3-4 million
CMOS(complementary-metal-oxide-semiconductor):

10-15 million
HTL(high-threshold-logic): 20 million
DTL(diode-transistor-logic): 35 million
RTL(resistor-transistor-logic): 80 million
TTL(transistor-transistor-logic): 170 million
ECL(emitter-coupled-logic): 250-1000 million

Binary Arithmetic

Adding and subtracting can be performed in binary just
as in decimal, but certain rules must be followed when using
binary digits or bits:

Addition Subtraction
0+0 = 0 0 -0 = 0
0+ 1 = 1 1 -1 = 0
1 + 0 = 1 1 -0 = 1

1 + 1 = 10
1+ 1+ 1 = 11

As you can see, remembering these rules makes adding
and subtracting binary numbers quite simple. An example of
adding two binary numbers is shown below:

Binary Decimal Equivalent
1011 11

+ 100 +4
1111 15

Here is an example of binary subtraction:
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Binary Decimal Equivalent
11011 27
-1001 -9
10010 18

In digital electronic circuits, devices called half adders
and full adders perform binary addition and subtraction.
Additional information on these types of circuits may be
found in chapter 10.

Binary Coded Decimal

To simplify working with large numbers a hybrid system
known as a binary coded decimal (BCD) is normally used.
Here, separate groups of binary digits are used to express
units, tens, hundreds, etc. Since each binary group needs to
be able to accommodate a count of up to 9, it must consist of
four digits; that is, to accommodate 9 it must run 1001. (Refer
to TABLE 1-1.)

The number 269 (100001101 in the binary system) is, as
a binary coded decimal:

0010 0110 1001

equivalent to

2 6 9

in decimal numbers.

For the next number up, 270, the right-hand binary
group changes to 1010, representing 10, which is immedi-
ately carried forward into the next group. The binary coded
decimal would then read:

equivalent to

0010 0111 0000

2 7 0

Truth Tables 7

in decimal numbers.
Binary coded decimal systems are described further in

chapter 7.

TRUTH TABLES

Truth tables are an easily -understood way to represent the
way digital devices and circuits work. They are widely used
with Boolean Algebra (discussed in chapter 4) to solve cir-
cuit design problems. A truth table lays out the complete
range of signal states for a device in terms of 1 (signal on) or 0
(signal absent).

Starting with the simplest device, an inverter or NOT
gate, there is one signal input, A (which may have a state of 0
or 1) and one signal output, X. An inverter makes the state of
output X the inversion or opposite of input A. The truth table
then reads as shown in TABLE 1-2. This fully expresses all of
the possible working states (two in this case) of the inverter,
sometimes referred to as a NOT logic element or gate.

Table 1-2. NOT Truth Table
A X

0
1

1

0

All other devices have more than one input. A basic rule
to follow here in compiling a truth table is that with series
logic, all the inputs must be 1 before the output can be 1, and
with parallel logic the output is always 1 if any of the inputs
is 1. This is equally well explained by mechanical thinking,
since parallel logic is the equivalent to a number of on -off
switches connected in parallel (any one switch which is on
will pass a signal) and series logic is equivalent to a number
of on -off switches connected in series where all of the
switches must be on before a signal can be passed. The basic
truth tables for such devices, written for two inputs, are
shown in TABLES 1-3 and 1-4.
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A B X

0 0 0
1 0 0
0 1 0
1 1 1

A B X

0 0 0
1 0 1

0 1 1

1 1 1

Table 1-3. Series Logic

Table 1-4. Parallel Logic

An example of a truth table for an OR gate, sometimes
called an OR logic element, with two inputs is shown in
TABLE 1-5. It is, in fact, an example of a parallel logic device.
Expanded to cover more than two inputs, the same basic rule
applies. X equals 1 when any input equals 1. TABLE 1-6 illus-
trates the truth table for a four -input OR gate. There are, as
you can see, sixteen different states possible with any four -
input gate. In the case of the OR device, fifteen of these give
the output signal.

A B X

0 0 0
1 0 1

0 1 1

1 1 1

Table 1-5. OR Truth Table

An example of series logic is the AND gate. Its basic
truth table for a two -input device is shown in TABLE 1-7.

TABLE 1-8 is an illustration of the AND gate written out
for four inputs. Again, there are sixteen possible different
states, but only one provides an output of X = 1. With sixteen
switches connected in series (in mechanical terms) the path
through them from input to output remains broken until all
the switches are on.

Table 1-6. Four -Input OR Gate

Table 1-7. AND Truth Table

Table 1-8. Four -Input AND Gate

Truth Tables 9

ABCDX
0 0 0 0 0
1 0 0 01
0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 1

1 1 1 0 1

1
'

1 0 1 1

1 0 1 1 1

0 1 1 1 1

0 1 0 1 1

0 1 1 1 1

0 0 1 1 1

1 1 1 1 1

A B X

0
1

0
1

0
0
1

1

0
0
0
1

ABCDX
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 0 1 0
0 1 1 1 0
0 0 1 1 0
1 1 1 1 1
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The immediate reaction to these two examples is proba-
bly a feeling that it is much simpler to work in terms of
switching equivalents than truth tables-and for very simple
problems in digital logic it is. However, most problems
require a combination of logic devices to provide the solu-
tion, which may involve both series and parallel logic. Draw-
ing out the switching circuits can then become a more
elaborate process than plotting truth tables and be more sus-
ceptible to mistakes.

Truth tables for other logic gates are given below. These
are written for two -input devices. They can be expanded to
present truth tables for more than two inputs by following
the same established pattern.

The truth table for a NOR logic gate with two inputs is
shown in TABLE 1-9. This can be identified as inverted series
logic. Note also that inversion has changed the parallel logic
of the OR gate to series logic in the case of the NOR (Not OR)
gate. The significance of this occurs frequently when work-
ing with Boolean Algebra.

A B X

0 0
1 0 0 Table 1-9. NOR Truth Table
0 1 0

1 0

The truth table for a NAND gate with two inputs is
shown in TABLE 1-10. This can be identified as inverted paral-
lel logic. Inversion has changed the series logic of AND to
parallel logic in the case of NAND (Not AND).

A B X,

0 0 0
1 0 1 Table 1-10. OR Truth Table
0 1 1

1 1 1

Combinations of Logic Gates

The state of combinations of logic gates can be expressed
in the same way as a truth table. Suppose, for example, the
design requirement is to provide for input signals A or B to
produce an output signal only in combination with a third
input signal C. (For example, A and B are trainee operators
who can only give a command signal to a machine when the
instructor (C) also adds his or her own signal.) FIGURE 1-1
shows how this can be implemented using OR and AND
logic.

A

B

C

OR
1-1

AND

Fig. 1-1. A typical combination of logic gates.

TABLES 1-10 through 1-12 show how the truth tables are
arranged beginning with the OR device or gate, proceeding
to the AND device, and finally culminating in the truth table
for the combination of both the OR and AND devices. Writ-
ing the truth table for the OR device first and calling the out-
put X, is shown in TABLE 1-10. X1 is now one of the inputs to
the AND device. The truth table for this device is then shown
in TABLE 1-11. The combined truth table can then be written
as shown in TABLE 1-12. Note that the number of states is
equal to the number of devices multiplied by the number of
inputs to each device. In this example, 3 x 2 = 6 possible
states.

Table 1-11. AND Truth Table

X, C X2

0

1

0

0

0

1

0

0
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A B C x,
0 0 0 0
1

0
0
1

0
1

0
1

Table 1-12. OR and AND Truth Table

1 1 0 0
1 1 1 1

1 0 1 1

Plotting Truth Tables

A truth table can be drawn up as a starting point in
design. For example, suppose the problem is concerned with
a control circuit to start and operate a machine under the fol-
lowing conditions:

A = signal from operator standing by machine
OR D = signal from a remote start
AND B = signal confirming guard is in place
AND C = signal from detector showing workpiece is in

place

The machine must not start under any other conditions.
There are four inputs to consider, which results in six-

teen possible combinations or states. This establishes the
basis for writing out a five -column, sixteen -line truth table.
On the output column, 1 must appear only when A=1 OR
D =1 AND B =1 AND C =1. All the other combinations of A,
B, C, and D must give X = O. This is shown in TABLE 1-13.

FIGURE 1-2 shows this truth table implemented with logic
devices and also with mechanical switches.

ABCDX
0 0 0 0 0
0 0 010
0 010 0
0 0110010 0 0010100111110 0 0 010 0101010 010110110 0 0110101110111111

Truth Tables 13

Table 1-13. Truth Table Used for Design

OR

AND

Fig. 1-2. Logic solution (top) and implementation with mechanical
switches (bottom).
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Symbols and Switches

0 NE of the most confusing things about the use of sym-
bols representing the various logic elements or gates
is that the original (and literally logical) way of des-

ignating them in the form of annotated blocks has largely
been abandoned in favor of representative symbols, the sig-
nificance of which is not apparent until you are familiar with
them. Even then, misunderstandings can easily arise, since
over the years different symbols have been used to illustrate
the same function(s). Various attempts have been made to
standardize symbols; US MIL standard recommendations are
used in American literature while CETOP standards are
widely used in Europe.

Another source of confusion is that different letter sym-
bols are used to designate inputs and outputs, particularly
for basic devices. These include A, B, C...N for inputs and
W, X, Y, Z for outputs. This is not particularly important if
the application is clear, but can cause confusion with more
complex devices where specific symbols (and sometimes dif-
ferent symbols) are used to designate specific integrated cir-
cuit (IC) terminals. Examples are Ck for clock input and D for
data input.

Digital Logic Gates 15

DIGITAL LOGIC GATES

The simple block method of symbolizing logic elements is
obvious, readily readable, and needs no extensive descrip-
tion. All symbols are in the form of a rectangular block with
the function written inside. Input lines are added to the left
side of the block and an output line to the right. FIGURE 2-1
shows a number of representative logic elements with two or
more inputs and one output each. (The NOT gate has only
one input.) For the sake of consistency, separate inputs are
designated A, B, C, etc. The output line is designated X. The
value 1 is used to designate a signal present, and a 0 repre-
sents no signal at that line.

A

EL

A

12..<

A
NOT B AND B OR

N N

Fig. 2 1. Examples of block ogic symbols and annotation.

Such block symbols are rarely used now, except in ele-
mentary textbooks, so you need to know the alternate forms
of other basic symbols. Each function is dealt with separately
and is illustrated with its corresponding mechanical switch-
ing function. (Devices are restricted to two inputs for sim-
plicity.) The switching function is shown as 1 in the operated
position and 0 in the off position. As you can see in the fol-
lowing drawings, both the standard gate symbol and, where
appropriate, its mechanical switch equivalent are repre-
sented.

The YES Gate

The YES gate is a 1 -input, 1 -output device with input
and output always the same; that is, A = 0, X = 0; or A =1,
X =1, where A is the input signal and Xis the output signal.
The YES gate is also referred to as a buffer. The symbol for a
YES gate is shown in D.G. 2-2.
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0

1

Fig. 2-2. YES logic symbols.

The NOT Gate (Inverter)

The NOT gate, a 1 -input, 1 -output device, works the
other way round to the YES gate. If there is an input to A,
there is no output at X and vice versa (that is, A=1, X= 0; or
A= 0, X=1). The symbols in FIG. 2-3 show this inverted mode
of working by means of a circle on the output side.

1

0

Fig. 2-3. NOT logic symbols.

The AND Gate

The AND gate produces a logic level 1 at its output only
when both inputs, A and B, are at logic level 1. (See FIG. 2-4.)
In mechanical form, it is two switches in series.

o .o

1 1

Fig. 2-4. AND logic symbols.

The NAND Gate

The NAND gate is an inverted form of the AND gate
where there is a logic level 1 output for all input states except
when both A=1 and B = 1; in that case, X= 0. (See FIG. 2-5.)

0 0

Fig. 2-5. NAND logic symbols.

The OR Gate

The OR gate is the equivalent of a parallel switching cir-
cuit. When either switch is closed, or both switches are
closed, there is an output. (See FIG. 2-6.)

Fig. 2-6. OR logic symbols.

The NOR Gate

The NOR gate is the inverted form of the OR gate, so
once again the symbols have the inversion mark (a circle on
the output side) added, as shown in FIG. 2-7. Note that the
switches are normally closed and there is an output (X=1)
only when both A= 0 and B = 0.

Fig. 2-7. NOR logic symbols.

The Exclusive OR (XOR) Gate

The exclusive OR gate is a special form of AND logic
providing an output only when one particular input is equal
to 1. If a 1 appears at the other input, it is inhibited or
inverted to 0. Basically, in fact, this is an AND gate with one
input inverted. FIGURE 2-8 shows the symbol for the exclusive
OR (XOR) gate.
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)
Fig. 2-8. Exclusive OR (Ex -OR) gate
logic symbol.

MEMORY

Memory function is performed by a flip-flop (FF) which per-
forms a store rather than a switching function. The output
state depends on the last input applied and is maintained
when the inputs are resumed.

In practice, there are different types of flip-flops, each of
which is given its specific symbol and inputs and designated
accordingly; that is R and S for an RS flip-flop, J and K for a
JK flip-flop, D for a D type flip-flop, and T for a T type flip-
flop. Outputs are then designated Q and Q. In addition, the
flip-flop may have a clock signal input (designated C, or Ck);
a clear signal input (C); and a preset input (P) depending on
type. These symbols are illustrated in FIG. 2-9. For more
detailed information on flip-flops, see chapter 6.

SIMPLE SWITCHING FUNCTIONS

As an example of the application of logic to the design of
switching circuits using digital devices, take the problem of
designing a circuit for switching a single light on and off
from two separate points. This is a common arrangement in
the hallway or stairway of a house.

The basic requirements are two possible inputs
(switches)-call them A and B-which may be either on or
off. When either A or B is on, there is an output (that is, a
circuit completed to light the bulb). A and B cannot be on at
the same time. If one is on, operating the other switch
switches the light off.

This can be written in the form of a truth table (TABLE 2-
1). A 1 under columns A or B represents a switch on and a 1
under column L represents the light on. This can also be
expressed in the form of this equation:

L = + TU3

Ck

RS flip-flop

Ck

Cr

I Pr

Ck

Cr

JK flip-flop

Ck

0

D -Type fhp-flop T -Type

Fig. 2-9. Symbols for different types of flip-flops.

Table 2-1. 1 =sw. on, 1 =light on

A B L

0
0
1

1

0
1

0

0
1

1

0

This states L = A on AND B off OR A off AND B on. More
about equations in the next chapter, but for now a further
equation can be written expressing the combinations that do
not produce an output; that is, do not switch the light on.
This output can be represented by the letter D for dark and
follows:

D=L=AB+AB
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The validity of the first equation can be proved using
this second equation. Applying deMorgan's theorem (to be
discussed in detail in the next chapter) this second statement
becomes:

L= (AB + AB)
=(A+B) (A+B)
= AA + AB+ AB+ BB
=AB+ AB

This restates, and proves the validity of, the first for-
mula. However, it also provides a second equation for imple-
menting the requirements specifically in binary (on -off)
elements to produce the desired switching circuit.

The first equation L = AB + AB (FIG. 2-10) is implemented
in terms of mechanical switches (or relay contacts) and also
in terms of logic gates.

FIGURE 2-11 shows the second equation, L= (A + B)
10(A+ B), implemented in terms of mechanical switches (or
relays) and also in terms of logic gates.

FIGURE 2-10 is obviously the best practical solution, since
it involves only half the contacts (series logic as opposed to

Fig. 2-10. First solution to switching problem.

Simple Switching Functions 21

Fig. 2-11. Alternate solution to switching problem.

parallel logic). In the case of the gate solutions, the choice is
not so obvious. It largely depends on the type gates most
readily available. FIGURE 2-10 requires two AND gates and one
OR gate. FIGURE 2-11 requires two OR gates and one AND gate.

These solutions may seem overcomplicated for the prob-
lem involved. Basically, they are presented to show the prin-
ciple of digital switching circuit design with a simple,
easily -understood example. Suppose we take it one step fur-
ther to derive suitable circuitry for switching a light on from
any of three different switch points.

The starting point is to draw up the truth table as shown
in TABLE 2-2. This establishes all the possible input condi-
tions, but does not give any immediate clue as to possible cir-
cuit design without drawing out each combination in detail.

Table 2-2. All Possible Combinations

A BCL
0 0 0 0
0 0110101011010 011010110 01111
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You can derive a formula from the truth table (or original
logic requirements):

L = AB C + ABC +ABC +ABC

This factors as follows:

L =C(AB + AB) +C(AB + AB)

It is now possible to simplify to some extent by calling
AB + AB = X. Then, since AB + AB = AB + AB:

L=CX+CX

Solutions to this equation implemented in the form of both
mechanical switches and exclusive OR logic gates are shown
in FIG. 2-12.

A A I

Fig. 2-12. Three -position light switching solution.
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SERIES AND PARALLEL WORKING

The difference between digital devices operating in series or
parallel modes is easy to explain diagramatically. In series
operation, binary digits are expressed by voltage levels in a
single output wire displaced in time. Thus a complete signal
representing the binary number, say, 100101 is as shown in
FIG. 2-13. (This is for positive working; it could equally well
be given by negative working. In this case, the 0 level could

+V
Volts

0

re-- Digit Time

Word Time

Fig. 2-13. Series working with positive logic (1 = + V).

be +V, with each pulse appearing as a 0 value; alternately,
the 0 level could be a 0 value and each pulse level being - V.)

In parallel operation, each digit is allocated a separate
line. Outputs then appear simultaneously on each line as
shown in FIG. 2-14. Again, a negative instead of a positive
voltage value could represent a 1. In many practical circuits,
too, the change in voltage or signal swing may be from some
nominal voltage representing condition 0 to some more posi-
tive (or more negative) voltage representing a 1. In such cases
the description HIGH or H is commonly used to designate a 1
signal, and LOW or L represents a 0 signal. In other words,
HIGH (or H) is used instead of 1; and LOW (or L) instead of 0.

Series working may appear the logical choice since it
needs only one digital device or output wire to handle any
number of digits. Parallel working has the disadvantage of
requiring n devices or output wires to handle n digits, or n
times as much circuit hardware to handle the same informa-
tion. However, it has the advantage of being n times as fast as
series working. In practical circuits, however, both the num-
ber of components used and operating time may be modified
by other factors.
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0

0

0

0

0 0

Fig. 2-14. Parallel working with positive logic (1 = + V).

Word Time

SIMPLE ELECTRONIC SWITCHES

A bipolar junction transistor can readily work as a switch
although its characteristics are not ideal for this purpose.
The most usual way of working is in the saturation mode,
when the transistor has two stable states, one passing no cur-
rent (except for leakage current) corresponding to off, and the
other in the saturated state passing maximum current and
corresponding to on. (See FIG. 2-15.)

In the off condition, the collector voltage approaches
V. In the on condition, the collector voltage is VcE, which is
typically on the order of 0.15 to 0.6 volts. However, the tran-
sistor is now capable of passing a (relatively) large voltage.

Sat.

Collector
Current
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Vcc

Off

Collector Voltage

Fig. 2-15. Switching characteristics of a bipolar transistor.

Vcc

Simplified design parameters for such a switching cir-
cuit are:

Base current
Collector current

Bias resistor

IB = Vcc/RB
k= Vcc

= x I,
RB = hfe X Rc
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where h, is the current gain of the transistor in the saturated
mode. R, is the load resistance in the collector line.

These formulas are all approximate. In practice, it is
usually necessary to make the value of RB about 1/4 the theo-
retical value to allow for tolerances and ensure that the tran-
sistor remains saturated over a range of input voltages.

FETs can also be used in a similar manner as switches.
They do not suffer from the same propagation delay present
with bipolar transistors, but still have turn-on and turn-off
delays due to interelectrode capacitance. These are of a simi-
lar order to, or higher than, the delay times characteristic of
bipolar junction transistors. A great deal of information on
solid state devices may be found in the book Solid State Elec-
tronics Theory with Experiments by M. J. Sanfilippo, pub-
lished by TAB Books, Inc.

IMPROVING TRANSISTOR SWITCH -OFF TIMES

A direct method of reducing the switch -off time of a transis-
tor is to reverse bias the base, but any such bias must not be
allowed to exceed the reverse voltage limit of the transistor, or
it will be damaged. An alternative method is to clamp the
base voltage to prevent the transistor from becoming satu-
rated during the switch -on period. This, too, has its limita-
tions so when fast switching times are required from bipolar
transistors, current switching circuits are normally employed
in which the transistor neither becomes saturated nor is cut
off.

DIODE SWITCHING

Diode switching characteristics are illustrated in simplified
form in FIG. 2-16. When reverse biased there is only a very
small leakage current. Application of forward voltage results
in an immediate step to +V (forward conduction). The next
application of reversed ( - V) voltage, however, produces a
transient due to stored charge effect, which then decays to
the leakage current value. The peak transient reverse current
can approach - V/R as a maximum, where R is the resistance

Current
0

Leakage
Current
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Transitory
Reverse
Current

1--- Storage Time

Fig. 2-16. Switching characteristics of a diode.

in the circuit. The time to reverse this charge, or storage time,
varies with the type of diode and construction. In the case of
ordinary diodes it can be a matter of milliseconds, reducing
to nanoseconds in the case of high-speed switching diodes.

SCHOTTICY DIODES

The Schottky diode differs from conventional diodes in hav-
ing a metal -to -semiconductor function at which rectification
occurs. It has specific advantages over conventional junction
diodes in that it does not exhibit carrier charge storage
effects, thus enabling much faster switching speeds to be
achieved. The voltage drop of the Schottky diode is also
much less than that of an ordinary diode for the same for-
ward current.

Diodes are commonly used as a clamp between the base
and emitter of a transistor to prevent the transistor from enter-
ing saturation and to minimize propagation -delay time. It is
readily possible to combine a Schottky clamping diode with
a transistor as an integral device. Such a combination is
called a Schottky transistor.

UNIJUNCTION TRANSISTORS

Unijunction transistors have two base contacts and an emit-
ter. They become conductive (switch on) at a particular firing
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voltage, which typically ranges from 0.5 to 0.85 of the sup-
ply voltage. A particular application of the unijunction tran-
sistor as a switching device is to generate short pulses when
supplied with a varied supply voltage, with pulse rates of up
to 1 MHz readily obtainable.

THYRISTORS

An SCR is basically a silicon diode with an additional cath-
ode electrode known as a gate. If the gate is biased to the
same potential as the cathode, it does not conduct in either
direction (except for a small leakage current). However, if the
gate is biased to be more positive than the cathode, the SCR
behaves as a normal diode; that is, it works as a switching
element triggered by the application ofa positive pulse to the
gate.

The triac is similar in construction, except that it has
both a cathode and anode gate; hence, it can be triggered by
both positive and negative pulses.

SCRs and triacs are also known as thyristors. They are
essentially alternating current switches, an SCR being trig-
gered by the positive half of an ac voltage and a triac by both
positive and negative halves of an ac voltage. Typical basic
switching circuits are shown in FIG. 2-17.

Load

Load

SCR Switching Circuit Triac Switching Circuit
Fig. 2-17. SCR and triac AC switches.
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BOUNCE -FREE SWITCHES

Mechanical switches commonly suffer from contact bounce
when closed, which can give a spurious signal (especially
when switching at rapid rates). This can be avoided by
employing a bounce -free (or no bounce) switch. An example
is shown in FIG. 2-18, employing an RS flip-flop as a follower
for a mechanical switch. The effect of any contact bounce is
now to raise both inputs to the flip-flop to logic 1, leaving the
outputs unaffected.

Fig. 2-18. Bounce -free switch.
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Mathematical Logic
(Boolean Algebra)

LOGIC functions can be expressed by symbols, truth
tables, or mathematically. The latter is known as
Boolean algebra, named after George Boole, who

devised the system of representing logic through a series of
algebraic equations as long ago as the middle of the last cen-
tury. Until the appearance of the first electronic computers
(in 1938) Boolean algebra was regarded as an academic
mathematical exercise. Today it is a tool used by designers of
logic circuits.

The basic symbols used in Boolean algebra are:

 meaning a series condition or AND logic
+ meaning a parallel condition or OR logic
- meaning negation or opposite condition or NOT logic

At this stage it is best to forget conventional arithmetic
where  means multiply and + means add; otherwise,
Boolean algebra may be confusing at first. Multiplication and
addition do enter into working with Boolean equations, as
explained later.

BASIC LOGIC

Basic logic symbols are shown again in FIG. 3-1 with equiva-
lent equations in Boolean algebra.
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YES logic represents a simple continuous condition;
that is, the output (X) is the same as the input (A). The cor-
responding mathematical equation is obviously A = X.

NOT logic represents a negation or opposite condition
between input and output. Here the negation sign used in
the mathematical equation becomes A = X (or A = X).

AND logic requires that input A and B are both present
before there is any output (a series condition), so the mathe-
matical equation becomes A13= X.

NAND logic is the negation of AND, so here the equation
becomes AB =X. Alternatively, this equation can take the
form AB = X, which implies the same logic.

OR logic represents a parallel condition in that an input
must be present at either A or B before there is an output. In
this case, the + sign applies, and the mathematical equation
becomes A + B = X.

NOR logic is the negation of OR, so the negation sign is
added to give A+ B = X.

The above basic equations are given for just two inputs.
Exactly the same forms apply where there are more inputs.
For example, the equation for an AND gate with five inputs
is:

ABCDE = X

With the exception of NOT (which has only a single
input and can only invert signals), each of the expressions for
a logic function can be rearranged to obtain the others. This
is a useful tool when designing logic circuits, for it enables
the required functions to be rendered in the same logic
dependent on the availability, or preferences for particular
components, that is all in OR logic, all in AND logic, or all in
NAND logic. This is done largely by using a NOT function
(or single input NOR gate) as an inverter where necessary,
and using the principle established by deMorgan's theorem
which states that inversion changes the state of the logic each
time it is applied; that is, from  to + or + to  .
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For example, starting with the AND function:

AB =X

Inversion changes the AND (0) to OR (+) logic:

A+B=X

Inverting again gives a positive output:

which is the same as:

A+B=X

A+B=X

In other words, double inversion has changed the func-
tion of an AND gate into OR logic working. All of these steps
are shown in FIG. 3-2. At this stage, the basic rule to remember
is that inversion changes the sign of the equation (except in a
NOT gate) as well as changing the input. This is shown
below:

Logic
OR
NOR
AND
NAND

Equation For
Positive Output
A + B = X
AB =X
AB= X
A +13- = X

With
Inversion
AB = X
A + B = X
A + B = X
AB = X

OR Logic

Working with OR logic throughout, equations must use
only the + sign, with inversion signals where necessary; that
is, to change a  sign to a + sign producing the same func-
tion, and where necessary to give a positive output. The first
example worked above shows how this is done with an AND
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gate. NAND and NOR functions can be obtained in a similar
way.

The NAND function is already in OR logic:

A+B=X

Employing an OR gate to yield a NAND function theory
requires inversion of both inputs as shown in FIG. 3-3.

The NOR function is in AND logic:

AB = X
A+B=X

Fig. 3-3. NAND function performed by two NOT and one OR device.

Inversion on inversion puts the equation back to its origi-
nal state, so this expression simplifies to:

A+B=X

Thus the NOR function is performed in OR logic by an
OR gate followed by a NOT gate for inversion. (See FIG. 3-4.)

A  B -X

Fig. 3-4. NOR function is performed by OR and NOT devices.
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AND Logic

Here the aim is to express all equations with the  (AND)
sign. Obviously, an AND gate already does this; A4013= X
and is shown in FIG. 3-5. Other logic functions can be deter-
mined from an AND gate as follows:

The OR function can be provided by inversion A +13=
Check by inverting again A + B = X
Which is the same as A+ B =X

The NOR function is already in AND logic (AB = X). The
NAND function is devised simply by inversion of the output
of an AND gate AB = X.

AB11}.___ X
A  B=X

AND

A-
B-

A+B=7
7+S= X

NAND

Fig. 3-5. AND, OR, NOR, and NAND functions devised from AND
logic.
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NAND Logic

Here, the requirement is to express all equations in the
form (inverted AND).

To derive the OR function
then invert
invert again
which is the same as

To derive the NOR function
invert
invert for positive output
which is the same as

To derive the AND function
invert
invert for positive output
which is the same as

A+B=X
Tog=3Z
A+B=X
A+B=X

= X

A+B=X
AB= X
A- B = X

AB= X-
A-+11=X
AB = X
AB =X

Derivations of the OR, NOR, and AND functions are shown

in FIG. 3-6.

Exclusive OR

The OR gate, described previously, provides an output if

one or more inputs has a value of 1. More specifically, it can
be described as inclusive OR. There is a possible variation
with a two -input OR gate where there is an output if one and
only one of the inputs has a value of 1. This is known as the
exclusive OR (it is also written XOR, sometimes described as
non-equivalence) shown in FIG. 3-7. It has the truth table of
TABLE 3-1. In other words, there is an output if A=1 or B=1,
but not if the values A =1, B =1 occur simultaneously. The

corresponding Boolean equation is:

(A + B)(AB)= X
or AB + AB = X
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D- x
Fig. 3-7. Exclusive -OR shown in three different forms.

Table 3-1. Exclusive -OR Truth Table

Input Output

A B X

0 0 0
0 1 1

1 0 1

1 1 0

Incidentally, notice in this equation that the period, or
small point, between A and B has been eliminated. In fact,
the point is almost never used and is understood as being
there when two or more letters follow one another; that is,
when they sit side by side.

A particular application of an exclusive OR is as a com-
parator or equality detector. For example, if the two input sig-
nals applied to the gate differ, there is an output. In this case
the gate, in a sense, compares the two signals and detects the
difference. Conversely, if the two input signals are identical,
the exclusive feature means that there is no output. This
absence of output indicates an equality of inputs.

Enable

Enable is an inhibit, such as provided by a NOT applied
to one input of an AND gate as shown in FIG. 3-8 for a two -
input AND gate with inhibit. The third input is called the
strobe (S) or enable input, giving the truth table of TABLE 3-2
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A

B

S

Q

Fig. 3-8. ENABLE has an inhibit function on the S input.

Input Output

A B S 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 1

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Table 3-2. ENABLE Truth Table

where the output is designated as Q. When a high is placed
on the strobe input, a low is applied to the AND gate. This
causes the AND gate to produce a low at its output. No matter
what the other input sees, the output of the AND gate is
always low.

As you can see from TABLE 3-2, there is an output, 1, only
when A =1 and B =1, and S = 0. The presence of an inhibit
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signal (S =1) holds the output at 0 irrespective of any possi-
ble combinations of A and B, even when A =1, B= 1. The cor-
responding Boolean equation is:

ABS= Q

SOLVING PROBLEMS

The basic process of designing logic circuits to meet particu-
lar requirements is to break down the problem into elemen-
tary yes -or -no or stop-go steps involving formal logic, and
co -relating these steps as necessary. This means dealing with
original truths (the facts of the question) called propositions
and putting these together to arrive at an answer, or syllo-
gism, based on the presence of these truths. Specifically, for
example, if a single truth can be dealt with by NOT logic, the
output responding to an input is either NOT (not true) or
NOT NOT (true). Normally, however, more than one input is
involved and there is some interrelationship between inputs,
calling for the use of connections expressing the relation-
ships. The most important of these are the AND and OR
functions.

The following is a problem involving several proposi-
tions and connections, representing the prerequisites neces-
sary to qualify for an executive position:

A. College Degree
OR B. Technical college with relevant certificates
C. At least 5 years of experience in a certain profession
D. Over twenty-five years of age
E. Not married

In plain language the basic relationship is:

A OR B AND C AND D AND NOT E

The corresponding Boolean equation is:

(A+ B)CDE= X
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An immediate solution employing AND, OR, and NOT
logic gates is shown in FIG. 3-9. This also follows directly
from the Boolean equation. Suppose, however, that only
AND and NOT devices are available. This means that the
problem must be solved in AND logic only. This can be
started by inverting the original equation thus:

(AB) +C + D +E=R

)-- )- x

Fig. 3-9. Problem solution using AND, OR, and NOT gates.

Now invert again:

(AB)CDE = X

Note here that by containing (AB) as one term in a
bracket it does not change its state on inversion. Now remove
double inversions as they merely mean using pairs of NOT
devices to get back to the original output:

(AB)CDE = X

The bracketed term (All) remains something of a prob-
lem as it still contains double inversion. However, since we
are restricted to NOT and AND devices this is really no prob-
lem at all, as it can be accommodated by a NOT device in
each input to an AND, and a further NOT in the output. The
final circuit in AND logic is shown in FIG. 3-10.

Given no restrictions on availability of components, fur-
ther solutions can be worked in Boolean algebra to see if any

Solving Problems 43

< m 0 Lu
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simpler circuit can be derived. There is, in fact, using NOR
logic (+):

Starting with
and inverting
inverting again as a whole
and removing double inversions

(A + B)CDE= X _
(A+B)+C+D+E=X
(A+B)+C+D+E=X
(A+B)+C+D+E=X

Remembering that bracketed inputs, (A+ B) in this
example, must be directed to one separate (NOR) device, the
final circuit then works out as in FIG. 3-11. This saves two
components compared with the AND logic circuit of FIG. 3-
10.

Fig. 3-11. Simpler solution to problem solving using OR and NOT
devices.

Whether solution by Boolean algebra is quicker or sim-
pler than design by digital logic diagrams is debatable. For
some people it is, for others it is not. Where it does have a
definite advantage is in positive elimination of unnecessary
components by making it simple to spot and remove double
inversions.
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BOOLEAN ALGEBRAIC THEOREMS

Most problems can be solved by applying the appropriate
Boolean algebra theorems, the basic rules under which Bool-
ean algebra works. Only one has been mentioned so far,
deMorgan's theorem, which is:

ABC=A+B+C
or A+B+C=ABC

There are numerous others, some obvious, others rather
more difficult to understand at first. Those which may be of
particular significance are:

 A = A or B
-

=B, etc. Double inversion returns the
function to its original form.

 AA = A. This means that with an AND device, appli-
cation of the same signal to both inputs will result in
the same output.

 A + A = A. The same as above, but in this case relat-
ing to an OR device.

 AA = 0 or AB = 0. With one input inverted, there is
no output from an AND device.

 A +A=1 or A +13= 1. With one input inverted, pro-
vided one has a value of 1, there is always an output
from an OR device.

A number 1 appearing in a Boolean equation means that
one signal is always applied, while a 0 means that there is no
signal at that particular input. (The numbers 1 or 0 in this
case replace A or B, etc., on a particular input diagram.)
Therefore the next equations can be stated as follows:

 A0 = 0 (the AND function can never be completed
with one input always at 0).

 Al =A (the AND function is completed with a single
input A when the second input is 1; the output is gov-
erned by the value of Al.
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 A+ 0 = 0 (the OR function is complete with one input
signal if the other input signal is 0).

 A + 1 = 1 (the OR function is complete with a single
input when the second input is 1. Compare this with
the AND equivalent).

Functions enclosed by a bracket are subject to normal
algebraic treatment when expanded, as shown next:

 A(B+C) or A AND (B OR C) becomes AB + AC(A AND
B OR A AND C)

 (A+ B) (C + D) OR (A OR B) AND (C OR D) becomes
AC+AD+BC+BD (AANDCORAANDDORBAND
C OR B AND D)

Checking by writing out in words and comparing with
the original expression verifies if the original expansion is
correct or not; i.e., A + (AB) = A. This is self explanatory on
spelling it out; A OR A AND B. It is an OR function satisfied
if only A is present.

In the example A + (AB) = A + B, this is an OR function,
so it is satisfied if A OR B is present. This can be shown with
the following equation:

A OR NOT A AND B = A OR B

4

Logic Circuit Devices
BASICALLY all the functions of a logic switching system

can be provided by NAND/NOR gates, or by either an
AND or OR gate(s) and inverters. The former is the

preferred method since AND/OR circuitry has a number of
practical limitations. If AND/OR elements are cascaded, for
example, each produces some attenuation of the signal
which may require additional amplification at certain stages,
thereby complicating circuit design. With NAND/NOR cir-
cuit design, this is not necessary since the main requirement
here is in observing the maximum number of inputs (fan -in)
and outputs (fan -out) provided by each element.

Initially, all electronic logic circuits were constructed
from discrete components such as transistors and diodes for
active elements and resistors and capacitors for passive ele-
ments. Typically, these yielded printed circuit modules
about 1 inch to 2 inch by 1 inch for assembly into complete
circuits. These have now been almost entirely replaced by
integrated circuits (ICs) offering the performance capabilities
of numerous interconnected modules in a single miniatur-
ized package. Besides offering very great reductions in
weight and size, as mentioned in chapter 1, integrated logic
circuits also have the advantages of greater reliability and
greater speed of operation. They are now generally cheaper
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than all the components needed to construct discrete mod-
ules covering the same functions.

Some integrated circuits have the disadvantage of lower
signal levels in the order of 0.8 to 2 volts as compared with 6
to 12 volts (or even 24 volts) normally employed with discrete
modules. This renders the IC more susceptible to noise and
can place a premium on component location, lead length,
and grounding requirements. However, the widely used
CMOS ICs can be used over a wider voltage range and have
very high noise immunity.

As with discrete component modules, IC logic circuits
are based on the same components of transistors, diodes,
etc., although in very much miniaturized form. Schemati-
cally, therefore, the two forms of circuits are identical,
although for the purpose of use only the external connection
points of the IC normally need to be identified.

The diode -resistor network shown in FIG. 4-1 provides
positive AND logic. With all inputs A, B, C...N positive
(logic 1), all the diodes are reverse biased and do not con-
duct, giving an output of +V (logic 1). In the absence of any

NO

+V
Bias Voltage

Bias
Resistor

-A B  C...  N

Fig. 4-1. A diode -resistor logic network using positive AND logic
and negative OR logic.

Logic Circuit Devices 49

one input, that diode conducts, causing the output to fall to
0.

The same circuit with negative logic ( -V corresponding
to logic 1) works as an OR gate giving a 1 output in the pres-
ence of any input. Equally, if the bias voltage is made more
positive than logic 1, all diodes conduct when all the inputs
are present together, clamping the output to logic level 1.

The network shown in FIG. 4-2 has the diodes connected
in the opposite manner to those of FIG. 4-1. This time, with
positive logic (+V as input) it works as an OR gate and with
negative logic ( -V as input) it works as an AND gate. Again
there is the possibility of clamping the output if required.

+V
Bias Voltage

Bias
Resistor

X=A+B+C +N

NO

Fig. 4-2. A diode -resistor logic network using positive OR logic and
negative AND logic.

The disadvantage of these networks is that if the circuits
are cascaded, the input current to any one circuit must be
provided by the circuit preceding it. This means that rela-
tively low values of bias resistors must be used in order to
maintain the required drive currents. In practice this may not
be possible and buffer amplifiers have to be inserted between
stages.
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DIODE -TRANSISTOR LOGIC (DTL)

Diode -transistor logic overcomes the limitation of cascading
by incorporating a transistor amplifier in the output circuit.
A typical positive logic NOR gate of this type is shown in FIG.
4-3. Here any input going positive (logic 1) causes the base of
the transistor to go positive with respect to the emitter and
cut off. The output is then logic 0 (no current flow through
the collector circuit). When all of the inputs are logic 0, the
base of the transistor is negative, yielding a collector output
approaching the emitter value or logic 1. Worked with nega-
tive logic ( -V= logic 1), this circuit provides a NAND func-
tion.

Bias
Resistor

NO

Fig. 4-3. Diode -transistor logic (DTL).

-V

DTL logic was originally widely produced in IC form
operating at speeds of 2-20 MHz with logic levels between
0.5 and 5 volts and for power supplies between 3 and 6 volts.
It has now been replaced by simpler and more efficient net-
works such as transistor -transistor logic (TTL) and more
exotic devices.
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RESISTOR -TRANSISTOR LOGIC (RTL)

Resistor -transistor logic is another network form which was
widely used for discrete modules, but found less suitable in
IC form because of its low logic levels (about 1 volt) on 3-4
volt supplies. It also has poor fan -out (limited number of out-
puts) and noise immunity. It is still of interest for discrete
module construction since it is a simple and straightforward
circuit with a wide tolerance for variations in component
working values (MG. 4-4).

-v

N

Fig. 4-4. Resistor -transistor logic (RTL).

Positive Logic NAND

DIRECT -COUPLED -TRANSISTOR LOGIC (DCTL)

With DCTL logic, only transistors are used as the switching
elements with the advantage of requiring only one low volt-
age supply with low power consumption and fast switching
speeds. It is attractive for producing IC NAND and NOR gates
utilizing a minimum of components. (See FIG. 4-5.)

Disadvantages of this network are that each input
requires its own transistor, and these transistors must have
uniform characteristics, making DCTL an unattractive choice
for construction of discrete modules. These limitations are
not so significant in IC construction, but this type of IC cir-
cuit is still relatively susceptible to noise.
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-V

-V

Fig. 4-5. Direct -coupled -transistor logic (DCTL).
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EMITTER -COUPLED -TRANSISTOR LOGIC (ECTL)

In the emitter -coupled -transistor logic the transistors are not
allowed to saturate fully and switch a constant current from
one transistor to another. For this reason it is sometimes
called Current -Mode Logic (CML). It is considerably less sus-
ceptible to noise than DCTL and has much higher switching
speeds.

FIGURE 4-6 shows the network for a NAND gate. Here the
bias voltage maintains a constant current through T, if all the
inputs are at a positive level (OV = logic 1). The output at X, is
then negative or logic 0 (ABC). It is therefore positive at X, or
logic 1 (ABC). If any input goes negative ( -V or logic 0) its
transistor will conduct through Re causing T, to cut off. In
this case output 1 goes to ground (logic 1) and output 2 goes
to -V (logic 0). A feature of this circuit is that it provides a
NAND function at output 1 and an AND function at output 2.

TRANSISTOR -TRANSISTOR LOGIC (TTL)

In transistor -transistor logic transistors are connected in the
common -base mode; a typical circuit is shown in FIG. 4-7. All
NOR inputs have to be negative (logic 0) for the output to go
positive (logic 1). Any input going positive causes its transis-
tor to conduct and transistor T, to cut off. Hence, the output
is then 0. Rendered in IC form, a multiple -emitter transistor
is normally used with the corresponding circuit shown in
FIG. 4-8.

Circuits of this type are fast switching (4 to 50 MHz)
with good noise immunity, and are relatively simple to pro-
duce. They are one of the main types used in digital ICs. A
typical TTL device can drive up to ten TTL inputs (has a fan -
out of ten), but should not be connected with outputs of dif-
ferent families in parallel unless having a modified output
stage.

Most of the range of IC devices in TTL are also produced
in low -power Schottky logic based on Schottky diodes and
Schottky transistors. These have the advantage of faster
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+V

Bias
Resistors

000
A B C

Fig. 4-8. TTL NAND logic.

switching speeds and lower current consumption (onlyabout 25 percent of the operating level of typical TTL
devices).

MOSFETS

The metal -oxide -semiconductor field effect transistor (MOS-
FET) is basically a special form of FET often just called MOS.
It has the attraction of being particularly suitable for extreme
miniaturization allowing large and very large scale integra-
tion (LSI and VLSI). MOS devices are thus widely used in
digital electronics as logic gates, registers, and memory
arrays. MOSFE1 circuits consist entirely of FE' s (except for
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parasitic capacitors in certain dynamic applications), but
can be made with a zener diode between the gate and sub-
strate of each, or selected, FET(s). The object of this is to pro-
tect the gate from excessive voltages. Under normal
operation, the zener diode remains open with no effect in the
circuit, but the maximum gate voltage that can arise is lim-
ited to the maximum value of the zener voltage. Examples of
MOSFET gate circuits are shown in FIG. 4-9 together with
standard circuit symbols for a MOSFET. Variations on the
symbols used for MOSFETs are shown in FIG. 4-10.

NOT NAND

Fig. 4-9. Typical MOSFET gate circuits.

NOR

MOSFET gates are, in fact, examples of direct -coupled -
transistor logic (DCTL). The only basic difference is that
because of the high density of components on the same chip
it becomes necessary to minimize power consumption in
large scale integration, although their efficiency, in terms of
power performance, is superior to that of ordinary bipolar
DCTL gates.

There are subtle differences between the characteristics
of MOSFETs and FETs. The drain resistance of a MOSFET is
lower than that of an FET, while the resistance between gate
and drain or gate and source is higher. In all cases, however,
these resistances are extremely high and virtually equivalent
to open circuits when shunted by external circuit resistors.
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Gate

Drain

D

S S
Fig. 4-10. Alternate symbols for MOSFETs. From left to right: N -
channel depletion mode, P -channel depletion mode, N -channel
enhancement mode, and P -channel enhancement mode.

COMPLEMENTARY MOS (CMOS)

Complementary MOS or CMOS employs P-channel and N -
channel devices on the same chip. This makes it possible to
reduce power dissipation to very low levels as small as 50
nanowatts. Like MOSFETs, the basic CMOS device is an
inverter. Combinations of these devices can be used to pro-vide CMOS NAND and NOR gates. About the only disadvan-
tages shown by MOSFET and CMOS devices are their slower
speed of working as compared to some other devices, and
certain high frequency limitations inherent with field effect
transistors due to internal capacitance effects.

MOS LOGIC

MOS logic elements are now widely used and have largely
taken over from TTL for integrated circuits. The extremely
high component density possible means that large memo-
ries, shift registers, and circuits of this type, can be produced
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in very compact packages. While functions performed are
basically similar to those of other logic devices, the behavior
and specific characteristics of MOS and related devices do
differ appreciably and need to be appreciated.

The working mode of asynchronous MOS circuits is
similar to that of other transistor gates using FETs. This dif-
fers from bipolar junction transistors in that MOS devices are
unipolar, have a high input resistance, and are generally less
noisy than bipolar transistors. Their main disadvantage is the
lower gain and the susceptibility of the thin silicon layer of
the gate to damage by excessive voltage. MOSFETs are also
slower than bipolar transistors.

The majority of such circuits use P -channel enhance-
ment mode MOS devices, where the drain supply is a nega-
tive potential and thus they work with negative logic. In
other words, a high negative voltage represents a logic 1. The
supply voltage for such devices commonly ranges from -10
volts to - 20 volts, with logic 1 having a value on the order of
-10 volts. With higher voltages, logic 0 normally lies at a
level of - 2.5 to - 5 volts.

P -channel and N -channel MOSFETs can also be used in
complementary configuration to operate with positive logic.
The particular advantage of this is that N -channel devices are
faster, and so such circuits can have faster switching times
than P -channel devices. Two basic complementary MOS
gates are shown in FIG. 4-11. Other types of MOS devices
include low threshold PMOS, VMOS, DMOS, and HMOS.

PMOS devices incorporate silicon gates in place of input
and output FETs to allow easier interfacing to TTL and to
increase switching speed of the device. Additionally, switch-
ing speeds of three times that of NMOS or PMOS (N -channel
or P -channel, respectively) devices is achieved in VMOS
devices by reduced gate resistance, a result of a V shape cut
in the gate region. DMOS, or double -diffused doping MOS
devices, dissipate only about one half the power of standard
MOS but at the sacrifice of switching speed. In HMOS, or
high-performance MOS devices, switching speed is
extremely fast and power consumption is minimal, but this
type of device has been prohibitive due to excessive cost.
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NOR gate

NAND gate

V

P -channel

AB

N -channel

P -channel

Fig. 4-11. Two basic CMOS gates.

CLOCKED MOS CIRCUITS

MOS circuits are particularly suitable for synchronous, or
clocked, systems. These are generally referred to as dynamic
MOS circuits. The advantage here is that average power con-
sumed by the system is reduced. However, where gates are
cascaded it is necessary to have more than one pulsed supply
to allow for the time it takes the output voltage to reach a
steady state. These pulsed voltages are then applied sequen-
tially to the system, giving two--hase systems, three-phase
systems, four -phase systems, and so on.

DYNAMIC MOS INVERTERS

A basic circuit for a dynamic MOS inverter is shown in FIG. 4-
12, operating as mentioned before with negative logic. This
requires a train of pulses to operate. At logic state 0 (no pulse)
both transistors are switched off and there is minimal power
consumed. With the appearance of a negative pulse, both
transistors are switched on and conduct with output being
the inversion of the input. If A =1 then Q = 0, or if A = 0 then
Q = 1. The output is held on for the duration of the pulse by
the charge on the output capacitor C.

A particularly important feature of a dynamic MOS cir-
cuit is that the parasitic capacitance between gate and sub-

VDD
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Clock

Fig. 4-12. Dynamic MOS inverter.

strate inherent in a MOSFET is used to provide temporary
memory or storage capacity with a time constant on the order
of milliseconds. This storage can be refreshed and made per-
manent by the application of a clock waveform of suitable fre-
quency, such as giving pulse times substantially longer than
the time constant of delay. A typical refresher frequency is
normally 1 kHz or longer.

DYNAMIC MOS NAND GATES

A basic circuit for a dynamic MOS NAND gate is shown in
FIG. 4-13. This is similar to the static NAND gate of FIG. 4-9
except for the additional FET which works as a switching
element controlled (switched on and off, respectively) by the
clock pulse. Again, in the off condition all transistors are off
and power dissipation is minimal.

The dynamic MOS NOR gate is similar to a static NOR
gate with an additional FET acting as a switch for the clock
pulse, shown in FIG. 4-14.

HANDLING MOS DEVICES

MOS integrated circuits are more readily damaged than other
devices and thus need handling and mounting with care.
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VDD Clock

A+ B

Fig. 4-13. Dynamic MOS NAND gate.

-v Clock

Fig. 4-14. Dynamic MOS NOR gate.

They are easily damaged by static charges or transient high
voltages. Ideally, they should be handled on a conductive
surface such as a metal tabletop, to which the person han-
dling the device is also connected by a metal bracelet, or con-
ductive cord or chain.

Similar recommendations apply when mounting MOS
devices on a printed circuit board. If it is impractical to
ground the printed circuit board, then the person mounting
the circuits should touch the board first to discharge any
static before the MOS device is brought into contact with the
board. In practice, the most modern CMOS ICs are difficult
to damage and the only precaution necessary is to store the
chips in conductive plastic carriers. so that all pins are
shorted together.
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INTEGRATED CIRCUITS AND MINIMIZATION

The ready availability of complex circuitry in integrated cir-
cuit chips has considerably changed attitudes towards circuit
design and construction. Medium scale integration (MSI)
can offer dozens of gates in a single package; large scale inte-
gration (LSI) hundreds of gates in a single chip; very large
scale integration (VLSI) thousands of gates in a single chip.
These chips are used to build other, more complex digital
logic circuits. The question of minimization or the elimina-
tion of redundant gates then becomes relatively unimportant.
A standard IC package for a computer, decoder, shift register,
read -only -memory, etc., may provide more internal circuits
than are actually required, but still offers the most straight-
forward, and cheapest, solution even if all of the pins are not
used.

This has influenced design technique too. Instead of
designing a specific, individual circuit as in the days of mod-
ule construction with discrete components, the circuit
designer is more and more having to accept what is prede-
signed in an IC package and use the facilities it provides
accordingly. This means the designer has to work with sub-
systems, rather than specific gates or other binary units. This
has resulted in new design techniques being developed for
implementing circuit performance requirements with IC
subsystems.

STANDARD IC GATES

Integrated circuits are produced in a variety of packages. The
most common are the '105 (Transistor Outline) style can,
similar in size and appearance to a transistor, but with as
many as 12 leads emerging from the bottom; and the flat
package. The latter is of rectangular wafer form or in a dual -
in -line package (DIP) with connections brought out at right
angles from both sides (FIG. 4-15). The DIP IC is larger, much
easier to mount on printed circuit boards, and also cheaper
to produce.

Common forms of digital IC gates are quadruple two -
input NAND, triple three -input NAND, dual four -input
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10.4 max

Fig. 4-15. Dual -in -line and flat IC packages.
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NAND, single eight -input NAND, quadruple two -input
NOR, quadruple two -input AND, inverters, and buffers, but
there are many more. Such gate circuits are available in most
logic families, particularly DTL, TTL, DCTL, and ECTL. The
limitation on the number of gates per chip is normally set by
the number of pins available. As an example, common num-
bers for a flat package are 14, 16, 24, 28, and 40 leads.

Where two different families of ICs may be involved in a
complete circuit (such as TTL and MOSFET) the question of
compatibility can arise because of the difference in operating
voltage levels. Such differences can be accommodated by
buffer circuits dropping a higher level voltage to a lower level
voltage where required. These types of ICs are referred to as
level translators.

MULTIPLE GATE ICS

Integrated circuits commonly contain multiple circuits or
complete subsystems in a single package such as dual, triple,
and quadruple gates; hex buffers and inverters; flip-flops and
latches; shift registers; counters; multiplexers; mnemonics;
display drivers; and arithmetical circuits. All such packages
may appear similar except for the number of leads. The des-
ignation of the leads is therefore of primary importance.

Pin numbering reads around the IC left to right then
right to left, as shown in FIG. 4-16. Note also that some ICs do
not have a notch marking the pin 1 position, but a dot mark
instead. For example, FIG. 4-17 shows a family of NOR gates
with the internal devices shown in symbolic form together
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HEF 4534B

VDD t Ce,02 t ZB0 t ZB2 f ZS3 t ZS2 TC
CPB EZB ZB, ZB2 EZ5

MR CPA MA MB

II FM II El 11 El 1/ El 14 OE iN
Ce,, OER ZS0 SR ZS,

Fig. 4-16. Conventional method of lead or pin -out numbering. This
IC is a real time S -decoder counter.

NC 11 K=D+E+F )14 V. A 1

NC 2(13F B2
A3 12E J3
C5

11-41N11101 DK CK 45CS

H6( i )9L 'D6
Vs, 7( 8G Vu 7(

J=A+8
M

3H

2G B3

M C4

10L D5

9F NC 6

8E 'Vss 7

4000A 4001A

Fig. 4-17. Family of IC NOR gates.

14 V. J11=14 V. A 1
J=A+B+C+

A 2 13 K

12 H

11 G

OF

=E+F+G

4002A

E

NC

4025A

14 V.

13 G

111H
+H+I
10 L

9J

8C

with their connection to external leads. Externally there is no
difference in the appearance of these packages, although
they have quite different functions and external connections.
The 400A is a dual three -input NOR gate (two gates plus
inverter). The 4001A is a quad two -input NOR gate (four
gates). The 4002A is a dual four -input NOR gate (two gates).
The 4025A is a triple three -input NOR gate (three gates). A,
B, C, D, etc. are inputs to the gates while J, K, L, etc. are gate
outputs. Additionally, V,, and V are the supply voltages,
with Vss being the most negative power supply to the device.
Finally, N.C. simply means no connection. This provides all
of the information necessary to connect the chosen IC into a
given circuit.

If the circuit is to be designed around the IC, then the
electrical characteristics as specified by the manufacturer
need to be known as well. A logic diagram of the IC can also
be helpful. FIGURE 4-18, for example, is a logic diagram for an
8 -input NOR gate IC (HEF 4078B).
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Fig. 4-18. Logic diagram for an 8 -input IC NOR gate.

IC BUFFERS

Individual buffer circuits are produced in IC form, the usual
number being six contained in a standard 16 -pin package.
These may be inverting buffers or non -inverting buffers,
described as hex inverting buffers or hex non -inverting
buffers as shown in FIGS. 4-19 and 4-20.

Where buffers are provided with input protection as
shown in FIG. 4-21, input voltages in excess of the noted sup-
ply voltage for the buffers can be accepted. Such buffers can
also be used to convert logic levels of up to 15 volts to stan-
dard TTL levels.

Hex buffers are also produced with three -state outputs as
illustrated in FIG. 4-22. Here the three -state outputs are con-
trolled by two enable inputs. A predetermined number of
buffers can then be made to assume an off state via the appro-
priate enable signal regardless of the input conditions.

SCHMITT TRIGGER

The Schmitt trigger is another hex (six gate) IC form, this
time in 14 -pin packages. These trigger circuits are available
in inverting and non -inverting forms as shown in FIG. 4-23.

Fig. 4-19. Hex inverting buffer IC.

iM 1111 ibl

n.c. 0, 16 n.c. 05 15 0, 1,

HEF4050B

VDD 01 II 02 12 03 13 VSS

N M 13 N El

Fig. 4-20. Hex non -inverting buffer IC.
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2 ..4)*. 02

13o3
I4 q>01)",

04}.0."m05

16 .4)0000306

0
Fig. 4-21. Input protection for buffer circuits.

0

COMPLEX ICS

Integrated circuits embodying complete subsystems may
have 14, 16, 24, or even 40 leads, each lead specifically des-
ignated. This may be in words and/or code letters. Abbrevia-
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VD E02 15 Z5 16 Z6 14

HEF 4009 7B

E04 I, Z, 12 Z2 13 Z3 VSS

Fig. 4-22. Three -state hex non -inverting buffer.

For 4715A For 4721A

In 1 1( 14 Vcc In 1

Out 1 2 13 In 6 Out 1

In2 3(, 12 Out 6 In2
Out2 4 11 In 5 Out2

In 3 5 10 Out 5 In 3
Out 3 6 9 In 4 Out 3

GND 7 ( 8 Out 4 GND

Fig. 4-23. Hex Schmitt trigger IC.

tions commonly used are:

1 I/

2

3

4

5(,
6

7

14 Vcc

13 In 6

12 Out 6
11 In 5

10 Out 5

9 In 4

8 Out 4

 AO, Al, A2, etc., for inputs (especially address
inputs)

 01, 02, 03, or QO, Ql, Q2, etc., for outputs
 D for data input
 E for enable
 El for latch enable
 C, Ck, Cp for clock (input)
 CE for clock enable
 R for reset
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 SO, S1, S2, etc., for select inputs
 ST for strobe input
 Cl or CL for clear
 R/W for read/write input

DIGITAL FAMILIES COMPARED

DTL, originally used for the production of NAND gates, is
now largely regarded as obsolete for IC production. Its chief
limitations are that it has limited fan -out and a relatively
high propagation delay (typically 30 ns per gate). Only a low
voltage supply is necessary, however, and power dissipation
is low.

TTL has similar or slightly higher power dissipation,
but smaller propagation delay and very good noise immu-
nity. MOS and CMOS devices are slower than TTL and also
more sensitive to capacitance loading.

CMOS is particularly suited to LSI and VLSI because of
the very small device size possible and the higher potential
packing density. TTL elements are generally produced in SSI
and MSI complexity.

In terms of power dissipation, low power Schottky (LS-
TTL) and TTL are similar, with MOS lower and CMOS sub-
stantially lower. Some comparative data is summarized in
TABLE 4-1.
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Flip -Flops
and Memories

THERE are a number of different types of logic devices,
or more appropriately, combinations of logic devices
that perform the function of storing a binary digit

(bit). One of these is the flip-flop. It is made up of several
gates so arranged that placing a 1 or 0 on its input can cause
it to hold (memorize) that 1 or 0 even when the input is
removed. The flip-flop latches on to the input level and is
therefore also called a latch. Dfferent kinds of flip-flops are
used for various purposes; some are discussed in this chap-
ter.

RS FLIP-FLOPS

The RS flip-flop can be configured in different ways, always
with the same expected results, using digital logic gates. The
first of these is the RS NOR latch shown in FIG. 5-1. This latch
uses two cross -coupled NOR gates to perform the latch func-
tion. Cross -coupled means that the output of NOR gate 1 acts
as one of the inputs to NOR gate 2 while the output of NOR
gate 2 acts as one of the inputs to NOR gate 1. The truth table
is listed in TABLE 5-1. Notice that the RS NOR latch has two
outputs, Q and Q (not Q). Q will always be the opposite of Q.
If Q is 1 then is 0, and if Q is 0 then Q is 1.
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Fig. 5-1. The RS NOR latch (flip-flop).

R S 0 0 Mode

0 0 NC NC Hold
0 1 1 0 Set
1 0 0 1 Reset
1 1 0 0 Disallowed

Table 5-1. RS NOR
Latch Truth Table

The operation of the RS NOR latch is such that on power
up of the latch you must assume that one of the gates will
switch first and cause a condition of a 1 or 0 on the Q output.
This then determines the operation of the flip-flop. If Q is 1
(high) then Q is 0 (low). With a 1 on the S (set) input the Q
output stays high and is said to be set. The Q output remains
high even with both inputs removed. The only time Q goes
low (flip) is when there is a 1 on the reset input and a 0 on
the set input. To get Q to go high again (flop) the set input
must be high with the reset line low.

The RS NAND latch is illustrated in FIG. 5-2. It performs a
latch function also but because it uses NAND gates, the same

Fig. 5-2. The RS NAND latch.
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input conditions produce opposite results. Its truth table is
listed in TABLE 5-2.

The clocked RS flip-flop of FIG. 5-3 has two additional
NAND gates that allow either the reset or set pulse to trigger
the flip-flop, but only when the clock input is positive. Its
truth table is listed in TABLE 5-3.

Table 5-2. RS NAND
Latch Truth Table

Clock

R

R S 0 0 Mode

0 0 1 1 Disallowed
0 1 0 1 Reset
1 0 1 0 Set
1 1 NC NC Hold

Fig. 5-3. A clocked RS flip-flop.

Table 5-3. Clocked RS Flip -Flop Truth Table

CK R S Q 0 Mode

0
SI
_FL
_FL
II_

X
0
0
1

1

X
0
1

0
1

NC
NC

1

0
0

NC
NC
0
1

0

Disable
Hold
Set

Reset
Disallowed

D FLIP-FLOPS

D flip-flops are also called data latches. As long as the clock
input is high, Q follows the value of input D. If D is high
when the clock (Ck) is high, then the output (Q) is high. If D
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goes low while the clock is still high, then Q goes low. In
other words, Q is at the same level as D as long as the clock is
high. However, once the clock input goes low, the output at
Q remains at whatever the last value of D was just prior to the
clock going low. The flip-flop latches to the last value of D
while the clock input was high. A D flip-flop is shown in FIG.
5-4. Its truth table is shown in TABLE 5-4.

Ck

Fig. 5-4. A D -type flip-flop can be construc ed as shown on the top,
but comes in a single IC and uses the symbol on the bottom.

CK D Q

0 X Last
State

1 0 0

1 1 1

Table 5-4. D Latch Truth Table

To see how a D latch operates as a memory device, look
at FIG. 5-5. Here you see four D latches with their clock lines
tied together. This is the concept of temporary storage of a
word (4 bits) of memory. When the clock input goes high, the
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input data is loaded into the flip-flops. The levels of this
input data are also seen at the output. As soon as the clock
goes low (it goes low on all the latches at the same time since
they're tied together) the output retains this data. As an
example:

If D D2, D Do = 1011
Then Q3, Q2, Q1, Ro = 1011

As soon as Ck goes low, 1011 is the output data that is
retained. As long as Ck is low, D, to Do can change all day
long, but Q, to Qo always remains 1011. This is a good exam-
ple of what can be referred to as a basic memory circuit. Later
you will see all of these D latches incorporated into a single
IC package.

JK FLIP-FLOPS

The JK flip-flop can function as a clocked RS flip-flop or as a
toggle flip-flop. It can also serve in a number of specialized
functions. In addition, there are no forbidden (ambiguous)
conditions, meaning that all four possibilities in its truth
table are equally valid. A JK flip-flop is shown in FIG. 5-6. The
truth table for the JK flip-flop is shown in TABLE 5-5. This is a

Ck

1
R

Fig. 5-6. Logic diagram for a JK flip-flop.
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Table 5-5. JK Flip -Flop Truth Table

J K 0, (after Ck)

0 0 No Change
0 1 Resets
1 0 Sets
1 1 Toggles

positive edge triggered flip-flop meaning that clocking
occurs when the clock goes from low to high (from 0 to 1).

THE JK MASTER -SLAVE FLIP-FLOP

The JK master -slave flip-flop is actually the end product of
the previous flip-flops discussed so far. It eliminates timing
problems associated with the simpler latches including a
problem called racing. Racing occurs when a flip-flop tog-
gles more than once during a positive clock edge. A logic
diagram for the JK master -slave flip-flop is shown in FIG. 5-7.
Notice that the clock input is provided directly to the master
section and also to the slave section, but there, through an
inverter. This low level clock into the slave section locks out
any data input to that section.

With the arrival of a clock input to the master section,
either J or K is ready to cause this section to change state.
This ready state on the J or K input is a function of the out-
puts of the slave section. If the slave is in the reset state, the
master can set, and if the slave is in the set state then the mas-
ter can reset.

If it is assumed that the slave section is in the reset con-
dition, then the master can only respond to a set command
during the clock on -time period. Even if the master changes
state during this on -time, the slave remains as it is. When the
clock on -time ends, or goes from high to low, into the master,
the clock into the slave goes from low to high, due to the
inverter. At this time the master cannot accept data at either
of its inputs because its clock line is low, or off. The slave, in
effect, acts as a holding stage for data to be transferred to a
next flip-flop (as in a shift register chain) and gives all cir-
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cuitry in the chain sufficient time to settle in. In a sense, the
slave acts as a buffer for the data between the master and
other flip-flops in more complex circuitry. The truth table for
a JK master -slave flip-flop is shown in TABLE 5-6. Keep in
mind that all of these types of flip-flops discussed are known
as digital memory devices.

Table 5-6. JK Master -Slave Flip -Flop Truth Table

Ck J K 0 ra Mode

0 X X NC NC Disable
0 0 0 NC NC Hold
0 1 0 1 0 Set
0 0 1 0 1 Reset
0 1 1 1/0 1/0 Toggle

SAMPLE -AND -HOLD

A sample -and -hold circuit is an analog memory. FIGURE 5-8
shows a basic circuit. A negative sampling pulse applied to
the gate closes the circuit allowing the capacitor to charge to
the instantaneous voltage of the input. In the absence of a
pulse, the gate circuit opens with the capacitor retaining its
charge. The output is thus a steady voltage level charging in
steps between the sampling pulse intervals.

Fig. 5-8. Sample -and -hold, or analog memory.

To work effectively, the time of the sampling pulses must
be short, the value of the capacitor low, and the output impe-
dance of the op amp high in order not to discharge the capac-
itor between the sampling pulses. Also, the capacitor must
be of a type which can hold its full charge between sampling
pulses. Finally, a field effect transistor (MOSFET) is prefera-
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ble to a bipolar transistor switch in most sample -and -hold
applications, although the latter can be used. Today there aresample -and -hold ICs that contain the type of op amp applica-ble for this type of analog memory function.

READ -ONLY -MEMORY (ROM)
Read -only-memory (ROM) is a circuit which accepts a binarycode (known as an address) at its input terminals and pro-vides another binary code or word at its output terminals foreach of the input combinations. Basically, therefore, it is acode -conversion system, although essentially it consists of adecoder applied to the input signals feeding an encoder pro-

viding the output signals. Since this encoder is essentially amemory matrix, the information it is provided with is storedand can be read out as often as required-hence the descrip-tion read -only-memory (FIG. 5-9).

X 0X, 0-
0111. AIN GI

.1MI

xn_ 0--

v

00

0

Word Lines

Fig. 5-9. Read-only memory (ROM).

Encoder

I 111111
Y,_, Y, Yo

Specifically, a ROM has a specified number of inputs(X0, X X2, etc.) and a specified number of outputs (Yo, 171,Y2, etc.). These numbers are not necessarily the same. Thus,if there are X inputs and Y outputs, the capacity of that ROMis X words each of Y bits, or an X by Y bit memory. For exam-ple, if there are 32 inputs with 8 outputs this particular ROMhas a capacity of 32 words each of 8 bits, or 32 x 8=256 -bit
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memory. ROMs from 256 -bit up to 1024 -bit are typical fig-
ures for MSI using CMOS in conjunction with TTL logic.
With LSI much larger memories can be achieved in a single
package. Alternately, ROMs can be cascaded to provide
larger memories. In the very near future you will probably
see ROM memory devices with capacities in the megabytes
(millions of bits of memory locations).

The way a ROM works is to decode the input into word
lines (Wo, W1, etc.), which are the minterm (see Appendix B)
outputs of the decoder. These lines are then encoded again in
the memory matrix where they are held. The working rela-
tionship can be established by a truth table or Boolean equa-
tions, or both, as a guide to implementation. Taking a
four -input four -output ROM as a simple example, the truth
table for conversion from binary code to a Gray code would
look like TABLE 5-7. To accommodate different arithmetic
codes some IC ROMs are designed to be programmable after
manufacture (PROMs). Additionally, EPROMs and EEPROMs
(erasable and electrically erasable PROMs respectively) pro-
vide a way to change the memory contents of ROMs from
time to time as necessary.

RANDOM-ACCESS MEMORY (RAM)

A random-access memory (RAM) is a similar device to a
ROM except that the stored words can be addressed and writ-
ten directly as well as being read. RAM chips are sometimes
also known as read -and -write memory. The decoder in this
case employs latches (flip-flops) instead of diodes or transis-
tors, which are bistable devices. This means that while a
RAM provides stored memory, this is lost when the power
supply is removed. For this reason, a RAM is described as a
volatile device, with power dissipation necessary to main-
tain storage. In the case of certain types like a dynamic MOS
RAM, a refreshing charge is necessary at regular intervals
(every millisecond or so) to replace leakage of all capacitance
on which the memory depends.
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Table 5-7. Binary -To -Gray Code Conversion
of a Four-Input/Four-Output ROM

X3

Binary Inputs

X2 X1 XO

Word
Line

Gray Code Outputs

Y3 Y2 Y1 YO

0 0 0 0 WO 0 0 0 0
0 0 0 1 W1 0 0 0 1

0 0 1 0 W2 0 0 1 1

0 0 1 1 W3 0 0 1 0
0 1 0 0 W4 0 1 1 0
0 1 0 1 W5 0 1 1 1

0 1 1 0 W6 0 1 0 1

0 1 1 1 W7 0 1 0 0
1 0 0 0 W8 1 1 0 0
1 0 0 1 W9 1 1 0 1

1 0 1 0 W10 1 1 1 1
1 0 1 1 W11 1 1 1 0
1 1 0 0 W12 1 0 1 0
1 1 0 1 W13 1 0 1 1

1 1 1 0 W14 1 0 0 1
1 1 1 1 W15 1 0 0 0

and the corresponding Boolean equations would be:-

CYO= W1 + W2 + W5 + W6 + W9 + W10 + W13 + W14

DY1 = W2 + W3 + W4 + W5 + W10 + W11 + W12 + W13

0Y2 = W4 + W5 + W6 + W7 + W8 + W9 + W10 + W11

DY3 = W8 + W9 + W10 + W11 + W12 + W13 + W14 + W15

Dynamic MOS RAM

In a dynamic MOS RAM information can be stored on
the parasitic gate -to -substrate capacitance, resulting in con-
siderable circuit simplification where only three devices are
needed to store four bits instead of the eight in a static MOS
RAM. In this case, however, refreshing of all bits is required.

Typical IC RAM

A typical IC RAM is shown in FIG. 5-10. This figure
shows the physical form (14 pin flat package) and block dia-
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gram for a 64 -bit, 1 -bit per word random access read/write
memory. The memory is strobed for reading or writing only
when the strobe input (ST), chip enable inputs (CE, and CEJ
are high simultaneously. The output data is available at the
data output (D0,) only when the memory is strobed, the
read/write input (R/W) is high, and after the read access time
has passed. Note that the output is initially disabled and
always goes to the low state before data is valid. The output is
disabled when the memory is not strobed or R/W is low. R/W
may remain high during a read cycle or low during a write
cycle. The output data has the same polarity as the input
data. The function table is as follows:

ST, CEi, CE, R/W Da
low low floating
high low floating
low high floating
high high memory data

REGISTERS

Mode
disabled
enabled(write)
disabled
enabled(read)

Flip-flops are a binary device and thus have a memory capac-
ity of 1 bit of memory. It follows then that a combination of
flip-flops can store as many bits as there are flip-flops, mean-
ing, as an example, that 8 flip-flops can store an eight -bit
word. Such a combination of flip-flops or binary memory
devices is called a register. Normally, to allow the data word
to be fed in serially, flip-flops are connected serially, output
to input. The data is then progressively shifted along the line
of flip-flops to complete the word. In this case, the circuit is
referred to specifically as a shift register. These are described
in more detail in chapter 11.

6

Number Systems
THERE are a number of different methods used to count
in digital electronics. So far, you have been intro-
duced to binary numbers and their use in represent-

ing decimal numbers. Binary numbers have a base of two,
while decimal numbers have a base of 10. Knowing how to
convert from one system to another can be very helpful in
dealing with digital electronic circuits, but operations in
digital circuitry can also be expressed using other number
systems such as the octal number system and the hexadeci-
mal number system. This last number system is especially
important in understanding the operation of microprocessor
circuitry, a field of study that is essential in understanding
today's microprocessor based electronic equipment.

BINARY CODED DECIMALS

While digital electronic devices think, count, or react in
terms of binary arithmetic (1 or 0, on or off), the human brain
finds it much easier to think and communicate in decimal
numbers. Some method of being able to render binary num-
bers in easily -readable decimal equivalents is therefore
highly desirable, like an in-between system representing
binary coded decimals.
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This can be done quite simply. To represent the ten deci-
mal numbers from 0 to 9, four binary digits or bits are
required as shown below:

Decimal Pure Binary
(21 (22) (2') (2°)

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

You can easily write decimal equivalents of 0 to 9 in sep-
arate groups of four bits, using as many groups as necessary
to cover the number of digits in the decimal number. Takingthe decimal number 7,893 as an example, each digit is
treated separately as a number between 0 and 9:

decimal 7 8 9 3
binary coded decimal 0111 1000 1001 0011

This works equally as well the other way. To translate a
binary coded decimal into its decimal equivalent each group
is connected in turn:

binary coded decimal 0101 0011 1000 0111
decimal 5 3 8 7
or 5,387

This particular system is known as an 8421 binary coded
decimal, or 8421 BCD. The numbers here actually refer to the
assigned values or weights given to the respective groups.
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Using four groups, as in the example, the weights are:

23 = 8 22 = 4 2' = 2 2° = 1

A little further study shows that with this method of
grouping, the four bits actually provide 16 possible combina-
tions, only ten of which are used to cover the decimal num-
bers 0 to 9. In other words, six of the combinations are
redundant, or unnecessary. This is shown in TABLE 6-1. As
you can see, the decimal numbers 0 to 9 can be represented
using 4 bits. Notice that 1001 is the largest 4 -bit group in this
8421 code. This code does not use the numbers 1010, 1011,
1100, 1101, 1110, 1111. If any of these numbers appears in a
digital machine using this code, an error has occurred.

Table 6-1. Decimal, 8421, and Binary Comparisons

Decimal 8421 Binary

0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001

10 0001 0000 1010
11 0001 0001 1011
12 0001 0010 1100
13 0001 0011 1101
14 0001 0100 1110
15 0001 0101 1111

As you can see, the 8421 code is the same as binary from
0 to 9. This is why it is called the 8421 code. However, with
numbers greater than 9, the 8421 code is quite different from
the pure binary number code. As an example, the binary
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number for 14 is 1110. But 0001 0100 is the 8421 code for thenumber 14. In the 8421 code, therefore, every number above9 is very much different than numbers above 9 in the binarynumber code.
In a practical application, say using memory gates orflip-flops, to locate decimal numbers when fed by the 8421BCD code (or vice versa), each group of numbers would need

four flip-flops, and each set of four groups would have six
unnecessary (redundant) code combinations. These could beeliminated by the use of a suitable alternative BCD.

TYPES OF CODES

There are many possible BCD code sequences, with the rela-tive advantages of each depending on a variety of factors suchas simplicity of circuit construction, operating speed, andease of decoding for read-out purposes. Some are weightedcodes while others are not.
Basic requirements of a weighted code are that theweights must be chosen so that their number is not greaterthan 15 and not less than 9. Additionally, one of the weightsmust be 1, and another either 1 or 2. For example, some pos-sible combinations are 7421, 5421, 5211, 2421, and 8421

(already described). The respective group equivalents areshown in TABLE 6-2.

Table 6-2. Group Equivalents of Binary Numbers

Decimal Pure Binary Binary Coded Decimal

0
1

2
3
4
5
6
7
8
9

(23) (22)
0 0
0

0

0

0

0

0

0

1

1

0
0
0
1

1

1

1

0

0

(2'1
0

0

1

0

0

1

0

0

(2°)
0
1

0

0

0

0

7421 5421 5211 2421
0000
0001
0010
0011
0100
0101
0110
1000
1001
10 -In

0000
0001
0010
0011
0100
1000
1001
1010
1011
1100

0000
0001
0100
0110
0111
1000
1001
1011
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1110
1111
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The 7421 BCD code has a particular advantage in practi-
cal applications in that it employs a minimum number of 1s.
The figure 1 in a binary device represents an on state, nor-
mally drawing current. Thus, this code is attractive for pro-
viding minimum current consumption.

5421 BCD and 2421 BCD, or any other code where the
sum of the weights is 9, yield the property that the 9's com-
plement of the number (that is, 9 -N, where N is the number)
can be obtained simply by inverting the binary equivalent.
For example, in 5211 BCD, decimal 6 is given by 1001.
Inverting this gives 0110 or the decimal number 3 (9 -6 = 3).
This again can be of particular advantage for certain types of
circuits.

Three other codes are worth mentioning here. These are
the Excess Three Code, the Reflected or Gray Code, and the
Johnson Code. The Excess Three code is a self -complement-
ing code obtained by adding 3 to each group of the binary
code. It is very useful for performing decimal or binary
coded decimal arithmetic. The Reflected or Gray code is also
widely used, particularly in digital shift position encoders
as it incurs only one digit change in passing from any one
combination to the next. The Johnson code is quite different
as this is an unweighted code, particularly adapted to count-
ing because of the simplicity with which it can be decoded
into decimal. TABLE 6-3 shows the equivalents in the three
codes for decimals 0 to 9.

Table 6-3. Equivalent Numbers in Three Different Codes

Decimal Pure Binary Excess
Three Code

Gray
Code

Johnson
Code(23) (22) (2') (2°)

0 0 0 0 0 0011 0000 00000
1 0 0 0 1 0100 0001 00001
2 0 0 1 0 0101 0011 00011
3 0 0 1 1 0110 0010 00111
4 0 1 0 0 0111 0110 01111
5 0 1 0 1 1000 0111 11111
6 0 1 1 0 1001 0101 11110
7 0 1 1 1 1010 0100 11100
8 1 0 0 0 1011 1100 , 11000

,

9
I

1 0 0 1 1100 1101
I

10000
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PARITY BITS

When the code used contains redundancies, the appearanceof a redundancy number indicates an error. For example, the
appearance of 1111 when using 8421 BCD indicates an errorsince no such number exists in the code. Errors produced bydropping or gaining a digit in the same code group, however,are not apparent as they still show valid combinations. Thesame is true of all codes used having no redundancies.

The simplest method of error detection is to add an extrabit, called a parity bit, in each group, giving this a value of 0or 1 to make the total number of is in each group either oddor even. Should an error occur, this immediately shows up bythe fact that the number of digits in the group will no longerbe odd (or even).
The limitation of this is that only single errors show up.Two errors occurring in the same group return the sum of thedigits to odd (or even) and show as correct. Three errors inthe same group again indicate an error, but not whether a sin-gle or triple error occurred.
To check blocks of information the readout can be

arranged in the form of a matrix. Parity checks are then madeon the rows and columns, including the extra row formed bythe column parity check (which also needs it own parity bit).An example of odd parity could be shown using the decimalnumber 8732. The normal 8421 BCD would be:

1000 0111 0011 0010

Adding an odd parity bit means that the total number of
1s in each four -bit group becomes an odd total. The decimal
number 8732 with an odd parity bit added to the end of eachfour -bit group then becomes:

10000 01110 00111 00100

TABLE 6-4 shows the number 8732 in a manner in whichthe odd parity bit may be seen in a somewhat simpler man-ner. TABLE 6-5 is an example of the 8421 code for decimal
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Table 6-4. An Example of Odd Parity

Decimal BCD
Parity

Bit
Total
Bits

8 = -1000 0 odd, OK
7 =.-0011 1 odd, OK
3 = -0011 1 odd, OK
2 = -0010 0 odd, OK

Table 6-5. Odd Parity for the 8421 Code

8421 Code Added Bit

0000 1

0001 0
0010 0
0011 1

0100 0
0101 1

0110 1

0111 0
1000 0
1001 1

numbers 0 to 9 and the added bit that is necessary for odd
parity.

In actual digital circuitry the probability of bit errors is
actually very small. If an error does occur, it is most likely a
one -bit error. However, because the possibility does exist,
other methods of detecting multiple bit errors are used. One
of these is the Diamond code. The Diamond code is designed
to detect multiple errors using the property of all numbers
which obey the formula 3n+2. The check is made by sub-
tracting 2 from the combination and dividing the remainder
by binary 3. If there is no remainder, the combination is
valid.

OTHER NUMBER SYSTEMS

In most cases when you hear the word -number," you imme-
diately think of decimal numbers. That is because you have
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learned to add, subtract, multiply, and divide in a number
system that has a base of 10. Of course, you are now becom-
ing more familiar with the binary number system but other
methods used to represent numbers do exist. They are rooted
in the binary number system but represent decimal numbers
differently than does the 8421 code or the binary code. Two
of these are discussed next.

Octal Numbers

The octal system is a numbering system with a base of 8.
This means it has eight digits, 0 to 7, relative to the decimal
system, although decimal 10 equals octal 8. The advantage of
octal numbers is that they can be written as groups of three
binary digits, called binary triplets. Thus, conversion from a
binary number to an octal number is direct and straightfor-ward as shown below:

Octal Binary Triplet
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

To convert a binary number into its octal equivalent, the
binary number is broken down into groups of three, or trip-
lets. If necessary, zeros are added in front of the number to
complete a set of triplets. The corresponding octal number
then follows from the equivalent of the various triplets. An
example is shown here:

Binary 10110011
group in triplets 10 110 011
add zero to complete 010 110 011
corresponding octal numbers 2 6 3
Therefore the octal number equals 2638
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Notice that this is not the decimal number. To convert
the octal number 2638 to its decimal equivalent, remember
that each digit in the octal system corresponds to a power of
8, just as in the binary system where each digit corresponds
to a power of 2. In octal numbers, the weights of the digit
positions are as follows:

83 82 8' 8°

(512 64 8 1 = decimal equivalents)

Therefore, to convert any octal number to a decimal
number, multiply each octal digit by its weight and add the
resulting products. In the case of the octal number 2638, its
decimal equivalent becomes:

2(82) + 6(81) + 3(8°) = 128+ 48+ 24= 200,0

Therefore, the decimal equivalent of the octal number 263 is
200.

Octal numbers can be used to check computer arithmeti-
cal solutions by comparing the answers obtained by the two
numbering systems. A worked out example should make this
clear.

Binary Sum Octal Sum
110 6

+010 +2
1000 10

001 000
1 0 octal equivalent

The two octal numbers agree-the one derived directly
by octal number working and the other extracted as the octal
equivalent of the binary sum solution. Thus, the binary
arithmetic is correct.

Hexadecimal Numbers

Hexadecimal numbers are numbers with a base of 16.
After the number 9, letters A through F are used as shown in
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TABLE 6-6. After the letter F, 2 -digit combinations are usedtaking the second digit followed by the first digit, then thesecond digit followed by the second digit, and so on. Thismeans that the next number following F is 10, then 11 to 19followed by 1A to 1F, then 20 to 29, then 2A to 2F, and so on.The importance of hexadecimal numbers cannot be over-stated. In the study and understanding of microcomputers,hex numbers are essential in programming, designing, and
troubleshooting.

Table 6-6. Hexadecimal Conversion Table

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

To convert a hex number to a binary number, simply con-vert each hex digit to its 4 -bit equivalent. As an example, toconvert 6BD to binary:

6 = 0110
B = 1011
D = 1101

Therefore 6BD,6 = 0110 1011 1101
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To convert a hex number to a decimal number you can
either convert the hex number to a binary number first, then
convert the binary number to the decimal number, or you can
go directly from hex to decimal if you know the weights of
the powers of 16. As an example, to convert C5F2 to decimal:

C5F2 = C(163) + 5(162) + F(161) + 2(16°)
12(161 + 5(162) + 15(16') + 2(16°)
49,152 + 1,280 + 240 + 2
50,674

Most of today's scientific calculators are capable of con-
verting from octal to binary, binary to decimal, and every
combination in between. However, scientific calculators are
not always readily available so it helps to know how to manu-
ally perform these conversion operations.

In the application of microcomputers, numbers made up
of eight bits each are located in certain areas of memory
known as addresses. If you want to retrieve a specific binary
number from memory, you need to know its address. For a
microcomputer that can store 65,536 eight -bit numbers, the
address locations in binary would be 0000 0000 0000 0000 to
1111 1111 1111 1111. These would be address locations for
the decimal numbers 0 through 65,535. But in hex, the
addresses are 0000 through FFFF. As you can see, a great
deal of time and energy can be saved using hex numbers.

HANDLING FRACTIONS

In the decimal system fractions are, of course, simply desig-
nated by a decimal point. Fractions are thus expressed in
negative base values, such as 10-', 10-2, 10-3, etc. Exactly the
same principle applies with any other numbering system
although the resulting fractions will have quite different val-
ues. In the case of the binary system, for example, the nega-
tive base values are 2-1, 2-2, 2 3, etc., the corresponding
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fractions being 1/2, 1/4, 1/8, etc. Here are some typical com-parisons:

Decimal
10° 10-1 10-2 10

(1/8) 0. 1 2 5
(1/4) 0. 2 5 0
(1/2) 0. 5 0 0
(3/4) 0. 7 5 0
(1) 1. 0 0 0

Binary
2° 21 2-2 2-3
0. 0 0 0
0. 0 1 0
0. 1 0 0
0. 1 1 0
1. 0 0 0

Octal
8° 8-1 8-2

(1/8) 0. 1 0
(1/4) 0. 2 0
(1/2) 0. 4 0
(3/4) 0. 6 0
(1) 1. 0 0

One point which arises is that to express a fractionexactly, the denominator of the fraction must be exactlydivisible by the base of the system. Thus the binary systemcan accommodate all fractions whose denominator is divisi-ble by 2. It cannot, for example, accommodate 1/3 as an exactvalue-nor can the decimal system (1/3 = 0.3 recurring).

7

Digital
Clocks

THERE can be little doubt that timing circuits, called
clocks, are an essential part of nearly all digital
circuits. Clock circuits perform a number of func-

tions. There is usually a master clock that is the source of
pulse trains used to determine the speed at which a system
operates, determines how long it takes to perform an opera-
tion such as addition, and ultimately controls all of the oper-
ations in the digital system. There are also subordinate clocks
that use the master clock pulses as an input and provide out-
put pulses that may be, depending upon their function,
phase shifted or of a different frequency from the master
clock. Clock circuits may also be referred to as strobe cir-
cuits. Basically, therefore, a clock as used in digital circuits
is an oscillator which generates square waves or pulses
(unlike a radio oscillator which generates sine waves). See
FIGS. 7-1 through 7-4.
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Input

Output

Fig. 7-1. Basic Schmitt trigger circuit and input and output char-acteristics. R1R2 is a voltage divider giving a feedback factor of R2/(R1 + R2).

Logic 1

I
Fig. 7-2. Schmitt trigger pulse circuit.
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Fig. 7-3. Basic block diagram of frequency division for digital clock.
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Fig. 7-4. Simplified block diagram of a digital clock.

OPERATIONAL AMPLIFIER CLOCKS

Op amps combined with an integrator can readily perform
the clock function in some digital circuits as shown in FIG. 7-5.
In this circuit the output is either + V or - V. The op amp
works as a comparator, comparing the input voltage V1 with
a standard reference voltage VR, V, being in the form of feed-
back from the voltage divider provided by R2, R,. If V, ismore
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+V

- -v

=.-

Fig. 7-5. Simple square wave generator.

positive than VR, then V0,, = + V. The capacitor C thencharges to + V, when after a period of time the comparatoroutput reverses and the capacitor charges to - V. The result isa square wave output with a time interval determined by thevalues of R, and C (the integrator part of the circuit). In prac-tice, maximum pulse frequency obtainable from such a basiccircuit is of the order of 10 kHz.

IC OSCILLATORS

A CMOS version of a ring oscillator is shown in FIG. 7-6. Thisclock circuit uses 4069 CMOS inverters connected in a loop
or ring through Ri and R2. The frequency of this circuit isdetermined by the following equation:

f= 1

2C(0.405R,+0.693R,)

where Re, = R1R2
R1 + R2

Monostable Multivibrators 101

R2 R,

Fig. 7-6. A 4069 IC configured as a CMOS ring oscillator.

Some IC waveform generators provide square, triangular,
and sine wave outputs simultaneously; one example is the
L8038. It can also be phase locked to a reference. A working
circuit for this IC is shown in FIG. 7-7. Square wave amplitude
is of the order of 0.9 volts. The frequency is set by R and C
and is calculated by:

frequency = 0.15
R x C

An alternative IC which provides both square and trian-
gular waveform outputs is shown in FIG. 7-8. Here the fre-
quency is given by:

2( +V - Va.)frequency -
R1 x C, x Vcc

MONOSTABLE MULTIVIBRATORS

Multivibrators are analog rather than digital devices, but
they are readily capable of working as pulse generators. A
monostable multivibrator has one stable state and one quasi -
stable state. Starting in its stable state, a triggering signal
transforms it into its quasi -stable state when, after a certain
period of time, the circuit returns to its stable state. Thus the
output is in the form of a pulse width equal to the circuit
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6 7

LB038

14 13 12 11 10

I

+V

0 (10-12 Volts)

Fig. 7-7. IC waveform
generator providing sine, triangular, orsquare wave outputs.

delay time. A further triggering signal is necessary to gener-ate another pulse, and so on. Because of this, it is known as aone-shot multivibrator.
A practical circuit is shown in FIG. 7-9. This is a 555timer connected as a monostable multivibrator. For each neg-ative clock edge input, one positive output pulse is pro-duced. R and C in this circuit determine the width of theoutput pulse which may be calculated using the followingequation:

Vcc
0
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NV\
2 3 4

NE566

8 7 6 5
In

I --
Fig. 7-8. IC waveform generator providing square or triangular
waveform outputs.

TH = 1.1RC
T

Clock
1 1Monostable multivibrators (one -shots) are also available

A Bin single function ICs. These are the 74121, 74122, and74123. A circuit using two op amps and capable of generat-
ing both positive and negative pulses is shown in FIG. 7-10. Fig. 7-9. A 555 timer configured as a monostable multivibrator.
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VDU'

Trigger In b
J-LFL

Fig. 7-10. Multivibrator circuit capable of generating both positiveand negative pulses.

BISTABLE MULTIVIBRATORS

A bistable multivibrator is stable in both its states and is gen-
erally known as a flip-flop. It is a true digital rather than ana-
log device, which in a sequential circuit is set and reset byclock pulses. An example of a practical bistable multivibra-
tor circuit is shown in FIG. 7-11 based on an op amp and fiveresistors.

Fig. 7-11. Bistable (digital) multivibrator using an LM193 op amp.
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CRYSTAL CONTROLLED OSCILLATORS

An op amp can be used to construct a crystal controlled oscil-
lator as shown in FIG. 7-12. Here, the crystal is used in parallel
with a capacitive voltage divider. At resonance (oscillator fre-

Fig. 7-12. A crystal -controlled oscillator using an op amp as the
active device.

quency), the impedance of the feedback tank circuit is maxi-
mum with the excitation voltage of the crystal being
determined by the ratio of C, to C2. If the output frequency of
the amplifier drifts, the impedance of the crystal decreases,
shunting the undesired frequencies to ground.

SWEEP GENERATORS

A linear amplifier (op amp) used in conjunction with a resis-
tor and a capacitor can be made to work as a triangle wave
generator by the use of integration. This is shown in FIG. 7-13.

If the input is a constant voltage, the output is in the form of a
linear ramp or sweep waveform. Although this is a linear
device it can be used in hybrid circuits, so it is worthy of
brief description. Figures 7-14 and 7-15 show two other exam-
ples of sweep generators.
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C,

Fig:7-13. A basic linear ramp or sweep waveform generator.

Input

Output

Flyback
Time

Bottoming Voltage

Fig. 7-14. Characteristic output of a Miller sweep generator.
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Encoders
and Decoders

ENCODERS

A binary encoder consists of a suitable number of inputs,
each of which represents a line in the binary code involved.
It then provides direct access to any one line whereby an
input signal applied to that line gives a 1 output, or generates
a bit. A binary encoder converts a decimal number to a
binary number.

Suppose the binary code has to cover a count of 10 deci-
mal, meaning it is required to have 10 bits. This can only be
satisfied with a minimum of 24= 16 bits (23=8 is not enough),
of which 16 -10 = 6 is redundant since only 10 lines are
required. These are shown below:

Decimal Output Code
Bit 3 Bit 2 Bit 1 Bit 0
(21 (22) (2') (2°)

Line 0 0 Y3 Y2 Y1 YO
Line 1 1 0 0 0 1
Line 2 2 0 0 1 0
Line 3 3 0 0 1 1

Line 4 4 0 1 0 0
Line 5 5 0 1 0 1
Line 6 6 0 1 1 0
Line 7 7 0 1 1 1

Line 8 8 1 0 0 0
Line 9 9 1 0 0 1

Encoders and Decoders 109

This can be encoded in the form of a diode matrix,
which for simplicity is shown as a wired circuit with keys for
each input, with outputs Y0, Y1, Y2, Y3 indicating the state
of the matrix via lamps as shown in FIG. 8-1. To complete any
line circuit to its corresponding lamp current must flow
through a diode to provide OR logic. In the absence of a
diode in the circuit cleared by any key, the corresponding

line 0

line 1

eN4S11

.\44Cri

I

line 2

II\
eiNd4CO

I

line 3
I

line 4

fbilli)*5
'line

line 6

line 7
*Nal

IC.

.N41C11.141CO.N4C1

.45(NO
>

line 8

line 9 IliNlYNII
>

4114111Y0

Y3 0 Y,-
0 Y.-

.
'4 I

1)(1

0 Y,

1-

....,

Fig. 8-1. Diode matrix encoder.

L
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vertical or output line is at signal 0. As you can see this onlyoccurs at key 1 position, representing decimal 0.
each diode can be replaced by a transistor working as a diode
(base and emitter connections), with the advantage that only
one multiple -emitter transistor is required instead of fifteen
diodes. In practice, several transistors may be needed for cov-
erage, depending on the number of bits in the output code.The number of emitters required is equal to the number of
bits in the code.

Assuming that the keys are not operated simultaneously,
operation of a single key encodes the decimal number posi-
tion in binary equivalent (all other lines at this time being in
the open state). For example, closing key 8 (to encode deci-
mal 7), output lines Y2, Y1, and YO are actuated (through the
diodes) giving a complete output signal 0111.

Specifically, YO= 1 if line 1, line 3, line 5, line 7, or line
9=1. Similarly Y1 = 1 if line 2, line 3, line 6, or line 7= 1,and so on. A complete truth table is shown in TABLE 8-1. This
can also be expressed in Boolean algebra as such (remember-
ing that + means OR logic and that the letter W represents a
line):

Y0=W1+W3+W5+W7+W9
Y1=W2+W3+W6+W7
Y2 =W4 + W5 + W6 + W7
Y3 =W8 +W9

Such an encoding matrix, therefore, can be imple-mented with OR gates and diodes.

DECODERS

A decoder is a system whereby digital information is
extracted in a different form; that is, a binary code to be read
in decimal equivalent (BCD -to -decimal decoder). Again
assuming that the binary unit is a four -bit device (as with a
count of decimal 10) a basic decoder to cover this requires
four inputs (A, B, C, and D) and ten output lines (covering
decimal 0 to 9).

Multiplexers 111

Table 8-1. Encoder Truth Table

Inputs (Lines) Outputs
9 8 7 6 5 4 3 2 1 0 Y3 Y2 Y1 YO
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 0 1 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 1

To accommodate all possible input states, eight inputs
are required; A, A, B, B, C, C, D, D. To cover ten output lines,
ten four -input NAND gates are needed. The basic circuit is
then as shown in FIG. 8-2. (In practice the complementary
inputs A, B, C, and D may be obtained using inverters.) This
circuit then works in the opposite manner to a decoder; the
outputs and inputs are transposed. The truth table for the
decoder of FIG. 8-2 is shown in TABLE 8-2.

For example, a binary input ABCD or 0101 gives an
immediate output on line 5 (decimal 5). These requirements
can also be implemented by a diode matrix working with
AND logic.

MULTIPLEXERS

A multiplexer lets you select 1 out of any number of input
sources, directing this data to a single information channel.
It is normally specified by an N -to -1 multiplexer, N being the
number of inputs it is designed to select from. A typical
basic circuit for a 4 -to -1 multiplexer is shown in FIG. 8-3 using
AND gates and AND -OR logic.

DEMULTIPLEXERS

A demultiplexer performs the inverse function of a multi-
plexer. It provides a binary signal on any one of N lines to
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A A B B c C D0 0 0 0 0 0 0 0

Fig. 8-2. BCD -to -decimal decoder.

Table 8-2. Decoder Truth Table
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which it is addressed. It can be derived directly from a
decoder by the addition of a signal (S) line as shown in FIG. 8-
4. When a data signal is applied at S, the output appears only
on the addressed line as the complement of this signal.

Select

Enable A A B

0 0 0 0 0

Inputs

X0 0

XI 0

X2

X3 0
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Fig. 8-3. Basic 4 -to -1 multiplexer circuit.

S A A B B C C D
0 0 0 0 0 0 0 0 0

Output

Fig. 8-4. Basic demultiplexer with S input.

In practice, this working is normally combined with an
inhibit or enable input (also called a strobe input) feeding
the S terminal as shown in FIG. 8-5. In this case if the enable
input is 1, the data is inhibited from appearing on any line. If
both data and enable inputs are 0, the data appears directly
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Data(s)

Output

Enable

Fig. 8-5. Inhibit or enable input function.

on the addressed line without inversion. The capacity of
demultiplexers is specified in the same way as for multiplex-
ers such as 2 -to -4 line, 3 -to -8 line, or 4 -to -6 line.

IC DECODERS

A practical example of an IC decoder is shown in FIG. 8-6.
This has four inputs to accept a four -bit binary coded deci-
mal (8421 BCD code) and 10 outputs (On, 0 etc.). The truth

n 15 Fr/ 111 WA 11 rol
Voo 03 0, A, A2 A3 A0 08

HEF 4028B

0, 02 00 07 09 05 06 VSS

-0 OW00 CI Ili

pin 13
A,

pin 12
A2

pin 11

A3

pin 10

Ao--.-f>e 11>o

---D->0->0-00 pin 3

0,

0,

0->0- 06

DDe->>- 08
1>1>o->co- 09 pin 5

Fig. 8-6. A typical CMOS IC decoder
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table, written in terms of H = high state or a more positive
voltage signal and L= low state or a less positive voltage, is
shown in TABLE 8-3.

Basically, an 8421 BCD code applied to the inputs
causes the selected output to be H, and the other source L.
This device can also be used as a 1 -of -8 decoder with enable.
In this case three -bit octal inputs are applied to A0, A1, and
A2, selecting an output from 00 to 0,. Input A, then becomes
an active LOW enable forcing the selected output to L when
A, is H.

Table 8-3. IC Decoder Truth Table

Inputs Outputs

A3 A2 A1 A0 Os 01 02 03 04 05 Os 070809
L
L
L
L
L
L
L
L
H
H

L
L
L
L
H
H
H
H
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L
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H
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L
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L
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L
L

LLL
L
L
H
L
L
L
LLL

L

L
L
L
H
L
L
L

L
L
L
L
L
L
H
L
L
L

L L
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L L
L L
H L
L H
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H
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L

L H
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L H
L L

L L

L
H
L
H

H

Note: X = indifferent or "doesn't care" state

1 -OF -16 DECODER/DEMULTIPLEXER

The HEF4515B 1 -of -16 decoder/demultiplexer is an excellent
example of how much logic can be contained in a small IC
package. This has four binary weighted address inputs (A0'
Al, A2, and A,) and 16 outputs, a latch enable input (EL), and
an active LOW enable input E. When EL is HIGH the selected
output is determined by the data on A0 to A,. When EL goes
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LOW the last data present are stored (latched) and the out-
puts remain stable. When E goes LOW, the selected output is
determined by the contents if the latch is LOW, and when E
goes HIGH, all outputs are HIGH. The enable input E does
not affect the state of the latch. The logic diagram for this
device is shown in FIG. 8-7. The corresponding truth table (EL
HIGH) is shown in TABLE 8-4.

0

A,

A,

r3 CM 171 PI FM Fq Fl ,M h15 ,4h31
VDD E A3 A2 010 011 08 09 014 015 0,2 0,3

D HEF 45158

EL A0 A, 07 05 05 04 03 01 02 00 V53

LILJUJULI Lti 7 8 U 10 u 12

so
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FF2

RC5

SQ
FF3
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Da
.--E>

SQ
FF4

EL-r>o

E>

---Do-t>c-1>c- 0
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>..04).- 0,0

E 4>c, 00

Fig. 8-7. 1 -of -16 decoder/demultiplexer.
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LED READOUT

LED displays are commonly used to provide visual readout of
digital information in decimal numbers. Each number
requires a seven -segment light-emitting diode (LED) to cover
numbers from 0 to 9 as shown in FIG. 8-8. Thus, it is necessaryto convert a digital input of binary coded decimal form into a
7 -bit (7 -segment) display code. This is shown in the truth
table of TABLE 8-5. As an example, to display decimal 6, the
binary code 0110 has to be converted into output code
1111100, powering segments Y6, Y5, Y4, Y3, and Y2, with
segments Y1 and YO off.

n
U

7
L b 1

Fig. 8-8. Seven -segment LED disp ay.

Table 8-5. Seven -Segment Display Code Truth Table

Decimal
Number D3 D2 D1 DO

Word
Line

7 -Bit Output Code
Y6 Y5 Y4 Y3 Y2 Y1 YO
(g) (f) (e) (d) (c) (b) (a)

0 0 0 0 0 WO 0 1 1 1 1 1 1
1 0 0 0 1 W1 0 0 0 0 1 1 02 0 0 1 0 W2 1 0 1 1 0 1 1
3 0 0 1 1 W3 1 0 0 1 1 1 1
4 0 1 0 0 W4 1 1 0 0 1 1
5 0 1 0 1 W5 1 1 0 1 1 0 1
6 0 1 1 0 W6 1 1 1 1 1 0 07 0 1 1 1 W7 0 0 0 0 1 1 18 1 0 0 0 W8 1 1 1 1 1 1 1
9 1 0 0 1 W9 1 1 0 0 1 1 1

One method of accomplishing this is to use ROM as a
code converter, specifically providing the required output
code. LEDs draw only small amounts of currents and so can
be powered directly from the IC output. Since four inputs are
required, the ROM would actually provide 16 possible input
combinations, six of which are unused. It is possible, how-
ever, to design a minimized converter circuit with no redun-
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dancies and such devices are available in IC form specifically
for such applications. They are called N-segment/decoder/
drivers, where N is the number of LED segments covered.

LED displays are themselves produced in packaged
form, normally with 14 pins to fit standard sockets. Some
examples of internal wiring are shown in FIG. 8-9. These are
7 -segment digit displays plus a decimal point.

a

bO
eUc

d

Fig. 8-9. Typical internal wiring of seven -segment LED displays.

A series of such displays, used to read out more than one
digit, normally has a common connection (common cathode
or common anode), when the basic circuitry involved is as
shown in FIG. 8-10. Arrays of this type, of course, are not
restricted to numerals. They can present readout in letters
(such as A, B, C, D, E, F, G, H, etc.), mixed figures and num-
bers, or other symbols, although not all available combina-
tions with a 7 -segment LED cover the full alphabet. A similar
device can also be used to power liquid crystal displays.

BCD ?
iF\IF

BCD BCD BCD BCD BCD

1111 100 1111 100 1111 r cull-11 Tou-IIII roplill lop
CT cm m cm c -n -n

4055A :=1. 4055A 4055A
-4 4055A ,t 4055A

-A
4055A

-1

1111 I 1111 1 1111 1 1111 I 1111 I 1111 11-1-- -r- -1--- --r- -7- -7
ri: rT ris 7 -ii f--0 n!
ioi :11! :ii: ;u: inj :n;

1. --
Fig. 8-10. Series connection of LED displays with common cathode
(or common anode).
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DISPLAY DRIVERS

An example of an LED display driver logic diagram is shownin FIG. 8-11 which is packaged in the form of a 16 -lead DIP IC.This has four address inputs (coded DA to DD) and seven out-
puts (coded O. to Os). In addition, this is an active LOW latch
enable input (EL), an active LOW ripple blanking input (BI),and an active LOW lamp test input (LT).

DLatch-4-

1

D
CP

EL I>0 1>er-
D8 Dc Dp

latc atch

Lri-atchr2
3 4

1 1
0, 0, 0, 0, 0 ob

Fig. 8-11. Logic diagram of typical IC display driver (HEF4511B)

When EL is LOW, the state of the segment outputs (0. toO.) is determined by the data on DA to D0. When EL goesHIGH, the last data present on DA to Dr, are stored in the
latches and the segment outputs remain stable. When LT isLOW, all the segment outputs are HIGH independent of all
other input conditions. With LT HIGH, a LOW on BI forces
all segment outputs LOW. The inputs LT and BI do not affectthe latch circuit.
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In this description, HIGH corresponds to a signal 1 and
LOW to a signal 0. The full function table (truth table plus
the other input functions) is shown in TABLE 8-6. Input condi-
tions marked X indicate that the state is immaterial or "don't
care."

9

Digital Adders
BINARY ADDERS

Binary adders perform the mathematical operation of addi-
tion using bits (binary digits). They can also be used to per-
form subtraction (negative addition), multiplication (re-
peated addition), and division (repeated subtraction) by suit-
able programming. In other words, all the common
arithmetical functions can be performed by binary adders,
which in turn are a basic application of logic gates.

HALF -ADDERS

A two -input device known as a half -adder (HA), has to cope
with 22= 4 possible combinations of input signals and pro-
vide a realistic output. This means coverage of all input con-
ditions in a meaningful way. To do this it must have two
outputs, one to provide a readout for the addition within the
capability of a two -digit count (0 and 1), and the other to
accommodate overflow or carry to another counting stage.
The half -adder then, can sum two binary digits and pass on
the result, with a remainder. It cannot, however, accommo-
date a third digit, carried over from a previous sum.

Calling the inputs A and B and the outputs R (signal
readout or display) and C (carry), the truth table is as shown
in TABLE 9-1. As you can see, while three of the combinations
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Inputs Outputs
A BR C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 9-1. Half -Adder Truth Table

producing the sum can be represented by a single digit read-
out either as 1 or 0, the condition 11 cannot. It represents an
overflow condition; hence, the readout must revert to 0 with
a carry of 1.

In terms of logic gates, the first three combinations can
be covered by an exclusive OR gate. To accommodate the
carry, an AND gate must be added as shown in FIG. 9-1. The
output of the exclusive -OR gate is the sum, and the output of
the AND gate is the carry.

Fig. 9-1. Half -adder (HA) circuit.

FULL -ADDERS

To extend addition to accommodate more digits (starting by
accommodating the carry from a ha --adder), half -adders can
be cascaded to make a full -adder. This is shown in FIG. 9-2

with provision to accept two inputs A and B directly into this
stage and a carry input from the initial stage (which need
only be a half -adder). To provide the facility to carry C, or C2
forward to the next stage (there cannot be a carry output at
both C, and C, simultaneously) the carry output must be
taken through an OR gate.

In practice, full -adders are not necessarily constructed
from two half -adders. The number of components required to

A

B

C

HA

Carry,
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HA Carry2

Carry

0 Sum

Fig. 9-2. Full -adder circuit from half -adders.

produce the required function can be reduced since only
seven signal combinations are required, as defined by truth
TABLE 9-2 for the full -adder. The Boolean equations corre-
sponding to the truth table are:

Sn = AnBnC_,+AnBnC, +AnBder,_,+AnBnC.-,
Cn = AnBnC,+ AnBnC_, + AnBnC + AnBnC._,

Table 9-2. Full -Adder Truth Table

Inputs
B C,.

Outputs
Co, SA

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1

1 0 0 1 0
1 0 1 0 0
1 1 0 0 1

1 1 1 1 1

These equations represent what is referred to as a sum of
products; hence, each term in the equation is called a min -
term. Considered as minterms, the equations can readily be
simplified to:

Sn= AnCn+ BnEn+ AnBnCn- 1+ Cn - 1Cn
Cn = AnBn+ BnC +

An example of implementing these simplified equations
in hardware form using AND and OR gates is shown in FIG.
9-3.

FIGURE 9-4 then shows a four -bit full -adder capable of
reading (or displaying) up to a maximum count of 23= 8 in
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A B C0 0 0

Fig. 9-3. Gate circuit for full -adder based on minterms.

A3B3C3

S. 83
Fig. 9-4. Cascaded full -adders.

A2B2C2

S2

A,B,C,

S1

ADB0

SO
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binary numbers. Note that the working is from right to left,
but appropriate inputs can be made to any stage directly,
keeping in mind that they do all have to be fed through the
first stage as a series of 1 signals. The circuit is an adder, not
a counter. Also the first (right hand) stage does not have to be
a full -adder, only a half -adder (although in a practical IC it is
usually a full -adder with the third input not used).

Obviously the coverage can be extended by adding fur-
ther full -adders to the left. Commercial IC binary adders are
generally available with one -bit, two-bit, and four -bit cover-
age (sometimes more), depending on the number of pins
available. A four -bit adder requires 16 pins; 8 for inputs, 4
for sum outputs, 1 for carry output, 1 for carry input (to allow
this IC to be cascaded with other full adders), 1 for power
input, and 1 for ground. Carry connections are completed
internally.

BINARY SUBTRACTORS

The basic rule of binary subtraction is to add the binary com-
plement of the number to be subtracted. In practice this
involves an extra bit being introduced which may be subject
to what is referred to as end carry round. For example, to sub-
tract a four -bit number B from another four -bit number A, the
solution is to add A, B, and 1. The basic circuitry, as applied
to a four -bit adder to turn it into a subtractor, is as shown in
FIG. 9-5. The basic functions involved for a four -bit subtractor
are:

B plus E = 1111
B plus B plus 1 = 10000

Hence, B = 10000 minus B minus 1 when A minus B =
A plus B minus 1000. The 1 is the output carry Cout fed back
to the carry input C. This works as long as A is greater than
B, yielding a positive difference. If B is greater than A, yield-
ing a negative difference, there is no carry round and a
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Y3 Y2 Y1 YO

Fig. 9-5. Basic circuitry for a four -bit (parallel) binary subtractor
with end -around carry.

slightly different system must be used. In practice, an IC
adder/subtractor incorporates a true/complement unit to
handle both positive and negative differences, as shown in
FIG. 9-6. In the case of a negative difference, the correct solu-
tion is then obtained by complementing the sum digits So, S
S2, and S3. In the case of a positive difference, there is a carry
and the solution is given directly by the So, S S2, and S, bits.

M

If M =1, Circuit ADDS
If M =0, circuit SUBTRACTS

C,, to
next stage

S, S2 Si So

Fig. 9-6. IC adder/subtractor with true/complement unit.
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SERIAL ADDER/SUBTRACTOR

In the case of a serial adder, the inputs are synchronous pulse
trains applied to the individual lines. The output is then
either the combined waveform of the inputs (addition) or the
difference. This can be performed by a single full -adder, with
carry facility for subtraction and a time delay in the carry line
to inject the carry pulse (when present) into the digit pulses
at the correct time interval. (See FIG. 9-7.)

A, B, 23 22 2' 2°

I I

Fig. 9-7. Serial adder/subtractor.

I

I

A input (9)

B input (3)

Addition (12)

Subtraction (6)

The chief advantage of a serial adder/subtractor is that
only a minimum of components are required, only one FA
and a time delay. It is slower than the previous type
described, which uses parallel working, but at the expense of
requiring one full -adder for each bit. Various other types of
circuits may be employed for adders, particularly one for
binary coded decimals called an 8421 adder. A circuit used
for BCD operation is shown in FIG. 9-8.

This circuit adds 8421 digits using binary addition.
When the sum exceeds 9, a correction of 0110 is added. You
may want to try adding two numbers such as 7 (0111) and 6
(0110) to see for yourself how this circuit works. There is also
another adder/subtractor called a 2's complement adder/sub-
tractor shown in FIG. 9-9. Recall that the adder/subtractor that
was first discussed is a 1's complement type. This other
adder/subtractor is slightly different. When SUB (subtract) is
low or 0, the B bits pass through the exclusive -OR (controlled
inverters) to the full -adders. Hence, the full -adders produce
the sum of A and B. However, when SUB is high or 1, the B
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Be

Ao

(Carry from
lower column

adder)

4,

FA

HA

FA

0

A, -

B2

A2

FA

FA

FA
S,

4

YO

Y1

Y2

Y3

Y4

(Carry to
next adder)

Fig. 9-8. An 8421 four -bit adder used for BCD operation.

bits are inverted before reaching the full -adders. This 1 is
also initially added to the first full -adder forming the 2's
complement of B. The output, therefore, of the full -adders is
the difference of A and B.

HALF AND FULL-SUBTRACTORS

Half-subtractors and full-subtractors can also be used
directly without taking the complements of binary numbers.
Recall that binary numbers can be subtracted using the fol-
lowing rules:

0- 0= 0 with a borrow of 0
0 - 1= 1 with a borrow of 1

Bo 0

Ao 0
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Subtract
0

B, 0
A, 0

FA

B2 0
A2 0

B3

A3 0

FA

0 So

0

FA

O S

O S

)) ) -LFA 0 S3

Fig. 9-9. A 2's complement adder/subtractor.

1- 0=1 with a borrow of 0
1-1= 0 with a borrow of 0

Carry0
(not used)

As you can see, if a circuit could be designed to produce
both the borrow and difference outputs, complements would
not have to be used. This is accomplished using the circuit of
FIG. 9-10, known as a half-subtractor. A full-subtractor is
shown in FIG. 9-11 and a parallel 4 -bit binary subtractor is
shown in FIG. 9-12.

Arithmetic in computers relies on the fundamental logic
gates that you have already been studying.
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DifferenceAB

Borrow
AB

Fig. 9-10. A half-subtractor.

Difference out
Difference

Fig. 9-11. A full-subtractor.

0

Bo 0
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B, 0

AI 0

A2 0

HS

B2 0

FS

0 YO

Bi

A3 0

FS

0 Y1

FS

0 Y2

0 Y3

Fig. 9-12. A parallel four -bit binary subtmctor.

0 Borrowout
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Binary Counters
OUNTER circuits may be asynchronous or synchro-
nous. The main difference is that with asynchro-
nous counters all operations (except clear) are

initiated by the incoming pulses, whereas with synchronous
a separate clock pulse is employed to synchronize opera-
tions. Synchronous counter circuits are more complicated to
design and generally use more components, but are usually
faster in operation.

The basic element employed in a binary counter is a two -
state (bistable) electrical device which is either off (0) or on
(1), such as a flip-flop. A simple element of this type pro-
vides a count of 2° (decimal 1). The counting range can be
extended by connecting a number of units in series, any over-
flow count from a preceding unit being an input to the fol-
lowing unit.

THE BASIC RIPPLE COUNTER

Indication of the state (position) of the count can be provided
by tapping points showing the state of that stage. A further
requirement is a means of resetting all stages to off (0), to
clear the circuit after making a count via a clear signal. A
four -stage counter as shown would then have a count capac-
ity of 2°+ 21+ 22+ 23= 1 + 2 +4 + 8 = 15 decimal, although the

The Basic Ripple Counter 135

actual number of combinations possible are 2'=16. The last
pulse would produce overflow; that is, returning all four
stages to 0 and carrying a 1 on to a fifth stage, if present. The
count capacity of such a stage is therefore 2°-1, where n is
the number of flip-flop stages.

On the face of it, it would appear possible to use this
spare pulse to clear a 2n-1 counter circuit. This is so, except
that the process would be tedious. To clear after a count, as
many pulses would have to be applied to bring the count
exactly to 2". Using a separate clear signal, all stages can be
returned to 0 with a single pulse.

Such a form of cascaded circuit is generally known as a
ripple counter because the changes in outputs of the flip-
flops ripple through the counter from input to output. A
basic circuit and the corresponding waveforms produced by
a 4 -bit ripple counter is shown in FIG. 10-1.

Fig. 10-1A. Basic arrangement for a four -stage binary counter.

22

Fig. 10-1B. Waveform signals in a ripple counter.
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In practice, unless all the flip-flops change state simulta-
neously, the waveforms may be spiked instead of square. It
may therefore be necessary to treat the outputs in such a way
that the counter is read only after these signals are stabilized.
The other main limitation of the ripple counter is that ripple-

through delays are cumulative and where many stages are
involved, operating speed can be very slow. Such delays can
be eliminated in a synchronous counter.

REVERSIBLE COUNTER

A reversible counter is designed to count either forwards or
backwards, and is also known as an up -down counter. The Q
output of the flip-flops is used for forward counting and the
Q outputs for backward counting. The direction of counting
is then determined by an up/down control signal X (such as
X= 1 for up, X= 0 for down) applied to logic gates between
the stages as shown in FIG. 10-2.

DECADE COUNTER

It is often desirable to have the counter circuit count to base
10 instead of 2; that is, in decimal rather than binary num-
bers. It is readily possible to utilize a ripple counter in this
way, starting with the necessity of providing 10 combina-
tions to cover a count of decimal 10. Again, the least number
of flip-flop stages (bits) required to do this is four (giving
24= 16 possible combinations; 23= 8 would not be enough;
and 25=32 would be far more than necessary).

The basic circuit is shown in FIG. 10-3. The principle
involved is that at a count of 10 (binary 1010), all binaries are
reset to zero via a feedback line containing a NAND gate, the
output from which feeds all clear inputs in parallel. At a
count of 10, output states are:

Q=0 Q=1 Q=0 Q3=1

Inputs to the NAND gate are thus Q, and Q3. After the
tenth pulse Q, and Q3 both go to 1, the output of the NAND
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Ck

Fig. 10-3. Basic circuit for a decade decimal) counter.

gate goes to 0, and FF0 and FF2 are reset to 0. Q, and Q3 simi-
larly return to 0 after a short delay. This delay, called a propa-
gation delay, can be troublesome unless eliminated, so the
feedback line normally incorporates a latching circuit to
memorize and hold the output of the NAND gate until all
flip-flops clear. A typical decade counter IC is shown in FIG.
10-4.

GND

Innnt R
R0,1 NC +Vcc

Fig. 10-4. A typical IC decade counter (7490).
Rg(1)
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To extend decimal counting beyond 10, it is necessary
only to add further four -bit counters in cascade. Essentially
then, to count to 100 (102), two decade counters in cascade;
to count to 1000 (101, three decade counters in cascade; and
so on.

DIVIDE -BY -N COUNTER

Exactly the same principle as used in the decade counter
applies when designing a counter to count to any base N.
The number of flip-flops required (n) is the smallest number
for which 2°>N. Feedback via a NAND gate is then intro-
duced to reset all binaries at the count of N, with each input
to the NAND gate being an output from those flip-flops in
state 1 at the count of N. For example, a divide -by -5 counter
needs three flip-flops. At a count of N=5 their outputs are:

Q= 1 Q1=0 Q, = 1

Hence, Q0 and Q, are the inputs to the NAND gate. This
type of counter, also known as a modulus 5 or mod 5 ripple
counter is shown in FIG. 10-5. The modulus, then, of a counter
is the number of counting states that a counter has before it
begins to repeat itself. A further example of modulus count -

Clock
In

Outputs

A

Ck

Reset

Ck Ck

Reset
7

Reset

Fig. 10-5. A mod 5 ripple counter.
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ing is a basic binary counter consisting of three flip-flops.
This counter can count through eight discrete states (23= 8)
and is therefore said to have a natural count of 8. The same is
true of a four -stage counter that can count through 16 dis-
crete states (2'=16). These counters are referred to as mod 8
and mod 16 counters.

Some divide -by -N counters are programmable, designed
to accommodate a number of different N values, selectable at
will. Basically, this involves having a suitable number of flip-
flops to start with and selecting the N setting by connecting
(or switching) the appropriate flip-flop outputs to the NAND
gate inputs.

SYNCHRONOUS COUNTERS

In a synchronous counter circuit, all flip-flops are clocked
simultaneously by the input pulses. Speed is thus limited
only by the delay time of any one flip-flop, plus the propaga-
tion time of the control gate involved. In general terms, this
usually makes them about twice as fast as ripple counters
using similar components. There is also an absence of spikes
in the output. These types of counters are known as parallel
counters.

A typical basic circuit using T -type flip-flops is shown
in FIG. 10-6. The requirement is that if T=0 there is no change
of state when the binary is clocked; and if T = 1 the flip-flop
output is complemented with each pulse. In terms of T logic,
this means:

To =1 T1= Q. T2= T3Q3 T3 = T2Q2

(Logic is performed by the AND gates.)
A critical factor is the minimum time between pulses

(T,,) as this governs the maximum signal pulse frequency
which can be applied. This is given by:

Tn..= Tr+ (n - 2)TG

Synchronous Counters 141

Where TF is the propagation time of one flip-flop
TG is the propagation time of one AND gate
n is the number of AND gates

Fig. 10-6. Synchronous counter using T -type flip-flops.

Maximum signal points frequency is then equivalent to
1/Tm,.

Speed of operation can be improved by parallel rather
than series working of the control gates, using a multiple -
input AND gate taking inputs from every preceding flip-flop.
This does, however, have the disadvantage of needing a large
fan -in and fan -out, with heavier circuit loading. Neverthe-
less, parallel working is widely used, particularly for syn-
chronous forward -backward counters and decade counters.

Synchronous Reversible Counter

A typical synchronous reversible (up/down) counter is
shown in FIG. 10-7. Again control gates are interposed
between the flip-flops but here they perform both up/down
logic and (parallel) carry logic, simplifying the circuitry to
some extent.

Synchronous Divide -by -N Counters

Design of synchronous counter circuits for decade
counters or divide -by -N working can be extremely tedious,
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but can be simplified by the use of Karnaugh maps. These
maps are used to simplify Boolean algebra (and thus simplify
circuitry even further). Numerous examples, however, are
available in IC form and are normally used in circuitry rather
than start -from -scratch circuits. It is then only necessary to
know the IC circuit characteristics and working parameters,
and lead identification.

JOHNSON COUNTER (TWISTED RING COUNTER)

The circuit shown in FIG. 10-8 comprises five flip-flops con-
nected with feedback from output to input, resulting in a
continuous loop or ring being formed. Because the ring is
crossed over or twisted at the input, it is known as a twisted
ring counter. Alternatively, because it generates a Johnson
code (a form of binary code) it is also called a Johnson
counter. This counter is also called a shift counter since the
waveforms literally shift through the flip-flops and the opera-
tion is cyclic in nature.

J FFDQ J1.12.1rallM
J Q J Q

Clear micKkRarlicKkdoicKkanbcKkR

R

al
IQ

Clock

Fig. 10-8. A Johnson (twisted ring) counter.

The working principle is as follows. Starting with all
outputs zero (A = 0, B = 0, etc.), after the first pulse the feed-
back loop applies the complement of A to FF4 and a 1
appears at E. Successive pulses shift this 1 along the counter
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so that after 5 pulses A =1, B =1, etc. The sixth pulse shifts
A(0) into FF4 and succeeding pulses similarly up to the
ninth pulse when A =1, B = 0, C = 0, D = 0, and E = 0. The
tenth pulse then shifts a 0 into FF4 and all inputs are zero
again. This counter, then sets each bit in a sequential order,
beginning with the least significant bit (LSB) which is E or
2°

In effect, this circuit is a 1 to 10 (decimal) counter. In
point of fact it has 25=32 possible combinations, or the
capacity to generate three different coded sequences of 10decimal sequences.

IC BINARY COUNTERS

An example of an IC (7493 Binary Counter) providing a
plete binary ripple through counter circuit is shown in FIG.
10-9. This is a TTL 14-pin device available in a dual -in -line
package. This is a divide -by-2, divide -by -8 ripple counter,
which, when externally connected will form a divide-by -16
counter. To reset the counter to 0, both reset -to -0 (Roo) and
Rom) are taken to +5 volts (high). Either or both inputs to Ro
must be at ground for normal counting.

Outputs

0

A
J

Clock 0- Ck Ck Ck CkIn
- -

K K C1 5 K Ci C1 5

B

Clock 0
In

R0,2) 0

0

Reset to Zero

Fig. 10-9. The 7493 binary counter IC.
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IC SYNCHRONOUS COUNTERS

FIGURE 10-10 shows a TTL synchronous up/down counter
which this time is a 16 pin package (74193 4 -bit binary up/
down counter). It can count up from 0 to 15 and it can count
down from 15 to 0. This has been a very popular counter
because, besides being operated in the synchronous mode,
the outputs may also be preset to any state simply by entering
the required data at the data inputs while the load input is
low (0). This allows the output to agree with what has been
entered without being influenced by the count pulses. The
advantage of this is that by changing the count length with
the preset inputs, the counter can be used as a programmable
divider.

The 74193 can also be cascaded without the need for
external components. This makes possible counting num-
bers greater than 15 just by connecting the borrow and carry
outputs of the first counter to the clock -down and clock -up
inputs of the subsequent counter.

Inputs Outputs Inputs

+Vcc Data Clear Borrow Carry Load Data Data

FTI 15
14-1

13 12 11-1 Fri pi

O

B

A

Os

Clear Borrow Carry Load C

D
Count Count

CA Down UP oc CD

HI2JLILILII2JULd
Data B QB CA Count Count Oc OD GND

Down Up

Outputs Inputs Outputs

Fig. 10-10. The 74193 IC, a TTL synchronous up/down counter
(four -bit).
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Converters
and Registers

DIGITAL -TO -ANALOG CONVERTERS (D/A)
In a digital circuit, data is represented by a series of digits,
any change taking place in discrete steps. In many applica-
tions, it is desirable to be able to present this data in the form
of a continuous steady voltage or circuit which then varies
smoothly with any change of state (an analog signal infi-
nitely variable between two limits). Systems for providing
this are known as digital -to-analog or D/A converters.

A basic form of a 4 -bit D/A converter is shown in FIG. 11-1
using a simple weighted resistor network. Input to each resis-
tor is via a digital switch (So, S etc.). When any switch is
closed, or equivalent to an input signal of 1, a constant refer-
ence voltage (VR) is applied through the corresponding resis-
tor. Resistor values are chosen so that the signal outputs in
each line have weighted values in a binary manner, 1, 2, 4, 8.
Then a 1 at input So gives an output of weighted value 1; a 1
at input S, an output of weighted value 2, a 1 at input S, an
output of weighted value 4; a 1 at input S3 an output of
weighted value 8; and so on.

Put another way, since the same (constant) reference
voltage is applied to each line when the input to that line is
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VA

Fig. 11-1. Weighted resistor network digital -to -analog converter.

1, resistor values must be chosen so that:

 Line output voltage from S3 is twice that in line from
S2

 Line output voltage from S2 is twice that in line from
S,

 Line output voltage from S, is twice that in line from
So

This effectively gives weights of 8, 4, 2, and 1 to the first
four output lines, and so on. The total output voltage result-
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ing from all lines is then fed to an op -amp to present the final
output required as a current (the op -amp working as a volt-
age -to -current converter).

As an example, suppose the digital value is 1010 (deci-
mal 10). Corresponding inputs are:

to S, = 1
to S, = 0
to S, = 1
to S0 = 0

If any input is 0 there is no output in that line (the digital
switch remains open). Output in this case is therefore:

(lx 8)+(0 x4)+(lx 2)+(0 x1)=10

That is to say, the 1 inputs at S, and S, give a final output of
value 10 (the decimal equivalent). The same principle can be
extended to cover any number of bits. Thus for an N -bit D/A
converter the following general relationship applies:

V,= VR(B_,2-1+ B_222+ Bo_32-3...B021

B, represents the binary word. This defines the weighting
necessary. The most significant bit (B,_,) has a weight of VR/2,
down to the least significant bit (Bo) which has a weight of
VR/2n. Thus with a 6 -bit converter, for example, the equation
becomes:

V, = VR/64(32n5+ 16114+ 8n, + 4n, + 2n, + no)

The basic disadvantages of such a circuit are that it
demands stable, close tolerance resistors with values extend-
ing over a wide range, the output resistance can be quite
high, and the output signal is not a convenient multiple of
the digital input value. Other circuits are therefore normally
preferred in practice. One of these is the serial converter
which works as an integrator, or a ladder type circuit.
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The ladder type D/A converter is more complex in that it
requires twice the number of resistors to handle the same
number of bits, but these need only be of two values, R and
2R. Actual resistor values are not as important as the correct
1:2 ratio values. A basic circuit of this type is shown in FIG.
11-2. Here the necessary weighting of signals is achieved by
current splitting. At the top of any ladder the current splits
equally right and left, yielding weightings corresponding to
VR/2, VR/4, VR/6...down to VR/22.

3R

Most Significant Bit
(MSB)

Fig. 11-2. A ladder -type D/A converter.

Vim

ANALOG -TO -DIGITAL CONVERTERS (A/D)

An analog -to -digital (A/D) converter converts the infinitely
variable analog data signals into digital form. There are many
forms of such devices, but the main types are voltage -to -fre-
quency converters, pulse counters, and integrating con-
verters.

Voltage -to -frequency converters are based on a voltage -
controlled oscillator where the output is applied to a counter
for a period of time controlled by a clock pulse generator.
Since this output frequency is proportional to input voltage,
the counter can be calibrated to read out the digital equiva-
lent to the analog input.

A basic example of a counter type circuit is shown in
FIG. 11-3. When an analog signal (V5) is applied to the com-
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Clear 0

Clock 0

<

Binary
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Analog vs
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0

Fig. 11-3. Counter -type analog -to -digital converter.

0
0 Digital
0 Outputs
0

-0

parator there is an output which opens the gate, allowing
clock pulses to be applied to the binary counter. The count
continues until the feedback signal (Vd) from the D/A con-
verter becomes equal to Vs, when the comparator output falls
to zero and the count is frozen in the binary counter and dis-
played or read out. In other words, the count proceeds one
step at a time until a final balance is reached. For example, to
establish a count of 9.9 in 0.1 steps would involve 99 pulses
passing through the gate before a final balance is reached; or
999 pulses to count up to 99.9 with the same interval, and so
on. The speed of conversion thus depends both on the pulse
rate and the method by which final balance is obtained.

A more rapid method of conversion is possible using
successive approximations. Here the first clock pulse sets the
counter to one-half of the maximum output. The next pulse
then sets the counter to one-half of a half in a plus or minus
manner; that is, plus if Vs is greater than V, and minus if Vd is
greater than Vs, and so on with following pulses. This
enables the final balance to be reached more quickly.
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SHIFT REGISTERS

A digital memory device has a one -bit capacity, so to store or
register an N -bit word, N memory units (flip-flops) are
required. It is then necessary to cascade the flip-flops output -
to -output to feed input data into the system serially. It is this
facility to shift the data along the circuit that gives such a
device the name shift register.

A basic circuit for performing this function is shown in
FIG. 11-4. Each flip-flop is a master -slave type, the stage used
to store the most significant bit (MSB) having S and R termi-
nals connected together via an inverter to turn it into a D type
latch. Starting with all outputs clear (Q0= 0, Q, = 0, etc.) Cr is
set to 1 and Pr held at 1 by keeping preset enable at 0. Clock
pulses are now applied. The first pulse (corresponding to the
least significant bit) enters FF4 which latches, changing Ck
from 0 to 1. Output Q, is now at 1 with all other outputs at 0.

Q4 0 Q3 0 Q12 0 01 0 QO 0
Preset 0 Pr, 0 Pr, 0 Pr, 0 Pr, 0 Pro

Enable 0

Serial Input

Clear 0

Pr
S Q

Ck

Clock 0 
FF4

S
r

Ck

R Cr

FF3

-0- Pr
S

Ck

Cr

S

Ck

Pr
S Q

Ck

Cr

FF2 FF1

Fig. 11-4. Basic circuit for a five -bit shift register.

FF0

Each succeeding pulse then shifts the preceding
pulse(s) to the right to make room for the incoming digit
until after five pulses (or N pulses in an N -bit register), the
full input word has been taken into the register. At that point
the input pulses must stop. This sequence of operations can
be seen from the following diagram, taking as an example
10110 as the 5 -bit word fed into a 5 -bit shift register.
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Clock Pulse

1

2
3

4
5

Word Bit MSB LSB
Q4 Q. Q Qi QO

0 0 0o -4o o o
o
o

o

Such a shift register accepts input serially and gives a
parallel output, and so is properly described as a series -in,
parallel -out register (SIPO). Other modes of working are pos-
sible:

 Series -in, series -out (SISO)
 Parallel -in, parallel -out (PIPO)
 Parallel -in, series -out (PISO)

IC SHIFT REGISTER

IC shift registers are produced in varying lengths and can be
programmed to any number of bits between 1 and the maxi-
mum provided. An example is the HEF4557B 1 -bit to 64 -bit
variable -length shift register in FIG. 11-5. It is available as a
flat 16 -pin DIP with LSI. The number of bits selected is equal
to the sum of the subscripts of the enabled length control
inputs (L L2, L4, LB, L,6, and L32) plus 1, giving a maximum
of 64. Serial data can be selected from DA or DB data inputs
with the A/B select input. This feature is useful for recircula-
tion purposes. Recirculation means that when data is shifted
right, the MSB may be returned to the serial input. In this
way data is not lost, but is recirculated in the shift register.

VDD L, L8 L16 L02 5 0 A/B

HEF 4557B

L2 L, MR CP0 CP, DB DA VSS

Fig. 11-5. IC 1 -to -64 -bit shift register (HEF4557B).
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Information on DA or D8 is shifted one position to the
right on the LOW to HIGH transition of CP0 while CP, is
LOW; or on the HIGH to LOW transition of CP, while CPB is
HIGH. When HIGH, master reset (MR) resets the whole regis-
ter asynchronously (0 = LOW; 0 = HIGH) and independent of
the other inputs. The complete logic diagram is shown in
FIG. 11-6.

A/B.

DA

DB

CP,-o
CPQ po
MR ->o->o

L32

CP
FFA
CDT

c\J

u_
u_

4

N- 0

b c
d

T f
'9

Fig. 11-6. Logic diagram for the IC shift register of Fig. 11-5.

This device can work on any voltage from 5-15V, draw-
ing a quiescent current of 50-200µA. Propagation delay is on
the order of 240-260 ns, depending on voltage. The maxi-
mum clock pulse frequency is 5 MHz with a 5V supply and
up to 20 MHz with a 15V supply.

Another example of the logic provided by an IC shift reg-
ister circuit is shown in -PIG. 11-7. In effect, this is a serial -to -
parallel converter. Information present on the data input DA is
shifted to the first register position and all the data in the reg-
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Logic Diagram (one register) (-)
oA

DF10
CP _
D0 0

D

Fig. 11-7. IC series -to -parallel converter shift register (HEF4058B).

ister is shifted one position to the right by the clock pulse.
The four outputs 00A 03A, 02A, and CIA3 are fully buffered. A
HIGH (1) signal on the asynchronous master reset input (MR)
clears the register and returns Oa to 03 to LOW (0), irrespec-
tive of the clock input and the serial data input (DA).

Another IC package (Signetics HEF4015B) actually con-
tains two such systems in a 16 -pin DIP as shown in FIG. 11-8.
Additionally, CMOS integrated circuitry lends itself well to
high component density. Some CMOS IC shift registers are
available with 64 stages, each stage configured as a D type
master -slave flip-flop. In these shift registers the logic level
present at the data input is transferred into the first stage and

VDD M RB 016 03A

HEF 4015B

CPB 02, ODA

038 0, A MRA Vss

Fig. 11-8. IC package providing two shift registers.
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shifted one stage at each positive -going clock transition. FIG-
URE 11-9 is an illustration of the IC package of this type of shift
register. As you can see, it is an HBC4031A. Also shown is its
logic diagram.

In this device, information can be permanently shared
with the clock line in either the LOW or HIGH state. There is
also a mode input control which allows operation in the
recirculating mode when in the HIGH state. Register pack-
ages can be cascaded and clock lines driven directly for fast
working, or, alternately, a delayed clock output is provided
allowing reduced clock drive fan -out and transition time
when cascaded. The entire circuitry is contained in a 16 -pin
DIP package.

Recirculation
In 1

Clock 2

NC 3

NC 4

Q6
07

16 VDD

15 Data In

14 NC

13 NC

12 NC Mode
11 NC Cont of

10 Mode control Recirculation

15

Data In

10

VDD

4stages 8 Q7
Vu

2cop cp!
Vss 8 9 Clock delayed

Fig. 11-9. CMOS HBC4031A IC with logic diagram.

DYNAMIC MOS SHIFT REGISTER

A basic circuit for a dynamic MOS shift register stage is
shown in FIG. 11-10. It employs two separate clock inputs; that
is, it is a two-phase MOS system, each stage incorporating six
MOSFETs. Specifically, these provide two NAND gates in
cascade, each clock pulse shifting and inverting a bit
through that stage. In this device, a minimum clock rate is
essential to retain gate capacitance (necessary for retaining
memory) and a maximum clock is also essential, limited,
however, by the response rate of the circuit. It is a general fea-
ture of most IC dynamic MOS shift registers that both input
and output are compatible with TTL integrated circuits.
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- VDD Ck, - VDD

+vss +vs,

Fig. 11-10. Dynamic MOS shift register.

Ck2

12

The Arithmetic
Logic Unit (ALU)

THE arithmetic logic unit (ALU) of a computer
is that part of the circuitry that can perform arith-
metic and logic functions on data. Typically, this

device can add, subtract, AND, OR, XOR, complement, shift
right, shift left, increment, and decrement, and is part of a
larger circuit called the MPU, or microprocessor unit. Much
of the material that you have read thus far describes devices
that, when arranged in an appropriate manner, serve as the
building blocks of the ALU; for example, the half and full -
adders and shift registers.

Typically, ALUs provide four -bit arithmetic operations
with up to 16 instruction capability. The 74181, a four -bit
MSI TTL ALU actually contains 32 separate operations and
divides these operations into arithmetic and logic functions.
This chapter discusses the 74181 and its two modes of opera-
tions, arithmetic and logic. Additionally, ALUs may be cas-
caded to increase word size without affecting the operation
of individual functions.

CASCADING ALUs

ALUs can be cascaded by using the 74182, a look -ahead
carry generator. As shown in FIG. 12-1, this device allows par-
allel operations of carry and borrow functions for two ALUs



158 The Arithmetic Logic Unit (ALU)

LSB

cri

MSB

Fig. 12-1. Cascading 74181s (ALUs) using the 74182.

(four ALUs are possible with the 74182). Parallel transfer of
carry and borrow from one ALU to another is achieved by the
use of additional outputs from the 74181 called the carry
generate (G) and the carry propagate (P).

Another method is to apply the CN+ 4 (ripple carry) out-
put of the least significant four -bit word of the least signifi-
cant ALU into the CN (ripple carry) input of the following
ALU.

ALU FUNCTIONS

TABLE 12-1 is a listing of all the functions of the 74181 ALU.
As you can see, there are 16 arithmetic functions and 16
logic functions. Positive logic operation is performed when
CN is high. Negative logic is used when CN is low. This is for
the logic mode of operation only.

Arithmetic Operation

To implement arithmetic operations in the following
examples, M must be low (0) and CN must be low (0). Each
condition of the inputs, as shown in TABLE 12-1, is stated as
well as the output results for those input conditions. Also,
assume A= 1001 and B=0110.
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Table 12-1. 74181 Function Table

Mode Select Inputs Active H gh Inputs & Outputs
Logic Arithmetic

S3 S2 S, So M = 1 M = 0, CN = 0
0 0 0 0 -A- A
0 0 0 1 A + B A + B
0 0 1 0 'AB A + ti
0
0

0
1

1

0
1

0
Lo is 0 minus 1

A plus AB
0 1 0 1 rt (A + B) plus AB
0 1 1 0 A a B A minus B minus 1
0 1 1 1 AB- AB minus 1
1 0 0 0 -N + B A plus AB
1 0 0 1 A e B A_plus B
1 0 1 0 B (A + S) plus AB
1 0 1 1 AB AB minus 1
1 1 0 0 Logic 1 A plus A
1 1 0 1 A+ B (A + B) plus A
1 1 1 0 A+ B (A + S) plus A
1 1 1 1 A A minus 1

Condition 1:
Selection = 0000 = A
Fo- F, = output = A= 1001
CN+ 4 = 1(no carry)

Condition 2:
Selection = 0001 = A + B
Fo-F, = output = 1001 + 0110 = 1111
CN+ 4 = 1(no carry)

Condition 3:
Selection = 0010 = A +
Fo-F, = output = 1001 + 0110 = 1001
CN+ 4 = 1(no carry)

Condition 4:
Selection = 0011 = minus 1(2's complement)
Fo- F3 = output = 1111
CN + 4 = 1(borrow)
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Condition 5:
Selection = 0100 = A Plus AB
Fo-F, = output = 1001 Plus 1001(0110) = 0010
CN+ 4 = 0(carry)

Condition 6:
Selection = 0101 = (A+ B) Plus AB
Fa -F, = output = (1001+0110) Plus 1001(0110) = 1000
CN + 4 = 0(carry)

Condition 7:
Selection = 0110 = A Minus B Minus 1
Fo-F, = output = 1001 Minus 0110 Minus 1 = 0010
CN+ 4 = 0(no borrow)

Condition 8:
Selection = 0111 = AB Minus 1
Fa -F, = output = 1001(0110) Minus 1 = 1000
CN+ 4 = 0(no borrow)

Condition 9:
Selection = 1000 = A Plus AB
Fo-F, = output = 1001 Plus 1001(0110)
CN+ 4 = 1(no carry)

Condition 10:
Selection = 1001 = A Plus B
Fo-F3 = output = 1001 Plus 0110 = 1111
CN+ 4 = 1(no carry)

Condition 11:
Selection = 1010 = (A+173) Plus AB
Fo-F, = output = 1001+0110 Plus 1001(0110) =
CN+ 4 = 1(no carry)

Condition 12:
Selection = 1001 = AB Minus 1
F0 -F, = output = 1001(0110) Minus 1 = 1111
CN+ 4 = 1(borrow)

Condition 13:
Selection = 1100 = A Plus A
Fo-F, = output = 1001 Plus 1001 = 0010
CN+ 4 = 0(carry)

Condition 14:
Selection = 1101 = (A+B) Plus A
Fo-F, = output = (1001 + 0110) Plus 1001 = 1000
CN+ 4 = 0(carry)

Condition 15:
Selection = 1110 = (A+ II) Plus A
Fo-F, = output = (1001 + 0110) Plus 1001 = 0010
CN +4 = 0(carry)

Condition 16:
Selection = 1111 = A Minus 1
Fo-F, = output = 1001 Minus 1 = 1000
CN+ 4 = 0(no borrow)

Logic Operation

In this mode of operation M=1 and CN= 1. A=1001 and
B = 0110 in this operation also. In the logic mode of opera-
tion, CN+ 4 is not a valid output and therefore you will not
see this listed as a resultant output. That particular output is
valid only in the arithmetic mode of operation.

Condition 1:
Selection = 0000 =
Fo-F, = output = 1001 = 0110

1001 Condition 2:
Selection = 0001 = A + B
Fc, - F, = output = 1001 + 0110 = 0000

Condition 3:
Selection = 0010 = AB
Fo-F, = output = 1001(0110) = 0110
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Condition 4:
Selection = 0011 = Logic 0
Fo-F, = output = 0000 (Inputs A and B have no effect

on the output; it is always
logic 0 with a selection input
of 0011.)

Condition 5:
Selection = 0100 = AB
Fo- F, = output = 1001(0110) = 1111

Condition 6:
Selection = 0101 =
F, F, = output = 0110 = 1001

Condition 7:
Selection = 0110 = A C) B
Fo-F, = output = 1001 C) 0110 = 1111

Condition 8:
Selection = 0110 = AB
Fa-F3 = output = 1001(0110) = 1001

Condition 9:
Selection = 1000 = A+ B
Fo-F, = output = 1001 + 0110 = 0110

Condition 10:
Selection = 1001 = A G B
Fo- F, = output = 1001 G 0110 = 0000

Condition 11:
Selection = 1010 = B
Fo- F, = output = 0110

Condition 12:
Selection = 1011 = AB
Fo-F, = output = 1001(0110) = 0000

Microprocessors 163

Condition 13:
Selection = 1100 = Logic 1
Fo-F, = output = 1111 (Inputs A and B have no effect

on the output; it is always
logic 1 with a selection input
of 1100.)

Condition 14:
Selection = 1101 = A3-
Fo - F, = output = 1001 + 0110 = 1001

Condition 15:
Selection = 1110 = A + B
Fo- F, = output = 1001 + 0110 = 1111

Condition 16:
Selection = 1111 = A
Fo- F, = output = 1001

The logic mode of operation and the arithmetic mode of
operation together make up 32 individual operations for the
74181 ALU. The ALU is just one part, although a very impor-
tant part, of a microprocessor unit (MPU). The MPU is, in
effect, the brains of the computer. It interprets instructions
stored in memory, step by step (sequentially), and manipu-
lates that set of instructions (data) to perform a certain task.

MICROPROCESSORS

A microprocessor unit (MPU) is a device, usually a single
integrated circuit, that acts on data to perform a single task. It
was stated earlier in this chapter that the ALU is part of the
MPU and that the MPU is the brain or thinking part of the
computer. Actually, the MPU itself is not capable of perform-
ing tasks on its own. It must interpret information, usually a
set of instructions called a program, and then be allowed to
control other devices.

AL
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A popular microprocessor in use is the Motorola 6802.
It's been around for a number of years. It is a member of the
6800 family of micros and contains 16 unidirectional address
lines with 8 bidirectional data lines. For clarity, address lines
make up the address bus which determines which device or
memory location is accessed. When information is accessed,
a signal is sent down the address lines to the correct memory
location. In computers, data is stored in memory locations or
cells and each cell has an address. As for data lines, they
make up the data bus which normally acts as an input to the
system. In the MPU the data bus acts as an output. FIGURE 12-2
is a block diagram of the 6802 microprocessor.

When data comes down the data bus (usually as two
eight -bit words) and into the MPU, it is manipulated by the
ALU. The ALU then supplies an eight -bit answer that is
placed into either accumulator A or B. Additionally, six out-
put test bits are applied to the condition code register (CCR).
These six test bits determine the results of the instruction
performed or special conditions in reference to the two eight -
bit words.

A description of the blocks within the MPU may be
helpful here.

Temporary A & B Data Registers. These registers pro-
vide storage capability for the ALU. These are eight -bit data
registers and are written into by the A & B accumulators.

Accumulator A & B (Acc A & Acc B). These are also
eight -bit registers used to transfer data into and out of the
ALU via the data bus. Initially, data is transferred into one of
the accumulators. Once manipulation on the data has taken
place by the ALU, the result is stored in one of the accumula-
tors.

Instruction Code Register. This register holds the eight -
bit instruction that is being performed. Input comes in from
the data bus and the instruction decoder receives its output.
During the operation of a program, this register is loaded
first.

Microprocessors 165
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Instruction Decoder. This circuit produces a logic code
from the eight -bit instruction code of the instruction code
register for the control logic.

Control Logic. This circuit controls the sequence of the
instructions for each block within the MPU and controls the
external control lines for the MPU allowing control of the
computer system itself. It also controls the transfer of data
within the MPU.

Index Register (High & Low). A 16 -bit register used to
modify memory locations or data that is user programmable.

Stack Pointer (High & Low). A 16 -bit register that points
to an address location in RAM for storage of internal data.
When an interrupt occurs, data in the index register, CCR,
Acc A & B, and the program counter is stored in RAM until
the interrupt routine is finished.

Address Register (High & Low). A 16 -bit register that
contains the address of the memory location that is being
accessed at any given time.

To perform a simple computer operation the following
program may be used as an example:

LDAA from MLoc 6F
ADDA from MLoc 5E
SWI

This program tells the computer to first load accumula-
tor A with the data found in memory location 6F (LDDA from
MLoc 6F).

Next, ADD the data found in accumulator A to the data
in memory location 5E (ADDA from MLoc 5E).

Then, interrupt the program with a software interrupt
instruction, causing the program to end (SWI). The data
found in the Program Counter is then displayed, indicating
the completion of the program.

The computer program just listed used mnemonics (a
group of letters that symbolize an instruction) as a list of
instructions, but computers need binary code to understand
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what to do. The following program, therefore, is written in
hexadecimal and is an exact replica of the program above:

$96 $6F
$9B $5E
$3F

(The dollar sign, $, represents hexadecimal.)
Along with the 6800 series of microprocessors, Motorola

also has a 68000 series of microprocessors. In addition, this
particular manufacturer has now come up with a new micro-
processor chip designated the 88000, which is a reduced
instruction set computer (RISC).
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Decimal 27 26 26 24 23 22 2' 2°

(128) (64) (32) (16) (8) (4) (2) (1)

153 1 0 0 1 1 0 0 1

154 1 0 0 1 1 0 1 0
155 1 0 0 1 1 0 1 1

156 1 0 0 1 1 1 0 0
157 1 0 0 1 1 1 0 1

158 1 0 0 1 1 1 1 0
159 1 0 0 1 1 1 1 1

160
up to

1 0 1 0 0 0 0 0

255
and so on

1 1 1 1 1 1 1 1

Higher orders of binary number equivalents:

28 256 23° 1073741824
2° 512 231 2147483648
210 1024 232 4294967296
2" 2048 233 8589934592
212 4096 234 17179869184
213 8192 236 34359738368
214 16384 238 68719476736
215 32768 237 137438953472
218 65536 238 274877906944
217 131072 239 549755813888
218 262144 2" 1099511627776
219 524288 2" 2199023255552
220 1048576 242 4398046511104
221 2097152 243 8796093022208
222 4194304 2" 17592186041416
223 8388608 248 35184372088832
224 16777216 246 70368744177664
225 33554432 247 14.0737488355328
276 67108864 2" 281474976710656
227 134217728 2" 562949953421312
22° 268435456 26° 1125899906842624
229 536870912

Appendix B

Simplifying Digital
Logic Circuitry

TRUTH TABLES AND BOOLEAN ALGEBRA

Truth tables, Boolean Algebra, and minimizing are all used
to represent logic circuitry in its simplest form. As an exam -
ple, suppose the problem in simplifying a logic circuit
involves three inputs (A, B, and C) and the logic to be pro -
vided is that there is an output with the following combina-
tions of signals:

B AND C OR A AND C OR A AND B

The corresponding truth table can be written:

A B C S
Line 1 0 0 0 0
Line 2 0 0 1 0
Line 3 0 1 0 0
Line 4 0 1 1 1

Line 5 1 0 0 0
Line 6 1 0 1 1
Line 7 1 1 0 1

Line 8 1 1 1 1

This describes all of the states, twenty four possible
combinations, of which only four provide one output. This
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may not be so obvious from the original statement, where it
may appear that only three states provide an output. The
solution for S can also be written in the form of a Boolean
equation as such:

S = 1 = ABC + ABC + ABC + ABC

Again, this indicates four states giving an output where
S =1. These states can be provided by covering all states as
laid down by the original logic statement, reminded by the
truth table, and/or the Boolean equation that there are four
possible states involved where S =1. Logic elements arranged
in the combination shown in FIG. B-1 would then cover all
states with what can be referred to as unreduced or
unminimized combinations. A second look with a view to
reducing or minimizing the actual combinations required
can then be very worthwhile.

Output

Fig. B-1. Unminimized logic element combination.

MINIMIZING

The Boolean equation above then simplifies to:

S = 1 = BC + AC + AB

This is merely the original statement expressed in Boolean
algebra. The same follows from a study of the truth table. We
only need the states established by the fourth, sixth, and sev-
enth lines. The minimized circuit is then very much simpler,
reducing the number of logic elements actually required
from ten to five as shown in FIG. B-2.

Output

Fig. B-2. Minimized logic element circuit.

Minimizing is thus a very important part of logic circuit
design. It can eliminate redundant or unnecessary compo-
nents. It is not always easy to spot how this can be achieved
working with block logic diagrams, but reducing the Bool-
ean equation to its simplest form provides a positive answer,
provided you do the Boolean algebra correctly. It is not so
easy with combination circuits where minimizing is best
done with the aid of a Karnaugh map (to be discussed later).
The full design procedure then is:

1. Put down all input combinations which provide an
output.
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2. Construct a truth table as a check that all possible
combinations have been considered.

3. Derive the Boolean equation which provides an out-
put.

4. Construct a Karnaugh map for all participating vari-
ables.

5. Use this map to minimize the Boolean equation.
6. Draw up a circuit from this minimized equation.

MINTERMS AND MAXTERMS

Truth tables and Boolean algebra equations are closely
related. In most digital circuit designs the starting point is
the truth table from which the corresponding formula is
derived. For example, here is the truth table for an XOR logic:

A B S
0 0 0
0 1 1

1 0 1

1 1 0

The corresponding equation is AB + AB = S
This particular equation is a sum of products, or what is

called the normal minterm form when referring to switching
circuits. A complementary formula can be devised for the
same conditions (from the same truth table) by considering
combinations which do not produce an output. This is
called a dual equation and in this case is:

AB + AB = S
by inversion S = A B + AB

= (A + B) (A + B)

This is the product of sums and this form of equation is
called the normal maxterm form.

Specifically then, the minterm form of an equation,
being a sum of products, can be solved by digital devices
having an AND function. Maxterm forms of an equation,
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being a product of sums, can be solved by OR devices. The
value of this is that a switching function requirement can be
written in equations in either minterm for solution with
AND devices, or maxterm form for solution with OR devices,
and the two alternatives compared term for term.

Again, minterms and maxterms can be directly related to
a truth table. For example, possible minterms and maxterms
covering three binary variables A, B, and C are:

A B C Minterm Maxterm
0 0 0 ABC A+B+C
0 0 1 ABC A+B+C
0 1 0 ABC A+B+C
0 1 1 ABC A+B+C
1 0 0 ABC A+B+C
1 0 1 ABC A+11+C
1 1 0 ABC A+B+C
1 1 1 ABC A+B+C

Minterms and maxterms can also be devised directly
from any functional expression f(A,B) where f is a Boolean
function of the binary values A and B. As an example:

Minterm form = f(A,B)
= A Bf(0,0)+ABf(0,1)+ABf(1,0)+ABf(1,1)

Maxterm form = f(A,B)
= (A+B+f(1,1))(A+B+f(1,0))(A+B+f(0,1))

(A+B+f(0,0))

KARNAUGH MAPS

In a Karnaugh map every possible combination of the binary
input variables is represented by a square called a cell. The
number of squares required is equal to 2^, where n is the
number of variables to cover all possible combinations.
There are 22= 4 squares. A Karnaugh map charts the min -
terms of ANDed variables.

Taking the simplest case of two variables A and B, the
map has four cells, with the four possible combinations in
FIG. B-3. Alternatively, the signal values can also be indicated
as shown in the right side of FIG. B-3. Drawing larger Kar-
naugh maps is not really difficult. FIGURE B-4 shows a Kar-
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B

B

A A

B

B

A A

AB AB 0

AB AB 0 0

Fig. B-3. Karnaugh maps for two binary variables.

7 A
00 01 11 10

Co

C 1

ABC ABC ABC ABC

ABC ABC ABC ABC

B B B

Fig. B-4. A Karnaugh map for three variables

naugh map for three variables, and FIG. B-5 shows a Karnaugh
map for four variables.

The advantage of using a Karnaugh map is that it elimi-
nates any unnecessary inputs from the truth table input pat-
terns used to produce a 1 output, it is quicker to draw and
considerably easier to use than a truth table, and it shows
you even further simplification of logic circuitry than either
the truth table or the Boolean equation can.

00

C

01

11

C

10

A
00 01 11 10

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

B

Fig. B-5. A Karnaugh map for four variables.

D

D
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Simple Operation
For simplicity, assume that two variables, A and B, con-

tain two states, 1 or 0, and a quick check is required on the
results of combining A and B as an AND function. A and B
are both drawn as separate maps, with respective cell values
and annotated by an AND sign. This is shown in FIG. B-6. It is
then readily possible to plot the resulting AB map.

In the same way, Karnaugh maps can be used to deter-
mine the inverse of a function simply by changing 0's to l's
and l's to 0's in the individual maps, remembering at the
same time this changes AND to OR or vice versa.

B

A map
A

0

0 B

B map
A

0 0

B

AB map
A

0 0

0

Fig. B-6. AB map derived from A and B maps.

Minimization Techniques

Probably the most useful application of Karnaugh maps
is to minimize the number of logic elements necessary to
provide a solution to the problem displayed on the map. This
involves grouping together adjacent cells on the map with
the object of arriving at the simplest statement of the original
equation or truth table by graphical rather than mathematical
means.

Adjacent cells are cells which differ in only one variable
in the AND terms describing the cells. As an example of min-
imization techniques, suppose the following logic equation
involved is:

f = ABC + ABC+ ABC + ABC

This, in fact, corresponds to the basic Karnaugh map config-
uration for three variables without the combinations ABC
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and AEC. The resulting Karnaugh map is therefore as shown
in FIG. B-7. (The individual cells are designated i, ii, iii, etc.,
for reference description only; they would not normally be so

marked.)

C

A

(I) (fi)

ABC

(III)

ABC

(iv)

ABC

(v) (vi)

ABC

(vii)

ABC

(viii)

ABC

B

Fig. B-7. 8 -cell Karnaugh map for three variables.

Adjacent cells ii and iii differ in only one variable (A and
A), and can thus be grouped. Similar adjacent cells vi and vii
differ only in one variable (A and A again) and can thus be
grouped as shown in FIG. B-8. Having done this the whole
map can be defined in simpler terms as follows:

C

A

CD

B
(a)

f=BC+BC

A

-B-
(b)

Fig. B-8. Grouping of adjacent cells.

C

A --I

B
(c)

Appendix C

Computer
Programming

There are a number of different ways in which you can make
a computer understand what it is that you want it to do. You
must give it a set of instructions or a program. This can be
accomplished by feeding this information into the computer
through a keyboard, magnetic tape, or magnetic diskette.
However you enter this information, it must be understood by
the computer so that it can perform the function it has been
asked to complete.

There are several languages that computers understand.
Home computers usually base their language on a set of
instructions that are written very much like the English lan-
guage. This type of programming is called BASIC (Begin-
ner's All purpose Symbolic Instruction Code) language.
Other languages include machine language and assembly
language. There are, of course, a great many other languages
that are used to communicate with computers, but only these
will be covered in this section because these are the three
most commonly used in understanding computer operation.

BASIC

The program structure of the BASIC language is simply a
series of commands stored within the computer's memory
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and executed only when you type in the command RUN.
Storing these commands is accomplished by typing a num-
ber in front of the command. Any number of lines may be
typed in and they are stored, sequentially, by the computer.

In the BASIC language, a typical program contains an
action statement, a control statement that can cause a com-
mand to be repeated many times, and a control statement that
causes the computer to make a decision to use or skip a part
of the instructional program.

Here is a simple program written in BASIC that runs on
an IBM PC and is actually a game, asking the player to pick
the correct number from 1 to 100:

10 READ Q$,D
20 IF D=0 THEN STOP
30 PRINT Q$;
40 INPUT A
50 IF A< D THEN PRINT "TRY HIGHER!":GOTO 20
60 IF A> D THEN PRINT "TRY LOWER!":GOTO 20
70 PRINT "VERY GOOD"
80 GOTO 10
90 DATA "PICK A NUMBER FROM 1 TO 100",67

100 DATA "END",0

ASSEMBLY LANGUAGE

In assembly language, symbols are used to represent the
commands and are like an abbreviation of the command
itself. Where BASIC is three steps removed from the actual
language that the machine understands, assembly language
is two steps removed.

The following set of programming commands is written
in assembly and represents the addition of two numbers in
either the direct or extended mode of addressing:

LDA A $00F0
ADD A $00F1
STA A $00F2
WAi

Computer Programming 183

The first command line tells the computer to load the
contents of memory location 00F0 into accumulator A. The
second line states "Add the contents of memory location
00F1 to the contents of accumulator A (addition) and place
the sum back into accumulator A (replacing the original con-
tents of 00F0 that was originally there)." Next, the computer
is told to place the sum that is now in accumulator A into
memory location 00F2. Finally, the command WAI, wait for
further instructions, is given.

As you can see, this is very close to the actual hexadeci-
mal code that the computer really uses to understand the
commands that it is given.

MACHINE LANGUAGE

Machine language is the actual hexadecimal code that the
computer understands. The following program is written in
machine language and represents the same program of add-
ing two numbers that was just presented using assembly lan-
guage:

B6
00 (LDA A $00F0)
FO

BB
00 (ADD A $00F1)
F1

(STA A $00F2)

3E (WAI)

B7
00
F2

Note: The assembly language shown is for reference only; it
would not be written.
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B
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Reflected or Gray Code, 89
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basic ripple counter, 134-136
decade counter, 136-139
divide -by -n counter, 139
IC binary counters, 144
IC synchronous counters, 145
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counter, 143

parallel counters, 140
reversible counter, 136
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6
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Gray code conversion, 82
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168-172
bipolar transistor, switching
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de Morgan's theorem, 45
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logic symbols, 31
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minterms and maxterms, 176
NAND gate, 32, 37
NOR gate, 32
NOT gate, 32
OR gate, 3G23-35
problem solving in, 41-44
theorems in, 45-46
XOR gate, 37
YES gate, 32

bootstrap sweep generator, 105
bounce -free switches, 29
buffers, IC, 66

C
cascading arithmetic logic unit

(ALU), 157-158
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CETOP stardardized symbol-
ism, 14

clocked MOS circuits, 60
clocks (see digital clocks)
CMOS, 58, 60
complementary MOS (CMOS),

58, 60
complex ICs, 67-69
computer programming, 182-

184
assembly language, 183-184
BASIC language, 182-183
machine language, 184

control logic, microprocessor,
166

converters
analog -to -digital (A/D), 149-
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digital -to -analog, 146-149
cross -coupling, 71
crystal controlled oscillators,

103
current -mode logic (CML), 53

D
D flip-flops, 73-76
D/A conversion, 2, 146-149
data latches (see D flip-flops)
data registers, temporary A&B,

164
decade counter, 136-139
decoders, 110-111

IC, 114-115
one -of -sixteen, 115-117
truth table for, 112

deMorgan's theorem, 45
demultiplexers, 111-114

one -of -sixteen, 115-117
Diamond code, 91
digital adders, 123-133

binary adders, 123
binary subtractors, 127-128
full-, 124-127
half- and full-subtractors,
130-133
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half-, 123-124
serial adder/subtractor, 129-
130

two's complement adder/
subtractor, 129

digital clocks, 97-107
bistable multivibrators, 102
block diagram of, 107
crystal controlled oscillators,
103

frequency division, 107
IC oscillators, 98-99
monostable multivibrators,
99-102

operational amplifier, 97-98
sweep generators, 103-104

digital families, 69-70
digital logic circuits, 173-181

Karnaugh maps, 177-181
minimizing, 175
minterms and maxterms, 176
truth tables and Boolean
algebra, 173-174

digital systems, 2
digital terminology, 2
diode matrix encoder, 109
diode switches, 26-27
diode -resistor logic network,

48-49
diode -transistor logic (DTL), 50
direct -coupled transistor logic

(DCTL), 51-52, 57
display drivers, 120-122
divide -by -n counter, 139

synchronous, 141
dynamic MOS inverters, 60-61
dynamic MOS NAND gates, 61
dynamic MOS RAM, 82
dynamic MOS shift registers,

155-156

E
electronic switches, 24
emitter -coupled transistor logic

(ECTL), 53-54

ENABLE, 39
truth table, 40

encoders, diode matrix, 109
Excess Three Code, 89
exclusive OR gate (see XOR

gate)

F
fan-in/out, 47
FETs

MOSFETs, 56-58
switches use of, 26

flip-flops, 71-79
D, 73-76
JK master -slave, 77-79
JK, 76-77
registers, 84, 151
RS, 71-73
symbols for, 19

fractions, various number sys-
tems, 95-96

full -adders, 124-127
full-subtractor, 130-133

G
gates (see also logic gates), 2,

28
Gray code, 89

binary conversion, 82

H
half -adders, 123-124
half-subtractor, 130-133
hexadecimal numbers, 93-95

I
index register, microprocessor,

166
instruction code register, micro-

processor, 164
instruction decoder, micropro-

cessor, 166

integrated circuits
binary counters, 144
buffers, 66
complex, 67-69
decoders, 114-115
minimization of, 63
multiple -gate, 64-66
oscillators, 98-99
RAM, 82-84
shift registers, 152-155
standard gates, 63-64
synchronous counters, 145

inverted parallel logic, 10
inverted series logic, 10

JK flip-flops, 76-77
JK master -slave flip-flops, 77-79
Johnson Code, 89
Johnson counter, 143

K
Karnaugh maps, 143, 177-181

minimization techniques
with, 179-181

operations with, 179

L
LED readouts, 118-119

display drivers, 120-122
level translators, 64
linear ramp generator, 104
logic, 30

parallel, 8
series, 8

logic circuit devices, 47-70
clocked MOS circuits, 60
complementary MOS
(CMOS), 58, 60

complex ICs, 67-69
current -mode logic (CML),
53

digital families, comparison
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of, 69-70
diode -resistor logic networks,
48-49

diode -transistor logic (DTL),
50

direct -coupled transistor
logic (DCTL), 51-52

dynamic MOS inverters, 60-
61

dynamic MOS NAND gates,
61

emitter -coupled transistor
logic (ECTL), 53-54

handling MOS devices, 61-62
IC buffers, 66
integrated circuits and mini-
mization, 63

MOS logic, 58-59
MOSFETs, 56-58
multiple -gate ICs, 64-66
resistor -transistor logic (RTL),
51

Schmitt trigger, 66-67
standard IC gates, 63-64
transistor -transistor logic
(TTL), 53, 55, 56

logic gates, 2
combination of, 11
cross -coupling, 71
switches, 15
YES, 15

logic operations, arithmetic
logic unit (ALU), 161-163

M
machine language, 184
master -slave flip-flops, JK, 77-

79

mathematical logic (see Bool-
ean algebra)

maxterms, 176
memories, 71, 79-81

analog, 79
random-access (RAM), 81-84
read-only (ROM), 80-81
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sample and hold, 79
symbols for, 18

microprocessors, 163-167
accumulators, 164
address register, 166
control logic, 166
data registers, 164
index register, 166
instruction code register, 164
instruction decoder, 166
stack pointer, 166

Miller sweep generator, 104
minimization, 175

Karnaugh maps, 179-181
minterms, 176
monostable multivibrators, 99-

102
MOS logic, 58-59

clocked MOS circuits, 60
dynamic MOS inverters, 60-
61

dynamic MOS NAND gates,
61

dynamic MOS shift registers,
155-156

handling devices using, 61-
62

MOSFETs, 56-58
MOS logic, 58-59

multiple -gate ICs, 64-66
multiplexers, 111-114
multivibrators

bistable, 102
monostable, 99-102

N
NAND gate, 2, 16, 32

Boolean algebra, 37
dynamic MOS, 61

NOR gate, 2, 17, 32
truth table for, 10

normal maxterm form, 176
NOT gate (inverter), 2, 16, 32

truth tables, 7
number systems, 85-96

binary-coded decimal (BCD),
85-88

binary -to -Gray code conver-
sion, 82

binary/decimal equivalents,
168-172

Diamond code, 91
fractions, 95-96
hexadecimal numbers, 93-95
octal numbers, 92-93
parity bits, 90-91

O
octal numbers, 92-93
one -of -sixteen decoder/

demultiplexer, 115-117
operational amplifiers, 97-98
OR gate, 2, 17, 32

Boolean algebra, 33-35
truth table for, 8-10, 12

oscillators, 98-99
crystal controlled, 103

P
parallel counters, 140
parallel logic

inverted, 10
truth table for, 8

parallel working switches, 23
parity bits, 90-91
positive edge triggered flip-

flops (see JK flip-flops)
pulse circuit, Schmitt trigger,

106

R
random-access memories

(RAM), 81-84
dynamic MOS, 82
typical integrated circuits,
82-84

read-only memories (ROM), 80-
81

Reflected Code, 89
registers, 84

shift (see shift registers)
resistor -transistor logic (RTL),

51
reversible counter, 136
reversible synchronous

counters, 141
ripple counter, 134-136
RS flip-flops, 71-73

S
74181 function table, 159
sample and hold memory, 79
Schmitt trigger, 66-67

pulse circuit, 106
Schottky diodes, 53

switches use of, 27
serial adder/subtractor, 129-130
series logic

inverted, 10
truth table for, 8

series working switches, 23
shift registers, 84, 151

dynamic MOS, 155-156
IC, 152-155

silicon controlled rectifier
(SCR), 28

Solid State Electronics Theory
with Experiments, 26

stack pointer, microprocessor,
166

subtractors (see also digital
adders)

binary, 127-128
half- and full-, 130-133

sweep generators, 103-104
switches, 18-29

AND gate, 16
bipolar transistor, 25
bounce -free, 29
digital logic gates, 15
diode, 26-27
electronic, simple, 24
FETs as, 26

functions of, 18
improving transistor switch -
off times, 26

NAND gate, 16
NOR gate, 17
NOT gate (inverter), 16
OR gate, 17
Schottky diodes, 27
series and parallel working,
23

solving equations with, 20-
22

thyristors, 28
truth tables and, 13, 19
unijunction transistors, 27
XOR gate, 17

symbols, 14-29
flip-flops, 19
logic, Boolean equations, 31
memory, 18

synchronous counters, 140-143
divide -by -n counter, 141
integrated circuits, 145
reversible, 141

T
thyristors, 28
transistor -transistor logic (TTL),

53, 55, 56
transistors

bipolar, switching character-
istics, 25

improving switch -off times,
26

Schottky, 27
unijunction, 27

trims, 28
triggers, Schmitt, 66-67
truth tables, 7-13, 173-174

AND gate, 9, 11-12
decoder, 112
enable, 40
full -adder, 125
logic gate combinations, 11
NOR gate, 10
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OR gate, 8-10, 12
parallel logic, 8
plotting, 12
series logic, 8
switches and, 13, 19
XOR gate, 39

twisted ring counter, 143
two's complement adder/sub-

tractor, 129

U

w
weighted code, BCD, 88

X
XOR gate, 17

Boolean algebra, 37
truth table, 39

unijunction transistors, 27
US MIL standardized symbol- Y

ism, 14 YES gate, 15, 32
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