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Introduction

`Contrariwise', continued Tweedledee, ' If it was so, it might be; and if it
were so, it would be; but as it isn't, it ain't. That's

logic.'
from Lewis Carroll's Through the Looking Glass

That, as a concise explanation of logic, is quite clever. But Lewis
Carroll was not only an outstanding writer; he was also a mathemati-
cian and an active practitioner of logic, or logician. The dictionarydefines logic much more broadly as the science of reasoning, proof,thinking or inference - which is not too logical when you come to look
into it. It merely hints at the various possible forms of logic, which
really start with commonsense. That is the sort of logic most people
can understand, but it is not true logic. True logic follows rules which
must not be broken to justify logical conclusions or answers.

The first thing to observe when looking at the subject of logic in
depth is that there are many different types of logic - so there is hoptfor everyone to be able to find a particular type of logic which he or
she can readily understand and apply to reach logical conclusions or
answers. This type of logic will then become a useful, everyday tool -
much more effective than mere commonsense.

This book has been planned with that in mind. It has been divided
into chapters which deal with different types of logic. Some will be
easy to understand; others possibly quite obscure at first. In the latter
case, skip those for a start. Read only those which immediately 'make
sense'. You can then start to apply that type of logic right away. Goback to the others later on, when you will discover that there is an
inter -relationship between all the different types of true logic. Logic is
not just a subject for philosophers or mathematicians - it is somethingeveryone can use and benefit from.

Logic today, in fact, is a 'popular' subject. There are various jour-nals and publications, for instance, devoted solely to presentingpuzzles and problems for solution by 'logic' as a stimulating mentalexercise or even hobby -interest -just as crossword puzzlesattract their
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addicts. The same sort of 'logic' problems have also been set for years
in aptitude tests. Largely, however, this is a back-to-back form of
logic. The originator of the problem starts with the answer and derives
the facts or clues to fit it, which are then presented to the reader to
solve and produce the same answer.

Logic, too, has become a powerful modern design tool, particularly
for the complex circuits used in microprocessors and computers; the
more complicated 'engineering' control circuits, etc; and, of course,
computer -aided design. All the modern forms of practical (mathe-
matical) logic deal in binary relationships, a tailor made language for
computers and the ever-expanding field of design by logic rather than
by combersome equations and tedious mathematical solutions. At the
same time binary language, as expressed in Truth Tables and Boolean
algebra, is an extremely simple, useful tool for application to problems
in 'ordinary' logic, where it can often be a much more compact (and
exact) alternative to deductive logic. The basic mathematical princi-
ples involved date back for more than a century. Before they had a
definite practical application they remained of interest only to the
`pure' logician concerned with academic studies. Bertrand Russell -a
leading philosopher/mathematician - even gave up his studies of
mathematical logic because the solutions obtained were 'too exact'.

On the other hand, formal logic has been the delight of philosophers
for two thousand years, with philosophers greatly outnumbering
mathematicians throughout. This has produced the logicians whose
proper business, as defined by a leading (American) authority is 'the
investigation and formulation of general principles concerning what
follows from what; and whether particular examples of his own reason-
ing are valid or not is irrelevant ... Correct reasoning, however
praiseworthy, does not itself contribute to logic.' The first sentence of
this virtually repeats Tweedledee's definition of logic. The remainder
contains two statements which may seem surprising. 'Correct' logic
does not have to be valid (i.e. the reasoning behind it does not
necessarily have to be true!). Also if the reasoning is correct, it is not
necessarily logic! You will find these two apparent contradictions of
the meaning of logic explained in the chapter on Deductive Logic.

Historically, the origins of formal logic date back to the Greek
philosopher Aristotle (384-322 BC), who developed the basic theory
of syllogism, which has been the core of deductive logic ever since as
first developed by the Peripatetic school. Alternative approaches to
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formal logic were subsequently developed by other groups of philoso-
phers, of which probably Stoicism (Stoic logic) is the most outstandingas the source of sentential calculus. Except for the dedicated student
of philosophy, then there is little else of note until the middle of the
sixteenth century when the first of the 'mathematical logicians' began
to appear, culminating in the development of Boolean algebra almost
simultaneously by George Boole (1815-64) and Augustus De Morgan
(1806-71). Mathematical logic, in its modern form, is finally accre-
dited to Gottlob Frege (1848-1925) with his consistent and completedevelopment of the sentential calculus; subsequently further de-
veloped by Bertrand Russel and Alfred North Whitehead in Princi pia
Mathematica.

All this is concerned, basically, with the logic used by philosophers(and of necessity has omitted many other important names in the
development of philosophical logic). Simplifying it to a degree, Aris-
totle remains the inventor and inspiration behind deductive logic, as
it is still used today. Mathematical logic based around sentential
calculus, was 'finalized', as it were, only at the beginning of the presentcentury and because of its complexity demanded a new artificial
language to support it. It thus remains largely the tool of philosophers.

Indeed, as far as philosophers are concerned, the algebraic
approach to logic using binary relationships remained as a weaker
tool, although as noted previously it has now become an importantdesign tool. For that reason, if you go to your local library to find
books on logic, virtually all will be catalogued and displayed under
Philosophy. Treatment of practical modern logic will only be found in
parts of books on the Electrical and Mathematical shelves.

It is to be hoped, therefore, that this present book will fill a real
need for introductory coverage of all types of logic in a single volume;
and above all make these types of logic easy to understand and apply.



CHAPTER 1

Some Types of Logic
Commonsense Logic

Commonsense logic is deriving conclusions from personal experi-
ence and/or knowledge. A conclusion that something makes sense, so
it is right; or something does not make sense, so it is wrong. Common-sense does not necessarily produce correct answers, however; and is
not necessarily 'logical' at all - especially when compared with deduc-tive or mathematical logic, for example; or even established facts.

Commonsense 'logic', for example, would maintain that brick,stone, metals are all hard and solid substances. Science establishes that
the atomic structure of any solid substance is almost entirely emptyspace. Commonsense finds it difficult, or impossible, to accept such afact. It is not understandable, so it is not real. Even less 'realistic' is
time -dilation in space travel; or the quantum theory which holds that
everything can be reduced to and analysed in terms of wave forms.

Yet commonsense is the logic most individuals use for solving ordi-
nary, everyday problems. Applied to pure logic problems it can even
provide instant answers which are known to be correct, ignoring anyrules of logic and avoiding any necessity of positive proof that theconclusion is correct.

A person familiar with philosophical logic and deduction would
immediately identify the following as a syllogism with an invalid
conclusion:

All dogs are animals
All cats are animals

Therefore all cats are dogs.

He could further go on to prove that this is an invalid syllogism bydrawing a Venn diagram, or by showing that it breaks one or more ofthe rules of deductive logic. Equally, he would probably be preparedto argue this proof at some length.
Commonsense logic has not heard of syllogisms or valid or invalid

arguments. It simply affirms, without argument, that cats are not dogs.
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To do this, however, it has to know there is a difference between cats
and dogs. Without any knowledge at all of the French language, for
example, commonsense logic could also maintain that all cats are
chats is also wrong (because the spelling is wrong).

This, incidentally, leads to an interesting digression.

All cats are animals
All chats are animals

Therefore: (i) all chats are cats
(ii) all cats are chats.

True or false? (i) is true and (ii) is false. But this is a question of
knowledge, not logic. (In the case of (ii) all cats are not male (French)
cats.)

Here is a classic problem in commonsense logic. A bear walked one
mile due South, then turned to the left and walked one mile due East.
Then it turned to the left again and walked one mile due North and
arrived back at its starting point.... What was the colour of the bear?

Now apparently the bear walked three legs of a square, like this
t1.But since it ended up where it started from its actual path

must have been a triangle A The only two places in the world
where this could happen is if the starting point is either the North Pole
or the South Pole. The South Pole is ruled out since it is impossible to
travel South from it. So the bear was at the North Pole, i.e. it was a
polar bear. So the bear was white.

Note again that this problem is solved by knowledge, not logic as such
- although it needs a logical type of mind to apply that knowledge to
a particular problem. So commonsense logic can perhaps best be
described as logical reasoning based on the available facts, and drawing
on additional knowledge or experience to arrive at an answer. It could
almost - but not quite - be called inductive logic, which is a recognized
category. It is certainly not true deductive logic, which does not permit
argument outside the facts available.

In this particular example, too, logical reasoning can also be proved
by geographical fact - except for one thing. There is the remote
possibility that a brown bear could have been taken to the North Pole
by aircraft, say, as an environmental experiment.

Some Types of Logic 11

Sherlock Holmes's Logic

Almost everyone must be familiar with the infallible reasoning ofSherlock Holmes - his ability to put together a complete picture fromthe most meagre of clues whilst the amiable Watson was simply
confused by the situation. Deductive logic at its best - or is it?

In fact it is not, although it is based on the principle of deductive
logic. It is fiction, written 'backwards' from the answer. Clever, ima-
ginative writing where the answer (conclusion) is first established, the
clues (premises) then extracted from the answer and then whittled
down to the absolute minimum to be ultimately acceptable for justi-fying the answer. The possibility of alternative answers is not con-
sidered for it does not fit in with the story, or the character of Sherlock
Holmes.

Let's face a simple situation which Sherlock Holmes' type logicwould answer immediately with ease.
One Spring day you come across two round stones and a carrot

lying close together on a grass verge. What do you deduce from that?
The Sherlock Holmes type of mind would immediately answer: 'A

boy built a snowman there in the second week of February.' (Sherlock
Holmes himself would probably have gone on to describe the boy in
more detail; where he went on holiday last (by the type of stones); and
even the snowman itself).

Now possibly this answer is right. Why a snowman? Because the
stones were used for eyes, and the carrot for a nose. Why a boy?Because a girl would have taken more trouble and moulded the nose
in snow. Why the second week in February? Beacuse that was when
there was the last fall of snow that laid heavily.

None of these conclusions is supported by fact, so it is difficult to
justify them on any logical basis. Indeed there are many other possible
answers, for example:

(i) The two stones just happened to be there, anyway. The carrotfell out of someone's shopping bag at that particular spot.
(ii) Digging up his vegetable plot, a gardener turned up two stonesand an old carrot. He threw them all over the hedge, where they

landed on the grass verge close together. Neither very interesting, butboth equally as plausible as the 'snowman' theory, or even more so.
(iii) One night a burglar approached the house the other side ofthe grass verge carrying two stones he could use to break a window
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and force an entry. He thought the house was empty, but it was not;
so he turned, ran and jumped over the hedge on to the grass verge,
dropping the stones where he landed. The woman who was in the
house and saw him was in the kitchen. She picked up the nearest
object, which happened to be a carrot and threw it at the burglar.
The carrot landed in the same spot as the stones.

That answer has 'written a story' around two simple facts. See how
many other different stories, or answers, you can think of.

Ordinary Language
Arguments in ordinary language are often difficult to prove, even

though they may lead to correct conclusions. This is the basic weakness
of ordinary language for dealing with problems in logic. Where proof
of the validity or otherwise of the conclusion is necessary, the available
information may first need changing into what is known as a
standard -form categorical syllogism before it can be analysed fully
under the rules of deductive logic. The term 'standard -form categorical
syllogism' is extremely off-putting when first met, but basically means
reducing the component propositions into three separate terms. The
validity (or otherwise) of the argument is then simple to establish (see
chapter on Deductive Logic).

As an example, consider the following forms:

No wealthy person:, are vagrants
All barristers are rich people

Therefore, no high court advocates are tramps

These contain six terms, but in fact this is because of synonymous
descriptions. Thus 'wealthy people' and 'rich people' are the same; so
are 'barristers' and 'high court advocates'; and so are 'vagrants and
tramps'. Thus, still using ordinary language, here is the same thing in
standard -form containing just three terms.

No rich people are vagrants
All barristers are rich people

Therefore, no barristers are vagrants.

That is now a standard -form categorical syllogism, which is easy to
pr,,ve as valid argument.

At the same time this demonstrates a basic rule applicable to all
types of logic. The information necessary to be able to solve the problem,
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or come to a conclusion, can at first appear obscure because it is
wrapped up in a lot of ordinary language. The 'facts' of the questionhave to be extracted and put down in their simplest form, eliminatingany ambiguity of duplication (synonymous description).

Reductio ad absurdum

Reductio ad absurdum is a particular type of logic favoured by philo-sophers, as well as being applicable to other types of logic. It means,
quite simply, showing that an assumption is false by deriving a further
conclusion from it which is absurd (i.e. cannot be true). In fact, it can
be argued that reductio ad absurdum itself is absurd as applied in deduc-
tive logic since it argues at length about things which are not true.
Debating the question rather than seeking the answer. In mathemati-
cal logic, however, reductio ad absurdum can be quite precise. It can be
used to prove that something is impossible, i.e. that a particular answeris not a correct solution or method of solution; or that there is noanswer to that problem.

Suppose the problem is to complete a series of numbers using each
of the ten digits 0,1,2,3,4,5,6,7,8 and 9 once and once only so that the
sum of such numbers composed is 100. Can it be done? The reductio ad
absurdum approach will show that it cannot.

Using the digits as' they stand, added together

0+1+2+3+4+5+6+7+8+9=45
This is well short of the total required, so some of the numbers will

have to be double figures instead of single figures to make up theadditional amount in tens. Call this sum T for tens. The sum of the
remaining figures is then 45 - T, so we get the following equationexpressing the requirement

10 x T + (45 - T) = 100

Solving this gives T = 55/9 = 6.1111....
This is obviously absurd. You cannot have 6.111... digits denotingtens. T must be a whole number. So, by reductio ad absurdum, theproblem is not solvable.
By all means apply reductio ad absurdum to deductive logic as well -but be prepared for a lengthy debate if discussing it with someone else.In philosophical logic there can be different opinions as to what is

absurd or not!
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Indirect Proof
Indirect proof is closely related to reductio ad absurdum, but it works

in the opposite sense. It 'proves' a deduction or assertion by establish-
ing that the opposite assumption is false. A handy trick for politicians,
this, to prove their policies right by expounding at length on how the
Opposition is wrong.

Even more so than reductio ad absurdum, indirect proof is open to
objections when applied to philosophical logic, but again in mathe-
matical logic it can be quite positive.

Here is a simple example. If we add all the numbers possible
together (i.e. 1 + 2 + 3 + 4+ 5 + etc., etc.) we conclude logically that
there is no end to such a series and so the sum of all possible numbers
is an infinitely large quantity - normally called infinity, or designated
co. Thus 1 +2+3+4+5+ etc., etc. = co

Suppose, now, we adopt the opposite assumption that there is an end
to such a series. If that is so, a further 1 can be added to it to give:

(1+2+3+4+5+ etc.,etc.)+1= oo+1
But there cannot be a quantity co + 1 because co (infinity) is already
an infinitely large number (there cannot be a larger number). So
oo + 1 is impossible. Thus this second (opposite) assumption is false.
Hence the original assumption must be true.

`Proving' that 2=1
There are quite a number ofways of 'proving' mathematically that

2 =1. Indirect proof immediately asserts that any such 'proof' is false.
Sometimes this can be shown directly, i.e. proved false, without having
to look too far. The trick of introducing co + 1 in an equation is one
common method of 'proving' 2 = 1. In some cases, though, it can be
difficult to see where the 'proof' is wrong.

Take the following series of numbers added together, for example,
calling the sum X:

X = 1 +i +i -i+ and so on indefinitely.

Now multiply by 2 to give a second series

2X=2x1-2xi+2x1-2x1+2xi-2xi+
which gives

2X=2-1+i-i+i-i+

Some Types of Logic 15

which can be grouped like this

2X= (2-1) + (I -i) -i+ -I) -
= 1 and so on

which is back to the original series, thus

2X = X
or 2 = 1

Proving that this mathematical reasoning is wrong can be quite a
problem!

No - the fallacy of this proof is not in grouping alternate pairs of
fractions and simplifying each group to a single fraction. Since the
series extends to an infinite number of fractions, every fraction we
`borrow' from farther on in the series does not reduce the number of
fractions in the series - nor does it extend infinity beyond infinity.

Lateral Thinking
Lateral thinking is another form of mental discipline which has re-

ceived considerable recent exposure via Dr de Bono's books - and
particularly his TV series on the subject. Loosely, it is the art of
thinking problems through in more than one direction at a time.
Another form of logical argument, in fact, but only marginally ac-
ceptable as a form of logic.

Probably the basic principle involved is best illustrated by example,
where something is being designed. The designer develops the originalidea through his own knowledge and experience into something final,which is then built or produced. To complete it, it utilizes 'standard'
parts bought in from another company, variation in performance or
quality of which may affect the performance of the final product.
Unless the designer has indulged in some degree of 'lateral thinking'to take into account such possible effects (which were outside his
immediate design problem), the design could prove unsatisfactory.Here is a very simple example of this. The call is for a bracket to be
designed to hold two parts at a V -angle when screwed or bolted up tothe bracket. Accordingly the design office drew up a V-shaped
bracket, and somebody in the workshop makes it. Then they find that
they cannot possibly get long enough screws or bolts into the holes
near the bottom of the V -bracket. So a little 'lateral thinking' at the
design stage would have taken into account that not only was the
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shape of the bracket important, but the fact that it had to be fitted with
bolts. Too bad if they had produced hundreds of brackets before
someone found that they were not usable!

Heuristic Reasoning
Heuristic is the name given to a certain form of logic (or possibly

more correctly philosophy) involving a study of the methods and rules
of discovery and invention. Put in everyday language it could be
described as arriving at a plausible guess to the answer of a problem.
Heuristic reasoning is not regarded as taut (i.e. exact), but somewhat
provisional. It may (that is, the answer) be correct or incorrect.
Equally, it may be based on inductive logic, or analogy. In either case
it can be a useful mental exercise, but heuristic reasoning is not
acceptable as positive or absolute proof.

Analogy
Analogy can be defined as a branch of heuristic reasoning and

defined simply as 'a sort of similarity'. From such similarity it is

possible to make an educated guess at possible unknowns. However
the application of analagous argument is much broader than simple
argument. Analogies can be vague, or clear cut. They can be applied
to mathematics, philosophy or other forms of argument. In many
cases analogous argument and deduction is the only answer to lack of
knowledge in tackling a problem. Probably the clearest example here
is the case of a mathematical problem where a solution is quite
straightforward (and exact) using calculus, but the person's know-
ledge of mathematics does not extend to calculus. Using analagous
reasoning he (or she) could well derive an acceptable answer, if not
necessarily exact.

That, in fact, is the weakness of analogy. It is never exact argument
and deduction - it is heuristic reasoning.

Logic Languages
One of the basic difficulties in developing an approach to logic is

the limitation of ordinary language when it comes to presenting prem-
ises and conclusion in a formalized manner. (Exactly the same problem
arises with computers. You cannot instruct or 'talk' to computers in
ordinary language - it has to be a formalized language consistent with
the input/output capabilities of the computer). So formalizing or
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adapting the style of natural language has been used by logicians since
the earliest days, although the first successful attempts to produce a
complete artificial language on this basis is due to the German logician
Gottlob Frege and only appeared towards the end of the last century.
The idea has since been developed extensively, replacing words with
symbols, and developing theorems of logic.

The aim is very simple - to give each expression an exact meaning,
free from context (which can often confuse or produce ambiguity of
meaning in a natural language); and manipulate such expressions in
a logical manner (determined by rules and theorems). In practice this
becomes a vast subject on its own, far beyond the scope of this book,
and so is only mentioned as such. After all, the title is Logic Made Easy,
and translating a natural language into an entirely new artificial
language is not easy. Just as it is not easy to learn computer language,
although with the great demand for such knowledge there are now a
considerable number of simplified computer languages which are
(relatively) easy to learn. Millions of people now use computers. The
greatest number of computers in use, indeed, are the home computer
types. The number of people seriously interested in a comprehensive
formalized logic language probably barely runs into thousands. Hence
this type of language remains largely the prerogative of academics.

For instance, you start by translating a simple premise:

some A are B

into something like:

(3x) (Px & Ox)

and a little later on may find you have produced an expression
something like this!

(x) (y) (P ad Oy ) & (Sxa, v Sya, x)
(3z) (3w) ( (Lxz & Lyw) & (Pz & Pw) & (Sza2w v Swa2z))*

Nevertheless, you will find that this book does make some consider-
able use of artificial language using symbols, but in a very, very much
simpler form.

* Incidentally, the natural language translation of this is - Torevery pair of
prime numbers differing by 2, there is a pair of greater prime numbers
differing by 2'. There are much simpler ways of expressing the same thing!
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Sentential Calculus
For the same reasons that the academic formalized language of

logic is only briefly mentioned, sentential calculus is also glossed over. It
relates to the artificial language and, broadly speaking, is based on a
series of metatheorems or proofs of general principles characterizing the
language. Every sentence consistent with a metatheorem is then either
a tautology (i.e. completely unambiguous) or a generalization of a
tautology.

To whet your appetite - or put you completely off the subject - here
is the start of metatheorem 110 in sentential calculus:

If it looks interesting you can gain some further encouragement from
the fact that there are only 22 theorems in the 100 -series covering the
sequential calculus!

CHAPTER 2

Which Type of Logic to Use?
Everyone is born with the inherent ability to do some things well
and also to suffer a sort of 'mental blank' in dealing with some other
subjects. Someone who is good at languages, for example, is often
quite hopeless with mathematics, or mechanical subjects. Some people
reason best with words, others with 'pictures' or diagrams.

It is just the same with logic. Some people will find one type of logic
easy to understand and apply, but find other types of logic impossible
to comprehend. So the answer to this particular problem is to work
with the type of logic you understand best. At the same time, though,
it does not necessarily follow that every type of logic can be applied to
solving any problem in logic. Often the reverse is true. Solving a
particular problem may involve a particular type of logic being used.
Only mathematical logic, for instance, willgive exact answers to purely
mathematical problems.

Let's see how alternative types of logic can be applied to solving the
following problem:

George Brown, Tom Green and Bill White were talking. 'Funny
thing', said Brown. 'I've just noticed we're wearing different
coloured hats the same as our names."Yes', said one of the others.
`But none of us is wearing a hat the same colour as our name. For
instance, I'm wearing a green hat.'

Solution by Logical Reasoning
First write down the known facts or premises.

(i) Brown, Green and White are each wearing a coloured hat.
(ii) The colours of the hats are brown, green and white.

(iii) Brown pointed out this fact.
(iv) The one wearing the green hat then pointed out that none of

the colours of the hats they were wearing was the same as their
names.

All these premises are true.
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Analysis or argument: Since none is wearing the same colour as their
name:

(a) Brown is wearing either a green or white hat
(b) Green is wearing a brown or white hat
(c) White is wearing either a brown or green hat
(d) Either Brown or White spoke last, and is wearing a green hat.

Conclusion: Since Brown had already spoken, it must have been White
who spoke last (consistent with (d)). That means it was White who
was wearing a green hat (consistent with (c)).

That leaves Brown wearing a white hat (consistent with (a) since the
green hat has already been allocated). That leaves Green wearing the
brown hat (consistent with (b) since the white hat has already been
allocated).

So - Brown was wearing the white hat
Green was wearing the brown hat
White was wearing the green hat

Now the same problem can be solved by several other different
types of logic. If the following alternative solutions are not clear, read
the appropriate chapter describing that type of logic first.

Solution by Simplified Boolean Algebra
Here we can allocate capital letters for the names - B for Brown, G

for Green and W for White; and lower case letters for the colours of
the hats -b for brown hat, g for green hat and w for white hat.

Let's concentrate on Brown, as the first name in the list. There is no
need to write out the argument in full to mull over; we can express the
relevant facts in simple equation form, noting that a over a letter
means 'not'.

B = b or g or w (Brown is wearing a brown, green or white hat)
B = b (Brown is not wearing a hat the same colour as his name)
B= g (Brown is not wearing a green hat since the last person who spoke

is White)

The 1; cancels the b and the g cancels out the g, so

B = w (Brown is wearing the white hat)
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The rest of the answer then follows in an obvious manner. The main
point is that the mathematical solution is shorter, quicker, and posi-
tive.

Incidentally, a complete proof of this solution is given in the chapter
on Boolean Algebra.

Solution by Logic Diagram
In this case the problem is set down in the following diagrammatic

form:

brown
hat

green
hat

white
hat

BROWN
GREEN
WHITE

Since the hat colours are not the same as the names we can fill in
part of the diagram thus, using 'X' to show 'not':

brown green
hat hat

white
hat

BROWN X

GREEN X
WHITE X

To proceed further we need another diagram to analyse the other
available facts:

spoke
first

spoke
last

BROWN
GREEN
WHITE

Brown spoke first, so, that completes the first line with a ,/ and X
(,/ for 'yes' and X for `not'). The person who spoke last was wearinga green hat. He cannot be Green, so he must be White. The second
diagram can thus be filled in like this:
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spoke
first

spoke
last

BROWN 'I X
GREEN
WHITE X N./

(Green did not speak at all, so we could fill in his line with X and X,
but this is not necessary for solving the problem.)

We can now go back to the original diagram and enter the fact that
White has been identified as the last speaker, wearing the green hat:

brown
hat

green
hat

white
hat

BROWN X X
GREEN X
WHITE X / X

That leaves only one possibility for Brown. He must be wearing a
white hat. The completed diagram also confirms that Green is wearing
the brown hat:

brown
hat

green
hat

white
hat

BROWN X X N/
GREEN / X X
WHITE X ./ X

Solution by Block Logic

Here the possibilities are written down in the following form:

brown H NOT H

green

white

A

brown

OR - BROWN green H NOT

white

Fig. 2.1a,b

B

OR .' GREEN
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brown

green OR WHITE

white NOT

C

Fig. 2.1c

The person who spoke last was wearing a green hat, so this bit of
information in block logic is:

spoke last-s. -0. BROWN or WHITEgreen 'Input'

But it cannot be Brown since he spoke first, which puts a NOT in the
green 'input' line of diagram A:

brown NOT H

green --I NOT H

white

OR

Fig. 2.2

BROWN = white hat

The rest of the solution then follows by completing the diagrams forGREEN and WHITE (i.e. introducing a second NOT in the appropri-
ate 'input' lines).

Incidentally, rendered in Truth Table form, as the complementary
method of expressing block logic, the solution follows exactly the samelines as the solution by Logic Diagrams, using 1 and 0 instead of ,/and X.

Solution by Arithmetical Logic
Not applicable since no numerical values are involved and there isno numerical answer.

Solution by Inductive Logic, Analogy or Heuristic Reasoning
Not necessary since all the facts necessary to obtain the solution are

available.
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Solution by Reductio ad Absurdum or Indirect Proof
This could be used to find an answer by assuming an answer and

seeing if this contradicts the facts. For example, assume Brown is
wearing the green hat. From the facts available, Brown spoke first.
But the person who spoke last was wearing the green hat. Thus the
assumption is not correct, i.e. Brown cannot be wearing a green hat.
Equally, from the facts, he is also not wearing a brown hat. Therefore
he must be wearing a white hat. The rest of the solution then follows.

This solution has been arrived at surprisingly simply. Note, how-
ever, it has used a mixture of logic. The final solution, starting with the
conclusion that Brown must be wearing a white hat, is derived by
deductive logic.

CHAPTER 3

Deductive Logic
In using the description deductive logic, the term deductive refers to the
manner of reasoning or argument. It follows the same pattern as all
approaches to logic in listing a number of premises (or statements in
simple terms), which are then considered or 'argued' over to arrive at
a logical solution to the problem or conclusion. Strange as it may seem
at first, the 'logic' part is concerned only with the correctness or validity
of arguments - not whether the premises themselves are true or false, or
even whether the conclusion is true or false. But if the argument isvalid (note: the argument is never itself said to be true or false), then
the conclusion must be true if the premises are true. If the argument itself
is logically incorrect or invalid, there is a possibility that the premisescould be true and the conclusion false, or vice versa. Let's clarify this
with some simple examples.

Example IA
True premises and true conclusion
Premises: All animals are mortal (true)

All cats are animals (true)
Conclusion: All cats are mortal (true)
This is valid argument.

Example 1B
On the other hand we can have true premises leading to a true

conclusion, but with invalid argument, e.g.

Premises: All animals are mortal
All cats are mortal

Conclusion: All cats are animals

(true)
(true)
(true)

This is invalid argument, even if the conclusion is true, because there
is nothing in the premises to establish the fact that cats are animals. In
`knowing' that they are, we are assuming another premise, not speci-
fically given.
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The logical correctness or incorrectness depends solely on the rela-
tion between premises given and conclusion. You cannot 'add in'
another premise, however convenient. On the other hand, logical
argument can ignore a false premise, as in the next example.

Example 2
True and false premises and true conclusion
Premises: Al} cats are mortal

All birds are cats
(true)
(false)

Conclusion: All birds are mortal (true)

This is valid argument since its conclusion reached is true, even if one
premise is false.

At this point it should be pointed out that although the examples
quoted are simple statements this does not mean that deductive logic
is restricted to simple, straightforward premises. Quite the reverse.
The original subject may be quite complex and lengthy, the gist of
which then has first to be extracted in the form of simpler premises. If
dealing with more than one subject, it would also have to be broken
down in order to provide conclusions for each subject separately.
Simple statements are thus the end product ofa preliminary assess-
ment of the subject matter, as a preliminary to applying deductive
logic. They express the gist of what is being analysed in the simplest
possible terms, ignoring irrelevancies.

One thing needs to be made quite clear. Not every statement is
necessarily a proposition or premise in logic. To qualify it must be
capable of being either true or false. This can help explain some of
the paradoxes in 'classic' logic, like the logic puzzle (antinomy) of
Bertrand Russell's:

`In a certain town there is a barber who must shave all those people
and only those people who do not shave themselves.' This leaves the
question of whether the barber shaves himself or not. If he does, he
breaks the rule and so he must not shave himself. If he does not shave
himself, then he is again breaking the rule and so he must shave
himself.

The answer to this is that the rule itself is wrong. It is both true and
false in the sense that it both can and cannot be obeyed. (That can be
arrived at by deduction.) There is another possible answer, perhaps an
even better one. Logically, the barber cannot exist. (That can be
arrived at by intuitive logic.)
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Example 3

False premises and false conclusion
Premises: All cats have wings (false)

All dogs are cats (false)
Conclusion: All dogs have wings (false)

This is still valid argument since the conclusion reached is a logical
assessment of the facts presented in the premises, even if these are false.

Example 4
False premises are true conclusion
Premises: All cats have wings (false)

All birds are cats (false)
Conclusion: All birds have wings (true)

Valid argument again!
At this point, deductive logic may appear to be anything but logical,but the above established the ground rules - the simplest and easiest

to understand being: If the premises are true, a valid argument must give a
true conclusion.

This then raises a most important point, that the form of the argu-ment must also be valid for the argument itself to be valid. To explain
this simply, let us take the premises of example IA:

All animals are mortal
All cats are animals

Now cross-link the two statements:

All animals are mortal

All cats are animals

This reads as 'all cats are animals (and) all animals are mortal'
which is a validform of argument for concluding 'all cats are mortal'.
In baisic 'formula' terms, this becomes:

All A are B

All C are A

(using A for `animals'; B for 'mortal' and C for `cats').



28
Logic Made Easy

Now look at Example 1B, using letters again, which only cross -linkslike this:

All A are B

All C are B

The only common feature is that both animals and cats are mortal.
It is an invalidform to make a conclusion that all C are A (all cats are
animals), even if the conclusion is correct. Substitute 'fish' instead of
`cats', for example:

All mammals are mortal
All fish are mortal

Conclusion: All fish are mammals.
The conclusion in this case is patently not true, because the form of
the argument is invalid.

This, in fact, is one way of finding out whether the form of the
argument is valid or invalid - see how they crosslink, and if 'substitu-
tion' to give an equally true premise (or a counter -example, as it is
called), results in a conclusion which is obviously false.

This also explains why a true conclusion can be derived even when
one or all of the premises are false - provided the form of the argumentis valid.

Conditional premises
A conditional premise is in the form

If A, then B

Which is then followed by a second premise A. The valid form of the
argument is then cross -linked like this

If A, then B

A

As a simple example:

Premises: If it rains, I will get wet
It rains

Conclusion: I will get wet

Deductive Logic

Further valid forms are:

(i) If A, then B
Not B

Conclusion: Not A

Example: Premises:

Conclusion:

(ii) If A, then not -B
B

Conclusion: Not -A

Example: Premises:

Conclusion:
(iii) If not -A, then not -B

Not -A
Conclusion: Not -B

Example: Premises:

Conclusion:
Invalid forms of argument

(iv) If A, then B
B

Conclusion: A

Example: Premises:

Conclusion:
(v) If A, then B

Not -A

Conclusion: Not -B

Example: Premises:

Conclusion:

The validity, or otherwis
proved mechanically, using
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If it rains, then I will get wet
I have not got wet
It is not raining

If it is fine, then I will not get wet when
I go out for a walk
I have gone out for a walk and got wet
It is not fine

If it is not raining, then I will not get wet
It is not raining
I will not get wet

are:

If Bacon wrote Shakespeare, Bacon was
a great writer
Bacon was a great writer
Bacon wrote Shakespeare.

If Bacon wrote Shakespeare, Bacon was
a great writer
Bacon did not write Shakespeare
Bacon was not a great writer.

e, of premises and conclusion can also be
Truth tables or Venn diagrams.
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Categorical Statements

`Categorical' means unconditional, so a categorical statement is
explicit, e.g. 'All A are B', or 'No C are D'. The former is an affirmative
statement and the latter a negative statement, but both are explicit or
universal as far as logic is concerned. But they are not necessarily
expressing an unconditional truth. The statement 'all trespassers will
be prosecuted', for example is categorical, but it does not necessarilymean that there will be trespassers - and the validity of being able to
prosecute them if there were is something that does not necessarily
hold true in law.

Other categorical statements in logic can be even more ambiguous
or even contradictory if they are of the type:

Some A are B; or in negative form, Some A are not B
These are known as particular statements, thus proving that a categorical
statement can be a true premise can be difficult at times. One way of
doing this is to deny or 'invert' the statement, like this

statement: A
re -write as Not -A

Now if Not -A is shown to be true, the original statement A is false. On
the other hand, if Not -A is false, then A is true. In other words, the
statement itself is argued in valid logic. Equally, this is the basis of
debate, where conclusion is finally decided by vote rather than truth!

Syllogisms

Syllogisms are arguments comprising only categorical statements
and embracing two premises and one conclusion - the basic formula
for deductive logic, in fact. Thus our original example IA is a syllog-
ism, for instance, and also the following:

Premises: All cats are mammals
All mammals are animals

Conclusion: All cats are animals.

Now each of these categorical statements contains two terms, one of
which is a subject and one of which is a predicate. One term occurs in
each premise (`mammals' in the example) and is called a middle term.
Each of the other two terms occurs once only in the two premises and
once in the conclusion (`cats' and 'animals' in the example) are known
as end terms. The rules of logic then state that for a syllogism to be valid:
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(i) The middle term must be distributed exactly once
(ii) No end term may be distributed only once

(iii) The number of negative premises must equal the number of
negative conclusions.

To apply, these, however, we have to understand clearly what
`distributed' means, and to do that we first have to be able to identify
the subject and predicate in each categorical statement. Distribution
then follows from whether the statement is universal or particular,
affirmative or negative (refer back to the start of the section on
`Categorical Statements').

If the statement is universal and affirmative, then the subject is distri-
buted and the predicate undistributed. If the statement is particularand negative then the subject is undistributed and the predicate distri-
buted.

If the statement is universal and negative, then both the subject and
predicate are distributed.

If the statement is particular and negative then the subject is undistri-
buted and the predicate distributed.

Don't be confused at this stage. We can make everything much
simpler (and more understandable-logic) by going back to our syllog-
ism example:

All cats are mammals
All mammals are animals
All cats are animals

and re -write in simple 'formula' form using S for subject, P for predi-cate, and subscripts
d and u to indicate distributed and undistributed

terms, respectively. We also need to identify the middle term separately,which we will designate M.

All cats are mammals
becomes SdK, (universal affirmative)

All mammals are animals
becomes MdP,, (universal affirmative)

All cats are animals
becomes S,Mu (universal affirmative)
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Extract the 'formula' on its own

S,M
MdPU
Sd Pu

(Now refer back to the definitions for the rules for a syllogism to be
valid.)

Rule I is satisfied because the middle term is distributed exactly once
(in the second line)

Rule II is satisfied because the first end term (S) is distributed twice;and the second term P is not distributed in either of its appearances.Thus no end term is distributed only once.
Rule III is satisfied because there are no negative premises and no

negative conclusions.
The syllogism is therefore valid.
Now look at this syllogism:

All men like football (universal affirmative)
No women are men (universal negative)

Conclusion: No women like football (universal negative).
In 'formula' form this becomes:

Md Pu
Sd Md

Sd Pd

Rule I is broken because the middle term is distributed twice.
Rule II is broken because the end term P is distributed exactly once.Rule III is satisfied since there is one negative premise and one

negative conclusion.

The syllogism is thus invalid. (You could also deduce this from the fact
that both premises are false, but that does not justify assuming that
the conclusion is also false.)

Actually there is no need to proceed past the first rule in this case;any one rule broken means an invalid syllogism. In fact, if there are
negative premise(s) or a negative conclusion, checking conformity toRule III is the first thing to do. If this rule is broken the syllogism isinvalid and there is no need to proceed further. Perhaps one more
example to help your familiarity with syllogisms?

All gemstones are valuable (universal affirmative)
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Some diamonds are not valuable (particular negative)Conclusion: Some diamonds are not gemstones
(particular negative)

Pd M
Su Mc,

SP,
Check Rule III first. There is one negative premise and one negativeconclusion, so this rule is satisfied.

Now check the other rules.
Rule I is satisfied.
Rule II is satisfied.
The syllogism is therefore valid.
Deductive logic can, quite easily, introduce ambiguity. Here, forinstance, is a classic example.

Ambiguity
A teacher of law made a contract with one of his pupils that thepupil would not have to pay for his lessons if he did not win his first

case. The pupil completed the course of lessons, but did not take anycases. The teacher then sued for payment.
The pupil analysed his position logically, based on the followingpremises:

(i) Either I will win the case, or lose it.
(ii) If I win my case, I will not have to pay (the teacher will have

lost his suit for payment).
(iii) If I lose my case, I will not have to pay since this is implicit in

my contract with my teacher.

Since all three premises are true, the logical conclusion is that whether Iwin or lose my case I will not have to pay.In a similar manner the teacher analysed his position, based onthese premises:

(i) Either I will win the case, or lose it.
(ii) If I win my case, the pupil will have to pay me.

(iii) If I lose the case, the pupil will have to pay me under the terms
of the contract because he will have won his first case.

Again, since all three premises are true, the logical conclusion is thatwhether I win or lose my case I will not have to pay.



34 Logic Made Easy

Somewhere there is a false premise, leading to a false conclusion, in
either the pupil's or the teacher's arguments. Or is there one in both?
Or are both sets of premises and conclusions logically correct? It is a
case of spotting the contradiction (s) or logical falsehood (s) - and
finding the answer is not as simple as it seems. Perhaps, indeed, it is a
subject for further argument and debate, with no logical conclusion at
at all?

CHAPTER 4

Venn Diagrams
Venn diagrams - named after the nineteenth-century English logician
and mathematician John Venn - are a pictorial method of represent-
ing, and analysing, deductive logic. They can be simple and effective
to use - or confusing and difficult to understand. It depends, basically,
on how you react to the principle involved.

In a Venn diagram each particular class (or what is also called a
`set') is represented by a fully enclosed shape. It does not matter what
the actual shape is; it can be a circle, a square, a rectangle, or an
irregular shape, provided it is a closed shape. For the purpose of
explanation, elliptic shapes will be used for a start.

Any one shape then represents a class, e.g. in the first diagram of
Fig. 4.1, this represents 'all A', or mathematically A= 1. If the shape

A = 1 A *1
i.e. A = 0

or A

Fig. 4.1

is shaded, as in the second diagram, this excludes all A from being
represented within this shape. Thus it represents A 0 1, or A = 0, or A
(not A). Enclose the shape within another shape as in the third
diagram and all A is now represented by the smaller shape (and
contained within it), so that everything outside and included within
the larger shape is not A. Equally, if we shade the smaller shape to
exclude A from it (making it A), then all A is contained within the
remaining plain area contained within the larger shape, as in the
fourth diagram.

Fig. 4.2 extends this principle to two states, A and B, where the two
shapes overlap. Thus in the first diagram this implies that some A are
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diagram (i) diagram (ii)
Fig. 4.2

B and some B are A, since both A and B occur in the overlapping area.
At the same time A cannot occur outside its shape so is excluded from
the non -overlapping part of the B shape. Complete labelling is then as
shown in the second diagram. If these overlapping shapes were in-
cluded within a larger shape, a further area would be produced from
which both A and B are excluded, i.e. A$ within this area as in the third
diagram.

Now look at the further diagrams shown in Fig. 4.3. These extend
the principle of representing statements by Venn diagrams further. It
is to be understood that the left hand shape designates A and the right
hand shape B. By the rule established, A is excluded from the A shape

diagram (i) diagram (ii) diagram (iii) diagram (iv)

Logic Made Easy

diagram (Ili)

All A isB

All B is A

diagram (v)

No A is B

No B is A

diagram (vi)
Fig. 4.3

by the shaded area in diagram (i) - which is then A - and only occurs
in the overlapping area with shape B. Thus all the A is contained in
this overlapping area, which is also included in shape B. Thus this
diagram expresses the condition or premise 'all A is B'.

Diagram (ii) excludes both A and B from the overlapping area
(shaded). That means 'no A is B'; and equally, `no B is A' - shown
explicitly in diagram (vi).

Some A is B Some A is not

Some B is A

diagram (vii)

Some B is not

diagram (vii
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Without shading, neither A nor B is excluded from the overlapping
area, i.e. `some A is B (diagram (iii)); and `some B is A' (diagram
(vii)). Since this is the significant part of the diagram this can be marked
with an X.

Diagram (iv) shows a further relationship, with 'X' marking the
significant part of the diagram - `some A is not B' (some A lies outside
the B shape). Similarly, diagram (viii) displays `some B is not A'.

Blank parts of a Venn diagram mean nothing on their own until all
the available information has been entered, either by shading (de-
noting exclusion from that particular area), or by an `X' or `some'
relationship, or both. Thus exclusion is expressed by a universal state-
ment, e.g. `all A are ...'; and an `X' designates a particular relation-
ship, e.g. 'some A are ...'.

Venn Diagrams and Syllogisms

Venn diagrams using two overlapping shapes, as just discussed, are
basically a diagrammatic representation of two categorical proposi-
tions. If a third overlapping shape is added the resulting Venn diagram
can be used to test syllogisms, and/or solve problems in deductive
logic. This time, to establish the overlapping areas neatly the shapes
are best drawn as circles.

As a simple example, take the premises:
(i) All animals are mortal

(ii) All cats are animals

(In the chapter on Deductive Logic we have seen that the conclusion in
this case is 'all cats are mortal'; and the argument is valid.)

Treating this in Venn diagram form we draw three overlapping
Animals Mortal

diagram (i) diagram (ii)

Fig. 4.4

agrarr. ;
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circles, one for animals, one for mortal and one for cats, as in the first
diagram of Fig. 4.4. Now, all cats being animals excludes cats from
that part of the cat circle which is outside the animals circle. Shade
that area in as in diagram (ii).

Equally, all animals being mortal excludes animals from the animal
circle outside the mortal circle, so shade that area in, as in diagram
(iii). We are left with the conclusion that the only area now accom-
modating all cats is within the mortal circle - hence 'all cats are mortal'.

Now try an example where the premises are true but the conclusion
drawn (by deductive logic) is false:

Premises: (i) All dogs are mammals
(ii) All cats are mammals

Conclusion: All cats are dogs.

This time shading -in the diagram produces the result shown in Fig.
4.5 (last diagram). The only area where all the cats are contained is
within the mammal circle. Cats are excluded from the dogs circle by
the shading. Therefore, from the Venn diagram, no cats are dogs.
Testing the (deductive) conclusion in this way shows that the argu-
ment in this case is not valid.

Dogs

diagram (i)

Mammals

diagram (ii)

Fig. 4.5

diagram (iii)

Two premises imply three specific terms, each one of which is repre-
sented by a circle in a Venn diagram. The conclusion can be tested by,
or deduced from, the final diagram. Thus a Venn diagram is essen-
tially a diagram or premises or propositions embracing a subject (S)
or major term; a predicate (P) or minor term; and a middle term (M).
A similar rule applies as for deductive logic - for valid argument the
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middle term must be distributed exactly once, i.e. appear unshaded in
each of the other terms (circles). Conventionally, too, the middle term
(M circle) is placed at the bottom of the diagram.

The premises used in the previous examples have been universal
premises, i.e. of the form all A are B. The case of a particular premise,
i.e. some A are B needs a little more explanation. For this, take the
following which consists of one universal premise and one particular
premise:

(i) All artists are gifted peop.e
(ii) Some artists are poor
Conclusion: Some poor people are gifted people.

The Venn diagram for this is developed as shown in Fig. 4.6. The
first (universal) premise excludes all artists from the artist circle out-
side the gifted people circle, so this part of the artist circle is shaded.
Only some artists are poor, though, so this area of overlap is marked
with an X. This 'some' area is common to artists, poor people and
gifted people. Hence some people c-.-1 be artists (as given by the
premise); and equally some poor people can be gifted (as given by the
diagram).

Fig. 4.6

In other cases the allocation of the 'X' area for 'some' may not be
clear from the premises, which will indicate that the argument is
invalid (although the conclusion reached by deductive logic may or
may not be correct). For this futher example, consider:

Premises: (i) all good mathematicians are good scholars
(ii) some athletes are good scholars

Conclusion: Some athletes are good mathematicians.
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Athletes Mathematicians

Good
scholars

diagram (I) diagram (II)

Fig. 4.7
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diagram (111)

In the corresponding Venn diagram - Fig. 4.7 - mathematicians
are excluded from their circle except where it overlaps the good
scholars circle by virtue of the universal premise (i). Some athletes are
good scholars (from the particular premise), but there are two over-
lapping areas where this could be marked with 'X', as in diagram (ii).

There is not enough information in the premise to indicate whether
the 'X' should be in area 1 or area 2. Area 1 seems the logical
placement, for it is known that some athletes are good scholars. But
there is no information to confirm whether or not some mathematicians
are also good athletes.. In this case the 'X' can only be placed on the
line between the two (it could belong to either area), as in diagram
(iii). The Venn diagram, in fact, shows that this form of syllogism and
argument is invalid.

Venn diagrams can also be used for mathematical solutions,
although there are simpler and more effective diagrams, or alternative
methods which can be used in such cases. The particular limitation of
Venn diagrams is that they are not very flexible. The greater the
number of terms to be accommodated the more unwieldy (and pos-
sibly confusing) the diagram becomes. This virtually limits their
application to a maximum of four separate terms or variables (i.e. four
overlapping shapes).

Lewis Carroll Diagrams
Lewis Carroll - an excellent mathematician as well as author -

developed an alternative form of logic diagram using squares. Fig. 4.8
shows a Carroll diagram plotted for two variables and two conditions
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B

B

A A

2 3

4

1 = A g
2 = A B
3 = A B
4=Ae

Fig. 4.8

B

B

A A

AB AB

A g AB

Alternative form of
Carroll diagram

for each (A and not -A, B and not -B). The diagram then plots in full
the various possible combinations - four in this case.

Unlike a Venn diagram, this type of diagram can be extended to
accommodate quite a number of separate terms before it becomes
excessively complicated. It is, in fact, basically the same as a Karnaugh
map - see Chapter 13.



CHAPTER 5

Simple Logic Diagrams
Many people find it easier to solve logic problems by diagrams rather
than deductive reasoning or mathematical solutions - 'pictures' speak
louder than words. Basically, however, a logic diagram is a Truth
Table, complementary to block logic and Boolean algebra. But for the
non -mathematically minded person such a diagram can be divorced
from these more obscure subjects by plotting the diagrams on a 'yes'
or 'no' basis, using ,./ for 'yes' and X for 'no' instead of the more
formal symbols 1 and 0, respectively. A large proportion of problems
designed specifically as 'logic puzzles' can be solved by using diagrams
of this type.

Here is a simple puzzle -problem which can be solved using a logic
diagram:

Smith, Jones and Thomas live in London, Brighton and York, not
necessarily in that order. All travel away from home to work.

Smith travels to London to work.
Thomas lives further South than Smith.
Jones also works in London.

Find out where each lives.

The basic logic diagram is drawn up like this:

London Brighton York
SMITH

JONES
THOMAS

Smith travels to London to work, so he does not live in London. Put
an X against Smith under London.

London Brighton York
SMITH X

JONES
THOMAS
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Jones also works in London, so does not live in London. Put an X
against Jones under London. The remaining space in this column is
then filled with a tick - the only remaining possibility, i.e. Thomas
lives in London.

London Brighton York
SMITH X

JONES X

THOMAS .\,/

Now Thomas lives further South than Smith. Since Thomas lives in
London that means Smith must live in York. The York column can
now be completed. The Xs in this column merely confirm that Thomas
does not live in York (he lives in London); and since Smith lives in
York, Jones cannot.

London Brighton York
SMITH X N./

JONES* X X
THOMAS / X

The only possibility left is that Jones lives in Brighton, so the
diagram is completed like this

London Brighton York
SMITH X X N/
JONES X N/ X

THOMAS / X X

Thus: Smith lives in York
Jones lives in Brighton
Thomas lives in London.

Note the principle of working with such diagrams. Once a \/ (yes)
has been established in any horizontal line or column, then the remain-
ing spaces in that particular line or column can be filled with Xs.
Similarly, if all the spaces but one in a line or column are filled with
Xs, then the remaining space must be a / (yes).
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More Facts - More Diagrams
Sometimes the facts available need treating in separate diagrams to

solve alternative or complementary possibilities. Here is a further
example illustrating this. Problem: There are three people with the
names Smith, Jones and Robinson. Their Christian names are Arthur,
Mary and Jane, not necessarily in that order.

(i) Their ages are 17, 24 and 30.
(ii) Miss Jones is 7 years older than Jane.

(iii) The person named Smith is 30 years old.
What are their full names and ages?

(Note: after the original statement, the facts have been separated for
ease of reference. In a set problem the facts may be incorporated in
one complete statement. It is then first necessary to separate them out
as individual facts.)

To solve this particular problem, draw up diagram A relating
surnames to Christian names. The only immediate clue is that Miss
Jones will not have the Christian name Arthur, so an X can be marked
in the Arthur column against Jones.

Arthur Mary Jane
SMITH

JONES X

ROBINSON
(diagram A)

There seems to be more information available about ages, so con-
struct two more diagrams on this basis:

17 24 30

SMITH
JONES
ROBINSON

(diagram B)

Now enter the main facts:

(a) Smith is 30 years old - enter in diagram B and complete
SMITH line.

17 24 30
Arthur

Mary
Jane

(diagram C)
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(b) Miss Jones is 7 years older than Jane. The only possibility is
that Miss Jones is 24 and Jane is 17.

Complete JONES line in diagram B and theJane line in diagram

17 24 30
SMITH X X

JONES X ,./ X
ROBINSON

(diagram B)
Diagram B can now be completed:

17 24 30

Arthur

Mary
Jane X X

(diagram C)

17 24 30
SMITH X X \/
JONES X ,/ X
ROBINSON ,/ X X

Diagram C can also be completed by filling in the top line with the
only possible alternative (Arthur is 30)

17 24 30
Arthur X X \/
Mary X ,/ X
Jane / X X

From these completed diagrams we can now complete diagram A

Arthur Mary Jane
SMITH /

V X X
JONES X ,/ X
ROBINSON X X \/

Answer to problem: Arthur Smith is 30
Mary Jones is 24
Jane Robinson is 17

Instead of separate diagrams the whole problem can be entered on
one diagram, appending the additional diagram(s) required to the
right and bottom of the main diagram. In this case the logic diagram
would be:

Simple Logic Diagrams 47

Arthur Mary Jane 17 24 30
SMITH

JONES
ROBINSON

17

24

30

This would fill in, step-by-step, in the same manner, transferring
information from the side and bottom diagrams to the main diagram
as it becomes available.



CHAPTER 6

Inductive Logic
Inductive logic is similar to deductive logic in that conclusions are
based on premises, but with one very important difference. The con-
clusions extend beyond the area of fact provided by the premises.
Similar rules apply as to what is valid argument and a true conclusion,
but the conclusion is necessarily qualified. It is not necessarily absolutely
correct, particularly as it often has to be based on incomplete facts. It
may be a convenient generalization, or even a forecast by extrapolation.

The 'safest' type of inductive arguments providing conclusions (i.e.
those least likely to be in error) are those based on observed data, but
even these have numerous pitfalls, correctly called fallacies. Take as an
example a spring suspended vertically and carrying a pan into which
weights can be put. The downward deflection of the spring is measured
with weights of 10, 20, 30, 40, 50 grams, etc., added to the pan and
plotted as points of a graph - Fig. 6.1. These points all lie in a line, so
inductive argument would conclude that the relationship between
deflection and load is a straight line, and the graph drawn in accord-
ingly. It would also seem logical that if this relationship is true it will

10 20

Weight in grams

Fig. 6.1

30 40 50
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extend beyond the measured range, i.e. downwards to give zero de-
flection with no load; and upwards to forecast the deflection produced
by larger loads.

In fact, this conclusion holds true, up to a point. It could be used to
calibrate a spring and a pan as a simple weighing machine, but there
are other factors (not catered for in the original premise) which could
modify the truth of the conclusion - Fig. 6.2. There could be a physical

Weight

15
0

Fig. 6.2

!Spring

gets
weak\ /

Weight -0.

limit to the amount of spring deflection before the pan hits something,
for instance. Or if there were no physical limit to movement, the spring
could be stretched beyond its normal behaviour pattern (i.e. exceeds
the limit of proportionality). Both would deny the truth of extrapo-
lating the original straight line graph upwards. Equally, the spring
could be affected by 'fatigue' in repeated use, so that it no longer
returns to zero deflection with no load. However, its behaviour within
the originally observed range is unaffected. Thus extending the con-
clusion too far beyond the area of fact has nullified the truth of the
conclusion.

In fact, even within the area of fact established by measurement,
the conclusion could still be false. In this case it is not, but with some
other system where measured data spaced at regular intervals show
what is apparently a linear relationship (i.e. all the points can be
joined by a straight line), the true relationship could well vary differ-
ently between points, e.g. instead of a straight line between points the
true representation could be a curve waving up and down.
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This point is made more clearly in Fig. 6.3, which shows a simple
wave form. Say this represents an alternating current, the value of
which is read by a meter. Suppose measurements are made at intervals
1, 2, 3, etc., which happen to correspond in time exactly to the peaks
of positive current. This would give points lying in a straight line
apparently indicating a steady positive current, Fig. 6.3 diagram (A).
Equally, if they were made with the same interval but starting at a
quarter of an interval later ( 1', 2', 3', etc.), all the measurement points
would indicate zero current Fig. 6.3 diagram (B). Started half an
interval later, they would indicate a steady negative current.

2

A 1 IA 2)

positive t
0

negative

3

I
I

I

ORIGINAL SIGNAL

diagram (A)

Measured at points 1,2,3 etc

diagram (e)
Measured at points 1' ,2' ,3' etc

Fig. 6.3

diagram (C)

This is an error (or what would be called in inductive logic terms a
fallacy) due to unrepresentative sampling. Not enough sample measure-
ments have been taken to give anything like a true picture, so the
inductively reasoned conclusion is false. Take measurements at shorter
intervals and this will immediately show up. Taken at one quarter ofthe original time interval, for example, the measured points and the
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subsequently induced plot would zig-zag up and down - Fig. 6.3
diagram (C). Still not true, but a much closer representation.

It is lack of sufficient samples (data), or unrepresentative samples
which is a common reason for false conclusions in inductive logic,
particularly when applied to statistics. Opinion polls are a classic
example. They are based on answers (data) provided by a limited
number of people, yielding, say, 65 per cent in favour of something
and 30 per cent against (the other 5 per cent 'don't know'). The
pollsters conclude, by induction, that 65 per cent of the whole population
are in favour, 30 per cent against. As a matter of logic, this is basically
nonsense, unless the sampling is fully representative (which in fact it
can never be). It can only be a statistical generalization. It can also be
biased unintentionally by poor selection of samples; or deliberately by
drawing on samples most likely to give the desired result.

This, indeed, is the chief limitation of inductive logic - basing a
conclusion on insufficient evidence (data) and/or jumping to a conclu-
sion (which is human nature, but not logic). At least these are honest
errors (errors of ignorance), whereas biasing towards a conclusion is
not.

In fact it is very difficult, or even impossible, to prove fully that any
inductive conclusion is true because it extends the conclusion beyond
the facts available at the time. It can become a 'theory of ...' or a
hypothesis; but these in turn may become subject to further proof or
disproof in the light of new evidence, or a new hypothesis. This applies
particularly in the fields of mathematics and science.

Cause and Effect

Inductive reasoning can be called a study of cause and effect -

logicians call this causal connections. It is based on a condition (or cause)
which is necessary to yield a certain effect, leading to a conclusion or
hypothesis relating the two. As such it is an inductive generalization which
may or may not be completely true.

Taking a simple everyday example, it is well known that paper or
wood will burn in air, which contains oxygen. But it will not burn in
a sample of air from which the oxygen has been removed. The induc-
tive generalization which could be drawn is that oxygen (cause)
produces combustion (effect). However, this is only part of the true
picture. To burn in the presence of oxygen the paper or wood must
first be raised to a suitable temperature, e.g. by holding a match to it.
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To be more complete the generalization would need to take in this
second cause (temperature) into the final statement.

A working 'formula' for such a method of reasoning would be -
cause 1 (oxygen) in the presence of cause 2 (a suitable temperature)
produced combustion of paper and wood (effect).

The other thing to emerge is that causal connections are based on
a study of observed 'happenings' - what happens (i.e. what is the
effect) in a particular circumstance or condition (cause). Equally
important is how many times this occurs. The more times the greater
the likelihood of the (generalized) conclusion being true, or at least
substantially true. This can be expressed in the following form:

Instance 1 of happening A is related to cause B present
Instance 2 of happening A is related to cause B present
Instance 3 of happening A is related to cause B present

The conclusion to be drawn from this is:
All instances of happening A are accompanied by cause B.

Note: This conclusion is reached partly by inductive reasoning and
partly by analogy, induction and analogy being closely related.

Causal connections summarized in this way can at best be valuable,
and at least be merely suggestive. They can also lead to conclusions
which are not factually correct, but despite this may be acceptable to
quite a number of people. Here is a classic example, using the form
given above:

Arthur broke a mirror, cut his hand, which was bad luck.
Mary broke a mirror, lost her purse, which was bad luck.
Tom broke a mirror, sprained his wrist, which was bad luck.
Conclusion drawn: breaking a mirror causes bad luck.

Testing Causal Connections

There are, however, methods of testing causal connections and
resulting conclusions, known as Mill's 'canons' (or rules), after the
English philosopher of that name.

(i) Method of Agreement
In words: if two or more instances ofa happening under investigation
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have only one circumstance in common, the circumstance in which
alone all the instances agree is the cause (or effect) of the given happen-
ing.

Represented in symbol form, using capital letters for circumstances
and lower case letters for happenings, this becomes:

A B C D occur together with a b c d
A E F G occur together with a e f g

Therefore A is the cause (or effect) of a.

(ii) Method of difference
In words: if an instance of a happening occurring and an instance

in which it does not occur have every circumstance in common but
one, that one occurring only in the former; the circumstance in which
alone the two instances differ is the effect (or cause) or an indispensable
part of the cause of the happening.
In symbol form:

A BCD occur together with a b c d
B C D occur together with b c d

Therefore, A is the cause (or effect), or an indispensable part of the
cause of a.

(iii) joint Agreement and Difference
This combines both the Method of Agreement and Method of

Difference and in symbol form becomes:

ABC abc ABC abc
A D E a d e BC be

Therefore, A is the effect (or cause), or an indispensable part of the
cause of a.

(iv) Method of Residues
Rather cumbersome in words, this is: subtract from any happening

such part as is known by previous induction to be the effect of certain
antecedents, when the residue of the happenings is the effect of the
remaining antecedents.

In symbols this becomes much simpler:

ABC
B is known to be the cause of b
C is known to be the cause of c

Therefore, A is the cause of a.

abc
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(v) Method of Concomitant Variation

In simple language, this accommodates varying happenings desig-
nated by + or - signs and is easiest to understand in symbol form:

ABC abc
A + B C a + b c
A -B C a ±b c

Therefore, A and a are causally connected.

Although looking less understandable at first sight, this is actually
the most useful of the methods of testing causal connections since it
can provide quantitative analysis of inductive reasoning.



CHAPTER 7

Simple Arithmetic or Logic with Numbers

Many problems involving numbers or quantities, can be solved by
simple 'schoolboy' maths. The first rule is that to find two unknown
quantities there must be two separate statements relating those quant-
ities.

Example: Arthur is twice as old as Bertie. If their combined ages is
54 years, how old are they?
There are two statements, so the problem is solvable.
Write down the two statements in simple equation form, using A for
Arthur's age and B for Bertie's age:

(i) A = 2B
(ii) A +B= 54

Equation (i) gives the equivalence between A and B directly, so use
fact to rewrite equation (ii):

A+B=(2B)+B=54
or 3B = 54

Hence B = 18 years
And since A = 2B

A =2 x 18 = 36 years

This is a very elementary example but it is surprising how often the
equivalence can be extracted from one equation (statement) and directly
substituted in the other equation (statement) to obtain the answer to
one of the unknowns. The answer to the other unknown then follows
quite simply, using either of the equations.

The method is readily recognizable as solutions to miscellaneous
equations - a subject that clicked or not at school. But what happens
when more than two unknowns are involved? Does this simple mathe-
matical method work? Not necessarily, unless you apply a little logic,
as the following will show:

There are a mixture of red, green and blue balls in a box. The
total number of balls is 60. There are four times as many red balls
as green balls; and 6 more blue balls than green balls.
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We have three different statements, so we can write three different
equations, using R for red, G for Green and B for blue; and x, y and
z for the number of red, green and blue balls respectively. (A mathe-
matician would probably set about it that way.)

Equation (i): (x times R) + (y times G) + (z times B) =60
or using a . sign for multiplication:

x.R+y.G+z.B=60
There are 4 times as many red balls as green balls, so

Equation (ii): x= 4y
There are 6 more blue balls than green balls, so

Equation (iii): z=y + 6

we now have three equations to manipulate to solve for three
unknowns. They are simple equations in this case and easy to solve by
substitution, but the problem has got a little confused by introducing
x, y and z. So let's start again with a logical approach.

There are more blue balls than green balls (one fact)
There are more red balls than blue balls (another fact)
That means that the green balls must be the least in number
(conclusion).

Now let's put this together in simple arithmetical form, forgetting
about the x, y and z approach, and using R, B and G for the numbers
of red, blue and green balls, respectively. Use the number of green
balls (G) as a base, because they are the least number

number of green balls =G
number of red balls =4 times as many green = 4G

number of blue balls = number of green balls + 6 = G +6

Now together G + 4G + (G + 6) = 60
or 6G =60 -6

= 54
hence G = 9

It then immediately follows that

R=4G=4 x 9=36
B=G+6=9+6= 15

The point of this example is not to over -complicate the problem by
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writing out comprehensive mathematical equations. Approach the
problem logically, looking for the simplest solution. The original
mathematical equation given is, in fact, a redundant statement. It
introduces x, y and z for unknowns, and at the same time retains R, B
and G. (In fact x = R, y = G and z =B.)

This is a basic error mathematicians often make - over -complicating
translation of facts into equations so that redundancies are introduced,
or the whole equation becomes too complex for easy solution. At the
extreme, mathematical analysis can become so complex that only the
originator can understand the working - and as a result nobody can
check the result!

Suppose, now, the information given in the problem is incomplete,
i.e. using the balls in a box example again, only two facts are given,
the total of 60 balls and the number of red balls being four times the
number of green balls. There is no mathematical solution in this
case. However, logic - and a little simple arithmetic - can give us
the various numbers of different coloured balls possible within the
facts.

(i) The relationship between red balls and green balls is known
(R = 4G). Also there are three different colours of balls in the
box, so there must be at least 1 blue ball.

(ii) To be consistent with the fact that R = 4G means that the total
of R and G together (R + G), must be a multiple of 5. (4 parts
for R plus 1 part for G.)

(iii) The largest available total is 60 -1= 59 (there must be at least
1 blue ball). This is not divisible by 5. So the largest possible
total (R + G) is 55.

(iv) That means there must be at least 5 blue balls, leaving 55 to be
allocated between R and G on a 4 to 1 basis, i.e. R = 4 x
11 = 44 and G= 11.

That is our first possible solution: B= 5
R = 44
G = II

(v) The next highest possible total is 50 (again divisible by 5). This
gives a second possible solution:

B= 10
R. (4 x 10) =40
G=(1 x 10)=10
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(vi) By the same reasoning, the next highest possible total is 45,
which gives the following answers:

B= 15
R = (4 x 9) = 36
G = (1 x 9) = 9

and so on, until we come to the last possible answer when there are
55 blue balls:

B =- 55

R = (4 x 9) = 4

G = (1 x 1) = 1

There is no correct answer produced by this form of logic. There are
not enough facts to establish one. In other words, on the information
available, it is only possible to derive all possible answers.

This method of deriving possible solutions by logic will also work
when there are enough facts available for an exact solution, using only
some of the facts. The exact solution is then obtained by seeing which
of the possible solutions fits the remaining fact(s). This is a more
lengthy process, of course, but in certain circumstances can be a
simpler one when it seems difficult to assemble all the available facts
in equation form.

Real life problems, too, may not contain all the facts for exact
solution. In that case, only possible solutions can be obtained. Numer-
ical problems set as puzzles or 'mind -teasers' on the other hand invar-
iably contain all the facts for exact solution, although this does not
necessarily preclude the possibility of there being alternative possi-
bilities.

Illogical Logic
Consider the following: Johnson said 'If my son's age was trebled

he would be as old as me. But in 15 years time he will be half my age'.
How old are we both now?'

First let's solve this by logical arithmetic, using S for son's age and
J for Johnson's age. Assembling the equations from the facts:

Equation (i) 3 x S =J
Equation (ii) S+ 15 =-1 U+ 15)

to make it simple, re -write this as
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Now since J = 3 x S from equation (i), substituting this in equation (ii)
gives

2 x S+30 =3 x S+15
Or 15 =S

Thus if the son's age is 15, Johnson must be 45.
Suppose now the problem was a little more obscure, or we could

not see how to derive the necessary two equations. In that case try
solving the problem on an arithmetical trial -and -error basis, using a
little genuine logic and a lot of 'illogical logic'.

If Johnson is talking about 15 years on, he is probably now under
60. His son, too, will probably be 20-30 years younger than Johnson.
On this basis, let's assume that Johnson is 54, when his son's age mustbe 18.

What does this give in 15 years time?

Johnson will be 69 and his son 30. This does not agree with the second
fact - it shows a surplus of 9 years. So logically Johnson must be youngerthan 54 - and illogically by that surplus. Thus Johnson is 54 -9 = 45,
and surprisingly that checks out as correct!

Do not expect 'illogical logic' to provide correct answers every time.
It certainly won't. But it is the basis of another method of handlingarithmetical logic. First an answer is estimated (or guesstimated, if
you like) on a reasonably logical basis, i.e. what appears to be the
right order of answer. Then see how it fits the facts. From this, adjustthe original estimate up or down to get nearer to the facts, until
eventually your adjusted answer meets the facts.

What you are doing, indeed, is employing a sort of loose variation
of reductio ad absurdum together with logical reasoning.

Not to be recommended for general use - 'illogical logic' can become
tedious if dealing with two or more unknowns which have to be
estimated and continually readjusted. But when all else fails and youcannot see how to work out the arithmetical problem, you could try
it instead of giving up entirely!

Devise Your Own Formulas

Quite often at work or business similar tedious calculations crop up
at various times, which have to be worked out from first principles. A
desk calculator helps, but it still takes time. How very much simpler
if a working formula can be devised to cope with the problem.
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As a hypothetical example - and an exercise in logic - let's take the
case of a printer who produces large catalogues for various clients.
Trying to cut costs, individual clients often ask how much can they
save by leaving off the page numbers? The printer's cost for setting
these numbers is, say L5 per thousand digits. A particular client asks
what the savings would be on his 512 -page catalogue.

The printer now sits down to think, and works things out like this:

(i) Pages 1 to 9 require one digit for page numbering, making 9
digits.

(ii) Pages from 10 to 99 require 2 digits for each number and thus
20 digits for each ten pages, requiring 9 x 20 =180 digits

(iii) Pages from 100-999 require 3 digits for each number and thus
300 digits for each hundred pages. Four groups of hundred
pages will take the book up to 499 pages, requiring 4 x
300 =1200 digits

(iv) Pages 500-512 will then require 3 digits per page, on 13 pages
or 3 x 13 = 39 digits.

Adding all this up he finds 1428 digits required, which at a cost of L5
per thousand amounts to a sum of £7.14 if the page numbers are
omitted. (His time in working it out will have been worth more than
that!)

Logically, when faced with a similar problem again he will simply
say to the client (from experience) that any saving is negligible. But
suppose the client persists in asking what the saving is for a particular
book. Does he go through the whole process again? Not if he has
spotted the formula which can be derived from the original working.
The number of digits required fall into a distinct pattern:

pages 1-9 =1 x 9
pages 10-99 = 2 x 90

pages 100-999 = 3 x 900

and so on (e.g. pages 1000-9999 for a really long book used = 4 x 9000
digits). So the basic formula is:

number of digits= (1 x 9) + (2 x90) + (3 x 900) + (4 x 9000)
pages covered 9 99 999 9999

Any intermediate number ofpages can then be inserted into this formula
for a quick answer.
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Lets use 512 pages again, which falls in the third group. The fourth
group does not apply and is ignored. Put the actual total of pages intheir third group, and deduct the prior pages covered by the previoustwo groups:

number of digits= (1 x 9) + (2 x 90) + 3 x (512 - 99)
=9+ 180+ 1239
= 1428

Is it Possible?

Here is another example of a problem in arithmetical logic where it
is not known at the start whether there is a possible answer or not.

Bellamy is travelling to America. He has bought twenty-five $100
notes from his bank. For safety he wants to distribute them in
different pockets, with each pocket holding a different number of
notes and different total value. He has seven pockets in all. Can he
do what he wants?

This problem is tackled from first principles. The least number of
notes he can have in any one pocket is 1; and the least difference in the
amounts in each pocket must also be 1 (in this case 1 note). So write
down numbers (i), (ii), (iii), etc, representing pockets and enter under
each the number of notes allocated on the above basis.

pockets
notes

(i) (ii) (iii) (iv) (v) (vi) (vii)
1 2 3 4 5 6 7

Add up the number ofnotes needed to do this. The total is 28 notes.
But Bellamy only has 25 notes, so he cannot fulfil his original plan.

How, in fact, could he do it, for he cannot afford to buy more
dollars. Only changing one (or more) $100 notes into smaller denom-
inations so that he can have a greater number of notes.

The answer is quite simple in this case. Logical assessment of the
position has established that he needs 28 notes, not 25. So Bellamy
changes three $100 notes into six $50 notes. That now gives him a
total of 28 notes, which he can now allocate like this:

pockets
number of notes
value of notes
money in
pocket

(i) (ii) (iii) (iv) (v) (vi) (vii)
1 2 3 4 5 6 7

$50 $50 $50 $100 $100 $100 $100

$50 $100 $150 $400 $500 $600 $700
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This could have been tackled in another way. The basic 'plan' for
allocating notes into different pockets shows that a total of 28 notes
are required. So it was rather foolish ofBellamy to have spent all his
money in buying $100 notes for with the amount he had available he
could only get 25 notes. He should have looked for the answer first,
and saved himself the trouble of going back and changing three notes.
He was also fortunate that there was a simple solution to his re-
quirements.

Jackson was much more methodical about planning his re-
quirements for his trip to America. He hit on the same basic plan, and
had the same amount of money for buying dollar notes, but he went
about working it out this way.

(i)

(ii)

The least amount of notes I need are 28; and I can afford to
buy up to $2500 worth of notes.
I cannot afford to buy twenty-eight $100 notes as that totals
$2800 - more than I have.

(iii) I will therefore buy twenty-eight $50 notes which will cost me
$1400 and leave me $1100 still available

(iv) I will then allocate these notes: 1 in pocket (i), 2 in pocket (ii),etc.
(v) I can afford to buy eleven more $100 notes. If I add one to

each pocket, that will still give me a different number of notes
and different total value in each pocket. That will need seven
more notes, costing $700 and leaving me with $400 unspent.(vi) If I use this to buy four more $100 notes I can still conform to
my original plan by putting all four of these additional notes
into either pocket (iv), (v), (vi) or (vii); or alternatively one
extra $100 not into each of these four pockets.

Jackson has arrived at possible solutions by a mixture of simplearithmetic and deductive logic.
Quite often problems of this type do not have an answer - see the

example under Reductio ad absurdum (Chapter 1).

Looking for Short Cuts
Here is what looks like. a tedious example of solving simultaneous

equations for unknowns A, B, C and D. A solution is possible (assum-ing all the equations are valid) because there are four unknown andfour separate equations.
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(i) A+2B+3C+4D=2
(ii) 4A+4B+2C+2D= -2

(iii) 5A + 2B + C - 3D = -6
(iv) 3A - 2B -C + 7D = 22

Let's look for a short cut. There is one obvious one we can try.
Adding equations (i) and (ii) together gives:

5A + 6B + 5C + 6D = 2 -2 = 0

Now group as:

5(A+C)+6(B+D)=0
Thus A + C =0, which means A = -C

or C = -A
and B + D = 0, which means B = -D

or D= -B

Try substituting for C and D in equations (iii) and (iv) which then
become:

(iii) 5A + 2B- A + 3B= -6 which simplifies to:

4A + 5B = -6

(iv) 3A - 2B + A - 7B = 22 which simplifies to:

4A -9B = 22

We now have two simple simultaneous equations to deal with. Sub-
tracting (iv) from (iii) gives:

14B= -28
or B= -2, when D must equal 2

Substitute B= -2 in another equation, say (iii):

4A- 10= -6
so A = 1, when C must equal - 1

Smarten up your school algebra, if it has got a bit rusty. It can be
the quickest and simplest method of solving problems or puzzles in
logic involving numbers.

CHAPTER 8

Logic in Aptitude Tests
Aptitude tests are widely used in vocational guidance and industrial
training. To be valid aptitude tests the questions must be solvable by
a specific talent, not by knowledge or learning. Some, but only some,
can be solved by logic reasoning. Others have to be tackled by mental
reasoning, numerical reasoning or abstract reasoning. Still more are
based on latent technological skills (fitting pegs into different hole
shapes as an elementary example), but these are outside the scope of
a book on logic.

An example of test questions which can be solved by logical reason-
ing is diagrams of a series of different shapes in different sizes and
colours arranged in a pattern, but with some shapes missing. The
problem is to find what the missing shapes should be. Since the
complete pattern is planned (by the designer of the test) on some
logical basis, there must be a logical answer.

The following is a very elementary test; the question to be solved
being what are the next three symbols in the sequence:

0- 0-0-0-0 -A- 0- 0-L-- ? -1 -? -
Starting point is to identify the individual symbols by a simple code
which is easier to work with than shapes - say 1 for a square, 2 for a
circle and 3 for a triangle. The pattern is then rewritten in this
(number) code:

1 2 3 1 2 3 1 2 3 ? ? ?

It takes only a little study to see that the pattern is divided into groups
of three which follow each other in the same manner, i.e. simply repeat
themselves:

first group I
second group I third group I fourth group

1 -2 -3
I

1 - 2 - 3
I

1 -2 - 3
I

? - ? - ?
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Typically the fourth group must be the same as the others,
i.e. fourth group

1 -2-3
or re -write original symbol form

0- O -A
These are, therefore, the missing symbols in the original question.A little too simple and obvious? Then try to find the missing symbolsin the following:

El A A 0 El A  0 III A A A - - - - -
First make a plan of the individual symbols involved.

These are

Square -- cell this 1.

Four versions of a triangle - piainL\ - call this 2

- solidA - call this 2 (it is still a triangle,
but different)

small triangle p - call this (ii) (' little 21)

small solid  - which is logically (T)

Circle - 0 -call this 3

The original pattern is then re -written as follows:

1 (ii) 2 2 3 1 (ii) 2 2 3 1(ii) 2 2

This logically splits into groups of five symbols repeating themselves
with variations. To get a better picture, arrange these groups in separatelines:

1st group 1 (ii) 2 2 3
2nd group 1 (ii) 2 2 3
3rd group (ii) 2 2
4th group

We now have a picture of what is going on. All the basic symbols
appear in the same order in each group, i.e. a square first, followed bya small triangle, then two large triangles, and lastly a circle. The only
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variation that occurs is that the solid symbols appear consecutively,
moving one position to the left in each succeeding group. Hence we
would be (logically) justified in completing the third and fourth groups
as:

3rd group I (ii) 2 2 3

4th group I (ii) 2 2 3

Hence the missing symbols in the original are:

last in third group

0
fourth group

111 A 0
This is a logical solution not necessarily completely correct, but the

best we can do with the available information. Certainly the first
symbol in the third group is I or ; but the last symbol in the third
group could be 3 or  (there is no evidence in the original information
to say whether it is likely to be or not). If it is 3, then by the 'shift to the
left' rule established, the fourth group could be either:

1 (ii) 2 2 3 which is

or 1 (ii) 2 23 which is

II AAA°
 0L LAI

That, in fact, is the weakness of the technique of aptitude tests of this
type. They are not necessarily capable of yielding only one answer by
logical reasoning. There may be equally possible alternatives. Unfor-
tunately, when set as test questions there is only one correct answer -
the one the originator of the question has given.

This ambiguity is even more possible in solutions to questions or
problems set which have to be answered by abstract reasoning. Which,
for example, is the odd one out in this series of diagrams?

010 X °A
(a) (b) (c) (d)

00
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Reasoning would select (d) - the only one with the two circles on
one side of the line. But (a) is also an odd one out on the reasoning
that it is the only one with a vertical straight line. Also (c) is an odd
one out on the reasoning that it is the only one which is a mathematical

symbol (percentage).
Surprisingly - or perhaps not so surprisingly - abstract reasoning

can be extremely puzzling, or even frustrating, to extremely intelligent
people who tend to think 'logically'. The number of extremely clever
children who give anything but the right answer to the following
simple question is remarkable:
`If you were eating an apple and found half a maggot in it, what
would you think?'

Numerical problems are much simpler for logical minds. One just
looks for the pattern of 'formula' involved, in the same way as applying
logic to patterns of symbols. Again the classic problem is to find the
missing or next number(s) in a series of given numbers which are
known to have been generated in some logical way. What, for example
are the next numbers which follow logically from:

50 40 100 90 150 ? ? ? ?

To find the logical answer, write down the numbers as heads of
columns lettered A, B, C, etc and see what relationship there is
between columns:

Number

Possible

relationships

A B

50 40
- A-10

or
D -A

C D E

100 90 150

2xA A+B 3xA
or or or

E/3 C-10 A+C
or or or

A+50 B+50 C+50

F G H

Notice how three repeated relationships have appeared:

(i) a ' - 10' relationship in alternate columns B and D (which
could be anticipated as also following in columns F and H).

(ii) A 'multiplication' relationship in alternate columns C and E
(which could be anticipated as also following in columns G

and J)
(iii) A `+50' relationship in columns C, D and E (which could also
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be anticipated as F = D + 50, G = E + 50, H = F + 50 and
J=G+50).

Using the first relationship would give:

A B C D E F G H J
- (A- 10) (C- 10) (E - 10) (G - 10)
50 = 40 100 = 90 150 =140 ? ? ?

This gives the missing figures for F, but still leaving values for G, H
and J unknown.

Using the second relationship gives:

A B C D E F G H
2xA - 3xA 4xA - 5xA

50 40 100 90 150 140 200 - 250

This gives values for G and J. Now, knowing G, we can establish
from the first relationship that the missing value for H should be
G -10 =190. Thus the missing figures are:

F G H J
140 200 190 250

Using the third relationship gives:
A B C D E F G H J

A+50 B+50 C+50 D+50 E+50 F+50 G+50
50 40 100 90 150 140 200 190 250

This confirms the solution derived from (i) and (ii). In fact, it
provides all the missing numbers, and so is a complete 'formula' for
solution in itself. To check, see how the given values for B and A can
also be shown to be consistent with this formula.

B = number before A + 50 = 40
Therefore number before A must be -10
A = number before the number before A + 50 = 50
Therefore the number before the number before A must be 0. In

other words, if the series were extended leftwards from A, it would
read:

check

A

0 - 10 50 40 100

(0+50 (-10+50 (50+50
=50) =40) =100)
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Incidentally the preceding number value - 10 could also be de-
duced from relationship (i); but neither relationship (i) nor (ii) would
establish the number before that (0).

The validity of all the relationships has been proved by being re-
peated in the original information (the original series of numbers).
The relationship in the original column D (D = A + B) appears only
once, so there is no justification for it being applicable again in the
series. If it were, by the same logic:

since D=A +B
then E should equal B + C or 40+ 100= 140, which it is not

(E= 150).

Thus this relationship is not repeatable, so is not valid.
As a further example of numerical reasoning, find the missing

numbers in the following series:

2 4 4 16 16

write down in column:

A
2

relationship A

B

4

A2

C D
4 16

A2 B2

E F G
16

B2 ? ?

The relationship pattern to emerge is that following pairs of numbers
are equal (i.e. B = C and D = E, so F =G); and that such pairs are the
square of the preceding pair number. Hence F and G are 162 or 256.

CHAPTER 9

Introduction to Block Logic and
Truth Tables

Many problems in logic can be readily solved by block logic using

appropriate combinations of logic functions. The basic technique is very

simple for only three different functions are involved:

NO (normally called NOT), AND and OR

The 'opposite working' or inverted forms of these are:

NOT NOT or YES; NOT AND called NAND; NOT OR called

NOR
The attraction of this method is that you can represent each logic

function by a rectangle with its function written in, and then think of

this block as a switch which accepts a premise or signal applied to one

side as an input and then either passes it through the block as an answer

or output signal, or stops it. At the same time we can construct a truth

table which shows all possible combinations of signals in and out.

A NOT logic block can accept only one input and has one output.

It works like a switch which is normally closed. Thus a signal applied

to the input opens the switch, so there is no output - Fig. 9.1. Information

Signal on
Signal off

Switching equivalent

Fig. 9.1

fed to the block is rejected, i.e. NOT acceptable. This is also shown by

the truth table as 'yes' or 'no' combinations. Conventionally 'yes' is

written as 1 and 'no' as 0 to avoid possible confusion with other logic

blocks, e.g. a YES logic block has a different truth table.

The inverted form of NOT is YES, corresponding to a switch which

is normally open. On receipt of a signal the switch closes to pass the

signal through as acceptable (YES) - Fig. 9.2.

A NOT

Truth Table
A S

0 1

1 0
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Signal off
Signal on

A YES
II

Switching equivalent

Fig. 9.2
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Truth Table
A S

0 0

1 1

Exactly the same result is obtained connecting two NOT devices in
series, when the output of the first becomes the input to the second -
Fig. 9.3. As the truth table shows, the final output has the same
relationship to the input A as YES (NOT NOT logically is the same
as YES). However, this uses two logic blocks instead of one - or two
stages of analysis, if you like, instead of one. It is obviously simpler to
provide a YES function with a single block (single device). Neverthe-
less the inverted forms of the logic blocks are extremely useful.

A
S1

S2

Fig. 9.3

Truth Table
A S1 S2
0 1 0
1 0 1

AND and OR blocks (and their inverted forms) again have a single
output but in this case can have two or more inputs - as many inputs
as are necessary to accommodate the relative inputs in fact. For
simplicity, we will consider just two inputs being used.

Fig. 9.4 then shows an AND logic block with inputs A and B, and
output at S, together with its truth table. There is an output (S= 1)
only when inputs A and B both = 1 (we have used 'S' for output here,
designating a signal). In this case there is a signal output when there
is an input at A and B.

B AND H

Truth Table

Signal off Signal off A 8 S
0 0 0

cotoolt_00002L__:%'.
on on

1 0 0

Switching equivalent 0 1 0
1 1 1

Fig. 9.4

The inverted form or NAND logic block is shown in Fig. 9.5. Here
the truth table shows that when there is a signal input at A and at B
there is no output (S =0). Thus anything that is to be inhibited when
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A
NAND

e

Truth Table
A B

S 0 0
1 0

0 1

1 1 0

S

1

51

A mi NOTH

B NOTI-
S2
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Truth Table
A S1 B S2 S
O 1 0 1 1

1 0 0 0 1

O 1 1 0 1

1 0 1 0 0

Fig. 9.5

signals are present at both A and B is satisfied by there being no output.

All the other combinations of A and B signals produce an output.
Again note that the same (NAND) logic function is also performed by

an AND block with a NOT in each input line. (In this case calling for

three blocks instead of one.)
Finally the OR block and its inverted form the NOR block are

shown in Fig. 9.6. An OR block gives an output in the presence of a

signal at A or B. A NOR block gives an output only when there is no

signal A or B (neither A nor B).

OR H S

Signal off
,Signal on

Switching equivalent

Fig. 9.6

Let's try a simple example of using logic blocks to solve a problem

in logic, taking one of the examples used in Chapter 2. (There is a

reason for this which will be explained later.) The example summary
is repeated here to save looking it up.

(i) Brown, Green and White are each wearing a coloured hat

(ii) The colours of the hats are brown, green and white
(iii) Brown pointed out this fact

(iv) The one wearing the green hat then pointed out that none of
the colours of the hats they were wearing was the same as their

names.

Designate the hat colours B for brown, g for green and w for white.

Take Brown, as he spoke first and this must be of some significance in

the problem. Brown is wearing a brown hat or a green hat or a white

hat - so connect b, g and w as inputs to an OR logic block - Fig.

Truth Table
A B S
O 0 0
1 0 1

O 1 1

1 1 1
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gh OR

(a)

B g NOT OR B

(b)

Fag. 9.7
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b

---INOTH OR B

(b)

9.7(a). Now from (iv), Brown cannot be wearing a green hat, so
exclude this as a possible input by inserting a NOT in the g input line
- Fig. 9.7(b).

From (iv) again Brown cannot be wearing a brown hat, so exclude
this as a possibility by inserting a NOT in the b input line - Fig.
9.7(c).

The answer is now obvious from the final diagram alone - we don't
even have to bother with constructing a truth table. Brown can only
be wearing a white hat.

The reason for repeating this example is that block logic and mathe-
matical logic (which was used for the simpler solution in the original
example) are very closely related. Block logic, in fact, presents mathe-
matical logic in diagrammatic form since they cover the same logic
functions and have the same truth table. One can be used to check the
other. If a question arises as to the validity of an equation in mathe-
matical logic (Boolean algebra), it can be 'spelt out' in the form of
block logic to see if it makes the proper sense.

There is one important difference, though. The use of block logic,
especially for more complicated problems, can lead to redundant
blocks being introduced, i.e. more logic blocks than are strictly neces-
sary. Also redundancies are not always easy to spot or eliminate. This
is not necessarily important using block logic for solutions in deductive
logic, but it is if block logic is being used to design control circuits. It
means that the final circuit ends up by using more switching devices
(logic blocks) than are strictly necessary. If the same problem is solved
in mathematical logic (Boolean algebra) it is readily possible to
simplify equations and thus eliminate all redundancies.

Both block logic and Boolean algebra deal with logic in terms of
basic logic functions, and in an exact way (as opposed to drawing a
conclusion from premises in deductive logic) - the one in a diagram-
matic way, and the other with mathematical equations. Equally,
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because they complement each other, when circuit designs for example

are worked out in mathematical logic, the final equation can then be

redrawn in block logic form to show the number and types of logic

devices required.
Equally, if designed in block logic, the final diagram could then be

rendered in the equivalent mathematical logic equation which is then

studied to see if it can be simplified.
The main use of both block logic and mathematical logic, in fact, is

in functional circuit design - electrical circuits (ranging from quite
elementary switching circuits to those for microprocessors and com-
puters), and control circuits in hydraulics and pneumatics. Surpris-
ingly, neither is used as much as it could be in solving `non-functional'
logic problems. Think about it before you automatically use deductive

logic for dealing in premises. If premises can be turned into 'signals'
operating on a yes -no basis (true or false), positive solutions can be

obtained in terms of NOT, OR and AND logic.
Equally, if you prefer to work with diagrams, then construct a truth

table for the block logic involved. In many cases you can use the

simpler, more easily understood simple logic diagrams described in

Chapter 5. The other alternative is Venn diagrams (Chapter 4),
although here there is a greater possibility of making mistakes until

you become thoroughly familiar with this type of diagram.

Block Logic and Circuit Design
Block logic is a useful and readily mastered tool for circuit design

involving switching or control elements. For electrical circuits, each

logic function AND, OR, NOT can be performed by a switch (or
combination of switches). In hydraulic or pneumatic control circuits,

similar functions can be performed by control valves. Circuits can thus

be designed with logic blocks, and then finalized by substituting the

appropriate switches or valves for each logic block.
Let's start with a very simple example. Suppose it is required to

design a circuit to switch something on and off from two separate
positions A and B. Drawn as a solution in block logic this simply
involves an OR function - Fig. 9.8. This is easily translated into two

separate switches, one at position A and one at position B, as in the

second diagram.
Suppose, now, it is necessary to be able to switch 'on' and 'off' from

either station. The first circuit will not work. If switched on at A, for
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A

OR S

diagram (i)

Fig. 9.8

instance, and left on, it cannot be switched off at B, and vice versa.
Additional logic is required in this case, as shown in Fig. 9.9, with the
corresponding switching circuit shown in the second diagram. Now if
switch A is left 'on', for example, switch B will be in its 'off' position
and the circuit completed through its 'off' position (i.e. ri state). Moving
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A Switching circuit

AND 1-L,

AND

OR S

Fig. 9.9

diagram (ii)

switch B to its 'on' position will then break the circuit (with switch A
still 'on'), and thus switch off the circuit. The same occurs if switch B is
left 'on', with switch A 'off'. Switching A 'on' will switch the circuit
`off'. In fact the two switches do not have any specific 'on' or 'off'
positions. They are merely acting as 'gates' to perform a combination
of AND and OR functions.

It is also possible to produce the same working with a different
arrangement of logic blocks, as shown in Fig. 9.10. This diagram

OR

irA OR -
AND I- S

Fig. 9.10
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expresses the required logic in the form - either A OR B 'on' AND (at
the same time) B OR A 'off'. In fact, we might have thought of
planning the block logic diagram first in this way.

An interesting fact now emerges. The switching equivalent of this

block logic solution, shown in the right-hand diagram, is considerably

more complicated than that for the alternative solution. In other
words the solution in OR logic is more complicated as regards switches

than the solution in AND logic. The reason for this is that AND logic
operates in series fashion and OR logic works in parallel fashion. In
terms of mechanical switching, series working is less complicated than

parallel working. Circuit designs in AND logic, therefore, are nor-
mally simpler than designs in OR logic when translated into mech-
anical switches. It does not follow, however, that this is also true when

the switching is done by electronic 'gates'.
As a further matter of interest, solutions to the above problem could

equally well have been derived from truth tables or Boolean algebra.

The requirement, expressed in Boolean algebra is:

AR+AB=1

(i.e. A 'on' with B 'off' OR A 'off' with B 'on' gives an output). This
would translate in logic block form as in Fig. 9.9.

Looking at the requirement the other way round, i.e. the combi-
nations that do not produce an output, corresponding to the complete
circuit being switched 'off'), the Boolean equation would be:

AB+Aii=0
which for 'switch on' working has to be inverted and becomes:

(AB+M3)=1,

which by applying de Morgan's theorem becomes:

(A +B) . (A + r3) = 1

This would translate in block logic form as in Fig. 9.10.

More Complex Circuits
The control problem solved in Fig. 9.11 by block logic is a little

more complicated. The device being controlled is a machine which
can be started from either of two operator positions A or B. Before the

machine can be started, however, it is necessary that the component



78

A+B
Component
on machin

- -
Machine -

Danger area
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Component
sensor C

Danger
sensor D

Fig. 9.11

it is handling is in position (as detected by the component sensor C),
and there is nobody standing in the danger area. Sensor D generates
a danger signal if anyone is in this area.

The logic required is A OR B AND C AND NOT -D. A and B are
connected to an OR block, and the output of this block provided one
input to the AND block. C is also connected to the AND block, giving
a second input to this block. D is connected to the AND block via a
NOT block and is the third input to this block.

There will be an output from the AND block, switching the machine
on, only when there is an input signal at each of the three input lines to
the AND block. If either operator A or B switches the machine on, the
machine will only start if there is also an input signal on the C line
(component in position) and no signal on the D line. The NOT in this
line will then invert this '0' signal into a 1', providing the third signal
input to the AND block. If there is a signal on the D line (someone
standing in the danger area), the NOT in this line will invert that '1'
into a '0' - i.e. there will be no input from this line into the AND
block. Consequently there will be no output from the AND block and
the machine will not start. In Boolean algebra this is presented quite
simply as:

(A +B) .C.b= 1

In practice - and with experience - circuit designs of this type are
commonly developed in a specific type of logic. The solution in Fig.
9.11, for instance, uses a mixture of OR and AND logic elements -
one of each in this case, but in a more complex control circuit there
may be several of each required.

Depending on the availability of actual control elements, or possibly
looking for the simplest solution using the minimum number of logic
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elements, alternative solutions are often worth looking at. Virtually

any problem of this type can be solved either in AND logic or OR
logic; or the inverted forms NAND or NOR logic. In this case only

one type of logic element will be required, together with NOT elements
for essential inversion.

Fig. 9.12 shows the same problem as Fig. 9.11 solved in NOR logic.
Specifically, this involves using two NOR devices and five NOT
devices - seven devices in all, but we have got everything in NOR

C

D

Fig. 9.12

logic. Also we can simplify this diagram. Two NOTs in the same line
simply change a signal back to what it was originally - they are
redundant elements which can be eliminated. On this basis we can
eliminate four devices from the original and end up with just three
devices performing the same function, still all in NOR logic - Fig.
9.13.

Try working out further alternative solutions in AND logic, OR
logic and NAND logic only. (Remember you will have to use NOT
devices as well.)

C

NOR

NOT

Fig. 9.13

NOR
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The main limitation with circuit design by block logic is that the
more complex the problem to be solved the greater the number of
logic blocks (devices) required and the more likely redundancies will
be introduced. Also it may not be easy to spot all the redundancies
and elimate them. Using Boolean algebra it is much easier to simplify
the equations. Even this has its limitations when it comes to the design
of complex pneumatic and hydraulic circuits where Karnaugh maps
can prove much more effective, but represent a new logic technology
to master.

The subject of circuit design by logic is further dealt with in Chap-
ters 11, 12 and 13.

CHAPTER 10

Algorithms
An algorithm is a modern way of plotting logic problems (the term
was not invented until the 1960s) which basically presents a chart

accommodating all the information relative to a problem and leads

one exactly through the paths necessary to arrive at the logical result.

Basically, in fact, it is simply an extension of block logic, given a more

sophisticated name. It was originally devised as a means of plotting

the strategy of solving problems using computers. It is now widely

used for designing flow -charts, making it possible for people to arrive

at solutions on a yes/no basis (like the working of a computer), with

the advantage that it can be completely non-mathematical. The scope

in this respect is considerable. Algorithms can be applied equally well

in general problem solving, commerce, industry, ergonomics, medi-

cine, finance, even political and military strategy. There are, equally,
mathematical algorithms. All have one thing in common. They are

directed to finding solutions - not teaching or learning. Algorithms do

not help understand a problem like a computer programme; therefore,

the solutions they give are only as good as the person designing the

complete algorithm.
Non -mathematical algorithms on individual facts or statements

relevant to the subject rendered as questions, which become in effect

`gates' in the flow path. Each 'gate' provides two exits - one for a 'yes'

answer and one for a 'no' answer, this procedure being followed

through the algorithm until the final answer part (s), which is then the

logical solution to the answers made at the various question parts.
Rather than a single answer, too, an algorithm commonly contains a

number of different answers since it is designed to cover all contingen-

cies, i.e. a 'yes' or a 'no' at all of the gates. A simple example will make

this clear:

A club has the following rules regarding subscriptions:

(i) Entrance fee is £50 for adult members; £20 for persons under

20 years on January 1st.
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(ii) Annual subscription rates payable on September 1st each year
are:

Full voting member
Senior (non voting) member
Junior (non voting) member

£50
£35
£20

An algorithm drawn up on this basis would look like this:

START
HERE

New
member

YES

NO

Over
20?

YES

NO

Voting
member

YES
Payable

NO

£100

£85

Over
20?

YES

NO

Voting
member

YES

£

NO

£

£35

Ic2oI

This chart plots all the possibilities with logical paths through to
the amount payable. It can provide immediate solutions relative to any
applicant, new or existing member, whether over or under 20, and
whether voting or not. In the same way it could be extended to cover
other club subscription rules. Try re -drawing it to take into account
as well:

(iii) Members joining after March 31st in any year pay only half
that year's subscription.

(iv) Family membership (two persons from the same family) can
have 25 per cent reduction on subscription rate.

(v) Existing members over 65 years old, with at least five years
paid -up membership, can have a reduced membership of £40
for full membership, or £20 for individual (non -voting) mem-
bership.

Algorithms of this type can readily be prepared to cover almost all
types of subjects involving variable factors which can be dealt with on
a yes/no basis. Once prepared, they then cover all possibilities involv-
ing these factors, with a logical route to the correct answer in each

Algorithms

case. This can save a lot of time and effort compared with working
out the answer each time for individual cases.

The main problem to arise in designing algorithms - apart from

ensuring that all the factors are included and presented on a yes/no
basis - is one of arrangement. Ideally - but not necessarily - all the

`yes' paths should come out the same way, and all the `no' paths in the

same (but different) way. Thus in the example drawn, a 'yes' auto-
matically reads straight across to the right. A `no' reads downwards
and then across on a different path.

The other difficulty, particularly when a large number of different

`boxes' have to be used is to avoid crossing paths, as this can be
misleading. Also the final 'answering' boxes should be made distinct

from the others (e.g. with a bolder outline).
Drawing up the basis of an algorithm is quite a simple exercise in

block logic once you have got the facts broken down into simple

questions. Planning and drawing up the final algorithm, however, can
be something of an art to get it into its best presentable form. It may

even be necessary if the algorithm tends to become excessively com-
plicated to stop at certain answer part(s) which, instead Of being

answers, are new starting points for a separate algorithm.
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Algorithms and Truth Tables
An algorithm can also be presented in the form of a truth table, from

which relevant solutions can be drawn. To demonstrate this we will

use the same example as before, dealing with club subscriptions,
writing out each question as a line and covering all possible combi-
nations of answers in the following columns of the table:

New member?
Over 20?

Voting member

1

YES
YES
YES

2
YES
YES
NO

3
YES
NO
NO

4
NO
NO
NO

5
NO
NO
YES

6
NO
YES
YES

7

YES
NO
YES

8
NO
YES
NO

Voting £100
£85
£50 \/
£40 N./

£35 N./

£20 1 N//
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The truth table is more explicit in that it analyses all the possible
combinations of the variable factors (answers to the questions). There
are three questions, each with two possible answers (`yes' or `no'),
which in fact gives us eight possible combinations, as given by the eight
columns in the truth table.

In this particular case the combination in columns 5 and 7 cannot
apply by the club rules since the person is under 20 and thus a junior
member, and a junior member is a non -voting member. With a
different set of questions all possible combinations may be relevant, in
which case there would be eight separate solutions, not six as in this
example. Plotting a truth table, in fact, is a good cross-check on the
completeness of the algorithm.

CHAPTER 11

Introduction to Boolean Algebra

The simplest approach to solving logic problems in a mathematical

way is the use of Boolean algebra, which is certainly not as frightening

as it sounds. It is like ordinary algebra in many ways, but certainly

much simpler because it is concerned with only two possible states of

each individual subject. These can be evaluated as true or false, yes or

no, in the case of general subjects (e.g. premises); or on or off, go or

stop, in the case of signals. (The usual interpretation with signals is 'I'

for 'on' and '0' for off').
At first it may look more complicated than ordinary algebra because

the mathematical signs are used in a different sense,  for AND; + for

OR. Thus A  B means A and B (not A times B); and A + B means A or

B (not A plus B).
The only other symbol used is a -over a letter, meaning an inversion

or logic NOT. Thus A means not A, means not B, and so on.

It then becomes obvious that Boolean algebra works in terms of

NOT, AND and OR logic, or the inverted forms YES, NAND and

NOR.
By far the simplest way of understanding Boolean algebra is to think

in terms of switching circuits applied to the basic equations for logic

functions, as in Chapter 9.

NOT then becomes a normally closed on -off switch within the possibility

of either a negated or positive output. The two Boolean algebraic

forms of NOT are thus:

A=S
consistent with the truth table

A=S

A S

1 0

0 1

YES then becomes a normally open on -off switch. The two Boolean

algebraic forms ofYES are thus:

A=S
consistent with the truth table

A S

1 1

0 0
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AND is the equivalent of two normally open switches in series. Here the
presence of an input signal at either A or B closes its respective switch
to pass on the signal to the output, but there is no output until both
switches are closed (signals A and B are present):

A  B = S consistent with the truth table A B S

0 0 0

1 0 0

0 1 0

1 1 1

NAND is not quite so easy to describe in simple switching terms.
Logically it should be two switches in series operating in the inverted
mode to AND. In fact it works in the manner of one normally closed
switch which needs signal inputs at both A and B to open it. With no
input at either A or B the switch remains closed, providing a through
path to the output and an output signal (consider this signal as coming
from a separate source). With an input at A the switch still remains
closed, so there is still an output. Similarly with an input at B only.
With inputs at both A and B the switch is opened, breaking the circuit
and changing the output to 0.

B SA  B= S consistent with the truth table A
0 0 1

1 0 1

0 1 1

1 1 0

OR is straightforward again - two normally open switches in parallel.
There is an output when either switch A or switch B is closed (by signal
input at A or B, respectively. Also there is obviously an output when
both switches are closed, as the truth tables shows:

A+ B= S consistent with the truth table A B S

0 0 0

1 0 1

0 1 1

1 1 1

Iritroduction to Boolean Algebra

There is, however, another form of OR known as an EXCLUSIVE

OR. This excludes the possibility of an output being generated when

signals are present at both inputs. That is, the production of an output

is exclusive to either A or B input signals being present.

NOR again is consistent with parallel switches giving an output

(both switches closed) when there is not a signal input at A or B. This

time either signal A or signal B (or both together) will open both

switches, giving no output.

A + B = S consistent with the truth table A B S

0 0 1

1 0 0

0 1 0

1 1 0
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Note here that, with the exception of NOT and YES which can only

have one (input) designation, all of the logic functions can accom-

modate any number of input signals A,B,C,D, etc, as necessary which

can be expressed in terms of Boolean algebra. These merely extend

the size of the truth table in the same truth sense. For example, here is the

AND truth table extended to accommodate four inputs A, B, C, D.

A B CDS
0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0
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A B CDS
1 1 0 1 0

1 1 1 0 0

1 I 1 1 1

This illustrates the basic rule that for N inputs there are 2" possible
states or combinations, represented by N lines in a truth table. Thus
in this case there are sixteen lines (different states) possible with the
switching equivalent of sixteen on - off switches connected in series.
There is an output (S = 1) only when all sixteen switches are closed
(i.e. A= 1, B= 1, C= 1 and D= 1). The truth table represented this
more compactly than drawing out all the individual switches con-
nected together.

Inverting the Function
One thing may - or may not - have become apparent from the logic

equations explained above: inverting a function changes the nature of
the function. Thus AND which is obviously an AND function (A  B or
A and B), becomes an OR function when inverted to NAND (not A or
not B). This is a very important rule in manipulating Boolean equa-
tions, where it is often convenient, or necessary, to invert functions to
obtain an optimum solution (eliminate redundancies, for example).
Specifically, too, it enables all expressions in an equation to be in the
same type of logic.

Suppose we want to work entirely in OR logic. This means that all
the terms used in an equation need to be expressed in the form A + B,
i.e. the + (OR) sign is used throughout the equation.

Starting with the NOR function, A  f3 = S , this is in AND logic (as
shown by the  sign). By the rule mentioned above, inverting it will
change it into OR logic:

thus A  ft = S becomes A + B = S by inverting each term and
changing the sign

This now contains double inversions on A and B, which is bad logic.
If inverted once (in the original form) and then inverted again (in the
conversion to OR logic), any subject ends up the right way up - or in
this case A = A and B = B, so NOR converted to OR logic now becomes:

A+A=A+B-=S

Introduction to Boolean Algebra

We still have the output inverted (5), which may or may not be

convenient. If not, we can invert the whole expression again:

when A + B= S becomes A + B = S

Thus we started with not -A and not -B = S (or NOR in AND logic) and

end up with not -A or B = S (or NOR in OR logic, which was what we

were after).
At this point there is something very important to note. When we

first inverted the equation we changed the sign from  (AND) to +

(OR), according to the rule of Boolean algebra which demands this,

i.e. theorem (xii). When we did the last inversion, we did not change

the sign. This is because we inverted A + B as a whole, which can be

considered as putting it in brackets (A +B) and treating it as a single

term. Again this is consistent with theorem (xii). (The theorems

governing Boolean algebra are summarized together on pages 94-5

for convenience of reference.)
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Ultra -Simplified Symbolic Logic
Now let us look at an ultra -simple symbolic method of handling

deductive logic, in which we use just the inversion sign
-

borrowed from

Boolean algebra, together with letter symbols. It is not Boolean alge-

bra, and indeed the validity of the method is questionable - but it

works. Take the following as an example:

Premises: all dogs are animals
no animals can fly

Conclusion, by deductive logic: no dogs can fly.

Symbolic technique: designate all dogs D, animals A, and fly F

first premise becomes D = A

second premise becomes A = F

Therefore if A = F
A=

thus D=A=P

(All dogs cannot fly, which is the same as no dogs can fly.) Try this

technique out for yourself using the examples in the chapter on De-

ductive Logic (Chapter 2). In fact, we have already used this quick
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method to provide a second solution to the 'coloured hats' problem in
Chapter 2. Let's see how this same solution can be worked out cor-
rectly in Boolean algebra, using the same notation as before - B for
Brown and b, g and w for the brown, green and white hats respectively.

The start is exactly the same as before:

B=b+g+w

also because the man who spoke after Brown was wearing a green hat,
Brown cannot be wearing a green hat. Nor can Brown be wearing a
hat the same colour as his name, so

B= g 6

Last time we jumped straight to the answer by assuming that g and 6
cancelled out g and b in the first equation. This is not justifiable in
Boolean algebra since there are not two separate equations involved,
only one combining the two propositions, viz:

B=b+g+wandkS or

B= (b +g+ w) gb which expands to
B = b 6.g + ggb +wg6 and then groups in OR logic as
B=(bSg)+(gg6)+ (wgG)
From theorem (i) b  6=o

gg =0
thus B= (0  g) + (0  b) + w  g b
From theorem (i) 0 g=o

0 6=o
Hence B=wgb

=white, NOT green, NOT brown.

Exactly the same answer as the short cut solution gave!

Boolean Algebra Theorems
(i) Since 0 has no value other than zero

A  0 = 0 (AND function)
(ii) Since 1 has no other value than 1 (positive)

A  1=A (AND function)
(iii) Since 0 has no other value than zero

A+ 0=A (OR function)
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(iv) Since I has no other value than 1 (positive)
A+ 1 = 1 (OR function)

(v) A A = A (AND function)
(vi) A + A = A (OR function)

(vii) A  A=o
(viii) A+A=1

(ix) A=A (double inversion returns the function to its ori-
ginal state)

(x) The order of individual functions is immaterial
AB=BA
A+B=B+A

(xi) The order of grouping of functions is immaterial
A. (BC) = (AB)C
A+(B+C)=(A+B)+C

(xii) Inversion of all signals changes the sign (de Morgan's theo-
rem)

ABC=A+$+C
A+B+C=A13C

(xiii) For simplification of equations . (AND) is treated as a multi-
plication sign and + (OR) as an addition sign, as in ordinary
algebra

A(B+C)=AB+AC
(xiv) Expansion of equations treated as in ordinary algebra

(A+B)(C+D)=AC+AD+BC+BD
(xv) Redundancies can be eliminated, e.g.

A+ (AB)=A
A+ (AB)=A+B

This last theorem may not be obvious, but can be proved by its truth
table:

A
0

B

0

S

0

i 0 1

1 1 1

0 1 1

This shows that A =1 makes S= 1 OR B= 1 makes S= 1 whether
A= 1 or A=0. Thus A is redundant in the equation.

A.
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Minterms and Maxterms
Boolean algebra and truth tables are closely related, as we have

seen. One can always be expressed in terms of the other. However the
logic involved may be a mixture of AND, OR and inversions of AND
and OR. Assuming that we start with a truth table, for a systematic
approach to combinational logic the truth table needs to be expressed
in a Boolean expression with a particular form, i.e. AND logic or OR
logic. In AND logic the Boolean expressions are called minterms; and
in OR logic the Boolean expressions are called maxterms. The two are
complementary, as solutions can be worked in either. Here, for ex-
ample, is the truth table for covering three binary variables A, B and
C and the corresponding Boolean minterms and maxterms:

A B C minterm maxterm
o 0 o ABe A -143-1-e

1 0 0 A.B.e A+11+e

o 1 0 ABL A+B+C
1 1 0 A  B C A+B+O
0 0 1 A$C A+ii+c
1 0 1 A  t C A +11+c

o 1 1 ABC A+ B + C

1 1 1 ABC A+B+C

This is a particularly useful technique for the design of combina-
tional circuits (e.g. electrical circuits or hydraulic or pneumatic con-
trol circuits). If the relationship (i.e. significance of the 'switching'
points A, B and C) are stated in minterms, the circuit can be designed
using digital devices having an AND function, plus NOT for inver-
sions. If the relationship is in maxterms, then the circuit can be
designed using OR devices, plus NOT for inversions.
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Repeating this table but this time using only minterms and adding
the output:

A B C minterm output (S)
0 0 o A$e
1 0 0 ABC 1

o 1 o ABC
1 1 0 ABC
o 0 1 A$C

1 0 1 A  11c

o 1 1 ABC 0

1 1 1 A B C 1

Here it is seen that there is an output ifany ofA  C, A  B  C, A  C
and A .B.0 is 1. The corresponding Boolean equation is then:

S=A11C+ABe+AclC+ABC

A

B

B

NOT

NOT

AND

NOT

AND

A NOT

B -i NOT

B

AND

OR



N

94 Logic Made Easy

Fig. 11.1 shows this as a complete circuit, using logic elements. It is an
unnecessarily complicated circuit for it contains a number of redun-
dancies. The original equation is capable of simplification (using the
relevant Boolean algebra theorems) to

S=AB+AC+ABC
This gives the simple circuit of Fig. 11.2.

AND

C NOT

B

AND

AND

Fig. 11.2

Or as a 'wiring' diagram, as in Fig. 11.3

C 4-1 NOT

AND

OR

AND

AND

Fig. 11.3

OR

CHAPTER 12

More Logic Equations
One particularly useful feature of Boolean algebra. is that it is possible

to express all the logic functions involved in a single logic. Problems
involving OR and AND, for instance, can be expressed entirely in
either OR logic or AND logic - or NOR or NAND logic. Working
out how this can be done is also useful practise in manipulating
Boolean equations and applying the rules laid down in the theorems.

Everything in AND Logic
In AND logic the basic expression is A  B =S. Thus to be in AND

logic every piece of logic must be expressed in the  form.

An OR function is changed into AND logic as follows. Start by
writing down the basic OR function:

A+B=S
invert AI1=S

Note this changes the sign from OR to AND, but the output is
inverted. Invert again to obtain a positive output:

AB=S=S
Thus Af3=s is the OR function in AND logic.

The NOR function is an inverted OR, and so is already in AND

form with a positive output. No conversion is necessary:

A s = S
The basic NAND function is in OR logic, viz:

A -f -B=s
invert to give A  B =

invert again for a positive output AB = S = S

Thus AB= S is the NAND functions in AND logic.

Everything in OR Logic
In this case every piece of logic needs to be expressed in + form.
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Starting with the AND function:

A  B = S

invert to put into OR logic:

A+D=S

invert again for a positive output:

A+11=S=s

Thus A+11=S is the AND function in OR logic.
The NAND function is already in OR logic, i.e.

A+11=S

The NOR function is in AND logic, i.e.

At=s
invert to put into OR logic

Ai -B=S

which is the same as A+B= S
invert again to get a positive output

A -I-B = S

Thus is the NOR function in OR logic.

Everything in NAND Logic
In this case since NAND is inverted AND, every piece of logic needs

to be expressed in-form.
Starting with the AND function

AB=S
invert to get the NAND form

AB=S

invert again to get a positive output
AB=S=S

This is the AND function in NAND logic.
The OR function is A +B=S
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invert to give

A11=S

invert again to get the form

All= S=S
Thus AA=S is the OR function in NAND logic.

The NOR function is A11=S
invert as a whole into the form

At=S

invert again to get a positive output

At=S=s

Thus At=S is the NOR function in NAND logic.

Evegthing in .NOR Logic _
This time everything needs to be expressed in + form.
The AND function is A B = S

invert to give

A+t=S

invert again to get into + form

A+f3=g=S

Thus A+S=S is the OR function in NOR logic
The NAND function is A+t=S

invert as a whole to get into + form

A+B=S

invert again to get a positive output

A-43=g=S

Thus A+B=s is the NAND function in OR logic.

Circuit Design by Equations
Examples of circuit design by block logic have already been given

in Chapter 9 where, too, Boolean algebraic equations were used to
check the results. (You probably skipped that part if you had not
already read Chapter 11.) All combinational control circuits can be

A
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expressed in terms of block logic or pure equations - or the re-
quirements equally well written out in the form of a truth table (which,
of course, will be the same for the block logic and algebraic solutions).
Provided you are happy working with Boolean algebra, solution by
equation is usually simpler and quicker, and redundancies can be
eliminated in the process.

All combinational control circuits are similar in that they provide
an 'on' signal when, and only when, a particular combination of other
signals are present. Thus the example given here is basically the same
sort of problem as solved by block logic in Chapter 9, but a little more
complicated in involving a combination of five different signals. Cir-
cuit design will be worked out in Boolean algebra on a logic basis, but
also illustrated by block logic diagrams as 'pictorial proof' of what the
equations mean.

The control problem, shown in Fig. 12.1, is this. A space rocket site
incorporates the following features. At the control centre, either tech-
nician A or B can give the final signal to start ignition. The rocket is
fuelled up, ready to go, but it must be impossible for A or B to launch
the rocket until all the monitoring signals are in a 'go' state. These
monitoring signals are derived as follows.

Command centre

IA

Emergency sensor E

E
Display

signal D

---1

- - - - - - - - - - - - - - - -
Ignition signal Control sensor C

Fig. 12.1

A control sensor (call it C) gives a continuous signal indicating that
the rocket is sitting properly, ready to go. A display screen (call it D)
monitors the internal systems, generating a ready -to -go signal when
all functions are operating correctly. A further emergency sensor (call
it E) on the tower only gives a signal if something else is wrong and
the launch must not take place.

More Logic Equations

In terms of logic we have the following requirement (or logic equa-

tion):
A OR B AND C NAND D AND NOT E = S (ignition signalled)

which in symbols is:

A+BCDE=S
This is in mixed logic (OR and AND logic, together with NOT). A

control circuit, based on logic elements, would be as in Fig. 12.2.

99

A A+13
OR

B

AND A+BCDE = SC

D

NOTE j
Fig. 12.2

It could equally well be rendered in terms of AND devices only

(AND logic), together with NOT.
Starting with the original equation:

A+BCDE=S
invert once

A.A+C+15+i.5
invert again to get into AND form and also give a positive output:

2 :

A 11CD E=S=S
This could be rendered in logic element form as shown in Fig. 12.3,

Fig. 12 3

=-= = =_
A-E.C.D-E = S
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but with obvious redundancies (NOT devices following each other for
double inversions and effectively cancelling each other out).

This is also obvious from the equation. Double inversions cancel
each other out, so the simplest form of the equation in AND logic
becomes (by remaining double inversions)

A11CDE=S
The requirements for this circuit are shown in Fig. 12.4. It has saved
six (NOT) devices.

A NOT H.
B NOT I...,
C

AND H NOT

NOT

AND

Fig. 12.4

7aEcoE = S

Perhaps it could be made even simpler using another form oflogic?
Certainly it can. Suppose we try NOR logic. This means reading the
terms of the equation in the form +

Starting with the original equation:

A +BCDE=S
invert, treating A + B as a whole to retain the + form:

A+B+C+1)+E=S
invert again as a whole to retain the + form and get a positive output:

A+B+e+C)+E=S=S
Now remove all the redundancies (double inversions) - in this case
there is only one (E):

A+B+C+17)+E=S

This can now be rendered in circuit form with just four logic elements,
as in Fig. 12.5.

More Logic Equations

NOR H

NOT

D NOTI

E

NOR
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A+B+6+5+E = S

Fig. 12.5

Incidentally a truth table written out for this particular requirement
would run to 32 lines, only three of which would give a 'go' output

(S=1) AB CDES
line 1 ... 0 0 0 0 0 0

1 0 0 0 0 0

1 0 1 1 0 1

0 1 1 1 0 1

1 1 1 1 0 1

line 32 ... 1 1 1 1 1 0

Even Boolean algebra, however, has distinct limitations when it

comes to more complete circuit designs. It can produce cumbersome
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equations which can prove
checking for possible errors,
convert into a different form
to be preferred in such cases.
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tedious to work with, and need careful
especially when simplifying or trying to
of logic. Other types of logic are generally CHAPTER 13

Karnaugh Maps and Logic Circuits

A Karnaugh map is a most useful device for combinational circuit

design (and can also be used for working other solutions in Boolean

algebra). It consists of a square or rectangular area divided into

squares, each square representing one minterm. The number of

squares required will be 2", where N is the number of variables.

Taking just two variables A and B as the simplified example, the

corresponding Karnaugh map will have 22=4 squares, covering the
four possible combinations of A and B (i.e. A  il, A B, A  11, A  B).

These squares can be labelled in various ways, two basic methods

being shown in Fig. 13.1. That on the left labels the possible states of

\AB 0 1,4 A

If3 AB AB 0 AB AB

B 413 AB 1 AB AB

Fig. 13.1

A and B in columns and squares, respectively. That on the left desig-

nates A and B allocation - to the right and down from the separating
line at the top left corner, with possible signal values. The resulting
combinations marked in the squares are shown in minterms, but
alternatively could have signal values (i.e. binary 0 or 1). Of the two
the left-hand form is probably easiest to use for logic expression reduc-
tion (i.e. elimination of redundancies or minimization); and the right-

hand form probably easiest for translating a truth table into a Kar-

naugh map.
The sequence in which the variables are presented is not significant,

but the squares cannot be allocated at random. They must be

arranged so that movement of one square upwards or downwards, or

one square left or right horizontally, results in the minterms associated

Ail
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with the two adjacent squares differing only in a single variable.
Specifically this implies that the minterms in adjacent squares are
identical except for one variable which is marked in one square but
not in the other.

Karnaugh maps can accommodate more than two variables. Figs.
13.2 and 13.3 show alternative versions of maps for three and four
variables, respectively. This is about the practical limit. Maps with
more than five variables are too cumbersome to be of real value.

o

C 1

A
00 01 I 11 10

ABC ABC ABC ABC

ABC ABC ABC ABC

5
Fig. 13.2

B

Movement in a Karnaugh map must always be horizontally (along
squares) or vertically (up and down columns), one square at a time. On

5

C

A

A 8
C 8

A e
5 8

A B
5 5

A E
o 5

A 6 A B A B A E
S D co -6 D -6 D

A E AB AB Al -3-

C D CD CD CD

AE AB AB AE
C 5 c 5 c 5 c 5

B B
Fig. 13.3

B

D

1
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reaching the edge of the map, the next move of one square returns to

the opposite edge of that square or column. In other words, a Kar-

naugh map is basically a three-dimensional device, drawn in two

dimensions. How it continues in the third dimension can be under-

stood by thinking of the flat map being rolled up into a vertical

cylinder (for continued horizontal movement), or a horizontal cylin-

der (for continued column movement) - Fig. 13.4.

Read around map as If continuous

Fig. 13.4

Minimization
A particular application of a Karnaugh map is for producing a

minimal form of Boolean equation. We will use the original equation

used in describing minterms as an example:

S=A$C+ABO+ABC+ABC
The Karnaugh map drawn for this is shown in Fig. 13.5. Fig. 13.6

then shows this map redrawn and re -labelled using the circuit outputs

A A
f 11 1

ABC ABC ABC ABC

ABC ABC ABC ABC

B B
Fig. 13.5

B

Ci
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A A
r if 1

C

C

0 0 r1,
; r

-
1 NI

0 ) 0

B B
Fig 13.6

B
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relative to the various combinations. (With practice this could be done
without going through the intermediate stage of Fig. 13.5.)

Simplification or minimizing then consists of grouping together ad-
jacent squares which both contain 1. Grouped squares can then be
represented by a single AND term instead of two. There are two such
groups in Fig. 13.6, shown enclosed by dashed lines. In the horizontal
group, B is the variable that changes and so instead ofA BC+ASC
which this group covers, this group can be represented simply by A  C
(i.e. A B C + A  ft  C in the original equation becomes A C (B+11)
which = A  C).

Similarly in the second (vertical) group, A B C + AB C, C is the
variable that changes, so these two squares can be represented by a
single end term A.B. There are no other groups and so the original
equation:

S=A13C+ABC+ASC+ABC
reduces to

S= AC +AB+ ABC

Basic rules for minimizing are:

(i) All the squares containing a 1 must be included in at least one
group (if not possible, there is no possibility of minimization).

(ii) Form the largest possible groups.
(iii) Produce the smallest possible number of groups (consistent with

(i) and (ii) above.
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0 1

11
i1 ) 0

r 1 11 0 0
1

,

:1 1i 0 0

0 (1
1

11
1

0

Fig. 13.7

A basic problem in conforming to these rules is that the effect of

`running off the edge' of the map is overlooked, e.g. see Fig. 13.7. Here

there is already one large group of four squares, and two smaller

groups each of two squares at the top and bottom. In fact these two

smaller groups form one larger group (think of the map being rolled

up into a horizontal cylinder). There are, in fact just two groups not

three, needing just two AND terms, not three.
Failure to spot how small groups may form a larger group does not

matter greatly. It does not upset the validity of the treatment. It

simply means that the final answer derived is not as fully simplified as

possible. Translated into hardware in a switching circuit, for example,

the circuit would work just as well but include more switching or logic

components than are strictly necessary.

Sequential Circuits
So far we have only dealt with combinational circuits. Other control

circuits may require sequential logic, i.e. operations or movements

following in a particular sequence. Even more complicated is the

compound circuit which incorporates both combinational and sequen-

tial requirements.
Karnaugh maps can again be used for the design of sequential or

compound logic circuits, only where sequence is involved a further

type of logic is required - MEMORY for providing the right timing

of the sequence. One memory will be required at each sequence point,

when each memory will require its own Karnaugh map. In a com-
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pound circuit, a further Karnaugh map (or maps) would be necessary
for the combinational requirements.

Dealing with a typical sequential logic circuit, the procedure would
be as follows:

(i) Write down a word statement of the sequence.
(ii) Draw a time diagram designating the complete sequence.

(iii) Prepare a separate signal flow diagram and on this plot the
signal flow path.

(iv) Prepare a Karnaugh map for every memory, and for every
auxiliary memory appearing in the signal flow diagram.

(v) Extend the presence of memory designations by infilling and
forming loops on the signal flow diagram.

(vi) Finally, minimize the memory set and reset equations.

No wonder this form of logic is largely incomprehensible to all but
specialists!

Even Karnaugh maps have their distinct limitations when it comes
to the design of the more complex logic control circuit where, in fact,
only design by logic can be relied upon to provide optimal solutions.
For that reason many major producers of logic control devices them-
selves (hardware) have developed their own system methods to make
logic designs easier to understand and minimize circuit design time.
This will then relate to a specific system which, in turn, is based on a
particular choice of logic elements providing all the logic functions
necessary.

For a full coverage of all the types of logic required in complex
circuits design the functions required are:

NOT AND OR YES NAND NOR INHIBITION
and MEMORY.

That does not mean that all these separate functional elements will be
required. Solutions can be worked all in AND logic, or all in OR logic
(or the inverted forms NAND and NOR). The only functions which
remain necessarily common with any type of logic chosen are NOT,
INHIBIT and MEMORY. NOT we already know about. INHIBI-
TION is a sort of variation on NOT and AND, expressed as:
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B and not A = S
or 13- A=S

BA =0

In other words, when a signal is present at A it inhibits the signal path

of B.
MEMORY is readily performed by a flip-flop device accepting two

signal inputs A and B. A signal applied at input A will give an output

state S1 and maintain this state even when signal A is removed. A

signal input at B will then change the state of the memory to S2, which

it will continue to hold when signal B is removed, until tripped back

to state S1 when a further signal is applied to A. In other words,

MEMORY is a logic device which 'remembers' the last signal, which

is an essential feature in sequential logic.
As far as logic circuit components are concerned (i.e. the available

`hardware' for turning a circuit design into a working circuit), choice

of type of logic used depends on the suitability of such 'working'

elements to perform the various functions necessary. This is no real

problem in electronic circuits using solid state devices, but in the case

of pneumatic and hydraulic circuits, the working elements involved

are normally miniaturized valves. If a multiplicity of individual

elements (valves) is to be avoided, the choice favours using NOR or

NAND logic, as these functions can be performed by simpler valves.

Other systems may, however, employ multi-functional devices based

on OR, AND, NOT, YES and MEMORY.



Other Bestsellers From TAB
0 SCIENCE FAIR: Developing
a Successful and Fun Project-
Maxine Haren Iritz, Photographs
by A. Frank Iritz

Here's all the step-by-step guid-
ance parents and teachers need to
help students complete prize -quality
science fair projects! This book pro-
vides easy -to -follow advice on every
step of science fair project prepara-
tion from choosing a topic and defin-
ing the problem to settling up and
conducting the experiment, drawing
conclusions, and setting up the fair
display. 96 pp., 83 illus., 8 1/2" x
11".
Paper $9.95 Hard $16.95
Book No. 2936

0 PARTICLES IN NATURE:
THE CHRONOLOGICAL DIS-
COVERY OF THE NEW
PHYSICS-John H. Mauldin

If you're interested in physics,
science, astronomy, or natural his-
tory, you will find this presentation
of the particle view of nature fas-
cinating, informative, and entertain-
ing. John Mauldin has done what
few other science writers have been
able to accomplish ... he's reduced
the complex concepts of particle
physics to understandable terms
and ideas. This enlightening guide
makes particle physics seem less
abstract-it shows significant
spinoffs that have results from re-
search done, and gives a glimpse of
future research that promises to be
of practical value to everyone. 304
pp., 169 illus. 16 Full -Color Pages,
14 Pages of Black & White Photos.
7" x 10".
Paper $16.95 Hard $23.95
Book No. 2616

Send $1 for the new TAB Catalog describing over 1300 titles currently in print and receive

a coupon worth S1 off on your next purchase from TAB.

(In PA, NY, and ME add applicable sales tax Orders subject to credit approval Orders outside U S must

be prepaid with international money orders in U.S dollars.)

'Prices subject to change without notice.
ON IIMM I= MINI NMI MI INN NIB

To purchase these or any other books from TAB, visit your local bookstore,
return this coupon, or call toll -free 1-800-822-8158 (In PA and AK call

1-717-794-2191).

Product No
Hard or
Payer

Title Quantity Price

:= Check or money order enclosed made payable to Subtotal
TAB BOOKS Inc.

Charge my =2 VISA I: MasterCard :: American Express Postage/
Handling
11500

Acct. No. Exp us*
oulsas
ssd Casale

NO and ME

lax

52 50

in PA

Signature add appl.cable

Please P,lni
Sales

Name TOTAL

Company

Address

City

State Zip

Mail coupon to
TAB BOOKS Inc.
Blue Ridge Summit
PA 17294-0840 BC

Help Us Help You
So that we can better provide you with the practical infor-
mation you need, please take a moment to complete and
return this card.

1. I am interested in books on the following subjects:
CI architecture & design  electronics
O automotive D engineering
 aviation 0 hobbies & crafts
El business & finance 0 how-to, do-it-yourself
El computer, mini & mainframe  military history
O computer, micros 0 nautical
o other

2. I own/use a computer:
 Apple/Macintosh
fl Commodore
CI IBM
El Other

3. This card came from TAB book (no. or title):

4. I purchase books from/by:
0 general bookstores 0
 technical bookstores 0
0 college bookstores E
E mail 0

telephone
electronic mail
hobby stores
art materials stores

Comments

Name

Address

City

State/Zip

TAB BOOKS Inc.



Logic Made Easy
R. H. Warring

A complete guide to understanding all forms of logic-
from puzzles and problems to algorithms and Boolean Algebra!

Looking for an introductory guide to logic? One that covers the
logic behind puzzles and problems . . circuits and binary relation-
ships . . . and the logic of philosophers? Here's an absorbing
sourcebook that will answer all your questions on this fascinating
subject. Author R.H. Warring takes you along the historical path of
considering what logic is all about and how the thought processes
engendered became the building blocks of the new electronic
revolution.

Whether you're an engineer, mathematician, student, or philos-
opher, Logic Made Easy is a valuable tool in solving intellectual or
mathematical and computer -level problems. And it's so easy to un-
derstand that you can explore all forms of logic . . . from Venn
diagrams to Karnaugh Maps.

The early chapters describe types of logic and their use. You'll
explore deductive and inductive logic, logic in solving aptitude tests
and see how to master the use of simple logic diagrams.

And if you're primarily interested in the use of logic as a
mathematical or modern design tool, Warring provides in-depth
coverage of the complex circuits used in microprocessors and com-
puters, complicated control circuits, and computer -aided design.
Seemingly difficult concepts like algorithms, block logic and truth
tables, Boolean Algebra, and even Karnaugh Maps become
crystal-clear.

Drawing on examples and illustrations throughout, Warring fills
a real need by providing a single sourcebook that covers all types
of logic in easy -to -understand English. So whether you're primarily
interested in solving puzzles and mind -teasers . . . understanding
today's modern technology ... or you want insight into the "formal"
logic practiced for centuries by philosophers, here's a guide that
makes it easy to understand and apply.

TAB

0885

32968 LOGIC MADE EitSI

.41PRING
035642 891062: t7:;',

C

Io! fg-00-00 ,

04

LIST PRICE $8.95
4

EUERYOAY PRICE
$8

TAB BOOKIfq1u.gs r4orCE

Blue Ridge Summit, PA 17294-0850

111111
618538

11

8  95

uu


	pp0001
	pp0003
	pp0004
	pp0005
	pp0006
	pp0007
	pp0008
	pp0009
	pp0010
	pp0011
	pp0012
	pp0013
	pp0014
	pp0015
	pp0016
	pp0017
	pp0018
	pp0019
	pp0020
	pp0021
	pp0022
	pp0023
	pp0024
	pp0025
	pp0026
	pp0027
	pp0028
	pp0029
	pp0030
	pp0031
	pp0032
	pp0033
	pp0034
	pp0035
	pp0036
	pp0037
	pp0038
	pp0039
	pp0040
	pp0041
	pp0042
	pp0043
	pp0044
	pp0045
	pp0046
	pp0047
	pp0048
	pp0049
	pp0050
	pp0051
	pp0052
	pp0053
	pp0054
	pp0055
	pp0056
	pp0058
	pp10002

