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INTRODUCTION

Of the various types of electrical networks which are frequently found
useful, one of the commonest is the 4-terminal transducer of reactances,
more briefly referred to as the reactance 4-pole.) In particular, the
selective networks or filters which are commonly used for transmitting
certain frequencies while blocking others are almost always reactance
4-poles, and these filters form essential parts of most communication
systems.

Detailed methods of designing filters and related reactance 4-poles
are well known and have been in general use for a considerable period.
For the most part these fit into one general filter design scheme which
may be referred to as the image parameter theory, since it is based upon

* Bell Telephone Laboratories, Inc. This paper has been accepted as a Doc-
tor’s thesis by the Faculty of Pure Science of Columbia University. The manu-
seript was received by the Editors May 18, 1938.

! Throughout this paper, the term 4-pole will be used to indicate a 4-terminal
transducer—i.e. 2 network with two pairs of accessible terminals subject to the
restriction that no external connections can be made between terminals of
different pairs. The term has been widely used in this sense and also to indicate
a network with four terminals to which external apparatus can be connected in
any desired manner.



the concepts of the image impedances and image transfer constants of
4-terminal networks. It has been found that methods based upon this
theory can be used to design practical filters with electrical characteris-
tics meeting any ordinary engineering requirements. In recent years
it has become apparent, however, that these filters are sometimes
unnecessarily costly. At the same time the question of network cost
has become increasingly important.

This paper describes a theory of reactance 4-pole design which differs
from the image parameter theory in such a way that it sometimes leads
to more advantageous choices of element values in filters of conventional
image parameter configurations. While more complicated than the
image parameter theory, it sometimes permits the realization of sub-
stantially greater network economy or of superior electrical characteris-
tics with no increase in cost. Instead of starting with the concepts of
image impedances and image transfer constants, this theory is based
upon the general problem in network synthesis of finding reactance
4-poles yielding prescribed insertion loss versus frequency functions
when inserted between prescribed resistance terminations. Because of
this it has come to be called the insertion loss theory.

While the insertion loss theory applies particularly to filter design,
it is capable of more general applications. As a matter of fact, it is
theoretically possible to use the theory to design physical reactance
4-poles which, when terminated in prescribed resistances, produce
insertion loss characteristics identical with those of any general finite
passive 4-poles with the same terminations. Although the possibility
of designing at least simple reactance networks on an insertion loss basis
iscommon knowledge, when other than verysimple circuits are considered
extensive special theory such as that developed in this paper is necessary
if hopelessly complex computations are to be avoided.

Although very general applications of the insertion loss method of
design are theoretically possible, even with the theory developed here
the numerical complications are such as to limit its practical usefulness.
In many design problems, for instance, economies in the cost of actually
constructing filters might be obtained by using insertion loss designs
rather than image parameter designs but these economies frequently are
off-set by the added cost involved in obtaining the insertion loss designs.
As a result, the insertion loss theory applies principally to the design of
filters which are to be made in such large numbers that construction
economies will justify high design costs or which must meet requirements
not easily satisfied with image parameter designs.
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The basic insertion loss theory applies only to networks of pure
reactances. Modifications are included, however, permitting the design
of certain types of dissipative reactance networks with prescribed loss
characteristics. These have greatly increased the practical advantages
obtainable by the use of the theory.

Limitations of the Image Parameter Theory

The great simplicity of the image parameter filter theory is obtained
by adopting certain definite restrictions which limit to a considerable
extent the choice of the element values. It is the possibility of avoiding
these restrictions by using the more complicated insertion loss theory
that sometimes renders this theory advantageous as a basis of filter
design. While the use of the insertion loss theory in filter design
normally involves the introduction of other restrictions, these are such
as to lead to the optimum choice of element values for meeting certain
types of filter specifications. In order to clarify the status of the
insertion loss theory, it will be best to introduce at this point a brief
description of the fundamentals of the image parameter theory and of the
restrictions which it involves.

The image parameter theory is, of course, an outgrowth of the arti-
ficial line theories of Pupin (1) and Campbell (2). The image imped--
ances and image transfer constants in terms of which it is developed
correspond to the characteristic impedances and propagation constants
of these artificial lines. In its most familiar form the image parameter
theory deals directly with the so-called composite filters introduced by
Zobel (3), which are made up of chains of sections with matched image
impedances but different transfer constants. In the more general form
developed by Bode (4), however, it deals with the equivalent restrictions
upon the image impedances and transfer constants of complete net-
works, without actually requiring chains of tandem sections.

The image attenuation of a non-dissipative filter is identically zero
over finite ranges of frequencies. If the filter is terminated in its image
impedances, the corresponding transducer loss will also be zero.” Al-
though the image impedances must vary with frequency, they can

2 By the transducer loss of a filter is meant the difference in level between the
received power and the maximum power obtainable from the generator with
any passive network. The image attenuation of a filter is equal to its transducer
loss when terminated in its image impedances at all frequencies where these
impedances are real. The transducer loss of any network terminated in resist-
ances can be obtained from the insertion loss by adding the reflection loss corre-
sponding to the ratio of the terminations.
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approximate constant resistances over the greater parts of the ranges of
zero attenuation, or theoretical pass bands. Consequently, if these
resistances are used as the actual terminations the transducer loss will
be small over the ranges of good approximation.

The situation deseribed above leads to the introduction of the follow-
ing requirement, which is responsible for the fundamental limitations
of the image parameter theory: The image attenuation of a non-
dissipative filter is required to be identically zero in continuous frequency
ranges including those to be freely transmitted between the actual
terminations and is required to be other than zero at all other fre-
quencies. For the types of filters commonly encountered these restrie-
tions reduce by almost half the constants which could otherwise be
chosen arbitrarily.

Without further investigation, it might appear that good filter char-
acteristics could be obtained only by satisfying these restrictions at
least so closely that permissible departures from them would be of no
practical interest. Actually, these requirements are not necessary but
instead are artificial or arbitrary restrictions leading to a simple design
procedure.

As an illustration, suppose that the elements of a filter designed on the
image basis are changed from their design values by various amounts of
the order of perhaps 10 or 20 percent. In general this will split the
theoretical pass band into a number of theoretical pass bands separated
by narrow theoretical attenuation bands.’ The image attenuation
corresponding to these theoretical attenuation bands, however, will
ordinarily be very moderate. In addition, the actual transducer loss
may be only a fraction of the image attenuation. A transducer loss of
less than 0.4 decibels may be obtained, for instance, even though the
corresponding image attenuation is as high as 2.5 decibels. As a result,
modifying the elements may leave unchanged the frequencies included
in the effective pass band and may result in an actual decrease in the
corresponding transducer loss.

When the dissipation required in actual filters has a marked effect the
arbitrariness of the restrictions of the image parameter theory becomes
much more striking. Under these conditions the image attenuation is
generally far from uniform over the frequency ranges in which itiszero
on a non-dissipative basis. The special restrictions of the image pa-
rameter theory then amount to the requirement of transmission range

3 In general the theoretical attenuation band will also be split up by narrow
theoretical pass bands, but it will be sufficient for purposes of illustration to
consider only the splitting of the pass band.
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ingertion losses approximating characteristics which are anything but
ideal.

The above discussion indicates the arbitrariness of the restrictions
forming the basis of the image parameter method of filter design or
synthests. It is well known that the circuit analysis problem of deter-
mining the operation of a known network can be solved in terms of the
image impedances and image transfer constant of the network even
though it does not satisfy the special restrictions of the design theory.
When these restrictions are abandoned, however, the image parameters
are no longer convenient in design problems involving the determination
of resistance-terminated reactance networks with prescribed properties.

Other Previous Theories

Cauer (5), Gewertz (6) and others have studied the synthesis of
perfectly general reactance 4-poles having prescribed open- and short-
circuit impedances. These investigations, however, have not yielded
useful methods of designing reactance 4-poles with resistance termina-
tions except under the restrictions of the image parameter theory. On
the other hand, they have produced such useful information as the
necessary and sufficient conditions satisfied by sets of open- and short-
circuit impedances corresponding to physical reactance 4-poles. In
addition, they have shown that physical networks of certain so-called
canonical configurations can readily be designed to have any specified
set of impedances satisfying these conditions. The canonical con-
figurations, however, were chosen purely for their general realizability
and ease of design and are rarely of practical interest.

The development of the present insertion loss theory started with the
previous theory developed by Norton (7) which permits the design of
two or more filters producing a constant resistance at their common
terminals when connected in series or in parallel at one end. Norton’s
theory involves the problem of designing a reactance 4-pole terminated
in an open- or short-circuit at one end. This amounts to the special
case of the insertion loss theory in which one of the specified terminations
is zero or infinite. Norton’s detailed design procedure, however, as-
sumes a rather restricted type of preseribed insertion loss characteristic
which is of little interest except in the design of filters to operate in
constant resistance pairs.

Principal Operations Involved in the Design of Filters on an Insertion
Loss Basis
Returning now to the subject of this paper, filters can readily be
designed on an insertion loss basis provided certain fundamental opera-

5



tions can be carried out. There is no problem in fitting these operations
together into straightforward design procedures but the operations
themselves cannot readily be carried out without special mathematical
machinery. The principal object of the insertion loss theory is to
supply this mathematical machinery.

The logical order to follow in developing the mathematical machinery
of the insertion loss theory turns out to be rather different from the
order in which the various parts are used in carrying out actual designs.
It will therefore be best to motivate the more detailed analysis by
introducing at once a brief description of the various fundamental
design operations, rather than introducing each operation at the time
the corresponding mathematical machinery is taken up.

The distinguishing feature of the insertion loss theory is the use of an
exactly prescribed insertion loss versus frequency function to fix the
element values of the final network. Since exactly prescribed loss
functions are rarely included in design specifications, the first operation
in the design of a network on the insertion loss basisis usually the choice
of the specific insertion loss function to be obtained. This choice is
guided by the following considerations. First, the loss function must
be consistent with the design specifications, e.g., it must represent
sufficient suppression of the unwanted frequencies. Second, the
function must be of a form leading to an economical network as regards
the number of elements involved. Third, it must usually correspond
to a particular type of network configuration, such as a ladder or a
lattice.

After a specific insertion loss function has been chosen, the determina-
tion of a corresponding network involves two principal operations.
The first of these is the determination of some or all of the open- and
short-circuit impedances of the network from the loss function, the
second being then the determination of the actual element values from
these impedances.* Tt turns out that there are only a finite number of
sets of open- and short-circuit impedances corresponding to reactance
“networks of minimum complexity producing a specific insertion loss
function when terminated in a specific pair of resistances. After one
of these sets of impedances has been selected, the method of determining
the element values of a corresponding network depends upon the type of

4 This rule, however, is not without its exceptions. In particular, symmetrical
lattices with equal terminations are most easily determined from their insertion
loss functions by procedures making no direct references to their open- and
short-circuit impedances.

6



configuration chosen, equivalent networks of different configurations
frequently requiring quite different methods.’

The parasitic dissipation which must be present in actual reactance
networks sometimes influences the loss characteristics to a small enough
extent to justify neglecting it in the design of the networks. On the
other hand, the influence of the necessary dissipation is sometimes so
important that it is highly desirable to compensate for it in some manner.
The logical way to obtain this compensation is to design dissipative
reactance networks which themselves produce more or less exactly
prescribed loss functions. Under certain conditions this can be accom-
plished by modifying the first part of the non-dissipative design pro-
cedure in such a way as to obtain the open-and short-circuit impedances
corresponding to the removal of the dissipation from the final network.’
This permits the element values to be computed from the impedances
on a strictly non-dissipative basis.

In order to clarify further the general design procedure outlined above,
the procedure used in a simple illustrative case will now be described in
more detail. It should be borne in mind, however, that the detailed
design procedures used in other cases may differ considerably from this
illustrative case even though they involve the same general types of
operations.

Illustrative Special Case—Choice of Insertion Loss Function
Assuming for the time being that dissipation can be neglected entirely,
consider the design of a low-pass filter of ideal reactance elements con-
sistent with the following specifications. First, the insertion loss shall
not be greater than a prescribed maximum o} in an effective pass band
extending from zero frequency to a prescribed cut-off frequency fj.
Second, the insertion loss shall not be less than a prescribed minimum o
in an effective attenuation band extending from a second prescribed
frequency f4 to infinity. Third, these loss specifications are to be met

5 As would be expected, when a particular configuration is desired care must
usually be exercised to make sure that an appropriate set of impedances is chosen.
The various sets corresponding to a single loss function, for instance, usually
oceur in inverse pairs leading to inverse configurations.

6 The possibility of doing this depends upon the following situation. When
the dissipation required in a network satisfies certain restrictions as regards its
variation from element to element the effect of the dissipation on complex im-
pedances and complex voltage ratios corresponds to simple transformations of
the functions of frequency representing the impedances and voltage ratios, these
transformations being independent of the specific network configuration and
element values.

-
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with a network which is electrically symmetrical and is terminated in
equal resistances and which has the same configuration as a mid-series
low-pass ladder filter of the image parameter theory even though it
may have more general element values.’

The above specifications on the insertion loss are indicated graphically
in Fig. 1A, it being required that the curve of actual insertion loss shall
fall within the shaded areas at frequencies less than f] or greater than
f%. The required configuration is indicated in Fig. 2.
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Fig. 1. A) Design specifications—If f < ff or > fg , e must lie in a shaded area.
B) Form of « characteristic meeting the design specifications.

1 1 e
Fig. 2. Configuration to meet specifications of Fig. 1A

The theory to be developed shows that the above specifications on the
form of the final network require the insertion loss « to be described by
an equation of the form '

¢ =1+ [So (ol - uf) o (wy — o) T ©

(1 - viw) - (1——-vgw2

In this equation, 5 represents the number of “‘sections,” while S, and
the w,’s and »,’s are arbitrary constants. The specific problem is to

7 It turns out that the requirement that the network shall be either sym-
metrical or of a type producing inverse image impedances at the two ends tends
to lead to efficient filter characteristics. The inverse impedance case is excluded
here in order to simplify the illustration. Similarly, the special loss specifica-
tions described above are chosen for their simplicity rather than for their gen-
erality. Somewhat similar methods can still be used, for instance, when the
minimum permissible attenuation band loss varies with frequency.
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choose the arbitrary constants in such a way as to satisfy the specifica-
tions indicated in Fig. 1A with the smallest possible value of 7, i.e., the
smallest number of sections.®

The best choice of the w,’s and »,’s turns out to be that leading to the
form of loss characteristic indicated in Fig. 1B for the special case of
7 = 3. A lengthy analysis will later be outlined which shows that the
particular rational “power ratio” function ¢** which has the form of (1)
and which corresponds to the “equal ripple”” type of loss characteristic
indicated in Fig. 1B can be obtained by requiring ¢’* to be determined by
the following set of equations relating both ¢’ and « to a new variable u.

=1+ (" - 1) 8n2|:(217 + l)ug}; kl] @)’
w s
m = \/k sn(u, k)
_ A
fe
Q= q2'q+l

In these equations, «, , f1, fo represent the maximum pass band loss and
the limits of the effective pass and attenuation bands, as in Fig. 1B.
The symbols K, K; and ¢, ¢; represent constants appearing in the general
theory of elliptic functions, K, K; being the complete elliptic integrals
of the first kind of moduli %, k; , respectively, and ¢, ¢: the corresponding
elliptic modular constants. These constants are uniquely related to k,
k;in a manner represented in most elliptic function tables by tabulations
of K and logy ¢ vs sin k.

8 It turns out that choosing the constants in this way will normally lead to a
physical network of the form of Fig. 2, although it is possible for difficulties to be
encountered if ozg is exceptionally small.

®The appearance of elliptic functions in a problem involving an algebraic
function producing equal maxima and equal minima is not surprising to those
familiar with the elliptic functions appearing in the ‘““Tchebycheff parameter’
version of the image parameter theory introduced by Cauer (16). The rational
character of e?* considered as a function of w depends upon the equivalence of

K
sn| (2n+ Du I?I’ k1 | to an odd rational function of sn (u, k), which ecan be com-

pared with the equivalence of sin [(29 + 1)u] to an odd polynomial in sin ().
The correspondence of (2) to the particular special case of (1) illustrated by
Fig. 1B depends upon the periodic properties of o and w considered as func-
tions of w.
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The insertion loss corresponding to (2) is completely determined by
the choice of «,, f1, f2 and the number of sections 7, for f1, f2 determine
k, which determines %; through the relation between ¢ and ¢, while
k, ki determine K, K;. The corresponding value of the minimum
attenuation band loss «, indicated in Fig. 1B is thus also determined
by the choice of a,, fi, f2. If minor approximations are made, this
relationship can be expressed in the following form:

@ = [10 logu(e"*® — 1) — 1029 + 1) logu(g) — 12.04] db (3)

With the help of (3) it is a simple matter to determine the minimum
value of 7 for which the specifications of Fig. 1A can be satisfied, i.e.,
for which «, , @, f1 and f; can be chosen in such a way that

ap Loy f1 2
PR A 11

In this way, a definite set of constants can be chosen which determine,
with the help of (2), a loss characteristic leading to a final network of the
required type and of the minimum number of sections permitted by the
loss specifications.”

4)

Illustrative Special Case—Determination of a Network Producing the

Insertion Loss Chosen

The open- and short-circuit impedances of reactance networks
producing the particular insertion loss function chosen cannot be
expressed directly in terms of the loss function itself. They can readily
be evaluated, however, in terms of the roots of the corresponding power
ratio (1)." In the special case under consideration these roots can be
computed by means of straightforward formulae derived from the
elliptic function relations (2).

If reactance networks of minimum complexity are assumed, and also a
definite pair of (equal) terminating resistances, it turns out that there
are only four sets of open- and short-circuit impedances consistent with

10 Any three of the four relations of (4) can be made exact equalities but the
fourth will then be an equality only in very special cases. Keeping three of the
parameters ap, aq, fi, f: fixed and changing the number of sections » makes
discrete changes in the fourth parameter. Since some margin is thus usually
available even though » has the smallest permissible value, this margin is usually
best distributed among the various relations of (4).

11 Jf the requirement of a loss function appropriate for a symmetrical network
is abandoned it is usually necessary to include also the roots of a linear function
of the power ratio e%?,
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(1). Of these only one set is appropriate for the mid-series low pass
ladder configuration of Fig. 2. Formulae for computing the element
values of this configuration from the impedances will be included in the
more detailed development of the insertion loss theory.”

Illustrative Special Case—Compensation for Effects of Dissipation

Turning now to the question of compensating for effects of dissipation,
consider first the problem of attempting to design a network of reactance
elements of prescribed dissipativeness producing exactly the same
insertion loss and phase as the non-dissipative filter considered pre-
viously. Assuming such a network to be possible, consider the insertion
loss and phase that would be produced by the pure reactance network
formed by simply removing the dissipation from all the elements. Pro-
vided the elements are all to be equally dissipative, it turns out that this
new loss and phase can be evaluated directly from the original loss and
phase and the extent of the dissipation, with no further information as
to the actual element values or specific configuration.” Thus any pure
reactance network which could be designed to produce this ‘‘pre-
distorted’ loss and phase would produce the original loss and phase upon
the addition of the required dissipation.

As described above, the ‘‘predistorted’” insertion loss and phase cannot
actually be produced by a pure reactance network. Ontheother hand,
if the required dissipation varies properly with frequency and is not too
great, the predistortion can be modified in such a way as to lead to a
physical network of the configuration of Fig. 2 which will produce a
close approximation to the sum of the original insertion loss and an
added constant loss when the required dissipation is added. This
modified predistortion amounts to nothing more than the addition of a

12 When the insertion loss function is not necessarily appropriate for a sym-
metrical network there are usually more than four sets of open- and short-circuit
impedances corresponding to networks of minimum complexity. There may be
a considerable variety, for instance, realizable with various networks having a
single configuration, such as the configuration of Fig. 2.

In the special case of symmetry under consideration the element values of the
final ladder may be computed directly from the equivalent lattice rather than
from open or short-circuit impedances. The formulae for doing this, however,
are derived by expressing the open-circuit impedances in terms of the impedances
of the lattice arms.

18 Actually the corresponding ‘‘complex insertion voltage ratio” is more con-
venient to use than the insertion loss and phase. The original voltage ratio can
be readily evaluated in terms of the roots of (1) used in computing the open-
and short-circuit impedances on a non-dissipative basis.
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constant to each root of the complex voltage ratio funetion correspond-
ing to the original loss and phase plus the addition of a constant factor
representing an added constant loss.* Although the general configura-
tion of Fig. 2 is obtained, however, the network yielded by the pre-
distortion method will not satisfy the previous requirementof electrical
symmetry nor will the terminations be equal.”

Major Divisions of the Theoretical Development

As was indicated previously, the logical order to follow in developing
the insertion loss theory is rather different from the order in which the
various parts are used in carrying out actual designs. Specifically, the
logical procedure is to divide the development of the theory into the
sequence of four parts described briefly below, which represent rather
different theoretical problems even though they may all be employed in
designing a single filter.

Part I deals with the determination of the open- and short-circuit
impedances of reactance 4-poles corresponding to prescribed insertion
loss characteristics and pairs of terminations. The necessary and
sufficient conditions upon insertion loss characteristics yielding physical
sets of impedances are established as well as the procedure for deter-
mining the impedances.

Part II deals with the determination of reactance 4-poles of special
configurations from prescribed open- and short-circuit impedances.
These include a new canonical reactance 4-pole made up of tandem
sections and also networks which have the same configurations as the
familiar lattices and ladders of the image parameter theory but which
are not required to satisfy the restrictions on actual element values
imposed by the image parameter theory. A

Part III deals with the problem of choosing specific insertion loss
functions for filtering purposes. In particular, it deals with certain
special types of loss functions which satisfy the conditions for physical
realizability established in Part I, which represent the optimum choice

14 The roots of the voltage ratio are determined in evaluating it from the roots
of (1).

15 When the dissipation varies from element to element or varies improperly
with frequency, partial compensation can be obtained by assuming dissipation
of the proper type representing an average of the actual dissipation. It is also
possible to reduce the restrictions on the dissipation assumed if the non-dissipa-
tive design procedure is further modified. It is possible for instance, to assume
all coils to be equally dissipative and all condensers to be equally dissipative to a
different extent.
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of arbitrary constants for meeting certain types of filter requirements,
and which lead to simplifications in the more general design procedure.

Part IV deals with modifications of the previous theory permitting
the design of certain types of dissipative networks with prescribed
insertion loss characteristics. It is shown that within certain severe
limits it is possible to design dissipative filters with loss characteristics
differing appreciably from those of non-dissipative filters of the same
configuration only by added constant losses.

Because of the extent of the material to be covered, detailed deriva-
tions and proofs will be only outlined in developing the four parts of the
theory described above. In addition, a variety of useful but unessential
modifications of the theory will be omitted entirely. These modifica-
tions have to do with the application of the theory to various special
design problems rather than forming a part of the central theory itself.

Ry REACTANCE
NE TWORK

Fig. 3. Reactance 4-pole with resistance terminations

Part I. OPEN- AND SHORT-CIRCUIT IMPEDANCES OF NETWORKS
wITH PrESCRIBED INSERTION Loss CHARACTERISTICS

Statement of Problem

Asisindicated in the above outline, the first two major divisions of the
insertion loss theory are not restricted to the design of networks specifi-
cally for filtering purposes. Finite 4-terminal networks are assumed
and these are required to be made up of pure reactances and to be
terminated in constant resistances as in Fig. 3, but they are not neces-
sarily required to have filter-like characteristics. The tferminating
resistances R;, R, are assumed to be prescribed in each case and also
the exact function of frequency representing the insertion loss a due to
the presence of the reactance network. The specific problem considered
is the design of the reactance network in accordance with these specifica~
tions and subject to the requirement of physical realizability.

The first division of the theory solves the problem of determining sets
of open- and short-circuit impedances describing physical reactance
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networks which would produce the prescribed insertion loss when
inserted between the prescribed terminations. When combined with
Cauer’s method (5) of realizing prescribed impedances with reactance
4-poles of his so-called canonical configurations, it amounts to an aca-
demic solution of the general design problem described above. The
design of more important equivalent configurations will be described
in the second division of the theory.

To insure the possibility of physical corresponding networks the
prescribed insertion loss function « must be assumed to satisfy certain
necessary and sufficient conditions. By definition, « satisfies the
equation

20 V20 P
“ =7 ®
in which Vg and V, represent the complex voltages received before and
after the insertion of the network between the prescribed terminations.
Since it represents the square of the magnitude of the “‘complex insertion

< 5 Voo . . . 2
voltage ratio” —— , the “‘insertion power ratio” ¢** must be an even

rational function of frequency with real coefficients and must be positive
at all real frequencies. Because the power delivered by a generator of
2

voltage ¢ and internal resistance R; cannot exceed i, while the

4R,
rfeceived power corresponding to Vi is (Rl—lz—e—;—a)—z, the power ratio
¢ ® must not only be positive at real frequencies but must not be less
than (73%%% . In other words, the relation
"2 Gt B ©

must be satisfied at all real frequencies.

The above conditions upon ¢* are obviously necessary whether or not
the network inserted between the terminations must be made up entirely
of reactances. It will be shown, however, that these conditions are
sufficient to insure the existence of physical corresponding networks of
the pure reactance type.

Form of Solution »
It turns out that the open- and short-circuit impedances of a reactance
network depend upon the insertion loss in a manner involving a rather
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complicated combination of the roots of the insertion power ratio and a
related function, which are normally of fairly high degree. As a result,
explicit equations expressing the impedances directly in terms of the
insertion loss cannot well be obtained. On the other hand, a simple
sequence of formulae has been derived which indicates the relationship
and which permits the impedances to be calculated in numerical cases.

Instead of actually deriving the formulae, it will be sufficient to begin
by merely stating them without proof. A derivation is unnecessary in
that elementary circuit analysis can be used to show that any networks
producing the impedances determined by these formulae would yield
the prescribed insertion loss when inserted between the preseribed
terminations. After the statement of the formulae, however, it will be
necessary to demonstrate that the impedances can actually be realized
physically.

Determination of Polynomials N and P from ¢*

To determine the open- and short-circut impedances corresponding
to the prescribed insertion loss «, the power ratio ¢** is first expressed
in the form

(7)

(e
Il
3=

in which N and P denote even polynomials in the familiar variable p
representing 274f and are required to have real coefficients. An expres-
sion of this type can be readily obtained, since ¢’ must be an even
rational function of the frequency f, while f* is proportional to —p”.
If the simplest rational fraction expression for ¢* does not have the
form % it is only necessary to multiply numerator and denominator by
identical factors. As a matter of fact, N and P can always be chosen
in a variety of ways, because of the possibility of associating the squares
of arbitrary identical factors with N and P°

Determination of Polynomials A and B from N

After N and P have been determined, a second pair of polynomials
4 and B must be evaluated. These are even polynomials with real
eoefficients defined by the pair of equations

N = J(pi — D) ps — P -+ (pn — D)
A+pB=J({(p—p)p2—p) -+ (pn — D)
15
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in which J must be a real constant, all the p,’s must have zero or negative
real parts, and any complex p,’s must oceur in conjugate pairs. The
fact that N must be positive at real frequencies in order for the power
ratio % to be positive is sufficient to insure the possibility of computing
J and the p,’s from their squares, as determined by N, in such a way as
to meet the special restrictions imposed upon them."® As a matter of
fact, there are always two solutions, although only two, because of the
arbitrariness of the sign of J. The individual polynomials 4 and B
can obviously be determined by expanding (A + pB) and associating
even powers of p with A and odd powers with pB.

The following expression for the complex insertion voltage ratio
offers an alternative definition of A and B and indicates their physical
significance:"

Vo _ A+ pB (9)

Vs P

That this voltage ratio corresponds to the original power ratio ¢’* can be
demonstrated by noting that the even polynomials A, B, P are real at
real frequencies, while p is imaginary. This requires the power ratio
to be

" A2 . ZB2
= ST (10)

6 Since the p,’s are determined by extracting the square roots of the pZ's
determined by N, the signs can be so chosen as to meet the real part requirement.
Complex p,’s with finite real parts will then automatically occur in conjugate
pairs corresponding to conjugate p2’s. Pure imaginary p.’s, which have zero
real parts, can also be chosen in conjugate pairs provided the corresponding
negative real p2’s occur in identical pairs. Single negative real p2’s cannot be

N
encountered since they represent real frequencies at which N and therefore };2

change sign.

17 In special cases, it may be possible to cancel identical factors out of the
numerator and denominator of this expression. TUnless the factors are constants
or have roots only at real frequencies, however, their cancellation destroys the
evenness of the denominator. The even and odd parts of the numerator then
lose their utility in regard to the computation of the open- and short-circuit
impedances.

The determination of a voltage ratio from a power ratio by (8) and (9) was
introduced by Norton (7) in connection with his theory of filters terminated at
one end in open- or short-circuits, which forms a part of his theory of con-
stant-resistance groups of filters.
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Since reversing the sign of p does not change the even polynomials 4
and B, the second equation of (8) requires

A—pB=Jp+p)p+p) - @+ D) (11)
Hence forming the product of (A 4+ pB) and (A — pB) indicates
A*— p'B* =N (12)

and reduces (10) to (7).

The voltage ratio (9) would correspond to the original power ratio
even though roots of (A -+ pB) had positive real parts, provided complex
roots occurred in conjugate pairs. The exclusion of roots with positive
real parts is merely a condition necessary for physical realizability.
This condition is necessary in that the roots represent modes of free
oscillation of the complete network consisting of the reactance 4—pole
and its terminations.

Determination of Polynomials A’ and B’ from N and P

In addition to A and B, a very similar pair of polynomials 4’ and B’
are needed. They are even polynomials with real coefficients defined by
the following pair of equations, comparable to (8):

N fh P = J%p{ — p")(ps’ — p) -+ (p’ — P)

A"+ pB = J'(pi — p)(p: — D) -+ (Pn — D) (13)
In this case, J’ must be real and any complex p,’s must occur in con-
jugate pairs but any of the p)’s are permitted to have positive real
parts. These conditions can always be satisfied because of the fact that
(6) and (7) require <N _ AR P2> to be non-negative at real
frequencies. In general, there are actually a number of solutions for
A’ and B’ because of the arbitrariness of the signs of the p.’s as well as
that of J'.

In the case of A’ and B’ there is again an alternative definition indi-
cating physical significance, corresponding to equation (9) defining
A and B. Suppose Z; and Z, represent the input impedances of the
terminated network measured at the ends terminated in R; and R;,
respectively, as indicated in Fig. 4. Then A’ and B’ can be defined by
the equations™

R1~Z1_A,+pB, Rz——Zgz—A'—l—pB,
R+ Z, A+ pB R, + Z, A+ pB
18 In special cases, it may be possible to cancel out common factors from
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The square of the magnitude of (&= A’ + pB’)is (4" — p°B"), which
in turn satisfies the equation

4R, R,

A® —p’'B" =N — 2 _ P 15
P A (15
corresponding to (12). Hence (14) 'requires
R, — Z,f - Ry — Zo x2 —1 _ 4R1R: oa (16)
R1 + Zl R2 + Zz! (Rl + R2)2

This expression can be checked by examining the relation between the
input power and input impedance and recalling that input and output
powers are identical in the case of a reactance network.

z, Zz

Fig. 4. Input impedances Z; and Z,

The possibility of roots of (4’ + pB’) with positive real parts is due to
the fact that they are the roots of the non-physical impedance (B; — Z,).
The simple relation between the two reflection -coefficients indi-
cated in (14) can be checked by simple circuit analysis. The following
important relation between the A’s and B’s represents a combination of
(12) and (15):

__ARR,
(R1 + R»)?

Computation of the Open- and Short-Circuit Impedances from the A’s,
B's and P

In terms of the A’s, B’s and P the desired open- and short-circuit
impedances are determined by the following formulae:

0]

AI2 . pQB/2 — A2 _ pZBZ P- (17)

one or both of the equations for the reflection coefficients as in the case of the
voltage ratio (9). If the denominators are not (4 + pB), however, the nu-
merators lose their direct application to the computation of the open- and short-
circuit impedances.
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A4 — A p(B — B')

Zn = Ry im Za = I —E_-?AT
AN _ o, p(B—B)
ZO2 - RZ m) ZS2 - RZ m (18)
T = — 2R R, P Ty = (R1 -+ Rz) p(B — B’)
(B: + R:) p(B + B) # 2 P

In these formulae Zy, Zs1, Zos, Zsz are the familiar open- and short-circuit
driving-point impedances of the reactance network as measured at the
terminals next to terminations B; and R, respectively. Zge and Zge
are the less familiar open- and short-circuit transfer impedances defined
in Fig. 5. That the impedances determined by (18) correspond to the
original power ratio and to the related voltage ratio and reflection
coefficients of (9) and (14) can be checked by means of simple circuit
analysis.”

REPRESENTED BY Vv, |REPRESENTED BY

—— ] 1
I, 4-POLE 4-POLE
! N

DETERMINANT A e DETERMINANT A
Vo A, Vi A

Zoyp=—2 = - 12 Lo B

0127, B2z Zsi2 Iz * e

Fig. 5. Open- and short-circuit transfer impedances Zo;; and Zs;»

Physical Realizability of the Impedances Determined by (18)

The necessary and sufficient conditions for the realizability of a set of
open- and short-circuit impedances with a physical reactance 4-pole
can be stated as follows: First, the four driving-point impedances
Zwu, Zw, Zs, Zs must be separately realizable as the impedances of
reactance 2-poles. Second, the two transfer impedances Zus, Zsi2
must be odd rational functions of p with real coefficients even though they
need not be realizable as 2-terminal impedances. Finally, the various

19 Tn terms of more conventional notation, these impedances would be referred
to as the transfer impedance and the reciprocal of the transfer admittance. The
more specific description is called for in the design of tandem section networks
such as those to be described in Part II, which sometimes involves the use of
short-circuit impedances or open-circuit admittances.

20 The demonstration may also require the use of equation (17) relating the
A’s and B’s if certain possible expressions for the voltage ratio and reflection
coefficients in terms of the impedances are chosen as a starting point.
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impedances must be inter-related by the following identities:
ZnZy — Zgu = ZnZss = Znks = —Zualsiz (19)

The above conditions differ from the more familiar necessary and
sufficient conditions introduced by Cauer (5) in that the requirement of
2-pole realizability is imposed explicitly on all four driving-point imped-
ances, instead of on only two, while Cauer’s requirement ontheresidues
of a transfer impedance is abandoned. It turns out that the require-
ment of four physical 2-pole impedances, together with (19), is sufficient
to insure the satisfaction of Cauer’s residue requirement. This can be
demonstrated by analyzing the behavior of (19) in the neighborhood of
a pole of Zys. .

An inspection of (18) shows that the expressions for the driving-point
and transfer impedances are all odd rational functions of p with real
coefficients. The required identities (19) are readily shown to be
satisfied by merely replacing the impedances by the corresponding
expressions of (18) and then making use of (17). To prove the complete
realizability of the impedances it therefore remains only to show that the
four driving-point impedances are not only odd rational functions of p
with real coefficients but are actually realizable as the impedances of
separate reactance 2-poles.

The independent realizability of the four driving-point impedances
can be demonstrated with the help of the following theorem. If 4, and
B, are even polynomials in p with real coefficients such that (4. 4 pB:)
PB.
A,
ance of a physical reactance 2-pole. The truth of this theorem is
indicated by the argument outlined below in terms of the theory of
positive real functions, or impedances of general 2-poles, as developed by
Brune (8).

has no roots with positive real parts, then is realizable as the imped-

In the first place, the combination must be a positive real

4

A, + pB.,

function because of the fact that its poles lie in the left half of the p
2

plane while its resistance part, ;12——%? , Is non-negative on the real

T x

z

P ), is a positive real

B
A,

21 The polynomial 4, + pB. is permitted to have roots on the real frequency
axis as well as in the left half of the p plane but these are always roots of 4.

frequency axis.” Hence the reciprocal, (1 +

and pB. and produce no pole of m
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function. This requires 3;% to be a positive real function, since sub-
tracting a real constant from a positive real function leaves a positive
real function provided the real part is still non-negative on the real
sz
As
is odd requires it to be realizable as the impedance of a 2-pole of the
reactance type.

Dividing the four driving-point impedances of (18) by R; or R; and
then replacing the open-circuit functions by their reciprocals yields the
p(B+xB"
(A £ 4
Thus the four driving-point impedances will be realizable with separate
reactance 2-poles provided [(4 &= A4’) 4+ p(B = B’)] has no roots with
positive real parts. That this condition is satisfied can be demonstrated
[(4 + 4') + p(B & B)]

A+ pB
The positive realness of this new function is proved by the following
conditions: First, the poles all lie in the left half plane, since (4 + pB)
has no roots with positive real parts; second, the real part is non-negative
at real frequencies, as can be shown by recalling that the 4’s and B’s
are real at real frequencies, by evaluating the real part of the function
on this basis, and by then using equation (17) relating the 4’s and B’s.”

Multiplicity of Solutions

As was indicated previously, a multiplicity of solutions for the
impedances can be obtained in a variety of ways. In the first place,
squares of identical factors can always be associated with the poly-

frequency axis. Finally, the fact that the positive real function

four functions corresponding to different choices of the signs in

to be a positive real function.

by showing

nomials N and P% in the power ratio {V_ . These factors cancel out in
y p P

the final impedance formulae only if they are constants or if all their
roots oecur at real frequencies. In addition, the dependence of 4, B,
A’, and B’ upon N and P leaves the sign of (4 -+ pB) arbitrary and
normally permits a number of solutions for A” and B’.

The choice of N and P determines the complex insertion voltage ratio
A + pB
P
the complexity of corresponding networks, which is normally the same

except as to sign, while the voltage ratio in turn determines

22 Roots of (4 4 pB) on the real frequency axis turn out to be roots of 4,
(4 +4") + pB =+ B)I
A -+ pB ’

pB, A’, and pB’ and produce no poles of
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for all choices of A’ and B’ permitted by N and P.* Making the degree
of N as low as is permitted by the prescribed insertion loss naturally
makes the degree of the voltage ratio as low as possible and leads to the
simplest networks. When the squares of identical factors with roots at
complex frequencies are combined with N and P? more complicated
networks producing a modified voltage ratio are obtained. Some of
these networks correspond to the addition of familiar all-pass phase-
shifting sections to the networks of minimum complexity. An additional
multiplicity of networks is normally possible, however, corresponding to
impedances which cannot be realized in this way.

The analysis outlined above indicates the existence of a number of
physical solutions for the impedances, all assuming a particular form.
On the other hand, it does not show that there may not be other solutions
of quite different forms. A more complicated analysis, however, shows
that there can be no such alternative solutions. In other words, it can
be demonstrated that the proper choice of N and P and of the corre-
sponding A’s and B’s permits the determination of any set of impedances
realizable with a reactance network corresponding to the prescribed
insertion loss function. This will not be demonstrated here, for the
object is merely to show that at least some physical sets of impedances
can be obtained.

Practical Design Procedure

For practical purposes it is usually desirable to restrict the insertion
power ratio ¢’ somewhat further than is necessary merely to insure
physical realizability. Suppose that identical factors other than
constants or the simple factor p° must be combined with numerator and
denominator of the simplest expression for ¢** in order to obtain the
form %; . It turns out that the corresponding network complexity will
then be the same as though these added factors were not identical.*
On the other hand, requiring the factors to be identical usually leads to
less desirable loss characteristics than could be obtained by making

28 In very special cases, special choices of A’ and B’ may lead to networks of
complexities which are less than normal for the degree of the voltage ratio.

24 The reason for this is as follows: If A is the determinant of the complete
network formed by the reactance 4-pole together with its terminations, the

A 2

\ia‘l‘f" in which the cofactor A, is inde-
12 |7

pendent of the terminations and therefore is an odd or even polynomial in p.

Thus the denominator of the simplest rational fraction expression for ¢?* is the

square of an even or odd polynomial in the frequency except when the element

values are such that A and Ays have roots in common.
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them different. Thus it is generally desirable to require ¢* to be so
chosen that no identical factors other than constants or the simple factor
p" need be combined with the simplest corresponding rational fraction

in forming % This merely requires all the poles of ¢’* to occur in

identical pairs.

After the power ratio has been chosen the corresponding open- and
short-circuit impedances can be computed in a straightforward manner
by means of the formulae described above. Corresponding networks of
the canonical type devised by Cauer (5) can then readily be designed from
the partial fraction expansions of various of these impedances or of the
corresponding admittances. More frequently, however, it is preferable
to use equivalent tandem section networks, which can be designed by
methods to be described in the next section.

In the determination of the impedances considerable labor may be
encountered in the extraction of the roots of the polynomials N and
(N — ———(Rfﬁlzz) ) P2> , which are needed in the formation of the poly-
nomials (4 + pB) and (4’ + pB’) in accordance with (8) and (13).
The required root extraction can now be expedited, however, by the use
of machines which have recently been constructed for the determination
of the roots of any polynomials of reasonable degree.”” In the design of
networks specifically for filtering purposes, moreover, the special poly-
nomials encountered are usually such that the greater part of the root
extraction labor can be avoided by the use of special methods to be
described in Part III.

The theory described above assumes non—dlss1patlve reactance net-
works. The distortion due to the parasitic dissipation which must be
present in actual networks can be readily estimated as soon as the
complex voltage ratio is determined provided the dissipation is uni-
formly distributed. This can be accomplished by making use of the
theory of uniformly dissipative networks as developed by Mayer (10) and
Bode, which shows how the effects of uniform dissipation can be esti-
mated from the derivative of the insertion phase.” Ways of avoiding
distortion due to dissipation will be described in Part IV, which will be
devoted to methods of designing certain types of dissipative networks
producing prescribed insertion loss characteristics.

% See, for instance, the description of Fry’s isograph recently published by
Dietzold (9).

26 Bode developed a theory similar to Mayer’s independently but published
only a brief reference to it. This reference is in the paper ‘““Ideal Wave Filters™
(1i) which he published in collaboration with Dietzold.
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One Open- or Short-Circuit Termination

Reactance networks terminated at one end in open- or short-circuits
can be considered as limiting cases of the previous networks in which
R, or R, approaches zero or infinity. They are of interest for two
principal reasons. For one thing, it is sometimes advantageous to
approximate actual open-circuit terminations by means of vacuum
tubes. In addition, when groups of filters are to be combined in series
or in parallel at one end, it is sometimes best to design the separate
filters as though they were to be terminated in open- or short-circuits at
their common terminals.”

Although the general methods described above can still be used,
difficulties with the specific impedance formulae are experienced when one
termination approaches zero or infinity. It turns out that all butone
of the possible solutions for the polynomials A’ and B’ permitted by (13)
lead to element values which approach zero of infinity with the termina~-
tion. Even with the one permissible choice most of the open- and short-
circuit impedance formulae become indeterminate.”

More careful analysis yields the following special relations.” If
termination R, is infinite

A P
Zy = Rl—p_B Zyne = — Ry ]?J—BS (20)
Rzz = Rle_m

in which Rz is the resistance measured at the open-circuited end of the
terminated network. If termination R. is zero

B B
Zs = I % Zsio = Ry EF (21)
GY2 —R}_l 6_2"

27 This is the method introduced by Norton (7) for the design of constant-
resistance groups of filter. It can also be used to design more eflicient filter
groups producing approximately constant resistances or conductances at their
common terminals at pass band frequencies, the susceptances or reactances being
later corrected by the addition of reactance 2-poles.

28 Some such indeterminacy is necessary, since any arbitrary impedance can
be connected in parallel with a short-circuit termination or in series with an
open-circuit termination without affecting the operation of the circuit.

29 The formulae for Zo1, Zs1, RBz2 , Gys are exhibited by Norton (7) as a part
of his theory of constant resistance groups of filters.
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in which G'ys is the conductance measured at the short-circuited end of
the terminated network. Zys, Zs» are the open- and short-circuit
transfer impedances while Zy, Zs are the open- and short-circuit
driving-point impedances corresponding to the end of the network termi-
nated in the finite resistance R;. The polynomials 4, B and P are
determined from the power ratio exactly as though termination R,
were finite.

If minimum complexities are assumed, networks can be designed with
no additional impedance data. This can be shown by ananalysis of the
relations between the open- and short-circuit impedances of physical
reactance 4-poles. It will also be clarified by the ladder network theory
which will be considered in the next section.

Part II. RErarizatioN or OpPEN- AND SHORT-CIRCUIT IMPEDANCES
wiTH Puysicarn CONFIGURATIONS

Methods have been developed for designing reactance 4-poles of a
variety of different configurations producing prescribed open- and short-
circuit impedances, such as impedances determined from insertion loss
functions by the method deseribed in Part I. Some of these configura-
tions are said to be canonical in that they can be designed to have any
set of impedances realizable with physical reactance networks. Others
are less general but can frequently be used more advantageously or else
amount to special cases of the general configurations for which simpler
design methods have been developed.

uww.gé

— °
a,0,c,d= REACTANCE 2-POLES

MULTI~-WINDING

IDEAL TRANSFORMER
Bl

PERFECTLY COUPLED
PAIRS OF COILS

Fig. 6. Cauer’s canonical reactance 4-poles

Cauer’s Canonical Configurations
The simplest general design theory applies to the design of the two
canonical reactance 4-poles introduced by Cauer (5). These have the

25



configurations indicated in Fig. 6. They are designed in"terms of par-
tial fraction expansions of the three open-circuit impedances or short-
circuit admittances by noting certain relations between partial fractions
of the different expansions and the correspondence of these partial
fractions to the various network branches. Since Cauer has described
these networks very completely, it will not be necessary to deseribe
them in more detail here.

A Canonical Tandem Section Configuration

Cauer’s canonical configurations are of particular interest only in theo-
retical studies of the properties of reactance 4-poles. When it comes
to actual construction it is almost always preferable to use equivalent
circuits consisting of simple networks or sections connected in the tan-
dem manner indicated in Fig. 7.*° In the case of selective networks or
filters the use of tandem sections is usually a practical necessity. In
the first place, the use of tandem sections permits reasonable approxima-
tions to theoretical transmission characteristics to be obtained with
much less precise adjustment of the elements to their theoretical values.

Fig. 7. Tandem 4-poles

In addition, the filters most commonly encountered can be built in tan-
dem section form without the use of the mutual inductances required
in equivalent networks of Cauer’s canonical configurations.”

For many purposes the ladder network is the most useful form of
tandem section combination. Even under its most general definition
as any sequence of alternate series and shunt 2-terminal impedances,
however, the ladder configuration cannot be used to realize all open-
and short-circuit impedances realizable with more general reactance
4-poles. On the other hand, it can be shown that a slight modification

36 By section is not necessarily meant a filter section with the properties of
those of the image parameter theory but merely the constituent parts of a com-
bination of 4-poles when these are to be connected in tandem.

3t The requirement of mutual inductances adds substantially to the diffi-
culty of building a network. If perfect coupling between coils is called for, it
can be only approximated. If less than perfect coupling is required, it is difficult
to obtain simultaneous adjustments of the self and mutual inductances.
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or generalization of the ladder configuration can always be realized and
hence can be referred to as a canonical reactance 4-pole. This configu-
ration is defined as any tandem combination of sections included in the
four types 4, B, C, D indicated in Fig. 8, plus possibly an ideal trans-
former in tandem at one end of the network.”

In many cases sections of all four types are not required in the
canonical network described above and frequently the ideal transformer
does not appear. It also turns out that series inductances can often
be included in the series branches, or networks of type 4, in such a way
that the induetive coupling in sections of types C and D can be less than
perfect or can even be completely replaced by separate self-inductances
in the shunt branches of these sections. In most filters, for instance,

o {z J— o I:%] -
o O C 0
TYPE A TYPE B

Mz
My

L, Ly L, Ly Ls La
© o < T o
M= L L, Mi=2ql, b,y M= 2Ly,
TYPE C TYPE D

Z = a general reactance 2-pole. Types C and D may be dissymetrical.
Fig. 8. Types of tandem sections yielding a canonical reactance 4-pole

neither sections of type D nor the ideal transformer appear, while the
inductive coupling in sections of type C can almost always be eliminated.

General Theory of the Tandem Section Configuration

The input impedance of a reactance 4-pole terminated at one end in a
constant resistance can readily be determined from the open- and short-
circuit impedances. Conversely, it can be shown that the open- and
short-circuit impedances can normally be determined from the imped-
ance function corresponding to a prescribed terminating resistance,

32 Other canonical networks of similar tandem sections can be obtained by
modifying somewhat sections of types C and D in accordance with the principles
of inverse networks and frequency transformations. It will be sufficient to con-
sider here, however, only the particular type of tandem combination described
above.
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except for an obvious ambiguity as to the signs of the transfer imped-
ances corresponding to the possibility of interchanging the input or
output terminals. The only exceptions to the rule correspond to values
of the termination leading to impedances of reduced degree, and there
can be only a finite number of such values for any one network.”

In accordance with the above principle, one way to obtain prescribed
open- and short-circuit impedances of the reactance type is to design a
resistance-terminated reactance 4-pole as a 2-pole producing an input
impedance computed from the open- and short-circuit impedances. The
addition of the proper ideal transformer to the terminated end of the
4-pole will yield the prescribed open- and short-circuited impedances
provided the design is so carried out that the degree of the input im-
pedance is normal for the prescribed impedances and for the final con-~
figuration. The added ideal transformer is generally necessary in order
to obtain the terminating resistance assumed in computing the input
impedance from the required open- and short-circuit impedances.

Brune (8) has shown how any prescribed positive real function can
be realized as the input impedance of a tandem combination of sections
of types A, B and C provided it is permissible to include series resist-
ances between sections. When the roots of the resistance part of the
positive real funetion occur only in identical pairs and are all real or
imaginary, Brune’s design procedure can be carried out in such a way
as to eliminate all the resistances except that forming the termination.*
The requirement of real or imaginary roots turns out to be unnecessary
if Brune’s procedure is replaced by a recent modification permitting
sections of type D to be used. The configuration obtained can be shown
to be such that impedance functions of the same degree as the prescribed
function would be obtained with general values of the terminating
resistance, i.e., the prescribed function does not represent a special case

3 In terms of the determinant A of the reactance 4-pole and various of its
A+ RyAs
A+ RaAri
the cancellation of identical factors leads to reductions in the degree of the
impedance function, this requires (A + RyA2) and (A11 + R»A11) to be propor-
tional to Kp"(4: + pB.) and Kp"(4: + pB:), respectively, in which (41 + pB1)
and (4; 4 pB:) are the numerator and denominator of the simplest rational
fraction expression for the impedance function. The necessary evenness and
oddness of the determinants permits of only two corresponding solutions for the
open- and short-circuit impedances. Since it turns out that passing from one
solution to the other reverses the sign of A, , only one solution can be physical.

3 The resistance part of the function is defined as the even part and repre-
sents the real part only at real frequencies.
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of reduced degree.”® Thus a tandem section equivalent can readily be
found corresponding to any reactance 4-pole which can produce an
input impedance such that the degree is normal for the configuration
and such that all the roots of the resistance part occur in identical pairs.
This turns out to be a property of all physical reactance 4-poles.”

The analysis outlined above proves the canonical nature of the react-
ance 4-pole formed by adding an ideal transformer to one end of a
tandem combination of sections of types A, B, C, D. It can also be
shown that the two-terminal impedance formed by closing one pair of
terminals through a resistance termination constitutes a canonical gen-
eral 2-pole. It was indicated above that this type of 2-pole can corre-
spond to any positive real function provided the roots of the resistance
part occur only in identical pairs. The restriction on the positive real
function turns out to be unnecessary, however, when it is permissible
to use special values of the terminating resistance leading to impedance
functions of reduced degree.”” Because of the canonical nature of the
reactance 4-pole, this can be demonstrated by merely showing how it is
possible to find a set of physical open- and short-circuit impedances of
the reactance type leading to an input impedance represented by any
prescribed positive real function. How this can be accomplished is
indicated below.

Suppose that a reactance network is to be so designed as to produce
a prescribed input impedance at one end when terminated at the far
end in a prescribed resistance. Because of the identity of the input and
received powers, the insertion loss that would be obtained upon termi-
nating the input end in a second resistance can readily be computed
from the prescribed impedance.” The general theory of Part I can then
be used to determine the corresponding sets of physically realizable
open- and short-circuit impedances. It is easily shown that one of these

3 This will be clarified by the subsequent description of the more detailed
design procedure.

3 In terms of the determinant A of a reactance network and various of its
cofactors, the resistance part of the input impeddnce is represented by
R.A%,

A‘ﬂ - RgAinz )
with any of the double roots of the numerator only when R, has special values.

37 Because the impedance function must generally be of less than normal
degree for the configuration, there are usually equivalent 2-poles representing
substantially more efficient use of the elements. In spite of this practical dis-
advantage, a knowledge of the canonical nature of this particular 2-pole is useful
in general network theory problems.

38 Specifically, the loss can be computed with the help of (16) of Part I.
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will correspond to the prescribed impedance provided it is a positive
real function.

Design Procedure

Consider now the actual operations involved in the design of a react-
ance 4-pole of the tandem section type producing prescribed open- and
short-circuit impedances. As indicated above, the first step is to com-
pute the input impedance of either end of the network corresponding to
an arbitrary far-end termination subject only to the requirement that
the degree of the impedance function must be normal for the open- and
short-circuit impedances. A section of type A, B, C, or D is then
designed in such a way that it will produce the required input impedance
when terminated in a new physical impedance of lower degree. A
second section is next designed to produce the required terminating
impedance when itself terminated in a new impedance of further reduced
degree. This procedure is continued until the required terminating im-
pedance is reduced to a constant resistance.” Finally, the required
terminating resistance is replaced by the equivalent combination of an
ideal transformer terminated in a resistance identical with the termina-
tion assumed in computing the original input impedance.

Brune shows how any positive real function with a pole or root on the
axis of real frequencies can be realized as the input impedance of a
section of type A or B, respectively, terminated in an impedance of
reduced degree. Brune also shows how any positive real function with
no roots or poles on the real frequency axis but such that the resistance
part has a pair of identical real or imaginary roots can be realized as the
input impedance of a section of type C terminated in a physical im-
pedance of reduced degree. Finally, if the roots of the resistance part
of the input impedance all occur in identical pairs, the terminating
impedance required in each case turns out to have this same property.*
Hence, to complete the explanation of the design procedure it remains
only to show how the appearance of identical complex roots of the re-
sistance part permits a section of type D to be made use of in the same

39 The exact manner in which the degree of the terminating impedance is
reduced at each stage in the design is what leads to a final configuration for
which the original input impedance is of normal degree.

40 The computation of the terminating impedance from the input impedance
may eliminate a pair of identical roots of the resistance part in reducing the
degree of the impedance function and may convert one or more pairs of identical
real roots into roots or poles of the impedance function or vice versa. Otherwise
the roots of the resistance part remain unchanged.
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way that a section of type € can be used when the roots are real or
imaginary.

Design of Sections of Type D

Suppose that a prescribed section of type D produces a prescribed
input impedance Z when terminated in impedance Z, . If A is used to
represent the determinant of the section of type D and if the input
and output meshes are numbered 1 and 2, respectively, Zy is related
to Z by

A—ZAuy ALZ

Zy = = -
YT ZAum — An Ag(Agy — ZAng)

Zy (22)

in which Z. represents the short-circuit impedance of the section of
type D at the terminated end. If it is assumed that Z is a positive
real function such that its resistance part has a pair of identical complex
roots, it can be shown that the following condition always determines
a physical section of type D which leads to a physical Z. of lower
degree than Z: The functions A, and (Ag; — ZAuz) are required to have
coincident pairs of identical complex roots which are also coincident
with a pair of identical complex roots of the resistance part of Z.

It is easily shown that the above coincidence of roots of A} and
(Ae — ZAng) leads to the elimination of all roots of the impedance
(Z. + Zs) which are not also roots of Z, which excludes the possibility
of roots in the right half of the p plane. If it is also assumed that the
section of type D is physical, simple additional analysis shows that
(Z, + Z.) must actually be a positive real function. This proves the
positive realness of Z itself except that it does not exclude real-
frequency poles with negative residues covered up in (Z1 4 Z) by the
positive residues of coincident poles of Z. . ~Finally, it can be shown
that any coincident poles of the two impedances can be separated, with-
out changing the corresponding residues of Z., by adding Lp to the
original input impedance Z. The reduced degree of Z; can be demon-
strated by showing that the above conditions lead to eight coincidences

A — ZAy
T — 8 O %2

To show that the condition on the roots of Al and (A — ZAuz)
actually leads to a physical section of type D, definite formulae for the
element values are first derived from this condition without considering
the question of physical realizability. The input impedance Z appears
in these formulae only through the appearance of the values assumed
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by Z and its derivative at double roots of its resistance part. This
permits Z to be replaced in the formulae by the open-circuit impedance
of a physical reactance 4-pole which produces the input impedance Z
when terminated in the proper constant resistance.” It can then be
shown that the corresponding capacities and self inductances of the
section of type D will be finite real and positive.

Conditions Necessary for Ladder Networks

When all the frequencies of infinite loss are real or imaginary, sections
of type D do not have to be included in the canonical tandem section
configuration.” This is because the frequencies of infinite loss of the
complete network are the corresponding critical frequencies of the sepa-
rate sections, while sections of type D are required only to realize
complex frequencies of infinite loss. When sections of type D are absent
the network can be considered as a general ladder of reactances, which
may be defined as any combination of alternate series and shunt
branches consisting of reactance 2-poles. While the coupling between
the series inductances in sections of type C renders them somewhat
more complicated than alternate series and shunt 2-poles the coupling
can be thought of as merely a device for realizing negative inductances
appearing in the equivalent 7 networks.®

The Mid-Series Low-Pass Ladder Configuration

Of the large variety of actual configurations possible in ladders of the
type described above, only a few are commonly made use of. An
extensive special design theory has been developed for these particular
configurations in order to permit the element values to be determined

4 As was indicated previously, the theory of Part I can be used to demonstrate
that any positive real function can be realized as the 1nput impedance of a resist-
ance-terminated reactance 4-pole.

42 By the frequencies of infinite loss of a network is meant the frequencies of
infinite loss obtained with general finite resistance terminations excluding any
specific terminations which bring roots and poles of the general expression for
the insertion voltage ratio into coincidence. Each frequency of infinite loss is
included in one or more of the following groups of critical frequencies: roots of
the open-circuit transfer impedance, poles of the short-circuit transfer im-
pedance, coincident roots or poles of open- and short-circuit driving-point
impedances of the same end of the network, and zeros of the resistance part of
an input impedance obtained with a resistance termination.

4 In many cases the negative inductance can be eliminated without the intro-
duction of the coupling but the conditions under which this can be done are
not subjeet to simple statement.
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without the labor involved in using the general theory of tandem sec-
tions described previously. The special design theory is best developed
first for the specific type of ladder indicated in ¥ig. 9, which may be
referred to as the mid-series low-pass configuration even though it is
not necessarily a mid-series type low-pass filter of the image parameter
theory.* The other configurations commonly encountered can be de-
signed by means of simple modifications of the theory of this special case.

The earliest special formulae for computing the element values of
ladders of the mid-series low-pass configuration indicated in Fig. 9 were
developed by Norton (7) as a part of his theory of constant resistance
pairs of filters. Although Norton’s formulae represented an important
step in the development of the theory of mid-series low-pass ladders, it
has been found that the computations which they call for in numerical
problems are undesirably complicated and must usually be carried to
an abnormally high precision.

o T T T .

Fig. 9. The mid-series low-pass ladder configuration

As a result an extensive further analysis of the design problem has
been carried out leading to the derivation of a new set of formulae.
These new formulae are relatively satisfactory for numerical computa-
tions and are also useful in a variety of theoretical investigations, such
as the determination of what impedances can be realized with mid-series
low-pass ladders. In addition, the derivation of the formulae involves
the development of an alternative set which are expressed very com-
pactly in terms of determinants and which are useful in certain theo-
retical investigations even though they have the same disadvantages as
Norton’s when applied to ordinary numerical problems.

Assumptions and Conditions Leading to Design Formulae

The development of the design formulae for ladders of the mid-series
low-pass configuration is simplified if certain simple assumptions are
adopted temporarily. The procedure to be followed when the assump-
tions are not satisfied can best be investigated after the formulae have

4 This type of ladder is obviously equivalent to sections of type C generally
combined with one or more sections of type A consisting of simple series in-
ductances.
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been derived. In the first place, it is simplest to start by assuming a
set of open- and short-circuit impedances to have been specified which
are known in advance to be appropriate for the configuration, leaving
until later the question of what impedances have this property. It is
also best to assume further that the impedances are such that the multi-
plicity of solutions for the elements which are normally encountered are
all possible, even though special sets of impedances can be found which
require certain of the solutions to be excluded. Certain difficulties are
also avoided by the temporary assumption that all the frequencies of
infinite loss are different and that all the open- and short-circuit im-
pedances are of normal degree for the configuration even though some
may be of reduced degree in special cases.

The following relations, which can be shown to apply to any ladder
of the mid-series low-pass configuration consistent with the above
assumptions, form the basis of all known formulae for the element
values.” First, the resonances of the shunt branches are identical with
the frequencies of infinite loss except for a single infinite loss point at
infinity.” Second, the value assumed by any of the open- and short-
circuit driving-point impedances at a shunt branch resonance is inde-
pendent of the elements separated from its terminals by the shunt
branch, which acts as a short-circuit across the ladder. Finally, under
the assumption of impedances of normal degree for the configuration
the derivatives of the driving-point impedance functions with respect
to the frequency have this same property.

It turns out that the relations stated above are sufficient to determine
all element values from one open-circuit or short-circuit driving-point
impedance together with the frequencies of infinite loss, except for the
far end inductance in the case of an open-circuit impedance.” The

4 These relations were introduced by Norton as the basis of his design
equations.

46 Under the present assumptions, the finite frequencies of infinite loss are the
roots of the open-circuit transfer impedance and also the finite poles of the
corresponding short-circuit impedance.

47 This at first seems contrary to the well known fact that it takes three
impedances to fix a 4-pole. The additional data are here supplied by the assump-
tion of impedances appropriate for a specific configuration subject to special
restrictions. Recall that Cauer’s canonical reactance 4-pole of the shunt or
admittance type can be designed from one short-circuit driving-point impedance
and the short-circuit transfer impedance except for a two terminal shunt branch
across the far end of the network. For the particular circuit under consideration
the terminal shunt branch would be absent in the equivalent shunt type canonical
network while the short-circuit transfer impedance could be found from a short-
circuit driving-point impedance and the frequencies of infinite loss.

34



multiplicity of solutions which are normally obtainable are due only
to the fact that the finite frequencies of infinite loss can be distributed
arbitrarily among the shunt branches as their individual resonances.
In order to obtain a unique solution it is expedient to assume at the
outset that a particular distribution has been chosen. The problem
then becomes that of realizing a known two-terminal impedance of the
reactance type as an open-circuit or short-circuit impedance of a ladder
of the midseries low-pass configuration with prescribed shunt branch
resonances,

Continued Fraction Expansion Forming Basis of Design Problem

The development of the formulae for the element values calls for the
introduction of extensive special notation so chosen as to reduce the
design problem to the determination of a particularly simple continued
fraction expansion of a known function. In the first place, instead of
dealing directly with the element values, it is simpler to consider the

U gld Oy 00
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Fig. 10. Designation of the impedance branches of a mid-series low-pass ladder

constants in the designations indicated in Fig. 10 for the impedances of
the various network branches, expressed in terms of « rather than
p = iw.’® The constants », ---, v, represent the reciprocals of the
shunt branch resonances or finite points of infinite loss in terms of w
and are thus assumed to be known.” The problem under consideration
therefore amounts to the determination of the so-called ladder network
coefficients a; , - - - , 2,41, Since there can be no difficulty in determining
the element values from these coefficients together with the »,’s. In
order to avoid ambiguity in the design formulae referred to previously,
which are merely specific formulae for the individual a,’s, it is con-
venient to include the additional requirement that the numbering of
the coefficients a1, ay, etc., shall begin at the terminals of the particular

8 Although the variable p is more convenient in formulating the general theory
of Part I, » turns out to be more convenient in the ladder network theory under
consideration here.

4® The reciprocals of the values of w at infinite loss points are more convenient
than the values themselves when the infinite loss points are later permitted to
become infinite.
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open-circuit or short-circuit driving-point impedance from which they
are to be computed.

It is well known that the problem of realizing a 2-terminal impedance
as the input impedance of a ladder network of prescribed configuration
amounts to the problem of obtaining a prescribed form of continued
fraction expansion of the impedance or of some related function.” For
the particular network under consideration, the required continued
fraction is simplest if the function F to be expanded is derived by
dividing the impedance function by p, or by its equivalent iw. In
other words, F is best defined by

r=2 (23)
iw

where Z is the open- or short-circuit impedance from which the coeffi-
cients a;, az, ete. are to be computed.

Since Z is an odd rational function of iw, the quantity F must be a
function of w®. This suggests replacing «” by a new variable in order
to decrease the degree of F. It turns out, however, that a simpler
continued fraction is obtained if the reciprocal of this variable is used.
Hence the following additional notation is introduced:

z = lo (24)
e
zuzyz a-=1’...777

in which z represents the new variable, while the z,’s indicate the values
of 2 corresponding to the frequencies of infinite loss. In terms of this
notation, the required continued fraction expansion of I fakes the
following form:
1
F=ao 4 (25)
(27 1
“w—z + 1
L —
as + s

-~

g9 — 2

The problem is to solve this identity for the a,’s assuming the constants
2, to be known and also the function F of the variable z.

In deriving the more useful formulae for the a,s which have been
developed by solving the above problem the first part of the analysis

50 A variety of ladders deseribed by Fry (12), for instance, correspond to
Stieltjes’ Fractions.
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is devoted to the derivation of the alternative formulae referred to
previously as being expressed compactly in terms of determinants.
The final formulae are then derived by expanding the determinants in
terms of the partial fraction representation of the function F. Since
the two parts of the derivation both involve long and complicated alge-
braic manipulation, they will be no more than briefly outlined here.
Grester clarity will be obtained if the statement of the preliminary for-
mulae in terms of determinants precedes the outline of their derivation.

Formulae for the a,’s in Terms of Determinants

The determinants appearing in the preliminary solution for the a,’s
are formed from the quantities H, defined as follows in terms of the
notation introduced above:

H, = Ezgf_’ H, =F. (26)

q — %r
where F,, F. , etc., are used to represent the values assumed by F and
(g at 2 = z,, ete. The use of the notation H, and H,, is consistent
since H,, is the limit approached by H, as 2, approaches z, .
The determinants themselves are of three different types. The deter-
minant U} is defined as | Hy, | in which ¢ and r take the values 1 to k.
In other words,

Hy He -+ Hug—n Hul
Hy Hyp --- Hyy-n Hau

O 27
|Hy He Hyg—y Hkk]

The determinant V; is obtained from Uj by changing the elements of
the last column to unity. In other words,

tHll Hm M H1(k_1) 1 |

Hy Hy -+ Hypyp 11

V;;=;..2f....2 ............ (28)
R RERTaT ‘
|Hy Hi --+ Hig-n 1]

Hinally, the determinant W is obtained from Ui by changing the ele-
ments of the last column from H,; to H,q+1 . Thus,
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! Hll H12 .. Hl(k-—l) Hl(k+1)

Hy Hwp --- Hyuy H
W, = YR s £ 2(k—1) 2(6+1) 29)

............................

............................

Hkl Hk2 e Hk(k—l) Hk(k+1)

In terms of these determinants all the ladder network coefficients
except for as,1 are given by the following design equations o

(zr — 2t Uy W ey

ai 1 Gor—1 V(k-—l) Vs
-1 —Vi (30)
= a = e
223 U, 2k UasUs
k=2...9

The coefficient as,.: corresponds to the inductance forming the last
series branch. If the function F is obtained from an open-circuit im-
pedance, the coefficient must be determined from some other impedance.
If F corresponds to a short-circuit impedance, ag,+1 can be found from
the value assumed by F at zero frequency, or by using the above for-
mulae with an arbitrary additional constant z,: .”

The above formulae can be derived by a method of induction which
is reasonably straightforward though long and tedious. The formulae
for the first four coefficients are first derived from Norton’s equations
or directly from the behavior of the continued fraction (25) in the
neighborhood of z = 2; and 2 = 2. This yields the special formulae
for a, and a, indicated above and shows the formulae for as and a4 to
be consistent with the general formulae indicated for a1 and as, . The
derivation is then completed by showing that if the formulae for as—
and ay, are correct, then those for asyy and s must also be correct.
This is demonstrated by first using the formulae for as— and as to
express agey1 and azepp in terms of the impedance that would be obtained
by removing the first two branches of the network, corresponding to

51 The formulae for as, as, as, involve Ui, Vi, Wi. As defined by (27),
(28) and (29) these quantities appear strange in that they are determinants of
only the first order. These first order determinants, however, merely represent
Hii, 1, Hy, respectively.

52 If F corresponds to a short-circuit impedance, an arbitrary shunt branch
can be assumed to be connected across the short-circuit since it will not affect F.
This permits az..1 to be determined exactly as though there were a complete
additional ‘‘section.”
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a; and a;. This “reduced” impedance is then replaced by an equiva-
lent expression in terms of the original impedance and the formulae for
a; and a2 . Considerable manipulation of the determinants in the re-
sulting equations finally yields the general formulae for ds; and asie .

The formulae (30) are indeterminate unless all the constants
2, .-+ ,%, are different in accordance with the original assumption of
no two identical frequencies of infinite loss. Coincident frequencies of
infinite loss can be handled, however, by assuming infinitesimal differ-
ences and making use of a Taylor’s series expansion of the function F

representing ;Z— considered as a function of z = l When all the fre-
W w

2

quencies of infinite loss are identical except for the single one at infinity,
the continued fraction (25) becomes a Stieltjes’ fraction of a type con-
sidered by Fry (12). The known formulae for the constants in the
Stieltjes’ fraction expansion are undoubtedly derivable from (30) by
the Taylor’s series method.”

The effect of abandoning the original assumptions other than that of
no two identical frequencies of infinite loss can best be considered after
the final formulae have been developed by showing how the deter-
minants of the first set can be expanded.

Derivation of the Final Design Formulae by Expanding the Deter-
minants
It is readily shown that if the function F is expanded into a sum of
partial fractions, this expansion will always take the following form
provided the open- or short-circuit driving-point impedance from which
it is derived is physically realizable:
B,

By
vee e 21
e Tt 2 (1)
In this expression the B’s and f’s are all positive and are also all finite
except that B, may sometimes be zero.
In terms of the partial fraction expansion of #, the determinant ele-
ment H, as defined in (26) becomes

B B,
(Br — 29) (B1 — ) Bu — 2¢)(Bu — 21)
53 This derivation has not been proved rigorously but has been carried far

enough to indicate the way in which the transformation of the formulae takes
place.

= —BOZ"{_ Beo+

Hy= —By— (32)
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while H 4, is obtained by merely equating 2. to z, in this formula. The
determinants Uy, Vi, W; defined in (27) through (29) and appearing
in the formulae (30) for the a,’s can be expanded in terms of these partial
fraction representations of the H,’s. The derivation of these expan-
sions, however, is too long and complicated to be more than briefly
outlined here. -

In deriving the expansions of the determinants, the particular W,
determinant of degree identical with the number of partial fractions in
the expansion of H,, is first examined. It is found that this particular
Wi determinant can be expressed in terms of a product of two deter-

|
|
|
|
|
1

minants of the general form ', which are evaluated in well-

T — Yy
known treatises on determinant theory.” It is then shown that W,
determinants of higher degree must vanish while those of lower degree
are equivalent to sums of similar factorable determinants.” Each term
in these sums is actually the determinant that would be obtained by
using only k& of the partial fractions of Hg , i.e., by setting all but &
of the B’s in (32) equal to zero. There must be one such term for
every possible choice of k partial fractions. After the expansions of the
W determinants have been determined the Uj and V; determinants
can be expanded by treating them as certain limiting cases of Wi
determinants.

When the expansions of the determinants are inserted in the equa-
tions (30) for the a,’s, a variety of factors in differences between the
infinite loss points z;, 22, ete.; can be cancelled out. The formulae
then take the form

Yo Ywe-n

a=F Aop—
1 1 21 S
Ly (33)
=2 oy = — 2T
g = — =
: Yy ? Youg—1) Yor

in which the ¥’s represent the uncancelled parts of the expansions of
the original determinants.

The ¥’s themselves are best expressed in terms of the quantities
Ugk , Yok » Wer defined by the recursion formulae

5t See, for instance, the chapter on functional determinants in the treatise by
Scott and Mathews (13).

5 The similar vanishing of higher degree determinants of the Ui and Vi types
shows the finite nature of the continued fraction (25).
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Ug(k—1)

By — z)
Up = By g = (34)
(.Bq - Zk)Q
Wa Uq(k—1)

B By — 2) By — Z41)

The statement of the ¥’s in terms of these quantities requires a very
complicated summation and product notation in the general case.
Hence, it will be better to avoid the necessity of a statement of the
general case by listing enough specific cases to establish what such a
statement would have to show.

The formulae for the simpler ¥’s are listed in Table I together with
the additional previous relations necessary in the actual computation of
ladder network coefficients. These are sufficient to indicate the general
case and are also sufficient by themselves for ordinary design purposes,
partmularly when impedances corresponding to both ends of a network
are known so that part of the elements can be determined from each
end. Some additional simplifications can be obtained, however, by
developing more specialized forms of the equations for specific numbers
of sections. The behavior of the impedances at zero and infinity can
also be used advantageously in determining one or two coefficients for
which the standard formulae are most complicated or for checking
purposes. Special simplified formulae have also been derived for the
ladder equivalents of symmetrical lattice networks, which are nor-
mally computed first in the design of symmetrical circuits. These for-
mulae can best be introduced at a later point, however, when the
theory of lattice networks is considered.

In ordinary numerical problems, the expanded formulae do not require
the extremely high precision of computation which is commonly neces-
sary when Norton’s equations are used or the formulae in terms of
determinants. Similarly, the expanded formulae do not become in-
determinate when coincident frequencies of infinite loss are encountered,
as do the other formulae. They also lead to somewhat more straight-
forward numerical computations in ordinary design problems, although
the extent to which this is true may vary widely from problem to
problem. While the complexity of the formulae increases so rapidly
with network complexity as to render them unsatisfactory for the design
of ladders of more than four or possibly five sections, such complicated
networks are rarely encountered. Finally, the formulae for ladders of
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general numbers of sections assume a form which renders them useful
in such general studies as the investigation of the requirements on im-

pedances of low-pass ladders or of the possibility of avoiding coupled
coils, ete.

TABLE I
General Mid-Series Low-Pass Ladders

02n-1 tw Qan+1 lw

I
: zZ - B,
F===—Boez+ B, + )
iw =12 — B
Uq(k—1 Ug (k- Ugq (k-
U = B, Voh = q (k1) _ g (k1) q (k1)

G-z TG
Yy =1 Yy = Z Vg2 Wyg = Z VaVr3(Bg — Br)?
Yypy = Z Voalraves(Bg — Br)2(By — Bs)2(Br — Bs)?

Yy = Z U1 -+ B Yyg = E UgsUira(By — Br)? + Bo Z Uga

Yy = Z uqaurausa(ﬁq - ﬂr)z(ﬂq - 6s)2(ﬁr - Iss)2 + By Z uqsura(ﬁq - ﬁr)2
Yy = z wq -+ By Wype = Z Weara(By — B7)* + Ba Z We2

Yys = Z wqawmwsa(ﬁq - 61‘) (ﬁq v)2<ﬁr - 63)2 4+ By Z wq3w1'3(Bq - 131)2

T By — 28) (Bg — 2i11)

—1 r=p
> ugus = Z > ugus = wus + ws + s + o+ Uy
g=1 r=q+1
and similarly for the other sums of products of terms.
V-1 Yw(e-1)
a; = -_ B021 b Z Vg1 Aofpy = —————————
Ty z-1)¥vr
1 i
ay = —— Qop = T
Y1 Yoo-y¥Yur
k=2 - ,q

Insertion Loss Functions and Impedances Realizable with Ladders of
the Mid-Series Low-Pass Configuration

The mid-series low-pass ladder configuration turns out to be appro-
priate for the realization of insertion power ratios of the form

e _ 1+ T’ + Do’ + oo 4 Toppre® 35
¢ ) 2D 2 3 (35)
(1—V1£u)(1 ...(1—Vw)
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in which 5 represents the number of shunt branches in the ladder while
the I';,’s and »,’s are arbitrary constants. Corresponding open- and
short-circuit impedances realizable with mid-series low-pass ladders and
subject to the previous assumptions of normal degrees for the configura-
tion and of normal multiplicity of solutions for the element values can
always be found by a straightforward method except in certain special
cases corresponding to discrete choices of the I'/s and »,’s.”

The first step in determining the impedances is to find a solution for
the polynomials A, B, A’, and B’ of the general impedance theory of
Part I, using the numerator and denominator of (35) as the polynomials
N and P°. It is readily shown that the multiplicity of solutions for the
polynomials, which was indicated in part I, is such that the signs of A’
and B’ can be chosen arbitrarily as far as general realizability is con-
cerned and also the sign of (4 4+ pB). Except in the very special
cases referred to above, the impedance formulae exhibited in equations
(18) in Part I yield corresponding impedances realizable with ladders
of the desired type provided the signs of A’, B/, and (4 - pB) are

chosen in accordance with the following conditions: % must be positive

I3 4

at zero frequency, % must be negative at infinite frequency, and i

must be positive or negative at zero frequency depending upon whether
termination R; is greater than or less than R, o

Difficulties Encountered in Special Cases

The difficulties which can be encountered in special cases are of two
types. The first type can be encountered even though the impedance
functions are of the form normal for the configuration. The second

% By discrete choices of the constants is meant choices which can always be
avoided by small changes in a single constant. It is assumed, of course, that
e?* meets the physical requirement that it must be positive and no less than

4R: R,
(B1 + R,)?

57 Actually all solutions are normally realizable if modified mid-series low-pass

at all real frequencies.

4 A
ladders are permitted. The requirement upon the sign of P or A can be violated,

for instance, if an ideal transformer is included in one end of the network. Simi-
’

B .
larly, the requirement upon the sign of B can normally be violated if a shunt

condenser is added to one end of the ladder and if negative series inductances
realizable with perfectly coupled coils are permitted.
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type corresponds to the appearance of various open- or short-circuit
impedances which are of reduced degree because of the coincidence of
roots of the numerators and denominators of the corresponding general
formulae.

It can be shown that if all the impedances are of normal degree, no
finite frequency of infinite loss can coincide with a root or pole of an
open- or short-circuit driving-point impedance. It follows that the
corresponding values of the quantities vg , Ug , Wa appearing in the
design formulae of Table I will all be finite. Of these quantities, ug
will always be positive but vz and wg can be negative. As a result,
the quantities ¥y formed from the ug’s in the manner indicated in
-Table I will all be finite but the quantities ¥y, and ¥y, may be zero.
The vanishing of ¥w; merely replaces a series inductance by a simple
conductor but the vanishing of ¥y leads to the requirement of three
network branches with infinite impedances at all frequencies, one shunt
branch and the two adjacent series branches.”

If it is no longer assumed that all the multiplicity of solutions for the
a,’s are to be physical, difficulties of this type can normally be overcome
by modifying the choice of the particular frequencies of infinite loss
which are to be the resonances of the individual shunt branches or by
choosing a different set of impedances corresponding to the same inser-
tion loss. It is within the bounds of possibility, however, to encounter
cases in which all solutions lead to the same difficulties. The ladder
must then be modified to the extent of using at least one anti-resonant
circuit as a series branch. This can be done by modifying properly the
normal design procedure.

‘When there are finite frequencies of infinite loss which are coincident
with roots or poles of open- or short-circuit driving-point impedances,
some of the impedance functions will be of reduced degree. It is then
normally possible to realize the impedances by adding terminal series
or shunt branches or both to a mid-series loss-pass ladder with im-
pedances of normal degree for its configuration. It is also usually
possible, however, to obtain complete networks of the normal mid-series
low-pass form by merely using impedances that are still of normal
degree in computing the element values. When all impedances are of
reduced degree, modifications of the normal design procedure can be
used or else the general method applying to the canonical tandem section
configuration.

58 W, , W, may also be negative, of course, leading to negative elements, but
these turn out to be realizable with coupled coils.
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Elimination of Various Elements

There is no difficulty in permitting any or all of the frequencies of
infinite loss to be placed at infinity. This merely requires the corre-
sponding shunt branches to be simple condensers rather than resonant
circuits. The design is carried out by setting the proper »,’s equal to
zero in (35) and also the corresponding z,’s representing their squares in
the design formulae of Table I.

Certain power ratios of the general form of (35) also lead to the
vanishing of one or more of the series inductances. One special case
of this type is of particular importance. In this case, one terminal
series branch vanishes while the next shunt branch is a simple capacity,
which leaves a network of the type of Fig. 11. The proper form of
power ratio is obtained from (35) by reducing the terms in the numerator
by one and also the number of »,’s.”* In other words,

14T’ + Tew' 4 oo 4 Ty0'

= 36
1 - v§w2)2(1 — ngz . 1 — 1/,2,_10.)2)2 (36)
(o, I T 0

Fig. 11. A special form of mid-series low-pass ladder configuration corresponding
to a special form of insertion loss function

Other Types of Ladders Commonly Encountered

Ladders of the configuration of Fig. 12, which may be described as
the mid-shunt low-pass configuration, are most easily designed by re-
defining the coefficients a;, - - -, G2;4+1 in accordance with the designa-
tions of the branch impedances indicated in the figure. These coeffi-
cients are related to the short- and open-circuit admittances in exactly
the same way that the coefficients of ladders of the mid-series type are
related to the open- and short-circuit impedances. As a result, mid-
series and mid-shunt ladders will produce the same insertion losses when
terminated in R; and Rp provided their coefficients are related by the
equations

Og5—1 = RiRedz,—1 dse = R1Rsas, (37)

59 The vanishing of & terminal series inductance next to a resonant shunt
branch, however, does not normally change the degree of the numerator in the
power ratio expression in this way.
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in which the a,’s and @,’s are the coefficients of the mid-series and mid-
shunt ladders, respectively, and must be numbered from opposite ends
in the two networks.

Negative inductances realizable with coupling in series type ladders
become negative capacities in the corresponding shunt type configura-
tions. These can be realized, however, by introducing ideal trans-
formers in the proper way. To understand how this can be accom-
plished it is only necessary to note that an ideal transformer shunted by
any 2-pole, such as a condenser, is equivalent to a pair of ‘“‘perfectly
coupled impedances” exactly similar to perfectly coupled inductances.

Other types of ladders can be designed by making use of the well-
known method of frequency transformations. The previous design
formulae apply to the determination of a low-pass ladder of reactance
elements producing an insertion loss represented by an appropriate
function of w. Suppose some other insertion loss function is transformed

alw a,Lw Ay b
2 .2 2,42 —y 22
-V,°W 1=V, 1=V, "W
| 1 J I —_— I ] L]
]’o,uw alw om_,uw'[ Tomﬂbw
Qe 2*]

Fig. 12. The mid-shunt low-pass ladder configuration

into this same function by replacing » by a related variable 2. Since
the reactance elements of the low-pass filter theory are merely devices
for producing impedances proportional to <w or its reciprocal, the same
theory can now be used to design a corresponding ladder made up of
impedances proportional to 7Q or its reciprocal. If all the elements of
the original low-pass ladder are positive, the impedance branches of the
transformed ladder can be realized with physical 2-poles provided 2
represents a physical impedance function. If the original low-pass
ladder includes negative inductances realizable with coupled coils, the
negative elements in the transformed ladder can be realized by using
ideal transformers just as in mid-shunt low-pass ladders including nega-~
tive capacities.

The mid-series and mid-shunt high-pass configurations obtained by
replacing inductances by capacities and vice versa in low-pass ladders

can be designed by defining  as ! and using power ratios represented
w
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by functions of @ identical with the functions of » appropriate for the

low-pass configurations. Band-pass configurations can be designed by
2 2

? Em provided their insertion loss characteristics when

w

defining © as

plotted against log (w) are to be symmetrical about log (wn). They
can then be realized as combinations of series and parallel resonant
circuits all resonating at w, . The situation is exactly similar in regard
to band-elimination configurations, for which @ is Lﬁ? 5

The only other ladder configurations commonly encountered are the
more general band-pass type indicated in Fig. 13, and its inverse. The

series type illustrated can normally be designed as an equivalent simpler

=TT

o 1 L o

[
IDEAL

TRANSFORMER
Fig. 14. An equivalent of the network of Fig. 13

network of the configuration indicated in Fig. 14." Tt can be deter-
mined from the equivalent network by means of the so-called impedance

0 Tt is sometimes more convenient, of course, to include arbitrary constant
factors in the frequency transformations. In the design ot a band-pass filter,
for instance, it is frequentiy convenient to start by designing a low-pass filter
with a cut-off at w = 1. Then the desired band-pass filter is obtained by replacing
w by an @ representing

w? — we1 ez

w(wcg - wcl) ’

where wer , we correspond to the two cut-offs of the band-pass filter.

61 An equivalent of this type always exists except in limiting cases in which
one or more shunt branches are simple inductances. A similar equivalent con-
figuration obtained by replacing inductances by capacities and vice versa always
exists except when one or more shunt branches are simple condensers. When
simple inductance and capacity shunt branches are both encountered, special
design methods must be used.
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transformation indicated in Fig. 15A.” The equivalent network itself
is of such a form that the formulae of Table I can be applied directly to
its design. The short-circuit driving-point impedance measured at the
terminals farther from the transformer, for instance, is determined by a
configuration exactly the same as that determining an open-circuit im-
pedance of a mid-series low-pass ladder with a far-end terminal shunt
branch consisting of a simple condenser. The only operation not cov-
ered by the formulae of Table I is the determination of the impedance
ratio of the transformer, which turns out to be determined by the
behavior of the open- and short-circuit driving point impedances at
zero frequency.

ORIGINAL NETWORK EQUIVALENT NET WORK

d>22 VOLTAGE RATIO

o .
‘ IDEAL
z TRANS.
o

(A)
% VOLTAGE RATIO
On Q (e, Im ‘:¢ O
Z
Z _Z IDEAL
[ d($-1) TRANS.
e O [e, O
(&)

Fig. 15. Network equivalences indicating the impedance transformation principle

The configuration inverse to that of Fig. 13, which is made up of
parallel resonant circuits in place of series resonant circuits, is designed
by an exactly similar method with the help of the equivalence indicated
in Fig. 15B.

Sufficient Conditions for Positive Elements

From the standpoint of actual construction, the perfectly coupled
inductances and ideal transformers which are sometimes required for
the realization of negative elements in physical ladders are highly un-
desirable. The two conditions stated below are sufficient to insure that

82 The impedance transformation principle represented by Figs. 15A and 15B
was discovered by Norton (14). In the determination of a network of the con-
figuration indicated in Fig. 13 from one of the type indicated in Fig. 14 there is a
considerable arbitrariness as to how the series capacity is distributed among
the different series branches.
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all the elements in a mid-series low-pass ladder will be positive, making
unnecessary the use of coupled coils or ideal transformers in the ladder
itself or in others related to it by frequency transformations or inverse
relationships such as (37). While these conditions are not necessary,
they turn out to be useful in demonstrating that most ladders en-
countered in filter design can be expected to be realizable without the
use of coupling.

Assuming a mid-series low-pass configuration and impedances of the
appropriate general form the first condition calls for frequencies of
infinite loss which are all real (or infinite) and are greater than all the
finite poles of at least one of the open-circuit driving-point impedances.
The second condition requires the particular frequencies of infinite loss
corresponding to the resonances of the shunt branches nearest the
terminals to be also equal to or gredter than all the roots of the corre-
sponding open-circuit impedances. The sufficiency of these conditions
is easily established by examining the formulae of Table I and recalling
that the B’s and B’s are all positive.

One interesting special case is that in which all frequencies of infinite
loss oceur at infinity. It is seen that the above conditions are always
satisfied in this special case. As a result, all power ratios of the form
(35) with all »,’s reduced to zero are realizable with networks of the
same configuration as constant-k low-pass image parameter filters pro-
vided €“ meets the general physical requirement that it must be no less

4R R,
than & + R
in regard to the power ratio (36) with all »,’s reduced to zero, the corre-
sponding constant-k configuration merely including an odd number of
“half sections.” These two special power ratios include all even poly-
nomials in  which have unit constant terms and which satisfy the
physical limit on ¢** at real frequencies.

at all real frequencies. The same situation also holds

Symmetrical and Inverse Impedance Ladders ‘

The ladders used as filters usually have impedances and terminations
meeting one of two special conditions.” One condition calls for an
electrically symmetrical network and equal terminations. The other
requires each open-circuit impedance to be the inverse of the short-
circuit impedance of the other end of the network with respect to the
mean of the terminations.*

03 Except when they are modified to compensate for effects of dissipation.

¢4 If the image impedances and transfer constants are used in the description
of the networks, these conditions require equal and inverse image impedances,
respectively.
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If the requirement of symmetry or of inverse impedances is to be
satisfied, the polynomial A’ or B’, respectively, must be identically
zero in the formulae (18) of Part I relating the impedances to the
insertion loss. An examination of the relation of A’ and B’ to the
insertion power ratio shows that their vanishing requires expressions

of the form
20 wB, i
=1+ < P > (38)
A'=0
in the case of symmetrical networks and equal terminations, and of the
form
2w 4RiRy AN
© = (B1 + R»)? + (?> 39
B'=0

in the case of inverse impedance networks.

The specification of power ratios in the forms (38) and (39) simplifies
the design procedure in that no roots need be extracted in determining
A’ and B’, the only root extraction being that involved in finding the
polynomials A and B. It is readily shown that the conditions necessary
for the physical realizability of these power ratios permit A’, B’, and P
to be any even polynomials in w with real coefficients. In other words,
there will be at least one corresponding symmetrical or inverse im-
pedance network for every power ratio of the general form

¢ = A(l + 3% (40)

in which ® is any odd or even rational function of w with real coeffi-
4R R,

—— - _ and must be unity when ® is an
R + Ro)? Y

cients while A represents
odd function.”

% When @ is odd and A is different from unity, the ratio of the open-circuit
driving-point impedances, which is identical with the ratio of the corresponding
short-circuit impedances, will be equal to the ratio of the terminations. This
permits the use of a symmetrical network combined with an ideal transformer.
It is convenient to permit unequal terminations in the case of inverse impedance
networks and not in the case of symmetry, or of proportional impedances, in
that unequal terminations are usually necessary in the inverse impedance case
if ideal transformers are to be avoided.
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4
When all the poles of 11—35 are real or imaginary and are also finite, the

power ratio (38) leading to symmetrical networks can be expressed in

the form (35) appropriate for mid-series low-pass ladders of the normal

configuration indicated in Fig. 9. When A? obeys the same condition

except for a single pole in terms of ” at infinity and when also R; and
R, are so chosen that « is zero at zero frequency, the power ratio (39)
leading to inverse impedance networks can be expressed in the form
(86) appropriate for mid-series low-pass ladders terminated at one end
in shunt condensers as in Fig. 11. Exactly similar relations exist in
regard to ladders of other than the mid-series low-pass configuration.

Za
I
o o
|
Zg Zg
Za
Or <

Fig. 16. The balanced lattice configuration

Lattice Networks and the Design of Symmetrical Ladders

It is well known that there is an equivalent lattice network of the
type indicated in Fig. 16 corresponding to every physical network which
is electrically symmetrical.® When the open- and short-circuit im-
pedances are known, the impedance arms Z, , Zz can be VBI‘}; easily
computed by well-known formulae. When a lattice of reactances is to
be designed to produce a power ratio prescribed in the form (38),
however, it is simpler to determine the impedance branches by the
formulae described below rather than to first compute the open- and
short-circuit impedances and then the impedance arms.

When a power ratio is prescribed in the form (38), the quantity
(P + pB’) can obviously be expressed as the following product of two
polynomials in p:

P 4+ pB" = (Py 4+ pB1)(P: — pBy) (41)

% This was pointed out by Campbell (15).
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where P;, B, Py, B; are even polynomials such that the roots of
(Py + pBy) are all those roots of (P 4 pB’) which have negative real
parts. It turns out that the impedance arms Z4 and Z5 of one lattice
producing the prescribed power ratio are related to Py, B1, ete., by the
formulae

ZA=RZ)£1 ZBzRE?

: 42
P, 0B, (42)

in which R represents the equal terminating resistances. The only
three other lattices of reactances corresponding to the prescribed power
ratio are obtained by interchanging these impedances and replacing
them by their inverses with respect to R.%

In the design of symmetrical ladders with prescribed insertion losses,
it is usually easier to determine the element values from the equivalent
lattices rather than from the open- and short-circuit impedances. In
the design of mid-series low-pass ladders of one, two or three shunt
branches or of related networks, for instance, the special design formulae
listed in Table II can be used. These formulae can be derived in
much the same way as the general formulae of Table I by using an
open-circuit impedance in formulating the partial fraction expansions
of the determinants in (30) and noting relations between the constants
required for symmetry. The relations between the constants are due
to the fact that the open-circuit impedance is proportional to the sum
of the two impedance arms, which requires the sums of the corre-
sponding partial fractions to be equal at frequencies of infinite loss.
Even when no other special relations are used, the initial determination
of the open-circuit impedance as a sum of two functions simplifies the
computation of the partial fraction expansion necessary for the use of
Table 1.

Part III. Sercian InserTioN Loss FuncrioNs FOR FILTERING
PURPOSES

From the standpoint of filter design the general theory of Parts I
and IT is incomplete in two principal respects. In the first place, it
gives no indication as to how to choose general insertion loss functions
in such a way as to obtain efficient filter characteristics. In addition,
the general design procedure is extremely complicated in numerical

87 The polynomials B’ and P are somewhat arbitrary asfar as the power ratio
of the form (38) is concerned. It turns out, however, that there are only four
corresponding lattices in spite of this arbitrariness.
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problems, involving the determination of the roots of two high degree
polynomials. Part III rectifies this situation by introducing special
types of realizable insertion loss functions which represent efficient filter
characteristics and which also lead to relatively simple special design
procedures.

Assumption of Insertion Loss Characteristics Appropriate for Sym-

metrical or Inverse Impedance Networks

The special insertion loss functions used for filtering purposes are
appropriate for the symmetrical and inverse impedance networks de-
scribed in the closing paragraphs of Part II. It turns out that any
loss function representing an efficient filter characteristic at least ap-
proximates one of the types required for these particular networks. In
addition, as was indicated previously, these networks can be designed
with only half the root extraction which is more generally required.

Recall that insertion power ratios which are to be appropriate for
symmetrical networks with equal terminations or for networks with
impedances which are inverse with respect to the mean of the termina-
tions must be of the form

&= A + @) (43)
where ® is any odd or even rational function of frequency in the two
4R1R2
By + Ry)?
the case of symmetrical networks with equal terminations). It is ob-
vious that the poles of & are frequencies of infinite loss while the roots
are frequencies of maximum possible insertion gain. Hence rough filter-
like characteristics can be obtained by merely requiring all poles of &
to occur in the desired attenuation bands and all roots in the desired
pass bands. In order to avoid the necessity of ideal transformers or
perfectly coupled inductances, however, it is best to add the restriction
that & must be such as to make the insertion loss zero or infinite at

each of the limiting frequencies zero and infinity.”

cases, respectively, and A represents (being thus unity in

68 This additional requirement is automatically satisfied when the network
is to be symmeftrical but not when it is to have inverse impedances. The require-
ment is called for in that failure to obey it always leads to the necessity of an
ideal transformer or perfectly coupled inductances. On the other hand, it does
not appear to be sufficient to insure that inverse impedance networks can be
realized without these devices, although they are not required in the filters com-
monly encountered.

54



By way of illustration consider the special case of the low-pass filter.
For a symmetrical low-pass filter
2

2 _ wlel — o) o ( —_@T
e 14 [So 0= b U ad (44)

in which the w,’s, ».’s and S; are arbitrary constants. Similarly, for a
low-pass filter of the inverse impedance type producing 1nﬁmte loss at
infinite frequency,

% 4R1R2 (w? - wg) v (wvzl - wﬂ) 2\
¢ = (By 4+ Rz)z{l + [SO 1 - V?wg) (1= V,2,_1w2):| j (45)

Making each w, in these expressions less than w. and each », less than

l, where w, is the desired effective cutoff, leads to the type of low-pass
We

filter characteristics illustrated in Figs. 17A and 17B for the case of
n = 3. The insertion loss characteristics illustrated can normally be
realized with the ladder networks indicated in Figs. 18A and 18B,
respectively.
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Fig. 17. Illustrations of the general form of filter characteristics obtained with
symmetrical and inverse impedance networks
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Fig. 18. Network configurations corresponding to the filter
characteristics of Fig. 17
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Decreasing the constant Sy in the above expressions always decreases
the pass band distortion but also decreases the suppression of attenua-
tion band frequencies other than frequencies of infinite loss. This
constant is normally made as large as is consistent with the permissible
pass band distortion in order that the required suppression of unwanted
frequencies may be obtained with a network of minimum complexity.”
Zero loss at zero frequency, which is not necessarily produced by filters
of the inverse impedance type, can always be obtained by properly
choosing the terminations R; and Re.

Tchebycheff Pass Band Parameters—Definition

Insertion loss functions of the rough filter type described above are
characterized by the appearance of equal minima at arbitrary pass band
frequencies and of infinite loss points at arbitrary attenuation band
frequencies. Particularly useful filter characteristics and also particu-
larly simple design procedures can be obtained by requiring the fre-
quencies of minimum loss to be so chosen that the maxima occurring
between the equal minima are themselves all equal. This leads to the
type of loss characteristics illustrated in Figs. 19A and 19B for the
special low-pass filters considered previously.

It is usually expedient to require also that the loss at each effective
cutoff shall have the same value as at the equal maxima, as indicated
in Fig. 19. In the case of inverse impedance filters transmitting zero
or infinite frequencies, it is also normally advantageous to require the
insertion loss to have the value zero at the equal maxima as well as at
zero or infinite frequency, as in Fig. 19B. In the design of all types of
filters commonly encountered, the addition of these restrictions to the
requirement, of equal maxima leaves the effective cutoffs and frequencies
of infinite loss all arbitrary but fixes the pass band frequencies of mini-
mum loss uniquely in terms of these parameters.”” The characteristics
obtained are the best for meeting efficiently the common type of filter
requirements setting limits on permissible distortion which are constant
at all pass band frequencies.

89 The choice of Sp is also sometimes influenced by the desire to realize the
insertion loss with a ladder with no coupled inductances. Normally, however,
coupled inductances are unnecessary even though So is given the most advan-
tageous value from the standpoint of loss characteristic. This will be explained
later.

70 The situation becomes more complicated only in such rare cases as multi-
band filters not derivable from simpler filters by means of frequency trans-
formations.
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The “equal ripple” pass band characteristics described above can be
said to approximate constant losses in the Tchebycheff sense, while the
corresponding pass band frequencies of minimum loss can be referred
to as Tchebycheff pass band parameters. This means merely that the
frequencies of minimum loss are chosen in such a way as to give the
least maximum deviation from constant losses at pass band frequencies,
other parameters being considered fixed.

The use of Tchebycheff parameters in network theory was first intro-
duced by Cauer (16), who applied them to the design of image parameter
filters. Filters satisfying the Tchebycheff pass band requirements of
the insertion loss theory, however, are more nearly analogous to general
image parameter filters than to Cauer’s special Tchebycheff parameter
type. A closer parallel to Cauer’s use of Tchebycheff parameters is

(A) (&

/

INSERTION LOSS
INSERTION LOSS QL

= ~¥oc @
Am=-0Lp

Fig. 19. Illustrations of the form of filter characteristics obtained by
using Tchebycheff pass band parameters

offered by the simultaneous requirement of Tchebycheff attenuation
band and pass band parameters, which will be described later.

Tchebycheff Pass Band Parameters—Theory
Tchebycheff pass band parameters can be obtained by using the
following type of insertion power ratio. '

€ = All + (€ — 1) cosh® (©))]. (46)

4R, R,
(B + R,)?
the equal maxima and equal minima of the pass band insertion loss char-
acteristic, as indicated in Fig. 19; and ©; is a function of frequency meet-
ing the following requirements: First, ®; must be such that cosh (0;)
is an odd or even rational function of frequency, depending upon

In this expression, A is as before; a, is the difference between
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whether the power ratio is to be appropriate for symmetrical or inverse
impedance filters; second, ®; must be pure imaginary at all pass band
frequencies and must have the form (a; 4+ nas) at all attenuation band
frequencies, where «; is not only real but also is infinite at various
arbitrary frequencies.

It is almost obvious that the above requirements on 0; lead to the
desired type of insertion loss characteristics. At pass band frequencies,
O; takes the form 8, leading to the power ratio

¢ = A[l + (& — 1) cos® (B1)]. (47)

Since the value of cos® (8;) must lie between zero and unity, the corre-
sponding value of « must lie in a range of amplitude «, . On the other
hand, at attenuation band frequencies

¢ = A[l + (& — 1) cosh® (a))]. (48)

This requires « to approach infinity when «; approaches infinity. The
only real problem is how to choose ®; in such a way that cosh (0;) is
an odd or even rational funection of frequency.

The forms ¢8; and (ar + nwi) assumed by ©; at pass band and
attenuation band frequencies, respectively, suggest that ©; may be
similar to the image transfer constant of an image parameter filter.
An analysis of the properties of general image transfer constants shows
the following statements to be correct. First, if ©; is obtained by
adding gw to the image transfer constant of any filter (of pure react-
ances) with inverse image impedances, cosh (0;) will be an odd rational
function of frequency. Second, if ©; by itself represents an image
transfer constant of any symmetrical filter, cosh (®;) will be an even
rational function of frequency.” If the theoretical pass bands of these

"1 These relations follow directly from the following equations, which can
readily be derived by means of elementary network theory:

R '\/ZHZH
cosh (@ + z2> =1 Zon

—Z
cosh (@) = 4/5 [J]
7 | Zow

. in which Zr; and Zr, are the image impedances of a filter with transfer constant
® while Zo1» and Zo; are corresponding open-circuit transfer and driving-point
impedances. Bode exhibits equations very similar to these. See, for instance,
equation (30) on page 43 of his “General Theory of Electric Wave Filters (4).”
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image transfer constants coincide with the desired effective pass bands
of the insertion loss filters, ®; will also assume the required forms 8;
and (a; + nwt) at pass band and attenuation band frequencies. As a
result, the well established theory of the image transfer constants of
image parameter filters of the inverse impedance and symmetrical types:
can be applied directly to the design of insertion loss filters of the:
symmetrical and inverse impedance types, respectively.

Tchebycheff Pass Band Parameters—Fundamental Design Procedure

In accordance with the above principles, the design of a filter with
Tchebycheff pass band parameters on the insertion loss basis is carried
out in terms of the image transfer constant of a hypothetical image
parameter filter. It should be borne in mind, however, that there is.
no direct connection between the element values of the reference filter
and those of the actual filter. The reference filter involves sections
with matched image impedances, or the equivalent, while the actual
filter doesnot. In addition the reference filter is normally of somewhat
greater complexity than the actual filter.”” The reference filter is intro-
duced at all only because its transfer constant is well understood and
happens to have a functional form which facilitates the determination
of the insertion loss of the actual filter.

The configuration of the reference filter corresponding to an actual
filter of prescribed configuration is chosen in accordance with the require-
ment of equal or inverse image impedances and of a one to one corre-
spondence between the attenuation peaks of the reference filter and all
the frequencies of infinite loss of the actual filter. Since the image
impedances of the reference filter are only required to be properly
related, a number of configurations are always possible.

By way of illustration, the two low-pass configurations used previously
as illustrative insertion loss filters are shown in Fig. 20 in comparison
with the simplest corresponding reference filters. It is seen that each
reference filter is obtained by adding a constant-k half-section to an
image parameter filter of the same configuration as the corresponding
actual filter. The added half-sections supply the infinite loss points at
infinity due to the corresponding poles of the series branches of the
actual filters. More generally, in the case of all types of filters com-
monly encountered the reference filters can be obtained by adding

2 This is because the total insertion loss of the actual filter is determined by
the transfer constant of the image parameter filter, including infinite loss points
corresponding to the reflection peaks of the image parameter theory.
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similar constant-k half-sections of the proper types to reference filters
of the same configurations as the actual filters.”

When it comes to the choice of the arbitrary constants of a reference
filter in such a way that the corresponding actual filter will meet design
specifications of the type ordinarily encountered, the procedure is actu-
ally simpler than if the reference filter itself constituted the final net-
work. In the first place, the theoretical pass band of the reference
filter is coincident with the effective pass band of the actual filter, it
being unnecessary to make any allowances for ranges of high reflection
losses near theoretical cut-offs. In addition, the pass band distortion
a, can be chosen directly, rather than reflection losses due to variations
in the image impedances which must be corrected for interaction effects.
Finally, at attenuation band frequencies at which even moderate in-

ACTUAL FILTER REFERENCE FILTER

Ppro)
(o, T -T T O O T T : I— 0
o 1 1 o O 1 1 T o}

Fig. 20. Tllustrations of reference image parameter filters

sertion losses are obtained, a good approximation to the loss can be
computed more easily than in the case of an image parameter filter,
which requires reflection losses to be added to the image attenuation.
This computation is carried out by means of the following approximate
formula which ean be derived from equation (48) by first assuming that
1

Kez‘" and ¢*7 are both large compared with unity and then expressing
o in terms of decibels rather than napiers:

o — ap = [ar + 10 logyp (€7 — 1) — 6.02] db (49)

where a,, is the minimum pass band insertion loss, which is negative-
or zero since it amounts to 10 logw (A) db, while «y is identical with
the image attenuation of the reference filter.

75 Exceptions to this general rule are possible but are not apt to be encountered
in ordinary filter design problems.
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After the arbitrary constants have been chosen, the function cosh (©;)
appearing in (46) can readily be replaced by the equivalent odd or even
rational function of frequency. In the case of low-pass filters, for in-

2
stance, if x is used to represent 1— C—U—; the function cosh (0;) turns.
&)

out to be

H(mu+x) +II(mv_X)
h ®I —_ ‘ T
cosh (8)) 2 I;]: I

In this equation, w. represents the value of » at the cutoff while the
m,’s represent the ‘“m’s” determining the attenuation peaks corre-
sponding to the various half-sections of the reference image parameter
filter, there being one factor in each product corresponding to each
half-section. When cosh (0;) is a rational function of w, m,’s different
from unity oceur in identical pairs, corresponding to halves of m~derived
full sections in the reference filter. Each such pair is related to one of
the »,’s in the expression of the form (44) or (45) for the power ratio of
the actual filter by the expression

ve = (1/w) V1 — m2 (51)

Special Formulae Aiding Root Extraction

After cosh (6;) has been replaced in (46) by the equivalent rational
function, corresponding networks can always be designed by means of
the general theory of symmetrical and inverse impedance networks
described previously. The use of Tchebycheff pass band parameters,
however, permits the more general design procedure to be considerably
simplified by the introduction of additional special formulae. In par-
ticular, the required root extraction can be expedited by the use of
special formulae giving good approximations to the required roots.
How this is accomplished is described briefly below.

The required roots are those of equations of the form

1 == 4+/g% _ 1cosh (B) =0 (52)

(50)

expressed as a function of p = . In other words, the problem is to
calculate the values of p corresponding to the values of ©; determined by

1
7 These are obviously factors of the function Kem determined by (46). In

the case of symmetrical filters only one choice of sign need be considered, the
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If the reference image parameter filter is made up of identical m-de-

rived sections or half-sections, ®; will take the form (n8,) or (n@o + E'A),

@; = cosh™ [ el :l (53)

in which @ represents the transfer constant of a single section or half-
section. When the reference filter is not actually made up of identical
sections, ®; can normally be approximated over a portion of the p plane
including the roots of (52) by means of the @;function representing a
reference filter of this special type. In ordinary design problems it is
only necessary to replace the ‘“m’s” describing the various sections of
the reference filter with a single new “m’ representing their mean.”
Since p can normally be expressed as a simple function of 0, it follows
that approximations to the roots of (52) in terms of p can ordinarily

be computed by replacing ©; by (n®,) or (n@o + 7251,> in (53). When ®,

is the transfer constant of an m-derived low-pass half-section of “‘m”
equal to my , for instance, the approximations to the roots of (52) can
be calculated by means of the following formula in terms of the values
of © determined by (53):

_ w, sinh (Oy)
V1 — (1 — md) cosh® (8y)

(4 (54)

in which the sign of the square root must be such that its real part is
positive.” '

It can readily be shown that the approximations to the roots described
above can be expected to be reasonably good in ordinary filter design

corresponding roots being those of (P -+ pB’), which are required in forming
(41). In the case of inverse impedance filters the roots corresponding to one
choice of signs are the conjugates of those corresponding to the other.

7 The approximating ©r function does not have to represent a symmetrical
or inverse impedance filter as does the actual ©r function. In the case of low-
pass or high-pass filters, the harmonic mean of the “m’s’’ appears to have par-
ticular advantages. The same thing is true of band pass or band elimination
filters if they have symmetrical loss characteristics permitting the m’s to repre-
sent the derivation of confluent sections from constant-k sections.

76 Pure imaginary values of the square root, for which the sign is not defined,
are not encountered in problems in which (54) gives reasonable approximations
to the required roots.
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problems. KExperience has shown that they are normally good enough
for well-known root improvement methods to be applied directly to the
determination of the actual roots to any desired precision. It also
turns out that the approximate roots are of such a form that special
methods can be used to obtain second approximations before the appli-
cation of general root improvement methods.”

Other Special Formulae

Various other special formulae can be derived to facilitate the design
of filters on the Tchebycheff pass band parameter basis besides those
expediting the root extraction. The reflection coefficients, for instance,
which measure the departure of the driving-point impedances from the
corresponding terminating impedances satisfy the following limit at
pass band frequencies: ’

e ER (55)
in which Z is either driving-point impedance and R is the corresponding
termination.

A rough estimate of the variation a4 of the insertion loss over the pass
band which will be produced by parasitic dissipation in a low-pass or
high-pass filter is usually furnished by the highly approximate relation,™

e =1 + _‘QiE coth [:!: COth_l (eap)] (56)
Q7Tm0 n

In this expression @ is the harmonic mean of the magnitudes of the react-
ance-resistance ratios of all the inductances and capacities, evaluated
at the cut-off frequency; mo represents the harmonic mean of the “m’s”
of all the half-sections in the reference image parameter filter, and n
is the total number of half sections in the reference filter.

77 This is accomplished by using a simple transformation of variable which
transforms the approximate roots into the n-th roots of a constant. One method
of obtaining sécond approximations amounts to the use of Newton’s method in
conjunction with Fry’s isograph. Although this machine is primarily intended
for general root extraction purposes it is also convenient for applying Newton's
method to the improvement of roots approximated by quantities which are all
of the same magnitude.

78 This equation furnishes even rough estimates only in the case of filters
meeting ordinary specifications, particularly as regards sharpness of cutoffs and
non-dissipative pass band loss.
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The actual loss e, produced by a low-pass or high-pass ladder filter
at a frequency of infinite theoretical loss not too far removed from the
cutoff frequency can be estimated by means of the following formula:

g 2m3Q a’
e =D e 614
In this equation, m, is the “m’ corresponding to the particular peak
frequency considered and «' is calculated by subtracting the attenuation
of the corresponding section of the reference filter from the non-dissipa-
tive insertion loss of the actual filter and evaluating the difference at
the peak frequency. ¢ is now best chosen as the mean “Q” of the
particular elements of the ladder network whose resonance produces
the peak, the ratios being evaluated at the peak frequency.
Ordinarily, equation (56) can be applied to band-pass and band-elim-
ination filters with narrow pass or attenuation bands by merely multi-

plying @ by 72 —J4

, where f.2 and f.1 are the cutoff frequencies and @

is now evaluated at the mean frequency of the pass or attenuation band.
This assumes, however, that the loss characteristics are at last approxi-
mately symmetrical on a logarithmic frequency scale. Equation (57)
can also be applied to these filters provided the peak frequencies con-
sidered are not too far removed from cutoff frequencies. This applica-

. : o foo — fafr| o et 4
tion is accomplished by multiplying @ by L_________’ in which f is the
2foo \/fc2fcl

peak frequency.

Comparison of Actual Performance of Tchebycheff Pass Band Param-

eter Filters with That of Image Parameter Filters

From the standpoint of actual performance, a Tchebycheff pass band
parameter filter can best be compared with an image parameter filter
producing the same order of magnitude of distortion at frequencies in
the effective pass band. When the constant «, measuring the pass
band distortion of the insertion loss filter is of the order of tenths of a
decibel, for instance, the best comparison is usually obtained by assum-
ing the image parameter filter to have image impedances of the con-
stant-k type. When «, is of the order of hundredths of a decibel or
smaller, on the other hand, it is usually best to assume that the reflection
effects produced by the image parameter filter at pass band frequencies
are reduced by the use of image impedances including impedance con-
trolling factors.
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The comparison is most clear cut when «, is of the order of the dis-
tortion due to an image parameter filter with constant-k image im-
pedances. Recall that the reference filter used in designing an insertion
loss filter is usually obtained by adding a constant-k half-section to an
image parameter filter of the same configuration as the insertion loss
filter. In other words, equation (49) approximating the insertion loss
of an actual filter at frequencies of high loss can usually be written in
the form

o — an = ay + [oo + 10 logy (¢°** — 1) — 6.02]db  (58)

in which a7 is the attenuation of an image parameter filter of the same
configuration as the actual filter while «y is the attenuation of a con-
stant-k half-section. The bracketed term in this equation is analogous
to the reflection losses that would be added to the attenuation of the
image parameter filter in computing its insertion loss from its attenua-
tion ;. These two corrections are of the same order of magnitude
when «, is of the order of the distortion that would be produced by the
image parameter filter at frequencies in its effective pass band. This
is illustrated by actual curves of the two corrections in Fig. 21, assuming
low-pass filters.

Although the insertion loss filter described above and the corre-
sponding image parameter filter of the same configuration produce
insertion losses of the same order of magnitude at frequencies of high
loss, their pass band loss characteristics differ in one important respect.
The effective cutoff of the insertion loss filter coincides with the theo-
retical cutoff of the image parameter filter, while the effective cutoff of
the image parameter filter normally occurs at a frequency at least 10
per cent lower.” This means that if the image parameter filter were
to be redesigned so as to have the same effective cutoff as the insertion
loss filter the theoretical cutoff would have to be moved much nearer to
the attenuation peaks. If the theoretical cutoff were originally within
20 per cent of an attenuation peak, for instance, it would normally have
to be moved to within 10 per cent of the peak. This change would
produce a marked reduction in the attenuation band loss, as is indicated
by a glance at a set of attenuation curves for filters of different peak
frequencies, such as that exhibited by Shea (17).

As is indicated by the above discussion, insertion loss filters of the

79 The effective cutoff of the image parameter filter can of course be moved
closer to the theoretical cutoff if impedance controlling factors are used but this
requires an increase in network complexity.
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Tchebycheff pass band parameter type normally represent a substan-
tially more efficient use of the elements than image parameter filters
when the pass band distortion is to be of the order of tenths of a decibel.
The same general situation usually exists when the pass band distortion
is to be substantially lower, calling for an image parameter filter in-
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Fig. 21. A comparison of the corrections involved in the determination of the
insertion losses of low-pass filters of the Tchebycheff pass band
parameter and image parameter. types

volving impedance controlling factors, but not necessarily to the same
extent.

Dependence Upon «, of Positiveness of Ladder Elements

In Part II certain conditions were pointed out which are sufficient
to insure that a mid-series low-pass ladder will not include negative
inductances requiring the use of coupled coils. The first of these re-
quires the frequencies of infinite loss to be greater than all the finite
poles of at least one of the open-circuit driving-point impedances. The
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second requires the particular frequencies of infinite loss corresponding
to the shunt branches nearest the terminals to be also equal to or greater
than all the roots of the corresponding open-circuit impedances. As
would be expected, the open-circuit impedances of a Tchebycheff pass
band parameter filter vary in much the same way as those of a corre-
sponding image parameter filter producing a somewhat similar loss
characteristic. Specifically, a good comparison is usually obtained when
the two filters produce the same order of magnitude of pass band dis-
tortion and are described by impedances which vary in the same manners
at zero and infinite frequencies, rather than in inverse manners. Thus
a study of the impedances of image parameter filters gives an indication
of when coupled coils may be required in insertion loss filters.

The open-circuit impedances of an image parameter filter are given by

Zy = Z; coth (O) (59)

where Z, is either open-circuit impedance, Z; is the corresponding image
impedance, and © is the image transfer constant. Since coth (@) is
finite in attenuation bands, the only roots and poles of the open-circuit
impedances occurring in attenuation bands are roots and poles of the
image impedances.

A mid-series low-pass image impedance of the constant-% type has no
root above the cutoff frequency and has no pole except at infinity. It
follows that low-pass filters of the insertion loss type and filters related
to them by frequency transformations can be expected to be realizable
with ladders without coupled coils whenever the pass band distortion
is of the order of that produced by image parameter filters with con-
stant-k impedances.

When a single impedance controlling factor is considered, a mid-series
type of low-pass insertion loss filter must be compared with an image
parameter filter of the so-called mid-shunt m-terminated type, which
produces an image impedance with a pole at infinity.® In this case,

80 The well known ladder form of a symmetrical mid-shunt m-terminated
image parameter filter has the general mid-series low-pass configuration except
that the terminal series inductances do not appear. The insertion power ratio
of a general mid-series low-pass ladder, when expressed in the form (35), has
ag many constants as there are elements in the network. It turns out that
removing the terminal series branches leaves the form and degree of the power
ratio unchanged, the only result being changes in the numerical values of the
constants, which are greater in number than the elements of the “reduced’” net-
work. Thus the mid-shunt m-terminated image parameter low-pass filter can
be described as a special case of the general mid-series low-pass configuration
in which the terminal series inductances have the value zero.
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the open-circuit impedances of the image parameter filter will have roots
in the attenuation band but no poles except at infinity. Thus when an
insertion loss filter produces a pass band distortion comparable with
that obtained with image impedances each including a single imped-
ance controlling factor, it is to be expected that no coupled coils will
be required provided the frequencies of infinite loss produced by the
terminal shunt branches are sufficiently high.

When two or more impedance controlling factors are included in each
image impedance, there will be poles in attenuation bands and the
sufficient conditions for elimination of coupling will be violated unless
all infinite loss frequencies are sufficiently high. This does not mean,
however, that coupling will necessarily be required whenever there are
infinite loss frequencies near the cutoff, since the above conditions are
sufficient but not necessary for its elimination. It merely means that
the possibility of required coupling must be considered.

The general rule is obviously that reducing the pass band distortion
a, always makes the necessity of coupled coils more probable. For the
range of values of @, normally of interest it can usually be assumed that
no coupling will be necessary, but unusually small values of a, may
lead to its necessity.™

Simultaneous Attenuation Band and Pass Band Tchebycheff Param-

eters

In many filter design problems, the minimum permissible suppression
of unwanted frequencies is constant over prescribed effective attenua-
tion bands at the same time that the maximum permissible distortion
is constant over prescribed effective pass bands. In many such prob-
lems, the most efficient use of the arbitrary constants is obtained by
requiring Tchebycheff attenuation band parameters as well as Tche-
bycheff pass band parameters. In other words, the frequencies of in-
finite loss of the previous theory are required to be so chosen that the
insertion loss' characteristics exhibit equal minima between the fre-
quencies of infinite loss as well as equal maxima and equal minima in
the pass bands. The simplest illustration is the design of a low-pass
filter with an effective pass band extending from zero frequency to some
prescribed frequency fi; and an effective attenuation band extending

81 The values of a, leading to the requirement of coupling are normally ex-
tremely small, but very small values are sometimes required in order to meet
restrictions on permissible impedance variations. As is indicated by (55), the
impedance variations occurring at pass band frequencies approach zero only

as \/ap .
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from a second prescribed frequency f> to infinity. In this special case,
the simultaneous use of attenuation band and pass band Techebycheff
parameters described above leads to a loss characteristic of the type
illustrated in Fig. 22 for a three-section symmetrical filter.
Mathematically, the theory of simultaneous attenuation band and
pass band Tchebycheff parameters is very similar to the Tehebycheff
version of the image parameter theory introduced by Cauer (16). De-
sign formulae for the essential constants such as the frequencies of
infinite loss can actually be derived by combining Cauer’s theory with
the theory of general Tchebycheff pass band parameters described above.
Cauer’s theory leads to image parameter filters characterized by equal
minima of attenuation between attenuation peaks. If one of these is
used as the reference image parameter filter in the design of an insertion

' -\&/_&z_

INSERTION LOSS QU

w[l lwz w

Fig. 22. An illustration of the form of filter characteristics obtained by the use
of both attenuation band and pass-band Tchebycheff parameters

loss filter with Tchebycheff pass band parameters, equal minima of
insertion loss between the infinite loss points are obtained. The re-
quirement that cosh (@;) must be an even or odd rational function of
frequency and must be infinite at a zero or infinite attenuation band
frequency, however, requires Cauer’s basic theory to be modified some-
what in designing the image parameter filter.*

The similarity of the insertion loss filters to Cauer’s image parameter
filters does not extend beyond the theory involved in the choice of the
design parameters. The insertion loss characteristics produced by the
two types of filters are quite different. Cauer’s theory would lead to
insertion loss characteristics with “equal ripples” in pass bands and with
equal minima between infinite loss points in attenuation bands only if

82 The required modification can be determined by examining Cauer’s various
methods of modifying his theory to apply it to various image parameter problems.
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interaction effects could be neglected at pass band frequencies and
reflection effects at attenuation band frequencies. In actual filters, the
effects of interaction and reflections are sufficient to produce marked
changes in the loss characteristics.” The insertion loss filters, on the
other hand, produce the ideal characteristics exactly, there being no
corrections for such effects as reflections and interaction.*

Direct Derivation of the Theory

In spite of the fact that Cauer’s Tchebycheff version of the image
parameter theory can be used to derive the essential formulae, it is
more convenient to develop the corresponding insertion loss theory by
means of the more direct analysis described below. This analysis yields
the same formulae as Cauer’s theory and also additional useful rela-
tionships. It was used in the original derivation of the theory, which
was carried out before the development of the simple theory of general
Tchebycheff pass band parameters made Cauer’s image parameters
available for the purpose. Since other filters call for a very similar
method of analysis although somewhat different formulae, only sym-
metrical low-pass filters will be described in detail.

Statement of Algebraic Form of the Power Ratio

It will be simplest to begin with the algebraic statement of the inser-
tion power ratio required for simultaneous attenuation band and pass
band Tchebycheff parameters, leaving its justification until later. An
expression for the power ratio exhibiting a simple type of symmetry is
obtained by replacing w by a new variable @ even though it is a low-pass
filter which is under consideration. In the design of a low-pass filter,
Q is defined by

w

Q= 60
— (60)

.8 At a pass band frequency at which the phase is an integral multiple of «
radians, for instance, interaction effects in a symmetrical image parameter filter
are such as to produce zero insertion loss whatever the reflection losses. At
attenuation band frequencies the reflection effects vary from 6db reflection gain
to infinite reflection loss. :

8 Even when dissipation in the elements is considered, it is frequently possible
to modify the insertion loss filters in such a way that the insertion loss character-
istics differ from those of non-dissipative filters only by constant losses. How
this can be done will be explained in Part IV.
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where w; and wy are the values of w at the cutoff frequency f; and the
limit of the effective attenuation band fo. The values of @ at fi and f.

1
are then /% and ——= where

;== (61)

The corresponding power ratio required for a symmetrical filter turns
out to be of the form

Q@ — 9 - (@ —9) ]2 62)

20
¢ _1+|:So(1_9§92)... (1 — Q2Q2)

Consider the bracketed expression in (62). If the constant S, is
omitted, replacing @ by its reciprocal will replace this expression by its
reciprocal. It follows that the requirement of Tchebycheff attenuation
band parameters will be satisfied provided the Q,’s are chosen in such a
way that Tchebycheff pass band parameters are obtained. As would
be expected from Cauer’s image parameter theory, the required values
of the Q,’s are most simply expressed in terms of Jacobean elliptic func-
tions. Specifically

- 20K
Qa_\/k811[2;7————i:—i’k] O'——l,“','l'] (63)
in which the constant % representing the modulus still has the value
fi/f2, while K is the corresponding complete integral.

Proof of Correctness of the Algebraic Expression for the Power Ratio

Suppose the power ratio (62) is transformed by replacing @ by
+/ksn (u, k). The function of u obtained in this way can be simplified
by replacing the €,’s by their equivalents of (63) and then making use
of the summation law for elliptic sines. This procedure permits the
bracketed expression in (62) to be replaced by a product of elliptic sines
showing the power ratio to be determined by the following pair of

equations
o=-t7
=1+ 8 g {k sn’ [(u + 2:"%) k]} (64)

Q = +/ksn (u, k).
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If w is replaced by (u + = ) in the product in the above power

2 4 + 1
ratio the net effect is to replace the factor in ¢ = —7 by one in
o = n -+ 1, the other factors being merely interchanged. The arguments
of the factorsin ¢ = —9and ¢ = 5 4 1 differ by exactly 2K and must
therefore be identical since this is the period of sn’ (v, k). In other

words, the power ratio is unchanged by replacing u by (u + —ZI£~) ,

27+ 1
which amounts to saying it is periodic in u with the period PR
n
The frequency variable © is also periodic in u but has the longer

period 4K.

For real values of u the function sn (u, k) covers the range —1 to +1.
In other words, the corresponding values of Q coincide with the pass
band and its image at negative frequencies. Thus as u increases Q
will vary cyclically over the pass band and its negative image, while.
in each cycle of @ the power ratio will pass through several complete
cycles, i.e., through a series of equal maxima and equal minima. A
more detailed analysis of this situation shows that it requires the power
ratio under consideration to represent at least a special case of Tche-
bycheff pass band parameters.” As indicated above, it then follows
from the reciprocal nature of the bracketed expression in (62) that
Tchebycheff attenuation band parameters are also obtained.”

Determination of the Roots of the Power Ratio and of Related Functions

The periodicity of the power ratio and of © considered as functions
of u simplifies the calculation of the roots of the power ratio involved
in the determination of corresponding networks. Since the period of
the power ratio is a fraction of that of €, as soon as any one root of the

8 The general principle of using periodic transformations in Tchebycheff
parameter problems was introduced by Schelkunoff. Schelkunoff’s application
of the principle to Cauer’s Tchebycheff theory is described by Guillemin (18).

8 The above analysis merely proves the correctness of a particular solution
for the choice of the Q,'s yielding attenuation band and pass band Tchebycheff
parameters. The uniqueness of this solution can be demonstrated, however,
by making use of the following relation, which can be shown to be necessarily
satisfied:

=y Y CHNIN(} S
V(e =y — ki) K V ke — o)1 — k)
in which y represents the bracketed expression in (62) with the constant S
omitted.
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power ratio in terms of 12 has been determined a number of others can
be computed by merely adding multiples of the period of the power
ratio to the corresponding value of w. Actually, it turns out that all
the roots can be found in this way as soon as any one has been deter-
mined. If =tapis used to represent the only real roots, for instance, the
complex roots take the form

— +aocds += '?:WQu

i il
14 at?

g=1,---,n (65)
20K
2+ 1’

W = 1/(1 + ha) (1 +,1;a3)

20K 20K
cd, = en l:-z—m, k] -dn I:m, k]

Assuming a, to be the positive real root of the power ratio, the roots
of the related polynomial (A + pB) appearing in the general theory
of Part I are found by using —as as the real root and replacing =+ap
by —ao in the above formulae for the complex roots.” It also turns
out that the roots of (P + pB’), which are required in the formation
of equation (41) in the determination of corresponding lattices, are
obtained by using -+a, as the real root and replacing *a, by (—)’a
in the above formulae.

where Q, is again \/k sn[ k] while W and cd, are defined by

(66)

Introduction of a Modular Transformation on the Elliptic Functions
Formulae for computing the real zeros -a, and other extremely

useful design relations can be obtained by the introduction of a modular

transformation on the elliptic functions.*® By means of this trans-

87 These formulae of course give the roots in terms of ¢Q, defined as Vs
[O3NOL)

rather than in terms of tw. The transformation from one variable to the other
is carried out at any convenient point in the design procedure, commonly after
the impedances of the final network branches have been determined as funetions
of 19, as in the case of more complicated frequency transformations.

88 The general theory of modular transformations (other than Landen’s trans-
formation and Jacobi’s imaginary transformation) is described in very few
treatises on elliptic functions. It is described in detail by Cayley (19), however,
and also by Jacobi (20), who was the first to introduce it. The use of modular
transformations in connection with the insertion loss theory was introduced by
Norton, who also showed that their use simplifies Cauer’s Tchebycheff version
of the image parameter theory.
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formation, the product of elliptic functions appearing in the power
ratio expression (64) can be replaced by a single elliptic function of a
different modulus. This transformation yields an expression of the
form

=1+ (& — 1) sn2|:(2n + l)u%, k11 67)
Q= +/Eksn (u k)

where K, represents the complete integral of the new modulus &; while
a, is again the magnitude of the equal pass band ripples of the insertion
loss characteristic. The moduli %; and % are uniquely related in the
manner described below. '

Suppose K’ and K represent the complete elliptic integrals of moduli
A/1 — k2 and /1 — %2, respectively, just as K and K; designate the
complete integrals of moduli ¥ and %;. Then the so-called modular

) r
constants g and ¢; are defined as exp (— T %—) and exp <—— g %) , respec-
1
tively. They are uniquely related to % and k; and are required to
satisfy the equation

g=q"" (68)
The above relation depends upon the fact that the equivalent power

ratios (64) and (67) must both have the periods 272—_!K_—1 and 22K’ in
terms of u. The equivalence of the power ratios can be established by
showing that when the periods are the same the roots, singularities,
and behavior at infinity of the functions (¢** — 1) are identical, which
Tequires them to be proportional in accordance with Liouville’s theorem.
The constant or proportionality, which relates Sy of (64) to o of (67),

can be found by ordinary elliptic function analysis.

Relation between Arbitrary Design Parameters

One useful formula that can be derived from (67) is a very simple
relation between the arbitrary design parameters. In the first place,
well-known elliptic function relations combined with the identity of ¢

and ¢ show (67) to be equivalent to
Zap _
& =1+ er-1 = (69)
ki sn® [(277 + Dun=2, k{l
K
\/k sn (uh) k)
U = U + ’LK’
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For real values of w;, the elliptic sines in these equations will vary
between +1 and —1. This requires the corresponding values of @ to
coincide with the effective attenuation band and its image at negative
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Fig. 23. Tchebycheff attenuation band and pass band parameters—approximate
relation between the design parameters

frequencies. It then follows that the loss a, at the equal minima of
the effective attenuation band will be such that

¢t
20 e? — 1
=1+ T
It is obvious from this equation that ki will be quite small in the
case of ordinary filters, for which a, is small and «, large. When ki
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is small, moreover, the corresponding modular constant ¢; approximates
2k: very closely. Introducing this approximation and the identity
of ¢: and ¢™ in (70), assuming ¢"** large compared with unity, and
solving for «, gives

aq = [10 logy (€ — 1) — 10(2q + 1) logw (9) — 12.04] db (71)

This equation is extremely useful in choosing the primary design
parameters. The modular constant ¢ is a measure of &, which is merely
the ratio of the cutoff frequency f1 to the attenuation band limit f;.
Thus the equation relates the sharpness of cutoff, the maximum pass
band distortion «,, the minimum attenuation band loss a, and the
number of ladder sections 5. Aside from this necessary relationship
these parameters are all arbitrary. The function logi (¢) is tabulated
against sin”* k in most elliptic function tables and in addition there are
rapidly convergent series for computing ¢ from % or vice versa.” Values
of a, determined by (71) are plotted in Fig. 23 against sin~ k for various
values of 5, assuming «, to be 0.1 db, together with a curve of the
changes in a, corresponding to changes in «, .

Determination of the Real Roots of the Power Ratio
When k; is as small as (70) requires in ordinary design problems,

sn [(217 -+ 1)u%, k{l approximates sin [(217 + Du %{jl for real values

of u and neighboring complex values. In other words for values of @
not too remote from the pass band, (67) can be replaced by

¢ =14 (&% — 1) sin’ [(21, + Du 2—7}{]
Q = VEksn (u, k).

(72)

The function sn (u, k) cannot normally be replaced by sin I:u 2%{] since

the modulus & represents the ratio of the cutoff frequency to theattenua-
tion band limit and is rarely small.

The above equations can be used to compute the real roots ==ap of
the power ratio, which must be determined before the formulae (65)

8 For a tabulation of logi, (¢) see, for instance, Silberstein’s “Synopsis of
Applicable Mathematics’ (21).
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for the complex zeros can be used. If u is replaced by </, the above
power ratio will be zero at the real value of 4’ determined by

. ) 1
sinh I:(2n 4 Du —2%:] = W—t——i (73)

The real zero ao can be calculated from u’ by the following formula
derived by replacing sn (¢, k) ini+/% sn (7', k) by Jacobi’s well known
equivalent:

_ R —
g = Vs (W, VI F) (74)
en (v, /1 = k2)
While this procedure uses the approximate formula (72) for the power
ratio at an imaginary value of w, this value turns out to be such that
the approximation is reasonably close in ordinary design problems.
Any small*error in gy, moreover, represents merely a small change in
the primary design constant e, or a,. A rigorous formula for %' can
readily be derived from (67) but is relatively complicated in numerical
applications.

Other Special Design Formulae

A large variety of additional rigorous and approximate special design
formulae can be derived by similar methods. These include not only
formulae for such quantities as insertion phase, impedances, etc., but
also equations for determining the constants Q,, ao, etc., in terms of
well-known O function expansions rather than from elliptic function
tables. For the particular elliptic function computations required the
© function expansions are usually easier to use than the tables.”

Inverse Impedance Filters with Attenuation Band and Pass Band

Tchebycheff Parameters

Inverse impedance filters with attenuation band and pass band
Tchebycheff parameters call for exactly the same sort of analysis as
symmetrical filters. The only real difference is in the specific periodic
substitution and elliptic function transformation involved. The sim-
plest formulae are obtained by requiring zero loss at zero frequency and
at the pass band minima rather than at zero frequency, at the cutoff,

9 These © function expansions are the Fourier series representations of the
functions. They are particularly convenient in that the arguments of the trigo-
nometric functions involved depend only on ». The expansions are listed in
various tables of formulae such as Silberstein’s ‘‘Synopsis of Applicable Mathe-
matics” (21).
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and at the pass band maxima. While this leads to a somewhat less
efficient use of the elements it at least permits the terminations to be
equal. The corresponding power ratio turns out to be determined by
the following set of equations

I

=1+ (& — 1) sn’ [(2y,)u ‘% kl]

 _ K
Q= ksnlu, klsn [(u + . ), k:| %)

@ =q"

fi/fe =Fk sn’ [2172; 1 K, k]

In these equations, © and fi, fz are defined as in the case of symmetrical
filters but % no longer represents fi/f2 , being now defined by the last of
these equations.

The more efficient requirement of zero loss at zero frequency and at
the pass band maxima can be satisfied by making linear transformations
on ¢* and @° in these equations. The increased efficiency is indicated
by the corresponding change in the formula for fi/fs, which becomes

fi/f = Esn [2’7 miy'd k} (76)
2

Other Types of Filters

Other types of filters with attenuation band and pass band Tcheby-
cheff parameters besides the low-pass types described above can be
obtained by means of ordinary frequency transformations. These in-
clude high-pass filters and also band-pass and band-elimination filters
with symmetrical loss characteristics on a logarithmic frequency scale.
More general types of characteristics can be obtained by making ra-
tional transformations on the power ratio and on the square of the
frequency, but this usually leads to power ratios not realizable with
networks of the symmetrical or inverse impedence types. Still more
general characteristics can be obtained by combining similar trans-
formations with the use of Tchebycheff pass band parameters but gen-
eral attenuation band parameters.

Instead of transforming the power ratios described previously, the
analysis used in driving them can itself be modified in such a way as to
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lead to new types of loss characteristics. Differences between the
transfer constants of reference image parameter filters with matched
impedances can be used, for instance, in the design of filters on the
Tchebycheff pass band parameter basis.” Similarly, new types of loss
characteristics can be obtained by using different elliptic functions in
(67). Tchebycheff attenuation band parameters can be obtained with
general pass band parameters by merely replacing cosh (8;) by sech (8;)
in (46).

Even when the power ratio is appropriate for symmetrical or inverse
impedance filters, the terminations can both be chosen arbitrarily if the
requirement of networks of these particular types is abandoned.” It is
always possible, for instance, to make one termination zero or infinite.

Part IV. DissipATIVE REACTANCE NETWORKS

The parasitic dissipation which must be present in actual reactance
networks is referred to in Parts I, II and III only in connection with
methods of estimating the effects of the dissipation in networks designed
on a non-dissipative basis. These effects, however, frequently repre-
sent substantial differences between the characteristics actually realized
and those which the non-dissipative design procedure assumes to be
obtained. This makes it desirable to include in the insertion loss theory
a modification applying directly to the design of dissipative reactance
networks.

The logical procedure is to parallel the theory of non-dissipative net-
works with a synthesis theory applying to the design of networks which
are made up of dissipative reactance elements and which produce pre-
seribed insertion loss characteristics when terminated in prescribed re-
sistances. The filter theory of Part III can then be applied to the
choice of loss characteristics provided this can be done without violating
the conditions necessary for the realizability of dissipative networks of
the type required. Even when the configurations are required to be
those which would be used in the absence of dissipation there {requently
turn out to be realizable loss functions at least very closely approxi-

91 This amounts to saying that sections described by negative ‘“m’s’’ can be

included in the reference filters.

4R R,
(B1 + R»)?
assumed by 2% at real frequencies.

92 Provided, of course, is equal to or less than the smallest value
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mating the desired special functions of Part III except for added con-
stant losses.”

The best method to use in designing a dissipative reactance network
depends upon what distribution of the dissipation is required—i.e.,
upon the relative dissipativeness of the various elements to be used.
In the networks encountered in ordinary design problems the dissipation
approximates closely certain very simple distributions for which special
design procedures can be developed. This situation makes it unneces-
sary to develop a perfectly general theory permitting the dissipation
constants of all the elements'to be prescribed independently. Any such
general theory must obviously be undesirably complicated since it must
permit the introduction of a large number of additional arbitrary con-
stants besides those determining the insertion loss function.

Equally Dissipative Inductances and Capacities

The simplest theory is obtained by assuming a dissipative reactance
network meeting the following very special requirements. Each actual
inductance is required to be equivalent to an ideal inductance combined
with a constant series resistance. Similarly, each actual capacity must
be equivalent to an ideal capacity combined with a constant shunt
resistance. Finally, all the inductance-resistance and capacity-con-
ductance ratios are required to be equal, which amounts to requiring
the phase angles of the impedances of all the reactance elements to be
of equal magnitude.

Fundamental Transformation Principle

To understand the design of networks involving the uniform type of
dissipation described above it is simplest to begin by examining the
effect of adding such dissipation to all the reactance elements in any
known network. The determination of the function of p representing
any voltage ratio, impedance, or similar complex quantity describing
the known network is accomplished by properly combining the im-

9 Bode (22) discovered ways of adding resistances to image parameter filters
in such a manner as to reduce the distortion due to dissipation. This procedure
increases the number of reactance elements, however, by requiring certain ele-
ments to be split in two, and in addition it only partially compensates for the
effects of dissipation. Bode also discovered certain general types of equalizers
which can actually duplicate the discrimination characteristies of filters and in
whieh all inductances can be in series with resistances and all capacities in
parallel with resistances and can therefore be permitted to be dissipative. These
equalizers are of the constant resistance type, however, and require approxi-
mately twice the number of elements appearing in non-dissipative filters.
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pedances of the various elements. On a non-dissipative basis, the
1

0
the addition of the uniform dissipation these impedances become

L{p 4+ d) and

reactance elements produce impedances typified by Lp and Upon

m, where d is a constant representing the value
assumed by the equal resistance-reactance ratios at unit w. It follows
that the modification of the complex function corresponding to the
addition of the dissipation amounts to the transformation represented
by the substitution of (p + d) for p.”

It follows from the above principle that the removal of uniform dissi-
pation from all the reactance elements of a network will change each
corresponding complex function by the transformation represented by
the substitution of (p — d) for p. Thus if a network in which the
elements are equally dissipative is to be designed to produce a pre-
scribed complex function it is only necessary to design any network
producing the “predistorted” function obtained by replacing p by
(p — d) in the prescribed function. The prescribed function will then
be obtained upon the addition of the required dissipation.

When the insertion loss function of a dissipative reactance network
is prescribed, the first step is to find the corresponding insertion voltage
ratio exactly as in the design of non-dissipative networks. The pre-
distortion of this voltage ratio and the computation of the corresponding
predistorted insertion power ratio is then followed by the design of a
pure reactance network, to which the required dissipation is finally
added. When the prescribed insertion loss is to be realized exactly,
A—L}; PB iclded by the
method of Part I must normally be modified by the reversal of the
signs of the poles with negative real parts before predistortion, in order
to obtain a predistorted voltage ratio realizable with a pure reactance
network.” In most actual design problems, however, a more efficient
use of elements is obtained by retaining A—:;ﬂ? and only approxi-

mating the rigorous procedure in a manner to be described later, which

the corresponding voltage ratio of the form

9 This transformation, which was originally discovered by Bode, is described
in Guillemin’s ‘“Communication Networks’’ (18)—Chap. VI, footnote on pp.
245, 246.

% Tt can be shown that this change in the original voltage ratio does not change
the corresponding insertion loss but only the insertion phase.
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usually leads to a very good approximation to the prescribed inser-
tion loss.

Arrangement of Design Procedure to Meet Physical Conditions

In accordance with Part I, the realization of a predistorted voltage
ratio with a pure reactance network calls for the following conditions.
First, the predistorted voltage ratio must be expressible in the form
A+ pB .
P
cients such that (4 -+ pB) has no roots with positive real parts. Sec-
ond, the corresponding predistorted power ratio must be positive and

4R, R,
(B: + Ry)?
avoid inefficiency in the use of elements it is also best to require that
(A + pB) and P shall have no common factors except possibly p.”

The usual design procedure is to choose an insertion loss function with-
out regard to dissipation and then to require the dissipation to be small
enough to yield a predistorted voltage ratio with roots with negative
real parts. Replacing p by (p — d) in the original voltage ratio amounts
to adding d to each of the roots and poles. Thus the restriction on the
dissipation requires the dissipation constant d to be smaller than the
magnitude of the smallest real part of any root of the original voltage
ratio, so that the addition of d can not change a negative real part into
a positive real part.

In order to meet the limitation on the magnitude of the predistorted
power ratio an initially unknown constant factor can be included in the
original power ratio. It turns out that this constant also appears in the
predistorted power ratio as nothing more than a simple multiplier and
can thus easily be chosen in such a way that the predistorted power

ARy
(Br 4 Rp)*

If a prescribed insertion loss function is such that the corresponding
A + pB
P

, in which A, B, and P are even polynomials with real coeffi-

no less than at all real frequencies. Third, in order to

ratio is no less than

actual voltage ratio takes the form without use of common

% This is necessary for the exclusion of common factors from the expression
P for the corresponding power ratio. Recall that inefficient networks are usually
encountered when common factors other than constants or p? must be combined
with numerator and denominator of the simplest rational fraction expression for

N
e2® in order to obtain the form P
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factors other than p, the predistorted voltage ratio will not take that
form.” Since this condition requires the finite poles of a voltage ratio
to occur in pairs differing only in sign, it cannot be satisfied both before
and after the addition of d to each of the poles. Modified insertion
loss functions can readily be found such that the predistorted voltage
ratios meet this condition rather than the actual voltage ratios. It is
normally more satisfactory, however, to start with a prescribed insertion
loss function of the previous type and then to realize it only to a good
approximation by means of the procedure outlined below.

A power ratio is first chosen which takes the form -1];2 without use of
identical roots of N and P® except possibly p°. The theory of Part I
is then used to determine the corresponding voltage ratio of the form
A 4+ pB
—p
p by (p — d) in the numerator of this function only, the denominator P
being left unchanged. A corresponding pure reactance network is then
designed, after which the required dissipation is added as before. The
' A + pB

P

The predistorted voltage ratio is next obtained by replacing

voltage ratio actually obtained is a third function derived from

by replacing p by (p + d) in the denominator P.

It follows from the fact that P is real at real frequencies that the
actual power ratio obtained by the above procedure will approximate
the original power ratio % very closely except near the poles. This is
because the first order effect of the substitution of (p + d) for p upon
the magnitude of a function of w is proportional to the derivative of
the phase, while the phase of P is zero at real frequencies.”

Special Case of Filters

The effectiveness of the design procedure described above is illus-
trated by the special case in which the original loss function is formed
by adding a constant loss to one of the functions described in Part II1
as appropriate for filter purposes. In this special case, the maximum

97 Except in the very special case in which P is a constant, i.e., in which all
frequencies of infinite loss oceur at infinity.

98 The relation between the derivative of the phase and the effect of the substi-
tution of (p + d) for p upon the magnitude of a function was discovered by Bode,
who used it in the derivation of his formulae for the estimation of the effect of
adding dissipation to a prescribed network. It is used in exactly the same way
by Guillemin (18) in deriving Mayer’s solution (10) of the same Problem.
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value of the dissipation constant d for which predistortion is physically
possible unusually corresponds to an amount of dissipation which would
produce a pass band distortion of about 6 decibels if the desired voltage
ratio were not predistorted. To avoid practical difficulties it is usually
necessary to keep d well below this physical limit, a margin of perhaps
30 to 50 per cent being usually needed.”

When d is small enough to satisfy the physical restriction, the pre-
distortion of only the numerator of the voltage ratio frequently leads
to a final loss characteristic which differs appreciably from that origi-
nally prescribed only by the substitution of rounded finite peaks for
the infinite peaks in the attenuation band. It is possible, however, for
the loss to be reduced substantially below the original minima between
the peaks over a portion of the attenuation band.

Serious reductions in attenuation band losses can be partly com-
pensated for by starting with complex frequencies of infinite loss so
chosen that one of each conjugate pair becomes real in the final char-
acteristic. If Tchebycheff pass band parameters are used, for instance,
complex m’s can be assigned to the reference image parameter filter.
It turns out that these m’s must be so chosen that the addition of the
required dissipation to the reference filter would produce infinite at-
tenuation peaks. This permits known methods to be used in their
determination.’” It is also possible to obtain better approximations
to non-dissipative filter characteristics by including so-called compen-
sating resistances in addition to dissipative reactances in the networks
producing prescribed insertion losses, but this requires substantial
changes in design procedure.

Unequally Dissipative Inductances and Capacities

Suppose now that the previous requirement of uniform dissipation is
relaxed to the extent of permitting the capacities to include a different
amount of dissipation than the inductances. Except in the design of
such circuits as narrow-band filters, the situation immediately becomes
much more complicated.'” The predistorted voltage ratio correspond-

% As d approaches the physical limit the constant loss which must be added
to the loss function chosen on a non-dissipative basis approaches infinity.

100 The possibility of using complex m’s to obtain infinite attenuation peaks in
dissipative image parameter filters was introduced by Bode (4) and is described
by Guillemin (18).

102 A frequency transformation can be used to transform a low-pass filter of
equally dissipative inductances and capacities into a band-pass filter of series
and parallel resonant circuits resonating at mid-band and with associated series
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ing to the removal of all dissipation from the final network can no longer
be found directly from the actual voltage ratio. In addition, it now
depends upon the assumption of a 4-pole including no resistances other
than those produced by the equally dissipative inductances and equally
dissipative capacities. It turns out, however, that a design procedure
can be obtained by combining the predistortion principle appropriate
for equally dissipative inductances and capacities with an additional
modification of the theory of Part I.

The simplest procedure is to replace the dissipation constants of the
inductances and capacities by constants dy and & representing their
average and one half their difference. The typical inductive and ca-

1
Clp + do—98)°
The predistortion method described above can be used to determine
the voltage ratio that would be obtained upon the removal of the
dissipation represented by do. 'The design problem is therefore solved
if a method can be found for designing a network of impedances of the

types L(p + 6) and 0

Such a design method has been found and turns out to be very similar
to that described in Part I for the non-dissipative case, in which §
is zero.

pacitive impedances then become L(p + do + §) and

0o = 3) producing a prescribed voltage ratio.

Design of Networks of Oppos1te1y Dissipative Inductances and Ca-
pacities
The fact that the above design problem can be solved depends upon
the following properties of networks of impedances of the type L(p 4+ 6)
and ———— o = ! 5 In the first place, the elements of the determinant of
any network of this type can be expressed in the form.

Ly(p* — &) + CL
ij = g (77)
p—290
It follows that the determinant must be equivalent to the product of
(p — 8)7" and an even polynomial in p, where n is the degree of the
determinant. The same statement is also true of any cofactor of the

and shunt constant resistances. If the band is narrow, the resistances approxi-
mate the total effect of dissipation no matter how it is divided between the in-
ductances and capacities.
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determinant provided n is modified to take account of the change in
degree. Thus each open- and short-circuit impedance of a network of
this particular type is equivalent to the product of (p — &) and an
even rational function of p.” In other words, the impedances differ
in form from those of non-dissipative networks only by the substitution
of the factor (p — 9) for p.

The important design formulae are those for determining the open-
and short-circuit impedances as functions of frequency. After these
have been determined the impedances obtained upon the removal of all
dissipation can easily be computed. In accordance with (77), all that
is necessary is to replace the factor (p — 8)~* by p~* in each impedance
and to replace p° by (p® + &%) in the even rational function multiplying
this factor. Formulae for computing the impedances of the dissipative
network are listed below. The derivation will be omitted as in the case
of the non-dissipative networks of Part I since the formulae can be
checked by simple mesh computations.

Particularly simple formulae are obtained by expressing the insertion
voltage ratio in the form

in which A, B and P are even polynomials as before. The additional
polynomials A’ and B’ are then found exactly as in the determination
of non-dissipative networks producing the voltage ratio il_—j;)_pl_? . In
other words, A’ and B’ are determined from the following pair of equa-
tions formed by combining (12) and (13) of Part I:

A"+ pB = J(pi — p) -+ (pn — D)
102 This theorem can also be derived from the following theorem included in

Guillemin’s ““Communication Networks’’ (18)—Vol. II, Chap. X, p. 445. Sup-
pose each element in a network produces an impedance proportional to (p + 2e)

A2 _ p2B2
(79)

1
or TR Then any impedance of the network takes the form of the product
of P+ 2 and an odd rational function of \/(p + 2a)(p + 28). This theo-
? + 28

rem was preceded by a still more general theorem due to Bode which states
that if each element of a network produces an individual impedance proportional
to Z, or Z; any impedance of the complete network will be the product of Z; and

Z
a rational function of —Z—l
2
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In terms of these polynomials, the impedances of the dissipative net-
work are given by

(4 -4+ 8B+ B)

Zo1 = R
ot T -0B+B)
20, = g, AT A4) + 8B+ B)
o (p — (B + B
Do = —2R1 Ry P

(Bi +Ry) (p—90)(B+ B)
p(B — B') + §(B + B') + 264
(p— A+ A4) 4+ 6B+ B)]

(B — B) + &(B + B') + 24
(»—d[A—-A") +6B+B]

7 Bt B (pﬂ(B — B) + 8B+ B) + 26A)
Si2 — 2 (p _ B)P

(80)

Z.s1 =R,

ng = Rz

A very similar alternative set of formulae expressing the short-circuit
impedances more simply rather than the open-circuit impedances can
be obtained by starting with a voltage ratio derived from (78) by
reversing the sign used with 6.

The specific type of voltage ratio function required depends more
upon the particular configuration than in the case of non-dissipative
networks. A mid-series high pass ladder, for instance, will produce an
infinite loss point at p = -+6 while the corresponding mid-shunt ladder
will produce one at p = —4. The exact type of voltage ratio function
required can ordinarily be determined by means of conventional circuit
analysis. Since the dissipation associated with one type of element is
negative, it may be possible for the corresponding power ratio to be less

4R R, ‘
than &+ B
lems, however, it is to be expected that there will be a minimum per-

4R\ R,

(Ry + Ro)*

The determination of (4’ 4 pB’) by (79) is also more restricted than
in the ease of non-dissipative networks. This is because it is the
multiplicity of solutions for (A’ + pB’) which leads to the various non-
equivalent configurations producing a given voltage ratio, while different
configurations which can produce the same voltage ratio on a non-
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missible value somewhere in the near neighborhood of



dissipative basis may no longer have this property after the addition of
the dissipation.

Useful information bearing on the choice of B’ is obtained by examin-
ing the driving-point impedances of a network determined by (80).
Simple circuit analysis shows the corresponding reflection coefficients
to be

Rl-—Zl_p—B(AI-*—pB’)_i
p

Ri+7Z, A+ pB

1 1 P +p (81)
Rz——Zz=p—6<——A’+pB’>_§_

Ry + Z, Y4 A+ pB 4

These formulae indicate that at least one of the driving-point imped-

ances will be the negative of the corresponding termination at zero
! 7

A A . B
frequency unless o and »B approach zero at that point and unless B
!
approaches —1. If can be shown that i, and A will approach zero
pB »B
7

B . .
and 53 will approach =1 provided zero frequency represents an even

order pole of the voltage ratio (78), or else a point at which it is finite.
The above conditions will then be satisfied by the proper choice of the
sign of B’, which (79) leaves arbitrary.

Other Types of Uniformly Dissipative Networks

Similar methods can be used in the design of dissipative reactance
networks in which each element is equivalent to an inductance or capac-
ity combined with both series and shunt constant resistances, all ele-
ments of each kind being equally dissipative at all frequencies. This
permits the simulation of the variation of dissipation with frequency
encountered in actual elements.

The effect of removing both series and -shunt types of dissipation
from both kinds of elements in like amounts can be computed by means
of a bilinear predistortion transformation. The removal of the proper
amount of dissipation of each kind leaves a network in which the capac-
itive dissipation is the negative of the inductive dissipation. The
impedances are then represented by products of (p — & — ¥p”) " and
even rational functions of p, where 6 and v depend only upon the dis-
sipation constants. Methods similar to those described previously show
that the corresponding impedances can be determined by replacing é by
(5 + vp) in (78) and (80).
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Theoretically, networks of still more complicated elements can be
designed in exactly the same way. The only requirement is the exist-
ence of a predistortion transformation producing a predistorted voltage
ratio which can be realized with a network of two kinds of elements such
that the ratio of their impedances is proportional to an even rational
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Fig. 24. A) Design specifications—When 0 < f < fop, fgl <f< fgl, or
foa <[ < o, the discrimination characteristic must lie in a shaded area. (Dis-
crimination = insertion loss minus an arbitrary constant loss.)

B) Form of discrimination characteristic meeting the design specifications.

function of frequency and such that the inverse of the predistortion
transformation leaves them physical impedances. The open- and
short-circuit impedances are computed by replacing é by the proper even
rational function. The principal difficulty is the determination of the
required form of voltage ratio and the advantageous choice of a specific
function of this form.
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Concentrated Dissipation

The only non-uniformly dissipative networks which are commonly
encountered approximate non-dissiptative networks to which constant
resistances have been added at only a few points. Methods similar to
those described above do not apply to these networks. Successive
approximation methods for correcting for the effect of adding the
resistances have been used successfully but are too complicated to be
included here.

ILLUSTRATIVE NUMERICAL DESIGN

In the introduction, the specific design procedure appropriate for
filters of a special illustrative type was outlined in order to motivate the
development of the general theory. By way of conclusion, an illustra-
tive numerical design will now be described briefly in order to clarify
further the way in which the theory can be applied to actual design
problems. The filters considered in the introduction were low-pass
filters having the mid-series low-pass ladder configuration and satisfying
the requirement of simultaneous attenuation band and pass band
Tchebycheff parameters. The numerical example which will be con-
sidered now is the design of a band-pass filter which is related to one of
these low-pass filters by the frequency transformation principle described
in Part III.

Suppose that a band-pass filter is to be designed to meet the following
specifications:

A) Frequencies to be transmitted—10.0 ke to 12.5 ke

B) Frequencies to be effectively eliminated—O0 to 9.2 ke, 13.5 ke to «

C) Pass-band distortion—<0.4 db

D) Discrimination against unwanted frequencies—>50 db (82)

E) Dissipation compensation to be sufficient to lead to readily
realizable elements

F) Final network to be a ladder involving no transformers or
coupled coils

Requirements A through D are indicated graphically in Fig. 24A.
Using the notation indicated in Fig. 24A the critical frequencies
for, foa, fon,s 32 satisfy approximately the equation

fouftn = foafte (83)
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while the discrimination requirement in (82) is the same for both
attenuation bands. This amounts to saying that the above loss require-
ments are symmetrical on a logarithmic frequency scale about the mid-

band frequency V' foufta. This symmetry makes it possible to simplify
the design procedure by first designing a low-pass filter and then con-
verting it to a band-pass filter by means of a frequency transformation.
Due to the uniformity of the discrimination requirement at all attenua-
tion band frequencies, the low-pass filter can be designed by the straight-
forward method of simultaneous attenuation band and pass band
Tchebycheff parameters. The final loss characteristic then takes the
form illustrated qualitatively in Fig. 24B for the special case in which the
low-pass filter includes two sections.

The first operation in the design procedure is the choice of the arbi-
trary constants of the low-pass filter theory subject to the specificatons
to be satisfied by the final band-pass filter. This choice is guided by the
following considerations:

The maximum pass band distortion e, and the minimum attenuation
band discrimination «, are the same for both the low-pass and the
band-pass filters since their loss characteristics differ only as to the
frequency scales. The number of sections 7 is also the same for the two
filters provided sections of the 6-element type of configuration are
considered in the band-pass case. Finally, it can be shown that the
constant k measuring the sharpness of cut-off obeys the relation

L sy (84

in which fa , fur , ete., are defined by Fig. 24B and are themselves related
by
Jufa = feofa . (85)

In accordance with Part 111, the constants o, , aa, k, 5 of the low-pass
theory are not all arbitrary but must be related by (71)—i.e., by

ag = [10 logn(e*® — 1) — 10(2n + 1) logw(g) — 12.04] db  (86)

in which log(q) is a quantity which is tabulated against sin~'% in most
elliptic function tables.

A choice of constants which is consistent with (85) and (86) and with
the original specifications in (82) is as follows:
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k= 0.62

n =2

ap = 0.30 db

a. = 52.4 db (87)
fa = 9.96 ke

S = 12.54 ke

Ja2 = 9.2872 ke

fio = 13.4484 ke

These constants fix the final loss characteristic except for changes due
to the requirement of dissipative elements.

After the constants of the Tchebycheff theory have been chosen, the
A + pB
P
accomplished by means of the special formulae for the roots and poles
which are included in the Tchebycheff theory. If p is used to represent
1Q rather than 7w, the voltage ratio corresponding to the choice of con-

stants indicated in (87) turns out to be

Vo _ A+ 2B _ (a0 + p)(oi + 2a1p + p°) (o3 + 2a2p + p°) (88)

Ve P aopip(l + Qip") (1 + 939%)

corresponding voltage ratio is evaluated. This is easily

in which the constants have the following values:

a = 0.37766

a = 0.25943

as = 0.077333

0 = 0.24902 (89)
Q5 = 0.57282

pi = 0.37822

ps = 0.66141

w
The low-pass type of voltage ratio is obtained by defining @ as %——;
102
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as in equation (60) of Part III. The corresponding band-pass type of
voltage ratio is obtained by redefining @ in accordance with the relation

9= % — Wy Wa1
w\/(wbl - wa1) (wb2 - wa2)

in which wa , wn , ete. are the values assumed by w at the frequencies
far, fu , ete., defined by Fig. (24B).

The next operation is the predistortion of the voltage ratio (88) in
order to compensate for the dissipation required in the elements of the
final network. The predistortion is accomplished by replacing p by
(p — d) in the numerator of (88). The constant d appearing in this
transformation is related to the dissipativeness of the final band-pass
filter by

(90)

- Vfali d + do o1
V (for — far) (Joa — fo2) ( ) o)

in which d . represents the mean of the resistance-reactance ratios of the
coils, evaluated at mid-band frequency, and d¢ represents the corre-
sponding mean of the conductance-susceptance ratios of the condensers.
In order to obtain a physically realizable design, d, and d. must be
sufficiently small to render d substantially smaller than a; of (89).
A suitable pair of values is

d, = 0.0100
(92)
de = 0.0025
which yields
d = 0.04263 (93)

In addition to the modification of the voltage ratio (88) by the pre-
distortion transformation described above, a temporarily unknown
constant factor is added to represent an added constant loss. The
general theories of Parts I and IT are then applied to the design of a
corresponding pure reactance network, using the frequency variable ©
in place of w.'™ By choosing the added constant loss and the ratio of
terminations in the proper way, a ladder type of network is obtained

108 If Q is defined as —w—, as for a low-pass filter, it is proportional to w
'\/601 Wy

and can obviously be used in place of it in the formulae of Parts I and II. If
it is defined by (90), as for a band-pass filter, the resulting network is related to
the low-pass network by the frequency transformation principle.
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which includes no transformers or negative impedance branches and
which produces a minimum transducer loss.™ The addition of the

Ry L Rs Ly Rg Ly

Ry, = 0.084427 Ry
Rr =
L; = 1.1834 Ry = 0.050448 R,
\/w1w2
1.8849
: RTI'\/wlwz n
B ’
L, = 0.13211 —/—— R, = 0.0056318 R
\/wlwi
Ry
Ls = 2.3227 R; = 0.099017 By
'\/6010?2
1.7650
Oy = —20% R. = 13.290 R
‘ RT!\/wlwz t n
; RT! 7
L, = 0.32454 = R, = 0.013835 Rr,
Vo wiws
Rry
Ly = 0.85255 —=—— R; = 0.036344 Rr,
W] W2

Provided Rz is in ohms and w;, w» are in radians per second:
Inductances are in henries
Capacities are in farads
Resistances are in ohms

Fig. 25. Preliminary low-pass filter

proper resistances to this network, corresponding to the substitution of
(p -+ d) for p in the impedance functions representing the different

10¢ Reeall that transducer loss was defined in the introduction as the difference

in level between the received power and the maximum power obtainable from the
generator with any passive network.
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branches, leads to a good approximation to the loss determined by (88)
plus an added constant loss.

Ry Ly Cy R Ly Cj Rs Ls Cs
el 'AYA msmend 1 K|
R>
S
;RT1 7
L2
8 Ly €z
Ca Ry Csa Ry

Rry = 0.084427 Rny

3.5282
Ly = 0.057481 R~ Ci= — R: = 0.050448 Rz,
T1
91.556
Ly = 0.0022151 Rn Cy = Ry = 12.445 Ry
Rry
31.605
L! = 0.0064170 Rry cl = S R} = 0.0056318 Rz
T1
1.7976
L; = 0.11282 Rpy Cy =~ 4 Rs = 0.099017 Rr:
R
85.732
Ly = 0.0023656 Rr Ci= 5 R, = 13.290 Ry
' T1
12.865
L] = 0.015764 R cl = = R. = 0.013835 Rn
T1
4.8974
Ls = 0.041411 Ry Ci= & R; = 0.036344 Ry
T1

Provided Ry is in ohms:
Tuductances are in millihenries
Capacities are in microfarads
Resistances are in ohms

Fig. 26. Band-pass filter derived from the preliminary low-pass
filter by a frequency transformation

If a mid-series type of ladder configuration is assumed and if Q is

(6]
defined as 7—, the above procedure leads to the low-pass filter

[ OD)
indicated . in Fig. 25. Transforming this network by redefining Q in
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terms of (90), with fur, fa, ete., fixed by (87), yields the band-pass
design indicated in Fig. 26. The computed loss characteristic of this
network is plotted in Fig. 27. The resistances associated with the
resonant circuits can be approximated with dissipation resistances.
Better approximations can be obtained, however, by replacing the
shunt branches by configurations of the type indicated in Fig. 28, which
can be made very nearly equivalent to them.
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Fig. 27. Transducer loss of the network of Fig. 26 (i.e., insertion loss
plus reflection loss corresponding to inequality of terminations)
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Fig. 28. Alternative shunt branch configuration
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