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Signals at 4, 6, and 11 GHz, lransmilted over a 28.5-mile radio relay
path in Ohio, were continuously monitored during the late summer of 1966.
Previous publications have reported on the observed 4- and 6-GHz multipath
fading statistics, and on the improvements avazlable with space or frequency
diversity. This paper presents data for the 11-GHz transmission, and, in
combination with the earlier results, establishes an empirical frequency
dependence for the amplitude statistics.

A general treatment of the relationships between the factors underlying
mullipath propagation is intractable. However, based on the resulls in
this and other papers, a general relationship is given for the probability
of deep multipath fading which is linear in frequency, cubic in path length,
and vartes with meteorological-geographical factors.

Temporal aspects of the Ohio data were also investigated at all frequencies,
ulilizing both a 1-howr and a 1-day clock time interval. It was found that
the multipath fade time statistic can be described by a single parameter
for either interval. A subset of the multipath fading hours was also analyzed
using a I-minule clock interval, with the result that the difference belween
the minute median fade and the hourly median fade s frequency inde-
pendent, and normally distributed with a standard deviation of 5.5 dB.

I. INTRODUCTION

Although it is a relatively rare phenomenon, multipath propagation
constitutes a fundamental limitation to the performance of microwave
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radio systems. During a period of multipath propagation, the narrow-
band output from a single receiving antenna can be reduced to equip-
ment noise levels for seconds at a time. Corrective measures such as
frequency diversity or space diversity then must be introduced to
provide satisfactory commercial operation. "% Propagation data re-
quired for economical system design and detailed performance estimates
were not available prior to 1966. To fill this need an extensive experi-
mental program was undertaken on a typical radio relay path in Ohio.
Previous studies''*'* have reported on the amplitude statistics obtaining
during multipath propagation at 4 and 6 GHz, both with and without
frequency or space diversity. Data were also obtained for a single
frequency in the 11-GHz band. The multipath fading data for this
signal have now been analyzed and statisties for the total time faded
(P), the number of fades (N), their average duration (f), and the fade
duration distribution are presented in Section IV as functions of fade
depth.

Multipath propagation is by its very nature dependent upon the
operating microwave frequency; the variation of the fading charac-

teristics with frequency has been considered by many investigators®®
with controversial results.* This is not surprising considering the time-
variant, nonstationary behavior of the phenomena. However, the data
obtained in Ohio were extensive enough to give statistical stability
which, with the 11:6:4 frequency sampling, allows a meaningful
comparison in Section V of P, N, and { as functions of frequency.

It is clear that a great deal is known about one path in Ohio. General-
ization of these results to other paths requires an underlying theory.
The experimental data show that P, N, and  can be quite closely
represented by simple, one-term algebraic functions of fade depth. This
agrees with predictions by S. H. Lin” based on analysis of a simple and
plausible analytic model for multipath fading. It is therefore reasonable
to assume that the variation of P, N, and  with fade depth for all paths
subject to multipath fading will have the same functional dependence
as did the Ohio path. A general formulation which includes the most
1mportant path parameters is proposed in Section VI for the coefficient
in the equation relating the total time faded and the fade depth during
the so-called worst fading month. This estimate provides necessary
information for microwave radio system design in the cantinental U.S.A.

The intensity of multipath fading varies greatly, even during the
normally active summer months; during some days there will be exten-

* Reference 5 gives many references on multipath fading investigations.
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sive multipath fading, while on others there will be none. Statistics
for time bases shorter than a month—or the entire 68-day period for
the test reported here—are also of interest. The time faded characteristic
was studied for the 4-, 6-, and 11-GHz signals on both a daily (24-hour)
and an hourly basis. Section VII concludes with a study of minute-by-
minute variations within an hour for a subset of the multipath fading
hours.

All the experimental results mentioned in the preceding paragraphs
were obtained from a data base comprising all the time intervals with
deep multipath fading.” In sum, these intervals were about 15 percent
of the total measurement time. The P, N, and 7 statisties for the re-
maining 85 percent of the time are given in Section VIII for typical
4- and 6-GHz signals. The 11-GHz data for this interval were not
included because of the difficulty in identifying rain attenuation data;
meteorological measurements were not made in conjunction with this
experiment.

II. SUMMARY

Highlights of the results detailed in Sections IV thru VIII are given
in this section. A few definitions are needed first:

L: Normalized algebraic value of envelope voltage (fade depth in
dB = —20 log L)
: Fraction of time 7' that the envelope voltage is <L
: Number of fades (during T') of the envelope voltage below L
: Duration of a fade below L in seconds ({ = average duration)
: I'requency in GHz
: Path length in miles
The major results are:
(7) The 11-GHz amplitude statistics for the data base interval (7T')
of 5.26 X 10° seconds and for fade depths exceeding 15 dB are
P = 0.69L°, N = 12,300L, { = 330L. Also t/1 is log-normal and
independent of L with 1 percent of the fades at any level longer
than ten times the average.
(i7) The P and N statisties for the 4- |, 6- , and 11-GHz data are,
within experimental error, linear functions of frequency given by
P = 0.078fL° and N = 1000fL. The comparable { statistic is
given by [ = 410L.
(77d) An empirical estimate of P for the worst fading month is

e 50 20

P = r[?, L =01
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where 7 is defined as the multipath occurrence factor and is
given by

n o c(i)(pﬂ)(mﬂ)

with

fl average terrain
¢ =14 over-water and Gulf Coast
10.25 mountains and dry climate.

Of the days in the 1966 Ohio data base, about 12 had more
fading than the average while 54 had less. The worst day con-
tained about 48 percent of the total fade time at or below
40 dB while the worst hour contained some 20 percent.

The simple model, P = aL’, can be used to characterize shorter
periods with multipath fading.* The cumulative empirical
probability distribution (c.e.p.d.) with a = a, is for daily fading

Pr(a, 2 A) = exp [—1.2V A(4/f)]
and for the hourly fading with a = a,
Pr (a, = A) = exp [—0.7V A@4/D).

The hourly median fade depth value exceeded by 1 percent of
the hours is 18 dB below free space.

The random variable defined as the difference between the
median for a minute in a fading hour and the median for the
entire hour was found to be normally distributed with zero mean
and a standard deviation of 5.5 & 1.5 dB.

III. EXPERIMENTAL DESCRIPTION’

The data presented were obtained by the MIDAS' measuring equip-
ment at West Unity, Ohio. The basic data consist of measurements of
the received envelope voltages of standard TD-2 (4 GHz), TH (6 GHz),
and TL (11 GHz) signals; Table I is a list of the center frequencies of
each channel. A functional block diagram is shown on Fig. 1. The
4-GHz and 6-GHz channels were standard in-service FM radio channels
with nominally constant transmitted power (0.5 dB). The 11-GHz

* The change in the coefficient from » to a is made to clearl‘)lr differentiate between
the total measurement period and the daily (or hourly) epoch.
t An acronym for Multiple Input Data Acquisition System.
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TaBLE [—RaAp1o CHANNELS MEASURED AT WEsT UNIiTY, OHIO

Frequency
Channel No.* (MHz) Antenna Polarization
4-7 3750 Horn Reflector A%
4-1 3770 H
4-8 3830 \4
4-2 3850 H
4-9 3910 A%
4-11 4070 \Y%
4-6 4170 H
6-11 5945.2 H
6-13 6004.5 H
6-14 6034.2 A%
6-15 6063.8 H
6-17 6123.1 H
6-18 6152.8 ! \%
11-1 10995 [ A%

* The 4-X channels correspond to standard TD-2 radio system signals; 6-X cor-
responds to TH; 11-1 corresponds to TL.

channel was added especially for the test program and was unmodulated,
with the RF equipment housed in an outdoor cabinet.

West Unity, Ohio, was chosen as the site for this experiment because
it is part of a major cross-country route in an area known to suffer
multipath fading. The hop monitored was of typical length—28.5

PLEASANT WEST UNITY
LAKE TOWER TOWER
w-— 28.5 MILES——
WC-281
RADIO STATION BUILDING
7,8,9,11 j
4-GHZ i RADIO CONCENTRATION MIDAS I
GHANNELS: EQUIPMENT SWITCH MIDAS Mo UNcH
(Tp=-2) [1,2,8 |
CHGA-;‘JGNFéIZ_S IS8 RADIO CONCENTRATION I
(TH)  [11,13,15,17 HW"’MENT SWITCH I
c',."AGN';éL RADIO || cONCENTRATION I
(TL) EQUIPMENT [ | SWITCH |

Fig. 1—1966 experimental layout, Pleasant Lake—West Unity.
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miles—with negligible ground reflections. The path clearance was
adequate even for the extreme of equivalent earth radius (k) equal to
two-thirds, as shown on the path profile in IFig. 2. It is believed that
this path is typical of those inland paths subject to multipath fading
conditions.

The MIDAS equipment sampled each signal five times per second,
converted each measurement to a decibel scale, and recorded the data
in digital form for subsequent computer processing (in the absence of
fading the recording rate was less than the sample rate). Further
equipment details are given in Ref. 2.

The data were obtained during the period from 00:28 on July 22
to 08:38 on September 28, 1966. The total elapsed time was 5.9 X 10°
seconds of which 5.26 X 10° seconds was selected for the data base;
the balance was unusable mainly because of maintenance of the radio
equipment or MIDAS. Within the data base, 7.8 X 10° seconds con-
tained all the multipath fading in excess of approximately 10 dB. The
balance of the time, 4.48 X 10° seconds, was categorized as nonfading
time.

A natural epoch for multipath fading is the 24-hour period from noon
to noon. It was convenient to number these periods from 1 to 69 starting
at noon on July 21 and ending at noon on September 28. Here the

NOTE: # INDICATES TREE HEIGHT MAXIMA

WEST PLEASANT
UNITY LAKE

Fig. 2—West, Unity—Pleasant Lake path profile.
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missing end periods from 12:00, July 21 to 00:28, July 22 and 08:38
to 12:00 on September 28 have been assumed negligible. Most of the
multipath fading was found to occur in the period between midnight
and 9 a.m. as will be discussed later. These latter time periods were,
for all practical purposes, subject to continuous measurement for 66 of
the 69 periods. Thus, we reduce the multipath fading data base to
66 nine-hour periods. These were used for channel characterization and
for investigating the daily and hourly statistical properties of multipath
fading.

All fading distributions will be given in terms of the received voltage
relative to the midday normal in dB. The rms variation in the dB
reference level was estimated as 0.8 dB.*

1v. 11-GHz MULTIPATH RESULTS

The 11-GHz data were analyzed in terms of the statistical properties
previously reported for the 4- and 6-GHz data.”* These were (i) the
fraction (P) of 5.26 X 10° seconds that the signal was faded below a
given level L, (77) the number of fades (N) below L, (2i7) the average
duration in seconds (I) of fades below L, and (i) the fade duration
distribution. The data were carefully inspected to insure that only
multipath fading was included and that rain fading was excluded. This
was done by inspection of signal level vs time plots with the determina-
tion made by the frequency of the fading and by comparison with the
4- and 6-GHz data. As in the case of the 4- and 6-GHz data, we were
most interested in fades greater than 15 dB. However, reliable data
for the 11-GHz signal were limited to fade depths of 35 dB because the
reference level of received signal strength was 5-10 dB lower than that
for the 4- and 6-GHz signals.

The data for the fractional fade time are given in Fig. 3. They are
adequately represented by a straight line whose equation is P = 0.69L".
The data for the number of fades are given in Fig. 4 along with the
fitted line N = 12,300L. The data for the average fade duration are
obtained from the ratio of the total time faded to the number of fades
and are given in Fig. 5 along with the fitted line { = 330L. These
variations of P, N, and 7 with L are in agreement with those previously
found for the more extensive 4- and 6-GHz data and are as predicted
from a mathematical model of the multipath fading process.”

The probability that a fade of depth —20 log L dB lasts longer than
{ seconds, i.e., the fade duration distribution, ecan be estimated by
dividing the number of fades of depth L and duration ¢ seconds or
longer by the total number of fades of depth L. A normalization is made
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Fig. 6-—~11-GHz fade duration distribution: probability that the fade duration,
normalized to its mean for a given fade depth, is longer than a given number. Data
pooled for all fade depths greater than 10 dB.

with respect to the average fade duration. The 11-GHz data are plotted
on Fig. 6, using a normal probability scale, for all fades =10 dB. The
data indicate that ¢/f is independent of L and that the probability is
approximately log normal with 1 percent of the fades being longer than
ten times the average fade duration. The line on Fig. 6, taken from
Fig. 40 of Ref. 4, represents the fade duration distribution for the
corresponding 6-GHz data. Thus, the fade duration distributions, when
properly normalized, appear to be invariant with frequency.

V. MULTIPATH EFFECTS AS A FUNCTION OF FREQUENCY

The 11-GHz results of Section IV can be combined with those pre-
viously obtained for 4 and 6 GHz"'* to obtain an estimate of the variation
of the characteristics with microwave frequency. This treatment is
valid because all the data were obtained under identical conditions:
same path, same antennas,* and same time period.

* The different beamwidths of the horn reflector for the three frequencies play a

minor role because the variations in angle-of-arrival of the multipath components
are generally less than the smallest beamwidth, which is 0.6 degree at 11 GHz.
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TaBLE II—MuLTtipATH FADING CHARACTERISTICS

(L =0.1)
Freq
(GHz) P N 7
4 0.2512 3670L 408L
6 0.531.2 6410L 490L
11 0.69L2 12300L 330L

Table II summarizes the 4-, 6-, and 11-GHz results. The tabulated
coefficients incorporate the effects of the environment and frequency.
Plotting them versus frequency (as in Fig. 7) allows us to observe that
the N and P coefficients increase, within experimental error, linearly
with f while 7 is longer at 6 GHz and shorter at 11 GHz with respect
to 4 GHz. Based upon these data, an approximation that { is independent
of f is reasonable. The functional dependence is described by:

P = 0.078fL%, (1)
N = 1000fL, (2)
[ = 410L, 3)

with f in GHaz.

The deviation of the P and N coefficients of Table II from these
empirical equations is less than 41 dB which is within the bounds of
experimental error.” The I coefficients agree with equation (3) within
42 dB. This is satisfactory since the [ data were originally obtained as
the ratio of the P and N data at each fade level; 41 dB variation each
in P and N corresponds to 42 dB variation in 7.

The multiple transmission paths which give rise to the fading effects
are generated by irregularities in the refractivity gradient in the volume
defined by the beamwidths of the two antennas. As the relative path
lengths vary with time the composite received signal may fade due to
destructive interference (or be enhanced by constructive interference).
It is easy to see that a given change in relative path length will cause
more signal variations at higher frequencies because of the proportion-
ally larger phase variations; we have found that the effect in Ohio
in 1966 was linear. There is no apparent reason why this variation with
frequency does not generally apply for multipath fading for a normal
overland path engineered in standard fashion. Also, a linear variation
of P with frequency has been theoretically predicted by C. L. Ruthroff®
from a careful analysis of a simple physical model of multipath fading.*

* The results discussed here predate Ruthroff’s analysis.
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Fig. 7—Coefficients of P, N, and I characteristics versus frequency.

VI. OCCURRENCE OF MULTIPATH FADING

6.1 (Feneral

It is well known that the time (probability) distribution of the
envelope of a microwave signal subject to multipath fading depends
upon path length, path geometry, terrain clearance, type of terrain,
and meteorological conditions in a complex manner. A general treatment
of these relationships is intractable. However, based on the results
discussed in previous sections and in other papers, an engineering
estimate (incorporating the most important factors) of the fade depth
distribution can be made for typical microwave paths for the heavy
fading time of the year, i.e., the so-called worst month fading. In the
results that follow adequate path clearance and negligible ground
reflections are assumed.

6.2 Relation lo the Rayleigh Distribution

Quite often in propagation studies it is assumed that the probability
distribution of the envelope (v) of the received signal is given by the
Rayleigh formula

Pro<L)y=1—¢"
~ I for L<O.l. 4)
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One physical basis of this distribution is the limiting case of the
envelope of an infinitely large number of equal amplitude signals of
the same frequency, but random phase. Since this is a good approxima-
tion in many situations, e.g., tropospheric and mobile radio propagation,
this distribution has seen much use. In the case of line-of-sight micro-
wave radio, this is not a good assumption and the distribution is not
directly applicable. From Table II the results for the fade depth dis-
tribution P vary as L® but with different coefficients.* The coefficient
is generally not fixed, but depends upon the time base of the data, and
upon the particular path parameters. The path parameters can be in-
corporated in the coefficient by expressing the multipath fade depth
distribution as

Pr@< L) =rL L<O01 (5)

where r is defined as the multipath occurrence factor; » = 1 is appro-
priate to the Rayleigh distribution.

6.3 Path Paramelers

As discussed in Section V, r is directly proportional to frequency;
terrain and distance effects have to be incorporated. An engineering
estimate for » can be given as a product of three terms®

r = dd)p1o- ®)
4
where: f is frequency in GHz,
D is the path length in miles,

1  average terrain
¢ =34 over-water and Gulf Coast
10.25 mountains and dry climate.

The terrain effects and the distance dependence are based on applicable
(albeit meager) Bell System data, most of which was acquired at 4 GHz
on paths of 20-40 miles length. The plot given on Fig. 8 extends beyond
this range. Indeed it can be argued that the curves should become
parallel to the abscissa as D decreases (no multipath fading for paths
sufficiently short®) and parallel to the ordinate (saturation) as D inereases.

* An analysis of a mathematical model for multipath fading shows that the deep
i(' %{i(} r(:-}gion of the distribution will be proportional to L? under very general conditions

ef. 7).

t This empirical result for r is partially supported by British data as reported by
I’I(‘. W. Pearson® and is similar to a concise result reported by S. Yonezawa and N.

anaka.®
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The plotted values are certainly upper bounds for either extreme. The
fD? dependence has been theoretically obtained by Ruthroff.’

The engineering estimate, equation (6), indicates that on a path of
above average length, maintenance of the per-hop fading outage
usually obtaining requires compensation for the additional free-space
loss (e« D* and for increased multipath (e« D%, which combine to
impose a D° (15 dB/octave) length dependence.

VII. TIME CONCENTRATION OF DEEP MULTIPATH FADING

7.1 Introduction

The results and estimates already given utilize the entire data base,
thus averaging temporal effects. It is well established that multipath
fading occurs most often at night, with a few nights experiencing
considerably more fading than most of the others. Describing this
variability statistically is the objective here. We consider the fade time
statistic for hourly and for daily periods and the median fade depth
during an hour or a minute.

The analysis includes data from four fade depth values,* 9.8 dB,
20.4 dB, 31 dB, and 40.1 dB (henceforth labeled as levels 1 through 4).
At each fade depth and for each analysis period the fade time for the
seven 4-GHz channels was arithmetically averaged, as was that for the
six 6-GHz channels. The fade time for the 11-GHz channel was used

* The unusual numbers are the result of quantization and calibration.?
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TaBLE III—FapE TiME DAaTA
(Seconds at or Below Given Fade Depth)

Fade Depth
1 2 3 4
Freq Band — _— —_ ——
(GHz) (9.8 dB) (20.4 dB) (31 dB) (40.1 dB)
4 148,427 13,771 1329 135
6 259,933 27,503 2562 312
11 243,977 32,232 2982 *

* No data was obtained at 11 GHz for fade depth 4; see Section IV for further
details.

directly. The resulting data will be referred to as the 4-, 6-, and 11-GHz
fade times respectively. The fade time totals for the entire test period
(5.26 X 10" seconds) are given in Table I1I.

7.2 Distribution by Days—Rank Order Dala

The fade times for fade depths 1-4 were separately compiled for each
of the 66 noon-to-noon periods. As expected there is considerable
variation. As an example, Fig. 9 shows a plot of the 6-GHz fade time
versus day number. Here the value plotted is the ratio of the fade time
for the day to the total fade time, given in Table III, for a fixed fade
depth. Much of the deep fading (levels 2, 3, 4) occurred on days 10,

0,40
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Fig. 9—Daily variation of multipath fading at 6 GHz, 1966 West Unity.
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43, and 58 while the fading time for level 1 was more widely distributed.

The days were separately rank ordered for each frequency and each
level with the variable again being the fraction of the total fade time;
the results are given on I'igs. 10a-c.* A few observations from these
plots:

(7) The worst day fraction increases with level.
(77) The data for level 1 do not fall off as rapidly with rank order
as for levels 2-4.
(177) Long tails in the rank order are prevalent.

Some of the more pertinent statistics are summarized in Table IV.

As already noted from Fig. 9, the bulk of the deep fading occurred
on three days (10, 43, 58). The fraction of the total fading at the sample
levels summed for these three days ranges from 0.55 to 0.74. Day 10 was
the worst day in all cases. It appears that if a day suffered extensive
20-dB fading it also suffered 30- and 40-dB fading, but this indicator
is not valid for 10-dB fading. In fact, about two-thirds of the days had
10-dB fading while only one-third had some 40-dB fading,.

The statistical worst night is of particular interest. Figure 11 is based
upon the observation that the worst day fraction increases with fade
depth. The data points are fairly consistent except for levels 3 and 4 at
6 GHz which, for some unknown reason, do not show the expected in-
crease relative to level 2. The line on Fig. 11 can be used as an estimate of
the worst day fraction as a function of level. This estimate predicts that
for systems with 40-dB fade margins the worst day will have 48 percent
of the total fading within the worst month.t

A different perspective on the daily fading time can be obtained from
I'igs. 12a-e¢, which replot the rank order data on a logarithmice scale
which has the effect of emphasizing the tail behavior. Generally, the
tail is longer for lesser fade depths. It is interesting to compare these
data with the result that would obtain for a uniform fade time distri-
bution: a horizontal line at 0.015 (1/66). This line intercepts the level
2, 3, 4 data in the range of 10-15 days which means that this number
of days had more fading than the average for the entire period while
some 51-56 days have less fading. We shall return to the daily data
in a later section where we shall see that they can be reduced to a more

* The data were plotted for all the days such that the cumulative sum of the
plotted fade times just exceeded 99 percent of the total; note change of scale at
rank order day 5.

t Here we take our statistics as representative of the worst month, the argument

being that our results for a late summer—early fall period are generally comparable
to the so-called worst fading month in a year.
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TaBLE IV—Da1Ly FApE TiME STATISTICS

Fraction of Total
Number Fade Time
of Days Number of
Freq With Fade Worst, Sum of 3 Days to Give
(GHz) Level Time >0 Day Worst, Days | 0.99 of Total
4 1 46 0.125 0.31 35
2 36 0.33 0.56 25
3 30 0.43 0.64 23
4 26 0.48 0.70 19
6 1 46 0.077 0.22 37
2 35 0.30 0.61 22
3 27 0.33 0.73 17
4 24 0.33 0.71 16
11 1 43 0.083 0.22 34
2 35 0.29 0.55 24
3 30 0.47 0.74 21

meaningful form given the appropriate statistical treatment and
mathematical modeling.

7.3 Distribution by Hours—Rank Order Dala

The preceding treatment on daily fade time is repeated here for
hourly fade time. This fade time is expressed as a fraction of all time
during the entire measurement period as given in Table ITI. Of course,
greater scatter can be expected in the hourly data than in the daily data.
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Fig. 11—Fraction of total fade time in worst night, 1966 West Unity.
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Fig. 12b—6-GHz rank order of daily fade times, 1966 West Unity.
Fig. 12¢—11-GHz rank order of daily fade times, 1966 West Unity.
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Figure 13 shows the distribution of fading for levels 2, 3, and 4 for
the 6-GHz channels as a function of the hour of the day. Deep fading
was generally within a 9-hour period between 12 p.m. and 9 a.m. The
hours were rank ordered by level within a particular frequency band
as shown on Figs. 14a—c. The general observations that can be made
are similar to the “days” case:

(7) The worst night fraction increases with fade depth.
(#7) The level 1 fraction does not fall off very rapidly.
(i77) Long tails are even more prevalent than for daily fading.

Some of the pertinent statistics are summarized in Table V.
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TaBLE V—HourLy Fape TiME STATISTICS

Fraction of
Total Fade Time
Number Number of Hours to Give

Freq of Worst | 10 Worst | 0.50 0.90 0.99

(GHz) Level Hours Hour Hours of Total Fade Time
4 1 220 0.027 0.226 33 103 163
2 117 0.107 0.525 10 48 80
3 88 0.192 0.621 7 36 69
4 61 0.222 0.699 5 24 47
6 1 259 0.014 0.128 50 138 206
2 123 0.083 0.5539 9 39 83
3 78 0.123 0.681 5 24 49
4 56 0.126 0.672 6 22 43
11 1 230 0.015 0.136 48 127 189
2 121 0.085 0.495 11 46 88
3 70 0.286 0.694 4 28 53

The worst hour for each transmission band is plotted versus fade
depth in Fig. 15. The data spread is greater than for the days case
(Fig. 11) with 6 GHz again exhibiting the least variation. The line on
Fig. 15 can be used as an estimate of the worst hour fraction as a function
of level. Thus, the worst day (Iig. 11) and worst hour (Fig. 15) estimates

0.30
A
© 4 GHz
028 o 6 GHz
a 1WGHz

FRACTION OF TOTAL FADE TIME

ol ! | | 1 ]

10 1S 20 25 30 35 40
FADE DEPTH IN dB RELATIVE TO MIDDAY NORMAL

Fig. 15>—Fraction of total fade time in worst hour, 1966 West Unity.
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Fig. 16—Fraction of total fade time: level 3 hourly variation on three worst days.

for 40 dB predict 48 percent of the worst month multipath in a single
day with 21 percent in the worst hour.

Days 10, 43, and 58 merit special study since they contain a majority
of the deep fade time. The hourly variation in fade time for level 3 is
given on I'ig. 16. It is obvious from these data that there is no fixed
relation between the frequency bands on an hourly time scale.* The
hour from 2 A.M. to 3 A.M. on day 10 was the worst hour with the frac-
tional fade time ranking with frequency as 11-4-6. However, the hour
from 5 A.M. to 6 a.M. on day 43 was also a bad one with the fractional
fade time ranking with frequency as 6-11-4. On day 58 the hour from
1 A.M. to 2 A.M., which was also outstanding, had the frequency order
6-4-11. However, the overall statistics show that fading severity
increases with frequency.

7.4 Howrly Median for a 4-GHz Channel

The data reported in previous sections were in terms of the fraction
of time that some fixed fade depth was exceeded; a reversal of these

* This conclusion does not change if absolute fade time is used instead of fractional
fade time.
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roles is equally valid. The variable examined in this section is the fade
depth exceeded for a total of 30 minutes in an hour (hourly median).
Tigure 17 shows a rank order of the hourly median data for one of the
4-GHz channels as obtained directly from the experimental data for
each hour. This particular channel is considered typical. The worst
hourly median was 20.5 dB below free space and some 10 hours had
hourly medians in excess of 15 dB. The general tendency is quite regular
and shows a slowly decreasing median value with 120 hours experiencing
hourly median fades in excess of 5 dB.

7.5 Analytic Model for Hourly Median

The single-channel fade depth statistics have a common charac-
teristic: the fractional probability that the signal » is at or below L is
proportional to L* (see Table IT). Lin" has shown that this is a general
property of fading signals under very general conditions, i.e.,

PEPr(ng)=aL*EET£ L <01 @
where @ is an environmental constant and ¢,/T is the fractional fade
time for the time period 7.

I 1
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]
w
I
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o} | | | 7/ | | |
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RANK ORDER POSITION

Fig. 17—4-GHz rank order of hourly median (channel 4-7).
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This formula will be used here with the following modification for
analytical simplicity,

ar=4% osrsi
P=Prow<l)= “. ®)
1 ) :
a
For this simple model the median value, L,, , is given by
1 LT
L= =2 9
2 2t @

This relation can be used to calculate values of L, from the 4-GHz
hourly rank order data of Fig. 14a. The results for levels 2 and 3 are
shown on Fig. 18 along with the 4-GHz hourly median data from Fig. 17.
There is good agreement for the first 20 rank order days. Level 3 predicts
a worst hour median 2.5 dB higher and level 2 predicts a worst hour
median 1 dB lower than the Fig. 17 data.

The calculated results roll off faster below 10 dB than the Fig. 17
data, which means that the aL® model does not hold when the hourly
median is less than 10 dB. This is to be expected because the aL® model
applies for multipath fading while the Fig. 17 data contains a con-
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Fig. 18—Comparison of 4-GHz hourly median data of Fig. 17 with calculated values.
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siderable number of hours during which the signal is depressed with
little multipath fading. In any case, the analytic model (8) is adequate
for the higher values of the hourly median which is the region of greatest
interest. This model will now be applied to the nightly and hourly rank
order data presented in Figs. 10 and 14.

7.6 Empirical Probability Distribution of Daily Fade Time

The rank order data (Section 7.2) can be used to estimate the prob-
ability distribution for the daily fade time by plotting the value of
the 7th ordered sample versus the probability estimate (N)™' (¢ — 0.5),
defined as the cumulative empirical probability distribution (c.e.p.d.)."
The random variable ¢, is defined as the total amount of time during
the 9-hour period for which the signal leyel is less than or equal to L.*
The rank order daily fade time data (Section 7.2) are samples of ¢, ,
with ¢,, the ith rank ordered sample value. Thus the c.e.p.d. is:

1 — 0.
N,

(o7]

PL; = Pr (tl‘ > t],.') = (10)
where N = number of sample values.

Repeating equation (7) in a form consistent with the above definitions
gives

Pro £ L) = o = & (11)
T,
where v, is the envelope voltage during the 7th interval,
a; is the environmental constant during the 7th interval,
T, = 9 hours.

Combining (10) with (11) gives

s 7SS t'_) = Pr > a. 9
P, =Pr <L2Td 2 o Pr (a, =2 a)). (12)
Thus the c.e.p.d. for ¢, is identical to that for the random variable a, ,
the daily environmental constant.

In the calculation of P, for levels 2-4 the values used for N, will
be those given in Table IV. At level 2 there were 36 days with non-zero
fade time at 4 GHz and 35 at both 6 and 11 GHz. If the aL® model is
interpreted in a deterministic sense then all days with level 2 fade time
should have level 3 fade time; yet there were only 30 such days at 4 GHz.

* The 9-hour period was chosen because most of the daily fading occurred between
12 p.m. and 9 am.
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There is no inconsistency because the aL® model is statistical so that
not all level 2 fades also generate level 3 fades; thus the 30 samples are
used to construet a c.e.p.d. which can be compared to that obtained for
the 36 samples at level 2. The corresponding procedure was followed
for level 4 at 4 GHz and for levels 2-4 for 6 and 11 GHz. Two basic
assumptions are made: (7) 0.2-second sampling has a negligible effect;
(i) the samples at any level are independent. The first assumption will
be justified if the level 4 results are consistent with the level 2 results
because the sampling interval would have a greater effect on the level 4
results. The second assumption only requires independence from day
to day which is plausible.

The daily rank order fade time data have been plotted on Figs. 19a-c
according to (12). The probability scale is exponential and the abscissa
is logarithmic. The data for all three frequencies appear to be inde-
pendent of level and approximately linear with increasing scatter
above 70 percent. The conclusion is that the al’ representation is
adequate over the 20-40 dB fade depth range for daily fading.

In Section V we examined the frequency dependence of the environ-
mental constant. Utilizing that relation, and normalizing to 4 GHz,
equation (12) becomes:

P, =pr| 2 > 2| (13)

The level 2 data for 4, 6, and 11 GHz has been plotted in Tig. 20
according to (13). The reduced data are consistent for the three fre-
quencies; a straight line whose equation is

Pr (Zt’[v’j =a, = A) = exp (—1.‘2\/:1(%)) (14)

provides a good fit (2 dB) to the data below 0.9. Similar results are
obtained for levels 3 and 4 but with increased scatter.

Figure 20 indicates that the environmental parameter a, is linearly
dependent on frequency on a day-to-day statistical basis for multipath
fading. This is a stronger result than that of Section V, where the linear
frequency dependence was found valid for the measurement period
taken as a whole. The net result of this analysis is that the daily fade
time for a day picked at random ean be calculated statistically.

The result, (14), can be checked against the results given in Table IT
for the entire measurement period in the following manner. Equation (11)
gives, for the ith fading day out of N,
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bility distribution.
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Pri; < L) = al? = ‘TL (1)
d

The fractional fade time accumulated over the N days is [equation (5)]
N N
z: I Z a;L2T,,

P' < L = ‘L2= i=1 = AL » 15
T = L) =" NT, NT, ()

Thus

i a;
= i-Il\/ (16)

s0 that ry is the average value of the a,’s which in turn can be calculated
from

Pla, < A) = 1 — exp (—1.2\/11(54}))- 17
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Thus

-] °0 P
o &= f apile) di = f aZ—Ada (18)

uf)

To convert from N periods of 9 hours each to the entire measurement
period of 5.26 X 10° seconds the above result must be multiplied by
[(N)(32, 400)/5.26 X 10°]. Substitution of the number of days with
nonzero level 2 fade time (Table IV) gives the results shown in Table VI.
The coeflicients obtained from the daily fade times are in fair agreement
with the overall coefficients which is a reassuring check on the con-
sistency of the results.

As a digression it is to be noted that the usual Rayleigh assumption
for modeling the propagation medium corresponds to A = 1. Equation
(18) shows that the average value of a, corresponds to A = 1.4. It
appears that the Rayleigh assumption is reasonable on the average but
it should be recognized that some 30 percent of the days will have
greater fading.

The calculation of the daily median is the last topice in this section.
As noted in Section 7.5, the median value L,, for the aL® distribution
model is given as

L

(19)

Bl

1
2a
or

20 log L,, = —10 log a — 3 dB. (20)

Values for 20 log L, can be read off directly from Fig. 20, e.g., at
4 GHz the 90-percent point is —8 dB relative to midday normal, while
the 1-percent point is — 14 dB. This calculation is valid only for median
values less than some —10 dB because as the value of a gets small the

TaBLE VI—FapE TiME COEFFICIENT OF L°

Freq Caleulated from Measured
(GHz) Daily Fade Time (Table II)
4 0.3 0.25
6 0.45 0.53
11 0.82 0.69
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calculated median values will be much too high. This occurs because
the range of validity of the aL” representation certainly does not extend
above —10 dB relative to midday normal. As a matter of fact, the
daily median is uninteresting and is included here only for completeness.
The next section will take up the matter of the hourly variation for
which the median caleulation is more meaningful.

7.7 Empirical Probability Distribution of Hourly Fade Time

The treatment of the daily fade time in Section 7.6 will be applied to
the hourly fade time in this section. As in Section 7.6, we define*

t, total time during an hour for which the signal level is less than
or equal to L,
tz: tth rank ordered sample value,
N, number of samples,
»; envelope voltage during ¢th hour,
a; environmental constant for the 7th hour,
T, one hour (3600 seconds).

The cumulative empirical probability distribution for the hourly data

is constructed according to (see Section 7.6)

, — 0.5 t o
P, =" =P-("_—L'—)=P~ = a; 21
L N, "\ger 2 e, r (a2 a) 21

V

with

Pr(v; £ L) = a;L’ = T_ (22)
h

The hourly rank order data on Figs. 14a—c are replotted on Figs. 21la-c
according to equation (21). The probability scale is exponential and the
abscissa is logarithmic. The 4-GHz results on Fig. 21a are consistent
with less than 3 dB scatter from 0.8 to 0.01 and increasing scatter for
smaller data values. The cutoff value imposed by the 0.2-second sampling
rate is —22.2 dB for level 2, —11.6 dB for level 3, and —2.5 dB for
level 4. Since the 4- and 6-GHz data is averaged for 7 and 6 channels
respectively, the actual cutoff point is some 8 dB lower. In any case
increased scatter is to be expected for smaller sample values.

The 6-GHz results on Fig. 21b are consistent for levels 2 and 3 but
the level 4 data is offset. If all the sample hours had the same amount
of fade time at a given level then the c.e.p.d. would be a vertical line
on Fig. 21b. One possible explanation, therefore, is that the level 4 hours

* The hourly data utilizes similar notation to that for the daily data.
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Fig. 21a—4-GHz hourly fade time, 1966 West Unity, cumulative empirical prob-
ability distribution.
Fig. 21b—6-GHz hourly fade time, 1966 West Unity, cumulative empirical prob-
ability distribution.
Fig. 21¢—11-GHz hourly fade time, 1966 West Unity, cumulative empirical
probability distribution.

at 6 GHz tended to be more alike than the level 2 and level 3 hours.
This behavior was also noted in conjunction with igs. 14b and 15.

We assume that the 6-GHz hourly data for level 4 is atypical.

The 11-GHz results on Fig. 2lc are reasonably consistent. Since
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there was only one 11-GHz channel, the effect of the 0.2-second cutoff
is clearly discernible.

The level 2 data from Figs. 21a—c is cross-plotted on Fig. 22 where
the frequency has been normalized to 4 GHz. Thus, assuming that the
level 2 data is typical, it is found that the distribution of the hourly
environmental constant a, for hours containing level 2 fades is approxi-
mately given by

P(a, £ A;) = 1 — exp (—=0.7[A4/N]"). (23)

The square-root function in the exponent was arbitrarily chosen to
agree with the result for the daily data, e.g., (14). A slightly larger
value than 0.5 would give a better fit for the smaller sample values
but this was considered unimportant.

From equation (23), the 50-percent point for 4 GHz falls at 4, = 1,
with the 99-percent point at 4, = 30. This means that for a fading hour
the level 2 fade time will exceed 1080 seconds with 1 percent probability.

The hourly median can now be obtained based on the aL® model
(see Section 7.3):
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Fig. 22—Hourly fade time for level 2, cumulative empirical probability distribu-
tion, 4, 6, and 11 GHz, 1966 West Unity.
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20 log L,, = —10 log a, — 3 dB. (24)

Values for L,, can be obtained from TFig. 22 using (24). FFor example,
at 4 GHz the 1-percent median is —18 dB relative to midday normal.
The actual maximum data point shown, however, falls at 10 log A =
17 dB which gives a median of —20 dB. This is in good agreement with
the minimum median of —20.5 dB for the data given on Fig. 17 for
one of the 4-GHz channels. This points up the problems of using a
best fit line to estimate tail probabilities. Within such limitations it
appears that the simple aL* model for the hourly and daily variations
of multipath fade time is adequate.

7.8 Empirical Probability Distribulion of the Median of the Fade Depth
Distribution for a Minule in a Fading Hour

In preceding sections, the multipath fading data have been examined
on a daily basis (Sections 7.2 and 7.6) and an hourly basis (Sections
7.3, 7.4, 7.5, and 7.7). Finer scale variations also are of interest. The
sampling rate for a single radio channel varies from 0.2 second to
30 seconds depending on the amount of activity. This suggests that the
smallest consecutive time interval that can be used in the construction
of fade depth distributions is one minute. The measurement technicue
guarantees that if the 30-gecond rate is being used then the difference
between any two 30-second samples is less than 2 dB.

The previous section (7.7) gave an estimate of the probability distri-
bution of the hourly median fade depth of a fading hour. It is logical
then to consider the median of the fade depth distribution for each
minute within a elock hour. One channel in each of the three bands,
4, 6, and 11 GHz, was selected for study during five hours with multipath
activity. The hourly medians in dB for each combination are given
in Table VII. Four of the hours selected were drawn from among
the ten having the most fading, with one lesser fading hour (day 10,
H5-6 aarn) included for comparison.

The data analysis for the five hours proceeds as follows:

(/) Construet the experimental fade depth distribution for each
minute within the hour and for the entire hour.
(i7) Estimate the 50-percent dB point from the fade depth distri-
bution for: (a) each minute within the hour: m, dB, 1 £ 7 £ 60;
(b) the entire hour: / dB.
(i77) Caleulate the difference in minute and hour medians:

d, = h — m, dB. (25)

(1) Rank order the o, values from largest to smallest (7 is then
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TasLe VII—Mgepian VaLugs oF THE HourLy Fape DEpPTH
DISTRIBUTION

Day Hour 4 GHz 6 GHz 11 GHz

D* ©) ®

10 2-3 A.M —20.5 dB —23.5 dB —27.5 dB
® O] ®

3-4 AM. —17.4 dB —21.0 dB —22.7 dB
@) (©) ()

5-6 A —11.5 dB —13.0 dB —14.2 dB
@ (©) @

28 0-1 a.m. —16.4 dB —16.2 dB —17.4 dB
® 0] ®

43 H-0 am. —17.5 dB —22.8 dB —21.0 dB

* The circled numbers give the hourly rank order position of the fade time at
or below level 3 (—31.0 dB) in the hour.
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Fig. 23—Cumulative empirical probability distribution for the difference between
the minute and hourly fade depth distribution medians. Data samples of five hours
for 4, 6, and 11 GHaz.
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redefined as the rank order index with ¢ = 1 for the worst
50-percent minute median fade value as normalized to the
hourly median).

(v) Construet the cumulative empirical probability distribution
for d, that is,

i— 0.5
60

Prld zd]= (26)

The c.e.p.d. for d is plotted on I'ig. 23 for all five hours and the three
radio channels. This single plot suffices because there is no consistent
difference between the different hours for a particular channel or between
the different channels in a particular hour. As expected, the 50-percent
point falls at the 0-dB difference point (within 41 dB). The entire
set of data appears to be normal with a mean of 0 dB and a standard
deviation of 5.5 # 1.5 dB. It can be seen that, for a multipath fading
hour, the minute medians vary considerably as compared to the hourly
median. This is not surprising since the average duration of a multipath
fade varies from 4 seconds at a —40-dB fade depth to 40 seconds at
a —20-dB fade depth.*

To recapitulate, the hourly median can be estimated from Fig. 22
using equation (24) and the difference in the hourly and minute median
calculated using a normal distribution with a mean of 0 dB and ¢ =
5.5 dB.

VIIT. AMPLITUDE STATISTICS FOR ENTIRE TEST PERIOD

8.1 Introduction

The effects of multipath propagation are most important in the deep
fade region, because the received signal ean be rendered unusable. The
signal statistics for shallow fade depths also are of interest if only
because the signal amplitude resides in this range for the vast majority
of time. At West Unity an elapsed time of 5.26 X 10° seconds (T,) was
the total data base; of this total 0.78 X 10" seconds (7',) contained
all the deep multipath fading and was subjected to detailed analysis.'"**
In this section, statistics for the remaining 4.48 X 10° seconds (7')
will be presented for two 4-GHz and two 6-GHz channels. The data for
the 11-GHz channel was not included in this analysis because of the
difficulty of separating out the effects of rain attenuation.

8.2 Fade Depth Distribution

The fade depth distributions for 4 and 6 GHz are given on Figs. 24
and 25, respectively, for the three time bases Ty , Ty ,and T', = T4+ T's.
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Fig. 24—4-GHz fade depth distribution for the entire test period, 1966 West Unity.

The lines on the figures are smoothed through the data, with the deep
fade equations 0.25L° and 0.53L* (as given in Table II) used below
—90 dB for 4 and 6 GHz respectively. As expected, the 7' data domi-
nates the total distribution above the 10-percent point.

It should not be inferred from these results that there was zero
probability of upfades above +3 dB. The equipment was designed to
give this value whenever the signal level was in excess thereof.

The data for the fade depths less than 20 dB have been replotted
on Figs. 26 and 27 on a normal probability scale where each set of data
has been normalized to its own time base, e.g., the data for the multipath
period are expressed as a fraction of 0.78 X 10° seconds (T,). The data
are given for only one of the channels in each band since the two channels
have almost identical statistics in this fade depth range (see Figs. 24
and 25).

The plots show that neither the data for the total measurement
period of 5.26 X 10° seconds (7', + T') nor for the “nonfading” period
of 4.48 X 10° seconds (T) are lognormal. During normal daytime
periods of transmission on a single hop when the atmosphere is well
mixed the envelope voltage scintillates and has a lognormal distribution
with a standard deviation less than 1 dB. The T data is drawn from
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a mixture of such periods and others with mild fading. This mixture,
coupled with the approximately 2-dB quantizing intervals, makes it
difficult to draw definitive conclusions from either the 7, or the
(T'y + T,) data in the central part of the distribution.

The T, data are approximately lognormal over the central 80 percent
of the distribution, with the characteristics given in Table VIII. As can
be seen from Iligs. 26 and 27, the lognormal characteristic is useless
for predicting the deep fade behavior. This seems to be a common
finding; an observable which can be modeled as having multiplicative
components is usually lognormal near its median. However, a more
sophisticated model is needed for caleulation of the tails of the dis-
tribution.”

TaBLE VIII—CHARACTERISTICS OF SHALLOW I"ADEs DURING
Periops IncLusive oF AL DEEP MULTIPATH FADES

Characteristie 4 (iHz ) 6 GHz

507% point 3.1dB 6.0 dB
4 4.6 dB 5.2 dB
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8.3 Number of Fades and Average Fade Durations

Data on the number of fades and the average fade duration were
also obtained for a 4-GHz and a 6-GHz radio channel, as shown on
Figs. 28a-b and 29a-b respectively. The number of fades occurring
during the deep fade total time (7',) first increases and then decreases
as the fade depth increases below 0 dB. The line through the deep fade
region, 3670L for 4 GHz on Fig. 28a and 6410L for 6 GHz on I'ig. 29a,
are the least squares fitted lines to the data for all the channels in the
separate bands.' The data for the balance of the measurement time (7',)
varies more rapidly as a function of fade depth, i.e., approximately a
factor of 100 from 0 to —10 dB. Of course, the Ty data has many more
fades at 0 dB fade than the 7', data. Note that the deep fade fitted line
would overestimate the number of fades by a factor of 2 at a —10-dB
fade depth but would be quite adequate for prediction at 0 dB fade
depth.

The average fade duration at any fade depth is obtained from the
ratio of the total time at or below the fade depth to the number of
fades of this depth. Values for this variable have been obtained from
the data for each of the three time bases—T, , Ty, and T, + T,—as
shown on IMigs. 28b and 29b for 4 and 6 GHz respectively. The lines
408L (4 GHz) and 490 (6 GHz) have been obtained for the deep fade
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Fig. 28a—4-GHz number of fades for the entire test period.
Fig. 28bh—4-(iHz average fade duration for the entire test period.
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Fig. 29a—6-GHz number of fades for the entire test period.
Fig. 290b—6-GHz average fade duration for the entire test period.

data. However, these deep fade lines, extended to 0 dB, are a good
representation of the data for the entire dB range. This is further
evidence in support of Lin’s finding that the average fade duration is
less sensitive to the fading conditions than is either the number of
fades or the fade depth distribution.
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A Fast Bipolar-IGFET Buffer-Driver

By G. MARR, G. T. CHENEY, E. F. KING, and E. G. PARKS

(Manuseript received August 24, 1971)

This paper discusses the performance and interface advantages of a
self-isolating bipolar-IGFET (BIGFET) integrated structure as an output
buffer-driver for IGFET inlegrated circuits. The low-capacitance, high-
impedance input and low-impedance, high-current output characteristics
make the BIGFET ideally suited to drive large outpul capacitances and
to interface with bipolar logic circwits. It is shown that in a shift register
application the operating speed is increased substantially when the BIGFET
is used as output buffer and is essentially independent of output capacitance
up to 100 pF. The application of BIGFET output circuits to 5-volt T°L
and 3-volt collector-diffusion-isolation (CDI) T*L 1s also discussed.

I. INTRODUCTION

Due to the high output impedance normally associated with In-
sulated-Gate TField-Effect Transistors (IGFET) two problems often
arise in digital IGFET integrated cireuits: (z) Charging and discharging
times for capacitances external to the integrated circuit are long com-
pared to the corresponding times for internal circuit nodes. (i7) Inter-
facing with bipolar logic requires IGFETs to provide and/or sink
currents which are larger than those normally available from IGFETSs
with typical integrated circuit geometries. Attempts to solve these
problems usually involve large IGFET inverters or push-pull drivers
as output stages. Since these types of output interface circuits employ
large-geometry IGFETs and have higher input capacitances than those
capacitances typically found at the nodes of the internal IGFET
cireuitry, the overall result is that circuit speed is degraded at the
output interface.

This paper discusses the use of a self-isolating bipolar-IGFET
(BIGFET) integrated structure in an output buffer-driver. Although
this structure has been previously proposed,'” there have been no
reported experimental studies of improved cireuit performance when
the BIGFET is incorporated directly on a monolithie p-channel IGFET
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integrated circuit. Since the BIGFET is capable of providing a low-
capacitance, high-impedance input and a low-impedance, high-current
output, it provides an almost ideal solution to the interface problems
discussed above.

II. DEVICE STRUCTURE AND CHARACTERISTICS

A schematic and device cross section of a BIGFET are shown in
Fig. 1. The structure is basically an IGFET and a vertical npn bipolar
transistor in cascade. The collector of the npn transistor is common
to the Silicon Integrated Circuit (SIC) substrate. A p-type diffusion
performs the dual role of bipolar transistor base and p-channel IGFET
drain. The emitter is formed by the same phosphorus-diffusion that
is used to make ohmic contact to the 6-9 Q-em n-type substrate.

The current-voltage characteristics for a typical BIGFET with
V, = —1.0 volt and hpp = 140 at I, = 10 mA are shown in Fig. 2.
It may be seen in the figure that the output current is in the range of
tens of milliamperes, although the IGFET gain factor, 8[(uxe,/t,.)W /L),
for this structure is only 100 pmhos/volt. The overall effective gain
factor is just the produet of 8 and A, g or, in this case, 14,000 umhos/volt.
Therefore, when using this structure for high-current output circuit
applications, one may employ a small gain factor IGFET with cor-
respondingly low input capacitance. Since this input capacitance need
be no greater than that found at a typical internal node of an IGFET
SIC, the delay through the BIGFET output-buffer, in turn, need be
no greater than the intrinsic delays associated with the internal IGFET
circuitry.

BIGFETs with the structure discussed above have been routinely
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\

4

—

\*J

N TYPE 6-9 Q-cm EPITAXIAL SL

EMITTER
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Fig. 1—BIGFET device schematic and structure.
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Fig. 2—BIGFET current-voltage characteristies.

fabricated with a minimum A ,p of 60 at I, = 1 mA. Preliminary life-test
data indicate that an end-of-life limit for her of 50 is feasible for
high-reliability applications. The temperature dependence of hyp is
(dhpg/dT)/hpg ~ 1 percent per degree from 0° to 80°C.

I1I. CIRCUTIT PERFORMANCE

In order to assess empirically the circuit performance improvements
achievable through the use of a BIGFET output driver, two four-bit
static shift registers were designed, fabricated, and tested. One version
of the shift register (SR1) has a large IGFET inverter (Birivee = 60
pmhos/volt) as the output stage. The Bs of the IGFETSs in the third
and fourth bits are appropriately increased to achieve optimum design
for maximum ecircuit speed. The second version (SR2) uses a BIGFET
output driver which consists of a normal IGFET inverter (Buriver =
20 umhos/volt) in cascade with a bipolar emitter follower. For the
case of SR2, there was no increase in the gain factors of the IGFETs
in the shift register bits just preceding the BIGFET buffer-driver.
The two shift registers are shown schematically in Fig. 3.

To measure the maximum clocking frequency (f,...) of the two shift
registers, a 7-inverter cascade with a BIGFET output stage was used
as signal diseriminator. Signals from the shift register were acceptable
only if they were capable of propagating through the seven-stage
inverter cascade. Two voltage bias conditions were studied. In one
case Vgo = —3.0 Vand V,, = +5.0 V while for the other Vg = 0V
and Vpp = +5.0V.
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Fig. 3—Experimental circuits for comparative speed performance measurements.

The experimentally measured results for the two types of shift
registers are summarized in Fig. 4. The maximum operating frequency
is plotted as a function of the output capacitive load (C,) for the two
stated supply conditions. For SR1, f... is twice as high at low values
of C, when two supplies are employed as when a single 5-volt supply
is used. However, f... decreases with increasing C, at essentially the
same rate regardless of the supplies used. On the other hand, SR2 is

MAXIMUM FREQUENCY IN MHZ

4
Vop = *+5V, Vge =-3V
— — Vpp= +5V, Veg=0V
3 b
" SR2
SR2
1
(o] 1 1 1
(o] 40 80 120 160 200 240 280 320

OUTPUT CAPACITANCE IN pf

Fig. 4—Experimental performance results for all-IGFET (SR1) and BIGFET-
output (SR2) shift registers.
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capable of operating at 3.3 N Hz for small values of C, when two supplies
are used and remains independent of C, up to 100 pI. Beyond 100 pF
the maximum operating frequency falls off in the same manner as SR1.
In the single-supply case, f... for SR2 is independent of C, over the
range investigated. Further comparison of the integrity of output
waveforms with and without the BIGFET output buffer is demon-
strated in Fig. 5. It can be seen that the output waveforms of SR1
with an IGFET output circuit are grossly degraded by the loading
of 100 pF. The output of SR2 with the BIGFET is almost unaffected.

IV. CIRCUIT INTERFACE

In addition to its usefulness as an output driver, the BIGFET is
also extremely versatile as a buffer to interface IGFET integrated
circuits with bipolar logic. To interface with any bipolar logic, the
primary design consideration is that the driver gate must furnish as
well as sink currents required by the loading bipolar gate. The net
result is that the value of the BIGFET emitter resistor Rz must be
carefully chosen to reflect this requirement.

As an example, the choice of 1500 @ for R, allows a straightforward
interface from BIGFET to low-power 5-volt T°L logic. The circuit

INPUT
SRt OUTPUT

SR2 OUTPUT

10 VOLT

—

INPUT
SR1 oUTPUT
SR2 OUTPUT =
1OVOLT

Co=M12pF —s|2uste

Fig. 5—Effects of capacitive loading on output waveforms for all-IGFET (SR1)
and BIGFET-output (SR2) shift registers.
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schematic is shown in Fig. 6a and the input and output waveforms
of the circuit interface are shown in Fig. 6b. In like manner, a suitable
choice of Ry allows the BIGFET to interface with RTL and DTL.
Interfacing with the 3-volt collector-diffusion-isolation (CDI)*
logic is less straightforward. If the same voltage biasing condition, i.e.,
Ry grounded, is used one finds that an Ry ladder of 900 £ and 300 @
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is needed to meet the current and voltage requirements of CDI-T"L.
This is shown in Fig. 7a. The circuit shown requires a =10-percent
tolerance on the 300-Q resistor which is not desirable for a high-yield,
low-cost integrated circuit technology. Since a —3-volt supply is often
available in low-threshold (V, = —1 V) IGFET SIC applications, a
higher-value and relaxed-tolerance Rz (~ 1500 2 == 20 percent) may
be used if the emitter resistor is connected to the —3-volt supply.
A schematic of this circuit configuration is shown in Fig. 7b.

Due to the voltage drop across the driver IGFET and the Ve of
the bipolar portion of the BIGFET, the output voltage level from the
emitter follower may not be sufficient to provide adequate de noise
margin for low V, IGFET SICs. However, this problem may be over-
come by the introduction of a “pull-up” IGFET in parallel with the
BIGFET output and using an IGFET as the active emitter load.
This is shown in Fig. 8. The only requirement is that a gating signal

___ IGFETCIRCUIT . _corva_
Vpp =+5V —i i_ T +3V —|
| | 1685 ‘
BIGFET | | | 2K
INPUT |
| 180
‘ 8254 T2L
] stio | 1 ' OUTPUT
Vee I BIGFET | ‘
| OUTPUT | |
300 | I |
R R
(a)
VDD=+5V

Vee =-3VO—'—-{
K

BIGFET .
INPUT
! BIGFET OUTPUT
‘ To CDI-T2L
I %Ls
(b)

Fig. 7—Circuit schematic for BIGFET-T*L (CDI) interface: (a) resistor ladder
output. (b) single emitter resistor.
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IVDD
BIGFET
INPUT | "PULL-UPY
1 IGFET
BIGFET OUTPUT
VGG—| —
GATING SIGNAL

Fig. S—IGFET “pull-up” circuit for BIGFET-IGFET interface.

must be applied to turn off the IGFET emitter load when the bipolar
transistor and the associated “pull-up” IGFET are on. Such a gating
signal is often conveniently available on circuits with timing signals,
e.g., IGFET shift registers. An alternate solution is to provide a voltage
level shifting buffer such as an IGFET source-follower at the input
of the IGFET circuit to which the BIGFET interfaces.

V. CONCLUSION

This work demonstrates that there are significant advantages in
using an integral bipolar-IGFET functional element as a fast interface
buffer-driver. Specifically, the BIGFET driver

(7) requires no additional processing for isolation since the bipolar
collector is common to the IGFET substrate,

(i7) significantly increases overall speed in multi-integrated circuit
applications by reducing circuit-to-circuit propagation delays,
and

(i77) allows direet interface with most forms of bipolar logic.
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On Finding the Paths Through a Network

By N. J. A. SLOANE

(Manuseript received May 19, 1971)

Giiven a directed graph G, algorithms are discussed for finding (?) all paths
through G with prescribed originating and terminating nodes, (i7) a subset
of these paths containing all the edges, (iii) a subset containing all the
edge-edge transitions, and (iv) a subset containing the most likely paths.

I. INTRODUCTION

Informally, a directed graph consists of a set of vertices or nodes
together with a set of directed edges joining the nodes. (All of the figures
below show directed graphs; for a formal definition see page 10 of Ref. 1.
There may be more than one edge with the same originating and termi-
nating nodes, and the originating and terminating nodes of an edge
may coincide.)

Common examples of directed graphs are state diagrams of systems:
the nodes represent states of the system and an edge directed from
node N, to node N; means that it is possible for the system to go directly
from state N; to state N; .

The following questions concerning the paths through a directed
graph arose in testing for possible errors sections of the stored program
of a No. 1 ESS electronic switching system.” However, these questions
and the algorithms for their solution seem of sufficient general interest
to warrant stating them independently of their origin.

Given a directed graph (7, the questions are: (i) Find the set « of all
paths through (¢ with prescribed originating and terminating nodes.
(A path is just what one would expect; a formal definition is given in
Section II.) (¢7) Find a small subset of « which contains every edge
occurring in a. (777) Find a small subset of a which contains all the
edge-edge transitions occurring in any path in a. (i) If a probability
measure is associated with the edges of (, find the most probable paths
in a.

These questions and algorithms for their solution are discussed in
Sections I1I, V, VI, and VII, respectively. Section II is concerned with
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the notation used to describe paths, and Section IV with an algorithm
for partially solving a combinatorial problem encountered in Sections V
and VI.

II. NOTATION FOR PATHS

Definition: A path from node N, to N, in a directed graph is a sequence
of (not necessarily distinct) edges e, , €2, --- , e, with the property
that there are nodes N, = n,, na, *++ , Neyy = N, such that e; is
directed from n; to n;,, forz = 1,2, - -+ , £. The length £ of a path is the
number of edges it contains.

A path is specified by giving the ordered string e,e, - - - e, of its edges.
(We are in fact describing paths by the notation used in automata theory
to describe regular expressions, as given, for example, in Ref. 3 and
chapter 5 of Ref. 4. However, the treatment given here is self-contained.)

It is convenient to include in the definition a path of zero length
(whose endpoints N, and N, must coincide). This path is specified by
the emply string A (not to be confused with the empty set ¢).

A collection of paths is specified by the sum of the strings of the
individual paths.

If S is a string, S* denotes SS --- S (i.e., S concatenated 7 times)

and S* denotes A + S + S* + S* + -+ . For example, in Fig. 1 the
collection of all paths from

N,toN, is ¢,

NitoN, is A,

N,toN, is a,

NitoN, is A+f+7+F+ - =1

N,toN, is d+ ce + cfe + c¢ffe + -+ = d + cf'e,

Nito N, is ad + (ac + b)f*e.

Parentheses are used in the natural way. The following rules are easily
verified. Here S is any sum of strings.

¢+ S=280¢8=258=¢
S*=A+8+8+8+ -
A* A

AS =8

Il
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Fig. 1—An example.

(A+ 8)*= A+ SS* = A 4 S* = S*
S[ + SzSgSl =t S"‘_,Sl ) Sl + SIS'*.ZSZ = SIS*A
(S + S2)* = (8% + SH*

III. FINDING ALL PATHS THROUGH A GRAPH

Let G be a directed graph with n nodes labeled N, , N, , -+ , N, .
Methods are given for finding all paths through G having prescribed
starting node N, and (not necessarily distinct) terminating node N, .
We first describe the MeNaughton-Yamada Algorithm, which requires
on the order of n® steps.

Definition: Let of; denote the set of paths which start at N, , end at N,
and do not pass through any intermediate node N, with p > k, for

k=01, ,n,and4d,j=1,2, .-+, n
The algorithm sucecessively computes «!; for all 7 and j, then «}; for
all 7 and j, -+, then o' for all 7 and j. The final step is to compute

o, , the set of all paths from N, to N, with no restriction on intermediate
nodes, which is the desired result.

The inductive step proceeds as follows. Suppose o} is known for
all 4, j, and we wish to obtain o ;. Referring to Fig. 2, we see that
the fundamental recurrence equation is

iy = oy + ol (o) el (1)
In words, this says that the paths from N, to N; containing intermediate
nodes as high as k are made up of those containing intermediate nodes

only as high as k — 1, !}, plus all possible paths containing N, as an
intermediate node, of;'(aj;')*a};'. When k is equal to either 7 or j,
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k=1
(9]

Fig. 2—The inductive step.

(1) may be simplified. We now give the complete statement of the
algorithm.

THE MCNAUGHTON-YAMADA ALGORITHM®
1. The Initial Step

Define of; forall 7, j = 1, --- , n by:
(1.1) if 7 ## j,

_— {¢ if there is no edge from N; to N, ,
i = e, + ey + - - if edges labeled e, , e, , - -+ join N, to N; ;

(1.2) ifi=j,

o _ {A if there is no edge from N; to itself,
s A+ e, + e + - if edges labeled e, , €; , - -+ join N to itself.

. The Inductz've Step (Refer to Fig. 2)

Forlc =1,2 ---,n — 1 compute of; forall7,j = 1,2, -, n from:
(2.1) if k # 7, k # j then
au = all + a,:kl(a )*akl )

(2.2) ifi # jand k =

aij = (o )aii
(23) ifi # jand k = j,

al; = ali'(afi )*;
(24) ifi =j =k,

ai; = (aii)*.
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Fig. 3—An example.

3. The Final Step

Finally, use whichever of (2.1) to (2.4) is appropriate to calculate
o), , the set of all paths from N, to N, .
Remark: In steps 2 and 3, after obtaining expressions of the form
Qpew = ¢ (B)* -+, it may be convenient to simplify (8)* by means
of the rules given at the end of Section II.

An Example: We will use the MeNaughton-Yamada algorithm to
compute the set of all paths in Fig. 3 which start at N, and end at N, ,
or, in other words, af, .

J
Step 1. ) 1 2 3 -+
A a [ ¢
al; 2 ¢ A+e d b
3 ¢ e A f
4 ¢ ¢ ¢ A

Step 2. Since there are no paths into N, , a}; = o, for all 7, j.

i

j
7 1 2 3 4
1 A a(A + ¢)* a(A + ¢)*d a(A + e)*d
af; 2 | ¢ (A + o)* (A + o)*d (A + ¢)*
3 ¢ e(A+o)* | A+ e(A+o)*d | f+ e(A + ¢)*b
4 ¢ ] ¢ A
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where we have used the rules ¢ + S = S and ¢S = S¢ = ¢. This may
be further simplified using the rules at the end of Section II as follows.

j
7 1 2 3 4
1 A ac* ac*d ac*b
ol 2 ¢ c* c*d c*b
3 ¢ ec* A + ec*d f + ec*d
4 ¢ ¢ ¢ A
Since there are no paths out of N, , af; = af; for all 7, j. We can

therefore go directly to Step 3:
ai = ais = aiy + aia(ahs)*an,
ac*b + ac*d(A + ec*d)*(f + ec*D)
ac*b + ac*d(ec*d)*(f + ec*b),
which, if required, can be expanded to give
aly = ab + acb + ac’b + - -
+ adf + adeb + adecb + adec b + - -
+ adedf + adedeb + adedech + - - -
+ adecdf + adecdeb + adecdech + - -+
+ acdf + acdeb + acdech + acdec’b + - -
+ acdedf + acdedeb + acdedech + - - -
+ e,

It may be verified that this includes all possible paths from N, to Ny .
Remarks: (i) When programmed in a computer language capable of
handling strings, such as sNoBor4,” this algorithm involves the caleula-
tion of n m X m matrices (requiring on the order of n* steps). Enough
storage space is required to hold two n X m matrices (the current
[e¥,),7,7 =1, -+, n, matrix and the previously calculated [«f;'], 7, j =
1, - -+, n, matrix) each entry of which is a string of letters, parentheses,
+’s and *’s. (77) With very little extra work Step 3 can be modified to
give the paths between several pairs of nodes. This is valuable for
analyzing large graphs, as we now show.
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Analysis of Large Graphs by Partitioning

Since the time required for the MeNaughton-Yamada algorithm
grows as the cube of the number of states, large graphs cannot be
handled directly. However, such graphs can usually be handled by
partitioning them into smaller subgraphs, applying the algorithm
to each subgraph separately, and then reapplying the algorithm to the
network of subgraphs. The following simple example will illustrate
the method.

Figure 4 shows a graph (¢ partitioned into two subgraphs 7, and @,
which are interconnected at nodes N, and N,. (Only edges between
the subgraphs are shown.) Suppose we wish to find all paths from
N, to N,. If G, , (; each contain 20 nodes, a direct application of the
MeNaughton-Yamada algorithm would require on the order of 40° =
64,000 steps. This number is considerably reduced by the following
technique.

Let B,;(GG,) denote the set of all paths starting at N, , ending at N, ,
and lying entirely in the subgraph G, .

We first apply the McNaughton-Yamada algorithm to G, and G, to
obtain 8,;((,), 1,7 = 1, 2, and 8,,;((.), 7, j = 3, 4. That is, we first find
all the paths between the interconnecting nodes that lie completely in
one of the subgraphs. (This will take on the order of 2-20° = 16,000
steps.)

We now replace ¢ by the condensed graph G of Fig. 5. G contains
(7) nodes N, , N, corresponding to the terminal nodes N, , N, , (%) nodes
N, , Ny corresponding to the interconnecting nodes N, , Ny , (iii) edges
a, b corresponding to the interconnecting edges a, b of G, and (i) edges
corresponding to all the paths 8,,(G,), 7, j = 1, 2, and B,,(G,), 7, j =
3,4,in (.

The MceNaughton-Yamada algorithm is now used to obtain all paths
from N, to 'y in G. (This takes on the order of 4° = 64 steps.) It is
clear that these paths are exactly all the paths from N, to N, in the
original graph (. Partitioning into two equal subgraphs has thus
reduced the number of steps by approximately a factor of four. (Parti-

Fig. 4—A graph partitioned into subgraphs.
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B,(G1) B22(Gy) 813(G2) Baa(G2)
312(51) Baa (Gi’)

B21(G1) b Ba3(G2)
Fig. 5—The condensed graph corresponding to Fig. 4.

tioning into k equal subgraphs would reduce it by a factor of about k°.)

The general method of analyzing a large graph by partitioning
should now be clear.

If n, is the largest number of nodes that can be directly handled by
the MeNaughton—Yamada algorithm, then it is desirable to partition G
in such a way that no subgraph has more than n, nodes, and that the
total number of interconnecting nodes (which is the number of nodes
in the condensed graph) is also less than 7, . (Of course the sugbraphs
may themselves be partitioned.)

1IV. THE COVERING PROBLEM

In Sections V and VI we will encounter a basic combinatorial problem,
the covering problem, which may be stated as follows. Suppose a set
S = {8, 8, -+, 8. of n elements is given, together with a family
F of subsets of S,

§=iX11X2y"'me}) ‘Xl';S'
The problem is to find a subfamily 3¢ C &, say
i = lXi.,X.',,"',Xf,l;

where £ is as small as possible, such that every element of S appearing
in & also appears in 3¢, or formally, such that

XiUXa\Jos o A Xym X, N X, W oo UK, .

3¢ is called a covering set for &. _
The family § may be represented by an m X » (0, 1) matrix 9 =
(m;;), where

m; =1 if s;e X,
0 if s;¢X,.

The ith row of 9%, written I(X,), is called the indicator vector of X ,
since it indicates which elements of S belong to X .
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The problem is to find a minimal set of rows which together contain
a 1 in every nonzero column. Equivalently, if we relabel the matrix so
that columns correspond to subsets and rows to elements, the problem
is to find a minimal system of representatives for the subsets. This
problem is known to be difficult (Ref. 6, page 521).

The direct attack is to look at the rows taken 1, 2, 3, - - - , m at a time,
until a covering set is found; this finds a minimal covering set, but may
take up to 2" — 1 steps. Several methods’ '* have been given which
are faster than the direct attack, but are still impractical for large m.
Roth’s algorithm' finds a locally minimal cover which has a high
probability of being the minimal cover, for quite large values of m
(up to several hundred).

However, for our purposes, the following extremely simple (and
appropriately named) algorithm is adequate. It finds a covering set in
at most 3m* steps, but may not find a minimal cover.

THE GREEDY ALGORITHM

The algorithm proceeds inductively, starting with 3¢ = ¢ and
(greedily) adding to 3C, each time that particular X ; which will contribute
the greatest number of new elements.

We keep track of the elements in JC at each step by means of the
indicator vector

I(3¢) = I(Y X)

XeX
and stop when this is equal to
I(5) = I(U X).

Xe

1. The Initial Step
Set ¢ = ¢, I(3¢) = (0,0, -+, 0).

2. The Inductive Step

Search through all X, ¢ F that are not in 3¢ and find an X, which
maximizes the number of elements of S which are in X, but not in 3,
i.e., which maximizes weight (/(X,). axp. not. 1(3C)). (The weight of

a vector is the number of its nonzero components, (a, , -+ , a,). AND.
by, -+ ,b) = (a, AND b, , --- , @, AND b,), NOT. (@, , --- , @,) =
(NoT @, , - -+, NOT @,), and .0R. is defined similarly.) Break ties in any
way.

Add X, to 3¢, and calculate the new I(3¢) = old I(i¢). or. I(X,).
Repeat Step 2 until 1(3¢) = I(F); then stop.
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Remarks:

(5) The greedy algorithm often finds a covering set which is close to
minimal, although it is possible to construct examples when the minimal
covering set contains two subsets while the greedy algorithm uses more
than N subsets, for any preassigned value of N. Are such examples rare?
The behavior of the algorithm for a random family F seems to be
unknown.

(#7) Since the algorithm involves simple calculations with binary
vectors it may be easily programmed on a computer.

Example 1: The set of all paths from N, to N, in Fig. 6 consists of
(a, + a;)(by + ba) (e, + ¢2) = abie, + arbicy + abac, + aibace
+ azbie, + ashic: + axbie, + azbacs .

Suppose it is desired to find a minimal subset of these paths which

contains all the edges S = {a, , a@», b, , ba, ¢, , c2}. F consists of the
following eight subsets of S, shown together with their indicator vectors.

1 X, I1(X))

1 a.bc, 101010

2 ab,c, 101001

3 a.bscy 100110

4 a,b.c, 100101

5 asb,c, 011010

6 asb,c» 011001

7 ash.c, 010110

8 @bsCo 010101

The greedy algorithm then proceeds as follows.

Step 1. 3¢ = ¢, I(3¢) = 000000.

Step 2. Weight (I(X,). anp. 111111) = 3 for all 7, so we pick X,
(any X, will do) and add it to 3¢: 3¢ = {X,}, I(3¢) = 101010.

Step 2 again. Weight (I(X,). axp. 010101) is maximized by ¢ = 8.

a, b, G
N, Na
Nz N3
az b, i

Fig. 6—An example.
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Then 3¢ = X, , Xs}, I(3¢) = 101010. or. 010101 = 111111. The
algorithm terminates having found

3 = {alblcl y agbz(:g}
which is a correet solution.

Example 2: The greedy algorithm does not always find a minimal
covering set, as the following example shows.

S = {1,2 3, 4,5, 6}
F={X, = (1,23}, X, = {4,5,6}, X; = {1, 3, 4, 6}].

The greedy algorithm finds 3¢ = {X, , X, , X;}, while the minimal
sgis (X, , X,}.

V. FINDING A SMALL SET OF PATHS CONTAINING ALL EDGES

As before, let ¢ be a directed graph with nodes N, , No, -+ , N, .
Let a,, denote the set of paths from N, to N, .
Definition: A set B,, of paths from N, to N, is said to be a spanning set
if every edge occurring in the set «,, oceurs in 8, .

Ezample: In Fig. 7, the set of all paths from N, to N, is
app = (@ + b)(e + d) = ac + ad + be + bd,

whereas an example of a spanning set is 8;, = ac + bd.

The problem we consider in this section is to find a small spanning
set B,, . Finding a minimal spanning set appears difficult, and the only
method we know is essentially an exhaustive search, as given in the
next paragraph. The main algorithm of this section, algorithm B, gives
a small spanning set 8,, with a reasonable amount of computation.

Finding the Smallest Spanning Set 8,, by Exhaustive Search

This may be accomplished by first applying the MeNaughton-Yamada
algorithm of Section III to produce a condensed list of all paths from
N, to N, . Then truncate each expression S* appearing in this list to
A + S. (Since there is no need to go around a loop more than once in

a C

b d

Fig. 7—An example.
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succession, we can throw away the remaining terms of $* = A + S +
S® + 8 4 ... .) We now have a finite spanning set 8,, and can use an
exhaustive search to get a minimal set.

The difficulty with this method is that the number of terms obtained
in the final list will be very large. To illustrate we apply the method to
the four-node graph of Fig. 3. We found that the complete set of paths
from N, to N, is

ay = ac*d + ac*d(ec*d)*(f + ec*D).
Truncating each S* to A + S, we obtain
a(A + ¢)b + a(A + ¢)d(A +-e(A + c)d)(f + e(A + ¢)b),
which, when parentheses are removed, becomes
ab + acb + adf + adeb + adecb + adedf + adedeb + adedech
+ adecdf + adecdeb + adecdech + acdf + acdeb + acdech + acdedf
+ acdedeb + acdedech + acdecdf + acdecdeb + acdecdecb.

Then by inspection, or from the greedy algorithm of Section IV, we
find that a minimal spanning set is for example

B4 = adf + adecb.
An Approximate Solution to the Problem—Algorithm B

We noticed in the above example that the difficulty was not in
finding a minimal spanning set—indeed there are a large number of ways
of choosing one—but rather in the very rapid increase in the number
of terms to be handled. The algorithm to be described now keeps the
lists involved small.

The basic idea is to follow the MeNaughton-Yamada algorithm, but
to use the greedy algorithm twice al each step lo reduce the complete path
sets o, to small covering sets B5; .

Definition: Let B%; be a set of paths from N; to N; containing no
internal node N, with p > k and containing every edge appearing
in of; .

Then 82, = B,, is an example of a spanning set of paths from N, to N, ,
which is what we are seeking.

The algorithm will form the 8}; by induction on k. At each step we will
keep a record of the edges in 8%; by means of its indicator vector I(8};).

The inductive step proceeds as follows. Suppose ;' is known for
all 7, j, and we wish to obtain 8}; (see Fig. 8). We restrict ourselves here
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Ni

T2
Fig. 8—The inductive step of algorithm B.

to the case when 7, j and & are distinet, the other cases being left to the
detailed statement of the algorithm,

Suppose 8;;' = T, + T, + -+ + T, , where each 7, is a path
from N, to N, . Then a possible choice for g%; is

f;l y ﬁf;le.Tia s Tuﬁ:i—l (2)
where we have used just enough 7';’s to include all the edges in 7', +
Ty + -+ 4+ T, that were not already contained in

B+ BB
" L vl e
A better choice for g5, , however, is to obtain (2) and then find a small
spanning subset of (2) by the greedy algorithm.
We now give the algorithm.

ALGORITHM B

Each g8}, will have the form of a sum of strings of edges, without
*’s or parentheses.
1. The Initial Step

Define g}, forall 4, j = 1, --- , n by:
(1.1) if 7 # j,

g = {¢ if there is no edge from N, to N, ,
P ey 4 ey + -+ if edges labeled ¢, , ¢, -+ join N, to N, ;

1.2)ifi = j,
g = A if there is no edge from N, to itself,
W \een - if edges labeled ¢, , ¢, , -+ - join N, to itself.
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2. The Inductive Step (Refer to Fig. 8)

Fork = 1,2, -+ ,n — 1, compute 8 forall i, j = 1,2, -+ ,n
as follows:
(2.1) If kb = 7, k # j:
(2.1.1) Let the terms of Bi;' be

gt =Ti+Tit+ v+ T,
(2.1.2) Form the indicator vector
I, = I .or. I(8%") .or. I(Bi7 ). (2.1.3)

(This includes all the edges in the three sides of the triangle of Fig. 8.)
(2.1.4) Using the greedy algorithm, find a small subset of the 7%’s
in (2.1.1) which contains all the edges in

I(8i:"). anD. NoT. I, ,

i.e., find a small subset of the terms 7', which includes all the new edges
they contain. Let this subset be T\, + To, + -+ + T.,, .

(2.1.5) Form the set
B + B TaTa, o+ ToBii' - (2.1.6)

(By construction, this now contains all the edges visible in Fig. 8.)
(2.1.7) Apply the greedy algorithm to the set (2.1.6) to find a small
spanning subset. This is 85; .

(2.2) If i # jand k = 1, replace (2.1.3) by I, + I(Bi;'), and replace
(2.1.6) by

TnxTa, e Tnmﬂ:i_l-

(2.3) If 1 # j and k = j, replace (2.1.3) by I, = I(8};'), and replace
(2.1.6) by

AT o P

(24) Ift = j = k:
Replace (2.1.3) by I, = 0 and replace steps (2.1.5) and (2.1.7) by

B:k = TmTaa e Ta-u .

3. The Final Step

Use whichever of (2.1) to (2.4) is appropriate to caleulate ;, , the
desired result.
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Example: We use algorithm B to obtain a small spanning set 8,4 of
paths from node 1 to node 4 in Fig. 3.

i
) 1 2 3 4
1 A a ) ¢
B‘i’i = ﬁ:) 2 ¢ c d b
3 ¢ e A f
4 ¢ ¢ [ A
]

1 1 2 3 4

1 A ac acd ach

B 2 ¢ c cd cb
3 ¢ ec ecd I+ ech

4 ¢ o] P A

The last step will be shown in detail.

(2.1.1) B3y, =ecd = T, .

(2.1.2) I, = I(B},). or. I(B},). or. I(B3,) = 111000. or. 101100. OR.

011011 = 111111.

(2.1.4) ~or. I, = 000000 so no 7,’s need be used.

(2.1.5) By, + Bi:B3 = ach + acd(f + ecb) = ach + acdf + acdech.

(2.1.7) From the greedy algorithm, 8}, = 8{, = acdecb + acdf, which
is a minimal solution (although minimal solutions with shorter strings
are possible, such as acdeb + adf).

Remarks: (i) If a fast version of the greedy algorithm is available, the
computation time for algorithm B should not be much more than for
the McNaughton-Yamada algorithm. (¢7) An edge forming a loop of
length one may be deleted from any sum of strings in which it appears
more than once. If there are many such edges the algorithm should be
modified to make a list of such edges and periodically delete duplicates
from the g5, . The modified algorithm would then give the improved
solution acdeb + adf to the above example. (i77) As in Section III, large
networks may be handled by partitioning.
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VI. FINDING A SMALL SET OF PATHS CONTAINING ALL EDGE-EDGE TRANSI-
TIONS.

With a,, defined as before, in this section we consider the problem of
finding a small subset v,, of a,, with the property that every edge-edge
transition appearing in any path from N, to N, appears in v,, .

For example, consider the graph of Fig. 6. Here the set of all paths
from N, to N, is

an = (@ + a) (b + b)e + €2)
= a,biey + arbic, + arbe, + arbac,
+ asbie, + axbic: + axb.e, + asbac,
and an example of v,4 is
Yia = aibie; + absc, + azbica + ashac, .

To check this we observe that «,, contains eight distinet edge-edge
transitions:

ab; , aby , @by, @by, bicy, bica, bacy , baca
and all of these appear in v .
Of course 7,4 is not unique, another example being
abics + abacs + abic, + asbac, .

The idea of the solution is to construct from G a new graph called the
transition graph, G”, which will have an edge for every edge-edge
transition in G, and then to apply algorlthm Bto G".

Suppose then that G is given and it is desired to find v,, . First form
the augmented graph G by adding to G a node N, which is connected
to N, by an edge 2, , and a node N,,, to which N, is connected by
an edge z, (see Fig. 9).

From G we construct the transition graph G" as follows. The nodes
of G” are (i) a node denoted (N,), and (i7) nodes denoted (e,l SN, -,
(eir; , N;) if edges e;y , - -« , i, enter N; inG, fori=1,2 - ,n + 1.

Fig. 9—Construction of augmented graph G.
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The edges of G" are (i) an edge from (N,) to (21, N,), labeled (z,);
and (77) for every edge-edge transition in G,
e Ny f Nj
O—> o—> O,
there is a corresponding edge in ¢":

(Cv N:)O'_)—O(l) Nl)

(e.))

In general, we see that nodes of G have labels of the form (edge of @,
node of ), and edges have labels of the form (edge-edge transition
pair of G).
By construction, apart from the edge (z,) of G”, there is a one-to-one
correspondence between edge-edge transitions in G and edges of G,
To find v,, we apply algorithm B to G'". Each path through G from
N, to N,,, will have the form

(21), (zi€:), (ei, ) €1), (e, ) €0), =+, (€i,20) (3)
and this corresponds uniquely to the path
€,y Ciyy "ty €, (4)

from N, to N, in (. The process of obtaining (4) from (3) will be called
contracting.
We can now state the algorithm.

Algorithm C for Oblaining v,,
1. From (¢ obtain G and then the transition graph G'”.

2. Apply algorithm B to find a small set of spanning paths from N, to
N, inG".

3. Contract each of these paths to give a set of paths in G. This is v,, .

Example: Let G be the graph of Fig. 6. Then G and G" are shown
in Figs. 10-11.

Applying algorithm B, or in this case even by inspection, we see that
a minimal spanning set for Fig. 11 is

(21)(z1a1) (@1by) (bicy) (e122)
+ (21)(z101) (@1b2) (bac1) (122)
+ (21) (21a2) (@2by) (b1e2) (e222)
+ (21)(2102) (a2b2) (bac2) (225),
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ay b, Cy

No Ns
Zy N, N> N3 N, 22
a, ba Cz

Fig. 10—Augmented graph G corresponding to Fig. 6.

which contracts to give the paths
abie, + abae; + abics + ashacs

the same solution as found before.

VII. FINDING THE MOST PROBABLE PATHS

A directed graph G is given with a conditional probability measure
associated with the edges. More precisely ¢ has nodes N, , -+ , N, ,
and associated with each edge e, directed say from N, to N; , is the
conditional probability p. that e will be traversed next, given that the
last node reached was N, .

We wish to find the most probable paths through the graph, starting
at N, and ending at N, . The probability of a path is the product of the
probabilities associated with the edges in the path.

In other words it is desired to find those paths P for which

probability (P) = [ 2.

all edgon
eeP

is the maximum, or is close to the maximum.
If we label each edge e of G with the “length”

g. = —log p.
instead of with p, , an equivalent problem is to find those paths P for
which

qe

nll edges ¢ P
is the minimum, or is close to the minimum. In the new graph this
corresponds to finding the shortest paths between N, and N, . This
problem has been extensively studied and many good algorithms for
its solution are available. We refer the reader to the recent survey by
S. E. Dreyfus.'® References 16 and 17 are earlier surveys covering a wide
range of similar problems. The paper by H. Frank' is also relevant.

VIII. SUMMARY

Four questions which arise in testing a stored program for possible
errors are stated quite generally in terms of listing the paths through
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(No)
(Z4)
(Z(Ny)

(aiN2)

(aby)

(biN3)

(by e

(c1Na)

(ZNs)

Fig. 11—Transition graph G” corresponding to Fig. 10.

a directed graph. Question 1 may be answered for small graphs by the
McNaughton-Yamada algorithm, and for large graphs by partitioning
(Section IIT). Question 2 involves a difficult combinatorial problem,
the minimal covering problem, a partial solution of which is given by the
appropriately named greedy algorithm of Section IV. With the aid of
the greedy algorithm, algorithm B solves question 2 (Section V).
Question 3 is solved by the same method as question 2 (Section VI).
Question 4 is shown to be equivalent to the widely studied “shortest-path
problem,” and references are given to the appropriate literature (Sec-
tion VII).
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Wiring Telephone Apparatus from
Computer-Generated Speech

By J. L. FLANAGAN, L. R. RABINER, R. W. SCHAFER, and
J. D. DENMAN

(Manuseript received October 5, 1971)

Tape-recorded, spoken wiring insiructions eliminate the need for a
wireman to divert his eyes and hands from the equipment he is fabricating.
A computer technique is described for automatically converting printed
wire lists to synthetic speech. The technique was used to synthesize spoken
wire lists for crossbar-/4 equipment, and the result was tested informally
on a production line at the Western Electric Company plant in Oklahoma
City. No errors were made in wiring crossbar-4 circuitry from the computer-
synthesized instructions.

I. INTRODUCTION

In many instances in fabricating and wiring telephone equipment,
it is necessary for the wireman to use both hands and to visually “keep
his place” in the equipment. Since it is inefficient and time consuming
to divert either eyes or hands from the wiring task, a spoken presentation
of the wire-list sequence is advantageous. '

Tape-recorded, spoken wire lists have been used by Western Electric
Company for switchgear wiring and cable forming at the Oklahoma City
and Montgomery (Chicago) plants. The wire lists typically are read and
recorded by a practiced announcer. The recordings are then checked
and edited by another person in a separate listening operation. The
final recording is then used in a cassette play-back whose start-stop
control is wired to a footswitch. As the wireman needs items of the
wiring sequence, he presses the footswitch for a time required to play
back each item of the list. Because of the noisy environment he normally
listens on an ear-insert earphone. The play-back normally is stopped
while each connection is made. A typical wire list includes: lead length;
color; beginning point; terminating point; and, sometimes, auxiliary
instructions. Studies of the audio technique of wiring show accelerated
training time and substantial improvements in quality and efficiency.

391
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Fewer defects are found to occur and less time is needed to repair them."

Wire lists for complex equipment are generally organized on computer
cards. The audio technique therefore requires a listing of the card deck
in a form convenient for the human announcer. The two human opera-
tions [(7) recording and (i7) editing] offer possibilities for errors to
creep in. This sequence of operations is illustrated in the upper half
of Fig. 1. Modifications in the wire list—made easily in the card deck
and, generally, made often during the life of a typical list—require
re-recording and re-editing of the audio tape. Consequently, there is
considerable motivation to consider direct and automatic conversion of
the card deck into a speech recording. One scheme for a direct and
automatic generation of the spoken wire list uses synthetic speech and
is illustrated in the lower half of Fig. 1.

II. COMPUTER-SYNTHESIZED INSTRUCTIONS

We recently have devised a computer technique for synthesizing
speech from stored, low bit-rate data.”® In its initial form the method
has been applied to the synthesis of 7-digit telephone numbers, as
might be used in an automatic intercept system. The system is imple-
mented on one of the DDP-516 computers in the Acoustics Research

ANNOUNCER -

(0 PRINTED
= WIRE CHECK
\ = C— LIST —— AND
EDIT

TAPE TAPE

RECORDER | | RECORDER
WIRE LIST TAPE
CoMPUTER RECOnDER
CARDS (CASSETTE)
§ Foot
SWITCH
DDP-516 g,'fe'gé:; TAPE CROSSBAR-4 WIREMAN
COMPUTER [~ | syntifesizer| | RECORDER WECO, OKLAHOMA CITY

_ Fig. 1—Human and computer methods of preparing tape-recorded, spoken wiring
instructions.
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Department, and the major components of the system are shown in
Fig. 2.

Individually-spoken words are analyzed in terms of their character-
istic (formant) resonances, and the results described by a data rate of
530 bits per second.” These data are stored in the fast-access disc of
the DDP-516 facility and constitute the vocabulary for the voice-
response system. When a word-sequence is demanded by a control
(answer-back) program, the formant data for the successive words are
accessed from dise and are concatenated ‘“head-to-tail.” An analysis
is made of the context in which the library words are to appear, and
duration and voice pitch data are computed for each word by the
synthesis program. The formant data at the boundaries between words
are interpolated smoothly by a specially designed algorithm in the
synthesis program. Finally, the formant and pitch data caleulated for
the required utterance are sent to a hardware digital filter whose
resonances simulate those of the human vocal tract."* Digital-to-analog
conversion of the filter output yields a synthetic speech signal.

We have used this voice-response system with simplified duration
and piteh rules to synthesize wire lists for crossbar-4 switchgear. In
this application the card deck comprising the wire list is simply put
into the card reader of the DDP-516 and each wiring instruction is
synthesized. A computer-controlled analog tape recorder records the
output of the D/A converter, and this tape goes directly to the wireman’s
cassette. The items of the crossbar-4 wire list which were synthesized
are shown in Table I. The synthesized list contained a total of 58 com-
plete wire wrap instructions.

DIGITAL STORAGE
FOR FORMANT-
cggeoov?/o:os CALCULATED SAMPLED
e<4n BB ~CONTROLS FOR HARDWARE
? / FORMANT SYNTHESIZER
/
/
v
WORD SEQUENCE DDP-516 HARDWARE DIGITAL-
DEMANDED BY PROGRAM FOR DIGITAL TO-
ANSWER-BACK "] CONCATENATING | : SPEECH ] ANALOG
PROGRAM WORDS : SYNTHESIZER CONVERTER
DURATION PITCH
CALCULATION GONTOUR
CALCULATION

_ Fig. 2—-DDP-516 computer system for automatic synthesis of spoken wiring
instructions.
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TaBLE [—SyNTHESIZED WIRE LisT

SWJ99234T2
issue 7

List combination 1, 2, C, D

Apparatus not otherwise identified shall be considered to be a relay.

Wire colors not otherwise identified shall be green and the length will be in inches.
The sequence of operations will be: wire length, starting terminal and apparatus
designation, ending terminal and apparatus designation.

bottom C2 capacitor

12 27A terminal strip 6R1
3 28A terminal strip 2A tube socket
11 37A terminal strip 4R1
2 38A terminal strip 6A tube socket
18 15A terminal strip 1 lower TP
19 16A terminal strip 1 TP
20 25A terminal strip 7 break TP
P 26A terminal strip 1 top P
35A terminal strip 7TP
36A terminal strip 2A repeat coil
14A terminal strip 6 make R1
24A terminal strip 2 top P
33A terminal strip 4 make R1
34A terminal strip 1 upper TP
12A terminal strip 2 R1
32A terminal strip upper R1
1A tube socket 8 top P
5A tube socket 9 top P
6A tube socket, 4 top P
8A tube socket 7 top P
1 top P 6 make TP
2top P 10 break R1
3top P 8 make RR1
4 top P top A capacitor
5 top P top D capacitor
8 top P bottom A capacitor

bottom C1 capacitor

top C2 capacitor

to{) C1 capacitor
5 bottom C1 capacitor 8 1

bottom A capacitor
top A capacitor
HA repeat coil

3-1/2 top C1 capacitor top C resistor
3-1/2 bottom C resistor 10 R1
4 break R1 4A repeat coil
6 break R1 7A repeat coil

8A repeat coil
3A repeat coil
6 TP

1 lower TP right E capacitor
1 upper TP lower E capacitor
2 lower TP 4 make TP
2 upper TP 4 TP
1A repeat coil top A resistor
5 6A repeat coil bottom A resistor
5 bottom A resistor bottom B capacitor
3.5 top A resistor to% B
20 17A terminal strip 5TP
20 18A terminal strip 3TP
11.5 22A terminal strip 11 R1
8 6 top P top R1 upper terminal
5.5 bottom D capacitor bottom R1 lower terminal
7 top R1 upper terminal 5A repeat coil
Red 2.5 11A terminal strip 4A tube socket
Black 3 31A terminal strip 7A tube socket
Black 9.5 7A tube socket 8 break R1
Black 2.5 8 break R1 2 make R1
Black 3 2 make R1 10 make R1
Black 10 10 make R1 top TP terminal
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We have made informal experiments at the Western Electriec Company
plant in Oklahoma City, where we asked the wireman (or, rather,
wiregirl) to use the synthetic speech recording to fabricate crossbar-4
equipment. A photograph of the wireman simultaneously wire-wrapping
five identical chassis of crossbar-4 equipment is shown in Fig. 3a. The
footswiteh control of the synthetic speech tape on the cassette is shown
in Fig. 3b.

Fig. 3a—Wireman on production line at Western Electric Company plant in
Oklahoma City. The wireman is fabricating crossbar-4 equipment from the computer-
spoken wire list.
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Fig. 3b—Wireman's footswitch to control the computer—-synthesized speech tape.

While the quality of the synthetic speech is far from natural, the
wireman (who had never heard synthetic speech) experienced no
difficulty in using it immediately and, in fact, remarked that the
“caricatured’”’ nature of the synthetic signal seemed better for the noisy
plant environment than natural speech. About 15 minutes/chassis are
needed to wire the equipment shown in Fig. 3, and no wiring errors were
made in the informal tests on the five chassis.

For speech material with as small a vocabulary and as rigid a con-
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textual format as a wire list, the flexibility and storage economy of the
synthesis system is not critically needed. In the case of brief lists,
digital recordings of the naturally spoken vocabulary words may be
made on the DDP-516 dise and these words can be concatenated
automatically by the control program. This simpler approach does not,
of course, permit smooth, natural joining of the words into a sentence,
but utterances such as the components of a wire list can be rendered
reasonably well virtually in isolation. This approach would be exceed-
ingly economical in that no pre-analysis computation of formant data
is required to establish the machine vocabulary, and all the advantages
of automatic, computer-generation of the spoken instructions are
retained.

One final comment may be in order about computer-generation of
spoken wire lists. The human-pronounced list which had been in use for
the crossbar-4 wiring had a very obvious pausal error throughout. (Look,
for example, at the first item in Table I.) The girl announcer who
recorded the tapes, and who apparently was unfamiliar with the wiring
operation, consistently read the items as “Twelve (pause) Twenty-seven
(pause) A terminal strip.” The computer, although speaking with a
machine accent, never makes this mistake.
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Man-Machine Interaction in
Human-Face Identification

By A. J. GOLDSTEIN, L. D. HARMON, and A. B. LESK
(Manuscript received September 20, 1971)

How well can a computer identify a human face which is described by a
person who 1is inspecting a photograph? We give an account of an inter-
active system that takes advantage both of the human’s superiority in
detecting and describing noteworthy features and of the machine’s super-
tority in making decisions based on accurate knowledge of population
statistics of stored face-features. Exrperiments using a population of
255 faces and 10 or fewer feature-descriptions showed that the population
containing the described individual could be narrowed down to less than
4 percent in 99 percent of all trials.

I. INTRODUCTION

In a previous report’ we described experiments in human-face
recognition which were intended to establish a foundation for extended
study. Those experiments provided a large body of reliable quantitative
data based on 21 feature-descriptions of 255 human faces. These
21-dimensional vectors were shown to be sufficient for accurate indi-
vidual identification, both by human and by computer search.*

The objective, then and now, is to explore new techniques for obtaining
accurate recognition of vectors given imprecise component values. Our
procedures involve searching through a population of vectors to retrieve
one, a “target,” whose components best match a searcher’s imprecise
specification.

There are two obvious kinds of such recognition and retrieval, just
as in fingerprint-file search. One is that of finding the best match
between an unidentified individual and a member of a file population.
The other is that of assigning an individual to one of a number of

* Our population consisted of 255 white males aged 20-50 with no eyeglasses,
facial hair, sears, or notable deformities. A panel of 10 observers independently
evaluated 21 features (shown in Fig. 1) for each face, The average value of the
observers’ votes was used as the “official’’ description of each face-feature. Although
individual feature-descriptions are restricted to inlegral values, averaging the panel’s
votes provides non-integral official descriptions. Reference 1 contains a detailed
discussion of the features and population used.
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predefined classes according to some systematic scheme. Ours is the
first approach, matching, though the techniques developed could
readily be used for the second, cataloging.

In our previous work, a subject was given a set of photographs of
human faces and an official deseription of one of them. He was required
to select that photograph which best matched the deseription. In the
experiments reported here, the subject was shown a picture and was
asked to describe it to a computer using features from a list given to him.
The computer then searched a population of stored descriptions for
best fit to the deseription furnished by the subject. In both studies
we ran supplementary experiments employing computer simulation to
establish theoretical limits of human performance under certain model-
ing assumptions.

In the earlier face-identification procedures, isolation was based on a
binary-decision technique. At each step in the search, the population
was progressively reduced by using a quantitative feature-description
to determine which members of the remaining subset would be retained.
On the average, eight feature-descriptions were required to isolate a
face in a population of 255 males; about 50 percent correct identification
was obtained. The binary process, however, obviously insured doom
given just one error in the sequence.

A more lenient process is rank-ordering. If one ranks population
members according to some goodness-of-fit criterion, any reasonably
accurate description can be expected to place the target high on the
rank-ordered list. Such a system can be quite useful in focusing attention
on a small subset of the population that has high probability of con-
taining the target. Population-reduction techniques like this are well-
known to be useful in many tasks, from fingerprint-file search’ and
seript recognition® to document retrieval.’

The present report deals with a real-time man-machine interactive
system for human-face identification. The study has three main objec-
tives:

(i) To develop a decision-making technique which replaces the
earlier error-sensitive binary-decision selection process by a
more forgiving rank-ordering process,

(#7) To design algorithms for optimizing the man-machine system
so that we can take advantage of both the human’s superiority
in detecting noteworthy features and the machine’s superiority in
making decisions based on accurate knowledge of population
statisties, and

(¢i7) To devise simple yet effective measures of performance.
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II. SYSTEM DESIGN

The system design can be understood by considering our experimental
procedure. A subject at a remote computer-terminal is given a photo-
graph of one member of the population. He describes this target face
to the computer using descriptive features chosen from a permitted set.
The aim is to have the computer identify the target from the subject’s
description of it.

Subjects in our experiments used three-view photographs of target
faces (two examples are shown in Tig. 6). The set of features from
which deseriptions were drawn is shown in Fig. 1.

In our experiments, features may be chosen by the subject or by
the computer which uses an automatic feature-selection algorithm.
There are three alternative modes of feature selection: the subject
may choose all features, or he may choose some and then let the com-
puter choose the rest, or the computer may choose all features.

After each feature description, the computer assigns a goodness-of-fit
measure (a “weight’’) to each member of the population. This weight
represents the similarity of the subject’s deseription to the official
description of each member of the population. At each feature-deserip-
tion step, the population is ranked by weight. After a predetermined
number of steps, the process is terminated. We evaluate performance
with respeet to the target’s rank and weight. An illustrative printout
of one “portrait’* appears in Fig. 2.

Two aspects of system design are crucial: the weight-assignment
algorithm and the feature-selection algorithm. They are described
below. Following that, we discuss two critical experimental requirements,
stopping criteria and measures of performance. The experiments
reported in the succeeding section were designed to show how various
modes of feature selection affected system performance.

2.1 Weight Assignment

The algorithm used to assign weights at each step must maintain
a reasonable balance between penalizing descriptive errors so heavily
that recovery from a mistake is impossible and penalizing these errors
so lightly that no significant reduction of the population is achieved.
The penalties assigned should distinguish between a minor descriptive
error (e.g., medium-long vs long nose-length) from which recovery
should be easy, and a major error (e.g., short vs long nose-length)
from which recovery should be more difficult.

* A portrait is defined as a description consisting of a set of /nlegral feature-values
assigned by a subject ; the subject is said to “portray’’ the target.
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Fig. 1—Set of 21 face-features and their allowable values used for all experiments.
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)
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i=1

—Mk = ZA'-‘

i=1

as the general form of an individual’s weight at step s. For the feature
described at step 7, v; is the individual’s official value, 9, is the value
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DESCRIBE NEXT PICTURE.
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76 147 52 B8a 72
1.00 0.50 0.42 0.37 0.34
Fig. 2—Printout of one interactive dialog. Computer requested feature; subject
picked Eyebrow Weight. Computer printed allowable feature-values; subject voted
thin. In next two lines computer displayed calculated weights of the top five in-
dividuals. First four faces, 93 - -+ 223, tied with relative weights 1.00. Face no. 159 in
fifth place was weighted 0.82 relatively. By step three the target (no. 76) was in
fifth place, advancing to first rank by step four despite deliberately introduced errors
on first two steps. Subject changed to AFS at step five, whereupon computer specified
Eye Shade. Nearest neighbors were gradually separated; by step 10 t-?le closest had
relative weight of only 0.19. Portrait automatically terminated at step 10. Summary
compares subject’s assignments with official values (“AVG."”); also displayed is
target’s rank at each step and percentage of population with higher rank.

assigned by the subject, and A, is the magnitude of the difference
between them.

A number of variants of this formulation were tested. In particular
we found that & = 1 yielded results as good as or better than any
other value of k. We also considered the effect of quantization error
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arising from comparing the integral feature-values used by subjects
to the non-integral official feature-values. For each feature description
this error is at most 0.5. Alternative formulations of weight functions
intended to minimize the effect of this error degraded performance.
Our earliest formulations of weight used an exponential form. While
presently unessential, the exponential has survived in our computational
algorithms. Consequently, with & = 1 and with no compensation for
quantizing effects, the weight assignment is

W = exp (— HZ A‘)-

i=1

2.2 Automatic Feature-Selection

As noted above, features may be selected either by the subject or
by the computer. The two methods have complementary advantages:
The subject possesses exhaustive knowledge of the face he is portraying,
but he knows very little about the characteristics of the population
stored in the machine; conversely, the machine does not know who the
target is, but it does possess the official descriptions of all population
members and their goodnesses-of-fit to the target deseription.

We wish to find if the advantages of human and of computer feature-
selection can be usefully combined, where the human can take advantage
of extreme features, while the computer can utilize discriminating
features.

An extreme feature of a target is a feature whose official value is
near an extreme of that feature’s range; e.g., long hair, short nose,
small mouth. This classification does not depend on the target’s other
feature values or those of the population. It depends only on the fea-
ture’s value and range.

Conversely, a discriminating feature is a purely relative concept,
based on the population and the target description up to any given
step. At each step, we refer to a feature as discriminating if its deserip-
tion will distinguish among those individuals whose official descriptions
match the partial portrait well (i.e., the individuals who have large
weights). Whether a feature is discriminating depends on the statistics
of feature-value distribution over the population.

We wish to develop an automatic-feature-selection procedure that
chooses the most discriminating feature available as the next one to
be described in a portrait. How can we decide when a feature is dis-
criminating?

Consider the two hypothetical distributions of official feature-values



HUMAN-FACE IDENTIFICATION 405

100 100
i @ | . | 0 (b)
o] ]
O 7151 = 151
E [
< S
3 =)
o o 7
9 4
W 90r w o8 Y
o (o]
V]
= =
z z
g 8
o« = -
g 25 ; 25 2
%
% %
114 | L
/ 0 /)
0 %1% g ‘ ﬁ [¢] ﬁ
T I T3 Tyds Ty Ty Xg Iy Iz
FEATURE VALUE FEATURE VALUE

_Fig. 3—Two types of distributions of official feature-values: (a) Relatively uniform
distribution represents discriminatingfeature. (b) Relatively non-uniform distribution
indicates a nondiseriminating feature.

shown in Fig. 3. If feature b were used, and if the target’s value happened
to be ., then the target would be well separated from the rest of the
population. It is much more likely, however, that the target’s value
would be z,, in which case the separation of population members
would be poor. If feature a were used, one would always obtain some
intermediate amount of population separation. In the extreme, if all
members of the population had the same value of a particular feature,
say very long ears, then the use of that feature would not lead to
population separation. Conversely if the values were uniformly dis-
tributed over the population, maximum discrimination and most
effective separation would be obtained.

In considering feature-value distributions, it is undesirable to utilize
the official description of every member of the population for all unused
features. Not only would this increase cost, but it would degrade
performance. This can be seen from the following argument: The aim
of automatic feature-selection (ATS) is to find a feature which will
decrease the number of individuals who are described well by the
portrait thus far. The distribution of feature values among those
individuals may be completely different from the distribution in the
whole population. If AFS considered all individuals, the distinguishing
characteristics of the high-ranking individuals would be obscured by
those of the overwhelming number of low-ranking individuals. To avoid
waste of one’s knowledge of the partial portrait, AFS considers the
distribution of feature values only in the subset of the population
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which the portrait describes well, although the feature chosen will be
used to rerank the entire population. This subset should include the
individuals who could easily attain first place in the rank-ordered
population. In practice, we found that to consider all individuals with
weight = 0.7 times the weight of the first-ranked one, but at least
10 individuals, was effective.

As a result of the above arguments, we implemented an AI'S procedure
which chooses as the next feature that one for which the distribution
of the feature-values of the high-ranking individuals is most nearly
uniform. This will be the most-discriminating feature in the sense of
efficient identification. Analytical details of the procedure are given
in Appendix A.

2.3 Stopping Crileria

The portrait composition must continue for enough steps to insure
accuracy. On the other hand, too many steps lead to subject fatigue
and boredom. The rule which governs when portrait composition stops
should satisfy both these requirements.

A stopping rule may be dynamic and depend on the ranks and/or
the weights at each step, or the rule may be static, e.g., stop after a
predetermined step. Our earlier experiments, employing a human
binary-search process,' showed that, on the average, fewer than eight
features were used when a target was successfully identified. One might
conjecture that with 5-valued features some 2.3 bits of information could
be available at each step, and so the present experiments should require
fewer than 8 steps for isolation, and not less than log, 255/log, 5 = 3.5.

This argument, and information from trial runs indicating that
fatigue and boredom commenced after the subject judged about ten
features, were used to arrive at a static stopping-rule of ten steps.
Experimental results have shown this to provide adequate accuracy.
The data we obtained permitted us to formulate an efficient dynamic
stopping-rule for future use; it is deseribed in Section IV.

2.4 Measures of Performance

A binary search-procedure may be evaluated by whether and at what
stage the target is ultimately isolated, or at what stage the target is
rejected and the size of the smallest subset that contained the target.
Meaningful measures of performance for a rank-ordering procedure are
less obvious.

One useful measure, population reduction, can be transferred directly
from binary search to rank ordering. We can consider the size of the
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subset of the population with rank greater than that of the target, and
how rapidly the population is reduced to that size. The concept of
absolute isolation is thus replaced by one of relative identification.

We measure the population reduction at each step by the rank of
the target. Since his rank usually changes from step to step, we use
as an overall measure of performance the mean rank of the target
from the sixth through tenth steps. The first five steps are not included
because the target’s rank then is usually large and changing rapidly.

Population reduction shows whether the target is separated from
the rest of the population. It does not reveal, however, the extent of
that separation. To do this, a ‘“confidence” measure was introduced.
It is based on the weights of the individuals in the ranked list, as
follows: If the target is ranked first, his confidence is the ratio of his
weight to that of the second-ranked individual; otherwise, the target’s
confidence is equal to the ratio of his weight to that of the first-ranked
individual. A confidence value less than 1.0 denotes failure to place
the target in first rank; confidence values greater than 1.0 correspond
to varying degrees of success. Obviously, the magnitude of the con-
fidence measure depends on the weighting function being used.

Confidence and rank are useful in evaluating a single portrait; their
averages can be used to compare several sets of portraits. A third
measure we find useful is the rank cross-section; this is meaningful
only for comparing sets of portraits. For a set of portraits, the rank
cross-section is the frequency with which targets reach or exceed a given
threshold rank (e.g., first rank, or top 2 percent of population, etc.)
at each step of a portrait. This indicates the average speed and extent
of a target’s rise in rank.

However, a target does not necessarily always rise in rank. A faulty
feature-judgment may worsen his position. The weighting scheme is
forgiving in that it permits recovery from a subject’s error in feature
judgment. Another way of viewing this is that once the target is en-
trenched in first place, i.e., has a large confidence, it takes a large error
in judgment to displace him.

We can express this quantitatively as follows: Suppose the target
is in first rank; let him have confidence ¢, and let the next feature
judgment for him have an error A. Suppose that the error for the
second-ranked individual is 0. Then with the weighting scheme that was
adopted, we find that if A > In ¢, the ranks will be reversed. Thus,

when confidence ¢ < 1.6 2.7 45 7.4 122 200
reversal occursif A > 0.5 1.0 1.5 20 25 3.0.
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Data on subject error (see Section 3.1.1.1) show that 95 percent of the
time A = 1.0. Thus a first-ranked target with confidence 2.7 or greater
is rarely dislodged.

III. EXPERIMENTS

3.1 Human Experiments

An interactive experiment was run to evaluate the effectiveness of
our overall system and to test the relative utility of three different
modes of operation.* In one mode the subject selects every feature he
describes to the computer, using first those he considers most extreme
for the target. We shall refer to this mode as “NO AFS” (i.e., no auto-
matic feature-selection). In another mode, termed “ALL AFS,” the
subject simply assigns feature values for each feature specified by the
computer which is operating in the automatic-feature-selection mode
described earlier. A third mode, termed “MIXED,” requires a subject
to select features until he decides there are no more he considers out-
standing, then to invoke AFS,

We expected subject selection of extreme features to enhance separa-
tion, at least for the first few features, for many members of the popu-
lation. When there are no extreme features to use, then computer
selection of discriminating features should facilitate target separation.
We expected that the mixed mode of operation, taking advantage of
the best capability of both human and computer, would yield best
results as measured by confidence and rank.

Fifteen subjects were used (13M, 2F). Twenty-one features were
made available, as illustrated in Fig. 1. Each subject participated in
three separate sessions, one in the NO-AFS mode, one in MIXED,
and one in ALL ATS. Each of the 15 subjects, portraying 15 targets,
provided us with 225 portraits. Five targets were portrayed in each
session. Fifteen different targets were used; each subject thus portrayed
all targets. The targets were individually selected at random from our
population of 255; as an ensemble they were shown to preserve the
feature distributions of the entire population. To minimize possible
effects of learning, we randomized the order in which subjects used the
three modes of feature selection and the order in which they portrayed
the targets.

At the beginning of the experiment each subject was given 20-30
minutes of verbal instruction to familiarize him with the feature set.
This used a collection of sample faces that were not employed in the

* The program which was used is described in Ref. 5.
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Fig. 4—Cumulative distribution of differences between subject votes and official
values. The difference was never greater than 1.0 for 95 percent of the votes.

experiment. The subject then observed the experimenter portraying
one target.

At the beginning of each session, the subject portrayed one practice
target using the same mode of description (NO AFS, MIXED, or
ALL AFS) to be employed in the experimental session. In all cases
the subjects viewed the target’s photograph while describing his features.

3.1.1 Results

3.1.1.1 Feature-Judgment Reliability. Our 15 subjects, making 2250
total judgments (15 subjects X 15 targets X 10 features), were in
excellent agreement with the official feature-values. This can be seen
in Fig. 4 which displays the cumulative distribution of magnitudes
of the differences (A) between the subject judgments and the official
values. In 95 percent of the 2250 judgments, the A was < 1.0 (the
maximum A is 4.0 for a 5H-valued feature).* No judgments were as
much as 3.0 off, only two were > 2.0 off, and only 24 of the 2250 judg-
ments were different from the official values by more than 1.5.

Standard deviations were computed for the distributions of subject
judgments, feature by feature. In both the ALL-AT'S and the NO-AFS
experiments, the standard deviation ranged from 0.42 to 1.1. The
standard-deviation values for each feature are similar for ALL AFS
and NO AT'S, indicating no significant difference in subject accuracy as
a function of whether feature selection is active or passive.

3.1.1.2 Identification Accuracy. The confidence and rank data,

* With the exception of two three-valued features. The data of Fig. 4, which
include all 21 features, are not significantly changed by deleting the contributions of
the two three-valued features.



410 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

averaged over all subjects and all targets, are shown in Fig. 5. For
the combined 225 portraits, the mean confidence at step 10 was 5.65, and
the mean rank over the sixth through tenth steps was 4.12. For 75
MIXED portraits, the mean confidence and rank were 6.79 and 2.75
respectively, while for 75 ALL-AFS portraits the corresponding figures
were 4.41 and 6.71. The results of the 75 NO-AFS experiments were
intermediate; mean confidence was 5.74, and mean rank was 2.91.

Subject performance varied considerably. Both the average confidence
and the average rank had a range of 6:1 (from best to worst subjects).
One subject’s performance was consistently poor. When his scores are
deleted, the average rank improves from 4.12 to 3.70, and the average
confidence improves from 5.65 to 5.80.

To test for improved performance with practice during the course
of the experiment, the data for each subject were examined according
to their temporal sequence. No trends were observed.

The 15 targets received a rather wide range of performance indices.
Number 99 had an average confidence measure of 20.3 (compared to
the 15-target mean of 5.65), and his average rank was 1.39 (compared
to the 15-target mean of 4.12). At the other extreme, no. 19 had a
confidence measure of 0.88 and a rank of 9.16. These two individuals
are depicted in Fig. 6.

NO AFS | MIXED | ALL AFS | comBINED
CONFIDENCE | 574 6.79 a.41 5.65
RANK 291 2.75 8.71 ai2
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Fig. 5—Two measures of performance summarized for all subjects and targets.
MIXED mode is clearly superior, while ALL AFS is markedly poorest. Combined
results for all experimental data show that the average target, with a rank of 4.12,
was in the upper 1.6 percent of the population over the sixth through tenth steps.
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NO. 99

Fig. 6—Targets which produced two extremes of performance. No. 19 was difficult
to retrieve, obtaining confidence 0.88 and rank 9.16, while no. 99 was outstandingly
easy, obtaining confidence 20.3 and rank 1.39.

The reasons for the different success with the two targets are clear.
In general, no. 19 is much closer to the population mean than is no. 99
who has a larger number of more extreme features than has no. 19.
All ten subjects who portrayed no. 99 in either the MIXED or the
NO-AFS mode started their portrait with hair texture; no. 99 has the
curliest hair in the population. All ten also described his light hair-shade
and thin upper lip, and all five NO-AFS portraits included his small-
to-medium mouth width. By contrast, only one of no. 19's features
received unanimous mention: his medium-to-wide eye opening.

3.1.1.3 Performance Differences Among NO AFS, MIXED, and ALL
AFS. The differences in performance among the three modes of opera-
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tion are clear and consistent. This can be seen first by noting the average
rank of the target at each feature step. Figure 7 illustrates this by a
plot of the percent of the population with better rank than the target
at each step. Overall, the population reduction in early steps is quite
rapid.

It is clear that at any step the ALL-AFS mode places the target
about twice as far down the ordered list as does either of the other
two modes. This suggests that knowledge of the population statistics
is not as effective as knowledge of a target’s outstanding features.
Both the MIXED and the NO-AFS modes are roughly equal and are
superior to ALL AFS. From step seven on, with the MIXED and
NO-AFS modés, the population having better rank than the target
was reduced to 0.68 percent. We have seen (Fig. 5) that the confidence
in the MIXED experiments is 18 percent higher than that in the
NO-AFS experiments and 54 percent higher than that in the ALL-AFS
experiments. Similarly, the rank results are superior for MIXED, being
11 percent ahead of NO AFS and 59 percent ahead of ALL AFS. Even
for ALL AFS, however, the average rank was better than seventh place;
i.e., 2.2 percent of the population had better rank than the target.

The plots of rank cross-section (see Section 2.4), displayed in Fig. 8,
also make evident the relative inferiority of ALL AFS. The asymptotic
levels of NO AFS and MIXED are virtually identical. For both MIXED
and NO AFS, half the targets reach first place by step five, and by
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Fig. 7—Comparison of how three modes of system operation affect the percent
of the population having better rank than the target. MIXED mode is clearly
superior in early steps; with eight feature-steps ALL AFS reduces the population
to 2 percent, and both other modes reduce it to 0.68 percent.
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Fig. 8—Rank cross-section at each step. ALL-AFS mode is obviously inferior.
Performances from NO AFS and MIXED are essentially alike. By step five, roughly
half the targets reached the top in MINXED and NO AFS; by step 10, better than
70 percent reached first place.

step ten in both modes 99 percent of the targets are in no worse than
tenth rank. And 96 percent are in no worse than fifth rank.

Although ALL ATS does not produce results comparable to those of
the other modes, more than half the targets reach first place by the
tenth step, and more than three-quarters of them reach fifth place or
better.

The confidence measure (see I'ig. 5) also indicates the relative infer-
iority of ALL AFS. Unlike the other measures discussed here, confidence
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shows MIXED to be superior to NO AFS in separating the target from
the rest of the population.

3.2 Computer Experiments

How does human performance compare with that of an ‘“‘ideal”
subject? The major variables in subject performance are the set of
features selected, the accuracy with which they are judged, and the
order in which they are described. Since the subject is constrained to
use integral feature-values, the best judgment he can make on any
feature is the nearest integer to the target’s official description; we shall
refer to this value as a “rounded” judgment. For each target there is a
sequence of features which gives the largest confidence at step 10, and
there is one which gives the best average rank. Either of these could
be regarded as the optimal sequence chosen by an ideal subject. How-
ever, there is no easy way to find such optimal sequences; therefore the
ideal subject was defined as follows:

For each target the sequence of features to be used by the ideal
subject in a computer simulation was selected on the basis of feature
“extremeness.” The extremeness of an individual’s feature is the
magnitude of the difference between his official value and the feature’s
population mean. Our ideal subject, modeled on how our human sub-
jects were instructed, was defined to be one who selected features in
descending order of extremeness and used, for each feature’s value, the
rounded value of the official description.

This ideal subject was used to portray the 15 targets employed in the
human experiments. The distribution of the step at which the target
first achieved rank one and remained there through step 10 is

Step 1 23 45 67 89 10
Frequency 2 4 4 3 1 0 0 0 0 L

For all targets, the average number of steps is 3.27, and the average
rank (over steps 6 through 10) is 1.01 (i.e., virtually perfect). The
confidence at step 10 ranged from 1.00 to 95.6 with an average of 21.5
and a median of 16.1.

These results are markedly superior to the results of the human
experiments summarized in Fig. 5. Are the differences due to subject
judgment-errors or to less-than-ideal feature selection owing to the fact
that the subject does not know the population statistics?

To explore this question, three additional computer studies were
performed with the same 15 targets used in the human experiments.
The results of all four computer experiments are summarized in the
tabulation below and are contrasted with the NO-AFS human experi-
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ments. Experiment no. 1 is that deseribed above, using the ideal subject.
In the second experiment, the NO-AFS human experimental data were
modified by replacing the subject judgments with rounded official-
values. Third, the extreme features chosen by the ideal subject were
used with human judgments. In the last computer experiment (no. 4),
four random sequences of features were used with rounded feature-
judgments. Finally, the results of the NO-AFS human experiments are
shown.

Besides displaying confidence and mean rank (averaged over steps 6
through 10), the table shows the number of targets on which confidence
was greater than, approximately equal to, and less than the confidence
obtained by the ideal subject.

Feature
Exp.  Selection  Judgment  Conf. >

II2

< Mean Rank

1 Extreme Rounded 21.5 0 15 0 1.01
2 NO AFS  Rounded 10.6 4 6 5 1.23
3 Extreme Human 8.25 1 2 12 1.68
4 Random  Rounded 408 O 2 13 1.76
5 NO AFS  Human hi4 2 0 13 2.91

The confidence and mean rank show the performance of the ideal
subject (exp. no. 1) to be better than that obtained in the experiment
using NO AFS and rounded official-values. Notice, however, if one
examines confidence for the ideal case and NO AT'S rounded, target by
target, then it is seen that NO AFS is better about as many times as
it is worse. Since the only variable was feature selection, this indicates
that the humans were almost as good as the ideal subject in their
choice of features. The use of extreme features with human judgments
(exp. no. 3) gives worse performance in rank and confidence than does
NO AI'S with rounded judgments. This shows that the advantage of
extreme-feature selection was not sufficient to overcome human errors
in judgment.

It might be argued that any feature sequence would produce good
results. But the random experiment shows that perfect feature-judg-
ments alone are not sufficient; feature selection is important.

In summary, humans are nearly ideal in feature selection while
considerably less than ideal in feature-value assignment.,

IV. EXTENSION TO LARGE POPULATIONS AND TO OTHER PROBLEMS

The procedures we have deseribed for identification and retrieval are
applicable to problems other than the face-recognition tasks we have
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so far explored. Such searches as medical diagnosis and telephone-
directory lookup also deal often with noisy data where probabilistic
identification is made. With what generality can the procedures we
have evolved be applied to tasks where descriptive components are
imprecise and populations are large?

First, however, there are questions of economic feasibility. The
storage and computing requirements in the present experiments are
modest. For a population of 255, we require 1500 words* of disk and
14,400 words of core storage. Memory requirements grow at a rate
of 7 words/face. The interactive computation process (slowed enor-
mously by the human at a remote terminal) takes about 5-10 minutes
real time (~5 seconds central-processor time) and costs $2.50 on the
average. A key question for extended applications is: How do these
numbers increase with population size?

In the earlier model of the binary-search identification process,' we
showed a logarithmic growth of the number of steps (features) required
to isolate a target. For a particular condition we found useful, the
model predicts that an average of only 13.5 feature-descriptions will be
required for a population of 4 million. If the actual growth of the
number of steps required to isolate in the present rather different rank-
ordering process is close to our model’s prediction in the binary-search
process, then a nonlinearity very important to economic treatment of
large populations will be at hand. That this may indeed be so can be
seen in Appendix B.

To investigate the effect of population size on the number of steps
required for isolation, comparable runs were made with population
sizes of 128, 255, and 510 individuals." The first feature in all portraits
was chosen at random, and all subsequent features were chosen by AFS.
(Since the number of individuals used in the AFS computation is a
function of each partial portrait, the cost varies from target to target.)
The dynamic stopping-rule described at the end of this section was used.
Feature judgments were drawn from the panel of observers whose
averaged judgments comprise the official values. Randomly chosen
observers supplied portraits. The data for each population size were
averaged over five portraits of each of 15 randomly chosen individuals
(75 portraits total). The results of this experiment are summarized
below.

* The computer is a time-shared Honeywell-635 having 36-bit words.

t The 128-individual population is a randomly-chosen subset of the 255-face one.
The 510-individual population is composed of the original 255 individuals plus 255
“new’’ pseudo-faces created by randomly shuffling the feature values of the old

population.
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Population Size

128 255 510

Mean stopping step, std. dev. 9.5, 3.9 10.6,4.2 117, 4.3
Relative total cost 1.00 1.98 4.56
Relative cost/step 1.00 1.77 3.76

While the mean stopping step appears to increase logarithmically
with population size, P, the cost per step increases roughly in proportion
to population size. That is,

Total Cost/Step ~P

and the logarithmic growth of the mean stopping step with population
size gives

Total Cost ~P In P.

The mean stopping step increased very slowly with population size,
from 9.5 to 11.7 for populations of 128 and 510. The final rank of the
target rose on the average from 1.4 to only 2.5, less than a twofold
increase for a fourfold increase in population size. Experience with
MIXED and ALL AFS indicates that the corresponding figures for
MIXED would be markedly better than those above, which were
obtained with ALL AFS.

The cost of the AT'S algorithm is linear with respect to the number of
faces used to determine the next feature. Figure 9 shows that this
number converges rapidly to a minimum. It is seen that, at most, less
than 35 percent of the population is used in the AFS computation at
step two and less than 15 percent at step three. From step four on
(with but a slight exception at step five), only 3.9 percent is used; this
is the minimum possible given our (arbitrary) convention of considering
all individuals with relative weight =0.7, but at least 10 faces (10/255 =
3.9 percent).

Several kinds of algorithmic corner-cutting look attractive and are
under consideration. The results displayed in Fig. 10 show that for a
given performance level only some minimum proportion of the popula-
tion need be considered at each step. For example, if flawless perform-
ance were required while operating in the MIXED mode, no more
than half the population would need to be considered in steps three
and four, and from step five on, at least 75 percent of the population
could be ignored. In 95 percent of all trials, the target was in the top
10 percent of the population from the sixth step on. The computational
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Fig. 9—Extent of AFS computation. For empirically determined rule of consider-
ing only those population members with weight equal to or greater than 0.7, or a
minimum of 10, extent of computation drops rapidly. With but very slight exception,
at and after step four no more than 10 individuals have weights above 0.7, indicating
efficient separation of top members.

savings with such a limited-depth search would thus be considerable.

Another possible economy might be some form of individual or
feature clustering. One could divide the population into small groups
of “look-alikes” and create a ‘“‘super-description” for each cluster
whose official description was the mean of the individual descriptions.
One could then order these clusters according to their resemblance to
the target description and then search the clusters’ members in that
order to find a good individual match to the deseription. This scheme
assumes that such a clustering can be achieved and that the cluster
descriptions would be non-trivially different.

In a sense the 255 individuals we have dealt with comprise a cluster
of the general population. Our 255-member subpopulation was delib-
erately chosen to be homogeneous (see footnote on page 399) to make
isolation more difficult. Consequently, several highly reliable features
(e.g., gender, race, age) could be added to our feature set for use with
a more universal population. We might guess that the general population
represented by the nonrepresentative subpopulation used in these
studies is on the order of several thousand individuals.

An Empirical Dynamic Stopping Rule

An empirical dynamic stopping rule was developed using the data
gathered from the 75 NO-AFS portraits. It is based on the concepts
of confidence and rank and on tradeoff between the frequency and
accuracy with which the rule stops portrait composition.
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Fig. 10—Minimum envelope needed to capture the target with several probabil-
ities at each step. P = 1.0 corresponds to the worst rank observed experimentally.
After step five, target was in top 10 percent of the population for all cases except
ALL AFS,

We consider first the confidence, which measures the degree of separa-
tion among population members. To formulate a stopping rule, we will
use a variant “pseudo-confidence,” the ratio of the weights of the
first- and second-ranked individuals. (Note that this ratio is always
>1.0). The experimental data show that when this ratio exceeded 3.5
at any step in the portrait, the target was then ranked first in 32 of
the 34 cases, and the first-ranked individual was subsequently unseated
in only two of 34 cases. We adopt this threshold as one component in our
dynamic stopping rule: Whenever the pseudo-confidence exceeds 3.5,
stop portrait composition.



420 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

Unfortunately, such a high pseudo-confidence occurs in fewer than
half of the portraits. Another possible stopping criterion is an extended
tenure-of-first-place by the same individual. Consequently, we adopt
as the second component in our stopping rule: If the same individual
has been in first place for the last six steps, stop regardless of the value
of the pseudo-confidence. In only one of 37 cases did an individual
change rank after holding first place for six or more consecutive steps.

We now have two criteria which would have terminated 80 percent
of our experimental NO-AL'S portraits. It was decided to use them as
points on a linear stopping rule combining p, the pseudo-confidence,
and s, the number of consecutive steps in which the same individual
has been first-ranked: If s + 2p > 8, stop. This is the dynamie stopping
rule used above to compare costs for various population sizes.

This empirical stopping rule was applied to the data from the rest
of the experiment, and it provided another means of comparison (the
mean stopping step) among the three types of portraits. The table
below shows the results of applying the dynamic stopping rule to the
NO-ATS, MIXED, and ALL-AFS runs.

NO AFS MIXED  ALL AFS

Decisions
(Number of portraits terminated
by stopping rule) Hd 56 43
Correct decisions 49 (899,) 48 (869,) 30 (70%,)
Mean stopping step, std. dev.
Decisions only 6.8, 2.1 6.6, 2.2 7.7, 1.8
All portraits 7.7, 23 74, 24 8.7, 18
Mean rank of target
Decisions only 1.4 1.6 3.6
All portraits 2.3 2.4 5.1

The number of decisions is the number of portraits (out of 75 in
each case) which met the requirements of our stopping rule at or before
the tenth step. A correct decision is one in which the target was in first
place at the stopping step. The mean stopping step and its standard
deviation are given for both the portraits which the stopping rule
terminated (“Decisions only’’) and for all 75 portraits, considering the
stopping step to be 10 for portraits in which no decision was made. The
mean rank of the target at the stopping step is also given for both cases.

The data show the performance of MIXED and NO AFS to be
almost identical. Both are superior in all respects to ALL AFS. The
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mean stopping step and mean rank of the target are in the ranges one
would expeet from Iig. 7, which shows the progression of the average
rank of the target. The stopping rule usually was satisfied soon after
the position of the target had stabilized.

If this dynamic stopping rule had been used in our experiments, the
average stopping step for a portrait would have been 7.9 instead of 10,
a 21-percent saving with virtually no loss of accuracy in identification.

V. SUMMARY

An interactive system for the description and retrieval of multi-
dimensional objects has been developed. This paper describes the
system and its performance in face-identification experiments.

The system permits flexible description of target items using features
chosen by either the user of the program or an automatic-feature-
selection algorithm. At each step, AI'S selects the feature which is
most likely to be diseriminating. It makes this choice on the basis of
the partial portrait and the population statistics. Population members
are ranked at each step on the basis of weights which reflect the match
between the portrait description and each individual’s official value.
Performanece is measured by two indices, confidence and rank.

The system was evaluated using 21 features, a population of 255 faces,
and three modes of operation (NO AFS, MIXED, and ALL AFS).
There were four principal results:

(7) The population was quickly and effectively reduced by all
modes of operation. Over all trials, the population was reduced
to less than 4 percent more than 93 percent of the time, and
the target was successfully “isolated” (i.e., was in first place by
portrait’s end) 67 percent of the time (see I'ig. 8). In 95 percent
of all trials, the target remained in the top 10 percent of the
population from the sixth step on.

(#17) The MIXED mode was the most effective in separating the
target from the rest of the population as measured by confidence
(see Iig. 5).

(77i) MIXED and NO AI'S were equally effective with respect to
population reduction, as measured by rank. The performance of
these two modes was considerably superior to that of ALL AFS
(see Iigs. 5, 7). In the NIXED experiments, the population was
reduced to less than 4 percent over 99 percent of the time, and
the target was isolated 70 percent of the time (see Ilig. 8).

(iv) The extent of the AFS computation drops rapidly with step
number, reaching its minimum by step four (see Fig. 9).
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These results can be summarized as follows: even in the worst case
there is fair performance in singling out a target and good performance
in narrowing down the population; and in the best case the population
reduction is excellent.

This rapid population-reduction and the slow growth of the mean
stopping step with population size (using the dynamic stopping rule)
make the extension of these experiments to larger populations feasible.
To process very large populations, say on the order of a million, new
approaches would undoubtedly be needed. With the cost-cutting
modifications we have deseribed (dynamic stopping rule, limited-depth
search), the present system could economically accommodate a popula-
tion on the order of 5000.
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APPENDIX A

Automatic Feature-Selection

As discussed in the text (Section 2.2), the automatic-feature-selection
algorithm selects, at each step, the most discriminating feature for the
subject to describe next. The purpose of this Appendix is to formalize
what is meant by a discriminating feature.

The AFS algorithm uses a subset of the population whose members
are well-described by the subject’s deseription of the target. In order
to give greater importance to those members of the subset with high
weight, each member’s official feature-values were considered in propor-
tion to his weight. The most diseriminating feature, for that subset,
thus is the one for which the distribution of the weighted feature-values
is most uniform. Since the distribution of feature values may span
different parts of the permissible feature ranges, distributions are shifted
to facilitate equitable comparisons among features.

We shall define, for any shift, the deviation of the distribution of
weighted feature-values from a uniform distribution. Formulae for the
best shift and corresponding deviation are then derived.

Consider the subset of the population whose members are well-
described by the subject’s description of the target. Let the members of
this subset have weights W, , - -+, W, . The sum of the weights is W, .
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Let us concentrate on one feature. For convenience, scale its range
to be from 0 to 1. Let the (scaled) official values corresponding to the