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A highly sensitive pocket receiver with a code -responsive signaling device
has been designed for the 150 -megacycle BELLBOY personal signaling
system. Ten transistors in a single -IF, superheterodyne receiver circuit con-
vert the FM signaling wave to produce excitation of a sound generator through
a tuned reed selector circuit. Printed wiring and novel packaging techniques
are employed to produce a receiver of acceptable size and weight. A recharge-
able battery with provision for home charging or a primary battery is used
for power supply.

A discussion of design problems and an analysis of circuit performance is
included. Sensitivity sufficient to signal in a 20 -microvolt per meter field is
achieved.

I. INTRODUCTION

This paper will describe the electrical and physical features of the 55A
radio receiver and certain associated apparatus, which were designed for
use in BELLBOY personal signaling systems operating in the 150 -mega-
cycle common carrier band of frequencies. The receiver is pocket -sized
and provides, in effect, an extension of the telephone bell to the cus-
tomer's pocket so that he may be alerted while away from his office,
home, or base location. An incoming signal, bearing the customer's
specific code, triggers the receiver. The receiver then emits a continuous
tone, in response to which the customer calls his base telephone to re-
ceive his message, or responds in some other prearranged manner.

The requirements and applications of this service have been covered
527
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in a previous paper.' In the present paper, discussion is concerned with
the requirements placed on size, cost, and performance of the receiver,
and the various circuit and equipment features which were used to
achieve these ends. Major problems encountered in both the electrical
and mechanical design are discussed in some detail, and an analysis of
the circuit performance is included.

The 55A radio receiver is a ten -transistor superheterodyne circuit
packaged in a molded plastic case. It has a self-contained antenna and is
powered by a battery mounted in a detachable case. When a recharge-
able battery is used, a charger is provided, which will accept the battery
case and permit the battery to be charged by placing the assembly in
any convenient 117 -volt ac outlet.

II. OBJECTIVES

To meet system objectives for personal signaling service, the receiver
must be able to respond to a calling signal when hand-held or pocket -
borne, when located within or outside of buildings, whether some dis-
tance from or close to the transmitter site, and in many and varied en-
vironments. The receiver must therefore be very sensitive. It must also
possess good stability against temperature variations, against shock and
vibration of transportation or handling, and against normal drift in volt-

age of the battery source.
In addition to the above general requirements, the following per-

formance objectives were set on the receiver:
(a) The receiver should be designed to permit reception on any as-

signed channel in the frequency range from 152.51 to 152.81 megacycles.*
(b) The receiver should respond to a carrier frequency which is fre-

quency -modulated with three audio -frequency tones, simultaneously ap-
plied, each at a deviation of 1.3 kilocycles. Each receiver must respond
to only one combination of tones sent out from the base transmitter. (In
a fully loaded system, 3200 useful code& are derived from the combina-
tions of the three out of thirty-two available tone frequencies in the
range from 500 to 1000 cycles.)

(c) The local oscillator of each receiver must possess a frequency sta-
bility of +0.0005 per cent, or better. (The base transmitter frequency is
maintained to ±0.0001 per cent, or one part per million.)

(d) The receiver must respond to this specified wave for any environ-
mental field strength between 26 and 100 db above one microvolt per
meter.

* The actual receiver is capable of being tuned to frequencies somewhat be-
yond this range, but performance in such circumstances would be subject to
restrictions, especially regarding occupancy of the image frequency band.
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(e) With 30-kc channel spacing, the receiver must have a selectivity
of at least 80 db against an adjacent channel carrier.

(f) All requirements should be met in an ambient temperature range
from 50 to 110 degrees F.

(g) Radiation from the receiver must meet requirements of Part 15
of the FCC rules governing restricted radiation devices. For the fre-
quencies of interest in this receiver, these requirements are: the field due
to the 75-mc local oscillator must not exceed 50 Av/m at a distance of
100 feet. The field due to the 150-mc conversion frequency must not
exceed 100 i.tv/m at a distance of 100 feet.

(h) In addition to the FCC requirements, radiation from the receiver
must not be strong enough to cause the sensitivity of a second similar
receiver at 5 feet distance to be reduced by more than 6 db.

(i) The receiver should operate from a self-contained, rechargeable
battery with provisions for home charging. The receiver should operate
without recharging the battery for at least 10 hours. As an alternate the
receiver should operate from a disposable battery, which should provide
at least 75 hours of operation before replacement.

(j) The signaling sound output of the receiver, when it is carried in an
inside pocket, should be clearly audible in a reasonably strong noise en-
vironment.

The needs of the customer, as well as economic considerations, af-
fected the design of the receiver package. To suit the customer, who
must carry the receiver, it needed to be as small and light as possible,
and attractive as well. It was required to be completely self-contained,
with no appended antenna or battery box. However, the cost and ease
of manufacture, as well as reliability in operation and ease of repair, are
factors which tended to place a limit on the smallness and compactness
of so complex a unit. Naturally, the final design represents an economi-
cally feasible compromise between these opposing influences.

Such objectives naturally posed very difficult design problems. The
premium on small size and weight limited the available power from the
battery. Therefore, to obtain a suitable interval of service before re-
charge, the current drain of the receiver had to be minimized. Also, the
size and number of circuit components had to be kept small, which called
for utmost simplification of the circuits.

ELECTRICAL DESIGN FEATURES

3.1 General Circuit Description

The selectivity and sensitivity requirements dictated the choice of a
superheterodyne circuit with at least one low intermediate frequency. In
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the early work, conventional approaches using either a crystal filter or an
electromechanical filter were explored, but the complexity and large
number of components involved seemed contradictory in the face of
space and cost limitations. Therefore a less conventional solution involv-
ing a single, very low intermediate frequency was adopted.

The circuit of the receiver is considered for convenience of discussion
as consisting of the following major parts: RF circuits, IF circuits, dis-
criminator, reed circuit and sound oscillator. These sections will be de-
scribed briefly, referring to the circuit schematics, Figs. 1 to 4.

The RF circuit (Fig. 1) consists of the antenna, two RF amplifier
stages, the RF mixer, and the local oscillator. Shielding is indicated by
the broken lines. The output of the mixer is the 6 -kilocycle IF, which is
delivered to the IF amplifier. The first IF stage is included within the
shielding of the RF compartment. In the IF circuits (Fig. 2), the input
signal is amplified by one transistor amplifier, passed through a low-pass
filter which acts as the IF filter, and is then amplified by two more IF
amplifiers. The fourth IF stage is operated as a limiter. This stage is an
overloaded amplifier which, for medium to strong signals, produces a
square -wave -like output. This output is delivered to the discriminator
(FM detector), shown in Fig. 3. The audio output from the discriminator
is passed on to the reed circuits (Fig. 4). Here the tone content is ampli-
fied to a strength sufficient to operate the tuned armatures of the reed
selector units.' Only when the signal contains the proper code will all
three reeds be simultaneously stimulated. In that case, a circuit through
the reed contacts delivers an impulse to the sounder circuit, which
triggers it into oscillation. This causes an audio transducer to emit a
continuous tone which signals the customer. To stop the audio sound
output, the user must operate a miniature pushbutton, which then re-
sets the circuit and places the receiver in readiness for the next call.

3.2 I F Plan

While the use of a single conversion and the low (6-kc) intermediate
frequency in this receiver was a practical solution to the space and cost
problem, it brought with it an interesting set of associated problems, some
advantages and some disadvantages. One advantage was that the IF
filter became a simple low-pass structure, inexpensive when compared
to an electromechanical or crystal bandpass filter which would be re-
quired for a higher IF. Also, the IF amplifier could be designed to use
relatively inexpensive alloy junction transistors. From an interference
standpoint, the single, low IF remains an advantage only as long as its
lone image response falls in an unoccupied space in the spectrum. The
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Fig. 3 - Discriminator.

1 GROUND

choice of the 6-kc IF frequency was predicated on the assumed use by
this service of one of the common -carrier mobile channels. Thus the
image frequency, which is spaced 12 kc from the received carrier, falls
within a channel width of ±15 kc (see Fig. 5).

Conventional superheterodyne receivers, with intermediate frequencies
considerably higher than that used herein, obtain image rejection by
means of RF selectivity. Such selectivity eliminates thermal noise con-
tributions in the vicinity of the image frequency. Since no rejection of
the image frequency exists in this design, a 3-db penalty in the noise
figure must be accepted.

Another disadvantage of the low IF comes about from 141 noise3 modu-
lation in the high -frequency beating oscillator. This noise modulation,
characterized by sidebands which are strongest in the vicinity of the
oscillator frequency, is detected by the mixer and appears as extraneous
noise energy in the IF amplifier. In receivers employing higher inter-
mediate frequencies, the 1/f noise modulation is less significant.

Because the frequency of the local oscillator is so close to the incoming
signal frequency, no attenuation of the oscillator frequency is achieved
in the RF amplifier tuned circuits. Therefore, the opportunity for spuri-
ous outputs of oscillator energy via reverse transmission through the
amplifier is greater than would exist if the IF were considerably higher in
frequency. This can produce interference in other nearby receivers as
discussed in the next section.

To include the necessary sidebands of the intermediate frequency, and
at the same time to attenuate the signaling tone frequencies, the IF
amplifier was designed to cut off frequencies below 2 kc (Fig. 6). The
discriminator output filter was designed to attenuate the IF residue above
2 kc. In the crossover region near 2 kc, the tandem gain of the IF amplifier
and the reed amplifier remained sufficient to require very careful control
of these characteristics to avoid instability due to inadvertent over-all
feedback.
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Fig. 5 - RF channel spectrum.

535

L

3.3 Frequency Stability

As many as twenty base transmitters may be used in a large metropoli-
tan area to provide the required coverage. To prevent the generation of
beat tones in the receiver, which might interfere with signaling, the fre-
quencies of base transmitters are held to an accuracy of one part per
million ( ±0.0001 per cent).'

Although oscillator radiation from the receiver has been kept within
the stated requirements, there may be instances (as when two customers
meet in conversation) in which a beat due to the difference of two local
oscillators will occur in the mixer stages of each. If this beat is high
enough in frequency it will be transmitted through the IF, causing de-
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Fig. 6 - IF response requirements.
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sensitization. If it is too low to pass through the IF, it may still be carried
to the reeds as a tone modulation on the desired signal. In this latter case,
if its frequency coincides with that of one of the three reeds, it could
conceivably cause false signaling in response to any code containing the
other two reed frequencies.

In an attempt to maintain these beat frequencies below the IF trans-
mission band, the oscillators are adjusted within +125 cps at the fac-
tory. The crystals maintain this frequency within +600 cps of the
original adjustment throughout the temperature range +10 to +45
degrees C. If the temperature coefficients are oppositely signed, it
would then be possible for two such oscillators to differ by as much as
1450 cps at some temperature within the range. In addition to this, if
two crystals did not enter service at the same time, an aging factor could
add to or subtract from this difference. Thus, it is evident that desen-
sitization due to direct feed into the IF is possible. However, it is con-
sidered improbable that the deviations due to extreme temperature, op-
posite -signed coefficients, and age difference would all add during a
chance meeting of two customers.

In considering the probability of false signaling due to a beat within
the reed frequency range (500 to 1000 cps), it is necessary to remember
that each of the three reeds responds only to an extremely narrow fre-

quency band (about 1.2 cps). Thus the probability of the beat falling into
one of these slots is indeed small. Since such interference also depends on
the coincidence of a number of low probability factors, it is not expected
to be a serious field problem.

The positioning of the IF signal in the band of transmission defined
by the filter and the low frequency cutoffs of the amplifier is affected by
all deviations of the oscillator and transmitter combined. Thus the total
of all such deviations, including the peak deviation due to modulation,
ideally should be contained within the IF transmission bandwidth. This
bandwidth is approximately 8.5 kilocycles.

TABLE I

Cause of Deviation

Base Transmitter:
Oscillator (tolerance ± 0.0001%)
Peak modulation (deviation ±3.9 kc)

Receiver:
Temperature (±4 ppm between 10°C and 45°C)
Crystal aging (±5 ppm first year)

Total

Max. Range

0.3 kc
7.8 kc

1.2 kc
1.5 kc

10.8 kc
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Table I lists the factors involved in determining the required receiver
IF bandwidth.

If we add the inaccuracy of the initial setting of the oscillator fre-
quency, which is held within ±125 cps, it is obvious that peaks of modu-
lation may often be in danger of spilling outside the IF transmission
bandwidth. Fortunately, peak modulation due to the addition of three
sinusoidal tones occurs only a small percentage of the time. Thus these
peaks may be degraded without serious loss of signaling sensitivity.

Experiments have been performed in which the frequency has been
deliberately moved off -center in the IF band. By this means it has been
demonstrated that a displacement of ±1.5 kc produces less than 2-db
degradation of signaling sensitivity.

3.4 Battery Considerations

The limitation on space and weight was one of the most serious factors
in the choice of a suitable battery. A 3 -cell, nickel -cadmium battery
supplies about 3.7 volts and possesses the advantage that it can be re-
charged on a routine basis. For this purpose a simple home charger is
provided, which may be supplied to the customer by the telephone
company. A mercury battery with a nominal voltage of 4 volts is also
available. This battery will provide service for about two weeks of aver-
age usage, before replacement.

Because of the limited battery capacity, circuits were required which
provided the necessary gain with the lowest possible power drain. Special
circuit designs were evolved, in some cases, to accomplish these objec-
tives. For example, it was determined early in the development that
greater gain in the RF circuits, for a given de power input, could be ob-
tained by operating the two diffused -base, germanium transistors in
series from a dc standpoint, rather than in parallel.

Although the receiver is already in commercial service, development is
continuing to improve the characteristics and life of the rechargeable
battery. The outcome of this development may necessitate modifica-
tions in the battery case and also in the charger.

3.5 Power Level Diagram

Fig. 7 shows a block diagram of the receiver and an associated graph
giving the power level in dbm of both signal and noise at significant
points through the circuit. The noise is shown for the absence of signal.
The signal is shown for the just -operate condition of the reeds, and the
signal powers given at the reed driver amplifier (RDA) input and output
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are those for one of the three signaling tones. The signal values shown
prior to the discriminator are for the power in the RF and IF wave re-
gardless of modulation.

A readily measured reference is the level at the IF test point, where a
signal-to-noise ratio of about -2 db exists for the just -signaling condi-
tion.

The levels in the early sections of the receiver are based on measure-
ments of the IF amplifier gain, on laboratory measurement of the RF
gain available in circuit jigs, and on computed values of noise at the RF
input. The method of constructing the level diagram fixed the mixer
output on the basis of measurements at IF, and the mixer input on sig-
naling sensitivity input data and the measured value of RF gain. The
difference between mixer input and output indicates 18-db conversion
loss. The difference between signal-to-noise ratios at the first RF input
and at the IF test point indicates a noise figure of 15 db, which agrees
reasonably well with the result of the noise figure analysis to follow.

A signal level point is provided at the left of the chart showing the
power per unit area in space carried by a signal wave whose field strength
is at the required value, i.e., 26 db above 1 microvolt per meter. This is
derived in the discussion of antenna effectiveness to follow.

3.6 Noise Figure Analysis

Since there is no image rejection, the available RF noise power must
be calculated in a bandwidth twice that of the IF. For 8.5-kc IF band-
width, therefore, the RF noise bandwidth is 17 kc. The available noise
power (at 290 degrees Kelvin) is

P = KTB
= 1.38 X Hi" X 290 X 17 X 103 X 103 mw

= 6.8 X 10-" mw

10 log Pi, = -131.7 dbm.

The input impedance of the RF amplifier transistor is determined by
measurement from data in Fig. 9, which will be discussed later in con-
nection with the neutralization of the RF stages. This impedance is

Zi = 25 + j38.6.

Data on typical receivers indicated that the RF power input to this
impedance required to cause 3-db increase of the energy measured at IF
stage 3 output was approximately
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P8 = -117.5 dbm.
Assuming no further change in the signal-to-noise ratio at points be-

yond the IF test point, the difference in db between P7, and P8 is the
noise figure

Ft = -117.5 - ( -131.7) = 14.2 db.

This correlates with the 15-db change in signal-to-noise ratio which
appears between the RF input and the IF test point on the level diagram.
Measured noise figures on a few sets ranged from 11 to 14 db.

The noise figure results from contributions of excess noise in each of
the earlier stages of the receiver. The importance of each contribution
is shown by the well-known formula4 for over-all noise figure,

F ± F2 - 1 F3 - + 
Ai AiA2

in which F1 , F2 , F3 , etc. are noise figures for the successive individual
stages, and A1 , A 2 , etc. are the power gain ratios of the successive in-
dividual stages.

Assume A1A2 = 23 db, which is the gain of the two RF stages shown
on the level diagram, and assume that the individual stage gains, Al and
A2 , are equal. Then

Al = 14.14 (power ratio)

A142 = 200 (power ratio).

Also assume F1 and F2 are each 8 db or a power ratio of 6.3.
Then, for Ft = 14.2 db (or 26.3 power ratio), the contribution of the

remainder of the set may be calculated:

26.3 = 6.3 +
14.14 2001

Solving, we get
F3 = 35.9 db.

It is thus apparent that the third term, containing the noise figure of
the mixer, is the heaviest contributor to the over-all result. About 18 db
of this is due to the conversion loss, as indicated on the level diagram. A
considerable amount is attributed to the noise figure of the diode. An-
other very considerable portion is the result of 1/f noise modulation
carried by the local oscillator energy.

Although, in the above discussion, no stage beyond the mixer was con-
sidered, there is at least a noticeable contribution from the first IF tran-
sistor which may be harmful if not controlled.
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3.7 Antenna Effectiveness

The antenna effectiveness is largely dependent on which way the re-
ceiver, or the person wearing it, is facing relative to the transmitter. As
has been noted by Mitchell and Van Wynen,1 the presence of the human
body provides gain in some orientations, while in others it provides shield-
ing, resulting in rather severe loss. Antenna effectiveness, averaged over
all orientations, is a useful criterion.

According to Schelkunoff and Friis,5 the effective area of a receiving
antenna is the ratio of the maximum power received at its terminals from
a linearly polarized wave, to the power per unit area in the wave. Thus

A = (2407rPr/E2)

where
A = Effective area of the antenna in square meters.
E = Field intensity of the wave in microvolts per meter.
Pr = Power received by the load connected to the antenna terminals.
A receiver of average sensitivity will signal satisfactorily in a field of

+26 db relative to 1 /A v/m averaged over all orientations (or 20 micro-
volts per meter).
Thus

E = 20 X 10-6 volt per meter.

As shown on the level diagram, assume the signaling power to be -120
dbm at the antenna output, or

Pr = 1.0 X 10-15 watt.

Thus the effective area of the antenna, when worn on the body and aver-
aged for all orientations, is

2407r(1.0 X 10-15)
Aav

400 X 10-12

= 1.886 X 10-3 square meter .

The effective area of a half -wave dipole antenna is

A = 0.13X2.

For 150 mc,

X = 2 meters and

A = 0.52 square meter.

Therefore the gain of the receiver antenna averaged over all orientations,
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with respect to a half -wave dipole, is

Gay = 10 log (0.001886/0.52) = -24.4 db.

Some experimental information showed that, on the average, the gain
at optimum orientation with respect to the field is about 6.8 db above
the average gain. Thus

Gina. = -24.4 + 6.8 = -17.6 db (at optimum).

Note that the power per unit area carried by the wave is

E2 400 X 10-12
W

2407r - 240r

= 0.053 10-12 watt

= -132.8 dbw

= -102.8 dbm.

This point is plotted as antenna input power on the level diagram, Fig. 7.
A number of other antenna types were tested in the course of the de-

velopment. The present design is probably not as great in effective area
as some other configurations which were tested. It was adopted in pref-
erence to types which produced undesirable coupling of the antenna to
other circuits of the receiver, resulting in instability, and other types
which suffered detuning due to body presence.

3.8 RF Neutralization

Partial neutralization of the RF amplifier transistors was accomplished
by providing an inductor between emitter and collector of the common -
base amplifier, as shown in Fig. 1.

From a statistical analysis based on a modest sample of transistors in
the early stages of production, element values were assigned to an equiva-
lent circuit of a typical transistor. This network is shown in Fig. 8(a).
Fig. 8 ( b ) shows ZF as the neutralizing element applied. This network is
resolved in Fig. 8(c) into two parallel networks N1 and N2 

The y -parameters of these two networks were calculated and a well-
known theorem of matrix algebra was applied. This states that each of
the y -parameters of the combined network is equal to the sum of the cor-
responding parameters of the two component networks. Applying this,
the feedback parameter ( Y12) for the combined network was computed
in terms of the neutralizing element (Z1) and equated to zero. Solving,



(a)

(b)

(C)

150 -MC POCKET RECEIVER 543

re
-W\r-

El

Le

Ce

aLe r,

C0 Lc

1

1-j
mf
Ta

a = ao
+ jL

fa

E2

re = 13
Ce = 13 x10-12

re= 120
C0 =10-12

80 = 0.95

= 100

m =1
fa = 800 x106

ZF;N2

Fig. 8 - (a) Assumed equivalent circuit for RF amplifier transistor; (b) as-
sumed equivalent circuit with neutralizing impedance added; (c) component net-
works used in analysis of neutralization.

the admittance (1/Zi) required for perfect neutralization was found to
be

(1/Z/) = -0.002155 - j0.000873.

This represents a coil of reactance +j1142 ohms in parallel with a resis-
tor of -463 ohms connected between emitter and collector. Since a
negative resistance is impractical in this circuit design, the coil alone was
used to give only partial neutralization.



544 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963

By taking into account the capacitance of the inductor and its mount-
ing, very good agreement was found between the computed value of in-
ductance and the value which was found to be most effective by experi-

ment.
Results of impedance measurements of the input and output of an

amplifier stage which employed a transistor of median characteristics,
according to the above -mentioned analysis, are shown in Figs. 9 and 10.
The test circuits are shown on the figures. These show that in each case
the use of the neutralizing coil (LN = 0.68 Ah) has little effect on the
measured value of reactance, but the variation of resistance is consider-
ably improved. It is to be noticed that the measuring terminals, in each
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Fig. 10 - RF amplifier, neutralization effect on output impedance.

case, are shunted by a choke, whose reactance is included in the meas-
ured values together with circuit strays.

It is interesting to compare the measured values of input impedance
with those calculated for the "median" transistor from its equivalent
circuit. The calculated impedance is

Zi = 25 + j38.G
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which corresponds to 85 ohms resistance in parallel with +j55 ohms re-
actance. From the curves, assuming 500 ohms load, the values are 89

ohms in parallel with -1--j82 ohms reactance.

3.9 Bias Stabilization

For uniformity of performance with variations due to ambient temper-
ature, battery voltage, and the normal tolerances on components, some
stabilization of the transistor bias is necessary. The design must accom-
modate the difference in battery voltage between the mercury battery
(4 volts) and the standard nickel -cadmium rechargeable battery (3.7
volts). Since neither battery affords a surplus of energy to be consumed
in biasing circuits, only a modest degree of stabilization was possible.

The general principles of bias stabilization are treated in many texts
on transistor circuit design: for example, in Chapter 6 of Shea.' The basic
bias circuit used widely in the 55A receiver is shown in Fig. 11. The effect

on the collector current (Is) of the variations of the saturation current
(1 -Go) due to temperature, is designated as a factor 5, which it is de-
sired to minimize. The best stability is thus achieved when the emitter
resistor (Re) is made as large as feasible and the parallel combination of
R1 and R2 is made as small as feasible.

Fig. 12 shows the bias circuit used in the RF stages, where the tran-
sistor currents are connected in series. An emitter resistor (R1) stabilizes
the current of the first transistor, while the base bias voltages of both
transistors are fixed by the resistor chain R2 , 113 , and R4 across the
battery. The factor S for the first transistor is estimated to be about 4.5.
The first collector current which is stabilized to this degree is auto-
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Fig. 11 - 55A receiver - bias stabilization, single stage.
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matically the emitter current of the second transistor. Thus, we might
say that the emitter current of the second RF transistor is stabilized by
the output resistance of the first transistor, which is relatively high.

On the basis of Fig. 11, the factor S for the IF amplifier stages is about
9.5. This poorer stabilization of the IF stages is in part compensated for
by the fact that the IF transistor characteristics are carefully controlled,
particularly with respect to 'Co . Temperature variation tests showed that
satisfactory stability has been attained.

3.10 Semiconductor Devices

In the design of this receiver, advantage was taken of the best avail-
able semiconductor devices, and in fact, the demand created through this
application has had considerable influence on the characterization of the
devices used. To meet the requirement of small size of the receiver, it
was necessary to miniaturize the encapsulation of the transistors and
diodes.

Gold -bonded germanium diodes are used both in the mixer and in the
discriminator.

A set of seven germanium alloy junction transistors, coded as the 28A
transistor, is used in the IF amplifier, limiter, reed amplifier and sound
oscillator stages. These are mechanically and electrically the same as the
WE 17A transistor but individually identified as to the range of the
parameter hfe (beta). Although each set uses the full range of beta found
in normal 17A production, by the identification it is possible to install
the low -beta and high -beta transistors in the stages which can benefit
most from these characteristics.

The RF transistors (WE 26A), when connected in the common -base
amplifier circuit, are capable of about 12 db per stage gain. These transis-
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tors are designed to maintain this characteristic at the low values of
collector -to -base voltage which result from operating the two RF ampli-
fiers in series.

IV. CIRCUIT DESCRIPTION

The following sections will describe the circuit in some detail, making
use of the Figs. 1 to 4, which together form a complete schematic of the
receiver.

4.1 RF Section

Fig. 1 shows the radio frequency circuits of the antenna, the two RF
amplifiers, the mixer, and the local oscillator.

The self-contained antenna is a "loop -stick" type, consisting of
about 24 turns of copper ribbon wound in a helix on a high -Q ferrite
core 2 inches long ands inch in diameter.

The inductance of the antenna winding is tuned to series resonance by
a variable capacitor (C1), connecting to the input of the first RF ampli-
fier stage. Since the input of the transistor is shunted by a capacitor
(C36), the transistor is tapped across a portion of the capacitive branch
of the resonant antenna mesh.

The RF amplifier stages consist of two diffused -base pnp transistors
(WE 26A) in a common -base configuration. The coupling networks
between the two transistors and between the second transistor and the
mixer provide the necessary impedance transformations. The inductors
are self-supporting coils which are tuned by manually stretching and
compressing their length by use of an insulated pick inserted through
openings provided in the shield around the RF circuits. The ratio of the
two capacitance values in the pi networks determines the transformation
ratio.

As discussed earlier, partial neutralization is accomplished by a fixed
inductor in series with a do blocking capacitor, connected from emitter
to collector of each transistor. Neutralization is required to minimize
interaction of tuning of the antenna, interstage, and mixer circuits. It
also minimizes leakage of local oscillator energy to the antenna.

The amplified RF signal is combined with the second harmonic of the
75 -megacycle, crystal -controlled, local oscillator* in the mixer diode
(CR1) to produce the intermediate frequency as the difference between
these two frequencies. The second harmonic energy from the local oscil-

* At the start of this development, a 150 -megacycle crystal with the required
stability was not considered to be feasible.



150 -MC POCKET RECEIVER 549

lator is capacitively fed to the emitter of the second RF amplifier transis-
tor. It is then amplified simultaneously with the signal before being
impressed on the mixer diode. The shunt capacitor (Co) which follows
the mixer diode provides RF ground, which causes the full RF voltage
to be developed on the diode. Series inductor L14 passes to the IF
amplifier the difference frequency that is developed on the mixer load
resistor (R10) .

The method used here, which derives the second harmonic directly
from the oscillator and amplifies it to a value suitable for mixing, pos-
sesses advantages over the direct injection of the 75 -megacycle oscillator
frequency into the mixer. The latter method would require third -order
mixing, with inherently greater conversion loss than is achieved by the
present method, which involves second -order mixing. Another advantage
of the circuit used is that the 75 -megacycle energy radiated from the
receiver is more effectively attenuated.

A quartz crystal, oscillating on the fifth overtone in the 75 -megacycle
range, is used with a WE 26A diffused -base transistor to form the local
oscillator circuit. The circuit may be thought of as a common -emitter
amplifier in which the crystal provides a feedback path from collector
to base. A slug -tuned coil (L6) in series with the crystal is used to set
the frequency.

The collector -to -emitter impedance of the oscillator consists of two
resonant meshes. One (L4 and C12) is resonant near 75 megacycles
while the other (L6 and C11) is resonant near 150 megacycles. The volt-
age developed across the latter is fed to the injection point on the second
RF amplifier.

This type of oscillator possesses inherent 1/f noise modulation' which
is apparently a function of the individual transistor, and is particularly
troublesome because of the low value of the intermediate frequency. The
resistor (R7) between emitter and ground provides feedback which
reduces the noise modulation to within tolerable limits. This resistor is
bypassed at RF.

4.2 IF Section

Fig. 2 shows the schematic circuit for the three stages of IF amplifica-
tion and the limiter stage. All four stages are similar, using alloy junction
transistors in the common -emitter configuration with bias stabilization
as shown in Fig. 11.

Filtering in the IF amplifier is controlled primarily by the package
filter, which appears on the schematic as a block between the first and
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second IF stages. This is a low-pass filter with the ground terminal
common to input and output. The filter cuts off at approximately 10
kilocycles.

Although the filter is a low-pass network, the over-all transmission of
the IF amplifier exhibits a bandpass characteristic (Fig. 6). The low -
frequency cutoff of about 2 kc is caused by the blocking capacitors
between transistors.

The limiter is operated as an overdriven amplifier. Because of the
high gain developed in the preceding stages, even the no -signal noise
experiences a small degree of amplitude limiting in this stage. Thus any
signal which rises out of the ambient noise is limited in this stage.
Stronger signals are limited in progressively earlier stages.

4.3 Discriminator

Fig. 3 shows the discriminator circuit, which converts the FM IF
signal into the original tone frequencies of the coded signal. It is seen to
be a form of rectifier circuit using diodes with the load connected through
a low-pass output filter. The circuit configuration resembles that of a
voltage doubler rectifier. This circuit also hears a strong resemblance to
that of a "storage counter" described in the literature.'

The low-pass output filter provides a cutoff of about 2 kc, in order to
prevent the passage of the IF to the following stages. The filter has es-
sentially zero loss to the recovered signal tones whose frequencies lie
between 500 and 1000 cycles per second.

It is not necessary for the applied signal to be limited for this dis-
criminator to function, but it may simplify understanding if the applied
IF signal is considered to be a square wave whose frequency varies ac-
cording to the modulating wave form.

The output capacitor (C25) is continually charged by the rectification
of the IF wave and discharged by current flow through the load resistor
(R26). The output filter separates C25 and C26 at the IF, but effec-
tively connects them in parallel at the signal frequency. Therefore the
charge is shared at the slower rate, and the rate of discharge is in effect
determined by a time constant, (C25 + C26 )R26 .

Referring to the input of the discriminator circuit, it is seen that a
positive pulse will cause the shunt diode (CR4) to conduct while the
series diode is non -conducting. Thus, the series input capacitor (C24)
is charged at a rate dependent on its capacitance value multiplied by the
effective resistance of the diode (CR4). This rate is made high by choice
of a small value of capacitance, so that approximately full charge is
reached during the positive half -cycle of the IF wave.
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Upon the reversal of the input wave, the shunt diode becomes non-
conducting and the series diode (CR3) conducts. Because of the voltage
reversal, the stored charge on C24 adds to the drive voltage, and assists
in charging the output capacitor (C25). The measure of charge delivered
to the output capacitor is determined by the change in the quantity
stored on C24 during the cycle. Since the charge on C24 becomes com-
pletely reversed from its initial value, to a nearly equal but oppo-
sitely poled value, the net charge delivered to the load capacitor is nearly
twice the maximum charge stored on the input capacitor.

The time constants of input capacitor charge and output capacitor
discharge are chosen so that, for the unmodulated IF carrier, the output
voltage on the load resistor (R26) stabilizes at about half its maximum
possible value.

During modulation, the intermediate frequency varies at the signal
rate from its unmodulated value (6 kc) to a maximum value (near 10
kc) and then to a minimum value (near 2 kc). When the frequency in-
creases, the increments of charge are delivered to the load capacitor
(C25) more rapidly and the output voltage therefore rises. Similarly,
when the IF frequency decreases, the increments of charge arrive less
frequently, and the output voltage falls because of the drain to a lower
value. Time constants are chosen to allow these variations to follow the
signal wave frequency.

4.4 Reed Circuit and Sound Oscillator

Fig. 4 shows the circuits of the reed amplifier stages, the reed selectors
and the sound oscillator. The output from the discriminator is applied to
a two -stage transistor amplifier using the transistors Q8 and Qg in com-
mon -emitter configuration. The first of these transistor amplifiers gets
its base bias from the rectification of the discriminator, combined with
the base current flowing in the load resistor of the discriminator. A
resistor (R28) biases the emitter of this amplifier and provides bias
stabilization, and at the same time furnishes the impedance across which
feedback is introduced from the output of the second amplifier (Q9).
This second amplifier is biased on both base and emitter in the same
manner as the IF amplifiers. The three windings of the reed selectors
(RDI , RD2 , and RD3) forming the load are coupled by a blocking
capacitor (C29) which keeps the direct current from saturating the cores
of these selectors. The capacitor C15 provides negative feedback,
effective at the IF frequencies. This provides stability against IF re-
generation and reduces noise without reducing the reed frequency gain.

The sound oscillator circuit uses a transistor oscillator whose positive
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feedback is accomplished through a transformer ( T1). This couples the
collector back to the base of the transistor (Q10). When the reed selectors
are quiescent, the oscillator is also at rest. When a signal is received
which causes all three reeds to respond, the simultaneous operation of
their contacts causes an impulse to be applied to the base of the oscillator
transistor. This impulse is amplified and returned through the trans-
former to the base in proper phase to start a buildup of oscillation. Once
started, the oscillation continues regardless of the excitation of the
reeds. The hearing -aid type transducer which is the load of the oscillator
gives forth an audible tone which alerts the customer. The customer
may then stop the oscillation and reset the circuit for further signaling
by simply closing the reset switch (a miniature pushbutton -type).
Capacitor C31 and resistor R32 are connected to ground from a point
between the contacts of RD1 and RD2. These furnish a reservoir of
charge whenever RD1 is energized, so that if RD2 and RD3 become
simultaneously energized there will be adequate pulse energy to set
off the sounder oscillator. A diode (CR5) across the primary of the
feedback transformer (T1) is polarized to absorb impulses caused by
mechanical shock and thus diminish the probability of false signaling
due to this cause. However, the receiver is automatically triggered when
the receiver is first energized. This serves as an indication of the condi-
tion of the battery, since the oscillator will not function with a dis-
charged battery.

V. TEST METHODS AND TECHNIQUES

5.1 The Testing Problem

In most other FM receivers such as, for example, those used in mobile
telephone service, the receiver is tested as a unit without connection to
its antenna. Test requirements are based on magnitudes or frequencies
of energy applied to the input terminals of the receiver. Similarly, in
such applications the efficiency of the antenna is determined by its
energy yield into a standard terminating impedance, when the antenna
is immersed in a standard strength of radio field.

In the development stages of the 55A pocket receiver, these same ap-
proaches were followed. Field measurements were made in which anten-
nas of various types were compared with a half -wave dipole and with
each other by connecting them through a transforming device to the
input of a field strength measuring set. Also, the sensitivity, selectivity,
and noise figure of the receiver were tested by connecting the appropri-
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ate test generator to the emitter input of the first RF amplifier through a
suitable coupling transformer.

While these methods were useful in giving relative results, their abso-
lute significance was always in doubt. The antenna, when connected to a
cable leading to a field strength set, experiences a field which is distorted
by the coupling to that cable. Also, it is then difficult to evaluate it in its
true relation to the human body. Furthermore, the tests on the receiver
were always in doubt because of the difference between the input coupling
used and that which exists in the normal connection to the antenna in the
assembled set.

To overcome these uncertainties, a method was devised by which the
assembled receiver could be bench tested as a complete unit in a suitable
test jig. These results were then correlated with the field performance of
the receiver when carried normally by a person.

5.2 RF Circuit Tuning

The RF amplifiers are tuned with the local oscillator disabled by
operation of a switch on the test jig. This switch places an RF ground
on the collector of the oscillator transistor. As a result of a signal coupled
to the antenna, rectified current flows in the mixer diode, and is measured
across the diode load resistor (R10). The antenna capacitor ( C1) and the
interstage tuning coils (L2 and L3) are then adjusted to maximize this
current.

5.3 Local Oscillator Adjustments

With no signal input to the antenna, and with the oscillator operating,
the rectified current of the mixer diode is a measure of the injection of
local oscillator energy. This is brought to final adjustment by varying
the slug position in the coil (Ls) of the oscillator circuit. A coarse ad-
justment of the injection is available in the initial alignment by selecting
the value of the oscillator emitter resistance (R7).

The local oscillator may be adjusted to the correct frequency by the
slug of the coil (L5) which is in series with the crystal.

5.4 Calibration of Test Jig

Considerable discussion of signaling sensitivity and the field tests
which were made to measure it is given in the paper by Mitchell and
Van Wynen.' Signaling sensitivity is defined as the field in db above one
microvolt per meter required to just trigger the receiver. A number of
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receivers whose sensitivity had been tested under free field conditions
were used to calibrate the test jig. Thus the voltage from the modulated
signal generator to the input of the jig, which is needed to produce trig-
gering, could be interpreted in terms of the free field strength. In this
way, meaningful measurements of signaling sensitivity are made in the
jig setup for aligning the receivers in the laboratory, or in production.

5.5 Noise Measurement

By means of the jig, an rms type voltmeter may be connected to the
IF test point at the collector of the third IF transistor. This measures the
no -signal noise voltage at the test point. When a signal is supplied to the
antenna coupling coil, the energy required to cause a 3-db increase in the
voltage at the test point is a measure of sensitivity, which is related to
noise figure as discussed elsewhere. Oscilloscopic observations at the IF
test point show qualitatively the fact that neither the input to double the
energy nor the input of modulated signal required for triggering is visi-
ble as a change from the random noise pattern. This shows qualitatively
the fact that triggering occurs even for signal levels commensurate with
the average noise in the IF band, or lower, as is indeed shown on the
level diagram. Thus signals strong enough to produce limiting and FM
quieting are not essential for the operation of the receiver. This is to a
large extent an advantage derived from the exclusion of much of the
noise energy by the very sharp frequency response of the reed selectors.

It is interesting to note that even after FM demodulation and band
limiting by the 2-kc low-pass filter, the noise lies in a band nearly 2000
times greater than the bandwidth of a reed (about 1.2 cycles).

VI. MECHANICAL DESIGN

6.1 General Features

The mechanical design of the 55A receiver was influenced strongly by
the inclusion of several required features. The receiver was designed to
enable the customer to recharge and change batteries easily and to enable
the telephone company to insert the reed selectors without the use of
tools. It was necessary to include a changeable number card which could
be exposed for viewing, but which would automatically remain hidden
from view during normal operation of the receiver. The on -off switch and
the audio transducer were placed in the top end of the receiver for opti-
mum accessibility and audibility, respectively, when the receiver is

pocket -borne. Moreover, it was necessary to reconcile such seemingly
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incompatible objectives as small size and reliability, light weight and
ruggedness, and low cost and high performance. Obviously, at the out-
set of the mechanical design, it was not possible to set absolute values on
all these objectives. The design became a problem in optimizing, and the
realistic approach of making the receiver as small, light, and inexpensive
as possible, consistent with high performance, reliability, and rugged-
ness, was taken. It was necessary to refrain from "gilding the lily," per-
formance -wise, even if this penalized size or weight only slightly. For
in the final analysis, if the receiver were incapable of being carried in a
pocket, its market would diminish.

The receiver contains an antenna, thirty-eight capacitors, thirty-three
resistors, four diodes, fifteen inductors, ten transistors, one transformer,
one crystal unit, three reed selectors, one audio transducer, two switches,
and one filter (which itself contains three inductors and five capacitors),
all mounted on a 4.85 X 2.24 -inch printed wiring board. The printed
wiring substrate is -2--6.-inch thick epoxy glass. This material was selected,
rather than the less expensive and more commonly used XXXP phenolic
substrate, because of its superior mechanical and electrical properties.

6.2 Circuit Layout and Shielding

The circuitry was laid out in a smooth, logical pattern, so that the
mechanical flow from top to bottom is in the same sequence as the elec-
trical flow. As shown in Fig. 13, the antenna is at the top of the receiver.
In sequence toward the bottom, the antenna is followed by the RF ampli-
fier, RF mixer, local oscillator, IF amplifier and limiter, discriminator,
reed circuit, and battery. The audio transducer is placed against the top
of the receiver case where it will be most easily heard by the customer.
The reed selectors are placed near the bottom of the circuitry, adjacent
to the battery. Removal of the battery case uncovers a number card,
which, upon its removal, in turn uncovers an access port through which
the reed selectors may be inserted or extracted.

The RF amplifiers, oscillator, and first IF amplifier are contained in a
three -compartment copper enclosure so that portions of these circuits
are shielded from each other and from the remainder of the circuitry.
The can cover, not shown in Fig. 13, is soldered into place, and the can
is soldered to a "ground plane" on the printed wiring board. Ground
planes run on both sides of the printed wiring board, covering as much
area as possible. This minimizes the ground circuit impedance, reduces
the coupling between ground paths, and contributes to the stability of
the circuit.
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Fig. 13 - Layout.

6.3 Space Conservation

Space was conserved on the printed wiring board by using minia-
turized components and by mounting all axial -lead components per-
pendicular to the printed wiring board. In some instances, where the tops
of several components were electrically common, the lead of one com-
ponent was bent into a common bus, which was connected to the tops of
all the components in the group, thus eliminating land areas and further
conserving board space. This arrangement is shown in Fig. 14. Although

Fig. 14 - Component wiring for space conservation.
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conductor spacings and widths were made as large as possible, for maxi-
mum board reliability, space considerations necessitated basing the
printed wiring pattern on minimum path width, spacing, and land area
diameter of 0.030, 0.040, and 0.075 inch, respectively.

6.4 Case Design

The operational requirements had a direct bearing on the design of
the receiver case. The case consists of three main parts - two dish -
shaped covers, which enclose the circuitry, and a battery case. These are
shown in Fig. 15. The battery case is designed to accommodate a nickel -
cadmium rechargeable battery. The battery case is a plug-in unit, and
enables a discharged battery to be unplugged from the receiver, battery
case and all, and inserted into a battery charger which, in turn, plugs
directly into a 117 -volt ac wall outlet. If necessary, a fully charged bat-
tery, in another battery case, can be plugged into the receiver for unin-
terrupted service. For special circumstances, a battery case designed to
accommodate a nonrechargeable mercury battery is available.

The battery case is equipped with nickel -silver prongs which mate with
contacts in the receiver case. The battery is equipped with slotted nickel
tabs as shown in Fig. 16. Connection between the battery and the nickel -
silver prongs is effected by means of screws which fasten the battery
tabs to an extension of the nickel -silver prongs. The battery tabs and
the connecting screws are located off -center with respect to the battery.
This allows the battery to be inserted into the battery case only if it is
properly oriented. Furthermore, the receiver case is designed so that the

Fig. 15 - Case parts.
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Fig. 16 -Battery.

prongs of the battery case can make contact with the circuitry only if the
battery case is properly oriented. This series of orienting devices render
it virtually impossible to inadvertently damage a receiver with an im-
properly oriented battery.

6.5 Contact Design

The mating contacts in the receiver were designed for minimum space
consumption. They are made of extra hard spring -tempered nickel -silver
wire, and are in the shape of the letter U. They are housed in cavities in
the wall of the receiver case in a manner which permits the battery con-
tacts to be inserted, through holes in the receiver case, into the mouth of
the U. The cavities in which they are housed are large enough to permit
the contacts to float into proper alignment with the pins of the battery
holder. Connection is made to the circuitry by means of flexible jumper
wires. The U-shaped contacts are shown in Fig. 17.

To be assured of reliable electrical contact between the prongs of the
battery case and the U-shaped contacts in the receiver, the contact force
and the working stress in the contacts were calculated. Calculations re-
vealed a contact force of 0.460 lb. The contacts produce a wiping action
upon mating and exert this force at two points. These features tend to
increase the reliability of the electrical contact, and it is expected to
provide trouble -free service. Calculations indicated a maximum work-
ing stress of 67,000 psi in the spring. Inasmuch as this is less than the
safe working stress, 80,000 psi, for the nickel -silver alloy of the spring
contact, it can be assumed that the spring will not lose its properties.

6.6 Materials and Special Features

The receiver case is molded of an acetal resin. This is a tough thermo-
plastic material which exhibits a high resistance to abrasion and cold
flow. The battery case is molded of nylon, also a thermoplastic material
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Fig. 17 - Contacts.
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with excellent bearing properties. These properties were used to advan-
tage in the design of the fastening device which permits the battery case
to be snapped onto or off from the receiver case. The snap mechanism is
molded as an integral part of the battery case and the receiver case, and
obviates the need for hardware of any kind. A cross-sectional view of the
snap is shown in Fig. 18.

The battery case was subjected to 20,000 snap -on -snap -off cycles. The
pull -off force dropped from an initial value of seventeen pounds to a
final value of nine pounds. This drop in pull -off force is not judged to be
serious, since even the lower value is considered adequate to hold the
battery case securely in place. It is estimated that the average customer
will recharge his battery once a day. At this rate, 20,000 on -off cycles

Fig. 18 - Snap fastener of case.
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will not be achieved for over fifty years. For customers who are unable
to exert the necessary force to unsnap the battery holder, a coin slot is
provided, permitting the customer to pry it off with minimum exertion.

When carried in a pocket or on a belt, the receiver is held in place by
means of a die-cast zinc clip. It has a brushed satin finish with the Bell
System emblem depressed and colored dark blue. The clip is shown in
Fig. 19.

A special switch, which is reliable, durable, compatible with printed
wiring, and capable of blending harmoniously with the physical appear-
ance of the receiver case, was designed. The switch contacts are a gold -

silver -platinum alloy. They are welded to phosphor bronze flat springs,
which are in turn mounted on the printed wiring board. The switch is
actuated by a thumb wheel, which rotates on a molded axle protruding
from the edge of the case. The thumb wheel is also molded of nylon and
is designed with a protrusion which hits against the inner surface of
the receiver case when the thumb wheel reaches either the "on" or
"off" position. This device limits the rotation of the wheel and imparts a
comfortable feel and a pleasant click to the switch. A model of this
switch has been on life test in the laboratories for several months. As of
the time of this writing, it has undergone over five million on -off cycles
without any discernible degradation in performance. The switch is shown
in Fig. 20.

Fig. 19 - Pocket clip.
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Fig. 20 - Switch.
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6.7 Battery Charger

For normal use each customer is supplied with a cordless plug-in bat-
tery charger. The charger circuit consists of a diode rectifier, two resistors,
and a neon indicator lamp. The circuitry is housed in a molded nylon
case, which serves the dual purposes of case and structural support for
the components. The charger plugs directly into a wall outlet -a feature
which imposed two important restrictions on the design. The charger
had to be made of nonflammable materials, and the "fall -out" torque -
the product of the weight of the charger and the distance from the wall
outlet cover to the center of gravity of the charger - had to be held to a
low value. A fall -out torque not exceeding six inch -ounces was set as the
design target, for it was judged that below this value the probability of
a charger inadvertently falling out of a wall outlet would be negligible.

Nonflammability was achieved by specifying nylon for the housing.
The inside of the housing is used as the structural support for the cir-
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cuitry, eliminating the need for additional supporting media, such as
printed wiring boards or brackets. In this manner, it was possible to
produce a charger which weighed only 3.1 ounces, including the battery
and the battery case, and which exerted a fall -out torque of only 1.45
inch ounces.

The battery case, containing the discharged battery, is disengaged
from the receiver and plugged into the charger. The prongs in the battery
case make contact with U-shaped contact springs, which are identical to
those used in the receiver. The same system of orienting devices used to
prevent insertion of an improperly oriented battery in the receiver is
similarly used in the charger. The charger is equipped with a neon indi-
cator lamp, which glows only when charging current is flowing. The
charger is shown in Figs. 21 and 22.

The use of molded plastics contributed significantly to the realization
of the objectives. The plastic parts are attractive, rugged, light in weight,
intricately shaped and inexpensive. The case halves, in addition to serv-
ing as a closure, were designed with built-in functional refinements which
eliminated the need for attached hardware in such places as the battery
case snap, the switch axle, the speaker support, the pocket clip axle bear-
ings, and the printed wiring board support. After tooling costs, these
features are obtained virtually free of charge.

0.8 Subjective Qualities

The BELLBOY personal signaling receiver is a consumer product, to
be worn on the person of the customer. Outwardly, the receiver was given
a tailored appearance to satisfy the needs of the well -dressed customer.
The appearance of boxiness was averted by adding barely discernible
compound curves to the surface. These curves actually add slightly to

r -

Fig. 21 - Charger.
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Fig. 22 - Battery being charged.
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the over-all dimensions of the receiver, but impart an appearance of ele-
gance and compactness. The finished product, shown in Fig. 23, is 51
inches long, 21 inches wide, and 44 inch thick, and weighs 11 ounces,
including the battery.

The receiver case and battery case are different shades of gray, the
battery case being the darker of the two. This not only adds to the ap-
pearance of the receiver, but avoids what would otherwise have been a
troublesome color -matching problem which would have been manifest
upon supplying replacement battery cases.

VII. CONCLUSION

In both the electrical and mechanical design of this receiver, emphasis
has been placed on reliability in fulfilling service objectives and on con-
venience to the customer. In connection with the latter, the esthetic
qualities essential to consumer acceptance have not been overlooked.
The reactions of the consumer have been sampled by means of field trials
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Fig. 23 - Finished product.

using development models. In the first commercial installation, which
went into service at Seattle in April, 1962, the performance of the re-

ceiver has been satisfactory, and it is expected that additional installa-
tions will follow.
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A "Thermodynamic" Theory of Traffic
in Connecting Networks

By V. E. BENE.
(Manuscript received October 22, 1962)

Two new theoretical models for representing random traffic in connecting
networks are presented. The first is called the "thermodynamic" model and
is studied in detail. The second model is formulated in an effort to take
methods of routing into account and to meet certain drawbacks of the "ther-
modynamic" model in describing customer behavior; since it is more realistic
than the first, it leads to results that are vastly more complicated and must be
described in another paper.

The "thermodynamic" model is worth considering for four reasons:
(1) It is faithful to the structure of real connecting systems. Indeed it is

an improvement over many previous models in that it only considers physi-
cally accessible states of the connecting network, while the latter suffer the
drawback that a large fraction of the network states on which calculation is
based are physically meaningless, being unreachable under normal opera-
tion.

(2) It gives rise to a relatively simple theory in which explicit calculations
are possible.

(3) The "thermodynamic" model provides a good simple description of
traffic in the interior of a large communications network.

(4) It has an analogy to statistical mechanics which permits us to be
guided by the latter theory as we try to use the model to understand the
properties of large-scale connecting systems.

The two models to be described differ in only one respect. In the first (the
"thermodynamic") model, the system moves from a state x to a state y that
has one more call in progress, at a rate X; the effective calling -rate per idle
inlet -outlet pair is thus proportional to the number of paths usable in x from
that inlet to that outlet. In the second model, the calling -rate per idle inlet -

outlet pair is set at A, and is then spread over the paths usable in x from that
inlet to that outlet in accordance with some routing rule. This provides a
mathematical description of routing, and avoids the unwelcome feature that
a single customer's calling -rate depends on the state of the network.

567



568 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963

The "thermodynamic" model is based on the single postulate that the

"equilibrium" probabilities of the states of the connecting network maximize
the entropy functional for a fixed value of the traffic carried. These probabili-
ties have the same geometric or exponential form as the canonical Maxwell -

Boltzmann distribution of statistical mechanics. The theory developed applies
to any connecting network regardless of its structure or configuration. The
number of calls in progress is analogous to the energy of a physical system.
As in statistical mechanics, important averages can be expressed as loga-

rithmic derivatives of a generating function analogous to the partition func-

tion of physics.
It is possible to give an interpretation of the maximum entropy postulate

in terms of random behavior at the inlets and outlets of the connecting net-
work; this interpretation leads to a stochastic progress zt of the familiar
Markov type, for which the canonical distribution is invariant. The transi-
tion rate matrix of zt is self-adjoint in a suitable inner product space, so
that the approach of zt to equilibrium is easily studied, with resulting appli-
cations to traffic measurement.
I
. INTRODUCTION

Like the physicist, the traffic engineer is faced with the study of an
extremely complex system which is best described in statistical terms.
The great success of the theoretical methods of statistical physics has
given rise to a fervent hope, sometimes voiced among traffic theorists,
that similar methods exist and can be found for the study of congestion.
Indeed, the problems are much the salve: one desires a small amount of
"macroscopic" information about averages, based in a rational way on
vast complexities of detail. A. K. Frlang was probably influenced by
statistical mechanics when he introduced his method of "statistical
equilibrium" into traffic theory. This method has had great success in
dealing with problems of the birth -and -death type, like trunking and
queueing, but as applied to more complex cases it has led mostly to alge-
braic and combinatory difficulties. Nothing as elegant or powerful as
statistical mechanics has resulted so far.

We shall present two traffic models in this paper. The first is the out-
come of a deliberate attempt to ape the methods of physicists in statis-
tical mechanics, and thus to realize, at least in part, the hope mentioned
above. It is called the "thermodynamic" model, and it is treated in de-
tail. The second model is introduced later in the paper in an attempt to
avoid certain drawbacks that appear in the interpretation of the "ther-
modynamic" model. Since it has independent interest and leads to in-
volved, more realistic results, it is studied in detail in a later paper.
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The approach taken in the "thermodynamic" model bears a close
analogy to the methods of statistical mechanics, and is based on the
single postulate that the "equilibrium" probabilities of the states of the
connecting network maximize the entropy functional for a fixed value of
the traffic carried. We develop a theory, briefly summarized in the next
paragraph, by deducing the consequences and interpreting the meaning
of the one basic assumption.

The state probabilities that maximize the entropy for a given carried
load form a distribution function over the set of states that has the same
geometric or exponential form as the canonical (or Maxwell -Boltzmann)
distribution of statistical mechanics. The theory applies to any connect-
ing network, regardless of its structure or configuration. The number of
calls in progress is analogous to the energy of a physical system. As in
statistical mechanics, important averages can be expressed as logarith-
mic derivatives of a generating function analogous to the partition func-
tion of physics. It is possible to give an interpretation of the maximum
entropy postulate in terms of random behavior at the inlets and outlets
of the connecting network. This interpretation leads to a stochastic
process zt of the familiar Markov type, and is such that any stochastic
process based on it satisfies the maximum entropy postulate. The transi-
tion rate matrix A of zt is self-adjoint in a suitable inner -product space;
its characteristic values are real and non -positive, and can be studied by
classical variational methods. In terms of these characteristic values the
approach of zt to equilibrium can he studied, with resulting applications
to traffic measurements. It turns out that the covariance of any function
of zt is strictly positive. The paper ends with a time -dependent or non -
stationary generalization of the maximum entropy postulate that has
close analogies with the statistical "derivation" of thermodynamics.

II. PRELIMINARIES

In order to give an adequate summary and discussion of our theory in
Section III, it is necessary to present first its concepts, terminology, and
notation. Virtually all the notions about to he discussed have appeared
in earlier papers by the author' .2 so only a brief résumé is given here.

Let S be the set of possible (or permissible, or both) states of a connect-
ing network, and let x, y, - he variables ranging over S. The elements
of S are partially ordered by inclusion , where x < y means that x
can be obtained from y by removing zero or more calls. Furthermore,
the states x e S can be arranged in an intuitive manner in the state -dia-
gram, the Hasse figure for the partial ordering < . This figure is con-
structed by partitioning the states in rows according to the number of
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calls in progress. The unique zero state (in which no calls are in progress)
is placed at the bottom of the figure; above it comes the row of states
with one call in progress; and so on. The figure is completed by drawing
a graph with the states as nodes, and with lines between states (in adja-
cent rows) that differ in exactly one call. In an earlier work2 we made the
assumption that in a given state at most one call could be in progress
between a given inlet and outlet; it is convenient to discard this assump-
tion here.

If the connecting network under study is in a state x, it can move only
to states which are neighbors of x, i.e., are obtainable from x by adding a
new call or terminating a call in progress. It is useful to divide the neigh-
bors of x into two sets Ax and B. where

A. = set of states immediately above x, i.e., accessible from x by add-
ing a new call,

B. = set of states immediately below x, i.e., accessible from x by a
hangup.

For any set X, the notation I X I is used to denote the number of ele-
ments of X. The states :CE S can be defined2 as sets of chains on a graph,

one chain for each call in progress. Hence it is natural to use I x to
mean the number of calls in progress in x. The kth level Lk is the set of
all states with k calls in progress, i.e.,

Lk = {XES: IXI = k}.

III. SUMMARY AND DISCUSSION

We start, in Section IV, with a brief informal discussion of NVIlai, is
meant, heuristically as well as precisely, by "equilibrium."

In Section V we formulate and discuss the maximum entropy postulate,
according to which a suitable "equilibrium" distribution qx , x e S} of
probability over S is obtained by choosing the probability vector q so
as to maximize the entropy functional

H(q) = qr log qx
xtS

for a given value of the average number of calls in progress, i.e., for

EIxlq.= m.
reS

Various heuristic arguments are adduced to support the prima fade
reasonableness of this principle. In Section VI it is shown that the
maximizing probability vector q is given by
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Aix'
qx 4)(X)

4)(0 E SIri
,t,

x e S

and A is a constant determined uniquely by the equation

m = X (d/dX) log 4)(X).

Because of their close similarity to corresponding notions from sta-
tistical mechanics, the vector q and the function 43(  ) are henceforth
called the canonical distribution and the partition function, respectively.

In Section VII we have collected together various properties of the
partition function, most of them based on the partial ordering < of S.
Among these are expressions for 43( ) in terms of the Mobius function
for and in terms of several sets of "characteristic polynomials"
associated with :5. and S.

The canonical distribution q is placed in a dynamic context in Section
VIII. This is done by defining a Markey process zt (taking values on S)
for which q forms a stationary distribution. The transition rate matrix
A (infinitesimal generator) of this process allows one to give interpre-
tations of this dynamic context in terms of calling rates and mean
holding -times. An informal description of the process zt is this: if it is in
state x, it moves to a state y E Ax at a rate A, and to a state y e Bx at a
rate set at unity by convention.

A full discussion of the analogy between the "thermodynamic"
theory of traffic and statistical mechanics is given in Section IX. For
purposes of illustration, we mention that the number of calls in progress
corresponds to the energy of a statistical mechanical system, and that
the constant A is related to the calling rate and corresponds to the
temperature (up to a monotone transformation).

The reasonableness of zt as a description of an operating connecting
network is discussed and criticized in detail in Section X. Two possible
interpretations of the inlets and outlets are considered: in one, the
inlets and outlets are the ultimate terminals of the system, beyond
which there is no more switching equipment; in the other, the inlets
and outlets are switching centers such as PBX's, frames, or individual
crossbar switches, acting as sources of traffic for a network under study.
In the first interpretation, there can be at most one call in progress on
an inlet or an outlet; in the second, there may be several.

Regardless of which interpretation of the inlets and outlets is adopted,
the transition rate matrix A for zt must be interpreted as saying that
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the calling rate between an inlet and an outlet in a given state x is

proportional to the number of free paths that x provides between that
inlet and outlet. This assumption is unacceptable for the interpretation
of inlets and outlets as ultimate terminals; it is not entirely unreasonable
if the inlets and outlets are local switching centers.

Section XI is devoted to describing, as an alternative to zt , a Markov
stochastic process on S based on the assumption that the calling rate
between an idle inlet terminal and an idle outlet terminal is a constant
X. This calling rate is then spread over the possible ways of realizing
the call in question in the current state of the network in accordance
with some method of routing. A mathematical description of such a
method of choosing routes for calls is given. This description leads
directly to a transition rate matrix Q for a process xt in which every
idle inlet -outlet terminal pair has a calling rate X in every state. The
possibility that zt may be a useful perturbation of xt is considered.

In Section XII it is observed that the rate matrix A for zt is a self-
adjoint operator in a suitable finite -dimensional inner product space.
This implies that the characteristic values of A are real and nonpositive,
and leads to bounds on the rate of approach of zt to equilibrium. These
bounds can be applied to estimate the covariance of z, , and the sampling
error incurred in measuring carried loads by averaging zt , or discrete
observations of zt . In particular it is shown that the dominant (i.e.,
that of smallest nonzero magnitude) characteristic value ri of A satisfies

- (m/a2) < r1 < o,

where m and a are (respectively) the mean and standard deviation of
the load associated with the equilibrium probability vector q for zt , so
that

m=Eixl qx ,
x,,s

o2 E - no2lx
xeS

In Section XIII we give a formula for the covariance of any process
ft defined by applying a function f(  ) to zt , i.e.,

ft = f(zt).

This covariance is always positive. Applications of this formula to traffic
averages are described briefly in Section XIV. Finally, Section XV con-
siders a time -dependent generalization of the variational principle on
which the "thermodynamic" theory of traffic is based.

We conclude this section with an appraisal of the "thermodynamic"
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theory presented herein. This will take the form of a list of comments,
first pro, then con, and then a defense.

1. There exist theories" for connecting networks in which it is as-
sumed that the links of the system are busy or idle with a given probabil-
ity, all independently of one another. It can be verified that an over-
whelming fraction of the states of the system so considered are in fact
not physically meaningful states that the system can reach under nor-
mal operation. The theory presented here is. based only on permitted,
physically meaningful states, and so is not open to this serious objection.

2. The theory provides a 'uniform method of treating any connecting
network in that the calculation of equilibrium probabilities always re-
duces to that of the partition function. In most other treatments the
nature of the algebraic process of calculating probabilities depends heav-
ily on a detailed account of the network configuration; in our theory it
depends on the network only via the numbers I L1 I, I L2 I,  

3. The maximum entropy principle can be given a certain informal, a
priori justification. It provides a "conservative, worst possible case"
approach to problems and processes of fantastic complexity. This is be-
cause it can be interpreted as enjoining that an "equilibrium" distribu-
tion of probability for given carried traffic correspond to a condition of
maximum ignorance of the actual state of the connecting network.

4. The canonical distribution q that results from the maximum en-
tropy postulate can be embedded in a dynamic model of traffic by de-
fining a Markov process zr for which q is the invariant or stationary dis-
tribution. This dynamic model is described by a transition rate matrix
which is a self-adjoint operator, a fact which makes it possible to study
the time -dependent behavior of z, in a simple approximate way, with
applications to traffic measurement, for instance.

5. A very serious drawback of the "thermodynamic" theory is that its
natural interpretation in terms of calling rates appears to be unreason-
able in most practical cases. For this reason it will probably remain an
amusing curiosity, rather than become an engineering tool.

6. The problem of calculating the partition function ci3(  ) is, as in
statistical mechanics, very difficult except in cases of unrealistic sim-
plicity. Thus, even if its assumptions are granted, our "thermodynamic"
theory does not afford much progress in calculating quantities of inter-
est.

7. The theory can take into account only one of the many different
possible methods of routing calls in operating networks. Thus it cannot
help the designer choose among alternative methods.

By way of defense against the objections just raised, these points can
be made:
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(i) Comment 5, that the interpretation of the "thermodynamic"
theory in terms of calling rates is unreasonable, depends on a natural,
but not necessarily valid or compelling, assignment of causes for new
calls.

(ii) Although the calculation of (I)(  ) is hard, it is at least a definite
combinatory problem solvable in principle by counting; thus at least
part of the problem of obtaining state probabilities is disposed of.

(iii) It is doubtful whether routing methods make as much as an or-
der of magnitude of difference in carried loads in large systems; hence it
is reasonable to ignore them in a relatively crude theory such as the
present one. (See however, Bene, Ref. U.)

The theory presented in this paper should be judged by its success in
practice as well as by its agreement with our preconceptions. I believe
that in spite of the major failings mentioned, the theory musters interest
enough to warrant its presentation to traffic engineers, if only because
its concepts and results may prove useful in more realistic approaches.

IV. EQUILIBRIUM

Quantities that are of interest in the design of a connecting network,
such as the average load carried, the variance of the load, or even the
probability of blocking, can often be calculated from a knowledge of
some "equilibrium" or "stationary" state probabilities {qx , x e AS} for
the network of interest. These probabilities are usually assumed or
proven to be of "equilibrium" type in the sense that they have some
physically reasonable invariance property.

Since the concepts of stationarity and equilibrium can assume many
precise forms of varying strength, it is important to consider briefly
some of these senses. The strongest notion, of course, is that of strict
stationarity of a stochastic process, defined by the condition that all the
finite -dimensional distributions be independent of time, i.e., be transla-
tion -invariant. A whole class of weaker notions can be obtained by re-
quiring only that the distributions of dimension not greater than n be
invariant. The notion of wide -sense stationarity, defined by the condi-
tion that the covariance depend only on the difference of its arguments,
is still another concept of stationarity, formulated for a moment rather
than a distribution. Again, Markov processes are described as homogene-
ous or stationary if their transition probability operators are time -in-

variant.
"Equilibrium" is a word that usually connotes a stable, quasi -static

random behavior which is perhaps a condition of attraction for a process,
in the sense that a process not in equilibrium tends toward it. Ergodic
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Markov processes with denumerable state spaces are typical examples.
It is to be remarked, though, that use of the word "equilibrium" usually
implies a nondegenerate limiting behavior for a process yg under study
as t -> 00 . Thus a time -homogeneous Markov process may not have a
genuine "equilibrium" distribution because it in some sense "blows up,"
e.g., the process may take values on the integers and the probability
mass may move out toward + co , even though the transition probabili-
ties are time -independent. In such a case, clearly, no first -order distribu-
tion can be assigned which is time -invariant.

The analytical expression of "equilibrium" often takes the form of a
statement to the effect that an operator has zero as a characteristic value.
Perhaps the most familiar example of such a statement arises in the case
of a Markov process in continuous time with a transition rate matrix A;
the equilibrium equation is Aq = 0, for a probability vector q.*
This equation, together with its connections to semigroups, to Markov
processes, and to the notion of statistical equilibrium used in traffic
theory, is discussed immediately below.

A traditional analytical method in telephone traffic theory is that of
"statistical equilibrium," due to Erlang.5 This method may be described
heuristically as follows: A notion of equilibrium is defined by the prop-
erty that the rate of flow of probability into (or onto) a state equals that
out of (or from) the state; this equilibrium is expressed in a set of equa-
tions among the state probabilities, the so-called statistical equilibrium
equations; the "equilibrium" state probabilities are then taken to be
(or defined by) the solution of these equations.

The method of statistical equilibrium can be interpreted in the mathe-
matically rigorous context of semigroups of positive operators, here the
matrices of transition probabilities {Q(t), t real} for a Markov process
a., taking values in S, with

Q(t) = (qxu(t))

qx(t) = Pr {state of system is y at t if it was r at 0 } .

The generator A of the semigroup is the matrix of transition rates or the
derivative

A = (.A t) - I -Q(0).

The matrix A expresses the relative probabilities of the various changes

* We arc using the convention (Aq): = E a,q,, rather than the more usual

(AO., = E
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that can take place in a small amount of time, and indeed

Q(t) = I + At + o(t) as t 0.

In terms of the generator A the equation of statistical equilibrium can
be written as Aq = 0, which expresses the fact that the vector q of
state probabilities is an eigenvector of A corresponding to a zero eigen-
value of A. From the semigroup property

Q(t s) = Q(t)Q(s)

it follows that

Q(t) = exp At

E qq..-z(t) = qz , x e S, t real

the last equation expressing the invariance of q under the transition
probability matrices Q(  ).

V. THE MAXIMUM ENTROPY PRINCIPLE

In the method of statistical equilibrium, the state probabilities are
calculated a posteriori from a prior equation expressing an equilibrium or
invariance principle. This equation is either postulated or is derived
from assumptions that lead to a Markov stochastic process as a model for
the operating network.

In the present work we use a variational principle rather than an equi-
librium principle as a basis for calculating "equilibrium" state proba-
bilities. In drawing this distinction we refer only to the immediate form
of the assumptions and derivations, and imply no absolute distinction,
since an "equilibrium" principle can almost always be given a "varia-
tional" form. For example, if A is a transition rate matrix for an ergodic
Markov process, and A is self-adjoint with respect to an inner product
( ,  ), then the "equilibrium" probability vector q, i.e., the solution of
Aq = 0 is equally well described as the vector which maximizes the
Rayleigh quotient

(Aq,q)
(q,q)

It will turn out that the probabilities fq, ,xeSi derived from our
variational principle also have an invariance property expressible, as in
the example given, in terms of the self-adjoint generator A of a Markov
semigroup by the equation Aq = 0. This equation can be interpreted



THEORY OF TRAFFIC 577

as a "statistical equilibrium" equation, and the elements of A related
to calling -rates and hangup rates, in the various states a; e S.

However, instead of starting with a suitable matrix A to represent
the infinitesimal dynamic behavior, and solving Aq = 0 in order to
obtain an equilibrium distribution fqx , x e 5) over the states of the
system, we shall directly choose a certain q, to be used as an "equi-
librium" distribution for calculating quantities of interest, according
to this criterion: The entropy functional

11(g) = - E gx log qa.
xeS

is to be as large as possible subject to the conditions

qz 0, x E S

E qs = 1,
rEs

Eixlq,= in,
xeS

where m is a given number, the average load carried. The first two condi-
tions ensure that only bona fide probability distributions are considered,
while the third enjoins that q give rise to m as the mean number of calls
in progress in equilibrium. This criterion or method for choosing a prob-
ability distribution over S we call the maximum entropy principle; it is
exactly analogous to that used in statistical mechanics, provided that
the number of calls in progress is interpreted as the energy of the me-
chanical system. We have already stated that this principle leads to a
unique q which is exactly the same as would be obtained by a particular
choice of A, given later, and solving Aq = 0; this matrix A has a definite
interpretation in terms of system behavior during small periods of time.

A measure of justification for using the maximum entropy principle
can be obtained from five arguments:

(1) Insofar as a high value of the entropy functional is an indication
of a low degree of information, so far can use of the principle be inter-
preted as postulating that an equilibrium distribution { qz , x e 8) corre-
sponds to a condition of maximum ignorance subject to a given average
number of calls in progress. The principle may thus be said to represent
a "safe" or "worst case possible" approach to the problem. Exactly the
same principle is used in statistical mechanics to obtain the canonical
distribution. In both cases it is a reasonable and systematic way of
throwing up our hands.

(2) The principle is appealing for the obvious reasons of unity, uni-
formity, simplicity, and elegance.
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(3) It leads to a theoretical structure similar to that of statistical
mechanics. As in the physical theory, statistical quantities of interest are
calculated from a partition function, characteristic of the network under
study, that depends on purely combinatory properties of that network.

(4) The principle of maximum entropy leads to a unified theory ap-
plicable to all connecting networks. That is, the resulting "equilibrium"
distribution depends algebraically on the structure of the network in a
way that in a sense is uniform for all networks.

(5) The principle can be given a dynamic context in terms of Markov
processes. This context permits the study of the approach to equilibrium
in time, with important applications to sampling error.

VI. THE CANONICAL DISTRIBUTION

In the next few sections we develop some of the principal consequences
of the maximum entropy principle, and examine their similarity to
statistical thermodynamics. In the present section we determine the
distribution {qz , x e S} which maximizes H(q) for a given average load
carried. The following lemma is no doubt well-known, especially to
physicists; since its application in traffic theory is relatively new, its
detailed proof is included for completeness.

Lemma 1: Let f() be a nonnegative function defined on S, and let

The maximum of

subject to the conditions

qz 0,

E qx = 1
=ES

E gzf(x) = mf ,

xS

is

f(s)= E
=ES

H(q) = log qr

x e S

(1)

(mf a given positive number in the closed (2)
convex hull of the range of f(  ),)

H(q) = log 1,(0.)) - mf log w,

where w is the unique positive solution of

w((11(1w) log 'h(w) = mf
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The maximum is achieved by the choice

(ix = kof(x)/*(0))1,

= exp Half (x) - a2 - 1}, x e S

where al , a2 are (the values of Lagrange's multipliers) determined by any
two of the relations

a2 = log CC') - 1,
mf = E f(x) exp (-alf(x) - a2 - 1),

reS

= exp f -ail.

Proof: With al and a2 as Lagrange's multipliers, we form the expression

h = - E q8 log q1 - a1 E f(x)q. - a2 E q.,
xeS reS reS

differentiate with respect to each qz , and set the resulting derivatives
equal to zero. This gives the equations

ah/aqx = - (log qx + 1 + gif(x) a2) = 0, x e S (4)

whose solution is (3). The multipliers al and a2 are to be determined
from the conditions E.,s ql = 1 and Exaf (x)qx = m f . The first gives

1 = e-°2-1 E exp [-a,f(x)],
reS

a2 = log 4(c -al ) - 1,

while the second yields

mf = E f(x) exp [-alf(x)]

579

reS

E f(x) exp [-alf(.1')]

(3)

E exp
[-alf(x)]xES

Setting w = exp -ad , it is found that w should be a solution of the
equation

w(d/dw) log 4,(6)) = ntf > 0.

From the fact that

2
2

1

a)da2lo
(-1-- g Nif(e a) -

(e -
E f(x)+

T1T1

log 41(e-a)) e-af(r)
xeS

>0

(5)
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it is easily shown (Khinchin,6 p. 77) that there is exactly one solution
co of (5), and that c is positive.

A relative extremum of H(q) in q 0 subject to (1) and (2) must
satisfy equations (4). Since these have only one solution there is only
one such extremum. To show that it is a maximum it is enough to
show that the matrix of second derivatives of H(q) with respect to the
components qx of q is negative definite. However, this is straightforward,
since

{M% - 1- if x = y
(1.

0 if x y

O

a2"

In Lemma I Nve let

= x

= number of calls in progress in state x

and we obtain
Theorem 1: Let m > 0; let

(1)( = t
S

reS

and let X be the unique (positive) root of

m = X(d/dX) log (13( X )

The maximum of H(q) = -Er.s qr log qz , subject to the conditions
that q be a probability vector over S and that Ez,s I x I qz = m, is

Hm,,x = log (1)(X) -m log X

and is achieved by the vector q with components
XIxI

qz - (x) '
x e S.

This is the distribution of probability over S that is determined
uniquely by the maximum entropy principle; as noted before, it is the
canonical distribution. The function 4)() is called the partition function
of the connecting network whose states form the set S. Since m deter-
mines X uniquely and vice versa, we can use X as the parameter that de-
termines the average traffic level instead of m. Indeed, m is a monotone
increasing the function of X > 0. Also it can be seen that moments of
the distribution of the number of calls in progress (other than the mean)
can be calculated from cf.( ) by logarithmic differentiation.
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VII. PROPERTIES OF THE PARTITION FUNCTION

In this section we exhibit various identities and relationships that are
typical of the partition function 40(  ). This function is the generating
function of the number of states in a given level; that is

10

<No = gELILki, w = max x I.
reS

Thus the problem of calculating A, 4)(  ), and q in our model reduces
to the calculation of the sequence

Lo I L1 I,

and vice versa.
Remark 1:

=1 E
Y. L k_.

EIA.I = IxI
rES reR

I A I

= 4)/(1)

The first part of this result was proven as Theorem 1 in Ref. 2, and it
implies the second part.

The Mobius function 11( ) of the partially ordered system (S, is
defined recursively by

i.t(0) = 1, il(x) = -E /2(y) if x > 0, X e S.

We have remarked in previous work (Ref. 2, Section VII) that if S is
a class of network states, then ( ) takes on the simple form

u(x) = Ix!
We define the generating function M(  ) by

Since

ma) = EexigX).
reS

4(t) E E (_01z, Ai(x)
reS reS I x I !

it can he seen that (except for a change of sign in the generating variable)
43( ) is the exponential generating function associated with M( ). Thus
we have
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Remark 2:

Proof:

ht(E) = I Click -tit) du

m(g) = 1 -
k -0

)Ak!

= E (-ok Lk C.- tA

k-0 0

= f
0

In analogy with Birkhoff,7 p. 15, (12), we define for each xeSa
characteristic polynomial by the recursion formula*

Px(t) = MITI - E p()

This is related to the Mobius function /2( ) by the fact that if py(  )
denotes the Mobius function for the set fx: x > y}, then

P.(t) = E Empy(x).

However, the partial ordering of the cone {x: y} is again of the
same form as that of 8; i.e., there are exactly (I x - y I)! ascending
chains between y and x, all of length I x - y I. Hence, by ref. 7, p. 15,
(11),

_1 )

(I x - Y I)! - /2(x Y)

and

p.(t) = E tudgx - y)
y6x

= tizi E elgx - y).

Let now

gig) = E Ivl

I/ <.

P.(E) = E px(E).
11<,

* Actually, Birkhoff's polynomial Thal equals /).(E). The definition we use is
more convenient for our purposes.
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The Mobius inversion formula gives

lei
E m(x -oqu()y.

p.(0 = E - oP(0.
y<x

583

To calculate qe(  ) explicitly, we note that if 0 -1e, 5 I x I, then, using
the cup fl for set intersection,

I Lk fl (y:y 5_ .v) =

( 1i.e., there are exactly 1 x states with k calls up below any state x.

Hence

qx(E) EIbl +)Ixl-

Let us write

Slrl = E r Y(S)
u<x

where ?V ) are functions to be determined. Using the Mobius inversion
formula once more, we find that one choice of the re's is

r.(0 = E A(x - y)E'Y',
11<z

= p.() -
so that

S'e' = E (pm) - ET"')
y<.

= P2(E) - qzW
and

P2(E) = (1 + E) III

(i Ek

4-0 k

k  number of elements of Lk less than or equal to X.
Aso

It is apparent that

'x' T I\ k4'(1+E)= E + 011'' = E E *.
reS 1reS k=0
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Since for 0 k x I there are precisely

Ixk I)

elements in Lk that are below x, we have

4'0 = P.(E).
xeS

The preceding results yield the following identities for 43( ) :

40) = E AIrl = E E Acx - OgY(X)
reS reS y<x

= E E r,(A)
xeS y<x

= E E ipu(x) -
xeS y<x

= E -E q=(A)
xeS reS

= 4(1 + A) E E 0l.
reS y<x

VIII. A REVERSIBLE MARKOV PROCESS FOR WHICH THE CANONICAL DIS-

TRIBUTION IS INVARIANT

We shall describe an ergodic reversible Markov process zt, taking
values in the set S of states, and having the property that its stationary
distribution over S is precisely the canonical distribution derived from
the maximum entropy postulate. This Markov stochastic process can
be used to place the canonical distribution into a dynamic context by
exhibiting it as invariant under a semigroup of positive operators, viz.,
the transition matrices of the Markov process in question. The transi-
tion rate matrix A of this process, i.e., the generator of the semigroup,
then provides several interpretations (cf. Section X) of this dynamic
context in terms of behavior at the terminals of the networks, i.e., in
terms of calling rates and mean holding -times.

Let x e S be a possible state of the network. In Section II we have
introduced the sets of states As and Bs with

Ax = set of states immediately above x, i.e., accessible from x by
adding a new call,

Bs = set of states immediately below x, i.e., accessible from x by a
hangup.

The process zt to be considered can be described heuristically by
saying that if zt = x then z,.) is moving to each y e Az at a rate A > 0.
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to each y e B. at a rate unity, and to any other state at a rate zero. Its
transition rate matrix A = (a,) is given by

1- x - X Az i if y=x
if yE Ba, =
if y E Ax
if y 4 A,. U B. and y x.

With this matrix we can define a 1VIarkov process zt in the usual way.
(Cf. Doob.8) A discussion and critique of possible physical interpre-
tations of the rate matrix A is given in Section X.

The probabilistic interpretation of the rate matrix A is that if zt = x
there is a conditional probability Xh o(h) that ze+h = y, for y E A= ;
there is a conditional probability h o(h) that zi+h = y, for y E B, ;
there is a conditional probability 1 - Ah I Ax I - hlx1- o(h) that
Zei-h = x; all other events have a conditional probability o(h), ash = 0.
The constant A is the calling rate per idle path.

An alternative informal description of the Markov process z, is as
follows: the length of time spent in any state x is a random variable
independent of all other lengths of time spent in a state, having a
negative exponential distribution with a mean

1

At the end of a stay in x, a new state is chosen (independently of every-
thing except x) from A= U Bs according to the probabilities

A

I a, I + I A.1

1

lx1-1-XlAxl

The equation Aq = 0 is the matrix -vector form of the statistical equi-
librium equations for the process zt . These equations can be written out
and solved explicitly, as follows: Aq = 0 is equivalent to

Eqll+xEq, x  S. (6)
y Al inz

We find by substitution that qx taken proportional to X gives a solu-
tion. Hence the unique normalized (to be a probability vector) solution
is

for elements of Az

for elements of 131

x1=1 Aixi
q. EA;_, 4,(x)

xeS
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This is precisely the canonical distribution of probability over S which
was obtained earlier from the maximum entropy principle. Thus, one
sense in which the canonical distribution is an equilibrium distribution
is that it is invariant under the transition probability matrices of z, .

It will be noticed that the vector q has components which satisfy not
only the statistical equilibrium equation (6) for zi , but also the much
stronger condition

qza = qaux x,y e 5,

which is an analog of the principle of detailed balance. In the language
of probability, this condition is that of reversibility; that is, it is equiva-
lent to the condition that the process ze look the same whether seen
forward or backward in the sense that for any two times t and s

Pr { zt = x and zs = y} = Pr zt = y and z8 =x}.

The reversibility of zt has important statistical consequences, explored
in Sections XII-XIV. However, an immediate consequence is the
following form of the Boltzmann H -theorem for zi :

Remark: Let

where

Then

11,(t) = -Eq(t) log qz(t),
yes

Try(t) = Pr Izt = y I zo = xl.

(d/dt)Hz(t) > 0.

The proof of this is well-known, being just Pauli's proof of the
quantum -mechanical H -theorem from the principle of detailed balance.
(See Tolman,9 p. 464.)

IX. ANALOGY WITH STATISTICAL MECHANICS

As its name suggests, the canonical distribution of probability over S,
implied by the maximum entropy principle, resembles the canonical
ensemble of statistical mehcanics and thermodynamics. This analogy
extends to several other concepts arising either in traffic theory or in
statistical mechanics, and will now be described. It is assumed that the
reader is familiar with the rudiments of statistical mechanics; a lucid
account can be found in Khinchin.6

Let us consider a conservative mechanical system embedded in a heat
bath, and assume that it is described by a canonical ensemble. It can
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exchange energy with its surroundings; its energy is a randomly varying
quantity. The basic identification we make is of the umber of calls in
progress in a connecting network with the energy of this mechanical
system. In other words, new calls in the operating network are analogous
to increments of energy in the mechanical system, while hangups repre-
sent decrements of energy. The average energy is identified with the aver-
age load carried by the network.

The surfaces of constant energy in the phase -space of the mechanical
system are analogous to the levels Lk , i.e., the sets consisting of the
various states with k calls in progress for k = 0, 1, 2, . The number
I Lk I

of ways of putting up k calls, on which our theory rests, is the
analog of the area of a surface of constant energy. Just as the canonical
density function is constant over the surfaces of constant energy and
maximizes the entropy for a given average energy, so is the canonical
probability vector q constant over each Lk and maximizes H(q).

The partition function of statistical mechanics is defined (cf. Ref. 6,
p. 79) by

z(a) = f cc-01,11'cl) , i
where 1' is the phase -space, x E r is a typical state, H(x) is the total
energy of state s (here given by the Hamiltonian function), and dV is
the volume element of phase -space. In a similar way, the partition
function (1)(  ) is the generating function of the numbers I Lk I, k =
0, 1, 2, . The set S of states corresponds to the phase -space r,
H(x) is analogous to I x I, the volume measure on r is analogous to the
counting measure on S, and c -a replaces t.

In Khinchin's developments of statistical mechanics the temperature
is defined as inversely proportional to the unique root 0 of the equation

(d/d0) log Z( 0) = average energy.

Specifically, the absolute temperature T is given by

0 = (kT)-1,

where k is Boltzmann's constant. In our model for a connecting net-
work the analog (modulo a logarithmic transformation) of 0 is the
solution A of

(d/dX) log 43(X) = average load carried.

Thus it is tempting to identify (log X)-' as proportional to the "tem-
perature" of the traffic system.

The matrix A, introduced in Section VIII as the "transition rate"



588 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963

matrix for the process zt, provides a sense in which the canonical
distribution q is of "equilibrium" type. The reversibility of zt is analogous
to the detailed balance property of transition matrices in statistical
mechanics. (Cf. Tolman,' pp. 165 and 521.) This property also implies
that a form of the Boltzmann H -theorem is valid for zt , as we saw in
Section VIII.

The analogies between our thermodynamic model of traffic and
statistical mechanics can be collected in the following tabulation:

STATISTICAL MECHANICS TRAFFIC THEORY

Energy Calls in progress
Partition function Generating function cf.( ) of number of

Entropy

Temperature
Area of surface of given

energy
Transition rate matrix

Equilibrium
Heat bath
Phase space 11
Volume measure on r

X. DISCUSSION AND CRITIQUE

ways of putting up is calls, 0 S k < w

-E qx log q,
xeS

flog (calling rate per idle path)) i

I Lk! = number of ways of putting up k
calls

A

Aq = 0
Idle customers' needs
Set S of possible states
Counting measure on S

It is now reasonable to consider possible physical interpretations of
the stochastic process zt and of the transition rate matrix A in terms of
items describing behavior at the inlets and outlets of the connecting
network, such as calling rates, holding -times, and routing rules. Obvi-
ously, transitions of zt from a state x into B. represent hangups, while
transitions from x into Ax represent new calls; the entries of A indicate
the "rates" at which these events occur in the different states. However,
the reasonableness, and so the acceptability, of zt as a model for traffic
depends on the interpretations of zt and A in physical terms. Hence we
must inquire whether (and how) the rates entered in A can be viewed as
realistically describing the terminations of calls in progress, the occur-
rence of new calls between inlets and outlets of the network, and their
routing or disposition.

In general, to construct a Markov process as a model for traffic in a



THEORY OF TRAFFIC 589

connecting network whose states form the set S, it is usually sufficient to
give, for each state .r e S, and each inlet u and outlet r,

(i) the hangup rate for the various calls in progress in x,
(ii) the calling rate between u and v in state x,

(iii) the method for disposing of requests that encounter congestion,
receive busy tone, etc.,

(iv) the method for choosing routes of new calls.
A particular choice of the items (i)-(iv) leads to a transition rate matrix,
and so to a Markov process. We shall assess the reasonableness of z1 as
a model for traffic in terms of items (i)-(iv) above by exhibiting two
choices of (i)-(iv) that both lead to the rate matrix A of z, .

In the dynamic model z1 described in Section VIII, the role of the in-
lets and outlets is open to (at least) two different interpretations, each
of which induces a corresponding interpretation of the transition rate
matrix A .

One possible interpretation of the inlets and outlets is to take them
seriously as actual terminals or customers' lines. They are then the outer-
most portions of the network under study, the original sources for traffic
that enters the system, beyond which there is no more connecting or
switching equipment. From any inlet, or to any outlet, there can be at
most one call in progress. In this case the rate matrix A can be inter-
preted as saying that in a state a each call in progress is terminating at
a unit rate, that the calling rate from an idle inlet u to an idle outlet v is

A  number of available paths from u to v in state x
= X  number of states covering x which include a (u,v) call,

and that of the possible routes for a new call one is chosen at random
(equal probability for all). The reader can verify that this choice of
(i)-(iv) does in fact lead to the rate matrix A. Note that this description
does not provide for the generation of blocked calls.

The choice of a unit hangup rate per call in progress is tantamount to
measuring time in units of mean holding -time, with the convenience that
carried and offered loads come out in the standard units of erlangs. This
unit hangup rate can be obtained as a consequence of assuming that the
holding -times are negative -exponentially distributed with mean unity,
mutually independent, and independent of the random process describ-
ing new calls. This assumption of "negative exponential holding -times"
is a standard one in congestion theory. (See e.g., Syski,") p. 9.)

More interesting (and questionable!) is the fact that under this inter-
pretation the calling rate in a state x between an idle inlet u and an idle
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outlet v depends on the number of ways in which a call from u to v
could be put into the network in state x. This calling rate can therefore
change in time as the state changes, even if u and v remain idle. It can
be argued that this is an unrealistic feature, and that therefore zi is not
a wholly reasonable model for telephone traffic in a network whose in-
lets and outlets are interpreted as terminals or customers' lines. For
surely the idle calling parties do not know the state of the system, nor
the number of paths available for a call between them, and so they can-
not (let alone do not) adjust their calling rates accordingly.

In a sense, it would be more intuitive and reasonable to assign a call-
ing rate X to each idle pair (u,v) of terminals (an inlet u and an outlet v)
irrespective of the state x of the system. This basic calling rate for each
idle pair (u,v) is then distributed over the states that cover x and realize
(u,v) [assuming that (u,v) is not blocked, so that there are such states]
in accordance with some routing rule. A stochastic process xt on S based
on this idea is described in Section XI, and is studied in detail in a work
(BeneA") to appear later.

From an a priori viewpoint, xt is a more reasonable model for traffic
than zt . The objection (described above) to letting the calling rate for
an idle pair depend on the state is severe. Nevertheless it does not neces-
sarily destroy the usefulness of the process zt for describing traffic. Three
comments are relevant here:

(1) If all calls can be put up in at most one way, then x, and zt coin-
cide.

(2) If calls can be put up in only a few ways, it may often be possible
or useful to regard z, as a small perturbation of xt obtained by raising
various calling rates. This idea is explored in Section XI.

(3) Even if zt is not in any precise sense a small perturbation of the
a priori reasonable model xt , it deserves to be considered as a model of
traffic. It must not be forgotten that the usefulness of a theory rests
more on its success in predicting than on its meeting criteria of reason-
ableness that are adduced a priori.

However, it is possible to give the inlets and outlets a second interpre-
tation, different from the one that assigns them the role of "outermost
terminals." This interpretation makes zg a fairly reasonable model of
traffic, in the a priori sense we are discussing. It consists in letting each
inlet or outlet represent a point from which several or many calls can be
in progress to other points in the system. Physically, such an inlet, or out-
let might be a PBX or central office serving a locality. As such, it would
itself contain a connecting network which is left out of account in the
model. It no longer necessarily makes sense to speak of busy and idle
inlets, or outlets.
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To give an intuitive rationale for this interpretation and for the as-
sumption about calling rates that corresponds to it, let us pick an inlet -
outlet pair (u,v) and think of u and v as (possibly geographically sepa-
rated) points between which there may be several calls in progress. For
example, the network under study might be a toll network, and u and v
might be local central offices acting as sources of traffic for the toll sys-
tem. Or, for a second example, u and v might be distinct switches in a
large network inside a central office.

In such situations, it is natural to expect that if in a state there are
many paths available for a call from u to v, then there is a larger proba-
bility that a requested call from u to v arise in the next small interval of
time h than if there were very few paths between u and v available. In
other words, it is reasonable that the calling rate in x for (u,v) calls be
a monotone increasing function of the number of paths available in x
for such calls.

A particularly simple monotone function is the linear one, and we shall
assume that the calling rate for an idle pair (u,v) in x is

X  number of paths available in x for (u,v) call,

and that of the available paths one is chosen at random. Again, no pro-
vision is made for the generation of blocked attempts, since these will not
affect the state probabilities when blocked calls are refused.

We observe that Az can be partitioned and written as

Az = U Az(u,v),
(u,v)

where

A z(u,v) = y covers x and realizes (u,v))

with

I Az(u,v) I = number of paths available in x for a (u,v) call.

Since routes for new calls are chosen at random we find that the transi-
tion rate from x to y E Az is exactly X, so that this second interpretation
also leads to the rate matrix A.

XI. A MARKOV MODEL BASED ON TERMINAL -PAIR BEHAVIOR

We now revert to interpreting inlets and outlets as the ultimate ter-
minals of the connecting network. In Section X it was suggested that
under this interpretation an a priori reasonable model (a stochastic
process st) can be obtained by postulating an effective calling rate
X > 0 per idle inlet -outlet pair. This can be done by assuming that each
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idle inlet calls an arbitrary outlet at a rate A, and vice versa, with at-
tempted calls to busy terminals rejected with no change of state. The
total attempt rate in a state x (excluding calls to busy terminals) is

fnumber of idle
linlet-outlet pairs in x

If I is the set of inlets, and St that of outlets, with I and It disjoint, this
has the quadratic form

X(1/1 -1x1)(191 -1x1).
As before, we assume a unit hangup rate per call in progress, with

blocked calls rejected. The description of St can be completed, finally,
by specifying a method of routing. This we do by introducing a "routing
matrix" R = (r) with the following properties: Let x be a state, and
let II be the partition of A, induced by the equivalence relation of

"having the same calls up, possibly on different routes"; then

r, > 0
rzy = 0 unless y E Az

E rzy = 1 for Y
ye Y

We note that La r, is exactly the number s(x) of attempts which
would be "successful" if they arose in state x, and that II consists of
exactly the sets Az (u,v) for { (u,v) } idle and unblocked in x.

The routing matrix R is to have this interpretation: each time the
call (u,v) I is to be completed in state x, a state y is chosen inde-
pendently from Az(u,v) with probability r, and the call is routed so
as to take the system to state y.

The foregoing assumptions lead to a rate matrix Q for xt defined by

1 if y E Bz
Xr, if y E Az
- I :v I - Xs(x) if y = x
0 if y e (Az U Bz)' and y 5 5.

This matrix is exactly like A except that for y e Az the rate from x to y
is not A but (the in general smaller quantity) Art , and that the diagonal
terms are correspondingly increased so as to keep row sums equal to
zero. For each Y E II, rx,, for y E Y represents a distribution of the calling
rate of some idle unblocked pair (u,v) over At (u,v) = Y. Indeed A
results from Q if all the rzy are replaced by unity. The process xt can be
defined in terms of its rate matrix Q.

qxy =
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The assumptions leading to the rate matrix Q and to the process xt
have much a priori appeal; xt itself is discussed in detail in a forth-
coming paper" already mentioned. Here we shall merely consider
whether zt may be regarded as a perturbation of xt . Since each process
is determined by its respective rate matrix, and since we are interested
mostly in equilibrium behavior, we restrict attention to asking how
different are the respective equilibrium distributions over S for xt and
zt . Thus, if p and q are probability row -vectors satisfying Qp = 0 and
Aq = 0 respectively, how different is p from q?

To give a precise estimate, we introduce the norms

IIMl1= EImxyI
x,y

II V = vz I

for matrices and vectors, respectively. Since Ap = (A - Q)p and
Qq = (Q - A)q, we find

2 11 - A
P q

I

Q - A H.
The norm of Q - A, in turn, can be seen to be

11 -A ll = 2X E E(1- r,)
xeS yeA x

= 2X E (1 Ax - 8(X))
xeS

= 2X IV (1) - E 8(41
xeS

where

s(x) = number of pairs that are idle and not blocked in x.

Letting

= max number of ways a call can be realized

we find :1, I As( x), and hence

IIQ-A II 2X(A - ES(x)

TA

2,8

2X(12 - 1)x'(1).

w = max I x
xeS
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so that V(1) < w S ,and

Q - 11 2X(eu - 1)w I S

The average contribution (per state) to II Q -A II is then

-
Qi 2X0.1 - 1)w.

XII. THE APPROACH TO EQUILIBRIUM

It is known from the theory of Markov processes that the matrix
Q(t) (qx,(0) of the transition probabilities

qxy(t) = Pr {z(t s) = y I z(s) = 2;), t > 0

of the process zt satisfies the Kolmogorov equations

(d/dt)Q(t) = AQ(t) = Q(t)A, Q(0) = I,

and that the study of the time -dependent (as opposed to the asymptotic,
or equilibrium) behavior of zt can be carried out in terms of the charac-
teristic values of A. Knowledge of the transition probabilities is essential,
for example, in calculating the sampling error incurred in such load
averages as

1 ÷',1- I Znr yn
1

7'

IZt I (it,
11 0

(7)

where 7 is the interval between successive discrete observations of
I zt I, and (0,T) is an interval of continuous observation of I zt I. In this
section we study the manner in which zt approaches equilibrium in
terms of the two principal characteristic values of A, i.e., that of largest,
and that of smallest nonzero, magnitude. Applications to estimating the
covariances of functions of zt , and to studying sampling error for the
traffic averages in (7), are described in Sections XIII and XIV, re-
spectively.

Our study of the approach to equilibrium is based on the observation
that the matrix A of transition rates for the process zt is symmetrizable,
i.e., is a self-adjoint operator in a suitably chosen inner -product space
of finite dimension I S I. The probabilities

XIxI 1
q.

4)(x) Az

are all strictly nonnegative, and we use their reciprocals Azz as weights
in defining an inner product,
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(r,$) = E , (8)
xeS

and a norm,

II s II = (s,$)1.

We now remark that for all states x,y from S,

qua,,x =qza,

or alternatively

ayx/A x = azythi

Indeed, this remark is the basis for the solution q given in Section VIII
for the statistical equilibrium equations (6) of the process z4 ; it has
the important consequence that A is self-adjoint with respect to the
inner product defined by (8), viz.

Lemma 2: (Ar,$) = (r,As), for any I S I -vectors r,s.
Proof: A is a real matrix, so

EE ayxrygx,.,, = E E rugxaxil,
x y x

= E"1'ul-LyE axygx = E 7'y E
1/

In a similar way we prove
Lemma 3:

1/

(Ar,$) = E E agy(sx/, - sy,uy)(Airx - pyro
y

Proof: Since the matrix whose elements are auxiix is symmetric, we
have

r,$) = E E ayriU,Jrir
X Y

= E E r +

Now

ay,(/,u, ,rrz =

because Aq = 0, and
2-,ayiq svy = E E auxAygo..

X y Y

=0
because Ex avz = 0. This proves the lemma.
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Theorem 2: The characteristic values of A are real and nonpositive.
Zero is a simple characteristic value corresponding to the characteristic
vector q, normalized to unity.

Proof: The result follows from the known properties of self-adjoint
transformations. (See Ref. 12, pp. 153-155.)

The characteristic values of A will all be of the Rayleigh quotient
form

(Av,v)
(v, v) =

for some vector v; by Lemma 3 this form is nonpositive. The probability
vector solution q of Aq = 0 is unique so that zero is a simple charac-
teristic value. Furthermore, if 0 > rmax = ri r181_1 = rrnin is
an arrangement of the characteristic values in decreasing order, the
variational description of the characteristic values (Ref. 12, p. 111)
implies that with II v II2 = (v,v),

rmax = ri = max 1(A v,v) I v 1 17 V = 11

rmin = r181_1 = min f (Av,v) II v II = 11.

The alternative notations 7.max and rmin identify the two "dominant"
characteristic values, and are introduced for later convenience to en-
hance the symmetry of the theory.

One can now estimate r1 from below by substituting suitable trial
vectors in the Rayleigh quotient. Choosing a vector v with components

I xj m
vx xE S,

0',Ux

where

m=Elxiqx = --a log 4(A)
zEs OX

20.2 E (IxI - no,qx
A2

G412 (;30 log J(A),xfs

it is easily seen that (q,v) = 0, that II v II = 1, and that

1 Y I -m IxI - nt)2(A. v, v) = - E E ayxqu
x y

=--1-Egy(lyi+XiAyi).
2a2 y

In equilibrium, the average rate of new calls equals the average rate of
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hangups, as can be verified from the equilibrium equations Aq = 0.
That is,

and we find

EIYI% E I Ay I,
yeS yeS

nt- <0,
(r -

a generalization of a result known (Ref. 13, p. 147) for the simple
busy signal trunk group (classical Erlang model).

In general, letting f(  ) be any function defined on the set S of states,
but not identically a constant, we define

mt = f(i)qx
072 E (f(x) - 2qx

S

Choosing now a vector v with components

vx -
f(x) - nif

afihx

we obtain (by repetition of previous reasoning)

1 qy (E - 1(y)]2 E
[f (x)

2(7? y xEBx X E A ,

as a lower bound for r1 .

We now define a set of vector -valued functions {cx(t), x e S, t 0} by
the condition

czy(t) = qxy(t) - qy , y e S.

The function cx() describes the approach to equilibrium from the
initial state x at time t = 0.

Theorem 3: For t 0

II cz(0) II exp (rmint) < ll cx(t)
II II MO) II exP (rmaxt).

Proof: Since qy and q(t) are both distributions in y, we have

(cx(t),q) = E q,(t) - qy = 0

so that cz(t) 1 q. Also
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-d qt,] qzy11 c.(t) 112 = 2 E [q.,,(t) - ] d (
dt

= 2 (c. ,
dt
(±-1 ex)

= 2(c., Act)

since (d/dt)c. = Act ; that is for each y e S,

c. == q. == qx,(t)(1
t Y Y

.. kix,(t)

Hence, II ex II being nonzero, we find

2r.i. < (d/dt) log II cz 112 2rn,ax

and Theorem 3 follows by integration. The argument just given is es-
sentially reproduced from Kramer."

XIII. COVARIANCES OF FUNCTIONS OF Zt

For the purposes of this section it is convenient to introduce an inner
product ( ,  )', closely related to but different from ( ,  ) of the previous
section, and defined by

(r,$)' = E 7.,-§zq. 
xeS

The associated norm is denoted by II r II' (r,r)'. The point of the
"prime" notation is explained by the fact that the transpose A' of A is
self-adjoint with respect to ( , )'.

Remark: Where A' is the transpose of A

(A'r,$)' = (r,A's)'.

Proof:
EE azrgzq, = E E
x y x y

= E2r,j E = Er E at,.s.,q,

Let f( ) be a function defined on S, and define a stochastic process
,ft by the condition

ft = f(zt).

Theorem 4: The covariance of f t is given by
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Rf(t) = (f A'nf)'
n=0 n!

where the vector f is defined by

fx = f(x) - f(x)q, ,
xeS

= f(x) - mf
Proof : The covariance of f t is

E E qzgxy(t)fafy = (f,Q(t)'f)'

599

= (f,(exp tA)'f)'

=
71=0 iv.

with Q(t)' denoting the transpose, and not the derivative, of Q(t). The
covariance of ft is thus the exponential generating function of the series
of numbers

(f,A"D' n = 0, 1, 2, .

These can be calculated with the help of the following results:
Lemma 4: Let the matrix elements of A' be axy(n) . Then

(n) (n)
yehxy = yyt.fly, .

Proof:

(n)
qyasy = Eaxu,a,2 au...4y

E auixaii2u ayun_igy

= qll E ay,_, au2uLau,s
u'n- 1 1

(n)= qyuyx

Lemma 5: Let Q be the diagonal matrix of elements gx , x e S. Then

(w,A"w)' = (A"Qw,Qw).

Proof:

E wx E axy(n)wyq. = E (Qw)x E iiaz,,'(Qw)y

= E (Qw)x E ay.(n) (Qw) up,
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From the three preceding results we obtain
Theorem 5: The covariance of ft is

Rf(t) =
nE n!

- (AnQf Qf),

where the vector f is as in Theorem 4, and Q is the diagonal matrix of
elements qx , x E S.

It is readily seen that An, n 1, is again a self-adjoint operator with
respect to ( ,  ), and that its characteristic values are precisely the
nth powers of those of A. Also, for any vector v and n 0

(Anv'v){:5 0 if n is odd
0 if n is zero or even

so that by the variational description of characteristic values we have

n odd (An v,v)

rmax , n even (v,v) rmin11, n even

rmin rmaxn, n odd
(10)

provided that v 1 q (in the inequalities involving r..). Returning now
to the vector Qf of Theorem 5, we find

Qf 112 =
E qr2m.,z

= E (f(x) - mf)2qx = a./
x6S

and

E q.(Q/).rAx = E qrfx = 0,

so that Qf 1 q. Letting v = Qf in (10), we obtain

Qf 1minn (A "Qffif) 0-12rmaxn,

crf2rm.n 5 (AnQLW) 0- rm

n odd,

n even.

Unfortunately, these inequalities do not give useful bounds for the
covariance R1(). However, such bounds can be obtained from the
formula of Theorem 5 in an elegant way by applying the spectral
theorem to A.

Theorem 6: Let ai , , ak denote the distinct characteristic values of A,
and let Ei , i = 1, , k., denote the perpendicular projection on the sub-
space of all solutions Ar = air. Then the covariance RA  ) of f t is given by

RA(t) = E0(EiQf,Qpeait,
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with 1Sk s S I, Q the diagonal matrix of elements q. , x e 8, and f
given by f. = f(x) -mf.

Proof: By the spectral theorem for self-adjoint operators (Ref. 12,
p. 56) we can write

A = E ajEj
i=0

and

E zit
i.

i=0

We can now calculate with formula (9) of Theorem 5:

Rf(t) = , (A" QfPf)
n-0 Tt:

= ,EE
4\n

(E1(2/12f)

= E (Eiw,w) eali
i-o

This proves Theorem 6. Since we know that zero is among the charac-
teristic values (indeed, it is a simple one), one of the a's, say ao , will
be zero. We may reasonably expect R1( ) to approach zero for large t;
hence the constant, i.e., ao , term of Rf( ) should be zero. This can be
seen as follows: the subspace associated with zero consists of vectors
proportional to the equilibrium vector q, because zero is a simple charac-
teristic value; but we have already verified that q 1 Qf; hence

(Eor,W) = 0, all r.

Using this we prove the
Corollary 1: Ri(t) > 0 for all t, and in fact

f2 erminiti Rf(t) < 0.1 ermaxin all t.

Proof: Since the Ei of Theorem 6 are perpendicular projections, they
are linear, self-adjoint, and positive in the sense of Ref. 12, p. 140; the
usual term for positive is nonnegative semidefinite. Hence

(Eir,r) 0

for any vector r. Since (Eor,Qf) = 0 if Eo is associated with the zero
characteristic value, the result follows from Theorem 6, using

E Ei =
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(Ei(2.faf) = II Qf 112 = a/.

XIV. APPLICATIONS TO SAMPLING ERROR

Let us suppose that n samples of the process ft( = f (zi)) are observed
during an interval of equilibrium of zt at intervals r apart, and that the
normed sum

71-'8 =
J=1

is used as an estimate of E (ft). We find that

Var ls.1 = E (n - I j DR/(iT),
i=-n

where R.1(  ) is the covariance of ft. By using the identity
11

EAil - Ij De-21flu = n c/nit u
1 e-2nu

2
csch224,

= v(u),
together with Corollary 1 of Section XIII, we find that

f2Vn( Trin in) Var { Sn} C GIN( Trnia.) 

In a similar way, if ft is observed continuously over an interval
(0,7') of equilibrium of zt and the time average

MOT) = for f(zi) di

is used as an estimate of E {ft}, then

Var {M( T) } = 2T-2 (T - t) Rf(t) dt,

and Corollary l gives

f2 f (T - t) cri" "` dt 5_ Var {M(71)1 f (l - erm"E dt.

XV. A GENERALIZATION

As an extension of the maximum problem posed and solved in Section
V we shall seek functions

q.( I), X E S t1 C t t2 < t12
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such that for each I in [ti ,t2]

E qx(t) = 1, q., -(t) 0
x S

E I x I qx(1) = in(t) > 0
xeS

12

H(q(t)) dt = maximum.
t

In other words, we look for a time -dependent distribution of proba-
bility over S with prescribed mean values for the function 1.1 on S, such
that the integral of the entropy functional over (t1 ,12) is a maximum.

The Euler equations for this problem assume the trivial form (with
L1( ) and L2(  ) as Lagrange's multipliers):

(01//aq.) - L1(t) I x - L2(t) = 0, x E S

or, writing out the H -derivative,

log qx(t) -1- 1 + Lt(t) I x 1 -1- L2(t) = 0, x E S.

The argument of Lemma 1 following equation (4) shows that qx( ) is
given by

A(t)I=I-4(A(0)1, s t < t2

where X(  ) is the unique solution of the equation

E l x l x(01.1
nt(t) - xes- 11 log Cu))

43(X (t)) du u=x(t) 

This solution has the form of the canonical distribution at each time
point in [ti ,12], and Theorem 1 in effect is just the special case of this
result that arises when m(t) = m. It is apparent that the form of this
solution does not depend on what interval [ti 42] was considered, so we
may assume that m(  ), and hence also A(  ) and q( ), are defined on
the real axis.

Let us define the matrix -valued function A (I) by A (t) = (a(t))
where

j

if y e Bx
if y e Aza,( X(t)t) = -I x - X(t) 1 Az 1 if x = y
otherwise.

In other words A (t) is obtained from the transition rate matrix A or zi
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by replacing the constant X by the function X(  ). Then for each t

A(t)q(t) = 0

i.e.,

x I X(t)
I

fix 11 (MO = E qu(t) X(t) qy(t)
yeAz yeBy

Thus an analog of the statistical equilibrium equation holds at each
point in time, and in this sense, a system described by I q(t),t1 t < t2I
may be said to be locally in equilibrium throughout the interval (t1 ,t2).

Let us now redefine the process zt to be the time -dependent Markov
process corresponding to the (time -dependent) transition rate matrix
A (  ). We know that if X( ) were a constant function with the particular
value X(u), then the process zt would have a stationary or equilibrium
distribution over S given by

q=(u)
[X(u)11x1

43(X(u))

We may therefore expect that if X( ) is not constant, but changes only
slowly with time, and if zo has the absolute distribution (vector) q(0),
then zt for t > 0 has a distribution approximately given by q(t). Let us
see in detail how this occurs.

The transition probability matrix

Q ,t2) = qxy( ti ,t2)

qz(ti ,t2) = Pr {zt, = y I zt, = x},

is now indexed by two time parameters instead of one, because of the
time -dependence of zt . The forward Kolmogorov equation for Q( ,  ) is

/ at)Q(u,t) = Q(u,t)A(t), u < t,

or

(a/a0q.,,(u,t) = -[I y 1 X(t)s(y)lqa,(u,t)

E q(i) X(t) E g12(t)
ZEBU

with Q(t,t) = I. It is easily seen that

Q(u,t) = exp f Q(w) dw,

the exponential of a matrix being defined by the usual series in powers

of the matrix. Therefore if
Pr {,z0 = x} = MO),
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then

Pr {zt = xl = E Pr {z0 = yiquz(t),
yeS

and the absolute distribution of zt is given by the vector

Q(0,t)q(0).

We now write

Q(0,0 = exp tA(t) {exp f A(u) du - exp tA(t)} ,

observe that

605

A(u) du - tA(t) = f udA(u)

and make this heuristic argument: Since dA/du is small, Q(0,0 is
approximately exp tA(1); however, for t fixed and u varying

exp uA(t)

is the transition probability matrix of a process zt obtained by setting

X(u) X(t).

This matrix approaches, as u --> oo , the matrix each of whose rows is
q(t). If t is large compared to the time it takes this to happen, we may
expect, by Theorem 3, that

exp tA(t)

have rows all approximately equal to q(t), so that

distr{zt} ti q(t).

The informal argument just given can be made precise. For the
purposes of this last section, we again introduce the vector norm

f II = I

and the matrix norm

m 11 = E ImryI.
raleS

Also, we use the following result:

Lemma 6: Let 11I,N be I S I -dimensional square matrices, with
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c= 2 sup I nt, sup I
x,yeS x,yeS

Then for integers k 1

11
Mk - Nk II (2c I S i)k-1 M -N II

Proof: There obtains the identity
mk - Nk irk-1)a N)mk-i Nk- 1).

If (b.y) are the elements of B and (bxy(k)) are those of Bk, then

sup I bx,,(k) -5 I S I  Sul)
I bi1<(k-1) I  sup bru

I.

x,//

Hence, with k > 1

and

Also,

sup nz, (k-1) nzy(k-1)I < S 1k -2(2W-1,
I

x,1/

II (Al - N) (111k-1 N") 11 < (2c I S I)k-' 
I I

ill. -N

(11[ N)(11/1k-1 - c I 8 I'll Mk -1 Nk 11

Thus

II Mk- Ark cISH II Mk -1 - Nk-1 + N II(2c S pk-1

6. M -N 11(2c S pk-1

Wh-1 (C S 1)./(2c I S

II 111 -N II(2c IS 1)k-1.

Using the lemma we find that the norm of

exp f A(u) du - exp tA(t)
-0

is at most

DO

n=1

(ft A(u) (121. - rAt(t)
0 - 1

f2c dA(u)
0n1

where

b= 21 S I sup f azy(u)du-l- tsuplaxy(t)i
z.v 0 x,y
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It can be verified that
f t

Jo u ( u) = 2 E
x,y

yeAz

fu (1X(u)

2t2c11(1) sup I X'(
ue[0,t]

Thus if X'(  ) is small on [0,11 the distribution of zt is nearly

(exp tA(t))q(0)

(in the sense of the vector norm of this section). By Theorem 3, how-
ever, this will be nearly q(t) (in the sense of the norm defined by q(t))
if t is large compared to the time it takes exp uA(t) to approach its
limit as u -> co .
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Flexural Vibrations of a Propped
Cantilever

By R. L. PEEK, JR.

(Manuscript received January 11, 1963)

The equations for the flexural vibrations of a propped cantilever beam
have been used to compute a number of the vibration characteristics of such
beams for the fist five modes over the range of prop locations from 50 to 100
per cent of the length. Plots of these characteristics are included in the paper.
This material has been prepared primarily for use in studies of contact
spring vibration, and such application is briefly discussed. The mathe-
matical treatment used to obtain the relations given is outlined in an
Appendix.

I. INTRODUCTION

In relays and other switching apparatus, contact chatter and certain
types of wear are associated with vibrations of the contact springs. As
an aid in the study of these vibrations, the general theory of beam
vibration has been used to develop an analytical treatment applicable
to the important class of contact springs which can be considered as
propped cantilever beams of uniform cross-section.

In almost all common types of switching apparatus, the contact
springs are cantilever beams, clamped at the terminal end, which carry
the contact at the free end. When the contact is open, the spring is
usually propped or supported by a card or stud, and is therefore a
propped cantilever. In some devices, the spring is supported at both
the stud and contact when the latter is closed, and is then a doubly
propped cantilever. In others, the spring is supported only at the contact
when the latter is closed, and is therefore a singly propped cantilever in
both operate and release, although the prop location differs for the two
cases. Sometimes the mating contact is mounted on another spring,
which constitutes a flexible prop, as contrasted with the (relatively) fixed
and rigid prop provided by a card or stud.

The relations given here apply only to a uniform cantilever with a
609
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single rigid prop. Some contact springs rigorously conform to these
limitations, and the treatment is approximately applicable to a much
larger number of cases. A more general treatment of relay spring vibra-
tion is given in Chapter 7 of Ref. 1. This includes an outline of approxi-
mate methods of analysis applicable to nonuniform springs and to those
which are doubly propped, or supported by a compliant prop, such as a
spring -mounted mating contact. The treatment given here may be used
in applying these more general methods, but the present discussion is
confined to the cases where it is directly applicable.

1.1 Application to Chatter Studies

The contact chatter of primary interest is that occurring with closed
contacts, usually immediately following closure. With a fixed mating
contact, the moving spring is a cantilever propped at the contact.
Vibration results in modulation of the contact force and therefore of
the contact resistance. If the amplitude of the force modulation exceeds
the static contact force, a transient open occurs. The timing and dura-
tion of these opens can therefore be related to the force modulation and
to the amplitudes and frequencies of the spring vibrations. The latter
may be directly observed, or predicted from an analysis of the excitation
of this vibration involved in operation.

1.2 Application to Wear Studies

The wear associated with vibration may occur at the contact or at a
supporting or actuating card or stud which serves as the prop to a
contact spring. Relative motion in the direction of the spring length
results in wear. Severe wear occurs when such longitudinal motion is
imposed in actuation. When this is avoided by providing purely perpen-
dicular motion in actuation, wear may still be produced by the longi-
tudinal component of the vibratory motion. The relations given here
include those between the longitudinal amplitudes and the (normal)
displacement amplitudes, or the corresponding energy content. Thus the
longitudinal amplitude can be evaluated from the observed displace-
ment amplitude, or from the estimated energy content of the spring
vibration.

11. THEORETICAL FOUNDATION

The equations giving the spring vibration characteristics are derived
in the Appendix to this paper. The treatment follows the usual approxi-
mate theory of beam vibration, based on the simple theory of bending,
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and formally applicable only for displacements which are small com-
pared with the spring dimensions. These formal limitations are of little
consequence for the present purpose, although impact causes some
deformation other than simple bending.

For springs of uniform section, flexural vibrations conform to a
general differential equation (3),* having a solution of the form of (4).
This represents a harmonic motion in which all points in the spring
move in phase. The relative motion at different points is determined
by the dynamic deflection curve X, a function of x only, where x is
measured along the length of the spring. Each such deflection curve
corresponds to a particular mode of vibration, having a corresponding
characteristic frequency. The deflection curves for the first three modes
of a propped spring (prop at 85 per cent of the length) are shown in
Fig. 1. As there indicated, several modes may be present together,
resulting in a configuration which is at any instant the sum of the
different modes present.

The deflection curves for the several modes, and the corresponding
frequencies, depend upon boundary conditions determined by the way
in which the spring is supported. For a propped cantilever, the boundary
conditions, and hence the deflection curves and frequencies, vary with
the prop location (defined by the ratio L'/L of Fig. 1). The special
cases in which L'/L is zero and unity correspond respectively to a free
cantilever and an end -propped cantilever. All the relations given in the
figures are shown in the form of curves in which the quantity given is
plotted against L'/L over the range from 0.5 to 1.0, which covers the
prop locations applying to most contact springs.

The frequency equation for any particular prop location is tran-
scendental in form (8). The successive roots of this equation determine
the frequencies and deflection curves of the several modes. These roots
do not form a simple series, and the successive frequencies are not simple
multiples of the fundamental. In the higher modes, however, the deflec-
tion curves approach sine curves in form (except for the end sections),
and the intervals between successive frequencies are approximately
equal.

From the frequency constant for a particular mode and prop location
there may be determined all the constants of the corresponding deflection
curve except for an undetermined multiplier (A1 in the equations of the
Appendix), which measures the amplitude or energy content T of the
mode in question. As this constant determines both the energy content
and the maximum deflection (or amplitude) at any point on the beam,

* Equations are cited by the numbers identifying them in the Appendix.
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x

y=XisiNwit -1-X2siNco2t+

L

X23

k
XL

T 1ST MODE

2ND MODE

XL

1- 3RD MODE

Fig. 1 - Flexural vibrations of a propped cantilever.

it may be eliminated from the equations to express the amplitude at
specified points on the beam in terms of the energy content. Similarly,
this amplitude constant may be eliminated from expressions for the
force acting on the prop and for the longitudinal displacement there to
give expressions for these quantities in terms of the energy content.

III. FREQUENCY RATIOS

The frequencies of the first five propped modes are shown in Fig. 2.
These frequencies are given as multiples of fo , the frequency of the same

beam as a free cantilever, and are shown plotted against the prop
location as measured by V /L.

The reference frequency fo is given by equation (12):

fo = 0.323 -V (s/ ?I?) ,
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where s is the static stiffness of the beam and m is its actual mass.
Equivalent expressions are the following:

For a circular section: fo
0.1416d

- L2

0.16361For a rectangular section: fo
L2

where d is the diameter of the circular section, t the thickness of the
rectangular section, L is the length, and VE/p is the velocity of sound
in the material.

The frequencies given by these relations apply to springs of uniform
cross-section. The added mass of the contact in relay springs reduces
the frequency (except when propped at the contact). An approximate
correction for the effect of the contact may be made by determining
the effective mass m' of the spring for the mode in question by the pro-
cedure given in Section V. Then if m" is the mass of the contact, the
corrected frequency is the product of VW/ (m' m") and the frequency
read from Fig. 2.

IV. LOCATIONS OF NODES AND LOOPS

A node is a point of zero displacement (other than the prop location),
while a loop is a point of maximum displacement. As illustrated in Fig.
1, the number of loops is the same as the order of the mode, while the
number of nodes is one less than the order of the mode. Expressions
for determining the locations of the nodes and loops are given in the
Appendix.

Fig. 3 gives the locations of the nodes of the second and third modes.

V. RELATIONS OF AMPLITUDES TO ENERGY CONTENT

For any particular mode, the amplitude at any specified point on the
spring is determined by the energy content T. Thus an estimate of T
may be used to estimate the amplitude at some specified point, or the
observed amplitude may be used to determine the energy content.

Fig. 4 gives the relation between the energy content T and the ampli-
tude XL of the free end of the spring, expressed as values of the ratio
inw2xL 2 i., where w/(27) is the frequency and m is the total mass of
the spring. Even when a correction is made for contact mass in deter-
mining the frequency, mw2 should be taken as the product of the mass
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of the spring alone and the uncorrected frequency, without allowance
for contact mass.

The effective mass m' of the spring, in terms of end motion, is the
kinetic energy T divided by half the square of the end velocity coXL
Thus the ratio m'/m is twice the reciprocal of mw2XL2/T, given in Fig.
4, and values read from this figure may be used to evaluate m'.

These curves may be used to determine the energy content from
observations of the end amplitude. When the prop is close to the free
end, the end amplitude is smaller than that at or near the loops. When
two or more modes are present, it is convenient to measure the amplitude
at the node of one of the modes present. Values have been determined,
therefore, of the ratios mco12X12/T, mo.12X13/T, mw22X23/T, and mco32X32/71,
which are given in Fig. 5. As shown in Fig. 1, X12 and X32 are the ampli-
tudes of the first and third modes respectively at the node (x2') of the
second mode, while X13 and X23 are the amplitudes of the first and second
modes respectively at the rear node (x311) of the third mode. The loca-
tions of these nodes (x2 and x31') are given in Fig. 3.

When two or more modes are present and it is desired to determine
the energy contents of the separate modes, the separate amplitudes must
first be determined. This requires measuring the displacements at succes-
sive time intervals and using these successive displacements in a set of
equations which can be solved for the amplitudes. If it can be assumed,
for example, that only the first three modes are present, then the dis-
placement X at a node (such as x311) of the third mode is the sum of the
first two modes, and is given by:

X = X13 sin (wit + + X23 sin (w21 402),

where 91 and 92 are the (unknown) phase angles of the two modes with
respect to an arbitrary choice of the time origin. Let X1 be the observed
value of X at this selected time origin, and let X2 , X3 and X4 be the ob-
served values of X at the times at which wit is equal to 7/2, r, and 37r/2,
respectively. On substituting these corresponding values of X and t in
the preceding equation, there are obtained four equations in the four
unknowns: X13 sin 91 , X13 cos coi , X23 sin 92 , and X23 cos (P2 . These four
unknowns may be evaluated from the determinant D given by:

D=
o 1 0 1

1 0 sin al cos ai
0 -1 sin a2 cos a2

-1 0 sin a3 cos a3
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where:
a2

12 7 = f2 7 03
1.2 3 ral= - - , - , -  - .fi 2 2

The ratio f2/fi can be read from Fig. 2.
The same procedure may be employed to determine the values of

X12 and X32 from observations of the deflections at the node x2' of the
second mode. (The same equations apply in this case, except that f2/fi
in the determinant terms is replaced by f3/fi .) A check on the accuracy
of the computations (or of the assumption that only the first three
modes are present) is given by comparing the values for the energy
content of the first mode obtained (by means of Fig. 5) from the values
found for X12 and X13 : these values of T should be the same.

VI. FORCE AT PROP

A prop, or point of simple support, is taken as restraining the beam
from deflection, without the application of any moment (or clamping
action). Aside from the minor variation in the instantaneous point of
support resulting from the finite dimensions of supporting surfaces,
this condition is satisfied by the support actually provided when a
spring is tensioned against a stud or contact. In general, vibration
results in a force modulation F' sin wt corresponding to each mode
present, where w/(2r) is the frequency of that mode and F' is propor-
tional to the square root of its energy content. As the sense of this force
modulation varies with the phase of the mode, it alternately increases
or decreases the total tension against the prop, which includes the static
tension and the total force modulation of all modes present. The propped
mode equations only apply rigorously when this total tension has the
same sense as the static tension, as otherwise the prop is no longer
effective and the spring moves away from it. (Practically, the effect of
such separation may be ignored if it occurs only over a short interval of
time.)

This force modulation is related to contact chatter, contact noise,
and wear. When the spring is propped at the contact, an open results
whenever the total tension becomes zero (or small enough to produce
high contact resistance). Similarly, contact resistance variations re-
sulting from force variations produce noise. Wear, whether at a contact
or other support, such as a card, depends upon both the longitudinal
motion and upon the normal force, or total tension.

If the energy content of a mode is estimated, or determined from
amplitude observations, the amplitude of the force modulation for the
first three modes may be determined from Fig. 6. This gives values of
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F'2/(sT), where T is the energy content of the mode in question and s
is the static stiffness of the spring. The latter quantity may be measured
directly, or computed as 3EI/12, where E is Young's modulus for the
spring material and I is the moment of inertia of its cross-section.

It will be seen from Fig. 6 that F'2/sT varies greatly in magnitude
with the prop location. Except for the fundamental, all modes have
prop locations for which F' is zero. These correspond to the nodes of
corresponding modes of a free (unpropped) cantilever, in which the
spring vibrates without deflection at the prop without requiring any
restraint, and hence without force modulation.

In general, and in particular for an end prop, as with a closed contact,
F'2/sT increases with the order of the mode. Hence a given energy
content produces a greater force modulation, and is therefore more
likely to produce chatter, the higher the order of the mode. (The open
intervals, on the other hand, are necessarily shorter with the higher
modes, because of the higher frequencies.) In relay spring vibration,
the energy content of the fundamental is usually larger than that of the
other modes, so that chatter commonly occurs at intervals equal to the
period of the fundamental, but each interval may comprise a number
of brief opens, corresponding to the shorter intervals in which higher
modes are in phase with the fundamental. The fine chatter immediately
following contact impact, however, corresponds wholly to higher modes,
occurring at a time when the sense of the fundamental force modulation
is the same as that of the static force.

VII. LONGITUDINAL COMPONENT OF VIBRATORY MOTION

In vibration, the deflected position of the spring defines a path from
the clamp to the prop point which is necessarily longer than the distance
between these points measured along the rest position of the spring. The
difference between these two lengths represents a longitudinal compo-
nent of the motion at the prop. This may be termed the vibratory slide,
as distinguished from the slide resulting, for example, from motion of
the prop point in actuation. The amplitude of this motion is of interest
in connection with wear, particularly the wear of a card serving as a
prop. The vibration characteristics affecting the wear are the amplitude
of this vibratory slide, and the normal force on the prop, which varies
with the force modulation discussed in the preceding section.

The longitudinal displacement is zero for the rest position of the spring
and attains full amplitude, or maximum displacement, for full amplitude
of the normal deflection in either sense. The longitudinal motion there-
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fore has twice the frequency of the flexural vibration producing it. As
shown in the Appendix, the longitudinal motion is harmonic, and as
such has an amplitude Z/2 about a displacement Z/2 from the rest
position, where Z is the full excursion, or double amplitude.

When a single mode is present alone, the longitudinal motion has
only one component, with a frequency twice that of the mode producing
it. Values of the ratio mw2L'Z/T have been determined for the first five
modes, and are given in Fig. 7. It will be seen that the values of this
ratio increase with the order of the mode. To obtain comparable values
of Z for the same energy content T, however, these values of mcd2L'Z/T
must be divided by (f/fi)2, and when this is done it is found that the
longitudinal displacement for the same energy content decreases with
the order of the mode.

If two or more modes are present together, the longitudinal motion
includes the motion that either would produce separately, and additional
motion at frequencies, as shown in the Appendix, equal to the sums and
differences of the frequencies of the modes present. Expressions for the
amplitudes of the additional motions are included in the Appendix,
and these were evaluated for the case where the first and second modes
only are present. The additional displacement was found to be only
five per cent of that produced by the first mode alone (for equal energy
contents of the two modes). Thus the longitudinal motion when two or
more modes are present differs little from the sum of the motions that
each would produce separately for the same energy content.

For a given total energy content, therefore, the longitudinal amplitude
is a maximum when only the fundamental mode is present. This, how-
ever, does not suffice to show that the wear is a maximum if all the
energy is in the fundamental, rather than distributed among several
modes. The wear also varies with the normal force, and it was shown
in the preceding section that the force modulation for a given energy
content is greater the higher the mode. It would therefore be necessary
to know the relation of wear to both longitudinal motion and normal
force to determine how the wear varies with the distribution of energy
among the possible modes.

VIII. CONTACT WIPE

There is another type of longitudinal motion that occurs at a closed
contact (end propped spring) because the contact surface is offset
from the center line of the spring by a distance L". This results in a
longitudinal motion z' = Z' sin cot at the contact surface, where Z' =
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L"(dX/dx) L . This quantity can be evaluated from the table of the ratio
mw2L2(dX/dx)L2/T given Section A.10 of the Appendix.

IX. DISCUSSION

The material contained in this paper has been prepared for reference
purposes and for use in analytical or experimental studies, primarily
those relating to contact springs (although it is of course applicable to
any use of propped cantilever beams). Few conclusions of engineering
interest may be drawn directly from this material; such value as it has
must appear in its application. The possible use of the material may he

indicated here by a brief discussion of its application to relay spring
vibration.

Relay operation results in spring vibration, and such vibration may
result in contact chatter and also in wear, particularly of such actuating
members as studs or cards. The vibration amplitudes and frequencies
(at least of the lower modes) are readily observed and measured, for
example by the rapid record shadowgraph.2 To reduce chatter and
wear, information is required as to (a) the relations between the vibra-
tion characteristics and the relay design and conditions of actuation,
and (b) the relations between chatter and wear and the vibration
characteristics.

Such information may be obtained either by analysis or by direct
experiment, but in either case the vibration characteristics are involved.
In studying the excitation problem analytically, the amplitudes and
frequencies must be determined from energy estimates, while an experi-
mental study requires that the energy he evaluated from observed
amplitudes.

The incidence of chatter can be determined directly from knowledge
of the vibration, provided the force modulation is computed from the
observed amplitudes by the relations given here. A similar analysis of
wear would require knowledge of the dependence of wear (for particular
materials) on both normal force and longitudinal displacement. Infor-
mation as to these relations is incomplete, but if available their applica-
tion would require the determination from the observed vibration of
the resulting normal force variation and longitudinal displacement by
means of the relations given here.

Because of the relatively large amplitudes associated with the funda-
mental mode, it is the most conspicuous feature of relay spring vibration.
The relation given above between the normal force and the energy
content shows that the force modulation for a given energy increases
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with the order of the mode, indicating the considerable effect on chatter
that may result from the presence of higher modes. The effect of the
higher modes on wear is less well understood. The relations given here
show that the diversion of energy from lower to higher modes increases
the force modulation, but decreases the longitudinal displacement.

APPENDIX

Derivation of Equations

A.1 Equations of Flexural Vibration

As shown in such texts as Ref. 3, bending of a beam may be described
in terms of the deflection y at a point located at a distance x, measured
along the length of the beam from a clamp or other point of reference.
Then dy/dx is the slope of the deflection curve, and, for the small
deflections assumed in the simple theory of bending, the curvature of
the neutral axis is given by d2y/dx2. In this simple theory, the moment
M at the point x is given by:

M = EI(d2y/dx2), (1)

where E is Young's modulus and I is the moment of inertia of the
beam's cross-section. The shearing force F is equal to dM/dx, and is
therefore given by:

F = EI(4/dx3). (2)

In motion, the inertia reaction of a differential element of length
must equal the difference between the shearing forces at the ends of
the element. Hence:

02y EI a4y
ate pa ax4

where p is the density of the beam and a is the area of its cross-section.
Equation (3) is the general differential equation for flexural vibrations
of beams of uniform section, assuming the simple theory of bending to
apply. The general form of solution is given by:

y = X sin (cot k), (4)

where X is a function of x only, the solution to the equation d4X/dx4 =
c4X, given by

X = A (sin cx B cos cx C sinh cx D cosh cx),

(3)

(5)
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in which c is given by:
c4 co2octi/EL (6)

A.2 Modes of a Propped Cantilever

For a propped cantilever, x may be measured from the clamped end,
as indicated in Fig. 1. Let L be the length of the beam, and L' the value
of x for the prop. Subject to continuity, different forms of (5) apply at
either side of the prop: let these be X1 for x < L', and X2 for x > L',
and write (5) as:

Xi = A, (sin cx + B1 cos cx C1 sinh cx D1 cosh cx), (5a)

X2 = A2 (sin c(x - L') + B2 cos c(x L') + C2 sinh c(x - L')

+ D2 cosh c(x - L')). (5b)

Writing X', X", X'" for the successive derivatives of X with respect to
cx, the boundary conditions applying are as follows:

For .r = 0, X1 = Xi' = 0,

For x = L', X1 = X, = 0, X1' = X2', = X2n,

For x = L, X2" = X2"' = 0.

Writing a for cL', and b for c(L - L'), substitution of the expressions
for XI and X. in the boundary conditions (7) gives the frequency equa-

tion:

cos a sinh a - sin a  cosh a cos b  sinh b - sin b  cosh b
1 - cos a cosh a 1 + cos bcosh b

and the following expressions for the coefficients:

Ci = -1,
sin a - sinh a

B1 = Di = - cos a - cosh a '

C2 -
1 + cos b  cosh b - sin b  sinh b

+ cos b  cosh b + sin b  sinh b '

sin b  cosh b - cos b  sinh b
1 + cos bcosh b + sin b  sinh b '

Al cos a - cosh a 1 cos b  cosh b

B2 = D2 -

A2 1 - cos a  cosh a 1 + cos b  cosh b + sin b  sinh

(7)

(8)

(9)
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The ratio b/a (= L/L' - 1) is determined by the prop location.
Then the values of a which satisfy (8) determine values of c (= a/L'),
which correspond to values of the frequency co/(27) given by (6). The
successive frequencies thus determined are those of successive modes of
vibration. Substitution in (9) of the value of a for any particular mode
determines the coefficients of the expression for the corresponding
deflection curve. The one remaining coefficient, A1 or A2 measures the
amplitude.

A.3 The Frequency Equation

As the mass m of the beam is equal to paL, (6) may be written in
the form:

0,2 = (s/3m)(cL)4, (10)

where s is the static stiffness of the beam as a free cantilever, or 3E///3 .

As a = di, the values of a satisfying (8) for a given prop location, or
value of L' /L, determine corresponding values of cL, and hence corre-
sponding values of the frequency co/(27).

The special case in which L' = 0, or a = 0, b = cL, is that of a simple
(unpropped) cantilever, and (8) then reduces to:

1 -I- cos b  cosh b = 0. (11)

The first three roots of this equation give values of b2, or (cL)2, of
3 52, 22.0 and 61.8. For the higher roots, a good approximation to b
is given by 7(n - i), where n is an integer. From (10), the frequency
.1.0 of the fundamental cantilever mode is given by:

fo = 0.323 V(s/m),

and the frequency of any other mode is given in terms of by :

= (cL)2/3.52
fo

For various values of L'/L, (8) has been solved numerically to
determine the values of a and thus of cL for the first five modes. By
means of (13), the resulting values of flfo have been determined, and
are plotted in Fig. 2.

Another special case of interest is that of an end prop, for which L' =
L, or a = cL, b = 0. In this case, (8) reduces to:

tan a = tanh a. (14)
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The values of a (or cL) satisfying this equation are given approxi-
mately by ,r (n ), where n is an integer. The value of (cL)2 for the
fundamental end propped mode is 15.50, giving a frequency 4.40 times
fo , the frequency of the fundamental cantilever mode.

A.4 Nodes and Loops of Deflection Curves

On substituting in (5) the expressions for the coefficients for X1
given by (9), the deflection curve for x < L' is given by:

X1/A1 = [fi(a) - fi(u)] (cosh u - cos u), (15)

where u = cx, and fi(u) is given by:

sin u - sinh u (16)fi(u) - cos u - cosh u 

Thus the nodes (points of zero deflection) lying between the clamp
and the prop (x < L') occur at those values of u for which f1(u) = f1(a).
These values of u may thus be determined for any mode and prop
location from (16) and the corresponding value of a. As u/a = x/L',
there may thus be determined the values of the node locations s' /L
lying between the clamp and prop. The locations of the nodes for the
second and third modes lying in this region are plotted against L' /L in

Fig. 3.
The loops (points of maximum deflection) of the deflection curve

occur at those values of u for which dX/du = 0. By differentiation of
(15), it is found that these values of u for x < L' are those for which

f2(u) = f1(a), where f2(u) is given by:

cosh u - cos u
12(0 (17)

sinh u + sin u 

For any mode and prop location and the corresponding value of a
there can be determined those values of u for which f2(u) = fi(a).
From these can be determined the corresponding loop locations x/L
lying between the clamp and plot.

Similarly, from (5) and the coefficients of X2 given by (9), the node
locations lying beyond the prop, x > L', are given by:

0 = B3 sin (u - a) + B4 sinh (u -
- B5 [cos (u - a) - cosh (u - a)],

where:



PROPPED CANTILEVER 629

B3 = 1 + cos b cosh b + sin b sinh b,

B4 = 1 + cos b cosh b - sin b sinh b,

B5 = sin b cosh b - cos b sinh b.

The node locations in Fig. 3 lying beyond the prop have been deter-
mined from these equations.

Similarly, the loop locations lying beyond the prop are given by:

0 = B3 cos - a) + B4 cosh (u - a) -I- B5 [sin (u - a) + sinh (n - a)1.

A.5 Free -End Deflection

On substituting in (5) the expressions for the coefficients given by
(9), it is found that the free -end deflection XL , the value of X2 for
x = L, is given by:

X L 2(sin b sinh b)

or by:

A2 1 + cos b  cosh b + sin bsinh b '

XL 2(sha b sinh b) (1 - cos a  cosh a)
A1 (1 + cos b  cosh b) (cos a - cosh a)

(18)

(19)

A.6 Energy Content

The energy content of a vibrating beam is the integral over the length
of paii2  dx/2, where or dy/dt, is the maximum velocity (occurring at
zero deflection, when all the energy is kinetic). Then, from (4), the
energy content T is given by:

2T = w22pa X2  d.r.
0

For the propped beam, the integral

is given by:

iL
JX2 dx

L

J
X12  d x f X22  dx.

o L

As shown in Ref. 3 these two component integrals are given by:

(20)
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4c

fL' b'
Xi2  dX = [3X0C1ui Xal"

cx(X12 - X1"2)]
(21)

4c X22.dx = [3
L

X2X21" - 2'.X2//

c(x - L')(X22 - 2X2iX2''' + X2112)].

On substituting the boundary conditions given by (7), the expression
for the energy content reduces to:

2

T = 8Pa [(1. - L')XL2 L'(X Liff2 - 2X L,'X L,'")], (22)

where XL/, Xv" and XL,"' are the first three derivatives of X1 with
respect to cx at x = L', and XL is, as before, the value of X2 at x = L.
Expressions for the derivatives can be obtained by differentiation of
(15), from which it is found that the second term in the bracket of (22)
is equal to )a4L'ill2f12(,.Then (22) reduces to:

1 _ L' Li2 4.2/H,
mw2X2 8 L r `i VT,,)

where XL/Al is given by (19), and f1(a) by (16). Values of mw2XL2/T

for the first five modes have been computed from (23) and are shown
plotted against L' /L in Fig. 4.

As the effective mass m' in terms of motion at the free end is defined
as the kinetic energy T divided by half the square of the end velocity,
or (0.)XL)2/2, the quantity given by (23) is one half the ratio of the
effective mass of the beam to its actual mass, or m'/(2m).

(23)

A.7 Energy Content in Terms of Amplitude at Nodes of Other Modes

Let X12 be the deflection in the first mode at x = x2, the location of
the node of the second mode. Using the value of a applying to the first
mode (for a particular prop location L'/L), and taking u = axa L',
(15) may be used to determine X12/211 . From this and the value of
Ti(mw2Al2) given by (23) there may be determined the value of
mw2X122/T. Such values have been determined for various values of
L'/L, and are plotted against L'/L in Fig. 5.

The same procedure has been used to determine the values of
mw2X132/T,

ni2x032/T and mw2X322/T given in Fig. 5. X32 is the ampli-
tude of the third mode at x2', while X13 and X23 are the amplitudes of
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the first and second modes respectively at x31', the first (rear) node of
the third mode.

A.8 Force Modulation at the Prop

The shearing force F on a section of the beam is given by (2), and its
maximum value, or force amplitude, is therefore given by c3EI  X"'
(where, as before, X"' = d3X/du3). The discontinuity at the prop
results in a difference between X1"' and X2"' corresponding to a force
F' sin (wt k) acting on the prop, where F' is given by:

F' = c3EI(X1m - X2'")(x=v) (24)

The force F' sin (wt k) is, of course, additive to any static tension
acting at the prop.

Expressions for X1"' and X21" at x = L' may be obtained by dif-
ferentiation of (5) and substitution of the expressions for the coefficients
given by (9), giving:

-f3(b)L - 2 f3(a)
A1c3EI Al f2(a)

where f3(u) is given by:

sin usinh u
.f3(1/)- sin u sinh u

(25)

(26)

The quantity given by the left side of (25) may he squared and
simplified as follows:

rF' L3F'2 1 3F'2

LA1c3EI Al2EI (cL) 2 EIc4L sAl2(cL) 2W2M

where, from (6), w2pa is substituted for c4EI, m is substituted for paL,
and s for 3EI/L3. As before, m is the mass of the spring and s is its
stiffness as a free cantilever.

It follows that F'2/(sT) is given by:
F,2 (eL) 2 / F' mw2A

12

sT 3 2611c3EI) T

Using (23) and (25) to evaluate the second and third terms on the
right-hand side of (27), the latter equation has been used to determine
values of F'2/(sT) for the first three modes for various prop locations
(L' /L). The results are plotted in Fig. 6.

(27)
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A.9 Longitudinal Component of Motion at the Prop

The longitudinal component of the motion at the prop is the dis-
placement z in the direction of the spring length. This is equal to the
difference between the distance from the clamp to the prop measured
along the displacement curve and that measured along the rest position.
As the latter distance is L', z is given by:

z = -f /1 ± c:42 .dx.

Neglecting quantities of smaller order, this reduces to:

Z = 1 f (4)2  dx.
2 0 dx

(28)

If only one mode of vibration is present, y = X  sin (wt), where
co/(27r) is the frequency of this mode. Substitution in (28) gives the
following expression for z:

where Z is given by:

Z

z = Z sin2 (wt), (29)

f (C/X) 2

2 Jo \ ds
(30)

Equation (29) shows that the maximum longitudinal displacement is Z.
As sin2 (wt) = (1 - cos (2(00)/2, the longitudinal motion is an harmonic
motion of frequency 2w/(27r) and amplitude Z/2 about a displacement
Z/2 from the rest position. In other words, Z is the double amplitude,
or full range of the longitudinal motion.

If two modes of vibration of frequencies co./ (27r) and w/ (27r) are
present together, the normal displacement y is given by:

y = X. sin (wort) X Sin (cunt).

In this case, substitution in (28) shows that the longitudinal displace-
ment z is given by:

z = Z. sine (co,t) Z7, sin2 (cont) + Z.7, sin (co.t)  sin (wt), (31)

where Z. and Z are given by (29) for X = X, and X = X , respec-
tively, and Zmn is given by:

f (dXm) (dX,i)
znin - o (dx) (dx) `4'2°.

Equation (31) shows that in this case the longitudinal displacement is

(32)



PROPPED CANTILEVER 633

the sum of (i) the displacements that would be produced by each mode
if it were present alone and (ii) an additional displacement having a
maximum value of Z, . From the relation:

sin (con,t)  sin (cont) = [cos (w. - (.0)t + cos (co. (0)t1,

it follows that this additional displacement corresponds to the sum of
two motions, both of amplitude Z,../2, having frequencies equal to
the sum and difference of the frequencies of the two modes present.

In the same way, it can be shown that if there are more than two
modes present, the displacement will include the displacements produced
by the separate modes, and additional displacements having maximum
values Zn,. corresponding to each pair of modes present.

To evaluate the maximum longitudinal displacements, it is necessary
to obtain expressions for Z from (30) and Zmn from (32). This may be
done by a procedure paralleling that used by Timoshenko (loc. cit.) to
derive (21). As c4x = d4X/dx4 for any mode, cni4dX.jcix = d5X./c/x5
and c.4dX/dx = d5X/dx5. By cross multiplication and subtraction
there is obtained:

XX(en.' -cm4)f d-dxn, d ,
o

fL7dX, d5X dXn d5X,n)
dx (33)

dx dx5 dx dx5
1. 

=o
dX,d4X

[
dXn d4X d2X d2X

n

d2Xn d2X
dx dx4 dx dx4 dx2 dx" dx2 dx" '

where the second equation is obtained by integration by parts.
In this equation, X. and X are the expressions for the deflection

curve X1 for the portion of the beam between the clamp and the prop
location, corresponding to the modes of frequencies co,,,/(27) and
con/ (2r). Equation (33) may be used to provide an expression for
Z, by substituting the boundary conditions (7), which eliminate the
first two terms, and by using the derivatives of (15) to express the
remaining terms. There is thus obtained:

L'Zmn 4comcon {an rf4(a.)f3(an)
A.A. - (0.2 L

an, rf4r1:aann;f)31(am) - Ma)1}, (34)
L f2(am)

where fl(u), f2(u) and f3(u) are given by (16), (17), and (26), and
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f4(u) is given by:

Mu) - sin ucosh u - cos usinh u
cos u - cosh u

(:35)

An expression for Z, the integral of (30), may be obtained from (33)
by considering X as a function of c and letting c - e, equal be, where

be is a small quantity. Then c4 - c,4 = 4c3.8c, neglecting quantities
of smaller order, and similarly, X = X, (dX,/de)  be. On making
these substitutions in (33) and neglecting quantities of higher order of
be than the first, this equation reduces to:

f(dX)2 dx = 43eXX' c2xX12 - 2c2xXX"
\dx

- cX"X"' c2xX"'2] ,

where the subscripts n and m have been dropped because, for be negli-

gible, c and X apply to a single mode.
As before, substitution in this of the boundary conditions (7), and

of the derivatives of (15), gives finally:

L'Z = a ±a [ f3(a) f4(a) - Mad (36)
Al2 2 12(a)

,

where Z is the (double) amplitude of the longitudinal motion for a
single mode. By evaluating the right-hand side of (36) for particular
modes and values of L'/L, and dividing these by corresponding
values of 71/(m2,412) given by (23), values are obtained of the ratio
mw2L/Z/T. Values of this ratio, determined in this way, are shown
plotted in Fig. 7 against L'/L for the first five modes.

The ratios given in Fig. 7 may be used to determine the maximum
longitudinal displacement for a given energy content when only one
mode is present. When two or more modes are present, the maximum
displacement is the sum of the displacements for the individual modes
and the additional term or terms Z, . The magnitudes of these ad-
ditional terms depend upon the division of the kinetic energy among
the modes involved. For the case of two modes present together, the
one additional term present, is, from (34), proportional to A,A , and
therefore to the square root of T.T , the corresponding energies, whose

sum T, T equals the total kinetic energy T. It is easily shown that
for a given value of T, T.T , and therefore A,A , is a maximum for
T, = T = T/2. In this case,

mco,2A.A Wm 4/(mc,,,2A2 nuo2A2

T 2co T T



PROPPED CANTILEVER 635

By evaluating the right-hand side of this equation [by means of (23)1,
and multiplying the result into the corresponding value of the right-
hand side of (34), values may be obtained of the ratio mco,2L'Zmn/T.
This was done for the case where m = 1 and n = 2, where the first
two modes are present. The resulting values of mco12L'ZI2/T are directly
comparable with those of mco12L'Z/T for the first mode alone, shown
in Fig. 7. The values for mco12L'ZI2/T were all less than 3 as compared
with values for mco12L1Z/T of about 50. It follows that the additional
displacement resulting from the cross product term is minor.

A.10 Angular End Displacement

To estimate contact wipe for a spring propped at the contact, there
is required an expression for the angular displacement at the prop,
when this is at the end of the spring. This is given by:

((IX
Vlx) L cj

As in this case, L' = L, and a = cL, this equation can, by differentia-
tion of (15), be expressed as follows:

L (dX 2a(1 - cos a  cosh a) (37)A1\dx) L cos a- cosh a
Values of the right-hand side of this expression have been determined

for the first five modes. By squaring these, and dividing them by the
corresponding values of T/(mw2Al2), there have been obtained the
following values of mw2L2(dX/dx)L2/T.

mw2L2 idx\ 2

Mode T kdx
1 16.416
2 49.700
3 103.68
4 178.60
5 271.44

A.11 Use of Equations

Many of the relations given here have been expressed in numerical
form, and are shown in the figures. If additional relations are required,
they may be computed from the equations given in this Appendix (or
from expressions derived from them).

If such computation is required, it should be noted that all relations
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involved in flexural vibrations of the type considered here can be ex-
pressed as dimensionless ratios which are, directly or indirectly, de-
pendent on the roots of the frequency equation, and hence on the
appropriate values of a, a pure number, equal to cL'. The similar
number b, appearing in expressions relating to the part of the beam
between the prop and the free end, is equal to c(L - L'), and there -

f ore equals a(L/L' - 1). The frequency, co/ (27), is related to a by
(6) (of which (10) is an alternate form), and the frequency ratios are
therefore functions of a only. Similarly, such ratios as F7(371),
mc2X2/T, and mc2L'Z/T discussed above are all functions of a only.

Values of a have been determined for the first five modes for values
of L'/L in the range from 0.5 to 1.0. To use the equations in this range
and for these modes, these values of a may be easily obtained from
Fig. 2, as the values of f/fo given there are [from (13)] equal to (cL)2/3.52,
so they may be used to evaluate cL, and hence a( = cL').

For values of L'/L outside this range, or for modes of higher order,
values of a must be determined by solution of (8) for the case in question.
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Numerical Computation of Phase from
Amplitude at Optical Frequencies

By D. E. THOMAS

(Manuscript received January 31, 1963)

This paper presents phase tables for use in determining phase from
amplitude or vice versa at optical and higher frequencies. The new tables,
combined with tables previously published by the author, are believed to
make possible the determination of phase from amplitude or vice versa of
any minimum phase function occurring in any area of the physical sciences,
and at any place in the frequency spectrum. The phase is determined by a
summation process based on Bode's straight-line approximation method.
The paper gives a brief historical background of the method, discusses the
application of the numerical phase summation technique to optical and
higher frequencies, describes the derivation of new tabulations useful at
these frequencies, and gives quantitative examples of their use. A table
expanding the existing tables of phase of a semi -infinite unit slope near
f/fo equal to one is given. Additional tables of phase of a unit line segment
and a new straight-line element, the unit wedge, are given. Finally, there is
a brief discussion of the potential of the method in solving physical and
engineering problems.

I. INTRODUCTION

The fact that nature ties the real and imaginary components of a
complex variable function of frequency inextricably together, when the
variable represents some physically real quantity or phenomena, has
been recognized to varying degrees for nearly half a century. For
example, Kramersi in 1927 noted the general relations between the
refractive index and absorption resulting from the simple relationships
to the real and imaginary parts of a complex dielectric constant. Because
one of the relations was contained in an earlier paper of Kronig's,2 this
relationship is commonly known in the physical science world as the
Kramers-Kronig relation. The awareness of the relationship between

637
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the real and imaginary parts of the impedance of an electrical network
emerged about the same time as the Kramers-Kronig work.3,4

The usefulness of a quantitative solution to the general real and
imaginary component relationship was soon recognized. Bode has pro-
vided us with a key to the solution of this problem (Ref. 5, Ch. XIV).
He gives general integral equations relating the two components, but
points out what many have since discovered, namely, that the general
integrals can be readily evaluated for only the simplest of functions.
Bode, however, presents a practical numerical integration technique for
summing the imaginary component associated with a multiple straight-
line approximation to the real component as a function of frequency
(Ref. 5, Ch. XV). The accuracy of this summation is limited only by
the number of straight lines used to approximate the true real compo-
nent and the accuracy to which the imaginary contribution of each of
the straight line segments to the total imaginary component is known.
The author has published tables for accomplishing this summation at
telecommunication and radio frequencies.° These tables made possible
the computation of the nonlinear phase from which the delay distortion
(dispersion) to be expected in a projected transatlantic repeatered sub-
marine telephone cable system was determined and the delay distortion
correction required to make existing coaxial cable systems suitable for
the transmission of television programs. Van Vleck utilized the Kramers-
Kronig relation while studying microwave propagation during World
War II to establish that a significant difference in the refractive index of
the atmosphere between wavelengths of 3 cm and 1 cm would lead to
an unreasonably high absorption, in contradiction with experiment?

The invention of the optical maser and the availability of coherent
light directed attention to the possibility of transmission of intelligence
beyond the microwave frequencies to the optical frequencies. The
realization of the potential usefulness of the numerical imaginary compo-
nent summation at optical frequencies resulted from a discussion initiated
by a colleague, W. L. Faust. This discussion concerned a proposal by
Miller and Lopez8 that the difference in determination of the velocity
of light obtained from measurements at optical frequencies and at
microwave frequencies could be explained by the difference in delay time
experienced by a wave reflected from a high -quality reflecting surface at
optical and microwave frequencies. This is a recurrence at optical fre-
quencies of the delay distortion problem which the earlier phase tables
were computed to solve at telecommunication frequencies. These tables
were, therefore, extended to make possible similar computations at op-
tical frequencies.



PHASE COMPUTATION AT OPTICAL FREQUENCIES 639

A use for this extension soon arose. Bennett,' in his analysis of hole
burning effects in a He-Ne optical maser, needed the phase associated
with an emission line, Gaussian in shape, but truncated due to an in-
crease in RIB' power to the maser. The extended tables provided the
answer to Bennett's problem and the motivation for writing this paper.

This paper will have two objectives. First, it will extend the nu-
merical computation of the imaginary part from the real part or vice
versa of a physical complex variable as a function of frequency from
telecommunication and radio frequencies to optical and higher fre-
quencies. Secondly, it will describe a mathematical tool which has
proved extremely useful in the telecommunications field and which, it
is believed, can be equally useful in the physical sciences.

H. THE NUMERICAL PHASE COMPUTATION TECHNIQUE

In all the discussion to follow, the five statements listed below will
apply.

(a) Loss, attenuation, gain, or amplitude, all designated as A, and
phase, designated as B, will be used interchangeably with real and imag-
inary parts, respectively. This is because attenuation in nepers, which is
equal to log, of the magnitude of a complex voltage or current loss ratio,
or loge of the amplitude of a complex variable expressed in polar form,
and their associated polar angles in radians are identically and respec-
tively interchangeable with real part and imaginary part of a complex
variable expressed in rectangular coordinates in the numerical computa-
tions to be discussed. In communications problems loss in decibels and
angle in degrees rather than nepers and radians respectively are in
common use. However, if nepers and radians are considered as the basic
units and decibels and degrees as derived units, there will be no difficulty.

(b) Since Bc, the phase at = 2rf is given by Bode (Ref. 5, p. 335)
as

1 dABe = r
log,

7r o au)

Wc

Wc

dw (1)

an amplitude characteristic constant from frequency f = 0 to f = co
contributes nothing to the phase. Therefore, a constant amplitude can
be added or subtracted from any amplitude characteristic without
affecting the associated phase characteristic.

(c) Since frequency, f, appears only as a ratio in (1), all frequencies
can be changed in the same ratio without changing the attenuation -
phase relationship in magnitude or form.
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(d) All frequencies will be considered on a log frequency scale. Linear
frequency scale is permitted in the narrow -band summations only
because log f and f are linearly related over a very narrow band. A
narrow band will be considered one in which the total frequency range
of interest is less than 10-3 times the center frequency. All other bands
will be referred to as broad bands.

(e) As seen from (1) above, the phase is determined from the inte-
grated slope, dA/dw, of the amplitude characteristic, A. The slope of a
given straight line section of a straight-line approximation to an ampli-
tude characteristic will be designated by k, and k will be defined as (A. -
An_1) in nepers divided by log, (f.11.-3) where An and A n_1 are the am-
plitudes at frequencies fn and fn_i respectively on the straight line sec-
tion. A unit slope designated by k = 1 will be one in which there is
a change in A of one neper between two frequencies which are in the
ratio e = 2.7183. When A is expressed in decibels a unit slope is a change
of 6.02 decibels per octave or 20 decibels per decade.

2.1 Phase Summation Using the Semi -infinite Unit Attenuation Slope

The numerical phase computation is based on a straight-line approxi-
mation to the amplitude characteristic, A. A hypothetical attenuation
(real part) characteristic plotted on a log frequency scale along with its
straight-line approximation is shown in Fig. 1(a). In Fig. 1( b) this
straight-line approximation is in turn broken down into the sum of a
series of so-called semi -infinite constant slopes of attenuation. A semi -
infinite slope is an attenuation characteristic which has a constant
magnitude from 0 to some frequency f and a constant slope from f to
f = 00. Thus, in Fig. 1( b ), the first semi -infinite slope, k1 , has the
constant slope k1 extending from .fo to 00 rather than terminating at fl
as in Fig. 1(a). Beginning at fi a semi -infinite slope equal in magnitude
to k1 but opposite in sign adds to the d -k1 slope to produce the straight
line segment of our amplitude approximation extending from fo to
This process is continued until the complete approximation is obtained.
The semi -infinite unit (k = 1) slope of attenuation or real part is the
fundamental element of all the numerical phase summations. The phase
associated with a semi -infinite unit slope is given by Bode (Ref. 5,
pp. 342-43) as

B(x,) = r===e log,r
1 + x I dx

x1 - xl
(2)

=! (re
3 :V:, X,- - ')

25
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Fig. 1 - (a) Straight-line approximation to attenuation. (b) Semi -infinite
slopes which add to produce straight-line approximation.

where B(x,) is the phase in radians at frequency , x = f/fo , xc =
fella , x4, < 1.0, and fo is the frequency at which the unit slope begins.

B(x) has a value of 0 at x, = 0, increases monotonically to 7/4
radian at x, = 1, and to 7r/2 radians at x, = 00 with odd symmetry
about x, = 1 on a log frequency scale. From the odd symmetry of B(xc)
around x, = 1, B(x,') for f; > fo is given by
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= folle') = r/2 - B(sc = xc'). (3)

B(1.,) is the function which was tabulated in the tables of Ref. 6.
The phase associated with a semi -infinite slope of magnitude k is

lc, times B(xc) of (2). To get the total phase associated with the straight-
line approximation and thus with the true amplitude characteristic within
the limits of error of the approximation, it is only necessary to sum
the phase contributions of each of the semi -infinite slopes making up
the straight-line approximation. Thus, the total phase 0(f) at frequency

f is given by

0(f) = 1.1(00 - 0) k2(01 - 02) + - 0) (4)

where 0 is the phase of a semi -infinite unit slope commencing at f ,

(A - A_1) in nepers (An - Ai_,) in decibels
log, (ffin_i) 20 logic (1,' /J (5)

A separate summation must be made for each frequency at which the
total phase is desired.

Note the following:
(a) That, as expected, adding or subtracting a constant amplitude

to the characteristic does not affect the phase summation of (4).
(h) That initial and final amplitudes need not be the same.
(c) The amplitude need not approach a constant at high or low fre-

quencies but may have a constant slope extending tof = 0 or 00 . This is

common in electrical networks. A slope extending to 00 is covered by
B(x,) of (2). The phase of a slope extending to 0 can be read from the
B(se) tables for the constant slope extending to 00 by reading the phase
for f/.fo < 1 from Table IV designated f > fo and the phase for fo/f < 1
from Table III designated f < fo (see Ref. 6, p. 881).

Complete' step-by-step examples of summing phase using (4) and
the tables of phase of a semi -infinite unit attenuation slope are given in

Ref. 6.

2.2 Phase Summation Using the Unit Attenuation Line Segment

When the value of k.,, as given by (5) is substituted in (4), (4) can
be rewritten as

0(f) = E (A - A_,) 0"-1 - On
11=1 loge (f/fn_i)

(6)

where (A -A _1) is the change in amplitude or real part (nepers) on
the straight line segment of the approximation to the amplitude charac-
teristic between f_.1 and f , and (0, - 0 ) /loge (fn/h-i) is the phase
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contribution of a straight line segment of attenuation or real part
having a one-neper change in amplitude between frequencies f,_.1 and
f and a constant amplitude below and above fn-1 and f , respectively.
This line segment is identified in its position by the geometric mean of
f,-1 and , and by a slope parameter, a, defined as the ratio of
this geometric mean frequency to fn -1 .

The "unit line segment" was introduced by Bode (Ref. 5, Ch. XV,
Charts V -IX), who gave graphical plots of the phase associated with
this element as a function of x, = fc/f0 with (a) as a parameter. In a
reasonably precise phase summation over a broad band of frequencies,
using these charts involves a nonlinear interpolation between curves
for different values of a. Therefore, it often proves easier to sum the
phase using (4) and the semi -infinite slope charts or tables.

However, in narrow -band problems at optical frequencies, the unit
line segment is extremely useful in fast and accurate phase summation.
A unit line segment for use with narrow bands is illustrated in Fig. 2.
By virtue of the fact that loge/f 12j = loge (f Afi2)/f = 41.12/A2 when
412 < 10-3.112 , to better than the accuracy to which the amplitude
data is likely to be known, a linear frequency plot of amplitude may be
used.

The phase of the unit line segment of Fig. 2 will be designated as (I)
and will be identified in tabulation by its frequency width AT and the

1 . 0
cr

w

z

w

0

-

k------Aft2
Af Of2 ----2

A = 0
TO f =o

A = 1 0 TO f =co

f f, f12 f2
LINEAR FREQUENCY, MI2 <1(3-3f12, f12 =log

Fig. 2 - Unit attenuation line segment..
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difference, Of 12 between its geometric mean frequency f12 = Vfif2 =
(fl f2)/2 and f.

Using unit line segments having a phase contribution of cI), (6) can
now be written

0(f) = (A1 - A0)Sol. + (A2 - A1) 112 + (A. -A 1,-1)cDen-1)n (7)

where 01,- (n-On is the phase contribution of a unit attenuation line seg-
ment of width Of = fn - f_.1 and a Af12 of (fn_i fn)/2 - f.

1 is evaluated in the next section and tabulated in Table V for fi2 = 106.

f is always positive for a positive slope and increases monotonically
from 0 at f = 0 to a maximum at f = f12 beyond which it decreases
monotonically to 0 at f = 00 . As a function of 1fi2 it has even symmetry
about Afi2 = 0 so that

(1)( Af12) = Is( - Wi2) 

Note the restriction of Fig. 2 and of Table V that f12 = 106. This
restriction applies only if the initial and final values of the amplitude
of the characteristic are not the same. If they are not the same, the
problem must be expanded or contracted about f = 0 to a center
frequency of 106 by multiplying all frequencies by the ratio of 106 to
the center band frequency. If they are the same, then the problem can
be linearly expanded or contracted about its center frequency to best
fit the range of Af12 of Table V, and the phase will expand and contract
to bear the same relationship to the magnitude. Proof that this is per-
missible will be given in Section 3.2. If the initial and final values are
not the same, they can be made the same by truncating the main high -Q
portion of the band from the rest of the band on a constant amplitude
line. The phase of the truncated portion having equal initial and final
amplitudes can then be summed using the permissible linear expansion
or contraction of the band about its center frequency. The residue is
then evaluated using the semi -infinite slope summation if the residue
becomes a broadband problem. If the residue remains a narrow -band
problem, the line segment summation may be used by expanding or
contracting about f = 0 to make the center frequency equal 106. In
reassembling the problem and adding the phase of the two parts, the
inverse frequency transformations must, of course, be made.

An example of phase summation using the unit line segment phase of
Table V in (7) will be given in Section 4.2.

2.3 Phase Summation Using the Unit Wedge of Attenuation

The unit wedge of attenuation is a convenient element for very ac-
curate narrow -band phase summation. Although it has been developed
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primarily for use with an automatic computer, it is equally useful for
rapid but less precise desk computer phase summation.

The summation is limited to characteristics having equal initial and
final amplitudes. If they are not equal they can be made so by the
division of the problem into two problems by constant amplitude
truncation as discussed in Section 2.2.

Since it is assumed that An = Ao , A. and Ao can each be made 0 by
subtracting a constant amplitude Ao from the amplitude characteristic.
Equation (7) can then be written:

0(f) = A1(4%1 - 4)12) A2(4)12 CD23) '  Ari-1 (43(n -2)(n-1) - 4)(n -1)n)

Each of the terms of the above equation is a magnitude A. multiplied
by the phase difference of two unit line segments of the type illustrated
in Fig. 2. The first line segment extends from f = n - 1 to f = n and
the second from the terminal of the first at f = n to f = n 1. If the
widths Af of these two line segments are equal, they produce the "unit
wedge of attenuation," which is the third type of amplitude element
used in the numerical phase summation. In using this element the
straight-line approximation is limited to equal frequency interval seg-
ments. Therefore, the hypothetical problem of Fig. 1 is no longer useful
in the discussion and a new problem shown in Fig. 3 will be used. In
Fig. 3 the amplitude characteristic is plotted on a linear frequency
scale consisting of equally spaced intervals between frequencies which
are designated as either f or n. The straight-line approximation is now
obtained by taking exact values of A at even values of n on the true

f = ODD VALUE OF FREQUENCY
AT WHICH PHASE IS SUMMED

LINE SEGMENT,
Aft2

A

A,
O I 2 3 4 5

An GIVEN FOR fl EVEN

An
0-2 n-1 n(EVEN)

f OR fl SUCCESSIVELY NUMBERED EQUAL INCREMENTS OF FREQUENCY

Fig. 3 - Phase summation using wedge element.
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amplitude characteristic. Since the accuracy of phase summation is
greatest at the midfrequency of the straight line segments approximating
the amplitude characteristic, phase will be summed at odd values of n.
For rapid desk computing using a less accurate approximation, it may
be desirable to take A's which lie off the true curve. This will be covered

in Section 4.3.
The total phase at f associated with the full magnitude characteristic

of Fig. 3 is then given by the sum of the individual phases contributed
by each successive line segment from A4 to A6 , A6 to A8 ,  An -2 to
An . Therefore, from (7)

0(f odd) = (A6 - A4)chf12---5-.r + (A8 - A6)(Dat12-7-i + 

+ (A n-2 -A n-4)Chd i2=(n-3)-f + (An A n-2) (1),A h 2=(n -1)-i

and since the initial value A4 and the final value A are zero

0(f odd) = A6(01360).2=5 --f - + 
An_2(43m,2--3-f - (I)Ah2-n-1-f)

= E A n et if 2=n -(f +1) -(1)4, -(t-1-]) -4-2)
n Oven

(8)

in which the GD's all have a Al of 2.
Each term of (8) represents the phase due to a wedge of attenuation

in the shape of an isosceles triangle having an amplitude A and a base
width of 4 frequency intervals. The first of such amplitude elements in
Fig. 3 is defined by points (A = A4 = 0, f = 4), (A6 , .f = 6), and
(A = 0, f = 8), the second by (A = 0, f = 6), (A8 , f = 8), and
(A = 0, f = 10), etc. These amplitudes add to approximate the true
curve. When the amplitude An is unity, this element is called a unit
wedge of attenuation, and its phase contribution is designated by AP.
4, is identified by a subscript which is equal to 500 + its lower frequency
line segment's Af12 or by 500 + n - (f 1). The 500 is added to
n - (f 1) to avoid negative subscripts in tabulation. Equation (8)
can now be written

where

0(f odd) = E
n even

BOO -En -(r +1) = (tf=2, f 12-11-(f +1) - (13,1f..2. Afi 2.=n -(1+1) +2.

ir is given in Table VI for 500 + n -(f + 1) even from 0 to 1000. In
summing phase using (9) the center of the band of the problem is placed
at n = 500. The band is then linearly expanded or contracted about
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n = 500 to get a maximum number of amplitude evaluations consistent
with the frequency range of the phase summation desired. With V
tabulated for 500 n - (f 1) even from 0 to 1000, the maximum
and minimum permissible values of f and n are related as follows

500 + f 1 > it > f 1 - 500.

Thus, for a low value of nev. = L and a high value of n-even = H, the
phase 0 at f can be summed only for odd values off between f = H - 501
and f = L 499.

The ease and accuracy of automatic computer summation of phase
using the unit wedge tables and (9) will be demonstrated in Section 4.3.
A fast and good phase summation using a less accurate straight-line
approximation and a desk computer will also be illustrated.

2.4 Requirements on the Complex Variable for the Numerical Method to be
Applied

A rigorous discussion of the requirements which must be met by a
complex variable if the phase computed from its amplitude charac-
teristic is to represent its true phase is beyond the scope of this paper
(see Ref. 5, Ch. XIII). Briefly, it is required that the function be an
analytic function of frequency in the right half p (p = iw) plane and
that its real and imaginary components be even and odd functions of
frequency, respectively, on the real frequency axis.

Actually, if there is sufficient information available to rigorously
determine the applicability of the method, the numerical phase sum-
mation technique will usually not be needed. Fortunately, when it is
needed the phase summed by the numerical method almost always
contains the desired information in spite of the fact that a portion of
the phase referred to as nonminimum5 phase may be missed in the
summation. For instance, in a long electrical, optical, acoustical, or
other transmission path, where a long path is defined as one in which
the length is many multiples of the wavelength of the transmitted
signal, there will be an integer multiple of 27 radians which will not be
included in the phase summed by the techniques described. However,
the phase summed will, in general, contain all of the phase nonlinearity,
and in this type of problem the nonlinear phase is usually the phase of
interest. Therefore, delay distortion in television transmission lines was
successfully delay distortion equalized using phase data obtained by
numerical phase summation based on the loss or absorption charac-
teristics of the lines. Also, in Bennett's He-Ne maser problem,9 the
nonlinear phase in the truncated Gaussian line was obtained by nu-
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merical phase summation in spite of the fact that an integer multiple
of 27 radians in the total phase was missed in the numerical summation.

Similar situations exist with regard to nonminimum imaginary part
complex variables where a portion of the imaginary component is
missed in the summation. Here again, however, the minimum possible
imaginary part associated with the real part which is obtained by the
numerical summation, is usually of sufficient interest to make the
summation valuable.

There is one important type of nonminimum phase function for which
the numerical summation may not be useful. A good example of such a
function is an electrical bridge having zero transmission or infinite loss
at a real frequency due to bridge balance. This violates the requirement
that the function be analytic in the right half p plane. In this case,
the phase summed may be the true phase or it may depart radically and
nonlinearly from the true phase over a wide frequency band centered at
the infinite loss frequency (Ref. 6, B.S.T.J., p. 896). By analogy to the
electrical case, the application of the numerical phase summation to
optical or other amplitude characteristics having infinite loss obtained
by interference (as in an interferometer) or multilayer reflection inter-
ference should be approached with caution if not entirely avoided.

2.5 Computation of Amplitude from Phase

So far only the determination of phase from amplitude has been
considered. The same technique and tables can be used for the reverse
computation. However, since a constant amplitude does not change the
phase, the amplitude determined from a given phase characteristic
must contain an additional arbitrary constant. This is taken into
account by considering the attenuation determined as the difference
between the true attenuation and the attenuation at either zero or
infinity.

In the reverse computation the complex variable A -I- iB is replaced
by either iw(A - A. iB) or (A - Ao iB)/iw. The multiplication
by iw or its reciprocal has the effect of interchanging the real and
imaginary components and their even and odd symmetry charac-
teristics. Thus in iw(A - A. iB), the real component becomes -0).8
with even symmetry and the imaginary component becomes ico(A - A.)
with odd symmetry. Similarly in (A - Ao iB)/iw, the real compo-
nent becomes B/w with even symmetry and the imaginary component
becomes -i(A - A0)/co with odd symmetry. The transformed variables
are then in suitable form for determining B from A using the same
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formula and tables and the same techniques as were described for de-
termining A from B. It must be remembered, of course, that the values
of A determined from the summation will include an arbitrary additive
constant (Ref. 5, pp. 320-330).

III. COMPUTATION OF PHASE TABLES

3.1 Semi -Infinite Unit Slope Phase Computation

The original tables of phase of a semi -infinite slope of Ref. 6 are
adequate except for the very steep slopes which may occur at micro-
wave frequencies and frequently occur at optical frequencies. For
instance, in the first optical problem to which they were applied, the
delay distortion or time dispersion at the surface of a mirror,1° the
critical phase values fell within the final 60 of 9,640 tabulated values of
phase in radians falling in the vicinity of x = f/fo = 1.0. Therefore,
the extension of the earlier tables is limited to values of f/fo > 0.9999.
In this region, the best expression for obtaining the phase B is given
by Bode as

where

B(2c) + B(Ye) =
4

- loge x log" ly

1 --, 1 - y,
yc - -1 + x, 1 -I- yc

From (2)

= 2 [1 - ye 1 (1 - Ycy ...1 1= - loge yc (12)B(x,) r 1 + ye 9 1+ yc 7

to better than 2 X 10-H radian for (1 - yc) < 10-4.
Substituting (12) in (11)

B(ye) = ± -1loge
ye

lo
4 ge

as

2(y, - 1)
yc -4 1.0, loge ye -

yc 1

and
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B(`!ic) = 7-r - 2
7

[1 - logoe(1 lic)1
4 1 + yc 1 - J (13)

Equation (13) is good to 3 X 10-13 radian for yc > 0.9999. This equation
was used to compute B(y6) to 12 significant figures for

yc = .99990(.0'1) .99998(.055) .999995(.065)

.999998 ( .062) .9999998 ( .061) 1.0.

These values were then extended by the numerical integration technique
described in Ref. 6 to obtain B(ye) for

yc = .999900(.051) .999980( .055) .9999980(.052)

.9999998 ( .061) 1.0.

These values were then graphically interpolated to obtain 11 significant.
figure values of B(yc) for

yc = .999900 ( .051 ) .999980 ( .061 )

.9999998( .075) 1.0.

These final values were rounded to 9 figures to obtain the values given
in Table III. The odd symmetry of B(xc) about xc = 1.0 was used to
obtain Table IV in accordance with (3).*

The initial 12 -figure computations were good to ±1 in the 12th
figure. The maximum error in numerically integrating and graphically
interpolating to 11 significant figures is estimated to be less than 5
figures in the 11th figure. The nine -figure tables are, therefore, believed
to be subject only to rounding errors in the last figure.

In order to extend the range of use of Tables III and IV of this paper,
values of B(xc) for .r = .9970(.0001) .9999 from the Ref. 6 tables are
included.

3.2 Unit Attenuation Line Segment Phase Computation

Fig. 2 shows a unit attenuation line segment meeting the restrictions
that Ain < 10-3.112 and f12 = 106. The phase associated with this ampli-
tude element will be designated as (I). It is determined by the difference
between the phase of a positive semi -infinite slope beginning at A = 0
at fi and extending to infinity, passing through amplitude A = 1.0 at

* Tables of phase functions are numbered the same as tables previously men-
tioned (Ref. 6). Therefore Tables I and II do not appear in this paper, since angles
are given in radians only. Furthermore, additional tabulations in the present
paper are numbered consecutively, even though the numbers sometimes duplicate
table numbers used in illustrative examples in Ref. 6.
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f2 and the phase of a semi -infinite slope of equal magnitude but opposite
in sign beginning at A = 1.0 at fo. In accordance with the definition of
slope given by (5), the slope k of these semi -infinite slopes will be

A = 1.0 1k -
loge f2/fi

log,112
Af/2

.fi2 - 4/2
or

1/k = log, 1 + Af/2f12 Of
1 A112/12 112

(14)

to better than 1 in 101° for the maximum value of Af = 40 for which
4) will he tabulated. Referring to Fig. 2,4) will therefore be given by:

k[B(f/h) - B(f/f2)] (15)

= ( 106/41)[B(f//i) -B (17/2) i, 1 < fi (16)

= (106/Af)[B(All) - B(ilf2)1,h2 > f > f1 (17)

in which the B's are the phases of semi -infinite unit slopes of attenua-
tion. 4) need be evaluated only for f < 112 since 4)(Af12) = 4)(-0112) as
a result of the even symmetry of 4, about f = .

Referring to Fig. 2, when f < f , ,f/f, is given by

h - 611 Afp - Af/2
fl - 1 - - 1 -f, 106

and B(fJ') of (16) is read from Table III for f < fo . When I > ft ,
= 1 - [(Af/2 - Af12)/106] and B(f,/f) of (17) is read from Table

IV for f > fo . Since f < 112 < f2 , f/f2 = 1 - [(Af12 + Af/2)/106] and
B(f/f2) of (16) and (17) is always read from Table III for f < fo

Equations (16) and (17) and the approximations to f/fi and 1/12
above may be used to evaluate 4) for Af,2 < 50, Of < 40 to an accuracy
of better than 0.0002 radian. This is sufficient since 4) is only given to
0.001 radian in Table V. These equations were therefore used to
compute 4 of Table V for Of 12 = 0 (1) 50 for each of the following
Af's: 2, 4, 6, 10, 20, and 40.

For Af12 > 50, Af < 40, and f < 11, (15) is used to compute 4).
However, the B's are determined from (13) with yc = y, = f/fl , or
Yc = Y2 = 1/12. Thus

= k[B(yi) - 13(J2)]

]2.621-1 - y2.0 e(1 + y2) 1 yi) (18)

+ y2I ge
- Nog. e(1

1 y2 1 + yi 1



652 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963

The error in 4, as determined from (18) is less than 10-7 radian for
Y12 = M12 > .999, Ai. < 40.
Referring to Fig. 2

1 - 7/2 = 1 -f/f2 = 1 f2 - Af2 Af2

f2 f2

1 + y2 = 1 + .f2) -
f2

- 2 (1
2f2

- !)

= 1 + yl = 2 (1 - .

./1 2fi
1 - yi

Substituting in (18)

2ef2 (1 -
2fi2 At22f2

= , loge

2* 2f 2 (1 - AV?.

2f2

Aft 20.1 -
11

1()g,

2f, (1 -412A )

and as shown in the Appendix, (19) can be reduced to:

1 2efi2 2efil 6,fii2
(1) = [642 loge - Afi loge

(20)

(Of < 40, 1000 > 412> 50).

The error term Af12/27f12 is only 1.6 X 10-4 radian for Of 12 = 1000.
Since 4, in Table V is only given to 0.001 radian, this error term is

dropped. (I) as given in (20) can then be further reduced, as shown in
the Appendix, to

1 [ 2efi2 ,
cf. - loge loge- (21)

r
l

6,1'2 Af Af,

loge 10 [, 2f12
gio

Af2
iogio e logio - - - lo - 

Af2 Af
(22)

4, was computed using (22) for Of = 10 at Af12 = 50(2) 80(5) 160(10)

300, and for AT = 40 at Af12 = 50(2) 100(5) 130. Five figures to the
right of the decimal were retained in spite of the fact that the error
term of (20) puts an error of as much as 5 in the last figure, since in
deriving unit wedge phase from this data, for 4) (662) differences of
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Of 12 - 6112 = 2, the difference error is moved out to 3 in the 7th figure.
The computed data was then graphically interpolated to give 1 for
Af = 10 at Af12 = 50(1) 300 and 4) for At. = 40 at Afi2 = 50(1) 130.

The final data was rounded to 3 figures to the right of the decimal and
is subject only to rounding errors. In tabulation, however, the Of = 10
values are tabulated for Of 5 20 at N.. = 50(1) 130 and for if 5 40
at Ain = 130(1) 300. This introduces a maximum error for the tabulation
of 0.0015 radian for Af = 20, Af12 = 50 and 0.0011 radian for Of = 40,
Afn = 130 to give a maximum percentage error in 4) as tabulated
between Of 12's of 50 and 300 of 0.05 per cent.

For Of 12 > 300 it is shown in the Appendix that (21) can be reduced
to

= r-1 logy
2f12 ± -1 ( f )2
0fi2 24r AL2

(Ai < 40, 1000 > Af12 > 300)

The error term (1/24,r) ( Af/Af12)2 has a maximum at AT = 40,
= 300 of 2.3 X 10-4 and can be neglected. Equation (23) can then

be written for112 = 106

loge 10 (6.0
- logio '---12A2)

(23)

(24)
(Af < 40, 1000 > Of 12 > 300).

Equation (24) was used to compute 4) for Af 40 at Af12 = 300(10)
1000 as tabulated in Table V.

One other source of error must be considered. In using the tables the
actual center of the line segment being summed will not be at f12 = 106
but may depart from this by half the band spread of the problem. For
a band of 103 this will be 500. Equation (23) may he used to evaluate
this error. It will be given by

1 2.1' 21.12 ± 500Max112 0 106 error =
Af r Af12

= -1
2 f12 500

< 10-4 radian
7r 2.112 5

-
00 27rfn

which is acceptable for our tabulation.
Recapitulating, the Table V phase values may be considered to be

reliable to ±0.002 radian or less than 0.1 per cent, which is better than
the amplitude approximations which are usually used for the unit
attenuation line segment phase summation.
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The reason for the restriction on center -band frequency in line seg-
ment phase summation when the initial and final amplitudes are not
the same is now apparent. /12 appears as a factor term in all equations
for 43. Since 1 was computed for fi. = 106, the problem must be trans-
formed to a center frequency of 106 by multiplying all frequencies by
the ratio of 106 to the actual center frequency. This does not change
the attenuation -phase relationship, since all frequency terms in the cl)
expression appear as ratios.

Now consider the problem when the initial and final amplitudes are
the same, as shown in the hypothetical problem of Fig. 4. Note that the
entire amplitude characteristic can be constructed of trapezoidal ele-
ments by successive constant amplitude truncations. A typical element
is abed. Its phase at f is given by the sum of the phases of the two line

segments ab and cd. Thus:

(13(f) of abed = A ab[(1)( Af12 ) 1)( AIM)]

and from (21)

(1)( Afi2) - (1)( A f34 ) =
1 [ 262 A ft 'sf2- loge - A. log, -

Ofl

2cf34 Al3 Aft]- loge ' -1- log,
Afi Afb A

= 1- loge2efi2 fa
7r Af2 28(f12 F)

A fi loge -Af2 Af3-"- - log
A fa AL AA 613

= _1 lo[
. e
A fi - ' log

A fi Af2,
7r ,f2 Af. Afi

A f3 log -Tr 
Ofb Laj3 rji2

( 25 )

( 26 )

Fili2 < 10-3 by the narrow -band limitation of our problem, so the second
term of (26) is less than 0.0003 radian, which is negligible. Note that
/12 has disappeared from the first term and that the phase is now de-
pendent only upon ratios of linear frequency intervals. Although f was
chosen <f, in obtaining (26), the dependence of 43( 0f12) - 43( Af34) on

ratios of linear frequency intervals only, can be shown for all values of f.

The problem can, therefore, be linearly expanded or contracted about
its center frequency to best fit the range of tabulated values of 013 with-
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L_
0

LINEAR FREQUENCY. f F <10-3f12

Fig. 4 - Line segment phase summation.

out changing the attenuation -phase relationship, as noted earlier in
Section 2.2.

3.3 Unit Wedge Phase Computation

The phase contribution of a unit wedge of attenuation is given by
(10) as

415004-n-U+1) - (13A/12=n-(1+1) 11)4./12.-u-1-1)+2

where Of = 2 for both (13's and n and f are even and odd integers respec-
tively. If f of (10) is n b then

gr500-(b+1) = (b+1) - 43itif 2=-N-1 . (27)

If f of (10) is n - b then

If 5 0 0 b-1 = (DAII2=b-1 chfilt-b-3-1 (28)

Because of the even symmetry of 4) about f = h2 and therefore about
= f - = 0,

(1)4.1.1 2=- (b+1) = Citlf 2=b +1

and

(1),If 12= = CItlf 12 )--1

Therefore, from (27) and (28)

4/499-b = -*499-1-b (20)
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*600+n -(f 4- ) for 500 + n -(f 1) even from 500 to 600 was computed
using the 11 -figure tables of B(x.) -before reduction to 9 figures for
tabulation - to compute the 4, values needed in (10). The 4, values
were computed in accordance with the procedure given in Section 3.2
for 4, (Af < 40, Of12 < 50). The extension of this 4, computation to
Af12 = 100 is permissible because of the small value of Ai = 2. The
use of 11 -figure tables of B(xc) good to only five in the final figure is
permissible because small differences (Of = 2) in this table are good
to at least one more significant figure. The final figure in the tabulated
values of 4, depends upon differences in the 11th figure in B(x,). They
are, therefore, estimated to be good to better than ±2 in the last figure.

*5001-n- (f +1) for 500 n - (f 1) even from 600 to 1000 was computed
using 5 decimal figure values of 4) computed before rounding for tabula-
tion in accordance with the procedure given in Section 3.2 for 1000 >
Of 12 > 50. In accordance with the discussion of the reliability of these
computations in Section 3.2, the resultant 5 -decimal figures of NI, are

estimated to be reliable to better than ±2 in the final figure. Values of

*5001-n-Cf+0 for 500 n - (f 1) < 500 were obtained from the
values for 500 + n - (f 1) > 500 using (29).

Table VI, giving *500+n- (J. +1) for 500 + n - (f 1) even from 0 to
1000 to 5 decimal figures, was tabulated using the above data.

IV. EXAMPLES OF PHASE SUMMATION

4.1 Semi -Infinite Unit Slope Phase Summation

Summation of phase using the semi -infinite slope of attenuation is
described in Section 2.1 and fully illustrated in Ref. 6. Therefore, an
actual numerical summation is not considered necessary here.

4.2 Unit Line Segment Phase Summation

A part of the truncated Gaussian problem solved for Bennett9 will

be used to illustrate unit line segment phase summation. Fig. 5(a) shows
the top portion of a Gaussian amplitude characteristic, A, normalized
to a peak amplitude of unity and truncated at A = 0.712 and A = 0.5.

The characteristic has a half width at half maximum of 800 mc,
corresponding to the full Doppler width at half maximum for neon
atoms at the temperature of the He-Ne optical maser. It has a center
frequency of approximately 2.6 X 1014 cps corresponding to the fre-
quency of oscillation of the maser. Since the ratio of the bandwidth to
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center frequency is ten orders of magnitude smaller than the narrow -
band requirement, and the initial and final amplitudes of the truncated
section are the same, a linear frequency summation scale was chosen
for convenience in unit line segment summation as shown on Fig. 5(a).

The phase wanted is the phase due to that portion of the Gaussian
lying between A = 0.5 and A = 0.712. Since the two sides of this area
which are defined by the Gaussian are essentially straight lines, the
characteristic was approximated by the two straight lines, ac and c'e,
and the three constant amplitude lines A = 0.712 from c to c', A = 0.5
from fT = 0 to f = 0, and A = 0.5 from f = 80 to fr = 00. This ap-
proximation was then broken into four line segments, ab, bc, c'd, and de.
The desired phase is then given by (7) as

9(f) = (Ab - A.)itab -I- (At. -Ab)4b,-1- (Ad -11,043,,d+ (A, - Ad)1)d,

and since

(Jib - A.) = (A, - Ab) = -(Ad - A01) = -(A, - Ad)
= 0.106 neper, (30)

0(f) = 0.10614)ab -I- do-bc ('c'd Ode] radians.

From Fig. 5, Of = 6 for all the line segments, and

ab has a center frequency of 3 and its Of i2 = I (3 - f) I,

be has a center frequency of 9 and its Wu = I (9 - f) I,
c'd has a center frequency of 71 and its Ain = I (71 - f) I,

de has a center frequency of 77 and its A, = I (77 -
Table VII gives the entire tabulation and phase summation of (30).

The first column gives frequency, f, at which phase is to be summed. The
second column gives Af12 for line ab at each value of f, and the third
column gives dab for g = 6 from Table V for each value of Af12 at f.
This is repeated for (1)br, d and cpde . Note the orderly recurrence of
values of 43, which made for easy tabulation.

A desk computer was used to sum the four unit line segment phase
contributions horizontally [(tied and (1)de negatively from (30)] and then
multiply the sum by 0.106 to get 0(f) of the last column in radians. This
summed phase is plotted as B on Fig. 5(b). The precision of the summa-
tion is demonstrated by the smoothness of the data.

The ease of the computation is illustrated by the fact that the ap-
proximation and phase summation was completed in one hour.
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4.3 Unit Wedge Phase Summation

The quantum -mechanically derived expression for the complex di-
electric constant, E = El - i,E2 , will be used to illustrate phase summation
using the unit wedge for three reasons.

First, e is defined by a Lorentzian whose real and imaginary parts
are known. Phase summation of E can therefore be checked against
known data. Secondly, it is derivable from the classical equation for a
damped harmonic oscillator which occurs repeatedly in science and
engineering." Finally, the real part of E is summed from the imaginary
part and serves to illustrate the reverse summation discussion in Section
2.5.

The formula for complex dielectric constant given by Van Vleck
(Ref. 7, p. 644) can be written as the sum of two Lorentzians as follows

AE- 1 =A
2 (v - vo) - iAv (v vo) - iAv (31)

where v = frequency (f), AP = half bandwidth at I E = 0.5
maximum, and A is a constant.

For a narrow band about vo only the first term of (31) is important
and (31) can therefore be written

E - 1 = A - A vo 1

2 {(v - vo) - iAv}

From (31), A is seen to be eo - 1 where eo = e( v = 0). Substituting
for the isolated A term in (32), and separating into real and imaginary
parts (32) becomes

- Eo)
A Vo

(v

(POu2 = ye) 2 + AI/2

[ -
po2) 2 + A,21 (33)

Ay

It is desired to obtain refraction from absorption, and the absorption
term is in the imaginary part of (33). Therefore real and imaginary
must be reversed by multiplying by or i2iry as discussed in Section
2.5. Since 27v is effectively constant across a narrow band, (33) need
only be multiplied by i to obtain

(32)

A vo AP Vo -
E2 i(1 0) = -2 [

(v - vo)2 Av2
i

(P - Po )2 + AP]
. (34)

Multiplying (34) by 1/A where tie = A vo/26,v, a constant which does
not change the real -imaginary relationship, (34) becomes
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e2 lel - to) Ay' AV(VO - V)+
A( (v - vo)2 Ave (v - v0)2

(35)

Van Vleck plots ( 2/Zie)21r logio e and ( - eo)/Ae in his atmospheric
absorption study at microwave frequencies (Ref. 7, Fig. 8.2). Equation
(35) is also identical with the expression for the impedance of a parallel
RLC circuit having a half width of Of which shows the recurrence of
the damped harmonic oscillator problem noted above.

The real and imaginary parts of (35), hereafter designated as A and
B, respectively, were arithmetically computed to four significant figures
for vo = 106, Ov2 = 103. A and B are plotted in Fig. 6(a) on an f (also n)
scale chosen for summation convenience in summing by (9). Because of
the even and odd symmetry of A and B respectively about the center
frequency, only half of the curves are shown.

Amplitude A data for phase summation were taken for n even from
250 to 750 from the four figure computed values of A. However A was
cut off linearly from A = 0.016 at n = 258 to A = 0 at n = 250, even
though A was decreasing very slowly for n < 250. In accordance with
Section 2.3, phase can then be summed between f = 249 and 749 odd.
Equation (9) then becomes

750

B(f = 249 to 749 odd) = E An415004-n-(f+1)
n=250
even

(36)

B(f) of (36) was summed on the 7090 computer.
The difference between B(f) summed and four -figure B(f) computed

from (35) are plotted as the "Error in Radians - Precision Summa-
tion" in Fig. 6(b). The maximum error between f = 419 and 499 is only
0.001 radian. For f < 419, the error gradually increases. This is due to
the arbitrary cutoff of A at n = 250 noted above. If a correction is made
for this cutoff, the error at f = 369 drops from point a = +0.0022
radian to point b = 0.0002 radian [see Fig. 6(b)]. This shows that the
potential overall accuracy of the phase summation is equal to the ac-
curacy of the amplitude data.

In order to illustrate the accuracy of an order of magnitude poorer
approximation to A, the summation frequency scale was reduced by a
factor of 10 to the scale for f or n marked "Desk Computer Summation."
Now A changes an order of magnitude more in frequency interval of
A/ = 2 then on the precision f or n scale. Therefore a better approxi-
mation to A is sometimes obtained by taking straight line terminal
points off the true A curve. The points selected are indicated and
several of the resultant line segments making up the approximation are
shown in dotted lines.



PHASE COMPUTATION AT OPTICAL FREQUENCIES 661

The summation performed was
520

0(f = 491 to 499 odd) = E Ani,600+._(f+i) .
n= 480
even

This summation required 30 minutes with a desk computer and pro-
duced the good approximation to the true phase shown on Fig 6(a).

V. VALUE OF THE NUMERICAL PHASE SUMMATION TECHNIQUE

A knowledge of the imaginary as well as the real part of experimentally
observed physical phenomena adds a new dimension to the under-
standing of the phenomena especially when the physical mechanisms
involved are only partially understood. Consider for instance the
difficulty of solving the time dispersion of reflection at the surface of a
mirror as discussed in Ref. 9. This problem was easily solved using the
phase tables, with no need for a quantitative knowledge of the physical
mechanisms involved.

When the phenomena can be represented by a Lorentzian or Gaussian,
as is often the case, the numerical solution of phase is not necessary.
For instance a Lorentzian approximation to the common -base current
gain of a transistor revealed that the high common -emitter current gain
is obtained at the price of a corresponding loss in frequency band.12
However this approximation was not good enough for later study of
VHF transistors. Here a knowledge of the numerical relationship be-
tween amplitude and phase made possible an understanding of current
gain and phase from simple amplitude measurements only. The results
not only prove good for all types of junction transistors but also reveal
rather than require information on the gradient of the base layer impu-
rity distribution.'3 And the computations of delay distortion mentioned in
the introduction, although theoretically possible, would have been
extremely difficult without a knowledge of the numerical computation
of phase.

Finally, consider the potential range of usefulness of the phase tables.
It is believed that the phase tables presented in Ref. 6 combined with
the phase tables of this paper are sufficient to sum the phase of any
minimum phase function occurring in any area of the physical or
engineering sciences and in any part of the frequency spectrum.
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APPENDIX

Equation (19) of Section 3.2 is reduced to (20) as follows: leaving
out the coefficient 2112/7rAf and treating only the portion in brackets

[ f2 26 (1 - 2f12)
log, 2

Af2) Af22f2 (1 -
.6./2

, ( fi)-1
-( 1 - 2.fi

2fi (1 - ii.)f 1 i

A .11

(1
2

:.,L,..ki.)
log,

24121 + ---A0 (i
.r2)

2/12 (1 + LA[
Af2

2fi2 112

21.12 2. f 1 2

A f2

Afi 262 (1 - 2./12i)(1 - Af1)1
21,2

loge
A fi

i2f12)
2/12 (1 -2f (I

Af2
2112 (1[

AA
log,

262 (1 - A f2 - A.)
2./12

A
2(11'12 (1 - Ail) -I- Al

/1 1y2l-
Ion;,.

2)12 (1 LI J.12+f12 Afi)
Aft



Lfi2 -
A/

2efi2] A11.Ai2- 1 [Al,. loge 2412 - Afl loge ± loge 2

2621 [
Af2 loge

2rAf Al2

[ 2412
Af2 loge

Thif
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A11)
2e./12. (1 - A2ff,12)

2 f 12
Af2 (1 2112 loge[

A11 (1 + .'-t.2-) 2efu (1 - 2t1
2/12 loge

2f12 dfi

A2:11.22 ( I. + 2A111) (- 21;112 + loge
2:,122)

-2A1:,12 ( i -I :6;1,:2) (- 'X + loge V]
=

[Af2 {log 26112 + 6fi (1 + log, 2-b - 1)1
2112 a Af2 2f12 64.2

- Afi
loge

2e112 Af2

2112 1 Afi 2112
(1 ± loge 264-1: - 1)}]

rAf2
logo

2efi2 Afi 2eful=
1_2/12 a Af2 2112 MI _I

FAMTI i, 2.62 46,126,11 2112

(2/12)2L Af2 (2112)2 ge Afli.

When the above is multiplied by the coefficient 2112/21-Af it becomes:

2412irAlf
LAfs loge Af2

2efi2 oft f2 fl
loge A- pji loge TAT] 27Affi2 aj2

7raf Af2 Afi 27rAff12 0112 Af
2

24121 6,1122

Of- Afi loge
27rAffn Af12

(Af < 40,

- loge
2ef121 6412

21-f i2

< 40, 1000 > Afi2 > 50)

which is the value of 4) given in (20). The first term of (20) can be
further reduced as follows

1000 > Ofi2 > 50)
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2e

rAf
fi21

Af2

____2efi21
- ATI loge

WI[
2efi2 2efi2

rzlf W 11 [
+ AD loge -A fl. loge

1 62 Of 2 1. Al loge 262 -A 2
li loge X 262rAfI Af2

=
Af2

1 [ 2ef12 Aft Af21- loge - loge

which is the value of ft. given in (21).
Equation (21) can be still further reduced for AA?. > 300 as follows.

Leaving the factor 1 ir and taking only the bracketed terms of (21)

loge
2efi2 Afi logeAf2-
Af2 of Afi

Af
262 - 641 loge Af12 + -2= loge

M2 (1 + 2aff12)
A/ 41

2

2ef12
to (1 j_ Af

s= loge
e

' 2A/i2

- loge (1 - 2Aaff12)1

-
A/

(6,./.12 - 1) r1,,,, (1 26412Af

2/ L

2efl2 Af 1 t A/ \ 2 1 i A/ y
loge

A/12 2&112 2 VAf12) 3 Vigil/

0412 1\ 26,6'1; 112 - 2 CAAffi2)2 1± :3 (2,0 - 14 (26,Aff 4

- -
i2)

A/ V + Af + 11 af )2 1( 6'f )3 + 1( Af y

[

2Afi2I. \2Afi2/ 3 2Af12 4 26,f12

2efi2 Af 1( Af Y -1 ( Af y Af Aj. Y
ge 64.12 - 244.12 + MAO 3 2Af12/ 2A/12 3 \264.121

2

- 1 - 2 ( Af
24 VA/12

2f12 1 ( Lif )2
= loge
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which when multiplied by lir becomes

1 211,, 1 ( f )2
loge - -r 02 247r Afi2

which is the expression for 4 in (23).
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TABLES III AND IV - TABLES OF PHASE OF A
SEMI -INFINITE UNIT ATTENUATION SLOPE

f/fo or foil

.999 700
710
720
730
740

.999 750
760
770
780
790

.999 800
810
820
830
840

.999 850
860
870
880
890

.999 900
901
902
903
904

.999 905
906
907
908
909

.999 910
911

912
913
914

.999 915
916
917
918
919

.999 920
921

922
923
924

.999 925
926
927
928
929

Table III f < fo B in
Radians

Table IV f > fo B in
Radians 1st Difference

0.784 4618
4898
5180
5464
5748

0.784 6033
6320
6608
6898
7189

0.784 7481
7775

8071
8368
8668

0.784 8969
9273
9578
9886

0.785 0197

0.786 3346
3065
2783
2500
2216

0.786 1930
1643
1355
1066

0775

0.786 0482
0188

0.785 9893
9595
9296

0.785 8994
8691
8385
8077
7766

0.785 0510 79
0542 33
0573 91
0605 51
0637 15

0.785 0668 83
0700 53
0732 27
0764 05
0795 86

0.785 0827 70
0859 58
0891 50
0923 45
0955 44

0.785 0987 46
1019 52
1051 62
1083 76
1115 94

0.785 1148 16
1180 41
1212 71
1245 05
1277 43

0.785 1309 85
1342 31
1374 82
1407 37
1439 96

0.785 7452 48
7420 94
7389 36
7357 75
7326 11

0.785 7294 44
7262 73
7230 99
7199 22
7167 41

0.785 7135 57
7103 69
7071 77
7039 82
7007 83

0.785 6975 81
6943 74
6911 64
6879 50
6847 33

0.785 6815 11
6782 85
6750 56
6718 22
6685 84

0.785 6653 42
6620 96
6588 45
6555 90
6523 31

.0'281

282
283
284
286

. 04287

288
289
291
293

.04294

295

298
299
302

.04303

306
308
311
314

. 0'3154

58
61

64
67

.053171

74
77

81

84

.053188

92
95
99

3202

.053207

10

14

17

22

. 053226

29

34
38
42

. 0'3246

51

55
59
64

667



TABLES III AND IV - Continued

f/fo or fo/f

.999 930
931

932
933
934

.999 935
936
937
938
939

.999 940
941
942
943
944

.999 945
946
947
948
949

.999 950
951
952
953
954

.999 955
956
957
958
959

.999 960
961
962
963
964

.999 965
966
967
968
969

.999 970
971
972
973
974

.999 975
976
977
978
979

Table III/ < fo B in
Radians

Table IV f > fo B in
Radians 1st Difference

0.785 1472 60
1505 28
1538 01
1570 79
1603 62

0.785 1636 49
1669 41
1702 38
1735 40
1768 48

0.785 1801 60
1834 78
1868 01
1901 30
1934 64

0.785 1968 04
2001 50
2035 02
2068 59
2102 23

0.785 2135 93
2169 69
2203 52
2237 42
2271 38

0.785 2305 41
2339 51
2373 69
2407 94
2442 26

0.785 2476 67
2511 15
2545 71
2580 36
2615 09

0.785 2649 91
2684 83
2719 83
2754 93
2790 14

0.785 2825 44
2860 85
2896 37
2932 01
2967 76

0.785 3003 63
3039 63
3075 77
3112 04
3148 46

0.785 6490 67
6457 98
6425 25
6392 48
6359 65

0.785 6326 78
6293 86
6260 89
6227 87
6194 79

0.785 6161 67
6128 49
6095 26
6061 97
6028 63

0.785 5995 23
5961 77
5928 25
5894 68
5861 04

0.785 5827 34
5793 57
5759 75
5725 85
5691 89

0.785 5657 86
5623 75
5589 58
5555 33
5521 00

0.785 5486 60
5452 12
5417 56
5382 91
5348 18

0.785 5313 36
5278 44
5243 44
5208 33
5173 13

0.785 5137 83
5102 42
5066 90
5031 26
4995 51

0.785 4959 63
4923 63
4887 50
4851 23
4814 81

.0'3269
73
77
83
87

.0'3292
97

3303
08
13

.0'3318
23
29
34
40

.0'3346
52
57
64
70

.0'3377
82
90
96

3403

.0'3411

17
25
33
40

. 0'3448

56

65
73
82

.0'3492
3500

11

20
30

. 0'3541

52
64
75
88

.0'3600
13
27
42
57
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TABLES III AND IV - Continued

f/Jo or foil Table III f < fo B in
Radians

.999 9800
01

02
03
04

.999 9805
06
07
08
09

.999 9810
11

12

13
14

.999 9815
16
17

18

19

.999 9820
21

22
23
24

.999 9825
26

27

28
29

.999 9830
31

32
33
34

.999 9835
36

37

38
39

.999 9840
41
42
43
44

.999 9845
46
47
48
49

0.785 3185 03
3188 69
3192 36
3196 03
3199 70

0.785 3203 37
3207 05
3210 72
3214 40
3218 08

0.785 3221 76
3225 44
3229 12
3232 81
3236 50

0.785 3240 18
3243 87
3247 57
3251 26
3254 96

0.785 3258 65
3262 35
3266 05
3269 76
3273 46

0.785 3277 17
3280 88
3284 59
3288 30
3292 01

0.785 3295 73
3299 44
3303 16
3306 88
3310 61

0.785 3314 33
3318 06
3321 79
3325 52
3329 25

0.785 3332 99
3336 72
3340 46
3344 20
3347 95

0.785 3351 69
3355 44
3359 19
3362 94
3366 69

Table IV f > Jo B in 1st DifferenceRadians

0.785 4778 24
4774 57
4770 91
4767 24
4763 57

0.785 4759 90
4756 22
4752 55
4748 87
4745 19

0.785 4741 51
4737 83
4734 15
4730 46
4726 77

0.785 4723 08
4719 39
4715 70
4712 01
4708 31

0.785 4704 61
4700 92
4697 21
4693 51
4689 81

0.785 4686 10
4682 39
4678 68
4674 97
4671 26

0.785 4667 54
4663 82
4660 11
4656 38
4652 66

0.785 4648 94
4645 21
4641 48
4637 75
4634 02

0.785 4630 28
4626 54
4622 81
4619 07
4615 32

0.785 4611 58
4607 83
4604 08
4600 33
4596 58

.0'0367
67

67
67
67

.050367

68
68
68
68

.0'0368
68
69
69
69

.0'0369

69
69
70
70

.0'0370
70
70
70
71

.0'0371

71

71
71

72

.0'0372

72
72
72
73

.0'0373
73
73
73
73

.0'0374
74
74
74
74

.0'0375
75
75
75

76
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TABLES III AND IV - Continued

filo or fog

.999 9850
51

52
53

54

.999 9855
56
57

58
59

.999 9860
61

62
63
64

.999 9865
66
67
68
69

.999 9870
71

72
73
74

.999 9875
76
77
78
79

.999 9880
81

82
83
84

.999 9885
86
87
88
89

.999 9890
91
92
93
94

.999 9895
96
97

98
99

Table III f < fo B in
Radians

0.785 3370 45
3374 20
3377 96
3381 72
3385 49

0.785 3389 25
3393 02
3396 79
3400 57
3404 34

0.785 3408 12
3411 90
3415 68
3419 46
3423 25

0.785 3427 04
3430 83
3434 62
3438 42
3442 22

0.785 3446 02
3449 82
3453 62
3457 43
3461 24

0.785 3465 06
3468 87
3472 69
3476 51
3480 33

0.785 3484 16
3487 99
3491 82
3495 65
3499 49

0.785 3503 33
3507 17
3511 02
3514 87
3518 72

0.785 3522 57
3526 43
3530 29
3534 15
3538 01

0.785 3541 88
3545 75
3549 63
3553 50
3557 39

Table IzsVadf>nsfo B in
Radians

0.785 4592 82
4589 06
4585 31
4581 54
4577 78

0.785 4574 01
4570 25
4566 48
4562 70
4558 93

0.785 4555 15
4551 37
4547 59
4543 81
4540 02

0.785 4536 23
4532 44
4528 65
4524 85
4521 05

0.785 4517 25
4513 45
4509 64
4505 84
4502 02

0.785 4498 21
4494 40
4490 58
4486 76
4482 93

0.785 4479 11
4475 28
4471 45
4467 61
4463 78

0.785 4459 94
4456 10
4452 25
4448 40
4444 55

0.785 4440 70
4436 84
4432 98
4429 12
4425 25

0.785 4421 39
4417 51
4413 64
4409 76
4405 88

1st Difference

.0'0376
76

76
76
77

.0'0377
77

77
77
78

.050378
78

78
79

79

.0,0379
79
80
80
80

.0,0380

81

81

81

.0'0382

82
82
82
83

.0,0383
83
83

84
84

.0,0384

84
85
85
85

.050386

86
86
87

87

.0,0387

87
88
88
88
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TABLES III AND IV - Continued

.1-/fo or foil Table III f < fo B in
Radians

Table IV f > fo B in
Radians

.999 9900
01

02
03
04

.999 9905
06
07
08
09

.999 9910
11

12

13
14

.999 9915
16

17

18

19

.999 9920
21

22
23
24

.999 9925
26
27
28
29

.999 9930
31

32

33
34

.999 9935
36
37
38
39

.999 9940
41
52
43
44

.999 9945
46
47
48
49

0.785 3561 27
3565 16
3569 05
3572 94
3576 84

0.785 3580 74
3584 64
3588 55
3592 46
3596 37

0.785 3600 29
3604 21
3608 13
3612 06
3615 99

0.785 3619 93
3623 87
3627 81
3631 76
3635 71

0.785 3639 66
3643 62
3647 58
3651 55
3655 52

0.785 3659 49
3663 47
3667 46
3671 44
3675 44

0.785 3679 43
3683 43
3687 44
3691 45
3695 46

0.785 3699 48
3703 51
3707 54
3711 57
3715 61

0.785 3719 66
3723 71
3727 77
3731 83
3735 89

0.785 3739 97
3744 05
3748 13
3752 22
3756 32

0.785 4402 00
4398 11
4394 22
4390 33
4386 43

0.785 4382 53
4378 63
4374 72
4370 81
4366 90

0.785 4362 98
4359 06
4355 14
4351 21
4347 28

0.785 4343 34
4339 40
4335 46
4331 51
4327 56

0.785 4323 61
4319 65
4315 69
4311 72
4307 75

0.785 4303 77
4299 80
4295 81
4291 82
4287 83

0.785 4283 84
4279 83
4275 83
4271 82
4267 80

0.785 4263 78
4259 76
4255 73
4251 69
4247 65

0.785 4243 61
4239 56
4235 50
4231 44
4227 37

0.785 4223 30
4219 22
4215 14
4211 05
4206 95

1st Difference

.0'0388
89

89

89
90

.0'0390
91

91

91

92

.0'0392
92
93
93

94

.0'0394
94
95
95
95

.0'0396

96
97
97
97

.0'0398

98
99
99

0400

.0'0400
01

01
02
02

.0'0402

03
03
04
05

.0'0405
06
06
07
07

.0'0408
08
09
10
10
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TABLES III AND IV Continued

filo or foil.
Table III f fo B in

Radians

.999 9950
51

52
53
54

.999 9955
56
57

58
59

.999 9960
61
62
63

64

.999 9965
66
67
68
69

.999 9970
71

72
73

.999 9975
76
77

78
79

.999 9980
81

82
83
84

.999 9985
86
87
88
89

.999 9990
91

92
93
94

.999 9995
96

97

.999 99980
985
990
995

0.785 3760 42
3764 53
3768 65
3772 77
3776 90

0.785 3781 03
3785 18
3789 33
3793 48
3797 65

0.785 3801 82
3806 00
3810 19
3814 39
3818 60

0.785 3822 81
3827 04
3831 27
3835 51
3839 76

0.785 3844 03
3848 30
3852 59
3856 88

19

0.785 3865 51
3869 85
3874 19
3878 55
3882 93

0.785 3887 32
3891 72
3896 14
3900 58
3905 04

0.785 3909 52
3914 02
3918 54
3923 09
3927 67

0.785 3932 27
3936 90
3941 57
3946 28
3951 04

0.785 3955 85
3960 72
3965 68

0.785 3970 74
3973 32
3975 96
3978 68

Table ItVadfia>nsfo B in

0.785 4202 85
4198 74
4194 62
4190 50
4186 37

0.785 4182 24
4178 09
4173 94
4169 78
4165 62

0.785 4161 45
4157 26
4153 08
4148 88
4144 67

0.785 4140 46
4136 23
4132 00
4127 76
4123 50

0.785 4119 24
4114 97
4110 68
4106 39
4102

0.785 4097 76
4093 42
4089 08
4084 72
4080 34

0.785 4075 95
4071 55
4067 12
4062 68
4058 23

0.785 4053 75
4049 25
4044 72
4040 18
4035 60

0.785 4031 00
4026 37
4021 69
4016 98
4012 23

0.785 4007 42
4002 55
3997 59

0.785 3992 53
3989 94
3987 30
3984 58

1st Difference

.0'0411

12

12

13

14

.0'0414
15

16

17

17

.0'0418
19
20
21

22

. 0'0422

23
24
25

26

.0'0427

28
29

31

32

. 0'0433

35
36
37
39

. 0'0441

42
44
46
48

.0,0450

52
55
57
GO

.0'0463

67

71

76

81

.0"0487

96
0506

.0'0259

64
72
95

1.000 00000 0.785 3981 63 0.785 3981 63
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TABLE -(i) IN RADIANS FOR LINE SEGMENT,
A, OF 1 NEPER; /12 = 106 CPS

tifit of = 2 of = 4 of = 6 of = 10 of = 20 of - 40

0 4.936 4.716 4.587 4.424 4.204 3.983
1 4.716 4.674 4.569 4.418 4.202 3.983
2 4.412 4.496 4.510 4.398 4.197 3.981
3 4.275 4.296 4.366 4.363 4.189 3.979
4 4.180 4.192 4.214 4.307 4.177 3.977

5 4.108 4.115 4.128 4.204 4.162 3.973
6 4.050 4.054 4.062 4.097 4.142 3.968
7 4.000 4.003 4.007 4.032 4.116 3.963
8 3.957 3.960 3.964 3.980 4.086 3.957
9 3.920 3.922 3.925 3.937 4.046 3.950

10 3.886 3.888 3.890 3.900 3.983 3.941
11 3.856 3.857 3.859 3.867 3.919 3.932
12 3.828 3.829 3.831 3.837 3.876 3.922
13 3.802 3.803 3.805 3.810 3.841 3.910
14 3.778 3.779 3.781 3.785 3.811 3.897

15 3.756 3.757 3.758 3.762 3.784 3.882
16 3.736 3.736 3.738 3.741 3.760 3.866
17 3.716 3.717 3.718 3.721 3.737 3.847
18 3.698 3.699 3.700 3.703 3.716 3.826
19 3.682 3.682 3.682 3.685 3.697 3.800

20 3.665 3.666 3.666 3.668 3.679 3.762
21 3.650 3.662 3.725
22 3.634 3.635 3.635 3.637 3.646 3.698
23 3.620 3.620 3.621 3.623 3.631 3.676
24 3.606 3.607 3.607 3.609 3.616 3.656

25 3.594 3.594 3.594 3.596 3.603 3.638
26 3.582 3.582 3.582 3.583 3.590 3.621
27 3.570 3.570 3.570 3.571 3.577 3.605
28 3.558 3.558 3.558 3.559 3.565 3.590
29 3.546 3.547 3.547 3.548 3.553 3.576

30 3.536 3.536 3.536 3.537 3.542 3.563
31 3.525 3.526 3.526 3.527 3.531 3.551
32 3.516 3.515 3.516 3.516 3.520 3.539
33 3.506 3.506 3.506 3.507 3.510 3.528
34 3.496 3.496 3.496 3.497 3.501 3.517

35 3.487 3.487 3.487 3.488 3.491 3.506
36 3.478 3.478 3.478 3.479 3.482 3.496
37 3.469 3.469 3.469 3.470 3.473 3.486
38 3.460 3.460 3.461 3.461 3.464 3.477
39 3.452 3.452 3.452 3.453 3.456 3.467

40 3.444 3.444 3.444 3.445 3.448 3.459
41 3.436 3.436 3.436 3.437 3.440 3.450
42 3.429 3.429 3.429 3.429 3.432 3.442
43 3.421 3.422 3.421 3.422 3.424 3.433
44 3.414 3.414 3.414 3.414 3.417 3.426

45 3.407 3.407 3.407 3.407 3.409 3.418
46 3.400 3.400 3.400 3.400 3.402 3.410
47 3.393 3.393 3.393 3.394 3.395 3.403
48 3.386 3.386 3.386 3.387 3.389 3.396
49 3.380 3.380 3.380 3.380 3.382 3.389
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TABLE V

Aftx of 20 Af = 40

50 3.374 3.382

51 3.367 3.375

52 3.361 3.369

53 3.355 3.362

54 3.349 3.356

55 3.343 3.350

56 3.337 3.344

57 3.332 3.338

58 3.326 3.332

59 3.321 3.327

60 3.315 3.321

61 3.310 3.316

62 3.305 3.310

63 3.300 3.305

64 3.295 3.300

65 3.290 3.295

66 3.285 3.290

67 3.280 3.285

68 3.275 3.280

69 3.271 3.275

70 3.266 3.270

71 3.262 3.266

72 3.257 3.261

73 3.253 3.257

71 3.252

75 3.244 3.248

76 3.240 3.243

77 3.236 3.239

78 3.232 3.235

79 3.228 3.231

80 3.224 3.227

81 3.220 3.223

82 3.216 3.219

83 3.212 3.215

84 3.208 3.211

85 3.204 3.207

86 3.201 3.203

87 3.197 3.200

88 3.193 3.196

89 3.190 3.192

02 g 40 Afu A 40

130 3.069 140 3.045

131 3.066 141 3.043

132 3.064 142 3.041

133 3.062 143 3.039

134 3.059 144 3.036

135 3.057 145 3.034

136 3.055 146 3.032

137 3.052 147 3.030

138 3.050 148 3.028

139 3.048 149 3.026

- Continued

Afu Af 5 20 Af = 40

90 3.186 3.189

91 3.183 3.185
92 3.179 3.181

93 3.176 3.178

94 3.172 3.174

95 3.169 3.171

96 3.166 3.168

97 3.162 3.164

98 3.159 3.161

99 3.156 3.158

100 3.152 3.155

101 3.149 3.151

102 3.146 3.148
103 3.143 3.145
104 3.140 3.142

105 3.137 3.139

106 3.134 3.136

107 3.131 3.133

108 3.128 3.130

109 3.125 3.127

110 3.122 3.124

111 3.119 3.121

112 3.116 3.118

113 3.114 3.115

114 3.111 3.112

115 3.108 3.110

116 3.105 3.107

117 3.103 3.104

118 3.100 3.101

119 3.097 3.099

120 3.094 3.096

121 3.092 3.093

122 3.089 3.091

123 3.087 3.088

124 3.084 3.085

125 3.081 3.083

126 3.079 3.080

127 3.076 3.078

128 3.074 3.075

129 3.071 3.073

of 5 40 Afu of 5 40

150 3.023 160 3.003

151 3.021 161 3.001

152 3.019 162 2.999

153 3.017 163 2.997

154 3.015 164 2.995

155 3.013 165 2.993

156 3.011 166 2.991

157 3.009 167 2.989

158 3.007 168 2.987

159 3.005 169 2.985

674



TABLE V - Continued

Afts of 5 40 Afis of < 40 Afi2 of 5 40 fit of 5 40

170 2.984 220 2.901 270 2.836 500 2.640
171 2.982 221 2.900 271 2.835 510 2.634
172 2.980 222 2.899 272 2.834 520 2.628
173 2.978 223 2.897 273 2.833 530 2.622
174 2.976 224 2.896 274 2.832 540 2.616

175 2.974 225 2.894 275 2.831 550 2.610

176 2.972 226 2.893 276 2.829 560 2.604
177 2.971 227 2.891 277 2.828 570 2.598
178 2.969 228 2.890 278 2.827 580 2.593
179 2.967 229 2.889 279 2.826 590 2.587

180 2.965 230 2.887 280 2.825 600 2.582
181 2.964 231 2.886 281 2.824 610 2.577

182 2.962 232 2.885 282 2.822 620 2.572
183 2.960 233 2.883 283 2.821 630 2.567
184 2.958 234 2.882 284 2.820 640 2.562

185 2.957 235 2.880 285 2.819 650 2.557
186 2.955 236 2.879 286 2.818 660 2.552

187 2.953 237 2.878 287 2.817 670 2.547

188 2.951 238 2.876 288 2.816 680 2.542
189 2.950 239 2.875 289 2.815 690 2.538

190 2.948 240 2.874 290 2.813 700 2.533

191 2.946 241 2.872 291 2.812 710 2.528
192 2.945 242 2.871 292 2.811 720 2.524

193 2.943 243 2.870 293 2.810 730 2.520
194 2.941 244 2.868 294 2.809 740 2.516

195 2.940 245 2.867 295 2.808 750 2.511

196 2.938 246 2.866 297 2.807 760 2.507

197 2.937 247 2.865 297 2.806 770 2.503

198 2.935 248 2.863 298 2.805 780 2.499

199 2.933 249 2.862 299 2.804 790 2.494

200 2.932 250 2.861 300 2.803 800 2.490
201 2.930 251 2.859 310 2.792 810 2.487

202 2.929 252 2.858 320 2.782 820 2.483

203 2.927 253 2.857 330 2.772 830 2.479

204 2.925 254 2.856 340 2.763 840 2.475

205 2.924 255 2.854 350 2.754 850 2.471

206 2.922 256 2.853 360 2.745 860 2.467

207 2.921 257 2.852 370 2.736 870 2.464

208 2.919 258 2.851 380 2.727 880 2.460

209 2.918 259 2.849 390 2.719 890 2.457

210 2.916 260 2.848 400 2.711 900 2.453

211 2.915 261 2.847 410 2.703 910 2.449

212 2.913 262 2.846 420 2.696 920 2.446
213 2.912 263 2.845 430 2.688 930 2.443

214 2.910 264 2.843 440 2.681 940 2.439

215 2.909 265 2.842 450 2.674 950 2.436

216 2.907 266 2.841 460 2.667 960 2.432

217 2.906 267 2.840 470 2.660 970 2.429

218 2.904 268 2.839 480 2.653 980 2.426

219 2.903 269 2.837 490 2.647 990 2.423

1000 1 2.419
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500 + n
+ 1)

0

4

8

10
12
14
16
18

20
22
24
26
28

30
32
34
36
38

40
42
44
46
48

50
52
54
56
58

60
62
64
66
68

70
72
74
76
78

80
82
84
86
88
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94
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TABLE VI 41500+n -
500 + n -

-.00128 100
-.00128 102
-.00129 104
-.00129 106
- .00130 108

-.00130 110
-.00131 112
-.00131 114
-.00132 116
-.00132 118

-.00133 120
-.00133 122
-.00134 124
-.00135 126
-.00135 128

-.00136 130
-.00136 132
-.00137 134
-.00137 136
- .00138 138

-.00138 140
-.00139 142
-.00139 144
-.00140 146
-.00141 148

- .00142 150
-.00143 152
-.00143 154
- .00144 156
-.00144 158

-.00145 160
- .00146 162
- .00146 164
-.00147 166
-.00148 168

-.00149 170
-.00150 172
- .00150 174
-.00151 176
- .00151 178

- .00152 180
-.00153 182
- .00154 184
- .00154 186
-.00155 188

- .00156 190
- .00156 192
- .00157 194
-.00158 196
-.00159 198

(1+1) IN RADIANS PER NEPER

500 n -
(./ + 1)

- .00159 200
- .00160 202
- .00161 204
-.00162 206
-.00163 208

-.00164 210
-.00164 212
- .00165 214
- .00166 216
-.00167 218

- .00168 220
-.00169 222
-.00170 224
-.00171 226
-.00171 228

- .00172 230
- .00173 232
-.00174 234
-.00175 236
-.00176 238

-.00177 240
-.00178 242
-.00179 244
-.00180 246
-.00181 248

-.00182 250
-.00183 252
-.00184 254
-.00185 256
-.00186 258

-.00187 260
-.00188 262
- .00189 264
- .00190 266
- .00192 268

-.00193 270
- .00195 272
-.00196 274
-.00197 276
- .00198 278

-.00200 280
-.00201 282
-.00202 284
-.00203 286
-.00205 288

-.00206 290
- .00207 292
-.00208 294
-.00209 296
-.00210 298

-.00212
-.00214
-.00216
- .00218
- .00219

-.00220
-.00222
- .00224
-.00225
-.00227

-.00229
-.00230
- .00232
- .00234
-.00235

-.00237
-.00239
- .00240
- .00242
-.00244

-.00246
-.00248
- .00250
-.00252
-.00254

-.00256
-.00258
- .00260
- .00262
- .00264

-.00266
-.00269
-.00271
-.00273
-.00275

- .00277
- .00280
-.00283
-.00286
- .00288

- .00291
- .00294
- .00297
-.00300
-.00302

-.00305
- .00308
-.00311
-.00314
-.00317
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500 n -
(1 + 1)

300
302
304
306
308

310
312
314
316
318

320
322
324
326
328

330
332
334
336
338

340
342
344
346
348

350
352
354
356
358

360
362
364
366
368

370
372
374
376
378

380
382
384
386
388

390
392
394
396
398

TABLE VI - Continued

4, 500 n -
+ 1)

- .00320 400
- .00323 402
- .00327 404
- .00330 406
- .00334 408

- .00337 410
- .00341 412
- .00344 414
- .00348 416
- .00352 418

- .00356 420
- .00360 422
- .00365 424
- .00368 426
- .00372 428

- .00376 430
- .00381 432
- .00386 434
- .00391 436
- .00396 438

- .00401 440
- .00406 442
- .00411 444
- .00416 446
- .00422 448

- .00428 450
- .00433 452
- .00439 454
- .00445 456
- .00452 458

- .00458 460
- .00464 462
- .00471 464
-.00478 466
- .00486 468

- .00494 470
- .00502 472
- .00510 474
- .00518 476
- .00527 478

- .00536 480
- .00546 482
- .00555 484
- .00564 486
- .00573 488

- .00583 490
- .00595 492
- .00607 494
- .00619 496
- .00632 498

SOO n -
(f + 1)

- .00644 500
- .00657 502
- .00671 504
- .00685 506
- .00700 508

- .00717 510
- .00732 512
- .00748 514
- .00767 516
- .00785 518

- .00805 520
- .00827 522
- .00848 524
- .00872 526
- .00895 528

- .00923 530
- .00950 532
- .00979 534
- .01010 536
- .01043 538

- .01079 540
- .01116 542
- .01158 544
- .01201 546
- .01248 548

- .01299 550
- .01354 552
- .01415 554
- .01480 556
- .01553 558

- .01632 560
- .01721 562
- .01819 564
- .01930 566
- .02054 568

- .02197 570
- .02359 572
- .02549 574
- .02770 576
- .03036 578

- .03356 580
- .03753 582
- .04256 584
- .04916 586
- .05819 588

- .07134 590
- .09219 592
-.13096 594
- .23165 596
- .52454 598

+ .52454
+.23165
+.13096
+ .09219
+.07134

+ .05189
+ .04916
+.04256
+ .03753
+ .03356

+ .03036
+.02770
+ .02549
+.02359
+ .02197

+ .02054
+ .01930
+.01819
+.01721
+ .01632

±.01553
+ .01480
+.01415
+.01354
+ .01299

+ .01248
+.01201
+.01158
+ .01116
+.01079

+ .01043
+.01010
+.00979
+ .00950
+.00923

+.00895
+.00872
+.00848
+.00827
+.00805

+ .00785
+ .00767
+ .00748
+ .00732
+ .00717

+ .00700
+ .00685
+ .00671
+ .00657
+ .00644
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500 n
+ 1)

600 +.00632
602 -F.00619
604 1-.00607

606 1-.00595
608 1-.00583

610 1-.00573
612 1-.00564
614 1-.00555
616 +.00546
618 +.00536

620 +.00527
622 +.00518
624 +.00510
626 1-.00502
628 1-.00494

630 1-.00486
632 +.00478
634 1-.00471
636 1-.00464
638 1-.00458

640 d-.00452
642 1-.00445
644 -F.00439
646 1-.00433
648 1-.00428

650 1-.00422
652 +.00416
654 1-.00411
656 -F.00406
658 1-.00401

660 1-.00396
662 1-.00391
664 1-.00386
666 -F.00381
668 1-.00376

670 1-.00372
672 1-.00368
674 1-.00365
676 1-.00360
678 1-.00356

680 1-.00352
682 +.00348
684 1-.00344
686 1-.00341
688 1-.00337

690 -F.00334
692 1-.00330
694 1-.00327
696 1-.00323
698 +.00320

TABLE VI Continued

500 + n -
(.1 I- 1)

500 + n
(1 + 1)

-

700 +.00317 800 1-.00210

702 +.00314 802 d-.00209

704 1-.00311 804 d-.00208

706 1-.00308 806 -F.00207

708 -F.00305 808 1-.00206

710 -F.00302 810 1-.00205

712 1-.00300 812 d-.00203
714 1-.00297 814 d-.00202

716 +.00294 816 d-.00201

718 1-.00291 818 d-.00200

720 +.00288 820 1-.00198
722 -F.00286 822 1-.00197
724 +.00283 824 1-.00196
726 +.00280 826 1-.00195
728 +.00277 828 1-.00193

730 -F.00275 830 -F.00192
732 1-.00273 832 1-.00190

734 +.00271 834 1-.00189

736 +.00269 836 1-.00188
738 1-.00266 838 1-.00187

740 1-.00264 840 -F.00186

742 1-.00262 842 +.00185
744 1-.00260 844 1-.00184

746 1-.00258 846 1-.00183
748 1-.00256 848 1-.00182

750 1-.00254 850 1-.00181
752 1-.00252 852 1-.00180
754 1-.00250 854 1-.00179

756 1-.00248 856 1-.00178

758 1-.00246 858 d-.00177

760 +.00244 860 1-.00176
762 -F.00242 862 1-.00175
764 1-.00240 864 1-.00174
766 1-.00239 866 1-.00173

768 -F.00237 868 1-.00172

770 -F.00235 870 1-.00171

772 +.00234 872 1-.00171

774 1-.00232 874 +.00170
776 -F.00230 876 1-.00169
778 1-.00229 878 1-.00168

780 1-.00227 880 1-.00167
782 +.00225 882 1-.00166
784 1-.00224 884 1-.00165
786 +.00222 886 1-.00164
788 1-.00220 888 +.00164

790 +.00219 890 -F.00163

792 +.00218 892 +.00162
794 1-.00216 894 +.00161
796 1-.00214 896 +.00160
798 1-.00212 898 -F.00159
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TABLE VI - Continued

500 n -
(/ + 1)

500 -1- 't -
(1 +1)

500 -1- " -

(1 + 1)

900 1-.00159 940 +.00144 980 1-.00132
902 +.00158 942 +.00144 982 d-.00132
904 1-.00157 944 +.00143 984 1-.00131
906 1-.00156 946 +.00143 986 1-.00131
908 d-.00156 948 +.00142 988 d-.00130

910 1-.00155 950 +.00141 990 -F.00130
912 +.00154 952 +.00140 992 1-.00129
914 -F.00154 954 1-.00139 994 1-.00129
916 1-.00153 956 d-.00139 996 -F.00128
918 1-.00152 958 +.00138 998 1-.00128

920 4-.00151 960 +.00138 1000 d-.00127
922 d-.00151 962 -F.00137
924 1-.00150 964 1-.00137
926 1-.00150 966 +.00136
928 +.00149 968 d-.00136

930 1-.00148 970 1-.00135
932 1-.00147 972 1-.00135
934 -F.00146 974 -F.00134
936 +.00146 976 -F.00133
938 1-.00145 978 -F.00133

TABLE VII - LINE SEGMENT PHASE SUMMATION -
TRUNCATED GAUSSIAN SECTION

I
Line

fi, = 3
ab

A112

,,,

"'al'

Line
11: = 9

be

An

,,,

-4'4

Line
in = 71
ed

&1I2

,

---c d

Line
112 = 77

de

'fit

.
de

eV)
radians

0 3 4.366 9 3.925 71 3.262 77 3.236 0.190]
2 1 4.569 7 4.007 69 3.271 75 3.244 0.2181
4 1 4.569 5 4.128 67 3.280 73 3.253 0.229
6 3 4.366 3 4.366 65 3.290 71 3.262 0.231]

8 5 4.128 1 4.569 63 3.300 69 3.271 0.225
10 7 4.007 1 4.569 61 3.310 67 3.280 0.2101
12 9 3.925 3 4.366 59 3.321 65 3.290 0.1781

14 11 3.859 5 4.128 57 3.332 63 3.300 0.143::.

16 13 3.805 7 4.007 55 3.343 61 3.310 0.122E

18 15 3.758 9 3.925 53 3.355 59 3.321 0.1061
20 17 3.718 11 3.859 51 3.367 57 3.332 0.0931
22 19 3.682 13 3.805 49 3.380 55 3.343 0.081(
24 21 3.650 15 3.758 47 3.393 53 3.355 0.070(
26 23 3.621 17 3.718 45 3.407 51 3.367 0.059E
28 25 3.594 19 3.682 43 3.421 49 3.380 0.0504
30 27 3.570 21 3.650 41 3.436 47 3.393 0.0414
32 29 3.547 23 3.621 39 3.452 45 3.407 0.032E
34 31 3.526 25 3.594 37 3.469 43 3.421 0.0244
36 33 3.506 27 3.570 35 3.487 41 3.436 0.0162
38 35 3.487 29 3.547 33 3.506 39 3.452 0.0081
40 37 3.469 31 3.526 31 3.526 37 3.469 0.0000

0(f) = A (Constant at 0.106 nepers) 1- 43/, - -





Bounds on Communication
By DAVID SLEPIAN

(Manuscript received February 6, 1963)

Six parameters of importance in many communication systems are: (a)
the rate at which digital information is transmitted; (b) the bandwidth of
the system; (c) the signal power of the transmitted signals; (d) the noise
power of disturbances in transmission; (e) the error probability in digits
recovered at the receiver output; (f) the length of time that the transmitter
and receiver can store their inputs. These six parameters cannot assume
arbitrary values: certain sets of values cannot be realized. In a series of
curves, this paper describes the boundary between compatible and incom-
patible sets of parameter values. In the model studied, it is assumed that
the disturbance is additive Gaussian noise with constant power
spectrum in the transmission band.

I. INTRODUCTION

In comparing the performance of communication systems that trans-
mit information by means of signals of limited bandwidth, six quantities
descriptive of the system and its environment are of particular impor-
tance: (i) the rate at which the system transmits information; (ii) the
bandwidth occupied by the transmission signals; (iii) a measure of the
power of these signals; (iv) a measure of the ambient noise which per-
turbs the transmitted signals; (v) the delay time (caused by the trans-
mitter and receiver) between the introduction of information at the in-
put of the system and the emergence of useful information at the output
of the system; (vi) a measure of the fidelity with which the information
at the output of the system represents the information presented to the
input of the system.

To compare the performance of two communication systems in a
meaningful manner, it is usually necessary to consider the values of at
least these six quantities for the two systems. In general, such a com-
parison will not yield a simple ordering of the two systems. Two systems
may utilize the same bandwidth, introduce the same delay, and operate
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in the same noise environment. The first system may transmit informa-
tion at a greater rate with somewhat better fidelity than the second, but
may require much more signal power. Which system is to be judged bet-
ter then depends on external considerations such as the economics of
equipment and the purpose for which communication is being established.
These external considerations allow the engineer to assign relative
weights or costs to the six quantities in question.

Quite apart from these costs dictated by external considerations that
may vary with every conceivable usage of a communication system, it
is clearly desirable to know, in the first place, what mutual values of the
six quantities can ever be obtained by any means. In order to provide
such quantitative information it is necessary to particularize both the
model of the communication system and the six descriptive parameters.

In all that follows we shall assume that a discrete message source
presents independent equiprobable decimal digits for transmission at
the uniform rate R decimal digits (or dits) per second. (The output of

any other discrete source having entropy rate R can be encoded into
this form.) A transmitter operates on these decimal digits to produce a
continuous signal of average power S lying in the frequency band (0,W)
cycles/second. The signal produced by the transmitter is perturbed by
the addition of independent Gaussian noise of total power N and constant
power spectral density N/W in the band (0,117) cycles/second. A re-
ceiver operates on the perturbed signal to produce decimal digits at an
average rate R symbols/second. When the receiver output symbols and
the transmitter input symbols are placed in proper correspondence, the
average probability, Pe , that an output symbol be different from the
corresponding input symbol will be taken as the measure of fidelity
with which the system operates. To perform their coding functions, the
transmitter and receiver may each require the internal storage of T
seconds of their inputs. We use the dimensionless parameter

n = 2W T

(that is, T measured in Nyquist intervals) as a measure of the delay or
complexity of encoding associated with transmitter and receiver.

Our concern henceforth is with the six quantities R, W, S, N, n, and
Pe of this model and with the determination of the boundaries of the
region of compatible values for these parameters. The famous capacity
formula of Shannon' published in 1948, C = W log (1 S/N), provides
information about this boundary when n co , i.e., when arbitrarily
complicated receiver and transmitter coding operations are allowed. The
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astonishing fact that P, could be made arbitrarily small for certain
finite nonzero values of R, W, and S/N by letting n 00 , promised the
existence of most remarkable and previously unsuspected communica-
tion systems. This led Gilbert' and others to compute the values of R,
W, S/N, and P, obtainable with specific transmitters and receivers
having fixed delay n and to compare these results with Shannon's
formula. The results were disappointing. For all systems examined, even
those permitting quite complex encodings (n = 100), it was found that
to achieve practical values of Pe S/N had to be at least 6 db more than
that given by the capacity formula. The question arose : was this result
due to the comparative poorness of the specific systems chosen, or is
the approach to the ideal systems described by the capacity formula
inherently very slow with increasing n? For a fixed finite value of n, what
values of R, W, S/N and P, are theoretically attainable?

Some information on this subject for large values of n was given by
Rice3 as early as 1950. The question was answered in considerable detail
by Shannon in an important paper' in which he presented a number of
inequalities that permit rather accurate determination of the region of
attainable parameter values for all values of n. Shannon's primary interest
here was again in the case of large delay, and he developed asymptotic
forms for his inequalities in this case. For small delay, the inequalities
involve quite complicated expressions and their numerical evaluation is
not a simple matter.

The present paper describes in Appendix A a technique which, by
means of an electronic computer, permits highly accurate evaluation of
the quantities entering these inequalities. The technique has been used
to map out bounds on the compatible region of the six quantities in
question over a wide range of parameter values. The results of the com-
putations are presented here in a number of curves which cross plot the
quantities in various ways which we hope will be useful to the communi-
cation engineer.* In particular, the curves show quantitatively the
improvement in communication systems that can be achieved with a
given degree of coding (measured by delay). Considerable improvement
can be obtained with a small amount of encoding, but to approach within
a few db of the capacity formula in general requires extremely compli-
cated systems. The curves also give numerical information concerning
the trade-offs of the various parameters. They should provide useful
references of comparison for existing communication systems.

* An application of these curves to the problem of determining the threshold
in modulation systems that expand bandwidth is given in Ref. 5.



684 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963

N

0
3",

16

12

-8

-12

-16
0 02 04 06 08 1.0 1.2 1.4 1.6

R/W IN DITS PER CYCLE

Fig. 1 - Relationship between signal parameters with arbitrarily complex en-
coding. Solid curve gives y = 10 logo S/N vs R/W; dashed curve gives z = 10

logo (SW /NR) vs R/W.

II. IDEAL SYSTEMS - UNRESTRICTED CODING

The solid curve on Fig. 1 shows a plot of the relation

R = W logio (1 + S/N) (1)

in terms of tile two dimensionless quantities

r = R/W, y = 10 loglo (S/N).

This curve can be interpreted* as follows. For values of R, W, S and N
corresponding to points above the curve, transmission with arbitrarily
small positive values of P. can be achieved by use of sufficiently com-
plicated coding schemes (sufficiently large finite values of n). For values
of R, W, S and N corresponding to points below the curve, Po is bounded
away from zero independently of n. For systems represented by these
points, no amount of coding can make the error probability arbitrarily
small.

* There are many subtle and thorny points in the argument that permits one to
apply the capacity formula to communication systems transmitting continuous
signals. Some of these points are discussed in Appendix B.
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In many communication situations, the quantity

S/N S/RZ=
R/W N/W

is a useful system parameter. This quantity is the signal energy per dit
divided by the noise power per unit bandwidth. From (1),

Z = (lot - 1)/r. (2)

The dashed curve of Fig. 1 shows a plot of

z = 10 logo Z

vs r as determined by (2). For a given value of r, values of z above the
curve are attainable with arbitrarily small positive P, and finite delay;
arbitrarily small positive values of P. cannot be obtained for z values
below the curve with finite delay.

The curves on Fig. 1 describe the relations between R, W, S and N
along the intersection of the planes P, = 0, n = co with the boundary
of the region of mutual compatibility of the six parameters. The inter-
section of any two other planes, say Pe = ci and n = c2 , with this
boundary also determines a curve in the y -r or z -r plane. Unfortunately,
the exact form of these curves is not known at present.

III. FINITE ??, AND NONZERO Pe

To understand fully the assumptions implicit in the remaining curves
to be presented here, it is necessary to recall the approach taken by
Shannon in Refs. 4 and 6.

Since the signal produced by the transmitter is limited in frequency to
the band (0,W) cycles/second, it can (according to the sampling theo-
rem) be thought of as generated by the application of a train of impulses
as input to an ideal low-pass filter with cutoff frequency W. The im-
pulses are spaced 1/(2W) seconds apart and are of varying amplitude.
During a fixed time T, n = 2WT such impulses are applied to the filter.
During this same time T, the information source can produce one of
M = lORT different messages. One method, then, of determining from
the output of the information source the train of impulses to be applied
to the filter is to provide a dictionary that lists for each of the possible
M messages a corresponding sequence of n impulses. The transmitter
examines the source output for T seconds and determines which of the
M messages was produced. The dictionary is then consulted to obtain
the corresponding sequence of n impulses. These impulses are applied
at a uniform rate to the filter during the next T seconds. At the end of
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this time, the source has produced another message from the list of M
messages and the process is repeated. This method of encoding the
source is known as block coding of length n.

In a block coding scheme of length n, the average power of the signal
produced at the output of the filter depends on the amplitudes of the
impulses listed in the encoding dictionary. It is easy to show that each
word of the dictionary, i.e., each sequence of n impulses, contributes an
energy d2/2W to the transmitted signal. Here d2 is the sum of the squares
of the amplitudes of the n impulses in question. Since one word is trans-
mitted every T seconds, one method of achieving average power S for
the transmitted signal is to require that d2 = nS for each word of the
dictionary. We shall refer to dictionaries of this sort as equal energy
block codes.

In Ref. 4, Shannon presents explicit formulae for functions Q(r,Y)
and Q,, (r, Y) which have the following significance. For the communica-
tion model under discussion, there exist transmitters and receivers using
equal energy block codes of length n such that

P. < Qn(R/W,S/N).
For every equal energy block code of length n, the system parameters
satisfy the inequality

Pe > Rn(R/W,S/N).

Here Pe is the probability that a transmitted word of the dictionary be
decoded incorrectly. The functions Qn and Qn and their numerical
evaluation are discussed further in Appendix A.

Consider now a relationship such as

Qun(R/TV,S/N) = 10-4 (3)

which serves to determine S/N as a function of R/W. This relation could
be plotted on Fig. 1 with S/N measured in db to yield a curve lying above
the solid -line capacity curve shown there. For our purposes, the vertical
difference between these two curves is of primary interest. This difference
is shown by the bottom solid curve of Fig. 2. Explicitly, the bottom
curve of Fig. 2 is a plot of

y = 10 logio (S/N) - 10 logo (101" - 1)

vsR/W , where S/N is given in terms of R/W by (3). The bottom dashed
curve of Fig. 2 is an analogous display of the relation defined by

Qi.(R/W,S/N) =
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The two bottom curves on Fig. 2 have the following significance.
For a given value of R/W, there exist equal energy block codes of length
101 that will achieve an error probability of Pe = 10-4 with as small a
value of S/N as that given by the ordinate of the dashed curve. On the
other hand, every equal energy block code of length 101 that achieves
an error probability of 10-4 must operate with a value of S/N at least
as large as the ordinate of the solid curve. The curves thus serve to
bound the minimal signal-to-noise ratio with which an error probability
of 10-4 can be achieved when equal energy block codes of length 101 are
employed. The bounds are plotted in db above the signal-to-noise ratio
given by the capacity formula, and thus measure the penalty in signal-
to-noise ratio that must be paid for restricting the coding (n = 101).

The remaining curves on Fig. 2 give analogous results for n = 5 and
n = 25. It is to be noted that the solid and dashed curves are much
closer together for large n, than for small n. This effect is shown more
clearly on Fig. 3, which was obtained from a cross plot of many curves
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of the sort shown on Fig. 2. For 11 = 101, there is little practical differ-
ence between the two bounds. For small values of n, however, the dis-
parity is great, and the question naturally arises: does the solid curve,
or the dashed curve, more nearly represent the minimal signal-to-noise
ratio needed to obtain Pe = 10-4 with an equal energy block code of

fixed length n?
We believe that the bound obtained from Q is quite close to the mini-

mal attainable S/N even for small n. Indeed, for n = 5, we have been
able to construct explicit equal energy block codes with a variety of

rates whose parameters plot close to the top -most solid line of Fig. 2
when S/N was adjusted to guarantee an error probability not greater
than 10-4. The five right -most triangles in the figure locate the per-
formance of certain block codes known as simplex codes [the (D,D 1)

codes of Ref. 2]. The crosses locate the performance of certain new codes
to be described in a later paper. The circle gives the performance of 5 -bit
PCM. The four left -most triangles locate the performance of some sim-
plex codes of block length 25. Apart from these explicit examples that
plot near the bounds obtained from Q, there are theoretical considera-
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tions which show that 0 is a very weak bound for small values of n.
Henceforth, in this paper we shall deal only with bounds obtained from
Q and shall treat the relationship

(27,(R/TV,S/N) = Pe (4)

as the defining equation of the boundary of the region of compatible
values of R, W, S, N, Pe and n for equal energy block codes.

IV. DISCUSSION OF RESULTS

Figs. 4, 5 and 6 give plots of S/N vs R/W as determined from (4) for
various values of Pe and n. The ordinates here, as in Fig. 2, are given
in db above capacity, i.e., in db above the solid curve of Fig. 1. One
advantage of this representation is that the ordinates of Figs. 4, 5 and 6
may also be interpreted as values of Z, the latter now being measured
in db above the capacity value given by the dashed line of Fig. 1.

From Figs. 4, 5 and 6, it is apparent that for a fixed rate and fixed
error probability modest amounts of coding (small values of n) can
produce a significant reduction in signal power, but that the return for
increased encoding diminishes rapidly. This is seen more clearly from
the cross plot given on Fig. 7.

The improvement in performance that can be obtained by encoding
can also be expressed in terms of decreased error probability for a fixed
rate and signal-to-noise ratio as is shown in Fig. 8.

An interesting feature of Figs. 4, 5 and 6 is the minimum value clearly
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evident on the n = 5 curves. It is not hard to show (see Appendix C)
that for all values of n, the curves obtained from (4) as plotted on these
figures must rise indefinitely with increasing R/W. For equal energy
block codes, there is, for any fixed Pe and n, a best value of R/W in the
sense of minimizing the additional signal-to-noise ratio needed above
that given by the channel capacity formula. When the curves of Figs. 4,
5 and 6 are plotted on a graph such as Fig. 1 with absolute S/N as
ordinate, the curves are monotone increasing but eventually for large
R/W depart further and further above the capacity formula curve. This
phenomenon is due to the restriction imposed here that all code words
of the dictionary have the same energy, a restriction likely to be realized
in practice. This point is discussed further in Appendix D.

Another way of presenting (4) that shows the departure from the
ideal system of the capacity formula that results with equal energy block
codes of restricted length is shown in Fig. 9. Fix Pe and n. Then from
(4), a given value of r = R/TV determines a corresponding signal-to-
noise ratio, S/N. From the capacity formula, using this value of S/N
it is possible to achieve any desired Pe with a rate per bandwidth r =
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login (1 + S/N) by sufficiently complex encoding. The ratio rlf then
measures the price paid in lost rate due to restricting the amount of
encoding. The solid curves on Fig. 9 were obtained from Q and give
upper bounds on r/f for equal energy block codes; the dashed curves
derived from Q give lower bounds for this ratio. It can be shown (see
Appendix C) that the solid curves approach (n - 1)/n asymptotically
with increasing R/W.
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Yet another way of viewing the bounds is given on Fig. 10. Here, for a
fixed signal-to-noise ratio and a fixed error probability, the improvement
in signaling rate that can be obtained by increasing the length of equal
energy codes is shown. It is seen, for example, that even with signal to
noise ratios as high as 20 db, one cannot achieve 75 per cent of the ideal
rate with equal energy codes of length less than 15 when the prescribed
error probability is 10-6. The S/N = 00 curve is given by r/f =
(n - 1)/n. That this limiting curve is different from unity is again due
to the fact that the bounds used here are those for equal energy codes.
If restricted energy codes were used, (see Section V) the limiting curve
corresponding to S/N = 00 would be r/f = 1.

V. CONCLUDING REMARKS

The exact computation of Qn that was carried out here allows one to
test the range of validity of Shannon's asymptotic expressions for this
quantity. On plots such as Figs. 4, 5 and 6, his formula* (4) of Ref. 4
gives curves in very close agreement with those shown for n = 101.
At n = 25 the error is about 0.1 db at large rates and 0.3 db at small
rates. This formula was used to compute the curves for n = 500 and
1000 shown on Fig. 5. Although it involves only elementary functions,

* This formula contains a misprint. The printed version must be multiplied by
-G to be corrected.
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the formula is quite complicated, and for extensive computations ma-
chine methods are desirable. For moderate or small values of n, exact
values of Q can be obtained by the method of Appendix A with com-
parable ease. Shannon's elementary asymptotic formula (73) of Ref. 4
has also been evaluated. For n = 500 and 1000, it gives values that
agree with the curves of Fig. 5 to about 0.1 db for R/W > 0.5. For small
rates it gives values 0.5 db too large. The accuracy of the formula
diminishes rapidly as n is decreased below 100.

The bounds presented here were obtained for communication systems
using equal energy block codes of fixed length. It is, of course, possible
to signal using block codes that have words of differing energy. One code
of this sort of particular interest that is treated by Shannon in Ref. 4,
Section XIII is the restricted energy block code. In these codes, each word
of the dictionary contributes energy ST or less to the transmitted signal,
i.e., for each code word d2 :5_ nS. Note that for these codes S is no longer
the average signal power, but rather the maximum contribution to the
signal power by any code word.

For any communication system with parameters R, W, 8, N using a
restricted energy block code of length n, Shannon showed that the aver-
age error probability, Pe', for a decoded word is bounded below by

Pe Q, n R
n+ 1W'N (5)
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For any fixed value of R/W, as n becomes large this lower bound ap-
proaches the one already given for equal energy block codes, and so
asymptotically (in n) one can do no better with restricted energy codes
than with equal energy codes. However, for any fixed value of n, as
R/W becomes large the lower bounds for the two classes of codes be-
have very differently, and indeed it is easy to argue that in this limit
restricted energy codes are superior to equal energy codes. This point is
discussed further in Appendix D.

The solid curves of Fig. 11 are those already shown in Fig. 6. The
dashed curves were obtained from the lower bound (5) for restricted
energy block codes. These dashed curves approach the horizontal
asymptotes indicated at the right. From the figure it is seen that for
R/W < 0.6 and n > 25 the bounds for restricted energy codes differ
from those for equal energy codes by less than 0.2 db. For small values
of n, the dashed curves lie below the solid ones even for small rates.

It should be pointed out in closing that the error probability P, used
throughout these calculations is the probability that a word of the block
code be improperly identified when a maximum likelihood receiver is
used. This is not in general the probability that an individual decoded
decimal digit be in error but rather an upper bound to this quantity.
For large n, a single code word is decoded into many decimal digits
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The received code word may be incorrectly identified and yet decoded
into a block of decimal digits many of which are correct. When large
block codes are used and P. is small, errors in the decoded stream of
decimal digits are not distributed uniformly. Many successive groups
of decimal digits, each containing RT digits, will be error free. Then a
single block of RT digits will be produced that contains from one to
RT erroneous digits. This bunching of errors may, in certain applica-
tions, be a serious drawback to the use of block coding.
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APPENDIX A

Computation of Q and Q

Our notation is similar to Shannon's4 and we here adopt his geometrical
point of view :

S = signal power (each signal vector is of length VnS);
N = noise power (variance N in each dimension) ;
A = VS/N = signal-to-noise "amplitude" ratio;
n = number of dimensions;

M = number of signal vectors;
St( 0) = solid angle in n -space of a cone of half -angle 0, or area of unit

n -sphere cut out by the cone;
-Q(0) = probability of a point X in n -space, at distance A Vn from

the origin, being moved outside a circular cone of half -angle 0 with
vertex at the origin 0 and axis OX (the perturbation is assumed spherical
Gaussian with unit variance in all dimensions) ;

01 = angle such that MU( 01) = 2(7).
Shannon shows [his equation (20)] that

1

1)

fa'
Q(01) Pe 5

S2(0
Q(0i) - Q(0) (1Q(0),

where Pe is the error probability of the best equal energy M -vector code
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in n -space used with signal-to-noise ratio A. We proceed to discuss the
evaluation of these quantities.

As shown by Shannon [his equation (21)]
(n 1) ir(n-1)12 0

dE.
(n 1 ( 6)

The surface 0(7) of the unit n -sphere has area

fir

P (22: 1.)

A change of variable sine = t shows that

S2(0) - 1

g(r)

(n2) ain' 0

J
) 0 - t)i dt

o

1 zon20n-1 1)
72- 2 2

where a(p,q) is Pearson's incomplete beta function.7 Thus 91 is given
by

2 n- 1 1

M isin2o1 , ,) . ( 7 )

The rate is related to O, by

R 2
=

W n
- logio M. (8)

To evaluate Q(0), it is convenient to use n -dimensional cylindrical
coordinates with origin located on the axis of the cone at a distance

/

from the vertex and within the cone. The z- or rotational axis of the
coordinate system coincides with the axis of the cone and is oriented so
that the vertex of the cone has z-coordinate - 1. Denote distance from
the z-axis by r. Then an element of "area" distant r from the axis and
having radial dimension dr and axial dimension dz sweeps out volume

(n - 1)7r(n-1)/2rn-2dr dz

r\n± 1)
9
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when rotated about the z-axis. One has therefore
fop fra-1 exp [-i(r2 z2)] (n -1),r(n-i)r

Qu = Q(0) = f dz , (9)
J-00 (270142 + 1

2 )
where we have set

Now set

One then has

(271

en

cn =

a = cot O.

1

2(n-10/2 r (ft
2

1)

rra-1r dr r exp 4r2) fr"-" dz exp ( -1z2)

= -exp (-17.2) n -3
r a-1

-CO
dz exp ( -1-z2)}

00

0

 (n - 3) f dr exp (-ir2)rn-4 dz exp ( - Zzz

0

+ a f dr exp ( -12-2/2)rn-3 exp
[_ (ar - 1)21

2

= - 3) (2._2 aJ-2 , U > 3,
en -2

on integrating by parts. Here

(10)

(1 a2)r2 - 2alr = dr rw-1 exp [
0 2

- +1 f: dr rn-2[(1 a2)r exp [(1 + a2)r2 - 2alr 12]

2

al [(1 a2)r2 - 2alr
± f: dr rn-2 exp -

2

al , 1 n-2 (1 + a2)72 - 2alr + 121
d n-1 - r exp [ -

1 a2 1 + a' 2 0

n - 2 r a2)1,2 - 2alr 12

dr r"-3 exp
1 ± a2 0 2

CO
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al rr -2
J, -2 n > 2. ( 1 1 )1 + a2 1 + a2

Now set

G = c.2.1csc 0, b -

One has from (10) and (11)

= Qn-2 + cos 0

= t cos 0 sin 0 bG--1 n - 1

r (n2)
In ± 1\ ' = A/2

C2/2 )

n - 2

n - 2lin - b-2n - 1
The initial values

with

sin2 0 G-2 ,

b1 = b2- -
A/7r

GI = 2 exp ( -E2 sine 0) erfc ( -t cos 0)

02 = - sin 0 e22t+ sin 0 cos 0 GI,

Q3 = z erfc(t) + cos 0 G1,

> 3

n > 2

n > 2.

(12)

erfc(x)
2 r.

e-12 dt
V 7 ' x

permit one to compute 11(0) for odd n from the recurrence (12). Since
0 < 0 < 7/2, all quantities involved are positive.

The curves of Figs. 4, 5, and 6 were obtained as follows. With 01 fixed
in value Q5 , Q15 , Q25 Q51 and Qioi were determined as functions of t by
repeated application of the recurrence. A given Q(01) was then expressed
as a function of the signal-to-noise ratio, A2, by the relation t = A1/n/2.
Values of A2 for which Q(01) took the values 10-2, 10-4, 10-6 were de-
termined graphically. The corresponding rate was found from (7) and
(8). Repetition of the process for different values of 01 permits plotting
the curves.

An integration by parts and (6) allow Shannon's upper bound to be
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written in the form

= MrVrbn_i Qn sinn-2 0 do.

Curves based on (), such as shown on Fig. 2, were obtained by using the
recurrence (12) to obtain values of Q(0) for a fixed E. The integral in
(13) was evaluated numerically using a trapezoidal formula with 150
points of evaluation for the integrand. Values of and 01 were expressed
in terms of R/TV and S/N as already explained.

APPENDIX B

(13)

The theorems and formulae of Shannon's Information Theory are
statements about certain mathematical constructs. In order to make
useful inferences from these formulae about physical communication
systems, it is necessary to examine the sense in which the mathematical
model approximates the behavior of the key elements of the physical
system. At best, the correspondence between mathematical and physical
entities is only a close approximation: the "true" theorems of the
mathematical model, when stated in physical terms, are only "partial
truths."

The formula

C = (a/2) logio (1 + S/N) dits/second (14)

gives the capacity of the following mathematical channel. Real numbers
are chosen at a transmitting point at the rate a numbers per second.
Each number chosen is transmitted to the receiving point, but is per-
turbed by an additive Gaussian variate, so that the ith transmitted real
number, si , is received as si + xi . The xi are assumed independent
Gaussian random variables with the same variance N. The transmitted
sequence satisfies the constraint

K

liM E s, = S.
K -..co 2K -K

(The reader should consult Ref. 8, Chapter 9, for a more careful, rigorous
definition of this channel and a precise mathematical interpretation of
the capacity formula.)

The foregoing description of the channel is essentially that given by
Shannon in Ref. 4. The channel is discrete in time; there is no mention
of bandlimited continuous functions of a time variable defined on the
real line. Within the mathematical theory, there is no question of the
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validity of (14) for the capacity of the discrete time channel described
nor of the validity of Shannon's bounds for the error probability attain-
able with block codes of finite length. The problem is to justify the
application of these formulae derived for a discrete time mathematical
channel to physical communication systems employing "continuous"
signals of "bandwidth" W.

I have placed quotation marks around the words continuous and
bandwidth to call attention to the fact that these two concepts have no
well -accepted operational definitions in terms of experiments in the real
world. They are again part of another strictly mathematical model that
is used to describe signals of the physical world. The elements of this
mathematical model are the real number continuum, functions and
Fourier analysis. The correspondence between these elements and
observables of the laboratory (meter readings, etc.) is again an approxi-
mation -a very good one in many circumstances, but a poor one in
many others. It is meaningless to ask if the reading of a meter in the
laboratory is a rational number or an irrational one, or if the trace seen
on an oscilloscope is a continuous function in the sense used in the
mathematical model. Within the mathematical model, there are many
notions introduced for which one cannot easily find meaningful counter-
parts in the real world of the laboratory. The asymptotic behavior of
spectra at infinity is such an example. One must be very suspicious of
the utility of applying in the real world formulae derived from the
mathematical models which are sensitive to assumptions about those
concepts of the model that have no operationally defined counterparts in
the laboratory.

It is evident that a good case for applying (14) to real communication
systems can be made if one can justify the statement

"In the laboratory, using signals of duration T and bandwidth W,
we can communicate about 2W T numbers and no more." (15)

Perhaps it would be simplest to take this statement as a basic axiom
for practical communication engineering and justify it by experiment
(with "bandwidth," "number," etc. suitably defined in operational
terms). It is intellectually more satisfying, however, to be able to derive
it from the mathematical models that have served so well to describe
signals in other circumstances.

The approach taken by Shannon in Ref. 6 and paraphrased here at
the beginning of Section III is one method of deriving statements in the
spirit of (15) from the usual mathematical model of signals and spectra.
This approach is reasonably satisfactory in justifying the fact that for
very large T one can transmit 2WT numbers using signals of (mathe-
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matical) bandwidth W and nominal duration T. From it one can argue
rather convincingly that rates arbitrarily close to those given by the
capacity formula can be achieved with arbitrarily small error probability
using (mathematically) bandlimited functions for signaling. Using this
approach, however, it is difficult to make a convincing argument that
one cannot exceed capacity or that Shannon's bounds Q. and Q have
any significance for channels employing (mathematical) bandlimited
functions.

The difficulty here lies in the fact that mathematical bandlimited
functions are entire functions and hence perfectly predictable for all
time from knowledge over any finite interval. If one allows all the usual
mathematical operations, the receiver, on the basis of observing the
bandlimited signal plus noise in an arbitrarily short time interval, could
extrapolate this function for all time and obtain sample values at an
arbitrarily great rate.

The heart of the dilemma presented here lies in the fact that the
mathematical specification that a signal be bandlimited is a statement
about concepts of the model that have no well defined physical counter-
part - namely, the behavior of spectra at infinity. The sampling
theorem, unfortunately, requires an assumption about this nonphysically
interpretable part of the mathematical model.

Yet, one feels that in the real world something like (15) holds with
laboratory meanings for bandwidth. If so, this should be derivable from
the mathematical model of functions and Fourier analysis without
making assumptions in the model about such nonphysical entities as the
behavior of spectra at infinity. A result of this sort is indeed the content
of an important theorem recently published by Pollak and Landau.'
Their results are too complex to discuss in detail here. The main point
is that within the classical model of functions and Fourier analysis they
define a suitable class of functions that are "limited" in both time and
frequency. The definition of this class does not entail specification of
spectral behavior at infinity. The specification, when translated to
physical terms, involves only an assumption about one's ability to
measure energy, and the correspondence between their class and labora-
tory bandlimited signals defined in an operational way is easy to make.
They prove that in an appropriate sense this class of functions is 2WT-
dimensional. From this, a form of statement (15) results which is, I
believe, the best justification on theoretical grounds to date of this
important postulate.

Quite apart from this difficulty of justifying (15), there are, of course,
many other ways in which the mathematical model only approximates
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the behavior of equipment in the laboratory: measurement errors pre-
vent one from specifying real numbers meaningfully by more than a
finite number of significant figures; disturbances are not truly Gaussian;
etc., etc. The attainment of arbitrarily small error by sufficient encoding
in the mathematical theory entails a delicate balance between many
quantities which only approximate their physical counterparts. One
should not believe that real communication systems can be built which
will signal at fixed rates with arbitrarily small error. Somewhere, for
large enough n, the mathematical model fails to describe adequately
the physical realities. How large is this n? This is a very difficult ques-
tion. My engineering judgment is that the results given on the curves of
this paper for n up to 100 might conceivably be achieved with real com-
munication systems. Until we have learned to describe and instrument
optimal codes of this size, I am safe from experimental contradiction.
Today, this time seems remote.

APPENDIX C

We show here that if

Q(R/W ,S/N) = Pc (16)

and

= log ( 1 + (17)

then, with n and Pe fixed (0 < P < 1),

lim
R/W n - 1

R I IV -..00

Referring to (7) and (8) we see that if R/W 00, then 01 0. In-
deed, for small values of 01 , one can easily develop the incomplete beta
function to obtain

R= 2- In (n - 1)0 in
n k 2

1

' 2f

- (n - 1) 111 sin O + 0 (012)1 logy, e.

Here t3(x,y) = r(s)r(y)/r(x y) as usual.
It is now convenient to write equation (9) as

(0_ r cot 81 -
11 dr dzr exp [

d 0 -00
r2 z2)/2]

(18)
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where

d=
(n _ 1) r(n-1)/2

(27070 n ± 1)
2

and as before we adopt the abbreviation A = VS/N. The region of
integration is shaded in Fig. 12.

Fig. 12 - Integration region and coordinate transformation.

To investigate the behavior of Q as 01 -- 0, it is convenient to trans-
form the integral by the rotation

z = x cos 01 - y sin 01

r = x sin 01 + y cos 01

and to write the result as the integral over the region y .-_. N/Ttil sin 01

minus the integral over the region G indicated in the figure.

Q, f dy f dx(x sin 01 + y cos 01)n-2 exp - x2
co 1/21

(I Vti-A sin B1 -co 2

2

-f f dy dx(x sin 01 y cos 01)"-2 exp
G

± [ x y± 21

With A > 0, the integral over G vanishes as 01 -> 0, so

Q.
0. . 2

Ti - (cos01Y-2[ :v2

iN/WA sin si dy f_.dx(y + x tan 01 )7i-2 exp
2

.
-.). dy yn-2 exp ( -y2/2) f dx exp (-x2/2)f -v n.4 sin 81 ---.

co

= 477A sin ei
dy yn-2 ex [-Y

/
2/21 0(00.

One thus finds that if A01 co Qn/d 0 whereas if .401 0, Q8 1.
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To maintain (16), therefore, we must have A01 = a + 0(01) where
0 <a < 00, or

A (a/01).

Equations (17) and (18) now give
- 1 1)[n - 1)13

R/IV
2 In (

2 2/ -
lirn - lirn

Ri 1-0
In (1 + a-)

012

n - 1
n

(19)

- 1) In sin Oil

as was to be shown.
The preceding considerations also allow one to show directly that the

curves of Figs. 4, 5 and 6 rise indefinitely as R/W --+ 00 . For a given
R/W, denote by A? the corresponding signal-to-noise ratio obtained
from the capacity formula, so that R/W = log (1 + A?). Then A? ti
10R1w as 01 -4 0. From (18) one finds,

- 1 )012/n
A?

sinn-1 Bl

Using (19), one then has
A2/A c/02/n

with c a positive constant. As R/W 00 , 01-* 0 and A2/A . The
logarithm of this latter ratio is plotted on Figs. 4, 5, and 6.

APPENDIX I)

Each word of a block code dictionary is a sequence of n real numbers
which may be regarded as a point in an n -dimensional Euclidean space.
The points of an equal energy block code all lie on the surface of a
hypersphere of radius VnS with center at the origin. The words of a
restricted energy block code all lie on the surface or within such a sphere.
In this geometric picture, the effect of the noise in the channel can be
visualized by surrounding each word of the code by a sphere of radius
\AN centered at the word. Due to the noise on the channel, a received
word lies on the average at a distance \AN from the corresponding
transmitted word. If the code is to have a small average error probability,
the noise spheres surrounding the words of the code must not overlap
too much. On the other hand, to achieve a large rate, it is necessary to
have many words in the dictionary.
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The volume of a sphere of radius r in n -space is proportional to 7-'1.
The fraction of the volume of such a sphere that lies external to the
concentric sphere of radius ar, 0 < a < 1 is therefore

rn - (cur - 1 - an.

For large enough n, then, almost all the volume of the sphere lies near
its surface. For example, if n 460, then at least 99 per cent of the
volume of the sphere lies within a thin skin of the surface whose thick-
ness is 1 per cent of the radius of the sphere.

Suppose now that N and S are fixed, and consider the problem of
placing code words on or within the sphere of radius VnS so that the
spheres of radius -V nN surrounding each code word do not overlap
appreciably. The radius of these noise spheres is a fixed fraction, A/YTS,
of the radius of the large sphere of radius -V nS. As n becomes large,
almost all of the volume of the large sphere lies within a skin of the sur-
face of fractional thickness much less than VN/S. It is not surprising,
then, that little is to be gained by placing code words interior to the large
sphere. Indeed, Shannon's bounds prove that in the limit n 00

restricted energy block codes give no better performance than equal
energy block codes.

In contrast now consider the situation when n and S are fixed and
R/W becomes large. As we seek to place more and more code words on
or within the sphere of radius -VnS, the noise power N must be con-
tinuously decreased to prevent the noise spheres surrounding the code
words from overlapping. Ultimately, for large enough rates, N must be
made so small that the radii of these noise spheres is very small compared
to the thickness of the skin of the sphere of radius NAS containing most
of its volume. It then becomes possible to pack appreciable numbers of
code words interior to this sphere and restricted energy codes then give
better performance than equal energy codes.

The asymptotic behavior of the dashed curves of Fig. 11 can readily
be deduced from the bound (5) and the material of Appendix C. The
curves are given by

n R S
Pe = Qn+1 it ± 1W ATI

To maintain 0 < PE < 1, we find as in the derivation of (19) that

A (a/01)

where a is given by
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nirn/ 2 0o

Pe - 1/7 f dy exp ( -y2/2)
(27)./21' en2 ± 1) aV

1 f'
do t("'2)-' r

.1 .1,x2(n+1)
2

In the right member of (18), replace n by n 1; in the left member,
replace R/1V by [n/(n 1)](R/W). There results

W
log [nI3 ' 2)12/n

sine 01

It follows then that

A2/Ai2

[1113
2- ' -9

(it
a2

so that

2
10 log 20 {log a - log [nti (16 -1)1

Ai2 2 ' 2

This latter value is the horizontal asymptote for the dashed curves of
Fig. 11.
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Analysis of Delay in Mathematical
Switching Models for Data

Systems

By D. G. HAENSCHKE

(Manuscript received August 17, 1962)

Traffic delay, caused by temporary all -lines -busy conditions, is analyzed
for three mathematical switching models. They are classified as "address
camp -on," "retrial," and "message storage" models. The models are de-
signed to permit a study of basic traffic theoretical problems encountered in
the rapidly growing field of data communications, but they are not identical
with any of the existing data switching systems. Each model assumes that
a message is switched only through one switching center which must es-
tablish connections via line groups to one or more addressed receiving sta-
tions, i.e., each model contains only a single switching center. Numerical
results for the average delay on all messages are obtained on the IBM 7090
computer.

I. INTRODUCTION

Switching centers can be used to link together communication lines
for the transmission of data between a variety of business machines and
computers. Due to randomness in the required interconnections a switch-
ing center may occasionally not find an idle line to a particular receiving
station, so that a delay can occur. More than one method can be followed
when a switching center finds all lines to a receiving station busy. Some
switching models appear to obtain lines to the addressed receiving sta-
tions in a shorter time than other switching models. This means that
with one switching model a given delay requirement can be met with
fewer lines than with another switching model. This is not to say that
the model which would render a given grade of service with the least
number of lines also is the most desirable from an economic point of
view, because delay is only one factor which enters into the choice be-
tween data switching systems. Components of a switching system, such

709
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as lines, memory, etc. do not bear the same price tag, and minimizing the
number of components of one kind does not ensure economical efficiency.

Interest in the particular traffic engineering problems of data switch-
ing has been present for at least 15 years. Yet, traffic engineering work
was mainly concentrated on classical telephone trunking problems, and
a variety of such fundamental problems have been worked out. Some
of the data switching systems which are being studied or are now in use
cannot be analyzed by standard mathematical approaches of traffic
theory because the operating conditions differ from those of the mathe-
matical models used in the analysis of classical telephone problems. The
understanding of the fundamental traffic theoretical problems encoun-
tered in data switching is a prerequisite for an exact mathematical analy-
sis of message delay in data systems. The fundamental problems need
to be studied on simplified models which lend themselves best to mathe-
matical treatment and, therefore, will not be identical with any of the
present data systems in use. We have constructed for study three hypo-
thetical models which we call "address camp -on," "retrial," and "mes-
sage storage" models, and have analyzed message delay for each of them.

Message delay is defined as the delay between initial request by the
switching center for a line, and the moment the message is released
from the switching center for transmission. The switching center handles
messages in a manner described by one of the three switching models.
The delay is caused by temporary all -lines -busy conditions in the line
groups which connect the switching center with the addressed receiving
stations. This type of traffic delay must not be confused with the total
delay from the time a message is ready at the data source and the time
the message is actually received at a destination. No account is taken
of messages which are switched through more than one switching center
in tandem.

This study, then, shall not be looked upon as an attempt to make a
choice between switching systems, since such a choice cannot be based
solely on the delay performance of mathematical models. A true com-
parison between switching systems must include other factors, as for
instance the cost of memory and logic, loading of transmitters, and load-
ing of incoming lines, all of which are neglected here.

II. DESCRIPTION OF MATHEMATICAL SWITCHING MODELS

The following describes each of the three switching models. The de-
scription is preceded by an outline of features which are common to
each model. The mathematical derivations given in the appendices and
the delay curves are based on these models.
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2.1 Common Features

711

Think of a data source feeding messages into a switching center that
has a large number of line groups radiating from it (see Fig. 1).

Each line group connects one, and only one, receiving station with the
switching center. A receiving station is capable of receiving from all
lines in its group simultaneously. There might be one or more lines per
group, but each group contains the same number of lines c. Full access
is given to each line in a group. A message is said to have A addresses
when a copy of the message must be transmitted over A different line
groups to A different receiving stations. The number of addresses per
message remains constant for all messages. The switching center is
responsible for transmitting a copy of the message to each of the ad-
dressed receiving stations. The addresses of a message are chosen at
random from a large number of possible receiving stations. This permits
us to assume that all line groups are independent of each other. 4es-
sages are originated and addressed in such a way that al , the information
load offered to a group, is the same for every group. The information
load is defined as the number of first, i.e., unrepeated, message attempts
which are expected to be generated during an interval equal to one aver-
age message length. First attempts are made Poisson distributed in
time, meaning that the probability that exactly k first attempts are
generated during an interval of length t is given by

DATA SOURCE

DATA PROCESSOR OR
INCOMING LINES FROM
SWITCHING CENTERS

ORIGINATING
OR

INTERMEDIATE
SWITCHING CENTER

OUTGOING
LINE GROUPS

RECEIVING
STATIONS

Fig. 1 - Switching model.
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Pr (k,t) - (ait)k
k,

in which t is in units of the average message length. The length of all
messages is exponentially distributed with mean 1. In the mathematical
derivations the average message length is taken as the unit of time. An
exponential message length distribution is chosen, since it is believed
that it will serve as a good approximation in a larger number of practical
cases than a constant length. The instant a new or repeated message is
originated, the switching mechanism begins to hunt for an idle line to
each of the addressed receiving stations. No delay is imposed by the
switching mechanism itself. Each new message is eventually delivered to
the respective receiving stations, i.e., no messages are lost. The system is
in statistical equilibrium, which is to say that the system is in the steady
state such that the average number of messages in the system during
any long interval of time remains constant.

When all lines in a group to one or more of the receiving stations are
busy we must find a way of delaying delivery. The camp -on and storage
models assume that blocked requests form queues at the switching cen-
ter. The retrial model assumes that blocked requests are withdrawn from
the switching center and reoffered at a later time.

The reader has doubtlessly observed the very simplified and idealized
set of common features on which the switching models are based to per-
mit mathematical analysis. The same applies to the features which are
unique to each of the three models.

2.2 Address Camp -On Model

When a line group to an addressed receiving station is blocked, the
request for service in this group will camp -on and wait in the order of
arrival until a line is assigned by the mechanism which scans continu-
ously for idle lines. The assignment of available lines to waiting requests
is done on a "first come, first served" basis. When a line is assigned it is
immediately made busy. The message, however, is not released from the
data source until lines to all addressed receiving stations are secured.
When the last line is obtained, the message content is released and trans-
mitted simultaneously to each of the addressed receiving stations, after
which the lines are released. The holding time of a line in the camp -on
model is made up of the sum of two random variables: namely, the ex-
ponentially distributed message length and the time spent waiting until
lines are secured to all addressed receiving stations.
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2.3 Retrial Model

In the retrial model, a message is released from the data source only
when lines are found at the switching center to all addressed receiving
stations. If even one line group is blocked, the message is not transmitted
to any of the addressed receiving stations and is temporarily cleared from
the switching mechanism without making any lines busy. A blocked
message is reoffered any number of times from the data source after a
constant time interval T, until an idle line is found simultaneously to
each addressed receiving station. At a retrial of a blocked message, an
attempt to seize an idle line is made in the same groups as at the previous
attempt. The message delay is determined by the number of attempts
made and by the length of the constant retrial interval T. The holding
time of a line in the retrial model is equal to the exponentially distributed
message length.

Another way of making retrials is to let the delay in the delivery of
the message content to any one addressed station be independent of the
delay to the other addresses of a multiaddress message. In this case, a
message having A addresses would be considered to consist of A one -
address messages and the delay would be that
case of the retrial model.

2.4 Message Storage Model

Message storage is analysed on a model in which requests for lines in
a busy group form queues in the order of arrival. In the multiaddress
case, some addresses of the message may find their line groups busy
while other addresses may obtain lines to the addressed stations with
no delay. The model assumes that the message is released with no delay
to stations which are not blocked, and that the delivery to a blocked
station is delayed only until the instant a line is found by the switching
mechanism which scans continuously for idle lines. As in the retrial
model, the line holding time is equal to the exponentially distributed
message length.

III. METHOD OF ANALYSIS

The delay performance is analysed as messages are switched through
one switching center which employs one of the three described switching
models. It should be pointed out that the results obtained here apply
only to the mathematical models used. All approximations mentioned
in the analysis are approximations of the model to which they refer.
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The mathematical analysis of the delay performance of the address
camp -on model is given in Appendix A. The problem is to find the total
occupancy of the outgoing line groups. In the multiaddress case, out-
going lines can be held busy in excess of the message length. This excess
holding time increases the load carried from the useful information load
ar to a total load aT . The excess holding time is the average length of
time between line seizure and the time lines are found for all addresses
of the message. Erlang delay probability is used by the introduction of

an approximation which assumes that the total holding time of an out-
going line is exponentially distributed. No explicit expression is derived
for the total load aT . Solutions for aT are found by solving (7) and (10)
of Appendix A in an iterative computer program. The average delay
follows from (11).

In Appendix B the mathematical analysis is given for the retrial
model. The retrial method has been under consideration for application
in both military and commercial data systems, and this method is also
used in voice telephone communications. The mathematical analysis of
delay in systems in which blocked attempts are reoffered is one of the
fundamental traffic problems for which an exact solution is not available.
The prospect of using the retrial method in data systems emphasizes the
need to treat such systems analytically. The analysis given here is
not exact because a number of approximations had to be introduced
to obtain numerical results. Since the retrial method is a basically
unsolved problem it must first be studied in its simplest form, which
exists for the case of one address per message. Considerable effort, there-
fore, is spent in Appendix B on the discussion of the one -address case.
Our approach to the retrial problem is to find approximations for the
unconditional state probability of finding i lines in a group of c lines
busy, 0 < i < c. Then, approximations are found for the conditional
probabilities of finding i lines busy at to + r, when the state of the group
is known at to , to - T, to - 2r, etc. The delay for the one -address case
follows from (23) of Appendix B. For the three -address case the delay
is computed from (31) in a 1VIarkov process which is in itself an approxi-
mation of the retrial problem since it accounts only for a first -order
dependency.

The basic problem in the retrial model is to find approximations of the
conditional probabilities mentioned above. These are obtained by in-
tegrating a set of differential equations (16), using a line request rate
w(t) which by itself is conditioned on previous states of the line group
and, therefore, is dependent on time. The line request rate w(t) appears
as a coefficient in (16). Since w(t) can be expressed only as a function of
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solutions to (16), we cannot find w(t) explicitly, but must compute it in a
long process of progressive iterations. It will become apparent from Ap-
pendix B that not all approximations made can be clearly justified, but
the results obtained are sufficiently accurate for comparison with other
switching models. Some of the approximations appear critical for short
retrial intervals r, particularly when c is small. The amount of effort
and computer time spent on solving the retrial problem analytically is
not necessarily less than the amount of effort and time spent by simula-
tion. The problem is by no means solved, but it is hoped that by this
analytical approach the way is paved toward a more complete analysis
of retrial systems.

For message storage, the average delay can be determined by the well -
established methods of traffic theory developed by A. K. Erlang. These
are outlined in Appendix C. The average delay for the storage model is
computed from (32) of Appendix C, and no approximations need to be
made.

IV. RESULTS AND CONCLUSIONS

For a fixed amount of information load, each switching model pro-
duces different delays. This means that some switching models must be
operated at lower occupancy than others to ensure that delays encoun-
tered will not exceed the desired maximum. The delays shown below
for each switching model do not necessarily keep their relationships in
respect to each other when messages are switched through several switch-
ing centers in tandem.

The results of computations for one address per message are shown in
Figs. 2 and 3 for one and ten lines per group, respectively. Figs. 4 and 5
show similar results for three addresses per message and one and ten
lines per group, respectively. The "information occupancy" in these
figures is numerically equal to the information load offered to the line
group divided by the number of lines per group, i.e., a,/c. The term
"occupancy" refers to the percentage of time a line is occupied on the
average. The fraction of time a line is actually utilized for the transmis-
sion of information, then, is equal to a!/c, so that we may also call "in-
formation occupancy" the "line utilization."

First let us discuss the address camp -on model. This method offers
the advantage that error correction can be performed on multilink con-
nections on an end -to -end basis because the message content remains in
storage at the data source until a connection is set up to all addressed
receiving stations. The camp -on model also is of interest because storage
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Fig. 2 - Average delay on all messages vs information occupancy; 1 line per
group, 1 address per message.

at an intermediate switching center need be provided only for the ad-
dress portion of a blocked message and this might have some economic
advantages over other switching models. For one address per message
there is, in theory, no difference in the traffic delay performance of the
address camp -on and message storage models when the message is
switched only once. It should be remembered that in the camp -on model
an intermediate switching center keeps the incoming lines busy in excess
of the message length for the duration of a delay which, for a given
information load ar, increases the actual load carried. Because we con-
sider only single -switched messages, no account is taken here of this
type of line loading.

As was mentioned before, the total holding time of an outgoing line
in the address camp -on model is made up by the excess holding time,
which is the time spent waiting for other addresses to find lines, and by
the actual message length. In Fig. 6 we show the total occupancy aT/c
versus the actual information occupancy or line utilization uric for three
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addresses per message. We see that the total occupancy approaches 100
per cent at a surprisingly low information load. This is due to the fact
that the excess holding time increases the load on the outgoing line
groups, which in turn increases delays and thus brings about longer
excess holding times. This makes the camp -on model unusable beyond
certain intolerably low levels of line utilization. For instance, in the
three -address case, line utilization must be limited to about 14 per cent
or 60 per cent for line group sizes of c = 1 or c = 10, respectively. It
can be seen in Fig. 6 that beyond this point the total occupancy blows
up and with it the delay imposed on a message. A similar result was
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obtained by Weber' in a different approach. A simulation made by
Weber' for c = 1 shows close agreement with the results derived here.
For example, the simulation shows a maximum utilization of about 14
per cent for c = 1 and three addresses per message, which is the same
as derived here analytically. This indicates that considerable confidence
may be placed in the approach presented in Appendix A.

From the delay performance of the address camp -on model it is con-
cluded that any switching method in which delays become a substantial
part of the line holding time will require a relatively large number of
lines to provide adequate service. By the same token we may conclude
that even more lines will be required when the message is switched more
than once, i.e., through more than one switching center.

Next we turn our attention to the retrial model. The performance of
the retrial model as a function of the retrial interval, T, is of interest.
We observe in Figs. 2-5 that when one doubles T the delay is less than
doubled. On the one hand, we expect longer retrial intervals to cause
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longer delays. On the other hand, it can be shown that the probability
that the message succeeds on a retrial increases with increasing length
of T. Shorter retrial intervals result in smaller chance for success than
longer retrial intervals, but the fact that in any given time there are
more attempts made with short retrials than with long retrials makes
the average delay a monotone increasing function of T. For large values
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of 7, say at least twice the message length, the rate of increase of the
delay will be almost proportional to the rate of increase in T. This is
so because the rate of change of the probability of being blocked again
becomes smaller with increasing values of T. With 7 approaching 0, the
average delay with the retrial model should approach the delay for the
message storage model in the case of one address per message.

The delay in the retrial model increases with the number of addresses
per message. A comparison between Figs. 2 and 4 shows that this in-
crease is quite significant when the number of lines per group is small.
This increase can, of course, be avoided when a multiaddress message is
broken up into several one -address messages, as suggested earlier in Sec-
tion 2.3. Stations not blocked would then receive the message content
independent of the availability of lines to the other stations. If this mode
of operation is used for retrials, the retrial curves given in Figs. 4 and 5
are to be replaced by those for the one -address case shown in Figs. 2 and
3, respectively. Such a change of the retrial model would bring the av-
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erage delay for very short retrial intervals close to that of the message
storage model, independent of the number of addresses.

The retrial model has the advantage that no storage has to be pro-
vided in a switching center except at the data source. However, provision
must be made to instruct the data source to reoffer the message when an
all -lines -busy condition is encountered at a switching center. The retrial
method is particularly well suited for error correction by retransmission
from the data source on request from a terminating station which de-
tected an error.

Since the analysis of the retrial model is based on approximations, we
do not expect absolute accuracy of the curves derived. The retrial model
has been simulated by others for some special cases and it is interesting
to compare the results. This is done in Table I, in which time is expressed
in units of the average message length. We observe some disagreement
between analysis and simulation for large retrial intervals.

Finally, let us look at the message storage model. This method pro-
vides an efficient use of lines, even if the line groups are small, and delay
is independent of the number of addresses per message. It requires, how-
ever, that considerable storage be provided because each switching
center must be arranged to permit full message storage to allow for de-
lays exceeding a message length. Provision must also be made for trans-
mission of a copy of the message to each addressed station independent
of the transmission to any other station.

According to the model of the message storage method, a message is
delayed only until the very instant a line is found. From a practical
point of view this means that the line -hunting mechanism should be
activated as soon as the address is decoded. On the other hand, message
storage may be operated so that the message is stored completely at the

TABLE I - COMPARISON: ANALYSIS VERSUS SIMULATION,

ONE ADDRESS PER MESSAGE

Retrial Interval No. of Lines Occupancy ar/c
Average Delay on All Messages

Analysis Simulation I Simulation ';

0.5 1 0.7 3.25 * 3.65
0.5 10 0.7 0.11 * 0.14
1.0 1 0.5 1.94 1.84 1.76

1.0 10 0.9 3.12 2.61 1.92

2.0 1 0.7 12.65 * 8.45
2.0 10 0.7 0.36 * 0.26

* Not available.
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switching center before the line hunting starts. In this case, the amount
of time needed for full message storage must be added to the delay. The
latter mode of operation adversely affects the delay performance of the
storage model, particularly when the message is long in comparison with
the delay that can be tolerated.

The delay performance for the storage model will become consider-
ably worse than shown when the line back to the originating station
cannot be released as soon as the message has been transmitted over it.
For multiswitched messages the release of lines between switching cen-
ters would ensure that the line holding time is not increased by the de-

lay.
The curves given for the storage model can be considered accurate

because the validity of Erlang delay formulas has long been observed.
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APPENDIX A

Mathematical Analysis of Address Camp -On Model

Let the excess holding time EA be the average time between seizure
of a line and the time lines are found for A addresses of a given message.
Further, let ZK,A be defined as the average time between initial request
for lines and the time K out of A addresses have seized lines. At the time
A addresses have seized lines, the message is ready to be transmitted.
The average delay on all messages, dA , is defined as the average time
between initial request and the time lines have been seized by all A
addresses, as illustrated in Fig. 7.

The average is a linear operator, and one obtains for the expected

excess holding time

And since

1 V A
EA = rr AA.-1

WK.A= dA



it follows that
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EA = (1A - E ZK.A.
A. K=1

(1)

A1The term E ZK A is recognized as the average time between re -
11 K=1

quest for and seizure of a line for any given single address.
We define Q(t) as the probability that the delay is less than or equal

to t between the time of a request for a line by a given single address
and the time of line seizure, and obtain

1 ,s4.
74 = f t dQ(1).
A IC...17 t=0

The average excess holding time for the A -address case follows from
(1) as

co

EA = f d[Q( IAA -f t (1Q(t). (2)
t=0

The only approximation in the analysis of the address camp -on model
is the assumption that the holding time of a line is exponentially dis-
tributed, so that

Q(t) = 1 -56-9`. (3)

The holding time is made up of two random variables, namely the mes-
sage length and the excess holding time. The approximation made in
(3) implies that the sum of these two random variables is exponentially
distributed. That this, indeed, is a reasonable assumption is confirmed

0 t

W1,A

W2,AZ A -->

4E- = dA

Fig. 7 - Line seizure sequence.
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by the close agreement of the delay derived here with the delay derived
by simulation.'

Substitution of (3) in (2) gives

EA = ASS f t(1 - coe'')A-` dt - yob (it.
i=0

The above reduces with the binomial expansion for (1 - Se-c1)11-1 to

EA_ - E-A
1

- 1) ( -a)K+' a

(tc K=o\ K 1 (K + 1)2 go

For the case of exponential line holding time with meant and service
of requests for lines in the order of arrival as is the case here, we must
substitute in (4) according to Erlang2

5 = 1 - Q(0)

c - ar -c - ar
-
t a-r/a1

(4)

(5)

in which c is the number of lines per group, aT the average number of

requests per line holding time or the total load offered per line group,
and ar the average number of requests per message length or the informa-
tion load. Q(0), the probability of no delay, is given by Erlang2 as

arce-ar C

Q(0) = 1 - c! c - ar
-aT arrea T

1 - E arse
i=c i! c! c - ar

(7)

The unit of time being the average message length renders for t, the
average line holding time,

so that

1 ± EA =

ar
E A =

Substitution of (5), (6) and (9) into (4) brings

ar - 1 + ar 1 - Q(0)
ar ar c - ar ar

aT A
c - ar
ti (A - 1 [Q(0) - 11K+1.
K=0 K (K + 1)2

With c, al and A given, we can now compute aT , the total load, itera-

(8)

(9)

(10)
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tively from (7) and (10) above. Then, with aT known, we find the
average delay on all messages from (1) and (9) as

aT 1 - Q(0) ardA = - 1 (11)
ar c - aT ar

which we recognize as the left-hand member of (10).
It is interesting to take note of the fact that there are generally two

values of aT which fulfill (10). Thus, one could conclude that the system
can operate in two modes, one implying a shorter delay than the other.
More than one steady state of operation has been observed by others' ,5
in similar traffic studies. However, it appears questionable that the
heavy delay mode is stable since the larger of the two aT which fulfill
(10) decreases with increasing ar , which is physically unreasonable.

APPENDIX B

Mathematical Analysis of Retrial Model

When a newly offered message makes its first trial to seize one of c
lines in a group, let Si , 0 < i 5 c, be the unconditional probability that
the group is in state i. A line group is said to be in state i when i out of
all c lines in the group are busy. The message is reoffered until a line is
available to each of A addressed receiving stations; therefore, no mes-
sages are lost. The load carried on each group equals al , the information
load offered. For the special case of c = 1, we obtain

So = 1 - ar (12)
and

= ar (13)

For c > 1, i.e., for more than one line per group, Si depends not only
on al , but also on the procedure by which lines are made busy. By
procedure is meant the type of distribution of the length of the intervals
between line requests, and whether unsuccessful attempts form queues
or are withdrawn. For Poisson input at the rate of ao and withdrawal of
blocked attempts, Erlang loss probability3 gives

aoi/
Si = 0

i!
(14)

E aox/x!

in which

ar

a°
=

1 - Sc. (15)
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In the switching model considered here, the total input to each line
group, i.e., the total load offered, is not Poisson distributed and its mag-
nitude differs from ao . This is so because repeated attempts are blocked
with a probability which is larger than S, and because for A > 1 blocking
to any one of the A addressed receiving stations will cause a retrial. In
order to compute Si , it is assumed that for a sufficiently large retrial
interval r, the total input will at least resemble ao in distribution and
magnitude. This approximation may be justified for light line occu-
pancies but it becomes increasingly unrealistic with increasing line oc-
cupancies. The approximation for ao , therefore, is used here only to com-
pute values for Si when c >= 2. For c = 1 the values for Si are exactly
determined by (12) and (13) above. For c > 1 we solve (14) and (15)
iteratively with i = c to obtain ao and then solve (14) to obtain approxi-
mations for Si when c Z 2. The approximations for Si so obtained are
used for the unconditional state probability both in the one and three -
address cases.

Next, we will consider conditional probabilities which take into ac-
count past known states of a line group. Let it be known that at a given
time to there are j lines busy in a group, 0 < j < c; what then is the
probability that at to + t there are i lines busy? This conditional prob-
ability is called Xid(t). For Poisson input and exponential line holding
time, Xi,;(t) is given by a well-known set of first -order differential equa-
tions.4 Here, now, we must take into account that the superposition of

first and repeated attempts results in an input which is not Poisson.

We let w(t), to to + T, be the instantaneous line request rate or
the density of requests. As was said above, Xii(t) is conditioned on
state j of the group at to . Consequently w(t) depends also on the state
of the group at to , and this important point should be kept in mind,
particularly since the notation does not always remind the reader of
this condition.

Assume for the time being w(t) is known for every value of t in the
interval (to , to + r). The differential equations defining Xid(t), to

to + 7, are

Xo,l(t) = -co(1)X0,;(t) XL;(t)

= w(t) - [i w(t)]. X j(t)
(16)

(i + 1) Xi+1,5(t)

for 0 < i < c
= w(t) X,-1.;(1) - cX,,;(t).
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The condition that j lines are busy at time to is taken into account by

(1 for i = j
Xid(to) = (1i)

0 for i j,

and, as said before, by w(t). For the special case t = to ± r, the argu-
ment is dropped and Xid(to r) is abbreviated to Xi,1 . The system
(16) can be solved with Laplace transforms for c < 2, and by numerical
integration for c > 3.

Two cases are considered in the following: one in which each message
has one address, i.e., the case A = 1; the other in which each message
has three addresses, i.e., the case A = 3.

B.1 One Address per Message

In order to compute delay for the case A = 1, we must know the
probability of finding the line group in state c at to + r, given a state c
at to , to - r, to - 2r, etc. In other words, we must know the probability
that a message is blocked twice, three times, four times, etc. To simplify
the notations for the case A = 1, we write Ci for the conditional prob-
ability that all c lines of a group are busy at to + r, given a state c at to
to - r, , to - ir. Ci , therefore, denotes the probability that a one-

address message is blocked i + 2 times in a row. Co is identical with
X,,., and can be computed by (16) provided w(t) is known. It will help
to keep matters clear if, for the case A = 1, w(t) is subscripted so that
wilt) refers to the condition that at to , to - r, , to - ir all c lines of
the group are known to be busy. For instance, the line request rate used
in (16) to compute Co is called wo(t). Values for Ci , i > 1, are computed
from (16) in the same manner as Xc,G , except that wi(t) is conditioned
as indicated later. Hence, the numerical values for X,,c obtained from
(16) with wi(t), i > 0, are equal to Ci .

Let us now discuss the procedure by which wi(t) is obtained for the
case A = 1. We will find functions Li which are conditioned on a state
c at to , to - r, , 10 ir, such that

wi(t) = Li(Co , C1 , C2 (18)

This means that we cannot obtain an explicit expression for wi(t)
since wi(t) is needed to compute Ci from (16). But with (18) we come
into a position which allows us to assume values for Ci , compute wi(t)
from (18) and then use the so -computed wi(t) to obtain Ci from (16).
Through successive iterations stable solutions are obtained for Ci such
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that (19) is satisfied

S. < Co < < C2 < <1. (19)

The above approach, of course, is extremely tedious when Ci must be
computed for large numbers of i. The problem is simplified when one
assumes for large enough i that Ci = Ci+1 . Computations have shown
that for retrial intervals r > 0.5 we may reasonably approximate C, =
Ci+1 when i > 4. This approximation, consequently, is used in the
one -address case. It is mainly for this approximation that the analysis
for the case A = 1 is limited to retrial intervals r 0.5.

Before we define the function Li in (18), we will give the method by
which the successive iterations are performed by a computer program to
compute Ci . We start by iterating for a stable value of Co with Ci = Co
for i > 1. Next, we iterate for a stable value of C1 with Co fixed and
Ci = C1 for i > 2. Now we go back and iterate for a new value of CO
with C1 fixed and Ci = C1 for i > 2. This process is continued until no
further changes in Co and CI are detected. Continuing one step further,
we iterate for a stable value of C2 with Co and C1 fixed and Ci = C2 for

3. Again, we back up and search for a new value of Co with C1 and
C2 fixed, then search for a new value of C1 with Co and C2 fixed and finally
search for a new value of C2 with Co and C1 fixed, all with Ci = C2 for

3. We proceed in steps in the manner described above until finally
no changes are detected in Co , C1, C2, Ca , C4 with Ci = C4 for i 5.

With the approximation Ci = C4 for i > 5, we can write for (18)

wilt) = Li(Co , C1 , C2 , C3 , C4 , (20)

Line requests are made by first and repeated attempts. First attempts
arrive independent of time with a density v. Repeated attempts arrive
with a density ui(t), in which i refers to the condition that all lines are
busy at time to , to - r, , to - it and t is some time such that

to < t 15 to r. With these definitions we substitute for Li(Co , CI , C2 I
Cs , C4 , I) in (20)

coi(t) = v ui(t). (21)

The density of first attempts, according to definition, is numerically
equal to the information load offered or

v= al.
The density of repeated attempts in the interval (to , to + T) is derived
from first attempts which are made before to and are blocked. For in-
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stance a kth attempt, k > 2, occurs at 1, to < t 5 to + T, if the attempt
occurs first at I - (k - r and all lines are busy at t - (k - 1)7,
t- (k -2)r, , t As an abbreviation we write Pr (t. I ti , t2 , 13 ,  )
for the probability that all lines are busy at t. , conditioned on all lines
busy at t1 and 12 and 13 . As before, let t be an instant in time such
that to < t s to + T. With the condition that all lines are busy at to ,

to - T, , to - iT, we obtain for the density of repeated attempts at t

ui(1) = ai[Pr (1 - T I to , to - T, , to iT)

+ Pr (t - 27- I to , to - T, , to - 1T)

Pr (t - T I to , to - r, , to ir, t 2r)

± Pr (t - 3r I , to - T, to iT)

 Pr (t - 27 I to , to - r, , to iT, t - 3T)

 Pr (t - T I to, to -  r to iT, t 37, t 2r) + ]
We are left with the problem of expressing Pr (G I tl , t2 , 13 , ) in

the above as functions of Co , C1 , C2 , C3 and C4 . Assume that symmetry
exists such that for any positive length of time 1

Pr (t. / I t. t. - T, ' , tx kT)

= Pr (tx - 11tx , tx T, ' , tx kT).

In the above it is assumed that traffic congestion builds up to an all -
lines -busy condition at tz t. r, , tz + kr in the same manner as it
subsides after tx + kr. This assumption may not be exact for the retrial
system but this concept is used here since it is expected to give a good
enough approximation for the following reason.

If a group is busy, say, at to , then it must be expected that part of the
traffic which contributes to the congestion at to is reoffered traffic. The
fact that congestion occurs at to implies that all lines were busy at
to - T, to - 2r, etc., with a larger probability than indicated by the un-
conditional state probability Se . As an approximation to the function
by which traffic is expected to build up we construct linear functions
in time. For example, we assume that the probability of blocking at
some time tz < to builds up to an all -lines -busy condition at to - T and
to as shown in Fig. 8. Also, we assume independence of events that are
not really independent. For instance, we assume that blocking between
to - T and to occurs with a probability W1,1(t) as defined below. Similarly,
independence is assumed between events occurring with probability
N i(t), M i(t) or 147;,;(t) and the event which causes a repeated attempt

(22)
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4)

0

a

(t)
w1(t)

to -3T to- 2T
TIME

to -7 to

Fig. 8 - Sample of build-up function.

at some time prior to to . The approximations made in the expressions
below may account for some of the differences which are observed be-
tween theory and simulation.

A first attempt, made at some time t - jr, to S t < to T j > 1, is

blocked in the nomenclature of (22) with a probability

Pr(t - I to , to - T , to - iT)

for which we approximate

Ni(t) = -1 [t Ci(r - for j = i + 1, i > 0

Mi(t) = 1- [Cit 8,(T - for j = i -I- 2, 0

for j > i + 3, i > 0

and with Ni*(t) = (110[1(Ci - 1) + T]

Wid(t) = 1 - [1 - N,_1(t)][1 - N,_,*(t)]

for 1 <= j 1.

A kth repeated attempt made at some time t - jr, to < t < to + Ty
j > 1, is blocked in the nomenclature of (22) with a probability

Pr [t - to, to - T, , to - iT,

t - (j + 1)T ,t - (j ± 2)7 , , t (i + k)T1
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for which we approximate

1 - (1 - Ck_i) [1 -N ,(t)]

1 - (1 - Ck_i) [1 - 1111 i(t)]

Ck-1

for j =

for j

for j

+ 1, i 0

-I- 2, i 0

+ 3, i 0

731

and filially

1 - (1 - Ck-1) [1 - Wi,;(0] for 1 > j i 1.

We make use of the above expressions as shown in (22) to obtain
u; (t). The subscript i of u; (t) corresponds with the value of i in the
above approximations and refers to the condition that all lines are busy
at to , to - T, , to - iT. For every such i, i = 1, 2, 3 and 4, we have,
according to (21), a Li(Co , Ci , C2 , C3 , C4, t) and an wi(t), and can per-
form the iterations outlined before to compute Co , C1 , C2 , C3 , and C4 -

Continuing in the analysis of the one -address case, we will now
evaluate the delay. The probability that a one -address message is de-
layed exactly ir is given by DIM which is

D1(0) = 1 - S,
D1(1) = Sc(1 - Co)

i-2
Di(1) = AS,(1 C1_1) Cj I > 2.

j=0

Hi(i), the probability that the delay is greater than ir for the one -
address case, is

Hi(i) = 1 - Dia),
k=0

which reduces to

i > 0

H1(0) =

Hi(i) = Sc 11 C1, I 1.
J=0

The average delay is obtained as the summation of all possible delay
values multiplied by their respective probability of occurrence and is
given by

d1 = i (i)
i=
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which reduces to
i

d1 = TSc[1+ E Ij Ca] (23)

The above formula is used to compute the average delay on all messages
for the case A = 1. The unconditional probability of finding all lines
busy, represented by S, , and the conditional blocking probabilities Ci

are approximated by the methods outlined before.

B.2 Three Addresses per Message

The delay for the case A = 3 is computed in a Markov process. This
means that we are considering only a first -order dependency, since we
make the assumption that the conditional probability Xid of finding i
lines of a group busy at to + 7 depends only on state j of that group at
to . This and the following approximations appear justifiable in the multi -
address case when considering the multitude of factors which determine
the line request rate between to and to + T. The principal assumption
for the case A = 3 is that co, the sum of the densities of line requests
of first and repeated attempts during to and to + T, is nearly Poisson dis-
tributed and therefore independent of any states at or before to . Recall
that for A = 1 we have been concerned only with the conditional prob-
ability of state c at to T given also a state c at to or at to and to - T,
etc. For the case A = 3, however, we are concerned with an Xi,; for all
values of i and j, 0 c, 0 < j < c, as will become apparent later.
For a known w, we obtain Xij from (16). The condition that j trunks
are busy, now, is accounted for only by the initial condition as given in
(17). The density of line requests w is obtained similarly to (21) as the
sum of the densities of first attempts a! , and of repeated attempts u
which, according to our assumptions for A = 3, are time independent.
It is obvious that in the case of A addresses per message, A > 1, a line
request in a given group is made only when the condition is fulfilled
that the remaining A - 1 groups are not busy. Since independence is
assumed we can set (1 - St.)2 for this condition in the three-address
case and obtain

w = (a1 u)(1 - Sc)2 (24)

for the density of line requests in the interval (to , to ± T) in any given
line group. The expression given in (24) above, of course, is an approxi-
mation since in reality u is dependent on the state of the group at to
and since independence is assumed between the event causing a repeated
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attempt during (to , to r) and the event causing all lines to be busy
in the other two addressed line groups. But, as said before, these de-
pendencies are believed to be noncritical for the multiaddress case, so
that w is considered to be independent of time.

As in the one -address case, we are left with the problem of defining u,
the density of repeated attempts, which is expressed below as a function
of X, . We obtain u by the following approach. Let G be the probability
that a first attempt is blocked at some time prior to to . This probability
is approximated by

G = 3Sc(1 - 802 3S:(1 - + Sc3. (25)

The above is an approximation because it assumes independence be-
tween the event which causes a group to be in state j, 0 < j c, at to
and the event causing all lines of a group to be busy at some time prior
to to . For the probability that a kth attempt, k > 2, is blocked prior to
to we approximate

R = Xc.,(1 - AS,)2 28e(1 - X.,.)(1 - S.)
(26)

2X,,cS,(1 - + SA1 - Xc,c) Xc,c8;

for which it is assumed that at the k - 1st attempt one line group was
in state c, i.e., busy, but without having made any assumptions about
the state of the remaining two groups. The expression given for R in
(26) is an approximation since, as before, the known state of a group at
to is ignored and since only a first -order dependency is considered, as
mentioned earlier. The density of repeated attempts is obtained simi-
larly to the one -address case by considering all attempts which were
blocked prior to to so that

u = arG a1GR a1GR2 + 

or

= aiG
1

1

Substitution of (27) in (24) gives

u.) = (11(1
1

GR )(1 - Sc)2.

(27)

(28)

R in (28) above is a function of X,,, . This means that we cannot find co
explicitly since w is needed to compute as outlined in (16). To find
co we again must iterate by assuming a value for Xc,c in (26), recompute
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Xe,, from (16) and then use the recomputed Xc,, in (26). After having
found a stable value for w we can, from (16), readily compute Xi,5 for all

0 c , 0 c .

In order to compute the delay for the three -address case we con-
sider Pi,j,h(k), which is defined as the probability of finding the
three groups in state i, j and h respectively at the k 1st attempt,
k 0. Pii,h(k) is obtained recursively by finding all possible ways in
which the states of the three groups have changed to states i, j and h at
the k 1st attempt when at least one group was busy at the kth attempt.
Using the approximation of a first -order dependency, as mentioned
before, we get for k > 1

= E E Pc,r,s(k - 1)  X i,c X 1,  Xh,.
r=0 8=0

c-1 c

+ E PE ,,c,s(k - 1)  X i,9 X i,c Xh,s
q=0 8-0

c-1
+ E E - 1)  Xi q X i,r Xh,c

4=0 r=0

At the first attempt,

(29)

Pi,j,h(0) = SiSpSh

A three -address message succeeds at the kth attempt, k > 0, when at
the kth attempt all three groups are in states other than c. The prob-
ability of a delay of exactly kr, then, is given for the three-address case

by
c-i c-i c-i

D3(k) = Pi,j,h(k). (30)
i-o j-0 h=0

H3(k), the probability that the delay is greater than kr for the three -
address case, is

H3(k) = 1 - E D3(i), k > 0.

As in the one -address case, we find the average delay on all messages for
the three -address case by summing over all possible delay values multi-
plied by their respective probability of occurrence

c0

d3 =-- r E k  D3(k)
k=1
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or with (30)
co o--1 c-i c-i

d3 =TEEEE k-Pi,;,h(k). (31)
k=1 i=0 j=0 h=0

Recall that Pi,;.h(k) is obtained recursively as shown in (29). The un-
conditional state probability Si and the conditional probability Xi.;
which are both needed in (29) are approximated as described earlier.

APPENDIX C

Mathematical Analysis of Message Storage Model

The delay for the message storage model is computed by well-known
methods of traffic theory and is given here only for reasons of com-
pleteness. The delay in the delivery of a copy of the message to a given
station is - according to the switching model - independent of the
delay in the delivery to any other station. Delayed messages form queues
in the order of arrival. An analysis for queued service and exponential
line holding time was made by A. K. Erlang.

According to Erlang2 we
any given receiving station

with

F(0) -

d = F(0) 1

c - ar

al,e-al
c! c - al

arie-ai e
-al

1 - E +
i-c i! c! c - ar

(32)

The delay distribution, expressed as the probability that the delay is
greater than t, is computed from

F (t) = F (0) (`_a1)i.

The curves for the message storage model are calculated from (32). One
should, however, bear in mind that in certain specialized applications of
data communication a copy of the message must sometimes have been
delivered to all addressed receiving stations before the message is of use
to any one station. One would then be interested in the average delay
until a line is found to the receiving station with the longest delay of all
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stations addressed by the message. For A addresses per message this
delay is given by

= f td[l - F(t)]',

which for A = 3 reduces to

F(0) { 3 [F(0)]21
(13 - 3 -

2
+F(0)c - al 2
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